Elk Finance Preisvorhersage bis zu $0.020087 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.006729 | $0.020087 |
| 2027 | $0.006478 | $0.017018 |
| 2028 | $0.011691 | $0.028636 |
| 2029 | $0.025683 | $0.084485 |
| 2030 | $0.021842 | $0.063152 |
| 2031 | $0.025824 | $0.057651 |
| 2032 | $0.039419 | $0.10694 |
| 2033 | $0.0916014 | $0.284849 |
| 2034 | $0.073643 | $0.164969 |
| 2035 | $0.087069 | $0.194375 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Elk Finance eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.67 Gewinn erzielen könnten, was einer Rendite von 39.55% in den nächsten 90 Tagen entspricht.
Langfristige Elk Finance Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Elk Finance'
'name_with_ticker' => 'Elk Finance <small>ELK</small>'
'name_lang' => 'Elk Finance'
'name_lang_with_ticker' => 'Elk Finance <small>ELK</small>'
'name_with_lang' => 'Elk Finance'
'name_with_lang_with_ticker' => 'Elk Finance <small>ELK</small>'
'image' => '/uploads/coins/elk-finance.png?1717499443'
'price_for_sd' => 0.01947
'ticker' => 'ELK'
'marketcap' => '$314.26K'
'low24h' => '$0.01905'
'high24h' => '$0.01958'
'volume24h' => '$511.96'
'current_supply' => '16.13M'
'max_supply' => '42.42M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01947'
'change_24h_pct' => '1.6851%'
'ath_price' => '$6.03'
'ath_days' => 1447
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '20.01.2022'
'ath_pct' => '-99.68%'
'fdv' => '$826.33K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.960391'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.019644'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.017214'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.006729'
'current_year_max_price_prediction' => '$0.020087'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.021842'
'grand_prediction_max_price' => '$0.063152'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.019846924633161
107 => 0.019921025845308
108 => 0.020087979659976
109 => 0.01866137759308
110 => 0.01930188003828
111 => 0.019678115217872
112 => 0.017978270988923
113 => 0.019644514762882
114 => 0.018636543624998
115 => 0.018294423081583
116 => 0.018755043322338
117 => 0.018575539166548
118 => 0.018421212034237
119 => 0.018335094842731
120 => 0.018673323510741
121 => 0.018657544739107
122 => 0.018104136990888
123 => 0.01738223914312
124 => 0.01762453175632
125 => 0.017536504578439
126 => 0.017217482730067
127 => 0.017432464937025
128 => 0.016485792097588
129 => 0.014857090681108
130 => 0.015933060725308
131 => 0.015891637049037
201 => 0.015870749353046
202 => 0.016679311103635
203 => 0.016601586548009
204 => 0.016460515718468
205 => 0.017214891853654
206 => 0.01693953441652
207 => 0.017788121155395
208 => 0.018347055264767
209 => 0.018205291495005
210 => 0.018730971726433
211 => 0.017630113688766
212 => 0.01799577457012
213 => 0.018071136770984
214 => 0.017205582969244
215 => 0.016614303246545
216 => 0.016574871630124
217 => 0.015549674074329
218 => 0.016097326333529
219 => 0.016579237658235
220 => 0.01634843953153
221 => 0.016275375739513
222 => 0.016648642807324
223 => 0.016677648855309
224 => 0.016016307887325
225 => 0.016153821616514
226 => 0.016727276726985
227 => 0.016139372019064
228 => 0.014997169205262
301 => 0.01471388711525
302 => 0.014676092062517
303 => 0.013907808567018
304 => 0.01473281737907
305 => 0.014372678923748
306 => 0.01551035198899
307 => 0.014860519235587
308 => 0.014832506244392
309 => 0.014790160499588
310 => 0.014128867157621
311 => 0.014273648372127
312 => 0.014754923179949
313 => 0.014926647453328
314 => 0.014908735204719
315 => 0.014752564670832
316 => 0.014824058741523
317 => 0.014593751429641
318 => 0.014512425124384
319 => 0.014255736934428
320 => 0.013878476207116
321 => 0.013930936625123
322 => 0.013183484408679
323 => 0.012776232770868
324 => 0.012663510885013
325 => 0.012512774468275
326 => 0.012680536964378
327 => 0.013181366970462
328 => 0.012577259726111
329 => 0.011541560228867
330 => 0.011603807533398
331 => 0.011743658745287
401 => 0.011483046937139
402 => 0.011236399732219
403 => 0.011450839465777
404 => 0.01101199993541
405 => 0.011796690405951
406 => 0.011775466727793
407 => 0.012067950810277
408 => 0.012250847109432
409 => 0.01182933035326
410 => 0.011723320028985
411 => 0.011783708327592
412 => 0.010785624268206
413 => 0.011986386049143
414 => 0.011996770286887
415 => 0.011907854138867
416 => 0.012547222717855
417 => 0.013896489843581
418 => 0.013388841276739
419 => 0.013192264407898
420 => 0.012818571636535
421 => 0.013316495066695
422 => 0.013278262316074
423 => 0.013105359318427
424 => 0.01300078704596
425 => 0.013193464664342
426 => 0.012976912156774
427 => 0.01293801337595
428 => 0.012702329086446
429 => 0.012618200518046
430 => 0.012555915075256
501 => 0.012487344922787
502 => 0.012638593592517
503 => 0.012295844208488
504 => 0.011882522051486
505 => 0.011848158786339
506 => 0.011943038782659
507 => 0.011901061447272
508 => 0.011847957815007
509 => 0.011746568519098
510 => 0.011716488480842
511 => 0.011814234012415
512 => 0.011703885006187
513 => 0.011866710975898
514 => 0.011822431321709
515 => 0.011575088772882
516 => 0.011266808379103
517 => 0.011264064036958
518 => 0.0111976455318
519 => 0.011113051579391
520 => 0.011089519477079
521 => 0.011432779949538
522 => 0.012143318854607
523 => 0.012003823065787
524 => 0.012104623069313
525 => 0.01260045932123
526 => 0.012758070755398
527 => 0.012646201892657
528 => 0.012493068893566
529 => 0.012499805968363
530 => 0.013023107782768
531 => 0.013055745475037
601 => 0.013138210394084
602 => 0.013244201119641
603 => 0.012664252571536
604 => 0.012472490443901
605 => 0.012381622909269
606 => 0.012101786072766
607 => 0.012403566109538
608 => 0.012227731805621
609 => 0.012251457860574
610 => 0.01223600623616
611 => 0.012244443867925
612 => 0.011796471068973
613 => 0.011959688812153
614 => 0.011688307657513
615 => 0.011324958755414
616 => 0.011323740682488
617 => 0.011412669811521
618 => 0.011359771285775
619 => 0.011217422713138
620 => 0.011237642656015
621 => 0.011060494679991
622 => 0.011259151627672
623 => 0.011264848398103
624 => 0.011188354652328
625 => 0.011494413089606
626 => 0.011619805481079
627 => 0.011569455658956
628 => 0.011616272803337
629 => 0.012009619745598
630 => 0.012073752460117
701 => 0.012102235975537
702 => 0.012064071838217
703 => 0.011623462463364
704 => 0.011643005362754
705 => 0.011499612533945
706 => 0.011378460703965
707 => 0.011383306141806
708 => 0.011445593931051
709 => 0.011717608359816
710 => 0.012290046689025
711 => 0.012311770305171
712 => 0.012338099961663
713 => 0.012231004016485
714 => 0.012198702854649
715 => 0.012241316424748
716 => 0.012456294163821
717 => 0.013009275274604
718 => 0.012813814817687
719 => 0.01265490242369
720 => 0.012794311435699
721 => 0.012772850511024
722 => 0.012591698709257
723 => 0.012586614381526
724 => 0.012238926156201
725 => 0.012110393735776
726 => 0.012002982424784
727 => 0.011885692077223
728 => 0.011816158427582
729 => 0.01192299371591
730 => 0.011947428210389
731 => 0.011713830985298
801 => 0.011681992546689
802 => 0.011872753083245
803 => 0.011788806483376
804 => 0.011875147643117
805 => 0.011895179532797
806 => 0.011891953937185
807 => 0.011804304045717
808 => 0.011860169472781
809 => 0.011728031083488
810 => 0.011584350431677
811 => 0.011492691127442
812 => 0.011412706227654
813 => 0.011457086498806
814 => 0.011298878935668
815 => 0.01124826515213
816 => 0.011841243523104
817 => 0.012279283021333
818 => 0.012272913753546
819 => 0.012234142473936
820 => 0.012176536216902
821 => 0.012452079907312
822 => 0.012356085995243
823 => 0.012425929586833
824 => 0.012443707712219
825 => 0.012497516743333
826 => 0.012516748846914
827 => 0.012458616072338
828 => 0.01226351538054
829 => 0.011777343006196
830 => 0.011551028453542
831 => 0.011476340881599
901 => 0.011479055632987
902 => 0.011404170670516
903 => 0.011426227648072
904 => 0.011396500153861
905 => 0.011340203471678
906 => 0.011453610337321
907 => 0.011466679422128
908 => 0.011440208904576
909 => 0.011446443669706
910 => 0.011227279090079
911 => 0.011243941697068
912 => 0.011151162183974
913 => 0.011133767143742
914 => 0.010899228613876
915 => 0.010483709611315
916 => 0.010713947474139
917 => 0.01043585251219
918 => 0.010330533736274
919 => 0.010829096441032
920 => 0.010779054573451
921 => 0.01069340464883
922 => 0.010566710559306
923 => 0.010519718489101
924 => 0.010234209546416
925 => 0.010217340154951
926 => 0.010358846096336
927 => 0.010293545973309
928 => 0.010201839869489
929 => 0.0098696896575508
930 => 0.0094962428481765
1001 => 0.0095075148599486
1002 => 0.0096263013417856
1003 => 0.0099716890582665
1004 => 0.0098367401021693
1005 => 0.0097388330861599
1006 => 0.0097204980451354
1007 => 0.0099499994705649
1008 => 0.010274792069583
1009 => 0.010427177490217
1010 => 0.010276168166383
1011 => 0.010102696786081
1012 => 0.010113255185211
1013 => 0.010183495484376
1014 => 0.010190876746674
1015 => 0.010077964711244
1016 => 0.010109748787832
1017 => 0.010061465869098
1018 => 0.0097651536859538
1019 => 0.0097597943381768
1020 => 0.0096870745497538
1021 => 0.0096848726234611
1022 => 0.0095611581225521
1023 => 0.009543849608677
1024 => 0.0092982069581889
1025 => 0.0094598896946147
1026 => 0.0093514414037449
1027 => 0.0091879842490386
1028 => 0.0091598041739565
1029 => 0.0091589570468711
1030 => 0.0093267909964035
1031 => 0.0094579284571967
1101 => 0.0093533279081954
1102 => 0.0093295123907842
1103 => 0.0095837998102609
1104 => 0.0095514394182512
1105 => 0.0095234155274729
1106 => 0.010245710454697
1107 => 0.0096739576584232
1108 => 0.009424640804739
1109 => 0.0091160638543185
1110 => 0.0092165380653554
1111 => 0.0092377094578942
1112 => 0.0084956375173087
1113 => 0.0081945790234324
1114 => 0.008091267093484
1115 => 0.0080318096171825
1116 => 0.0080589051357531
1117 => 0.0077879171806251
1118 => 0.0079700255681982
1119 => 0.007735372905099
1120 => 0.0076960326225046
1121 => 0.0081156206520129
1122 => 0.0081740038751213
1123 => 0.0079249229070953
1124 => 0.0080848732111138
1125 => 0.0080268730074011
1126 => 0.0077393953515138
1127 => 0.0077284158196014
1128 => 0.0075841696372054
1129 => 0.0073584522933203
1130 => 0.00725529341036
1201 => 0.0072015673684477
1202 => 0.0072237357804404
1203 => 0.0072125267529723
1204 => 0.0071393802666647
1205 => 0.0072167194239453
1206 => 0.0070191498358395
1207 => 0.0069404760339294
1208 => 0.006904940902825
1209 => 0.0067295865216999
1210 => 0.0070086533225171
1211 => 0.007063632997869
1212 => 0.0071187210001655
1213 => 0.0075982244499795
1214 => 0.0075742698126895
1215 => 0.0077908080674098
1216 => 0.0077823937890197
1217 => 0.0077206335710863
1218 => 0.007460077370688
1219 => 0.0075639304281991
1220 => 0.0072442868595286
1221 => 0.0074837855548265
1222 => 0.0073744883519972
1223 => 0.0074468320606068
1224 => 0.0073167515495575
1225 => 0.0073887434752648
1226 => 0.0070766707185065
1227 => 0.0067852615692277
1228 => 0.0069025331176609
1229 => 0.007030020702436
1230 => 0.007306446269461
1231 => 0.0071418094822023
]
'min_raw' => 0.0067295865216999
'max_raw' => 0.020087979659976
'avg_raw' => 0.013408783090838
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.006729'
'max' => '$0.020087'
'avg' => '$0.0134087'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0127482434783
'max_diff' => 0.00061014965997595
'year' => 2026
]
1 => [
'items' => [
101 => 0.0072010190965067
102 => 0.0070026768001567
103 => 0.0065934399891108
104 => 0.0065957562250183
105 => 0.0065328040573474
106 => 0.0064784041933128
107 => 0.0071607199977016
108 => 0.0070758632416092
109 => 0.0069406551065536
110 => 0.0071216365682832
111 => 0.0071694909393265
112 => 0.0071708532859948
113 => 0.0073028926886651
114 => 0.0073733621415396
115 => 0.0073857826880408
116 => 0.0075935495410426
117 => 0.0076631902496577
118 => 0.0079500304725215
119 => 0.0073673833008058
120 => 0.007355384065726
121 => 0.0071241833485964
122 => 0.0069775521986541
123 => 0.0071342233088814
124 => 0.0072730125248035
125 => 0.0071284959164085
126 => 0.0071473667345528
127 => 0.0069533649952233
128 => 0.0070227114884033
129 => 0.0070824420303114
130 => 0.0070494623358687
131 => 0.0070000901370528
201 => 0.0072616333918292
202 => 0.0072468760963984
203 => 0.0074904311880996
204 => 0.0076802997988724
205 => 0.0080205782924512
206 => 0.0076654799452827
207 => 0.0076525387501238
208 => 0.0077790410086351
209 => 0.007663170882821
210 => 0.0077363968026347
211 => 0.0080087804647009
212 => 0.0080145355022638
213 => 0.0079181312081381
214 => 0.0079122649980793
215 => 0.0079307804973135
216 => 0.0080392263546497
217 => 0.0080013320398918
218 => 0.0080451843002963
219 => 0.0081000222234217
220 => 0.0083268551242661
221 => 0.0083815437687205
222 => 0.0082486787155075
223 => 0.0082606749421857
224 => 0.0082109797650567
225 => 0.0081629748466289
226 => 0.0082708828926993
227 => 0.0084680869678309
228 => 0.0084668601715145
301 => 0.0085126076838455
302 => 0.0085411080050349
303 => 0.0084187637629798
304 => 0.0083391221601243
305 => 0.008369661818386
306 => 0.0084184953970136
307 => 0.0083538257469996
308 => 0.0079546547092173
309 => 0.0080757377029358
310 => 0.0080555835721252
311 => 0.0080268816390247
312 => 0.0081486315255158
313 => 0.0081368884519529
314 => 0.0077851378074656
315 => 0.0078076557424735
316 => 0.0077865071976752
317 => 0.0078548424725038
318 => 0.007659480553723
319 => 0.0077195725641574
320 => 0.0077572617097742
321 => 0.0077794609060842
322 => 0.0078596596252872
323 => 0.0078502492312389
324 => 0.0078590746619804
325 => 0.0079779881908816
326 => 0.0085794120138685
327 => 0.0086121461855868
328 => 0.008450951152085
329 => 0.0085153453885375
330 => 0.0083917225360201
331 => 0.0084747113851162
401 => 0.0085314902479795
402 => 0.0082749174846477
403 => 0.0082597249107466
404 => 0.0081355918227418
405 => 0.0082022939129781
406 => 0.0080961660913622
407 => 0.0081222061465931
408 => 0.0080493958820362
409 => 0.0081804398618596
410 => 0.008326967393478
411 => 0.0083639860345123
412 => 0.0082666059274779
413 => 0.0081960963123233
414 => 0.0080723046554228
415 => 0.0082781729397253
416 => 0.0083383750997776
417 => 0.0082778567234074
418 => 0.0082638332932497
419 => 0.0082372589184408
420 => 0.0082694711724906
421 => 0.0083380472258849
422 => 0.008305708025505
423 => 0.0083270686370993
424 => 0.0082456640126689
425 => 0.0084188042640146
426 => 0.0086937926516223
427 => 0.0086946767842536
428 => 0.0086623374095534
429 => 0.0086491048341876
430 => 0.0086822869951473
501 => 0.0087002869562645
502 => 0.0088075919802408
503 => 0.008922734546188
504 => 0.0094600546608265
505 => 0.0093091773227572
506 => 0.0097859196937811
507 => 0.010162961012012
508 => 0.010276019217331
509 => 0.010172010988237
510 => 0.0098162044549218
511 => 0.0097987468889326
512 => 0.010330472067349
513 => 0.010180235349891
514 => 0.010162365170398
515 => 0.0099722566527433
516 => 0.010084634332075
517 => 0.010060055685124
518 => 0.010021257088484
519 => 0.010235665872352
520 => 0.01063701997535
521 => 0.010574465174522
522 => 0.010527770917539
523 => 0.01032317027593
524 => 0.010446385561386
525 => 0.010402510958268
526 => 0.010591024096773
527 => 0.0104793530896
528 => 0.010179097158994
529 => 0.010226913905599
530 => 0.010219686500544
531 => 0.010368425984446
601 => 0.01032377808332
602 => 0.010210968281276
603 => 0.010635648190658
604 => 0.010608071839537
605 => 0.010647168800596
606 => 0.010664380491967
607 => 0.010922875669109
608 => 0.011028772872261
609 => 0.011052813391368
610 => 0.011153407543978
611 => 0.011050310517212
612 => 0.011462772131213
613 => 0.011737035036722
614 => 0.01205560551491
615 => 0.012521122607215
616 => 0.012696161340196
617 => 0.012664542159794
618 => 0.013017491906307
619 => 0.013651734755158
620 => 0.012792740773244
621 => 0.013697263521999
622 => 0.013410902062961
623 => 0.012731944195002
624 => 0.012688227312693
625 => 0.013148025463738
626 => 0.014167813508822
627 => 0.013912368169869
628 => 0.014168231325886
629 => 0.01386975336342
630 => 0.013854931416814
701 => 0.014153734917464
702 => 0.014851905583664
703 => 0.014520230870688
704 => 0.014044693839662
705 => 0.014395822983196
706 => 0.014091642423598
707 => 0.013406238488047
708 => 0.013912172835632
709 => 0.013573868945583
710 => 0.013672604005923
711 => 0.014383668463901
712 => 0.014298111307074
713 => 0.014408830190387
714 => 0.014213414259357
715 => 0.01403086496551
716 => 0.013690123152256
717 => 0.01358924629972
718 => 0.013617125032592
719 => 0.013589232484405
720 => 0.013398590571468
721 => 0.013357421468521
722 => 0.013288804493282
723 => 0.013310071763105
724 => 0.013181051775052
725 => 0.013424539149398
726 => 0.01346973255168
727 => 0.013646922357567
728 => 0.013665318791019
729 => 0.014158789878276
730 => 0.013886994295859
731 => 0.014069338238246
801 => 0.014053027679751
802 => 0.012746659270781
803 => 0.012926665311351
804 => 0.013206698221471
805 => 0.013080543775038
806 => 0.012902190903375
807 => 0.012758161396832
808 => 0.012539941966646
809 => 0.0128470816241
810 => 0.013250937612991
811 => 0.013675561245361
812 => 0.014185718717211
813 => 0.014071857508382
814 => 0.013666024206283
815 => 0.013684229591754
816 => 0.013796768121179
817 => 0.01365102050037
818 => 0.013608036681662
819 => 0.01379086280455
820 => 0.013792121827579
821 => 0.01362442157565
822 => 0.013438053434453
823 => 0.013437272545136
824 => 0.013404110134513
825 => 0.013875652882599
826 => 0.014134953715697
827 => 0.014164682138328
828 => 0.014132952755991
829 => 0.014145164135958
830 => 0.013994282694482
831 => 0.014339152927195
901 => 0.014655639956863
902 => 0.014570814672152
903 => 0.014443649511747
904 => 0.01434235633638
905 => 0.014546953219179
906 => 0.014537842842054
907 => 0.014652875718756
908 => 0.014647657163007
909 => 0.014608975933177
910 => 0.014570816053581
911 => 0.014722115662782
912 => 0.014678543805129
913 => 0.014634904268347
914 => 0.014547378496451
915 => 0.014559274702501
916 => 0.014432131498954
917 => 0.014373309235315
918 => 0.013488763524541
919 => 0.013252384007258
920 => 0.013326753815344
921 => 0.013351238287177
922 => 0.013248365618327
923 => 0.013395858599638
924 => 0.013372871974734
925 => 0.013462299485508
926 => 0.013406429059268
927 => 0.013408722001049
928 => 0.013573025011792
929 => 0.013620722874805
930 => 0.013596463356708
1001 => 0.013613453891616
1002 => 0.014004993597314
1003 => 0.013949329171898
1004 => 0.01391975855533
1005 => 0.013927949818208
1006 => 0.01402799660772
1007 => 0.014056004246431
1008 => 0.013937333913151
1009 => 0.013993299528351
1010 => 0.01423159401478
1011 => 0.01431498359873
1012 => 0.014581123121428
1013 => 0.014468062321933
1014 => 0.014675590312562
1015 => 0.015313460604252
1016 => 0.015823035530521
1017 => 0.01535440936925
1018 => 0.016290178827367
1019 => 0.017018809578667
1020 => 0.016990843516834
1021 => 0.016863789891812
1022 => 0.016034263153108
1023 => 0.015270920280605
1024 => 0.015909489006704
1025 => 0.015911116849709
1026 => 0.015856263229819
1027 => 0.01551557210774
1028 => 0.015844407917261
1029 => 0.015870509709665
1030 => 0.015855899646946
1031 => 0.015594692562441
1101 => 0.01519587762354
1102 => 0.015273805107973
1103 => 0.015401451917152
1104 => 0.015159789877462
1105 => 0.015082564212962
1106 => 0.015226141416052
1107 => 0.015688777079905
1108 => 0.01560131848752
1109 => 0.015599034590225
1110 => 0.015973219536666
1111 => 0.015705383869179
1112 => 0.01527478802311
1113 => 0.015166056893116
1114 => 0.014780134631703
1115 => 0.015046692512269
1116 => 0.015056285455847
1117 => 0.014910294428816
1118 => 0.015286634390351
1119 => 0.015283166351352
1120 => 0.015640445134018
1121 => 0.016323427978694
1122 => 0.016121436343978
1123 => 0.015886542049432
1124 => 0.015912081572162
1125 => 0.016192187099591
1126 => 0.01602282890352
1127 => 0.016083731291634
1128 => 0.016192094916532
1129 => 0.016257473381951
1130 => 0.015902674617105
1201 => 0.015819954053033
1202 => 0.015650736809914
1203 => 0.015606591189774
1204 => 0.015744415103461
1205 => 0.015708103371595
1206 => 0.015055479206085
1207 => 0.014987276349622
1208 => 0.014989368033859
1209 => 0.014817868708415
1210 => 0.014556291072559
1211 => 0.015243701481599
1212 => 0.015188492805451
1213 => 0.015127546699795
1214 => 0.015135012249984
1215 => 0.015433393810049
1216 => 0.015260317436581
1217 => 0.015720469342104
1218 => 0.015625875943761
1219 => 0.015528856581684
1220 => 0.015515445550563
1221 => 0.015478101373466
1222 => 0.015350034295046
1223 => 0.015195385602214
1224 => 0.015093273139767
1225 => 0.013922746644036
1226 => 0.014139989553004
1227 => 0.014389907717458
1228 => 0.014476178466343
1229 => 0.014328606380621
1230 => 0.015355861340452
1231 => 0.015543550720489
]
'min_raw' => 0.0064784041933128
'max_raw' => 0.017018809578667
'avg_raw' => 0.01174860688599
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.006478'
'max' => '$0.017018'
'avg' => '$0.011748'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00025118232838707
'max_diff' => -0.0030691700813087
'year' => 2027
]
2 => [
'items' => [
101 => 0.014975027345683
102 => 0.014868679834914
103 => 0.015362833465553
104 => 0.015064798418453
105 => 0.015199003581913
106 => 0.014908925424812
107 => 0.015498341845025
108 => 0.015493851479445
109 => 0.015264555179409
110 => 0.015458354842046
111 => 0.015424677381487
112 => 0.015165802423478
113 => 0.01550654864294
114 => 0.015506717648814
115 => 0.01528602494536
116 => 0.015028304183572
117 => 0.014982229798457
118 => 0.014947518938495
119 => 0.015190466838177
120 => 0.015408293165354
121 => 0.015813613956504
122 => 0.015915521233584
123 => 0.016313272120377
124 => 0.016076430833431
125 => 0.016181419508326
126 => 0.016295399566479
127 => 0.016350045797836
128 => 0.016261002696319
129 => 0.016878873544305
130 => 0.016931040774949
131 => 0.016948531996139
201 => 0.016740189422609
202 => 0.01692524639109
203 => 0.01683866436398
204 => 0.017063926745339
205 => 0.017099250763031
206 => 0.017069332576735
207 => 0.017080544977502
208 => 0.016553301208632
209 => 0.016525960837784
210 => 0.016153172941282
211 => 0.016305086764616
212 => 0.016021091153313
213 => 0.016111149087136
214 => 0.016150845766262
215 => 0.016130110473853
216 => 0.016313675744257
217 => 0.016157607764507
218 => 0.015745718705993
219 => 0.015333717428582
220 => 0.015328545088153
221 => 0.015220072424237
222 => 0.015141666555985
223 => 0.015156770307808
224 => 0.015209997899245
225 => 0.015138572871608
226 => 0.015153815022595
227 => 0.015406936286903
228 => 0.015457697951282
229 => 0.01528518998186
301 => 0.014592545591853
302 => 0.014422568921178
303 => 0.014544744781275
304 => 0.014486352589282
305 => 0.011691617153013
306 => 0.012348198788868
307 => 0.011958080276249
308 => 0.012137864835353
309 => 0.011739654854668
310 => 0.011929701529425
311 => 0.01189460684799
312 => 0.012950370688781
313 => 0.012933886388563
314 => 0.012941776550748
315 => 0.012565158551962
316 => 0.013165121250321
317 => 0.013460684449493
318 => 0.013405983567486
319 => 0.013419750601003
320 => 0.013183187352818
321 => 0.012944067000092
322 => 0.01267884572856
323 => 0.013171594068726
324 => 0.013116808864794
325 => 0.01324246641152
326 => 0.013562048932496
327 => 0.013609108672686
328 => 0.013672357440734
329 => 0.013649687259742
330 => 0.014189782944525
331 => 0.014124373793431
401 => 0.014281991028069
402 => 0.013957760417971
403 => 0.013590862706394
404 => 0.013660597966575
405 => 0.013653881900244
406 => 0.013568378667508
407 => 0.013491190172103
408 => 0.013362693074976
409 => 0.013769276904277
410 => 0.013752770343317
411 => 0.014019992378487
412 => 0.013972758288114
413 => 0.013657317472463
414 => 0.013668583502904
415 => 0.013744352971893
416 => 0.014006591969186
417 => 0.014084442358174
418 => 0.014048378956193
419 => 0.014133738353714
420 => 0.014201202941131
421 => 0.014142210867191
422 => 0.01497741423092
423 => 0.014630579564124
424 => 0.01479962436746
425 => 0.014839940556986
426 => 0.014736671485274
427 => 0.01475906684914
428 => 0.014792989723026
429 => 0.014998962770481
430 => 0.015539495645786
501 => 0.015778893976727
502 => 0.016499135667068
503 => 0.015759015277928
504 => 0.015715099596959
505 => 0.015844836874605
506 => 0.016267694992161
507 => 0.016610381779397
508 => 0.016724070756798
509 => 0.016739096631962
510 => 0.016952384711467
511 => 0.017074637461052
512 => 0.016926485928582
513 => 0.016800943016925
514 => 0.016351263890331
515 => 0.01640331547367
516 => 0.016761899265803
517 => 0.017268419992671
518 => 0.017703067470823
519 => 0.017550869072968
520 => 0.018712035413278
521 => 0.01882716031298
522 => 0.018811253774275
523 => 0.019073525428679
524 => 0.01855296960538
525 => 0.018330421905626
526 => 0.016828086819398
527 => 0.017250181699176
528 => 0.017863721395697
529 => 0.017782517116206
530 => 0.01733694818863
531 => 0.017702729466837
601 => 0.017581790737223
602 => 0.017486401343425
603 => 0.01792339864856
604 => 0.017442902160704
605 => 0.01785892807567
606 => 0.017325370536489
607 => 0.01755156430243
608 => 0.01742316578112
609 => 0.017506255360338
610 => 0.017020515378029
611 => 0.017282608881812
612 => 0.017009611426589
613 => 0.01700948199025
614 => 0.017003455556295
615 => 0.017324635851709
616 => 0.017335109529611
617 => 0.017097756806024
618 => 0.017063550570409
619 => 0.017190028951692
620 => 0.01704195589195
621 => 0.017111238344642
622 => 0.017044054386862
623 => 0.017028929862856
624 => 0.016908415082343
625 => 0.016856494001275
626 => 0.016876853595003
627 => 0.016807355805519
628 => 0.01676548087351
629 => 0.016995125578341
630 => 0.016872435676391
701 => 0.016976321591246
702 => 0.016857930479821
703 => 0.016447535307067
704 => 0.016211512703367
705 => 0.015436314265688
706 => 0.015656159580983
707 => 0.01580191725247
708 => 0.015753744342913
709 => 0.015857238393083
710 => 0.015863592087219
711 => 0.015829945116512
712 => 0.015790986234877
713 => 0.015772023205859
714 => 0.015913358088045
715 => 0.015995407744268
716 => 0.01581654598479
717 => 0.015774641177086
718 => 0.015955480291147
719 => 0.016065792046256
720 => 0.016880272067163
721 => 0.016819932756479
722 => 0.016971372585305
723 => 0.016954322784613
724 => 0.01711305585148
725 => 0.017372517330209
726 => 0.016844959597383
727 => 0.016936525378228
728 => 0.016914075563328
729 => 0.017159176755753
730 => 0.017159941934922
731 => 0.01701299152635
801 => 0.017092655726835
802 => 0.017048189355597
803 => 0.017128546098414
804 => 0.016819126888197
805 => 0.017195966086502
806 => 0.017409609628959
807 => 0.017412576069753
808 => 0.017513841413298
809 => 0.017616732867232
810 => 0.017814224053102
811 => 0.017611224945247
812 => 0.017246049311779
813 => 0.017272413813005
814 => 0.017058311472716
815 => 0.017061910571737
816 => 0.017042698299096
817 => 0.017100355775523
818 => 0.016831779461912
819 => 0.016894813785894
820 => 0.016806565363191
821 => 0.016936333543392
822 => 0.016796724432944
823 => 0.016914064737347
824 => 0.016964704922835
825 => 0.017151568297489
826 => 0.016769124560574
827 => 0.015989295891838
828 => 0.016153225332515
829 => 0.015910760813374
830 => 0.015933201827748
831 => 0.015978536248244
901 => 0.015831592558916
902 => 0.015859624784112
903 => 0.015858623275768
904 => 0.01584999281792
905 => 0.015811767089092
906 => 0.01575633221956
907 => 0.015977167677821
908 => 0.016014691925441
909 => 0.01609810367963
910 => 0.016346280481361
911 => 0.016321481766456
912 => 0.016361929499355
913 => 0.016273632325541
914 => 0.015937297680399
915 => 0.015955562269785
916 => 0.01572780254747
917 => 0.016092279351457
918 => 0.016005966433414
919 => 0.015950319933653
920 => 0.015935136270632
921 => 0.016183928254652
922 => 0.016258370715608
923 => 0.016211983169588
924 => 0.016116840959361
925 => 0.016299542129267
926 => 0.01634842525479
927 => 0.016359368383854
928 => 0.016683079827453
929 => 0.016377460257566
930 => 0.016451025925635
1001 => 0.017024964267663
1002 => 0.016504481389521
1003 => 0.016780192778226
1004 => 0.016766698140482
1005 => 0.016907742757379
1006 => 0.016755128365112
1007 => 0.016757020203411
1008 => 0.016882258268026
1009 => 0.016706383993079
1010 => 0.016662835049276
1011 => 0.016602672495317
1012 => 0.016734035230884
1013 => 0.016812781249832
1014 => 0.01744741632997
1015 => 0.017857419534615
1016 => 0.017839620214195
1017 => 0.018002272683903
1018 => 0.017928996256574
1019 => 0.017692367343382
1020 => 0.018096264044379
1021 => 0.017968454228427
1022 => 0.017978990714366
1023 => 0.017978598545833
1024 => 0.018063580900112
1025 => 0.018003363113587
1026 => 0.017884667675116
1027 => 0.017963463246457
1028 => 0.018197457923408
1029 => 0.018923784580495
1030 => 0.01933024660035
1031 => 0.018899315056531
1101 => 0.019196565865054
1102 => 0.019018321301233
1103 => 0.018985928961671
1104 => 0.019172624436085
1105 => 0.019359646696213
1106 => 0.019347734186762
1107 => 0.019211965629609
1108 => 0.019135273416672
1109 => 0.019716012546804
1110 => 0.020143891245252
1111 => 0.020114712786553
1112 => 0.020243497013907
1113 => 0.020621611488564
1114 => 0.020656181537442
1115 => 0.020651826505867
1116 => 0.020566141032712
1117 => 0.020938443837382
1118 => 0.021249025387082
1119 => 0.020546307321368
1120 => 0.020813893161537
1121 => 0.020934021066266
1122 => 0.021110404470752
1123 => 0.02140799283941
1124 => 0.021731252739189
1125 => 0.021776965233382
1126 => 0.021744530031208
1127 => 0.021531331437611
1128 => 0.021885046277242
1129 => 0.022092244134665
1130 => 0.022215625717121
1201 => 0.022528500881492
1202 => 0.020934762935309
1203 => 0.019806636003085
1204 => 0.019630462692268
1205 => 0.019988718047488
1206 => 0.020083187127626
1207 => 0.020045106759877
1208 => 0.018775297332845
1209 => 0.019623777408428
1210 => 0.020536670627523
1211 => 0.020571738573943
1212 => 0.02102875200712
1213 => 0.021177574314576
1214 => 0.021545530030403
1215 => 0.021522514300194
1216 => 0.021612105661544
1217 => 0.021591510159076
1218 => 0.022273070640428
1219 => 0.02302493306407
1220 => 0.022998898459116
1221 => 0.022890809340084
1222 => 0.023051340113779
1223 => 0.023827342709452
1224 => 0.023755900825631
1225 => 0.023825300530358
1226 => 0.024740251324246
1227 => 0.025929817506534
1228 => 0.025377144584369
1229 => 0.026576285798117
1230 => 0.027331081628426
1231 => 0.028636422969602
]
'min_raw' => 0.011691617153013
'max_raw' => 0.028636422969602
'avg_raw' => 0.020164020061308
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.011691'
'max' => '$0.028636'
'avg' => '$0.020164'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0052132129597007
'max_diff' => 0.011617613390934
'year' => 2028
]
3 => [
'items' => [
101 => 0.028472987804745
102 => 0.028981147609827
103 => 0.028180404749703
104 => 0.026341737286026
105 => 0.026050761121763
106 => 0.026633302771308
107 => 0.028065424573131
108 => 0.026588200159279
109 => 0.02688704073426
110 => 0.026800974628562
111 => 0.026796388531547
112 => 0.026971421201615
113 => 0.026717527184591
114 => 0.025683117284571
115 => 0.026157181245934
116 => 0.02597412238403
117 => 0.026177239839255
118 => 0.027273380973089
119 => 0.02678875084908
120 => 0.026278232381591
121 => 0.026918535832939
122 => 0.027733862158644
123 => 0.027682840502464
124 => 0.027583837164076
125 => 0.028141913798921
126 => 0.029063692898573
127 => 0.029312846085201
128 => 0.029496765873857
129 => 0.029522125305362
130 => 0.029783343210666
131 => 0.028378708698459
201 => 0.030607899742904
202 => 0.03099281945612
203 => 0.030920470503323
204 => 0.031348292564665
205 => 0.03122241646142
206 => 0.031040041737174
207 => 0.031718230704763
208 => 0.030940741780449
209 => 0.029837194135521
210 => 0.029231766071815
211 => 0.030029042584591
212 => 0.030515911529828
213 => 0.030837700931949
214 => 0.0309350742106
215 => 0.02848774647716
216 => 0.027168772563854
217 => 0.028014219720216
218 => 0.029045723600624
219 => 0.028372978642321
220 => 0.028399348971012
221 => 0.027440191454737
222 => 0.02913058775787
223 => 0.028884311234975
224 => 0.030161994271414
225 => 0.02985706496072
226 => 0.030898965877567
227 => 0.030624598448259
228 => 0.031763482307639
301 => 0.032217813913196
302 => 0.032980707389993
303 => 0.03354189493706
304 => 0.033871434998505
305 => 0.033851650649289
306 => 0.035157452548941
307 => 0.03438746678996
308 => 0.03342018320497
309 => 0.033402688096658
310 => 0.033903657971839
311 => 0.034953553395844
312 => 0.035225776003932
313 => 0.035377911304561
314 => 0.035144910795779
315 => 0.034309146439782
316 => 0.033948267628283
317 => 0.034255746831346
318 => 0.03387972618799
319 => 0.034528843311181
320 => 0.035420219765257
321 => 0.035236154052375
322 => 0.035851458133867
323 => 0.036488233126334
324 => 0.037398849964916
325 => 0.037636918926565
326 => 0.03803043786722
327 => 0.038435498121391
328 => 0.038565592558351
329 => 0.038813983204441
330 => 0.038812674063127
331 => 0.039561215993736
401 => 0.040386880923613
402 => 0.040698550320454
403 => 0.04141521691294
404 => 0.040187950488301
405 => 0.04111884616921
406 => 0.04195853737522
407 => 0.04095742290301
408 => 0.042337225973196
409 => 0.04239080059971
410 => 0.04319971385335
411 => 0.042379725301758
412 => 0.041892818717318
413 => 0.043298499782444
414 => 0.043978664571319
415 => 0.043773793401545
416 => 0.042214713683828
417 => 0.041307262416042
418 => 0.038932287413969
419 => 0.04174554789521
420 => 0.043115805011689
421 => 0.042211165048926
422 => 0.04266741282638
423 => 0.045156552761325
424 => 0.046104256088677
425 => 0.045907140421534
426 => 0.045940449724481
427 => 0.046451813237888
428 => 0.048719480669364
429 => 0.047360641780304
430 => 0.048399423196269
501 => 0.048950389113691
502 => 0.049462156963458
503 => 0.048205416870321
504 => 0.04657041647433
505 => 0.046052543216272
506 => 0.042121216433135
507 => 0.041916573801185
508 => 0.041801701690566
509 => 0.041077449282093
510 => 0.040508385278464
511 => 0.040055844454786
512 => 0.038868242193327
513 => 0.03926902309414
514 => 0.037376232961229
515 => 0.038587173011901
516 => 0.03556623425676
517 => 0.038082161819722
518 => 0.036712856832391
519 => 0.037632308304044
520 => 0.037629100424477
521 => 0.035936098752809
522 => 0.034959610720634
523 => 0.035581866900219
524 => 0.03624897491949
525 => 0.036357210951196
526 => 0.037222133911483
527 => 0.037463515318242
528 => 0.036732118386741
529 => 0.035503632015737
530 => 0.035788981380931
531 => 0.034953828124856
601 => 0.033490254167292
602 => 0.034541418535164
603 => 0.034900332266791
604 => 0.035058849017541
605 => 0.033619592122881
606 => 0.033167346358792
607 => 0.0329265745087
608 => 0.035317842024051
609 => 0.035448841056523
610 => 0.034778631484999
611 => 0.037808042300167
612 => 0.037122393332068
613 => 0.03788843121751
614 => 0.03576308891693
615 => 0.035844279854965
616 => 0.034838108749749
617 => 0.035401497336292
618 => 0.035003312442185
619 => 0.035355981106014
620 => 0.035567369249006
621 => 0.036573375251444
622 => 0.0380936487923
623 => 0.036423111502024
624 => 0.035695234482116
625 => 0.036146805291531
626 => 0.037349397864309
627 => 0.039171387171648
628 => 0.038092732830751
629 => 0.038571421310503
630 => 0.03867599344796
701 => 0.037880633670937
702 => 0.039200713221117
703 => 0.039908154576365
704 => 0.040633843022488
705 => 0.041263937966928
706 => 0.040343987098876
707 => 0.041328466397469
708 => 0.040535149866793
709 => 0.039823462927221
710 => 0.039824542262537
711 => 0.039378090649256
712 => 0.038513034392002
713 => 0.03835350474582
714 => 0.039183398111631
715 => 0.039848893999818
716 => 0.039903707428679
717 => 0.040272160146792
718 => 0.040490206670007
719 => 0.042627359017384
720 => 0.043486939370951
721 => 0.044538017956269
722 => 0.044947472300794
723 => 0.046179783080306
724 => 0.045184592042462
725 => 0.044969276201379
726 => 0.041980093336067
727 => 0.042469571862804
728 => 0.043253274211764
729 => 0.041993016299145
730 => 0.042792359873317
731 => 0.042950167227271
801 => 0.041950193217518
802 => 0.042484322542453
803 => 0.041065833413734
804 => 0.038124567979022
805 => 0.039203987690351
806 => 0.039998803926635
807 => 0.038864503157322
808 => 0.040897693382813
809 => 0.039709945626647
810 => 0.039333486609889
811 => 0.037864785768187
812 => 0.038557956029991
813 => 0.039495478734322
814 => 0.038916198701758
815 => 0.040118291748663
816 => 0.041820776089585
817 => 0.043034067815622
818 => 0.043127209288844
819 => 0.042347143993235
820 => 0.043597203607758
821 => 0.043606308927329
822 => 0.042196236575503
823 => 0.041332575111325
824 => 0.041136349409504
825 => 0.041626559684967
826 => 0.042221765457188
827 => 0.04316023906678
828 => 0.043727339014096
829 => 0.045206034910124
830 => 0.045606127622056
831 => 0.046045708211938
901 => 0.046633123441653
902 => 0.0473384660351
903 => 0.045795216595814
904 => 0.045856532773014
905 => 0.044419480262894
906 => 0.042883783561655
907 => 0.044049185930599
908 => 0.045572794501014
909 => 0.045223277011523
910 => 0.045183949153961
911 => 0.045250087701742
912 => 0.04498656292884
913 => 0.043794650147687
914 => 0.043196079010761
915 => 0.043968388489179
916 => 0.044378836605418
917 => 0.045015405838867
918 => 0.044936935244498
919 => 0.046576669227318
920 => 0.04721382027006
921 => 0.047050809768097
922 => 0.047080807623525
923 => 0.048234339152109
924 => 0.049517303453747
925 => 0.050718968824281
926 => 0.051941354451918
927 => 0.050467720867279
928 => 0.049719500614083
929 => 0.050491472926343
930 => 0.050081853551161
1001 => 0.052435647981956
1002 => 0.052598619601389
1003 => 0.054952243826055
1004 => 0.057186113479622
1005 => 0.055783059974149
1006 => 0.057106076234893
1007 => 0.058537026187986
1008 => 0.061297560810765
1009 => 0.060367909866592
1010 => 0.059655811812843
1011 => 0.058982882592883
1012 => 0.060383141475115
1013 => 0.062184552157424
1014 => 0.062572558764696
1015 => 0.063201277698409
1016 => 0.062540256615703
1017 => 0.063336383700739
1018 => 0.066147062146881
1019 => 0.065387592020188
1020 => 0.06430902234937
1021 => 0.066527783042171
1022 => 0.067330743911683
1023 => 0.072966343807784
1024 => 0.080081521471632
1025 => 0.077135791198024
1026 => 0.075307281359073
1027 => 0.07573702454406
1028 => 0.078335246562933
1029 => 0.079169713011951
1030 => 0.076901345545687
1031 => 0.077702571282963
1101 => 0.082117403870132
1102 => 0.084485819908361
1103 => 0.081269192807735
1104 => 0.072394646210388
1105 => 0.064211908951399
1106 => 0.066382339345944
1107 => 0.066136279895499
1108 => 0.070879466748831
1109 => 0.06536947890884
1110 => 0.065462252972914
1111 => 0.070303523907251
1112 => 0.069011955822365
1113 => 0.066919780936394
1114 => 0.064227184143406
1115 => 0.05924966993651
1116 => 0.054840946795209
1117 => 0.063487468143601
1118 => 0.06311461442038
1119 => 0.062574666975329
1120 => 0.063776261585874
1121 => 0.069610863936097
1122 => 0.069476357467159
1123 => 0.068620695937583
1124 => 0.069269707666312
1125 => 0.066806006042422
1126 => 0.067440958048341
1127 => 0.06421061276401
1128 => 0.065670863743664
1129 => 0.066915292068732
1130 => 0.067165129479065
1201 => 0.067728025921561
1202 => 0.062918137450846
1203 => 0.065077636163291
1204 => 0.066346139339187
1205 => 0.06061499584195
1206 => 0.066232853059278
1207 => 0.062834407993607
1208 => 0.061680924695387
1209 => 0.063233937996572
1210 => 0.062628727202745
1211 => 0.062108402501383
1212 => 0.06181805237771
1213 => 0.062958413946277
1214 => 0.062905214716076
1215 => 0.061039361855258
1216 => 0.058605432860213
1217 => 0.059422339321946
1218 => 0.059125549545859
1219 => 0.058049945110679
1220 => 0.058774772631016
1221 => 0.055582999058265
1222 => 0.050091718520302
1223 => 0.053719426646152
1224 => 0.053579763829494
1225 => 0.053509339504131
1226 => 0.056235461898219
1227 => 0.055973408132372
1228 => 0.055497777981322
1229 => 0.058041209789961
1230 => 0.057112822965822
1231 => 0.059973892402372
]
'min_raw' => 0.025683117284571
'max_raw' => 0.084485819908361
'avg_raw' => 0.055084468596466
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.025683'
'max' => '$0.084485'
'avg' => '$0.055084'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.013991500131557
'max_diff' => 0.05584939693876
'year' => 2029
]
4 => [
'items' => [
101 => 0.061858377775653
102 => 0.061380411328273
103 => 0.063152778930352
104 => 0.059441159196905
105 => 0.060674010388019
106 => 0.06092809930985
107 => 0.058009824236249
108 => 0.056016283369338
109 => 0.055883336921545
110 => 0.052426811785175
111 => 0.054273259612928
112 => 0.055898057290147
113 => 0.055119905292152
114 => 0.054873565616217
115 => 0.056132061596014
116 => 0.056229857511934
117 => 0.054000100265024
118 => 0.054463737403886
119 => 0.056397181346198
120 => 0.054415019577246
121 => 0.050564003044458
122 => 0.049608897699857
123 => 0.049481469040803
124 => 0.046891147595887
125 => 0.049672722405997
126 => 0.048458490459814
127 => 0.052294234629075
128 => 0.050103278131102
129 => 0.050008830375483
130 => 0.049866058740393
131 => 0.047636462067922
201 => 0.048124602040932
202 => 0.049747253657037
203 => 0.050326234034142
204 => 0.050265841637363
205 => 0.049739301778884
206 => 0.049980349029775
207 => 0.049203851848223
208 => 0.048929654532026
209 => 0.048064212378194
210 => 0.046792251496558
211 => 0.046969125458539
212 => 0.044449038125349
213 => 0.043075960795069
214 => 0.042695911086916
215 => 0.042187692733803
216 => 0.042753315702218
217 => 0.044441899034566
218 => 0.042405109282816
219 => 0.038913176117628
220 => 0.03912304725082
221 => 0.039594565375805
222 => 0.038715894469301
223 => 0.037884306197554
224 => 0.038607304730949
225 => 0.037127726615517
226 => 0.039773365322287
227 => 0.039701808209586
228 => 0.040687938714269
301 => 0.041304586356283
302 => 0.039883413183486
303 => 0.039525991973789
304 => 0.03972959533872
305 => 0.036364485248495
306 => 0.040412937427434
307 => 0.040447948609993
308 => 0.040148161609017
309 => 0.042303837412364
310 => 0.046852985729571
311 => 0.045141413143571
312 => 0.044478640505716
313 => 0.043218709236671
314 => 0.044897492845357
315 => 0.044768588457314
316 => 0.044185633929046
317 => 0.04383306121142
318 => 0.044482687254115
319 => 0.043752565355637
320 => 0.043621415400262
321 => 0.04282678936325
322 => 0.042543144021218
323 => 0.042333144302223
324 => 0.042101955245757
325 => 0.042611900695598
326 => 0.041456297217347
327 => 0.040062752707781
328 => 0.039946894560171
329 => 0.040266789092074
330 => 0.040125259575054
331 => 0.039946216971294
401 => 0.039604375881363
402 => 0.03950295893226
403 => 0.039832514816336
404 => 0.039460465437516
405 => 0.040009444562544
406 => 0.039860152616937
407 => 0.039026219944661
408 => 0.037986831073586
409 => 0.037977578332442
410 => 0.037753643705108
411 => 0.037468429288402
412 => 0.037389089162497
413 => 0.038546415811073
414 => 0.040942047337755
415 => 0.040471727546463
416 => 0.040811581795983
417 => 0.042483328337503
418 => 0.04301472629188
419 => 0.042637552610713
420 => 0.042121254012873
421 => 0.042143968530919
422 => 0.043908317133952
423 => 0.044018357392129
424 => 0.04429639362421
425 => 0.044653748755464
426 => 0.042698411734813
427 => 0.042051872333086
428 => 0.041745506095908
429 => 0.040802016664053
430 => 0.041819489127638
501 => 0.041226651495622
502 => 0.041306645546398
503 => 0.041254549315889
504 => 0.041282997380479
505 => 0.03977262581235
506 => 0.040322925828984
507 => 0.039407945318887
508 => 0.03818288912725
509 => 0.038178782309335
510 => 0.038478613076702
511 => 0.038300262003893
512 => 0.037820323852789
513 => 0.037888496801909
514 => 0.037291230032669
515 => 0.037961015801559
516 => 0.037980222860802
517 => 0.037722318856302
518 => 0.038754216245902
519 => 0.03917698544837
520 => 0.039007227507769
521 => 0.039165074778717
522 => 0.040491271457158
523 => 0.040707499381762
524 => 0.040803533542656
525 => 0.040674860489146
526 => 0.039189315219466
527 => 0.039255205469202
528 => 0.038771746535503
529 => 0.038363274682174
530 => 0.038379611414155
531 => 0.03858961904439
601 => 0.03950673468241
602 => 0.041436750475705
603 => 0.041509993164238
604 => 0.041598765439379
605 => 0.041237683983009
606 => 0.041128778360684
607 => 0.041272452987457
608 => 0.041997265444009
609 => 0.043861679866923
610 => 0.043202671289813
611 => 0.042666887058543
612 => 0.043136914275758
613 => 0.043064557269863
614 => 0.04245379132259
615 => 0.042436649156669
616 => 0.041264394030167
617 => 0.040831038000857
618 => 0.040468893266629
619 => 0.04007344067088
620 => 0.039839003116429
621 => 0.040199205750029
622 => 0.040281588354125
623 => 0.039493999000494
624 => 0.039386653481837
625 => 0.040029815949309
626 => 0.039746784126888
627 => 0.040037889375099
628 => 0.040105428289739
629 => 0.040094552968929
630 => 0.039799035240324
701 => 0.039987389428071
702 => 0.039541875622963
703 => 0.039057446273917
704 => 0.038748410530241
705 => 0.03847873585624
706 => 0.03862836703896
707 => 0.038094959194139
708 => 0.037924311289202
709 => 0.039923579267366
710 => 0.041400460018588
711 => 0.041378985587556
712 => 0.041248265511426
713 => 0.041054041993895
714 => 0.041983056783958
715 => 0.041659406607337
716 => 0.041894889152706
717 => 0.041954829343674
718 => 0.042136250248902
719 => 0.042201092628868
720 => 0.042005093920683
721 => 0.041347298316791
722 => 0.03970813421322
723 => 0.038945098898169
724 => 0.038693284534843
725 => 0.038702437508687
726 => 0.038449957629413
727 => 0.038524324269214
728 => 0.038424095946973
729 => 0.038234287752484
730 => 0.038616646917815
731 => 0.038660710249698
801 => 0.038571463051658
802 => 0.038592483997592
803 => 0.037853555315796
804 => 0.037909734458605
805 => 0.037596921852548
806 => 0.037538273259925
807 => 0.036747510231525
808 => 0.03534655890378
809 => 0.036122821932986
810 => 0.035185205352804
811 => 0.03483011574668
812 => 0.036511054714309
813 => 0.036342335063949
814 => 0.036053560363201
815 => 0.035626402394873
816 => 0.035467965349295
817 => 0.034505352015435
818 => 0.034448475684328
819 => 0.034925572845335
820 => 0.034705408921441
821 => 0.034396215389696
822 => 0.033276347760159
823 => 0.03201724576913
824 => 0.032055250143807
825 => 0.032455747060728
826 => 0.033620245861043
827 => 0.033165256033726
828 => 0.032835155693601
829 => 0.032773337822675
830 => 0.033547117901789
831 => 0.034642178825673
901 => 0.035155956910552
902 => 0.034646818432109
903 => 0.034061947562036
904 => 0.034097545941867
905 => 0.034334366014525
906 => 0.034359252455706
907 => 0.033978561644986
908 => 0.034085723878294
909 => 0.033922934646779
910 => 0.032923897433452
911 => 0.032905828018244
912 => 0.032660648174442
913 => 0.032653224226213
914 => 0.032236112148928
915 => 0.032177755285956
916 => 0.031349553939613
917 => 0.0318946785738
918 => 0.031529037589515
919 => 0.030977930380209
920 => 0.0308829192896
921 => 0.030880063141487
922 => 0.031445927020127
923 => 0.031888066124916
924 => 0.031535398070981
925 => 0.031455102391283
926 => 0.03231245017983
927 => 0.032203344858839
928 => 0.032108860354514
929 => 0.034544128130672
930 => 0.032616423659529
1001 => 0.031775834480586
1002 => 0.030735445748088
1003 => 0.031074201565485
1004 => 0.031145582393569
1005 => 0.028643635036076
1006 => 0.027628595304739
1007 => 0.02728027191991
1008 => 0.027079806887371
1009 => 0.02717116131998
1010 => 0.026257506509491
1011 => 0.026871497652596
1012 => 0.026080349816031
1013 => 0.025947711306613
1014 => 0.027362381642801
1015 => 0.027559224755698
1016 => 0.02671943088172
1017 => 0.027258714499092
1018 => 0.02706316276283
1019 => 0.026093911774957
1020 => 0.026056893516548
1021 => 0.025570557441653
1022 => 0.024809535657663
1023 => 0.024461728281439
1024 => 0.024280587180099
1025 => 0.024355329528881
1026 => 0.024317537510183
1027 => 0.024070919024672
1028 => 0.024331673393092
1029 => 0.023665553732925
1030 => 0.023400299516956
1031 => 0.023280490341453
1101 => 0.022689270802638
1102 => 0.023630164005415
1103 => 0.023815531819423
1104 => 0.024001264865287
1105 => 0.025617944224196
1106 => 0.025537179492114
1107 => 0.026267253336121
1108 => 0.026238884009063
1109 => 0.02603065512234
1110 => 0.025152171701244
1111 => 0.025502319535432
1112 => 0.024424618926858
1113 => 0.025232105499319
1114 => 0.024863602349093
1115 => 0.025107514213547
1116 => 0.024668938688613
1117 => 0.024911664492451
1118 => 0.023859489404816
1119 => 0.022876983112486
1120 => 0.023272372325666
1121 => 0.023702205618635
1122 => 0.024634193717276
1123 => 0.02407910929446
1124 => 0.024278738642971
1125 => 0.02361001374301
1126 => 0.022230243262567
1127 => 0.022238052613643
1128 => 0.022025804985161
1129 => 0.021842392045491
1130 => 0.024142867417756
1201 => 0.023856766940081
1202 => 0.023400903272811
1203 => 0.024011094906754
1204 => 0.024172439259812
1205 => 0.02417703250672
1206 => 0.02462221257152
1207 => 0.024859805251906
1208 => 0.02490168199161
1209 => 0.025602182442324
1210 => 0.025836980953579
1211 => 0.026804082791509
1212 => 0.024839647172943
1213 => 0.024799190914111
1214 => 0.02401968155439
1215 => 0.0235253043949
1216 => 0.024053531981459
1217 => 0.024521469512894
1218 => 0.024034221677863
1219 => 0.024097845958755
1220 => 0.023443755549836
1221 => 0.02367756209321
1222 => 0.023878947785507
1223 => 0.023767754443125
1224 => 0.02360129262776
1225 => 0.024483103971605
1226 => 0.024433348719739
1227 => 0.025254511715883
1228 => 0.025894666993307
1229 => 0.027041939691893
1230 => 0.02584470082224
1231 => 0.025801068679236
]
'min_raw' => 0.021842392045491
'max_raw' => 0.063152778930352
'avg_raw' => 0.042497585487922
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.021842'
'max' => '$0.063152'
'avg' => '$0.042497'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0038407252390795
'max_diff' => -0.021333040978009
'year' => 2030
]
5 => [
'items' => [
101 => 0.026227579875913
102 => 0.025836915656937
103 => 0.026083801958059
104 => 0.027002162491935
105 => 0.027021566002882
106 => 0.026696532194505
107 => 0.026676753857726
108 => 0.026739180156105
109 => 0.027104812935562
110 => 0.026977049607659
111 => 0.02712490056528
112 => 0.027309790451759
113 => 0.028074573413923
114 => 0.02825895999694
115 => 0.027810996193691
116 => 0.027851442309486
117 => 0.027683891550189
118 => 0.027522039616113
119 => 0.027885859127339
120 => 0.028550746434994
121 => 0.028546610205561
122 => 0.028700851137374
123 => 0.028796941960093
124 => 0.028384449806202
125 => 0.028115932581776
126 => 0.028218899171816
127 => 0.02838354499161
128 => 0.028165506751497
129 => 0.026819673728383
130 => 0.027227913495449
131 => 0.027159962436305
201 => 0.027063191864952
202 => 0.027473680107562
203 => 0.027434087515169
204 => 0.026248135658835
205 => 0.026324056448866
206 => 0.026252752653534
207 => 0.026483149803635
208 => 0.025824473454732
209 => 0.026027077863402
210 => 0.026154149449221
211 => 0.026228995589479
212 => 0.026499391170567
213 => 0.026467663370021
214 => 0.026497418925938
215 => 0.026898344190905
216 => 0.028926086600176
217 => 0.029036452145551
218 => 0.028492971835822
219 => 0.028710081499884
220 => 0.02829327842155
221 => 0.028573081120373
222 => 0.028764515020691
223 => 0.027899462035779
224 => 0.02784823921216
225 => 0.027429715839256
226 => 0.027654606593479
227 => 0.027296789233293
228 => 0.027384585097563
301 => 0.027139100207159
302 => 0.027580924134332
303 => 0.028074951937409
304 => 0.028199762870215
305 => 0.027871439040487
306 => 0.027633710950169
307 => 0.027216338736071
308 => 0.027910438029862
309 => 0.028113413815659
310 => 0.027909371884468
311 => 0.027862090910607
312 => 0.027772493550575
313 => 0.027881099414092
314 => 0.028112308365938
315 => 0.028003274494007
316 => 0.028075293287347
317 => 0.02780083191259
318 => 0.028384586358269
319 => 0.029311728906164
320 => 0.029314709821059
321 => 0.029205675361394
322 => 0.029161060809679
323 => 0.02927293678206
324 => 0.029333624907683
325 => 0.029695411287817
326 => 0.030083622487905
327 => 0.031895234768901
328 => 0.031386541289681
329 => 0.032993911478678
330 => 0.034265132607277
331 => 0.034646316239981
401 => 0.034295645233969
402 => 0.033096018665278
403 => 0.033037159262697
404 => 0.034829907825596
405 => 0.034323374243491
406 => 0.034263123685676
407 => 0.03362215954545
408 => 0.034001048737277
409 => 0.033918180113055
410 => 0.033787367935649
411 => 0.034510262120005
412 => 0.03586345549991
413 => 0.035652547621484
414 => 0.035495114673975
415 => 0.03480528932603
416 => 0.035220718263562
417 => 0.035072791975924
418 => 0.035708377183959
419 => 0.035331870586655
420 => 0.034319536753417
421 => 0.034480754253056
422 => 0.03445638655231
423 => 0.034957872106946
424 => 0.034807338591081
425 => 0.034426992467361
426 => 0.035858830432048
427 => 0.035765854838923
428 => 0.035897672972795
429 => 0.035955703391937
430 => 0.036827237929227
501 => 0.03718427774316
502 => 0.037265332031785
503 => 0.037604492240571
504 => 0.037256893416822
505 => 0.038647536545579
506 => 0.039572233079925
507 => 0.040646315689017
508 => 0.04221583906709
509 => 0.042805994376148
510 => 0.042699388101842
511 => 0.043889382814374
512 => 0.046027776860698
513 => 0.04313161867763
514 => 0.046181280276822
515 => 0.045215792624554
516 => 0.042926638769408
517 => 0.042779244248488
518 => 0.044329485816815
519 => 0.047767772410144
520 => 0.046906520615239
521 => 0.047769181109545
522 => 0.046762841820027
523 => 0.046712868592209
524 => 0.047720305456445
525 => 0.050074236602258
526 => 0.048955972150672
527 => 0.04735266584963
528 => 0.04853652227211
529 => 0.047510956278218
530 => 0.045200069056132
531 => 0.046905862032223
601 => 0.045765246847298
602 => 0.046098138996697
603 => 0.048495542461705
604 => 0.048207080534052
605 => 0.04858037697929
606 => 0.047921518524315
607 => 0.047306040834925
608 => 0.046157206021707
609 => 0.045817092670385
610 => 0.045911087764694
611 => 0.045817046091085
612 => 0.045174283571426
613 => 0.045035479066504
614 => 0.044804132143802
615 => 0.044875836228843
616 => 0.044440836331234
617 => 0.045261771013588
618 => 0.045414143724684
619 => 0.04601155152623
620 => 0.046073576386011
621 => 0.047737348609749
622 => 0.04682097082747
623 => 0.047435756160074
624 => 0.047380763973342
625 => 0.042976251674771
626 => 0.043583154608173
627 => 0.044527305115914
628 => 0.044101966591942
629 => 0.043500637432933
630 => 0.043015031895803
701 => 0.042279289851335
702 => 0.043314832650249
703 => 0.044676461313121
704 => 0.046108109535931
705 => 0.04782814107033
706 => 0.047444250055226
707 => 0.046075954742824
708 => 0.046137335470998
709 => 0.046516766980144
710 => 0.046025368700812
711 => 0.045880445755004
712 => 0.046496856792833
713 => 0.046501101676877
714 => 0.04593568856904
715 => 0.045307335369187
716 => 0.045304702546336
717 => 0.045192893163594
718 => 0.046782732460831
719 => 0.047656983323428
720 => 0.047757214775899
721 => 0.047650236948074
722 => 0.047691408468206
723 => 0.047182701154064
724 => 0.048345455221724
725 => 0.049412513338669
726 => 0.049126518968956
727 => 0.048697772752261
728 => 0.048356255739448
729 => 0.049046068414304
730 => 0.049015352141759
731 => 0.049403193516898
801 => 0.049385598791842
802 => 0.049255182324834
803 => 0.049126523626539
804 => 0.04963664082236
805 => 0.049489735262195
806 => 0.049342601517119
807 => 0.049047502266319
808 => 0.049087611155582
809 => 0.048658938967967
810 => 0.048460615599271
811 => 0.045478307978387
812 => 0.044681337932374
813 => 0.044932080932671
814 => 0.045014632038907
815 => 0.044667789653538
816 => 0.045165072537659
817 => 0.045087571526922
818 => 0.045389082623127
819 => 0.045200711580308
820 => 0.045208442393612
821 => 0.045762401465601
822 => 0.045923218140909
823 => 0.045841425481898
824 => 0.045898710256581
825 => 0.047218813710771
826 => 0.047031137214118
827 => 0.046931437815802
828 => 0.046959055230493
829 => 0.047296369966376
830 => 0.047390799675721
831 => 0.046990694361767
901 => 0.047179386340809
902 => 0.047982812838993
903 => 0.048263966643356
904 => 0.0491612746254
905 => 0.04878008224625
906 => 0.0494797773558
907 => 0.051630401578914
908 => 0.053348469020214
909 => 0.051768463199055
910 => 0.054923475260433
911 => 0.057380104709817
912 => 0.057285815179819
913 => 0.056857445012456
914 => 0.054060637697206
915 => 0.051486973907665
916 => 0.053639952951153
917 => 0.053645441337499
918 => 0.053460498528281
919 => 0.052311834623898
920 => 0.053420527514281
921 => 0.053508531529739
922 => 0.053459272683239
923 => 0.052578594760934
924 => 0.05123396235006
925 => 0.051496700304549
926 => 0.051927070433712
927 => 0.051112289994592
928 => 0.050851918275006
929 => 0.051335998839464
930 => 0.052895807280338
1001 => 0.052600934529946
1002 => 0.052593234210758
1003 => 0.053854824882443
1004 => 0.052951798229824
1005 => 0.051500014271559
1006 => 0.051133419675419
1007 => 0.049832255826833
1008 => 0.050730974331638
1009 => 0.050763317610668
1010 => 0.050271098670267
1011 => 0.051539955125799
1012 => 0.051528262390183
1013 => 0.052732852750351
1014 => 0.055035577095513
1015 => 0.054354548196465
1016 => 0.053562585682607
1017 => 0.053648693966602
1018 => 0.054593089308673
1019 => 0.054022086326408
1020 => 0.054227422980004
1021 => 0.054592778507055
1022 => 0.054813206567791
1023 => 0.053616977760857
1024 => 0.053338079603722
1025 => 0.052767551854176
1026 => 0.052618711813725
1027 => 0.053083394761278
1028 => 0.052960967222088
1029 => 0.050760599283305
1030 => 0.050530648590971
1031 => 0.050537700850411
1101 => 0.049959478900976
1102 => 0.04907755163892
1103 => 0.051395203826463
1104 => 0.051209063920282
1105 => 0.051003579869942
1106 => 0.051028750493633
1107 => 0.052034764755725
1108 => 0.051451225678774
1109 => 0.053002659955022
1110 => 0.052683731708209
1111 => 0.052356624155291
1112 => 0.052311407927538
1113 => 0.05218549942717
1114 => 0.051753712330917
1115 => 0.05123230346581
1116 => 0.050888024169404
1117 => 0.046941512365495
1118 => 0.047673962000497
1119 => 0.048516578540683
1120 => 0.048807446393781
1121 => 0.048309896803614
1122 => 0.051773358621337
1123 => 0.052406166470184
1124 => 0.050489350218993
1125 => 0.050130792161487
1126 => 0.051796865627894
1127 => 0.050792019658452
1128 => 0.051244501736964
1129 => 0.050266482977686
1130 => 0.052253741590173
1201 => 0.052238602009115
1202 => 0.051465513524586
1203 => 0.052118922617828
1204 => 0.052005376708269
1205 => 0.051132561713269
1206 => 0.052281411382327
1207 => 0.052281981197429
1208 => 0.051537900339463
1209 => 0.050668976797604
1210 => 0.050513633791377
1211 => 0.050396603703582
1212 => 0.051215719509442
1213 => 0.051950136179667
1214 => 0.053316703525623
1215 => 0.053660291025235
1216 => 0.055001335910138
1217 => 0.054202808975469
1218 => 0.054556785622953
1219 => 0.054941077346851
1220 => 0.055125320931147
1221 => 0.054825105897592
1222 => 0.056908300599942
1223 => 0.057084186060257
1224 => 0.057143158933697
1225 => 0.056440717401028
1226 => 0.057064649890526
1227 => 0.056772732541162
1228 => 0.057532220387232
1229 => 0.057651317779124
1230 => 0.057550446525204
1231 => 0.057588249917215
]
'min_raw' => 0.025824473454732
'max_raw' => 0.057651317779124
'avg_raw' => 0.041737895616928
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.025824'
'max' => '$0.057651'
'avg' => '$0.041737'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0039820814092412
'max_diff' => -0.0055014611512287
'year' => 2031
]
6 => [
'items' => [
101 => 0.055810610739487
102 => 0.055718430770328
103 => 0.054461550350054
104 => 0.054973738411707
105 => 0.05401622738026
106 => 0.054319863991788
107 => 0.054453704116994
108 => 0.054383793630947
109 => 0.055002696756232
110 => 0.054476502666184
111 => 0.053087789948231
112 => 0.051698698876426
113 => 0.051681259969549
114 => 0.051315536809837
115 => 0.051051185950903
116 => 0.051102109304684
117 => 0.051281569845446
118 => 0.051040755378032
119 => 0.051092145354258
120 => 0.051945561369235
121 => 0.052116707864753
122 => 0.051535085201728
123 => 0.049199786281929
124 => 0.048626698069357
125 => 0.049038622511721
126 => 0.048841749159602
127 => 0.039419103514027
128 => 0.041632814340377
129 => 0.040317502537877
130 => 0.040923658731055
131 => 0.039581065979042
201 => 0.040221821611618
202 => 0.04010349744293
203 => 0.043663078943234
204 => 0.043607500974152
205 => 0.043634103206831
206 => 0.042364309329297
207 => 0.044387125454869
208 => 0.045383637416441
209 => 0.045199209573661
210 => 0.045245626088347
211 => 0.044448036580774
212 => 0.043641825616708
213 => 0.042747613582581
214 => 0.044408949014042
215 => 0.044224236874005
216 => 0.044647900065919
217 => 0.04572539484793
218 => 0.045884060047586
219 => 0.046097307684947
220 => 0.046020873586953
221 => 0.047841843896473
222 => 0.047621312376841
223 => 0.048152729887905
224 => 0.047059563748903
225 => 0.045822542498339
226 => 0.046057659796799
227 => 0.046035016110264
228 => 0.045746735991451
229 => 0.045486489590062
301 => 0.045053252655718
302 => 0.046424078422984
303 => 0.046368425400255
304 => 0.047269383148679
305 => 0.047110130115208
306 => 0.046046599381864
307 => 0.046084583590067
308 => 0.046340045644819
309 => 0.047224202733132
310 => 0.047486680754948
311 => 0.047365090477302
312 => 0.047652885645646
313 => 0.047880347212352
314 => 0.047681451316365
315 => 0.050497397769215
316 => 0.04932802047489
317 => 0.049897966831669
318 => 0.050033895679442
319 => 0.049685716794147
320 => 0.049761224327016
321 => 0.049875597664742
322 => 0.050570050174818
323 => 0.052392494502709
324 => 0.053199642689734
325 => 0.055627987834388
326 => 0.053132620268846
327 => 0.052984555484365
328 => 0.053421973773915
329 => 0.054847669440266
330 => 0.056003061869059
331 => 0.056386372193877
401 => 0.056437032981066
402 => 0.057156148632415
403 => 0.057568332313055
404 => 0.057068829077722
405 => 0.056645552385946
406 => 0.05512942781504
407 => 0.055304923362393
408 => 0.05651391365309
409 => 0.058221683647874
410 => 0.059687127966582
411 => 0.059173980442061
412 => 0.063088933828459
413 => 0.06347708546557
414 => 0.063423455459766
415 => 0.064307722653813
416 => 0.062552632351512
417 => 0.061802297244006
418 => 0.056737069611102
419 => 0.058160191967998
420 => 0.060228783890791
421 => 0.059954997992988
422 => 0.058452731245035
423 => 0.059685988362542
424 => 0.059278234991978
425 => 0.058956622990912
426 => 0.060429989915351
427 => 0.058809962459353
428 => 0.060212622877661
429 => 0.058413696382517
430 => 0.059176324456729
501 => 0.058743419877637
502 => 0.059023562195099
503 => 0.057385855931462
504 => 0.058269522478248
505 => 0.05734909249789
506 => 0.057348656094235
507 => 0.057328337551404
508 => 0.058411219341485
509 => 0.058446532077782
510 => 0.057646280798769
511 => 0.057530952087189
512 => 0.057957382780126
513 => 0.057458144121072
514 => 0.057691734747473
515 => 0.057465219343183
516 => 0.057414225954534
517 => 0.057007901957961
518 => 0.056832846408127
519 => 0.056901490199843
520 => 0.056667173550416
521 => 0.056525989293533
522 => 0.057300252449154
523 => 0.056886594878792
524 => 0.057236853493811
525 => 0.056837689595836
526 => 0.055454013618022
527 => 0.054658246931073
528 => 0.052044611275814
529 => 0.05278583510544
530 => 0.053277267271334
531 => 0.053114848943438
601 => 0.053463786359308
602 => 0.053485208282691
603 => 0.053371765171795
604 => 0.053240412582341
605 => 0.053176477406048
606 => 0.053652997829026
607 => 0.053929633973504
608 => 0.053326589063696
609 => 0.053185304078823
610 => 0.053795015777661
611 => 0.054166939561733
612 => 0.056913015817401
613 => 0.056709577618672
614 => 0.057220167574753
615 => 0.057162682981339
616 => 0.05769786259867
617 => 0.058572655089225
618 => 0.0567939573601
619 => 0.057102677783136
620 => 0.057026986664804
621 => 0.057853362447484
622 => 0.057855942302476
623 => 0.057360488740227
624 => 0.057629082154138
625 => 0.057479160678968
626 => 0.057750089047703
627 => 0.056706860577498
628 => 0.057977400244653
629 => 0.058697714364163
630 => 0.058707715926411
701 => 0.059049139102292
702 => 0.059396044822884
703 => 0.06006190014444
704 => 0.05937747447936
705 => 0.058146259335375
706 => 0.05823514909197
707 => 0.057513288103536
708 => 0.057525422717167
709 => 0.057460647198601
710 => 0.057655043405891
711 => 0.056749519613151
712 => 0.056962044237372
713 => 0.05666450851892
714 => 0.057102030998592
715 => 0.056631329135522
716 => 0.057026950164255
717 => 0.057197687085211
718 => 0.057827709999243
719 => 0.056538274238863
720 => 0.053909027436321
721 => 0.054461726990752
722 => 0.053644240936136
723 => 0.053719902382879
724 => 0.053872750546731
725 => 0.05337731963888
726 => 0.053471832243276
727 => 0.053468455587972
728 => 0.053439357396779
729 => 0.053310476683197
730 => 0.053123574150232
731 => 0.053868136316
801 => 0.05399465193671
802 => 0.054275880489579
803 => 0.055112625903768
804 => 0.055029015305075
805 => 0.055165387660514
806 => 0.054867687574289
807 => 0.053733711836055
808 => 0.053795292174363
809 => 0.053027384368904
810 => 0.054256243360502
811 => 0.053965233331145
812 => 0.053777617272087
813 => 0.053726424492122
814 => 0.054565244036348
815 => 0.054816231990866
816 => 0.054659833140785
817 => 0.054339054536387
818 => 0.054955044286513
819 => 0.055119857157125
820 => 0.055156752680791
821 => 0.056248168413694
822 => 0.055217750696144
823 => 0.055465782482229
824 => 0.057400855673474
825 => 0.055646011310862
826 => 0.056575591507437
827 => 0.056530093394117
828 => 0.057005635167405
829 => 0.056491085088683
830 => 0.056497463553591
831 => 0.056919712432282
901 => 0.056326740035147
902 => 0.056179911730627
903 => 0.055977069479537
904 => 0.056419968113957
905 => 0.05668546581471
906 => 0.058825182296202
907 => 0.060207536726172
908 => 0.060147525074666
909 => 0.060695919232321
910 => 0.060448862641583
911 => 0.059651051739852
912 => 0.061012817666432
913 => 0.060581897948556
914 => 0.06061742244653
915 => 0.060616100222941
916 => 0.060902624163673
917 => 0.060699595692131
918 => 0.060299405734276
919 => 0.060565070504383
920 => 0.061353999894709
921 => 0.063802860929588
922 => 0.0651732760078
923 => 0.063720360221136
924 => 0.064722562075459
925 => 0.064121598083899
926 => 0.064012385049502
927 => 0.064641841876153
928 => 0.065272400483652
929 => 0.065232236626334
930 => 0.064774483456832
1001 => 0.064515910306437
1002 => 0.066473912829587
1003 => 0.067916535734941
1004 => 0.067818158524262
1005 => 0.068252363538214
1006 => 0.069527202888632
1007 => 0.069643758222028
1008 => 0.069629074929013
1009 => 0.069340180373902
1010 => 0.070595425273197
1011 => 0.071642572652123
1012 => 0.06927330963136
1013 => 0.070175493973736
1014 => 0.070580513591593
1015 => 0.071175202554512
1016 => 0.0721785425164
1017 => 0.073268435837792
1018 => 0.073422558703508
1019 => 0.073313201154824
1020 => 0.072594387211461
1021 => 0.07378696148886
1022 => 0.074485543531251
1023 => 0.07490153315073
1024 => 0.075956413611655
1025 => 0.070583014854867
1026 => 0.066779456139567
1027 => 0.066185475522119
1028 => 0.067393358464833
1029 => 0.067711867564141
1030 => 0.067583476945587
1031 => 0.063302225807086
1101 => 0.0661629356209
1102 => 0.06924081884525
1103 => 0.069359052874972
1104 => 0.070899905572585
1105 => 0.071401670372614
1106 => 0.072642258758372
1107 => 0.072564659617067
1108 => 0.072866723146926
1109 => 0.072797283972423
1110 => 0.075095212720335
1111 => 0.077630169375004
1112 => 0.077542391886721
1113 => 0.077177961875367
1114 => 0.077719202586779
1115 => 0.080335549516861
1116 => 0.080094678217644
1117 => 0.080328664167465
1118 => 0.083413484648883
1119 => 0.087424190085324
1120 => 0.085560814741855
1121 => 0.089603803065372
1122 => 0.092148649905423
1123 => 0.096549699373217
1124 => 0.095998666304224
1125 => 0.097711962565643
1126 => 0.095012202106654
1127 => 0.088813006381203
1128 => 0.087831959928083
1129 => 0.089796039771283
1130 => 0.094624538413682
1201 => 0.089643973165866
1202 => 0.090651535028797
1203 => 0.090361357144491
1204 => 0.090345894798212
1205 => 0.09093602966574
1206 => 0.090080008261027
1207 => 0.086592423062916
1208 => 0.088190762806742
1209 => 0.087573567073072
1210 => 0.088258391754569
1211 => 0.091954108117422
1212 => 0.09032014381853
1213 => 0.088598895162129
1214 => 0.090757722952911
1215 => 0.09350665258429
1216 => 0.09333462950826
1217 => 0.093000832840694
1218 => 0.09488242717874
1219 => 0.097990269769779
1220 => 0.098830307133814
1221 => 0.099450405542136
1222 => 0.099535906635996
1223 => 0.10041662104138
1224 => 0.095680797715023
1225 => 0.10319667095852
1226 => 0.10449445464586
1227 => 0.10425052510027
1228 => 0.10569295704966
1229 => 0.10526855697918
1230 => 0.10465366786339
1231 => 0.10694022931726
]
'min_raw' => 0.039419103514027
'max_raw' => 0.10694022931726
'avg_raw' => 0.073179666415642
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.039419'
'max' => '$0.10694'
'avg' => '$0.073179'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.013594630059295
'max_diff' => 0.049288911538134
'year' => 2032
]
7 => [
'items' => [
101 => 0.10431887112639
102 => 0.10059818319428
103 => 0.098556940207859
104 => 0.10124501363475
105 => 0.10288652627572
106 => 0.10397146171159
107 => 0.10429976251895
108 => 0.096048426198688
109 => 0.09160141356216
110 => 0.094451897677071
111 => 0.097929685027166
112 => 0.095661478430695
113 => 0.095750387834994
114 => 0.092516521302633
115 => 0.098215810458349
116 => 0.097385471966928
117 => 0.10169326952926
118 => 0.10066517906878
119 => 0.10417802075312
120 => 0.10325297180949
121 => 0.10709279825572
122 => 0.10862460898428
123 => 0.11119675760482
124 => 0.11308884060062
125 => 0.11419990792553
126 => 0.11413320361085
127 => 0.11853580588371
128 => 0.11593974513861
129 => 0.11267848099824
130 => 0.11261949501909
131 => 0.11430854992986
201 => 0.11784834565326
202 => 0.1187661631824
203 => 0.11927909797022
204 => 0.11849352048728
205 => 0.11567568260983
206 => 0.11445895450111
207 => 0.11549564210175
208 => 0.11422786224975
209 => 0.1164164059505
210 => 0.11942174389934
211 => 0.1188011534973
212 => 0.12087569416721
213 => 0.12302262551252
214 => 0.12609283376104
215 => 0.12689549988668
216 => 0.12822227646971
217 => 0.12958796539706
218 => 0.13002658787417
219 => 0.13086405427954
220 => 0.1308596404182
221 => 0.13338340179878
222 => 0.13616718875594
223 => 0.13721800388745
224 => 0.13963429534008
225 => 0.13549648090441
226 => 0.13863506068565
227 => 0.14146613821209
228 => 0.13809081087345
301 => 0.14274291325935
302 => 0.14292354385311
303 => 0.14565085136428
304 => 0.14288620271281
305 => 0.14124456316864
306 => 0.14598391502123
307 => 0.14827713809451
308 => 0.14758640064197
309 => 0.14232985452222
310 => 0.13927031921665
311 => 0.1312629251817
312 => 0.14074802930978
313 => 0.14536794684628
314 => 0.14231789005189
315 => 0.14385616128777
316 => 0.15224847036464
317 => 0.15544371829934
318 => 0.15477912906539
319 => 0.15489143370586
320 => 0.15661553149357
321 => 0.16426113056228
322 => 0.15967971037671
323 => 0.16318203444604
324 => 0.16503965450384
325 => 0.16676511553982
326 => 0.16252792857302
327 => 0.15701541058585
328 => 0.15526936473955
329 => 0.14201462201373
330 => 0.14132465509242
331 => 0.14093735575136
401 => 0.1384954881905
402 => 0.13657684917149
403 => 0.13505107618907
404 => 0.13104699224881
405 => 0.13239825303753
406 => 0.12601657895404
407 => 0.13009934788001
408 => 0.11991404195184
409 => 0.12839666738682
410 => 0.12377996002022
411 => 0.12687995485095
412 => 0.12686913926102
413 => 0.12116106592339
414 => 0.11786876834669
415 => 0.1199667485007
416 => 0.12221594976367
417 => 0.12258087510137
418 => 0.12549702324896
419 => 0.12631085751456
420 => 0.12384490169551
421 => 0.11970297412549
422 => 0.12066504943269
423 => 0.1178492719213
424 => 0.1129147301399
425 => 0.11645880419614
426 => 0.11766890690087
427 => 0.11820335719331
428 => 0.11335080208726
429 => 0.11182602391884
430 => 0.1110142448161
501 => 0.11907657019707
502 => 0.11951824258111
503 => 0.11725858421818
504 => 0.12747245428823
505 => 0.1251607409218
506 => 0.12774349113563
507 => 0.12057775118256
508 => 0.12085149209872
509 => 0.11745911596886
510 => 0.11935861992292
511 => 0.11801611175206
512 => 0.1192051587747
513 => 0.11991786865744
514 => 0.12330968813176
515 => 0.12843539651687
516 => 0.12280306340951
517 => 0.12034897521814
518 => 0.12187147772975
519 => 0.1259261025512
520 => 0.13206906670813
521 => 0.12843230828855
522 => 0.130046239919
523 => 0.13039881218143
524 => 0.12771720116295
525 => 0.13216794153139
526 => 0.13455312945259
527 => 0.13699983871464
528 => 0.13912424781165
529 => 0.13602256923109
530 => 0.13934180992045
531 => 0.13666708784968
601 => 0.13426758564452
602 => 0.13427122469889
603 => 0.13276598191446
604 => 0.12984938434683
605 => 0.12931151900672
606 => 0.13210956243086
607 => 0.13435332828132
608 => 0.13453813558368
609 => 0.13578039964734
610 => 0.13651555872388
611 => 0.14372111707428
612 => 0.14661925225031
613 => 0.15016303708467
614 => 0.15154354099443
615 => 0.15569836282474
616 => 0.15234300675863
617 => 0.15161705436755
618 => 0.14153881563907
619 => 0.14318912666626
620 => 0.14583143385213
621 => 0.14158238631134
622 => 0.14427742898005
623 => 0.14480948749166
624 => 0.14143800530182
625 => 0.14323885961256
626 => 0.13845632447933
627 => 0.12853964271361
628 => 0.13217898163303
629 => 0.13485876006596
630 => 0.13103438582787
701 => 0.13788942862592
702 => 0.13388485414011
703 => 0.13261559628158
704 => 0.12766376885236
705 => 0.13000084078564
706 => 0.13316176403903
707 => 0.13120868096521
708 => 0.1352616216003
709 => 0.14100166641938
710 => 0.14509236418304
711 => 0.14540639716294
712 => 0.14277635255637
713 => 0.14699101582311
714 => 0.14702171504376
715 => 0.14226755766147
716 => 0.13935566273607
717 => 0.13869407408234
718 => 0.14034685225145
719 => 0.14235363006844
720 => 0.14551775936531
721 => 0.14742977643134
722 => 0.15241530288405
723 => 0.15376424339591
724 => 0.15524632004523
725 => 0.15722683150424
726 => 0.1596049433035
727 => 0.15440177007271
728 => 0.1546085018451
729 => 0.14976337897542
730 => 0.14458567032828
731 => 0.14851490578097
801 => 0.15365185845107
802 => 0.15247343583272
803 => 0.15234083921517
804 => 0.15256382994666
805 => 0.15167533777611
806 => 0.14765672061776
807 => 0.14563859623871
808 => 0.14824249156612
809 => 0.14962634604659
810 => 0.15177258366101
811 => 0.15150801457346
812 => 0.1570364921791
813 => 0.15918469140417
814 => 0.15863509011577
815 => 0.15873622997973
816 => 0.16262544206535
817 => 0.16695104578203
818 => 0.17100254447639
819 => 0.1751239029642
820 => 0.17015544444778
821 => 0.16763276762506
822 => 0.17023552617323
823 => 0.16885446585109
824 => 0.1767904481112
825 => 0.17733991830443
826 => 0.18527532670269
827 => 0.19280697420349
828 => 0.18807648135172
829 => 0.19253712304486
830 => 0.19736167071745
831 => 0.20666900593252
901 => 0.20353462286809
902 => 0.20113373456278
903 => 0.19886490671526
904 => 0.20358597729966
905 => 0.20965955918554
906 => 0.21096775055172
907 => 0.21308752033248
908 => 0.21085884160112
909 => 0.21354303965214
910 => 0.22301943826861
911 => 0.22045883171195
912 => 0.21682235876346
913 => 0.22430306534817
914 => 0.22701030398066
915 => 0.24601112249539
916 => 0.27000044075489
917 => 0.2600687054731
918 => 0.2539037568886
919 => 0.25535266604049
920 => 0.26411275297919
921 => 0.26692621487264
922 => 0.25927825558777
923 => 0.2619796441008
924 => 0.2768645604022
925 => 0.28484984043262
926 => 0.27400475758513
927 => 0.24408360413111
928 => 0.21649493416196
929 => 0.22381269177178
930 => 0.22298308515528
1001 => 0.23897507079002
1002 => 0.22039776209243
1003 => 0.22071055632673
1004 => 0.23703323928859
1005 => 0.23267862731599
1006 => 0.22562471361695
1007 => 0.21654643553829
1008 => 0.1997643988708
1009 => 0.18490008099268
1010 => 0.21405243139963
1011 => 0.21279532903997
1012 => 0.21097485853106
1013 => 0.21502611865316
1014 => 0.23469788783587
1015 => 0.2342443898849
1016 => 0.23135946729756
1017 => 0.23354765565352
1018 => 0.22524111361842
1019 => 0.22738189863731
1020 => 0.21649056397568
1021 => 0.22141390210505
1022 => 0.22560957908623
1023 => 0.22645192335826
1024 => 0.22834976801431
1025 => 0.21213289321961
1026 => 0.2194137939
1027 => 0.22369064092159
1028 => 0.204367690485
1029 => 0.22330868831949
1030 => 0.21185059350872
1031 => 0.20796154403514
1101 => 0.21319763680801
1102 => 0.21115712636215
1103 => 0.2094028153036
1104 => 0.20842387959004
1105 => 0.21226868823596
1106 => 0.21208932331709
1107 => 0.20579847012716
1108 => 0.19759230858887
1109 => 0.20034656575919
1110 => 0.19934591830791
1111 => 0.1957194428584
1112 => 0.19816324944905
1113 => 0.18740196200601
1114 => 0.1688877262833
1115 => 0.1811187975081
1116 => 0.18064791457079
1117 => 0.18041047404096
1118 => 0.18960178602442
1119 => 0.18871825345685
1120 => 0.18711463319515
1121 => 0.19568999111472
1122 => 0.19255987011923
1123 => 0.20220616547805
1124 => 0.20855983948463
1125 => 0.20694834223674
1126 => 0.21292400334991
1127 => 0.20041001828157
1128 => 0.20456666214734
1129 => 0.20542334068721
1130 => 0.19558417252911
1201 => 0.18886281031174
1202 => 0.18841457208098
1203 => 0.17676065625683
1204 => 0.18298608402297
1205 => 0.18846420283146
1206 => 0.18584060904139
1207 => 0.18501005762508
1208 => 0.18925316468635
1209 => 0.18958289044477
1210 => 0.18206510821013
1211 => 0.18362829319392
1212 => 0.19014703443417
1213 => 0.18346403764003
1214 => 0.17048006653035
1215 => 0.1672598621777
1216 => 0.16683022755692
1217 => 0.15809677795491
1218 => 0.16747505163055
1219 => 0.16338118384903
1220 => 0.1763136631188
1221 => 0.16892670031818
1222 => 0.16860826311598
1223 => 0.16812689858028
1224 => 0.16060965773357
1225 => 0.16225545573342
1226 => 0.16772633894704
1227 => 0.16967841171156
1228 => 0.16947479452936
1229 => 0.16769952863466
1230 => 0.16851223627042
1231 => 0.16589422180952
]
'min_raw' => 0.09160141356216
'max_raw' => 0.28484984043262
'avg_raw' => 0.18822562699739
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.0916014'
'max' => '$0.284849'
'avg' => '$0.188225'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.052182310048133
'max_diff' => 0.17790961111536
'year' => 2033
]
8 => [
'items' => [
101 => 0.16496974641411
102 => 0.16205184776923
103 => 0.15776334285132
104 => 0.15835968576308
105 => 0.14986303537235
106 => 0.14523360928812
107 => 0.14395224516286
108 => 0.14223875150266
109 => 0.14414578883121
110 => 0.14983896542935
111 => 0.1429717865772
112 => 0.13119849011178
113 => 0.13190608529007
114 => 0.1334958415688
115 => 0.13053334126068
116 => 0.12772958334285
117 => 0.13016722337633
118 => 0.12517872245931
119 => 0.13409867807178
120 => 0.13385741827035
121 => 0.13718222611632
122 => 0.13926129669434
123 => 0.13446971211911
124 => 0.13326464155626
125 => 0.13395110451626
126 => 0.12260540090258
127 => 0.13625504007778
128 => 0.13637308272418
129 => 0.13536232991993
130 => 0.1426303413954
131 => 0.15796811255825
201 => 0.15219742608637
202 => 0.14996284186453
203 => 0.14571489562536
204 => 0.15137503177097
205 => 0.15094042162687
206 => 0.14897494973422
207 => 0.14778622620091
208 => 0.1499764857593
209 => 0.14751482880309
210 => 0.14707264757195
211 => 0.14439351040915
212 => 0.143437180335
213 => 0.1427291516207
214 => 0.14194968157572
215 => 0.14366899826311
216 => 0.13977280045453
217 => 0.13507436784635
218 => 0.13468374401273
219 => 0.13576229076137
220 => 0.13528511411346
221 => 0.13468145947452
222 => 0.13352891837324
223 => 0.13318698404863
224 => 0.13429810472065
225 => 0.1330437142643
226 => 0.13489463571283
227 => 0.13439128749499
228 => 0.13157962526709
301 => 0.12807525312045
302 => 0.12804405685767
303 => 0.127289045627
304 => 0.12632742530804
305 => 0.1260599245342
306 => 0.12996193213184
307 => 0.1380389710817
308 => 0.13645325506868
309 => 0.1375990973988
310 => 0.14323550758116
311 => 0.14502715288536
312 => 0.14375548548588
313 => 0.14201474871645
314 => 0.14209133229991
315 => 0.14803995679793
316 => 0.14841096521113
317 => 0.14934838377947
318 => 0.15055323155423
319 => 0.14396067627183
320 => 0.14178082353897
321 => 0.14074788838052
322 => 0.13756684788869
323 => 0.14099732733732
324 => 0.13899853387038
325 => 0.13926823939758
326 => 0.13909259331917
327 => 0.13918850795512
328 => 0.1340961847624
329 => 0.1359515596892
330 => 0.13286663901751
331 => 0.12873627653671
401 => 0.12872243011338
402 => 0.12973333047908
403 => 0.12913200738503
404 => 0.12751386240037
405 => 0.12774371225801
406 => 0.12572998564568
407 => 0.12798821512844
408 => 0.12805297306968
409 => 0.12718343171222
410 => 0.13066254580603
411 => 0.13208794168896
412 => 0.1315155909401
413 => 0.13204778403465
414 => 0.1365191487281
415 => 0.13724817627246
416 => 0.1375719621508
417 => 0.13713813196723
418 => 0.13212951237304
419 => 0.13235166595034
420 => 0.13072165040135
421 => 0.12934445902926
422 => 0.12939953946172
423 => 0.13010759484932
424 => 0.13319971425388
425 => 0.13970689725037
426 => 0.1399538400884
427 => 0.14025314201192
428 => 0.13903573067187
429 => 0.13866854776265
430 => 0.13915295679786
501 => 0.14159671259991
502 => 0.14788271599603
503 => 0.14566082256779
504 => 0.1438543886248
505 => 0.1454391182039
506 => 0.14519516150672
507 => 0.14313592147317
508 => 0.14307812546394
509 => 0.1391257854607
510 => 0.13766469535193
511 => 0.13644369909634
512 => 0.13511040306015
513 => 0.13431998047741
514 => 0.13553442880514
515 => 0.13581218750662
516 => 0.13315677501312
517 => 0.13279485210234
518 => 0.1349633192656
519 => 0.13400905771565
520 => 0.13499053938432
521 => 0.13521825155044
522 => 0.13518158464704
523 => 0.13418522599266
524 => 0.13482027528712
525 => 0.13331819438841
526 => 0.13168490701633
527 => 0.13064297143034
528 => 0.12973374443886
529 => 0.13023823641831
530 => 0.12843981462816
531 => 0.1278644633024
601 => 0.13460513487522
602 => 0.13958454144048
603 => 0.13951213889696
604 => 0.13907140703371
605 => 0.1384165688841
606 => 0.14154880711054
607 => 0.14045759794352
608 => 0.1412515437861
609 => 0.14145363632484
610 => 0.14206530957322
611 => 0.14228393018443
612 => 0.14162310685559
613 => 0.13940530305124
614 => 0.13387874683327
615 => 0.13130611999515
616 => 0.13045711028808
617 => 0.13048797017843
618 => 0.12963671663788
619 => 0.12988744895608
620 => 0.12954952216993
621 => 0.12890957059022
622 => 0.1301987212116
623 => 0.13034728381145
624 => 0.13004638065222
625 => 0.13011725423907
626 => 0.12762590459804
627 => 0.12781531650032
628 => 0.12676064695913
629 => 0.12656290913438
630 => 0.12389679637482
701 => 0.11917339116203
702 => 0.12179061616195
703 => 0.11862937639957
704 => 0.11743216700096
705 => 0.12309957008973
706 => 0.12253072000891
707 => 0.12155709594373
708 => 0.1201169030303
709 => 0.11958272146941
710 => 0.11633720340678
711 => 0.11614544088548
712 => 0.11775400727368
713 => 0.11701170923291
714 => 0.11596924165343
715 => 0.11219352975379
716 => 0.10794837948334
717 => 0.10807651388594
718 => 0.10942681720314
719 => 0.11335300621111
720 => 0.11181897624194
721 => 0.11070601989834
722 => 0.11049759663053
723 => 0.11310645019086
724 => 0.11679852455044
725 => 0.11853076323446
726 => 0.11681416730747
727 => 0.11484223433464
728 => 0.11496225675764
729 => 0.11576071216686
730 => 0.11584461854081
731 => 0.11456109289349
801 => 0.11492239784491
802 => 0.11437354258528
803 => 0.11100521887
804 => 0.11094429657506
805 => 0.11011765561377
806 => 0.11009262525399
807 => 0.10868630276359
808 => 0.10848954852573
809 => 0.10569720986337
810 => 0.10753513562692
811 => 0.10630235152016
812 => 0.10444425508691
813 => 0.10412391856145
814 => 0.10411428885868
815 => 0.10602213843287
816 => 0.10751284129384
817 => 0.1063237963275
818 => 0.10605307383733
819 => 0.10894368176452
820 => 0.10857582555731
821 => 0.10825726445429
822 => 0.11646793978657
823 => 0.10996854957408
824 => 0.10713444446921
825 => 0.10362670121997
826 => 0.1047688401095
827 => 0.10500950555504
828 => 0.096574015358867
829 => 0.093151738036854
830 => 0.091977341425739
831 => 0.091301459572511
901 => 0.091609467420217
902 => 0.088529016437312
903 => 0.090599130443781
904 => 0.087931720276625
905 => 0.087484520281597
906 => 0.092254180089184
907 => 0.092917850387462
908 => 0.090086426708811
909 => 0.09190465907636
910 => 0.091245342744566
911 => 0.087977445368009
912 => 0.087852635725251
913 => 0.086212919693841
914 => 0.083647081616275
915 => 0.0824744247642
916 => 0.081863694894165
917 => 0.082115693941429
918 => 0.081988275511835
919 => 0.081156784069582
920 => 0.082035935627996
921 => 0.079790066686754
922 => 0.078895743578155
923 => 0.07849179857814
924 => 0.076498460625395
925 => 0.079670747749624
926 => 0.080295728276517
927 => 0.080921940208114
928 => 0.086372687539627
929 => 0.086100383606597
930 => 0.088561878543797
1001 => 0.088466229376936
1002 => 0.087764171147272
1003 => 0.084802302959294
1004 => 0.085982850828798
1005 => 0.082349307984338
1006 => 0.085071805340305
1007 => 0.083829371241249
1008 => 0.084651737121638
1009 => 0.083173049118957
1010 => 0.083991416113172
1011 => 0.080443934344692
1012 => 0.077131345783701
1013 => 0.078464428121133
1014 => 0.079913641078377
1015 => 0.083055904022278
1016 => 0.081184398135997
1017 => 0.081857462422176
1018 => 0.079602809733077
1019 => 0.074950817225764
1020 => 0.07497714699815
1021 => 0.074261539300066
1022 => 0.073643149768487
1023 => 0.081399363100139
1024 => 0.08043475536476
1025 => 0.078897779183173
1026 => 0.080955082879233
1027 => 0.081499066630271
1028 => 0.081514553082912
1029 => 0.083015508752863
1030 => 0.083816569062977
1031 => 0.083957759414629
1101 => 0.086319545591591
1102 => 0.087111185165395
1103 => 0.090371836532871
1104 => 0.083748604692361
1105 => 0.083612203591145
1106 => 0.08098403336124
1107 => 0.079317206251707
1108 => 0.081098162439462
1109 => 0.082675846497051
1110 => 0.081033056402686
1111 => 0.081247570107819
1112 => 0.079042258627017
1113 => 0.079830553711854
1114 => 0.080509539633731
1115 => 0.080134643516618
1116 => 0.079573405884123
1117 => 0.082546494396
1118 => 0.082378741090532
1119 => 0.085147349463801
1120 => 0.087305677675849
1121 => 0.091173787679156
1122 => 0.08713721324157
1123 => 0.086990104425134
1124 => 0.088428116702791
1125 => 0.087110965013208
1126 => 0.087943359414494
1127 => 0.091039676072341
1128 => 0.09110509636421
1129 => 0.090009222186128
1130 => 0.089942538142799
1201 => 0.090153012766249
1202 => 0.091385769209853
1203 => 0.090955006229679
1204 => 0.091453496055921
1205 => 0.092076865216785
1206 => 0.094655384369162
1207 => 0.095277056607265
1208 => 0.093766715368775
1209 => 0.093903082272037
1210 => 0.093338173189048
1211 => 0.09279247809317
1212 => 0.094019120976334
1213 => 0.096260834955043
1214 => 0.096246889368726
1215 => 0.096766923439094
1216 => 0.097090900356738
1217 => 0.095700154260611
1218 => 0.094794829691184
1219 => 0.095141988738402
1220 => 0.095697103615043
1221 => 0.094961972465558
1222 => 0.090424402465065
1223 => 0.091800811342121
1224 => 0.091571709602023
1225 => 0.091245440864401
1226 => 0.092629430633735
1227 => 0.092495941444218
1228 => 0.088497421960071
1229 => 0.088753394204281
1230 => 0.088512988480048
1231 => 0.08928978855743
]
'min_raw' => 0.073643149768487
'max_raw' => 0.16496974641411
'avg_raw' => 0.1193064480913
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.073643'
'max' => '$0.164969'
'avg' => '$0.1193064'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.017958263793674
'max_diff' => -0.11988009401851
'year' => 2034
]
9 => [
'items' => [
101 => 0.087069015259789
102 => 0.087752110169007
103 => 0.088180540892451
104 => 0.08843288987992
105 => 0.089344547459977
106 => 0.08923757496527
107 => 0.08933789789951
108 => 0.090689645422057
109 => 0.097526320527368
110 => 0.097898425669076
111 => 0.096066043860241
112 => 0.096798044250738
113 => 0.095392763571872
114 => 0.096336137906157
115 => 0.096981570666564
116 => 0.094064984131865
117 => 0.09389228280577
118 => 0.092481202033657
119 => 0.09323943691289
120 => 0.092033030701012
121 => 0.09232904058711
122 => 0.091501371139904
123 => 0.092991011357531
124 => 0.094656660587524
125 => 0.095077469361502
126 => 0.093970502646734
127 => 0.093168985792581
128 => 0.091761786232754
129 => 0.094101990462234
130 => 0.094786337495366
131 => 0.094098395878605
201 => 0.09393898477418
202 => 0.093636901019344
203 => 0.09400307327081
204 => 0.094782610394452
205 => 0.094414995082733
206 => 0.094657811472672
207 => 0.093732445785399
208 => 0.095700614655438
209 => 0.098826540486692
210 => 0.09883659084938
211 => 0.098468973556077
212 => 0.098318552480083
213 => 0.098695750131894
214 => 0.098900364384544
215 => 0.10012015242428
216 => 0.10142903358942
217 => 0.10753701087753
218 => 0.10582191529649
219 => 0.1112412761117
220 => 0.1155272869006
221 => 0.11681247413165
222 => 0.11563016235181
223 => 0.11158553762022
224 => 0.11138708903499
225 => 0.1174314659805
226 => 0.11572365264339
227 => 0.11552051368116
228 => 0.1133594583317
301 => 0.11463690969514
302 => 0.11435751234288
303 => 0.11391646995374
304 => 0.11635375816715
305 => 0.12091614412445
306 => 0.12020505348722
307 => 0.11967425731307
308 => 0.11734846299041
309 => 0.11874911065762
310 => 0.11825036685097
311 => 0.120393286755
312 => 0.11912386847534
313 => 0.11571071427768
314 => 0.11625427033356
315 => 0.1161721129292
316 => 0.11786290648926
317 => 0.11735537223061
318 => 0.11607300871956
319 => 0.12090055038524
320 => 0.12058707668167
321 => 0.12103151072327
322 => 0.12122716433296
323 => 0.12416560387403
324 => 0.12536938853443
325 => 0.12564266872756
326 => 0.12678617105089
327 => 0.12561421734805
328 => 0.13030286774825
329 => 0.13342054667405
330 => 0.13704189118066
331 => 0.14233364883045
401 => 0.14432339865827
402 => 0.14396396816144
403 => 0.14797611841752
404 => 0.1551858632426
405 => 0.14542126372508
406 => 0.15570341072733
407 => 0.15244820169951
408 => 0.14473015965327
409 => 0.14423320873523
410 => 0.14945995641726
411 => 0.16105237972017
412 => 0.15814860916297
413 => 0.16105712924855
414 => 0.15766418607358
415 => 0.15749569784697
416 => 0.16089234157174
417 => 0.16882878477607
418 => 0.16505847810281
419 => 0.15965281896958
420 => 0.16364427355219
421 => 0.16018650620105
422 => 0.1523951885908
423 => 0.15814638870435
424 => 0.15430072497316
425 => 0.15542309409665
426 => 0.16350610726029
427 => 0.16253353773144
428 => 0.16379213275928
429 => 0.16157074547831
430 => 0.15949561947725
501 => 0.1556222426954
502 => 0.15447552678546
503 => 0.15479243780845
504 => 0.1544753697401
505 => 0.15230825102882
506 => 0.15184026194946
507 => 0.15106025964744
508 => 0.15130201497638
509 => 0.14983538245086
510 => 0.15260322104825
511 => 0.15311695628203
512 => 0.15513115839463
513 => 0.15534027953982
514 => 0.16094980375301
515 => 0.15786017208061
516 => 0.15993296375242
517 => 0.15974755375542
518 => 0.14489743302756
519 => 0.14694364864014
520 => 0.15012691799547
521 => 0.14869285946571
522 => 0.14666543622265
523 => 0.14502818325032
524 => 0.14254757757953
525 => 0.14603898242536
526 => 0.15062980852811
527 => 0.1554567104658
528 => 0.16125591687279
529 => 0.15996160151295
530 => 0.15534829833586
531 => 0.15555524774637
601 => 0.15683452757051
602 => 0.15517774396342
603 => 0.15468912613342
604 => 0.15676739898391
605 => 0.15678171090683
606 => 0.15487538113788
607 => 0.15275684445435
608 => 0.15274796770829
609 => 0.1523709945681
610 => 0.15773124875777
611 => 0.16067884657926
612 => 0.1610167839192
613 => 0.16065610070374
614 => 0.16079491335836
615 => 0.15907977113192
616 => 0.16300007765194
617 => 0.16659773859284
618 => 0.16563348860786
619 => 0.16418794080417
620 => 0.16303649235151
621 => 0.16536224394597
622 => 0.16525868188854
623 => 0.16656631616305
624 => 0.16650699431909
625 => 0.16606728609519
626 => 0.16563350431122
627 => 0.16735340005218
628 => 0.16685809769947
629 => 0.16636202600539
630 => 0.16536707827815
701 => 0.16550230819861
702 => 0.16405700998913
703 => 0.16338834890508
704 => 0.1533332905432
705 => 0.15064625039039
706 => 0.15149164792221
707 => 0.15176997474042
708 => 0.15060057142239
709 => 0.15227719538539
710 => 0.15201589531674
711 => 0.15303246102842
712 => 0.15239735490591
713 => 0.15242341988271
714 => 0.15429113157011
715 => 0.15483333621878
716 => 0.15455756655834
717 => 0.15475070617568
718 => 0.15920152713816
719 => 0.15856876272654
720 => 0.15823261924433
721 => 0.15832573328615
722 => 0.15946301346874
723 => 0.15978138982667
724 => 0.15843240682621
725 => 0.1590685950076
726 => 0.16177740353968
727 => 0.16272533322062
728 => 0.16575066973012
729 => 0.16446545300982
730 => 0.16682452392282
731 => 0.17407550364283
801 => 0.17986808797282
802 => 0.17454098803429
803 => 0.18517833147514
804 => 0.19346102918013
805 => 0.19314312544665
806 => 0.19169884551954
807 => 0.18226921438932
808 => 0.17359192723542
809 => 0.18085084639673
810 => 0.18086935087449
811 => 0.18024580328091
812 => 0.17637300273013
813 => 0.18011103821653
814 => 0.18040774989889
815 => 0.18024167025877
816 => 0.17727240315675
817 => 0.17273888110425
818 => 0.17362472046159
819 => 0.17507574339954
820 => 0.1723286542629
821 => 0.17145079283174
822 => 0.17308290425223
823 => 0.17834190731299
824 => 0.17734772324768
825 => 0.17732176108393
826 => 0.18157530211496
827 => 0.17853068470834
828 => 0.17363589373273
829 => 0.17239989445703
830 => 0.16801292969717
831 => 0.17104302188264
901 => 0.17115206950602
902 => 0.16949251898283
903 => 0.17377055711139
904 => 0.1737311342369
905 => 0.17779249473802
906 => 0.18555629063881
907 => 0.18326015415775
908 => 0.18058999724922
909 => 0.1808803173406
910 => 0.18406441217197
911 => 0.18213923575111
912 => 0.18283154261485
913 => 0.18406336428261
914 => 0.18480655287918
915 => 0.18077338393857
916 => 0.17983305932975
917 => 0.17790948518918
918 => 0.17740766060111
919 => 0.17897437160192
920 => 0.17856159860592
921 => 0.17114290447553
922 => 0.17036760966168
923 => 0.17039138684676
924 => 0.16844187117407
925 => 0.16546839183585
926 => 0.17328251799946
927 => 0.1726549343099
928 => 0.17196213048774
929 => 0.17204699500287
930 => 0.17543884232519
1001 => 0.17347139958585
1002 => 0.1787021685659
1003 => 0.17762687971491
1004 => 0.17652401376233
1005 => 0.17637156409356
1006 => 0.17594705479392
1007 => 0.17449125445249
1008 => 0.17273328806018
1009 => 0.17157252637553
1010 => 0.158266586292
1011 => 0.16073609137441
1012 => 0.16357703186925
1013 => 0.16455771314372
1014 => 0.16288018996267
1015 => 0.17455749329231
1016 => 0.17669104913592
1017 => 0.1702283693172
1018 => 0.16901946579259
1019 => 0.17463674880612
1020 => 0.17124884046404
1021 => 0.17277441538303
1022 => 0.16947695685304
1023 => 0.176177138011
1024 => 0.17612609385645
1025 => 0.17351957205555
1026 => 0.17572258643298
1027 => 0.17533975847138
1028 => 0.17239700177774
1029 => 0.17627042864709
1030 => 0.17627234981849
1031 => 0.1737636292558
1101 => 0.17083399286811
1102 => 0.17031024307692
1103 => 0.16991566796513
1104 => 0.17267737409343
1105 => 0.17515351117243
1106 => 0.17976098839
1107 => 0.18091941763346
1108 => 0.18544084409168
1109 => 0.18274855478007
1110 => 0.18394201176092
1111 => 0.18523767813843
1112 => 0.18585886824637
1113 => 0.18484667230039
1114 => 0.19187030868337
1115 => 0.19246331879276
1116 => 0.19266214995291
1117 => 0.19029381928262
1118 => 0.19239745123254
1119 => 0.19141323150814
1120 => 0.19397389780691
1121 => 0.19437544297879
1122 => 0.19403534850359
1123 => 0.1941628052791
1124 => 0.18816937068059
1125 => 0.18785857947877
1126 => 0.18362091938923
1127 => 0.18534779719892
1128 => 0.18211948190511
1129 => 0.18314321394011
1130 => 0.18359446526666
1201 => 0.18335875718196
1202 => 0.18544543227929
1203 => 0.183671332167
1204 => 0.17898919028159
1205 => 0.17430577274976
1206 => 0.17424697625768
1207 => 0.17301391509073
1208 => 0.17212263771345
1209 => 0.17229432935608
1210 => 0.17289939309879
1211 => 0.17208747030878
1212 => 0.17226073520156
1213 => 0.17513808687965
1214 => 0.17571511923836
1215 => 0.17375413782237
1216 => 0.16588051446891
1217 => 0.16394830754848
1218 => 0.16533713956556
1219 => 0.16467336731363
1220 => 0.13290425965146
1221 => 0.14036794025886
1222 => 0.13593327468459
1223 => 0.13797697261036
1224 => 0.13345032741012
1225 => 0.13561067976148
1226 => 0.13521174156562
1227 => 0.14721311911594
1228 => 0.14702573411284
1229 => 0.14711542539763
1230 => 0.14283422668535
1231 => 0.14965429248123
]
'min_raw' => 0.087069015259789
'max_raw' => 0.19437544297879
'avg_raw' => 0.14072222911929
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.087069'
'max' => '$0.194375'
'avg' => '$0.140722'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.013425865491302
'max_diff' => 0.029405696564672
'year' => 2035
]
10 => [
'items' => [
101 => 0.15301410213391
102 => 0.15239229078564
103 => 0.1525487873056
104 => 0.1498596585949
105 => 0.1471414620417
106 => 0.14412656373675
107 => 0.14972787213465
108 => 0.14910510225833
109 => 0.15053351228908
110 => 0.15416636117492
111 => 0.15470131197321
112 => 0.15542029127104
113 => 0.1551625883732
114 => 0.16130211690783
115 => 0.16055857949238
116 => 0.16235029073331
117 => 0.15866460477324
118 => 0.1544939012609
119 => 0.15528661564803
120 => 0.15521027087794
121 => 0.15423831433029
122 => 0.15336087541818
123 => 0.15190018684641
124 => 0.15652202162874
125 => 0.15633438357704
126 => 0.15937202552871
127 => 0.15883509280767
128 => 0.15524932468686
129 => 0.15537739109679
130 => 0.15623869925018
131 => 0.1592196966033
201 => 0.16010465957948
202 => 0.15969470946924
203 => 0.16066503097253
204 => 0.16143193352553
205 => 0.16076134212575
206 => 0.17025550219463
207 => 0.1663128650035
208 => 0.16823447893777
209 => 0.16869277253828
210 => 0.16751886311744
211 => 0.16777344203627
212 => 0.16815905972971
213 => 0.17050045485255
214 => 0.17664495314304
215 => 0.17936630960888
216 => 0.18755364480572
217 => 0.1791403388375
218 => 0.17864112807907
219 => 0.18011591438186
220 => 0.18492274685985
221 => 0.18881823310045
222 => 0.19011059062245
223 => 0.19028139700348
224 => 0.19270594562905
225 => 0.19409565168607
226 => 0.19241154165395
227 => 0.19098443473539
228 => 0.18587271489214
229 => 0.18646441038275
301 => 0.19054060555684
302 => 0.19629847132695
303 => 0.20123931916153
304 => 0.19950920645579
305 => 0.21270874513135
306 => 0.21401742547575
307 => 0.21383660816685
308 => 0.21681797674915
309 => 0.21090056725845
310 => 0.20837076005677
311 => 0.19129299144953
312 => 0.19609114783504
313 => 0.20306554992721
314 => 0.20214246165765
315 => 0.19707746443201
316 => 0.20123547690694
317 => 0.19986070794966
318 => 0.19877637063383
319 => 0.20374393008677
320 => 0.19828189441217
321 => 0.20301106194312
322 => 0.1969458556677
323 => 0.1995171094649
324 => 0.19805754145206
325 => 0.19900206083429
326 => 0.19348041982544
327 => 0.19645976328356
328 => 0.19335646934241
329 => 0.19335499797702
330 => 0.19328649259127
331 => 0.19693750415092
401 => 0.1970565635068
402 => 0.19435846044785
403 => 0.19396962164476
404 => 0.19540736249844
405 => 0.19372414450371
406 => 0.1945117116094
407 => 0.19374799910904
408 => 0.19357607133896
409 => 0.19220612161588
410 => 0.19161590960762
411 => 0.19184734694395
412 => 0.19105733200094
413 => 0.19058131942169
414 => 0.19319180170819
415 => 0.19179712632907
416 => 0.19297804770388
417 => 0.19163223875313
418 => 0.18696707858875
419 => 0.18428409564505
420 => 0.17547204055513
421 => 0.17797112844731
422 => 0.17962802630532
423 => 0.17908042157313
424 => 0.18025688843277
425 => 0.18032911394309
426 => 0.17994663257436
427 => 0.17950376814827
428 => 0.17928820623758
429 => 0.18089482811325
430 => 0.18182752618847
501 => 0.1797943181718
502 => 0.1793179659811
503 => 0.18137365154245
504 => 0.18262761854734
505 => 0.19188620636824
506 => 0.19120030027763
507 => 0.1929217899628
508 => 0.19272797664266
509 => 0.19453237208754
510 => 0.19748179604551
511 => 0.19148479246706
512 => 0.19252566492749
513 => 0.19227046703745
514 => 0.19505665068447
515 => 0.19506534884569
516 => 0.19339489256911
517 => 0.1943004740167
518 => 0.19379500329598
519 => 0.19470845720679
520 => 0.19119113958361
521 => 0.19547485277767
522 => 0.19790344212232
523 => 0.19793716308773
524 => 0.19908829516262
525 => 0.20025791201978
526 => 0.20250288972494
527 => 0.20019530081004
528 => 0.1960441729914
529 => 0.19634387101185
530 => 0.19391006629062
531 => 0.19395097898769
601 => 0.19373258380436
602 => 0.19438800418955
603 => 0.19133496750067
604 => 0.19205150910923
605 => 0.19104834666119
606 => 0.19252348424825
607 => 0.19093648005355
608 => 0.1922703439733
609 => 0.19284599542278
610 => 0.19497016166423
611 => 0.19062273897258
612 => 0.18175804980966
613 => 0.18362151494567
614 => 0.18086530363748
615 => 0.18112040148769
616 => 0.18163573974364
617 => 0.17996535984793
618 => 0.18028401569231
619 => 0.1802726310632
620 => 0.18017452448003
621 => 0.17973999415602
622 => 0.17910983921701
623 => 0.18162018254257
624 => 0.18204673879083
625 => 0.18299492049158
626 => 0.18581606607522
627 => 0.18553416710422
628 => 0.18599395602179
629 => 0.18499023939633
630 => 0.18116696102322
701 => 0.18137458343322
702 => 0.17878552865351
703 => 0.18292871253988
704 => 0.18194755190823
705 => 0.18131499126618
706 => 0.18114239123436
707 => 0.18397052989223
708 => 0.18481675330431
709 => 0.18428944366184
710 => 0.18320791620107
711 => 0.18528476865065
712 => 0.18584044675078
713 => 0.18596484258478
714 => 0.18964462692848
715 => 0.18617050165229
716 => 0.18700675813611
717 => 0.19353099250288
718 => 0.18761441221502
719 => 0.19074855674898
720 => 0.19059515668335
721 => 0.19219847897326
722 => 0.1904636374581
723 => 0.19048514289787
724 => 0.19190878447285
725 => 0.1899095366359
726 => 0.18941449475599
727 => 0.18873059794445
728 => 0.19022386161259
729 => 0.19111900564713
730 => 0.19833320915472
731 => 0.20299391362827
801 => 0.20279158015534
802 => 0.20464052934553
803 => 0.20380756080091
804 => 0.20111768564435
805 => 0.20570897454127
806 => 0.2042560986266
807 => 0.20437587195176
808 => 0.20437141398262
809 => 0.20533744945326
810 => 0.20465292478646
811 => 0.20330365640318
812 => 0.20419936372372
813 => 0.20685929424449
814 => 0.2151158001976
815 => 0.21973625031312
816 => 0.21483764329904
817 => 0.21821663682239
818 => 0.21619044476688
819 => 0.2158222253964
820 => 0.21794448303473
821 => 0.2200704554041
822 => 0.21993504015501
823 => 0.21839169338473
824 => 0.21751989595517
825 => 0.22412143816534
826 => 0.22898534201145
827 => 0.22865365637717
828 => 0.23011760889694
829 => 0.23441581877331
830 => 0.23480879321749
831 => 0.23475928746994
901 => 0.23378525930741
902 => 0.23801740512378
903 => 0.24154793562132
904 => 0.23355979993016
905 => 0.23660157742898
906 => 0.23796712934815
907 => 0.23997216470649
908 => 0.24335499543895
909 => 0.24702964686595
910 => 0.24754928286823
911 => 0.24718057625774
912 => 0.2447570448617
913 => 0.24877789230083
914 => 0.25113321043019
915 => 0.25253574847573
916 => 0.25609235159914
917 => 0.23797556253191
918 => 0.22515159876729
919 => 0.22314895164516
920 => 0.22722141331822
921 => 0.22829528898413
922 => 0.22786241104972
923 => 0.21342787392886
924 => 0.22307295679452
925 => 0.23345025497636
926 => 0.2338488892624
927 => 0.2390439817113
928 => 0.2407357167667
929 => 0.2449184471244
930 => 0.24465681620169
1001 => 0.24567524448201
1002 => 0.24544112545709
1003 => 0.25318875266693
1004 => 0.26173553601317
1005 => 0.261439588083
1006 => 0.26021088685602
1007 => 0.26203571770277
1008 => 0.27085691404505
1009 => 0.27004479964265
1010 => 0.27083369960884
1011 => 0.28123438723723
1012 => 0.29475676063471
1013 => 0.28847426056749
1014 => 0.30210547797265
1015 => 0.31068560676942
1016 => 0.32552405232155
1017 => 0.32366620585754
1018 => 0.32944270382144
1019 => 0.3203402729427
1020 => 0.29943925174032
1021 => 0.29613158512915
1022 => 0.30275361744817
1023 => 0.31903323773603
1024 => 0.30224091427106
1025 => 0.30563797943765
1026 => 0.30465962444114
1027 => 0.30460749206112
1028 => 0.30659717296889
1029 => 0.30371103703739
1030 => 0.29195240004654
1031 => 0.29734131408536
1101 => 0.29526039557807
1102 => 0.29756932980466
1103 => 0.3100296955487
1104 => 0.30452067083524
1105 => 0.29871736081644
1106 => 0.30599599943761
1107 => 0.31526420761394
1108 => 0.31468421980284
1109 => 0.3135588010332
1110 => 0.31990272771264
1111 => 0.33038103599097
1112 => 0.33321328061335
1113 => 0.3353039856909
1114 => 0.33559225859834
1115 => 0.33856164870561
1116 => 0.32259448971617
1117 => 0.34793478109813
1118 => 0.35231034940838
1119 => 0.35148792391478
1120 => 0.35635118393955
1121 => 0.35492028947126
1122 => 0.35284714788718
1123 => 0.36055644947151
1124 => 0.35171835731363
1125 => 0.33917379818037
1126 => 0.33229160493662
1127 => 0.34135463217069
1128 => 0.34688910664647
1129 => 0.35054704221627
1130 => 0.35165393130951
1201 => 0.32383397481585
1202 => 0.30884056123129
1203 => 0.31845116743915
1204 => 0.33017677030136
1205 => 0.32252935340023
1206 => 0.32282911766428
1207 => 0.31192591086907
1208 => 0.33114146216923
1209 => 0.32834191797302
1210 => 0.34286595821526
1211 => 0.33939967944874
1212 => 0.35124347044629
1213 => 0.34812460334798
1214 => 0.36107084629957
1215 => 0.3662354531185
1216 => 0.37490763177434
1217 => 0.3812869216957
1218 => 0.38503296275389
1219 => 0.3848080644998
1220 => 0.3996517454426
1221 => 0.39089894538934
1222 => 0.37990336564587
1223 => 0.37970449029892
1224 => 0.38539925685664
1225 => 0.3973339252787
1226 => 0.40042841115817
1227 => 0.40215780660727
1228 => 0.39950917727629
1229 => 0.39000864013731
1230 => 0.38590635636952
1231 => 0.38940162099428
]
'min_raw' => 0.14412656373675
'max_raw' => 0.40215780660727
'avg_raw' => 0.27314218517201
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.144126'
'max' => '$0.402157'
'avg' => '$0.273142'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.057057548476956
'max_diff' => 0.20778236362849
'year' => 2036
]
11 => [
'items' => [
101 => 0.38512721270971
102 => 0.39250604059602
103 => 0.40263874731652
104 => 0.4005463834478
105 => 0.4075408421562
106 => 0.41477937108089
107 => 0.42513079254586
108 => 0.42783703742883
109 => 0.4323103573111
110 => 0.43691487287899
111 => 0.43839371918423
112 => 0.44121729563997
113 => 0.4412024139983
114 => 0.44971145169631
115 => 0.45909718378018
116 => 0.46264008036165
117 => 0.47078677569427
118 => 0.45683584543141
119 => 0.46741778629252
120 => 0.47696296183241
121 => 0.46558281005236
122 => 0.48126769804586
123 => 0.48187670670393
124 => 0.49107201439236
125 => 0.48175080844234
126 => 0.47621590610356
127 => 0.49219496176553
128 => 0.49992672346483
129 => 0.49759785391784
130 => 0.47987504167476
131 => 0.46955960478212
201 => 0.44256211673489
202 => 0.47454180753152
203 => 0.49011818205819
204 => 0.47983470262771
205 => 0.48502109149817
206 => 0.51331634748315
207 => 0.52408934898007
208 => 0.52184863997768
209 => 0.52222728291387
210 => 0.5280401989778
211 => 0.55381787003663
212 => 0.53837129201644
213 => 0.55017962214064
214 => 0.55644271786041
215 => 0.56226023021105
216 => 0.54797425852154
217 => 0.52938841925609
218 => 0.52350150378026
219 => 0.47881221326358
220 => 0.47648594161644
221 => 0.47518013484765
222 => 0.46694720788048
223 => 0.46047838247277
224 => 0.45533413233647
225 => 0.4418340837757
226 => 0.44638995386688
227 => 0.42487369414011
228 => 0.43863903462387
301 => 0.4042985645717
302 => 0.43289832846372
303 => 0.41733277724899
304 => 0.42778462625553
305 => 0.42774816073897
306 => 0.40850299295619
307 => 0.39740278181549
308 => 0.40447626838103
309 => 0.41205960747334
310 => 0.41328997872765
311 => 0.42312197580624
312 => 0.42586587485281
313 => 0.41755173264132
314 => 0.40358693465885
315 => 0.40683063872705
316 => 0.39733704825608
317 => 0.38069989612139
318 => 0.39264898924133
319 => 0.39672893499702
320 => 0.39853087147211
321 => 0.38217014313748
322 => 0.37702924708604
323 => 0.37429227716455
324 => 0.40147497008008
325 => 0.40296409935945
326 => 0.39534550342452
327 => 0.42978227947532
328 => 0.42198817646173
329 => 0.43069609912951
330 => 0.40653630658176
331 => 0.40745924319256
401 => 0.3960216102226
402 => 0.40242592042287
403 => 0.39789956039387
404 => 0.40190851544731
405 => 0.4043114665768
406 => 0.41574722274373
407 => 0.43302890642964
408 => 0.41403910212126
409 => 0.40576497244508
410 => 0.41089819596071
411 => 0.4245686466311
412 => 0.44528007917424
413 => 0.43301849425228
414 => 0.43845997742543
415 => 0.43964869942403
416 => 0.43060746065112
417 => 0.44561344254409
418 => 0.45365527014891
419 => 0.46190452124971
420 => 0.46906711484176
421 => 0.45860958895513
422 => 0.46980064068128
423 => 0.46078262847656
424 => 0.45269253926397
425 => 0.45270480858986
426 => 0.44762977744946
427 => 0.43779626511985
428 => 0.43598281457312
429 => 0.44541661333075
430 => 0.4529816265503
501 => 0.45360471727303
502 => 0.45779309729579
503 => 0.46027173744951
504 => 0.48456578050389
505 => 0.49433704559122
506 => 0.50628516357943
507 => 0.51093962889487
508 => 0.52494790077618
509 => 0.51363508353581
510 => 0.5111874843649
511 => 0.47720799885166
512 => 0.48277213770089
513 => 0.49168086085804
514 => 0.47735490041523
515 => 0.48644142493465
516 => 0.48823529735368
517 => 0.47686810976128
518 => 0.48293981580157
519 => 0.46681516469395
520 => 0.4333803797602
521 => 0.44565066501756
522 => 0.45468572510034
523 => 0.44179158034734
524 => 0.46490383574477
525 => 0.45140213327539
526 => 0.44712274178861
527 => 0.43042730988546
528 => 0.43830691107764
529 => 0.44896418451508
530 => 0.44237922857176
531 => 0.45604400089026
601 => 0.47539696275492
602 => 0.48918903586849
603 => 0.49024781998529
604 => 0.48138044097041
605 => 0.49559047243262
606 => 0.49569397699838
607 => 0.47966500345932
608 => 0.46984734641634
609 => 0.46761675407965
610 => 0.47318921107009
611 => 0.4799552025888
612 => 0.49062328542568
613 => 0.49706978445656
614 => 0.51387883497021
615 => 0.51842688208596
616 => 0.52342380698444
617 => 0.53010123964338
618 => 0.53811920960903
619 => 0.52057634778748
620 => 0.52127335839163
621 => 0.50493768836086
622 => 0.48748068216092
623 => 0.50072837382013
624 => 0.51804796839798
625 => 0.51407483426537
626 => 0.51362777551168
627 => 0.51437960433162
628 => 0.51138399094606
629 => 0.4978349426258
630 => 0.49103069538089
701 => 0.49980991027543
702 => 0.50447567227397
703 => 0.51171186223651
704 => 0.51081984908619
705 => 0.52945949731961
706 => 0.53670230098942
707 => 0.53484928187364
708 => 0.53519028198634
709 => 0.54830303206912
710 => 0.56288710700391
711 => 0.57654701771854
712 => 0.59044246560426
713 => 0.57369096082946
714 => 0.56518557979399
715 => 0.57396096195794
716 => 0.5693046206593
717 => 0.59606133892183
718 => 0.5979139160411
719 => 0.62466869948835
720 => 0.65006217488014
721 => 0.63411298795792
722 => 0.64915235285841
723 => 0.66541865217571
724 => 0.69679898267072
725 => 0.68623119133334
726 => 0.67813642878731
727 => 0.67048691729491
728 => 0.68640433638483
729 => 0.70688184175703
730 => 0.71129250028309
731 => 0.71843945209655
801 => 0.71092530615239
802 => 0.71997526728611
803 => 0.75192560684256
804 => 0.74329234306096
805 => 0.73103172062468
806 => 0.75625344516127
807 => 0.76538108922409
808 => 0.82944367544127
809 => 0.91032533683391
810 => 0.87683979791974
811 => 0.85605424334412
812 => 0.86093934170934
813 => 0.8904745864329
814 => 0.8999603696363
815 => 0.87417474094391
816 => 0.88328266092048
817 => 0.93346819546235
818 => 0.96039112459935
819 => 0.92382617059952
820 => 0.82294491270109
821 => 0.72992778572066
822 => 0.75460011641169
823 => 0.75180303978289
824 => 0.80572113587519
825 => 0.74308644257498
826 => 0.74414105017453
827 => 0.79917411539377
828 => 0.78449223709887
829 => 0.76070947457403
830 => 0.73010142620668
831 => 0.67351961789783
901 => 0.62340353237824
902 => 0.72169271712737
903 => 0.7174543087537
904 => 0.7113164653317
905 => 0.72497557168334
906 => 0.79130031492189
907 => 0.789771314918
908 => 0.78004459699589
909 => 0.78742222681245
910 => 0.75941614039687
911 => 0.7666339465529
912 => 0.72991305133251
913 => 0.74651242957217
914 => 0.76065844744703
915 => 0.76349846997078
916 => 0.76989718573193
917 => 0.71522086013554
918 => 0.73976892511574
919 => 0.75418861344897
920 => 0.68903993696668
921 => 0.75290083358388
922 => 0.71426906695076
923 => 0.70115686512581
924 => 0.71881071748187
925 => 0.71193099404978
926 => 0.70601621183378
927 => 0.7027156617284
928 => 0.7156787025141
929 => 0.71507396116726
930 => 0.69386391042405
1001 => 0.66619626386181
1002 => 0.67548243420763
1003 => 0.67210868146268
1004 => 0.65988176629222
1005 => 0.66812123083374
1006 => 0.63183879889043
1007 => 0.56941676052867
1008 => 0.61065467110919
1009 => 0.60906705641006
1010 => 0.60826650908616
1011 => 0.63925565915529
1012 => 0.63627676741748
1013 => 0.63087004974395
1014 => 0.65978246768214
1015 => 0.6492290462078
1016 => 0.68175220449289
1017 => 0.70317406000544
1018 => 0.69774078452303
1019 => 0.7178881431734
1020 => 0.67569636881698
1021 => 0.689710783818
1022 => 0.69259913532657
1023 => 0.65942569293274
1024 => 0.63676415094636
1025 => 0.63525288445636
1026 => 0.59596089360482
1027 => 0.61695035796384
1028 => 0.63542021799673
1029 => 0.62657458836002
1030 => 0.6237743262727
1031 => 0.63808025797405
1101 => 0.63919195138927
1102 => 0.6138452237104
1103 => 0.61911561102131
1104 => 0.6410940022368
1105 => 0.61856181195342
1106 => 0.57478544684522
1107 => 0.56392830304278
1108 => 0.56247975992267
1109 => 0.53303432483954
1110 => 0.56465382930711
1111 => 0.55085106825698
1112 => 0.59445382503188
1113 => 0.56954816420833
1114 => 0.56847453094854
1115 => 0.56685157680861
1116 => 0.54150667445695
1117 => 0.54705559731939
1118 => 0.56550106203896
1119 => 0.57208261165394
1120 => 0.57139610210805
1121 => 0.56541066919895
1122 => 0.56815076973436
1123 => 0.55932395119549
1124 => 0.55620701785507
1125 => 0.54636911885266
1126 => 0.53191012510808
1127 => 0.53392073687043
1128 => 0.5052736868609
1129 => 0.48966525360169
1130 => 0.48534504499138
1201 => 0.47956788148373
1202 => 0.48599759098201
1203 => 0.50519253336753
1204 => 0.4820393604164
1205 => 0.44234486939793
1206 => 0.44473057594427
1207 => 0.45009055023124
1208 => 0.44010227360724
1209 => 0.43064920803514
1210 => 0.43886788159863
1211 => 0.42204880247088
1212 => 0.45212305558973
1213 => 0.45130963132499
1214 => 0.46251945310836
1215 => 0.4695291847182
1216 => 0.45337402278507
1217 => 0.44931104324709
1218 => 0.45162550104405
1219 => 0.4133726691788
1220 => 0.45939338064536
1221 => 0.45979136966917
1222 => 0.45638354602113
1223 => 0.48088815414701
1224 => 0.53260052047156
1225 => 0.51314424813515
1226 => 0.50561019141755
1227 => 0.49128794409002
1228 => 0.51037148828305
1229 => 0.50890616983869
1230 => 0.50227944412778
1231 => 0.49827157974117
]
'min_raw' => 0.37429227716455
'max_raw' => 0.96039112459935
'avg_raw' => 0.66734170088195
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.374292'
'max' => '$0.960391'
'avg' => '$0.667341'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.23016571342781
'max_diff' => 0.55823331799208
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.01174860688599
]
1 => [
'year' => 2028
'avg' => 0.020164020061308
]
2 => [
'year' => 2029
'avg' => 0.055084468596466
]
3 => [
'year' => 2030
'avg' => 0.042497585487922
]
4 => [
'year' => 2031
'avg' => 0.041737895616928
]
5 => [
'year' => 2032
'avg' => 0.073179666415642
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.01174860688599
'min' => '$0.011748'
'max_raw' => 0.073179666415642
'max' => '$0.073179'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.073179666415642
]
1 => [
'year' => 2033
'avg' => 0.18822562699739
]
2 => [
'year' => 2034
'avg' => 0.1193064480913
]
3 => [
'year' => 2035
'avg' => 0.14072222911929
]
4 => [
'year' => 2036
'avg' => 0.27314218517201
]
5 => [
'year' => 2037
'avg' => 0.66734170088195
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.073179666415642
'min' => '$0.073179'
'max_raw' => 0.66734170088195
'max' => '$0.667341'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.66734170088195
]
]
]
]
'prediction_2025_max_price' => '$0.020087'
'last_price' => 0.01947783
'sma_50day_nextmonth' => '$0.018331'
'sma_200day_nextmonth' => '$0.025616'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.019426'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.019417'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.018944'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.01898'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.020089'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.023836'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.02744'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.019417'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.019307'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.019139'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.019254'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.0205072'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.023093'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.028442'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.02580071'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.033143'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.06659'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.1841065'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.019453'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.019756'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.021229'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.024867'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.0385052'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.125591'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.429431'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '50.49'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 91.86
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.018996'
'vwma_10_action' => 'BUY'
'hma_9' => '0.019730'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 92.43
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 96.6
'cci_20_action' => 'NEUTRAL'
'adx_14' => 21.25
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000134'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -7.57
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 68.74
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.002775'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 17
'buy_signals' => 17
'sell_pct' => 50
'buy_pct' => 50
'overall_action' => 'neutral'
'overall_action_label' => 'Neutral'
'overall_action_dir' => 0
'last_updated' => 1767690797
'last_updated_date' => '6. Januar 2026'
]
Elk Finance Preisprognose für 2026
Die Preisprognose für Elk Finance im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.006729 am unteren Ende und $0.020087 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Elk Finance im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn ELK das prognostizierte Preisziel erreicht.
Elk Finance Preisprognose 2027-2032
Die Preisprognose für ELK für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.011748 am unteren Ende und $0.073179 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Elk Finance, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Elk Finance Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.006478 | $0.011748 | $0.017018 |
| 2028 | $0.011691 | $0.020164 | $0.028636 |
| 2029 | $0.025683 | $0.055084 | $0.084485 |
| 2030 | $0.021842 | $0.042497 | $0.063152 |
| 2031 | $0.025824 | $0.041737 | $0.057651 |
| 2032 | $0.039419 | $0.073179 | $0.10694 |
Elk Finance Preisprognose 2032-2037
Die Preisprognose für Elk Finance für die Jahre 2032-2037 wird derzeit zwischen $0.073179 am unteren Ende und $0.667341 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Elk Finance bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Elk Finance Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.039419 | $0.073179 | $0.10694 |
| 2033 | $0.0916014 | $0.188225 | $0.284849 |
| 2034 | $0.073643 | $0.1193064 | $0.164969 |
| 2035 | $0.087069 | $0.140722 | $0.194375 |
| 2036 | $0.144126 | $0.273142 | $0.402157 |
| 2037 | $0.374292 | $0.667341 | $0.960391 |
Elk Finance Potenzielles Preishistogramm
Elk Finance Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Elk Finance Neutral, mit 17 technischen Indikatoren, die bullische Signale zeigen, und 17 anzeigen bärische Signale. Die Preisprognose für ELK wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Elk Finance
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Elk Finance im nächsten Monat steigen, und bis zum 04.02.2026 $0.025616 erreichen. Der kurzfristige 50-Tage-SMA für Elk Finance wird voraussichtlich bis zum 04.02.2026 $0.018331 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 50.49, was darauf hindeutet, dass sich der ELK-Markt in einem NEUTRAL Zustand befindet.
Beliebte ELK Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.019426 | BUY |
| SMA 5 | $0.019417 | BUY |
| SMA 10 | $0.018944 | BUY |
| SMA 21 | $0.01898 | BUY |
| SMA 50 | $0.020089 | SELL |
| SMA 100 | $0.023836 | SELL |
| SMA 200 | $0.02744 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.019417 | BUY |
| EMA 5 | $0.019307 | BUY |
| EMA 10 | $0.019139 | BUY |
| EMA 21 | $0.019254 | BUY |
| EMA 50 | $0.0205072 | SELL |
| EMA 100 | $0.023093 | SELL |
| EMA 200 | $0.028442 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.02580071 | SELL |
| SMA 50 | $0.033143 | SELL |
| SMA 100 | $0.06659 | SELL |
| SMA 200 | $0.1841065 | SELL |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.024867 | SELL |
| EMA 50 | $0.0385052 | SELL |
| EMA 100 | $0.125591 | SELL |
| EMA 200 | $0.429431 | SELL |
Elk Finance Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 50.49 | NEUTRAL |
| Stoch RSI (14) | 91.86 | SELL |
| Stochastic Fast (14) | 92.43 | SELL |
| Commodity Channel Index (20) | 96.6 | NEUTRAL |
| Average Directional Index (14) | 21.25 | NEUTRAL |
| Awesome Oscillator (5, 34) | -0.000134 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -7.57 | SELL |
| Ultimate Oscillator (7, 14, 28) | 68.74 | NEUTRAL |
| VWMA (10) | 0.018996 | BUY |
| Hull Moving Average (9) | 0.019730 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.002775 | SELL |
Auf weltweiten Geldflüssen basierende Elk Finance-Preisprognose
Definition weltweiter Geldflüsse, die für Elk Finance-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Elk Finance-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.027369 | $0.038458 | $0.054041 | $0.075936 | $0.1067038 | $0.149936 |
| Amazon.com aktie | $0.040641 | $0.0848012 | $0.176942 | $0.3692016 | $0.770361 | $1.60 |
| Apple aktie | $0.027627 | $0.039187 | $0.055585 | $0.078843 | $0.111833 | $0.158626 |
| Netflix aktie | $0.030732 | $0.048491 | $0.076512 | $0.120724 | $0.190484 | $0.300554 |
| Google aktie | $0.025223 | $0.032664 | $0.04230048 | $0.054778 | $0.070938 | $0.091865 |
| Tesla aktie | $0.044154 | $0.100095 | $0.2269089 | $0.514385 | $1.16 | $2.64 |
| Kodak aktie | $0.0146063 | $0.010953 | $0.008213 | $0.006159 | $0.004618 | $0.003463 |
| Nokia aktie | $0.0129032 | $0.008547 | $0.005662 | $0.003751 | $0.002485 | $0.001646 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Elk Finance Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Elk Finance investieren?", "Sollte ich heute ELK kaufen?", "Wird Elk Finance auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Elk Finance-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Elk Finance.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Elk Finance zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Elk Finance-Preis entspricht heute $0.01947 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
Elk Finance-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Elk Finance 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.019984 | $0.0205035 | $0.021036 | $0.021583 |
| Wenn die Wachstumsrate von Elk Finance 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.02049 | $0.021555 | $0.022676 | $0.023855 |
| Wenn die Wachstumsrate von Elk Finance 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0220092 | $0.024869 | $0.0281019 | $0.031754 |
| Wenn die Wachstumsrate von Elk Finance 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.02454 | $0.030919 | $0.038956 | $0.049082 |
| Wenn die Wachstumsrate von Elk Finance 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0296036 | $0.044993 | $0.068384 | $0.103934 |
| Wenn die Wachstumsrate von Elk Finance 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.044792 | $0.1030073 | $0.236881 | $0.544747 |
| Wenn die Wachstumsrate von Elk Finance 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0701069 | $0.252337 | $0.908243 | $3.26 |
Fragefeld
Ist ELK eine gute Investition?
Die Entscheidung, Elk Finance zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Elk Finance in den letzten 2026 Stunden um 1.6851% gestiegen, und Elk Finance hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Elk Finance investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Elk Finance steigen?
Es scheint, dass der Durchschnittswert von Elk Finance bis zum Ende dieses Jahres potenziell auf $0.020087 steigen könnte. Betrachtet man die Aussichten von Elk Finance in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.063152 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Elk Finance nächste Woche kosten?
Basierend auf unserer neuen experimentellen Elk Finance-Prognose wird der Preis von Elk Finance in der nächsten Woche um 0.86% steigen und $0.019644 erreichen bis zum 13. Januar 2026.
Wie viel wird Elk Finance nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Elk Finance-Prognose wird der Preis von Elk Finance im nächsten Monat um -11.62% fallen und $0.017214 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Elk Finance in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Elk Finance im Jahr 2026 wird erwartet, dass ELK innerhalb der Spanne von $0.006729 bis $0.020087 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Elk Finance-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Elk Finance in 5 Jahren sein?
Die Zukunft von Elk Finance scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.063152 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Elk Finance-Prognose für 2030 könnte der Wert von Elk Finance seinen höchsten Gipfel von ungefähr $0.063152 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.021842 liegen wird.
Wie viel wird Elk Finance im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Elk Finance-Preisprognosesimulation wird der Wert von ELK im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.020087 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.020087 und $0.006729 während des Jahres 2026 liegen.
Wie viel wird Elk Finance im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Elk Finance könnte der Wert von ELK um -12.62% fallen und bis zu $0.017018 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.017018 und $0.006478 im Laufe des Jahres schwanken.
Wie viel wird Elk Finance im Jahr 2028 kosten?
Unser neues experimentelles Elk Finance-Preisprognosemodell deutet darauf hin, dass der Wert von ELK im Jahr 2028 um 47.02% steigen, und im besten Fall $0.028636 erreichen wird. Der Preis wird voraussichtlich zwischen $0.028636 und $0.011691 im Laufe des Jahres liegen.
Wie viel wird Elk Finance im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Elk Finance im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.084485 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.084485 und $0.025683.
Wie viel wird Elk Finance im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Elk Finance-Preisprognosen wird der Wert von ELK im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.063152 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.063152 und $0.021842 während des Jahres 2030 liegen.
Wie viel wird Elk Finance im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Elk Finance im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.057651 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.057651 und $0.025824 während des Jahres schwanken.
Wie viel wird Elk Finance im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Elk Finance-Preisprognose könnte ELK eine 449.04% Steigerung im Wert erfahren und $0.10694 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.10694 und $0.039419 liegen.
Wie viel wird Elk Finance im Jahr 2033 kosten?
Laut unserer experimentellen Elk Finance-Preisprognose wird der Wert von ELK voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.284849 beträgt. Im Laufe des Jahres könnte der Preis von ELK zwischen $0.284849 und $0.0916014 liegen.
Wie viel wird Elk Finance im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Elk Finance-Preisprognosesimulation deuten darauf hin, dass ELK im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.164969 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.164969 und $0.073643.
Wie viel wird Elk Finance im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Elk Finance könnte ELK um 897.93% steigen, wobei der Wert im Jahr 2035 $0.194375 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.194375 und $0.087069.
Wie viel wird Elk Finance im Jahr 2036 kosten?
Unsere jüngste Elk Finance-Preisprognosesimulation deutet darauf hin, dass der Wert von ELK im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.402157 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.402157 und $0.144126.
Wie viel wird Elk Finance im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Elk Finance um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.960391 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.960391 und $0.374292 liegen.
Verwandte Prognosen
AICHAIN-Preisprognose
EDUM-Preisprognose
1ART-Preisprognose
Sacabam-Preisprognose
Graviton-Preisprognose
Para-Preisprognose
Cyber Arena-Preisprognose
Eggdog-Preisprognose
LATOKEN-Preisprognose
K21 Kanon-Preisprognose
Elmo-Preisprognose
KEK-Preisprognose
Generaitiv-Preisprognose
Zaibot-Preisprognose
Hawksight-Preisprognose
Rubidium-Preisprognose
VFOX-Preisprognose
Web3Shot-Preisprognose
Tomb Shares-Preisprognose
Long Mao-Preisprognose
Gyoza-Preisprognose
Perpy Finance-Preisprognose
Cope-Preisprognose
WOOF Token-Preisprognose
Happycoin-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Elk Finance?
Elk Finance-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Elk Finance Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Elk Finance. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von ELK über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von ELK über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von ELK einzuschätzen.
Wie liest man Elk Finance-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Elk Finance in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von ELK innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Elk Finance?
Die Preisentwicklung von Elk Finance wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von ELK. Die Marktkapitalisierung von Elk Finance kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von ELK-„Walen“, großen Inhabern von Elk Finance, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Elk Finance-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


