Elk Finance Preisvorhersage bis zu $0.020054 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.006718 | $0.020054 |
| 2027 | $0.006467 | $0.01699 |
| 2028 | $0.011671 | $0.028588 |
| 2029 | $0.025639 | $0.084343 |
| 2030 | $0.0218055 | $0.063046 |
| 2031 | $0.02578 | $0.057554 |
| 2032 | $0.039352 | $0.106759 |
| 2033 | $0.091446 | $0.284369 |
| 2034 | $0.073518 | $0.164691 |
| 2035 | $0.086922 | $0.194047 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Elk Finance eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.74 Gewinn erzielen könnten, was einer Rendite von 39.55% in den nächsten 90 Tagen entspricht.
Langfristige Elk Finance Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Elk Finance'
'name_with_ticker' => 'Elk Finance <small>ELK</small>'
'name_lang' => 'Elk Finance'
'name_lang_with_ticker' => 'Elk Finance <small>ELK</small>'
'name_with_lang' => 'Elk Finance'
'name_with_lang_with_ticker' => 'Elk Finance <small>ELK</small>'
'image' => '/uploads/coins/elk-finance.png?1717499443'
'price_for_sd' => 0.01944
'ticker' => 'ELK'
'marketcap' => '$313.7K'
'low24h' => '$0.01905'
'high24h' => '$0.01958'
'volume24h' => '$511.85'
'current_supply' => '16.13M'
'max_supply' => '42.42M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01944'
'change_24h_pct' => '1.0831%'
'ath_price' => '$6.03'
'ath_days' => 1447
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '20.01.2022'
'ath_pct' => '-99.68%'
'fdv' => '$824.86K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.958771'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.019611'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.017185'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.006718'
'current_year_max_price_prediction' => '$0.020054'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0218055'
'grand_prediction_max_price' => '$0.063046'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.019813452142941
107 => 0.019887428380959
108 => 0.020054100622535
109 => 0.018629904566879
110 => 0.019269326783669
111 => 0.019644927430274
112 => 0.017947950044444
113 => 0.019611383643555
114 => 0.0186051124821
115 => 0.018263568936217
116 => 0.018723412325808
117 => 0.018544210909672
118 => 0.018390144055138
119 => 0.018304172103104
120 => 0.018641830337357
121 => 0.01862607817714
122 => 0.018073603769263
123 => 0.017352923425925
124 => 0.017594807404675
125 => 0.017506928687521
126 => 0.017188444879974
127 => 0.017403064512379
128 => 0.016457988267777
129 => 0.014832033709727
130 => 0.01590618909511
131 => 0.015864835281229
201 => 0.015843982813024
202 => 0.016651180897665
203 => 0.016573587427055
204 => 0.0164327545181
205 => 0.017185858373159
206 => 0.016910965335386
207 => 0.017758120904856
208 => 0.018316112353495
209 => 0.018174587672988
210 => 0.01869938132744
211 => 0.017600379923009
212 => 0.017965424105278
213 => 0.018040659205314
214 => 0.017176565188488
215 => 0.016586282678461
216 => 0.016546917564756
217 => 0.015523449038309
218 => 0.016070177663987
219 => 0.016551276229417
220 => 0.016320867351333
221 => 0.016247926783801
222 => 0.016620564324443
223 => 0.016649521452775
224 => 0.015989295858054
225 => 0.016126577665822
226 => 0.016699065625416
227 => 0.016112152438093
228 => 0.014971875986849
301 => 0.014689071661386
302 => 0.014651340351251
303 => 0.013884352591099
304 => 0.014707969998695
305 => 0.014348438928705
306 => 0.015484193270959
307 => 0.014835456481836
308 => 0.014807490735471
309 => 0.014765216408157
310 => 0.014105038359129
311 => 0.014249575395362
312 => 0.014730038517414
313 => 0.014901473172167
314 => 0.014883591133153
315 => 0.014727683986
316 => 0.014799057479593
317 => 0.014569138588557
318 => 0.014487949442784
319 => 0.014231694165891
320 => 0.013855069701186
321 => 0.013907441642975
322 => 0.013161250029242
323 => 0.012754685234694
324 => 0.012642153458001
325 => 0.01249167126318
326 => 0.012659150822324
327 => 0.013159136162154
328 => 0.012556047764511
329 => 0.011522095008485
330 => 0.011584237330892
331 => 0.011723852679119
401 => 0.011463680401345
402 => 0.011217449175037
403 => 0.011431527248941
404 => 0.010993427835855
405 => 0.011776794900146
406 => 0.011755607016418
407 => 0.012047597814891
408 => 0.012230185653431
409 => 0.011809379799111
410 => 0.01170354826473
411 => 0.011763834716489
412 => 0.010767433958648
413 => 0.011966170615405
414 => 0.011976537339792
415 => 0.011887771151776
416 => 0.012526061414657
417 => 0.013873052957061
418 => 0.013366260556199
419 => 0.013170015220704
420 => 0.012796952694473
421 => 0.013294036360415
422 => 0.013255868090584
423 => 0.013083256699521
424 => 0.012978860791626
425 => 0.013171213452876
426 => 0.012955026168224
427 => 0.012916192991471
428 => 0.012680906191263
429 => 0.012596919508456
430 => 0.012534739112112
501 => 0.012466284605456
502 => 0.012617278189338
503 => 0.012275106863402
504 => 0.011862481787791
505 => 0.01182817647742
506 => 0.01192289645551
507 => 0.011880989916278
508 => 0.011827975845032
509 => 0.011726757545501
510 => 0.011696728238217
511 => 0.011794308918742
512 => 0.011684146019737
513 => 0.011846697378102
514 => 0.011802492403004
515 => 0.011555567005509
516 => 0.011247806536739
517 => 0.011245066823017
518 => 0.011178760334849
519 => 0.01109430905292
520 => 0.011070816638271
521 => 0.011413498190669
522 => 0.012122838748539
523 => 0.011983578223948
524 => 0.012084208224958
525 => 0.012579208232751
526 => 0.012736553850059
527 => 0.012624873657829
528 => 0.01247199892257
529 => 0.012478724635069
530 => 0.013001143883778
531 => 0.013033726531507
601 => 0.013116052370759
602 => 0.013221864339477
603 => 0.012642893893646
604 => 0.012451455179137
605 => 0.012360740895587
606 => 0.012081376013099
607 => 0.012382647087927
608 => 0.012207109334338
609 => 0.012230795374521
610 => 0.012215369809779
611 => 0.0122237932112
612 => 0.011776575933086
613 => 0.011939518404183
614 => 0.011668594942773
615 => 0.011305858840531
616 => 0.011304642821924
617 => 0.01139342196906
618 => 0.011340612658415
619 => 0.011198504161322
620 => 0.011218690002601
621 => 0.011041840792457
622 => 0.01124016269867
623 => 0.011245849861311
624 => 0.011169485124751
625 => 0.011475027384423
626 => 0.011600208297509
627 => 0.011549943392015
628 => 0.011596681577744
629 => 0.011989365127468
630 => 0.012053389680058
701 => 0.012081825157094
702 => 0.012043725384845
703 => 0.011603859112173
704 => 0.011623369051822
705 => 0.011480218059728
706 => 0.011359270556288
707 => 0.011364107822139
708 => 0.011426290560982
709 => 0.011697846228479
710 => 0.012269319121645
711 => 0.012291006100199
712 => 0.012317291350861
713 => 0.012210376026511
714 => 0.012178129341646
715 => 0.012220671042559
716 => 0.012435286214615
717 => 0.012987334704594
718 => 0.012792203898156
719 => 0.012633559515131
720 => 0.012772733409263
721 => 0.012751308679142
722 => 0.012570462395838
723 => 0.012565386642993
724 => 0.012218284805279
725 => 0.012089969159002
726 => 0.011982739000713
727 => 0.011865646467177
728 => 0.011796230088319
729 => 0.011902885195424
730 => 0.011927278480326
731 => 0.011694075224627
801 => 0.011662290482591
802 => 0.011852729295236
803 => 0.011768924274066
804 => 0.011855119816604
805 => 0.011875117921845
806 => 0.011871897766306
807 => 0.011784395699258
808 => 0.011840166907445
809 => 0.011708251373885
810 => 0.011564813044212
811 => 0.011473308326404
812 => 0.011393458323777
813 => 0.011437763746144
814 => 0.011279823005257
815 => 0.011229294583528
816 => 0.011821272877003
817 => 0.012258573607233
818 => 0.012252215081425
819 => 0.012213509190851
820 => 0.012156000088661
821 => 0.012431079065588
822 => 0.012335247050404
823 => 0.012404972848483
824 => 0.012422720990477
825 => 0.012476439270893
826 => 0.012495638938899
827 => 0.012437604207157
828 => 0.012242832559083
829 => 0.011757480130416
830 => 0.011531547264687
831 => 0.011456985655788
901 => 0.011459695828658
902 => 0.011384937162136
903 => 0.011406956939875
904 => 0.011377279582059
905 => 0.011321077846079
906 => 0.011434293447319
907 => 0.011447340490686
908 => 0.011420914616531
909 => 0.011427138866525
910 => 0.011208343915159
911 => 0.011224978420114
912 => 0.011132355382716
913 => 0.011114989679791
914 => 0.010880846706858
915 => 0.010466028490742
916 => 0.010695878049849
917 => 0.010418252104187
918 => 0.010313110951845
919 => 0.010810832814227
920 => 0.0107608753439
921 => 0.010675369870689
922 => 0.010548889454908
923 => 0.010501976638373
924 => 0.010216949215897
925 => 0.010200108275215
926 => 0.010341375562182
927 => 0.010276185569957
928 => 0.010184634131493
929 => 0.0098530441017958
930 => 0.0094802271227306
1001 => 0.0094914801238846
1002 => 0.0096100662684188
1003 => 0.0099548714771723
1004 => 0.0098201501169216
1005 => 0.0097224082243102
1006 => 0.0097041041059346
1007 => 0.0099332184696728
1008 => 0.010257463295305
1009 => 0.010409591712923
1010 => 0.010258837071273
1011 => 0.010085658256151
1012 => 0.010096198848194
1013 => 0.010166320684788
1014 => 0.010173689498345
1015 => 0.010060967892771
1016 => 0.010092698364469
1017 => 0.010044496876464
1018 => 0.0097486844335482
1019 => 0.0097433341244873
1020 => 0.0096707369803758
1021 => 0.009668538767704
1022 => 0.009545032915364
1023 => 0.009527753592866
1024 => 0.0092825252267755
1025 => 0.0094439352799561
1026 => 0.0093356698906907
1027 => 0.0091724884118442
1028 => 0.0091443558633842
1029 => 0.0091435101650065
1030 => 0.0093110610570709
1031 => 0.0094419773502295
1101 => 0.0093375532134894
1102 => 0.0093137778617306
1103 => 0.0095676364171228
1104 => 0.009535330601977
1105 => 0.009507353974411
1106 => 0.010228430727518
1107 => 0.0096576422111131
1108 => 0.0094087458384909
1109 => 0.0091006893132318
1110 => 0.009200994071212
1111 => 0.0092221297575019
1112 => 0.0084813093456159
1113 => 0.0081807585967771
1114 => 0.0080776209057916
1115 => 0.0080182637064766
1116 => 0.0080453135275652
1117 => 0.0077747826025235
1118 => 0.0079565838583201
1119 => 0.0077223269446438
1120 => 0.007683053010728
1121 => 0.0081019333912442
1122 => 0.0081602181491293
1123 => 0.0079115572643364
1124 => 0.008071237806914
1125 => 0.0080133354224498
1126 => 0.0077263426070707
1127 => 0.0077153815924994
1128 => 0.0075713786860274
1129 => 0.007346042021856
1130 => 0.0072430571197398
1201 => 0.0071894216885618
1202 => 0.0072115527127995
1203 => 0.0072003625897244
1204 => 0.0071273394673682
1205 => 0.0072045481896201
1206 => 0.0070073118091133
1207 => 0.0069287706931541
1208 => 0.0068932954932153
1209 => 0.0067182368530131
1210 => 0.0069968329985054
1211 => 0.0070517199488292
1212 => 0.0071067150434005
1213 => 0.0075854097948982
1214 => 0.0075614955578907
1215 => 0.0077776686137328
1216 => 0.0077692685262995
1217 => 0.007707612469002
1218 => 0.0074474957051931
1219 => 0.0075511736111118
1220 => 0.0072320691318179
1221 => 0.0074711639047003
1222 => 0.0073620510351932
1223 => 0.0074342727337623
1224 => 0.0073044116077671
1225 => 0.0073762821167273
1226 => 0.0070647356809226
1227 => 0.0067738180027447
1228 => 0.0068908917688599
1229 => 0.0070181643416363
1230 => 0.0072941237078639
1231 => 0.0071297645859541
]
'min_raw' => 0.0067182368530131
'max_raw' => 0.020054100622535
'avg_raw' => 0.013386168737774
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.006718'
'max' => '$0.020054'
'avg' => '$0.013386'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.012726743146987
'max_diff' => 0.00060912062253542
'year' => 2026
]
1 => [
'items' => [
101 => 0.0071888743412993
102 => 0.0069908665557463
103 => 0.0065823199360226
104 => 0.0065846322655222
105 => 0.0065217862687496
106 => 0.0064674781518724
107 => 0.0071486432082479
108 => 0.0070639295658616
109 => 0.0069289494637664
110 => 0.0071096256943169
111 => 0.0071573993573917
112 => 0.0071587594064176
113 => 0.0072905761202988
114 => 0.0073609267241266
115 => 0.0073733263229682
116 => 0.0075807427703487
117 => 0.0076502660276216
118 => 0.0079366224850289
119 => 0.0073549579669041
120 => 0.0073429789689283
121 => 0.0071121681794014
122 => 0.0069657843277092
123 => 0.0071221912069636
124 => 0.0072607463503148
125 => 0.0071164734739263
126 => 0.007135312465816
127 => 0.0069416379167914
128 => 0.0070108674548332
129 => 0.0070704972592206
130 => 0.0070375731861158
131 => 0.0069882842551347
201 => 0.0072493864086221
202 => 0.0072346540018547
203 => 0.0074777983298947
204 => 0.0076673467210196
205 => 0.0080070513237433
206 => 0.0076525518615997
207 => 0.0076396324921915
208 => 0.0077659214004892
209 => 0.0076502466934477
210 => 0.0077233491153428
211 => 0.007995273393417
212 => 0.00800101872492
213 => 0.0079047770198025
214 => 0.0078989207032997
215 => 0.0079174049755364
216 => 0.0080256679353725
217 => 0.007987837530621
218 => 0.0080316158327481
219 => 0.0080863612699151
220 => 0.0083128116096224
221 => 0.0083674080198818
222 => 0.0082347670479447
223 => 0.0082467430425926
224 => 0.008197131678012
225 => 0.0081492077214558
226 => 0.0082569337770625
227 => 0.0084538052610446
228 => 0.0084525805337604
301 => 0.0084982508914095
302 => 0.0085267031458712
303 => 0.0084045652413984
304 => 0.0083250579567218
305 => 0.0083555461088468
306 => 0.0084042973280402
307 => 0.0083397367455149
308 => 0.0079412389227977
309 => 0.0080621177060706
310 => 0.0080419975658635
311 => 0.0080133440395159
312 => 0.0081348885908248
313 => 0.0081231653223411
314 => 0.0077720079168682
315 => 0.0077944878746392
316 => 0.0077733749975562
317 => 0.0078415950226995
318 => 0.007646562588211
319 => 0.0077065532514961
320 => 0.0077441788331311
321 => 0.0077663405897674
322 => 0.0078464040511965
323 => 0.0078370095280868
324 => 0.0078458200744495
325 => 0.0079645330517788
326 => 0.0085649425537358
327 => 0.0085976215181984
328 => 0.0084366983454148
329 => 0.0085009839788726
330 => 0.0083775696203561
331 => 0.0084604185060326
401 => 0.0085171016094789
402 => 0.008260961564539
403 => 0.0082457946134128
404 => 0.0081218708799378
405 => 0.0081884604749082
406 => 0.0080825116413489
407 => 0.0081085077791715
408 => 0.008035820311517
409 => 0.0081666432813647
410 => 0.0083129236894886
411 => 0.0083498798973691
412 => 0.0082526640250834
413 => 0.0081822733267104
414 => 0.0080586904485049
415 => 0.0082642115291847
416 => 0.0083243121563169
417 => 0.008263895846176
418 => 0.0082498960669939
419 => 0.0082233665107408
420 => 0.0082555244377663
421 => 0.0083239848353943
422 => 0.0082917001761379
423 => 0.0083130247623592
424 => 0.0082317574295015
425 => 0.0084046056741269
426 => 0.0086791302847875
427 => 0.0086800129263001
428 => 0.0086477280930174
429 => 0.0086345178348245
430 => 0.0086676440329801
501 => 0.0086856136365717
502 => 0.0087927376871008
503 => 0.008907686061329
504 => 0.0094440999679471
505 => 0.0092934770894636
506 => 0.0097694154188213
507 => 0.010145820844486
508 => 0.010258688373428
509 => 0.010154855557629
510 => 0.0097996491037177
511 => 0.0097822209804869
512 => 0.010313049386927
513 => 0.010163066048626
514 => 0.010145226007778
515 => 0.0099554381143823
516 => 0.010067626265067
517 => 0.010043089070812
518 => 0.010004355909278
519 => 0.010218403085691
520 => 0.010619080291812
521 => 0.010556630991711
522 => 0.010510015486126
523 => 0.010305759910218
524 => 0.010428767389049
525 => 0.010384966781891
526 => 0.010573161986796
527 => 0.010461679316444
528 => 0.010161929777326
529 => 0.010209665879418
530 => 0.010202450663618
531 => 0.010350939293496
601 => 0.010306366692521
602 => 0.010193747147913
603 => 0.010617710820681
604 => 0.010590180977981
605 => 0.010629212000731
606 => 0.01064639466402
607 => 0.010904453880556
608 => 0.011010172484597
609 => 0.011034172458579
610 => 0.011134596955847
611 => 0.011031673805602
612 => 0.011443439789545
613 => 0.011717240141656
614 => 0.01203527334027
615 => 0.01250000532271
616 => 0.012674748847119
617 => 0.012643182993503
618 => 0.012995537478677
619 => 0.013628710656133
620 => 0.012771165395781
621 => 0.013674162637214
622 => 0.013388284136181
623 => 0.012710471352966
624 => 0.012666828200615
625 => 0.013125850886976
626 => 0.01414391902603
627 => 0.01388890450403
628 => 0.014144336138431
629 => 0.013846361568852
630 => 0.013831564619946
701 => 0.014129864178678
702 => 0.01482685735712
703 => 0.014495742024441
704 => 0.014021007002235
705 => 0.014371543954937
706 => 0.014067876405843
707 => 0.01338362842654
708 => 0.013888709499231
709 => 0.013550976169803
710 => 0.013649544710221
711 => 0.014359409934638
712 => 0.014273997072765
713 => 0.014384529225046
714 => 0.014189442869401
715 => 0.014007201450934
716 => 0.013667034309939
717 => 0.013566327589528
718 => 0.013594159304001
719 => 0.013566313797512
720 => 0.013375993408423
721 => 0.01333489373852
722 => 0.013266392488063
723 => 0.013287623889937
724 => 0.013158821498331
725 => 0.013401898223224
726 => 0.013447015405349
727 => 0.013623906374809
728 => 0.013642271782072
729 => 0.014134910614133
730 => 0.013863573423893
731 => 0.014045609837232
801 => 0.01402932678703
802 => 0.012725161611286
803 => 0.012904864065757
804 => 0.013184424691176
805 => 0.01305848300836
806 => 0.012880430934674
807 => 0.012736644338623
808 => 0.012518792942673
809 => 0.012825414599008
810 => 0.01322858947151
811 => 0.013652496962178
812 => 0.014161794036697
813 => 0.014048124858536
814 => 0.01364297600763
815 => 0.01366115068912
816 => 0.013773499418619
817 => 0.013627997605959
818 => 0.013585086280873
819 => 0.0137676040615
820 => 0.013768860961145
821 => 0.013601443541199
822 => 0.013415389715993
823 => 0.013414610143672
824 => 0.013381503662543
825 => 0.013852251138298
826 => 0.014111114652026
827 => 0.014140792936695
828 => 0.014109117067003
829 => 0.014121307852077
830 => 0.013970680877108
831 => 0.014314969474846
901 => 0.014630922738744
902 => 0.014546240514663
903 => 0.014419289822477
904 => 0.014318167481377
905 => 0.014522419304814
906 => 0.014513324292638
907 => 0.014628163162616
908 => 0.014622953408132
909 => 0.014584337415467
910 => 0.014546241893761
911 => 0.014697286331202
912 => 0.014653787958919
913 => 0.014610222021648
914 => 0.014522843864842
915 => 0.014534720007549
916 => 0.01440779123519
917 => 0.014349068177231
918 => 0.013466014281849
919 => 0.013230033426385
920 => 0.013304277807347
921 => 0.013328720985315
922 => 0.013226021814599
923 => 0.013373266044153
924 => 0.013350318186947
925 => 0.013439594875287
926 => 0.013383818676356
927 => 0.013386107751015
928 => 0.013550133659334
929 => 0.013597751078335
930 => 0.013573532474712
1001 => 0.013590494354525
1002 => 0.01398137371565
1003 => 0.013925803170116
1004 => 0.013896282425363
1005 => 0.013904459873408
1006 => 0.014004337930724
1007 => 0.014032298333632
1008 => 0.013913828141766
1009 => 0.013969699369118
1010 => 0.014207591964069
1011 => 0.014290840908747
1012 => 0.0145565315784
1013 => 0.014443661459656
1014 => 0.014650839447514
1015 => 0.015287633950007
1016 => 0.015796349461427
1017 => 0.015328513653568
1018 => 0.016262704905761
1019 => 0.016990106797369
1020 => 0.016962187901218
1021 => 0.016835348556307
1022 => 0.016007220841691
1023 => 0.015245165372013
1024 => 0.015882657130983
1025 => 0.015884282228578
1026 => 0.015829521121119
1027 => 0.015489404585807
1028 => 0.015817685802935
1029 => 0.015843743573809
1030 => 0.01582915815144
1031 => 0.015568391601262
1101 => 0.015170249276854
1102 => 0.015248045334025
1103 => 0.015375476862668
1104 => 0.015134222393945
1105 => 0.015057126973064
1106 => 0.015200462028485
1107 => 0.015662317442098
1108 => 0.015575006351501
1109 => 0.015572726306073
1110 => 0.015946280177313
1111 => 0.015678896223476
1112 => 0.015249026591443
1113 => 0.015140478840071
1114 => 0.014755207449227
1115 => 0.015021315771172
1116 => 0.015030892535936
1117 => 0.014885147727567
1118 => 0.015260852979397
1119 => 0.01525739078936
1120 => 0.015614067009625
1121 => 0.016295897981302
1122 => 0.016094247012112
1123 => 0.015859748874509
1124 => 0.015885245323994
1125 => 0.016164878444252
1126 => 0.015995805876341
1127 => 0.016056605550577
1128 => 0.016164786416663
1129 => 0.016230054619152
1130 => 0.015875854234077
1201 => 0.015793273180952
1202 => 0.015624341328272
1203 => 0.01558027016117
1204 => 0.015717861630299
1205 => 0.015681611139362
1206 => 0.015030087645941
1207 => 0.014961999815835
1208 => 0.014964087972378
1209 => 0.014792877886179
1210 => 0.014531741409596
1211 => 0.015217992478406
1212 => 0.015162876913503
1213 => 0.015102033595456
1214 => 0.01510948655475
1215 => 0.015407364884513
1216 => 0.015234580410034
1217 => 0.015693956254255
1218 => 0.015599522390785
1219 => 0.015502666655049
1220 => 0.015489278242072
1221 => 0.015451997047157
1222 => 0.01532414595807
1223 => 0.015169758085338
1224 => 0.015067817838913
1225 => 0.013899265474559
1226 => 0.014116141996227
1227 => 0.014365638665489
1228 => 0.014451763915922
1229 => 0.014304440715369
1230 => 0.015329963175973
1231 => 0.015517336011706
]
'min_raw' => 0.0064674781518724
'max_raw' => 0.016990106797369
'avg_raw' => 0.011728792474621
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.006467'
'max' => '$0.01699'
'avg' => '$0.011728'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00025075870114073
'max_diff' => -0.0030639938251666
'year' => 2027
]
2 => [
'items' => [
101 => 0.014949771470244
102 => 0.014843603318044
103 => 0.015336923542357
104 => 0.015039391141151
105 => 0.015173369963196
106 => 0.014883781032433
107 => 0.015472203382495
108 => 0.015467720590065
109 => 0.015238811005769
110 => 0.015432283818911
111 => 0.015398663156495
112 => 0.015140224799605
113 => 0.015480396339377
114 => 0.015480565060216
115 => 0.015260244562255
116 => 0.015002958454996
117 => 0.014956961775844
118 => 0.014922309456888
119 => 0.015164847616958
120 => 0.01538230657288
121 => 0.015786943777204
122 => 0.015888679184314
123 => 0.016285759251173
124 => 0.016049317404836
125 => 0.016154129012883
126 => 0.016267916839925
127 => 0.016322470908618
128 => 0.016233577981216
129 => 0.016850406769724
130 => 0.01690248601862
131 => 0.016919947740291
201 => 0.016711956543354
202 => 0.01689670140718
203 => 0.016810265403503
204 => 0.017035147872458
205 => 0.017070412315033
206 => 0.017040544586741
207 => 0.017051738077425
208 => 0.016525383522488
209 => 0.016498089262073
210 => 0.016125930084603
211 => 0.016277587700284
212 => 0.015994071056907
213 => 0.016083977105067
214 => 0.016123606834439
215 => 0.016102906512782
216 => 0.016286162194329
217 => 0.016130357428352
218 => 0.015719163034263
219 => 0.015307856610537
220 => 0.01530269299343
221 => 0.015194403272225
222 => 0.015116129638045
223 => 0.015131207916894
224 => 0.01518434573825
225 => 0.015113041171268
226 => 0.015128257615867
227 => 0.015380951982849
228 => 0.015431628036014
229 => 0.015259411006949
301 => 0.014567934784453
302 => 0.014398244785016
303 => 0.014520214591512
304 => 0.014461920879868
305 => 0.0116718988567
306 => 0.012327373146062
307 => 0.011937912581127
308 => 0.012117393927668
309 => 0.011719855541194
310 => 0.011909581695991
311 => 0.01187454620289
312 => 0.012928529463289
313 => 0.012912072964385
314 => 0.012919949819552
315 => 0.012543966999391
316 => 0.013142917840954
317 => 0.013437982563083
318 => 0.01338337393591
319 => 0.013397117750873
320 => 0.013160953474376
321 => 0.012922236405978
322 => 0.012657462438831
323 => 0.013149379742738
324 => 0.013094686935852
325 => 0.013220132556998
326 => 0.013539176091557
327 => 0.013586156463949
328 => 0.013649298560872
329 => 0.013626666613886
330 => 0.014165851409558
331 => 0.014100552573146
401 => 0.014257903981141
402 => 0.013934220196615
403 => 0.013567941270078
404 => 0.013637558919453
405 => 0.013630854179988
406 => 0.013545495151263
407 => 0.01346843683679
408 => 0.013340156454238
409 => 0.013746054566557
410 => 0.013729575844454
411 => 0.013996347200886
412 => 0.013949192772358
413 => 0.013634283958002
414 => 0.013645530987913
415 => 0.013721172669204
416 => 0.013982969391815
417 => 0.014060688483566
418 => 0.014024685903696
419 => 0.01410990133979
420 => 0.014177252145965
421 => 0.014118359564094
422 => 0.01495215432992
423 => 0.014605904611181
424 => 0.014774664314905
425 => 0.014814912509853
426 => 0.014711817604821
427 => 0.014734175198171
428 => 0.014768040860016
429 => 0.014973666527162
430 => 0.01551328777602
501 => 0.015752282353814
502 => 0.016471309332889
503 => 0.015732437181093
504 => 0.015688595565362
505 => 0.015818114036828
506 => 0.016240258990281
507 => 0.016582367824996
508 => 0.016695865062203
509 => 0.016710865595735
510 => 0.016923793957888
511 => 0.017045840524196
512 => 0.016897938854151
513 => 0.016772607674738
514 => 0.01632368694676
515 => 0.016375650743394
516 => 0.016733629772185
517 => 0.017239296235212
518 => 0.017673210666117
519 => 0.017521268955859
520 => 0.018680476950999
521 => 0.018795407688777
522 => 0.018779527976972
523 => 0.019041357301617
524 => 0.018521679412811
525 => 0.018299507047061
526 => 0.016799705698297
527 => 0.017221088701197
528 => 0.01783359364287
529 => 0.017752526317064
530 => 0.017307708856117
531 => 0.017672873232185
601 => 0.017552138469711
602 => 0.017456909953258
603 => 0.017893170248086
604 => 0.017413484133338
605 => 0.017828808406934
606 => 0.017296150730067
607 => 0.017521963012792
608 => 0.017393781039806
609 => 0.01747673048572
610 => 0.016991809719844
611 => 0.017253461194325
612 => 0.016980924158276
613 => 0.016980794940235
614 => 0.016974778670059
615 => 0.017295417284357
616 => 0.017305873298057
617 => 0.017068920877634
618 => 0.017034772331958
619 => 0.017161037403298
620 => 0.017013214073634
621 => 0.017082379679195
622 => 0.017015309029366
623 => 0.017000210013365
624 => 0.016879898484988
625 => 0.016828064970529
626 => 0.016848390227133
627 => 0.016779009647954
628 => 0.016737205339393
629 => 0.016966462740887
630 => 0.016843979759486
701 => 0.016947690467334
702 => 0.016829499026406
703 => 0.01641979599859
704 => 0.016184171454762
705 => 0.015410280414708
706 => 0.015629754953659
707 => 0.015775266800046
708 => 0.015727175135683
709 => 0.015830494639738
710 => 0.015836837618161
711 => 0.015803247394175
712 => 0.015764354217973
713 => 0.015745423170726
714 => 0.015886519686991
715 => 0.015968430963774
716 => 0.015789870860528
717 => 0.015748036726659
718 => 0.015928570849614
719 => 0.016038696560326
720 => 0.016851802933928
721 => 0.016791565387472
722 => 0.016942749808054
723 => 0.016925728762411
724 => 0.017084194120747
725 => 0.01734321800917
726 => 0.016816550019788
727 => 0.016907961371936
728 => 0.016885549419386
729 => 0.0171302372406
730 => 0.017131001129269
731 => 0.016984298557388
801 => 0.017063828401582
802 => 0.01701943702434
803 => 0.017099658242871
804 => 0.016790760878314
805 => 0.017166964524934
806 => 0.01738024775054
807 => 0.017383209188335
808 => 0.017484303744552
809 => 0.01758702166867
810 => 0.017784179779169
811 => 0.017581523035976
812 => 0.017216963283208
813 => 0.017243283319837
814 => 0.017029542070176
815 => 0.017033135099198
816 => 0.017013955228686
817 => 0.017071515463886
818 => 0.016803392113048
819 => 0.016866320127572
820 => 0.016778220538732
821 => 0.016907769860635
822 => 0.016768396205538
823 => 0.016885538611664
824 => 0.016936093390815
825 => 0.017122641614251
826 => 0.016740842881258
827 => 0.015962329419184
828 => 0.016125982387475
829 => 0.015883926792709
830 => 0.015906329959576
831 => 0.015951587922083
901 => 0.015804892058113
902 => 0.01583287700604
903 => 0.015831877186773
904 => 0.015823261284476
905 => 0.015785100024594
906 => 0.015729758647791
907 => 0.015950221659799
908 => 0.015987682621543
909 => 0.016070953699069
910 => 0.016318711942473
911 => 0.016293955051415
912 => 0.016334334567884
913 => 0.016246186310154
914 => 0.015910418904436
915 => 0.015928652689993
916 => 0.01570127709193
917 => 0.016065139193816
918 => 0.015978971845344
919 => 0.015923419195233
920 => 0.015908261139958
921 => 0.016156633528127
922 => 0.016230950439427
923 => 0.016184641127527
924 => 0.016089659377762
925 => 0.016272052416144
926 => 0.016320853098671
927 => 0.016331777771789
928 => 0.016654943265406
929 => 0.016349839132961
930 => 0.016423280730115
1001 => 0.01699625110628
1002 => 0.016476646039605
1003 => 0.016751892431998
1004 => 0.016738420553404
1005 => 0.016879227293922
1006 => 0.016726870290841
1007 => 0.016728758938492
1008 => 0.016853785784997
1009 => 0.016678208127791
1010 => 0.016634732630713
1011 => 0.016574671542876
1012 => 0.016705812730876
1013 => 0.016784425942076
1014 => 0.017417990689309
1015 => 0.017827302410083
1016 => 0.017809533108802
1017 => 0.017971911259778
1018 => 0.01789875841555
1019 => 0.017662528584791
1020 => 0.018065744100737
1021 => 0.017938149840238
1022 => 0.017948668556047
1023 => 0.017948277048919
1024 => 0.018033116077667
1025 => 0.017972999850416
1026 => 0.017854504595701
1027 => 0.017933167275723
1028 => 0.018166767312966
1029 => 0.018891868996292
1030 => 0.019297645504601
1031 => 0.018867440740984
1101 => 0.019164190226255
1102 => 0.018986246277745
1103 => 0.018953908568927
1104 => 0.019140289175292
1105 => 0.019326996016236
1106 => 0.019315103597624
1107 => 0.019179564018601
1108 => 0.019103001149601
1109 => 0.019682760844116
1110 => 0.020109917911086
1111 => 0.020080788662816
1112 => 0.020209355691341
1113 => 0.020586832463519
1114 => 0.020621344208874
1115 => 0.020616996522203
1116 => 0.020531455560412
1117 => 0.020903130464174
1118 => 0.02121318820789
1119 => 0.020511655299274
1120 => 0.020778789847135
1121 => 0.020898715152207
1122 => 0.021074801080288
1123 => 0.021371887556389
1124 => 0.021694602267731
1125 => 0.021740237666301
1126 => 0.021707857167161
1127 => 0.021495018139994
1128 => 0.021848136427931
1129 => 0.022054984839362
1130 => 0.022178158334727
1201 => 0.022490505824858
1202 => 0.020899455770064
1203 => 0.019773231460962
1204 => 0.019597355272219
1205 => 0.019955006418017
1206 => 0.020049316172949
1207 => 0.02001130002899
1208 => 0.018743632177261
1209 => 0.01959068126333
1210 => 0.02050203485803
1211 => 0.020537043661207
1212 => 0.020993286326218
1213 => 0.021141857639965
1214 => 0.021509192786392
1215 => 0.021486215872969
1216 => 0.021575656135545
1217 => 0.021555095368068
1218 => 0.022235506375284
1219 => 0.022986100758256
1220 => 0.022960110061518
1221 => 0.022852203238336
1222 => 0.023012463271608
1223 => 0.023787157113418
1224 => 0.02371583571868
1225 => 0.023785118378526
1226 => 0.02469852607785
1227 => 0.025886086017703
1228 => 0.025334345196573
1229 => 0.026531464019281
1230 => 0.027284986861633
1231 => 0.028588126701765
]
'min_raw' => 0.0116718988567
'max_raw' => 0.028588126701765
'avg_raw' => 0.020130012779233
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.011671'
'max' => '$0.028588'
'avg' => '$0.02013'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.005204420704828
'max_diff' => 0.011598019904396
'year' => 2028
]
3 => [
'items' => [
101 => 0.028424967175682
102 => 0.028932269952563
103 => 0.028132877571571
104 => 0.026297311080959
105 => 0.026006825657553
106 => 0.026588384831474
107 => 0.028018091312844
108 => 0.026543358286482
109 => 0.026841694857018
110 => 0.026755773904634
111 => 0.026751195542222
112 => 0.026925933013944
113 => 0.026672467197517
114 => 0.025639801863767
115 => 0.026113066300689
116 => 0.025930316173569
117 => 0.026133091064534
118 => 0.027227383520346
119 => 0.026743570740957
120 => 0.02623391327963
121 => 0.026873136838179
122 => 0.027687088089258
123 => 0.027636152482776
124 => 0.027537316116771
125 => 0.028094451537042
126 => 0.029014676025969
127 => 0.029263409007564
128 => 0.029447018609456
129 => 0.029472335271447
130 => 0.029733112624175
131 => 0.028330847074205
201 => 0.030556278514741
202 => 0.030940549048219
203 => 0.030868322114307
204 => 0.031295422639691
205 => 0.031169758830629
206 => 0.030987691687344
207 => 0.031664736866966
208 => 0.030888559203258
209 => 0.029786872727676
210 => 0.029182465738284
211 => 0.029978397618037
212 => 0.030464445442807
213 => 0.030785692136533
214 => 0.030882901191951
215 => 0.028439700957111
216 => 0.027122951536629
217 => 0.027966972818595
218 => 0.028996737033831
219 => 0.028325126681995
220 => 0.02835145253626
221 => 0.027393912670638
222 => 0.029081458064889
223 => 0.028835596895437
224 => 0.030111125077473
225 => 0.029806710040077
226 => 0.030846853756808
227 => 0.030572949057181
228 => 0.031709912151528
301 => 0.03216347751191
302 => 0.032925084343803
303 => 0.033485325429641
304 => 0.03381430971095
305 => 0.033794558728689
306 => 0.035098158350551
307 => 0.034329471197841
308 => 0.033363818968385
309 => 0.033346353366148
310 => 0.033846478339181
311 => 0.034894603080072
312 => 0.035166366575791
313 => 0.035318245295239
314 => 0.035085637749467
315 => 0.034251282937505
316 => 0.033891012759975
317 => 0.034197973389262
318 => 0.033822586917071
319 => 0.034470609282915
320 => 0.035360482401327
321 => 0.035176727121314
322 => 0.035790993472265
323 => 0.036426694522793
324 => 0.03733577557617
325 => 0.037573443026697
326 => 0.037966298284734
327 => 0.038370675391483
328 => 0.038500550419902
329 => 0.038748522147009
330 => 0.038747215213605
331 => 0.039494494703665
401 => 0.04031876712252
402 => 0.040629910878687
403 => 0.041345368789427
404 => 0.04012017218992
405 => 0.04104949788469
406 => 0.041887772923904
407 => 0.04088834686413
408 => 0.042265822851122
409 => 0.042319307122269
410 => 0.04312685611714
411 => 0.042308250503171
412 => 0.041822165102677
413 => 0.04322547544052
414 => 0.04390449310914
415 => 0.043699967461323
416 => 0.042143517182754
417 => 0.041237596361335
418 => 0.038866626832603
419 => 0.041675142657647
420 => 0.043043088790496
421 => 0.042139974532742
422 => 0.042595452833334
423 => 0.045080394752029
424 => 0.046026499746594
425 => 0.045829716521497
426 => 0.045862969647211
427 => 0.046373470729258
428 => 0.048637313665135
429 => 0.047280766502489
430 => 0.048317795979479
501 => 0.048867832674787
502 => 0.049378737411267
503 => 0.048124116851572
504 => 0.046491873937447
505 => 0.045974874089647
506 => 0.042050177618245
507 => 0.041845880122815
508 => 0.041731201747783
509 => 0.041008170814783
510 => 0.040440066556286
511 => 0.03998828895757
512 => 0.038802689626329
513 => 0.03920279459699
514 => 0.037313196716802
515 => 0.038522094477309
516 => 0.035506250634594
517 => 0.038017935003091
518 => 0.036650939393593
519 => 0.037568840180142
520 => 0.037565637710769
521 => 0.035875491342023
522 => 0.034900650188985
523 => 0.035521856913086
524 => 0.036187839832773
525 => 0.036295893320857
526 => 0.037159357560165
527 => 0.037400331869253
528 => 0.036670168462699
529 => 0.035443753974307
530 => 0.035728622088424
531 => 0.034894877345745
601 => 0.033433771753727
602 => 0.03448316329837
603 => 0.034841471710201
604 => 0.034999721117245
605 => 0.033562891576607
606 => 0.033111408539852
607 => 0.032871042759393
608 => 0.035258277323543
609 => 0.035389055421845
610 => 0.034719976180774
611 => 0.037744277795108
612 => 0.037059785196512
613 => 0.037824531133902
614 => 0.035702773292914
615 => 0.035783827299766
616 => 0.034779353135164
617 => 0.035341791548353
618 => 0.034944278206147
619 => 0.035296352082692
620 => 0.035507383712638
621 => 0.036511693052913
622 => 0.038029402602512
623 => 0.036361682728241
624 => 0.035635033296833
625 => 0.036085842517247
626 => 0.037286406878155
627 => 0.039105323340688
628 => 0.038028488185763
629 => 0.038506369341672
630 => 0.038610765114785
701 => 0.037816746738148
702 => 0.039134599930811
703 => 0.039840848162979
704 => 0.040565312711704
705 => 0.041194344980327
706 => 0.040275945639627
707 => 0.04125876458155
708 => 0.040466786005258
709 => 0.039756299349083
710 => 0.039757376864065
711 => 0.039311678206093
712 => 0.038448080894627
713 => 0.038288820300433
714 => 0.039117314023827
715 => 0.039781687531341
716 => 0.039836408515554
717 => 0.040204239826057
718 => 0.040421918606649
719 => 0.042555466576403
720 => 0.043413597219472
721 => 0.044462903126236
722 => 0.044871666912561
723 => 0.046101899359471
724 => 0.045108386743997
725 => 0.044893434040152
726 => 0.041909292529915
727 => 0.042397945535041
728 => 0.043180326144251
729 => 0.041922193697992
730 => 0.042720189152973
731 => 0.042877730359641
801 => 0.041879442838898
802 => 0.042412671337185
803 => 0.040996574536968
804 => 0.038060269643011
805 => 0.039137868877545
806 => 0.039931344630143
807 => 0.038798956896331
808 => 0.040828718079731
809 => 0.039642973499165
810 => 0.039267149392903
811 => 0.037800925563407
812 => 0.038492926770798
813 => 0.039428868312298
814 => 0.038850565254534
815 => 0.040050630932035
816 => 0.041750243977202
817 => 0.042961489446895
818 => 0.043054473833963
819 => 0.042275724144095
820 => 0.043523675492023
821 => 0.043532765455173
822 => 0.042125071236679
823 => 0.041262866365925
824 => 0.041066971605196
825 => 0.041556355124929
826 => 0.042150557063066
827 => 0.043087447906095
828 => 0.043653591420724
829 => 0.045129793447559
830 => 0.045529211389992
831 => 0.045968050612772
901 => 0.04655447514741
902 => 0.047258628157408
903 => 0.045717981458986
904 => 0.045779194224439
905 => 0.044344565350574
906 => 0.042811458652258
907 => 0.043974895531832
908 => 0.045495934486353
909 => 0.045147006469587
910 => 0.045107744939749
911 => 0.045173771942697
912 => 0.044910691612979
913 => 0.043720789031878
914 => 0.043123227404833
915 => 0.043894234357951
916 => 0.044303990239961
917 => 0.044939485878491
918 => 0.044861147627357
919 => 0.046498116144962
920 => 0.047134192611544
921 => 0.046971457032146
922 => 0.047001404295206
923 => 0.048152990354982
924 => 0.049433790895189
925 => 0.05063342961761
926 => 0.051853753651739
927 => 0.050382605398539
928 => 0.049635647043374
929 => 0.050406317398975
930 => 0.049997388860323
1001 => 0.052347213539505
1002 => 0.052509910301949
1003 => 0.054859565062061
1004 => 0.057089667221091
1005 => 0.055688980011435
1006 => 0.057009764961803
1007 => 0.058438301570804
1008 => 0.061194180461279
1009 => 0.060266097403955
1010 => 0.059555200326961
1011 => 0.058883406024232
1012 => 0.06028130332387
1013 => 0.0620796758679
1014 => 0.062467028089286
1015 => 0.063094686667869
1016 => 0.062434780418929
1017 => 0.063229564809488
1018 => 0.06603550295412
1019 => 0.06527731369874
1020 => 0.064200563071094
1021 => 0.066415581751117
1022 => 0.06721718840075
1023 => 0.072843283672539
1024 => 0.079946461355575
1025 => 0.077005699152819
1026 => 0.075180273155765
1027 => 0.075609291564756
1028 => 0.078203131596862
1029 => 0.079036190690807
1030 => 0.076771648900774
1031 => 0.07757152334453
1101 => 0.081978910171546
1102 => 0.084343331798341
1103 => 0.081132129644963
1104 => 0.072272550261917
1105 => 0.064103613458058
1106 => 0.06627038335046
1107 => 0.06602473888736
1108 => 0.070759926200284
1109 => 0.065259231135749
1110 => 0.065351848733316
1111 => 0.070184954705222
1112 => 0.06889556489233
1113 => 0.066806918528016
1114 => 0.064118862887952
1115 => 0.059149743422241
1116 => 0.054748455737313
1117 => 0.063380394443476
1118 => 0.063008169550304
1119 => 0.062469132744353
1120 => 0.063668700826123
1121 => 0.069493462927858
1122 => 0.069359183308498
1123 => 0.068504964880193
1124 => 0.069152882029327
1125 => 0.06669333551914
1126 => 0.067327216657648
1127 => 0.064102319456732
1128 => 0.06556010767515
1129 => 0.066802437230977
1130 => 0.067051853282313
1201 => 0.067613800381472
1202 => 0.062812023945632
1203 => 0.064967880592575
1204 => 0.066234244396203
1205 => 0.060512766660701
1206 => 0.066121149177326
1207 => 0.062728435700873
1208 => 0.061576897790118
1209 => 0.063127291883366
1210 => 0.062523101797419
1211 => 0.062003654640755
1212 => 0.061713794202101
1213 => 0.06285223251343
1214 => 0.062799123005479
1215 => 0.06093641696679
1216 => 0.058506592872932
1217 => 0.059322121595088
1218 => 0.059025832364706
1219 => 0.057952041971731
1220 => 0.05867564704665
1221 => 0.055489256504856
1222 => 0.050007237191869
1223 => 0.053628827068821
1224 => 0.05348939979809
1225 => 0.053419094245665
1226 => 0.056140618944802
1227 => 0.055879007141237
1228 => 0.055404179156058
1229 => 0.057943321383419
1230 => 0.05701650031415
1231 => 0.05987274446313
]
'min_raw' => 0.025639801863767
'max_raw' => 0.084343331798341
'avg_raw' => 0.054991566831054
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.025639'
'max' => '$0.084343'
'avg' => '$0.054991'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.013967903007066
'max_diff' => 0.055755205096576
'year' => 2029
]
4 => [
'items' => [
101 => 0.061754051589937
102 => 0.061276891248668
103 => 0.063046269694577
104 => 0.05934090972971
105 => 0.0605716816768
106 => 0.060825342069319
107 => 0.057911988762474
108 => 0.055921810067708
109 => 0.055789087838466
110 => 0.05233839224526
111 => 0.054181725978109
112 => 0.055803783380683
113 => 0.055026943761589
114 => 0.054781019545608
115 => 0.056037393030603
116 => 0.056135024010498
117 => 0.053909027322417
118 => 0.054371882522016
119 => 0.05630206564762
120 => 0.054323246859591
121 => 0.050478725192664
122 => 0.049525230664595
123 => 0.04939801691816
124 => 0.046812064135433
125 => 0.049588947728272
126 => 0.048376763624144
127 => 0.052206038684888
128 => 0.050018777307006
129 => 0.049924488840629
130 => 0.04978195799459
131 => 0.047556121610133
201 => 0.048043438319047
202 => 0.049663353279909
203 => 0.050241357187593
204 => 0.050181066644575
205 => 0.049655414812859
206 => 0.049896055529646
207 => 0.049120867936093
208 => 0.048847133062675
209 => 0.047983150505459
210 => 0.046713334827624
211 => 0.046889910485859
212 => 0.044374073362723
213 => 0.043003311772456
214 => 0.042623903030618
215 => 0.042116541804449
216 => 0.04268121083115
217 => 0.044366946312252
218 => 0.042333591673311
219 => 0.038847547768091
220 => 0.039057064946724
221 => 0.039527787840905
222 => 0.038650598841743
223 => 0.037820413070928
224 => 0.038542192243551
225 => 0.037065109485205
226 => 0.039706286235405
227 => 0.039634849806125
228 => 0.040619317169325
301 => 0.041234924814838
302 => 0.039816148497272
303 => 0.039459330090183
304 => 0.039662590071354
305 => 0.036303155349815
306 => 0.040344779681192
307 => 0.040379731816242
308 => 0.040080450415888
309 => 0.042232490601195
310 => 0.046773966630358
311 => 0.045065280667737
312 => 0.044403625817704
313 => 0.043145819464123
314 => 0.044821771749118
315 => 0.044693084762559
316 => 0.044111113406248
317 => 0.043759135314089
318 => 0.044407665741128
319 => 0.043678775217211
320 => 0.043547846450543
321 => 0.04275456057644
322 => 0.042471393611593
323 => 0.042261748064022
324 => 0.042030948915492
325 => 0.042540034325584
326 => 0.041386379810552
327 => 0.039995185559569
328 => 0.03987952281053
329 => 0.040198877829799
330 => 0.040057587006958
331 => 0.039878846364429
401 => 0.039537581800724
402 => 0.039436335894636
403 => 0.03976533597189
404 => 0.039393914066567
405 => 0.03994196732027
406 => 0.039792927160432
407 => 0.038960400942997
408 => 0.03792276503539
409 => 0.037913527899297
410 => 0.037689970945067
411 => 0.037405237551842
412 => 0.037326031235664
413 => 0.038481406014838
414 => 0.040872997230271
415 => 0.040403470648754
416 => 0.04074275172292
417 => 0.042411678808993
418 => 0.042942180543268
419 => 0.042565642977902
420 => 0.042050215134604
421 => 0.042072891343868
422 => 0.043834264315037
423 => 0.043944118986704
424 => 0.044221686301548
425 => 0.044578438741637
426 => 0.04262639946109
427 => 0.041980950469299
428 => 0.041675100928841
429 => 0.0407332027229
430 => 0.041748959185758
501 => 0.041157121393879
502 => 0.041236980532062
503 => 0.041184972163556
504 => 0.04121337224955
505 => 0.039705547972676
506 => 0.040254919890258
507 => 0.039341482524842
508 => 0.038118492430706
509 => 0.038114392539075
510 => 0.038413717632006
511 => 0.038235667354139
512 => 0.037756538634489
513 => 0.037824596607691
514 => 0.037228337148473
515 => 0.037896993301666
516 => 0.037916167967573
517 => 0.037658698926647
518 => 0.03868885598741
519 => 0.039110912175732
520 => 0.038941440537473
521 => 0.039099021593815
522 => 0.040422981598002
523 => 0.040638844847109
524 => 0.040734717043237
525 => 0.040606261001058
526 => 0.039123221152264
527 => 0.039189000275931
528 => 0.038706356711601
529 => 0.038298573759468
530 => 0.038314882939014
531 => 0.038524536384483
601 => 0.03944010527686
602 => 0.041366866035132
603 => 0.041439985197465
604 => 0.041528607755249
605 => 0.041168135274614
606 => 0.041059413325197
607 => 0.041202845639994
608 => 0.041926435676533
609 => 0.043787705703291
610 => 0.043129808565789
611 => 0.042594927952221
612 => 0.043064162453098
613 => 0.04299192747967
614 => 0.042382191609226
615 => 0.042365078354131
616 => 0.0411948002744
617 => 0.040762175114266
618 => 0.040400641149026
619 => 0.040005855497067
620 => 0.039771813329251
621 => 0.04013140846928
622 => 0.040213652132409
623 => 0.039427391074089
624 => 0.039320226597175
625 => 0.039962304350022
626 => 0.039679749870065
627 => 0.039970364159715
628 => 0.040037789167757
629 => 0.040026932188533
630 => 0.039731912860282
701 => 0.039919949382506
702 => 0.039475186951062
703 => 0.038991574608023
704 => 0.038683060063278
705 => 0.038413840204472
706 => 0.038563219029288
707 => 0.038030710794316
708 => 0.037860350692675
709 => 0.039856246839732
710 => 0.041330636783063
711 => 0.041309198569364
712 => 0.041178698956935
713 => 0.040984803003746
714 => 0.041912250979854
715 => 0.041589146649885
716 => 0.041824232046208
717 => 0.041884071146075
718 => 0.042065186078988
719 => 0.04212991910015
720 => 0.041934250950225
721 => 0.041277564740222
722 => 0.039641165140746
723 => 0.038879416709814
724 => 0.038628027039682
725 => 0.038637164576735
726 => 0.03838511051307
727 => 0.03845935173109
728 => 0.038359292447206
729 => 0.038169804370471
730 => 0.038551518674513
731 => 0.038595507692139
801 => 0.038506411012429
802 => 0.038527396505847
803 => 0.037789714051542
804 => 0.037845798446381
805 => 0.037533513409059
806 => 0.037474963729213
807 => 0.036685534348631
808 => 0.035286945771311
809 => 0.036061899607424
810 => 0.035125864348399
811 => 0.034771373612557
812 => 0.036449477621411
813 => 0.036281042522282
814 => 0.035992754849551
815 => 0.035566317297166
816 => 0.035408147460869
817 => 0.034447157606011
818 => 0.034390377198704
819 => 0.034866669719681
820 => 0.034646877109475
821 => 0.034338205042776
822 => 0.033220226106776
823 => 0.031963247632607
824 => 0.032001187911657
825 => 0.032401009377374
826 => 0.033563544212218
827 => 0.033109321740188
828 => 0.032779778125128
829 => 0.032718064512071
830 => 0.033490539585669
831 => 0.03458375365334
901 => 0.035096665234605
902 => 0.034588385434927
903 => 0.034004500968786
904 => 0.03404003931078
905 => 0.034276459978608
906 => 0.034301304447988
907 => 0.033921255684823
908 => 0.034028237185506
909 => 0.033865722503375
910 => 0.03286837019912
911 => 0.032850331258574
912 => 0.032605564918631
913 => 0.032598153491134
914 => 0.032181744887067
915 => 0.032123486444861
916 => 0.031296681887289
917 => 0.031840887150878
918 => 0.031475862832121
919 => 0.030925685083223
920 => 0.030830834231938
921 => 0.030827982900813
922 => 0.031392892431438
923 => 0.031834285854106
924 => 0.031482212586426
925 => 0.031402052328029
926 => 0.032257954171373
927 => 0.032149032860089
928 => 0.032054707706984
929 => 0.034485868324057
930 => 0.032561414989815
1001 => 0.031722243492129
1002 => 0.030683609409398
1003 => 0.031021793903983
1004 => 0.031093054345956
1005 => 0.028595326604853
1006 => 0.02758199877136
1007 => 0.027234262845359
1008 => 0.027034135903681
1009 => 0.027125336264039
1010 => 0.026213222362395
1011 => 0.026826177989271
1012 => 0.026036364449516
1013 => 0.025903949639301
1014 => 0.027316234087505
1015 => 0.027512745218027
1016 => 0.026674367683999
1017 => 0.027212741781839
1018 => 0.027017519850002
1019 => 0.026049903535753
1020 => 0.026012947709853
1021 => 0.02552743185672
1022 => 0.024767693560963
1023 => 0.024420472773302
1024 => 0.024239637172379
1025 => 0.024314253465735
1026 => 0.024276525184518
1027 => 0.024030322629183
1028 => 0.024290637226796
1029 => 0.023625640999313
1030 => 0.023360834143291
1031 => 0.023241227029898
1101 => 0.022651004602252
1102 => 0.023590310957741
1103 => 0.023775366142842
1104 => 0.023960785943824
1105 => 0.025574738719899
1106 => 0.02549411020019
1107 => 0.026222952750682
1108 => 0.026194631269425
1109 => 0.025986753567558
1110 => 0.025109751737604
1111 => 0.025459309035969
1112 => 0.024383426004866
1113 => 0.025189550724704
1114 => 0.024821669067143
1115 => 0.025065169566227
1116 => 0.02462733371332
1117 => 0.024869650152118
1118 => 0.023819249592324
1119 => 0.022838400329124
1120 => 0.023233122705411
1121 => 0.023662231070414
1122 => 0.024592647340518
1123 => 0.024038499085811
1124 => 0.024237791752869
1125 => 0.023570194679415
1126 => 0.022192751227202
1127 => 0.022200547407552
1128 => 0.021988657741666
1129 => 0.021805554133943
1130 => 0.024102149678938
1201 => 0.023816531719115
1202 => 0.023361436880891
1203 => 0.023970599406604
1204 => 0.024131671647112
1205 => 0.024136257147358
1206 => 0.024580686401357
1207 => 0.024817878373885
1208 => 0.024859684487092
1209 => 0.025559003520789
1210 => 0.025793406036644
1211 => 0.026758876825562
1212 => 0.024797754292184
1213 => 0.024757366264162
1214 => 0.023979171572577
1215 => 0.023485628196403
1216 => 0.024012964909789
1217 => 0.024480113249208
1218 => 0.023993687173654
1219 => 0.024057204150106
1220 => 0.023404216886145
1221 => 0.023637629107105
1222 => 0.023838675155817
1223 => 0.023727669344658
1224 => 0.023561488272612
1225 => 0.024441812412665
1226 => 0.024392141074665
1227 => 0.025211919152447
1228 => 0.025850994786971
1229 => 0.026996332572472
1230 => 0.025801112885493
1231 => 0.025757554329531
]
'min_raw' => 0.021805554133943
'max_raw' => 0.063046269694577
'avg_raw' => 0.04242591191426
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0218055'
'max' => '$0.063046'
'avg' => '$0.042425'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0038342477298239
'max_diff' => -0.021297062103764
'year' => 2030
]
5 => [
'items' => [
101 => 0.026183346201067
102 => 0.025793340850126
103 => 0.026039810769394
104 => 0.026956622458068
105 => 0.026975993244357
106 => 0.026651507616172
107 => 0.026631762636207
108 => 0.026694083650584
109 => 0.02705909977835
110 => 0.026931551927496
111 => 0.027079153529621
112 => 0.027263731593234
113 => 0.028027224723815
114 => 0.028211300332804
115 => 0.027764092035221
116 => 0.027804469937314
117 => 0.027637201757875
118 => 0.027475622792402
119 => 0.027838828710073
120 => 0.028502594663447
121 => 0.028498465409901
122 => 0.028652446209317
123 => 0.028748374971708
124 => 0.028336578499381
125 => 0.028068514138073
126 => 0.028171307071577
127 => 0.028335675210789
128 => 0.028118004699329
129 => 0.026774441467808
130 => 0.0271819927251
131 => 0.027114156267649
201 => 0.027017548903042
202 => 0.02742734484375
203 => 0.027387819025565
204 => 0.026203867315986
205 => 0.026279660063111
206 => 0.026208476523972
207 => 0.026438485101713
208 => 0.025780919632105
209 => 0.025983182341785
210 => 0.026110039617201
211 => 0.026184759526985
212 => 0.026454699077046
213 => 0.026423024786477
214 => 0.026452730158671
215 => 0.026852979250012
216 => 0.028877301805113
217 => 0.028987481215372
218 => 0.028444917503034
219 => 0.028661661004517
220 => 0.028245560878263
221 => 0.028524891680646
222 => 0.028716002721403
223 => 0.027852408676761
224 => 0.027801272242117
225 => 0.027383454722627
226 => 0.027607966191207
227 => 0.02725075230175
228 => 0.027338400095412
301 => 0.027093329223338
302 => 0.027534407999947
303 => 0.028027602608909
304 => 0.028152203043978
305 => 0.027824432943171
306 => 0.027587105789085
307 => 0.027170437486934
308 => 0.02786336615947
309 => 0.028065999619938
310 => 0.027862301812165
311 => 0.02781510057922
312 => 0.027725654328078
313 => 0.027834077024239
314 => 0.028064896034594
315 => 0.027956046051869
316 => 0.028027943383149
317 => 0.027753944896515
318 => 0.028336714821148
319 => 0.029262293712687
320 => 0.029265269600171
321 => 0.029156419030703
322 => 0.029111879722895
323 => 0.029223567012774
324 => 0.02928415278588
325 => 0.029645329001402
326 => 0.030032885470551
327 => 0.031841442407937
328 => 0.031333606856977
329 => 0.032938266163359
330 => 0.034207343335775
331 => 0.034587884089763
401 => 0.03423780450192
402 => 0.033040201142836
403 => 0.03298144100857
404 => 0.034771166042139
405 => 0.034265486745556
406 => 0.034205337802286
407 => 0.033565454669133
408 => 0.033943704851894
409 => 0.033860975988329
410 => 0.033730384429957
411 => 0.034452059429528
412 => 0.035802970604355
413 => 0.035592418428994
414 => 0.035435250997321
415 => 0.034746589062481
416 => 0.035161317365466
417 => 0.035013640560371
418 => 0.035648153833078
419 => 0.035272282226516
420 => 0.034261655727535
421 => 0.034422601328566
422 => 0.034398274724748
423 => 0.034898914507526
424 => 0.034748634871379
425 => 0.034368930213888
426 => 0.035798353336823
427 => 0.035705534550089
428 => 0.035837130368349
429 => 0.035895062917283
430 => 0.036765127582952
501 => 0.037121565237513
502 => 0.037202482825418
503 => 0.037541071029373
504 => 0.037194058442457
505 => 0.038582356205904
506 => 0.039505493209176
507 => 0.040577764342672
508 => 0.04214464066802
509 => 0.042733800660767
510 => 0.042627374181444
511 => 0.043815361928811
512 => 0.045950149503344
513 => 0.04305887578617
514 => 0.046103394030916
515 => 0.045139534705283
516 => 0.042854241583296
517 => 0.042707095648076
518 => 0.044254722683084
519 => 0.04768721049315
520 => 0.046827411227683
521 => 0.047688616816734
522 => 0.046683974751478
523 => 0.04663408580515
524 => 0.047639823594028
525 => 0.049989784757653
526 => 0.048873406295792
527 => 0.047272804023484
528 => 0.048454663833226
529 => 0.047430827490066
530 => 0.045123837655176
531 => 0.046826753755389
601 => 0.045688062255435
602 => 0.046020392971291
603 => 0.048413753136617
604 => 0.04812577770948
605 => 0.048498444578002
606 => 0.04784069730945
607 => 0.047226257643398
608 => 0.046079360377823
609 => 0.045739820638838
610 => 0.045833657207334
611 => 0.045739774138095
612 => 0.045098095658536
613 => 0.04495952525197
614 => 0.044728568503451
615 => 0.044800151657198
616 => 0.044365885401203
617 => 0.045185435550253
618 => 0.045337551279768
619 => 0.045933951533436
620 => 0.045995871786254
621 => 0.047656838003494
622 => 0.046742005722441
623 => 0.04735575419939
624 => 0.047300854758787
625 => 0.042903770814864
626 => 0.043509650186536
627 => 0.044452208353438
628 => 0.044027587176856
629 => 0.043427272179223
630 => 0.04294248563178
701 => 0.042207984440434
702 => 0.043241780762407
703 => 0.044601112993819
704 => 0.046030346694882
705 => 0.047747477339608
706 => 0.04736423376931
707 => 0.04599824613189
708 => 0.04605952333945
709 => 0.046438314924894
710 => 0.0459477454049
711 => 0.045803066876399
712 => 0.046418438316768
713 => 0.046422676041676
714 => 0.045858216521615
715 => 0.04523092306007
716 => 0.045228294677562
717 => 0.045116673865016
718 => 0.046703831846063
719 => 0.047576608255868
720 => 0.047676670664702
721 => 0.047569873258497
722 => 0.047610975341508
723 => 0.047103125978959
724 => 0.048263919023696
725 => 0.049329177512082
726 => 0.049043665481266
727 => 0.048615642359147
728 => 0.048274701325993
729 => 0.048963350609117
730 => 0.048932686140574
731 => 0.049319873408497
801 => 0.049302308357522
802 => 0.049172111842169
803 => 0.049043670130994
804 => 0.049552926997411
805 => 0.049406269198298
806 => 0.049259383599115
807 => 0.048964782042893
808 => 0.049004823287197
809 => 0.048576874069305
810 => 0.048378885179484
811 => 0.045401607318349
812 => 0.044605981388494
813 => 0.044856301502486
814 => 0.044938713383571
815 => 0.044592455959275
816 => 0.045088900159481
817 => 0.045011529856743
818 => 0.045312532444582
819 => 0.045124479095713
820 => 0.045132196870746
821 => 0.045685221672567
822 => 0.045845767125271
823 => 0.045764112412265
824 => 0.045821300574295
825 => 0.047139177630654
826 => 0.046951817656575
827 => 0.046852286404569
828 => 0.046879857241583
829 => 0.047216603085086
830 => 0.047310873535625
831 => 0.046911443012423
901 => 0.047099816756246
902 => 0.047901888249254
903 => 0.048182567878492
904 => 0.049078362521154
905 => 0.048697813035471
906 => 0.049396328086238
907 => 0.051543325210968
908 => 0.053258495075103
909 => 0.051681153985652
910 => 0.05483084501557
911 => 0.057283331278705
912 => 0.057189200771096
913 => 0.056761553064089
914 => 0.053969462656231
915 => 0.051400139435197
916 => 0.053549487408819
917 => 0.053554966538821
918 => 0.053370335641724
919 => 0.052223608996741
920 => 0.053330432040153
921 => 0.053418287633948
922 => 0.053369111864111
923 => 0.052489919234045
924 => 0.051147554589893
925 => 0.051409849428194
926 => 0.051839493723999
927 => 0.05102608743885
928 => 0.05076615484472
929 => 0.051249418991407
930 => 0.052806596764117
1001 => 0.052512221326303
1002 => 0.052504533993957
1003 => 0.053763996951539
1004 => 0.052862493283028
1005 => 0.051413157806089
1006 => 0.051047181483776
1007 => 0.049748212090754
1008 => 0.050645414877284
1009 => 0.050677703608312
1010 => 0.05018631481132
1011 => 0.051453031298767
1012 => 0.051441358283334
1013 => 0.052643917062297
1014 => 0.054942757787223
1015 => 0.05426287746578
1016 => 0.053472250622712
1017 => 0.053558213682258
1018 => 0.054501016270568
1019 => 0.053930976303586
1020 => 0.054135966650172
1021 => 0.054500705993127
1022 => 0.0547207622947
1023 => 0.053526550966935
1024 => 0.053248123180703
1025 => 0.052678557644944
1026 => 0.052529968628109
1027 => 0.052993867872609
1028 => 0.052871646811486
1029 => 0.050674989865497
1030 => 0.050445426992558
1031 => 0.05045246735813
1101 => 0.049875220599004
1102 => 0.04899478073624
1103 => 0.051308524127251
1104 => 0.051122698152135
1105 => 0.050917560657395
1106 => 0.050942688830002
1107 => 0.051947006416001
1108 => 0.051364451496868
1109 => 0.052913269228256
1110 => 0.052594878864406
1111 => 0.052268322989119
1112 => 0.052223183020019
1113 => 0.052097486868472
1114 => 0.051666427995338
1115 => 0.051145898503406
1116 => 0.050802199845341
1117 => 0.046862343963203
1118 => 0.047593558297841
1119 => 0.048434753737557
1120 => 0.048725131032468
1121 => 0.048228420576026
1122 => 0.051686041151644
1123 => 0.05231778174927
1124 => 0.050404198271641
1125 => 0.050046244934075
1126 => 0.051709508512862
1127 => 0.05070635724915
1128 => 0.051158076201776
1129 => 0.050181706903256
1130 => 0.052165613938826
1201 => 0.052150499891168
1202 => 0.051378715245759
1203 => 0.052031022343106
1204 => 0.051917667932453
1205 => 0.051046324968607
1206 => 0.052193237064966
1207 => 0.052193805919057
1208 => 0.051450979977896
1209 => 0.050583521904127
1210 => 0.050428440888983
1211 => 0.050311608176274
1212 => 0.051129342516425
1213 => 0.051862520568816
1214 => 0.053226783154061
1215 => 0.053569791182071
1216 => 0.054908574350732
1217 => 0.054111394157964
1218 => 0.054464773812206
1219 => 0.05484841741549
1220 => 0.055032350266931
1221 => 0.054732641555889
1222 => 0.056812322881957
1223 => 0.056987911705666
1224 => 0.057046785119419
1225 => 0.056345528277464
1226 => 0.056968408484327
1227 => 0.05667698346316
1228 => 0.057435190408034
1229 => 0.057554086938263
1230 => 0.057453385807026
1231 => 0.057491125442375
]
'min_raw' => 0.025780919632105
'max_raw' => 0.057554086938263
'avg_raw' => 0.041667503285184
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.02578'
'max' => '$0.057554'
'avg' => '$0.041667'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0039753654981621
'max_diff' => -0.0054921827563143
'year' => 2031
]
6 => [
'items' => [
101 => 0.055716484311502
102 => 0.055624459806889
103 => 0.054369699156723
104 => 0.054881023396388
105 => 0.053925127238743
106 => 0.054228251757153
107 => 0.054361866156592
108 => 0.054292073576876
109 => 0.054909932901714
110 => 0.054384626255281
111 => 0.052998255646935
112 => 0.051611507322845
113 => 0.051594097827257
114 => 0.051228991471665
115 => 0.050965086449136
116 => 0.051015923919009
117 => 0.051195081793675
118 => 0.050954673467769
119 => 0.051005976773113
120 => 0.051857953473952
121 => 0.052028811325285
122 => 0.051448169587982
123 => 0.04911680922651
124 => 0.048544687546029
125 => 0.048955917264293
126 => 0.048759375945549
127 => 0.03935262190132
128 => 0.041562599231657
129 => 0.04024950574571
130 => 0.04085463963656
131 => 0.039514311211318
201 => 0.040153986188476
202 => 0.040035861577385
203 => 0.043589439726582
204 => 0.043533955491569
205 => 0.04356051285871
206 => 0.042292860530254
207 => 0.044312265109995
208 => 0.045307096421416
209 => 0.04512297962225
210 => 0.04516931785396
211 => 0.044373073507286
212 => 0.043568222244489
213 => 0.042675518328326
214 => 0.044334051863018
215 => 0.044149651246072
216 => 0.044572599916099
217 => 0.045648277467772
218 => 0.045806675073358
219 => 0.046019563061575
220 => 0.045943257872198
221 => 0.047761157055485
222 => 0.047540997469504
223 => 0.048071518727483
224 => 0.046980196249076
225 => 0.045745261275478
226 => 0.045979982040893
227 => 0.045957376543678
228 => 0.045669582618754
229 => 0.045409775131468
301 => 0.044977268865443
302 => 0.046345782690031
303 => 0.046290223527952
304 => 0.047189661781543
305 => 0.047030677333544
306 => 0.045968940279711
307 => 0.046006860426299
308 => 0.046261891635906
309 => 0.047144557564251
310 => 0.047406592908263
311 => 0.047285207696613
312 => 0.047572517488954
313 => 0.047799595434257
314 => 0.047601034982731
315 => 0.050412232249405
316 => 0.049244827148292
317 => 0.049813812271822
318 => 0.049949511871129
319 => 0.04960192020096
320 => 0.049677300387895
321 => 0.04979148083123
322 => 0.05048476212434
323 => 0.052304132840018
324 => 0.053109919745116
325 => 0.05553416940593
326 => 0.053043010359743
327 => 0.052895195291383
328 => 0.053331875860622
329 => 0.054755167044408
330 => 0.055908610865923
331 => 0.05629127472529
401 => 0.056341850071397
402 => 0.057059752910583
403 => 0.057471241429908
404 => 0.056972580623186
405 => 0.056550017801452
406 => 0.055036450224429
407 => 0.055211649792778
408 => 0.056418601081644
409 => 0.058123490866243
410 => 0.059586463664978
411 => 0.059074181580611
412 => 0.062982532269545
413 => 0.063370029276171
414 => 0.063316489719134
415 => 0.064199265567516
416 => 0.062447135282652
417 => 0.061698065639948
418 => 0.056641380679803
419 => 0.058062102894105
420 => 0.060127206068682
421 => 0.059853881919787
422 => 0.058354148794043
423 => 0.059585325982918
424 => 0.059178260301806
425 => 0.058857190709942
426 => 0.060328072752673
427 => 0.058710777526186
428 => 0.060111072311631
429 => 0.058315179765103
430 => 0.059076521642021
501 => 0.058644347170719
502 => 0.058924017018962
503 => 0.057289072800725
504 => 0.058171249014859
505 => 0.057252371369891
506 => 0.057251935702246
507 => 0.057231651427305
508 => 0.058312706901682
509 => 0.05834796008189
510 => 0.057549058452941
511 => 0.057433924247021
512 => 0.057859635750589
513 => 0.05736123907393
514 => 0.057594435742067
515 => 0.057368302363447
516 => 0.057317394976821
517 => 0.056911756259014
518 => 0.056736995946114
519 => 0.056805523967821
520 => 0.056571602501119
521 => 0.056430656356122
522 => 0.057203613691502
523 => 0.056790653768218
524 => 0.05714032166058
525 => 0.056741830965628
526 => 0.055360488602794
527 => 0.054566064002498
528 => 0.05195683632961
529 => 0.052696810060904
530 => 0.05318741341031
531 => 0.053025269006258
601 => 0.053373617927717
602 => 0.053395003722322
603 => 0.053281751936959
604 => 0.05315062087796
605 => 0.053086793530442
606 => 0.053562510286076
607 => 0.053838679874612
608 => 0.053236652019849
609 => 0.053095605316743
610 => 0.053704288716777
611 => 0.054075585239172
612 => 0.056817030147047
613 => 0.056613935053521
614 => 0.057123663882871
615 => 0.057066276239113
616 => 0.057600553258443
617 => 0.058473870382731
618 => 0.056698172485744
619 => 0.057006372241648
620 => 0.056930808778872
621 => 0.057755790851654
622 => 0.057758366355636
623 => 0.057263748392092
624 => 0.057531888814389
625 => 0.05738222018671
626 => 0.057652691625854
627 => 0.056611222594726
628 => 0.057879619455005
629 => 0.058598718741095
630 => 0.05860870343538
701 => 0.058949550789861
702 => 0.059295871442563
703 => 0.05996060377725
704 => 0.059277332418532
705 => 0.058048193759325
706 => 0.058136933600426
707 => 0.057416290054257
708 => 0.057428404202463
709 => 0.057363737929936
710 => 0.057557806281638
711 => 0.056653809684514
712 => 0.056865975878976
713 => 0.056568941964286
714 => 0.057005726547927
715 => 0.056535818539007
716 => 0.056930772339882
717 => 0.057101221307414
718 => 0.05773018166711
719 => 0.056442920582488
720 => 0.05381810809103
721 => 0.05436987549951
722 => 0.053553768161974
723 => 0.053629302003203
724 => 0.053781892383606
725 => 0.053287297036252
726 => 0.053381650242037
727 => 0.053378279281573
728 => 0.053349230165435
729 => 0.053220566813409
730 => 0.053033979497704
731 => 0.053777285934927
801 => 0.053903588182887
802 => 0.054184342434566
803 => 0.055019676650133
804 => 0.05493620706346
805 => 0.055072349422443
806 => 0.05477515141719
807 => 0.053643088166282
808 => 0.053704564647327
809 => 0.052937951943602
810 => 0.054164738424151
811 => 0.053874219192767
812 => 0.053686919554354
813 => 0.053635813112694
814 => 0.054473217960209
815 => 0.054723782615299
816 => 0.054567647537016
817 => 0.054247409936269
818 => 0.05486236079945
819 => 0.055026895707743
820 => 0.055063729005896
821 => 0.056153304030321
822 => 0.055124624146093
823 => 0.055372237618426
824 => 0.05730404724518
825 => 0.05555216248522
826 => 0.056480174914263
827 => 0.056434753535005
828 => 0.056909493291475
829 => 0.056395811018359
830 => 0.056402178725777
831 => 0.056823715467866
901 => 0.056231743138154
902 => 0.056085162464392
903 => 0.05588266231342
904 => 0.056324813984747
905 => 0.056589863914908
906 => 0.05872597169428
907 => 0.060105994738103
908 => 0.060046084298219
909 => 0.060593553571117
910 => 0.060346913649432
911 => 0.05955044828199
912 => 0.06090991754561
913 => 0.060479724587991
914 => 0.060515189172732
915 => 0.060513869179117
916 => 0.060799909887813
917 => 0.060597223830456
918 => 0.060197708806108
919 => 0.060462925523856
920 => 0.061250524358854
921 => 0.063695255309171
922 => 0.065063359137345
923 => 0.063612893740873
924 => 0.064613405348854
925 => 0.064013454902802
926 => 0.063904426059775
927 => 0.064532821286814
928 => 0.065162316436512
929 => 0.065122220316859
930 => 0.064665239163112
1001 => 0.064407102104827
1002 => 0.066361802392415
1003 => 0.067801992266859
1004 => 0.067703780972578
1005 => 0.068137253685513
1006 => 0.069409942977498
1007 => 0.069526301736495
1008 => 0.069511643207337
1009 => 0.069223235882381
1010 => 0.070476363769928
1011 => 0.071521745100407
1012 => 0.069156477919542
1013 => 0.070057140698395
1014 => 0.070461477237364
1015 => 0.071055163237816
1016 => 0.072056811033906
1017 => 0.073144866214416
1018 => 0.073298729146858
1019 => 0.073189556033271
1020 => 0.072471954393232
1021 => 0.073662517354944
1022 => 0.074359921215777
1023 => 0.0747752092551
1024 => 0.075828310625483
1025 => 0.070463974282176
1026 => 0.066666830393568
1027 => 0.066073851543939
1028 => 0.067279697352401
1029 => 0.067597669275652
1030 => 0.067469495192092
1031 => 0.063195464524245
1101 => 0.066051349657004
1102 => 0.069124041930211
1103 => 0.069242076554358
1104 => 0.07078033055329
1105 => 0.071281249110505
1106 => 0.072519745203206
1107 => 0.072442276935402
1108 => 0.072743831025197
1109 => 0.072674508962142
1110 => 0.074968562177751
1111 => 0.077499243544766
1112 => 0.0774116140961
1113 => 0.077047798707929
1114 => 0.077588126599106
1115 => 0.080200060974162
1116 => 0.079959595912303
1117 => 0.080193187237134
1118 => 0.083272805067497
1119 => 0.087276746317496
1120 => 0.085416513617743
1121 => 0.089452683308669
1122 => 0.091993238180944
1123 => 0.096386865134269
1124 => 0.095836761400644
1125 => 0.097547168131649
1126 => 0.094851960907341
1127 => 0.08866322032908
1128 => 0.087683828443023
1129 => 0.089644595801062
1130 => 0.094464951021919
1201 => 0.089492785660969
1202 => 0.090498648237727
1203 => 0.090208959747953
1204 => 0.09019352347943
1205 => 0.090782663065121
1206 => 0.089928085368621
1207 => 0.08644638209749
1208 => 0.088042026188843
1209 => 0.087425871376049
1210 => 0.088109541078228
1211 => 0.091799024494059
1212 => 0.090167815929621
1213 => 0.088449470215608
1214 => 0.09060465707242
1215 => 0.093348950543693
1216 => 0.093177217590231
1217 => 0.092843983881707
1218 => 0.094722404849105
1219 => 0.097825005961544
1220 => 0.098663626574976
1221 => 0.099282679166967
1222 => 0.099368036060423
1223 => 0.10024726511204
1224 => 0.095519428907258
1225 => 0.10302262638369
1226 => 0.10431822131622
1227 => 0.10407470316581
1228 => 0.10551470240635
1229 => 0.10509101810053
1230 => 0.10447716601543
1231 => 0.1067598711083
]
'min_raw' => 0.03935262190132
'max_raw' => 0.1067598711083
'avg_raw' => 0.073056246504813
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.039352'
'max' => '$0.106759'
'avg' => '$0.073056'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.013571702269216
'max_diff' => 0.049205784170042
'year' => 2032
]
7 => [
'items' => [
101 => 0.10414293392412
102 => 0.1004285210544
103 => 0.09839072069132
104 => 0.10107426059409
105 => 0.10271300477008
106 => 0.10379611042671
107 => 0.10412385754397
108 => 0.095886437373411
109 => 0.091446924769747
110 => 0.094292601449581
111 => 0.09776452339709
112 => 0.095500142205538
113 => 0.095588901661206
114 => 0.092360489150962
115 => 0.098050166268336
116 => 0.097221228170051
117 => 0.10152176049032
118 => 0.10049540393816
119 => 0.10400232109963
120 => 0.10307883228142
121 => 0.10691218273424
122 => 0.10844141001369
123 => 0.11100922062111
124 => 0.1128981125568
125 => 0.11400730603018
126 => 0.11394071421452
127 => 0.11833589135404
128 => 0.11574420895066
129 => 0.11248844503936
130 => 0.11242955854201
131 => 0.1141157648062
201 => 0.11764959054785
202 => 0.11856586014759
203 => 0.11907792985404
204 => 0.11829367727333
205 => 0.11548059177201
206 => 0.1142659157152
207 => 0.11530085490815
208 => 0.11403521320851
209 => 0.11622006585843
210 => 0.11922033520612
211 => 0.11860079145017
212 => 0.12067183333911
213 => 0.12281514381419
214 => 0.12588017405567
215 => 0.12668148645853
216 => 0.12800602538928
217 => 0.12936941103739
218 => 0.12980729376329
219 => 0.13064334775407
220 => 0.13063894133685
221 => 0.13315844631097
222 => 0.13593753832
223 => 0.13698658121728
224 => 0.13939879751502
225 => 0.13526796163929
226 => 0.13840124810265
227 => 0.14122755092386
228 => 0.13785791618563
301 => 0.14250217264808
302 => 0.1426824986024
303 => 0.14540520641988
304 => 0.14264522043916
305 => 0.141006349574
306 => 0.14573770835403
307 => 0.14802706383129
308 => 0.14733749133015
309 => 0.14208981054806
310 => 0.13903543524928
311 => 0.13104154594735
312 => 0.1405106531358
313 => 0.14512277902965
314 => 0.14207786625621
315 => 0.14361354314713
316 => 0.15199169831912
317 => 0.15518155736323
318 => 0.15451808898086
319 => 0.15463020421586
320 => 0.15635139425603
321 => 0.1639840987708
322 => 0.15941040530084
323 => 0.1629068225856
324 => 0.16476130970617
325 => 0.16648386069544
326 => 0.16225381988362
327 => 0.15675059893908
328 => 0.15500749785645
329 => 0.14177510968956
330 => 0.14108630642012
331 => 0.14069966027211
401 => 0.1382619110011
402 => 0.1363465078298
403 => 0.13482330811363
404 => 0.13082597719244
405 => 0.13217495903546
406 => 0.1258040478549
407 => 0.129879931057
408 => 0.11971180298179
409 => 0.12818012219038
410 => 0.12357120105237
411 => 0.12666596764001
412 => 0.12665517029093
413 => 0.12095672380645
414 => 0.11766997879775
415 => 0.11976442063932
416 => 0.12200982855049
417 => 0.12237413842962
418 => 0.12528536839759
419 => 0.12609783010497
420 => 0.12363603320139
421 => 0.11950109112825
422 => 0.12046154386386
423 => 0.11765051525371
424 => 0.11272429573909
425 => 0.11626239259804
426 => 0.11747045442482
427 => 0.11800400334929
428 => 0.11315963223679
429 => 0.11163742565683
430 => 0.11082701564621
501 => 0.11887574365064
502 => 0.1193166711397
503 => 0.11706082376481
504 => 0.12725746780753
505 => 0.12494965322162
506 => 0.12752804754238
507 => 0.12037439284509
508 => 0.1206476720882
509 => 0.1172610173121
510 => 0.11915731769036
511 => 0.11781707370362
512 => 0.1190041153594
513 => 0.11971562323352
514 => 0.1231017222929
515 => 0.12821878600247
516 => 0.12259595200988
517 => 0.12014600271885
518 => 0.12166593747997
519 => 0.12571372404349
520 => 0.13184632788962
521 => 0.12821570298256
522 => 0.1298269126643
523 => 0.13017889030203
524 => 0.12750180190861
525 => 0.13194503595724
526 => 0.13432620118068
527 => 0.1367687839872
528 => 0.13888961019849
529 => 0.13579316270073
530 => 0.13910680538165
531 => 0.1364365943175
601 => 0.13404113895162
602 => 0.13404477186861
603 => 0.13254206772557
604 => 0.12963038909552
605 => 0.12909343088298
606 => 0.13188675531498
607 => 0.13412673698064
608 => 0.13431123259942
609 => 0.13555140154394
610 => 0.13628532075055
611 => 0.14347872669014
612 => 0.14637197406602
613 => 0.14990978219087
614 => 0.15128795783544
615 => 0.15543577242228
616 => 0.15208607527438
617 => 0.15136134722584
618 => 0.14130010577797
619 => 0.14294763350142
620 => 0.14558548434944
621 => 0.14134360296688
622 => 0.14403410035761
623 => 0.14456526153507
624 => 0.14119946546067
625 => 0.14299728257147
626 => 0.13822281334082
627 => 0.12832285638458
628 => 0.13195605743939
629 => 0.13463131633798
630 => 0.13081339203265
701 => 0.13765687357588
702 => 0.13365905293646
703 => 0.13239193572299
704 => 0.12744845971337
705 => 0.12978159009807
706 => 0.13293718235059
707 => 0.13098739321551
708 => 0.13503349843311
709 => 0.14076386247809
710 => 0.14484766114561
711 => 0.14516116449858
712 => 0.14253555554862
713 => 0.14674311064734
714 => 0.14677375809274
715 => 0.14202761875302
716 => 0.13912063483405
717 => 0.13846016197131
718 => 0.14011015267576
719 => 0.14211354599604
720 => 0.14527233888494
721 => 0.1471811312714
722 => 0.15215824947
723 => 0.15350491494939
724 => 0.15498449202777
725 => 0.15696166328915
726 => 0.15933576432475
727 => 0.15414136641651
728 => 0.15434774952897
729 => 0.14951079811814
730 => 0.14434182184668
731 => 0.14826443051473
801 => 0.15339271954545
802 => 0.15221628437555
803 => 0.15208391138654
804 => 0.15230652603684
805 => 0.15141953233752
806 => 0.14740769270899
807 => 0.14539297196299
808 => 0.14799247573541
809 => 0.14937399629985
810 => 0.15151661421404
811 => 0.15125249133094
812 => 0.15677164497754
813 => 0.15891622119406
814 => 0.15836754682628
815 => 0.15846851611454
816 => 0.16235116891625
817 => 0.16666947736019
818 => 0.17071414306894
819 => 0.17482855075031
820 => 0.16986847170235
821 => 0.16735004945695
822 => 0.16994841836734
823 => 0.1685696872488
824 => 0.17649228521418
825 => 0.17704082870788
826 => 0.18496285377926
827 => 0.19248179890919
828 => 0.18775928418897
829 => 0.1922124028634
830 => 0.19702881377789
831 => 0.20632045186645
901 => 0.20319135504199
902 => 0.20079451591365
903 => 0.19852951451882
904 => 0.20324262286262
905 => 0.20930596145318
906 => 0.21061194651165
907 => 0.21272814123107
908 => 0.21050322123958
909 => 0.21318289230243
910 => 0.2226433086614
911 => 0.2200870206518
912 => 0.21645668073437
913 => 0.22392477086173
914 => 0.22662744364736
915 => 0.24559621665762
916 => 0.26954507614401
917 => 0.25963009105995
918 => 0.25347553986371
919 => 0.25492200538274
920 => 0.26366731814711
921 => 0.26647603504467
922 => 0.25884097429432
923 => 0.26153780682689
924 => 0.2763976192281
925 => 0.28436943182149
926 => 0.2735426395624
927 => 0.24367194911638
928 => 0.21612980834521
929 => 0.22343522431649
930 => 0.2226070168588
1001 => 0.23857203148454
1002 => 0.22002605402819
1003 => 0.22033832072475
1004 => 0.23663347494571
1005 => 0.23228620716923
1006 => 0.22524419012731
1007 => 0.21618122286278
1008 => 0.19942748965129
1009 => 0.18458824093347
1010 => 0.21369142494401
1011 => 0.21243644272877
1012 => 0.21061904250315
1013 => 0.21466347004201
1014 => 0.23430206213991
1015 => 0.23384932902814
1016 => 0.23096927195748
1017 => 0.23315376986192
1018 => 0.22486123708277
1019 => 0.22699841159742
1020 => 0.2161254455294
1021 => 0.22104048028732
1022 => 0.22522908112147
1023 => 0.22607000475222
1024 => 0.22796464863093
1025 => 0.21177512412817
1026 => 0.21904374533044
1027 => 0.22331337930907
1028 => 0.204023017663
1029 => 0.22293207088257
1030 => 0.21149330052502
1031 => 0.2076108100611
1101 => 0.21283807199154
1102 => 0.21080100293357
1103 => 0.20904965057823
1104 => 0.2080723658719
1105 => 0.21191069012177
1106 => 0.21173162770773
1107 => 0.2054513842483
1108 => 0.19725906267096
1109 => 0.20000867469611
1110 => 0.19900971486962
1111 => 0.19538935559006
1112 => 0.19782904062064
1113 => 0.1870859024423
1114 => 0.16860289158619
1115 => 0.18081333470767
1116 => 0.1803432459299
1117 => 0.18010620585132
1118 => 0.18928201638525
1119 => 0.18839997392438
1120 => 0.18679905822091
1121 => 0.19535995351771
1122 => 0.19223511157409
1123 => 0.20186513813897
1124 => 0.20820809646567
1125 => 0.20659931706081
1126 => 0.21256490002525
1127 => 0.20007202020373
1128 => 0.2042216537531
1129 => 0.20507688747648
1130 => 0.19525431339862
1201 => 0.18854428697938
1202 => 0.18809680471711
1203 => 0.17646254360475
1204 => 0.1826774719825
1205 => 0.18814635176371
1206 => 0.18552718275073
1207 => 0.18469803208666
1208 => 0.18893398300852
1209 => 0.18926315267361
1210 => 0.18175804942562
1211 => 0.18331859804659
1212 => 0.18982634521565
1213 => 0.18315461951509
1214 => 0.17019254629911
1215 => 0.16697777292687
1216 => 0.16654886289898
1217 => 0.15783014254656
1218 => 0.16719259945564
1219 => 0.16310563611658
1220 => 0.17601630433533
1221 => 0.16864179989008
1222 => 0.16832389974268
1223 => 0.16784334704408
1224 => 0.16033878427094
1225 => 0.16198180657842
1226 => 0.16744346296781
1227 => 0.16939224349751
1228 => 0.16918896972238
1229 => 0.16741669787191
1230 => 0.16822803484955
1231 => 0.16561443575602
]
'min_raw' => 0.091446924769747
'max_raw' => 0.28436943182149
'avg_raw' => 0.18790817829562
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.091446'
'max' => '$0.284369'
'avg' => '$0.1879081'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.052094302868427
'max_diff' => 0.17760956071318
'year' => 2033
]
8 => [
'items' => [
101 => 0.16469151951873
102 => 0.16177854200574
103 => 0.15749726979222
104 => 0.15809260695208
105 => 0.14961028644129
106 => 0.14498866803619
107 => 0.14370946497361
108 => 0.14199886117675
109 => 0.1439026822242
110 => 0.14958625709303
111 => 0.14273065996355
112 => 0.13097721954929
113 => 0.13168362134508
114 => 0.13327069644763
115 => 0.13031319249357
116 => 0.12751416320555
117 => 0.12994769207906
118 => 0.12496760443267
119 => 0.13387251624705
120 => 0.13363166333819
121 => 0.13695086378654
122 => 0.13902642794374
123 => 0.13424292453327
124 => 0.1330398863615
125 => 0.13372519157918
126 => 0.12239862286727
127 => 0.13602524147771
128 => 0.13614308504131
129 => 0.13513403690485
130 => 0.14238979064026
131 => 0.15770169414832
201 => 0.1519407401287
202 => 0.14970992460654
203 => 0.14546914266821
204 => 0.15111973280832
205 => 0.1506858556485
206 => 0.14872369858875
207 => 0.14753697987672
208 => 0.14972354549043
209 => 0.14726604019953
210 => 0.14682460472155
211 => 0.14414998601156
212 => 0.1431952688195
213 => 0.14248843421887
214 => 0.14171027877572
215 => 0.14342669577906
216 => 0.13953706903604
217 => 0.13484656048877
218 => 0.13445659545507
219 => 0.13553332319919
220 => 0.13505695132537
221 => 0.13445431476981
222 => 0.13330371746695
223 => 0.13296235982581
224 => 0.13407160655633
225 => 0.13281933167068
226 => 0.13466713147939
227 => 0.13416463217485
228 => 0.13135771190764
301 => 0.12785924999972
302 => 0.12782810635047
303 => 0.12707436847103
304 => 0.12611436995632
305 => 0.12584732033132
306 => 0.129742747065
307 => 0.1378061638234
308 => 0.13622312217251
309 => 0.13736703200191
310 => 0.14299393619338
311 => 0.14478255982893
312 => 0.14351303713829
313 => 0.14177523617858
314 => 0.14185169060132
315 => 0.14779028254875
316 => 0.14816066524409
317 => 0.14909650282521
318 => 0.15029931858463
319 => 0.14371788186324
320 => 0.1415417055236
321 => 0.14051051244422
322 => 0.13733483688165
323 => 0.14075953071403
324 => 0.13876410827792
325 => 0.13903335893789
326 => 0.13885800909236
327 => 0.13895376196512
328 => 0.13387002714271
329 => 0.13572227291876
330 => 0.1326425550671
331 => 0.12851915857828
401 => 0.1285053355074
402 => 0.12951453095643
403 => 0.12891422201352
404 => 0.12729880608353
405 => 0.12752826829183
406 => 0.12551793789557
407 => 0.12777235880015
408 => 0.12783700752498
409 => 0.12696893267759
410 => 0.13044217913122
411 => 0.13186517103717
412 => 0.13129378557665
413 => 0.13182508111006
414 => 0.13628890470011
415 => 0.13701670271557
416 => 0.1373399425184
417 => 0.13690684400368
418 => 0.13190667161093
419 => 0.13212845051893
420 => 0.13050118404469
421 => 0.12912631535108
422 => 0.12918130288859
423 => 0.12988816411752
424 => 0.13297506856115
425 => 0.13947127697981
426 => 0.13971780334063
427 => 0.14001660048162
428 => 0.13880124234578
429 => 0.1384346787026
430 => 0.13891827076606
501 => 0.14135790509369
502 => 0.14763330693863
503 => 0.14541516080663
504 => 0.14361177347382
505 => 0.14519383035443
506 => 0.14495028509823
507 => 0.14289451804063
508 => 0.14283681950627
509 => 0.13889114525425
510 => 0.13743251932193
511 => 0.13621358231663
512 => 0.134882534928
513 => 0.1340934454189
514 => 0.13530584553964
515 => 0.13558313579195
516 => 0.13293220173883
517 => 0.13257088922293
518 => 0.13473569919509
519 => 0.13378304703859
520 => 0.13476287340619
521 => 0.13499020152827
522 => 0.1349535964648
523 => 0.13395891820201
524 => 0.13459289646498
525 => 0.13309334887504
526 => 0.13146281609575
527 => 0.13042263776835
528 => 0.12951494421805
529 => 0.13001858535522
530 => 0.12822319666247
531 => 0.12764881568563
601 => 0.13437811889445
602 => 0.13934912752701
603 => 0.13927684709275
604 => 0.13883685853826
605 => 0.1381831247947
606 => 0.14131008039849
607 => 0.14022071159158
608 => 0.14101331841842
609 => 0.14121507012146
610 => 0.14182571176281
611 => 0.14204396366318
612 => 0.14138425483459
613 => 0.1391701914292
614 => 0.13365295592979
615 => 0.13108466791133
616 => 0.13023709008701
617 => 0.13026789793115
618 => 0.12941808005765
619 => 0.12966838950756
620 => 0.12933103264603
621 => 0.12869216036568
622 => 0.1299791367922
623 => 0.13012744883634
624 => 0.12982705316017
625 => 0.12989780721639
626 => 0.12741065931836
627 => 0.12759975177124
628 => 0.12654686096486
629 => 0.12634945663146
630 => 0.12368784035862
701 => 0.11897240132385
702 => 0.12158521228786
703 => 0.11842930406016
704 => 0.11723411379452
705 => 0.12289195862185
706 => 0.12232406792537
707 => 0.12135208590916
708 => 0.11991432192837
709 => 0.11938104128223
710 => 0.11614099689241
711 => 0.11594955778489
712 => 0.11755541127305
713 => 0.11681436514231
714 => 0.11577365571864
715 => 0.11200431168112
716 => 0.10776632099602
717 => 0.10789423929574
718 => 0.10924226528205
719 => 0.11316183264332
720 => 0.11163038986607
721 => 0.11051931055989
722 => 0.11031123880477
723 => 0.11291569244789
724 => 0.11660154000281
725 => 0.11833085720939
726 => 0.11661715637781
727 => 0.1146485491347
728 => 0.11476836913594
729 => 0.11556547792389
730 => 0.11564924278699
731 => 0.11436788184782
801 => 0.11472857744658
802 => 0.11418064784937
803 => 0.11081800492266
804 => 0.11075718537517
805 => 0.10993193857101
806 => 0.10990695042576
807 => 0.10850299974442
808 => 0.10830657733905
809 => 0.10551894804755
810 => 0.10735377408893
811 => 0.10612306911306
812 => 0.10426810642047
813 => 0.10394831015309
814 => 0.10393869669112
815 => 0.10584332861435
816 => 0.10733151735598
817 => 0.10614447775303
818 => 0.10587421184523
819 => 0.10875994466722
820 => 0.10839270886158
821 => 0.10807468502232
822 => 0.116271512781
823 => 0.10978308400356
824 => 0.10695375871003
825 => 0.10345193138498
826 => 0.10459214401976
827 => 0.10483240357512
828 => 0.09641114011021
829 => 0.092994634571298
830 => 0.091822218618638
831 => 0.091147476662354
901 => 0.091454965044709
902 => 0.088379709343556
903 => 0.090446332034765
904 => 0.087783420542461
905 => 0.087336974764913
906 => 0.092098590384585
907 => 0.092761141381108
908 => 0.089934492991483
909 => 0.091749658850429
910 => 0.091091454477282
911 => 0.087829068516977
912 => 0.08770446936978
913 => 0.086067518773311
914 => 0.083506008065931
915 => 0.08233532893815
916 => 0.0817256290841
917 => 0.081977203126694
918 => 0.081849999592466
919 => 0.081019910487839
920 => 0.081897579328275
921 => 0.079655498118763
922 => 0.07876268331546
923 => 0.078359419581954
924 => 0.076369443459132
925 => 0.079536380416939
926 => 0.080160306893648
927 => 0.080785462698256
928 => 0.086227017165377
929 => 0.085955172481873
930 => 0.088412516027019
1001 => 0.08831702817562
1002 => 0.087616153990218
1003 => 0.084659281090215
1004 => 0.085837837926965
1005 => 0.082210423171847
1006 => 0.084928328946608
1007 => 0.083687990253466
1008 => 0.084508969186788
1009 => 0.083032775039989
1010 => 0.08384976183139
1011 => 0.080308263007422
1012 => 0.077001261235834
1013 => 0.078332095286121
1014 => 0.079778864098117
1015 => 0.082915827512362
1016 => 0.081047477982224
1017 => 0.081719407123379
1018 => 0.079468556980089
1019 => 0.074824410210924
1020 => 0.074850695577284
1021 => 0.074136294775085
1022 => 0.07351894817776
1023 => 0.081262080400894
1024 => 0.080299099508141
1025 => 0.078764715487363
1026 => 0.080818549473172
1027 => 0.081361615777748
1028 => 0.081377076111978
1029 => 0.082875500370896
1030 => 0.083675209666488
1031 => 0.083816161895975
1101 => 0.086173964842982
1102 => 0.086964269290645
1103 => 0.090219421462501
1104 => 0.083607359920015
1105 => 0.083471188863736
1106 => 0.08084745112924
1107 => 0.07918343517837
1108 => 0.080961387725024
1109 => 0.082536410966633
1110 => 0.080896391491717
1111 => 0.08111054341244
1112 => 0.078908951261879
1113 => 0.079695916861166
1114 => 0.080373757650986
1115 => 0.079999493808487
1116 => 0.079439202721692
1117 => 0.08240727702215
1118 => 0.082239806638141
1119 => 0.08500374566246
1120 => 0.087158433783092
1121 => 0.091020020091839
1122 => 0.086990253469615
1123 => 0.086843392757029
1124 => 0.088278979779751
1125 => 0.086964049509752
1126 => 0.087795040050541
1127 => 0.090886134668654
1128 => 0.090951444627052
1129 => 0.089857418676763
1130 => 0.089790847098263
1201 => 0.090000966749348
1202 => 0.091231644108723
1203 => 0.090801607624462
1204 => 0.091299256731241
1205 => 0.091921574559541
1206 => 0.094495744954683
1207 => 0.095116368722139
1208 => 0.093608574723751
1209 => 0.093744711639752
1210 => 0.093180755294485
1211 => 0.092635980531308
1212 => 0.093860554640964
1213 => 0.096098487895423
1214 => 0.096084565828796
1215 => 0.096603722844624
1216 => 0.096927153364556
1217 => 0.095538752807397
1218 => 0.094634955097589
1219 => 0.094981528649672
1220 => 0.095535707306842
1221 => 0.094801815980185
1222 => 0.090271898740524
1223 => 0.091645986258804
1224 => 0.091417270906315
1225 => 0.091091552431634
1226 => 0.092473208056769
1227 => 0.092339944001153
1228 => 0.088348168151439
1229 => 0.088603708690053
1230 => 0.088363708417969
1231 => 0.089139198396508
]
'min_raw' => 0.07351894817776
'max_raw' => 0.16469151951873
'avg_raw' => 0.11910523384825
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.073518'
'max' => '$0.164691'
'avg' => '$0.1191052'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.017927976591987
'max_diff' => -0.11967791230275
'year' => 2034
]
9 => [
'items' => [
101 => 0.08692217050597
102 => 0.087604113353188
103 => 0.088031821514147
104 => 0.08828374490676
105 => 0.089193864946368
106 => 0.089087072864286
107 => 0.089187226600603
108 => 0.090536694356558
109 => 0.097361839184768
110 => 0.097733316758934
111 => 0.0959040253222
112 => 0.096634791169997
113 => 0.09523188054315
114 => 0.096173663845637
115 => 0.096818008062496
116 => 0.093906340446776
117 => 0.09373393038714
118 => 0.092325229449092
119 => 0.093082185540299
120 => 0.09187781397212
121 => 0.092173324627822
122 => 0.091347051072323
123 => 0.092834178962798
124 => 0.09449701902066
125 => 0.09491711808682
126 => 0.093812018307773
127 => 0.093011853238119
128 => 0.091607026966566
129 => 0.093943284364754
130 => 0.094626477224138
131 => 0.093939695843508
201 => 0.093780553591146
202 => 0.093478979310484
203 => 0.093844534000422
204 => 0.094622756409103
205 => 0.09425576109268
206 => 0.094498167964803
207 => 0.093574362937153
208 => 0.095539212425753
209 => 0.098659866280429
210 => 0.09866989969285
211 => 0.098302902398186
212 => 0.098152735012276
213 => 0.09852929650786
214 => 0.098733565671852
215 => 0.099951296499
216 => 0.10125797019307
217 => 0.10735564617688
218 => 0.10564344316087
219 => 0.11105366404607
220 => 0.11533244633701
221 => 0.11661546605759
222 => 0.1154351482854
223 => 0.11139734494625
224 => 0.11119923105107
225 => 0.11723341395636
226 => 0.11552848090253
227 => 0.11532568454083
228 => 0.11316827388219
301 => 0.11444357078195
302 => 0.1141646446425
303 => 0.11372434608584
304 => 0.11615752373263
305 => 0.12071221507617
306 => 0.12000232371665
307 => 0.11947242274769
308 => 0.11715055095353
309 => 0.11854883638245
310 => 0.11805093372361
311 => 0.12019023952284
312 => 0.1189229621588
313 => 0.1155155643578
314 => 0.11605820368854
315 => 0.11597618484534
316 => 0.11766412682653
317 => 0.11715744854107
318 => 0.1158772477782
319 => 0.12069664763631
320 => 0.12038370261644
321 => 0.12082738710543
322 => 0.12102271073888
323 => 0.12395619450516
324 => 0.1251579489432
325 => 0.1254307682403
326 => 0.12657234200941
327 => 0.12540236484498
328 => 0.13008310768229
329 => 0.13319552854019
330 => 0.13681076553036
331 => 0.14209359845708
401 => 0.14407999250646
402 => 0.14372116820096
403 => 0.14772655183387
404 => 0.15492413718752
405 => 0.14517600598778
406 => 0.15544081181141
407 => 0.15219109280053
408 => 0.14448606748568
409 => 0.14398995469169
410 => 0.14920788729209
411 => 0.16078075959237
412 => 0.15788188633958
413 => 0.16078550111052
414 => 0.15739828024564
415 => 0.15723007617996
416 => 0.16062099135353
417 => 0.16854404948575
418 => 0.16478010155852
419 => 0.15938355924696
420 => 0.16336828211032
421 => 0.15991634639738
422 => 0.15213816910016
423 => 0.15787966962584
424 => 0.15404049173284
425 => 0.15516096794394
426 => 0.16323034884041
427 => 0.16225941958201
428 => 0.16351589194801
429 => 0.16129825110963
430 => 0.15922662487673
501 => 0.15535978067204
502 => 0.15421499873614
503 => 0.15453137527828
504 => 0.15421484195564
505 => 0.15205137816124
506 => 0.15158417836083
507 => 0.15080549155831
508 => 0.15104683915895
509 => 0.14958268015736
510 => 0.15234585070405
511 => 0.15285871950649
512 => 0.15486952460106
513 => 0.15507829305657
514 => 0.16067835662295
515 => 0.15759393571584
516 => 0.15966323155642
517 => 0.15947813425947
518 => 0.14465305874794
519 => 0.14669582335068
520 => 0.14987372401769
521 => 0.14844208407475
522 => 0.14641808014757
523 => 0.14478358845615
524 => 0.14230716640829
525 => 0.14579268288518
526 => 0.15037576640893
527 => 0.15519452761797
528 => 0.1609839534729
529 => 0.15969182101843
530 => 0.15508629832866
531 => 0.15529289871218
601 => 0.15657002098889
602 => 0.15491603160176
603 => 0.15442823784179
604 => 0.15650300561685
605 => 0.15651729340225
606 => 0.15461417872106
607 => 0.15249921501923
608 => 0.1524903532441
609 => 0.15211401588148
610 => 0.15746522982641
611 => 0.16040785642737
612 => 0.16074522382489
613 => 0.16038514891352
614 => 0.16052372745604
615 => 0.1588114778733
616 => 0.16272517266761
617 => 0.16631676603517
618 => 0.16535414228947
619 => 0.16391103244962
620 => 0.1627615259526
621 => 0.16508335509061
622 => 0.16497996769399
623 => 0.16628539660035
624 => 0.16622617480463
625 => 0.16578720816309
626 => 0.16535415796635
627 => 0.16707115304665
628 => 0.16657668603762
629 => 0.16608145098475
630 => 0.16508818126953
701 => 0.16522318312029
702 => 0.1637803224537
703 => 0.16311278908853
704 => 0.15307468891281
705 => 0.15039218054148
706 => 0.15123615228259
707 => 0.15151400969348
708 => 0.15034657861255
709 => 0.15202037489417
710 => 0.15175951551667
711 => 0.1527743667569
712 => 0.15214033176172
713 => 0.15216635277908
714 => 0.15403091450938
715 => 0.1545722047121
716 => 0.15429690014625
717 => 0.15448971402728
718 => 0.15893302853403
719 => 0.15830133130037
720 => 0.15796575473518
721 => 0.15805871173711
722 => 0.15919407385932
723 => 0.15951191326507
724 => 0.15816520536874
725 => 0.15880032059788
726 => 0.1615045606354
727 => 0.1624508916018
728 => 0.16547112578192
729 => 0.16418807662182
730 => 0.16654316888425
731 => 0.17378191958883
801 => 0.17956473453509
802 => 0.17424661892557
803 => 0.18486602213735
804 => 0.19313475080063
805 => 0.19281738322224
806 => 0.19137553912066
807 => 0.18196181137304
808 => 0.1732991587489
809 => 0.18054583550465
810 => 0.18056430877399
811 => 0.17994181281392
812 => 0.17607554386846
813 => 0.17980727503524
814 => 0.1801034863036
815 => 0.17993768676225
816 => 0.17697342742671
817 => 0.17244755130805
818 => 0.17333189666822
819 => 0.17478047240834
820 => 0.17203801632774
821 => 0.17116163543872
822 => 0.1727909942497
823 => 0.17804112782907
824 => 0.17704862048784
825 => 0.17702270211013
826 => 0.18126906940451
827 => 0.17822958684515
828 => 0.17334305109528
829 => 0.17210913637295
830 => 0.16772957037323
831 => 0.17075455220871
901 => 0.1708634159197
902 => 0.16920666428297
903 => 0.17347748735972
904 => 0.1734381309732
905 => 0.17749264185645
906 => 0.18524334386047
907 => 0.182951079889
908 => 0.18028542628779
909 => 0.1805752567448
910 => 0.18375398149566
911 => 0.18183205194806
912 => 0.18252319121355
913 => 0.18375293537361
914 => 0.1844948705582
915 => 0.18046850368947
916 => 0.17952976496898
917 => 0.17760943499937
918 => 0.17710845675496
919 => 0.1786725254462
920 => 0.17826044860542
921 => 0.17085426634633
922 => 0.17008027909265
923 => 0.17010401617672
924 => 0.16815778842624
925 => 0.16518932395859
926 => 0.17299027134179
927 => 0.17236374609273
928 => 0.17167211070697
929 => 0.17175683209531
930 => 0.17514295895572
1001 => 0.17317883437317
1002 => 0.17840078148955
1003 => 0.17732730614852
1004 => 0.17622630021559
1005 => 0.1760741076582
1006 => 0.17565031430743
1007 => 0.17419696922109
1008 => 0.17244196769683
1009 => 0.17128316367489
1010 => 0.15799966449631
1011 => 0.1604650046773
1012 => 0.16330115383269
1013 => 0.16428018115598
1014 => 0.16260548717287
1015 => 0.17426309634692
1016 => 0.17639305387854
1017 => 0.16994127358158
1018 => 0.16873440891247
1019 => 0.17434221819371
1020 => 0.17096002367032
1021 => 0.17248302565711
1022 => 0.16919112839922
1023 => 0.17588000948161
1024 => 0.1758290514147
1025 => 0.17322692559842
1026 => 0.17542622451976
1027 => 0.17504404221009
1028 => 0.17210624857226
1029 => 0.17597314277998
1030 => 0.17597506071126
1031 => 0.17347057118818
1101 => 0.17054587572849
1102 => 0.17002300925851
1103 => 0.16962909961062
1104 => 0.17238614803083
1105 => 0.17485810902332
1106 => 0.17945781557924
1107 => 0.18061429109374
1108 => 0.18512809201773
1109 => 0.18244034334047
1110 => 0.18363178751693
1111 => 0.18492526871054
1112 => 0.18554541116096
1113 => 0.18453492231669
1114 => 0.19154671310623
1115 => 0.19213872308459
1116 => 0.19233721890947
1117 => 0.18997288250663
1118 => 0.19207296661218
1119 => 0.19109040680666
1120 => 0.19364675445763
1121 => 0.19404762241038
1122 => 0.19370810151569
1123 => 0.19383534333116
1124 => 0.18785201685694
1125 => 0.18754174981469
1126 => 0.18331123667807
1127 => 0.18503520205161
1128 => 0.18181233141758
1129 => 0.18283433689488
1130 => 0.18328482717124
1201 => 0.18304951661597
1202 => 0.18513267246722
1203 => 0.18336156443303
1204 => 0.17868731913369
1205 => 0.17401180033934
1206 => 0.17395310300947
1207 => 0.17272212144068
1208 => 0.17183234723197
1209 => 0.172003749311
1210 => 0.17260779259385
1211 => 0.17179723913828
1212 => 0.17197021181413
1213 => 0.17484271074412
1214 => 0.1754187699188
1215 => 0.17346109576238
1216 => 0.16560075153329
1217 => 0.16367180334329
1218 => 0.16505829304956
1219 => 0.16439564027133
1220 => 0.13268011225262
1221 => 0.14013120511754
1222 => 0.13570401875241
1223 => 0.13774426991452
1224 => 0.13322525905007
1225 => 0.13538196789624
1226 => 0.13498370252274
1227 => 0.14696483935567
1228 => 0.14677777038354
1229 => 0.14686731040103
1230 => 0.14259333207098
1231 => 0.1494018956019
]
'min_raw' => 0.08692217050597
'max_raw' => 0.19404762241038
'avg_raw' => 0.14048489645818
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.086922'
'max' => '$0.194047'
'avg' => '$0.140484'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.013403222328209
'max_diff' => 0.029356102891652
'year' => 2035
]
10 => [
'items' => [
101 => 0.15275603882526
102 => 0.15213527618225
103 => 0.15229150876569
104 => 0.14960691535888
105 => 0.14689330313343
106 => 0.14388348955349
107 => 0.14947535116082
108 => 0.14885363160635
109 => 0.15027963257668
110 => 0.15390635454355
111 => 0.15444040312975
112 => 0.15515816984539
113 => 0.15490090157195
114 => 0.16103007559007
115 => 0.16028779217488
116 => 0.16207648163597
117 => 0.15839701170632
118 => 0.15423334222242
119 => 0.1550247196707
120 => 0.15494850365858
121 => 0.15397818634756
122 => 0.153102227265
123 => 0.15164400219247
124 => 0.15625804209865
125 => 0.15607072050469
126 => 0.15910323937345
127 => 0.15856721220708
128 => 0.15498749160196
129 => 0.15511534202369
130 => 0.15597519755259
131 => 0.15895116735577
201 => 0.15983463781283
202 => 0.15942537909691
203 => 0.16039406412111
204 => 0.16115967326778
205 => 0.16049021284241
206 => 0.16996836069853
207 => 0.1660323728945
208 => 0.16795074596376
209 => 0.16840826663706
210 => 0.16723633705301
211 => 0.16749048661614
212 => 0.16787545395267
213 => 0.17021290023574
214 => 0.17634703562806
215 => 0.17906380243684
216 => 0.18723732942398
217 => 0.17883821277259
218 => 0.1783398439495
219 => 0.17981214297675
220 => 0.1846108685739
221 => 0.18849978494902
222 => 0.18978996286761
223 => 0.18996048117807
224 => 0.19238094072276
225 => 0.19376830299488
226 => 0.19208703326963
227 => 0.19066233321376
228 => 0.18555923445391
229 => 0.18614993203064
301 => 0.1902192525677
302 => 0.19596740750808
303 => 0.20089992244052
304 => 0.19917272762668
305 => 0.21235000484675
306 => 0.21365647805877
307 => 0.2134759657042
308 => 0.21645230611047
309 => 0.21054487652522
310 => 0.20801933592647
311 => 0.19097036953687
312 => 0.19576043367404
313 => 0.20272307320803
314 => 0.20180154175715
315 => 0.19674508681568
316 => 0.20089608666602
317 => 0.19952363630173
318 => 0.1984411277564
319 => 0.20340030925717
320 => 0.19794748548512
321 => 0.20266867711971
322 => 0.19661370001388
323 => 0.1991806173071
324 => 0.19772351090365
325 => 0.19866643732292
326 => 0.19315410874298
327 => 0.19612842744051
328 => 0.19303036730651
329 => 0.19302889842263
330 => 0.19296050857346
331 => 0.1966053625822
401 => 0.19672422114057
402 => 0.19403066852104
403 => 0.19364248550737
404 => 0.19507780156388
405 => 0.19339742237158
406 => 0.19418366121947
407 => 0.19342123674533
408 => 0.19324959893708
409 => 0.1918819596792
410 => 0.19129274308288
411 => 0.19152379009254
412 => 0.19073510753568
413 => 0.19025989776728
414 => 0.19286597738967
415 => 0.19147365417638
416 => 0.1926525838885
417 => 0.19130904468874
418 => 0.18665175247021
419 => 0.18397329446535
420 => 0.17517610119575
421 => 0.17767097429413
422 => 0.17932507773948
423 => 0.17877839656066
424 => 0.1799528792703
425 => 0.18002498296992
426 => 0.17964314666858
427 => 0.17920102914789
428 => 0.17898583078945
429 => 0.18058974304455
430 => 0.18152086809385
501 => 0.17949108914927
502 => 0.17901554034218
503 => 0.18106775892231
504 => 0.18231961107067
505 => 0.19156258397914
506 => 0.19087783469167
507 => 0.19259642102795
508 => 0.19240293458034
509 => 0.19420428685304
510 => 0.19714873651064
511 => 0.19116184707568
512 => 0.19220096407053
513 => 0.1919461965801
514 => 0.1947276812369
515 => 0.19473636472839
516 => 0.19306872573118
517 => 0.19397277988592
518 => 0.19346816165817
519 => 0.19438007499895
520 => 0.19086868944746
521 => 0.19514517801853
522 => 0.19756967146749
523 => 0.19760333556139
524 => 0.19875252621422
525 => 0.19992017047414
526 => 0.20216136195067
527 => 0.19985766486027
528 => 0.19571353805503
529 => 0.19601273062492
530 => 0.19358303059529
531 => 0.19362387429174
601 => 0.19340584743907
602 => 0.19406016243625
603 => 0.19101227479402
604 => 0.19172760793162
605 => 0.19072613734999
606 => 0.19219878706907
607 => 0.19061445940906
608 => 0.19194607372351
609 => 0.19252075431791
610 => 0.19464133808323
611 => 0.19030124746273
612 => 0.18145150888922
613 => 0.18331183123008
614 => 0.18056026836279
615 => 0.18081493598209
616 => 0.18132940510314
617 => 0.179661842358
618 => 0.17997996077883
619 => 0.17996859535027
620 => 0.17987065422707
621 => 0.17943685675273
622 => 0.17880776459072
623 => 0.18131387413981
624 => 0.18173971098695
625 => 0.18268629354812
626 => 0.18550268117708
627 => 0.18522125763795
628 => 0.18568027110642
629 => 0.18467824728201
630 => 0.18086141699343
701 => 0.18106868924143
702 => 0.17848400098763
703 => 0.1826201972583
704 => 0.18164069138628
705 => 0.18100919757853
706 => 0.18083688864234
707 => 0.18366025755147
708 => 0.18450505377997
709 => 0.18397863346254
710 => 0.18289893003334
711 => 0.18497227980306
712 => 0.18552702073383
713 => 0.18565120677017
714 => 0.18932478503672
715 => 0.18585651898691
716 => 0.1866913650967
717 => 0.19320459612794
718 => 0.18729799434705
719 => 0.19042685304332
720 => 0.19027371169194
721 => 0.19187432992615
722 => 0.19014241427819
723 => 0.19016388344832
724 => 0.19158512400503
725 => 0.18958924796522
726 => 0.1890950409897
727 => 0.18841229759259
728 => 0.18990304282251
729 => 0.19079667716724
730 => 0.19799871368367
731 => 0.20265155772606
801 => 0.20244956549517
802 => 0.20429539637183
803 => 0.20346383265603
804 => 0.20077849406226
805 => 0.20536203959966
806 => 0.20391161400794
807 => 0.20403118533145
808 => 0.20402673488082
809 => 0.20499114110091
810 => 0.20430777090745
811 => 0.20296077810961
812 => 0.20385497479033
813 => 0.20651041925092
814 => 0.21475300033558
815 => 0.21936565791023
816 => 0.21447531255776
817 => 0.21784860729756
818 => 0.2158258324815
819 => 0.21545823412508
820 => 0.2175769125062
821 => 0.21969929935335
822 => 0.21956411248652
823 => 0.21802336862125
824 => 0.21715304150669
825 => 0.22374344999911
826 => 0.22859915071165
827 => 0.22826802447608
828 => 0.22972950799184
829 => 0.2340204687961
830 => 0.23441278047597
831 => 0.23436335822149
901 => 0.23339097278944
902 => 0.2376159809529
903 => 0.2411405570948
904 => 0.23316589365684
905 => 0.236202541098
906 => 0.23756578996902
907 => 0.23956744376937
908 => 0.24294456924671
909 => 0.24661302325338
910 => 0.24713178287248
911 => 0.2467636980978
912 => 0.24434425406706
913 => 0.24835832021492
914 => 0.2507096660229
915 => 0.25210983864197
916 => 0.2556604434374
917 => 0.23757420892994
918 => 0.22477187320137
919 => 0.22277260360939
920 => 0.22683819694208
921 => 0.22791026148142
922 => 0.22747811360987
923 => 0.21306792080993
924 => 0.22269673692656
925 => 0.2330565334542
926 => 0.23345449543042
927 => 0.23864082618529
928 => 0.24032970807395
929 => 0.24450538411953
930 => 0.24424419444597
1001 => 0.24526090511355
1002 => 0.24502718093805
1003 => 0.25276174152015
1004 => 0.26129411043557
1005 => 0.26099866163131
1006 => 0.25977203264931
1007 => 0.2615937858589
1008 => 0.27040010496384
1009 => 0.26958936021904
1010 => 0.27037692967954
1011 => 0.28076007620665
1012 => 0.29425964367728
1013 => 0.28798773925276
1014 => 0.30159596716208
1015 => 0.31016162528984
1016 => 0.32497504531621
1017 => 0.32312033217128
1018 => 0.32888708788165
1019 => 0.31980000855153
1020 => 0.29893423760786
1021 => 0.29563214948506
1022 => 0.30224301352909
1023 => 0.31849517770267
1024 => 0.30173117504272
1025 => 0.30512251094735
1026 => 0.30414580597867
1027 => 0.30409376152161
1028 => 0.30608008676719
1029 => 0.30319881839873
1030 => 0.29146001273535
1031 => 0.29683983819366
1101 => 0.29476242922377
1102 => 0.29706746935696
1103 => 0.30950682028494
1104 => 0.30400708672259
1105 => 0.29821356417673
1106 => 0.30547992713481
1107 => 0.31473250417366
1108 => 0.31415349453105
1109 => 0.31302997381713
1110 => 0.31936320125588
1111 => 0.32982383752316
1112 => 0.33265130547196
1113 => 0.33473848450673
1114 => 0.33502627123245
1115 => 0.33799065336578
1116 => 0.32205042351438
1117 => 0.34734797766268
1118 => 0.35171616643327
1119 => 0.35089512798727
1120 => 0.35575018596429
1121 => 0.35432170474652
1122 => 0.3522520595838
1123 => 0.35994835917782
1124 => 0.35112517275263
1125 => 0.33860177043035
1126 => 0.33173118423154
1127 => 0.34077892637251
1128 => 0.34630406677532
1129 => 0.34995583311665
1130 => 0.35106085540508
1201 => 0.32328781818173
1202 => 0.3083196914816
1203 => 0.31791408908646
1204 => 0.32961991633434
1205 => 0.32198539705298
1206 => 0.32228465575475
1207 => 0.3113998375759
1208 => 0.33058298121769
1209 => 0.32778815854472
1210 => 0.34228770351608
1211 => 0.33882727074254
1212 => 0.35065108679759
1213 => 0.34753747977107
1214 => 0.36046188845874
1215 => 0.36561778499864
1216 => 0.37427533774037
1217 => 0.38064386877976
1218 => 0.38438359201667
1219 => 0.38415907306088
1220 => 0.39897771964826
1221 => 0.39023968147976
1222 => 0.37926264614265
1223 => 0.3790641062055
1224 => 0.38474926835239
1225 => 0.39666380856419
1226 => 0.3997530754916
1227 => 0.40147955425847
1228 => 0.39883539192784
1229 => 0.38935087775677
1230 => 0.38525551262528
1231 => 0.38874488237146
]
'min_raw' => 0.14388348955349
'max_raw' => 0.40147955425847
'avg_raw' => 0.27268152190598
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.143883'
'max' => '$0.401479'
'avg' => '$0.272681'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.056961319047524
'max_diff' => 0.20743193184809
'year' => 2036
]
11 => [
'items' => [
101 => 0.38447768301684
102 => 0.39184406626759
103 => 0.40195968384542
104 => 0.39987084881708
105 => 0.40685351114116
106 => 0.41407983204907
107 => 0.42441379550177
108 => 0.42711547621387
109 => 0.43158125169524
110 => 0.43617800159641
111 => 0.43765435377878
112 => 0.4404731681801
113 => 0.4404583116368
114 => 0.44895299856327
115 => 0.45832290130173
116 => 0.46185982267176
117 => 0.46999277833514
118 => 0.45606537677435
119 => 0.46662947084467
120 => 0.47615854813251
121 => 0.4647975893522
122 => 0.48045602426696
123 => 0.48106400581193
124 => 0.49024380531195
125 => 0.48093831988189
126 => 0.47541275233768
127 => 0.49136485879749
128 => 0.49908358062675
129 => 0.49675863879473
130 => 0.47906571665657
131 => 0.46876767708703
201 => 0.44181572119007
202 => 0.47374147718787
203 => 0.48929158164733
204 => 0.47902544564265
205 => 0.48420308749794
206 => 0.51245062260441
207 => 0.52320545508049
208 => 0.52096852510742
209 => 0.52134652944987
210 => 0.52714964183995
211 => 0.55288383800992
212 => 0.53746331115088
213 => 0.5492517261385
214 => 0.55550425894164
215 => 0.56131195986664
216 => 0.54705008193757
217 => 0.52849558830045
218 => 0.52261860130092
219 => 0.47800468074041
220 => 0.4756823324268
221 => 0.47437872794402
222 => 0.46615968607857
223 => 0.45970177055736
224 => 0.45456619636787
225 => 0.44108891608237
226 => 0.44563710254901
227 => 0.42415713070093
228 => 0.43789925548587
301 => 0.40361670176428
302 => 0.43216823121521
303 => 0.41662893181382
304 => 0.42706315343373
305 => 0.42702674941746
306 => 0.40781403924222
307 => 0.39673254897217
308 => 0.4037941058703
309 => 0.41136465541218
310 => 0.41259295160496
311 => 0.42240836669757
312 => 0.42514763806827
313 => 0.41684751793068
314 => 0.40290627203866
315 => 0.40614450549341
316 => 0.39666692627456
317 => 0.38005783324336
318 => 0.39198677382531
319 => 0.39605983861849
320 => 0.39785873606853
321 => 0.38152560063956
322 => 0.37639337487816
323 => 0.37366102094633
324 => 0.40079786935751
325 => 0.40228448717144
326 => 0.39467874024877
327 => 0.42905743754576
328 => 0.42127647954289
329 => 0.42996971601309
330 => 0.40585066974895
331 => 0.40677204979684
401 => 0.39535370677053
402 => 0.40174721589131
403 => 0.39722848971716
404 => 0.40123068353624
405 => 0.40362958200973
406 => 0.4150460513983
407 => 0.4322985889571
408 => 0.41334081157735
409 => 0.40508063649263
410 => 0.4102052026582
411 => 0.42385259766457
412 => 0.4445290996965
413 => 0.43228819434021
414 => 0.43772050027328
415 => 0.43890721745319
416 => 0.42988122702641
417 => 0.44486190083808
418 => 0.45289016563653
419 => 0.46112550410442
420 => 0.46827601774714
421 => 0.45783612882137
422 => 0.46900830647124
423 => 0.46000550344028
424 => 0.45192905842884
425 => 0.45194130706211
426 => 0.4468748351284
427 => 0.4370579073403
428 => 0.43524751523748
429 => 0.44466540358367
430 => 0.45221765815997
501 => 0.45283969801974
502 => 0.45702101420203
503 => 0.45949547404773
504 => 0.48374854440061
505 => 0.49350332992846
506 => 0.50543129702327
507 => 0.51007791243009
508 => 0.5240625589008
509 => 0.51276882109825
510 => 0.51032534988373
511 => 0.47640317188878
512 => 0.4819579266351
513 => 0.49085162493806
514 => 0.47654982569805
515 => 0.48562102549543
516 => 0.48741187248972
517 => 0.47606385603252
518 => 0.48212532194116
519 => 0.46602786558721
520 => 0.43264946951634
521 => 0.44489906053463
522 => 0.45391888269183
523 => 0.44104648433744
524 => 0.46411976015707
525 => 0.45064082875234
526 => 0.44636865459985
527 => 0.42970138009093
528 => 0.43756769207691
529 => 0.44820699167269
530 => 0.44163314147383
531 => 0.45527486770503
601 => 0.47459519016391
602 => 0.48836400249319
603 => 0.48942100093581
604 => 0.48056857704686
605 => 0.49475464282432
606 => 0.49485797282623
607 => 0.47885603267748
608 => 0.46905493343554
609 => 0.46682810306608
610 => 0.4723911619248
611 => 0.47914574237659
612 => 0.4897958331414
613 => 0.49623145993995
614 => 0.51301216143785
615 => 0.51755253812277
616 => 0.5225410355433
617 => 0.52920720649275
618 => 0.53721165388872
619 => 0.51969837867978
620 => 0.52039421375266
621 => 0.50408609436591
622 => 0.48665852998026
623 => 0.4998838789724
624 => 0.51717426348516
625 => 0.51320783017376
626 => 0.51276152539935
627 => 0.51351208623529
628 => 0.51052152505009
629 => 0.4969953276448
630 => 0.49020255598635
701 => 0.49896696444663
702 => 0.50362485748432
703 => 0.51084884337483
704 => 0.50995833463398
705 => 0.52856654648849
706 => 0.53579713493203
707 => 0.53394724099385
708 => 0.53428766599866
709 => 0.54737830099777
710 => 0.5619377794112
711 => 0.57557465223778
712 => 0.58944666499428
713 => 0.57272341218244
714 => 0.56423237575143
715 => 0.57299295794515
716 => 0.56834446971904
717 => 0.59505606189745
718 => 0.59690551458457
719 => 0.62361517521083
720 => 0.64896582367238
721 => 0.63304353557773
722 => 0.64805753609538
723 => 0.66429640176465
724 => 0.69562380830167
725 => 0.68507383989145
726 => 0.6769927294283
727 => 0.66935611908827
728 => 0.68524669292813
729 => 0.70568966231498
730 => 0.71009288212058
731 => 0.71722778036508
801 => 0.70972630727484
802 => 0.71876100535188
803 => 0.75065745961133
804 => 0.74203875611264
805 => 0.72979881161877
806 => 0.75497799888858
807 => 0.76409024887991
808 => 0.82804479144145
809 => 0.90879004325577
810 => 0.87536097880273
811 => 0.85461047974756
812 => 0.85948733923395
813 => 0.88897277179727
814 => 0.89844255691576
815 => 0.87270041653302
816 => 0.88179297570343
817 => 0.93189387069306
818 => 0.95877139342585
819 => 0.92226810742183
820 => 0.82155698907807
821 => 0.72869673853723
822 => 0.75332745853224
823 => 0.75053509926503
824 => 0.80436226071746
825 => 0.74183320288459
826 => 0.74288603185379
827 => 0.7978262820011
828 => 0.78316916517613
829 => 0.75942651306138
830 => 0.72887008617286
831 => 0.67238370494203
901 => 0.62235214184661
902 => 0.72047555865757
903 => 0.71624429849883
904 => 0.71011680675134
905 => 0.72375287657151
906 => 0.78996576095231
907 => 0.78843933965714
908 => 0.77872902616426
909 => 0.78609421336584
910 => 0.75813536013479
911 => 0.76534099322368
912 => 0.7286820289991
913 => 0.74525341184219
914 => 0.75937557199331
915 => 0.7622108047258
916 => 0.76859872884267
917 => 0.71401461666512
918 => 0.7385212805275
919 => 0.75291664958278
920 => 0.68787784848303
921 => 0.75163104160073
922 => 0.7130644287108
923 => 0.69997434104487
924 => 0.71759841959913
925 => 0.71073029904655
926 => 0.70482549230502
927 => 0.70153050868579
928 => 0.71447168687747
929 => 0.71386796544677
930 => 0.69269368615074
1001 => 0.6650727019831
1002 => 0.67434321089766
1003 => 0.67097514809751
1004 => 0.65876885402104
1005 => 0.66699442243502
1006 => 0.63077318200479
1007 => 0.56845642046083
1008 => 0.6096247819508
1009 => 0.608039844816
1010 => 0.60724064764145
1011 => 0.63817753349122
1012 => 0.63520366575216
1013 => 0.62980606668557
1014 => 0.65866972288134
1015 => 0.64813410009892
1016 => 0.68060240700941
1017 => 0.70198813385909
1018 => 0.69656402177422
1019 => 0.71667740124253
1020 => 0.67455678469925
1021 => 0.68854756392911
1022 => 0.691431044138
1023 => 0.65831354984427
1024 => 0.63569022729271
1025 => 0.63418150960329
1026 => 0.59495578598477
1027 => 0.6159098509228
1028 => 0.63434856093015
1029 => 0.62551784973833
1030 => 0.62272231038499
1031 => 0.63700411466268
1101 => 0.63811393317044
1102 => 0.61280995358026
1103 => 0.61807145220988
1104 => 0.64001277614675
1105 => 0.61751858714231
1106 => 0.57381605231159
1107 => 0.56297721943875
1108 => 0.56153111933419
1109 => 0.53213534494439
1110 => 0.56370152207921
1111 => 0.54992203983891
1112 => 0.59345125913248
1113 => 0.56858760252388
1114 => 0.56751577998184
1115 => 0.56589556300737
1116 => 0.54059340566592
1117 => 0.54613297008772
1118 => 0.56454732592524
1119 => 0.57111777554063
1120 => 0.57043242381564
1121 => 0.56445708553572
1122 => 0.56719256480158
1123 => 0.55838063298207
1124 => 0.5552689564521
1125 => 0.54544764938946
1126 => 0.53101304121271
1127 => 0.53302026201228
1128 => 0.50442152619344
1129 => 0.48883941706954
1130 => 0.48452649463295
1201 => 0.47875907450129
1202 => 0.48517794008334
1203 => 0.50434050956811
1204 => 0.48122638520357
1205 => 0.44159884024788
1206 => 0.44398052322177
1207 => 0.44933145773607
1208 => 0.43936002666864
1209 => 0.42992290400209
1210 => 0.43812771650269
1211 => 0.42133700330427
1212 => 0.45136053520752
1213 => 0.45054848280952
1214 => 0.46173939886029
1215 => 0.46873730832755
1216 => 0.4526093926056
1217 => 0.44855326541605
1218 => 0.45086381980392
1219 => 0.41267550259594
1220 => 0.45861859862117
1221 => 0.45901591642342
1222 => 0.45561384018188
1223 => 0.48007712048136
1224 => 0.53170227220173
1225 => 0.51227881350761
1226 => 0.5047574632241
1227 => 0.49045937083708
1228 => 0.50951073000607
1229 => 0.50804788286939
1230 => 0.50143233334903
1231 => 0.49743122835734
]
'min_raw' => 0.37366102094633
'max_raw' => 0.95877139342585
'avg_raw' => 0.66621620718609
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.373661'
'max' => '$0.958771'
'avg' => '$0.666216'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.22977753139284
'max_diff' => 0.55729183916738
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.011728792474621
]
1 => [
'year' => 2028
'avg' => 0.020130012779233
]
2 => [
'year' => 2029
'avg' => 0.054991566831054
]
3 => [
'year' => 2030
'avg' => 0.04242591191426
]
4 => [
'year' => 2031
'avg' => 0.041667503285184
]
5 => [
'year' => 2032
'avg' => 0.073056246504813
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.011728792474621
'min' => '$0.011728'
'max_raw' => 0.073056246504813
'max' => '$0.073056'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.073056246504813
]
1 => [
'year' => 2033
'avg' => 0.18790817829562
]
2 => [
'year' => 2034
'avg' => 0.11910523384825
]
3 => [
'year' => 2035
'avg' => 0.14048489645818
]
4 => [
'year' => 2036
'avg' => 0.27268152190598
]
5 => [
'year' => 2037
'avg' => 0.66621620718609
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.073056246504813
'min' => '$0.073056'
'max_raw' => 0.66621620718609
'max' => '$0.666216'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.66621620718609
]
]
]
]
'prediction_2025_max_price' => '$0.020054'
'last_price' => 0.01944498
'sma_50day_nextmonth' => '$0.018312'
'sma_200day_nextmonth' => '$0.025611'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.019415'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.01941'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.01894'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.018979'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.020088'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.023835'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.02744'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.01940073'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.019296'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.019133'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.019251'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.0205059'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.023093'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.028442'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.025799'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.033143'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.066589'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.1841064'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.019437'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.019745'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.021223'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.024864'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.0385039'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.12559'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.429431'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '50.08'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 91.19
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.018996'
'vwma_10_action' => 'BUY'
'hma_9' => '0.019720'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 89.89
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 91.16
'cci_20_action' => 'NEUTRAL'
'adx_14' => 21.19
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000139'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -10.11
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 68.41
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.002775'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 17
'buy_signals' => 17
'sell_pct' => 50
'buy_pct' => 50
'overall_action' => 'neutral'
'overall_action_label' => 'Neutral'
'overall_action_dir' => 0
'last_updated' => 1767688825
'last_updated_date' => '6. Januar 2026'
]
Elk Finance Preisprognose für 2026
Die Preisprognose für Elk Finance im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.006718 am unteren Ende und $0.020054 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Elk Finance im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn ELK das prognostizierte Preisziel erreicht.
Elk Finance Preisprognose 2027-2032
Die Preisprognose für ELK für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.011728 am unteren Ende und $0.073056 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Elk Finance, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Elk Finance Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.006467 | $0.011728 | $0.01699 |
| 2028 | $0.011671 | $0.02013 | $0.028588 |
| 2029 | $0.025639 | $0.054991 | $0.084343 |
| 2030 | $0.0218055 | $0.042425 | $0.063046 |
| 2031 | $0.02578 | $0.041667 | $0.057554 |
| 2032 | $0.039352 | $0.073056 | $0.106759 |
Elk Finance Preisprognose 2032-2037
Die Preisprognose für Elk Finance für die Jahre 2032-2037 wird derzeit zwischen $0.073056 am unteren Ende und $0.666216 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Elk Finance bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Elk Finance Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.039352 | $0.073056 | $0.106759 |
| 2033 | $0.091446 | $0.1879081 | $0.284369 |
| 2034 | $0.073518 | $0.1191052 | $0.164691 |
| 2035 | $0.086922 | $0.140484 | $0.194047 |
| 2036 | $0.143883 | $0.272681 | $0.401479 |
| 2037 | $0.373661 | $0.666216 | $0.958771 |
Elk Finance Potenzielles Preishistogramm
Elk Finance Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Elk Finance Neutral, mit 17 technischen Indikatoren, die bullische Signale zeigen, und 17 anzeigen bärische Signale. Die Preisprognose für ELK wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Elk Finance
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Elk Finance im nächsten Monat steigen, und bis zum 04.02.2026 $0.025611 erreichen. Der kurzfristige 50-Tage-SMA für Elk Finance wird voraussichtlich bis zum 04.02.2026 $0.018312 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 50.08, was darauf hindeutet, dass sich der ELK-Markt in einem NEUTRAL Zustand befindet.
Beliebte ELK Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.019415 | BUY |
| SMA 5 | $0.01941 | BUY |
| SMA 10 | $0.01894 | BUY |
| SMA 21 | $0.018979 | BUY |
| SMA 50 | $0.020088 | SELL |
| SMA 100 | $0.023835 | SELL |
| SMA 200 | $0.02744 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.01940073 | BUY |
| EMA 5 | $0.019296 | BUY |
| EMA 10 | $0.019133 | BUY |
| EMA 21 | $0.019251 | BUY |
| EMA 50 | $0.0205059 | SELL |
| EMA 100 | $0.023093 | SELL |
| EMA 200 | $0.028442 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.025799 | SELL |
| SMA 50 | $0.033143 | SELL |
| SMA 100 | $0.066589 | SELL |
| SMA 200 | $0.1841064 | SELL |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.024864 | SELL |
| EMA 50 | $0.0385039 | SELL |
| EMA 100 | $0.12559 | SELL |
| EMA 200 | $0.429431 | SELL |
Elk Finance Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 50.08 | NEUTRAL |
| Stoch RSI (14) | 91.19 | SELL |
| Stochastic Fast (14) | 89.89 | SELL |
| Commodity Channel Index (20) | 91.16 | NEUTRAL |
| Average Directional Index (14) | 21.19 | NEUTRAL |
| Awesome Oscillator (5, 34) | -0.000139 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -10.11 | SELL |
| Ultimate Oscillator (7, 14, 28) | 68.41 | NEUTRAL |
| VWMA (10) | 0.018996 | BUY |
| Hull Moving Average (9) | 0.019720 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.002775 | SELL |
Auf weltweiten Geldflüssen basierende Elk Finance-Preisprognose
Definition weltweiter Geldflüsse, die für Elk Finance-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Elk Finance-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.027323 | $0.038394 | $0.053949 | $0.0758087 | $0.106523 | $0.149683 |
| Amazon.com aktie | $0.040573 | $0.084658 | $0.176644 | $0.368578 | $0.769061 | $1.60 |
| Apple aktie | $0.027581 | $0.039121 | $0.055491 | $0.07871 | $0.111644 | $0.158359 |
| Netflix aktie | $0.030681 | $0.04841 | $0.076383 | $0.120521 | $0.190163 | $0.300047 |
| Google aktie | $0.025181 | $0.0326094 | $0.042229 | $0.054686 | $0.070818 | $0.09171 |
| Tesla aktie | $0.04408 | $0.099926 | $0.226526 | $0.513517 | $1.16 | $2.63 |
| Kodak aktie | $0.014581 | $0.010934 | $0.008199 | $0.006149 | $0.004611 | $0.003457 |
| Nokia aktie | $0.012881 | $0.008533 | $0.005653 | $0.003744 | $0.00248 | $0.001643 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Elk Finance Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Elk Finance investieren?", "Sollte ich heute ELK kaufen?", "Wird Elk Finance auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Elk Finance-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Elk Finance.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Elk Finance zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Elk Finance-Preis entspricht heute $0.01944 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
Elk Finance-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Elk Finance 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.01995 | $0.020468 | $0.021001 | $0.021546 |
| Wenn die Wachstumsrate von Elk Finance 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.020455 | $0.021519 | $0.022637 | $0.023814 |
| Wenn die Wachstumsrate von Elk Finance 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.021972 | $0.024827 | $0.028054 | $0.03170071 |
| Wenn die Wachstumsrate von Elk Finance 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.024499 | $0.030867 | $0.03889 | $0.0490000022 |
| Wenn die Wachstumsrate von Elk Finance 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.029553 | $0.044917 | $0.068268 | $0.103759 |
| Wenn die Wachstumsrate von Elk Finance 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.044716 | $0.102833 | $0.236482 | $0.543829 |
| Wenn die Wachstumsrate von Elk Finance 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.069988 | $0.251911 | $0.906711 | $3.26 |
Fragefeld
Ist ELK eine gute Investition?
Die Entscheidung, Elk Finance zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Elk Finance in den letzten 2026 Stunden um 1.0831% gestiegen, und Elk Finance hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Elk Finance investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Elk Finance steigen?
Es scheint, dass der Durchschnittswert von Elk Finance bis zum Ende dieses Jahres potenziell auf $0.020054 steigen könnte. Betrachtet man die Aussichten von Elk Finance in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.063046 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Elk Finance nächste Woche kosten?
Basierend auf unserer neuen experimentellen Elk Finance-Prognose wird der Preis von Elk Finance in der nächsten Woche um 0.86% steigen und $0.019611 erreichen bis zum 13. Januar 2026.
Wie viel wird Elk Finance nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Elk Finance-Prognose wird der Preis von Elk Finance im nächsten Monat um -11.62% fallen und $0.017185 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Elk Finance in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Elk Finance im Jahr 2026 wird erwartet, dass ELK innerhalb der Spanne von $0.006718 bis $0.020054 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Elk Finance-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Elk Finance in 5 Jahren sein?
Die Zukunft von Elk Finance scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.063046 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Elk Finance-Prognose für 2030 könnte der Wert von Elk Finance seinen höchsten Gipfel von ungefähr $0.063046 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.0218055 liegen wird.
Wie viel wird Elk Finance im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Elk Finance-Preisprognosesimulation wird der Wert von ELK im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.020054 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.020054 und $0.006718 während des Jahres 2026 liegen.
Wie viel wird Elk Finance im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Elk Finance könnte der Wert von ELK um -12.62% fallen und bis zu $0.01699 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.01699 und $0.006467 im Laufe des Jahres schwanken.
Wie viel wird Elk Finance im Jahr 2028 kosten?
Unser neues experimentelles Elk Finance-Preisprognosemodell deutet darauf hin, dass der Wert von ELK im Jahr 2028 um 47.02% steigen, und im besten Fall $0.028588 erreichen wird. Der Preis wird voraussichtlich zwischen $0.028588 und $0.011671 im Laufe des Jahres liegen.
Wie viel wird Elk Finance im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Elk Finance im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.084343 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.084343 und $0.025639.
Wie viel wird Elk Finance im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Elk Finance-Preisprognosen wird der Wert von ELK im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.063046 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.063046 und $0.0218055 während des Jahres 2030 liegen.
Wie viel wird Elk Finance im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Elk Finance im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.057554 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.057554 und $0.02578 während des Jahres schwanken.
Wie viel wird Elk Finance im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Elk Finance-Preisprognose könnte ELK eine 449.04% Steigerung im Wert erfahren und $0.106759 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.106759 und $0.039352 liegen.
Wie viel wird Elk Finance im Jahr 2033 kosten?
Laut unserer experimentellen Elk Finance-Preisprognose wird der Wert von ELK voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.284369 beträgt. Im Laufe des Jahres könnte der Preis von ELK zwischen $0.284369 und $0.091446 liegen.
Wie viel wird Elk Finance im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Elk Finance-Preisprognosesimulation deuten darauf hin, dass ELK im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.164691 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.164691 und $0.073518.
Wie viel wird Elk Finance im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Elk Finance könnte ELK um 897.93% steigen, wobei der Wert im Jahr 2035 $0.194047 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.194047 und $0.086922.
Wie viel wird Elk Finance im Jahr 2036 kosten?
Unsere jüngste Elk Finance-Preisprognosesimulation deutet darauf hin, dass der Wert von ELK im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.401479 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.401479 und $0.143883.
Wie viel wird Elk Finance im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Elk Finance um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.958771 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.958771 und $0.373661 liegen.
Verwandte Prognosen
AICHAIN-Preisprognose
EDUM-Preisprognose
1ART-Preisprognose
Sacabam-Preisprognose
Graviton-Preisprognose
Para-Preisprognose
Cyber Arena-Preisprognose
Eggdog-Preisprognose
LATOKEN-Preisprognose
K21 Kanon-Preisprognose
Elmo-Preisprognose
KEK-Preisprognose
Generaitiv-Preisprognose
Zaibot-Preisprognose
Hawksight-Preisprognose
Rubidium-Preisprognose
VFOX-Preisprognose
Web3Shot-Preisprognose
Tomb Shares-Preisprognose
Long Mao-Preisprognose
Gyoza-Preisprognose
Perpy Finance-Preisprognose
Cope-Preisprognose
WOOF Token-Preisprognose
Happycoin-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Elk Finance?
Elk Finance-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Elk Finance Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Elk Finance. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von ELK über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von ELK über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von ELK einzuschätzen.
Wie liest man Elk Finance-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Elk Finance in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von ELK innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Elk Finance?
Die Preisentwicklung von Elk Finance wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von ELK. Die Marktkapitalisierung von Elk Finance kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von ELK-„Walen“, großen Inhabern von Elk Finance, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Elk Finance-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


