Eggplant Finance Preisvorhersage bis zu $0.0075084 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.002515 | $0.0075084 |
| 2027 | $0.002421 | $0.006361 |
| 2028 | $0.00437 | $0.0107037 |
| 2029 | $0.009599 | $0.031579 |
| 2030 | $0.008164 | $0.0236052 |
| 2031 | $0.009652 | $0.021548 |
| 2032 | $0.014734 | $0.039972 |
| 2033 | $0.034238 | $0.106471 |
| 2034 | $0.027526 | $0.061662 |
| 2035 | $0.032544 | $0.072653 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Eggplant Finance eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,955.02 Gewinn erzielen könnten, was einer Rendite von 39.55% in den nächsten 90 Tagen entspricht.
Langfristige Eggplant Finance Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Eggplant Finance'
'name_with_ticker' => 'Eggplant Finance <small>EGGP</small>'
'name_lang' => 'Eggplant Finance'
'name_lang_with_ticker' => 'Eggplant Finance <small>EGGP</small>'
'name_with_lang' => 'Eggplant Finance'
'name_with_lang_with_ticker' => 'Eggplant Finance <small>EGGP</small>'
'image' => '/uploads/coins/eggplant-finance.png?1717111634'
'price_for_sd' => 0.00728
'ticker' => 'EGGP'
'marketcap' => '$3.18K'
'low24h' => '$0.007207'
'high24h' => '$0.007303'
'volume24h' => '$21.68'
'current_supply' => '435.41K'
'max_supply' => '476.77K'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.00728'
'change_24h_pct' => '0.3119%'
'ath_price' => '$9.55'
'ath_days' => 1695
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '17.05.2021'
'ath_pct' => '-99.92%'
'fdv' => '$3.48K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.358974'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.007342'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.006434'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002515'
'current_year_max_price_prediction' => '$0.0075084'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.008164'
'grand_prediction_max_price' => '$0.0236052'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0074183801294991
107 => 0.0074460776680306
108 => 0.0075084816366136
109 => 0.0069752465575586
110 => 0.0072146534530949
111 => 0.00735528257483
112 => 0.0067199150866997
113 => 0.0073427234024518
114 => 0.0069659641211732
115 => 0.0068380863623728
116 => 0.007010256917984
117 => 0.0069431618850209
118 => 0.0068854775156318
119 => 0.0068532886463694
120 => 0.0069797117006395
121 => 0.0069738139140496
122 => 0.0067669612596063
123 => 0.0064971304042779
124 => 0.006587694496222
125 => 0.0065547917125759
126 => 0.0064355477800985
127 => 0.0065159037930209
128 => 0.0061620565793582
129 => 0.0055532808396291
130 => 0.0059554567405993
131 => 0.0059399734058952
201 => 0.005932166006424
202 => 0.0062343900806777
203 => 0.0062053382094339
204 => 0.0061526087786497
205 => 0.0064345793627513
206 => 0.0063316563065146
207 => 0.006648840914114
208 => 0.0068577592108932
209 => 0.0068047707730311
210 => 0.0070012594409416
211 => 0.0065897809099867
212 => 0.0067264575723167
213 => 0.0067546264429972
214 => 0.0064310998895126
215 => 0.0062100914548599
216 => 0.0061953527119492
217 => 0.0058121545430998
218 => 0.0060168559118316
219 => 0.0061969846451974
220 => 0.0061107169604696
221 => 0.0060834071886585
222 => 0.0062229268900744
223 => 0.0062337687657798
224 => 0.0059865728507252
225 => 0.0060379727091416
226 => 0.0062523186632535
227 => 0.006032571741053
228 => 0.0056056393666735
301 => 0.0054997542350255
302 => 0.0054856272066135
303 => 0.0051984583317284
304 => 0.0055068299858317
305 => 0.005372217494969
306 => 0.0057974567406988
307 => 0.0055545623641418
308 => 0.0055440916730352
309 => 0.0055282636877113
310 => 0.0052810855743008
311 => 0.0053352018721491
312 => 0.0055150926883417
313 => 0.0055792797581743
314 => 0.0055725845209216
315 => 0.0055142111252033
316 => 0.005540934166843
317 => 0.0054548499387966
318 => 0.0054244518061851
319 => 0.0053285069379983
320 => 0.00518749448721
321 => 0.0052071031333717
322 => 0.0049277205704452
323 => 0.0047754981222079
324 => 0.0047333649547955
325 => 0.0046770227224653
326 => 0.0047397289598581
327 => 0.004926929114747
328 => 0.0047011260112227
329 => 0.0043140024284763
330 => 0.0043372692154259
331 => 0.0043895427777304
401 => 0.0042921313402001
402 => 0.0041999395896998
403 => 0.0042800928370066
404 => 0.004116063471637
405 => 0.0044093649428758
406 => 0.0044014319600467
407 => 0.0045107566108832
408 => 0.0045791195586189
409 => 0.0044215650968552
410 => 0.0043819405757942
411 => 0.0044045125038246
412 => 0.0040314488130726
413 => 0.0044802693482744
414 => 0.0044841507669005
415 => 0.0044509157041462
416 => 0.0046898987833618
417 => 0.0051942276211982
418 => 0.0050044788258237
419 => 0.0049310023570669
420 => 0.0047913235362494
421 => 0.004977437271681
422 => 0.0049631466406264
423 => 0.0048985189874367
424 => 0.0048594319811369
425 => 0.0049314509887172
426 => 0.0048505080290987
427 => 0.0048359684493874
428 => 0.0047478744155558
429 => 0.0047164288535011
430 => 0.0046931478112397
501 => 0.0046675176712578
502 => 0.0047240513734248
503 => 0.0045959385666865
504 => 0.0044414470808133
505 => 0.0044286027853839
506 => 0.0044640670143463
507 => 0.0044483767330318
508 => 0.0044285276663535
509 => 0.004390630392493
510 => 0.0043793870808857
511 => 0.00441592238913
512 => 0.004374676156263
513 => 0.0044355372196569
514 => 0.00441898637801
515 => 0.004326534721982
516 => 0.0042113057285842
517 => 0.0042102799488419
518 => 0.0041854540512278
519 => 0.0041538345380175
520 => 0.0041450387127988
521 => 0.0042733425540841
522 => 0.0045389276657336
523 => 0.0044867869534037
524 => 0.0045244639616572
525 => 0.0047097975519587
526 => 0.0047687095271401
527 => 0.004726895202563
528 => 0.0046696571760866
529 => 0.0046721753587636
530 => 0.0048677750223623
531 => 0.0048799743334536
601 => 0.0049107980569341
602 => 0.0049504152523899
603 => 0.0047336421822587
604 => 0.0046619653666545
605 => 0.004628000914943
606 => 0.0045234035495684
607 => 0.0046362028406245
608 => 0.0045704795242733
609 => 0.0045793478450773
610 => 0.0045735723395196
611 => 0.0045767261560921
612 => 0.0044092829591371
613 => 0.0044702904595521
614 => 0.0043688536575128
615 => 0.0042330411663975
616 => 0.0042325858753053
617 => 0.0042658257901003
618 => 0.0042460533881023
619 => 0.0041928463627203
620 => 0.0042004041695458
621 => 0.004134189829057
622 => 0.0042084437893304
623 => 0.0042105731272176
624 => 0.0041819813078718
625 => 0.004296379778745
626 => 0.004343248925602
627 => 0.0043244291776124
628 => 0.0043419284819134
629 => 0.0044889536354022
630 => 0.0045129251505781
701 => 0.0045235717141498
702 => 0.0045093067293631
703 => 0.0043446158318213
704 => 0.0043519205734471
705 => 0.0042983232261696
706 => 0.0042530391156694
707 => 0.0042548502426055
708 => 0.0042781321619249
709 => 0.0043798056690592
710 => 0.0045937715708428
711 => 0.0046018914204085
712 => 0.0046117329149548
713 => 0.0045717026106961
714 => 0.0045596290878933
715 => 0.0045755571809109
716 => 0.0046559115238281
717 => 0.0048626047098026
718 => 0.0047895455333055
719 => 0.0047301472855795
720 => 0.0047822555624878
721 => 0.004774233901696
722 => 0.0047065230118986
723 => 0.0047046225927401
724 => 0.004574663746738
725 => 0.0045266209203908
726 => 0.0044864727387518
727 => 0.0044426319724969
728 => 0.0044166416967052
729 => 0.0044565745726903
730 => 0.0044657076939001
731 => 0.0043783937626513
801 => 0.0043664931964581
802 => 0.004437795637518
803 => 0.0044064180916305
804 => 0.0044386906757015
805 => 0.0044461781920351
806 => 0.0044449725294532
807 => 0.0044122107678585
808 => 0.0044330921377292
809 => 0.004383701472949
810 => 0.0043299965432385
811 => 0.0042957361440186
812 => 0.0042658394017167
813 => 0.0042824278519546
814 => 0.0042232930557877
815 => 0.0042043746443456
816 => 0.0044260179994627
817 => 0.0045897483289553
818 => 0.0045873676251201
819 => 0.004572875702791
820 => 0.0045513436457889
821 => 0.0046543363197436
822 => 0.0046184557315413
823 => 0.0046445618573819
824 => 0.004651206962079
825 => 0.0046713196926196
826 => 0.0046785082650402
827 => 0.0046567794064004
828 => 0.0045838547028487
829 => 0.0044021332750706
830 => 0.0043175414598923
831 => 0.0042896247518953
901 => 0.0042906394712096
902 => 0.0042626489826144
903 => 0.0042708934359514
904 => 0.0042597818981976
905 => 0.0042387393338617
906 => 0.0042811285329033
907 => 0.0042860134932101
908 => 0.0042761193476406
909 => 0.0042784497770955
910 => 0.0041965304776248
911 => 0.0042027586240442
912 => 0.0041680795133465
913 => 0.0041615775981535
914 => 0.0040739118261652
915 => 0.0039185992037311
916 => 0.0040046574731207
917 => 0.003900711185322
918 => 0.0038613451510893
919 => 0.0040476978344723
920 => 0.0040289931936795
921 => 0.0039969789793541
922 => 0.0039496232840201
923 => 0.0039320585959741
924 => 0.0038253411117111
925 => 0.0038190356734252
926 => 0.0038719277402404
927 => 0.00384751987131
928 => 0.003813241979349
929 => 0.0036890909293605
930 => 0.0035495040441734
1001 => 0.0035537172948253
1002 => 0.003598117285897
1003 => 0.0037272162480925
1004 => 0.003676775050128
1005 => 0.0036401793822587
1006 => 0.0036333261137285
1007 => 0.0037191091176733
1008 => 0.0038405100403501
1009 => 0.0038974686370775
1010 => 0.003841024397579
1011 => 0.0037761842944167
1012 => 0.0037801308110561
1013 => 0.0038063852181873
1014 => 0.0038091441851594
1015 => 0.0037669399436711
1016 => 0.0037788201904373
1017 => 0.0037607730092469
1018 => 0.0036500174915939
1019 => 0.0036480142754891
1020 => 0.0036208330852831
1021 => 0.0036200100496461
1022 => 0.00357376806444
1023 => 0.0035672984910539
1024 => 0.0034754822227393
1025 => 0.0035359159685892
1026 => 0.0034953801847872
1027 => 0.0034342831971727
1028 => 0.0034237500534791
1029 => 0.0034234334144605
1030 => 0.0034861663597041
1031 => 0.0035351828975992
1101 => 0.0034960853221013
1102 => 0.0034871835620351
1103 => 0.0035822310706388
1104 => 0.0035701354087917
1105 => 0.0035596606436407
1106 => 0.0038296399192614
1107 => 0.003615930255862
1108 => 0.0035227406444988
1109 => 0.0034074008042096
1110 => 0.0034449560378017
1111 => 0.0034528694773207
1112 => 0.003175497952994
1113 => 0.0030629683601191
1114 => 0.0030243524444326
1115 => 0.0030021284390062
1116 => 0.0030122561973505
1117 => 0.0029109663653583
1118 => 0.0029790348076362
1119 => 0.0028913263749473
1120 => 0.0028766217707791
1121 => 0.0030334553134167
1122 => 0.0030552777846665
1123 => 0.0029621763426046
1124 => 0.0030219625401627
1125 => 0.0030002832338378
1126 => 0.0028928298842873
1127 => 0.0028887259567078
1128 => 0.0028348096430713
1129 => 0.0027504410524856
1130 => 0.0027118823426764
1201 => 0.0026918006318257
1202 => 0.0027000867371075
1203 => 0.002695897028718
1204 => 0.0026685563474489
1205 => 0.0026974641645645
1206 => 0.0026236166373689
1207 => 0.0025942099570096
1208 => 0.0025809276417211
1209 => 0.0025153837108299
1210 => 0.0026196932523962
1211 => 0.0026402435461417
1212 => 0.0026608343303143
1213 => 0.0028400630486106
1214 => 0.0028311092883397
1215 => 0.0029120469205313
1216 => 0.0029089018329791
1217 => 0.0028858171091753
1218 => 0.0027884264567
1219 => 0.0028272446349552
1220 => 0.00270776831597
1221 => 0.0027972880977537
1222 => 0.0027564350077831
1223 => 0.0027834756269401
1224 => 0.0027348541555414
1225 => 0.0027617632853448
1226 => 0.0026451167831544
1227 => 0.0025361939206696
1228 => 0.0025800276601901
1229 => 0.002627679948045
1230 => 0.0027310022496915
1231 => 0.0026694643392213
]
'min_raw' => 0.0025153837108299
'max_raw' => 0.0075084816366136
'avg_raw' => 0.0050119326737218
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002515'
'max' => '$0.0075084'
'avg' => '$0.005011'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0047650362891701
'max_diff' => 0.00022806163661363
'year' => 2026
]
1 => [
'items' => [
101 => 0.0026915956988324
102 => 0.0026174593488801
103 => 0.002464494882927
104 => 0.0024653606451924
105 => 0.0024418303946175
106 => 0.002421496822648
107 => 0.0026765327085033
108 => 0.0026448149645765
109 => 0.0025942768907448
110 => 0.0026619241108717
111 => 0.002679811109579
112 => 0.0026803203272861
113 => 0.0027296739928632
114 => 0.0027560140530289
115 => 0.0027606566027974
116 => 0.0028383156619396
117 => 0.0028643459542163
118 => 0.0029715610441592
119 => 0.0027537792829516
120 => 0.0027492942108948
121 => 0.002662876045986
122 => 0.0026080682795838
123 => 0.0026666287806417
124 => 0.0027185053902734
125 => 0.0026644879968528
126 => 0.0026715415280641
127 => 0.0025990275907801
128 => 0.0026249479112612
129 => 0.0026472739831039
130 => 0.0026349468384982
131 => 0.002616492506383
201 => 0.0027142520998767
202 => 0.0027087361204888
203 => 0.0027997721014335
204 => 0.0028707411586253
205 => 0.0029979303963495
206 => 0.0028652017962594
207 => 0.0028603646385237
208 => 0.0029076486312945
209 => 0.0028643387152834
210 => 0.0028917090871949
211 => 0.0029935206062902
212 => 0.0029956717232562
213 => 0.0029596377425182
214 => 0.0029574450715155
215 => 0.0029643657916848
216 => 0.0030049006658811
217 => 0.002990736535326
218 => 0.0030071276257963
219 => 0.0030276249354186
220 => 0.0031124104986957
221 => 0.0031328520109616
222 => 0.0030831897338643
223 => 0.0030876736814413
224 => 0.0030690986265469
225 => 0.0030511553562637
226 => 0.0030914892074562
227 => 0.0031652001132742
228 => 0.0031647415615547
301 => 0.0031818410589692
302 => 0.0031924939041986
303 => 0.0031467640941149
304 => 0.0031169956692821
305 => 0.0031284107775771
306 => 0.0031466637843294
307 => 0.0031224915734951
308 => 0.0029732894905685
309 => 0.0030185478714625
310 => 0.00301101466386
311 => 0.0030002864601646
312 => 0.0030457941121262
313 => 0.0030414047880779
314 => 0.0029099274917293
315 => 0.0029183442416645
316 => 0.00291043934217
317 => 0.0029359816896269
318 => 0.0028629593446979
319 => 0.002885420526185
320 => 0.0028995079686533
321 => 0.002907805580492
322 => 0.0029377822441788
323 => 0.0029342648286845
324 => 0.002937563596693
325 => 0.0029820110753948
326 => 0.0032068111701359
327 => 0.0032190465432992
328 => 0.0031587950909656
329 => 0.0031828643577655
330 => 0.0031366566288797
331 => 0.0031676761868456
401 => 0.0031888989805946
402 => 0.0030929972565516
403 => 0.0030873185788508
404 => 0.0030409201342309
405 => 0.0030658520302274
406 => 0.0030261835910302
407 => 0.0030359168384661
408 => 0.003008701830106
409 => 0.0030576834267
410 => 0.0031124524626627
411 => 0.0031262892840416
412 => 0.0030898905641198
413 => 0.0030635354921038
414 => 0.0030172646675442
415 => 0.0030942140799994
416 => 0.0031167164331921
417 => 0.0030940958847176
418 => 0.0030888542093673
419 => 0.00307892124405
420 => 0.0030909615349156
421 => 0.003116593880544
422 => 0.0031045061397007
423 => 0.0031124903054863
424 => 0.0030820628987477
425 => 0.0031467792325848
426 => 0.003249564345552
427 => 0.0032498948164973
428 => 0.0032378070104966
429 => 0.0032328609407165
430 => 0.0032452637632226
501 => 0.0032519917856418
502 => 0.003292100239338
503 => 0.0033351382081453
504 => 0.003535977629632
505 => 0.0034795827237504
506 => 0.0036577794064841
507 => 0.0037987098465831
508 => 0.0038409687234276
509 => 0.0038020925451645
510 => 0.0036690992393763
511 => 0.0036625739533163
512 => 0.0038613221004892
513 => 0.003805166645671
514 => 0.0037984871330056
515 => 0.00372742840346
516 => 0.0037694329134163
517 => 0.0037602459109199
518 => 0.0037457437780357
519 => 0.0038258854569728
520 => 0.003975903525646
521 => 0.0039525218027828
522 => 0.0039350684313123
523 => 0.0038585928381285
524 => 0.0039046482266673
525 => 0.0038882487849415
526 => 0.0039587111939383
527 => 0.0039169708237821
528 => 0.0038047412128704
529 => 0.0038226141483217
530 => 0.0038199126900836
531 => 0.0038755085091965
601 => 0.0038588200242719
602 => 0.0038166539955614
603 => 0.0039753907801964
604 => 0.0039650832963426
605 => 0.0039796969518284
606 => 0.0039861303349156
607 => 0.004082750618467
608 => 0.0041223328571337
609 => 0.0041313187182957
610 => 0.004168918783629
611 => 0.0041303831944174
612 => 0.0042845530266732
613 => 0.0043870669690643
614 => 0.0045061421884707
615 => 0.0046801430884252
616 => 0.0047455690364065
617 => 0.0047337504245086
618 => 0.0048656759210093
619 => 0.005102743105682
620 => 0.0047816684805412
621 => 0.0051197608404445
622 => 0.0050127247027631
623 => 0.0047589439458184
624 => 0.0047426034569497
625 => 0.0049144667320079
626 => 0.0052956429348596
627 => 0.00520016261931
628 => 0.005295799106451
629 => 0.0051842340641699
630 => 0.0051786939194766
701 => 0.0052903806413652
702 => 0.0055513427547842
703 => 0.0054273694367174
704 => 0.0052496232857639
705 => 0.0053808682775915
706 => 0.0052671717195198
707 => 0.0050109815525214
708 => 0.0052000896073121
709 => 0.0050736384365609
710 => 0.0051105436107001
711 => 0.005376325163427
712 => 0.0053443456238321
713 => 0.0053857301092935
714 => 0.0053126875756747
715 => 0.0052444543315244
716 => 0.0051170919142507
717 => 0.0050793861813872
718 => 0.0050898066894405
719 => 0.0050793810175009
720 => 0.0050081229155573
721 => 0.0049927347352271
722 => 0.0049670870938385
723 => 0.0049750363703526
724 => 0.0049268113010598
725 => 0.005017821970623
726 => 0.0050347143528772
727 => 0.0051009443285253
728 => 0.0051078205443065
729 => 0.0052922700837618
730 => 0.0051906783769784
731 => 0.0052588348648946
801 => 0.0052527383071017
802 => 0.004764444144352
803 => 0.004831726771723
804 => 0.0049363974254607
805 => 0.0048892434378296
806 => 0.004822578731653
807 => 0.0047687434070799
808 => 0.0046871773854072
809 => 0.0048019799945749
810 => 0.0049529332177339
811 => 0.0051116489671566
812 => 0.0053023355406201
813 => 0.0052597765172595
814 => 0.0051080842143045
815 => 0.0051148890202038
816 => 0.0051569536526806
817 => 0.0051024761316483
818 => 0.0050864096471683
819 => 0.0051547463644307
820 => 0.0051552169618453
821 => 0.0050925339900692
822 => 0.0050228733378029
823 => 0.0050225814571264
824 => 0.0050101860168976
825 => 0.0051864391854499
826 => 0.0052833606069484
827 => 0.0052944724917265
828 => 0.005282612688568
829 => 0.005287177056105
830 => 0.0052307806164528
831 => 0.005359686153653
901 => 0.0054779826220242
902 => 0.0054462766414653
903 => 0.0053987448693368
904 => 0.0053608835233961
905 => 0.0054373577116126
906 => 0.0054339524363928
907 => 0.0054769494055726
908 => 0.0054749988146881
909 => 0.0054605405511507
910 => 0.0054462771578154
911 => 0.005502829900129
912 => 0.0054865436185519
913 => 0.0054702320398812
914 => 0.0054375166716793
915 => 0.0054419632335627
916 => 0.0053944396684647
917 => 0.0053724530927201
918 => 0.0050418277466916
919 => 0.0049534738507379
920 => 0.0049812717850143
921 => 0.0049904235867512
922 => 0.0049519718580036
923 => 0.005007101759589
924 => 0.0049985098228239
925 => 0.0050319360226619
926 => 0.0050110527842
927 => 0.0050119098395909
928 => 0.0050733229911314
929 => 0.0050911514902939
930 => 0.0050820837717262
1001 => 0.0050884344909878
1002 => 0.0052347841358999
1003 => 0.0052139778963916
1004 => 0.0052029249963365
1005 => 0.0052059867251887
1006 => 0.0052433821972355
1007 => 0.0052538508876915
1008 => 0.0052094943106075
1009 => 0.0052304131287826
1010 => 0.0053194828015791
1011 => 0.005350652146151
1012 => 0.0054501297318903
1013 => 0.0054078698853951
1014 => 0.0054854396626003
1015 => 0.0057238627122431
1016 => 0.005914331541918
1017 => 0.0057391685346917
1018 => 0.0060889402843304
1019 => 0.0063612877632016
1020 => 0.0063508346133441
1021 => 0.0063033445308922
1022 => 0.0059932841669296
1023 => 0.0057079619972717
1024 => 0.0059466461076098
1025 => 0.0059472545624929
1026 => 0.0059267513857364
1027 => 0.0057994079158014
1028 => 0.0059223201090156
1029 => 0.0059320764325615
1030 => 0.0059266154857916
1031 => 0.005828981545965
1101 => 0.005679912565618
1102 => 0.0057090402875571
1103 => 0.0057567520902827
1104 => 0.0056664236939983
1105 => 0.0056375582981949
1106 => 0.0056912245608597
1107 => 0.0058641484409754
1108 => 0.0058314581831194
1109 => 0.0058306045083751
1110 => 0.00597046729431
1111 => 0.0058703557238589
1112 => 0.0057094076814106
1113 => 0.0056687661780485
1114 => 0.0055245162205103
1115 => 0.0056241501799827
1116 => 0.0056277358288092
1117 => 0.0055731673274405
1118 => 0.0057138356145525
1119 => 0.0057125393315226
1120 => 0.0058460829344239
1121 => 0.0061013681464845
1122 => 0.0060258677474558
1123 => 0.0059380689978056
1124 => 0.0059476151562878
1125 => 0.0060523129529113
1126 => 0.0059890102750545
1127 => 0.0060117743593737
1128 => 0.0060522784967432
1129 => 0.0060767156484794
1130 => 0.0059440990262194
1201 => 0.0059131797477843
1202 => 0.0058499297552981
1203 => 0.0058334290128754
1204 => 0.0058849448120011
1205 => 0.0058713722190115
1206 => 0.0056274344689096
1207 => 0.0056019416167672
1208 => 0.005602723446147
1209 => 0.0055386204573157
1210 => 0.0054408480128678
1211 => 0.0056977881591875
1212 => 0.0056771522695629
1213 => 0.0056543718445085
1214 => 0.0056571623165944
1215 => 0.0057686913256022
1216 => 0.0057039988680277
1217 => 0.0058759943693748
1218 => 0.0058406372649558
1219 => 0.0058043733842231
1220 => 0.005799360611281
1221 => 0.0057854021110878
1222 => 0.0057375332201963
1223 => 0.0056797286579703
1224 => 0.0056415610790433
1225 => 0.0052040418836271
1226 => 0.0052852429013643
1227 => 0.0053786572705653
1228 => 0.0054109035364788
1229 => 0.00535574406726
1230 => 0.005739711252242
1231 => 0.005809865756938
]
'min_raw' => 0.002421496822648
'max_raw' => 0.0063612877632016
'avg_raw' => 0.0043913922929248
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002421'
'max' => '$0.006361'
'avg' => '$0.004391'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.3886888181886E-5
'max_diff' => -0.001147193873412
'year' => 2027
]
2 => [
'items' => [
101 => 0.0055973631861485
102 => 0.0055576126315766
103 => 0.005742317291982
104 => 0.0056309178025311
105 => 0.0056810809858097
106 => 0.0055726556213556
107 => 0.0057929675911204
108 => 0.0057912891830343
109 => 0.0057055828508243
110 => 0.0057780212559166
111 => 0.0057654333004102
112 => 0.0056686710624304
113 => 0.0057960351266561
114 => 0.0057960982976429
115 => 0.0057136078163071
116 => 0.0056172769935952
117 => 0.0056000553177268
118 => 0.0055870810983666
119 => 0.0056778901231812
120 => 0.0057593092108776
121 => 0.0059108099475769
122 => 0.0059489008323518
123 => 0.0060975720914821
124 => 0.0060090455953423
125 => 0.006048288244471
126 => 0.0060908916913119
127 => 0.0061113173504173
128 => 0.0060780348350064
129 => 0.0063089824959674
130 => 0.006328481554606
131 => 0.0063350194203013
201 => 0.0062571451684376
202 => 0.0063263157307882
203 => 0.0062939531153526
204 => 0.0063781516501224
205 => 0.0063913550554752
206 => 0.0063801722408662
207 => 0.0063843632101267
208 => 0.0061872901234557
209 => 0.0061770708442685
210 => 0.0060377302474234
211 => 0.0060945125705915
212 => 0.0059883607390764
213 => 0.0060220225783348
214 => 0.0060368603963382
215 => 0.006029109962252
216 => 0.0060977229579479
217 => 0.0060393878948974
218 => 0.005885432072335
219 => 0.0057314343046117
220 => 0.0057295009880817
221 => 0.0056889560941266
222 => 0.0056596495619647
223 => 0.0056652950397642
224 => 0.0056851904398807
225 => 0.0056584932051421
226 => 0.0056641904137577
227 => 0.0057588020370798
228 => 0.0057777757233979
229 => 0.0057132957237914
301 => 0.005454399220952
302 => 0.0053908653697625
303 => 0.0054365322420665
304 => 0.0054147064184284
305 => 0.0043700906801806
306 => 0.0046155076528777
307 => 0.004469689221274
308 => 0.0045368890633404
309 => 0.0043880462041729
310 => 0.0044590818180903
311 => 0.004445964134005
312 => 0.0048405873636857
313 => 0.0048344258647407
314 => 0.0048373750482264
315 => 0.004696602836398
316 => 0.0049208567922227
317 => 0.0050313323547734
318 => 0.0050108862683571
319 => 0.0050160321078145
320 => 0.0049276095369558
321 => 0.0048382311719945
322 => 0.0047390968100207
323 => 0.0049232762011906
324 => 0.0049027985969395
325 => 0.004949766853482
326 => 0.0050692203540705
327 => 0.0050868103357918
328 => 0.0051104514496054
329 => 0.0051019777931923
330 => 0.0053038546668174
331 => 0.0052794060453949
401 => 0.0053383201886747
402 => 0.0052171293261213
403 => 0.0050799903616
404 => 0.0051060559953449
405 => 0.0051035456652087
406 => 0.0050715862813517
407 => 0.0050427347786062
408 => 0.0049947051553954
409 => 0.0051466779902811
410 => 0.0051405081707197
411 => 0.0052403903777877
412 => 0.0052227352274844
413 => 0.0051048298128111
414 => 0.0051090408277624
415 => 0.0051373619270541
416 => 0.0052353815750675
417 => 0.0052644804802845
418 => 0.0052510007079971
419 => 0.005282906329152
420 => 0.0053081232312158
421 => 0.0052860731838049
422 => 0.0055982553557082
423 => 0.0054686155526689
424 => 0.0055318010906423
425 => 0.0055468704691381
426 => 0.0055082705729959
427 => 0.0055166415083105
428 => 0.0055293211943688
429 => 0.0056063097651776
430 => 0.0058083500518023
501 => 0.0058978323194137
502 => 0.0061670441364997
503 => 0.0058904020627418
504 => 0.0058739872669437
505 => 0.005922480444619
506 => 0.0060805362802134
507 => 0.006208625689533
508 => 0.0062511203362596
509 => 0.0062567367053347
510 => 0.0063364594875845
511 => 0.0063821550996282
512 => 0.006326779044902
513 => 0.0062798536366362
514 => 0.0061117726488241
515 => 0.0061312284808327
516 => 0.0062652598699516
517 => 0.0064545871014914
518 => 0.0066170495622938
519 => 0.0065601608709092
520 => 0.0069941814290163
521 => 0.0070372127945376
522 => 0.0070312672511931
523 => 0.0071292991057765
524 => 0.0069347258382685
525 => 0.0068515419967294
526 => 0.0062899994425293
527 => 0.0064477699952364
528 => 0.0066770987591358
529 => 0.006646746237295
530 => 0.0064802015589758
531 => 0.0066169232232208
601 => 0.0065717187653397
602 => 0.0065360641338742
603 => 0.0066994049126082
604 => 0.0065198050167207
605 => 0.0066753071127876
606 => 0.0064758740661187
607 => 0.0065604207336595
608 => 0.0065124279561011
609 => 0.006543485164955
610 => 0.0063619253565984
611 => 0.0064598906220724
612 => 0.0063578496794748
613 => 0.0063578012987819
614 => 0.0063555487393184
615 => 0.0064755994557657
616 => 0.0064795143053191
617 => 0.006390796644478
618 => 0.0063780110435204
619 => 0.0064252861114652
620 => 0.0063699393882618
621 => 0.0063958357717005
622 => 0.0063707237633351
623 => 0.0063650705213122
624 => 0.0063200245270541
625 => 0.0063006174741623
626 => 0.0063082274796593
627 => 0.0062822506076712
628 => 0.0062665986026738
629 => 0.0063524351615692
630 => 0.0063065761507883
701 => 0.0063454066104562
702 => 0.0063011544008699
703 => 0.0061477569626739
704 => 0.0060595364738189
705 => 0.0057697829330167
706 => 0.0058519566777501
707 => 0.0059064379555232
708 => 0.0058884318935442
709 => 0.0059271158820961
710 => 0.0059294907648148
711 => 0.0059169142058
712 => 0.0059023521616179
713 => 0.0058952641638416
714 => 0.0059480922921786
715 => 0.0059787607987913
716 => 0.0059119058806132
717 => 0.0058962427086838
718 => 0.005963836722123
719 => 0.0060050690312732
720 => 0.0063095052356047
721 => 0.0062869516182718
722 => 0.0063435567718534
723 => 0.006337183900237
724 => 0.0063965151190987
725 => 0.0064934965866935
726 => 0.0062963061466283
727 => 0.0063305315886913
728 => 0.0063221403006783
729 => 0.0064137541828898
730 => 0.0064140401914301
731 => 0.0063591130925915
801 => 0.0063888899639623
802 => 0.0063722693312489
803 => 0.0064023050609753
804 => 0.006286650400962
805 => 0.0064275052927091
806 => 0.006507360939841
807 => 0.0065084697355789
808 => 0.0065463206785458
809 => 0.006584779428779
810 => 0.0066585976508003
811 => 0.0065827206786317
812 => 0.0064462253921748
813 => 0.0064560799109799
814 => 0.0063760527744719
815 => 0.0063773980450946
816 => 0.0063702168850795
817 => 0.0063917680868575
818 => 0.0062913796778231
819 => 0.00631494063677
820 => 0.0062819551562716
821 => 0.0063304598846986
822 => 0.0062782768150299
823 => 0.0063221362541452
824 => 0.0063410645341039
825 => 0.0064109102946482
826 => 0.0062679605394077
827 => 0.0059764763116247
828 => 0.0060377498302094
829 => 0.0059471214832917
830 => 0.0059555094818454
831 => 0.0059724545738639
901 => 0.0059175299865428
902 => 0.005928007866931
903 => 0.0059276335233118
904 => 0.0059244076322385
905 => 0.0059101196257881
906 => 0.0058893991896391
907 => 0.0059719430298429
908 => 0.0059859688367658
909 => 0.0060171464681256
910 => 0.006109909951063
911 => 0.006100640691604
912 => 0.0061157592383595
913 => 0.0060827555356792
914 => 0.0059570404289558
915 => 0.0059638673640845
916 => 0.0058787353736353
917 => 0.006014969451727
918 => 0.0059827074238329
919 => 0.0059619078845727
920 => 0.0059562325375792
921 => 0.0060492259632483
922 => 0.0060770510537018
923 => 0.0060597123246035
924 => 0.0060241500853714
925 => 0.0060924400977293
926 => 0.006110711624112
927 => 0.0061148019450411
928 => 0.0062357987536283
929 => 0.0061215643225342
930 => 0.0061490616854912
1001 => 0.0063635882618126
1002 => 0.006169042259733
1003 => 0.0062720976159282
1004 => 0.0062670535925166
1005 => 0.0063197732255429
1006 => 0.0062627290438376
1007 => 0.0062634361748367
1008 => 0.0063102476374268
1009 => 0.0062445093807108
1010 => 0.0062282316638687
1011 => 0.0062057441146346
1012 => 0.0062548448556968
1013 => 0.006284278529328
1014 => 0.0065214923221447
1015 => 0.0066747432505675
1016 => 0.0066680902235941
1017 => 0.0067288864361863
1018 => 0.006701497185584
1019 => 0.0066130500704699
1020 => 0.006764018510993
1021 => 0.0067162457796237
1022 => 0.0067201841055539
1023 => 0.0067200375208661
1024 => 0.0067518022108621
1025 => 0.0067292940168088
1026 => 0.0066849280559112
1027 => 0.0067143802512278
1028 => 0.0068018427419654
1029 => 0.0070733289968919
1030 => 0.0072252563018633
1031 => 0.0070641827823671
1101 => 0.0071752891392552
1102 => 0.0071086649163652
1103 => 0.0070965573131671
1104 => 0.0071663403159881
1105 => 0.0072362454647178
1106 => 0.007231792808952
1107 => 0.0071810452606433
1108 => 0.0071523792582752
1109 => 0.0073694478320224
1110 => 0.0075293802594927
1111 => 0.0075184739401398
1112 => 0.0075666108868384
1113 => 0.007707942451165
1114 => 0.0077208640381822
1115 => 0.0077192362152173
1116 => 0.007687208713567
1117 => 0.0078263679928693
1118 => 0.0079424571119379
1119 => 0.0076797952722985
1120 => 0.0077798134623372
1121 => 0.0078247148502304
1122 => 0.0078906434092991
1123 => 0.0080018759393575
1124 => 0.0081227039699724
1125 => 0.0081397903783133
1126 => 0.0081276667539355
1127 => 0.0080479774197132
1128 => 0.0081801888925902
1129 => 0.008257635272661
1130 => 0.0083037528196643
1201 => 0.0084206992456365
1202 => 0.0078249921459158
1203 => 0.0074033210521696
1204 => 0.0073374710218767
1205 => 0.0074713796479018
1206 => 0.0075066902846834
1207 => 0.0074924566112725
1208 => 0.0070178274586025
1209 => 0.0073349721976147
1210 => 0.0076761932705046
1211 => 0.0076893009615809
1212 => 0.0078601233652658
1213 => 0.0079157501421525
1214 => 0.0080532845673231
1215 => 0.0080446817515821
1216 => 0.0080781691954605
1217 => 0.0080704710120345
1218 => 0.0083252245733731
1219 => 0.0086062555827994
1220 => 0.0085965243725669
1221 => 0.0085561228399538
1222 => 0.0086161260053692
1223 => 0.0089061801242104
1224 => 0.00887947658897
1225 => 0.0089054167988543
1226 => 0.0092474069517019
1227 => 0.0096920427979358
1228 => 0.0094854648066511
1229 => 0.0099336796065232
1230 => 0.010215807064197
1231 => 0.01070371732972
]
'min_raw' => 0.0043700906801806
'max_raw' => 0.01070371732972
'avg_raw' => 0.0075369040049505
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00437'
'max' => '$0.0107037'
'avg' => '$0.007536'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0019485938575326
'max_diff' => 0.0043424295665188
'year' => 2028
]
3 => [
'items' => [
101 => 0.010642628561468
102 => 0.010832568447385
103 => 0.010533266916686
104 => 0.0098460101033805
105 => 0.0097372490819616
106 => 0.0099549914011101
107 => 0.010490289645752
108 => 0.0099381329544216
109 => 0.010049833533947
110 => 0.010017663759529
111 => 0.010015949568963
112 => 0.01008137325075
113 => 0.0099864727880486
114 => 0.0095998312307343
115 => 0.0097770267779584
116 => 0.0097086030675461
117 => 0.0097845242755741
118 => 0.010194239723013
119 => 0.010013094757304
120 => 0.0098222732509514
121 => 0.0100616057666
122 => 0.010366358302595
123 => 0.010347287436585
124 => 0.010310281985523
125 => 0.010518879775619
126 => 0.010863422211439
127 => 0.010956550647357
128 => 0.011025296154825
129 => 0.01103477499884
130 => 0.011132412983263
131 => 0.010607388933081
201 => 0.011440615584294
202 => 0.011584490809537
203 => 0.011557448230209
204 => 0.011717359487871
205 => 0.01167030953931
206 => 0.011602141545755
207 => 0.01185563490325
208 => 0.011565025224741
209 => 0.011152541372839
210 => 0.01092624457368
211 => 0.011224250453655
212 => 0.011406232245583
213 => 0.011526510633832
214 => 0.011562906801442
215 => 0.010648145055545
216 => 0.010155139209518
217 => 0.010471150304498
218 => 0.010856705650293
219 => 0.010605247153668
220 => 0.010615103850662
221 => 0.010256590116604
222 => 0.010888426160622
223 => 0.010796372963586
224 => 0.011273945112648
225 => 0.011159968686518
226 => 0.011549410234834
227 => 0.011446857223555
228 => 0.011872549039713
301 => 0.012042369030324
302 => 0.012327523224931
303 => 0.01253728381127
304 => 0.012660459239649
305 => 0.012653064248949
306 => 0.013141146661941
307 => 0.0128533415153
308 => 0.012491790420654
309 => 0.012485251102031
310 => 0.012672503537167
311 => 0.013064933271015
312 => 0.013166684591381
313 => 0.013223549698296
314 => 0.013136458807568
315 => 0.012824066948069
316 => 0.012689177727001
317 => 0.012804107251468
318 => 0.012663558319051
319 => 0.012906185207468
320 => 0.013239363747572
321 => 0.013170563696572
322 => 0.013400551951987
323 => 0.013638565600872
324 => 0.013978935808639
325 => 0.014067921184821
326 => 0.01421501062784
327 => 0.014366413981072
328 => 0.014415040657695
329 => 0.01450788407134
330 => 0.014507394740722
331 => 0.014787184616824
401 => 0.015095801514537
402 => 0.015212297248926
403 => 0.01548017276654
404 => 0.015021445330103
405 => 0.015369395360122
406 => 0.015683254996953
407 => 0.015309058599009
408 => 0.015824801156996
409 => 0.015844826271825
410 => 0.01614718173083
411 => 0.015840686548831
412 => 0.015658690688128
413 => 0.016184105918683
414 => 0.016438337798324
415 => 0.016361761087168
416 => 0.015779008534216
417 => 0.015439821552966
418 => 0.01455210379875
419 => 0.015603643825172
420 => 0.016115818298198
421 => 0.015777682126064
422 => 0.015948218343082
423 => 0.01687860864658
424 => 0.017232841035841
425 => 0.017159163175146
426 => 0.017171613520762
427 => 0.017362750888235
428 => 0.018210359236879
429 => 0.017702452666963
430 => 0.018090728208768
501 => 0.018296668156109
502 => 0.018487956656357
503 => 0.018018212557098
504 => 0.017407082385874
505 => 0.017213511807147
506 => 0.01574406114768
507 => 0.015667569859354
508 => 0.015624632981294
509 => 0.015353922038663
510 => 0.015141217391724
511 => 0.01497206675926
512 => 0.014528164987021
513 => 0.014677968804278
514 => 0.013970482028829
515 => 0.01442310699597
516 => 0.013293941019487
517 => 0.01423434399805
518 => 0.013722525411695
519 => 0.014066197827116
520 => 0.014064998786434
521 => 0.013432188908206
522 => 0.013067197376849
523 => 0.013299784186313
524 => 0.013549135708822
525 => 0.013589592154429
526 => 0.013912882912102
527 => 0.014003106413457
528 => 0.013729724992219
529 => 0.013270541564436
530 => 0.013377199401851
531 => 0.013065035959178
601 => 0.012517981533088
602 => 0.01291088557256
603 => 0.013045040286407
604 => 0.013104290650667
605 => 0.012566325452233
606 => 0.012397285107092
607 => 0.012307289445725
608 => 0.013201097012796
609 => 0.013250061808976
610 => 0.012999550988792
611 => 0.014131883650436
612 => 0.013875601895214
613 => 0.014161931406352
614 => 0.01336752132104
615 => 0.013397868856114
616 => 0.013021782390741
617 => 0.013232365681243
618 => 0.013083532198933
619 => 0.013215352632395
620 => 0.013294365256697
621 => 0.013670390009982
622 => 0.014238637596716
623 => 0.013614224451161
624 => 0.013342158701882
625 => 0.013510946762579
626 => 0.013960451610845
627 => 0.014641474465698
628 => 0.014238295228763
629 => 0.014417219327688
630 => 0.014456306283523
701 => 0.014159016840714
702 => 0.014652435951504
703 => 0.014916863261506
704 => 0.015188110966046
705 => 0.01542362774771
706 => 0.015079768667988
707 => 0.015447747173554
708 => 0.015151221455018
709 => 0.014885207231227
710 => 0.014885610664998
711 => 0.014718736056566
712 => 0.014395395475175
713 => 0.014335766511032
714 => 0.014645963912812
715 => 0.014894712853236
716 => 0.014915201007397
717 => 0.015052921201998
718 => 0.015134422594532
719 => 0.015933247037136
720 => 0.016254540836174
721 => 0.016647412811857
722 => 0.016800458587437
723 => 0.017261071501986
724 => 0.016889089164336
725 => 0.016808608445707
726 => 0.015691312180349
727 => 0.015874269381209
728 => 0.016167201512531
729 => 0.015696142523301
730 => 0.015994921029134
731 => 0.016053906235179
801 => 0.0156801361191
802 => 0.015879782887751
803 => 0.015349580261354
804 => 0.014250194565094
805 => 0.01465365988206
806 => 0.014950746160304
807 => 0.014526767410776
808 => 0.015286732909061
809 => 0.014842776753835
810 => 0.014702063966282
811 => 0.014153093214307
812 => 0.014412186277417
813 => 0.014762613355129
814 => 0.014546090162624
815 => 0.014995408298193
816 => 0.01563176260693
817 => 0.01608526658289
818 => 0.016120080986983
819 => 0.015828508312847
820 => 0.016295755383942
821 => 0.016299158768749
822 => 0.015772102163795
823 => 0.015449282927923
824 => 0.015375937718316
825 => 0.015559168432091
826 => 0.015781644344869
827 => 0.016132426851788
828 => 0.016344397374092
829 => 0.016897104075781
830 => 0.017046650661915
831 => 0.017210957020385
901 => 0.017430520985504
902 => 0.017694163820675
903 => 0.017117328306516
904 => 0.017140247056849
905 => 0.016603105812895
906 => 0.016029093359884
907 => 0.016464697260057
908 => 0.017034191413575
909 => 0.016903548825523
910 => 0.016888848865581
911 => 0.016913570120774
912 => 0.016815069875771
913 => 0.01636955691821
914 => 0.016145823099982
915 => 0.016434496806081
916 => 0.016587914033484
917 => 0.016825850773798
918 => 0.016796520048319
919 => 0.017409419538827
920 => 0.01764757374772
921 => 0.017586643709892
922 => 0.017597856303216
923 => 0.018029023122688
924 => 0.018508569302162
925 => 0.01895772758093
926 => 0.019414630673891
927 => 0.018863816162096
928 => 0.018584146522523
929 => 0.018872694202712
930 => 0.018719586742001
1001 => 0.01959938762587
1002 => 0.019660303130192
1003 => 0.020540040394443
1004 => 0.021375015815382
1005 => 0.020850582713628
1006 => 0.021345099507596
1007 => 0.021879959738818
1008 => 0.02291179190279
1009 => 0.022564307130257
1010 => 0.022298139240278
1011 => 0.022046611870361
1012 => 0.022570000398312
1013 => 0.023243331378185
1014 => 0.023388360422166
1015 => 0.023623362878773
1016 => 0.023376286530383
1017 => 0.023673862777452
1018 => 0.024724437691231
1019 => 0.024440563075847
1020 => 0.024037415486879
1021 => 0.024866743483021
1022 => 0.025166874060893
1023 => 0.027273347636008
1024 => 0.029932857538674
1025 => 0.028831802975687
1026 => 0.028148342877632
1027 => 0.028308972212565
1028 => 0.029280135198927
1029 => 0.029592041926974
1030 => 0.028744171919445
1031 => 0.029043653939885
1101 => 0.030693829316931
1102 => 0.031579095462751
1103 => 0.030376785129621
1104 => 0.027059658604836
1105 => 0.024001116457426
1106 => 0.024812379562867
1107 => 0.024720407503135
1108 => 0.0264933150822
1109 => 0.024433792760153
1110 => 0.024468469834117
1111 => 0.026278039264375
1112 => 0.025795277164256
1113 => 0.025013264389562
1114 => 0.024006826016108
1115 => 0.022146331598498
1116 => 0.020498439809095
1117 => 0.023730335094928
1118 => 0.023590969893382
1119 => 0.023389148428779
1120 => 0.023838280258891
1121 => 0.026019136937618
1122 => 0.025968861132429
1123 => 0.025649032110759
1124 => 0.025891619604852
1125 => 0.024970737628954
1126 => 0.025208069882236
1127 => 0.024000631968723
1128 => 0.024546444332692
1129 => 0.025011586541367
1130 => 0.025104970726307
1201 => 0.02531537006329
1202 => 0.023517530764972
1203 => 0.024324707828128
1204 => 0.02479884873047
1205 => 0.022656662884297
1206 => 0.024756504603943
1207 => 0.023486234382619
1208 => 0.023055085590684
1209 => 0.023635570639491
1210 => 0.023409355051431
1211 => 0.023214868172641
1212 => 0.023106341152568
1213 => 0.023532585306615
1214 => 0.023512700507357
1215 => 0.022815282340911
1216 => 0.021905528773182
1217 => 0.022210871932155
1218 => 0.022099937899893
1219 => 0.0216978986562
1220 => 0.021968824564045
1221 => 0.020775803978358
1222 => 0.018723274068496
1223 => 0.020079238197642
1224 => 0.020027035053675
1225 => 0.020000711861263
1226 => 0.02101968142822
1227 => 0.020921731015985
1228 => 0.020743950058645
1229 => 0.021694633569501
1230 => 0.021347621299541
1231 => 0.022417031349184
]
'min_raw' => 0.0095998312307343
'max_raw' => 0.031579095462751
'avg_raw' => 0.020589463346743
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.009599'
'max' => '$0.031579'
'avg' => '$0.020589'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0052297405505537
'max_diff' => 0.02087537813303
'year' => 2029
]
4 => [
'items' => [
101 => 0.023121413972985
102 => 0.022942759755198
103 => 0.023605235017459
104 => 0.022217906421831
105 => 0.022678721331336
106 => 0.022773694645523
107 => 0.021682902282548
108 => 0.0209377569148
109 => 0.02088806421405
110 => 0.019596084833733
111 => 0.020286249790205
112 => 0.020893566390934
113 => 0.020602708868857
114 => 0.020510632066489
115 => 0.020981032480767
116 => 0.021017586621663
117 => 0.020184148335389
118 => 0.020357446546663
119 => 0.021080128896108
120 => 0.020339236805669
121 => 0.018899804497982
122 => 0.018542805383967
123 => 0.018495175121358
124 => 0.017526965210193
125 => 0.018566661771823
126 => 0.018112806360536
127 => 0.01954653016677
128 => 0.018727594817864
129 => 0.018692292151758
130 => 0.018638926994164
131 => 0.017805548727376
201 => 0.01798800560385
202 => 0.018594520050219
203 => 0.018810931237558
204 => 0.018788357777714
205 => 0.018591547798549
206 => 0.018681646399181
207 => 0.018391407414114
208 => 0.018288917987684
209 => 0.017965433165935
210 => 0.017489999842928
211 => 0.017556111762494
212 => 0.01661415394572
213 => 0.016100925333656
214 => 0.015958870418081
215 => 0.01576890864809
216 => 0.01598032710547
217 => 0.016611485497575
218 => 0.015850174568974
219 => 0.014544960381639
220 => 0.014623405978275
221 => 0.014799649943208
222 => 0.014471220480525
223 => 0.014160389557091
224 => 0.014430631826507
225 => 0.013877595368999
226 => 0.014866481756935
227 => 0.014839735151464
228 => 0.015208330844562
301 => 0.015438821295802
302 => 0.014907615427864
303 => 0.014774018588611
304 => 0.014850121419888
305 => 0.013592311140042
306 => 0.015105540910124
307 => 0.015118627384014
308 => 0.01500657304954
309 => 0.015812321186381
310 => 0.017512701074262
311 => 0.016872949762818
312 => 0.016625218718442
313 => 0.016154281821992
314 => 0.016781777275045
315 => 0.016733595414705
316 => 0.016515698769817
317 => 0.01638391419911
318 => 0.016626731311373
319 => 0.016353826471762
320 => 0.016304805263645
321 => 0.016007790078052
322 => 0.015901769170126
323 => 0.015823275510711
324 => 0.015736861704323
325 => 0.015927469028236
326 => 0.015495527755767
327 => 0.014974648924895
328 => 0.014931343486095
329 => 0.015050913610075
330 => 0.014998012731162
331 => 0.014931090217039
401 => 0.014803316912315
402 => 0.014765409302248
403 => 0.014888590644808
404 => 0.014749526090976
405 => 0.014954723415392
406 => 0.014898921097237
407 => 0.01458721388417
408 => 0.014198711287898
409 => 0.01419525279988
410 => 0.014111550552785
411 => 0.014004943156392
412 => 0.013975287417563
413 => 0.014407872776344
414 => 0.015303311522831
415 => 0.015127515470862
416 => 0.015254546134714
417 => 0.015879411273993
418 => 0.01607803711142
419 => 0.015937057196725
420 => 0.015744075194229
421 => 0.015752565422938
422 => 0.016412043345094
423 => 0.016453174174166
424 => 0.016557098509925
425 => 0.016690670650388
426 => 0.015959805109828
427 => 0.015718141721704
428 => 0.015603628201436
429 => 0.01525097088132
430 => 0.015631281566511
501 => 0.015409690816778
502 => 0.015439590979535
503 => 0.015420118459314
504 => 0.015430751772081
505 => 0.014866205343036
506 => 0.015071896390093
507 => 0.014729895129926
508 => 0.014271993834006
509 => 0.014270458788301
510 => 0.014382529481769
511 => 0.014315865447968
512 => 0.014136474247096
513 => 0.014161955920478
514 => 0.013938709648582
515 => 0.01418906205989
516 => 0.014196241271242
517 => 0.014099841956101
518 => 0.014485544387696
519 => 0.014643566988624
520 => 0.014580114894324
521 => 0.014639115020537
522 => 0.015134820590493
523 => 0.015215642227546
524 => 0.015251537859948
525 => 0.01520344246779
526 => 0.014648175608376
527 => 0.014672804054768
528 => 0.014492096856375
529 => 0.014339418316188
530 => 0.014345524657102
531 => 0.014424021273579
601 => 0.0147668206015
602 => 0.015488221577986
603 => 0.015515598217706
604 => 0.01554877950368
605 => 0.015413814538045
606 => 0.015373107812969
607 => 0.015426810490642
608 => 0.015697730767949
609 => 0.016394611275319
610 => 0.01614828716093
611 => 0.015948021821669
612 => 0.016123708515349
613 => 0.016096662925935
614 => 0.015868370933559
615 => 0.015861963537684
616 => 0.015423798214951
617 => 0.015261818471678
618 => 0.015126456074226
619 => 0.014978643869932
620 => 0.014891015840518
621 => 0.015025652319926
622 => 0.015056445275739
623 => 0.014762060260469
624 => 0.014721936670678
625 => 0.014962337828889
626 => 0.014856546242219
627 => 0.014965355512614
628 => 0.014990600196695
629 => 0.014986535221123
630 => 0.014876076654553
701 => 0.014946479650963
702 => 0.014779955576311
703 => 0.014598885656233
704 => 0.014483374328279
705 => 0.014382575374284
706 => 0.01443850449243
707 => 0.014239127398493
708 => 0.014175342653475
709 => 0.014922628699897
710 => 0.015474656937068
711 => 0.015466630227872
712 => 0.015417769699946
713 => 0.015345172866443
714 => 0.0156924198574
715 => 0.015571445949173
716 => 0.015659464575117
717 => 0.015681869009549
718 => 0.015749680484793
719 => 0.015773917258599
720 => 0.015700656894635
721 => 0.01545478616517
722 => 0.014842099684031
723 => 0.014556892473145
724 => 0.014462769343051
725 => 0.014466190540065
726 => 0.014371818653532
727 => 0.014399615403568
728 => 0.014362152078248
729 => 0.014291205603445
730 => 0.014434123747533
731 => 0.014450593732264
801 => 0.014417234929689
802 => 0.014425092135302
803 => 0.014148895497714
804 => 0.014169894128202
805 => 0.014052971085266
806 => 0.014031049424244
807 => 0.013735478153357
808 => 0.013211830803239
809 => 0.013501982266882
810 => 0.013151520100271
811 => 0.013018794767407
812 => 0.013647095850162
813 => 0.013584031847812
814 => 0.013476093689053
815 => 0.013316430655965
816 => 0.013257210083891
817 => 0.012897404634921
818 => 0.012876145409509
819 => 0.013054474705583
820 => 0.012972181871381
821 => 0.012856611565428
822 => 0.012438027632443
823 => 0.011967400703389
824 => 0.011981605972122
825 => 0.012131303641928
826 => 0.012566569806372
827 => 0.012396503785743
828 => 0.012273118936494
829 => 0.012250012663164
830 => 0.012539236050142
831 => 0.012948547736889
901 => 0.013140587622477
902 => 0.012950281928197
903 => 0.012731668993394
904 => 0.012744974949781
905 => 0.012833493516448
906 => 0.012842795566219
907 => 0.012700501019435
908 => 0.01274055610086
909 => 0.012679708769463
910 => 0.012306288808992
911 => 0.012299534826035
912 => 0.012207891545525
913 => 0.012205116623412
914 => 0.012049208541778
915 => 0.012027395923415
916 => 0.011717830964386
917 => 0.011921587557868
918 => 0.011784918332661
919 => 0.011578925573264
920 => 0.0115434123439
921 => 0.011542344773342
922 => 0.011753853278105
923 => 0.011919115957844
924 => 0.011787295752347
925 => 0.011757282846783
926 => 0.012077742158045
927 => 0.012036960789636
928 => 0.012001644387604
929 => 0.012911898364711
930 => 0.012191361313827
1001 => 0.011877166032825
1002 => 0.01148828970852
1003 => 0.011614909800598
1004 => 0.011641590514435
1005 => 0.010706413054706
1006 => 0.010327011675763
1007 => 0.010196815419949
1008 => 0.010121885634024
1009 => 0.010156032078379
1010 => 0.0098145263379869
1011 => 0.010044023843514
1012 => 0.0097483087390961
1013 => 0.0096987311395002
1014 => 0.010227506378271
1015 => 0.010301082363686
1016 => 0.0099871843516394
1017 => 0.010188757690845
1018 => 0.01011566439597
1019 => 0.0097533779258075
1020 => 0.0097395412474462
1021 => 0.0095577586317037
1022 => 0.0092733040381172
1023 => 0.0091433006559124
1024 => 0.0090755937657191
1025 => 0.0091035309481938
1026 => 0.0090894050538427
1027 => 0.0089972240380785
1028 => 0.0090946887617631
1029 => 0.0088457066679533
1030 => 0.0087465599920131
1031 => 0.0087017777386764
1101 => 0.0084807917995456
1102 => 0.0088324787015959
1103 => 0.0089017654517347
1104 => 0.008971188718175
1105 => 0.0095754708552608
1106 => 0.0095452826273756
1107 => 0.0098181695051946
1108 => 0.0098075656229293
1109 => 0.009729733864901
1110 => 0.0094013744804823
1111 => 0.0095322526786683
1112 => 0.0091294299276394
1113 => 0.0094312521219948
1114 => 0.0092935130768872
1115 => 0.0093846824122909
1116 => 0.0092207517268275
1117 => 0.0093114777366951
1118 => 0.0089181959105615
1119 => 0.0085509548749427
1120 => 0.0086987433881098
1121 => 0.0088594064035891
1122 => 0.0092077647573231
1123 => 0.0090002853957331
1124 => 0.0090749028198242
1125 => 0.0088249469399252
1126 => 0.0083092165633263
1127 => 0.0083121355412497
1128 => 0.008232801658607
1129 => 0.0081642456010671
1130 => 0.0090241168962651
1201 => 0.0089171783081536
1202 => 0.0087467856637744
1203 => 0.0089748629894105
1204 => 0.0090351702543826
1205 => 0.0090368871174343
1206 => 0.0092032864466906
1207 => 0.0092920937985434
1208 => 0.0093077464792205
1209 => 0.0095695794191007
1210 => 0.0096573423668886
1211 => 0.010018825528149
1212 => 0.0092845591152011
1213 => 0.0092694373816239
1214 => 0.0089780725051104
1215 => 0.0087932842941291
1216 => 0.0089907251120095
1217 => 0.0091656307232922
1218 => 0.0089835073100005
1219 => 0.0090072887829413
1220 => 0.0087628029806267
1221 => 0.008850195150828
1222 => 0.0089254690608019
1223 => 0.0088839072321102
1224 => 0.0088216871629435
1225 => 0.0091512904577643
1226 => 0.0091326929481448
1227 => 0.0094396271138289
1228 => 0.0096789042450524
1229 => 0.010107731640108
1230 => 0.0096602278980898
1231 => 0.0096439190830644
]
'min_raw' => 0.0081642456010671
'max_raw' => 0.023605235017459
'avg_raw' => 0.015884740309263
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.008164'
'max' => '$0.0236052'
'avg' => '$0.015884'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0014355856296671
'max_diff' => -0.0079738604452916
'year' => 2030
]
5 => [
'items' => [
101 => 0.0098033403659542
102 => 0.0096573179603208
103 => 0.009749599080159
104 => 0.010092863725042
105 => 0.010100116366079
106 => 0.0099786252842085
107 => 0.0099712325408355
108 => 0.0099945662320756
109 => 0.010131232390483
110 => 0.010083477035409
111 => 0.010138740741318
112 => 0.010207848851786
113 => 0.010493709297914
114 => 0.0105626292837
115 => 0.010395189449157
116 => 0.010410307391472
117 => 0.010347680297026
118 => 0.010287183308507
119 => 0.010423171703822
120 => 0.010671693169119
121 => 0.010670147129982
122 => 0.010727799279363
123 => 0.010763716090812
124 => 0.010609534843361
125 => 0.010509168520673
126 => 0.010547655355267
127 => 0.010609196641916
128 => 0.010527698345439
129 => 0.010024653105895
130 => 0.010177244896918
131 => 0.010151846161534
201 => 0.010115675273756
202 => 0.010269107499588
203 => 0.010254308587106
204 => 0.0098110237030148
205 => 0.0098394013630601
206 => 0.0098127494425119
207 => 0.0098988672502728
208 => 0.0096526673160871
209 => 0.0097283967576608
210 => 0.0097758935534964
211 => 0.0098038695311311
212 => 0.0099049379456552
213 => 0.0098930787337381
214 => 0.0099042007603914
215 => 0.010054058538058
216 => 0.010811987752519
217 => 0.010853240167386
218 => 0.010650098189221
219 => 0.0107312494027
220 => 0.01057545681864
221 => 0.010680041424039
222 => 0.010751595554892
223 => 0.010428256196636
224 => 0.010409110138295
225 => 0.010252674542823
226 => 0.010336734170865
227 => 0.010202989258549
228 => 0.010235805581833
301 => 0.010144048281056
302 => 0.010309193153759
303 => 0.010493850782359
304 => 0.010540502591694
305 => 0.0104177817662
306 => 0.010328923800846
307 => 0.010172918485317
308 => 0.010432358801846
309 => 0.0105082270567
310 => 0.010431960298202
311 => 0.010414287623796
312 => 0.010380797937731
313 => 0.010421392619011
314 => 0.01050781386189
315 => 0.010467059199698
316 => 0.010493978372081
317 => 0.010391390245888
318 => 0.01060958588377
319 => 0.010956133068366
320 => 0.010957247274231
321 => 0.010916492392356
322 => 0.010899816372769
323 => 0.010941633354786
324 => 0.010964317352107
325 => 0.011099545804027
326 => 0.011244651320676
327 => 0.011921795452379
328 => 0.011731656089832
329 => 0.012332458646964
330 => 0.012807615465207
331 => 0.012950094218909
401 => 0.012819020469647
402 => 0.012370624253886
403 => 0.012348623796353
404 => 0.013018717050699
405 => 0.012829385014131
406 => 0.012806864570831
407 => 0.012567285103006
408 => 0.012708906240985
409 => 0.012677931620652
410 => 0.012629036667127
411 => 0.012899239932976
412 => 0.013405036325435
413 => 0.013326203214342
414 => 0.013267357953874
415 => 0.013009515152099
416 => 0.013164794110042
417 => 0.013109502247291
418 => 0.013347071178752
419 => 0.013206340606551
420 => 0.012827950637741
421 => 0.012888210487464
422 => 0.012879102332404
423 => 0.01306654751812
424 => 0.013010281126043
425 => 0.012868115416308
426 => 0.013403307568353
427 => 0.013368555166894
428 => 0.013417826126658
429 => 0.013439516726901
430 => 0.013765278758707
501 => 0.013898733039916
502 => 0.013929029498196
503 => 0.01405580074362
504 => 0.013925875314124
505 => 0.014445669667369
506 => 0.014791302581435
507 => 0.01519277299723
508 => 0.015779429179781
509 => 0.016000017331294
510 => 0.015960170056131
511 => 0.016404966078327
512 => 0.017204254642954
513 => 0.016121729127577
514 => 0.017261631123846
515 => 0.016900751312628
516 => 0.016045111772183
517 => 0.015990018673106
518 => 0.016569467704075
519 => 0.017854629884862
520 => 0.017532711334764
521 => 0.017855156428286
522 => 0.017479007099013
523 => 0.017460328114379
524 => 0.017836887694944
525 => 0.018716739680129
526 => 0.018298754982726
527 => 0.017699471424946
528 => 0.018141973078126
529 => 0.017758637194547
530 => 0.016894874159886
531 => 0.017532465169715
601 => 0.017106126218989
602 => 0.017230554590236
603 => 0.01812665565153
604 => 0.018018834401046
605 => 0.018158365083152
606 => 0.017912097081389
607 => 0.017682043934843
608 => 0.017252632652845
609 => 0.017125505141965
610 => 0.017160638612404
611 => 0.017125487731562
612 => 0.016885236065777
613 => 0.016833353741426
614 => 0.016746880927823
615 => 0.016773682468591
616 => 0.016611088280504
617 => 0.016917937107098
618 => 0.016974890953256
619 => 0.017198189940183
620 => 0.017221373581772
621 => 0.017843258081901
622 => 0.017500734549574
623 => 0.017730528907118
624 => 0.017709973936871
625 => 0.01606365607555
626 => 0.016290504151255
627 => 0.016643408568203
628 => 0.016484425606718
629 => 0.016259660895463
630 => 0.016078151340003
701 => 0.015803145803175
702 => 0.016190210815246
703 => 0.016699160146344
704 => 0.017234281376703
705 => 0.017877194472446
706 => 0.01773370375381
707 => 0.017222262563579
708 => 0.017245205441764
709 => 0.017387029287019
710 => 0.017203354521359
711 => 0.017149185247209
712 => 0.017379587260576
713 => 0.017381173912616
714 => 0.017169833896887
715 => 0.01693496814422
716 => 0.016933984048141
717 => 0.016892191955988
718 => 0.017486441819365
719 => 0.017813219158785
720 => 0.017850683654121
721 => 0.017810697499747
722 => 0.017826086583572
723 => 0.017635942049811
724 => 0.018070556068379
725 => 0.018469400870688
726 => 0.018362501943593
727 => 0.018202245255299
728 => 0.018074593084065
729 => 0.018332431148894
730 => 0.018320950025742
731 => 0.018465917309284
801 => 0.018459340755931
802 => 0.018410593710971
803 => 0.018362503684503
804 => 0.0185531752036
805 => 0.018498264868191
806 => 0.018443269241864
807 => 0.018332967093858
808 => 0.018347958987696
809 => 0.018187729969979
810 => 0.018113600694802
811 => 0.016998874257143
812 => 0.016700982928263
813 => 0.016794705604466
814 => 0.01682556154298
815 => 0.016695918854893
816 => 0.016881793167135
817 => 0.016852824852462
818 => 0.016965523618959
819 => 0.016895114322463
820 => 0.016898003944551
821 => 0.0171050626727
822 => 0.017165172702372
823 => 0.017134600256133
824 => 0.017156012149517
825 => 0.017649440195144
826 => 0.017579290505996
827 => 0.017542024881772
828 => 0.01755234771436
829 => 0.017678429159234
830 => 0.017713725080007
831 => 0.017564173783491
901 => 0.017634703039474
902 => 0.017935007659953
903 => 0.018040097281351
904 => 0.018375492906975
905 => 0.018233010884028
906 => 0.018494542803624
907 => 0.019298402761661
908 => 0.019940581719018
909 => 0.019350007410664
910 => 0.020529287284855
911 => 0.021447525824563
912 => 0.021412282300003
913 => 0.021252166171364
914 => 0.020206776006541
915 => 0.019244792390982
916 => 0.020049532533379
917 => 0.020051583981499
918 => 0.019982456089578
919 => 0.019553108689855
920 => 0.019967515730732
921 => 0.020000409856732
922 => 0.019981997893426
923 => 0.019652818248716
924 => 0.019150221773813
925 => 0.019248427921963
926 => 0.019409291595984
927 => 0.019104743101384
928 => 0.019007421404115
929 => 0.019188360955548
930 => 0.019771385890518
1001 => 0.019661168403796
1002 => 0.019658290179794
1003 => 0.020129847327481
1004 => 0.019792314178139
1005 => 0.019249666615991
1006 => 0.019112640949906
1007 => 0.018626292146856
1008 => 0.018962214997438
1009 => 0.018974304262798
1010 => 0.018790322750583
1011 => 0.019264595701727
1012 => 0.019260225192988
1013 => 0.019710476773886
1014 => 0.020571188689793
1015 => 0.020316633823198
1016 => 0.02002061420884
1017 => 0.020052799748654
1018 => 0.020405795679737
1019 => 0.020192366281691
1020 => 0.020269116981311
1021 => 0.020405679508361
1022 => 0.020488071071587
1023 => 0.02004094487064
1024 => 0.019936698364681
1025 => 0.01972344659904
1026 => 0.019667813193917
1027 => 0.019841502307387
1028 => 0.019795741362515
1029 => 0.018973288206857
1030 => 0.018887337276004
1031 => 0.018889973268344
1101 => 0.018673845565971
1102 => 0.018344198943261
1103 => 0.019210490585566
1104 => 0.019140915242945
1105 => 0.019064109449396
1106 => 0.019073517720858
1107 => 0.019449545561434
1108 => 0.019231430424039
1109 => 0.019811325265173
1110 => 0.01969211631907
1111 => 0.019569850113317
1112 => 0.019552949199362
1113 => 0.019505887141409
1114 => 0.019344493833669
1115 => 0.019149601716339
1116 => 0.019020917059211
1117 => 0.01754579054525
1118 => 0.017819565445825
1119 => 0.018134518513569
1120 => 0.018243239050459
1121 => 0.018057265048877
1122 => 0.019351837220776
1123 => 0.01958836803139
1124 => 0.018871900777518
1125 => 0.018737879007483
1126 => 0.019360623665708
1127 => 0.01898503250936
1128 => 0.019154161184066
1129 => 0.018788597497791
1130 => 0.019531394685544
1201 => 0.019525735815499
1202 => 0.019236770932628
1203 => 0.019481002072884
1204 => 0.019438560902032
1205 => 0.019112320260959
1206 => 0.019541737095771
1207 => 0.019541950081164
1208 => 0.019263827664038
1209 => 0.018939041569662
1210 => 0.018880977487093
1211 => 0.018837234000689
1212 => 0.019143402967935
1213 => 0.019417913106602
1214 => 0.019928708417828
1215 => 0.020057134495267
1216 => 0.020558390025321
1217 => 0.020259916762862
1218 => 0.020392226094234
1219 => 0.020535866589736
1220 => 0.020604733125484
1221 => 0.020492518801065
1222 => 0.021271174964246
1223 => 0.021336917401826
1224 => 0.021358960272477
1225 => 0.021096401795312
1226 => 0.021329615175612
1227 => 0.021220502358185
1228 => 0.021504383596716
1229 => 0.021548899799695
1230 => 0.021511196159481
1231 => 0.021525326304947
]
'min_raw' => 0.0096526673160871
'max_raw' => 0.021548899799695
'avg_raw' => 0.015600783557891
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.009652'
'max' => '$0.021548'
'avg' => '$0.01560078'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00148842171502
'max_diff' => -0.0020563352177645
'year' => 2031
]
6 => [
'items' => [
101 => 0.020860880634032
102 => 0.020826425620765
103 => 0.020356629070052
104 => 0.020548074637029
105 => 0.020190176325791
106 => 0.020303669567046
107 => 0.020353696306388
108 => 0.020327565176748
109 => 0.020558898682143
110 => 0.020362217944244
111 => 0.019843145139623
112 => 0.019323930913963
113 => 0.019317412602302
114 => 0.019180712661578
115 => 0.019081903642278
116 => 0.019100937764833
117 => 0.019168016495379
118 => 0.019078004904516
119 => 0.01909721344113
120 => 0.019416203134733
121 => 0.019480174242855
122 => 0.019262775422332
123 => 0.018389887787432
124 => 0.018175678972355
125 => 0.018329648020687
126 => 0.018256060732461
127 => 0.014734065838217
128 => 0.015561506296131
129 => 0.015069869273261
130 => 0.015296438232531
131 => 0.014794604140971
201 => 0.015034105672842
202 => 0.014989878485101
203 => 0.016320378255684
204 => 0.016299604331809
205 => 0.016309547709836
206 => 0.015834924369255
207 => 0.016591012238229
208 => 0.016963488310526
209 => 0.016894552902673
210 => 0.016911902459675
211 => 0.016613779588558
212 => 0.016312434190893
213 => 0.015978195768158
214 => 0.016599169444482
215 => 0.016530127772049
216 => 0.0166884845282
217 => 0.017091230345412
218 => 0.017150536196878
219 => 0.017230243862671
220 => 0.017201674338462
221 => 0.017882316312482
222 => 0.017799886078408
223 => 0.01799851922573
224 => 0.017589915771356
225 => 0.017127542177735
226 => 0.017215424281751
227 => 0.017206960528431
228 => 0.017099207234424
229 => 0.01700193237857
301 => 0.016839997150593
302 => 0.017352384173815
303 => 0.017331582196401
304 => 0.017668342031084
305 => 0.017608816459193
306 => 0.017211290121729
307 => 0.01722548785264
308 => 0.017320974416219
309 => 0.017651454503009
310 => 0.017749563493569
311 => 0.017704115500174
312 => 0.017811687529477
313 => 0.017896708075373
314 => 0.017822364801042
315 => 0.018874908789477
316 => 0.018437819142368
317 => 0.018650853595119
318 => 0.018701661056828
319 => 0.018571518812026
320 => 0.018599742004879
321 => 0.018642492451692
322 => 0.018902064793344
323 => 0.019583257725702
324 => 0.019884953438406
325 => 0.020792619875481
326 => 0.019859901809273
327 => 0.019804558179195
328 => 0.019968056313413
329 => 0.020500952598226
330 => 0.020932814984664
331 => 0.021076088652984
401 => 0.021095024633443
402 => 0.021363815559865
403 => 0.021517881506236
404 => 0.021331177271494
405 => 0.021172964981298
406 => 0.02060626819585
407 => 0.02067186489183
408 => 0.021123761078017
409 => 0.021762091057559
410 => 0.022309844586921
411 => 0.022118040392076
412 => 0.023581371006082
413 => 0.023726454259291
414 => 0.0237064084448
415 => 0.024036929686894
416 => 0.023380912330819
417 => 0.023100452201359
418 => 0.021207172274225
419 => 0.021739106707865
420 => 0.022512304646575
421 => 0.022409969000043
422 => 0.021848451989312
423 => 0.022309418625916
424 => 0.022157008640095
425 => 0.022036796560782
426 => 0.022587511400373
427 => 0.021981977812124
428 => 0.022506263985823
429 => 0.021833861545008
430 => 0.022118916537482
501 => 0.021957105537195
502 => 0.022061817085191
503 => 0.021449675515216
504 => 0.021779972247478
505 => 0.021435934085239
506 => 0.021435770966355
507 => 0.021428176304855
508 => 0.02183293567703
509 => 0.021846134865626
510 => 0.021547017078031
511 => 0.02150390953174
512 => 0.021663300723956
513 => 0.021476695382491
514 => 0.021564006847282
515 => 0.021479339957814
516 => 0.021460279657637
517 => 0.021308403942984
518 => 0.021242971709202
519 => 0.021268629374049
520 => 0.021181046536494
521 => 0.021128274708857
522 => 0.02141767866009
523 => 0.021263061803469
524 => 0.021393981409295
525 => 0.021244781995084
526 => 0.020727591822339
527 => 0.020430150284807
528 => 0.019453225992046
529 => 0.019730280509602
530 => 0.019913967941376
531 => 0.01985325924627
601 => 0.019983685014503
602 => 0.019991692097398
603 => 0.019949289350613
604 => 0.019900192401963
605 => 0.019876294722592
606 => 0.020054408445622
607 => 0.020157809456874
608 => 0.019932403432575
609 => 0.019879593954847
610 => 0.020107491890421
611 => 0.020246509499469
612 => 0.021272937417429
613 => 0.021196896321948
614 => 0.021387744549294
615 => 0.0213662579677
616 => 0.021566297314465
617 => 0.021893277103491
618 => 0.021228435767415
619 => 0.021343829234874
620 => 0.021315537421477
621 => 0.02162442002163
622 => 0.021625384319392
623 => 0.02144019377077
624 => 0.021540588571552
625 => 0.021484550947943
626 => 0.021585818507743
627 => 0.021195880746758
628 => 0.021670782848458
629 => 0.021940021738106
630 => 0.02194376012035
701 => 0.022071377217232
702 => 0.022201043578747
703 => 0.022449926868115
704 => 0.022194102358888
705 => 0.021733898970802
706 => 0.021767124168974
707 => 0.021497307090921
708 => 0.021501842764749
709 => 0.021477630982385
710 => 0.021550292363837
711 => 0.021211825833883
712 => 0.021291263251946
713 => 0.021180050401472
714 => 0.021343587479856
715 => 0.021167648617163
716 => 0.021315523778308
717 => 0.021379341795719
718 => 0.02161483165387
719 => 0.021132866573643
720 => 0.020150107148894
721 => 0.020356695094782
722 => 0.02005113529568
723 => 0.020079416018435
724 => 0.020136547579244
725 => 0.019951365498379
726 => 0.01998669240365
727 => 0.019985430278002
728 => 0.019974553961024
729 => 0.01992638094972
730 => 0.019856520552589
731 => 0.020134822872863
801 => 0.020182111860154
802 => 0.020287229421036
803 => 0.020599987980299
804 => 0.020568736024874
805 => 0.020619709260804
806 => 0.020508434972972
807 => 0.020084577713506
808 => 0.020107595201933
809 => 0.019820566752408
810 => 0.020279889458254
811 => 0.020171115778746
812 => 0.020100988679953
813 => 0.020081853851324
814 => 0.020395387678561
815 => 0.020489201913711
816 => 0.020430743178005
817 => 0.020310842605557
818 => 0.020541087150079
819 => 0.020602690876955
820 => 0.020616481679544
821 => 0.021024430867423
822 => 0.020639281507397
823 => 0.020731990786411
824 => 0.021455282116246
825 => 0.020799356687466
826 => 0.021146815015973
827 => 0.021129808738879
828 => 0.021307556662394
829 => 0.021115228221077
830 => 0.021117612362611
831 => 0.021275440477005
901 => 0.021053799354789
902 => 0.020998917895982
903 => 0.020923099553709
904 => 0.021088646130304
905 => 0.021187883815945
906 => 0.021987666680165
907 => 0.02250436288498
908 => 0.02248193174004
909 => 0.022686910415451
910 => 0.022594565644789
911 => 0.022296360021001
912 => 0.022805360658505
913 => 0.022644291559307
914 => 0.022657569900146
915 => 0.022657075679637
916 => 0.022764172549698
917 => 0.022688284601976
918 => 0.022538701667277
919 => 0.022638001800073
920 => 0.022932887694031
921 => 0.023848222557081
922 => 0.024360456073018
923 => 0.023817385456242
924 => 0.024191988295689
925 => 0.02396736007666
926 => 0.023926538447152
927 => 0.024161816713257
928 => 0.024397506802821
929 => 0.024382494363032
930 => 0.024211395460829
1001 => 0.024114746032448
1002 => 0.02484660788408
1003 => 0.025385831229422
1004 => 0.025349059812269
1005 => 0.025511356888877
1006 => 0.025987866125459
1007 => 0.026031432158244
1008 => 0.026025943839467
1009 => 0.025917960881564
1010 => 0.026387146107523
1011 => 0.026778548677546
1012 => 0.025892965946738
1013 => 0.0262301842575
1014 => 0.026381572421697
1015 => 0.026603855161582
1016 => 0.026978883402681
1017 => 0.027386263543843
1018 => 0.027443871562499
1019 => 0.027402995916465
1020 => 0.027134317762403
1021 => 0.027580077973918
1022 => 0.02784119385146
1023 => 0.027996682381006
1024 => 0.02839097542111
1025 => 0.02638250734346
1026 => 0.024960813810759
1027 => 0.024738795836125
1028 => 0.02519027811797
1029 => 0.025309330395189
1030 => 0.025261340571521
1031 => 0.023661095245745
1101 => 0.024730370875663
1102 => 0.025880821546206
1103 => 0.025925015041819
1104 => 0.026500954702282
1105 => 0.026688504264293
1106 => 0.027152211181103
1107 => 0.027123206187203
1108 => 0.027236111442257
1109 => 0.027210156479367
1110 => 0.028069075897745
1111 => 0.029016591566985
1112 => 0.028983782112274
1113 => 0.028847565524325
1114 => 0.02904987038581
1115 => 0.030027808098415
1116 => 0.029937775264971
1117 => 0.030025234493683
1118 => 0.031178278170999
1119 => 0.03267739897006
1120 => 0.031980906849628
1121 => 0.033492094340755
1122 => 0.034443306761813
1123 => 0.036088330286832
1124 => 0.035882365239588
1125 => 0.036522760826137
1126 => 0.035513644818818
1127 => 0.033196510490021
1128 => 0.032829815112854
1129 => 0.033563948544147
1130 => 0.035368743949287
1201 => 0.033507109114118
1202 => 0.033883715416674
1203 => 0.033775252776202
1204 => 0.033769473263028
1205 => 0.033990053773908
1206 => 0.03367009023817
1207 => 0.032366501233234
1208 => 0.032963928392098
1209 => 0.032733233075252
1210 => 0.032989206728768
1211 => 0.034370590965228
1212 => 0.033759848066202
1213 => 0.033116480034802
1214 => 0.033923406320973
1215 => 0.034950900773224
1216 => 0.034886602016987
1217 => 0.034761835555092
1218 => 0.035465137568232
1219 => 0.036626786445784
1220 => 0.036940775469503
1221 => 0.03717255574759
1222 => 0.037204514331978
1223 => 0.037533707613326
1224 => 0.035763552372128
1225 => 0.038572834200721
1226 => 0.039057919567674
1227 => 0.038966743623416
1228 => 0.039505895593272
1229 => 0.039347263406775
1230 => 0.039117430257168
1231 => 0.039972100810303
]
'min_raw' => 0.014734065838217
'max_raw' => 0.039972100810303
'avg_raw' => 0.02735308332426
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.014734'
'max' => '$0.039972'
'avg' => '$0.027353'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0050813985221297
'max_diff' => 0.018423201010608
'year' => 2032
]
7 => [
'items' => [
101 => 0.038992289989491
102 => 0.037601571884101
103 => 0.036838596426198
104 => 0.037843344056639
105 => 0.038456908373689
106 => 0.038862435357239
107 => 0.038985147577435
108 => 0.035900964484516
109 => 0.03423876085407
110 => 0.035304214323983
111 => 0.036604141090947
112 => 0.035756331213303
113 => 0.03578956375539
114 => 0.034580809670385
115 => 0.036711089006176
116 => 0.036400725225421
117 => 0.038010893069004
118 => 0.037626613590729
119 => 0.038939642960815
120 => 0.038593878323265
121 => 0.040029128002294
122 => 0.040601687957093
123 => 0.04156310523304
124 => 0.0422703276949
125 => 0.042685622251514
126 => 0.042660689524065
127 => 0.044306293456296
128 => 0.043335938310482
129 => 0.042116943552191
130 => 0.042094895782893
131 => 0.042726230441501
201 => 0.044049334687739
202 => 0.044392396368404
203 => 0.044584121046561
204 => 0.04429048802798
205 => 0.043237237063178
206 => 0.042782448636681
207 => 0.043169941552546
208 => 0.042696071014089
209 => 0.043514104508056
210 => 0.044637439217799
211 => 0.044405475042384
212 => 0.045180896502784
213 => 0.045983376137581
214 => 0.047130958056956
215 => 0.047430978465516
216 => 0.047926900792112
217 => 0.048437367768177
218 => 0.048601316003418
219 => 0.048914344054643
220 => 0.048912694242299
221 => 0.049856025343884
222 => 0.050896548761465
223 => 0.05128932226343
224 => 0.052192483273539
225 => 0.050645851694263
226 => 0.051818989513567
227 => 0.052877189192124
228 => 0.051615559910897
301 => 0.053354421953147
302 => 0.053421938025901
303 => 0.05444135056572
304 => 0.053407980660802
305 => 0.052794368909895
306 => 0.054565843043031
307 => 0.055423003575143
308 => 0.055164819847067
309 => 0.053200028928306
310 => 0.052056436339741
311 => 0.049063433952929
312 => 0.052608774568189
313 => 0.054335606562878
314 => 0.053195556850612
315 => 0.053770531612748
316 => 0.056907407478767
317 => 0.058101726710876
318 => 0.057853316659519
319 => 0.05789529386902
320 => 0.058539726848239
321 => 0.061397497573817
322 => 0.059685055112444
323 => 0.060994153210169
324 => 0.061688494120898
325 => 0.062333436654822
326 => 0.060749661627685
327 => 0.058689193587655
328 => 0.058036556866813
329 => 0.053082201374651
330 => 0.052824305655609
331 => 0.05267954097347
401 => 0.051766820129957
402 => 0.051049671562236
403 => 0.050479368395165
404 => 0.048982722577828
405 => 0.049487796606681
406 => 0.047102455548104
407 => 0.048628512226085
408 => 0.044821450300524
409 => 0.047992084599587
410 => 0.046266452501658
411 => 0.047425168044691
412 => 0.047421125395319
413 => 0.045287562709499
414 => 0.044056968278635
415 => 0.044841150945433
416 => 0.045681857012738
417 => 0.045818258743684
418 => 0.046908256104619
419 => 0.047212450938641
420 => 0.046290726390055
421 => 0.04474255740412
422 => 0.045102161749577
423 => 0.044049680908052
424 => 0.042205248716368
425 => 0.043529952117132
426 => 0.043982264101249
427 => 0.044182030841081
428 => 0.042368243615029
429 => 0.041798312289367
430 => 0.041494885633772
501 => 0.044508420249801
502 => 0.044673508478737
503 => 0.043828893758378
504 => 0.047646632384055
505 => 0.046782560553301
506 => 0.047747940490992
507 => 0.045069531424422
508 => 0.045171850257721
509 => 0.043903848482197
510 => 0.044613844748581
511 => 0.044112042271749
512 => 0.044556484066577
513 => 0.044822880645895
514 => 0.046090674354804
515 => 0.048006560767258
516 => 0.045901308251888
517 => 0.04498401958317
518 => 0.045553100314215
519 => 0.047068637293571
520 => 0.049364753396205
521 => 0.048005406449802
522 => 0.048608661541408
523 => 0.048740445941973
524 => 0.047738113829455
525 => 0.049401710810905
526 => 0.050293245948302
527 => 0.051207776522069
528 => 0.052001837794706
529 => 0.050842492899948
530 => 0.052083158122902
531 => 0.051083400960095
601 => 0.050186515432061
602 => 0.050187875637189
603 => 0.049625246244047
604 => 0.048535080898968
605 => 0.048334037683198
606 => 0.049379889880591
607 => 0.050218564300329
608 => 0.050287641542518
609 => 0.050751974793933
610 => 0.051026762429107
611 => 0.053720054809489
612 => 0.054803319284962
613 => 0.056127914580423
614 => 0.056643919098106
615 => 0.058196907698472
616 => 0.056942743276109
617 => 0.056671396914267
618 => 0.052904354548478
619 => 0.053521207524842
620 => 0.054508848657461
621 => 0.052920640386984
622 => 0.05392799297945
623 => 0.054126865719848
624 => 0.052866673677689
625 => 0.05353979669709
626 => 0.051752181524627
627 => 0.048045525893029
628 => 0.049405837378227
629 => 0.050407484507227
630 => 0.048978010551943
701 => 0.051540287288508
702 => 0.050043458115135
703 => 0.049569035127647
704 => 0.047718141909449
705 => 0.048591692261025
706 => 0.049773181619568
707 => 0.049043158558869
708 => 0.050558066023333
709 => 0.052703579004078
710 => 0.054232599321663
711 => 0.054349978515727
712 => 0.053366920887924
713 => 0.054942277010267
714 => 0.054953751759763
715 => 0.053176743618242
716 => 0.052088336025982
717 => 0.051841047530992
718 => 0.052458822675243
719 => 0.053208915747947
720 => 0.054391603460879
721 => 0.055106276876134
722 => 0.056969766109629
723 => 0.057473972865789
724 => 0.058027943224873
725 => 0.05876821846274
726 => 0.059657108688475
727 => 0.057712267479116
728 => 0.057789539646001
729 => 0.055978530440006
730 => 0.054043207378408
731 => 0.055511876340735
801 => 0.057431965640134
802 => 0.056991495033341
803 => 0.056941933092079
804 => 0.057025282529946
805 => 0.05669318207685
806 => 0.055191104035714
807 => 0.054436769846961
808 => 0.055410053401628
809 => 0.055927310295066
810 => 0.056729530627247
811 => 0.056630640038488
812 => 0.058697073462012
813 => 0.059500027004691
814 => 0.059294597128154
815 => 0.059332401169383
816 => 0.060786110204342
817 => 0.062402933629281
818 => 0.063917302125379
819 => 0.06545778280325
820 => 0.063600673220093
821 => 0.062657747504361
822 => 0.063630606153874
823 => 0.063114393660465
824 => 0.066080703766165
825 => 0.066286084641972
826 => 0.069252180249689
827 => 0.072067358177506
828 => 0.070299195360195
829 => 0.071966493257117
830 => 0.07376981186943
831 => 0.077248706050482
901 => 0.076077136879277
902 => 0.075179733254963
903 => 0.074331691166209
904 => 0.076096332130016
905 => 0.078366514539125
906 => 0.07885549008651
907 => 0.07964781727631
908 => 0.078814782117395
909 => 0.079818081210495
910 => 0.083360167881101
911 => 0.082403064795839
912 => 0.081043824552769
913 => 0.083839961793593
914 => 0.084851872991338
915 => 0.091953995719126
916 => 0.10092071903701
917 => 0.097208436704729
918 => 0.094904103266477
919 => 0.095445676283986
920 => 0.098720020096939
921 => 0.099771635407182
922 => 0.096912982480406
923 => 0.097922707021486
924 => 0.10348638851676
925 => 0.1064711251347
926 => 0.10241745190393
927 => 0.091233528231237
928 => 0.08092143984065
929 => 0.083656670041226
930 => 0.083346579820556
1001 => 0.089324061503827
1002 => 0.082380238203791
1003 => 0.082497154379736
1004 => 0.088598244053954
1005 => 0.086970577928029
1006 => 0.084333967259759
1007 => 0.080940690016377
1008 => 0.07466790319183
1009 => 0.069111920971728
1010 => 0.080008481571637
1011 => 0.079538602064459
1012 => 0.078858146905824
1013 => 0.080372426228428
1014 => 0.087725336783308
1015 => 0.087555828395969
1016 => 0.086477502519658
1017 => 0.087295403192912
1018 => 0.084190585317246
1019 => 0.084990767579194
1020 => 0.080919806353163
1021 => 0.082760050845688
1022 => 0.084328310277427
1023 => 0.084643161576826
1024 => 0.085352537631078
1025 => 0.079290996915667
1026 => 0.082012450739401
1027 => 0.083611049895106
1028 => 0.076388520752096
1029 => 0.08346828371615
1030 => 0.079185478977522
1031 => 0.077731830723663
1101 => 0.07968897659389
1102 => 0.078926274944876
1103 => 0.078270548854397
1104 => 0.077904642429106
1105 => 0.079341754353892
1106 => 0.079274711364881
1107 => 0.076923317324525
1108 => 0.073856019653963
1109 => 0.074885505432817
1110 => 0.074511483597879
1111 => 0.073155980218285
1112 => 0.074069425832029
1113 => 0.070047073633346
1114 => 0.063126825739186
1115 => 0.067698553470994
1116 => 0.067522546926402
1117 => 0.067433796445358
1118 => 0.070869323482537
1119 => 0.070539076829007
1120 => 0.069939675919064
1121 => 0.073144971750518
1122 => 0.071974995654725
1123 => 0.075580586300923
1124 => 0.077955461495491
1125 => 0.077353116326984
1126 => 0.079586697926243
1127 => 0.074909222705893
1128 => 0.07646289234636
1129 => 0.076783101505967
1130 => 0.073105418897503
1201 => 0.070593109265754
1202 => 0.070425566855743
1203 => 0.066069568171882
1204 => 0.068396507508408
1205 => 0.070444117829257
1206 => 0.06946347138655
1207 => 0.069153028018768
1208 => 0.070739015857815
1209 => 0.070862260695976
1210 => 0.068052265324999
1211 => 0.068636552343605
1212 => 0.071073126340829
1213 => 0.06857515693048
1214 => 0.063722010407159
1215 => 0.062518362969375
1216 => 0.062357774213551
1217 => 0.059093386899798
1218 => 0.062598796446632
1219 => 0.061068591240303
1220 => 0.06590249115242
1221 => 0.063141393447344
1222 => 0.063022368043815
1223 => 0.062842443689149
1224 => 0.06003265067806
1225 => 0.060647816775827
1226 => 0.062692722577247
1227 => 0.063422368004706
1228 => 0.063346260008814
1229 => 0.062682701423226
1230 => 0.062986475145738
1231 => 0.062007914143745
]
'min_raw' => 0.03423876085407
'max_raw' => 0.1064711251347
'avg_raw' => 0.070354942994386
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.034238'
'max' => '$0.106471'
'avg' => '$0.070354'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.019504695015853
'max_diff' => 0.066499024324399
'year' => 2033
]
8 => [
'items' => [
101 => 0.061662363886955
102 => 0.06057171222544
103 => 0.058968755583225
104 => 0.059191656535829
105 => 0.05601577999118
106 => 0.054285393893129
107 => 0.053806445827311
108 => 0.053165976457081
109 => 0.053878788546902
110 => 0.056006783131956
111 => 0.053439970183145
112 => 0.049039349423401
113 => 0.049303834229355
114 => 0.049898053062089
115 => 0.04879073019844
116 => 0.04774274203856
117 => 0.048653882717609
118 => 0.046789281689347
119 => 0.050123381188117
120 => 0.050033203140381
121 => 0.051275949254193
122 => 0.052053063902877
123 => 0.050262066231516
124 => 0.049811635160541
125 => 0.050068221169519
126 => 0.045827425993511
127 => 0.050929385813671
128 => 0.050973507774059
129 => 0.050595708761996
130 => 0.053312344860894
131 => 0.059045294369616
201 => 0.056888328157075
202 => 0.05605308564493
203 => 0.054465289018785
204 => 0.056580933749089
205 => 0.056418485243001
206 => 0.055683831491703
207 => 0.055239510610659
208 => 0.056058185457604
209 => 0.055138067737249
210 => 0.054972789311529
211 => 0.053971381876367
212 => 0.053613924983149
213 => 0.05334927813018
214 => 0.053057927948723
215 => 0.053700573849075
216 => 0.052244253691769
217 => 0.050488074346883
218 => 0.05034206703648
219 => 0.050745206057598
220 => 0.050566847050923
221 => 0.050341213122176
222 => 0.049910416504452
223 => 0.049782608350487
224 => 0.050197922847172
225 => 0.049729056994754
226 => 0.050420894100442
227 => 0.050232752688788
228 => 0.049181810057231
301 => 0.047871946429514
302 => 0.047860285895695
303 => 0.04757807792571
304 => 0.047218643645682
305 => 0.047118657251721
306 => 0.048577148990997
307 => 0.051596183242315
308 => 0.051003474579414
309 => 0.051431767331587
310 => 0.053538543775359
311 => 0.054208224653856
312 => 0.05373290102856
313 => 0.05308224873357
314 => 0.053110874132433
315 => 0.055334349990258
316 => 0.05547302545214
317 => 0.055823413605915
318 => 0.056273761403196
319 => 0.053809597205796
320 => 0.052994812220334
321 => 0.052608721891672
322 => 0.051419713115156
323 => 0.05270195714272
324 => 0.051954848459022
325 => 0.05205565894532
326 => 0.051990005983868
327 => 0.052025856940255
328 => 0.050122449239358
329 => 0.050815950965401
330 => 0.049662869838983
331 => 0.048119023650139
401 => 0.048113848136372
402 => 0.048491702303926
403 => 0.04826693985963
404 => 0.0476621099012
405 => 0.047748023142078
406 => 0.046995332749825
407 => 0.047839413383597
408 => 0.047863618595908
409 => 0.047538601574523
410 => 0.048839024251529
411 => 0.049371808483343
412 => 0.049157875317328
413 => 0.049356798362113
414 => 0.051028104300277
415 => 0.051300600092388
416 => 0.051421624723182
417 => 0.051259467750609
418 => 0.049387346766603
419 => 0.049470383293117
420 => 0.04886111635716
421 => 0.048346349999244
422 => 0.048366937953967
423 => 0.048631594776878
424 => 0.049787366644448
425 => 0.052219620403277
426 => 0.05231192265547
427 => 0.052423795677775
428 => 0.051968751873185
429 => 0.051831506307538
430 => 0.052012568634713
501 => 0.052925995264702
502 => 0.055275576549944
503 => 0.054445077600482
504 => 0.053769869027083
505 => 0.054362208980878
506 => 0.054271022887905
507 => 0.053501320496775
508 => 0.053479717514229
509 => 0.052002412536909
510 => 0.0514562865234
511 => 0.050999902749689
512 => 0.050501543582997
513 => 0.050206099563831
514 => 0.050660035854175
515 => 0.050763856454593
516 => 0.049771316822307
517 => 0.049636037337986
518 => 0.050446566627167
519 => 0.050089882906576
520 => 0.050456740958534
521 => 0.050541855173439
522 => 0.050528149824493
523 => 0.050155731055331
524 => 0.050393099673107
525 => 0.049831652129077
526 => 0.049221162251638
527 => 0.048831707744695
528 => 0.048491857033744
529 => 0.048680425960419
530 => 0.048008212168148
531 => 0.04779315744701
601 => 0.050312684526368
602 => 0.05217388626937
603 => 0.05214682365891
604 => 0.051982086977673
605 => 0.05173732168497
606 => 0.052908089158992
607 => 0.052500217181277
608 => 0.052796978123909
609 => 0.052872516238826
610 => 0.053101147362056
611 => 0.053182863337101
612 => 0.05293586090512
613 => 0.052106890574583
614 => 0.050041175327019
615 => 0.049079579302986
616 => 0.048762236598407
617 => 0.048773771402999
618 => 0.04845558999872
619 => 0.048549308682171
620 => 0.04842299846525
621 => 0.048183797472125
622 => 0.048665655973144
623 => 0.048721185676564
624 => 0.048608714144646
625 => 0.048635205261942
626 => 0.047703989014879
627 => 0.047774787363648
628 => 0.047380573161084
629 => 0.047306662750427
630 => 0.046310123574503
701 => 0.044544609973691
702 => 0.045522875891093
703 => 0.044341268227875
704 => 0.043893775501537
705 => 0.046012136468625
706 => 0.045799511781717
707 => 0.045435590743459
708 => 0.044897275680086
709 => 0.044697609386689
710 => 0.043484500194674
711 => 0.043412823231924
712 => 0.04401407290419
713 => 0.043736616868177
714 => 0.043346963512797
715 => 0.041935678558138
716 => 0.040348927008711
717 => 0.040396821064024
718 => 0.040901537209334
719 => 0.042369067472071
720 => 0.041795678009888
721 => 0.041379677376189
722 => 0.04130177296243
723 => 0.042276909804558
724 => 0.043656932733654
725 => 0.044304408615713
726 => 0.043662779680727
727 => 0.042925710907971
728 => 0.042970572868921
729 => 0.043269019396608
730 => 0.043300381906861
731 => 0.042820625907691
801 => 0.04295567441127
802 => 0.042750523385239
803 => 0.041491511917164
804 => 0.041468740392075
805 => 0.041159758673507
806 => 0.041150402829866
807 => 0.04062474784748
808 => 0.040551205081763
809 => 0.039507485209258
810 => 0.040194464790015
811 => 0.03973367495529
812 => 0.039039155985026
813 => 0.038919420652772
814 => 0.0389158212641
815 => 0.039628936954961
816 => 0.040186131617971
817 => 0.039741690591746
818 => 0.039640499985202
819 => 0.040720950926879
820 => 0.040583453696021
821 => 0.040464381980861
822 => 0.043533366816577
823 => 0.041104025843235
824 => 0.040044694516922
825 => 0.038733570839048
826 => 0.039160479319823
827 => 0.039250435209313
828 => 0.036097419111831
829 => 0.034818240873766
830 => 0.034379275107277
831 => 0.034126644102598
901 => 0.034241771223771
902 => 0.03309036077687
903 => 0.033864127639758
904 => 0.032867103519044
905 => 0.032699949180609
906 => 0.034482751816034
907 => 0.034730818387771
908 => 0.033672489324497
909 => 0.034352107911031
910 => 0.034105668764149
911 => 0.032884194635961
912 => 0.03283754330882
913 => 0.032224650528187
914 => 0.031265592005925
915 => 0.030827276526275
916 => 0.030598998018844
917 => 0.030693190180069
918 => 0.030645563741026
919 => 0.030334769010504
920 => 0.030663378131176
921 => 0.029823917618522
922 => 0.02948963767839
923 => 0.029338651184668
924 => 0.028593581662143
925 => 0.029779318606401
926 => 0.03001292372194
927 => 0.030246989111721
928 => 0.032284368526538
929 => 0.032182586808548
930 => 0.033102643969468
1001 => 0.033066892240072
1002 => 0.032804477033839
1003 => 0.031697390443951
1004 => 0.03213865542676
1005 => 0.030780510397479
1006 => 0.031798124998301
1007 => 0.031333728191088
1008 => 0.031641111970641
1009 => 0.031088408219326
1010 => 0.031394297295882
1011 => 0.030068320161013
1012 => 0.028830141369474
1013 => 0.029328420659881
1014 => 0.029870107233703
1015 => 0.031044621744921
1016 => 0.030345090591574
1017 => 0.030596668446519
1018 => 0.029753924746077
1019 => 0.028015103774229
1020 => 0.028024945312095
1021 => 0.02775746558785
1022 => 0.027526324053423
1023 => 0.03042544015948
1024 => 0.030064889243448
1025 => 0.029490398546489
1026 => 0.030259377173721
1027 => 0.030462707328094
1028 => 0.03046849585174
1029 => 0.031029522807958
1030 => 0.031328942995061
1031 => 0.031381717100799
1101 => 0.032264505138197
1102 => 0.032560404044077
1103 => 0.033779169760217
1104 => 0.031303539284117
1105 => 0.031252555303596
1106 => 0.030270198279985
1107 => 0.029647171925161
1108 => 0.030312857427522
1109 => 0.030902563907481
1110 => 0.030288522104118
1111 => 0.030368703000507
1112 => 0.02954440204855
1113 => 0.02983905085191
1114 => 0.030092842094844
1115 => 0.029952713487655
1116 => 0.029742934180393
1117 => 0.030854214701049
1118 => 0.03079151189893
1119 => 0.031826361867993
1120 => 0.032633101421709
1121 => 0.034078922923913
1122 => 0.032570132813984
1123 => 0.03251514650548
1124 => 0.033052646491182
1125 => 0.03256032175563
1126 => 0.032871453994026
1127 => 0.034028794710221
1128 => 0.034053247495841
1129 => 0.033643631831078
1130 => 0.033618706680652
1201 => 0.033697377849774
1202 => 0.034158157344571
1203 => 0.033997146830765
1204 => 0.034183472273629
1205 => 0.034416475093046
1206 => 0.035380273545304
1207 => 0.03561264208922
1208 => 0.035048106996782
1209 => 0.035099078194798
1210 => 0.034887926573392
1211 => 0.034683956752835
1212 => 0.035142451122046
1213 => 0.035980358593508
1214 => 0.035975146014616
1215 => 0.036169524261401
1216 => 0.036290620298832
1217 => 0.035770787458461
1218 => 0.035432395394163
1219 => 0.035562156444061
1220 => 0.035769647188677
1221 => 0.035494869992073
1222 => 0.033798817845454
1223 => 0.034313291722507
1224 => 0.034227658112878
1225 => 0.034105705439364
1226 => 0.03462301290105
1227 => 0.034573117334391
1228 => 0.033078551398515
1229 => 0.033174228660623
1230 => 0.033084369849717
1231 => 0.033374722051136
]
'min_raw' => 0.027526324053423
'max_raw' => 0.061662363886955
'avg_raw' => 0.044594343970189
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.027526'
'max' => '$0.061662'
'avg' => '$0.044594'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0067124368006464
'max_diff' => -0.044808761247747
'year' => 2034
]
9 => [
'items' => [
101 => 0.032544641783899
102 => 0.032799968883425
103 => 0.032960107646705
104 => 0.033054430608521
105 => 0.03339518982446
106 => 0.033355205663498
107 => 0.033392704352875
108 => 0.033897960313015
109 => 0.036453371576498
110 => 0.036592456973372
111 => 0.035907549611069
112 => 0.036181156593109
113 => 0.035655891018862
114 => 0.036008505317828
115 => 0.036249755065748
116 => 0.035159593844556
117 => 0.035095041572125
118 => 0.034567608040006
119 => 0.034851020944805
120 => 0.034400090635161
121 => 0.034510733160275
122 => 0.034201367014415
123 => 0.034758164482778
124 => 0.035380750569988
125 => 0.035538040402286
126 => 0.035124278571039
127 => 0.034824687736982
128 => 0.034298704923735
129 => 0.035173426064457
130 => 0.035429221182648
131 => 0.035172082481596
201 => 0.035112497825971
202 => 0.034999585011228
203 => 0.035136452813392
204 => 0.035427828067499
205 => 0.035290420878518
206 => 0.035381180747643
207 => 0.03503529771771
208 => 0.035770959544762
209 => 0.03693936757278
210 => 0.036943124195644
211 => 0.036805716265987
212 => 0.036749491901667
213 => 0.036890480776105
214 => 0.036966961456822
215 => 0.037422893623817
216 => 0.037912127004142
217 => 0.040195165720873
218 => 0.039554097584942
219 => 0.041579745353006
220 => 0.043181769740102
221 => 0.043662146805756
222 => 0.043220222508842
223 => 0.04170842336138
224 => 0.041634247282787
225 => 0.043893513474231
226 => 0.043255167294201
227 => 0.043179238047287
228 => 0.042371479144611
301 => 0.042848964698979
302 => 0.042744531603948
303 => 0.0425796788544
304 => 0.043490688030202
305 => 0.045196015880954
306 => 0.044930224542951
307 => 0.044731823638837
308 => 0.043862488630645
309 => 0.04438602247858
310 => 0.044199602102961
311 => 0.045000582341915
312 => 0.044526099392244
313 => 0.043250331194057
314 => 0.043453501484605
315 => 0.04342279270391
316 => 0.044054777234555
317 => 0.043865071165276
318 => 0.04338574954921
319 => 0.045190187255753
320 => 0.0450730171079
321 => 0.04523913758873
322 => 0.045312268961839
323 => 0.046410598396052
324 => 0.046860548822628
325 => 0.046962695446952
326 => 0.047390113551783
327 => 0.046952060895134
328 => 0.048704583847982
329 => 0.049869909349076
330 => 0.051223494885698
331 => 0.053201447164197
401 => 0.053945175517995
402 => 0.053810827647735
403 => 0.055310488491236
404 => 0.058005345691419
405 => 0.054355535336809
406 => 0.058198794502645
407 => 0.056982063023302
408 => 0.054097214573844
409 => 0.053911464343828
410 => 0.05586511720758
411 => 0.060198131227263
412 => 0.05911276035997
413 => 0.060199906505178
414 => 0.058931692779626
415 => 0.058868715278808
416 => 0.060138312195234
417 => 0.063104794592589
418 => 0.061695530002536
419 => 0.05967500364684
420 => 0.061166928865014
421 => 0.05987448516987
422 => 0.0569622477925
423 => 0.059111930397323
424 => 0.057674498858914
425 => 0.058094017799885
426 => 0.061115285091817
427 => 0.06075175821797
428 => 0.06122219565441
429 => 0.060391885892585
430 => 0.059616245647208
501 => 0.058168455529412
502 => 0.057739836250723
503 => 0.057858291199246
504 => 0.057739777550333
505 => 0.056929752285304
506 => 0.056754827406444
507 => 0.056463278278043
508 => 0.056553641543966
509 => 0.056005443886866
510 => 0.05704000612923
511 => 0.057232029997944
512 => 0.057984898122604
513 => 0.058063063388851
514 => 0.060159790399624
515 => 0.059004948396156
516 => 0.059779716116344
517 => 0.059710413599054
518 => 0.05415973798737
519 => 0.054924572112634
520 => 0.056114413993375
521 => 0.055578391838894
522 => 0.054820581922325
523 => 0.054208609783498
524 => 0.053281409415811
525 => 0.054586426128024
526 => 0.056302384331529
527 => 0.058106582920654
528 => 0.060274209309713
529 => 0.059790420333628
530 => 0.05806606065308
531 => 0.058143414168704
601 => 0.058621583164804
602 => 0.05800231086862
603 => 0.057819675378844
604 => 0.058596491853067
605 => 0.058601841361194
606 => 0.057889293742878
607 => 0.057097427459956
608 => 0.057094109511317
609 => 0.056953204554792
610 => 0.05895675945837
611 => 0.060058512073088
612 => 0.060184826234803
613 => 0.060050010123586
614 => 0.060101895494134
615 => 0.059460809923091
616 => 0.060926141430474
617 => 0.062270874527914
618 => 0.061910457331768
619 => 0.061370140718421
620 => 0.060939752510716
621 => 0.061809071547967
622 => 0.061770362139673
623 => 0.062259129457428
624 => 0.062236956148638
625 => 0.062072602083145
626 => 0.061910463201369
627 => 0.062553325540263
628 => 0.062368191510715
629 => 0.062182769916884
630 => 0.061810878523829
701 => 0.061861424740607
702 => 0.061321201420541
703 => 0.061071269393741
704 => 0.057312891381458
705 => 0.056308529968031
706 => 0.056624522514357
707 => 0.05672855546535
708 => 0.056291456091103
709 => 0.056918144312157
710 => 0.056820475616733
711 => 0.057200447376353
712 => 0.056963057517398
713 => 0.056972800080015
714 => 0.057670913038346
715 => 0.057873578200134
716 => 0.05777050106314
717 => 0.057842692756613
718 => 0.059506319862491
719 => 0.059269805287835
720 => 0.059144161633959
721 => 0.059178965784747
722 => 0.059604058178866
723 => 0.059723060840035
724 => 0.059218838202493
725 => 0.059456632513234
726 => 0.060469130507779
727 => 0.060823447503446
728 => 0.06195425727181
729 => 0.061473869183668
730 => 0.062355642310162
731 => 0.065065912282393
801 => 0.067231063472627
802 => 0.06523990095943
803 => 0.069215925389955
804 => 0.072311830735948
805 => 0.072193004732269
806 => 0.071653162025614
807 => 0.068128556098103
808 => 0.064885161174693
809 => 0.067598398749948
810 => 0.06760531535051
811 => 0.067372245836544
812 => 0.0659246711023
813 => 0.067321873373593
814 => 0.067432778215995
815 => 0.067370700996228
816 => 0.066260848841501
817 => 0.064566309736197
818 => 0.06489741862122
819 => 0.065439781729326
820 => 0.064412975216884
821 => 0.064084848319759
822 => 0.064694898650212
823 => 0.066660607923964
824 => 0.06628900197234
825 => 0.066279297839165
826 => 0.067869185685663
827 => 0.066731169106842
828 => 0.064901594964617
829 => 0.064439603364588
830 => 0.062799844419313
831 => 0.063932431763435
901 => 0.063973191565644
902 => 0.06335288505203
903 => 0.064951929419493
904 => 0.06493719394414
905 => 0.066455248584701
906 => 0.069357198902167
907 => 0.06849894939699
908 => 0.06750089859975
909 => 0.067609414394357
910 => 0.068799564821391
911 => 0.068079972704714
912 => 0.068338743047045
913 => 0.068799173141485
914 => 0.069076962049297
915 => 0.067569444845451
916 => 0.067217970472351
917 => 0.066498977255731
918 => 0.066311405346159
919 => 0.06689701031881
920 => 0.066742724098245
921 => 0.063969765862098
922 => 0.063679976297827
923 => 0.063688863730039
924 => 0.062960174091935
925 => 0.061848747488276
926 => 0.064769510242858
927 => 0.064534932117617
928 => 0.064275976022255
929 => 0.064307696666354
930 => 0.065575500784283
1001 => 0.064840110370242
1002 => 0.06679526631409
1003 => 0.066393345029402
1004 => 0.06598111598035
1005 => 0.065924133368967
1006 => 0.065765460354812
1007 => 0.065221311549645
1008 => 0.064564219169132
1009 => 0.06413034986315
1010 => 0.059156857831289
1011 => 0.06007990902293
1012 => 0.06114179528015
1013 => 0.0615083541609
1014 => 0.060881329830274
1015 => 0.065246070291976
1016 => 0.066043550434015
1017 => 0.063627931065438
1018 => 0.063176067310666
1019 => 0.065275694404512
1020 => 0.064009362597949
1021 => 0.064579591732906
1022 => 0.06334706824179
1023 => 0.065851460820742
1024 => 0.065832381545296
1025 => 0.064858116267812
1026 => 0.06568155860886
1027 => 0.065538465238182
1028 => 0.064438522139412
1029 => 0.065886330978906
1030 => 0.065887049074028
1031 => 0.064949339926803
1101 => 0.063854300933772
1102 => 0.063658533825485
1103 => 0.063511049607001
1104 => 0.064543319656106
1105 => 0.065468849754309
1106 => 0.067191031808695
1107 => 0.067624029295204
1108 => 0.069314047311324
1109 => 0.068307723868208
1110 => 0.068753814016471
1111 => 0.069238107975714
1112 => 0.069470296309096
1113 => 0.069091957879763
1114 => 0.071717251497965
1115 => 0.071938906716259
1116 => 0.072013225793643
1117 => 0.071127991556633
1118 => 0.071914286750751
1119 => 0.071546405268783
1120 => 0.072503530684444
1121 => 0.07265362017081
1122 => 0.072526499715446
1123 => 0.07257414048742
1124 => 0.070333915517816
1125 => 0.070217748035013
1126 => 0.068633796164137
1127 => 0.0692792682595
1128 => 0.068072589115502
1129 => 0.068455239502236
1130 => 0.068623908146682
1201 => 0.068535805218685
1202 => 0.069315762283314
1203 => 0.068652639443678
1204 => 0.06690254924239
1205 => 0.065151982230198
1206 => 0.065130005287341
1207 => 0.064669111893105
1208 => 0.064335970385908
1209 => 0.064400145259024
1210 => 0.064626305882345
1211 => 0.064322825519343
1212 => 0.064387588441635
1213 => 0.065463084464767
1214 => 0.065678767522119
1215 => 0.064945792220425
1216 => 0.062002790616292
1217 => 0.061280570640677
1218 => 0.061799688036905
1219 => 0.06155158335695
1220 => 0.049676931673175
1221 => 0.05246670494708
1222 => 0.050809116399474
1223 => 0.051573009464193
1224 => 0.049881040787561
1225 => 0.050688536923726
1226 => 0.050539421872414
1227 => 0.05502529474146
1228 => 0.054955254006726
1229 => 0.05498877879997
1230 => 0.053388553070057
1231 => 0.055937756108672
]
'min_raw' => 0.032544641783899
'max_raw' => 0.07265362017081
'avg_raw' => 0.052599130977354
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.032544'
'max' => '$0.072653'
'avg' => '$0.052599'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0050183177304755
'max_diff' => 0.010991256283855
'year' => 2035
]
10 => [
'items' => [
101 => 0.05719358519187
102 => 0.056961164651379
103 => 0.057019659894117
104 => 0.056014517819873
105 => 0.054998510772381
106 => 0.053871602594348
107 => 0.055965258699072
108 => 0.055732479880128
109 => 0.056266390739609
110 => 0.057624276381152
111 => 0.057824230199975
112 => 0.058092970160205
113 => 0.057996646014675
114 => 0.06029147795099
115 => 0.060013558661713
116 => 0.060683264186033
117 => 0.059305629111827
118 => 0.057746704259042
119 => 0.058043004908463
120 => 0.058014468773225
121 => 0.057651171019386
122 => 0.05732320205136
123 => 0.056777226124281
124 => 0.058504774746793
125 => 0.058434639427593
126 => 0.059570048722047
127 => 0.059369354100474
128 => 0.058029066299311
129 => 0.058076934940334
130 => 0.058398874556097
131 => 0.059513111242094
201 => 0.059843892553516
202 => 0.059690661470709
203 => 0.060053348077943
204 => 0.060340000784377
205 => 0.060089347244489
206 => 0.063638072787772
207 => 0.062164394525919
208 => 0.062882655056959
209 => 0.063053955961375
210 => 0.062615172296783
211 => 0.062710328761968
212 => 0.062854464878139
213 => 0.063729631150781
214 => 0.066026320681597
215 => 0.067043508840701
216 => 0.070103769604544
217 => 0.06695904552403
218 => 0.066772450611254
219 => 0.067323695985844
220 => 0.06912039301572
221 => 0.070576447203265
222 => 0.071059504379055
223 => 0.07112334835924
224 => 0.072029595734055
225 => 0.072549039828787
226 => 0.071919553466081
227 => 0.071386129683657
228 => 0.069475471906011
229 => 0.069696635746322
301 => 0.071220235288436
302 => 0.073372409381238
303 => 0.075219198648411
304 => 0.074572517414151
305 => 0.079506238745752
306 => 0.079995397063336
307 => 0.079927811200228
308 => 0.081042186644202
309 => 0.078830378326526
310 => 0.077884787418952
311 => 0.071501461960034
312 => 0.073294916041528
313 => 0.075901806874845
314 => 0.075556775097716
315 => 0.07366358129217
316 => 0.075217762491143
317 => 0.074703901583023
318 => 0.07429859816468
319 => 0.076155371696042
320 => 0.074113772926257
321 => 0.075881440365375
322 => 0.073614388590528
323 => 0.074575471399557
324 => 0.074029914314807
325 => 0.074382956609602
326 => 0.072319078568071
327 => 0.073432697061474
328 => 0.072272748377507
329 => 0.072272198410801
330 => 0.072246592479313
331 => 0.073611266961999
401 => 0.073655768947886
402 => 0.072647272443272
403 => 0.072501932341281
404 => 0.073039330874173
405 => 0.072410177937055
406 => 0.072704554636491
407 => 0.072419094307395
408 => 0.072354831174601
409 => 0.071842771599027
410 => 0.071622162254498
411 => 0.07170866886289
412 => 0.071413377211235
413 => 0.071235453309947
414 => 0.072211198937067
415 => 0.071689897409963
416 => 0.072131302001522
417 => 0.07162826575974
418 => 0.069884522983265
419 => 0.06888167807277
420 => 0.065587909613051
421 => 0.06652201826232
422 => 0.067141333263191
423 => 0.066936649659097
424 => 0.06737638924273
425 => 0.067403385681748
426 => 0.067260421860495
427 => 0.067094888070283
428 => 0.067014315375801
429 => 0.067614838228501
430 => 0.067963461957163
501 => 0.067203489808894
502 => 0.067025438967695
503 => 0.067793812768807
504 => 0.068262520343611
505 => 0.071723193731924
506 => 0.07146681586949
507 => 0.072110273992585
508 => 0.072037830482594
509 => 0.072712277106515
510 => 0.073814712294216
511 => 0.071573153311894
512 => 0.071962210443947
513 => 0.071866822619809
514 => 0.07290824187172
515 => 0.072911493068949
516 => 0.072287110204679
517 => 0.072625598284855
518 => 0.072436663524436
519 => 0.072778094172578
520 => 0.071463391786831
521 => 0.073064557379318
522 => 0.073972315093427
523 => 0.073984919310168
524 => 0.074415189262244
525 => 0.074852368453109
526 => 0.075691495839692
527 => 0.074828965645735
528 => 0.073277357792428
529 => 0.073389378867774
530 => 0.072479671751091
531 => 0.072494964092074
601 => 0.072413332377422
602 => 0.072658315298042
603 => 0.071517151761322
604 => 0.071784980562465
605 => 0.071410018672462
606 => 0.071961395350027
607 => 0.071368205190797
608 => 0.071866776620912
609 => 0.072081943522245
610 => 0.072875914020376
611 => 0.071250935102665
612 => 0.067937493088051
613 => 0.068634018771124
614 => 0.067603802574948
615 => 0.067699153006213
616 => 0.067891776052279
617 => 0.067267421737642
618 => 0.067386528865209
619 => 0.067382273520468
620 => 0.067345603258416
621 => 0.067183184587471
622 => 0.066947645381047
623 => 0.067885961084298
624 => 0.068045399206562
625 => 0.068399810402151
626 => 0.069454297720811
627 => 0.069348929571153
628 => 0.069520789394927
629 => 0.069145620364581
630 => 0.06771655602152
701 => 0.067794161090785
702 => 0.066826424633524
703 => 0.06837506320517
704 => 0.068008325150374
705 => 0.067771886740675
706 => 0.067707372330002
707 => 0.068764473518764
708 => 0.069080774762473
709 => 0.06888367705358
710 => 0.068479423902383
711 => 0.069255709459397
712 => 0.069463410725596
713 => 0.06950990737937
714 => 0.070885336548406
715 => 0.069586778590807
716 => 0.069899354397757
717 => 0.072337981614884
718 => 0.070126483236503
719 => 0.07129796324983
720 => 0.071240625399266
721 => 0.071839914933362
722 => 0.071191466165519
723 => 0.071199504465155
724 => 0.071731632972043
725 => 0.070984354454001
726 => 0.070799317783932
727 => 0.07054369094949
728 => 0.071101842790574
729 => 0.071436429576267
730 => 0.07413295334204
731 => 0.075875030671153
801 => 0.075799402499894
802 => 0.076490502415196
803 => 0.076179155573602
804 => 0.075173734492951
805 => 0.076889865679584
806 => 0.076346809966155
807 => 0.076391578819357
808 => 0.076389912520405
809 => 0.076750997095081
810 => 0.076495135581008
811 => 0.075990806273124
812 => 0.07632560360376
813 => 0.077319831983516
814 => 0.080405947380927
815 => 0.08213297844291
816 => 0.080301977942472
817 => 0.0815649775696
818 => 0.080807627846105
819 => 0.080669994872143
820 => 0.081463251972919
821 => 0.08225789756524
822 => 0.082207282076356
823 => 0.081630410181834
824 => 0.081304549886201
825 => 0.083772073215943
826 => 0.085590102372134
827 => 0.085466124971904
828 => 0.086013320896909
829 => 0.087619905056858
830 => 0.087766790978075
831 => 0.087748286728136
901 => 0.087384214646438
902 => 0.088966105393223
903 => 0.090285746484911
904 => 0.087299942478578
905 => 0.088436897557145
906 => 0.088947313322319
907 => 0.089696755099127
908 => 0.090961188997628
909 => 0.092334699585929
910 => 0.092528929042892
911 => 0.092391113948441
912 => 0.091485246793511
913 => 0.092988158468618
914 => 0.09386852888028
915 => 0.094392769313506
916 => 0.095722155826878
917 => 0.088950465476318
918 => 0.084157126471344
919 => 0.083408577369063
920 => 0.084930781403791
921 => 0.085332174468399
922 => 0.08517037342736
923 => 0.079775034585946
924 => 0.083380172026654
925 => 0.087258996784291
926 => 0.087407998240243
927 => 0.089349819016317
928 => 0.08998215545893
929 => 0.091545575703937
930 => 0.091447783341938
1001 => 0.091828451292148
1002 => 0.091740942322644
1003 => 0.094636849109546
1004 => 0.097831464341819
1005 => 0.097720844974579
1006 => 0.097261581237968
1007 => 0.097943666202939
1008 => 0.10124085147842
1009 => 0.10093729949457
1010 => 0.10123217439038
1011 => 0.10511974165139
1012 => 0.1101741320907
1013 => 0.10782586027914
1014 => 0.11292093441321
1015 => 0.11612801350234
1016 => 0.12167432516881
1017 => 0.12097989963201
1018 => 0.12313903806305
1019 => 0.11973673299015
1020 => 0.11192435282345
1021 => 0.11068801375748
1022 => 0.11316319587665
1023 => 0.11924818959187
1024 => 0.1129715577699
1025 => 0.11424131221278
1026 => 0.11387562284781
1027 => 0.11385613681563
1028 => 0.1145998394085
1029 => 0.11352106000862
1030 => 0.1091259186648
1031 => 0.11114018604194
1101 => 0.11036238067456
1102 => 0.1112254137189
1103 => 0.1158828471173
1104 => 0.11382368479252
1105 => 0.11165452455614
1106 => 0.11437513286775
1107 => 0.11783940215089
1108 => 0.11762261440504
1109 => 0.11720195556785
1110 => 0.11957318740813
1111 => 0.12348976770253
1112 => 0.12454840361801
1113 => 0.12532986700796
1114 => 0.12543761760651
1115 => 0.12654751573811
1116 => 0.12057931375412
1117 => 0.13005100357701
1118 => 0.13168650275928
1119 => 0.13137909669751
1120 => 0.13319688520627
1121 => 0.13266204571415
1122 => 0.13188714720381
1123 => 0.1347687286449
1124 => 0.13146522805432
1125 => 0.12677632486516
1126 => 0.1242038998396
1127 => 0.12759147662487
1128 => 0.12966015155749
1129 => 0.13102741409552
1130 => 0.13144114691341
1201 => 0.12104260828484
1202 => 0.11543837269344
1203 => 0.11903062345484
1204 => 0.12341341730765
1205 => 0.12055496711297
1206 => 0.12066701294884
1207 => 0.11659161415873
1208 => 0.12377399967071
1209 => 0.12272758651498
1210 => 0.12815637981795
1211 => 0.12686075472741
1212 => 0.13128772492144
1213 => 0.13012195530543
1214 => 0.1349609998042
1215 => 0.13689142566667
1216 => 0.14013291113654
1217 => 0.14251736104339
1218 => 0.14391755563596
1219 => 0.14383349320462
1220 => 0.14938176175453
1221 => 0.14611014163238
1222 => 0.14200021569731
1223 => 0.14192588010379
1224 => 0.14405446898367
1225 => 0.14851540732605
1226 => 0.14967206373421
1227 => 0.15031847687241
1228 => 0.14932847264946
1229 => 0.145777363486
1230 => 0.14424401255375
1231 => 0.14555047197348
]
'min_raw' => 0.053871602594348
'max_raw' => 0.15031847687241
'avg_raw' => 0.10209503973338
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.053871'
'max' => '$0.150318'
'avg' => '$0.102095'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.02132696081045
'max_diff' => 0.0776648567016
'year' => 2036
]
11 => [
'items' => [
101 => 0.14395278436848
102 => 0.14671084140667
103 => 0.15049824280929
104 => 0.14971615939666
105 => 0.1523305469886
106 => 0.15503616310465
107 => 0.15890531566744
108 => 0.15991685542166
109 => 0.16158889216996
110 => 0.16330996721943
111 => 0.16386273014105
112 => 0.16491812607068
113 => 0.16491256361317
114 => 0.16809307028344
115 => 0.17160126763284
116 => 0.17292553091728
117 => 0.17597060131955
118 => 0.17075602496766
119 => 0.17471134103131
120 => 0.1782791351287
121 => 0.1740254639229
122 => 0.17988815870182
123 => 0.18011579385493
124 => 0.18355281440604
125 => 0.18006873562403
126 => 0.17799990076484
127 => 0.18397254948508
128 => 0.18686252606414
129 => 0.18599204159912
130 => 0.17936761183919
131 => 0.17551190958376
201 => 0.16542079307187
202 => 0.17737415648399
203 => 0.18319629111765
204 => 0.17935253391702
205 => 0.18129110147101
206 => 0.19186729746297
207 => 0.19589402813874
208 => 0.19505649630715
209 => 0.19519802539974
210 => 0.19737077618205
211 => 0.20700594970652
212 => 0.20123233038908
213 => 0.20564604602387
214 => 0.20798706488173
215 => 0.21016153366331
216 => 0.20482172558367
217 => 0.19787471372942
218 => 0.19567430345947
219 => 0.17897034801559
220 => 0.17810083459313
221 => 0.17761275036015
222 => 0.17453544831212
223 => 0.17211753184633
224 => 0.17019471490125
225 => 0.16514866903563
226 => 0.16685156138705
227 => 0.15880921746886
228 => 0.16395442410455
301 => 0.15111864902194
302 => 0.16180866392785
303 => 0.1559905748299
304 => 0.15989726518217
305 => 0.15988363510757
306 => 0.15269017955173
307 => 0.14854114451071
308 => 0.15118507112171
309 => 0.15401957032385
310 => 0.154479458283
311 => 0.15815446048658
312 => 0.15918007460769
313 => 0.15607241593938
314 => 0.15085265611359
315 => 0.15206508727108
316 => 0.14851657463201
317 => 0.1422979427236
318 => 0.14676427272711
319 => 0.14828927416098
320 => 0.14896280167159
321 => 0.14284749140438
322 => 0.14092592814857
323 => 0.13990290399466
324 => 0.15006324635087
325 => 0.15061985284082
326 => 0.14777217534201
327 => 0.16064394766448
328 => 0.15773066915953
329 => 0.16098551502013
330 => 0.15195507185164
331 => 0.15230004694178
401 => 0.14802489042654
402 => 0.15041869240901
403 => 0.14872683032364
404 => 0.15022529686484
405 => 0.15112347153123
406 => 0.15539792653534
407 => 0.16185747133785
408 => 0.15475946549824
409 => 0.15166676270861
410 => 0.15358545812528
411 => 0.15869519686259
412 => 0.16643671261233
413 => 0.16185357947596
414 => 0.16388749613523
415 => 0.16433181644263
416 => 0.16095238374468
417 => 0.16656131711627
418 => 0.169567190077
419 => 0.17265059375694
420 => 0.17532782677723
421 => 0.17141901452167
422 => 0.17560200394134
423 => 0.17223125286612
424 => 0.16920734068981
425 => 0.16921192671636
426 => 0.16731498243586
427 => 0.16363941386201
428 => 0.16296158262365
429 => 0.16648774632623
430 => 0.16931539568675
501 => 0.16954829443161
502 => 0.17111382640747
503 => 0.17204029210452
504 => 0.18112091540465
505 => 0.18477321721482
506 => 0.18923918273375
507 => 0.1909789279914
508 => 0.19621493748374
509 => 0.19198643457078
510 => 0.19107157136703
511 => 0.17837072502428
512 => 0.18045048790139
513 => 0.18378038893491
514 => 0.17842563386584
515 => 0.18182199346245
516 => 0.18249250679155
517 => 0.17824368133762
518 => 0.18051316259347
519 => 0.17448609323221
520 => 0.16198884497984
521 => 0.1665752301261
522 => 0.1699523533543
523 => 0.16513278211137
524 => 0.17377167702115
525 => 0.16872501295785
526 => 0.16712546273238
527 => 0.16088504702199
528 => 0.16383028302166
529 => 0.16781375688294
530 => 0.16535243316521
531 => 0.17046004944912
601 => 0.17769379625863
602 => 0.18284899501216
603 => 0.1832447471601
604 => 0.17993029973307
605 => 0.1852417228874
606 => 0.18528041080647
607 => 0.17928910379058
608 => 0.17561946160309
609 => 0.1747857111771
610 => 0.17686858320762
611 => 0.17939757437207
612 => 0.18338508856884
613 => 0.18579465988528
614 => 0.19207754394067
615 => 0.19377751222165
616 => 0.19564526196428
617 => 0.19814115161311
618 => 0.20113810706951
619 => 0.19458093914768
620 => 0.19484146765331
621 => 0.18873552367467
622 => 0.18221044685255
623 => 0.18716216679823
624 => 0.1936358819275
625 => 0.19215080452403
626 => 0.19198370297876
627 => 0.1922647214278
628 => 0.19114502156367
629 => 0.18608066057624
630 => 0.18353737019293
701 => 0.18681886364998
702 => 0.18856283137993
703 => 0.19126757323911
704 => 0.19093415671479
705 => 0.19790128127598
706 => 0.20060849520554
707 => 0.19991587403414
708 => 0.20004333299854
709 => 0.20494461450463
710 => 0.21039584756482
711 => 0.21550164667924
712 => 0.22069548483761
713 => 0.21443411021875
714 => 0.21125497033518
715 => 0.21453503119484
716 => 0.21279458473251
717 => 0.22279570635503
718 => 0.22348816231705
719 => 0.23348856074465
720 => 0.24298012967773
721 => 0.23701864528998
722 => 0.24264005655648
723 => 0.24872007116157
724 => 0.26044940578163
725 => 0.25649937852456
726 => 0.25347371955047
727 => 0.25061448643983
728 => 0.2565640966526
729 => 0.26421817514398
730 => 0.26586679034117
731 => 0.2685381767801
801 => 0.26572954058116
802 => 0.26911223352166
803 => 0.2810546260322
804 => 0.27782768615743
805 => 0.2732449127788
806 => 0.2826722847063
807 => 0.28608401395889
808 => 0.31002931659
809 => 0.34026125029289
810 => 0.32774503122631
811 => 0.31997581015582
812 => 0.32180176139578
813 => 0.33284144016853
814 => 0.33638703460845
815 => 0.32674888668105
816 => 0.33015324346802
817 => 0.34891158407318
818 => 0.35897483196822
819 => 0.34530758965224
820 => 0.30760021015315
821 => 0.27283228417726
822 => 0.28205430376618
823 => 0.28100881293738
824 => 0.30116230976697
825 => 0.27775072470864
826 => 0.27814491575867
827 => 0.29871516555977
828 => 0.2932273755762
829 => 0.28433785862584
830 => 0.27289718748873
831 => 0.25174804875778
901 => 0.23301566679641
902 => 0.26975418163257
903 => 0.26816995006819
904 => 0.26587574799299
905 => 0.27098124645275
906 => 0.29577209775235
907 => 0.29520058838974
908 => 0.29156493741145
909 => 0.29432254663532
910 => 0.28385443639605
911 => 0.28655230675915
912 => 0.27282677676015
913 => 0.27903128954847
914 => 0.28431878571495
915 => 0.28538032885309
916 => 0.28777203974706
917 => 0.26733513202179
918 => 0.27651070359435
919 => 0.28190049225844
920 => 0.2575492309919
921 => 0.28141914611847
922 => 0.26697937092631
923 => 0.26207829434794
924 => 0.26867694829297
925 => 0.26610544643319
926 => 0.26389462013781
927 => 0.26266094107817
928 => 0.26750626426854
929 => 0.2672802241503
930 => 0.25935233497415
1001 => 0.24901072672596
1002 => 0.25248170990577
1003 => 0.25122066917591
1004 => 0.24665049489338
1005 => 0.24973024055486
1006 => 0.23616859928533
1007 => 0.21283650035389
1008 => 0.22825039958952
1009 => 0.22765698123605
1010 => 0.22735775279284
1011 => 0.23894087205953
1012 => 0.23782742241007
1013 => 0.23580650039336
1014 => 0.24661337907572
1015 => 0.24266872298363
1016 => 0.25482522358159
1017 => 0.26283228110856
1018 => 0.26080143231855
1019 => 0.26833210862414
1020 => 0.25256167434783
1021 => 0.25779998001442
1022 => 0.25887958755232
1023 => 0.24648002387029
1024 => 0.23800959654299
1025 => 0.2374447156102
1026 => 0.22275816192145
1027 => 0.23060360035626
1028 => 0.23750726151259
1029 => 0.23420094356445
1030 => 0.23315426207551
1031 => 0.23850153080499
1101 => 0.23891705938153
1102 => 0.22944296380067
1103 => 0.23141292827752
1104 => 0.23962800762533
1105 => 0.23120592935568
1106 => 0.21484320701643
1107 => 0.21078502564396
1108 => 0.21024358944175
1109 => 0.19923747970119
1110 => 0.21105621272822
1111 => 0.20589701903957
1112 => 0.22219485008538
1113 => 0.21288561639904
1114 => 0.21248431394095
1115 => 0.21187768641727
1116 => 0.20240427310691
1117 => 0.20447834855505
1118 => 0.2113728912353
1119 => 0.2138329417362
1120 => 0.21357633831435
1121 => 0.21133910421486
1122 => 0.21236329852912
1123 => 0.20906401178995
1124 => 0.20789896497364
1125 => 0.20422175674997
1126 => 0.19881727651588
1127 => 0.19956880264004
1128 => 0.18886111313713
1129 => 0.18302699559585
1130 => 0.18141218875286
1201 => 0.17925280155499
1202 => 0.18165609728277
1203 => 0.18883077959812
1204 => 0.18017659053204
1205 => 0.16533959039904
1206 => 0.16623131938805
1207 => 0.16823476966965
1208 => 0.16450135332404
1209 => 0.16096798807481
1210 => 0.16403996248803
1211 => 0.15775332993896
1212 => 0.16899447917846
1213 => 0.16869043759449
1214 => 0.17288044288297
1215 => 0.17550053917742
1216 => 0.16946206548496
1217 => 0.16794340568107
1218 => 0.16880850332461
1219 => 0.15451036630583
1220 => 0.17171198004696
1221 => 0.17186074031691
1222 => 0.17058696457065
1223 => 0.17974629284756
1224 => 0.19907533237797
1225 => 0.19180297019782
1226 => 0.18898689175335
1227 => 0.18363352457188
1228 => 0.1907665684897
1229 => 0.19021886200963
1230 => 0.18774192559524
1231 => 0.18624386672331
]
'min_raw' => 0.13990290399466
'max_raw' => 0.35897483196822
'avg_raw' => 0.24943886798144
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.1399029'
'max' => '$0.358974'
'avg' => '$0.249438'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.086031301400313
'max_diff' => 0.20865635509581
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0043913922929248
]
1 => [
'year' => 2028
'avg' => 0.0075369040049505
]
2 => [
'year' => 2029
'avg' => 0.020589463346743
]
3 => [
'year' => 2030
'avg' => 0.015884740309263
]
4 => [
'year' => 2031
'avg' => 0.015600783557891
]
5 => [
'year' => 2032
'avg' => 0.02735308332426
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0043913922929248
'min' => '$0.004391'
'max_raw' => 0.02735308332426
'max' => '$0.027353'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.02735308332426
]
1 => [
'year' => 2033
'avg' => 0.070354942994386
]
2 => [
'year' => 2034
'avg' => 0.044594343970189
]
3 => [
'year' => 2035
'avg' => 0.052599130977354
]
4 => [
'year' => 2036
'avg' => 0.10209503973338
]
5 => [
'year' => 2037
'avg' => 0.24943886798144
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.02735308332426
'min' => '$0.027353'
'max_raw' => 0.24943886798144
'max' => '$0.249438'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.24943886798144
]
]
]
]
'prediction_2025_max_price' => '$0.0075084'
'last_price' => 0.00728042
'sma_50day_nextmonth' => '$0.006797'
'sma_200day_nextmonth' => '$0.007344'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.007191'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.007129'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.007034'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.006954'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.007039'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.007731'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.007237'
'daily_sma200_action' => 'BUY'
'daily_ema3' => '$0.0072049'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.007151'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.007072'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.007029'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.007158'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.0073072'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.007222'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '$0.007596'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.006645'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '$0.007931'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.011758'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.007151'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.007139'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.007246'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.00727'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.007375'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.015483'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.0528097'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '63.01'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 116.19
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.007024'
'vwma_10_action' => 'BUY'
'hma_9' => '0.007224'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 222.83
'cci_20_action' => 'SELL'
'adx_14' => 13.21
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000096'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 84.62
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000618'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 9
'buy_signals' => 26
'sell_pct' => 25.71
'buy_pct' => 74.29
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767696012
'last_updated_date' => '6. Januar 2026'
]
Eggplant Finance Preisprognose für 2026
Die Preisprognose für Eggplant Finance im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.002515 am unteren Ende und $0.0075084 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Eggplant Finance im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn EGGP das prognostizierte Preisziel erreicht.
Eggplant Finance Preisprognose 2027-2032
Die Preisprognose für EGGP für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.004391 am unteren Ende und $0.027353 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Eggplant Finance, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Eggplant Finance Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.002421 | $0.004391 | $0.006361 |
| 2028 | $0.00437 | $0.007536 | $0.0107037 |
| 2029 | $0.009599 | $0.020589 | $0.031579 |
| 2030 | $0.008164 | $0.015884 | $0.0236052 |
| 2031 | $0.009652 | $0.01560078 | $0.021548 |
| 2032 | $0.014734 | $0.027353 | $0.039972 |
Eggplant Finance Preisprognose 2032-2037
Die Preisprognose für Eggplant Finance für die Jahre 2032-2037 wird derzeit zwischen $0.027353 am unteren Ende und $0.249438 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Eggplant Finance bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Eggplant Finance Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.014734 | $0.027353 | $0.039972 |
| 2033 | $0.034238 | $0.070354 | $0.106471 |
| 2034 | $0.027526 | $0.044594 | $0.061662 |
| 2035 | $0.032544 | $0.052599 | $0.072653 |
| 2036 | $0.053871 | $0.102095 | $0.150318 |
| 2037 | $0.1399029 | $0.249438 | $0.358974 |
Eggplant Finance Potenzielles Preishistogramm
Eggplant Finance Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Eggplant Finance Bullisch, mit 26 technischen Indikatoren, die bullische Signale zeigen, und 9 anzeigen bärische Signale. Die Preisprognose für EGGP wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Eggplant Finance
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Eggplant Finance im nächsten Monat steigen, und bis zum 04.02.2026 $0.007344 erreichen. Der kurzfristige 50-Tage-SMA für Eggplant Finance wird voraussichtlich bis zum 04.02.2026 $0.006797 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 63.01, was darauf hindeutet, dass sich der EGGP-Markt in einem NEUTRAL Zustand befindet.
Beliebte EGGP Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.007191 | BUY |
| SMA 5 | $0.007129 | BUY |
| SMA 10 | $0.007034 | BUY |
| SMA 21 | $0.006954 | BUY |
| SMA 50 | $0.007039 | BUY |
| SMA 100 | $0.007731 | SELL |
| SMA 200 | $0.007237 | BUY |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.0072049 | BUY |
| EMA 5 | $0.007151 | BUY |
| EMA 10 | $0.007072 | BUY |
| EMA 21 | $0.007029 | BUY |
| EMA 50 | $0.007158 | BUY |
| EMA 100 | $0.0073072 | SELL |
| EMA 200 | $0.007222 | BUY |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.007596 | SELL |
| SMA 50 | $0.006645 | BUY |
| SMA 100 | $0.007931 | SELL |
| SMA 200 | $0.011758 | SELL |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.00727 | BUY |
| EMA 50 | $0.007375 | SELL |
| EMA 100 | $0.015483 | SELL |
| EMA 200 | $0.0528097 | SELL |
Eggplant Finance Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 63.01 | NEUTRAL |
| Stoch RSI (14) | 116.19 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 222.83 | SELL |
| Average Directional Index (14) | 13.21 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.000096 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 84.62 | SELL |
| VWMA (10) | 0.007024 | BUY |
| Hull Moving Average (9) | 0.007224 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.000618 | NEUTRAL |
Auf weltweiten Geldflüssen basierende Eggplant Finance-Preisprognose
Definition weltweiter Geldflüsse, die für Eggplant Finance-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Eggplant Finance-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.01023 | $0.014375 | $0.020199 | $0.028383 | $0.039883 | $0.056043 |
| Amazon.com aktie | $0.015191 | $0.031696 | $0.066137 | $0.13800012 | $0.287945 | $0.600815 |
| Apple aktie | $0.010326 | $0.014647 | $0.020776 | $0.02947 | $0.04180096 | $0.059291 |
| Netflix aktie | $0.011487 | $0.018125 | $0.028598 | $0.045124 | $0.071199 | $0.112341 |
| Google aktie | $0.009428 | $0.0122093 | $0.015811 | $0.020475 | $0.026515 | $0.034337 |
| Tesla aktie | $0.0165041 | $0.037413 | $0.084814 | $0.192266 | $0.435854 | $0.988049 |
| Kodak aktie | $0.005459 | $0.004094 | $0.00307 | $0.0023022 | $0.001726 | $0.001294 |
| Nokia aktie | $0.004822 | $0.003195 | $0.002116 | $0.0014021 | $0.000928 | $0.000615 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Eggplant Finance Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Eggplant Finance investieren?", "Sollte ich heute EGGP kaufen?", "Wird Eggplant Finance auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Eggplant Finance-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Eggplant Finance.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Eggplant Finance zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Eggplant Finance-Preis entspricht heute $0.00728 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
Eggplant Finance-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Eggplant Finance 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.007469 | $0.007663 | $0.007863 | $0.008067 |
| Wenn die Wachstumsrate von Eggplant Finance 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.007658 | $0.008057 | $0.008475 | $0.008916 |
| Wenn die Wachstumsrate von Eggplant Finance 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.008226 | $0.009295 | $0.0105039 | $0.011869 |
| Wenn die Wachstumsrate von Eggplant Finance 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.009172 | $0.011557 | $0.014561 | $0.018346 |
| Wenn die Wachstumsrate von Eggplant Finance 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.011065 | $0.016817 | $0.02556 | $0.038848 |
| Wenn die Wachstumsrate von Eggplant Finance 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.016742 | $0.038502 | $0.088541 | $0.203615 |
| Wenn die Wachstumsrate von Eggplant Finance 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0262045 | $0.094318 | $0.339483 | $1.22 |
Fragefeld
Ist EGGP eine gute Investition?
Die Entscheidung, Eggplant Finance zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Eggplant Finance in den letzten 2026 Stunden um 0.3119% gestiegen, und Eggplant Finance hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Eggplant Finance investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Eggplant Finance steigen?
Es scheint, dass der Durchschnittswert von Eggplant Finance bis zum Ende dieses Jahres potenziell auf $0.0075084 steigen könnte. Betrachtet man die Aussichten von Eggplant Finance in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.0236052 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Eggplant Finance nächste Woche kosten?
Basierend auf unserer neuen experimentellen Eggplant Finance-Prognose wird der Preis von Eggplant Finance in der nächsten Woche um 0.86% steigen und $0.007342 erreichen bis zum 13. Januar 2026.
Wie viel wird Eggplant Finance nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Eggplant Finance-Prognose wird der Preis von Eggplant Finance im nächsten Monat um -11.62% fallen und $0.006434 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Eggplant Finance in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Eggplant Finance im Jahr 2026 wird erwartet, dass EGGP innerhalb der Spanne von $0.002515 bis $0.0075084 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Eggplant Finance-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Eggplant Finance in 5 Jahren sein?
Die Zukunft von Eggplant Finance scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.0236052 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Eggplant Finance-Prognose für 2030 könnte der Wert von Eggplant Finance seinen höchsten Gipfel von ungefähr $0.0236052 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.008164 liegen wird.
Wie viel wird Eggplant Finance im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Eggplant Finance-Preisprognosesimulation wird der Wert von EGGP im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.0075084 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.0075084 und $0.002515 während des Jahres 2026 liegen.
Wie viel wird Eggplant Finance im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Eggplant Finance könnte der Wert von EGGP um -12.62% fallen und bis zu $0.006361 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.006361 und $0.002421 im Laufe des Jahres schwanken.
Wie viel wird Eggplant Finance im Jahr 2028 kosten?
Unser neues experimentelles Eggplant Finance-Preisprognosemodell deutet darauf hin, dass der Wert von EGGP im Jahr 2028 um 47.02% steigen, und im besten Fall $0.0107037 erreichen wird. Der Preis wird voraussichtlich zwischen $0.0107037 und $0.00437 im Laufe des Jahres liegen.
Wie viel wird Eggplant Finance im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Eggplant Finance im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.031579 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.031579 und $0.009599.
Wie viel wird Eggplant Finance im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Eggplant Finance-Preisprognosen wird der Wert von EGGP im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.0236052 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.0236052 und $0.008164 während des Jahres 2030 liegen.
Wie viel wird Eggplant Finance im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Eggplant Finance im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.021548 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.021548 und $0.009652 während des Jahres schwanken.
Wie viel wird Eggplant Finance im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Eggplant Finance-Preisprognose könnte EGGP eine 449.04% Steigerung im Wert erfahren und $0.039972 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.039972 und $0.014734 liegen.
Wie viel wird Eggplant Finance im Jahr 2033 kosten?
Laut unserer experimentellen Eggplant Finance-Preisprognose wird der Wert von EGGP voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.106471 beträgt. Im Laufe des Jahres könnte der Preis von EGGP zwischen $0.106471 und $0.034238 liegen.
Wie viel wird Eggplant Finance im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Eggplant Finance-Preisprognosesimulation deuten darauf hin, dass EGGP im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.061662 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.061662 und $0.027526.
Wie viel wird Eggplant Finance im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Eggplant Finance könnte EGGP um 897.93% steigen, wobei der Wert im Jahr 2035 $0.072653 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.072653 und $0.032544.
Wie viel wird Eggplant Finance im Jahr 2036 kosten?
Unsere jüngste Eggplant Finance-Preisprognosesimulation deutet darauf hin, dass der Wert von EGGP im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.150318 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.150318 und $0.053871.
Wie viel wird Eggplant Finance im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Eggplant Finance um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.358974 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.358974 und $0.1399029 liegen.
Verwandte Prognosen
Axe-Preisprognose
Instadapp DAI-Preisprognose
dexSHARE-Preisprognose
Xenon-Preisprognose
MainCoin-Preisprognose
Sing Token-Preisprognose
Mecha Tracker-Preisprognose
AOK-Preisprognose
Fractionalized WAVE-999-Preisprognose
ImageCoin-Preisprognose
Pioneer Coin-Preisprognose
SLT-Preisprognose
Guncoin-Preisprognose
Cockapoo-Preisprognose
Babylon Finance-Preisprognose
BoostCoin-Preisprognose
Levin-Preisprognose
NFTEarth-Preisprognose
MEMEX-Preisprognose
Atrofarm-Preisprognose
noob.finance-Preisprognose
Catex Token-Preisprognose
Fabric-Preisprognose
VIBE-Preisprognose
WorldCoin-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Eggplant Finance?
Eggplant Finance-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Eggplant Finance Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Eggplant Finance. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von EGGP über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von EGGP über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von EGGP einzuschätzen.
Wie liest man Eggplant Finance-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Eggplant Finance in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von EGGP innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Eggplant Finance?
Die Preisentwicklung von Eggplant Finance wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von EGGP. Die Marktkapitalisierung von Eggplant Finance kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von EGGP-„Walen“, großen Inhabern von Eggplant Finance, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Eggplant Finance-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


