Dexter AI Preisvorhersage bis zu $0.004831 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.001618 | $0.004831 |
| 2027 | $0.001558 | $0.004093 |
| 2028 | $0.002812 | $0.006887 |
| 2029 | $0.006177 | $0.02032 |
| 2030 | $0.005253 | $0.015189 |
| 2031 | $0.006211 | $0.013866 |
| 2032 | $0.009481 | $0.025721 |
| 2033 | $0.022032 | $0.068512 |
| 2034 | $0.017712 | $0.039679 |
| 2035 | $0.020942 | $0.046751 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Dexter AI eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,955.01 Gewinn erzielen könnten, was einer Rendite von 39.55% in den nächsten 90 Tagen entspricht.
Langfristige Dexter AI Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Dexter AI'
'name_with_ticker' => 'Dexter AI <small>DEXTER</small>'
'name_lang' => 'Dexter AI'
'name_lang_with_ticker' => 'Dexter AI <small>DEXTER</small>'
'name_with_lang' => 'Dexter AI'
'name_with_lang_with_ticker' => 'Dexter AI <small>DEXTER</small>'
'image' => '/uploads/coins/dexter-ai.png?1762828492'
'price_for_sd' => 0.004684
'ticker' => 'DEXTER'
'marketcap' => '$4.69M'
'low24h' => '$0.004529'
'high24h' => '$0.005623'
'volume24h' => '$735.04K'
'current_supply' => '999.91M'
'max_supply' => '999.91M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.004684'
'change_24h_pct' => '-8.3731%'
'ath_price' => '$0.00589'
'ath_days' => 2
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '04.01.2026'
'ath_pct' => '-21.08%'
'fdv' => '$4.69M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.230996'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.004724'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00414'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001618'
'current_year_max_price_prediction' => '$0.004831'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.005253'
'grand_prediction_max_price' => '$0.015189'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0047736458222584
107 => 0.0047914688829253
108 => 0.0048316251486758
109 => 0.0044884942544674
110 => 0.0046425499521732
111 => 0.0047330432415085
112 => 0.0043241912681174
113 => 0.0047249615525539
114 => 0.0044825211089966
115 => 0.0044002331811199
116 => 0.0045110230353957
117 => 0.0044678481214378
118 => 0.0044307288657328
119 => 0.0044100156832596
120 => 0.0044913675248097
121 => 0.0044875723641649
122 => 0.0043544649616769
123 => 0.0041808317812832
124 => 0.0042391087759382
125 => 0.0042179361974303
126 => 0.0041412040416007
127 => 0.004192912249954
128 => 0.0039652154692913
129 => 0.0035734749928099
130 => 0.0038322707509088
131 => 0.0038223073957376
201 => 0.0038172834202581
202 => 0.0040117612798801
203 => 0.003993066721045
204 => 0.0039591359137018
205 => 0.0041405808757149
206 => 0.004074351023801
207 => 0.0042784558216841
208 => 0.0044128924422406
209 => 0.0043787949666984
210 => 0.0045052332581203
211 => 0.004240451360192
212 => 0.0043284012854779
213 => 0.004346527643186
214 => 0.0041383418730487
215 => 0.00399612538207
216 => 0.0039866411635084
217 => 0.0037400573667909
218 => 0.0038717804406425
219 => 0.0039876912945608
220 => 0.0039321789905795
221 => 0.003914605453522
222 => 0.0040043848431138
223 => 0.0040113614705936
224 => 0.0038522936247053
225 => 0.003885368866889
226 => 0.0040232981250967
227 => 0.0038818934034722
228 => 0.003607167127686
301 => 0.0035390312129031
302 => 0.003529940625877
303 => 0.0033451506210582
304 => 0.0035435843805334
305 => 0.0034569627268283
306 => 0.0037305994929959
307 => 0.0035742996397044
308 => 0.0035675618654216
309 => 0.0035573767313765
310 => 0.00339832034065
311 => 0.0034331435816581
312 => 0.0035489013384985
313 => 0.0035902050102437
314 => 0.0035858966988896
315 => 0.0035483340623386
316 => 0.0035655300449998
317 => 0.0035101357933704
318 => 0.0034905749301885
319 => 0.0034288354653468
320 => 0.003338095507992
321 => 0.0033507134556027
322 => 0.0031709338566816
323 => 0.0030729803895638
324 => 0.0030458681608716
325 => 0.0030096125555663
326 => 0.0030499633279633
327 => 0.0031704245636659
328 => 0.0030251227561318
329 => 0.0027760129988511
330 => 0.0027909849197261
331 => 0.0028246223807289
401 => 0.0027619391946843
402 => 0.0027026148196941
403 => 0.0027541925506094
404 => 0.0026486414624937
405 => 0.0028373777254514
406 => 0.0028322729384656
407 => 0.002902622145924
408 => 0.0029466129490589
409 => 0.0028452283900247
410 => 0.0028197304476007
411 => 0.0028342552344223
412 => 0.0025941928626233
413 => 0.0028830039285715
414 => 0.0028855015786629
415 => 0.0028641151822125
416 => 0.0030178981587887
417 => 0.0033424282054776
418 => 0.0032203269477223
419 => 0.0031730456501894
420 => 0.003083163869017
421 => 0.0032029260057772
422 => 0.0031937301422544
423 => 0.0031521429599765
424 => 0.003126990902375
425 => 0.00317333433971
426 => 0.0031212484376291
427 => 0.0031118923783905
428 => 0.0030552048388973
429 => 0.003034969966417
430 => 0.003019988872406
501 => 0.0030034961599119
502 => 0.0030398749739461
503 => 0.002957435795313
504 => 0.0028580222274937
505 => 0.0028497570649992
506 => 0.002872577905327
507 => 0.0028624813822937
508 => 0.0028497087267314
509 => 0.0028253222488371
510 => 0.0028180873017806
511 => 0.0028415973698171
512 => 0.002815055873726
513 => 0.0028542192969985
514 => 0.0028435690128794
515 => 0.0027840773915477
516 => 0.0027099288047492
517 => 0.0027092687267948
518 => 0.0026932935353971
519 => 0.002672946727266
520 => 0.0026672867107159
521 => 0.0027498488179737
522 => 0.0029207499091214
523 => 0.0028871979356126
524 => 0.0029114426750172
525 => 0.0030307027969877
526 => 0.0030686120034851
527 => 0.003041704946642
528 => 0.0030048729076802
529 => 0.0030064933304687
530 => 0.0031323595574177
531 => 0.0031402096796018
601 => 0.0031600444058157
602 => 0.0031855376342936
603 => 0.0030460465536876
604 => 0.0029999233131164
605 => 0.0029780675629138
606 => 0.0029107603115296
607 => 0.0029833454116598
608 => 0.0029410531822178
609 => 0.0029467598488778
610 => 0.0029430433747291
611 => 0.0029450728209212
612 => 0.0028373249698194
613 => 0.0028765826237006
614 => 0.0028113091599759
615 => 0.0027239153193388
616 => 0.0027236223445408
617 => 0.0027450118632259
618 => 0.0027322885405401
619 => 0.0026980504063389
620 => 0.0027029137717027
621 => 0.0026603055736419
622 => 0.0027080871783936
623 => 0.0027094573838471
624 => 0.0026910588633361
625 => 0.0027646730180469
626 => 0.0027948327972954
627 => 0.0027827224969605
628 => 0.0027939831063403
629 => 0.0028885921715899
630 => 0.0029040175773086
701 => 0.0029108685235837
702 => 0.0029016891631515
703 => 0.0027957123863767
704 => 0.0028004129070747
705 => 0.0027659236050372
706 => 0.0027367837792086
707 => 0.0027379492194235
708 => 0.0027529308778116
709 => 0.0028183566586551
710 => 0.0029560413573797
711 => 0.0029612663910501
712 => 0.0029675992842836
713 => 0.0029418402248458
714 => 0.0029340710460384
715 => 0.0029443205982806
716 => 0.002996027732004
717 => 0.0031290325182906
718 => 0.0030820197437259
719 => 0.0030437976262074
720 => 0.00307732872788
721 => 0.003072166877603
722 => 0.0030285956665623
723 => 0.0030273727677868
724 => 0.0029437456832409
725 => 0.0029128306541808
726 => 0.0028869957419484
727 => 0.0028587846922281
728 => 0.002842060236311
729 => 0.002867756601729
730 => 0.0028736336645306
731 => 0.0028174481124485
801 => 0.0028097902293124
802 => 0.002855672563992
803 => 0.0028354814591654
804 => 0.0028562485111949
805 => 0.0028610666454022
806 => 0.0028602908148238
807 => 0.0028392089824512
808 => 0.0028526459137362
809 => 0.0028208635655051
810 => 0.0027863050353581
811 => 0.0027642588461968
812 => 0.002745020622151
813 => 0.0027556951069838
814 => 0.0027176425176388
815 => 0.0027054687284601
816 => 0.0028480937837573
817 => 0.0029534524455832
818 => 0.0029519204889136
819 => 0.002942595096675
820 => 0.002928739455395
821 => 0.0029950141055429
822 => 0.0029719253426349
823 => 0.0029887243467812
824 => 0.0029930003983884
825 => 0.0030059427187391
826 => 0.0030105684858345
827 => 0.0029965862048705
828 => 0.0029496599621636
829 => 0.0028327242269512
830 => 0.0027782903265479
831 => 0.0027603262327464
901 => 0.0027609791934374
902 => 0.0027429676226345
903 => 0.0027482728374579
904 => 0.0027411226854232
905 => 0.0027275820272771
906 => 0.0027548590094998
907 => 0.0027580024275983
908 => 0.0027516356540119
909 => 0.002753135259672
910 => 0.0027004210936608
911 => 0.0027044288372135
912 => 0.0026821132118328
913 => 0.0026779293010927
914 => 0.002621517343374
915 => 0.0025215753832312
916 => 0.0025769529307511
917 => 0.0025100646406085
918 => 0.0024847330316086
919 => 0.002604648928741
920 => 0.0025926126986181
921 => 0.0025720119046713
922 => 0.0025415390368423
923 => 0.0025302363537435
924 => 0.0024615648292299
925 => 0.0024575073492133
926 => 0.0024915428110493
927 => 0.0024758366165007
928 => 0.0024537791709535
929 => 0.0023738893391086
930 => 0.0022840667175007
1001 => 0.0022867778978422
1002 => 0.0023153488025664
1003 => 0.0023984225613634
1004 => 0.0023659642066108
1005 => 0.0023424152978211
1006 => 0.0023380052950823
1007 => 0.0023932057123235
1008 => 0.0024713258675647
1009 => 0.0025079780965639
1010 => 0.0024716568507704
1011 => 0.0024299329592776
1012 => 0.0024324724992229
1013 => 0.0024493669207448
1014 => 0.0024511422855725
1015 => 0.0024239843214961
1016 => 0.0024316291293049
1017 => 0.0024200159671874
1018 => 0.0023487460127085
1019 => 0.0023474569652315
1020 => 0.0023299661690191
1021 => 0.0023294365546611
1022 => 0.0022996803470202
1023 => 0.0022955172478763
1024 => 0.0022364344915327
1025 => 0.0022753229406771
1026 => 0.0022492386107263
1027 => 0.0022099233728189
1028 => 0.0022031454109849
1029 => 0.0022029416572675
1030 => 0.002243309615872
1031 => 0.0022748512175775
1101 => 0.0022496923588134
1102 => 0.0022439641743569
1103 => 0.0023051261982006
1104 => 0.0022973427731622
1105 => 0.0022906023772767
1106 => 0.0024643310644922
1107 => 0.0023268112523426
1108 => 0.002266844764889
1109 => 0.002192624849338
1110 => 0.0022167912280907
1111 => 0.0022218834391719
1112 => 0.002043397921417
1113 => 0.0019709863690928
1114 => 0.001946137453107
1115 => 0.001931836550645
1116 => 0.0019383536514763
1117 => 0.0018731747613566
1118 => 0.0019169760534764
1119 => 0.0018605366440672
1120 => 0.00185107439341
1121 => 0.0019519950489349
1122 => 0.0019660375685813
1123 => 0.001906127817101
1124 => 0.0019445995760591
1125 => 0.0019306491814634
1126 => 0.0018615041357506
1127 => 0.0018588633036009
1128 => 0.001824168750228
1129 => 0.0017698784923889
1130 => 0.0017450663877543
1201 => 0.0017321440282321
1202 => 0.0017374760456227
1203 => 0.0017347800144676
1204 => 0.0017171865875146
1205 => 0.0017357884491064
1206 => 0.0016882683795592
1207 => 0.0016693455049703
1208 => 0.0016607984815258
1209 => 0.0016186216846495
1210 => 0.0016857437245864
1211 => 0.0016989676120352
1212 => 0.0017122175546273
1213 => 0.0018275492587714
1214 => 0.0018217876127564
1215 => 0.0018738700866968
1216 => 0.001871846257533
1217 => 0.0018569914922851
1218 => 0.0017943216811942
1219 => 0.0018193007509131
1220 => 0.0017424190569278
1221 => 0.0018000240495086
1222 => 0.0017737355365367
1223 => 0.0017911358768289
1224 => 0.0017598484960581
1225 => 0.001777164224401
1226 => 0.0017021034863231
1227 => 0.0016320128252391
1228 => 0.0016602193533333
1229 => 0.0016908830751794
1230 => 0.0017573698371127
1231 => 0.0017177708702091
]
'min_raw' => 0.0016186216846495
'max_raw' => 0.0048316251486758
'avg_raw' => 0.0032251234166626
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001618'
'max' => '$0.004831'
'avg' => '$0.003225'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0030662483153505
'max_diff' => 0.00014675514867578
'year' => 2026
]
1 => [
'items' => [
101 => 0.0017320121561104
102 => 0.0016843062323036
103 => 0.0015858752849668
104 => 0.0015864323934392
105 => 0.0015712909366262
106 => 0.0015582065072508
107 => 0.00172231928791
108 => 0.0017019092693959
109 => 0.0016693885760909
110 => 0.0017129188164006
111 => 0.0017244289028564
112 => 0.0017247565788365
113 => 0.0017565151184884
114 => 0.0017734646567936
115 => 0.0017764520863834
116 => 0.0018264248347143
117 => 0.0018431750407984
118 => 0.0019121667690806
119 => 0.0017720266068883
120 => 0.0017691405124697
121 => 0.0017135313761512
122 => 0.0016782631827523
123 => 0.0017159462195265
124 => 0.0017493282458609
125 => 0.0017145686487614
126 => 0.0017191075183275
127 => 0.0016724455991849
128 => 0.001689125039631
129 => 0.0017034916207065
130 => 0.0016955592390652
131 => 0.0016836840798166
201 => 0.001746591300385
202 => 0.0017430418284652
203 => 0.0018016224784893
204 => 0.0018472902843255
205 => 0.0019291351564808
206 => 0.001843725765717
207 => 0.001840613108046
208 => 0.0018710398360662
209 => 0.0018431703826248
210 => 0.0018607829151789
211 => 0.0019262975051976
212 => 0.0019276817252482
213 => 0.0019044942559346
214 => 0.0019030832963195
215 => 0.0019075367034443
216 => 0.0019336204480739
217 => 0.0019245059862278
218 => 0.0019350534722261
219 => 0.0019482432649757
220 => 0.0020028018401444
221 => 0.0020159557279104
222 => 0.0019839986001479
223 => 0.0019868839709761
224 => 0.0019749311279502
225 => 0.0019633848313558
226 => 0.0019893392198987
227 => 0.0020367713750958
228 => 0.00203647630212
301 => 0.0020474796401764
302 => 0.002054334628629
303 => 0.0020249080000324
304 => 0.0020057523468632
305 => 0.0020130978431941
306 => 0.0020248434517914
307 => 0.0020092889006294
308 => 0.0019132790052881
309 => 0.0019424022743988
310 => 0.0019375547383637
311 => 0.0019306512575691
312 => 0.0019599349298635
313 => 0.0019571104482327
314 => 0.0018725062576304
315 => 0.0018779223434152
316 => 0.0018728356277456
317 => 0.001889271846718
318 => 0.0018422827728613
319 => 0.0018567362955034
320 => 0.0018658014094111
321 => 0.0018711408311443
322 => 0.0018904304837202
323 => 0.0018881670656307
324 => 0.0018902897864738
325 => 0.0019188912489644
326 => 0.0020635476314051
327 => 0.0020714209591351
328 => 0.0020326498138585
329 => 0.0020481381216695
330 => 0.0020184039575931
331 => 0.0020383647011392
401 => 0.0020520213349255
402 => 0.0019903096328647
403 => 0.0019866554663743
404 => 0.0019567985788257
405 => 0.0019728419790138
406 => 0.0019473157757532
407 => 0.0019535790131647
408 => 0.0019360664553431
409 => 0.0019675855727065
410 => 0.0020028288434945
411 => 0.0020117326854945
412 => 0.0019883105105376
413 => 0.0019713513122721
414 => 0.0019415765468253
415 => 0.0019910926453373
416 => 0.002005572661518
417 => 0.0019910165879767
418 => 0.0019876436276806
419 => 0.0019812518740145
420 => 0.0019889996684367
421 => 0.0020054938002401
422 => 0.0019977154722804
423 => 0.0020028531949343
424 => 0.0019832734941743
425 => 0.0020249177414709
426 => 0.0020910588284119
427 => 0.0020912714828215
428 => 0.0020834931129337
429 => 0.002080310371563
430 => 0.0020882914510988
501 => 0.002092620859346
502 => 0.0021184302070852
503 => 0.0021461246654992
504 => 0.0022753626188783
505 => 0.0022390731187235
506 => 0.0023537407193617
507 => 0.0024444279037421
508 => 0.0024716210250678
509 => 0.0024466046329834
510 => 0.0023610249070214
511 => 0.0023568259573861
512 => 0.0024847181988015
513 => 0.0024485827827659
514 => 0.0024442845900104
515 => 0.0023985590810032
516 => 0.002425588520041
517 => 0.0024196767852255
518 => 0.0024103448226072
519 => 0.0024619151094042
520 => 0.0025584500825767
521 => 0.0025434042017085
522 => 0.0025321731495988
523 => 0.0024829619485638
524 => 0.0025125980833065
525 => 0.0025020452233674
526 => 0.0025473870066762
527 => 0.0025205275386876
528 => 0.0024483090214493
529 => 0.0024598100583548
530 => 0.0024580716997634
531 => 0.002493846996393
601 => 0.0024831081403423
602 => 0.0024559747657671
603 => 0.0025581201365331
604 => 0.002551487384318
605 => 0.0025608911105008
606 => 0.0025650309215864
607 => 0.0026272050087684
608 => 0.0026526757429379
609 => 0.0026584580455224
610 => 0.0026826532730062
611 => 0.0026578560462212
612 => 0.0027570626334841
613 => 0.0028230292251491
614 => 0.0028996528159778
615 => 0.003011620476658
616 => 0.0030537213528326
617 => 0.003046116206382
618 => 0.0031310088088405
619 => 0.003283558928402
620 => 0.0030769509471202
621 => 0.0032945096530933
622 => 0.0032256330786182
623 => 0.0030623279595746
624 => 0.0030518130351491
625 => 0.0031624051577768
626 => 0.0034076878416679
627 => 0.0033462473113264
628 => 0.0034077883363651
629 => 0.0033359974617134
630 => 0.0033324324396859
701 => 0.0034043016138235
702 => 0.0035722278565805
703 => 0.0034924523932677
704 => 0.0033780747048627
705 => 0.003462529410067
706 => 0.0033893669285051
707 => 0.0032245113806567
708 => 0.0033462003289107
709 => 0.003264830394715
710 => 0.0032885784673769
711 => 0.0034596059661921
712 => 0.003439027485052
713 => 0.0034656579451633
714 => 0.0034186558801074
715 => 0.0033747485397997
716 => 0.0032927922285137
717 => 0.0032685290051392
718 => 0.0032752344871806
719 => 0.0032685256822353
720 => 0.0032226718792881
721 => 0.0032127697549074
722 => 0.003196265780451
723 => 0.0032013810522434
724 => 0.0031703487518572
725 => 0.0032289131142863
726 => 0.0032397831760206
727 => 0.003282401435134
728 => 0.0032868262041758
729 => 0.0034055174491737
730 => 0.0033401443059542
731 => 0.0033840022544714
801 => 0.003380079186749
802 => 0.0030658672766887
803 => 0.0031091629055799
804 => 0.0031765173172177
805 => 0.0031461742460716
806 => 0.0031032762426562
807 => 0.0030686338048528
808 => 0.0030161469692096
809 => 0.003090021182457
810 => 0.0031871579172307
811 => 0.0032892897520697
812 => 0.0034119944596857
813 => 0.0033846081973861
814 => 0.0032869958729124
815 => 0.0032913746904824
816 => 0.0033184428176992
817 => 0.0032833871335548
818 => 0.0032730485279323
819 => 0.0033170224520468
820 => 0.0033173252762945
821 => 0.0032769894750654
822 => 0.0032321636133729
823 => 0.0032319757913757
824 => 0.003223999462254
825 => 0.0033374164329446
826 => 0.0033997842990754
827 => 0.0034069346744164
828 => 0.0033993030218437
829 => 0.0034022401420295
830 => 0.0033659496549102
831 => 0.0034488989468553
901 => 0.0035250214199789
902 => 0.0035046189710623
903 => 0.0034740327997574
904 => 0.0034496694410834
905 => 0.0034988797380374
906 => 0.0034966884809782
907 => 0.0035243565565839
908 => 0.0035231013728559
909 => 0.0035137976396787
910 => 0.0035046193033279
911 => 0.0035410103694865
912 => 0.0035305303268555
913 => 0.0035200340058236
914 => 0.0034989820270878
915 => 0.0035018433406343
916 => 0.0034712624504631
917 => 0.0034571143313835
918 => 0.0032443605665117
919 => 0.0031875058086081
920 => 0.0032053934728299
921 => 0.0032112825563447
922 => 0.0031865392928437
923 => 0.0032220147766812
924 => 0.003216485960103
925 => 0.0032379953511594
926 => 0.0032245572174566
927 => 0.0032251087231511
928 => 0.0032646274090591
929 => 0.0032760998517027
930 => 0.0032702648747802
1001 => 0.0032743514926054
1002 => 0.0033685258755337
1003 => 0.0033551372898086
1004 => 0.0033480248704865
1005 => 0.0033499950592458
1006 => 0.0033740586332056
1007 => 0.0033807951200919
1008 => 0.0033522521517901
1009 => 0.0033657131806461
1010 => 0.0034230285330563
1011 => 0.0034430856626319
1012 => 0.0035070983922687
1013 => 0.0034799046469834
1014 => 0.0035298199433722
1015 => 0.003683242547093
1016 => 0.0038058071389817
1017 => 0.0036930916750848
1018 => 0.0039181659395819
1019 => 0.0040934185394785
1020 => 0.004086692052796
1021 => 0.0040561327083384
1022 => 0.0038566122826875
1023 => 0.0036730106123216
1024 => 0.0038266012057214
1025 => 0.0038269927397301
1026 => 0.0038137991715443
1027 => 0.0037318550526618
1028 => 0.0038109476938314
1029 => 0.0038172257804652
1030 => 0.0038137117214282
1031 => 0.0037508853576092
1101 => 0.0036549611123104
1102 => 0.0036737044802316
1103 => 0.0037044064992408
1104 => 0.0036462811721442
1105 => 0.003627706608199
1106 => 0.0036622402565284
1107 => 0.0037735148668171
1108 => 0.003752479046312
1109 => 0.0037519297160261
1110 => 0.0038419298767233
1111 => 0.0037775091849145
1112 => 0.0036739408941256
1113 => 0.0036477885348035
1114 => 0.0035549652775502
1115 => 0.0036190786319602
1116 => 0.0036213859574466
1117 => 0.0035862717284588
1118 => 0.0036767902202824
1119 => 0.0036759560764448
1120 => 0.0037618899125318
1121 => 0.0039261631318552
1122 => 0.003877579457507
1123 => 0.0038210819301289
1124 => 0.0038272247778614
1125 => 0.003894596655647
1126 => 0.0038538620803875
1127 => 0.0038685105176623
1128 => 0.0038945744834827
1129 => 0.0039102995211941
1130 => 0.0038249621869294
1201 => 0.0038050659721557
1202 => 0.0037643652993513
1203 => 0.0037537472535307
1204 => 0.0037868971022825
1205 => 0.0037781632883378
1206 => 0.0036211920356739
1207 => 0.0036047876663907
1208 => 0.0036052907649765
1209 => 0.0035640411984287
1210 => 0.003501125708413
1211 => 0.0036664638596856
1212 => 0.0036531848922325
1213 => 0.0036385259398747
1214 => 0.0036403215778957
1215 => 0.0037120892655333
1216 => 0.0036704603823484
1217 => 0.0037811375911352
1218 => 0.0037583856842701
1219 => 0.0037350502768446
1220 => 0.0037318246127246
1221 => 0.0037228424717492
1222 => 0.0036920393682371
1223 => 0.0036548427697668
1224 => 0.0036302823535425
1225 => 0.0033487435751438
1226 => 0.0034009955347788
1227 => 0.003461106651423
1228 => 0.0034818567680084
1229 => 0.0034463622577247
1230 => 0.0036934409078447
1231 => 0.0037385845581307
]
'min_raw' => 0.0015582065072508
'max_raw' => 0.0040934185394785
'avg_raw' => 0.0028258125233647
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001558'
'max' => '$0.004093'
'avg' => '$0.002825'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -6.0415177398649E-5
'max_diff' => -0.00073820660919726
'year' => 2027
]
2 => [
'items' => [
101 => 0.0036018414967669
102 => 0.0035762624531681
103 => 0.0036951178656846
104 => 0.0036234335224539
105 => 0.0036557129778214
106 => 0.003585942451235
107 => 0.0037277107747372
108 => 0.003726630737639
109 => 0.0036714796578139
110 => 0.0037180929728238
111 => 0.0037099927622435
112 => 0.003647727328952
113 => 0.0037296847000334
114 => 0.003729725349867
115 => 0.0036766436346231
116 => 0.0036146558122999
117 => 0.0036035738537555
118 => 0.003595225086644
119 => 0.0036536596929007
120 => 0.0037060519781502
121 => 0.0038035410318504
122 => 0.0038280520962335
123 => 0.0039237204123144
124 => 0.003866754588094
125 => 0.00389200680014
126 => 0.0039194216484594
127 => 0.0039325653348913
128 => 0.0039111484031795
129 => 0.0040597606767031
130 => 0.0040723081059509
131 => 0.0040765151504428
201 => 0.0040264039279682
202 => 0.0040709144222033
203 => 0.0040500894359833
204 => 0.0041042702647799
205 => 0.0041127665105508
206 => 0.0041055704926456
207 => 0.0041082673351574
208 => 0.0039814529767065
209 => 0.0039748769832218
210 => 0.0038852128454466
211 => 0.0039217516443539
212 => 0.003853444111147
213 => 0.0038751051335724
214 => 0.0038846531058638
215 => 0.0038796657869814
216 => 0.0039238174932217
217 => 0.0038862795233198
218 => 0.0037872106489351
219 => 0.0036881147833018
220 => 0.0036868707154305
221 => 0.0036607805231966
222 => 0.0036419220928685
223 => 0.0036455548955884
224 => 0.0036583573662074
225 => 0.0036411779900025
226 => 0.0036448440809323
227 => 0.0037057256174031
228 => 0.0037179349753551
229 => 0.0036764428065302
301 => 0.0035098457614068
302 => 0.0034689624286565
303 => 0.0034983485574857
304 => 0.0034843038806144
305 => 0.0028121051704239
306 => 0.0029700282865188
307 => 0.0028761957334975
308 => 0.0029194380909579
309 => 0.002823659352145
310 => 0.0028693699865003
311 => 0.00286092890142
312 => 0.0031148645988158
313 => 0.003110899742178
314 => 0.003112797509235
315 => 0.0030222121430022
316 => 0.0031665170910717
317 => 0.0032376068975289
318 => 0.0032244500663476
319 => 0.0032277613573031
320 => 0.0031708624078553
321 => 0.0031133484154406
322 => 0.0030495565465126
323 => 0.0031680739540674
324 => 0.003154896841507
325 => 0.0031851203967453
326 => 0.0032619874073438
327 => 0.0032733063666438
328 => 0.0032885191627286
329 => 0.0032830664582528
330 => 0.0034129720006446
331 => 0.0033972395823166
401 => 0.0034351501839614
402 => 0.0033571652000937
403 => 0.0032689177884447
404 => 0.0032856907363739
405 => 0.0032840753666088
406 => 0.0032635098554638
407 => 0.0032449442315483
408 => 0.003214037698561
409 => 0.0033118305422391
410 => 0.0033078603313764
411 => 0.0033721334303771
412 => 0.0033607725358132
413 => 0.0032849017014327
414 => 0.0032876114431254
415 => 0.0033058357582664
416 => 0.0033689103210511
417 => 0.0033876351457293
418 => 0.0033789610608831
419 => 0.003399491976322
420 => 0.0034157187747721
421 => 0.0034015298123751
422 => 0.0036024155980419
423 => 0.003518993814125
424 => 0.0035596530111611
425 => 0.0035693499900763
426 => 0.0035445113824905
427 => 0.003549897987072
428 => 0.0035580572252511
429 => 0.0036075985217319
430 => 0.0037376092185872
501 => 0.0037951900712117
502 => 0.0039684249073217
503 => 0.0037904087829654
504 => 0.0037798460428501
505 => 0.0038110508680244
506 => 0.0039127580555907
507 => 0.0039951821782428
508 => 0.0040225270148882
509 => 0.004026141086465
510 => 0.0040774418178621
511 => 0.004106846440397
512 => 0.0040712125597273
513 => 0.0040410165768826
514 => 0.0039328583143962
515 => 0.0039453779277842
516 => 0.0040316256489241
517 => 0.0041534556349997
518 => 0.0042579984373021
519 => 0.0042213911916203
520 => 0.0045006786354847
521 => 0.0045283688447569
522 => 0.0045245429531671
523 => 0.004587625370745
524 => 0.0044624196183639
525 => 0.0044088917334738
526 => 0.0040475452911126
527 => 0.0041490689022863
528 => 0.0042966394333998
529 => 0.0042771079202458
530 => 0.0041699382559796
531 => 0.0042579171395016
601 => 0.0042288285692552
602 => 0.0042058852070159
603 => 0.0043109931972236
604 => 0.004195422644392
605 => 0.0042954865287284
606 => 0.0041671535620386
607 => 0.004221558410435
608 => 0.0041906755872188
609 => 0.0042106605586961
610 => 0.0040938288237996
611 => 0.0041568683920197
612 => 0.0040912061705068
613 => 0.0040911750380643
614 => 0.0040897255408851
615 => 0.0041669768533042
616 => 0.0041694960158288
617 => 0.0041124071792308
618 => 0.0041041797859818
619 => 0.0041346007709747
620 => 0.0040989857648166
621 => 0.0041156498020398
622 => 0.0040994905015282
623 => 0.0040958527026161
624 => 0.0040668661019639
625 => 0.0040543778773997
626 => 0.0040592748320332
627 => 0.0040425590013159
628 => 0.0040324871086707
629 => 0.0040877219879321
630 => 0.0040582122201114
701 => 0.0040831991927839
702 => 0.0040547233838163
703 => 0.0039560138236149
704 => 0.0038992449117084
705 => 0.0037127917028691
706 => 0.0037656696016014
707 => 0.0038007277031671
708 => 0.0037891410008088
709 => 0.0038140337209331
710 => 0.0038155619317784
711 => 0.0038074690547147
712 => 0.0037980985398368
713 => 0.0037935374914162
714 => 0.0038275318095465
715 => 0.0038472666554173
716 => 0.0038042462526761
717 => 0.0037941671742333
718 => 0.0038376631766261
719 => 0.003864195712959
720 => 0.0040600970538962
721 => 0.0040455840498066
722 => 0.0040820088420384
723 => 0.0040779079694171
724 => 0.0041160869546004
725 => 0.0041784934597321
726 => 0.004051603585666
727 => 0.0040736272802822
728 => 0.0040682275789637
729 => 0.0041271801020813
730 => 0.0041273641454236
731 => 0.0040920191629177
801 => 0.004111180251341
802 => 0.0041004850574401
803 => 0.0041198127183612
804 => 0.0040453902197888
805 => 0.0041360287896377
806 => 0.0041874150181216
807 => 0.004188128515954
808 => 0.004212485180429
809 => 0.0042372329621785
810 => 0.0042847341741692
811 => 0.0042359081791574
812 => 0.0041480749672461
813 => 0.0041544162414465
814 => 0.0041029196614398
815 => 0.0041037853282534
816 => 0.0040991643309592
817 => 0.0041130322916914
818 => 0.0040484334573065
819 => 0.0040635946746183
820 => 0.0040423688815977
821 => 0.0040735811395535
822 => 0.0040400019095642
823 => 0.0040682249750642
824 => 0.0040804051145246
825 => 0.004125350091353
826 => 0.004033363499943
827 => 0.0038457966131132
828 => 0.0038852254467535
829 => 0.0038269071047314
830 => 0.0038323046893191
831 => 0.0038432086692056
901 => 0.0038078653028334
902 => 0.0038146077033398
903 => 0.0038143668173481
904 => 0.0038122909920094
905 => 0.0038030968173905
906 => 0.0037897634451809
907 => 0.0038428794962681
908 => 0.003851904948382
909 => 0.0038719674104142
910 => 0.003931659688924
911 => 0.0039256950226601
912 => 0.0039354236408083
913 => 0.0039141861220146
914 => 0.0038332898369053
915 => 0.0038376828943905
916 => 0.003782901397156
917 => 0.0038705665243643
918 => 0.0038498062651182
919 => 0.0038364219909288
920 => 0.0038327699677118
921 => 0.0038926102118343
922 => 0.0039105153507567
923 => 0.0038993580697494
924 => 0.0038764741608937
925 => 0.0039204180309171
926 => 0.0039321755566923
927 => 0.0039348076331125
928 => 0.0040126677453925
929 => 0.003939159148471
930 => 0.0039568533983626
1001 => 0.0040948988849707
1002 => 0.0039697106775921
1003 => 0.0040360256630707
1004 => 0.0040327798896181
1005 => 0.0040667043922122
1006 => 0.0040299970902233
1007 => 0.0040304521212248
1008 => 0.0040605747812835
1009 => 0.0040182729378814
1010 => 0.0040077984065629
1011 => 0.0039933279165664
1012 => 0.0040249237020815
1013 => 0.0040438639465433
1014 => 0.004196508406829
1015 => 0.0042951236896066
1016 => 0.004290842540102
1017 => 0.0043299642325987
1018 => 0.0043123395518153
1019 => 0.0042554248084098
1020 => 0.0043525713353894
1021 => 0.0043218301094697
1022 => 0.004324364378784
1023 => 0.0043242700531535
1024 => 0.0043447102809455
1025 => 0.0043302265062355
1026 => 0.0043016774995531
1027 => 0.0043206296625153
1028 => 0.0043769108109905
1029 => 0.0045516092227741
1030 => 0.0046493727684543
1031 => 0.0045457237345686
1101 => 0.0046172194502271
1102 => 0.0045743474973603
1103 => 0.0045665563881942
1104 => 0.0046114609811197
1105 => 0.0046564441735906
1106 => 0.0046535789386979
1107 => 0.0046209234508765
1108 => 0.0046024771944085
1109 => 0.0047421584283334
1110 => 0.0048450731820815
1111 => 0.0048380550858251
1112 => 0.0048690306802935
1113 => 0.0049599759836918
1114 => 0.0049682908824709
1115 => 0.0049672433963405
1116 => 0.0049466340521465
1117 => 0.0050361815140821
1118 => 0.0051108835822665
1119 => 0.0049418635844268
1120 => 0.0050062241869699
1121 => 0.0050351177350206
1122 => 0.0050775420358885
1123 => 0.0051491189425909
1124 => 0.0052268704481067
1125 => 0.0052378653634885
1126 => 0.0052300639448699
1127 => 0.0051787847369097
1128 => 0.0052638613620133
1129 => 0.0053136972537067
1130 => 0.005343373386736
1201 => 0.0054186271224606
1202 => 0.0050352961717369
1203 => 0.0047639554720301
1204 => 0.0047215817035637
1205 => 0.0048077504280063
1206 => 0.0048304724334591
1207 => 0.0048213132215521
1208 => 0.004515894594815
1209 => 0.0047199737377018
1210 => 0.0049395457359863
1211 => 0.0049479803906755
1212 => 0.0050579027240506
1213 => 0.0050936979416663
1214 => 0.0051821998278829
1215 => 0.0051766640108036
1216 => 0.0051982128117247
1217 => 0.0051932591155662
1218 => 0.0053571902235116
1219 => 0.0055380305795805
1220 => 0.0055317686530869
1221 => 0.0055057707122961
1222 => 0.0055443820876782
1223 => 0.0057310287151716
1224 => 0.0057138452846632
1225 => 0.005730537523721
1226 => 0.0059506044164787
1227 => 0.0062367226812142
1228 => 0.0061037920214404
1229 => 0.0063922133033825
1230 => 0.0065737592118099
1231 => 0.0068877240882376
]
'min_raw' => 0.0028121051704239
'max_raw' => 0.0068877240882376
'avg_raw' => 0.0048499146293308
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002812'
'max' => '$0.006887'
'avg' => '$0.004849'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0012538986631731
'max_diff' => 0.0027943055487591
'year' => 2028
]
3 => [
'items' => [
101 => 0.0068484141393993
102 => 0.0069706383618119
103 => 0.0067780411267447
104 => 0.0063357989447071
105 => 0.0062658124265646
106 => 0.0064059272082268
107 => 0.0067503857267429
108 => 0.0063950789836549
109 => 0.0064669570750291
110 => 0.0064462561798779
111 => 0.0064451531171484
112 => 0.0064872525350519
113 => 0.0064261851336249
114 => 0.0061773855543952
115 => 0.0062914089353711
116 => 0.0062473790321238
117 => 0.0062962334924234
118 => 0.006559880865548
119 => 0.0064433160773212
120 => 0.0063205245418787
121 => 0.0064745323769467
122 => 0.0066706372738219
123 => 0.0066583653818099
124 => 0.0066345527820535
125 => 0.0067687831600929
126 => 0.0069904924188033
127 => 0.0070504195405327
128 => 0.0070946565166374
129 => 0.0071007560482524
130 => 0.0071635850147246
131 => 0.0068257378270653
201 => 0.0073619099904117
202 => 0.0074544921115645
203 => 0.0074370905099235
204 => 0.0075399916411336
205 => 0.0075097155179819
206 => 0.0074658501657132
207 => 0.0076289703463795
208 => 0.0074419662223653
209 => 0.0071765374114918
210 => 0.00703091791626
211 => 0.0072226814143709
212 => 0.0073397846910434
213 => 0.0074171825077566
214 => 0.0074406030403291
215 => 0.0068519639425157
216 => 0.0065347201162154
217 => 0.006738069771666
218 => 0.0069861703857594
219 => 0.0068243596156271
220 => 0.006830702291468
221 => 0.0066000026563818
222 => 0.0070065821844227
223 => 0.0069473469670592
224 => 0.0072546593795263
225 => 0.0071813168059548
226 => 0.0074319181485225
227 => 0.0073659264164589
228 => 0.007639854406707
301 => 0.0077491316983213
302 => 0.007932625278594
303 => 0.0080676039031958
304 => 0.0081468659332916
305 => 0.0081421073383091
306 => 0.0084561829897354
307 => 0.0082709835510568
308 => 0.0080383294079201
309 => 0.0080341214284852
310 => 0.0081546163059504
311 => 0.0084071405129621
312 => 0.0084726163657625
313 => 0.0085092084350978
314 => 0.0084531664071317
315 => 0.0082521456898094
316 => 0.0081653459632678
317 => 0.0082393018451114
318 => 0.008148860156718
319 => 0.0083049878843408
320 => 0.00851938460145
321 => 0.0084751125271835
322 => 0.0086231074338163
323 => 0.008776266592663
324 => 0.008995291068622
325 => 0.0090525521770905
326 => 0.0091472026119441
327 => 0.0092446290004565
328 => 0.009275919730732
329 => 0.0093356634437711
330 => 0.0093353485649131
331 => 0.0095153902653723
401 => 0.0097139818364061
402 => 0.0097889455570659
403 => 0.0099613204991995
404 => 0.0096661344515341
405 => 0.0098900364595412
406 => 0.010092001675394
407 => 0.0098512104190057
408 => 0.01018308506877
409 => 0.010195971009377
410 => 0.010390533413637
411 => 0.010193307143272
412 => 0.010076194813498
413 => 0.010414293721414
414 => 0.010577889132939
415 => 0.010528612863604
416 => 0.010153618020896
417 => 0.009935354938155
418 => 0.0093641183508164
419 => 0.010040772764103
420 => 0.010370351390535
421 => 0.010152764491874
422 => 0.010262502667285
423 => 0.010861198569602
424 => 0.011089143206515
425 => 0.011041732315491
426 => 0.011049743975624
427 => 0.011172738764215
428 => 0.011718165391293
429 => 0.011391333113457
430 => 0.011641184143691
501 => 0.011773704229222
502 => 0.011896796270087
503 => 0.01159452112136
504 => 0.01120126559417
505 => 0.011076705060965
506 => 0.010131129762972
507 => 0.010081908462286
508 => 0.010054279054653
509 => 0.0098800795477833
510 => 0.0097432064526448
511 => 0.0096343598856184
512 => 0.009348713989405
513 => 0.0094451110941538
514 => 0.0089898511545214
515 => 0.0092811103304766
516 => 0.0085545044741877
517 => 0.0091596434225147
518 => 0.008830293805232
519 => 0.0090514432154078
520 => 0.0090506716459492
521 => 0.0086434654663313
522 => 0.0084085974401038
523 => 0.0085582644876163
524 => 0.0087187194431347
525 => 0.0087447527198323
526 => 0.0089527867579647
527 => 0.0090108445863308
528 => 0.0088349266559207
529 => 0.0085394471828519
530 => 0.0086080803252765
531 => 0.0084072065916632
601 => 0.0080551831000024
602 => 0.0083080125174537
603 => 0.0083943395966963
604 => 0.0084324665528351
605 => 0.0080862918789579
606 => 0.0079775162806079
607 => 0.007919605064762
608 => 0.0084947603795297
609 => 0.0085262686860124
610 => 0.0083650677352214
611 => 0.0090937113184981
612 => 0.0089287968346373
613 => 0.0091130467181394
614 => 0.00860185258698
615 => 0.0086213808912045
616 => 0.0083793733972643
617 => 0.0085148814229242
618 => 0.0084191087180154
619 => 0.0085039337135673
620 => 0.0085547774661546
621 => 0.0087967452490464
622 => 0.0091624063059171
623 => 0.0087606033311968
624 => 0.0085855320211866
625 => 0.0086941452772785
626 => 0.0089833966911388
627 => 0.0094216273896446
628 => 0.0091621859959144
629 => 0.0092773216808513
630 => 0.0093024737059799
701 => 0.0091111712272858
702 => 0.009428680984905
703 => 0.0095988370434579
704 => 0.009773381950698
705 => 0.0099249344030173
706 => 0.0097036648764215
707 => 0.0099404549876197
708 => 0.0097496439570754
709 => 0.0095784667369954
710 => 0.0095787263421794
711 => 0.009471344371523
712 => 0.0092632782723773
713 => 0.0092249076913882
714 => 0.0094245162993639
715 => 0.0095845834999549
716 => 0.0095977674012658
717 => 0.0096863888280626
718 => 0.0097388340755678
719 => 0.010252868796975
720 => 0.010459617814243
721 => 0.010712426598999
722 => 0.010810909868184
723 => 0.011107309200226
724 => 0.010867942667226
725 => 0.010816154212125
726 => 0.010097186384076
727 => 0.010214917325641
728 => 0.010403415922434
729 => 0.010100294656508
730 => 0.010292555330841
731 => 0.010330511660592
801 => 0.010089994711883
802 => 0.010218465206312
803 => 0.0098772856619551
804 => 0.009169843087648
805 => 0.0094294685707234
806 => 0.0096206403152596
807 => 0.0093478146645004
808 => 0.0098368440836755
809 => 0.0095511631926097
810 => 0.009460616065243
811 => 0.0091073594390037
812 => 0.0092740829684941
813 => 0.0094995789293809
814 => 0.0093602486422721
815 => 0.0096493799085708
816 => 0.010058866890142
817 => 0.010350691698581
818 => 0.01037309438377
819 => 0.010185470582687
820 => 0.010486138921321
821 => 0.010488328961921
822 => 0.010149173847676
823 => 0.0099414432286242
824 => 0.0098942463949067
825 => 0.010012153339017
826 => 0.01015531413599
827 => 0.010381038811653
828 => 0.010517439505683
829 => 0.010873100174372
830 => 0.010969331753729
831 => 0.011075061083851
901 => 0.011216348074611
902 => 0.011385999332259
903 => 0.011014812038776
904 => 0.011029560001926
905 => 0.010683915533672
906 => 0.010314544848912
907 => 0.010594851155939
908 => 0.010961314364791
909 => 0.010877247299775
910 => 0.010867788037626
911 => 0.01088369589278
912 => 0.010820312071131
913 => 0.010533629394927
914 => 0.010389659149666
915 => 0.01057541749678
916 => 0.010674139791118
917 => 0.010827249460147
918 => 0.010808375461686
919 => 0.011202769526327
920 => 0.01135601913399
921 => 0.011316811326429
922 => 0.011324026506609
923 => 0.011601477601126
924 => 0.011910060280399
925 => 0.012199088680608
926 => 0.01249310078336
927 => 0.012138657718005
928 => 0.011958693388427
929 => 0.012144370639257
930 => 0.01204584767637
1001 => 0.012611989844928
1002 => 0.012651188300337
1003 => 0.013217289530372
1004 => 0.013754587007756
1005 => 0.013417120088895
1006 => 0.013735336193537
1007 => 0.014079512855247
1008 => 0.014743485476335
1009 => 0.014519882856391
1010 => 0.014348606753814
1011 => 0.014186751664478
1012 => 0.014523546411614
1013 => 0.014956827473376
1014 => 0.015050152064165
1015 => 0.015201373553981
1016 => 0.015042382647924
1017 => 0.015233869681996
1018 => 0.015909903055939
1019 => 0.015727232870788
1020 => 0.015467811842176
1021 => 0.016001475263968
1022 => 0.016194605981751
1023 => 0.017550098502491
1024 => 0.019261463802529
1025 => 0.018552947330883
1026 => 0.018113148293248
1027 => 0.018216511499265
1028 => 0.018841444173467
1029 => 0.01904215271405
1030 => 0.018496557712364
1031 => 0.018689271090589
1101 => 0.019751140751771
1102 => 0.020320799756137
1103 => 0.019547126312796
1104 => 0.017412591966952
1105 => 0.015444453816936
1106 => 0.015966492680737
1107 => 0.015907309674334
1108 => 0.017048156154335
1109 => 0.015722876247285
1110 => 0.01574519056205
1111 => 0.016909628539081
1112 => 0.01659897645033
1113 => 0.016095759851867
1114 => 0.015448127854998
1115 => 0.014250920210078
1116 => 0.013190520012366
1117 => 0.015270208995659
1118 => 0.01518052902503
1119 => 0.015050659137733
1120 => 0.015339670518523
1121 => 0.01674302774633
1122 => 0.016710675820005
1123 => 0.016504869370823
1124 => 0.016660971748633
1125 => 0.016068394350293
1126 => 0.016221115038581
1127 => 0.015444142053798
1128 => 0.015795366292178
1129 => 0.016094680175052
1130 => 0.016154771868457
1201 => 0.016290161522056
1202 => 0.015133271755598
1203 => 0.015652681296239
1204 => 0.015957785739273
1205 => 0.014579312765851
1206 => 0.015930537760717
1207 => 0.015113132878612
1208 => 0.014835693384616
1209 => 0.015209229113407
1210 => 0.015063661876622
1211 => 0.014938511714429
1212 => 0.014868675773572
1213 => 0.015142959187163
1214 => 0.015130163538079
1215 => 0.014681382637329
1216 => 0.01409596624695
1217 => 0.014292451203199
1218 => 0.014221066376537
1219 => 0.01396235855589
1220 => 0.014136696390505
1221 => 0.013369000797219
1222 => 0.012048220430315
1223 => 0.012920768397289
1224 => 0.01288717624971
1225 => 0.012870237565618
1226 => 0.013525933247344
1227 => 0.013462903237019
1228 => 0.013348503151088
1229 => 0.013960257508598
1230 => 0.01373695893885
1231 => 0.014425112515054
]
'min_raw' => 0.0061773855543952
'max_raw' => 0.020320799756137
'avg_raw' => 0.013249092655266
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.006177'
'max' => '$0.02032'
'avg' => '$0.013249'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0033652803839713
'max_diff' => 0.0134330756679
'year' => 2029
]
4 => [
'items' => [
101 => 0.014878374967326
102 => 0.014763412947925
103 => 0.015189708475094
104 => 0.014296977819747
105 => 0.014593507133316
106 => 0.014654621413871
107 => 0.013952708554786
108 => 0.013473215726213
109 => 0.013441239021166
110 => 0.012609864534602
111 => 0.013053978074704
112 => 0.013444779611327
113 => 0.013257616002709
114 => 0.013198365595574
115 => 0.01350106307578
116 => 0.013524585262421
117 => 0.012988276914246
118 => 0.013099792402508
119 => 0.013564830526468
120 => 0.013088074634949
121 => 0.01216181581536
122 => 0.011932090821572
123 => 0.011901441272729
124 => 0.011278408869856
125 => 0.011947442144129
126 => 0.011655391190932
127 => 0.012577976652775
128 => 0.012051000784895
129 => 0.012028283908484
130 => 0.011993944017948
131 => 0.011457674291651
201 => 0.011575083279991
202 => 0.011965368639127
203 => 0.012104626852146
204 => 0.012090101079619
205 => 0.011963456027948
206 => 0.012021433484075
207 => 0.011834667897203
208 => 0.01176871708129
209 => 0.011560558165064
210 => 0.011254622063581
211 => 0.011297164354907
212 => 0.010691024885334
213 => 0.010360767932054
214 => 0.010269357160103
215 => 0.01014711885553
216 => 0.010283164301868
217 => 0.010689307768374
218 => 0.010199412579624
219 => 0.0093595216406649
220 => 0.0094100005172009
221 => 0.0095234115654643
222 => 0.0093120708273146
223 => 0.0091120545551396
224 => 0.0092859524759627
225 => 0.008930079613039
226 => 0.0095664171007459
227 => 0.0095492059550187
228 => 0.0097863932195896
301 => 0.0099347112836984
302 => 0.009592886164471
303 => 0.0095069180713787
304 => 0.0095558894042361
305 => 0.0087465023570961
306 => 0.0097202490300852
307 => 0.0097286700317489
308 => 0.0096565643029658
309 => 0.010175054345277
310 => 0.011269230055653
311 => 0.010857557140293
312 => 0.010698144944586
313 => 0.010395102244018
314 => 0.01079888864963
315 => 0.010767884153729
316 => 0.010627670065154
317 => 0.01054286814689
318 => 0.010699118281461
319 => 0.010523507026073
320 => 0.010491962419131
321 => 0.010300836421932
322 => 0.010232613136611
323 => 0.010182103332207
324 => 0.010126497000548
325 => 0.010249150711952
326 => 0.0099712012654711
327 => 0.0096360214807348
328 => 0.0096081549083295
329 => 0.0096850969647946
330 => 0.0096510558324712
331 => 0.0096079919324845
401 => 0.0095257712196545
402 => 0.0095013780905255
403 => 0.0095806439263311
404 => 0.0094911574191919
405 => 0.0096231996350581
406 => 0.0095872914585715
407 => 0.0093867113036794
408 => 0.0091367141663991
409 => 0.0091344886674906
410 => 0.009080627194341
411 => 0.0090120265101583
412 => 0.0089929433691898
413 => 0.0092713072781117
414 => 0.0098475122388494
415 => 0.0097343894176405
416 => 0.009816132249257
417 => 0.010218226076956
418 => 0.010346039613398
419 => 0.010255320592661
420 => 0.010131138801771
421 => 0.010136602170336
422 => 0.010560968942194
423 => 0.010587436177216
424 => 0.010654310341463
425 => 0.010740262541156
426 => 0.010269958623937
427 => 0.010114450898129
428 => 0.010040762710401
429 => 0.0098138316131173
430 => 0.010058557345936
501 => 0.0099159661416234
502 => 0.0099352065666943
503 => 0.009922676214626
504 => 0.009929518634154
505 => 0.0095662392314495
506 => 0.0096985991523917
507 => 0.0094785251121965
508 => 0.0091838706768453
509 => 0.0091828828918589
510 => 0.0092549991474744
511 => 0.0092121015767249
512 => 0.0090966653168354
513 => 0.0091130624927089
514 => 0.0089694059781376
515 => 0.009130504994563
516 => 0.0091351247379141
517 => 0.0090730928414676
518 => 0.0093212881036512
519 => 0.0094229739050759
520 => 0.0093821431819828
521 => 0.0094201091126973
522 => 0.0097390901815806
523 => 0.0097910980139284
524 => 0.0098141964576127
525 => 0.0097832476030331
526 => 0.0094259395010747
527 => 0.009441787634788
528 => 0.0093255045450023
529 => 0.0092272575877435
530 => 0.0092311869507964
531 => 0.0092816986580379
601 => 0.0095022862460338
602 => 0.0099664998206226
603 => 0.0099841163864425
604 => 0.010005468178128
605 => 0.0099186197107932
606 => 0.0098924253820172
607 => 0.0099269824630027
608 => 0.010101316674428
609 => 0.010549751597491
610 => 0.010391244745719
611 => 0.010262376207922
612 => 0.010375428658278
613 => 0.01035802511968
614 => 0.010211121739612
615 => 0.01020699865101
616 => 0.009925044096807
617 => 0.0098208119179126
618 => 0.0097337077075851
619 => 0.0096385921838205
620 => 0.0095822045130316
621 => 0.0096688416031014
622 => 0.0096886565306603
623 => 0.0094992230190655
624 => 0.009473403931416
625 => 0.0096280994261907
626 => 0.0095600237065697
627 => 0.0096300412723965
628 => 0.0096462859482679
629 => 0.0096436701813059
630 => 0.009572591311575
701 => 0.0096178948635391
702 => 0.0095107384575052
703 => 0.0093942219603151
704 => 0.0093198916943421
705 => 0.0092550286788016
706 => 0.0092910184496841
707 => 0.0091627214879607
708 => 0.0091216767077977
709 => 0.0096025470394959
710 => 0.0099577711237485
711 => 0.0099526060248793
712 => 0.0099211648138686
713 => 0.0098744495519234
714 => 0.010097899162045
715 => 0.010020053785895
716 => 0.010076692801243
717 => 0.010091109807781
718 => 0.010134745744448
719 => 0.01015034184117
720 => 0.010103199604689
721 => 0.0099449845011166
722 => 0.0095507275056558
723 => 0.0093671998099923
724 => 0.0093066326135279
725 => 0.0093088341160858
726 => 0.009248106847596
727 => 0.0092659937497715
728 => 0.0092418865129789
729 => 0.0091962332386605
730 => 0.0092881994886425
731 => 0.009298797742228
801 => 0.0092773317205674
802 => 0.0092823877457498
803 => 0.0091046582546575
804 => 0.0091181706418571
805 => 0.0090429319528586
806 => 0.0090288256056874
807 => 0.0088386287516814
808 => 0.0085016674553351
809 => 0.0086883767231354
810 => 0.0084628581829286
811 => 0.0083774508945887
812 => 0.0087817557140311
813 => 0.0087411747238292
814 => 0.0086717177087359
815 => 0.0085689763073027
816 => 0.008530868522107
817 => 0.0082993376827167
818 => 0.0082856576055565
819 => 0.0084004105414169
820 => 0.0083474560099248
821 => 0.0082730877922604
822 => 0.0080037336464656
823 => 0.0077008904064994
824 => 0.0077100313403092
825 => 0.0078063601403437
826 => 0.0080864491181525
827 => 0.0079770135089341
828 => 0.0078976167188172
829 => 0.0078827480866871
830 => 0.0080688601473856
831 => 0.0083322477049563
901 => 0.008455823254004
902 => 0.008333363637943
903 => 0.008192688624706
904 => 0.0082012508609365
905 => 0.0082582115826285
906 => 0.0082641973490971
907 => 0.0081726323771049
908 => 0.0081984073803758
909 => 0.0081592527934916
910 => 0.0079189611660567
911 => 0.0079146150524894
912 => 0.007855643611891
913 => 0.0078538579801064
914 => 0.0077535328485332
915 => 0.0077394966691113
916 => 0.0075402950310725
917 => 0.0076714101524677
918 => 0.0075834650128886
919 => 0.0074509109433817
920 => 0.0074280585718361
921 => 0.0074273716019524
922 => 0.0075634749927884
923 => 0.0076698197051025
924 => 0.0075849948562442
925 => 0.0075656818824198
926 => 0.007771893916005
927 => 0.0077456515550668
928 => 0.0077229258397395
929 => 0.0083086642380359
930 => 0.0078450065900471
1001 => 0.0076428253908706
1002 => 0.0073925877637214
1003 => 0.0074740663969288
1004 => 0.0074912351421158
1005 => 0.0068894587575445
1006 => 0.0066453181532704
1007 => 0.0065615382981281
1008 => 0.0065133218070204
1009 => 0.0065352946674828
1010 => 0.0063155394887994
1011 => 0.0064632186032898
1012 => 0.0062729291939928
1013 => 0.0062410265552689
1014 => 0.0065812875914263
1015 => 0.0066286329268314
1016 => 0.0064266430169502
1017 => 0.00655635323829
1018 => 0.0065093185089252
1019 => 0.0062761911597515
1020 => 0.0062672874097817
1021 => 0.0061503123007889
1022 => 0.0059672689060595
1023 => 0.0058836131629582
1024 => 0.0058400445256186
1025 => 0.0058580217945208
1026 => 0.0058489319372503
1027 => 0.0057896144699444
1028 => 0.0058523319450418
1029 => 0.005692114712818
1030 => 0.0056283149199885
1031 => 0.0055994980337114
1101 => 0.0054572960183529
1102 => 0.0056836026623114
1103 => 0.0057281879221073
1104 => 0.0057728610286379
1105 => 0.0061617099213624
1106 => 0.0061422841295575
1107 => 0.0063178838267299
1108 => 0.0063110603454049
1109 => 0.0062609764672449
1110 => 0.0060496808236856
1111 => 0.0061338995012256
1112 => 0.0058746875022458
1113 => 0.0060689067565841
1114 => 0.005980273199694
1115 => 0.0060389396618422
1116 => 0.0059334520731582
1117 => 0.0059918332602117
1118 => 0.0057387607412089
1119 => 0.0055024451837906
1120 => 0.0055975454625769
1121 => 0.0057009303416537
1122 => 0.0059250951014695
1123 => 0.0057915844198423
1124 => 0.0058395999095532
1125 => 0.0056787560567175
1126 => 0.0053468892455422
1127 => 0.0053487675756529
1128 => 0.005297717096865
1129 => 0.0052536020297004
1130 => 0.0058069197276813
1201 => 0.005738105925279
1202 => 0.0056284601372787
1203 => 0.0057752253816675
1204 => 0.0058140324417615
1205 => 0.0058151372242061
1206 => 0.0059222133579529
1207 => 0.005979359909728
1208 => 0.0059894322371657
1209 => 0.0061579188471492
1210 => 0.0062143933364236
1211 => 0.0064470037651758
1212 => 0.0059745114240706
1213 => 0.0059647807552378
1214 => 0.005777290669634
1215 => 0.0056583814932431
1216 => 0.0057854324826727
1217 => 0.0058979823151178
1218 => 0.0057807879066595
1219 => 0.0057960910222951
1220 => 0.0056387671040749
1221 => 0.0056950030020602
1222 => 0.0057434409331988
1223 => 0.0057166963546741
1224 => 0.0056766584261703
1225 => 0.0058887545123587
1226 => 0.0058767872199646
1227 => 0.0060742959714911
1228 => 0.0062282681672924
1229 => 0.0065042138679904
1230 => 0.0062162501439373
1231 => 0.0062057556012807
]
'min_raw' => 0.0052536020297004
'max_raw' => 0.015189708475094
'avg_raw' => 0.010221655252397
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.005253'
'max' => '$0.015189'
'avg' => '$0.010221'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00092378352469482
'max_diff' => -0.0051310912810433
'year' => 2030
]
5 => [
'items' => [
101 => 0.0063083414391268
102 => 0.0062143776310663
103 => 0.0062737595142402
104 => 0.0064946465285708
105 => 0.0064993135231144
106 => 0.0064211353514261
107 => 0.006416378202574
108 => 0.0064313931756223
109 => 0.0065193363417498
110 => 0.0064886062972843
111 => 0.0065241678827293
112 => 0.0065686381898666
113 => 0.0067525862352061
114 => 0.0067969354861843
115 => 0.0066891897987576
116 => 0.0066989180279549
117 => 0.0066586181831721
118 => 0.0066196890380674
119 => 0.0067071960711176
120 => 0.0068671168939718
121 => 0.0068661220348327
122 => 0.0069032205573183
123 => 0.0069263326294861
124 => 0.0068271186966712
125 => 0.0067625340746061
126 => 0.0067872999283321
127 => 0.0068269010677701
128 => 0.0067744578125432
129 => 0.0064507537472032
130 => 0.0065489448823316
131 => 0.006532601076145
201 => 0.0065093255086606
202 => 0.0066080574543218
203 => 0.0065985345173046
204 => 0.006313285581813
205 => 0.0063315462931753
206 => 0.0063143960761523
207 => 0.0063698119359578
208 => 0.0062113849927775
209 => 0.006260116053478
210 => 0.006290679717924
211 => 0.0063086819510839
212 => 0.0063737183615041
213 => 0.0063660870893887
214 => 0.0063732439909146
215 => 0.006469675818592
216 => 0.0069573949115773
217 => 0.0069839403857169
218 => 0.0068532207625022
219 => 0.0069054406736459
220 => 0.0068051898634892
221 => 0.0068724889039694
222 => 0.0069185331982558
223 => 0.0067104678861845
224 => 0.0066981476087363
225 => 0.0065974830278248
226 => 0.0066515744716734
227 => 0.0065655110951979
228 => 0.0065866280374159
301 => 0.0065275832260325
302 => 0.0066338521308179
303 => 0.0067526772788863
304 => 0.0067826972038356
305 => 0.0067037277056841
306 => 0.0066465485846789
307 => 0.0065461608841672
308 => 0.006713107867404
309 => 0.0067619282529196
310 => 0.0067128514347024
311 => 0.0067014792635718
312 => 0.0066799290198284
313 => 0.0067060512496565
314 => 0.0067616623666154
315 => 0.0067354371908337
316 => 0.0067527593814656
317 => 0.0066867450533421
318 => 0.0068271515406112
319 => 0.0070501508330559
320 => 0.0070508678122452
321 => 0.0070246424951
322 => 0.0070139116603565
323 => 0.0070408204272328
324 => 0.0070554173294078
325 => 0.0071424353472617
326 => 0.0072358091473697
327 => 0.0076715439302932
328 => 0.0075491913468692
329 => 0.0079358011682571
330 => 0.0082415593419726
331 => 0.0083332428490854
401 => 0.008248898336584
402 => 0.0079603603155178
403 => 0.0079462032636609
404 => 0.0083774008847442
405 => 0.008255567806686
406 => 0.0082410761497206
407 => 0.0080869094036497
408 => 0.0081780410445006
409 => 0.008158109217826
410 => 0.0081266458543218
411 => 0.0083005186767801
412 => 0.008625993078688
413 => 0.0085752648408711
414 => 0.0085373985645559
415 => 0.0083714795644503
416 => 0.0084713998618642
417 => 0.0084358201578024
418 => 0.0085886931458902
419 => 0.0084981345742983
420 => 0.0082546448012935
421 => 0.0082934213501973
422 => 0.0082875603528381
423 => 0.0084081792631761
424 => 0.0083719724602381
425 => 0.008280490393466
426 => 0.0086248806425659
427 => 0.0086025178553886
428 => 0.0086342231747611
429 => 0.0086481808368685
430 => 0.0088578051126587
501 => 0.0089436814712213
502 => 0.0089631769080923
503 => 0.0090447528068108
504 => 0.0089611472254182
505 => 0.0092956291607579
506 => 0.0095180401301967
507 => 0.0097763819163637
508 => 0.01015388870168
509 => 0.010295834745092
510 => 0.010270193462859
511 => 0.01055641479906
512 => 0.011070748177871
513 => 0.010374154944071
514 => 0.011107669310723
515 => 0.010875447131071
516 => 0.010324852520616
517 => 0.010289400718787
518 => 0.010662269781522
519 => 0.011489257475351
520 => 0.011282106437663
521 => 0.011489596300239
522 => 0.011247548354072
523 => 0.011235528633404
524 => 0.011477840571754
525 => 0.012044015623446
526 => 0.011775047079142
527 => 0.011389414717089
528 => 0.011674159652125
529 => 0.011427487237497
530 => 0.01087166524808
531 => 0.011281948033169
601 => 0.011007603618961
602 => 0.011087671903978
603 => 0.011664303056992
604 => 0.011594921271084
605 => 0.011684707726629
606 => 0.011526236982713
607 => 0.011378200319354
608 => 0.011101878893846
609 => 0.011020073742235
610 => 0.011042681743099
611 => 0.011020062538832
612 => 0.010865463240785
613 => 0.010832077537092
614 => 0.010776433234941
615 => 0.010793679730926
616 => 0.010689052163568
617 => 0.010886506000331
618 => 0.010923155172391
619 => 0.011066845608504
620 => 0.011081764026256
621 => 0.011481939845525
622 => 0.011261529728953
623 => 0.011409399864443
624 => 0.011396172967717
625 => 0.010336785575374
626 => 0.010482759810985
627 => 0.010709849912356
628 => 0.010607546129502
629 => 0.010462912515944
630 => 0.010346113118232
701 => 0.010169150087347
702 => 0.010418222155044
703 => 0.010745725438203
704 => 0.01109007004998
705 => 0.011503777538676
706 => 0.011411442843285
707 => 0.011082336076247
708 => 0.011097099565404
709 => 0.011188361646152
710 => 0.011070168959549
711 => 0.011035311628875
712 => 0.011183572784188
713 => 0.011184593777282
714 => 0.011048598807282
715 => 0.010897465284944
716 => 0.010896832029967
717 => 0.010869939279444
718 => 0.011252332514647
719 => 0.011462610129692
720 => 0.011486718119378
721 => 0.011460987469904
722 => 0.011470890175674
723 => 0.01134853426463
724 => 0.011628203593758
725 => 0.011884855826595
726 => 0.011816067545619
727 => 0.011712944133607
728 => 0.011630801368842
729 => 0.011796717320776
730 => 0.011789329344612
731 => 0.01188261419324
801 => 0.011878382253667
802 => 0.011847014067694
803 => 0.011816068665876
804 => 0.011938763686173
805 => 0.011903429490749
806 => 0.01186804041156
807 => 0.01179706219545
808 => 0.011806709313843
809 => 0.011703603707541
810 => 0.011655902336274
811 => 0.010938588164015
812 => 0.010746898378271
813 => 0.010807207887072
814 => 0.010827063343304
815 => 0.010743639702891
816 => 0.010863247773469
817 => 0.010844606982366
818 => 0.01091712739605
819 => 0.01087181979005
820 => 0.010873679230005
821 => 0.01100691923865
822 => 0.011045599380003
823 => 0.011025926347924
824 => 0.01103970466524
825 => 0.011357220172328
826 => 0.011312079620795
827 => 0.011288099602477
828 => 0.011294742231433
829 => 0.011375874251104
830 => 0.011398586786967
831 => 0.011302352176532
901 => 0.011347736975139
902 => 0.01154097968742
903 => 0.011608603700128
904 => 0.011824427087324
905 => 0.011732741476488
906 => 0.011901034383238
907 => 0.012418309403307
908 => 0.012831544482046
909 => 0.012451516425975
910 => 0.013210370022911
911 => 0.013801246399208
912 => 0.013778567579729
913 => 0.013675534616305
914 => 0.013002837571152
915 => 0.012383811720854
916 => 0.012901653129854
917 => 0.012902973214101
918 => 0.012858490177817
919 => 0.012582209859849
920 => 0.012848876221624
921 => 0.012870043229032
922 => 0.012858195333645
923 => 0.012646371861632
924 => 0.01232295657139
925 => 0.012386151144957
926 => 0.012489665145593
927 => 0.012293691547106
928 => 0.01223106610793
929 => 0.012347498714335
930 => 0.012722668831869
1001 => 0.012651745094361
1002 => 0.01264989298895
1003 => 0.012953334814351
1004 => 0.012736135954208
1005 => 0.012386948230907
1006 => 0.012298773725553
1007 => 0.01198581363301
1008 => 0.012201976283655
1009 => 0.012209755592625
1010 => 0.012091365517995
1011 => 0.012396554932978
1012 => 0.012393742558791
1013 => 0.012683474486867
1014 => 0.013237333115006
1015 => 0.013073529864937
1016 => 0.012883044506851
1017 => 0.012903755546861
1018 => 0.013130904536569
1019 => 0.012993565072084
1020 => 0.013042953301078
1021 => 0.013130829781569
1022 => 0.0131838478441
1023 => 0.012896127063564
1024 => 0.012829045586346
1025 => 0.012691820426355
1026 => 0.012656020943543
1027 => 0.012767787973058
1028 => 0.012738341309568
1029 => 0.012209101771829
1030 => 0.012153793295474
1031 => 0.012155489527481
1101 => 0.012016413733913
1102 => 0.011804289766705
1103 => 0.012361738887262
1104 => 0.012316967921386
1105 => 0.012267544240056
1106 => 0.012273598359012
1107 => 0.012515568128542
1108 => 0.012375213442448
1109 => 0.012748369379109
1110 => 0.012671659736626
1111 => 0.012592982781265
1112 => 0.012582107229475
1113 => 0.012551823314063
1114 => 0.012447968499969
1115 => 0.012322557571242
1116 => 0.012239750413188
1117 => 0.011290522765407
1118 => 0.011466693895432
1119 => 0.011669362722022
1120 => 0.011739323188817
1121 => 0.011619650969248
1122 => 0.012452693888608
1123 => 0.012604898857376
1124 => 0.012143860078892
1125 => 0.012057618547527
1126 => 0.012458347869047
1127 => 0.012216659101003
1128 => 0.012325491538454
1129 => 0.012090255336846
1130 => 0.012568237137482
1201 => 0.012564595716999
1202 => 0.012378650000843
1203 => 0.012535810046837
1204 => 0.012508499621327
1205 => 0.012298567365751
1206 => 0.012574892364433
1207 => 0.012575029418185
1208 => 0.012396060709193
1209 => 0.012187064438379
1210 => 0.012149700841429
1211 => 0.01212155239022
1212 => 0.012318568744988
1213 => 0.01249521299262
1214 => 0.012823904143638
1215 => 0.012906544908514
1216 => 0.013229097315529
1217 => 0.013037033061943
1218 => 0.013122172657909
1219 => 0.013214603733062
1220 => 0.01325891858953
1221 => 0.013186709908981
1222 => 0.013687766564943
1223 => 0.013730071098686
1224 => 0.013744255442917
1225 => 0.01357530195769
1226 => 0.013725372196627
1227 => 0.013655159301632
1228 => 0.013837833748705
1229 => 0.01386647943451
1230 => 0.013842217557733
1231 => 0.013851310150549
]
'min_raw' => 0.0062113849927775
'max_raw' => 0.01386647943451
'avg_raw' => 0.010038932213644
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.006211'
'max' => '$0.013866'
'avg' => '$0.010038'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00095778296307709
'max_diff' => -0.0013232290405839
'year' => 2031
]
6 => [
'items' => [
101 => 0.013423746687136
102 => 0.013401575265981
103 => 0.013099266365322
104 => 0.013222459476895
105 => 0.012992155859608
106 => 0.01306518750904
107 => 0.013097379164239
108 => 0.013080564070423
109 => 0.013229424630586
110 => 0.013102862744244
111 => 0.012768845117488
112 => 0.012434736487853
113 => 0.012430542026167
114 => 0.012342577121491
115 => 0.012278994606987
116 => 0.012291242854991
117 => 0.012334407278523
118 => 0.012276485812222
119 => 0.012288846293751
120 => 0.012494112644575
121 => 0.01253527734734
122 => 0.012395383603257
123 => 0.011833690034189
124 => 0.011695849023438
125 => 0.011794926408459
126 => 0.01174757379982
127 => 0.0094812089169975
128 => 0.010013657728751
129 => 0.0096972947250603
130 => 0.009843089352323
131 => 0.0095201646473573
201 => 0.0096742812425008
202 => 0.0096458215348147
203 => 0.010501983467809
204 => 0.010488615676837
205 => 0.010495014130968
206 => 0.010189599244246
207 => 0.010676133451712
208 => 0.010915817697514
209 => 0.010871458522605
210 => 0.010882622771249
211 => 0.010690783990628
212 => 0.010496871549703
213 => 0.010281792809806
214 => 0.010681382523998
215 => 0.010636954969004
216 => 0.010738855795631
217 => 0.010998018288548
218 => 0.011036180950092
219 => 0.011087471954216
220 => 0.01106908778038
221 => 0.011507073386269
222 => 0.011454030439474
223 => 0.011581848679753
224 => 0.011318916861905
225 => 0.011021384552293
226 => 0.011077935717286
227 => 0.011072489385342
228 => 0.011003151328678
229 => 0.010940556031436
301 => 0.010836352497645
302 => 0.011166067897784
303 => 0.011152682054669
304 => 0.011369383295354
305 => 0.01133107924614
306 => 0.011075275430893
307 => 0.011084411514198
308 => 0.011145856065077
309 => 0.011358516357231
310 => 0.011421648410959
311 => 0.011392403128295
312 => 0.01146162454312
313 => 0.011516334327013
314 => 0.01146849524965
315 => 0.012145795701424
316 => 0.011864533332625
317 => 0.012001618654166
318 => 0.0120343126956
319 => 0.011950567595949
320 => 0.011968728909376
321 => 0.011996238350557
322 => 0.012163270290505
323 => 0.012601610432009
324 => 0.0127957482968
325 => 0.013379821641614
326 => 0.012779627849658
327 => 0.012744014833892
328 => 0.012849224080619
329 => 0.013192136964468
330 => 0.013470035648658
331 => 0.013562230674563
401 => 0.013574415769211
402 => 0.013747379766819
403 => 0.013846519504661
404 => 0.013726377388105
405 => 0.013624569523727
406 => 0.013259906390386
407 => 0.013302117141015
408 => 0.013592907354462
409 => 0.014003665658413
410 => 0.014356139015322
411 => 0.014232715130669
412 => 0.015174352246884
413 => 0.015267711720714
414 => 0.015254812460104
415 => 0.015467499235242
416 => 0.015045359299503
417 => 0.014864886298398
418 => 0.013646581539574
419 => 0.013988875482798
420 => 0.014486419831493
421 => 0.014420567971248
422 => 0.014059237965827
423 => 0.014355864914111
424 => 0.014257790768626
425 => 0.014180435620982
426 => 0.014534814548373
427 => 0.014145160360623
428 => 0.0144825327329
429 => 0.014049849175784
430 => 0.014233278920578
501 => 0.014129155325934
502 => 0.014196536052576
503 => 0.013802629701441
504 => 0.014015172006978
505 => 0.013793787242757
506 => 0.013793682277554
507 => 0.013788795196613
508 => 0.014049253389949
509 => 0.014057746922282
510 => 0.013865267923877
511 => 0.01383752869312
512 => 0.013940095167949
513 => 0.013820016688126
514 => 0.01387620065307
515 => 0.013821718443189
516 => 0.013809453350174
517 => 0.013711723002295
518 => 0.013669618081277
519 => 0.013686128505718
520 => 0.013629769915393
521 => 0.013595811826143
522 => 0.013782040077948
523 => 0.013682545835435
524 => 0.013766791158335
525 => 0.013670782980283
526 => 0.013337976806383
527 => 0.013146576456411
528 => 0.012517936445062
529 => 0.012696217972455
530 => 0.012814418809562
531 => 0.012775353433603
601 => 0.012859280977457
602 => 0.012864433447018
603 => 0.012837147746971
604 => 0.012805554401832
605 => 0.012790176508639
606 => 0.012904790725623
607 => 0.01297132813632
608 => 0.012826281844889
609 => 0.01279229952822
610 => 0.012938949337082
611 => 0.01302840563577
612 => 0.013688900684135
613 => 0.013639969077581
614 => 0.013762777807689
615 => 0.013748951429332
616 => 0.013877674543449
617 => 0.014088082432584
618 => 0.013660264363002
619 => 0.013734518787046
620 => 0.013716313317055
621 => 0.01391507586468
622 => 0.013915696379658
623 => 0.013796528303431
624 => 0.013861131250835
625 => 0.013825071657884
626 => 0.013890236216093
627 => 0.013639315566144
628 => 0.013944909832572
629 => 0.014118162089578
630 => 0.014120567697334
701 => 0.01420268789214
702 => 0.014286126766143
703 => 0.014446280418798
704 => 0.014281660167694
705 => 0.013985524361416
706 => 0.014006904410117
707 => 0.013833280095248
708 => 0.013836198751348
709 => 0.013820618736343
710 => 0.013867375534182
711 => 0.013649576053906
712 => 0.013700693156596
713 => 0.013629128913489
714 => 0.013734363220357
715 => 0.013621148502022
716 => 0.013716304537826
717 => 0.013757370728407
718 => 0.013908905855742
719 => 0.013598766640505
720 => 0.012966371786056
721 => 0.013099308851508
722 => 0.012902684489724
723 => 0.012920882823009
724 => 0.012957646352487
725 => 0.012838483725169
726 => 0.012861216199215
727 => 0.012860404035276
728 => 0.012853405245217
729 => 0.012822406443572
730 => 0.012777452048262
731 => 0.012956536522946
801 => 0.012986966464885
802 => 0.013054608456343
803 => 0.013255865140921
804 => 0.013235754852172
805 => 0.013268555567489
806 => 0.01319695179012
807 => 0.012924204316876
808 => 0.012939015816901
809 => 0.012754316174253
810 => 0.013049885271219
811 => 0.012979890607736
812 => 0.012934764592846
813 => 0.012922451541594
814 => 0.013124207102566
815 => 0.013184575528539
816 => 0.013146957976647
817 => 0.013069803280236
818 => 0.013217963106083
819 => 0.013257604425118
820 => 0.013266478654535
821 => 0.013528989459106
822 => 0.013281150092379
823 => 0.013340807491262
824 => 0.013806237487389
825 => 0.013384156705851
826 => 0.013607742309356
827 => 0.013596798957548
828 => 0.013711177786577
829 => 0.0135874165551
830 => 0.01358895072389
831 => 0.013690511375375
901 => 0.013547887756925
902 => 0.013512572143276
903 => 0.013463783875955
904 => 0.013570311272767
905 => 0.013634169629336
906 => 0.014148821084485
907 => 0.014481309395469
908 => 0.014466875201013
909 => 0.014598776718655
910 => 0.014539353876878
911 => 0.014347461845826
912 => 0.014674998144092
913 => 0.01457135195462
914 => 0.01457989642055
915 => 0.014579578395101
916 => 0.014648494050193
917 => 0.014599660992533
918 => 0.014503406023276
919 => 0.0145673045639
920 => 0.014757060385409
921 => 0.015346068277791
922 => 0.015675684897684
923 => 0.015326224943394
924 => 0.015567277740408
925 => 0.015422731958094
926 => 0.015396463689583
927 => 0.015547862659769
928 => 0.015699526633811
929 => 0.015689866294326
930 => 0.015579766037203
1001 => 0.015517573195644
1002 => 0.015988518228054
1003 => 0.016335502505595
1004 => 0.016311840504079
1005 => 0.016416276883476
1006 => 0.016722905323481
1007 => 0.016750939585243
1008 => 0.016747407912621
1009 => 0.016677922069773
1010 => 0.016979837589693
1011 => 0.017231700828108
1012 => 0.016661838104792
1013 => 0.01687883436978
1014 => 0.016976250984316
1015 => 0.017119287476662
1016 => 0.01736061401495
1017 => 0.017622758644233
1018 => 0.017659828769083
1019 => 0.017633525741533
1020 => 0.017460634311695
1021 => 0.017747476093092
1022 => 0.017915501281367
1023 => 0.018015556435797
1024 => 0.018269279659841
1025 => 0.016976852596163
1026 => 0.016062008482699
1027 => 0.015919142363873
1028 => 0.016209666234439
1029 => 0.016286275062223
1030 => 0.016255394139803
1031 => 0.015225653916111
1101 => 0.015913720994705
1102 => 0.016654023316948
1103 => 0.016682461344121
1104 => 0.017053072165628
1105 => 0.017173758240961
1106 => 0.017472148529345
1107 => 0.017453484135564
1108 => 0.017526137422359
1109 => 0.017509435689904
1110 => 0.018062140865647
1111 => 0.018671856752003
1112 => 0.018650744229637
1113 => 0.018563090357142
1114 => 0.018693271305003
1115 => 0.019322563440848
1116 => 0.019264628305181
1117 => 0.019320907354579
1118 => 0.020062878248091
1119 => 0.021027545953786
1120 => 0.020579360953437
1121 => 0.021551793442435
1122 => 0.022163888147829
1123 => 0.023222442649032
1124 => 0.023089906411991
1125 => 0.023501993911278
1126 => 0.022852638886539
1127 => 0.021361588493436
1128 => 0.021125624061216
1129 => 0.021598030830092
1130 => 0.022759396774595
1201 => 0.021561455283549
1202 => 0.021803797286985
1203 => 0.021734002773692
1204 => 0.021730283720687
1205 => 0.021872224847436
1206 => 0.021666331839935
1207 => 0.02082748668793
1208 => 0.021211924477748
1209 => 0.021063474584881
1210 => 0.02122819080869
1211 => 0.022117096334451
1212 => 0.021724090012651
1213 => 0.021310089777876
1214 => 0.021829337946291
1215 => 0.022490519297713
1216 => 0.022449143756998
1217 => 0.022368857914377
1218 => 0.022821425005602
1219 => 0.02356893325059
1220 => 0.023770981725479
1221 => 0.023920129778943
1222 => 0.023940694775639
1223 => 0.024152527022678
1224 => 0.023013451641748
1225 => 0.024821193524815
1226 => 0.025133340610159
1227 => 0.025074669895285
1228 => 0.025421608243488
1229 => 0.02531953018047
1230 => 0.025171635082715
1231 => 0.025721606160519
]
'min_raw' => 0.0094812089169975
'max_raw' => 0.025721606160519
'avg_raw' => 0.017601407538758
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.009481'
'max' => '$0.025721'
'avg' => '$0.0176014'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00326982392422
'max_diff' => 0.011855126726009
'year' => 2032
]
7 => [
'items' => [
101 => 0.025091108700194
102 => 0.024196196932686
103 => 0.023705230637684
104 => 0.024351774660064
105 => 0.024746596533255
106 => 0.025007548676047
107 => 0.025086512636784
108 => 0.023101874821037
109 => 0.022032265111409
110 => 0.022717872672181
111 => 0.023554361214428
112 => 0.02300880490566
113 => 0.023030189680089
114 => 0.022252369753462
115 => 0.023623181018728
116 => 0.023423465347716
117 => 0.024459590602216
118 => 0.024212310994805
119 => 0.025057230917699
120 => 0.024834735185651
121 => 0.025758302529814
122 => 0.026126738547988
123 => 0.02674539996499
124 => 0.027200489821742
125 => 0.027467727290108
126 => 0.02745168335489
127 => 0.028510611341736
128 => 0.027886198504019
129 => 0.02710178881704
130 => 0.027087601320583
131 => 0.027493858212641
201 => 0.028345261207258
202 => 0.028566017616353
203 => 0.028689390332893
204 => 0.028500440722876
205 => 0.027822685339606
206 => 0.027530034001407
207 => 0.027779381420478
208 => 0.027474450953623
209 => 0.028000846487793
210 => 0.028723699988227
211 => 0.02857443359886
212 => 0.029073408759247
213 => 0.029589795556529
214 => 0.030328251869026
215 => 0.03052131169407
216 => 0.030840432243462
217 => 0.031168912114425
218 => 0.031274410996197
219 => 0.031475841095882
220 => 0.031474779459828
221 => 0.032081802623036
222 => 0.032751367969997
223 => 0.033004113388002
224 => 0.033585287540239
225 => 0.032590047171304
226 => 0.033344948423639
227 => 0.034025888249649
228 => 0.033214043717226
301 => 0.034332982269655
302 => 0.034376428118076
303 => 0.035032408847955
304 => 0.034367446707521
305 => 0.033972594311166
306 => 0.035112518384517
307 => 0.035664091736339
308 => 0.035497953353918
309 => 0.034233632060424
310 => 0.03349774283832
311 => 0.031571778801643
312 => 0.033853166398542
313 => 0.034964363748002
314 => 0.034230754327735
315 => 0.034600744247806
316 => 0.036619289282081
317 => 0.037387820540021
318 => 0.037227971410809
319 => 0.037254983282305
320 => 0.03766966879926
321 => 0.039508612752925
322 => 0.038406674909502
323 => 0.039249065101976
324 => 0.0396958658226
325 => 0.04011087923239
326 => 0.03909173746428
327 => 0.037765848998134
328 => 0.037345884463895
329 => 0.034157811328751
330 => 0.033991858276967
331 => 0.033898703800108
401 => 0.033311378000477
402 => 0.032849900804043
403 => 0.032482917003889
404 => 0.031519841921646
405 => 0.031844851490538
406 => 0.030309910818833
407 => 0.031291911465632
408 => 0.028842109091153
409 => 0.03088237730489
410 => 0.029771952075766
411 => 0.030517572752332
412 => 0.030514971352033
413 => 0.029142047287224
414 => 0.028350173338836
415 => 0.028854786238944
416 => 0.029395771324081
417 => 0.029483544334052
418 => 0.030184945618089
419 => 0.030380691639893
420 => 0.029787572055318
421 => 0.028791342382148
422 => 0.029022743813646
423 => 0.028345483996212
424 => 0.027158612216583
425 => 0.028011044249506
426 => 0.028302102024337
427 => 0.028430649718898
428 => 0.027263497636777
429 => 0.02689675311247
430 => 0.026701501405014
501 => 0.028640677704815
502 => 0.028746910159961
503 => 0.028203409899678
504 => 0.030660082612966
505 => 0.030104061916667
506 => 0.030725273262811
507 => 0.029001746559173
508 => 0.029067587600288
509 => 0.028251642438045
510 => 0.028708517207426
511 => 0.028385612846189
512 => 0.028671606240984
513 => 0.02884302950263
514 => 0.0296588407763
515 => 0.03089169255918
516 => 0.029536985776922
517 => 0.028946720632134
518 => 0.029312917808184
519 => 0.030288149144903
520 => 0.031765674541205
521 => 0.030890949768624
522 => 0.031279137768906
523 => 0.031363939577685
524 => 0.030718949914455
525 => 0.031789456230092
526 => 0.032363149261419
527 => 0.032951639602516
528 => 0.033462609276565
529 => 0.032716583619102
530 => 0.033514938011164
531 => 0.032871605299683
601 => 0.032294469350972
602 => 0.032295344627975
603 => 0.031933298816737
604 => 0.031231789436756
605 => 0.031102420344003
606 => 0.031775414702021
607 => 0.032315092444349
608 => 0.032359542888089
609 => 0.032658336215885
610 => 0.032835159029459
611 => 0.03456826298144
612 => 0.035265331727914
613 => 0.036117694196267
614 => 0.036449737414207
615 => 0.037449068456125
616 => 0.036642027478078
617 => 0.036467419085951
618 => 0.034043368856952
619 => 0.034440306946153
620 => 0.035075843125792
621 => 0.034053848614472
622 => 0.034702068901195
623 => 0.034830041316977
624 => 0.034019121632048
625 => 0.03445226887354
626 => 0.033301958219345
627 => 0.030916766188005
628 => 0.031792111630666
629 => 0.032436660514555
630 => 0.031516809784941
701 => 0.033165606614634
702 => 0.032202413544803
703 => 0.031897127583087
704 => 0.030706098204132
705 => 0.031268218224074
706 => 0.032028493599829
707 => 0.031558731809111
708 => 0.032533558059938
709 => 0.033914172007774
710 => 0.034898079723983
711 => 0.034973611941203
712 => 0.034341025196378
713 => 0.035354749492075
714 => 0.035362133366861
715 => 0.034218648220129
716 => 0.033518269934708
717 => 0.033359142514651
718 => 0.03375667400872
719 => 0.034239350630882
720 => 0.035000397134474
721 => 0.035460281597586
722 => 0.036659416373508
723 => 0.036983867861985
724 => 0.037340341680275
725 => 0.037816700633966
726 => 0.0383886916938
727 => 0.037137207818352
728 => 0.037186931605781
729 => 0.036021567148938
730 => 0.034776208096632
731 => 0.035721280381135
801 => 0.036956836675424
802 => 0.036673398696346
803 => 0.036641506133587
804 => 0.036695140577888
805 => 0.036481437597882
806 => 0.035514866939516
807 => 0.035029461205938
808 => 0.035655758442464
809 => 0.035988607550395
810 => 0.036504827489303
811 => 0.036441192485751
812 => 0.037770919610404
813 => 0.038287611362183
814 => 0.038155419501591
815 => 0.038179745985315
816 => 0.039115191721496
817 => 0.040155599769218
818 => 0.041130079199844
819 => 0.042121361531541
820 => 0.040926331990272
821 => 0.040319569688391
822 => 0.040945593503136
823 => 0.040613416455109
824 => 0.042522204303185
825 => 0.042654364632348
826 => 0.044563014453336
827 => 0.046374550411248
828 => 0.045236757133121
829 => 0.04630964494706
830 => 0.047470060591661
831 => 0.049708690640749
901 => 0.048954798796171
902 => 0.048377329458215
903 => 0.047831623724159
904 => 0.048967150728385
905 => 0.050427988078835
906 => 0.050742638452395
907 => 0.051252492263258
908 => 0.050716443323094
909 => 0.051362055227667
910 => 0.053641348947057
911 => 0.053025463664196
912 => 0.052150807554033
913 => 0.053950091039796
914 => 0.054601244738756
915 => 0.059171382409897
916 => 0.064941370002684
917 => 0.062552557251489
918 => 0.061069744090316
919 => 0.06141824035599
920 => 0.06352524449847
921 => 0.064201947356065
922 => 0.062362435715657
923 => 0.063012182325161
924 => 0.066592350025207
925 => 0.06851299513075
926 => 0.065904501100371
927 => 0.058707769524928
928 => 0.052072054341133
929 => 0.053832144818024
930 => 0.053632605179911
1001 => 0.057479048738594
1002 => 0.053010775003887
1003 => 0.053086009274052
1004 => 0.057011993212074
1005 => 0.055964608005814
1006 => 0.054267978110635
1007 => 0.05208444161697
1008 => 0.048047972455753
1009 => 0.044472759154392
1010 => 0.05148457576081
1011 => 0.05118221347858
1012 => 0.050744348086332
1013 => 0.051718770134797
1014 => 0.05645028700762
1015 => 0.056341210229276
1016 => 0.055647319416912
1017 => 0.056173629482417
1018 => 0.05417571341148
1019 => 0.054690621874664
1020 => 0.052071003209945
1021 => 0.053255180251337
1022 => 0.054264337904875
1023 => 0.054466941244657
1024 => 0.054923416914369
1025 => 0.051022882295293
1026 => 0.052774107825579
1027 => 0.053802788756979
1028 => 0.049155170885179
1029 => 0.053710920294884
1030 => 0.050954982665482
1031 => 0.050019576041268
1101 => 0.05127897783032
1102 => 0.050788187728318
1103 => 0.050366235218779
1104 => 0.050130778468391
1105 => 0.051055544147167
1106 => 0.051012402722919
1107 => 0.049499306583157
1108 => 0.047525534350527
1109 => 0.048187997098662
1110 => 0.047947318171643
1111 => 0.047075066691927
1112 => 0.047662858873211
1113 => 0.045074519581653
1114 => 0.040621416360696
1115 => 0.043563272750701
1116 => 0.043450014479809
1117 => 0.043392904523772
1118 => 0.045603628293922
1119 => 0.045391118213497
1120 => 0.045005410336622
1121 => 0.047067982864292
1122 => 0.046315116146177
1123 => 0.0486352739737
1124 => 0.050163479977306
1125 => 0.049775877502507
1126 => 0.051213162635359
1127 => 0.048203258902393
1128 => 0.049203028186106
1129 => 0.049409079249859
1130 => 0.047042531039466
1201 => 0.045425887490811
1202 => 0.045318075797202
1203 => 0.042515038671039
1204 => 0.04401239847851
1205 => 0.045330013144126
1206 => 0.044698977970324
1207 => 0.044499211085938
1208 => 0.045519776774115
1209 => 0.04559908346864
1210 => 0.043790882428916
1211 => 0.044166864683355
1212 => 0.045734773186212
1213 => 0.044127357411921
1214 => 0.04100441113235
1215 => 0.040229877276906
1216 => 0.040126540183099
1217 => 0.03802594293808
1218 => 0.040281635332705
1219 => 0.039296965153653
1220 => 0.042407526451117
1221 => 0.040630790520281
1222 => 0.040554198985419
1223 => 0.040438419646941
1224 => 0.038630348823574
1225 => 0.039026201424996
1226 => 0.040342075762177
1227 => 0.040811594550068
1228 => 0.040762619893837
1229 => 0.040335627260052
1230 => 0.040531102301243
1231 => 0.039901409085548
]
'min_raw' => 0.022032265111409
'max_raw' => 0.06851299513075
'avg_raw' => 0.045272630121079
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.022032'
'max' => '$0.068512'
'avg' => '$0.045272'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.012551056194412
'max_diff' => 0.042791388970231
'year' => 2033
]
8 => [
'items' => [
101 => 0.039679051305155
102 => 0.03897722898591
103 => 0.037945744059983
104 => 0.038089178365398
105 => 0.036045536824425
106 => 0.034932052448637
107 => 0.034623854648907
108 => 0.034211719670635
109 => 0.034670406391352
110 => 0.036039747444709
111 => 0.03438803161245
112 => 0.031556280672435
113 => 0.031726473728999
114 => 0.032108846996326
115 => 0.031396296942315
116 => 0.030721928115986
117 => 0.031308237097207
118 => 0.030108386893609
119 => 0.032253843161078
120 => 0.032195814581615
121 => 0.032995508004002
122 => 0.033495572712381
123 => 0.032343085457438
124 => 0.032053238029477
125 => 0.032218348297275
126 => 0.029489443358243
127 => 0.032772498251048
128 => 0.032800890246093
129 => 0.032557780747239
130 => 0.034305906124709
131 => 0.037994995925151
201 => 0.036607011948931
202 => 0.036069542601301
203 => 0.035047812978569
204 => 0.036409207036558
205 => 0.03630467321396
206 => 0.035831931624897
207 => 0.035546016036789
208 => 0.036072824274529
209 => 0.035480738666204
210 => 0.035374383821524
211 => 0.034729989177978
212 => 0.03449996960832
213 => 0.034329672276288
214 => 0.034142191646792
215 => 0.034555727198199
216 => 0.033618601233577
217 => 0.032488519187833
218 => 0.032394565093387
219 => 0.032653980608682
220 => 0.032539208554377
221 => 0.032394015608947
222 => 0.032116802735174
223 => 0.032034559597241
224 => 0.032301809896824
225 => 0.032000099890255
226 => 0.032445289439942
227 => 0.032324222515888
228 => 0.03164795251961
301 => 0.030805069717027
302 => 0.030797566292077
303 => 0.030615968574866
304 => 0.030384676578597
305 => 0.030320336436479
306 => 0.031258859790157
307 => 0.03320157504463
308 => 0.032820173554941
309 => 0.033095775218838
310 => 0.03445146263222
311 => 0.034882394893991
312 => 0.034576529381776
313 => 0.034157841803693
314 => 0.034176261932253
315 => 0.035607044131913
316 => 0.035696280262672
317 => 0.035921751176435
318 => 0.036211545018693
319 => 0.034625882526216
320 => 0.034101577371453
321 => 0.033853132501784
322 => 0.033088018463468
323 => 0.033913128357872
324 => 0.033432372157131
325 => 0.033497242593581
326 => 0.033454995636742
327 => 0.033478065331903
328 => 0.032253243462327
329 => 0.032699504176858
330 => 0.031957509185261
331 => 0.030964061184359
401 => 0.030960730798312
402 => 0.031203875789116
403 => 0.031059243634321
404 => 0.030670042224602
405 => 0.030725326447873
406 => 0.030240978479219
407 => 0.030784135060671
408 => 0.03079971084792
409 => 0.030590565978121
410 => 0.031427373633013
411 => 0.031770214411993
412 => 0.031632550778374
413 => 0.031760555564475
414 => 0.032836022508762
415 => 0.033011370546593
416 => 0.033089248562157
417 => 0.032984902338161
418 => 0.031780213125954
419 => 0.031833646215249
420 => 0.031441589659411
421 => 0.031110343183629
422 => 0.031123591305502
423 => 0.031293895053081
424 => 0.032037621506943
425 => 0.033602749984026
426 => 0.033662145465637
427 => 0.033734134522038
428 => 0.033441318850853
429 => 0.033353002842556
430 => 0.033469514453796
501 => 0.034057294419243
502 => 0.035569224071075
503 => 0.035034807153732
504 => 0.034600317881236
505 => 0.034981482110681
506 => 0.034922804865222
507 => 0.034427509862855
508 => 0.03441360858177
509 => 0.033462979116835
510 => 0.033111553048435
511 => 0.032817875121894
512 => 0.032497186492767
513 => 0.032307071523841
514 => 0.03259917452182
515 => 0.032665981933519
516 => 0.032027293623352
517 => 0.03194024276671
518 => 0.032461809427837
519 => 0.03223228738624
520 => 0.032468356497896
521 => 0.032523126556763
522 => 0.032514307315824
523 => 0.032274659943958
524 => 0.032427404032398
525 => 0.032066118728033
526 => 0.031673275222835
527 => 0.031422665541533
528 => 0.031203975356048
529 => 0.031325317381303
530 => 0.030892755217445
531 => 0.03075436987547
601 => 0.032375657772085
602 => 0.033573320573097
603 => 0.033555906081644
604 => 0.033449899843566
605 => 0.033292396076362
606 => 0.034045772037642
607 => 0.03378331091696
608 => 0.033974273311616
609 => 0.034022881255723
610 => 0.034170002862757
611 => 0.034222586191743
612 => 0.034063642850079
613 => 0.03353020958216
614 => 0.032200944595819
615 => 0.031582168156395
616 => 0.031377961624849
617 => 0.031385384144427
618 => 0.031180637918871
619 => 0.031240944858379
620 => 0.031159665626419
621 => 0.031005742424645
622 => 0.031315813057338
623 => 0.031351545809248
624 => 0.031279171618509
625 => 0.031296218360412
626 => 0.030696990972518
627 => 0.030742548929366
628 => 0.03048887643641
629 => 0.030441315902049
630 => 0.029800053929647
701 => 0.028663965393129
702 => 0.029293468725143
703 => 0.028533117221634
704 => 0.028245160586049
705 => 0.02960830251246
706 => 0.02947148087072
707 => 0.029237301695
708 => 0.028890901886892
709 => 0.028762418828504
710 => 0.027981796438533
711 => 0.027935673103275
712 => 0.028322570638322
713 => 0.028144030738229
714 => 0.027893293100151
715 => 0.026985146791897
716 => 0.025964089664511
717 => 0.025994908961051
718 => 0.026319688235829
719 => 0.027264027779699
720 => 0.026895057982669
721 => 0.026627366161483
722 => 0.026577235530162
723 => 0.027204725336736
724 => 0.028092754876218
725 => 0.028509398467602
726 => 0.028096517322194
727 => 0.02762222169345
728 => 0.027651089870697
729 => 0.027843136920753
730 => 0.027863318350314
731 => 0.02755460065438
801 => 0.027641502877462
802 => 0.027509490454095
803 => 0.026699330455573
804 => 0.026684677230245
805 => 0.026485850901013
806 => 0.026479830518782
807 => 0.026141577333206
808 => 0.02609425337431
809 => 0.025422631143849
810 => 0.025864694929798
811 => 0.025568181751574
812 => 0.025121266451601
813 => 0.025044218085434
814 => 0.025041901918508
815 => 0.025500784003147
816 => 0.025859332625465
817 => 0.025573339725257
818 => 0.025508224685619
819 => 0.026203482954116
820 => 0.02611500500203
821 => 0.026038383666145
822 => 0.028013241570951
823 => 0.026449987439213
824 => 0.025768319410349
825 => 0.024924625779382
826 => 0.025199336679898
827 => 0.025257222302979
828 => 0.023228291207711
829 => 0.022405154115049
830 => 0.022122684484114
831 => 0.021960119217976
901 => 0.022034202251121
902 => 0.021293282323373
903 => 0.021791192768504
904 => 0.021149618739477
905 => 0.021042056765648
906 => 0.02218927060532
907 => 0.022348898709184
908 => 0.021667875625535
909 => 0.02210520269286
910 => 0.021946621818947
911 => 0.021160616684776
912 => 0.021130597070113
913 => 0.020736207323202
914 => 0.02011906373819
915 => 0.019837012559667
916 => 0.019690117857011
917 => 0.019750729474248
918 => 0.019720082385827
919 => 0.019520089403392
920 => 0.019731545749477
921 => 0.019191362165024
922 => 0.01897625670914
923 => 0.018879098565126
924 => 0.018399654542118
925 => 0.019162663192449
926 => 0.019312985508694
927 => 0.019463604006339
928 => 0.020774635196722
929 => 0.020709139783386
930 => 0.021301186422383
1001 => 0.021278180578695
1002 => 0.021109319286734
1003 => 0.020396921272283
1004 => 0.020680870423569
1005 => 0.019806919071405
1006 => 0.020461742847362
1007 => 0.02016290862211
1008 => 0.020360706695204
1009 => 0.020005047925048
1010 => 0.020201884173243
1011 => 0.019348632506466
1012 => 0.018551878105605
1013 => 0.018872515335222
1014 => 0.019221084673131
1015 => 0.019976871811534
1016 => 0.01952673122701
1017 => 0.019688618802905
1018 => 0.01914632252331
1019 => 0.018027410399232
1020 => 0.01803374332034
1021 => 0.017861623066877
1022 => 0.017712886037915
1023 => 0.019578435288066
1024 => 0.01934642474884
1025 => 0.018976746319373
1026 => 0.019471575587652
1027 => 0.019602416300181
1028 => 0.019606141151327
1029 => 0.019967155812071
1030 => 0.020159829401226
1031 => 0.020193788956409
1101 => 0.020761853325328
1102 => 0.02095226100884
1103 => 0.021736523309719
1104 => 0.020143482393321
1105 => 0.020110674763978
1106 => 0.019478538850225
1107 => 0.019077628260049
1108 => 0.019505989541328
1109 => 0.019885459159395
1110 => 0.019490330029026
1111 => 0.019541925551821
1112 => 0.019011496977536
1113 => 0.019201100233858
1114 => 0.01936441210052
1115 => 0.019274240886777
1116 => 0.019139250215468
1117 => 0.019854346978128
1118 => 0.019813998416292
1119 => 0.020479912961684
1120 => 0.020999040969823
1121 => 0.02192941116564
1122 => 0.02095852136501
1123 => 0.020923138281738
1124 => 0.021269013596351
1125 => 0.020952208057131
1126 => 0.021152418222162
1127 => 0.021897154212817
1128 => 0.02191288931076
1129 => 0.021649306146687
1130 => 0.021633267087199
1201 => 0.021683891117143
1202 => 0.021980397641738
1203 => 0.021876789151319
1204 => 0.021996687519478
1205 => 0.022146622264809
1206 => 0.022766815942513
1207 => 0.022916342538552
1208 => 0.022553070430829
1209 => 0.022585869834771
1210 => 0.022449996094441
1211 => 0.022318743763774
1212 => 0.022613779835249
1213 => 0.023152964054817
1214 => 0.023149609817771
1215 => 0.023274690076467
1216 => 0.023352614041414
1217 => 0.023018107340033
1218 => 0.022800355777586
1219 => 0.02288385558252
1220 => 0.023017373588999
1221 => 0.02284055749253
1222 => 0.02174916663594
1223 => 0.022080224903512
1224 => 0.022025120619865
1225 => 0.021946645419043
1226 => 0.022279527067084
1227 => 0.022247419820061
1228 => 0.021285683118606
1229 => 0.021347250381886
1230 => 0.021289427227803
1231 => 0.021476265668149
]
'min_raw' => 0.017712886037915
'max_raw' => 0.039679051305155
'avg_raw' => 0.028695968671535
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.017712'
'max' => '$0.039679'
'avg' => '$0.028695'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0043193790734936
'max_diff' => -0.028833943825594
'year' => 2034
]
9 => [
'items' => [
101 => 0.020942118168201
102 => 0.021106418341647
103 => 0.021209465870213
104 => 0.021270161656188
105 => 0.021489436454617
106 => 0.021463707087881
107 => 0.021487837081055
108 => 0.021812963720724
109 => 0.023457342694184
110 => 0.023546842613591
111 => 0.02310611227737
112 => 0.023282175353669
113 => 0.022944172747937
114 => 0.023171076161586
115 => 0.023326317714482
116 => 0.022624810988177
117 => 0.022583272312587
118 => 0.022243874649867
119 => 0.022426247729346
120 => 0.022136079046806
121 => 0.022207276291832
122 => 0.022008202587876
123 => 0.022366495619818
124 => 0.022767122902637
125 => 0.022868337175528
126 => 0.022602085999036
127 => 0.022409302600448
128 => 0.022070838459328
129 => 0.022633711869177
130 => 0.022798313207473
131 => 0.02263284728842
201 => 0.022594505219473
202 => 0.022521847068102
203 => 0.022609919989764
204 => 0.022797416753235
205 => 0.022708996742103
206 => 0.022767399717216
207 => 0.022544827800974
208 => 0.02301821807567
209 => 0.02377007575946
210 => 0.023772493104855
211 => 0.023684072617107
212 => 0.023647892858566
213 => 0.0237386176448
214 => 0.023787832119606
215 => 0.024081219442204
216 => 0.024396035728419
217 => 0.025865145971077
218 => 0.025452625693678
219 => 0.026756107698723
220 => 0.027786992728759
221 => 0.028096110074128
222 => 0.027811736661484
223 => 0.026838910578377
224 => 0.026791179089628
225 => 0.028244991974367
226 => 0.02783422324558
227 => 0.027785363612346
228 => 0.027265579664389
301 => 0.027572836354126
302 => 0.027505634808897
303 => 0.027399553882141
304 => 0.027985778242472
305 => 0.029083137912401
306 => 0.028912104116869
307 => 0.028784435322534
308 => 0.028225027829583
309 => 0.028561916088526
310 => 0.028441956632186
311 => 0.028957378584775
312 => 0.028652054038056
313 => 0.027831111268457
314 => 0.027961849110378
315 => 0.02794208834858
316 => 0.028348763426128
317 => 0.028226689662144
318 => 0.027918251486948
319 => 0.029079387256348
320 => 0.029003989558059
321 => 0.029110886255919
322 => 0.029157945488207
323 => 0.029864708369533
324 => 0.030154246508123
325 => 0.030219976734661
326 => 0.030495015572638
327 => 0.030213133517818
328 => 0.031340862715598
329 => 0.032090736827299
330 => 0.032961754196209
331 => 0.034234544679584
401 => 0.034713125675303
402 => 0.034626674302039
403 => 0.035591689520376
404 => 0.037325800416646
405 => 0.034977187694303
406 => 0.037450282593808
407 => 0.036667329301878
408 => 0.034810961131441
409 => 0.034691432906408
410 => 0.035948586984306
411 => 0.038736833732486
412 => 0.0380384095461
413 => 0.038737976104251
414 => 0.037921894554502
415 => 0.037881369227082
416 => 0.038698340844908
417 => 0.040607239560765
418 => 0.03970039333486
419 => 0.038400206902208
420 => 0.039360244330937
421 => 0.038528571062902
422 => 0.036654578419329
423 => 0.038037875474287
424 => 0.037112904127669
425 => 0.037382859940793
426 => 0.039327012132281
427 => 0.039093086597013
428 => 0.039395807900572
429 => 0.038861512723386
430 => 0.038362396777279
501 => 0.037430759799033
502 => 0.037154948018923
503 => 0.037231172472277
504 => 0.037154910245869
505 => 0.036633667918726
506 => 0.036521105687808
507 => 0.036333497038146
508 => 0.03639164480347
509 => 0.036038885655259
510 => 0.036704615051693
511 => 0.036828180294058
512 => 0.037312642631558
513 => 0.037362941118579
514 => 0.038712161832626
515 => 0.037969033736062
516 => 0.03846758822183
517 => 0.038422992816046
518 => 0.034851194258695
519 => 0.035343356585653
520 => 0.036109006717352
521 => 0.035764082370836
522 => 0.035276440044728
523 => 0.034882642720669
524 => 0.034285999506876
525 => 0.035125763372772
526 => 0.036229963557494
527 => 0.037390945457472
528 => 0.038785789139747
529 => 0.038474476267633
530 => 0.037364869825064
531 => 0.03741464595951
601 => 0.037722342436466
602 => 0.037323847541635
603 => 0.037206323617605
604 => 0.037706196454007
605 => 0.037709638803506
606 => 0.037251122267286
607 => 0.036741565044919
608 => 0.036739429981551
609 => 0.03664875919557
610 => 0.037938024685902
611 => 0.038646990346141
612 => 0.038728272116532
613 => 0.038641519435374
614 => 0.038674907099261
615 => 0.03826237560256
616 => 0.039205300271603
617 => 0.040070621193501
618 => 0.039838696701548
619 => 0.039491008918099
620 => 0.039214058851671
621 => 0.039773456067497
622 => 0.039748546990049
623 => 0.040063063370138
624 => 0.040048795090403
625 => 0.039943035061338
626 => 0.039838700478571
627 => 0.040252375305795
628 => 0.040133243598969
629 => 0.040013926847697
630 => 0.039774618836541
701 => 0.039807144769742
702 => 0.039459517019492
703 => 0.039298688515863
704 => 0.036880213702815
705 => 0.036233918206825
706 => 0.036437255926421
707 => 0.036504199983374
708 => 0.036222931355269
709 => 0.03662619831599
710 => 0.036563349587327
711 => 0.036807857225278
712 => 0.036655099468373
713 => 0.036661368700001
714 => 0.037110596691668
715 => 0.037241009488802
716 => 0.037174680487619
717 => 0.037221135046422
718 => 0.038291660746796
719 => 0.038139466225688
720 => 0.038058615919698
721 => 0.038081012006998
722 => 0.038354554275773
723 => 0.038431131176176
724 => 0.038106669468206
725 => 0.038259687485375
726 => 0.038911218781606
727 => 0.039139217861809
728 => 0.03986688148005
729 => 0.039557757041832
730 => 0.040125168326774
731 => 0.041869197171923
801 => 0.043262448091045
802 => 0.041981156967291
803 => 0.044539684850825
804 => 0.046531865807182
805 => 0.046455402583926
806 => 0.046108019754209
807 => 0.043839974700267
808 => 0.041752885826983
809 => 0.04349882429196
810 => 0.043503275048163
811 => 0.043353297385625
812 => 0.04242179900432
813 => 0.043320883261095
814 => 0.043392249304404
815 => 0.043352303297914
816 => 0.042638125672981
817 => 0.041547708441796
818 => 0.041760773358679
819 => 0.042109778038941
820 => 0.041449039369202
821 => 0.041237893328653
822 => 0.041630453990212
823 => 0.042895366235017
824 => 0.042656241902274
825 => 0.042649997399569
826 => 0.043673072699541
827 => 0.042940771578229
828 => 0.041763460789609
829 => 0.041466174288661
830 => 0.040411007486479
831 => 0.041139814955122
901 => 0.041166043438447
902 => 0.040766883036103
903 => 0.041795850456361
904 => 0.041786368340437
905 => 0.042763219764383
906 => 0.044630592798327
907 => 0.044078318704344
908 => 0.043436084020291
909 => 0.043505912737684
910 => 0.044271761415521
911 => 0.043808711822276
912 => 0.043975227684504
913 => 0.044271509373821
914 => 0.044450263473246
915 => 0.043480192773646
916 => 0.043254022889724
917 => 0.042791358682062
918 => 0.042670658226319
919 => 0.043047488569655
920 => 0.042948207087798
921 => 0.041163839035985
922 => 0.040977362646441
923 => 0.040983081611081
924 => 0.040514177863102
925 => 0.03979898709764
926 => 0.041678465727453
927 => 0.041527517290192
928 => 0.041360881897938
929 => 0.04138129378268
930 => 0.042197111754441
1001 => 0.041723896131025
1002 => 0.042982017424392
1003 => 0.042723385509064
1004 => 0.042458120661015
1005 => 0.042421452978849
1006 => 0.042319348643684
1007 => 0.041969194887051
1008 => 0.041546363184939
1009 => 0.04126717307015
1010 => 0.038066785782698
1011 => 0.038660759047453
1012 => 0.039344071146186
1013 => 0.039579947744468
1014 => 0.039176464500943
1015 => 0.041985126864765
1016 => 0.042498296543579
1017 => 0.040943872113221
1018 => 0.040653102769032
1019 => 0.042004189654562
1020 => 0.041189319098933
1021 => 0.041556255260238
1022 => 0.040763139982847
1023 => 0.042374688995315
1024 => 0.042362411691923
1025 => 0.041735482727588
1026 => 0.04226535879522
1027 => 0.042173279788859
1028 => 0.041465478532182
1029 => 0.042397127557634
1030 => 0.042397589643927
1031 => 0.041794184146365
1101 => 0.041089538627662
1102 => 0.040963564651902
1103 => 0.040868660183389
1104 => 0.041532914578733
1105 => 0.042128482992529
1106 => 0.043236688156673
1107 => 0.043515317265243
1108 => 0.044602825225386
1109 => 0.043955267184923
1110 => 0.044242321276979
1111 => 0.044553959100187
1112 => 0.044703369732735
1113 => 0.044459913124815
1114 => 0.046149260623051
1115 => 0.046291893312172
1116 => 0.046339716819066
1117 => 0.045770078347668
1118 => 0.046276050635814
1119 => 0.046039322958231
1120 => 0.046655222610458
1121 => 0.046751803540129
1122 => 0.046670002928664
1123 => 0.046700659240168
1124 => 0.045259099171744
1125 => 0.045184346677361
1126 => 0.044165091112255
1127 => 0.044580445288992
1128 => 0.043803960564025
1129 => 0.044050191868991
1130 => 0.044158728282042
1201 => 0.044102035019252
1202 => 0.044603928790953
1203 => 0.044177216554883
1204 => 0.043051052805909
1205 => 0.041924582234375
1206 => 0.041910440313952
1207 => 0.041613860496325
1208 => 0.041399487609483
1209 => 0.041440783432775
1210 => 0.041586315300357
1211 => 0.041391029032776
1212 => 0.04143270325923
1213 => 0.042124773092274
1214 => 0.042263562761675
1215 => 0.041791901236426
1216 => 0.039898112152122
1217 => 0.039433371560623
1218 => 0.039767417881586
1219 => 0.039607765255504
1220 => 0.031966557820525
1221 => 0.033761746163741
1222 => 0.032695106209038
1223 => 0.03318666297391
1224 => 0.032097899785235
1225 => 0.032617514645839
1226 => 0.032521560754382
1227 => 0.035408170486789
1228 => 0.035363100046219
1229 => 0.035384672881045
1230 => 0.034354945267075
1231 => 0.035995329316281
]
'min_raw' => 0.020942118168201
'max_raw' => 0.046751803540129
'avg_raw' => 0.033846960854165
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.020942'
'max' => '$0.046751'
'avg' => '$0.033846'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0032292321302855
'max_diff' => 0.0070727522349735
'year' => 2035
]
10 => [
'items' => [
101 => 0.036803441485222
102 => 0.03665388142996
103 => 0.036691522473724
104 => 0.036044724631105
105 => 0.035390935297992
106 => 0.034665782310112
107 => 0.036013026929974
108 => 0.035863236326478
109 => 0.03620680207794
110 => 0.037080586516955
111 => 0.037209254594784
112 => 0.037382185796209
113 => 0.037320202270579
114 => 0.038796901320014
115 => 0.038618063321553
116 => 0.039049011442639
117 => 0.038162518461452
118 => 0.037159367506553
119 => 0.037350033707604
120 => 0.037331671019202
121 => 0.037097892920133
122 => 0.036886848505218
123 => 0.03653551901578
124 => 0.037647177507343
125 => 0.037602046202712
126 => 0.03833266956528
127 => 0.038203524789049
128 => 0.037341064366294
129 => 0.037371867309018
130 => 0.037579031902228
131 => 0.038296030924692
201 => 0.038508885051576
202 => 0.038410282539233
203 => 0.0386436673722
204 => 0.038828125228312
205 => 0.038666832438965
206 => 0.040950398199726
207 => 0.040002102486209
208 => 0.040464295218778
209 => 0.040574525462098
210 => 0.040292173011726
211 => 0.040353405147929
212 => 0.040446155149517
213 => 0.041009314996849
214 => 0.042487209387864
215 => 0.043141758753277
216 => 0.045111002814019
217 => 0.043087407540247
218 => 0.042967335771171
219 => 0.043322056091984
220 => 0.044478210821293
221 => 0.045415165637307
222 => 0.045726007603998
223 => 0.045767090501338
224 => 0.046350250695235
225 => 0.046684507243083
226 => 0.04627943970906
227 => 0.045936187386315
228 => 0.044706700172286
229 => 0.044849016665093
301 => 0.045829436172053
302 => 0.047214336472055
303 => 0.048402725003775
304 => 0.047986592759488
305 => 0.051161388039813
306 => 0.051476156023981
307 => 0.051432665266236
308 => 0.052149753577928
309 => 0.050726479311715
310 => 0.050118001988268
311 => 0.046010402434572
312 => 0.047164470362352
313 => 0.048841975871413
314 => 0.048619951726966
315 => 0.047401702386435
316 => 0.048401800852407
317 => 0.048071137023586
318 => 0.04781032874254
319 => 0.049005142038185
320 => 0.047691395739399
321 => 0.048828870247119
322 => 0.0473700474253
323 => 0.047988493616528
324 => 0.047637433647511
325 => 0.047864612471757
326 => 0.046536529707242
327 => 0.047253130929587
328 => 0.046506716740426
329 => 0.046506362842915
330 => 0.046489885708319
331 => 0.04736803869176
401 => 0.047396675229023
402 => 0.046747718847445
403 => 0.046654194094255
404 => 0.047000004125104
405 => 0.046595151146771
406 => 0.046784579307219
407 => 0.046600888732777
408 => 0.046559536115355
409 => 0.046230031424167
410 => 0.046088071743283
411 => 0.046143737792008
412 => 0.045953720869895
413 => 0.045839228801109
414 => 0.046467110354114
415 => 0.046131658569013
416 => 0.046415697556991
417 => 0.046091999281612
418 => 0.044969920030522
419 => 0.044324600387447
420 => 0.04220509669894
421 => 0.042806185315764
422 => 0.04320470769059
423 => 0.043072996048087
424 => 0.043355963621822
425 => 0.043373335532682
426 => 0.043281339889948
427 => 0.043174820721034
428 => 0.043122973080486
429 => 0.043509402915156
430 => 0.043733738440812
501 => 0.043244704742445
502 => 0.043130130989227
503 => 0.043624571058566
504 => 0.043926179215234
505 => 0.046153084385088
506 => 0.045988108057296
507 => 0.046402166265084
508 => 0.046355549665128
509 => 0.046789548631535
510 => 0.047498953519962
511 => 0.046056535029063
512 => 0.046306889004005
513 => 0.046245507990867
514 => 0.046915649797342
515 => 0.046917741906913
516 => 0.046515958417865
517 => 0.046733771765471
518 => 0.046612194330234
519 => 0.046831901187883
520 => 0.045985904697857
521 => 0.047016237103031
522 => 0.047600369183611
523 => 0.047608479858116
524 => 0.047885353828352
525 => 0.048166673817571
526 => 0.048706643039069
527 => 0.048151614369052
528 => 0.047153171822644
529 => 0.047225256149545
530 => 0.046639869649901
531 => 0.046649710102719
601 => 0.046597180994368
602 => 0.046754824802736
603 => 0.046020498648713
604 => 0.046192843529312
605 => 0.045951559687224
606 => 0.046306364500054
607 => 0.045924653172785
608 => 0.046245478391083
609 => 0.046383935919777
610 => 0.046894847181432
611 => 0.045849191164029
612 => 0.043717027759857
613 => 0.044165234357397
614 => 0.043502301593767
615 => 0.043563658545004
616 => 0.043687609351389
617 => 0.043285844233715
618 => 0.043362488357094
619 => 0.04335975008967
620 => 0.043336153180346
621 => 0.043231638556334
622 => 0.043080071673929
623 => 0.043683867483606
624 => 0.043786464157404
625 => 0.044014523854218
626 => 0.044693074817565
627 => 0.044625271574993
628 => 0.044735861476757
629 => 0.044494444342141
630 => 0.043574857193478
701 => 0.043624795199918
702 => 0.043002067459413
703 => 0.04399859930581
704 => 0.043762607411006
705 => 0.043610461901207
706 => 0.04356894758924
707 => 0.044249180549179
708 => 0.044452716912138
709 => 0.044325886709559
710 => 0.044065754263842
711 => 0.044565285460873
712 => 0.044698938935669
713 => 0.044728859019725
714 => 0.045613932525257
715 => 0.044778324796744
716 => 0.044979463882224
717 => 0.046548693609452
718 => 0.045125618785756
719 => 0.045879453258223
720 => 0.045842556983561
721 => 0.046228193191308
722 => 0.045810923558649
723 => 0.045816096115838
724 => 0.046158514943058
725 => 0.045677649455789
726 => 0.045558580398715
727 => 0.045394087349156
728 => 0.045753251905011
729 => 0.04596855481263
730 => 0.047703738125482
731 => 0.048824745679557
801 => 0.048776079785188
802 => 0.049220794960988
803 => 0.049020446701166
804 => 0.048373469321
805 => 0.049477780818457
806 => 0.049128330454306
807 => 0.049157138717745
808 => 0.049156066472741
809 => 0.04938842041542
810 => 0.049223776352106
811 => 0.048899246002946
812 => 0.049114684393915
813 => 0.04975445939446
814 => 0.051740340626844
815 => 0.052851666073913
816 => 0.051673437439509
817 => 0.05248616377441
818 => 0.051998817577472
819 => 0.051910252276195
820 => 0.052420704474518
821 => 0.052932050151841
822 => 0.052899479642803
823 => 0.052528268938958
824 => 0.052318581431479
825 => 0.053906405488581
826 => 0.055076287205977
827 => 0.054996509115837
828 => 0.05534862366049
829 => 0.056382442854083
830 => 0.056476962324901
831 => 0.056465055044083
901 => 0.056230778673573
902 => 0.057248707928052
903 => 0.058097882420899
904 => 0.056176550462696
905 => 0.056908168520297
906 => 0.057236615437617
907 => 0.05771887295805
908 => 0.058532522230767
909 => 0.059416361150748
910 => 0.059541345664834
911 => 0.05945266317103
912 => 0.058869747644437
913 => 0.059836854737072
914 => 0.060403363390486
915 => 0.060740706329273
916 => 0.061596151893526
917 => 0.057238643813961
918 => 0.054154183013041
919 => 0.053672499918824
920 => 0.054652021432167
921 => 0.054910313443698
922 => 0.054806196257721
923 => 0.051334355199378
924 => 0.053654221394166
925 => 0.056150202359867
926 => 0.056246083153962
927 => 0.057495623413893
928 => 0.057902524942912
929 => 0.058908568633142
930 => 0.058845640326402
1001 => 0.059090595955322
1002 => 0.059034284898273
1003 => 0.060897768986932
1004 => 0.062953468666788
1005 => 0.062882286323599
1006 => 0.062586755172685
1007 => 0.063025669327342
1008 => 0.065147371699119
1009 => 0.064952039344313
1010 => 0.065141788088636
1011 => 0.067643394758867
1012 => 0.070895839279566
1013 => 0.06938475225961
1014 => 0.072663376289338
1015 => 0.074727096323659
1016 => 0.078296086730383
1017 => 0.077849231553813
1018 => 0.079238613328689
1019 => 0.077049267526263
1020 => 0.072022087024102
1021 => 0.071226516466361
1022 => 0.072819268870014
1023 => 0.076734895235886
1024 => 0.072695951861221
1025 => 0.073513024845585
1026 => 0.073277707771121
1027 => 0.073265168724256
1028 => 0.073743733143104
1029 => 0.073049550493323
1030 => 0.070221325497041
1031 => 0.071517484346002
1101 => 0.071016975167758
1102 => 0.071572327416451
1103 => 0.074569334457958
1104 => 0.073244286205183
1105 => 0.071848455509064
1106 => 0.073599136961626
1107 => 0.075828356050151
1108 => 0.075688855525883
1109 => 0.075418166202108
1110 => 0.076944027747399
1111 => 0.079464303984736
1112 => 0.080145524524398
1113 => 0.080648387599836
1114 => 0.080717723921998
1115 => 0.081431931132546
1116 => 0.077591458958036
1117 => 0.083686386929304
1118 => 0.084738812620955
1119 => 0.084541000209501
1120 => 0.085710727072927
1121 => 0.085366563756601
1122 => 0.084867925108814
1123 => 0.086722190995384
1124 => 0.084596424787972
1125 => 0.081579167283075
1126 => 0.079923840141301
1127 => 0.08210370845302
1128 => 0.083434877964067
1129 => 0.084314696332586
1130 => 0.084580928839299
1201 => 0.077889583880521
1202 => 0.074283320066744
1203 => 0.076594893825476
1204 => 0.079415173347428
1205 => 0.077575792162892
1206 => 0.077647892422916
1207 => 0.075025418234639
1208 => 0.07964720412247
1209 => 0.078973848793951
1210 => 0.082467217429453
1211 => 0.081633496968556
1212 => 0.084482203479018
1213 => 0.083732043584262
1214 => 0.086845915366521
1215 => 0.088088123125177
1216 => 0.09017398328616
1217 => 0.091708350511557
1218 => 0.092609360294079
1219 => 0.092555267046339
1220 => 0.09612551668598
1221 => 0.094020265208505
1222 => 0.091375573183121
1223 => 0.091327739048278
1224 => 0.0926974625238
1225 => 0.095568027163211
1226 => 0.096312322809194
1227 => 0.096728282536619
1228 => 0.096091225734405
1229 => 0.093806126140339
1230 => 0.09281943172134
1231 => 0.093660123953617
]
'min_raw' => 0.034665782310112
'max_raw' => 0.096728282536619
'avg_raw' => 0.065697032423365
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.034665'
'max' => '$0.096728'
'avg' => '$0.065697'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.013723664141911
'max_diff' => 0.04997647899649
'year' => 2036
]
11 => [
'items' => [
101 => 0.092632029595049
102 => 0.094406808890266
103 => 0.096843959935
104 => 0.096340697881803
105 => 0.09802302747238
106 => 0.099764061612393
107 => 0.10225381862735
108 => 0.10290473330649
109 => 0.10398067051905
110 => 0.10508816333773
111 => 0.10544386018333
112 => 0.10612299582781
113 => 0.10611941644774
114 => 0.1081660374235
115 => 0.11042352373834
116 => 0.11127567256126
117 => 0.11323514179181
118 => 0.10987961940248
119 => 0.11242482168025
120 => 0.11472065784535
121 => 0.11198346732311
122 => 0.11575604677442
123 => 0.11590252748566
124 => 0.11811421231556
125 => 0.11587224603291
126 => 0.11454097361089
127 => 0.11838430721115
128 => 0.12024397527644
129 => 0.11968382812069
130 => 0.11542108060759
131 => 0.11293997871712
201 => 0.10644645650094
202 => 0.11413831406528
203 => 0.11788479351031
204 => 0.11541137813091
205 => 0.1166588249783
206 => 0.12346449049167
207 => 0.12605564728495
208 => 0.1255167047855
209 => 0.12560777719616
210 => 0.12700591836899
211 => 0.13320604629974
212 => 0.1294907859258
213 => 0.13233096327353
214 => 0.13383738309774
215 => 0.13523662978416
216 => 0.13180052215877
217 => 0.12733019662459
218 => 0.12591425687641
219 => 0.11516544571711
220 => 0.11460592341655
221 => 0.11429184659398
222 => 0.11231163665475
223 => 0.11075573406767
224 => 0.10951842256346
225 => 0.10627134768392
226 => 0.10736714013688
227 => 0.10219198049609
228 => 0.10550286423787
301 => 0.097243184492575
302 => 0.10412209122217
303 => 0.10037821503476
304 => 0.10289212720338
305 => 0.10288335640064
306 => 0.098254447061643
307 => 0.09558458875778
308 => 0.097285926381441
309 => 0.099109895366354
310 => 0.099405828197588
311 => 0.10177065159699
312 => 0.10243062297605
313 => 0.10043087888637
314 => 0.097072020988746
315 => 0.097852207070972
316 => 0.095568778311725
317 => 0.091567157241962
318 => 0.094441191355867
319 => 0.095422512964713
320 => 0.095855920491839
321 => 0.091920785759013
322 => 0.090684280990027
323 => 0.090025976226299
324 => 0.096564044510044
325 => 0.096922214649482
326 => 0.095089765575962
327 => 0.10337260914822
328 => 0.10149794655053
329 => 0.10359240397564
330 => 0.097781413361534
331 => 0.09800340102853
401 => 0.095252384946555
402 => 0.0967927701295
403 => 0.095704075531127
404 => 0.096668322229101
405 => 0.097246287724129
406 => 0.099996852391434
407 => 0.10415349825237
408 => 0.099586009753387
409 => 0.097595889606738
410 => 0.098830548952858
411 => 0.10211860949308
412 => 0.10710018952425
413 => 0.10415099388216
414 => 0.10545979682753
415 => 0.1057457120465
416 => 0.10357108436518
417 => 0.10718037114871
418 => 0.1091146172578
419 => 0.11109875352989
420 => 0.11282152346071
421 => 0.11030624587073
422 => 0.11299795344289
423 => 0.11082891229008
424 => 0.10888305814465
425 => 0.10888600920217
426 => 0.10766534647236
427 => 0.10530015861993
428 => 0.10486398169145
429 => 0.10713302915647
430 => 0.10895259034383
501 => 0.10910245811833
502 => 0.11010986068408
503 => 0.11070603114542
504 => 0.11654931212097
505 => 0.1188995280675
506 => 0.1217733276396
507 => 0.1228928345314
508 => 0.12626214891029
509 => 0.123541153907
510 => 0.12295244952218
511 => 0.11477959493333
512 => 0.1161178994144
513 => 0.11826065401577
514 => 0.11481492816748
515 => 0.11700044812146
516 => 0.11743191605602
517 => 0.11469784372167
518 => 0.11615822988774
519 => 0.11227987720499
520 => 0.10423803574254
521 => 0.10718932401714
522 => 0.10936246558014
523 => 0.10626112462332
524 => 0.11182015824995
525 => 0.10857268556702
526 => 0.10754339263271
527 => 0.10352775392655
528 => 0.10542298081975
529 => 0.10798630232984
530 => 0.10640246765471
531 => 0.10968916241957
601 => 0.11434399873608
602 => 0.11766131229553
603 => 0.11791597443938
604 => 0.1157831640634
605 => 0.11920100630231
606 => 0.11922590155168
607 => 0.11537056154389
608 => 0.11300918725574
609 => 0.1124726780491
610 => 0.11381298323612
611 => 0.11544036116714
612 => 0.11800628258857
613 => 0.11955681516406
614 => 0.123599781782
615 => 0.12469369262788
616 => 0.12589556899445
617 => 0.12750164646514
618 => 0.12943015425851
619 => 0.12521068899662
620 => 0.12537833621755
621 => 0.12144922858815
622 => 0.11725041359511
623 => 0.12043679078515
624 => 0.12460255509513
625 => 0.12364692415966
626 => 0.12353939615765
627 => 0.12372022843125
628 => 0.1229997139139
629 => 0.11974085345541
630 => 0.1181042741347
701 => 0.12021587899433
702 => 0.1213381030005
703 => 0.12307857456585
704 => 0.12286402470852
705 => 0.12734729254787
706 => 0.12908935486326
707 => 0.12864366077594
708 => 0.12872567921423
709 => 0.1318795998245
710 => 0.13538740819637
711 => 0.1386729336327
712 => 0.14201511122314
713 => 0.13798598569045
714 => 0.13594024422687
715 => 0.13805092722587
716 => 0.13693096911659
717 => 0.14336658061369
718 => 0.1438121683906
719 => 0.15024731451974
720 => 0.15635503447924
721 => 0.15251888500384
722 => 0.15613620117517
723 => 0.16004862353858
724 => 0.16759632104524
725 => 0.1650545220562
726 => 0.16310754386566
727 => 0.16126765888333
728 => 0.16509616745804
729 => 0.17002148257749
730 => 0.17108234828013
731 => 0.17280135600031
801 => 0.17099402957281
802 => 0.17317075518426
803 => 0.18085555309439
804 => 0.17877905286349
805 => 0.17583008872153
806 => 0.18189649861574
807 => 0.18409190877389
808 => 0.19950044700896
809 => 0.21895436302571
810 => 0.21090031405348
811 => 0.20590090595388
812 => 0.20707588544483
813 => 0.21417979701753
814 => 0.2164613479478
815 => 0.21025930602156
816 => 0.21244997207936
817 => 0.22452075743939
818 => 0.23099634650789
819 => 0.22220162676523
820 => 0.19793734379887
821 => 0.17556456676587
822 => 0.1814988346943
823 => 0.18082607287299
824 => 0.1937946258812
825 => 0.17872952901972
826 => 0.17898318661428
827 => 0.19221991556476
828 => 0.18868858321576
829 => 0.18296827706924
830 => 0.1756063313312
831 => 0.16199709373688
901 => 0.14994301247792
902 => 0.17358384171586
903 => 0.17256440617106
904 => 0.17108811243031
905 => 0.17437344439869
906 => 0.19032608387937
907 => 0.18995832390569
908 => 0.18761882258589
909 => 0.18939331371754
910 => 0.18265720019433
911 => 0.18439325002771
912 => 0.17556102280368
913 => 0.17955355837533
914 => 0.18295600386137
915 => 0.18363909516676
916 => 0.18517813475731
917 => 0.17202720996247
918 => 0.17793158910448
919 => 0.18139985868491
920 => 0.16573009054382
921 => 0.18109011775091
922 => 0.17179828161995
923 => 0.16864449287841
924 => 0.17289065393883
925 => 0.17123592084406
926 => 0.16981327849836
927 => 0.16901941962536
928 => 0.17213733167644
929 => 0.17199187735254
930 => 0.16689036807634
1001 => 0.16023565718965
1002 => 0.16246919659666
1003 => 0.16165773079055
1004 => 0.15871687402803
1005 => 0.16069865640557
1006 => 0.151971889772
1007 => 0.13695794135681
1008 => 0.14687661556956
1009 => 0.14649475740181
1010 => 0.14630220719775
1011 => 0.15375581673661
1012 => 0.15303932416348
1013 => 0.15173888312733
1014 => 0.15869299040858
1015 => 0.15615464770498
1016 => 0.16397722180872
1017 => 0.16912967504582
1018 => 0.16782284624049
1019 => 0.17266875341395
1020 => 0.16252065283348
1021 => 0.16589144477518
1022 => 0.16658616032265
1023 => 0.15860717780419
1024 => 0.15315655120946
1025 => 0.15279305655728
1026 => 0.14334242118462
1027 => 0.14839087431783
1028 => 0.15283330415587
1029 => 0.15070572500993
1030 => 0.15003219701195
1031 => 0.15347310548325
1101 => 0.15374049354086
1102 => 0.14764401749087
1103 => 0.14891166791195
1104 => 0.15419798089721
1105 => 0.148778466388
1106 => 0.13824923496928
1107 => 0.13563783999943
1108 => 0.13528943177289
1109 => 0.12820712150229
1110 => 0.13581234589818
1111 => 0.13249246164203
1112 => 0.14297993622889
1113 => 0.13698954699033
1114 => 0.1367313132831
1115 => 0.13634095515996
1116 => 0.13024491814351
1117 => 0.13157956282675
1118 => 0.13601612502596
1119 => 0.1375991404001
1120 => 0.13743401892731
1121 => 0.13599438345083
1122 => 0.13665344119984
1123 => 0.13453038655935
1124 => 0.13378069177823
1125 => 0.13141444882922
1126 => 0.12793672538548
1127 => 0.12842032416045
1128 => 0.12153004402256
1129 => 0.1177758537086
1130 => 0.11673674330912
1201 => 0.11534720145554
1202 => 0.11689369575892
1203 => 0.12151052472465
1204 => 0.11594164947707
1205 => 0.10639420347628
1206 => 0.10696802124898
1207 => 0.10825721941622
1208 => 0.10585480716047
1209 => 0.10358112557957
1210 => 0.10555790724454
1211 => 0.10151252851225
1212 => 0.10874608410899
1213 => 0.10855043670191
1214 => 0.11124665890829
1215 => 0.112932661986
1216 => 0.10904697074187
1217 => 0.108069729902
1218 => 0.10862641069751
1219 => 0.099425717169504
1220 => 0.11049476595617
1221 => 0.11059049154973
1222 => 0.10977083090098
1223 => 0.11566475766134
1224 => 0.12810278148755
1225 => 0.12342309660578
1226 => 0.12161098117533
1227 => 0.11816614841741
1228 => 0.12275618353341
1229 => 0.12240374045221
1230 => 0.12080985917892
1231 => 0.11984587481162
]
'min_raw' => 0.090025976226299
'max_raw' => 0.23099634650789
'avg_raw' => 0.16051116136709
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.090025'
'max' => '$0.230996'
'avg' => '$0.160511'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.055360193916187
'max_diff' => 0.13426806397127
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0028258125233647
]
1 => [
'year' => 2028
'avg' => 0.0048499146293308
]
2 => [
'year' => 2029
'avg' => 0.013249092655266
]
3 => [
'year' => 2030
'avg' => 0.010221655252397
]
4 => [
'year' => 2031
'avg' => 0.010038932213644
]
5 => [
'year' => 2032
'avg' => 0.017601407538758
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0028258125233647
'min' => '$0.002825'
'max_raw' => 0.017601407538758
'max' => '$0.0176014'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.017601407538758
]
1 => [
'year' => 2033
'avg' => 0.045272630121079
]
2 => [
'year' => 2034
'avg' => 0.028695968671535
]
3 => [
'year' => 2035
'avg' => 0.033846960854165
]
4 => [
'year' => 2036
'avg' => 0.065697032423365
]
5 => [
'year' => 2037
'avg' => 0.16051116136709
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.017601407538758
'min' => '$0.0176014'
'max_raw' => 0.16051116136709
'max' => '$0.160511'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.16051116136709
]
]
]
]
'prediction_2025_max_price' => '$0.004831'
'last_price' => 0.00468487
'sma_50day_nextmonth' => '$0.003689'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'sinken'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.004561'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.003982'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.003282'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.002683'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.001885'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.004461'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.004127'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.003571'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.002935'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.0021011'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.001097'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.000548'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.0040011'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.003486'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.002542'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.001182'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.000496'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.000248'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.000124'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '71.79'
'rsi_14_action' => 'SELL'
'stoch_rsi_14' => 117.86
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.0038050'
'vwma_10_action' => 'BUY'
'hma_9' => '0.004892'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 94.16
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 196.72
'cci_20_action' => 'SELL'
'adx_14' => 21.79
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001638'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -5.84
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 81.68
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 3
'buy_signals' => 26
'sell_pct' => 10.34
'buy_pct' => 89.66
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767709675
'last_updated_date' => '6. Januar 2026'
]
Dexter AI Preisprognose für 2026
Die Preisprognose für Dexter AI im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.001618 am unteren Ende und $0.004831 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Dexter AI im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn DEXTER das prognostizierte Preisziel erreicht.
Dexter AI Preisprognose 2027-2032
Die Preisprognose für DEXTER für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.002825 am unteren Ende und $0.0176014 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Dexter AI, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Dexter AI Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.001558 | $0.002825 | $0.004093 |
| 2028 | $0.002812 | $0.004849 | $0.006887 |
| 2029 | $0.006177 | $0.013249 | $0.02032 |
| 2030 | $0.005253 | $0.010221 | $0.015189 |
| 2031 | $0.006211 | $0.010038 | $0.013866 |
| 2032 | $0.009481 | $0.0176014 | $0.025721 |
Dexter AI Preisprognose 2032-2037
Die Preisprognose für Dexter AI für die Jahre 2032-2037 wird derzeit zwischen $0.0176014 am unteren Ende und $0.160511 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Dexter AI bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Dexter AI Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.009481 | $0.0176014 | $0.025721 |
| 2033 | $0.022032 | $0.045272 | $0.068512 |
| 2034 | $0.017712 | $0.028695 | $0.039679 |
| 2035 | $0.020942 | $0.033846 | $0.046751 |
| 2036 | $0.034665 | $0.065697 | $0.096728 |
| 2037 | $0.090025 | $0.160511 | $0.230996 |
Dexter AI Potenzielles Preishistogramm
Dexter AI Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Dexter AI Bullisch, mit 26 technischen Indikatoren, die bullische Signale zeigen, und 3 anzeigen bärische Signale. Die Preisprognose für DEXTER wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Dexter AI
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Dexter AI im nächsten Monat sinken, und bis zum 04.02.2026 — erreichen. Der kurzfristige 50-Tage-SMA für Dexter AI wird voraussichtlich bis zum 04.02.2026 $0.003689 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 71.79, was darauf hindeutet, dass sich der DEXTER-Markt in einem SELL Zustand befindet.
Beliebte DEXTER Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.004561 | BUY |
| SMA 5 | $0.003982 | BUY |
| SMA 10 | $0.003282 | BUY |
| SMA 21 | $0.002683 | BUY |
| SMA 50 | $0.001885 | BUY |
| SMA 100 | — | — |
| SMA 200 | — | — |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.004461 | BUY |
| EMA 5 | $0.004127 | BUY |
| EMA 10 | $0.003571 | BUY |
| EMA 21 | $0.002935 | BUY |
| EMA 50 | $0.0021011 | BUY |
| EMA 100 | $0.001097 | BUY |
| EMA 200 | $0.000548 | BUY |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.001182 | BUY |
| EMA 50 | $0.000496 | BUY |
| EMA 100 | $0.000248 | BUY |
| EMA 200 | $0.000124 | BUY |
Dexter AI Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 71.79 | SELL |
| Stoch RSI (14) | 117.86 | SELL |
| Stochastic Fast (14) | 94.16 | SELL |
| Commodity Channel Index (20) | 196.72 | SELL |
| Average Directional Index (14) | 21.79 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.001638 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -5.84 | SELL |
| Ultimate Oscillator (7, 14, 28) | 81.68 | SELL |
| VWMA (10) | 0.0038050 | BUY |
| Hull Moving Average (9) | 0.004892 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | — | — |
Auf weltweiten Geldflüssen basierende Dexter AI-Preisprognose
Definition weltweiter Geldflüsse, die für Dexter AI-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Dexter AI-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.006583 | $0.00925 | $0.012998 | $0.018264 | $0.025664 | $0.036063 |
| Amazon.com aktie | $0.009775 | $0.020396 | $0.042558 | $0.0888015 | $0.185289 | $0.386618 |
| Apple aktie | $0.006645 | $0.009425 | $0.013369 | $0.018963 | $0.026898 | $0.038153 |
| Netflix aktie | $0.007391 | $0.011663 | $0.018403 | $0.029037 | $0.045815 | $0.07229 |
| Google aktie | $0.006066 | $0.007856 | $0.010174 | $0.013175 | $0.017062 | $0.022095 |
| Tesla aktie | $0.01062 | $0.024075 | $0.054576 | $0.123721 | $0.280467 | $0.635798 |
| Kodak aktie | $0.003513 | $0.002634 | $0.001975 | $0.001481 | $0.00111 | $0.000833 |
| Nokia aktie | $0.0031035 | $0.002055 | $0.001361 | $0.0009022 | $0.000597 | $0.000395 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Dexter AI Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Dexter AI investieren?", "Sollte ich heute DEXTER kaufen?", "Wird Dexter AI auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Dexter AI-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Dexter AI.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Dexter AI zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Dexter AI-Preis entspricht heute $0.004684 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
Dexter AI-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Dexter AI 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0048066 | $0.004931 | $0.005059 | $0.005191 |
| Wenn die Wachstumsrate von Dexter AI 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.004928 | $0.005184 | $0.005454 | $0.005737 |
| Wenn die Wachstumsrate von Dexter AI 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.005293 | $0.005981 | $0.006759 | $0.007637 |
| Wenn die Wachstumsrate von Dexter AI 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0059026 | $0.007436 | $0.009369 | $0.0118055 |
| Wenn die Wachstumsrate von Dexter AI 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.00712 | $0.010821 | $0.016447 | $0.024998 |
| Wenn die Wachstumsrate von Dexter AI 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.010773 | $0.024775 | $0.056975 | $0.131024 |
| Wenn die Wachstumsrate von Dexter AI 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.016862 | $0.060693 | $0.218453 | $0.786285 |
Fragefeld
Ist DEXTER eine gute Investition?
Die Entscheidung, Dexter AI zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Dexter AI in den letzten 2026 Stunden um -8.3731% gefallen, und Dexter AI hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Dexter AI investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Dexter AI steigen?
Es scheint, dass der Durchschnittswert von Dexter AI bis zum Ende dieses Jahres potenziell auf $0.004831 steigen könnte. Betrachtet man die Aussichten von Dexter AI in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.015189 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Dexter AI nächste Woche kosten?
Basierend auf unserer neuen experimentellen Dexter AI-Prognose wird der Preis von Dexter AI in der nächsten Woche um 0.86% steigen und $0.004724 erreichen bis zum 13. Januar 2026.
Wie viel wird Dexter AI nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Dexter AI-Prognose wird der Preis von Dexter AI im nächsten Monat um -11.62% fallen und $0.00414 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Dexter AI in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Dexter AI im Jahr 2026 wird erwartet, dass DEXTER innerhalb der Spanne von $0.001618 bis $0.004831 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Dexter AI-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Dexter AI in 5 Jahren sein?
Die Zukunft von Dexter AI scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.015189 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Dexter AI-Prognose für 2030 könnte der Wert von Dexter AI seinen höchsten Gipfel von ungefähr $0.015189 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.005253 liegen wird.
Wie viel wird Dexter AI im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Dexter AI-Preisprognosesimulation wird der Wert von DEXTER im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.004831 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.004831 und $0.001618 während des Jahres 2026 liegen.
Wie viel wird Dexter AI im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Dexter AI könnte der Wert von DEXTER um -12.62% fallen und bis zu $0.004093 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.004093 und $0.001558 im Laufe des Jahres schwanken.
Wie viel wird Dexter AI im Jahr 2028 kosten?
Unser neues experimentelles Dexter AI-Preisprognosemodell deutet darauf hin, dass der Wert von DEXTER im Jahr 2028 um 47.02% steigen, und im besten Fall $0.006887 erreichen wird. Der Preis wird voraussichtlich zwischen $0.006887 und $0.002812 im Laufe des Jahres liegen.
Wie viel wird Dexter AI im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Dexter AI im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.02032 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.02032 und $0.006177.
Wie viel wird Dexter AI im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Dexter AI-Preisprognosen wird der Wert von DEXTER im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.015189 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.015189 und $0.005253 während des Jahres 2030 liegen.
Wie viel wird Dexter AI im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Dexter AI im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.013866 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.013866 und $0.006211 während des Jahres schwanken.
Wie viel wird Dexter AI im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Dexter AI-Preisprognose könnte DEXTER eine 449.04% Steigerung im Wert erfahren und $0.025721 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.025721 und $0.009481 liegen.
Wie viel wird Dexter AI im Jahr 2033 kosten?
Laut unserer experimentellen Dexter AI-Preisprognose wird der Wert von DEXTER voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.068512 beträgt. Im Laufe des Jahres könnte der Preis von DEXTER zwischen $0.068512 und $0.022032 liegen.
Wie viel wird Dexter AI im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Dexter AI-Preisprognosesimulation deuten darauf hin, dass DEXTER im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.039679 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.039679 und $0.017712.
Wie viel wird Dexter AI im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Dexter AI könnte DEXTER um 897.93% steigen, wobei der Wert im Jahr 2035 $0.046751 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.046751 und $0.020942.
Wie viel wird Dexter AI im Jahr 2036 kosten?
Unsere jüngste Dexter AI-Preisprognosesimulation deutet darauf hin, dass der Wert von DEXTER im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.096728 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.096728 und $0.034665.
Wie viel wird Dexter AI im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Dexter AI um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.230996 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.230996 und $0.090025 liegen.
Verwandte Prognosen
Wie liest und prognostiziert man die Kursbewegungen von Dexter AI?
Dexter AI-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Dexter AI Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Dexter AI. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von DEXTER über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von DEXTER über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von DEXTER einzuschätzen.
Wie liest man Dexter AI-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Dexter AI in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von DEXTER innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Dexter AI?
Die Preisentwicklung von Dexter AI wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von DEXTER. Die Marktkapitalisierung von Dexter AI kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von DEXTER-„Walen“, großen Inhabern von Dexter AI, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Dexter AI-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


