Cowcoin Preisvorhersage bis zu $0.009639 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.003229 | $0.009639 |
| 2027 | $0.0031086 | $0.008166 |
| 2028 | $0.00561 | $0.013741 |
| 2029 | $0.012324 | $0.04054 |
| 2030 | $0.010481 | $0.0303037 |
| 2031 | $0.012391 | $0.027663 |
| 2032 | $0.018915 | $0.051315 |
| 2033 | $0.043954 | $0.136684 |
| 2034 | $0.035337 | $0.07916 |
| 2035 | $0.041779 | $0.09327 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Cowcoin eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.90 Gewinn erzielen könnten, was einer Rendite von 39.55% in den nächsten 90 Tagen entspricht.
Langfristige Cowcoin Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Cowcoin'
'name_with_ticker' => 'Cowcoin <small>COW</small>'
'name_lang' => 'Cowcoin'
'name_lang_with_ticker' => 'Cowcoin <small>COW</small>'
'name_with_lang' => 'Cowcoin'
'name_with_lang_with_ticker' => 'Cowcoin <small>COW</small>'
'image' => '/uploads/coins/cowcoin-2.jpeg?1736025559'
'price_for_sd' => 0.009346
'ticker' => 'COW'
'marketcap' => '$0'
'low24h' => '$0.009043'
'high24h' => '$0.009395'
'volume24h' => '$15.28K'
'current_supply' => '0'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.009346'
'change_24h_pct' => '2.657%'
'ath_price' => '$0.06495'
'ath_days' => 275
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '06.04.2025'
'ath_pct' => '-85.54%'
'fdv' => '$9.35M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.460842'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.009426'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00826'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.003229'
'current_year_max_price_prediction' => '$0.009639'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.010481'
'grand_prediction_max_price' => '$0.0303037'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0095235195532883
107 => 0.0095590769182627
108 => 0.0096391894771541
109 => 0.0089546364327925
110 => 0.0092619806522894
111 => 0.0094425165869849
112 => 0.0086268486660771
113 => 0.0094263934547608
114 => 0.0089427198872832
115 => 0.0087785538139482
116 => 0.0089995818044583
117 => 0.0089134469815997
118 => 0.0088393933189124
119 => 0.0087980701027295
120 => 0.008960368664991
121 => 0.0089527972430728
122 => 0.0086872452944194
123 => 0.0083408436026833
124 => 0.0084571073806778
125 => 0.0084148676601537
126 => 0.0082617854639418
127 => 0.0083649443809737
128 => 0.007910684717898
129 => 0.0071291545779389
130 => 0.0076454573273115
131 => 0.0076255802330899
201 => 0.007615557300829
202 => 0.0080035445474226
203 => 0.0079662485260514
204 => 0.0078985558820589
205 => 0.0082605422354496
206 => 0.0081284123470585
207 => 0.0085356055293629
208 => 0.0088038092948325
209 => 0.0087357841444265
210 => 0.0089880310821919
211 => 0.008459785863303
212 => 0.0086352477354982
213 => 0.008671410184178
214 => 0.0082560753800385
215 => 0.0079723506163954
216 => 0.0079534294093595
217 => 0.0074614897688833
218 => 0.0077242799540277
219 => 0.007955524441958
220 => 0.0078447762775365
221 => 0.007809716717188
222 => 0.0079888284075177
223 => 0.0080027469198442
224 => 0.0076854033637821
225 => 0.0077513891380508
226 => 0.0080265607859738
227 => 0.0077444555185409
228 => 0.0071963710655526
301 => 0.0070604385433511
302 => 0.007042302639156
303 => 0.0066736428580012
304 => 0.0070695222044713
305 => 0.0068967102608302
306 => 0.0074426211201874
307 => 0.0071307997651012
308 => 0.0071173577697129
309 => 0.0070970382221715
310 => 0.0067797175193878
311 => 0.0068491905865147
312 => 0.0070801296426915
313 => 0.0071625312996501
314 => 0.0071539361317324
315 => 0.0070789979153279
316 => 0.0071133042470521
317 => 0.00700279159945
318 => 0.0069637672834599
319 => 0.0068405958077112
320 => 0.0066595677653493
321 => 0.0066847408249492
322 => 0.0063260769044663
323 => 0.0061306577648522
324 => 0.0060765683225899
325 => 0.0060042376598433
326 => 0.0060847382634117
327 => 0.0063250608546433
328 => 0.006035180822336
329 => 0.0055382018396652
330 => 0.0055680711233347
331 => 0.0056351785354701
401 => 0.0055101243169157
402 => 0.0053917709940589
403 => 0.0054946696059743
404 => 0.0052840930594585
405 => 0.0056606257050752
406 => 0.0056504415522318
407 => 0.0057907896378952
408 => 0.0058785521760931
409 => 0.005676287939006
410 => 0.0056254190303593
411 => 0.0056543962725875
412 => 0.0051754670061604
413 => 0.0057516508991796
414 => 0.005756633761413
415 => 0.0057139674697874
416 => 0.0060207676051382
417 => 0.0066682115840904
418 => 0.0064246171158349
419 => 0.0063302899750446
420 => 0.0061509740114494
421 => 0.0063899018862115
422 => 0.0063715559532853
423 => 0.0062885886871043
424 => 0.0062384098256444
425 => 0.0063308659164521
426 => 0.0062269534928271
427 => 0.0062082879662216
428 => 0.0060951951832854
429 => 0.006054826205171
430 => 0.0060249386209104
501 => 0.0059920353273329
502 => 0.006064611793975
503 => 0.0059001439723345
504 => 0.0057018119024155
505 => 0.0056853227367845
506 => 0.005730850772834
507 => 0.0057107080060458
508 => 0.0056852263009666
509 => 0.005636574786441
510 => 0.0056221409213564
511 => 0.0056690439805655
512 => 0.0056160931613366
513 => 0.0056942249794892
514 => 0.0056729774481824
515 => 0.0055542904655061
516 => 0.0054063625415424
517 => 0.0054050456727298
518 => 0.0053731748441623
519 => 0.0053325825521703
520 => 0.005321290705164
521 => 0.0054860037718863
522 => 0.0058269548905543
523 => 0.005760018027691
524 => 0.0058083867710754
525 => 0.0060463131162217
526 => 0.0061219427466489
527 => 0.0060682626263576
528 => 0.0059947819668573
529 => 0.0059980147429547
530 => 0.0062491204005755
531 => 0.0062647815524288
601 => 0.0063043522306831
602 => 0.0063552117349122
603 => 0.0060769242198505
604 => 0.0059849074260213
605 => 0.0059413047642076
606 => 0.0058070254421752
607 => 0.0059518341787481
608 => 0.0058674603292754
609 => 0.0058788452441904
610 => 0.0058714308034165
611 => 0.0058754795894414
612 => 0.005660520456527
613 => 0.0057388402666416
614 => 0.0056086183919491
615 => 0.0054342659198273
616 => 0.0054336814292049
617 => 0.0054763539497518
618 => 0.0054509706647546
619 => 0.0053826648974912
620 => 0.0053923674093369
621 => 0.0053073631961063
622 => 0.005402688459874
623 => 0.0054054220473487
624 => 0.0053687166283959
625 => 0.0055155783495815
626 => 0.0055757477165789
627 => 0.005551587423518
628 => 0.0055740525660114
629 => 0.0057627995565448
630 => 0.0057935735516103
701 => 0.0058072413274024
702 => 0.0057889283184743
703 => 0.0055775025145106
704 => 0.0055868801479683
705 => 0.0055180732958131
706 => 0.0054599387564293
707 => 0.0054622638331292
708 => 0.0054921525433336
709 => 0.0056226782937457
710 => 0.0058973620405747
711 => 0.0059077860879757
712 => 0.0059204203375166
713 => 0.0058690304951688
714 => 0.0058535308269821
715 => 0.0058739788901241
716 => 0.0059771356632478
717 => 0.0062424828905127
718 => 0.0061486914584519
719 => 0.0060724375642358
720 => 0.0061393327873655
721 => 0.0061290347921068
722 => 0.0060421093485869
723 => 0.0060396696409015
724 => 0.0058728319230415
725 => 0.0058111558174597
726 => 0.005759614647259
727 => 0.0057033330349162
728 => 0.0056699674085427
729 => 0.0057212321750584
730 => 0.0057329570337075
731 => 0.005620865725766
801 => 0.0056055880946852
802 => 0.0056971242764091
803 => 0.0056568426156452
804 => 0.005698273302678
805 => 0.0057078855774555
806 => 0.0057063377798268
807 => 0.0056642790996701
808 => 0.0056910860481941
809 => 0.0056276796233988
810 => 0.005558734659771
811 => 0.0055147520683994
812 => 0.0054763714239836
813 => 0.0054976672362016
814 => 0.005421751554106
815 => 0.0053974645995228
816 => 0.0056820044572096
817 => 0.0058921971094018
818 => 0.0058891408249935
819 => 0.0058705364796705
820 => 0.0058428941962741
821 => 0.0059751134580442
822 => 0.0059290509110511
823 => 0.0059625652626432
824 => 0.0059710960717163
825 => 0.0059969162614652
826 => 0.0060061447599802
827 => 0.0059782498278637
828 => 0.0058846310286017
829 => 0.0056513418818492
830 => 0.0055427451542839
831 => 0.0055069064253658
901 => 0.0055082090950946
902 => 0.0054722756486022
903 => 0.0054828596590183
904 => 0.0054685949617101
905 => 0.0054415810760091
906 => 0.0054959992048828
907 => 0.0055022703872955
908 => 0.0054895685457682
909 => 0.0054925602892612
910 => 0.0053873944664425
911 => 0.0053953899955432
912 => 0.0053508698734876
913 => 0.0053425228873002
914 => 0.005229979895554
915 => 0.005030593672308
916 => 0.0051410729948753
917 => 0.0050076295089576
918 => 0.0049570924388418
919 => 0.005196327068643
920 => 0.0051723145471467
921 => 0.0051312155483372
922 => 0.0050704215633161
923 => 0.0050478724829059
924 => 0.0049108714085049
925 => 0.004902776654157
926 => 0.0049706780859703
927 => 0.0049393439115341
928 => 0.0048953388634457
929 => 0.00473595703999
930 => 0.0045567591009176
1001 => 0.0045621679603001
1002 => 0.0046191674906229
1003 => 0.0047849013124702
1004 => 0.0047201462410502
1005 => 0.0046731656937562
1006 => 0.0046643676494781
1007 => 0.0047744935935719
1008 => 0.0049303448765633
1009 => 0.0050034668115669
1010 => 0.0049310051947245
1011 => 0.0048477651909064
1012 => 0.0048528316242418
1013 => 0.0048865363354199
1014 => 0.0048900782240057
1015 => 0.0048358975387308
1016 => 0.0048511490842705
1017 => 0.0048279805919652
1018 => 0.0046857955974529
1019 => 0.0046832239217757
1020 => 0.0046483294310796
1021 => 0.0046472728397692
1022 => 0.0045879086062566
1023 => 0.0045796031396226
1024 => 0.0044617318508318
1025 => 0.004539315090061
1026 => 0.0044872763264889
1027 => 0.0044088416350824
1028 => 0.0043953194647201
1029 => 0.0043949129719505
1030 => 0.0044754478623489
1031 => 0.004538373992977
1101 => 0.004488181563061
1102 => 0.0044767537197085
1103 => 0.004598773189037
1104 => 0.0045832450993328
1105 => 0.0045697978737944
1106 => 0.0049163901035632
1107 => 0.0046420353087722
1108 => 0.0045224009586192
1109 => 0.0043743307323578
1110 => 0.0044225431446634
1111 => 0.0044327022083239
1112 => 0.0040766200058297
1113 => 0.003932157500625
1114 => 0.0038825834127934
1115 => 0.0038540528243716
1116 => 0.00386705457178
1117 => 0.003737021373334
1118 => 0.0038244058332403
1119 => 0.0037118080748187
1120 => 0.0036929306941945
1121 => 0.003894269434438
1122 => 0.0039222845439391
1123 => 0.0038027633831954
1124 => 0.0038795153171111
1125 => 0.0038516839989416
1126 => 0.0037137382402117
1127 => 0.0037084697268885
1128 => 0.0036392533941857
1129 => 0.0035309432364289
1130 => 0.0034814425879845
1201 => 0.0034556622204904
1202 => 0.0034662997025678
1203 => 0.0034609210661171
1204 => 0.0034258218250266
1205 => 0.0034629329135307
1206 => 0.0033681294177631
1207 => 0.0033303779018647
1208 => 0.003313326417962
1209 => 0.0032291828587826
1210 => 0.0033630926802476
1211 => 0.0033894746020277
1212 => 0.0034159085043435
1213 => 0.0036459975768108
1214 => 0.0036345029769753
1215 => 0.0037384085613911
1216 => 0.0037343709814508
1217 => 0.0037047354256165
1218 => 0.0035797078903642
1219 => 0.0036295416375143
1220 => 0.0034761611096702
1221 => 0.0035910842299931
1222 => 0.0035386381171819
1223 => 0.0035733521464956
1224 => 0.0035109331917518
1225 => 0.0035454784185225
1226 => 0.0033957307343865
1227 => 0.0032558984539472
1228 => 0.0033121710455547
1229 => 0.0033733457881835
1230 => 0.0035059882172374
1231 => 0.0034269874807692
]
'min_raw' => 0.0032291828587826
'max_raw' => 0.0096391894771541
'avg_raw' => 0.0064341861679683
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.003229'
'max' => '$0.009639'
'avg' => '$0.006434'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0061172271412174
'max_diff' => 0.00029277947715407
'year' => 2026
]
1 => [
'items' => [
101 => 0.0034553991329517
102 => 0.0033602248541934
103 => 0.0031638531319261
104 => 0.0031649645745483
105 => 0.003134757063268
106 => 0.0031086533631529
107 => 0.0034360616656844
108 => 0.0033953432677053
109 => 0.0033304638296178
110 => 0.0034173075357043
111 => 0.0034402703899886
112 => 0.0034409241101681
113 => 0.0035042830363683
114 => 0.0035380977066391
115 => 0.0035440576888355
116 => 0.0036437543281719
117 => 0.0036771713266469
118 => 0.0038148112140151
119 => 0.0035352287681166
120 => 0.0035294709516277
121 => 0.0034185296047432
122 => 0.0033481688486357
123 => 0.0034233472659101
124 => 0.0034899450807379
125 => 0.0034205989844906
126 => 0.0034296541206845
127 => 0.0033365626522567
128 => 0.0033698384718589
129 => 0.0033985000904373
130 => 0.0033826748293104
131 => 0.0033589836474521
201 => 0.0034844848193935
202 => 0.0034774035514295
203 => 0.0035942731280007
204 => 0.0036853813203616
205 => 0.0038486634886098
206 => 0.0036782700339509
207 => 0.0036720602192105
208 => 0.0037327621543836
209 => 0.0036771620334969
210 => 0.0037122993906464
211 => 0.0038430023171516
212 => 0.0038457638640297
213 => 0.0037995043957696
214 => 0.0037966895029219
215 => 0.0038055741398244
216 => 0.0038576117356688
217 => 0.003839428200727
218 => 0.0038604706477124
219 => 0.0038867845498811
220 => 0.0039956300061142
221 => 0.0040218722771175
222 => 0.0039581171636371
223 => 0.0039638735365487
224 => 0.00394002737399
225 => 0.0039169922797499
226 => 0.0039687718075963
227 => 0.0040633999124648
228 => 0.0040628112359356
301 => 0.0040847631169576
302 => 0.0040984389569751
303 => 0.0040397322402933
304 => 0.0040015163264392
305 => 0.0040161707395527
306 => 0.0040396034652526
307 => 0.0040085718224265
308 => 0.0038170301476487
309 => 0.0038751316560467
310 => 0.0038654607240307
311 => 0.0038516881408143
312 => 0.0039101096567942
313 => 0.0039044747590577
314 => 0.003735687694937
315 => 0.0037464928951537
316 => 0.0037363447949501
317 => 0.0037691353828139
318 => 0.0036753912341427
319 => 0.0037042263028975
320 => 0.0037223113877085
321 => 0.0037329636415984
322 => 0.0037714468869674
323 => 0.0037669313222953
324 => 0.0037711661931273
325 => 0.0038282266868094
326 => 0.004116819083057
327 => 0.0041325265304415
328 => 0.0040551773147912
329 => 0.0040860768007977
330 => 0.0040267565446399
331 => 0.0040665786300098
401 => 0.0040938238894486
402 => 0.0039707078010069
403 => 0.0039634176652662
404 => 0.0039038525733099
405 => 0.0039358594797879
406 => 0.0038849341902033
407 => 0.0038974294749764
408 => 0.0038624915694316
409 => 0.0039253728433446
410 => 0.0039956838783415
411 => 0.0040134472224486
412 => 0.0039667195117033
413 => 0.0039328855696174
414 => 0.0038734843129081
415 => 0.0039722699266591
416 => 0.0040011578505569
417 => 0.0039721181906928
418 => 0.0039653890669732
419 => 0.0039526373896838
420 => 0.0039680943955912
421 => 0.0040010005207193
422 => 0.0039854825997896
423 => 0.0039957324599543
424 => 0.0039566705626165
425 => 0.0040397516746593
426 => 0.0041717044751417
427 => 0.0041721287249717
428 => 0.0041566107203946
429 => 0.0041502610872617
430 => 0.0041661835016691
501 => 0.0041748207583134
502 => 0.0042263109268354
503 => 0.0042815619291182
504 => 0.0045393942488714
505 => 0.0044669959652174
506 => 0.0046957601378158
507 => 0.0048766828970311
508 => 0.0049309337217263
509 => 0.0048810255157052
510 => 0.0047102922388955
511 => 0.0047019152498091
512 => 0.004957062847093
513 => 0.00488497196436
514 => 0.0048763969832502
515 => 0.0047851736719011
516 => 0.0048390979471354
517 => 0.0048273039171202
518 => 0.0048086864637577
519 => 0.004911570224507
520 => 0.005104159440133
521 => 0.0050741426047875
522 => 0.005051736429643
523 => 0.0049535590924992
524 => 0.0050126837781619
525 => 0.0049916306100561
526 => 0.0050820883809089
527 => 0.0050285032013407
528 => 0.00488442580502
529 => 0.0049073706052694
530 => 0.0049039025448702
531 => 0.0049752749821356
601 => 0.0049538507480413
602 => 0.0048997191193166
603 => 0.0051035011911311
604 => 0.005090268716883
605 => 0.0051090293400021
606 => 0.0051172883464907
607 => 0.0052413269025614
608 => 0.0052921415301924
609 => 0.0053036773402999
610 => 0.0053519473064051
611 => 0.0053024763395703
612 => 0.005500395479111
613 => 0.0056320001580036
614 => 0.0057848657648521
615 => 0.0060082435028595
616 => 0.0060922355987099
617 => 0.0060770631783786
618 => 0.006246425629961
619 => 0.0065507661907386
620 => 0.0061385791071414
621 => 0.0065726131070377
622 => 0.006435202953834
623 => 0.0061094059524913
624 => 0.0060884284664991
625 => 0.0063090619783894
626 => 0.0067984058725735
627 => 0.0066758307771729
628 => 0.0067986063615182
629 => 0.0066553821207702
630 => 0.0066482698300284
701 => 0.0067916502798276
702 => 0.0071266665160448
703 => 0.0069675128601138
704 => 0.0067393270682593
705 => 0.0069078159060005
706 => 0.0067618552818433
707 => 0.0064329651438106
708 => 0.0066757370463075
709 => 0.0065134023888535
710 => 0.0065607802720836
711 => 0.0069019835765939
712 => 0.0068609290922833
713 => 0.0069140573965241
714 => 0.0068202873301488
715 => 0.006732691301972
716 => 0.0065691868104136
717 => 0.0065207811911372
718 => 0.0065341587628535
719 => 0.006520774561877
720 => 0.0064292953015339
721 => 0.0064095403639726
722 => 0.0063766146025535
723 => 0.0063868196727973
724 => 0.0063249096085581
725 => 0.0064417466910495
726 => 0.0064634326831247
727 => 0.0065484569683578
728 => 0.006557284471708
729 => 0.0067940758958373
730 => 0.0066636551585451
731 => 0.0067511526491054
801 => 0.0067433260499914
802 => 0.0061164669614133
803 => 0.0062028426129948
804 => 0.0063372160206829
805 => 0.0062766809826583
806 => 0.0061910986019088
807 => 0.0061219862408166
808 => 0.0060172739466602
809 => 0.0061646544898638
810 => 0.0063584442320031
811 => 0.0065621992993704
812 => 0.0068069976622513
813 => 0.0067523615174233
814 => 0.0065576229642545
815 => 0.0065663587934931
816 => 0.0066203602524237
817 => 0.0065504234565586
818 => 0.0065297977301296
819 => 0.0066175265943419
820 => 0.0066181307348148
821 => 0.0065376599990279
822 => 0.00644823150219
823 => 0.0064478567935229
824 => 0.0064319438562874
825 => 0.0066582129969536
826 => 0.0067826381459296
827 => 0.0067969032887385
828 => 0.0067816779881598
829 => 0.006787537602082
830 => 0.006715137349414
831 => 0.0068806228573851
901 => 0.00703248872432
902 => 0.0069917854278404
903 => 0.006930765400103
904 => 0.0068821600088874
905 => 0.0069803355423716
906 => 0.0069759639404081
907 => 0.0070311623084572
908 => 0.0070286581916413
909 => 0.007010097056582
910 => 0.006991786090717
911 => 0.007064387000594
912 => 0.0070434791044844
913 => 0.0070225387326371
914 => 0.006980539611087
915 => 0.0069862479892372
916 => 0.0069252384974679
917 => 0.0068970127149711
918 => 0.0064725646693399
919 => 0.0063591382823073
920 => 0.0063948245326747
921 => 0.0064065733728888
922 => 0.0063572100638923
923 => 0.0064279843685996
924 => 0.0064169542681795
925 => 0.0064598659365212
926 => 0.0064330565891494
927 => 0.006434156854117
928 => 0.006512997428382
929 => 0.0065358851825029
930 => 0.0065242442860302
1001 => 0.0065323971708931
1002 => 0.0067202769614413
1003 => 0.0066935664632828
1004 => 0.0066793770434961
1005 => 0.0066833076097492
1006 => 0.0067313149244224
1007 => 0.0067447543514287
1008 => 0.0066878105548313
1009 => 0.0067146655784948
1010 => 0.0068290108608441
1011 => 0.0068690252382839
1012 => 0.0069967319230809
1013 => 0.0069424798535738
1014 => 0.0070420618751286
1015 => 0.0073481430593752
1016 => 0.0075926618885583
1017 => 0.0073677922680735
1018 => 0.0078168199585832
1019 => 0.0081664524248416
1020 => 0.0081530329484432
1021 => 0.0080920664408064
1022 => 0.0076940191734313
1023 => 0.0073277301434423
1024 => 0.0076341464704819
1025 => 0.0076349275887146
1026 => 0.0076086061544747
1027 => 0.0074451259870069
1028 => 0.0076029173990106
1029 => 0.0076154423082812
1030 => 0.0076084316897319
1031 => 0.0074830918286339
1101 => 0.0072917210274157
1102 => 0.0073291144238967
1103 => 0.0073903655701374
1104 => 0.0072744043719762
1105 => 0.0072373477428269
1106 => 0.0073062430667276
1107 => 0.0075282381552462
1108 => 0.0074862712696917
1109 => 0.0074851753447084
1110 => 0.0076647274778395
1111 => 0.0075362069002931
1112 => 0.0073295860743766
1113 => 0.0072774115908388
1114 => 0.0070922273232231
1115 => 0.007220134756469
1116 => 0.0072247379172823
1117 => 0.0071546843232758
1118 => 0.0073352705374428
1119 => 0.0073336064036877
1120 => 0.0075050461373285
1121 => 0.0078327745182262
1122 => 0.0077358491094606
1123 => 0.0076231354045206
1124 => 0.0076353905094596
1125 => 0.0077697987624642
1126 => 0.0076885324644556
1127 => 0.0077177563918283
1128 => 0.00776975452855
1129 => 0.0078011262954753
1130 => 0.0076308765949831
1201 => 0.0075911832458139
1202 => 0.007509984583886
1203 => 0.0074888013686338
1204 => 0.0075549359845084
1205 => 0.0075375118497959
1206 => 0.0072243510394403
1207 => 0.0071916239923478
1208 => 0.0071926276841587
1209 => 0.0071103339681584
1210 => 0.0069848162985031
1211 => 0.0073146692400866
1212 => 0.0072881774325885
1213 => 0.0072589325274136
1214 => 0.0072625148614284
1215 => 0.0074056928436164
1216 => 0.0073226423832859
1217 => 0.0075434456437771
1218 => 0.0074980551313737
1219 => 0.0074515005236012
1220 => 0.007445065258719
1221 => 0.0074271457065791
1222 => 0.0073656928947196
1223 => 0.0072914849316578
1224 => 0.0072424864066608
1225 => 0.0066808108737616
1226 => 0.0067850545855514
1227 => 0.0069049774738523
1228 => 0.006946374374333
1229 => 0.0068755621114825
1230 => 0.0073684889944628
1231 => 0.0074585514859449
]
'min_raw' => 0.0031086533631529
'max_raw' => 0.0081664524248416
'avg_raw' => 0.0056375528939972
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0031086'
'max' => '$0.008166'
'avg' => '$0.005637'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00012052949562966
'max_diff' => -0.0014727370523125
'year' => 2027
]
2 => [
'items' => [
101 => 0.0071857463246146
102 => 0.007134715617491
103 => 0.0073718345591261
104 => 0.0072288228507085
105 => 0.0072932210142522
106 => 0.0071540274085828
107 => 0.0074368580690845
108 => 0.0074347033733224
109 => 0.0073246758583671
110 => 0.0074176703605714
111 => 0.0074015102773311
112 => 0.0072772894839323
113 => 0.0074407960898038
114 => 0.0074408771870404
115 => 0.0073349780961004
116 => 0.0072113111421743
117 => 0.0071892024116954
118 => 0.0071725464531696
119 => 0.0072891246694837
120 => 0.0073936483337003
121 => 0.0075881409591936
122 => 0.0076370410262734
123 => 0.0078279012435477
124 => 0.0077142532769762
125 => 0.0077646319485698
126 => 0.0078193251230828
127 => 0.0078455470422193
128 => 0.0078028198321322
129 => 0.0080993043107588
130 => 0.0081243366848046
131 => 0.0081327298232929
201 => 0.0080327569252511
202 => 0.0081215562576604
203 => 0.0080800099907509
204 => 0.008188101835364
205 => 0.0082050520167853
206 => 0.0081906958161417
207 => 0.0081960760712652
208 => 0.0079430788722035
209 => 0.0079299596327656
210 => 0.0077510778721311
211 => 0.0078239735118169
212 => 0.0076876986074033
213 => 0.0077309127833799
214 => 0.0077499611803906
215 => 0.0077400113787792
216 => 0.007828094921913
217 => 0.0077532059159703
218 => 0.007555561516395
219 => 0.0073578632687352
220 => 0.0073553813282774
221 => 0.0073033308693325
222 => 0.0072657079210324
223 => 0.0072729554356208
224 => 0.0072984966223385
225 => 0.007264223420829
226 => 0.0072715373460665
227 => 0.0073929972374373
228 => 0.0074173551524394
229 => 0.0073345774400105
301 => 0.0070022129798415
302 => 0.0069206499076429
303 => 0.0069792758264733
304 => 0.0069512564132651
305 => 0.005610206448824
306 => 0.0059252662458941
307 => 0.0057380684128948
308 => 0.0058243377868991
309 => 0.0056332572740506
310 => 0.0057244509101696
311 => 0.0057076107754368
312 => 0.0062142176058285
313 => 0.0062063076369868
314 => 0.0062100937204851
315 => 0.0060293740905249
316 => 0.0063172653681241
317 => 0.006459090963705
318 => 0.006432842820529
319 => 0.0064394489126724
320 => 0.0063259343626191
321 => 0.0062111927894601
322 => 0.0060839267262253
323 => 0.0063203713411547
324 => 0.0062940827362188
325 => 0.0063543793376004
326 => 0.0065077305717922
327 => 0.0065303121235517
328 => 0.0065606619581159
329 => 0.0065497837028729
330 => 0.0068089478761512
331 => 0.0067775613847469
401 => 0.0068531937985214
402 => 0.0066976121851423
403 => 0.0065215568216616
404 => 0.0065550191905758
405 => 0.006551796495362
406 => 0.0065107678864528
407 => 0.0064737290928425
408 => 0.0064120699370969
409 => 0.0066071686297141
410 => 0.0065992479790859
411 => 0.0067274741060074
412 => 0.0067048088925519
413 => 0.0065534450499774
414 => 0.0065588510392266
415 => 0.0065952089149579
416 => 0.0067210439379908
417 => 0.0067584003403286
418 => 0.0067410953663705
419 => 0.0067820549561494
420 => 0.0068144277458536
421 => 0.006786120480116
422 => 0.0071868916682203
423 => 0.0070204635292497
424 => 0.0071015794461844
425 => 0.0071209251144106
426 => 0.0070713715920448
427 => 0.0070821179766673
428 => 0.007098395821156
429 => 0.0071972317053622
430 => 0.007456605663913
501 => 0.0075714806245369
502 => 0.0079170876114046
503 => 0.0075619418581937
504 => 0.0075408689789374
505 => 0.0076031232336034
506 => 0.0078060311211097
507 => 0.0079704689057648
508 => 0.0080250224055783
509 => 0.0080322325511587
510 => 0.0081345785434569
511 => 0.0081932413576024
512 => 0.0081221510480251
513 => 0.0080619094541239
514 => 0.0078461315422319
515 => 0.0078711084230771
516 => 0.0080431743637199
517 => 0.0082862276395113
518 => 0.0084947926355235
519 => 0.008421760443144
520 => 0.0089789445183069
521 => 0.0090341870434664
522 => 0.0090265543126941
523 => 0.0091524050061975
524 => 0.0089026170086412
525 => 0.0087958278002713
526 => 0.0080749343704965
527 => 0.0082774760194023
528 => 0.008571882200941
529 => 0.0085329164388478
530 => 0.0083191108003147
531 => 0.0084946304447743
601 => 0.0084365981613092
602 => 0.0083908256915786
603 => 0.0086005182488442
604 => 0.0083699526684352
605 => 0.0085695821329029
606 => 0.0083135552798207
607 => 0.008422094048047
608 => 0.0083604821937722
609 => 0.0084003526143529
610 => 0.008167270950325
611 => 0.0082930361584969
612 => 0.0081620387041874
613 => 0.0081619765943377
614 => 0.0081590848182733
615 => 0.0083132027423367
616 => 0.0083182285223074
617 => 0.0082043351435653
618 => 0.0081879213283396
619 => 0.0082486118060578
620 => 0.008177559151511
621 => 0.0082108042413734
622 => 0.0081785661114157
623 => 0.0081713086293233
624 => 0.0081134797772523
625 => 0.0080885655177428
626 => 0.0080983350408578
627 => 0.0080649866219317
628 => 0.0080448929932637
629 => 0.0081550876897819
630 => 0.0080962151086736
701 => 0.0081460646223754
702 => 0.008089254810002
703 => 0.0078923272494589
704 => 0.0077790721269193
705 => 0.0074070942202479
706 => 0.0075125866931427
707 => 0.0075825283118119
708 => 0.007559412607259
709 => 0.0076090740852288
710 => 0.0076121228966424
711 => 0.0075959774439155
712 => 0.0075772830780184
713 => 0.007568183694563
714 => 0.0076360030438547
715 => 0.0076753744588129
716 => 0.0075895478889435
717 => 0.0075694399244644
718 => 0.0076562153252172
719 => 0.0077091482695479
720 => 0.0080999753900335
721 => 0.008071021654593
722 => 0.0081436898486651
723 => 0.0081355085251969
724 => 0.0082116763695357
725 => 0.0083361786040968
726 => 0.0080830307498618
727 => 0.0081269684641628
728 => 0.0081161959512862
729 => 0.0082338074221684
730 => 0.0082341745923428
731 => 0.0081636606404202
801 => 0.0082018873977156
802 => 0.0081805502704895
803 => 0.0082191093432728
804 => 0.0080706349598039
805 => 0.0082514607320497
806 => 0.0083539772927578
807 => 0.0083554007353027
808 => 0.0084039927714565
809 => 0.0084533650944498
810 => 0.0085481309690123
811 => 0.0084507221256425
812 => 0.00827549309898
813 => 0.0082881440687188
814 => 0.0081854073545003
815 => 0.0081871343772273
816 => 0.0081779153945618
817 => 0.0082055822555135
818 => 0.0080767062799402
819 => 0.0081069532138136
820 => 0.0080646073292651
821 => 0.0081268764124798
822 => 0.0080598851723889
823 => 0.0081161907564543
824 => 0.0081404903799772
825 => 0.0082301565139103
826 => 0.0080466414115017
827 => 0.0076724416948105
828 => 0.007751103011992
829 => 0.0076347567451675
830 => 0.0076455250351235
831 => 0.0076672786945955
901 => 0.0075967679668924
902 => 0.0076102191916898
903 => 0.0076097386192852
904 => 0.0076055973059288
905 => 0.0075872547423998
906 => 0.007560654396317
907 => 0.0076666219879559
908 => 0.0076846279466894
909 => 0.0077246529624876
910 => 0.0078437402602754
911 => 0.0078318406309546
912 => 0.0078512494200878
913 => 0.0078088801423857
914 => 0.0076474904243981
915 => 0.0076562546625542
916 => 0.0075469644723105
917 => 0.0077218581666052
918 => 0.0076804410313122
919 => 0.0076537391347545
920 => 0.0076464532748873
921 => 0.0077658357670523
922 => 0.0078015568797994
923 => 0.0077792978794901
924 => 0.0077336440204571
925 => 0.0078213129261524
926 => 0.0078447694268622
927 => 0.0078500204723287
928 => 0.0080053529643755
929 => 0.0078587018331054
930 => 0.007894002217989
1001 => 0.0081694057439115
1002 => 0.0079196527489885
1003 => 0.0080519524805557
1004 => 0.00804547709715
1005 => 0.0081131571630409
1006 => 0.0080399253563139
1007 => 0.0080408331523258
1008 => 0.0081009284657921
1009 => 0.0080165354362755
1010 => 0.0079956385353454
1011 => 0.0079667696163768
1012 => 0.0080298038447964
1013 => 0.008067590013941
1014 => 0.0083721187863635
1015 => 0.0085688582615476
1016 => 0.0085603172820664
1017 => 0.0086383658464809
1018 => 0.0086032042533692
1019 => 0.0084896581940521
1020 => 0.0086834674718396
1021 => 0.008622138107023
1022 => 0.0086271940253433
1023 => 0.0086270058438109
1024 => 0.0086677845099078
1025 => 0.0086388890876683
1026 => 0.00858193324438
1027 => 0.0086197431911727
1028 => 0.0087320252158437
1029 => 0.0090805520656556
1030 => 0.009275592308177
1031 => 0.0090688103981561
1101 => 0.0092114457907684
1102 => 0.009125915381388
1103 => 0.0091103719616943
1104 => 0.0091999575289275
1105 => 0.009289699903837
1106 => 0.0092839837025222
1107 => 0.0092188353466599
1108 => 0.0091820346935116
1109 => 0.0094607015682739
1110 => 0.0096660185746324
1111 => 0.0096520173312614
1112 => 0.0097138142660526
1113 => 0.0098952519779069
1114 => 0.0099118403684274
1115 => 0.0099097506125016
1116 => 0.009868634555777
1117 => 0.010047283545762
1118 => 0.010196315676237
1119 => 0.0098591173766023
1120 => 0.0099875180748532
1121 => 0.01004516128511
1122 => 0.010129798619737
1123 => 0.010272595990117
1124 => 0.010427711809482
1125 => 0.010449646887099
1126 => 0.01043408289984
1127 => 0.010331779847232
1128 => 0.010501509427697
1129 => 0.010600933035285
1130 => 0.010660137518335
1201 => 0.010810270236663
1202 => 0.010045517269953
1203 => 0.0095041871094261
1204 => 0.0094196505879576
1205 => 0.0095915589285983
1206 => 0.009636889787082
1207 => 0.0096186169748673
1208 => 0.0090093006636097
1209 => 0.0094164426636798
1210 => 0.0098544932222835
1211 => 0.0098713205282565
1212 => 0.010090617797099
1213 => 0.010162029977133
1214 => 0.010338593022501
1215 => 0.01032754895594
1216 => 0.010370539247755
1217 => 0.010360656524155
1218 => 0.010687702385964
1219 => 0.01104848253832
1220 => 0.011035989868854
1221 => 0.010984123453396
1222 => 0.011061153924889
1223 => 0.011433517705671
1224 => 0.011399236415745
1225 => 0.011432537768835
1226 => 0.011871575651879
1227 => 0.012442387352248
1228 => 0.012177188008869
1229 => 0.012752594274946
1230 => 0.013114782018466
1231 => 0.013741148269972
]
'min_raw' => 0.005610206448824
'max_raw' => 0.013741148269972
'avg_raw' => 0.0096756773593981
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00561'
'max' => '$0.013741'
'avg' => '$0.009675'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.002501553085671
'max_diff' => 0.0055746958451307
'year' => 2028
]
3 => [
'items' => [
101 => 0.013662724130365
102 => 0.013906563915588
103 => 0.013522328552856
104 => 0.012640046493243
105 => 0.012500421980069
106 => 0.012779953791299
107 => 0.013467155472892
108 => 0.012758311364802
109 => 0.012901709604668
110 => 0.01286041090194
111 => 0.01285821026958
112 => 0.01294219945615
113 => 0.012820368760449
114 => 0.012324008589236
115 => 0.012551487530634
116 => 0.012463646986924
117 => 0.012561112619117
118 => 0.013087094438174
119 => 0.012854545338128
120 => 0.012609573751985
121 => 0.012916822484555
122 => 0.013308055703237
123 => 0.013283573031525
124 => 0.013236066415442
125 => 0.013503858722937
126 => 0.013946173159133
127 => 0.014065728973873
128 => 0.014153982632104
129 => 0.014166151320516
130 => 0.01429149637396
131 => 0.013617484430574
201 => 0.014687158694581
202 => 0.01487186189082
203 => 0.014837145345091
204 => 0.015042435174211
205 => 0.014982033698784
206 => 0.01489452143759
207 => 0.015219949483146
208 => 0.014846872489605
209 => 0.014317336666362
210 => 0.0140268228407
211 => 0.014409394881414
212 => 0.014643018276754
213 => 0.014797428479834
214 => 0.014844152913989
215 => 0.013669806059073
216 => 0.013036898236535
217 => 0.013442584894479
218 => 0.013937550616168
219 => 0.013614734870998
220 => 0.013627388637038
221 => 0.013167138218912
222 => 0.01397827256558
223 => 0.013860097113984
224 => 0.014473191565913
225 => 0.01432687165457
226 => 0.014826826379928
227 => 0.014695171545434
228 => 0.015241663402696
301 => 0.015459673800235
302 => 0.015825747188311
303 => 0.016095032262767
304 => 0.01625316160909
305 => 0.016243668116265
306 => 0.016870255366124
307 => 0.016500778756173
308 => 0.016036629055124
309 => 0.016028234051406
310 => 0.016268623758631
311 => 0.01677241463728
312 => 0.016903040282255
313 => 0.016976042197517
314 => 0.016864237223078
315 => 0.016463196843603
316 => 0.016290029641067
317 => 0.016437573114765
318 => 0.016257140124988
319 => 0.016568618085898
320 => 0.016996343854331
321 => 0.016908020174561
322 => 0.017203272993807
323 => 0.017508828600224
324 => 0.017945786840762
325 => 0.018060023905355
326 => 0.018248853429081
327 => 0.018443221036263
328 => 0.018505646673336
329 => 0.018624836584045
330 => 0.018624208394382
331 => 0.018983395212712
401 => 0.01937958939642
402 => 0.019529143528853
403 => 0.01987303500992
404 => 0.019284132899987
405 => 0.019730821915191
406 => 0.020133746588256
407 => 0.019653363182393
408 => 0.020315459792397
409 => 0.02034116750342
410 => 0.020729323418271
411 => 0.020335853036894
412 => 0.020102211580434
413 => 0.020776725710802
414 => 0.021103101851491
415 => 0.021004794701778
416 => 0.020256672438443
417 => 0.019821233192708
418 => 0.018681604696663
419 => 0.020031543878516
420 => 0.02068905987573
421 => 0.020254969630854
422 => 0.020473899500848
423 => 0.021668309883287
424 => 0.022123064024574
425 => 0.022028478342158
426 => 0.022044461765473
427 => 0.02228983884574
428 => 0.023377975951271
429 => 0.022725938974817
430 => 0.023224396811957
501 => 0.023488777051453
502 => 0.023734348151967
503 => 0.023131303142647
504 => 0.022346750446012
505 => 0.022098249673706
506 => 0.020211807910985
507 => 0.020113610424834
508 => 0.020058489200169
509 => 0.019710957675709
510 => 0.019437893094379
511 => 0.019220742001068
512 => 0.018650872685414
513 => 0.018843186850758
514 => 0.017934934102575
515 => 0.018516002024361
516 => 0.017066408707732
517 => 0.018273673096719
518 => 0.017616613977369
519 => 0.018057811504464
520 => 0.018056272207856
521 => 0.017243887678671
522 => 0.016775321236269
523 => 0.017073910010246
524 => 0.017394020877956
525 => 0.017445957789259
526 => 0.017860989884993
527 => 0.017976816421828
528 => 0.017625856607796
529 => 0.017036369108274
530 => 0.017173293609634
531 => 0.01677254646562
601 => 0.01607025251025
602 => 0.016574652289872
603 => 0.016746876551528
604 => 0.016822940596875
605 => 0.016132315150775
606 => 0.015915305641402
607 => 0.015799771599498
608 => 0.016947218035685
609 => 0.017010077741673
610 => 0.016688478598371
611 => 0.01814213722138
612 => 0.017813129504815
613 => 0.018180711733065
614 => 0.017160869146311
615 => 0.017199828506525
616 => 0.016717018682253
617 => 0.016987359922481
618 => 0.016796291447393
619 => 0.016965519021835
620 => 0.017066953332204
621 => 0.017549683932135
622 => 0.018279185104749
623 => 0.017477580078152
624 => 0.017128309288868
625 => 0.017344994922166
626 => 0.017922057318138
627 => 0.018796336387317
628 => 0.018278745581857
629 => 0.018508443592058
630 => 0.018558622388734
701 => 0.018176970091041
702 => 0.018810408451916
703 => 0.019149873215552
704 => 0.019498093820709
705 => 0.019800444015246
706 => 0.019359006853474
707 => 0.019831407894101
708 => 0.019450736045365
709 => 0.019109234043916
710 => 0.019109751961486
711 => 0.018895522767429
712 => 0.018480426709328
713 => 0.018403876627498
714 => 0.018802099820387
715 => 0.019121437109208
716 => 0.019147739257837
717 => 0.019324540789071
718 => 0.019429170114054
719 => 0.02045467973556
720 => 0.02086714818879
721 => 0.021371506805771
722 => 0.02156798291118
723 => 0.022159305547877
724 => 0.021681764493867
725 => 0.021578445482958
726 => 0.020144090186491
727 => 0.020378965785934
728 => 0.020755024282765
729 => 0.020150291252593
730 => 0.020533855169881
731 => 0.020609578812149
801 => 0.020129742655632
802 => 0.020386043879324
803 => 0.019705383817215
804 => 0.018294021634074
805 => 0.018811979701485
806 => 0.0191933711819
807 => 0.018649078514117
808 => 0.019624702054082
809 => 0.019054762922992
810 => 0.01887411958034
811 => 0.018169365496652
812 => 0.01850198229568
813 => 0.01895185127898
814 => 0.018673884550184
815 => 0.019250707249351
816 => 0.020067642024366
817 => 0.020649838394349
818 => 0.020694532202476
819 => 0.020320218940704
820 => 0.020920058331528
821 => 0.020924427506631
822 => 0.020247806223365
823 => 0.019833379454808
824 => 0.01973922082103
825 => 0.019974447549094
826 => 0.020260056222213
827 => 0.020710381496098
828 => 0.020982503627701
829 => 0.021692053824494
830 => 0.021884037763347
831 => 0.022094969906254
901 => 0.022376840298242
902 => 0.022715297973908
903 => 0.021974771847957
904 => 0.022004194331454
905 => 0.021314626656251
906 => 0.020577724701288
907 => 0.021136941428979
908 => 0.021868042910952
909 => 0.021700327423192
910 => 0.021681456004702
911 => 0.021713192496107
912 => 0.021586740495412
913 => 0.021014802782797
914 => 0.020727579244042
915 => 0.021098170887576
916 => 0.021295123852978
917 => 0.021600580726213
918 => 0.021562926719174
919 => 0.022349750820954
920 => 0.02265548687458
921 => 0.022577266508879
922 => 0.022591660938646
923 => 0.023145181459878
924 => 0.023760810119666
925 => 0.024337427598914
926 => 0.024923987665102
927 => 0.024216866611483
928 => 0.023857834149619
929 => 0.024228264004435
930 => 0.024031708709292
1001 => 0.025161173737271
1002 => 0.025239375445243
1003 => 0.026368758800045
1004 => 0.02744067808822
1005 => 0.026767424788746
1006 => 0.027402272326156
1007 => 0.028088911697743
1008 => 0.029413550448759
1009 => 0.02896745871877
1010 => 0.028625759444747
1011 => 0.028302855281874
1012 => 0.02897476758522
1013 => 0.029839172029413
1014 => 0.03002535646753
1015 => 0.030327046385208
1016 => 0.030009856325657
1017 => 0.030391876815047
1018 => 0.031740577010901
1019 => 0.031376146312675
1020 => 0.030858596136036
1021 => 0.031923265410119
1022 => 0.032308565081613
1023 => 0.035012799959159
1024 => 0.038427008198433
1025 => 0.037013503568474
1026 => 0.036136095631149
1027 => 0.036342307308815
1028 => 0.037589060579555
1029 => 0.037989478160146
1030 => 0.036901005143882
1031 => 0.037285472214554
1101 => 0.039403923573922
1102 => 0.040540404760166
1103 => 0.03899691065946
1104 => 0.034738471651474
1105 => 0.030811996405269
1106 => 0.031853474452047
1107 => 0.031735403162369
1108 => 0.034011414865821
1109 => 0.031367454761048
1110 => 0.031411972268398
1111 => 0.033735049483539
1112 => 0.033115292310166
1113 => 0.032111365061802
1114 => 0.030819326185195
1115 => 0.028430872822655
1116 => 0.026315353072504
1117 => 0.030464374477652
1118 => 0.030285461130156
1119 => 0.030026368089509
1120 => 0.030602951614673
1121 => 0.033402677546779
1122 => 0.033338134802215
1123 => 0.0329275467913
1124 => 0.033238974178823
1125 => 0.03205677033504
1126 => 0.032361451183864
1127 => 0.030811374431529
1128 => 0.031512073860508
1129 => 0.032109211084814
1130 => 0.032229095223361
1201 => 0.032499200308943
1202 => 0.030191181925911
1203 => 0.031227414420033
1204 => 0.031836103928475
1205 => 0.029086022585019
1206 => 0.031781743662501
1207 => 0.03015100446074
1208 => 0.029597507082781
1209 => 0.030342718384468
1210 => 0.030052308815459
1211 => 0.029802631721447
1212 => 0.029663307612991
1213 => 0.03021050854698
1214 => 0.030184980969363
1215 => 0.029289654034233
1216 => 0.028121736545551
1217 => 0.028513727990337
1218 => 0.028371313823507
1219 => 0.027855186511121
1220 => 0.02820299400222
1221 => 0.026671425832763
1222 => 0.024036442401199
1223 => 0.025777193167815
1224 => 0.025710176156873
1225 => 0.025676383140976
1226 => 0.026984509231271
1227 => 0.026858763091293
1228 => 0.026630532615923
1229 => 0.02785099487946
1230 => 0.027405509735735
1231 => 0.028778389979195
]
'min_raw' => 0.012324008589236
'max_raw' => 0.040540404760166
'avg_raw' => 0.026432206674701
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.012324'
'max' => '$0.04054'
'avg' => '$0.026432'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0067138021404123
'max_diff' => 0.026799256490194
'year' => 2029
]
4 => [
'items' => [
101 => 0.029682657699864
102 => 0.029453306155906
103 => 0.030303774317901
104 => 0.028522758681514
105 => 0.029114340633977
106 => 0.029236264854482
107 => 0.027835934564575
108 => 0.026879336714922
109 => 0.026815542544364
110 => 0.02515693370037
111 => 0.026042949157009
112 => 0.026822606093041
113 => 0.026449210924504
114 => 0.026331005169008
115 => 0.026934892738134
116 => 0.026981819974202
117 => 0.025911874018719
118 => 0.026134349663646
119 => 0.027062110086489
120 => 0.026110972481378
121 => 0.024263067482094
122 => 0.023804761492986
123 => 0.023743615025784
124 => 0.022500652834616
125 => 0.023835387690653
126 => 0.023252740157323
127 => 0.025093316733925
128 => 0.02404198926458
129 => 0.023996668638638
130 => 0.023928159865437
131 => 0.022858290961377
201 => 0.02309252425765
202 => 0.023871151409201
203 => 0.024148974348736
204 => 0.024119995140006
205 => 0.023867335711379
206 => 0.023983001903979
207 => 0.023610400796842
208 => 0.023478827590891
209 => 0.023063546360846
210 => 0.022453197677049
211 => 0.022538070405017
212 => 0.021328809955993
213 => 0.020669940683056
214 => 0.020487574352064
215 => 0.020243706472648
216 => 0.020515119877952
217 => 0.021325384273077
218 => 0.020348033505375
219 => 0.018672434167336
220 => 0.018773140542634
221 => 0.018999397867939
222 => 0.018577768839076
223 => 0.018178732347899
224 => 0.018525662202124
225 => 0.017815688673561
226 => 0.019085194776927
227 => 0.019050858194581
228 => 0.019524051564185
301 => 0.019819949089104
302 => 0.019138001092127
303 => 0.018966493015071
304 => 0.01906419181037
305 => 0.017449448350837
306 => 0.019392092574026
307 => 0.019408892641939
308 => 0.019265040260857
309 => 0.020299438337294
310 => 0.022482340915427
311 => 0.02166104515848
312 => 0.021343014617595
313 => 0.020738438326893
314 => 0.021544000338065
315 => 0.021482145744332
316 => 0.021202415813814
317 => 0.021033234279025
318 => 0.021344956444262
319 => 0.020994608453076
320 => 0.02093167632694
321 => 0.020550376113385
322 => 0.0204142692852
323 => 0.020313501208181
324 => 0.02020256545665
325 => 0.020447262081061
326 => 0.019892747337623
327 => 0.019224056916788
328 => 0.019168462543627
329 => 0.019321963495834
330 => 0.019254050751284
331 => 0.019168137403534
401 => 0.01900410542557
402 => 0.018955440641697
403 => 0.019113577580488
404 => 0.01893505019655
405 => 0.01919847707644
406 => 0.019126839541184
407 => 0.018726678092631
408 => 0.018227928768989
409 => 0.018223488853847
410 => 0.018116034130181
411 => 0.017979174383667
412 => 0.017941103133113
413 => 0.018496444737467
414 => 0.019645985238503
415 => 0.019420302931977
416 => 0.019583381527295
417 => 0.020385566811443
418 => 0.02064055739072
419 => 0.020459571117332
420 => 0.020211825943571
421 => 0.020222725473888
422 => 0.021069345730194
423 => 0.021122148397094
424 => 0.021255563701565
425 => 0.021427040070971
426 => 0.020488774284526
427 => 0.020178533239724
428 => 0.020031523821178
429 => 0.019578791711863
430 => 0.020067024477442
501 => 0.019782552153151
502 => 0.019820937188656
503 => 0.019795938883927
504 => 0.019809589648687
505 => 0.019084839924099
506 => 0.019348900632015
507 => 0.018909848489688
508 => 0.018322006957028
509 => 0.018320036306087
510 => 0.018463909688411
511 => 0.018378328170839
512 => 0.018148030507554
513 => 0.018180743203649
514 => 0.017894145563938
515 => 0.018215541346128
516 => 0.018224757827152
517 => 0.018101002944462
518 => 0.018596157490997
519 => 0.01879902271272
520 => 0.018717564597847
521 => 0.01879330739423
522 => 0.019429681050707
523 => 0.019533437723642
524 => 0.019579519583979
525 => 0.019517775995805
526 => 0.018804939136463
527 => 0.018836556482391
528 => 0.018604569376409
529 => 0.018408564718052
530 => 0.018416403876478
531 => 0.018517175749695
601 => 0.018957252430226
602 => 0.019883367860467
603 => 0.019918513264063
604 => 0.019961110518485
605 => 0.019787846077085
606 => 0.019735587863642
607 => 0.019804529936163
608 => 0.020152330198926
609 => 0.021046966901601
610 => 0.020730742540099
611 => 0.020473647211873
612 => 0.02069918912713
613 => 0.020664468717132
614 => 0.020371393515364
615 => 0.020363167870568
616 => 0.019800662856566
617 => 0.019592717560508
618 => 0.019418942906687
619 => 0.019229185521217
620 => 0.019116690982385
621 => 0.019289533721884
622 => 0.019329064901423
623 => 0.018951141230733
624 => 0.018899631630894
625 => 0.019208252258428
626 => 0.019072439826787
627 => 0.019212126280716
628 => 0.019244534736236
629 => 0.019239316228467
630 => 0.019097512451876
701 => 0.019187893950426
702 => 0.018974114762333
703 => 0.018741662003878
704 => 0.018593371626303
705 => 0.018463968604004
706 => 0.018535768921723
707 => 0.018279813899274
708 => 0.018197928736236
709 => 0.019157274732365
710 => 0.019865953934413
711 => 0.019855649458148
712 => 0.019792923608977
713 => 0.019699725720584
714 => 0.020145512192896
715 => 0.019990209099724
716 => 0.020103205076014
717 => 0.020131967294406
718 => 0.020219021866853
719 => 0.020250136393909
720 => 0.020156086682717
721 => 0.019840444364749
722 => 0.019053893718745
723 => 0.018687752269777
724 => 0.01856691949305
725 => 0.01857131153499
726 => 0.018450159411348
727 => 0.018485844141417
728 => 0.018437749718513
729 => 0.018346670516823
730 => 0.018530145037673
731 => 0.018551288767018
801 => 0.018508463621494
802 => 0.018518550493558
803 => 0.018163976579481
804 => 0.018190934064074
805 => 0.018040831364268
806 => 0.018012688917569
807 => 0.017633242363396
808 => 0.016960997791021
809 => 0.017333486540476
810 => 0.016883572510978
811 => 0.016713183250697
812 => 0.0175197795079
813 => 0.017438819615175
814 => 0.017300251471248
815 => 0.017095280306249
816 => 0.01701925450732
817 => 0.016557345819867
818 => 0.016530053790425
819 => 0.01675898820851
820 => 0.016653342851717
821 => 0.016504976759752
822 => 0.015967609814288
823 => 0.015363431451505
824 => 0.015381667798547
825 => 0.015573845694611
826 => 0.016132628846135
827 => 0.015914302601788
828 => 0.015755904406509
829 => 0.015726241185965
830 => 0.016097538495225
831 => 0.01662300197702
901 => 0.016869537686095
902 => 0.016625228285802
903 => 0.016344578801298
904 => 0.016361660635016
905 => 0.01647529842194
906 => 0.016487240146594
907 => 0.016304566183415
908 => 0.016355987834031
909 => 0.016277873644651
910 => 0.015798487008614
911 => 0.015789816424519
912 => 0.015672167212882
913 => 0.01566860484151
914 => 0.015468454183544
915 => 0.015440451722918
916 => 0.01504304044325
917 => 0.015304617751
918 => 0.015129165426386
919 => 0.014864717388174
920 => 0.014819126446709
921 => 0.014817755927956
922 => 0.015089284933701
923 => 0.015301444776476
924 => 0.01513221749469
925 => 0.015093687722961
926 => 0.015505084882929
927 => 0.015452730844355
928 => 0.015407392584597
929 => 0.016575952485559
930 => 0.015650946140081
1001 => 0.015247590575937
1002 => 0.014748361470163
1003 => 0.014910912984335
1004 => 0.014945164976749
1005 => 0.013744608970175
1006 => 0.013257543547827
1007 => 0.013090401049551
1008 => 0.012994208178744
1009 => 0.013038044477885
1010 => 0.012599628470696
1011 => 0.012894251278258
1012 => 0.012514620074415
1013 => 0.012450973667664
1014 => 0.013129801287417
1015 => 0.013224256185052
1016 => 0.012821282246904
1017 => 0.01308005675075
1018 => 0.012986221518421
1019 => 0.012521127761798
1020 => 0.012503364601293
1021 => 0.012269996903055
1022 => 0.011904821644204
1023 => 0.011737926751949
1024 => 0.011651006443015
1025 => 0.011686871456524
1026 => 0.011668737008206
1027 => 0.011550397466319
1028 => 0.011675520092224
1029 => 0.011355883487275
1030 => 0.011228601615697
1031 => 0.011171111347222
1101 => 0.010887415462733
1102 => 0.011338901775088
1103 => 0.011427850266296
1104 => 0.01151697401351
1105 => 0.01229273538564
1106 => 0.012253980539767
1107 => 0.012604305472081
1108 => 0.012590692489417
1109 => 0.012490774143834
1110 => 0.012069235079587
1111 => 0.012237253037384
1112 => 0.011720119879071
1113 => 0.012107591202916
1114 => 0.011930765471903
1115 => 0.01204780624539
1116 => 0.011837356381519
1117 => 0.011953828025447
1118 => 0.011448943253333
1119 => 0.010977488957054
1120 => 0.011167215928485
1121 => 0.011373470844343
1122 => 0.011820684054696
1123 => 0.011554327556039
1124 => 0.01165011942501
1125 => 0.01132923269932
1126 => 0.010667151727461
1127 => 0.01067089903386
1128 => 0.010569052300557
1129 => 0.010481041853117
1130 => 0.01158492180402
1201 => 0.011447636882365
1202 => 0.011228891327115
1203 => 0.01152169094542
1204 => 0.011599111811855
1205 => 0.011601315875081
1206 => 0.011814934918344
1207 => 0.011928943440027
1208 => 0.011949037936115
1209 => 0.012285172116235
1210 => 0.012397839859694
1211 => 0.012861902349666
1212 => 0.011919270613496
1213 => 0.011899857733205
1214 => 0.011525811236507
1215 => 0.011288585034859
1216 => 0.01154205431749
1217 => 0.011766593499892
1218 => 0.011532788294805
1219 => 0.011563318318692
1220 => 0.011249453933449
1221 => 0.011361645682481
1222 => 0.011458280330609
1223 => 0.011404924357835
1224 => 0.011325047884134
1225 => 0.011748183847546
1226 => 0.011724308858207
1227 => 0.012118342795191
1228 => 0.012425520426706
1229 => 0.012976037656952
1230 => 0.012401544228078
1231 => 0.012380607404126
]
'min_raw' => 0.010481041853117
'max_raw' => 0.030303774317901
'avg_raw' => 0.020392408085509
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.010481'
'max' => '$0.0303037'
'avg' => '$0.020392'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0018429667361192
'max_diff' => -0.010236630442265
'year' => 2030
]
5 => [
'items' => [
101 => 0.012585268216636
102 => 0.01239780852719
103 => 0.012516276580031
104 => 0.01295695062213
105 => 0.012966261370235
106 => 0.012810294343263
107 => 0.012800803735498
108 => 0.01283075890912
109 => 0.013006207296658
110 => 0.012944900239068
111 => 0.013015846318216
112 => 0.013104565476556
113 => 0.013471545531593
114 => 0.013560023180457
115 => 0.013345068364118
116 => 0.013364476377287
117 => 0.013284077375334
118 => 0.013206412946845
119 => 0.01338099124011
120 => 0.013700036502398
121 => 0.013698051738379
122 => 0.013772064037876
123 => 0.013818173087312
124 => 0.013620239293247
125 => 0.013491391671538
126 => 0.013540800048489
127 => 0.013619805119207
128 => 0.013515179768858
129 => 0.012869383639332
130 => 0.013065276931414
131 => 0.013032670708919
201 => 0.012986235483034
202 => 0.01318320770302
203 => 0.013164209251886
204 => 0.012595131880866
205 => 0.012631562367792
206 => 0.012597347339438
207 => 0.012707903095786
208 => 0.012391838153534
209 => 0.012489057601041
210 => 0.012550032727141
211 => 0.012585947544848
212 => 0.012715696493424
213 => 0.012700471951865
214 => 0.012714750114544
215 => 0.01290713355283
216 => 0.013880142965656
217 => 0.013933101721172
218 => 0.013672313440257
219 => 0.013776493214661
220 => 0.013576490829418
221 => 0.013710753770531
222 => 0.013802613064932
223 => 0.013387518577061
224 => 0.01336293937543
225 => 0.013162111509197
226 => 0.013270025029039
227 => 0.013098326859714
228 => 0.013140455584719
301 => 0.013022659996888
302 => 0.013234668602117
303 => 0.013471727165568
304 => 0.013531617520422
305 => 0.01337407178122
306 => 0.013259998283267
307 => 0.013059722799008
308 => 0.013392785392761
309 => 0.013490183045073
310 => 0.013392273804357
311 => 0.013369586093924
312 => 0.013326592923649
313 => 0.013378707298239
314 => 0.013489652596541
315 => 0.0134373328427
316 => 0.013471890961868
317 => 0.013340191047779
318 => 0.013620304817569
319 => 0.014065192897046
320 => 0.014066623284968
321 => 0.014014303249104
322 => 0.013992895017679
323 => 0.014046578549521
324 => 0.014075699663331
325 => 0.014249302361432
326 => 0.01443558497313
327 => 0.015304884640456
328 => 0.015060788772429
329 => 0.015832083152149
330 => 0.016442076866467
331 => 0.016624987309599
401 => 0.016456718308519
402 => 0.015881079145538
403 => 0.015852835541971
404 => 0.01671308348005
405 => 0.016470024035691
406 => 0.016441112888193
407 => 0.016133547124972
408 => 0.016315356583797
409 => 0.016275592188168
410 => 0.016212822144327
411 => 0.016559701926808
412 => 0.017209029913441
413 => 0.017107826057365
414 => 0.017032282073516
415 => 0.016701270326813
416 => 0.016900613332478
417 => 0.016829631106324
418 => 0.017134615796315
419 => 0.016953949622202
420 => 0.016468182621345
421 => 0.01654554261734
422 => 0.016533849809572
423 => 0.016774486964877
424 => 0.016702253663836
425 => 0.016519745098241
426 => 0.017206810580973
427 => 0.017162196370184
428 => 0.017225449120855
429 => 0.017253294937857
430 => 0.017671499589744
501 => 0.017842824654566
502 => 0.017881718443748
503 => 0.018044464004573
504 => 0.017877669185937
505 => 0.018544967383172
506 => 0.018988681746403
507 => 0.019504078812629
508 => 0.020257212452057
509 => 0.020540397667357
510 => 0.020489242792906
511 => 0.021060260122924
512 => 0.022086365571965
513 => 0.020696648041634
514 => 0.022160023975571
515 => 0.021696736050374
516 => 0.020598288713927
517 => 0.020527561655303
518 => 0.021271442944781
519 => 0.022921300048922
520 => 0.022508029556859
521 => 0.022921976011397
522 => 0.022439085484118
523 => 0.022415105899318
524 => 0.022898523096319
525 => 0.024028053726812
526 => 0.023491456064087
527 => 0.022722111735426
528 => 0.023290183615386
529 => 0.022798067180394
530 => 0.021689191117641
531 => 0.022507713536702
601 => 0.021960390905253
602 => 0.022120128746381
603 => 0.023270519509591
604 => 0.023132101449405
605 => 0.023311227236453
606 => 0.022995074910852
607 => 0.022699738786095
608 => 0.022148471977286
609 => 0.021985269052323
610 => 0.022030372469357
611 => 0.02198524670131
612 => 0.021676817988185
613 => 0.021610212836952
614 => 0.021499201333524
615 => 0.021533608440346
616 => 0.021324874336341
617 => 0.021718798717265
618 => 0.021791914553614
619 => 0.022078579867484
620 => 0.022108342411345
621 => 0.022906701230047
622 => 0.022466978608581
623 => 0.022761982506885
624 => 0.022735594581536
625 => 0.020622095398491
626 => 0.020913316938354
627 => 0.021366366264026
628 => 0.021162268156904
629 => 0.020873721185036
630 => 0.020640704034343
701 => 0.020287659223816
702 => 0.020784563015008
703 => 0.021437938660598
704 => 0.022124913095952
705 => 0.02295026786768
706 => 0.022766058290819
707 => 0.022109483662599
708 => 0.022138937120793
709 => 0.022321006809839
710 => 0.022085210019749
711 => 0.022015668943051
712 => 0.022311452933776
713 => 0.022313489835561
714 => 0.022042177131568
715 => 0.02174066271078
716 => 0.021739399354348
717 => 0.021685747775453
718 => 0.022448629980816
719 => 0.022868138057675
720 => 0.022916233982616
721 => 0.022864900818718
722 => 0.022884656916162
723 => 0.022640554409467
724 => 0.023198500353421
725 => 0.023710526726728
726 => 0.023573292720834
727 => 0.023367559437035
728 => 0.023203682967032
729 => 0.02353468863257
730 => 0.023519949471335
731 => 0.023706054623039
801 => 0.023697611818363
802 => 0.023635031655613
803 => 0.023573294955769
804 => 0.023818073992253
805 => 0.023747581560776
806 => 0.023676979635083
807 => 0.023535376664492
808 => 0.023554622859972
809 => 0.023348925098925
810 => 0.023253759902576
811 => 0.021822703682714
812 => 0.021440278699656
813 => 0.021560597384304
814 => 0.021600209419364
815 => 0.021433777576646
816 => 0.021672398086271
817 => 0.021635209332607
818 => 0.021779889018418
819 => 0.021689499431985
820 => 0.021693209052142
821 => 0.021959025552749
822 => 0.02203619321374
823 => 0.021996945118541
824 => 0.022024433139072
825 => 0.022657882970254
826 => 0.022567826660845
827 => 0.02251998604136
828 => 0.022533238219906
829 => 0.02269509823309
830 => 0.022740410199553
831 => 0.022548420213636
901 => 0.022638963800875
902 => 0.023024486903649
903 => 0.023159398170902
904 => 0.023589970174891
905 => 0.023407055534789
906 => 0.023742803273056
907 => 0.024774777355649
908 => 0.025599189659999
909 => 0.024841026034639
910 => 0.026354954243305
911 => 0.027533764513854
912 => 0.027488519812259
913 => 0.027282966975216
914 => 0.025940922822488
915 => 0.024705953784397
916 => 0.025739057824315
917 => 0.025741691418973
918 => 0.025652946865729
919 => 0.025101762067291
920 => 0.025633766829506
921 => 0.025675995435573
922 => 0.025652358645668
923 => 0.025229766553027
924 => 0.024584546535637
925 => 0.024710620982596
926 => 0.024917133498565
927 => 0.024526162222812
928 => 0.024401223210424
929 => 0.024633508605073
930 => 0.025381980545216
1001 => 0.025240486260535
1002 => 0.025236791272938
1003 => 0.025842163825719
1004 => 0.025408847725502
1005 => 0.024712211185119
1006 => 0.024536301271165
1007 => 0.023911939583746
1008 => 0.024343188425146
1009 => 0.024358708303211
1010 => 0.024122517720032
1011 => 0.024731376749223
1012 => 0.024725766006082
1013 => 0.025303787037591
1014 => 0.026408746155053
1015 => 0.026081955372284
1016 => 0.025701933246659
1017 => 0.025743252188585
1018 => 0.026196418997674
1019 => 0.025922424000107
1020 => 0.026020954511593
1021 => 0.026196269859944
1022 => 0.02630204196244
1023 => 0.025728033210776
1024 => 0.025594204312751
1025 => 0.025320437354951
1026 => 0.025249016665764
1027 => 0.025471994140556
1028 => 0.025413247453859
1029 => 0.024357403917555
1030 => 0.024247062393354
1031 => 0.02425044641037
1101 => 0.023972987401311
1102 => 0.023549795814704
1103 => 0.02466191803685
1104 => 0.024572599058271
1105 => 0.02447399781866
1106 => 0.024486075907901
1107 => 0.024968810471216
1108 => 0.024688800045814
1109 => 0.025433253654551
1110 => 0.025280216372918
1111 => 0.025123254262475
1112 => 0.025101557317628
1113 => 0.025041140296485
1114 => 0.024833947850803
1115 => 0.024583750522306
1116 => 0.02441854857431
1117 => 0.022524820300207
1118 => 0.02287628525257
1119 => 0.023280613643225
1120 => 0.023420186183435
1121 => 0.02318143769528
1122 => 0.024843375096304
1123 => 0.025147027074299
1124 => 0.024227245426226
1125 => 0.024055191834308
1126 => 0.024854654901147
1127 => 0.024372480941458
1128 => 0.024589603845982
1129 => 0.02412030288628
1130 => 0.025073886204768
1201 => 0.02506662149757
1202 => 0.024695656049022
1203 => 0.025009193505873
1204 => 0.024954708656967
1205 => 0.024535889579205
1206 => 0.025087163516567
1207 => 0.025087436941562
1208 => 0.024730390762819
1209 => 0.024313438993507
1210 => 0.024238897865115
1211 => 0.024182741138063
1212 => 0.024575792733597
1213 => 0.024928201565113
1214 => 0.025583947031005
1215 => 0.025748817021258
1216 => 0.026392315569233
1217 => 0.02600914351529
1218 => 0.026178998723894
1219 => 0.02636340058032
1220 => 0.026451809611445
1221 => 0.026307751839518
1222 => 0.027307369959092
1223 => 0.027391768355892
1224 => 0.027420066408296
1225 => 0.027083000802663
1226 => 0.027382393951652
1227 => 0.027242317812099
1228 => 0.027606757012944
1229 => 0.02766390573303
1230 => 0.027615502800242
1231 => 0.027633642706028
]
'min_raw' => 0.012391838153534
'max_raw' => 0.02766390573303
'avg_raw' => 0.020027871943282
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.012391'
'max' => '$0.027663'
'avg' => '$0.020027'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0019107963004167
'max_diff' => -0.0026398685848709
'year' => 2031
]
6 => [
'items' => [
101 => 0.026780644985691
102 => 0.02673641255397
103 => 0.026133300208866
104 => 0.026379072947477
105 => 0.025919612592837
106 => 0.026065312204259
107 => 0.026129535204698
108 => 0.026095988753892
109 => 0.026392968569364
110 => 0.026140475057245
111 => 0.025474103164985
112 => 0.02480754972015
113 => 0.024799181684612
114 => 0.024623689928233
115 => 0.024496841531288
116 => 0.024521277032729
117 => 0.024607390926976
118 => 0.024491836435208
119 => 0.024516495844788
120 => 0.024926006348604
121 => 0.025008130759649
122 => 0.02472903992284
123 => 0.023608449940434
124 => 0.023333454347965
125 => 0.023531115726432
126 => 0.023436646318548
127 => 0.018915202734316
128 => 0.019977448836911
129 => 0.019346298273218
130 => 0.019637161490809
131 => 0.018992920200925
201 => 0.019300385912036
202 => 0.019243608222044
203 => 0.020951668520869
204 => 0.020924999508663
205 => 0.020937764553513
206 => 0.020328455703661
207 => 0.021299101246014
208 => 0.021777276143462
209 => 0.021688778696157
210 => 0.021711051597041
211 => 0.021328329366203
212 => 0.020941470141297
213 => 0.020512383723668
214 => 0.021309573250939
215 => 0.021220939383985
216 => 0.021424233585318
217 => 0.021941267978037
218 => 0.022017403256387
219 => 0.022119729842578
220 => 0.022083053045531
221 => 0.022956843150004
222 => 0.022851021402899
223 => 0.023106021366426
224 => 0.022581467094557
225 => 0.021987884144789
226 => 0.022100704857851
227 => 0.022089839315937
228 => 0.021951508496473
229 => 0.02182662961785
301 => 0.021618741469349
302 => 0.022276530332864
303 => 0.022249825306269
304 => 0.022682148645647
305 => 0.022605731296047
306 => 0.022095397532921
307 => 0.022113624203109
308 => 0.022236207319563
309 => 0.022660468885239
310 => 0.022786418603862
311 => 0.022728073675967
312 => 0.022866171792614
313 => 0.022975318913298
314 => 0.022879878990513
315 => 0.024231107032158
316 => 0.023669982941976
317 => 0.023943470919254
318 => 0.02400869619035
319 => 0.023841623029978
320 => 0.023877855216021
321 => 0.023932737105197
322 => 0.0242659691893
323 => 0.025140466599465
324 => 0.025527775549522
325 => 0.026693013635256
326 => 0.025495614932821
327 => 0.025424566249147
328 => 0.025634460815207
329 => 0.02631857892451
330 => 0.026872992396154
331 => 0.027056923329579
401 => 0.0270812328388
402 => 0.027426299497402
403 => 0.027624085271001
404 => 0.027384399328894
405 => 0.027181290589122
406 => 0.026453780294046
407 => 0.026537991591646
408 => 0.027118123923783
409 => 0.027937595012551
410 => 0.02864078645815
411 => 0.028394553322597
412 => 0.030273138333359
413 => 0.030459392363844
414 => 0.030433658079145
415 => 0.030857972478907
416 => 0.030015794805504
417 => 0.029655747533701
418 => 0.027225205004043
419 => 0.027908088314336
420 => 0.028900699310176
421 => 0.028769323522777
422 => 0.028048462885029
423 => 0.028640239620715
424 => 0.028444579725328
425 => 0.028290254647899
426 => 0.028997247744987
427 => 0.028219879793063
428 => 0.0288929444702
429 => 0.02802973205981
430 => 0.028395678094819
501 => 0.02818794942653
502 => 0.028322375333181
503 => 0.027536524229669
504 => 0.027960550409667
505 => 0.027518883346512
506 => 0.027518673938818
507 => 0.027508924113919
508 => 0.028028543455069
509 => 0.028045488223129
510 => 0.027661488744918
511 => 0.027606148420909
512 => 0.027810770603809
513 => 0.027571211618267
514 => 0.027683299759836
515 => 0.027574606653889
516 => 0.027550137546314
517 => 0.027355163534075
518 => 0.02727116336868
519 => 0.027304101997949
520 => 0.027191665475227
521 => 0.027123918403281
522 => 0.02749544751614
523 => 0.027296954498581
524 => 0.027465025614408
525 => 0.027273487365657
526 => 0.026609532346243
527 => 0.026227684793381
528 => 0.02497353531037
529 => 0.025329210547984
530 => 0.025565023598495
531 => 0.025487087386708
601 => 0.025654524526937
602 => 0.025664803807479
603 => 0.025610368286371
604 => 0.02554733892655
605 => 0.025516659719931
606 => 0.025745317391064
607 => 0.02587806086542
608 => 0.025588690592885
609 => 0.025520895186751
610 => 0.025813464508854
611 => 0.025991931626325
612 => 0.02730963254972
613 => 0.027212013009197
614 => 0.027457018899043
615 => 0.027429434995768
616 => 0.027686240200825
617 => 0.028106008177117
618 => 0.027252502512344
619 => 0.027400641583743
620 => 0.027364321304467
621 => 0.027760856589917
622 => 0.027762094529795
623 => 0.027524351817761
624 => 0.02765323599889
625 => 0.027581296384736
626 => 0.027711300990734
627 => 0.027210709240718
628 => 0.027820375956697
629 => 0.028166017698602
630 => 0.028170816934523
701 => 0.028334648377004
702 => 0.028501110611041
703 => 0.028820620373471
704 => 0.028492199657181
705 => 0.027901402759689
706 => 0.027944056387425
707 => 0.02759767238259
708 => 0.02760349516029
709 => 0.027572412716585
710 => 0.027665693469922
711 => 0.027231179120444
712 => 0.027333158769771
713 => 0.02719038666352
714 => 0.027400331225067
715 => 0.027174465581922
716 => 0.027364303789729
717 => 0.027446231666982
718 => 0.027748547297827
719 => 0.027129813317441
720 => 0.025868172846827
721 => 0.026133384969662
722 => 0.025741115408026
723 => 0.025777421449431
724 => 0.025850765431133
725 => 0.02561303358978
726 => 0.025658385333319
727 => 0.025656765049904
728 => 0.025642802322786
729 => 0.025580959089211
730 => 0.025491274165216
731 => 0.025848551298847
801 => 0.025909259645853
802 => 0.026044206781074
803 => 0.026445717919976
804 => 0.026405597488915
805 => 0.026471035576556
806 => 0.026328184598655
807 => 0.025784047896589
808 => 0.025813597137432
809 => 0.025445117630628
810 => 0.02603478393163
811 => 0.025895143168338
812 => 0.025805115859827
813 => 0.025780551074602
814 => 0.026183057481956
815 => 0.026303493707551
816 => 0.026228445933935
817 => 0.026074520760754
818 => 0.026370102597153
819 => 0.026449187826977
820 => 0.026466892093384
821 => 0.026990606435288
822 => 0.026496161907355
823 => 0.026615179619585
824 => 0.027543721835293
825 => 0.026701662175712
826 => 0.027147719957563
827 => 0.027125887750314
828 => 0.027354075817737
829 => 0.027107169668475
830 => 0.02711023036611
831 => 0.027312845911182
901 => 0.027028308920034
902 => 0.026957853559573
903 => 0.026860519983707
904 => 0.027073044285733
905 => 0.02720044299315
906 => 0.028227183010892
907 => 0.028890503887387
908 => 0.028861707378754
909 => 0.029124853562854
910 => 0.029006303796774
911 => 0.028623475330254
912 => 0.029276916841646
913 => 0.029070140606287
914 => 0.029087186987897
915 => 0.029086552520722
916 => 0.029224040640543
917 => 0.029126617707049
918 => 0.028934587104872
919 => 0.02906206598029
920 => 0.029440632665749
921 => 0.030615715273258
922 => 0.031273307068193
923 => 0.030576127421506
924 => 0.031057032606183
925 => 0.030768660859415
926 => 0.030716255134711
927 => 0.031018299129302
928 => 0.031320871811922
929 => 0.031301599240097
930 => 0.031081947009794
1001 => 0.030957871038365
1002 => 0.031897415862526
1003 => 0.032589656484239
1004 => 0.032542450314678
1005 => 0.032750802994851
1006 => 0.033362532907944
1007 => 0.033418461824749
1008 => 0.033411416066743
1009 => 0.033272790410864
1010 => 0.033875117953472
1011 => 0.034377590186459
1012 => 0.033240702576808
1013 => 0.033673614495612
1014 => 0.033867962603514
1015 => 0.034153323286399
1016 => 0.03463477459043
1017 => 0.035157758405258
1018 => 0.035231714050901
1019 => 0.035179238981214
1020 => 0.034834317096775
1021 => 0.035406572227455
1022 => 0.035741785861974
1023 => 0.035941397910102
1024 => 0.036447580851877
1025 => 0.033869162831264
1026 => 0.032044030400584
1027 => 0.031759009616302
1028 => 0.032338610589029
1029 => 0.032491446743306
1030 => 0.032429838681157
1031 => 0.030375486196646
1101 => 0.031748193875629
1102 => 0.033225111917674
1103 => 0.033281846354608
1104 => 0.034021222407356
1105 => 0.034261993558179
1106 => 0.034857288192876
1107 => 0.034820052351394
1108 => 0.034964997121736
1109 => 0.034931676829128
1110 => 0.036034334785829
1111 => 0.037250730258362
1112 => 0.037208610351049
1113 => 0.037033739110134
1114 => 0.03729345272287
1115 => 0.038548903207384
1116 => 0.038433321444954
1117 => 0.038545599281924
1118 => 0.040025846157255
1119 => 0.041950377657849
1120 => 0.04105623955602
1121 => 0.042996261955681
1122 => 0.044217403220099
1123 => 0.046329240768547
1124 => 0.046064828306462
1125 => 0.046886951166693
1126 => 0.045591474814784
1127 => 0.042616799251834
1128 => 0.042146045457396
1129 => 0.043088506475245
1130 => 0.045405454923625
1201 => 0.043015537523286
1202 => 0.043499014700739
1203 => 0.043359773241107
1204 => 0.043352353655462
1205 => 0.043635529061921
1206 => 0.043224768365416
1207 => 0.041551255393413
1208 => 0.042318216526408
1209 => 0.04202205600046
1210 => 0.042350668184229
1211 => 0.044124052610058
1212 => 0.043339997083194
1213 => 0.042514058277142
1214 => 0.043549968830425
1215 => 0.04486903894224
1216 => 0.04478649390524
1217 => 0.04462632203231
1218 => 0.045529202493689
1219 => 0.047020496496733
1220 => 0.047423587273251
1221 => 0.047721140643649
1222 => 0.047762168226221
1223 => 0.048184777825218
1224 => 0.045912299500081
1225 => 0.049518780963455
1226 => 0.05014152068514
1227 => 0.05002447142738
1228 => 0.05071662041914
1229 => 0.050512972627639
1230 => 0.050217918929114
1231 => 0.051315122305365
]
'min_raw' => 0.018915202734316
'max_raw' => 0.051315122305365
'avg_raw' => 0.03511516251984
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.018915'
'max' => '$0.051315'
'avg' => '$0.035115'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0065233645807823
'max_diff' => 0.023651216572335
'year' => 2032
]
7 => [
'items' => [
101 => 0.05005726717424
102 => 0.048271900175165
103 => 0.047292412528918
104 => 0.048582280874511
105 => 0.049369958462963
106 => 0.049890563243226
107 => 0.050048097935176
108 => 0.046088705523545
109 => 0.043954812611647
110 => 0.045322613503042
111 => 0.046991424991119
112 => 0.045903029168005
113 => 0.045945692223665
114 => 0.044393925805295
115 => 0.047128721886679
116 => 0.046730285100877
117 => 0.048797375850441
118 => 0.048304048053618
119 => 0.049989680315887
120 => 0.049545796849543
121 => 0.051388332301148
122 => 0.052123369577449
123 => 0.053357611563775
124 => 0.054265524993186
125 => 0.054798669124552
126 => 0.054766661150678
127 => 0.056879243810503
128 => 0.055633527624021
129 => 0.054068614501036
130 => 0.054040310159879
131 => 0.054850800841263
201 => 0.056549366962185
202 => 0.056989780444208
203 => 0.057235911498346
204 => 0.056858953221049
205 => 0.055506817581906
206 => 0.054922972268408
207 => 0.055420425391136
208 => 0.054812082968673
209 => 0.05586225266058
210 => 0.05730435995171
211 => 0.057006570498802
212 => 0.058002035992784
213 => 0.059032238053031
214 => 0.060505473268454
215 => 0.060890631507507
216 => 0.061527283430407
217 => 0.062182607388333
218 => 0.062393079782143
219 => 0.062794936887674
220 => 0.062792818902366
221 => 0.064003842337988
222 => 0.065339638689752
223 => 0.065843870888787
224 => 0.067003325026941
225 => 0.065017800447471
226 => 0.066523843649062
227 => 0.067882332315603
228 => 0.066262686123439
301 => 0.068494991070174
302 => 0.068581666412744
303 => 0.069890361179843
304 => 0.068563748317807
305 => 0.067776009835028
306 => 0.070050181318635
307 => 0.071150581263822
308 => 0.07081913184498
309 => 0.068296785401915
310 => 0.066828671583524
311 => 0.062986334542787
312 => 0.067537748744147
313 => 0.069754609835058
314 => 0.068291044267244
315 => 0.069029181609124
316 => 0.073056219604586
317 => 0.074589454941857
318 => 0.074270552709829
319 => 0.074324441937464
320 => 0.075151747895266
321 => 0.07882047811787
322 => 0.076622089927985
323 => 0.078302675327118
324 => 0.079194051763017
325 => 0.080022011873628
326 => 0.077988803521447
327 => 0.075343629329022
328 => 0.074505791625422
329 => 0.06814552151525
330 => 0.067814441834762
331 => 0.067628596777364
401 => 0.06645686997877
402 => 0.065536213678057
403 => 0.064804073605953
404 => 0.06288271942122
405 => 0.063531120056624
406 => 0.060468882503944
407 => 0.062427993571113
408 => 0.057540588496724
409 => 0.061610964672701
410 => 0.059395643977412
411 => 0.06088317224344
412 => 0.060877982397453
413 => 0.058138971238429
414 => 0.056559166763609
415 => 0.057565879661875
416 => 0.058645155801784
417 => 0.058820264724364
418 => 0.060219574411747
419 => 0.060610091667434
420 => 0.059426806151194
421 => 0.057439307889853
422 => 0.057900958405953
423 => 0.056549811430635
424 => 0.054181978327508
425 => 0.055882597400574
426 => 0.056463263523061
427 => 0.05671971876257
428 => 0.054391226853114
429 => 0.053659564141144
430 => 0.053270033052536
501 => 0.057138728824291
502 => 0.057350664711755
503 => 0.056266370746776
504 => 0.061167482285453
505 => 0.06005820979847
506 => 0.061297538944787
507 => 0.057859068460409
508 => 0.057990422663427
509 => 0.056362595632188
510 => 0.05727406999824
511 => 0.056629869294505
512 => 0.057200431876828
513 => 0.057542424736155
514 => 0.059169984656996
515 => 0.061629548792612
516 => 0.058926881479163
517 => 0.057749290627784
518 => 0.058479861368957
519 => 0.060425467526187
520 => 0.063373160448137
521 => 0.061628066910494
522 => 0.06240250978889
523 => 0.062571691105254
524 => 0.06128492373747
525 => 0.063420605396413
526 => 0.064565134547687
527 => 0.065739184629958
528 => 0.066758579420256
529 => 0.065270243209184
530 => 0.066862976299647
531 => 0.065579514583972
601 => 0.064428116743179
602 => 0.064429862938427
603 => 0.063707574253659
604 => 0.06230804891269
605 => 0.062049954967244
606 => 0.063392592265125
607 => 0.0644692602298
608 => 0.064557939760263
609 => 0.065154038466704
610 => 0.065506803540871
611 => 0.068964380828573
612 => 0.070355047016266
613 => 0.072055527306614
614 => 0.072717960213522
615 => 0.074711645767974
616 => 0.07310158276353
617 => 0.072753235504747
618 => 0.06791720647922
619 => 0.068709105961231
620 => 0.069977013438865
621 => 0.067938113806527
622 => 0.069231326333242
623 => 0.069486633880002
624 => 0.067868832777215
625 => 0.068732970247272
626 => 0.066438077325703
627 => 0.061679571187083
628 => 0.063425902974036
629 => 0.064711790978157
630 => 0.062876670247429
701 => 0.06616605312828
702 => 0.064244463555932
703 => 0.063635411914064
704 => 0.06125928431655
705 => 0.062380725077038
706 => 0.063897489763083
707 => 0.062960305529928
708 => 0.064905103532645
709 => 0.067659456163175
710 => 0.069622371872225
711 => 0.069773060166745
712 => 0.068511036870964
713 => 0.070533437256578
714 => 0.070548168235482
715 => 0.068266892338762
716 => 0.066869623554218
717 => 0.066552161146491
718 => 0.067345244483165
719 => 0.068308194065147
720 => 0.069826497166757
721 => 0.070743975932415
722 => 0.073136273960115
723 => 0.073783561213851
724 => 0.074494733660473
725 => 0.075445079366621
726 => 0.07658621305049
727 => 0.074089477514963
728 => 0.074188677472286
729 => 0.07186375191126
730 => 0.069379235521251
731 => 0.071264673761928
801 => 0.073729633452274
802 => 0.07316416897577
803 => 0.073100542670772
804 => 0.073207544467313
805 => 0.072781202718372
806 => 0.070852874788877
807 => 0.069884480574656
808 => 0.071133956174714
809 => 0.071797996848383
810 => 0.072827866022813
811 => 0.072700912909163
812 => 0.075353745302618
813 => 0.076384555753227
814 => 0.076120830329095
815 => 0.076169362154042
816 => 0.078035595236946
817 => 0.08011123024524
818 => 0.082055336334671
819 => 0.08403296455014
820 => 0.081648856548249
821 => 0.080438353536229
822 => 0.081687283654327
823 => 0.0810245837537
824 => 0.084832653952262
825 => 0.085096316470558
826 => 0.0889041113023
827 => 0.092518162021398
828 => 0.090248241517177
829 => 0.092388674313193
830 => 0.09470372689413
831 => 0.099169838926503
901 => 0.097665809513715
902 => 0.096513746554666
903 => 0.095425052625092
904 => 0.097690451867241
905 => 0.10060485180163
906 => 0.10123258563372
907 => 0.10224975425449
908 => 0.10118032582321
909 => 0.10246833457501
910 => 0.10701557144857
911 => 0.10578686790576
912 => 0.10404191135103
913 => 0.10763151814143
914 => 0.10893058288464
915 => 0.11804809957794
916 => 0.12955934102905
917 => 0.1247936114814
918 => 0.12183536936205
919 => 0.12253062643054
920 => 0.12673414212837
921 => 0.1280841779576
922 => 0.12441431518851
923 => 0.12571057275991
924 => 0.13285307942357
925 => 0.13668480508957
926 => 0.13148080696572
927 => 0.11712318253558
928 => 0.10388479710526
929 => 0.10739621305365
930 => 0.10699812745702
1001 => 0.11467185982127
1002 => 0.10575756373263
1003 => 0.10590765761677
1004 => 0.11374007463969
1005 => 0.1116505200596
1006 => 0.10826570924978
1007 => 0.10390950997002
1008 => 0.095856672701733
1009 => 0.088724050163228
1010 => 0.10271276550611
1011 => 0.10210954666369
1012 => 0.10123599638786
1013 => 0.10317998799872
1014 => 0.11261945944944
1015 => 0.11240184907991
1016 => 0.11101752293477
1017 => 0.11206752211497
1018 => 0.10808163931682
1019 => 0.10910889207077
1020 => 0.10388270007737
1021 => 0.10624515712344
1022 => 0.10825844696598
1023 => 0.10866264470913
1024 => 0.10957332286331
1025 => 0.10179167774422
1026 => 0.10528540794559
1027 => 0.10733764712065
1028 => 0.098065555866639
1029 => 0.1071543676886
1030 => 0.10165621661529
1031 => 0.099790061561552
1101 => 0.10230259349418
1102 => 0.10132345735652
1103 => 0.10048165360216
1104 => 0.1000119126432
1105 => 0.10185683879649
1106 => 0.10177077078628
1107 => 0.098752113514758
1108 => 0.094814398160271
1109 => 0.096136024684337
1110 => 0.095655865377829
1111 => 0.093915706109261
1112 => 0.095088363348644
1113 => 0.089924574334646
1114 => 0.081040543726459
1115 => 0.086909606471444
1116 => 0.086683653940074
1117 => 0.086569718427626
1118 => 0.090980156871502
1119 => 0.090556194981251
1120 => 0.089786699998998
1121 => 0.093901573730466
1122 => 0.092399589465618
1123 => 0.09702835105788
1124 => 0.10007715281207
1125 => 0.099303878068805
1126 => 0.10217129085476
1127 => 0.096166472290141
1128 => 0.098161032145803
1129 => 0.098572108167714
1130 => 0.093850796827355
1201 => 0.090625560389721
1202 => 0.090410473889718
1203 => 0.08481835837182
1204 => 0.087805621343502
1205 => 0.090434289137241
1206 => 0.089175361256901
1207 => 0.088776822299386
1208 => 0.090812871400776
1209 => 0.090971089853536
1210 => 0.087363692363384
1211 => 0.088113784533008
1212 => 0.091241793572787
1213 => 0.08803496673085
1214 => 0.081804626009155
1215 => 0.080259415368975
1216 => 0.080053255785693
1217 => 0.075862521977323
1218 => 0.080362673732664
1219 => 0.078398236894889
1220 => 0.084603869327854
1221 => 0.081059245363619
1222 => 0.08090644370907
1223 => 0.080675461597092
1224 => 0.077068323891195
1225 => 0.077858057803226
1226 => 0.080483253606689
1227 => 0.081419953044312
1228 => 0.081322247618815
1229 => 0.080470388715081
1230 => 0.080860365358987
1231 => 0.079604114712096
]
'min_raw' => 0.043954812611647
'max_raw' => 0.13668480508957
'avg_raw' => 0.09031980885061
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.043954'
'max' => '$0.136684'
'avg' => '$0.090319'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.025039609877331
'max_diff' => 0.085369682784208
'year' => 2033
]
8 => [
'items' => [
101 => 0.079160506462083
102 => 0.077760356800978
103 => 0.07570252360037
104 => 0.075988677928339
105 => 0.071911571896589
106 => 0.069690148142096
107 => 0.069075287324747
108 => 0.068253069742986
109 => 0.069168158988445
110 => 0.071900021967462
111 => 0.068604815617705
112 => 0.062955415462895
113 => 0.063294954038309
114 => 0.064057796407355
115 => 0.062636244699345
116 => 0.061290865309504
117 => 0.06246056353489
118 => 0.060066838214571
119 => 0.064347066676158
120 => 0.064231298491474
121 => 0.065826702974401
122 => 0.06682434213857
123 => 0.064525106854674
124 => 0.063946855398567
125 => 0.064276253708029
126 => 0.058832033396427
127 => 0.065381794025998
128 => 0.065438436627907
129 => 0.064953428281639
130 => 0.068440973615713
131 => 0.075800782063277
201 => 0.073031726077695
202 => 0.071959463904917
203 => 0.069921092730647
204 => 0.072637101293857
205 => 0.072428554212536
206 => 0.071485425221672
207 => 0.070915017865256
208 => 0.071966010909097
209 => 0.070784788196299
210 => 0.070572608139251
211 => 0.069287027847719
212 => 0.068828134173819
213 => 0.068488387566746
214 => 0.068114359935172
215 => 0.068939371688547
216 => 0.067069786516064
217 => 0.064815250075745
218 => 0.064627809765155
219 => 0.065145348942615
220 => 0.064916376382849
221 => 0.064626713532631
222 => 0.06407366826658
223 => 0.063909591550086
224 => 0.064442761279987
225 => 0.063840843740655
226 => 0.064729005858084
227 => 0.064487474906395
228 => 0.063138302644216
301 => 0.061456734477993
302 => 0.061441764994105
303 => 0.061079473891017
304 => 0.060618041700402
305 => 0.060489681821112
306 => 0.062362054812902
307 => 0.0662378108705
308 => 0.065476907217411
309 => 0.066026738087311
310 => 0.068731361779602
311 => 0.06959108032051
312 => 0.068980872463723
313 => 0.068145582313373
314 => 0.068182330840819
315 => 0.071036770144092
316 => 0.07121479802211
317 => 0.071664617035893
318 => 0.072242761587442
319 => 0.06907933298082
320 => 0.068033333637929
321 => 0.067537681119433
322 => 0.066011263204131
323 => 0.067657374060603
324 => 0.066698255758032
325 => 0.066827673585195
326 => 0.066743390055476
327 => 0.06678941456193
328 => 0.064345870265071
329 => 0.065236169377939
330 => 0.063755874426444
331 => 0.061773925657297
401 => 0.061767281470062
402 => 0.062252360623486
403 => 0.06196381656188
404 => 0.061187351911246
405 => 0.061297645050059
406 => 0.060331361098164
407 => 0.061414969416954
408 => 0.0614460434262
409 => 0.061028795198922
410 => 0.062698243323151
411 => 0.063382217581788
412 => 0.06310757586027
413 => 0.063362947986467
414 => 0.065508526199471
415 => 0.065858349066331
416 => 0.066013717275789
417 => 0.065805544457459
418 => 0.063402165217508
419 => 0.063508765306757
420 => 0.062726604582115
421 => 0.062065761191859
422 => 0.062092191461802
423 => 0.062431950868021
424 => 0.063915700121605
425 => 0.067038162953977
426 => 0.067156658135975
427 => 0.067300277753305
428 => 0.066716104592188
429 => 0.066539912377011
430 => 0.066772355387899
501 => 0.067944988256442
502 => 0.070961318361051
503 => 0.069895145848168
504 => 0.06902833099923
505 => 0.069788761313354
506 => 0.069671699026945
507 => 0.068683575522327
508 => 0.0686558421866
509 => 0.066759317259044
510 => 0.06605821517511
511 => 0.065472321797193
512 => 0.064832541523642
513 => 0.064453258331852
514 => 0.06503600969557
515 => 0.065169291827363
516 => 0.063895095785844
517 => 0.063721427573701
518 => 0.064761963566638
519 => 0.064304062471238
520 => 0.064775025103257
521 => 0.064884292473728
522 => 0.064866697910442
523 => 0.064388596577239
524 => 0.064693324109835
525 => 0.063972552651595
526 => 0.063188821947131
527 => 0.062688850585831
528 => 0.06225255926152
529 => 0.062494639045648
530 => 0.061631668817252
531 => 0.061355587273029
601 => 0.064590089278378
602 => 0.066979450686486
603 => 0.066944708425321
604 => 0.066733223845464
605 => 0.066419000657877
606 => 0.067922000873094
607 => 0.06739838565155
608 => 0.067779359474739
609 => 0.067876333302162
610 => 0.068169843871122
611 => 0.068274748671439
612 => 0.067957653503812
613 => 0.066893443391341
614 => 0.064241532973126
615 => 0.063007061514751
616 => 0.062599665371739
617 => 0.062614473447782
618 => 0.062206000604352
619 => 0.062326314163211
620 => 0.062164160458545
621 => 0.0618570805711
622 => 0.062475677727927
623 => 0.06254696528762
624 => 0.062402577319531
625 => 0.062436585912937
626 => 0.061241115206067
627 => 0.061332004247485
628 => 0.060825922515252
629 => 0.060731038291365
630 => 0.059451707741857
701 => 0.057185188231476
702 => 0.0584410600566
703 => 0.056924143494152
704 => 0.056349664206917
705 => 0.05906915980283
706 => 0.058796197872067
707 => 0.058329005700299
708 => 0.057637931106875
709 => 0.057381604817832
710 => 0.055824247428651
711 => 0.05573223044592
712 => 0.056504098820185
713 => 0.05614790812383
714 => 0.055647681486184
715 => 0.053835911311788
716 => 0.051798881779278
717 => 0.051860366896553
718 => 0.052508308090563
719 => 0.054392284498921
720 => 0.053656182323053
721 => 0.053122131748661
722 => 0.053022120129579
723 => 0.0542739749309
724 => 0.056045611746458
725 => 0.056876824102179
726 => 0.056053117901954
727 => 0.055106888570628
728 => 0.055164481165621
729 => 0.055547618898175
730 => 0.05558788125659
731 => 0.054971983235844
801 => 0.05514535492104
802 => 0.054881987477787
803 => 0.053265701964681
804 => 0.053236468485045
805 => 0.052839805954004
806 => 0.052827795170208
807 => 0.052152973252802
808 => 0.052058561001733
809 => 0.05071866112596
810 => 0.051600587281784
811 => 0.051009037519659
812 => 0.050117432495653
813 => 0.049963719453449
814 => 0.049959098653786
815 => 0.050874577654204
816 => 0.051589889376646
817 => 0.051019327781035
818 => 0.050889421965587
819 => 0.052276476213252
820 => 0.052099960916957
821 => 0.051947099808766
822 => 0.055886981101108
823 => 0.052768257625448
824 => 0.051408316179548
825 => 0.049725130394371
826 => 0.050273184173384
827 => 0.050388667157207
828 => 0.046340908760897
829 => 0.044698733683631
830 => 0.044135201081175
831 => 0.04381088010128
901 => 0.043958677244385
902 => 0.04248052706692
903 => 0.043473868432524
904 => 0.042193915323763
905 => 0.041979327019751
906 => 0.044268041733979
907 => 0.044586503015987
908 => 0.043227848248778
909 => 0.044100324555553
910 => 0.043783952518389
911 => 0.042215856446124
912 => 0.042155966710298
913 => 0.041369151222478
914 => 0.04013793734154
915 => 0.039575239560072
916 => 0.039282181669918
917 => 0.03940310306698
918 => 0.03934196150837
919 => 0.038942971480693
920 => 0.039364831149715
921 => 0.038287154019813
922 => 0.037858014303252
923 => 0.037664181849247
924 => 0.036707681367678
925 => 0.038229898991549
926 => 0.038529795039844
927 => 0.038830281975996
928 => 0.041445815604061
929 => 0.041315150935424
930 => 0.042496295903626
1001 => 0.042450398782148
1002 => 0.042113517103937
1003 => 0.040692268717911
1004 => 0.041258752993264
1005 => 0.039515202444928
1006 => 0.040821589065654
1007 => 0.040225408767965
1008 => 0.040620019907302
1009 => 0.039910473498121
1010 => 0.040303165777415
1011 => 0.038600911518304
1012 => 0.037011370442511
1013 => 0.037651048173007
1014 => 0.038346451022078
1015 => 0.039854261584214
1016 => 0.038956222052573
1017 => 0.039279191026786
1018 => 0.038197299027527
1019 => 0.035965046805884
1020 => 0.035977681111037
1021 => 0.035634297738995
1022 => 0.035337564370758
1023 => 0.039059372695663
1024 => 0.038596506997379
1025 => 0.037858991085527
1026 => 0.038846185441258
1027 => 0.039107215297794
1028 => 0.039114646450845
1029 => 0.039834877969612
1030 => 0.040219265660287
1031 => 0.0402870156568
1101 => 0.041420315513212
1102 => 0.041800182676494
1103 => 0.043364801761243
1104 => 0.0401866530503
1105 => 0.040121201169037
1106 => 0.038860077290326
1107 => 0.038060252588867
1108 => 0.038914841971915
1109 => 0.03967189150221
1110 => 0.038883600929499
1111 => 0.038986535036573
1112 => 0.037928319348415
1113 => 0.038306581663256
1114 => 0.038632392126233
1115 => 0.038452498738831
1116 => 0.038183189630951
1117 => 0.039609822074005
1118 => 0.03952932588055
1119 => 0.04085783880966
1120 => 0.041893509640773
1121 => 0.043749616918432
1122 => 0.041812672213134
1123 => 0.041742082249415
1124 => 0.042432110467754
1125 => 0.041800077036769
1126 => 0.042199500348099
1127 => 0.043685263647916
1128 => 0.043716655485206
1129 => 0.043190801764501
1130 => 0.043158803517806
1201 => 0.043259799477077
1202 => 0.043851335965078
1203 => 0.04364463494009
1204 => 0.043883834599235
1205 => 0.044182957435752
1206 => 0.045420256313038
1207 => 0.045718564883496
1208 => 0.044993829712544
1209 => 0.045059265183965
1210 => 0.044788194335604
1211 => 0.044526343292594
1212 => 0.045114946197006
1213 => 0.046190629573837
1214 => 0.046183937803377
1215 => 0.046433475438505
1216 => 0.046588935317909
1217 => 0.045921587711923
1218 => 0.045487168959478
1219 => 0.045653752751948
1220 => 0.045920123863832
1221 => 0.045567372190425
1222 => 0.043390025451681
1223 => 0.044050493362768
1224 => 0.043940559207132
1225 => 0.043783999601057
1226 => 0.044448105192901
1227 => 0.044384050588472
1228 => 0.042465366500366
1229 => 0.042588194430532
1230 => 0.042472836073618
1231 => 0.042845582524904
]
'min_raw' => 0.035337564370758
'max_raw' => 0.079160506462083
'avg_raw' => 0.05724903541642
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.035337'
'max' => '$0.07916'
'avg' => '$0.057249'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0086172482408886
'max_diff' => -0.057524298627491
'year' => 2034
]
9 => [
'items' => [
101 => 0.041779947505151
102 => 0.042107729660065
103 => 0.042313311554861
104 => 0.04243440087025
105 => 0.042871858509157
106 => 0.042820527904348
107 => 0.04286866772669
108 => 0.043517301920654
109 => 0.046797871089346
110 => 0.04697642523103
111 => 0.046097159334269
112 => 0.046448408717272
113 => 0.045774086711702
114 => 0.046226763591606
115 => 0.04653647361609
116 => 0.045136953569258
117 => 0.045054083074895
118 => 0.044376977902538
119 => 0.044740815868965
120 => 0.044161923503504
121 => 0.044303963441193
122 => 0.043906807392595
123 => 0.04462160920709
124 => 0.045420868704668
125 => 0.04562279321747
126 => 0.045091616758256
127 => 0.044707009995551
128 => 0.044031767217584
129 => 0.04515471100611
130 => 0.045483093990966
131 => 0.045152986150087
201 => 0.045076492950357
202 => 0.044931538475087
203 => 0.045107245727529
204 => 0.045481305546707
205 => 0.045304905843783
206 => 0.045421420955327
207 => 0.044977385499982
208 => 0.045921808631749
209 => 0.047421779852798
210 => 0.047426602505544
211 => 0.04725020185176
212 => 0.047178022504836
213 => 0.047359020280506
214 => 0.047457204148889
215 => 0.048042517766088
216 => 0.048670582597266
217 => 0.051601487118219
218 => 0.050778500856939
219 => 0.053378973708219
220 => 0.055435610104443
221 => 0.05605230543386
222 => 0.055484974748554
223 => 0.053544167120721
224 => 0.053448941839388
225 => 0.056349327823215
226 => 0.05552983593669
227 => 0.055432359984389
228 => 0.054395380540132
301 => 0.05500836382409
302 => 0.054874295387966
303 => 0.054662661802692
304 => 0.0558321912077
305 => 0.058021445849265
306 => 0.057680229982677
307 => 0.057425528166818
308 => 0.056309498952306
309 => 0.056981597813592
310 => 0.056742276282294
311 => 0.057770553457946
312 => 0.057161424838218
313 => 0.055523627479657
314 => 0.055784452107258
315 => 0.055745028989503
316 => 0.056556353959362
317 => 0.056312814341734
318 => 0.05569747397049
319 => 0.058013963214903
320 => 0.057863543288361
321 => 0.058076804353415
322 => 0.058170688469569
323 => 0.059580694651524
324 => 0.060158329069106
325 => 0.060289462194811
326 => 0.060838170215664
327 => 0.06027580983939
328 => 0.062525652300638
329 => 0.064021666255421
330 => 0.065759363448076
331 => 0.068298606095517
401 => 0.069253384820263
402 => 0.069080912589531
403 => 0.071006137384845
404 => 0.074465723546682
405 => 0.069780193866192
406 => 0.074714067997103
407 => 0.073152060411573
408 => 0.069448568525597
409 => 0.069210107309441
410 => 0.071718155013049
411 => 0.077280763429006
412 => 0.075887393111391
413 => 0.077283042483684
414 => 0.075654943356623
415 => 0.075574094512267
416 => 0.077203969343068
417 => 0.081012260725085
418 => 0.079203084241156
419 => 0.076609186123171
420 => 0.078524480127967
421 => 0.076865275208921
422 => 0.073126622144094
423 => 0.075886327627369
424 => 0.07404099116259
425 => 0.074579558446494
426 => 0.078458181222376
427 => 0.077991495068419
428 => 0.078595430165614
429 => 0.077529500526799
430 => 0.076533754162469
501 => 0.074675119628353
502 => 0.074124869572376
503 => 0.074276938891925
504 => 0.074124794214373
505 => 0.073084905274268
506 => 0.072860341356661
507 => 0.072486058322279
508 => 0.072602064285157
509 => 0.071898302680154
510 => 0.073226446233362
511 => 0.073472961380398
512 => 0.074439473500442
513 => 0.074539819995026
514 => 0.07723154249191
515 => 0.075748986973186
516 => 0.076743613212831
517 => 0.076654644480172
518 => 0.069528834424735
519 => 0.07051070817882
520 => 0.072038195611218
521 => 0.071350064593383
522 => 0.070377208332024
523 => 0.069591574739724
524 => 0.06840125951223
525 => 0.070076605336949
526 => 0.072279506943287
527 => 0.074595689215104
528 => 0.077378430452418
529 => 0.076757355002928
530 => 0.074543667803307
531 => 0.074642972193983
601 => 0.075256832862301
602 => 0.074461827521706
603 => 0.074227364926416
604 => 0.075224621302126
605 => 0.075231488858704
606 => 0.074316739134744
607 => 0.073300162213995
608 => 0.073295902719578
609 => 0.073115012675499
610 => 0.075687123293615
611 => 0.077101524063864
612 => 0.077263682832752
613 => 0.077090609486704
614 => 0.077157218548562
615 => 0.076334209904549
616 => 0.078215363609132
617 => 0.079941696275276
618 => 0.079479002243031
619 => 0.078785358112864
620 => 0.078232837152758
621 => 0.079348845864199
622 => 0.079299151753039
623 => 0.079926618265457
624 => 0.079898152760032
625 => 0.079687159372115
626 => 0.07947900977827
627 => 0.080304299389702
628 => 0.080066629235355
629 => 0.079828589913612
630 => 0.07935116561186
701 => 0.079416055503646
702 => 0.078722531140918
703 => 0.078401675037204
704 => 0.073576769078786
705 => 0.072287396548346
706 => 0.07269305939402
707 => 0.072826614135847
708 => 0.072265477558224
709 => 0.073070003266376
710 => 0.072944618786964
711 => 0.073432416448889
712 => 0.073127661647431
713 => 0.073140168890785
714 => 0.074036387781299
715 => 0.074296563938003
716 => 0.074164236244824
717 => 0.074256914025199
718 => 0.076392634357081
719 => 0.076089003222379
720 => 0.075927705233662
721 => 0.075972385878867
722 => 0.076518108214023
723 => 0.076670880672532
724 => 0.076023573030699
725 => 0.076328847056628
726 => 0.077628665113992
727 => 0.078083527870739
728 => 0.079535231443766
729 => 0.078918521963971
730 => 0.080050518904695
731 => 0.083529891574288
801 => 0.086309455217034
802 => 0.083753253620839
803 => 0.088857568275447
804 => 0.092832009404509
805 => 0.092679463734198
806 => 0.091986427992866
807 => 0.087461632433413
808 => 0.083297848098704
809 => 0.08678103049831
810 => 0.086789909846569
811 => 0.086490701389362
812 => 0.084632343358933
813 => 0.086426034558127
814 => 0.08656841125179
815 => 0.086488718164357
816 => 0.085063919419579
817 => 0.082888515083126
818 => 0.083313583883286
819 => 0.084009855249118
820 => 0.082691668296175
821 => 0.082270427692946
822 => 0.083053594118653
823 => 0.085577119521486
824 => 0.085100061661868
825 => 0.085087603753211
826 => 0.087128659580674
827 => 0.085667704095627
828 => 0.083318945362115
829 => 0.082725852805582
830 => 0.080620773784907
831 => 0.082074759362522
901 => 0.082127085714979
902 => 0.081330752673493
903 => 0.08338356339959
904 => 0.083364646387359
905 => 0.085313484651234
906 => 0.089038931461537
907 => 0.087937133521627
908 => 0.086655862392786
909 => 0.086795172090286
910 => 0.088323055626227
911 => 0.087399262362208
912 => 0.087731464860865
913 => 0.088322552797958
914 => 0.088679170826294
915 => 0.086743860244048
916 => 0.08629264677072
917 => 0.085369622358701
918 => 0.085128822518672
919 => 0.085880606642725
920 => 0.085682538086962
921 => 0.082122687887673
922 => 0.081750663735028
923 => 0.081762073184661
924 => 0.08082660076405
925 => 0.079399780783513
926 => 0.083149378501371
927 => 0.082848233329041
928 => 0.082515792365573
929 => 0.082556514486716
930 => 0.084184087770381
1001 => 0.083240013071434
1002 => 0.085749990389384
1003 => 0.085234014509638
1004 => 0.084704805795532
1005 => 0.08463165303115
1006 => 0.084427952826185
1007 => 0.083729389029852
1008 => 0.082885831268604
1009 => 0.082328841366906
1010 => 0.075944004274882
1011 => 0.077128992900273
1012 => 0.078492214298673
1013 => 0.078962792862634
1014 => 0.078157835665933
1015 => 0.08376117364625
1016 => 0.084784957490362
1017 => 0.081683849446779
1018 => 0.081103758749231
1019 => 0.083799204295807
1020 => 0.082173521126405
1021 => 0.082905566158044
1022 => 0.081323285206863
1023 => 0.084538357942206
1024 => 0.084513864474682
1025 => 0.083263128564923
1026 => 0.084320241991182
1027 => 0.084136542519086
1028 => 0.082724464757394
1029 => 0.084583123325929
1030 => 0.08458404519739
1031 => 0.08338023907759
1101 => 0.081974457076709
1102 => 0.081723136458041
1103 => 0.081533800132048
1104 => 0.082859001028378
1105 => 0.084047172008232
1106 => 0.086258063629173
1107 => 0.086813934312167
1108 => 0.088983534594299
1109 => 0.08769164326221
1110 => 0.088264321956932
1111 => 0.088886045690399
1112 => 0.089184122911357
1113 => 0.088698422075512
1114 => 0.092068704356767
1115 => 0.092353259444086
1116 => 0.092448668303472
1117 => 0.091312228080912
1118 => 0.092321652985691
1119 => 0.091849376501384
1120 => 0.093078108711365
1121 => 0.09327078961113
1122 => 0.093107595743851
1123 => 0.093168755702697
1124 => 0.090292814334182
1125 => 0.090143681602425
1126 => 0.088110246222945
1127 => 0.088938886170479
1128 => 0.087389783506311
1129 => 0.087881019918644
1130 => 0.088097552248528
1201 => 0.087984448047498
1202 => 0.088985736229831
1203 => 0.088134436725187
1204 => 0.085887717365835
1205 => 0.083640385889296
1206 => 0.083612172473244
1207 => 0.083020489764167
1208 => 0.082592811537597
1209 => 0.082675197536735
1210 => 0.08296553654347
1211 => 0.082575936506718
1212 => 0.082659077427783
1213 => 0.084039770682507
1214 => 0.084316658868089
1215 => 0.083375684626286
1216 => 0.079597537263512
1217 => 0.078670370423922
1218 => 0.079336799561702
1219 => 0.079018289357376
1220 => 0.063773926636029
1221 => 0.067355363534581
1222 => 0.065227395343566
1223 => 0.066208060989095
1224 => 0.064035956500761
1225 => 0.065072598612344
1226 => 0.064881168666443
1227 => 0.070640013216893
1228 => 0.070550096780269
1229 => 0.070593135020209
1230 => 0.068538807692346
1231 => 0.071811406906697
]
'min_raw' => 0.041779947505151
'max_raw' => 0.09327078961113
'avg_raw' => 0.06752536855814
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.041779'
'max' => '$0.09327'
'avg' => '$0.067525'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0064423831343925
'max_diff' => 0.014110283149047
'year' => 2035
]
10 => [
'items' => [
101 => 0.073423606958548
102 => 0.073125231636265
103 => 0.07320032627664
104 => 0.071909951554558
105 => 0.070605628668138
106 => 0.069158933853245
107 => 0.071846714002433
108 => 0.07154787873178
109 => 0.07223329932512
110 => 0.073976516878362
111 => 0.074233212284916
112 => 0.074578213514473
113 => 0.074454555132536
114 => 0.077400599475842
115 => 0.077043814067241
116 => 0.077903564247802
117 => 0.076134992896986
118 => 0.074133686539204
119 => 0.074514069450184
120 => 0.074477435517011
121 => 0.07401104350124
122 => 0.073590005643198
123 => 0.07288909623624
124 => 0.075106877314931
125 => 0.07501683945328
126 => 0.076474447775846
127 => 0.07621680134638
128 => 0.074496175433635
129 => 0.07455762792472
130 => 0.074970925460323
131 => 0.076401352949997
201 => 0.076826001219862
202 => 0.076629287221953
203 => 0.07709489466393
204 => 0.077462891801724
205 => 0.077141109438654
206 => 0.081696869120787
207 => 0.079805000074308
208 => 0.080727083884022
209 => 0.080946995439405
210 => 0.080383696614533
211 => 0.080505855959429
212 => 0.080690894080518
213 => 0.08181440931759
214 => 0.084762838391423
215 => 0.086068677557588
216 => 0.089997359117964
217 => 0.085960245792996
218 => 0.085720700195528
219 => 0.086428374379369
220 => 0.088734926348488
221 => 0.090604170076049
222 => 0.091224306059738
223 => 0.091306267267312
224 => 0.092469683598574
225 => 0.093136532143224
226 => 0.092328414255072
227 => 0.091643618958333
228 => 0.089190767205334
229 => 0.089474691474638
301 => 0.091430648135986
302 => 0.094193552125412
303 => 0.096564411179506
304 => 0.095734218971542
305 => 0.10206799949394
306 => 0.10269596796156
307 => 0.10260920302399
308 => 0.10403980864747
309 => 0.10120034782263
310 => 0.099986423308046
311 => 0.091791679474244
312 => 0.094094068232286
313 => 0.097440725506649
314 => 0.096997782867066
315 => 0.094567350898018
316 => 0.096562567478915
317 => 0.095902886481079
318 => 0.095382568707897
319 => 0.09776624529541
320 => 0.095145294971402
321 => 0.097414579522245
322 => 0.094504198613046
323 => 0.095738011219618
324 => 0.095037639511327
325 => 0.095490865840919
326 => 0.092841313979056
327 => 0.094270947849482
328 => 0.092781836509847
329 => 0.092781130477184
330 => 0.092748258261827
331 => 0.094500191149178
401 => 0.094557321617738
402 => 0.093262640566962
403 => 0.093076056800826
404 => 0.093765954776741
405 => 0.092958264931511
406 => 0.093336177926555
407 => 0.092969711531145
408 => 0.092887212226575
409 => 0.092229843731661
410 => 0.091946631309329
411 => 0.09205768619761
412 => 0.091678598611187
413 => 0.091450184628169
414 => 0.092702820971509
415 => 0.092033587904468
416 => 0.092600251405831
417 => 0.091954466827393
418 => 0.089715896123578
419 => 0.088428470439359
420 => 0.084200017895466
421 => 0.085399201791535
422 => 0.086194261955274
423 => 0.085931494575901
424 => 0.086496020584271
425 => 0.086530677896295
426 => 0.086347144736312
427 => 0.086134636849107
428 => 0.086031199762038
429 => 0.086802135064631
430 => 0.087249688956276
501 => 0.086274056879238
502 => 0.086045479934132
503 => 0.08703189783014
504 => 0.08763361217687
505 => 0.092076332839038
506 => 0.091747201742586
507 => 0.092573256205965
508 => 0.092480255150228
509 => 0.093346091828645
510 => 0.094761368867975
511 => 0.091883714929333
512 => 0.092383176151295
513 => 0.092260719793914
514 => 0.093597666194019
515 => 0.093601839994747
516 => 0.092800273842459
517 => 0.09323481585754
518 => 0.092992266425758
519 => 0.09343058603151
520 => 0.091742805996131
521 => 0.093798339894626
522 => 0.094963695159393
523 => 0.094979876118375
524 => 0.095532245265044
525 => 0.096093484309123
526 => 0.097170733780613
527 => 0.096063440406041
528 => 0.094071527418023
529 => 0.094215337101918
530 => 0.093047479245856
531 => 0.093067111147407
601 => 0.092962314518347
602 => 0.093276817090878
603 => 0.091811821624788
604 => 0.092155653132488
605 => 0.091674287008233
606 => 0.09238212975535
607 => 0.09162060797005
608 => 0.092260660741751
609 => 0.092536886299931
610 => 0.093556164556328
611 => 0.09147005974283
612 => 0.087216350811229
613 => 0.088110531999888
614 => 0.086787967785446
615 => 0.086910376138849
616 => 0.08715766049387
617 => 0.086356130992842
618 => 0.086509037562541
619 => 0.086503574663884
620 => 0.086456498354558
621 => 0.086247989574803
622 => 0.085945610591953
623 => 0.087150195392285
624 => 0.087354877822736
625 => 0.087809861510842
626 => 0.08916358434826
627 => 0.089028315513819
628 => 0.089248944595043
629 => 0.088767312549512
630 => 0.086932717668087
701 => 0.087032344996651
702 => 0.085789990613043
703 => 0.08777809171606
704 => 0.087307283133213
705 => 0.087003749777061
706 => 0.086920927888618
707 => 0.088278006343111
708 => 0.088684065486294
709 => 0.088431036677877
710 => 0.087912067209786
711 => 0.088908642008071
712 => 0.089175283381977
713 => 0.089234974552239
714 => 0.091000714020536
715 => 0.089333659773598
716 => 0.08973493629993
717 => 0.092865581208937
718 => 0.090026518275935
719 => 0.091530433230204
720 => 0.091456824419189
721 => 0.092226176420086
722 => 0.091393715099413
723 => 0.091404034455178
724 => 0.092087166911556
725 => 0.091127830580161
726 => 0.090890285413331
727 => 0.090562118466685
728 => 0.091278658988938
729 => 0.091708192625689
730 => 0.095169918280206
731 => 0.097406350926892
801 => 0.097309261487528
802 => 0.098196477219502
803 => 0.097796778406283
804 => 0.09650604550318
805 => 0.098709169180668
806 => 0.098012008666501
807 => 0.098069481732239
808 => 0.098067342581862
809 => 0.098530893376953
810 => 0.098202425154824
811 => 0.097554980572437
812 => 0.097984784501199
813 => 0.099261148511906
814 => 0.10322302156477
815 => 0.10544013821299
816 => 0.10308954835865
817 => 0.10471095376452
818 => 0.10373868828682
819 => 0.10356199872713
820 => 0.10458036114293
821 => 0.10560050606733
822 => 0.10553552724586
823 => 0.10479495441576
824 => 0.10437662361538
825 => 0.10754436458696
826 => 0.10987830217377
827 => 0.10971914327726
828 => 0.11042161888519
829 => 0.1124841089968
830 => 0.11267267724464
831 => 0.1126489219796
901 => 0.11218153590227
902 => 0.11421232526534
903 => 0.11590644548035
904 => 0.11207334952945
905 => 0.11353294228864
906 => 0.11418820050338
907 => 0.11515031396898
908 => 0.11677356065437
909 => 0.11853683709963
910 => 0.11878618372234
911 => 0.11860926036119
912 => 0.11744633214613
913 => 0.1193757302728
914 => 0.12050592644544
915 => 0.12117893240218
916 => 0.12288556353093
917 => 0.11419224715504
918 => 0.10803868573833
919 => 0.1070777182646
920 => 0.1090318834106
921 => 0.10954718117543
922 => 0.10933946529255
923 => 0.10241307246071
924 => 0.10704125223979
925 => 0.11202078453368
926 => 0.11221206864887
927 => 0.1147049266323
928 => 0.1155167033774
929 => 0.11752378080042
930 => 0.11739823756115
1001 => 0.11788692897408
1002 => 0.1177745872812
1003 => 0.12149227556734
1004 => 0.125593437829
1005 => 0.12545142762078
1006 => 0.12486183702291
1007 => 0.12573747960088
1008 => 0.12997031856217
1009 => 0.12958062658048
1010 => 0.12995917914681
1011 => 0.13494993483452
1012 => 0.14143862715527
1013 => 0.13842397811823
1014 => 0.14496489908672
1015 => 0.14908206211707
1016 => 0.15620226985545
1017 => 0.15531078477885
1018 => 0.1580826294009
1019 => 0.15371484043317
1020 => 0.14368551408746
1021 => 0.14209833480254
1022 => 0.14527590792474
1023 => 0.15308766138263
1024 => 0.14502988800868
1025 => 0.14665996506776
1026 => 0.14619050276509
1027 => 0.14616548711406
1028 => 0.14712023276762
1029 => 0.14573532440095
1030 => 0.1400929585749
1031 => 0.14267882158231
1101 => 0.14168029569181
1102 => 0.14278823461236
1103 => 0.14876732401779
1104 => 0.14612382606796
1105 => 0.14333911571815
1106 => 0.1468317604735
1107 => 0.15127909745002
1108 => 0.15100079109467
1109 => 0.15046076044224
1110 => 0.15350488495488
1111 => 0.15853288680496
1112 => 0.1598919355009
1113 => 0.1608951574637
1114 => 0.1610334848228
1115 => 0.16245834259148
1116 => 0.15479652325891
1117 => 0.16695602730917
1118 => 0.16905563775913
1119 => 0.16866099801448
1120 => 0.17099462666449
1121 => 0.17030801391721
1122 => 0.16931321977264
1123 => 0.17301251755997
1124 => 0.16877157116474
1125 => 0.16275208167702
1126 => 0.15944967069205
1127 => 0.16379855187495
1128 => 0.16645426185831
1129 => 0.16820951722243
1130 => 0.16874065643506
1201 => 0.15539128848329
1202 => 0.14819671954718
1203 => 0.15280835574933
1204 => 0.15843487019408
1205 => 0.15476526768708
1206 => 0.15490910915788
1207 => 0.14967722033747
1208 => 0.15889777626322
1209 => 0.15755441882192
1210 => 0.16452375960375
1211 => 0.16286047049371
1212 => 0.16854369735304
1213 => 0.1670471132553
1214 => 0.17325935017211
1215 => 0.17573757966782
1216 => 0.17989891269674
1217 => 0.18296000621249
1218 => 0.18475753887433
1219 => 0.18464962175569
1220 => 0.1917723416891
1221 => 0.18757232259325
1222 => 0.18229610874036
1223 => 0.182200678678
1224 => 0.18493330459694
1225 => 0.19066013886373
1226 => 0.19214502366705
1227 => 0.1929748717004
1228 => 0.19170393055011
1229 => 0.18714511083964
1230 => 0.18517663560241
1231 => 0.18685383353675
]
'min_raw' => 0.069158933853245
'max_raw' => 0.1929748717004
'avg_raw' => 0.13106690277682
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.069158'
'max' => '$0.192974'
'avg' => '$0.131066'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.027378986348095
'max_diff' => 0.099704082089274
'year' => 2036
]
11 => [
'items' => [
101 => 0.18480276458631
102 => 0.18834348502308
103 => 0.19320565043984
104 => 0.19220163250836
105 => 0.1955579139225
106 => 0.19903131209504
107 => 0.20399842748183
108 => 0.20529701537569
109 => 0.20744353178337
110 => 0.20965300226077
111 => 0.21036262463122
112 => 0.21171751391928
113 => 0.21171037298394
114 => 0.2157934230481
115 => 0.22029715371039
116 => 0.22199720777381
117 => 0.2259063883511
118 => 0.21921205360651
119 => 0.22428978340926
120 => 0.22887002279515
121 => 0.22340927257818
122 => 0.23093564456065
123 => 0.23122787652961
124 => 0.23564023230703
125 => 0.23116746442153
126 => 0.22851154912869
127 => 0.23617907706326
128 => 0.23988915230592
129 => 0.23877164744924
130 => 0.23026738031184
131 => 0.2253175320727
201 => 0.21236282447645
202 => 0.22770823522593
203 => 0.23518253717023
204 => 0.23024802367547
205 => 0.23273670525872
206 => 0.24631414501923
207 => 0.25148355500591
208 => 0.25040835386559
209 => 0.25059004515898
210 => 0.25337936495637
211 => 0.26574874504445
212 => 0.25833672577568
213 => 0.26400293678359
214 => 0.26700827467114
215 => 0.26979979999039
216 => 0.26294469607694
217 => 0.25402630660701
218 => 0.25120147829337
219 => 0.22975738355704
220 => 0.22864112529903
221 => 0.22801453571273
222 => 0.22406397700391
223 => 0.22095992000789
224 => 0.21849145863841
225 => 0.21201347885991
226 => 0.21419960687206
227 => 0.2038750591646
228 => 0.21048033890833
301 => 0.1940021114723
302 => 0.2077256689342
303 => 0.20025656054128
304 => 0.2052718659461
305 => 0.20525436801801
306 => 0.19601960066371
307 => 0.19069317957843
308 => 0.19408738240138
309 => 0.19772623725974
310 => 0.19831662921793
311 => 0.20303449952563
312 => 0.20435115571822
313 => 0.20036162598586
314 => 0.19366063683505
315 => 0.19521712378149
316 => 0.19066163742014
317 => 0.18267832279612
318 => 0.18841207873439
319 => 0.19036983510717
320 => 0.19123449185231
321 => 0.18338381880946
322 => 0.180916966893
323 => 0.17960363563156
324 => 0.19264721352975
325 => 0.19336177017122
326 => 0.18970599736531
327 => 0.20623043710264
328 => 0.20249044746585
329 => 0.20666893220985
330 => 0.19507588890543
331 => 0.19551875877176
401 => 0.19003042628468
402 => 0.19310352574694
403 => 0.19093155809764
404 => 0.19285524967935
405 => 0.19400830248175
406 => 0.19949573438747
407 => 0.20778832659198
408 => 0.19867609505048
409 => 0.19470576527829
410 => 0.19716893553898
411 => 0.20372868253596
412 => 0.21366703502366
413 => 0.20778333032296
414 => 0.21039441855735
415 => 0.21096482517733
416 => 0.20662639915762
417 => 0.21382699897927
418 => 0.21768585892127
419 => 0.2216442507432
420 => 0.22508121145057
421 => 0.22006318200262
422 => 0.22543319281819
423 => 0.22110591203536
424 => 0.21722389382709
425 => 0.21722978124629
426 => 0.21479453451701
427 => 0.21007593711819
428 => 0.20920575536157
429 => 0.21373255075132
430 => 0.21736261196478
501 => 0.21766160119314
502 => 0.21967138960019
503 => 0.22086076167702
504 => 0.23251822490284
505 => 0.23720695304786
506 => 0.24294024107051
507 => 0.24517367986574
508 => 0.25189552990726
509 => 0.24646709007676
510 => 0.24529261297295
511 => 0.22898760347262
512 => 0.23165754786488
513 => 0.23593238644819
514 => 0.22905809398634
515 => 0.23341825030937
516 => 0.23427903752828
517 => 0.22882450815897
518 => 0.23173800797142
519 => 0.22400061626204
520 => 0.20795698058739
521 => 0.2138448601321
522 => 0.21818032131582
523 => 0.21199308364814
524 => 0.2230834676883
525 => 0.21660469428403
526 => 0.21455123415085
527 => 0.2065399540599
528 => 0.21032096988038
529 => 0.21543484791651
530 => 0.21227506584231
531 => 0.21883208808993
601 => 0.22811858028652
602 => 0.23473668764598
603 => 0.23524474375168
604 => 0.2309897440983
605 => 0.23780840819788
606 => 0.23785807472174
607 => 0.23016659376235
608 => 0.22545560450107
609 => 0.2243852578289
610 => 0.22705919366981
611 => 0.23030584541645
612 => 0.23542491032807
613 => 0.23851825404281
614 => 0.24658405386811
615 => 0.24876642803624
616 => 0.2511641955925
617 => 0.2543683524918
618 => 0.25821576437837
619 => 0.24979784620383
620 => 0.25013230578587
621 => 0.24229365693575
622 => 0.23391693646344
623 => 0.24027382312897
624 => 0.24858460682296
625 => 0.24667810386096
626 => 0.24646358333142
627 => 0.24682434735908
628 => 0.2453869063863
629 => 0.23888541414045
630 => 0.23562040543607
701 => 0.23983309965727
702 => 0.24207195915039
703 => 0.24554423497514
704 => 0.24511620368889
705 => 0.25406041331827
706 => 0.25753586272138
707 => 0.2566466940412
708 => 0.2568103224774
709 => 0.26310245761264
710 => 0.27010060595931
711 => 0.27665529537298
712 => 0.28332300697502
713 => 0.27528482039355
714 => 0.2712035249739
715 => 0.27541438006458
716 => 0.27318004108139
717 => 0.28601921562681
718 => 0.28690817221557
719 => 0.29974641834254
720 => 0.31193144266694
721 => 0.30427824720617
722 => 0.31149486581818
723 => 0.31930022722662
724 => 0.33435803575775
725 => 0.32928709558456
726 => 0.32540283488366
727 => 0.32173222728992
728 => 0.32937017899995
729 => 0.33919628185564
730 => 0.34131273029752
731 => 0.34474218531888
801 => 0.34113653269772
802 => 0.3454791441303
803 => 0.36081047072746
804 => 0.35666781094754
805 => 0.35078456809427
806 => 0.36288717800647
807 => 0.36726706548599
808 => 0.39800740958213
809 => 0.43681836382378
810 => 0.42075037392127
811 => 0.41077645407799
812 => 0.4131205618257
813 => 0.42729300848104
814 => 0.43184474853577
815 => 0.41947154998814
816 => 0.42384197289194
817 => 0.44792343278236
818 => 0.46084236338784
819 => 0.44329672038174
820 => 0.39488898719819
821 => 0.35025484644529
822 => 0.36209383047451
823 => 0.36075165709205
824 => 0.386624181521
825 => 0.35656900988186
826 => 0.35707506189148
827 => 0.38348260272615
828 => 0.37643752357132
829 => 0.36502539760607
830 => 0.35033816759425
831 => 0.32318746451306
901 => 0.29913932964069
902 => 0.34630326008012
903 => 0.34426946563753
904 => 0.34132422989321
905 => 0.3478785333344
906 => 0.37970437037335
907 => 0.37897068181942
908 => 0.37430332957051
909 => 0.37784347511515
910 => 0.36440479297574
911 => 0.36786824735617
912 => 0.35024777616935
913 => 0.35821296504167
914 => 0.36500091230919
915 => 0.36636369322042
916 => 0.36943410819875
917 => 0.34319774838262
918 => 0.35497710368101
919 => 0.36189637134248
920 => 0.33063486832284
921 => 0.36127843194117
922 => 0.34274103172885
923 => 0.33644915967438
924 => 0.34492033650462
925 => 0.34161911065538
926 => 0.3387809105247
927 => 0.33719714608531
928 => 0.34341744341977
929 => 0.34312725911425
930 => 0.3329496453674
1001 => 0.31967336312724
1002 => 0.32412931922614
1003 => 0.3225104286006
1004 => 0.31664336013258
1005 => 0.32059705588748
1006 => 0.30318698070255
1007 => 0.27323385124383
1008 => 0.29302180605343
1009 => 0.29225999131841
1010 => 0.29187584978347
1011 => 0.30674595092398
1012 => 0.30531653381092
1013 => 0.30272212775383
1014 => 0.31659571183079
1015 => 0.31153166701666
1016 => 0.32713785989478
1017 => 0.33741710786959
1018 => 0.33480995808434
1019 => 0.34447764048856
1020 => 0.3242319754549
1021 => 0.33095677326398
1022 => 0.33234274477227
1023 => 0.31642451395682
1024 => 0.30555040412852
1025 => 0.3048252249769
1026 => 0.28597101707926
1027 => 0.29604278275233
1028 => 0.30490551974665
1029 => 0.30066095650254
1030 => 0.29931725458218
1031 => 0.30618193627993
1101 => 0.30671538083986
1102 => 0.29455278834137
1103 => 0.29708177646102
1104 => 0.30762807732925
1105 => 0.29681603673816
1106 => 0.27581000800647
1107 => 0.27060022244994
1108 => 0.2699051410213
1109 => 0.25577578939869
1110 => 0.27094836523238
1111 => 0.26432512928122
1112 => 0.28524785229239
1113 => 0.27329690511922
1114 => 0.27278172367265
1115 => 0.27200295135545
1116 => 0.25984123473771
1117 => 0.26250387775958
1118 => 0.27135490869628
1119 => 0.27451305624849
1120 => 0.27418363558485
1121 => 0.27131153381602
1122 => 0.27262636729825
1123 => 0.26839083053364
1124 => 0.26689517434698
1125 => 0.26217447200924
1126 => 0.25523634370006
1127 => 0.25620113299547
1128 => 0.24245488535497
1129 => 0.23496520007184
1130 => 0.23289215389794
1201 => 0.23011998991563
1202 => 0.23320527719619
1203 => 0.24241594396253
1204 => 0.23130592569036
1205 => 0.2122585786399
1206 => 0.21340335665273
1207 => 0.21597533295992
1208 => 0.21118247212679
1209 => 0.20664643158256
1210 => 0.21059015081517
1211 => 0.20251953877315
1212 => 0.2169506278674
1213 => 0.21656030735006
1214 => 0.22193932495183
1215 => 0.22530293504677
1216 => 0.21755090275963
1217 => 0.21560128760314
1218 => 0.21671187700134
1219 => 0.19835630811746
1220 => 0.22043928336974
1221 => 0.22063025785673
1222 => 0.21899501835509
1223 => 0.23075352094156
1224 => 0.25556762896794
1225 => 0.24623156338323
1226 => 0.24261635660476
1227 => 0.23574384587618
1228 => 0.2449010583727
1229 => 0.24419792732774
1230 => 0.24101810208788
1231 => 0.23909493386115
]
'min_raw' => 0.17960363563156
'max_raw' => 0.46084236338784
'avg_raw' => 0.3202229995097
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.1796036'
'max' => '$0.460842'
'avg' => '$0.320222'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.11044470177832
'max_diff' => 0.26786749168744
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0056375528939972
]
1 => [
'year' => 2028
'avg' => 0.0096756773593981
]
2 => [
'year' => 2029
'avg' => 0.026432206674701
]
3 => [
'year' => 2030
'avg' => 0.020392408085509
]
4 => [
'year' => 2031
'avg' => 0.020027871943282
]
5 => [
'year' => 2032
'avg' => 0.03511516251984
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0056375528939972
'min' => '$0.005637'
'max_raw' => 0.03511516251984
'max' => '$0.035115'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.03511516251984
]
1 => [
'year' => 2033
'avg' => 0.09031980885061
]
2 => [
'year' => 2034
'avg' => 0.05724903541642
]
3 => [
'year' => 2035
'avg' => 0.06752536855814
]
4 => [
'year' => 2036
'avg' => 0.13106690277682
]
5 => [
'year' => 2037
'avg' => 0.3202229995097
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.03511516251984
'min' => '$0.035115'
'max_raw' => 0.3202229995097
'max' => '$0.320222'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.3202229995097
]
]
]
]
'prediction_2025_max_price' => '$0.009639'
'last_price' => 0.00934641
'sma_50day_nextmonth' => '$0.008976'
'sma_200day_nextmonth' => '$0.013082'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.0091071'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.009084'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.009213'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.009576'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.010916'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.011382'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.013472'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.009189'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.009165'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.009255'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.009615'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.01038'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.011378'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.01194'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.012434'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.01216'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.009418'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.009734'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.010481'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.011539'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.01176'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.006459'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.003229'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '41.69'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 40.82
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.0092032'
'vwma_10_action' => 'BUY'
'hma_9' => '0.009033'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 50.38
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -36.05
'cci_20_action' => 'NEUTRAL'
'adx_14' => 24.29
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.001037'
'ao_5_34_action' => 'SELL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -49.62
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 43.37
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.000542'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 16
'buy_signals' => 16
'sell_pct' => 50
'buy_pct' => 50
'overall_action' => 'neutral'
'overall_action_label' => 'Neutral'
'overall_action_dir' => 0
'last_updated' => 1767683033
'last_updated_date' => '6. Januar 2026'
]
Cowcoin Preisprognose für 2026
Die Preisprognose für Cowcoin im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.003229 am unteren Ende und $0.009639 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Cowcoin im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn COW das prognostizierte Preisziel erreicht.
Cowcoin Preisprognose 2027-2032
Die Preisprognose für COW für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.005637 am unteren Ende und $0.035115 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Cowcoin, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Cowcoin Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.0031086 | $0.005637 | $0.008166 |
| 2028 | $0.00561 | $0.009675 | $0.013741 |
| 2029 | $0.012324 | $0.026432 | $0.04054 |
| 2030 | $0.010481 | $0.020392 | $0.0303037 |
| 2031 | $0.012391 | $0.020027 | $0.027663 |
| 2032 | $0.018915 | $0.035115 | $0.051315 |
Cowcoin Preisprognose 2032-2037
Die Preisprognose für Cowcoin für die Jahre 2032-2037 wird derzeit zwischen $0.035115 am unteren Ende und $0.320222 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Cowcoin bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Cowcoin Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.018915 | $0.035115 | $0.051315 |
| 2033 | $0.043954 | $0.090319 | $0.136684 |
| 2034 | $0.035337 | $0.057249 | $0.07916 |
| 2035 | $0.041779 | $0.067525 | $0.09327 |
| 2036 | $0.069158 | $0.131066 | $0.192974 |
| 2037 | $0.1796036 | $0.320222 | $0.460842 |
Cowcoin Potenzielles Preishistogramm
Cowcoin Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Cowcoin Neutral, mit 16 technischen Indikatoren, die bullische Signale zeigen, und 16 anzeigen bärische Signale. Die Preisprognose für COW wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Cowcoin
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Cowcoin im nächsten Monat steigen, und bis zum 04.02.2026 $0.013082 erreichen. Der kurzfristige 50-Tage-SMA für Cowcoin wird voraussichtlich bis zum 04.02.2026 $0.008976 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 41.69, was darauf hindeutet, dass sich der COW-Markt in einem NEUTRAL Zustand befindet.
Beliebte COW Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.0091071 | BUY |
| SMA 5 | $0.009084 | BUY |
| SMA 10 | $0.009213 | BUY |
| SMA 21 | $0.009576 | SELL |
| SMA 50 | $0.010916 | SELL |
| SMA 100 | $0.011382 | SELL |
| SMA 200 | $0.013472 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.009189 | BUY |
| EMA 5 | $0.009165 | BUY |
| EMA 10 | $0.009255 | BUY |
| EMA 21 | $0.009615 | SELL |
| EMA 50 | $0.01038 | SELL |
| EMA 100 | $0.011378 | SELL |
| EMA 200 | $0.01194 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.012434 | SELL |
| SMA 50 | $0.01216 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.011539 | SELL |
| EMA 50 | $0.01176 | SELL |
| EMA 100 | $0.006459 | BUY |
| EMA 200 | $0.003229 | BUY |
Cowcoin Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 41.69 | NEUTRAL |
| Stoch RSI (14) | 40.82 | NEUTRAL |
| Stochastic Fast (14) | 50.38 | NEUTRAL |
| Commodity Channel Index (20) | -36.05 | NEUTRAL |
| Average Directional Index (14) | 24.29 | NEUTRAL |
| Awesome Oscillator (5, 34) | -0.001037 | SELL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -49.62 | NEUTRAL |
| Ultimate Oscillator (7, 14, 28) | 43.37 | NEUTRAL |
| VWMA (10) | 0.0092032 | BUY |
| Hull Moving Average (9) | 0.009033 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | 0.000542 | NEUTRAL |
Auf weltweiten Geldflüssen basierende Cowcoin-Preisprognose
Definition weltweiter Geldflüsse, die für Cowcoin-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Cowcoin-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.013133 | $0.018454 | $0.025931 | $0.036438 | $0.0512017 | $0.071946 |
| Amazon.com aktie | $0.0195018 | $0.040691 | $0.0849057 | $0.17716 | $0.369656 | $0.77131 |
| Apple aktie | $0.013257 | $0.0188042 | $0.026672 | $0.037832 | $0.053662 | $0.076116 |
| Netflix aktie | $0.014747 | $0.023268 | $0.036714 | $0.057929 | $0.0914037 | $0.14422 |
| Google aktie | $0.0121035 | $0.015674 | $0.020297 | $0.026285 | $0.034039 | $0.044081 |
| Tesla aktie | $0.021187 | $0.04803 | $0.108881 | $0.246827 | $0.559538 | $1.26 |
| Kodak aktie | $0.0070088 | $0.005255 | $0.003941 | $0.002955 | $0.002216 | $0.001662 |
| Nokia aktie | $0.006191 | $0.0041016 | $0.002717 | $0.001800027 | $0.001192 | $0.000789 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Cowcoin Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Cowcoin investieren?", "Sollte ich heute COW kaufen?", "Wird Cowcoin auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Cowcoin-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Cowcoin.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Cowcoin zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Cowcoin-Preis entspricht heute $0.009346 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
Cowcoin-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Cowcoin 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.009589 | $0.009838 | $0.010094 | $0.010356 |
| Wenn die Wachstumsrate von Cowcoin 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.009832 | $0.010343 | $0.010881 | $0.011446 |
| Wenn die Wachstumsrate von Cowcoin 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.010561 | $0.011933 | $0.013484 | $0.015237 |
| Wenn die Wachstumsrate von Cowcoin 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.011775 | $0.014836 | $0.018693 | $0.023552 |
| Wenn die Wachstumsrate von Cowcoin 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0142052 | $0.02159 | $0.032814 | $0.049872 |
| Wenn die Wachstumsrate von Cowcoin 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.021493 | $0.049427 | $0.113667 | $0.261396 |
| Wenn die Wachstumsrate von Cowcoin 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.03364 | $0.121083 | $0.435819 | $1.56 |
Fragefeld
Ist COW eine gute Investition?
Die Entscheidung, Cowcoin zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Cowcoin in den letzten 2026 Stunden um 2.657% gestiegen, und Cowcoin hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Cowcoin investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Cowcoin steigen?
Es scheint, dass der Durchschnittswert von Cowcoin bis zum Ende dieses Jahres potenziell auf $0.009639 steigen könnte. Betrachtet man die Aussichten von Cowcoin in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.0303037 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Cowcoin nächste Woche kosten?
Basierend auf unserer neuen experimentellen Cowcoin-Prognose wird der Preis von Cowcoin in der nächsten Woche um 0.86% steigen und $0.009426 erreichen bis zum 13. Januar 2026.
Wie viel wird Cowcoin nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Cowcoin-Prognose wird der Preis von Cowcoin im nächsten Monat um -11.62% fallen und $0.00826 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Cowcoin in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Cowcoin im Jahr 2026 wird erwartet, dass COW innerhalb der Spanne von $0.003229 bis $0.009639 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Cowcoin-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Cowcoin in 5 Jahren sein?
Die Zukunft von Cowcoin scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.0303037 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Cowcoin-Prognose für 2030 könnte der Wert von Cowcoin seinen höchsten Gipfel von ungefähr $0.0303037 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.010481 liegen wird.
Wie viel wird Cowcoin im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Cowcoin-Preisprognosesimulation wird der Wert von COW im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.009639 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.009639 und $0.003229 während des Jahres 2026 liegen.
Wie viel wird Cowcoin im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Cowcoin könnte der Wert von COW um -12.62% fallen und bis zu $0.008166 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.008166 und $0.0031086 im Laufe des Jahres schwanken.
Wie viel wird Cowcoin im Jahr 2028 kosten?
Unser neues experimentelles Cowcoin-Preisprognosemodell deutet darauf hin, dass der Wert von COW im Jahr 2028 um 47.02% steigen, und im besten Fall $0.013741 erreichen wird. Der Preis wird voraussichtlich zwischen $0.013741 und $0.00561 im Laufe des Jahres liegen.
Wie viel wird Cowcoin im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Cowcoin im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.04054 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.04054 und $0.012324.
Wie viel wird Cowcoin im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Cowcoin-Preisprognosen wird der Wert von COW im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.0303037 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.0303037 und $0.010481 während des Jahres 2030 liegen.
Wie viel wird Cowcoin im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Cowcoin im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.027663 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.027663 und $0.012391 während des Jahres schwanken.
Wie viel wird Cowcoin im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Cowcoin-Preisprognose könnte COW eine 449.04% Steigerung im Wert erfahren und $0.051315 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.051315 und $0.018915 liegen.
Wie viel wird Cowcoin im Jahr 2033 kosten?
Laut unserer experimentellen Cowcoin-Preisprognose wird der Wert von COW voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.136684 beträgt. Im Laufe des Jahres könnte der Preis von COW zwischen $0.136684 und $0.043954 liegen.
Wie viel wird Cowcoin im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Cowcoin-Preisprognosesimulation deuten darauf hin, dass COW im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.07916 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.07916 und $0.035337.
Wie viel wird Cowcoin im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Cowcoin könnte COW um 897.93% steigen, wobei der Wert im Jahr 2035 $0.09327 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.09327 und $0.041779.
Wie viel wird Cowcoin im Jahr 2036 kosten?
Unsere jüngste Cowcoin-Preisprognosesimulation deutet darauf hin, dass der Wert von COW im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.192974 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.192974 und $0.069158.
Wie viel wird Cowcoin im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Cowcoin um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.460842 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.460842 und $0.1796036 liegen.
Verwandte Prognosen
Wie liest und prognostiziert man die Kursbewegungen von Cowcoin?
Cowcoin-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Cowcoin Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Cowcoin. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von COW über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von COW über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von COW einzuschätzen.
Wie liest man Cowcoin-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Cowcoin in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von COW innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Cowcoin?
Die Preisentwicklung von Cowcoin wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von COW. Die Marktkapitalisierung von Cowcoin kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von COW-„Walen“, großen Inhabern von Cowcoin, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Cowcoin-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


