Cicada Finance Preisvorhersage bis zu $0.001962 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.000657 | $0.001962 |
| 2027 | $0.000632 | $0.001662 |
| 2028 | $0.001142 | $0.002797 |
| 2029 | $0.0025094 | $0.008254 |
| 2030 | $0.002134 | $0.00617 |
| 2031 | $0.002523 | $0.005632 |
| 2032 | $0.003851 | $0.010448 |
| 2033 | $0.00895 | $0.027831 |
| 2034 | $0.007195 | $0.016118 |
| 2035 | $0.0085072 | $0.018991 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Cicada Finance eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,957.29 Gewinn erzielen könnten, was einer Rendite von 39.57% in den nächsten 90 Tagen entspricht.
Langfristige Cicada Finance Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Cicada Finance'
'name_with_ticker' => 'Cicada Finance <small>LTCIC</small>'
'name_lang' => 'Cicada Finance'
'name_lang_with_ticker' => 'Cicada Finance <small>LTCIC</small>'
'name_with_lang' => 'Cicada Finance'
'name_with_lang_with_ticker' => 'Cicada Finance <small>LTCIC</small>'
'image' => '/uploads/coins/cicada-finance.jpg?1753525899'
'price_for_sd' => 0.001903
'ticker' => 'LTCIC'
'marketcap' => '$4.96M'
'low24h' => '$0.001869'
'high24h' => '$0.001927'
'volume24h' => '$103.27K'
'current_supply' => '2.61B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.001903'
'change_24h_pct' => '1.494%'
'ath_price' => '$0.002894'
'ath_days' => 150
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '09.08.2025'
'ath_pct' => '-34.64%'
'fdv' => '$19.03M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.093836'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.001919'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001682'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000657'
'current_year_max_price_prediction' => '$0.001962'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.002134'
'grand_prediction_max_price' => '$0.00617'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0019391831229589
107 => 0.0019464233288165
108 => 0.0019627358823079
109 => 0.0018233468987532
110 => 0.0018859284601237
111 => 0.0019226892643296
112 => 0.001756602613558
113 => 0.0019194062652531
114 => 0.001820920446662
115 => 0.0017874928806249
116 => 0.001832498694547
117 => 0.0018149598850919
118 => 0.0017998810466359
119 => 0.0017914667956902
120 => 0.0018245140983241
121 => 0.0018229724021562
122 => 0.001768900600842
123 => 0.0016983661402762
124 => 0.0017220398204568
125 => 0.0017134389505052
126 => 0.0016822682882665
127 => 0.0017032735510553
128 => 0.0016107770042536
129 => 0.0014516415030335
130 => 0.0015567712895917
131 => 0.0015527239071684
201 => 0.0015506830334164
202 => 0.0016296851624411
203 => 0.0016220909306246
204 => 0.0016083073255147
205 => 0.0016820151415494
206 => 0.0016551107971867
207 => 0.0017380236470518
208 => 0.0017926354124398
209 => 0.0017787841022319
210 => 0.0018301467315409
211 => 0.001722585214234
212 => 0.0017583128356643
213 => 0.0017656762489248
214 => 0.0016811055985409
215 => 0.0016233334408692
216 => 0.0016194806966033
217 => 0.0015193117366943
218 => 0.0015728211865421
219 => 0.0016199072880367
220 => 0.0015973566994499
221 => 0.001590217856783
222 => 0.0016266886557422
223 => 0.0016295227491726
224 => 0.0015649051186157
225 => 0.0015783411701827
226 => 0.0016343717387748
227 => 0.0015769293436138
228 => 0.0014653281529779
301 => 0.0014376495146931
302 => 0.0014339566741273
303 => 0.0013588900118783
304 => 0.0014394991336538
305 => 0.0014043110918086
306 => 0.0015154696943801
307 => 0.0014519764967468
308 => 0.0014492394318991
309 => 0.0014451019569416
310 => 0.0013804889797791
311 => 0.0013946351154088
312 => 0.0014416590247591
313 => 0.0014584376853776
314 => 0.0014566875336116
315 => 0.0014414285819495
316 => 0.0014484140518819
317 => 0.0014259114193306
318 => 0.0014179652714249
319 => 0.0013928850428744
320 => 0.0013560240354951
321 => 0.0013611497846529
322 => 0.0012881184838273
323 => 0.001248327155073
324 => 0.0012373134397151
325 => 0.0012225854392436
326 => 0.001238977006558
327 => 0.0012879115953279
328 => 0.0012288860992193
329 => 0.0011276910262982
330 => 0.0011337730226088
331 => 0.0011474374625577
401 => 0.0011219738691122
402 => 0.0010978747149134
403 => 0.001118826974263
404 => 0.0010759492878353
405 => 0.0011526190261119
406 => 0.001150545324556
407 => 0.0011791230617607
408 => 0.001196993307309
409 => 0.0011558081768809
410 => 0.0011454502279546
411 => 0.0011513505864055
412 => 0.0010538308044227
413 => 0.0011711536150508
414 => 0.001172168227589
415 => 0.0011634804990474
416 => 0.0012259512737715
417 => 0.0013577840935626
418 => 0.0013081832837943
419 => 0.0012889763510596
420 => 0.0012524639578907
421 => 0.0013011145538968
422 => 0.0012973789471911
423 => 0.0012804851169809
424 => 0.0012702676757579
425 => 0.0012890936244952
426 => 0.0012679349323718
427 => 0.0012641342498644
428 => 0.0012411062490533
429 => 0.001232886300471
430 => 0.0012268005777862
501 => 0.0012201007950811
502 => 0.0012348788462468
503 => 0.0012013898380907
504 => 0.0011610053772224
505 => 0.0011576478462671
506 => 0.0011669182844318
507 => 0.0011628168056469
508 => 0.0011576282099646
509 => 0.0011477217677773
510 => 0.001144782737998
511 => 0.0011543331589663
512 => 0.0011435512905172
513 => 0.0011594605247326
514 => 0.0011551340933241
515 => 0.0011309669991702
516 => 0.0011008458520502
517 => 0.0011005777106596
518 => 0.0010940881589211
519 => 0.0010858227390716
520 => 0.0010835234883567
521 => 0.0011170624334212
522 => 0.0011864870459686
523 => 0.0011728573333354
524 => 0.001182706197542
525 => 0.0012311528616596
526 => 0.0012465525993405
527 => 0.0012356222302974
528 => 0.0012206600669953
529 => 0.0012213183262463
530 => 0.0012724485676044
531 => 0.0012756374980402
601 => 0.0012836948964637
602 => 0.0012940509304585
603 => 0.0012373859076674
604 => 0.0012186494087687
605 => 0.0012097710161291
606 => 0.0011824290031694
607 => 0.0012119150200194
608 => 0.001194734780718
609 => 0.0011970529819603
610 => 0.0011955432503601
611 => 0.0011963676659014
612 => 0.0011525975953575
613 => 0.0011685451085765
614 => 0.0011420292747789
615 => 0.0011065275498659
616 => 0.0011064085356354
617 => 0.0011150975325127
618 => 0.0011099289771696
619 => 0.0010960205276372
620 => 0.0010979961572472
621 => 0.001080687563008
622 => 0.0011000977339701
623 => 0.0011006543482204
624 => 0.0010931803751208
625 => 0.0011230844215753
626 => 0.0011353361338071
627 => 0.0011304166046049
628 => 0.0011349909665238
629 => 0.0011734237094298
630 => 0.0011796899234616
701 => 0.0011824729618116
702 => 0.0011787440591045
703 => 0.0011356934465121
704 => 0.0011376029242459
705 => 0.0011235924435936
706 => 0.0011117550638305
707 => 0.0011122284969421
708 => 0.001118314448892
709 => 0.0011448921579936
710 => 0.0012008233799564
711 => 0.0012029459289447
712 => 0.0012055185202377
713 => 0.0011950544985685
714 => 0.0011918984495059
715 => 0.0011960620928649
716 => 0.0012170669191101
717 => 0.0012710970349677
718 => 0.0012519991834735
719 => 0.001236472332933
720 => 0.0012500935668659
721 => 0.0012479966846687
722 => 0.0012302968886966
723 => 0.0012298001143747
724 => 0.0011958285469371
725 => 0.0011832700319506
726 => 0.0011727751968394
727 => 0.0011613151108725
728 => 0.0011545211877658
729 => 0.0011649597414405
730 => 0.0011673471621713
731 => 0.0011445230821267
801 => 0.0011414122443545
802 => 0.0011600508808109
803 => 0.0011518487118248
804 => 0.001160284846031
805 => 0.0011622421015306
806 => 0.0011619269383158
807 => 0.0011533629318812
808 => 0.0011588213742003
809 => 0.0011459105308758
810 => 0.0011318719279064
811 => 0.0011229161738477
812 => 0.0011151010906232
813 => 0.0011194373530115
814 => 0.0011039793693675
815 => 0.0010990340492921
816 => 0.0011569721767614
817 => 0.0011997716944629
818 => 0.001199149372525
819 => 0.0011953611477766
820 => 0.0011897326142137
821 => 0.001216655156822
822 => 0.0012072758813105
823 => 0.0012141000879099
824 => 0.0012158371349004
825 => 0.0012210946529758
826 => 0.0012229737637888
827 => 0.0012172937857855
828 => 0.0011982310858557
829 => 0.0011507286500576
830 => 0.0011286161379632
831 => 0.0011213186406591
901 => 0.0011215838908261
902 => 0.001114267107089
903 => 0.0011164222278148
904 => 0.0011135176440505
905 => 0.001108017065095
906 => 0.0011190977077612
907 => 0.0011203746486052
908 => 0.001117788294203
909 => 0.0011183974742921
910 => 0.001096983564489
911 => 0.0010986116175428
912 => 0.0010895464112565
913 => 0.0010878467943605
914 => 0.0010649307422665
915 => 0.001024331634247
916 => 0.0010468274811406
917 => 0.0010196556614879
918 => 0.0010093652816652
919 => 0.0010580783392635
920 => 0.0010531888993705
921 => 0.0010448203036622
922 => 0.0010324414064414
923 => 0.0010278499530481
924 => 0.00099995373570749
925 => 0.00099830547836648
926 => 0.0010121315969417
927 => 0.0010057513189469
928 => 0.00099679099224204
929 => 0.00096433759721068
930 => 0.00092784923624561
1001 => 0.00092895059050548
1002 => 0.00094055685923838
1003 => 0.00097430365089787
1004 => 0.00096111819557109
1005 => 0.00095155199644584
1006 => 0.00094976053490856
1007 => 0.00097218442672626
1008 => 0.0010039189315989
1009 => 0.0010188080512656
1010 => 0.0010040533858652
1011 => 0.00098710402070077
1012 => 0.00098813565002253
1013 => 0.00099499861772213
1014 => 0.00099571981859022
1015 => 0.00098468752429109
1016 => 0.00098779305051426
1017 => 0.00098307547220599
1018 => 0.00095412370283612
1019 => 0.00095360005713527
1020 => 0.00094649482602156
1021 => 0.00094627968244723
1022 => 0.00093419191183984
1023 => 0.00093250074917306
1024 => 0.00090849974695685
1025 => 0.00092429727929729
1026 => 0.000913701124011
1027 => 0.00089773021861421
1028 => 0.00089497682850401
1029 => 0.00089489405827248
1030 => 0.00091129260708588
1031 => 0.0009241056527067
1101 => 0.00091388544866881
1102 => 0.00091155850631971
1103 => 0.00093640416283045
1104 => 0.00093324232656627
1105 => 0.00093050419675315
1106 => 0.0010010774547546
1107 => 0.00094521321414646
1108 => 0.00092085321662192
1109 => 0.00089070309384724
1110 => 0.00090052012585279
1111 => 0.00090258871873857
1112 => 0.00083008310843357
1113 => 0.00080066759136283
1114 => 0.00079057329440453
1115 => 0.00078476388379262
1116 => 0.00078741130515845
1117 => 0.00076093388969876
1118 => 0.0007787271507837
1119 => 0.00075579994707583
1120 => 0.00075195612676263
1121 => 0.00079295280712784
1122 => 0.00079865725570153
1123 => 0.00077432030585292
1124 => 0.00078994856745001
1125 => 0.00078428154254582
1126 => 0.00075619296817833
1127 => 0.00075512019124306
1128 => 0.00074102633198659
1129 => 0.00071897217135912
1130 => 0.00070889282816024
1201 => 0.00070364341870939
1202 => 0.00070580942735776
1203 => 0.00070471422710418
1204 => 0.00069756730462761
1205 => 0.00070512388033465
1206 => 0.00068581995199583
1207 => 0.00067813297218898
1208 => 0.00067466094174681
1209 => 0.00065752759425344
1210 => 0.0006847943693496
1211 => 0.00069016626754133
1212 => 0.00069554875003196
1213 => 0.000742399585336
1214 => 0.00074005905000329
1215 => 0.000761216349524
1216 => 0.0007603942157704
1217 => 0.00075435981122157
1218 => 0.00072890165104141
1219 => 0.00073904881994115
1220 => 0.00070781741128792
1221 => 0.00073121810618028
1222 => 0.00072053900626778
1223 => 0.00072760749175765
1224 => 0.00071489771750723
1225 => 0.00072193183135113
1226 => 0.00069144014388687
1227 => 0.00066296743516237
1228 => 0.00067442568432329
1229 => 0.00068688211157095
1230 => 0.00071389081968251
1231 => 0.00069780465594827
]
'min_raw' => 0.00065752759425344
'max_raw' => 0.0019627358823079
'avg_raw' => 0.0013101317382807
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000657'
'max' => '$0.001962'
'avg' => '$0.00131'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0012455924057466
'max_diff' => 5.9615882307908E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.0007035898487123
102 => 0.00068421042138238
103 => 0.00064422512734101
104 => 0.00064445143976289
105 => 0.00063830057340161
106 => 0.00063298532682427
107 => 0.00069965234536013
108 => 0.00069136124775559
109 => 0.00067815046883479
110 => 0.00069583362139577
111 => 0.00070050932760226
112 => 0.00070064243838469
113 => 0.00071354361002495
114 => 0.00072042896764202
115 => 0.00072164254176488
116 => 0.00074194281408909
117 => 0.0007487471976051
118 => 0.00077677349031515
119 => 0.00071984479315353
120 => 0.00071867238409846
121 => 0.00069608245961592
122 => 0.00068175557237652
123 => 0.00069706343384239
124 => 0.00071062410936968
125 => 0.00069650382760479
126 => 0.00069834763830787
127 => 0.00067939231370791
128 => 0.00068616795032148
129 => 0.0006920040413499
130 => 0.00068878169491358
131 => 0.00068395768633508
201 => 0.00070951228862034
202 => 0.00070807039781011
203 => 0.00073186743095592
204 => 0.00075041892003524
205 => 0.00078366650494073
206 => 0.00074897091685606
207 => 0.00074770647172378
208 => 0.00076006662571517
209 => 0.00074874530532992
210 => 0.0007558999890147
211 => 0.00078251377478813
212 => 0.00078307608214407
213 => 0.00077365670944
214 => 0.00077308353975492
215 => 0.00077489263331939
216 => 0.00078548855083246
217 => 0.00078178601167373
218 => 0.00078607068372503
219 => 0.00079142873173441
220 => 0.00081359189006647
221 => 0.00081893535250731
222 => 0.0008059535090437
223 => 0.00080712562415692
224 => 0.00080227005834196
225 => 0.00079757964260477
226 => 0.00080812301220177
227 => 0.00082739122737073
228 => 0.00082727136080419
301 => 0.0008317412122028
302 => 0.00083452589259389
303 => 0.0008225720058447
304 => 0.00081479046512758
305 => 0.00081777440299082
306 => 0.00082254578461587
307 => 0.0008162271082369
308 => 0.00077722531053026
309 => 0.00078905596450997
310 => 0.00078708676519832
311 => 0.00078428238591572
312 => 0.00079617819997606
313 => 0.00079503081968991
314 => 0.00076066232553339
315 => 0.00076286248502098
316 => 0.00076079612451899
317 => 0.00076747295803852
318 => 0.00074838473440837
319 => 0.00075425614343586
320 => 0.00075793863613686
321 => 0.00076010765262799
322 => 0.00076794362750248
323 => 0.00076702416629344
324 => 0.00076788647250274
325 => 0.00077950515462095
326 => 0.00083826846172461
327 => 0.00084146681887633
328 => 0.00082571693851707
329 => 0.00083200870506794
330 => 0.00081992988914836
331 => 0.00082803847919621
401 => 0.00083358617057109
402 => 0.00080851722000771
403 => 0.00080703279945149
404 => 0.00079490412996193
405 => 0.00080142138994267
406 => 0.00079105196070575
407 => 0.00079359625593325
408 => 0.00078648218466948
409 => 0.00079928609654681
410 => 0.00081360285955242
411 => 0.00081721983927374
412 => 0.00080770512283462
413 => 0.00080081584108233
414 => 0.0007887205317958
415 => 0.00080883530070085
416 => 0.00081471747211516
417 => 0.00080880440415852
418 => 0.00080743421710989
419 => 0.00080483771512859
420 => 0.00080798507727967
421 => 0.00081468543654637
422 => 0.00081152567085241
423 => 0.00081361275176118
424 => 0.00080565895152543
425 => 0.00082257596307862
426 => 0.00084944424872562
427 => 0.00084953063465739
428 => 0.0008463708519311
429 => 0.00084507793691798
430 => 0.00084832006574679
501 => 0.00085007878763734
502 => 0.00086056323776498
503 => 0.00087181347047086
504 => 0.0009243133976481
505 => 0.00090957162817858
506 => 0.00095615268680488
507 => 0.00099299225638483
508 => 0.0010040388325027
509 => 0.00099387650225583
510 => 0.00095911171943953
511 => 0.0009574059933404
512 => 0.0010093592561807
513 => 0.00099468007981812
514 => 0.00099293403849854
515 => 0.00097435910884163
516 => 0.00098533919281866
517 => 0.00098293768738477
518 => 0.00097914679357171
519 => 0.0010000960289206
520 => 0.0010393111273426
521 => 0.0010331990864967
522 => 0.0010286367315346
523 => 0.0010086458201723
524 => 0.0010206848139441
525 => 0.0010163979588537
526 => 0.0010348170088275
527 => 0.0010239059716549
528 => 0.0009945688706198
529 => 0.000999240900656
530 => 0.00099853473271485
531 => 0.0010130676189041
601 => 0.0010087052071985
602 => 0.00099768290181512
603 => 0.0010391770943994
604 => 0.0010364826923358
605 => 0.0010403027384359
606 => 0.001041984440868
607 => 0.0010672412246844
608 => 0.001077588120887
609 => 0.0010799370474729
610 => 0.0010897657986078
611 => 0.0010796924991909
612 => 0.0011199928789991
613 => 0.0011467902799791
614 => 0.0011779168401991
615 => 0.0012234011107112
616 => 0.0012405036171767
617 => 0.0012374142024623
618 => 0.0012718998572598
619 => 0.0013338698123577
620 => 0.0012499401021765
621 => 0.0013383182907946
622 => 0.0013103387766533
623 => 0.0012439998519544
624 => 0.0012397284072883
625 => 0.0012846538973052
626 => 0.0013842943102445
627 => 0.0013593355169154
628 => 0.0013843351338891
629 => 0.0013551717527564
630 => 0.0013537235450749
701 => 0.0013829187335614
702 => 0.0014511348828069
703 => 0.0014187279473445
704 => 0.0013722646588525
705 => 0.0014065724280261
706 => 0.0013768518633338
707 => 0.0013098831128197
708 => 0.0013593164313965
709 => 0.001326261779044
710 => 0.0013359088838825
711 => 0.0014053848466189
712 => 0.0013970253149719
713 => 0.0014078433229949
714 => 0.0013887498219908
715 => 0.0013709134812842
716 => 0.0013376206268112
717 => 0.0013277642539196
718 => 0.0013304882007917
719 => 0.0013277629040668
720 => 0.0013091358579663
721 => 0.0013051133491344
722 => 0.0012984089915178
723 => 0.0013004869522837
724 => 0.0012878807985354
725 => 0.0013116712152227
726 => 0.0013160869262004
727 => 0.0013333996075093
728 => 0.0013351970675154
729 => 0.0013834126385303
730 => 0.0013568563122451
731 => 0.0013746725886801
801 => 0.0013730789332224
802 => 0.0012454376176098
803 => 0.0012630254647124
804 => 0.0012903866354335
805 => 0.0012780604651108
806 => 0.0012606341441542
807 => 0.0012465614556416
808 => 0.0012252398935386
809 => 0.0012552495827542
810 => 0.0012947091328981
811 => 0.0013361978268253
812 => 0.0013860437741319
813 => 0.0013749187389638
814 => 0.0013352659915125
815 => 0.0013370447847968
816 => 0.0013480405849511
817 => 0.0013338000246775
818 => 0.001329600205444
819 => 0.001347463594281
820 => 0.0013475866096224
821 => 0.0013312011239984
822 => 0.0013129916552396
823 => 0.0013129153569006
824 => 0.0013096751578176
825 => 0.0013557481769752
826 => 0.0013810836790042
827 => 0.0013839883534816
828 => 0.0013808881712686
829 => 0.0013820813083606
830 => 0.0013673391379596
831 => 0.0014010353678414
901 => 0.0014319583605928
902 => 0.001423670337962
903 => 0.0014112454138267
904 => 0.0014013483632875
905 => 0.0014213389073878
906 => 0.001420448759927
907 => 0.0014316882752277
908 => 0.0014311783858911
909 => 0.001427398959635
910 => 0.0014236704729372
911 => 0.0014384535012449
912 => 0.0014341962265005
913 => 0.0014299323390325
914 => 0.0014213804599469
915 => 0.0014225428023463
916 => 0.0014101200235493
917 => 0.0014043726776501
918 => 0.0013179463851376
919 => 0.0012948504557177
920 => 0.0013021169052742
921 => 0.0013045092091415
922 => 0.0012944578310597
923 => 0.0013088689252418
924 => 0.0013066229714787
925 => 0.0013153606637321
926 => 0.0013099017329586
927 => 0.0013101257693817
928 => 0.0013261793208197
929 => 0.0013308397350988
930 => 0.0013284694107823
1001 => 0.0013301295046836
1002 => 0.0013683856679579
1003 => 0.0013629468649035
1004 => 0.0013600576091802
1005 => 0.0013608579527611
1006 => 0.0013706332226991
1007 => 0.0013733697645718
1008 => 0.0013617748443638
1009 => 0.0013672430757633
1010 => 0.0013905261110405
1011 => 0.0013986738556818
1012 => 0.0014246775454376
1013 => 0.0014136307158506
1014 => 0.0014339076496532
1015 => 0.001496232031246
1016 => 0.0015460210597816
1017 => 0.0015002330115217
1018 => 0.0015916642218326
1019 => 0.0016628565340879
1020 => 0.0016601240545665
1021 => 0.001647710028217
1022 => 0.0015666594734599
1023 => 0.0014920755445768
1024 => 0.0015544681680884
1025 => 0.0015546272197169
1026 => 0.001549267638024
1027 => 0.0015159797364328
1028 => 0.0015481092912043
1029 => 0.0015506596185847
1030 => 0.0015492321134385
1031 => 0.0015237103573361
1101 => 0.0014847433529767
1102 => 0.0014923574123547
1103 => 0.0015048293969385
1104 => 0.0014812173281929
1105 => 0.001473671841523
1106 => 0.0014877003368299
1107 => 0.001532903071662
1108 => 0.0015243577564836
1109 => 0.0015241346037699
1110 => 0.0015606950858807
1111 => 0.0015345256709352
1112 => 0.0014924534500271
1113 => 0.0014818296593834
1114 => 0.001444122359641
1115 => 0.0014701669258818
1116 => 0.0014711042234546
1117 => 0.0014568398806935
1118 => 0.0014936109228269
1119 => 0.0014932720712002
1120 => 0.0015281807030585
1121 => 0.0015949128960881
1122 => 0.0015751769029174
1123 => 0.0015522260901299
1124 => 0.0015547214798369
1125 => 0.0015820897457763
1126 => 0.0015655422674326
1127 => 0.0015714928560181
1128 => 0.0015820807388478
1129 => 0.0015884686714412
1130 => 0.0015538023546414
1201 => 0.0015457199779138
1202 => 0.0015291862716578
1203 => 0.0015248729363118
1204 => 0.0015383392950703
1205 => 0.0015347913853109
1206 => 0.001471025447223
1207 => 0.0014643615519025
1208 => 0.0014645659240581
1209 => 0.0014478092424237
1210 => 0.0014222512808669
1211 => 0.0014894160778517
1212 => 0.0014840218046831
1213 => 0.0014780669445885
1214 => 0.0014787963809721
1215 => 0.001507950342917
1216 => 0.0014910395726786
1217 => 0.0015359996269782
1218 => 0.0015267571914371
1219 => 0.0015172777222994
1220 => 0.0015159673709128
1221 => 0.0015123185840451
1222 => 0.0014998055362218
1223 => 0.0014846952790576
1224 => 0.0014747181784497
1225 => 0.0013603495663119
1226 => 0.0013815757154731
1227 => 0.0014059944652586
1228 => 0.0014144237198326
1229 => 0.0014000048965972
1230 => 0.0015003748792469
1231 => 0.0015187134422662
]
'min_raw' => 0.00063298532682427
'max_raw' => 0.0016628565340879
'avg_raw' => 0.0011479209304561
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000632'
'max' => '$0.001662'
'avg' => '$0.001147'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -2.4542267429174E-5
'max_diff' => -0.00029987934822001
'year' => 2027
]
2 => [
'items' => [
101 => 0.0014631647386858
102 => 0.0014527738442845
103 => 0.001501056104554
104 => 0.0014719359993452
105 => 0.0014850487809377
106 => 0.0014567061194429
107 => 0.0015142962194507
108 => 0.0015138574793784
109 => 0.001491453629744
110 => 0.0015103892100401
111 => 0.0015070986869819
112 => 0.0014818047959229
113 => 0.0015150980809132
114 => 0.0015151145939671
115 => 0.0014935513757957
116 => 0.0014683702577669
117 => 0.0014638684686148
118 => 0.0014604769752189
119 => 0.0014842146814646
120 => 0.0015054978346586
121 => 0.0015451005062115
122 => 0.0015550575587762
123 => 0.0015939205978146
124 => 0.0015707795502743
125 => 0.0015810376769222
126 => 0.0015921743244991
127 => 0.0015975136428841
128 => 0.0015888135100993
129 => 0.001649183806391
130 => 0.0016542809090961
131 => 0.0016559899235434
201 => 0.0016356333993035
202 => 0.0016537147573323
203 => 0.0016452550887023
204 => 0.0016672647963141
205 => 0.0016707161995017
206 => 0.001667792983789
207 => 0.0016688885136375
208 => 0.0016173731158025
209 => 0.0016147017706594
210 => 0.0015782777900831
211 => 0.0015931208314004
212 => 0.0015653724771031
213 => 0.0015741717660905
214 => 0.0015780504088334
215 => 0.0015760244259756
216 => 0.0015939600346862
217 => 0.0015787111032794
218 => 0.0015384666661404
219 => 0.0014982112644315
220 => 0.0014977058906544
221 => 0.0014871073539513
222 => 0.0014794465531338
223 => 0.0014809222951528
224 => 0.0014861230025116
225 => 0.0014791442785677
226 => 0.0014806335431514
227 => 0.0015053652581592
228 => 0.0015103250272255
229 => 0.0014934697940314
301 => 0.0014257936005585
302 => 0.0014091856929274
303 => 0.0014211231275835
304 => 0.0014154178026871
305 => 0.0011423526355987
306 => 0.0012065052461732
307 => 0.0011683879433866
308 => 0.0011859541502035
309 => 0.0011470462544861
310 => 0.00116561514166
311 => 0.0011621861462261
312 => 0.0012653416456163
313 => 0.001263731014379
314 => 0.0012645019383196
315 => 0.0012277037300054
316 => 0.0012863242750301
317 => 0.0013152028634359
318 => 0.0013098582053008
319 => 0.0013112033406073
320 => 0.0012880894593954
321 => 0.0012647257312142
322 => 0.0012388117610092
323 => 0.0012869567145865
324 => 0.0012816038176105
325 => 0.0012938814373619
326 => 0.0013251068812292
327 => 0.0013297049464526
328 => 0.0013358847927418
329 => 0.0013336697577585
330 => 0.0013864408775199
331 => 0.0013800499467217
401 => 0.0013954502511491
402 => 0.0013637706565182
403 => 0.0013279221881386
404 => 0.0013347358100028
405 => 0.0013340796034256
406 => 0.0013257253405389
407 => 0.001318183485549
408 => 0.0013056284218954
409 => 0.0013453545010952
410 => 0.0013437416948281
411 => 0.0013698511536114
412 => 0.0013652360531577
413 => 0.0013344152828212
414 => 0.0013355160526633
415 => 0.0013429192588635
416 => 0.0013685418400508
417 => 0.0013761483666655
418 => 0.0013726247204699
419 => 0.0013809649296518
420 => 0.0013875566909315
421 => 0.00138179275338
422 => 0.0014633979540405
423 => 0.0014295097852315
424 => 0.0014460266429166
425 => 0.0014499658161516
426 => 0.0014398757067422
427 => 0.0014420638901734
428 => 0.0014453783918273
429 => 0.0014655033968239
430 => 0.0015183172331522
501 => 0.0015417081217461
502 => 0.0016120807641668
503 => 0.0015397658340652
504 => 0.0015354749653819
505 => 0.0015481512033321
506 => 0.0015894673941338
507 => 0.0016229502861461
508 => 0.001634058493101
509 => 0.0016355266260266
510 => 0.0016563663607336
511 => 0.0016683113080295
512 => 0.0016538358688007
513 => 0.0016415694496959
514 => 0.0015976326590265
515 => 0.0016027184621824
516 => 0.0016377546025782
517 => 0.0016872452145055
518 => 0.0017297133081598
519 => 0.0017148424619245
520 => 0.0018282965215179
521 => 0.0018395450281083
522 => 0.0018379908482053
523 => 0.0018636166202205
524 => 0.0018127546813681
525 => 0.001791010217105
526 => 0.0016442215887361
527 => 0.0016854632058774
528 => 0.0017454103184276
529 => 0.0017374760932914
530 => 0.0016939408977666
531 => 0.0017296802828101
601 => 0.0017178637244408
602 => 0.0017085435145855
603 => 0.0017512412027442
604 => 0.0017042933406894
605 => 0.0017449419775903
606 => 0.0016928096803085
607 => 0.0017149103906975
608 => 0.0017023649585896
609 => 0.0017104833906738
610 => 0.0016630232025968
611 => 0.0016886315680522
612 => 0.0016619578104013
613 => 0.0016619451635672
614 => 0.0016613563388886
615 => 0.0016927378964753
616 => 0.0016937612479416
617 => 0.0016705702294701
618 => 0.0016672280413966
619 => 0.0016795858624161
620 => 0.0016651180905207
621 => 0.0016718874699315
622 => 0.001665323128127
623 => 0.0016638453565206
624 => 0.0016520702209388
625 => 0.001646997168766
626 => 0.0016489864432394
627 => 0.0016421960239205
628 => 0.0016381045506606
629 => 0.0016605424418764
630 => 0.0016485547817417
701 => 0.0016587051610335
702 => 0.0016471375227506
703 => 0.0016070390486818
704 => 0.0015839779922112
705 => 0.0015082356918259
706 => 0.0015297161142571
707 => 0.0015439576565521
708 => 0.0015392508269086
709 => 0.0015493629182842
710 => 0.0015499837185677
711 => 0.0015466961745809
712 => 0.0015428896198047
713 => 0.0015410367994553
714 => 0.0015548462043523
715 => 0.0015628630286983
716 => 0.0015453869858487
717 => 0.0015412925935249
718 => 0.0015589618377246
719 => 0.0015697400664792
720 => 0.0016493204518399
721 => 0.0016434248798511
722 => 0.0016582216085953
723 => 0.001656555724013
724 => 0.0016720650530408
725 => 0.0016974162512696
726 => 0.0016458701769639
727 => 0.0016548167931342
728 => 0.0016526232894568
729 => 0.0016765713874394
730 => 0.0016766461507872
731 => 0.0016622880697505
801 => 0.0016700718184138
802 => 0.0016657271434459
803 => 0.0016735785583309
804 => 0.0016433461408928
805 => 0.0016801659619446
806 => 0.0017010404278641
807 => 0.0017013302698436
808 => 0.0017112246010195
809 => 0.0017212778145351
810 => 0.0017405740824281
811 => 0.0017207396520967
812 => 0.0016850594427733
813 => 0.0016876354386401
814 => 0.0016667161449687
815 => 0.0016670678020747
816 => 0.001665190628883
817 => 0.0016708241669382
818 => 0.0016445823856946
819 => 0.0016507412793011
820 => 0.0016421187921855
821 => 0.0016547980495312
822 => 0.0016411572645836
823 => 0.0016526222316829
824 => 0.0016575701314133
825 => 0.001675827987939
826 => 0.0016384605643297
827 => 0.0015622658580383
828 => 0.0015782829090723
829 => 0.0015545924324808
830 => 0.0015567850762854
831 => 0.0015612145657272
901 => 0.0015468571412074
902 => 0.0015495960853513
903 => 0.0015494982309929
904 => 0.0015486549749967
905 => 0.0015449200543691
906 => 0.0015395036805275
907 => 0.0015610808468405
908 => 0.0015647472278558
909 => 0.0015728971386842
910 => 0.0015971457451723
911 => 0.0015947227375626
912 => 0.0015986747635036
913 => 0.0015900475130641
914 => 0.0015571852696897
915 => 0.00155896984761
916 => 0.0015367161323485
917 => 0.0015723280611518
918 => 0.0015638946863567
919 => 0.0015584576347639
920 => 0.0015569740848629
921 => 0.0015812827989562
922 => 0.0015885563472054
923 => 0.0015840239600462
924 => 0.0015747279017518
925 => 0.0015925790818099
926 => 0.0015973553045126
927 => 0.0015984245246355
928 => 0.0016300533930742
929 => 0.0016001922270283
930 => 0.00160738010649
1001 => 0.0016634578901795
1002 => 0.0016126030785783
1003 => 0.0016395420064811
1004 => 0.0016382234861437
1005 => 0.0016520045300951
1006 => 0.0016370930383011
1007 => 0.0016372778841132
1008 => 0.0016495145175333
1009 => 0.0016323303727832
1010 => 0.0016280753368819
1011 => 0.0016221970352594
1012 => 0.0016350320917988
1013 => 0.0016427261277144
1014 => 0.001704734406548
1015 => 0.0017447945825955
1016 => 0.0017430554647021
1017 => 0.0017589477467557
1018 => 0.0017517881281339
1019 => 0.0017286678309923
1020 => 0.0017681313589932
1021 => 0.0017556434475095
1022 => 0.0017566729357594
1023 => 0.0017566346181554
1024 => 0.0017649379875798
1025 => 0.00175905428935
1026 => 0.0017474569161897
1027 => 0.0017551557937202
1028 => 0.0017780187075868
1029 => 0.0018489858937486
1030 => 0.0018887000713148
1031 => 0.0018465950503925
1101 => 0.001875638530016
1102 => 0.0018582227914918
1103 => 0.0018550578337286
1104 => 0.0018732992852285
1105 => 0.0018915726659745
1106 => 0.0018904087306189
1107 => 0.0018771431945459
1108 => 0.0018696498298187
1109 => 0.0019263920979941
1110 => 0.0019681988346065
1111 => 0.0019653478954454
1112 => 0.0019779310137272
1113 => 0.0020148754381837
1114 => 0.0020182531733534
1115 => 0.0020178276563583
1116 => 0.00200945558731
1117 => 0.0020458321710272
1118 => 0.0020761781571491
1119 => 0.0020075176952177
1120 => 0.0020336627002897
1121 => 0.002045400035406
1122 => 0.0020626339256671
1123 => 0.002091710387273
1124 => 0.0021232951367275
1125 => 0.0021277615666096
1126 => 0.0021245924208699
1127 => 0.002103761429561
1128 => 0.0021383218392986
1129 => 0.0021585665167815
1130 => 0.0021706217589314
1201 => 0.0022011918472225
1202 => 0.0020454725211918
1203 => 0.0019352466424746
1204 => 0.0019180332798319
1205 => 0.0019530373296479
1206 => 0.0019622676184323
1207 => 0.0019585469005971
1208 => 0.0018344776528024
1209 => 0.001917380080919
1210 => 0.0020065761229383
1211 => 0.0020100025061746
1212 => 0.0020546559098108
1213 => 0.0020691968884396
1214 => 0.0021051487312221
1215 => 0.0021028999336674
1216 => 0.0021116536352662
1217 => 0.0021096413108616
1218 => 0.0021762345290626
1219 => 0.0022496967379268
1220 => 0.0022471529752294
1221 => 0.0022365919135397
1222 => 0.0022522768910775
1223 => 0.0023280977633141
1224 => 0.0023211173924033
1225 => 0.0023278982281566
1226 => 0.0024172953096007
1227 => 0.0025335242320646
1228 => 0.0024795242283871
1229 => 0.0025966886982848
1230 => 0.0026704375214637
1231 => 0.002797978485381
]
'min_raw' => 0.0011423526355987
'max_raw' => 0.002797978485381
'avg_raw' => 0.0019701655604898
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001142'
'max' => '$0.002797'
'avg' => '$0.00197'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00050936730877441
'max_diff' => 0.0011351219512931
'year' => 2028
]
3 => [
'items' => [
101 => 0.0027820097285461
102 => 0.0028316604898602
103 => 0.0027534223210314
104 => 0.0025737716708577
105 => 0.0025453412677926
106 => 0.0026022596547013
107 => 0.0027421879549014
108 => 0.0025978528145655
109 => 0.002627051625473
110 => 0.0026186423659673
111 => 0.0026181942722653
112 => 0.002635296186342
113 => 0.0026104889679979
114 => 0.0025094198977305
115 => 0.0025557392570303
116 => 0.0025378531279663
117 => 0.002557699121662
118 => 0.0026647997645275
119 => 0.0026174480173562
120 => 0.0025675667982549
121 => 0.0026301289165366
122 => 0.0027097919917855
123 => 0.0027048068197047
124 => 0.0026951335022277
125 => 0.002749661486367
126 => 0.0028397257409646
127 => 0.0028640697470749
128 => 0.0028820399946942
129 => 0.0028845177882311
130 => 0.002910040601601
131 => 0.0027727980015336
201 => 0.0029906055324806
202 => 0.0030282148762635
203 => 0.0030211458783799
204 => 0.0030629470811515
205 => 0.0030506481069019
206 => 0.0030328288228643
207 => 0.0030990926206281
208 => 0.0030231265237046
209 => 0.0029153022129874
210 => 0.0028561476636049
211 => 0.0029340471460932
212 => 0.0029816176417315
213 => 0.0030130587132966
214 => 0.003022572762555
215 => 0.0027834517538972
216 => 0.0026545787924898
217 => 0.0027371848832205
218 => 0.0028379700150797
219 => 0.0027722381350373
220 => 0.0027748147002881
221 => 0.0026810983133819
222 => 0.0028462618358287
223 => 0.002822198899852
224 => 0.0029470374542653
225 => 0.0029172437313626
226 => 0.0030190447262819
227 => 0.0029922371125968
228 => 0.0031035140182102
301 => 0.0031479053885613
302 => 0.003222445408346
303 => 0.003277277350332
304 => 0.0033094757154342
305 => 0.0033075426463664
306 => 0.0034351286100629
307 => 0.0033598956247851
308 => 0.0032653852642231
309 => 0.0032636758699769
310 => 0.0033126241249342
311 => 0.0034152062390266
312 => 0.0034418042887017
313 => 0.0034566689698974
314 => 0.0034339031932029
315 => 0.0033522431796806
316 => 0.0033169827998673
317 => 0.0033470256650597
318 => 0.0033102858225422
319 => 0.0033737090981066
320 => 0.0034608028019372
321 => 0.003442818296502
322 => 0.0035029378017841
323 => 0.0035651551649947
324 => 0.0036541287887424
325 => 0.0036773897886739
326 => 0.0037158393370239
327 => 0.0037554165522947
328 => 0.0037681276872038
329 => 0.0037923971877789
330 => 0.0037922692755311
331 => 0.0038654070490398
401 => 0.0039460802781083
402 => 0.0039765325544921
403 => 0.0040465558848883
404 => 0.0039266433854949
405 => 0.0040175983937403
406 => 0.0040996420879291
407 => 0.0040018262134527
408 => 0.0041366426082427
409 => 0.0041418772233519
410 => 0.0042209136966792
411 => 0.0041407950894058
412 => 0.0040932209161546
413 => 0.0042305657717499
414 => 0.0042970226210501
415 => 0.0042770052771971
416 => 0.0041246723020977
417 => 0.0040360079767212
418 => 0.0038039563351397
419 => 0.0040788315284778
420 => 0.0042127152169336
421 => 0.0041243255756885
422 => 0.0041689041694141
423 => 0.0044121105221235
424 => 0.0045047077547901
425 => 0.004485448177699
426 => 0.0044887027291877
427 => 0.0045386665151759
428 => 0.0047602334578072
429 => 0.004627465409901
430 => 0.0047289616078014
501 => 0.004782794825196
502 => 0.00483279811767
503 => 0.0047100058350569
504 => 0.0045502548795542
505 => 0.0044996550460576
506 => 0.0041155369678361
507 => 0.0040955419537244
508 => 0.0040843181463926
509 => 0.0040135536288045
510 => 0.0039579521020129
511 => 0.003913735703556
512 => 0.0037976986698705
513 => 0.0038368577624365
514 => 0.0036519189495531
515 => 0.0037702362482068
516 => 0.0034750694373411
517 => 0.0037208931283592
518 => 0.0035871024695697
519 => 0.0036769392986586
520 => 0.0036766258664251
521 => 0.0035112077812798
522 => 0.0034157980819554
523 => 0.003476596855766
524 => 0.0035417779675036
525 => 0.0035523533835874
526 => 0.0036368623963563
527 => 0.003660447045305
528 => 0.0035889844579286
529 => 0.0034689527612568
530 => 0.0034968333867621
531 => 0.0034152330819694
601 => 0.0032722316865306
602 => 0.0033749377852996
603 => 0.0034100061630877
604 => 0.0034254943565204
605 => 0.0032848689079275
606 => 0.0032406813388526
607 => 0.0032171562478468
608 => 0.0034507997817422
609 => 0.0034635993019495
610 => 0.0033981151468994
611 => 0.0036941097371881
612 => 0.003627117045283
613 => 0.003701964295749
614 => 0.0034943035122284
615 => 0.0035022364338112
616 => 0.0034039264909809
617 => 0.0034589734898931
618 => 0.0034200680453096
619 => 0.0034545262363661
620 => 0.0034751803340089
621 => 0.0035734741451449
622 => 0.0037220154857909
623 => 0.003558792327571
624 => 0.0034876736601359
625 => 0.003531795281426
626 => 0.003649296973201
627 => 0.003827318051041
628 => 0.0037219259899516
629 => 0.0037686971969898
630 => 0.0037789146250215
701 => 0.0037012024210004
702 => 0.0038301834108508
703 => 0.0038993053711513
704 => 0.0039702101996453
705 => 0.0040317748755185
706 => 0.0039418892519142
707 => 0.0040380797537688
708 => 0.0039605671891833
709 => 0.0038910304056485
710 => 0.0038911358642456
711 => 0.0038475144241639
712 => 0.0037629923873505
713 => 0.0037474052269614
714 => 0.0038284916037468
715 => 0.0038935151990203
716 => 0.003898870853769
717 => 0.0039348712571454
718 => 0.0039561759250298
719 => 0.0041649906325892
720 => 0.0042489776353754
721 => 0.0043516753525898
722 => 0.0043916819011711
723 => 0.004512087269259
724 => 0.0044148501556821
725 => 0.0043938122945096
726 => 0.0041017482558239
727 => 0.004149573725797
728 => 0.0042261469176953
729 => 0.0041030109195547
730 => 0.0041811123683751
731 => 0.0041965312487871
801 => 0.0040988268054564
802 => 0.0041510149701991
803 => 0.004012418677355
804 => 0.0037250365062349
805 => 0.0038305033493598
806 => 0.0039081624456552
807 => 0.0037973333399441
808 => 0.0039959902222526
809 => 0.0038799389727184
810 => 0.0038431562980585
811 => 0.0036996539702397
812 => 0.003767381545059
813 => 0.0038589840597676
814 => 0.003802384355613
815 => 0.0039198372402221
816 => 0.0040861818483687
817 => 0.0042047289221267
818 => 0.004213829494445
819 => 0.0041376116680557
820 => 0.0042597512212602
821 => 0.0042606408745625
822 => 0.0041228669595931
823 => 0.0040384812038027
824 => 0.004019308582538
825 => 0.0040672055494711
826 => 0.0041253613095957
827 => 0.0042170567343884
828 => 0.0042724663591636
829 => 0.0044169452735832
830 => 0.00445603712529
831 => 0.0044989872184069
901 => 0.0045563817881293
902 => 0.0046252986847467
903 => 0.004474512438389
904 => 0.0044805034570575
905 => 0.0043400933922269
906 => 0.0041900451011153
907 => 0.0043039130502855
908 => 0.004452780246607
909 => 0.0044186299472872
910 => 0.0044147873409864
911 => 0.0044212495389343
912 => 0.0043955013284916
913 => 0.0042790431269329
914 => 0.004220558547177
915 => 0.0042960185760697
916 => 0.0043361222230866
917 => 0.0043983194822044
918 => 0.0043906523571933
919 => 0.0045508658171826
920 => 0.0046131199231309
921 => 0.004597192658826
922 => 0.0046001236587691
923 => 0.0047128317439448
924 => 0.0048381863148459
925 => 0.0049555974124873
926 => 0.005075033023932
927 => 0.0049310487326841
928 => 0.0048579423893049
929 => 0.0049333694747096
930 => 0.0048933468014808
1001 => 0.0051233289533495
1002 => 0.0051392524185597
1003 => 0.0053692179401012
1004 => 0.005587482603829
1005 => 0.0054503944791592
1006 => 0.0055796624061381
1007 => 0.0057194762085345
1008 => 0.0059891997173291
1009 => 0.0058983663285545
1010 => 0.0058287893762939
1011 => 0.005763039492601
1012 => 0.0058998545630658
1013 => 0.0060758649655447
1014 => 0.006113775920432
1015 => 0.0061752061504488
1016 => 0.0061106197749173
1017 => 0.0061884069502891
1018 => 0.0064630298607685
1019 => 0.0063888243261935
1020 => 0.006283440537962
1021 => 0.0065002289507208
1022 => 0.0065786838345546
1023 => 0.0071293212964417
1024 => 0.0078245238377732
1025 => 0.0075367054207159
1026 => 0.0073580472414062
1027 => 0.0074000361513727
1028 => 0.0076539005853758
1029 => 0.0077354337843232
1030 => 0.007513798443405
1031 => 0.0075920837927035
1101 => 0.0080234437641835
1102 => 0.0082548545491978
1103 => 0.0079405676205336
1104 => 0.0070734624491493
1105 => 0.0062739518808608
1106 => 0.006486018086001
1107 => 0.0064619763595186
1108 => 0.0069254188356216
1109 => 0.0063870545487353
1110 => 0.0063961192226143
1111 => 0.0068691451983289
1112 => 0.0067429499777265
1113 => 0.0065385298822133
1114 => 0.0062754443737828
1115 => 0.0057891064789851
1116 => 0.0053583434430272
1117 => 0.0062031689553431
1118 => 0.0061667385430365
1119 => 0.006113981907332
1120 => 0.0062313860912282
1121 => 0.0068014674824693
1122 => 0.0067883252612278
1123 => 0.0067047211549096
1124 => 0.0067681341326992
1125 => 0.0065274132806095
1126 => 0.0065894525253049
1127 => 0.0062738252343019
1128 => 0.0064165019515953
1129 => 0.006538091288498
1130 => 0.0065625021480421
1201 => 0.0066175010610444
1202 => 0.0061475413711617
1203 => 0.0063585394746275
1204 => 0.0064824810925649
1205 => 0.0059225083536889
1206 => 0.006471412231967
1207 => 0.0061393604185268
1208 => 0.0060266570457943
1209 => 0.0061783972896383
1210 => 0.0061192639690401
1211 => 0.0060684246124148
1212 => 0.0060400553778869
1213 => 0.0061514766660063
1214 => 0.0061462787297383
1215 => 0.0059639718764348
1216 => 0.0057261600180784
1217 => 0.005805977483651
1218 => 0.0057769790501158
1219 => 0.0056718849861117
1220 => 0.0057427056961447
1221 => 0.0054308471307002
1222 => 0.0048943106778506
1223 => 0.005248763093159
1224 => 0.0052351170607397
1225 => 0.0052282361123956
1226 => 0.0054945973061547
1227 => 0.005468992823373
1228 => 0.0054225204364045
1229 => 0.0056710314842809
1230 => 0.0055803216088607
1231 => 0.0058598680709711
]
'min_raw' => 0.0025094198977305
'max_raw' => 0.0082548545491978
'avg_raw' => 0.0053821372234641
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0025094'
'max' => '$0.008254'
'avg' => '$0.005382'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0013670672621318
'max_diff' => 0.0054568760638168
'year' => 2029
]
4 => [
'items' => [
101 => 0.0060439954508486
102 => 0.0059972947914149
103 => 0.0061704674821545
104 => 0.0058078163168492
105 => 0.0059282744869242
106 => 0.0059531007488289
107 => 0.0056679648965255
108 => 0.0054731820334121
109 => 0.0054601922371297
110 => 0.005122465595223
111 => 0.0053028764412953
112 => 0.0054616305199309
113 => 0.0053855996360786
114 => 0.0053615305296091
115 => 0.0054844943746099
116 => 0.0054940497184806
117 => 0.0052761868655992
118 => 0.0053214874515325
119 => 0.0055103984254702
120 => 0.0053167273796849
121 => 0.0049404561737097
122 => 0.0048471357122715
123 => 0.0048346850424783
124 => 0.0045815925497186
125 => 0.0048533718317339
126 => 0.0047347328919023
127 => 0.0051095118813177
128 => 0.0048954401325437
129 => 0.0048862119273138
130 => 0.0048722621416255
131 => 0.004654414977988
201 => 0.0047021096619151
202 => 0.0048606540553943
203 => 0.0049172244811181
204 => 0.0049113237222473
205 => 0.0048598771013727
206 => 0.0048834291009597
207 => 0.0048075599042291
208 => 0.0047807689117828
209 => 0.0046962091701791
210 => 0.0045719297102465
211 => 0.0045892115314003
212 => 0.0043429814017842
213 => 0.0042088221587473
214 => 0.0041716886484651
215 => 0.0041220321665995
216 => 0.0041772974802226
217 => 0.0043422838627642
218 => 0.0041432752816054
219 => 0.0038020890280376
220 => 0.0038225949032301
221 => 0.0038686655165387
222 => 0.0037828132334257
223 => 0.0037015612524952
224 => 0.0037722032577327
225 => 0.0036276381443171
226 => 0.003886135519827
227 => 0.0038791438902499
228 => 0.0039754957264695
301 => 0.0040357465069964
302 => 0.0038968879643038
303 => 0.0038619654163301
304 => 0.0038818588867973
305 => 0.0035530641332282
306 => 0.003948626180478
307 => 0.0039520470174887
308 => 0.0039227557341528
309 => 0.0041333803127052
310 => 0.0045778638689044
311 => 0.0044106312757526
312 => 0.0043458737610524
313 => 0.0042227696782698
314 => 0.0043867985593804
315 => 0.0043742037005603
316 => 0.0043172449725172
317 => 0.0042827961560747
318 => 0.0043462691566284
319 => 0.0042749311488816
320 => 0.0042621168824529
321 => 0.0041844763699544
322 => 0.0041567622394107
323 => 0.0041362438004874
324 => 0.0041136550153331
325 => 0.004163480246609
326 => 0.0040505697174827
327 => 0.0039144106881122
328 => 0.0039030905380811
329 => 0.0039343464675946
330 => 0.0039205180455152
331 => 0.0039030243329164
401 => 0.0038696240714361
402 => 0.0038597149273386
403 => 0.0038919148384223
404 => 0.0038555630161803
405 => 0.0039092021100846
406 => 0.003894615244529
407 => 0.0038131341992965
408 => 0.0037115786487901
409 => 0.0037106745913707
410 => 0.0036887946145985
411 => 0.0036609271745027
412 => 0.0036531750901887
413 => 0.0037662539850882
414 => 0.0040003239133635
415 => 0.0039543703856244
416 => 0.0039875765189228
417 => 0.0041509178294332
418 => 0.0042028391201999
419 => 0.0041659866178368
420 => 0.004115540639639
421 => 0.004117760006662
422 => 0.0042901491852001
423 => 0.0043009008868087
424 => 0.0043280669681431
425 => 0.0043629830597915
426 => 0.004171932979226
427 => 0.0041087615650483
428 => 0.0040788274443942
429 => 0.0039866419387423
430 => 0.0040860561031999
501 => 0.0040281317269095
502 => 0.0040359477042495
503 => 0.0040308575387533
504 => 0.0040336371133097
505 => 0.0038860632645423
506 => 0.00393983141878
507 => 0.0038504314338548
508 => 0.0037307348896592
509 => 0.0037303336248721
510 => 0.00375962918449
511 => 0.0037422030392939
512 => 0.0036953097306384
513 => 0.0037019707038027
514 => 0.0036436135698778
515 => 0.0037090563164512
516 => 0.0037109329802576
517 => 0.0036857339581363
518 => 0.0037865575385914
519 => 0.0038278650417681
520 => 0.0038112785055925
521 => 0.0038267012861737
522 => 0.0039562799621697
523 => 0.003977406940271
524 => 0.0039867901483738
525 => 0.0039742178925529
526 => 0.0038290697465
527 => 0.003835507683995
528 => 0.0037882703702952
529 => 0.0037483598179643
530 => 0.0037499560307543
531 => 0.003770475242661
601 => 0.0038600838444934
602 => 0.0040486598643342
603 => 0.0040558161864399
604 => 0.0040644898575966
605 => 0.0040292096779643
606 => 0.0040185688382014
607 => 0.0040326068524825
608 => 0.0041034260906786
609 => 0.0042855923985546
610 => 0.0042212026588726
611 => 0.0041688527982252
612 => 0.0042147777394341
613 => 0.0042077079547066
614 => 0.0041480318568264
615 => 0.0041463569475163
616 => 0.0040318194360816
617 => 0.0039894775259971
618 => 0.0039540934566935
619 => 0.0039154549767384
620 => 0.0038925487906475
621 => 0.0039277431031586
622 => 0.0039357924588367
623 => 0.00385883947944
624 => 0.0038483510726992
625 => 0.00391119253682
626 => 0.0038835383514264
627 => 0.0039119813668946
628 => 0.0039185803904628
629 => 0.0039175177956799
630 => 0.003888643650066
701 => 0.0039070471694409
702 => 0.0038635173597661
703 => 0.0038161852297108
704 => 0.0037859902796313
705 => 0.0037596411809081
706 => 0.0037742611922984
707 => 0.0037221435212008
708 => 0.0037054700292952
709 => 0.003900812471169
710 => 0.0040451140332663
711 => 0.0040430158314037
712 => 0.004030243567179
713 => 0.0040112665733001
714 => 0.004102037805376
715 => 0.0040704149231488
716 => 0.0040934232121493
717 => 0.0040992797873548
718 => 0.0041170058766141
719 => 0.0041233414299155
720 => 0.0041041909875141
721 => 0.0040399197637854
722 => 0.003879761984978
723 => 0.0038052081066055
724 => 0.0037806040849495
725 => 0.003781498394407
726 => 0.0037568293471957
727 => 0.0037640954871886
728 => 0.0037543024802354
729 => 0.0037357568942489
730 => 0.0037731160546238
731 => 0.0037774213498324
801 => 0.0037687012753921
802 => 0.0037707551685941
803 => 0.0036985566766215
804 => 0.0037040457711593
805 => 0.0036734817952525
806 => 0.0036677514182242
807 => 0.0035904883486415
808 => 0.0034536056214148
809 => 0.0035294519398262
810 => 0.0034378402527915
811 => 0.0034031455187678
812 => 0.0035673849934976
813 => 0.0035508999055286
814 => 0.0035226846008213
815 => 0.0034809482845744
816 => 0.0034654678788936
817 => 0.0033714138344782
818 => 0.0033658566197753
819 => 0.0034124723438604
820 => 0.0033909607911443
821 => 0.0033607504240687
822 => 0.0032513315368968
823 => 0.0031283084803671
824 => 0.0031320217731483
825 => 0.0031711531185051
826 => 0.0032849327827108
827 => 0.0032404770994975
828 => 0.003208223991256
829 => 0.0032021839536072
830 => 0.0032777876704567
831 => 0.0033847827692671
901 => 0.0034349824757486
902 => 0.0033852360912132
903 => 0.0033280901231946
904 => 0.003331568333479
905 => 0.0033547073082352
906 => 0.0033571388873146
907 => 0.0033199427368349
908 => 0.0033304132353173
909 => 0.0033145075906801
910 => 0.0032168946789017
911 => 0.0032151291708615
912 => 0.0031911733880902
913 => 0.0031904480165085
914 => 0.0031496932539645
915 => 0.0031439913809602
916 => 0.0030630703262918
917 => 0.0031163328095261
918 => 0.0030806071321784
919 => 0.0030267601095801
920 => 0.003017476862588
921 => 0.0030171977969736
922 => 0.0030724866492081
923 => 0.003115686727097
924 => 0.0030812285956314
925 => 0.0030733831470395
926 => 0.0031571520126337
927 => 0.0031464916609167
928 => 0.0031372598650816
929 => 0.0033752025317012
930 => 0.003186852344174
1001 => 0.0031047209117593
1002 => 0.0030030676678101
1003 => 0.0030361664766201
1004 => 0.0030431408819591
1005 => 0.0027986831546357
1006 => 0.0026995066851059
1007 => 0.0026654730581497
1008 => 0.0026458862246715
1009 => 0.0026548121906435
1010 => 0.002565541735827
1011 => 0.0026255329578607
1012 => 0.0025482322898334
1013 => 0.0025352725812804
1014 => 0.0026734957514286
1015 => 0.0026927286980666
1016 => 0.0026106749725005
1017 => 0.0026633667476055
1018 => 0.0026442599774819
1019 => 0.0025495573879203
1020 => 0.0025459404455842
1021 => 0.0024984220150991
1022 => 0.0024240648727713
1023 => 0.002390081663459
1024 => 0.0023723829129934
1025 => 0.0023796857623773
1026 => 0.0023759932182579
1027 => 0.0023518968701459
1028 => 0.0023773743927255
1029 => 0.0023122898505739
1030 => 0.0022863726614673
1031 => 0.0022746664684221
1101 => 0.0022169001911361
1102 => 0.0023088320270783
1103 => 0.0023269437568856
1104 => 0.0023450911723957
1105 => 0.0025030520346441
1106 => 0.002495160756359
1107 => 0.0025664940688485
1108 => 0.0025637221874987
1109 => 0.0025433767712536
1110 => 0.0024575428067743
1111 => 0.0024917546951724
1112 => 0.0023864558203908
1113 => 0.0024653528970047
1114 => 0.0024293475660588
1115 => 0.0024531794583938
1116 => 0.0024103275671404
1117 => 0.0024340435730712
1118 => 0.0023312387199238
1119 => 0.0022352409945581
1120 => 0.0022738732815936
1121 => 0.0023158709957391
1122 => 0.002406932740825
1123 => 0.0023526971166949
1124 => 0.0023722022980081
1125 => 0.0023068632057368
1126 => 0.0021720499951923
1127 => 0.0021728130233233
1128 => 0.0021520749479464
1129 => 0.0021341542230123
1130 => 0.0023589267305485
1201 => 0.0023309727161089
1202 => 0.0022864316526303
1203 => 0.0023460516360879
1204 => 0.0023618161060105
1205 => 0.0023622648983069
1206 => 0.0024057620992231
1207 => 0.0024289765631494
1208 => 0.0024330682130336
1209 => 0.0025015119984945
1210 => 0.0025244534525856
1211 => 0.0026189460551908
1212 => 0.0024270069780757
1213 => 0.0024230541190915
1214 => 0.0023468906115205
1215 => 0.0022985865109215
1216 => 0.0023501980346144
1217 => 0.0023959187989308
1218 => 0.0023483112831139
1219 => 0.0023545278196301
1220 => 0.0022906186193228
1221 => 0.0023134631512253
1222 => 0.0023331399395905
1223 => 0.0023222755736034
1224 => 0.0023060110918795
1225 => 0.0023921702176496
1226 => 0.0023873087821133
1227 => 0.0024675421408202
1228 => 0.0025300897814747
1229 => 0.0026421863352558
1230 => 0.0025252077376597
1231 => 0.0025209445726155
]
'min_raw' => 0.0021341542230123
'max_raw' => 0.0061704674821545
'avg_raw' => 0.0041523108525834
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.002134'
'max' => '$0.00617'
'avg' => '$0.004152'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00037526567471823
'max_diff' => -0.0020843870670433
'year' => 2030
]
5 => [
'items' => [
101 => 0.0025626176947559
102 => 0.0025244470726477
103 => 0.002548569588215
104 => 0.0026382998250653
105 => 0.0026401956835749
106 => 0.0026084376108635
107 => 0.0026065051292528
108 => 0.0026126046145123
109 => 0.002648329490191
110 => 0.0026358461209143
111 => 0.0026502921918815
112 => 0.0026683572248321
113 => 0.0027430818605309
114 => 0.0027610977172188
115 => 0.0027173285256179
116 => 0.0027212803935566
117 => 0.0027049095144067
118 => 0.0026890954502744
119 => 0.0027246431569852
120 => 0.0027896072896912
121 => 0.0027892031511933
122 => 0.0028042735672588
123 => 0.0028136623116175
124 => 0.0027733589478489
125 => 0.0027471229400313
126 => 0.0027571834948691
127 => 0.0027732705411452
128 => 0.0027519666825776
129 => 0.0026204693985911
130 => 0.0026603572744736
131 => 0.0026537179815092
201 => 0.0026442628209624
202 => 0.0026843703886061
203 => 0.0026805019158638
204 => 0.0025646261382835
205 => 0.0025720441296061
206 => 0.0025650772509049
207 => 0.0025875886612777
208 => 0.0025232313826114
209 => 0.0025430272480763
210 => 0.0025554430293211
211 => 0.0025627560198569
212 => 0.0025891755562365
213 => 0.0025860755285755
214 => 0.0025889828541645
215 => 0.0026281560521165
216 => 0.0028262806447395
217 => 0.0028370641291787
218 => 0.002783962307926
219 => 0.0028051754381294
220 => 0.0027644508669405
221 => 0.0027917895444105
222 => 0.0028104939732083
223 => 0.0027259722561257
224 => 0.0027209674285814
225 => 0.0026800747726007
226 => 0.0027020481696463
227 => 0.0026670869150036
228 => 0.0026756651840002
301 => 0.0026516795960458
302 => 0.0026948488788808
303 => 0.0027431188449187
304 => 0.0027553137445785
305 => 0.0027232342138078
306 => 0.0027000065193856
307 => 0.0026592263396586
308 => 0.0027270446873903
309 => 0.0027468768389937
310 => 0.0027269405175407
311 => 0.0027223208362428
312 => 0.0027135665485309
313 => 0.0027241780997651
314 => 0.0027467688288369
315 => 0.0027361154581919
316 => 0.0027431521971912
317 => 0.0027163354043797
318 => 0.0027733722899393
319 => 0.002863960590882
320 => 0.0028642518470822
321 => 0.0028535984190116
322 => 0.0028492392657764
323 => 0.0028601703294809
324 => 0.0028660999831249
325 => 0.0029014490387312
326 => 0.0029393799837653
327 => 0.0031163871536712
328 => 0.0030666842486672
329 => 0.0032237355400115
330 => 0.0033479427209069
331 => 0.0033851870235357
401 => 0.003350924017597
402 => 0.0032337121251322
403 => 0.003227961150499
404 => 0.003403125203426
405 => 0.0033536333354523
406 => 0.0033477464352386
407 => 0.0032851197630402
408 => 0.0033221398827737
409 => 0.0033140430395356
410 => 0.0033012617763731
411 => 0.0033718935859808
412 => 0.0035041100282212
413 => 0.0034835028557801
414 => 0.003468120557492
415 => 0.0034007198041134
416 => 0.0034413101121506
417 => 0.0034268566809147
418 => 0.0034889577938783
419 => 0.0034521704702668
420 => 0.0033532583858758
421 => 0.0033690104613335
422 => 0.0033666295668169
423 => 0.0034156282072578
424 => 0.0034009200316184
425 => 0.0033637575594655
426 => 0.0035036581267954
427 => 0.0034945737621209
428 => 0.0035074533142545
429 => 0.0035131232914171
430 => 0.0035982783014263
501 => 0.0036331635843707
502 => 0.0036410831543519
503 => 0.0036742214750245
504 => 0.0036402586427453
505 => 0.0037761341869511
506 => 0.0038664834952902
507 => 0.0039714288662589
508 => 0.0041247822599006
509 => 0.0041824445545082
510 => 0.0041720283771025
511 => 0.0042882991699636
512 => 0.0044972352001805
513 => 0.004214260322519
514 => 0.0045122335558132
515 => 0.0044178986704187
516 => 0.0041942323541604
517 => 0.004179830880246
518 => 0.0043313003064355
519 => 0.0046672449153316
520 => 0.0045830946010553
521 => 0.0046673825550997
522 => 0.0045690561794887
523 => 0.0045641734461798
524 => 0.0046626070625049
525 => 0.0048926025723856
526 => 0.004783340326894
527 => 0.0046266861057802
528 => 0.004742357144841
529 => 0.0046421521859572
530 => 0.00441636236799
531 => 0.0045830302528959
601 => 0.0044715841846874
602 => 0.0045041100721895
603 => 0.0047383531312123
604 => 0.0047101683866204
605 => 0.0047466420559594
606 => 0.0046822669842582
607 => 0.0046221305162723
608 => 0.0045098813329838
609 => 0.0044766498836299
610 => 0.0044858338606891
611 => 0.004476645332507
612 => 0.0044138429460804
613 => 0.004400280776711
614 => 0.0043776765669231
615 => 0.004384682556724
616 => 0.004342180029228
617 => 0.0044223910800833
618 => 0.0044372789579394
619 => 0.0044956498717054
620 => 0.0045017101336106
621 => 0.0046642722975909
622 => 0.0045747357894168
623 => 0.0046348046093102
624 => 0.0046294314886692
625 => 0.0041990798814493
626 => 0.0042583785358998
627 => 0.004350628633282
628 => 0.0043090700894534
629 => 0.0042503160316813
630 => 0.0042028689798371
701 => 0.004130981844583
702 => 0.004232161606983
703 => 0.0043652022352709
704 => 0.0045050842634945
705 => 0.0046731433549716
706 => 0.0046356345221774
707 => 0.0045019425156788
708 => 0.0045079398414282
709 => 0.0045450129493507
710 => 0.0044969999061441
711 => 0.0044828399223765
712 => 0.0045430675850224
713 => 0.0045434823398345
714 => 0.0044882375310552
715 => 0.0044268430357903
716 => 0.0044265857906134
717 => 0.0044156612331815
718 => 0.0045709996339868
719 => 0.0046564200479459
720 => 0.0046662133607444
721 => 0.0046557608799655
722 => 0.0046597836249732
723 => 0.0046100793682008
724 => 0.0047236885598431
725 => 0.0048279475888786
726 => 0.0048000039419278
727 => 0.0047581124427251
728 => 0.0047247438458421
729 => 0.0047921433609715
730 => 0.0047891421666594
731 => 0.0048270369772136
801 => 0.0048253178497158
802 => 0.0048125752502224
803 => 0.0048000043970062
804 => 0.0048498464090636
805 => 0.0048354927100293
806 => 0.0048211167157358
807 => 0.0047922834583255
808 => 0.0047962023768773
809 => 0.0047543181108325
810 => 0.0047349405328666
811 => 0.0044435482535697
812 => 0.0043656787150242
813 => 0.0043901780570312
814 => 0.0043982438765451
815 => 0.0043643549535775
816 => 0.0044129429637629
817 => 0.004405370573843
818 => 0.0044348303133216
819 => 0.0044164251470886
820 => 0.0044171805015307
821 => 0.004471306171027
822 => 0.0044870190831488
823 => 0.0044790273692249
824 => 0.0044846244917173
825 => 0.0046136078171564
826 => 0.0045952705129335
827 => 0.0045855291855411
828 => 0.0045882275998023
829 => 0.0046211856048856
830 => 0.0046304120468686
831 => 0.0045913189638561
901 => 0.0046097554877993
902 => 0.0046882558668058
903 => 0.0047157265567214
904 => 0.0048033998122528
905 => 0.0047661546550352
906 => 0.0048345197530408
907 => 0.0050446507569305
908 => 0.005212517942797
909 => 0.0050581403412693
910 => 0.005366407050356
911 => 0.0056064369016131
912 => 0.0055972241561313
913 => 0.0055553693995741
914 => 0.0052821017954417
915 => 0.0050306368719285
916 => 0.0052409979582119
917 => 0.005241534211882
918 => 0.0052234640080102
919 => 0.0051112315237084
920 => 0.0052195585608345
921 => 0.0052281571676556
922 => 0.0052233442343899
923 => 0.0051372958518186
924 => 0.0050059158760317
925 => 0.0050315872088212
926 => 0.0050736373756115
927 => 0.0049940276372937
928 => 0.0049685875021771
929 => 0.0050158855535427
930 => 0.0051682897299831
1001 => 0.0051394786032443
1002 => 0.0051387262282903
1003 => 0.0052619924462979
1004 => 0.0051737604367192
1005 => 0.0050319110065387
1006 => 0.004996092154654
1007 => 0.0048689593609331
1008 => 0.0049567704343876
1009 => 0.0049599305985942
1010 => 0.0049118373710706
1011 => 0.0050358135068953
1012 => 0.0050346710449781
1013 => 0.0051523679345311
1014 => 0.0053773601824235
1015 => 0.0053108189035256
1016 => 0.0052334386358379
1017 => 0.0052418520164577
1018 => 0.0053341260358634
1019 => 0.0052783350573197
1020 => 0.0052983978821925
1021 => 0.0053340956683751
1022 => 0.0053556330291052
1023 => 0.0052387531216898
1024 => 0.005211502824259
1025 => 0.0051557582792704
1026 => 0.005141215568004
1027 => 0.0051866183367492
1028 => 0.0051746563112883
1029 => 0.0049596649990294
1030 => 0.0049371972106979
1031 => 0.0049378862656894
1101 => 0.004881389943645
1102 => 0.0047952194918562
1103 => 0.0050216702941867
1104 => 0.0050034831255826
1105 => 0.0049834058990188
1106 => 0.0049858652447138
1107 => 0.0050841598628757
1108 => 0.0050271440203446
1109 => 0.0051787299824263
1110 => 0.0051475684657134
1111 => 0.00511560777368
1112 => 0.0051111898324945
1113 => 0.0050988876928198
1114 => 0.0050566990784505
1115 => 0.0050057537914569
1116 => 0.0049721153001785
1117 => 0.0045865135393943
1118 => 0.0046580789832536
1119 => 0.0047404085030183
1120 => 0.0047688283233262
1121 => 0.0047202142540978
1122 => 0.0050586186582098
1123 => 0.0051204484037871
1124 => 0.0049331620713791
1125 => 0.0048981284454361
1126 => 0.0050609154568942
1127 => 0.0049627349890822
1128 => 0.0050069456477263
1129 => 0.0049113863856751
1130 => 0.0051055554286638
1201 => 0.0051040761858784
1202 => 0.005028540042649
1203 => 0.0050923826736573
1204 => 0.0050812884454296
1205 => 0.004996008325761
1206 => 0.0051082589605687
1207 => 0.0051083146354831
1208 => 0.0050356127399223
1209 => 0.0049507128423986
1210 => 0.0049355347459674
1211 => 0.0049241000891969
1212 => 0.0050041334231179
1213 => 0.0050758910600538
1214 => 0.0052094142321646
1215 => 0.0052429851300656
1216 => 0.0053740145795144
1217 => 0.0052959929220758
1218 => 0.0053305789122687
1219 => 0.0053681268971101
1220 => 0.0053861287818246
1221 => 0.0053567956767168
1222 => 0.0055603383455838
1223 => 0.0055775235832224
1224 => 0.0055832856447509
1225 => 0.0055146522020289
1226 => 0.0055756147630233
1227 => 0.0055470923996018
1228 => 0.0056212996654838
1229 => 0.0056329363123
1230 => 0.0056230804864324
1231 => 0.0056267741418038
]
'min_raw' => 0.0025232313826114
'max_raw' => 0.0056329363123
'avg_raw' => 0.0040780838474557
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.002523'
'max' => '$0.005632'
'avg' => '$0.004078'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00038907715959915
'max_diff' => -0.00053753116985446
'year' => 2031
]
6 => [
'items' => [
101 => 0.0054530863813132
102 => 0.0054440797546558
103 => 0.0053212737611015
104 => 0.0053713181112109
105 => 0.0052777625973694
106 => 0.0053074300145371
107 => 0.0053205071293431
108 => 0.0053136763866882
109 => 0.0053741475436802
110 => 0.0053227347067958
111 => 0.005187047777205
112 => 0.005051323879801
113 => 0.0050496199768274
114 => 0.0050138862703667
115 => 0.0049880573455504
116 => 0.0049930329128004
117 => 0.0050105674607626
118 => 0.0049870382057468
119 => 0.0049920593652679
120 => 0.0050754440691298
121 => 0.0050921662768168
122 => 0.0050353376813081
123 => 0.0048071626700133
124 => 0.0047511679499079
125 => 0.0047914158442961
126 => 0.0047721799430749
127 => 0.003851521667435
128 => 0.0040678166729794
129 => 0.0039393015253693
130 => 0.0039985272180857
131 => 0.0038673465312119
201 => 0.0039299528307569
202 => 0.003918391733247
203 => 0.0042661877015278
204 => 0.0042607573458608
205 => 0.0042633565697505
206 => 0.0041392888412504
207 => 0.0043369321015571
208 => 0.0044342982786059
209 => 0.0044162783905511
210 => 0.0044208136081512
211 => 0.0043428835438857
212 => 0.0042641111031193
213 => 0.0041767403433176
214 => 0.0043390644156769
215 => 0.0043210167497948
216 => 0.004362411601983
217 => 0.0044676903660723
218 => 0.0044831930639995
219 => 0.0045040288472266
220 => 0.0044965607021318
221 => 0.0046744822167693
222 => 0.0046529347473828
223 => 0.0047048579489743
224 => 0.0045980479838777
225 => 0.0044771823698758
226 => 0.004500154971703
227 => 0.004497942525413
228 => 0.0044697755448143
229 => 0.0044443476541606
301 => 0.004402017380486
302 => 0.0045359566300943
303 => 0.004530518941162
304 => 0.0046185488043542
305 => 0.0046029886709585
306 => 0.0044990742919316
307 => 0.0045027856143076
308 => 0.004527746040887
309 => 0.0046141343622713
310 => 0.0046397802978236
311 => 0.0046279000786619
312 => 0.0046560196762136
313 => 0.0046782442595901
314 => 0.00465881074171
315 => 0.0049339483732299
316 => 0.0048196920460941
317 => 0.0048753797849497
318 => 0.0048886609825355
319 => 0.0048546414741929
320 => 0.0048620190874051
321 => 0.0048731941611424
322 => 0.0049410470205716
323 => 0.0051191125570967
324 => 0.0051979765710906
325 => 0.0054352428482732
326 => 0.0051914280125685
327 => 0.0051769610492239
328 => 0.0052196998704996
329 => 0.0053590002923919
330 => 0.0054718902005122
331 => 0.0055093422958108
401 => 0.0055142922084712
402 => 0.0055845548290196
403 => 0.0056248280527976
404 => 0.0055760230987946
405 => 0.0055346660103688
406 => 0.0053865300530583
407 => 0.0054036771934778
408 => 0.0055218039869672
409 => 0.0056886650404045
410 => 0.0058318491831874
411 => 0.005781711086856
412 => 0.0061642293698845
413 => 0.0062021544951997
414 => 0.0061969144691473
415 => 0.0062833135486307
416 => 0.0061118289707226
417 => 0.0060385159913097
418 => 0.0055436078823093
419 => 0.005682656873899
420 => 0.0058847727492356
421 => 0.0058580219552391
422 => 0.0057112400039969
423 => 0.0058317378359151
424 => 0.0057918974843673
425 => 0.0057604737461239
426 => 0.0059044319828084
427 => 0.0057461439880954
428 => 0.0058831937054043
429 => 0.0057074260253579
430 => 0.0057819401134567
501 => 0.0057396423132109
502 => 0.0057670141737934
503 => 0.0056069988361272
504 => 0.0056933392281791
505 => 0.005603406791957
506 => 0.0056033641522727
507 => 0.0056013788887586
508 => 0.0057071840011524
509 => 0.0057106343020691
510 => 0.0056324441641474
511 => 0.0056211757437133
512 => 0.0056628410000762
513 => 0.0056140618970232
514 => 0.0056368853323297
515 => 0.005614753195628
516 => 0.0056097707854824
517 => 0.0055700700937546
518 => 0.005552965944165
519 => 0.0055596729219387
520 => 0.005536778549113
521 => 0.0055229838613598
522 => 0.0055986347781572
523 => 0.0055582175450616
524 => 0.0055924402575206
525 => 0.005553439157423
526 => 0.0054182443525141
527 => 0.005340492390552
528 => 0.0050851219366442
529 => 0.0051575446805864
530 => 0.0052055610347468
531 => 0.0051896916299832
601 => 0.0052237852520598
602 => 0.0052258783235584
603 => 0.0052147941394779
604 => 0.0052019600742847
605 => 0.005195713161117
606 => 0.0052422725338693
607 => 0.0052693018168685
608 => 0.0052103801182627
609 => 0.0051965755886816
610 => 0.0052561486791281
611 => 0.0052924882298863
612 => 0.0055607990552548
613 => 0.005540921722679
614 => 0.0055908099267148
615 => 0.0055851932805373
616 => 0.005637484066181
617 => 0.0057229574009737
618 => 0.0055491662126199
619 => 0.005579330353671
620 => 0.005571934802877
621 => 0.0056526774872281
622 => 0.0056529295570753
623 => 0.0056045202844106
624 => 0.0056307637364729
625 => 0.0056161153614832
626 => 0.0056425869549362
627 => 0.0055406562487838
628 => 0.0056647968461376
629 => 0.0057351765653939
630 => 0.0057361537878641
701 => 0.0057695132162235
702 => 0.0058034083274846
703 => 0.0058684670419081
704 => 0.00580159387525
705 => 0.0056812955584036
706 => 0.0056899807083187
707 => 0.0056194498491671
708 => 0.0056206354856519
709 => 0.0056143064651762
710 => 0.0056333003320503
711 => 0.0055448243344449
712 => 0.0055655894742395
713 => 0.0055365181569265
714 => 0.0055792671583047
715 => 0.0055332762994848
716 => 0.0055719312365185
717 => 0.0055886134259108
718 => 0.0056501710639101
719 => 0.0055241841863013
720 => 0.0052672884142952
721 => 0.0053212910201311
722 => 0.0052414169242867
723 => 0.0052488095759592
724 => 0.0052637439088695
725 => 0.0052153368496976
726 => 0.0052245713911059
727 => 0.0052242414683043
728 => 0.0052213983718391
729 => 0.0052088058261791
730 => 0.005190544143613
731 => 0.005263293066307
801 => 0.0052756545258785
802 => 0.0053031325192452
803 => 0.0053848883890033
804 => 0.0053767190496783
805 => 0.00539004358106
806 => 0.0053609562038678
807 => 0.0052501588559626
808 => 0.0052561756850159
809 => 0.0051811457303072
810 => 0.0053012138346129
811 => 0.0052727801226918
812 => 0.005254448723644
813 => 0.0052494468315746
814 => 0.0053314053583205
815 => 0.0053559286340654
816 => 0.005340647374317
817 => 0.0053093050647475
818 => 0.0053694915646429
819 => 0.0053855949329504
820 => 0.0053891998832451
821 => 0.0054958388214432
822 => 0.0053951598152795
823 => 0.0054193942527264
824 => 0.0056084644156614
825 => 0.0054370038677783
826 => 0.0055278303440185
827 => 0.0055233848606447
828 => 0.0055698486124888
829 => 0.0055195734768182
830 => 0.0055201966973791
831 => 0.0055614533612894
901 => 0.0055035158175059
902 => 0.0054891696668875
903 => 0.0054693505625574
904 => 0.0055126248517948
905 => 0.0055385658310649
906 => 0.005747631072432
907 => 0.0058826967528884
908 => 0.0058768331954894
909 => 0.0059304151339968
910 => 0.0059062759799449
911 => 0.0058283242839243
912 => 0.0059613783238349
913 => 0.0059192744583897
914 => 0.0059227454499008
915 => 0.0059226162594234
916 => 0.0059506116491606
917 => 0.005930774349792
918 => 0.0058916729964794
919 => 0.005917630299592
920 => 0.0059947142099309
921 => 0.006233985032846
922 => 0.006367884155266
923 => 0.0062259241375476
924 => 0.0063238462568494
925 => 0.006265127878487
926 => 0.0062544570024181
927 => 0.0063159593297274
928 => 0.0063775693087191
929 => 0.0063736450194046
930 => 0.006328919338364
1001 => 0.0063036549360164
1002 => 0.0064949654547885
1003 => 0.0066359197861302
1004 => 0.0066263076457025
1005 => 0.0066687325075148
1006 => 0.0067932932139471
1007 => 0.0068046814838976
1008 => 0.0068032468236403
1009 => 0.0067750198083247
1010 => 0.006897666000059
1011 => 0.0069999796109581
1012 => 0.006768486069836
1013 => 0.0068566357798223
1014 => 0.0068962090246415
1015 => 0.0069543142888886
1016 => 0.0070523476092466
1017 => 0.0071588377972094
1018 => 0.0071738966773928
1019 => 0.0071632116812689
1020 => 0.0070929785396976
1021 => 0.0072095013740586
1022 => 0.0072777577176306
1023 => 0.007318402808209
1024 => 0.0074214719952178
1025 => 0.0068964534155291
1026 => 0.006524819169709
1027 => 0.0064667831157606
1028 => 0.0065848017136198
1029 => 0.0066159222766945
1030 => 0.006603377616741
1031 => 0.006185069485563
1101 => 0.0064645808100208
1102 => 0.0067653114931578
1103 => 0.0067768637834614
1104 => 0.0069274158514218
1105 => 0.0069764417760875
1106 => 0.0070976559241062
1107 => 0.0070900739461446
1108 => 0.0071195876622488
1109 => 0.0071128029700228
1110 => 0.0073373266545773
1111 => 0.0075850096207307
1112 => 0.0075764331471965
1113 => 0.0075408257903601
1114 => 0.0075937087872187
1115 => 0.0078493441516088
1116 => 0.007825809343729
1117 => 0.007848671404894
1118 => 0.0081500799064877
1119 => 0.008541953833419
1120 => 0.0083598890508604
1121 => 0.0087549172412826
1122 => 0.0090035665476087
1123 => 0.0094335798120816
1124 => 0.0093797400335097
1125 => 0.0095471410417859
1126 => 0.0092833555931649
1127 => 0.0086776508832964
1128 => 0.0085817957944152
1129 => 0.0087737001097928
1130 => 0.0092454781433993
1201 => 0.008758842140599
1202 => 0.0088572879701694
1203 => 0.0088289355646304
1204 => 0.0088274247854291
1205 => 0.0088850850827563
1206 => 0.0088014458141244
1207 => 0.0084606843873008
1208 => 0.0086168533410943
1209 => 0.0085565490081855
1210 => 0.0086234611615337
1211 => 0.0089845584564826
1212 => 0.0088249087349013
1213 => 0.0086567307221057
1214 => 0.0088676632718401
1215 => 0.00913625289194
1216 => 0.0091194450362161
1217 => 0.0090868307709731
1218 => 0.0092706756765207
1219 => 0.0095743335989822
1220 => 0.0096564111152271
1221 => 0.0097169990597182
1222 => 0.0097253531136219
1223 => 0.0098114050608446
1224 => 0.0093486820527448
1225 => 0.010083035350169
1226 => 0.010209837878534
1227 => 0.010186004258627
1228 => 0.010326939932239
1229 => 0.010285473081869
1230 => 0.010225394121633
1231 => 0.010448807142185
]
'min_raw' => 0.003851521667435
'max_raw' => 0.010448807142185
'avg_raw' => 0.0071501644048099
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.003851'
'max' => '$0.010448'
'avg' => '$0.00715'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0013282902848236
'max_diff' => 0.0048158708298847
'year' => 2032
]
7 => [
'items' => [
101 => 0.010192682142624
102 => 0.0098291449509878
103 => 0.0096297012577059
104 => 0.0098923448016833
105 => 0.010052732048994
106 => 0.010158737816921
107 => 0.010190815098246
108 => 0.0093846019226602
109 => 0.0089500977356522
110 => 0.0092286099379237
111 => 0.0095684140465803
112 => 0.0093467944237641
113 => 0.0093554814933971
114 => 0.0090395101518736
115 => 0.0095963704991518
116 => 0.0095152406304861
117 => 0.0099361425326401
118 => 0.0098356909157422
119 => 0.010178920077631
120 => 0.010088536336444
121 => 0.010463714192825
122 => 0.01061338279727
123 => 0.010864699678192
124 => 0.011049569398842
125 => 0.011158128434802
126 => 0.011151610957478
127 => 0.011581775941848
128 => 0.011328122679385
129 => 0.011009474400247
130 => 0.0110037110582
131 => 0.011168743517246
201 => 0.011514606276963
202 => 0.01160428345846
203 => 0.01165440076893
204 => 0.011577644363349
205 => 0.011302321926438
206 => 0.011183439094096
207 => 0.011284730711619
208 => 0.011160859767477
209 => 0.011374695769114
210 => 0.011668338272267
211 => 0.011607702256554
212 => 0.011810399366023
213 => 0.012020169549965
214 => 0.01232015033437
215 => 0.01239857641967
216 => 0.012528211756394
217 => 0.012661649100872
218 => 0.012704505579682
219 => 0.012786331895313
220 => 0.012785900630239
221 => 0.01303248973994
222 => 0.013304485164169
223 => 0.013407157140107
224 => 0.013643245687411
225 => 0.013238952323683
226 => 0.013545613484258
227 => 0.013822229527323
228 => 0.01349243647724
301 => 0.013946979364854
302 => 0.013964628235164
303 => 0.014231105223137
304 => 0.013960979745013
305 => 0.013800580098374
306 => 0.014263647868125
307 => 0.01448771177541
308 => 0.014420221903043
309 => 0.013906620641946
310 => 0.013607682678594
311 => 0.012825304367674
312 => 0.013752065273186
313 => 0.014203463476276
314 => 0.01390545162965
315 => 0.014055751470774
316 => 0.014875738669059
317 => 0.015187936703927
318 => 0.015123001695103
319 => 0.015133974642673
320 => 0.015302431035493
321 => 0.016049459451884
322 => 0.015601822708799
323 => 0.015944024226259
324 => 0.01612552667722
325 => 0.016294116268914
326 => 0.015880113515001
327 => 0.015341502015068
328 => 0.015170901143666
329 => 0.013875820224675
330 => 0.01380840563859
331 => 0.01377056378855
401 => 0.01353197627688
402 => 0.013344511847328
403 => 0.01319543317284
404 => 0.012804206212323
405 => 0.012936233826909
406 => 0.012312699707257
407 => 0.012711614740318
408 => 0.011716439229596
409 => 0.012545250966725
410 => 0.012094166419651
411 => 0.012397057561132
412 => 0.012396000802473
413 => 0.011838282179284
414 => 0.011516601716719
415 => 0.011721589027456
416 => 0.011941351696479
417 => 0.011977007450158
418 => 0.012261935486939
419 => 0.012341452777497
420 => 0.012100511674799
421 => 0.011695816429125
422 => 0.011789817904579
423 => 0.011514696779819
424 => 0.011032557591059
425 => 0.011378838373769
426 => 0.011497073857878
427 => 0.011549293383387
428 => 0.011075164865301
429 => 0.010926183391087
430 => 0.010846866904292
501 => 0.011634612391291
502 => 0.011677766867304
503 => 0.011456982466595
504 => 0.012454948893435
505 => 0.012229078355397
506 => 0.012481431086011
507 => 0.011781288255959
508 => 0.011808034654934
509 => 0.011476575818901
510 => 0.011662170618992
511 => 0.011530998196287
512 => 0.011647176393228
513 => 0.011716813125454
514 => 0.012048217572354
515 => 0.012549035073167
516 => 0.011998716799351
517 => 0.011758935246747
518 => 0.0119076943734
519 => 0.012303859530926
520 => 0.012904070023898
521 => 0.012548733331696
522 => 0.012706425721687
523 => 0.012740874493654
524 => 0.012478862372104
525 => 0.01291373078455
526 => 0.013146780299644
527 => 0.013385840879329
528 => 0.013593410482343
529 => 0.013290354826748
530 => 0.013614667819557
531 => 0.013353328796303
601 => 0.013118880675712
602 => 0.013119236236735
603 => 0.012972163505948
604 => 0.012687191557691
605 => 0.012634638358178
606 => 0.01290802673878
607 => 0.013127258330047
608 => 0.013145315293953
609 => 0.013266693167404
610 => 0.013338523342621
611 => 0.014042556708134
612 => 0.014325724751814
613 => 0.014671977275528
614 => 0.014806862147237
615 => 0.01521281725218
616 => 0.014884975534877
617 => 0.014814044917117
618 => 0.013829330619429
619 => 0.01399057753051
620 => 0.014248749393165
621 => 0.013833587778353
622 => 0.01409691226592
623 => 0.014148898097741
624 => 0.013819480745545
625 => 0.013995436786637
626 => 0.013528149708829
627 => 0.012559220654515
628 => 0.01291480947957
629 => 0.013176642544715
630 => 0.012802974476969
701 => 0.013472760025453
702 => 0.013081485135209
703 => 0.012957469779508
704 => 0.012473641662255
705 => 0.012701989909346
706 => 0.01301083418317
707 => 0.012820004328947
708 => 0.013216004929706
709 => 0.013776847389882
710 => 0.014176537125749
711 => 0.014207220340702
712 => 0.013950246617671
713 => 0.014362048648812
714 => 0.014365048177034
715 => 0.013900533803647
716 => 0.013616021336375
717 => 0.013551379505191
718 => 0.013712867473265
719 => 0.013908943678831
720 => 0.014218101205489
721 => 0.014404918623996
722 => 0.014892039371157
723 => 0.015023840278492
724 => 0.015168649516116
725 => 0.015362159315096
726 => 0.015594517443665
727 => 0.015086131086511
728 => 0.015106330224231
729 => 0.014632927887537
730 => 0.014127029598017
731 => 0.014510943338651
801 => 0.015012859484625
802 => 0.01489771936617
803 => 0.014884763750745
804 => 0.014906551502302
805 => 0.014819739613112
806 => 0.014427092655705
807 => 0.014229907811795
808 => 0.014484326567658
809 => 0.014619538813523
810 => 0.014829241215112
811 => 0.014803390967836
812 => 0.015343561833936
813 => 0.015553455898584
814 => 0.015499756014974
815 => 0.015509638085918
816 => 0.015889641264115
817 => 0.016312282951885
818 => 0.016708142664963
819 => 0.017110828167678
820 => 0.016625375077073
821 => 0.016378891936248
822 => 0.016633199620841
823 => 0.016498260383756
824 => 0.017273661265623
825 => 0.01732734834032
826 => 0.018102693151877
827 => 0.018838587704388
828 => 0.018376385520876
829 => 0.018812221361884
830 => 0.019283613358151
831 => 0.020193004999546
901 => 0.019886753887508
902 => 0.019652170335254
903 => 0.019430490011873
904 => 0.019891771574068
905 => 0.02048520293468
906 => 0.02061302236594
907 => 0.020820138675364
908 => 0.020602381200983
909 => 0.020864646093676
910 => 0.021790556409916
911 => 0.021540367269232
912 => 0.021185058469548
913 => 0.021915975738848
914 => 0.022180491857239
915 => 0.024037004504271
916 => 0.026380928409862
917 => 0.025410528521913
918 => 0.024808169996854
919 => 0.024949738538378
920 => 0.025805660201869
921 => 0.026080555074586
922 => 0.025333296048595
923 => 0.025597240569463
924 => 0.0270516008299
925 => 0.02783181844816
926 => 0.026772178125356
927 => 0.023848672500685
928 => 0.021153066799654
929 => 0.021868062816274
930 => 0.021787004456899
1001 => 0.023349533121601
1002 => 0.021534400340969
1003 => 0.021564962521828
1004 => 0.023159802624569
1005 => 0.022734326627639
1006 => 0.02204511000346
1007 => 0.021158098843744
1008 => 0.019518376676406
1009 => 0.018066029025759
1010 => 0.020914417224366
1011 => 0.020791589545784
1012 => 0.020613716865155
1013 => 0.02100955326806
1014 => 0.022931622480441
1015 => 0.022887312563964
1016 => 0.02260543548246
1017 => 0.022819236764431
1018 => 0.022007629605017
1019 => 0.022216799249949
1020 => 0.021152639801939
1021 => 0.021633684315664
1022 => 0.022043631254128
1023 => 0.022125934171393
1024 => 0.022311366846481
1025 => 0.020726864940504
1026 => 0.021438259777756
1027 => 0.02185613759596
1028 => 0.019968150410791
1029 => 0.02181881815965
1030 => 0.02069928228752
1031 => 0.020319294997654
1101 => 0.020830897823939
1102 => 0.020631525704986
1103 => 0.020460117264633
1104 => 0.020364468409746
1105 => 0.020740133061826
1106 => 0.02072260785679
1107 => 0.02010794757262
1108 => 0.019306148288677
1109 => 0.019575258446533
1110 => 0.019477488203263
1111 => 0.01912315622904
1112 => 0.01936193319746
1113 => 0.018310480270794
1114 => 0.016501510160233
1115 => 0.017696571225523
1116 => 0.017650562674485
1117 => 0.01762736307673
1118 => 0.018525418438234
1119 => 0.018439091136888
1120 => 0.018282406239625
1121 => 0.019120278588028
1122 => 0.018814443909887
1123 => 0.019756954324203
1124 => 0.020377752640823
1125 => 0.020220298107006
1126 => 0.020804161924366
1127 => 0.019581458201043
1128 => 0.019987591331572
1129 => 0.020071294806898
1130 => 0.019109939373308
1201 => 0.018453215351016
1202 => 0.018409419345931
1203 => 0.017270750393422
1204 => 0.017879018156837
1205 => 0.018414268616813
1206 => 0.018157925183598
1207 => 0.018076774510685
1208 => 0.018491355699167
1209 => 0.018523572208159
1210 => 0.017789032388971
1211 => 0.017941766477231
1212 => 0.018578693015205
1213 => 0.017925717562659
1214 => 0.016657092921298
1215 => 0.016342456470132
1216 => 0.016300478167646
1217 => 0.015447159157953
1218 => 0.016363481982291
1219 => 0.015963482513543
1220 => 0.01722707604259
1221 => 0.016505318195586
1222 => 0.016474204657361
1223 => 0.01642717198097
1224 => 0.015692685059163
1225 => 0.01585349101596
1226 => 0.016388034507791
1227 => 0.01657876564774
1228 => 0.016558870827229
1229 => 0.016385414953062
1230 => 0.016464822164018
1231 => 0.016209023870222
]
'min_raw' => 0.0089500977356522
'max_raw' => 0.02783181844816
'avg_raw' => 0.018390958091906
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.00895'
'max' => '$0.027831'
'avg' => '$0.01839'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0050985760682172
'max_diff' => 0.017383011305976
'year' => 2033
]
8 => [
'items' => [
101 => 0.016118696168702
102 => 0.015833597096113
103 => 0.015414580220035
104 => 0.015472847086634
105 => 0.014642665013394
106 => 0.014190337758796
107 => 0.0140651395363
108 => 0.013897719240786
109 => 0.014084050104167
110 => 0.014640313211888
111 => 0.013969341886175
112 => 0.012819008611408
113 => 0.012888145601294
114 => 0.013043475890611
115 => 0.012754018924081
116 => 0.012480072197542
117 => 0.012718246650267
118 => 0.012230835277172
119 => 0.013102377226414
120 => 0.013078804459155
121 => 0.01340366140204
122 => 0.013606801115162
123 => 0.01313862984368
124 => 0.013020886034972
125 => 0.01308795825957
126 => 0.011979403792195
127 => 0.013313068851758
128 => 0.013324602442575
129 => 0.013225844835755
130 => 0.013935980307684
131 => 0.01543458765026
201 => 0.014870751286642
202 => 0.014652416804605
203 => 0.014237362794651
204 => 0.014790397619446
205 => 0.014747933173589
206 => 0.01455589284526
207 => 0.014439746255485
208 => 0.014653749908395
209 => 0.014413228834616
210 => 0.014370024640688
211 => 0.014108254232112
212 => 0.014014814106045
213 => 0.013945634756664
214 => 0.013869475090417
215 => 0.01403746433635
216 => 0.01365677860424
217 => 0.013197708930397
218 => 0.01315954225422
219 => 0.013264923802794
220 => 0.013218300312283
221 => 0.013159319038885
222 => 0.013046707725372
223 => 0.013013298354213
224 => 0.013121862602557
225 => 0.012999299895865
226 => 0.013180147845926
227 => 0.013130967210283
228 => 0.012856248177457
301 => 0.012513846548542
302 => 0.012510798455833
303 => 0.012437028586535
304 => 0.012343071566609
305 => 0.012316934873111
306 => 0.012698188262181
307 => 0.013487371367602
308 => 0.013332435840456
309 => 0.01344439263725
310 => 0.013995109269762
311 => 0.014170165526611
312 => 0.014045914741934
313 => 0.013875832604415
314 => 0.013883315355284
315 => 0.014464537506553
316 => 0.014500787619186
317 => 0.014592379959081
318 => 0.014710101999837
319 => 0.01406596331452
320 => 0.013852976481132
321 => 0.013752051503413
322 => 0.013441241634922
323 => 0.013776423431266
324 => 0.013581127352452
325 => 0.013607479465748
326 => 0.013590317617393
327 => 0.013599689147074
328 => 0.013102133612677
329 => 0.013283416698662
330 => 0.01298199840778
331 => 0.012578433152078
401 => 0.012577080259833
402 => 0.012675852284435
403 => 0.012617098819252
404 => 0.012458994755134
405 => 0.012481452691212
406 => 0.012284697539819
407 => 0.012505342328958
408 => 0.012511669632005
409 => 0.012426709369584
410 => 0.012766643110366
411 => 0.012905914241324
412 => 0.012849991576573
413 => 0.012901990558087
414 => 0.013338874111101
415 => 0.013410105192808
416 => 0.013441741334042
417 => 0.013399353095775
418 => 0.012909975987437
419 => 0.012931681943184
420 => 0.012772418042041
421 => 0.012637856828392
422 => 0.012643238571257
423 => 0.012712420526806
424 => 0.013014542184157
425 => 0.013650339401008
426 => 0.013674467440626
427 => 0.013703711328507
428 => 0.013584761739693
429 => 0.013548885405513
430 => 0.013596215550764
501 => 0.013834987556784
502 => 0.014449173982233
503 => 0.014232079479347
504 => 0.014055578269224
505 => 0.014210417414887
506 => 0.014186581142081
507 => 0.013985379011626
508 => 0.013979731937949
509 => 0.013593560721393
510 => 0.013450802015325
511 => 0.013331502155231
512 => 0.01320122982241
513 => 0.013124000016746
514 => 0.013242660098565
515 => 0.013269799063222
516 => 0.013010346720501
517 => 0.012974984324897
518 => 0.013186858708631
519 => 0.013093620691823
520 => 0.013189518304302
521 => 0.013211767372992
522 => 0.013208184760493
523 => 0.013110833562627
524 => 0.013172882313092
525 => 0.01302611852062
526 => 0.012866534939514
527 => 0.012764730557177
528 => 0.012675892731197
529 => 0.012725185120336
530 => 0.01254946675349
531 => 0.012493250911425
601 => 0.013151861592576
602 => 0.013638384384
603 => 0.013631310149929
604 => 0.013588247569364
605 => 0.01352426530957
606 => 0.013830306855959
607 => 0.013723688100691
608 => 0.013801262153444
609 => 0.013821008005642
610 => 0.013880772753176
611 => 0.013902133513466
612 => 0.013837566459868
613 => 0.013620871541793
614 => 0.013080888408685
615 => 0.012829524802566
616 => 0.012746570625755
617 => 0.01274958585253
618 => 0.012666412437519
619 => 0.012690910735811
620 => 0.012657892929142
621 => 0.012595365191177
622 => 0.012721324208715
623 => 0.012735839812096
624 => 0.012706439472305
625 => 0.012713364316634
626 => 0.012469942060211
627 => 0.012488448925681
628 => 0.012385400347002
629 => 0.012366079980769
630 => 0.012105582147336
701 => 0.011644072475644
702 => 0.011899793633589
703 => 0.011590918434628
704 => 0.011473942716558
705 => 0.012027687572444
706 => 0.011972106947404
707 => 0.011876977077654
708 => 0.011736260173491
709 => 0.011684066904931
710 => 0.01136695712754
711 => 0.011348220590177
712 => 0.011505388758536
713 => 0.011432861056665
714 => 0.011331004694849
715 => 0.010962091277367
716 => 0.010547310453081
717 => 0.010559830078947
718 => 0.01069176414188
719 => 0.011075380223593
720 => 0.010925494783842
721 => 0.010816751177566
722 => 0.010796386768931
723 => 0.011051289978772
724 => 0.011412031424571
725 => 0.011581283239804
726 => 0.011413559831162
727 => 0.011220888210183
728 => 0.011232615238997
729 => 0.0113106299079
730 => 0.011318828146534
731 => 0.011193418728239
801 => 0.011228720744899
802 => 0.011175093753508
803 => 0.010845985006331
804 => 0.01084003247271
805 => 0.010759263878557
806 => 0.010756818237626
807 => 0.010619410710302
808 => 0.010600186447376
809 => 0.010327355461834
810 => 0.010506933642726
811 => 0.010386482027261
812 => 0.010204933031092
813 => 0.010173633915722
814 => 0.01017269302652
815 => 0.010359103251973
816 => 0.010504755330708
817 => 0.010388577334682
818 => 0.010362125857003
819 => 0.010644558435909
820 => 0.010608616315813
821 => 0.010577490671612
822 => 0.011379730984746
823 => 0.010744695177308
824 => 0.010467783318688
825 => 0.010125052309511
826 => 0.010236647254299
827 => 0.010260161948837
828 => 0.0094359556536723
829 => 0.0091015752623726
830 => 0.0089868285129377
831 => 0.0089207901363571
901 => 0.0089508846538226
902 => 0.0086499030827448
903 => 0.0088521676762848
904 => 0.0085915430770703
905 => 0.0085478485148661
906 => 0.0090138775834541
907 => 0.0090787228058458
908 => 0.0088020729412914
909 => 0.0089797269398801
910 => 0.0089153071304165
911 => 0.0085960107377858
912 => 0.0085838159641726
913 => 0.0084236042581615
914 => 0.0081729039613533
915 => 0.0080583271985249
916 => 0.0079986546256429
917 => 0.0080232766922093
918 => 0.0080108270219056
919 => 0.0079295845018929
920 => 0.0080154837480537
921 => 0.0077960466701319
922 => 0.0077086650575788
923 => 0.0076691968104266
924 => 0.0074744337734441
925 => 0.0077843883767989
926 => 0.007845453338365
927 => 0.0079066386167693
928 => 0.0084392146923151
929 => 0.0084126086966252
930 => 0.0086531139400165
1001 => 0.0086437683485191
1002 => 0.0085751723571773
1003 => 0.008285777153199
1004 => 0.0084011249235312
1005 => 0.0080461024154721
1006 => 0.008312109417694
1007 => 0.0081907149305979
1008 => 0.0082710658194949
1009 => 0.0081265876763105
1010 => 0.0082065478461051
1011 => 0.0078599341061131
1012 => 0.0075362710726954
1013 => 0.0076665225256556
1014 => 0.0078081207510838
1015 => 0.0081151417823689
1016 => 0.007932282589004
1017 => 0.0079980456696097
1018 => 0.0077777503581875
1019 => 0.0073232182064787
1020 => 0.0073257908090953
1021 => 0.0072558709400761
1022 => 0.0071954499647755
1023 => 0.0079532861670493
1024 => 0.0078590372556791
1025 => 0.0077088639504032
1026 => 0.0079098768871649
1027 => 0.007963027898149
1028 => 0.0079645410327102
1029 => 0.0081111948824767
1030 => 0.0081894640683862
1031 => 0.0082032593516408
1101 => 0.0084340223529146
1102 => 0.0085113710671039
1103 => 0.0088299594740501
1104 => 0.0081828234747982
1105 => 0.0081694961347532
1106 => 0.0079127055514112
1107 => 0.0077498449037572
1108 => 0.0079238567592895
1109 => 0.008078007508304
1110 => 0.0079174954448767
1111 => 0.0079384549317657
1112 => 0.0077229806009319
1113 => 0.0078000025351954
1114 => 0.0078663442009581
1115 => 0.0078297142325068
1116 => 0.0077748773968247
1117 => 0.0080653689047967
1118 => 0.0080489782354716
1119 => 0.008319490606066
1120 => 0.0085303743434696
1121 => 0.0089083157008741
1122 => 0.008513914191894
1123 => 0.0084995406333028
1124 => 0.0086400444741235
1125 => 0.008511349556698
1126 => 0.0085926803021134
1127 => 0.0088952120604192
1128 => 0.0089016040797489
1129 => 0.0087945295203247
1130 => 0.0087880140236528
1201 => 0.0088085788640575
1202 => 0.0089290277766393
1203 => 0.008886939225562
1204 => 0.0089356451624204
1205 => 0.0089965526822736
1206 => 0.0092484920086397
1207 => 0.00930923372729
1208 => 0.0091616628419401
1209 => 0.009174986840606
1210 => 0.0091197912785738
1211 => 0.009066473057249
1212 => 0.0091863246322862
1213 => 0.0094053557413553
1214 => 0.0094039931601935
1215 => 0.0094548041201412
1216 => 0.0094864589272479
1217 => 0.009350573322411
1218 => 0.0092621167903143
1219 => 0.0092960366533556
1220 => 0.009350275253037
1221 => 0.0092784478064884
1222 => 0.0088350955326808
1223 => 0.0089695802911012
1224 => 0.0089471954513313
1225 => 0.0089153167174095
1226 => 0.009050542181941
1227 => 0.0090374993560023
1228 => 0.0086468160817017
1229 => 0.0086718263573537
1230 => 0.0086483370394007
1231 => 0.0087242358311689
]
'min_raw' => 0.0071954499647755
'max_raw' => 0.016118696168702
'avg_raw' => 0.011657073066739
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.007195'
'max' => '$0.016118'
'avg' => '$0.011657'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0017546477708767
'max_diff' => -0.011713122279458
'year' => 2034
]
9 => [
'items' => [
101 => 0.0085072507728639
102 => 0.0085739939153818
103 => 0.008615854588691
104 => 0.008640510846859
105 => 0.0087295861583161
106 => 0.00871913419862
107 => 0.0087289364498261
108 => 0.0088610116217067
109 => 0.0095290025183527
110 => 0.0095653597890183
111 => 0.0093863232912138
112 => 0.009457844840748
113 => 0.009320539105686
114 => 0.0094127133655016
115 => 0.009475776653095
116 => 0.0091908057828329
117 => 0.0091739316573416
118 => 0.0090360592126687
119 => 0.0091101440549415
120 => 0.0089922697439968
121 => 0.0090211919768343
122 => 0.0089403228924257
123 => 0.009085871143487
124 => 0.0092486167040851
125 => 0.0092897326597091
126 => 0.0091815742819942
127 => 0.0091032604885441
128 => 0.0089657672654131
129 => 0.0091944215597163
130 => 0.0092612870434839
131 => 0.0091940703437956
201 => 0.0091784947657639
202 => 0.0091489790735383
203 => 0.0091847566593992
204 => 0.0092609228796992
205 => 0.009225004296775
206 => 0.0092487291536004
207 => 0.009158314464348
208 => 0.0093506183062004
209 => 0.0096560430875018
210 => 0.0096570250781157
211 => 0.0096211063015769
212 => 0.0096064091120981
213 => 0.0096432639565605
214 => 0.0096632561978165
215 => 0.0097824380067853
216 => 0.0099103248362215
217 => 0.010507116867805
218 => 0.010339540053439
219 => 0.010869049447177
220 => 0.011287822629434
221 => 0.011413394396061
222 => 0.011297874279372
223 => 0.010902686200454
224 => 0.010883296387958
225 => 0.011473874221965
226 => 0.01130700893368
227 => 0.011287160838599
228 => 0.011076010640827
301 => 0.011200826559171
302 => 0.01117352748689
303 => 0.011130434565779
304 => 0.011368574643227
305 => 0.011814351609298
306 => 0.011744873088665
307 => 0.011693010596029
308 => 0.011465764250243
309 => 0.011602617307715
310 => 0.011553886555197
311 => 0.011763264793315
312 => 0.01163923376335
313 => 0.011305744765004
314 => 0.011358853987185
315 => 0.011350826635093
316 => 0.011516028972316
317 => 0.011466439331256
318 => 0.011341143461791
319 => 0.01181282799209
320 => 0.011782199422339
321 => 0.011825623731579
322 => 0.011844740455448
323 => 0.012131846517027
324 => 0.012249464684087
325 => 0.012276166067205
326 => 0.012387894228997
327 => 0.012273386168758
328 => 0.012731500052575
329 => 0.013036119053628
330 => 0.013389949698901
331 => 0.013906991372356
401 => 0.014101403824478
402 => 0.014066284955121
403 => 0.014458300051019
404 => 0.015162742464343
405 => 0.014208672907633
406 => 0.015213310467511
407 => 0.014895253815152
408 => 0.014141147214004
409 => 0.014092591639222
410 => 0.014603281384878
411 => 0.015735942088675
412 => 0.015452223428905
413 => 0.015736406150763
414 => 0.015404891910462
415 => 0.015388429434209
416 => 0.015720305244065
417 => 0.016495751163401
418 => 0.01612736587428
419 => 0.015599195230546
420 => 0.015989188214634
421 => 0.01565134019967
422 => 0.014890074064252
423 => 0.015452006474593
424 => 0.015076258274712
425 => 0.01518592157531
426 => 0.015975688403133
427 => 0.015880661568946
428 => 0.016003635091632
429 => 0.015786590042868
430 => 0.015583835742459
501 => 0.015205379784015
502 => 0.015093337632372
503 => 0.015124302052232
504 => 0.015093322287944
505 => 0.014881579657384
506 => 0.014835853856474
507 => 0.014759642184999
508 => 0.014783263368755
509 => 0.014639963129871
510 => 0.014910400287986
511 => 0.014960595807617
512 => 0.015157397418706
513 => 0.015177830014833
514 => 0.01572591970042
515 => 0.015424041111872
516 => 0.015626567332014
517 => 0.015608451480633
518 => 0.014157490990702
519 => 0.014357420544281
520 => 0.014668448188301
521 => 0.014528330656258
522 => 0.014330237248403
523 => 0.014170266200463
524 => 0.013927893704954
525 => 0.014269028338031
526 => 0.014717584104903
527 => 0.015189206129311
528 => 0.015755829089737
529 => 0.015629365441188
530 => 0.0151786135072
531 => 0.015198833909684
601 => 0.015323828481407
602 => 0.015161949154072
603 => 0.015114207780181
604 => 0.015317269549753
605 => 0.015318667924559
606 => 0.01513240619469
607 => 0.014925410367478
608 => 0.014924543047404
609 => 0.014887710139294
610 => 0.01541144440299
611 => 0.015699445292516
612 => 0.015732464130363
613 => 0.015697222861648
614 => 0.015710785827301
615 => 0.015543204455352
616 => 0.015926245776915
617 => 0.016277762372441
618 => 0.016183548415783
619 => 0.01604230830145
620 => 0.015929803747338
621 => 0.01615704591828
622 => 0.016146927182121
623 => 0.016274692181635
624 => 0.016268896023251
625 => 0.016225933459399
626 => 0.016183549950112
627 => 0.016351595773621
628 => 0.016303201275184
629 => 0.016254731606723
630 => 0.016157518266291
701 => 0.016170731173798
702 => 0.016029515446562
703 => 0.015964182589551
704 => 0.014981733175542
705 => 0.014719190589658
706 => 0.014801791831725
707 => 0.014828986305353
708 => 0.014714727435519
709 => 0.014878545304166
710 => 0.014853014462863
711 => 0.014952340031329
712 => 0.014890285728366
713 => 0.014892832458605
714 => 0.015075320932245
715 => 0.015128298112505
716 => 0.015101353491046
717 => 0.015120224580308
718 => 0.015555100867354
719 => 0.015493275365897
720 => 0.015460431800476
721 => 0.015469529692555
722 => 0.015580649907748
723 => 0.015611757501063
724 => 0.015479952442295
725 => 0.015542112469966
726 => 0.015806781978508
727 => 0.0158994013275
728 => 0.016194997829676
729 => 0.016069423181743
730 => 0.016299920882767
731 => 0.01700839223326
801 => 0.017574368170521
802 => 0.017053873308671
803 => 0.018093216040851
804 => 0.018902493442713
805 => 0.018871432028108
806 => 0.01873031579417
807 => 0.017808974987902
808 => 0.016961143441557
809 => 0.017670390530904
810 => 0.017672198547593
811 => 0.017611273593618
812 => 0.017232873936972
813 => 0.017598106105795
814 => 0.017627096909028
815 => 0.017610869768494
816 => 0.017320751638949
817 => 0.016877794877926
818 => 0.016964347568742
819 => 0.017106122641924
820 => 0.016837712851011
821 => 0.016751939659292
822 => 0.016911408341715
823 => 0.017425249663104
824 => 0.017328110937776
825 => 0.017325574253089
826 => 0.017741174913274
827 => 0.017443694532817
828 => 0.016965439275353
829 => 0.016844673515431
830 => 0.016416036425273
831 => 0.016712097590198
901 => 0.016722752304456
902 => 0.016560602630098
903 => 0.016978596827769
904 => 0.016974744937651
905 => 0.017371568218113
906 => 0.01813014529034
907 => 0.017905796722772
908 => 0.017644903747745
909 => 0.017673270047908
910 => 0.017984378346701
911 => 0.017796275167339
912 => 0.017863918382139
913 => 0.017984275960594
914 => 0.018056890675986
915 => 0.01766282190784
916 => 0.017570945627497
917 => 0.017382999002108
918 => 0.017333967235734
919 => 0.017487045840478
920 => 0.017446715036475
921 => 0.01672185681698
922 => 0.01664610509997
923 => 0.016648428296982
924 => 0.016457947002762
925 => 0.016167417308327
926 => 0.016930911998674
927 => 0.016869592689938
928 => 0.016801900918831
929 => 0.016810192774548
930 => 0.017141599942392
1001 => 0.016949367048579
1002 => 0.017460449703132
1003 => 0.017355386473906
1004 => 0.017247628769291
1005 => 0.017232733372134
1006 => 0.017191255849312
1007 => 0.017049013990451
1008 => 0.016877248398466
1009 => 0.016763833876557
1010 => 0.015463750618217
1011 => 0.015705038508729
1012 => 0.015982618232679
1013 => 0.016078437641055
1014 => 0.015914531912526
1015 => 0.017055485987631
1016 => 0.017263949291659
1017 => 0.016632500346032
1018 => 0.016514382030195
1019 => 0.017063229804753
1020 => 0.016732207502783
1021 => 0.016881266825091
1022 => 0.016559082101351
1023 => 0.017213736586237
1024 => 0.017208749215908
1025 => 0.016954073835246
1026 => 0.01716932372304
1027 => 0.017131918757996
1028 => 0.016844390880466
1029 => 0.017222851732809
1030 => 0.01722303944467
1031 => 0.016977919927902
1101 => 0.01669167399588
1102 => 0.016640499984061
1103 => 0.016601947240417
1104 => 0.016871785213481
1105 => 0.017113721096368
1106 => 0.01756390379343
1107 => 0.017677090419549
1108 => 0.018118865356549
1109 => 0.017855809891197
1110 => 0.017972418971849
1111 => 0.018099014624258
1112 => 0.018159709235424
1113 => 0.018060810623582
1114 => 0.018747068942562
1115 => 0.018805010171096
1116 => 0.018824437363833
1117 => 0.018593034919862
1118 => 0.018798574450525
1119 => 0.018702409310881
1120 => 0.018952604288788
1121 => 0.018991838055974
1122 => 0.018958608450949
1123 => 0.018971061867917
1124 => 0.018385461456931
1125 => 0.018355094986333
1126 => 0.017941046005024
1127 => 0.018109774025403
1128 => 0.017794345078649
1129 => 0.017894370846942
1130 => 0.017938461252526
1201 => 0.017915430926758
1202 => 0.018119313654517
1203 => 0.017945971685432
1204 => 0.017488493728958
1205 => 0.01703089113292
1206 => 0.017025146305082
1207 => 0.016904667618902
1208 => 0.016817583595566
1209 => 0.016834359067932
1210 => 0.01689347802061
1211 => 0.016814147494564
1212 => 0.016831076684456
1213 => 0.01711221403526
1214 => 0.017168594125984
1215 => 0.016976992548581
1216 => 0.01620768456733
1217 => 0.016018894459068
1218 => 0.016154593045016
1219 => 0.016089737861041
1220 => 0.012985674206413
1221 => 0.013714927918841
1222 => 0.013281630126032
1223 => 0.013481313684031
1224 => 0.013039028839493
1225 => 0.013250110349442
1226 => 0.013211131302017
1227 => 0.014383749691415
1228 => 0.014365440868148
1229 => 0.014374204332964
1230 => 0.013955901324194
1231 => 0.01462226937533
]
'min_raw' => 0.0085072507728639
'max_raw' => 0.018991838055974
'avg_raw' => 0.013749544414419
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0085072'
'max' => '$0.018991'
'avg' => '$0.013749'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0013118008080884
'max_diff' => 0.0028731418872718
'year' => 2035
]
10 => [
'items' => [
101 => 0.014950546239139
102 => 0.014889790928454
103 => 0.014905081731232
104 => 0.014642335078657
105 => 0.014376748294897
106 => 0.014082171678194
107 => 0.014629458621258
108 => 0.014568609655689
109 => 0.014708175289937
110 => 0.015063129993393
111 => 0.015115398421819
112 => 0.015185647719677
113 => 0.01516046834708
114 => 0.015760343155764
115 => 0.015687694358331
116 => 0.015862757057659
117 => 0.015502639803102
118 => 0.015095132946927
119 => 0.015172586677883
120 => 0.015165127260749
121 => 0.015070160319105
122 => 0.014984428410447
123 => 0.014841708937347
124 => 0.015293294468742
125 => 0.015274960920859
126 => 0.01557175975066
127 => 0.015519297674543
128 => 0.015168943090584
129 => 0.015181456073091
130 => 0.015265611893984
131 => 0.015556876150971
201 => 0.015643343213228
202 => 0.015603288224874
203 => 0.015698095411267
204 => 0.015773027145792
205 => 0.015707505683454
206 => 0.01663515141762
207 => 0.016249928233559
208 => 0.016437683333105
209 => 0.016482461818029
210 => 0.016367762670485
211 => 0.016392636808519
212 => 0.016430314349843
213 => 0.016659085002744
214 => 0.017259445391277
215 => 0.017525340920567
216 => 0.018325300739491
217 => 0.017503261998304
218 => 0.017454485621337
219 => 0.017598582541197
220 => 0.018068243639251
221 => 0.018448859846201
222 => 0.018575132200322
223 => 0.018591821176448
224 => 0.018828716507207
225 => 0.018964500492961
226 => 0.018799951183087
227 => 0.018660512871999
228 => 0.018161062149405
229 => 0.018218874930504
301 => 0.018617147662103
302 => 0.019179731353634
303 => 0.019662486687824
304 => 0.019493442595512
305 => 0.020783129693317
306 => 0.020910996901165
307 => 0.020893329787482
308 => 0.021184630316151
309 => 0.020606458089064
310 => 0.020359278260424
311 => 0.018690661017549
312 => 0.019159474400784
313 => 0.019840922185761
314 => 0.019750730016121
315 => 0.019255844419519
316 => 0.019662111272721
317 => 0.019527786745914
318 => 0.019421839418491
319 => 0.019907204664315
320 => 0.019373525638826
321 => 0.019835598329238
322 => 0.019242985324254
323 => 0.019494214774687
324 => 0.01935160478802
325 => 0.019443890927016
326 => 0.018904388044161
327 => 0.019195490704057
328 => 0.018892277216452
329 => 0.01889213345378
330 => 0.018885439999235
331 => 0.019242169322748
401 => 0.019253802253181
402 => 0.018990178744117
403 => 0.018952186477887
404 => 0.01909266379869
405 => 0.018928201647099
406 => 0.019005152452716
407 => 0.01893053240861
408 => 0.018913733864943
409 => 0.018779880210969
410 => 0.018722212376454
411 => 0.018744825420284
412 => 0.018667635443868
413 => 0.018621125690994
414 => 0.018876188038755
415 => 0.018739918515532
416 => 0.018855302779941
417 => 0.018723807847992
418 => 0.018267989124242
419 => 0.018005842956018
420 => 0.017144843641272
421 => 0.017389021978868
422 => 0.017550912469314
423 => 0.017497407663187
424 => 0.017612356690359
425 => 0.01761941362705
426 => 0.01758204252655
427 => 0.017538771579705
428 => 0.017517709675815
429 => 0.017674687851721
430 => 0.017765818966477
501 => 0.017567160345846
502 => 0.017520617410562
503 => 0.017721472244262
504 => 0.01784399357679
505 => 0.018748622257384
506 => 0.018681604442813
507 => 0.018849806005803
508 => 0.018830869091074
509 => 0.019007171125698
510 => 0.019295350441509
511 => 0.018709401316261
512 => 0.018811101823808
513 => 0.018786167207965
514 => 0.019058396805529
515 => 0.019059246676618
516 => 0.018896031434001
517 => 0.018984513064888
518 => 0.018935125045894
519 => 0.019024375871408
520 => 0.018680709379041
521 => 0.019099258070239
522 => 0.019336548207466
523 => 0.019339842981252
524 => 0.019452316623047
525 => 0.019566596357145
526 => 0.019785946355078
527 => 0.019560478804755
528 => 0.019154884630547
529 => 0.019184167219864
530 => 0.018946367503927
531 => 0.018950364960114
601 => 0.018929026225701
602 => 0.018993065373977
603 => 0.018694762370853
604 => 0.018764773489447
605 => 0.018666757513431
606 => 0.018810888756218
607 => 0.018655827364728
608 => 0.018786155183738
609 => 0.018842400349987
610 => 0.019049946224319
611 => 0.018625172670338
612 => 0.01775903063913
613 => 0.017941104195047
614 => 0.017671803104276
615 => 0.017696727945529
616 => 0.017747080091618
617 => 0.017583872311946
618 => 0.01761500721304
619 => 0.01761389485528
620 => 0.017604309157048
621 => 0.017561852510172
622 => 0.017500281972411
623 => 0.017745560044441
624 => 0.017787237568436
625 => 0.017879881541524
626 => 0.018155527164426
627 => 0.018127983666527
628 => 0.018172908254369
629 => 0.01807483813135
630 => 0.017701277137264
701 => 0.017721563296499
702 => 0.017468594565774
703 => 0.017873412562328
704 => 0.017777546317408
705 => 0.017715740725661
706 => 0.017698876497328
707 => 0.017975205392413
708 => 0.018057887328747
709 => 0.018006365494602
710 => 0.017900692709638
711 => 0.018103615696123
712 => 0.018157909326673
713 => 0.018170063668281
714 => 0.018529604293709
715 => 0.018190157995244
716 => 0.018271866093091
717 => 0.018909329347884
718 => 0.018331238139703
719 => 0.018637465945649
720 => 0.01862247768808
721 => 0.018779133471418
722 => 0.018609627341407
723 => 0.018611728573039
724 => 0.018750828295862
725 => 0.018555487821925
726 => 0.018507118773499
727 => 0.018440297279524
728 => 0.018586199567003
729 => 0.018673661389753
730 => 0.019378539447491
731 => 0.019833922819135
801 => 0.019814153425984
802 => 0.019994808672633
803 => 0.019913421829405
804 => 0.019650602243858
805 => 0.020099203228953
806 => 0.019957247107006
807 => 0.019968949797223
808 => 0.019968514222508
809 => 0.020062902633583
810 => 0.019996019793766
811 => 0.019864186851103
812 => 0.019951703710828
813 => 0.020211597496363
814 => 0.021018315781176
815 => 0.021469766020954
816 => 0.020991137909884
817 => 0.021321289171814
818 => 0.021123316059579
819 => 0.021087338455896
820 => 0.021294697846375
821 => 0.021502420192016
822 => 0.021489189176607
823 => 0.021338393420332
824 => 0.021253212723913
825 => 0.021898229494827
826 => 0.022373466864062
827 => 0.022341058861512
828 => 0.022484097245121
829 => 0.022904062363409
830 => 0.022942458710651
831 => 0.022937621653428
901 => 0.022842452300544
902 => 0.02325596249886
903 => 0.023600919981315
904 => 0.022820423345059
905 => 0.023117626246694
906 => 0.023251050204517
907 => 0.023446956159707
908 => 0.023777482343761
909 => 0.024136521447385
910 => 0.024187293513301
911 => 0.024151268302867
912 => 0.023914472362538
913 => 0.02430733723395
914 => 0.024537468261809
915 => 0.024674506022444
916 => 0.025022010982505
917 => 0.023251874185458
918 => 0.021998883379001
919 => 0.021803210771166
920 => 0.022201118713644
921 => 0.022306043864818
922 => 0.022263748667945
923 => 0.020853393598337
924 => 0.021795785543604
925 => 0.022809720038146
926 => 0.02284866939146
927 => 0.023356266199798
928 => 0.023521560527689
929 => 0.023930242490636
930 => 0.023904679322582
1001 => 0.024004186877009
1002 => 0.023981311813477
1003 => 0.024738309091695
1004 => 0.025573389504754
1005 => 0.025544473325443
1006 => 0.025424420635843
1007 => 0.025602719351925
1008 => 0.026464611830857
1009 => 0.026385262582943
1010 => 0.026462343618339
1011 => 0.027478563425131
1012 => 0.028799793729544
1013 => 0.028185949603791
1014 => 0.029517814727786
1015 => 0.030356153224205
1016 => 0.031805972967943
1017 => 0.031624448395514
1018 => 0.032188852582483
1019 => 0.031299481525545
1020 => 0.029257305807271
1021 => 0.02893412368272
1022 => 0.029581142480347
1023 => 0.031171775059142
1024 => 0.02953104779986
1025 => 0.029862964787525
1026 => 0.029767372672748
1027 => 0.029762278975192
1028 => 0.029956684693344
1029 => 0.029674689059644
1030 => 0.028525788117905
1031 => 0.029052322648988
1101 => 0.028849002380272
1102 => 0.029074601376943
1103 => 0.030292066117871
1104 => 0.029753795935172
1105 => 0.029186772023218
1106 => 0.029897945841488
1107 => 0.030803514497983
1108 => 0.030746845638923
1109 => 0.030636884366601
1110 => 0.031256730301296
1111 => 0.032280534187594
1112 => 0.032557264264083
1113 => 0.03276154074905
1114 => 0.032789707025047
1115 => 0.033079837173064
1116 => 0.031519734244967
1117 => 0.033995657658142
1118 => 0.034423181235593
1119 => 0.034342824522069
1120 => 0.034817998985464
1121 => 0.034678190604321
1122 => 0.034475630195307
1123 => 0.035228882792294
1124 => 0.034365339474198
1125 => 0.033139648451241
1126 => 0.032467210114627
1127 => 0.033352731160334
1128 => 0.033893487962521
1129 => 0.034250893810175
1130 => 0.034359044603724
1201 => 0.031640840594232
1202 => 0.030175879391621
1203 => 0.03111490272668
1204 => 0.032260576003381
1205 => 0.031513369972068
1206 => 0.031542659033848
1207 => 0.030477339595487
1208 => 0.032354833135083
1209 => 0.03208129811857
1210 => 0.033500398268115
1211 => 0.033161718628436
1212 => 0.034318939711239
1213 => 0.034014204617435
1214 => 0.035279142954305
1215 => 0.035783761103721
1216 => 0.036631093514133
1217 => 0.037254394684496
1218 => 0.037620409053585
1219 => 0.03759843492375
1220 => 0.039048766201714
1221 => 0.038193556517814
1222 => 0.037119211597389
1223 => 0.037099780087294
1224 => 0.037656198545167
1225 => 0.03882229898692
1226 => 0.039124651865395
1227 => 0.039293625876725
1228 => 0.039034836296346
1229 => 0.038106567477903
1230 => 0.037705745708529
1231 => 0.03804725746896
]
'min_raw' => 0.014082171678194
'max_raw' => 0.039293625876725
'avg_raw' => 0.026687898777459
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.014082'
'max' => '$0.039293'
'avg' => '$0.026687'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0055749209053301
'max_diff' => 0.020301787820751
'year' => 2036
]
11 => [
'items' => [
101 => 0.037629617932393
102 => 0.038350580941466
103 => 0.039340617142311
104 => 0.039136178581864
105 => 0.039819586038297
106 => 0.040526840859144
107 => 0.041538247017757
108 => 0.04180266603988
109 => 0.042239740628495
110 => 0.042689633951702
111 => 0.042834127562151
112 => 0.043110010698233
113 => 0.043108556657926
114 => 0.043939949057585
115 => 0.044857000620488
116 => 0.045203166355691
117 => 0.045999155376101
118 => 0.044636052073431
119 => 0.045669981586708
120 => 0.046602611888619
121 => 0.045490691594847
122 => 0.047023214675611
123 => 0.047082719074065
124 => 0.047981164843846
125 => 0.04707041793479
126 => 0.0465296193274
127 => 0.048090884643476
128 => 0.048846331750528
129 => 0.048618784933852
130 => 0.04688714242357
131 => 0.045879252208945
201 => 0.043241409109768
202 => 0.046366048207085
203 => 0.047887968764415
204 => 0.046883201016995
205 => 0.047389947424945
206 => 0.050154591513641
207 => 0.051207188985168
208 => 0.050988256069302
209 => 0.05102525212814
210 => 0.051593214617781
211 => 0.054111873079502
212 => 0.052602634547193
213 => 0.053756390855054
214 => 0.054368339040566
215 => 0.054936750619513
216 => 0.053540911429945
217 => 0.051724945153267
218 => 0.051149752404364
219 => 0.046783296666322
220 => 0.046556003682601
221 => 0.046428417243156
222 => 0.045624002789916
223 => 0.044991953377331
224 => 0.044489324217954
225 => 0.043170275205976
226 => 0.043615415526428
227 => 0.041513126708259
228 => 0.042858096593583
301 => 0.039502792878247
302 => 0.042297189515767
303 => 0.040776326471589
304 => 0.041797545102274
305 => 0.041793982166676
306 => 0.039913594889923
307 => 0.038829026751373
308 => 0.039520155781281
309 => 0.040261100963232
310 => 0.040381316826165
311 => 0.041341971595213
312 => 0.041610069692049
313 => 0.040797719942332
314 => 0.039433261666621
315 => 0.039750194204089
316 => 0.038822604123617
317 => 0.037197038186828
318 => 0.038364548022288
319 => 0.038763187211898
320 => 0.038939248988004
321 => 0.037340691586681
322 => 0.036838390144815
323 => 0.036570969071884
324 => 0.039226907979935
325 => 0.039372406308761
326 => 0.038628016287096
327 => 0.04199272977098
328 => 0.041231191482206
329 => 0.042082016332177
330 => 0.039721435898243
331 => 0.039811613249763
401 => 0.038694076642359
402 => 0.039319822468682
403 => 0.038877565487367
404 => 0.039269268389656
405 => 0.039504053494237
406 => 0.04062140672488
407 => 0.042309947894832
408 => 0.040454511412668
409 => 0.03964607116705
410 => 0.040147622948591
411 => 0.041483321436556
412 => 0.043506973018971
413 => 0.042308930552398
414 => 0.042840601454982
415 => 0.042956747894805
416 => 0.042073355733897
417 => 0.043539544948001
418 => 0.044325287659139
419 => 0.045131297094222
420 => 0.045831132502834
421 => 0.044809359201323
422 => 0.045902803099389
423 => 0.045021680336379
424 => 0.044231222129162
425 => 0.044232420927975
426 => 0.043736554947836
427 => 0.042775752128183
428 => 0.042598565346879
429 => 0.043520313359446
430 => 0.044259467975663
501 => 0.044320348290167
502 => 0.04472958226484
503 => 0.044971762715607
504 => 0.047345460361476
505 => 0.048300181190902
506 => 0.049467595749183
507 => 0.049922369511512
508 => 0.051291075490708
509 => 0.050185734251643
510 => 0.049946586721649
511 => 0.046626553716434
512 => 0.047170208935047
513 => 0.048040653394971
514 => 0.046640907024974
515 => 0.047528723919535
516 => 0.047703997781054
517 => 0.046593344178941
518 => 0.047186592256339
519 => 0.045611101248566
520 => 0.042344289293481
521 => 0.043543181843574
522 => 0.044425970303312
523 => 0.043166122324234
524 => 0.045424351063881
525 => 0.044105140453483
526 => 0.043687014023263
527 => 0.042055753746142
528 => 0.042825645803977
529 => 0.043866935835991
530 => 0.043223539659166
531 => 0.044558683332501
601 => 0.046449602843754
602 => 0.047797184693677
603 => 0.047900635295124
604 => 0.047034230446595
605 => 0.048422649745684
606 => 0.048432762864506
607 => 0.046866620223275
608 => 0.045907366575839
609 => 0.045689422128855
610 => 0.046233890087947
611 => 0.046894974704616
612 => 0.047937320890434
613 => 0.048567188860103
614 => 0.050209550468842
615 => 0.050653926429969
616 => 0.051142160884875
617 => 0.051794592682559
618 => 0.052578004335757
619 => 0.050863944238209
620 => 0.050932047041292
621 => 0.049335938011232
622 => 0.047630266607425
623 => 0.048924658587973
624 => 0.05061690391679
625 => 0.050228700968594
626 => 0.050185020206656
627 => 0.050258479132203
628 => 0.049965786786787
629 => 0.048641950156153
630 => 0.047977127687904
701 => 0.048834918286246
702 => 0.049290795813397
703 => 0.04999782210131
704 => 0.04991066618781
705 => 0.051731889976394
706 => 0.052439562469689
707 => 0.052258509562891
708 => 0.052291827655023
709 => 0.05357303490129
710 => 0.054998000859505
711 => 0.056332669520193
712 => 0.057690351807198
713 => 0.056053612818972
714 => 0.055222577700778
715 => 0.056079993814578
716 => 0.05562503675559
717 => 0.058239354965564
718 => 0.058420364686217
719 => 0.061034493851228
720 => 0.063515613713535
721 => 0.0619572667819
722 => 0.063426717748944
723 => 0.065016048775898
724 => 0.068082126186557
725 => 0.067049579180551
726 => 0.066258664356025
727 => 0.06551125366852
728 => 0.067066496661112
729 => 0.069067291925469
730 => 0.069498244062032
731 => 0.070196551159652
801 => 0.069462366631434
802 => 0.070346611027899
803 => 0.073468382304098
804 => 0.072624852148632
805 => 0.071426903723631
806 => 0.073891242328089
807 => 0.074783076889169
808 => 0.081042438896212
809 => 0.088945141991452
810 => 0.085673371018077
811 => 0.083642477195513
812 => 0.084119785417261
813 => 0.087005585064261
814 => 0.087932412320174
815 => 0.085412976342087
816 => 0.086302883722212
817 => 0.091206360880464
818 => 0.093836919053485
819 => 0.090264267723426
820 => 0.0804074643972
821 => 0.071319041574997
822 => 0.073729700564459
823 => 0.073456406646512
824 => 0.078724581131821
825 => 0.072604734233398
826 => 0.072707776759945
827 => 0.078084891514517
828 => 0.076650369485082
829 => 0.074326627517097
830 => 0.07133600746297
831 => 0.065807569694044
901 => 0.060910878190214
902 => 0.070514417869929
903 => 0.070100295776036
904 => 0.069500585614623
905 => 0.070835175683431
906 => 0.07731556622756
907 => 0.077166172250541
908 => 0.07621580399022
909 => 0.076936649939512
910 => 0.074200259736947
911 => 0.074905489798595
912 => 0.071317601922388
913 => 0.072939477085867
914 => 0.074321641810479
915 => 0.074599131842243
916 => 0.075224331052801
917 => 0.069882072250408
918 => 0.072280589612204
919 => 0.073689493851575
920 => 0.067324013241723
921 => 0.073563668766499
922 => 0.069789075410112
923 => 0.068507921732464
924 => 0.070232826380254
925 => 0.069560629361486
926 => 0.068982713837482
927 => 0.068660227045238
928 => 0.069926806647796
929 => 0.069867719195447
930 => 0.067795349133155
1001 => 0.065092026867505
1002 => 0.065999350553385
1003 => 0.0656697113521
1004 => 0.064475056362339
1005 => 0.065280109582244
1006 => 0.061735062629891
1007 => 0.055635993603873
1008 => 0.059665225421997
1009 => 0.05951010437996
1010 => 0.059431885316386
1011 => 0.062459741667918
1012 => 0.06216868314425
1013 => 0.061640409073738
1014 => 0.064465354194756
1015 => 0.063434211224711
1016 => 0.066611950890552
1017 => 0.068705015757791
1018 => 0.068174146803904
1019 => 0.070142684428202
1020 => 0.066020253458572
1021 => 0.06738955966346
1022 => 0.067671771774511
1023 => 0.064430494810468
1024 => 0.062216303918303
1025 => 0.06206864262942
1026 => 0.058229540756707
1027 => 0.060280357988963
1028 => 0.062084992284764
1029 => 0.061220712502354
1030 => 0.060947107342867
1031 => 0.062344896764967
1101 => 0.062453516974322
1102 => 0.059976964689996
1103 => 0.060491918332118
1104 => 0.062639360623689
1105 => 0.06043780829614
1106 => 0.056160551745245
1107 => 0.055099732982924
1108 => 0.054958200205261
1109 => 0.052081175587251
1110 => 0.055170621965125
1111 => 0.053821995829167
1112 => 0.058082289633634
1113 => 0.055648832660937
1114 => 0.055543931194532
1115 => 0.055385357242363
1116 => 0.052908983305251
1117 => 0.053451151815705
1118 => 0.055253402519049
1119 => 0.055896465873809
1120 => 0.055829389097445
1121 => 0.055244570507388
1122 => 0.05551229746316
1123 => 0.054649855656363
1124 => 0.054345309504208
1125 => 0.053384078075991
1126 => 0.051971333423472
1127 => 0.052167784232271
1128 => 0.049368767410883
1129 => 0.047843714491524
1130 => 0.04742159994332
1201 => 0.046857130728081
1202 => 0.047485358243177
1203 => 0.049360838147906
1204 => 0.047098611477545
1205 => 0.043220182527961
1206 => 0.043453282716353
1207 => 0.043976989631601
1208 => 0.043001065259704
1209 => 0.042077434744827
1210 => 0.042880456541
1211 => 0.041237115066636
1212 => 0.044175579597621
1213 => 0.04409610236701
1214 => 0.045191380230733
1215 => 0.045876279956284
1216 => 0.044297807827809
1217 => 0.04390082635614
1218 => 0.044126965044204
1219 => 0.040389396260649
1220 => 0.044885941122486
1221 => 0.044924827429175
1222 => 0.044591859262748
1223 => 0.046986130586429
1224 => 0.052038789871349
1225 => 0.050137776205613
1226 => 0.049401646255798
1227 => 0.048002262683092
1228 => 0.049866858206548
1229 => 0.049723686362568
1230 => 0.049076208987781
1231 => 0.048684612651257
]
'min_raw' => 0.036570969071884
'max_raw' => 0.093836919053485
'avg_raw' => 0.065203944062684
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.03657'
'max' => '$0.093836'
'avg' => '$0.0652039'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.02248879739369
'max_diff' => 0.05454329317676
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0011479209304561
]
1 => [
'year' => 2028
'avg' => 0.0019701655604898
]
2 => [
'year' => 2029
'avg' => 0.0053821372234641
]
3 => [
'year' => 2030
'avg' => 0.0041523108525834
]
4 => [
'year' => 2031
'avg' => 0.0040780838474557
]
5 => [
'year' => 2032
'avg' => 0.0071501644048099
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0011479209304561
'min' => '$0.001147'
'max_raw' => 0.0071501644048099
'max' => '$0.00715'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0071501644048099
]
1 => [
'year' => 2033
'avg' => 0.018390958091906
]
2 => [
'year' => 2034
'avg' => 0.011657073066739
]
3 => [
'year' => 2035
'avg' => 0.013749544414419
]
4 => [
'year' => 2036
'avg' => 0.026687898777459
]
5 => [
'year' => 2037
'avg' => 0.065203944062684
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0071501644048099
'min' => '$0.00715'
'max_raw' => 0.065203944062684
'max' => '$0.0652039'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.065203944062684
]
]
]
]
'prediction_2025_max_price' => '$0.001962'
'last_price' => 0.00190312
'sma_50day_nextmonth' => '$0.0018093'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'sinken'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.001884'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.001878'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.001861'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.0019016'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.002064'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.002205'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.001886'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.001879'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.00188'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.001922'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.002034'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.0022015'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.001973'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.002265'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.001898'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.001926'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.002025'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.002259'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.001232'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.000616'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.000308'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '44.14'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 88.01
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.001860'
'vwma_10_action' => 'BUY'
'hma_9' => '0.001892'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 51.5
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 6.66
'cci_20_action' => 'NEUTRAL'
'adx_14' => 22.48
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000134'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -48.5
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 58.09
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.000054'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 10
'buy_signals' => 19
'sell_pct' => 34.48
'buy_pct' => 65.52
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767685564
'last_updated_date' => '6. Januar 2026'
]
Cicada Finance Preisprognose für 2026
Die Preisprognose für Cicada Finance im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.000657 am unteren Ende und $0.001962 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Cicada Finance im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn LTCIC das prognostizierte Preisziel erreicht.
Cicada Finance Preisprognose 2027-2032
Die Preisprognose für LTCIC für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.001147 am unteren Ende und $0.00715 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Cicada Finance, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Cicada Finance Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.000632 | $0.001147 | $0.001662 |
| 2028 | $0.001142 | $0.00197 | $0.002797 |
| 2029 | $0.0025094 | $0.005382 | $0.008254 |
| 2030 | $0.002134 | $0.004152 | $0.00617 |
| 2031 | $0.002523 | $0.004078 | $0.005632 |
| 2032 | $0.003851 | $0.00715 | $0.010448 |
Cicada Finance Preisprognose 2032-2037
Die Preisprognose für Cicada Finance für die Jahre 2032-2037 wird derzeit zwischen $0.00715 am unteren Ende und $0.0652039 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Cicada Finance bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Cicada Finance Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.003851 | $0.00715 | $0.010448 |
| 2033 | $0.00895 | $0.01839 | $0.027831 |
| 2034 | $0.007195 | $0.011657 | $0.016118 |
| 2035 | $0.0085072 | $0.013749 | $0.018991 |
| 2036 | $0.014082 | $0.026687 | $0.039293 |
| 2037 | $0.03657 | $0.0652039 | $0.093836 |
Cicada Finance Potenzielles Preishistogramm
Cicada Finance Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Cicada Finance Bullisch, mit 19 technischen Indikatoren, die bullische Signale zeigen, und 10 anzeigen bärische Signale. Die Preisprognose für LTCIC wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Cicada Finance
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Cicada Finance im nächsten Monat sinken, und bis zum 04.02.2026 — erreichen. Der kurzfristige 50-Tage-SMA für Cicada Finance wird voraussichtlich bis zum 04.02.2026 $0.0018093 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 44.14, was darauf hindeutet, dass sich der LTCIC-Markt in einem NEUTRAL Zustand befindet.
Beliebte LTCIC Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.001884 | BUY |
| SMA 5 | $0.001878 | BUY |
| SMA 10 | $0.001861 | BUY |
| SMA 21 | $0.0019016 | BUY |
| SMA 50 | $0.002064 | SELL |
| SMA 100 | $0.002205 | SELL |
| SMA 200 | — | — |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.001886 | BUY |
| EMA 5 | $0.001879 | BUY |
| EMA 10 | $0.00188 | BUY |
| EMA 21 | $0.001922 | SELL |
| EMA 50 | $0.002034 | SELL |
| EMA 100 | $0.0022015 | SELL |
| EMA 200 | $0.001973 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.002265 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.002259 | SELL |
| EMA 50 | $0.001232 | BUY |
| EMA 100 | $0.000616 | BUY |
| EMA 200 | $0.000308 | BUY |
Cicada Finance Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 44.14 | NEUTRAL |
| Stoch RSI (14) | 88.01 | NEUTRAL |
| Stochastic Fast (14) | 51.5 | NEUTRAL |
| Commodity Channel Index (20) | 6.66 | NEUTRAL |
| Average Directional Index (14) | 22.48 | NEUTRAL |
| Awesome Oscillator (5, 34) | -0.000134 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -48.5 | NEUTRAL |
| Ultimate Oscillator (7, 14, 28) | 58.09 | NEUTRAL |
| VWMA (10) | 0.001860 | BUY |
| Hull Moving Average (9) | 0.001892 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | 0.000054 | NEUTRAL |
Auf weltweiten Geldflüssen basierende Cicada Finance-Preisprognose
Definition weltweiter Geldflüsse, die für Cicada Finance-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Cicada Finance-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.002674 | $0.003757 | $0.00528 | $0.007419 | $0.010425 | $0.014649 |
| Amazon.com aktie | $0.00397 | $0.008285 | $0.017288 | $0.036073 | $0.075269 | $0.157054 |
| Apple aktie | $0.002699 | $0.003828 | $0.005431 | $0.0077035 | $0.010926 | $0.015498 |
| Netflix aktie | $0.0030028 | $0.004737 | $0.007475 | $0.011795 | $0.018611 | $0.029366 |
| Google aktie | $0.002464 | $0.003191 | $0.004133 | $0.005352 | $0.006931 | $0.008975 |
| Tesla aktie | $0.004314 | $0.00978 | $0.02217 | $0.050259 | $0.113933 | $0.258278 |
| Kodak aktie | $0.001427 | $0.00107 | $0.0008025 | $0.0006018 | $0.000451 | $0.000338 |
| Nokia aktie | $0.00126 | $0.000835 | $0.000553 | $0.000366 | $0.000242 | $0.00016 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Cicada Finance Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Cicada Finance investieren?", "Sollte ich heute LTCIC kaufen?", "Wird Cicada Finance auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Cicada Finance-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Cicada Finance.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Cicada Finance zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Cicada Finance-Preis entspricht heute $0.001903 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
Cicada Finance-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Cicada Finance 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.001952 | $0.0020033 | $0.002055 | $0.0021088 |
| Wenn die Wachstumsrate von Cicada Finance 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.002002 | $0.0021061 | $0.002215 | $0.00233 |
| Wenn die Wachstumsrate von Cicada Finance 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.00215 | $0.002429 | $0.002745 | $0.0031026 |
| Wenn die Wachstumsrate von Cicada Finance 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.002397 | $0.003021 | $0.0038063 | $0.004795 |
| Wenn die Wachstumsrate von Cicada Finance 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.002892 | $0.004396 | $0.006681 | $0.010155 |
| Wenn die Wachstumsrate von Cicada Finance 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.004376 | $0.010064 | $0.023145 | $0.053225 |
| Wenn die Wachstumsrate von Cicada Finance 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.006849 | $0.024655 | $0.088741 | $0.31941 |
Fragefeld
Ist LTCIC eine gute Investition?
Die Entscheidung, Cicada Finance zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Cicada Finance in den letzten 2026 Stunden um 1.494% gestiegen, und Cicada Finance hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Cicada Finance investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Cicada Finance steigen?
Es scheint, dass der Durchschnittswert von Cicada Finance bis zum Ende dieses Jahres potenziell auf $0.001962 steigen könnte. Betrachtet man die Aussichten von Cicada Finance in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.00617 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Cicada Finance nächste Woche kosten?
Basierend auf unserer neuen experimentellen Cicada Finance-Prognose wird der Preis von Cicada Finance in der nächsten Woche um 0.86% steigen und $0.001919 erreichen bis zum 13. Januar 2026.
Wie viel wird Cicada Finance nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Cicada Finance-Prognose wird der Preis von Cicada Finance im nächsten Monat um -11.62% fallen und $0.001682 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Cicada Finance in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Cicada Finance im Jahr 2026 wird erwartet, dass LTCIC innerhalb der Spanne von $0.000657 bis $0.001962 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Cicada Finance-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Cicada Finance in 5 Jahren sein?
Die Zukunft von Cicada Finance scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.00617 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Cicada Finance-Prognose für 2030 könnte der Wert von Cicada Finance seinen höchsten Gipfel von ungefähr $0.00617 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.002134 liegen wird.
Wie viel wird Cicada Finance im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Cicada Finance-Preisprognosesimulation wird der Wert von LTCIC im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.001962 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.001962 und $0.000657 während des Jahres 2026 liegen.
Wie viel wird Cicada Finance im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Cicada Finance könnte der Wert von LTCIC um -12.62% fallen und bis zu $0.001662 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.001662 und $0.000632 im Laufe des Jahres schwanken.
Wie viel wird Cicada Finance im Jahr 2028 kosten?
Unser neues experimentelles Cicada Finance-Preisprognosemodell deutet darauf hin, dass der Wert von LTCIC im Jahr 2028 um 47.02% steigen, und im besten Fall $0.002797 erreichen wird. Der Preis wird voraussichtlich zwischen $0.002797 und $0.001142 im Laufe des Jahres liegen.
Wie viel wird Cicada Finance im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Cicada Finance im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.008254 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.008254 und $0.0025094.
Wie viel wird Cicada Finance im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Cicada Finance-Preisprognosen wird der Wert von LTCIC im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.00617 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.00617 und $0.002134 während des Jahres 2030 liegen.
Wie viel wird Cicada Finance im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Cicada Finance im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.005632 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.005632 und $0.002523 während des Jahres schwanken.
Wie viel wird Cicada Finance im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Cicada Finance-Preisprognose könnte LTCIC eine 449.04% Steigerung im Wert erfahren und $0.010448 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.010448 und $0.003851 liegen.
Wie viel wird Cicada Finance im Jahr 2033 kosten?
Laut unserer experimentellen Cicada Finance-Preisprognose wird der Wert von LTCIC voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.027831 beträgt. Im Laufe des Jahres könnte der Preis von LTCIC zwischen $0.027831 und $0.00895 liegen.
Wie viel wird Cicada Finance im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Cicada Finance-Preisprognosesimulation deuten darauf hin, dass LTCIC im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.016118 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.016118 und $0.007195.
Wie viel wird Cicada Finance im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Cicada Finance könnte LTCIC um 897.93% steigen, wobei der Wert im Jahr 2035 $0.018991 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.018991 und $0.0085072.
Wie viel wird Cicada Finance im Jahr 2036 kosten?
Unsere jüngste Cicada Finance-Preisprognosesimulation deutet darauf hin, dass der Wert von LTCIC im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.039293 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.039293 und $0.014082.
Wie viel wird Cicada Finance im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Cicada Finance um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.093836 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.093836 und $0.03657 liegen.
Verwandte Prognosen
Wie liest und prognostiziert man die Kursbewegungen von Cicada Finance?
Cicada Finance-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Cicada Finance Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Cicada Finance. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von LTCIC über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von LTCIC über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von LTCIC einzuschätzen.
Wie liest man Cicada Finance-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Cicada Finance in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von LTCIC innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Cicada Finance?
Die Preisentwicklung von Cicada Finance wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von LTCIC. Die Marktkapitalisierung von Cicada Finance kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von LTCIC-„Walen“, großen Inhabern von Cicada Finance, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Cicada Finance-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


