Centurion Invest Preisvorhersage bis zu $0.002358 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.000789 | $0.002358 |
| 2027 | $0.00076 | $0.001997 |
| 2028 | $0.001372 | $0.003361 |
| 2029 | $0.003014 | $0.009917 |
| 2030 | $0.002563 | $0.007413 |
| 2031 | $0.003031 | $0.006767 |
| 2032 | $0.004627 | $0.012553 |
| 2033 | $0.010752 | $0.033436 |
| 2034 | $0.008644 | $0.019364 |
| 2035 | $0.01022 | $0.022816 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Centurion Invest eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,955.54 Gewinn erzielen könnten, was einer Rendite von 39.56% in den nächsten 90 Tagen entspricht.
Langfristige Centurion Invest Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Centurion Invest'
'name_with_ticker' => 'Centurion Invest <small>CIX</small>'
'name_lang' => 'Centurion Invest'
'name_lang_with_ticker' => 'Centurion Invest <small>CIX</small>'
'name_with_lang' => 'Centurion Invest'
'name_with_lang_with_ticker' => 'Centurion Invest <small>CIX</small>'
'image' => '/uploads/coins/centurion-invest.jpg?1717487495'
'price_for_sd' => 0.002286
'ticker' => 'CIX'
'marketcap' => '$0'
'low24h' => '$0.002267'
'high24h' => '$0.002296'
'volume24h' => '$89.1K'
'current_supply' => '0'
'max_supply' => '2.4B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.002286'
'change_24h_pct' => '0.7393%'
'ath_price' => '$0.3049'
'ath_days' => 524
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '31.07.2024'
'ath_pct' => '-99.25%'
'fdv' => '$5.48M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.112734'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.002305'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.0020207'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000789'
'current_year_max_price_prediction' => '$0.002358'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.002563'
'grand_prediction_max_price' => '$0.007413'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0023297158878589
107 => 0.0023384142012973
108 => 0.0023580119456209
109 => 0.0021905513660938
110 => 0.0022657362499171
111 => 0.0023099003252924
112 => 0.002110365426044
113 => 0.0023059561618879
114 => 0.0021876362499704
115 => 0.0021474766947601
116 => 0.0022015462452316
117 => 0.0021804752888285
118 => 0.0021623597178412
119 => 0.0021522509179653
120 => 0.002191953628393
121 => 0.0021901014494966
122 => 0.0021251401092727
123 => 0.0020404006891137
124 => 0.0020688420199957
125 => 0.0020585090178474
126 => 0.002021060885078
127 => 0.0020462964050598
128 => 0.0019351719464644
129 => 0.001743988091198
130 => 0.0018702900021069
131 => 0.0018654275159269
201 => 0.0018629756298988
202 => 0.0019578880252184
203 => 0.00194876438841
204 => 0.0019322048982637
205 => 0.0020207567570553
206 => 0.0019884341374058
207 => 0.0020880448349987
208 => 0.0021536548828493
209 => 0.0021370140524517
210 => 0.0021987206195761
211 => 0.0020694972508158
212 => 0.0021124200703763
213 => 0.0021212664039993
214 => 0.0020196640408634
215 => 0.0019502571282257
216 => 0.0019456284784495
217 => 0.0018252864567975
218 => 0.0018895721933972
219 => 0.0019461409812803
220 => 0.0019190489217996
221 => 0.0019104723851202
222 => 0.0019542880509912
223 => 0.0019576929034851
224 => 0.0018800619057925
225 => 0.0018962038484667
226 => 0.0019635184327932
227 => 0.0018945076936531
228 => 0.0017604311003443
301 => 0.0017271782514498
302 => 0.0017227417084356
303 => 0.001632557344917
304 => 0.0017294003658176
305 => 0.0016871257919629
306 => 0.0018206706642428
307 => 0.001744390549412
308 => 0.0017411022661208
309 => 0.0017361315436398
310 => 0.0016585061364902
311 => 0.001675501167304
312 => 0.0017319952381453
313 => 0.0017521529590727
314 => 0.0017500503436326
315 => 0.0017317183863779
316 => 0.0017401106625343
317 => 0.0017130762169717
318 => 0.0017035297915702
319 => 0.0016733986470519
320 => 0.0016291141885512
321 => 0.0016352722141181
322 => 0.0015475331141693
323 => 0.0014997281958506
324 => 0.0014864964245188
325 => 0.0014688023469
326 => 0.0014884950176679
327 => 0.0015472845603229
328 => 0.0014763718989838
329 => 0.0013547971150626
330 => 0.0013621039667296
331 => 0.0013785202930017
401 => 0.0013479285775985
402 => 0.0013189760863376
403 => 0.0013441479284991
404 => 0.0012926350898597
405 => 0.0013847453734457
406 => 0.0013822540484108
407 => 0.00141658706607
408 => 0.0014380562065967
409 => 0.0013885767883994
410 => 0.0013761328485293
411 => 0.0013832214822249
412 => 0.0012660621573647
413 => 0.0014070126497099
414 => 0.0014082315954208
415 => 0.0013977942422007
416 => 0.0014728460280163
417 => 0.0016312287053263
418 => 0.0015716387711938
419 => 0.0015485637475825
420 => 0.0015046981108295
421 => 0.001563146467319
422 => 0.001558658545477
423 => 0.0015383624609137
424 => 0.0015260873256422
425 => 0.0015487046387562
426 => 0.0015232847902526
427 => 0.0015187186869706
428 => 0.0014910530690513
429 => 0.0014811777021595
430 => 0.0014738663736625
501 => 0.0014658173193837
502 => 0.0014835715274235
503 => 0.0014433381562446
504 => 0.0013948206547288
505 => 0.0013907869494444
506 => 0.0014019243643816
507 => 0.0013969968873549
508 => 0.0013907633585801
509 => 0.0013788618545485
510 => 0.0013753309325377
511 => 0.0013868047161129
512 => 0.0013738514834197
513 => 0.0013929646838577
514 => 0.0013877669509202
515 => 0.0013587328372529
516 => 0.0013225455818177
517 => 0.001322223439339
518 => 0.0013144269545145
519 => 0.0013044969588812
520 => 0.0013017346612635
521 => 0.0013420280261623
522 => 0.0014254340856237
523 => 0.0014090594804136
524 => 0.001420891810815
525 => 0.0014790951655018
526 => 0.0014975962617209
527 => 0.0014844646218471
528 => 0.0014664892232636
529 => 0.0014672800495746
530 => 0.0015287074280576
531 => 0.0015325385783052
601 => 0.0015422186590051
602 => 0.0015546602982949
603 => 0.0014865834868173
604 => 0.001464073637876
605 => 0.0014534072226488
606 => 0.001420558792171
607 => 0.0014559830082297
608 => 0.0014353428345485
609 => 0.0014381278991468
610 => 0.0014363141221735
611 => 0.001437304567048
612 => 0.0013847196267443
613 => 0.0014038788152078
614 => 0.0013720229484014
615 => 0.0013293715187365
616 => 0.0013292285361887
617 => 0.001339667413175
618 => 0.0013334579606703
619 => 0.0013167484836397
620 => 0.0013191219859854
621 => 0.0012983276079206
622 => 0.0013216467999768
623 => 0.0013223155109649
624 => 0.0013133363518183
625 => 0.0013492627846092
626 => 0.0013639818734369
627 => 0.0013580715985343
628 => 0.0013635671927941
629 => 0.001409739919187
630 => 0.0014172680882463
701 => 0.0014206116036595
702 => 0.0014161317359367
703 => 0.0013644111454721
704 => 0.0013667051735921
705 => 0.0013498731173589
706 => 0.0013356518035601
707 => 0.0013362205815311
708 => 0.0013435321854651
709 => 0.0013754623886644
710 => 0.0014426576189093
711 => 0.001445207628778
712 => 0.0014482983151279
713 => 0.0014357269404883
714 => 0.0014319352936051
715 => 0.0014369374545511
716 => 0.0014621724500737
717 => 0.0015270837097922
718 => 0.0015041397353304
719 => 0.0014854859269487
720 => 0.0015018503459301
721 => 0.0014993311718965
722 => 0.0014780668078455
723 => 0.0014774699879698
724 => 0.0014366568747276
725 => 0.0014215691960316
726 => 0.00140896080242
727 => 0.0013951927657466
728 => 0.0013870306120979
729 => 0.0013995713897349
730 => 0.0014024396139586
731 => 0.00137501898448
801 => 0.0013712816540048
802 => 0.0013936739319524
803 => 0.0013838199252959
804 => 0.0013939550155097
805 => 0.0013963064433765
806 => 0.001395927809332
807 => 0.0013856390946572
808 => 0.001392196814577
809 => 0.0013766858520162
810 => 0.0013598200099026
811 => 0.0013490606534132
812 => 0.0013396716878547
813 => 0.0013448812316364
814 => 0.0013263101592796
815 => 0.0013203688994708
816 => 0.0013899752066215
817 => 0.0014413941341077
818 => 0.0014406464825379
819 => 0.0014360953458872
820 => 0.0014293332799887
821 => 0.0014616777628349
822 => 0.0014504095917596
823 => 0.0014586081277041
824 => 0.0014606949991934
825 => 0.0014670113306662
826 => 0.0014692688762606
827 => 0.0014624450055079
828 => 0.0014395432617962
829 => 0.0013824742938991
830 => 0.0013559085352882
831 => 0.0013471413924589
901 => 0.0013474600614496
902 => 0.0013386697480859
903 => 0.0013412588893257
904 => 0.0013377693504248
905 => 0.0013311610079567
906 => 0.0013444731851108
907 => 0.0013460072895164
908 => 0.0013429000682999
909 => 0.0013436319313794
910 => 0.0013179054668188
911 => 0.0013198613940444
912 => 0.001308970542705
913 => 0.00130692863937
914 => 0.001279397515559
915 => 0.0012306221390275
916 => 0.0012576484323663
917 => 0.001225004470485
918 => 0.0012126417074838
919 => 0.0012711651047274
920 => 0.0012652909788305
921 => 0.0012552370287161
922 => 0.0012403651410702
923 => 0.001234849013278
924 => 0.0012013347670059
925 => 0.0011993545665446
926 => 0.0012159651319578
927 => 0.0012082999275543
928 => 0.0011975350775318
929 => 0.0011585458819657
930 => 0.0011147091172704
1001 => 0.0011160322736484
1002 => 0.001129975932886
1003 => 0.0011705190026779
1004 => 0.001154678123908
1005 => 0.0011431853846073
1006 => 0.0011410331400067
1007 => 0.0011679729872119
1008 => 0.0012060985150796
1009 => 0.0012239861597446
1010 => 0.0012062600471375
1011 => 0.0011858972434161
1012 => 0.0011871366329265
1013 => 0.0011953817360827
1014 => 0.0011962481798449
1015 => 0.0011829940879524
1016 => 0.0011867250371838
1017 => 0.0011810573841361
1018 => 0.0011462750078437
1019 => 0.0011456459049527
1020 => 0.0011371097488689
1021 => 0.0011368512774552
1022 => 0.0011223291465128
1023 => 0.0011202974000072
1024 => 0.0010914628275908
1025 => 0.0011104418304744
1026 => 0.0010977117117825
1027 => 0.0010785244201823
1028 => 0.0010752165238783
1029 => 0.001075117084521
1030 => 0.0010948181427945
1031 => 0.001110211612138
1101 => 0.0010979331576474
1102 => 0.0010951375915677
1103 => 0.0011249869235014
1104 => 0.0011211883239301
1105 => 0.0011178987611997
1106 => 0.0012026847922235
1107 => 0.0011355700327317
1108 => 0.0011063041668167
1109 => 0.0010700821003097
1110 => 0.0010818761878119
1111 => 0.0010843613753398
1112 => 0.00099725383490869
1113 => 0.00096191431660434
1114 => 0.00094978712566394
1115 => 0.00094280775582443
1116 => 0.00094598834230171
1117 => 0.00091417863091573
1118 => 0.00093555528305117
1119 => 0.00090801076179889
1120 => 0.00090339283317332
1121 => 0.00095264584928382
1122 => 0.00095949911874365
1123 => 0.00093026094208408
1124 => 0.00094903658473035
1125 => 0.00094222827570586
1126 => 0.00090848293355819
1127 => 0.00090719410970208
1128 => 0.00089026188321851
1129 => 0.00086376622749684
1130 => 0.00085165700185868
1201 => 0.0008453504120092
1202 => 0.00084795263389408
1203 => 0.00084663687087978
1204 => 0.00083805062719509
1205 => 0.00084712902431709
1206 => 0.00082393747112307
1207 => 0.00081470240777417
1208 => 0.00081053114391131
1209 => 0.00078994730559561
1210 => 0.00082270534603033
1211 => 0.00082915909267089
1212 => 0.00083562555518599
1213 => 0.00089191169653851
1214 => 0.00088909979997952
1215 => 0.0009145179754236
1216 => 0.00091353027186687
1217 => 0.00090628059648308
1218 => 0.00087569540855257
1219 => 0.00088788611933311
1220 => 0.00085036500640768
1221 => 0.00087847837539909
1222 => 0.00086564860783377
1223 => 0.00087414061807967
1224 => 0.00085887121796384
1225 => 0.00086732193444602
1226 => 0.00083068951541758
1227 => 0.00079648267796087
1228 => 0.00081024850791329
1229 => 0.00082521353938517
1230 => 0.00085766154063532
1231 => 0.00083833577878093
]
'min_raw' => 0.00078994730559561
'max_raw' => 0.0023580119456209
'avg_raw' => 0.0015739796256082
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000789'
'max' => '$0.002358'
'avg' => '$0.001573'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0014964426944044
'max_diff' => 7.1621945620863E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00084528605353173
102 => 0.00082200379657849
103 => 0.00077396585023604
104 => 0.00077423773979543
105 => 0.00076684814831419
106 => 0.00076046246237638
107 => 0.00084055557500733
108 => 0.00083059473036693
109 => 0.00081472342807557
110 => 0.00083596779689303
111 => 0.00084158514520184
112 => 0.00084174506321113
113 => 0.00085724440630383
114 => 0.00086551640849081
115 => 0.00086697438472918
116 => 0.00089136293597101
117 => 0.00089953765665451
118 => 0.00093320817422004
119 => 0.00086481458689851
120 => 0.00086340606597527
121 => 0.00083626674872906
122 => 0.00081905456467587
123 => 0.00083744528169684
124 => 0.0008537369463942
125 => 0.00083677297616404
126 => 0.00083898811254714
127 => 0.00081621536852045
128 => 0.00082435555295279
129 => 0.00083136697638719
130 => 0.00082749568047914
131 => 0.00082170016313194
201 => 0.00085240121567671
202 => 0.00085066894197374
203 => 0.00087925846791758
204 => 0.00090154604784742
205 => 0.00094148937546315
206 => 0.00089980643080337
207 => 0.00089828733862527
208 => 0.00091313670833626
209 => 0.00089953538329337
210 => 0.0009081309512187
211 => 0.00094010449658342
212 => 0.00094078004721372
213 => 0.00092946370375831
214 => 0.00092877510323062
215 => 0.00093094853077846
216 => 0.00094367836381196
217 => 0.0009392301690018
218 => 0.00094437773265063
219 => 0.00095081483981579
220 => 0.00097744144432777
221 => 0.00098386102853166
222 => 0.000968264767089
223 => 0.00096967293487334
224 => 0.00096383950496683
225 => 0.00095820448476981
226 => 0.0009708711872441
227 => 0.00099401983498054
228 => 0.00099387582844439
301 => 0.00099924586477383
302 => 0.0010025913529193
303 => 0.00098823006875198
304 => 0.00097888140083811
305 => 0.00098246627498749
306 => 0.00098819856682073
307 => 0.00098060737000386
308 => 0.00093375098666573
309 => 0.00094796422017316
310 => 0.00094559844312591
311 => 0.00094222928892231
312 => 0.00095652080512172
313 => 0.00095514235351991
314 => 0.00091385237634846
315 => 0.00091649562672197
316 => 0.00091401312115839
317 => 0.00092203460450717
318 => 0.00089910219686827
319 => 0.00090615605100588
320 => 0.00091058016219521
321 => 0.00091318599767335
322 => 0.0009226000622585
323 => 0.00092149543043616
324 => 0.00092253139679345
325 => 0.00093648996935232
326 => 0.0010070876393514
327 => 0.0010109301147645
328 => 0.00099200836051119
329 => 0.00099956722812029
330 => 0.00098505585525344
331 => 0.00099479743707671
401 => 0.0010014623799508
402 => 0.00097134478469745
403 => 0.00096956141616813
404 => 0.00095499014970347
405 => 0.00096281992294286
406 => 0.00095036219073837
407 => 0.00095341888246838
408 => 0.00094487210591368
409 => 0.0009602546020659
410 => 0.00097745462296232
411 => 0.00098180002749016
412 => 0.00097036913899168
413 => 0.00096209242238652
414 => 0.00094756123454779
415 => 0.00097172692377223
416 => 0.00097879370773749
417 => 0.00097168980496448
418 => 0.00097004367546864
419 => 0.0009669242630485
420 => 0.00097070547355998
421 => 0.00097875522051435
422 => 0.00097495910850615
423 => 0.00097746650736645
424 => 0.00096791088852947
425 => 0.00098823482293461
426 => 0.0010205141219911
427 => 0.0010206179052158
428 => 0.0010168217727452
429 => 0.001015268477127
430 => 0.0010191635394104
501 => 0.0010212764509154
502 => 0.0010338723681079
503 => 0.0010473882890989
504 => 0.0011104611949055
505 => 0.0010927505753453
506 => 0.001148712609601
507 => 0.0011929713129365
508 => 0.0012062425628683
509 => 0.0011940336373916
510 => 0.0011522675628491
511 => 0.0011502183199764
512 => 0.0012126344685248
513 => 0.0011949990477192
514 => 0.0011929013705298
515 => 0.0011705856293163
516 => 0.0011837769962318
517 => 0.0011808918507817
518 => 0.0011763375075426
519 => 0.0012015057166988
520 => 0.0012486183574576
521 => 0.0012412754105758
522 => 0.0012357942413581
523 => 0.0012117773533901
524 => 0.001226240884313
525 => 0.001221090697982
526 => 0.0012432191668487
527 => 0.0012301107520977
528 => 0.0011948654420617
529 => 0.001200478373855
530 => 0.0011996299905061
531 => 0.0012170896597094
601 => 0.0012118487003902
602 => 0.0011986066090846
603 => 0.0012484573315733
604 => 0.0012452203029392
605 => 0.0012498096694546
606 => 0.0012518300505256
607 => 0.0012821733068362
608 => 0.0012946039680708
609 => 0.0012974259458004
610 => 0.0013092341125514
611 => 0.0012971321478546
612 => 0.0013455486351962
613 => 0.001377742774098
614 => 0.0014151379231277
615 => 0.0014697822867286
616 => 0.0014903290729311
617 => 0.0014866174799108
618 => 0.0015280482127455
619 => 0.0016024983186959
620 => 0.0015016659749334
621 => 0.0016078426777554
622 => 0.0015742283595109
623 => 0.0014945294156491
624 => 0.0014893977432532
625 => 0.0015433707933602
626 => 0.001663077823784
627 => 0.0016330925703688
628 => 0.0016631268689167
629 => 0.0016280902642948
630 => 0.0016263504015637
701 => 0.0016614252192334
702 => 0.0017433794425474
703 => 0.001704446063059
704 => 0.0016486255167061
705 => 0.0016898425394692
706 => 0.0016541365398965
707 => 0.001573680929379
708 => 0.0016330696412106
709 => 0.0015933581009019
710 => 0.0016049480395456
711 => 0.0016884157906285
712 => 0.00167837272999
713 => 0.0016913693804187
714 => 0.0016684306325936
715 => 0.0016470022250164
716 => 0.0016070045109793
717 => 0.0015951631597163
718 => 0.0015984356831982
719 => 0.0015951615380162
720 => 0.0015727831846104
721 => 0.001567950581323
722 => 0.0015598960307896
723 => 0.0015623924727983
724 => 0.0015472475613536
725 => 0.0015758291383482
726 => 0.0015811341308983
727 => 0.0016019334191292
728 => 0.0016040928702324
729 => 0.0016620185918961
730 => 0.0016301140778059
731 => 0.0016515183803608
801 => 0.0016496037780752
802 => 0.0014962567334309
803 => 0.0015173866031904
804 => 0.0015502580496179
805 => 0.0015354495075585
806 => 0.0015145136937517
807 => 0.0014976069015954
808 => 0.0014719913826704
809 => 0.0015080447336549
810 => 0.0015554510563532
811 => 0.0016052951728083
812 => 0.0016651796128133
813 => 0.0016518141029359
814 => 0.0016041756748572
815 => 0.0016063126999409
816 => 0.0016195229481201
817 => 0.0016024144764504
818 => 0.001597368854158
819 => 0.0016188297570979
820 => 0.0016189775465417
821 => 0.0015992921822579
822 => 0.0015774155022401
823 => 0.0015773238381521
824 => 0.0015734310942466
825 => 0.0016287827747878
826 => 0.0016592206023994
827 => 0.0016627102502821
828 => 0.0016589857212929
829 => 0.0016604191446795
830 => 0.0016427080434441
831 => 0.0016831903688044
901 => 0.0017203409538419
902 => 0.0017103838034454
903 => 0.0016954566195086
904 => 0.0016835663985124
905 => 0.0017075828452553
906 => 0.0017065134306873
907 => 0.0017200164758911
908 => 0.0017194038997633
909 => 0.0017148633335365
910 => 0.0017103839656033
911 => 0.0017281441531335
912 => 0.0017230295043447
913 => 0.0017179069110936
914 => 0.0017076327660988
915 => 0.0017090291930391
916 => 0.001694104586491
917 => 0.0016871997805984
918 => 0.001583368066919
919 => 0.0015556208402247
920 => 0.0015643506825896
921 => 0.0015672247733664
922 => 0.00155514914475
923 => 0.0015724624942114
924 => 0.0015697642270372
925 => 0.0015802616061785
926 => 0.0015737032994342
927 => 0.0015739724546307
928 => 0.001593259036387
929 => 0.0015988580131219
930 => 0.0015960103283653
1001 => 0.0015980047491559
1002 => 0.0016439653344835
1003 => 0.0016374312089867
1004 => 0.0016339600850465
1005 => 0.0016349216101
1006 => 0.0016466655250572
1007 => 0.0016499531800513
1008 => 0.0016360231548221
1009 => 0.0016425926352487
1010 => 0.001670564649114
1011 => 0.001680353270888
1012 => 0.0017115938527855
1013 => 0.0016983222983384
1014 => 0.0017226828109055
1015 => 0.0017975587214262
1016 => 0.001857374779769
1017 => 0.0018023654605138
1018 => 0.0019122100341313
1019 => 0.0019977397909608
1020 => 0.0019944570164364
1021 => 0.0019795429249942
1022 => 0.0018821695707701
1023 => 0.0017925651584582
1024 => 0.0018675230541614
1025 => 0.0018677141372528
1026 => 0.001861275187535
1027 => 0.0018212834238422
1028 => 0.0018598835608457
1029 => 0.0018629474995459
1030 => 0.0018612325086409
1031 => 0.0018305709171832
1101 => 0.0017837563342367
1102 => 0.0017929037916861
1103 => 0.0018078875135915
1104 => 0.0017795202020928
1105 => 0.001770455127233
1106 => 0.0017873088260985
1107 => 0.0018416149554506
1108 => 0.0018313486962706
1109 => 0.0018310806027542
1110 => 0.0018750040130978
1111 => 0.001843564330557
1112 => 0.0017930191704188
1113 => 0.0017802558508751
1114 => 0.0017349546648974
1115 => 0.0017662443554095
1116 => 0.0017673704156671
1117 => 0.0017502333719465
1118 => 0.0017944097470691
1119 => 0.0017940026539952
1120 => 0.0018359415473884
1121 => 0.0019161129600271
1122 => 0.0018924023283142
1123 => 0.0018648294433415
1124 => 0.0018678273804512
1125 => 0.0019007073510054
1126 => 0.0018808273702316
1127 => 0.001887976349926
1128 => 0.0019006965301684
1129 => 0.001908370930733
1130 => 0.0018667231523123
1201 => 0.001857013062919
1202 => 0.0018371496277984
1203 => 0.001831967628344
1204 => 0.0018481459817855
1205 => 0.0018438835572434
1206 => 0.0017672757746628
1207 => 0.0017592698351414
1208 => 0.0017595153658767
1209 => 0.0017393840502886
1210 => 0.0017086789619474
1211 => 0.0017893701008025
1212 => 0.0017828894730807
1213 => 0.0017757353616365
1214 => 0.0017766116994676
1215 => 0.0018116369879682
1216 => 0.0017913205518184
1217 => 0.0018453351271211
1218 => 0.0018342313542656
1219 => 0.0018228428115348
1220 => 0.0018212685680259
1221 => 0.0018168849506993
1222 => 0.0018018518958143
1223 => 0.0017836985786942
1224 => 0.0017717121863181
1225 => 0.0016343108395266
1226 => 0.0016598117302642
1227 => 0.0016891481805785
1228 => 0.0016992750056686
1229 => 0.0016819523705971
1230 => 0.0018025358990297
1231 => 0.0018245676716461
]
'min_raw' => 0.00076046246237638
'max_raw' => 0.0019977397909608
'avg_raw' => 0.0013791011266686
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00076'
'max' => '$0.001997'
'avg' => '$0.001379'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -2.9484843219235E-5
'max_diff' => -0.00036027215466011
'year' => 2027
]
2 => [
'items' => [
101 => 0.001757831995294
102 => 0.0017453484750482
103 => 0.0018033543165387
104 => 0.0017683697031942
105 => 0.0017841232724411
106 => 0.001750072672471
107 => 0.0018192608627884
108 => 0.0018187337647001
109 => 0.0017918179959805
110 => 0.0018145670193911
111 => 0.0018106138167475
112 => 0.0017802259801537
113 => 0.0018202242114102
114 => 0.0018202440500339
115 => 0.0017943382078405
116 => 0.0017640858556768
117 => 0.0017586774496385
118 => 0.0017546029422059
119 => 0.0017831211933845
120 => 0.001808690568217
121 => 0.0018562688355947
122 => 0.0018682311424452
123 => 0.0019149208224586
124 => 0.0018871193912899
125 => 0.0018994434056381
126 => 0.0019128228665515
127 => 0.0019192374721267
128 => 0.0019087852165686
129 => 0.0019813135078683
130 => 0.0019874371178635
131 => 0.0019894903113258
201 => 0.0019650341795754
202 => 0.0019867569485987
203 => 0.0019765935843552
204 => 0.0020030358346529
205 => 0.0020071823171311
206 => 0.0020036703939874
207 => 0.0020049865529738
208 => 0.0019430964512168
209 => 0.0019398871229444
210 => 0.0018961277042267
211 => 0.0019139599908075
212 => 0.0018806233857685
213 => 0.0018911947666315
214 => 0.001895854530588
215 => 0.0018934205343364
216 => 0.0019149682015354
217 => 0.0018966482825187
218 => 0.0018482990041599
219 => 0.0017999365530726
220 => 0.0017993294018944
221 => 0.0017865964221913
222 => 0.0017773928100275
223 => 0.0017791657522459
224 => 0.0017854138318722
225 => 0.0017770296602812
226 => 0.0017788188483785
227 => 0.0018085312920901
228 => 0.0018144899107771
229 => 0.0017942401962963
301 => 0.0017129346706361
302 => 0.0016929820906996
303 => 0.0017073236094811
304 => 0.0017004692872156
305 => 0.0013724114309694
306 => 0.0014494837581435
307 => 0.0014036899984656
308 => 0.0014247938697947
309 => 0.0013780502994001
310 => 0.0014003587812329
311 => 0.0013962392192137
312 => 0.0015201692405737
313 => 0.0015182342437503
314 => 0.0015191604243319
315 => 0.0014749514120218
316 => 0.0015453775690372
317 => 0.0015800720264257
318 => 0.0015736510057262
319 => 0.0015752670383008
320 => 0.0015474982444969
321 => 0.0015194292869555
322 => 0.0014882964932604
323 => 0.0015461373758162
324 => 0.0015397064570528
325 => 0.0015544566709246
326 => 0.0015919706178137
327 => 0.0015974946889947
328 => 0.0016049190966817
329 => 0.0016022579750312
330 => 0.0016656566889911
331 => 0.0016579786864124
401 => 0.001676480463515
402 => 0.0016384209042817
403 => 0.0015953529003627
404 => 0.0016035387199086
405 => 0.0016027503596601
406 => 0.0015927136288593
407 => 0.0015836529170649
408 => 0.0015685693847669
409 => 0.0016162959129005
410 => 0.0016143583030171
411 => 0.0016457259548034
412 => 0.0016401814176611
413 => 0.0016031536416461
414 => 0.0016044760959103
415 => 0.0016133702363871
416 => 0.0016441529581286
417 => 0.001653291365789
418 => 0.0016490580912581
419 => 0.0016590779380736
420 => 0.0016669972164545
421 => 0.0016600724775109
422 => 0.0017581121779702
423 => 0.0017173992590354
424 => 0.0017372424524455
425 => 0.001741974937151
426 => 0.0017298527770914
427 => 0.0017324816395463
428 => 0.0017364636498434
429 => 0.0017606416366095
430 => 0.0018240916698405
501 => 0.0018521932576396
502 => 0.0019367382710409
503 => 0.0018498598119658
504 => 0.0018447048037431
505 => 0.0018599339136715
506 => 0.0019095707865366
507 => 0.0019497968098395
508 => 0.0019631421024639
509 => 0.001964905903191
510 => 0.0019899425593329
511 => 0.0020042931037274
512 => 0.0019869024507478
513 => 0.0019721656932249
514 => 0.0019193804569716
515 => 0.0019254904917973
516 => 0.0019675825727168
517 => 0.0020270401162267
518 => 0.0020780608740612
519 => 0.0020601951829205
520 => 0.0021964977951119
521 => 0.0022100116423644
522 => 0.0022081444656291
523 => 0.0022389310208005
524 => 0.0021778259783582
525 => 0.0021517023888597
526 => 0.0019753519474707
527 => 0.00202489922826
528 => 0.002096919110697
529 => 0.0020873870091957
530 => 0.002035084245473
531 => 0.0020780211977248
601 => 0.0020638248985477
602 => 0.0020526276883818
603 => 0.0021039242788381
604 => 0.0020475215704836
605 => 0.0020963564505353
606 => 0.0020337252117368
607 => 0.0020602767918927
608 => 0.0020452048308408
609 => 0.0020549582367915
610 => 0.0019979400248987
611 => 0.0020287056679972
612 => 0.0019966600729978
613 => 0.0019966448792133
614 => 0.0019959374709275
615 => 0.0020336389713324
616 => 0.0020348684159071
617 => 0.0020070069501441
618 => 0.0020029916776497
619 => 0.0020178382445508
620 => 0.0020004568030317
621 => 0.002008589470121
622 => 0.0020007031332329
623 => 0.0019989277526878
624 => 0.0019847812184477
625 => 0.00197868650253
626 => 0.0019810763976828
627 => 0.0019729184534509
628 => 0.0019680029969655
629 => 0.0019949596629123
630 => 0.0019805578037257
701 => 0.0019927523714402
702 => 0.0019788551224524
703 => 0.0019306812027174
704 => 0.0019029758720479
705 => 0.0018119798033932
706 => 0.0018377861755834
707 => 0.0018548958270441
708 => 0.0018492410873384
709 => 0.0018613896563201
710 => 0.0018621354797889
711 => 0.001858185856173
712 => 0.0018536126980039
713 => 0.0018513867375187
714 => 0.0018679772232803
715 => 0.001877608558675
716 => 0.0018566130094658
717 => 0.0018516940460451
718 => 0.0018729217054916
719 => 0.0018858705654911
720 => 0.0019814776723917
721 => 0.0019743947891056
722 => 0.0019921714362081
723 => 0.0019901700585492
724 => 0.0020088028167545
725 => 0.0020392595016291
726 => 0.0019773325454561
727 => 0.0019880809237747
728 => 0.0019854456696273
729 => 0.002014216683408
730 => 0.0020143065033726
731 => 0.0019970568433923
801 => 0.0020064081639114
802 => 0.0020011885133377
803 => 0.0020106211274024
804 => 0.0019743001928811
805 => 0.0020185351705255
806 => 0.0020436135524109
807 => 0.0020439617657677
808 => 0.002055848719747
809 => 0.0020679265534359
810 => 0.0020911089034442
811 => 0.0020672800102764
812 => 0.0020244141511636
813 => 0.0020275089277357
814 => 0.0020023766902218
815 => 0.0020027991676749
816 => 0.00200054394992
817 => 0.0020073120281673
818 => 0.0019757854054543
819 => 0.0019831846407906
820 => 0.00197282566799
821 => 0.0019880584053909
822 => 0.0019716704980092
823 => 0.0019854443988279
824 => 0.0019913887578093
825 => 0.0020133235704232
826 => 0.0019684307083515
827 => 0.0018768911236077
828 => 0.001896133854131
829 => 0.0018676723442031
830 => 0.0018703065653075
831 => 0.0018756281111717
901 => 0.0018583792399246
902 => 0.0018616697809841
903 => 0.0018615522197023
904 => 0.0018605391400872
905 => 0.0018560520424928
906 => 0.0018495448632357
907 => 0.0018754674625918
908 => 0.0018798722173574
909 => 0.0018896634415676
910 => 0.0019187954833665
911 => 0.0019158845054099
912 => 0.0019206324312324
913 => 0.0019102677358204
914 => 0.001870787353801
915 => 0.0018729313284905
916 => 0.0018461959297576
917 => 0.0018889797573126
918 => 0.0018788479822287
919 => 0.001872315960921
920 => 0.0018705336383884
921 => 0.0018997378928841
922 => 0.0019084762635498
923 => 0.0019030310973612
924 => 0.0018918629026474
925 => 0.0019133091380782
926 => 0.0019190472459354
927 => 0.0019203317966714
928 => 0.001958330413947
929 => 0.0019224554972651
930 => 0.0019310909462765
1001 => 0.0019984622543652
1002 => 0.0019373657745337
1003 => 0.0019697299425146
1004 => 0.0019681458849069
1005 => 0.0019847022981022
1006 => 0.0019667877757794
1007 => 0.001967009847754
1008 => 0.0019817108210428
1009 => 0.0019610659553931
1010 => 0.0019559539963289
1011 => 0.0019488918614942
1012 => 0.0019643117745427
1013 => 0.0019735553150327
1014 => 0.0020480514627492
1015 => 0.0020961793716111
1016 => 0.0020940900121591
1017 => 0.0021131828464336
1018 => 0.0021045813497226
1019 => 0.0020768048478826
1020 => 0.0021242159495399
1021 => 0.0021092130932108
1022 => 0.0021104499104581
1023 => 0.0021104038760584
1024 => 0.0021203794639448
1025 => 0.0021133108456781
1026 => 0.0020993778734956
1027 => 0.0021086272306549
1028 => 0.0021360945147124
1029 => 0.0022213538072259
1030 => 0.0022690660368519
1031 => 0.0022184814710932
1101 => 0.0022533740271992
1102 => 0.0022324509270246
1103 => 0.0022286485773145
1104 => 0.0022505636810887
1105 => 0.002272517144351
1106 => 0.0022711188036487
1107 => 0.002255181716643
1108 => 0.0022461792605822
1109 => 0.002314348873919
1110 => 0.0023645750837866
1111 => 0.0023611499929944
1112 => 0.0023762672298519
1113 => 0.002420651904824
1114 => 0.0024247098832566
1115 => 0.0024241986712457
1116 => 0.0024141405482943
1117 => 0.0024578430248827
1118 => 0.0024943003997247
1119 => 0.0024118123834381
1120 => 0.0024432227401926
1121 => 0.0024573238613182
1122 => 0.0024780284907447
1123 => 0.002512960671086
1124 => 0.0025509062842398
1125 => 0.0025562722099922
1126 => 0.0025524648288877
1127 => 0.0025274386769799
1128 => 0.0025689592196782
1129 => 0.0025932809798143
1130 => 0.0026077640313817
1201 => 0.0026444906404068
1202 => 0.0024574109450417
1203 => 0.0023249866381981
1204 => 0.0023043066704543
1205 => 0.0023463601980609
1206 => 0.0023574493779201
1207 => 0.0023529793434235
1208 => 0.0022039237465798
1209 => 0.0023035219235847
1210 => 0.0024106811875893
1211 => 0.0024147976113396
1212 => 0.0024684437794949
1213 => 0.002485913170877
1214 => 0.002529105367806
1215 => 0.0025264036841281
1216 => 0.0025369202967423
1217 => 0.0025345027096247
1218 => 0.0026145071592455
1219 => 0.0027027639479531
1220 => 0.0026997078959996
1221 => 0.0026870199384159
1222 => 0.0027058637190459
1223 => 0.0027969541831643
1224 => 0.0027885680329233
1225 => 0.0027967144635519
1226 => 0.0029041152543812
1227 => 0.0030437515600436
1228 => 0.0029788764768075
1229 => 0.0031196367401274
1230 => 0.0032082378645064
1231 => 0.0033614643475925
]
'min_raw' => 0.0013724114309694
'max_raw' => 0.0033614643475925
'avg_raw' => 0.0023669378892809
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001372'
'max' => '$0.003361'
'avg' => '$0.002366'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00061194896859301
'max_diff' => 0.0013637245566317
'year' => 2028
]
3 => [
'items' => [
101 => 0.0033422796372538
102 => 0.0034019295826913
103 => 0.0033079350017776
104 => 0.0030921044445606
105 => 0.0030579484327149
106 => 0.0031263296333981
107 => 0.0032944381427377
108 => 0.0031210352981916
109 => 0.0031561144678029
110 => 0.003146011664595
111 => 0.0031454733291461
112 => 0.0031660194036585
113 => 0.0031362162509672
114 => 0.0030147928454181
115 => 0.0030704404766286
116 => 0.0030489522537995
117 => 0.0030727950390815
118 => 0.0032014647177361
119 => 0.0031445767857009
120 => 0.0030846499705021
121 => 0.0031598114955862
122 => 0.0032555179453205
123 => 0.0032495288076972
124 => 0.0032379073774426
125 => 0.0033034167713095
126 => 0.0034116190975262
127 => 0.0034408657515104
128 => 0.0034624550335601
129 => 0.0034654318308008
130 => 0.0034960946924495
131 => 0.0033312127573281
201 => 0.0035928846228342
202 => 0.0036380681254677
203 => 0.0036295754996369
204 => 0.0036797950612016
205 => 0.003665019192242
206 => 0.0036436112763823
207 => 0.0037232199634693
208 => 0.0036319550278138
209 => 0.0035024159415866
210 => 0.0034313482368897
211 => 0.0035249359233028
212 => 0.003582086657635
213 => 0.0036198596575593
214 => 0.0036312897445133
215 => 0.0033440120725929
216 => 0.003189185340578
217 => 0.0032884275007075
218 => 0.0034095097853935
219 => 0.0033305401391231
220 => 0.0033336355997476
221 => 0.003221045637024
222 => 0.0034194714988126
223 => 0.0033905625197742
224 => 0.0035405423541646
225 => 0.0035047484630239
226 => 0.0036270511957857
227 => 0.0035948447874386
228 => 0.0037285317878513
301 => 0.003781863151747
302 => 0.0038714148120918
303 => 0.0039372893779823
304 => 0.0039759721830528
305 => 0.0039736498125319
306 => 0.0041269303579184
307 => 0.0040365461755184
308 => 0.0039230023405077
309 => 0.0039209486907586
310 => 0.0039797546518392
311 => 0.0041029958136366
312 => 0.0041349504538046
313 => 0.0041528087383264
314 => 0.00412545815393
315 => 0.0040273526018274
316 => 0.003984991121836
317 => 0.0040210843301189
318 => 0.0039769454379137
319 => 0.0040531415490458
320 => 0.0041577750842413
321 => 0.0041361686729892
322 => 0.0042083956663906
323 => 0.0042831430060596
324 => 0.0043900350588995
325 => 0.0044179805997131
326 => 0.0044641735160042
327 => 0.0045117212004504
328 => 0.0045269922352484
329 => 0.0045561493790017
330 => 0.0045559957064618
331 => 0.0046438627216645
401 => 0.0047407827604481
402 => 0.0047773678313849
403 => 0.0048614931846913
404 => 0.004717431465258
405 => 0.0048267039343099
406 => 0.0049252704366621
407 => 0.0048077553891379
408 => 0.0049697225046556
409 => 0.0049760113207257
410 => 0.005070964976959
411 => 0.0049747112554472
412 => 0.0049175561028662
413 => 0.0050825608867919
414 => 0.0051624015041315
415 => 0.0051383528604243
416 => 0.0049553414943845
417 => 0.0048488210296227
418 => 0.0045700364270776
419 => 0.0049002688313908
420 => 0.0050611154025204
421 => 0.004954924940623
422 => 0.0050084812328738
423 => 0.005300666997708
424 => 0.0054119124193296
425 => 0.0053887741492965
426 => 0.0053926841360437
427 => 0.0054527101463035
428 => 0.005718898532723
429 => 0.0055593922813819
430 => 0.0056813288339469
501 => 0.0057460035417525
502 => 0.0058060770147229
503 => 0.0056585555515237
504 => 0.0054666322954222
505 => 0.0054058421438247
506 => 0.0049443663919726
507 => 0.004920344575001
508 => 0.0049068604011994
509 => 0.0048218445927542
510 => 0.004755045455106
511 => 0.0047019243007552
512 => 0.0045625185284193
513 => 0.0046095638842833
514 => 0.0043873801794257
515 => 0.0045295254400866
516 => 0.0041749148823207
517 => 0.0044702450921378
518 => 0.0043095102859513
519 => 0.0044174393853567
520 => 0.0044170628308964
521 => 0.0042183311399388
522 => 0.0041037068480191
523 => 0.0041767499080745
524 => 0.0042550578666193
525 => 0.0042677630694336
526 => 0.0043692913817337
527 => 0.0043976257513529
528 => 0.0043117712886015
529 => 0.0041675663667083
530 => 0.0042010618811
531 => 0.004103028062489
601 => 0.0039312275661896
602 => 0.0040546176819807
603 => 0.0040967484925922
604 => 0.0041153558586976
605 => 0.0039464098020074
606 => 0.0038933232829981
607 => 0.0038650604657165
608 => 0.0041457575523233
609 => 0.0041611347723655
610 => 0.0040824627405099
611 => 0.0044380677844852
612 => 0.0043575834110117
613 => 0.0044475041753318
614 => 0.0041980225142523
615 => 0.0042075530496772
616 => 0.0040894444332012
617 => 0.0041555773664071
618 => 0.0041088367407811
619 => 0.0041502344789425
620 => 0.0041750481125071
621 => 0.0042931373485213
622 => 0.0044715934815237
623 => 0.0042754987545898
624 => 0.0041900574739365
625 => 0.0042430647639138
626 => 0.0043842301623424
627 => 0.0045981029670854
628 => 0.0044714859620862
629 => 0.0045276764388087
630 => 0.0045399515582322
701 => 0.0044465888663621
702 => 0.0046015453827058
703 => 0.0046845878386789
704 => 0.0047697722152923
705 => 0.0048437354226936
706 => 0.0047357477020283
707 => 0.0048513100425719
708 => 0.004758187195593
709 => 0.0046746463749899
710 => 0.0046747730719306
711 => 0.0046223666948296
712 => 0.0045208227355681
713 => 0.0045020964715164
714 => 0.0045995128619797
715 => 0.0046776315817647
716 => 0.0046840658136896
717 => 0.0047273163508473
718 => 0.0047529115732213
719 => 0.0050037795475039
720 => 0.0051046807220491
721 => 0.0052280607683214
722 => 0.0052761242496629
723 => 0.005420778096789
724 => 0.0053039583670236
725 => 0.0052786836836583
726 => 0.0049278007664432
727 => 0.0049852578244803
728 => 0.0050772521181793
729 => 0.0049293177184626
730 => 0.0050231480452778
731 => 0.0050416721393892
801 => 0.0049242909641681
802 => 0.0049869893215949
803 => 0.0048204810730367
804 => 0.0044752229063277
805 => 0.0046019297537427
806 => 0.0046952286425037
807 => 0.0045620796245717
808 => 0.0048007440856363
809 => 0.0046613212345168
810 => 0.0046171308841891
811 => 0.0044447285725631
812 => 0.004526095827277
813 => 0.0046361462043445
814 => 0.0045681478660463
815 => 0.0047092546280168
816 => 0.0049090994347659
817 => 0.0050515207450193
818 => 0.0050624540847682
819 => 0.0049708867237619
820 => 0.0051176240041495
821 => 0.0051186928250404
822 => 0.0049531725733238
823 => 0.0048517923407681
824 => 0.0048287585386256
825 => 0.0048863014924204
826 => 0.0049561692613427
827 => 0.0050663312596884
828 => 0.0051328998481063
829 => 0.0053064754214489
830 => 0.0053534399947937
831 => 0.0054050398221307
901 => 0.0054739931042504
902 => 0.0055567891986937
903 => 0.005375636057636
904 => 0.0053828336096419
905 => 0.0052141463129249
906 => 0.0050338797441775
907 => 0.0051706795993118
908 => 0.0053495272121778
909 => 0.0053084993721773
910 => 0.0053038829020545
911 => 0.005311646524299
912 => 0.0052807128727826
913 => 0.0051408011134285
914 => 0.0050705383037749
915 => 0.0051611952541826
916 => 0.0052093753886476
917 => 0.0052840985754536
918 => 0.0052748873654647
919 => 0.0054673662699925
920 => 0.0055421577520321
921 => 0.0055230228904184
922 => 0.0055265441654615
923 => 0.0056619505711873
924 => 0.0058125503428058
925 => 0.0059536069023166
926 => 0.0060970956931712
927 => 0.0059241143553331
928 => 0.0058362850999847
929 => 0.0059269024724038
930 => 0.0058788196190664
1001 => 0.0061551179566442
1002 => 0.0061742482540622
1003 => 0.0064505266121254
1004 => 0.0067127476725423
1005 => 0.0065480513226727
1006 => 0.0067033525625132
1007 => 0.0068713235152966
1008 => 0.0071953667355206
1009 => 0.0070862403789271
1010 => 0.0070026513000045
1011 => 0.0069236600243221
1012 => 0.0070880283295053
1013 => 0.0072994855282756
1014 => 0.0073450313835788
1015 => 0.007418833069026
1016 => 0.0073412396208191
1017 => 0.0074346923825463
1018 => 0.0077646216966678
1019 => 0.0076754718836256
1020 => 0.007548864817558
1021 => 0.0078093123243087
1022 => 0.0079035672645378
1023 => 0.0085650977967607
1024 => 0.0094003074201554
1025 => 0.009054525151788
1026 => 0.0088398869394882
1027 => 0.0088903320106651
1028 => 0.0091953222914989
1029 => 0.009293275489795
1030 => 0.0090270049303338
1031 => 0.0091210561934083
1101 => 0.0096392878998652
1102 => 0.0099173025835156
1103 => 0.0095397213007649
1104 => 0.0084979895167465
1105 => 0.0075374652364965
1106 => 0.0077922395285909
1107 => 0.0077633560304341
1108 => 0.0083201313483001
1109 => 0.0076733456900683
1110 => 0.0076842359017786
1111 => 0.0082525247435828
1112 => 0.0081009150235267
1113 => 0.0078553266937416
1114 => 0.0075392583030883
1115 => 0.006954976650178
1116 => 0.0064374620962961
1117 => 0.0074524273129424
1118 => 0.0074086601672061
1119 => 0.0073452788542524
1120 => 0.0074863271076565
1121 => 0.0081712173889418
1122 => 0.0081554284511847
1123 => 0.0080549872847607
1124 => 0.0081311710242455
1125 => 0.007841971315867
1126 => 0.0079165046656711
1127 => 0.0075373130845431
1128 => 0.0077087235156522
1129 => 0.0078547997714852
1130 => 0.0078841267425396
1201 => 0.0079502019057975
1202 => 0.0073855968701976
1203 => 0.007639087955249
1204 => 0.0077879902188141
1205 => 0.0071152443749163
1206 => 0.007774692196523
1207 => 0.0073757683526606
1208 => 0.0072403676084187
1209 => 0.0074226668728489
1210 => 0.0073516246722086
1211 => 0.007290546759836
1212 => 0.0072564642352804
1213 => 0.0073903246954423
1214 => 0.0073840799449779
1215 => 0.0071650582509573
1216 => 0.0068793533795737
1217 => 0.0069752453123528
1218 => 0.0069404068741825
1219 => 0.0068141478800054
1220 => 0.0068992311975116
1221 => 0.0065245673268956
1222 => 0.0058799776108342
1223 => 0.0063058133215813
1224 => 0.0062894191099377
1225 => 0.0062811524050087
1226 => 0.0066011561724006
1227 => 0.0065703951939089
1228 => 0.0065145637167341
1229 => 0.0068131224911435
1230 => 0.0067041445223019
1231 => 0.0070399889438331
]
'min_raw' => 0.0030147928454181
'max_raw' => 0.0099173025835156
'avg_raw' => 0.0064660477144669
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.003014'
'max' => '$0.009917'
'avg' => '$0.006466'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0016423814144487
'max_diff' => 0.0065558382359231
'year' => 2029
]
4 => [
'items' => [
101 => 0.0072611978009088
102 => 0.0072050920793975
103 => 0.0074131400786725
104 => 0.0069774544688095
105 => 0.0071221717517333
106 => 0.0071519977831744
107 => 0.0068094383222114
108 => 0.0065754280704176
109 => 0.0065598222545351
110 => 0.0061540807265238
111 => 0.0063708245757562
112 => 0.0065615501936109
113 => 0.0064702074235644
114 => 0.0064412910313553
115 => 0.0065890186079513
116 => 0.0066004983058539
117 => 0.0063387599771099
118 => 0.0063931836638306
119 => 0.0066201394846414
120 => 0.0063874649594549
121 => 0.0059354163641852
122 => 0.0058233020624976
123 => 0.0058083439479759
124 => 0.0055042810699015
125 => 0.0058307940762317
126 => 0.0056882623989641
127 => 0.006138518259661
128 => 0.0058813345268015
129 => 0.0058702478501045
130 => 0.0058534887122152
131 => 0.0055917692323773
201 => 0.0056490691653212
202 => 0.0058395428694528
203 => 0.0059075060329268
204 => 0.0059004169181706
205 => 0.00583860944439
206 => 0.0058669045893813
207 => 0.0057757560686822
208 => 0.0057435696289309
209 => 0.0056419803714982
210 => 0.0054926722278209
211 => 0.0055134344409593
212 => 0.0052176159397334
213 => 0.0050564383199894
214 => 0.0050118264791311
215 => 0.0049521696610783
216 => 0.0050185648754709
217 => 0.005216777923087
218 => 0.0049776909344181
219 => 0.0045677930623475
220 => 0.0045924286228909
221 => 0.0046477774130684
222 => 0.0045446353087415
223 => 0.0044470199630568
224 => 0.0045318885863463
225 => 0.0043582094543618
226 => 0.0046687657064069
227 => 0.0046603660301129
228 => 0.0047761221962055
301 => 0.0048485069024189
302 => 0.004681683589424
303 => 0.004639727977344
304 => 0.004663627800761
305 => 0.0042686169571922
306 => 0.0047438413829832
307 => 0.0047479511435516
308 => 0.0047127608784572
309 => 0.0049658032142829
310 => 0.0054998014687588
311 => 0.0052988898453949
312 => 0.0052210907922425
313 => 0.0050731947353289
314 => 0.0052702574499673
315 => 0.0052551261081403
316 => 0.0051866964420077
317 => 0.0051453099664171
318 => 0.0052215658166714
319 => 0.0051358610226845
320 => 0.0051204660866742
321 => 0.0050271895243074
322 => 0.0049938940353557
323 => 0.0049692433808674
324 => 0.0049421054323991
325 => 0.0050019649843648
326 => 0.0048663153644307
327 => 0.0047027352206864
328 => 0.0046891353016958
329 => 0.0047266858737461
330 => 0.0047100725409251
331 => 0.0046890557634498
401 => 0.0046489290116707
402 => 0.0046370242615903
403 => 0.0046757089239881
404 => 0.0046320361955969
405 => 0.0046964776853148
406 => 0.0046789531658218
407 => 0.0045810626244953
408 => 0.0044590547662824
409 => 0.0044579686404241
410 => 0.0044316822475051
411 => 0.0043982025739372
412 => 0.0043888892946617
413 => 0.0045247411876107
414 => 0.0048059505403102
415 => 0.0047507424156058
416 => 0.0047906359436609
417 => 0.0049868726176162
418 => 0.0050492503552239
419 => 0.0050049761145676
420 => 0.0049443708032411
421 => 0.0049470371293623
422 => 0.0051541438246404
423 => 0.0051670608151827
424 => 0.0051996978831039
425 => 0.0052416457386169
426 => 0.0050121200157492
427 => 0.0049362264884561
428 => 0.0049002639248121
429 => 0.0047895131480522
430 => 0.0049089483657338
501 => 0.0048393585791167
502 => 0.0048487486188569
503 => 0.0048426333431576
504 => 0.0048459726972026
505 => 0.0046686788996053
506 => 0.0047332754411621
507 => 0.0046258711621187
508 => 0.0044820688891757
509 => 0.0044815868135332
510 => 0.0045167822161114
511 => 0.0044958466134616
512 => 0.0044395094450346
513 => 0.0044475118739057
514 => 0.0043774021764433
515 => 0.0044560244605547
516 => 0.004458279066339
517 => 0.0044280052043713
518 => 0.0045491336808294
519 => 0.0045987601164657
520 => 0.0045788332119896
521 => 0.0045973619917266
522 => 0.004753036562437
523 => 0.0047784183100205
524 => 0.004789691205673
525 => 0.0047745870188711
526 => 0.0046002074371033
527 => 0.004607941913074
528 => 0.0045511914603069
529 => 0.004503243307934
530 => 0.004505160982574
531 => 0.0045298125657171
601 => 0.0046374674750995
602 => 0.004864020885291
603 => 0.0048726184215994
604 => 0.004883038886413
605 => 0.0048406536191101
606 => 0.0048278698169192
607 => 0.0048447349517883
608 => 0.0049298165010439
609 => 0.0051486693451444
610 => 0.0050713121333493
611 => 0.0050084195160232
612 => 0.0050635932971461
613 => 0.0050550997260086
614 => 0.0049834054379803
615 => 0.0049813932181006
616 => 0.004843788957324
617 => 0.0047929197952123
618 => 0.004750409715861
619 => 0.004703989818963
620 => 0.0046764705480729
621 => 0.0047187526554451
622 => 0.0047284230736683
623 => 0.0046359725069343
624 => 0.004623371836305
625 => 0.0046988689647841
626 => 0.0046656454933571
627 => 0.0046998166576222
628 => 0.0047077446608465
629 => 0.00470646806973
630 => 0.0046717789498688
701 => 0.0046938887604239
702 => 0.0046415924672094
703 => 0.0045847281029879
704 => 0.0045484521813897
705 => 0.0045167966284924
706 => 0.0045343609690713
707 => 0.0044717473020294
708 => 0.0044517159297785
709 => 0.0046863984540944
710 => 0.0048597609580687
711 => 0.0048572401986019
712 => 0.004841895723634
713 => 0.0048190969463448
714 => 0.0049281486284804
715 => 0.0048901572029815
716 => 0.0049177991393218
717 => 0.0049248351722488
718 => 0.0049461311248013
719 => 0.0049537425973898
720 => 0.0049307354407196
721 => 0.0048535206128469
722 => 0.0046611086031536
723 => 0.0045715402932351
724 => 0.0045419812590838
725 => 0.0045430556738346
726 => 0.0045134185186088
727 => 0.004522147989067
728 => 0.0045103827650308
729 => 0.0044881022770197
730 => 0.0045329852117214
731 => 0.0045381575518323
801 => 0.0045276813385618
802 => 0.0045301488660315
803 => 0.0044434102946008
804 => 0.0044500048398004
805 => 0.0044132855741347
806 => 0.0044064011544798
807 => 0.0043135780483892
808 => 0.0041491284610253
809 => 0.0042402494959326
810 => 0.004130188099321
811 => 0.0040885061807219
812 => 0.0042858219005017
813 => 0.004266016874922
814 => 0.0042321192801672
815 => 0.004181977672647
816 => 0.0041633796626716
817 => 0.0040503840414754
818 => 0.0040437076573669
819 => 0.0040997113383702
820 => 0.0040738675665561
821 => 0.0040375731231275
822 => 0.0039061183281377
823 => 0.0037583196153823
824 => 0.0037627807294908
825 => 0.0038097927501255
826 => 0.0039464865405556
827 => 0.003893077911808
828 => 0.0038543293388582
829 => 0.0038470728959225
830 => 0.0039379024716547
831 => 0.0040664453507003
901 => 0.0041267547935636
902 => 0.004066989967311
903 => 0.0039983353528789
904 => 0.0040025140411445
905 => 0.0040303129820904
906 => 0.004033234257728
907 => 0.0039885471615411
908 => 0.0040011263173615
909 => 0.0039820174294081
910 => 0.0038647462193104
911 => 0.0038626251549907
912 => 0.003833844908779
913 => 0.0038329734543617
914 => 0.0037840110759867
915 => 0.0037771609007911
916 => 0.0036799431267237
917 => 0.0037439321600174
918 => 0.003701011676059
919 => 0.003636320382815
920 => 0.0036251675794761
921 => 0.0036248323127404
922 => 0.0036912558061934
923 => 0.0037431559628227
924 => 0.0037017582962533
925 => 0.0036923328500355
926 => 0.0037929719566636
927 => 0.0037801647129993
928 => 0.003769073722584
929 => 0.0040549357457524
930 => 0.0038286536483227
1001 => 0.0037299817381129
1002 => 0.0036078565119406
1003 => 0.0036476211013911
1004 => 0.0036560000846517
1005 => 0.003362310930434
1006 => 0.0032431612771445
1007 => 0.0032022736061955
1008 => 0.0031787421734975
1009 => 0.0031894657428671
1010 => 0.0030822170800462
1011 => 0.003154289955191
1012 => 0.0030614216786919
1013 => 0.0030458520099173
1014 => 0.0032119119924696
1015 => 0.0032350182689334
1016 => 0.0031364397149814
1017 => 0.0031997431050368
1018 => 0.0031767884158198
1019 => 0.0030630136387443
1020 => 0.0030586682791307
1021 => 0.003001580095371
1022 => 0.0029122481422378
1023 => 0.0028714210425596
1024 => 0.00285015793457
1025 => 0.0028589315073362
1026 => 0.0028544953204699
1027 => 0.0028255462004146
1028 => 0.0028561546501448
1029 => 0.0027779627093686
1030 => 0.0027468260485163
1031 => 0.0027327623411743
1101 => 0.0026633624931753
1102 => 0.0027738085135942
1103 => 0.0027955677709791
1104 => 0.0028173699008228
1105 => 0.0030071425561657
1106 => 0.0029976620505967
1107 => 0.0030833612037468
1108 => 0.003080031092246
1109 => 0.0030555883055333
1110 => 0.002952468209036
1111 => 0.0029935700415609
1112 => 0.0028670649896923
1113 => 0.0029618511760596
1114 => 0.0029185947189673
1115 => 0.0029472261244046
1116 => 0.0028957442758386
1117 => 0.0029242364564685
1118 => 0.0028007276981203
1119 => 0.0026853969573898
1120 => 0.002731809414174
1121 => 0.0027822650626066
1122 => 0.0028916657642685
1123 => 0.0028265076088949
1124 => 0.0028499409454699
1125 => 0.0027714431906367
1126 => 0.0026094799006409
1127 => 0.0026103965952731
1128 => 0.0025854820716693
1129 => 0.0025639522856956
1130 => 0.0028339918068534
1201 => 0.0028004081237043
1202 => 0.0027468969199301
1203 => 0.0028185237926326
1204 => 0.0028374630746465
1205 => 0.0028380022493799
1206 => 0.0028902593667465
1207 => 0.0029181489996527
1208 => 0.002923064668333
1209 => 0.0030052923715991
1210 => 0.0030328540131243
1211 => 0.003146376513897
1212 => 0.0029157827591546
1213 => 0.0029110338325222
1214 => 0.0028195317296199
1215 => 0.0027614996493683
1216 => 0.0028235052358034
1217 => 0.0028784337207782
1218 => 0.0028212385107606
1219 => 0.0028287069977321
1220 => 0.0027519271013039
1221 => 0.0027793723014471
1222 => 0.0028030118050781
1223 => 0.0027899594606389
1224 => 0.0027704194692727
1225 => 0.0028739302114064
1226 => 0.0028680897296734
1227 => 0.00296448131245
1228 => 0.0030396254442526
1229 => 0.0031742971620631
1230 => 0.0030337602039324
1231 => 0.0030286384785943
]
'min_raw' => 0.0025639522856956
'max_raw' => 0.0074131400786725
'avg_raw' => 0.004988546182184
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.002563'
'max' => '$0.007413'
'avg' => '$0.004988'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00045084055972247
'max_diff' => -0.0025041625048432
'year' => 2030
]
5 => [
'items' => [
101 => 0.0030787041653248
102 => 0.0030328463483285
103 => 0.0030618269057121
104 => 0.0031696279462309
105 => 0.0031719056123464
106 => 0.0031337517703047
107 => 0.003131430105549
108 => 0.0031387579682704
109 => 0.0031816774891114
110 => 0.0031666800897459
111 => 0.0031840354599794
112 => 0.0032057386162112
113 => 0.0032955120723335
114 => 0.0033171561486779
115 => 0.0032645722643278
116 => 0.0032693200003278
117 => 0.003249652184121
118 => 0.0032306533201022
119 => 0.0032733599918552
120 => 0.0033514072738855
121 => 0.0033509217457947
122 => 0.0033690271982034
123 => 0.0033803067450603
124 => 0.0033318866728174
125 => 0.0033003669862426
126 => 0.0033124536397252
127 => 0.0033317804618568
128 => 0.0033061862117883
129 => 0.0031482066439555
130 => 0.0031961275530621
131 => 0.0031881511705741
201 => 0.0031767918319498
202 => 0.0032249766766179
203 => 0.0032203291308019
204 => 0.0030811170899943
205 => 0.0030900289931744
206 => 0.0030816590523438
207 => 0.0031087040434963
208 => 0.0030313858300522
209 => 0.0030551683917615
210 => 0.0030700845915179
211 => 0.003078870347766
212 => 0.0031106105237839
213 => 0.0031068861804719
214 => 0.0031103790133744
215 => 0.0031574413153131
216 => 0.003395466288687
217 => 0.0034084214628153
218 => 0.0033446254472755
219 => 0.0033701106971628
220 => 0.0033211845903905
221 => 0.0033540290136432
222 => 0.0033765003338748
223 => 0.0032749567587347
224 => 0.0032689440072272
225 => 0.0032198159650083
226 => 0.0032462145921422
227 => 0.0032042124782437
228 => 0.0032145183278228
301 => 0.0031857022739518
302 => 0.0032375654337006
303 => 0.0032955565050199
304 => 0.003310207339772
305 => 0.0032716673011202
306 => 0.003243761773224
307 => 0.0031947688588906
308 => 0.0032762451673054
309 => 0.0033000713228314
310 => 0.0032761200186535
311 => 0.0032705699781292
312 => 0.0032600526613642
313 => 0.0032728012765994
314 => 0.0032999415604714
315 => 0.0032871427037997
316 => 0.0032955965741182
317 => 0.0032633791380574
318 => 0.0033319027018761
319 => 0.0034407346123138
320 => 0.0034410845247017
321 => 0.0034282855990394
322 => 0.0034230485544151
323 => 0.0034361810288484
324 => 0.0034433048575061
325 => 0.0034857728717394
326 => 0.003531342743012
327 => 0.0037439974485488
328 => 0.0036842848581857
329 => 0.003872964763823
330 => 0.0040221860721627
331 => 0.0040669310178768
401 => 0.0040257677732322
402 => 0.0038849505368979
403 => 0.0038780413714792
404 => 0.0040884817740664
405 => 0.0040290227215544
406 => 0.0040219502564553
407 => 0.0039467111769186
408 => 0.0039911867914661
409 => 0.0039814593221466
410 => 0.0039661040359418
411 => 0.0040509604103002
412 => 0.0042098039679183
413 => 0.0041850467098381
414 => 0.0041665665651374
415 => 0.004085591950548
416 => 0.0041343567548657
417 => 0.0041169925420765
418 => 0.0041916002198208
419 => 0.0041474042842875
420 => 0.0040285722607521
421 => 0.0040474966521756
422 => 0.0040446362684825
423 => 0.0041035027621969
424 => 0.00408583250194
425 => 0.0040411858665698
426 => 0.0042092610579069
427 => 0.0041983471898648
428 => 0.0042138205594909
429 => 0.0042206324153302
430 => 0.00432293682248
501 => 0.0043648476647134
502 => 0.0043743621596529
503 => 0.0044141742182738
504 => 0.0043733715993665
505 => 0.0045366111667699
506 => 0.0046451559538003
507 => 0.0047712363095998
508 => 0.0049554735966278
509 => 0.0050247485208404
510 => 0.0050122346258372
511 => 0.0051519212341907
512 => 0.0054029349643431
513 => 0.0050629716774582
514 => 0.0054209538440433
515 => 0.0053076208232053
516 => 0.0050389102695725
517 => 0.0050216084778078
518 => 0.0052035823845217
519 => 0.0056071829952736
520 => 0.0055060856198805
521 => 0.0056073483543626
522 => 0.0054892199957024
523 => 0.0054833539270309
524 => 0.0056016111236499
525 => 0.0058779255094143
526 => 0.0057466589022275
527 => 0.0055584560329326
528 => 0.005697422102859
529 => 0.0055770368323861
530 => 0.0053057751242952
531 => 0.0055060083126228
601 => 0.005372118081901
602 => 0.0054111943692218
603 => 0.0056926117195302
604 => 0.0056587508394032
605 => 0.0057025699537207
606 => 0.0056252303638962
607 => 0.0055529829916662
608 => 0.0054181279062386
609 => 0.0053782039637189
610 => 0.0053892375051183
611 => 0.0053781984960437
612 => 0.0053027483151292
613 => 0.0052864548557444
614 => 0.0052592983762702
615 => 0.0052677153047986
616 => 0.0052166531784788
617 => 0.0053130179608178
618 => 0.0053309041135835
619 => 0.0054010303660139
620 => 0.0054083111061762
621 => 0.0056036117210101
622 => 0.0054960434242531
623 => 0.0055682095247176
624 => 0.0055617543094384
625 => 0.0050447340420714
626 => 0.0051159748732061
627 => 0.0052268032498474
628 => 0.0051768752163948
629 => 0.0051062886584534
630 => 0.0050492862283039
701 => 0.0049629217178297
702 => 0.0050844781078386
703 => 0.0052443118346194
704 => 0.0054123647532531
705 => 0.0056142693237281
706 => 0.0055692065740264
707 => 0.00540859028775
708 => 0.0054157954170221
709 => 0.0054603346910683
710 => 0.0054026522843587
711 => 0.0053856406165257
712 => 0.00545799754914
713 => 0.0054584958315682
714 => 0.0053921252514971
715 => 0.005318366497436
716 => 0.0053180574455634
717 => 0.0053049327877032
718 => 0.0054915548431791
719 => 0.0055941781040728
720 => 0.0056059436955486
721 => 0.0055933861860231
722 => 0.0055982190730498
723 => 0.005538504858685
724 => 0.0056749938450227
725 => 0.0058002496362479
726 => 0.0057666784084999
727 => 0.0057163503656744
728 => 0.0056762616554368
729 => 0.0057572347824055
730 => 0.0057536291765251
731 => 0.0057991556361823
801 => 0.0057970902929987
802 => 0.0057817814569527
803 => 0.0057666789552266
804 => 0.0058265586674612
805 => 0.0058093142719764
806 => 0.0057920430911824
807 => 0.0057574030940145
808 => 0.005762111244939
809 => 0.0057117918919597
810 => 0.0056885118568145
811 => 0.0053384359848455
812 => 0.0052448842727963
813 => 0.0052743175458277
814 => 0.0052840077435442
815 => 0.0052432939185706
816 => 0.0053016670850592
817 => 0.0052925696888945
818 => 0.0053279623355728
819 => 0.0053058505464983
820 => 0.0053067580220348
821 => 0.0053717840789726
822 => 0.0053906614199423
823 => 0.0053810602519663
824 => 0.0053877845809079
825 => 0.0055427439032054
826 => 0.0055207136428949
827 => 0.0055090105061843
828 => 0.0055122523550338
829 => 0.0055518477842461
830 => 0.0055629323425953
831 => 0.0055159662899717
901 => 0.0055381157518965
902 => 0.005632425349587
903 => 0.0056654283713177
904 => 0.005770758174333
905 => 0.0057260122019242
906 => 0.005808145370841
907 => 0.0060605947308305
908 => 0.0062622687477572
909 => 0.0060768009872602
910 => 0.0064471496363149
911 => 0.0067355191829623
912 => 0.0067244510794574
913 => 0.0066741671788916
914 => 0.0063458661167345
915 => 0.0060437585846445
916 => 0.0062964843634012
917 => 0.0062971286133848
918 => 0.0062754192448582
919 => 0.0061405842214319
920 => 0.0062707272783148
921 => 0.00628105756156
922 => 0.0062752753499867
923 => 0.0061718976536632
924 => 0.0060140590187692
925 => 0.0060449003102152
926 => 0.006095418974749
927 => 0.005999776603489
928 => 0.0059692130706958
929 => 0.0060260364931084
930 => 0.006209133399752
1001 => 0.0061745199901592
1002 => 0.006173616094151
1003 => 0.006321706938759
1004 => 0.0062157058540242
1005 => 0.0060452893176678
1006 => 0.0060022568947199
1007 => 0.0058495207833682
1008 => 0.0059550161595062
1009 => 0.0059588127502836
1010 => 0.0059010340109094
1011 => 0.0060499777439312
1012 => 0.0060486052012104
1013 => 0.0061900051083655
1014 => 0.0064603086234663
1015 => 0.0063803665732228
1016 => 0.00628740266646
1017 => 0.0062975104207347
1018 => 0.0064083675370642
1019 => 0.0063413407939096
1020 => 0.006365444078075
1021 => 0.0064083310538569
1022 => 0.0064342058311697
1023 => 0.0062937874384696
1024 => 0.006261049194143
1025 => 0.0061940782358132
1026 => 0.0061766067628572
1027 => 0.0062311532110219
1028 => 0.0062167821490849
1029 => 0.0059584936615299
1030 => 0.0059315010774768
1031 => 0.0059323289014932
1101 => 0.0058644547654643
1102 => 0.0057609304163611
1103 => 0.0060329862246866
1104 => 0.0060111363358595
1105 => 0.0059870157496414
1106 => 0.0059899703838229
1107 => 0.0061080605893902
1108 => 0.0060395623064629
1109 => 0.006221676218273
1110 => 0.0061842390728501
1111 => 0.0061458418059104
1112 => 0.00614053413401
1113 => 0.0061257544621391
1114 => 0.00607506946802
1115 => 0.0060138642919254
1116 => 0.0059734513331661
1117 => 0.005510193099403
1118 => 0.0055961711329402
1119 => 0.0056950810233805
1120 => 0.005729224321204
1121 => 0.0056708198476326
1122 => 0.0060773756326161
1123 => 0.0061516572922016
1124 => 0.0059266533000444
1125 => 0.0058845642399642
1126 => 0.0060801349843879
1127 => 0.0059621819179492
1128 => 0.0060152961765442
1129 => 0.005900492201408
1130 => 0.0061337650156284
1201 => 0.0061319878676229
1202 => 0.0060412394741857
1203 => 0.0061179393949006
1204 => 0.006104610896184
1205 => 0.0060021561834969
1206 => 0.0061370130127657
1207 => 0.0061370799000705
1208 => 0.0060497365444275
1209 => 0.0059477386269555
1210 => 0.0059295038083948
1211 => 0.0059157663221125
1212 => 0.006011917597042
1213 => 0.0060981265294865
1214 => 0.006258539979759
1215 => 0.006298871732487
1216 => 0.0064562892484215
1217 => 0.0063625547822023
1218 => 0.0064041060570127
1219 => 0.0064492158436061
1220 => 0.0064708431341564
1221 => 0.006435602624789
1222 => 0.0066801368226698
1223 => 0.0067007830013052
1224 => 0.0067077054864128
1225 => 0.0066252499307436
1226 => 0.006698489763141
1227 => 0.0066642232710106
1228 => 0.0067533751640283
1229 => 0.0067673553192019
1230 => 0.0067555146251283
1231 => 0.0067599521470421
]
'min_raw' => 0.0030313858300522
'max_raw' => 0.0067673553192019
'avg_raw' => 0.0048993705746271
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.003031'
'max' => '$0.006767'
'avg' => '$0.004899'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00046743354435658
'max_diff' => -0.00064578475947054
'year' => 2031
]
6 => [
'items' => [
101 => 0.0065512853479395
102 => 0.0065404648736009
103 => 0.0063929269382092
104 => 0.0064530497374267
105 => 0.0063406530460504
106 => 0.0063762951947
107 => 0.0063920059142139
108 => 0.0063837995259154
109 => 0.0064564489902869
110 => 0.0063946821042661
111 => 0.0062316691366408
112 => 0.0060686117562414
113 => 0.0060665647036542
114 => 0.0060236345735969
115 => 0.005992603952611
116 => 0.0059985815510833
117 => 0.0060196473877701
118 => 0.0059913795678871
119 => 0.005997411940474
120 => 0.0060975895189045
121 => 0.006117679417825
122 => 0.0060494060916631
123 => 0.0057752788353292
124 => 0.0057080073190287
125 => 0.0057563607508933
126 => 0.0057332509248219
127 => 0.0046271809582195
128 => 0.004887035690305
129 => 0.0047326388323327
130 => 0.0048037920079442
131 => 0.0046461927968271
201 => 0.0047214074008546
202 => 0.0047075180098882
203 => 0.0051253567294212
204 => 0.0051188327525341
205 => 0.0051219554350287
206 => 0.0049729016634508
207 => 0.0052103483688254
208 => 0.0053273231542003
209 => 0.0053056742346105
210 => 0.0053111228012636
211 => 0.0052174983741986
212 => 0.0051228619241356
213 => 0.0050178955365705
214 => 0.0052129101104289
215 => 0.0051912278188256
216 => 0.0052409591947212
217 => 0.005367440085798
218 => 0.0053860648774632
219 => 0.0054110967863353
220 => 0.0054021246288973
221 => 0.0056158778193699
222 => 0.0055899908976147
223 => 0.005652370930869
224 => 0.0055240504696803
225 => 0.0053788436875554
226 => 0.00540644274967
227 => 0.0054037847380507
228 => 0.0053699451994136
229 => 0.005339396377
301 => 0.0052885411947587
302 => 0.0054494545165209
303 => 0.0054429217295196
304 => 0.0055486799575367
305 => 0.0055299861634541
306 => 0.0054051444314228
307 => 0.0054096031783055
308 => 0.0054395903938919
309 => 0.0055433764894244
310 => 0.0055741872688747
311 => 0.005559914488236
312 => 0.0055936971013378
313 => 0.0056203975013053
314 => 0.0055970502604871
315 => 0.0059275979554989
316 => 0.0057903315068251
317 => 0.0058572342188149
318 => 0.0058731901214108
319 => 0.0058323194124279
320 => 0.0058411828057359
321 => 0.0058546084314675
322 => 0.0059361262019024
323 => 0.0061500524188808
324 => 0.0062447988841354
325 => 0.0065298482995624
326 => 0.0062369315091305
327 => 0.0062195510389965
328 => 0.0062708970463825
329 => 0.0064382512287831
330 => 0.0065738760748398
331 => 0.0066188706606619
401 => 0.0066248174379579
402 => 0.0067092302721436
403 => 0.0067576141344927
404 => 0.0066989803337955
405 => 0.0066492943269195
406 => 0.0064713252175437
407 => 0.0064919256265478
408 => 0.0066338420161429
409 => 0.0068343072752798
410 => 0.0070063273224745
411 => 0.0069460918974508
412 => 0.0074056456707986
413 => 0.0074512085503172
414 => 0.007444913233592
415 => 0.0075487122538009
416 => 0.007342692336989
417 => 0.007254614831104
418 => 0.0066600370055662
419 => 0.006827089122028
420 => 0.007069909183932
421 => 0.0070377710382105
422 => 0.006861428618657
423 => 0.0070061935509363
424 => 0.0069583297371067
425 => 0.0069205775612679
426 => 0.0070935275974049
427 => 0.0069033619282764
428 => 0.0070680121359133
429 => 0.0068568465415307
430 => 0.0069463670477985
501 => 0.0068955508788212
502 => 0.0069284351679449
503 => 0.006736194285664
504 => 0.0068399227993592
505 => 0.0067318788384666
506 => 0.0067318276115614
507 => 0.0067294425351363
508 => 0.0068565557759862
509 => 0.0068607009342068
510 => 0.0067667640571613
511 => 0.0067532262856092
512 => 0.0068032825224705
513 => 0.0067446797788552
514 => 0.0067720996337515
515 => 0.0067455102983269
516 => 0.0067395244788658
517 => 0.006691828450996
518 => 0.0066712796907601
519 => 0.0066793373891249
520 => 0.0066518323105775
521 => 0.0066352595058506
522 => 0.0067261457871447
523 => 0.0066775889133914
524 => 0.0067187037498384
525 => 0.006671848204601
526 => 0.0065094264708188
527 => 0.0064160160141421
528 => 0.0061092164155302
529 => 0.0061962244011128
530 => 0.0062539107855704
531 => 0.0062348454358513
601 => 0.0062758051843588
602 => 0.0062783197802559
603 => 0.0062650033484809
604 => 0.006249584626426
605 => 0.0062420796452384
606 => 0.0062980156262944
607 => 0.006330488346016
608 => 0.0062597003859949
609 => 0.0062431157573908
610 => 0.0063146862932825
611 => 0.0063583442788314
612 => 0.006680690314822
613 => 0.0066568098793118
614 => 0.0067167450861435
615 => 0.006709997301635
616 => 0.0067728189468218
617 => 0.0068755057862941
618 => 0.006666714729955
619 => 0.006702953637884
620 => 0.0066940686945384
621 => 0.0067910721762282
622 => 0.0067913750105098
623 => 0.0067332165775534
624 => 0.0067647452075719
625 => 0.0067471467912383
626 => 0.0067789495081217
627 => 0.0066564909415364
628 => 0.0068056322570519
629 => 0.0068901857724951
630 => 0.0068913597981391
701 => 0.006931437493401
702 => 0.0069721587529306
703 => 0.0070503196645236
704 => 0.0069699788875282
705 => 0.0068254536507306
706 => 0.0068358879060137
707 => 0.0067511528125589
708 => 0.0067525772247886
709 => 0.0067449736006737
710 => 0.0067677926490166
711 => 0.0066614984394212
712 => 0.0066864454779554
713 => 0.0066515194779179
714 => 0.0067028777155808
715 => 0.0066476247416763
716 => 0.0066940644099497
717 => 0.0067141062312771
718 => 0.0067880609834448
719 => 0.0066367015646504
720 => 0.0063280694635968
721 => 0.0063929476730408
722 => 0.0062969877051998
723 => 0.0063058691655688
724 => 0.0063238111289882
725 => 0.0062656553553008
726 => 0.0062767496442213
727 => 0.0062763532781518
728 => 0.0062729376094986
729 => 0.00625780904668
730 => 0.006235869637498
731 => 0.006323269491085
801 => 0.0063381204293073
802 => 0.0063711322253336
803 => 0.0064693529381926
804 => 0.0064595383727741
805 => 0.0064755463361741
806 => 0.0064406010419528
807 => 0.0063074901775422
808 => 0.0063147187378954
809 => 0.0062245784744614
810 => 0.0063688271361347
811 => 0.0063346671490611
812 => 0.006312643983171
813 => 0.0063066347583146
814 => 0.0064050989413228
815 => 0.0064345609681158
816 => 0.0064162022101415
817 => 0.0063785478619256
818 => 0.0064508553420089
819 => 0.0064702017732715
820 => 0.0064745327257622
821 => 0.0066026477168856
822 => 0.006481692930586
823 => 0.0065108079498355
824 => 0.0067379550187713
825 => 0.0065319639713994
826 => 0.0066410820233408
827 => 0.0066357412625212
828 => 0.0066915623655409
829 => 0.0066311623027777
830 => 0.0066319110339445
831 => 0.0066814763917769
901 => 0.0066118707858607
902 => 0.00659463545897
903 => 0.0065708249783122
904 => 0.0066228142917394
905 => 0.0066539795338646
906 => 0.0069051484970457
907 => 0.007067415101957
908 => 0.0070603706806901
909 => 0.0071247435044657
910 => 0.0070957429577673
911 => 0.0070020925425205
912 => 0.0071619423818954
913 => 0.0071113592043158
914 => 0.0071155292200169
915 => 0.0071153740118242
916 => 0.0071490074028565
917 => 0.0071251750628551
918 => 0.0070781990743729
919 => 0.007109383927805
920 => 0.0072019917937092
921 => 0.0074894494510323
922 => 0.0076503145643778
923 => 0.0074797651692208
924 => 0.0075974078582527
925 => 0.0075268641652097
926 => 0.0075140442776907
927 => 0.0075879325801291
928 => 0.0076619502142598
929 => 0.0076572356109527
930 => 0.0076035026094214
1001 => 0.0075731502002808
1002 => 0.0078029888110965
1003 => 0.0079723299843469
1004 => 0.0079607820516088
1005 => 0.0080117508711256
1006 => 0.0081613969016333
1007 => 0.0081750786592378
1008 => 0.0081733550722512
1009 => 0.0081394434084847
1010 => 0.0082867893595121
1011 => 0.0084097079441646
1012 => 0.0081315938381249
1013 => 0.0082374960489238
1014 => 0.0082850389633076
1015 => 0.00835484606697
1016 => 0.0084726223518776
1017 => 0.0086005586359039
1018 => 0.0086186502292152
1019 => 0.0086058133779984
1020 => 0.0085214359595711
1021 => 0.00866142536815
1022 => 0.00874342788054
1023 => 0.008792258500074
1024 => 0.0089160848265721
1025 => 0.0082853325721613
1026 => 0.0078388547760682
1027 => 0.0077691308209907
1028 => 0.0079109172253999
1029 => 0.0079483051695172
1030 => 0.007933234136124
1031 => 0.0074306827846359
1101 => 0.0077664849921305
1102 => 0.0081277799323432
1103 => 0.0081416587424167
1104 => 0.0083225305438081
1105 => 0.0083814298165268
1106 => 0.0085270553240558
1107 => 0.0085179464089103
1108 => 0.0085534039025857
1109 => 0.0085452528388279
1110 => 0.008814993426457
1111 => 0.0091125573514768
1112 => 0.0091022536589487
1113 => 0.0090594753241105
1114 => 0.0091230084461352
1115 => 0.0094301263056437
1116 => 0.0094018518146036
1117 => 0.0094293180742336
1118 => 0.0097914273389983
1119 => 0.010262220892635
1120 => 0.010043490020071
1121 => 0.010518073075421
1122 => 0.010816797952198
1123 => 0.011333411737854
1124 => 0.011268729147514
1125 => 0.011469843103182
1126 => 0.01115293381114
1127 => 0.010425246018675
1128 => 0.01031008664004
1129 => 0.010540638632366
1130 => 0.011107428208566
1201 => 0.010522788411579
1202 => 0.010641060281073
1203 => 0.010606997974702
1204 => 0.010605182939151
1205 => 0.01067445546385
1206 => 0.010573972053762
1207 => 0.010164584564442
1208 => 0.010352204438262
1209 => 0.010279755394733
1210 => 0.010360143009962
1211 => 0.010793961814976
1212 => 0.010602160180331
1213 => 0.010400112738931
1214 => 0.010653525068363
1215 => 0.010976206045653
1216 => 0.010956013250007
1217 => 0.010916830786522
1218 => 0.011137700281664
1219 => 0.011502511978949
1220 => 0.011601119114793
1221 => 0.011673908886538
1222 => 0.011683945366269
1223 => 0.01178732734513
1224 => 0.011231416389179
1225 => 0.012113661353079
1226 => 0.01226600068682
1227 => 0.012237367205895
1228 => 0.012406685963928
1229 => 0.012356868090112
1230 => 0.012284689807138
1231 => 0.012553096053754
]
'min_raw' => 0.0046271809582195
'max_raw' => 0.012553096053754
'avg_raw' => 0.0085901385059866
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.004627'
'max' => '$0.012553'
'avg' => '$0.00859'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0015957951281674
'max_diff' => 0.0057857407345517
'year' => 2032
]
7 => [
'items' => [
101 => 0.012245389951277
102 => 0.011808639877931
103 => 0.011569030149757
104 => 0.011884567568582
105 => 0.01207725525952
106 => 0.012204609565992
107 => 0.01224314690218
108 => 0.011274570174214
109 => 0.010752561037569
110 => 0.011087162909312
111 => 0.011495400285826
112 => 0.01122914860994
113 => 0.011239585171554
114 => 0.010859980251451
115 => 0.011528986898123
116 => 0.011431518256934
117 => 0.011937185739839
118 => 0.011816504136809
119 => 0.012228856339219
120 => 0.012120270184897
121 => 0.012571005240517
122 => 0.012750815657368
123 => 0.013052745332518
124 => 0.013274846030633
125 => 0.013405267808676
126 => 0.013397437774322
127 => 0.013914233834798
128 => 0.013609497253414
129 => 0.013226676286299
130 => 0.013219752262788
131 => 0.013418020666273
201 => 0.013833536847696
202 => 0.013941274148024
203 => 0.014001484601115
204 => 0.013909270196265
205 => 0.013578500477841
206 => 0.013435675790465
207 => 0.013557366562139
208 => 0.01340854920539
209 => 0.013665449713914
210 => 0.014018228983106
211 => 0.013945381459058
212 => 0.014188899810038
213 => 0.014440915684425
214 => 0.01480130970354
215 => 0.014895530045488
216 => 0.01505127268785
217 => 0.015211583025633
218 => 0.015263070385645
219 => 0.015361375731496
220 => 0.015360857613798
221 => 0.015657107390233
222 => 0.015983880067733
223 => 0.016107229188685
224 => 0.016390863690802
225 => 0.015905149545664
226 => 0.016273569304233
227 => 0.016605893148607
228 => 0.016209682961241
301 => 0.016755766399391
302 => 0.016776969581843
303 => 0.017097112463286
304 => 0.016772586320989
305 => 0.016579883733616
306 => 0.017136208882888
307 => 0.017405397098543
308 => 0.017324315417261
309 => 0.016707279819212
310 => 0.016348138635246
311 => 0.015408196883646
312 => 0.016521598490878
313 => 0.017063903935391
314 => 0.016705875379123
315 => 0.016886444157627
316 => 0.017871568863524
317 => 0.018246640569429
318 => 0.01816862827655
319 => 0.018181811069854
320 => 0.018384192954328
321 => 0.01928166568382
322 => 0.018743879221053
323 => 0.019154996821364
324 => 0.019373052114175
325 => 0.01957559402249
326 => 0.019078215109695
327 => 0.018431132452095
328 => 0.018226174211751
329 => 0.016670276495173
330 => 0.016589285262104
331 => 0.016543822428697
401 => 0.01625718569491
402 => 0.016031967738562
403 => 0.015852866057868
404 => 0.015382849763437
405 => 0.015541466465334
406 => 0.014792358592036
407 => 0.015271611262619
408 => 0.014076017008993
409 => 0.015071743430688
410 => 0.014529814809485
411 => 0.014893705303499
412 => 0.014892435723846
413 => 0.014222397952779
414 => 0.013835934149759
415 => 0.014082203926439
416 => 0.01434622467596
417 => 0.014389061154298
418 => 0.014731370947698
419 => 0.014826902253112
420 => 0.014537437937778
421 => 0.014051240975549
422 => 0.014164173440903
423 => 0.013833645576953
424 => 0.013254408208952
425 => 0.013670426599165
426 => 0.013812473568621
427 => 0.01387520960257
428 => 0.013305596177002
429 => 0.013126611271779
430 => 0.013031321210067
501 => 0.013977711035207
502 => 0.014029556406183
503 => 0.013764308158076
504 => 0.014963255391389
505 => 0.014691896706984
506 => 0.014995070841957
507 => 0.014153926003374
508 => 0.01418605886896
509 => 0.01378784742243
510 => 0.014010819223988
511 => 0.013853229941364
512 => 0.013992805305873
513 => 0.014076466203868
514 => 0.014474612307818
515 => 0.015076289619644
516 => 0.01441514255689
517 => 0.014127071313848
518 => 0.014305789092857
519 => 0.014781738089512
520 => 0.015502825182826
521 => 0.015075927110354
522 => 0.015265377225718
523 => 0.015306763647876
524 => 0.014991984813861
525 => 0.015514431527432
526 => 0.015794414965584
527 => 0.01608162003872
528 => 0.016330992156419
529 => 0.015966904016734
530 => 0.016356530516182
531 => 0.016042560335963
601 => 0.015760896626666
602 => 0.015761323794247
603 => 0.015584632034955
604 => 0.015242269486732
605 => 0.015179132580056
606 => 0.015507578741898
607 => 0.015770961459728
608 => 0.015792654921886
609 => 0.01593847712757
610 => 0.016024773206805
611 => 0.016870592097141
612 => 0.017210787451815
613 => 0.017626771891942
614 => 0.01778882127497
615 => 0.018276531819965
616 => 0.017882665944968
617 => 0.01779745058538
618 => 0.016614424332126
619 => 0.016808144814822
620 => 0.017118309998864
621 => 0.01661953884177
622 => 0.016935894339651
623 => 0.016998349616259
624 => 0.016602590788709
625 => 0.016813982678233
626 => 0.016252588492984
627 => 0.015088526478769
628 => 0.015515727461218
629 => 0.015830291178597
630 => 0.015381369968471
701 => 0.016186043861971
702 => 0.015715969985229
703 => 0.015566979133828
704 => 0.014985712703436
705 => 0.015260048083584
706 => 0.015631090613339
707 => 0.015401829468274
708 => 0.015877580768017
709 => 0.016551371486691
710 => 0.017031554877748
711 => 0.017068417396053
712 => 0.016759691645392
713 => 0.017254426631088
714 => 0.017258030235344
715 => 0.016699967150427
716 => 0.016358156618223
717 => 0.016280496546131
718 => 0.016474506632371
719 => 0.016710070693305
720 => 0.017081489561992
721 => 0.017305930205514
722 => 0.017891152369698
723 => 0.018049496707692
724 => 0.018223469128143
725 => 0.018455949932974
726 => 0.018735102746029
727 => 0.018124332283244
728 => 0.018148599332349
729 => 0.017579858334097
730 => 0.016972077011755
731 => 0.017433307274401
801 => 0.01803630448792
802 => 0.017897976260886
803 => 0.017882411509556
804 => 0.017908587103992
805 => 0.017804292138186
806 => 0.017332569873196
807 => 0.017095673904856
808 => 0.017401330142622
809 => 0.0175637728298
810 => 0.017815707271123
811 => 0.017784651033539
812 => 0.018433607098603
813 => 0.018685771802074
814 => 0.01862125728019
815 => 0.018633129504845
816 => 0.019089661655523
817 => 0.019597419300075
818 => 0.02007300133872
819 => 0.020556783815154
820 => 0.019973565157462
821 => 0.019677442691012
822 => 0.019982965488826
823 => 0.019820850791761
824 => 0.020752409927439
825 => 0.020816909060818
826 => 0.021748400834167
827 => 0.022632497447052
828 => 0.022077212204735
829 => 0.022600821177644
830 => 0.02316714697231
831 => 0.024259681313271
901 => 0.023891754183057
902 => 0.023609927767466
903 => 0.023343603166508
904 => 0.023897782383262
905 => 0.024610725092386
906 => 0.024764286123451
907 => 0.025013113658605
908 => 0.024751501930574
909 => 0.025066584441401
910 => 0.026178964158891
911 => 0.025878389339978
912 => 0.025451524777308
913 => 0.026329641730182
914 => 0.026647428841834
915 => 0.028877825217811
916 => 0.03169379277556
917 => 0.030527963716012
918 => 0.029804295997681
919 => 0.029974375077117
920 => 0.031002671102689
921 => 0.031332927149619
922 => 0.030435177367978
923 => 0.030752277767884
924 => 0.032499532147985
925 => 0.033436878064278
926 => 0.032163836407601
927 => 0.028651564966392
928 => 0.025413090293866
929 => 0.026272079607435
930 => 0.026174696876818
1001 => 0.028051903733814
1002 => 0.025871220729953
1003 => 0.025907937839065
1004 => 0.027823963345867
1005 => 0.027312800589646
1006 => 0.026484782389346
1007 => 0.025419135743068
1008 => 0.023449189357038
1009 => 0.021704352906913
1010 => 0.025126378997445
1011 => 0.02497881500987
1012 => 0.024765120488105
1013 => 0.025240674522131
1014 => 0.027549829922997
1015 => 0.027496596417001
1016 => 0.027157952011824
1017 => 0.027414810808476
1018 => 0.026439753800399
1019 => 0.026691048193015
1020 => 0.025412577302932
1021 => 0.02599049953891
1022 => 0.02648300583417
1023 => 0.026581883764623
1024 => 0.026804660790768
1025 => 0.024901055493778
1026 => 0.025755718385211
1027 => 0.026257752762845
1028 => 0.023989543180529
1029 => 0.026212917552252
1030 => 0.024867917960697
1031 => 0.024411404898107
1101 => 0.025026039595862
1102 => 0.024786515856395
1103 => 0.024580587410507
1104 => 0.024465675799402
1105 => 0.024916995686677
1106 => 0.024895941074492
1107 => 0.024157494141495
1108 => 0.023194220220348
1109 => 0.023517526566673
1110 => 0.02340006634004
1111 => 0.022974375326051
1112 => 0.02326123967135
1113 => 0.021998034273372
1114 => 0.019824755041854
1115 => 0.021260489871538
1116 => 0.021205215642375
1117 => 0.021177343869543
1118 => 0.022256258913255
1119 => 0.022152546126607
1120 => 0.021964306403283
1121 => 0.022970918155912
1122 => 0.022603491325364
1123 => 0.023735814240465
1124 => 0.024481635346405
1125 => 0.024292470989154
1126 => 0.024993919344156
1127 => 0.023524974891906
1128 => 0.024012899315121
1129 => 0.024113459862512
1130 => 0.022958496723137
1201 => 0.02216951482114
1202 => 0.022116898723329
1203 => 0.02074891283367
1204 => 0.02147967985393
1205 => 0.022122724590564
1206 => 0.021814756064004
1207 => 0.021717262428793
1208 => 0.022215336267296
1209 => 0.022254040870262
1210 => 0.021371571820915
1211 => 0.021555065080434
1212 => 0.022320262475847
1213 => 0.021535784069364
1214 => 0.020011670669388
1215 => 0.019633669473677
1216 => 0.019583237146225
1217 => 0.018558067923805
1218 => 0.019658929321058
1219 => 0.019178373819906
1220 => 0.020696442890106
1221 => 0.019829329978775
1222 => 0.019791950474244
1223 => 0.019735445870765
1224 => 0.018853040371821
1225 => 0.019046231096295
1226 => 0.019688426488224
1227 => 0.019917569038913
1228 => 0.019893667593566
1229 => 0.019685279380455
1230 => 0.019780678437297
1231 => 0.019473364835973
]
'min_raw' => 0.010752561037569
'max_raw' => 0.033436878064278
'avg_raw' => 0.022094719550923
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.010752'
'max' => '$0.033436'
'avg' => '$0.022094'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0061253800793492
'max_diff' => 0.020883782010525
'year' => 2033
]
8 => [
'items' => [
101 => 0.019364846007167
102 => 0.019022330732997
103 => 0.018518927902227
104 => 0.018588929153394
105 => 0.017591556423123
106 => 0.017048134825094
107 => 0.016897722888941
108 => 0.01669658576177
109 => 0.016920441862661
110 => 0.017588730991491
111 => 0.016782632516674
112 => 0.015400633222832
113 => 0.015483693735204
114 => 0.015670306045617
115 => 0.015322555239727
116 => 0.014993438286465
117 => 0.015279578775224
118 => 0.014694007455848
119 => 0.015741069541963
120 => 0.015712749446891
121 => 0.01610302944271
122 => 0.016347079533447
123 => 0.015784623086453
124 => 0.015643166811078
125 => 0.015723746734361
126 => 0.014391940096492
127 => 0.015994192427157
128 => 0.016008048771847
129 => 0.015889402336176
130 => 0.016742552238264
131 => 0.018542964635797
201 => 0.017865577070424
202 => 0.017603272130964
203 => 0.017104630249307
204 => 0.01776904095019
205 => 0.017718024574783
206 => 0.01748730917781
207 => 0.017347771785845
208 => 0.017604873708991
209 => 0.017315914012347
210 => 0.017264008910748
211 => 0.016949520468367
212 => 0.016837262402749
213 => 0.016754151000088
214 => 0.016662653512116
215 => 0.016864474170829
216 => 0.016407122006467
217 => 0.015855600131032
218 => 0.015809747054639
219 => 0.015936351430004
220 => 0.015880338418493
221 => 0.01580947888589
222 => 0.015674188740706
223 => 0.015634051044647
224 => 0.015764479084798
225 => 0.015617233431895
226 => 0.01583450241364
227 => 0.015775417272646
228 => 0.015445372478065
301 => 0.015034014465783
302 => 0.015030352516621
303 => 0.014941726107637
304 => 0.014828847050727
305 => 0.014797446679417
306 => 0.015255480821371
307 => 0.016203597787407
308 => 0.016017459740458
309 => 0.016151963555573
310 => 0.016813589202621
311 => 0.01702390010004
312 => 0.016874626406538
313 => 0.016670291368073
314 => 0.016679281072748
315 => 0.017377555755606
316 => 0.017421106291054
317 => 0.017531144444198
318 => 0.017672574567766
319 => 0.016898712568143
320 => 0.016642832242158
321 => 0.016521581948006
322 => 0.016148177971787
323 => 0.016550862146902
324 => 0.016316235322718
325 => 0.016347894497294
326 => 0.016327276418319
327 => 0.016338535283628
328 => 0.015740776866771
329 => 0.015958568616616
330 => 0.015596447591094
331 => 0.015111608187913
401 => 0.015109982836226
402 => 0.015228646593284
403 => 0.015158060747273
404 => 0.014968116050586
405 => 0.014995096798236
406 => 0.014758717058339
407 => 0.015023797578453
408 => 0.015031399139266
409 => 0.014929328699989
410 => 0.015337721815287
411 => 0.015505040807842
412 => 0.015437855858149
413 => 0.01550032693267
414 => 0.016025194616672
415 => 0.016110770950747
416 => 0.016148778305487
417 => 0.016097853485144
418 => 0.015509920550421
419 => 0.01553599787616
420 => 0.015344659762465
421 => 0.015182999219107
422 => 0.015189464793044
423 => 0.015272579326729
424 => 0.015635545369937
425 => 0.016399386009852
426 => 0.016428373203777
427 => 0.016463506528429
428 => 0.016320601640473
429 => 0.01627750015885
430 => 0.016334362138547
501 => 0.016621220522066
502 => 0.017359098165769
503 => 0.017098282925294
504 => 0.016886236074956
505 => 0.017072258330122
506 => 0.01704362166203
507 => 0.016801899364408
508 => 0.016795115024594
509 => 0.016331172652163
510 => 0.016159663720532
511 => 0.01601633802004
512 => 0.015859830096715
513 => 0.015767046953575
514 => 0.015909604030623
515 => 0.015942208520829
516 => 0.015630504980393
517 => 0.015588020939616
518 => 0.015842564779324
519 => 0.015730549525819
520 => 0.015845759991894
521 => 0.01587248980828
522 => 0.015868185692202
523 => 0.015751228902673
524 => 0.015825773672617
525 => 0.015649453068834
526 => 0.015457730894718
527 => 0.015335424092345
528 => 0.015228695185632
529 => 0.015287914586197
530 => 0.015076808236219
531 => 0.015009271066129
601 => 0.015800519581871
602 => 0.016385023367804
603 => 0.016376524451267
604 => 0.016324789482596
605 => 0.016247921813206
606 => 0.016615597173271
607 => 0.016487506429725
608 => 0.016580703147995
609 => 0.016604425624248
610 => 0.016676226415115
611 => 0.016701889026363
612 => 0.016624318791341
613 => 0.016363983608201
614 => 0.015715253083743
615 => 0.015413267273393
616 => 0.015313606926006
617 => 0.015317229390352
618 => 0.015217305652308
619 => 0.015246737671429
620 => 0.01520707039717
621 => 0.015131950176266
622 => 0.01528327612424
623 => 0.015300715030045
624 => 0.015265393745578
625 => 0.015273713186719
626 => 0.014981268037246
627 => 0.015003502006803
628 => 0.014879700438954
629 => 0.014856489137433
630 => 0.014543529554546
701 => 0.013989076289245
702 => 0.014296297220303
703 => 0.013925217537385
704 => 0.01378468403869
705 => 0.014449947764071
706 => 0.014383173737586
707 => 0.014268885630216
708 => 0.014099829699687
709 => 0.014037125210583
710 => 0.013656152584617
711 => 0.013633642689465
712 => 0.01382246301002
713 => 0.013735328928995
714 => 0.013612959678978
715 => 0.013169750659789
716 => 0.012671436980758
717 => 0.012686477938439
718 => 0.012844982248284
719 => 0.013305854906375
720 => 0.013125783985681
721 => 0.012995140466641
722 => 0.012970674862655
723 => 0.013276913118755
724 => 0.013710304410034
725 => 0.013913641907319
726 => 0.013712140622961
727 => 0.013480666797091
728 => 0.013494755536325
729 => 0.013588481606585
730 => 0.013598330891354
731 => 0.013447665226606
801 => 0.013490076728703
802 => 0.013425649778828
803 => 0.013030261706369
804 => 0.013023110389928
805 => 0.012926075780452
806 => 0.012923137611041
807 => 0.012758057533906
808 => 0.01273496168997
809 => 0.012407185177173
810 => 0.012622928670495
811 => 0.012478219262216
812 => 0.012260108050443
813 => 0.012222505595322
814 => 0.012221375220114
815 => 0.012445326665832
816 => 0.012620311667461
817 => 0.012480736544329
818 => 0.012448957994342
819 => 0.012788269768737
820 => 0.012745089252549
821 => 0.012707695204016
822 => 0.013671498973377
823 => 0.012908573083382
824 => 0.012575893849056
825 => 0.012164140122505
826 => 0.012298209212113
827 => 0.012326459539178
828 => 0.011336266051011
829 => 0.010934544676182
830 => 0.010796689038892
831 => 0.010717351170638
901 => 0.010753506433464
902 => 0.0103919100789
903 => 0.010634908809419
904 => 0.010321796931346
905 => 0.010269302706033
906 => 0.010829185531145
907 => 0.010907089955472
908 => 0.010574725478288
909 => 0.010788157277561
910 => 0.010710763940221
911 => 0.01032716433581
912 => 0.010312513652489
913 => 0.010120036855173
914 => 0.0098188479382269
915 => 0.0096811965212048
916 => 0.0096095064680753
917 => 0.0096390871812078
918 => 0.0096241302674633
919 => 0.0095265262880337
920 => 0.009629724813313
921 => 0.0093660952257991
922 => 0.0092611157998432
923 => 0.009213699028643
924 => 0.0089797125957715
925 => 0.0093520890647091
926 => 0.0094254519201649
927 => 0.0094989593231089
928 => 0.010138791080101
929 => 0.010106826893668
930 => 0.010395767571837
1001 => 0.010384539868411
1002 => 0.010302129306469
1003 => 0.0099544527015125
1004 => 0.010093030399508
1005 => 0.0096665097848329
1006 => 0.0099860880299304
1007 => 0.0098402458647745
1008 => 0.0099367786471872
1009 => 0.0097632040003991
1010 => 0.0098592673766531
1011 => 0.009442848974776
1012 => 0.0090540033302682
1013 => 0.0092104861687301
1014 => 0.0093806009101215
1015 => 0.0097494530138879
1016 => 0.0095297677438484
1017 => 0.0096087748741744
1018 => 0.0093441142132163
1019 => 0.0087980436730793
1020 => 0.0088011343730334
1021 => 0.0087171333172267
1022 => 0.0086445441406548
1023 => 0.0095550012397956
1024 => 0.0094417715073206
1025 => 0.0092613547477628
1026 => 0.009502849749908
1027 => 0.0095667048615162
1028 => 0.009568522726774
1029 => 0.009744711246451
1030 => 0.0098387430909861
1031 => 0.0098553166111427
1101 => 0.010132553053659
1102 => 0.010225479052354
1103 => 0.010608228089597
1104 => 0.0098307651459412
1105 => 0.0098147538082403
1106 => 0.0095062480798326
1107 => 0.0093105888695938
1108 => 0.0095196450333514
1109 => 0.0097048402554284
1110 => 0.0095120026116122
1111 => 0.0095371831368698
1112 => 0.0092783143554608
1113 => 0.0093708477639062
1114 => 0.0094505500008557
1115 => 0.0094065431102931
1116 => 0.0093406626651635
1117 => 0.0096896563591566
1118 => 0.0096699647672242
1119 => 0.0099949557184009
1120 => 0.010248309405169
1121 => 0.010702364504246
1122 => 0.010228534337932
1123 => 0.010211266083367
1124 => 0.010380066041653
1125 => 0.01022545320996
1126 => 0.010323163182536
1127 => 0.010686621917074
1128 => 0.010694301227404
1129 => 0.010565662885144
1130 => 0.010557835230327
1201 => 0.010582541631107
1202 => 0.010727247792168
1203 => 0.010676683013122
1204 => 0.010735197855577
1205 => 0.010808371562079
1206 => 0.011111049037178
1207 => 0.011184023551714
1208 => 0.011006733314338
1209 => 0.011022740637739
1210 => 0.010956429222234
1211 => 0.010892373225736
1212 => 0.011036361751236
1213 => 0.011299503611689
1214 => 0.011297866619832
1215 => 0.01135891041671
1216 => 0.011396940196451
1217 => 0.011233688542303
1218 => 0.011127417718382
1219 => 0.011168168714461
1220 => 0.011233330444634
1221 => 0.011147037643594
1222 => 0.010614398500865
1223 => 0.010775967191649
1224 => 0.010749074261197
1225 => 0.010710775457942
1226 => 0.010873234025899
1227 => 0.010857564500699
1228 => 0.010388201385641
1229 => 0.010418248489422
1230 => 0.010390028649541
1231 => 0.010481212725433
]
'min_raw' => 0.0086445441406548
'max_raw' => 0.019364846007167
'avg_raw' => 0.014004695073911
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.008644'
'max' => '$0.019364'
'avg' => '$0.0140046'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0021080168969139
'max_diff' => -0.014072032057112
'year' => 2034
]
9 => [
'items' => [
101 => 0.010220528970621
102 => 0.010300713537869
103 => 0.010351004546764
104 => 0.010380626337356
105 => 0.010487640556829
106 => 0.010475083673327
107 => 0.01048686000332
108 => 0.010645533840091
109 => 0.011448051656194
110 => 0.011491730930269
111 => 0.011276638209781
112 => 0.0113625635091
113 => 0.011197605724205
114 => 0.011308342990326
115 => 0.011384106615384
116 => 0.011041745362253
117 => 0.011021472950749
118 => 0.010855834326397
119 => 0.010944839140873
120 => 0.01080322608137
121 => 0.010837972972757
122 => 0.010740817635258
123 => 0.010915677899322
124 => 0.011111198845082
125 => 0.011160595157338
126 => 0.011030654726243
127 => 0.01093656929064
128 => 0.010771386259389
129 => 0.011046089321703
130 => 0.011126420868548
131 => 0.011045667374286
201 => 0.011026955025166
202 => 0.010991495157398
203 => 0.011034478003743
204 => 0.011125983365692
205 => 0.011082831126836
206 => 0.011111333940845
207 => 0.011002710605816
208 => 0.011233742585393
209 => 0.011600676969835
210 => 0.011601856723881
211 => 0.011558704252418
212 => 0.011541047190829
213 => 0.011585324245261
214 => 0.01160934273095
215 => 0.011752526605959
216 => 0.011906168608542
217 => 0.012623148795337
218 => 0.012421823627927
219 => 0.013057971102994
220 => 0.01356108116236
221 => 0.013711941870828
222 => 0.013573157117583
223 => 0.013098381973736
224 => 0.013075087240144
225 => 0.013784601749947
226 => 0.013584131403104
227 => 0.013560286093239
228 => 0.013306612283556
301 => 0.013456564923191
302 => 0.01342376808123
303 => 0.013371996661719
304 => 0.013658095852351
305 => 0.014193647996964
306 => 0.01411017717285
307 => 0.014047870074749
308 => 0.013774858508193
309 => 0.013939272450601
310 => 0.013880727794851
311 => 0.014132272789308
312 => 0.013983263106995
313 => 0.013582612643059
314 => 0.013646417550002
315 => 0.013636773566675
316 => 0.013835246060161
317 => 0.013775669544006
318 => 0.013625140295727
319 => 0.014191817537955
320 => 0.01415502066987
321 => 0.01420719021588
322 => 0.014230156863431
323 => 0.014575083314802
324 => 0.014716388645513
325 => 0.014748467429483
326 => 0.014882696564712
327 => 0.014745127686318
328 => 0.015295501284842
329 => 0.01566146761267
330 => 0.016086556334897
331 => 0.016707725211148
401 => 0.016941290454752
402 => 0.016899098984057
403 => 0.017370062136728
404 => 0.018216372453156
405 => 0.017070162495945
406 => 0.018277124364103
407 => 0.017895014171689
408 => 0.016989037779344
409 => 0.016930703580437
410 => 0.017544241311935
411 => 0.01890500894958
412 => 0.018564152090049
413 => 0.018905566469294
414 => 0.018507288460612
415 => 0.01848751060053
416 => 0.018886222995385
417 => 0.019817836238644
418 => 0.019375261707772
419 => 0.01874072259404
420 => 0.019209256401098
421 => 0.018803369056667
422 => 0.017888791268951
423 => 0.018563891443232
424 => 0.018112471182436
425 => 0.018244219613357
426 => 0.019193037857854
427 => 0.019078873536415
428 => 0.019226612739689
429 => 0.018965856912918
430 => 0.018722269853294
501 => 0.018267596517494
502 => 0.018132990157888
503 => 0.018170190513053
504 => 0.018132971723239
505 => 0.017878586170523
506 => 0.017823651634634
507 => 0.017732091668082
508 => 0.017760469930266
509 => 0.017588310406335
510 => 0.017913210997966
511 => 0.017973515410787
512 => 0.018209950966914
513 => 0.018234498490696
514 => 0.018892968149062
515 => 0.018530294126367
516 => 0.01877360717256
517 => 0.018751842963557
518 => 0.017008673034927
519 => 0.017248866470974
520 => 0.01762253208061
521 => 0.017454196229961
522 => 0.017216208721665
523 => 0.017024021048633
524 => 0.016732837071792
525 => 0.017142672927503
526 => 0.017681563496579
527 => 0.018248165644833
528 => 0.018928901000716
529 => 0.018776968793916
530 => 0.018235439770864
531 => 0.018259732367251
601 => 0.018409899639331
602 => 0.018215419377852
603 => 0.018158063352037
604 => 0.018402019802145
605 => 0.018403699796141
606 => 0.018179926751586
607 => 0.017931243962597
608 => 0.017930201972631
609 => 0.017885951272321
610 => 0.018515160561894
611 => 0.018861162050924
612 => 0.018900830564032
613 => 0.01885849204393
614 => 0.018874786459961
615 => 0.018673455817117
616 => 0.019133637963912
617 => 0.019555946609108
618 => 0.019442758870887
619 => 0.019273074360709
620 => 0.019137912475239
621 => 0.019410919026176
622 => 0.019398762474215
623 => 0.019552258111506
624 => 0.019545294662764
625 => 0.019493679853207
626 => 0.019442760714214
627 => 0.019644649344681
628 => 0.019586508661339
629 => 0.019528277669456
630 => 0.019411486500517
701 => 0.019427360360072
702 => 0.019257705148317
703 => 0.019179214884465
704 => 0.017998909640605
705 => 0.017683493511859
706 => 0.01778272984685
707 => 0.017815401024999
708 => 0.017678131521552
709 => 0.017874940727853
710 => 0.017844268221523
711 => 0.017963597000835
712 => 0.017889045560174
713 => 0.017892105177304
714 => 0.018111345068244
715 => 0.018174991341297
716 => 0.018142620333134
717 => 0.018165291877638
718 => 0.018687748051678
719 => 0.018613471490938
720 => 0.018574013548431
721 => 0.018584943668166
722 => 0.01871844242222
723 => 0.018755814784593
724 => 0.018597465459108
725 => 0.018672143916413
726 => 0.018990115309513
727 => 0.019101387301475
728 => 0.019456514086233
729 => 0.019305649916193
730 => 0.01958256762955
731 => 0.020433718272207
801 => 0.021113676300705
802 => 0.020488358797244
803 => 0.021737015124449
804 => 0.02270927318429
805 => 0.022671956300572
806 => 0.022502420619105
807 => 0.021395530666794
808 => 0.020376954029878
809 => 0.021229036637707
810 => 0.021231208771507
811 => 0.02115801411982
812 => 0.020703408424457
813 => 0.021142194827036
814 => 0.021177024098234
815 => 0.021157528968214
816 => 0.020808983847459
817 => 0.020276819869972
818 => 0.020380803437353
819 => 0.020551130641929
820 => 0.020228665709689
821 => 0.020125618624999
822 => 0.020317202760948
823 => 0.020934526765114
824 => 0.020817825238041
825 => 0.020814777689541
826 => 0.02131407631151
827 => 0.020956686253567
828 => 0.020382115003139
829 => 0.020237028184742
830 => 0.019722067721625
831 => 0.020077752747726
901 => 0.020090553218602
902 => 0.019895748164819
903 => 0.020397922359621
904 => 0.02039329473601
905 => 0.02087003439521
906 => 0.021781381568361
907 => 0.021511851364589
908 => 0.021198417062406
909 => 0.021232496061644
910 => 0.021606258569146
911 => 0.021380273224942
912 => 0.021461539130343
913 => 0.021606135563465
914 => 0.021693374181694
915 => 0.021219943767007
916 => 0.021109564490549
917 => 0.020883767228777
918 => 0.020824860937886
919 => 0.021008768096185
920 => 0.020960315057509
921 => 0.020089477388591
922 => 0.019998470006894
923 => 0.020001261073362
924 => 0.019772418684919
925 => 0.019423379114079
926 => 0.020340634266178
927 => 0.020266965840487
928 => 0.020185641600007
929 => 0.020195603355436
930 => 0.020593752728301
1001 => 0.020362805985014
1002 => 0.020976815753469
1003 => 0.020850593803898
1004 => 0.020721134737599
1005 => 0.020703239551217
1006 => 0.020653408855621
1007 => 0.020482520859235
1008 => 0.020276163334823
1009 => 0.020139908222824
1010 => 0.018578000744034
1011 => 0.0188678816869
1012 => 0.019201363288187
1013 => 0.019316479800608
1014 => 0.019119565040292
1015 => 0.020490296254182
1016 => 0.020740742055654
1017 => 0.019982125386819
1018 => 0.019840219182195
1019 => 0.020499599601332
1020 => 0.020101912602614
1021 => 0.020280991033786
1022 => 0.019893921416257
1023 => 0.020680416995989
1024 => 0.020674425217412
1025 => 0.020368460673088
1026 => 0.020627059810796
1027 => 0.020582121846807
1028 => 0.020236688629822
1029 => 0.020691367845105
1030 => 0.020691593360323
1031 => 0.020397109138655
1101 => 0.020053216038631
1102 => 0.019991736074739
1103 => 0.019945419180617
1104 => 0.02026959991711
1105 => 0.020560259351762
1106 => 0.021101104499065
1107 => 0.021237085819261
1108 => 0.021767829964774
1109 => 0.021451797667584
1110 => 0.021591890691625
1111 => 0.021743981486589
1112 => 0.021816899406649
1113 => 0.021698083568903
1114 => 0.02252254768989
1115 => 0.02259215772263
1116 => 0.022615497364483
1117 => 0.022337492701681
1118 => 0.02258442591005
1119 => 0.022468894039423
1120 => 0.022769475871118
1121 => 0.02281661094035
1122 => 0.022776689213589
1123 => 0.02279165062854
1124 => 0.022088115946714
1125 => 0.022051633962021
1126 => 0.021554199512078
1127 => 0.021756907727279
1128 => 0.021377954435018
1129 => 0.021498124427645
1130 => 0.021551094215374
1201 => 0.021523425804274
1202 => 0.021768368545626
1203 => 0.02156011717698
1204 => 0.02101050757543
1205 => 0.020460748233111
1206 => 0.020453846452392
1207 => 0.020309104521618
1208 => 0.020204482616475
1209 => 0.020224636507067
1210 => 0.020295661446226
1211 => 0.020200354517895
1212 => 0.020220693083238
1213 => 0.020558448783092
1214 => 0.020626183279934
1215 => 0.020395994994088
1216 => 0.019471755810404
1217 => 0.01924494519645
1218 => 0.01940797216791
1219 => 0.019330055775834
1220 => 0.015600863660095
1221 => 0.016476982031799
1222 => 0.015956422245501
1223 => 0.016196320144832
1224 => 0.015664963401325
1225 => 0.015918554690119
1226 => 0.01587172563875
1227 => 0.017280498054223
1228 => 0.017258502010659
1229 => 0.017269030352708
1230 => 0.016766485155231
1231 => 0.017567053300401
]
'min_raw' => 0.010220528970621
'max_raw' => 0.02281661094035
'avg_raw' => 0.016518569955485
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.01022'
'max' => '$0.022816'
'avg' => '$0.016518'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0015759848299661
'max_diff' => 0.003451764933183
'year' => 2035
]
10 => [
'items' => [
101 => 0.017961441956211
102 => 0.017888451112335
103 => 0.017906821335213
104 => 0.017591160042714
105 => 0.017272086644021
106 => 0.016918185139826
107 => 0.017575690391072
108 => 0.017502587031123
109 => 0.017670259837089
110 => 0.018096698991968
111 => 0.018159493777409
112 => 0.018243890605843
113 => 0.018213640350624
114 => 0.018934324156074
115 => 0.018847044592009
116 => 0.019057363229361
117 => 0.018624721835415
118 => 0.018135147031467
119 => 0.018228199196291
120 => 0.01821923752454
121 => 0.018105145157424
122 => 0.018002147669806
123 => 0.017830685872284
124 => 0.018373216371215
125 => 0.018351190623735
126 => 0.018707761873299
127 => 0.01864473444139
128 => 0.018223821825675
129 => 0.01823885480209
130 => 0.01833995879308
131 => 0.018689880860282
201 => 0.018793761554338
202 => 0.018745639877921
203 => 0.01885954031662
204 => 0.018949562579273
205 => 0.018870845726802
206 => 0.019985310358638
207 => 0.019522506943297
208 => 0.019748074107769
209 => 0.019801870547376
210 => 0.019664072098539
211 => 0.019693955647899
212 => 0.0197392210824
213 => 0.020014063936811
214 => 0.020735331113204
215 => 0.021054775435798
216 => 0.022015839441424
217 => 0.021028250031686
218 => 0.020969650563163
219 => 0.021142767211929
220 => 0.021707013522189
221 => 0.022164282159693
222 => 0.022315984547214
223 => 0.022336034522058
224 => 0.022620638286031
225 => 0.022783767855995
226 => 0.022586079903263
227 => 0.022418560062114
228 => 0.021818524784447
229 => 0.021887980501679
301 => 0.022366461517485
302 => 0.023042344134702
303 => 0.023622321733875
304 => 0.023419233792905
305 => 0.024968651424767
306 => 0.025122269854162
307 => 0.025101044754298
308 => 0.025451010397949
309 => 0.024756399864566
310 => 0.0244594404041
311 => 0.022454779753201
312 => 0.023018007627059
313 => 0.023836692418923
314 => 0.023728336416809
315 => 0.02313378563745
316 => 0.023621870713795
317 => 0.023460494523724
318 => 0.02333321042711
319 => 0.023916323548932
320 => 0.023275166718522
321 => 0.02383029638908
322 => 0.023118336844509
323 => 0.023420161481512
324 => 0.023248831219934
325 => 0.023359702896622
326 => 0.022711549340183
327 => 0.023061277266199
328 => 0.022696999508662
329 => 0.022696826793574
330 => 0.022688785341886
331 => 0.023117356508175
401 => 0.023131332198521
402 => 0.022814617459099
403 => 0.022768973917134
404 => 0.022937742014527
405 => 0.022740158772915
406 => 0.022832606728091
407 => 0.022742958927299
408 => 0.022722777319069
409 => 0.022561966831076
410 => 0.022492685251272
411 => 0.022519852343879
412 => 0.022427117051213
413 => 0.022371240683
414 => 0.022677670125861
415 => 0.022513957235869
416 => 0.022652578777496
417 => 0.022494602035379
418 => 0.021946985820009
419 => 0.021632045943613
420 => 0.020597649676829
421 => 0.020891003174925
422 => 0.021085496847658
423 => 0.02102121668998
424 => 0.021159315341791
425 => 0.021167793477422
426 => 0.021122896197969
427 => 0.02107091090006
428 => 0.021045607332005
429 => 0.021234199397461
430 => 0.021343683439175
501 => 0.021105016889707
502 => 0.021049100656466
503 => 0.02129040571512
504 => 0.021437601661501
505 => 0.022524413827325
506 => 0.022443899271724
507 => 0.022645975006099
508 => 0.022623224379514
509 => 0.022835031942328
510 => 0.023181247790975
511 => 0.022477294167202
512 => 0.022599476175404
513 => 0.022569519968588
514 => 0.022896573979672
515 => 0.022897595006595
516 => 0.022701509789391
517 => 0.022807810766757
518 => 0.022748476477406
519 => 0.022855701557773
520 => 0.022442823950746
521 => 0.022945664308721
522 => 0.023230742389376
523 => 0.023234700698802
524 => 0.023369825446513
525 => 0.023507120016085
526 => 0.023770644986541
527 => 0.023499770447687
528 => 0.023012493521394
529 => 0.023047673341578
530 => 0.02276198305798
531 => 0.022766785563261
601 => 0.02274114941369
602 => 0.022818085428353
603 => 0.022459707079477
604 => 0.022543817761642
605 => 0.02242606231406
606 => 0.022599220198058
607 => 0.0224129309389
608 => 0.022569505522798
609 => 0.022637077922678
610 => 0.022886421532967
611 => 0.022376102684925
612 => 0.021335528008218
613 => 0.02155426942101
614 => 0.021230733689723
615 => 0.021260678153441
616 => 0.021321170735778
617 => 0.021125094484484
618 => 0.021162499654158
619 => 0.021161163278281
620 => 0.021149647112943
621 => 0.021098640107157
622 => 0.021024669857339
623 => 0.021319344565771
624 => 0.021369415540847
625 => 0.021480717115959
626 => 0.021811875106915
627 => 0.021778784614375
628 => 0.021832756580619
629 => 0.021714936081349
630 => 0.021266143508485
701 => 0.021290515104398
702 => 0.020986600912838
703 => 0.021472945346789
704 => 0.021357772565396
705 => 0.021283519923989
706 => 0.021263259402836
707 => 0.021595238270397
708 => 0.021694571550703
709 => 0.021632673716425
710 => 0.021505719452473
711 => 0.02174950916992
712 => 0.021814737013647
713 => 0.021829339122347
714 => 0.022261287759623
715 => 0.02185348025282
716 => 0.021951643572965
717 => 0.022717485774784
718 => 0.022022972576734
719 => 0.022390871707234
720 => 0.022372864959251
721 => 0.022561069705386
722 => 0.022357426676783
723 => 0.022359951076186
724 => 0.022527064140661
725 => 0.022292383980606
726 => 0.022234273872662
727 => 0.02215399517473
728 => 0.022329280774727
729 => 0.02243435656444
730 => 0.023281190259862
731 => 0.023828283447413
801 => 0.023804532689286
802 => 0.024021570159013
803 => 0.023923792791065
804 => 0.023608043877598
805 => 0.024146988771409
806 => 0.023976444056595
807 => 0.023990503555673
808 => 0.023989980260415
809 => 0.024103377586488
810 => 0.024023025188253
811 => 0.023864642363326
812 => 0.023969784273929
813 => 0.0242820181595
814 => 0.025251201720818
815 => 0.025793569681706
816 => 0.025218550488555
817 => 0.025615191028177
818 => 0.025377348041879
819 => 0.025334124896053
820 => 0.02558324446644
821 => 0.025832800087658
822 => 0.025816904473445
823 => 0.025635739907264
824 => 0.025533404640709
825 => 0.026308321563893
826 => 0.02687926715253
827 => 0.026840332491053
828 => 0.027012177424583
829 => 0.027516719464392
830 => 0.027562848465385
831 => 0.027557037271523
901 => 0.027442701729498
902 => 0.027939488890752
903 => 0.02835391748081
904 => 0.02741623635499
905 => 0.027773293052555
906 => 0.02793358730774
907 => 0.028168946831514
908 => 0.028566037798958
909 => 0.028997383912779
910 => 0.029058380982742
911 => 0.029015100642624
912 => 0.028730616285354
913 => 0.029202600350126
914 => 0.029479077545881
915 => 0.029643713388885
916 => 0.030061202493952
917 => 0.027934577230489
918 => 0.026429246168877
919 => 0.026194166986362
920 => 0.026672209748038
921 => 0.026798265811973
922 => 0.026747452770662
923 => 0.025053065802105
924 => 0.026185246389634
925 => 0.027403377505369
926 => 0.027450170882519
927 => 0.028059992788976
928 => 0.028258575799163
929 => 0.028749562365045
930 => 0.028718851021668
1001 => 0.028838398437158
1002 => 0.028810916556609
1003 => 0.029720365780487
1004 => 0.030723623328941
1005 => 0.030688883710202
1006 => 0.030544653567607
1007 => 0.030758859924254
1008 => 0.031794329229871
1009 => 0.031698999809268
1010 => 0.031791604221243
1011 => 0.033012480889059
1012 => 0.0345997942249
1013 => 0.033862327816748
1014 => 0.035462417722195
1015 => 0.036469589500552
1016 => 0.038211388947715
1017 => 0.037993307078387
1018 => 0.038671376821253
1019 => 0.03760289501723
1020 => 0.035149444819394
1021 => 0.034761176934157
1022 => 0.035538499072911
1023 => 0.037449469701054
1024 => 0.035478315807264
1025 => 0.035877077672741
1026 => 0.035762234228658
1027 => 0.035756114709576
1028 => 0.035989671863053
1029 => 0.035650885030412
1030 => 0.034270606527647
1031 => 0.034903180031432
1101 => 0.034658913022946
1102 => 0.034929945480173
1103 => 0.03639259586954
1104 => 0.03574592326717
1105 => 0.035064706211991
1106 => 0.035919103573352
1107 => 0.037007045017152
1108 => 0.036938963596818
1109 => 0.036806857185543
1110 => 0.037551534109031
1111 => 0.038781522216766
1112 => 0.039113983059794
1113 => 0.039359398857255
1114 => 0.039393237549391
1115 => 0.039741797109022
1116 => 0.03786750450857
1117 => 0.040842055000735
1118 => 0.041355677700433
1119 => 0.041259137920369
1120 => 0.041830007934536
1121 => 0.041662043494794
1122 => 0.04141868937442
1123 => 0.042323639774409
1124 => 0.041286187166553
1125 => 0.039813653801354
1126 => 0.039005792873798
1127 => 0.040069649311486
1128 => 0.040719309314509
1129 => 0.04114869325037
1130 => 0.041278624569921
1201 => 0.038013000507716
1202 => 0.036253010258001
1203 => 0.037381143829739
1204 => 0.038757544646879
1205 => 0.037859858532534
1206 => 0.037895046128672
1207 => 0.036615181637377
1208 => 0.038870784255182
1209 => 0.038542161926372
1210 => 0.040247055149562
1211 => 0.039840168699224
1212 => 0.041230442939162
1213 => 0.040864337138623
1214 => 0.042384021847961
1215 => 0.042990265222338
1216 => 0.044008242202162
1217 => 0.044757070212433
1218 => 0.045196796342861
1219 => 0.045170396835361
1220 => 0.046912810834806
1221 => 0.045885370174642
1222 => 0.044594662556305
1223 => 0.044571317727619
1224 => 0.045239793492624
1225 => 0.046640735308705
1226 => 0.047003979138741
1227 => 0.047206982885096
1228 => 0.046896075580942
1229 => 0.045780862381669
1230 => 0.045299318976482
1231 => 0.045709607909357
]
'min_raw' => 0.016918185139826
'max_raw' => 0.047206982885096
'avg_raw' => 0.032062584012461
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.016918'
'max' => '$0.0472069'
'avg' => '$0.032062'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0066976561692051
'max_diff' => 0.024390371944746
'year' => 2036
]
11 => [
'items' => [
101 => 0.045207859800981
102 => 0.046074017801692
103 => 0.047263437738034
104 => 0.047017827224656
105 => 0.047838866346894
106 => 0.048688555462576
107 => 0.049903649059927
108 => 0.05022131952106
109 => 0.050746416713388
110 => 0.051286914209735
111 => 0.051460507438746
112 => 0.051791950775743
113 => 0.051790203905752
114 => 0.052789030710502
115 => 0.053890767607232
116 => 0.05430664778048
117 => 0.055262941307097
118 => 0.053625322155287
119 => 0.054867475093548
120 => 0.055987928136964
121 => 0.054652077827747
122 => 0.0564932362658
123 => 0.056564724275794
124 => 0.057644108352242
125 => 0.056549945805794
126 => 0.055900235578404
127 => 0.057775924660555
128 => 0.058683511523755
129 => 0.058410138974373
130 => 0.056329760375502
131 => 0.055118890799323
201 => 0.051949811559167
202 => 0.055703722813168
203 => 0.057532143481899
204 => 0.056325025207684
205 => 0.056933825451321
206 => 0.060255242176464
207 => 0.061519822619591
208 => 0.061256798727505
209 => 0.061301245435526
210 => 0.061983590088879
211 => 0.065009482055909
212 => 0.063196297449638
213 => 0.064582409142401
214 => 0.065317597786245
215 => 0.066000481971156
216 => 0.064323534240778
217 => 0.062141849882812
218 => 0.061450818865765
219 => 0.056205001085014
220 => 0.055931933488094
221 => 0.055778652371148
222 => 0.054812236610846
223 => 0.054052898546805
224 => 0.053449044725864
225 => 0.051864351973701
226 => 0.052399139258412
227 => 0.049873469762546
228 => 0.05148930360177
301 => 0.047458274101945
302 => 0.050815435252088
303 => 0.048988285069452
304 => 0.050215167276045
305 => 0.050210886799606
306 => 0.04795180767391
307 => 0.046648817979986
308 => 0.047479133726072
309 => 0.048369298116421
310 => 0.048513724293883
311 => 0.049667845661639
312 => 0.049989936127624
313 => 0.049013986978723
314 => 0.04737473997538
315 => 0.047755499667013
316 => 0.046641101896988
317 => 0.044688162669711
318 => 0.046090797717789
319 => 0.046569718992713
320 => 0.046781237911262
321 => 0.044860746477821
322 => 0.044257286373536
323 => 0.043936009277535
324 => 0.047126828647821
325 => 0.047301628935793
326 => 0.04640732594826
327 => 0.0504496602532
328 => 0.049534755503069
329 => 0.050556928266071
330 => 0.047720949715932
331 => 0.047829287915699
401 => 0.04648669022149
402 => 0.047238455217837
403 => 0.046707131948936
404 => 0.047177720035218
405 => 0.047459788593829
406 => 0.048802165980966
407 => 0.050830763045559
408 => 0.048601659563669
409 => 0.04763040725526
410 => 0.048232966724867
411 => 0.049837661996788
412 => 0.052268857476587
413 => 0.050829540820177
414 => 0.05146828511111
415 => 0.051607822322923
416 => 0.050546523506885
417 => 0.052307989077756
418 => 0.053251972787306
419 => 0.054220304743399
420 => 0.05506108024883
421 => 0.053833531666059
422 => 0.055147184611801
423 => 0.054088612228494
424 => 0.053138963367467
425 => 0.053140403592791
426 => 0.052544674990112
427 => 0.051390375755788
428 => 0.051177505266851
429 => 0.05228488443288
430 => 0.053172897654839
501 => 0.053246038677095
502 => 0.053737688424538
503 => 0.05402864168068
504 => 0.056880379122638
505 => 0.058027371512603
506 => 0.059429892095597
507 => 0.059976252904402
508 => 0.061620603057715
509 => 0.060292656761325
510 => 0.060005347226927
511 => 0.056016691617826
512 => 0.056669833750368
513 => 0.057715577323409
514 => 0.056033935544174
515 => 0.057100550192518
516 => 0.057311122518088
517 => 0.055976794000004
518 => 0.056689516514445
519 => 0.054796736823589
520 => 0.050872020470449
521 => 0.052312358408996
522 => 0.053372931944275
523 => 0.051859362741659
524 => 0.054572376954131
525 => 0.052987490059186
526 => 0.052485157001476
527 => 0.050525376648683
528 => 0.051450317536337
529 => 0.052701313330768
530 => 0.051928343373681
531 => 0.05353237209666
601 => 0.055804104547233
602 => 0.057423076375518
603 => 0.05754736092964
604 => 0.056506470506742
605 => 0.058174504052311
606 => 0.058186653855657
607 => 0.056305105202138
608 => 0.055152667128364
609 => 0.054890830773252
610 => 0.055544949324363
611 => 0.056339170002357
612 => 0.057591434649774
613 => 0.058348151949351
614 => 0.060321269334805
615 => 0.0608551383256
616 => 0.061441698487519
617 => 0.062225523752298
618 => 0.063166706951338
619 => 0.061107451693428
620 => 0.061189269743757
621 => 0.059271719759921
622 => 0.057222542597708
623 => 0.058777612630288
624 => 0.06081065983559
625 => 0.060344276560376
626 => 0.060291798914569
627 => 0.060380051758732
628 => 0.060028413999874
629 => 0.058437969448866
630 => 0.057639258152059
701 => 0.058669799497923
702 => 0.059217486359132
703 => 0.060066900917552
704 => 0.059962192644261
705 => 0.062150193326289
706 => 0.063000384229618
707 => 0.062782869014827
708 => 0.062822897049144
709 => 0.064362127069212
710 => 0.066074067418325
711 => 0.067677525465695
712 => 0.069308631861605
713 => 0.067342269438169
714 => 0.066343871867923
715 => 0.067373963311674
716 => 0.066827382292032
717 => 0.069968198957352
718 => 0.070185662288725
719 => 0.073326251837251
720 => 0.076307045293248
721 => 0.074434862329998
722 => 0.07620024653937
723 => 0.078109653495693
724 => 0.081793209304553
725 => 0.080552717297185
726 => 0.079602519860529
727 => 0.07870458787421
728 => 0.080573041795052
729 => 0.082976777914935
730 => 0.083494519652459
731 => 0.084333459059815
801 => 0.08345141685361
802 => 0.084513739537222
803 => 0.08826420541861
804 => 0.087250796431181
805 => 0.085811592755407
806 => 0.088772225370191
807 => 0.089843666804314
808 => 0.09736360390722
809 => 0.10685783513275
810 => 0.1029271610629
811 => 0.10048726482568
812 => 0.10106069831654
813 => 0.10452767016009
814 => 0.10564115148005
815 => 0.10261432541237
816 => 0.10368345154989
817 => 0.10957444168181
818 => 0.11273476888199
819 => 0.10844262005557
820 => 0.096600751672576
821 => 0.085682008211072
822 => 0.088578150654489
823 => 0.088249817979169
824 => 0.09457895195993
825 => 0.087226626961987
826 => 0.087350421258864
827 => 0.093810435027678
828 => 0.092087014106832
829 => 0.089295292934136
830 => 0.085702390865137
831 => 0.079060579087374
901 => 0.073177741175187
902 => 0.084715341057646
903 => 0.08421781877095
904 => 0.083497332771143
905 => 0.085100696398986
906 => 0.092886175053086
907 => 0.092706694570974
908 => 0.091564931315523
909 => 0.092430948681743
910 => 0.089143475902705
911 => 0.089990732492227
912 => 0.085680278626322
913 => 0.087628783794166
914 => 0.089289303154325
915 => 0.089622677000286
916 => 0.090373785297728
917 => 0.083955647133449
918 => 0.086837202742574
919 => 0.088529846697687
920 => 0.080882419729571
921 => 0.088378681654879
922 => 0.083843921627077
923 => 0.082304755963832
924 => 0.084377039759735
925 => 0.08356946874911
926 => 0.082875166616334
927 => 0.082487734096621
928 => 0.084009390606716
929 => 0.083938403511748
930 => 0.08144867812043
1001 => 0.078200932841646
1002 => 0.07929098276081
1003 => 0.078894957405905
1004 => 0.077459710431442
1005 => 0.07842689359985
1006 => 0.074167908406382
1007 => 0.066840545743809
1008 => 0.071681225961893
1009 => 0.071494865039144
1010 => 0.071400893411099
1011 => 0.075038530808415
1012 => 0.074688855907236
1013 => 0.074054192537571
1014 => 0.077448054340949
1015 => 0.076209249128833
1016 => 0.080026954893358
1017 => 0.082541542823602
1018 => 0.081903761986094
1019 => 0.084268744088547
1020 => 0.079316095309357
1021 => 0.080961166568023
1022 => 0.081300213474464
1023 => 0.077406174613111
1024 => 0.074746067045572
1025 => 0.074568668198263
1026 => 0.069956408261553
1027 => 0.072420240290882
1028 => 0.074588310516395
1029 => 0.07354997312742
1030 => 0.073221266529518
1031 => 0.074900557250438
1101 => 0.075031052521605
1102 => 0.07205574650971
1103 => 0.07267440684527
1104 => 0.075254323288282
1105 => 0.07260939957029
1106 => 0.06747074483207
1107 => 0.066196287409531
1108 => 0.066026251296454
1109 => 0.062569821688035
1110 => 0.06628145274856
1111 => 0.064661226325113
1112 => 0.06977950218349
1113 => 0.066855970463049
1114 => 0.06672994285377
1115 => 0.066539433638113
1116 => 0.063564341890838
1117 => 0.064215697906547
1118 => 0.066380904507087
1119 => 0.067153474614957
1120 => 0.067072889223226
1121 => 0.06637029381352
1122 => 0.066691938394213
1123 => 0.0656558091314
1124 => 0.065289930323535
1125 => 0.064135116163019
1126 => 0.062437858372615
1127 => 0.062673872478257
1128 => 0.059311160683807
1129 => 0.057478976825568
1130 => 0.056971852481403
1201 => 0.056293704614199
1202 => 0.057048451087486
1203 => 0.059301634543796
1204 => 0.05658381725595
1205 => 0.051924310148653
1206 => 0.052204354465216
1207 => 0.052833530898627
1208 => 0.051661064777383
1209 => 0.050551423991248
1210 => 0.05151616662679
1211 => 0.049541872040232
1212 => 0.053072114967109
1213 => 0.052976631789328
1214 => 0.05429248804371
1215 => 0.055115319963664
1216 => 0.053218958783168
1217 => 0.05274202907458
1218 => 0.053013709911838
1219 => 0.048523430848494
1220 => 0.053925536447014
1221 => 0.053972254080557
1222 => 0.053572229339061
1223 => 0.056448683798975
1224 => 0.062518899898037
1225 => 0.060235040427693
1226 => 0.059350661010758
1227 => 0.057669455092687
1228 => 0.059909562158386
1229 => 0.059737556886855
1230 => 0.058959683817926
1231 => 0.058489223758726
]
'min_raw' => 0.043936009277535
'max_raw' => 0.11273476888199
'avg_raw' => 0.078335389079763
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.043936'
'max' => '$0.112734'
'avg' => '$0.078335'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.027017824137709
'max_diff' => 0.065527785996895
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0013791011266686
]
1 => [
'year' => 2028
'avg' => 0.0023669378892809
]
2 => [
'year' => 2029
'avg' => 0.0064660477144669
]
3 => [
'year' => 2030
'avg' => 0.004988546182184
]
4 => [
'year' => 2031
'avg' => 0.0048993705746271
]
5 => [
'year' => 2032
'avg' => 0.0085901385059866
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0013791011266686
'min' => '$0.001379'
'max_raw' => 0.0085901385059866
'max' => '$0.00859'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0085901385059866
]
1 => [
'year' => 2033
'avg' => 0.022094719550923
]
2 => [
'year' => 2034
'avg' => 0.014004695073911
]
3 => [
'year' => 2035
'avg' => 0.016518569955485
]
4 => [
'year' => 2036
'avg' => 0.032062584012461
]
5 => [
'year' => 2037
'avg' => 0.078335389079763
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0085901385059866
'min' => '$0.00859'
'max_raw' => 0.078335389079763
'max' => '$0.078335'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.078335389079763
]
]
]
]
'prediction_2025_max_price' => '$0.002358'
'last_price' => 0.00228639
'sma_50day_nextmonth' => '$0.002178'
'sma_200day_nextmonth' => '$0.002691'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.002275'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.002279'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.002285'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.002293'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.002328'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.002456'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.002887'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.00228'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.00228'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.002285'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.002296'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.002348'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.002499'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.0028029'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.00260021'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.003231'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.003963'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.002287'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.0023033'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.002378'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.0026089'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.0032064'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.004984'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.00573'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '42.01'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 34.43
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.002286'
'vwma_10_action' => 'BUY'
'hma_9' => '0.002270'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 45.76
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -52.25
'cci_20_action' => 'NEUTRAL'
'adx_14' => 28.52
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000028'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -54.24
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 44.56
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000084'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 19
'buy_signals' => 13
'sell_pct' => 59.38
'buy_pct' => 40.63
'overall_action' => 'bearish'
'overall_action_label' => 'Bärisch'
'overall_action_dir' => -1
'last_updated' => 1767678383
'last_updated_date' => '6. Januar 2026'
]
Centurion Invest Preisprognose für 2026
Die Preisprognose für Centurion Invest im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.000789 am unteren Ende und $0.002358 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Centurion Invest im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn CIX das prognostizierte Preisziel erreicht.
Centurion Invest Preisprognose 2027-2032
Die Preisprognose für CIX für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.001379 am unteren Ende und $0.00859 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Centurion Invest, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Centurion Invest Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.00076 | $0.001379 | $0.001997 |
| 2028 | $0.001372 | $0.002366 | $0.003361 |
| 2029 | $0.003014 | $0.006466 | $0.009917 |
| 2030 | $0.002563 | $0.004988 | $0.007413 |
| 2031 | $0.003031 | $0.004899 | $0.006767 |
| 2032 | $0.004627 | $0.00859 | $0.012553 |
Centurion Invest Preisprognose 2032-2037
Die Preisprognose für Centurion Invest für die Jahre 2032-2037 wird derzeit zwischen $0.00859 am unteren Ende und $0.078335 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Centurion Invest bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Centurion Invest Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.004627 | $0.00859 | $0.012553 |
| 2033 | $0.010752 | $0.022094 | $0.033436 |
| 2034 | $0.008644 | $0.0140046 | $0.019364 |
| 2035 | $0.01022 | $0.016518 | $0.022816 |
| 2036 | $0.016918 | $0.032062 | $0.0472069 |
| 2037 | $0.043936 | $0.078335 | $0.112734 |
Centurion Invest Potenzielles Preishistogramm
Centurion Invest Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Centurion Invest Bärisch, mit 13 technischen Indikatoren, die bullische Signale zeigen, und 19 anzeigen bärische Signale. Die Preisprognose für CIX wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Centurion Invest
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Centurion Invest im nächsten Monat steigen, und bis zum 04.02.2026 $0.002691 erreichen. Der kurzfristige 50-Tage-SMA für Centurion Invest wird voraussichtlich bis zum 04.02.2026 $0.002178 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 42.01, was darauf hindeutet, dass sich der CIX-Markt in einem NEUTRAL Zustand befindet.
Beliebte CIX Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.002275 | BUY |
| SMA 5 | $0.002279 | BUY |
| SMA 10 | $0.002285 | BUY |
| SMA 21 | $0.002293 | SELL |
| SMA 50 | $0.002328 | SELL |
| SMA 100 | $0.002456 | SELL |
| SMA 200 | $0.002887 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.00228 | BUY |
| EMA 5 | $0.00228 | BUY |
| EMA 10 | $0.002285 | BUY |
| EMA 21 | $0.002296 | SELL |
| EMA 50 | $0.002348 | SELL |
| EMA 100 | $0.002499 | SELL |
| EMA 200 | $0.0028029 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.00260021 | SELL |
| SMA 50 | $0.003231 | SELL |
| SMA 100 | $0.003963 | SELL |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.0026089 | SELL |
| EMA 50 | $0.0032064 | SELL |
| EMA 100 | $0.004984 | SELL |
| EMA 200 | $0.00573 | SELL |
Centurion Invest Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 42.01 | NEUTRAL |
| Stoch RSI (14) | 34.43 | NEUTRAL |
| Stochastic Fast (14) | 45.76 | NEUTRAL |
| Commodity Channel Index (20) | -52.25 | NEUTRAL |
| Average Directional Index (14) | 28.52 | SELL |
| Awesome Oscillator (5, 34) | -0.000028 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -54.24 | NEUTRAL |
| Ultimate Oscillator (7, 14, 28) | 44.56 | NEUTRAL |
| VWMA (10) | 0.002286 | BUY |
| Hull Moving Average (9) | 0.002270 | SELL |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.000084 | SELL |
Auf weltweiten Geldflüssen basierende Centurion Invest-Preisprognose
Definition weltweiter Geldflüsse, die für Centurion Invest-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Centurion Invest-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.003212 | $0.004514 | $0.006343 | $0.008913 | $0.012525 | $0.01760021 |
| Amazon.com aktie | $0.00477 | $0.009954 | $0.02077 | $0.043338 | $0.090428 | $0.188683 |
| Apple aktie | $0.003243 | $0.004600046 | $0.006524 | $0.009254 | $0.013127 | $0.01862 |
| Netflix aktie | $0.0036075 | $0.005692 | $0.008981 | $0.014171 | $0.022359 | $0.03528 |
| Google aktie | $0.00296 | $0.003834 | $0.004965 | $0.00643 | $0.008327 | $0.010783 |
| Tesla aktie | $0.005183 | $0.011749 | $0.026635 | $0.06038 | $0.136878 | $0.310293 |
| Kodak aktie | $0.001714 | $0.001285 | $0.000964 | $0.000723 | $0.000542 | $0.0004065 |
| Nokia aktie | $0.001514 | $0.0010033 | $0.000664 | $0.00044 | $0.000291 | $0.000193 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Centurion Invest Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Centurion Invest investieren?", "Sollte ich heute CIX kaufen?", "Wird Centurion Invest auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Centurion Invest-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Centurion Invest.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Centurion Invest zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Centurion Invest-Preis entspricht heute $0.002286 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
Centurion Invest-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Centurion Invest 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.002345 | $0.0024067 | $0.002469 | $0.002533 |
| Wenn die Wachstumsrate von Centurion Invest 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0024052 | $0.00253 | $0.002661 | $0.00280021 |
| Wenn die Wachstumsrate von Centurion Invest 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.002583 | $0.002919 | $0.003298 | $0.003727 |
| Wenn die Wachstumsrate von Centurion Invest 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.00288 | $0.003629 | $0.004572 | $0.005761 |
| Wenn die Wachstumsrate von Centurion Invest 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.003475 | $0.005281 | $0.008027 | $0.01220027 |
| Wenn die Wachstumsrate von Centurion Invest 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.005257 | $0.012091 | $0.0278061 | $0.063944 |
| Wenn die Wachstumsrate von Centurion Invest 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.008229 | $0.02962 | $0.106613 | $0.383736 |
Fragefeld
Ist CIX eine gute Investition?
Die Entscheidung, Centurion Invest zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Centurion Invest in den letzten 2026 Stunden um 0.7393% gestiegen, und Centurion Invest hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Centurion Invest investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Centurion Invest steigen?
Es scheint, dass der Durchschnittswert von Centurion Invest bis zum Ende dieses Jahres potenziell auf $0.002358 steigen könnte. Betrachtet man die Aussichten von Centurion Invest in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.007413 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Centurion Invest nächste Woche kosten?
Basierend auf unserer neuen experimentellen Centurion Invest-Prognose wird der Preis von Centurion Invest in der nächsten Woche um 0.86% steigen und $0.002305 erreichen bis zum 13. Januar 2026.
Wie viel wird Centurion Invest nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Centurion Invest-Prognose wird der Preis von Centurion Invest im nächsten Monat um -11.62% fallen und $0.0020207 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Centurion Invest in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Centurion Invest im Jahr 2026 wird erwartet, dass CIX innerhalb der Spanne von $0.000789 bis $0.002358 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Centurion Invest-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Centurion Invest in 5 Jahren sein?
Die Zukunft von Centurion Invest scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.007413 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Centurion Invest-Prognose für 2030 könnte der Wert von Centurion Invest seinen höchsten Gipfel von ungefähr $0.007413 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.002563 liegen wird.
Wie viel wird Centurion Invest im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Centurion Invest-Preisprognosesimulation wird der Wert von CIX im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.002358 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.002358 und $0.000789 während des Jahres 2026 liegen.
Wie viel wird Centurion Invest im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Centurion Invest könnte der Wert von CIX um -12.62% fallen und bis zu $0.001997 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.001997 und $0.00076 im Laufe des Jahres schwanken.
Wie viel wird Centurion Invest im Jahr 2028 kosten?
Unser neues experimentelles Centurion Invest-Preisprognosemodell deutet darauf hin, dass der Wert von CIX im Jahr 2028 um 47.02% steigen, und im besten Fall $0.003361 erreichen wird. Der Preis wird voraussichtlich zwischen $0.003361 und $0.001372 im Laufe des Jahres liegen.
Wie viel wird Centurion Invest im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Centurion Invest im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.009917 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.009917 und $0.003014.
Wie viel wird Centurion Invest im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Centurion Invest-Preisprognosen wird der Wert von CIX im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.007413 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.007413 und $0.002563 während des Jahres 2030 liegen.
Wie viel wird Centurion Invest im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Centurion Invest im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.006767 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.006767 und $0.003031 während des Jahres schwanken.
Wie viel wird Centurion Invest im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Centurion Invest-Preisprognose könnte CIX eine 449.04% Steigerung im Wert erfahren und $0.012553 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.012553 und $0.004627 liegen.
Wie viel wird Centurion Invest im Jahr 2033 kosten?
Laut unserer experimentellen Centurion Invest-Preisprognose wird der Wert von CIX voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.033436 beträgt. Im Laufe des Jahres könnte der Preis von CIX zwischen $0.033436 und $0.010752 liegen.
Wie viel wird Centurion Invest im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Centurion Invest-Preisprognosesimulation deuten darauf hin, dass CIX im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.019364 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.019364 und $0.008644.
Wie viel wird Centurion Invest im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Centurion Invest könnte CIX um 897.93% steigen, wobei der Wert im Jahr 2035 $0.022816 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.022816 und $0.01022.
Wie viel wird Centurion Invest im Jahr 2036 kosten?
Unsere jüngste Centurion Invest-Preisprognosesimulation deutet darauf hin, dass der Wert von CIX im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.0472069 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.0472069 und $0.016918.
Wie viel wird Centurion Invest im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Centurion Invest um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.112734 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.112734 und $0.043936 liegen.
Verwandte Prognosen
SolPod-Preisprognose
zuzalu-Preisprognose
SOFT COQ INU-Preisprognose
All Street Bets-Preisprognose
MagicRing-Preisprognose
AI INU-Preisprognose
Wall Street Baby On Solana-Preisprognose
Meta Masters Guild Games-Preisprognose
Morfey-Preisprognose
PANTIES-PreisprognoseCeler Bridged BUSD (zkSync)-Preisprognose
Bridged BUSD-Preisprognose
Multichain Bridged BUSD (Moonriver)-Preisprognose
tooker kurlson-Preisprognose
dogwifsaudihat-PreisprognoseHarmony Horizen Bridged BUSD (Harmony)-Preisprognose
IoTeX Bridged BUSD (IoTeX)-Preisprognose
MIMANY-Preisprognose
The Open League MEME-Preisprognose
Sandwich Cat-Preisprognose
Hege-Preisprognose
DexNet-Preisprognose
SolDocs-Preisprognose
Secret Society-Preisprognose
duk-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Centurion Invest?
Centurion Invest-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Centurion Invest Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Centurion Invest. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von CIX über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von CIX über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von CIX einzuschätzen.
Wie liest man Centurion Invest-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Centurion Invest in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von CIX innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Centurion Invest?
Die Preisentwicklung von Centurion Invest wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von CIX. Die Marktkapitalisierung von Centurion Invest kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von CIX-„Walen“, großen Inhabern von Centurion Invest, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Centurion Invest-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


