CAT Terminal Preisvorhersage bis zu $0.014274 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.004782 | $0.014274 |
| 2027 | $0.0046035 | $0.012093 |
| 2028 | $0.0083081 | $0.020349 |
| 2029 | $0.01825 | $0.060036 |
| 2030 | $0.015521 | $0.044876 |
| 2031 | $0.01835 | $0.040967 |
| 2032 | $0.028011 | $0.075992 |
| 2033 | $0.065092 | $0.202415 |
| 2034 | $0.052331 | $0.117228 |
| 2035 | $0.061871 | $0.138124 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in CAT Terminal eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.93 Gewinn erzielen könnten, was einer Rendite von 39.55% in den nächsten 90 Tagen entspricht.
Langfristige CAT Terminal Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'CAT Terminal'
'name_with_ticker' => 'CAT Terminal <small>CAT</small>'
'name_lang' => 'CAT Terminal'
'name_lang_with_ticker' => 'CAT Terminal <small>CAT</small>'
'name_with_lang' => 'CAT Terminal'
'name_with_lang_with_ticker' => 'CAT Terminal <small>CAT</small>'
'image' => '/uploads/coins/cat-terminal.jpg?1747672481'
'price_for_sd' => 0.01384
'ticker' => 'CAT'
'marketcap' => '$13.84M'
'low24h' => '$0.01284'
'high24h' => '$0.01394'
'volume24h' => '$141.88K'
'current_supply' => '999.97M'
'max_supply' => '999.97M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01384'
'change_24h_pct' => '6.9015%'
'ath_price' => '$0.03915'
'ath_days' => 91
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '07.10.2025'
'ath_pct' => '-64.52%'
'fdv' => '$13.84M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.682458'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.013959'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.012232'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004782'
'current_year_max_price_prediction' => '$0.014274'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.015521'
'grand_prediction_max_price' => '$0.044876'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.014103320427613
107 => 0.014155977106584
108 => 0.014274615293024
109 => 0.01326086497936
110 => 0.013716009108049
111 => 0.013983363642417
112 => 0.012775446129703
113 => 0.013959486996941
114 => 0.01324321784179
115 => 0.01300010533253
116 => 0.013327424298611
117 => 0.013199867779201
118 => 0.013090202174182
119 => 0.013029006882288
120 => 0.013269353806102
121 => 0.013258141334829
122 => 0.012864887118142
123 => 0.012351903023566
124 => 0.012524077323834
125 => 0.012461524786404
126 => 0.012234826321319
127 => 0.012387593715109
128 => 0.011714883426665
129 => 0.010557520339835
130 => 0.011322109845985
131 => 0.011292673981711
201 => 0.011277831084135
202 => 0.011852398966305
203 => 0.01179716752197
204 => 0.011696921909676
205 => 0.012232985232035
206 => 0.012037314908305
207 => 0.012640324740316
208 => 0.013037506015909
209 => 0.01293676799695
210 => 0.013310318906389
211 => 0.012528043871969
212 => 0.012787884258977
213 => 0.012841437002615
214 => 0.012226370293848
215 => 0.011806204069322
216 => 0.011778183772392
217 => 0.011049673441536
218 => 0.011438837779949
219 => 0.011781286293038
220 => 0.011617280030347
221 => 0.011565360547126
222 => 0.011830605926938
223 => 0.011851217764622
224 => 0.011381265681074
225 => 0.01147898360069
226 => 0.011886483569744
227 => 0.011468715647007
228 => 0.010657060815132
301 => 0.010455759194821
302 => 0.010428901847946
303 => 0.0098829558882297
304 => 0.010469211131651
305 => 0.010213295007234
306 => 0.011021730977922
307 => 0.010559956687194
308 => 0.010540050520457
309 => 0.010509959429835
310 => 0.010040041189563
311 => 0.010142923419321
312 => 0.01048491962044
313 => 0.010606947717863
314 => 0.010594219187555
315 => 0.010483243652479
316 => 0.01053404768415
317 => 0.01037039019684
318 => 0.010312599331835
319 => 0.01013019546525
320 => 0.0098621121717226
321 => 0.0098993907979379
322 => 0.0093682476456516
323 => 0.0090788526663853
324 => 0.0089987519502889
325 => 0.0088916379250854
326 => 0.0090108507644552
327 => 0.0093667429838358
328 => 0.0089374614605165
329 => 0.0082014883993832
330 => 0.0082457216343944
331 => 0.0083451005804992
401 => 0.0081599085718905
402 => 0.0079846398777294
403 => 0.0081370217873038
404 => 0.0078251802991402
405 => 0.0083827851345035
406 => 0.0083677034863764
407 => 0.0085755440869481
408 => 0.008705511079804
409 => 0.0084059792385846
410 => 0.0083306477905382
411 => 0.0083735600069689
412 => 0.007664316657513
413 => 0.008517583774046
414 => 0.0085249628635025
415 => 0.0084617786196011
416 => 0.0089161170174882
417 => 0.0098749127487301
418 => 0.009514175227168
419 => 0.0093744867554698
420 => 0.00910893886866
421 => 0.0094627656611607
422 => 0.0094355972840545
423 => 0.009312731579479
424 => 0.0092384220179873
425 => 0.0093753396634912
426 => 0.0092214564065089
427 => 0.0091938147451258
428 => 0.0090263363515682
429 => 0.0089665541848496
430 => 0.0089222938486077
501 => 0.0088735675673362
502 => 0.0089810456019883
503 => 0.0087374862355537
504 => 0.0084437775160526
505 => 0.0084193588139985
506 => 0.0084867809972842
507 => 0.0084569517001715
508 => 0.0084192160028
509 => 0.0083471682798123
510 => 0.0083257932594579
511 => 0.0083952517059241
512 => 0.0083168371695428
513 => 0.0084325420894343
514 => 0.008401076753469
515 => 0.0082253139445722
516 => 0.0080062484089603
517 => 0.0080042982661878
518 => 0.0079571009558797
519 => 0.0078969880850392
520 => 0.0078802660595676
521 => 0.0081241886079072
522 => 0.0086291009829825
523 => 0.0085299746022261
524 => 0.0086016035712027
525 => 0.0089539472047715
526 => 0.0090659466505403
527 => 0.0089864520967859
528 => 0.0088776350485963
529 => 0.0088824224464608
530 => 0.0092542832412852
531 => 0.0092774757429247
601 => 0.009336075712383
602 => 0.0094113932334864
603 => 0.008999278996312
604 => 0.0088630119029507
605 => 0.0087984409943056
606 => 0.0085995875877652
607 => 0.0088140339383164
608 => 0.0086890852333585
609 => 0.0087059450825129
610 => 0.0086949650836332
611 => 0.0087009609054858
612 => 0.0083826292725879
613 => 0.0084986125885979
614 => 0.0083057678303973
615 => 0.0080475703470067
616 => 0.0080467047785067
617 => 0.0081098982467784
618 => 0.0080723082990897
619 => 0.0079711547163854
620 => 0.0079855231053771
621 => 0.0078596408986804
622 => 0.008000807484441
623 => 0.0080048556370023
624 => 0.0079504988120886
625 => 0.0081679854146877
626 => 0.0082570898532247
627 => 0.0082213110266305
628 => 0.0082545795153718
629 => 0.0085340937508753
630 => 0.0085796667673235
701 => 0.0085999072908453
702 => 0.0085727876706816
703 => 0.0082596885224853
704 => 0.0082735758011082
705 => 0.0081716801649276
706 => 0.0080855890898526
707 => 0.0080890322813673
708 => 0.0081332942850123
709 => 0.0083265890508619
710 => 0.0087333664902435
711 => 0.0087488033967176
712 => 0.0087675133776905
713 => 0.0086914104821905
714 => 0.0086684571207012
715 => 0.008698738529271
716 => 0.008851502748161
717 => 0.0092444537942271
718 => 0.0091055586502294
719 => 0.0089926347361276
720 => 0.0090916994528635
721 => 0.0090764492162169
722 => 0.008947721871624
723 => 0.0089441089238011
724 => 0.0086970399929057
725 => 0.0086057042346411
726 => 0.0085293772386722
727 => 0.0084460301516407
728 => 0.0083966192046289
729 => 0.0084725368761129
730 => 0.0084899001458128
731 => 0.0083239048302991
801 => 0.0083012802821684
802 => 0.0084368356400746
803 => 0.0083771827810732
804 => 0.0084385372258759
805 => 0.0084527719833588
806 => 0.0084504798595497
807 => 0.008388195423665
808 => 0.0084278936657493
809 => 0.0083339954886045
810 => 0.0082318953240096
811 => 0.0081667617800631
812 => 0.0081099241242588
813 => 0.008141460959123
814 => 0.0080290379012309
815 => 0.0079930715023821
816 => 0.0084144447945699
817 => 0.0087257177760353
818 => 0.0087211917436072
819 => 0.0086936406852019
820 => 0.0086527054009398
821 => 0.0088485080771471
822 => 0.0087802943399546
823 => 0.0088299255332106
824 => 0.0088425587549089
825 => 0.0088807957121066
826 => 0.0088944621377273
827 => 0.0088531527075587
828 => 0.0087145132143911
829 => 0.0083690367788649
830 => 0.0082082165655316
831 => 0.0081551432164591
901 => 0.0081570723318972
902 => 0.0081038587161626
903 => 0.0081195325108634
904 => 0.0080984080100089
905 => 0.0080584033159561
906 => 0.0081389907819955
907 => 0.0081482777367323
908 => 0.0081294676592102
909 => 0.0081338981134014
910 => 0.0079781587054077
911 => 0.0079899992343492
912 => 0.007924069664581
913 => 0.0079117086650423
914 => 0.0077450444538126
915 => 0.0074497746452554
916 => 0.0076133827817299
917 => 0.0074157671596541
918 => 0.0073409271292086
919 => 0.0076952081933246
920 => 0.0076596482007145
921 => 0.0075987849509231
922 => 0.0075087555194691
923 => 0.0074753627275927
924 => 0.0072724786950254
925 => 0.0072604912240371
926 => 0.0073610460289072
927 => 0.0073146434463392
928 => 0.0072494766463816
929 => 0.0070134491027875
930 => 0.0067480759977536
1001 => 0.0067560859437187
1002 => 0.0068404961909878
1003 => 0.0070859303691956
1004 => 0.0069900349897154
1005 => 0.0069204617916299
1006 => 0.0069074328229911
1007 => 0.0070705176434987
1008 => 0.0073013168318431
1009 => 0.0074096026471736
1010 => 0.0073022946928702
1011 => 0.0071790250928371
1012 => 0.0071865279422148
1013 => 0.0072364410377888
1014 => 0.0072416861984005
1015 => 0.0071614503610986
1016 => 0.0071840362793149
1017 => 0.0071497262042446
1018 => 0.0069391653368694
1019 => 0.0069353569584743
1020 => 0.0068836819258678
1021 => 0.0068821172264174
1022 => 0.0067942051050127
1023 => 0.0067819055915204
1024 => 0.006607350738587
1025 => 0.0067222432713885
1026 => 0.0066451793925139
1027 => 0.0065290259495187
1028 => 0.0065090010521654
1029 => 0.0065083990795702
1030 => 0.0066276626940917
1031 => 0.0067208496066142
1101 => 0.0066465199516809
1102 => 0.0066295965300724
1103 => 0.0068102943975696
1104 => 0.006787298946833
1105 => 0.0067673850347998
1106 => 0.0072806512959546
1107 => 0.0068743609995847
1108 => 0.0066971952401281
1109 => 0.0064779189699354
1110 => 0.006549316429197
1111 => 0.0065643609229104
1112 => 0.0060370410206153
1113 => 0.0058231074019277
1114 => 0.0057496934459124
1115 => 0.0057074426763047
1116 => 0.0057266968825667
1117 => 0.0055341315338371
1118 => 0.0056635386329203
1119 => 0.0054967933180642
1120 => 0.0054688379233924
1121 => 0.0057669992021358
1122 => 0.00580848660224
1123 => 0.0056314884642705
1124 => 0.0057451499222426
1125 => 0.0057039346975695
1126 => 0.0054996516878994
1127 => 0.0054918495795341
1128 => 0.0053893475461766
1129 => 0.0052289517122769
1130 => 0.00515564651219
1201 => 0.0051174685275197
1202 => 0.0051332215080688
1203 => 0.005125256319054
1204 => 0.0050732780728714
1205 => 0.0051282356512817
1206 => 0.0049878417484826
1207 => 0.0049319357651575
1208 => 0.0049066843294985
1209 => 0.0047820766599929
1210 => 0.0049803828754585
1211 => 0.0050194516981011
1212 => 0.0050585974983933
1213 => 0.0053993349639639
1214 => 0.0053823126830981
1215 => 0.0055361858119381
1216 => 0.0055302065851059
1217 => 0.0054863194761813
1218 => 0.0053011669827074
1219 => 0.0053749654665802
1220 => 0.0051478252040504
1221 => 0.0053180141327743
1222 => 0.0052403470129643
1223 => 0.0052917548014405
1224 => 0.005199318962507
1225 => 0.005250476772355
1226 => 0.0050287163653075
1227 => 0.0048216396174596
1228 => 0.0049049733457407
1229 => 0.00499556663875
1230 => 0.005191995980736
1231 => 0.0050750042851561
]
'min_raw' => 0.0047820766599929
'max_raw' => 0.014274615293024
'avg_raw' => 0.0095283459765082
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004782'
'max' => '$0.014274'
'avg' => '$0.009528'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0090589633400071
'max_diff' => 0.00043357529302358
'year' => 2026
]
1 => [
'items' => [
101 => 0.0051170789228324
102 => 0.0049761359298259
103 => 0.004685330276878
104 => 0.0046869762052922
105 => 0.0046422420911317
106 => 0.0046035852852094
107 => 0.0050884421887339
108 => 0.0050281425683273
109 => 0.0049320630150285
110 => 0.0050606693151686
111 => 0.0050946748621821
112 => 0.0050956429522994
113 => 0.0051894707890726
114 => 0.0052395467223779
115 => 0.0052483728226645
116 => 0.0053960129511117
117 => 0.0054454999747468
118 => 0.005649330021434
119 => 0.0052352981292981
120 => 0.0052267714149408
121 => 0.0050624790695502
122 => 0.0049582822667442
123 => 0.0050696135137826
124 => 0.0051682378004278
125 => 0.0050655436010504
126 => 0.0050789532954962
127 => 0.0049410947232564
128 => 0.0049903726759834
129 => 0.005032817487329
130 => 0.0050093819572947
131 => 0.0049742978345408
201 => 0.0051601517336194
202 => 0.0051496651282661
203 => 0.0053227365518507
204 => 0.0054576581029912
205 => 0.0056994616427471
206 => 0.0054471270435082
207 => 0.0054379309677727
208 => 0.0055278240831838
209 => 0.0054454862125792
210 => 0.0054975209045946
211 => 0.0056910780494102
212 => 0.0056951676068768
213 => 0.0056266622502141
214 => 0.0056224936930354
215 => 0.0056356508961489
216 => 0.0057127130457428
217 => 0.005685785162794
218 => 0.005716946790673
219 => 0.0057559148834993
220 => 0.0059171034375581
221 => 0.0059559654522404
222 => 0.0058615509042069
223 => 0.0058700754807794
224 => 0.0058347618480776
225 => 0.0058006493213661
226 => 0.005877329299679
227 => 0.0060174634671946
228 => 0.0060165916998115
301 => 0.0060491001028561
302 => 0.0060693525686387
303 => 0.0059824141597885
304 => 0.0059258204524409
305 => 0.0059475220809892
306 => 0.0059822234576378
307 => 0.0059362688922355
308 => 0.0056526160263471
309 => 0.0057386581860424
310 => 0.0057243365634225
311 => 0.0057039408312428
312 => 0.0057904568881608
313 => 0.0057821122034138
314 => 0.0055321564978565
315 => 0.005548157851147
316 => 0.0055331295931482
317 => 0.0055816889692345
318 => 0.0054428638469122
319 => 0.0054855655195371
320 => 0.0055123476083041
321 => 0.0055281224643375
322 => 0.0055851120612504
323 => 0.0055784249898242
324 => 0.0055846963835015
325 => 0.0056691969110275
326 => 0.0060965715821749
327 => 0.0061198326425764
328 => 0.0060052866738263
329 => 0.0060510455290227
330 => 0.0059631985334073
331 => 0.0060221708100876
401 => 0.0060625181440589
402 => 0.0058801963001889
403 => 0.0058694003838539
404 => 0.0057811908124387
405 => 0.0058285896396717
406 => 0.0057531746974477
407 => 0.0057716788863668
408 => 0.0057199395609828
409 => 0.005813060045477
410 => 0.0059171832166019
411 => 0.0059434888415766
412 => 0.0058742900675516
413 => 0.0058241855947361
414 => 0.0057362186459114
415 => 0.0058825096422782
416 => 0.0059252895877532
417 => 0.0058822849374366
418 => 0.0058723198202881
419 => 0.0058534359412982
420 => 0.0058763261244856
421 => 0.0059250565989826
422 => 0.0059020762071204
423 => 0.0059172551608078
424 => 0.0058594086418205
425 => 0.0059824429400194
426 => 0.0061778510153754
427 => 0.0061784792842901
428 => 0.006155498768555
429 => 0.0061460956366383
430 => 0.0061696750403569
501 => 0.0061824658995964
502 => 0.0062587173674989
503 => 0.0063405382305508
504 => 0.0067223604971748
505 => 0.0066151463325933
506 => 0.0069539217622503
507 => 0.0072218491426251
508 => 0.0073021888489551
509 => 0.0072282800994068
510 => 0.0069754422596742
511 => 0.0069630368290304
512 => 0.0073408833069733
513 => 0.0072341243704894
514 => 0.0072214257346987
515 => 0.0070863337045701
516 => 0.0071661898258495
517 => 0.0071487241207071
518 => 0.0071211536506882
519 => 0.0072735135672638
520 => 0.0075587177298298
521 => 0.0075142659864662
522 => 0.0074810848221023
523 => 0.0073356946187514
524 => 0.0074232519952462
525 => 0.0073920744905275
526 => 0.0075260328365325
527 => 0.0074466788798998
528 => 0.0072333155665452
529 => 0.0072672943774516
530 => 0.007262158548539
531 => 0.007367853543632
601 => 0.0073361265296162
602 => 0.007255963339852
603 => 0.0075577429330079
604 => 0.0075381470448146
605 => 0.0075659295340289
606 => 0.0075781602449831
607 => 0.0077618481653841
608 => 0.0078370992290146
609 => 0.007854182537914
610 => 0.0079256652282368
611 => 0.0078524039834595
612 => 0.0081455011969509
613 => 0.0083403937412262
614 => 0.0085667714604805
615 => 0.0088975701529056
616 => 0.0090219535213165
617 => 0.0089994847791254
618 => 0.0092502925723689
619 => 0.0097009886016835
620 => 0.0090905833325425
621 => 0.0097333415631277
622 => 0.0095298517283251
623 => 0.0090473809906338
624 => 0.0090163155630829
625 => 0.0093430503482478
626 => 0.010067716654686
627 => 0.0098861959640205
628 => 0.010068013557508
629 => 0.0098559136768947
630 => 0.0098453811301041
701 => 0.010057712339722
702 => 0.010553835784567
703 => 0.010318146132831
704 => 0.0099802272235928
705 => 0.010229741287573
706 => 0.010013589113917
707 => 0.0095265377694846
708 => 0.0098860571585693
709 => 0.0096456567816111
710 => 0.0097158183919944
711 => 0.010221104227503
712 => 0.010160306898954
713 => 0.010238984271778
714 => 0.01010012076809
715 => 0.0099704003588808
716 => 0.009728267581928
717 => 0.0096565840036739
718 => 0.0096763947657983
719 => 0.009656574186444
720 => 0.009521103123054
721 => 0.0094918481598132
722 => 0.009443088606056
723 => 0.0094582012306302
724 => 0.0093665190044559
725 => 0.0095395423077613
726 => 0.0095716569575309
727 => 0.0096975688887305
728 => 0.0097106414831244
729 => 0.010061304419271
730 => 0.0098681651666928
731 => 0.0099977396521631
801 => 0.0099861492905803
802 => 0.0090578375944988
803 => 0.0091857507556554
804 => 0.0093847434930538
805 => 0.0092950975345841
806 => 0.0091683591232316
807 => 0.0090660110607808
808 => 0.0089109432805411
809 => 0.0091291982034155
810 => 0.009416180218172
811 => 0.0097179198206111
812 => 0.01008044018218
813 => 0.0099995298576798
814 => 0.0097111427546155
815 => 0.009724079589392
816 => 0.0098040500115238
817 => 0.0097004810487841
818 => 0.0096699365397658
819 => 0.0097998536650276
820 => 0.0098007483328681
821 => 0.0096815797245087
822 => 0.0095491456239425
823 => 0.0095485907202255
824 => 0.0095250253511914
825 => 0.0098601059036951
826 => 0.010044366327107
827 => 0.010065491487701
828 => 0.010042944435483
829 => 0.010051621901021
830 => 0.0099444048205389
831 => 0.010189471272283
901 => 0.010414368482964
902 => 0.010354091226274
903 => 0.010263727049578
904 => 0.010191747630311
905 => 0.010337135162633
906 => 0.01033066128468
907 => 0.010412404202025
908 => 0.010408695871124
909 => 0.010381208802528
910 => 0.010354092207923
911 => 0.010461606440409
912 => 0.010430644068079
913 => 0.010399633602632
914 => 0.010337437366715
915 => 0.010345890868146
916 => 0.010255542294099
917 => 0.010213742909676
918 => 0.0095851804586917
919 => 0.0094172080329181
920 => 0.0094700555774605
921 => 0.0094874543613097
922 => 0.0094143525463505
923 => 0.0095191617706865
924 => 0.0095028273640942
925 => 0.0095663749848367
926 => 0.0095266731903137
927 => 0.0095283025658095
928 => 0.0096450570781864
929 => 0.0096789514098386
930 => 0.0096617124791995
1001 => 0.0096737860353032
1002 => 0.0099520160397829
1003 => 0.0099124606304406
1004 => 0.009891447607596
1005 => 0.0098972683585295
1006 => 0.0099683620899926
1007 => 0.0099882644532285
1008 => 0.0099039367416839
1009 => 0.009943706177941
1010 => 0.010113039390031
1011 => 0.010172296430832
1012 => 0.010361416460078
1013 => 0.010281074910314
1014 => 0.010428545302007
1015 => 0.010881819009709
1016 => 0.011243925411576
1017 => 0.010910917399739
1018 => 0.011575879692796
1019 => 0.012093648221117
1020 => 0.012073775402611
1021 => 0.011983490483497
1022 => 0.011394024779592
1023 => 0.010851589650421
1024 => 0.011305359668985
1025 => 0.011306516422081
1026 => 0.011267537175058
1027 => 0.011025440419498
1028 => 0.011259112732739
1029 => 0.011277660792391
1030 => 0.011267278811313
1031 => 0.011081663796452
1101 => 0.010798263976147
1102 => 0.010853639622671
1103 => 0.010944346061311
1104 => 0.010772619849621
1105 => 0.010717742919728
1106 => 0.010819769573162
1107 => 0.011148520708624
1108 => 0.01108637221079
1109 => 0.01108474926235
1110 => 0.011350646891146
1111 => 0.011160321573228
1112 => 0.010854338086911
1113 => 0.01077707322119
1114 => 0.01050283499973
1115 => 0.010692252316095
1116 => 0.010699069108098
1117 => 0.010595327179723
1118 => 0.010862756172645
1119 => 0.010860291767395
1120 => 0.011114175794622
1121 => 0.011599506700193
1122 => 0.011455970469732
1123 => 0.011289053450404
1124 => 0.011307201958511
1125 => 0.011506246298121
1126 => 0.011385899546653
1127 => 0.011429177077568
1128 => 0.011506180792394
1129 => 0.011552639045444
1130 => 0.01130051733085
1201 => 0.011241735698802
1202 => 0.011121489109182
1203 => 0.011090119018459
1204 => 0.011188057356677
1205 => 0.011162254064769
1206 => 0.010698496183126
1207 => 0.01065003090417
1208 => 0.010651517265083
1209 => 0.01052964901675
1210 => 0.01034377068631
1211 => 0.010832247840487
1212 => 0.010793016288773
1213 => 0.010749707691962
1214 => 0.010755012747956
1215 => 0.010967044124558
1216 => 0.010844055218288
1217 => 0.011171041383092
1218 => 0.011103822857712
1219 => 0.011034880430795
1220 => 0.011025350487357
1221 => 0.010998813534886
1222 => 0.010907808450895
1223 => 0.010797914343419
1224 => 0.010725352734799
1225 => 0.0098935709578511
1226 => 0.010047944817401
1227 => 0.010225537871192
1228 => 0.010286842281701
1229 => 0.010181976845389
1230 => 0.010911949177483
1231 => 0.011045322156745
]
'min_raw' => 0.0046035852852094
'max_raw' => 0.012093648221117
'avg_raw' => 0.0083486167531632
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0046035'
'max' => '$0.012093'
'avg' => '$0.008348'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00017849137478346
'max_diff' => -0.0021809670719067
'year' => 2027
]
2 => [
'items' => [
101 => 0.010641326702856
102 => 0.010565755648459
103 => 0.010916903603228
104 => 0.010705118460411
105 => 0.010800485297254
106 => 0.01059435435887
107 => 0.011013196511658
108 => 0.011010005636206
109 => 0.010847066578793
110 => 0.01098478155436
111 => 0.010960850188356
112 => 0.010776892393837
113 => 0.011019028301863
114 => 0.011019148398253
115 => 0.010862323098093
116 => 0.010679185480979
117 => 0.010646444800557
118 => 0.01062177909595
119 => 0.010794419045956
120 => 0.0109492074853
121 => 0.01123723039561
122 => 0.011309646198518
123 => 0.01159228989826
124 => 0.011423989336736
125 => 0.011498594795802
126 => 0.011579589575205
127 => 0.011618421450936
128 => 0.011555146993266
129 => 0.011994208999753
130 => 0.012031279285613
131 => 0.012043708631805
201 => 0.011895659393572
202 => 0.012027161768479
203 => 0.011965636162161
204 => 0.012125708697494
205 => 0.012150810114943
206 => 0.012129550107373
207 => 0.01213751769347
208 => 0.011762855726779
209 => 0.011743427527307
210 => 0.01147852264894
211 => 0.011586473344953
212 => 0.011384664692969
213 => 0.011448660295372
214 => 0.011476868947139
215 => 0.011462134348283
216 => 0.011592576715337
217 => 0.011481674055726
218 => 0.011188983702928
219 => 0.010896213606839
220 => 0.010892538116768
221 => 0.010815456918289
222 => 0.010759741329914
223 => 0.010770474128852
224 => 0.010808297912209
225 => 0.010757542942866
226 => 0.010768374088918
227 => 0.010948243280924
228 => 0.010984314764612
229 => 0.010861729769
301 => 0.010369533322688
302 => 0.010248747080182
303 => 0.010335565836
304 => 0.010294072062563
305 => 0.0083081195738717
306 => 0.0087746896530401
307 => 0.008497469555221
308 => 0.0086252253305795
309 => 0.0083422553965026
310 => 0.008477303480769
311 => 0.0084523650307714
312 => 0.0092025959112618
313 => 0.0091908820879717
314 => 0.0091964888752989
315 => 0.0089288623077651
316 => 0.0093551986966997
317 => 0.0095652273324496
318 => 0.0095263566217034
319 => 0.0095361395421616
320 => 0.0093680365563232
321 => 0.0091981164796568
322 => 0.0090096489641214
323 => 0.0093597983126972
324 => 0.0093208676823843
325 => 0.0094101605415235
326 => 0.0096372574232673
327 => 0.0096706983017612
328 => 0.009715643181581
329 => 0.00969953364156
330 => 0.010083328241723
331 => 0.010036848183285
401 => 0.010148851750895
402 => 0.0099184519145899
403 => 0.009657732630057
404 => 0.0097072868424911
405 => 0.0097025143733439
406 => 0.0096417553635148
407 => 0.0095869048461599
408 => 0.0094955941888014
409 => 0.0097845146201181
410 => 0.0097727849782373
411 => 0.0099626742460703
412 => 0.0099291094734948
413 => 0.0097049557075432
414 => 0.009712961403146
415 => 0.0097668035534809
416 => 0.0099531518505489
417 => 0.010008472712678
418 => 0.0099828458851847
419 => 0.010043502685016
420 => 0.010091443346426
421 => 0.010049523293982
422 => 0.010643022835025
423 => 0.01039656044694
424 => 0.010516684500018
425 => 0.010545333378865
426 => 0.01047194987812
427 => 0.010487864131765
428 => 0.010511969889664
429 => 0.010658335331233
430 => 0.011042440601091
501 => 0.011212558210419
502 => 0.011724365431535
503 => 0.011198432311116
504 => 0.011167225616278
505 => 0.011259417551898
506 => 0.01155990257099
507 => 0.011803417455841
508 => 0.011884205391857
509 => 0.011894882851265
510 => 0.012046446389911
511 => 0.01213331978377
512 => 0.012028042589803
513 => 0.011938831190897
514 => 0.011619287033341
515 => 0.011656275139668
516 => 0.01191108651292
517 => 0.012271022585953
518 => 0.012579885181582
519 => 0.012471732265541
520 => 0.013296862670872
521 => 0.013378670980205
522 => 0.013367367717035
523 => 0.013553739220404
524 => 0.013183829740112
525 => 0.013025686270629
526 => 0.011958119707932
527 => 0.012258062366576
528 => 0.012694046635929
529 => 0.012636342483023
530 => 0.012319719052726
531 => 0.012579644994317
601 => 0.012493705349392
602 => 0.012425921185799
603 => 0.012736453579822
604 => 0.012395010456626
605 => 0.012690640479585
606 => 0.01231149191724
607 => 0.012472226298951
608 => 0.012380985690045
609 => 0.012440029546036
610 => 0.012094860370376
611 => 0.012281105279054
612 => 0.012087111969859
613 => 0.012087019991771
614 => 0.012082737578719
615 => 0.012310969846689
616 => 0.012318412492754
617 => 0.012149748501884
618 => 0.012125441385773
619 => 0.012215317533911
620 => 0.012110096103042
621 => 0.01215932854829
622 => 0.012111587303654
623 => 0.012100839743903
624 => 0.012015201359254
625 => 0.01197830598847
626 => 0.011992773614031
627 => 0.01194338814942
628 => 0.011913631620642
629 => 0.012076818256184
630 => 0.011989634219744
701 => 0.012063456052204
702 => 0.011979326757058
703 => 0.01168769796669
704 => 0.011519979165431
705 => 0.01096911941443
706 => 0.011125342556474
707 => 0.011228918661274
708 => 0.011194686759256
709 => 0.011268230130779
710 => 0.011272745096496
711 => 0.011248835396728
712 => 0.011221151027419
713 => 0.011207675807481
714 => 0.011308109056859
715 => 0.011366413938551
716 => 0.011239313909061
717 => 0.011209536150469
718 => 0.011338041297669
719 => 0.011416429363225
720 => 0.011995202796846
721 => 0.01195232539147
722 => 0.012059939264698
723 => 0.012047823594042
724 => 0.01216062007742
725 => 0.012344994656392
726 => 0.011970109585399
727 => 0.012035176671173
728 => 0.012019223724359
729 => 0.01219339381458
730 => 0.012193937554591
731 => 0.012089513885062
801 => 0.012146123650394
802 => 0.012114525632393
803 => 0.012171627521649
804 => 0.01195175273758
805 => 0.012219536490559
806 => 0.012371352622895
807 => 0.01237346059004
808 => 0.012445420231879
809 => 0.01251853539561
810 => 0.012658873585402
811 => 0.012514621439665
812 => 0.012255125872148
813 => 0.012273860613958
814 => 0.012121718457668
815 => 0.012124275994802
816 => 0.012110623661143
817 => 0.012151595342153
818 => 0.011960743717524
819 => 0.012005536212356
820 => 0.011942826457287
821 => 0.012035040352412
822 => 0.01193583344476
823 => 0.012019216031365
824 => 0.012055201191568
825 => 0.012187987207419
826 => 0.011916220842254
827 => 0.011362070826717
828 => 0.011478559878403
829 => 0.011306263420943
830 => 0.011322210114059
831 => 0.011354424972053
901 => 0.011250006077251
902 => 0.011269925911761
903 => 0.011269214235099
904 => 0.011263081390101
905 => 0.011235918002714
906 => 0.01119652571689
907 => 0.011353452459305
908 => 0.01138011737076
909 => 0.01143939016584
910 => 0.011615745798877
911 => 0.011598123712384
912 => 0.011626866066587
913 => 0.011564121668744
914 => 0.01132512064672
915 => 0.011338099552085
916 => 0.011176252394216
917 => 0.011435251370131
918 => 0.011373916994015
919 => 0.011334374322729
920 => 0.011323584738509
921 => 0.011500377523049
922 => 0.011553276695071
923 => 0.011520313480998
924 => 0.011452704967245
925 => 0.011582533300314
926 => 0.011617269885226
927 => 0.011625046125552
928 => 0.011855077039638
929 => 0.011637902298325
930 => 0.01169017841709
1001 => 0.012098021772821
1002 => 0.011728164127709
1003 => 0.011924085971134
1004 => 0.011914496616427
1005 => 0.01201472360189
1006 => 0.011906275078212
1007 => 0.011907619427638
1008 => 0.011996614200765
1009 => 0.0118716370922
1010 => 0.011840691002562
1011 => 0.011797939201368
1012 => 0.011891286195232
1013 => 0.011947243496333
1014 => 0.012398218247093
1015 => 0.012689568503031
1016 => 0.012676920220039
1017 => 0.012792501849991
1018 => 0.012740431267091
1019 => 0.012572281619381
1020 => 0.012859292564357
1021 => 0.012768470292319
1022 => 0.012775957570076
1023 => 0.012775678893224
1024 => 0.012836067764309
1025 => 0.012793276714587
1026 => 0.012708931163173
1027 => 0.012764923676444
1028 => 0.012931201423167
1029 => 0.01344733265102
1030 => 0.013736166523956
1031 => 0.013429944489199
1101 => 0.013641172348298
1102 => 0.01351451090102
1103 => 0.013491492748198
1104 => 0.013624159453329
1105 => 0.013757058373964
1106 => 0.013748593287258
1107 => 0.013652115495311
1108 => 0.013597617638674
1109 => 0.014010293667252
1110 => 0.014314346335356
1111 => 0.014293611981786
1112 => 0.014385126675269
1113 => 0.01465381664578
1114 => 0.014678382289352
1115 => 0.014675287582896
1116 => 0.014614399072145
1117 => 0.014878959241915
1118 => 0.01509965999003
1119 => 0.014600305141145
1120 => 0.014790452930565
1121 => 0.014875816399416
1122 => 0.015001155297887
1123 => 0.015212623028848
1124 => 0.015442333073717
1125 => 0.015474816592703
1126 => 0.015451767981503
1127 => 0.015300268031974
1128 => 0.01555161950408
1129 => 0.015698855301523
1130 => 0.015786530849468
1201 => 0.016008861451238
1202 => 0.014876343575138
1203 => 0.014074691132644
1204 => 0.013949501527747
1205 => 0.014204079512143
1206 => 0.014271209696407
1207 => 0.014244149603304
1208 => 0.013341816896225
1209 => 0.013944750932786
1210 => 0.014593457259991
1211 => 0.014618376711959
1212 => 0.014943132663168
1213 => 0.015048886513077
1214 => 0.015310357620536
1215 => 0.015294002531573
1216 => 0.015357666585326
1217 => 0.015343031321876
1218 => 0.015827351489205
1219 => 0.01636162855601
1220 => 0.016343128240084
1221 => 0.016266319590451
1222 => 0.016380393532977
1223 => 0.01693182472253
1224 => 0.016881057775101
1225 => 0.01693037354021
1226 => 0.017580541989993
1227 => 0.018425853460094
1228 => 0.018033121414348
1229 => 0.018885236948016
1230 => 0.019421598507756
1231 => 0.020349180364505
]
'min_raw' => 0.0083081195738717
'max_raw' => 0.020349180364505
'avg_raw' => 0.014328649969189
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0083081'
'max' => '$0.020349'
'avg' => '$0.014328'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0037045342886623
'max_diff' => 0.0082555321433886
'year' => 2028
]
3 => [
'items' => [
101 => 0.020233042547603
102 => 0.020594143357526
103 => 0.020025131616655
104 => 0.018718565643369
105 => 0.018511796576762
106 => 0.018925753484335
107 => 0.019943426148277
108 => 0.018893703350558
109 => 0.019106060905374
110 => 0.019044901915301
111 => 0.019041643012629
112 => 0.019166022072705
113 => 0.018985603758889
114 => 0.018250547091767
115 => 0.018587419230593
116 => 0.018457336719863
117 => 0.018601672963811
118 => 0.019380596143604
119 => 0.019036215638608
120 => 0.018673438751796
121 => 0.019128441474494
122 => 0.019707816296388
123 => 0.019671560061271
124 => 0.019601207811212
125 => 0.019997779761268
126 => 0.020652800438081
127 => 0.020829849894937
128 => 0.020960544184372
129 => 0.020978564718787
130 => 0.02116418742296
131 => 0.020166047359676
201 => 0.021750121274163
202 => 0.022023647080036
203 => 0.021972235565015
204 => 0.022276247986518
205 => 0.022186799820061
206 => 0.022057203460852
207 => 0.02253912781423
208 => 0.021986640432372
209 => 0.021202454150052
210 => 0.020772234046125
211 => 0.021338782583842
212 => 0.021684754006006
213 => 0.021913419108142
214 => 0.021982613029885
215 => 0.020243530131448
216 => 0.01930626090315
217 => 0.019907039732676
218 => 0.020640031368237
219 => 0.020161975554131
220 => 0.020180714436964
221 => 0.019499132476907
222 => 0.020700336247939
223 => 0.020525330962214
224 => 0.021433258694136
225 => 0.021216574454338
226 => 0.021956954274169
227 => 0.021761987454778
228 => 0.022571283821623
301 => 0.022894134053182
302 => 0.023436249839596
303 => 0.023835032418891
304 => 0.024069205176948
305 => 0.024055146322914
306 => 0.02498305545474
307 => 0.024435899858378
308 => 0.023748543474675
309 => 0.023736111366275
310 => 0.02409210297731
311 => 0.024838163732511
312 => 0.025031606431592
313 => 0.02513971451044
314 => 0.024974143224415
315 => 0.024380245039559
316 => 0.02412380281447
317 => 0.024342299020093
318 => 0.02407509693621
319 => 0.024536362696655
320 => 0.025169779106796
321 => 0.025038981122902
322 => 0.02547621917273
323 => 0.025928714555518
324 => 0.026575803275745
325 => 0.026744976228838
326 => 0.02702461268723
327 => 0.027312450458706
328 => 0.027404896193459
329 => 0.027581403785329
330 => 0.027580473503193
331 => 0.028112391011624
401 => 0.028699112495538
402 => 0.028920586273082
403 => 0.029429853012408
404 => 0.028557751568146
405 => 0.029219250531598
406 => 0.029815939155025
407 => 0.029104542379591
408 => 0.030085037100336
409 => 0.030123107488494
410 => 0.030697925150429
411 => 0.030115237328319
412 => 0.029769239159555
413 => 0.030768122908393
414 => 0.031251451289913
415 => 0.031105868847943
416 => 0.029997979276255
417 => 0.029353140025914
418 => 0.027665471327568
419 => 0.02966458780262
420 => 0.030638299122591
421 => 0.029995457599167
422 => 0.030319669471724
423 => 0.03208846432234
424 => 0.03276190688047
425 => 0.032621835536098
426 => 0.032645505287526
427 => 0.033008882668045
428 => 0.034620298088848
429 => 0.033654700616386
430 => 0.034392863703836
501 => 0.034784382743774
502 => 0.035148047447662
503 => 0.034255001872323
504 => 0.033093162700253
505 => 0.032725159463767
506 => 0.029931539678685
507 => 0.029786119636795
508 => 0.029704490960605
509 => 0.029189833703828
510 => 0.028785454076488
511 => 0.028463876383174
512 => 0.027619960484691
513 => 0.027904757327018
514 => 0.026559731523773
515 => 0.027420231367901
516 => 0.025273537709138
517 => 0.027061367977503
518 => 0.026088333245099
519 => 0.026741699898223
520 => 0.026739420363521
521 => 0.025536365205035
522 => 0.02484246809674
523 => 0.025284646341025
524 => 0.025758696519051
525 => 0.025835609565539
526 => 0.026450227995325
527 => 0.0266217547879
528 => 0.026102020598579
529 => 0.025229052254543
530 => 0.025431822890574
531 => 0.024838358956273
601 => 0.02379833623867
602 => 0.024545298711507
603 => 0.024800344541355
604 => 0.024912987309456
605 => 0.02389024441411
606 => 0.023568876391564
607 => 0.023397782752899
608 => 0.025097028989809
609 => 0.025190117534498
610 => 0.024713863378473
611 => 0.026866577323978
612 => 0.026379351858235
613 => 0.026923702076607
614 => 0.025413423580696
615 => 0.025471118253099
616 => 0.024756128209848
617 => 0.025156474858417
618 => 0.024873522750983
619 => 0.025124130805515
620 => 0.025274344240106
621 => 0.025989216960526
622 => 0.027069530675654
623 => 0.025882438815
624 => 0.025365205891844
625 => 0.025686094288342
626 => 0.026540662374392
627 => 0.027835376769295
628 => 0.027068879788957
629 => 0.027409038132868
630 => 0.027483347598421
701 => 0.026918161102381
702 => 0.027856216001577
703 => 0.028358927242801
704 => 0.028874604954863
705 => 0.029322353463285
706 => 0.02866863193667
707 => 0.029368207677448
708 => 0.028804473122123
709 => 0.028298744948189
710 => 0.028299511929073
711 => 0.027982261258055
712 => 0.0273675481068
713 => 0.027254185570317
714 => 0.027843911801213
715 => 0.028316816391109
716 => 0.028355767078193
717 => 0.028617591357875
718 => 0.028772536269586
719 => 0.030291207041748
720 => 0.030902028989416
721 => 0.031648930504755
722 => 0.031939890738043
723 => 0.032815576725222
724 => 0.032108389170836
725 => 0.031955384695027
726 => 0.029831256924834
727 => 0.030179082728207
728 => 0.030735985399606
729 => 0.029840440044765
730 => 0.030408457446285
731 => 0.030520596113599
801 => 0.029810009756292
802 => 0.030189564632354
803 => 0.029181579411712
804 => 0.027091501998958
805 => 0.027858542855218
806 => 0.028423343108586
807 => 0.027617303507661
808 => 0.029062098294278
809 => 0.028218079006555
810 => 0.027950565412417
811 => 0.026906899506203
812 => 0.027399469639552
813 => 0.02806567779783
814 => 0.027654038611025
815 => 0.02850825173158
816 => 0.029718045320603
817 => 0.030580216276594
818 => 0.030646403056976
819 => 0.030092084893241
820 => 0.030980383288237
821 => 0.030986853572268
822 => 0.029984849353906
823 => 0.029371127349343
824 => 0.029231688418624
825 => 0.029580034206173
826 => 0.030002990300437
827 => 0.030669874176583
828 => 0.031072858136028
829 => 0.032123626576083
830 => 0.03240793438807
831 => 0.032720302476701
901 => 0.033137722573863
902 => 0.033638942424822
903 => 0.032542301925386
904 => 0.032585873496822
905 => 0.031564697047768
906 => 0.030473423560438
907 => 0.031301564108161
908 => 0.032384247711389
909 => 0.032135878896549
910 => 0.032107932331165
911 => 0.03215493070241
912 => 0.031967668726988
913 => 0.031120689752408
914 => 0.030695342213743
915 => 0.031244149056351
916 => 0.031535815468615
917 => 0.031988164638052
918 => 0.031932403054987
919 => 0.033097605936702
920 => 0.033550368542631
921 => 0.03343453249323
922 => 0.03345584911407
923 => 0.034275554185343
924 => 0.035187234809804
925 => 0.036041144021466
926 => 0.036909777147822
927 => 0.035862606010672
928 => 0.035330917087764
929 => 0.035879484338473
930 => 0.035588406833603
1001 => 0.037261024515779
1002 => 0.037376832935066
1003 => 0.039049329667945
1004 => 0.040636728224653
1005 => 0.039639711632384
1006 => 0.04057985337228
1007 => 0.041596693314859
1008 => 0.043558342540429
1009 => 0.042897728092909
1010 => 0.042391707779256
1011 => 0.041913521027928
1012 => 0.042908551747434
1013 => 0.044188642872075
1014 => 0.044464362239762
1015 => 0.044911132948321
1016 => 0.044441408176795
1017 => 0.045007139925611
1018 => 0.047004421594062
1019 => 0.046464738456754
1020 => 0.045698301643382
1021 => 0.047274963699653
1022 => 0.047845551568699
1023 => 0.051850236052851
1024 => 0.056906315639356
1025 => 0.054813065490534
1026 => 0.0535137175744
1027 => 0.053819095155637
1028 => 0.055665404261533
1029 => 0.056258380147426
1030 => 0.054646467278525
1031 => 0.055215822154231
1101 => 0.058353023497107
1102 => 0.060036031364091
1103 => 0.057750280622614
1104 => 0.05144398498107
1105 => 0.045629292394105
1106 => 0.047171610707188
1107 => 0.046996759674194
1108 => 0.050367291143276
1109 => 0.046451867192414
1110 => 0.046517792890082
1111 => 0.04995802338049
1112 => 0.049040228866131
1113 => 0.047553519295109
1114 => 0.045640147019265
1115 => 0.042103101401852
1116 => 0.038970241460695
1117 => 0.045114501259859
1118 => 0.044849549604707
1119 => 0.044465860344413
1120 => 0.045319719273684
1121 => 0.04946581586214
1122 => 0.049370234916171
1123 => 0.048762197703744
1124 => 0.049223388570376
1125 => 0.047472670306364
1126 => 0.047923870266114
1127 => 0.045628371317091
1128 => 0.046666032710553
1129 => 0.047550329484085
1130 => 0.047727865153609
1201 => 0.048127862082243
1202 => 0.044709932121939
1203 => 0.046244482328964
1204 => 0.047145886807681
1205 => 0.04307330857946
1206 => 0.047065385030447
1207 => 0.044650433565538
1208 => 0.043830762766994
1209 => 0.044934341513817
1210 => 0.044504275802914
1211 => 0.044134530558986
1212 => 0.043928206359845
1213 => 0.04473855279397
1214 => 0.044700749164245
1215 => 0.043374865116551
1216 => 0.041645303426281
1217 => 0.042225801100463
1218 => 0.042014900853238
1219 => 0.041250571150622
1220 => 0.041765637084665
1221 => 0.039497547380043
1222 => 0.035595416928284
1223 => 0.038173283830204
1224 => 0.03807403875866
1225 => 0.038023994893181
1226 => 0.039961190622966
1227 => 0.039774973952257
1228 => 0.039436988871481
1229 => 0.041244363789562
1230 => 0.040584647631839
1231 => 0.042617737381265
]
'min_raw' => 0.018250547091767
'max_raw' => 0.060036031364091
'avg_raw' => 0.039143289227929
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.01825'
'max' => '$0.060036'
'avg' => '$0.039143'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0099424275178953
'max_diff' => 0.039686850999585
'year' => 2029
]
4 => [
'items' => [
101 => 0.043956861782238
102 => 0.043617216518015
103 => 0.04487666948968
104 => 0.042239174594435
105 => 0.043115244600707
106 => 0.043295801414819
107 => 0.041222061063624
108 => 0.039805441302565
109 => 0.03971096891515
110 => 0.037254745471702
111 => 0.038566840209249
112 => 0.039721429280121
113 => 0.039168470714905
114 => 0.038993420552325
115 => 0.039887713869199
116 => 0.039957208119025
117 => 0.038372731858334
118 => 0.038702194646769
119 => 0.040076109243174
120 => 0.038667575524041
121 => 0.035931024590443
122 => 0.035252322123134
123 => 0.035161770703026
124 => 0.033321075783112
125 => 0.035297676267341
126 => 0.034434837186376
127 => 0.037160535504747
128 => 0.035603631243506
129 => 0.035536516212549
130 => 0.035435061999624
131 => 0.033850699843904
201 => 0.034197574464539
202 => 0.035350638534025
203 => 0.035762064784215
204 => 0.035719149655604
205 => 0.035344987891033
206 => 0.035516277230835
207 => 0.03496449458617
208 => 0.034769648649976
209 => 0.03415466127875
210 => 0.033250799737647
211 => 0.033376487228642
212 => 0.031585701007478
213 => 0.030609985629969
214 => 0.030339920473197
215 => 0.029978778058761
216 => 0.030380712469871
217 => 0.031580627935114
218 => 0.030133275307764
219 => 0.027651890748155
220 => 0.027801026188261
221 => 0.02813608924347
222 => 0.027511701456752
223 => 0.026920770817519
224 => 0.027434537064614
225 => 0.026383141715193
226 => 0.028263145348347
227 => 0.028212296518719
228 => 0.028913045614514
301 => 0.029351238404934
302 => 0.028341345889617
303 => 0.028087360653055
304 => 0.028232042186786
305 => 0.025840778716306
306 => 0.028717628372905
307 => 0.028742507488199
308 => 0.028529477398502
309 => 0.030061311027873
310 => 0.033293957776735
311 => 0.032077706036899
312 => 0.031606736601831
313 => 0.03071142336149
314 => 0.031904375095804
315 => 0.031812775015555
316 => 0.031398524714369
317 => 0.031147984839672
318 => 0.031609612240773
319 => 0.031090784096071
320 => 0.030997588304839
321 => 0.030432923207992
322 => 0.030231363459042
323 => 0.030082136645245
324 => 0.029917852585978
325 => 0.030280222283684
326 => 0.029459044874978
327 => 0.028468785421092
328 => 0.028386456062257
329 => 0.028613774660471
330 => 0.028513203102641
331 => 0.028385974564331
401 => 0.028143060636066
402 => 0.028070993262585
403 => 0.02830517726428
404 => 0.028040797180142
405 => 0.028430904395816
406 => 0.028324816818769
407 => 0.027732220237206
408 => 0.026993625489223
409 => 0.026987050446711
410 => 0.026827921419796
411 => 0.026625246678811
412 => 0.026568867202439
413 => 0.027391269104294
414 => 0.029093616428717
415 => 0.028759404915214
416 => 0.029000906985094
417 => 0.030188858145518
418 => 0.030566472096479
419 => 0.030298450658363
420 => 0.029931566383028
421 => 0.029947707429174
422 => 0.031201462061416
423 => 0.031279657199942
424 => 0.03147723108829
425 => 0.031731169369192
426 => 0.030341697445661
427 => 0.029882263426529
428 => 0.029664558099835
429 => 0.028994109956183
430 => 0.029717130799232
501 => 0.029295857516826
502 => 0.029352701675368
503 => 0.029315681842546
504 => 0.029335897174537
505 => 0.028262619849017
506 => 0.028653665696641
507 => 0.028003476130376
508 => 0.027132945288352
509 => 0.027130026963722
510 => 0.027343088154028
511 => 0.027216351020949
512 => 0.026875304654544
513 => 0.026923748681198
514 => 0.026499328032505
515 => 0.026975281032333
516 => 0.026988929661327
517 => 0.026805661831058
518 => 0.02753893309615
519 => 0.027839354931751
520 => 0.027718724119891
521 => 0.027830891152414
522 => 0.028773292912475
523 => 0.028926945519236
524 => 0.028995187857438
525 => 0.028903752164625
526 => 0.027848116526596
527 => 0.027894938456052
528 => 0.027551390204543
529 => 0.027261128134241
530 => 0.027272737094829
531 => 0.027421969530392
601 => 0.028073676328864
602 => 0.029445154866033
603 => 0.029497201473981
604 => 0.02956028348112
605 => 0.029303697255607
606 => 0.029226308394793
607 => 0.029328404277967
608 => 0.029843459507612
609 => 0.03116832139439
610 => 0.030700026719052
611 => 0.030319295858562
612 => 0.030653299467515
613 => 0.030601882229923
614 => 0.030167869000172
615 => 0.030155687694339
616 => 0.029322677544024
617 => 0.029014732658175
618 => 0.028757390862285
619 => 0.028476380339251
620 => 0.028309787881638
621 => 0.028565749611449
622 => 0.028624291087507
623 => 0.02806462629183
624 => 0.027988346048212
625 => 0.028445380401566
626 => 0.028244256622613
627 => 0.028451117416895
628 => 0.028499110895588
629 => 0.028491382840135
630 => 0.028281386515989
701 => 0.028415231910819
702 => 0.028098647650814
703 => 0.027754409817476
704 => 0.027534807526582
705 => 0.02734317540176
706 => 0.027449504042335
707 => 0.027070461853525
708 => 0.026949198628713
709 => 0.028369888102668
710 => 0.029419366692064
711 => 0.029404106857735
712 => 0.029311216540768
713 => 0.029173200371868
714 => 0.029833362765207
715 => 0.029603375387732
716 => 0.029770710420934
717 => 0.029813304209913
718 => 0.029942222780724
719 => 0.029988300088863
720 => 0.029849022460918
721 => 0.029381589730203
722 => 0.028216791807432
723 => 0.02767457523007
724 => 0.027495634728209
725 => 0.027502138875595
726 => 0.02732272545489
727 => 0.027375570748033
728 => 0.027304348018537
729 => 0.027169469399499
730 => 0.027441175667688
731 => 0.027472487283978
801 => 0.027409067794334
802 => 0.027424005379964
803 => 0.026898919092535
804 => 0.026938840262541
805 => 0.026716554115012
806 => 0.02667487814205
807 => 0.026112958117765
808 => 0.025117435343135
809 => 0.025669051598014
810 => 0.025002776731103
811 => 0.024750448343292
812 => 0.025944931686073
813 => 0.025825038688269
814 => 0.025619833992261
815 => 0.025316293478459
816 => 0.025203707349238
817 => 0.024519669668526
818 => 0.024479253073151
819 => 0.024818280618283
820 => 0.02466183107143
821 => 0.024442116655572
822 => 0.023646333313427
823 => 0.022751609362047
824 => 0.022778615454105
825 => 0.023063210496108
826 => 0.023890708963603
827 => 0.023567390996484
828 => 0.023332820101693
829 => 0.023288892024274
830 => 0.023838743882834
831 => 0.024616899460222
901 => 0.024981992646882
902 => 0.024620196386947
903 => 0.024204584324026
904 => 0.024229880704535
905 => 0.024398166191084
906 => 0.024415850616292
907 => 0.024145329888941
908 => 0.024221479889106
909 => 0.024105801075554
910 => 0.023395880410308
911 => 0.023383040196656
912 => 0.023208814216388
913 => 0.023203538722947
914 => 0.022907136867803
915 => 0.022865668199339
916 => 0.022277144325643
917 => 0.022664512521524
918 => 0.02240468627347
919 => 0.022013066830837
920 => 0.021945551491317
921 => 0.021943521898684
922 => 0.022345627501763
923 => 0.022659813683435
924 => 0.022409206062296
925 => 0.022352147564788
926 => 0.022961383040977
927 => 0.022883852273327
928 => 0.022816711128562
929 => 0.024547224163152
930 => 0.023177388062658
1001 => 0.022580061335332
1002 => 0.021840756080997
1003 => 0.022081477599709
1004 => 0.022132201160637
1005 => 0.020354305293749
1006 => 0.019633013161975
1007 => 0.019385492883671
1008 => 0.019243041464084
1009 => 0.019307958364782
1010 => 0.018658710847057
1011 => 0.019095015916531
1012 => 0.018532822445708
1013 => 0.018438568880788
1014 => 0.019443840449027
1015 => 0.019583718115036
1016 => 0.018986956535257
1017 => 0.019370174076399
1018 => 0.019231214068859
1019 => 0.018542459639172
1020 => 0.018516154286092
1021 => 0.018170561524164
1022 => 0.017629775771692
1023 => 0.017382622171593
1024 => 0.017253902430776
1025 => 0.017307014704535
1026 => 0.01728015951366
1027 => 0.01710491122765
1028 => 0.017290204540276
1029 => 0.016816856694999
1030 => 0.016628365768988
1031 => 0.016543228790665
1101 => 0.016123105333097
1102 => 0.016791708583837
1103 => 0.016923431847074
1104 => 0.017055414645832
1105 => 0.018204234800533
1106 => 0.018146842992137
1107 => 0.018665636989099
1108 => 0.018645477608378
1109 => 0.018497509156539
1110 => 0.017873254597858
1111 => 0.01812207133868
1112 => 0.017356252085135
1113 => 0.017930055940539
1114 => 0.017668195823554
1115 => 0.017841520771579
1116 => 0.01752986688695
1117 => 0.017702349014577
1118 => 0.016954668319399
1119 => 0.016256494606393
1120 => 0.016537460089468
1121 => 0.016842901701871
1122 => 0.017505176942635
1123 => 0.017110731272888
1124 => 0.017252588851371
1125 => 0.016777389710124
1126 => 0.015796918147808
1127 => 0.015802467510372
1128 => 0.015651643321243
1129 => 0.015521309201144
1130 => 0.017156038103005
1201 => 0.016952733722819
1202 => 0.016628794800812
1203 => 0.01706239992074
1204 => 0.017177051996687
1205 => 0.017180315980107
1206 => 0.017496663082638
1207 => 0.017665497587968
1208 => 0.017695255401302
1209 => 0.018193034402267
1210 => 0.018359883357526
1211 => 0.019047110590891
1212 => 0.017651173159771
1213 => 0.017622424747
1214 => 0.01706850163399
1215 => 0.016717194838541
1216 => 0.01709255591083
1217 => 0.017425074578983
1218 => 0.017078833915902
1219 => 0.017124045636961
1220 => 0.016659245835676
1221 => 0.016825389893772
1222 => 0.016968495538626
1223 => 0.016889481012899
1224 => 0.016771192443539
1225 => 0.017397811840187
1226 => 0.017362455518087
1227 => 0.017945977906163
1228 => 0.018400875335755
1229 => 0.019216132852226
1230 => 0.018365369133453
1231 => 0.018334363922062
]
'min_raw' => 0.015521309201144
'max_raw' => 0.04487666948968
'avg_raw' => 0.030198989345412
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.015521'
'max' => '$0.044876'
'avg' => '$0.030198'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0027292378906228
'max_diff' => -0.015159361874411
'year' => 2030
]
5 => [
'items' => [
101 => 0.018637444836807
102 => 0.018359836957417
103 => 0.018535275554493
104 => 0.019187866981967
105 => 0.01920165521049
106 => 0.01897068461761
107 => 0.018956630036043
108 => 0.019000990464947
109 => 0.01926081088261
110 => 0.019170021645203
111 => 0.019275085249233
112 => 0.019406468894862
113 => 0.019949927358697
114 => 0.020080953354457
115 => 0.019762628113949
116 => 0.01979136931903
117 => 0.019672306940857
118 => 0.019557294175389
119 => 0.019815826075896
120 => 0.02028829820553
121 => 0.020285358980933
122 => 0.020394963331462
123 => 0.02046324593383
124 => 0.020170127018546
125 => 0.019979317382977
126 => 0.020052485938786
127 => 0.02016948405293
128 => 0.020014545027231
129 => 0.019058189585878
130 => 0.019348286734562
131 => 0.019300000383995
201 => 0.019231234748967
202 => 0.019522929675224
203 => 0.019494794987992
204 => 0.018652051875356
205 => 0.018706001555153
206 => 0.018655332734071
207 => 0.018819054060853
208 => 0.018350995468483
209 => 0.018494967139074
210 => 0.018585264821217
211 => 0.018638450849699
212 => 0.018830595254578
213 => 0.018808049326388
214 => 0.018829193768025
215 => 0.019114093196218
216 => 0.020555016738338
217 => 0.020633443027517
218 => 0.020247243296532
219 => 0.020401522471608
220 => 0.020105340192609
221 => 0.02030416934075
222 => 0.020440203194195
223 => 0.019825492368282
224 => 0.019789093182612
225 => 0.01949168845399
226 => 0.019651496909287
227 => 0.019397230166275
228 => 0.019459618331137
301 => 0.019285175583281
302 => 0.019599137798218
303 => 0.019950196339313
304 => 0.020038887590515
305 => 0.019805579092586
306 => 0.019636648364306
307 => 0.019340061654687
308 => 0.019833291962649
309 => 0.019977527535618
310 => 0.019832534354587
311 => 0.019798936266378
312 => 0.019735267949934
313 => 0.019812443800692
314 => 0.019976741997711
315 => 0.019899262002108
316 => 0.019950438904226
317 => 0.019755405326745
318 => 0.020170224053103
319 => 0.020829056022122
320 => 0.020831174274633
321 => 0.020753693861383
322 => 0.020721990545621
323 => 0.020801490151519
324 => 0.020844615426474
325 => 0.021101702574215
326 => 0.021377567326545
327 => 0.022664907756447
328 => 0.022303427715106
329 => 0.02344563272874
330 => 0.024348968597766
331 => 0.024619839526797
401 => 0.024370651017551
402 => 0.023518190588318
403 => 0.023476364812783
404 => 0.024750300593566
405 => 0.02439035538554
406 => 0.024347541048381
407 => 0.023892068836978
408 => 0.024161309325248
409 => 0.024102422480944
410 => 0.024009466716366
411 => 0.024523158812531
412 => 0.025484744558941
413 => 0.025334872402669
414 => 0.025222999790381
415 => 0.024732806568963
416 => 0.025028012376877
417 => 0.024922895242973
418 => 0.025374545159202
419 => 0.025106997754099
420 => 0.024387628446573
421 => 0.024502190379869
422 => 0.024484874574118
423 => 0.024841232629463
424 => 0.024734262786599
425 => 0.024463986995494
426 => 0.025481457963397
427 => 0.025415389058212
428 => 0.02550905966031
429 => 0.025550296356213
430 => 0.026169613004526
501 => 0.026423327219418
502 => 0.026480924788091
503 => 0.026721933669276
504 => 0.026474928267573
505 => 0.027463125986253
506 => 0.02812021980624
507 => 0.028883468091893
508 => 0.029998778979032
509 => 0.030418146189799
510 => 0.030342391256784
511 => 0.031188007242545
512 => 0.032707560371971
513 => 0.030649536389928
514 => 0.032816640640292
515 => 0.032130560455048
516 => 0.030503876677891
517 => 0.030399137419984
518 => 0.031500746560062
519 => 0.033944009606804
520 => 0.033331999924855
521 => 0.033945010635398
522 => 0.033229901079569
523 => 0.033194389862706
524 => 0.033910279360425
525 => 0.035582994192952
526 => 0.034788350076797
527 => 0.033649032881556
528 => 0.034490286968783
529 => 0.033761514824037
530 => 0.032119387211445
531 => 0.033331531932586
601 => 0.032521005277453
602 => 0.032757560045387
603 => 0.034461166517736
604 => 0.0342561840798
605 => 0.034521450335352
606 => 0.034053262337528
607 => 0.03361590092109
608 => 0.032799533358423
609 => 0.032557847169552
610 => 0.032624640537198
611 => 0.032557814070076
612 => 0.032101063921569
613 => 0.032002428770486
614 => 0.03183803253071
615 => 0.031888985799592
616 => 0.031579872772997
617 => 0.032163232920192
618 => 0.032271509704064
619 => 0.032696030570993
620 => 0.032740105735692
621 => 0.033922390307415
622 => 0.033271207832795
623 => 0.03370807725716
624 => 0.03366899954387
625 => 0.030539131847879
626 => 0.03097040000133
627 => 0.031641317908698
628 => 0.031339070300836
629 => 0.030911762898368
630 => 0.030566689260102
701 => 0.030043867412537
702 => 0.03077972912308
703 => 0.031747309022276
704 => 0.032764645158686
705 => 0.033986907868078
706 => 0.033714113060048
707 => 0.032741795807522
708 => 0.032785413249192
709 => 0.033055039110766
710 => 0.032705849121935
711 => 0.03260286617723
712 => 0.033040890835574
713 => 0.033043907270662
714 => 0.032642121987492
715 => 0.032195611171179
716 => 0.032193740274555
717 => 0.032114287987575
718 => 0.033244035464919
719 => 0.033865282347104
720 => 0.033936507300957
721 => 0.033860488340219
722 => 0.033889745021123
723 => 0.03352825514862
724 => 0.03435451380067
725 => 0.035112770448302
726 => 0.034909541468946
727 => 0.03460487233819
728 => 0.034362188700689
729 => 0.034852372916548
730 => 0.034830545785037
731 => 0.035106147737974
801 => 0.035093644841434
802 => 0.035000970270576
803 => 0.034909544778647
804 => 0.035272036519875
805 => 0.035167644719841
806 => 0.035063090770507
807 => 0.034853391818709
808 => 0.034881893388989
809 => 0.034577276863654
810 => 0.03443634732073
811 => 0.032317105132408
812 => 0.031750774371452
813 => 0.031928953557575
814 => 0.031987614772067
815 => 0.031741146899126
816 => 0.032094518516521
817 => 0.032039445924263
818 => 0.03225370116435
819 => 0.032119843792225
820 => 0.032125337345468
821 => 0.032518983335487
822 => 0.032633260441079
823 => 0.032575138182845
824 => 0.032615845020197
825 => 0.033553916905699
826 => 0.033420553081431
827 => 0.033349706207828
828 => 0.033369331275993
829 => 0.033609028755226
830 => 0.033676130962415
831 => 0.033391814195369
901 => 0.033525899626324
902 => 0.034096818373352
903 => 0.034296607623609
904 => 0.03493423900615
905 => 0.034663361861852
906 => 0.035160568583498
907 => 0.036688812535576
908 => 0.037909679550933
909 => 0.036786919789147
910 => 0.039028886586374
911 => 0.040774579329051
912 => 0.040707576733984
913 => 0.040403174825697
914 => 0.038415750049802
915 => 0.03658689214019
916 => 0.038116809438989
917 => 0.038120709512814
918 => 0.037989288260031
919 => 0.037173042146007
920 => 0.037960884664579
921 => 0.038023420742679
922 => 0.037988417168628
923 => 0.037362603186796
924 => 0.036407100906296
925 => 0.036593803764756
926 => 0.03689962685555
927 => 0.036320639943297
928 => 0.036135618542779
929 => 0.036479608528105
930 => 0.037588015933985
1001 => 0.03737847793447
1002 => 0.037373006050493
1003 => 0.038269498470358
1004 => 0.037627803372908
1005 => 0.036596158685707
1006 => 0.036335654796467
1007 => 0.035411041486112
1008 => 0.036049675192934
1009 => 0.036072658483104
1010 => 0.035722885328556
1011 => 0.036624540849488
1012 => 0.03661623193513
1013 => 0.037472219658541
1014 => 0.039108546691396
1015 => 0.038624604269018
1016 => 0.038061831884578
1017 => 0.038123020846752
1018 => 0.038794112734576
1019 => 0.03838835525966
1020 => 0.038534268476682
1021 => 0.038793891877447
1022 => 0.038950529121215
1023 => 0.038100483157884
1024 => 0.037902296781433
1025 => 0.037496877009181
1026 => 0.037391110558119
1027 => 0.037721316503257
1028 => 0.037634318903061
1029 => 0.036070726826561
1030 => 0.035907322754823
1031 => 0.035912334124416
1101 => 0.035501446816589
1102 => 0.034874745047901
1103 => 0.036521679877596
1104 => 0.036389407961933
1105 => 0.036243390004075
1106 => 0.036261276370746
1107 => 0.036976154960516
1108 => 0.036561489276215
1109 => 0.037663945960298
1110 => 0.037437314008932
1111 => 0.037204869803174
1112 => 0.037172738933514
1113 => 0.037083267745505
1114 => 0.036776437751059
1115 => 0.036405922095142
1116 => 0.036161275565588
1117 => 0.033356865231461
1118 => 0.033877347476971
1119 => 0.03447611485698
1120 => 0.03468280695715
1121 => 0.034329245817152
1122 => 0.036790398499847
1123 => 0.037240074811233
1124 => 0.035877975932385
1125 => 0.035623182846284
1126 => 0.036807102692153
1127 => 0.036093054296779
1128 => 0.036414590245494
1129 => 0.035719605395132
1130 => 0.037131760955879
1201 => 0.037121002696514
1202 => 0.036571642288404
1203 => 0.037035957943481
1204 => 0.036955271672164
1205 => 0.036335045124422
1206 => 0.037151423243721
1207 => 0.037151828157083
1208 => 0.036623080708402
1209 => 0.036005619446042
1210 => 0.035895231956117
1211 => 0.03581206981093
1212 => 0.036394137455711
1213 => 0.036916017485943
1214 => 0.037887106837173
1215 => 0.038131261772586
1216 => 0.039084214739818
1217 => 0.038516777646269
1218 => 0.038768315160299
1219 => 0.039041394713932
1220 => 0.039172319094111
1221 => 0.038958984842398
1222 => 0.040439313051599
1223 => 0.04056429810854
1224 => 0.040606204517016
1225 => 0.040107046173846
1226 => 0.040550415612046
1227 => 0.040342977734765
1228 => 0.040882673463548
1229 => 0.040967304645002
1230 => 0.040895625045152
1231 => 0.040922488317958
]
'min_raw' => 0.018350995468483
'max_raw' => 0.040967304645002
'avg_raw' => 0.029659150056743
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.01835'
'max' => '$0.040967'
'avg' => '$0.029659'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.002829686267339
'max_diff' => -0.0039093648446773
'year' => 2031
]
6 => [
'items' => [
101 => 0.039659289339196
102 => 0.039593785808242
103 => 0.038700640515761
104 => 0.039064603824244
105 => 0.038384191864251
106 => 0.038599957505785
107 => 0.038695064944682
108 => 0.038645386215902
109 => 0.039085181763619
110 => 0.038711265703765
111 => 0.037724439744318
112 => 0.036737344924798
113 => 0.036724952753409
114 => 0.0364650681111
115 => 0.036277219114957
116 => 0.036313405495915
117 => 0.036440931022276
118 => 0.036269807099536
119 => 0.036306325064656
120 => 0.036912766603571
121 => 0.037034384129257
122 => 0.036621080257941
123 => 0.03496160557514
124 => 0.034554366325504
125 => 0.034847081822237
126 => 0.034707182668091
127 => 0.028011405197694
128 => 0.029584478794493
129 => 0.028649811879807
130 => 0.029080549396051
131 => 0.028126496506981
201 => 0.028581820551841
202 => 0.028497738826527
203 => 0.031027194619548
204 => 0.030987700646493
205 => 0.03100660432142
206 => 0.030104282663889
207 => 0.031541705565038
208 => 0.0322498317742
209 => 0.032118776459053
210 => 0.0321517602584
211 => 0.03158498930507
212 => 0.031012091903148
213 => 0.030376660516138
214 => 0.031557213491509
215 => 0.031425956153359
216 => 0.031727013262175
217 => 0.032492686254372
218 => 0.032605434510982
219 => 0.032756969311246
220 => 0.032702654872333
221 => 0.033996645162466
222 => 0.033839934400308
223 => 0.034217562248346
224 => 0.033440753114239
225 => 0.032561719843597
226 => 0.032728795330583
227 => 0.03271270461765
228 => 0.032507851373953
229 => 0.03232291902515
301 => 0.032015058768759
302 => 0.032989174174724
303 => 0.032949626868185
304 => 0.033589851792329
305 => 0.033476685818174
306 => 0.032720935746352
307 => 0.032747927508016
308 => 0.032929460077009
309 => 0.033557746370997
310 => 0.033744264520045
311 => 0.033657861881943
312 => 0.033862370517497
313 => 0.034024005804551
314 => 0.03388266942097
315 => 0.035883694560411
316 => 0.035052729411529
317 => 0.035457736043276
318 => 0.03555432773851
319 => 0.035306910142273
320 => 0.035360566159537
321 => 0.035441840405302
322 => 0.035935321710461
323 => 0.037230359445163
324 => 0.037803922842242
325 => 0.039529516621476
326 => 0.037756296386503
327 => 0.037651080836074
328 => 0.037961912383654
329 => 0.038975018604716
330 => 0.039796046040658
331 => 0.04006842820737
401 => 0.04010442800724
402 => 0.040615435059614
403 => 0.040908334772318
404 => 0.040553385362636
405 => 0.040252602902683
406 => 0.039175237465626
407 => 0.039299945448534
408 => 0.040159059783814
409 => 0.04137260938398
410 => 0.042413961189238
411 => 0.042049316081811
412 => 0.044831300852151
413 => 0.045107123278742
414 => 0.045069013537794
415 => 0.045697378073447
416 => 0.044450202434387
417 => 0.043917010685799
418 => 0.040317635484551
419 => 0.041328913099495
420 => 0.042798864503068
421 => 0.042604310922771
422 => 0.041536792921582
423 => 0.042413151381108
424 => 0.042123399868126
425 => 0.041894860828036
426 => 0.042941842475162
427 => 0.041790643146511
428 => 0.042787380409144
429 => 0.041509054559891
430 => 0.042050981749947
501 => 0.041743357666802
502 => 0.041942428149586
503 => 0.040778666174908
504 => 0.041406603887719
505 => 0.040752541901587
506 => 0.040752231791044
507 => 0.040737793336449
508 => 0.041507294362579
509 => 0.041532387763415
510 => 0.040963725342454
511 => 0.040881772203416
512 => 0.041184795911816
513 => 0.040830034511315
514 => 0.040996025137768
515 => 0.040835062198293
516 => 0.040798826050219
517 => 0.040510090257294
518 => 0.040385694938745
519 => 0.040434473548421
520 => 0.040267967006502
521 => 0.040167640792191
522 => 0.040717835927249
523 => 0.040423888861396
524 => 0.040672784323612
525 => 0.040389136531305
526 => 0.039405889703709
527 => 0.038840414055512
528 => 0.036983151945211
529 => 0.037509869175766
530 => 0.037859083244552
531 => 0.037743667996901
601 => 0.037991624608627
602 => 0.038006847130766
603 => 0.037926233908676
604 => 0.037832894124689
605 => 0.037787461479858
606 => 0.038126079192162
607 => 0.038322658171502
608 => 0.037894131548236
609 => 0.03779373375613
610 => 0.038226997831855
611 => 0.038491288667759
612 => 0.040442663707882
613 => 0.040298099542051
614 => 0.040660927229001
615 => 0.040620078399495
616 => 0.041000379618402
617 => 0.041622011384029
618 => 0.040358060193535
619 => 0.040577438416061
620 => 0.040523651942081
621 => 0.041110878561427
622 => 0.041112711818835
623 => 0.040760640126392
624 => 0.040951503902576
625 => 0.040844968978784
626 => 0.041037491985135
627 => 0.04029616879948
628 => 0.041199020418715
629 => 0.041710879108348
630 => 0.04171798626675
701 => 0.041960603223275
702 => 0.04220711610253
703 => 0.042680276107513
704 => 0.042193919926799
705 => 0.041319012503513
706 => 0.041382177993541
707 => 0.040869220091385
708 => 0.040877843006393
709 => 0.040831813210287
710 => 0.040969952093363
711 => 0.040326482516092
712 => 0.040477503539729
713 => 0.040266073222259
714 => 0.040576978807843
715 => 0.040242495792289
716 => 0.040523626004614
717 => 0.04064495248464
718 => 0.041092649807906
719 => 0.040176370533631
720 => 0.038308015066731
721 => 0.038700766037494
722 => 0.038119856501812
723 => 0.038173621891018
724 => 0.038282236533912
725 => 0.037930180939793
726 => 0.037997342052604
727 => 0.037994942585049
728 => 0.037974265269956
729 => 0.037882682012894
730 => 0.037749868170958
731 => 0.038278957639286
801 => 0.03836886024994
802 => 0.038568702616847
803 => 0.039163297946388
804 => 0.039103883851443
805 => 0.039200790705365
806 => 0.038989243587363
807 => 0.038183434955091
808 => 0.038227194240685
809 => 0.037681515248125
810 => 0.038554748378153
811 => 0.038347955246848
812 => 0.038214634369827
813 => 0.038178256533323
814 => 0.038774325749678
815 => 0.038952679001452
816 => 0.038841541223788
817 => 0.038613594399393
818 => 0.039051319688661
819 => 0.039168436509922
820 => 0.039194654647101
821 => 0.039970219934186
822 => 0.039238000131193
823 => 0.039414252715412
824 => 0.040789325063972
825 => 0.039542324190842
826 => 0.040202888364777
827 => 0.040170557185873
828 => 0.040508479464985
829 => 0.040142837695773
830 => 0.04014737026372
831 => 0.040447422354734
901 => 0.040026053307585
902 => 0.039921716405785
903 => 0.039777575723223
904 => 0.040092301630316
905 => 0.040280965577789
906 => 0.041801458436028
907 => 0.042783766165349
908 => 0.042741121596166
909 => 0.043130813131203
910 => 0.042955253525504
911 => 0.042388325248417
912 => 0.043356002687866
913 => 0.04304978905668
914 => 0.043075032936386
915 => 0.043074093357922
916 => 0.043277698653
917 => 0.043133425641286
918 => 0.042849048725877
919 => 0.043037831393641
920 => 0.04359844842586
921 => 0.045338620895699
922 => 0.04631244446404
923 => 0.045279995494116
924 => 0.045992164968527
925 => 0.04556511705581
926 => 0.045487509746495
927 => 0.045934804805335
928 => 0.046382882794965
929 => 0.04635434216412
930 => 0.046029060552708
1001 => 0.045845317224137
1002 => 0.047236683266608
1003 => 0.048261818065398
1004 => 0.048191910744711
1005 => 0.048500458923143
1006 => 0.049406365918055
1007 => 0.049489190700474
1008 => 0.049478756681595
1009 => 0.049273466816498
1010 => 0.050165449899878
1011 => 0.050909557880983
1012 => 0.049225948144123
1013 => 0.049867044691849
1014 => 0.050154853586964
1015 => 0.050577442434045
1016 => 0.051290420653183
1017 => 0.052064904107301
1018 => 0.052174424559492
1019 => 0.052096714557626
1020 => 0.051585921900403
1021 => 0.052433370937408
1022 => 0.05292978670816
1023 => 0.05322539093937
1024 => 0.053974994085864
1025 => 0.050156630996719
1026 => 0.047453803817263
1027 => 0.047031718323893
1028 => 0.047890045772352
1029 => 0.048116379875478
1030 => 0.048025144882307
1031 => 0.044982867161533
1101 => 0.047015701361307
1102 => 0.04920286003471
1103 => 0.049286877706839
1104 => 0.050381815070076
1105 => 0.050738371558545
1106 => 0.051619939652671
1107 => 0.051564797328358
1108 => 0.051779445130466
1109 => 0.051730101317943
1110 => 0.053363020576249
1111 => 0.055164373009016
1112 => 0.055101997902219
1113 => 0.054843032177374
1114 => 0.055227640438987
1115 => 0.057086829194261
1116 => 0.056915664886568
1117 => 0.057081936431751
1118 => 0.059274024753506
1119 => 0.062124051392716
1120 => 0.060799927880807
1121 => 0.063672894895373
1122 => 0.065481275341604
1123 => 0.068608682333334
1124 => 0.068217115575165
1125 => 0.069434592167073
1126 => 0.067516129355595
1127 => 0.063110950955137
1128 => 0.062413814610919
1129 => 0.063809499226347
1130 => 0.067240653664464
1201 => 0.063701439962649
1202 => 0.064417418285044
1203 => 0.064211216480028
1204 => 0.06420022886214
1205 => 0.064619581547056
1206 => 0.06401128860562
1207 => 0.0615329937324
1208 => 0.062668781668113
1209 => 0.062230199401118
1210 => 0.062716839124823
1211 => 0.065343033008173
1212 => 0.064181930091701
1213 => 0.06295880248954
1214 => 0.064492875936393
1215 => 0.066446278599067
1216 => 0.066324038171039
1217 => 0.06608684064813
1218 => 0.067423910665512
1219 => 0.06963235860947
1220 => 0.07022929321446
1221 => 0.070669938136072
1222 => 0.070730695626006
1223 => 0.071356535532889
1224 => 0.067991236621612
1225 => 0.073332052420815
1226 => 0.074254263772278
1227 => 0.074080926259947
1228 => 0.075105925364512
1229 => 0.074804344626232
1230 => 0.074367401453031
1231 => 0.075992243057329
]
'min_raw' => 0.028011405197694
'max_raw' => 0.075992243057329
'avg_raw' => 0.052001824127511
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.028011'
'max' => '$0.075992'
'avg' => '$0.0520018'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0096604097292106
'max_diff' => 0.035024938412327
'year' => 2032
]
7 => [
'items' => [
101 => 0.074129493275958
102 => 0.071485554474977
103 => 0.07003503735758
104 => 0.071945195307647
105 => 0.073111662112428
106 => 0.073882622469165
107 => 0.074115914607287
108 => 0.068252475196317
109 => 0.065092406555063
110 => 0.067117974323847
111 => 0.069589306798982
112 => 0.067977508244932
113 => 0.068040687696713
114 => 0.065742686531847
115 => 0.069792628911251
116 => 0.069202586371949
117 => 0.072263728109616
118 => 0.071533162066724
119 => 0.074029404320954
120 => 0.073372060077228
121 => 0.076100659281316
122 => 0.077189171377701
123 => 0.079016952600911
124 => 0.080361475909113
125 => 0.081151005712321
126 => 0.081103605304388
127 => 0.084232115726887
128 => 0.082387342432568
129 => 0.080069872395222
130 => 0.080027956673771
131 => 0.081228207244917
201 => 0.083743603169375
202 => 0.084395808735065
203 => 0.084760302670766
204 => 0.084202067520115
205 => 0.082199698325225
206 => 0.081335085459114
207 => 0.082071760671287
208 => 0.081170870190022
209 => 0.08272605990591
210 => 0.084861667556422
211 => 0.084420673021699
212 => 0.085894851633682
213 => 0.087420471408971
214 => 0.089602176207507
215 => 0.090172554630139
216 => 0.0911153684732
217 => 0.092085833615925
218 => 0.092397520864999
219 => 0.092992628534355
220 => 0.092989492023184
221 => 0.094782889040154
222 => 0.096761061486754
223 => 0.097507775790548
224 => 0.099224804158056
225 => 0.096284453250549
226 => 0.09851474319021
227 => 0.10052652054356
228 => 0.098127996647051
301 => 0.101433803054
302 => 0.10156216002566
303 => 0.10350019790536
304 => 0.10153562523115
305 => 0.10036906824835
306 => 0.10373687454739
307 => 0.10536644993059
308 => 0.10487560856325
309 => 0.10114028152192
310 => 0.09896616096816
311 => 0.093276068122423
312 => 0.10001622889192
313 => 0.10329916458955
314 => 0.10113177951157
315 => 0.10222488247564
316 => 0.10818849780781
317 => 0.1104590564108
318 => 0.10998679609378
319 => 0.11006660031329
320 => 0.11129175252191
321 => 0.11672475211857
322 => 0.11346917282431
323 => 0.11595794121055
324 => 0.11727797498868
325 => 0.1185040959281
326 => 0.1154931304204
327 => 0.11157590853474
328 => 0.11033515992976
329 => 0.10091627578005
330 => 0.10042598195592
331 => 0.10015076517501
401 => 0.098415562301564
402 => 0.097052168155103
403 => 0.095967946510259
404 => 0.093122625138196
405 => 0.094082837575983
406 => 0.089547989173638
407 => 0.092449224476299
408 => 0.085211496928414
409 => 0.091239291500528
410 => 0.087958636965115
411 => 0.090161508252724
412 => 0.090153822642324
413 => 0.086097638180858
414 => 0.083758115633894
415 => 0.085248950456399
416 => 0.08684724372874
417 => 0.087106561434873
418 => 0.089178790382186
419 => 0.089757104938969
420 => 0.088004784832992
421 => 0.08506151111237
422 => 0.085745166468744
423 => 0.083744261379918
424 => 0.080237752175452
425 => 0.082756188303877
426 => 0.083616093125941
427 => 0.083995876083061
428 => 0.080547627005773
429 => 0.079464112280559
430 => 0.078887258132424
501 => 0.08461638545775
502 => 0.084930239985405
503 => 0.083324515847363
504 => 0.090582541212321
505 => 0.088939826537571
506 => 0.090775141304133
507 => 0.08568313191089
508 => 0.085877653527012
509 => 0.08346701467718
510 => 0.084816811354139
511 => 0.083862818568842
512 => 0.084707761121592
513 => 0.085214216203881
514 => 0.087624459491599
515 => 0.091266812607246
516 => 0.087264449518944
517 => 0.085520562606476
518 => 0.086602460238979
519 => 0.089483696205137
520 => 0.093848916181623
521 => 0.091264618097304
522 => 0.092411485702898
523 => 0.092662025254131
524 => 0.09075645952267
525 => 0.093919177108213
526 => 0.095614103156177
527 => 0.097352746565861
528 => 0.098862361922808
529 => 0.096658294154445
530 => 0.099016962607297
531 => 0.097116292195329
601 => 0.095411194348099
602 => 0.095413780277699
603 => 0.094344147490626
604 => 0.092271599183269
605 => 0.091889389476796
606 => 0.093877692637632
607 => 0.095472123479611
608 => 0.095603448440566
609 => 0.0964862072795
610 => 0.097008614867243
611 => 0.10212891940579
612 => 0.10418834824858
613 => 0.10670657885455
614 => 0.10768757159527
615 => 0.11064000803949
616 => 0.10825567582562
617 => 0.107739810553
618 => 0.10057816547392
619 => 0.10175088445442
620 => 0.10362852069274
621 => 0.10060912700392
622 => 0.10252423733085
623 => 0.10290232067697
624 => 0.10050652916176
625 => 0.10178622492607
626 => 0.0983877323794
627 => 0.091340890457755
628 => 0.093927022257718
629 => 0.095831285745042
630 => 0.093113666954636
701 => 0.097984893450067
702 => 0.095139223493962
703 => 0.094237282734124
704 => 0.090718490264898
705 => 0.09237922485963
706 => 0.094625392178433
707 => 0.093237521920391
708 => 0.096117561095596
709 => 0.10019646464608
710 => 0.10310333421906
711 => 0.10332648757013
712 => 0.10145756517984
713 => 0.10445252523758
714 => 0.10447434025193
715 => 0.10109601307202
716 => 0.099026806484937
717 => 0.098556678394703
718 => 0.099731150538149
719 => 0.10115717653981
720 => 0.10340562208858
721 => 0.10476431064329
722 => 0.10830704980125
723 => 0.1092656134391
724 => 0.11031878425876
725 => 0.11172614525969
726 => 0.11341604298125
727 => 0.1097186429724
728 => 0.10986554756757
729 => 0.10642257987332
730 => 0.10274327512051
731 => 0.10553540879608
801 => 0.10918575215492
802 => 0.10834835935513
803 => 0.10825413555877
804 => 0.10841259384875
805 => 0.1077812270244
806 => 0.10492557827742
807 => 0.10349148935399
808 => 0.10534182994032
809 => 0.10632520361276
810 => 0.10785033041953
811 => 0.10766232634907
812 => 0.11159088921665
813 => 0.11311740995341
814 => 0.11272686062544
815 => 0.11279873110088
816 => 0.11556242397866
817 => 0.11863621885554
818 => 0.12151523338069
819 => 0.12444389061223
820 => 0.12091328001217
821 => 0.11912065368725
822 => 0.12097018647276
823 => 0.11998879834271
824 => 0.1256281456366
825 => 0.12601860180772
826 => 0.13165754131261
827 => 0.13700956637518
828 => 0.13364805532487
829 => 0.13681780883953
830 => 0.14024615569943
831 => 0.14685999302142
901 => 0.14463268528897
902 => 0.14292660247229
903 => 0.14131436245425
904 => 0.14466917799589
905 => 0.14898509459573
906 => 0.14991470169399
907 => 0.15142102033043
908 => 0.1498373104681
909 => 0.15174471455736
910 => 0.1584786891483
911 => 0.15665910977139
912 => 0.1540750145442
913 => 0.15939084074594
914 => 0.16131461758361
915 => 0.17481669092006
916 => 0.19186361625017
917 => 0.18480607722736
918 => 0.18042523501054
919 => 0.18145483684646
920 => 0.18767979690218
921 => 0.18967905650172
922 => 0.18424437972406
923 => 0.18616399943859
924 => 0.1967412927985
925 => 0.20241567132589
926 => 0.19470910311498
927 => 0.17344698706801
928 => 0.15384234504219
929 => 0.15904237891597
930 => 0.15845285645052
1001 => 0.16981683862153
1002 => 0.15661571340502
1003 => 0.1568379864975
1004 => 0.16843696378513
1005 => 0.1653425555016
1006 => 0.16033001038416
1007 => 0.15387894216876
1008 => 0.14195354592101
1009 => 0.13139088990011
1010 => 0.15210669079151
1011 => 0.15121338778783
1012 => 0.14991975265842
1013 => 0.15279859765298
1014 => 0.16677745177218
1015 => 0.1664551939396
1016 => 0.1644051540261
1017 => 0.16596009123227
1018 => 0.1600574223739
1019 => 0.16157867453998
1020 => 0.15383923956673
1021 => 0.15733778740199
1022 => 0.16031925571358
1023 => 0.16091782961853
1024 => 0.16226644719031
1025 => 0.15074265769689
1026 => 0.15591650085875
1027 => 0.1589556489928
1028 => 0.14522466715802
1029 => 0.1586842316304
1030 => 0.15054205415993
1031 => 0.14777847683505
1101 => 0.15149926962937
1102 => 0.15004927305884
1103 => 0.14880265115415
1104 => 0.14810701471164
1105 => 0.15083915429088
1106 => 0.15071169671389
1107 => 0.14624138607683
1108 => 0.14041004808394
1109 => 0.1423672365215
1110 => 0.14165617161339
1111 => 0.13907918065723
1112 => 0.14081576141461
1113 => 0.13316873862251
1114 => 0.12001243336636
1115 => 0.1287038916071
1116 => 0.12836927991932
1117 => 0.12820055353291
1118 => 0.13473194418656
1119 => 0.13410410168003
1120 => 0.13296456138283
1121 => 0.13905825210603
1122 => 0.13683397302036
1123 => 0.14368867705634
1124 => 0.1482036284689
1125 => 0.1470584907473
1126 => 0.15130482437346
1127 => 0.14241232619013
1128 => 0.14536605738153
1129 => 0.14597481728639
1130 => 0.13898305690841
1201 => 0.13420682447876
1202 => 0.13388830422874
1203 => 0.12560697540111
1204 => 0.13003079441628
1205 => 0.13392357207956
1206 => 0.1320592336706
1207 => 0.13146903982585
1208 => 0.13448421218126
1209 => 0.13471851689648
1210 => 0.12937634455896
1211 => 0.13048715135252
1212 => 0.13511940033796
1213 => 0.13037043056322
1214 => 0.1211439580307
1215 => 0.11885566527668
1216 => 0.11855036484169
1217 => 0.11234433340598
1218 => 0.1190085799404
1219 => 0.11609945773742
1220 => 0.12528933991999
1221 => 0.12004012850364
1222 => 0.11981384549094
1223 => 0.11947178552876
1224 => 0.11412999790411
1225 => 0.1152995099056
1226 => 0.11918714592023
1227 => 0.12057429824761
1228 => 0.12042960689526
1229 => 0.11916809438287
1230 => 0.11974560835105
1231 => 0.11788523464033
]
'min_raw' => 0.065092406555063
'max_raw' => 0.20241567132589
'avg_raw' => 0.13375403894048
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.065092'
'max' => '$0.202415'
'avg' => '$0.133754'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.037081001357369
'max_diff' => 0.12642342826856
'year' => 2033
]
8 => [
'items' => [
101 => 0.11722829796274
102 => 0.11515482510361
103 => 0.11210739281218
104 => 0.11253115696329
105 => 0.10649339618993
106 => 0.10320370367239
107 => 0.10229316014099
108 => 0.10107554327656
109 => 0.10243069320578
110 => 0.10647629197227
111 => 0.10159644153822
112 => 0.093230280250765
113 => 0.093733100799387
114 => 0.094862789283378
115 => 0.092757622267097
116 => 0.090765258359462
117 => 0.092497457131558
118 => 0.088952604304906
119 => 0.095291167811745
120 => 0.095119727432504
121 => 0.097482351933716
122 => 0.098959749520259
123 => 0.095554826396425
124 => 0.094698497438672
125 => 0.09518630133099
126 => 0.087123989587583
127 => 0.096823489060034
128 => 0.096907370734253
129 => 0.096189124913555
130 => 0.10135380894419
131 => 0.11225290315416
201 => 0.10815222549732
202 => 0.10656431916495
203 => 0.10354570806637
204 => 0.10756782812784
205 => 0.10725899206197
206 => 0.10586231824949
207 => 0.10501760556981
208 => 0.10657401458242
209 => 0.10482474926913
210 => 0.10451053315227
211 => 0.10260672535459
212 => 0.10192715258856
213 => 0.10142402396715
214 => 0.10087012879139
215 => 0.10209188352705
216 => 0.099323226560819
217 => 0.095984497674336
218 => 0.095706918492972
219 => 0.096473339017729
220 => 0.096134254988822
221 => 0.095705295089097
222 => 0.094886293820244
223 => 0.094643313638969
224 => 0.095432881350888
225 => 0.094541505438789
226 => 0.095856779152849
227 => 0.095499097480039
228 => 0.093501116731526
301 => 0.091010892971664
302 => 0.09098872475678
303 => 0.090452210132503
304 => 0.089768878092973
305 => 0.089578790752094
306 => 0.092351576182467
307 => 0.098091159040853
308 => 0.096964341589175
309 => 0.09777858267891
310 => 0.10178384295638
311 => 0.10305699475621
312 => 0.10215334176494
313 => 0.10091636581561
314 => 0.10097078647962
315 => 0.10519790775658
316 => 0.10546154812553
317 => 0.10612768228427
318 => 0.10698385292773
319 => 0.10229915132771
320 => 0.10075013745555
321 => 0.1000161287469
322 => 0.097755666021383
323 => 0.10019338127343
324 => 0.098773028989436
325 => 0.098964683038689
326 => 0.098839868087688
327 => 0.098908025490885
328 => 0.095289396054064
329 => 0.096607834431278
330 => 0.094415674913832
331 => 0.091480619401425
401 => 0.091470780066185
402 => 0.092189130744756
403 => 0.091761827652077
404 => 0.090611966016645
405 => 0.090775298434764
406 => 0.089344334585593
407 => 0.09094904335449
408 => 0.090995060660058
409 => 0.090377160374955
410 => 0.09284943564058
411 => 0.093862328834091
412 => 0.093455613629729
413 => 0.093833792611133
414 => 0.097011165941568
415 => 0.097529216432946
416 => 0.097759300240722
417 => 0.097451018418566
418 => 0.093891869162827
419 => 0.09404973256699
420 => 0.092891435651254
421 => 0.091912796815779
422 => 0.091951937236914
423 => 0.092455084812491
424 => 0.094652359784254
425 => 0.099276395425892
426 => 0.099451874198367
427 => 0.099664559589682
428 => 0.098799461216088
429 => 0.098538539268736
430 => 0.098882762666963
501 => 0.10061930733372
502 => 0.10508617168389
503 => 0.1035072834907
504 => 0.10222362281278
505 => 0.10334973929975
506 => 0.10317638249337
507 => 0.10171307658743
508 => 0.10167200646434
509 => 0.098863454583645
510 => 0.097825196900982
511 => 0.096957551069109
512 => 0.096010104471171
513 => 0.095448426369216
514 => 0.096311419211951
515 => 0.096508795885715
516 => 0.094621846952542
517 => 0.094364662785466
518 => 0.095905586016917
519 => 0.095227483154164
520 => 0.095924928764648
521 => 0.096086742128858
522 => 0.096060686450342
523 => 0.09535266918201
524 => 0.095803938275466
525 => 0.09473655233965
526 => 0.093575930450635
527 => 0.092835525994742
528 => 0.092189424906576
529 => 0.092547919341906
530 => 0.091269952138451
531 => 0.090861104709668
601 => 0.095651058460479
602 => 0.099189448796883
603 => 0.099137999200036
604 => 0.098824813010987
605 => 0.09835948186156
606 => 0.10058526546177
607 => 0.099809846961404
608 => 0.1003740287088
609 => 0.10051763664215
610 => 0.10095229460445
611 => 0.10110764746585
612 => 0.10063806321918
613 => 0.099062081132466
614 => 0.095134883612249
615 => 0.09330676256532
616 => 0.09270345217007
617 => 0.092725381357088
618 => 0.092120476482935
619 => 0.092298648078308
620 => 0.092058515673198
621 => 0.091603762992188
622 => 0.092519839645313
623 => 0.092625408945741
624 => 0.092411585708601
625 => 0.092461948821462
626 => 0.09069158374304
627 => 0.090826180754922
628 => 0.090076727489004
629 => 0.089936214036439
630 => 0.08804166144256
701 => 0.084685186902714
702 => 0.086544999618655
703 => 0.08429860738704
704 => 0.08344786461053
705 => 0.08747514859688
706 => 0.087070920984121
707 => 0.086379059024596
708 => 0.085355650989792
709 => 0.08497605899461
710 => 0.082669778196105
711 => 0.082533510823
712 => 0.083676565861558
713 => 0.083149085291386
714 => 0.08240830279835
715 => 0.079725263700492
716 => 0.076708639430782
717 => 0.076799692355661
718 => 0.077759224409565
719 => 0.080549193266821
720 => 0.07945910416734
721 => 0.078668232018335
722 => 0.078520125438356
723 => 0.080373989368922
724 => 0.082997595227173
725 => 0.084228532395992
726 => 0.08300871104581
727 => 0.081607445958567
728 => 0.08169273447159
729 => 0.082260120738807
730 => 0.082319745013082
731 => 0.081407665493665
801 => 0.081664410535844
802 => 0.081274391339515
803 => 0.07888084425156
804 => 0.078837552574759
805 => 0.078250137518214
806 => 0.078232350823756
807 => 0.07723301127502
808 => 0.077093196764044
809 => 0.075108947434455
810 => 0.076414986352051
811 => 0.075538964016248
812 => 0.074218591723415
813 => 0.073990959042452
814 => 0.073984116129188
815 => 0.075339843244085
816 => 0.07639914389137
817 => 0.075554202799837
818 => 0.07536182609179
819 => 0.077415906035224
820 => 0.077154505639068
821 => 0.076928134581848
822 => 0.082762680098528
823 => 0.078144182046811
824 => 0.076130253281611
825 => 0.073637633999975
826 => 0.074449243406953
827 => 0.074620261434026
828 => 0.068625961390088
829 => 0.066194074608805
830 => 0.065359542709188
831 => 0.06487925780241
901 => 0.065098129665467
902 => 0.062909146330443
903 => 0.064380179334022
904 => 0.062484704796046
905 => 0.062166922321347
906 => 0.065556265599485
907 => 0.066027872916381
908 => 0.064015849585592
909 => 0.065307894280948
910 => 0.064839380913647
911 => 0.062517197266658
912 => 0.06242850693217
913 => 0.061263316806813
914 => 0.059440019885897
915 => 0.058606724267451
916 => 0.05817273667436
917 => 0.058351808413519
918 => 0.058261264262514
919 => 0.057670402430787
920 => 0.058295131771071
921 => 0.056699206462631
922 => 0.056063696145566
923 => 0.055776650879076
924 => 0.054360175309802
925 => 0.056614417850061
926 => 0.057058532028691
927 => 0.057503521249447
928 => 0.061376848609085
929 => 0.061183348120106
930 => 0.062932498301907
1001 => 0.062864529542323
1002 => 0.062365643576119
1003 => 0.060260925747463
1004 => 0.061099828760978
1005 => 0.058517815679855
1006 => 0.060452435440055
1007 => 0.059569555773152
1008 => 0.060153932936578
1009 => 0.059103170105574
1010 => 0.059684705641186
1011 => 0.057163847975994
1012 => 0.054809906557663
1013 => 0.055757201300233
1014 => 0.056787019021701
1015 => 0.05901992623452
1016 => 0.05769002511965
1017 => 0.058168307849686
1018 => 0.056566140767627
1019 => 0.053260412440939
1020 => 0.053279122504267
1021 => 0.052770608220412
1022 => 0.052331177634861
1023 => 0.057842780260612
1024 => 0.057157325348556
1025 => 0.056065142656316
1026 => 0.057527072591494
1027 => 0.057913630070303
1028 => 0.057924634818289
1029 => 0.058991221161122
1030 => 0.059560458483488
1031 => 0.059660789028771
1101 => 0.061339085684341
1102 => 0.061901628586021
1103 => 0.064218663183985
1104 => 0.059512162673725
1105 => 0.059415235392915
1106 => 0.057547644943726
1107 => 0.056363189555414
1108 => 0.05762874561751
1109 => 0.058749855522897
1110 => 0.057582480953568
1111 => 0.0577349154277
1112 => 0.056167810446384
1113 => 0.056727976738062
1114 => 0.057210467411003
1115 => 0.056944064420896
1116 => 0.056545246250655
1117 => 0.058657937295624
1118 => 0.058538730987163
1119 => 0.060506117458796
1120 => 0.06203983590259
1121 => 0.064788533538834
1122 => 0.061920124262565
1123 => 0.061815588027643
1124 => 0.06283744649214
1125 => 0.061901472144814
1126 => 0.062492975623588
1127 => 0.064693233183795
1128 => 0.064739721158922
1129 => 0.063960987679176
1130 => 0.063913601676162
1201 => 0.064063165959358
1202 => 0.064939168637592
1203 => 0.064633066384974
1204 => 0.064987295661265
1205 => 0.065430264795418
1206 => 0.067262572949294
1207 => 0.067704336241944
1208 => 0.066631080468812
1209 => 0.06672798344839
1210 => 0.066326556327709
1211 => 0.065938782758998
1212 => 0.066810441111679
1213 => 0.06840341388369
1214 => 0.068393504082751
1215 => 0.068763042802891
1216 => 0.068993262364115
1217 => 0.068004991476324
1218 => 0.0673616634681
1219 => 0.067608356362478
1220 => 0.068002823672861
1221 => 0.067480435930219
1222 => 0.064256016789092
1223 => 0.065234099579817
1224 => 0.065071298777636
1225 => 0.064839450638075
1226 => 0.06582292044744
1227 => 0.065728062385136
1228 => 0.062886695142438
1229 => 0.063068590254522
1230 => 0.062897756786659
1231 => 0.063449754670563
]
'min_raw' => 0.052331177634861
'max_raw' => 0.11722829796274
'avg_raw' => 0.084779737798801
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.052331'
'max' => '$0.117228'
'avg' => '$0.084779'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.012761228920202
'max_diff' => -0.085187373363147
'year' => 2034
]
9 => [
'items' => [
101 => 0.06187166244758
102 => 0.062357072986756
103 => 0.062661517926487
104 => 0.062840838334844
105 => 0.063488666610985
106 => 0.063412651439986
107 => 0.063483941401226
108 => 0.06444449971442
109 => 0.069302674038747
110 => 0.069567093748262
111 => 0.068264994391642
112 => 0.068785157401838
113 => 0.067786558169407
114 => 0.068456924524171
115 => 0.068915572158641
116 => 0.066843031691339
117 => 0.066720309295542
118 => 0.065717588488858
119 => 0.06625639385336
120 => 0.06539911577696
121 => 0.065609461830595
122 => 0.065021315926993
123 => 0.066079861454794
124 => 0.067263479836221
125 => 0.067562508581876
126 => 0.066775892692028
127 => 0.066206330947264
128 => 0.065206368148762
129 => 0.066869328568296
130 => 0.067355628872768
131 => 0.066866774239821
201 => 0.066753495939682
202 => 0.066538833765609
203 => 0.066799037534685
204 => 0.067352980376871
205 => 0.067091751162214
206 => 0.067264297660762
207 => 0.066606728337476
208 => 0.06800531863511
209 => 0.070226616616837
210 => 0.070233758453067
211 => 0.069972527830288
212 => 0.069865637887739
213 => 0.07013367635951
214 => 0.070279076234933
215 => 0.071145863502793
216 => 0.072075960775534
217 => 0.076416318914188
218 => 0.075197563717077
219 => 0.079048587666752
220 => 0.082094247618069
221 => 0.083007507866901
222 => 0.082167351410191
223 => 0.079293221556146
224 => 0.079152203033747
225 => 0.083447366462014
226 => 0.08223378606258
227 => 0.082089434535649
228 => 0.080553778174848
301 => 0.081461541278822
302 => 0.081263000171901
303 => 0.080949593321664
304 => 0.08268154208872
305 => 0.085923595568514
306 => 0.085418291129903
307 => 0.085041104806878
308 => 0.083388384136672
309 => 0.084383691128662
310 => 0.084029281372664
311 => 0.08555205059842
312 => 0.08464999584255
313 => 0.082224591997465
314 => 0.082610845554031
315 => 0.08255246410599
316 => 0.083753950169711
317 => 0.083393293876099
318 => 0.082482040176336
319 => 0.085912514582176
320 => 0.085689758655562
321 => 0.086005575630407
322 => 0.086144608029697
323 => 0.088232677348793
324 => 0.089088092538061
325 => 0.089282286762175
326 => 0.090094865031795
327 => 0.089262069074585
328 => 0.092593846676877
329 => 0.094809284367788
330 => 0.097382629251163
331 => 0.10114297777567
401 => 0.10255690360605
402 => 0.10230149056035
403 => 0.10515254389537
404 => 0.11027582336304
405 => 0.10333705182094
406 => 0.11064359510343
407 => 0.10833042785829
408 => 0.10284594993217
409 => 0.10249281421147
410 => 0.10620696633914
411 => 0.11444459828441
412 => 0.11238116491257
413 => 0.1144479733222
414 => 0.11203693152737
415 => 0.1119172029804
416 => 0.11433087440377
417 => 0.11997054924686
418 => 0.11729135112896
419 => 0.11345006366062
420 => 0.11628641055019
421 => 0.11382930438293
422 => 0.10829275648739
423 => 0.11237958704396
424 => 0.10964683983701
425 => 0.11044440075283
426 => 0.11618822891636
427 => 0.11549711631544
428 => 0.11639148001633
429 => 0.11481295149383
430 => 0.11333835694271
501 => 0.11058591670821
502 => 0.10977105484844
503 => 0.10999625335083
504 => 0.10977094325125
505 => 0.10823097823628
506 => 0.10789842293792
507 => 0.10734414953774
508 => 0.10751594204122
509 => 0.10647374589047
510 => 0.10844058535564
511 => 0.10880564809211
512 => 0.11023694983406
513 => 0.11038555232907
514 => 0.11437170730711
515 => 0.11217620012982
516 => 0.11364913589531
517 => 0.11351738265664
518 => 0.10296481519922
519 => 0.10441886588876
520 => 0.10668091245545
521 => 0.10566186354329
522 => 0.10422116680221
523 => 0.10305772693853
524 => 0.10129499657721
525 => 0.10377600571053
526 => 0.10703826889494
527 => 0.11046828870698
528 => 0.11458923276736
529 => 0.11366948602616
530 => 0.11039125052424
531 => 0.11053830977411
601 => 0.11144737219108
602 => 0.11027005376407
603 => 0.10992283957596
604 => 0.11139967029347
605 => 0.11140984041497
606 => 0.11005519328101
607 => 0.10854975088942
608 => 0.10854344303083
609 => 0.1082755640981
610 => 0.11208458659441
611 => 0.11417916383177
612 => 0.11441930373645
613 => 0.11416300050285
614 => 0.11426164144515
615 => 0.11304285310159
616 => 0.11582864183452
617 => 0.1183851570618
618 => 0.1176999563689
619 => 0.11667274312324
620 => 0.11585451829577
621 => 0.11750720860311
622 => 0.1174336169053
623 => 0.11836282813154
624 => 0.11832067374294
625 => 0.11800821495695
626 => 0.11769996752779
627 => 0.11892213374171
628 => 0.11857016949949
629 => 0.11821765855959
630 => 0.11751064390289
701 => 0.117606738937
702 => 0.11657970305419
703 => 0.11610454926083
704 => 0.10895937626214
705 => 0.10704995256163
706 => 0.10765069612771
707 => 0.10784847650797
708 => 0.10701749286651
709 => 0.10820890994618
710 => 0.10802322885633
711 => 0.10874560535711
712 => 0.10829429588137
713 => 0.10831281777967
714 => 0.10964002271851
715 => 0.11002531595858
716 => 0.10982935270698
717 => 0.10996659865118
718 => 0.11312937350723
719 => 0.11267972806255
720 => 0.11244086288183
721 => 0.11250703016932
722 => 0.1133151869557
723 => 0.11354142673216
724 => 0.11258283290171
725 => 0.11303491129371
726 => 0.11495980370959
727 => 0.11563340711568
728 => 0.11778322583991
729 => 0.11686994463588
730 => 0.11854631181177
731 => 0.12369889299478
801 => 0.12781513137527
802 => 0.12402966844983
803 => 0.1315886160358
804 => 0.13747434099811
805 => 0.13724843707087
806 => 0.13622212478442
807 => 0.12952138339493
808 => 0.12335526126589
809 => 0.1285134842542
810 => 0.1285266336254
811 => 0.1280835376961
812 => 0.12533150693418
813 => 0.12798777299096
814 => 0.1281986177444
815 => 0.12808060075062
816 => 0.12597062521794
817 => 0.12274908256819
818 => 0.12337856429067
819 => 0.12440966819316
820 => 0.12245757339493
821 => 0.1218337608253
822 => 0.12299354707744
823 => 0.1267306200329
824 => 0.12602414803806
825 => 0.1260056991992
826 => 0.12902828598387
827 => 0.1268647661611
828 => 0.12338650407107
829 => 0.12250819702069
830 => 0.11939079869039
831 => 0.12154399682092
901 => 0.12162148658838
902 => 0.12044220197744
903 => 0.12348219651784
904 => 0.12345418243297
905 => 0.1263402048056
906 => 0.13185719564158
907 => 0.13022554997675
908 => 0.1283281235911
909 => 0.12853442644914
910 => 0.13079705960308
911 => 0.12942901994732
912 => 0.12992097654584
913 => 0.13079631496785
914 => 0.13132442837128
915 => 0.12845843905759
916 => 0.12779023985246
917 => 0.1264233387848
918 => 0.12606673981067
919 => 0.12718005220895
920 => 0.12688673372591
921 => 0.12161497387348
922 => 0.1210640456371
923 => 0.12108094181957
924 => 0.119695606574
925 => 0.11758263780594
926 => 0.12313539356958
927 => 0.12268942957099
928 => 0.12219711983142
929 => 0.12225742496544
930 => 0.12466768804208
1001 => 0.12326961373642
1002 => 0.12698662341788
1003 => 0.12622251797091
1004 => 0.12543881610246
1005 => 0.1253304846321
1006 => 0.12502882627505
1007 => 0.12399432752658
1008 => 0.12274510812408
1009 => 0.12192026526902
1010 => 0.11246500002983
1011 => 0.11421984225948
1012 => 0.11623862828578
1013 => 0.11693550513228
1014 => 0.11574344906393
1015 => 0.12404139716583
1016 => 0.12555751224507
1017 => 0.12096510077632
1018 => 0.12010604809745
1019 => 0.12409771651644
1020 => 0.12169025249817
1021 => 0.12277433339819
1022 => 0.1204311434529
1023 => 0.12519232451951
1024 => 0.12515605229694
1025 => 0.12330384532588
1026 => 0.12486931797446
1027 => 0.12459727857738
1028 => 0.12250614146883
1029 => 0.12525861729574
1030 => 0.12525998248941
1031 => 0.12347727355022
1101 => 0.1213954597944
1102 => 0.12102328066511
1103 => 0.12074289368642
1104 => 0.12270537538946
1105 => 0.12446493034789
1106 => 0.12773902589486
1107 => 0.12856221130595
1108 => 0.13177515876803
1109 => 0.12986200498994
1110 => 0.13071008128027
1111 => 0.13163078806115
1112 => 0.13207220874978
1113 => 0.13135293742561
1114 => 0.13634396733614
1115 => 0.1367653631818
1116 => 0.13690665356378
1117 => 0.13522370635966
1118 => 0.13671855737562
1119 => 0.13601916608952
1120 => 0.13783878791946
1121 => 0.1381241278565
1122 => 0.13788245508109
1123 => 0.13797302648089
1124 => 0.13371406293026
1125 => 0.13349321320233
1126 => 0.13048191149132
1127 => 0.13170903919698
1128 => 0.12941498276902
1129 => 0.13014245169373
1130 => 0.13046311306416
1201 => 0.13029561776162
1202 => 0.13177841915629
1203 => 0.13051773505451
1204 => 0.12719058243424
1205 => 0.12386252333347
1206 => 0.12382074226244
1207 => 0.12294452304633
1208 => 0.12231117704063
1209 => 0.12243318195049
1210 => 0.12286314316616
1211 => 0.12228618691315
1212 => 0.12240930978216
1213 => 0.124453969771
1214 => 0.12486401174992
1215 => 0.12347052889182
1216 => 0.11787549413794
1217 => 0.11650245857525
1218 => 0.11748936930923
1219 => 0.11701768954358
1220 => 0.094442408317882
1221 => 0.099746135777981
1222 => 0.096594841018757
1223 => 0.098047102627908
1224 => 0.094830446702562
1225 => 0.096365603509518
1226 => 0.096082116102224
1227 => 0.10461035290936
1228 => 0.10447719622182
1229 => 0.10454093128165
1230 => 0.1014986908152
1231 => 0.10634506248408
]
'min_raw' => 0.06187166244758
'max_raw' => 0.1381241278565
'avg_raw' => 0.099997895152039
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.061871'
'max' => '$0.138124'
'avg' => '$0.099997'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0095404848127197
'max_diff' => 0.020895829893755
'year' => 2035
]
10 => [
'items' => [
101 => 0.10873255943807
102 => 0.10829069729306
103 => 0.10840190447541
104 => 0.10649099663557
105 => 0.10455943304658
106 => 0.10241703176087
107 => 0.10639734854091
108 => 0.10595480526124
109 => 0.10696984032275
110 => 0.10955136027353
111 => 0.10993149889252
112 => 0.11044240905143
113 => 0.11025928412852
114 => 0.11462206273522
115 => 0.11409370145941
116 => 0.1153669001142
117 => 0.11274783388348
118 => 0.10978411183937
119 => 0.11034741850858
120 => 0.11029316754651
121 => 0.10960249053299
122 => 0.10897897820743
123 => 0.1079410058589
124 => 0.11122530396067
125 => 0.11109196745557
126 => 0.1132505304864
127 => 0.11286898350354
128 => 0.1103209193716
129 => 0.11041192398056
130 => 0.11102397371112
131 => 0.11314228481685
201 => 0.11377114377865
202 => 0.11347983125184
203 => 0.11416934639495
204 => 0.11471431105027
205 => 0.11423778556524
206 => 0.12098438152998
207 => 0.11818272451439
208 => 0.11954823264998
209 => 0.11987389829428
210 => 0.11903971259442
211 => 0.11922061760277
212 => 0.11949463939675
213 => 0.12115844607086
214 => 0.12552475621006
215 => 0.12745856524823
216 => 0.13327652515202
217 => 0.12729798932753
218 => 0.12694324775334
219 => 0.12799123801757
220 => 0.1314069963747
221 => 0.13417514769729
222 => 0.13509350318947
223 => 0.13521487902816
224 => 0.13693777498261
225 => 0.13792530681359
226 => 0.13672857009708
227 => 0.13571446103339
228 => 0.13208204824309
229 => 0.1325025099143
301 => 0.13539907387715
302 => 0.13949064108143
303 => 0.14300163139772
304 => 0.14177220495932
305 => 0.1511518608445
306 => 0.15208181541306
307 => 0.15195332576071
308 => 0.15407190066368
309 => 0.14986696092157
310 => 0.14806926771494
311 => 0.13593372292358
312 => 0.13934331600751
313 => 0.14429935979339
314 => 0.14364340881412
315 => 0.14004419734139
316 => 0.14299890107307
317 => 0.14202198361725
318 => 0.1412514482875
319 => 0.14478142000871
320 => 0.14090007109799
321 => 0.14426064036893
322 => 0.13995067551831
323 => 0.14177782087574
324 => 0.14074064480179
325 => 0.14141182483315
326 => 0.13748812008426
327 => 0.13960525592421
328 => 0.13740004027282
329 => 0.13739899471347
330 => 0.13735031445574
331 => 0.13994474089018
401 => 0.14002934504307
402 => 0.13811205998805
403 => 0.13783574925801
404 => 0.13885741484731
405 => 0.13766131201688
406 => 0.13822096100306
407 => 0.13767826321454
408 => 0.13755609051138
409 => 0.13658259762665
410 => 0.13616319012516
411 => 0.13632765061329
412 => 0.1357662621821
413 => 0.135428005346
414 => 0.13728302665724
415 => 0.13629196360199
416 => 0.13713113203018
417 => 0.13617479369476
418 => 0.13285970836742
419 => 0.13095316773927
420 => 0.12469127886449
421 => 0.12646714278153
422 => 0.12764454239579
423 => 0.1272554118303
424 => 0.12809141485851
425 => 0.12814273865471
426 => 0.12787094554819
427 => 0.1275562439497
428 => 0.12740306461565
429 => 0.12854473787422
430 => 0.12920751762777
501 => 0.12776271019866
502 => 0.12742421203302
503 => 0.12888499211386
504 => 0.12977606711931
505 => 0.13635526430773
506 => 0.13586785612949
507 => 0.13709115500786
508 => 0.13695343032721
509 => 0.13823564243854
510 => 0.14033151733729
511 => 0.13607001765229
512 => 0.13680966664603
513 => 0.13662832179375
514 => 0.13860819733973
515 => 0.13861437829508
516 => 0.13742734400314
517 => 0.13807085455023
518 => 0.13771166461664
519 => 0.13836076937408
520 => 0.13586134649611
521 => 0.13890537376545
522 => 0.14063114107438
523 => 0.14065510335514
524 => 0.14147310336303
525 => 0.14230423874642
526 => 0.1438995307382
527 => 0.14225974691862
528 => 0.13930993545693
529 => 0.13952290231663
530 => 0.13779342893593
531 => 0.13782250169591
601 => 0.13766730902464
602 => 0.13813305391348
603 => 0.1359635513081
604 => 0.13647272923325
605 => 0.1357598771563
606 => 0.13680811704483
607 => 0.13568038420504
608 => 0.13662823434378
609 => 0.13703729504193
610 => 0.13854673782455
611 => 0.13545743827875
612 => 0.12915814737768
613 => 0.13048233469661
614 => 0.12852375763925
615 => 0.12870503140274
616 => 0.12907123325449
617 => 0.12788425323918
618 => 0.12811069162006
619 => 0.12810260164767
620 => 0.12803288663619
621 => 0.12772410729087
622 => 0.12727631615001
623 => 0.12906017823233
624 => 0.12936329116095
625 => 0.13003707365352
626 => 0.13204179332039
627 => 0.13184147455113
628 => 0.13216820277495
629 => 0.13145495689685
630 => 0.12873811683338
701 => 0.12888565431994
702 => 0.12704585949843
703 => 0.12999002596351
704 => 0.12929280848349
705 => 0.12884330783844
706 => 0.12872065742285
707 => 0.13073034640201
708 => 0.1313316768426
709 => 0.13095696806581
710 => 0.13018842943262
711 => 0.1316642508064
712 => 0.13205911834611
713 => 0.1321475146261
714 => 0.13476238713975
715 => 0.132293656952
716 => 0.13288790484526
717 => 0.13752405727292
718 => 0.13331970676634
719 => 0.13554684499788
720 => 0.13543783817091
721 => 0.13657716672792
722 => 0.13534437997473
723 => 0.13535966184401
724 => 0.13637130841783
725 => 0.13495063325632
726 => 0.13459885410733
727 => 0.1341128737325
728 => 0.13517399410172
729 => 0.13581008777272
730 => 0.1409365356017
731 => 0.14424845469364
801 => 0.14410467555129
802 => 0.14541854776906
803 => 0.14482663630126
804 => 0.1429151980334
805 => 0.14617779008158
806 => 0.14514536944489
807 => 0.14523048094779
808 => 0.1452273130934
809 => 0.14591378256102
810 => 0.14542735602921
811 => 0.14446855940434
812 => 0.14510505334909
813 => 0.14699521281425
814 => 0.15286232579127
815 => 0.15614563994213
816 => 0.15266466615674
817 => 0.1550657952618
818 => 0.15362597340855
819 => 0.15336431494682
820 => 0.15487240146685
821 => 0.15638312769269
822 => 0.15628690096315
823 => 0.15519019129984
824 => 0.15457068783901
825 => 0.15926177559328
826 => 0.16271808914002
827 => 0.16248239172755
828 => 0.16352268345328
829 => 0.16657701213504
830 => 0.1668562616716
831 => 0.16682108264847
901 => 0.16612893353542
902 => 0.1691363167773
903 => 0.17164512878756
904 => 0.16596872101386
905 => 0.16813022278445
906 => 0.1691005905685
907 => 0.17052537837065
908 => 0.17292923421502
909 => 0.17554045925329
910 => 0.17590971510432
911 => 0.17564771040749
912 => 0.17392553730126
913 => 0.17678277089653
914 => 0.17845647132626
915 => 0.17945312163021
916 => 0.18198046097424
917 => 0.16910658322959
918 => 0.15999381268868
919 => 0.15857072197872
920 => 0.16146463289771
921 => 0.16222773412854
922 => 0.16192012897924
923 => 0.1516628772386
924 => 0.15851671967109
925 => 0.16589087784101
926 => 0.16617414928852
927 => 0.16986580705476
928 => 0.17106796214961
929 => 0.17404023052808
930 => 0.17385431433174
1001 => 0.17457801438278
1002 => 0.17441164827378
1003 => 0.17991714955994
1004 => 0.18599053505343
1005 => 0.18578023302597
1006 => 0.18490711200425
1007 => 0.18620384561077
1008 => 0.19247223030359
1009 => 0.19189513788989
1010 => 0.19245573401318
1011 => 0.1998465128367
1012 => 0.2094555766333
1013 => 0.20499120176555
1014 => 0.21467761063931
1015 => 0.22077469157087
1016 => 0.23131896259207
1017 => 0.22999876792858
1018 => 0.2341035752597
1019 => 0.22763534394801
1020 => 0.21278297741113
1021 => 0.21043253355409
1022 => 0.2151381816786
1023 => 0.22670655842226
1024 => 0.21477385232658
1025 => 0.21718782322855
1026 => 0.21649259944639
1027 => 0.21645555392555
1028 => 0.21786943078101
1029 => 0.2158185286593
1030 => 0.20746278446522
1031 => 0.21129217278866
1101 => 0.20981346205465
1102 => 0.21145420185922
1103 => 0.22030859789193
1104 => 0.21639385834343
1105 => 0.2122699982367
1106 => 0.21744223396836
1107 => 0.22402826742778
1108 => 0.22361612529013
1109 => 0.22281639728104
1110 => 0.22732442219589
1111 => 0.23477035862786
1112 => 0.23678296532522
1113 => 0.23826863044329
1114 => 0.23847347856255
1115 => 0.24058354150335
1116 => 0.22923720126632
1117 => 0.24724413461718
1118 => 0.25035343457538
1119 => 0.24976901505051
1120 => 0.25322487109471
1121 => 0.2522080705799
1122 => 0.25073488616506
1123 => 0.25621315307677
1124 => 0.24993276213584
1125 => 0.24101853787442
1126 => 0.23612801814124
1127 => 0.24256824903286
1128 => 0.24650107330529
1129 => 0.24910041997477
1130 => 0.24988698070638
1201 => 0.23011798536003
1202 => 0.21946359330709
1203 => 0.22629293646017
1204 => 0.23462520644302
1205 => 0.22919091508586
1206 => 0.22940392901858
1207 => 0.22165605764992
1208 => 0.23531072114003
1209 => 0.23332135152331
1210 => 0.24364220461395
1211 => 0.24117905019385
1212 => 0.24959530523605
1213 => 0.24737902322402
1214 => 0.25657868594532
1215 => 0.26024868047577
1216 => 0.26641117248143
1217 => 0.27094432668665
1218 => 0.27360628154138
1219 => 0.27344646775664
1220 => 0.28399445907172
1221 => 0.27777467711196
1222 => 0.26996116508046
1223 => 0.26981984329913
1224 => 0.27386657189856
1225 => 0.28234740487721
1226 => 0.28454636147747
1227 => 0.28577527822984
1228 => 0.28389314944469
1229 => 0.27714202190317
1230 => 0.27422691925973
1231 => 0.27671067117059
]
'min_raw' => 0.10241703176087
'max_raw' => 0.28577527822984
'avg_raw' => 0.19409615499536
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.102417'
'max' => '$0.285775'
'avg' => '$0.194096'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.040545369313291
'max_diff' => 0.14765115037335
'year' => 2036
]
11 => [
'items' => [
101 => 0.27367325601484
102 => 0.27891668672184
103 => 0.2861170370189
104 => 0.28463019315583
105 => 0.28960048926999
106 => 0.29474422285775
107 => 0.30209999290778
108 => 0.30402306358223
109 => 0.30720182627927
110 => 0.31047381726368
111 => 0.31152469258524
112 => 0.31353113964157
113 => 0.31352056467517
114 => 0.31956712792887
115 => 0.32623667444417
116 => 0.32875427385334
117 => 0.33454335487348
118 => 0.32462975650008
119 => 0.33214933474552
120 => 0.33893218255015
121 => 0.33084539177347
122 => 0.34199114887853
123 => 0.34242391337009
124 => 0.34895814339099
125 => 0.34233444945781
126 => 0.33840132114386
127 => 0.34975611521382
128 => 0.35525034239161
129 => 0.35359543645216
130 => 0.34100152054013
131 => 0.33367132130086
201 => 0.31448677600186
202 => 0.33721169861921
203 => 0.34828034553103
204 => 0.34097285541861
205 => 0.34465832838
206 => 0.36476507383873
207 => 0.37242042069405
208 => 0.37082816206306
209 => 0.37109722756089
210 => 0.37522791376964
211 => 0.39354565122972
212 => 0.38256923834181
213 => 0.39096029471627
214 => 0.39541088076108
215 => 0.39954483311336
216 => 0.38939315268523
217 => 0.37618596560604
218 => 0.37200269505806
219 => 0.34024626954182
220 => 0.33859320968253
221 => 0.33766529709068
222 => 0.33181493945486
223 => 0.32721816090093
224 => 0.3235626319274
225 => 0.31396943226749
226 => 0.31720685554138
227 => 0.30191729753987
228 => 0.31169901492057
301 => 0.28729651117088
302 => 0.30761964141794
303 => 0.29655868560381
304 => 0.30398581994954
305 => 0.30395990737749
306 => 0.2902841982719
307 => 0.28239633466456
308 => 0.2874227883554
309 => 0.29281154571237
310 => 0.29368585346358
311 => 0.30067251803785
312 => 0.30262234594268
313 => 0.2967142763623
314 => 0.28679082352041
315 => 0.28909581528572
316 => 0.28234962408001
317 => 0.2705271834805
318 => 0.27901826671908
319 => 0.2819174958633
320 => 0.28319796061884
321 => 0.27157194810569
322 => 0.26791880256105
323 => 0.26597389852595
324 => 0.28529005129818
325 => 0.28634823375079
326 => 0.28093442271131
327 => 0.30540536196841
328 => 0.29986683475181
329 => 0.30605472662486
330 => 0.2888866614428
331 => 0.28954250465262
401 => 0.28141486746498
402 => 0.28596580120115
403 => 0.28274934791987
404 => 0.28559813072847
405 => 0.28730567939797
406 => 0.29543198292032
407 => 0.3077124307507
408 => 0.29421818416242
409 => 0.28833854768274
410 => 0.29198624108641
411 => 0.30170052930778
412 => 0.31641817322843
413 => 0.30770503180722
414 => 0.31157177601121
415 => 0.31241648760031
416 => 0.30599173969434
417 => 0.31665506284789
418 => 0.32236962435456
419 => 0.32823158199851
420 => 0.33332135557244
421 => 0.3258901872083
422 => 0.33384260257407
423 => 0.32743435957955
424 => 0.32168550314148
425 => 0.32169422178367
426 => 0.31808788016268
427 => 0.31110013884372
428 => 0.30981149213332
429 => 0.31651519505897
430 => 0.32189092996231
501 => 0.32233370123698
502 => 0.32530998429471
503 => 0.32707131795011
504 => 0.34433478219009
505 => 0.35127829031827
506 => 0.35976868062353
507 => 0.36307616613961
508 => 0.37303051174382
509 => 0.364991569216
510 => 0.36325229343279
511 => 0.33910630703861
512 => 0.34306021095797
513 => 0.34939079262785
514 => 0.33921069599864
515 => 0.34566762417464
516 => 0.34694235857302
517 => 0.33886478021065
518 => 0.34317936382555
519 => 0.33172110892926
520 => 0.30796218939564
521 => 0.31668151331717
522 => 0.32310187061612
523 => 0.31393922912618
524 => 0.3303629093537
525 => 0.32076853441836
526 => 0.31772757817507
527 => 0.30586372369083
528 => 0.31146300632576
529 => 0.3190361162635
530 => 0.3143568147905
531 => 0.32406706794762
601 => 0.33781937604802
602 => 0.34762008976448
603 => 0.34837246686768
604 => 0.34207126454482
605 => 0.35216898148094
606 => 0.35224253232489
607 => 0.34085226637056
608 => 0.33387579189481
609 => 0.33229072221529
610 => 0.33625053704594
611 => 0.3410584832725
612 => 0.34863927442165
613 => 0.35322018774446
614 => 0.36516478016166
615 => 0.36839664439145
616 => 0.37194748333998
617 => 0.37669249921339
618 => 0.38239010736653
619 => 0.36992406509249
620 => 0.37041936419164
621 => 0.35881115823016
622 => 0.34640612537519
623 => 0.35581999900294
624 => 0.36812738649609
625 => 0.36530405820671
626 => 0.36498637609879
627 => 0.36552062928664
628 => 0.36339193195772
629 => 0.35376391283225
630 => 0.34892878190203
701 => 0.35516733437547
702 => 0.35848284736908
703 => 0.36362491887905
704 => 0.36299105002949
705 => 0.37623647402101
706 => 0.38138324526328
707 => 0.38006648093675
708 => 0.38030879726254
709 => 0.38962678075484
710 => 0.39999029478774
711 => 0.40969709326568
712 => 0.41957126559413
713 => 0.40766756545667
714 => 0.40162360064503
715 => 0.40785942956163
716 => 0.40455061096283
717 => 0.42356406409084
718 => 0.42488051433252
719 => 0.44389259257146
720 => 0.46193731873638
721 => 0.45060374953704
722 => 0.46129079481685
723 => 0.47284970561454
724 => 0.49514871990898
725 => 0.4876391963834
726 => 0.48188701905203
727 => 0.47645123926821
728 => 0.4877622340926
729 => 0.50231364823662
730 => 0.50544788347153
731 => 0.5105265419221
801 => 0.50518695355014
802 => 0.5116178996078
803 => 0.53432196509222
804 => 0.528187126184
805 => 0.51947466870976
806 => 0.53739734788808
807 => 0.54388349581007
808 => 0.58940667874859
809 => 0.64688157767737
810 => 0.62308659212032
811 => 0.60831627672568
812 => 0.61178765119999
813 => 0.63277553864067
814 => 0.63951618196436
815 => 0.62119278977146
816 => 0.62766492166257
817 => 0.66332700470855
818 => 0.68245856808611
819 => 0.65647533530762
820 => 0.58478862658173
821 => 0.51869020723926
822 => 0.5362224844995
823 => 0.53423486834809
824 => 0.57254932764553
825 => 0.52804081230496
826 => 0.52879022155485
827 => 0.56789698329484
828 => 0.55746396972224
829 => 0.54056382389404
830 => 0.51881359700663
831 => 0.47860629095277
901 => 0.44299355871719
902 => 0.51283832775358
903 => 0.50982649430826
904 => 0.50546491315073
905 => 0.51517114004445
906 => 0.56230182267976
907 => 0.56121530789788
908 => 0.5543034552003
909 => 0.55954603455314
910 => 0.53964477438599
911 => 0.54477378227434
912 => 0.51867973691193
913 => 0.53047533519933
914 => 0.54052756377134
915 => 0.54254569748295
916 => 0.54709265578369
917 => 0.50823939494135
918 => 0.52568336838775
919 => 0.53593006850824
920 => 0.48963510458574
921 => 0.53501496592115
922 => 0.50756304611079
923 => 0.49824545221315
924 => 0.51079036489667
925 => 0.50590160022357
926 => 0.50169852743554
927 => 0.49935314060186
928 => 0.50856473994515
929 => 0.50813500782554
930 => 0.49306304340554
1001 => 0.47340228023152
1002 => 0.48000107769527
1003 => 0.47760367271263
1004 => 0.46891516778415
1005 => 0.47477017105186
1006 => 0.44898769981022
1007 => 0.4046302980952
1008 => 0.4339341563721
1009 => 0.4328059897049
1010 => 0.43223711691302
1011 => 0.45425815650895
1012 => 0.45214134166362
1013 => 0.44829930199145
1014 => 0.46884460571261
1015 => 0.46134529348105
1016 => 0.48445640671853
1017 => 0.49967888062981
1018 => 0.49581796885046
1019 => 0.51013477914063
1020 => 0.48015310066114
1021 => 0.49011181159587
1022 => 0.49216428811734
1023 => 0.46859107985386
1024 => 0.45248767875141
1025 => 0.45141376549009
1026 => 0.42349268716382
1027 => 0.43840790183464
1028 => 0.45153267351145
1029 => 0.44524692640169
1030 => 0.44325704664809
1031 => 0.45342291075696
1101 => 0.45421288546295
1102 => 0.43620137844845
1103 => 0.43994654110701
1104 => 0.4555644919747
1105 => 0.43955300881668
1106 => 0.40844531250157
1107 => 0.40073017371788
1108 => 0.39970083198591
1109 => 0.37877676370915
1110 => 0.40124573618277
1111 => 0.39143742756701
1112 => 0.42242175696262
1113 => 0.40472367418414
1114 => 0.40396074520827
1115 => 0.4028074661639
1116 => 0.38479725623571
1117 => 0.38874034760143
1118 => 0.40184778385086
1119 => 0.40652466477049
1120 => 0.40603682777402
1121 => 0.4017835502625
1122 => 0.40373067892697
1123 => 0.39745829907412
1124 => 0.39524339119978
1125 => 0.38825253268996
1126 => 0.37797790195448
1127 => 0.37940665237622
1128 => 0.35904992038585
1129 => 0.34795849238396
1130 => 0.34488853129571
1201 => 0.34078325102599
1202 => 0.34535223362591
1203 => 0.35899225232181
1204 => 0.34253949588316
1205 => 0.31433239899576
1206 => 0.31602769358125
1207 => 0.31983651717736
1208 => 0.3127387996039
1209 => 0.3060214055869
1210 => 0.31186163468528
1211 => 0.2999099158865
1212 => 0.32128082529418
1213 => 0.32070280208598
1214 => 0.32866855554499
1215 => 0.33364970465663
1216 => 0.32216976862048
1217 => 0.31928259575244
1218 => 0.32092726063277
1219 => 0.29374461369724
1220 => 0.32644715336604
1221 => 0.3267299662871
1222 => 0.32430835035629
1223 => 0.34172144315229
1224 => 0.37846850023169
1225 => 0.36464277921147
1226 => 0.35928904214781
1227 => 0.34911158407624
1228 => 0.36267244267895
1229 => 0.36163118032061
1230 => 0.35692219704918
1231 => 0.35407418927369
]
'min_raw' => 0.26597389852595
'max_raw' => 0.68245856808611
'avg_raw' => 0.47421623330603
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.265973'
'max' => '$0.682458'
'avg' => '$0.474216'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.16355686676508
'max_diff' => 0.39668328985626
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0083486167531632
]
1 => [
'year' => 2028
'avg' => 0.014328649969189
]
2 => [
'year' => 2029
'avg' => 0.039143289227929
]
3 => [
'year' => 2030
'avg' => 0.030198989345412
]
4 => [
'year' => 2031
'avg' => 0.029659150056743
]
5 => [
'year' => 2032
'avg' => 0.052001824127511
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0083486167531632
'min' => '$0.008348'
'max_raw' => 0.052001824127511
'max' => '$0.0520018'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.052001824127511
]
1 => [
'year' => 2033
'avg' => 0.13375403894048
]
2 => [
'year' => 2034
'avg' => 0.084779737798801
]
3 => [
'year' => 2035
'avg' => 0.099997895152039
]
4 => [
'year' => 2036
'avg' => 0.19409615499536
]
5 => [
'year' => 2037
'avg' => 0.47421623330603
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.052001824127511
'min' => '$0.0520018'
'max_raw' => 0.47421623330603
'max' => '$0.474216'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.47421623330603
]
]
]
]
'prediction_2025_max_price' => '$0.014274'
'last_price' => 0.01384104
'sma_50day_nextmonth' => '$0.012329'
'sma_200day_nextmonth' => '$0.020943'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.01308'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.012666'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0120029'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.011823'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.018595'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.024475'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.020751'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.013144'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.012784'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.01241'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.01329'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.017167'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.01990054'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.018042'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.022368'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.013278'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.013928'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.016546'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.017875'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.012844'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.006422'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.003211'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '48.31'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 117.24
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.012132'
'vwma_10_action' => 'BUY'
'hma_9' => '0.013334'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 247.5
'cci_20_action' => 'SELL'
'adx_14' => 32.97
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.002660'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 72.26
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.003341'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 11
'buy_signals' => 20
'sell_pct' => 35.48
'buy_pct' => 64.52
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767711167
'last_updated_date' => '6. Januar 2026'
]
CAT Terminal Preisprognose für 2026
Die Preisprognose für CAT Terminal im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.004782 am unteren Ende und $0.014274 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte CAT Terminal im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn CAT das prognostizierte Preisziel erreicht.
CAT Terminal Preisprognose 2027-2032
Die Preisprognose für CAT für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.008348 am unteren Ende und $0.0520018 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte CAT Terminal, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| CAT Terminal Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.0046035 | $0.008348 | $0.012093 |
| 2028 | $0.0083081 | $0.014328 | $0.020349 |
| 2029 | $0.01825 | $0.039143 | $0.060036 |
| 2030 | $0.015521 | $0.030198 | $0.044876 |
| 2031 | $0.01835 | $0.029659 | $0.040967 |
| 2032 | $0.028011 | $0.0520018 | $0.075992 |
CAT Terminal Preisprognose 2032-2037
Die Preisprognose für CAT Terminal für die Jahre 2032-2037 wird derzeit zwischen $0.0520018 am unteren Ende und $0.474216 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte CAT Terminal bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| CAT Terminal Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.028011 | $0.0520018 | $0.075992 |
| 2033 | $0.065092 | $0.133754 | $0.202415 |
| 2034 | $0.052331 | $0.084779 | $0.117228 |
| 2035 | $0.061871 | $0.099997 | $0.138124 |
| 2036 | $0.102417 | $0.194096 | $0.285775 |
| 2037 | $0.265973 | $0.474216 | $0.682458 |
CAT Terminal Potenzielles Preishistogramm
CAT Terminal Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für CAT Terminal Bullisch, mit 20 technischen Indikatoren, die bullische Signale zeigen, und 11 anzeigen bärische Signale. Die Preisprognose für CAT wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von CAT Terminal
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von CAT Terminal im nächsten Monat steigen, und bis zum 04.02.2026 $0.020943 erreichen. Der kurzfristige 50-Tage-SMA für CAT Terminal wird voraussichtlich bis zum 04.02.2026 $0.012329 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 48.31, was darauf hindeutet, dass sich der CAT-Markt in einem NEUTRAL Zustand befindet.
Beliebte CAT Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.01308 | BUY |
| SMA 5 | $0.012666 | BUY |
| SMA 10 | $0.0120029 | BUY |
| SMA 21 | $0.011823 | BUY |
| SMA 50 | $0.018595 | SELL |
| SMA 100 | $0.024475 | SELL |
| SMA 200 | $0.020751 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.013144 | BUY |
| EMA 5 | $0.012784 | BUY |
| EMA 10 | $0.01241 | BUY |
| EMA 21 | $0.01329 | BUY |
| EMA 50 | $0.017167 | SELL |
| EMA 100 | $0.01990054 | SELL |
| EMA 200 | $0.018042 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.022368 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.017875 | SELL |
| EMA 50 | $0.012844 | BUY |
| EMA 100 | $0.006422 | BUY |
| EMA 200 | $0.003211 | BUY |
CAT Terminal Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 48.31 | NEUTRAL |
| Stoch RSI (14) | 117.24 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 247.5 | SELL |
| Average Directional Index (14) | 32.97 | SELL |
| Awesome Oscillator (5, 34) | -0.002660 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 72.26 | SELL |
| VWMA (10) | 0.012132 | BUY |
| Hull Moving Average (9) | 0.013334 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.003341 | SELL |
Auf weltweiten Geldflüssen basierende CAT Terminal-Preisprognose
Definition weltweiter Geldflüsse, die für CAT Terminal-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
CAT Terminal-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.019448 | $0.027329 | $0.0384018 | $0.053961 | $0.075824 | $0.106545 |
| Amazon.com aktie | $0.02888 | $0.06026 | $0.125736 | $0.262356 | $0.547422 | $1.14 |
| Apple aktie | $0.019632 | $0.027847 | $0.039499 | $0.056026 | $0.079469 | $0.11272 |
| Netflix aktie | $0.021838 | $0.034458 | $0.05437 | $0.085787 | $0.135359 | $0.213575 |
| Google aktie | $0.017924 | $0.023211 | $0.030058 | $0.038926 | $0.0504092 | $0.065279 |
| Tesla aktie | $0.031376 | $0.071128 | $0.161242 | $0.365524 | $0.828617 | $1.87 |
| Kodak aktie | $0.010379 | $0.007783 | $0.005836 | $0.004376 | $0.003282 | $0.002461 |
| Nokia aktie | $0.009169 | $0.006074 | $0.004023 | $0.002665 | $0.001765 | $0.001169 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
CAT Terminal Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in CAT Terminal investieren?", "Sollte ich heute CAT kaufen?", "Wird CAT Terminal auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere CAT Terminal-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie CAT Terminal.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich CAT Terminal zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der CAT Terminal-Preis entspricht heute $0.01384 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
CAT Terminal-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von CAT Terminal 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.01420081 | $0.014569 | $0.014948 | $0.015337 |
| Wenn die Wachstumsrate von CAT Terminal 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.01456 | $0.015317 | $0.016113 | $0.016951 |
| Wenn die Wachstumsrate von CAT Terminal 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.015639 | $0.017672 | $0.019969 | $0.022564 |
| Wenn die Wachstumsrate von CAT Terminal 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.017438 | $0.021971 | $0.027682 | $0.034878 |
| Wenn die Wachstumsrate von CAT Terminal 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.021036 | $0.031972 | $0.048594 | $0.073856 |
| Wenn die Wachstumsrate von CAT Terminal 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.031829 | $0.073197 | $0.168329 | $0.38710049 |
| Wenn die Wachstumsrate von CAT Terminal 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.049818 | $0.179312 | $0.6454023 | $2.32 |
Fragefeld
Ist CAT eine gute Investition?
Die Entscheidung, CAT Terminal zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von CAT Terminal in den letzten 2026 Stunden um 6.9015% gestiegen, und CAT Terminal hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in CAT Terminal investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann CAT Terminal steigen?
Es scheint, dass der Durchschnittswert von CAT Terminal bis zum Ende dieses Jahres potenziell auf $0.014274 steigen könnte. Betrachtet man die Aussichten von CAT Terminal in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.044876 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird CAT Terminal nächste Woche kosten?
Basierend auf unserer neuen experimentellen CAT Terminal-Prognose wird der Preis von CAT Terminal in der nächsten Woche um 0.86% steigen und $0.013959 erreichen bis zum 13. Januar 2026.
Wie viel wird CAT Terminal nächsten Monat kosten?
Basierend auf unserer neuen experimentellen CAT Terminal-Prognose wird der Preis von CAT Terminal im nächsten Monat um -11.62% fallen und $0.012232 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von CAT Terminal in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von CAT Terminal im Jahr 2026 wird erwartet, dass CAT innerhalb der Spanne von $0.004782 bis $0.014274 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte CAT Terminal-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird CAT Terminal in 5 Jahren sein?
Die Zukunft von CAT Terminal scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.044876 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der CAT Terminal-Prognose für 2030 könnte der Wert von CAT Terminal seinen höchsten Gipfel von ungefähr $0.044876 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.015521 liegen wird.
Wie viel wird CAT Terminal im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen CAT Terminal-Preisprognosesimulation wird der Wert von CAT im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.014274 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.014274 und $0.004782 während des Jahres 2026 liegen.
Wie viel wird CAT Terminal im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von CAT Terminal könnte der Wert von CAT um -12.62% fallen und bis zu $0.012093 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.012093 und $0.0046035 im Laufe des Jahres schwanken.
Wie viel wird CAT Terminal im Jahr 2028 kosten?
Unser neues experimentelles CAT Terminal-Preisprognosemodell deutet darauf hin, dass der Wert von CAT im Jahr 2028 um 47.02% steigen, und im besten Fall $0.020349 erreichen wird. Der Preis wird voraussichtlich zwischen $0.020349 und $0.0083081 im Laufe des Jahres liegen.
Wie viel wird CAT Terminal im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von CAT Terminal im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.060036 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.060036 und $0.01825.
Wie viel wird CAT Terminal im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für CAT Terminal-Preisprognosen wird der Wert von CAT im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.044876 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.044876 und $0.015521 während des Jahres 2030 liegen.
Wie viel wird CAT Terminal im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von CAT Terminal im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.040967 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.040967 und $0.01835 während des Jahres schwanken.
Wie viel wird CAT Terminal im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen CAT Terminal-Preisprognose könnte CAT eine 449.04% Steigerung im Wert erfahren und $0.075992 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.075992 und $0.028011 liegen.
Wie viel wird CAT Terminal im Jahr 2033 kosten?
Laut unserer experimentellen CAT Terminal-Preisprognose wird der Wert von CAT voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.202415 beträgt. Im Laufe des Jahres könnte der Preis von CAT zwischen $0.202415 und $0.065092 liegen.
Wie viel wird CAT Terminal im Jahr 2034 kosten?
Die Ergebnisse unserer neuen CAT Terminal-Preisprognosesimulation deuten darauf hin, dass CAT im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.117228 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.117228 und $0.052331.
Wie viel wird CAT Terminal im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von CAT Terminal könnte CAT um 897.93% steigen, wobei der Wert im Jahr 2035 $0.138124 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.138124 und $0.061871.
Wie viel wird CAT Terminal im Jahr 2036 kosten?
Unsere jüngste CAT Terminal-Preisprognosesimulation deutet darauf hin, dass der Wert von CAT im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.285775 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.285775 und $0.102417.
Wie viel wird CAT Terminal im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von CAT Terminal um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.682458 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.682458 und $0.265973 liegen.
Verwandte Prognosen
Wie liest und prognostiziert man die Kursbewegungen von CAT Terminal?
CAT Terminal-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
CAT Terminal Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von CAT Terminal. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von CAT über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von CAT über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von CAT einzuschätzen.
Wie liest man CAT Terminal-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von CAT Terminal in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von CAT innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von CAT Terminal?
Die Preisentwicklung von CAT Terminal wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von CAT. Die Marktkapitalisierung von CAT Terminal kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von CAT-„Walen“, großen Inhabern von CAT Terminal, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen CAT Terminal-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


