Bonzo Finance Preisvorhersage bis zu $0.031722 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.010627 | $0.031722 |
| 2027 | $0.01023 | $0.026875 |
| 2028 | $0.018463 | $0.045222 |
| 2029 | $0.040558 | $0.133418 |
| 2030 | $0.034493 | $0.09973 |
| 2031 | $0.040781 | $0.091042 |
| 2032 | $0.06225 | $0.168878 |
| 2033 | $0.144655 | $0.449831 |
| 2034 | $0.116296 | $0.260518 |
| 2035 | $0.137498 | $0.306955 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Bonzo Finance eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.64 Gewinn erzielen könnten, was einer Rendite von 39.55% in den nächsten 90 Tagen entspricht.
Langfristige Bonzo Finance Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Bonzo Finance'
'name_with_ticker' => 'Bonzo Finance <small>BONZO</small>'
'name_lang' => 'Bonzo Finance'
'name_lang_with_ticker' => 'Bonzo Finance <small>BONZO</small>'
'name_with_lang' => 'Bonzo Finance'
'name_with_lang_with_ticker' => 'Bonzo Finance <small>BONZO</small>'
'image' => '/uploads/coins/bonzo-finance.png?1740242810'
'price_for_sd' => 0.03075
'ticker' => 'BONZO'
'marketcap' => '$4.14M'
'low24h' => '$0.02918'
'high24h' => '$0.0312'
'volume24h' => '$15.51K'
'current_supply' => '134.55M'
'max_supply' => '400M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.03075'
'change_24h_pct' => '3.4001%'
'ath_price' => '$0.1719'
'ath_days' => 160
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '30.07.2025'
'ath_pct' => '-82.14%'
'fdv' => '$12.3M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.51'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.0310223'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.027185'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.010627'
'current_year_max_price_prediction' => '$0.031722'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.034493'
'grand_prediction_max_price' => '$0.09973'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.031341999334198
107 => 0.031459018982566
108 => 0.031722670225511
109 => 0.029469799221198
110 => 0.030481272161317
111 => 0.031075417751439
112 => 0.028391046360067
113 => 0.031022356359943
114 => 0.029430581749199
115 => 0.02889030953866
116 => 0.029617714894699
117 => 0.029334244320026
118 => 0.029090532965872
119 => 0.028954537842762
120 => 0.029488664055438
121 => 0.029463746429198
122 => 0.028589812275829
123 => 0.027449800798874
124 => 0.027832426070141
125 => 0.027693414721959
126 => 0.027189619663325
127 => 0.027529116704397
128 => 0.026034143551036
129 => 0.023462119942621
130 => 0.025161277521554
131 => 0.025095861803093
201 => 0.025062876231478
202 => 0.02633974619078
203 => 0.026217004606595
204 => 0.02599422742941
205 => 0.027185528185762
206 => 0.026750687384437
207 => 0.028090764272741
208 => 0.028973425582118
209 => 0.028749554122958
210 => 0.029579701350698
211 => 0.027841240983597
212 => 0.028418687782624
213 => 0.028537698767597
214 => 0.027170827719349
215 => 0.026237086647738
216 => 0.026174816763689
217 => 0.024555838422962
218 => 0.025420683584642
219 => 0.026181711537196
220 => 0.025817238206077
221 => 0.025701856837776
222 => 0.026291315225261
223 => 0.026337121190338
224 => 0.025292740332278
225 => 0.025509900183909
226 => 0.026415492865033
227 => 0.025487081571857
228 => 0.02368333008434
301 => 0.02323597477662
302 => 0.023176289332176
303 => 0.021963026257443
304 => 0.023265869197394
305 => 0.022697143340086
306 => 0.024493741508942
307 => 0.02346753427024
308 => 0.023423296527234
309 => 0.023356424690415
310 => 0.022312119042726
311 => 0.022540755610484
312 => 0.023300778384043
313 => 0.023571963071918
314 => 0.023543676287222
315 => 0.023297053857823
316 => 0.023409956343091
317 => 0.023046258100211
318 => 0.022917828680925
319 => 0.022512470106366
320 => 0.021916704984929
321 => 0.021999549779104
322 => 0.020819183183113
323 => 0.02017605681482
324 => 0.019998047912345
325 => 0.019760006968453
326 => 0.020024935270361
327 => 0.020815839352852
328 => 0.019861841229706
329 => 0.018226278362762
330 => 0.018324578477929
331 => 0.018545429651143
401 => 0.018133874950935
402 => 0.017744372966357
403 => 0.018083013340653
404 => 0.017390003792684
405 => 0.018629176544122
406 => 0.018595660393937
407 => 0.019057547365745
408 => 0.019346374768091
409 => 0.018680721114665
410 => 0.018513311020948
411 => 0.018608675418694
412 => 0.017032514350772
413 => 0.018928741380111
414 => 0.018945140030203
415 => 0.018804724832204
416 => 0.019814407185886
417 => 0.021945151879978
418 => 0.021143480017054
419 => 0.020833048441069
420 => 0.020242917788198
421 => 0.021029231844658
422 => 0.020968855193532
423 => 0.020695809079975
424 => 0.02053066993854
425 => 0.020834943870076
426 => 0.020492967031173
427 => 0.02043153859401
428 => 0.020059349099606
429 => 0.019926494383647
430 => 0.019828134041049
501 => 0.019719848968537
502 => 0.01995869885554
503 => 0.019417433588271
504 => 0.018764720736833
505 => 0.018710454725687
506 => 0.018860287953578
507 => 0.018793997904008
508 => 0.018710137354433
509 => 0.018550024727233
510 => 0.018502522731008
511 => 0.018656881174048
512 => 0.018482619491512
513 => 0.018739752096619
514 => 0.018669826255826
515 => 0.018279226193401
516 => 0.017792393896954
517 => 0.017788060068351
518 => 0.017683172848646
519 => 0.017549583204454
520 => 0.017512421621556
521 => 0.018054493992875
522 => 0.019176567578642
523 => 0.018956277684811
524 => 0.01911545970932
525 => 0.019898477721667
526 => 0.020147375601619
527 => 0.019970713781899
528 => 0.019728888187039
529 => 0.019739527285927
530 => 0.020565918549149
531 => 0.020617459558564
601 => 0.020747687061596
602 => 0.02091506620528
603 => 0.019999219173836
604 => 0.019696390973107
605 => 0.019552894171332
606 => 0.019110979562118
607 => 0.01958754658126
608 => 0.01930987138784
609 => 0.019347339258168
610 => 0.019322938258464
611 => 0.019336262854291
612 => 0.018628830170084
613 => 0.018886581458642
614 => 0.01845801994973
615 => 0.017884224197584
616 => 0.017882300633024
617 => 0.018022736330466
618 => 0.017939199682378
619 => 0.017714404710297
620 => 0.017746335775079
621 => 0.017466586048146
622 => 0.017780302456961
623 => 0.017789298721034
624 => 0.017668500815392
625 => 0.018151824227694
626 => 0.018349842224068
627 => 0.018270330454833
628 => 0.018344263466377
629 => 0.018965431724449
630 => 0.019066709253985
701 => 0.019111690042588
702 => 0.019051421744673
703 => 0.01835561728184
704 => 0.018386479168555
705 => 0.018160035121019
706 => 0.017968713762937
707 => 0.017976365613912
708 => 0.018074729662002
709 => 0.018504291228985
710 => 0.019408278222666
711 => 0.01944258386827
712 => 0.019484163311508
713 => 0.019315038819703
714 => 0.019264029254671
715 => 0.019331324037634
716 => 0.019670814023082
717 => 0.020544074436287
718 => 0.020235405883158
719 => 0.019984453544753
720 => 0.020204606401799
721 => 0.020170715595072
722 => 0.019884643079792
723 => 0.019876613977082
724 => 0.019327549357345
725 => 0.019124572669025
726 => 0.018954950155722
727 => 0.018769726799304
728 => 0.018659920184876
729 => 0.018828633050851
730 => 0.018867219679451
731 => 0.018498326049401
801 => 0.018448047210734
802 => 0.018749293712155
803 => 0.018616726358481
804 => 0.018753075169247
805 => 0.018784709262923
806 => 0.018779615445246
807 => 0.018641199902747
808 => 0.018729421841925
809 => 0.018520750655543
810 => 0.018293852081751
811 => 0.018149104927953
812 => 0.01802279383834
813 => 0.018092878572101
814 => 0.01784303929321
815 => 0.017763110679621
816 => 0.018699534233988
817 => 0.019391280381849
818 => 0.019381222118897
819 => 0.019319995029955
820 => 0.01922902399525
821 => 0.01966415892527
822 => 0.019512566616448
823 => 0.019622862687077
824 => 0.019650937666164
825 => 0.019735912172216
826 => 0.019766283254324
827 => 0.019674480750121
828 => 0.019366380333282
829 => 0.01859862338783
830 => 0.018241230457201
831 => 0.018123284837244
901 => 0.018127571936518
902 => 0.018009314600065
903 => 0.018044146685572
904 => 0.017997201422213
905 => 0.017908298450689
906 => 0.018087389064131
907 => 0.018108027588986
908 => 0.018066225699835
909 => 0.01807607155798
910 => 0.017729969769632
911 => 0.017756283136906
912 => 0.017609766964181
913 => 0.017582296948073
914 => 0.017211916822045
915 => 0.016555734741328
916 => 0.016919323311181
917 => 0.016480159447088
918 => 0.016313841437338
919 => 0.017101165027739
920 => 0.01702213957622
921 => 0.016886882354757
922 => 0.016686808734139
923 => 0.016612599482061
924 => 0.016161727558227
925 => 0.016135087639658
926 => 0.016358551939676
927 => 0.016255430854155
928 => 0.016110609795074
929 => 0.015586082599358
930 => 0.014996340366387
1001 => 0.015014140977413
1002 => 0.015201727009177
1003 => 0.015747158695953
1004 => 0.015534049099866
1005 => 0.015379435642753
1006 => 0.0153504811899
1007 => 0.015712906787616
1008 => 0.016225814938896
1009 => 0.016466459967803
1010 => 0.016227988052654
1011 => 0.015954044356771
1012 => 0.015970718040206
1013 => 0.016081640586161
1014 => 0.016093296977381
1015 => 0.015914987793228
1016 => 0.015965180784115
1017 => 0.015888933041214
1018 => 0.015421000783775
1019 => 0.015412537373067
1020 => 0.015297699250664
1021 => 0.015294221997958
1022 => 0.015098853704039
1023 => 0.015071520329202
1024 => 0.014683604723618
1025 => 0.01493893194993
1026 => 0.014767671851801
1027 => 0.014509542487748
1028 => 0.01446504088809
1029 => 0.014463703116267
1030 => 0.014728744256481
1031 => 0.014935834789892
1101 => 0.014770650994531
1102 => 0.014733041846281
1103 => 0.01513460915604
1104 => 0.015083506055506
1105 => 0.015039251100023
1106 => 0.016179889639574
1107 => 0.015276985230384
1108 => 0.014883267371995
1109 => 0.014395966757246
1110 => 0.014554634294591
1111 => 0.014588067876021
1112 => 0.013416197740086
1113 => 0.012940770171884
1114 => 0.012777621346587
1115 => 0.012683726891043
1116 => 0.012726515773487
1117 => 0.012298575200014
1118 => 0.012586158342871
1119 => 0.01221559797916
1120 => 0.012153472328276
1121 => 0.012816080162213
1122 => 0.012908278171406
1123 => 0.01251493282051
1124 => 0.012767524212613
1125 => 0.012675931062554
1126 => 0.012221950173023
1127 => 0.0122046114423
1128 => 0.011976819790133
1129 => 0.011620369963648
1130 => 0.011457462828118
1201 => 0.01137261937751
1202 => 0.011407627438797
1203 => 0.011389926291746
1204 => 0.011274414333721
1205 => 0.011396547301966
1206 => 0.011084548036925
1207 => 0.010960307415637
1208 => 0.010904190809362
1209 => 0.01062727350363
1210 => 0.011067972082734
1211 => 0.011154795254592
1212 => 0.011241789494919
1213 => 0.011999014963479
1214 => 0.011961186118967
1215 => 0.012303140449963
1216 => 0.012289852733474
1217 => 0.012192321818981
1218 => 0.011780854933791
1219 => 0.011944858300536
1220 => 0.011440081429478
1221 => 0.011818294582766
1222 => 0.011645693894164
1223 => 0.011759938116329
1224 => 0.01155451670389
1225 => 0.011668205395176
1226 => 0.011175384249567
1227 => 0.010715194797977
1228 => 0.010900388467064
1229 => 0.011101715164827
1230 => 0.011538242742665
1231 => 0.011278250518579
]
'min_raw' => 0.01062727350363
'max_raw' => 0.031722670225511
'avg_raw' => 0.02117497186457
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.010627'
'max' => '$0.031722'
'avg' => '$0.021174'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.02013185649637
'max_diff' => 0.00096354022551054
'year' => 2026
]
1 => [
'items' => [
101 => 0.011371753553755
102 => 0.011058534038135
103 => 0.01041227271068
104 => 0.010415930479609
105 => 0.010316517253949
106 => 0.010230609712409
107 => 0.011308113753067
108 => 0.011174109092793
109 => 0.010960590204743
110 => 0.011246393721301
111 => 0.011321964707391
112 => 0.011324116107125
113 => 0.01153263097515
114 => 0.011643915397593
115 => 0.011663529759383
116 => 0.011991632409481
117 => 0.012101608090016
118 => 0.012554582353797
119 => 0.011634473691849
120 => 0.011615524659451
121 => 0.011250415562889
122 => 0.011018857601703
123 => 0.011266270534598
124 => 0.01148544461791
125 => 0.011257225912603
126 => 0.011287026457556
127 => 0.010980661491836
128 => 0.011090172551269
129 => 0.011184498228386
130 => 0.011132417133689
131 => 0.011054449214175
201 => 0.011467474842506
202 => 0.011444170317895
203 => 0.011828789278416
204 => 0.012128627262508
205 => 0.012665990532451
206 => 0.012105223946884
207 => 0.012084787383661
208 => 0.012284558067297
209 => 0.012101577506165
210 => 0.012217214904526
211 => 0.012647359559827
212 => 0.012656447838581
213 => 0.012504207459875
214 => 0.012494943618995
215 => 0.012524183049053
216 => 0.012695439304178
217 => 0.012635597106464
218 => 0.012704848012678
219 => 0.012791447331305
220 => 0.013149658830499
221 => 0.013236022410236
222 => 0.013026203685859
223 => 0.013045147967429
224 => 0.012966670004859
225 => 0.012890861276343
226 => 0.013061268227072
227 => 0.013372690278887
228 => 0.013370752938466
301 => 0.013442996801307
302 => 0.013488004129357
303 => 0.01329479972999
304 => 0.013169030770324
305 => 0.013217258592347
306 => 0.013294375930026
307 => 0.013192250479099
308 => 0.012561884886865
309 => 0.012753097539639
310 => 0.012721270404396
311 => 0.012675944693499
312 => 0.012868210494467
313 => 0.012849665988928
314 => 0.012294186050897
315 => 0.01232974607428
316 => 0.012296348573698
317 => 0.012404262730564
318 => 0.01209574978755
319 => 0.012190646290955
320 => 0.012250164488291
321 => 0.012285221163762
322 => 0.012411869914152
323 => 0.012397009145068
324 => 0.01241094614788
325 => 0.012598732810677
326 => 0.013548493310504
327 => 0.013600186678982
328 => 0.013345629626639
329 => 0.013447320148134
330 => 0.013252096584136
331 => 0.013383151470532
401 => 0.013472815895371
402 => 0.013067639601
403 => 0.01304364769042
404 => 0.012847618369328
405 => 0.012952953422815
406 => 0.012785357778859
407 => 0.012826479887639
408 => 0.01271149888653
409 => 0.012918441796038
410 => 0.013149836124545
411 => 0.013208295469965
412 => 0.013054514100496
413 => 0.012943166254314
414 => 0.01274767611668
415 => 0.013072780572348
416 => 0.013167851022564
417 => 0.013072281207745
418 => 0.01305013559341
419 => 0.013008169694262
420 => 0.0130590388573
421 => 0.013167333248474
422 => 0.01311626361348
423 => 0.013149996007125
424 => 0.013021442907244
425 => 0.013294863688685
426 => 0.013729121691908
427 => 0.013730517902397
428 => 0.013679447992118
429 => 0.013658551285148
430 => 0.013710952112276
501 => 0.013739377411398
502 => 0.013908832077659
503 => 0.014090663685928
504 => 0.014939192462377
505 => 0.014700928977393
506 => 0.015453794187062
507 => 0.016049212820597
508 => 0.016227752834293
509 => 0.016063504422649
510 => 0.015501619478942
511 => 0.01547405072299
512 => 0.016313744050593
513 => 0.016076492225154
514 => 0.016048271875447
515 => 0.015748055033599
516 => 0.015925520369711
517 => 0.015886706097444
518 => 0.015825435869811
519 => 0.016164027368769
520 => 0.016797840428547
521 => 0.01669905471932
522 => 0.016625315769918
523 => 0.016302213158728
524 => 0.016496793098245
525 => 0.016427506908716
526 => 0.016725204349035
527 => 0.016548854980196
528 => 0.016074694809233
529 => 0.016150206379311
530 => 0.016138792957402
531 => 0.016373680371528
601 => 0.016303173000072
602 => 0.016125025261522
603 => 0.016795674124413
604 => 0.016752125917602
605 => 0.016813867318354
606 => 0.016841047792382
607 => 0.017249259937065
608 => 0.01741649139141
609 => 0.017454455859345
610 => 0.017613312806828
611 => 0.017450503353776
612 => 0.018101857247155
613 => 0.018534969578699
614 => 0.019038051839544
615 => 0.019773190238403
616 => 0.020049609076784
617 => 0.01999967648776
618 => 0.020557050031756
619 => 0.021558637900598
620 => 0.020202126032546
621 => 0.021630536323473
622 => 0.021178318117156
623 => 0.020106116885034
624 => 0.020037079766108
625 => 0.020763186889013
626 => 0.022373622602395
627 => 0.021970226721603
628 => 0.022374282413543
629 => 0.021902929986214
630 => 0.021879523365327
701 => 0.022351389878226
702 => 0.023453931705721
703 => 0.022930155411641
704 => 0.02217919365886
705 => 0.022733692130854
706 => 0.022253334238002
707 => 0.021170953461697
708 => 0.021969918252376
709 => 0.021435673250056
710 => 0.021591594343759
711 => 0.022714497875689
712 => 0.022579387151893
713 => 0.022754232939401
714 => 0.02244563470096
715 => 0.022157355284781
716 => 0.021619260346571
717 => 0.021459956963127
718 => 0.021503982687176
719 => 0.021459935146165
720 => 0.021158875973585
721 => 0.02109386227393
722 => 0.020985503259523
723 => 0.021019088249085
724 => 0.020815341600453
725 => 0.021199853622627
726 => 0.021271222442251
727 => 0.021551038226348
728 => 0.021580089629306
729 => 0.022359372605088
730 => 0.021930156637346
731 => 0.022218111765231
801 => 0.022192354348255
802 => 0.020129354736933
803 => 0.020413617881373
804 => 0.020855842127434
805 => 0.020656620704004
806 => 0.020374968221909
807 => 0.020147518741366
808 => 0.01980290952044
809 => 0.020287940381259
810 => 0.020925704385955
811 => 0.021596264376936
812 => 0.022401898269269
813 => 0.022222090163113
814 => 0.021581203611707
815 => 0.021609953314235
816 => 0.021787672662673
817 => 0.02155750995894
818 => 0.021489630484299
819 => 0.021778347065218
820 => 0.021780335297635
821 => 0.021515505290898
822 => 0.02122119520179
823 => 0.02121996203177
824 => 0.021167592394111
825 => 0.021912246428413
826 => 0.022321730854265
827 => 0.022368677583771
828 => 0.022318570965317
829 => 0.022337855014099
830 => 0.02209958504907
831 => 0.022644199532364
901 => 0.023143991639024
902 => 0.023010036677938
903 => 0.022809219148451
904 => 0.022649258313531
905 => 0.02297235498886
906 => 0.022957968002509
907 => 0.023139626390982
908 => 0.023131385317171
909 => 0.023070300433645
910 => 0.023010038859472
911 => 0.023248969189409
912 => 0.02318016109149
913 => 0.023111246115591
914 => 0.02297302658107
915 => 0.022991812911394
916 => 0.022791030055885
917 => 0.022698138719727
918 => 0.021301275901403
919 => 0.020927988512537
920 => 0.02104543232404
921 => 0.021084097876214
922 => 0.020921642726199
923 => 0.021154561680017
924 => 0.021118261507786
925 => 0.021259484243044
926 => 0.021171254409233
927 => 0.021174875392389
928 => 0.021434340521041
929 => 0.021509664351733
930 => 0.021471354043505
1001 => 0.021498185270187
1002 => 0.022116499564322
1003 => 0.022028595044274
1004 => 0.021981897520001
1005 => 0.021994833053361
1006 => 0.022152825612321
1007 => 0.022197054902755
1008 => 0.022009652291246
1009 => 0.022098032446196
1010 => 0.022474343928858
1011 => 0.022606031650404
1012 => 0.023026315643888
1013 => 0.022847771533504
1014 => 0.023175496975323
1015 => 0.024182813253636
1016 => 0.024987527197738
1017 => 0.024247478998532
1018 => 0.025725233677172
1019 => 0.026875877665811
1020 => 0.02683171403303
1021 => 0.026631072638735
1022 => 0.025321095049122
1023 => 0.024115634140495
1024 => 0.025124053377135
1025 => 0.025126624045153
1026 => 0.025039999938403
1027 => 0.024501985051022
1028 => 0.025021278186537
1029 => 0.025062497789838
1030 => 0.025039425773167
1031 => 0.024626931020455
1101 => 0.023997127774837
1102 => 0.024120189821494
1103 => 0.024321767964318
1104 => 0.023940138486348
1105 => 0.023818184744391
1106 => 0.024044919953337
1107 => 0.02477550803872
1108 => 0.024637394593187
1109 => 0.024633787892964
1110 => 0.02522469578217
1111 => 0.024801733259403
1112 => 0.024121742028002
1113 => 0.023950035274091
1114 => 0.023340591973236
1115 => 0.023761536631899
1116 => 0.023776685680771
1117 => 0.023546138593171
1118 => 0.024140449653543
1119 => 0.024134972972496
1120 => 0.024699182872791
1121 => 0.025777740294595
1122 => 0.02545875779238
1123 => 0.025087815847502
1124 => 0.025128147522015
1125 => 0.025570486444365
1126 => 0.025303038234296
1127 => 0.025399214475352
1128 => 0.025570340870105
1129 => 0.025673585672889
1130 => 0.025113292183741
1201 => 0.024982660969486
1202 => 0.024715435350444
1203 => 0.024645721174439
1204 => 0.024863370865302
1205 => 0.024806027861437
1206 => 0.023775412461873
1207 => 0.023667707418329
1208 => 0.023671010578247
1209 => 0.023400181125159
1210 => 0.022987101202684
1211 => 0.024072650575229
1212 => 0.02398546576836
1213 => 0.023889220489144
1214 => 0.02390100998668
1215 => 0.02437221017662
1216 => 0.024098890270275
1217 => 0.024825556037545
1218 => 0.024676175401367
1219 => 0.024522963715535
1220 => 0.024501785193611
1221 => 0.024442811765973
1222 => 0.024240569939555
1223 => 0.023996350781306
1224 => 0.023835096139128
1225 => 0.021986616269931
1226 => 0.022329683381541
1227 => 0.022724350821898
1228 => 0.022860588440778
1229 => 0.022627544566327
1230 => 0.024249771932138
1231 => 0.024546168504043
]
'min_raw' => 0.010230609712409
'max_raw' => 0.026875877665811
'avg_raw' => 0.01855324368911
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.01023'
'max' => '$0.026875'
'avg' => '$0.018553'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00039666379122112
'max_diff' => -0.0048467925596992
'year' => 2027
]
2 => [
'items' => [
101 => 0.023648363954271
102 => 0.023480421380127
103 => 0.024260782219339
104 => 0.023790129238062
105 => 0.024002064246712
106 => 0.023543976680261
107 => 0.024474775249376
108 => 0.024467684123793
109 => 0.024105582457368
110 => 0.024411628306265
111 => 0.024358445308601
112 => 0.023949633419025
113 => 0.02448773531546
114 => 0.024488002207287
115 => 0.024139487226122
116 => 0.023732498027862
117 => 0.023659737971868
118 => 0.023604923043616
119 => 0.023988583134578
120 => 0.024332571572462
121 => 0.024972648773396
122 => 0.025133579389571
123 => 0.025761702298256
124 => 0.025387685688883
125 => 0.025553482407492
126 => 0.02573347819892
127 => 0.025819774800457
128 => 0.025679159119184
129 => 0.026654892542076
130 => 0.026737274338668
131 => 0.026764896242466
201 => 0.026435884422168
202 => 0.026728123924768
203 => 0.026591394739457
204 => 0.026947126095174
205 => 0.027002909313957
206 => 0.026955662912194
207 => 0.026973369386314
208 => 0.026140753041046
209 => 0.026097577491142
210 => 0.025508875804614
211 => 0.025748776093338
212 => 0.025300294002289
213 => 0.025442512293238
214 => 0.025505200760783
215 => 0.025472455862877
216 => 0.025762339695718
217 => 0.025515879218448
218 => 0.024865429497079
219 => 0.024214802561117
220 => 0.024206634469925
221 => 0.024035335882206
222 => 0.023911518378186
223 => 0.023935370022122
224 => 0.024019426326372
225 => 0.023906632872977
226 => 0.023930703075032
227 => 0.024330428808064
228 => 0.02441059095311
229 => 0.024138168662872
301 => 0.023044353857217
302 => 0.022775928960283
303 => 0.022968867453102
304 => 0.022876655280365
305 => 0.018463246260994
306 => 0.019500111245074
307 => 0.018884041280141
308 => 0.019167954663998
309 => 0.018539106760346
310 => 0.018839225940711
311 => 0.018783804886696
312 => 0.020451053098031
313 => 0.020425021310436
314 => 0.020437481349586
315 => 0.019842731216487
316 => 0.020790184327739
317 => 0.021256933799654
318 => 0.021170550894538
319 => 0.021192291610709
320 => 0.020818714076449
321 => 0.020441098396718
322 => 0.020022264493259
323 => 0.02080040611645
324 => 0.020713890051272
325 => 0.020912326777293
326 => 0.021417007242645
327 => 0.021491323358263
328 => 0.021591204971293
329 => 0.021555404523079
330 => 0.022408316442972
331 => 0.022305023181779
401 => 0.022553930221755
402 => 0.022041909555902
403 => 0.021462509571041
404 => 0.021572634566151
405 => 0.021562028643552
406 => 0.021427003075964
407 => 0.021305108030947
408 => 0.021102187124709
409 => 0.021744258898689
410 => 0.021718191957226
411 => 0.022140185440005
412 => 0.022065593992898
413 => 0.021567454053493
414 => 0.021585245218882
415 => 0.021704899356261
416 => 0.022119023691917
417 => 0.022241963990475
418 => 0.022185013145859
419 => 0.02231981157079
420 => 0.02242635074968
421 => 0.022333191251352
422 => 0.023652133291681
423 => 0.023104416600219
424 => 0.023371369904649
425 => 0.023435036694776
426 => 0.023271955550635
427 => 0.023307322011301
428 => 0.023360892562427
429 => 0.023686162458672
430 => 0.024539764784022
501 => 0.024917819443253
502 => 0.026055215538435
503 => 0.024886427266579
504 => 0.024817076207453
505 => 0.025021955590267
506 => 0.025689727503743
507 => 0.026230893918989
508 => 0.026410430039565
509 => 0.026434158701718
510 => 0.026770980399255
511 => 0.02696404031493
512 => 0.026730081385884
513 => 0.026531825690038
514 => 0.02582169839592
515 => 0.025903897563826
516 => 0.02647016831771
517 => 0.027270059110752
518 => 0.027956448625634
519 => 0.027716098940612
520 => 0.029549797376895
521 => 0.029731601086866
522 => 0.029706481692566
523 => 0.0301206575999
524 => 0.029298602769299
525 => 0.028947158402655
526 => 0.026574690821777
527 => 0.027241257440309
528 => 0.02821015116643
529 => 0.028081914448612
530 => 0.0273782779261
531 => 0.027955914854235
601 => 0.027764930021417
602 => 0.027614292359805
603 => 0.028304392690195
604 => 0.027545599029172
605 => 0.028202581619214
606 => 0.027359994651871
607 => 0.027717196837727
608 => 0.027514431601109
609 => 0.027645645559174
610 => 0.02687857144147
611 => 0.027292466015711
612 => 0.026861352066422
613 => 0.026861147662278
614 => 0.026851630797953
615 => 0.027358834447439
616 => 0.02737537434024
617 => 0.027000550076927
618 => 0.026946532044728
619 => 0.027146265021764
620 => 0.026912430015805
621 => 0.027021839943353
622 => 0.026915743931052
623 => 0.02689185948396
624 => 0.026701544145921
625 => 0.026619551065464
626 => 0.026651702665013
627 => 0.026541952680468
628 => 0.02647582434495
629 => 0.026838476207592
630 => 0.026644725946717
701 => 0.026808781201343
702 => 0.026621819533273
703 => 0.02597372893642
704 => 0.025601005180737
705 => 0.024376822121312
706 => 0.02472399891837
707 => 0.024954177494001
708 => 0.024878103476128
709 => 0.025041539903255
710 => 0.025051573572505
711 => 0.024998438724009
712 => 0.024936915376446
713 => 0.024906969213307
714 => 0.025130163378915
715 => 0.02525973510442
716 => 0.024977278993457
717 => 0.024911103478639
718 => 0.025196682201653
719 => 0.025370885057717
720 => 0.026657101070768
721 => 0.026561814034099
722 => 0.026800965797003
723 => 0.026774040978583
724 => 0.027024710125971
725 => 0.027434448241264
726 => 0.026601336088294
727 => 0.026745935551199
728 => 0.026710483102184
729 => 0.027097543644398
730 => 0.027098752005162
731 => 0.026866689874997
801 => 0.026992494520537
802 => 0.026922273818666
803 => 0.027049172117844
804 => 0.02656054141763
805 => 0.027155640866067
806 => 0.027493023905969
807 => 0.027497708469805
808 => 0.027657625353081
809 => 0.027820110168251
810 => 0.028131985621525
811 => 0.02781141213113
812 => 0.02723473162911
813 => 0.027276366098689
814 => 0.026938258531354
815 => 0.026943942180645
816 => 0.026913602415294
817 => 0.027004654334983
818 => 0.026580522193708
819 => 0.026680065159522
820 => 0.02654070442446
821 => 0.026745632608178
822 => 0.02652516375834
823 => 0.02671046600594
824 => 0.026790436313137
825 => 0.027085528468333
826 => 0.026481578407085
827 => 0.025250083348376
828 => 0.025508958540151
829 => 0.025126061797308
830 => 0.025161500348649
831 => 0.025233091862361
901 => 0.025001040343135
902 => 0.02504530846022
903 => 0.025043726891567
904 => 0.025030097787355
905 => 0.024969732224949
906 => 0.024882190216499
907 => 0.025230930634157
908 => 0.02529018842677
909 => 0.025421911159262
910 => 0.025813828662775
911 => 0.025774666862123
912 => 0.025838541383794
913 => 0.025699103661626
914 => 0.025167968464664
915 => 0.025196811661227
916 => 0.024837136537898
917 => 0.025412713457699
918 => 0.025276409245846
919 => 0.025188533033753
920 => 0.025164555195116
921 => 0.025557444186315
922 => 0.025675002730262
923 => 0.025601748134734
924 => 0.02545150082213
925 => 0.025740020078961
926 => 0.025817215660439
927 => 0.025834496904268
928 => 0.026345697709293
929 => 0.025863067350536
930 => 0.025979241274822
1001 => 0.026885597068791
1002 => 0.026063657432211
1003 => 0.026499057189149
1004 => 0.026477746636758
1005 => 0.026700482419283
1006 => 0.02645947580142
1007 => 0.026462463367293
1008 => 0.026660237652746
1009 => 0.026382499337607
1010 => 0.026313727424936
1011 => 0.026218719520135
1012 => 0.026426165804474
1013 => 0.026550520469947
1014 => 0.027552727745219
1015 => 0.02820019935125
1016 => 0.028172090901247
1017 => 0.028428949517458
1018 => 0.0283132323583
1019 => 0.027939551126734
1020 => 0.028577379423445
1021 => 0.028375543862496
1022 => 0.028392182940911
1023 => 0.028391563633581
1024 => 0.028525766636841
1025 => 0.028430671509507
1026 => 0.028243229252216
1027 => 0.02836766217017
1028 => 0.028737183450909
1029 => 0.029884188844623
1030 => 0.030526068258745
1031 => 0.029845546897925
1101 => 0.030314961420074
1102 => 0.030033479976281
1103 => 0.029982326424596
1104 => 0.030277153433967
1105 => 0.030572496498988
1106 => 0.03055368442255
1107 => 0.030339280523378
1108 => 0.030218169201034
1109 => 0.031135264709096
1110 => 0.031810965057122
1111 => 0.031764886823339
1112 => 0.031968261161811
1113 => 0.032565374509699
1114 => 0.032619967070962
1115 => 0.032613089663038
1116 => 0.032477776303804
1117 => 0.033065711939765
1118 => 0.033556178191028
1119 => 0.03244645517072
1120 => 0.032869023169512
1121 => 0.033058727558461
1122 => 0.033337269884193
1123 => 0.033807217476817
1124 => 0.03431770520985
1125 => 0.034389893772514
1126 => 0.034338672532763
1127 => 0.034001992150181
1128 => 0.034560573919051
1129 => 0.034887778018901
1130 => 0.035082620572428
1201 => 0.035576708869465
1202 => 0.033059899108184
1203 => 0.031278376065587
1204 => 0.031000165516981
1205 => 0.031565917607661
1206 => 0.031715101922185
1207 => 0.031654965912061
1208 => 0.02964969975863
1209 => 0.030989608205682
1210 => 0.032431237032009
1211 => 0.032486615866446
1212 => 0.033208325399942
1213 => 0.033443343607922
1214 => 0.034024414379017
1215 => 0.033988068244077
1216 => 0.034129549729983
1217 => 0.034097025586491
1218 => 0.035173336831059
1219 => 0.036360667967583
1220 => 0.036319554465807
1221 => 0.036148861567067
1222 => 0.03640236962916
1223 => 0.037627822604191
1224 => 0.037515002531734
1225 => 0.037624597622135
1226 => 0.039069475743199
1227 => 0.040948022832099
1228 => 0.040075249106261
1229 => 0.041968916957455
1230 => 0.043160880490762
1231 => 0.045222258170287
]
'min_raw' => 0.018463246260994
'max_raw' => 0.045222258170287
'avg_raw' => 0.03184275221564
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.018463'
'max' => '$0.045222'
'avg' => '$0.031842'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0082326365485846
'max_diff' => 0.018346380504476
'year' => 2028
]
3 => [
'items' => [
101 => 0.044964163532311
102 => 0.045766642735862
103 => 0.044502120264359
104 => 0.04159852106763
105 => 0.041139015380216
106 => 0.042058957402956
107 => 0.04432054509923
108 => 0.041987731958093
109 => 0.042459657018282
110 => 0.0423237425692
111 => 0.042316500265807
112 => 0.042592909529718
113 => 0.042191963475878
114 => 0.040558437123712
115 => 0.041307072624478
116 => 0.041017988505203
117 => 0.041338748888188
118 => 0.043069760383512
119 => 0.042304438939269
120 => 0.041498234967425
121 => 0.042509393659101
122 => 0.043796946145429
123 => 0.043716373424789
124 => 0.043560028669962
125 => 0.044441335866973
126 => 0.045896997157655
127 => 0.046290456555206
128 => 0.046580900238554
129 => 0.046620947515402
130 => 0.047033459356175
131 => 0.044815279221968
201 => 0.048335588061861
202 => 0.048943448151941
203 => 0.048829195648226
204 => 0.049504806555687
205 => 0.049306024688118
206 => 0.049018020949929
207 => 0.050089007944816
208 => 0.048861207779371
209 => 0.047118500020265
210 => 0.046162416076768
211 => 0.047421464538657
212 => 0.048190321499596
213 => 0.04869848704229
214 => 0.048852257628467
215 => 0.044987470231437
216 => 0.042904564175374
217 => 0.044239683076744
218 => 0.0458686202814
219 => 0.044806230393549
220 => 0.044847874065782
221 => 0.043333185276858
222 => 0.046002636629478
223 => 0.045613720021021
224 => 0.047631420073677
225 => 0.047149879763056
226 => 0.048795235829332
227 => 0.048361958435195
228 => 0.050160468674045
301 => 0.050877943101043
302 => 0.052082694329951
303 => 0.052968914238155
304 => 0.053489319518938
305 => 0.053458076337871
306 => 0.055520181325215
307 => 0.054304230058639
308 => 0.05277670869011
309 => 0.052749080647822
310 => 0.053540205609728
311 => 0.05519818649535
312 => 0.05562807681635
313 => 0.055868326859074
314 => 0.055500375555479
315 => 0.054180547603623
316 => 0.053610652585692
317 => 0.054096219652417
318 => 0.053502412855065
319 => 0.054527489980056
320 => 0.055935139817327
321 => 0.055644465692381
322 => 0.056616145711774
323 => 0.057621732308127
324 => 0.059059766304632
325 => 0.059435721641563
326 => 0.060057161517209
327 => 0.060696827281613
328 => 0.060902270685664
329 => 0.061294525889342
330 => 0.061292458510796
331 => 0.0624745459689
401 => 0.063778425041389
402 => 0.064270609206384
403 => 0.065402359554596
404 => 0.063464276744545
405 => 0.06493433481906
406 => 0.066260364000212
407 => 0.064679417344676
408 => 0.066858383996005
409 => 0.066942988333431
410 => 0.068220413381676
411 => 0.066925498370253
412 => 0.066156581969985
413 => 0.068376414806636
414 => 0.069450521992213
415 => 0.069126992166543
416 => 0.066664914218558
417 => 0.065231879249339
418 => 0.061481350323093
419 => 0.065924013847024
420 => 0.068087905655259
421 => 0.066659310261532
422 => 0.067379810681697
423 => 0.071310627351068
424 => 0.072807227837233
425 => 0.072495945398138
426 => 0.0725485470062
427 => 0.073356085463314
428 => 0.076937155701711
429 => 0.074791295406305
430 => 0.076431725198292
501 => 0.077301803244951
502 => 0.078109980224665
503 => 0.076125352989445
504 => 0.073543382116388
505 => 0.072725563557127
506 => 0.066517264604164
507 => 0.066194095682386
508 => 0.066012691173572
509 => 0.064868961405675
510 => 0.063970303102058
511 => 0.063255656653978
512 => 0.061380210962722
513 => 0.062013118829235
514 => 0.059024049833309
515 => 0.060936350250801
516 => 0.056165723959708
517 => 0.060138843294856
518 => 0.057976455076304
519 => 0.059428440607817
520 => 0.059423374767083
521 => 0.056749809051136
522 => 0.05520775214207
523 => 0.056190410822279
524 => 0.057243898931007
525 => 0.057414823832288
526 => 0.058780698664107
527 => 0.059161884970286
528 => 0.058006872666676
529 => 0.056066863333555
530 => 0.056517483254737
531 => 0.05519862034375
601 => 0.052887363821574
602 => 0.054547348606468
603 => 0.05511414039641
604 => 0.055364467940264
605 => 0.053091612600309
606 => 0.052377432106405
607 => 0.051997208404005
608 => 0.055773466250462
609 => 0.055980338179711
610 => 0.05492195214093
611 => 0.059705957396503
612 => 0.058623189668058
613 => 0.059832906505265
614 => 0.056476594220065
615 => 0.056604809869233
616 => 0.055015877846129
617 => 0.055905573606591
618 => 0.055276765319329
619 => 0.055833694981291
620 => 0.056167516324363
621 => 0.057756187619358
622 => 0.060156983369127
623 => 0.057518893105404
624 => 0.056369439399352
625 => 0.057082554013814
626 => 0.058981672205271
627 => 0.0618589334794
628 => 0.060155536894836
629 => 0.060911475373516
630 => 0.061076614301745
701 => 0.059820592723457
702 => 0.061905244786562
703 => 0.063022426762863
704 => 0.064168424302312
705 => 0.065163461855693
706 => 0.06371068768403
707 => 0.065265364294707
708 => 0.064012569383867
709 => 0.062888682837286
710 => 0.062890387309257
711 => 0.062185356861224
712 => 0.060819271528608
713 => 0.060567344433764
714 => 0.061877900996026
715 => 0.062928843248792
716 => 0.063015403886403
717 => 0.063597259516897
718 => 0.063941595685434
719 => 0.067316558239414
720 => 0.068673996097779
721 => 0.070333845416004
722 => 0.070980450269435
723 => 0.072926499057591
724 => 0.0713549066108
725 => 0.071014882699157
726 => 0.066294404886797
727 => 0.067067382864125
728 => 0.068304995187108
729 => 0.066314812658162
730 => 0.067577125395906
731 => 0.067826332669776
801 => 0.066247187017381
802 => 0.067090676941181
803 => 0.064850617780902
804 => 0.060205810537446
805 => 0.061910415784813
806 => 0.063165579010797
807 => 0.061374306326808
808 => 0.064585093281031
809 => 0.06270941782647
810 => 0.062114918755674
811 => 0.059795565926278
812 => 0.060890211181675
813 => 0.062370734563411
814 => 0.061455943242816
815 => 0.063354272589659
816 => 0.066042813210735
817 => 0.067958827362675
818 => 0.068105915138019
819 => 0.066874046401299
820 => 0.068848123913573
821 => 0.068862502913101
822 => 0.066635735414912
823 => 0.065271852720966
824 => 0.064961975703267
825 => 0.065736109248446
826 => 0.066676050285229
827 => 0.068158075323903
828 => 0.06905363201592
829 => 0.071388768902134
830 => 0.072020589989922
831 => 0.072714769809217
901 => 0.073642408124922
902 => 0.074756275764509
903 => 0.072319196781613
904 => 0.072416026472887
905 => 0.07014665226767
906 => 0.067721500468214
907 => 0.069561888384562
908 => 0.071967950768642
909 => 0.071415997399271
910 => 0.071353891369833
911 => 0.071458336484572
912 => 0.071042181669178
913 => 0.06915992886257
914 => 0.068214673286618
915 => 0.069434294140013
916 => 0.070082468344513
917 => 0.071087730008963
918 => 0.07096381029032
919 => 0.07355325638072
920 => 0.074559436830664
921 => 0.07430201281468
922 => 0.074349385028876
923 => 0.076171026672057
924 => 0.078197066828453
925 => 0.080094720794463
926 => 0.082025095914823
927 => 0.079697953363406
928 => 0.078516373893995
929 => 0.079735462299079
930 => 0.07908859683143
1001 => 0.082805677681303
1002 => 0.083063040294512
1003 => 0.086779852357132
1004 => 0.090307549594306
1005 => 0.088091866164898
1006 => 0.090181155842256
1007 => 0.092440892970606
1008 => 0.096800292520328
1009 => 0.095332200117507
1010 => 0.094207664344887
1011 => 0.093144983473478
1012 => 0.095356253671042
1013 => 0.098201017454304
1014 => 0.09881375232641
1015 => 0.099806616901958
1016 => 0.098762741202474
1017 => 0.10001997450337
1018 => 0.10445856051182
1019 => 0.10325921539185
1020 => 0.10155595251715
1021 => 0.1050597898845
1022 => 0.10632781500692
1023 => 0.11522747938596
1024 => 0.12646367329131
1025 => 0.12181181523367
1026 => 0.11892425682277
1027 => 0.11960290154313
1028 => 0.1237059791882
1029 => 0.12502375750262
1030 => 0.1214415817786
1031 => 0.12270686680328
1101 => 0.12967871168934
1102 => 0.13341888278714
1103 => 0.12833922806433
1104 => 0.11432466214611
1105 => 0.10140259233109
1106 => 0.10483010713442
1107 => 0.10444153332389
1108 => 0.11193191089859
1109 => 0.10323061140739
1110 => 0.1033771189751
1111 => 0.1110223896256
1112 => 0.10898276248917
1113 => 0.10567882774385
1114 => 0.10142671471108
1115 => 0.093566290497154
1116 => 0.086604093566733
1117 => 0.10025856504548
1118 => 0.099669759406275
1119 => 0.098817081584594
1120 => 0.10071462380737
1121 => 0.10992855021441
1122 => 0.10971613938816
1123 => 0.1083648900845
1124 => 0.10938980077196
1125 => 0.10549915594497
1126 => 0.10650186370522
1127 => 0.10140054540921
1128 => 0.10370655432888
1129 => 0.10567173898376
1130 => 0.10606627889829
1201 => 0.10695519747142
1202 => 0.099359485589947
1203 => 0.10276973722634
1204 => 0.10477294056536
1205 => 0.095722395002523
1206 => 0.1045940403793
1207 => 0.099227261145025
1208 => 0.097405695666591
1209 => 0.099858193610299
1210 => 0.098902452776503
1211 => 0.098080762930591
1212 => 0.097622245878148
1213 => 0.099423089695686
1214 => 0.099339078179124
1215 => 0.096392548164909
1216 => 0.092548919877294
1217 => 0.093838967693415
1218 => 0.093370281227556
1219 => 0.091671701013523
1220 => 0.092816338990424
1221 => 0.087775932628176
1222 => 0.079104175459452
1223 => 0.084833003868216
1224 => 0.084612450206245
1225 => 0.084501237048567
1226 => 0.088806293264566
1227 => 0.088392461443943
1228 => 0.08764135263726
1229 => 0.091657906311262
1230 => 0.090191810189981
1231 => 0.094709972980079
]
'min_raw' => 0.040558437123712
'max_raw' => 0.13341888278714
'avg_raw' => 0.086988659955427
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.040558'
'max' => '$0.133418'
'avg' => '$0.086988'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.022095190862718
'max_diff' => 0.088196624616854
'year' => 2029
]
4 => [
'items' => [
101 => 0.097685927210086
102 => 0.096931128955322
103 => 0.099730028292678
104 => 0.093868687789568
105 => 0.095815589988537
106 => 0.096216843833454
107 => 0.091608342662398
108 => 0.088460169447742
109 => 0.088250222186126
110 => 0.082791723676905
111 => 0.08570760952107
112 => 0.088273468396381
113 => 0.0870446211138
114 => 0.086655604774903
115 => 0.088643004882978
116 => 0.088797442892306
117 => 0.085276239913015
118 => 0.086008409514406
119 => 0.089061678465274
120 => 0.085931474970725
121 => 0.079850000896654
122 => 0.078341711243327
123 => 0.078140477600279
124 => 0.074049876436496
125 => 0.07844250237013
126 => 0.076525003435042
127 => 0.082582359595819
128 => 0.079122430243036
129 => 0.078973279603911
130 => 0.078747816537231
131 => 0.075226867134956
201 => 0.075997731286047
202 => 0.078560201130196
203 => 0.079474519238878
204 => 0.079379148369355
205 => 0.078547643630009
206 => 0.078928302241689
207 => 0.077702068223218
208 => 0.077269059469442
209 => 0.075902364734084
210 => 0.073893701032164
211 => 0.074173018039767
212 => 0.070193329650817
213 => 0.068024984198467
214 => 0.067424814755591
215 => 0.066622243093769
216 => 0.067515467360355
217 => 0.070182055693632
218 => 0.066965584415427
219 => 0.06145117001817
220 => 0.06178259571955
221 => 0.062527210869377
222 => 0.061139625463797
223 => 0.05982639232863
224 => 0.060968141993685
225 => 0.058631611918327
226 => 0.06280956936608
227 => 0.062696567325709
228 => 0.064253851499075
301 => 0.06522765325137
302 => 0.062983355484392
303 => 0.062418920665224
304 => 0.062740448390354
305 => 0.057426311305804
306 => 0.063819573125565
307 => 0.063874862319268
308 => 0.063401442675738
309 => 0.066805657224946
310 => 0.073989611724921
311 => 0.07128671906813
312 => 0.070240077336058
313 => 0.068250410638298
314 => 0.070901523378344
315 => 0.07069795928371
316 => 0.069777365248383
317 => 0.069220587103389
318 => 0.070246467907291
319 => 0.069093469118866
320 => 0.068886358854177
321 => 0.067631495988353
322 => 0.067183567037876
323 => 0.066851938275508
324 => 0.066486847593311
325 => 0.067292146663309
326 => 0.065467233024777
327 => 0.063266566075198
328 => 0.063083604429887
329 => 0.063588777618743
330 => 0.063365276088395
331 => 0.063082534390547
401 => 0.062542703489235
402 => 0.062382547192478
403 => 0.062902977460149
404 => 0.062315442030918
405 => 0.063182382561459
406 => 0.06294662270716
407 => 0.061629687325869
408 => 0.059988298248854
409 => 0.059973686443139
410 => 0.059620051858914
411 => 0.059169645046587
412 => 0.05904435217531
413 => 0.060871987021493
414 => 0.064655136456585
415 => 0.063912413699383
416 => 0.064449107008751
417 => 0.06708910690595
418 => 0.067928283485703
419 => 0.067332655826381
420 => 0.066517323949587
421 => 0.066553194414287
422 => 0.069339430255036
423 => 0.069513204366757
424 => 0.069952275485423
425 => 0.070516605954392
426 => 0.067428763745481
427 => 0.066407757323932
428 => 0.065923947838123
429 => 0.064434001879664
430 => 0.066040780857549
501 => 0.065104579556272
502 => 0.065230905097004
503 => 0.06514863542288
504 => 0.065193560228003
505 => 0.062808401541826
506 => 0.063677428006819
507 => 0.062232502958314
508 => 0.060297910518813
509 => 0.0602914250866
510 => 0.060764913845433
511 => 0.060483264204062
512 => 0.059725352261008
513 => 0.059833010075276
514 => 0.058889814339419
515 => 0.059947531114719
516 => 0.059977862647142
517 => 0.059570584074429
518 => 0.061200142703567
519 => 0.061867774203518
520 => 0.061599694722206
521 => 0.061848965032464
522 => 0.063943277183137
523 => 0.064284741444942
524 => 0.064436397314172
525 => 0.064233198539956
526 => 0.061887245213996
527 => 0.061991298219766
528 => 0.061227826303679
529 => 0.060582772987273
530 => 0.060608571737071
531 => 0.060940212992764
601 => 0.062388509806881
602 => 0.06543636507043
603 => 0.065552028949729
604 => 0.065692216945592
605 => 0.065122001913575
606 => 0.064950019603696
607 => 0.065176908662827
608 => 0.066321522851199
609 => 0.069265781303414
610 => 0.068225083725991
611 => 0.067378980396123
612 => 0.068121241124237
613 => 0.068006975903176
614 => 0.067042462444965
615 => 0.067015391764605
616 => 0.065164182064693
617 => 0.064479831988641
618 => 0.063907937842376
619 => 0.06328344436433
620 => 0.062913223697333
621 => 0.063482050904124
622 => 0.063612148416483
623 => 0.062368397787436
624 => 0.062198879172514
625 => 0.063214552784415
626 => 0.062767592695946
627 => 0.063227302231013
628 => 0.063333958786464
629 => 0.063316784624528
630 => 0.062850106959127
701 => 0.063147553386525
702 => 0.062444003912681
703 => 0.061678999529589
704 => 0.061190974394634
705 => 0.060765107737245
706 => 0.06100140331028
707 => 0.060159052738278
708 => 0.059889567837127
709 => 0.063046785229679
710 => 0.065379055663365
711 => 0.065345143527578
712 => 0.065138712122473
713 => 0.064831996927567
714 => 0.066299084724281
715 => 0.065787980671252
716 => 0.066159851574003
717 => 0.066254508326126
718 => 0.066541005806012
719 => 0.066643404029781
720 => 0.066333885477413
721 => 0.065295103411158
722 => 0.062706557266486
723 => 0.061501582048494
724 => 0.061103920156107
725 => 0.061118374410628
726 => 0.06071966154431
727 => 0.060837100352498
728 => 0.060678821119468
729 => 0.060379078543968
730 => 0.060982895050895
731 => 0.061052479278379
801 => 0.060911541290592
802 => 0.060944737288745
803 => 0.059777830945273
804 => 0.05986654830018
805 => 0.059372558794402
806 => 0.059279941717202
807 => 0.058031179263183
808 => 0.055818815564876
809 => 0.057044679813078
810 => 0.055564008183848
811 => 0.055003255402022
812 => 0.057657771856236
813 => 0.057391332029059
814 => 0.056935302863539
815 => 0.056260740682931
816 => 0.056010539008424
817 => 0.054490392838346
818 => 0.054400574492953
819 => 0.055153999982243
820 => 0.054806320042724
821 => 0.054318045730949
822 => 0.052549565669274
823 => 0.050561208556324
824 => 0.050621224559197
825 => 0.051253683962127
826 => 0.053092644974917
827 => 0.052374131092871
828 => 0.05185284102745
829 => 0.051755219068119
830 => 0.052977162274568
831 => 0.054706467916709
901 => 0.055517819432969
902 => 0.054713794721467
903 => 0.053790174424659
904 => 0.053846390912481
905 => 0.054220374020533
906 => 0.054259674357353
907 => 0.053658492493832
908 => 0.05382772166697
909 => 0.053570647078333
910 => 0.051992980802389
911 => 0.051964445822291
912 => 0.05157726107487
913 => 0.051565537274595
914 => 0.050906839431468
915 => 0.050814683049852
916 => 0.049506798502224
917 => 0.050367652072112
918 => 0.049790236694272
919 => 0.048919935521349
920 => 0.0487698952711
921 => 0.048765384879999
922 => 0.04965898958881
923 => 0.050357209780807
924 => 0.049800281081982
925 => 0.049673479212869
926 => 0.051027391434256
927 => 0.050855093762901
928 => 0.050705885090708
929 => 0.054551627563646
930 => 0.051507422309288
1001 => 0.050179975061227
1002 => 0.048537007016356
1003 => 0.04907196569633
1004 => 0.049184689350379
1005 => 0.045233647369713
1006 => 0.043630710130228
1007 => 0.043080642475053
1008 => 0.042764070762684
1009 => 0.042908336467268
1010 => 0.041465504945946
1011 => 0.042435111590505
1012 => 0.041185741452552
1013 => 0.040976280483123
1014 => 0.043210309057042
1015 => 0.043521161082098
1016 => 0.042194969769057
1017 => 0.0430465992829
1018 => 0.042737786582645
1019 => 0.041207158317658
1020 => 0.041148699576475
1021 => 0.040380684117289
1022 => 0.039178888640761
1023 => 0.03862963585951
1024 => 0.038343580242203
1025 => 0.038461612365017
1026 => 0.03840193171188
1027 => 0.038012475080611
1028 => 0.038424254910103
1029 => 0.037372327604924
1030 => 0.036953441676048
1031 => 0.036764240620054
1101 => 0.035830594590031
1102 => 0.037316440618071
1103 => 0.03760917100379
1104 => 0.037902478158798
1105 => 0.040455516693841
1106 => 0.040327974103443
1107 => 0.041480897004887
1108 => 0.041436096541026
1109 => 0.041107264253421
1110 => 0.039719974922303
1111 => 0.040272923723632
1112 => 0.038571033260464
1113 => 0.039846205312772
1114 => 0.039264270040557
1115 => 0.039649452411862
1116 => 0.038956859777761
1117 => 0.039340169137922
1118 => 0.037678588237826
1119 => 0.03612702737239
1120 => 0.036751420757526
1121 => 0.037430207775215
1122 => 0.038901990981278
1123 => 0.038025409045695
1124 => 0.038340661056963
1125 => 0.037284619591763
1126 => 0.035105704405722
1127 => 0.035118036829046
1128 => 0.034782858197921
1129 => 0.034493214923748
1130 => 0.038126095025756
1201 => 0.037674288957735
1202 => 0.036954395119261
1203 => 0.037918001629503
1204 => 0.038172794485302
1205 => 0.038180048079711
1206 => 0.038883070515299
1207 => 0.039258273715196
1208 => 0.039324404905402
1209 => 0.040430625897605
1210 => 0.040801416582784
1211 => 0.042328650938774
1212 => 0.039226440345084
1213 => 0.039162552359373
1214 => 0.037931561549212
1215 => 0.037150847716213
1216 => 0.037985017693287
1217 => 0.038723978417418
1218 => 0.037954523118756
1219 => 0.038054997736673
1220 => 0.037022066865027
1221 => 0.037391291047726
1222 => 0.037709316653735
1223 => 0.037533721606778
1224 => 0.037270847322587
1225 => 0.038663392065036
1226 => 0.03858481923324
1227 => 0.039881588911874
1228 => 0.040892513609259
1229 => 0.042704271391377
1230 => 0.040813607696667
1231 => 0.040744704396924
]
'min_raw' => 0.034493214923748
'max_raw' => 0.099730028292678
'avg_raw' => 0.067111621608213
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.034493'
'max' => '$0.09973'
'avg' => '$0.067111'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0060652221999642
'max_diff' => -0.033688854494464
'year' => 2030
]
5 => [
'items' => [
101 => 0.041418245204347
102 => 0.040801313467196
103 => 0.041191193029315
104 => 0.042641455766405
105 => 0.042672097532745
106 => 0.042158808466854
107 => 0.042127574780547
108 => 0.042226157560418
109 => 0.042803559981303
110 => 0.042601797833662
111 => 0.042835282098905
112 => 0.043127257747829
113 => 0.04433499282689
114 => 0.044626173665684
115 => 0.043918755187371
116 => 0.043982627155334
117 => 0.043718033225373
118 => 0.043462438804383
119 => 0.044036977736201
120 => 0.045086958926688
121 => 0.045080427048196
122 => 0.045324002275671
123 => 0.045475747624502
124 => 0.044824345502936
125 => 0.044400306674515
126 => 0.044562910143623
127 => 0.04482291663177
128 => 0.044478593543797
129 => 0.042353271938861
130 => 0.042997958747729
131 => 0.042890651339159
201 => 0.042737832540328
202 => 0.043386070111861
203 => 0.0433235460167
204 => 0.04145070662326
205 => 0.041570599724815
206 => 0.041457997719864
207 => 0.041821837834065
208 => 0.040781664907007
209 => 0.041101615093699
210 => 0.041302284851445
211 => 0.041420480880375
212 => 0.041847485984647
213 => 0.041797381864135
214 => 0.041844371442166
215 => 0.042477507286633
216 => 0.045679691121961
217 => 0.045853978922898
218 => 0.044995722048318
219 => 0.045338578741344
220 => 0.04468036886525
221 => 0.045122229564695
222 => 0.04542453943321
223 => 0.044058459268234
224 => 0.043977568866651
225 => 0.04331664232426
226 => 0.043671786811348
227 => 0.043106726396599
228 => 0.043245372457404
301 => 0.042857705984446
302 => 0.043555428452146
303 => 0.044335590586144
304 => 0.044532690350728
305 => 0.044014205726891
306 => 0.043638788689431
307 => 0.042979680041711
308 => 0.044075792412063
309 => 0.044396329072573
310 => 0.044074108769442
311 => 0.043999443284554
312 => 0.043857952325609
313 => 0.044029461260365
314 => 0.044394583361081
315 => 0.04422239852113
316 => 0.044336129641424
317 => 0.043902703889885
318 => 0.044824561144143
319 => 0.046288692320934
320 => 0.046293399742077
321 => 0.046121213973985
322 => 0.046050759267476
323 => 0.046227432314644
324 => 0.046323270195225
325 => 0.046894598433471
326 => 0.04750765639583
327 => 0.050368530408015
328 => 0.049565208433366
329 => 0.052103546051133
330 => 0.054111041544899
331 => 0.05471300166634
401 => 0.054159226679026
402 => 0.052264792361763
403 => 0.052171842376281
404 => 0.055002927055812
405 => 0.054203015961952
406 => 0.054107869082633
407 => 0.053095667039872
408 => 0.053694003810805
409 => 0.053563138781931
410 => 0.053356561931717
411 => 0.054498146810158
412 => 0.056635091792614
413 => 0.056302028876955
414 => 0.05605341286076
415 => 0.054964049848826
416 => 0.055620089700048
417 => 0.055386486474643
418 => 0.05639019417925
419 => 0.055795619969889
420 => 0.054196955848681
421 => 0.054451548379249
422 => 0.054413067230423
423 => 0.055205006546465
424 => 0.054967286020931
425 => 0.054366648482535
426 => 0.05662778794698
427 => 0.056480962127277
428 => 0.05668912757056
429 => 0.056780768436423
430 => 0.058157084182684
501 => 0.058720916706736
502 => 0.058848916560973
503 => 0.05938451385045
504 => 0.058835590412493
505 => 0.061031675540098
506 => 0.062491944004836
507 => 0.064188120971357
508 => 0.066666691408832
509 => 0.067598656821381
510 => 0.067430305611303
511 => 0.069309529429464
512 => 0.0726864528579
513 => 0.068112878386126
514 => 0.07292886341041
515 => 0.071404178154943
516 => 0.067789176842146
517 => 0.067556413375668
518 => 0.070004534235722
519 => 0.075434230680421
520 => 0.074074153304131
521 => 0.075436455279774
522 => 0.073847257662257
523 => 0.073768340605738
524 => 0.075359271498647
525 => 0.079076568247058
526 => 0.077310619902673
527 => 0.074778699922698
528 => 0.076648230234873
529 => 0.075028670061604
530 => 0.07137934770488
531 => 0.074073113278594
601 => 0.072271868953478
602 => 0.072797567806962
603 => 0.076583515463483
604 => 0.076127980225075
605 => 0.076717485005002
606 => 0.075677024498458
607 => 0.074705070319783
608 => 0.072890845667021
609 => 0.072353743187533
610 => 0.07250217898994
611 => 0.072353669630121
612 => 0.071338627610486
613 => 0.071119429382989
614 => 0.070754089400532
615 => 0.070867323537668
616 => 0.070180377486667
617 => 0.071476786615201
618 => 0.071717411573375
619 => 0.072660830025573
620 => 0.07275877885895
621 => 0.075386185819599
622 => 0.073939054217454
623 => 0.074909915035504
624 => 0.074823072105842
625 => 0.067867524882237
626 => 0.068825937920337
627 => 0.070316927841041
628 => 0.069645238902753
629 => 0.068695627895019
630 => 0.067928766091353
701 => 0.066766892043154
702 => 0.06840220745418
703 => 0.070552473323272
704 => 0.07281331314987
705 => 0.075529564065433
706 => 0.074923328481725
707 => 0.072762534728388
708 => 0.072859466357702
709 => 0.07345865954893
710 => 0.072682649923847
711 => 0.072453789535903
712 => 0.073427217646017
713 => 0.073433921110424
714 => 0.072541028252871
715 => 0.071548741239368
716 => 0.07154458352055
717 => 0.071368015630853
718 => 0.073878668697586
719 => 0.075259274028633
720 => 0.075417558204881
721 => 0.07524862024243
722 => 0.075313637759269
723 => 0.074510293936695
724 => 0.076346499690889
725 => 0.078031583672865
726 => 0.077579945169127
727 => 0.076902874847827
728 => 0.076363555724787
729 => 0.077452898723547
730 => 0.077404391994597
731 => 0.078016865934318
801 => 0.077989080578591
802 => 0.077783128628973
803 => 0.07757995252432
804 => 0.078385522813284
805 => 0.078153531507126
806 => 0.077921179854391
807 => 0.077455163043572
808 => 0.077518502467882
809 => 0.076841549052319
810 => 0.076528359426999
811 => 0.071818738909171
812 => 0.070560174415518
813 => 0.070956144425664
814 => 0.071086508034361
815 => 0.070538779153828
816 => 0.071324081668507
817 => 0.071201693103435
818 => 0.071677835415212
819 => 0.07138036237051
820 => 0.071392570768027
821 => 0.072267375564557
822 => 0.072521335118675
823 => 0.072392169239746
824 => 0.072482632593801
825 => 0.074567322405802
826 => 0.074270946179162
827 => 0.074113502215758
828 => 0.074157115269612
829 => 0.074689798212832
830 => 0.074838920353523
831 => 0.074207079364788
901 => 0.074505059227705
902 => 0.075773819664729
903 => 0.076217814012066
904 => 0.077634830839389
905 => 0.077032856905677
906 => 0.078137806113827
907 => 0.081534043274739
908 => 0.084247192520611
909 => 0.081752068348472
910 => 0.086734421421044
911 => 0.09061389796414
912 => 0.09046499719281
913 => 0.089788520723612
914 => 0.085371839820517
915 => 0.081307544204486
916 => 0.084707500066403
917 => 0.084716167253102
918 => 0.084424108029292
919 => 0.082610153273489
920 => 0.084360986335765
921 => 0.084499961106157
922 => 0.084422172191112
923 => 0.083031417332879
924 => 0.08090799171882
925 => 0.081322904001044
926 => 0.082002538783309
927 => 0.080715848353814
928 => 0.080304672798267
929 => 0.081069126385378
930 => 0.083532355123278
1001 => 0.083066695998891
1002 => 0.083054535757277
1003 => 0.085046822961607
1004 => 0.083620775285795
1005 => 0.081328137373656
1006 => 0.080749216064662
1007 => 0.078694435425856
1008 => 0.080113679731957
1009 => 0.080164755807902
1010 => 0.079387450205776
1011 => 0.081391211439293
1012 => 0.081372746426771
1013 => 0.083275019497495
1014 => 0.086911451147582
1015 => 0.085835979370717
1016 => 0.084585322705221
1017 => 0.084721303761708
1018 => 0.086212680321528
1019 => 0.085310960008645
1020 => 0.085635224920175
1021 => 0.086212189507748
1022 => 0.086560286568655
1023 => 0.084671217951553
1024 => 0.084230785692309
1025 => 0.083329815860614
1026 => 0.083094769648923
1027 => 0.083828590777487
1028 => 0.083635254836393
1029 => 0.080160463061495
1030 => 0.079797327987459
1031 => 0.079808464821743
1101 => 0.078895344411948
1102 => 0.077502616613003
1103 => 0.081162622113175
1104 => 0.080868672449767
1105 => 0.080544174771262
1106 => 0.080583923885321
1107 => 0.08217260822385
1108 => 0.081251091077021
1109 => 0.083701095445556
1110 => 0.083197448201258
1111 => 0.082680884305579
1112 => 0.082609479440275
1113 => 0.082410646411599
1114 => 0.081728773973757
1115 => 0.080905372030883
1116 => 0.080361690746342
1117 => 0.0741294118106
1118 => 0.075286086529575
1119 => 0.076616735359538
1120 => 0.0770760700034
1121 => 0.076290346310083
1122 => 0.081759799134212
1123 => 0.082759120870139
1124 => 0.079732110147872
1125 => 0.079165880033769
1126 => 0.081796921086225
1127 => 0.080210081699906
1128 => 0.080924635378402
1129 => 0.07938016116546
1130 => 0.08251841352751
1201 => 0.082494505302522
1202 => 0.08127365425304
1203 => 0.082305509200035
1204 => 0.082126199010291
1205 => 0.08074786118225
1206 => 0.082562109295156
1207 => 0.082563009139585
1208 => 0.081387966548049
1209 => 0.080015774051035
1210 => 0.079770458442309
1211 => 0.079585646084649
1212 => 0.080879182867621
1213 => 0.08203896390245
1214 => 0.084197028874165
1215 => 0.084739617682413
1216 => 0.086857377923188
1217 => 0.085596354811681
1218 => 0.086155350024029
1219 => 0.086762218401733
1220 => 0.08705317341885
1221 => 0.086579077831965
1222 => 0.089868831190779
1223 => 0.090146587169702
1224 => 0.090239716346855
1225 => 0.089130430023851
1226 => 0.090115735910375
1227 => 0.089654743915971
1228 => 0.090854117018144
1229 => 0.091042194034929
1230 => 0.090882899492746
1231 => 0.090942598106468
]
'min_raw' => 0.040781664907007
'max_raw' => 0.091042194034929
'avg_raw' => 0.065911929470968
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.040781'
'max' => '$0.091042'
'avg' => '$0.065911'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0062884499832596
'max_diff' => -0.0086878342577483
'year' => 2031
]
6 => [
'items' => [
101 => 0.08813537396698
102 => 0.087989804586061
103 => 0.086004955748091
104 => 0.086813796320826
105 => 0.085301707638836
106 => 0.085781206536135
107 => 0.08599256508123
108 => 0.085882163371764
109 => 0.086859526953234
110 => 0.086028568246796
111 => 0.083835531598249
112 => 0.081641897458333
113 => 0.081614358168602
114 => 0.081036813020421
115 => 0.080619353660956
116 => 0.080699771143755
117 => 0.080983172842157
118 => 0.080602881839049
119 => 0.080684036205805
120 => 0.08203173942268
121 => 0.082302011691444
122 => 0.08138352091999
123 => 0.077695647935015
124 => 0.076790634654173
125 => 0.077441140253249
126 => 0.077130240474817
127 => 0.062250123831629
128 => 0.065745986517056
129 => 0.063668863617655
130 => 0.064626097413528
131 => 0.062505892801607
201 => 0.063517765571861
202 => 0.063330909618872
203 => 0.068952153366941
204 => 0.068864385377583
205 => 0.06890639526951
206 => 0.066901153671639
207 => 0.07009555798529
208 => 0.071669236417259
209 => 0.071377990421597
210 => 0.071451290764056
211 => 0.070191748024949
212 => 0.068918590396449
213 => 0.067506462648888
214 => 0.070130021459591
215 => 0.069838326505483
216 => 0.070507369781675
217 => 0.072208935206273
218 => 0.072459497178664
219 => 0.072796255010505
220 => 0.072675551299845
221 => 0.075551203386173
222 => 0.075202942944356
223 => 0.076042150407769
224 => 0.074315836984704
225 => 0.072362349483332
226 => 0.072733643593024
227 => 0.072697884984502
228 => 0.072242636856196
229 => 0.07183165920148
301 => 0.071147497198614
302 => 0.073312287012607
303 => 0.073224400499529
304 => 0.074647180989361
305 => 0.074395690717631
306 => 0.072716177132908
307 => 0.072776161289155
308 => 0.073179583567314
309 => 0.074575832678217
310 => 0.074990334478221
311 => 0.074798320729418
312 => 0.075252803030397
313 => 0.075612007310355
314 => 0.075297913557554
315 => 0.079744818732117
316 => 0.077898153666491
317 => 0.078798205370464
318 => 0.079012862398449
319 => 0.078463022935016
320 => 0.07858226342636
321 => 0.078762880279656
322 => 0.079859550444466
323 => 0.082737530280996
324 => 0.084012167959524
325 => 0.08784697830489
326 => 0.083906327044135
327 => 0.083672505106358
328 => 0.084363270249737
329 => 0.086614709878367
330 => 0.088439290230401
331 => 0.089044608795736
401 => 0.089124611636865
402 => 0.090260229506252
403 => 0.090911144490965
404 => 0.090122335627193
405 => 0.089453902706878
406 => 0.087059658955255
407 => 0.087336799188814
408 => 0.089246020571294
409 => 0.091942908226626
410 => 0.094257118398237
411 => 0.093446762654505
412 => 0.099629204957172
413 => 0.10024216885847
414 => 0.10015747706681
415 => 0.10155390005522
416 => 0.098782284799814
417 => 0.097597365580612
418 => 0.089598425491286
419 => 0.09184580138386
420 => 0.095112494227475
421 => 0.094680135180153
422 => 0.09230777551817
423 => 0.094255318750698
424 => 0.093611400052717
425 => 0.093103514659407
426 => 0.095430236104585
427 => 0.092871910299163
428 => 0.095086972970549
429 => 0.092246132182607
430 => 0.093450464291284
501 => 0.092766827139409
502 => 0.09320922416009
503 => 0.090622980216846
504 => 0.092018454671098
505 => 0.090564923891655
506 => 0.09056423472881
507 => 0.090532147956292
508 => 0.092242220472364
509 => 0.09229798587572
510 => 0.091034239702566
511 => 0.090852114135589
512 => 0.091525527812577
513 => 0.090737136764146
514 => 0.091106019973633
515 => 0.090748309860774
516 => 0.090667781779842
517 => 0.090026120330251
518 => 0.089749674934918
519 => 0.089858076297548
520 => 0.089488046562158
521 => 0.089265090262026
522 => 0.090487796336467
523 => 0.089834553804715
524 => 0.090387677549659
525 => 0.089757323232514
526 => 0.087572240536985
527 => 0.086315576371956
528 => 0.082188157717374
529 => 0.083358688527767
530 => 0.084134751666059
531 => 0.083878262803483
601 => 0.084429300128309
602 => 0.084463129344714
603 => 0.084283981493252
604 => 0.084076551231521
605 => 0.083975585651723
606 => 0.084728100363989
607 => 0.08516496048294
608 => 0.084212639984371
609 => 0.083989524615937
610 => 0.084952373219045
611 => 0.085539710310722
612 => 0.089876277399459
613 => 0.089555010502598
614 => 0.090361327368274
615 => 0.09027054846314
616 => 0.091115696994718
617 => 0.09249715765743
618 => 0.08968826186766
619 => 0.090175789052456
620 => 0.090056258645391
621 => 0.091361260287171
622 => 0.091365334359851
623 => 0.090582920685937
624 => 0.091007079831778
625 => 0.090770325832767
626 => 0.091198172308202
627 => 0.089550719787323
628 => 0.091557139126243
629 => 0.092694649600604
630 => 0.092710443934645
701 => 0.09324961487165
702 => 0.093797443770323
703 => 0.094848953635484
704 => 0.093768117730892
705 => 0.091823799155785
706 => 0.091964172676797
707 => 0.09082421940761
708 => 0.090843382228014
709 => 0.090741089590878
710 => 0.091048077495154
711 => 0.089618086368884
712 => 0.089953702427994
713 => 0.089483837979875
714 => 0.090174767658909
715 => 0.089431441539036
716 => 0.090056201004209
717 => 0.090325826478274
718 => 0.091320750282193
719 => 0.089284490484249
720 => 0.085132418913573
721 => 0.086005234696731
722 => 0.08471427159524
723 => 0.084833755145326
724 => 0.085075130932166
725 => 0.084292753033775
726 => 0.084442006081227
727 => 0.084436673712094
728 => 0.084390722235689
729 => 0.084187195527449
730 => 0.08389204153397
731 => 0.085067844200384
801 => 0.085267635985426
802 => 0.08571174837461
803 => 0.087033125600509
804 => 0.086901088855421
805 => 0.087116446264812
806 => 0.086646322249292
807 => 0.084855562850058
808 => 0.08495280970104
809 => 0.083740139911021
810 => 0.085680737681626
811 => 0.085221178514908
812 => 0.084924897730515
813 => 0.084844054773472
814 => 0.08616870743793
815 => 0.086565064276523
816 => 0.08631808129323
817 => 0.085811511988852
818 => 0.086784274807029
819 => 0.087044545099605
820 => 0.087102810019714
821 => 0.088826359224755
822 => 0.087199137274032
823 => 0.087590825770766
824 => 0.090646667609873
825 => 0.087875440739152
826 => 0.089343421418307
827 => 0.089271571403065
828 => 0.090022540644763
829 => 0.089209970006096
830 => 0.089220042793019
831 => 0.089886852604585
901 => 0.088950438484025
902 => 0.088718569178953
903 => 0.088398243394675
904 => 0.089097663025761
905 => 0.089516933462568
906 => 0.092895945263027
907 => 0.095078940987783
908 => 0.09498417138613
909 => 0.09585018814398
910 => 0.095460039662764
911 => 0.094200147300949
912 => 0.096350629935062
913 => 0.095670127249614
914 => 0.095726227064191
915 => 0.095724139026291
916 => 0.096176613821537
917 => 0.095855993960399
918 => 0.095224019303143
919 => 0.095643553573652
920 => 0.096889420370818
921 => 0.10075662913708
922 => 0.10292077039638
923 => 0.1006263451159
924 => 0.1022090089508
925 => 0.10125997461064
926 => 0.10108750683971
927 => 0.10208153668597
928 => 0.10307730644988
929 => 0.10301388022075
930 => 0.10229100250549
1001 => 0.10188266722648
1002 => 0.10497471876148
1003 => 0.10725288966074
1004 => 0.10709753367846
1005 => 0.10778322445977
1006 => 0.10979643380129
1007 => 0.10998049643312
1008 => 0.10995730877214
1009 => 0.1095010903342
1010 => 0.1114833563792
1011 => 0.1131369975886
1012 => 0.10939548894724
1013 => 0.11082020645792
1014 => 0.11145980805
1015 => 0.11239893294841
1016 => 0.11398339406764
1017 => 0.11570453910067
1018 => 0.11594792787974
1019 => 0.11577523189377
1020 => 0.11464009047762
1021 => 0.1165233879103
1022 => 0.1176265793776
1023 => 0.11828350465029
1024 => 0.11994935783989
1025 => 0.11146375801169
1026 => 0.10545722869161
1027 => 0.10451922240294
1028 => 0.10642669507622
1029 => 0.10692968040835
1030 => 0.10672692765166
1031 => 0.099966032812152
1101 => 0.10448362769081
1102 => 0.10934417993008
1103 => 0.10953089353681
1104 => 0.11196418761714
1105 => 0.1127565679138
1106 => 0.11471568858761
1107 => 0.11459314505605
1108 => 0.11507015976371
1109 => 0.11496050234316
1110 => 0.11858936084987
1111 => 0.12259253067348
1112 => 0.12245391363178
1113 => 0.12187841060629
1114 => 0.122733130737
1115 => 0.12686483100071
1116 => 0.12648445024957
1117 => 0.12685395774855
1118 => 0.13172546521188
1119 => 0.13805911787808
1120 => 0.1351165003263
1121 => 0.14150113369827
1122 => 0.14551992197105
1123 => 0.15247000073836
1124 => 0.15159981664683
1125 => 0.15430543130892
1126 => 0.1500420055101
1127 => 0.14025231809551
1128 => 0.13870306258873
1129 => 0.1418047113467
1130 => 0.1494298121637
1201 => 0.14156456978654
1202 => 0.14315569807573
1203 => 0.1426974530214
1204 => 0.14267303508987
1205 => 0.14360496822143
1206 => 0.14225315060774
1207 => 0.13674560246225
1208 => 0.13926967932114
1209 => 0.1382950120298
1210 => 0.1393764780558
1211 => 0.14521270416765
1212 => 0.14263236948535
1213 => 0.13991419650691
1214 => 0.14332338863275
1215 => 0.14766446173444
1216 => 0.1473928051814
1217 => 0.14686567792486
1218 => 0.14983706667049
1219 => 0.15474493034305
1220 => 0.15607150617234
1221 => 0.15705075732888
1222 => 0.15718577951879
1223 => 0.15857659199061
1224 => 0.15109784279974
1225 => 0.16296680983356
1226 => 0.1650162525667
1227 => 0.16463104227357
1228 => 0.16690891161772
1229 => 0.1662387046727
1230 => 0.16526767996162
1231 => 0.16887858738881
]
'min_raw' => 0.062250123831629
'max_raw' => 0.16887858738881
'avg_raw' => 0.11556435561022
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.06225'
'max' => '$0.168878'
'avg' => '$0.115564'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.021468458924622
'max_diff' => 0.077836393353877
'year' => 2032
]
7 => [
'items' => [
101 => 0.16473897340874
102 => 0.15886331252694
103 => 0.15563980875979
104 => 0.15988477855301
105 => 0.16247703347669
106 => 0.16419034908287
107 => 0.16470879735008
108 => 0.15167839681016
109 => 0.14465573361828
110 => 0.14915718020928
111 => 0.15464925572354
112 => 0.15106733404296
113 => 0.15120773859136
114 => 0.14610085958731
115 => 0.15510110119781
116 => 0.1537898416991
117 => 0.16059265829795
118 => 0.15896911152062
119 => 0.16451654437317
120 => 0.16305571938837
121 => 0.16911952222663
122 => 0.17153853734972
123 => 0.17560044023103
124 => 0.17858839252543
125 => 0.18034297526313
126 => 0.18023763669683
127 => 0.18719016763324
128 => 0.18309050304297
129 => 0.17794035810084
130 => 0.17784720822733
131 => 0.18051454127098
201 => 0.18610453958338
202 => 0.18755394481462
203 => 0.18836396460739
204 => 0.18712339109778
205 => 0.18267349901065
206 => 0.18075205816889
207 => 0.18238918143557
208 => 0.18038712036003
209 => 0.18384323945554
210 => 0.18858922916087
211 => 0.18760920105439
212 => 0.19088528808031
213 => 0.19427569349773
214 => 0.19912412551727
215 => 0.2003916851841
216 => 0.20248691311239
217 => 0.20464359089711
218 => 0.20533625767747
219 => 0.20665877348305
220 => 0.20665180317195
221 => 0.21063729356765
222 => 0.21503341289448
223 => 0.21669284616996
224 => 0.22050862148525
225 => 0.21397423997854
226 => 0.21893064341294
227 => 0.2234014433776
228 => 0.21807117135029
301 => 0.22541770954584
302 => 0.22570295897636
303 => 0.23000988671348
304 => 0.22564399034439
305 => 0.22305153501686
306 => 0.23053585640941
307 => 0.23415728377735
308 => 0.23306648038197
309 => 0.22476541268354
310 => 0.21993383523352
311 => 0.20728866510511
312 => 0.22226741535291
313 => 0.22956312766247
314 => 0.22474651855118
315 => 0.22717573602149
316 => 0.24042875886314
317 => 0.24547465189155
318 => 0.2444251414151
319 => 0.2446024914092
320 => 0.2473251636979
321 => 0.25939899202899
322 => 0.25216407422385
323 => 0.25769489779868
324 => 0.26062842667991
325 => 0.26335325179213
326 => 0.25666194250633
327 => 0.24795664744037
328 => 0.24519931506956
329 => 0.22426760170005
330 => 0.22317801511734
331 => 0.22256639715062
401 => 0.21871023238549
402 => 0.21568034317253
403 => 0.2132708627778
404 => 0.20694766669029
405 => 0.20908155975046
406 => 0.19900370494056
407 => 0.20545115931069
408 => 0.18936665969578
409 => 0.20276230892856
410 => 0.19547166607659
411 => 0.20036713667048
412 => 0.20035005683476
413 => 0.19133594336104
414 => 0.18613679082915
415 => 0.18944989317652
416 => 0.19300180188728
417 => 0.19357808712555
418 => 0.19818322948336
419 => 0.19946842572822
420 => 0.19557422110622
421 => 0.18903334419248
422 => 0.19055264071802
423 => 0.18610600233356
424 => 0.17831343960226
425 => 0.18391019420097
426 => 0.1858211722929
427 => 0.18666516908431
428 => 0.17900207861996
429 => 0.17659416922228
430 => 0.17531221846326
501 => 0.1880441354425
502 => 0.1887416185953
503 => 0.18517319617139
504 => 0.20130280389914
505 => 0.19765217690626
506 => 0.20173082168263
507 => 0.19041478048284
508 => 0.19084706849574
509 => 0.18548987324415
510 => 0.18848954461713
511 => 0.18636947357463
512 => 0.18824720081352
513 => 0.18937270277835
514 => 0.19472901896691
515 => 0.20282346945547
516 => 0.19392896394575
517 => 0.19005350052349
518 => 0.19245781623423
519 => 0.19886082580892
520 => 0.20856171307861
521 => 0.20281859256641
522 => 0.20536729192521
523 => 0.20592406935137
524 => 0.20168930490754
525 => 0.20871785488406
526 => 0.21248451191632
527 => 0.21634832263156
528 => 0.21970316121409
529 => 0.21480503166487
530 => 0.22004673240183
531 => 0.21582284689258
601 => 0.21203358493353
602 => 0.21203933167978
603 => 0.20966227230059
604 => 0.20505642022464
605 => 0.20420703043539
606 => 0.20862566338519
607 => 0.21216898856483
608 => 0.21246083379801
609 => 0.21442260068008
610 => 0.21558355411309
611 => 0.22696247599619
612 => 0.23153917250896
613 => 0.23713547037233
614 => 0.23931554378018
615 => 0.24587678313824
616 => 0.2405780494788
617 => 0.23943163512098
618 => 0.22351621460338
619 => 0.22612236382154
620 => 0.23029506017581
621 => 0.22358502082936
622 => 0.22784099635653
623 => 0.22868121607948
624 => 0.22335701626
625 => 0.22620090142867
626 => 0.21864838557385
627 => 0.20298809366246
628 => 0.20873528926569
629 => 0.2129671597148
630 => 0.20692775879806
701 => 0.21775315118421
702 => 0.21142918043368
703 => 0.20942478530989
704 => 0.20160492531354
705 => 0.2052955982178
706 => 0.21028728616617
707 => 0.20720300336009
708 => 0.2136033532901
709 => 0.22266795570196
710 => 0.22912793118707
711 => 0.22962384789098
712 => 0.2254705164388
713 => 0.23212625659712
714 => 0.23217473639794
715 => 0.22466703430986
716 => 0.22006860858396
717 => 0.21902383658387
718 => 0.22163388187972
719 => 0.22480295870982
720 => 0.2297997095994
721 => 0.2328191415123
722 => 0.24069221855822
723 => 0.24282244746804
724 => 0.24516292319488
725 => 0.24829052054192
726 => 0.25204600305654
727 => 0.24382922111429
728 => 0.24415568917885
729 => 0.23650433560331
730 => 0.22832776699276
731 => 0.2345327633445
801 => 0.24264497065834
802 => 0.24078402133735
803 => 0.240574626523
804 => 0.24092677051947
805 => 0.23952367550437
806 => 0.23317752875219
807 => 0.22999053358223
808 => 0.23410257044066
809 => 0.23628793502521
810 => 0.23967724491203
811 => 0.23925944092883
812 => 0.24798993921197
813 => 0.25138234684823
814 => 0.25051442380557
815 => 0.25067414253315
816 => 0.2568159345161
817 => 0.26364687035699
818 => 0.27004494319336
819 => 0.27655333768614
820 => 0.26870721409813
821 => 0.26472343642177
822 => 0.26883367809355
823 => 0.26665272600666
824 => 0.27918512361031
825 => 0.28005283962923
826 => 0.29258433099788
827 => 0.30447820852897
828 => 0.29700787715264
829 => 0.3040520631694
830 => 0.31167092466744
831 => 0.32636894461289
901 => 0.32141916857784
902 => 0.31762771770787
903 => 0.31404481495591
904 => 0.32150026681295
905 => 0.33109158652328
906 => 0.33315746492437
907 => 0.33650497716042
908 => 0.33298547735853
909 => 0.33722432720972
910 => 0.35218932982941
911 => 0.34814565402183
912 => 0.34240298432176
913 => 0.35421641663587
914 => 0.35849165186679
915 => 0.38849749167548
916 => 0.42638110391337
917 => 0.41069703968968
918 => 0.40096143490444
919 => 0.4032495329606
920 => 0.41708334570868
921 => 0.42152632730009
922 => 0.40944877174703
923 => 0.41371476854711
924 => 0.43722083033912
925 => 0.44983107832578
926 => 0.43270466777764
927 => 0.38545358031862
928 => 0.34188591974718
929 => 0.35344202520805
930 => 0.35213192147649
1001 => 0.37738625243107
1002 => 0.34804921369116
1003 => 0.34854317418451
1004 => 0.37431973795843
1005 => 0.36744299266572
1006 => 0.35630354599854
1007 => 0.3419672500355
1008 => 0.31546528100095
1009 => 0.29199174796496
1010 => 0.33802875188033
1011 => 0.33604355255864
1012 => 0.33316868975078
1013 => 0.33956638583703
1014 => 0.37063178201416
1015 => 0.3699156240834
1016 => 0.36535979271491
1017 => 0.36881535065466
1018 => 0.35569776998432
1019 => 0.35907846920483
1020 => 0.34187901840715
1021 => 0.34965388848021
1022 => 0.35627964574897
1023 => 0.35760986461668
1024 => 0.3606069156483
1025 => 0.33499744272426
1026 => 0.34649534421254
1027 => 0.35324928412922
1028 => 0.32273473787521
1029 => 0.35264610966152
1030 => 0.33455163877659
1031 => 0.32841010358841
1101 => 0.33667887163356
1102 => 0.33345652468472
1103 => 0.33068614000068
1104 => 0.32914021774573
1105 => 0.33521188840746
1106 => 0.33492863771387
1107 => 0.32499420605079
1108 => 0.31203514492554
1109 => 0.31638463120585
1110 => 0.31480442206356
1111 => 0.30907754028087
1112 => 0.31293676713606
1113 => 0.29594268517581
1114 => 0.26670525043871
1115 => 0.28602039539288
1116 => 0.28527678332298
1117 => 0.28490182039721
1118 => 0.29941661799888
1119 => 0.29802135512284
1120 => 0.29548893934036
1121 => 0.30903103047908
1122 => 0.30408798504662
1123 => 0.31932128634149
1124 => 0.32935492380244
1125 => 0.32681006878818
1126 => 0.33624675331698
1127 => 0.31648483458503
1128 => 0.32304895127722
1129 => 0.32440180663001
1130 => 0.30886392317651
1201 => 0.29824963738486
1202 => 0.29754178553428
1203 => 0.27913807671024
1204 => 0.2889691894145
1205 => 0.29762016175515
1206 => 0.29347701734655
1207 => 0.29216542159971
1208 => 0.29886607981993
1209 => 0.29938677835089
1210 => 0.28751479666367
1211 => 0.28998335759321
1212 => 0.30027766703349
1213 => 0.28972396740779
1214 => 0.2692198529721
1215 => 0.26413454910049
1216 => 0.26345607582327
1217 => 0.24966432840292
1218 => 0.26447437342152
1219 => 0.25800939188637
1220 => 0.27843219109353
1221 => 0.26676679771607
1222 => 0.26626392592289
1223 => 0.26550376145225
1224 => 0.25363263471765
1225 => 0.25623165702306
1226 => 0.26487120300855
1227 => 0.26795389034762
1228 => 0.26763234080244
1229 => 0.26482886451993
1230 => 0.26611228160594
1231 => 0.26197794799974
]
'min_raw' => 0.14465573361828
'max_raw' => 0.44983107832578
'avg_raw' => 0.29724340597203
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.144655'
'max' => '$0.449831'
'avg' => '$0.297243'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.082405609786655
'max_diff' => 0.28095249093697
'year' => 2033
]
8 => [
'items' => [
101 => 0.26051802875468
102 => 0.25591012203484
103 => 0.2491377721234
104 => 0.25007950891582
105 => 0.2366617116595
106 => 0.22935098357786
107 => 0.22732747039871
108 => 0.22462154400712
109 => 0.22763311198484
110 => 0.23662370072573
111 => 0.22577914324441
112 => 0.20718691009994
113 => 0.20830433499155
114 => 0.21081485695656
115 => 0.20613651588353
116 => 0.2017088586813
117 => 0.20555834739145
118 => 0.19768057311106
119 => 0.21176684834183
120 => 0.21138585407317
121 => 0.21663634638979
122 => 0.21991958698631
123 => 0.21235278037308
124 => 0.21044974897268
125 => 0.2115338021463
126 => 0.19361681794454
127 => 0.21517214653315
128 => 0.21535855790989
129 => 0.21376239052862
130 => 0.22523993755595
131 => 0.2494611417203
201 => 0.24034815041799
202 => 0.23681932474411
203 => 0.23011102455852
204 => 0.23904943625637
205 => 0.23836310569892
206 => 0.23525925863499
207 => 0.23338204224614
208 => 0.2368408710012
209 => 0.23295345508622
210 => 0.23225516836885
211 => 0.22802431060499
212 => 0.22651408687506
213 => 0.22539597734916
214 => 0.22416504862431
215 => 0.22688017066299
216 => 0.22072734691928
217 => 0.21330764465312
218 => 0.21269077669198
219 => 0.21439400336827
220 => 0.21364045235432
221 => 0.21268716897963
222 => 0.21086709140607
223 => 0.2103271132698
224 => 0.21208178025253
225 => 0.21010086353247
226 => 0.21302381405904
227 => 0.21222893325004
228 => 0.20778879366653
301 => 0.20225473579525
302 => 0.20220547107212
303 => 0.20101316738142
304 => 0.19949458936726
305 => 0.19907215570408
306 => 0.20523415418938
307 => 0.21798930664085
308 => 0.2154851650097
309 => 0.21729466397296
310 => 0.22619560794528
311 => 0.22902495037335
312 => 0.22701675013455
313 => 0.22426780178729
314 => 0.22438874156342
315 => 0.23378273022928
316 => 0.23436862177947
317 => 0.23584898071102
318 => 0.23775166028744
319 => 0.22734078469384
320 => 0.22389839025919
321 => 0.22226719279929
322 => 0.21724373597564
323 => 0.22266110348131
324 => 0.21950463543056
325 => 0.21993055081091
326 => 0.21965317286071
327 => 0.21980463997773
328 => 0.21176291094083
329 => 0.21469289434104
330 => 0.20982122865856
331 => 0.20329861517985
401 => 0.20327674909235
402 => 0.20487314950068
403 => 0.20392354807065
404 => 0.20136819503892
405 => 0.20173117087615
406 => 0.19855112060089
407 => 0.20211728655624
408 => 0.20221955143548
409 => 0.2008463832923
410 => 0.20634055398259
411 => 0.20859152019722
412 => 0.20768767150926
413 => 0.2085281037638
414 => 0.21558922339999
415 => 0.21674049399894
416 => 0.21725181235033
417 => 0.21656671349617
418 => 0.20865716806847
419 => 0.20900799004217
420 => 0.20643389117317
421 => 0.20425904888073
422 => 0.20434603116688
423 => 0.20546418281491
424 => 0.21034721664056
425 => 0.22062327345607
426 => 0.22101324230052
427 => 0.22148589591619
428 => 0.2195633761246
429 => 0.21898352575942
430 => 0.21974849806317
501 => 0.22360764471368
502 => 0.23353441764688
503 => 0.23002563310541
504 => 0.22717293665572
505 => 0.22967552052354
506 => 0.22929026735299
507 => 0.22603834288845
508 => 0.2259470721996
509 => 0.21970558944902
510 => 0.21739825538781
511 => 0.2154700743453
512 => 0.21336455098333
513 => 0.21211632615657
514 => 0.21403416679851
515 => 0.21447279964455
516 => 0.21027940756282
517 => 0.2097078637172
518 => 0.21313227821179
519 => 0.21162532106776
520 => 0.21317526386113
521 => 0.21353486388436
522 => 0.21347695999833
523 => 0.21190352366704
524 => 0.21290638506406
525 => 0.21053431889273
526 => 0.20795505320424
527 => 0.20630964238891
528 => 0.20487380322046
529 => 0.20567049024258
530 => 0.20283044647804
531 => 0.20192185931897
601 => 0.21256663818784
602 => 0.22043005078893
603 => 0.22031571365546
604 => 0.21961971576057
605 => 0.21858560406677
606 => 0.22353199300219
607 => 0.22180877000326
608 => 0.22306255871508
609 => 0.22338170056359
610 => 0.22434764681964
611 => 0.22469288958029
612 => 0.22364932617109
613 => 0.22014699990926
614 => 0.21141953585598
615 => 0.20735687777984
616 => 0.20601613294579
617 => 0.20606486647407
618 => 0.20472057820803
619 => 0.20511653134915
620 => 0.20458288186429
621 => 0.20357227884363
622 => 0.20560808835386
623 => 0.20584269643504
624 => 0.20536751416924
625 => 0.20547943679468
626 => 0.20154513058687
627 => 0.20184424734298
628 => 0.20017872723501
629 => 0.19986646229291
630 => 0.19565617249337
701 => 0.18819703382223
702 => 0.19233012072215
703 => 0.18733793294701
704 => 0.18544731579258
705 => 0.19439720335038
706 => 0.19349888287082
707 => 0.19196134870033
708 => 0.18968701521198
709 => 0.18884344279786
710 => 0.18371816385222
711 => 0.18341533502981
712 => 0.18595556166944
713 => 0.18478333447912
714 => 0.18313708354674
715 => 0.17717452954747
716 => 0.1704706447185
717 => 0.17067299286237
718 => 0.17280537389625
719 => 0.17900555934303
720 => 0.17658303962468
721 => 0.1748254737738
722 => 0.17449633452217
723 => 0.17861620135606
724 => 0.1844466760648
725 => 0.18718220434863
726 => 0.18447137889859
727 => 0.18135732858279
728 => 0.18154686639639
729 => 0.18280777655585
730 => 0.1829402803853
731 => 0.18091335375926
801 => 0.1814839217317
802 => 0.18061717680774
803 => 0.17529796480925
804 => 0.17520175713161
805 => 0.1738963367233
806 => 0.17385680911214
807 => 0.17163596334523
808 => 0.17132525167045
809 => 0.16691562760454
810 => 0.16981805551829
811 => 0.16787125925805
812 => 0.16493697809106
813 => 0.16443110691187
814 => 0.16441589981336
815 => 0.16742875047861
816 => 0.1697828486041
817 => 0.1679051246125
818 => 0.16747760325776
819 => 0.1720424128393
820 => 0.17146149921088
821 => 0.17095843175517
822 => 0.18392462100384
823 => 0.17366087044915
824 => 0.16918528937291
825 => 0.16364590790126
826 => 0.16544955844041
827 => 0.16582961411015
828 => 0.1525084002194
829 => 0.14710398540297
830 => 0.14524939389905
831 => 0.14418205026847
901 => 0.14466845216378
902 => 0.13980384495436
903 => 0.14307294145227
904 => 0.13886060280392
905 => 0.13815439052139
906 => 0.14568657383326
907 => 0.14673463313873
908 => 0.14226328653509
909 => 0.14513461489989
910 => 0.14409343132036
911 => 0.1389328112599
912 => 0.13873571353255
913 => 0.13614629579077
914 => 0.13209435843498
915 => 0.13024251433539
916 => 0.12927805784987
917 => 0.12967601139268
918 => 0.12947479390386
919 => 0.12816171368054
920 => 0.12955005812522
921 => 0.12600341177259
922 => 0.1245911086177
923 => 0.12395320404782
924 => 0.12080535127252
925 => 0.12581498489451
926 => 0.12680194582775
927 => 0.12779085137891
928 => 0.13639859904726
929 => 0.13596858029899
930 => 0.13985574035572
1001 => 0.13970469246394
1002 => 0.13859601144795
1003 => 0.13391866861064
1004 => 0.13578297409997
1005 => 0.1300449315812
1006 => 0.13434426318523
1007 => 0.13238222778553
1008 => 0.13368089704296
1009 => 0.13134577262182
1010 => 0.1326381268914
1011 => 0.12703599087885
1012 => 0.12180479509452
1013 => 0.12390998098626
1014 => 0.12619855880779
1015 => 0.13116077864366
1016 => 0.12820532144684
1017 => 0.12926821561302
1018 => 0.12570769808264
1019 => 0.1183613334059
1020 => 0.11840291303216
1021 => 0.1172728348759
1022 => 0.11629628235478
1023 => 0.12854479125829
1024 => 0.12702149555586
1025 => 0.12459432321806
1026 => 0.1278431898442
1027 => 0.1287022417466
1028 => 0.12872669774658
1029 => 0.13109698697162
1030 => 0.13236201075593
1031 => 0.13258497668084
1101 => 0.13631467798993
1102 => 0.13756482467279
1103 => 0.14271400193211
1104 => 0.13225468232606
1105 => 0.13203927952172
1106 => 0.12788890806023
1107 => 0.12525667686457
1108 => 0.12806913918216
1109 => 0.13056059685616
1110 => 0.12796632459507
1111 => 0.12830508178429
1112 => 0.12482248323361
1113 => 0.12606734834398
1114 => 0.12713959387848
1115 => 0.12654756291801
1116 => 0.12566126391556
1117 => 0.1303563257391
1118 => 0.13009141195092
1119 => 0.13446356146
1120 => 0.13787196465774
1121 => 0.14398043251304
1122 => 0.13760592786441
1123 => 0.13737361557865
1124 => 0.13964450543599
1125 => 0.13756447701139
1126 => 0.1388789831756
1127 => 0.1437686452478
1128 => 0.14387195610236
1129 => 0.14214136618001
1130 => 0.14203605962596
1201 => 0.14236843835113
1202 => 0.14431519092609
1203 => 0.14363493575873
1204 => 0.14442214426035
1205 => 0.14540656054579
1206 => 0.14947852368621
1207 => 0.1504602602138
1208 => 0.14807514942379
1209 => 0.14829049822317
1210 => 0.14739840131495
1211 => 0.14653664687955
1212 => 0.1484737450012
1213 => 0.15201382989228
1214 => 0.1519918072079
1215 => 0.15281303809321
1216 => 0.15332465813132
1217 => 0.15112841039901
1218 => 0.14969873388355
1219 => 0.15024696283226
1220 => 0.15112359286012
1221 => 0.14996268352915
1222 => 0.14279701335289
1223 => 0.14497061993958
1224 => 0.14460882551962
1225 => 0.1440935862699
1226 => 0.14627916450082
1227 => 0.1460683601487
1228 => 0.13975395137624
1229 => 0.1401581793388
1230 => 0.13977853381749
1231 => 0.14100524616502
]
'min_raw' => 0.11629628235478
'max_raw' => 0.26051802875468
'avg_raw' => 0.18840715555473
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.116296'
'max' => '$0.260518'
'avg' => '$0.1884071'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.028359451263508
'max_diff' => -0.1893130495711
'year' => 2034
]
9 => [
'items' => [
101 => 0.13749823051889
102 => 0.13857696491153
103 => 0.13925353701009
104 => 0.13965204317381
105 => 0.14109172069541
106 => 0.14092279115494
107 => 0.14108121979798
108 => 0.14321588150174
109 => 0.15401226787188
110 => 0.15459989136112
111 => 0.1517062183869
112 => 0.15286218366492
113 => 0.15064298311293
114 => 0.15213274731083
115 => 0.15315200613914
116 => 0.14854617148625
117 => 0.14827344384972
118 => 0.14604508386763
119 => 0.14724247830125
120 => 0.14533733766166
121 => 0.14580479253562
122 => 0.14449774795604
123 => 0.14685016796931
124 => 0.14948053907327
125 => 0.15014507469063
126 => 0.14839696758192
127 => 0.14713122282935
128 => 0.14490899200606
129 => 0.14860461139083
130 => 0.14968532312089
131 => 0.14859893487218
201 => 0.1483471949769
202 => 0.14787014833024
203 => 0.14844840267814
204 => 0.14967943733272
205 => 0.14909890412326
206 => 0.14948235653578
207 => 0.14802103135365
208 => 0.1511291374484
209 => 0.15606555793332
210 => 0.15608142933237
211 => 0.15550089299362
212 => 0.15526335003164
213 => 0.15585901554508
214 => 0.15618213965065
215 => 0.15810841269476
216 => 0.16017538041719
217 => 0.16982101688912
218 => 0.16711256076544
219 => 0.17567074326481
220 => 0.1824391544809
221 => 0.18446870505786
222 => 0.18260161402479
223 => 0.17621439645896
224 => 0.17590100909335
225 => 0.1854462087504
226 => 0.18274925264945
227 => 0.18242845830288
228 => 0.17901574844602
301 => 0.18103308264376
302 => 0.18059186206221
303 => 0.17989537378898
304 => 0.18374430690955
305 => 0.19094916611464
306 => 0.18982622124078
307 => 0.18898799498436
308 => 0.18531513153273
309 => 0.18752701569437
310 => 0.18673940611026
311 => 0.19012347671298
312 => 0.18811882825427
313 => 0.18272882055445
314 => 0.18358719704634
315 => 0.18345745516641
316 => 0.18612753386188
317 => 0.18532604251293
318 => 0.18330095111705
319 => 0.19092454068914
320 => 0.19042950718696
321 => 0.19113135151264
322 => 0.19144032509006
323 => 0.19608066971987
324 => 0.19798167044024
325 => 0.19841323088547
326 => 0.20021903454115
327 => 0.19836830084547
328 => 0.20577255517895
329 => 0.21069595226051
330 => 0.21641473132642
331 => 0.22477140460463
401 => 0.22791359106079
402 => 0.22734598320211
403 => 0.23368191750825
404 => 0.24506745061649
405 => 0.22964732496813
406 => 0.24588475471884
407 => 0.24074417192991
408 => 0.22855594261248
409 => 0.22777116433422
410 => 0.23602517473624
411 => 0.25433177538884
412 => 0.24974617955711
413 => 0.25433927578088
414 => 0.24898118505918
415 => 0.24871511069332
416 => 0.25407904527401
417 => 0.26661217079464
418 => 0.26065815265697
419 => 0.25212160767148
420 => 0.25842485964542
421 => 0.25296439944716
422 => 0.24066045433392
423 => 0.2497426730384
424 => 0.24366965203741
425 => 0.24544208242505
426 => 0.25820666927544
427 => 0.25667080041469
428 => 0.25865835693812
429 => 0.25515037169767
430 => 0.2518733603246
501 => 0.24575657524269
502 => 0.2439456967338
503 => 0.24444615840507
504 => 0.24394544872985
505 => 0.24052316369268
506 => 0.23978412156474
507 => 0.23855235230667
508 => 0.23893412910577
509 => 0.23661804253378
510 => 0.24098897642303
511 => 0.24180026026941
512 => 0.24498106144837
513 => 0.24531130277867
514 => 0.2541697887862
515 => 0.24929068355406
516 => 0.25256400858546
517 => 0.25227121158492
518 => 0.22882009849973
519 => 0.23205145497195
520 => 0.2370784315872
521 => 0.23481378543593
522 => 0.23161210562364
523 => 0.22902657751199
524 => 0.22510923803903
525 => 0.23062281812138
526 => 0.2378725896258
527 => 0.24549516894797
528 => 0.25465319855237
529 => 0.25260923295589
530 => 0.24532396595471
531 => 0.24565077771049
601 => 0.24767099938905
602 => 0.24505462875882
603 => 0.24428300998234
604 => 0.24756499081817
605 => 0.24758759201644
606 => 0.24457714140741
607 => 0.24123157646212
608 => 0.24121755842284
609 => 0.24062224745515
610 => 0.24908708955784
611 => 0.25374189682226
612 => 0.25427556297352
613 => 0.25370597683825
614 => 0.25392518793565
615 => 0.25121665815017
616 => 0.25740755405022
617 => 0.26308893234426
618 => 0.26156620159651
619 => 0.25928341173671
620 => 0.25746505965932
621 => 0.26113785563514
622 => 0.26097431181186
623 => 0.26303931046119
624 => 0.26294563019444
625 => 0.2622512488172
626 => 0.26156622639506
627 => 0.26428226286743
628 => 0.2635000879816
629 => 0.26271669816213
630 => 0.2611454899482
701 => 0.26135904323948
702 => 0.25907664753553
703 => 0.25802070684756
704 => 0.2421418924565
705 => 0.23789855439598
706 => 0.23923359493093
707 => 0.23967312493935
708 => 0.23782641877742
709 => 0.24047412103373
710 => 0.2400614794417
711 => 0.24166682648905
712 => 0.24066387534993
713 => 0.24070503681452
714 => 0.24365450226294
715 => 0.24451074463054
716 => 0.24407525285166
717 => 0.2443802563658
718 => 0.25140893361536
719 => 0.25040968047492
720 => 0.24987884715991
721 => 0.25002589161595
722 => 0.25182186934975
723 => 0.25232464505847
724 => 0.25019434905122
725 => 0.25119900896333
726 => 0.25547672335878
727 => 0.25697368129952
728 => 0.2617512524658
729 => 0.25972165531981
730 => 0.26344706872018
731 => 0.2748977194259
801 => 0.28404529153439
802 => 0.27563280618402
803 => 0.29243115742497
804 => 0.30551108344643
805 => 0.30500905409997
806 => 0.30272826645399
807 => 0.28783711842639
808 => 0.27413406199688
809 => 0.28559725056267
810 => 0.28562647258775
811 => 0.28464177452375
812 => 0.27852589941828
813 => 0.28442895532701
814 => 0.28489751846829
815 => 0.28463524771017
816 => 0.27994622060624
817 => 0.27278694289559
818 => 0.27418584862336
819 => 0.27647728474236
820 => 0.27213911812545
821 => 0.27075281103257
822 => 0.27333021967396
823 => 0.28163516734093
824 => 0.28006516509177
825 => 0.28002416598817
826 => 0.28674130139462
827 => 0.28193328209215
828 => 0.27420349330451
829 => 0.27225161969224
830 => 0.2653237833083
831 => 0.27010886457479
901 => 0.27028107113086
902 => 0.26766033102355
903 => 0.27441615192049
904 => 0.27435389584159
905 => 0.280767542312
906 => 0.29302802550782
907 => 0.28940199732508
908 => 0.28518532105929
909 => 0.28564379068514
910 => 0.29067207088115
911 => 0.28763185789017
912 => 0.28872513967885
913 => 0.29067041606823
914 => 0.29184404961244
915 => 0.28547492287932
916 => 0.28398997476728
917 => 0.28095229207602
918 => 0.2801598173629
919 => 0.2826339465316
920 => 0.28198210090792
921 => 0.27026659783664
922 => 0.26904226258125
923 => 0.26907981119558
924 => 0.26600116198193
925 => 0.26130548297063
926 => 0.27364544704789
927 => 0.2726543752348
928 => 0.27156030865601
929 => 0.27169432556926
930 => 0.27705068573501
1001 => 0.2739437263362
1002 => 0.28220408711856
1003 => 0.28050600527088
1004 => 0.27876437403126
1005 => 0.27852362754256
1006 => 0.2778532481043
1007 => 0.2755542675733
1008 => 0.27277811043481
1009 => 0.27094505102537
1010 => 0.24993248746969
1011 => 0.25383229704117
1012 => 0.25831867247432
1013 => 0.25986735129583
1014 => 0.25721822900633
1015 => 0.27565887106788
1016 => 0.27902815407098
1017 => 0.26882237608171
1018 => 0.26691329171909
1019 => 0.27578403032087
1020 => 0.27043389054031
1021 => 0.2728430581559
1022 => 0.26763575551522
1023 => 0.27821659245965
1024 => 0.27813598420989
1025 => 0.27401979965946
1026 => 0.27749877065507
1027 => 0.27689421383131
1028 => 0.27224705161159
1029 => 0.27836391579101
1030 => 0.27836694967933
1031 => 0.27440521154311
1101 => 0.26977876873601
1102 => 0.2689516700338
1103 => 0.26832856226676
1104 => 0.27268981184241
1105 => 0.27660009457466
1106 => 0.28387616129808
1107 => 0.28570553734743
1108 => 0.2928457138565
1109 => 0.28859408639423
1110 => 0.29047877778046
1111 => 0.29252487688609
1112 => 0.29350585204013
1113 => 0.29190740566865
1114 => 0.30299903880114
1115 => 0.30393551247638
1116 => 0.30424950399922
1117 => 0.30050946771332
1118 => 0.30383149530159
1119 => 0.30227722860703
1120 => 0.30632099875856
1121 => 0.30695511355177
1122 => 0.30641804088121
1123 => 0.30661931892539
1124 => 0.29715456674498
1125 => 0.29666376941388
1126 => 0.28997171297895
1127 => 0.29269877544137
1128 => 0.28760066287938
1129 => 0.28921732688916
1130 => 0.28992993698054
1201 => 0.28955770990907
1202 => 0.29285295946134
1203 => 0.2900513241669
1204 => 0.2826573479934
1205 => 0.27526135733603
1206 => 0.27516850669796
1207 => 0.27322127290796
1208 => 0.27181377953144
1209 => 0.27208491268927
1210 => 0.2730404213019
1211 => 0.27175824363385
1212 => 0.27203186124739
1213 => 0.27657573673672
1214 => 0.27748697856066
1215 => 0.27439022279773
1216 => 0.26195630154981
1217 => 0.25890498608745
1218 => 0.26109821113158
1219 => 0.26004999082227
1220 => 0.20988063866319
1221 => 0.22166718378045
1222 => 0.21466401890503
1223 => 0.21789139947975
1224 => 0.21074298160269
1225 => 0.2141545812943
1226 => 0.21352458340294
1227 => 0.23247699916226
1228 => 0.23218108325837
1229 => 0.23232272254204
1230 => 0.22556191049332
1231 => 0.23633206766298
]
'min_raw' => 0.13749823051889
'max_raw' => 0.30695511355177
'avg_raw' => 0.22222667203533
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.137498'
'max' => '$0.306955'
'avg' => '$0.222226'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.021201948164117
'max_diff' => 0.046437084797089
'year' => 2035
]
10 => [
'items' => [
101 => 0.24163783436708
102 => 0.24065587815856
103 => 0.24090301538083
104 => 0.23665637909747
105 => 0.23236383926395
106 => 0.22760275197144
107 => 0.23644826367275
108 => 0.23546479376949
109 => 0.23772051988628
110 => 0.24345746651481
111 => 0.24430225369841
112 => 0.24543765624014
113 => 0.24503069525238
114 => 0.25472615703306
115 => 0.2535519726387
116 => 0.2563814191932
117 => 0.25056103295998
118 => 0.24397471346096
119 => 0.24522655747471
120 => 0.2451059948295
121 => 0.2435710939805
122 => 0.24218545412408
123 => 0.23987875416475
124 => 0.24717749416343
125 => 0.24688117864855
126 => 0.25167818240538
127 => 0.25083026539575
128 => 0.24516766808496
129 => 0.24536990885571
130 => 0.24673007523256
131 => 0.25143762659297
201 => 0.25283514835128
202 => 0.25218776059122
203 => 0.25372007939991
204 => 0.25493116170863
205 => 0.25387217269174
206 => 0.26886522396078
207 => 0.26263906376198
208 => 0.26567365092153
209 => 0.26639738207826
210 => 0.26454355993873
211 => 0.2649455875804
212 => 0.26555454991156
213 => 0.26925204993928
214 => 0.27895535989227
215 => 0.28325288981779
216 => 0.2961822206351
217 => 0.28289603978198
218 => 0.28210769279384
219 => 0.28443665570242
220 => 0.29202754160085
221 => 0.29817924164586
222 => 0.30022011545088
223 => 0.30048985061537
224 => 0.30431866554831
225 => 0.3065132708647
226 => 0.30385374670762
227 => 0.30160007844828
228 => 0.29352771847893
229 => 0.29446211612568
301 => 0.3008991893143
302 => 0.30999193433493
303 => 0.31779445550151
304 => 0.31506228453429
305 => 0.33590682040207
306 => 0.33797347099106
307 => 0.33768792670248
308 => 0.34239606430306
309 => 0.33305136996146
310 => 0.3290563320855
311 => 0.30208734710617
312 => 0.30966453183476
313 => 0.32067841483022
314 => 0.31922068611583
315 => 0.31122210988259
316 => 0.31778838786419
317 => 0.31561737101697
318 => 0.31390499995401
319 => 0.32174970375293
320 => 0.31312412968334
321 => 0.32059236813066
322 => 0.31101427507294
323 => 0.31507476486113
324 => 0.31276983447356
325 => 0.31426140691596
326 => 0.30554170489553
327 => 0.31024664444695
328 => 0.30534596394178
329 => 0.30534364038113
330 => 0.30523545758736
331 => 0.31100108646875
401 => 0.31118910341958
402 => 0.30692829496485
403 => 0.30631424590019
404 => 0.30858470712839
405 => 0.3059265916649
406 => 0.30717030716029
407 => 0.30596426254027
408 => 0.30569275649311
409 => 0.30352935011644
410 => 0.30259729516528
411 => 0.30296277792773
412 => 0.30171519684021
413 => 0.300963484108
414 => 0.30508592300459
415 => 0.30288347020085
416 => 0.3047483655248
417 => 0.30262308193461
418 => 0.29525592306903
419 => 0.29101899209915
420 => 0.27710311193806
421 => 0.28104963828915
422 => 0.28366618934289
423 => 0.28280141923524
424 => 0.28465928004809
425 => 0.28477333761308
426 => 0.28416932812417
427 => 0.28346996251443
428 => 0.28312955001294
429 => 0.28566670590425
430 => 0.28713961029589
501 => 0.28392879524608
502 => 0.28317654620398
503 => 0.2864228574933
504 => 0.28840310550446
505 => 0.30302414421358
506 => 0.30194097044067
507 => 0.30465952404855
508 => 0.30435345663191
509 => 0.30720293391251
510 => 0.31186062498735
511 => 0.3023902367213
512 => 0.3040339686629
513 => 0.30363096355013
514 => 0.3080308676977
515 => 0.30804460371818
516 => 0.3054066413902
517 => 0.30683672356425
518 => 0.30603849092695
519 => 0.30748100519016
520 => 0.30192650399456
521 => 0.30869128687945
522 => 0.31252648286221
523 => 0.31257973456215
524 => 0.31439758701997
525 => 0.31624463040004
526 => 0.31978986932451
527 => 0.31614575561062
528 => 0.30959034978666
529 => 0.31006362891332
530 => 0.30622019687726
531 => 0.30628480566416
601 => 0.30593991889621
602 => 0.30697495004868
603 => 0.30215363512767
604 => 0.30328518810293
605 => 0.30170100731121
606 => 0.30403052496324
607 => 0.30152434905272
608 => 0.30363076920886
609 => 0.30453983031932
610 => 0.30789428538759
611 => 0.30102889331171
612 => 0.28702989412279
613 => 0.28997265347376
614 => 0.28562008124492
615 => 0.28602292837611
616 => 0.28683674369376
617 => 0.28419890198545
618 => 0.28470211905545
619 => 0.28468414060063
620 => 0.2845292119897
621 => 0.28384300748309
622 => 0.28284787518708
623 => 0.28681217596881
624 => 0.2874857879211
625 => 0.28898314384817
626 => 0.2934382594209
627 => 0.29299308831632
628 => 0.29371918085786
629 => 0.29213412491653
630 => 0.28609645457518
701 => 0.28642432912282
702 => 0.28233572825987
703 => 0.28887858913168
704 => 0.28732915331569
705 => 0.28633022196545
706 => 0.2860576542915
707 => 0.29052381323402
708 => 0.29186015798808
709 => 0.29102743761611
710 => 0.28931950383886
711 => 0.29259924159648
712 => 0.29347676105939
713 => 0.29367320530546
714 => 0.29948427178462
715 => 0.29399797936875
716 => 0.29531858448231
717 => 0.30562156859492
718 => 0.2962781837194
719 => 0.30122758307031
720 => 0.30098533572751
721 => 0.3035172809569
722 => 0.30077764231676
723 => 0.30081160342113
724 => 0.303059799256
725 => 0.29990261367018
726 => 0.29912085011954
727 => 0.29804084937341
728 => 0.30039899149154
729 => 0.30181259104176
730 => 0.31320516524208
731 => 0.32056528773999
801 => 0.32024576541141
802 => 0.32316560137386
803 => 0.32185018853015
804 => 0.31760237346941
805 => 0.32485287581223
806 => 0.32255851349706
807 => 0.32274765793867
808 => 0.3227406179731
809 => 0.32426616833606
810 => 0.32318517608927
811 => 0.32105442940927
812 => 0.32246891849324
813 => 0.32666944538352
814 => 0.33970800973887
815 => 0.34700456309013
816 => 0.3392687480653
817 => 0.34460480968274
818 => 0.34140507414544
819 => 0.34082358701443
820 => 0.34417502804203
821 => 0.34753233532349
822 => 0.3473184893637
823 => 0.344881256677
824 => 0.34350452577477
825 => 0.35392959340515
826 => 0.36161060564882
827 => 0.36108681210796
828 => 0.36339866645053
829 => 0.37018634230326
830 => 0.37080692231731
831 => 0.37072874349941
901 => 0.36919057118376
902 => 0.37587391955187
903 => 0.38144928634288
904 => 0.36883452873476
905 => 0.37363806329263
906 => 0.37579452471587
907 => 0.37896084987847
908 => 0.38430297116548
909 => 0.39010593181087
910 => 0.39092653407236
911 => 0.3903442774984
912 => 0.38651706896081
913 => 0.39286673774271
914 => 0.3965862247971
915 => 0.39880109421903
916 => 0.40441763455394
917 => 0.37580784228747
918 => 0.35555640932233
919 => 0.35239385563059
920 => 0.35882503292403
921 => 0.36052088308864
922 => 0.3598372880137
923 => 0.3370424590317
924 => 0.3522738455735
925 => 0.36866153680112
926 => 0.36929105476214
927 => 0.37749507564115
928 => 0.38016664113354
929 => 0.38677195326674
930 => 0.38635878919437
1001 => 0.38796707758533
1002 => 0.38759735993592
1003 => 0.39983230975011
1004 => 0.41332927630279
1005 => 0.41286191926879
1006 => 0.41092157063799
1007 => 0.41380331923334
1008 => 0.42773363513854
1009 => 0.42645115487875
1010 => 0.42769697520973
1011 => 0.44412160274016
1012 => 0.46547595490574
1013 => 0.45555471438293
1014 => 0.47708095155738
1015 => 0.4906305768019
1016 => 0.5140632526049
1017 => 0.511129366186
1018 => 0.52025153491919
1019 => 0.5058770971756
1020 => 0.47287048256316
1021 => 0.46764705945649
1022 => 0.47810448479417
1023 => 0.50381304456623
1024 => 0.47729483075796
1025 => 0.48265943087397
1026 => 0.48111442567967
1027 => 0.48103209891871
1028 => 0.48417417653724
1029 => 0.47961642907181
1030 => 0.46104734597455
1031 => 0.46955744732973
1101 => 0.46627128850786
1102 => 0.46991752672009
1103 => 0.48959477052849
1104 => 0.48089499199389
1105 => 0.47173048202031
1106 => 0.48322481129475
1107 => 0.49786104234117
1108 => 0.49694513330612
1109 => 0.49516788695785
1110 => 0.50518613156947
1111 => 0.5217333365976
1112 => 0.52620597962465
1113 => 0.52950759326806
1114 => 0.52996283000826
1115 => 0.53465205136045
1116 => 0.50943692631383
1117 => 0.54945397733315
1118 => 0.55636381659546
1119 => 0.55506505319764
1120 => 0.56274504872722
1121 => 0.56048539921973
1122 => 0.55721152161154
1123 => 0.56938594810781
1124 => 0.55542895055539
1125 => 0.53561874966687
1126 => 0.52475048165808
1127 => 0.53906269369023
1128 => 0.54780266215089
1129 => 0.55357922533699
1130 => 0.55532720986681
1201 => 0.51139430469294
1202 => 0.48771690543485
1203 => 0.50289384689735
1204 => 0.52141076293815
1205 => 0.50933406391028
1206 => 0.50980744764796
1207 => 0.49258924853488
1208 => 0.52293419150149
1209 => 0.5185131885524
1210 => 0.5414493596729
1211 => 0.53597545836072
1212 => 0.55467901553246
1213 => 0.54975374210468
1214 => 0.57019827673506
1215 => 0.5783541551128
1216 => 0.59204914427013
1217 => 0.6021232340429
1218 => 0.60803893224409
1219 => 0.60768377591332
1220 => 0.63112471937561
1221 => 0.61730241398008
1222 => 0.59993834073605
1223 => 0.59962427943402
1224 => 0.60861737901792
1225 => 0.6274644486094
1226 => 0.63235121954076
1227 => 0.63508225782584
1228 => 0.63089957762412
1229 => 0.61589645577083
1230 => 0.60941818382213
1231 => 0.61493785921603
]
'min_raw' => 0.22760275197144
'max_raw' => 0.63508225782584
'avg_raw' => 0.43134250489864
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.2276027'
'max' => '$0.635082'
'avg' => '$0.431342'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.090104521452543
'max_diff' => 0.32812714427407
'year' => 2036
]
11 => [
'items' => [
101 => 0.6081877705204
102 => 0.61984031734943
103 => 0.63584175299538
104 => 0.63253751981102
105 => 0.64358307594799
106 => 0.65501406452337
107 => 0.67136089158397
108 => 0.67563455749886
109 => 0.68269876474322
110 => 0.68997015446887
111 => 0.6923055288793
112 => 0.69676448325293
113 => 0.69674098236238
114 => 0.71017834148955
115 => 0.7250001647272
116 => 0.73059505987342
117 => 0.74346021275782
118 => 0.72142908929201
119 => 0.73813994951614
120 => 0.75321356373826
121 => 0.73524217945047
122 => 0.76001154589568
123 => 0.76097328426616
124 => 0.77549439183197
125 => 0.76077446740642
126 => 0.7520338232702
127 => 0.77726773538382
128 => 0.78947763059482
129 => 0.78579991078984
130 => 0.75781228148255
131 => 0.74152228077983
201 => 0.69888820683432
202 => 0.74939010907771
203 => 0.77398811249978
204 => 0.75774857859613
205 => 0.76593885489986
206 => 0.81062234670696
207 => 0.82763492734526
208 => 0.82409642949941
209 => 0.82469437738673
210 => 0.83387405709897
211 => 0.87458181228503
212 => 0.85018878177917
213 => 0.86883633961148
214 => 0.87872693704697
215 => 0.88791387515404
216 => 0.86535365872469
217 => 0.83600314862551
218 => 0.8267066100265
219 => 0.75613387699565
220 => 0.75246025975955
221 => 0.75039814708293
222 => 0.73739681834848
223 => 0.72718133532686
224 => 0.7190576039515
225 => 0.69773850687101
226 => 0.70493307630702
227 => 0.67095488520209
228 => 0.69269292775787
301 => 0.63846291432229
302 => 0.68362728096499
303 => 0.65904636957314
304 => 0.67555179047127
305 => 0.67549420461267
306 => 0.64510249169073
307 => 0.62757318593623
308 => 0.63874354181379
309 => 0.65071905001848
310 => 0.65266203593424
311 => 0.66818859491437
312 => 0.67252172378346
313 => 0.65939214101569
314 => 0.63733911783156
315 => 0.64246153214133
316 => 0.62746938037374
317 => 0.60119621106582
318 => 0.62006605994829
319 => 0.62650905600546
320 => 0.62935465011369
321 => 0.60351800559324
322 => 0.59539957094407
323 => 0.59107738445712
324 => 0.63400393146666
325 => 0.63635554461304
326 => 0.62432435927155
327 => 0.67870645785889
328 => 0.66639811407376
329 => 0.68014954969919
330 => 0.64199672673332
331 => 0.64345421595021
401 => 0.62539205813205
402 => 0.6355056595964
403 => 0.62835769205799
404 => 0.63468858054264
405 => 0.6384832889971
406 => 0.65654248299289
407 => 0.68383348795154
408 => 0.65384504163097
409 => 0.64077864612663
410 => 0.64888496440932
411 => 0.67047315823426
412 => 0.70318037695836
413 => 0.68381704517957
414 => 0.6924101630123
415 => 0.69428737697755
416 => 0.68000957299338
417 => 0.7037068199569
418 => 0.71640636712074
419 => 0.72943347470984
420 => 0.74074454721818
421 => 0.72423016146652
422 => 0.741902921465
423 => 0.72766179656832
424 => 0.71488603531556
425 => 0.71490541087178
426 => 0.70689098921383
427 => 0.69136203736945
428 => 0.68849826039248
429 => 0.70339598988184
430 => 0.71534255811207
501 => 0.71632653469172
502 => 0.72294076870082
503 => 0.72685500425537
504 => 0.76521983383521
505 => 0.78065048566274
506 => 0.79951879463015
507 => 0.80686906433258
508 => 0.82899074091937
509 => 0.81112569044081
510 => 0.80726047439334
511 => 0.75360052293905
512 => 0.7623873369836
513 => 0.77645587407038
514 => 0.75383250793385
515 => 0.76818182656641
516 => 0.7710146860246
517 => 0.75306377460947
518 => 0.76265213200939
519 => 0.73718829750504
520 => 0.68438852995911
521 => 0.70376560119179
522 => 0.7180336478707
523 => 0.69767138602243
524 => 0.7341699522571
525 => 0.71284824334614
526 => 0.70609028524389
527 => 0.67972508130099
528 => 0.69216844267228
529 => 0.70899826709871
530 => 0.69859939228027
531 => 0.72017861892745
601 => 0.75074055882939
602 => 0.7725208171985
603 => 0.77419283498953
604 => 0.76018958802218
605 => 0.78262988065489
606 => 0.7827933336881
607 => 0.75748059192711
608 => 0.74197667854043
609 => 0.73845415679847
610 => 0.74725410674096
611 => 0.75793887053153
612 => 0.77478576501773
613 => 0.78496599052211
614 => 0.81151061946312
615 => 0.8186928349604
616 => 0.82658391228023
617 => 0.83712882509765
618 => 0.84979069659512
619 => 0.82208724259941
620 => 0.82318795247236
621 => 0.79739087969199
622 => 0.7698230077517
623 => 0.79074358617063
624 => 0.81809445950546
625 => 0.81182013894242
626 => 0.81111414970634
627 => 0.81230142777634
628 => 0.80757079497196
629 => 0.78617431812319
630 => 0.77542914139877
701 => 0.78929316076021
702 => 0.79666127003431
703 => 0.80808856495178
704 => 0.80667990965227
705 => 0.83611539415779
706 => 0.84755313335379
707 => 0.844626870219
708 => 0.84516537306026
709 => 0.86587285353698
710 => 0.88890383064526
711 => 0.91047537991227
712 => 0.93241888634627
713 => 0.90596513287045
714 => 0.89253354829612
715 => 0.90639151506042
716 => 0.89903828283027
717 => 0.94129213633502
718 => 0.94421770147481
719 => 0.98646849954501
720 => 1.0265695380451
721 => 1.0013827942479
722 => 1.0251327592128
723 => 1.0508202826854
724 => 1.1003756831144
725 => 1.0836871676299
726 => 1.0709040263112
727 => 1.0588240195326
728 => 1.0839605959917
729 => 1.1162984000396
730 => 1.1232636533039
731 => 1.1345500245236
801 => 1.1226837852179
802 => 1.1369753634382
803 => 1.1874309145936
804 => 1.173797379288
805 => 1.1544355674538
806 => 1.1942653792883
807 => 1.2086796333568
808 => 1.3098464172126
809 => 1.437573660822
810 => 1.3846937432654
811 => 1.3518694720137
812 => 1.35958395436
813 => 1.4062256198861
814 => 1.4212054425206
815 => 1.3804851207455
816 => 1.3948682267993
817 => 1.4741205552719
818 => 1.5166368867783
819 => 1.4588939978875
820 => 1.2995836575538
821 => 1.1526922481403
822 => 1.1916544645231
823 => 1.1872373583236
824 => 1.2723840983381
825 => 1.1734722239798
826 => 1.1751376462704
827 => 1.2620451306964
828 => 1.238859703823
829 => 1.2013022816532
830 => 1.1529664588856
831 => 1.0636132199773
901 => 0.98447056447671
902 => 1.1396875373783
903 => 1.1329942992631
904 => 1.1233014985898
905 => 1.1448717776175
906 => 1.2496109297454
907 => 1.2471963532813
908 => 1.2318360497445
909 => 1.2434867045977
910 => 1.1992598655274
911 => 1.2106581289822
912 => 1.1526689797905
913 => 1.178882497066
914 => 1.2012217002932
915 => 1.2057066260786
916 => 1.2158113928791
917 => 1.1294672669194
918 => 1.168233244545
919 => 1.1910046245191
920 => 1.0881227013661
921 => 1.188970979689
922 => 1.1279642077848
923 => 1.1072575931096
924 => 1.1351363218807
925 => 1.1242719541656
926 => 1.1149314087813
927 => 1.1097192239659
928 => 1.1301902855124
929 => 1.1292352860231
930 => 1.0957406560711
1001 => 1.0520482767146
1002 => 1.0667128733801
1003 => 1.0613850879302
1004 => 1.0420765061617
1005 => 1.0550881589466
1006 => 0.99779142512869
1007 => 0.89921537262005
1008 => 0.96433773237341
1009 => 0.9618305923624
1010 => 0.9605663786791
1011 => 1.0095040321839
1012 => 1.0047998059832
1013 => 0.99626158936497
1014 => 1.0419196951178
1015 => 1.0252538723298
1016 => 1.0766140112006
1017 => 1.1104431204264
1018 => 1.1018629640697
1019 => 1.1336794048068
1020 => 1.0670507160689
1021 => 1.0891820937887
1022 => 1.0937433400639
1023 => 1.0413562811801
1024 => 1.0055694755678
1025 => 1.0031829036329
1026 => 0.94113351442674
1027 => 0.9742797972955
1028 => 1.0034471545336
1029 => 0.98947825389492
1030 => 0.98505611726174
1031 => 1.0076478542762
1101 => 1.0094034257274
1102 => 0.96937621059364
1103 => 0.977699136117
1104 => 1.0124071191207
1105 => 0.97682458399682
1106 => 0.90769353062533
1107 => 0.89054807357761
1108 => 0.88826055355397
1109 => 0.84176071421721
1110 => 0.89169381500173
1111 => 0.86989667838538
1112 => 0.93875357178663
1113 => 0.89942288356276
1114 => 0.89772741620268
1115 => 0.89516446861694
1116 => 0.85514013601561
1117 => 0.86390292117627
1118 => 0.89303175366016
1119 => 0.90342524925019
1120 => 0.90234112250875
1121 => 0.89288900648981
1122 => 0.89721613680062
1123 => 0.88327694239736
1124 => 0.87835472273433
1125 => 0.86281884351462
1126 => 0.83998539295782
1127 => 0.84316052430343
1128 => 0.79792148405307
1129 => 0.77327285390709
1130 => 0.7664504379464
1201 => 0.75732721819539
1202 => 0.76748092989324
1203 => 0.79779332753603
1204 => 0.76123014484493
1205 => 0.69854513273008
1206 => 0.70231260876825
1207 => 0.71077700885233
1208 => 0.69500365529325
1209 => 0.6800754999068
1210 => 0.69305431985579
1211 => 0.66649385386082
1212 => 0.7139867142737
1213 => 0.71270216549673
1214 => 0.73040456691987
1215 => 0.7414742418196
1216 => 0.71596222502552
1217 => 0.70954602179364
1218 => 0.7132009827547
1219 => 0.65279261959456
1220 => 0.72546791487604
1221 => 0.72609641384754
1222 => 0.72071482408075
1223 => 0.75941217522013
1224 => 0.84107565613071
1225 => 0.81035056970624
1226 => 0.79845288757203
1227 => 0.77583538513775
1228 => 0.80597186423702
1229 => 0.8036578528445
1230 => 0.79319301576479
1231 => 0.7868638496467
]
'min_raw' => 0.59107738445712
'max_raw' => 1.5166368867783
'avg_raw' => 1.0538571356177
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.591077'
'max' => '$1.51'
'avg' => '$1.05'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.36347463248568
'max_diff' => 0.88155462895248
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.01855324368911
]
1 => [
'year' => 2028
'avg' => 0.03184275221564
]
2 => [
'year' => 2029
'avg' => 0.086988659955427
]
3 => [
'year' => 2030
'avg' => 0.067111621608213
]
4 => [
'year' => 2031
'avg' => 0.065911929470968
]
5 => [
'year' => 2032
'avg' => 0.11556435561022
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.01855324368911
'min' => '$0.018553'
'max_raw' => 0.11556435561022
'max' => '$0.115564'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.11556435561022
]
1 => [
'year' => 2033
'avg' => 0.29724340597203
]
2 => [
'year' => 2034
'avg' => 0.18840715555473
]
3 => [
'year' => 2035
'avg' => 0.22222667203533
]
4 => [
'year' => 2036
'avg' => 0.43134250489864
]
5 => [
'year' => 2037
'avg' => 1.0538571356177
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.11556435561022
'min' => '$0.115564'
'max_raw' => 1.0538571356177
'max' => '$1.05'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.0538571356177
]
]
]
]
'prediction_2025_max_price' => '$0.031722'
'last_price' => 0.03075913
'sma_50day_nextmonth' => '$0.027751'
'sma_200day_nextmonth' => '$0.051241'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.029423'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.028823'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.027667'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.02695'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.029964'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.039341'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.053391'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.029681'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.0290091'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.027982'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.027329'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.030784'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.037859'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.041155'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.041619'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.02882'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.028123'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.030618'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.037526'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.042048'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.021024'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.010512'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '56.25'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 110.15
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.027257'
'vwma_10_action' => 'BUY'
'hma_9' => '0.030039'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 261.09
'cci_20_action' => 'SELL'
'adx_14' => 8.09
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.002494'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 69.19
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.007473'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 9
'buy_signals' => 23
'sell_pct' => 28.13
'buy_pct' => 71.88
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767680412
'last_updated_date' => '6. Januar 2026'
]
Bonzo Finance Preisprognose für 2026
Die Preisprognose für Bonzo Finance im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.010627 am unteren Ende und $0.031722 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Bonzo Finance im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn BONZO das prognostizierte Preisziel erreicht.
Bonzo Finance Preisprognose 2027-2032
Die Preisprognose für BONZO für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.018553 am unteren Ende und $0.115564 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Bonzo Finance, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Bonzo Finance Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.01023 | $0.018553 | $0.026875 |
| 2028 | $0.018463 | $0.031842 | $0.045222 |
| 2029 | $0.040558 | $0.086988 | $0.133418 |
| 2030 | $0.034493 | $0.067111 | $0.09973 |
| 2031 | $0.040781 | $0.065911 | $0.091042 |
| 2032 | $0.06225 | $0.115564 | $0.168878 |
Bonzo Finance Preisprognose 2032-2037
Die Preisprognose für Bonzo Finance für die Jahre 2032-2037 wird derzeit zwischen $0.115564 am unteren Ende und $1.05 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Bonzo Finance bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Bonzo Finance Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.06225 | $0.115564 | $0.168878 |
| 2033 | $0.144655 | $0.297243 | $0.449831 |
| 2034 | $0.116296 | $0.1884071 | $0.260518 |
| 2035 | $0.137498 | $0.222226 | $0.306955 |
| 2036 | $0.2276027 | $0.431342 | $0.635082 |
| 2037 | $0.591077 | $1.05 | $1.51 |
Bonzo Finance Potenzielles Preishistogramm
Bonzo Finance Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Bonzo Finance Bullisch, mit 23 technischen Indikatoren, die bullische Signale zeigen, und 9 anzeigen bärische Signale. Die Preisprognose für BONZO wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Bonzo Finance
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Bonzo Finance im nächsten Monat steigen, und bis zum 04.02.2026 $0.051241 erreichen. Der kurzfristige 50-Tage-SMA für Bonzo Finance wird voraussichtlich bis zum 04.02.2026 $0.027751 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 56.25, was darauf hindeutet, dass sich der BONZO-Markt in einem NEUTRAL Zustand befindet.
Beliebte BONZO Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.029423 | BUY |
| SMA 5 | $0.028823 | BUY |
| SMA 10 | $0.027667 | BUY |
| SMA 21 | $0.02695 | BUY |
| SMA 50 | $0.029964 | BUY |
| SMA 100 | $0.039341 | SELL |
| SMA 200 | $0.053391 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.029681 | BUY |
| EMA 5 | $0.0290091 | BUY |
| EMA 10 | $0.027982 | BUY |
| EMA 21 | $0.027329 | BUY |
| EMA 50 | $0.030784 | SELL |
| EMA 100 | $0.037859 | SELL |
| EMA 200 | $0.041155 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.041619 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.037526 | SELL |
| EMA 50 | $0.042048 | SELL |
| EMA 100 | $0.021024 | BUY |
| EMA 200 | $0.010512 | BUY |
Bonzo Finance Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 56.25 | NEUTRAL |
| Stoch RSI (14) | 110.15 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 261.09 | SELL |
| Average Directional Index (14) | 8.09 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.002494 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 69.19 | NEUTRAL |
| VWMA (10) | 0.027257 | BUY |
| Hull Moving Average (9) | 0.030039 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.007473 | SELL |
Auf weltweiten Geldflüssen basierende Bonzo Finance-Preisprognose
Definition weltweiter Geldflüsse, die für Bonzo Finance-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Bonzo Finance-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.043221 | $0.060733 | $0.085341 | $0.119918 | $0.1685053 | $0.236778 |
| Amazon.com aktie | $0.06418 | $0.133916 | $0.279425 | $0.583038 | $1.21 | $2.53 |
| Apple aktie | $0.043629 | $0.061885 | $0.087779 | $0.1245081 | $0.1766053 | $0.2505012 |
| Netflix aktie | $0.048533 | $0.076577 | $0.120827 | $0.190646 | $0.30081 | $0.474632 |
| Google aktie | $0.039832 | $0.051583 | $0.06680036 | $0.0865061 | $0.112025 | $0.145072 |
| Tesla aktie | $0.069728 | $0.158069 | $0.358331 | $0.81231 | $1.84 | $4.17 |
| Kodak aktie | $0.023066 | $0.017297 | $0.01297 | $0.009726 | $0.007294 | $0.005469 |
| Nokia aktie | $0.020376 | $0.013498 | $0.008942 | $0.005923 | $0.003924 | $0.002599 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Bonzo Finance Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Bonzo Finance investieren?", "Sollte ich heute BONZO kaufen?", "Wird Bonzo Finance auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Bonzo Finance-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Bonzo Finance.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Bonzo Finance zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Bonzo Finance-Preis entspricht heute $0.03075 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
Bonzo Finance-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Bonzo Finance 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.031558 | $0.032378 | $0.03322 | $0.034084 |
| Wenn die Wachstumsrate von Bonzo Finance 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.032358 | $0.03404 | $0.03581 | $0.037671 |
| Wenn die Wachstumsrate von Bonzo Finance 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.034756 | $0.039273 | $0.044378 | $0.050145 |
| Wenn die Wachstumsrate von Bonzo Finance 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.038754 | $0.048827 | $0.061519 | $0.07751 |
| Wenn die Wachstumsrate von Bonzo Finance 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.046749 | $0.071053 | $0.107991 | $0.164131 |
| Wenn die Wachstumsrate von Bonzo Finance 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.070735 | $0.162667 | $0.37408 | $0.860258 |
| Wenn die Wachstumsrate von Bonzo Finance 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.110711 | $0.398488 | $1.43 | $5.16 |
Fragefeld
Ist BONZO eine gute Investition?
Die Entscheidung, Bonzo Finance zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Bonzo Finance in den letzten 2026 Stunden um 3.4001% gestiegen, und Bonzo Finance hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Bonzo Finance investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Bonzo Finance steigen?
Es scheint, dass der Durchschnittswert von Bonzo Finance bis zum Ende dieses Jahres potenziell auf $0.031722 steigen könnte. Betrachtet man die Aussichten von Bonzo Finance in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.09973 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Bonzo Finance nächste Woche kosten?
Basierend auf unserer neuen experimentellen Bonzo Finance-Prognose wird der Preis von Bonzo Finance in der nächsten Woche um 0.86% steigen und $0.0310223 erreichen bis zum 13. Januar 2026.
Wie viel wird Bonzo Finance nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Bonzo Finance-Prognose wird der Preis von Bonzo Finance im nächsten Monat um -11.62% fallen und $0.027185 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Bonzo Finance in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Bonzo Finance im Jahr 2026 wird erwartet, dass BONZO innerhalb der Spanne von $0.010627 bis $0.031722 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Bonzo Finance-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Bonzo Finance in 5 Jahren sein?
Die Zukunft von Bonzo Finance scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.09973 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Bonzo Finance-Prognose für 2030 könnte der Wert von Bonzo Finance seinen höchsten Gipfel von ungefähr $0.09973 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.034493 liegen wird.
Wie viel wird Bonzo Finance im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Bonzo Finance-Preisprognosesimulation wird der Wert von BONZO im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.031722 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.031722 und $0.010627 während des Jahres 2026 liegen.
Wie viel wird Bonzo Finance im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Bonzo Finance könnte der Wert von BONZO um -12.62% fallen und bis zu $0.026875 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.026875 und $0.01023 im Laufe des Jahres schwanken.
Wie viel wird Bonzo Finance im Jahr 2028 kosten?
Unser neues experimentelles Bonzo Finance-Preisprognosemodell deutet darauf hin, dass der Wert von BONZO im Jahr 2028 um 47.02% steigen, und im besten Fall $0.045222 erreichen wird. Der Preis wird voraussichtlich zwischen $0.045222 und $0.018463 im Laufe des Jahres liegen.
Wie viel wird Bonzo Finance im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Bonzo Finance im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.133418 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.133418 und $0.040558.
Wie viel wird Bonzo Finance im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Bonzo Finance-Preisprognosen wird der Wert von BONZO im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.09973 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.09973 und $0.034493 während des Jahres 2030 liegen.
Wie viel wird Bonzo Finance im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Bonzo Finance im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.091042 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.091042 und $0.040781 während des Jahres schwanken.
Wie viel wird Bonzo Finance im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Bonzo Finance-Preisprognose könnte BONZO eine 449.04% Steigerung im Wert erfahren und $0.168878 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.168878 und $0.06225 liegen.
Wie viel wird Bonzo Finance im Jahr 2033 kosten?
Laut unserer experimentellen Bonzo Finance-Preisprognose wird der Wert von BONZO voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.449831 beträgt. Im Laufe des Jahres könnte der Preis von BONZO zwischen $0.449831 und $0.144655 liegen.
Wie viel wird Bonzo Finance im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Bonzo Finance-Preisprognosesimulation deuten darauf hin, dass BONZO im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.260518 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.260518 und $0.116296.
Wie viel wird Bonzo Finance im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Bonzo Finance könnte BONZO um 897.93% steigen, wobei der Wert im Jahr 2035 $0.306955 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.306955 und $0.137498.
Wie viel wird Bonzo Finance im Jahr 2036 kosten?
Unsere jüngste Bonzo Finance-Preisprognosesimulation deutet darauf hin, dass der Wert von BONZO im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.635082 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.635082 und $0.2276027.
Wie viel wird Bonzo Finance im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Bonzo Finance um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $1.51 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $1.51 und $0.591077 liegen.
Verwandte Prognosen
Wie liest und prognostiziert man die Kursbewegungen von Bonzo Finance?
Bonzo Finance-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Bonzo Finance Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Bonzo Finance. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von BONZO über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von BONZO über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von BONZO einzuschätzen.
Wie liest man Bonzo Finance-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Bonzo Finance in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von BONZO innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Bonzo Finance?
Die Preisentwicklung von Bonzo Finance wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von BONZO. Die Marktkapitalisierung von Bonzo Finance kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von BONZO-„Walen“, großen Inhabern von Bonzo Finance, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Bonzo Finance-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


