Black Panther Preisvorhersage bis zu $0.002856 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.000956 | $0.002856 |
| 2027 | $0.000921 | $0.002419 |
| 2028 | $0.001662 | $0.004071 |
| 2029 | $0.003651 | $0.012012 |
| 2030 | $0.0031056 | $0.008979 |
| 2031 | $0.003671 | $0.008197 |
| 2032 | $0.0056048 | $0.0152054 |
| 2033 | $0.013024 | $0.0405017 |
| 2034 | $0.010471 | $0.023456 |
| 2035 | $0.01238 | $0.027637 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Black Panther eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,955.54 Gewinn erzielen könnten, was einer Rendite von 39.56% in den nächsten 90 Tagen entspricht.
Langfristige Black Panther Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Black Panther'
'name_with_ticker' => 'Black Panther <small>BLACK</small>'
'name_lang' => 'Black Panther'
'name_lang_with_ticker' => 'Black Panther <small>BLACK</small>'
'name_with_lang' => 'Black Panther'
'name_with_lang_with_ticker' => 'Black Panther <small>BLACK</small>'
'image' => '/uploads/coins/black-panther-fi.png?1717113208'
'price_for_sd' => 0.002769
'ticker' => 'BLACK'
'marketcap' => '$0'
'low24h' => '$0.002473'
'high24h' => '$0.002766'
'volume24h' => '$103.65'
'current_supply' => '0'
'max_supply' => '800M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.002769'
'change_24h_pct' => '11.8315%'
'ath_price' => '$0.08221'
'ath_days' => 623
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '23.04.2024'
'ath_pct' => '-96.66%'
'fdv' => '$2.2M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.136554'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.002793'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.002447'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000956'
'current_year_max_price_prediction' => '$0.002856'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0031056'
'grand_prediction_max_price' => '$0.008979'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0028219601892535
107 => 0.0028324963642286
108 => 0.002856234904438
109 => 0.0026533916774345
110 => 0.0027444623311948
111 => 0.0027979578081127
112 => 0.0025562632972154
113 => 0.0027931802847394
114 => 0.0026498606281378
115 => 0.0026012157840982
116 => 0.0026667096581266
117 => 0.0026411866317229
118 => 0.0026192434323833
119 => 0.0026069987501198
120 => 0.0026550902229112
121 => 0.0026528466982237
122 => 0.0025741597145844
123 => 0.0024715157521187
124 => 0.0025059664350954
125 => 0.0024934501789931
126 => 0.0024480896522491
127 => 0.0024786571704236
128 => 0.0023440532902499
129 => 0.0021124743105117
130 => 0.0022654624779827
131 => 0.0022595725999542
201 => 0.0022566026563675
202 => 0.0023715690359396
203 => 0.0023605176712694
204 => 0.0023404593361777
205 => 0.0024477212651952
206 => 0.0024085692182273
207 => 0.0025292266016
208 => 0.0026086993579195
209 => 0.0025885424962425
210 => 0.0026632870076862
211 => 0.0025067601092505
212 => 0.0025587520661417
213 => 0.0025694675363993
214 => 0.002446397669641
215 => 0.002362325811204
216 => 0.0023567191767356
217 => 0.0022109501600215
218 => 0.0022888187921438
219 => 0.0023573399659884
220 => 0.0023245236411747
221 => 0.0023141349730985
222 => 0.0023672084252726
223 => 0.0023713326870499
224 => 0.0022772990814577
225 => 0.0022968516457173
226 => 0.0023783890890233
227 => 0.0022947971113496
228 => 0.0021323915534014
301 => 0.0020921127295978
302 => 0.0020867387920164
303 => 0.0019774994273071
304 => 0.002094804353205
305 => 0.002043597609474
306 => 0.0022053590993693
307 => 0.0021129618038854
308 => 0.0021089787411492
309 => 0.0021029577576352
310 => 0.0020089309238086
311 => 0.0020295168246996
312 => 0.0020979474945825
313 => 0.0021223643285234
314 => 0.0021198174527022
315 => 0.0020976121469679
316 => 0.0021077776222235
317 => 0.0020750310845389
318 => 0.0020634676005222
319 => 0.0020269700641787
320 => 0.0019733287684554
321 => 0.0019807879196269
322 => 0.0018745104767907
323 => 0.0018166048853627
324 => 0.0018005773808389
325 => 0.0017791447319541
326 => 0.0018029982555605
327 => 0.0018742094061482
328 => 0.0017883136502511
329 => 0.0016410514016522
330 => 0.0016499021137156
331 => 0.0016697870359222
401 => 0.0016327316149422
402 => 0.0015976617688103
403 => 0.0016281521547154
404 => 0.0015657551986601
405 => 0.0016773274099565
406 => 0.0016743096943185
407 => 0.0017158969151105
408 => 0.0017419022577274
409 => 0.001681968362325
410 => 0.0016668951497098
411 => 0.0016754815366548
412 => 0.0015335676868681
413 => 0.0017042995259421
414 => 0.0017057760219762
415 => 0.0016931333665254
416 => 0.0017840428000781
417 => 0.0019758900602377
418 => 0.0019037094039275
419 => 0.0018757588721323
420 => 0.0018226248907579
421 => 0.0018934227661557
422 => 0.001887986593944
423 => 0.0018634021615959
424 => 0.0018485334202037
425 => 0.0018759295321194
426 => 0.0018451387387579
427 => 0.0018396078661958
428 => 0.001806096796118
429 => 0.0017941348687568
430 => 0.0017852787339566
501 => 0.0017755289997274
502 => 0.0017970344839546
503 => 0.0017483002274136
504 => 0.0016895314915033
505 => 0.0016846455069989
506 => 0.0016981361397957
507 => 0.0016921675390426
508 => 0.0016846169316348
509 => 0.0016702007658077
510 => 0.0016659237973594
511 => 0.0016798218699262
512 => 0.0016641317563063
513 => 0.0016872833736371
514 => 0.0016809874147606
515 => 0.0016458187002721
516 => 0.0016019854608936
517 => 0.0016015952531198
518 => 0.0015921514535967
519 => 0.0015801233550192
520 => 0.0015767774131605
521 => 0.0016255843394591
522 => 0.0017266132162287
523 => 0.0017067788303027
524 => 0.0017211112068439
525 => 0.001791612314152
526 => 0.001814022496123
527 => 0.0017981162797743
528 => 0.0017763428697834
529 => 0.001777300789321
530 => 0.0018517071225193
531 => 0.0018563477542522
601 => 0.0018680731335167
602 => 0.0018831435594634
603 => 0.0018006828384793
604 => 0.0017734168967783
605 => 0.0017604967809434
606 => 0.0017207078248863
607 => 0.0017636168027466
608 => 0.001738615578893
609 => 0.0017419890981543
610 => 0.0017397920893098
611 => 0.0017409918047
612 => 0.0016772962232496
613 => 0.0017005035453889
614 => 0.0016619168711982
615 => 0.0016102536460142
616 => 0.0016100804527679
617 => 0.0016227249539404
618 => 0.0016152035098636
619 => 0.001594963497247
620 => 0.001597838495509
621 => 0.0015726504855182
622 => 0.0016008967759655
623 => 0.0016017067785055
624 => 0.0015908304180974
625 => 0.0016343477257684
626 => 0.0016521768022279
627 => 0.0016450177488131
628 => 0.0016516745039558
629 => 0.0017076030385848
630 => 0.0017167218300624
701 => 0.0017207717948832
702 => 0.0017153453785409
703 => 0.0016526967748993
704 => 0.0016554755068733
705 => 0.0016350870153662
706 => 0.001617860888529
707 => 0.0016185498432633
708 => 0.0016274063116974
709 => 0.0016660830287739
710 => 0.0017474758997445
711 => 0.0017505646997004
712 => 0.0017543084153536
713 => 0.0017390808423512
714 => 0.0017344880606255
715 => 0.0017405471252193
716 => 0.001771114008122
717 => 0.0018497403297755
718 => 0.0018219485364277
719 => 0.0017993533758309
720 => 0.0018191754232859
721 => 0.0018161239744505
722 => 0.0017903666754106
723 => 0.0017896437538139
724 => 0.0017402072618497
725 => 0.001721931716385
726 => 0.0017066593026939
727 => 0.0016899822256396
728 => 0.0016800954953411
729 => 0.0016952860065181
730 => 0.0016987602561531
731 => 0.0016655459379799
801 => 0.001661018949144
802 => 0.0016881424783451
803 => 0.0016762064244108
804 => 0.0016884829518821
805 => 0.0016913312115616
806 => 0.0016908725761522
807 => 0.0016784099649977
808 => 0.0016863532617072
809 => 0.0016675649969786
810 => 0.0016471355809923
811 => 0.0016341028863907
812 => 0.0016227301318147
813 => 0.0016290403970418
814 => 0.001606545453716
815 => 0.0015993488686123
816 => 0.0016836622515118
817 => 0.0017459454539814
818 => 0.0017450398315506
819 => 0.0017395270879105
820 => 0.0017313362690806
821 => 0.0017705147987071
822 => 0.0017568657823847
823 => 0.0017667965821727
824 => 0.0017693243875132
825 => 0.0017769752929523
826 => 0.0017797098340293
827 => 0.0017714441516338
828 => 0.0017437035119465
829 => 0.0016745764753466
830 => 0.0016423976532044
831 => 0.0016317781059168
901 => 0.0016321641062913
902 => 0.0016215164927808
903 => 0.0016246526921522
904 => 0.0016204258506268
905 => 0.0016124212353605
906 => 0.0016285461346056
907 => 0.0016304043790297
908 => 0.0016266406348677
909 => 0.0016275271328674
910 => 0.0015963649387223
911 => 0.0015987341326624
912 => 0.0015855421597412
913 => 0.00158306882385
914 => 0.0015497206650616
915 => 0.0014906395678751
916 => 0.0015233762308573
917 => 0.0014838349454462
918 => 0.0014688600615128
919 => 0.0015397488329814
920 => 0.0015326335664744
921 => 0.0015204553231464
922 => 0.0015024411630961
923 => 0.0014957595359029
924 => 0.0014551640842234
925 => 0.0014527654883698
926 => 0.0014728856903916
927 => 0.0014636009094524
928 => 0.0014505615605923
929 => 0.0014033343607986
930 => 0.001350235351842
1001 => 0.0013518380771539
1002 => 0.0013687278839608
1003 => 0.0014178372751527
1004 => 0.0013986493864129
1005 => 0.0013847283529766
1006 => 0.0013821213618787
1007 => 0.0014147533135745
1008 => 0.0014609343618292
1009 => 0.0014826014764277
1010 => 0.0014611300239007
1011 => 0.0014364647753428
1012 => 0.0014379660347348
1013 => 0.0014479532408934
1014 => 0.0014490027550492
1015 => 0.0014329482138665
1016 => 0.0014374674731694
1017 => 0.0014306023050386
1018 => 0.0013884707808917
1019 => 0.0013877087552204
1020 => 0.0013773689997321
1021 => 0.0013770559160452
1022 => 0.0013594654125868
1023 => 0.0013570043795556
1024 => 0.0013220773672717
1025 => 0.0013450664325257
1026 => 0.0013296465745334
1027 => 0.0013064052113622
1028 => 0.0013023983915913
1029 => 0.0013022779417506
1030 => 0.0013261416250537
1031 => 0.0013447875714922
1101 => 0.001329914809565
1102 => 0.0013265285699705
1103 => 0.001362684749714
1104 => 0.0013580835462707
1105 => 0.0013540989337635
1106 => 0.0014567993554762
1107 => 0.0013755039578767
1108 => 0.0013400545243443
1109 => 0.001296179118683
1110 => 0.0013104651720053
1111 => 0.0013134754533461
1112 => 0.0012079630118671
1113 => 0.0011651566274999
1114 => 0.0011504670895096
1115 => 0.0011420130527166
1116 => 0.0011458656634423
1117 => 0.0011073348968236
1118 => 0.0011332282092314
1119 => 0.0010998638222643
1120 => 0.0010942701742121
1121 => 0.0011539298311638
1122 => 0.0011622311239019
1123 => 0.0011268152300714
1124 => 0.001149557967223
1125 => 0.0011413111345842
1126 => 0.0011004357589172
1127 => 0.0010988746202256
1128 => 0.0010783647935549
1129 => 0.0010462708863002
1130 => 0.0010316031094903
1201 => 0.0010239640039762
1202 => 0.0010271160477946
1203 => 0.0010255222779859
1204 => 0.0010151218519169
1205 => 0.0010261184182339
1206 => 0.00099802673538894
1207 => 0.00098684040093002
1208 => 0.00098178779317592
1209 => 0.00095685480775412
1210 => 0.00099653427530914
1211 => 0.0010043516302862
1212 => 0.0010121843878676
1213 => 0.0010803631949621
1214 => 0.001076957174431
1215 => 0.0011077459412332
1216 => 0.0011065495463722
1217 => 0.0010977680913352
1218 => 0.0010607205770136
1219 => 0.0010754870559138
1220 => 0.0010300381290794
1221 => 0.0010640915552903
1222 => 0.0010485509936728
1223 => 0.001058837275775
1224 => 0.0010403416130785
1225 => 0.0010505778764819
1226 => 0.0010062054151561
1227 => 0.00096477103510734
1228 => 0.0009814454391839
1229 => 0.00099957242336454
1230 => 0.0010388763437378
1231 => 0.0010154672530138
]
'min_raw' => 0.00095685480775412
'max_raw' => 0.002856234904438
'avg_raw' => 0.0019065448560961
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000956'
'max' => '$0.002856'
'avg' => '$0.0019065'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0018126251922459
'max_diff' => 8.675490443803E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.0010238860472339
102 => 0.00099568449588574
103 => 0.00093749664007964
104 => 0.00093782597702432
105 => 0.0009288750430999
106 => 0.00092114012933145
107 => 0.0010181560686809
108 => 0.0010060906030277
109 => 0.00098686586259856
110 => 0.0010125989416238
111 => 0.001019403176157
112 => 0.0010195968831485
113 => 0.0010383710733385
114 => 0.0010483908620083
115 => 0.0010501568931896
116 => 0.0010796984870967
117 => 0.0010896004397113
118 => 0.0011303851811541
119 => 0.001047540752944
120 => 0.0010458346264623
121 => 0.0010129610588177
122 => 0.0009921121225069
123 => 0.0010143886033239
124 => 0.0010341225242849
125 => 0.00101357424675
126 => 0.0010162574179983
127 => 0.00098867303426363
128 => 0.00099853315348287
129 => 0.001007026016456
130 => 0.0010023367567096
131 => 0.00099531670790663
201 => 0.0010325045678088
202 => 0.0010304062830127
203 => 0.0010650364730988
204 => 0.0010920331826996
205 => 0.0011404161125432
206 => 0.0010899260029922
207 => 0.0010880859427201
208 => 0.0011060728270344
209 => 0.001089597686013
210 => 0.001100009406436
211 => 0.0011387386234185
212 => 0.0011395569107447
213 => 0.0011258495437281
214 => 0.0011250154491995
215 => 0.0011276480989771
216 => 0.0011430676109544
217 => 0.0011376795596758
218 => 0.0011439147490241
219 => 0.0011517119487808
220 => 0.0011839644729188
221 => 0.0011917404472981
222 => 0.001172848860937
223 => 0.0011745545596652
224 => 0.0011674885877805
225 => 0.0011606629474763
226 => 0.0011760059900755
227 => 0.0012040457019939
228 => 0.0012038712684013
301 => 0.0012103759365523
302 => 0.0012144282909228
303 => 0.00119703261946
304 => 0.0011857086769944
305 => 0.0011900509970969
306 => 0.0011969944615042
307 => 0.0011877993251713
308 => 0.0011310426841226
309 => 0.0011482590233885
310 => 0.0011453933826986
311 => 0.0011413123618825
312 => 0.0011586235241444
313 => 0.0011569538203134
314 => 0.0011069397081205
315 => 0.0011101414493127
316 => 0.0011071344166069
317 => 0.0011168507544603
318 => 0.0010890729718826
319 => 0.0010976172307173
320 => 0.001102976109761
321 => 0.0011061325306865
322 => 0.0011175356874478
323 => 0.0011161976586166
324 => 0.0011174525136969
325 => 0.001134360384852
326 => 0.0012198745950739
327 => 0.0012245289448598
328 => 0.0012016092242656
329 => 0.0012107652005715
330 => 0.001193187728256
331 => 0.0012049876031802
401 => 0.001213060777919
402 => 0.0011765796536566
403 => 0.0011744194782383
404 => 0.001156769457442
405 => 0.0011662535788697
406 => 0.0011511636597458
407 => 0.0011548661980758
408 => 0.0011445135781235
409 => 0.0011631462328516
410 => 0.0011839804360593
411 => 0.0011892439785572
412 => 0.0011753978643428
413 => 0.0011653723651481
414 => 0.001147770891167
415 => 0.001177042534672
416 => 0.00118560245527
417 => 0.0011769975730532
418 => 0.0011750036338231
419 => 0.0011712251225852
420 => 0.0011758052628444
421 => 0.0011855558361041
422 => 0.0011809576458197
423 => 0.0011839948315122
424 => 0.0011724202115845
425 => 0.0011970383781511
426 => 0.0012361379513434
427 => 0.0012362636628646
428 => 0.0012316654477942
429 => 0.0012297839572573
430 => 0.0012345020049626
501 => 0.0012370613522983
502 => 0.0012523186534351
503 => 0.0012686903454326
504 => 0.001345089888456
505 => 0.0013236372024928
506 => 0.0013914234220923
507 => 0.0014450335208566
508 => 0.0014611088453905
509 => 0.0014463203032218
510 => 0.0013957294993239
511 => 0.0013932472731285
512 => 0.0014688512930384
513 => 0.0014474896945304
514 => 0.0014449488003599
515 => 0.0014179179792944
516 => 0.0014338965423764
517 => 0.001430401796239
518 => 0.0014248851684923
519 => 0.0014553711537764
520 => 0.0015124381967258
521 => 0.0015035437629108
522 => 0.0014969044806688
523 => 0.0014678130785504
524 => 0.0014853326004256
525 => 0.0014790942342502
526 => 0.0015058982143047
527 => 0.0014900201303013
528 => 0.001447327859412
529 => 0.0014541267442667
530 => 0.0014530991064983
531 => 0.0014742478189513
601 => 0.0014678995004162
602 => 0.0014518594954175
603 => 0.0015122431477769
604 => 0.0015083221692642
605 => 0.0015138812203348
606 => 0.0015163284865354
607 => 0.0015530829516473
608 => 0.0015681400799919
609 => 0.0015715583117383
610 => 0.0015858614191056
611 => 0.0015712024373972
612 => 0.0016298488159077
613 => 0.0016688452355062
614 => 0.0017141415836073
615 => 0.0017803317226935
616 => 0.0018052198272829
617 => 0.0018007240139536
618 => 0.0018509086219911
619 => 0.0019410892470934
620 => 0.0018189520966495
621 => 0.0019475628126391
622 => 0.001906846144839
623 => 0.0018103076579463
624 => 0.0018040917175044
625 => 0.001869468701663
626 => 0.0020144685602252
627 => 0.0019781477402302
628 => 0.0020145279680752
629 => 0.0019720884998444
630 => 0.0019699810225388
701 => 0.0020124667778299
702 => 0.0021117370608454
703 => 0.0020645774704756
704 => 0.0019969626336746
705 => 0.0020468883769651
706 => 0.0020036380777175
707 => 0.001906183048516
708 => 0.0019781199663836
709 => 0.001930017798051
710 => 0.0019440565680224
711 => 0.0020451601712
712 => 0.0020329951181787
713 => 0.0020487378232418
714 => 0.0020209523608637
715 => 0.0019949963576374
716 => 0.0019465475500972
717 => 0.0019322042466819
718 => 0.0019361682197279
719 => 0.0019322022823338
720 => 0.0019050956197826
721 => 0.0018992419385855
722 => 0.0018894855468014
723 => 0.0018925094605756
724 => 0.0018741645896884
725 => 0.0019087851512963
726 => 0.0019152110326061
727 => 0.0019404049902291
728 => 0.0019430207104873
729 => 0.0020131855238539
730 => 0.0019745399237234
731 => 0.0020004667287915
801 => 0.0019981475913137
802 => 0.0018123999396875
803 => 0.0018379943272162
804 => 0.0018778111622496
805 => 0.0018598737320375
806 => 0.0018345144024298
807 => 0.0018140353840904
808 => 0.0017830075772191
809 => 0.0018266786195543
810 => 0.0018841013963274
811 => 0.0019444770468683
812 => 0.0020170144350239
813 => 0.0020008249344158
814 => 0.0019431210108527
815 => 0.001945709566711
816 => 0.0019617110004678
817 => 0.0019409876898692
818 => 0.0019348759810065
819 => 0.0019608713455218
820 => 0.0019610503613104
821 => 0.0019372056879709
822 => 0.0019107066970832
823 => 0.0019105956653438
824 => 0.0019058804258652
825 => 0.0019729273304727
826 => 0.0020097963488001
827 => 0.002014023322334
828 => 0.0020095118398025
829 => 0.0020112481303746
830 => 0.0019897948609632
831 => 0.0020388306730682
901 => 0.0020838307833949
902 => 0.0020717697925402
903 => 0.0020536886526781
904 => 0.0020392861538723
905 => 0.0020683770215395
906 => 0.0020670816509956
907 => 0.0020834377466884
908 => 0.0020826957397104
909 => 0.0020771957999128
910 => 0.0020717699889604
911 => 0.0020932827160808
912 => 0.002087087396154
913 => 0.002080882453184
914 => 0.0020684374901286
915 => 0.0020701289672968
916 => 0.0020520509493985
917 => 0.0020436872311249
918 => 0.0019179169756563
919 => 0.0018843070537334
920 => 0.0018948814193634
921 => 0.001898362775092
922 => 0.0018837356939989
923 => 0.0019047071708976
924 => 0.0019014387884373
925 => 0.0019141541526508
926 => 0.0019062101451271
927 => 0.0019065361699669
928 => 0.001929897802253
929 => 0.0019366797834931
930 => 0.0019332304130971
1001 => 0.001935646233885
1002 => 0.0019913178042877
1003 => 0.001983403087253
1004 => 0.0019791985515745
1005 => 0.0019803632366918
1006 => 0.0019945885165416
1007 => 0.0019985708182281
1008 => 0.0019816975261511
1009 => 0.0019896550682379
1010 => 0.0020235372724812
1011 => 0.0020353941263996
1012 => 0.0020732355124945
1013 => 0.0020571598191044
1014 => 0.0020866674500617
1015 => 0.0021773638477317
1016 => 0.0022498184059039
1017 => 0.0021831861998975
1018 => 0.0023162397689484
1019 => 0.0024198410578554
1020 => 0.0024158646678302
1021 => 0.0023977993867682
1022 => 0.0022798520737304
1023 => 0.0021713151977776
1024 => 0.0022621109032313
1025 => 0.0022623423601568
1026 => 0.0022545429285356
1027 => 0.0022061013285846
1028 => 0.0022528572658606
1029 => 0.0022565685823689
1030 => 0.002254491232043
1031 => 0.0022173511709378
1101 => 0.0021606451622609
1102 => 0.0021717253806214
1103 => 0.0021898750043262
1104 => 0.0021555139802449
1105 => 0.0021445335510431
1106 => 0.0021649482580414
1107 => 0.0022307286975631
1108 => 0.0022182932865117
1109 => 0.0022179685476737
1110 => 0.0022711725095868
1111 => 0.0022330899549906
1112 => 0.0021718651376587
1113 => 0.0021564050638262
1114 => 0.0021015322168747
1115 => 0.0021394330877145
1116 => 0.0021407970725824
1117 => 0.002120039152961
1118 => 0.0021735495284325
1119 => 0.0021730564209023
1120 => 0.0022238565584442
1121 => 0.0023209673417641
1122 => 0.002292246904605
1123 => 0.0022588481609636
1124 => 0.0022624795304441
1125 => 0.0023023066906619
1126 => 0.0022782262804286
1127 => 0.0022868857638431
1128 => 0.0023022935834966
1129 => 0.0023115895036482
1130 => 0.0022611419905904
1201 => 0.0022493802621131
1202 => 0.0022253198934543
1203 => 0.0022190429923793
1204 => 0.0022386396606158
1205 => 0.002233476630896
1206 => 0.0021406824349359
1207 => 0.002130984925156
1208 => 0.0021312823339361
1209 => 0.0021068974845032
1210 => 0.0020697047360835
1211 => 0.0021674450582668
1212 => 0.0021595951425205
1213 => 0.0021509294430719
1214 => 0.0021519909418085
1215 => 0.0021944167029414
1216 => 0.0021698076189321
1217 => 0.0022352349021205
1218 => 0.0022217850196211
1219 => 0.0022079901983867
1220 => 0.0022060833338915
1221 => 0.0022007735046351
1222 => 0.0021825641244144
1223 => 0.0021605752035838
1224 => 0.0021460562134037
1225 => 0.0019796234167627
1226 => 0.0020105123757243
1227 => 0.0020460473073923
1228 => 0.0020583138234068
1229 => 0.0020373310989469
1230 => 0.0021833926502673
1231 => 0.0022100795031777
]
'min_raw' => 0.00092114012933145
'max_raw' => 0.0024198410578554
'avg_raw' => 0.0016704905935934
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000921'
'max' => '$0.002419'
'avg' => '$0.00167'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -3.5714678422669E-5
'max_diff' => -0.00043639384658264
'year' => 2027
]
2 => [
'items' => [
101 => 0.0021292432849718
102 => 0.0021141221290666
103 => 0.0021843839907311
104 => 0.0021420074989841
105 => 0.002161089630623
106 => 0.0021198444993877
107 => 0.0022036514217938
108 => 0.0022030129534601
109 => 0.0021704101677789
110 => 0.0021979658189824
111 => 0.0021931773464745
112 => 0.0021563688817376
113 => 0.0022048183157801
114 => 0.0022048423460949
115 => 0.0021734628737224
116 => 0.0021368185198412
117 => 0.0021302673748682
118 => 0.0021253319671536
119 => 0.0021598758228712
120 => 0.0021908477358918
121 => 0.0022484787874347
122 => 0.0022629686030726
123 => 0.0023195233181489
124 => 0.0022858477389201
125 => 0.0023007756870205
126 => 0.0023169820863706
127 => 0.0023247520301897
128 => 0.0023120913236947
129 => 0.0023999440750577
130 => 0.0024073615390115
131 => 0.0024098485505144
201 => 0.0023802250970527
202 => 0.0024065376571823
203 => 0.0023942268816781
204 => 0.0024262560995081
205 => 0.0024312786898335
206 => 0.0024270247345118
207 => 0.0024286189839572
208 => 0.0023536521589562
209 => 0.0023497647335984
210 => 0.0022967594130056
211 => 0.0023183594729427
212 => 0.0022779791962081
213 => 0.0022907841979236
214 => 0.0022964285206692
215 => 0.0022934802467794
216 => 0.0023195807079231
217 => 0.002297389983979
218 => 0.0022388250149978
219 => 0.00218024409003
220 => 0.002179508654236
221 => 0.0021640853307311
222 => 0.0021529370927598
223 => 0.002155084638898
224 => 0.0021626528715982
225 => 0.0021524972133169
226 => 0.0021546644379162
227 => 0.0021906548064057
228 => 0.0021978724181347
229 => 0.0021733441533766
301 => 0.0020748596309611
302 => 0.0020506912821307
303 => 0.0020680630119908
304 => 0.0020597604440004
305 => 0.0016623874360197
306 => 0.0017557443299276
307 => 0.0017002748336681
308 => 0.0017258377295733
309 => 0.0016692177376488
310 => 0.0016962397655032
311 => 0.0016912497836449
312 => 0.0018413649064175
313 => 0.001839021065252
314 => 0.0018401429379846
315 => 0.0017865930294334
316 => 0.001871899487794
317 => 0.0019139245167034
318 => 0.0019061468023122
319 => 0.0019081042854602
320 => 0.0018744682395258
321 => 0.001840468608434
322 => 0.0018027577850476
323 => 0.001872819833701
324 => 0.0018650301298898
325 => 0.0018828969077857
326 => 0.0019283371544761
327 => 0.001935028403412
328 => 0.0019440215098378
329 => 0.001940798121357
330 => 0.002017592312347
331 => 0.0020082920291137
401 => 0.0020307030358318
402 => 0.0019846018946855
403 => 0.001932434077518
404 => 0.0019423494740671
405 => 0.0019413945416449
406 => 0.0019292371558891
407 => 0.0019182620116222
408 => 0.0018999914886455
409 => 0.0019578021268723
410 => 0.0019554551205349
411 => 0.0019934504250408
412 => 0.0019867343859027
413 => 0.0019418830328448
414 => 0.0019434849076937
415 => 0.0019542582858871
416 => 0.0019915450708226
417 => 0.0020026143272693
418 => 0.0019974866066496
419 => 0.0020096235410127
420 => 0.0020192160790707
421 => 0.0020108282161035
422 => 0.0021295826672811
423 => 0.0020802675396207
424 => 0.0021043033897099
425 => 0.0021100357983288
426 => 0.0020953523541912
427 => 0.0020985366674499
428 => 0.0021033600343635
429 => 0.0021326465737504
430 => 0.0022095029272302
501 => 0.0022435420830075
502 => 0.002345950562626
503 => 0.0022407156049682
504 => 0.0022344713980863
505 => 0.0022529182577054
506 => 0.0023130428762799
507 => 0.0023617682324162
508 => 0.0023779332440799
509 => 0.0023800697172265
510 => 0.0024103963537372
511 => 0.0024277790162269
512 => 0.0024067139023951
513 => 0.002388863424032
514 => 0.0023249252262184
515 => 0.0023323262467133
516 => 0.002383311938684
517 => 0.0024553322316348
518 => 0.0025171331354209
519 => 0.002495492612894
520 => 0.0026605945239467
521 => 0.0026769637040467
522 => 0.0026747020126359
523 => 0.0027119934409644
524 => 0.0026379775499996
525 => 0.0026063343226218
526 => 0.0023927229000657
527 => 0.0024527389967072
528 => 0.0025399759177975
529 => 0.0025284297841696
530 => 0.0024650760002242
531 => 0.0025170850758947
601 => 0.0024998892490039
602 => 0.0024863261868796
603 => 0.0025484612038001
604 => 0.0024801412003302
605 => 0.0025392943735008
606 => 0.0024634298170482
607 => 0.002495591464978
608 => 0.0024773349581292
609 => 0.0024891491554937
610 => 0.0024200835991045
611 => 0.0024573496968605
612 => 0.0024185332069183
613 => 0.002418514802848
614 => 0.0024176579266811
615 => 0.0024633253549595
616 => 0.0024648145681561
617 => 0.0024310662696587
618 => 0.0024262026125978
619 => 0.002444186101898
620 => 0.0024231321458107
621 => 0.002432983159352
622 => 0.0024234305229755
623 => 0.0024212800233179
624 => 0.0024041444761684
625 => 0.0023967620113047
626 => 0.0023996568660004
627 => 0.002389775234524
628 => 0.0023838211941252
629 => 0.0024164735181848
630 => 0.0023990286986307
701 => 0.0024137998493942
702 => 0.0023969662588314
703 => 0.0023386136998945
704 => 0.0023050545261828
705 => 0.0021948319516362
706 => 0.0022260909370469
707 => 0.002246815676714
708 => 0.0022399661503777
709 => 0.002254681583363
710 => 0.0022555849914345
711 => 0.0022508008541649
712 => 0.0022452614360926
713 => 0.0022425651537241
714 => 0.0022626610334765
715 => 0.0022743273680689
716 => 0.0022488956816009
717 => 0.0022429373932885
718 => 0.0022686502324296
719 => 0.0022843350494519
720 => 0.0024001429258068
721 => 0.0023915635042719
722 => 0.002413096168698
723 => 0.0024106719211293
724 => 0.0024332415838703
725 => 0.0024701334438008
726 => 0.002395121977436
727 => 0.0024081413742955
728 => 0.0024049493188473
729 => 0.0024397993432288
730 => 0.0024399081412009
731 => 0.0024190138106964
801 => 0.0024303409662347
802 => 0.0024240184587575
803 => 0.0024354440843069
804 => 0.0023914489208667
805 => 0.0024450302809525
806 => 0.0024754074594146
807 => 0.002475829246567
808 => 0.0024902277880698
809 => 0.002504857540144
810 => 0.0025329380752674
811 => 0.0025040743892601
812 => 0.0024521514279561
813 => 0.0024559000980521
814 => 0.0024254576848375
815 => 0.0024259694273035
816 => 0.0024232377059139
817 => 0.0024314358074383
818 => 0.0023932479431321
819 => 0.0024022105585559
820 => 0.0023896628444775
821 => 0.0024081140980157
822 => 0.0023882635993101
823 => 0.0024049477795416
824 => 0.0024121481186401
825 => 0.0024387175249261
826 => 0.0023843392763987
827 => 0.0022734583465677
828 => 0.0022967668623195
829 => 0.0022622917366782
830 => 0.0022654825408124
831 => 0.0022719284729761
901 => 0.0022510350978557
902 => 0.0022550208954027
903 => 0.0022548784946667
904 => 0.0022536513620549
905 => 0.0022482161882457
906 => 0.0022403341109059
907 => 0.0022717338810521
908 => 0.0022770693138646
909 => 0.0022889293200866
910 => 0.002324216653884
911 => 0.002320690617105
912 => 0.0023264417293854
913 => 0.0023138870835684
914 => 0.0022660649148242
915 => 0.0022686618886664
916 => 0.0022362775832405
917 => 0.002288101180587
918 => 0.0022758286686973
919 => 0.0022679165004445
920 => 0.0022657575920311
921 => 0.0023011323963036
922 => 0.0023117170921741
923 => 0.0023051214200201
924 => 0.0022915935040059
925 => 0.0023175711019226
926 => 0.0023245216112183
927 => 0.0023260775739246
928 => 0.0023721048967228
929 => 0.0023286499899693
930 => 0.0023391100179295
1001 => 0.0024207161701282
1002 => 0.0023467106509632
1003 => 0.0023859130249849
1004 => 0.0023839942727759
1005 => 0.0024040488807894
1006 => 0.0023823492095686
1007 => 0.0023826182030002
1008 => 0.0024004253362994
1009 => 0.0023754184291141
1010 => 0.0023692263672221
1011 => 0.0023606720780667
1012 => 0.0023793500554851
1013 => 0.0023905466582152
1014 => 0.0024807830532213
1015 => 0.0025390798796747
1016 => 0.0025365490606915
1017 => 0.0025596760087041
1018 => 0.0025492571068058
1019 => 0.0025156117242089
1020 => 0.0025730402896845
1021 => 0.0025548674886548
1022 => 0.0025563656322917
1023 => 0.0025563098713108
1024 => 0.0025683931953017
1025 => 0.0025598310528337
1026 => 0.0025429541911435
1027 => 0.0025541578395436
1028 => 0.0025874286699144
1029 => 0.0026907023482591
1030 => 0.002748495666855
1031 => 0.0026872231179121
1101 => 0.0027294881017008
1102 => 0.0027041441719812
1103 => 0.0026995384260345
1104 => 0.0027260839592115
1105 => 0.0027526759568303
1106 => 0.0027509821615424
1107 => 0.0027316777367853
1108 => 0.0027207731570717
1109 => 0.0028033462879654
1110 => 0.0028641847642114
1111 => 0.0028600359879977
1112 => 0.0028783473369505
1113 => 0.0029321100238245
1114 => 0.0029370254101363
1115 => 0.0029364061844399
1116 => 0.0029242228865985
1117 => 0.0029771592337931
1118 => 0.0030213196659492
1119 => 0.0029214028051575
1120 => 0.0029594498377393
1121 => 0.002976530376464
1122 => 0.0030016096748794
1123 => 0.0030439226550847
1124 => 0.0030898857745514
1125 => 0.0030963854636039
1126 => 0.0030917736231824
1127 => 0.0030614597103392
1128 => 0.0031117531041136
1129 => 0.0031412137946615
1130 => 0.0031587569616868
1201 => 0.0032032435143584
1202 => 0.0029766358600563
1203 => 0.00281623169921
1204 => 0.0027911822732297
1205 => 0.0028421212659807
1206 => 0.0028555534721383
1207 => 0.0028501389666787
1208 => 0.002669589500338
1209 => 0.002790231717655
1210 => 0.0029200325996024
1211 => 0.0029250187801087
1212 => 0.00298999981562
1213 => 0.0030111603044452
1214 => 0.0030634785552908
1215 => 0.0030602060344557
1216 => 0.0030729446959714
1217 => 0.0030700162982918
1218 => 0.0031669248410758
1219 => 0.0032738293548245
1220 => 0.0032701275914489
1221 => 0.0032547588027607
1222 => 0.0032775840747306
1223 => 0.0033879209895031
1224 => 0.0033777629345039
1225 => 0.0033876306196746
1226 => 0.0035177240605074
1227 => 0.0036868640391663
1228 => 0.003608281537703
1229 => 0.0037787829543727
1230 => 0.0038861045582744
1231 => 0.0040717061749616
]
'min_raw' => 0.0016623874360197
'max_raw' => 0.0040717061749616
'avg_raw' => 0.0028670468054907
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001662'
'max' => '$0.004071'
'avg' => '$0.002867'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00074124730668826
'max_diff' => 0.0016518651171062
'year' => 2028
]
3 => [
'items' => [
101 => 0.0040484679384451
102 => 0.0041207212858139
103 => 0.0040068666451144
104 => 0.0037454333762489
105 => 0.0037040605607246
106 => 0.0037868899851309
107 => 0.0039905180426565
108 => 0.0037804770129486
109 => 0.0038229680397005
110 => 0.0038107306211374
111 => 0.0038100785411079
112 => 0.0038349657836345
113 => 0.0037988655403184
114 => 0.0036517866547389
115 => 0.0037191920412587
116 => 0.0036931635844509
117 => 0.0037220440978291
118 => 0.0038779003173018
119 => 0.0038089925675247
120 => 0.0037364038507456
121 => 0.0038274462103124
122 => 0.00394337441959
123 => 0.0039361198405964
124 => 0.0039220429251701
125 => 0.0040013937603848
126 => 0.0041324580925463
127 => 0.0041678842548704
128 => 0.004194035123642
129 => 0.0041976408866231
130 => 0.0042347824862973
131 => 0.0040350627439611
201 => 0.0043520231042153
202 => 0.004406753402578
203 => 0.0043964663748243
204 => 0.0044572967980514
205 => 0.0044393989444191
206 => 0.0044134677625931
207 => 0.00450989692241
208 => 0.0043993486721118
209 => 0.0042424393484512
210 => 0.0041563557901764
211 => 0.0042697175638752
212 => 0.0043389436432923
213 => 0.0043846976781815
214 => 0.0043985428214936
215 => 0.0040505664190294
216 => 0.0038630264377573
217 => 0.0039832374156025
218 => 0.0041299031050921
219 => 0.0040342480086506
220 => 0.0040379975073321
221 => 0.0039016184775237
222 => 0.0041419696230877
223 => 0.0041069524828504
224 => 0.0042886214683461
225 => 0.0042452647069728
226 => 0.0043934087122952
227 => 0.0043543974308475
228 => 0.0045163310790453
301 => 0.0045809307954899
302 => 0.0046894037735434
303 => 0.0047691969377641
304 => 0.0048160530099944
305 => 0.0048132399471704
306 => 0.0049989070489496
307 => 0.0048894256457449
308 => 0.0047518912005342
309 => 0.0047494036363359
310 => 0.0048206346743887
311 => 0.0049699153888664
312 => 0.0050086217061844
313 => 0.0050302532571522
314 => 0.0049971237838453
315 => 0.0048782895672694
316 => 0.0048269775550551
317 => 0.0048706968761138
318 => 0.0048172319033031
319 => 0.0049095274459962
320 => 0.005036268939378
321 => 0.0050100973221849
322 => 0.0050975851145935
323 => 0.0051881257757522
324 => 0.0053176029876447
325 => 0.0053514531253607
326 => 0.0054074061157998
327 => 0.0054650001225614
328 => 0.0054834977653313
329 => 0.0055188155048604
330 => 0.0055186293629397
331 => 0.0056250617481687
401 => 0.0057424599650129
402 => 0.0057867750740966
403 => 0.0058886752238852
404 => 0.0057141747883794
405 => 0.0058465353732271
406 => 0.00596592793396
407 => 0.0058235832010767
408 => 0.0060197722532873
409 => 0.0060273898296107
410 => 0.0061424061880906
411 => 0.0060258150743031
412 => 0.005956583643108
413 => 0.0061564521909002
414 => 0.0062531622853766
415 => 0.0062240324178675
416 => 0.006002352687804
417 => 0.0058733255766161
418 => 0.0055356367391666
419 => 0.0059356437541978
420 => 0.0061304755028549
421 => 0.0060018481206429
422 => 0.0060667202904226
423 => 0.0064206418138692
424 => 0.006555392215276
425 => 0.0065273650737598
426 => 0.00653210119931
427 => 0.0066048100700163
428 => 0.0069272412442347
429 => 0.0067340330107469
430 => 0.0068817334658739
501 => 0.0069600732546996
502 => 0.0070328396164848
503 => 0.0068541484299852
504 => 0.006621673821844
505 => 0.0065480393548255
506 => 0.0059890586624505
507 => 0.0059599612898823
508 => 0.0059436280529191
509 => 0.0058406493042485
510 => 0.0057597362160467
511 => 0.0056953911241982
512 => 0.0055265303881169
513 => 0.0055835159295855
514 => 0.0053143871602465
515 => 0.0054865662095316
516 => 0.0050570301953252
517 => 0.0054147605516879
518 => 0.0052200641827231
519 => 0.0053507975581409
520 => 0.0053503414417099
521 => 0.0051096198485113
522 => 0.0049707766572859
523 => 0.0050592529425926
524 => 0.0051541065436976
525 => 0.0051694962213511
526 => 0.0052924763911161
527 => 0.0053267975130476
528 => 0.0052228029112952
529 => 0.0050481290161658
530 => 0.005088701778117
531 => 0.0049699544515599
601 => 0.0047618543293186
602 => 0.0049113154701919
603 => 0.0049623480750285
604 => 0.0049848869805877
605 => 0.0047802444108239
606 => 0.0047159412723977
607 => 0.0046817068210553
608 => 0.0050217122302006
609 => 0.0050403384940324
610 => 0.0049450438947806
611 => 0.0053757845196034
612 => 0.0052782946501379
613 => 0.0053872147199288
614 => 0.0050850202252335
615 => 0.0050965644618897
616 => 0.0049535007452193
617 => 0.0050336068670337
618 => 0.0049769904420761
619 => 0.0050271350840152
620 => 0.0050571915756394
621 => 0.0052002318169616
622 => 0.0054163938414751
623 => 0.0051788663748798
624 => 0.0050753722562282
625 => 0.0051395794253666
626 => 0.005310571577904
627 => 0.0055696334419254
628 => 0.0054162636043188
629 => 0.0054843265338599
630 => 0.0054991952560556
701 => 0.0053861060158646
702 => 0.00557380320352
703 => 0.0056743916512338
704 => 0.0057775745847418
705 => 0.0058671654347865
706 => 0.0057363610520574
707 => 0.0058763404916493
708 => 0.0057635417730356
709 => 0.0056623496615219
710 => 0.0056625031281848
711 => 0.0055990238384514
712 => 0.0054760247156877
713 => 0.0054533417903049
714 => 0.0055713412326836
715 => 0.0056659656108825
716 => 0.0056737593278912
717 => 0.0057261482456382
718 => 0.0057571514675121
719 => 0.0060610251887128
720 => 0.006183245713155
721 => 0.0063326946569268
722 => 0.0063909134430069
723 => 0.0065661311165179
724 => 0.0064246286146741
725 => 0.0063940136583077
726 => 0.0059689928956342
727 => 0.0060385900217119
728 => 0.006150021735686
729 => 0.0059708303635548
730 => 0.0060844860450037
731 => 0.0061069240840782
801 => 0.0059647415092982
802 => 0.0060406873658346
803 => 0.005838997687251
804 => 0.0054207901253139
805 => 0.0055742687880874
806 => 0.005687280744248
807 => 0.0055259987485332
808 => 0.0058150904833769
809 => 0.0056462090599459
810 => 0.0055926817564562
811 => 0.0053838526616815
812 => 0.0054824119558462
813 => 0.0056157148124371
814 => 0.0055333491451843
815 => 0.0057042702720009
816 => 0.0059463401705727
817 => 0.0061188535958066
818 => 0.0061320970344883
819 => 0.0060211824595647
820 => 0.0061989237737271
821 => 0.0062002184251562
822 => 0.0059997254966864
823 => 0.005876924694348
824 => 0.0058490240936816
825 => 0.0059187252643812
826 => 0.0060033553531565
827 => 0.0061367934154199
828 => 0.00621742724178
829 => 0.0064276774960502
830 => 0.0064845651865086
831 => 0.0065470675110522
901 => 0.0066305898916455
902 => 0.0067308799242467
903 => 0.0065114510424301
904 => 0.0065201693609713
905 => 0.0063158402244234
906 => 0.0060974852382597
907 => 0.0062631894544247
908 => 0.0064798256743522
909 => 0.0064301290861391
910 => 0.006424537204756
911 => 0.0064339411981839
912 => 0.00639647159361
913 => 0.0062269979608107
914 => 0.00614188936338
915 => 0.0062517011675845
916 => 0.0063100612543581
917 => 0.0064005726594095
918 => 0.0063894152182729
919 => 0.0066225628774701
920 => 0.0067131570078149
921 => 0.0066899791525313
922 => 0.0066942444357097
923 => 0.0068582607813592
924 => 0.0070406806902557
925 => 0.0072115410073643
926 => 0.0073853474605486
927 => 0.0071758169974536
928 => 0.0070694303503364
929 => 0.0071791942141424
930 => 0.0071209519629687
1001 => 0.0074556292139867
1002 => 0.0074788015407083
1003 => 0.0078134545907518
1004 => 0.008131080184987
1005 => 0.0079315852401015
1006 => 0.0081196999876789
1007 => 0.0083231614244042
1008 => 0.0087156715462759
1009 => 0.0085834879459021
1010 => 0.0084822373795969
1011 => 0.0083865560836776
1012 => 0.0085856536715076
1013 => 0.0088417895375893
1014 => 0.0088969587499044
1015 => 0.0089863539501161
1016 => 0.0088923658278185
1017 => 0.0090055641686739
1018 => 0.0094052040537649
1019 => 0.0092972178290945
1020 => 0.0091438600304106
1021 => 0.0094593373378674
1022 => 0.009573507349049
1023 => 0.010374812278821
1024 => 0.011386492852913
1025 => 0.010967650452186
1026 => 0.010707661458095
1027 => 0.010768765038728
1028 => 0.011138196536838
1029 => 0.011256846208861
1030 => 0.010934315499307
1031 => 0.011048238798508
1101 => 0.011675967377796
1102 => 0.01201272362064
1103 => 0.01155536341046
1104 => 0.010293524729744
1105 => 0.0091300518385631
1106 => 0.0094386572411714
1107 => 0.0094036709656562
1108 => 0.010078087013366
1109 => 0.0092946423933495
1110 => 0.0093078335914949
1111 => 0.0099961958488524
1112 => 0.0098125526001061
1113 => 0.0095150740563874
1114 => 0.0091322237611418
1115 => 0.0084244895810142
1116 => 0.0077976296810475
1117 => 0.0090270463020953
1118 => 0.0089740316218467
1119 => 0.0088972585085112
1120 => 0.0090681087645208
1121 => 0.0098977091110119
1122 => 0.009878584137871
1123 => 0.0097569208163957
1124 => 0.0098492013734434
1125 => 0.009498896828567
1126 => 0.0095891782860679
1127 => 0.0091298675385128
1128 => 0.0093374951789189
1129 => 0.009514435801037
1130 => 0.0095499592505778
1201 => 0.0096299953962657
1202 => 0.0089460952943613
1203 => 0.0092531463618643
1204 => 0.009433510097228
1205 => 0.0086186201791659
1206 => 0.0094174023436188
1207 => 0.0089341901151276
1208 => 0.0087701806271735
1209 => 0.0089909977960967
1210 => 0.0089049451306156
1211 => 0.008830962102017
1212 => 0.0087896783008692
1213 => 0.0089518220590248
1214 => 0.0089442578589031
1215 => 0.0086789591998133
1216 => 0.0083328879139875
1217 => 0.0084490407969134
1218 => 0.0084068413656073
1219 => 0.0082539051827192
1220 => 0.0083569657044006
1221 => 0.0079031393246519
1222 => 0.0071223546261369
1223 => 0.007638164914058
1224 => 0.0076183067790667
1225 => 0.0076082934069093
1226 => 0.0079959105823328
1227 => 0.0079586501347656
1228 => 0.0078910220575758
1229 => 0.008252663140047
1230 => 0.008120659280186
1231 => 0.0085274640722566
]
'min_raw' => 0.0036517866547389
'max_raw' => 0.01201272362064
'avg_raw' => 0.0078322551376894
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.003651'
'max' => '$0.012012'
'avg' => '$0.007832'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0019893992187192
'max_diff' => 0.0079410174456783
'year' => 2029
]
4 => [
'items' => [
101 => 0.0087954120187986
102 => 0.0087274517523475
103 => 0.0089794580911751
104 => 0.0084517167247401
105 => 0.0086270112373612
106 => 0.0086631391934647
107 => 0.0082482005452254
108 => 0.0079647464047954
109 => 0.0079458432452425
110 => 0.0074543728281234
111 => 0.0077169123579378
112 => 0.0079479362795505
113 => 0.0078372937492786
114 => 0.0078022676295461
115 => 0.007981208479021
116 => 0.00799511371555
117 => 0.0076780728490792
118 => 0.007743995684597
119 => 0.0080189048674657
120 => 0.007737068678533
121 => 0.0071895070011169
122 => 0.0070537041344853
123 => 0.0070355855287332
124 => 0.0066672773837669
125 => 0.0070627791314003
126 => 0.0068901320197705
127 => 0.0074355221767791
128 => 0.0071239982440818
129 => 0.0071105690699782
130 => 0.0070902689036891
131 => 0.0067732508686988
201 => 0.0068426576708146
202 => 0.0070733764520016
203 => 0.0071556995123623
204 => 0.0071471125427137
205 => 0.0070722458041056
206 => 0.0071065194136607
207 => 0.0069961121755667
208 => 0.0069571250818678
209 => 0.006834071089909
210 => 0.0066532157162625
211 => 0.0066783647652185
212 => 0.006320042946642
213 => 0.0061248102023033
214 => 0.0060707723517965
215 => 0.0059985106797017
216 => 0.0060789344999406
217 => 0.0063190278659507
218 => 0.0060294243278934
219 => 0.0055329193752204
220 => 0.0055627601688793
221 => 0.0056298035724198
222 => 0.0055048686334586
223 => 0.0053866281987266
224 => 0.0054894286635764
225 => 0.0052790529698197
226 => 0.0056552264699285
227 => 0.0056450520309646
228 => 0.005785266249392
301 => 0.00587294507766
302 => 0.0056708737648599
303 => 0.0056200533761496
304 => 0.0056490029792169
305 => 0.0051705305265526
306 => 0.0057461648421067
307 => 0.0057511429515714
308 => 0.0057085173560371
309 => 0.0060150248583541
310 => 0.0066618512903302
311 => 0.0064184891680879
312 => 0.0063242519986965
313 => 0.0061451070707967
314 => 0.0063838070506499
315 => 0.006365478616497
316 => 0.006282590486405
317 => 0.0062324594866986
318 => 0.0063248273907579
319 => 0.0062210140811953
320 => 0.0062023663581989
321 => 0.0060893814457634
322 => 0.0060490509725099
323 => 0.0060191918957154
324 => 0.0059863199860569
325 => 0.006058827227594
326 => 0.005894516279149
327 => 0.0056963733829253
328 => 0.0056798999450402
329 => 0.0057253845554006
330 => 0.0057052610012471
331 => 0.005679803601205
401 => 0.0056311984916143
402 => 0.0056167783938825
403 => 0.0056636367158738
404 => 0.0056107364023556
405 => 0.0056887936965809
406 => 0.0056675664316587
407 => 0.0055489926553595
408 => 0.0054012058284561
409 => 0.0053998902157033
410 => 0.0053680497862659
411 => 0.0053274962121368
412 => 0.0053162151355542
413 => 0.0054807710951606
414 => 0.0058213970068003
415 => 0.0057545239898582
416 => 0.0058028465980213
417 => 0.0060405460035408
418 => 0.006116103496685
419 => 0.0060624745777285
420 => 0.0059890640057734
421 => 0.0059922936983744
422 => 0.0062431598456367
423 => 0.0062588060595227
424 => 0.0062983389943529
425 => 0.0063491499876158
426 => 0.0060711279095942
427 => 0.0059791988835017
428 => 0.0059356378109109
429 => 0.005801486567588
430 => 0.0059461571822534
501 => 0.0058618638105013
502 => 0.0058732378662223
503 => 0.0058658304975127
504 => 0.0058698754217122
505 => 0.0056551213217688
506 => 0.005733366428645
507 => 0.0056032687625752
508 => 0.0054290825918562
509 => 0.0054284986587345
510 => 0.0054711304772486
511 => 0.0054457714034131
512 => 0.0053775307877635
513 => 0.0053872240451299
514 => 0.0053023009108754
515 => 0.0053975352512114
516 => 0.0054002662313273
517 => 0.0053635958228484
518 => 0.0055103174639425
519 => 0.0055704294400122
520 => 0.0055462921915951
521 => 0.0055687359063182
522 => 0.0057573028656257
523 => 0.0057880475077461
524 => 0.0058017022468989
525 => 0.0057834067053404
526 => 0.0055721825641771
527 => 0.0055815512530321
528 => 0.0055128100304369
529 => 0.0054547309411155
530 => 0.0054570538001037
531 => 0.005486914001768
601 => 0.0056173152537137
602 => 0.0058917370008598
603 => 0.0059021511055643
604 => 0.005914773304267
605 => 0.0058634324787342
606 => 0.005847947594488
607 => 0.0058683761537965
608 => 0.0059714345336146
609 => 0.0062365286665839
610 => 0.0061428266949507
611 => 0.0060666455334548
612 => 0.0061334769503804
613 => 0.0061231887775866
614 => 0.0060363462455565
615 => 0.0060339088649204
616 => 0.0058672302807175
617 => 0.0058056130032254
618 => 0.0057541209941798
619 => 0.0056978930645348
620 => 0.0056645592630641
621 => 0.005715775132065
622 => 0.0057274888072739
623 => 0.0056155044146031
624 => 0.0056002413556786
625 => 0.0056916902280846
626 => 0.0056514469888963
627 => 0.0056928381583858
628 => 0.0057024412647542
629 => 0.0057008949434506
630 => 0.0056588763798314
701 => 0.0056856577592707
702 => 0.0056223118129834
703 => 0.0055534326106495
704 => 0.0055094919708864
705 => 0.0054711479348131
706 => 0.005492423434595
707 => 0.0054165801626251
708 => 0.0053923163734984
709 => 0.0056765848305168
710 => 0.0058865769961171
711 => 0.0058835236268633
712 => 0.0058649370267932
713 => 0.0058373211092433
714 => 0.0059694142572369
715 => 0.0059233956457618
716 => 0.0059568780305936
717 => 0.0059654007027845
718 => 0.0059911962646419
719 => 0.0060004159608025
720 => 0.0059725476355146
721 => 0.0058790181320191
722 => 0.0056459515018269
723 => 0.005537458356321
724 => 0.0055016538112078
725 => 0.0055029552384202
726 => 0.0054670560660766
727 => 0.0054776299812198
728 => 0.0054633788899083
729 => 0.0054363907706736
730 => 0.0054907569942828
731 => 0.0054970221950974
801 => 0.005484332468879
802 => 0.0054873213587782
803 => 0.005382255845543
804 => 0.0053902437483239
805 => 0.0053457660905859
806 => 0.0053374270659461
807 => 0.005224991420297
808 => 0.0050257953762221
809 => 0.0051361693210674
810 => 0.0050028531166195
811 => 0.0049523642499249
812 => 0.0051913706922273
813 => 0.0051673810744269
814 => 0.0051263212767889
815 => 0.0050655852784706
816 => 0.0050430577058926
817 => 0.0049061873062711
818 => 0.0048981002728863
819 => 0.0049659369387503
820 => 0.0049346326515712
821 => 0.0048906695765111
822 => 0.0047314397751087
823 => 0.004552412759157
824 => 0.0045578164594449
825 => 0.0046147616223031
826 => 0.0047803373634148
827 => 0.0047156440568731
828 => 0.0046687083207069
829 => 0.004659918668206
830 => 0.0047699395716384
831 => 0.0049256422000872
901 => 0.0049986943897054
902 => 0.0049263018884217
903 => 0.0048431412808361
904 => 0.0048482028816907
905 => 0.0048818754445391
906 => 0.0048854139547901
907 => 0.0048312849483005
908 => 0.0048465219465648
909 => 0.0048233755529009
910 => 0.0046813261777106
911 => 0.0046787569549568
912 => 0.0046438957474295
913 => 0.0046428401639203
914 => 0.0045835325533805
915 => 0.0045752350086919
916 => 0.0044574761482506
917 => 0.0045349853867997
918 => 0.0044829962589986
919 => 0.0044046363804069
920 => 0.0043911271078021
921 => 0.0043907210027546
922 => 0.0044711790771201
923 => 0.0045340451873558
924 => 0.0044839006321352
925 => 0.0044724836889228
926 => 0.0045943867732717
927 => 0.004578873494617
928 => 0.004565439095352
929 => 0.004911700737471
930 => 0.0046376076286009
1001 => 0.0045180873884459
1002 => 0.004370158394976
1003 => 0.0044183248211725
1004 => 0.0044284741948842
1005 => 0.0040727316317943
1006 => 0.0039284069182537
1007 => 0.0038788801153287
1008 => 0.0038503767400391
1009 => 0.0038633660860814
1010 => 0.0037334569162944
1011 => 0.0038207580268906
1012 => 0.0037082676668038
1013 => 0.00368940829186
1014 => 0.0038905549905767
1015 => 0.0039185433786212
1016 => 0.0037991362199129
1017 => 0.0038758149460667
1018 => 0.0038480101740493
1019 => 0.0037101959911606
1020 => 0.0037049325030668
1021 => 0.003635782190496
1022 => 0.0035275753414617
1023 => 0.0034781219078757
1024 => 0.0034523661302897
1025 => 0.0034629934660918
1026 => 0.0034576199599084
1027 => 0.0034225541972822
1028 => 0.0034596298883756
1029 => 0.0033649168183653
1030 => 0.0033272013107322
1031 => 0.0033101660909274
1101 => 0.0032261027898123
1102 => 0.0033598848850061
1103 => 0.0033862416431017
1104 => 0.0034126503321527
1105 => 0.0036425199403644
1106 => 0.0036310363043429
1107 => 0.0037348427812196
1108 => 0.003730809052416
1109 => 0.0037012017636573
1110 => 0.0035762934825472
1111 => 0.0036260796971217
1112 => 0.003472845467157
1113 => 0.0035876589711613
1114 => 0.0035352628826603
1115 => 0.0035699438009334
1116 => 0.003507584382826
1117 => 0.0035420966595639
1118 => 0.0033924918082174
1119 => 0.0032527929030271
1120 => 0.0033090118205409
1121 => 0.0033701282132915
1122 => 0.0035026441249421
1123 => 0.0034237187411956
1124 => 0.00345210329369
1125 => 0.0033570197943503
1126 => 0.0031608353759537
1127 => 0.0031619457584563
1128 => 0.0031317670597959
1129 => 0.0031056882579911
1130 => 0.0034327842709443
1201 => 0.0033921047111108
1202 => 0.0033272871565253
1203 => 0.0034140480290852
1204 => 0.0034369889808703
1205 => 0.0034376420775164
1206 => 0.0035009405705139
1207 => 0.0035347229875735
1208 => 0.0035406772850016
1209 => 0.0036402788313876
1210 => 0.00367366395596
1211 => 0.0038111725592341
1212 => 0.0035318567855106
1213 => 0.0035261044609596
1214 => 0.0034152689324865
1215 => 0.0033449752880884
1216 => 0.0034200819984573
1217 => 0.0034866162907557
1218 => 0.0034173363384118
1219 => 0.0034263828376083
1220 => 0.0033333801619668
1221 => 0.003366624242326
1222 => 0.0033952585227926
1223 => 0.0033794483561642
1224 => 0.0033557797715007
1225 => 0.0034811612375342
1226 => 0.0034740867238467
1227 => 0.0035908448275246
1228 => 0.0036818661187937
1229 => 0.0038449925447498
1230 => 0.0036747616152917
1231 => 0.0036685577236156
]
'min_raw' => 0.0031056882579911
'max_raw' => 0.0089794580911751
'avg_raw' => 0.0060425731745831
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0031056'
'max' => '$0.008979'
'avg' => '$0.006042'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00054609839674779
'max_diff' => -0.0030332655294648
'year' => 2030
]
5 => [
'items' => [
101 => 0.0037292017598851
102 => 0.0036736546716741
103 => 0.0037087585140031
104 => 0.0038393367730473
105 => 0.0038420956858984
106 => 0.0037958803409844
107 => 0.0037930681330463
108 => 0.0038019442955776
109 => 0.0038539322567647
110 => 0.0038357660656972
111 => 0.0038567884419122
112 => 0.0038830772452751
113 => 0.0039918188822056
114 => 0.0040180361227265
115 => 0.0039543418203415
116 => 0.003960092702692
117 => 0.0039362692851523
118 => 0.0039132561623155
119 => 0.0039649863016559
120 => 0.004059524148059
121 => 0.004058936033023
122 => 0.0040808669758354
123 => 0.0040945297715217
124 => 0.0040358790506582
125 => 0.0039976995880227
126 => 0.0040123400234195
127 => 0.0040357503984461
128 => 0.0040047483543155
129 => 0.0038133893763977
130 => 0.0038714354662391
131 => 0.0038617737585808
201 => 0.0038480143119714
202 => 0.0039063801041641
203 => 0.0039007505811228
204 => 0.0037321245099906
205 => 0.0037429194039585
206 => 0.0037327809832466
207 => 0.0037655402946926
208 => 0.0036718855613491
209 => 0.0037006931265513
210 => 0.003718760961392
211 => 0.0037294030549168
212 => 0.0037678495940802
213 => 0.0037633383364577
214 => 0.0037675691679723
215 => 0.0038245752360416
216 => 0.0041128923662161
217 => 0.0041285848314757
218 => 0.0040513093932883
219 => 0.0040821794066535
220 => 0.0040229157315221
221 => 0.0040626998336699
222 => 0.0040899191059529
223 => 0.0039669204484714
224 => 0.00395963726623
225 => 0.0039001289888301
226 => 0.0039321053663837
227 => 0.003881228650513
228 => 0.0038937120169957
301 => 0.0038588074360297
302 => 0.0039216287323357
303 => 0.0039918727030483
304 => 0.0040096191040688
305 => 0.0039629359632899
306 => 0.0039291342927972
307 => 0.0038697896943743
308 => 0.0039684810841322
309 => 0.003997341454063
310 => 0.0039683294928951
311 => 0.0039616067875687
312 => 0.0039488672731227
313 => 0.003964309535782
314 => 0.0039971842742902
315 => 0.0039816811547108
316 => 0.0039919212383228
317 => 0.0039528965991222
318 => 0.0040358984664872
319 => 0.00416772540735
320 => 0.0041681492525207
321 => 0.0041526460493737
322 => 0.0041463024726672
323 => 0.004162209699909
324 => 0.0041708387181391
325 => 0.0042222797741526
326 => 0.0042774780767572
327 => 0.0045350644701066
328 => 0.0044627352416027
329 => 0.0046912812136654
330 => 0.0048720314045868
331 => 0.0049262304835962
401 => 0.0048763698811713
402 => 0.0047057994536925
403 => 0.0046974304547712
404 => 0.0049523346864014
405 => 0.0048803125656124
406 => 0.0048717457635171
407 => 0.004780609463063
408 => 0.0048344823040818
409 => 0.0048226995234841
410 => 0.0048040998278772
411 => 0.0049068854557264
412 => 0.0050992909753237
413 => 0.005069302770727
414 => 0.0050469179671082
415 => 0.0049488342737694
416 => 0.0050079025649454
417 => 0.0049868694778362
418 => 0.0050772409679842
419 => 0.0050237068991941
420 => 0.0048797669272117
421 => 0.0049026898421823
422 => 0.004899225089699
423 => 0.0049705294502902
424 => 0.0049491256511237
425 => 0.0048950456543931
426 => 0.0050986333541749
427 => 0.0050854135013654
428 => 0.0051041562301702
429 => 0.0051124073590283
430 => 0.0052363276042678
501 => 0.0052870937637369
502 => 0.0052986185707231
503 => 0.005346842495823
504 => 0.0052974187155356
505 => 0.0054951490752434
506 => 0.0056266282265628
507 => 0.0057793480266755
508 => 0.0060025127018525
509 => 0.0060864246841078
510 => 0.0060712667355804
511 => 0.0062404676453564
512 => 0.006544517919099
513 => 0.0061327239890338
514 => 0.0065663439973063
515 => 0.006429064909071
516 => 0.0061035786604103
517 => 0.0060826211832274
518 => 0.0063030442497934
519 => 0.0067919213965029
520 => 0.0066694632160509
521 => 0.0067921216942167
522 => 0.0066490340640476
523 => 0.0066419285571725
524 => 0.0067851722473969
525 => 0.0071198689374135
526 => 0.0069608670859044
527 => 0.0067328989429127
528 => 0.0069012270721206
529 => 0.0067554056685678
530 => 0.0064268292335223
531 => 0.0066693695745881
601 => 0.0065071897556686
602 => 0.0065545224487827
603 => 0.0068954003057241
604 => 0.006854384980126
605 => 0.0069074626093669
606 => 0.0068137819830401
607 => 0.0067262695059722
608 => 0.0065629209687629
609 => 0.0065145615198807
610 => 0.0065279263317611
611 => 0.0065145548969437
612 => 0.0064231628916257
613 => 0.0064034267967787
614 => 0.006370532440709
615 => 0.0063807277771218
616 => 0.0063188767641275
617 => 0.0064356024047192
618 => 0.0064572677121958
619 => 0.0065422108993078
620 => 0.0065510299827819
621 => 0.0067875955497982
622 => 0.0066572992108085
623 => 0.0067447132442475
624 => 0.0067368941103239
625 => 0.0061106329343794
626 => 0.0061969261988755
627 => 0.0063311714381131
628 => 0.0062706941398017
629 => 0.0061851933894976
630 => 0.006116146949367
701 => 0.006011534532208
702 => 0.0061587745004557
703 => 0.0063523794014765
704 => 0.0065559401225686
705 => 0.0068005049911339
706 => 0.006745920959519
707 => 0.0065513681524665
708 => 0.00656009564927
709 => 0.0066140456003656
710 => 0.0065441755118268
711 => 0.0065235694586906
712 => 0.0066112146450921
713 => 0.0066118182093219
714 => 0.0065314242283759
715 => 0.0064420810304975
716 => 0.0064417066792362
717 => 0.0064258089201267
718 => 0.0066518622400761
719 => 0.0067761687094798
720 => 0.006790420245867
721 => 0.0067752094675306
722 => 0.0067810634924181
723 => 0.0067087322967783
724 => 0.0068740599608612
725 => 0.0070257809746351
726 => 0.006985116501897
727 => 0.0069241546764672
728 => 0.006875595646193
729 => 0.0069736775375926
730 => 0.0069693101053638
731 => 0.0070244558239383
801 => 0.0070219540956067
802 => 0.0070034106645854
803 => 0.0069851171641413
804 => 0.0070576488255987
805 => 0.0070367608719218
806 => 0.0070158404734835
807 => 0.0069738814116626
808 => 0.0069795843450303
809 => 0.0069186330455191
810 => 0.0068904341854236
811 => 0.0064663909881122
812 => 0.0063530727897795
813 => 0.0063887250017796
814 => 0.0064004626356793
815 => 0.0063511464105437
816 => 0.0064218532090894
817 => 0.0064108336294331
818 => 0.0064537043676373
819 => 0.0064269205916384
820 => 0.0064280198071479
821 => 0.0065067851814577
822 => 0.0065296511047117
823 => 0.0065180213115941
824 => 0.0065261664200476
825 => 0.0067138670065252
826 => 0.006687181985455
827 => 0.0066730060998636
828 => 0.0066769329170522
829 => 0.0067248944412432
830 => 0.0067383210494145
831 => 0.0066814315671215
901 => 0.0067082609758451
902 => 0.006822497193031
903 => 0.0068624734038362
904 => 0.0069900582790564
905 => 0.0069358579564225
906 => 0.0070353449943521
907 => 0.0073411342313169
908 => 0.0075854198328101
909 => 0.0073607646981475
910 => 0.007809364095706
911 => 0.008158663074467
912 => 0.0081452563978742
913 => 0.0080843480414963
914 => 0.0076866804407708
915 => 0.0073207407856933
916 => 0.0076268648457841
917 => 0.0076276452189683
918 => 0.0076013488907185
919 => 0.007438024654399
920 => 0.0075956655613204
921 => 0.0076081785240441
922 => 0.0076011745923842
923 => 0.0074759542833319
924 => 0.0072847660159907
925 => 0.0073221237457891
926 => 0.007383316469276
927 => 0.0072674658775759
928 => 0.0072304445938929
929 => 0.0072992742038471
930 => 0.0075210575483383
1001 => 0.0074791306917657
1002 => 0.0074780358121008
1003 => 0.0076574166842727
1004 => 0.0075290186926127
1005 => 0.0073225949463979
1006 => 0.0072704702280839
1007 => 0.007085462593487
1008 => 0.0072132480256777
1009 => 0.0072178467958902
1010 => 0.0071478600206148
1011 => 0.0073282739874924
1012 => 0.0073266114410263
1013 => 0.0074978876515013
1014 => 0.0078253034375226
1015 => 0.0077284704784438
1016 => 0.0076158642824311
1017 => 0.0076281076981689
1018 => 0.0077623877494866
1019 => 0.0076811989651445
1020 => 0.0077103950180622
1021 => 0.0077623435577638
1022 => 0.0077936854015754
1023 => 0.007623598089168
1024 => 0.0075839426004292
1025 => 0.0075028213876548
1026 => 0.0074816583774411
1027 => 0.0075477299125962
1028 => 0.0075303223974246
1029 => 0.0072174602870612
1030 => 0.0071847644557798
1031 => 0.0071857671902463
1101 => 0.0071035519678874
1102 => 0.0069781540198757
1103 => 0.0073076923401279
1104 => 0.0072812258011258
1105 => 0.0072520087904149
1106 => 0.0072555877075171
1107 => 0.0073986291232486
1108 => 0.0073156578783597
1109 => 0.0075362505316165
1110 => 0.007490903313729
1111 => 0.0074443931108135
1112 => 0.0074379639840351
1113 => 0.0074200615239766
1114 => 0.0073586673272242
1115 => 0.0072845301454264
1116 => 0.0072355783563508
1117 => 0.0066744385625088
1118 => 0.0067785828442459
1119 => 0.0068983913473344
1120 => 0.0069397487624981
1121 => 0.0068690040420146
1122 => 0.0073614607599831
1123 => 0.0074514373477869
1124 => 0.0071788923943014
1125 => 0.0071279103614414
1126 => 0.0073648031335698
1127 => 0.0072219278330128
1128 => 0.0072862645721052
1129 => 0.0071472037325021
1130 => 0.007429764622607
1201 => 0.0074276119820434
1202 => 0.0073176894138654
1203 => 0.0074105952157722
1204 => 0.0073944505463914
1205 => 0.0072703482376458
1206 => 0.0074336988871515
1207 => 0.0074337799070357
1208 => 0.0073279818250872
1209 => 0.0072044328275495
1210 => 0.0071823451848868
1211 => 0.0071657051131978
1212 => 0.0072821721345247
1213 => 0.0073865961016635
1214 => 0.0075809032156119
1215 => 0.0076297566406817
1216 => 0.0078204348110858
1217 => 0.0077068952445617
1218 => 0.0077572258638183
1219 => 0.0078118668707221
1220 => 0.0078380637787882
1221 => 0.007795377322898
1222 => 0.0080915790078016
1223 => 0.0081165875053926
1224 => 0.0081249726383122
1225 => 0.0080250950967227
1226 => 0.0081138097302839
1227 => 0.0080723030911605
1228 => 0.0081802918352831
1229 => 0.0081972258492311
1230 => 0.0081828833418622
1231 => 0.0081882584651745
]
'min_raw' => 0.0036718855613491
'max_raw' => 0.0081972258492311
'avg_raw' => 0.0059345557052901
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.003671'
'max' => '$0.008197'
'avg' => '$0.005934'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00056619730335799
'max_diff' => -0.00078223224194404
'year' => 2031
]
6 => [
'items' => [
101 => 0.0079355025806671
102 => 0.0079223958546619
103 => 0.0077436847155698
104 => 0.0078165108257159
105 => 0.0076803659034442
106 => 0.0077235388607446
107 => 0.0077425690889556
108 => 0.0077326287776941
109 => 0.0078206283047161
110 => 0.0077458107296318
111 => 0.0075483548478361
112 => 0.0073508451693174
113 => 0.0073483655961915
114 => 0.0072963647841729
115 => 0.0072587777215073
116 => 0.0072660183232494
117 => 0.007291535148195
118 => 0.0072572946372544
119 => 0.0072646015863015
120 => 0.0073859456264311
121 => 0.007410280308293
122 => 0.0073275815511523
123 => 0.0069955341078589
124 => 0.0069140488323968
125 => 0.0069726188324757
126 => 0.0069446261448291
127 => 0.0056048553047249
128 => 0.0059196145905056
129 => 0.0057325953111101
130 => 0.0058187823993988
131 => 0.0056278841435436
201 => 0.0057189907970725
202 => 0.005702166724848
203 => 0.006208290341979
204 => 0.0062003879178478
205 => 0.0062041703900924
206 => 0.0060236231346768
207 => 0.0063112398149461
208 => 0.0064529301340081
209 => 0.0064267070269154
210 => 0.006433306818016
211 => 0.0063199005407545
212 => 0.0062052684107502
213 => 0.0060781237368171
214 => 0.0063143428254281
215 => 0.0062880792951689
216 => 0.0063483183842636
217 => 0.006501523348517
218 => 0.0065240833614724
219 => 0.0065544042476655
220 => 0.0065435363683529
221 => 0.0068024533448749
222 => 0.0067710967906289
223 => 0.0068466570644654
224 => 0.0066912238484118
225 => 0.0065153364105909
226 => 0.0065487668623271
227 => 0.0065455472409942
228 => 0.0065045577661169
229 => 0.0064675543009609
301 => 0.0064059539571379
302 => 0.0066008665601295
303 => 0.0065929534644002
304 => 0.0067210572862892
305 => 0.0066984136914362
306 => 0.0065471942231802
307 => 0.0065525950560724
308 => 0.0065889182528246
309 => 0.0067146332515149
310 => 0.006751954022456
311 => 0.0067346655543805
312 => 0.0067755860759594
313 => 0.0068079279877514
314 => 0.0067796477221357
315 => 0.0071800366454521
316 => 0.0070137672494728
317 => 0.0070948057961781
318 => 0.0071141330120604
319 => 0.0070646267549853
320 => 0.0070753628894587
321 => 0.0070916252077645
322 => 0.0071903668200284
323 => 0.0074494933817249
324 => 0.0075642587719661
325 => 0.0079095361109313
326 => 0.0075547291039179
327 => 0.0075336763244591
328 => 0.0075958711995834
329 => 0.0077985855488742
330 => 0.0079628664889837
331 => 0.0080173679544128
401 => 0.0080245712227904
402 => 0.0081268195951243
403 => 0.0081854264553269
404 => 0.0081144039533238
405 => 0.0080542198192421
406 => 0.0078386477212912
407 => 0.0078636007786124
408 => 0.0080355025987988
409 => 0.0082783240447788
410 => 0.0084866901066952
411 => 0.0084137275741024
412 => 0.008970380194264
413 => 0.0090255700278309
414 => 0.0090179445773329
415 => 0.0091436752315469
416 => 0.0088941254875346
417 => 0.0087874381371708
418 => 0.0080672323121495
419 => 0.0082695807721667
420 => 0.0085637061423099
421 => 0.0085247775466579
422 => 0.0083111758408662
423 => 0.0084865280706472
424 => 0.0084285511397104
425 => 0.0083828223288155
426 => 0.0085923148764913
427 => 0.0083619692148422
428 => 0.0085614082681297
429 => 0.0083056256193556
430 => 0.0084140608608054
501 => 0.008352507773336
502 => 0.0083923401645914
503 => 0.0081594808192219
504 => 0.0082851260696422
505 => 0.0081542535637212
506 => 0.0081541915131133
507 => 0.0081513024952915
508 => 0.00830527341813
509 => 0.008310294404396
510 => 0.0081965096597812
511 => 0.0081801115004304
512 => 0.0082407440901735
513 => 0.0081697592072848
514 => 0.0082029725872149
515 => 0.0081707652067279
516 => 0.008163514646989
517 => 0.0081057409534088
518 => 0.0080808504576937
519 => 0.0080906106624126
520 => 0.0080572940519764
521 => 0.0080372195890741
522 => 0.0081473091793533
523 => 0.0080884927522685
524 => 0.0081382947183562
525 => 0.0080815390924901
526 => 0.0078847993659889
527 => 0.0077716522687932
528 => 0.0074000291632148
529 => 0.0075054210149598
530 => 0.0075752959217025
531 => 0.0075522022654409
601 => 0.0076018163751495
602 => 0.0076048622785365
603 => 0.0075887322257143
604 => 0.0075700556909338
605 => 0.0075609649866799
606 => 0.0076287196483146
607 => 0.0076680535099105
608 => 0.0075823088033998
609 => 0.0075622200183603
610 => 0.0076489126507376
611 => 0.0077017951064071
612 => 0.0080922494469855
613 => 0.0080633233282845
614 => 0.0081359222097598
615 => 0.0081277486898263
616 => 0.0082038438835212
617 => 0.0083282273649841
618 => 0.0080753209690017
619 => 0.0081192167744991
620 => 0.0081084545366933
621 => 0.0082259538270464
622 => 0.0082263206470054
623 => 0.0081558739529139
624 => 0.0081940642486479
625 => 0.0081727474732651
626 => 0.0082112697675169
627 => 0.0080629370023339
628 => 0.0082435902987942
629 => 0.0083460090768459
630 => 0.0083474311616786
701 => 0.0083959768496294
702 => 0.0084453020801641
703 => 0.0085399775648532
704 => 0.0084426616322813
705 => 0.0082675997430995
706 => 0.008280238646052
707 => 0.0081775999244774
708 => 0.0081793252999302
709 => 0.0081701151105427
710 => 0.0081977555822054
711 => 0.0080690025315053
712 => 0.0080992206151566
713 => 0.0080569151210878
714 => 0.0081191248106171
715 => 0.0080521974683137
716 => 0.0081084493468164
717 => 0.0081327257927988
718 => 0.0082223064011086
719 => 0.0080389663396306
720 => 0.007665123543246
721 => 0.0077437098314518
722 => 0.0076274745383757
723 => 0.0076382325572888
724 => 0.0076599654676194
725 => 0.0075895219946722
726 => 0.0076029603893816
727 => 0.007602480275358
728 => 0.0075983429120816
729 => 0.0075800178441121
730 => 0.0075534428700519
731 => 0.0076593093873618
801 => 0.0076772981715972
802 => 0.0077172850106136
803 => 0.0078362587201946
804 => 0.0078243704410142
805 => 0.0078437607175974
806 => 0.007801431852688
807 => 0.0076401960719299
808 => 0.0076489519505538
809 => 0.0075397660038102
810 => 0.0077144928804719
811 => 0.0076731152497963
812 => 0.0076464388221224
813 => 0.0076391599116762
814 => 0.0077584285340711
815 => 0.0077941155751982
816 => 0.007771877806036
817 => 0.007726267492705
818 => 0.0078138527777793
819 => 0.0078372869051386
820 => 0.007842532942037
821 => 0.007997717274376
822 => 0.0078512060223319
823 => 0.0078864727368955
824 => 0.0081616135765932
825 => 0.0079120988018279
826 => 0.0080442723428645
827 => 0.0080378031358287
828 => 0.0081054186469143
829 => 0.0080322566903708
830 => 0.008033163620506
831 => 0.0080932016136785
901 => 0.0080088890801768
902 => 0.007988012111192
903 => 0.0079591707280631
904 => 0.0080221448329841
905 => 0.0080598949608105
906 => 0.0083641332666773
907 => 0.0085606850872196
908 => 0.0085521522543213
909 => 0.0086301263742178
910 => 0.0085949983190433
911 => 0.0084815605625723
912 => 0.0086751849806077
913 => 0.0086139141131515
914 => 0.0086189652090205
915 => 0.00861877720698
916 => 0.0086595169774461
917 => 0.0086306491163258
918 => 0.0085737475988323
919 => 0.0086115214816271
920 => 0.0087236964091174
921 => 0.0090718908259943
922 => 0.0092667450346411
923 => 0.0090601603579676
924 => 0.0092026597016579
925 => 0.0091172108731515
926 => 0.0091016822791294
927 => 0.0091911823975857
928 => 0.0092808391741515
929 => 0.0092751284250812
930 => 0.0092100422092208
1001 => 0.0091732766573829
1002 => 0.0094516777332631
1003 => 0.0096567989035331
1004 => 0.0096428110148704
1005 => 0.0097045490063222
1006 => 0.0098858136587089
1007 => 0.0099023862268405
1008 => 0.0099002984641721
1009 => 0.0098592216248891
1010 => 0.010037700215353
1011 => 0.010186590195551
1012 => 0.0098497135234191
1013 => 0.0099779917501273
1014 => 0.010035579978963
1015 => 0.010120136584551
1016 => 0.010262797751511
1017 => 0.010417765617836
1018 => 0.01043967977327
1019 => 0.0104241306313
1020 => 0.0103219251577
1021 => 0.010491492846183
1022 => 0.010590821621245
1023 => 0.010649969633696
1024 => 0.01079995915198
1025 => 0.010035935624259
1026 => 0.0094951217969049
1027 => 0.0094106659083172
1028 => 0.009582410278824
1029 => 0.009627697899691
1030 => 0.0096094425165053
1031 => 0.0090007073851764
1101 => 0.0094074610438314
1102 => 0.0098450937797252
1103 => 0.0098619050354263
1104 => 0.010080993133484
1105 => 0.010152337198936
1106 => 0.010328731834405
1107 => 0.01031769830193
1108 => 0.010360647588615
1109 => 0.010350774291384
1110 => 0.010677508209319
1111 => 0.011037944241257
1112 => 0.011025463487588
1113 => 0.010973646543511
1114 => 0.011050603541567
1115 => 0.0114226121532
1116 => 0.011388363561557
1117 => 0.01142163315105
1118 => 0.011860252269652
1119 => 0.012430519516676
1120 => 0.012165573126538
1121 => 0.012740430556868
1122 => 0.013102272837378
1123 => 0.01372804164633
1124 => 0.013649692309473
1125 => 0.013893299514694
1126 => 0.013509430644499
1127 => 0.012627990125831
1128 => 0.012488498789733
1129 => 0.012767763977084
1130 => 0.013454310189889
1201 => 0.012746142193633
1202 => 0.012889403656955
1203 => 0.012848144345881
1204 => 0.012845945812534
1205 => 0.012929854888284
1206 => 0.012808140397506
1207 => 0.012312253666055
1208 => 0.0125395156328
1209 => 0.012451758873423
1210 => 0.012549131540651
1211 => 0.013074611666137
1212 => 0.012842284376778
1213 => 0.012597546450175
1214 => 0.012904502121829
1215 => 0.013295362173258
1216 => 0.013270902853682
1217 => 0.013223441550504
1218 => 0.013490978431528
1219 => 0.01393287097803
1220 => 0.014052312757682
1221 => 0.014140482237541
1222 => 0.014152639319178
1223 => 0.014277864815623
1224 => 0.013604495760349
1225 => 0.014673149744412
1226 => 0.014857676766489
1227 => 0.0148229933342
1228 => 0.015028087353155
1229 => 0.014967743490045
1230 => 0.014880314700062
1231 => 0.015205432344854
]
'min_raw' => 0.0056048553047249
'max_raw' => 0.015205432344854
'avg_raw' => 0.010405143824789
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0056048'
'max' => '$0.0152054'
'avg' => '$0.0104051'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0019329697433758
'max_diff' => 0.0070082064956225
'year' => 2032
]
7 => [
'items' => [
101 => 0.014832711200741
102 => 0.01430368046096
103 => 0.014013443734074
104 => 0.014395650868766
105 => 0.014629051428731
106 => 0.014783314351805
107 => 0.014829994219119
108 => 0.013656767483274
109 => 0.013024463342792
110 => 0.013429763047459
111 => 0.013924256659445
112 => 0.013601748823367
113 => 0.013614390519953
114 => 0.013154579099274
115 => 0.013964939767325
116 => 0.013846877034196
117 => 0.014459386702518
118 => 0.014313206354476
119 => 0.014812684211504
120 => 0.014681154952423
121 => 0.015227125553168
122 => 0.015444928007369
123 => 0.015810652226218
124 => 0.016079680450369
125 => 0.01623765896928
126 => 0.016228174531567
127 => 0.016854164128078
128 => 0.016485039933426
129 => 0.01602133294905
130 => 0.016012945952679
131 => 0.016253106370667
201 => 0.016756416721975
202 => 0.016886917773201
203 => 0.016959850057556
204 => 0.016848151725276
205 => 0.01644749386735
206 => 0.016274491835679
207 => 0.016421894579014
208 => 0.016241633690378
209 => 0.016552814556436
210 => 0.016980132350182
211 => 0.016891892915571
212 => 0.017186864115879
213 => 0.017492128276323
214 => 0.017928669736029
215 => 0.018042797838679
216 => 0.018231447252458
217 => 0.01842562946734
218 => 0.018487995561403
219 => 0.018607071786031
220 => 0.018606444195549
221 => 0.018965288413221
222 => 0.019361104697793
223 => 0.01951051618205
224 => 0.019854079651504
225 => 0.019265739249965
226 => 0.0197120022029
227 => 0.020114542557133
228 => 0.019634617352025
301 => 0.020296082439035
302 => 0.020321765629452
303 => 0.020709551312253
304 => 0.020316456231986
305 => 0.020083037628128
306 => 0.020756908391386
307 => 0.021082973226996
308 => 0.020984759844907
309 => 0.020237351157813
310 => 0.019802327244058
311 => 0.018663785751915
312 => 0.020012437330691
313 => 0.020669326174007
314 => 0.020235649974402
315 => 0.020454371024044
316 => 0.021647642150356
317 => 0.022101962536672
318 => 0.022007467072257
319 => 0.022023435250216
320 => 0.022268578284173
321 => 0.023355677499476
322 => 0.022704262450904
323 => 0.023202244847481
324 => 0.023466372915017
325 => 0.023711709784161
326 => 0.023109239973057
327 => 0.02232543560085
328 => 0.022077171854303
329 => 0.020192529423175
330 => 0.020094425600047
331 => 0.020039356951276
401 => 0.019692156910386
402 => 0.019419352784342
403 => 0.019202408814744
404 => 0.018633083053566
405 => 0.018825213785231
406 => 0.017917827349434
407 => 0.018498341035256
408 => 0.017050130374112
409 => 0.018256243246525
410 => 0.017599810845294
411 => 0.018040587548028
412 => 0.018039049719635
413 => 0.017227440061522
414 => 0.016759320548583
415 => 0.017057624521711
416 => 0.017377430060304
417 => 0.017429317432986
418 => 0.01784395366155
419 => 0.017959669720366
420 => 0.017609044659886
421 => 0.017020119427116
422 => 0.017156913326734
423 => 0.016756548424573
424 => 0.01605492433335
425 => 0.016558843004848
426 => 0.016730902995037
427 => 0.016806894488746
428 => 0.0161169277771
429 => 0.015900125256394
430 => 0.01578470141352
501 => 0.016931053388873
502 => 0.016993853137826
503 => 0.016672560743192
504 => 0.018124832833132
505 => 0.017796138931704
506 => 0.01816337055156
507 => 0.017144500714149
508 => 0.017183422914029
509 => 0.016701073604885
510 => 0.016971156987413
511 => 0.016780270757836
512 => 0.016949336919121
513 => 0.017050674479109
514 => 0.017532944639477
515 => 0.018261749997075
516 => 0.017460909559811
517 => 0.017111971913049
518 => 0.0173284508666
519 => 0.017904962847171
520 => 0.018778408008841
521 => 0.01826131089341
522 => 0.01849078981236
523 => 0.018540920747344
524 => 0.018159632478401
525 => 0.01879246665118
526 => 0.019131607625509
527 => 0.019479496089833
528 => 0.019781557895792
529 => 0.01934054178695
530 => 0.019812492240587
531 => 0.019432183485426
601 => 0.01909100721645
602 => 0.019091524640019
603 => 0.0188774997827
604 => 0.018462799652778
605 => 0.018386322586178
606 => 0.018784165944616
607 => 0.019103198642177
608 => 0.019129475703211
609 => 0.019306108597073
610 => 0.019410638124197
611 => 0.020435169591011
612 => 0.020847244622332
613 => 0.021351122170451
614 => 0.021547410872425
615 => 0.022138169491975
616 => 0.021661083927619
617 => 0.021557863464762
618 => 0.020124876289406
619 => 0.020359527859093
620 => 0.020735227662671
621 => 0.020131071440789
622 => 0.02051426950598
623 => 0.020589920921294
624 => 0.020110542443552
625 => 0.020366599201235
626 => 0.019686588368367
627 => 0.018276572374976
628 => 0.018794036402055
629 => 0.019175064102494
630 => 0.018631290593592
701 => 0.019605983561358
702 => 0.019036588051336
703 => 0.018856117010463
704 => 0.018152035137448
705 => 0.018484334678915
706 => 0.018933774566819
707 => 0.018656072969089
708 => 0.019232345481483
709 => 0.020048501045299
710 => 0.020630142102978
711 => 0.02067479328112
712 => 0.020300837047957
713 => 0.020900104298158
714 => 0.020904469305841
715 => 0.020228493399536
716 => 0.019814461920774
717 => 0.019720393097669
718 => 0.019955395461063
719 => 0.020240731714053
720 => 0.020690627457322
721 => 0.020962490032569
722 => 0.021671363444045
723 => 0.021863164264197
724 => 0.022073895215169
725 => 0.022355496752686
726 => 0.022693631599627
727 => 0.021953811804547
728 => 0.021983206224202
729 => 0.021294296274526
730 => 0.020558097193617
731 => 0.021116780527516
801 => 0.02184718466806
802 => 0.021679629151194
803 => 0.021660775732698
804 => 0.021692481953107
805 => 0.021566150565241
806 => 0.020994758379988
807 => 0.020707808801657
808 => 0.021078046966348
809 => 0.021274812073476
810 => 0.021579977594912
811 => 0.021542359503132
812 => 0.022328433113965
813 => 0.022633877549503
814 => 0.022555731792188
815 => 0.022570112492217
816 => 0.02312310505283
817 => 0.023738146511825
818 => 0.024314214000043
819 => 0.024900214591733
820 => 0.024193768006459
821 => 0.023835077998024
822 => 0.024205154528315
823 => 0.024008786712138
824 => 0.025137174430365
825 => 0.025215301547747
826 => 0.026343607670699
827 => 0.027414504537574
828 => 0.0267418934026
829 => 0.027376135407809
830 => 0.028062119846953
831 => 0.029385495127024
901 => 0.0289398288896
902 => 0.028598455536213
903 => 0.028275859366766
904 => 0.028947130784685
905 => 0.029810710740014
906 => 0.029996717591126
907 => 0.030298119750014
908 => 0.029981232233646
909 => 0.030362888343096
910 => 0.031710302117646
911 => 0.031346219021812
912 => 0.03082916249645
913 => 0.031892816264463
914 => 0.032277748428257
915 => 0.034979403944306
916 => 0.038390355633141
917 => 0.036978199236447
918 => 0.036101628191017
919 => 0.036307643179236
920 => 0.037553207267997
921 => 0.037953242921079
922 => 0.036865808115443
923 => 0.03724990847257
924 => 0.039366339204249
925 => 0.040501736388568
926 => 0.038959714508077
927 => 0.034705337297278
928 => 0.030782607213579
929 => 0.031823091874614
930 => 0.031705133204051
1001 => 0.033978973995129
1002 => 0.031337535760387
1003 => 0.031382010805914
1004 => 0.033702872216513
1005 => 0.033083706181803
1006 => 0.032080736502366
1007 => 0.030789930002192
1008 => 0.028403754801469
1009 => 0.026290252882771
1010 => 0.030435316855761
1011 => 0.030256574159936
1012 => 0.029997728248198
1013 => 0.030573761814718
1014 => 0.033370817303759
1015 => 0.033306336121552
1016 => 0.032896139738936
1017 => 0.033207270079845
1018 => 0.032026193849312
1019 => 0.032330584086526
1020 => 0.030781985833092
1021 => 0.03148201691882
1022 => 0.032078584579891
1023 => 0.032198354370186
1024 => 0.032468201823318
1025 => 0.030162384881367
1026 => 0.031197628993074
1027 => 0.031805737919447
1028 => 0.029058279666903
1029 => 0.031751429503546
1030 => 0.030122245738387
1031 => 0.029569276298973
1101 => 0.03031377680096
1102 => 0.030023644231285
1103 => 0.029774205285035
1104 => 0.029635014067123
1105 => 0.03018169306826
1106 => 0.030156189839434
1107 => 0.029261716887752
1108 => 0.028094913385664
1109 => 0.028486530939984
1110 => 0.028344252611066
1111 => 0.027828617592795
1112 => 0.0281760933371
1113 => 0.026645986012631
1114 => 0.024013515888941
1115 => 0.025752606287391
1116 => 0.025685653198817
1117 => 0.025651892415477
1118 => 0.026958770784985
1119 => 0.02683314458457
1120 => 0.026605131800683
1121 => 0.027824429959209
1122 => 0.027379369729473
1123 => 0.028750940488142
1124 => 0.029654345697437
1125 => 0.029425212914263
1126 => 0.030274869880141
1127 => 0.028495553017479
1128 => 0.029086570705454
1129 => 0.02920837863183
1130 => 0.0278093840092
1201 => 0.026853698584604
1202 => 0.026789965262395
1203 => 0.025132938437709
1204 => 0.026018108792403
1205 => 0.026797022073695
1206 => 0.026423983058069
1207 => 0.026305890049945
1208 => 0.026909201617201
1209 => 0.026956084092991
1210 => 0.025887158676598
1211 => 0.026109422119132
1212 => 0.02703629762272
1213 => 0.026086067234559
1214 => 0.024239924809615
1215 => 0.023782055963313
1216 => 0.023720967819019
1217 => 0.022479191193812
1218 => 0.023812652949008
1219 => 0.023230561158312
1220 => 0.025069382150591
1221 => 0.024019057461596
1222 => 0.023973780063511
1223 => 0.023905336635555
1224 => 0.022836488197092
1225 => 0.023070498076254
1226 => 0.023848382555297
1227 => 0.024125940500915
1228 => 0.024096988933222
1229 => 0.023844570496976
1230 => 0.023960126364498
1231 => 0.023587880652877
]
'min_raw' => 0.013024463342792
'max_raw' => 0.040501736388568
'avg_raw' => 0.02676309986568
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.013024'
'max' => '$0.0405017'
'avg' => '$0.026763'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.007419608038067
'max_diff' => 0.025296304043714
'year' => 2033
]
8 => [
'items' => [
101 => 0.023456432944479
102 => 0.023041547819235
103 => 0.022431781300066
104 => 0.022516573074472
105 => 0.021308466045911
106 => 0.020650225217658
107 => 0.020468032831872
108 => 0.020224397559256
109 => 0.020495552084203
110 => 0.02130504363049
111 => 0.020328625082456
112 => 0.01865462396965
113 => 0.018755234288889
114 => 0.018981275804747
115 => 0.01856004893536
116 => 0.018161393054378
117 => 0.018507991998918
118 => 0.017798695659456
119 => 0.019066990878667
120 => 0.019032687047344
121 => 0.019505429074216
122 => 0.019801044365262
123 => 0.019119746825988
124 => 0.018948402337285
125 => 0.019046007945223
126 => 0.017432804665186
127 => 0.019373595949581
128 => 0.019390379993201
129 => 0.019246664821834
130 => 0.020280076265566
131 => 0.022460896740953
201 => 0.021640384354812
202 => 0.02132265715878
203 => 0.020718657526866
204 => 0.021523451174442
205 => 0.021461655579044
206 => 0.021182192461375
207 => 0.02101317229583
208 => 0.021324597133287
209 => 0.020974583312083
210 => 0.020911711212058
211 => 0.020530774691427
212 => 0.020394797685069
213 => 0.020294125722962
214 => 0.020183295784506
215 => 0.020427759011642
216 => 0.019873773177135
217 => 0.019205720568622
218 => 0.019150179222654
219 => 0.019303533762118
220 => 0.019235685794308
221 => 0.019149854392687
222 => 0.018985978872201
223 => 0.01893736050592
224 => 0.019095346610057
225 => 0.018916989509648
226 => 0.019180165126915
227 => 0.019108595921189
228 => 0.01870881615584
301 => 0.018210542550788
302 => 0.018206106870539
303 => 0.018098754639663
304 => 0.017962025433127
305 => 0.017923990495809
306 => 0.018478802402552
307 => 0.019627246445387
308 => 0.019401779399842
309 => 0.019564702447041
310 => 0.020366122588392
311 => 0.020620869951783
312 => 0.02044005630727
313 => 0.020192547438561
314 => 0.020203436572655
315 => 0.021049249303065
316 => 0.021102001605566
317 => 0.021235289655447
318 => 0.021406602466743
319 => 0.020469231619811
320 => 0.020159286490061
321 => 0.020012417292484
322 => 0.01956011700948
323 => 0.020047884087405
324 => 0.019763683099367
325 => 0.019802031522341
326 => 0.019777057061571
327 => 0.019790694805917
328 => 0.019066636364306
329 => 0.019330445205038
330 => 0.018891811840755
331 => 0.018304531004886
401 => 0.018302562233596
402 => 0.018446298386175
403 => 0.018360798498225
404 => 0.018130720498155
405 => 0.018163401992127
406 => 0.017877077715844
407 => 0.018198166943336
408 => 0.018207374633468
409 => 0.018083737791035
410 => 0.018578420047762
411 => 0.018781091771965
412 => 0.018699711353718
413 => 0.018775381904877
414 => 0.019411148573507
415 => 0.019514806280938
416 => 0.019560844187335
417 => 0.019499159491617
418 => 0.018787002552486
419 => 0.018818589741062
420 => 0.018586823909723
421 => 0.018391006205124
422 => 0.018398837886379
423 => 0.018499513641063
424 => 0.018939170566323
425 => 0.01986440264634
426 => 0.019899514527441
427 => 0.019942071151621
428 => 0.019768971973835
429 => 0.019716763605479
430 => 0.019785639919464
501 => 0.020133108442327
502 => 0.021026891819914
503 => 0.02071096908049
504 => 0.020454118975708
505 => 0.020679445763893
506 => 0.020644758471022
507 => 0.02035196281113
508 => 0.020343745012143
509 => 0.019781776528376
510 => 0.019574029575331
511 => 0.019400420671776
512 => 0.019210844281269
513 => 0.019098457042319
514 => 0.019271134920433
515 => 0.019310628394223
516 => 0.018933065195833
517 => 0.018881604727036
518 => 0.019189930985109
519 => 0.019054248094492
520 => 0.019193801312265
521 => 0.019226178855854
522 => 0.019220965325618
523 => 0.019079296804734
524 => 0.019169592095329
525 => 0.018956016814749
526 => 0.018723785775088
527 => 0.018575636840289
528 => 0.018446357245573
529 => 0.018518089078496
530 => 0.018262378191841
531 => 0.018180571132757
601 => 0.019139002082584
602 => 0.01984700533009
603 => 0.019836710682471
604 => 0.01977404466266
605 => 0.019680935668559
606 => 0.020126296939468
607 => 0.019971141977963
608 => 0.020084030176089
609 => 0.020112764960415
610 => 0.020199736498206
611 => 0.02023082134751
612 => 0.020136861343097
613 => 0.019821520092041
614 => 0.019035719676155
615 => 0.018669927461333
616 => 0.01854920993769
617 => 0.018553597790399
618 => 0.018432561224443
619 => 0.018468211917595
620 => 0.018420163368259
621 => 0.018329171040009
622 => 0.018512470558636
623 => 0.018533594120604
624 => 0.018490809822691
625 => 0.018500887073664
626 => 0.018146651360351
627 => 0.018173583132275
628 => 0.01802362360388
629 => 0.017995508000095
630 => 0.017616423370783
701 => 0.016944820000761
702 => 0.017316953461869
703 => 0.016867468570733
704 => 0.016697241831652
705 => 0.017503068738772
706 => 0.017422186067456
707 => 0.017283750093016
708 => 0.017078974434234
709 => 0.017003021150462
710 => 0.016541553042152
711 => 0.016514287044477
712 => 0.016743003099642
713 => 0.016637458509822
714 => 0.016489233932853
715 => 0.015952379540355
716 => 0.015348777456807
717 => 0.015366996409602
718 => 0.015558991001963
719 => 0.01611724117325
720 => 0.015899123173502
721 => 0.015740876062069
722 => 0.015711241134988
723 => 0.016082184292325
724 => 0.01660714657495
725 => 0.016853447132589
726 => 0.016609370760228
727 => 0.016328988965665
728 => 0.016346054506336
729 => 0.016459583902923
730 => 0.016471514237285
731 => 0.016289014512739
801 => 0.0163403871162
802 => 0.016262347433933
803 => 0.015783418047908
804 => 0.015774755734016
805 => 0.015657218738906
806 => 0.015653659765406
807 => 0.015453700015746
808 => 0.015425724264512
809 => 0.015028692044873
810 => 0.015290019854164
811 => 0.015114734880018
812 => 0.014850539078434
813 => 0.014804991622659
814 => 0.014803622411138
815 => 0.015074892426265
816 => 0.015286849906096
817 => 0.015117784037189
818 => 0.015079291016043
819 => 0.015490295775927
820 => 0.01543799167384
821 => 0.015392696658758
822 => 0.016560141960378
823 => 0.015636017907253
824 => 0.015233047072933
825 => 0.014734294143377
826 => 0.014896690612171
827 => 0.014930909934247
828 => 0.013731499045637
829 => 0.013244898197505
830 => 0.013077915123592
831 => 0.012981814003761
901 => 0.01302560849083
902 => 0.012587610654924
903 => 0.012881952444469
904 => 0.01250268334161
905 => 0.012439097642267
906 => 0.013117277780605
907 => 0.013211642584983
908 => 0.012809053012657
909 => 0.013067580691422
910 => 0.012973834961298
911 => 0.01250918482181
912 => 0.012491438604217
913 => 0.012258293497464
914 => 0.011893466551184
915 => 0.01172673084712
916 => 0.011639893444778
917 => 0.011675724249411
918 => 0.011657607098148
919 => 0.01153938043124
920 => 0.011664383712304
921 => 0.011345051984109
922 => 0.011217891516911
923 => 0.011160456083978
924 => 0.010877030795156
925 => 0.01132808646947
926 => 0.011416950119559
927 => 0.01150598885849
928 => 0.01228101029156
929 => 0.012242292410951
930 => 0.012592283195278
1001 => 0.01257868319699
1002 => 0.012478860155826
1003 => 0.012057723165245
1004 => 0.012225580863646
1005 => 0.011708940958847
1006 => 0.012096042703621
1007 => 0.011919385633062
1008 => 0.012036314770364
1009 => 0.011826065638419
1010 => 0.011942426189011
1011 => 0.011438022987619
1012 => 0.010967018375304
1013 => 0.011156564380781
1014 => 0.01136262256595
1015 => 0.011809409214046
1016 => 0.01154330677235
1017 => 0.011639007272831
1018 => 0.01131842661629
1019 => 0.010656977152507
1020 => 0.010660720884639
1021 => 0.010558971295095
1022 => 0.010471044794047
1023 => 0.011573871838833
1024 => 0.011436717862698
1025 => 0.011218180951996
1026 => 0.011510701291282
1027 => 0.011588048311912
1028 => 0.011590250272852
1029 => 0.011803665561353
1030 => 0.011917565339082
1031 => 0.011937640668577
1101 => 0.012273454236175
1102 => 0.012386014514546
1103 => 0.012849634371029
1104 => 0.011907901738715
1105 => 0.011888507374877
1106 => 0.011514817652341
1107 => 0.011277817722507
1108 => 0.011531045240298
1109 => 0.011755370252058
1110 => 0.011521788055759
1111 => 0.011552288959407
1112 => 0.011238723945242
1113 => 0.011350808683201
1114 => 0.011447351158975
1115 => 0.011394046078357
1116 => 0.011314245792676
1117 => 0.011736978159263
1118 => 0.011713125942439
1119 => 0.012106784040779
1120 => 0.012413668679196
1121 => 0.012963660813431
1122 => 0.012389715349619
1123 => 0.012368798495691
1124 => 0.012573264098005
1125 => 0.012385983211928
1126 => 0.012504338267212
1127 => 0.012944591984263
1128 => 0.012953893851561
1129 => 0.012798075589531
1130 => 0.012788594034126
1201 => 0.012818520635814
1202 => 0.01299380167664
1203 => 0.012932553095133
1204 => 0.013003431504277
1205 => 0.013092066040241
1206 => 0.013458696061251
1207 => 0.013547089318096
1208 => 0.013332339530611
1209 => 0.013351729031969
1210 => 0.013271406716436
1211 => 0.013193816366067
1212 => 0.013368228142536
1213 => 0.013686969092106
1214 => 0.013684986221201
1215 => 0.013758927926063
1216 => 0.013804992995625
1217 => 0.013607247995371
1218 => 0.013478523271491
1219 => 0.013527884521593
1220 => 0.013606814235456
1221 => 0.013502288679176
1222 => 0.012857108524869
1223 => 0.013052814969418
1224 => 0.013020239847489
1225 => 0.012973848912592
1226 => 0.013170633255939
1227 => 0.013151652925964
1228 => 0.012583118354046
1229 => 0.012619514092734
1230 => 0.012585331699462
1231 => 0.012695782005184
]
'min_raw' => 0.010471044794047
'max_raw' => 0.023456432944479
'avg_raw' => 0.016963738869263
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.010471'
'max' => '$0.023456'
'avg' => '$0.016963'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.002553418548745
'max_diff' => -0.017045303444089
'year' => 2034
]
9 => [
'items' => [
101 => 0.012380018532952
102 => 0.012477145250311
103 => 0.012538062216932
104 => 0.012573942778258
105 => 0.012703567969299
106 => 0.012688357949259
107 => 0.012702622493098
108 => 0.01289482243163
109 => 0.013866903765673
110 => 0.013919812007908
111 => 0.013659272472861
112 => 0.013763352878197
113 => 0.013563541259834
114 => 0.013697676137863
115 => 0.013789447814753
116 => 0.013374749253563
117 => 0.01335019349614
118 => 0.013149557184151
119 => 0.013257367773592
120 => 0.013085833373935
121 => 0.013127921915593
122 => 0.013010238683906
123 => 0.013222045070444
124 => 0.013458877521979
125 => 0.013518710752034
126 => 0.013361315283585
127 => 0.013247350591562
128 => 0.013047266134672
129 => 0.013380011045653
130 => 0.013477315797841
131 => 0.013379499945214
201 => 0.013356833874841
202 => 0.013313881712442
203 => 0.013365946379142
204 => 0.013476785855264
205 => 0.013424516005208
206 => 0.013459041162046
207 => 0.013327466866368
208 => 0.013607313457194
209 => 0.014051777192176
210 => 0.014053206215761
211 => 0.014000936083952
212 => 0.013979548272192
213 => 0.014033180599445
214 => 0.014062273936866
215 => 0.014235711048716
216 => 0.014421815979769
217 => 0.015290286489055
218 => 0.015046423445288
219 => 0.015816982146668
220 => 0.016426394034935
221 => 0.016609130013874
222 => 0.016441021511642
223 => 0.01586593140655
224 => 0.015837714742382
225 => 0.016697142156169
226 => 0.016454314547505
227 => 0.016425430976125
228 => 0.016118158576211
301 => 0.016299794620987
302 => 0.016260068153555
303 => 0.016197357981227
304 => 0.016543906901784
305 => 0.017192615544431
306 => 0.017091508218923
307 => 0.017016036290666
308 => 0.016685340270589
309 => 0.016884493138305
310 => 0.016813578616633
311 => 0.017118272405203
312 => 0.016937778554648
313 => 0.016452474889542
314 => 0.016529761097792
315 => 0.016518079442893
316 => 0.016758487072938
317 => 0.016686322669682
318 => 0.01650398818496
319 => 0.017190398328814
320 => 0.017145826672086
321 => 0.017209019090827
322 => 0.017236838347847
323 => 0.017654644106508
324 => 0.017825805757538
325 => 0.017864662448928
326 => 0.018027252779289
327 => 0.017860617053392
328 => 0.01852727876624
329 => 0.018970569904494
330 => 0.01948547537313
331 => 0.02023789065635
401 => 0.020520805763071
402 => 0.020469699681317
403 => 0.021040172361857
404 => 0.022065299087892
405 => 0.020676907102143
406 => 0.022138887234416
407 => 0.021676041203911
408 => 0.020578641591827
409 => 0.020507981994301
410 => 0.021251153752675
411 => 0.022899437185118
412 => 0.022486560879967
413 => 0.022900112502845
414 => 0.02241768256767
415 => 0.02239372585515
416 => 0.022876681957697
417 => 0.024005135215865
418 => 0.023469049372347
419 => 0.022700438862023
420 => 0.023267968901942
421 => 0.022776321858939
422 => 0.021668503467709
423 => 0.022486245161238
424 => 0.021939444578717
425 => 0.022099030058215
426 => 0.023248323552225
427 => 0.023110037518372
428 => 0.023288992451119
429 => 0.022973141678886
430 => 0.022678087252525
501 => 0.022127346254694
502 => 0.021964298996439
503 => 0.022009359392795
504 => 0.021964276666744
505 => 0.021656142140028
506 => 0.021589600518322
507 => 0.021478694900222
508 => 0.021513069188753
509 => 0.021304534180143
510 => 0.021698082826922
511 => 0.021771128923703
512 => 0.022057520809595
513 => 0.022087254965257
514 => 0.022884852290933
515 => 0.022445549087029
516 => 0.022740271603821
517 => 0.022713908847884
518 => 0.020602425569028
519 => 0.020893369335079
520 => 0.021345986531872
521 => 0.021142083098225
522 => 0.020853811349104
523 => 0.020621016455534
524 => 0.020268308387277
525 => 0.020764738220191
526 => 0.021417490661045
527 => 0.022103809844362
528 => 0.022928377373704
529 => 0.022744343500179
530 => 0.022088395127959
531 => 0.022117820492766
601 => 0.02229971651955
602 => 0.022064144637868
603 => 0.02199466989105
604 => 0.022290171756194
605 => 0.022292206715135
606 => 0.022021152795447
607 => 0.021719925966057
608 => 0.021718663814643
609 => 0.021665063409859
610 => 0.022427217960608
611 => 0.022846325901003
612 => 0.022894375950943
613 => 0.022843091749799
614 => 0.022862829003422
615 => 0.022618959327319
616 => 0.023176373089584
617 => 0.023687911080346
618 => 0.023550807971406
619 => 0.023345270920751
620 => 0.023181550759898
621 => 0.023512240704611
622 => 0.023497515601927
623 => 0.023683443242252
624 => 0.023675008490517
625 => 0.023612488018168
626 => 0.023550810204209
627 => 0.023795355764812
628 => 0.02372493057064
629 => 0.023654395986689
630 => 0.023512928080272
701 => 0.023532155918287
702 => 0.023326654356502
703 => 0.023231579930908
704 => 0.021801888685422
705 => 0.021419828468119
706 => 0.021540032390036
707 => 0.021579606642224
708 => 0.02141333354603
709 => 0.021651726453918
710 => 0.021614573171744
711 => 0.021759114858739
712 => 0.021668811487975
713 => 0.021672517569811
714 => 0.021938080528519
715 => 0.022015174585217
716 => 0.021975963925755
717 => 0.02200342572758
718 => 0.022636271359725
719 => 0.022546300948098
720 => 0.022498505960098
721 => 0.022511745498411
722 => 0.022673451125788
723 => 0.022718719872653
724 => 0.022526913011206
725 => 0.022617370235887
726 => 0.023002525617847
727 => 0.023137308203626
728 => 0.023567469518123
729 => 0.023384729346217
730 => 0.02372015684056
731 => 0.024751146602509
801 => 0.02557477256342
802 => 0.024817332091984
803 => 0.026329816281063
804 => 0.027507502175231
805 => 0.027462300629074
806 => 0.027256943853061
807 => 0.025916179772949
808 => 0.024682388676765
809 => 0.02571450731826
810 => 0.025717138400934
811 => 0.025628478494289
812 => 0.025077819428604
813 => 0.025609316752426
814 => 0.025651505079876
815 => 0.025627890835286
816 => 0.025205701820714
817 => 0.024561097229034
818 => 0.024687051423283
819 => 0.024893366962858
820 => 0.024502768604512
821 => 0.024377948761831
822 => 0.024610012597321
823 => 0.025357770627692
824 => 0.025216411303518
825 => 0.025212719840286
826 => 0.025817514974786
827 => 0.025384612181443
828 => 0.024688640109033
829 => 0.024512897982006
830 => 0.023889131825142
831 => 0.024319969331467
901 => 0.024335474406314
902 => 0.024099509107153
903 => 0.024707787392581
904 => 0.024702182001096
905 => 0.025279651702836
906 => 0.026383556884847
907 => 0.026057077802651
908 => 0.025677418150881
909 => 0.025718697681848
910 => 0.02617143225
911 => 0.025897698595171
912 => 0.025996135125986
913 => 0.026171283254521
914 => 0.02627695446915
915 => 0.025703493220251
916 => 0.02556979197131
917 => 0.02529628613874
918 => 0.02522493357225
919 => 0.025447698365993
920 => 0.025389007713238
921 => 0.024334171264812
922 => 0.024223934986897
923 => 0.02422731577616
924 => 0.023950121413893
925 => 0.023527333477166
926 => 0.024638394931528
927 => 0.024549161147447
928 => 0.024450653955969
929 => 0.024462720524851
930 => 0.024944994644822
1001 => 0.024665251299812
1002 => 0.025408994831555
1003 => 0.025256103520405
1004 => 0.025099291124037
1005 => 0.025077614874236
1006 => 0.025017255480239
1007 => 0.024810260659483
1008 => 0.024560301974959
1009 => 0.024395257600385
1010 => 0.022503335607918
1011 => 0.022854465324916
1012 => 0.023258408057841
1013 => 0.023397847470548
1014 => 0.023159326706199
1015 => 0.02481967891306
1016 => 0.025123041260806
1017 => 0.024204136921649
1018 => 0.024032247438409
1019 => 0.024830947958965
1020 => 0.024349233907902
1021 => 0.0245661497156
1022 => 0.02409729638596
1023 => 0.02504997015472
1024 => 0.025042712376768
1025 => 0.024672100763607
1026 => 0.024985339161212
1027 => 0.024930906281209
1028 => 0.024512486682727
1029 => 0.025063234802314
1030 => 0.02506350796651
1031 => 0.024706802346634
1101 => 0.02429024827552
1102 => 0.024215778246173
1103 => 0.024159675082701
1104 => 0.024552351776572
1105 => 0.024904424472429
1106 => 0.025559544473196
1107 => 0.025724257206656
1108 => 0.026367141970898
1109 => 0.025984335395283
1110 => 0.026154028592078
1111 => 0.026338254561767
1112 => 0.026426579266322
1113 => 0.026282658900015
1114 => 0.027281323560809
1115 => 0.027365641456474
1116 => 0.027393912517544
1117 => 0.027057168412848
1118 => 0.027356275993757
1119 => 0.027216333462052
1120 => 0.027580425052395
1121 => 0.027637519262715
1122 => 0.027589162497759
1123 => 0.027607285101286
1124 => 0.026755100989817
1125 => 0.026710910748008
1126 => 0.026108373665346
1127 => 0.02635391198026
1128 => 0.025894889869486
1129 => 0.026040450509264
1130 => 0.026104612252325
1201 => 0.026071097798897
1202 => 0.026367794348182
1203 => 0.026115541670189
1204 => 0.025449805378785
1205 => 0.024783887707974
1206 => 0.024775527654062
1207 => 0.024600203285761
1208 => 0.024473475879738
1209 => 0.024497888074035
1210 => 0.024583919830867
1211 => 0.024468475557634
1212 => 0.024493111446502
1213 => 0.024902231349769
1214 => 0.024984277428659
1215 => 0.024705452795117
1216 => 0.023585931657241
1217 => 0.0233111983619
1218 => 0.023508671206393
1219 => 0.023414291905605
1220 => 0.018897160978381
1221 => 0.019958393886182
1222 => 0.019327845328431
1223 => 0.019618431113987
1224 => 0.01897480431628
1225 => 0.019281976759517
1226 => 0.019225253225393
1227 => 0.020931684336972
1228 => 0.020905040762284
1229 => 0.020917793631541
1230 => 0.0203090659545
1231 => 0.021278785672783
]
'min_raw' => 0.012380018532952
'max_raw' => 0.027637519262715
'avg_raw' => 0.020008768897833
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.01238'
'max' => '$0.027637'
'avg' => '$0.0200087'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0019089737389048
'max_diff' => 0.004181086318236
'year' => 2035
]
10 => [
'items' => [
101 => 0.021756504476003
102 => 0.021668091439601
103 => 0.02169034309608
104 => 0.021307985914519
105 => 0.02092149568485
106 => 0.020492818539727
107 => 0.021289247689269
108 => 0.021200698363339
109 => 0.02140379865798
110 => 0.02192033989139
111 => 0.021996402550159
112 => 0.022098631534896
113 => 0.022061989721022
114 => 0.022934946384372
115 => 0.022829225572487
116 => 0.023083982311176
117 => 0.022559928371251
118 => 0.021966911594569
119 => 0.022079624696637
120 => 0.022068769518527
121 => 0.021930570642184
122 => 0.021805810875911
123 => 0.021598121015913
124 => 0.022255282465263
125 => 0.022228602910537
126 => 0.022660513889959
127 => 0.022584169428987
128 => 0.022074322433955
129 => 0.022092531719126
130 => 0.02221499791298
131 => 0.022638854808205
201 => 0.022764684393086
202 => 0.022706395115927
203 => 0.022844361511411
204 => 0.022953404525057
205 => 0.022858055635069
206 => 0.024207994844292
207 => 0.023647405967189
208 => 0.023920633085337
209 => 0.023985796143067
210 => 0.023818882340922
211 => 0.023855079967872
212 => 0.023909909509439
213 => 0.024242823749106
214 => 0.025116487043504
215 => 0.025503426569366
216 => 0.026667553224181
217 => 0.025471296628201
218 => 0.025400315712398
219 => 0.025610010076187
220 => 0.026293475657885
221 => 0.026847360317193
222 => 0.027031115813058
223 => 0.027055402135309
224 => 0.027400139661387
225 => 0.02759773678236
226 => 0.027358279458224
227 => 0.027155364448245
228 => 0.026428548069241
229 => 0.026512679044166
301 => 0.027092258032726
302 => 0.0279109474911
303 => 0.028613468216504
304 => 0.028367469943787
305 => 0.030244263116906
306 => 0.030430339494008
307 => 0.030404629755262
308 => 0.030828539434179
309 => 0.029987165049235
310 => 0.02962746119881
311 => 0.027199236976586
312 => 0.027881468937052
313 => 0.028873133157668
314 => 0.028741882679519
315 => 0.028021709615247
316 => 0.028612921900656
317 => 0.028417448630182
318 => 0.028263270751566
319 => 0.028969589502358
320 => 0.028192963021887
321 => 0.028865385714437
322 => 0.02800299665592
323 => 0.028368593643175
324 => 0.028161063111273
325 => 0.028295360799399
326 => 0.027510259258765
327 => 0.027933880992829
328 => 0.027492635201889
329 => 0.027492425993933
330 => 0.027482685468642
331 => 0.028001809184898
401 => 0.028018737790648
402 => 0.027635104579982
403 => 0.027579817040848
404 => 0.027784244050399
405 => 0.027544913561734
406 => 0.027656894791052
407 => 0.027548305359092
408 => 0.027523859590715
409 => 0.027329071549179
410 => 0.027245151505076
411 => 0.027278058716722
412 => 0.027165729438545
413 => 0.027098046985316
414 => 0.027469221725152
415 => 0.027270918034804
416 => 0.02743882884053
417 => 0.027247473285372
418 => 0.026584151561544
419 => 0.02620266822367
420 => 0.024949714977316
421 => 0.025305050963699
422 => 0.025540639090292
423 => 0.025462777215858
424 => 0.025630054650687
425 => 0.025640324126615
426 => 0.02558594052736
427 => 0.025522971286394
428 => 0.025492321342309
429 => 0.02572076091449
430 => 0.025853377775063
501 => 0.025564283510558
502 => 0.025496552769243
503 => 0.025788843031989
504 => 0.025967139923414
505 => 0.027283583993326
506 => 0.027186057564568
507 => 0.027430829762154
508 => 0.027403272169042
509 => 0.027659832427381
510 => 0.02807920001931
511 => 0.027226508447895
512 => 0.027374506220837
513 => 0.027338220584679
514 => 0.027734377645643
515 => 0.027735614404745
516 => 0.027498098457184
517 => 0.027626859705613
518 => 0.02755498870912
519 => 0.027684869313731
520 => 0.027184755039653
521 => 0.02779384024148
522 => 0.028139152302332
523 => 0.028143946960632
524 => 0.02830762213691
525 => 0.028473925595435
526 => 0.028793130602096
527 => 0.028465023141048
528 => 0.027874789759241
529 => 0.027917402702965
530 => 0.02757134908717
531 => 0.027577166310971
601 => 0.027546113514416
602 => 0.027639305294423
603 => 0.027205205394736
604 => 0.027307087773526
605 => 0.027164451846598
606 => 0.027374196158188
607 => 0.027148545950894
608 => 0.027338203086647
609 => 0.027420052819204
610 => 0.027722080094438
611 => 0.027103936276771
612 => 0.02584349918789
613 => 0.026108458345295
614 => 0.0257165629394
615 => 0.025752834351267
616 => 0.02582610837579
617 => 0.025588603288542
618 => 0.025633911774543
619 => 0.025632293036592
620 => 0.025618343627444
621 => 0.02555655938137
622 => 0.02546696000092
623 => 0.025823896355395
624 => 0.025884546797381
625 => 0.026019365216917
626 => 0.026420493385249
627 => 0.026380411221979
628 => 0.026445786893265
629 => 0.026303072169916
630 => 0.025759454477967
701 => 0.025788975534063
702 => 0.025420847491498
703 => 0.026009951355204
704 => 0.025870443784487
705 => 0.025780502346096
706 => 0.025755960991329
707 => 0.026158083478803
708 => 0.026278404829553
709 => 0.026203428638231
710 => 0.026049650282425
711 => 0.026344950186062
712 => 0.026423959982573
713 => 0.026441647362242
714 => 0.026964862173347
715 => 0.026470889257992
716 => 0.026589793448386
717 => 0.027517449999147
718 => 0.026676193515461
719 => 0.027121825837128
720 => 0.027100014453941
721 => 0.02732798487033
722 => 0.027081314225839
723 => 0.027084372004109
724 => 0.02728679428981
725 => 0.027002528696595
726 => 0.02693214053808
727 => 0.02683489980122
728 => 0.027047221392672
729 => 0.027174498584269
730 => 0.028200259273739
731 => 0.028862947459507
801 => 0.028834178417647
802 => 0.029097073606857
803 => 0.028978636916274
804 => 0.028596173600361
805 => 0.029248991844192
806 => 0.029042412836769
807 => 0.029059442959147
808 => 0.029058809097142
809 => 0.029196166077628
810 => 0.029098836068371
811 => 0.028906988629405
812 => 0.029034345912536
813 => 0.029412551512373
814 => 0.030586513299031
815 => 0.03124347786777
816 => 0.030546963207084
817 => 0.031027409693322
818 => 0.030739313002166
819 => 0.030686957263249
820 => 0.030988713161323
821 => 0.031290997243151
822 => 0.031271743053948
823 => 0.031052300333001
824 => 0.03092834270809
825 => 0.031866991372763
826 => 0.032558571719431
827 => 0.032511410576202
828 => 0.03271956452479
829 => 0.033330710955806
830 => 0.033386586526321
831 => 0.033379547488722
901 => 0.033241054057186
902 => 0.033842807085913
903 => 0.034344800049315
904 => 0.033208996829245
905 => 0.033641495826692
906 => 0.033835658560893
907 => 0.034120747060188
908 => 0.034601739144878
909 => 0.035124224125701
910 => 0.035198109230746
911 => 0.035145684212989
912 => 0.034801091322986
913 => 0.035372800623545
914 => 0.03570769452358
915 => 0.03590711617714
916 => 0.036412816309969
917 => 0.033836857643838
918 => 0.032013466066499
919 => 0.031728717141604
920 => 0.032307765277576
921 => 0.03246045565321
922 => 0.03239890635425
923 => 0.030346513358444
924 => 0.031717911717233
925 => 0.033193421040841
926 => 0.033250101363162
927 => 0.033988772182005
928 => 0.03422931367976
929 => 0.034824040508726
930 => 0.034786840183648
1001 => 0.03493164670233
1002 => 0.034898358191384
1003 => 0.035999964407535
1004 => 0.037215199654056
1005 => 0.03717311992168
1006 => 0.036998415476982
1007 => 0.037257881368893
1008 => 0.038512134375826
1009 => 0.038396662857942
1010 => 0.038508833601726
1011 => 0.039987668583501
1012 => 0.041910364421632
1013 => 0.041017079169314
1014 => 0.042955251130937
1015 => 0.044175227642698
1016 => 0.046285050871862
1017 => 0.046020890612472
1018 => 0.046842229312988
1019 => 0.045547988616255
1020 => 0.042576150367355
1021 => 0.042105845588727
1022 => 0.043047407665554
1023 => 0.045362146155151
1024 => 0.042974508313062
1025 => 0.04345752433885
1026 => 0.043318415690929
1027 => 0.043311003182255
1028 => 0.043593908489491
1029 => 0.043183539585997
1030 => 0.041511622849203
1031 => 0.042277852437008
1101 => 0.04198197439579
1102 => 0.042310273141691
1103 => 0.044081966072618
1104 => 0.043298658395971
1105 => 0.042473507389371
1106 => 0.043508429867314
1107 => 0.044826241819682
1108 => 0.044743775516039
1109 => 0.04458375641873
1110 => 0.045485775691933
1111 => 0.046975647264417
1112 => 0.04737835356367
1113 => 0.047675623120811
1114 => 0.047716611570331
1115 => 0.04813881807456
1116 => 0.045868507291579
1117 => 0.049471548809886
1118 => 0.050093694548084
1119 => 0.049976756934602
1120 => 0.050668245738714
1121 => 0.050464792191167
1122 => 0.050170019921654
1123 => 0.051266176760059
1124 => 0.050009521400123
1125 => 0.048225857325204
1126 => 0.047247303936829
1127 => 0.048535941976292
1128 => 0.049322868259722
1129 => 0.049842976475157
1130 => 0.05000036090689
1201 => 0.046044745054916
1202 => 0.043912887499215
1203 => 0.045279383750623
1204 => 0.046946603487874
1205 => 0.045859245801759
1206 => 0.045901868164414
1207 => 0.044351581856587
1208 => 0.047083769426494
1209 => 0.046685712678873
1210 => 0.048750831789681
1211 => 0.04825797454027
1212 => 0.049941999007672
1213 => 0.049498538927599
1214 => 0.051339316926462
1215 => 0.052073653107283
1216 => 0.053306717845181
1217 => 0.054213765285856
1218 => 0.054746400892073
1219 => 0.054714423448142
1220 => 0.056824991077978
1221 => 0.05558046308428
1222 => 0.054017042611468
1223 => 0.053988765267643
1224 => 0.054798482884352
1225 => 0.056495428873794
1226 => 0.056935422279296
1227 => 0.057181318567968
1228 => 0.056804719842156
1229 => 0.055453873901121
1230 => 0.054870585472727
1231 => 0.055367564113212
]
'min_raw' => 0.020492818539727
'max_raw' => 0.057181318567968
'avg_raw' => 0.038837068553847
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.020492'
'max' => '$0.057181'
'avg' => '$0.038837'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.008112800006775
'max_diff' => 0.029543799305253
'year' => 2036
]
11 => [
'items' => [
101 => 0.054759801941761
102 => 0.055808969957632
103 => 0.05724970173362
104 => 0.05695219631915
105 => 0.05794671231522
106 => 0.05897593174502
107 => 0.060447761754769
108 => 0.060832552621026
109 => 0.061468597290661
110 => 0.062123296185505
111 => 0.062333567825899
112 => 0.06273504163087
113 => 0.062732925665744
114 => 0.063942793999327
115 => 0.065277316237771
116 => 0.065781067488523
117 => 0.066939415712621
118 => 0.064955784972216
119 => 0.066460391675121
120 => 0.06781758458389
121 => 0.06619948324756
122 => 0.068429658970432
123 => 0.068516251640065
124 => 0.06982369814396
125 => 0.06849835063582
126 => 0.067711363516145
127 => 0.069983365842623
128 => 0.071082716201003
129 => 0.070751582926249
130 => 0.068231642355305
131 => 0.06676492885768
201 => 0.062926256726491
202 => 0.06747332968418
203 => 0.069688076281933
204 => 0.06822590669666
205 => 0.068963339986146
206 => 0.072986536900036
207 => 0.074518309802136
208 => 0.0741997117464
209 => 0.074253549573249
210 => 0.075080066427577
211 => 0.078745297330814
212 => 0.076549006014207
213 => 0.078227988432287
214 => 0.079118514652816
215 => 0.079945685036008
216 => 0.077914416004772
217 => 0.075271764840403
218 => 0.074434726285698
219 => 0.068080522747617
220 => 0.067749758858553
221 => 0.06756409106445
222 => 0.066393481885858
223 => 0.065473703728325
224 => 0.064742261988282
225 => 0.062822740435414
226 => 0.063470522611361
227 => 0.060411205891373
228 => 0.062368448313294
301 => 0.057485704958408
302 => 0.061552198715859
303 => 0.059338991044462
304 => 0.060825100471775
305 => 0.060819915575983
306 => 0.058083516948876
307 => 0.056505219327942
308 => 0.057510972000263
309 => 0.058589218701738
310 => 0.058764160601395
311 => 0.060162135594975
312 => 0.060552280366312
313 => 0.059370123495045
314 => 0.057384520955312
315 => 0.05784573113852
316 => 0.0564958729183
317 => 0.054130298308911
318 => 0.055829295292345
319 => 0.056409407562113
320 => 0.056665618188709
321 => 0.054339347248455
322 => 0.053608382413228
323 => 0.053219222868342
324 => 0.057084228588985
325 => 0.057295962327119
326 => 0.056212702586692
327 => 0.061109139332324
328 => 0.060000924894983
329 => 0.061239071940622
330 => 0.05780388114857
331 => 0.057935110062924
401 => 0.056308835690593
402 => 0.057219440671406
403 => 0.056575854421135
404 => 0.05714587278773
405 => 0.057487539446392
406 => 0.059113546963102
407 => 0.061570765109808
408 => 0.058870675662678
409 => 0.05769420802457
410 => 0.058424081930547
411 => 0.060367832323822
412 => 0.063312713668385
413 => 0.061569284641144
414 => 0.062342988838089
415 => 0.062512008785417
416 => 0.06122646876598
417 => 0.063360113362577
418 => 0.064503550835591
419 => 0.065676481081858
420 => 0.066694903549932
421 => 0.06520798694821
422 => 0.066799200853175
423 => 0.065516963332839
424 => 0.06436666372182
425 => 0.064368408251507
426 => 0.063646808502319
427 => 0.062248618060847
428 => 0.06199077029135
429 => 0.063332126950859
430 => 0.064407767964837
501 => 0.064496362910721
502 => 0.06509189304449
503 => 0.065444321643206
504 => 0.068898601014072
505 => 0.070287940752332
506 => 0.07198679908542
507 => 0.072648600148568
508 => 0.074640384079829
509 => 0.073031856790554
510 => 0.072683841793408
511 => 0.067852425483727
512 => 0.068643569633776
513 => 0.069910267752061
514 => 0.067873312869143
515 => 0.069165291899971
516 => 0.069420355928514
517 => 0.067804097921672
518 => 0.068667411157512
519 => 0.066374707157656
520 => 0.061620739791768
521 => 0.063365405887249
522 => 0.064650067381781
523 => 0.062816697031464
524 => 0.066102942423177
525 => 0.064183185707213
526 => 0.063574714992826
527 => 0.06120085380053
528 => 0.062321224904997
529 => 0.063836542865957
530 => 0.062900252540705
531 => 0.064843195550303
601 => 0.067594921015868
602 => 0.069555964450715
603 => 0.069706509015269
604 => 0.068445689466369
605 => 0.070466160839924
606 => 0.070480877768082
607 => 0.068201777804844
608 => 0.066805841767442
609 => 0.06648868216267
610 => 0.067281009038194
611 => 0.06824304013669
612 => 0.06975989504584
613 => 0.070676498699124
614 => 0.073066514897877
615 => 0.073713184754125
616 => 0.074423678868092
617 => 0.075373118112621
618 => 0.076513163356905
619 => 0.074018809265224
620 => 0.074117914603344
621 => 0.071795206609855
622 => 0.069313060008791
623 => 0.071196699875057
624 => 0.073659308430089
625 => 0.073094383306624
626 => 0.073030817689861
627 => 0.073137717425624
628 => 0.072711782331261
629 => 0.070785293685349
630 => 0.069817823147829
701 => 0.071066106969287
702 => 0.071729514265672
703 => 0.072758401127167
704 => 0.072631569104321
705 => 0.075281871165151
706 => 0.076311698405016
707 => 0.076048224528266
708 => 0.076096710062441
709 => 0.077961163089255
710 => 0.080034818309083
711 => 0.081977070065358
712 => 0.083952811973495
713 => 0.081570977988717
714 => 0.080361629582344
715 => 0.081609368442135
716 => 0.080947300639934
717 => 0.084751738613451
718 => 0.085015149644365
719 => 0.088819312513714
720 => 0.092429916068014
721 => 0.09016216066624
722 => 0.092300551868166
723 => 0.094613396298642
724 => 0.099075248450516
725 => 0.097572653615616
726 => 0.096421689520746
727 => 0.095334034012512
728 => 0.097597272464698
729 => 0.10050889257732
730 => 0.10113602766243
731 => 0.10215222608434
801 => 0.10108381769853
802 => 0.10237059791792
803 => 0.10691349753224
804 => 0.10568596595516
805 => 0.10394267378017
806 => 0.10752885672096
807 => 0.1088266823863
808 => 0.11793550258222
809 => 0.12943576434617
810 => 0.12467458046111
811 => 0.1217191599812
812 => 0.12241375389749
813 => 0.12661326018526
814 => 0.12796200831922
815 => 0.12429564594975
816 => 0.12559066712083
817 => 0.13272636109716
818 => 0.13655443197499
819 => 0.13135539754439
820 => 0.11701146774705
821 => 0.10378570939359
822 => 0.10729377607258
823 => 0.10689607017917
824 => 0.11456248316079
825 => 0.10565668973302
826 => 0.10580664045417
827 => 0.11363158673737
828 => 0.11154402522255
829 => 0.10816244292322
830 => 0.10381039868665
831 => 0.095765242399985
901 => 0.088639423121102
902 => 0.10261479570516
903 => 0.10201215222677
904 => 0.1011394351633
905 => 0.10308157255021
906 => 0.11251204041569
907 => 0.11229463760794
908 => 0.11091163186496
909 => 0.11196062953176
910 => 0.10797854856041
911 => 0.10900482149702
912 => 0.10378361436589
913 => 0.10614381804603
914 => 0.10815518756636
915 => 0.1085589997764
916 => 0.10946880930478
917 => 0.10169458649799
918 => 0.10518498429905
919 => 0.10723526600112
920 => 0.097972018681263
921 => 0.10705216138522
922 => 0.10155925457501
923 => 0.099694879502934
924 => 0.10220501492475
925 => 0.10122681270968
926 => 0.10038581188713
927 => 0.099916518977913
928 => 0.10175968539816
929 => 0.10167369948159
930 => 0.098657921474888
1001 => 0.094723962003981
1002 => 0.096044327930235
1003 => 0.09556462661073
1004 => 0.093826127146144
1005 => 0.094997665878049
1006 => 0.089838802204921
1007 => 0.080963245389704
1008 => 0.086826710087494
1009 => 0.086600973074851
1010 => 0.086487146236718
1011 => 0.090893377902846
1012 => 0.090469820397208
1013 => 0.089701059376989
1014 => 0.093812008247137
1015 => 0.092311456609468
1016 => 0.096935803182335
1017 => 0.099981696919209
1018 => 0.099209159743197
1019 => 0.10207383752481
1020 => 0.096074746494411
1021 => 0.098067403892953
1022 => 0.098478087821089
1023 => 0.093761279776206
1024 => 0.090539119643355
1025 => 0.090324238297808
1026 => 0.084737456668462
1027 => 0.087721870319933
1028 => 0.0903480308298
1029 => 0.089090303743862
1030 => 0.088692144921982
1031 => 0.090726251992854
1101 => 0.09088431953321
1102 => 0.087280362861853
1103 => 0.088029739576293
1104 => 0.091154765049021
1105 => 0.087950996952369
1106 => 0.081726598873123
1107 => 0.080182862090434
1108 => 0.07997689914691
1109 => 0.075790162556948
1110 => 0.080286021963918
1111 => 0.078323458851235
1112 => 0.084523172209086
1113 => 0.080981929188811
1114 => 0.08082927328
1115 => 0.080598511484078
1116 => 0.076994814349188
1117 => 0.077783794994828
1118 => 0.080406486826082
1119 => 0.081342292818212
1120 => 0.0812446805864
1121 => 0.080393634205305
1122 => 0.080783238880508
1123 => 0.079528186474412
1124 => 0.079085001348162
1125 => 0.077686187182046
1126 => 0.075630316790132
1127 => 0.075916198177513
1128 => 0.071842980983381
1129 => 0.069623676074019
1130 => 0.069009401725076
1201 => 0.068187968393377
1202 => 0.069102184805642
1203 => 0.071831442070842
1204 => 0.068539378764781
1205 => 0.06289536713793
1206 => 0.063234581853632
1207 => 0.06399669660606
1208 => 0.062576500806804
1209 => 0.061232404670806
1210 => 0.062400987211089
1211 => 0.060009545081102
1212 => 0.064285690962219
1213 => 0.064170033199896
1214 => 0.065763915949289
1215 => 0.066760603542251
1216 => 0.064463561321913
1217 => 0.063885861415361
1218 => 0.06421494553713
1219 => 0.058775918048227
1220 => 0.065319431365286
1221 => 0.065376019940177
1222 => 0.064891474206038
1223 => 0.068375693039064
1224 => 0.075728481531854
1225 => 0.072962066735634
1226 => 0.071890827311208
1227 => 0.069854400382303
1228 => 0.072567818354003
1229 => 0.072359470189691
1230 => 0.071417240776976
1231 => 0.070847377488231
]
'min_raw' => 0.053219222868342
'max_raw' => 0.13655443197499
'avg_raw' => 0.094886827421666
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.053219'
'max' => '$0.136554'
'avg' => '$0.094886'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.032726404328616
'max_diff' => 0.079373113407022
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0016704905935934
]
1 => [
'year' => 2028
'avg' => 0.0028670468054907
]
2 => [
'year' => 2029
'avg' => 0.0078322551376894
]
3 => [
'year' => 2030
'avg' => 0.0060425731745831
]
4 => [
'year' => 2031
'avg' => 0.0059345557052901
]
5 => [
'year' => 2032
'avg' => 0.010405143824789
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0016704905935934
'min' => '$0.00167'
'max_raw' => 0.010405143824789
'max' => '$0.0104051'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.010405143824789
]
1 => [
'year' => 2033
'avg' => 0.02676309986568
]
2 => [
'year' => 2034
'avg' => 0.016963738869263
]
3 => [
'year' => 2035
'avg' => 0.020008768897833
]
4 => [
'year' => 2036
'avg' => 0.038837068553847
]
5 => [
'year' => 2037
'avg' => 0.094886827421666
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.010405143824789
'min' => '$0.0104051'
'max_raw' => 0.094886827421666
'max' => '$0.094886'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.094886827421666
]
]
]
]
'prediction_2025_max_price' => '$0.002856'
'last_price' => 0.00276948
'sma_50day_nextmonth' => '$0.002394'
'sma_200day_nextmonth' => '$0.004292'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.002562'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.002444'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.002293'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.00216'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.002179'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.002829'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.004728'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.002594'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.00249'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.002352'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.00225'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.002381'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.003059'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.004275'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.004074'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.005019'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.002534'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.002455'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.002658'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.00352'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.006016'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.008538'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.004269'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '71.05'
'rsi_14_action' => 'SELL'
'stoch_rsi_14' => 119.02
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.002290'
'vwma_10_action' => 'BUY'
'hma_9' => '0.002629'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 261.36
'cci_20_action' => 'SELL'
'adx_14' => 16.15
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000263'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 79.69
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000357'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 12
'buy_signals' => 22
'sell_pct' => 35.29
'buy_pct' => 64.71
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767702047
'last_updated_date' => '6. Januar 2026'
]
Black Panther Preisprognose für 2026
Die Preisprognose für Black Panther im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.000956 am unteren Ende und $0.002856 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Black Panther im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn BLACK das prognostizierte Preisziel erreicht.
Black Panther Preisprognose 2027-2032
Die Preisprognose für BLACK für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.00167 am unteren Ende und $0.0104051 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Black Panther, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Black Panther Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.000921 | $0.00167 | $0.002419 |
| 2028 | $0.001662 | $0.002867 | $0.004071 |
| 2029 | $0.003651 | $0.007832 | $0.012012 |
| 2030 | $0.0031056 | $0.006042 | $0.008979 |
| 2031 | $0.003671 | $0.005934 | $0.008197 |
| 2032 | $0.0056048 | $0.0104051 | $0.0152054 |
Black Panther Preisprognose 2032-2037
Die Preisprognose für Black Panther für die Jahre 2032-2037 wird derzeit zwischen $0.0104051 am unteren Ende und $0.094886 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Black Panther bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Black Panther Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.0056048 | $0.0104051 | $0.0152054 |
| 2033 | $0.013024 | $0.026763 | $0.0405017 |
| 2034 | $0.010471 | $0.016963 | $0.023456 |
| 2035 | $0.01238 | $0.0200087 | $0.027637 |
| 2036 | $0.020492 | $0.038837 | $0.057181 |
| 2037 | $0.053219 | $0.094886 | $0.136554 |
Black Panther Potenzielles Preishistogramm
Black Panther Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Black Panther Bullisch, mit 22 technischen Indikatoren, die bullische Signale zeigen, und 12 anzeigen bärische Signale. Die Preisprognose für BLACK wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Black Panther
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Black Panther im nächsten Monat steigen, und bis zum 04.02.2026 $0.004292 erreichen. Der kurzfristige 50-Tage-SMA für Black Panther wird voraussichtlich bis zum 04.02.2026 $0.002394 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 71.05, was darauf hindeutet, dass sich der BLACK-Markt in einem SELL Zustand befindet.
Beliebte BLACK Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.002562 | BUY |
| SMA 5 | $0.002444 | BUY |
| SMA 10 | $0.002293 | BUY |
| SMA 21 | $0.00216 | BUY |
| SMA 50 | $0.002179 | BUY |
| SMA 100 | $0.002829 | SELL |
| SMA 200 | $0.004728 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.002594 | BUY |
| EMA 5 | $0.00249 | BUY |
| EMA 10 | $0.002352 | BUY |
| EMA 21 | $0.00225 | BUY |
| EMA 50 | $0.002381 | BUY |
| EMA 100 | $0.003059 | SELL |
| EMA 200 | $0.004275 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.004074 | SELL |
| SMA 50 | $0.005019 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.00352 | SELL |
| EMA 50 | $0.006016 | SELL |
| EMA 100 | $0.008538 | SELL |
| EMA 200 | $0.004269 | SELL |
Black Panther Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 71.05 | SELL |
| Stoch RSI (14) | 119.02 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 261.36 | SELL |
| Average Directional Index (14) | 16.15 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.000263 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 79.69 | SELL |
| VWMA (10) | 0.002290 | BUY |
| Hull Moving Average (9) | 0.002629 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.000357 | NEUTRAL |
Auf weltweiten Geldflüssen basierende Black Panther-Preisprognose
Definition weltweiter Geldflüsse, die für Black Panther-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Black Panther-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.003891 | $0.005468 | $0.007683 | $0.010797 | $0.015171 | $0.021318 |
| Amazon.com aktie | $0.005778 | $0.012057 | $0.025158 | $0.052495 | $0.109534 | $0.22855 |
| Apple aktie | $0.003928 | $0.005571 | $0.0079034 | $0.01121 | $0.0159011 | $0.022554 |
| Netflix aktie | $0.004369 | $0.006894 | $0.010879 | $0.017165 | $0.027084 | $0.042734 |
| Google aktie | $0.003586 | $0.004644 | $0.006014 | $0.007788 | $0.010086 | $0.013061 |
| Tesla aktie | $0.006278 | $0.014232 | $0.032263 | $0.073138 | $0.165799 | $0.375855 |
| Kodak aktie | $0.002076 | $0.001557 | $0.001167 | $0.000875 | $0.000656 | $0.000492 |
| Nokia aktie | $0.001834 | $0.001215 | $0.0008051 | $0.000533 | $0.000353 | $0.000234 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Black Panther Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Black Panther investieren?", "Sollte ich heute BLACK kaufen?", "Wird Black Panther auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Black Panther-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Black Panther.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Black Panther zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Black Panther-Preis entspricht heute $0.002769 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
Black Panther-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Black Panther 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.002841 | $0.002915 | $0.002991 | $0.003068 |
| Wenn die Wachstumsrate von Black Panther 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.002913 | $0.003064 | $0.003224 | $0.003391 |
| Wenn die Wachstumsrate von Black Panther 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.003129 | $0.003536 | $0.003995 | $0.004515 |
| Wenn die Wachstumsrate von Black Panther 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.003489 | $0.004396 | $0.005539 | $0.006978 |
| Wenn die Wachstumsrate von Black Panther 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0042092 | $0.006397 | $0.009723 | $0.014778 |
| Wenn die Wachstumsrate von Black Panther 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.006368 | $0.014646 | $0.033681 | $0.077455 |
| Wenn die Wachstumsrate von Black Panther 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.009968 | $0.035878 | $0.129139 | $0.464815 |
Fragefeld
Ist BLACK eine gute Investition?
Die Entscheidung, Black Panther zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Black Panther in den letzten 2026 Stunden um 11.8315% gestiegen, und Black Panther hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Black Panther investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Black Panther steigen?
Es scheint, dass der Durchschnittswert von Black Panther bis zum Ende dieses Jahres potenziell auf $0.002856 steigen könnte. Betrachtet man die Aussichten von Black Panther in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.008979 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Black Panther nächste Woche kosten?
Basierend auf unserer neuen experimentellen Black Panther-Prognose wird der Preis von Black Panther in der nächsten Woche um 0.86% steigen und $0.002793 erreichen bis zum 13. Januar 2026.
Wie viel wird Black Panther nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Black Panther-Prognose wird der Preis von Black Panther im nächsten Monat um -11.62% fallen und $0.002447 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Black Panther in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Black Panther im Jahr 2026 wird erwartet, dass BLACK innerhalb der Spanne von $0.000956 bis $0.002856 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Black Panther-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Black Panther in 5 Jahren sein?
Die Zukunft von Black Panther scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.008979 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Black Panther-Prognose für 2030 könnte der Wert von Black Panther seinen höchsten Gipfel von ungefähr $0.008979 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.0031056 liegen wird.
Wie viel wird Black Panther im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Black Panther-Preisprognosesimulation wird der Wert von BLACK im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.002856 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.002856 und $0.000956 während des Jahres 2026 liegen.
Wie viel wird Black Panther im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Black Panther könnte der Wert von BLACK um -12.62% fallen und bis zu $0.002419 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.002419 und $0.000921 im Laufe des Jahres schwanken.
Wie viel wird Black Panther im Jahr 2028 kosten?
Unser neues experimentelles Black Panther-Preisprognosemodell deutet darauf hin, dass der Wert von BLACK im Jahr 2028 um 47.02% steigen, und im besten Fall $0.004071 erreichen wird. Der Preis wird voraussichtlich zwischen $0.004071 und $0.001662 im Laufe des Jahres liegen.
Wie viel wird Black Panther im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Black Panther im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.012012 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.012012 und $0.003651.
Wie viel wird Black Panther im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Black Panther-Preisprognosen wird der Wert von BLACK im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.008979 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.008979 und $0.0031056 während des Jahres 2030 liegen.
Wie viel wird Black Panther im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Black Panther im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.008197 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.008197 und $0.003671 während des Jahres schwanken.
Wie viel wird Black Panther im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Black Panther-Preisprognose könnte BLACK eine 449.04% Steigerung im Wert erfahren und $0.0152054 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.0152054 und $0.0056048 liegen.
Wie viel wird Black Panther im Jahr 2033 kosten?
Laut unserer experimentellen Black Panther-Preisprognose wird der Wert von BLACK voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.0405017 beträgt. Im Laufe des Jahres könnte der Preis von BLACK zwischen $0.0405017 und $0.013024 liegen.
Wie viel wird Black Panther im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Black Panther-Preisprognosesimulation deuten darauf hin, dass BLACK im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.023456 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.023456 und $0.010471.
Wie viel wird Black Panther im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Black Panther könnte BLACK um 897.93% steigen, wobei der Wert im Jahr 2035 $0.027637 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.027637 und $0.01238.
Wie viel wird Black Panther im Jahr 2036 kosten?
Unsere jüngste Black Panther-Preisprognosesimulation deutet darauf hin, dass der Wert von BLACK im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.057181 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.057181 und $0.020492.
Wie viel wird Black Panther im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Black Panther um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.136554 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.136554 und $0.053219 liegen.
Verwandte Prognosen
Wie liest und prognostiziert man die Kursbewegungen von Black Panther?
Black Panther-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Black Panther Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Black Panther. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von BLACK über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von BLACK über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von BLACK einzuschätzen.
Wie liest man Black Panther-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Black Panther in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von BLACK innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Black Panther?
Die Preisentwicklung von Black Panther wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von BLACK. Die Marktkapitalisierung von Black Panther kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von BLACK-„Walen“, großen Inhabern von Black Panther, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Black Panther-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


