Bertram The Pomeranian Preisvorhersage bis zu $0.022878 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.007664 | $0.022878 |
| 2027 | $0.007378 | $0.019382 |
| 2028 | $0.013315 | $0.032614 |
| 2029 | $0.02925 | $0.096221 |
| 2030 | $0.024876 | $0.071925 |
| 2031 | $0.029411 | $0.065659 |
| 2032 | $0.044894 | $0.121795 |
| 2033 | $0.104325 | $0.324418 |
| 2034 | $0.083873 | $0.187886 |
| 2035 | $0.099163 | $0.221376 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Bertram The Pomeranian eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.53 Gewinn erzielen könnten, was einer Rendite von 39.55% in den nächsten 90 Tagen entspricht.
Langfristige Bertram The Pomeranian Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Bertram The Pomeranian'
'name_with_ticker' => 'Bertram The Pomeranian <small>BERT</small>'
'name_lang' => 'Bertram The Pomeranian'
'name_lang_with_ticker' => 'Bertram The Pomeranian <small>BERT</small>'
'name_with_lang' => 'Bertram The Pomeranian'
'name_with_lang_with_ticker' => 'Bertram The Pomeranian <small>BERT</small>'
'image' => '/uploads/coins/bertram-the-pomeranian.png?1745418632'
'price_for_sd' => 0.02218
'ticker' => 'BERT'
'marketcap' => '$21.7M'
'low24h' => '$0.02006'
'high24h' => '$0.02234'
'volume24h' => '$1.41M'
'current_supply' => '978.06M'
'max_supply' => '978.06M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02218'
'change_24h_pct' => '7.0793%'
'ath_price' => '$0.1885'
'ath_days' => 417
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '15.11.2024'
'ath_pct' => '-88.28%'
'fdv' => '$21.7M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.09'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.022373'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.019606'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.007664'
'current_year_max_price_prediction' => '$0.022878'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.024876'
'grand_prediction_max_price' => '$0.071925'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.022603906414458
107 => 0.022688301195792
108 => 0.02287844694744
109 => 0.021253672318282
110 => 0.021983148425897
111 => 0.022411647296453
112 => 0.020475673810358
113 => 0.022373379325262
114 => 0.021225388606785
115 => 0.020835743314692
116 => 0.021360349368632
117 => 0.021155909879215
118 => 0.020980144811305
119 => 0.020882064883383
120 => 0.021267277670739
121 => 0.02124930703378
122 => 0.020619024147086
123 => 0.01979684581501
124 => 0.020072795850338
125 => 0.019972540615458
126 => 0.01960920271107
127 => 0.019854048589042
128 => 0.018775871256116
129 => 0.016920923193599
130 => 0.018146358702294
131 => 0.018099180768227
201 => 0.018075391514521
202 => 0.018996272430755
203 => 0.018907750978996
204 => 0.01874708367725
205 => 0.019606251930076
206 => 0.019292643960351
207 => 0.020259109827714
208 => 0.020895686755052
209 => 0.020734230255173
210 => 0.021332933932178
211 => 0.020079153181812
212 => 0.020495608854131
213 => 0.020581439791013
214 => 0.019595649927202
215 => 0.018922234183267
216 => 0.018877325030649
217 => 0.017709714933072
218 => 0.018333442822578
219 => 0.018882297553729
220 => 0.018619438730356
221 => 0.018536225479559
222 => 0.018961343931125
223 => 0.018994379275705
224 => 0.018241169918353
225 => 0.018397785994785
226 => 0.019050901068761
227 => 0.018381329170641
228 => 0.017080460346543
301 => 0.016757826892248
302 => 0.01671478164213
303 => 0.0158397741257
304 => 0.016779386802395
305 => 0.016369220688964
306 => 0.01766493052675
307 => 0.016924828016438
308 => 0.016892923676442
309 => 0.01684469558719
310 => 0.016091540471693
311 => 0.016256433576483
312 => 0.016804563370731
313 => 0.017000142256443
314 => 0.016979741776332
315 => 0.016801877235708
316 => 0.016883302711592
317 => 0.016621002883253
318 => 0.016528379354567
319 => 0.016236034019928
320 => 0.015806367140467
321 => 0.015866114955357
322 => 0.015014832438691
323 => 0.014551008542629
324 => 0.014422628201299
325 => 0.01425095264349
326 => 0.014442019412365
327 => 0.015012420862279
328 => 0.014324395696265
329 => 0.013144824808487
330 => 0.013215719028733
331 => 0.013374997292944
401 => 0.013078183301318
402 => 0.012797273767954
403 => 0.013041501816303
404 => 0.012541702081143
405 => 0.013435395703116
406 => 0.013411223795189
407 => 0.013744337511818
408 => 0.013952640355008
409 => 0.013472569740302
410 => 0.013351833278953
411 => 0.013420610254504
412 => 0.012283880051254
413 => 0.013651442402804
414 => 0.013663269138809
415 => 0.013562001444911
416 => 0.01429018617836
417 => 0.015826883092453
418 => 0.015248715899881
419 => 0.015024832087721
420 => 0.014599228797148
421 => 0.015166319912014
422 => 0.015122776162392
423 => 0.014925854813123
424 => 0.014806756166654
425 => 0.015026199074538
426 => 0.0147795647619
427 => 0.014735262462292
428 => 0.014466838728048
429 => 0.014371023667425
430 => 0.014300086011047
501 => 0.014221990621565
502 => 0.014394249590604
503 => 0.014003888104207
504 => 0.013533150419221
505 => 0.013494013674167
506 => 0.013602073668199
507 => 0.01355426516496
508 => 0.013493784785446
509 => 0.013378311270103
510 => 0.013344052744802
511 => 0.013455376332157
512 => 0.013329698492602
513 => 0.013515142990892
514 => 0.013464712348469
515 => 0.013183010879383
516 => 0.01283190654966
517 => 0.012828780984659
518 => 0.012753136132747
519 => 0.012656791040557
520 => 0.012629990039987
521 => 0.013020933611279
522 => 0.013830175103896
523 => 0.013671301635388
524 => 0.013786103998393
525 => 0.014350818000305
526 => 0.01453032359997
527 => 0.014402914777151
528 => 0.014228509722242
529 => 0.014236182659537
530 => 0.014832177528161
531 => 0.014869348997055
601 => 0.01496326930698
602 => 0.015083983447109
603 => 0.014423472917197
604 => 0.014205072672977
605 => 0.014101582520881
606 => 0.013782872908155
607 => 0.014126573901383
608 => 0.013926314051373
609 => 0.01395333594699
610 => 0.01393573790202
611 => 0.013945347624548
612 => 0.013435145897536
613 => 0.013621036591446
614 => 0.013311957258727
615 => 0.012898134728
616 => 0.012896747449772
617 => 0.012998029927906
618 => 0.012937783146728
619 => 0.012775660607666
620 => 0.012798689349143
621 => 0.012596933341824
622 => 0.012823186181342
623 => 0.012829674303207
624 => 0.012742554635918
625 => 0.01309112835207
626 => 0.013233939287987
627 => 0.013176595256693
628 => 0.013229915877884
629 => 0.013677903545275
630 => 0.013750945082132
701 => 0.013783385307951
702 => 0.01373991970286
703 => 0.013238104270062
704 => 0.01326036191839
705 => 0.013097050063137
706 => 0.012959068754827
707 => 0.012964587283543
708 => 0.013035527612328
709 => 0.013345328188731
710 => 0.013997285238029
711 => 0.014022026531476
712 => 0.014052013700888
713 => 0.013930040812547
714 => 0.0138932526223
715 => 0.013941785741073
716 => 0.014186626530516
717 => 0.014816423514591
718 => 0.014593811197692
719 => 0.014412823918887
720 => 0.014571598556219
721 => 0.014547156445319
722 => 0.014340840431647
723 => 0.0143350498283
724 => 0.013939063434845
725 => 0.013792676281358
726 => 0.013670344219016
727 => 0.013536760800498
728 => 0.013457568072244
729 => 0.013579244095294
730 => 0.013607072841394
731 => 0.013341026090462
801 => 0.013304764901387
802 => 0.013522024421215
803 => 0.01342641660679
804 => 0.013524751614886
805 => 0.013547566180267
806 => 0.013543892509776
807 => 0.013444066971029
808 => 0.013507692792586
809 => 0.013357198756833
810 => 0.013193559096425
811 => 0.013089167188195
812 => 0.012998071402688
813 => 0.013048616639006
814 => 0.012868432100729
815 => 0.012810787440536
816 => 0.013486137795869
817 => 0.013985026364593
818 => 0.013977772327222
819 => 0.013933615240315
820 => 0.013868006766108
821 => 0.014181826861978
822 => 0.014072498215608
823 => 0.014152043940556
824 => 0.014172291666079
825 => 0.014233575433013
826 => 0.014255479112174
827 => 0.014189270980666
828 => 0.013967068404684
829 => 0.013413360711725
830 => 0.013155608285948
831 => 0.013070545692235
901 => 0.013073637555959
902 => 0.012988350151747
903 => 0.013013471114601
904 => 0.012979614106046
905 => 0.012915497122734
906 => 0.013044657595963
907 => 0.01305954213729
908 => 0.013029394539485
909 => 0.013036495390127
910 => 0.012786886156514
911 => 0.012805863404423
912 => 0.012700195676555
913 => 0.012680384251423
914 => 0.012413265436913
915 => 0.011940025737518
916 => 0.012202246469472
917 => 0.011885520699086
918 => 0.011765571850662
919 => 0.012333391043227
920 => 0.012276397745146
921 => 0.012178849993223
922 => 0.012034556537396
923 => 0.011981036691034
924 => 0.011655867046858
925 => 0.011636654289568
926 => 0.01179781714554
927 => 0.011723446032784
928 => 0.011619000823932
929 => 0.01124071086491
930 => 0.010815387703468
1001 => 0.010828225536226
1002 => 0.010963512920462
1003 => 0.011356879236117
1004 => 0.011203184211284
1005 => 0.011091676707321
1006 => 0.011070794703732
1007 => 0.011332176698085
1008 => 0.011702086981315
1009 => 0.011875640609931
1010 => 0.011703654234875
1011 => 0.011506085547615
1012 => 0.011518110638163
1013 => 0.011598108178246
1014 => 0.011606514788604
1015 => 0.011477917883587
1016 => 0.011514117159089
1017 => 0.011459127149471
1018 => 0.011121653561947
1019 => 0.011115549734889
1020 => 0.011032728274014
1021 => 0.011030220473094
1022 => 0.010889320507365
1023 => 0.010869607628163
1024 => 0.01058984219419
1025 => 0.010773984650039
1026 => 0.010650471558569
1027 => 0.010464308195929
1028 => 0.010432213562041
1029 => 0.010431248758591
1030 => 0.010622396906655
1031 => 0.010771750972637
1101 => 0.010652620121675
1102 => 0.010625496336166
1103 => 0.010915107403798
1104 => 0.010878251755578
1105 => 0.010846335001913
1106 => 0.011668965572664
1107 => 0.011017789285251
1108 => 0.010733839256096
1109 => 0.010382397174368
1110 => 0.010496828488304
1111 => 0.010520940847496
1112 => 0.0096757859931378
1113 => 0.0093329067739822
1114 => 0.0092152435470988
1115 => 0.0091475266965135
1116 => 0.0091783861156599
1117 => 0.0088697546026987
1118 => 0.0090771600837027
1119 => 0.0088099112814507
1120 => 0.0087651061500503
1121 => 0.0092429801142506
1122 => 0.0093094734846699
1123 => 0.0090257921085904
1124 => 0.0092079614758765
1125 => 0.0091419043309549
1126 => 0.0088144924951148
1127 => 0.0088019877712641
1128 => 0.008637704021122
1129 => 0.0083806317637521
1130 => 0.0082631428439645
1201 => 0.0082019535944536
1202 => 0.0082272014713565
1203 => 0.0082144353721966
1204 => 0.008131127939856
1205 => 0.0082192104567022
1206 => 0.0079941960243692
1207 => 0.0079045934643497
1208 => 0.0078641220667525
1209 => 0.0076644088067095
1210 => 0.0079822414163278
1211 => 0.0080448584443723
1212 => 0.0081075988473054
1213 => 0.0086537112201461
1214 => 0.0086264289892966
1215 => 0.0088730470691914
1216 => 0.0088634639441082
1217 => 0.0087931244727742
1218 => 0.0084963738134974
1219 => 0.0086146533372132
1220 => 0.0082506073479349
1221 => 0.0085233753558233
1222 => 0.0083988954280874
1223 => 0.0084812885670402
1224 => 0.0083331382741132
1225 => 0.0084151307631947
1226 => 0.0080597072646603
1227 => 0.0077278178026724
1228 => 0.0078613798106337
1229 => 0.0080065769879559
1230 => 0.0083214014639433
1231 => 0.0081338946032907
]
'min_raw' => 0.0076644088067095
'max_raw' => 0.02287844694744
'avg_raw' => 0.015271427877075
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.007664'
'max' => '$0.022878'
'avg' => '$0.015271'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.01451913119329
'max_diff' => 0.00069490694744039
'year' => 2026
]
1 => [
'items' => [
101 => 0.0082013291608008
102 => 0.0079754346815507
103 => 0.0075093498472899
104 => 0.0075119878368351
105 => 0.0074402908392942
106 => 0.0073783341654857
107 => 0.0081554320218327
108 => 0.0080587876192968
109 => 0.0079047974123625
110 => 0.0081109194236716
111 => 0.0081654213550579
112 => 0.0081669729484238
113 => 0.0083173542470958
114 => 0.0083976127731543
115 => 0.0084117586862325
116 => 0.0086483869088959
117 => 0.0087277015679309
118 => 0.0090543874234655
119 => 0.0083908033979534
120 => 0.0083771373216316
121 => 0.0081138199830742
122 => 0.0079468199640787
123 => 0.0081252546172496
124 => 0.0082833233611998
125 => 0.0081187316195636
126 => 0.0081402238263
127 => 0.0079192728607928
128 => 0.0079982524342524
129 => 0.0080662802826133
130 => 0.0080287193032405
131 => 0.0079724886991475
201 => 0.0082703635267881
202 => 0.0082535562616317
203 => 0.0085309441492433
204 => 0.0087471878438347
205 => 0.0091347352027265
206 => 0.0087303093304221
207 => 0.0087155704441881
208 => 0.0088596454213174
209 => 0.0087276795108026
210 => 0.0088110774109395
211 => 0.0091212985116879
212 => 0.0091278529947067
213 => 0.0090180569591674
214 => 0.0090113758604265
215 => 0.0090324633900889
216 => 0.0091559737099783
217 => 0.0091128154091201
218 => 0.0091627592875077
219 => 0.0092252148721991
220 => 0.0094835576511019
221 => 0.00954584322048
222 => 0.0093945215782563
223 => 0.0094081842282726
224 => 0.0093515857802089
225 => 0.009296912388556
226 => 0.0094198101885842
227 => 0.0096444083336982
228 => 0.0096430111202941
301 => 0.0096951135243964
302 => 0.0097275728905126
303 => 0.0095882335294339
304 => 0.0094975287290219
305 => 0.0095323107211963
306 => 0.0095879278841363
307 => 0.0095142748248442
308 => 0.0090596540234775
309 => 0.0091975569333229
310 => 0.0091746031460169
311 => 0.0091419141616171
312 => 0.0092805766038384
313 => 0.0092672022730169
314 => 0.0088665891404446
315 => 0.0088922350934058
316 => 0.0088681487557862
317 => 0.008945976640236
318 => 0.0087234765496329
319 => 0.0087919160789415
320 => 0.008834840710143
321 => 0.0088601236476833
322 => 0.0089514629547513
323 => 0.0089407453413012
324 => 0.0089507967328511
325 => 0.0090862288125499
326 => 0.0097711977969893
327 => 0.0098084791475134
328 => 0.0096248921425192
329 => 0.0096982315299208
330 => 0.0095574359436705
331 => 0.0096519529639688
401 => 0.0097166191087848
402 => 0.0094244052349457
403 => 0.0094071022257893
404 => 0.0092657255260708
405 => 0.0093416933565139
406 => 0.0092208230759985
407 => 0.0092504804149741
408 => 0.0091675559097181
409 => 0.0093168035090746
410 => 0.0094836855158873
411 => 0.0095258465011783
412 => 0.009414939100323
413 => 0.0093346348329498
414 => 0.0091936469933128
415 => 0.0094281129127482
416 => 0.0094966778928105
417 => 0.0094277527700969
418 => 0.0094117813131205
419 => 0.00938151543101
420 => 0.0094182023630863
421 => 0.009496304473204
422 => 0.009459472960392
423 => 0.009483800823492
424 => 0.0093910880961381
425 => 0.0095882796565603
426 => 0.0099014673112441
427 => 0.0099024742607652
428 => 0.0098656425494176
429 => 0.0098505718066845
430 => 0.0098883633776623
501 => 0.0099088637546263
502 => 0.010031074765379
503 => 0.010162212049019
504 => 0.010774172532086
505 => 0.01060233647724
506 => 0.011145304223509
507 => 0.011574721215269
508 => 0.011703484594969
509 => 0.01158502834443
510 => 0.011179795910219
511 => 0.011159913273733
512 => 0.011765501615166
513 => 0.011594395171008
514 => 0.011574042603931
515 => 0.011357525676443
516 => 0.011485513996732
517 => 0.011457521073609
518 => 0.011413332875
519 => 0.011657525674367
520 => 0.012114632795541
521 => 0.012043388363982
522 => 0.011990207700758
523 => 0.011757185515168
524 => 0.011897516918282
525 => 0.011847547593504
526 => 0.012062247524068
527 => 0.011935064041388
528 => 0.011593098871405
529 => 0.011647557951857
530 => 0.011639326571403
531 => 0.011808727797861
601 => 0.011757877754475
602 => 0.011629397284318
603 => 0.012113070453094
604 => 0.012081663407846
605 => 0.012126191417358
606 => 0.01214579402422
607 => 0.012440197358777
608 => 0.012560804985089
609 => 0.012588185027795
610 => 0.012702752944663
611 => 0.012585334473655
612 => 0.013055092075639
613 => 0.013367453469843
614 => 0.013730277303181
615 => 0.014260460441541
616 => 0.014459814206033
617 => 0.014423802732824
618 => 0.014825781537431
619 => 0.015548128513825
620 => 0.014569809709443
621 => 0.015599981786001
622 => 0.015273841200471
623 => 0.014500567739199
624 => 0.014450778044588
625 => 0.014974447810451
626 => 0.016135896949788
627 => 0.015844967113431
628 => 0.016136372806778
629 => 0.015796432586564
630 => 0.01577955168939
701 => 0.016119862669043
702 => 0.016915017822387
703 => 0.016537269414978
704 => 0.015995674445248
705 => 0.016395579742746
706 => 0.016049144764565
707 => 0.015268529797679
708 => 0.015844744644868
709 => 0.015459446186207
710 => 0.015571896760037
711 => 0.016381736811323
712 => 0.016284294713781
713 => 0.016410393810895
714 => 0.016187832205077
715 => 0.015979924570498
716 => 0.015591849531134
717 => 0.015476959643846
718 => 0.015508711075387
719 => 0.015476943909413
720 => 0.015259819491483
721 => 0.015212931494103
722 => 0.015134782777594
723 => 0.015159004332603
724 => 0.015012061882352
725 => 0.015289372645836
726 => 0.015340843967192
727 => 0.015542647615057
728 => 0.015563599539236
729 => 0.016125619826045
730 => 0.015816068496438
731 => 0.016023742253714
801 => 0.016005165958162
802 => 0.014517326919875
803 => 0.014722338012036
804 => 0.015041270935414
805 => 0.014897592085735
806 => 0.014694463807963
807 => 0.014530426832613
808 => 0.014281894041316
809 => 0.014631699172417
810 => 0.015091655722188
811 => 0.015575264796382
812 => 0.016156289411705
813 => 0.016026611481437
814 => 0.015564402945351
815 => 0.015585137282636
816 => 0.015713308797073
817 => 0.015547315040268
818 => 0.015498360240802
819 => 0.015706583159379
820 => 0.015708017076182
821 => 0.015517021197961
822 => 0.015304764231196
823 => 0.015303874866755
824 => 0.015266105789678
825 => 0.015803151621472
826 => 0.0160984725275
827 => 0.016132330593443
828 => 0.016096193609896
829 => 0.016110101300637
830 => 0.015938260572372
831 => 0.016331037519402
901 => 0.016691488487612
902 => 0.01659487992822
903 => 0.016450049963976
904 => 0.016334685921499
905 => 0.016567703826134
906 => 0.016557327905645
907 => 0.016688340262855
908 => 0.016682396785568
909 => 0.016638342257462
910 => 0.016594881501546
911 => 0.016767198486173
912 => 0.016717573961927
913 => 0.016667872357087
914 => 0.016568188179647
915 => 0.01658173691494
916 => 0.016436931957631
917 => 0.016369938558556
918 => 0.015362518576104
919 => 0.015093303038396
920 => 0.015178003726947
921 => 0.01520588939287
922 => 0.01508872644585
923 => 0.015256708015185
924 => 0.015230528265541
925 => 0.015332378356765
926 => 0.015268746841585
927 => 0.015271358301164
928 => 0.015458485019639
929 => 0.015512808702107
930 => 0.015485179238758
1001 => 0.015504529967805
1002 => 0.01595045935126
1003 => 0.015887062452952
1004 => 0.015853384114272
1005 => 0.015862713244249
1006 => 0.015976657762555
1007 => 0.016008556006541
1008 => 0.015873400905323
1009 => 0.01593714083238
1010 => 0.016208537351985
1011 => 0.016303510774135
1012 => 0.016606620347806
1013 => 0.016477854013568
1014 => 0.016714210192939
1015 => 0.017440688508569
1016 => 0.018021049655569
1017 => 0.017487325560349
1018 => 0.018553084898269
1019 => 0.019382931416937
1020 => 0.019351080525368
1021 => 0.019206377590143
1022 => 0.018261619391251
1023 => 0.017392238811079
1024 => 0.018119512582242
1025 => 0.01812136655265
1026 => 0.01805889309072
1027 => 0.017670875784158
1028 => 0.018045390929528
1029 => 0.018075118581728
1030 => 0.018058479001717
1031 => 0.01776098704253
1101 => 0.017306771806556
1102 => 0.017395524376428
1103 => 0.017540902896381
1104 => 0.017265671028974
1105 => 0.01717771777045
1106 => 0.017341239611837
1107 => 0.017868141055917
1108 => 0.017768533390046
1109 => 0.017765932231344
1110 => 0.018192096066163
1111 => 0.017887054732344
1112 => 0.017396643830559
1113 => 0.017272808610133
1114 => 0.016833277003022
1115 => 0.017136863049612
1116 => 0.017147788570965
1117 => 0.016981517595821
1118 => 0.01741013580382
1119 => 0.017406186011577
1120 => 0.017813095208671
1121 => 0.018590952765399
1122 => 0.018360902009829
1123 => 0.018093378010552
1124 => 0.018122465286909
1125 => 0.018441480915033
1126 => 0.018248596783851
1127 => 0.01831795926226
1128 => 0.018441375926615
1129 => 0.018515836264483
1130 => 0.018111751590169
1201 => 0.018017540122982
1202 => 0.017824816524849
1203 => 0.017774538535453
1204 => 0.017931507884822
1205 => 0.017890152007072
1206 => 0.017146870323201
1207 => 0.017069193251656
1208 => 0.017071575496543
1209 => 0.0168762528068
1210 => 0.016578338822125
1211 => 0.017361238986331
1212 => 0.017298361146464
1213 => 0.01722894887761
1214 => 0.017237451484484
1215 => 0.017577281910817
1216 => 0.017380163101696
1217 => 0.017904235762882
1218 => 0.017796502178808
1219 => 0.017686005634819
1220 => 0.017670731646633
1221 => 0.017628199904319
1222 => 0.017482342734561
1223 => 0.017306211437421
1224 => 0.017189914298818
1225 => 0.015856787285228
1226 => 0.016104207904507
1227 => 0.016388842773889
1228 => 0.016487097590197
1229 => 0.016319025927876
1230 => 0.017488979228198
1231 => 0.017702740970118
]
'min_raw' => 0.0073783341654857
'max_raw' => 0.019382931416937
'avg_raw' => 0.013380632791211
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.007378'
'max' => '$0.019382'
'avg' => '$0.01338'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00028607464122377
'max_diff' => -0.0034955155305039
'year' => 2027
]
2 => [
'items' => [
101 => 0.01705524271051
102 => 0.016934122223317
103 => 0.017496919867174
104 => 0.017157484088715
105 => 0.017310331998971
106 => 0.016979958420334
107 => 0.017651252026164
108 => 0.017646137893612
109 => 0.01738498951909
110 => 0.017605710336969
111 => 0.01756735466319
112 => 0.017272518791535
113 => 0.017660598849185
114 => 0.017660791332051
115 => 0.01740944169943
116 => 0.017115920356037
117 => 0.017063445672503
118 => 0.017023913047442
119 => 0.0173006093966
120 => 0.017548694478048
121 => 0.018010319309115
122 => 0.018126382759581
123 => 0.01857938613353
124 => 0.018309644680678
125 => 0.018429217572991
126 => 0.018559030862215
127 => 0.018621268126794
128 => 0.018519855843998
129 => 0.019223556547368
130 => 0.019282970447565
131 => 0.019302891414373
201 => 0.019065607496524
202 => 0.019276371152567
203 => 0.019177761817663
204 => 0.01943431591262
205 => 0.019474546870556
206 => 0.019440472680442
207 => 0.019453242621494
208 => 0.018852758212477
209 => 0.018821619928062
210 => 0.01839704721059
211 => 0.018570063731243
212 => 0.01824661763878
213 => 0.018349185726564
214 => 0.018394396762355
215 => 0.018370781082962
216 => 0.018579845825729
217 => 0.018402098085272
218 => 0.01793299257377
219 => 0.017463759254785
220 => 0.017457868412695
221 => 0.017334327562462
222 => 0.017245030155379
223 => 0.017262232003979
224 => 0.017322853562117
225 => 0.017241506720216
226 => 0.017258866193326
227 => 0.017547149112502
228 => 0.017604962196003
229 => 0.017408490749236
301 => 0.016619629539773
302 => 0.016426041020263
303 => 0.01656518860906
304 => 0.016498685023867
305 => 0.013315726483831
306 => 0.014063515379321
307 => 0.013619204610132
308 => 0.01382396345433
309 => 0.013370437212704
310 => 0.013586883706555
311 => 0.013546913942501
312 => 0.014749336357767
313 => 0.014730562185631
314 => 0.014739548388325
315 => 0.014310613520284
316 => 0.014993918411925
317 => 0.015330538972396
318 => 0.015268239465519
319 => 0.015283918909209
320 => 0.01501449411812
321 => 0.014742157009237
322 => 0.014440093243105
323 => 0.015001290384368
324 => 0.014938894842214
325 => 0.015082007766707
326 => 0.015445984228017
327 => 0.015499581144556
328 => 0.015571615943912
329 => 0.015545796596129
330 => 0.016160918210149
331 => 0.016086422923988
401 => 0.016265935129879
402 => 0.015896664902737
403 => 0.015478800589275
404 => 0.01555822293425
405 => 0.015550573923755
406 => 0.015453193241024
407 => 0.015365282314839
408 => 0.015218935391491
409 => 0.015681998712234
410 => 0.015663199187064
411 => 0.015967541647497
412 => 0.01591374616139
413 => 0.015554486739184
414 => 0.015567317759731
415 => 0.015653612539288
416 => 0.015952279756631
417 => 0.016040944521554
418 => 0.015999871469762
419 => 0.016097088336799
420 => 0.016173924584654
421 => 0.016106737786538
422 => 0.017057961163445
423 => 0.01666294689829
424 => 0.016855474102635
425 => 0.016901390706435
426 => 0.016783776291323
427 => 0.016809282646505
428 => 0.016847917824539
429 => 0.017082503060017
430 => 0.017698122595696
501 => 0.017970776297385
502 => 0.018791068411411
503 => 0.017948136202982
504 => 0.017898120094134
505 => 0.018045879474319
506 => 0.018527477781991
507 => 0.018917767976131
508 => 0.019047249749908
509 => 0.019064362903824
510 => 0.019307279319216
511 => 0.019446514478396
512 => 0.019277782877052
513 => 0.019134800511847
514 => 0.01862265542731
515 => 0.01868193761537
516 => 0.019090333103786
517 => 0.019667215785548
518 => 0.020162241140913
519 => 0.01998890051484
520 => 0.021311367132369
521 => 0.021442484295705
522 => 0.021424368143257
523 => 0.021723072554187
524 => 0.021130205128586
525 => 0.020876742817877
526 => 0.019165714922123
527 => 0.019646443968909
528 => 0.020345211870639
529 => 0.0202527273186
530 => 0.019745263390244
531 => 0.020161856184018
601 => 0.020024117578335
602 => 0.019915477425253
603 => 0.020413179027452
604 => 0.01986593567138
605 => 0.020339752699543
606 => 0.019732077459914
607 => 0.019989692320218
608 => 0.019843457666081
609 => 0.019938089409153
610 => 0.019384874172797
611 => 0.019683375685794
612 => 0.019372455528474
613 => 0.019372308111837
614 => 0.019365444532131
615 => 0.019731240718387
616 => 0.019743169318888
617 => 0.019472845384558
618 => 0.019433887482367
619 => 0.019577935265429
620 => 0.019409293037638
621 => 0.0194881996746
622 => 0.019411683039288
623 => 0.019394457532993
624 => 0.019257201768151
625 => 0.019198068210732
626 => 0.01922125600228
627 => 0.0191421041156
628 => 0.019094412240827
629 => 0.019355957417852
630 => 0.01921622438047
701 => 0.019334541325819
702 => 0.019199704233804
703 => 0.018732300127157
704 => 0.018463491082715
705 => 0.017580608053642
706 => 0.017830992585474
707 => 0.01799699778912
708 => 0.017942133070305
709 => 0.018060003716147
710 => 0.018067240016496
711 => 0.018028919067984
712 => 0.017984548318825
713 => 0.01796295109199
714 => 0.018123919126539
715 => 0.018217366488529
716 => 0.018013658632169
717 => 0.0179659327316
718 => 0.018171892621399
719 => 0.018297528035197
720 => 0.019225149342242
721 => 0.019156428159639
722 => 0.019328904842122
723 => 0.019309486614545
724 => 0.019490269655477
725 => 0.019785773522788
726 => 0.019184931536364
727 => 0.019289216929655
728 => 0.019263648559521
729 => 0.019542797320251
730 => 0.019543668792212
731 => 0.01937630516564
801 => 0.019467035702769
802 => 0.019416392406006
803 => 0.01950791168811
804 => 0.019155510346348
805 => 0.01958469714124
806 => 0.019828018397757
807 => 0.01983139691364
808 => 0.019946729258113
809 => 0.020063913599696
810 => 0.020288838738759
811 => 0.020057640559645
812 => 0.019641737542109
813 => 0.019671764396617
814 => 0.019427920609609
815 => 0.019432019667722
816 => 0.019410138574263
817 => 0.019475805382866
818 => 0.019169920518071
819 => 0.019241711084445
820 => 0.019141203871117
821 => 0.019288998446602
822 => 0.019129995914698
823 => 0.019263636229679
824 => 0.019321310959378
825 => 0.019534131953615
826 => 0.01909856208081
827 => 0.018210405624673
828 => 0.018397106879609
829 => 0.018120961058491
830 => 0.018146519405597
831 => 0.018198151334331
901 => 0.018030795360387
902 => 0.018062721606223
903 => 0.01806158097606
904 => 0.018051751641536
905 => 0.018008215889118
906 => 0.017945080434827
907 => 0.018196592652655
908 => 0.018239329479501
909 => 0.018334328151607
910 => 0.01861697976158
911 => 0.01858873620036
912 => 0.018634802620524
913 => 0.018534239883957
914 => 0.018151184222525
915 => 0.018171985987877
916 => 0.017912587640611
917 => 0.01832769475266
918 => 0.018229391909381
919 => 0.018166015426821
920 => 0.018148722566375
921 => 0.018432074815018
922 => 0.018516858248815
923 => 0.018464026902477
924 => 0.018355668269803
925 => 0.018563748877892
926 => 0.0186194224704
927 => 0.0186318857346
928 => 0.019000564676634
929 => 0.018652490791948
930 => 0.018736275635549
1001 => 0.019389941067885
1002 => 0.01879715672042
1003 => 0.01911116780994
1004 => 0.019095798601143
1005 => 0.019256436048986
1006 => 0.019082621641764
1007 => 0.019084776279657
1008 => 0.019227411450818
1009 => 0.019027106077311
1010 => 0.018977507649929
1011 => 0.018908987777733
1012 => 0.019058598411924
1013 => 0.019148283220815
1014 => 0.019871076914242
1015 => 0.020338034603593
1016 => 0.020317762738785
1017 => 0.02050300963579
1018 => 0.020419554212022
1019 => 0.020150054634248
1020 => 0.020610057551536
1021 => 0.020464493381167
1022 => 0.020476493514511
1023 => 0.020476046868949
1024 => 0.020572834316804
1025 => 0.020504251539559
1026 => 0.020369067845733
1027 => 0.020458809090454
1028 => 0.020725308504193
1029 => 0.021552530861641
1030 => 0.022015455452108
1031 => 0.02152466222003
1101 => 0.021863204819534
1102 => 0.021660199894894
1103 => 0.021623307861213
1104 => 0.021835937631804
1105 => 0.02204893958266
1106 => 0.022035372279223
1107 => 0.021880743800672
1108 => 0.021793398096692
1109 => 0.022454809030191
1110 => 0.022942125339152
1111 => 0.022908893633891
1112 => 0.023055567573384
1113 => 0.02348620679619
1114 => 0.023525579049777
1115 => 0.023520619050786
1116 => 0.023423030812201
1117 => 0.023847051052623
1118 => 0.024200776197109
1119 => 0.023400441954564
1120 => 0.02370519875698
1121 => 0.023842013904236
1122 => 0.024042899131633
1123 => 0.024381826182525
1124 => 0.024749990855753
1125 => 0.024802053377268
1126 => 0.024765112526832
1127 => 0.02452229802804
1128 => 0.024925148206605
1129 => 0.025161128393209
1130 => 0.025301649194021
1201 => 0.025657986564449
1202 => 0.023842858828008
1203 => 0.022558021198454
1204 => 0.022357375249318
1205 => 0.022765396676897
1206 => 0.02287298867344
1207 => 0.022829618474542
1208 => 0.021383416910152
1209 => 0.02234976129738
1210 => 0.023389466605494
1211 => 0.023429405920712
1212 => 0.023949904137166
1213 => 0.024119399692387
1214 => 0.024538468979893
1215 => 0.02451225608186
1216 => 0.024614292784519
1217 => 0.024590836313607
1218 => 0.025367073923263
1219 => 0.026223379279115
1220 => 0.026193728147526
1221 => 0.026070624121277
1222 => 0.026253454592612
1223 => 0.02713725348711
1224 => 0.027055887447493
1225 => 0.027134927624238
1226 => 0.028176976329574
1227 => 0.02953178787621
1228 => 0.028902341891942
1229 => 0.030268058559601
1230 => 0.031127704808362
1231 => 0.032614374106514
]
'min_raw' => 0.013315726483831
'max_raw' => 0.032614374106514
'avg_raw' => 0.022965050295172
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.013315'
'max' => '$0.032614'
'avg' => '$0.022965'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0059373923183454
'max_diff' => 0.013231442689577
'year' => 2028
]
3 => [
'items' => [
101 => 0.032428235788385
102 => 0.033006985236472
103 => 0.032095009350694
104 => 0.030000928376213
105 => 0.029669532046181
106 => 0.030332995891196
107 => 0.03196405701431
108 => 0.030281627971975
109 => 0.030621981176039
110 => 0.030523959430372
111 => 0.030518736268111
112 => 0.030718083127478
113 => 0.030428920110734
114 => 0.029250817961085
115 => 0.029790735233669
116 => 0.029582247245768
117 => 0.029813580212154
118 => 0.031061988822767
119 => 0.030510037617671
120 => 0.029928601859977
121 => 0.030657851331049
122 => 0.03158643650503
123 => 0.03152832731367
124 => 0.031415571194675
125 => 0.032051171533734
126 => 0.033100997080435
127 => 0.033384760707168
128 => 0.03359422921513
129 => 0.033623111383378
130 => 0.033920615666506
131 => 0.032320860155397
201 => 0.034859713236162
202 => 0.035298103028809
203 => 0.035215703917186
204 => 0.035702955721451
205 => 0.035559593880251
206 => 0.035351885065136
207 => 0.036124282816327
208 => 0.035238791123871
209 => 0.033981947146735
210 => 0.033292417683323
211 => 0.034200445703499
212 => 0.03475494672961
213 => 0.03512143663498
214 => 0.035232336258906
215 => 0.032445044621805
216 => 0.030942849019689
217 => 0.031905739177938
218 => 0.03308053162613
219 => 0.032314334124031
220 => 0.03234436761551
221 => 0.031251971330678
222 => 0.033177184457931
223 => 0.032896697098881
224 => 0.034351866013805
225 => 0.034004578273799
226 => 0.035191212034587
227 => 0.034878731596943
228 => 0.036175820423056
301 => 0.03669326427307
302 => 0.037562133030949
303 => 0.038201276426176
304 => 0.038576593652719
305 => 0.038554061014217
306 => 0.040041254848078
307 => 0.039164308602845
308 => 0.038062657438471
309 => 0.038042732044573
310 => 0.03861329279312
311 => 0.039809031596376
312 => 0.040119069270769
313 => 0.040292338034637
314 => 0.040026970891244
315 => 0.039075108593347
316 => 0.038664099279167
317 => 0.039014291122935
318 => 0.038586036590335
319 => 0.039325324060601
320 => 0.040340523660561
321 => 0.040130888957703
322 => 0.040831666339164
323 => 0.041556897205046
324 => 0.042594009915412
325 => 0.042865149582075
326 => 0.043313333140549
327 => 0.043774661242849
328 => 0.043922827396167
329 => 0.044205722556108
330 => 0.044204231558974
331 => 0.045056755164497
401 => 0.045997115101847
402 => 0.046352079208813
403 => 0.047168299599949
404 => 0.045770550783903
405 => 0.046830759317055
406 => 0.047787093952699
407 => 0.046646912375035
408 => 0.048218387051608
409 => 0.048279403852262
410 => 0.049200685099642
411 => 0.048266790059291
412 => 0.047712246165429
413 => 0.049313193608519
414 => 0.050087841646859
415 => 0.049854511353416
416 => 0.04807885629938
417 => 0.047045348896503
418 => 0.044340460674484
419 => 0.047544517615941
420 => 0.049105120288502
421 => 0.048074814715472
422 => 0.048594440917212
423 => 0.051429352984545
424 => 0.052508703952823
425 => 0.052284206496654
426 => 0.052322142871204
427 => 0.05290454106208
428 => 0.055487215372968
429 => 0.053939617059962
430 => 0.055122697982853
501 => 0.055750199838439
502 => 0.056333058532965
503 => 0.054901741793591
504 => 0.053039619745883
505 => 0.052449807526809
506 => 0.047972371131337
507 => 0.047739301122433
508 => 0.04760847186369
509 => 0.046783611893485
510 => 0.046135497905065
511 => 0.045620093598544
512 => 0.044267518785478
513 => 0.044723973079638
514 => 0.042568251131914
515 => 0.043947405639973
516 => 0.040506821359679
517 => 0.043372242185822
518 => 0.04181272390485
519 => 0.042859898487413
520 => 0.042856244993944
521 => 0.040928064580443
522 => 0.039815930358034
523 => 0.040524625569464
524 => 0.041284403092414
525 => 0.041407674439314
526 => 0.04239274583004
527 => 0.042667658081153
528 => 0.041834661125855
529 => 0.040435522897899
530 => 0.040760510797308
531 => 0.039809344488625
601 => 0.038142462118741
602 => 0.039339646137766
603 => 0.039748417398326
604 => 0.039928954074175
605 => 0.038289766706128
606 => 0.037774698446599
607 => 0.037500480427066
608 => 0.040223924392718
609 => 0.040373120800983
610 => 0.039609810882051
611 => 0.043060044095643
612 => 0.042279150058177
613 => 0.043151600021711
614 => 0.040731021551799
615 => 0.040823490909091
616 => 0.039677550269943
617 => 0.040319200456085
618 => 0.039865702785871
619 => 0.040267361461955
620 => 0.040508114016299
621 => 0.041653866617864
622 => 0.043385324840084
623 => 0.041482729386672
624 => 0.040653741301952
625 => 0.041168040847306
626 => 0.042537688310187
627 => 0.044612774327415
628 => 0.043384281640218
629 => 0.043929465833637
630 => 0.044048564326343
701 => 0.043142719300075
702 => 0.044646174125617
703 => 0.04545188778067
704 => 0.046278383271806
705 => 0.046996006148881
706 => 0.045948262797621
707 => 0.047069498371579
708 => 0.046165980423692
709 => 0.045355431420468
710 => 0.045356660688726
711 => 0.044848191458772
712 => 0.04386296825449
713 => 0.043681277979585
714 => 0.044626453734595
715 => 0.045384395181636
716 => 0.045446822869509
717 => 0.045866458199028
718 => 0.04611479406445
719 => 0.048548823141824
720 => 0.049527809772088
721 => 0.050724896092307
722 => 0.05119122867812
723 => 0.052594722571934
724 => 0.051461287266478
725 => 0.051216061408501
726 => 0.047811644301463
727 => 0.048369117412022
728 => 0.04926168565018
729 => 0.047826362422957
730 => 0.048736744644764
731 => 0.048916473379881
801 => 0.047777590688929
802 => 0.048385917142383
803 => 0.046770382438234
804 => 0.043420539081888
805 => 0.044649903458876
806 => 0.045555129439915
807 => 0.044263260351414
808 => 0.046578885690314
809 => 0.045226145171538
810 => 0.044797391370083
811 => 0.043124669928838
812 => 0.043914130060153
813 => 0.044981886191736
814 => 0.044322137042391
815 => 0.045691215589115
816 => 0.047630195931187
817 => 0.049012028791224
818 => 0.049118108759931
819 => 0.048229682806539
820 => 0.049653391066708
821 => 0.049663761227086
822 => 0.048057812493596
823 => 0.047074177836293
824 => 0.046850693972569
825 => 0.047409000480744
826 => 0.048086887650736
827 => 0.04915572678001
828 => 0.049801603880554
829 => 0.051485708812026
830 => 0.05194137931941
831 => 0.05244202305636
901 => 0.053111037481735
902 => 0.053914360831175
903 => 0.052156735075823
904 => 0.052226568823707
905 => 0.050589892056308
906 => 0.048840868207152
907 => 0.050168159289761
908 => 0.051903415818139
909 => 0.051505346053241
910 => 0.051460555072863
911 => 0.051535881077877
912 => 0.051235749474887
913 => 0.04987826535796
914 => 0.049196545332739
915 => 0.050076138090601
916 => 0.050543602495235
917 => 0.051268599019642
918 => 0.051179227895188
919 => 0.053046741083118
920 => 0.05377240023728
921 => 0.053586745572939
922 => 0.053620910499207
923 => 0.054934681735818
924 => 0.056395865548592
925 => 0.057764457009441
926 => 0.059156647025787
927 => 0.05747830762298
928 => 0.056626150379819
929 => 0.057505359134999
930 => 0.057038838593741
1001 => 0.059719604002789
1002 => 0.059905214383337
1003 => 0.062585785942533
1004 => 0.065129967548733
1005 => 0.063532012665627
1006 => 0.065038812146928
1007 => 0.066668538637119
1008 => 0.069812545450291
1009 => 0.068753754563108
1010 => 0.067942737336894
1011 => 0.067176329976929
1012 => 0.068771102029274
1013 => 0.070822750797512
1014 => 0.071264656291742
1015 => 0.071980712013287
1016 => 0.071227866977211
1017 => 0.072134585900004
1018 => 0.075335702129951
1019 => 0.074470732267585
1020 => 0.073242336012181
1021 => 0.075769309837253
1022 => 0.076683811841184
1023 => 0.083102265833193
1024 => 0.091205829131213
1025 => 0.087850900714967
1026 => 0.08576838838414
1027 => 0.086257828179737
1028 => 0.089216975173245
1029 => 0.090167359268929
1030 => 0.087583887679817
1031 => 0.088496413520318
1101 => 0.093524520619044
1102 => 0.096221938756521
1103 => 0.092558482614239
1104 => 0.08245115241246
1105 => 0.073131732369556
1106 => 0.075603662223888
1107 => 0.075323422091321
1108 => 0.080725495899767
1109 => 0.074450103022432
1110 => 0.074555764544344
1111 => 0.080069547518253
1112 => 0.078598564750985
1113 => 0.076215761057249
1114 => 0.073149129473489
1115 => 0.067480177361819
1116 => 0.062459028386088
1117 => 0.072306657829045
1118 => 0.071882010140712
1119 => 0.071267057358746
1120 => 0.072635568230172
1121 => 0.079280668563231
1122 => 0.079127477492463
1123 => 0.07815295405901
1124 => 0.078892121494229
1125 => 0.076086181432033
1126 => 0.076809336076129
1127 => 0.073130256125807
1128 => 0.074793353915303
1129 => 0.076210648630694
1130 => 0.076495191528216
1201 => 0.077136281205452
1202 => 0.071658240105101
1203 => 0.074117719732322
1204 => 0.075562433591238
1205 => 0.069035163817516
1206 => 0.075433410454584
1207 => 0.071562879597086
1208 => 0.070249163290628
1209 => 0.072017909228311
1210 => 0.071328627216234
1211 => 0.070736023018248
1212 => 0.07040533969354
1213 => 0.071704111500808
1214 => 0.071643522243631
1215 => 0.069518479486195
1216 => 0.066746447836943
1217 => 0.067676832647269
1218 => 0.067338815123274
1219 => 0.066113796011186
1220 => 0.066939310983361
1221 => 0.063304160829466
1222 => 0.057050073928352
1223 => 0.06118171530309
1224 => 0.061022651604524
1225 => 0.060942444474742
1226 => 0.064047258777678
1227 => 0.063748802522704
1228 => 0.063207101497434
1229 => 0.066103847247049
1230 => 0.065046496081711
1231 => 0.068305003230017
]
'min_raw' => 0.029250817961085
'max_raw' => 0.096221938756521
'avg_raw' => 0.062736378358803
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.02925'
'max' => '$0.096221'
'avg' => '$0.062736'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.015935091477254
'max_diff' => 0.063607564650007
'year' => 2029
]
4 => [
'items' => [
101 => 0.07045126678492
102 => 0.069906904923044
103 => 0.071925476170222
104 => 0.067698266834186
105 => 0.069102376209415
106 => 0.069391761205639
107 => 0.066068101854149
108 => 0.063797633657089
109 => 0.063646219313577
110 => 0.059709540349664
111 => 0.061812482476424
112 => 0.063662984522315
113 => 0.062776737647093
114 => 0.06249617836227
115 => 0.063929494902546
116 => 0.064040875873251
117 => 0.061501377937541
118 => 0.062029419973816
119 => 0.064231443044766
120 => 0.061973934642237
121 => 0.057587964578028
122 => 0.056500183361324
123 => 0.05635505329523
124 => 0.053404904362512
125 => 0.056572874103652
126 => 0.055189970415334
127 => 0.059558546597002
128 => 0.057063239311177
129 => 0.056955671601393
130 => 0.056793067231301
131 => 0.054253752175793
201 => 0.054809700791059
202 => 0.056657758661567
203 => 0.057317166529626
204 => 0.057248384886618
205 => 0.056648702169797
206 => 0.056923233846685
207 => 0.056038871662251
208 => 0.05572658496852
209 => 0.054740922261883
210 => 0.053292270379399
211 => 0.053493714308756
212 => 0.050623555869171
213 => 0.049059741220447
214 => 0.048626897936426
215 => 0.048048081807267
216 => 0.048692276758385
217 => 0.050615425070928
218 => 0.048295700187327
219 => 0.044318694584173
220 => 0.044557719397411
221 => 0.045094737185651
222 => 0.044094008089993
223 => 0.04314690198578
224 => 0.043970333902246
225 => 0.042285224200252
226 => 0.04529837464243
227 => 0.045216877367226
228 => 0.046339993520096
301 => 0.04704230109915
302 => 0.04542370950421
303 => 0.04501663809522
304 => 0.045248524470145
305 => 0.04141595922592
306 => 0.046026791174324
307 => 0.046066665840483
308 => 0.04572523474022
309 => 0.04818036040928
310 => 0.053361441343896
311 => 0.051412110287795
312 => 0.05065727038403
313 => 0.049222319175188
314 => 0.051134306461998
315 => 0.050987495670019
316 => 0.050323561592351
317 => 0.049922012190577
318 => 0.050661879275523
319 => 0.049830334471005
320 => 0.049680966174791
321 => 0.048775956814041
322 => 0.048452909647555
323 => 0.048213738386368
324 => 0.047950434328283
325 => 0.048531217469135
326 => 0.047215086463579
327 => 0.045627961492793
328 => 0.045496009224402
329 => 0.045860341038791
330 => 0.045699151332237
331 => 0.045495237510101
401 => 0.045105910491018
402 => 0.044990405481112
403 => 0.045365740728243
404 => 0.044942009117636
405 => 0.045567248190942
406 => 0.045397217759058
407 => 0.044447441588267
408 => 0.043263668827285
409 => 0.043253130766665
410 => 0.042998088867087
411 => 0.04267325466217
412 => 0.042582893217561
413 => 0.04390098676298
414 => 0.046629400954777
415 => 0.046093747963509
416 => 0.046480812145627
417 => 0.048384784830144
418 => 0.048990000492096
419 => 0.048560432750561
420 => 0.047972413931364
421 => 0.047998283775163
422 => 0.050007722085762
423 => 0.050133048288366
424 => 0.050449707170584
425 => 0.050856703322022
426 => 0.048629745955052
427 => 0.047893394283445
428 => 0.047544470010202
429 => 0.046469918299302
430 => 0.047628730194407
501 => 0.046953540128402
502 => 0.047044646336083
503 => 0.046985313298812
504 => 0.047017713149244
505 => 0.045297532405473
506 => 0.045924275858465
507 => 0.044882193308974
508 => 0.043486961754462
509 => 0.04348228444906
510 => 0.043823765395404
511 => 0.043620639166368
512 => 0.043074031706884
513 => 0.04315167471659
514 => 0.042471440251758
515 => 0.043234267496663
516 => 0.043256142652519
517 => 0.04296241261175
518 => 0.0441376532324
519 => 0.044619150273585
520 => 0.044425810868443
521 => 0.044605585065517
522 => 0.046116006763624
523 => 0.046362271404735
524 => 0.046471645890987
525 => 0.046325098568752
526 => 0.044633192801438
527 => 0.044708236016757
528 => 0.0441576186947
529 => 0.043692405080186
530 => 0.043711011185043
531 => 0.04395019145644
601 => 0.044994705729367
602 => 0.047192824439264
603 => 0.047276241437501
604 => 0.047377345272809
605 => 0.046966105163893
606 => 0.046842071212007
607 => 0.047005704010425
608 => 0.047831201826271
609 => 0.049954606329098
610 => 0.04920405336038
611 => 0.04859384211376
612 => 0.049129161888817
613 => 0.049046753605422
614 => 0.048351144760804
615 => 0.048331621337333
616 => 0.04699652556491
617 => 0.046502971056506
618 => 0.046090519967368
619 => 0.045640134145338
620 => 0.045373130332969
621 => 0.04578336953983
622 => 0.045877196100247
623 => 0.044980200904691
624 => 0.044857943774048
625 => 0.045590449413725
626 => 0.045268100992266
627 => 0.045599644337593
628 => 0.045676565237635
629 => 0.045664179201089
630 => 0.045327610427606
701 => 0.045542129327199
702 => 0.045034728178499
703 => 0.044483005638477
704 => 0.044131041031471
705 => 0.043823905230528
706 => 0.043994322023729
707 => 0.043386817272846
708 => 0.043192464276383
709 => 0.045469455150845
710 => 0.047151492791587
711 => 0.04712703529813
712 => 0.046978156596671
713 => 0.046756953045245
714 => 0.047815019408692
715 => 0.047446410244372
716 => 0.047714604209741
717 => 0.047782870829993
718 => 0.047989493328904
719 => 0.048063343112461
720 => 0.04784011777458
721 => 0.047090946275969
722 => 0.045224082130521
723 => 0.044355051831312
724 => 0.044068257357728
725 => 0.044078681792143
726 => 0.043791129354266
727 => 0.043875826434417
728 => 0.043761675166254
729 => 0.043545500280511
730 => 0.043980973833699
731 => 0.044031158103987
801 => 0.043929513373151
802 => 0.043953454386856
803 => 0.04311187942857
804 => 0.043175862544844
805 => 0.04281959642285
806 => 0.042752800819829
807 => 0.041852191087069
808 => 0.040256630400016
809 => 0.041140725905467
810 => 0.040072862857523
811 => 0.039668446940501
812 => 0.041582888992104
813 => 0.04139073210848
814 => 0.041061843052305
815 => 0.040575347591737
816 => 0.040394901693089
817 => 0.039298569535132
818 => 0.039233792382535
819 => 0.039777164203477
820 => 0.039526416804395
821 => 0.039174272490618
822 => 0.037898841482414
823 => 0.036464834748498
824 => 0.03650811839795
825 => 0.036964249259365
826 => 0.038290511256556
827 => 0.037772317749688
828 => 0.03739636241487
829 => 0.037325957281834
830 => 0.038207224924904
831 => 0.039454403271127
901 => 0.040039551447133
902 => 0.039459687375926
903 => 0.038793570753022
904 => 0.038834114185371
905 => 0.039103831477011
906 => 0.039132174950765
907 => 0.03869860150715
908 => 0.038820649891857
909 => 0.038635247235149
910 => 0.037497431473161
911 => 0.037476851994079
912 => 0.03719761365633
913 => 0.037189158430439
914 => 0.036714104358659
915 => 0.036647641010123
916 => 0.035704392316883
917 => 0.036325241463194
918 => 0.035908808451892
919 => 0.035281145677243
920 => 0.035172936378313
921 => 0.035169683476121
922 => 0.035814152802857
923 => 0.036317710463883
924 => 0.035916052482414
925 => 0.035824602745847
926 => 0.036801046680367
927 => 0.036676785289216
928 => 0.036569175725878
929 => 0.039342732129395
930 => 0.037147245812706
1001 => 0.036189888464652
1002 => 0.035004976949206
1003 => 0.035390790113477
1004 => 0.035472086615964
1005 => 0.032622588017669
1006 => 0.031466546791224
1007 => 0.031069837006802
1008 => 0.030841524917214
1009 => 0.030945569603402
1010 => 0.02990499690949
1011 => 0.030604278969283
1012 => 0.029703230973775
1013 => 0.029552167345064
1014 => 0.03116335277946
1015 => 0.031387539820247
1016 => 0.030431088254794
1017 => 0.031045284995258
1018 => 0.030822568719193
1019 => 0.029718676855493
1020 => 0.029676516305979
1021 => 0.029122622172449
1022 => 0.028255885108515
1023 => 0.027859763012637
1024 => 0.027653459185813
1025 => 0.027738584165542
1026 => 0.027695542370924
1027 => 0.027414665546449
1028 => 0.02771164190172
1029 => 0.026952990033104
1030 => 0.026650888746147
1031 => 0.026514436603525
1101 => 0.025841089403756
1102 => 0.026912684237448
1103 => 0.027123801919281
1104 => 0.027335335568165
1105 => 0.029176591561546
1106 => 0.029084607615452
1107 => 0.029916097690142
1108 => 0.029883787514852
1109 => 0.029646633076304
1110 => 0.028646117510083
1111 => 0.029044905182304
1112 => 0.027817498712572
1113 => 0.028737155095222
1114 => 0.02831746232795
1115 => 0.028595256548434
1116 => 0.028095757492308
1117 => 0.028372200893779
1118 => 0.027173865753594
1119 => 0.026054877260719
1120 => 0.026505190895562
1121 => 0.026994733316248
1122 => 0.028056186017382
1123 => 0.027423993545381
1124 => 0.027651353864157
1125 => 0.026889734855916
1126 => 0.025318297296202
1127 => 0.025327191462132
1128 => 0.025085460029198
1129 => 0.024876568777776
1130 => 0.02749660845569
1201 => 0.027170765105043
1202 => 0.026651576371111
1203 => 0.027346531123219
1204 => 0.027530288190092
1205 => 0.027535519495453
1206 => 0.028042540543213
1207 => 0.028313137767291
1208 => 0.02836083170087
1209 => 0.029158640274434
1210 => 0.029426055184944
1211 => 0.030527499355357
1212 => 0.028290179483385
1213 => 0.028244103352931
1214 => 0.027356310561756
1215 => 0.026793258338143
1216 => 0.027394863229219
1217 => 0.027927803035454
1218 => 0.027372870487099
1219 => 0.027445332962649
1220 => 0.026700381356138
1221 => 0.026966666502235
1222 => 0.027196027142536
1223 => 0.027069387678157
1224 => 0.026879802270562
1225 => 0.027884108048908
1226 => 0.027827441180988
1227 => 0.028762673810674
1228 => 0.029491754524641
1229 => 0.030798397502838
1230 => 0.029434847438251
1231 => 0.029385154254277
]
'min_raw' => 0.024876568777776
'max_raw' => 0.071925476170222
'avg_raw' => 0.048401022473999
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.024876'
'max' => '$0.071925'
'avg' => '$0.048401'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0043742491833089
'max_diff' => -0.024296462586299
'year' => 2030
]
5 => [
'items' => [
101 => 0.029870913098662
102 => 0.029425980817795
103 => 0.029707162660763
104 => 0.030753094760881
105 => 0.030775193657999
106 => 0.030405008658463
107 => 0.030382482867599
108 => 0.03045358094614
109 => 0.030870004612862
110 => 0.030724493388303
111 => 0.030892882661257
112 => 0.031103456025553
113 => 0.031974476741541
114 => 0.032184476887339
115 => 0.031674285405642
116 => 0.031720349984068
117 => 0.031529524364844
118 => 0.031345189207711
119 => 0.031759547720957
120 => 0.032516796048151
121 => 0.032512085245608
122 => 0.032687752138713
123 => 0.032797191157814
124 => 0.032327398773574
125 => 0.032021581206178
126 => 0.032138851121195
127 => 0.032326368269114
128 => 0.032078041837418
129 => 0.030545256064999
130 => 0.031010205353617
131 => 0.030932815057132
201 => 0.030822601863956
202 => 0.031290111969008
203 => 0.031245019478877
204 => 0.029894324332494
205 => 0.029980791453446
206 => 0.029899582684507
207 => 0.030161984830699
208 => 0.029411810240771
209 => 0.02964255889213
210 => 0.029787282283128
211 => 0.029872525472243
212 => 0.03018048232313
213 => 0.030144347141103
214 => 0.030178236109479
215 => 0.030634854821749
216 => 0.032944275575794
217 => 0.033069972251987
218 => 0.032450995847013
219 => 0.032698264712031
220 => 0.032223562562954
221 => 0.032542233295857
222 => 0.032760259717951
223 => 0.031775040240581
224 => 0.031716701937152
225 => 0.031240040523445
226 => 0.031496171367689
227 => 0.031088648778038
228 => 0.031188640567003
301 => 0.030909054807929
302 => 0.031412253509294
303 => 0.031974907846592
304 => 0.032117056552087
305 => 0.031743124506796
306 => 0.031472373062682
307 => 0.030997022717889
308 => 0.031787540935153
309 => 0.032018712552488
310 => 0.03178632668906
311 => 0.031732477806773
312 => 0.031630434272141
313 => 0.031754126825036
314 => 0.032017453542213
315 => 0.031893273525273
316 => 0.031975296614232
317 => 0.031662709180963
318 => 0.032327554294401
319 => 0.033383488338231
320 => 0.033386883338845
321 => 0.033262702652528
322 => 0.033211890591198
323 => 0.033339307511273
324 => 0.033408425963498
325 => 0.033820468918752
326 => 0.034262607426256
327 => 0.036325874920631
328 => 0.035746517664509
329 => 0.037577171329851
330 => 0.039024980698509
331 => 0.039459115423139
401 => 0.039059731904097
402 => 0.037693462459727
403 => 0.037626426762654
404 => 0.039668210136623
405 => 0.039091312813873
406 => 0.039022692713004
407 => 0.038292690775249
408 => 0.038724212332961
409 => 0.03862983223825
410 => 0.038480848641517
411 => 0.03930416171358
412 => 0.040845330286817
413 => 0.04060512471169
414 => 0.040425822392675
415 => 0.039640171824867
416 => 0.040113308948095
417 => 0.039944833880858
418 => 0.040668709686626
419 => 0.040239901695101
420 => 0.039086942249259
421 => 0.039270554841214
422 => 0.039242802167317
423 => 0.039813950229534
424 => 0.039642505758023
425 => 0.039209324882669
426 => 0.04084006274018
427 => 0.040734171694354
428 => 0.040884300987272
429 => 0.040950392544917
430 => 0.04194299394196
501 => 0.042349630974626
502 => 0.042441944700225
503 => 0.042828218430821
504 => 0.04243233385792
505 => 0.04401615441044
506 => 0.045069302659375
507 => 0.046292588545025
508 => 0.04808013801221
509 => 0.048752273147628
510 => 0.048630857951463
511 => 0.049986157556462
512 => 0.052421600820028
513 => 0.049123130667017
514 => 0.052596427747448
515 => 0.051496821992927
516 => 0.04888967653002
517 => 0.048721807098434
518 => 0.050487396275496
519 => 0.054403303138559
520 => 0.05342241288321
521 => 0.054404907523623
522 => 0.053258775337306
523 => 0.053201860213895
524 => 0.054349242441549
525 => 0.057030163557011
526 => 0.05575655842788
527 => 0.053930533174481
528 => 0.055278841805491
529 => 0.054110812089237
530 => 0.051478914227585
531 => 0.053421662814918
601 => 0.052122602160862
602 => 0.052501737121579
603 => 0.055232169395715
604 => 0.054903636560663
605 => 0.055328788470541
606 => 0.054578406477769
607 => 0.05387743137214
608 => 0.052569009282389
609 => 0.052181650006043
610 => 0.052288702174298
611 => 0.052181596956305
612 => 0.051449546822109
613 => 0.051291460665328
614 => 0.051027976811447
615 => 0.051109641475256
616 => 0.05061421474504
617 => 0.051549187345344
618 => 0.051722726498911
619 => 0.052403121587168
620 => 0.052473762462355
621 => 0.054368653098333
622 => 0.05332497917838
623 => 0.054025165750355
624 => 0.053962534472946
625 => 0.048946181277757
626 => 0.049637390488395
627 => 0.050712695106749
628 => 0.050228271833722
629 => 0.04954341066325
630 => 0.048990348548161
701 => 0.048152402890296
702 => 0.049331795312419
703 => 0.05088257093311
704 => 0.052513092691265
705 => 0.05447205774767
706 => 0.054034839551948
707 => 0.052476471202163
708 => 0.052546378467946
709 => 0.052978517677518
710 => 0.052418858137134
711 => 0.052253803612823
712 => 0.052955841720462
713 => 0.052960676271076
714 => 0.05231672033275
715 => 0.051601081149993
716 => 0.051598082595687
717 => 0.05147074151537
718 => 0.053281429032605
719 => 0.054277124085927
720 => 0.054391278919148
721 => 0.054269440556113
722 => 0.054316331306454
723 => 0.053736958293569
724 => 0.055061233193294
725 => 0.056276518798495
726 => 0.055950796295511
727 => 0.055462491959356
728 => 0.055073534035685
729 => 0.055859170169955
730 => 0.055824187029602
731 => 0.056265904338926
801 => 0.056245865490292
802 => 0.056097332572995
803 => 0.055950801600089
804 => 0.056531780344549
805 => 0.056364467796378
806 => 0.056196895365606
807 => 0.055860803201639
808 => 0.055906483708622
809 => 0.055418263685095
810 => 0.055192390762783
811 => 0.051795803956132
812 => 0.050888124974719
813 => 0.051173699259781
814 => 0.051267717729356
815 => 0.050872694673423
816 => 0.051439056262534
817 => 0.051350789408796
818 => 0.051694184102307
819 => 0.051479646006266
820 => 0.051488450724561
821 => 0.052119361520673
822 => 0.052302517608871
823 => 0.052209362944163
824 => 0.052274605278169
825 => 0.053778087328283
826 => 0.053564340259406
827 => 0.053450791389202
828 => 0.053482245202256
829 => 0.053866417101078
830 => 0.053973964257741
831 => 0.053518279397758
901 => 0.053733183012009
902 => 0.054648215326159
903 => 0.054968424849768
904 => 0.055990379939837
905 => 0.055556235253772
906 => 0.056353126614386
907 => 0.058802498976626
908 => 0.06075922710326
909 => 0.058959739052798
910 => 0.062553021069536
911 => 0.065350906545258
912 => 0.065243519040577
913 => 0.064755642991628
914 => 0.061570324763153
915 => 0.05863914743889
916 => 0.061091201734999
917 => 0.06109745252567
918 => 0.060886818887014
919 => 0.059578591447436
920 => 0.060841295407864
921 => 0.060941524262776
922 => 0.060885422757029
923 => 0.059882407846406
924 => 0.058350989466026
925 => 0.058650224951855
926 => 0.059140378781881
927 => 0.058212415324841
928 => 0.057915874773028
929 => 0.058467200077996
930 => 0.060243685083793
1001 => 0.059907850883924
1002 => 0.059899080895753
1003 => 0.061335922018657
1004 => 0.06030745386438
1005 => 0.058653999269616
1006 => 0.058236480178051
1007 => 0.056754568677557
1008 => 0.057778130229336
1009 => 0.057814966387373
1010 => 0.057254372186009
1011 => 0.058699488399445
1012 => 0.058686171399131
1013 => 0.060058094166625
1014 => 0.062680695227415
1015 => 0.061905063043379
1016 => 0.061003087201887
1017 => 0.061101156984935
1018 => 0.062176740448115
1019 => 0.061526418133094
1020 => 0.061760278571784
1021 => 0.062176386472332
1022 => 0.062427434700111
1023 => 0.06106503500837
1024 => 0.060747394469115
1025 => 0.060097613402478
1026 => 0.059928097650931
1027 => 0.06045733077158
1028 => 0.060317896542371
1029 => 0.057811870450927
1030 => 0.057549976780973
1031 => 0.057558008685933
1101 => 0.056899464600469
1102 => 0.055895026801448
1103 => 0.058534629365412
1104 => 0.058322632338311
1105 => 0.058088604027659
1106 => 0.058117271160367
1107 => 0.059263033168952
1108 => 0.058598433341604
1109 => 0.060365380908378
1110 => 0.060002149607955
1111 => 0.059629602795274
1112 => 0.059578105477708
1113 => 0.059434706739026
1114 => 0.058942939107764
1115 => 0.058349100142363
1116 => 0.057956996219955
1117 => 0.05346226541768
1118 => 0.054296461309936
1119 => 0.055256127644629
1120 => 0.055587400617743
1121 => 0.055020735273839
1122 => 0.058965314509408
1123 => 0.059686027146657
1124 => 0.057502941557506
1125 => 0.057094575378573
1126 => 0.058992086928113
1127 => 0.057847655502387
1128 => 0.058362992903317
1129 => 0.057249115316995
1130 => 0.059512428577274
1201 => 0.059495185922317
1202 => 0.05861470594482
1203 => 0.059358881592534
1204 => 0.05922956276048
1205 => 0.058235503034413
1206 => 0.059543942043662
1207 => 0.059544591013086
1208 => 0.058697148178031
1209 => 0.057707520475778
1210 => 0.057530598416578
1211 => 0.057397311411105
1212 => 0.058330212470613
1213 => 0.059166648643462
1214 => 0.060723048991022
1215 => 0.061114365017558
1216 => 0.062641697520514
1217 => 0.061732245379474
1218 => 0.06213539373422
1219 => 0.062573068302114
1220 => 0.062782905584911
1221 => 0.062440986993082
1222 => 0.064813563045311
1223 => 0.065013881157971
1224 => 0.065081046088401
1225 => 0.064281026792738
1226 => 0.064991631174134
1227 => 0.064659162916822
1228 => 0.065524152960006
1229 => 0.065659794443524
1230 => 0.06554491093257
1231 => 0.065587965680394
]
'min_raw' => 0.029411810240771
'max_raw' => 0.065659794443524
'avg_raw' => 0.047535802342147
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.029411'
'max' => '$0.065659'
'avg' => '$0.047535'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0045352414629945
'max_diff' => -0.0062656817266979
'year' => 2031
]
6 => [
'items' => [
101 => 0.063563390570913
102 => 0.063458405671001
103 => 0.062026929111325
104 => 0.062610266390334
105 => 0.06151974530731
106 => 0.061865560776349
107 => 0.06201799294005
108 => 0.061938371028182
109 => 0.062643247404857
110 => 0.062043958487953
111 => 0.060462336504024
112 => 0.058880283608244
113 => 0.05886042222285
114 => 0.058443895620944
115 => 0.058142823178418
116 => 0.058200820411967
117 => 0.058405210227692
118 => 0.058130943670768
119 => 0.058189472346355
120 => 0.059161438335629
121 => 0.059356359183034
122 => 0.058693941983062
123 => 0.056034241338826
124 => 0.055381544129377
125 => 0.055850689939981
126 => 0.055626468459372
127 => 0.044894901514572
128 => 0.04741612398467
129 => 0.045918099205563
130 => 0.046608457944581
131 => 0.045079362556749
201 => 0.045809127022578
202 => 0.045674366172471
203 => 0.049728417295992
204 => 0.049665118863864
205 => 0.049695416473645
206 => 0.048249232618769
207 => 0.050553042767758
208 => 0.051687982489483
209 => 0.051477935352434
210 => 0.051530799691542
211 => 0.050622415197744
212 => 0.049704211621175
213 => 0.048685782544243
214 => 0.050577897887545
215 => 0.050367526960856
216 => 0.05085004217761
217 => 0.052077214228939
218 => 0.05225791997507
219 => 0.052500790330408
220 => 0.052413738596708
221 => 0.054487664064794
222 => 0.054236498006408
223 => 0.054841735941711
224 => 0.053596715589279
225 => 0.052187856882086
226 => 0.052455634863262
227 => 0.05242984569034
228 => 0.052101519919611
229 => 0.051805122094234
301 => 0.05131170322455
302 => 0.052872953540482
303 => 0.052809569628833
304 => 0.053835681482693
305 => 0.053654306245404
306 => 0.052443038020743
307 => 0.05248629870235
308 => 0.052777247576536
309 => 0.053784224952089
310 => 0.0540831643974
311 => 0.053944683735655
312 => 0.054272457190335
313 => 0.054531515964514
314 => 0.054304990983833
315 => 0.057512107011371
316 => 0.056180288837388
317 => 0.056829407748656
318 => 0.056984218784163
319 => 0.056587673572037
320 => 0.056673670029328
321 => 0.056803931229491
322 => 0.057594851729124
323 => 0.05967045597485
324 => 0.060589726966167
325 => 0.063355399099574
326 => 0.060513394307208
327 => 0.060344761504214
328 => 0.060842942570738
329 => 0.062466684889175
330 => 0.063782575527907
331 => 0.064219132368327
401 => 0.064276830561556
402 => 0.065095840215934
403 => 0.065565281276197
404 => 0.0649963909018
405 => 0.064514315874803
406 => 0.062787582965457
407 => 0.062987457001451
408 => 0.064364390903909
409 => 0.066309391142132
410 => 0.067978403689312
411 => 0.067393973666249
412 => 0.071852762198919
413 => 0.072294832869415
414 => 0.072233752996609
415 => 0.073240855772936
416 => 0.071241961854841
417 => 0.070387395978109
418 => 0.064618545967424
419 => 0.066239357512092
420 => 0.068595302279192
421 => 0.068283484154927
422 => 0.066572534090475
423 => 0.067977105780263
424 => 0.067512710454602
425 => 0.067146422593473
426 => 0.068824458293701
427 => 0.066979389111393
428 => 0.068576896302695
429 => 0.066528076805754
430 => 0.067396643293366
501 => 0.066903602947163
502 => 0.067222660475909
503 => 0.06535745668228
504 => 0.06636387537406
505 => 0.065315586355905
506 => 0.065315089330419
507 => 0.065291948292242
508 => 0.066525255673276
509 => 0.066565473782694
510 => 0.065654057764686
511 => 0.065522708477497
512 => 0.066008375635183
513 => 0.065439786589963
514 => 0.065705825825564
515 => 0.065447844647391
516 => 0.065389767650269
517 => 0.064927000256215
518 => 0.064727627338802
519 => 0.064805806596927
520 => 0.064538940484777
521 => 0.064378143999238
522 => 0.065259961824079
523 => 0.064788842132696
524 => 0.065187755974567
525 => 0.064733143304814
526 => 0.06315725772614
527 => 0.062250949265156
528 => 0.05927424749171
529 => 0.060118436422073
530 => 0.060678134556279
531 => 0.060493154326263
601 => 0.060890563438185
602 => 0.060914961130034
603 => 0.060785759376641
604 => 0.060636160297983
605 => 0.06056334373984
606 => 0.061106058706751
607 => 0.061421123011988
608 => 0.060734307751842
609 => 0.060573396545957
610 => 0.061267804694074
611 => 0.061691393263279
612 => 0.064818933264432
613 => 0.064587234999326
614 => 0.065168752176255
615 => 0.065103282266241
616 => 0.065712804910614
617 => 0.066709116830675
618 => 0.064683336123997
619 => 0.06503494160845
620 => 0.064948736063419
621 => 0.065889905599764
622 => 0.065892843828325
623 => 0.06532856567638
624 => 0.065634470016917
625 => 0.065463722606076
626 => 0.065772286255362
627 => 0.064584140527736
628 => 0.066031173771579
629 => 0.066851548376076
630 => 0.066862939278255
701 => 0.067251790329891
702 => 0.067646885519088
703 => 0.068405236329211
704 => 0.067625735526589
705 => 0.066223489465545
706 => 0.066324727101925
707 => 0.065502590749397
708 => 0.065516411010014
709 => 0.065442637375727
710 => 0.065664037605643
711 => 0.064632725427787
712 => 0.064874772334572
713 => 0.064535905247648
714 => 0.065034204977583
715 => 0.064498116840069
716 => 0.064948694492495
717 => 0.065143148870396
718 => 0.065860689711154
719 => 0.064392135474475
720 => 0.061397653973504
721 => 0.062027130289587
722 => 0.061096085373802
723 => 0.061182257125496
724 => 0.06135633777805
725 => 0.060792085427477
726 => 0.060899726994331
727 => 0.060895881280101
728 => 0.060862740992489
729 => 0.060715957163646
730 => 0.060503091571527
731 => 0.061351082573954
801 => 0.061495172769456
802 => 0.061815467425057
803 => 0.062768447062187
804 => 0.06267322192363
805 => 0.062828538075469
806 => 0.062489483788068
807 => 0.061197984881457
808 => 0.061268119485675
809 => 0.06039353984725
810 => 0.06179310245738
811 => 0.061461667557977
812 => 0.061247989322221
813 => 0.06118968523588
814 => 0.062145027125203
815 => 0.062430880391638
816 => 0.062252755818895
817 => 0.061887417123475
818 => 0.06258897542137
819 => 0.062776682825519
820 => 0.062818703590925
821 => 0.064061730384336
822 => 0.062888174980372
823 => 0.063170661430243
824 => 0.065374540072829
825 => 0.063375926258468
826 => 0.064434636570341
827 => 0.064382818209838
828 => 0.064924418580589
829 => 0.064338391171306
830 => 0.064345655683391
831 => 0.064826560121431
901 => 0.064151216569777
902 => 0.063983992009009
903 => 0.063752972475994
904 => 0.064257395174652
905 => 0.064559773769421
906 => 0.066996723170655
907 => 0.068571103622246
908 => 0.06850275561471
909 => 0.069127328461485
910 => 0.068845952673581
911 => 0.067937316031257
912 => 0.069488247983271
913 => 0.068997468219905
914 => 0.069037927507299
915 => 0.069036421610602
916 => 0.069362747248529
917 => 0.069131515626752
918 => 0.06867573436479
919 => 0.068978303236901
920 => 0.069876824616719
921 => 0.072665862549676
922 => 0.074226645126797
923 => 0.072571901478757
924 => 0.073713321489275
925 => 0.073028876212499
926 => 0.072904492145225
927 => 0.073621388262107
928 => 0.074339539210739
929 => 0.074293796099963
930 => 0.073772455388715
1001 => 0.073477963249462
1002 => 0.075707956389991
1003 => 0.07735097734899
1004 => 0.077238934334539
1005 => 0.077733455761987
1006 => 0.079185385967949
1007 => 0.0793181322698
1008 => 0.079301409286906
1009 => 0.078972383727123
1010 => 0.080401997571854
1011 => 0.081594606592791
1012 => 0.078896223816496
1013 => 0.079923732653285
1014 => 0.080385014474387
1015 => 0.081062313043913
1016 => 0.082205029259125
1017 => 0.083446322159352
1018 => 0.083621854585528
1019 => 0.083497305929156
1020 => 0.082678639893712
1021 => 0.084036877396844
1022 => 0.08483250107159
1023 => 0.085306276762378
1024 => 0.086507693085456
1025 => 0.080387863193875
1026 => 0.076055943421332
1027 => 0.07537945159517
1028 => 0.076755124325398
1029 => 0.077117878253575
1030 => 0.076971652599982
1031 => 0.07209568305507
1101 => 0.075353780624621
1102 => 0.078859219660833
1103 => 0.078993877850564
1104 => 0.080748773927366
1105 => 0.081320240025593
1106 => 0.082733161386905
1107 => 0.082644782771058
1108 => 0.082988806638048
1109 => 0.08290972150869
1110 => 0.085526860804826
1111 => 0.088413954097411
1112 => 0.088313983237083
1113 => 0.087898929417737
1114 => 0.088515355116659
1115 => 0.091495144794326
1116 => 0.091220813510963
1117 => 0.091487302985267
1118 => 0.095000642948824
1119 => 0.09956848466823
1120 => 0.097446263585756
1121 => 0.10205087268206
1122 => 0.10494923002834
1123 => 0.109961639363
1124 => 0.10933406102766
1125 => 0.11128535519888
1126 => 0.10821056482786
1127 => 0.10115022461833
1128 => 0.10003289875428
1129 => 0.10226981342931
1130 => 0.10776904988294
1201 => 0.10209662290327
1202 => 0.10324414749347
1203 => 0.10291366033429
1204 => 0.10289605007806
1205 => 0.10356816193237
1206 => 0.1025932286327
1207 => 0.098621174982692
1208 => 0.10044154376303
1209 => 0.099738611955653
1210 => 0.10051856720298
1211 => 0.10472766399477
1212 => 0.10286672197078
1213 => 0.10090637071917
1214 => 0.10336508622546
1215 => 0.10649587597128
1216 => 0.10629995677556
1217 => 0.10591979164798
1218 => 0.10806276256732
1219 => 0.1116023226945
1220 => 0.11255905157378
1221 => 0.11326528927299
1222 => 0.11336266751973
1223 => 0.11436572398138
1224 => 0.10897203658432
1225 => 0.11753195700318
1226 => 0.11901001879648
1227 => 0.11873220443873
1228 => 0.12037500791564
1229 => 0.11989165345883
1230 => 0.1191913486869
1231 => 0.12179554163213
]
'min_raw' => 0.044894901514572
'max_raw' => 0.12179554163213
'avg_raw' => 0.083345221573351
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.044894'
'max' => '$0.121795'
'avg' => '$0.083345'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.015483091273801
'max_diff' => 0.056135747188606
'year' => 2032
]
7 => [
'items' => [
101 => 0.11881004456796
102 => 0.114572507349
103 => 0.1122477106217
104 => 0.11530919048822
105 => 0.11717872941177
106 => 0.11841437571524
107 => 0.11878828154007
108 => 0.10939073318309
109 => 0.10432597583061
110 => 0.10757242722599
111 => 0.11153332198646
112 => 0.10895003361393
113 => 0.10905129362732
114 => 0.10536820328434
115 => 0.11185919375696
116 => 0.11091351104293
117 => 0.11581971463624
118 => 0.11464880977395
119 => 0.11864962834657
120 => 0.11759607873437
121 => 0.12196930427146
122 => 0.12371390233856
123 => 0.12664335401822
124 => 0.1287982705988
125 => 0.1300636788319
126 => 0.12998770846801
127 => 0.13500188631143
128 => 0.1320452008192
129 => 0.12833090700369
130 => 0.12826372714701
131 => 0.13018741254602
201 => 0.13421892940501
202 => 0.13526424307037
203 => 0.13584843080499
204 => 0.13495372695369
205 => 0.13174445675943
206 => 0.13035871016092
207 => 0.1315394064118
208 => 0.13009551635536
209 => 0.13258807567677
210 => 0.136010892007
211 => 0.13530409397009
212 => 0.1376668138384
213 => 0.14011198033672
214 => 0.14360867824862
215 => 0.14452284456514
216 => 0.14603392672371
217 => 0.14758932662952
218 => 0.14808887916006
219 => 0.14904267994291
220 => 0.14903765294197
221 => 0.15191199579929
222 => 0.1550824849819
223 => 0.15627927125134
224 => 0.15903121528674
225 => 0.15431860756574
226 => 0.15789317465665
227 => 0.16111752364988
228 => 0.15727332185585
301 => 0.16257165844478
302 => 0.16277738084824
303 => 0.16588354489558
304 => 0.16273485256457
305 => 0.16086516910939
306 => 0.16626287518835
307 => 0.16887465513382
308 => 0.16808796575887
309 => 0.16210122077191
310 => 0.15861667840593
311 => 0.14949695891613
312 => 0.16029966059436
313 => 0.1655613414627
314 => 0.16208759428959
315 => 0.1638395503079
316 => 0.17339765427016
317 => 0.17703676141758
318 => 0.1762798525702
319 => 0.17640775770562
320 => 0.17837135386791
321 => 0.18707902062363
322 => 0.18186118486147
323 => 0.18585002479306
324 => 0.18796569110995
325 => 0.18993083989244
326 => 0.1851050555743
327 => 0.17882678108124
328 => 0.17683818800526
329 => 0.1617421985933
330 => 0.16095638678585
331 => 0.16051528680579
401 => 0.15773421382636
402 => 0.15554905226453
403 => 0.15381133066071
404 => 0.14925103024471
405 => 0.15078999776609
406 => 0.14352183071164
407 => 0.14817174642505
408 => 0.13657157631011
409 => 0.14623254268275
410 => 0.14097451791636
411 => 0.14450514013287
412 => 0.14449282212456
413 => 0.13799182723918
414 => 0.1342421890616
415 => 0.13663160444645
416 => 0.13919324741105
417 => 0.13960886536366
418 => 0.14293010233298
419 => 0.14385698818137
420 => 0.14104848078859
421 => 0.13633118856832
422 => 0.13742690796111
423 => 0.13421998434307
424 => 0.128599974055
425 => 0.13263636355986
426 => 0.13401456440434
427 => 0.13462325641163
428 => 0.12909662175585
429 => 0.12736003315793
430 => 0.12643548795979
501 => 0.13561776943477
502 => 0.1361207955418
503 => 0.13354724285752
504 => 0.14517994502474
505 => 0.14254710625714
506 => 0.1454886322217
507 => 0.137327482911
508 => 0.13763924980512
509 => 0.13377563093321
510 => 0.13593899933437
511 => 0.13441000027705
512 => 0.13576422054638
513 => 0.13657593459216
514 => 0.14043891948223
515 => 0.14627665176499
516 => 0.13986191835884
517 => 0.13706692715311
518 => 0.13880092397752
519 => 0.14341878602435
520 => 0.15041508340932
521 => 0.14627313454381
522 => 0.14811126111547
523 => 0.14851280999882
524 => 0.14545869024868
525 => 0.15052769316086
526 => 0.153244213002
527 => 0.15603080025443
528 => 0.15845031588732
529 => 0.15491777602744
530 => 0.15869810004721
531 => 0.1556518262043
601 => 0.15291900364921
602 => 0.15292314821296
603 => 0.15120880870399
604 => 0.14788705988466
605 => 0.14727447843761
606 => 0.15046120448569
607 => 0.15301665699217
608 => 0.1532271363004
609 => 0.15464196611187
610 => 0.1554792478204
611 => 0.16368574679325
612 => 0.16698646856785
613 => 0.17102252867436
614 => 0.17259480154573
615 => 0.17732677919754
616 => 0.17350532293127
617 => 0.17267852682998
618 => 0.16120029686479
619 => 0.16307985637857
620 => 0.16608921251064
621 => 0.16124992003899
622 => 0.16431933726067
623 => 0.16492530523938
624 => 0.16108548273258
625 => 0.1631364978424
626 => 0.15768960979433
627 => 0.14639537903981
628 => 0.15054026686831
629 => 0.15359229946424
630 => 0.14923667263694
701 => 0.15704396513884
702 => 0.15248310603446
703 => 0.15103753265822
704 => 0.14539783553338
705 => 0.14805955548446
706 => 0.15165956983044
707 => 0.14943517951121
708 => 0.1540511234175
709 => 0.16058853101608
710 => 0.16524747698019
711 => 0.16560513300095
712 => 0.16260974287117
713 => 0.16740987467047
714 => 0.1674448383902
715 => 0.16203027011148
716 => 0.1587138771892
717 => 0.15796038573951
718 => 0.15984275511154
719 => 0.16212829903374
720 => 0.16573196478205
721 => 0.16790958452023
722 => 0.17358766187714
723 => 0.17512398680669
724 => 0.17681194211964
725 => 0.17906757096389
726 => 0.18177603172278
727 => 0.17585007377509
728 => 0.17608552313172
729 => 0.17056735314131
730 => 0.16467039712094
731 => 0.16914545167446
801 => 0.17499599021163
802 => 0.17365387020693
803 => 0.17350285428938
804 => 0.17375682117438
805 => 0.17274490652038
806 => 0.16816805404364
807 => 0.16586958738244
808 => 0.16883519577678
809 => 0.17041128465432
810 => 0.172855661054
811 => 0.17255434006821
812 => 0.17885079116692
813 => 0.18129740166909
814 => 0.18067145400627
815 => 0.1807866434405
816 => 0.18521611488931
817 => 0.19014259813067
818 => 0.19475689979293
819 => 0.19945076563264
820 => 0.19379212715817
821 => 0.19091901951713
822 => 0.19388333321961
823 => 0.19231042664334
824 => 0.20134881438501
825 => 0.20197461274193
826 => 0.21101234690529
827 => 0.21959023281968
828 => 0.21420261636564
829 => 0.21928289601822
830 => 0.22477763266377
831 => 0.23537787114193
901 => 0.23180808374337
902 => 0.22907368254178
903 => 0.2264896866188
904 => 0.23186657193671
905 => 0.23878384900037
906 => 0.24027376422702
907 => 0.24268799608563
908 => 0.24014972648453
909 => 0.24320679263783
910 => 0.25399957950189
911 => 0.25108327322065
912 => 0.24694164948167
913 => 0.25546151816058
914 => 0.25854482551532
915 => 0.28018509127153
916 => 0.30750682070353
917 => 0.29619544531453
918 => 0.28917410959478
919 => 0.29082429003723
920 => 0.30080126072689
921 => 0.30400554705919
922 => 0.29529519222427
923 => 0.29837183680604
924 => 0.31532445094062
925 => 0.32441898451884
926 => 0.3120673863608
927 => 0.27798981691424
928 => 0.24656874157846
929 => 0.25490302566697
930 => 0.25395817649428
1001 => 0.27217164550021
1002 => 0.25101372028033
1003 => 0.25136996547851
1004 => 0.26996006973508
1005 => 0.2650005486345
1006 => 0.25696675961903
1007 => 0.246627397129
1008 => 0.22751412929091
1009 => 0.2105849749538
1010 => 0.24378694516026
1011 => 0.2423552158311
1012 => 0.24028185959206
1013 => 0.24489588954145
1014 => 0.26730030926045
1015 => 0.2667838148699
1016 => 0.26349814107496
1017 => 0.26599029568982
1018 => 0.25652987286565
1019 => 0.25896803923726
1020 => 0.24656376431959
1021 => 0.25217101463066
1022 => 0.25694952271596
1023 => 0.2579088789611
1024 => 0.26007035756736
1025 => 0.24160075953291
1026 => 0.24989306681147
1027 => 0.2547640204535
1028 => 0.23275687469198
1029 => 0.25432900994017
1030 => 0.24127924492227
1031 => 0.23684995867431
1101 => 0.2428134090931
1102 => 0.24048944666525
1103 => 0.23849144023744
1104 => 0.23737651832061
1105 => 0.24175541814617
1106 => 0.24155113723539
1107 => 0.23438640721295
1108 => 0.22504030897043
1109 => 0.22817716631583
1110 => 0.22703751663405
1111 => 0.22290727916955
1112 => 0.22569056053385
1113 => 0.21343439799191
1114 => 0.1923483073584
1115 => 0.20627842471532
1116 => 0.20574213035013
1117 => 0.20547170641219
1118 => 0.21593980460575
1119 => 0.21493353850456
1120 => 0.2131071556775
1121 => 0.22287373621666
1122 => 0.21930880294082
1123 => 0.23029508729304
1124 => 0.23753136471573
1125 => 0.23569601069228
1126 => 0.24250176458429
1127 => 0.22824943317351
1128 => 0.23298348596388
1129 => 0.23395916768287
1130 => 0.22275321812883
1201 => 0.21509817608342
1202 => 0.21458767205286
1203 => 0.20131488407588
1204 => 0.20840510027898
1205 => 0.21464419712462
1206 => 0.21165615390903
1207 => 0.21071022869223
1208 => 0.21554275547873
1209 => 0.21591828419784
1210 => 0.20735618960551
1211 => 0.20913652019753
1212 => 0.21656079472158
1213 => 0.20894944752825
1214 => 0.19416184323811
1215 => 0.19049431291954
1216 => 0.19000499676904
1217 => 0.18005836366956
1218 => 0.1907393948324
1219 => 0.18607683849598
1220 => 0.20080579809673
1221 => 0.19239269536578
1222 => 0.1920300233221
1223 => 0.19148179133566
1224 => 0.1829203133367
1225 => 0.18479473290816
1226 => 0.19102558904586
1227 => 0.19324882871141
1228 => 0.19301692659983
1229 => 0.19099505445155
1230 => 0.19192065716737
1231 => 0.18893896831836
]
'min_raw' => 0.10432597583061
'max_raw' => 0.32441898451884
'avg_raw' => 0.21437248017473
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.104325'
'max' => '$0.324418'
'avg' => '$0.214372'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.059431074316038
'max_diff' => 0.20262344288671
'year' => 2033
]
8 => [
'items' => [
101 => 0.18788607192728
102 => 0.18456284129508
103 => 0.17967861033164
104 => 0.18035779260384
105 => 0.17068085303671
106 => 0.16540834276649
107 => 0.16394898141426
108 => 0.16199746242315
109 => 0.1641694106771
110 => 0.17065343948276
111 => 0.16283232507968
112 => 0.14942357302299
113 => 0.15022946186899
114 => 0.15204005483543
115 => 0.14866602682075
116 => 0.14547279246556
117 => 0.1482490506621
118 => 0.14256758565123
119 => 0.15272663273848
120 => 0.15245185898517
121 => 0.15623852350804
122 => 0.15860640254436
123 => 0.15314920797557
124 => 0.15177673829934
125 => 0.15255855940219
126 => 0.13963679810012
127 => 0.15518253993217
128 => 0.15531698015309
129 => 0.15416582136059
130 => 0.16244344896523
131 => 0.17991182506781
201 => 0.17333951931422
202 => 0.17079452387743
203 => 0.16595648569173
204 => 0.1724028843199
205 => 0.17190790148474
206 => 0.16966940138748
207 => 0.16831554954412
208 => 0.17081006307688
209 => 0.16800645171185
210 => 0.1675028460726
211 => 0.16445154382709
212 => 0.16336236775086
213 => 0.16255598514536
214 => 0.16166823713022
215 => 0.16362638803859
216 => 0.15918896046403
217 => 0.15383785781549
218 => 0.15339297153
219 => 0.15462134167905
220 => 0.1540778793295
221 => 0.15339036964135
222 => 0.15207772641457
223 => 0.15168829320937
224 => 0.15295376220014
225 => 0.15152512149099
226 => 0.15363315867943
227 => 0.15305988920719
228 => 0.14985765253612
301 => 0.14586648002409
302 => 0.14583095021696
303 => 0.14497105864608
304 => 0.143875857445
305 => 0.14357119752567
306 => 0.1480152419404
307 => 0.15721428087984
308 => 0.15540828942168
309 => 0.15671330333565
310 => 0.16313268017263
311 => 0.16517320703171
312 => 0.16372488939966
313 => 0.16174234289658
314 => 0.16182956488112
315 => 0.16860452643981
316 => 0.16902707248188
317 => 0.1700947100117
318 => 0.17146692595184
319 => 0.1639585837079
320 => 0.16147592263664
321 => 0.16029950008829
322 => 0.15667657397219
323 => 0.16058358918219
324 => 0.15830713873439
325 => 0.15861430967442
326 => 0.15841426419676
327 => 0.15852350255458
328 => 0.15272379307777
329 => 0.15483690238737
330 => 0.15132344831588
331 => 0.14661932771788
401 => 0.14660355785616
402 => 0.1477548847082
403 => 0.14707003044518
404 => 0.14522710523262
405 => 0.1454888840607
406 => 0.14319542607007
407 => 0.14576735138516
408 => 0.14584110500041
409 => 0.14485077366038
410 => 0.14881317946558
411 => 0.15043658035698
412 => 0.14978472305402
413 => 0.15039084431089
414 => 0.15548333652033
415 => 0.15631363495149
416 => 0.15668239866817
417 => 0.15618830413964
418 => 0.15048392572006
419 => 0.15073693915986
420 => 0.14888049441567
421 => 0.14731199423416
422 => 0.14737472601572
423 => 0.14818113899976
424 => 0.1517027917966
425 => 0.15911390249476
426 => 0.15939514872831
427 => 0.15973602736789
428 => 0.15834950262882
429 => 0.15793131350026
430 => 0.1584830129046
501 => 0.16126623642514
502 => 0.16842544295779
503 => 0.16589490122182
504 => 0.16383753140026
505 => 0.16564239939669
506 => 0.16536455411566
507 => 0.16301926033018
508 => 0.16295343574486
509 => 0.15845206713473
510 => 0.15678801365077
511 => 0.15539740600732
512 => 0.15387889876342
513 => 0.1529786767684
514 => 0.15436182689632
515 => 0.15467816969553
516 => 0.15165388776751
517 => 0.15124168931582
518 => 0.15371138322191
519 => 0.15262456301331
520 => 0.15374238454969
521 => 0.15400172873463
522 => 0.15395996834765
523 => 0.15282520322937
524 => 0.15354846867658
525 => 0.15183773027812
526 => 0.1499775592144
527 => 0.1487908859685
528 => 0.14775535617208
529 => 0.14832992828848
530 => 0.14628168360625
531 => 0.14562640890938
601 => 0.15330344261706
602 => 0.15897454995893
603 => 0.15889208981218
604 => 0.15839013487583
605 => 0.15764433165826
606 => 0.16121167627445
607 => 0.15996888474148
608 => 0.16087311942043
609 => 0.16110328509683
610 => 0.16179992727783
611 => 0.16204891697912
612 => 0.16129629716736
613 => 0.15877041315431
614 => 0.15247615034764
615 => 0.14954615402009
616 => 0.14857920642906
617 => 0.1486143531375
618 => 0.14764485001692
619 => 0.14793041213601
620 => 0.14754554316562
621 => 0.14681669444548
622 => 0.14828492393385
623 => 0.14845412370488
624 => 0.14811142139826
625 => 0.14819214019747
626 => 0.14535471146873
627 => 0.1455704350124
628 => 0.14436925890839
629 => 0.14414405286929
630 => 0.14110758427672
701 => 0.13572804002184
702 => 0.13870882974404
703 => 0.13510845492208
704 => 0.13374493842242
705 => 0.14019961346148
706 => 0.13955174311237
707 => 0.13844287069718
708 => 0.13680261728585
709 => 0.13619423134022
710 => 0.1324978709262
711 => 0.13227947023363
712 => 0.13411148626494
713 => 0.13326607390231
714 => 0.13207879476248
715 => 0.12777859007057
716 => 0.12294373624802
717 => 0.12308967009412
718 => 0.12462754713942
719 => 0.1290991320596
720 => 0.12735200647208
721 => 0.12608444681238
722 => 0.12584707099082
723 => 0.12881832637757
724 => 0.13302327524708
725 => 0.13499614317622
726 => 0.13304109097533
727 => 0.13079523227443
728 => 0.13093192728725
729 => 0.13184129796707
730 => 0.13193685996771
731 => 0.13047503683143
801 => 0.13088653148162
802 => 0.13026143348013
803 => 0.12642520819882
804 => 0.12635582304829
805 => 0.12541435149677
806 => 0.12538584411235
807 => 0.12378416614213
808 => 0.12356008032222
809 => 0.12037985149744
810 => 0.12247308774053
811 => 0.1210690547685
812 => 0.11895284590176
813 => 0.11858801069548
814 => 0.11857704330863
815 => 0.12074991663913
816 => 0.12244769645055
817 => 0.12109347852317
818 => 0.12078514935151
819 => 0.12407729824989
820 => 0.12365834229397
821 => 0.12329552913811
822 => 0.1326467681961
823 => 0.12524453279542
824 => 0.1220167356559
825 => 0.11802172375369
826 => 0.11932251977365
827 => 0.11959661660772
828 => 0.10998933313793
829 => 0.10609165943075
830 => 0.10475412469518
831 => 0.1039843545449
901 => 0.10433514846855
902 => 0.10082678498055
903 => 0.10318446326746
904 => 0.10014651704144
905 => 0.099637195470318
906 => 0.10506941965176
907 => 0.10582528191201
908 => 0.10260053868177
909 => 0.10467134587409
910 => 0.10392044239978
911 => 0.10019859391005
912 => 0.10005644667381
913 => 0.098188953930963
914 => 0.095266689406258
915 => 0.093931136103643
916 => 0.093235568347835
917 => 0.093522573160227
918 => 0.09337745474459
919 => 0.092430458920677
920 => 0.093431735436703
921 => 0.09087388769428
922 => 0.089855332113267
923 => 0.089395274187634
924 => 0.087125037092011
925 => 0.090737993890166
926 => 0.091449791894233
927 => 0.092162992360254
928 => 0.098370915494325
929 => 0.098060785197955
930 => 0.10086421203756
1001 => 0.10075527602574
1002 => 0.099955693278582
1003 => 0.096582385193301
1004 => 0.097926925672659
1005 => 0.093788639065178
1006 => 0.096889324767639
1007 => 0.095474301300766
1008 => 0.096410903910104
1009 => 0.094726807968462
1010 => 0.095658856197184
1011 => 0.091618585606962
1012 => 0.087845837777955
1013 => 0.089364101637722
1014 => 0.091014628087823
1015 => 0.094593389977958
1016 => 0.092461908920338
1017 => 0.09322847010888
1018 => 0.090660618448057
1019 => 0.085362407001213
1020 => 0.085392394302618
1021 => 0.084577379899331
1022 => 0.083873088460841
1023 => 0.092706735160255
1024 => 0.091608131553894
1025 => 0.089857650488843
1026 => 0.092200738955766
1027 => 0.092820288736235
1028 => 0.0928379264475
1029 => 0.094547383309101
1030 => 0.095459720742574
1031 => 0.09562052416952
1101 => 0.098310391476509
1102 => 0.099211999517603
1103 => 0.10292559543853
1104 => 0.095382315285491
1105 => 0.095226966394732
1106 => 0.09223371101557
1107 => 0.09033534113261
1108 => 0.092363694025583
1109 => 0.094160537790975
1110 => 0.092289543960044
1111 => 0.092533856255528
1112 => 0.090022199903315
1113 => 0.090919998864815
1114 => 0.09169330427704
1115 => 0.091266330481201
1116 => 0.090627130043064
1117 => 0.094013217093149
1118 => 0.093822160791601
1119 => 0.096975362898445
1120 => 0.099433509428376
1121 => 0.10383894745626
1122 => 0.099241643213485
1123 => 0.099074099174249
1124 => 0.10071186903269
1125 => 0.099211748783571
1126 => 0.10015977299862
1127 => 0.10368620609882
1128 => 0.10376071407335
1129 => 0.10251260950192
1130 => 0.10243666222533
1201 => 0.10267637436104
1202 => 0.10408037582716
1203 => 0.10358977457429
1204 => 0.10415751076462
1205 => 0.10486747356411
1206 => 0.10780418072078
1207 => 0.10851221087408
1208 => 0.10679206467311
1209 => 0.1069473746154
1210 => 0.10630399271716
1211 => 0.10568249386502
1212 => 0.10707953252202
1213 => 0.10963264812654
1214 => 0.10961676532687
1215 => 0.11020903852165
1216 => 0.11057801981533
1217 => 0.10899408199201
1218 => 0.10796299671203
1219 => 0.10835838041804
1220 => 0.10899060757428
1221 => 0.10815335767222
1222 => 0.10298546342482
1223 => 0.10455307241312
1224 => 0.1042921456253
1225 => 0.10392055414967
1226 => 0.10549679710936
1227 => 0.10534476463063
1228 => 0.10079080164208
1229 => 0.10108233157731
1230 => 0.10080853054302
1231 => 0.10169323769923
]
'min_raw' => 0.083873088460841
'max_raw' => 0.18788607192728
'avg_raw' => 0.13587958019406
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.083873'
'max' => '$0.187886'
'avg' => '$0.135879'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.020452887369769
'max_diff' => -0.13653291259156
'year' => 2034
]
9 => [
'items' => [
101 => 0.099163971693774
102 => 0.099941956882187
103 => 0.1004299018992
104 => 0.10071730526279
105 => 0.10175560328642
106 => 0.10163377099734
107 => 0.10174803002027
108 => 0.10328755188879
109 => 0.11107392519966
110 => 0.11149772031931
111 => 0.10941079815438
112 => 0.11024448239655
113 => 0.10864399095829
114 => 0.10971841158316
115 => 0.11045350288736
116 => 0.10713176663358
117 => 0.10693507497052
118 => 0.10532797773477
119 => 0.10619154075863
120 => 0.1048175498953
121 => 0.105154679193
122 => 0.10421203628622
123 => 0.10590860584009
124 => 0.10780563422156
125 => 0.10828489850664
126 => 0.10702416050884
127 => 0.10611130311175
128 => 0.10450862623638
129 => 0.10717391359811
130 => 0.10795332484584
131 => 0.10716981968263
201 => 0.10698826441639
202 => 0.10664421751492
203 => 0.10706125559295
204 => 0.10794908000479
205 => 0.10753039840771
206 => 0.1078069449788
207 => 0.10675303462338
208 => 0.10899460634134
209 => 0.11255476169307
210 => 0.11256620817467
211 => 0.11214752432074
212 => 0.11197620790838
213 => 0.11240580295037
214 => 0.11263884063775
215 => 0.11402807222931
216 => 0.11551877307648
217 => 0.1224752234865
218 => 0.12052188004806
219 => 0.12669405669291
220 => 0.13157544706217
221 => 0.13303916259658
222 => 0.13169261317806
223 => 0.12708614035648
224 => 0.12686012482351
225 => 0.13374414002161
226 => 0.13179909042028
227 => 0.1315677329593
228 => 0.12910648045905
301 => 0.13056138551875
302 => 0.13024317644002
303 => 0.12974086784193
304 => 0.13251672534627
305 => 0.1377128827919
306 => 0.13690301292474
307 => 0.13629848263769
308 => 0.13364960689596
309 => 0.1352448217403
310 => 0.13467679628856
311 => 0.1371173941071
312 => 0.13567163802525
313 => 0.13178435475654
314 => 0.13240341742974
315 => 0.13230984735206
316 => 0.13423551292011
317 => 0.13365747591454
318 => 0.13219697634956
319 => 0.13769512289064
320 => 0.13733810383656
321 => 0.13784427522933
322 => 0.13806710753029
323 => 0.14141373244164
324 => 0.14278473758777
325 => 0.14309597975876
326 => 0.14439832861024
327 => 0.14306357613292
328 => 0.14840353770456
329 => 0.15195430055431
330 => 0.15607869432487
331 => 0.1621055421562
401 => 0.16437169269224
402 => 0.16396233288143
403 => 0.16853182012369
404 => 0.17674308712402
405 => 0.16562206471131
406 => 0.17733252831584
407 => 0.17362513074245
408 => 0.16483495778917
409 => 0.16426897428032
410 => 0.17022178146028
411 => 0.18342453484898
412 => 0.1801173948695
413 => 0.18342994414524
414 => 0.17956567945868
415 => 0.17937378614641
416 => 0.18324226543461
417 => 0.19228117815133
418 => 0.18798712953819
419 => 0.18183055790735
420 => 0.1863764745927
421 => 0.18243838085512
422 => 0.17356475346132
423 => 0.18011486596189
424 => 0.17573499226922
425 => 0.17701327225963
426 => 0.18621911530458
427 => 0.18511144391377
428 => 0.18654487326108
429 => 0.18401490798245
430 => 0.1816515214733
501 => 0.1772400850466
502 => 0.17593407620183
503 => 0.17629501006125
504 => 0.17593389734094
505 => 0.17346573920339
506 => 0.17293274068858
507 => 0.17204438647937
508 => 0.17231972459504
509 => 0.17064935878453
510 => 0.17380168418416
511 => 0.17438678355652
512 => 0.17668078310025
513 => 0.17691895374293
514 => 0.18330770981917
515 => 0.17978889033106
516 => 0.18214961824394
517 => 0.18193845251938
518 => 0.16502546749121
519 => 0.16735592760356
520 => 0.17098139219971
521 => 0.16934812531335
522 => 0.16703906806162
523 => 0.16517438052703
524 => 0.16234918823804
525 => 0.16632559213178
526 => 0.17155414040864
527 => 0.17705155835565
528 => 0.18365634581389
529 => 0.18218223414142
530 => 0.17692808644831
531 => 0.17716378367567
601 => 0.17862077119174
602 => 0.17673383997715
603 => 0.1761773471247
604 => 0.17854431761934
605 => 0.17856061764427
606 => 0.17638947523864
607 => 0.17397664776964
608 => 0.17396653793444
609 => 0.17353719859149
610 => 0.17964205797401
611 => 0.18299911336349
612 => 0.18338399435373
613 => 0.18297320780628
614 => 0.18313130324486
615 => 0.18117790668138
616 => 0.18564279196373
617 => 0.1897402122302
618 => 0.18864201607017
619 => 0.1869956639085
620 => 0.18568426511267
621 => 0.18833309219072
622 => 0.18821514409058
623 => 0.18970442483868
624 => 0.18963686246144
625 => 0.18913607336054
626 => 0.18864203395492
627 => 0.19060084435451
628 => 0.19003673841696
629 => 0.18947175626708
630 => 0.18833859807106
701 => 0.18849261308966
702 => 0.18684654519391
703 => 0.18608499886639
704 => 0.17463316930565
705 => 0.17157286624769
706 => 0.17253569988794
707 => 0.17285268972227
708 => 0.17152084190956
709 => 0.17343036954936
710 => 0.17313277168938
711 => 0.17429055087361
712 => 0.17356722070423
713 => 0.17359690642669
714 => 0.17572406622457
715 => 0.17634158976348
716 => 0.17602751230756
717 => 0.17624748139174
718 => 0.18131657609346
719 => 0.1805959129274
720 => 0.18021307498378
721 => 0.18031912371052
722 => 0.18161438608943
723 => 0.18197698883682
724 => 0.18044061551649
725 => 0.18116517805602
726 => 0.1842502733887
727 => 0.18532988215386
728 => 0.18877547509065
729 => 0.18731172597057
730 => 0.18999850083006
731 => 0.19825673075907
801 => 0.20485397625241
802 => 0.19878687665403
803 => 0.21090187784841
804 => 0.22033514407193
805 => 0.21997307960234
806 => 0.21832817144089
807 => 0.20758864864177
808 => 0.19770597964475
809 => 0.20597325190105
810 => 0.20599432687821
811 => 0.20528416085951
812 => 0.20087338070945
813 => 0.20513067527121
814 => 0.2054686038533
815 => 0.20527945370979
816 => 0.20189771891036
817 => 0.19673443492069
818 => 0.19774332825312
819 => 0.1993959161125
820 => 0.19626722252875
821 => 0.19526741535451
822 => 0.19712624711252
823 => 0.20311579033979
824 => 0.20198350188773
825 => 0.20195393326031
826 => 0.20679834342323
827 => 0.20333079123573
828 => 0.19775605362897
829 => 0.1963483588615
830 => 0.19135199077383
831 => 0.19480300000844
901 => 0.19492719568708
902 => 0.19303711319774
903 => 0.19790942340614
904 => 0.19786452420981
905 => 0.20249005760501
906 => 0.21133234018562
907 => 0.20871724212423
908 => 0.2056761676007
909 => 0.20600681672126
910 => 0.20963322146221
911 => 0.20744061437306
912 => 0.20822909116972
913 => 0.20963202800815
914 => 0.21047845463573
915 => 0.20588502895532
916 => 0.20481408170026
917 => 0.20262329946783
918 => 0.20205176527628
919 => 0.20383611169242
920 => 0.20336599945366
921 => 0.1949167575212
922 => 0.19403376472812
923 => 0.19406084485646
924 => 0.19184051749424
925 => 0.18845398532723
926 => 0.1973535896628
927 => 0.19663882688477
928 => 0.19584978409607
929 => 0.19594643733547
930 => 0.19980945394197
1001 => 0.19756870922319
1002 => 0.2035260963089
1003 => 0.20230143661953
1004 => 0.20104536903018
1005 => 0.20087174222858
1006 => 0.20038826336934
1007 => 0.19873023446642
1008 => 0.19672806493406
1009 => 0.19540605918384
1010 => 0.18025176047188
1011 => 0.18306431016432
1012 => 0.1862998922135
1013 => 0.1874168021711
1014 => 0.18550625040081
1015 => 0.19880567469526
1016 => 0.2012356076703
1017 => 0.1938751821883
1018 => 0.19249834710482
1019 => 0.19889593977412
1020 => 0.19503740932063
1021 => 0.19677490534757
1022 => 0.19301938929684
1023 => 0.20065030797335
1024 => 0.20059217315833
1025 => 0.19762357344105
1026 => 0.200132613594
1027 => 0.19969660612298
1028 => 0.19634506435351
1029 => 0.20075655782548
1030 => 0.20075874587121
1031 => 0.19790153318625
1101 => 0.1945649342945
1102 => 0.19396842921961
1103 => 0.19351904277485
1104 => 0.19666438383006
1105 => 0.19948448678493
1106 => 0.20473199922112
1107 => 0.20605134852541
1108 => 0.21120085669407
1109 => 0.20813457530463
1110 => 0.20949381812958
1111 => 0.21096946849269
1112 => 0.21167694954202
1113 => 0.21052414713767
1114 => 0.21852345294573
1115 => 0.21919883944833
1116 => 0.21942529070058
1117 => 0.21672796978969
1118 => 0.21912382207438
1119 => 0.21800288213266
1120 => 0.22091925645493
1121 => 0.2213765811868
1122 => 0.2209892434087
1123 => 0.22113440549698
1124 => 0.21430840916404
1125 => 0.21395444524418
1126 => 0.20912812208073
1127 => 0.21109488444422
1128 => 0.20741811647505
1129 => 0.20858405747298
1130 => 0.20909799315537
1201 => 0.20882954232049
1202 => 0.21120608223734
1203 => 0.20918553781298
1204 => 0.20385298886885
1205 => 0.19851898707532
1206 => 0.19845202302778
1207 => 0.1970476745085
1208 => 0.19603258774832
1209 => 0.19622812947047
1210 => 0.19691724400423
1211 => 0.19599253515887
1212 => 0.19618986867496
1213 => 0.1994669198683
1214 => 0.20012410911426
1215 => 0.19789072327606
1216 => 0.18892335685965
1217 => 0.18672274264813
1218 => 0.18830450050329
1219 => 0.18754852212678
1220 => 0.15136629491831
1221 => 0.15986677250237
1222 => 0.15481607737086
1223 => 0.15714367005877
1224 => 0.15198821820067
1225 => 0.15444867004774
1226 => 0.1539943144329
1227 => 0.16766283084066
1228 => 0.16744941575738
1229 => 0.16755156626407
1230 => 0.16267565642803
1231 => 0.17044311319223
]
'min_raw' => 0.099163971693774
'max_raw' => 0.2213765811868
'avg_raw' => 0.16027027644029
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.099163'
'max' => '$0.221376'
'avg' => '$0.16027'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.015290883232933
'max_diff' => 0.033490509259515
'year' => 2035
]
10 => [
'items' => [
101 => 0.17426964170299
102 => 0.17356145311541
103 => 0.17373968892558
104 => 0.17067700718336
105 => 0.16758121971803
106 => 0.16414751498071
107 => 0.17052691396392
108 => 0.16981763369696
109 => 0.17144446743838
110 => 0.17558196368786
111 => 0.17619122572741
112 => 0.1770100800871
113 => 0.17671657908917
114 => 0.18370896360167
115 => 0.18286213969997
116 => 0.18490274165521
117 => 0.18070506861244
118 => 0.17595500311776
119 => 0.17685783527696
120 => 0.17677088527991
121 => 0.17566391202093
122 => 0.17466458605883
123 => 0.17300098989029
124 => 0.17826485433347
125 => 0.17805115105002
126 => 0.18151075880615
127 => 0.18089923953042
128 => 0.17681536414292
129 => 0.17696122055133
130 => 0.17794217499405
131 => 0.18133726952064
201 => 0.18234516473179
202 => 0.18187826751231
203 => 0.18298337859917
204 => 0.18385681334322
205 => 0.18309306855539
206 => 0.19390608415592
207 => 0.18941576619776
208 => 0.19160431592714
209 => 0.19212627214191
210 => 0.19078929227333
211 => 0.19107923533316
212 => 0.19151842006406
213 => 0.19418506374888
214 => 0.20118310837741
215 => 0.20428249470608
216 => 0.21360715139692
217 => 0.20402513381702
218 => 0.20345657654816
219 => 0.20513622879584
220 => 0.21061078938852
221 => 0.21504740654956
222 => 0.21651928841646
223 => 0.21671382190329
224 => 0.21947517013445
225 => 0.22105792344446
226 => 0.21913986982852
227 => 0.2175145202176
228 => 0.21169271965709
229 => 0.21236660892421
301 => 0.2170090377108
302 => 0.22356674180955
303 => 0.2291939341391
304 => 0.22722348751274
305 => 0.24225660435331
306 => 0.24374707648328
307 => 0.24354114142765
308 => 0.24693665875171
309 => 0.24019724834853
310 => 0.23731601983125
311 => 0.21786593925198
312 => 0.22333061853628
313 => 0.23127385080537
314 => 0.23022253422896
315 => 0.22445394663194
316 => 0.22918955814813
317 => 0.22762381688461
318 => 0.22638885178741
319 => 0.23204646630744
320 => 0.22582568674067
321 => 0.23121179377054
322 => 0.22430405579259
323 => 0.22723248834695
324 => 0.22557016839675
325 => 0.2266458931308
326 => 0.22035722831622
327 => 0.22375043920146
328 => 0.22021605958755
329 => 0.22021438383142
330 => 0.22013636220555
331 => 0.22429454414748
401 => 0.22443014231132
402 => 0.22135723957357
403 => 0.2209143862813
404 => 0.22255184701164
405 => 0.22063480934806
406 => 0.22153177920515
407 => 0.22066197765127
408 => 0.22046616700067
409 => 0.21890591442223
410 => 0.2182337147114
411 => 0.21849730153847
412 => 0.21759754380936
413 => 0.21705540723191
414 => 0.22002851759492
415 => 0.21844010466289
416 => 0.21978507053204
417 => 0.21825231217592
418 => 0.2129391039226
419 => 0.20988342166996
420 => 0.19984726381411
421 => 0.20269350573221
422 => 0.20458056706857
423 => 0.20395689330816
424 => 0.20529678587522
425 => 0.20537904439668
426 => 0.20494343166454
427 => 0.20443904792617
428 => 0.2041935418165
429 => 0.20602334321859
430 => 0.20708560452078
501 => 0.20476995891929
502 => 0.20422743555419
503 => 0.20656868110759
504 => 0.20799683954268
505 => 0.21854155901444
506 => 0.21776037213697
507 => 0.21972099789922
508 => 0.21950026152665
509 => 0.22155530967766
510 => 0.22491444487643
511 => 0.21808438378837
512 => 0.21926984622751
513 => 0.21897919821376
514 => 0.22215241701591
515 => 0.22216232345864
516 => 0.22025982027272
517 => 0.2212911981144
518 => 0.22071551129754
519 => 0.22175585518434
520 => 0.21774993890996
521 => 0.22262871252021
522 => 0.225394662776
523 => 0.22543306799798
524 => 0.22674410646729
525 => 0.22807619748233
526 => 0.23063303018502
527 => 0.22800488880597
528 => 0.22327711830947
529 => 0.22361844806871
530 => 0.22084655795644
531 => 0.22089315393001
601 => 0.2206444209713
602 => 0.22139088730413
603 => 0.21791374629257
604 => 0.21872982433797
605 => 0.21758731029546
606 => 0.21926736262511
607 => 0.21745990404101
608 => 0.21897905805449
609 => 0.21963467456595
610 => 0.22205391360767
611 => 0.21710258046752
612 => 0.20700647701898
613 => 0.20912880036728
614 => 0.20598971743024
615 => 0.20628025150739
616 => 0.2068671765814
617 => 0.2049647603866
618 => 0.20532768144455
619 => 0.20531471535052
620 => 0.20520298055706
621 => 0.20470808862999
622 => 0.20399039742436
623 => 0.20684945829389
624 => 0.20733526844808
625 => 0.2084151642417
626 => 0.21162820162319
627 => 0.21130714342014
628 => 0.21183080266989
629 => 0.21068765746791
630 => 0.20633327873469
701 => 0.20656974244946
702 => 0.20362103613731
703 => 0.2083397591917
704 => 0.20722230328832
705 => 0.20650187219793
706 => 0.20630529590017
707 => 0.20952629777986
708 => 0.21049007202528
709 => 0.20988951259202
710 => 0.20865774767328
711 => 0.21102310045587
712 => 0.21165596907427
713 => 0.21179764501863
714 => 0.21598859663797
715 => 0.21203187265849
716 => 0.2129842954468
717 => 0.22041482616017
718 => 0.21367636014629
719 => 0.21724587587957
720 => 0.21707116665929
721 => 0.21889721012261
722 => 0.21692137779708
723 => 0.21694587060677
724 => 0.2185672734953
725 => 0.21629030555991
726 => 0.21572649627804
727 => 0.21494759779321
728 => 0.21664829413941
729 => 0.21766778468307
730 => 0.2258841297317
731 => 0.23119226334397
801 => 0.23096182326466
802 => 0.23306761422385
803 => 0.2321189361099
804 => 0.22905540423132
805 => 0.23428447959014
806 => 0.23262978135281
807 => 0.23276619266503
808 => 0.23276111542918
809 => 0.23386134510078
810 => 0.23308173154388
811 => 0.23154503319755
812 => 0.23256516527455
813 => 0.23559459283937
814 => 0.24499802895474
815 => 0.25026031638387
816 => 0.24468123264399
817 => 0.24852960990085
818 => 0.24622195486375
819 => 0.24580258529672
820 => 0.24821965060688
821 => 0.25064094666989
822 => 0.25048672057823
823 => 0.24872898397141
824 => 0.24773608316313
825 => 0.25525466072957
826 => 0.2607942206049
827 => 0.26041645975908
828 => 0.26208377327811
829 => 0.26697905733804
830 => 0.26742662076278
831 => 0.26737023805839
901 => 0.26626090541175
902 => 0.27108094830172
903 => 0.27510191288111
904 => 0.26600412695576
905 => 0.26946844473737
906 => 0.27102368860288
907 => 0.27330724801752
908 => 0.277159995519
909 => 0.28134510119642
910 => 0.28193692102655
911 => 0.28151699653589
912 => 0.27875680683995
913 => 0.28333619941088
914 => 0.28601870017895
915 => 0.2876160679984
916 => 0.29166672701187
917 => 0.27103329325953
918 => 0.25642792330142
919 => 0.25414708387836
920 => 0.25878526053473
921 => 0.26000831073025
922 => 0.25951530073001
923 => 0.24307562898002
924 => 0.25406053240887
925 => 0.26587936486139
926 => 0.26633337434961
927 => 0.27225012899547
928 => 0.27417686684414
929 => 0.27894062986082
930 => 0.27864265518709
1001 => 0.27980255567363
1002 => 0.27953591463845
1003 => 0.28835978249821
1004 => 0.29809381910457
1005 => 0.29775676036923
1006 => 0.29635737743918
1007 => 0.29843569972056
1008 => 0.30848226866109
1009 => 0.30755734158603
1010 => 0.30845582945435
1011 => 0.32030130043504
1012 => 0.33570209770854
1013 => 0.32854688116024
1014 => 0.34407164221197
1015 => 0.35384365636181
1016 => 0.37074334438883
1017 => 0.36862742021513
1018 => 0.37520634474842
1019 => 0.3648394743375
1020 => 0.34103504438387
1021 => 0.33726790222401
1022 => 0.34480981622728
1023 => 0.36335087587512
1024 => 0.34422589227694
1025 => 0.34809485155042
1026 => 0.34698059101938
1027 => 0.34692121681098
1028 => 0.34918728885313
1029 => 0.34590023316563
1030 => 0.3325081769647
1031 => 0.3386456774017
1101 => 0.336275693736
1102 => 0.33890536730708
1103 => 0.35309663101036
1104 => 0.34682233504967
1105 => 0.34021287393749
1106 => 0.34850260492899
1107 => 0.3590582811418
1108 => 0.35839772589478
1109 => 0.35711597262488
1110 => 0.36434114869688
1111 => 0.37627502278987
1112 => 0.37950070100301
1113 => 0.38188183071387
1114 => 0.38221014827148
1115 => 0.38559202316309
1116 => 0.36740682952866
1117 => 0.3962671988554
1118 => 0.40125058738651
1119 => 0.40031391688296
1120 => 0.40585274350225
1121 => 0.40422308020438
1122 => 0.40186195377211
1123 => 0.41064217210589
1124 => 0.4005763603133
1125 => 0.38628920772418
1126 => 0.37845099324595
1127 => 0.38877298636161
1128 => 0.39507626736942
1129 => 0.39924233515162
1130 => 0.40050298474531
1201 => 0.36881849434389
1202 => 0.35174231131993
1203 => 0.36268794885946
1204 => 0.37604238208522
1205 => 0.36733264497781
1206 => 0.36767405018271
1207 => 0.35525625394618
1208 => 0.37714108151112
1209 => 0.37395264621528
1210 => 0.39049425417033
1211 => 0.38654646667716
1212 => 0.40003550582299
1213 => 0.39648338974896
1214 => 0.41122802497611
1215 => 0.41711005916328
1216 => 0.42698691002906
1217 => 0.43425236173195
1218 => 0.43851877393783
1219 => 0.4382626345519
1220 => 0.45516828522971
1221 => 0.44519961366345
1222 => 0.43267661274073
1223 => 0.4324501111636
1224 => 0.43893595079377
1225 => 0.4525284913554
1226 => 0.45605283935961
1227 => 0.45802246909357
1228 => 0.45500591259271
1229 => 0.44418563406866
1230 => 0.43951349266204
1231 => 0.44349429250545
]
'min_raw' => 0.16414751498071
'max_raw' => 0.45802246909357
'avg_raw' => 0.31108499203714
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.164147'
'max' => '$0.458022'
'avg' => '$0.311084'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.064983543286932
'max_diff' => 0.23664588790677
'year' => 2036
]
11 => [
'items' => [
101 => 0.43862611637099
102 => 0.44702995414805
103 => 0.45857021837884
104 => 0.45618719945033
105 => 0.46415327444617
106 => 0.47239732401133
107 => 0.48418668515295
108 => 0.48726886071415
109 => 0.49236357971217
110 => 0.49760771908914
111 => 0.49929199532351
112 => 0.50250780125513
113 => 0.5024908523705
114 => 0.51218189999416
115 => 0.52287142562981
116 => 0.52690647409418
117 => 0.53618484554413
118 => 0.520295959589
119 => 0.53234786210433
120 => 0.54321897985185
121 => 0.53025798510968
122 => 0.54812169683729
123 => 0.54881530428363
124 => 0.55928795323471
125 => 0.54867191720602
126 => 0.54236814889977
127 => 0.56056689180079
128 => 0.56937269023556
129 => 0.56672031208305
130 => 0.54653558337832
131 => 0.53478720550843
201 => 0.50403943453009
202 => 0.5404614974588
203 => 0.55820162186523
204 => 0.54648964074181
205 => 0.5523964827752
206 => 0.58462229760945
207 => 0.59689180143134
208 => 0.59433983040669
209 => 0.59477107150084
210 => 0.60139147305588
211 => 0.63074997947268
212 => 0.61315768190289
213 => 0.62660633422418
214 => 0.63373945092267
215 => 0.64036508724514
216 => 0.62409461849102
217 => 0.60292697770256
218 => 0.59622229730774
219 => 0.545325115037
220 => 0.54267569566455
221 => 0.54118849628517
222 => 0.53181191456671
223 => 0.52444448979789
224 => 0.51858564008678
225 => 0.50321026884419
226 => 0.50839900528981
227 => 0.48389387261851
228 => 0.49957138809303
301 => 0.46046060465251
302 => 0.49303322728498
303 => 0.47530542968155
304 => 0.48720916898466
305 => 0.48716763795963
306 => 0.46524907981861
307 => 0.45260691291151
308 => 0.46066299370521
309 => 0.46929975180855
310 => 0.47070103675328
311 => 0.48189881907671
312 => 0.48502387942765
313 => 0.47555480066917
314 => 0.45965012059773
315 => 0.4633444150312
316 => 0.45253204815273
317 => 0.4335837910899
318 => 0.44719276011725
319 => 0.45183946048732
320 => 0.45389170808742
321 => 0.43525827348816
322 => 0.42940324378553
323 => 0.4262860751003
324 => 0.45724477817962
325 => 0.45894076581962
326 => 0.45026385326487
327 => 0.48948432079097
328 => 0.48060752106708
329 => 0.4905250812274
330 => 0.46300919653312
331 => 0.46406034038349
401 => 0.45103387960761
402 => 0.45832782721368
403 => 0.45317270014062
404 => 0.45773854832731
405 => 0.46047529890471
406 => 0.47349962216656
407 => 0.49318194413537
408 => 0.47155422259415
409 => 0.46213071460396
410 => 0.46797700596125
411 => 0.48354645026099
412 => 0.50713495536027
413 => 0.49317008557859
414 => 0.49936745764883
415 => 0.50072130774429
416 => 0.49042412977485
417 => 0.50751462699975
418 => 0.51667356330552
419 => 0.52606873678042
420 => 0.53422630266189
421 => 0.52231609789025
422 => 0.5350617242567
423 => 0.52479099931127
424 => 0.51557709726719
425 => 0.51559107095326
426 => 0.50981105560738
427 => 0.49861154754594
428 => 0.49654618642813
429 => 0.50729045578934
430 => 0.51590634233093
501 => 0.51661598801381
502 => 0.52138618550347
503 => 0.52420913924091
504 => 0.55187792348733
505 => 0.56300653739943
506 => 0.57661439583726
507 => 0.58191542359568
508 => 0.59786961662487
509 => 0.58498531001759
510 => 0.58219770923702
511 => 0.54349805552496
512 => 0.54983512165231
513 => 0.55998137595814
514 => 0.54366536352136
515 => 0.55401411798413
516 => 0.55605718133167
517 => 0.54311095166216
518 => 0.55002609230221
519 => 0.53166152895856
520 => 0.4935822414317
521 => 0.50755702013231
522 => 0.5178471611156
523 => 0.50316186116721
524 => 0.52948469292511
525 => 0.51410743802569
526 => 0.50923358646098
527 => 0.4902189538535
528 => 0.4991931285039
529 => 0.51133082821637
530 => 0.50383114095311
531 => 0.51939411810808
601 => 0.54143544425392
602 => 0.55714340584911
603 => 0.55834926809386
604 => 0.54825010113984
605 => 0.56443408063567
606 => 0.56455196325785
607 => 0.54629636827305
608 => 0.53511491799244
609 => 0.53257446896272
610 => 0.53892100872335
611 => 0.54662687962862
612 => 0.55877689029897
613 => 0.5661188872828
614 => 0.58526292152232
615 => 0.59044274828506
616 => 0.59613380747197
617 => 0.60373881760332
618 => 0.61287058215059
619 => 0.59289080119281
620 => 0.59368463513724
621 => 0.57507973974825
622 => 0.55519774081323
623 => 0.57028569967875
624 => 0.59001119882837
625 => 0.58548614752871
626 => 0.58497698681909
627 => 0.58583325390327
628 => 0.58242151299768
629 => 0.56699033532674
630 => 0.55924089450467
701 => 0.56923965025834
702 => 0.57455354394799
703 => 0.58279492964042
704 => 0.58177900489928
705 => 0.60300792938276
706 => 0.61125684750769
707 => 0.60914642126023
708 => 0.60953479048
709 => 0.6244690627255
710 => 0.64107904492983
711 => 0.65663648514438
712 => 0.67246218153823
713 => 0.653383686848
714 => 0.64369680384227
715 => 0.65369119445197
716 => 0.64838803011323
717 => 0.67886158542435
718 => 0.68097150827655
719 => 0.71144286000277
720 => 0.74036380125201
721 => 0.72219907622584
722 => 0.73932759376834
723 => 0.75785348199907
724 => 0.79359292611319
725 => 0.78155713866436
726 => 0.77233791410339
727 => 0.76362579144024
728 => 0.78175433569172
729 => 0.80507641826069
730 => 0.81009977146992
731 => 0.81823952273749
801 => 0.80968156956107
802 => 0.81998868153444
803 => 0.85637731597494
804 => 0.84654478573776
805 => 0.83258101214285
806 => 0.86130634423202
807 => 0.87170193024819
808 => 0.94466359712034
809 => 1.0367807154426
810 => 0.99864362358355
811 => 0.9749706999904
812 => 0.98053439856405
813 => 1.0141724518141
814 => 1.0249759268995
815 => 0.99560835743606
816 => 1.005981479448
817 => 1.0631384015964
818 => 1.0938012565155
819 => 1.0521569809646
820 => 0.93726207635559
821 => 0.83132372711158
822 => 0.85942334779713
823 => 0.85623772284414
824 => 0.91764570522141
825 => 0.84631028314344
826 => 0.84751138870134
827 => 0.91018922312199
828 => 0.89346785146868
829 => 0.86638137090178
830 => 0.83152148839541
831 => 0.76707977143354
901 => 0.71000194563018
902 => 0.8219447062688
903 => 0.81711753087536
904 => 0.81012706555835
905 => 0.82568358967401
906 => 0.90122165498325
907 => 0.89948025808501
908 => 0.88840237948695
909 => 0.89680485276764
910 => 0.86490837671032
911 => 0.87312882485955
912 => 0.83130694593581
913 => 0.85021218184528
914 => 0.86632325547964
915 => 0.86955779204026
916 => 0.87684536807087
917 => 0.81457382879157
918 => 0.84253192173163
919 => 0.85895468201488
920 => 0.78475605359004
921 => 0.8574880136977
922 => 0.81348981983438
923 => 0.79855617200648
924 => 0.81866236144826
925 => 0.81082695986889
926 => 0.80409054170116
927 => 0.80033150461721
928 => 0.8150952711041
929 => 0.81440652375097
930 => 0.79025013625483
1001 => 0.75873911350643
1002 => 0.76931524705485
1003 => 0.76547283858493
1004 => 0.75154745460937
1005 => 0.76093148205162
1006 => 0.71960897434354
1007 => 0.64851574758883
1008 => 0.69548211082742
1009 => 0.6936739569323
1010 => 0.69276220374514
1011 => 0.728056127664
1012 => 0.72466343124857
1013 => 0.71850565403317
1014 => 0.75143436220182
1015 => 0.73941494076664
1016 => 0.77645596549802
1017 => 0.80085358004937
1018 => 0.794665555819
1019 => 0.81761163022846
1020 => 0.76955889981102
1021 => 0.78552008931477
1022 => 0.78880966835024
1023 => 0.75102802705441
1024 => 0.72521851834032
1025 => 0.72349731835903
1026 => 0.67874718701818
1027 => 0.70265234597002
1028 => 0.72368789658495
1029 => 0.71361350026507
1030 => 0.71042424735422
1031 => 0.72671744881117
1101 => 0.72798357010621
1102 => 0.69911587040182
1103 => 0.70511837929152
1104 => 0.73014983919564
1105 => 0.70448765072604
1106 => 0.6546302104243
1107 => 0.64226487589642
1108 => 0.64061511233207
1109 => 0.60707934438543
1110 => 0.64309118667672
1111 => 0.6273710524592
1112 => 0.67703076809623
1113 => 0.64866540485476
1114 => 0.64744263073855
1115 => 0.64559422831994
1116 => 0.61672860750313
1117 => 0.62304834395611
1118 => 0.64405611044885
1119 => 0.65155191820288
1120 => 0.65077004404279
1121 => 0.64395316093228
1122 => 0.64707389511219
1123 => 0.63702092298286
1124 => 0.63347100928947
1125 => 0.62226650519246
1126 => 0.6057989794931
1127 => 0.6080888899428
1128 => 0.57546241256989
1129 => 0.55768577607891
1130 => 0.55276543739051
1201 => 0.54618575486128
1202 => 0.55350863004006
1203 => 0.57536998585879
1204 => 0.54900055259604
1205 => 0.50379200886772
1206 => 0.5065091193774
1207 => 0.5126136599753
1208 => 0.50123788895668
1209 => 0.49047167638365
1210 => 0.49983202472547
1211 => 0.48067656877408
1212 => 0.51492850531076
1213 => 0.51400208641738
1214 => 0.52676909023271
1215 => 0.53475255972373
1216 => 0.51635324722587
1217 => 0.51172586988969
1218 => 0.51436183432296
1219 => 0.47079521392448
1220 => 0.52320876788028
1221 => 0.52366204247141
1222 => 0.51978083023117
1223 => 0.5476894296257
1224 => 0.60658527925861
1225 => 0.58442629154665
1226 => 0.57584566174563
1227 => 0.55953387822148
1228 => 0.58126836126954
1229 => 0.5795994920822
1230 => 0.57205223271721
1231 => 0.56748762670439
]
'min_raw' => 0.4262860751003
'max_raw' => 1.0938012565155
'avg_raw' => 0.76004366580788
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.426286'
'max' => '$1.09'
'avg' => '$0.760043'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.26213856011959
'max_diff' => 0.6357787874219
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.013380632791211
]
1 => [
'year' => 2028
'avg' => 0.022965050295172
]
2 => [
'year' => 2029
'avg' => 0.062736378358803
]
3 => [
'year' => 2030
'avg' => 0.048401022473999
]
4 => [
'year' => 2031
'avg' => 0.047535802342147
]
5 => [
'year' => 2032
'avg' => 0.083345221573351
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.013380632791211
'min' => '$0.01338'
'max_raw' => 0.083345221573351
'max' => '$0.083345'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.083345221573351
]
1 => [
'year' => 2033
'avg' => 0.21437248017473
]
2 => [
'year' => 2034
'avg' => 0.13587958019406
]
3 => [
'year' => 2035
'avg' => 0.16027027644029
]
4 => [
'year' => 2036
'avg' => 0.31108499203714
]
5 => [
'year' => 2037
'avg' => 0.76004366580788
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.083345221573351
'min' => '$0.083345'
'max_raw' => 0.76004366580788
'max' => '$0.760043'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.76004366580788
]
]
]
]
'prediction_2025_max_price' => '$0.022878'
'last_price' => 0.02218354
'sma_50day_nextmonth' => '$0.020454'
'sma_200day_nextmonth' => '$0.042316'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.020843'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.019924'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.019285'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.020676'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.02434'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.038645'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.043497'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.021073'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.020443'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.020078'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.020862'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.025453'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.032877'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.037726'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.045473'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.032598'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.021525'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.022522'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.02743'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.03453'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.0343069'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.022783'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.011391'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '51.80'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 103.42
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.019328'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0212016'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 87.76
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 70.28
'cci_20_action' => 'NEUTRAL'
'adx_14' => 16.9
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.002057'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -12.24
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 63.26
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.011148'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 18
'sell_pct' => 43.75
'buy_pct' => 56.25
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767713210
'last_updated_date' => '6. Januar 2026'
]
Bertram The Pomeranian Preisprognose für 2026
Die Preisprognose für Bertram The Pomeranian im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.007664 am unteren Ende und $0.022878 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Bertram The Pomeranian im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn BERT das prognostizierte Preisziel erreicht.
Bertram The Pomeranian Preisprognose 2027-2032
Die Preisprognose für BERT für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.01338 am unteren Ende und $0.083345 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Bertram The Pomeranian, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Bertram The Pomeranian Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.007378 | $0.01338 | $0.019382 |
| 2028 | $0.013315 | $0.022965 | $0.032614 |
| 2029 | $0.02925 | $0.062736 | $0.096221 |
| 2030 | $0.024876 | $0.048401 | $0.071925 |
| 2031 | $0.029411 | $0.047535 | $0.065659 |
| 2032 | $0.044894 | $0.083345 | $0.121795 |
Bertram The Pomeranian Preisprognose 2032-2037
Die Preisprognose für Bertram The Pomeranian für die Jahre 2032-2037 wird derzeit zwischen $0.083345 am unteren Ende und $0.760043 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Bertram The Pomeranian bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Bertram The Pomeranian Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.044894 | $0.083345 | $0.121795 |
| 2033 | $0.104325 | $0.214372 | $0.324418 |
| 2034 | $0.083873 | $0.135879 | $0.187886 |
| 2035 | $0.099163 | $0.16027 | $0.221376 |
| 2036 | $0.164147 | $0.311084 | $0.458022 |
| 2037 | $0.426286 | $0.760043 | $1.09 |
Bertram The Pomeranian Potenzielles Preishistogramm
Bertram The Pomeranian Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Bertram The Pomeranian Bullisch, mit 18 technischen Indikatoren, die bullische Signale zeigen, und 14 anzeigen bärische Signale. Die Preisprognose für BERT wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Bertram The Pomeranian
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Bertram The Pomeranian im nächsten Monat steigen, und bis zum 04.02.2026 $0.042316 erreichen. Der kurzfristige 50-Tage-SMA für Bertram The Pomeranian wird voraussichtlich bis zum 04.02.2026 $0.020454 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 51.80, was darauf hindeutet, dass sich der BERT-Markt in einem NEUTRAL Zustand befindet.
Beliebte BERT Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.020843 | BUY |
| SMA 5 | $0.019924 | BUY |
| SMA 10 | $0.019285 | BUY |
| SMA 21 | $0.020676 | BUY |
| SMA 50 | $0.02434 | SELL |
| SMA 100 | $0.038645 | SELL |
| SMA 200 | $0.043497 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.021073 | BUY |
| EMA 5 | $0.020443 | BUY |
| EMA 10 | $0.020078 | BUY |
| EMA 21 | $0.020862 | BUY |
| EMA 50 | $0.025453 | SELL |
| EMA 100 | $0.032877 | SELL |
| EMA 200 | $0.037726 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.045473 | SELL |
| SMA 50 | $0.032598 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.03453 | SELL |
| EMA 50 | $0.0343069 | SELL |
| EMA 100 | $0.022783 | SELL |
| EMA 200 | $0.011391 | BUY |
Bertram The Pomeranian Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 51.80 | NEUTRAL |
| Stoch RSI (14) | 103.42 | SELL |
| Stochastic Fast (14) | 87.76 | SELL |
| Commodity Channel Index (20) | 70.28 | NEUTRAL |
| Average Directional Index (14) | 16.9 | NEUTRAL |
| Awesome Oscillator (5, 34) | -0.002057 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -12.24 | SELL |
| Ultimate Oscillator (7, 14, 28) | 63.26 | NEUTRAL |
| VWMA (10) | 0.019328 | BUY |
| Hull Moving Average (9) | 0.0212016 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.011148 | SELL |
Auf weltweiten Geldflüssen basierende Bertram The Pomeranian-Preisprognose
Definition weltweiter Geldflüsse, die für Bertram The Pomeranian-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Bertram The Pomeranian-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.031171 | $0.0438012 | $0.061548 | $0.086485 | $0.121526 | $0.170764 |
| Amazon.com aktie | $0.046287 | $0.096581 | $0.201522 | $0.420488 | $0.877373 | $1.83 |
| Apple aktie | $0.031465 | $0.044631 | $0.0633065 | $0.089795 | $0.127368 | $0.180661 |
| Netflix aktie | $0.0350021 | $0.055227 | $0.08714 | $0.137494 | $0.216945 | $0.3423056 |
| Google aktie | $0.028727 | $0.037202 | $0.048176 | $0.062388 | $0.080792 | $0.104626 |
| Tesla aktie | $0.050288 | $0.11400002 | $0.258429 | $0.585839 | $1.32 | $3.01 |
| Kodak aktie | $0.016635 | $0.012474 | $0.009354 | $0.007015 | $0.00526 | $0.003944 |
| Nokia aktie | $0.014695 | $0.009735 | $0.006449 | $0.004272 | $0.00283 | $0.001874 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Bertram The Pomeranian Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Bertram The Pomeranian investieren?", "Sollte ich heute BERT kaufen?", "Wird Bertram The Pomeranian auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Bertram The Pomeranian-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Bertram The Pomeranian.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Bertram The Pomeranian zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Bertram The Pomeranian-Preis entspricht heute $0.02218 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
kurzfristige Bertram The Pomeranian-Prognose
basierend auf dem Preisverlauf der letzten 4 Stunden
langfristige Bertram The Pomeranian-Prognose
basierend auf dem Preisverlauf des letzten Monats
Bertram The Pomeranian-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Bertram The Pomeranian 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.02276 | $0.023351 | $0.023958 | $0.024581 |
| Wenn die Wachstumsrate von Bertram The Pomeranian 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.023336 | $0.024549 | $0.025826 | $0.027168 |
| Wenn die Wachstumsrate von Bertram The Pomeranian 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.025066 | $0.028324 | $0.0320056 | $0.036165 |
| Wenn die Wachstumsrate von Bertram The Pomeranian 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.027949 | $0.035214 | $0.044368 | $0.05590098 |
| Wenn die Wachstumsrate von Bertram The Pomeranian 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.033715 | $0.051243 | $0.077883 | $0.118372 |
| Wenn die Wachstumsrate von Bertram The Pomeranian 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.051014 | $0.117316 | $0.269787 | $0.62042 |
| Wenn die Wachstumsrate von Bertram The Pomeranian 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.079845 | $0.28739 | $1.03 | $3.72 |
Fragefeld
Ist BERT eine gute Investition?
Die Entscheidung, Bertram The Pomeranian zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Bertram The Pomeranian in den letzten 2026 Stunden um 7.0793% gestiegen, und Bertram The Pomeranian hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Bertram The Pomeranian investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Bertram The Pomeranian steigen?
Es scheint, dass der Durchschnittswert von Bertram The Pomeranian bis zum Ende dieses Jahres potenziell auf $0.022878 steigen könnte. Betrachtet man die Aussichten von Bertram The Pomeranian in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.071925 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Bertram The Pomeranian nächste Woche kosten?
Basierend auf unserer neuen experimentellen Bertram The Pomeranian-Prognose wird der Preis von Bertram The Pomeranian in der nächsten Woche um 0.86% steigen und $0.022373 erreichen bis zum 13. Januar 2026.
Wie viel wird Bertram The Pomeranian nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Bertram The Pomeranian-Prognose wird der Preis von Bertram The Pomeranian im nächsten Monat um -11.62% fallen und $0.019606 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Bertram The Pomeranian in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Bertram The Pomeranian im Jahr 2026 wird erwartet, dass BERT innerhalb der Spanne von $0.007664 bis $0.022878 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Bertram The Pomeranian-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Bertram The Pomeranian in 5 Jahren sein?
Die Zukunft von Bertram The Pomeranian scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.071925 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Bertram The Pomeranian-Prognose für 2030 könnte der Wert von Bertram The Pomeranian seinen höchsten Gipfel von ungefähr $0.071925 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.024876 liegen wird.
Wie viel wird Bertram The Pomeranian im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Bertram The Pomeranian-Preisprognosesimulation wird der Wert von BERT im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.022878 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.022878 und $0.007664 während des Jahres 2026 liegen.
Wie viel wird Bertram The Pomeranian im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Bertram The Pomeranian könnte der Wert von BERT um -12.62% fallen und bis zu $0.019382 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.019382 und $0.007378 im Laufe des Jahres schwanken.
Wie viel wird Bertram The Pomeranian im Jahr 2028 kosten?
Unser neues experimentelles Bertram The Pomeranian-Preisprognosemodell deutet darauf hin, dass der Wert von BERT im Jahr 2028 um 47.02% steigen, und im besten Fall $0.032614 erreichen wird. Der Preis wird voraussichtlich zwischen $0.032614 und $0.013315 im Laufe des Jahres liegen.
Wie viel wird Bertram The Pomeranian im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Bertram The Pomeranian im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.096221 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.096221 und $0.02925.
Wie viel wird Bertram The Pomeranian im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Bertram The Pomeranian-Preisprognosen wird der Wert von BERT im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.071925 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.071925 und $0.024876 während des Jahres 2030 liegen.
Wie viel wird Bertram The Pomeranian im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Bertram The Pomeranian im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.065659 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.065659 und $0.029411 während des Jahres schwanken.
Wie viel wird Bertram The Pomeranian im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Bertram The Pomeranian-Preisprognose könnte BERT eine 449.04% Steigerung im Wert erfahren und $0.121795 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.121795 und $0.044894 liegen.
Wie viel wird Bertram The Pomeranian im Jahr 2033 kosten?
Laut unserer experimentellen Bertram The Pomeranian-Preisprognose wird der Wert von BERT voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.324418 beträgt. Im Laufe des Jahres könnte der Preis von BERT zwischen $0.324418 und $0.104325 liegen.
Wie viel wird Bertram The Pomeranian im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Bertram The Pomeranian-Preisprognosesimulation deuten darauf hin, dass BERT im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.187886 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.187886 und $0.083873.
Wie viel wird Bertram The Pomeranian im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Bertram The Pomeranian könnte BERT um 897.93% steigen, wobei der Wert im Jahr 2035 $0.221376 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.221376 und $0.099163.
Wie viel wird Bertram The Pomeranian im Jahr 2036 kosten?
Unsere jüngste Bertram The Pomeranian-Preisprognosesimulation deutet darauf hin, dass der Wert von BERT im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.458022 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.458022 und $0.164147.
Wie viel wird Bertram The Pomeranian im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Bertram The Pomeranian um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $1.09 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $1.09 und $0.426286 liegen.
Verwandte Prognosen
Wie liest und prognostiziert man die Kursbewegungen von Bertram The Pomeranian?
Bertram The Pomeranian-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Bertram The Pomeranian Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Bertram The Pomeranian. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von BERT über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von BERT über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von BERT einzuschätzen.
Wie liest man Bertram The Pomeranian-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Bertram The Pomeranian in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von BERT innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Bertram The Pomeranian?
Die Preisentwicklung von Bertram The Pomeranian wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von BERT. Die Marktkapitalisierung von Bertram The Pomeranian kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von BERT-„Walen“, großen Inhabern von Bertram The Pomeranian, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Bertram The Pomeranian-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


