xJKL_Astrovault Preisvorhersage bis zu $0.012183 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.004081 | $0.012183 |
| 2027 | $0.003929 | $0.010321 |
| 2028 | $0.00709 | $0.017367 |
| 2029 | $0.015576 | $0.051239 |
| 2030 | $0.013247 | $0.0383015 |
| 2031 | $0.015662 | $0.034964 |
| 2032 | $0.0239073 | $0.064858 |
| 2033 | $0.055555 | $0.172758 |
| 2034 | $0.044663 | $0.100052 |
| 2035 | $0.0528065 | $0.117886 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in xJKL_Astrovault eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,955.03 Gewinn erzielen könnten, was einer Rendite von 39.55% in den nächsten 90 Tagen entspricht.
Langfristige xJKL_Astrovault Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'xJKL_Astrovault'
'name_with_ticker' => 'xJKL_Astrovault <small>XJKL</small>'
'name_lang' => 'xJKL_Astrovault'
'name_lang_with_ticker' => 'xJKL_Astrovault <small>XJKL</small>'
'name_with_lang' => 'xJKL_Astrovault'
'name_with_lang_with_ticker' => 'xJKL_Astrovault <small>XJKL</small>'
'image' => '/uploads/coins/astrovault-xjkl.png?1717108466'
'price_for_sd' => 0.01181
'ticker' => 'XJKL'
'marketcap' => '$0'
'low24h' => '$0.01146'
'high24h' => '$0.01188'
'volume24h' => '$466.88'
'current_supply' => '0'
'max_supply' => '0'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01181'
'change_24h_pct' => '2.9171%'
'ath_price' => '$0.9546'
'ath_days' => 679
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '27.02.2024'
'ath_pct' => '-98.76%'
'fdv' => '$0'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.582468'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.011914'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.01044'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004081'
'current_year_max_price_prediction' => '$0.012183'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.013247'
'grand_prediction_max_price' => '$0.0383015'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.012036972410299
107 => 0.012081914095858
108 => 0.012183170008202
109 => 0.011317949323532
110 => 0.011706408009404
111 => 0.011934591093697
112 => 0.010903651617488
113 => 0.011914212734976
114 => 0.011302887756354
115 => 0.011095394876817
116 => 0.011374756704005
117 => 0.011265889128262
118 => 0.011172291179556
119 => 0.011120061915961
120 => 0.011325194409809
121 => 0.011315624733784
122 => 0.010979988159348
123 => 0.010542163930293
124 => 0.010689112112654
125 => 0.010635724460356
126 => 0.010442240721282
127 => 0.010572625400102
128 => 0.0099984772607552
129 => 0.0090106852286323
130 => 0.0096632509019409
131 => 0.0096381278333734
201 => 0.0096254596429612
202 => 0.010115844710862
203 => 0.010068705501692
204 => 0.0099831473754594
205 => 0.010440669379198
206 => 0.010273667693294
207 => 0.010788327538705
208 => 0.011127315799004
209 => 0.011041337411071
210 => 0.011360157508355
211 => 0.010692497501982
212 => 0.010914267374229
213 => 0.010959973837539
214 => 0.010435023628692
215 => 0.010076418059293
216 => 0.010052503156216
217 => 0.00943073051777
218 => 0.0097628764424547
219 => 0.010055151111045
220 => 0.0099151742262208
221 => 0.0098708617261759
222 => 0.010097244678696
223 => 0.010114836572946
224 => 0.0097137395197473
225 => 0.0097971402981991
226 => 0.010144935408569
227 => 0.0097883767537681
228 => 0.0090956415310158
301 => 0.0089238336179594
302 => 0.0089009112753096
303 => 0.0084349545888434
304 => 0.0089353146442414
305 => 0.0087168940712443
306 => 0.0094068820442617
307 => 0.0090127646145539
308 => 0.0089957749998717
309 => 0.008970092705445
310 => 0.0085690245369752
311 => 0.0086568329766583
312 => 0.0089487216037678
313 => 0.0090528707542813
314 => 0.0090420071446139
315 => 0.0089472911902557
316 => 0.0089906516691367
317 => 0.0088509724588687
318 => 0.0088016488225517
319 => 0.0086459698588002
320 => 0.008417164789497
321 => 0.0084489815377267
322 => 0.0079956588253339
323 => 0.007748664551965
324 => 0.0076802997924286
325 => 0.0075888795788167
326 => 0.007690625948816
327 => 0.0079943746190467
328 => 0.0076279892788733
329 => 0.0069998473120894
330 => 0.007037599714595
331 => 0.007122418154236
401 => 0.006964359553095
402 => 0.006814770351968
403 => 0.0069448260257925
404 => 0.0066786739938169
405 => 0.0071545813557439
406 => 0.0071417093953187
407 => 0.0073190982299313
408 => 0.0074300231085998
409 => 0.0071743771756247
410 => 0.0071100829148216
411 => 0.0071467078477863
412 => 0.0065413792889263
413 => 0.0072696299723762
414 => 0.007275927914528
415 => 0.0072220011102332
416 => 0.007609772116953
417 => 0.0084280898899417
418 => 0.0081202058269872
419 => 0.0080009838119661
420 => 0.0077743426742603
421 => 0.0080763285336341
422 => 0.0080531407313475
423 => 0.0079482766956944
424 => 0.0078848545997357
425 => 0.0080017117561672
426 => 0.007870374704853
427 => 0.0078467829615362
428 => 0.0077038426651059
429 => 0.0076528194826495
430 => 0.0076150439496501
501 => 0.007573456799565
502 => 0.0076651876897806
503 => 0.0074573134243485
504 => 0.0072066374384028
505 => 0.0071857964425232
506 => 0.0072433402645059
507 => 0.0072178814069123
508 => 0.0071856745553078
509 => 0.0071241829045806
510 => 0.0071059396453711
511 => 0.0071652213874309
512 => 0.0070982957569857
513 => 0.0071970481703353
514 => 0.0071701929781245
515 => 0.007020182057483
516 => 0.0068332129092074
517 => 0.0068315484916067
518 => 0.0067912662953016
519 => 0.0067399608618383
520 => 0.0067256888639581
521 => 0.0069338730996977
522 => 0.0073648082372488
523 => 0.0072802053583437
524 => 0.0073413396088044
525 => 0.0076420596142798
526 => 0.0077376494610543
527 => 0.0076698020519833
528 => 0.0075769283338011
529 => 0.007581014306059
530 => 0.0078983919158742
531 => 0.0079181863680951
601 => 0.0079682005629249
602 => 0.008032482937291
603 => 0.0076807496183027
604 => 0.0075644476983655
605 => 0.0075093373965144
606 => 0.0073396189971838
607 => 0.0075226457403059
608 => 0.0074160038950752
609 => 0.007430393523401
610 => 0.0074210222590766
611 => 0.0074261396030798
612 => 0.0071544483299372
613 => 0.0072534383501975
614 => 0.0070888482420846
615 => 0.0068684805634282
616 => 0.0068677418136985
617 => 0.0069216764908549
618 => 0.0068895940344181
619 => 0.0068032609690621
620 => 0.0068155241735153
621 => 0.0067080855985547
622 => 0.0068285691617537
623 => 0.0068320241992354
624 => 0.0067856314646197
625 => 0.0069712530172556
626 => 0.0070473023188233
627 => 0.0070167656270706
628 => 0.0070451597831253
629 => 0.0072837209899213
630 => 0.0073226168757842
701 => 0.0073398918589665
702 => 0.0073167456699989
703 => 0.0070495202440526
704 => 0.0070613728280235
705 => 0.0069744064311576
706 => 0.0069009289900989
707 => 0.0069038677024029
708 => 0.0069416446585057
709 => 0.0071066188413961
710 => 0.0074537972835296
711 => 0.0074669724516245
712 => 0.0074829411397022
713 => 0.0074179884600705
714 => 0.0073983981103802
715 => 0.00742424283832
716 => 0.0075546248074101
717 => 0.0078900026302691
718 => 0.0077714577085391
719 => 0.007675078841911
720 => 0.0077596290914997
721 => 0.0077466132433023
722 => 0.0076367463858293
723 => 0.007633662789063
724 => 0.0074227931630134
725 => 0.0073448394635319
726 => 0.0072796955175119
727 => 0.0072085600290838
728 => 0.0071663885270605
729 => 0.0072311831207732
730 => 0.0072460024109824
731 => 0.0071043278994139
801 => 0.0070850181869924
802 => 0.007200712651396
803 => 0.0071497998311363
804 => 0.0072021649293506
805 => 0.0072143140813158
806 => 0.0072123577880307
807 => 0.0071591989563794
808 => 0.0071930808104548
809 => 0.0071129401248998
810 => 0.0070257991661005
811 => 0.0069702086634602
812 => 0.0069216985768963
813 => 0.0069486147923447
814 => 0.0068526633989779
815 => 0.0068219666171198
816 => 0.0071816024006599
817 => 0.0074472692206972
818 => 0.0074434063199182
819 => 0.0074198919048838
820 => 0.0073849542538675
821 => 0.0075520689006251
822 => 0.0074938494992576
823 => 0.0075362089781462
824 => 0.0075469912433451
825 => 0.0075796259126916
826 => 0.0075912900019384
827 => 0.0075560330230038
828 => 0.007437706295422
829 => 0.0071428473404559
830 => 0.0070055897009627
831 => 0.0069602923937231
901 => 0.0069619388648094
902 => 0.006916521842078
903 => 0.0069298991907206
904 => 0.006911869746146
905 => 0.0068777263399129
906 => 0.0069465065332234
907 => 0.0069544328097706
908 => 0.0069383786907898
909 => 0.0069421600169774
910 => 0.0068092387686204
911 => 0.0068193444824432
912 => 0.0067630745837058
913 => 0.0067525246560363
914 => 0.0066102792520087
915 => 0.0063582708999728
916 => 0.0064979079900433
917 => 0.0063292460211843
918 => 0.0062653711779315
919 => 0.006567744751314
920 => 0.0065373948310838
921 => 0.0064854489604429
922 => 0.0064086101912971
923 => 0.0063801099443814
924 => 0.0062069514662033
925 => 0.006196720339548
926 => 0.0062825423570053
927 => 0.0062429384489041
928 => 0.0061873195627571
929 => 0.0059858735951287
930 => 0.0057593816310467
1001 => 0.0057662179997647
1002 => 0.0058382608795063
1003 => 0.0060477352686613
1004 => 0.0059658900008747
1005 => 0.0059065103200293
1006 => 0.0058953902907536
1007 => 0.0060345807384971
1008 => 0.0062315643833544
1009 => 0.0063239847022608
1010 => 0.0062323989730713
1011 => 0.0061271902187044
1012 => 0.0061335937880923
1013 => 0.0061761938663803
1014 => 0.0061806705322757
1015 => 0.0061121904488175
1016 => 0.0061314671911866
1017 => 0.0061021840568256
1018 => 0.0059224735153051
1019 => 0.0059192231214773
1020 => 0.0058751192563642
1021 => 0.0058737838088565
1022 => 0.0057987521320744
1023 => 0.0057882546818231
1024 => 0.005639274733475
1025 => 0.0057373337866306
1026 => 0.0056715609221052
1027 => 0.0055724257010151
1028 => 0.0055553347515329
1029 => 0.0055548209769535
1030 => 0.0056566106827832
1031 => 0.0057361443146531
1101 => 0.0056727050692434
1102 => 0.0056582611827817
1103 => 0.005812484101904
1104 => 0.0057928578296726
1105 => 0.005775861604496
1106 => 0.0062139266584929
1107 => 0.005867163985612
1108 => 0.0057159556677145
1109 => 0.0055288066606355
1110 => 0.0055897433210276
1111 => 0.005602583570718
1112 => 0.0051525239448373
1113 => 0.0049699348106688
1114 => 0.0049072771005486
1115 => 0.0048712167025244
1116 => 0.004887649878722
1117 => 0.004723298242401
1118 => 0.0048337452601339
1119 => 0.0046914306353779
1120 => 0.0046675711254057
1121 => 0.0049220473038684
1122 => 0.0049574561774732
1123 => 0.0048063909220003
1124 => 0.0049033992712572
1125 => 0.0048682226952998
1126 => 0.0046938702111516
1127 => 0.0046872112287072
1128 => 0.0045997272809478
1129 => 0.0044628318429347
1130 => 0.0044002669543677
1201 => 0.0043676826171887
1202 => 0.0043811275497648
1203 => 0.0043743293804326
1204 => 0.0043299667270811
1205 => 0.0043768721957937
1206 => 0.0042570481059108
1207 => 0.0042093331878311
1208 => 0.0041877814663122
1209 => 0.0040814306897238
1210 => 0.0042506820696809
1211 => 0.0042840267237052
1212 => 0.0043174370769986
1213 => 0.0046082513922004
1214 => 0.0045937231308456
1215 => 0.0047250515379424
1216 => 0.00471994835754
1217 => 0.0046824913684569
1218 => 0.0045244664928908
1219 => 0.0045874523917689
1220 => 0.004393591585204
1221 => 0.0045388452827359
1222 => 0.0044725575611218
1223 => 0.0045164333373787
1224 => 0.0044375407355495
1225 => 0.0044812031587975
1226 => 0.0042919339781795
1227 => 0.0041151970804076
1228 => 0.0041863211673427
1229 => 0.004263641183867
1230 => 0.0044312906804657
1231 => 0.0043314400233698
]
'min_raw' => 0.0040814306897238
'max_raw' => 0.012183170008202
'avg_raw' => 0.0081323003489629
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004081'
'max' => '$0.012183'
'avg' => '$0.008132'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0077316893102762
'max_diff' => 0.00037005000820189
'year' => 2026
]
1 => [
'items' => [
101 => 0.0043673500954329
102 => 0.0042470573652952
103 => 0.0039988591031015
104 => 0.0040002638783113
105 => 0.0039620839829659
106 => 0.0039290909790314
107 => 0.0043429090724813
108 => 0.0042914442510648
109 => 0.004209441793687
110 => 0.0043192053415354
111 => 0.0043482285657682
112 => 0.0043490548161603
113 => 0.0044291354672632
114 => 0.0044718745251121
115 => 0.0044794074692996
116 => 0.0046054161040671
117 => 0.004647652536347
118 => 0.0048216184233846
119 => 0.0044682484146548
120 => 0.0044609709918666
121 => 0.0043207499397505
122 => 0.0042318195316914
123 => 0.0043268390808736
124 => 0.0044110134299871
125 => 0.0043233654714126
126 => 0.004334810444453
127 => 0.004217150221168
128 => 0.0042592082145643
129 => 0.0042954342243008
130 => 0.0042754323509907
131 => 0.004245488578544
201 => 0.0044041120932714
202 => 0.0043951619329199
203 => 0.004542875796573
204 => 0.0046580293164103
205 => 0.0048644050101126
206 => 0.004649041215126
207 => 0.0046411925024431
208 => 0.0047179149278912
209 => 0.0046476407905434
210 => 0.0046920516195665
211 => 0.0048572497389682
212 => 0.0048607401149154
213 => 0.0048022718207049
214 => 0.0047987140196885
215 => 0.0048099434951647
216 => 0.004875714883775
217 => 0.004852732339644
218 => 0.0048793283215593
219 => 0.0049125870041965
220 => 0.0050501590169732
221 => 0.0050833271635058
222 => 0.0050027457631438
223 => 0.0050100213613648
224 => 0.0049798817056206
225 => 0.0049507671758204
226 => 0.0050162123869756
227 => 0.0051358147966905
228 => 0.0051350707563071
301 => 0.0051628161906223
302 => 0.0051801013663451
303 => 0.0051059007386209
304 => 0.0050575988584051
305 => 0.0050761208728083
306 => 0.0051057379771961
307 => 0.0050665164450247
308 => 0.004824422979282
309 => 0.0048978586717979
310 => 0.0048856353817413
311 => 0.004868227930298
312 => 0.0049420680869841
313 => 0.0049349460237375
314 => 0.0047216125788206
315 => 0.0047352694938055
316 => 0.0047224431010539
317 => 0.0047638878000673
318 => 0.0046454026407868
319 => 0.0046818478777718
320 => 0.0047047059887558
321 => 0.0047181695917297
322 => 0.0047668093577505
323 => 0.004761102042606
324 => 0.0047664545830277
325 => 0.0048385745156143
326 => 0.0052033323860651
327 => 0.0052231853521608
328 => 0.0051254220862241
329 => 0.0051644765826707
330 => 0.0050895004897727
331 => 0.0051398324432313
401 => 0.0051742682874946
402 => 0.0050186593289007
403 => 0.0050094451762665
404 => 0.0049341596303627
405 => 0.0049746138183401
406 => 0.004910248296509
407 => 0.004926041344156
408 => 0.0048818826061219
409 => 0.0049613595426663
410 => 0.0050502271071902
411 => 0.0050726785634754
412 => 0.0050136184479487
413 => 0.004970855032056
414 => 0.0048957765608935
415 => 0.0050206337316697
416 => 0.005057145773358
417 => 0.0050204419494583
418 => 0.0050119368714664
419 => 0.00499581976404
420 => 0.0050153561919974
421 => 0.0050569469209376
422 => 0.0050373335012295
423 => 0.0050502885104907
424 => 0.0050009173743348
425 => 0.0051059253021161
426 => 0.0052727031629669
427 => 0.0052732393810605
428 => 0.0052536258556288
429 => 0.0052456004236015
430 => 0.0052657250909426
501 => 0.0052766418974181
502 => 0.0053417213813665
503 => 0.0054115542605241
504 => 0.0057374338370806
505 => 0.0056459281560117
506 => 0.0059350679029953
507 => 0.0061637399027622
508 => 0.0062323086368776
509 => 0.0061692286278997
510 => 0.0059534353247012
511 => 0.00594284747575
512 => 0.0062653337763111
513 => 0.0061742166255943
514 => 0.0061633785304489
515 => 0.0060480795093527
516 => 0.0061162355108821
517 => 0.0061013287935594
518 => 0.0060777978110039
519 => 0.0062078347141339
520 => 0.0064512521883188
521 => 0.0064133132922124
522 => 0.0063849936662038
523 => 0.0062609053087532
524 => 0.0063356342160765
525 => 0.0063090246835166
526 => 0.0064233561222205
527 => 0.0063556287106838
528 => 0.0061735263235614
529 => 0.006202526728928
530 => 0.0061981433759975
531 => 0.0062883524686982
601 => 0.0062612739381968
602 => 0.0061928558583222
603 => 0.0064504202138549
604 => 0.0064336954172548
605 => 0.0064574073550129
606 => 0.00646784608333
607 => 0.0066246209677497
608 => 0.0066888466216597
609 => 0.0067034269695256
610 => 0.0067644363733497
611 => 0.0067019089999802
612 => 0.0069520630747202
613 => 0.0071184009375273
614 => 0.007311610924846
615 => 0.0075939426462674
616 => 0.0077001019852363
617 => 0.0076809252508469
618 => 0.0078949859398212
619 => 0.0082796482396062
620 => 0.0077586764995495
621 => 0.0083072610068474
622 => 0.0081335854855496
623 => 0.0077218039488417
624 => 0.0076952900724631
625 => 0.0079741533100037
626 => 0.0085926451312766
627 => 0.0084377199449239
628 => 0.008592898533381
629 => 0.0084118744671498
630 => 0.0084028850964707
701 => 0.0085841065985375
702 => 0.0090075405159862
703 => 0.0088063829339894
704 => 0.0085179742143342
705 => 0.0087309307247909
706 => 0.0085464480872387
707 => 0.0081307570713945
708 => 0.0084376014765537
709 => 0.0082324233612492
710 => 0.0082923052431636
711 => 0.0087235591235922
712 => 0.0086716695157428
713 => 0.0087388194731482
714 => 0.008620301555948
715 => 0.0085095871327228
716 => 0.0083029304400121
717 => 0.0082417495813522
718 => 0.0082586577696291
719 => 0.0082417412024939
720 => 0.0081261186821952
721 => 0.0081011500099453
722 => 0.0080595344622927
723 => 0.0080724328606508
724 => 0.0079941834560061
725 => 0.0081418562497226
726 => 0.0081692656215246
727 => 0.0082767295659025
728 => 0.0082878868291058
729 => 0.0085871723845448
730 => 0.0084223309298984
731 => 0.0085329208094017
801 => 0.0085230286096666
802 => 0.007730728503373
803 => 0.0078399004674972
804 => 0.0080097377836249
805 => 0.0079332263029185
806 => 0.0078250569701287
807 => 0.0077377044342283
808 => 0.0076053564100837
809 => 0.0077916337125485
810 => 0.008036568556907
811 => 0.0082940987809628
812 => 0.0086035044711171
813 => 0.008534448722954
814 => 0.0082883146568035
815 => 0.0082993560512099
816 => 0.0083676096068021
817 => 0.0082792150508208
818 => 0.0082531457705952
819 => 0.0083640280880201
820 => 0.0083647916736004
821 => 0.0082630830541049
822 => 0.0081500525360166
823 => 0.0081495789340187
824 => 0.0081294662450702
825 => 0.0084154524698331
826 => 0.0085727159769841
827 => 0.0085907459846361
828 => 0.0085715024138135
829 => 0.0085789085004731
830 => 0.0084874003307269
831 => 0.008696560870862
901 => 0.0088885072663235
902 => 0.0088370615320032
903 => 0.008759937062815
904 => 0.0086985037082889
905 => 0.0088225897860569
906 => 0.0088170644283435
907 => 0.0088868307820095
908 => 0.0088836657772172
909 => 0.0088602059765247
910 => 0.0088370623698266
911 => 0.0089288241543498
912 => 0.0089023982340563
913 => 0.0088759312670095
914 => 0.0088228477127073
915 => 0.0088300626493614
916 => 0.0087529514968002
917 => 0.0087172763492591
918 => 0.008180807726889
919 => 0.0080374457813738
920 => 0.0080825503678343
921 => 0.0080973999688372
922 => 0.0080350086664257
923 => 0.0081244617670733
924 => 0.0081105205960916
925 => 0.008164757537069
926 => 0.0081308726510406
927 => 0.0081322632985827
928 => 0.0082319115233729
929 => 0.0082608398269633
930 => 0.0082461266582772
1001 => 0.0082564312572871
1002 => 0.0084938963921699
1003 => 0.0084601364436971
1004 => 0.0084422021439317
1005 => 0.0084471700675319
1006 => 0.0085078475008044
1007 => 0.0085248338692557
1008 => 0.0084528614325167
1009 => 0.0084868040497505
1010 => 0.0086313274059724
1011 => 0.0086819024013366
1012 => 0.008843313509164
1013 => 0.0087747432017052
1014 => 0.0089006069686991
1015 => 0.0092874692783182
1016 => 0.0095965216600776
1017 => 0.0093123043176818
1018 => 0.0098798396591994
1019 => 0.01032174733068
1020 => 0.010304786178213
1021 => 0.010227729354182
1022 => 0.0097246292189242
1023 => 0.0092616689736595
1024 => 0.0096489548771538
1025 => 0.0096499421485678
1026 => 0.0096166739459908
1027 => 0.009410047996999
1028 => 0.0096094838108536
1029 => 0.0096253143015129
1030 => 0.0096164534364109
1031 => 0.0094580338057791
1101 => 0.009216156310646
1102 => 0.0092634185942221
1103 => 0.0093408351788442
1104 => 0.0091942694333631
1105 => 0.0091474327969502
1106 => 0.0092345110150764
1107 => 0.0095150951773463
1108 => 0.0094620523667826
1109 => 0.009460667204636
1110 => 0.0096876068418799
1111 => 0.0095251670382522
1112 => 0.0092640147229727
1113 => 0.0091980703191888
1114 => 0.0089640121112291
1115 => 0.0091256769491536
1116 => 0.0091314949788642
1117 => 0.0090429527993075
1118 => 0.00927119943286
1119 => 0.0092690960999497
1120 => 0.0094857823084797
1121 => 0.0099000049555656
1122 => 0.0097774989361638
1123 => 0.0096350377642165
1124 => 0.009650527243627
1125 => 0.0098204086014674
1126 => 0.0097176944545029
1127 => 0.0097546311778998
1128 => 0.0098203526933127
1129 => 0.0098600041153347
1130 => 0.0096448220141987
1201 => 0.0095946527730742
1202 => 0.0094920241127444
1203 => 0.009465250210919
1204 => 0.0095488391133404
1205 => 0.0095268163907919
1206 => 0.0091310059959955
1207 => 0.009089641607471
1208 => 0.0090909101942123
1209 => 0.0089868974724981
1210 => 0.0088282531059704
1211 => 0.0092451610290423
1212 => 0.009211677488197
1213 => 0.009174714250524
1214 => 0.0091792420362296
1215 => 0.0093602076353146
1216 => 0.0092552384488635
1217 => 0.0095343162351551
1218 => 0.0094769462321397
1219 => 0.0094181049050238
1220 => 0.0094099712412658
1221 => 0.0093873223504322
1222 => 0.0093096508764831
1223 => 0.0092158579043575
1224 => 0.0091539276599521
1225 => 0.0084440143915205
1226 => 0.0085757701647659
1227 => 0.0087273431719681
1228 => 0.0087796655666636
1229 => 0.0086901644899374
1230 => 0.0093131849245077
1231 => 0.009427016761478
]
'min_raw' => 0.0039290909790314
'max_raw' => 0.01032174733068
'avg_raw' => 0.0071254191548559
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.003929'
'max' => '$0.010321'
'avg' => '$0.007125'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0001523397106924
'max_diff' => -0.0018614226775215
'year' => 2027
]
2 => [
'items' => [
101 => 0.009082212702228
102 => 0.0090177139409993
103 => 0.009317413452556
104 => 0.0091366580103121
105 => 0.0092180521748867
106 => 0.009042122511304
107 => 0.0093995980053371
108 => 0.0093968746410079
109 => 0.0092578085998788
110 => 0.0093753462655579
111 => 0.0093549212036863
112 => 0.0091979159857561
113 => 0.0094045753507907
114 => 0.0094046778512574
115 => 0.0092708298102271
116 => 0.0091145246014076
117 => 0.0090865809218349
118 => 0.009065529112982
119 => 0.0092128747204082
120 => 0.0093449843312889
121 => 0.0095908075643877
122 => 0.0096526133658047
123 => 0.0098938455233804
124 => 0.0097502035189247
125 => 0.0098138781590245
126 => 0.0098830059881807
127 => 0.0099161484115699
128 => 0.0098621446111777
129 => 0.01023687744701
130 => 0.010268516379872
131 => 0.010279124640385
201 => 0.010152766836552
202 => 0.010265002140768
203 => 0.010212490958768
204 => 0.010349110466305
205 => 0.010370534149532
206 => 0.010352389052008
207 => 0.010359189267214
208 => 0.010039420899233
209 => 0.010022839222441
210 => 0.0097967468827956
211 => 0.0098888811823913
212 => 0.0097166405254089
213 => 0.0097712598120134
214 => 0.009795335473117
215 => 0.0097827597140382
216 => 0.0098940903174533
217 => 0.0097994365612108
218 => 0.0095496297359688
219 => 0.0092997548510242
220 => 0.0092966178753874
221 => 0.0092308302288396
222 => 0.009183277809994
223 => 0.0091924380928764
224 => 0.0092247201245482
225 => 0.0091814015196277
226 => 0.0091906457402965
227 => 0.0093441613973189
228 => 0.0093749478675112
229 => 0.0092703234127474
301 => 0.0088502411296343
302 => 0.0087471518836617
303 => 0.0088212503893182
304 => 0.0087858360761694
305 => 0.0070908554198597
306 => 0.0074890659830562
307 => 0.0072524627883579
308 => 0.0073615004260644
309 => 0.0071199898323776
310 => 0.0072352513463397
311 => 0.0072139667533875
312 => 0.0078542775551002
313 => 0.0078442799826502
314 => 0.0078490652915222
315 => 0.0076206500310024
316 => 0.0079845217431607
317 => 0.0081637780329734
318 => 0.0081306024644808
319 => 0.0081389520403308
320 => 0.0079954786637588
321 => 0.0078504544274247
322 => 0.0076896002302602
323 => 0.0079884474464122
324 => 0.0079552207374682
325 => 0.0080314308531932
326 => 0.008225254634908
327 => 0.0082537959230304
328 => 0.0082921557037042
329 => 0.0082784064529677
330 => 0.0086059693866115
331 => 0.0085662993540174
401 => 0.0086618927187218
402 => 0.0084652499148388
403 => 0.0082427299167388
404 => 0.0082850236936508
405 => 0.0082809504628291
406 => 0.0082290935594322
407 => 0.0081822794657242
408 => 0.0081043471894896
409 => 0.0083509364433026
410 => 0.0083409253699227
411 => 0.0085029930113443
412 => 0.008474345981482
413 => 0.0082830341049439
414 => 0.0082898668460413
415 => 0.008335820313625
416 => 0.0084948657896195
417 => 0.0085420813155364
418 => 0.0085202092027183
419 => 0.0085719788714156
420 => 0.0086128955067345
421 => 0.0085771173708481
422 => 0.0090836603255888
423 => 0.0088733083747289
424 => 0.0089758324519585
425 => 0.0090002838402709
426 => 0.0089376521232661
427 => 0.0089512347000108
428 => 0.0089718086027484
429 => 0.0090967293113878
430 => 0.009424557396956
501 => 0.0095697502244529
502 => 0.010006570009665
503 => 0.0095576939813111
504 => 0.0095310595354222
505 => 0.0096097439694327
506 => 0.0098662034254225
507 => 0.01007403972649
508 => 0.010142991017919
509 => 0.010152104069343
510 => 0.010281461275857
511 => 0.010355606414262
512 => 0.010265753908554
513 => 0.010189613317916
514 => 0.0099168871731681
515 => 0.0099484559670313
516 => 0.010165933651482
517 => 0.01047313369014
518 => 0.010736743282025
519 => 0.010644436390669
520 => 0.011348672813209
521 => 0.011418494977956
522 => 0.011408847812408
523 => 0.011567913094633
524 => 0.011252200902498
525 => 0.011117227823725
526 => 0.010206075777844
527 => 0.010462072337328
528 => 0.010834178370688
529 => 0.010784928741847
530 => 0.010514695393998
531 => 0.010736538285799
601 => 0.010663190088101
602 => 0.010605337321357
603 => 0.010870372061121
604 => 0.010578955477723
605 => 0.010831271267346
606 => 0.010507673657282
607 => 0.010644858040773
608 => 0.010566985549842
609 => 0.010617378595168
610 => 0.010322781881889
611 => 0.010481739117443
612 => 0.010316168738287
613 => 0.010316090236369
614 => 0.010312435261072
615 => 0.010507228077899
616 => 0.010513580264662
617 => 0.010369628078712
618 => 0.010348882319761
619 => 0.010425590263896
620 => 0.010335785351156
621 => 0.010377804504602
622 => 0.010337058068508
623 => 0.010327885187492
624 => 0.010254794110921
625 => 0.010223304465453
626 => 0.010235652366829
627 => 0.010193502613653
628 => 0.010168105862741
629 => 0.010307383208089
630 => 0.010232972940902
701 => 0.010295978767449
702 => 0.010224175676129
703 => 0.0099752748784964
704 => 0.0098321293976996
705 => 0.0093619788640873
706 => 0.0094953129721998
707 => 0.0095837136238225
708 => 0.0095544972089886
709 => 0.0096172653733036
710 => 0.0096211188288106
711 => 0.0096007122587461
712 => 0.0095770840648549
713 => 0.0095655831667898
714 => 0.0096513014384583
715 => 0.0097010637803062
716 => 0.009592585811861
717 => 0.0095671709416224
718 => 0.0096768481569533
719 => 0.0097437511949466
720 => 0.01023772563792
721 => 0.010201130415668
722 => 0.010292977242071
723 => 0.010282636698922
724 => 0.010378906805339
725 => 0.010536267742548
726 => 0.010216308958392
727 => 0.010271842739979
728 => 0.010258227139196
729 => 0.010406878698341
730 => 0.010407342772283
731 => 0.01031821873688
801 => 0.010366534322344
802 => 0.010339565888007
803 => 0.010388301493857
804 => 0.010200641664164
805 => 0.010429191080104
806 => 0.010558763871542
807 => 0.010560562989877
808 => 0.010621979464666
809 => 0.010684382160054
810 => 0.010804158699721
811 => 0.010681041657371
812 => 0.010459566083386
813 => 0.010475555904466
814 => 0.010345704856474
815 => 0.01034788767605
816 => 0.010336235614081
817 => 0.010371204329176
818 => 0.010208315330666
819 => 0.010246545053038
820 => 0.010193023217844
821 => 0.010271726393962
822 => 0.01018705478656
823 => 0.010258220573342
824 => 0.010288933367733
825 => 0.010402264240238
826 => 0.010170315724544
827 => 0.009697356999511
828 => 0.0097967786575833
829 => 0.0096497262158917
830 => 0.0096633364792384
831 => 0.009690831377256
901 => 0.00960171141701
902 => 0.0096187126969322
903 => 0.0096181052915772
904 => 0.0096128710003749
905 => 0.0095896874567387
906 => 0.0095560667317419
907 => 0.0096900013522156
908 => 0.0097127594541215
909 => 0.0097633478955258
910 => 0.0099138647826775
911 => 0.0098988245962184
912 => 0.0099233557643445
913 => 0.0098698043620619
914 => 0.0096658205752011
915 => 0.0096768978762233
916 => 0.0095387637549755
917 => 0.0097598154954776
918 => 0.0097074675255863
919 => 0.0096737184488537
920 => 0.0096645097005842
921 => 0.0098153996899859
922 => 0.0098605483397257
923 => 0.009832414731021
924 => 0.0097747118787793
925 => 0.0098855184134003
926 => 0.0099151655675125
927 => 0.0099218024719733
928 => 0.010118130406276
929 => 0.0099327750225695
930 => 0.0099773919057018
1001 => 0.010325480091449
1002 => 0.010009812139862
1003 => 0.010177028494053
1004 => 0.010168844123667
1005 => 0.010254386352178
1006 => 0.010161827164139
1007 => 0.010162974546206
1008 => 0.010238930249991
1009 => 0.010132264162708
1010 => 0.010105852139448
1011 => 0.010069364118481
1012 => 0.010149034377375
1013 => 0.010196793094406
1014 => 0.010581693278763
1015 => 0.010830356351439
1016 => 0.010819561231652
1017 => 0.010918208418888
1018 => 0.010873766957533
1019 => 0.010730253755754
1020 => 0.010975213291621
1021 => 0.01089769784493
1022 => 0.010904088124174
1023 => 0.010903850277662
1024 => 0.010955391273193
1025 => 0.010918869754196
1026 => 0.010846882091397
1027 => 0.010894670861486
1028 => 0.011036586423855
1029 => 0.01147709668395
1030 => 0.011723612061484
1031 => 0.011462256148689
1101 => 0.01164253595764
1102 => 0.011534432312533
1103 => 0.011514786664412
1104 => 0.011628015707007
1105 => 0.011741442942051
1106 => 0.011734218117538
1107 => 0.011651875769449
1108 => 0.011605362666373
1109 => 0.011957575465896
1110 => 0.012217079856796
1111 => 0.012199383397077
1112 => 0.012277489815083
1113 => 0.012506812674091
1114 => 0.012527779082351
1115 => 0.012525137796818
1116 => 0.012473170366327
1117 => 0.012698968502356
1118 => 0.012887333279972
1119 => 0.012461141407651
1120 => 0.01262342969337
1121 => 0.012696286133431
1122 => 0.012803261002972
1123 => 0.012983745538958
1124 => 0.013179799616198
1125 => 0.013207523812343
1126 => 0.013187852168453
1127 => 0.013058549234297
1128 => 0.013273073945024
1129 => 0.013398737489345
1130 => 0.013473567254229
1201 => 0.013663323087488
1202 => 0.012696736070001
1203 => 0.012012537736532
1204 => 0.011905690286817
1205 => 0.012122968777381
1206 => 0.012180263382579
1207 => 0.012157167999065
1208 => 0.011387040570155
1209 => 0.011901635725286
1210 => 0.012455296843817
1211 => 0.012476565222236
1212 => 0.012753739554681
1213 => 0.012843998879085
1214 => 0.013067160546773
1215 => 0.013053201723699
1216 => 0.013107538038503
1217 => 0.013095047060703
1218 => 0.013508407057863
1219 => 0.013964404519283
1220 => 0.013948614777177
1221 => 0.013883059746981
1222 => 0.013980420145616
1223 => 0.01445105839346
1224 => 0.014407729565423
1225 => 0.01444981983112
1226 => 0.015004728849337
1227 => 0.015726189507906
1228 => 0.015390998598535
1229 => 0.016118266423285
1230 => 0.016576042968154
1231 => 0.017367720167527
]
'min_raw' => 0.0070908554198597
'max_raw' => 0.017367720167527
'avg_raw' => 0.012229287793693
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00709'
'max' => '$0.017367'
'avg' => '$0.012229'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0031617644408283
'max_diff' => 0.0070459728368465
'year' => 2028
]
3 => [
'items' => [
101 => 0.017268598283073
102 => 0.017576792407193
103 => 0.017091149422539
104 => 0.015976014965132
105 => 0.015799540668684
106 => 0.016152846679214
107 => 0.017021415031004
108 => 0.016125492370843
109 => 0.016306736358142
110 => 0.016254538077607
111 => 0.016251756653066
112 => 0.016357912314936
113 => 0.016203927990686
114 => 0.015576568152443
115 => 0.015864083469255
116 => 0.015753059997815
117 => 0.015876248816726
118 => 0.016541048065458
119 => 0.016247124470759
120 => 0.015937499840157
121 => 0.016325837838138
122 => 0.01682032555698
123 => 0.016789381404215
124 => 0.016729336814198
125 => 0.017067805024292
126 => 0.017626855345487
127 => 0.01777796440086
128 => 0.017889510016248
129 => 0.017904890272031
130 => 0.018063316465375
131 => 0.017211418895223
201 => 0.018563402217336
202 => 0.01879685238928
203 => 0.018752973432472
204 => 0.019012443473503
205 => 0.018936100805312
206 => 0.018825492256901
207 => 0.019236807462795
208 => 0.018765267770663
209 => 0.01809597654288
210 => 0.017728790138238
211 => 0.018212330815953
212 => 0.018507612234589
213 => 0.018702774468882
214 => 0.018761830443059
215 => 0.017277549278552
216 => 0.016477604052891
217 => 0.016990359771149
218 => 0.017615957135934
219 => 0.017207943670274
220 => 0.017223937025656
221 => 0.016642217047678
222 => 0.01766742644608
223 => 0.017518062060101
224 => 0.018292964758781
225 => 0.018108028010758
226 => 0.018739931079982
227 => 0.018573529824477
228 => 0.019264252132708
301 => 0.019539799962021
302 => 0.020002487653033
303 => 0.020342842602019
304 => 0.020542705538016
305 => 0.020530706517006
306 => 0.021322663040747
307 => 0.02085567394755
308 => 0.020269025585617
309 => 0.020258414967601
310 => 0.020562248467118
311 => 0.021199000129456
312 => 0.02136410057114
313 => 0.021456369194625
314 => 0.021315056585864
315 => 0.020808173394609
316 => 0.020589303802581
317 => 0.020775787036251
318 => 0.020547734066159
319 => 0.0209414174729
320 => 0.021482028876592
321 => 0.021370394759539
322 => 0.021743570875726
323 => 0.022129768896708
324 => 0.022682049411949
325 => 0.022826435989522
326 => 0.023065101511719
327 => 0.0233107667316
328 => 0.023389667779363
329 => 0.023540314361099
330 => 0.023539520379252
331 => 0.023993503992997
401 => 0.024494261977661
402 => 0.024683286524298
403 => 0.025117938046414
404 => 0.024373612546796
405 => 0.024938191988451
406 => 0.025447456777165
407 => 0.024840290301538
408 => 0.025677127836544
409 => 0.025709620341714
410 => 0.026200218592897
411 => 0.025702903278071
412 => 0.025407599031613
413 => 0.02626013132623
414 => 0.026672644849079
415 => 0.02654839241885
416 => 0.025602825289712
417 => 0.025052464663271
418 => 0.023612064747239
419 => 0.025318280668424
420 => 0.026149328672633
421 => 0.025600673076147
422 => 0.025877383045625
423 => 0.027387022915585
424 => 0.027961796036123
425 => 0.027842247245018
426 => 0.027862449022774
427 => 0.028172586165746
428 => 0.029547905053329
429 => 0.028723782096247
430 => 0.029353793217638
501 => 0.02968794884475
502 => 0.029998331213906
503 => 0.029236130212613
504 => 0.028244517908886
505 => 0.027930432667243
506 => 0.025546120089897
507 => 0.025422006265701
508 => 0.025352337415146
509 => 0.024913085167253
510 => 0.024567953221726
511 => 0.024293491484715
512 => 0.023573221925586
513 => 0.023816291758057
514 => 0.022668332412746
515 => 0.023402756120695
516 => 0.02157058528713
517 => 0.023096471600573
518 => 0.022266001053703
519 => 0.022823639690492
520 => 0.022821694141821
521 => 0.021794904612001
522 => 0.021202673839752
523 => 0.021580066337796
524 => 0.021984661053153
525 => 0.022050305184499
526 => 0.022574872793962
527 => 0.02272126833822
528 => 0.022277683004564
529 => 0.021532617618993
530 => 0.021705679314929
531 => 0.021199166750008
601 => 0.020311522962708
602 => 0.02094904422752
603 => 0.021166722017158
604 => 0.021262860929893
605 => 0.020389965211661
606 => 0.020115682425505
607 => 0.019969656571611
608 => 0.021419937743124
609 => 0.021499387419524
610 => 0.021092911642009
611 => 0.022930220699993
612 => 0.022514381074222
613 => 0.02297897581939
614 => 0.021689975779969
615 => 0.021739217317344
616 => 0.02112898404154
617 => 0.021470673900188
618 => 0.021229178521274
619 => 0.021443068736254
620 => 0.021571273649211
621 => 0.022181406791739
622 => 0.02310343834099
623 => 0.022090273246393
624 => 0.021648822705885
625 => 0.021922696138404
626 => 0.02265205717982
627 => 0.023757076492871
628 => 0.023102882818959
629 => 0.023393202862512
630 => 0.023456624876589
701 => 0.022974246681012
702 => 0.023774862464999
703 => 0.024203918967829
704 => 0.024644042158999
705 => 0.02502618879392
706 => 0.024468247277929
707 => 0.025065324677814
708 => 0.024584185691856
709 => 0.024152554282218
710 => 0.024153208888897
711 => 0.023882440200502
712 => 0.023357791747687
713 => 0.023261038523436
714 => 0.023764361014573
715 => 0.024167977987647
716 => 0.024201221814744
717 => 0.024424684909627
718 => 0.024556928067325
719 => 0.025853090788627
720 => 0.026374418157555
721 => 0.027011887396058
722 => 0.027260217590253
723 => 0.028007602443476
724 => 0.027404028474868
725 => 0.027273441450102
726 => 0.025460530263903
727 => 0.025757394369082
728 => 0.026232702444599
729 => 0.025468367919001
730 => 0.025953162249936
731 => 0.026048870920211
801 => 0.025442396124298
802 => 0.025766340517024
803 => 0.024906040252762
804 => 0.023122190535822
805 => 0.023776848399675
806 => 0.024258896942925
807 => 0.02357095423555
808 => 0.024804064911459
809 => 0.024083707111164
810 => 0.023855388271743
811 => 0.022964635077618
812 => 0.023385036297011
813 => 0.023953634965804
814 => 0.02360230709518
815 => 0.024331365178871
816 => 0.025363905858065
817 => 0.02609975583492
818 => 0.026156245259057
819 => 0.025683143022059
820 => 0.026441292376147
821 => 0.026446814666501
822 => 0.025591619097959
823 => 0.025067816573976
824 => 0.024948807538437
825 => 0.025246115442309
826 => 0.025607102123676
827 => 0.026176277507534
828 => 0.02652021827145
829 => 0.027417033371658
830 => 0.027659685824071
831 => 0.027926287301645
901 => 0.028282549092536
902 => 0.028710332716148
903 => 0.02777436650142
904 => 0.02781155418399
905 => 0.02693999540417
906 => 0.02600860985376
907 => 0.026715415387673
908 => 0.027639469600865
909 => 0.02742749054337
910 => 0.027403638569062
911 => 0.027443750973861
912 => 0.027283925687099
913 => 0.026561041838472
914 => 0.026198014095184
915 => 0.02666641250228
916 => 0.026915345409637
917 => 0.027301418639717
918 => 0.027253826965092
919 => 0.02824831014454
920 => 0.028634736236462
921 => 0.028535871906044
922 => 0.028554065322144
923 => 0.029253671303454
924 => 0.030031777039615
925 => 0.030760575741625
926 => 0.031501941083942
927 => 0.030608196227797
928 => 0.030154407708366
929 => 0.03062260162737
930 => 0.03037417134364
1001 => 0.031801725443163
1002 => 0.031900566191694
1003 => 0.033328017062807
1004 => 0.034682837917181
1005 => 0.033831899212685
1006 => 0.034634296083903
1007 => 0.035502153720503
1008 => 0.03717639190633
1009 => 0.036612567385753
1010 => 0.036180686639247
1011 => 0.035772561420632
1012 => 0.036621805212516
1013 => 0.037714343783774
1014 => 0.037949666127818
1015 => 0.038330978225225
1016 => 0.037930075179427
1017 => 0.038412918740068
1018 => 0.040117568681345
1019 => 0.039656957219851
1020 => 0.039002814897542
1021 => 0.040348472309859
1022 => 0.040835460496265
1023 => 0.044253398626162
1024 => 0.048568686703137
1025 => 0.04678212910356
1026 => 0.045673155149649
1027 => 0.045933790334032
1028 => 0.047509587458024
1029 => 0.048015683480949
1030 => 0.046639940028877
1031 => 0.047125875873965
1101 => 0.049803430156559
1102 => 0.051239852122945
1103 => 0.049288998155385
1104 => 0.043906669430879
1105 => 0.038943916538544
1106 => 0.040260262081266
1107 => 0.04011102934768
1108 => 0.042987727392628
1109 => 0.039645971788828
1110 => 0.039702238382786
1111 => 0.042638423496828
1112 => 0.041855099647358
1113 => 0.040586215331756
1114 => 0.038953180798279
1115 => 0.035934365425737
1116 => 0.033260516464381
1117 => 0.038504550028239
1118 => 0.038278417765309
1119 => 0.037950944737663
1120 => 0.038679700524407
1121 => 0.042218331763897
1122 => 0.042136754860395
1123 => 0.041617804221218
1124 => 0.042011423707213
1125 => 0.040517211932738
1126 => 0.04090230432959
1127 => 0.03894313041313
1128 => 0.0398287588457
1129 => 0.040583492875899
1130 => 0.04073501690649
1201 => 0.041076408284419
1202 => 0.038159256338275
1203 => 0.039468971919012
1204 => 0.040238307118941
1205 => 0.036762422697007
1206 => 0.04016960005974
1207 => 0.03810847521297
1208 => 0.037408898482919
1209 => 0.038350786387706
1210 => 0.037983731755195
1211 => 0.037668159736333
1212 => 0.037492065127592
1213 => 0.038183683652493
1214 => 0.038151418821643
1215 => 0.037019796677535
1216 => 0.035543641721364
1217 => 0.03603908777779
1218 => 0.035859087580659
1219 => 0.035206743645769
1220 => 0.035646344693577
1221 => 0.033710564156026
1222 => 0.030380154354286
1223 => 0.032580325082527
1224 => 0.032495620902815
1225 => 0.032452909214375
1226 => 0.034106276708396
1227 => 0.033947343573524
1228 => 0.033658878377453
1229 => 0.035201445756226
1230 => 0.034638387912515
1231 => 0.036373599513719
]
'min_raw' => 0.015576568152443
'max_raw' => 0.051239852122945
'avg_raw' => 0.033408210137694
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.015576'
'max' => '$0.051239'
'avg' => '$0.0334082'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0084857127325836
'max_diff' => 0.033872131955418
'year' => 2029
]
4 => [
'items' => [
101 => 0.037516522100723
102 => 0.037226639962986
103 => 0.038301564180287
104 => 0.036050501854269
105 => 0.036798214462028
106 => 0.036952316994202
107 => 0.035182410714218
108 => 0.033973346999948
109 => 0.033892716234541
110 => 0.03179636637324
111 => 0.032916219548002
112 => 0.03390164399912
113 => 0.033429702159061
114 => 0.03328029947136
115 => 0.034043565401336
116 => 0.034102877701026
117 => 0.032750550982464
118 => 0.033031742529871
119 => 0.034204358026761
120 => 0.03300219562797
121 => 0.030666590459232
122 => 0.030087328085117
123 => 0.030010043806486
124 => 0.028439038306008
125 => 0.030126037166806
126 => 0.029389616955309
127 => 0.031715959579759
128 => 0.030387165149099
129 => 0.030329883477021
130 => 0.030243293828281
131 => 0.0288910644966
201 => 0.029187116781581
202 => 0.030171239666894
203 => 0.030522385799311
204 => 0.030485758380845
205 => 0.030166416927869
206 => 0.030312609809749
207 => 0.029841671600239
208 => 0.02967537351673
209 => 0.029150491021284
210 => 0.028379058755468
211 => 0.028486331143499
212 => 0.026957921968686
213 => 0.026125163531433
214 => 0.025894666971581
215 => 0.025586437338633
216 => 0.02592948232879
217 => 0.026953592177528
218 => 0.025718298422926
219 => 0.023600473926442
220 => 0.023727758787278
221 => 0.024013730078362
222 => 0.023480824469316
223 => 0.022976474033732
224 => 0.023414965818228
225 => 0.022517615660281
226 => 0.024122170557809
227 => 0.024078771844544
228 => 0.024676850685333
301 => 0.025050841658292
302 => 0.024188913546637
303 => 0.023972140957458
304 => 0.024095624476019
305 => 0.022054716977132
306 => 0.024510065001223
307 => 0.024531298952896
308 => 0.024349480967167
309 => 0.02565687798963
310 => 0.028415893494384
311 => 0.027377840880354
312 => 0.026975875532895
313 => 0.026211739113541
314 => 0.027229905522399
315 => 0.027151726228069
316 => 0.026798169810491
317 => 0.026584337785977
318 => 0.026978329847592
319 => 0.026535517809426
320 => 0.026455976599711
321 => 0.025974043410523
322 => 0.025802015188546
323 => 0.025674652341636
324 => 0.025534438361602
325 => 0.02584371546241
326 => 0.025142852863188
327 => 0.024297681274933
328 => 0.024227414402253
329 => 0.02442142741565
330 => 0.024335591099792
331 => 0.024227003450997
401 => 0.02401968005736
402 => 0.023958171635232
403 => 0.024158044167505
404 => 0.023932399731861
405 => 0.024265350388143
406 => 0.024174806232634
407 => 0.023669033940263
408 => 0.023038654403083
409 => 0.023033042702936
410 => 0.022897228465681
411 => 0.022724248614728
412 => 0.022676129577436
413 => 0.023378037263191
414 => 0.024830965166375
415 => 0.024545720653362
416 => 0.024751839047048
417 => 0.025765737541108
418 => 0.026088025383378
419 => 0.025859273106741
420 => 0.025546142881653
421 => 0.025559919022394
422 => 0.026629979792483
423 => 0.026696718170151
424 => 0.026865344519899
425 => 0.027082077033127
426 => 0.025896183590921
427 => 0.025504063547912
428 => 0.025318255317543
429 => 0.024746037884839
430 => 0.025363125327795
501 => 0.025003574901104
502 => 0.025052090537656
503 => 0.025020494665705
504 => 0.025037748148294
505 => 0.024121722052014
506 => 0.024455473816584
507 => 0.023900546775767
508 => 0.023157561761597
509 => 0.023155071015306
510 => 0.023336915544938
511 => 0.023228747303135
512 => 0.022937669345705
513 => 0.022979015595709
514 => 0.022616778939108
515 => 0.023022997684327
516 => 0.023034646584419
517 => 0.022878230240625
518 => 0.02350406626502
519 => 0.023760471794848
520 => 0.0236575152066
521 => 0.023753248086155
522 => 0.02455757385068
523 => 0.024688714045491
524 => 0.024746957857391
525 => 0.024668918865271
526 => 0.023767949684609
527 => 0.023807911498988
528 => 0.023514698220155
529 => 0.023266963897595
530 => 0.023276871971302
531 => 0.023404239616305
601 => 0.02396046159205
602 => 0.025130997948928
603 => 0.02517541894802
604 => 0.025229258494772
605 => 0.025010266000543
606 => 0.024944215768808
607 => 0.025031353073478
608 => 0.025470944985244
609 => 0.026601694730345
610 => 0.02620201225019
611 => 0.025877064172395
612 => 0.026162131241994
613 => 0.026118247401059
614 => 0.02574782362043
615 => 0.025737427058642
616 => 0.025026465391969
617 => 0.024763639051613
618 => 0.024544001689402
619 => 0.024304163423645
620 => 0.024161979260254
621 => 0.02438043875677
622 => 0.02443040302836
623 => 0.023952737521208
624 => 0.023887633477618
625 => 0.024277705441884
626 => 0.024106049313759
627 => 0.024282601898403
628 => 0.024323563612481
629 => 0.024316967833086
630 => 0.024137739120743
701 => 0.024251974157313
702 => 0.02398177424072
703 => 0.023687972414141
704 => 0.023500545153284
705 => 0.023336990009568
706 => 0.023427739909183
707 => 0.023104233087334
708 => 0.023000736744119
709 => 0.024213273897293
710 => 0.025108988129313
711 => 0.025095964089638
712 => 0.025016683597625
713 => 0.024898888867955
714 => 0.02546232756707
715 => 0.025266036790611
716 => 0.025408854731128
717 => 0.02544520789104
718 => 0.025555237957222
719 => 0.025594564248478
720 => 0.025475692882436
721 => 0.025076746059086
722 => 0.024082608506023
723 => 0.023619834791449
724 => 0.023467111757534
725 => 0.023472662949754
726 => 0.0233195362867
727 => 0.023364638951625
728 => 0.023303851420466
729 => 0.023188734542535
730 => 0.023420631766361
731 => 0.023447355761135
801 => 0.023393228178128
802 => 0.023405977183374
803 => 0.022957823914273
804 => 0.022991896033985
805 => 0.022802178141753
806 => 0.022766608324043
807 => 0.022287018013107
808 => 0.021437354259556
809 => 0.021908150457879
810 => 0.021339494854269
811 => 0.021124136360643
812 => 0.02214360997435
813 => 0.022041283099331
814 => 0.02186614396972
815 => 0.021607076694833
816 => 0.021510986122533
817 => 0.020927170223817
818 => 0.020892675265984
819 => 0.021182030189743
820 => 0.021048502848523
821 => 0.020860979890692
822 => 0.020181790746325
823 => 0.019418157276259
824 => 0.019441206570691
825 => 0.019684104169613
826 => 0.020390361697684
827 => 0.020114414663088
828 => 0.01991421192336
829 => 0.019876719968282
830 => 0.020346010280816
831 => 0.021010154392411
901 => 0.021321755950184
902 => 0.021012968269911
903 => 0.020658249609122
904 => 0.020679839690396
905 => 0.020823468828587
906 => 0.020838562220204
907 => 0.020607676837698
908 => 0.020672669720454
909 => 0.020573939588473
910 => 0.019968032950747
911 => 0.019957074021022
912 => 0.019808374760559
913 => 0.019803872206049
914 => 0.019550897669234
915 => 0.019515504782803
916 => 0.0190132084855
917 => 0.019343821429478
918 => 0.019122063624616
919 => 0.018787822305311
920 => 0.018730198975879
921 => 0.018728466749015
922 => 0.01907165784895
923 => 0.01933981104166
924 => 0.019125921196574
925 => 0.019077222624929
926 => 0.01959719596425
927 => 0.019531024617159
928 => 0.019473720657338
929 => 0.020950687571614
930 => 0.019781553009799
1001 => 0.01927174360898
1002 => 0.018640757665287
1003 => 0.018846209870261
1004 => 0.018889501668569
1005 => 0.017372094217753
1006 => 0.016756482203938
1007 => 0.016545227359646
1008 => 0.01642364721005
1009 => 0.016479052810928
1010 => 0.015924929794407
1011 => 0.016297309625858
1012 => 0.015817485932404
1013 => 0.015737041928715
1014 => 0.016595026131361
1015 => 0.016714409620888
1016 => 0.016205082565022
1017 => 0.016532152987448
1018 => 0.016413552705658
1019 => 0.01582571113245
1020 => 0.015803259908224
1021 => 0.015508301670419
1022 => 0.015046749143423
1023 => 0.014835807253479
1024 => 0.014725946885714
1025 => 0.01477127741459
1026 => 0.014748356912053
1027 => 0.014598785128977
1028 => 0.014756930191577
1029 => 0.014352934906686
1030 => 0.014192060729031
1031 => 0.014119397595237
1101 => 0.013760828526795
1102 => 0.014331471371074
1103 => 0.014443895200166
1104 => 0.014556540538931
1105 => 0.015537041306641
1106 => 0.015488058259153
1107 => 0.015930841152736
1108 => 0.015913635423717
1109 => 0.01578734656986
1110 => 0.015254554668944
1111 => 0.015466916024547
1112 => 0.014813300780284
1113 => 0.015303033762802
1114 => 0.015079540081319
1115 => 0.015227470324278
1116 => 0.014961478409106
1117 => 0.015108689317499
1118 => 0.014470555060693
1119 => 0.013874674270479
1120 => 0.014114474095306
1121 => 0.014375163929329
1122 => 0.014940405912025
1123 => 0.014603752450277
1124 => 0.014724825765398
1125 => 0.014319250427169
1126 => 0.013482432657534
1127 => 0.013487168955232
1128 => 0.013358442772439
1129 => 0.013247204556176
1130 => 0.014642421150099
1201 => 0.014468903911535
1202 => 0.014192426901257
1203 => 0.014562502366273
1204 => 0.014660356193111
1205 => 0.014663141953995
1206 => 0.014933139460241
1207 => 0.015077237177724
1208 => 0.015102635024986
1209 => 0.015527481934746
1210 => 0.015669885015032
1211 => 0.016256423149089
1212 => 0.015065011493151
1213 => 0.015040475154127
1214 => 0.014567710086996
1215 => 0.014267875007302
1216 => 0.014588240051423
1217 => 0.014872039746325
1218 => 0.014576528534605
1219 => 0.014615116060274
1220 => 0.014218416402694
1221 => 0.014360217863825
1222 => 0.014482356384871
1223 => 0.01441491867252
1224 => 0.014313961153108
1225 => 0.014848771407752
1226 => 0.014818595317246
1227 => 0.015316622921605
1228 => 0.015704871053499
1229 => 0.016400681113507
1230 => 0.01567456704249
1231 => 0.0156481045597
]
'min_raw' => 0.013247204556176
'max_raw' => 0.038301564180287
'avg_raw' => 0.025774384368232
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.013247'
'max' => '$0.0383015'
'avg' => '$0.025774'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0023293635962669
'max_diff' => -0.012938287942658
'year' => 2030
]
5 => [
'items' => [
101 => 0.015906779573687
102 => 0.015669845413235
103 => 0.015819579623951
104 => 0.016376556617279
105 => 0.016388324663475
106 => 0.016191194727418
107 => 0.016179199352894
108 => 0.016217060313479
109 => 0.01643881314219
110 => 0.016361325890062
111 => 0.016450996099962
112 => 0.01656313007052
113 => 0.017026963716568
114 => 0.017138792438329
115 => 0.016867106620995
116 => 0.016891636808363
117 => 0.016790018854737
118 => 0.016691857184805
119 => 0.016912510283453
120 => 0.017315758158181
121 => 0.017313249574081
122 => 0.017406795242999
123 => 0.017465073419761
124 => 0.017214900822866
125 => 0.017052047661389
126 => 0.017114495926115
127 => 0.017214352061359
128 => 0.017082113927283
129 => 0.016265878905105
130 => 0.016513472469539
131 => 0.01647226079371
201 => 0.01641357035582
202 => 0.016662527599442
203 => 0.016638515065959
204 => 0.015919246461957
205 => 0.015965291704324
206 => 0.015922046625652
207 => 0.016061780321952
208 => 0.015662299335068
209 => 0.015785176996088
210 => 0.015862244713173
211 => 0.015907638190598
212 => 0.016071630557657
213 => 0.016052387946176
214 => 0.01607043440991
215 => 0.016313591797878
216 => 0.017543398424684
217 => 0.017610334085966
218 => 0.017280718409247
219 => 0.017412393370715
220 => 0.017159606238846
221 => 0.017329303933996
222 => 0.017445406787164
223 => 0.016920760318994
224 => 0.016889694160076
225 => 0.016635863685792
226 => 0.016772257804979
227 => 0.016555244954269
228 => 0.016608492317046
301 => 0.016459608048699
302 => 0.016727570089161
303 => 0.017027193287489
304 => 0.017102889939865
305 => 0.016903764636921
306 => 0.016759584794592
307 => 0.016506452487256
308 => 0.016927417155778
309 => 0.017050520053519
310 => 0.016926770548662
311 => 0.016898095084407
312 => 0.016843755131458
313 => 0.016909623562306
314 => 0.0170498496087
315 => 0.016983721594789
316 => 0.017027400313003
317 => 0.016860942080471
318 => 0.017214983640405
319 => 0.017777286842322
320 => 0.017779094739062
321 => 0.017712966368697
322 => 0.017685908064299
323 => 0.017753759785299
324 => 0.017790566560518
325 => 0.018009986584354
326 => 0.01824543301201
327 => 0.019344158756556
328 => 0.019035640964109
329 => 0.020010495808157
330 => 0.02078147942074
331 => 0.021012663695127
401 => 0.020799985040752
402 => 0.020072422852811
403 => 0.020036725180852
404 => 0.021124010258468
405 => 0.02081680242323
406 => 0.020780261028756
407 => 0.020391522329209
408 => 0.020621315046866
409 => 0.020571056008659
410 => 0.020491719658092
411 => 0.020930148155881
412 => 0.021750847164961
413 => 0.021622933527929
414 => 0.021527451931628
415 => 0.021109079370911
416 => 0.021361033099357
417 => 0.021271317202513
418 => 0.02165679363047
419 => 0.021428445933897
420 => 0.020814475021731
421 => 0.020912251913168
422 => 0.020897473132727
423 => 0.021201619386965
424 => 0.021110322230817
425 => 0.020879645897722
426 => 0.021748042104969
427 => 0.021691653285544
428 => 0.02177159973921
429 => 0.02180679464054
430 => 0.022335372109034
501 => 0.022551913385284
502 => 0.022601072046081
503 => 0.022806769510615
504 => 0.022595954105777
505 => 0.023439366033963
506 => 0.024000185751756
507 => 0.024651606713491
508 => 0.025603507824035
509 => 0.025961431447177
510 => 0.025896775748306
511 => 0.026618496306423
512 => 0.027915412106412
513 => 0.026158919511726
514 => 0.028008510479028
515 => 0.027422951333335
516 => 0.026034601132655
517 => 0.025945207747305
518 => 0.026885414622283
519 => 0.028970702979424
520 => 0.028448361897105
521 => 0.028971557342311
522 => 0.028361222064316
523 => 0.028330913773454
524 => 0.028941914720153
525 => 0.030369551736043
526 => 0.029691334903967
527 => 0.028718944769596
528 => 0.02943694251275
529 => 0.028814946420076
530 => 0.027413415137537
531 => 0.028447962472724
601 => 0.027756190131896
602 => 0.02795808607759
603 => 0.029412088644639
604 => 0.029237139208958
605 => 0.029463539978611
606 => 0.029063948546114
607 => 0.028690667138376
608 => 0.027993909670592
609 => 0.027787634134109
610 => 0.027844641271377
611 => 0.027787605884203
612 => 0.02739777648451
613 => 0.027313592862762
614 => 0.027173283138347
615 => 0.027216770988949
616 => 0.02695294765799
617 => 0.02745083679219
618 => 0.027543249402882
619 => 0.027905571594245
620 => 0.02794318908611
621 => 0.028952251231723
622 => 0.02839647675852
623 => 0.028769338258404
624 => 0.028735986016346
625 => 0.02606469089135
626 => 0.026432771790538
627 => 0.027005390159525
628 => 0.026747426360462
629 => 0.02638272590282
630 => 0.026088210729273
701 => 0.025641990125625
702 => 0.026270037056351
703 => 0.02709585198491
704 => 0.027964133115501
705 => 0.029007316001872
706 => 0.028774489725621
707 => 0.027944631537063
708 => 0.02798185836919
709 => 0.02821197999718
710 => 0.027913951580178
711 => 0.027826057181798
712 => 0.028199904656553
713 => 0.028202479138649
714 => 0.027859561426951
715 => 0.027478471143677
716 => 0.027476874361475
717 => 0.027409063026462
718 => 0.028373285550171
719 => 0.028903510444318
720 => 0.028964299873932
721 => 0.02889941883136
722 => 0.02892438896961
723 => 0.028615862786414
724 => 0.029321062150602
725 => 0.02996822282417
726 => 0.029794769939082
727 => 0.029534739406556
728 => 0.029327612562631
729 => 0.029745977437239
730 => 0.02972734830794
731 => 0.029962570440257
801 => 0.029951899405626
802 => 0.02987280304968
803 => 0.029794772763862
804 => 0.030104154026986
805 => 0.030015057191717
806 => 0.029925821964454
807 => 0.029746847054949
808 => 0.029771172717609
809 => 0.02951118708302
810 => 0.029390905832326
811 => 0.027582164416962
812 => 0.027098809608446
813 => 0.0272508828708
814 => 0.027300949337347
815 => 0.027090592705245
816 => 0.027392190079494
817 => 0.027345186448188
818 => 0.027528050081396
819 => 0.027413804822384
820 => 0.027418493487664
821 => 0.027754464434761
822 => 0.027851998230026
823 => 0.02780239175456
824 => 0.027837134429565
825 => 0.028637764711109
826 => 0.028523940687789
827 => 0.028463473943997
828 => 0.028480223645264
829 => 0.028684801847906
830 => 0.02874207257509
831 => 0.028499412479669
901 => 0.028613852383471
902 => 0.029101122969272
903 => 0.029271640097175
904 => 0.029815848916579
905 => 0.029584659337556
906 => 0.030009017815503
907 => 0.031313351102248
908 => 0.032355342784698
909 => 0.031397084171389
910 => 0.033310569199368
911 => 0.034800491766775
912 => 0.034743306057042
913 => 0.034483503594884
914 => 0.032787266363533
915 => 0.031226363573771
916 => 0.03253212503684
917 => 0.032535453691342
918 => 0.032423287623642
919 => 0.031726633810453
920 => 0.032399045581028
921 => 0.032452419185535
922 => 0.032422544160198
923 => 0.031888421315017
924 => 0.031072914452828
925 => 0.031232262541653
926 => 0.031493277961759
927 => 0.030999121317976
928 => 0.030841208328281
929 => 0.0311347986203
930 => 0.032080807713154
1001 => 0.031901970174008
1002 => 0.031897300003121
1003 => 0.032662442834509
1004 => 0.032114765695393
1005 => 0.031234272431356
1006 => 0.031011936269907
1007 => 0.030222792680349
1008 => 0.03076785696849
1009 => 0.030787472861861
1010 => 0.030488946721668
1011 => 0.031258496182361
1012 => 0.031251404648604
1013 => 0.031981977329211
1014 => 0.033378557903963
1015 => 0.032965520306452
1016 => 0.032485202518911
1017 => 0.032537426380184
1018 => 0.033110193238881
1019 => 0.032763885321117
1020 => 0.032888420062889
1021 => 0.033110004740634
1022 => 0.033243692278355
1023 => 0.03251819080084
1024 => 0.032349041701685
1025 => 0.032003022008078
1026 => 0.03191275192878
1027 => 0.032194577749284
1028 => 0.032120326602635
1029 => 0.030785824221979
1030 => 0.0306463612981
1031 => 0.030650638426868
1101 => 0.030299952273672
1102 => 0.029765071715728
1103 => 0.031170705885947
1104 => 0.031057813790241
1105 => 0.030933189653735
1106 => 0.030948455399362
1107 => 0.031558593551291
1108 => 0.031204682610457
1109 => 0.032145612851528
1110 => 0.031952185880916
1111 => 0.031753798238374
1112 => 0.031726375023139
1113 => 0.031650012706399
1114 => 0.03138813790913
1115 => 0.031071908355193
1116 => 0.030863106212348
1117 => 0.02846958406327
1118 => 0.028913807851661
1119 => 0.029424846827932
1120 => 0.029601255434681
1121 => 0.029299496305733
1122 => 0.031400053198785
1123 => 0.031783845184615
1124 => 0.030621314225403
1125 => 0.030403852148761
1126 => 0.031414309976326
1127 => 0.030804880382859
1128 => 0.031079306491481
1129 => 0.030486147347695
1130 => 0.03169140093397
1201 => 0.031682218920995
1202 => 0.031213348054047
1203 => 0.031609634500102
1204 => 0.031540769977969
1205 => 0.031011415923963
1206 => 0.031708182401674
1207 => 0.031708527989154
1208 => 0.031257249973848
1209 => 0.030730256049432
1210 => 0.030636041982787
1211 => 0.030565064339449
1212 => 0.031061850342229
1213 => 0.031507267118911
1214 => 0.032336077312134
1215 => 0.032544459886755
1216 => 0.033357790948313
1217 => 0.032873491901526
1218 => 0.033088175396244
1219 => 0.033321244698595
1220 => 0.033432986692981
1221 => 0.033250909109534
1222 => 0.034514347028555
1223 => 0.034621019899657
1224 => 0.034656786390622
1225 => 0.034230762232981
1226 => 0.034609171397161
1227 => 0.034432126280836
1228 => 0.034892748488965
1229 => 0.034964979932719
1230 => 0.034903802469568
1231 => 0.034926729869911
]
'min_raw' => 0.015662299335068
'max_raw' => 0.034964979932719
'avg_raw' => 0.025313639633894
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.015662'
'max' => '$0.034964'
'avg' => '$0.025313'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0024150947788915
'max_diff' => -0.0033365842475677
'year' => 2031
]
6 => [
'items' => [
101 => 0.033848608491749
102 => 0.033792702210748
103 => 0.03303041610237
104 => 0.033341053326069
105 => 0.032760331925594
106 => 0.032944484663778
107 => 0.033025657436097
108 => 0.032983257386352
109 => 0.03335861628862
110 => 0.033039484540935
111 => 0.032197243388675
112 => 0.031354772768378
113 => 0.031344196236001
114 => 0.031122388592519
115 => 0.030962062292377
116 => 0.030992946825665
117 => 0.031101787949306
118 => 0.030955736248408
119 => 0.030986903783804
120 => 0.031504492539576
121 => 0.031608291273272
122 => 0.03125554261939
123 => 0.029839205872666
124 => 0.029491633282408
125 => 0.029741461567621
126 => 0.029622059738291
127 => 0.023907314115773
128 => 0.025249908831764
129 => 0.024452184641731
130 => 0.024819812650023
131 => 0.024005542821677
201 => 0.024394155063302
202 => 0.024322392572121
203 => 0.026481245145168
204 => 0.026447537631644
205 => 0.026463671634606
206 => 0.025693553636319
207 => 0.026920372518572
208 => 0.027524747614951
209 => 0.027412893869533
210 => 0.02744104504746
211 => 0.026957314541357
212 => 0.026468355203288
213 => 0.025926024047066
214 => 0.026933608301169
215 => 0.026821582132149
216 => 0.027078529858137
217 => 0.027732020270532
218 => 0.027828249216126
219 => 0.027957581894862
220 => 0.027911225336062
221 => 0.029015626636556
222 => 0.028881876351991
223 => 0.029204176055208
224 => 0.028541181112754
225 => 0.02779093940331
226 => 0.027933535825026
227 => 0.027919802642927
228 => 0.027744963472591
229 => 0.027587126487199
301 => 0.027324372376816
302 => 0.028155765262358
303 => 0.028122012229507
304 => 0.028668434597761
305 => 0.028571849136509
306 => 0.027926827787792
307 => 0.027949864851449
308 => 0.028104800175776
309 => 0.028641033102292
310 => 0.028800223544403
311 => 0.028726480188975
312 => 0.028901025241431
313 => 0.029038978534117
314 => 0.028918350051026
315 => 0.030626194988634
316 => 0.029916978700005
317 => 0.030262645784388
318 => 0.030345085347224
319 => 0.030133918140536
320 => 0.030179712746336
321 => 0.03024907909584
322 => 0.030670257986703
323 => 0.031775553265422
324 => 0.032265081020367
325 => 0.033737849423994
326 => 0.032224432554875
327 => 0.032134632661003
328 => 0.032399922723841
329 => 0.033264593685138
330 => 0.033965328284856
331 => 0.034197802377931
401 => 0.03422852766706
402 => 0.034664664520255
403 => 0.034914650031035
404 => 0.034611706034739
405 => 0.034354992717436
406 => 0.033435477479288
407 => 0.033541913871861
408 => 0.034275155068793
409 => 0.035310901447151
410 => 0.036199679590827
411 => 0.035888460461957
412 => 0.038262842728766
413 => 0.038498253032038
414 => 0.038465726939853
415 => 0.039002026644457
416 => 0.037937580946353
417 => 0.037482509787749
418 => 0.034410497050457
419 => 0.035273607323865
420 => 0.036528188794952
421 => 0.036362140232815
422 => 0.035451029633452
423 => 0.036198988431736
424 => 0.035951689862189
425 => 0.03575663521996
426 => 0.036650218349212
427 => 0.035667686992228
428 => 0.036518387293069
429 => 0.035427355357873
430 => 0.035889882084723
501 => 0.035627329544662
502 => 0.03579723321531
503 => 0.034803979828403
504 => 0.035339915246115
505 => 0.034781683153034
506 => 0.034781418478338
507 => 0.034769095473943
508 => 0.035425853055873
509 => 0.035447269897041
510 => 0.03496192505169
511 => 0.034891979276963
512 => 0.035150605466192
513 => 0.034847821932911
514 => 0.034989492442437
515 => 0.034852112988323
516 => 0.034821185979548
517 => 0.034574754311832
518 => 0.0344685847736
519 => 0.034510216585193
520 => 0.034368105749557
521 => 0.034282478830713
522 => 0.034752062124587
523 => 0.034501182713606
524 => 0.034713611256737
525 => 0.03447152212122
526 => 0.033632335704302
527 => 0.033149710721697
528 => 0.031564565372762
529 => 0.032014110627353
530 => 0.032312159596235
531 => 0.032213654413798
601 => 0.032425281662119
602 => 0.032438273856401
603 => 0.032369471680687
604 => 0.032289807575315
605 => 0.032251031494521
606 => 0.03254003663211
607 => 0.032707813841946
608 => 0.032342072797644
609 => 0.032256384788224
610 => 0.032626169177131
611 => 0.032851737440747
612 => 0.034517206763426
613 => 0.034393823416607
614 => 0.034703491404364
615 => 0.034668627541185
616 => 0.034993208926333
617 => 0.035523762312723
618 => 0.034444998933133
619 => 0.034632234954999
620 => 0.034586329006348
621 => 0.035087518116526
622 => 0.035089082774222
623 => 0.034788594866417
624 => 0.034951494236098
625 => 0.034860568276852
626 => 0.035024883774589
627 => 0.034392175556787
628 => 0.035162745869438
629 => 0.035599609582257
630 => 0.035605675435334
701 => 0.035812745368045
702 => 0.036023140412362
703 => 0.036426975378381
704 => 0.036011877674341
705 => 0.035265157313721
706 => 0.035319068111865
707 => 0.034881266237648
708 => 0.034888625766249
709 => 0.0348493400258
710 => 0.034967239490179
711 => 0.034418047859156
712 => 0.034546942037248
713 => 0.034366489433116
714 => 0.034631842686279
715 => 0.034346366450339
716 => 0.03458630686911
717 => 0.034689857199701
718 => 0.035071960148859
719 => 0.03428992953407
720 => 0.032695316171696
721 => 0.033030523233285
722 => 0.032534725659249
723 => 0.03258061361236
724 => 0.032673314580659
725 => 0.032372840412533
726 => 0.032430161414782
727 => 0.03242811350522
728 => 0.032410465726985
729 => 0.032332300790992
730 => 0.032218946169341
731 => 0.032670516093285
801 => 0.03274724662278
802 => 0.032917809084947
803 => 0.033425287278733
804 => 0.033374578240014
805 => 0.033457286786062
806 => 0.033276734494427
807 => 0.032588988915333
808 => 0.032626336809121
809 => 0.032160607975118
810 => 0.032905899351561
811 => 0.032729404516254
812 => 0.032615617147764
813 => 0.032584569210039
814 => 0.03309330534411
815 => 0.033245527168886
816 => 0.033150672742912
817 => 0.032956123547894
818 => 0.033329715515634
819 => 0.033429672965622
820 => 0.033452049752385
821 => 0.034113983090066
822 => 0.033489044472799
823 => 0.033639473409331
824 => 0.034813077030318
825 => 0.033748780492312
826 => 0.034312562105139
827 => 0.034284967928969
828 => 0.034573379524761
829 => 0.03426130976001
830 => 0.034265178238756
831 => 0.034521268197126
901 => 0.034161636036663
902 => 0.034072586056214
903 => 0.033949564146012
904 => 0.034218177986272
905 => 0.034379199835149
906 => 0.035676917679583
907 => 0.03651530259021
908 => 0.036478906090157
909 => 0.03681150196925
910 => 0.036661664479489
911 => 0.03617779969992
912 => 0.037003697877622
913 => 0.036742349137149
914 => 0.036763894409775
915 => 0.036763092493652
916 => 0.036936866558563
917 => 0.036813731707414
918 => 0.036571020276268
919 => 0.036732143451131
920 => 0.037210621677886
921 => 0.038695832775239
922 => 0.039526976581748
923 => 0.038645796874472
924 => 0.039253622837084
925 => 0.038889143850052
926 => 0.038822907175798
927 => 0.039204666798304
928 => 0.039587094640493
929 => 0.039562735640227
930 => 0.039285112664684
1001 => 0.039128290490223
1002 => 0.040315800534528
1003 => 0.041190737706466
1004 => 0.041131072856993
1005 => 0.041394414098518
1006 => 0.042167592128474
1007 => 0.042238281837751
1008 => 0.042229376559166
1009 => 0.042054164739016
1010 => 0.042815458919362
1011 => 0.043450543918303
1012 => 0.042013608265007
1013 => 0.042560774550913
1014 => 0.042806415125253
1015 => 0.043167088366659
1016 => 0.043775604580764
1017 => 0.044436614590236
1018 => 0.044530088653181
1019 => 0.044463764332376
1020 => 0.044027810462226
1021 => 0.04475109550208
1022 => 0.045174778915305
1023 => 0.045427072692058
1024 => 0.046066847732222
1025 => 0.042807932117814
1026 => 0.040501109667321
1027 => 0.040140866030757
1028 => 0.040873435631592
1029 => 0.041066608393199
1030 => 0.040988740695213
1031 => 0.038392202300062
1101 => 0.040127195793472
1102 => 0.041993902909985
1103 => 0.042065610732735
1104 => 0.043000123346267
1105 => 0.043304438960199
1106 => 0.04405684410346
1107 => 0.044009780956891
1108 => 0.044192979635895
1109 => 0.044150865432151
1110 => 0.045544537522447
1111 => 0.047081964800352
1112 => 0.047028728582438
1113 => 0.046807705221225
1114 => 0.047135962602709
1115 => 0.048722752314227
1116 => 0.048576666145377
1117 => 0.048718576414825
1118 => 0.050589490912253
1119 => 0.053021945893395
1120 => 0.051891826340167
1121 => 0.05434386058753
1122 => 0.055887286169494
1123 => 0.058556481120317
1124 => 0.058222284766411
1125 => 0.059261382773309
1126 => 0.057624003544037
1127 => 0.053864249864688
1128 => 0.053269254453172
1129 => 0.05446045033471
1130 => 0.057388889174278
1201 => 0.054368223374223
1202 => 0.054979300131451
1203 => 0.05480330998426
1204 => 0.054793932217226
1205 => 0.055151843442773
1206 => 0.054632674542724
1207 => 0.052517487047222
1208 => 0.053486865011532
1209 => 0.053112541626159
1210 => 0.053527881329888
1211 => 0.055769298411788
1212 => 0.054778314491171
1213 => 0.053734393431796
1214 => 0.05504370210488
1215 => 0.056710901972988
1216 => 0.056606571601488
1217 => 0.056404127074066
1218 => 0.057545296275495
1219 => 0.059430173465051
1220 => 0.059939648195338
1221 => 0.060315732025483
1222 => 0.060367587631672
1223 => 0.060901732603495
1224 => 0.058029500468137
1225 => 0.062587806631103
1226 => 0.063374900184781
1227 => 0.063226959218375
1228 => 0.064101780577328
1229 => 0.063844385941448
1230 => 0.06347146149804
1231 => 0.064858239431819
]
'min_raw' => 0.023907314115773
'max_raw' => 0.064858239431819
'avg_raw' => 0.044382776773796
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0239073'
'max' => '$0.064858'
'avg' => '$0.044382'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0082450147807051
'max_diff' => 0.0298932594991
'year' => 2032
]
7 => [
'items' => [
101 => 0.06326841043795
102 => 0.061011848335056
103 => 0.059773853735671
104 => 0.061404144890317
105 => 0.062399706809138
106 => 0.063057709907849
107 => 0.063256821247943
108 => 0.058252463672608
109 => 0.055555392493898
110 => 0.057284184197467
111 => 0.059393429390652
112 => 0.05801778350459
113 => 0.058071706218882
114 => 0.056110396698737
115 => 0.059566961763283
116 => 0.059063369307667
117 => 0.061676007858243
118 => 0.061052480700414
119 => 0.063182986016365
120 => 0.062621952565667
121 => 0.064950771052557
122 => 0.065879799797222
123 => 0.067439783651291
124 => 0.068587314124621
125 => 0.069261165967321
126 => 0.06922071043024
127 => 0.071890847142671
128 => 0.070316360810822
129 => 0.068338434900083
130 => 0.068302660460634
131 => 0.069327056317232
201 => 0.071473909003384
202 => 0.072030556669467
203 => 0.072341646775537
204 => 0.071865201448967
205 => 0.070156209380197
206 => 0.069418275269688
207 => 0.070047016511851
208 => 0.069278120001037
209 => 0.07060545109296
210 => 0.072428160184792
211 => 0.072051777965101
212 => 0.073309967295151
213 => 0.074612060886374
214 => 0.076474113202506
215 => 0.076960922629541
216 => 0.077765600100724
217 => 0.078593877541351
218 => 0.078859897932578
219 => 0.079367813400709
220 => 0.079365136435478
221 => 0.080895773885345
222 => 0.082584114392444
223 => 0.083221423848702
224 => 0.084686881801917
225 => 0.082177336412807
226 => 0.084080855418027
227 => 0.085797877208906
228 => 0.08375077304532
301 => 0.086572229220726
302 => 0.08668177997046
303 => 0.0883358662268
304 => 0.086659132921416
305 => 0.085663494037001
306 => 0.088537866190204
307 => 0.089928684333265
308 => 0.089509758589722
309 => 0.086321712996442
310 => 0.084466133719445
311 => 0.079609724837032
312 => 0.085362350939501
313 => 0.08816428730761
314 => 0.086314456658146
315 => 0.087247403639513
316 => 0.092337259860773
317 => 0.094275147566044
318 => 0.093872080470205
319 => 0.093940192174353
320 => 0.094985841204967
321 => 0.09962282485615
322 => 0.096844236767922
323 => 0.098968363249663
324 => 0.10009499227647
325 => 0.10114146810429
326 => 0.098571654213251
327 => 0.095228364099076
328 => 0.094169403778146
329 => 0.086130527456234
330 => 0.085712069032609
331 => 0.08547717563884
401 => 0.083996206017455
402 => 0.082832569566767
403 => 0.081907202658128
404 => 0.07947876355191
405 => 0.080298290462681
406 => 0.076427865382
407 => 0.078904026189177
408 => 0.07272673430573
409 => 0.077871366545484
410 => 0.07507137711511
411 => 0.076951494712132
412 => 0.076944935158954
413 => 0.07348304257101
414 => 0.071486295174139
415 => 0.072758700329996
416 => 0.074122819660723
417 => 0.074344143432684
418 => 0.076112759752128
419 => 0.076606342550605
420 => 0.075110763628044
421 => 0.072598723661788
422 => 0.073182213252418
423 => 0.071474470776208
424 => 0.068481717774017
425 => 0.070631165228645
426 => 0.071365081094189
427 => 0.071689220150677
428 => 0.068746191293026
429 => 0.067821427729687
430 => 0.067329091368083
501 => 0.072218815593239
502 => 0.072486685724221
503 => 0.071116224261096
504 => 0.077310840026912
505 => 0.075908807695629
506 => 0.077475221315933
507 => 0.073129267687917
508 => 0.07329528896911
509 => 0.071237844874611
510 => 0.072389876089066
511 => 0.071575657558388
512 => 0.072296803351532
513 => 0.072729055166547
514 => 0.074786161654716
515 => 0.077894855397203
516 => 0.074478898543839
517 => 0.072990517225426
518 => 0.073913900624395
519 => 0.076372992297893
520 => 0.080098642061828
521 => 0.077892982415889
522 => 0.078871816712227
523 => 0.079085648460671
524 => 0.077459276695714
525 => 0.080158608708635
526 => 0.081605202663694
527 => 0.083089108731143
528 => 0.084377542791405
529 => 0.08249640401601
530 => 0.084509492156334
531 => 0.082887298473126
601 => 0.081432023039989
602 => 0.081434230092109
603 => 0.08052131455472
604 => 0.078752425666269
605 => 0.078426215415614
606 => 0.080123202335334
607 => 0.081484025139691
608 => 0.081596109023759
609 => 0.082349530449851
610 => 0.082795397488954
611 => 0.087165500599014
612 => 0.088923192221269
613 => 0.091072464265563
614 => 0.091909726853151
615 => 0.094429587066539
616 => 0.092394595291188
617 => 0.091954312019892
618 => 0.085841955382206
619 => 0.086842853439206
620 => 0.088445387800762
621 => 0.085868380583578
622 => 0.087502898517585
623 => 0.087825586981582
624 => 0.085780814864442
625 => 0.086873016001594
626 => 0.083972453596387
627 => 0.077958079731315
628 => 0.080165304426047
629 => 0.081790564745168
630 => 0.07947111787663
701 => 0.083628636613495
702 => 0.081199899996025
703 => 0.080430107088205
704 => 0.077426870503811
705 => 0.078844282566468
706 => 0.080761352676597
707 => 0.079576826231859
708 => 0.082034896462231
709 => 0.085516179451824
710 => 0.087997149024194
711 => 0.088187607061639
712 => 0.086592509838657
713 => 0.08914866331826
714 => 0.089167282105743
715 => 0.086283930538557
716 => 0.084517893758224
717 => 0.08411664648596
718 => 0.085119040841239
719 => 0.086336132640753
720 => 0.088255147185984
721 => 0.089414767484706
722 => 0.092438442208689
723 => 0.09325656189345
724 => 0.094155427388613
725 => 0.095356588890004
726 => 0.096798891243911
727 => 0.093643215803881
728 => 0.093768596672028
729 => 0.090830075395573
730 => 0.087689843985103
731 => 0.090072888190279
801 => 0.09318840148546
802 => 0.092473699293209
803 => 0.09239328069654
804 => 0.092528522469879
805 => 0.091989660356913
806 => 0.089552406991131
807 => 0.088328433608848
808 => 0.089907671540905
809 => 0.090746966217999
810 => 0.092048639067985
811 => 0.091888180414244
812 => 0.095241149886348
813 => 0.096544012434674
814 => 0.096210684442181
815 => 0.096272024814786
816 => 0.098630795225703
817 => 0.10125423304078
818 => 0.1037114287477
819 => 0.1062109937598
820 => 0.10319767057804
821 => 0.10166769090227
822 => 0.10324623938845
823 => 0.102408639342
824 => 0.10722173765719
825 => 0.1075549861417
826 => 0.1123677364151
827 => 0.11693560951619
828 => 0.11406661026334
829 => 0.11677194733621
830 => 0.11969798994989
831 => 0.12534280088499
901 => 0.12344182714889
902 => 0.1219857110591
903 => 0.12060968839014
904 => 0.12347297312679
905 => 0.12715654319839
906 => 0.12794994891102
907 => 0.12923556926978
908 => 0.12788389666072
909 => 0.12951183743648
910 => 0.13525918372836
911 => 0.13370620002706
912 => 0.13150071351664
913 => 0.13603769143307
914 => 0.13767960610397
915 => 0.14920342314173
916 => 0.16375271817705
917 => 0.1577292144966
918 => 0.1539902313849
919 => 0.15486898110602
920 => 0.1601818911282
921 => 0.16188822920399
922 => 0.15724981410399
923 => 0.15888818073266
924 => 0.16791574193729
925 => 0.17275873888474
926 => 0.16618129852884
927 => 0.14803440145198
928 => 0.13130213358713
929 => 0.13574028448873
930 => 0.13523713590834
1001 => 0.14493612421153
1002 => 0.13366916187939
1003 => 0.13385886862933
1004 => 0.14375842173922
1005 => 0.14111739069081
1006 => 0.13683925863008
1007 => 0.13133336868563
1008 => 0.12115522189015
1009 => 0.11214015343477
1010 => 0.12982077872204
1011 => 0.12905835800953
1012 => 0.12795425983338
1013 => 0.13041131084849
1014 => 0.14234205313177
1015 => 0.1420670109061
1016 => 0.14031733259414
1017 => 0.1416444481728
1018 => 0.13660660885263
1019 => 0.13790497475491
1020 => 0.13129948311041
1021 => 0.13428544120342
1022 => 0.13683007968008
1023 => 0.13734095352829
1024 => 0.13849197839416
1025 => 0.12865659693869
1026 => 0.13307239446057
1027 => 0.1356662618004
1028 => 0.12394707479335
1029 => 0.13543461115333
1030 => 0.1284853848293
1031 => 0.12612671304105
1101 => 0.12930235387255
1102 => 0.1280648035521
1103 => 0.12700083045798
1104 => 0.12640711519007
1105 => 0.12873895533404
1106 => 0.12863017220417
1107 => 0.12481482913797
1108 => 0.1198378696414
1109 => 0.12150830061158
1110 => 0.12090141737974
1111 => 0.11870199425805
1112 => 0.12018413988271
1113 => 0.11365752064847
1114 => 0.10242881148012
1115 => 0.1098468407014
1116 => 0.10956125464564
1117 => 0.10941724920603
1118 => 0.11499169314655
1119 => 0.11445583898598
1120 => 0.11348325843743
1121 => 0.11868413205357
1122 => 0.11678574322206
1123 => 0.12263613028413
1124 => 0.12648957358252
1125 => 0.12551221571621
1126 => 0.12913639776365
1127 => 0.12154678396733
1128 => 0.12406774922802
1129 => 0.12458731667434
1130 => 0.11861995408046
1201 => 0.11454351135367
1202 => 0.11427165909864
1203 => 0.10720366917879
1204 => 0.11097933234315
1205 => 0.11430175968023
1206 => 0.11271057481655
1207 => 0.112206853224
1208 => 0.11478025759644
1209 => 0.1149802331559
1210 => 0.11042076920783
1211 => 0.11136882614208
1212 => 0.11532238115924
1213 => 0.11126920669942
1214 => 0.10339455080627
1215 => 0.10144152726914
1216 => 0.10118095792792
1217 => 0.095884203198956
1218 => 0.10157203764064
1219 => 0.099089145482356
1220 => 0.10693257206074
1221 => 0.10245244886431
1222 => 0.10225931970762
1223 => 0.1019673766614
1224 => 0.097408241059995
1225 => 0.098406402008519
1226 => 0.10172444102562
1227 => 0.1029083547273
1228 => 0.1027848628287
1229 => 0.10170818082428
1230 => 0.1022010803324
1231 => 0.10061327927918
]
'min_raw' => 0.055555392493898
'max_raw' => 0.17275873888474
'avg_raw' => 0.11415706568932
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.055555'
'max' => '$0.172758'
'avg' => '$0.114157'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.031648078378125
'max_diff' => 0.10790049945292
'year' => 2033
]
8 => [
'items' => [
101 => 0.10005259368007
102 => 0.098282915700549
103 => 0.095681977956671
104 => 0.096043654302435
105 => 0.090890516059431
106 => 0.088082812846896
107 => 0.0873056776026
108 => 0.086266459875209
109 => 0.087423060010161
110 => 0.090875917866246
111 => 0.08671103872715
112 => 0.079570645575471
113 => 0.079999795370525
114 => 0.080963967544293
115 => 0.079167239077113
116 => 0.077466786370918
117 => 0.078945192036866
118 => 0.07591971332836
119 => 0.08132958219182
120 => 0.081183260400046
121 => 0.083199724968298
122 => 0.084460661644844
123 => 0.081554610838502
124 => 0.080823746919503
125 => 0.081240080223678
126 => 0.074359018099569
127 => 0.082637395389715
128 => 0.082708987140288
129 => 0.082095975107276
130 => 0.086503955448054
131 => 0.095806168850643
201 => 0.092306301987922
202 => 0.090951047754641
203 => 0.088374708466487
204 => 0.091807527600061
205 => 0.091543940650923
206 => 0.09035190050454
207 => 0.089630950904616
208 => 0.090959322647998
209 => 0.089466350945172
210 => 0.089198172203226
211 => 0.08757330080838
212 => 0.086993295647358
213 => 0.086563882916808
214 => 0.086091141693696
215 => 0.087133891032108
216 => 0.084770883846166
217 => 0.081921328828372
218 => 0.081684419161255
219 => 0.082338547581476
220 => 0.082049144449662
221 => 0.081683033610401
222 => 0.080984028313898
223 => 0.080776648374311
224 => 0.081450532571526
225 => 0.08068975660276
226 => 0.081812322986286
227 => 0.081507047044398
228 => 0.079801800448776
301 => 0.077676431827479
302 => 0.077657511588638
303 => 0.077199604405483
304 => 0.076616390760929
305 => 0.076454154067135
306 => 0.078820684835288
307 => 0.08371933270106
308 => 0.082757610910301
309 => 0.083452553465338
310 => 0.086870983026195
311 => 0.087957598987828
312 => 0.08718634471617
313 => 0.086130604300234
314 => 0.086177051520562
315 => 0.089784836116174
316 => 0.090009849216004
317 => 0.090578384727296
318 => 0.091309113527424
319 => 0.087310790990592
320 => 0.08598873088864
321 => 0.085362265467233
322 => 0.083432994441929
323 => 0.085513547839522
324 => 0.084301298472924
325 => 0.084464872328813
326 => 0.084358344640578
327 => 0.084416515961725
328 => 0.08132807002322
329 => 0.082453337399271
330 => 0.080582362137388
331 => 0.078077336288557
401 => 0.078068938563536
402 => 0.07868204009117
403 => 0.078317343311868
404 => 0.077335953655978
405 => 0.077475355424569
406 => 0.076254049246282
407 => 0.077623644107075
408 => 0.077662919187037
409 => 0.077135550563295
410 => 0.079245600414018
411 => 0.080110089559496
412 => 0.079762964234019
413 => 0.080085734321295
414 => 0.08279757479262
415 => 0.083239723115341
416 => 0.083436096193615
417 => 0.083172982283175
418 => 0.080135301786915
419 => 0.080270035834139
420 => 0.079281446793055
421 => 0.078446193228285
422 => 0.078479598990548
423 => 0.078909027898202
424 => 0.080784369123603
425 => 0.084730914175056
426 => 0.084880682674872
427 => 0.085062206465704
428 => 0.084323857981842
429 => 0.084101165014066
430 => 0.084394954520495
501 => 0.085877069342339
502 => 0.089689471054373
503 => 0.088341913667591
504 => 0.087246328536158
505 => 0.088207452064056
506 => 0.088059494630471
507 => 0.086810584991918
508 => 0.086775532257986
509 => 0.084378475361038
510 => 0.083492338004581
511 => 0.082751815303294
512 => 0.081943183845323
513 => 0.081463800011466
514 => 0.082200351456327
515 => 0.082368809486387
516 => 0.080758326879483
517 => 0.0805388240511
518 => 0.081853978912579
519 => 0.081275228291957
520 => 0.081870487657592
521 => 0.082008592936459
522 => 0.081986354805727
523 => 0.081382072688712
524 => 0.081767224090145
525 => 0.080856226206598
526 => 0.079865652835697
527 => 0.079233728739965
528 => 0.07868229115387
529 => 0.078988260776376
530 => 0.077897534939988
531 => 0.077548589792954
601 => 0.081636743461521
602 => 0.084656706531549
603 => 0.084612795072474
604 => 0.084345495358467
605 => 0.083948342203218
606 => 0.085848015115319
607 => 0.085186207057902
608 => 0.085667727715586
609 => 0.085790294932325
610 => 0.08616126898251
611 => 0.086293860319155
612 => 0.085893077209211
613 => 0.084548000140708
614 => 0.081196195972089
615 => 0.079635922083574
616 => 0.079121005711947
617 => 0.07913972194409
618 => 0.078623444708641
619 => 0.078775511492403
620 => 0.078570562087052
621 => 0.078182437495902
622 => 0.078964295176579
623 => 0.079054396990769
624 => 0.078871902065595
625 => 0.078914886226886
626 => 0.077403906191051
627 => 0.077518782721499
628 => 0.076879135602159
629 => 0.076759209478343
630 => 0.075142237261097
701 => 0.072277536594373
702 => 0.07386485884696
703 => 0.07194759677712
704 => 0.07122150058001
705 => 0.074658727046
706 => 0.074313724842637
707 => 0.073723231039331
708 => 0.072849767634551
709 => 0.072525791561212
710 => 0.070557415497966
711 => 0.070441113339272
712 => 0.071416693666841
713 => 0.070966496913337
714 => 0.070334250168574
715 => 0.068044316548869
716 => 0.065469672989353
717 => 0.065547385294783
718 => 0.066366331508118
719 => 0.068747528073334
720 => 0.067817153380186
721 => 0.067142155865487
722 => 0.067015749121334
723 => 0.068597994174845
724 => 0.070837202416149
725 => 0.071887788823509
726 => 0.070846689600599
727 => 0.069650730870083
728 => 0.069723523336471
729 => 0.070207779003746
730 => 0.07025866742737
731 => 0.069480221240349
801 => 0.069699349282221
802 => 0.069366473749129
803 => 0.067323617216986
804 => 0.067286668420287
805 => 0.066785318481788
806 => 0.066770137804899
807 => 0.065917216491908
808 => 0.065797886904254
809 => 0.064104359868688
810 => 0.06521904449197
811 => 0.064471372570242
812 => 0.06334445462622
813 => 0.06315017354791
814 => 0.063144333224095
815 => 0.064301425978363
816 => 0.065205523189444
817 => 0.064484378643426
818 => 0.064320188009098
819 => 0.066073314425998
820 => 0.065850213109346
821 => 0.065657008807974
822 => 0.070636705877992
823 => 0.066694887076464
824 => 0.064976029087847
825 => 0.062848615924654
826 => 0.063541312377938
827 => 0.063687273698473
828 => 0.05857122853604
829 => 0.056495649650804
830 => 0.055783389193931
831 => 0.055373473231116
901 => 0.055560277082771
902 => 0.053692012644937
903 => 0.054947517245404
904 => 0.053329758162701
905 => 0.053058535587842
906 => 0.055951289229609
907 => 0.056353798999639
908 => 0.054636567270707
909 => 0.055739308035245
910 => 0.05533943890478
911 => 0.053357489998924
912 => 0.053281794128949
913 => 0.052287321836863
914 => 0.05073116526753
915 => 0.050019959958089
916 => 0.049649558057965
917 => 0.049802393100945
918 => 0.049725115026385
919 => 0.049220823316974
920 => 0.049754020436865
921 => 0.048391922127805
922 => 0.047849523605965
923 => 0.047604534777201
924 => 0.046395594128456
925 => 0.048319556318955
926 => 0.048698601107921
927 => 0.049078392732213
928 => 0.052384219526925
929 => 0.05221906976243
930 => 0.053711943202261
1001 => 0.053653932885607
1002 => 0.053228141197621
1003 => 0.051431796105341
1004 => 0.052147787242352
1005 => 0.049944077812361
1006 => 0.051595246754985
1007 => 0.050841722204035
1008 => 0.051340479346332
1009 => 0.050443669033364
1010 => 0.050940000888951
1011 => 0.048788486689019
1012 => 0.046779433001744
1013 => 0.047587934853437
1014 => 0.048466868829628
1015 => 0.050372621638224
1016 => 0.049237570987544
1017 => 0.049645778122545
1018 => 0.048278352553339
1019 => 0.045456963018263
1020 => 0.04547293177663
1021 => 0.04503892246397
1022 => 0.044663875051436
1023 => 0.049367945208759
1024 => 0.048782919724351
1025 => 0.04785075818119
1026 => 0.049098493449338
1027 => 0.049428414458458
1028 => 0.049437806845774
1029 => 0.050348122288706
1030 => 0.050833957803782
1031 => 0.050919588419046
1101 => 0.052351989437167
1102 => 0.052832111364615
1103 => 0.054809665634374
1104 => 0.050792738054672
1105 => 0.05071001207458
1106 => 0.049116051643347
1107 => 0.048105136738341
1108 => 0.049185269851768
1109 => 0.050142120337391
1110 => 0.049145783655146
1111 => 0.049275884192031
1112 => 0.047938383599815
1113 => 0.04841647712628
1114 => 0.048828275677425
1115 => 0.048600904721883
1116 => 0.048260519396558
1117 => 0.050063669509349
1118 => 0.049961928713383
1119 => 0.051641063552656
1120 => 0.052950069235953
1121 => 0.055296041433177
1122 => 0.052847897147077
1123 => 0.0527586770388
1124 => 0.05363081790857
1125 => 0.052831977844392
1126 => 0.05333681718993
1127 => 0.055214704009825
1128 => 0.055254380799194
1129 => 0.054589743456607
1130 => 0.054549300213908
1201 => 0.054676951085888
1202 => 0.055424606230176
1203 => 0.055163352549639
1204 => 0.05546568192289
1205 => 0.055843749433572
1206 => 0.057407596955053
1207 => 0.057784635298101
1208 => 0.056868627596462
1209 => 0.056951332835816
1210 => 0.056608720810429
1211 => 0.056277761886822
1212 => 0.057021709214423
1213 => 0.058381287577934
1214 => 0.058372829711497
1215 => 0.058688225465405
1216 => 0.05888471440721
1217 => 0.058041240030286
1218 => 0.057492169226321
1219 => 0.057702717910845
1220 => 0.058039389842551
1221 => 0.057593539740943
1222 => 0.054841546375963
1223 => 0.055676325364881
1224 => 0.055537377322518
1225 => 0.055339498413533
1226 => 0.056178875142046
1227 => 0.056097915208908
1228 => 0.053672850892782
1229 => 0.053828095642198
1230 => 0.053682291840181
1231 => 0.054153413753151
]
'min_raw' => 0.044663875051436
'max_raw' => 0.10005259368007
'avg_raw' => 0.072358234365754
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.044663'
'max' => '$0.100052'
'avg' => '$0.072358'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.010891517442462
'max_diff' => -0.07270614520467
'year' => 2034
]
9 => [
'items' => [
101 => 0.052806535715001
102 => 0.053220826328174
103 => 0.053480665517023
104 => 0.053633712795434
105 => 0.054186624510554
106 => 0.054121746702468
107 => 0.054182591614911
108 => 0.055002413725154
109 => 0.059148792629788
110 => 0.059374470885097
111 => 0.058263148618008
112 => 0.058707099943848
113 => 0.057854810479717
114 => 0.058426958106831
115 => 0.058818406982328
116 => 0.057049524785246
117 => 0.056944783061486
118 => 0.056088975895561
119 => 0.056548838191133
120 => 0.055817164213608
121 => 0.055996691414824
122 => 0.055494717709325
123 => 0.056398170437255
124 => 0.05740837096944
125 => 0.057663587517898
126 => 0.056992222656538
127 => 0.056506110251812
128 => 0.055652657004496
129 => 0.05707196877523
130 => 0.057487018789735
131 => 0.057069788694195
201 => 0.056973107364401
202 => 0.056789896419141
203 => 0.057011976432532
204 => 0.057484758338219
205 => 0.057261803122408
206 => 0.057409068970417
207 => 0.056847843417692
208 => 0.058041519255402
209 => 0.059937363759421
210 => 0.059943459209503
211 => 0.05972050279188
212 => 0.059629273829452
213 => 0.05985804064406
214 => 0.059982137256478
215 => 0.06072192718626
216 => 0.061515751255446
217 => 0.065220181813763
218 => 0.064179992536506
219 => 0.067466783705405
220 => 0.070066208783586
221 => 0.07084566270545
222 => 0.070128601773476
223 => 0.067675575060064
224 => 0.067555217866722
225 => 0.071221075417724
226 => 0.070185302752653
227 => 0.070062100889945
228 => 0.068751441223554
301 => 0.069526203414748
302 => 0.069356751558459
303 => 0.069089263513437
304 => 0.070567455803834
305 => 0.07333449981232
306 => 0.072903230054423
307 => 0.072581307186182
308 => 0.071170734887884
309 => 0.072020214474188
310 => 0.071717731064215
311 => 0.073017391754175
312 => 0.072247501552452
313 => 0.070177455756005
314 => 0.070507117372049
315 => 0.070457289681971
316 => 0.071482740012948
317 => 0.071174925276831
318 => 0.070397183914494
319 => 0.073325042356716
320 => 0.073134923515082
321 => 0.0734044685653
322 => 0.073523130632364
323 => 0.075305266471491
324 => 0.076035350502796
325 => 0.076201092359822
326 => 0.076894615722835
327 => 0.076183836866765
328 => 0.079027459067783
329 => 0.080918301901505
330 => 0.083114613154755
331 => 0.086324014208566
401 => 0.087530778693418
402 => 0.087312787490559
403 => 0.08974611874117
404 => 0.094118760908604
405 => 0.088196623491222
406 => 0.094432648571798
407 => 0.092458395029659
408 => 0.087777475396553
409 => 0.087476079356598
410 => 0.090646052478732
411 => 0.097676747765019
412 => 0.09591563833729
413 => 0.097679628309143
414 => 0.095621840307133
415 => 0.095519653788434
416 => 0.097579686138954
417 => 0.10239306401246
418 => 0.10010640861153
419 => 0.096827927383386
420 => 0.09924870690343
421 => 0.0971516036506
422 => 0.092426243079732
423 => 0.095914291650101
424 => 0.093581932904999
425 => 0.09426263918183
426 => 0.099164910351855
427 => 0.098575056114877
428 => 0.099338382116558
429 => 0.09799113170331
430 => 0.096732587375447
501 => 0.094383420926761
502 => 0.093687948553811
503 => 0.09388015209722
504 => 0.09368785330728
505 => 0.092373516269195
506 => 0.092089685310959
507 => 0.09161662127898
508 => 0.091763243603509
509 => 0.090873744823625
510 => 0.092552412801092
511 => 0.092863988370081
512 => 0.09408558293479
513 => 0.094212412934982
514 => 0.097614536409385
515 => 0.095740703970046
516 => 0.096997832549263
517 => 0.096885383136585
518 => 0.087878925118792
519 => 0.089119935568992
520 => 0.09105055837897
521 => 0.090180815419973
522 => 0.088951202364459
523 => 0.08795822389445
524 => 0.086453759975126
525 => 0.088571264050904
526 => 0.0913555567391
527 => 0.094283027192337
528 => 0.09780019112644
529 => 0.09701520108065
530 => 0.094217276259077
531 => 0.094342789122688
601 => 0.095118660258036
602 => 0.094113836642434
603 => 0.093817494541706
604 => 0.095077947404038
605 => 0.095086627450168
606 => 0.093930456443428
607 => 0.092645583946497
608 => 0.092640200283821
609 => 0.092411569633388
610 => 0.095662513191939
611 => 0.097450203441675
612 => 0.097655159247801
613 => 0.097436408282921
614 => 0.097520596847388
615 => 0.096480379280133
616 => 0.09885800817194
617 => 0.10103995556619
618 => 0.10045514705402
619 => 0.099578435958859
620 => 0.098880093343432
621 => 0.10029063972748
622 => 0.1002278303174
623 => 0.10102089815919
624 => 0.1009849200209
625 => 0.1007182411345
626 => 0.10045515657797
627 => 0.1014982571069
628 => 0.10119786090625
629 => 0.10089699810733
630 => 0.1002935717043
701 => 0.10037558737432
702 => 0.099499027655688
703 => 0.099093491021204
704 => 0.092995193057011
705 => 0.091365528573345
706 => 0.091878254194786
707 => 0.092047056782279
708 => 0.091337824710515
709 => 0.092354681314654
710 => 0.092196205290016
711 => 0.092812742796507
712 => 0.092427556929398
713 => 0.092443365091743
714 => 0.093576114596623
715 => 0.09390495659695
716 => 0.093737704901503
717 => 0.093854842255941
718 => 0.096554223148388
719 => 0.096170457506824
720 => 0.095966589658476
721 => 0.096023062445726
722 => 0.096712812139125
723 => 0.09690590439434
724 => 0.096087758940643
725 => 0.096473601066249
726 => 0.098116467866422
727 => 0.098691378268275
728 => 0.10052621629834
729 => 0.099746744491524
730 => 0.10117749872769
731 => 0.10557514946959
801 => 0.1090882971765
802 => 0.10585746135825
803 => 0.11230890972534
804 => 0.11733228768443
805 => 0.11713948207148
806 => 0.11626353993149
807 => 0.11054455767849
808 => 0.10528186494405
809 => 0.10968433088215
810 => 0.1096955536732
811 => 0.10931737794476
812 => 0.10696856097478
813 => 0.10923564420556
814 => 0.10941559703958
815 => 0.10931487130585
816 => 0.10751403884206
817 => 0.10476450051932
818 => 0.10530175372612
819 => 0.10618178543852
820 => 0.10451570181309
821 => 0.1039832871432
822 => 0.10497314731057
823 => 0.10816268301537
824 => 0.1075597197661
825 => 0.10754397395889
826 => 0.11012370643548
827 => 0.10827717472336
828 => 0.10530853020958
829 => 0.10455890831824
830 => 0.1018982556098
831 => 0.10373597791244
901 => 0.10380211426648
902 => 0.10279561254239
903 => 0.10539020227734
904 => 0.10536629267617
905 => 0.10782946947579
906 => 0.1125381383897
907 => 0.11114555329233
908 => 0.10952612833692
909 => 0.10970220473136
910 => 0.11163332818476
911 => 0.11046572686157
912 => 0.11088560443819
913 => 0.11163269264976
914 => 0.11208342951695
915 => 0.10963735063261
916 => 0.1090670526352
917 => 0.10790042307988
918 => 0.10759607120507
919 => 0.10854626663535
920 => 0.10829592371037
921 => 0.10379655576201
922 => 0.10332634677716
923 => 0.10334076741542
924 => 0.1021584045658
925 => 0.10035501742052
926 => 0.10509421116366
927 => 0.10471358758111
928 => 0.1042934086039
929 => 0.1043448781311
930 => 0.10640200150882
1001 => 0.10520876606252
1002 => 0.10838117806394
1003 => 0.10772902552789
1004 => 0.10706014774007
1005 => 0.10696768845528
1006 => 0.10671022757295
1007 => 0.10582729841044
1008 => 0.1047611083909
1009 => 0.1040571173882
1010 => 0.095987190352198
1011 => 0.097484921869474
1012 => 0.099207925457576
1013 => 0.099802699391685
1014 => 0.098785297420288
1015 => 0.10586747164141
1016 => 0.10716145311714
1017 => 0.10324189882283
1018 => 0.10250871024872
1019 => 0.10591553936227
1020 => 0.10386080493888
1021 => 0.10478605172392
1022 => 0.10278617425759
1023 => 0.10684977087184
1024 => 0.10681881307402
1025 => 0.10523798221059
1026 => 0.1065740896313
1027 => 0.10634190808696
1028 => 0.10455715393556
1029 => 0.10690635076184
1030 => 0.10690751593416
1031 => 0.10538600059833
1101 => 0.10360920378862
1102 => 0.10329155448511
1103 => 0.1030522484051
1104 => 0.10472719709796
1105 => 0.10622895085855
1106 => 0.10902334229068
1107 => 0.10972591868982
1108 => 0.11246812114883
1109 => 0.1108352730999
1110 => 0.11155909349107
1111 => 0.11234490291633
1112 => 0.11272164885198
1113 => 0.11210776156713
1114 => 0.11636753072153
1115 => 0.11672718575412
1116 => 0.11684777497554
1117 => 0.115411404784
1118 => 0.11668723770071
1119 => 0.11609031773013
1120 => 0.11764333766445
1121 => 0.11788687102011
1122 => 0.11768060693182
1123 => 0.11775790826281
1124 => 0.11412294676431
1125 => 0.11393445483466
1126 => 0.11136435399915
1127 => 0.11241168908685
1128 => 0.11045374634047
1129 => 0.11107463015439
1130 => 0.11134830982357
1201 => 0.11120535509558
1202 => 0.1124709038413
1203 => 0.11139492887291
1204 => 0.10855525402467
1205 => 0.10571480550891
1206 => 0.10567914599158
1207 => 0.10493130603546
1208 => 0.10439075472091
1209 => 0.10449488408118
1210 => 0.10486184952858
1211 => 0.104369426022
1212 => 0.10447450954363
1213 => 0.10621959617061
1214 => 0.10656956084826
1215 => 0.10538024413357
1216 => 0.10060496590652
1217 => 0.09943310065172
1218 => 0.10027541415777
1219 => 0.099872842553816
1220 => 0.080605178696698
1221 => 0.08513183051863
1222 => 0.082442247716609
1223 => 0.083681731213535
1224 => 0.080936363636762
1225 => 0.082246596941441
1226 => 0.082004644692126
1227 => 0.089283366868427
1228 => 0.0891697196332
1229 => 0.089224116550625
1230 => 0.086627609951479
1231 => 0.090763915466756
]
'min_raw' => 0.052806535715001
'max_raw' => 0.11788687102011
'avg_raw' => 0.085346703367554
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0528065'
'max' => '$0.117886'
'avg' => '$0.085346'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0081426606635654
'max_diff' => 0.017834277340035
'year' => 2035
]
10 => [
'items' => [
101 => 0.092801608300316
102 => 0.092424485588263
103 => 0.092519399250097
104 => 0.090888468075783
105 => 0.089239907529432
106 => 0.087411400171879
107 => 0.090808540831872
108 => 0.090430836781606
109 => 0.091297153979289
110 => 0.093500442529924
111 => 0.093824885138485
112 => 0.094260939294562
113 => 0.094104644920057
114 => 0.097828211011507
115 => 0.097377262588952
116 => 0.098463918540594
117 => 0.096228584803282
118 => 0.093699092499688
119 => 0.094179866291267
120 => 0.094133563908999
121 => 0.09354408143933
122 => 0.093011923023255
123 => 0.092126029195193
124 => 0.094929128354797
125 => 0.094815327647977
126 => 0.096657628812539
127 => 0.096331984186544
128 => 0.094157249675392
129 => 0.094234920743907
130 => 0.094757296007115
131 => 0.096565242757451
201 => 0.097101964447353
202 => 0.096853333575929
203 => 0.09744182440663
204 => 0.097906943564512
205 => 0.097500236211759
206 => 0.10325835465683
207 => 0.10086718242382
208 => 0.10203262313252
209 => 0.10231057387437
210 => 0.1015986088938
211 => 0.10175300860453
212 => 0.10198688209488
213 => 0.1034069161312
214 => 0.10713349633265
215 => 0.10878397333619
216 => 0.11374951483442
217 => 0.10864692419679
218 => 0.10834415758498
219 => 0.1092386015538
220 => 0.11215390006921
221 => 0.11451647569588
222 => 0.11530027833151
223 => 0.11540387078898
224 => 0.11687433663963
225 => 0.11771718024266
226 => 0.11669578340827
227 => 0.11583025653583
228 => 0.11273004671191
229 => 0.11308890444062
301 => 0.11556107832935
302 => 0.11905316955748
303 => 0.12204974712139
304 => 0.12100045009978
305 => 0.12900584568641
306 => 0.12979954795971
307 => 0.12968988396901
308 => 0.13149805586633
309 => 0.12790920287795
310 => 0.12637489869466
311 => 0.1160173932698
312 => 0.11892742981703
313 => 0.12315733883888
314 => 0.12259749451849
315 => 0.11952562152103
316 => 0.12204741683026
317 => 0.1212136324372
318 => 0.12055599209265
319 => 0.1235687700009
320 => 0.12025609693268
321 => 0.12312429239096
322 => 0.11944580204803
323 => 0.12100524320019
324 => 0.12012002898054
325 => 0.12069287106843
326 => 0.11734404792774
327 => 0.11915099160637
328 => 0.11726887313003
329 => 0.11726798076081
330 => 0.11722643289113
331 => 0.11944073693195
401 => 0.11951294530723
402 => 0.11787657127543
403 => 0.11764074421248
404 => 0.11851272046617
405 => 0.11749186464404
406 => 0.11796951665803
407 => 0.11750633223695
408 => 0.11740205966762
409 => 0.1165711980946
410 => 0.11621324008393
411 => 0.11635360464336
412 => 0.11587446803915
413 => 0.11558577090399
414 => 0.11716900376454
415 => 0.11632314631458
416 => 0.11703936397903
417 => 0.11622314355651
418 => 0.11339376796175
419 => 0.1117665641371
420 => 0.10642213592185
421 => 0.10793780913395
422 => 0.10894270204165
423 => 0.10861058494165
424 => 0.10932410098471
425 => 0.10936790507481
426 => 0.10913593373578
427 => 0.10886734064255
428 => 0.10873660437889
429 => 0.10971100537797
430 => 0.11027667795476
501 => 0.10904355648867
502 => 0.10875465338237
503 => 0.11000140726709
504 => 0.11076192641654
505 => 0.11637717251731
506 => 0.11596117694916
507 => 0.11700524419021
508 => 0.11688769824138
509 => 0.11798204704296
510 => 0.11977084482723
511 => 0.11613371877609
512 => 0.11676499809621
513 => 0.11661022298528
514 => 0.11830001706215
515 => 0.11830529241481
516 => 0.11729217645426
517 => 0.1178414030524
518 => 0.11753483983256
519 => 0.11808884100532
520 => 0.11595562107472
521 => 0.11855365268333
522 => 0.12002656919195
523 => 0.1200470206391
524 => 0.1207451713744
525 => 0.12145453295563
526 => 0.12281609073842
527 => 0.12141655984805
528 => 0.11889894001787
529 => 0.11908070403774
530 => 0.11760462445247
531 => 0.11762943761697
601 => 0.11749698300021
602 => 0.11789448927584
603 => 0.11604285134851
604 => 0.11647742706905
605 => 0.11586901851542
606 => 0.11676367553483
607 => 0.11580117247405
608 => 0.11661014834804
609 => 0.11695927551728
610 => 0.11824756228794
611 => 0.11561089147055
612 => 0.11023454118695
613 => 0.11136471519851
614 => 0.10969309906216
615 => 0.10984781349987
616 => 0.11016036128667
617 => 0.10914729165039
618 => 0.1093405534115
619 => 0.10933364874143
620 => 0.10927414802499
621 => 0.10901060948598
622 => 0.10862842646492
623 => 0.1101509259911
624 => 0.11040962832845
625 => 0.11098469157794
626 => 0.11269568973928
627 => 0.11252472067485
628 => 0.11280357831238
629 => 0.11219483365537
630 => 0.10987605141859
701 => 0.11000197245005
702 => 0.10843173517006
703 => 0.11094453708031
704 => 0.1103494724206
705 => 0.10996583036336
706 => 0.10986115007362
707 => 0.11157638946846
708 => 0.11208961597848
709 => 0.11176980765879
710 => 0.1111138714648
711 => 0.11237346286739
712 => 0.11271047638883
713 => 0.1127859212877
714 => 0.1150176757504
715 => 0.11291065157046
716 => 0.11341783323259
717 => 0.11737471977914
718 => 0.11378636969444
719 => 0.11568719876406
720 => 0.11559416307254
721 => 0.11656656290401
722 => 0.11551439790413
723 => 0.11552744075032
724 => 0.11639086592459
725 => 0.11517834098687
726 => 0.11487810276052
727 => 0.11446332580115
728 => 0.11536897611761
729 => 0.11591187252329
730 => 0.12028721883956
731 => 0.12311389209991
801 => 0.12299117875886
802 => 0.12411254898632
803 => 0.12360736142827
804 => 0.12197597754159
805 => 0.12476055091009
806 => 0.1238793953848
807 => 0.1239520367757
808 => 0.1239493330595
809 => 0.12453522445186
810 => 0.12412006670422
811 => 0.12330174816853
812 => 0.12384498620185
813 => 0.12545820894964
814 => 0.13046570185849
815 => 0.13326796123074
816 => 0.13029700232566
817 => 0.13234632999566
818 => 0.13111746364377
819 => 0.13089414207202
820 => 0.13218127129291
821 => 0.13347065346311
822 => 0.13338852539302
823 => 0.13245250014796
824 => 0.13192376323779
825 => 0.13592753626147
826 => 0.13887744802282
827 => 0.13867628381716
828 => 0.13956415719886
829 => 0.14217098090842
830 => 0.14240931619864
831 => 0.14237929143015
901 => 0.14178855254561
902 => 0.14435530902651
903 => 0.14649654244066
904 => 0.14165181356193
905 => 0.14349662289679
906 => 0.14432481724326
907 => 0.14554085225806
908 => 0.14759250715916
909 => 0.14982114855634
910 => 0.15013630288571
911 => 0.1499126858075
912 => 0.14844283689696
913 => 0.15088144290698
914 => 0.15230992111529
915 => 0.15316054719821
916 => 0.15531759341379
917 => 0.14432993188959
918 => 0.13655231894055
919 => 0.13533773236847
920 => 0.13780764192406
921 => 0.13845893737671
922 => 0.1381964009964
923 => 0.12944199051262
924 => 0.13529164220904
925 => 0.14158537558169
926 => 0.14182714351257
927 => 0.14497791803468
928 => 0.14600393937369
929 => 0.14854072584544
930 => 0.14838204916094
1001 => 0.14899971629773
1002 => 0.14885772531948
1003 => 0.153556588075
1004 => 0.1587401314822
1005 => 0.15856064185667
1006 => 0.15781544616298
1007 => 0.15892218884285
1008 => 0.16427216114135
1009 => 0.16377962142367
1010 => 0.16425808180497
1011 => 0.17056600065613
1012 => 0.17876719245363
1013 => 0.17495691547749
1014 => 0.18322412013804
1015 => 0.18842788724616
1016 => 0.1974272643801
1017 => 0.19630049804007
1018 => 0.19980388951783
1019 => 0.19428335112817
1020 => 0.18160707910063
1021 => 0.17960101052945
1022 => 0.1836172106107
1023 => 0.19349064661537
1024 => 0.18330626097433
1025 => 0.18536654892534
1026 => 0.18477318585685
1027 => 0.18474156806056
1028 => 0.18594829074605
1029 => 0.18419787655232
1030 => 0.17706637423357
1031 => 0.18033469972004
1101 => 0.17907264229183
1102 => 0.18047298910105
1103 => 0.18803008328342
1104 => 0.18468891180677
1105 => 0.18116925907085
1106 => 0.18558368467516
1107 => 0.19120476543067
1108 => 0.19085300829904
1109 => 0.19017045244061
1110 => 0.19401798407712
1111 => 0.20037297911963
1112 => 0.20209070874318
1113 => 0.20335870163385
1114 => 0.20353353643056
1115 => 0.20533444349587
1116 => 0.19565051231867
1117 => 0.21101915979788
1118 => 0.21367290066722
1119 => 0.21317410737008
1120 => 0.21612362865986
1121 => 0.21525580467428
1122 => 0.21399846387657
1123 => 0.21867408250205
1124 => 0.2133138630509
1125 => 0.20570570637286
1126 => 0.20153172114701
1127 => 0.2070283615982
1128 => 0.21038496811542
1129 => 0.21260347150303
1130 => 0.21327478928766
1201 => 0.19640224832934
1202 => 0.18730888454682
1203 => 0.19313762647578
1204 => 0.2002490939074
1205 => 0.19561100775802
1206 => 0.19579281195401
1207 => 0.18918011997259
1208 => 0.20083417041737
1209 => 0.19913627329356
1210 => 0.20794496657543
1211 => 0.20584270122953
1212 => 0.21302584864939
1213 => 0.21113428520025
1214 => 0.21898605932172
1215 => 0.22211834459707
1216 => 0.22737793907566
1217 => 0.23124691818451
1218 => 0.23351885671901
1219 => 0.23338245805123
1220 => 0.24238501040018
1221 => 0.23707651980522
1222 => 0.23040780450279
1223 => 0.2302871884825
1224 => 0.23374101063405
1225 => 0.24097927435388
1226 => 0.24285605082398
1227 => 0.24390491283621
1228 => 0.24229854415333
1229 => 0.23653655807546
1230 => 0.23404856170096
1231 => 0.23616840669623
]
'min_raw' => 0.087411400171879
'max_raw' => 0.24390491283621
'avg_raw' => 0.16565815650404
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.087411'
'max' => '$0.2439049'
'avg' => '$0.165658'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.034604864456877
'max_diff' => 0.1260180418161
'year' => 2036
]
11 => [
'items' => [
101 => 0.23357601842738
102 => 0.23805120787509
103 => 0.24419659883569
104 => 0.24292759990383
105 => 0.24716967307407
106 => 0.25155977252615
107 => 0.25783781191433
108 => 0.25947912388553
109 => 0.26219215016041
110 => 0.26498474537997
111 => 0.26588165170194
112 => 0.26759412416427
113 => 0.26758509858909
114 => 0.27274574961701
115 => 0.27843810751287
116 => 0.28058684084016
117 => 0.28552773464444
118 => 0.27706662715419
119 => 0.28348447437974
120 => 0.28927353322632
121 => 0.28237157861454
122 => 0.29188431509771
123 => 0.29225367309902
124 => 0.29783054039689
125 => 0.292177316992
126 => 0.28882045097991
127 => 0.29851159737669
128 => 0.30320083784984
129 => 0.30178840045703
130 => 0.29103968215705
131 => 0.28478346707224
201 => 0.26840974546155
202 => 0.28780512600155
203 => 0.29725205009158
204 => 0.29101521690586
205 => 0.29416071278982
206 => 0.31132151840221
207 => 0.31785524209953
208 => 0.31649627324466
209 => 0.3167259166106
210 => 0.3202513953222
211 => 0.33588530944603
212 => 0.32651710571174
213 => 0.33367874644671
214 => 0.33747725486931
215 => 0.34100552118541
216 => 0.3323412142331
217 => 0.3210690781921
218 => 0.31749871953584
219 => 0.29039508676009
220 => 0.288984224969
221 => 0.28819226549218
222 => 0.28319907301568
223 => 0.27927579147968
224 => 0.27615585234015
225 => 0.26796820034533
226 => 0.27073129254254
227 => 0.25768188415858
228 => 0.2660304332
301 => 0.24520326233021
302 => 0.26254874911329
303 => 0.25310838925977
304 => 0.25944733700375
305 => 0.25942522101223
306 => 0.24775320845036
307 => 0.24102103519336
308 => 0.24531103801282
309 => 0.24991026157613
310 => 0.25065647012564
311 => 0.25661948352749
312 => 0.2582836323934
313 => 0.253241183638
314 => 0.24477166550674
315 => 0.24673894139949
316 => 0.24098116841018
317 => 0.23089089271595
318 => 0.23813790487886
319 => 0.24061235345991
320 => 0.24170521091952
321 => 0.23178258365024
322 => 0.22866467873151
323 => 0.22700473231454
324 => 0.2434907789293
325 => 0.244393921778
326 => 0.23977331527251
327 => 0.26065889482121
328 => 0.25593184492952
329 => 0.26121311781388
330 => 0.24656043173224
331 => 0.24712018407301
401 => 0.24018336766225
402 => 0.24406752133404
403 => 0.24132232671094
404 => 0.24375372010131
405 => 0.24521108727449
406 => 0.25214676542194
407 => 0.2626279434168
408 => 0.2511108063912
409 => 0.2460926248607
410 => 0.2492058764589
411 => 0.25749687572439
412 => 0.27005816402006
413 => 0.26262162852954
414 => 0.26592183669967
415 => 0.2666427853688
416 => 0.2611593594136
417 => 0.27026034575651
418 => 0.27513763827395
419 => 0.28014073118337
420 => 0.28448477657314
421 => 0.27814238585498
422 => 0.2849296530694
423 => 0.27946031380852
424 => 0.27455375108161
425 => 0.27456119231193
426 => 0.2714832338399
427 => 0.2655193014526
428 => 0.26441946081725
429 => 0.27014097069693
430 => 0.27472907979143
501 => 0.27510697843201
502 => 0.27764719137229
503 => 0.27915046322407
504 => 0.29388457097049
505 => 0.29981075099303
506 => 0.30705717174775
507 => 0.30988006101761
508 => 0.31837594565807
509 => 0.31151482880888
510 => 0.31003038302011
511 => 0.28942214586504
512 => 0.29279674354469
513 => 0.29819980003005
514 => 0.28951124027642
515 => 0.29502213160932
516 => 0.29611009829507
517 => 0.28921600634071
518 => 0.29289843872966
519 => 0.28311899006971
520 => 0.26284110867344
521 => 0.27028292083524
522 => 0.27576259947321
523 => 0.26794242241732
524 => 0.28195978710735
525 => 0.27377113203258
526 => 0.27117572149864
527 => 0.26105009967507
528 => 0.26582900340487
529 => 0.27229253912673
530 => 0.2682988255173
531 => 0.27658638091598
601 => 0.28832376957081
602 => 0.29668853169982
603 => 0.29733067427042
604 => 0.29195269261701
605 => 0.30057094253843
606 => 0.30063371708035
607 => 0.2909122959624
608 => 0.28495797965676
609 => 0.28360514646413
610 => 0.28698478901789
611 => 0.29108829899459
612 => 0.29755839051515
613 => 0.3014681313144
614 => 0.31166266175253
615 => 0.314421009389
616 => 0.31745159716273
617 => 0.32150139702708
618 => 0.32636422011161
619 => 0.31572464004333
620 => 0.3161473703941
621 => 0.30623994074953
622 => 0.29565243130517
623 => 0.30368703122176
624 => 0.31419120181465
625 => 0.31178153347456
626 => 0.31151039656125
627 => 0.31196637364234
628 => 0.31014956240632
629 => 0.30193219251999
630 => 0.29780548080653
701 => 0.30312999175333
702 => 0.30595973235484
703 => 0.31034841324846
704 => 0.30980741569451
705 => 0.32111218636656
706 => 0.3255048784112
707 => 0.32438103981229
708 => 0.32458785316118
709 => 0.33254061228568
710 => 0.34138571604178
711 => 0.34967032292361
712 => 0.35809778087595
713 => 0.34793815138512
714 => 0.34277971808851
715 => 0.3481019045204
716 => 0.34527787748444
717 => 0.36150557449388
718 => 0.36262914502608
719 => 0.37885566858833
720 => 0.39425657166738
721 => 0.38458354037926
722 => 0.39370477320106
723 => 0.40357013016285
724 => 0.42260200433863
725 => 0.41619273866564
726 => 0.41128334160612
727 => 0.40664398510691
728 => 0.41629774950466
729 => 0.42871716317972
730 => 0.43139218593366
731 => 0.43572674473239
801 => 0.43116948616016
802 => 0.43665820214484
803 => 0.45603578143479
804 => 0.45079978846002
805 => 0.44336383670798
806 => 0.4586605745149
807 => 0.46419640446266
808 => 0.50304975817269
809 => 0.5521037221836
810 => 0.53179505897739
811 => 0.51918881636883
812 => 0.52215158240591
813 => 0.54006442948122
814 => 0.54581746743647
815 => 0.53017872708301
816 => 0.53570259455868
817 => 0.56613964744431
818 => 0.58246814977988
819 => 0.56029185039774
820 => 0.4991083199272
821 => 0.44269431061122
822 => 0.45765784623776
823 => 0.45596144567028
824 => 0.48866226189622
825 => 0.45067491175923
826 => 0.45131452131155
827 => 0.48469155578627
828 => 0.47578713521565
829 => 0.46136311428326
830 => 0.4427996219266
831 => 0.4084832893901
901 => 0.3780883566808
902 => 0.4376998192587
903 => 0.43512926459593
904 => 0.43140672050938
905 => 0.43969083955265
906 => 0.47991617013857
907 => 0.47898884607187
908 => 0.47308968348446
909 => 0.47756414631418
910 => 0.4605787193155
911 => 0.46495625060404
912 => 0.44268537434391
913 => 0.45275274052744
914 => 0.4613321668125
915 => 0.4630546136598
916 => 0.46693537435708
917 => 0.43377469909556
918 => 0.44866286874171
919 => 0.45740827357598
920 => 0.41789621637419
921 => 0.45662724724605
922 => 0.4331974455151
923 => 0.4252450189038
924 => 0.43595191368337
925 => 0.43177942637498
926 => 0.42819216680389
927 => 0.42619041432628
928 => 0.43405237617555
929 => 0.4336856062582
930 => 0.42082191073177
1001 => 0.40404174430885
1002 => 0.40967371895057
1003 => 0.40762756976319
1004 => 0.40021206114962
1005 => 0.40520921860324
1006 => 0.38320426618101
1007 => 0.34534588925647
1008 => 0.37035629268627
1009 => 0.36939341936031
1010 => 0.36890789496653
1011 => 0.38770252190724
1012 => 0.38589585219271
1013 => 0.38261672896987
1014 => 0.40015183748011
1015 => 0.39375128699338
1016 => 0.41347627543412
1017 => 0.42646842855346
1018 => 0.42317319827027
1019 => 0.43539238107554
1020 => 0.40980346827132
1021 => 0.41830307865589
1022 => 0.4200548365762
1023 => 0.399935456963
1024 => 0.38619144570147
1025 => 0.38527487684352
1026 => 0.36144465535745
1027 => 0.37417456732448
1028 => 0.38537636305592
1029 => 0.38001157219503
1030 => 0.37831323967704
1031 => 0.38698965218807
1101 => 0.38766388374863
1102 => 0.37229133271611
1103 => 0.37548777286115
1104 => 0.38881745962993
1105 => 0.37515189895503
1106 => 0.34860194682037
1107 => 0.34201719160916
1108 => 0.34113866388287
1109 => 0.32328028550657
1110 => 0.34245721643861
1111 => 0.33408597217698
1112 => 0.36053063249657
1113 => 0.34542558434758
1114 => 0.34477443591195
1115 => 0.34379012954879
1116 => 0.32841868555999
1117 => 0.33178405488731
1118 => 0.34297105509154
1119 => 0.34696270279499
1120 => 0.34654634123692
1121 => 0.3429162326875
1122 => 0.34457807779226
1123 => 0.3392246956846
1124 => 0.33733430504138
1125 => 0.33136771217845
1126 => 0.32259846898329
1127 => 0.32381788603447
1128 => 0.30644372066756
1129 => 0.29697735325892
1130 => 0.29435718752492
1201 => 0.29085339240116
1202 => 0.29475295050739
1203 => 0.30639450184002
1204 => 0.29235232103998
1205 => 0.26827798700277
1206 => 0.26972489549907
1207 => 0.27297566929928
1208 => 0.26691787382861
1209 => 0.26118467880786
1210 => 0.26616922672959
1211 => 0.25596861403168
1212 => 0.27420836460982
1213 => 0.27371503047299
1214 => 0.28051368154992
1215 => 0.28476501759068
1216 => 0.27496706440311
1217 => 0.27250290567292
1218 => 0.2739066024754
1219 => 0.25070662110355
1220 => 0.27861774811513
1221 => 0.27885912470056
1222 => 0.27679231183212
1223 => 0.29165412530642
1224 => 0.32301718725305
1225 => 0.31121714177248
1226 => 0.30664780750415
1227 => 0.29796149971987
1228 => 0.30953548910049
1229 => 0.30864678729842
1230 => 0.30462774071931
1231 => 0.30219700880807
]
'min_raw' => 0.22700473231454
'max_raw' => 0.58246814977988
'avg_raw' => 0.40473644104721
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.2270047'
'max' => '$0.582468'
'avg' => '$0.404736'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.13959333214266
'max_diff' => 0.33856323694367
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0071254191548559
]
1 => [
'year' => 2028
'avg' => 0.012229287793693
]
2 => [
'year' => 2029
'avg' => 0.033408210137694
]
3 => [
'year' => 2030
'avg' => 0.025774384368232
]
4 => [
'year' => 2031
'avg' => 0.025313639633894
]
5 => [
'year' => 2032
'avg' => 0.044382776773796
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0071254191548559
'min' => '$0.007125'
'max_raw' => 0.044382776773796
'max' => '$0.044382'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.044382776773796
]
1 => [
'year' => 2033
'avg' => 0.11415706568932
]
2 => [
'year' => 2034
'avg' => 0.072358234365754
]
3 => [
'year' => 2035
'avg' => 0.085346703367554
]
4 => [
'year' => 2036
'avg' => 0.16565815650404
]
5 => [
'year' => 2037
'avg' => 0.40473644104721
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.044382776773796
'min' => '$0.044382'
'max_raw' => 0.40473644104721
'max' => '$0.404736'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.40473644104721
]
]
]
]
'prediction_2025_max_price' => '$0.012183'
'last_price' => 0.01181312
'sma_50day_nextmonth' => '$0.010845'
'sma_200day_nextmonth' => '$0.025146'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.011541'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.011491'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0112024'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.010776'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.011724'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.020228'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.030176'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.0116087'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.011492'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.011289'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.011281'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.013467'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.019586'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.03820056'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.023171'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.060537'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.1904071'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.011562'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.011998'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.014964'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.025444'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.072717'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.169753'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.117012'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '53.06'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 107.35
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.0110010'
'vwma_10_action' => 'BUY'
'hma_9' => '0.011631'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 142.31
'cci_20_action' => 'SELL'
'adx_14' => 16.55
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000214'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 78.49
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.006253'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 19
'sell_pct' => 44.12
'buy_pct' => 55.88
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767708836
'last_updated_date' => '6. Januar 2026'
]
xJKL_Astrovault Preisprognose für 2026
Die Preisprognose für xJKL_Astrovault im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.004081 am unteren Ende und $0.012183 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte xJKL_Astrovault im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn XJKL das prognostizierte Preisziel erreicht.
xJKL_Astrovault Preisprognose 2027-2032
Die Preisprognose für XJKL für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.007125 am unteren Ende und $0.044382 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte xJKL_Astrovault, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| xJKL_Astrovault Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.003929 | $0.007125 | $0.010321 |
| 2028 | $0.00709 | $0.012229 | $0.017367 |
| 2029 | $0.015576 | $0.0334082 | $0.051239 |
| 2030 | $0.013247 | $0.025774 | $0.0383015 |
| 2031 | $0.015662 | $0.025313 | $0.034964 |
| 2032 | $0.0239073 | $0.044382 | $0.064858 |
xJKL_Astrovault Preisprognose 2032-2037
Die Preisprognose für xJKL_Astrovault für die Jahre 2032-2037 wird derzeit zwischen $0.044382 am unteren Ende und $0.404736 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte xJKL_Astrovault bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| xJKL_Astrovault Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.0239073 | $0.044382 | $0.064858 |
| 2033 | $0.055555 | $0.114157 | $0.172758 |
| 2034 | $0.044663 | $0.072358 | $0.100052 |
| 2035 | $0.0528065 | $0.085346 | $0.117886 |
| 2036 | $0.087411 | $0.165658 | $0.2439049 |
| 2037 | $0.2270047 | $0.404736 | $0.582468 |
xJKL_Astrovault Potenzielles Preishistogramm
xJKL_Astrovault Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für xJKL_Astrovault Bullisch, mit 19 technischen Indikatoren, die bullische Signale zeigen, und 15 anzeigen bärische Signale. Die Preisprognose für XJKL wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von xJKL_Astrovault
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von xJKL_Astrovault im nächsten Monat steigen, und bis zum 04.02.2026 $0.025146 erreichen. Der kurzfristige 50-Tage-SMA für xJKL_Astrovault wird voraussichtlich bis zum 04.02.2026 $0.010845 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 53.06, was darauf hindeutet, dass sich der XJKL-Markt in einem NEUTRAL Zustand befindet.
Beliebte XJKL Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.011541 | BUY |
| SMA 5 | $0.011491 | BUY |
| SMA 10 | $0.0112024 | BUY |
| SMA 21 | $0.010776 | BUY |
| SMA 50 | $0.011724 | BUY |
| SMA 100 | $0.020228 | SELL |
| SMA 200 | $0.030176 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.0116087 | BUY |
| EMA 5 | $0.011492 | BUY |
| EMA 10 | $0.011289 | BUY |
| EMA 21 | $0.011281 | BUY |
| EMA 50 | $0.013467 | SELL |
| EMA 100 | $0.019586 | SELL |
| EMA 200 | $0.03820056 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.023171 | SELL |
| SMA 50 | $0.060537 | SELL |
| SMA 100 | $0.1904071 | SELL |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.025444 | SELL |
| EMA 50 | $0.072717 | SELL |
| EMA 100 | $0.169753 | SELL |
| EMA 200 | $0.117012 | SELL |
xJKL_Astrovault Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 53.06 | NEUTRAL |
| Stoch RSI (14) | 107.35 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 142.31 | SELL |
| Average Directional Index (14) | 16.55 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.000214 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 78.49 | SELL |
| VWMA (10) | 0.0110010 | BUY |
| Hull Moving Average (9) | 0.011631 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.006253 | SELL |
Auf weltweiten Geldflüssen basierende xJKL_Astrovault-Preisprognose
Definition weltweiter Geldflüsse, die für xJKL_Astrovault-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
xJKL_Astrovault-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.016599 | $0.023324 | $0.032775 | $0.046054 | $0.064714 | $0.090935 |
| Amazon.com aktie | $0.024648 | $0.051431 | $0.107314 | $0.223917 | $0.467216 | $0.974875 |
| Apple aktie | $0.016756 | $0.023767 | $0.033711 | $0.047817 | $0.067825 | $0.0962056 |
| Netflix aktie | $0.018639 | $0.0294098 | $0.046404 | $0.073218 | $0.115527 | $0.182283 |
| Google aktie | $0.015297 | $0.01981 | $0.025654 | $0.033222 | $0.043023 | $0.055715 |
| Tesla aktie | $0.026779 | $0.0607069 | $0.137618 | $0.311969 | $0.707212 | $1.60 |
| Kodak aktie | $0.008858 | $0.006642 | $0.004981 | $0.003735 | $0.0028013 | $0.00210069 |
| Nokia aktie | $0.007825 | $0.005184 | $0.003434 | $0.002275 | $0.0015071 | $0.000998 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
xJKL_Astrovault Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in xJKL_Astrovault investieren?", "Sollte ich heute XJKL kaufen?", "Wird xJKL_Astrovault auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere xJKL_Astrovault-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie xJKL_Astrovault.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich xJKL_Astrovault zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der xJKL_Astrovault-Preis entspricht heute $0.01181 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
xJKL_Astrovault-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von xJKL_Astrovault 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.01212 | $0.012435 | $0.012758 | $0.01309 |
| Wenn die Wachstumsrate von xJKL_Astrovault 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.012427 | $0.013073 | $0.013752 | $0.014467 |
| Wenn die Wachstumsrate von xJKL_Astrovault 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.013348 | $0.015083 | $0.017043 | $0.019258 |
| Wenn die Wachstumsrate von xJKL_Astrovault 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.014883 | $0.018752 | $0.023626 | $0.029768 |
| Wenn die Wachstumsrate von xJKL_Astrovault 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.017954 | $0.027288 | $0.041474 | $0.063035 |
| Wenn die Wachstumsrate von xJKL_Astrovault 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.027166 | $0.062472 | $0.143666 | $0.330384 |
| Wenn die Wachstumsrate von xJKL_Astrovault 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.042519 | $0.15304 | $0.550841 | $1.98 |
Fragefeld
Ist XJKL eine gute Investition?
Die Entscheidung, xJKL_Astrovault zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von xJKL_Astrovault in den letzten 2026 Stunden um 2.9171% gestiegen, und xJKL_Astrovault hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in xJKL_Astrovault investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann xJKL_Astrovault steigen?
Es scheint, dass der Durchschnittswert von xJKL_Astrovault bis zum Ende dieses Jahres potenziell auf $0.012183 steigen könnte. Betrachtet man die Aussichten von xJKL_Astrovault in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.0383015 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird xJKL_Astrovault nächste Woche kosten?
Basierend auf unserer neuen experimentellen xJKL_Astrovault-Prognose wird der Preis von xJKL_Astrovault in der nächsten Woche um 0.86% steigen und $0.011914 erreichen bis zum 13. Januar 2026.
Wie viel wird xJKL_Astrovault nächsten Monat kosten?
Basierend auf unserer neuen experimentellen xJKL_Astrovault-Prognose wird der Preis von xJKL_Astrovault im nächsten Monat um -11.62% fallen und $0.01044 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von xJKL_Astrovault in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von xJKL_Astrovault im Jahr 2026 wird erwartet, dass XJKL innerhalb der Spanne von $0.004081 bis $0.012183 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte xJKL_Astrovault-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird xJKL_Astrovault in 5 Jahren sein?
Die Zukunft von xJKL_Astrovault scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.0383015 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der xJKL_Astrovault-Prognose für 2030 könnte der Wert von xJKL_Astrovault seinen höchsten Gipfel von ungefähr $0.0383015 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.013247 liegen wird.
Wie viel wird xJKL_Astrovault im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen xJKL_Astrovault-Preisprognosesimulation wird der Wert von XJKL im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.012183 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.012183 und $0.004081 während des Jahres 2026 liegen.
Wie viel wird xJKL_Astrovault im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von xJKL_Astrovault könnte der Wert von XJKL um -12.62% fallen und bis zu $0.010321 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.010321 und $0.003929 im Laufe des Jahres schwanken.
Wie viel wird xJKL_Astrovault im Jahr 2028 kosten?
Unser neues experimentelles xJKL_Astrovault-Preisprognosemodell deutet darauf hin, dass der Wert von XJKL im Jahr 2028 um 47.02% steigen, und im besten Fall $0.017367 erreichen wird. Der Preis wird voraussichtlich zwischen $0.017367 und $0.00709 im Laufe des Jahres liegen.
Wie viel wird xJKL_Astrovault im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von xJKL_Astrovault im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.051239 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.051239 und $0.015576.
Wie viel wird xJKL_Astrovault im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für xJKL_Astrovault-Preisprognosen wird der Wert von XJKL im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.0383015 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.0383015 und $0.013247 während des Jahres 2030 liegen.
Wie viel wird xJKL_Astrovault im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von xJKL_Astrovault im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.034964 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.034964 und $0.015662 während des Jahres schwanken.
Wie viel wird xJKL_Astrovault im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen xJKL_Astrovault-Preisprognose könnte XJKL eine 449.04% Steigerung im Wert erfahren und $0.064858 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.064858 und $0.0239073 liegen.
Wie viel wird xJKL_Astrovault im Jahr 2033 kosten?
Laut unserer experimentellen xJKL_Astrovault-Preisprognose wird der Wert von XJKL voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.172758 beträgt. Im Laufe des Jahres könnte der Preis von XJKL zwischen $0.172758 und $0.055555 liegen.
Wie viel wird xJKL_Astrovault im Jahr 2034 kosten?
Die Ergebnisse unserer neuen xJKL_Astrovault-Preisprognosesimulation deuten darauf hin, dass XJKL im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.100052 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.100052 und $0.044663.
Wie viel wird xJKL_Astrovault im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von xJKL_Astrovault könnte XJKL um 897.93% steigen, wobei der Wert im Jahr 2035 $0.117886 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.117886 und $0.0528065.
Wie viel wird xJKL_Astrovault im Jahr 2036 kosten?
Unsere jüngste xJKL_Astrovault-Preisprognosesimulation deutet darauf hin, dass der Wert von XJKL im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.2439049 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.2439049 und $0.087411.
Wie viel wird xJKL_Astrovault im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von xJKL_Astrovault um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.582468 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.582468 und $0.2270047 liegen.
Verwandte Prognosen
SolPod-Preisprognose
zuzalu-Preisprognose
SOFT COQ INU-Preisprognose
All Street Bets-Preisprognose
MagicRing-Preisprognose
AI INU-Preisprognose
Wall Street Baby On Solana-Preisprognose
Meta Masters Guild Games-Preisprognose
Morfey-Preisprognose
PANTIES-PreisprognoseCeler Bridged BUSD (zkSync)-Preisprognose
Bridged BUSD-Preisprognose
Multichain Bridged BUSD (Moonriver)-Preisprognose
tooker kurlson-Preisprognose
dogwifsaudihat-PreisprognoseHarmony Horizen Bridged BUSD (Harmony)-Preisprognose
IoTeX Bridged BUSD (IoTeX)-Preisprognose
MIMANY-Preisprognose
The Open League MEME-Preisprognose
Sandwich Cat-Preisprognose
Hege-Preisprognose
DexNet-Preisprognose
SolDocs-Preisprognose
Secret Society-Preisprognose
duk-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von xJKL_Astrovault?
xJKL_Astrovault-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
xJKL_Astrovault Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von xJKL_Astrovault. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von XJKL über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von XJKL über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von XJKL einzuschätzen.
Wie liest man xJKL_Astrovault-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von xJKL_Astrovault in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von XJKL innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von xJKL_Astrovault?
Die Preisentwicklung von xJKL_Astrovault wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von XJKL. Die Marktkapitalisierung von xJKL_Astrovault kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von XJKL-„Walen“, großen Inhabern von xJKL_Astrovault, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen xJKL_Astrovault-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


