xJKL_Astrovault Preisvorhersage bis zu $0.01223 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.004097 | $0.01223 |
| 2027 | $0.003944 | $0.010361 |
| 2028 | $0.007118 | $0.017435 |
| 2029 | $0.015637 | $0.051439 |
| 2030 | $0.013298 | $0.03845 |
| 2031 | $0.015723 | $0.03510095 |
| 2032 | $0.02400028 | $0.06511 |
| 2033 | $0.055771 | $0.17343 |
| 2034 | $0.044837 | $0.100441 |
| 2035 | $0.053011 | $0.118345 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in xJKL_Astrovault eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.83 Gewinn erzielen könnten, was einer Rendite von 39.55% in den nächsten 90 Tagen entspricht.
Langfristige xJKL_Astrovault Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'xJKL_Astrovault'
'name_with_ticker' => 'xJKL_Astrovault <small>XJKL</small>'
'name_lang' => 'xJKL_Astrovault'
'name_lang_with_ticker' => 'xJKL_Astrovault <small>XJKL</small>'
'name_with_lang' => 'xJKL_Astrovault'
'name_with_lang_with_ticker' => 'xJKL_Astrovault <small>XJKL</small>'
'image' => '/uploads/coins/astrovault-xjkl.png?1717108466'
'price_for_sd' => 0.01185
'ticker' => 'XJKL'
'marketcap' => '$0'
'low24h' => '$0.01146'
'high24h' => '$0.01188'
'volume24h' => '$462.29'
'current_supply' => '0'
'max_supply' => '0'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01185'
'change_24h_pct' => '3.4175%'
'ath_price' => '$0.9546'
'ath_days' => 679
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '27.02.2024'
'ath_pct' => '-98.76%'
'fdv' => '$0'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.584733'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.01196'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.010481'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004097'
'current_year_max_price_prediction' => '$0.01223'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.013298'
'grand_prediction_max_price' => '$0.03845'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.012083782949134
107 => 0.012128899408253
108 => 0.012230549094352
109 => 0.011361963656064
110 => 0.011751933017526
111 => 0.011981003482198
112 => 0.010946054789157
113 => 0.01196054587415
114 => 0.011346843516012
115 => 0.011138543718159
116 => 0.011418991954556
117 => 0.011309701004087
118 => 0.011215739062654
119 => 0.011163306684864
120 => 0.011369236917731
121 => 0.011359630026228
122 => 0.011022688195921
123 => 0.010583161313792
124 => 0.010730680962412
125 => 0.010677085691065
126 => 0.010482849513772
127 => 0.010613741245102
128 => 0.010037360303115
129 => 0.0090457268501009
130 => 0.009700830283716
131 => 0.0096756095141373
201 => 0.0096628920584448
202 => 0.010155184183078
203 => 0.010107861654406
204 => 0.010021970801483
205 => 0.010481272060902
206 => 0.01031362092274
207 => 0.010830282226978
208 => 0.011170588777507
209 => 0.011084276028529
210 => 0.011404335984146
211 => 0.010734079517169
212 => 0.010956711829477
213 => 0.011002596040488
214 => 0.010475604354656
215 => 0.010115604205344
216 => 0.010091596299687
217 => 0.0094674056518571
218 => 0.0098008432576371
219 => 0.010094254552138
220 => 0.0099537333117082
221 => 0.0099092484849408
222 => 0.010136511817313
223 => 0.010154172124618
224 => 0.0097515152465271
225 => 0.0098352403619671
226 => 0.010184388011494
227 => 0.0098264427370196
228 => 0.009131013538744
301 => 0.0089585374825108
302 => 0.0089355259972449
303 => 0.0084677572534918
304 => 0.0089700631573147
305 => 0.0087507931693347
306 => 0.0094434644341056
307 => 0.009047814322539
308 => 0.0090307586370052
309 => 0.0090049764667958
310 => 0.008602348585764
311 => 0.0086904985033733
312 => 0.008983522255118
313 => 0.0090880764308893
314 => 0.0090771705737692
315 => 0.0089820862788759
316 => 0.0090256153821677
317 => 0.0088853929739198
318 => 0.0088358775230904
319 => 0.0086795931399752
320 => 0.0084498982714585
321 => 0.0084818387517263
322 => 0.0080267531142631
323 => 0.0077787983057504
324 => 0.0077101676827459
325 => 0.0076183919453931
326 => 0.0077205339964858
327 => 0.0080254639138307
328 => 0.007657653739022
329 => 0.0070270689931963
330 => 0.0070649682108846
331 => 0.0071501165006513
401 => 0.0069914432259833
402 => 0.0068412722879485
403 => 0.0069718337348164
404 => 0.0067046466651583
405 => 0.0071824047815182
406 => 0.0071694827633723
407 => 0.0073475614447876
408 => 0.0074589176988189
409 => 0.007202277585292
410 => 0.0071377332907686
411 => 0.0071745006543037
412 => 0.0065668180353822
413 => 0.0072979008103031
414 => 0.0073042232444995
415 => 0.0072500867244489
416 => 0.007639365732446
417 => 0.0084608658584872
418 => 0.0081517844663045
419 => 0.0080320988092168
420 => 0.0078045762876034
421 => 0.0081077365387027
422 => 0.0080844585614549
423 => 0.0079791867204297
424 => 0.0079155179825095
425 => 0.0080328295843175
426 => 0.0079009817768154
427 => 0.0078772982876526
428 => 0.0077338021112163
429 => 0.0076825805048885
430 => 0.0076446580667544
501 => 0.0076029091885505
502 => 0.007694996810696
503 => 0.0074863141437786
504 => 0.0072346633048903
505 => 0.0072137412605365
506 => 0.0072715088644822
507 => 0.0072459510000286
508 => 0.0072136188993143
509 => 0.0071518881139272
510 => 0.0071335739085724
511 => 0.0071930861911863
512 => 0.0071259002938969
513 => 0.0072250367451526
514 => 0.0071980771158811
515 => 0.0070474828183083
516 => 0.0068597865663826
517 => 0.0068581156760343
518 => 0.0068176768264404
519 => 0.0067661718714609
520 => 0.0067518443712594
521 => 0.0069608382139267
522 => 0.0073934492135886
523 => 0.0073085173228511
524 => 0.0073698893180792
525 => 0.0076717787925053
526 => 0.0077677403782921
527 => 0.0076996291176754
528 => 0.0076063942232236
529 => 0.0076104960854043
530 => 0.0079291079438681
531 => 0.0079489793746632
601 => 0.007999188069516
602 => 0.0080637204313772
603 => 0.0077106192579462
604 => 0.0075938650518896
605 => 0.0075385404317833
606 => 0.0073681620151783
607 => 0.0075519005303453
608 => 0.0074448439660251
609 => 0.0074592895541249
610 => 0.0074498818459242
611 => 0.0074550190907483
612 => 0.0071822712383879
613 => 0.0072816462205829
614 => 0.007116416038589
615 => 0.0068951913728574
616 => 0.0068944497502065
617 => 0.0069485941737355
618 => 0.0069163869519489
619 => 0.0068297181462446
620 => 0.0068420290410297
621 => 0.0067341726485802
622 => 0.0068551247598761
623 => 0.0068585932336406
624 => 0.0068120200824857
625 => 0.0069983634981118
626 => 0.0070747085475357
627 => 0.0070440531017519
628 => 0.0070725576797383
629 => 0.0073120466263558
630 => 0.0073510937742897
701 => 0.0073684359380922
702 => 0.0073451997359933
703 => 0.0070769350980464
704 => 0.0070888337754887
705 => 0.0070015291753138
706 => 0.0069277659880982
707 => 0.0069307161287499
708 => 0.0069686399955218
709 => 0.0071342557459204
710 => 0.0074827843290523
711 => 0.0074960107340111
712 => 0.0075120415226626
713 => 0.0074468362487881
714 => 0.0074271697142572
715 => 0.0074531149496668
716 => 0.0075840039607288
717 => 0.0079206860332003
718 => 0.0078016801025493
719 => 0.0077049264284924
720 => 0.0077898054852436
721 => 0.0077767390197608
722 => 0.0076664449014599
723 => 0.0076633493129051
724 => 0.007451659636723
725 => 0.0073734027833792
726 => 0.0073080054993012
727 => 0.0072365933723273
728 => 0.007194257869701
729 => 0.0072593044428768
730 => 0.0072741813637706
731 => 0.0071319558947021
801 => 0.0071125710888092
802 => 0.0072287154770005
803 => 0.0071776046620567
804 => 0.0072301734027136
805 => 0.0072423698014723
806 => 0.0072404059003653
807 => 0.0071870403395243
808 => 0.0072210539566204
809 => 0.0071406016122408
810 => 0.0070531217712794
811 => 0.0069973150829327
812 => 0.0069486163456672
813 => 0.0069756372354893
814 => 0.0068793126970929
815 => 0.00684849653863
816 => 0.0072095309084789
817 => 0.0074762308792598
818 => 0.0074723529560598
819 => 0.0074487470959011
820 => 0.0074136735759791
821 => 0.0075814381142871
822 => 0.0075229923036984
823 => 0.0075655165142126
824 => 0.0075763407105239
825 => 0.007609102292719
826 => 0.0076208117424006
827 => 0.0075854176527271
828 => 0.0074666307647588
829 => 0.0071706251338603
830 => 0.007032833713625
831 => 0.0069873602498498
901 => 0.0069890131238916
902 => 0.0069434194790634
903 => 0.0069568488508291
904 => 0.0069387492916122
905 => 0.006904473105209
906 => 0.0069735207775667
907 => 0.0069814778785823
908 => 0.0069653613267958
909 => 0.0069691573581692
910 => 0.0068357191928462
911 => 0.0068458642067432
912 => 0.0067893754801984
913 => 0.0067787845249531
914 => 0.0066359859432839
915 => 0.0063829975568717
916 => 0.0065231776811209
917 => 0.0063538598033361
918 => 0.0062897365574345
919 => 0.006593286030322
920 => 0.0065628180823959
921 => 0.006510670199645
922 => 0.0064335326124854
923 => 0.0064049215310617
924 => 0.0062310896574989
925 => 0.0062208187430518
926 => 0.0063069745134449
927 => 0.0062672165898476
928 => 0.0062113814076137
929 => 0.0060091520374844
930 => 0.0057817792696156
1001 => 0.0057886422242633
1002 => 0.0058609652713016
1003 => 0.0060712542846572
1004 => 0.0059890907291023
1005 => 0.0059294801268291
1006 => 0.0059183168529114
1007 => 0.0060580485978879
1008 => 0.0062557982917351
1009 => 0.0063485780236883
1010 => 0.0062566361270851
1011 => 0.0061510182267706
1012 => 0.0061574466989765
1013 => 0.0062002124445562
1014 => 0.0062047065197415
1015 => 0.0061359601243324
1016 => 0.0061553118319557
1017 => 0.0061259148185186
1018 => 0.0059455054013177
1019 => 0.005942242367045
1020 => 0.005897966986569
1021 => 0.0058966263456444
1022 => 0.0058213028784435
1023 => 0.0058107646046956
1024 => 0.0056612052887606
1025 => 0.0057596456834163
1026 => 0.005693617035034
1027 => 0.0055940962873382
1028 => 0.0055769388729238
1029 => 0.0055764231003283
1030 => 0.0056786086557799
1031 => 0.0057584515857055
1101 => 0.0056947656316419
1102 => 0.0056802655744019
1103 => 0.0058350882504813
1104 => 0.0058153856537102
1105 => 0.0057983233319745
1106 => 0.0062380919755887
1107 => 0.0058899807785929
1108 => 0.0057381844272102
1109 => 0.0055503076170289
1110 => 0.005611481253781
1111 => 0.0056243714378724
1112 => 0.0051725615767267
1113 => 0.0049892623723293
1114 => 0.0049263609928648
1115 => 0.0048901603596881
1116 => 0.0049066574428057
1117 => 0.0047416666599957
1118 => 0.0048525431947397
1119 => 0.0047096751231499
1120 => 0.004685722826015
1121 => 0.0049411886359754
1122 => 0.0049767352110217
1123 => 0.0048250824784187
1124 => 0.0049224680830971
1125 => 0.0048871547090795
1126 => 0.0047121241861811
1127 => 0.0047054393076437
1128 => 0.0046176151438737
1129 => 0.0044801873336826
1130 => 0.0044173791367449
1201 => 0.0043846680824539
1202 => 0.0043981653009801
1203 => 0.0043913406942716
1204 => 0.0043468055191565
1205 => 0.0043938933983782
1206 => 0.0042736033250219
1207 => 0.0042257028485684
1208 => 0.004204067314637
1209 => 0.004097302950895
1210 => 0.0042672125319366
1211 => 0.0043006868598663
1212 => 0.0043342271425627
1213 => 0.0046261724045119
1214 => 0.0046115876442537
1215 => 0.0047434267739218
1216 => 0.0047383037477795
1217 => 0.0047007010923458
1218 => 0.0045420616744079
1219 => 0.0046052925189222
1220 => 0.004410677807762
1221 => 0.0045564963818773
1222 => 0.0044899508741803
1223 => 0.0045339972787862
1224 => 0.0044547978718006
1225 => 0.0044986300936898
1226 => 0.0043086248648341
1227 => 0.0041312006555743
1228 => 0.004202601336716
1229 => 0.0042802220427753
1230 => 0.0044485235109
1231 => 0.0043482845449419
]
'min_raw' => 0.004097302950895
'max_raw' => 0.012230549094352
'avg_raw' => 0.0081639260226233
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004097'
'max' => '$0.01223'
'avg' => '$0.008163'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.007761757049105
'max_diff' => 0.0003714890943516
'year' => 2026
]
1 => [
'items' => [
101 => 0.0043843342675554
102 => 0.0042635737314509
103 => 0.0040144102519256
104 => 0.0040158204901606
105 => 0.0039774921171571
106 => 0.003944370806848
107 => 0.0043597981959973
108 => 0.0043081332332215
109 => 0.0042258118767812
110 => 0.0043360022836971
111 => 0.0043651383762426
112 => 0.0043659678398369
113 => 0.0044463599162967
114 => 0.0044892651819143
115 => 0.0044968274209415
116 => 0.0046233260902367
117 => 0.0046657267756267
118 => 0.0048403691979784
119 => 0.0044856249698891
120 => 0.0044783192459575
121 => 0.0043375528886948
122 => 0.0042482766394907
123 => 0.0043436657098569
124 => 0.0044281674042948
125 => 0.0043401785918885
126 => 0.0043516680732436
127 => 0.0042335502815382
128 => 0.0042757718341142
129 => 0.00431213872305
130 => 0.0042920590645266
131 => 0.0042619988438506
201 => 0.0044212392289955
202 => 0.0044122542623975
203 => 0.0045605425699652
204 => 0.0046761439099127
205 => 0.0048833221773101
206 => 0.0046671208548336
207 => 0.0046592416193202
208 => 0.0047362624103334
209 => 0.0046657149841449
210 => 0.0047102985222817
211 => 0.0048761390800575
212 => 0.0048796430297151
213 => 0.004820947358365
214 => 0.004817375721429
215 => 0.0048286488671721
216 => 0.0048946760338997
217 => 0.0048716041130352
218 => 0.0048983035239691
219 => 0.004931691546178
220 => 0.0050697985622618
221 => 0.0051030956962805
222 => 0.0050222009231997
223 => 0.0050295048154685
224 => 0.0049992479497251
225 => 0.0049700201965344
226 => 0.0050357199173365
227 => 0.0051557874484337
228 => 0.0051550405145542
301 => 0.0051828938479895
302 => 0.0052002462439702
303 => 0.0051257570576909
304 => 0.0050772673364663
305 => 0.005095861381065
306 => 0.0051255936633037
307 => 0.0050862196026566
308 => 0.0048431846605033
309 => 0.0049169059368204
310 => 0.004904635111655
311 => 0.0048871599644361
312 => 0.0049612872778427
313 => 0.0049541375176299
314 => 0.0047399744410442
315 => 0.0047536844663568
316 => 0.0047408081930925
317 => 0.0047824140662472
318 => 0.0046634681304557
319 => 0.0047000550991921
320 => 0.004723002103002
321 => 0.0047365180645332
322 => 0.0047853469855656
323 => 0.0047796174752637
324 => 0.0047849908311606
325 => 0.0048573912306944
326 => 0.0052235676067194
327 => 0.0052434977789438
328 => 0.0051453543217928
329 => 0.0051845606971305
330 => 0.0051092930299738
331 => 0.0051598207191857
401 => 0.0051943904808802
402 => 0.0050381763751653
403 => 0.005028926389646
404 => 0.0049533480660528
405 => 0.0049939595761767
406 => 0.0049293437434986
407 => 0.0049451982086719
408 => 0.0049008677418799
409 => 0.0049806537559977
410 => 0.0050698669172746
411 => 0.0050924056849477
412 => 0.0050331158907495
413 => 0.0049901861723621
414 => 0.0049148157288023
415 => 0.0050401584561822
416 => 0.0050768124894184
417 => 0.0050399659281497
418 => 0.0050314277747904
419 => 0.0050152479896028
420 => 0.0050348603927048
421 => 0.0050766128636816
422 => 0.005056923169416
423 => 0.0050699285593662
424 => 0.0050203654239759
425 => 0.005125781716711
426 => 0.0052932081593867
427 => 0.0052937464627769
428 => 0.0052740566623766
429 => 0.0052660000202754
430 => 0.0052862029503632
501 => 0.0052971622111682
502 => 0.0053624947824883
503 => 0.0054325992344792
504 => 0.0057597461229522
505 => 0.0056678845857684
506 => 0.0059581487672771
507 => 0.0061877100487637
508 => 0.0062565454395833
509 => 0.0061932201189846
510 => 0.0059765876179834
511 => 0.0059659585939843
512 => 0.006289699010363
513 => 0.0061982275144856
514 => 0.0061873472711109
515 => 0.006071599864065
516 => 0.0061400209172244
517 => 0.0061250562292221
518 => 0.006101433737113
519 => 0.0062319763402892
520 => 0.0064763404398164
521 => 0.006438254003273
522 => 0.0064098242451724
523 => 0.0062852533209535
524 => 0.0063602728412565
525 => 0.0063335598269809
526 => 0.0064483358888067
527 => 0.0063803450923821
528 => 0.0061975345279396
529 => 0.0062266477128786
530 => 0.0062222473135427
531 => 0.0063128072200604
601 => 0.0062856233839588
602 => 0.0062169392332589
603 => 0.00647550522989
604 => 0.0064587153922884
605 => 0.0064825195433162
606 => 0.0064929988667664
607 => 0.0066503834324719
608 => 0.006714858853297
609 => 0.0067294959026254
610 => 0.0067907425657013
611 => 0.0067279720298537
612 => 0.0069790989278777
613 => 0.007146083661403
614 => 0.0073400450223484
615 => 0.0076234747025886
616 => 0.0077300468842301
617 => 0.0077107955735071
618 => 0.007925688722327
619 => 0.0083118469339501
620 => 0.007788849188762
621 => 0.0083395670843828
622 => 0.0081652161569731
623 => 0.007751833244524
624 => 0.0077252162584266
625 => 0.0080051639662115
626 => 0.0086260610381099
627 => 0.0084705333637557
628 => 0.0086263154256689
629 => 0.0084445873755957
630 => 0.0084355630461853
701 => 0.0086174892999015
702 => 0.0090425699079931
703 => 0.0088406300449971
704 => 0.0085510997337064
705 => 0.0087648844099729
706 => 0.0085796843385531
707 => 0.0081623767434083
708 => 0.0084704144346742
709 => 0.0082644384029331
710 => 0.0083245531592832
711 => 0.0087574841413807
712 => 0.0087053927402214
713 => 0.0087728038368554
714 => 0.008653825015752
715 => 0.0085426800356035
716 => 0.0083352196764216
717 => 0.00827380089174
718 => 0.0082907748342096
719 => 0.0082737924802971
720 => 0.0081577203159939
721 => 0.008132654543164
722 => 0.0080908771569574
723 => 0.0081038257158506
724 => 0.0080252720073768
725 => 0.0081735190852913
726 => 0.0082010350493009
727 => 0.0083089169098267
728 => 0.0083201175624708
729 => 0.008620567008433
730 => 0.0084550845024449
731 => 0.0085661044545339
801 => 0.0085561737850587
802 => 0.0077607925057234
803 => 0.0078703890283073
804 => 0.0080408868241646
805 => 0.0079640777982352
806 => 0.0078554878061151
807 => 0.0077677955652511
808 => 0.0076349328533501
809 => 0.0078219345689484
810 => 0.0080678219395446
811 => 0.0083263536719651
812 => 0.0086369626087982
813 => 0.0085676383099837
814 => 0.0083205470539461
815 => 0.0083316313871917
816 => 0.0084001503737914
817 => 0.0083114120605383
818 => 0.0082852413995824
819 => 0.0083965549268539
820 => 0.0083973214819394
821 => 0.0082952173281583
822 => 0.0081817472460936
823 => 0.0081812718023066
824 => 0.0081610808971941
825 => 0.0084481792927609
826 => 0.0086060543814008
827 => 0.0086241545058849
828 => 0.0086048360988087
829 => 0.0086122709869722
830 => 0.0085204069514328
831 => 0.0087303808952423
901 => 0.0089230737503527
902 => 0.0088714279489007
903 => 0.0087940035506409
904 => 0.0087323312881627
905 => 0.0088568999238335
906 => 0.0088513530785763
907 => 0.0089213907463649
908 => 0.0089182134331968
909 => 0.0088946623997695
910 => 0.0088714287899823
911 => 0.0089635474265803
912 => 0.0089370187386201
913 => 0.0089104488442801
914 => 0.0088571588535339
915 => 0.0088644018483293
916 => 0.0087869908184835
917 => 0.0087511769339891
918 => 0.0082126220407175
919 => 0.0080687025754465
920 => 0.0081139825689716
921 => 0.0081288899185346
922 => 0.0080662559828108
923 => 0.0081560569573007
924 => 0.0081420615705492
925 => 0.0081965094333718
926 => 0.0081624927725317
927 => 0.008163888828158
928 => 0.0082639245745722
929 => 0.0082929653773387
930 => 0.0082781949906637
1001 => 0.0082885396631917
1002 => 0.0085269282753859
1003 => 0.0084930370379706
1004 => 0.0084750329935711
1005 => 0.0084800202369116
1006 => 0.0085409336384367
1007 => 0.0085579860651153
1008 => 0.0084857337350253
1009 => 0.0085198083515815
1010 => 0.0086648937441651
1011 => 0.0087156654204473
1012 => 0.008877704239353
1013 => 0.0088088672690716
1014 => 0.0089352205072175
1015 => 0.009323587284285
1016 => 0.0096338415387434
1017 => 0.0093485189045441
1018 => 0.0099182613322159
1019 => 0.010361887536855
1020 => 0.010344860424223
1021 => 0.010267503934185
1022 => 0.0097624472946161
1023 => 0.0092976866449141
1024 => 0.0096864786631693
1025 => 0.0096874697739797
1026 => 0.009654072194809
1027 => 0.0094466426989052
1028 => 0.009646854097981
1029 => 0.0096627461517787
1030 => 0.0096538508276902
1031 => 0.0094948151195249
1101 => 0.0092519969878685
1102 => 0.0092994430695697
1103 => 0.0093771607192701
1104 => 0.0092300249947871
1105 => 0.0091830062155468
1106 => 0.0092704230718432
1107 => 0.0095520983968554
1108 => 0.0094988493082959
1109 => 0.0094974587593972
1110 => 0.0097252809413825
1111 => 0.0095622094261851
1112 => 0.0093000415166033
1113 => 0.009233840661864
1114 => 0.0089988722257789
1115 => 0.0091611657615118
1116 => 0.0091670064169372
1117 => 0.009078119906016
1118 => 0.0093072541670831
1119 => 0.009305142654529
1120 => 0.0095226715332782
1121 => 0.0099385050493308
1122 => 0.0098155226167094
1123 => 0.0096725074280215
1124 => 0.0096880571444129
1125 => 0.0098585991532565
1126 => 0.0097554855616143
1127 => 0.0097925659281023
1128 => 0.0098585430276808
1129 => 0.0098983486499757
1130 => 0.0096823297279384
1201 => 0.009631965383832
1202 => 0.0095289376112731
1203 => 0.009502059588517
1204 => 0.0095859735595212
1205 => 0.0095638651928859
1206 => 0.0091665155324648
1207 => 0.0091249902821182
1208 => 0.0091262638022619
1209 => 0.0090218465858472
1210 => 0.0088625852678115
1211 => 0.0092811145026102
1212 => 0.009247500747743
1213 => 0.0092103937638676
1214 => 0.0092149391576628
1215 => 0.0093966085132171
1216 => 0.0092912311124732
1217 => 0.009571394203367
1218 => 0.0095138010943527
1219 => 0.0094547309394108
1220 => 0.0094465656446769
1221 => 0.009423828674653
1222 => 0.0093458551443874
1223 => 0.0092516974211089
1224 => 0.0091895263363981
1225 => 0.008476852288803
1226 => 0.0086091204466024
1227 => 0.0087612829055288
1228 => 0.0088138087765973
1229 => 0.0087239596394549
1230 => 0.0093494029359587
1231 => 0.0094636774531515
]
'min_raw' => 0.003944370806848
'max_raw' => 0.010361887536855
'avg_raw' => 0.0071531291718518
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.003944'
'max' => '$0.010361'
'avg' => '$0.007153'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00015293214404695
'max_diff' => -0.0018686615574961
'year' => 2027
]
2 => [
'items' => [
101 => 0.0091175324866322
102 => 0.0090527828964023
103 => 0.0093536479083146
104 => 0.0091721895268796
105 => 0.0092539002249289
106 => 0.0090772863891085
107 => 0.0094361520683083
108 => 0.0094334181130972
109 => 0.0092938112585395
110 => 0.0094118060160252
111 => 0.0093913015232037
112 => 0.0092336857282446
113 => 0.0094411487701427
114 => 0.0094412516692231
115 => 0.0093068831070261
116 => 0.0091499700434406
117 => 0.0091219176937926
118 => 0.0091007840166358
119 => 0.0092487026358663
120 => 0.0093813260073389
121 => 0.0096281052215272
122 => 0.0096901513793037
123 => 0.0099323216637518
124 => 0.0097881210504201
125 => 0.0098520433145995
126 => 0.0099214399747226
127 => 0.0099547112855632
128 => 0.0099004974699853
129 => 0.010276687602999
130 => 0.010308449576393
131 => 0.010319099091332
201 => 0.01019224989509
202 => 0.010304921670777
203 => 0.01025220627823
204 => 0.01038935708488
205 => 0.010410864082592
206 => 0.010392648420663
207 => 0.010399475081202
208 => 0.010078463167162
209 => 0.010061817005946
210 => 0.0098348454166118
211 => 0.0099273380169548
212 => 0.0097544275338993
213 => 0.0098092592292515
214 => 0.0098334285181072
215 => 0.0098208038532041
216 => 0.0099325674098035
217 => 0.0098375455549079
218 => 0.0095867672567991
219 => 0.0093359206343106
220 => 0.0093327714593005
221 => 0.00926672797141
222 => 0.0092189906261333
223 => 0.0092281865324069
224 => 0.0092605941055559
225 => 0.0092171070390681
226 => 0.0092263872095535
227 => 0.0093804998730639
228 => 0.0094114060686497
229 => 0.0093063747402191
301 => 0.0088846588006218
302 => 0.0087811686512503
303 => 0.0088555553183196
304 => 0.0088200032825754
305 => 0.0071184310220705
306 => 0.0075181901848981
307 => 0.0072806668648844
308 => 0.0073901285386692
309 => 0.0071476787353008
310 => 0.0072633884893511
311 => 0.0072420211228217
312 => 0.0078848220269147
313 => 0.007874785574941
314 => 0.0078795894933836
315 => 0.0076502859495763
316 => 0.008015572721131
317 => 0.0081955261200863
318 => 0.0081622215352443
319 => 0.0081706035817299
320 => 0.0080265722520584
321 => 0.0078809840314917
322 => 0.0077195042890168
323 => 0.0080195136910358
324 => 0.0079861577668626
325 => 0.0080626642558333
326 => 0.0082572417981576
327 => 0.0082858940803931
328 => 0.0083244030382803
329 => 0.008310600318132
330 => 0.0086394371100936
331 => 0.008599612804852
401 => 0.0086955779222496
402 => 0.0084981703948718
403 => 0.0082747850395493
404 => 0.0083172432925786
405 => 0.0083131542213842
406 => 0.0082610956518617
407 => 0.0082140995029926
408 => 0.0081358641562084
409 => 0.0083834123700862
410 => 0.0083733623646789
411 => 0.00853606027037
412 => 0.0085073018351759
413 => 0.0083152459665673
414 => 0.0083221052794871
415 => 0.008368237455346
416 => 0.0085279014427218
417 => 0.0085753005849281
418 => 0.0085533434137289
419 => 0.0086053144093051
420 => 0.0086463901651803
421 => 0.0086104728918296
422 => 0.0091189857396503
423 => 0.008907815751843
424 => 0.009010738534589
425 => 0.0090352850118176
426 => 0.0089724097265532
427 => 0.0089860451245319
428 => 0.0090066990370461
429 => 0.0091321055493813
430 => 0.0094612085244157
501 => 0.0096069659917787
502 => 0.010045484523887
503 => 0.0095948628631561
504 => 0.0095681248386661
505 => 0.0096471152682899
506 => 0.0099045720685383
507 => 0.010113216623452
508 => 0.01018243605931
509 => 0.010191584550447
510 => 0.010321444813738
511 => 0.010395878294906
512 => 0.01030567636211
513 => 0.010229239668602
514 => 0.0099554529201287
515 => 0.0099871444817611
516 => 0.010205467914399
517 => 0.010513862622186
518 => 0.010778497364467
519 => 0.010685831501172
520 => 0.01139280662621
521 => 0.011462900322123
522 => 0.011453215639748
523 => 0.011612899510378
524 => 0.011295959546232
525 => 0.011160461571136
526 => 0.010245766149332
527 => 0.010502758252918
528 => 0.010876311368097
529 => 0.01082687021255
530 => 0.010555585955204
531 => 0.010778291571031
601 => 0.01070465812979
602 => 0.010646580379629
603 => 0.010912645812043
604 => 0.010620095939739
605 => 0.010873392959331
606 => 0.010548536911682
607 => 0.01068625479103
608 => 0.010608079462048
609 => 0.010658668480707
610 => 0.010362926111326
611 => 0.010522501515104
612 => 0.010356287249894
613 => 0.01035620844269
614 => 0.010352539253573
615 => 0.010548089599486
616 => 0.010554466489246
617 => 0.010409954488156
618 => 0.010389128051098
619 => 0.010466134304481
620 => 0.010375980149739
621 => 0.010418162711319
622 => 0.010377257816557
623 => 0.010368049263157
624 => 0.01029467394296
625 => 0.010263061837523
626 => 0.010275457758608
627 => 0.010233144089408
628 => 0.010207648573163
629 => 0.010347467553679
630 => 0.010272767912671
701 => 0.010336018762351
702 => 0.010263936436247
703 => 0.010014067689195
704 => 0.0098703655304511
705 => 0.0093983866301149
706 => 0.0095322392607623
707 => 0.009620983693362
708 => 0.0095916536589172
709 => 0.0096546659221213
710 => 0.0096585343633176
711 => 0.009638048434216
712 => 0.0096143283527263
713 => 0.00960278272886
714 => 0.0096888343500077
715 => 0.0097387902124484
716 => 0.0096298903844208
717 => 0.0096043766783844
718 => 0.0097144804170446
719 => 0.0097816436340225
720 => 0.010277539092436
721 => 0.010240801555155
722 => 0.010333005564351
723 => 0.010322624807902
724 => 0.01041926929879
725 => 0.010577242196383
726 => 0.01025603912566
727 => 0.010311788872371
728 => 0.010298120321927
729 => 0.010447349971587
730 => 0.010447815850264
731 => 0.010358345220719
801 => 0.010406848700491
802 => 0.010379775388706
803 => 0.010428700522279
804 => 0.010240310902947
805 => 0.010469749123891
806 => 0.010599825810493
807 => 0.010601631925413
808 => 0.01066328724251
809 => 0.010725932615516
810 => 0.010846174953739
811 => 0.010722579121965
812 => 0.010500242252415
813 => 0.010516294256252
814 => 0.010385938230985
815 => 0.01038812953932
816 => 0.01037643216369
817 => 0.010411536868495
818 => 0.010248014411543
819 => 0.010286392805345
820 => 0.010232662829278
821 => 0.010311672073896
822 => 0.010226671187383
823 => 0.010298113730538
824 => 0.010328945963806
825 => 0.010442717568334
826 => 0.01020986702889
827 => 0.0097350690163667
828 => 0.0098348773149684
829 => 0.0096872530015637
830 => 0.0097009161938147
831 => 0.0097285180166427
901 => 0.0096390514781029
902 => 0.0096561188742416
903 => 0.0096555091067501
904 => 0.0096502544599315
905 => 0.0096269807578956
906 => 0.009593229285382
907 => 0.0097276847637209
908 => 0.0097505313695276
909 => 0.0098013165441402
910 => 0.0099524187758746
911 => 0.0099373200996883
912 => 0.0099619466669862
913 => 0.0099081870088472
914 => 0.0097034099501694
915 => 0.0097145303296678
916 => 0.0095758590191312
917 => 0.0097977704069542
918 => 0.0097452188612305
919 => 0.0097113385378344
920 => 0.0097020939776968
921 => 0.0098535707626372
922 => 0.009898894990799
923 => 0.0098706519734043
924 => 0.0098127247207475
925 => 0.0099239621705036
926 => 0.0099537246193271
927 => 0.0099603873340218
928 => 0.010157478767324
929 => 0.0099714025557307
930 => 0.0100161929493
1001 => 0.010365634813944
1002 => 0.010048739262393
1003 => 0.010216605903663
1004 => 0.010208389705109
1005 => 0.010294264598486
1006 => 0.010201345457352
1007 => 0.010202497301469
1008 => 0.010278748389118
1009 => 0.010171667488471
1010 => 0.010145152751588
1011 => 0.010108522832487
1012 => 0.010188502920765
1013 => 0.0102364473665
1014 => 0.010622844387804
1015 => 0.010872474485411
1016 => 0.010861637384521
1017 => 0.01096066820045
1018 => 0.010916053910856
1019 => 0.010771982601101
1020 => 0.011017894759228
1021 => 0.010940077862995
1022 => 0.010946492993373
1023 => 0.0109462542219
1024 => 0.010997995655023
1025 => 0.010961332107622
1026 => 0.010889064492259
1027 => 0.010937039107926
1028 => 0.011079506565216
1029 => 0.011521729924081
1030 => 0.011769203974383
1031 => 0.011506831675516
1101 => 0.011687812573969
1102 => 0.011579288524985
1103 => 0.011559566476973
1104 => 0.011673235855586
1105 => 0.011787104197397
1106 => 0.01177985127629
1107 => 0.011697188707339
1108 => 0.011650494719623
1109 => 0.012004077238239
1110 => 0.012264590814835
1111 => 0.012246825535416
1112 => 0.012325235701192
1113 => 0.012555450373043
1114 => 0.012576498317493
1115 => 0.012573846760274
1116 => 0.012521677233829
1117 => 0.01274835347542
1118 => 0.012937450784144
1119 => 0.01250960149578
1120 => 0.01267252090383
1121 => 0.01274566067504
1122 => 0.012853051558768
1123 => 0.013034237980418
1124 => 0.013231054491656
1125 => 0.013258886504328
1126 => 0.013239138359453
1127 => 0.01310933257958
1128 => 0.013324691554685
1129 => 0.013450843791512
1130 => 0.013525964561601
1201 => 0.01371645833564
1202 => 0.012746112361367
1203 => 0.012059253251453
1204 => 0.011951990283074
1205 => 0.01217011374718
1206 => 0.012227631165163
1207 => 0.012204445966095
1208 => 0.011431323591388
1209 => 0.011947919953772
1210 => 0.012503734203042
1211 => 0.012525085291981
1212 => 0.012803337526693
1213 => 0.01289394786026
1214 => 0.013117977380558
1215 => 0.013103964273066
1216 => 0.01315851189617
1217 => 0.013145972342252
1218 => 0.013560939853622
1219 => 0.014018710641935
1220 => 0.014002859495157
1221 => 0.013937049528239
1222 => 0.014034788551379
1223 => 0.014507257062617
1224 => 0.014463759733256
1225 => 0.014506013683637
1226 => 0.015063080685544
1227 => 0.015787347029881
1228 => 0.015450852597785
1229 => 0.01618094869177
1230 => 0.016640505482202
1231 => 0.017435261432197
]
'min_raw' => 0.0071184310220705
'max_raw' => 0.017435261432197
'avg_raw' => 0.012276846227134
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.007118'
'max' => '$0.017435'
'avg' => '$0.012276'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0031740602152225
'max_diff' => 0.0070733738953412
'year' => 2028
]
3 => [
'items' => [
101 => 0.017335754073002
102 => 0.017645146732146
103 => 0.01715761513223
104 => 0.016038144032432
105 => 0.015860983445725
106 => 0.016215663426732
107 => 0.017087609550871
108 => 0.01618820274029
109 => 0.016370151566681
110 => 0.01631775029244
111 => 0.016314958051227
112 => 0.016421526541469
113 => 0.016266943388134
114 => 0.015637143812466
115 => 0.015925777246562
116 => 0.015814322016342
117 => 0.015937989903809
118 => 0.016605374487955
119 => 0.016310307854843
120 => 0.015999479126126
121 => 0.016389327330353
122 => 0.016885738060713
123 => 0.016854673569343
124 => 0.016794395472135
125 => 0.017134179950037
126 => 0.017695404360021
127 => 0.017847101062858
128 => 0.017959080467589
129 => 0.017974520535594
130 => 0.018133562831993
131 => 0.017278352320435
201 => 0.018635593365641
202 => 0.018869951401121
203 => 0.018825901803596
204 => 0.019086380896738
205 => 0.019009741339819
206 => 0.018898702646221
207 => 0.019311617414343
208 => 0.018838243953195
209 => 0.018166349921156
210 => 0.017797735566622
211 => 0.018283156683944
212 => 0.01857958642143
213 => 0.018775507621436
214 => 0.018834793258179
215 => 0.017344739877975
216 => 0.016541683748195
217 => 0.017056433520327
218 => 0.01768446376846
219 => 0.017274863580697
220 => 0.017290919132581
221 => 0.016706936905867
222 => 0.017736133237422
223 => 0.017586187988818
224 => 0.018364104203823
225 => 0.018178448255944
226 => 0.018812808730748
227 => 0.018645760357997
228 => 0.019339168813735
301 => 0.019615788220013
302 => 0.020080275255527
303 => 0.020421953809654
304 => 0.020622593991906
305 => 0.020610548307946
306 => 0.021405584668572
307 => 0.020936779503166
308 => 0.020347849726521
309 => 0.020337197844912
310 => 0.020642212921435
311 => 0.021281440845028
312 => 0.021447183345228
313 => 0.021539810791832
314 => 0.021397948632974
315 => 0.020889094225494
316 => 0.020669373472295
317 => 0.020856581919944
318 => 0.020627642075475
319 => 0.021022856476203
320 => 0.021565570261645
321 => 0.021453502011074
322 => 0.021828129370521
323 => 0.022215829275601
324 => 0.022770257552558
325 => 0.022915205634574
326 => 0.023154799302265
327 => 0.023401419888738
328 => 0.023480627774503
329 => 0.02363186020519
330 => 0.02363106313563
331 => 0.024086812244623
401 => 0.024589517625217
402 => 0.024779277268735
403 => 0.025215619105597
404 => 0.024468399001212
405 => 0.025035174033834
406 => 0.025546419300557
407 => 0.024936891617401
408 => 0.025776983526896
409 => 0.025809602392053
410 => 0.026302108529015
411 => 0.025802859206445
412 => 0.025506406552362
413 => 0.026362254256762
414 => 0.026776372001971
415 => 0.026651636366912
416 => 0.025702392025156
417 => 0.025149891103249
418 => 0.023703889621149
419 => 0.025416740839311
420 => 0.026251020703123
421 => 0.025700231441856
422 => 0.025978017507741
423 => 0.027493528210777
424 => 0.028070536564442
425 => 0.027950522860472
426 => 0.02797080320085
427 => 0.028282146435045
428 => 0.029662813795316
429 => 0.028835485909423
430 => 0.029467947078804
501 => 0.029803402202535
502 => 0.030114991616574
503 => 0.02934982649454
504 => 0.028354357913282
505 => 0.02803905122667
506 => 0.025645466304693
507 => 0.025520869814691
508 => 0.025450930029193
509 => 0.025009969574809
510 => 0.024663495446896
511 => 0.024387966356621
512 => 0.023664895743786
513 => 0.023908910849658
514 => 0.022756487209365
515 => 0.023493767015038
516 => 0.02165447105889
517 => 0.023186291386145
518 => 0.022352591225343
519 => 0.022912398461027
520 => 0.022910445346319
521 => 0.021879662738379
522 => 0.021285128842004
523 => 0.02166398898038
524 => 0.022070157122674
525 => 0.022136056537247
526 => 0.022662664135805
527 => 0.02280962899717
528 => 0.022364318606101
529 => 0.021616355738424
530 => 0.021790090453369
531 => 0.02128160811355
601 => 0.02039051237151
602 => 0.021030512890482
603 => 0.021249037206496
604 => 0.021345549993503
605 => 0.020469259674244
606 => 0.020193910230744
607 => 0.02004731649743
608 => 0.02150323766219
609 => 0.021582996310152
610 => 0.021174939790443
611 => 0.023019393953034
612 => 0.022601937170033
613 => 0.02306833867604
614 => 0.021774325848989
615 => 0.021823758881601
616 => 0.0212111524718
617 => 0.021554171126914
618 => 0.021311736597487
619 => 0.021526458609357
620 => 0.02165516209794
621 => 0.022267667985057
622 => 0.023193285219494
623 => 0.022176180030793
624 => 0.021733012734862
625 => 0.02200795123279
626 => 0.022740148683745
627 => 0.023849465302439
628 => 0.023192727537095
629 => 0.023484176605224
630 => 0.023547845260944
701 => 0.023063591146532
702 => 0.02386732044237
703 => 0.024298045501495
704 => 0.024739880286165
705 => 0.025123513049764
706 => 0.024563401757012
707 => 0.025162801129056
708 => 0.024679791043422
709 => 0.024246481063943
710 => 0.024247138216319
711 => 0.023975316536543
712 => 0.023448627780241
713 => 0.023351498292724
714 => 0.023856778152891
715 => 0.024261964750564
716 => 0.024295337859461
717 => 0.024519669979172
718 => 0.024652427416812
719 => 0.025953630780672
720 => 0.026476985537736
721 => 0.027116933828074
722 => 0.02736622975267
723 => 0.028116521108169
724 => 0.027510599902919
725 => 0.02737950503874
726 => 0.025559543628731
727 => 0.025857562207664
728 => 0.026334718707051
729 => 0.025567411763659
730 => 0.026054091409529
731 => 0.026150172280908
801 => 0.025541338967336
802 => 0.025866543146249
803 => 0.025002897263374
804 => 0.023212110339668
805 => 0.02386931410014
806 => 0.024353237280241
807 => 0.023662619234939
808 => 0.024900525350533
809 => 0.024177366153372
810 => 0.023948159405636
811 => 0.023053942164609
812 => 0.023475978280795
813 => 0.024046788170913
814 => 0.023694094022592
815 => 0.02442598733765
816 => 0.025462543460589
817 => 0.026201255081779
818 => 0.026257964187435
819 => 0.025783022104845
820 => 0.026544119823236
821 => 0.026549663589205
822 => 0.025691142253684
823 => 0.025165302715945
824 => 0.025045830866594
825 => 0.025344294970107
826 => 0.025706685491285
827 => 0.026278074339251
828 => 0.026623352653171
829 => 0.027523655374406
830 => 0.02776725147707
831 => 0.028034889740174
901 => 0.028392536996266
902 => 0.028821984226077
903 => 0.027882378135694
904 => 0.02791971043731
905 => 0.027044762255676
906 => 0.026109754643339
907 => 0.026819308870759
908 => 0.027746956635066
909 => 0.027534153212974
910 => 0.02751020848081
911 => 0.027550476878596
912 => 0.027390030047849
913 => 0.026664334978816
914 => 0.026299895458239
915 => 0.026770115418221
916 => 0.027020016399868
917 => 0.027407591028748
918 => 0.027359814275031
919 => 0.028358164896547
920 => 0.028746093759513
921 => 0.028646844955955
922 => 0.028665109124365
923 => 0.029367435800867
924 => 0.030148567509635
925 => 0.030880200434303
926 => 0.031624448869641
927 => 0.03072722833233
928 => 0.030271675076354
929 => 0.03074168975301
930 => 0.030492293349641
1001 => 0.031925399059181
1002 => 0.032024624189144
1003 => 0.03345762626883
1004 => 0.034817715881166
1005 => 0.033963467964194
1006 => 0.034768985273727
1007 => 0.035640217918777
1008 => 0.03732096704348
1009 => 0.036754949867747
1010 => 0.036321389581756
1011 => 0.035911677206442
1012 => 0.036764223619462
1013 => 0.037861010960051
1014 => 0.038097248448316
1015 => 0.03848004342897
1016 => 0.038077581312755
1017 => 0.038562302601988
1018 => 0.040273581750307
1019 => 0.039811179018553
1020 => 0.039154492804512
1021 => 0.040505383339114
1022 => 0.040994265372132
1023 => 0.044425495509363
1024 => 0.048757565294665
1025 => 0.046964059957646
1026 => 0.045850773318903
1027 => 0.04611242208652
1028 => 0.047694347322295
1029 => 0.048202411500229
1030 => 0.04682131792438
1031 => 0.047309143523634
1101 => 0.049997110537474
1102 => 0.051439118600093
1103 => 0.049480677963536
1104 => 0.044077417920157
1105 => 0.039095365395897
1106 => 0.04041683007008
1107 => 0.040267016985851
1108 => 0.043154902211509
1109 => 0.039800150866327
1110 => 0.03985663627524
1111 => 0.042804239909041
1112 => 0.042017869794262
1113 => 0.040744050918996
1114 => 0.039104665683379
1115 => 0.036074110450562
1116 => 0.03338986316757
1117 => 0.038654290234747
1118 => 0.038427278566871
1119 => 0.038098532030542
1120 => 0.038830121873051
1121 => 0.042382514482876
1122 => 0.042300620335247
1123 => 0.041779651550791
1124 => 0.042174801782193
1125 => 0.040674779172908
1126 => 0.041061369154201
1127 => 0.039094576213324
1128 => 0.039983648763129
1129 => 0.040741317875791
1130 => 0.040893431167641
1201 => 0.041236150181275
1202 => 0.03830765373339
1203 => 0.039622462662352
1204 => 0.040394789727181
1205 => 0.036905387950785
1206 => 0.040325815473344
1207 => 0.038256675125549
1208 => 0.037554377814062
1209 => 0.038499928623344
1210 => 0.038131446553388
1211 => 0.037814647307634
1212 => 0.037637867885201
1213 => 0.038332176042903
1214 => 0.038299785737468
1215 => 0.037163762832062
1216 => 0.035681867262176
1217 => 0.036179240056994
1218 => 0.035998539857742
1219 => 0.035343659024863
1220 => 0.03578496963561
1221 => 0.033841661048069
1222 => 0.030498299627596
1223 => 0.03270702659189
1224 => 0.032621993006398
1225 => 0.032579115216626
1226 => 0.034238912485564
1227 => 0.034079361276194
1228 => 0.033789774268857
1229 => 0.035338340532376
1230 => 0.034773093015036
1231 => 0.036515052674414
]
'min_raw' => 0.015637143812466
'max_raw' => 0.051439118600093
'avg_raw' => 0.033538131206279
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.015637'
'max' => '$0.051439'
'avg' => '$0.033538'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0085187127903951
'max_diff' => 0.034003857167896
'year' => 2029
]
4 => [
'items' => [
101 => 0.037662419968967
102 => 0.037371410509624
103 => 0.038450514995859
104 => 0.036190698521634
105 => 0.036941318906271
106 => 0.03709602072723
107 => 0.035319231465062
108 => 0.03410546582725
109 => 0.034024521497149
110 => 0.031920019148391
111 => 0.033044227316148
112 => 0.03403348398088
113 => 0.033559706807891
114 => 0.033409723108614
115 => 0.034175957300728
116 => 0.034235500259807
117 => 0.032877914482719
118 => 0.033160199554926
119 => 0.034337375232017
120 => 0.033130537748185
121 => 0.030785849652883
122 => 0.030204334587399
123 => 0.030126749758214
124 => 0.02854963478008
125 => 0.030243194204697
126 => 0.02950391013128
127 => 0.031839299661219
128 => 0.030505337686663
129 => 0.030447833252096
130 => 0.030360906865182
131 => 0.029003418853702
201 => 0.029300622455353
202 => 0.030288572492625
203 => 0.030641084195977
204 => 0.030604314337274
205 => 0.030283730998468
206 => 0.030430492409321
207 => 0.029957722769897
208 => 0.029790777970368
209 => 0.029263854261268
210 => 0.02848942197528
211 => 0.028597111534516
212 => 0.027062758534744
213 => 0.026226761586192
214 => 0.025995368649095
215 => 0.025685940343033
216 => 0.026030319399622
217 => 0.027058411905477
218 => 0.025818314221423
219 => 0.023692253724851
220 => 0.023820033583326
221 => 0.024107116987138
222 => 0.023572138963381
223 => 0.023065827161196
224 => 0.023506024194821
225 => 0.022605184335063
226 => 0.024215979180377
227 => 0.024172411694011
228 => 0.02477281640146
301 => 0.025148261786572
302 => 0.024282981725775
303 => 0.024065366130451
304 => 0.024189329863625
305 => 0.022140485486885
306 => 0.0246053821051
307 => 0.024626698633412
308 => 0.02444417357637
309 => 0.025756654930425
310 => 0.02852639996068
311 => 0.027484310467562
312 => 0.027080781918505
313 => 0.026313673851771
314 => 0.027335799804324
315 => 0.027257316478817
316 => 0.026902385116955
317 => 0.026687721521848
318 => 0.027083245777778
319 => 0.026638711689465
320 => 0.026558861152224
321 => 0.026075053774786
322 => 0.025902356552874
323 => 0.025774498405044
324 => 0.025633739147366
325 => 0.025944218994782
326 => 0.025240630813512
327 => 0.024392172440499
328 => 0.02432163230723
329 => 0.024516399817138
330 => 0.02443022969274
331 => 0.024321219757827
401 => 0.024113090104988
402 => 0.024051342482977
403 => 0.024251992298825
404 => 0.024025470355344
405 => 0.024359715822239
406 => 0.024268819549889
407 => 0.023761080361464
408 => 0.023128249343563
409 => 0.023122615820095
410 => 0.022986273415339
411 => 0.022812620863665
412 => 0.022764314696421
413 => 0.023468952028458
414 => 0.024927530217754
415 => 0.024641176418377
416 => 0.024848096385145
417 => 0.025865937825422
418 => 0.026189479011727
419 => 0.025959837141181
420 => 0.025645489185084
421 => 0.025659318899809
422 => 0.02673354102539
423 => 0.026800538941694
424 => 0.026969821061849
425 => 0.02718739642537
426 => 0.025996891166411
427 => 0.025603246209173
428 => 0.025416715389843
429 => 0.024842272662818
430 => 0.025461759894917
501 => 0.025100811213861
502 => 0.025149515522698
503 => 0.025117796777674
504 => 0.025135117357269
505 => 0.024215528930389
506 => 0.024550578621
507 => 0.023993493526404
508 => 0.023247619120477
509 => 0.023245118687931
510 => 0.023427670392102
511 => 0.023319081495212
512 => 0.023026871565757
513 => 0.023068378607045
514 => 0.022704733249608
515 => 0.023112531737449
516 => 0.023124225938907
517 => 0.022967201308155
518 => 0.02359547114402
519 => 0.023852873808394
520 => 0.023749516832639
521 => 0.023845622007446
522 => 0.024653075711551
523 => 0.024784725896995
524 => 0.024843196213047
525 => 0.024764853735371
526 => 0.023860380778894
527 => 0.023900498000629
528 => 0.023606144445727
529 => 0.023357446710049
530 => 0.023367393315228
531 => 0.023495256279809
601 => 0.0240536413452
602 => 0.025228729796719
603 => 0.025273323544475
604 => 0.025327372467648
605 => 0.025107528334293
606 => 0.025041221240048
607 => 0.02512869741267
608 => 0.025569998851845
609 => 0.026705145965574
610 => 0.026303909161655
611 => 0.025977697394447
612 => 0.02626387306035
613 => 0.026219818559703
614 => 0.025847954239362
615 => 0.025837517246423
616 => 0.025123790723474
617 => 0.024859942278706
618 => 0.024639450769544
619 => 0.024398679797616
620 => 0.024255942694741
621 => 0.02447525175761
622 => 0.024525410335077
623 => 0.024045887236247
624 => 0.023980530009776
625 => 0.024372118923505
626 => 0.024199795242479
627 => 0.024377034421836
628 => 0.024418155431776
629 => 0.024411534002079
630 => 0.024231608287839
701 => 0.024346287572633
702 => 0.024075036876554
703 => 0.023780092485105
704 => 0.023591936339046
705 => 0.023427745146318
706 => 0.023518847962891
707 => 0.023194083056523
708 => 0.02309018422675
709 => 0.02430743681131
710 => 0.025206634383196
711 => 0.025193559694379
712 => 0.025113970888745
713 => 0.024995718067573
714 => 0.025561347921425
715 => 0.025364293790469
716 => 0.025507667135163
717 => 0.025544161668748
718 => 0.025654619630459
719 => 0.025694098857588
720 => 0.025574765213118
721 => 0.025174266926897
722 => 0.024176263275869
723 => 0.023711689882257
724 => 0.023558372924283
725 => 0.023563945704515
726 => 0.023410223547729
727 => 0.023455501612246
728 => 0.023394477684676
729 => 0.02327891312913
730 => 0.023511712177239
731 => 0.02353854009886
801 => 0.02348420201929
802 => 0.023497000604096
803 => 0.023047104513354
804 => 0.02308130913601
805 => 0.022890853450548
806 => 0.022855145305501
807 => 0.022373689917525
808 => 0.021520721909651
809 => 0.021993348985621
810 => 0.021422481939273
811 => 0.021206285938773
812 => 0.022229724179761
813 => 0.022126999366124
814 => 0.021951179138581
815 => 0.021691104377898
816 => 0.021594640119316
817 => 0.021008553821045
818 => 0.020973924715894
819 => 0.021264404910978
820 => 0.02113035829576
821 => 0.020942106080571
822 => 0.020260275639976
823 => 0.019493672478447
824 => 0.019516811409198
825 => 0.019760653611721
826 => 0.02046965770216
827 => 0.02019263753813
828 => 0.019991656230687
829 => 0.019954018473278
830 => 0.020425133807225
831 => 0.021091860706474
901 => 0.021404674050428
902 => 0.021094685526852
903 => 0.020738587401936
904 => 0.020760261444799
905 => 0.02090444914183
906 => 0.020919601230084
907 => 0.020687817958242
908 => 0.020753063591587
909 => 0.02065394950835
910 => 0.020045686562474
911 => 0.020034685014606
912 => 0.019885407478123
913 => 0.019880887413644
914 => 0.01962692908506
915 => 0.01959139855936
916 => 0.019087148883788
917 => 0.019419047547258
918 => 0.019196427349264
919 => 0.018860886200091
920 => 0.0188030387795
921 => 0.018801299816185
922 => 0.019145825550757
923 => 0.019415021563457
924 => 0.01920029992292
925 => 0.019151411967574
926 => 0.01967340742935
927 => 0.019606978748745
928 => 0.019549451939759
929 => 0.021032162625371
930 => 0.019858481420352
1001 => 0.019346689423582
1002 => 0.018713249640916
1003 => 0.018919500828233
1004 => 0.018962960983861
1005 => 0.017439652492651
1006 => 0.016821646427483
1007 => 0.016609570034985
1008 => 0.016487517072782
1009 => 0.016543138140302
1010 => 0.01598686019677
1011 => 0.016360688174812
1012 => 0.015878998496716
1013 => 0.01579824165463
1014 => 0.016659562468965
1015 => 0.016779410228516
1016 => 0.016268102452489
1017 => 0.016596444817908
1018 => 0.016477383311907
1019 => 0.015887255683714
1020 => 0.015864717149002
1021 => 0.015568611849164
1022 => 0.015105264392202
1023 => 0.014893502171098
1024 => 0.014783214567743
1025 => 0.01482872138235
1026 => 0.014805711744353
1027 => 0.014655558292106
1028 => 0.014814318364473
1029 => 0.014408751983767
1030 => 0.0142472521831
1031 => 0.014174306469905
1101 => 0.013814342963499
1102 => 0.014387204978689
1103 => 0.014500066012407
1104 => 0.014613149417226
1105 => 0.015597463250855
1106 => 0.015548289713369
1107 => 0.015992794543759
1108 => 0.015975521903442
1109 => 0.015848741925314
1110 => 0.015313878051885
1111 => 0.015527065258802
1112 => 0.01487090817256
1113 => 0.015362545675918
1114 => 0.015138182850658
1115 => 0.015286688379009
1116 => 0.015019662048831
1117 => 0.015167445445198
1118 => 0.01452682955037
1119 => 0.013928631441488
1120 => 0.014169363822993
1121 => 0.014431067452777
1122 => 0.014998507602993
1123 => 0.014660544930804
1124 => 0.014782089087506
1125 => 0.014374936508799
1126 => 0.013534864441541
1127 => 0.01353961915821
1128 => 0.013410392372627
1129 => 0.013298721562464
1130 => 0.014699364009195
1201 => 0.014525171980063
1202 => 0.014247619779331
1203 => 0.014619134429497
1204 => 0.014717368799731
1205 => 0.01472016539415
1206 => 0.01499121289273
1207 => 0.01513587099131
1208 => 0.015161367608169
1209 => 0.015587866703553
1210 => 0.015730823574666
1211 => 0.01631964269477
1212 => 0.015123597762315
1213 => 0.015098966004011
1214 => 0.014624362402506
1215 => 0.014323361295246
1216 => 0.014644972205838
1217 => 0.014929875568355
1218 => 0.014633215144145
1219 => 0.014671952732703
1220 => 0.014273710351248
1221 => 0.014416063263572
1222 => 0.014538676768675
1223 => 0.014470976798046
1224 => 0.014369626665299
1225 => 0.014906516741624
1226 => 0.014876223299429
1227 => 0.015376187681552
1228 => 0.015765945670213
1229 => 0.016464461663468
1230 => 0.015735523810044
1231 => 0.0157089584174
]
'min_raw' => 0.013298721562464
'max_raw' => 0.038450514995859
'avg_raw' => 0.025874618279161
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.013298'
'max' => '$0.03845'
'avg' => '$0.025874'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0023384222500021
'max_diff' => -0.012988603604234
'year' => 2030
]
5 => [
'items' => [
101 => 0.015968639391721
102 => 0.015730783818862
103 => 0.015881100330414
104 => 0.016440243349573
105 => 0.016452057160481
106 => 0.016254160606523
107 => 0.01624211858323
108 => 0.016280126781169
109 => 0.01650274198366
110 => 0.016424953391636
111 => 0.016514972319693
112 => 0.016627542367647
113 => 0.017093179814698
114 => 0.017205443426773
115 => 0.016932701051439
116 => 0.016957326634165
117 => 0.016855313498844
118 => 0.016756770088345
119 => 0.016978281284037
120 => 0.017383097347979
121 => 0.017380579008255
122 => 0.017474488466589
123 => 0.017532993281144
124 => 0.017281847788934
125 => 0.017118361308382
126 => 0.017181052427941
127 => 0.01728129689335
128 => 0.017148544498869
129 => 0.016329135223242
130 => 0.0165776916534
131 => 0.016536319709633
201 => 0.016477401030709
202 => 0.016727326443263
203 => 0.016703220527525
204 => 0.015981154762428
205 => 0.016027379069973
206 => 0.015983965815669
207 => 0.01612424292184
208 => 0.015723208394779
209 => 0.015846563914294
210 => 0.015923931339748
211 => 0.015969501347705
212 => 0.016134131464092
213 => 0.016114814020087
214 => 0.016132930664649
215 => 0.016377033666512
216 => 0.017611622883898
217 => 0.017678818851033
218 => 0.017347921333091
219 => 0.017480108364844
220 => 0.017226338170005
221 => 0.017396695801913
222 => 0.01751325016705
223 => 0.016986563403111
224 => 0.01695537643112
225 => 0.016700558836415
226 => 0.016837483378203
227 => 0.016619626586995
228 => 0.016673081023251
301 => 0.016523617759407
302 => 0.016792621876487
303 => 0.017093410278396
304 => 0.017169401307212
305 => 0.016969501626592
306 => 0.016824761083792
307 => 0.016570644371133
308 => 0.016993246127644
309 => 0.017116827759803
310 => 0.016992597005941
311 => 0.016963810025775
312 => 0.016909258750379
313 => 0.016975383336731
314 => 0.017116154707694
315 => 0.017049769528787
316 => 0.017093618109011
317 => 0.016926512537656
318 => 0.017281930928542
319 => 0.017846420869365
320 => 0.017848235796828
321 => 0.01778185026008
322 => 0.017754686728739
323 => 0.017822802318053
324 => 0.017859752231009
325 => 0.018080025556589
326 => 0.018316387611013
327 => 0.019419386186166
328 => 0.019109668599983
329 => 0.020088314553537
330 => 0.020862296441526
331 => 0.021094379767608
401 => 0.020880874027977
402 => 0.020150482426053
403 => 0.020114645929546
404 => 0.021206159346201
405 => 0.020897756811514
406 => 0.020861073311342
407 => 0.020470822847261
408 => 0.020701509204993
409 => 0.020651054714592
410 => 0.020571409833176
411 => 0.021011543333978
412 => 0.021835433956491
413 => 0.021707022876575
414 => 0.021611169962236
415 => 0.021191170393968
416 => 0.021444103944365
417 => 0.021354039151692
418 => 0.021741014657547
419 => 0.021511778940435
420 => 0.020895420358991
421 => 0.020993577494631
422 => 0.020978741241044
423 => 0.021284070288559
424 => 0.021192418087228
425 => 0.020960844677768
426 => 0.021832617987912
427 => 0.021776009878209
428 => 0.021856267235352
429 => 0.021891599006007
430 => 0.022422232057523
501 => 0.022639615440365
502 => 0.022688965274102
503 => 0.022895462674767
504 => 0.022683827430658
505 => 0.023530519300467
506 => 0.024093519988049
507 => 0.024747474258426
508 => 0.025703077213784
509 => 0.026062392764821
510 => 0.025997485626635
511 => 0.026722012881241
512 => 0.028023972252434
513 => 0.026260648839996
514 => 0.028117432674977
515 => 0.027529596350422
516 => 0.026135846999626
517 => 0.026046105972661
518 => 0.026989969214782
519 => 0.029083367042337
520 => 0.028558994629656
521 => 0.029084224727753
522 => 0.028471515919084
523 => 0.028441089762418
524 => 0.029054466828507
525 => 0.030487655776869
526 => 0.029806801429787
527 => 0.028830629770909
528 => 0.029551419732911
529 => 0.028927004761863
530 => 0.027520023069347
531 => 0.028558593651955
601 => 0.027864131080152
602 => 0.028066812178265
603 => 0.029526469210682
604 => 0.029350839414768
605 => 0.029578120633562
606 => 0.029176975231376
607 => 0.028802242170911
608 => 0.028102775085509
609 => 0.027895697364833
610 => 0.027952926196952
611 => 0.027895669005066
612 => 0.027504323599218
613 => 0.027419812596085
614 => 0.027278957221686
615 => 0.027322614192034
616 => 0.02705776487947
617 => 0.027557590252939
618 => 0.027650362246701
619 => 0.028014093471534
620 => 0.028051857253928
621 => 0.0290648435377
622 => 0.028506907715142
623 => 0.028881219234775
624 => 0.028847737289303
625 => 0.026166053774276
626 => 0.026535566101953
627 => 0.027110411324461
628 => 0.026851444330905
629 => 0.026485325590961
630 => 0.026189665078412
701 => 0.025741709169059
702 => 0.026372198509241
703 => 0.027201224946515
704 => 0.02807288273248
705 => 0.029120122449036
706 => 0.028886390735515
707 => 0.028053305314423
708 => 0.028090676917844
709 => 0.028321693465008
710 => 0.028022506046364
711 => 0.027934269835774
712 => 0.028309571164632
713 => 0.028312155658622
714 => 0.027967904375465
715 => 0.027585332071556
716 => 0.027583729079633
717 => 0.027515654033363
718 => 0.028483626318586
719 => 0.029015913202422
720 => 0.02907693903583
721 => 0.029011805677605
722 => 0.029036872922136
723 => 0.028727146912572
724 => 0.029435088724039
725 => 0.030084766138429
726 => 0.029910638713039
727 => 0.029649596948707
728 => 0.029441664609942
729 => 0.02986165646221
730 => 0.029842954886157
731 => 0.03007909177298
801 => 0.030068379239801
802 => 0.02998897528632
803 => 0.029910641548804
804 => 0.030221225963612
805 => 0.03013178263998
806 => 0.030042200386162
807 => 0.029862529461773
808 => 0.029886949724416
809 => 0.029625953032625
810 => 0.029505204020606
811 => 0.027689428597239
812 => 0.027204194071942
813 => 0.02735685873146
814 => 0.02740711990131
815 => 0.027195945214055
816 => 0.027498715469252
817 => 0.027451529045692
818 => 0.027635103816627
819 => 0.027520414269637
820 => 0.027525121168651
821 => 0.027862398671959
822 => 0.027960311766051
823 => 0.02791051237614
824 => 0.02794539016181
825 => 0.028749134011584
826 => 0.028634867338428
827 => 0.028574165445733
828 => 0.028590980284854
829 => 0.028796354070933
830 => 0.028853847518043
831 => 0.028610243742648
901 => 0.028725128691381
902 => 0.029214294222015
903 => 0.029385474473366
904 => 0.029931799664495
905 => 0.029699711013148
906 => 0.030125719777258
907 => 0.031435125481044
908 => 0.03248116936121
909 => 0.031519184179417
910 => 0.033440110552459
911 => 0.034935827274394
912 => 0.034878419175359
913 => 0.034617606368339
914 => 0.032914772646102
915 => 0.031347799667079
916 => 0.032658639101219
917 => 0.032661980700513
918 => 0.032549378430595
919 => 0.03185001540289
920 => 0.032525042113188
921 => 0.032578623282114
922 => 0.032548632075898
923 => 0.032012432082301
924 => 0.0311937537984
925 => 0.031353721575436
926 => 0.031615752057474
927 => 0.031119673689691
928 => 0.030961146592736
929 => 0.031255878626989
930 => 0.032205566651211
1001 => 0.0320260336314
1002 => 0.032021345298703
1003 => 0.032789463691303
1004 => 0.032239656692526
1005 => 0.031355739281392
1006 => 0.031132538477642
1007 => 0.030340325990409
1008 => 0.030887509977105
1009 => 0.030907202154653
1010 => 0.030607515077225
1011 => 0.031380057236055
1012 => 0.031372938124058
1013 => 0.032106351926142
1014 => 0.033508363658083
1015 => 0.033093719800141
1016 => 0.032611534106478
1017 => 0.032663961060938
1018 => 0.033238955350617
1019 => 0.032891300677234
1020 => 0.033016319721717
1021 => 0.03323876611932
1022 => 0.033372973554027
1023 => 0.032644650676419
1024 => 0.032474843773938
1025 => 0.032127478445586
1026 => 0.0320368573153
1027 => 0.032319779127227
1028 => 0.032245239225559
1029 => 0.030905547103382
1030 => 0.030765541822638
1031 => 0.030769835584717
1101 => 0.030417785649398
1102 => 0.02988082499637
1103 => 0.031291925532272
1104 => 0.0311785944109
1105 => 0.031053485624037
1106 => 0.031068810736567
1107 => 0.031681321652567
1108 => 0.031326034388744
1109 => 0.032270623810055
1110 => 0.032076444621991
1111 => 0.031877285470458
1112 => 0.03184975560918
1113 => 0.0317730963273
1114 => 0.031510203126071
1115 => 0.031192743788155
1116 => 0.030983129635406
1117 => 0.028580299326626
1118 => 0.029026250655315
1119 => 0.029539277009229
1120 => 0.029716371650776
1121 => 0.029413439011834
1122 => 0.031522164753053
1123 => 0.03190744926616
1124 => 0.03074039734447
1125 => 0.030522089580338
1126 => 0.031536476973725
1127 => 0.030924677371697
1128 => 0.031200170695029
1129 => 0.030604704816777
1130 => 0.0318146455094
1201 => 0.031805427788527
1202 => 0.031334733531347
1203 => 0.031732561094341
1204 => 0.031663428765215
1205 => 0.031132016108127
1206 => 0.031831492238493
1207 => 0.031831839169927
1208 => 0.031378806181167
1209 => 0.030849762831968
1210 => 0.030755182376577
1211 => 0.030683928708537
1212 => 0.031182646660621
1213 => 0.031629795617008
1214 => 0.032461828967219
1215 => 0.032671021920087
1216 => 0.033487515941893
1217 => 0.03300133350628
1218 => 0.033216851882871
1219 => 0.033450827567596
1220 => 0.033563004115024
1221 => 0.033380218450715
1222 => 0.034648569748927
1223 => 0.034755657459776
1224 => 0.034791563042919
1225 => 0.03436388212146
1226 => 0.034743762879681
1227 => 0.034566029253238
1228 => 0.03502844277342
1229 => 0.035100955117777
1230 => 0.035039539741808
1231 => 0.035062556304437
]
'min_raw' => 0.015723208394779
'max_raw' => 0.035100955117777
'avg_raw' => 0.025412081756278
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.015723'
'max' => '$0.03510095'
'avg' => '$0.025412'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0024244868323153
'max_diff' => -0.0033495598780814
'year' => 2031
]
6 => [
'items' => [
101 => 0.033980242223914
102 => 0.033924118529177
103 => 0.033158867969086
104 => 0.03347071322877
105 => 0.032887733462924
106 => 0.033072602352031
107 => 0.033154090796853
108 => 0.033111525857707
109 => 0.033488344491864
110 => 0.033167971673869
111 => 0.032322455133014
112 => 0.031476708231742
113 => 0.031466090568327
114 => 0.031243420337895
115 => 0.03108247054538
116 => 0.031113475185419
117 => 0.031222739580915
118 => 0.031076119900081
119 => 0.031107408642794
120 => 0.031627010247622
121 => 0.031731212643841
122 => 0.031377092186984
123 => 0.029955247453365
124 => 0.029606323189307
125 => 0.029857123030843
126 => 0.029737256860167
127 => 0.024000287183894
128 => 0.02534810311166
129 => 0.024547276654886
130 => 0.024916334330421
131 => 0.02409889789106
201 => 0.024489021405437
202 => 0.024416979837361
203 => 0.026584227964437
204 => 0.026550389365885
205 => 0.026566586112313
206 => 0.025793473204905
207 => 0.027025063058709
208 => 0.027631788507232
209 => 0.027519499774186
210 => 0.027547760429128
211 => 0.027062148745194
212 => 0.026571287894908
213 => 0.026026847668998
214 => 0.027038350313893
215 => 0.026925888486707
216 => 0.027183835455784
217 => 0.027839867224701
218 => 0.027936470394696
219 => 0.028066306034822
220 => 0.028019769200167
221 => 0.029128465402917
222 => 0.028994194977351
223 => 0.029317748070728
224 => 0.02865217480962
225 => 0.027899015487883
226 => 0.028042166452312
227 => 0.02802837986329
228 => 0.027852860761531
229 => 0.027694409964453
301 => 0.027430634030553
302 => 0.028265260116906
303 => 0.028231375822006
304 => 0.028779923170249
305 => 0.028682962098142
306 => 0.028035432328216
307 => 0.028058558980627
308 => 0.028214096832381
309 => 0.028752415113202
310 => 0.028912224630453
311 => 0.028838194494754
312 => 0.029013418334838
313 => 0.029151908113589
314 => 0.029030810518823
315 => 0.030745297088484
316 => 0.030033322731174
317 => 0.030380334079041
318 => 0.030463094240798
319 => 0.030251105826717
320 => 0.030297078522995
321 => 0.030366714631047
322 => 0.030789531442988
323 => 0.031899125100552
324 => 0.032390556578228
325 => 0.033869052425618
326 => 0.032349750035064
327 => 0.032259600918706
328 => 0.032525922667118
329 => 0.033393956244216
330 => 0.034097415928205
331 => 0.034330794088947
401 => 0.034361638865543
402 => 0.034799471809782
403 => 0.035050429488319
404 => 0.034746307374202
405 => 0.0344885957254
406 => 0.033565504587741
407 => 0.033672354900418
408 => 0.034408447596412
409 => 0.035448221885146
410 => 0.036340456394956
411 => 0.036028026967133
412 => 0.038411642960624
413 => 0.03864796875018
414 => 0.038615316167391
415 => 0.039153701485993
416 => 0.038085116268831
417 => 0.037628275385631
418 => 0.034544315909022
419 => 0.035410782728877
420 => 0.036670243137348
421 => 0.036503548829552
422 => 0.035588895015448
423 => 0.036339762548019
424 => 0.036091502259952
425 => 0.035895689070425
426 => 0.036792747251904
427 => 0.035806394932249
428 => 0.036660403518439
429 => 0.035565128673063
430 => 0.036029454118442
501 => 0.03576588053875
502 => 0.035936444947174
503 => 0.034939328900733
504 => 0.035477348515769
505 => 0.034916945515903
506 => 0.034916679811914
507 => 0.034904308884632
508 => 0.035563620528767
509 => 0.035585120657812
510 => 0.035097888356632
511 => 0.035027670570033
512 => 0.035287302529721
513 => 0.034983341502644
514 => 0.035125562954105
515 => 0.034987649245525
516 => 0.034956601964817
517 => 0.034709211949872
518 => 0.034602629529304
519 => 0.034644423242699
520 => 0.034501759752744
521 => 0.034415799839683
522 => 0.034887209294344
523 => 0.034635354239322
524 => 0.034848608895052
525 => 0.034605578299964
526 => 0.033763128373999
527 => 0.033278626512831
528 => 0.031687316697833
529 => 0.032138610187353
530 => 0.032437818237801
531 => 0.032338929978913
601 => 0.032551380223681
602 => 0.03256442294326
603 => 0.032495353203012
604 => 0.032415379292187
605 => 0.032376452415232
606 => 0.032666581463864
607 => 0.032835011141889
608 => 0.032467847768551
609 => 0.032381826527339
610 => 0.03275304896943
611 => 0.032979494444657
612 => 0.034651440605011
613 => 0.034527577433137
614 => 0.034838449687621
615 => 0.03480345024249
616 => 0.035129293891023
617 => 0.035661910544574
618 => 0.034578951965946
619 => 0.034766916129306
620 => 0.034720831657177
621 => 0.035223969839888
622 => 0.035225540582375
623 => 0.034923884108223
624 => 0.035087416976678
625 => 0.034996137415796
626 => 0.035161091919482
627 => 0.034525923164961
628 => 0.035299490145738
629 => 0.035738052776283
630 => 0.035744142218834
701 => 0.035952017425064
702 => 0.036163230673914
703 => 0.036568636112284
704 => 0.036151924136272
705 => 0.035402299857519
706 => 0.035456420309173
707 => 0.035016915868817
708 => 0.035024304017863
709 => 0.034984865499239
710 => 0.035103223462422
711 => 0.034551896082034
712 => 0.034681291516234
713 => 0.034500137150616
714 => 0.034766522335094
715 => 0.034479935911644
716 => 0.034720809433849
717 => 0.034824762460949
718 => 0.035208351368896
719 => 0.034423279518054
720 => 0.032822464869494
721 => 0.033158975516623
722 => 0.032661249837178
723 => 0.032707316243786
724 => 0.032800377716548
725 => 0.032498735035507
726 => 0.032556278953197
727 => 0.032554223079526
728 => 0.032536506670909
729 => 0.032458037759578
730 => 0.032344242313545
731 => 0.032797568346147
801 => 0.032874597272723
802 => 0.033045823034637
803 => 0.033555274758551
804 => 0.033504368517633
805 => 0.033587398708649
806 => 0.033406144267855
807 => 0.032715724117444
808 => 0.032753217253323
809 => 0.032285677248128
810 => 0.033033866985531
811 => 0.032856685780092
812 => 0.032742455904313
813 => 0.032711287224375
814 => 0.033222001780573
815 => 0.033374815580257
816 => 0.033279592275246
817 => 0.033084286498562
818 => 0.033459331326765
819 => 0.033559677500922
820 => 0.033582141308691
821 => 0.034246648836554
822 => 0.033619279897741
823 => 0.033770293836824
824 => 0.034948461480723
825 => 0.033880026003728
826 => 0.034446000104847
827 => 0.034418298617784
828 => 0.034707831816397
829 => 0.034394548444657
830 => 0.034398431967516
831 => 0.034655517833207
901 => 0.034294487100525
902 => 0.034205090813926
903 => 0.034081590484258
904 => 0.034351248935919
905 => 0.034512896982086
906 => 0.035815661516791
907 => 0.03665730681949
908 => 0.036620768777218
909 => 0.036954658087233
910 => 0.036804237894996
911 => 0.03631849141542
912 => 0.037147601425583
913 => 0.036885236326932
914 => 0.036906865386891
915 => 0.036906060352199
916 => 0.037080510206447
917 => 0.036956896496618
918 => 0.036713241185857
919 => 0.036874990952057
920 => 0.037355329931073
921 => 0.038846316860535
922 => 0.039680692899212
923 => 0.038796086375334
924 => 0.039406276110152
925 => 0.039040379702094
926 => 0.038973885440275
927 => 0.039357129686408
928 => 0.03974104475086
929 => 0.039716591020965
930 => 0.039437888398429
1001 => 0.039280456358776
1002 => 0.040472584506633
1003 => 0.041350924218601
1004 => 0.041291027338709
1005 => 0.041555392687044
1006 => 0.042331577526268
1007 => 0.042402542140501
1008 => 0.042393602230211
1009 => 0.042217709029441
1010 => 0.042981963803995
1011 => 0.043619518582711
1012 => 0.042176994835506
1013 => 0.042726288994419
1014 => 0.042972884839508
1015 => 0.043334960701788
1016 => 0.043945843372416
1017 => 0.044609423981343
1018 => 0.044703261555236
1019 => 0.044636679306017
1020 => 0.044199030056426
1021 => 0.044925127876877
1022 => 0.045350458951008
1023 => 0.045603733872125
1024 => 0.046245996931148
1025 => 0.042974407731496
1026 => 0.040658614287448
1027 => 0.040296969700698
1028 => 0.041032388188826
1029 => 0.041226312179293
1030 => 0.041148141661896
1031 => 0.038541505597892
1101 => 0.040283246301276
1102 => 0.0421572128484
1103 => 0.042229199535444
1104 => 0.043167346371727
1105 => 0.043472845437559
1106 => 0.044228176606483
1107 => 0.044180930436212
1108 => 0.044364841555902
1109 => 0.044322563574382
1110 => 0.045721655511072
1111 => 0.047265061684404
1112 => 0.047211618436352
1113 => 0.046989735538183
1114 => 0.047319269478621
1115 => 0.048912230050957
1116 => 0.048765575768129
1117 => 0.048908037911914
1118 => 0.050786228202022
1119 => 0.053228142748615
1120 => 0.052093628277511
1121 => 0.054555198232063
1122 => 0.056104626036237
1123 => 0.058784201209731
1124 => 0.058448705200824
1125 => 0.059491844152234
1126 => 0.05784809732475
1127 => 0.054073722352802
1128 => 0.053476413065764
1129 => 0.054672241384694
1130 => 0.057612068619562
1201 => 0.054579655763111
1202 => 0.055193108934548
1203 => 0.055016434379905
1204 => 0.055007020143706
1205 => 0.055366323248934
1206 => 0.054845135354812
1207 => 0.052721722114245
1208 => 0.053694869889044
1209 => 0.0533190907988
1210 => 0.053736045715613
1211 => 0.055986179436364
1212 => 0.054991341681932
1213 => 0.053943360921694
1214 => 0.05525776136058
1215 => 0.056931444796276
1216 => 0.056826708694769
1217 => 0.05662347688155
1218 => 0.057769083971793
1219 => 0.059661291253491
1220 => 0.06017274727823
1221 => 0.060550293659434
1222 => 0.060602350926703
1223 => 0.061138573132992
1224 => 0.058255171184383
1225 => 0.062831204127839
1226 => 0.063621358606815
1227 => 0.063472842313315
1228 => 0.064351065761913
1229 => 0.064092670144957
1230 => 0.063718295437018
1231 => 0.06511046640653
]
'min_raw' => 0.024000287183894
'max_raw' => 0.06511046640653
'avg_raw' => 0.044555376795212
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.02400028'
'max' => '$0.06511'
'avg' => '$0.044555'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0082770787891149
'max_diff' => 0.030009511288753
'year' => 2032
]
7 => [
'items' => [
101 => 0.063514454732388
102 => 0.061249117093226
103 => 0.060006308061083
104 => 0.061642939249153
105 => 0.062642372805151
106 => 0.063302934809752
107 => 0.063502820473222
108 => 0.058479001469661
109 => 0.055771441660517
110 => 0.057506956455942
111 => 0.059624404285193
112 => 0.058243408654779
113 => 0.058297541068921
114 => 0.056328604219218
115 => 0.059798611507246
116 => 0.059293060632735
117 => 0.061915859464001
118 => 0.061289907473644
119 => 0.063428698104077
120 => 0.062865482852404
121 => 0.065203357873156
122 => 0.066135999514374
123 => 0.067702049984059
124 => 0.068854043084531
125 => 0.069530515467245
126 => 0.069489902602771
127 => 0.072170423200286
128 => 0.070589813854188
129 => 0.068604195994468
130 => 0.06856828243193
131 => 0.069596662057901
201 => 0.071751863631765
202 => 0.07231067604296
203 => 0.072622975946227
204 => 0.072144677773136
205 => 0.070429039611239
206 => 0.069688235751415
207 => 0.070319422103139
208 => 0.069547535433442
209 => 0.070880028378487
210 => 0.072709825797169
211 => 0.072331979866015
212 => 0.073595062164037
213 => 0.074902219462358
214 => 0.076771513107063
215 => 0.077260215685533
216 => 0.078068022464048
217 => 0.078899520989843
218 => 0.079166575906815
219 => 0.079676466605589
220 => 0.079673779229917
221 => 0.081210369170273
222 => 0.082905275458715
223 => 0.083545063345432
224 => 0.085016220312825
225 => 0.082496915561652
226 => 0.084407837155104
227 => 0.086131536265868
228 => 0.084076471126242
301 => 0.086908899652449
302 => 0.087018876433701
303 => 0.088679395260151
304 => 0.086996141312629
305 => 0.085996630491727
306 => 0.088882180780489
307 => 0.090278407671238
308 => 0.089857852768873
309 => 0.086657409196519
310 => 0.084794613763926
311 => 0.079919318810428
312 => 0.085694316279916
313 => 0.088507149088317
314 => 0.086650124639075
315 => 0.087586699754612
316 => 0.092696349899476
317 => 0.094641773849294
318 => 0.094237139267272
319 => 0.094305515850781
320 => 0.09535523130216
321 => 0.10001024770243
322 => 0.097220853972954
323 => 0.099353240962552
324 => 0.10048425133294
325 => 0.10153479679685
326 => 0.098954989165792
327 => 0.095598697342683
328 => 0.094535618834758
329 => 0.08646548015555
330 => 0.086045394390461
331 => 0.085809587520616
401 => 0.084322858561782
402 => 0.083154696849475
403 => 0.082225731284784
404 => 0.079787848230434
405 => 0.08061056219647
406 => 0.076725085433574
407 => 0.079210875773633
408 => 0.073009561041935
409 => 0.078174200223556
410 => 0.075363321924328
411 => 0.07725075110393
412 => 0.077244166041329
413 => 0.073768810511716
414 => 0.071764297971054
415 => 0.073041651378759
416 => 0.074411075628258
417 => 0.074633260105443
418 => 0.076408754390549
419 => 0.0769042566814
420 => 0.075402861607331
421 => 0.07288105257786
422 => 0.073466811299066
423 => 0.071752427589265
424 => 0.068748036080657
425 => 0.070905842513783
426 => 0.071642612502103
427 => 0.071968012101806
428 => 0.069013538109786
429 => 0.068085178236742
430 => 0.067590927230027
501 => 0.072499667086185
502 => 0.072768578936359
503 => 0.071392787890565
504 => 0.077611493875415
505 => 0.076204009185628
506 => 0.077776514426242
507 => 0.073413659834749
508 => 0.073580326755507
509 => 0.071514881474047
510 => 0.072671392818561
511 => 0.071854007876359
512 => 0.072577958130792
513 => 0.07301189092834
514 => 0.075076997290553
515 => 0.078197780420986
516 => 0.074768539265266
517 => 0.073274369786081
518 => 0.07420134412744
519 => 0.076669998953727
520 => 0.080410137383667
521 => 0.078195900155842
522 => 0.079178541037364
523 => 0.079393204355327
524 => 0.077760507799046
525 => 0.080470337234551
526 => 0.081922556843654
527 => 0.083412233668087
528 => 0.084705678314945
529 => 0.082817223985713
530 => 0.084838140817286
531 => 0.083209638590881
601 => 0.081748703742331
602 => 0.081750919377449
603 => 0.080834453606101
604 => 0.079058685691995
605 => 0.078731206843466
606 => 0.080434793169532
607 => 0.081800908072812
608 => 0.081913427839495
609 => 0.082669779243469
610 => 0.083117380213302
611 => 0.087504478201673
612 => 0.089269005304574
613 => 0.091426635645212
614 => 0.092267154260274
615 => 0.094796813949008
616 => 0.09275390830144
617 => 0.09231191281411
618 => 0.086175785854618
619 => 0.087180576300482
620 => 0.088789342752169
621 => 0.08620231382086
622 => 0.087843188225799
623 => 0.088167131591806
624 => 0.086114407567713
625 => 0.087210856161951
626 => 0.084299013770009
627 => 0.078261250627983
628 => 0.080477058990915
629 => 0.082108639779062
630 => 0.079780172821915
701 => 0.083953859718486
702 => 0.081515677995895
703 => 0.080742891443196
704 => 0.07772797558282
705 => 0.079150899814164
706 => 0.081075425211369
707 => 0.079886292265988
708 => 0.082353921676863
709 => 0.085848743015389
710 => 0.088339360821431
711 => 0.088530559530455
712 => 0.086929259139603
713 => 0.089495353235305
714 => 0.089514044429324
715 => 0.086619479806569
716 => 0.084846575092136
717 => 0.084443767410793
718 => 0.085450059973885
719 => 0.086671884917333
720 => 0.088598362311347
721 => 0.089762492253289
722 => 0.092797925735061
723 => 0.093619227002531
724 => 0.094521588092494
725 => 0.09572742078654
726 => 0.097175332104898
727 => 0.094007384569967
728 => 0.094133253031323
729 => 0.091183304150015
730 => 0.088030860704875
731 => 0.090423172322113
801 => 0.093550801525775
802 => 0.092833319930732
803 => 0.09275258859447
804 => 0.092888356309057
805 => 0.092347398617152
806 => 0.089900667025497
807 => 0.088671933737518
808 => 0.090257313162305
809 => 0.091099871769459
810 => 0.092406606690322
811 => 0.092245524029498
812 => 0.095611532852557
813 => 0.096919462098374
814 => 0.096584837827846
815 => 0.096646416746806
816 => 0.099014360171515
817 => 0.1016480002645
818 => 0.104114751751
819 => 0.10662403731251
820 => 0.10359899562903
821 => 0.10206306602079
822 => 0.10364775331851
823 => 0.10280689593225
824 => 0.10763871188821
825 => 0.10797325634156
826 => 0.11280472290223
827 => 0.11739035998865
828 => 0.11451020349489
829 => 0.1172260613434
830 => 0.12016348303371
831 => 0.1258302460538
901 => 0.12392187962776
902 => 0.12246010085333
903 => 0.12107872697475
904 => 0.12395314672914
905 => 0.12765104182318
906 => 0.12844753300844
907 => 0.12973815301161
908 => 0.12838122388779
909 => 0.13001549555659
910 => 0.13578519268285
911 => 0.13422616958881
912 => 0.1320121061698
913 => 0.13656672792338
914 => 0.13821502783035
915 => 0.14978365979887
916 => 0.16438953553546
917 => 0.15834260707316
918 => 0.15458908344345
919 => 0.1554712505312
920 => 0.16080482191011
921 => 0.16251779575792
922 => 0.15786134234207
923 => 0.15950608040885
924 => 0.16856874886388
925 => 0.17343057972479
926 => 0.16682756038468
927 => 0.14861009190485
928 => 0.13181275398351
929 => 0.13626816439424
930 => 0.13576305912114
1001 => 0.14549976578516
1002 => 0.13418898740362
1003 => 0.13437943190345
1004 => 0.14431748334993
1005 => 0.14166618160534
1006 => 0.13737141233219
1007 => 0.13184411055209
1008 => 0.12162638199803
1009 => 0.11257625487526
1010 => 0.13032563828281
1011 => 0.12956025259512
1012 => 0.12845186069553
1013 => 0.13091846692753
1014 => 0.14289560663168
1015 => 0.14261949479529
1016 => 0.14086301216561
1017 => 0.14219528875929
1018 => 0.13713785780385
1019 => 0.13844127291663
1020 => 0.13181009319937
1021 => 0.1348076633741
1022 => 0.13736219768621
1023 => 0.13787505826989
1024 => 0.13903055935224
1025 => 0.1291569291171
1026 => 0.13358989921812
1027 => 0.13619385383935
1028 => 0.12442909212797
1029 => 0.13596130232691
1030 => 0.12898505118155
1031 => 0.12661720676304
1101 => 0.12980519733278
1102 => 0.12856283430733
1103 => 0.12749472353205
1104 => 0.12689869936697
1105 => 0.12923960779571
1106 => 0.12913040161952
1107 => 0.12530022107936
1108 => 0.12030390670284
1109 => 0.12198083380603
1110 => 0.12137159046817
1111 => 0.1191636140178
1112 => 0.12065152355325
1113 => 0.11409952297289
1114 => 0.10282714651772
1115 => 0.11027402368623
1116 => 0.10998732701589
1117 => 0.10984276155404
1118 => 0.11543888392961
1119 => 0.11490094588771
1120 => 0.11392458307415
1121 => 0.11914568234905
1122 => 0.11723991088002
1123 => 0.12311304949135
1124 => 0.12698147843156
1125 => 0.12600031972176
1126 => 0.12963859583777
1127 => 0.12201946681957
1128 => 0.12455023585302
1129 => 0.12507182384332
1130 => 0.11908125479445
1201 => 0.11498895920416
1202 => 0.11471604974387
1203 => 0.10762057314337
1204 => 0.11141091947067
1205 => 0.11474626738351
1206 => 0.11314889456671
1207 => 0.11264321405307
1208 => 0.11522662612854
1209 => 0.11542737937224
1210 => 0.11085018414117
1211 => 0.11180192797063
1212 => 0.11577085795373
1213 => 0.11170192111828
1214 => 0.10379664150408
1215 => 0.10183602286071
1216 => 0.10157444019232
1217 => 0.096257086932886
1218 => 0.10196704077353
1219 => 0.099474492904837
1220 => 0.10734842175671
1221 => 0.10285087582525
1222 => 0.10265699560928
1223 => 0.10236391722679
1224 => 0.097787051619297
1225 => 0.098789094312353
1226 => 0.10212003683949
1227 => 0.10330855465892
1228 => 0.10318458251311
1229 => 0.10210371340391
1230 => 0.10259852974716
1231 => 0.10100455390012
]
'min_raw' => 0.055771441660517
'max_raw' => 0.17343057972479
'avg_raw' => 0.11460101069265
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.055771'
'max' => '$0.17343'
'avg' => '$0.114601'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.031771154476623
'max_diff' => 0.10832011331826
'year' => 2033
]
8 => [
'items' => [
101 => 0.10044168785279
102 => 0.098665127778923
103 => 0.096054075257581
104 => 0.096417158125189
105 => 0.091243979861354
106 => 0.088425357781865
107 => 0.087645200339105
108 => 0.086601941201622
109 => 0.08776303923469
110 => 0.091229324897308
111 => 0.087048248974665
112 => 0.079880087573668
113 => 0.08031090628782
114 => 0.081278828027297
115 => 0.079475112269225
116 => 0.077768046678599
117 => 0.079252201711039
118 => 0.076214957229235
119 => 0.081645864512316
120 => 0.08149897369025
121 => 0.083523280080329
122 => 0.084789120408995
123 => 0.081871768272094
124 => 0.081138062099023
125 => 0.08155601448029
126 => 0.074648192618367
127 => 0.082958763660266
128 => 0.08303063382374
129 => 0.082415237850431
130 => 0.086840360370148
131 => 0.096178749117076
201 => 0.092665271634664
202 => 0.091304746958056
203 => 0.088718388553285
204 => 0.092164557564875
205 => 0.091899945553396
206 => 0.090703269686363
207 => 0.089979516388126
208 => 0.091313054031616
209 => 0.08981427631649
210 => 0.089545054655196
211 => 0.08791386430381
212 => 0.087331603562798
213 => 0.08690052089062
214 => 0.086425941225861
215 => 0.087472745708435
216 => 0.085100549032323
217 => 0.08223991239024
218 => 0.082002081405968
219 => 0.082658753663857
220 => 0.082368225073241
221 => 0.08200069046685
222 => 0.081298966811157
223 => 0.081090780392467
224 => 0.081767285255519
225 => 0.081003550707817
226 => 0.082130482635726
227 => 0.081824019507322
228 => 0.08011214138433
301 => 0.077978507424625
302 => 0.077959513606935
303 => 0.077499825670178
304 => 0.076914343968173
305 => 0.076751476352682
306 => 0.079127210313852
307 => 0.08404490851374
308 => 0.083079446686558
309 => 0.083777091801205
310 => 0.087208815280521
311 => 0.08829965697907
312 => 0.087525403379441
313 => 0.086465557298388
314 => 0.086512185147144
315 => 0.090134000043331
316 => 0.090359888195798
317 => 0.090930634682801
318 => 0.091664205211538
319 => 0.087650333612534
320 => 0.086323132155792
321 => 0.085694230475255
322 => 0.08375745671478
323 => 0.085846101169019
324 => 0.084629137490207
325 => 0.084793347467878
326 => 0.084686405504498
327 => 0.084744803047887
328 => 0.081644346463048
329 => 0.082773989887363
330 => 0.080895738596494
331 => 0.078380970961623
401 => 0.07837254057872
402 => 0.078988026394686
403 => 0.078621911347387
404 => 0.077636705168784
405 => 0.077776649056413
406 => 0.076550593344909
407 => 0.077925514418244
408 => 0.077964942234924
409 => 0.077435522729232
410 => 0.079553778345252
411 => 0.080421629399467
412 => 0.080073154139557
413 => 0.080397179446268
414 => 0.083119565984276
415 => 0.083563433776023
416 => 0.083760570528857
417 => 0.083496433395675
418 => 0.080446939674628
419 => 0.080582197688605
420 => 0.079589764127144
421 => 0.078751262347781
422 => 0.078784798021593
423 => 0.079215896933787
424 => 0.081098531166953
425 => 0.085060423923302
426 => 0.085210774857299
427 => 0.085393004575351
428 => 0.084651784730718
429 => 0.084428225733059
430 => 0.084723157756445
501 => 0.086211036369305
502 => 0.090038264116683
503 => 0.088685466218813
504 => 0.087585620470291
505 => 0.088550481708029
506 => 0.088401948883312
507 => 0.087148182364545
508 => 0.087112993314162
509 => 0.084706614511245
510 => 0.0838170310584
511 => 0.083073628541036
512 => 0.082261852399088
513 => 0.081780604291159
514 => 0.082520020108292
515 => 0.082689133254181
516 => 0.081072387647244
517 => 0.080852031195098
518 => 0.082172300557601
519 => 0.081591299235767
520 => 0.082188873503413
521 => 0.082327515859404
522 => 0.082305191246885
523 => 0.081698559139313
524 => 0.08208520835465
525 => 0.0811706676947
526 => 0.08017624208657
527 => 0.079541860503488
528 => 0.078988278433743
529 => 0.079295437940416
530 => 0.078200470384235
531 => 0.07785016822567
601 => 0.081954220300376
602 => 0.084985927693957
603 => 0.084941845467766
604 => 0.084673506252859
605 => 0.08427480861013
606 => 0.086181869153405
607 => 0.085517487393007
608 => 0.08600088063465
609 => 0.086123924502599
610 => 0.086496341232437
611 => 0.086629448203055
612 => 0.086227106489113
613 => 0.084876798555223
614 => 0.081511959567393
615 => 0.079945617935349
616 => 0.079428699107291
617 => 0.079447488124923
618 => 0.078929203140784
619 => 0.079081861296516
620 => 0.078876114864157
621 => 0.078486480896677
622 => 0.079271379140884
623 => 0.079361831351696
624 => 0.079178626722662
625 => 0.079221778044904
626 => 0.077704921964226
627 => 0.077820245237602
628 => 0.077178110596873
629 => 0.077057718092785
630 => 0.075434457638082
701 => 0.07255861644721
702 => 0.074152111631612
703 => 0.072227393528185
704 => 0.071498473618178
705 => 0.074949067101845
706 => 0.07460272322065
707 => 0.07400993304811
708 => 0.073133072834628
709 => 0.072807836851899
710 => 0.070831805978041
711 => 0.070715051532298
712 => 0.071694425790704
713 => 0.07124247826866
714 => 0.0706077727818
715 => 0.068308933847453
716 => 0.065724277765833
717 => 0.065802292286368
718 => 0.066624423296696
719 => 0.069014880088694
720 => 0.068080887264738
721 => 0.067403264754625
722 => 0.067276366427739
723 => 0.068864764668363
724 => 0.071112680958566
725 => 0.072167352987638
726 => 0.071122205037694
727 => 0.06992159534756
728 => 0.069994670896309
729 => 0.070480809783712
730 => 0.070531896107145
731 => 0.069750422623538
801 => 0.069970402831666
802 => 0.069636232780108
803 => 0.067585431790523
804 => 0.067548339303782
805 => 0.067045039667305
806 => 0.067029799954336
807 => 0.06617356171871
808 => 0.066053768070651
809 => 0.064353655083869
810 => 0.065472674600185
811 => 0.064722095059802
812 => 0.06359079464863
813 => 0.063395758031331
814 => 0.063389894995102
815 => 0.064551487563232
816 => 0.065459100714714
817 => 0.064735151712258
818 => 0.06457032255756
819 => 0.066330266701496
820 => 0.066106297766934
821 => 0.065912342114047
822 => 0.07091140471014
823 => 0.066954256583613
824 => 0.065228714134329
825 => 0.063093027681716
826 => 0.063788417959753
827 => 0.063934946908744
828 => 0.058799005976627
829 => 0.056715355380108
830 => 0.056000325016099
831 => 0.055588814932566
901 => 0.055776345245051
902 => 0.053900815320345
903 => 0.055161202448149
904 => 0.053537152067952
905 => 0.053264874736594
906 => 0.056168877997623
907 => 0.056572953086454
908 => 0.054849043221211
909 => 0.055956072430353
910 => 0.055554648250261
911 => 0.053564991750413
912 => 0.053489001507041
913 => 0.052490661815225
914 => 0.05092845351419
915 => 0.050214482400972
916 => 0.049842640046227
917 => 0.049996069448858
918 => 0.049918490847871
919 => 0.04941223800024
920 => 0.049947508668498
921 => 0.048580113300209
922 => 0.048035605446703
923 => 0.047789663881761
924 => 0.046576021788063
925 => 0.048507466068225
926 => 0.048887984923111
927 => 0.049269253517689
928 => 0.052587936330366
929 => 0.052422144315545
930 => 0.053920823385541
1001 => 0.053862587472775
1002 => 0.053435139925021
1003 => 0.051631809032754
1004 => 0.052350584585129
1005 => 0.05013830515744
1006 => 0.051795895325044
1007 => 0.05103944039517
1008 => 0.051540137152328
1009 => 0.050639839236951
1010 => 0.05113810127571
1011 => 0.048978220059923
1012 => 0.046961353370969
1013 => 0.047772999402613
1014 => 0.048655351461993
1015 => 0.050568515545851
1016 => 0.049429050800766
1017 => 0.049838845411031
1018 => 0.048466102065433
1019 => 0.045633740438713
1020 => 0.045649771297926
1021 => 0.045214074168008
1022 => 0.044837568234935
1023 => 0.049559932033822
1024 => 0.048972631445906
1025 => 0.048036844823063
1026 => 0.049289432404421
1027 => 0.04962063644217
1028 => 0.049630065355506
1029 => 0.0505439209209
1030 => 0.051031645799968
1031 => 0.051117609423825
1101 => 0.052555580901128
1102 => 0.053037569973017
1103 => 0.055022814746484
1104 => 0.050990265751523
1105 => 0.050907218058665
1106 => 0.049307058880427
1107 => 0.048292212632073
1108 => 0.049376546271291
1109 => 0.050337117849335
1110 => 0.04933690651694
1111 => 0.049467513001337
1112 => 0.048124811007864
1113 => 0.04860476379053
1114 => 0.049018163783583
1115 => 0.048789908605948
1116 => 0.048448199557352
1117 => 0.050258361934149
1118 => 0.050156225478767
1119 => 0.051841890299494
1120 => 0.053155986570298
1121 => 0.055511082010386
1122 => 0.053053417144753
1123 => 0.052963850068716
1124 => 0.053839382603986
1125 => 0.053037435933548
1126 => 0.053544238547007
1127 => 0.05542942827422
1128 => 0.055469259362513
1129 => 0.054802037314148
1130 => 0.054761436791867
1201 => 0.054889584084865
1202 => 0.055640146782563
1203 => 0.055377877113525
1204 => 0.055681382214391
1205 => 0.056060919990459
1206 => 0.057630849152958
1207 => 0.058009353759066
1208 => 0.057089783798361
1209 => 0.057172810669824
1210 => 0.056828866261761
1211 => 0.056496620273182
1212 => 0.057243460734877
1213 => 0.05860832635781
1214 => 0.058599835599607
1215 => 0.058916457894931
1216 => 0.059113710961877
1217 => 0.058266956400474
1218 => 0.057715750317029
1219 => 0.057927117803576
1220 => 0.05826509901755
1221 => 0.057817515051081
1222 => 0.055054819468974
1223 => 0.055892844826908
1224 => 0.055753356430001
1225 => 0.055554707990438
1226 => 0.056397348968099
1227 => 0.056316074190167
1228 => 0.05388157905012
1229 => 0.054037427530286
1230 => 0.053891056712385
1231 => 0.054364010769674
]
'min_raw' => 0.044837568234935
'max_raw' => 0.10044168785279
'avg_raw' => 0.072639628043864
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.044837'
'max' => '$0.100441'
'avg' => '$0.072639'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.010933873425582
'max_diff' => -0.072988891871995
'year' => 2034
]
9 => [
'items' => [
101 => 0.053011894862351
102 => 0.053427796608804
103 => 0.053688646285342
104 => 0.053842288748765
105 => 0.054397350680272
106 => 0.05433222056911
107 => 0.054393302101115
108 => 0.055216312414622
109 => 0.059378816157307
110 => 0.059605372051975
111 => 0.058489727967706
112 => 0.058935405774265
113 => 0.058079801844695
114 => 0.058654174494663
115 => 0.059047145674289
116 => 0.057271384477575
117 => 0.0571662354241
118 => 0.056307100112757
119 => 0.056768750765161
120 => 0.056034231383329
121 => 0.056214456747233
122 => 0.055710530917992
123 => 0.056617497079995
124 => 0.057631626177407
125 => 0.057887835236585
126 => 0.057213859506823
127 => 0.05672585666131
128 => 0.055869084422721
129 => 0.05729391574991
130 => 0.057710579850928
131 => 0.057291727190766
201 => 0.057194669877296
202 => 0.057010746443647
203 => 0.057233690103206
204 => 0.05770831060875
205 => 0.0574844883432
206 => 0.057632326892837
207 => 0.057068918792073
208 => 0.058267236711467
209 => 0.060170453958378
210 => 0.060176573113034
211 => 0.059952749640999
212 => 0.059861165898586
213 => 0.060090822363638
214 => 0.060215401574928
215 => 0.060958068471114
216 => 0.061754979639876
217 => 0.065473816344905
218 => 0.064429581879298
219 => 0.067729155038586
220 => 0.07033868901163
221 => 0.071121174149056
222 => 0.070401324641395
223 => 0.067938758361195
224 => 0.067817933111195
225 => 0.07149804680248
226 => 0.070458246124807
227 => 0.070334565142816
228 => 0.06901880845675
301 => 0.069796583617851
302 => 0.069626472780845
303 => 0.069357944502524
304 => 0.070841885329617
305 => 0.073619690085625
306 => 0.073186743164313
307 => 0.072863568371384
308 => 0.071447510503534
309 => 0.072300293627955
310 => 0.071996633891333
311 => 0.073301348827089
312 => 0.072528464602122
313 => 0.070450368612002
314 => 0.070781312247922
315 => 0.070731290783119
316 => 0.07176072898421
317 => 0.071451717188469
318 => 0.070670951270539
319 => 0.073610195850955
320 => 0.07341933765684
321 => 0.073689930939837
322 => 0.073809054471388
323 => 0.075598120852188
324 => 0.076331044104664
325 => 0.076497430514603
326 => 0.077193650918136
327 => 0.076480107916721
328 => 0.079334788669918
329 => 0.081232984795554
330 => 0.08343783727576
331 => 0.086659719357818
401 => 0.087871176824748
402 => 0.087652337876682
403 => 0.090095132100467
404 => 0.094484779020342
405 => 0.088539611023998
406 => 0.094799887360144
407 => 0.092817956150486
408 => 0.088118832905807
409 => 0.087816264767873
410 => 0.090998565587113
411 => 0.098056602519083
412 => 0.096288644319217
413 => 0.098059494265344
414 => 0.095993703738953
415 => 0.095891119827468
416 => 0.097959163430408
417 => 0.10279126003187
418 => 0.10049571206495
419 => 0.097204481162912
420 => 0.099634674843749
421 => 0.0975294161736
422 => 0.092785679164956
423 => 0.096287292394901
424 => 0.09394586334824
425 => 0.09462921682127
426 => 0.099550552416065
427 => 0.09895840429706
428 => 0.099724698794492
429 => 0.098372209063944
430 => 0.097108770387558
501 => 0.094750468273895
502 => 0.094052291280928
503 => 0.094245242284007
504 => 0.094052195663994
505 => 0.092732747305314
506 => 0.092447812557883
507 => 0.091972908828887
508 => 0.092120101352448
509 => 0.091227143403949
510 => 0.092912339547293
511 => 0.093225126801395
512 => 0.094451472020825
513 => 0.09457879524975
514 => 0.09799414922993
515 => 0.096113029650339
516 => 0.09737504707238
517 => 0.097262160355584
518 => 0.088220677155507
519 => 0.089466513766796
520 => 0.091404644568896
521 => 0.090531519269624
522 => 0.089297124376309
523 => 0.088300284315889
524 => 0.086789969692225
525 => 0.088915708522009
526 => 0.091710829036054
527 => 0.094649684118637
528 => 0.098180525938949
529 => 0.097392483148185
530 => 0.094583677486809
531 => 0.094709678456945
601 => 0.095488566874768
602 => 0.094479835604212
603 => 0.094182341059751
604 => 0.095447695692699
605 => 0.095456409494629
606 => 0.094295742258608
607 => 0.093005873025632
608 => 0.093000468426448
609 => 0.092770948655099
610 => 0.096034534796395
611 => 0.097829177188332
612 => 0.098034930046357
613 => 0.097815328381634
614 => 0.097899844346708
615 => 0.096855581481086
616 => 0.099242456725364
617 => 0.10143288948701
618 => 0.10084580671512
619 => 0.099965686181319
620 => 0.0992646277838
621 => 0.10068065963662
622 => 0.10061760596725
623 => 0.10141375796773
624 => 0.10137763991419
625 => 0.10110992394122
626 => 0.1008458162761
627 => 0.10189297331493
628 => 0.10159140890458
629 => 0.1012893760814
630 => 0.10068360301559
701 => 0.10076593763606
702 => 0.099885969067483
703 => 0.099478855343036
704 => 0.093356841729762
705 => 0.091720839649729
706 => 0.092235559208001
707 => 0.092405018251271
708 => 0.091693028049447
709 => 0.092713839103586
710 => 0.092554746782105
711 => 0.093173681939093
712 => 0.092786998124048
713 => 0.092802867762698
714 => 0.093940022413065
715 => 0.094270143245868
716 => 0.094102241125902
717 => 0.094219834015378
718 => 0.096929712520496
719 => 0.096544454454105
720 => 0.096339793784812
721 => 0.096396486188882
722 => 0.09708891824739
723 => 0.097282761418384
724 => 0.096461434281766
725 => 0.096848776907431
726 => 0.098498032646411
727 => 0.099075178815264
728 => 0.10091715234036
729 => 0.10013464924843
730 => 0.10157096753961
731 => 0.10598572028971
801 => 0.10951253026415
802 => 0.10626913006007
803 => 0.11274566744158
804 => 0.11778858079719
805 => 0.11759502538319
806 => 0.11671567679495
807 => 0.11097445401237
808 => 0.10569129521104
809 => 0.11011088188313
810 => 0.11012214831845
811 => 0.10974250190378
812 => 0.10738455062791
813 => 0.10966045031054
814 => 0.10984110296249
815 => 0.10973998551681
816 => 0.10793214980211
817 => 0.10517191880965
818 => 0.10571126133852
819 => 0.10659471540309
820 => 0.10492215255103
821 => 0.10438766737564
822 => 0.10538137700665
823 => 0.10858331648542
824 => 0.10797800837453
825 => 0.10796220133351
826 => 0.11055196612248
827 => 0.1086982534398
828 => 0.10571806417502
829 => 0.1049655270818
830 => 0.10229452737058
831 => 0.10413939638489
901 => 0.10420578993636
902 => 0.10319537403132
903 => 0.10580005385699
904 => 0.10577605127385
905 => 0.1082488071129
906 => 0.11297578755247
907 => 0.11157778683591
908 => 0.10995206410459
909 => 0.11012882524189
910 => 0.11206745863436
911 => 0.11089531663057
912 => 0.1113168270676
913 => 0.11206682062783
914 => 0.11251931036401
915 => 0.11006371893227
916 => 0.10949120310502
917 => 0.10832003664821
918 => 0.10801450118048
919 => 0.10896839182237
920 => 0.10871707533968
921 => 0.10420020981545
922 => 0.10372817223656
923 => 0.10374264895519
924 => 0.10255568801892
925 => 0.10074528768784
926 => 0.10550291166453
927 => 0.1051208078763
928 => 0.10469899486657
929 => 0.10475066455343
930 => 0.10681578787087
1001 => 0.10561791205553
1002 => 0.10880266123861
1003 => 0.10814797254889
1004 => 0.10747649356465
1005 => 0.10738367471528
1006 => 0.10712521259424
1007 => 0.10623884981168
1008 => 0.10516851348959
1009 => 0.10446178473881
1010 => 0.096360474592499
1011 => 0.0978640306325
1012 => 0.099593734803076
1013 => 0.1001908217514
1014 => 0.09916946320913
1015 => 0.10627917927218
1016 => 0.10757819290783
1017 => 0.10364339587289
1018 => 0.10290735600435
1019 => 0.10632743392342
1020 => 0.1042647088507
1021 => 0.10519355382465
1022 => 0.10318589904202
1023 => 0.10726529856256
1024 => 0.10723422037308
1025 => 0.10564724182217
1026 => 0.10698854522624
1027 => 0.10675546075192
1028 => 0.1049637658765
1029 => 0.1073220984859
1030 => 0.10732326818945
1031 => 0.10579583583809
1101 => 0.10401212924964
1102 => 0.10369324464089
1103 => 0.10345300792432
1104 => 0.10513447031915
1105 => 0.10664206424455
1106 => 0.1094473227755
1107 => 0.11015263142148
1108 => 0.11290549802179
1109 => 0.11126629999595
1110 => 0.11199293524964
1111 => 0.11278180060635
1112 => 0.11316001166792
1113 => 0.11254373703902
1114 => 0.1168200719944
1115 => 0.11718112568815
1116 => 0.11730218386856
1117 => 0.11586022778213
1118 => 0.11714102228091
1119 => 0.11654178095039
1120 => 0.11810084041836
1121 => 0.11834532085001
1122 => 0.11813825462205
1123 => 0.11821585656992
1124 => 0.11456675908268
1125 => 0.11437753412744
1126 => 0.11179743843601
1127 => 0.11284884650137
1128 => 0.11088328951847
1129 => 0.11150658788523
1130 => 0.11178133186629
1201 => 0.11163782120217
1202 => 0.11290829153587
1203 => 0.11182813221228
1204 => 0.10897741416271
1205 => 0.10612591943691
1206 => 0.1060901212434
1207 => 0.10533937301516
1208 => 0.10479671955254
1209 => 0.10490125386111
1210 => 0.10526964639912
1211 => 0.10477530790853
1212 => 0.1048808000891
1213 => 0.1066326731772
1214 => 0.10698399883123
1215 => 0.10579005698704
1216 => 0.10099620819761
1217 => 0.099819785680226
1218 => 0.10066537485625
1219 => 0.10026123769303
1220 => 0.080918643887039
1221 => 0.085462899389007
1222 => 0.082762857078073
1223 => 0.084007160797925
1224 => 0.081251116771029
1225 => 0.082566445437307
1226 => 0.082323552260758
1227 => 0.089630580633626
1228 => 0.089516491436072
1229 => 0.089571099897475
1230 => 0.086964495753128
1231 => 0.091116886932088
]
'min_raw' => 0.053011894862351
'max_raw' => 0.11834532085001
'avg_raw' => 0.085678607856182
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.053011'
'max' => '$0.118345'
'avg' => '$0.085678'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0081743266274161
'max_diff' => 0.01790363299722
'year' => 2035
]
10 => [
'items' => [
101 => 0.093162504142001
102 => 0.092783914838785
103 => 0.092879197610018
104 => 0.09124192391331
105 => 0.089586952285762
106 => 0.087751334052504
107 => 0.091161685840627
108 => 0.090782512938434
109 => 0.09165219915396
110 => 0.093864056065538
111 => 0.094189760397795
112 => 0.094627510323316
113 => 0.094470608136178
114 => 0.098208654790447
115 => 0.097755952676189
116 => 0.098846834520263
117 => 0.096602807801598
118 => 0.094063478564456
119 => 0.094546122035509
120 => 0.094499639588073
121 => 0.093907864682142
122 => 0.093373636757111
123 => 0.092484297779719
124 => 0.095298297901591
125 => 0.095184054635611
126 => 0.097033520318563
127 => 0.09670660929435
128 => 0.094523417465958
129 => 0.094601390589213
130 => 0.095125797315708
131 => 0.096940774983678
201 => 0.097479583928634
202 => 0.097229986157506
203 => 0.097820765568088
204 => 0.098287693526195
205 => 0.097879404530677
206 => 0.10365991570192
207 => 0.10125944444779
208 => 0.10242941743468
209 => 0.10270844909817
210 => 0.10199371535954
211 => 0.10214871551475
212 => 0.10238349851488
213 => 0.10380905491647
214 => 0.10755012740231
215 => 0.10920702293994
216 => 0.1141918749147
217 => 0.10906944083064
218 => 0.10876549679083
219 => 0.10966341915959
220 => 0.11259005496895
221 => 0.1149618184075
222 => 0.11574866917039
223 => 0.11585266448819
224 => 0.11732884882821
225 => 0.11817497016271
226 => 0.11714960122183
227 => 0.11628070840505
228 => 0.11316844218626
229 => 0.11352869547551
301 => 0.1160104833924
302 => 0.11951615500159
303 => 0.12252438594524
304 => 0.1214710083162
305 => 0.12950753605701
306 => 0.13030432495624
307 => 0.13019423449364
308 => 0.13200943818417
309 => 0.12840662851827
310 => 0.12686635758495
311 => 0.11646857289439
312 => 0.11938992627231
313 => 0.12363628497219
314 => 0.12307426347523
315 => 0.11999044428189
316 => 0.12252204659185
317 => 0.12168501969765
318 => 0.12102482185792
319 => 0.12404931614737
320 => 0.12072376043674
321 => 0.12360311001005
322 => 0.11991031439922
323 => 0.12147582005648
324 => 0.12058716333043
325 => 0.12116223314186
326 => 0.11780038677487
327 => 0.11961435747029
328 => 0.11772491963015
329 => 0.11772402379061
330 => 0.11768231434556
331 => 0.11990522958543
401 => 0.1199777187716
402 => 0.1183349810507
403 => 0.11809823688073
404 => 0.11897360415974
405 => 0.11794877833507
406 => 0.11842828788826
407 => 0.11796330219095
408 => 0.11785862411639
409 => 0.11702453140879
410 => 0.11666518133649
411 => 0.11680609175915
412 => 0.11632509184232
413 => 0.1160352719939
414 => 0.11762466188305
415 => 0.11677551498109
416 => 0.11749451794184
417 => 0.11667512332265
418 => 0.11383474457929
419 => 0.11220121272752
420 => 0.10683600058455
421 => 0.10835756809277
422 => 0.10936636892489
423 => 0.10903296025589
424 => 0.10974925108893
425 => 0.10979322552861
426 => 0.10956035207707
427 => 0.10929071445312
428 => 0.10915946976968
429 => 0.1101376601133
430 => 0.11070553253215
501 => 0.10946761558441
502 => 0.10917758896386
503 => 0.11042919134529
504 => 0.11119266807493
505 => 0.11682975128612
506 => 0.1164121379543
507 => 0.1174602654647
508 => 0.11734226239186
509 => 0.11844086700256
510 => 0.12023662123612
511 => 0.11658535077852
512 => 0.11721908507852
513 => 0.11706370806323
514 => 0.11876007357422
515 => 0.11876536944218
516 => 0.1177483135786
517 => 0.11829967606209
518 => 0.11799192064965
519 => 0.11854807627558
520 => 0.11640656047365
521 => 0.11901469555805
522 => 0.1204933400864
523 => 0.12051387106711
524 => 0.1212147368383
525 => 0.12192685705324
526 => 0.12329370979321
527 => 0.12188873627218
528 => 0.11936132567927
529 => 0.11954379656059
530 => 0.11806197665471
531 => 0.11808688631504
601 => 0.11795391659599
602 => 0.11835296873235
603 => 0.11649412997693
604 => 0.11693039571743
605 => 0.11631962112596
606 => 0.11721775737385
607 => 0.11625151123836
608 => 0.11706363313572
609 => 0.11741411802436
610 => 0.11870741480883
611 => 0.11606049025175
612 => 0.11066323189882
613 => 0.11179780104003
614 => 0.11011968416169
615 => 0.11027500026782
616 => 0.11058876352059
617 => 0.10957175416144
618 => 0.10976576749751
619 => 0.1097588359759
620 => 0.10969910386733
621 => 0.10943454045425
622 => 0.109050871163
623 => 0.11057929153213
624 => 0.11083899993607
625 => 0.11141629954697
626 => 0.11313395160292
627 => 0.11296231765751
628 => 0.1132422597435
629 => 0.11263114774158
630 => 0.11030334800088
701 => 0.11042975872618
702 => 0.10885341495607
703 => 0.11137598889266
704 => 0.11077861008813
705 => 0.11039347608666
706 => 0.11028838870612
707 => 0.1120102984893
708 => 0.11252552088405
709 => 0.11220446886293
710 => 0.11154598180102
711 => 0.1128104716241
712 => 0.11314879575622
713 => 0.11322453405248
714 => 0.11546496757711
715 => 0.1133497493984
716 => 0.11385890343748
717 => 0.11783117790592
718 => 0.11422887309945
719 => 0.11613709429642
720 => 0.11604369679873
721 => 0.11701987819242
722 => 0.11596362143185
723 => 0.11597671500031
724 => 0.11684349794565
725 => 0.11562625762405
726 => 0.11532485180233
727 => 0.11490846181834
728 => 0.11581763411506
729 => 0.11636264178862
730 => 0.12075500337349
731 => 0.12359266927334
801 => 0.12346947871282
802 => 0.12459520983294
803 => 0.12408805765281
804 => 0.12245032948319
805 => 0.12524573176906
806 => 0.12436114952121
807 => 0.12443407340696
808 => 0.12443135917629
809 => 0.12501952903959
810 => 0.12460275678646
811 => 0.12378125589476
812 => 0.12432660652452
813 => 0.12594610292846
814 => 0.13097306945853
815 => 0.1337862265272
816 => 0.13080371387069
817 => 0.13286101116372
818 => 0.13162736587788
819 => 0.13140317583167
820 => 0.13269531056477
821 => 0.13398970700867
822 => 0.13390725955102
823 => 0.13296759420074
824 => 0.1324368010875
825 => 0.13645614436973
826 => 0.13941752803235
827 => 0.13921558151993
828 => 0.14010690774924
829 => 0.14272386912617
830 => 0.14296313127765
831 => 0.14293298974594
901 => 0.14233995353908
902 => 0.14491669187005
903 => 0.14706625231914
904 => 0.14220268279165
905 => 0.14405466639892
906 => 0.14488608150741
907 => 0.14610684555642
908 => 0.1481664791309
909 => 0.15040378748362
910 => 0.15072016741553
911 => 0.15049568071367
912 => 0.14902011571297
913 => 0.15146820520916
914 => 0.15290223862126
915 => 0.15375617270089
916 => 0.15592160744576
917 => 0.14489121604407
918 => 0.13708335676393
919 => 0.13586404679048
920 => 0.13834356156849
921 => 0.13899738984169
922 => 0.13873383248459
923 => 0.12994537700528
924 => 0.1358177773912
925 => 0.14213598644099
926 => 0.14237869458231
927 => 0.14554172214016
928 => 0.14657173356987
929 => 0.14911838534144
930 => 0.14895909157975
1001 => 0.14957916076005
1002 => 0.1494366175936
1003 => 0.15415375373963
1004 => 0.15935745541019
1005 => 0.1591772677681
1006 => 0.15842917408555
1007 => 0.15954022077306
1008 => 0.16491099855965
1009 => 0.16441654340602
1010 => 0.16489686447018
1011 => 0.17122931416434
1012 => 0.17946239954721
1013 => 0.17563730479861
1014 => 0.18393665976171
1015 => 0.18916066378108
1016 => 0.19819503856048
1017 => 0.19706389034286
1018 => 0.20058090614718
1019 => 0.19503889895557
1020 => 0.18231333021921
1021 => 0.18029946025515
1022 => 0.18433127892249
1023 => 0.19424311169703
1024 => 0.18401912003521
1025 => 0.18608742023264
1026 => 0.18549174963664
1027 => 0.18546000888201
1028 => 0.18667142438703
1029 => 0.18491420301382
1030 => 0.17775496702127
1031 => 0.18103600268701
1101 => 0.1797690372482
1102 => 0.18117482986109
1103 => 0.18876131279993
1104 => 0.1854071478535
1105 => 0.18187380755268
1106 => 0.18630540040089
1107 => 0.19194834095719
1108 => 0.19159521587852
1109 => 0.19091000563106
1110 => 0.19477249991954
1111 => 0.20115220887948
1112 => 0.20287661857561
1113 => 0.20414954255928
1114 => 0.20432505727041
1115 => 0.20613296787675
1116 => 0.19641137689432
1117 => 0.2118397914516
1118 => 0.21450385244429
1119 => 0.21400311939168
1120 => 0.21696411106423
1121 => 0.21609291220105
1122 => 0.21483068173523
1123 => 0.21952448335721
1124 => 0.21414341856787
1125 => 0.20650567455661
1126 => 0.20231545713458
1127 => 0.2078334734511
1128 => 0.21120313346337
1129 => 0.21343026438085
1130 => 0.21410419285081
1201 => 0.19716603632846
1202 => 0.18803730939614
1203 => 0.19388871869869
1204 => 0.2010278418905
1205 => 0.19637171870452
1206 => 0.19655422991821
1207 => 0.18991582186265
1208 => 0.20161519370241
1209 => 0.19991069363256
1210 => 0.20875364301014
1211 => 0.20664320217208
1212 => 0.21385428410818
1213 => 0.21195536456473
1214 => 0.21983767342242
1215 => 0.22298213983074
1216 => 0.22826218832744
1217 => 0.23214621349527
1218 => 0.23442698736338
1219 => 0.23429005825531
1220 => 0.2433276205978
1221 => 0.23799848583281
1222 => 0.23130383658736
1223 => 0.23118275150386
1224 => 0.23465000521199
1225 => 0.24191641778964
1226 => 0.24380049284902
1227 => 0.24485343377697
1228 => 0.24324081809268
1229 => 0.23745642424781
1230 => 0.23495875231314
1231 => 0.237086841166
]
'min_raw' => 0.087751334052504
'max_raw' => 0.24485343377697
'avg_raw' => 0.16630238391474
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.087751'
'max' => '$0.244853'
'avg' => '$0.1663023'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.034739439190153
'max_diff' => 0.12650811292696
'year' => 2036
]
11 => [
'items' => [
101 => 0.23448437136771
102 => 0.23897696436362
103 => 0.24514625411308
104 => 0.24387232017584
105 => 0.24813089032921
106 => 0.2525380624233
107 => 0.25884051645634
108 => 0.26048821131978
109 => 0.26321178827281
110 => 0.2660152436059
111 => 0.26691563790365
112 => 0.268634769994
113 => 0.26862570931929
114 => 0.27380642958449
115 => 0.27952092447055
116 => 0.28167801399918
117 => 0.28663812242765
118 => 0.27814411056682
119 => 0.28458691613543
120 => 0.2903984880322
121 => 0.28346969243389
122 => 0.29301942296384
123 => 0.29339021736016
124 => 0.29898877251726
125 => 0.29331356431215
126 => 0.28994364379587
127 => 0.29967247805711
128 => 0.30437995450072
129 => 0.30296202428519
130 => 0.29217150533317
131 => 0.28589096047596
201 => 0.26945356315802
202 => 0.28892437032384
203 => 0.29840803252308
204 => 0.29214694493915
205 => 0.29530467333077
206 => 0.31253221553856
207 => 0.31909134821054
208 => 0.31772709446656
209 => 0.31795763089177
210 => 0.32149681982488
211 => 0.33719153262127
212 => 0.32778689691308
213 => 0.33497638852702
214 => 0.33878966895541
215 => 0.34233165633372
216 => 0.33363365478919
217 => 0.32231768257876
218 => 0.31873343916752
219 => 0.29152440317148
220 => 0.29010805468504
221 => 0.28931301535984
222 => 0.28430040487503
223 => 0.28036186610354
224 => 0.27722979384388
225 => 0.26901030091858
226 => 0.27178413849513
227 => 0.2586839823137
228 => 0.26706499799755
301 => 0.24615683241766
302 => 0.26356977400208
303 => 0.25409270156698
304 => 0.26045630082211
305 => 0.26043409882379
306 => 0.24871669501413
307 => 0.24195834103269
308 => 0.24626502722874
309 => 0.25088213669607
310 => 0.25163124717332
311 => 0.25761745011661
312 => 0.25928807068508
313 => 0.2542260123688
314 => 0.24572355715885
315 => 0.24769848358377
316 => 0.24191831921173
317 => 0.23178880348054
318 => 0.23906399852305
319 => 0.24154806997832
320 => 0.24264517744739
321 => 0.23268396210851
322 => 0.22955393198052
323 => 0.22788753020388
324 => 0.24443768934619
325 => 0.24534434442388
326 => 0.24070576885832
327 => 0.26167257026243
328 => 0.25692713736337
329 => 0.2622289485709
330 => 0.24751927971091
331 => 0.24808120887055
401 => 0.24111741589933
402 => 0.2450166746424
403 => 0.24226080424177
404 => 0.24470165306919
405 => 0.24616468779234
406 => 0.25312733807366
407 => 0.26364927628404
408 => 0.25208735030556
409 => 0.2470496535869
410 => 0.25017501229807
411 => 0.25849825440088
412 => 0.27110839224555
413 => 0.26364293683883
414 => 0.26695597917668
415 => 0.2676797315405
416 => 0.26217498110977
417 => 0.27131136024582
418 => 0.27620762004865
419 => 0.28123016946814
420 => 0.28559110840044
421 => 0.27922405278176
422 => 0.28603771497532
423 => 0.2805471060206
424 => 0.2756214621795
425 => 0.27562893234799
426 => 0.27253900401429
427 => 0.26655187851173
428 => 0.26544776071007
429 => 0.271191520949
430 => 0.27579747272451
501 => 0.27617684097376
502 => 0.27872693253903
503 => 0.28023605045932
504 => 0.29502745762451
505 => 0.30097668394729
506 => 0.30825128528169
507 => 0.31108515247551
508 => 0.31961407673128
509 => 0.31272627770938
510 => 0.31123605906471
511 => 0.29054767861008
512 => 0.29393539975054
513 => 0.29935946816289
514 => 0.29063711950039
515 => 0.29616944211883
516 => 0.29726163979433
517 => 0.29034073743049
518 => 0.29403749041755
519 => 0.28422001049478
520 => 0.26386327051828
521 => 0.2713340231167
522 => 0.27683501165727
523 => 0.26898442274288
524 => 0.28305629951218
525 => 0.27483579960605
526 => 0.2722302957894
527 => 0.26206529647144
528 => 0.26686278486281
529 => 0.27335145660556
530 => 0.26934221185759
531 => 0.27766199670074
601 => 0.28944503084422
602 => 0.29784232266667
603 => 0.29848696246321
604 => 0.29308806639623
605 => 0.30173983179886
606 => 0.30180285046447
607 => 0.29204362374681
608 => 0.28606615172184
609 => 0.28470805750106
610 => 0.28810084313463
611 => 0.29222031123656
612 => 0.29871556427283
613 => 0.30264050964904
614 => 0.31287468556004
615 => 0.31564376012473
616 => 0.31868613354039
617 => 0.32275168265691
618 => 0.32763341675669
619 => 0.31695246046364
620 => 0.31737683476896
621 => 0.30743087615677
622 => 0.29680219298491
623 => 0.30486803862829
624 => 0.31541305885254
625 => 0.31299401956188
626 => 0.3127218282252
627 => 0.31317957855392
628 => 0.31135570192721
629 => 0.3031063755406
630 => 0.29896361547276
701 => 0.30430883289108
702 => 0.30714957806067
703 => 0.31155532607968
704 => 0.31101222464227
705 => 0.32236095839645
706 => 0.32677073316543
707 => 0.32564252407462
708 => 0.3258501416992
709 => 0.33383382828013
710 => 0.34271332972851
711 => 0.35103015458833
712 => 0.35949038605167
713 => 0.34929124681416
714 => 0.3441127529048
715 => 0.34945563676841
716 => 0.34662062738385
717 => 0.36291143222599
718 => 0.3640393722076
719 => 0.38032899903913
720 => 0.39578979463493
721 => 0.38607914593013
722 => 0.39523585028153
723 => 0.40513957259463
724 => 0.42424545975763
725 => 0.41781126911435
726 => 0.41288277991821
727 => 0.40822538144215
728 => 0.41791668832965
729 => 0.430384399818
730 => 0.43306982545834
731 => 0.43742124090723
801 => 0.43284625962849
802 => 0.43835632066108
803 => 0.45780925734963
804 => 0.45255290214056
805 => 0.44508803274242
806 => 0.46044425797813
807 => 0.46600161619512
808 => 0.50500606657305
809 => 0.55425079636867
810 => 0.53386315487495
811 => 0.52120788789473
812 => 0.52418217582203
813 => 0.54216468410408
814 => 0.54794009502799
815 => 0.53224053723327
816 => 0.53778588645736
817 => 0.56834130588879
818 => 0.58473330807853
819 => 0.56247076736525
820 => 0.5010493004825
821 => 0.44441590292802
822 => 0.4594376301946
823 => 0.45773463250104
824 => 0.49056261881391
825 => 0.45242753980722
826 => 0.45306963673483
827 => 0.48657647103921
828 => 0.47763742209936
829 => 0.46315730764371
830 => 0.4445216237882
831 => 0.41007183858918
901 => 0.37955870313508
902 => 0.43940198851599
903 => 0.43682143723241
904 => 0.43308441655752
905 => 0.44140075168163
906 => 0.48178251441139
907 => 0.48085158407746
908 => 0.47492948025782
909 => 0.47942134380998
910 => 0.46236986224517
911 => 0.46676441729944
912 => 0.4444069319085
913 => 0.45451344903627
914 => 0.46312623982144
915 => 0.4648553850861
916 => 0.46875123765975
917 => 0.43546160396713
918 => 0.45040767216282
919 => 0.45918708697058
920 => 0.41952137147126
921 => 0.45840302331016
922 => 0.43488210550729
923 => 0.42689875273266
924 => 0.43764728551694
925 => 0.43345857183762
926 => 0.42985736178566
927 => 0.42784782470002
928 => 0.43574036090452
929 => 0.43537216465696
930 => 0.42245844355113
1001 => 0.40561302079918
1002 => 0.41126689760689
1003 => 0.40921279115727
1004 => 0.40176844439885
1005 => 0.40678503528017
1006 => 0.38469450787739
1007 => 0.34668890364661
1008 => 0.37179656994461
1009 => 0.37082995210402
1010 => 0.37034253955617
1011 => 0.38921025685418
1012 => 0.38739656118828
1013 => 0.3841046857949
1014 => 0.40170798652574
1015 => 0.39528254496117
1016 => 0.41508424183872
1017 => 0.42812692009573
1018 => 0.42481887500331
1019 => 0.43708557694476
1020 => 0.41139715150931
1021 => 0.41992981599822
1022 => 0.42168838632363
1023 => 0.40149076452721
1024 => 0.38769330422957
1025 => 0.38677317093028
1026 => 0.36285027618134
1027 => 0.37562969345737
1028 => 0.38687505181205
1029 => 0.38148939783522
1030 => 0.37978446067799
1031 => 0.38849461485852
1101 => 0.38917146843577
1102 => 0.37373913514468
1103 => 0.37694800591433
1104 => 0.39032953045418
1105 => 0.37661082582938
1106 => 0.34995762368109
1107 => 0.34334726103896
1108 => 0.34246531680935
1109 => 0.32453748904942
1110 => 0.34378899707939
1111 => 0.33538519791597
1112 => 0.36193269878023
1113 => 0.34676890866367
1114 => 0.34611522797923
1115 => 0.34512709375058
1116 => 0.32969587180838
1117 => 0.33307432870841
1118 => 0.34430483399762
1119 => 0.3483120048055
1120 => 0.34789402406046
1121 => 0.34424979839492
1122 => 0.34591810624315
1123 => 0.34054390538702
1124 => 0.3386461632104
1125 => 0.33265636688588
1126 => 0.32385302101231
1127 => 0.32507718025009
1128 => 0.3076354485538
1129 => 0.29813226742289
1130 => 0.29550191213577
1201 => 0.29198449111572
1202 => 0.29589921419949
1203 => 0.30758603831934
1204 => 0.29348924893275
1205 => 0.26932129230424
1206 => 0.27077382767781
1207 => 0.27403724340059
1208 => 0.26795588979084
1209 => 0.26220039896853
1210 => 0.2672043312808
1211 => 0.25696404945675
1212 => 0.2752747325355
1213 => 0.27477947987332
1214 => 0.28160457020003
1215 => 0.28587243924627
1216 => 0.27603638283369
1217 => 0.27356264124545
1218 => 0.2749717968794
1219 => 0.2516815931832
1220 => 0.2797012636765
1221 => 0.27994357895047
1222 => 0.27786872846089
1223 => 0.2927883379883
1224 => 0.32427336763405
1225 => 0.31242743299893
1226 => 0.30784032906295
1227 => 0.29912024112749
1228 => 0.3107392405539
1229 => 0.30984708268258
1230 => 0.30581240644764
1231 => 0.30337222167179
]
'min_raw' => 0.22788753020388
'max_raw' => 0.58473330807853
'avg_raw' => 0.4063104191412
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.227887'
'max' => '$0.584733'
'avg' => '$0.40631'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.14013619615138
'max_diff' => 0.33987987430156
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0071531291718518
]
1 => [
'year' => 2028
'avg' => 0.012276846227134
]
2 => [
'year' => 2029
'avg' => 0.033538131206279
]
3 => [
'year' => 2030
'avg' => 0.025874618279161
]
4 => [
'year' => 2031
'avg' => 0.025412081756278
]
5 => [
'year' => 2032
'avg' => 0.044555376795212
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0071531291718518
'min' => '$0.007153'
'max_raw' => 0.044555376795212
'max' => '$0.044555'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.044555376795212
]
1 => [
'year' => 2033
'avg' => 0.11460101069265
]
2 => [
'year' => 2034
'avg' => 0.072639628043864
]
3 => [
'year' => 2035
'avg' => 0.085678607856182
]
4 => [
'year' => 2036
'avg' => 0.16630238391474
]
5 => [
'year' => 2037
'avg' => 0.4063104191412
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.044555376795212
'min' => '$0.044555'
'max_raw' => 0.4063104191412
'max' => '$0.40631'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.4063104191412
]
]
]
]
'prediction_2025_max_price' => '$0.01223'
'last_price' => 0.01185906
'sma_50day_nextmonth' => '$0.010871'
'sma_200day_nextmonth' => '$0.025152'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.011557'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.01150078'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.011207'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.010778'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.011724'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.020229'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.030176'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.011631'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.0115075'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.011297'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.011285'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.013469'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.019587'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.038201'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.023173'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.060538'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.1904076'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.011585'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.012013'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.014972'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.025449'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.072718'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.169754'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.117012'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '53.48'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 108.75
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.0110039'
'vwma_10_action' => 'BUY'
'hma_9' => '0.011645'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 147.72
'cci_20_action' => 'SELL'
'adx_14' => 16.61
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000222'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 78.79
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.006253'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 19
'sell_pct' => 44.12
'buy_pct' => 55.88
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767709883
'last_updated_date' => '6. Januar 2026'
]
xJKL_Astrovault Preisprognose für 2026
Die Preisprognose für xJKL_Astrovault im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.004097 am unteren Ende und $0.01223 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte xJKL_Astrovault im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn XJKL das prognostizierte Preisziel erreicht.
xJKL_Astrovault Preisprognose 2027-2032
Die Preisprognose für XJKL für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.007153 am unteren Ende und $0.044555 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte xJKL_Astrovault, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| xJKL_Astrovault Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.003944 | $0.007153 | $0.010361 |
| 2028 | $0.007118 | $0.012276 | $0.017435 |
| 2029 | $0.015637 | $0.033538 | $0.051439 |
| 2030 | $0.013298 | $0.025874 | $0.03845 |
| 2031 | $0.015723 | $0.025412 | $0.03510095 |
| 2032 | $0.02400028 | $0.044555 | $0.06511 |
xJKL_Astrovault Preisprognose 2032-2037
Die Preisprognose für xJKL_Astrovault für die Jahre 2032-2037 wird derzeit zwischen $0.044555 am unteren Ende und $0.40631 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte xJKL_Astrovault bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| xJKL_Astrovault Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.02400028 | $0.044555 | $0.06511 |
| 2033 | $0.055771 | $0.114601 | $0.17343 |
| 2034 | $0.044837 | $0.072639 | $0.100441 |
| 2035 | $0.053011 | $0.085678 | $0.118345 |
| 2036 | $0.087751 | $0.1663023 | $0.244853 |
| 2037 | $0.227887 | $0.40631 | $0.584733 |
xJKL_Astrovault Potenzielles Preishistogramm
xJKL_Astrovault Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für xJKL_Astrovault Bullisch, mit 19 technischen Indikatoren, die bullische Signale zeigen, und 15 anzeigen bärische Signale. Die Preisprognose für XJKL wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von xJKL_Astrovault
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von xJKL_Astrovault im nächsten Monat steigen, und bis zum 04.02.2026 $0.025152 erreichen. Der kurzfristige 50-Tage-SMA für xJKL_Astrovault wird voraussichtlich bis zum 04.02.2026 $0.010871 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 53.48, was darauf hindeutet, dass sich der XJKL-Markt in einem NEUTRAL Zustand befindet.
Beliebte XJKL Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.011557 | BUY |
| SMA 5 | $0.01150078 | BUY |
| SMA 10 | $0.011207 | BUY |
| SMA 21 | $0.010778 | BUY |
| SMA 50 | $0.011724 | BUY |
| SMA 100 | $0.020229 | SELL |
| SMA 200 | $0.030176 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.011631 | BUY |
| EMA 5 | $0.0115075 | BUY |
| EMA 10 | $0.011297 | BUY |
| EMA 21 | $0.011285 | BUY |
| EMA 50 | $0.013469 | SELL |
| EMA 100 | $0.019587 | SELL |
| EMA 200 | $0.038201 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.023173 | SELL |
| SMA 50 | $0.060538 | SELL |
| SMA 100 | $0.1904076 | SELL |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.025449 | SELL |
| EMA 50 | $0.072718 | SELL |
| EMA 100 | $0.169754 | SELL |
| EMA 200 | $0.117012 | SELL |
xJKL_Astrovault Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 53.48 | NEUTRAL |
| Stoch RSI (14) | 108.75 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 147.72 | SELL |
| Average Directional Index (14) | 16.61 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.000222 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 78.79 | SELL |
| VWMA (10) | 0.0110039 | BUY |
| Hull Moving Average (9) | 0.011645 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.006253 | SELL |
Auf weltweiten Geldflüssen basierende xJKL_Astrovault-Preisprognose
Definition weltweiter Geldflüsse, die für xJKL_Astrovault-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
xJKL_Astrovault-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.016663 | $0.023415 | $0.0329028 | $0.046234 | $0.064966 | $0.091288 |
| Amazon.com aktie | $0.024744 | $0.051631 | $0.107731 | $0.224788 | $0.469033 | $0.978666 |
| Apple aktie | $0.016821 | $0.023859 | $0.033842 | $0.0480036 | $0.068089 | $0.096579 |
| Netflix aktie | $0.018711 | $0.029524 | $0.046584 | $0.0735031 | $0.115976 | $0.182992 |
| Google aktie | $0.015357 | $0.019887 | $0.025754 | $0.033352 | $0.04319 | $0.055931 |
| Tesla aktie | $0.026883 | $0.060943 | $0.138153 | $0.313183 | $0.709962 | $1.60 |
| Kodak aktie | $0.008893 | $0.006668 | $0.00500091 | $0.00375 | $0.002812 | $0.0021088 |
| Nokia aktie | $0.007856 | $0.0052043 | $0.003447 | $0.002283 | $0.001513 | $0.0010023 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
xJKL_Astrovault Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in xJKL_Astrovault investieren?", "Sollte ich heute XJKL kaufen?", "Wird xJKL_Astrovault auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere xJKL_Astrovault-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie xJKL_Astrovault.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich xJKL_Astrovault zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der xJKL_Astrovault-Preis entspricht heute $0.01185 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
xJKL_Astrovault-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von xJKL_Astrovault 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.012167 | $0.012483 | $0.012808 | $0.01314 |
| Wenn die Wachstumsrate von xJKL_Astrovault 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.012475 | $0.013124 | $0.0138064 | $0.014524 |
| Wenn die Wachstumsrate von xJKL_Astrovault 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.01340033 | $0.015141 | $0.0171098 | $0.019333 |
| Wenn die Wachstumsrate von xJKL_Astrovault 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.014941 | $0.018825 | $0.023718 | $0.029884 |
| Wenn die Wachstumsrate von xJKL_Astrovault 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.018024 | $0.027394 | $0.041635 | $0.06328 |
| Wenn die Wachstumsrate von xJKL_Astrovault 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.027271 | $0.062715 | $0.144225 | $0.331669 |
| Wenn die Wachstumsrate von xJKL_Astrovault 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.042684 | $0.153635 | $0.552983 | $1.99 |
Fragefeld
Ist XJKL eine gute Investition?
Die Entscheidung, xJKL_Astrovault zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von xJKL_Astrovault in den letzten 2026 Stunden um 3.4175% gestiegen, und xJKL_Astrovault hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in xJKL_Astrovault investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann xJKL_Astrovault steigen?
Es scheint, dass der Durchschnittswert von xJKL_Astrovault bis zum Ende dieses Jahres potenziell auf $0.01223 steigen könnte. Betrachtet man die Aussichten von xJKL_Astrovault in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.03845 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird xJKL_Astrovault nächste Woche kosten?
Basierend auf unserer neuen experimentellen xJKL_Astrovault-Prognose wird der Preis von xJKL_Astrovault in der nächsten Woche um 0.86% steigen und $0.01196 erreichen bis zum 13. Januar 2026.
Wie viel wird xJKL_Astrovault nächsten Monat kosten?
Basierend auf unserer neuen experimentellen xJKL_Astrovault-Prognose wird der Preis von xJKL_Astrovault im nächsten Monat um -11.62% fallen und $0.010481 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von xJKL_Astrovault in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von xJKL_Astrovault im Jahr 2026 wird erwartet, dass XJKL innerhalb der Spanne von $0.004097 bis $0.01223 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte xJKL_Astrovault-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird xJKL_Astrovault in 5 Jahren sein?
Die Zukunft von xJKL_Astrovault scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.03845 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der xJKL_Astrovault-Prognose für 2030 könnte der Wert von xJKL_Astrovault seinen höchsten Gipfel von ungefähr $0.03845 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.013298 liegen wird.
Wie viel wird xJKL_Astrovault im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen xJKL_Astrovault-Preisprognosesimulation wird der Wert von XJKL im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.01223 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.01223 und $0.004097 während des Jahres 2026 liegen.
Wie viel wird xJKL_Astrovault im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von xJKL_Astrovault könnte der Wert von XJKL um -12.62% fallen und bis zu $0.010361 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.010361 und $0.003944 im Laufe des Jahres schwanken.
Wie viel wird xJKL_Astrovault im Jahr 2028 kosten?
Unser neues experimentelles xJKL_Astrovault-Preisprognosemodell deutet darauf hin, dass der Wert von XJKL im Jahr 2028 um 47.02% steigen, und im besten Fall $0.017435 erreichen wird. Der Preis wird voraussichtlich zwischen $0.017435 und $0.007118 im Laufe des Jahres liegen.
Wie viel wird xJKL_Astrovault im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von xJKL_Astrovault im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.051439 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.051439 und $0.015637.
Wie viel wird xJKL_Astrovault im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für xJKL_Astrovault-Preisprognosen wird der Wert von XJKL im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.03845 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.03845 und $0.013298 während des Jahres 2030 liegen.
Wie viel wird xJKL_Astrovault im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von xJKL_Astrovault im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.03510095 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.03510095 und $0.015723 während des Jahres schwanken.
Wie viel wird xJKL_Astrovault im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen xJKL_Astrovault-Preisprognose könnte XJKL eine 449.04% Steigerung im Wert erfahren und $0.06511 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.06511 und $0.02400028 liegen.
Wie viel wird xJKL_Astrovault im Jahr 2033 kosten?
Laut unserer experimentellen xJKL_Astrovault-Preisprognose wird der Wert von XJKL voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.17343 beträgt. Im Laufe des Jahres könnte der Preis von XJKL zwischen $0.17343 und $0.055771 liegen.
Wie viel wird xJKL_Astrovault im Jahr 2034 kosten?
Die Ergebnisse unserer neuen xJKL_Astrovault-Preisprognosesimulation deuten darauf hin, dass XJKL im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.100441 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.100441 und $0.044837.
Wie viel wird xJKL_Astrovault im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von xJKL_Astrovault könnte XJKL um 897.93% steigen, wobei der Wert im Jahr 2035 $0.118345 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.118345 und $0.053011.
Wie viel wird xJKL_Astrovault im Jahr 2036 kosten?
Unsere jüngste xJKL_Astrovault-Preisprognosesimulation deutet darauf hin, dass der Wert von XJKL im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.244853 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.244853 und $0.087751.
Wie viel wird xJKL_Astrovault im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von xJKL_Astrovault um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.584733 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.584733 und $0.227887 liegen.
Verwandte Prognosen
SolPod-Preisprognose
zuzalu-Preisprognose
SOFT COQ INU-Preisprognose
All Street Bets-Preisprognose
MagicRing-Preisprognose
AI INU-Preisprognose
Wall Street Baby On Solana-Preisprognose
Meta Masters Guild Games-Preisprognose
Morfey-Preisprognose
PANTIES-PreisprognoseCeler Bridged BUSD (zkSync)-Preisprognose
Bridged BUSD-Preisprognose
Multichain Bridged BUSD (Moonriver)-Preisprognose
tooker kurlson-Preisprognose
dogwifsaudihat-PreisprognoseHarmony Horizen Bridged BUSD (Harmony)-Preisprognose
IoTeX Bridged BUSD (IoTeX)-Preisprognose
MIMANY-Preisprognose
The Open League MEME-Preisprognose
Sandwich Cat-Preisprognose
Hege-Preisprognose
DexNet-Preisprognose
SolDocs-Preisprognose
Secret Society-Preisprognose
duk-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von xJKL_Astrovault?
xJKL_Astrovault-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
xJKL_Astrovault Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von xJKL_Astrovault. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von XJKL über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von XJKL über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von XJKL einzuschätzen.
Wie liest man xJKL_Astrovault-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von xJKL_Astrovault in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von XJKL innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von xJKL_Astrovault?
Die Preisentwicklung von xJKL_Astrovault wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von XJKL. Die Marktkapitalisierung von xJKL_Astrovault kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von XJKL-„Walen“, großen Inhabern von xJKL_Astrovault, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen xJKL_Astrovault-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


