Alpaca Finance Preisvorhersage bis zu $0.005848 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.001959 | $0.005848 |
| 2027 | $0.001886 | $0.004954 |
| 2028 | $0.0034038 | $0.008336 |
| 2029 | $0.007477 | $0.024596 |
| 2030 | $0.006359 | $0.018385 |
| 2031 | $0.007518 | $0.016784 |
| 2032 | $0.011476 | $0.031133 |
| 2033 | $0.026668 | $0.082929 |
| 2034 | $0.021439 | $0.048028 |
| 2035 | $0.025348 | $0.056589 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Alpaca Finance eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.82 Gewinn erzielen könnten, was einer Rendite von 39.55% in den nächsten 90 Tagen entspricht.
Langfristige Alpaca Finance Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Alpaca Finance'
'name_with_ticker' => 'Alpaca Finance <small>ALPACA</small>'
'name_lang' => 'Alpaca Finance'
'name_lang_with_ticker' => 'Alpaca Finance <small>ALPACA</small>'
'name_with_lang' => 'Alpaca Finance'
'name_with_lang_with_ticker' => 'Alpaca Finance <small>ALPACA</small>'
'image' => '/uploads/coins/alpaca-finance.png?1717085056'
'price_for_sd' => 0.00567
'ticker' => 'ALPACA'
'marketcap' => '$864.06K'
'low24h' => '$0.00491'
'high24h' => '$0.005946'
'volume24h' => '$194.12K'
'current_supply' => '151.67M'
'max_supply' => '151.67M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.00567'
'change_24h_pct' => '11.8841%'
'ath_price' => '$8.78'
'ath_days' => 1767
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '06.03.2021'
'ath_pct' => '-99.93%'
'fdv' => '$864.06K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.2796011'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.005719'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.0050118'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001959'
'current_year_max_price_prediction' => '$0.005848'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.006359'
'grand_prediction_max_price' => '$0.018385'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0057780854557486
107 => 0.0057996587293954
108 => 0.0058482644164801
109 => 0.0054329341420809
110 => 0.0056194052418299
111 => 0.0057289395429533
112 => 0.005234059585586
113 => 0.0057191573573565
114 => 0.0054257041660301
115 => 0.0053261017453748
116 => 0.005460203283166
117 => 0.0054079437834708
118 => 0.0053630141344136
119 => 0.0053379426182503
120 => 0.0054364119873575
121 => 0.0054318182735923
122 => 0.005270703273652
123 => 0.0050605353241174
124 => 0.005131074586509
125 => 0.005105447011173
126 => 0.0050125693721324
127 => 0.0050751576867569
128 => 0.0047995504243719
129 => 0.0043253824542576
130 => 0.0046386323394728
131 => 0.0046265725596423
201 => 0.0046204914717843
202 => 0.0048558901029327
203 => 0.0048332619561182
204 => 0.0047921916480745
205 => 0.0050118150837175
206 => 0.0049316495753557
207 => 0.0051787007827574
208 => 0.0053414246862224
209 => 0.0053001526407368
210 => 0.0054531952584586
211 => 0.0051326996686452
212 => 0.0052391554475299
213 => 0.0052610958360168
214 => 0.0050091049646129
215 => 0.0048369642007841
216 => 0.0048254843743851
217 => 0.0045270160123644
218 => 0.0046864554022034
219 => 0.0048267554672115
220 => 0.0047595626237975
221 => 0.0047382913769017
222 => 0.0048469615641216
223 => 0.0048554061683658
224 => 0.004662868296679
225 => 0.0047029030170841
226 => 0.004869854456392
227 => 0.0046986962691668
228 => 0.0043661638699195
301 => 0.0042836912372861
302 => 0.0042726878678206
303 => 0.0040490155471317
304 => 0.0042892024529569
305 => 0.0041843544319553
306 => 0.0045155680740271
307 => 0.0043263806180101
308 => 0.0043182251249054
309 => 0.0043058969009269
310 => 0.0041133728947228
311 => 0.0041555234165426
312 => 0.0042956381707774
313 => 0.0043456326935941
314 => 0.0043404178552712
315 => 0.0042949515320423
316 => 0.0043157657819913
317 => 0.0042487158307403
318 => 0.0042250390974295
319 => 0.0041503088143021
320 => 0.0040404759428725
321 => 0.0040557488772889
322 => 0.0038381412196527
323 => 0.0037195770184599
324 => 0.0036867600102208
325 => 0.0036428757352863
326 => 0.0036917168558463
327 => 0.0038375247644995
328 => 0.0036616494917903
329 => 0.0033601236729462
330 => 0.0033782458884337
331 => 0.0034189611261001
401 => 0.003343088550067
402 => 0.0032712815243543
403 => 0.0033337119073233
404 => 0.0032059514429345
405 => 0.0034344003678386
406 => 0.0034282214646407
407 => 0.0035133730966582
408 => 0.0035666201596462
409 => 0.0034439029184003
410 => 0.0034130398640897
411 => 0.0034306208624726
412 => 0.0031400461213603
413 => 0.0034896269410838
414 => 0.0034926501305294
415 => 0.0034667637470644
416 => 0.0036529047414702
417 => 0.0040457202984986
418 => 0.0038979272849754
419 => 0.0038406973630717
420 => 0.003731903239698
421 => 0.0038768649495376
422 => 0.0038657341519769
423 => 0.0038153964641776
424 => 0.0037849520735335
425 => 0.0038410467967713
426 => 0.0037780013165515
427 => 0.0037666766159301
428 => 0.0036980612515601
429 => 0.0036735686882802
430 => 0.0036554353695048
501 => 0.0036354723672761
502 => 0.0036795057757223
503 => 0.003579720279106
504 => 0.0034593887522797
505 => 0.0034493844878292
506 => 0.0034770071415609
507 => 0.0034647861735493
508 => 0.0034493259785361
509 => 0.0034198082559224
510 => 0.0034110509781693
511 => 0.0034395078824398
512 => 0.003407381696659
513 => 0.0034547856337825
514 => 0.0034418943858644
515 => 0.0033698849229183
516 => 0.0032801344707697
517 => 0.0032793355034876
518 => 0.0032599989157925
519 => 0.0032353708640872
520 => 0.0032285199035163
521 => 0.0033284541946022
522 => 0.0035353151863682
523 => 0.0034947034239206
524 => 0.0035240495843498
525 => 0.0036684036486993
526 => 0.0037142894648779
527 => 0.0036817207994195
528 => 0.0036371388013922
529 => 0.0036391001830479
530 => 0.0037914503661957
531 => 0.0038009522602421
601 => 0.0038249604810701
602 => 0.0038558178295565
603 => 0.0036869759392977
604 => 0.0036311477452004
605 => 0.0036046932496069
606 => 0.003523223642357
607 => 0.0036110816290998
608 => 0.0035598905426789
609 => 0.0035667979691736
610 => 0.0035622994986073
611 => 0.0035647559677217
612 => 0.0034343365117083
613 => 0.0034818545068348
614 => 0.0034028466236703
615 => 0.0032970639371642
616 => 0.0032967093165068
617 => 0.003322599479167
618 => 0.0033071989973345
619 => 0.0032657566967061
620 => 0.0032716433799082
621 => 0.0032200698407984
622 => 0.0032779053413252
623 => 0.0032795638565349
624 => 0.0032572940385111
625 => 0.0033463976068338
626 => 0.0033829034114771
627 => 0.0033682449401881
628 => 0.003381874934055
629 => 0.0034963910260014
630 => 0.003515062145676
701 => 0.0035233546236906
702 => 0.0035122438016939
703 => 0.0033839680779956
704 => 0.0033896576518121
705 => 0.0033479113342381
706 => 0.0033126400950066
707 => 0.0033140507596026
708 => 0.0033321847615077
709 => 0.0034113770113726
710 => 0.0035780324325751
711 => 0.0035843568839862
712 => 0.0035920223035937
713 => 0.0035608431897187
714 => 0.0035514392706301
715 => 0.0035638454672654
716 => 0.0036264324811433
717 => 0.0037874232730458
718 => 0.003730518374974
719 => 0.0036842538070641
720 => 0.003724840305959
721 => 0.0037185923325817
722 => 0.0036658531495384
723 => 0.0036643729363237
724 => 0.003563149582327
725 => 0.0035257296130986
726 => 0.0034944586859753
727 => 0.0034603116499048
728 => 0.0034400681423032
729 => 0.0034711713704889
730 => 0.0034782850467776
731 => 0.0034102772947581
801 => 0.0034010080894552
802 => 0.0034565446878035
803 => 0.0034321051014835
804 => 0.0034572418220862
805 => 0.0034630737568849
806 => 0.0034621346810614
807 => 0.0034366169460747
808 => 0.0034528811894054
809 => 0.003414411405324
810 => 0.0033725812931101
811 => 0.0033458962876257
812 => 0.0033226100810883
813 => 0.0033355306218775
814 => 0.0032894712531614
815 => 0.0032747359341172
816 => 0.003447371229722
817 => 0.0035748987787275
818 => 0.0035730444776586
819 => 0.0035617568967886
820 => 0.003544985841218
821 => 0.0036252055739679
822 => 0.003597258623122
823 => 0.0036175923649083
824 => 0.0036227681555973
825 => 0.0036384337151647
826 => 0.0036440328062097
827 => 0.003627108464253
828 => 0.0035703083055119
829 => 0.0034287677103263
830 => 0.0033628801811858
831 => 0.0033411361991259
901 => 0.0033419265515761
902 => 0.0033201251027114
903 => 0.0033265466064745
904 => 0.0033178919657625
905 => 0.0033015021700364
906 => 0.0033345185981767
907 => 0.0033383234339505
908 => 0.0033306170051056
909 => 0.0033324321480754
910 => 0.0032686262086986
911 => 0.0032734772356902
912 => 0.0032464661009623
913 => 0.0032414018388249
914 => 0.0031731200423612
915 => 0.0030521489423211
916 => 0.0031191786746921
917 => 0.0030382161837946
918 => 0.0030075544617098
919 => 0.0031527022851832
920 => 0.0031381334694804
921 => 0.0031131979899092
922 => 0.0030763132186141
923 => 0.0030626322981488
924 => 0.0029795113562544
925 => 0.0029746001275744
926 => 0.0030157971108314
927 => 0.0029967861205599
928 => 0.0029700874901937
929 => 0.002873387757404
930 => 0.0027646652415672
1001 => 0.002767946890915
1002 => 0.0028025295003483
1003 => 0.0029030831013762
1004 => 0.0028637950698596
1005 => 0.0028352911522162
1006 => 0.0028299532252662
1007 => 0.0028967685567525
1008 => 0.0029913262490503
1009 => 0.0030356906026673
1010 => 0.0029917268755983
1011 => 0.0029412237131166
1012 => 0.0029442976066077
1013 => 0.0029647468428757
1014 => 0.0029668957684708
1015 => 0.0029340234015042
1016 => 0.0029432767802544
1017 => 0.0029292200517862
1018 => 0.0028429539351242
1019 => 0.0028413936546266
1020 => 0.0028202225583687
1021 => 0.0028195815059879
1022 => 0.0027835641898758
1023 => 0.0027785251183757
1024 => 0.0027070105511402
1025 => 0.0027540816558607
1026 => 0.0027225088301581
1027 => 0.0026749211345476
1028 => 0.0026667169978875
1029 => 0.0026664703716327
1030 => 0.0027153322946106
1031 => 0.0027535106758419
1101 => 0.0027230580529787
1102 => 0.002716124581052
1103 => 0.002790155921787
1104 => 0.0027807347588678
1105 => 0.0027725760925398
1106 => 0.0029828596448228
1107 => 0.0028164038045606
1108 => 0.002743819557239
1109 => 0.0026539827678039
1110 => 0.0026832340794404
1111 => 0.0026893977605934
1112 => 0.0024733564763003
1113 => 0.0023857085541688
1114 => 0.0023556310902356
1115 => 0.0023383210845091
1116 => 0.002346209471484
1117 => 0.0022673160614898
1118 => 0.0023203337377825
1119 => 0.0022520187134214
1120 => 0.002240565477271
1121 => 0.0023627212034361
1122 => 0.0023797184591086
1123 => 0.0023072028857764
1124 => 0.0023537696230606
1125 => 0.0023368838767953
1126 => 0.0022531897784381
1127 => 0.002249993279493
1128 => 0.0022079985229271
1129 => 0.0021422848606889
1130 => 0.002112251953713
1201 => 0.0020966105550023
1202 => 0.0021030645009551
1203 => 0.0020998011883874
1204 => 0.0020785058664932
1205 => 0.0021010218113109
1206 => 0.0020435028765323
1207 => 0.0020205983732418
1208 => 0.002010252940486
1209 => 0.0019592015752036
1210 => 0.0020404470000131
1211 => 0.0020564533722035
1212 => 0.0020724912818917
1213 => 0.0022120903361816
1214 => 0.0022051163619321
1215 => 0.0022681576926843
1216 => 0.0022657080224968
1217 => 0.0022477276137644
1218 => 0.0021718712269562
1219 => 0.0022021062307279
1220 => 0.0021090475886815
1221 => 0.0021787734506752
1222 => 0.0021469534790829
1223 => 0.0021680150862719
1224 => 0.0021301444174976
1225 => 0.0021511036092389
1226 => 0.0020602490768471
1227 => 0.0019754103928574
1228 => 0.0020095519558904
1229 => 0.0020466677394686
1230 => 0.002127144215192
1231 => 0.0020792130901677
]
'min_raw' => 0.0019592015752036
'max_raw' => 0.0058482644164801
'avg_raw' => 0.0039037329958418
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001959'
'max' => '$0.005848'
'avg' => '$0.0039037'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0037114284247964
'max_diff' => 0.00017763441648014
'year' => 2026
]
1 => [
'items' => [
101 => 0.0020964509352029
102 => 0.0020387070399153
103 => 0.0019195648902086
104 => 0.0019202392218371
105 => 0.0019019117977576
106 => 0.0018860742275051
107 => 0.0020847185564597
108 => 0.002060013994052
109 => 0.0020206505071087
110 => 0.0020733400986251
111 => 0.0020872720629184
112 => 0.0020876686863558
113 => 0.002126109652211
114 => 0.0021466256025789
115 => 0.0021502416277524
116 => 0.0022107293180977
117 => 0.0022310039940495
118 => 0.0023145125149154
119 => 0.0021448849675271
120 => 0.0021413915998152
121 => 0.0020740815492306
122 => 0.0020313924510201
123 => 0.0020770045083072
124 => 0.0021174105643969
125 => 0.0020753370780248
126 => 0.0020808309871252
127 => 0.0020243507692008
128 => 0.0020445397894675
129 => 0.002061929293476
130 => 0.0020523278314703
131 => 0.0020379539781318
201 => 0.0021140977285821
202 => 0.0021098013997719
203 => 0.0021807082107285
204 => 0.0022359851404638
205 => 0.0023350512804826
206 => 0.0022316705989383
207 => 0.0022279029960018
208 => 0.0022647319190483
209 => 0.0022309983557332
210 => 0.0022523168033053
211 => 0.0023316165489968
212 => 0.0023332920276644
213 => 0.0023052256012504
214 => 0.0023035177566525
215 => 0.0023089082208583
216 => 0.0023404803380801
217 => 0.0023294480702097
218 => 0.0023422148898922
219 => 0.0023581799933977
220 => 0.0024242184305601
221 => 0.0024401400741879
222 => 0.0024014587345982
223 => 0.0024049512264665
224 => 0.0023904833436334
225 => 0.0023765075500987
226 => 0.002407923092964
227 => 0.0024653356150244
228 => 0.0024649784547044
301 => 0.0024782970438825
302 => 0.0024865944146032
303 => 0.0024509760254231
304 => 0.0024277897637912
305 => 0.002436680851881
306 => 0.0024508978953593
307 => 0.0024320704562935
308 => 0.0023158587806613
309 => 0.0023511099794176
310 => 0.002345242456249
311 => 0.0023368863897417
312 => 0.0023723317426806
313 => 0.0023689129519201
314 => 0.0022665068955396
315 => 0.0022730625990135
316 => 0.0022669055695811
317 => 0.0022868001912869
318 => 0.0022299239808725
319 => 0.0022474187201289
320 => 0.0022583912565875
321 => 0.0022648541648566
322 => 0.0022882026211823
323 => 0.0022854629493193
324 => 0.0022880323193326
325 => 0.0023226519162996
326 => 0.002497745957748
327 => 0.0025072759401008
328 => 0.0024603468215683
329 => 0.0024790940787861
330 => 0.0024431034445024
331 => 0.0024672641984133
401 => 0.0024837943726226
402 => 0.0024090976939406
403 => 0.0024046746414065
404 => 0.0023685354609725
405 => 0.0023879546095099
406 => 0.0023570573479007
407 => 0.0023646384551593
408 => 0.0023434410183553
409 => 0.0023815921842349
410 => 0.0024242511157802
411 => 0.0024350284465408
412 => 0.0024066779292423
413 => 0.0023861502863281
414 => 0.0023501105075966
415 => 0.0024100454628259
416 => 0.0024275722702196
417 => 0.0024099534019681
418 => 0.0024058707252143
419 => 0.0023981340601431
420 => 0.0024075120952827
421 => 0.0024274768154625
422 => 0.0024180618221162
423 => 0.0024242805910923
424 => 0.0024005810565222
425 => 0.002450987816592
426 => 0.0025310458826301
427 => 0.0025313032824032
428 => 0.0025218882383066
429 => 0.0025180358051122
430 => 0.002527696211708
501 => 0.0025329365859956
502 => 0.0025641765695107
503 => 0.0025976983164783
504 => 0.0027541296828919
505 => 0.0027102043811732
506 => 0.002848999595599
507 => 0.0029587685899068
508 => 0.0029916835116834
509 => 0.0029614033324157
510 => 0.0028578164748441
511 => 0.0028527340094245
512 => 0.0030075365078796
513 => 0.0029637977116624
514 => 0.0029585951210281
515 => 0.0029032483465943
516 => 0.0029359651451161
517 => 0.0029288095013529
518 => 0.0029175139676066
519 => 0.0029799353401141
520 => 0.0030967825770538
521 => 0.0030785708393903
522 => 0.0030649766220427
523 => 0.0030054107188427
524 => 0.0030412826970952
525 => 0.003028509372722
526 => 0.0030833916803814
527 => 0.0030508806171159
528 => 0.0029634663472628
529 => 0.0029773873578581
530 => 0.0029752832251118
531 => 0.0030185861279301
601 => 0.0030055876713482
602 => 0.0029727450678464
603 => 0.0030963832059009
604 => 0.0030883548329271
605 => 0.0030997372302623
606 => 0.0031047481135817
607 => 0.003180004469467
608 => 0.0032108345905385
609 => 0.003217833567779
610 => 0.0032471197983097
611 => 0.0032171048996842
612 => 0.0033371858944462
613 => 0.0034170327490426
614 => 0.003509778979538
615 => 0.0036453061501283
616 => 0.0036962656199666
617 => 0.0036870602478609
618 => 0.0037898154018522
619 => 0.0039744641294559
620 => 0.0037243830350187
621 => 0.0039877190347054
622 => 0.0039043498975649
623 => 0.0037066831731516
624 => 0.0036939557664369
625 => 0.0038278179671675
626 => 0.0041247114446286
627 => 0.0040503429958625
628 => 0.004124833084769
629 => 0.0040379364392856
630 => 0.0040336212884149
701 => 0.0041206127086548
702 => 0.0043238729037009
703 => 0.004227311604129
704 => 0.0040888673033906
705 => 0.0041910924206239
706 => 0.0041025355635885
707 => 0.003902992179184
708 => 0.0040502861277113
709 => 0.0039517948590212
710 => 0.0039805398473088
711 => 0.0041875538446249
712 => 0.0041626453727767
713 => 0.0041948792418107
714 => 0.004137987306673
715 => 0.0040848412682197
716 => 0.0039856402407701
717 => 0.0039562717070938
718 => 0.0039643881132327
719 => 0.003956267685006
720 => 0.0039007656218524
721 => 0.0038887799565988
722 => 0.0038688033227387
723 => 0.0038749949168884
724 => 0.003837433000861
725 => 0.0039083200970924
726 => 0.0039214773668079
727 => 0.0039730630839519
728 => 0.0039784188842348
729 => 0.0041220843722041
730 => 0.0040429558356311
731 => 0.0040960420895934
801 => 0.0040912935553718
802 => 0.0037109672104475
803 => 0.0037633728251303
804 => 0.003844899515789
805 => 0.0038081718521541
806 => 0.0037562475287241
807 => 0.0037143158535482
808 => 0.0036507850779229
809 => 0.0037402034246151
810 => 0.0038577790419342
811 => 0.0039814007959194
812 => 0.0041299242333144
813 => 0.0040967755310912
814 => 0.003978624253568
815 => 0.0039839244335681
816 => 0.004016688060785
817 => 0.0039742561866497
818 => 0.0039617421985987
819 => 0.0040149688309921
820 => 0.0040153353735566
821 => 0.0039665123743007
822 => 0.0039122545451423
823 => 0.003912027202857
824 => 0.0039023725462268
825 => 0.0040396539812522
826 => 0.0041151448897975
827 => 0.0041237998008026
828 => 0.0041145623453282
829 => 0.0041181174753188
830 => 0.0040741909789649
831 => 0.004174593923632
901 => 0.0042667335944807
902 => 0.0042420381944163
903 => 0.0042050162790618
904 => 0.0041755265402649
905 => 0.0042350913491531
906 => 0.0042324390219771
907 => 0.0042659288348367
908 => 0.0042644095434789
909 => 0.0042531481790298
910 => 0.0042420385965951
911 => 0.0042860868351782
912 => 0.0042734016498594
913 => 0.0042606967609439
914 => 0.0042352151612029
915 => 0.0042386785338123
916 => 0.0042016630108134
917 => 0.004184537936159
918 => 0.003927017902157
919 => 0.0038582001343617
920 => 0.003879851605025
921 => 0.0038869798313475
922 => 0.0038570302506106
923 => 0.0038999702559712
924 => 0.0038932781016205
925 => 0.0039193133594198
926 => 0.0039030476606663
927 => 0.0039037152106168
928 => 0.0039515491624384
929 => 0.0039654355621523
930 => 0.0039583728271808
1001 => 0.0039633193246585
1002 => 0.0040773092712451
1003 => 0.0040611035460338
1004 => 0.0040524945775073
1005 => 0.0040548793206239
1006 => 0.0040840061959488
1007 => 0.0040921601307713
1008 => 0.0040576113359614
1009 => 0.004073904747318
1010 => 0.0041432800249324
1011 => 0.0041675574457968
1012 => 0.0042450393193729
1013 => 0.0042121236423473
1014 => 0.0042725417920849
1015 => 0.0044582465863133
1016 => 0.0046066004257373
1017 => 0.0044701681040213
1018 => 0.0047426010373759
1019 => 0.0049547291541757
1020 => 0.004946587323735
1021 => 0.0049095978799593
1022 => 0.0046680956587005
1023 => 0.0044458617141029
1024 => 0.0046317698453105
1025 => 0.0046322437633693
1026 => 0.0046162740900248
1027 => 0.0045170878204253
1028 => 0.0046128226228414
1029 => 0.0046204217037995
1030 => 0.0046161682392217
1031 => 0.0045401223588743
1101 => 0.0044240143552117
1102 => 0.0044467015812041
1103 => 0.0044838637201865
1104 => 0.0044135080382585
1105 => 0.0043910251348814
1106 => 0.0044328251298068
1107 => 0.0045675134228312
1108 => 0.0045420513812311
1109 => 0.0045413864644247
1110 => 0.004650323875976
1111 => 0.0045723481994701
1112 => 0.0044469877397784
1113 => 0.0044153325704049
1114 => 0.0043029780446063
1115 => 0.0043805817157685
1116 => 0.0043833745337385
1117 => 0.0043408717961332
1118 => 0.0044504366026891
1119 => 0.0044494269437082
1120 => 0.0045534424209637
1121 => 0.0047522809470469
1122 => 0.0046934746106345
1123 => 0.004625089239498
1124 => 0.0046325246254612
1125 => 0.0047140724573812
1126 => 0.0046647667766464
1127 => 0.0046824974432101
1128 => 0.0047140456198938
1129 => 0.0047330794181842
1130 => 0.0046297859548007
1201 => 0.0046057033073886
1202 => 0.0045564386626439
1203 => 0.0045435864363981
1204 => 0.0045837114616022
1205 => 0.004573139935099
1206 => 0.0043831398082024
1207 => 0.004363283737791
1208 => 0.0043638926951226
1209 => 0.0043139636619684
1210 => 0.0042378099020673
1211 => 0.0044379374361827
1212 => 0.0044218643944102
1213 => 0.0044041210002479
1214 => 0.0044062944647904
1215 => 0.0044931630443985
1216 => 0.0044427748812574
1217 => 0.0045767400714255
1218 => 0.0045492008556892
1219 => 0.0045209553629842
1220 => 0.0045170509755136
1221 => 0.0045061788706143
1222 => 0.0044688943775828
1223 => 0.0044238711117966
1224 => 0.004394142851876
1225 => 0.0040533645073433
1226 => 0.0041166109858722
1227 => 0.0041893702943217
1228 => 0.0042144865160338
1229 => 0.0041715234808056
1230 => 0.0044705908200764
1231 => 0.0045252333048458
]
'min_raw' => 0.0018860742275051
'max_raw' => 0.0049547291541757
'avg_raw' => 0.0034204016908404
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001886'
'max' => '$0.004954'
'avg' => '$0.00342'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.3127347698463E-5
'max_diff' => -0.00089353526230445
'year' => 2027
]
2 => [
'items' => [
101 => 0.0043597176542383
102 => 0.0043287564339691
103 => 0.0044726206325228
104 => 0.0043858529341119
105 => 0.0044249244233935
106 => 0.0043404732345287
107 => 0.0045120715303836
108 => 0.0045107642388749
109 => 0.0044440086260641
110 => 0.0045004300128891
111 => 0.0044906254084661
112 => 0.0044152584860145
113 => 0.0045144607962549
114 => 0.0045145099993631
115 => 0.0044502591734248
116 => 0.0043752282750433
117 => 0.0043618145225634
118 => 0.0043517090619539
119 => 0.0044224390995595
120 => 0.0044858554301096
121 => 0.0046038574990217
122 => 0.0046335260228063
123 => 0.0047493242462827
124 => 0.0046803720423156
125 => 0.0047109376612537
126 => 0.0047441209643817
127 => 0.0047600302601769
128 => 0.0047341069164186
129 => 0.0049139892219278
130 => 0.0049291767999642
131 => 0.0049342690635078
201 => 0.0048736137621864
202 => 0.0049274898663098
203 => 0.0049022830213795
204 => 0.0049678642292249
205 => 0.004978148199998
206 => 0.0049694380426161
207 => 0.0049727023372609
208 => 0.004819204522922
209 => 0.004811244851483
210 => 0.0047027141666204
211 => 0.0047469412229202
212 => 0.0046642608610257
213 => 0.0046904796554846
214 => 0.0047020366502602
215 => 0.0046959999320431
216 => 0.0047494417543257
217 => 0.0047040052879425
218 => 0.0045840909827105
219 => 0.0044641440069062
220 => 0.0044626381703317
221 => 0.0044310582488424
222 => 0.0044082317497567
223 => 0.0044126289432942
224 => 0.0044281252268551
225 => 0.0044073310775855
226 => 0.0044117685636223
227 => 0.0044854603986482
228 => 0.0045002387706165
229 => 0.0044500160883855
301 => 0.0042483647721295
302 => 0.0041988790333162
303 => 0.0042344484010303
304 => 0.0042174485342237
305 => 0.0034038101254808
306 => 0.0035949624007458
307 => 0.0034813862097012
308 => 0.0035337273439239
309 => 0.0034177954632794
310 => 0.0034731242332334
311 => 0.0034629070297061
312 => 0.0037702742317252
313 => 0.0037654751156355
314 => 0.0037677721985441
315 => 0.003658126446299
316 => 0.003832795106832
317 => 0.0039188431698925
318 => 0.003902917963515
319 => 0.0039069259948651
320 => 0.0038380547370272
321 => 0.003768439022865
322 => 0.0036912244820776
323 => 0.003834679554855
324 => 0.0038187297996219
325 => 0.0038553127995858
326 => 0.0039483536686623
327 => 0.0039620542900617
328 => 0.0039804680641605
329 => 0.0039738680369278
330 => 0.00413110746211
331 => 0.0041120647302213
401 => 0.0041579522351052
402 => 0.0040635581560656
403 => 0.0039567422956642
404 => 0.0039770444986529
405 => 0.0039750892332451
406 => 0.0039501964604544
407 => 0.00392772437821
408 => 0.003890314692743
409 => 0.0040086844731523
410 => 0.0040038788762363
411 => 0.0040816759044113
412 => 0.0040679245240014
413 => 0.0039760894400902
414 => 0.003979369348078
415 => 0.0040014283055663
416 => 0.004077774609298
417 => 0.0041004393902983
418 => 0.0040899401607036
419 => 0.0041147910583839
420 => 0.0041344321946576
421 => 0.0041172576826996
422 => 0.004360412554185
423 => 0.0042594376988458
424 => 0.0043086521407596
425 => 0.0043203894951677
426 => 0.0042903245086613
427 => 0.0042968445276881
428 => 0.0043067205799148
429 => 0.0043666860351063
430 => 0.0045240527406731
501 => 0.0045937493833373
502 => 0.0048034351715642
503 => 0.0045879620473882
504 => 0.004575176763916
505 => 0.0046129475062798
506 => 0.0047360552614638
507 => 0.0048358225341171
508 => 0.0048689210941682
509 => 0.0048732956152766
510 => 0.0049353907142831
511 => 0.0049709824670286
512 => 0.0049278507360005
513 => 0.0048913011100346
514 => 0.0047603848865314
515 => 0.004775538795875
516 => 0.0048799342038431
517 => 0.0050273988664569
518 => 0.0051539388880628
519 => 0.0051096289828614
520 => 0.0054476822816297
521 => 0.0054811988853787
522 => 0.0054765679744621
523 => 0.0055529237857417
524 => 0.0054013730499423
525 => 0.0053365821742308
526 => 0.0048992035540243
527 => 0.0050220891058603
528 => 0.0052007104722692
529 => 0.0051770692646293
530 => 0.0050473496537803
531 => 0.0051538404841057
601 => 0.0051186312853239
602 => 0.0050908603294138
603 => 0.0052180844621029
604 => 0.0050781963021319
605 => 0.0051993149808646
606 => 0.0050439790225776
607 => 0.005109831386776
608 => 0.0050724503999365
609 => 0.0050966404796631
610 => 0.0049552257678661
611 => 0.0050315297137037
612 => 0.0049520512728552
613 => 0.0049520135897258
614 => 0.004950259098739
615 => 0.0050437651319359
616 => 0.0050468143603215
617 => 0.0049777132605092
618 => 0.0049677547124642
619 => 0.0050045766840729
620 => 0.0049614677990087
621 => 0.0049816381750061
622 => 0.0049620787391498
623 => 0.0049576754981538
624 => 0.0049225897247478
625 => 0.0049074738088611
626 => 0.0049134011489695
627 => 0.0048931680814264
628 => 0.0048809769263697
629 => 0.0049478339711513
630 => 0.0049121149491299
701 => 0.0049423595187436
702 => 0.0049078920144999
703 => 0.0047884126280143
704 => 0.0047196987693748
705 => 0.0044940132840485
706 => 0.0045580174077251
707 => 0.0046004522079397
708 => 0.0045864275067219
709 => 0.0046165579917766
710 => 0.0046184077588493
711 => 0.0046086120310141
712 => 0.0045972698330914
713 => 0.0045917490784055
714 => 0.0046328962607647
715 => 0.0046567835850747
716 => 0.0046047111078456
717 => 0.0045925112550022
718 => 0.0046451594044811
719 => 0.0046772747452494
720 => 0.0049143963774311
721 => 0.0048968296410263
722 => 0.0049409187021044
723 => 0.0049359549504288
724 => 0.0049821673103769
725 => 0.0050577049880916
726 => 0.0049041157686308
727 => 0.0049307735464136
728 => 0.0049242376749192
729 => 0.004995594606097
730 => 0.0049958173746472
731 => 0.0049530353298631
801 => 0.0049762281704
802 => 0.0049632825630746
803 => 0.0049866770252154
804 => 0.0048965950265517
805 => 0.0050063051771732
806 => 0.0050685037630096
807 => 0.0050693673904343
808 => 0.0050988490264823
809 => 0.0051288040761683
810 => 0.0051863001855055
811 => 0.0051272005408849
812 => 0.005020886033447
813 => 0.0050285615974902
814 => 0.0049662294406783
815 => 0.0049672772554955
816 => 0.0049616839378824
817 => 0.0049784699050847
818 => 0.0049002786023957
819 => 0.0049186299448503
820 => 0.0048929379579486
821 => 0.0049307176970516
822 => 0.0048900729429914
823 => 0.0049242345231241
824 => 0.0049389775286351
825 => 0.0049933795363647
826 => 0.0048820377222168
827 => 0.0046550042259909
828 => 0.0047027294194126
829 => 0.0046321401096088
830 => 0.0046386734189836
831 => 0.0046518717436892
901 => 0.0046090916550953
902 => 0.0046172527478435
903 => 0.0046169611761818
904 => 0.0046144485691211
905 => 0.0046033198158324
906 => 0.0045871809218071
907 => 0.0046514733083144
908 => 0.0046623978376013
909 => 0.0046866817129434
910 => 0.0047589340540513
911 => 0.0047517143413471
912 => 0.0047634899923107
913 => 0.0047377838123746
914 => 0.0046398658549437
915 => 0.0046451832711297
916 => 0.0045788750060845
917 => 0.0046849860615248
918 => 0.0046598575629991
919 => 0.0046436570565289
920 => 0.0046392365982419
921 => 0.0047116680389283
922 => 0.0047333406612054
923 => 0.0047198357373979
924 => 0.0046921367446671
925 => 0.0047453269991823
926 => 0.0047595584673739
927 => 0.0047627443682656
928 => 0.0048569873010468
929 => 0.0047680115012997
930 => 0.0047894288606422
1001 => 0.0049565209843776
1002 => 0.0048049914852865
1003 => 0.0048852600404662
1004 => 0.0048813313123875
1005 => 0.0049223939890776
1006 => 0.0048779629743692
1007 => 0.0048785137500466
1008 => 0.0049149746251207
1009 => 0.0048637719018326
1010 => 0.0048510933874809
1011 => 0.0048335781107093
1012 => 0.0048718220767565
1013 => 0.004894747604776
1014 => 0.005079510523668
1015 => 0.005198875795485
1016 => 0.005193693834232
1017 => 0.0052410472598602
1018 => 0.005219714107907
1019 => 0.0051508237328491
1020 => 0.0052684112027867
1021 => 0.0052312016072297
1022 => 0.0052342691210778
1023 => 0.0052341549480592
1024 => 0.0052588960761852
1025 => 0.0052413647194168
1026 => 0.0052068086156694
1027 => 0.0052297485700028
1028 => 0.0052978720331892
1029 => 0.0055093293532028
1030 => 0.0056276636709194
1031 => 0.0055022054786914
1101 => 0.0055887448597381
1102 => 0.0055368520682444
1103 => 0.0055274216043531
1104 => 0.0055817747308605
1105 => 0.0056362229953207
1106 => 0.0056327548762609
1107 => 0.0055932282322121
1108 => 0.0055709006339405
1109 => 0.0057399726883478
1110 => 0.0058645420979678
1111 => 0.0058560472993557
1112 => 0.0058935405777733
1113 => 0.0060036220028308
1114 => 0.0060136864687527
1115 => 0.0060124185773757
1116 => 0.0059874727484698
1117 => 0.0060958622073183
1118 => 0.0061862826008209
1119 => 0.0059816985098324
1120 => 0.0060596014534784
1121 => 0.0060945745947572
1122 => 0.0061459255422179
1123 => 0.0062325631980022
1124 => 0.0063266746716872
1125 => 0.006339983065946
1126 => 0.006330540123354
1127 => 0.0062684710766066
1128 => 0.0063714489740961
1129 => 0.0064317710113166
1130 => 0.0064676914040361
1201 => 0.0065587795433894
1202 => 0.0060947905769714
1203 => 0.0057663561247928
1204 => 0.0057150663424342
1205 => 0.0058193661317316
1206 => 0.0058468691543941
1207 => 0.0058357827204447
1208 => 0.0054660998845637
1209 => 0.0057131200388109
1210 => 0.0059788929547364
1211 => 0.0059891023748313
1212 => 0.0061221538535932
1213 => 0.0061654808690425
1214 => 0.0062726047489018
1215 => 0.0062659041210499
1216 => 0.0062919870810824
1217 => 0.0062859910602648
1218 => 0.00648441549011
1219 => 0.0067033071025421
1220 => 0.0066957275820363
1221 => 0.0066642593229412
1222 => 0.0067109950538329
1223 => 0.0069369146557137
1224 => 0.0069161155990604
1225 => 0.0069363201109396
1226 => 0.0072026920538278
1227 => 0.0075490134705495
1228 => 0.0073881124023806
1229 => 0.0077372214222721
1230 => 0.0079569670448199
1231 => 0.0083369943768948
]
'min_raw' => 0.0034038101254808
'max_raw' => 0.0083369943768948
'avg_raw' => 0.0058704022511878
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0034038'
'max' => '$0.008336'
'avg' => '$0.00587'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0015177358979757
'max_diff' => 0.0033822652227191
'year' => 2028
]
3 => [
'items' => [
101 => 0.0082894130832449
102 => 0.0084373549348523
103 => 0.008204232637096
104 => 0.007668936719658
105 => 0.007584224091693
106 => 0.0077538209181444
107 => 0.0081707581669588
108 => 0.0077406900804255
109 => 0.0078276922942093
110 => 0.0078026356507866
111 => 0.0078013004887425
112 => 0.00785225819347
113 => 0.0077783413849877
114 => 0.0074771910098509
115 => 0.0076152064520858
116 => 0.007561912061793
117 => 0.0076210461611828
118 => 0.0079401685068321
119 => 0.007799076910894
120 => 0.0076504483759237
121 => 0.0078368615420887
122 => 0.0080742295611304
123 => 0.0080593754970901
124 => 0.0080305524043348
125 => 0.0081930266690682
126 => 0.0084613865539147
127 => 0.0085339231524314
128 => 0.0085874681865109
129 => 0.0085948511420597
130 => 0.0086709001726937
131 => 0.0082619653681514
201 => 0.0089109554051506
202 => 0.0090230180565524
203 => 0.0090019549226099
204 => 0.0091265078433258
205 => 0.0090898612144485
206 => 0.0090367659988853
207 => 0.009234208871386
208 => 0.0090078565508822
209 => 0.0086865779288919
210 => 0.0085103181226974
211 => 0.0087424312539673
212 => 0.0088841746436019
213 => 0.0089778580075776
214 => 0.0090062065369116
215 => 0.0082937098129399
216 => 0.0079097135955991
217 => 0.008155850768389
218 => 0.0084561551066729
219 => 0.0082602971623895
220 => 0.0082679744229973
221 => 0.0079887324650115
222 => 0.0084808618237972
223 => 0.0084091627156815
224 => 0.0087811378154192
225 => 0.0086923629725801
226 => 0.008995694226426
227 => 0.0089158169415511
228 => 0.0092473830851881
301 => 0.0093796537966799
302 => 0.009601756907567
303 => 0.0097651368600578
304 => 0.0098610766931209
305 => 0.0098553168254051
306 => 0.010235478241036
307 => 0.010011310336067
308 => 0.0097297026151065
309 => 0.0097246092198953
310 => 0.0098704578489929
311 => 0.010176116563964
312 => 0.010255369421603
313 => 0.010299660957149
314 => 0.01023182692866
315 => 0.0099885087340745
316 => 0.0098834451713036
317 => 0.0099729623707689
318 => 0.0098634905281235
319 => 0.010052469640903
320 => 0.010311978326511
321 => 0.010258390809141
322 => 0.010437525845418
323 => 0.010622911762408
324 => 0.010888021949907
325 => 0.010957331569921
326 => 0.011071897736195
327 => 0.011189823954317
328 => 0.011227698677376
329 => 0.011300013275534
330 => 0.011299632141906
331 => 0.011517557050789
401 => 0.011757934973858
402 => 0.011848672075055
403 => 0.012057317035985
404 => 0.011700019852184
405 => 0.011971033870431
406 => 0.012215495298811
407 => 0.011924038305935
408 => 0.012325743869845
409 => 0.012341341186607
410 => 0.01257684215173
411 => 0.012338116807052
412 => 0.012196362459421
413 => 0.012605601949566
414 => 0.012803620047924
415 => 0.012743975385174
416 => 0.012290076556625
417 => 0.012025887969773
418 => 0.011334455479808
419 => 0.012153487131832
420 => 0.012552413558052
421 => 0.012289043433555
422 => 0.012421872005026
423 => 0.013146541621164
424 => 0.013422448892106
425 => 0.013365062108488
426 => 0.013374759530252
427 => 0.013523634085582
428 => 0.014183825850627
429 => 0.013788223641886
430 => 0.014090646707537
501 => 0.01425105081109
502 => 0.014400043081888
503 => 0.014034165154299
504 => 0.013558163346319
505 => 0.013407393592535
506 => 0.012262856465131
507 => 0.012203278337177
508 => 0.012169835328554
509 => 0.011958981889795
510 => 0.011793308844549
511 => 0.011661559487923
512 => 0.011315809832448
513 => 0.011432490191583
514 => 0.010881437404317
515 => 0.011233981449498
516 => 0.010354487895387
517 => 0.011086956261543
518 => 0.010688307031094
519 => 0.010955989267704
520 => 0.010955055349598
521 => 0.010462167483269
522 => 0.010177880048278
523 => 0.010359039066487
524 => 0.010553255914427
525 => 0.010584766944582
526 => 0.010836574157515
527 => 0.010906848138067
528 => 0.010693914696216
529 => 0.010336262346339
530 => 0.010419336830034
531 => 0.010176196546517
601 => 0.00975010255191
602 => 0.010056130697724
603 => 0.010160622161813
604 => 0.010206771545102
605 => 0.0097877570386318
606 => 0.0096560935834513
607 => 0.0095859970646766
608 => 0.010282172835313
609 => 0.010320310915556
610 => 0.01012519110485
611 => 0.011007151151262
612 => 0.010807536429911
613 => 0.011030554980455
614 => 0.010411798691385
615 => 0.010435436014893
616 => 0.010142506871638
617 => 0.010306527618328
618 => 0.010190603041203
619 => 0.01029327636288
620 => 0.010354818328556
621 => 0.010647699405021
622 => 0.011090300492975
623 => 0.01060395273892
624 => 0.01039204405785
625 => 0.010523511011766
626 => 0.010873624834557
627 => 0.011404065198082
628 => 0.011090033826768
629 => 0.011229395616759
630 => 0.011259839968097
701 => 0.011028284860964
702 => 0.011412602965169
703 => 0.011618562159408
704 => 0.011829833675446
705 => 0.012013274813129
706 => 0.01174544718598
707 => 0.012032061138611
708 => 0.011801100886964
709 => 0.011593905665004
710 => 0.011594219894629
711 => 0.011464243305255
712 => 0.011212397285238
713 => 0.011165953015135
714 => 0.011407561973472
715 => 0.011601309477605
716 => 0.011617267450034
717 => 0.011724536023428
718 => 0.011788016460208
719 => 0.012410211038126
720 => 0.012660462844429
721 => 0.012966466016151
722 => 0.01308567149693
723 => 0.013444437256546
724 => 0.013154704768126
725 => 0.013092019321753
726 => 0.01222177094031
727 => 0.012364274064019
728 => 0.012592435314584
729 => 0.012225533235295
730 => 0.012458248155386
731 => 0.012504191010188
801 => 0.012213066043037
802 => 0.01236856846676
803 => 0.011955600132608
804 => 0.011099302074147
805 => 0.011413556269694
806 => 0.011644953134435
807 => 0.011314721277422
808 => 0.01190664909938
809 => 0.011560857085663
810 => 0.011451257618258
811 => 0.011023671020882
812 => 0.011225475435526
813 => 0.011498418795893
814 => 0.011329771532258
815 => 0.011679739926815
816 => 0.012175388506671
817 => 0.012528617201059
818 => 0.012555733714156
819 => 0.012328631328149
820 => 0.012692564351073
821 => 0.01269521520583
822 => 0.012284697269262
823 => 0.012033257318887
824 => 0.011976129633127
825 => 0.012118845792697
826 => 0.012292129557271
827 => 0.012565349757096
828 => 0.012730451001652
829 => 0.01316094748452
830 => 0.013277427489482
831 => 0.013405403700405
901 => 0.0135764193846
902 => 0.013781767560997
903 => 0.013332477441518
904 => 0.013350328575547
905 => 0.012931955837133
906 => 0.012484864565418
907 => 0.012824151109935
908 => 0.013267723133495
909 => 0.013165967221187
910 => 0.013154517602368
911 => 0.013173772685362
912 => 0.013097052050519
913 => 0.012750047462524
914 => 0.012575783930797
915 => 0.012800628346094
916 => 0.01292012314615
917 => 0.013105449159997
918 => 0.013082603817032
919 => 0.013559983726139
920 => 0.013745479123599
921 => 0.013698021463133
922 => 0.013706754814791
923 => 0.014042585371477
924 => 0.014416098019334
925 => 0.014765941903386
926 => 0.015121818128389
927 => 0.014692795449063
928 => 0.014474964190941
929 => 0.0146997104462
930 => 0.014580456919627
1001 => 0.015265723056209
1002 => 0.015313169396705
1003 => 0.015998385980745
1004 => 0.016648738113073
1005 => 0.016240263591027
1006 => 0.01662543666722
1007 => 0.017042032752744
1008 => 0.017845714191999
1009 => 0.017575062557112
1010 => 0.01736774764644
1011 => 0.017171836057594
1012 => 0.017579496973894
1013 => 0.018103946230173
1014 => 0.018216907576863
1015 => 0.018399948113056
1016 => 0.018207503370381
1017 => 0.01843928186584
1018 => 0.019257561803444
1019 => 0.019036455341146
1020 => 0.018722448620047
1021 => 0.019368402042344
1022 => 0.019602170074793
1023 => 0.021242876551789
1024 => 0.023314336253201
1025 => 0.022456738334879
1026 => 0.021924399632464
1027 => 0.022049511854774
1028 => 0.022805938814394
1029 => 0.023048879146032
1030 => 0.022388483578085
1031 => 0.02262174645709
1101 => 0.023907047854309
1102 => 0.02459657081651
1103 => 0.023660106018552
1104 => 0.021076436781716
1105 => 0.018694175750434
1106 => 0.019326058650542
1107 => 0.019254422739279
1108 => 0.020635318745975
1109 => 0.019031182025145
1110 => 0.019058191573486
1111 => 0.020467643047207
1112 => 0.020091625558134
1113 => 0.019482525382517
1114 => 0.018698622855786
1115 => 0.017249506532918
1116 => 0.015965983794156
1117 => 0.018483267462502
1118 => 0.01837471761334
1119 => 0.018217521345566
1120 => 0.018567344629084
1121 => 0.020265987194772
1122 => 0.020226827985664
1123 => 0.019977717076519
1124 => 0.020166665505542
1125 => 0.019449401809356
1126 => 0.019634256995654
1127 => 0.018693798388115
1128 => 0.019118924955744
1129 => 0.0194812185271
1130 => 0.019553954325398
1201 => 0.019717831792945
1202 => 0.018317516775374
1203 => 0.018946217107175
1204 => 0.019315519650853
1205 => 0.017646997323174
1206 => 0.019282538329143
1207 => 0.018293140406338
1208 => 0.01795732389108
1209 => 0.018409456588414
1210 => 0.018233260036549
1211 => 0.018081776587865
1212 => 0.017997246220683
1213 => 0.01832924257354
1214 => 0.018313754546858
1215 => 0.017770544075869
1216 => 0.017061948160555
1217 => 0.017299776208603
1218 => 0.017213371049097
1219 => 0.016900227604562
1220 => 0.017111248477095
1221 => 0.01618201934968
1222 => 0.014583328933089
1223 => 0.0156394727915
1224 => 0.015598812401815
1225 => 0.015578309589534
1226 => 0.016371972509458
1227 => 0.016295680132626
1228 => 0.01615720872162
1229 => 0.016897684468508
1230 => 0.01662740086009
1231 => 0.017460351254409
]
'min_raw' => 0.0074771910098509
'max_raw' => 0.02459657081651
'avg_raw' => 0.016036880913181
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.007477'
'max' => '$0.024596'
'avg' => '$0.016036'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0040733808843701
'max_diff' => 0.016259576439616
'year' => 2029
]
4 => [
'items' => [
101 => 0.018008986255961
102 => 0.017869834673085
103 => 0.018385828543828
104 => 0.017305255286484
105 => 0.0176641783775
106 => 0.017738151929112
107 => 0.016888547112733
108 => 0.016308162509
109 => 0.0162694574728
110 => 0.015263150551851
111 => 0.015800711586396
112 => 0.016273743051009
113 => 0.016047197688184
114 => 0.015975480194164
115 => 0.016341869317486
116 => 0.016370340890279
117 => 0.015721186013322
118 => 0.015856165868302
119 => 0.016419054302106
120 => 0.015841982523993
121 => 0.014720826323261
122 => 0.014442764084282
123 => 0.014405665455898
124 => 0.013651538610393
125 => 0.014461345532696
126 => 0.014107843109635
127 => 0.015224553028478
128 => 0.01458669431187
129 => 0.014559197497469
130 => 0.014517632029596
131 => 0.013868523901082
201 => 0.014010637328253
202 => 0.014483044004656
203 => 0.014651604028838
204 => 0.014634021837344
205 => 0.014480728954221
206 => 0.014550905651128
207 => 0.014324842059207
208 => 0.014245014299793
209 => 0.013993055932728
210 => 0.013622746738416
211 => 0.013674240503124
212 => 0.012940561092522
213 => 0.012540813610312
214 => 0.012430168775824
215 => 0.01228220987898
216 => 0.012446881126926
217 => 0.012938482670933
218 => 0.012345506909775
219 => 0.011328891559681
220 => 0.01138999187445
221 => 0.011527266140889
222 => 0.01127145645354
223 => 0.011029354052943
224 => 0.011239842447873
225 => 0.010809089122235
226 => 0.011579320622344
227 => 0.011558488018815
228 => 0.01184558269126
301 => 0.012025108881715
302 => 0.01161135913501
303 => 0.011507302192612
304 => 0.011566577756126
305 => 0.010586884729186
306 => 0.011765520869837
307 => 0.011775713764125
308 => 0.011688436014943
309 => 0.012316023373532
310 => 0.013640428449559
311 => 0.013142133985887
312 => 0.012949179308523
313 => 0.012582372325805
314 => 0.013071120851433
315 => 0.01303359259033
316 => 0.012863875561449
317 => 0.012761230172833
318 => 0.012950357448638
319 => 0.012737795210382
320 => 0.012699613191572
321 => 0.012468271700026
322 => 0.012385693312912
323 => 0.012324555562633
324 => 0.012257248906847
325 => 0.012405710617737
326 => 0.012069276849095
327 => 0.011663570705121
328 => 0.011629840629051
329 => 0.011722972334659
330 => 0.011681768487767
331 => 0.011629643360884
401 => 0.01153012229823
402 => 0.011500596524872
403 => 0.011596540964418
404 => 0.011488225286079
405 => 0.011648050969728
406 => 0.011604587227334
407 => 0.011361802295471
408 => 0.011059202379876
409 => 0.011056508605902
410 => 0.01099131395045
411 => 0.01090827875465
412 => 0.010885180262767
413 => 0.011222115702352
414 => 0.011919561978665
415 => 0.01178263658615
416 => 0.01188157921492
417 => 0.012368279021354
418 => 0.012522986254245
419 => 0.01241317872478
420 => 0.012262867405816
421 => 0.012269480341007
422 => 0.01278313962024
423 => 0.012815175919419
424 => 0.012896121312141
425 => 0.013000159016954
426 => 0.012430896795782
427 => 0.012242668141583
428 => 0.012153474962695
429 => 0.011878794493826
430 => 0.012175013830178
501 => 0.012002419508262
502 => 0.012025708378951
503 => 0.012010541471363
504 => 0.012018823628488
505 => 0.011579105326943
506 => 0.011739315565112
507 => 0.011472934970869
508 => 0.011116281257802
509 => 0.011115085629497
510 => 0.011202376120499
511 => 0.011150452320774
512 => 0.011010726710796
513 => 0.011030574074207
514 => 0.010856690286349
515 => 0.011051686714321
516 => 0.011057278514144
517 => 0.010982194267848
518 => 0.01128261316946
519 => 0.011405695038569
520 => 0.011356272979196
521 => 0.011402227455134
522 => 0.01178832645439
523 => 0.011851277437949
524 => 0.011879236106537
525 => 0.011841775194442
526 => 0.011409284636069
527 => 0.011428467431424
528 => 0.011287716807089
529 => 0.011168797361461
530 => 0.011173553515635
531 => 0.011234693569134
601 => 0.01150169576858
602 => 0.012063586156674
603 => 0.012084909486166
604 => 0.012110753983555
605 => 0.012005631424269
606 => 0.011973925454501
607 => 0.01201575381263
608 => 0.012226770299605
609 => 0.012769561994523
610 => 0.0125777031577
611 => 0.012421718936903
612 => 0.012558559151586
613 => 0.012537493673125
614 => 0.012359679835363
615 => 0.012354689193164
616 => 0.012013407587975
617 => 0.011887243549143
618 => 0.01178181143508
619 => 0.011666682318899
620 => 0.011598429919663
621 => 0.011703296625049
622 => 0.011727280881318
623 => 0.011497987997234
624 => 0.0114667362244
625 => 0.011653981743173
626 => 0.011571581971578
627 => 0.01165633218008
628 => 0.011675994955426
629 => 0.011672828795723
630 => 0.011586793970624
701 => 0.011641630002547
702 => 0.011511926439641
703 => 0.011370893295827
704 => 0.011280922936749
705 => 0.011202411865617
706 => 0.011245974370971
707 => 0.011090681993582
708 => 0.011041000836638
709 => 0.011623052788781
710 => 0.012053020823942
711 => 0.012046768918425
712 => 0.012008712051448
713 => 0.011952167266674
714 => 0.012222633696403
715 => 0.012128408600433
716 => 0.012196965230522
717 => 0.012214415770192
718 => 0.012267233298008
719 => 0.012286111024382
720 => 0.012229049423855
721 => 0.012037543722999
722 => 0.011560329724282
723 => 0.011338185319665
724 => 0.011264873966033
725 => 0.0112675386945
726 => 0.011194033587524
727 => 0.011215684135796
728 => 0.011186504410388
729 => 0.011131245069798
730 => 0.011242562262407
731 => 0.011255390531863
801 => 0.011229407768967
802 => 0.011235527650219
803 => 0.011020401470822
804 => 0.011036757047012
805 => 0.010945687120419
806 => 0.010928612607048
807 => 0.010698395762988
808 => 0.01029053325327
809 => 0.010516528675825
810 => 0.010243557985144
811 => 0.010140179848402
812 => 0.01062955586914
813 => 0.010580436089835
814 => 0.010496364379522
815 => 0.010372004797888
816 => 0.010325878619367
817 => 0.010045630560452
818 => 0.010029072010066
819 => 0.010167970515398
820 => 0.010103873634393
821 => 0.010013857338075
822 => 0.0096878274376146
823 => 0.0093212618847071
824 => 0.0093323261946005
825 => 0.0094489238767858
826 => 0.0097879473630793
827 => 0.0096554850218185
828 => 0.0095593820734036
829 => 0.0095413848800095
830 => 0.009766657435013
831 => 0.010085465296402
901 => 0.010235042812042
902 => 0.01008681603678
903 => 0.0099165410984545
904 => 0.0099269049449723
905 => 0.00999585097277
906 => 0.010003096225447
907 => 0.0098922647451439
908 => 0.0099234631576502
909 => 0.0098760699162105
910 => 0.0095852176809765
911 => 0.0095799570863435
912 => 0.0095085772571912
913 => 0.0095064159043327
914 => 0.0093849810084118
915 => 0.0093679914270326
916 => 0.0091268750706104
917 => 0.0092855785865751
918 => 0.0091791286003746
919 => 0.0090186833621571
920 => 0.0089910225426129
921 => 0.008990191024976
922 => 0.0091549324097266
923 => 0.0092836534875772
924 => 0.0091809803434597
925 => 0.0091576036587794
926 => 0.0094072054927704
927 => 0.0093754413842238
928 => 0.009347933871079
929 => 0.01005691954913
930 => 0.0094957020621103
1001 => 0.0092509792045954
1002 => 0.0089480881968105
1003 => 0.0090467110362543
1004 => 0.0090674923175961
1005 => 0.0083390940440812
1006 => 0.0080435829552324
1007 => 0.00794217468564
1008 => 0.0078838127927871
1009 => 0.0079104090402227
1010 => 0.0076444144002652
1011 => 0.0078231671974619
1012 => 0.0075928383232259
1013 => 0.0075542229379053
1014 => 0.0079660794973115
1015 => 0.0080233869315217
1016 => 0.0077788956131565
1017 => 0.007935898619096
1018 => 0.0078789671466373
1019 => 0.0075967866506907
1020 => 0.0075860094313248
1021 => 0.0074444211775829
1022 => 0.0072228629773651
1023 => 0.0071216049346654
1024 => 0.0070688688668648
1025 => 0.0070906287962448
1026 => 0.0070796263100854
1027 => 0.0070078276455272
1028 => 0.0070837417254934
1029 => 0.0068898126210433
1030 => 0.0068125884890583
1031 => 0.0067777081402269
1101 => 0.0066055848978846
1102 => 0.0068795095200044
1103 => 0.0069334761213735
1104 => 0.0069875490536184
1105 => 0.0074582170116514
1106 => 0.007434703770562
1107 => 0.0076472520185981
1108 => 0.0076389927845305
1109 => 0.0075783705811373
1110 => 0.0073226154768897
1111 => 0.0074245549030464
1112 => 0.0071108011942402
1113 => 0.0073458868060562
1114 => 0.0072386035502332
1115 => 0.0073096142293452
1116 => 0.0071819306255271
1117 => 0.0072525960038068
1118 => 0.006946273604587
1119 => 0.0066602340582681
1120 => 0.0067753447217217
1121 => 0.006900483177397
1122 => 0.0071718152339864
1123 => 0.0070102120995226
1124 => 0.0070683306975668
1125 => 0.0068736431230544
1126 => 0.006471947047079
1127 => 0.006474220603245
1128 => 0.0064124284133809
1129 => 0.0063590309395309
1130 => 0.0070287741635053
1201 => 0.0069454810065305
1202 => 0.0068127642620301
1203 => 0.0069904108984977
1204 => 0.007037383488811
1205 => 0.0070387207324216
1206 => 0.007168327132665
1207 => 0.0072374980917082
1208 => 0.0072496897730436
1209 => 0.0074536282441583
1210 => 0.0075219857296625
1211 => 0.0078035405381407
1212 => 0.007231629419104
1213 => 0.0072198512859639
1214 => 0.0069929107509806
1215 => 0.0068489814759063
1216 => 0.0070027657115818
1217 => 0.0071389975507488
1218 => 0.0069971438539683
1219 => 0.0070156669520728
1220 => 0.0068252399540179
1221 => 0.0068933086453995
1222 => 0.0069519385722603
1223 => 0.0069195665727556
1224 => 0.0068711041226745
1225 => 0.0071278280935045
1226 => 0.0071133427209609
1227 => 0.0073524099846563
1228 => 0.0075387800125709
1229 => 0.0078727884202214
1230 => 0.007524233234586
1231 => 0.0075115304982401
]
'min_raw' => 0.0063590309395309
'max_raw' => 0.018385828543828
'avg_raw' => 0.012372429741679
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.006359'
'max' => '$0.018385'
'avg' => '$0.012372'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00111816007032
'max_diff' => -0.0062107422726826
'year' => 2030
]
5 => [
'items' => [
101 => 0.0076357017836046
102 => 0.0075219667196856
103 => 0.0075938433540815
104 => 0.0078612079832118
105 => 0.0078668569765176
106 => 0.0077722290603277
107 => 0.0077664709430278
108 => 0.007784645269448
109 => 0.0078910928669561
110 => 0.0078538968055825
111 => 0.0078969410294931
112 => 0.0079507684906099
113 => 0.0081734216921594
114 => 0.0082271026252641
115 => 0.0080966857881924
116 => 0.0081084609683645
117 => 0.0080596814912775
118 => 0.0080125611276164
119 => 0.00811848082375
120 => 0.0083120511502909
121 => 0.0083108469593358
122 => 0.0083557515126238
123 => 0.0083837266773128
124 => 0.0082636367913954
125 => 0.0081854626914906
126 => 0.0082154396157413
127 => 0.0082633733704307
128 => 0.0081998953451305
129 => 0.0078080795670964
130 => 0.0079269314448632
131 => 0.0079071486808429
201 => 0.0078789756192117
202 => 0.0079984821013605
203 => 0.0079869554096193
204 => 0.00764168624077
205 => 0.0076637892527367
206 => 0.0076430303981352
207 => 0.0077101065042147
208 => 0.0075183443898323
209 => 0.0075773291246788
210 => 0.007614323797427
211 => 0.0076361139438821
212 => 0.0077148348945213
213 => 0.0077055978995576
214 => 0.007714260709945
215 => 0.0078309830981826
216 => 0.0084213248836013
217 => 0.0084534558844659
218 => 0.0082952310848471
219 => 0.0083584387714487
220 => 0.0082370938351753
221 => 0.008318553503836
222 => 0.0083742861402825
223 => 0.0081224410729506
224 => 0.0081075284425242
225 => 0.007985682672534
226 => 0.0080511556876296
227 => 0.0079469834129361
228 => 0.0079725436453544
301 => 0.0079010750072119
302 => 0.0080297043266045
303 => 0.008173531892661
304 => 0.0082098684157696
305 => 0.0081142826673277
306 => 0.008045072286048
307 => 0.0079235616558378
308 => 0.0081256365419184
309 => 0.008184729396729
310 => 0.0081253261523087
311 => 0.00811156112259
312 => 0.0080854764161459
313 => 0.0081170951163725
314 => 0.0081844075643508
315 => 0.00815266425695
316 => 0.0081736312707333
317 => 0.0080937266352819
318 => 0.0082636765461445
319 => 0.0085335979052678
320 => 0.0085344657465739
321 => 0.0085027222680648
322 => 0.0084897335205817
323 => 0.0085223042558874
324 => 0.0085399725436692
325 => 0.0086453003291964
326 => 0.0087583212395113
327 => 0.0092857405130641
328 => 0.0091376432915527
329 => 0.0096056010473618
330 => 0.0099756948754971
331 => 0.010086669832313
401 => 0.0099845780938176
402 => 0.0096353277713116
403 => 0.0096181918843028
404 => 0.01014011931581
405 => 0.0099926509106182
406 => 0.0099751100130612
407 => 0.0097885044988694
408 => 0.0098988114692993
409 => 0.0098746857167607
410 => 0.0098366020361062
411 => 0.010047060051636
412 => 0.010441018668992
413 => 0.010379616523957
414 => 0.010333782671051
415 => 0.010132952069654
416 => 0.010253896948834
417 => 0.010210830793904
418 => 0.010395870325938
419 => 0.010286257006289
420 => 0.0099915336924097
421 => 0.010038469351566
422 => 0.010031375121106
423 => 0.01017737388127
424 => 0.010133548677381
425 => 0.010022817546677
426 => 0.010439672161267
427 => 0.010412603941262
428 => 0.010450980488572
429 => 0.010467875031532
430 => 0.01072160708963
501 => 0.010825552995313
502 => 0.010849150535732
503 => 0.010947891106666
504 => 0.010846693780377
505 => 0.011251555238004
506 => 0.011520764483005
507 => 0.011833464874455
508 => 0.012290404192305
509 => 0.012462217602742
510 => 0.012431181047989
511 => 0.012777627223806
512 => 0.013400183300685
513 => 0.012557017430685
514 => 0.013444873139161
515 => 0.013163788272645
516 => 0.012497341110635
517 => 0.012454429770298
518 => 0.012905755526021
519 => 0.013906752613722
520 => 0.013656014196468
521 => 0.013907162731948
522 => 0.013614184624771
523 => 0.013599635792336
524 => 0.013892933439222
525 => 0.014578239377993
526 => 0.014252676214792
527 => 0.01378590158898
528 => 0.014130560708862
529 => 0.013831985082525
530 => 0.013159210630331
531 => 0.013655822461526
601 => 0.013323752272696
602 => 0.013420668007619
603 => 0.014118630152826
604 => 0.014034649500936
605 => 0.014143328240881
606 => 0.013951513109496
607 => 0.013772327530313
608 => 0.013437864340272
609 => 0.013338846278536
610 => 0.013366211308503
611 => 0.013338832717787
612 => 0.013151703636834
613 => 0.013111293129619
614 => 0.013043940513836
615 => 0.013064815905795
616 => 0.012938173283419
617 => 0.013177174077543
618 => 0.013221534731
619 => 0.01339545957795
620 => 0.013413517032534
621 => 0.013897895255626
622 => 0.013631107869993
623 => 0.01381009188159
624 => 0.01379408186693
625 => 0.012511785041481
626 => 0.012688474230227
627 => 0.012963347159794
628 => 0.012839517277606
629 => 0.012664450795921
630 => 0.01252307522549
701 => 0.012308876779892
702 => 0.012610356978754
703 => 0.013006771381413
704 => 0.013423570755969
705 => 0.013924327894722
706 => 0.013812564730808
707 => 0.013414209449579
708 => 0.013432079376497
709 => 0.013542544233142
710 => 0.013399482206996
711 => 0.013357290422583
712 => 0.013536747729862
713 => 0.013537983553709
714 => 0.013373373403005
715 => 0.013190439343837
716 => 0.01318967284345
717 => 0.013157121494554
718 => 0.013619975437426
719 => 0.013874498306194
720 => 0.013903678942914
721 => 0.013872534216843
722 => 0.013884520585818
723 => 0.013736419336511
724 => 0.014074934874366
725 => 0.014385590207618
726 => 0.014302327942123
727 => 0.014177505969718
728 => 0.014078079256457
729 => 0.014278906168305
730 => 0.014269963662052
731 => 0.014382876904292
801 => 0.014377754507406
802 => 0.014339786030922
803 => 0.014302329298097
804 => 0.01445084100983
805 => 0.014408072021876
806 => 0.014365236601871
807 => 0.014279323609275
808 => 0.014291000611833
809 => 0.014166200191701
810 => 0.014108461806869
811 => 0.013240215032757
812 => 0.013008191123932
813 => 0.01308119056893
814 => 0.013105223881654
815 => 0.013004246779186
816 => 0.013149022005235
817 => 0.01312645893961
818 => 0.013214238629004
819 => 0.013159397690022
820 => 0.013161648381287
821 => 0.013322923889513
822 => 0.013369742855666
823 => 0.013345930351606
824 => 0.013362607813205
825 => 0.013746932876645
826 => 0.013692294142648
827 => 0.013663268404202
828 => 0.013671308732117
829 => 0.013769512025848
830 => 0.013797003586392
831 => 0.013680519912571
901 => 0.013735454286529
902 => 0.013969357878633
903 => 0.014051210898073
904 => 0.014312446444446
905 => 0.014201468941255
906 => 0.014405172951356
907 => 0.015031289630592
908 => 0.015531474957944
909 => 0.015071483859878
910 => 0.015990010515343
911 => 0.016705215271446
912 => 0.016677764521671
913 => 0.01655305202946
914 => 0.01573881042934
915 => 0.01498953316925
916 => 0.015616335413308
917 => 0.015617933261131
918 => 0.015564090392483
919 => 0.015229676959564
920 => 0.015552453529901
921 => 0.015578074361902
922 => 0.01556373350911
923 => 0.015307339514165
924 => 0.014915873273415
925 => 0.01499236483982
926 => 0.015117659585977
927 => 0.014880450492279
928 => 0.014804647813837
929 => 0.014945579415111
930 => 0.015399690398679
1001 => 0.015313843347721
1002 => 0.015311601534286
1003 => 0.015678891623098
1004 => 0.01541599118567
1005 => 0.014993329643432
1006 => 0.014886602029796
1007 => 0.014507790901723
1008 => 0.014769437097162
1009 => 0.014778853277936
1010 => 0.014635552330654
1011 => 0.015004957725527
1012 => 0.015001553589781
1013 => 0.015352249033477
1014 => 0.016022647006629
1015 => 0.015824377337687
1016 => 0.015593811284386
1017 => 0.015618880207283
1018 => 0.015893824416089
1019 => 0.015727586871079
1020 => 0.015787367051314
1021 => 0.015893733931627
1022 => 0.01595790771146
1023 => 0.015609646587944
1024 => 0.015528450260797
1025 => 0.015362351071492
1026 => 0.015319018893391
1027 => 0.015454303217306
1028 => 0.01541866057762
1029 => 0.014778061884403
1030 => 0.014711115756705
1031 => 0.014713168898864
1101 => 0.014544829677651
1102 => 0.014288071959259
1103 => 0.014962815912987
1104 => 0.014908624530467
1105 => 0.014848801438245
1106 => 0.014856129425696
1107 => 0.015149012906815
1108 => 0.014979125696796
1109 => 0.015430798688599
1110 => 0.015337948300017
1111 => 0.015242716649325
1112 => 0.015229552734372
1113 => 0.015192896673638
1114 => 0.015067189402262
1115 => 0.01491539031824
1116 => 0.014815159414357
1117 => 0.013666201433381
1118 => 0.013879441351469
1119 => 0.014124754439799
1120 => 0.01420943553486
1121 => 0.014064582662005
1122 => 0.015072909076571
1123 => 0.015257140028988
1124 => 0.014699092457031
1125 => 0.01459470454125
1126 => 0.015079752730951
1127 => 0.014787209377832
1128 => 0.014918941631829
1129 => 0.014634208552378
1130 => 0.015212764187463
1201 => 0.015208356562869
1202 => 0.014983285353549
1203 => 0.015173513998445
1204 => 0.015140457090098
1205 => 0.014886352249101
1206 => 0.015220819764161
1207 => 0.015220985655875
1208 => 0.015004359510375
1209 => 0.014751387597992
1210 => 0.014706162194988
1211 => 0.014672090929002
1212 => 0.014910562189003
1213 => 0.015124374775039
1214 => 0.015522226989018
1215 => 0.015622256488348
1216 => 0.016012678283572
1217 => 0.015780201113808
1218 => 0.015883255232081
1219 => 0.015995135055361
1220 => 0.016048774356886
1221 => 0.015961371993495
1222 => 0.016567857745501
1223 => 0.016619063725214
1224 => 0.016636232647281
1225 => 0.016431729064058
1226 => 0.01661337611062
1227 => 0.016528389473052
1228 => 0.016749501094036
1229 => 0.016784174219501
1230 => 0.016754807315765
1231 => 0.016765813113065
]
'min_raw' => 0.0075183443898323
'max_raw' => 0.016784174219501
'avg_raw' => 0.012151259304667
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.007518'
'max' => '$0.016784'
'avg' => '$0.012151'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0011593134503015
'max_diff' => -0.0016016543243263
'year' => 2031
]
6 => [
'items' => [
101 => 0.016248284515147
102 => 0.016221447927164
103 => 0.015855529145779
104 => 0.016004643753928
105 => 0.015725881141242
106 => 0.015814279637298
107 => 0.015853244852068
108 => 0.015832891635128
109 => 0.016013074470143
110 => 0.015859882251459
111 => 0.01545558279922
112 => 0.015051173195866
113 => 0.015046096162721
114 => 0.01493962225258
115 => 0.014862661117217
116 => 0.014877486562231
117 => 0.014929733364173
118 => 0.014859624438109
119 => 0.014874585732097
120 => 0.015123042898887
121 => 0.015172869211771
122 => 0.015003539932193
123 => 0.014323658440591
124 => 0.014156813817198
125 => 0.01427673842382
126 => 0.014219422185989
127 => 0.011476183484492
128 => 0.012120666726374
129 => 0.011737736668631
130 => 0.011914208457004
131 => 0.011523336027306
201 => 0.011709880838137
202 => 0.011675432823102
203 => 0.012711742804402
204 => 0.012695562249442
205 => 0.012703307024846
206 => 0.012333628715929
207 => 0.012922536299893
208 => 0.013212653352185
209 => 0.013158960407021
210 => 0.01317247376455
211 => 0.012940269510312
212 => 0.0127055552696
213 => 0.012445221054388
214 => 0.01292888984797
215 => 0.012875114134626
216 => 0.012998456273148
217 => 0.013312150059145
218 => 0.01335834266074
219 => 0.013420425985723
220 => 0.013398173533108
221 => 0.013928317233216
222 => 0.013864113333132
223 => 0.014018826259612
224 => 0.013700570031746
225 => 0.013340432900757
226 => 0.013408883195588
227 => 0.013402290881754
228 => 0.013318363160332
229 => 0.013242596966094
301 => 0.013116467599681
302 => 0.013515559578645
303 => 0.013499357173127
304 => 0.013761655285234
305 => 0.013715291546091
306 => 0.013405663148964
307 => 0.013416721587741
308 => 0.01349109490302
309 => 0.01374850179638
310 => 0.013824917687927
311 => 0.013789518802315
312 => 0.013873305338879
313 => 0.013939526801126
314 => 0.013881621734973
315 => 0.014701435360717
316 => 0.014360991586102
317 => 0.014526921513057
318 => 0.01456649482292
319 => 0.014465128621843
320 => 0.014487111321205
321 => 0.014520409120812
322 => 0.014722586839644
323 => 0.015253159674455
324 => 0.015488146771262
325 => 0.016195117046063
326 => 0.01546863436405
327 => 0.015425527888184
328 => 0.015552874583132
329 => 0.015967940974844
330 => 0.016304313300123
331 => 0.016415907406203
401 => 0.01643065640954
402 => 0.016640014371181
403 => 0.0167600144505
404 => 0.016614592807977
405 => 0.01649136319222
406 => 0.0160499700044
407 => 0.016101062467764
408 => 0.016453038874383
409 => 0.01695022628004
410 => 0.017376864797626
411 => 0.017227470858621
412 => 0.018367241157545
413 => 0.01848024472714
414 => 0.018464631287665
415 => 0.018722070236386
416 => 0.018211106349704
417 => 0.017992659388688
418 => 0.016518006833862
419 => 0.016932324051472
420 => 0.017534558459266
421 => 0.017454850477131
422 => 0.01701749175242
423 => 0.017376533021814
424 => 0.017257822749894
425 => 0.017164191033136
426 => 0.017593136079003
427 => 0.017121493380981
428 => 0.017529853462565
429 => 0.01700612743399
430 => 0.01722815327755
501 => 0.017102120670564
502 => 0.017183679213259
503 => 0.016706889639176
504 => 0.016964153719938
505 => 0.01669618660761
506 => 0.016696059556309
507 => 0.016690144167452
508 => 0.017005406286758
509 => 0.01701568697315
510 => 0.016782707790648
511 => 0.016749131850631
512 => 0.016873279698738
513 => 0.016727935082978
514 => 0.016795940913904
515 => 0.016729994910318
516 => 0.016715149075875
517 => 0.016596854941227
518 => 0.016545890575455
519 => 0.016565875016464
520 => 0.016497657816615
521 => 0.016456554486182
522 => 0.016681967680473
523 => 0.016561538503906
524 => 0.016663510181966
525 => 0.016547300584964
526 => 0.016144467491644
527 => 0.015912793919792
528 => 0.015151879549157
529 => 0.015367673920758
530 => 0.015510745812385
531 => 0.015463460553056
601 => 0.015565047587061
602 => 0.015571284205893
603 => 0.015538257225581
604 => 0.015500016213397
605 => 0.015481402603527
606 => 0.015620133201656
607 => 0.015700670983327
608 => 0.015525104990765
609 => 0.015483972335137
610 => 0.015661479246881
611 => 0.015769758360503
612 => 0.016569230498707
613 => 0.016510003020448
614 => 0.016658652368073
615 => 0.01664191673274
616 => 0.016797724930749
617 => 0.017052405485037
618 => 0.016534568708368
619 => 0.016624447267349
620 => 0.016602411120286
621 => 0.016842995995733
622 => 0.016843747075454
623 => 0.016699504424517
624 => 0.01677770070566
625 => 0.016734053686729
626 => 0.016812929749185
627 => 0.016509212001366
628 => 0.016879107433905
629 => 0.017088814308619
630 => 0.017091726088778
701 => 0.017191125483056
702 => 0.017292121024467
703 => 0.017485973171347
704 => 0.017286714593304
705 => 0.016928267808835
706 => 0.016954146508898
707 => 0.016743989290314
708 => 0.016747522071126
709 => 0.016728663810281
710 => 0.016785258870662
711 => 0.016521631434504
712 => 0.016583504266839
713 => 0.016496881939243
714 => 0.016624258967326
715 => 0.016487222341286
716 => 0.016602400493788
717 => 0.016652107566192
718 => 0.01683552773348
719 => 0.016460131033443
720 => 0.015694671749945
721 => 0.015855580571633
722 => 0.015617583785241
723 => 0.015639611293939
724 => 0.015684110367162
725 => 0.015539874311657
726 => 0.015567390005647
727 => 0.015566406951432
728 => 0.015557935521303
729 => 0.015520414152605
730 => 0.015466000744617
731 => 0.015682767014477
801 => 0.015719599827695
802 => 0.015801474608856
803 => 0.016045078421399
804 => 0.016020736655953
805 => 0.016060439085326
806 => 0.015973768904924
807 => 0.015643631675032
808 => 0.015661559714953
809 => 0.015437996769858
810 => 0.015795757601712
811 => 0.015711035114517
812 => 0.01565641397587
813 => 0.015641510092129
814 => 0.015885717751404
815 => 0.015958788510546
816 => 0.015913255717045
817 => 0.015819866629171
818 => 0.015999201285894
819 => 0.016047183674511
820 => 0.0160579251618
821 => 0.016375671789504
822 => 0.016075683668564
823 => 0.0161478937909
824 => 0.016711256552073
825 => 0.016200364266436
826 => 0.016470995304396
827 => 0.016457749323383
828 => 0.016596195004749
829 => 0.016446392736585
830 => 0.016448249715235
831 => 0.016571180101165
901 => 0.016398546544739
902 => 0.016355800048416
903 => 0.016296746069903
904 => 0.01642568827154
905 => 0.016502983289867
906 => 0.017125924370646
907 => 0.017528372718395
908 => 0.017510901374237
909 => 0.017670556754853
910 => 0.01759863054361
911 => 0.01736636183433
912 => 0.017762816198919
913 => 0.017637361449608
914 => 0.017647703786714
915 => 0.01764731884441
916 => 0.017730735285258
917 => 0.017671627091913
918 => 0.017555118775498
919 => 0.017632462433149
920 => 0.017862145445511
921 => 0.018575088563415
922 => 0.018974060977435
923 => 0.018551069923127
924 => 0.018842843488313
925 => 0.018667883318753
926 => 0.018636087851329
927 => 0.018819343212163
928 => 0.019002919337247
929 => 0.0189912263317
930 => 0.018857959491628
1001 => 0.018782680435192
1002 => 0.01935271867086
1003 => 0.019772713132553
1004 => 0.019744072325944
1005 => 0.019870483531826
1006 => 0.020241630742047
1007 => 0.020275563791581
1008 => 0.020271289007282
1009 => 0.020187182403464
1010 => 0.020552625031482
1011 => 0.020857483701126
1012 => 0.020167714154753
1013 => 0.020430369368266
1014 => 0.020548283755834
1015 => 0.020721417060406
1016 => 0.021013521965731
1017 => 0.021330825369913
1018 => 0.021375695550319
1019 => 0.021343858010085
1020 => 0.021134587885454
1021 => 0.021481785056527
1022 => 0.021685165016566
1023 => 0.021806273128502
1024 => 0.022113383149902
1025 => 0.020549011954949
1026 => 0.019441672268867
1027 => 0.019268745186707
1028 => 0.019620399208302
1029 => 0.019713127569408
1030 => 0.019675748883318
1031 => 0.018429337391713
1101 => 0.019262183088154
1102 => 0.020158255029869
1103 => 0.020192676802519
1104 => 0.020641269152522
1105 => 0.020787349210105
1106 => 0.021148524850201
1107 => 0.021125933215575
1108 => 0.021213873736379
1109 => 0.021193657733564
1110 => 0.021862659552338
1111 => 0.022600667906177
1112 => 0.022575113023607
1113 => 0.022469015591024
1114 => 0.02262658837071
1115 => 0.023388292081654
1116 => 0.023318166610003
1117 => 0.023386287532438
1118 => 0.024284379135381
1119 => 0.025452025971247
1120 => 0.024909536786162
1121 => 0.02608658222074
1122 => 0.026827469929309
1123 => 0.02810875861206
1124 => 0.0279483349585
1125 => 0.028447131240164
1126 => 0.0276611431372
1127 => 0.02585635557839
1128 => 0.02557074103876
1129 => 0.026142548580013
1130 => 0.02754828162402
1201 => 0.026098277043878
1202 => 0.02639161108195
1203 => 0.026307130859252
1204 => 0.026302629267202
1205 => 0.026474436726444
1206 => 0.026225221045939
1207 => 0.025209871530518
1208 => 0.025675200229943
1209 => 0.025495514472176
1210 => 0.025694889216879
1211 => 0.026770832485646
1212 => 0.026295132319241
1213 => 0.025794020836675
1214 => 0.026422525841352
1215 => 0.027222828690057
1216 => 0.027172747176068
1217 => 0.027075568106479
1218 => 0.027623361433619
1219 => 0.028528155521667
1220 => 0.02877271772791
1221 => 0.028953248548704
1222 => 0.028978140698798
1223 => 0.029234545315155
1224 => 0.027855793070724
1225 => 0.030043908291504
1226 => 0.03042173534467
1227 => 0.030350719518002
1228 => 0.030770658386202
1229 => 0.030647101718357
1230 => 0.030468087492096
1231 => 0.031133779921753
]
'min_raw' => 0.011476183484492
'max_raw' => 0.031133779921753
'avg_raw' => 0.021304981703123
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.011476'
'max' => '$0.031133'
'avg' => '$0.0213049'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00395783909466
'max_diff' => 0.014349605702251
'year' => 2032
]
7 => [
'items' => [
101 => 0.03037061726976
102 => 0.029287403964763
103 => 0.028693131722111
104 => 0.029475717349809
105 => 0.02995361508417
106 => 0.030269475086577
107 => 0.030365054132458
108 => 0.027962821682655
109 => 0.02666815162613
110 => 0.02749802028894
111 => 0.028510517332044
112 => 0.027850168598527
113 => 0.027876053018676
114 => 0.026934569261276
115 => 0.028593817753796
116 => 0.028352079204912
117 => 0.02960621922415
118 => 0.029306908643457
119 => 0.03032961114371
120 => 0.0300602993009
121 => 0.031178197703381
122 => 0.031624157642022
123 => 0.032372993787122
124 => 0.032923840703769
125 => 0.033247308549246
126 => 0.033227888753101
127 => 0.034509629507924
128 => 0.033753831765416
129 => 0.032804371672975
130 => 0.032787198935411
131 => 0.03327893777124
201 => 0.034309487469175
202 => 0.034576694011962
203 => 0.034726026016392
204 => 0.034497318853322
205 => 0.033676954572342
206 => 0.033322725435156
207 => 0.033624538923045
208 => 0.033255446962486
209 => 0.033892603235324
210 => 0.034767554887167
211 => 0.034586880830995
212 => 0.035190847112609
213 => 0.035815888674973
214 => 0.036709726181528
215 => 0.036943408404448
216 => 0.037329676232796
217 => 0.037727272710538
218 => 0.037854969983663
219 => 0.038098783700196
220 => 0.03809749868156
221 => 0.038832247726888
222 => 0.039642698677168
223 => 0.039948625148916
224 => 0.040652086201817
225 => 0.03944743380094
226 => 0.040361176485054
227 => 0.041185395258589
228 => 0.04020272765823
301 => 0.041557106013138
302 => 0.041609693455572
303 => 0.042403701401635
304 => 0.041598822234784
305 => 0.041120887554773
306 => 0.042500667067985
307 => 0.043168298911782
308 => 0.042967202767062
309 => 0.041436851176405
310 => 0.040546120910775
311 => 0.038214907996585
312 => 0.040976330394347
313 => 0.0423213386925
314 => 0.041433367929843
315 => 0.041881208732353
316 => 0.044324482937979
317 => 0.045254723565192
318 => 0.045061240017604
319 => 0.045093935552136
320 => 0.045595876509518
321 => 0.047821759138486
322 => 0.046487958671653
323 => 0.047507599151997
324 => 0.048048412786184
325 => 0.048550750629488
326 => 0.047317167651839
327 => 0.04571229432285
328 => 0.04520396357156
329 => 0.041345076737487
330 => 0.041144204919478
331 => 0.04103144948099
401 => 0.040320542390898
402 => 0.039761964151926
403 => 0.039317761997615
404 => 0.038152042894711
405 => 0.038545438871898
406 => 0.036687525926354
407 => 0.037876152788521
408 => 0.034910878866557
409 => 0.037380447102359
410 => 0.036036373389101
411 => 0.036938882738807
412 => 0.036935733968708
413 => 0.035273928115049
414 => 0.034315433179662
415 => 0.034926223457671
416 => 0.03558103912029
417 => 0.035687280758486
418 => 0.036536266357509
419 => 0.036773199989312
420 => 0.036055280023575
421 => 0.034849430155475
422 => 0.035129521577328
423 => 0.034309757135938
424 => 0.032873151484186
425 => 0.033904946744003
426 => 0.034257247010539
427 => 0.034412842878345
428 => 0.033000106215121
429 => 0.032556193683531
430 => 0.0323198583765
501 => 0.03466706359264
502 => 0.034795648792897
503 => 0.03413778872827
504 => 0.037111378601234
505 => 0.036438363631544
506 => 0.037190286245358
507 => 0.035104106216574
508 => 0.035183801103087
509 => 0.034196170044943
510 => 0.034749177443973
511 => 0.034358329638599
512 => 0.034704499911056
513 => 0.034911992945054
514 => 0.03589946194266
515 => 0.037391722412118
516 => 0.035751967003607
517 => 0.035037502090389
518 => 0.035480752104246
519 => 0.036661185301952
520 => 0.038449602021741
521 => 0.037390823328385
522 => 0.037860691333268
523 => 0.037963336589363
524 => 0.037182632379
525 => 0.038478387699562
526 => 0.039172793502548
527 => 0.039885110169378
528 => 0.040503594772526
529 => 0.039600595228467
530 => 0.04056693418051
531 => 0.039788235566951
601 => 0.039089662410206
602 => 0.039090721857326
603 => 0.038652496711574
604 => 0.037803380271758
605 => 0.037646790172473
606 => 0.038461391644105
607 => 0.039114624881308
608 => 0.039168428299501
609 => 0.039530091783952
610 => 0.03974412050862
611 => 0.041841892968309
612 => 0.04268563440528
613 => 0.043717345463199
614 => 0.044119255064308
615 => 0.04532885887108
616 => 0.044352005557894
617 => 0.044140657198891
618 => 0.041206554022053
619 => 0.041687013252889
620 => 0.042456274838877
621 => 0.041219238862269
622 => 0.042003853462995
623 => 0.042158753005588
624 => 0.041177204853142
625 => 0.041701492131555
626 => 0.040309140560434
627 => 0.037422071871511
628 => 0.038481601832325
629 => 0.039261772517412
630 => 0.038148372755441
701 => 0.040144098734254
702 => 0.038978236817578
703 => 0.038608714561233
704 => 0.037167076495035
705 => 0.037847474168542
706 => 0.038767721764317
707 => 0.038199115740394
708 => 0.039379058616659
709 => 0.04105017240872
710 => 0.04224110761349
711 => 0.042332532830611
712 => 0.041566841280406
713 => 0.042793866876187
714 => 0.042802804418078
715 => 0.04141871453349
716 => 0.040570967185824
717 => 0.040378357204759
718 => 0.040859534700871
719 => 0.041443773011417
720 => 0.042364953990754
721 => 0.042921604363775
722 => 0.044373053312068
723 => 0.044765773781173
724 => 0.045197254511314
725 => 0.045773845830511
726 => 0.046466191544186
727 => 0.044951378537927
728 => 0.045011564882631
729 => 0.043600991985216
730 => 0.042093592547713
731 => 0.043237520820786
801 => 0.044733054867427
802 => 0.044389977704709
803 => 0.044351374515473
804 => 0.044416294372136
805 => 0.0441576253953
806 => 0.042987675199788
807 => 0.042400133535877
808 => 0.043158212180186
809 => 0.043561097241438
810 => 0.044185936836169
811 => 0.044108912167355
812 => 0.04571843186051
813 => 0.04634384254392
814 => 0.046183835728272
815 => 0.04621328083313
816 => 0.047345557001938
817 => 0.048604880972006
818 => 0.049784404052409
819 => 0.05098426559149
820 => 0.049537785674735
821 => 0.048803352379485
822 => 0.049561100070373
823 => 0.049159028479517
824 => 0.051469451102756
825 => 0.051629419752337
826 => 0.053939675305723
827 => 0.056132382926
828 => 0.054755182556142
829 => 0.056053820474451
830 => 0.057458403262607
831 => 0.060168071346302
901 => 0.059255550462986
902 => 0.058556573767391
903 => 0.057896044167485
904 => 0.059270501408769
905 => 0.06103871869219
906 => 0.061419575759265
907 => 0.062036709706522
908 => 0.06138786882053
909 => 0.062169326200229
910 => 0.064928214140339
911 => 0.064182738265544
912 => 0.063124042682108
913 => 0.06530191974441
914 => 0.066090084986975
915 => 0.071621841424636
916 => 0.078605912432643
917 => 0.075714461175445
918 => 0.073919644073554
919 => 0.074341468666129
920 => 0.07689181497253
921 => 0.0777109052622
922 => 0.075484335497522
923 => 0.076270797579981
924 => 0.080604280977581
925 => 0.0829290557856
926 => 0.079771699337397
927 => 0.071060678119381
928 => 0.063028718728258
929 => 0.065159156042629
930 => 0.064917630566346
1001 => 0.069573417864003
1002 => 0.064164958912475
1003 => 0.064256023490453
1004 => 0.069008087538861
1005 => 0.067740318321748
1006 => 0.065686694553639
1007 => 0.063043712454442
1008 => 0.058157915597821
1009 => 0.053830429071387
1010 => 0.062317626710351
1011 => 0.061951643315191
1012 => 0.0614216451233
1013 => 0.06260109874756
1014 => 0.068328190753216
1015 => 0.068196162745698
1016 => 0.067356267923149
1017 => 0.067993320743559
1018 => 0.065575016114116
1019 => 0.066198268280896
1020 => 0.063027446424854
1021 => 0.064460790329003
1022 => 0.065682288399362
1023 => 0.065927522221575
1024 => 0.066480046544969
1025 => 0.061758786696356
1026 => 0.063878493759477
1027 => 0.065123623069367
1028 => 0.059498083549089
1029 => 0.06501242424054
1030 => 0.061676600066247
1031 => 0.060544371239094
1101 => 0.06206876819505
1102 => 0.06147470921879
1103 => 0.060963972195314
1104 => 0.060678972160639
1105 => 0.06179832104354
1106 => 0.061746102080242
1107 => 0.059914630051559
1108 => 0.057525549450492
1109 => 0.058327403319107
1110 => 0.058036082291219
1111 => 0.056980297304992
1112 => 0.057691768909744
1113 => 0.054558808029957
1114 => 0.04916871167342
1115 => 0.052729574429665
1116 => 0.052592485087023
1117 => 0.052523358423956
1118 => 0.055199248370256
1119 => 0.054942023295204
1120 => 0.05447515726523
1121 => 0.056971722944231
1122 => 0.056060442887849
1123 => 0.058868793297035
1124 => 0.060718554509242
1125 => 0.06024939523232
1126 => 0.061989104593072
1127 => 0.058345876412723
1128 => 0.059556010673291
1129 => 0.05980541766722
1130 => 0.056940915711284
1201 => 0.054984108498639
1202 => 0.054853611766791
1203 => 0.051460777724708
1204 => 0.053273202283989
1205 => 0.054868060892932
1206 => 0.054104247385276
1207 => 0.053862446847032
1208 => 0.055097753356784
1209 => 0.055193747252277
1210 => 0.05300507626207
1211 => 0.05346017026713
1212 => 0.055357987921315
1213 => 0.053412350131543
1214 => 0.049632293724146
1215 => 0.048694787471743
1216 => 0.048569706856004
1217 => 0.046027115544928
1218 => 0.048757436122389
1219 => 0.047565578022285
1220 => 0.051330643479861
1221 => 0.049180058282944
1222 => 0.049087350853426
1223 => 0.048947209976485
1224 => 0.046758696601917
1225 => 0.047237841943667
1226 => 0.048830594035538
1227 => 0.049398905925555
1228 => 0.049339626339384
1229 => 0.048822788681365
1230 => 0.049059394314569
1231 => 0.048297205131152
]
'min_raw' => 0.02666815162613
'max_raw' => 0.0829290557856
'avg_raw' => 0.054798603705865
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.026668'
'max' => '$0.082929'
'avg' => '$0.054798'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.015191968141638
'max_diff' => 0.051795275863847
'year' => 2033
]
8 => [
'items' => [
101 => 0.048028060266892
102 => 0.047178565041158
103 => 0.045930041738375
104 => 0.046103656561266
105 => 0.04363000520456
106 => 0.042282228658813
107 => 0.041909181874359
108 => 0.04141032812349
109 => 0.041965528732919
110 => 0.043622997661064
111 => 0.041623738482072
112 => 0.038196148851415
113 => 0.038402152828546
114 => 0.03886498260203
115 => 0.038002502381069
116 => 0.037186237234407
117 => 0.037895913553745
118 => 0.03644359864212
119 => 0.039040487920583
120 => 0.038970249343299
121 => 0.039938209075755
122 => 0.040543494160992
123 => 0.039148508002893
124 => 0.038797672756574
125 => 0.03899752445745
126 => 0.035694421017137
127 => 0.03966827505509
128 => 0.039702641109828
129 => 0.039408378084923
130 => 0.041524332681154
131 => 0.045989656861991
201 => 0.044309622287911
202 => 0.043659062121514
203 => 0.042422346769636
204 => 0.044070196547122
205 => 0.043943667394672
206 => 0.043371454582537
207 => 0.043025378488345
208 => 0.043663034303166
209 => 0.042946365876265
210 => 0.042817632534062
211 => 0.04203764854357
212 => 0.041759229745975
213 => 0.041553099552408
214 => 0.041326170463224
215 => 0.041826719486757
216 => 0.040692409546723
217 => 0.039324542956817
218 => 0.039210819650387
219 => 0.039524819698094
220 => 0.039385898051538
221 => 0.039210154546991
222 => 0.038874612335915
223 => 0.038775064129613
224 => 0.039098547506169
225 => 0.03873335363429
226 => 0.039272217085387
227 => 0.039125676043363
228 => 0.038307109694885
301 => 0.037286872952603
302 => 0.037277790705578
303 => 0.037057982372977
304 => 0.036778023413006
305 => 0.036700145234935
306 => 0.037836146593578
307 => 0.04018763540831
308 => 0.03972598188762
309 => 0.040059573868474
310 => 0.041700516246159
311 => 0.042222122483167
312 => 0.04185189873106
313 => 0.041345113624769
314 => 0.041367409597468
315 => 0.043099247719947
316 => 0.04320726033933
317 => 0.04348017338232
318 => 0.043830943767778
319 => 0.041911636444477
320 => 0.041277010395141
321 => 0.040976289365253
322 => 0.040050184986882
323 => 0.041048909160766
324 => 0.040466995354277
325 => 0.040545515407779
326 => 0.040494379119928
327 => 0.040522302990915
328 => 0.039039762037105
329 => 0.039579922040615
330 => 0.038681801269024
331 => 0.037479318374653
401 => 0.037475287230346
402 => 0.037769593215187
403 => 0.037594528499209
404 => 0.037123433849838
405 => 0.037190350621277
406 => 0.036604089290335
407 => 0.037261533361458
408 => 0.03728038650497
409 => 0.037027234726367
410 => 0.03804011802773
411 => 0.038455097142733
412 => 0.03828846721902
413 => 0.038443405943084
414 => 0.039745165675645
415 => 0.039957409311811
416 => 0.040051673914969
417 => 0.039925371834405
418 => 0.038467199721321
419 => 0.038531875855163
420 => 0.038057325298321
421 => 0.037656380084695
422 => 0.037672415790559
423 => 0.037878553749592
424 => 0.038778770306522
425 => 0.040673222979915
426 => 0.040745116074044
427 => 0.040832252601397
428 => 0.040477824553342
429 => 0.040370925662629
430 => 0.040511952892424
501 => 0.041223409710961
502 => 0.043053469806881
503 => 0.042406604343379
504 => 0.041880692652491
505 => 0.042342058990173
506 => 0.042271035258796
507 => 0.041671523490214
508 => 0.041654697191606
509 => 0.040504042432191
510 => 0.040078671566776
511 => 0.039723199833179
512 => 0.039335033979914
513 => 0.039104916250662
514 => 0.039458481669431
515 => 0.039539346263967
516 => 0.038766269296562
517 => 0.038660901762522
518 => 0.03929221310213
519 => 0.039014396519228
520 => 0.039300137764263
521 => 0.039366432184154
522 => 0.039355757255661
523 => 0.03906568483608
524 => 0.039250568346237
525 => 0.038813263728288
526 => 0.038337760637299
527 => 0.038034419290137
528 => 0.037769713732348
529 => 0.037916587760587
530 => 0.037393008668053
531 => 0.037225505178786
601 => 0.039187933973007
602 => 0.040637601222962
603 => 0.040616522487017
604 => 0.040488211102959
605 => 0.040297566413262
606 => 0.041209462864457
607 => 0.040891776374806
608 => 0.041122919839622
609 => 0.041181755552478
610 => 0.041359833535111
611 => 0.041423481107583
612 => 0.041231093937492
613 => 0.040585419096556
614 => 0.038976458781863
615 => 0.038227483412069
616 => 0.037980309064865
617 => 0.037989293382935
618 => 0.037741465782804
619 => 0.037814462117897
620 => 0.037716080636419
621 => 0.037529769911538
622 => 0.037905083598335
623 => 0.03794833500445
624 => 0.037860732305286
625 => 0.037881365912203
626 => 0.037156052978735
627 => 0.03721119694577
628 => 0.036904148329964
629 => 0.036846580416027
630 => 0.036070388253052
701 => 0.034695251325488
702 => 0.03545721067113
703 => 0.034536870929292
704 => 0.034188324323635
705 => 0.035838289744696
706 => 0.035672678979338
707 => 0.035389225338316
708 => 0.034969938326328
709 => 0.03481442069502
710 => 0.033869544798092
711 => 0.033813716489384
712 => 0.034282022497697
713 => 0.034065915388287
714 => 0.033762419160512
715 => 0.03266318658843
716 => 0.031427285234012
717 => 0.031464589327303
718 => 0.031857706553381
719 => 0.033000747907284
720 => 0.032554141875498
721 => 0.032230124075223
722 => 0.032169445281171
723 => 0.032928967428393
724 => 0.034003850391521
725 => 0.03450816142867
726 => 0.03400840450701
727 => 0.033434310664229
728 => 0.033469253096345
729 => 0.033701709442722
730 => 0.033726137317971
731 => 0.033352461244122
801 => 0.03345764887009
802 => 0.033297859247686
803 => 0.03231723062994
804 => 0.032299494167852
805 => 0.032058832090284
806 => 0.032051544938221
807 => 0.03164211870831
808 => 0.031584837148515
809 => 0.030771896518631
810 => 0.031306976503032
811 => 0.030948072942456
812 => 0.030407120619877
813 => 0.030313860235567
814 => 0.0303110567158
815 => 0.030866493796362
816 => 0.031300485897354
817 => 0.030954316223552
818 => 0.030875500099045
819 => 0.031717050108989
820 => 0.031609955199325
821 => 0.031517211698244
822 => 0.033907606411593
823 => 0.032015422471152
824 => 0.031190322271036
825 => 0.030169104091114
826 => 0.030501617879926
827 => 0.030571683420872
828 => 0.028115837786573
829 => 0.027119501518594
830 => 0.026777596457564
831 => 0.026580825261113
901 => 0.026670496366233
902 => 0.025773676866464
903 => 0.026376354402334
904 => 0.025599784521799
905 => 0.025469590054151
906 => 0.026858193199095
907 => 0.027051409214612
908 => 0.026227089664905
909 => 0.02675643626103
910 => 0.026564487826807
911 => 0.02561309658351
912 => 0.025576760435977
913 => 0.025099385753109
914 => 0.024352386812376
915 => 0.024010988251803
916 => 0.023833184917298
917 => 0.023906550038433
918 => 0.023869454388177
919 => 0.023627380177797
920 => 0.023883329798555
921 => 0.023229484283203
922 => 0.022969117730599
923 => 0.022851516199246
924 => 0.022271190670428
925 => 0.023194746658711
926 => 0.023376698823055
927 => 0.02355900948937
928 => 0.025145899370866
929 => 0.025066622836891
930 => 0.025783244094789
1001 => 0.025755397510489
1002 => 0.025551005519242
1003 => 0.02468870932902
1004 => 0.025032405221491
1005 => 0.023974562686666
1006 => 0.024767170240057
1007 => 0.024405457252772
1008 => 0.024644874715206
1009 => 0.024214380530348
1010 => 0.024452633786917
1011 => 0.023419846431201
1012 => 0.022455444130143
1013 => 0.022843547768747
1014 => 0.023265460808944
1015 => 0.024180275781535
1016 => 0.023635419530919
1017 => 0.023831370441937
1018 => 0.023174967691816
1019 => 0.02182062132614
1020 => 0.021828286779488
1021 => 0.021619950097169
1022 => 0.021439916785991
1023 => 0.023698002825599
1024 => 0.023417174131516
1025 => 0.022969710361446
1026 => 0.023568658399188
1027 => 0.023727029766951
1028 => 0.023731538377148
1029 => 0.024168515404398
1030 => 0.024401730122174
1031 => 0.024442835226993
1101 => 0.025130428020885
1102 => 0.02536090005583
1103 => 0.026310181750143
1104 => 0.024381943482752
1105 => 0.024342232684547
1106 => 0.023577086826369
1107 => 0.023091819226634
1108 => 0.023610313514087
1109 => 0.024069628671242
1110 => 0.023591359028637
1111 => 0.023653810947138
1112 => 0.023011773028008
1113 => 0.023241271373405
1114 => 0.023438946265227
1115 => 0.023329801808756
1116 => 0.023166407274768
1117 => 0.024031970066316
1118 => 0.023983131621449
1119 => 0.024789163592141
1120 => 0.025417523153195
1121 => 0.026543655819311
1122 => 0.025368477675596
1123 => 0.025325649513129
1124 => 0.025744301671097
1125 => 0.025360835962366
1126 => 0.025603173053498
1127 => 0.026504611567413
1128 => 0.026523657542744
1129 => 0.026204612916599
1130 => 0.026185199022104
1201 => 0.02624647503252
1202 => 0.026605370539453
1203 => 0.026479961421586
1204 => 0.026625088027752
1205 => 0.02680657107102
1206 => 0.027557261885195
1207 => 0.02773825089904
1208 => 0.02729854142744
1209 => 0.027338242269508
1210 => 0.027173778856834
1211 => 0.027014909260912
1212 => 0.027372024911504
1213 => 0.028024660782085
1214 => 0.028020600768206
1215 => 0.028171999604752
1216 => 0.028266319825665
1217 => 0.027861428390886
1218 => 0.027597858955116
1219 => 0.027698928248149
1220 => 0.027860540248712
1221 => 0.027646519654518
1222 => 0.026325485403172
1223 => 0.026726202807036
1224 => 0.026659503836953
1225 => 0.026564516392683
1226 => 0.026967440840924
1227 => 0.026928577794951
1228 => 0.025764478686252
1229 => 0.02583900053428
1230 => 0.025769010606655
1231 => 0.025995162381406
]
'min_raw' => 0.021439916785991
'max_raw' => 0.048028060266892
'avg_raw' => 0.034733988526441
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.021439'
'max' => '$0.048028'
'avg' => '$0.034733'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0052282348401397
'max_diff' => -0.034900995518708
'year' => 2034
]
9 => [
'items' => [
101 => 0.025348623024362
102 => 0.02554749417608
103 => 0.025672224298136
104 => 0.025745691298249
105 => 0.02601110447945
106 => 0.025979961306024
107 => 0.026009168576063
108 => 0.026402706257303
109 => 0.028393084803189
110 => 0.028501416715919
111 => 0.027967950757102
112 => 0.028181059885499
113 => 0.02777193696082
114 => 0.028046583921042
115 => 0.02823449039595
116 => 0.027385377168179
117 => 0.02733509819353
118 => 0.026924286673008
119 => 0.027145033514583
120 => 0.026793809417378
121 => 0.026879987525534
122 => 0.026639026022256
123 => 0.027072708753201
124 => 0.02755763343388
125 => 0.027680144558476
126 => 0.02735787053402
127 => 0.027124522901421
128 => 0.026714841328066
129 => 0.027396150914905
130 => 0.02759538660063
131 => 0.027395104414665
201 => 0.027348694655925
202 => 0.027260748246972
203 => 0.027367352902333
204 => 0.027594301520297
205 => 0.027487276743148
206 => 0.027557968493989
207 => 0.027288564436801
208 => 0.027861562426798
209 => 0.02877162113439
210 => 0.028774547121944
211 => 0.028667521767892
212 => 0.028623729298907
213 => 0.028733543807006
214 => 0.028793113672823
215 => 0.02914823365548
216 => 0.029529291545474
217 => 0.031307522449495
218 => 0.030808202327352
219 => 0.032385954572829
220 => 0.033633751753513
221 => 0.034007911568443
222 => 0.033663702144287
223 => 0.032486180298079
224 => 0.03242840545864
225 => 0.034188120233775
226 => 0.033690920209757
227 => 0.033631779848977
228 => 0.033002626329498
301 => 0.033374533981689
302 => 0.033293192322599
303 => 0.033164790534355
304 => 0.033874364427424
305 => 0.035202623411151
306 => 0.034995601792204
307 => 0.034841069757116
308 => 0.034163955362959
309 => 0.034571729467216
310 => 0.034426528919089
311 => 0.035050402620389
312 => 0.034680833660234
313 => 0.033687153430565
314 => 0.033845400282352
315 => 0.033821481589053
316 => 0.034313726602254
317 => 0.034165966867564
318 => 0.033792629129396
319 => 0.035198083566345
320 => 0.035106821172758
321 => 0.035236210381377
322 => 0.035293171512505
323 => 0.036148646861391
324 => 0.036499107739671
325 => 0.036578668494722
326 => 0.036911579223472
327 => 0.036570385372516
328 => 0.037935404043432
329 => 0.038843061808543
330 => 0.03989735301036
331 => 0.041437955822976
401 => 0.042017236731893
402 => 0.041912594820639
403 => 0.043080662290508
404 => 0.04517965356918
405 => 0.042336860970516
406 => 0.045330328479749
407 => 0.04438263122757
408 => 0.042135658091
409 => 0.041990979511078
410 => 0.043512655807058
411 => 0.046887587375626
412 => 0.046042205295856
413 => 0.046888970117858
414 => 0.045901173974431
415 => 0.045852121570111
416 => 0.046840995063974
417 => 0.049151551883075
418 => 0.048053892948247
419 => 0.046480129708159
420 => 0.047642171994172
421 => 0.046635503424091
422 => 0.044367197386907
423 => 0.046041558848112
424 => 0.044921961022073
425 => 0.045248719188806
426 => 0.047601947291532
427 => 0.047318800660342
428 => 0.047685218619773
429 => 0.047038500512205
430 => 0.046434363821652
501 => 0.045306697824954
502 => 0.044972851516593
503 => 0.045065114625692
504 => 0.044972805795578
505 => 0.044341887034211
506 => 0.044205640187764
507 => 0.043978556141242
508 => 0.044048938982705
509 => 0.043621954539461
510 => 0.044427762403349
511 => 0.044577327443642
512 => 0.045163727208181
513 => 0.045224609177042
514 => 0.046857724174405
515 => 0.04595823187724
516 => 0.046561688968607
517 => 0.046507710086397
518 => 0.042184356812288
519 => 0.042780076748191
520 => 0.043706830021243
521 => 0.043289328927917
522 => 0.042699080062166
523 => 0.042222422455929
524 => 0.041500237441738
525 => 0.042516698980877
526 => 0.043853237816211
527 => 0.045258506007531
528 => 0.046946843662582
529 => 0.046570026352392
530 => 0.045226943709453
531 => 0.045287193415693
601 => 0.045659633392281
602 => 0.045177289782859
603 => 0.045035037235974
604 => 0.045640090076776
605 => 0.045644256743159
606 => 0.045089262127346
607 => 0.044472487174813
608 => 0.044469902865241
609 => 0.044360153719777
610 => 0.0459206981036
611 => 0.04677883972587
612 => 0.046877224279899
613 => 0.046772217661497
614 => 0.046812630541356
615 => 0.046313296839218
616 => 0.047454625609496
617 => 0.04850202175482
618 => 0.048221297213518
619 => 0.047800451218762
620 => 0.047465227113249
621 => 0.048142329067835
622 => 0.048112178783654
623 => 0.048492873663219
624 => 0.048475603144482
625 => 0.048347589775143
626 => 0.048221301785279
627 => 0.048722019390143
628 => 0.048577820761221
629 => 0.048433398151999
630 => 0.04814373649921
701 => 0.048183106328595
702 => 0.047762332998833
703 => 0.047567664003208
704 => 0.044640309385233
705 => 0.043858024577238
706 => 0.044104147302709
707 => 0.044185177294508
708 => 0.043844725943543
709 => 0.04433284572605
710 => 0.044256772774993
711 => 0.044552728126367
712 => 0.044367828071716
713 => 0.044375416434455
714 => 0.044919168070336
715 => 0.045077021483517
716 => 0.04499673596354
717 => 0.045052965189705
718 => 0.046348743973814
719 => 0.046164525667387
720 => 0.046066663363704
721 => 0.046093771890627
722 => 0.046424871151778
723 => 0.04651756086755
724 => 0.046124828028631
725 => 0.046310043105827
726 => 0.047098665397234
727 => 0.04737463856707
728 => 0.048255412450552
729 => 0.047881244050341
730 => 0.048568046342556
731 => 0.05067904244067
801 => 0.052365452193663
802 => 0.05081456009098
803 => 0.053911436839364
804 => 0.056322799608565
805 => 0.056230247489149
806 => 0.055809770614513
807 => 0.053064498211173
808 => 0.050538257615914
809 => 0.05265156514369
810 => 0.052656952399183
811 => 0.052475417408348
812 => 0.051347919171261
813 => 0.052436182913691
814 => 0.052522565337572
815 => 0.052474214151139
816 => 0.051609763896325
817 => 0.050289908134334
818 => 0.050547804790939
819 => 0.050970244775407
820 => 0.050170477754597
821 => 0.049914903731855
822 => 0.050390064465079
823 => 0.051921131351195
824 => 0.051631692025242
825 => 0.051624133594725
826 => 0.052862477772531
827 => 0.051976090592621
828 => 0.050551057693678
829 => 0.05019121809282
830 => 0.048914029926775
831 => 0.049796188342251
901 => 0.049827935653147
902 => 0.049344786504432
903 => 0.05059026258431
904 => 0.050578785302972
905 => 0.051761179476165
906 => 0.05402147304834
907 => 0.053352993016756
908 => 0.052575623470445
909 => 0.052660145094249
910 => 0.05358713869023
911 => 0.053026657200894
912 => 0.053228210252275
913 => 0.053586833615547
914 => 0.053803199994726
915 => 0.052629013301974
916 => 0.052355254216052
917 => 0.051795239202637
918 => 0.051649141738813
919 => 0.052105262282142
920 => 0.051985090633952
921 => 0.049825267414598
922 => 0.049599553871033
923 => 0.049606476183169
924 => 0.04903890874578
925 => 0.048173232171969
926 => 0.050448178521083
927 => 0.050265468491395
928 => 0.050063770759253
929 => 0.050088477580569
930 => 0.051075954685634
1001 => 0.050503168095907
1002 => 0.052026015122571
1003 => 0.051712963554861
1004 => 0.05139188339569
1005 => 0.051347500337352
1006 => 0.051223911869344
1007 => 0.050800081027298
1008 => 0.050288279817243
1009 => 0.049950344326904
1010 => 0.046076552276358
1011 => 0.046795505548127
1012 => 0.047622595752646
1013 => 0.047908103976889
1014 => 0.047419722402753
1015 => 0.050819365308566
1016 => 0.051440512827232
1017 => 0.049559016476742
1018 => 0.049207065330555
1019 => 0.050842439167117
1020 => 0.049856108827349
1021 => 0.050300253318953
1022 => 0.049340255862154
1023 => 0.051290896579308
1024 => 0.05127603596526
1025 => 0.050517192669069
1026 => 0.051158561826675
1027 => 0.051047108152221
1028 => 0.05019037593977
1029 => 0.051318056518568
1030 => 0.051318615834066
1031 => 0.050588245660158
1101 => 0.049735333195623
1102 => 0.049582852591857
1103 => 0.049467978939807
1104 => 0.050272001442431
1105 => 0.050992885504171
1106 => 0.052334272020754
1107 => 0.052671528461581
1108 => 0.05398786280256
1109 => 0.053204049793663
1110 => 0.053551503948429
1111 => 0.053928714583819
1112 => 0.054109563233886
1113 => 0.053814880063475
1114 => 0.055859689119845
1115 => 0.056032333655534
1116 => 0.05609021987498
1117 => 0.055400721766161
1118 => 0.056013157465834
1119 => 0.055726619083696
1120 => 0.056472112351366
1121 => 0.056589015214672
1122 => 0.056490002648391
1123 => 0.056527109462391
1124 => 0.054782225661815
1125 => 0.05469174423176
1126 => 0.053458023512688
1127 => 0.053960773824913
1128 => 0.053020906213658
1129 => 0.053318947914896
1130 => 0.053450321856956
1201 => 0.053381699565029
1202 => 0.053989198573245
1203 => 0.053472700312414
1204 => 0.052109576481903
1205 => 0.050746081269216
1206 => 0.0507289636975
1207 => 0.050369979475689
1208 => 0.05011049963456
1209 => 0.050160484657503
1210 => 0.050336638398005
1211 => 0.050100261258932
1212 => 0.050150704306178
1213 => 0.050988394990734
1214 => 0.051156387883385
1215 => 0.050585482395097
1216 => 0.048293214478349
1217 => 0.047730686181861
1218 => 0.048135020365956
1219 => 0.047941774668415
1220 => 0.03869275385951
1221 => 0.040865674105897
1222 => 0.039574598680893
1223 => 0.040169585636259
1224 => 0.038851731949691
1225 => 0.039480680803551
1226 => 0.039364536915777
1227 => 0.042858528370584
1228 => 0.042803974499845
1229 => 0.042830086550841
1230 => 0.041583690322214
1231 => 0.043569233357762
]
'min_raw' => 0.025348623024362
'max_raw' => 0.056589015214672
'avg_raw' => 0.040968819119517
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.025348'
'max' => '$0.056589'
'avg' => '$0.040968'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0039087062383718
'max_diff' => 0.0085609549477804
'year' => 2035
]
10 => [
'items' => [
101 => 0.044547383254891
102 => 0.044366353741549
103 => 0.04441191496993
104 => 0.043629022114782
105 => 0.042837666664998
106 => 0.041959931682456
107 => 0.043590654788696
108 => 0.043409346216654
109 => 0.043825202848153
110 => 0.044882843349045
111 => 0.045038584930386
112 => 0.045247903195085
113 => 0.045172877497479
114 => 0.046960293995844
115 => 0.046743826064138
116 => 0.047265451497475
117 => 0.046192428405285
118 => 0.044978200924185
119 => 0.045208985872255
120 => 0.0451867594259
121 => 0.04490379125348
122 => 0.044648340239781
123 => 0.044223086274849
124 => 0.045568652745639
125 => 0.045514025204218
126 => 0.046398381602256
127 => 0.046242063018723
128 => 0.045198129260244
129 => 0.045235413558655
130 => 0.045486168383698
131 => 0.046354033696237
201 => 0.046611675209775
202 => 0.046492325395465
203 => 0.046774817553277
204 => 0.046998087836679
205 => 0.046802856863343
206 => 0.049566915740098
207 => 0.048419085784957
208 => 0.048978530118543
209 => 0.049111954295666
210 => 0.048770191071574
211 => 0.048844307277256
212 => 0.048956573133407
213 => 0.049638229428049
214 => 0.051427092784027
215 => 0.052219368187185
216 => 0.054602967827765
217 => 0.052153580743958
218 => 0.052008244250977
219 => 0.052437602524058
220 => 0.053837027842725
221 => 0.054971130622169
222 => 0.055347377942069
223 => 0.05539710523656
224 => 0.056102970221142
225 => 0.056507558866702
226 => 0.056017259645922
227 => 0.055601782392779
228 => 0.054113594442956
229 => 0.054285856250349
301 => 0.055472569279474
302 => 0.057148871330161
303 => 0.058587312879153
304 => 0.058083620783445
305 => 0.061926435922491
306 => 0.062307435347036
307 => 0.06225479354575
308 => 0.063122766935178
309 => 0.06140001651687
310 => 0.060663507336326
311 => 0.055691613290775
312 => 0.057088512716652
313 => 0.059118988069191
314 => 0.058850247042391
315 => 0.057375661566615
316 => 0.05858619427384
317 => 0.058185954303974
318 => 0.057870268433769
319 => 0.059316486603895
320 => 0.057726310318473
321 => 0.059103124844323
322 => 0.057337345973598
323 => 0.05808592160651
324 => 0.05766099387274
325 => 0.057935974193674
326 => 0.056328444856266
327 => 0.057195828666163
328 => 0.056292358838081
329 => 0.056291930475748
330 => 0.056271986329218
331 => 0.057334914575357
401 => 0.057369576627303
402 => 0.056584071047411
403 => 0.056470867421445
404 => 0.056889440559063
405 => 0.056399401039391
406 => 0.056628687446374
407 => 0.056406345891081
408 => 0.056356292123755
409 => 0.055957455189754
410 => 0.055785625272337
411 => 0.055853004210468
412 => 0.055623005158404
413 => 0.055484422410106
414 => 0.056244418732504
415 => 0.055838383355611
416 => 0.056182187987628
417 => 0.055790379217841
418 => 0.054432199318802
419 => 0.053651095696373
420 => 0.051085619770433
421 => 0.051813185560566
422 => 0.052295562432146
423 => 0.052136136878967
424 => 0.052478644656696
425 => 0.052499671852515
426 => 0.052388319082522
427 => 0.052259386840043
428 => 0.052196629754805
429 => 0.052664369652257
430 => 0.052935908406129
501 => 0.052343975404579
502 => 0.052205293784339
503 => 0.052803770730422
504 => 0.053168841321804
505 => 0.055864317453122
506 => 0.055664627875041
507 => 0.056165809528924
508 => 0.056109384165956
509 => 0.056634702383725
510 => 0.057493375653733
511 => 0.055747452806984
512 => 0.05605048464371
513 => 0.055976188235372
514 => 0.056787336940043
515 => 0.056789869257759
516 => 0.056303545089426
517 => 0.056567189310788
518 => 0.056420030339125
519 => 0.056685966490648
520 => 0.055661960898981
521 => 0.056909089175059
522 => 0.057616130544424
523 => 0.057625947814524
524 => 0.057961079812176
525 => 0.058301593331326
526 => 0.058955179378859
527 => 0.058283365171195
528 => 0.057074836811403
529 => 0.057162088655457
530 => 0.056453528920294
531 => 0.056465439937454
601 => 0.056401857994372
602 => 0.056592672191788
603 => 0.0557038338849
604 => 0.055912442458942
605 => 0.055620389233673
606 => 0.056049849777035
607 => 0.055587821224749
608 => 0.055976152407394
609 => 0.056143743272441
610 => 0.056762157172438
611 => 0.055496480988902
612 => 0.052915681571928
613 => 0.053458196898544
614 => 0.052655774116819
615 => 0.052730041400307
616 => 0.052880073132502
617 => 0.052393771201129
618 => 0.0524865422845
619 => 0.052483227848582
620 => 0.052454665830443
621 => 0.052328159916221
622 => 0.052144701312167
623 => 0.052875543925138
624 => 0.052999728326485
625 => 0.053275774867487
626 => 0.05409710212935
627 => 0.054015032167659
628 => 0.054148891680227
629 => 0.053856677115881
630 => 0.052743596395855
701 => 0.052804042034146
702 => 0.05205028395609
703 => 0.053256499578752
704 => 0.052970851798037
705 => 0.052786692815562
706 => 0.052736443330972
707 => 0.053559806504255
708 => 0.053806169670338
709 => 0.053652652678052
710 => 0.053337784848068
711 => 0.053942424163955
712 => 0.054104200137201
713 => 0.054140415811543
714 => 0.055211720751205
715 => 0.054200289856957
716 => 0.054443751325961
717 => 0.056343168207989
718 => 0.054620659197602
719 => 0.055533110636939
720 => 0.055488450887152
721 => 0.055955230167843
722 => 0.055450161361869
723 => 0.055456422295038
724 => 0.055870890673925
725 => 0.055288844585545
726 => 0.055144721788729
727 => 0.054945617177156
728 => 0.05538035481243
729 => 0.055640960363285
730 => 0.057741249709491
731 => 0.05909813241197
801 => 0.059039226555332
802 => 0.059577515817862
803 => 0.059335011574928
804 => 0.058551901405106
805 => 0.05988857497488
806 => 0.059465595528606
807 => 0.059500465440237
808 => 0.059499167580385
809 => 0.059780411934652
810 => 0.059581124533987
811 => 0.059188308610844
812 => 0.059449078152578
813 => 0.06022347046471
814 => 0.062627207962825
815 => 0.063972371312056
816 => 0.062546227440164
817 => 0.063529962386167
818 => 0.062940071959167
819 => 0.06283287132086
820 => 0.063450729564392
821 => 0.064069669286988
822 => 0.064030245502409
823 => 0.063580927046711
824 => 0.06332711845212
825 => 0.065249042162475
826 => 0.066665082813147
827 => 0.066568518334028
828 => 0.066994722540408
829 => 0.06824607127234
830 => 0.068360478917975
831 => 0.068346066184254
901 => 0.068062494897345
902 => 0.069294610232098
903 => 0.070322462521356
904 => 0.067996856337588
905 => 0.068882416727946
906 => 0.069279973318152
907 => 0.069863704342299
908 => 0.070848556424715
909 => 0.071918367005331
910 => 0.072069649951307
911 => 0.071962307461582
912 => 0.071256738625613
913 => 0.072427338128418
914 => 0.073113047863225
915 => 0.073521372318115
916 => 0.074556815197003
917 => 0.069282428492309
918 => 0.065548955428698
919 => 0.06496591969781
920 => 0.066151545783317
921 => 0.066464185926875
922 => 0.066338161077024
923 => 0.062135797711409
924 => 0.064943795124389
925 => 0.067964964237627
926 => 0.068081019647365
927 => 0.069593480075119
928 => 0.070085999188243
929 => 0.071303728075305
930 => 0.071227558801868
1001 => 0.071524056407569
1002 => 0.071455896742641
1003 => 0.073711483082853
1004 => 0.07619972977392
1005 => 0.076113569703149
1006 => 0.075755854801709
1007 => 0.076287122429801
1008 => 0.078855259671703
1009 => 0.07861882674803
1010 => 0.07884850119407
1011 => 0.081876479736145
1012 => 0.085813282565767
1013 => 0.083984242402866
1014 => 0.087952733264233
1015 => 0.090450687900802
1016 => 0.094770642151417
1017 => 0.094229762603017
1018 => 0.095911489091493
1019 => 0.093261475326412
1020 => 0.087176508065642
1021 => 0.086213538704306
1022 => 0.088141427751968
1023 => 0.092880954854984
1024 => 0.087992163176949
1025 => 0.08898115936624
1026 => 0.088696328397191
1027 => 0.088681150965304
1028 => 0.089260411809352
1029 => 0.088420163742847
1030 => 0.084996841962164
1031 => 0.086565730160489
1101 => 0.085959907082917
1102 => 0.086632112954586
1103 => 0.090259730805194
1104 => 0.088655874481832
1105 => 0.086966342131877
1106 => 0.089085390635963
1107 => 0.091783667565732
1108 => 0.091614814244737
1109 => 0.091287168226793
1110 => 0.093134091674952
1111 => 0.096184668113515
1112 => 0.09700922666665
1113 => 0.097617898933216
1114 => 0.097701824555174
1115 => 0.098566310620817
1116 => 0.093917751167312
1117 => 0.1012951344035
1118 => 0.10256900469229
1119 => 0.10232956987451
1120 => 0.10374542308785
1121 => 0.10332884315575
1122 => 0.10272528419354
1123 => 0.10496971269729
1124 => 0.10239665653378
1125 => 0.098744527248445
1126 => 0.096740896891582
1127 => 0.099379438973749
1128 => 0.1009907045509
1129 => 0.10205564860166
1130 => 0.10237790002796
1201 => 0.094278605604936
1202 => 0.089913535118387
1203 => 0.09271149525463
1204 => 0.09612519972574
1205 => 0.093898787866613
1206 => 0.093986058996335
1207 => 0.090811780775964
1208 => 0.096406052913528
1209 => 0.09559101451832
1210 => 0.099819435154439
1211 => 0.098810288634434
1212 => 0.10225840151685
1213 => 0.10135039783606
1214 => 0.1051194703492
1215 => 0.10662305541826
1216 => 0.10914780876353
1217 => 0.11100502760191
1218 => 0.11209562202674
1219 => 0.11203014682819
1220 => 0.11635162527136
1221 => 0.11380340041438
1222 => 0.11060222942353
1223 => 0.11054433033987
1224 => 0.11220226215697
1225 => 0.11567683241424
1226 => 0.11657773792901
1227 => 0.11708122120798
1228 => 0.11631011903986
1229 => 0.11354420359054
1230 => 0.11234989532302
1231 => 0.11336748056939
]
'min_raw' => 0.041959931682456
'max_raw' => 0.11708122120798
'avg_raw' => 0.079520576445218
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.041959'
'max' => '$0.117081'
'avg' => '$0.07952'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.016611308658094
'max_diff' => 0.060492205993307
'year' => 2036
]
11 => [
'items' => [
101 => 0.11212306125518
102 => 0.11427127811389
103 => 0.11722123869525
104 => 0.11661208350061
105 => 0.11864839798665
106 => 0.12075576925317
107 => 0.12376940481226
108 => 0.124557280742
109 => 0.12585960969364
110 => 0.12720013397765
111 => 0.12763067424953
112 => 0.12845270921735
113 => 0.1284483766873
114 => 0.13092563439216
115 => 0.13365812635491
116 => 0.13468957881351
117 => 0.13706134686745
118 => 0.13299977719175
119 => 0.13608052444672
120 => 0.1388594355868
121 => 0.13554630316453
122 => 0.14011268434778
123 => 0.14028998658149
124 => 0.1429670398075
125 => 0.14025333350159
126 => 0.1386419433596
127 => 0.14329396632153
128 => 0.14554493369546
129 => 0.14486692400345
130 => 0.13970723676981
131 => 0.13670407749044
201 => 0.12884423039016
202 => 0.13815455880057
203 => 0.14268934818328
204 => 0.13969549276084
205 => 0.14120541929374
206 => 0.14944308886197
207 => 0.15257946008395
208 => 0.15192711679466
209 => 0.15203735207207
210 => 0.15372968105428
211 => 0.16123439974401
212 => 0.15673739834711
213 => 0.16017518741561
214 => 0.16199857834167
215 => 0.16369224545248
216 => 0.15953313431732
217 => 0.15412219183996
218 => 0.15240831922147
219 => 0.13939781284152
220 => 0.13872055948267
221 => 0.13834039664948
222 => 0.13594352376128
223 => 0.1340602382299
224 => 0.13256257965344
225 => 0.12863227631009
226 => 0.12995863831321
227 => 0.12369455510197
228 => 0.12770209355504
301 => 0.11770446549832
302 => 0.12603078722508
303 => 0.1214991488606
304 => 0.12454202214432
305 => 0.12453140584609
306 => 0.1189285113869
307 => 0.11569687879227
308 => 0.11775620085859
309 => 0.11996395758288
310 => 0.12032215868361
311 => 0.123184572905
312 => 0.1239834111868
313 => 0.12156289389875
314 => 0.1174972868787
315 => 0.11844163466283
316 => 0.11567774161456
317 => 0.11083412535908
318 => 0.11431289511519
319 => 0.11550070006064
320 => 0.1160253023923
321 => 0.11126216209812
322 => 0.10976548000488
323 => 0.10896865901682
324 => 0.11688242527967
325 => 0.11731595925987
326 => 0.11509793812166
327 => 0.12512360398777
328 => 0.12285448702906
329 => 0.12538964661909
330 => 0.11835594499961
331 => 0.11862464187361
401 => 0.11529477480687
402 => 0.11715927786245
403 => 0.11584150719851
404 => 0.11700864444094
405 => 0.11770822169176
406 => 0.12103754236007
407 => 0.12606880271915
408 => 0.12054025287529
409 => 0.11813138453802
410 => 0.11962583290647
411 => 0.12360574584775
412 => 0.12963551768179
413 => 0.12606577139557
414 => 0.12764996417917
415 => 0.12799603982656
416 => 0.12536384107429
417 => 0.12973257060431
418 => 0.13207380825095
419 => 0.13447543362552
420 => 0.13656069764625
421 => 0.13351617163804
422 => 0.13677425088249
423 => 0.13414881413987
424 => 0.13179352596909
425 => 0.13179709796902
426 => 0.13031959129422
427 => 0.12745673593396
428 => 0.12692878148145
429 => 0.12967526721671
430 => 0.13187768868323
501 => 0.1320590906641
502 => 0.13327846435247
503 => 0.13400007714069
504 => 0.14107286345033
505 => 0.14391759661322
506 => 0.14739608247677
507 => 0.14875114875734
508 => 0.15282941244371
509 => 0.14953588329658
510 => 0.14882330754833
511 => 0.13893077383508
512 => 0.14055067567644
513 => 0.14314429482172
514 => 0.1389735416595
515 => 0.14161892456589
516 => 0.14214117918848
517 => 0.138831821063
518 => 0.14059949222674
519 => 0.13590508169383
520 => 0.12617112804042
521 => 0.12974340727733
522 => 0.13237380721188
523 => 0.1286199021793
524 => 0.13534863165401
525 => 0.13141784680405
526 => 0.13017197671757
527 => 0.12531139332542
528 => 0.1276054015855
529 => 0.13070808060429
530 => 0.12879098569583
531 => 0.13276924548414
601 => 0.13840352230751
602 => 0.14241884349884
603 => 0.14272709000146
604 => 0.14014550748107
605 => 0.14428250994544
606 => 0.14431264349192
607 => 0.13964608781196
608 => 0.13678784844148
609 => 0.13613845044272
610 => 0.1377607739656
611 => 0.13973057421982
612 => 0.14283640020646
613 => 0.14471318580319
614 => 0.14960684726929
615 => 0.15093093174974
616 => 0.15238569915644
617 => 0.15432971704543
618 => 0.15666400895712
619 => 0.15155671114565
620 => 0.15175963360889
621 => 0.14700378860221
622 => 0.1419214861554
623 => 0.14577832019458
624 => 0.15082061764769
625 => 0.1496639090407
626 => 0.149533755693
627 => 0.1497526375223
628 => 0.14888051700721
629 => 0.14493594823972
630 => 0.142955010499
701 => 0.14551092557565
702 => 0.1468692806882
703 => 0.14897597100674
704 => 0.14871627695814
705 => 0.15414288497669
706 => 0.15625150076059
707 => 0.15571202661031
708 => 0.15581130283713
709 => 0.15962885099326
710 => 0.16387474968154
711 => 0.16785159409879
712 => 0.17189701104946
713 => 0.16702010302012
714 => 0.16454390988869
715 => 0.16709870913277
716 => 0.16574309669246
717 => 0.17353284787526
718 => 0.17407219334598
719 => 0.18186138124111
720 => 0.18925424807284
721 => 0.1846109208728
722 => 0.18898936928238
723 => 0.19372501821749
724 => 0.20286085334465
725 => 0.19978422547638
726 => 0.19742757674619
727 => 0.1952005550834
728 => 0.19983463363393
729 => 0.20579630165797
730 => 0.2070803878502
731 => 0.2091610980403
801 => 0.20697348569255
802 => 0.20960822380782
803 => 0.2189100071173
804 => 0.21639658315797
805 => 0.21282711708265
806 => 0.22016998165272
807 => 0.22282733579597
808 => 0.24147803884044
809 => 0.26502532185621
810 => 0.25527659206788
811 => 0.24922524089873
812 => 0.25064745196345
813 => 0.25924612259497
814 => 0.26200774269365
815 => 0.2545007072779
816 => 0.25715231909794
817 => 0.2717629609271
818 => 0.27960110150293
819 => 0.26895585379823
820 => 0.2395860375776
821 => 0.21250572571694
822 => 0.21968864386472
823 => 0.21887432385867
824 => 0.2345716357894
825 => 0.21633663882778
826 => 0.21664366941036
827 => 0.23266558512808
828 => 0.22839121269977
829 => 0.22146727678616
830 => 0.21255627811159
831 => 0.19608347289405
901 => 0.18149304993472
902 => 0.2101082293317
903 => 0.20887429076278
904 => 0.20708736485553
905 => 0.21106397509654
906 => 0.2303732656464
907 => 0.22992812400116
908 => 0.22709635996735
909 => 0.22924422802897
910 => 0.22109074513016
911 => 0.22319208332454
912 => 0.21250143605718
913 => 0.2173340551029
914 => 0.22145242112938
915 => 0.22227924408265
916 => 0.22414211841499
917 => 0.20822406120756
918 => 0.21537080156409
919 => 0.21956884196454
920 => 0.20060194270929
921 => 0.21919392734949
922 => 0.20794696324606
923 => 0.20412957470562
924 => 0.20926918547262
925 => 0.20726627415829
926 => 0.20554428862512
927 => 0.20458339111014
928 => 0.20835735401929
929 => 0.20818129413872
930 => 0.20200635832472
1001 => 0.19395140627794
1002 => 0.19665491257963
1003 => 0.19567270339472
1004 => 0.1921130506011
1005 => 0.19451182678988
1006 => 0.18394883044734
1007 => 0.16577574425676
1008 => 0.17778144165094
1009 => 0.17731923536095
1010 => 0.17708616999015
1011 => 0.18610811976877
1012 => 0.18524086746935
1013 => 0.18366679605375
1014 => 0.19208414154515
1015 => 0.18901169721151
1016 => 0.19848024668885
1017 => 0.20471684576201
1018 => 0.20313504250421
1019 => 0.20900059407662
1020 => 0.1967171959045
1021 => 0.20079724805288
1022 => 0.20163814114595
1023 => 0.19198027280838
1024 => 0.18538276067103
1025 => 0.18494278182861
1026 => 0.17350360497562
1027 => 0.17961432091668
1028 => 0.1849914980662
1029 => 0.18241624749738
1030 => 0.18160100010072
1031 => 0.18576592224469
1101 => 0.18608957236543
1102 => 0.17871031531382
1103 => 0.18024469652552
1104 => 0.18664332124801
1105 => 0.1800834675997
1106 => 0.16733874350705
1107 => 0.16417787572247
1108 => 0.16375615769366
1109 => 0.15518363357031
1110 => 0.16438910002212
1111 => 0.16037066722474
1112 => 0.17306484828343
1113 => 0.16581400014297
1114 => 0.16550143057172
1115 => 0.16502893582079
1116 => 0.15765021018131
1117 => 0.15926568215388
1118 => 0.16463575703402
1119 => 0.16655186024948
1120 => 0.16635199498594
1121 => 0.16460944073748
1122 => 0.1654071731491
1123 => 0.16283739910286
1124 => 0.16192995840191
1125 => 0.15906582593849
1126 => 0.15485634245404
1127 => 0.15544169695082
1128 => 0.14710160869686
1129 => 0.14255748597412
1130 => 0.14129973269504
1201 => 0.13961781244513
1202 => 0.14148971006269
1203 => 0.14707798227472
1204 => 0.14033734036892
1205 => 0.1287809826225
1206 => 0.12947553941414
1207 => 0.13103600230918
1208 => 0.12812809002776
1209 => 0.12537599509598
1210 => 0.12776871835464
1211 => 0.12287213723271
1212 => 0.13162773074407
1213 => 0.13139091647686
1214 => 0.13465446029562
1215 => 0.13669522122015
1216 => 0.1319919279933
1217 => 0.1308090624658
1218 => 0.1314828764285
1219 => 0.12034623256417
1220 => 0.13374435889876
1221 => 0.13386022645167
1222 => 0.13286809811841
1223 => 0.14000218677084
1224 => 0.15505733900551
1225 => 0.14939298514273
1226 => 0.14719957612106
1227 => 0.14302990396749
1228 => 0.14858574454149
1229 => 0.14815914267002
1230 => 0.14622988722328
1231 => 0.14506306750946
]
'min_raw' => 0.10896865901682
'max_raw' => 0.27960110150293
'avg_raw' => 0.19428488025988
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.108968'
'max' => '$0.2796011'
'avg' => '$0.194284'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.067008727334365
'max_diff' => 0.16251988029495
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0034204016908404
]
1 => [
'year' => 2028
'avg' => 0.0058704022511878
]
2 => [
'year' => 2029
'avg' => 0.016036880913181
]
3 => [
'year' => 2030
'avg' => 0.012372429741679
]
4 => [
'year' => 2031
'avg' => 0.012151259304667
]
5 => [
'year' => 2032
'avg' => 0.021304981703123
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0034204016908404
'min' => '$0.00342'
'max_raw' => 0.021304981703123
'max' => '$0.0213049'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.021304981703123
]
1 => [
'year' => 2033
'avg' => 0.054798603705865
]
2 => [
'year' => 2034
'avg' => 0.034733988526441
]
3 => [
'year' => 2035
'avg' => 0.040968819119517
]
4 => [
'year' => 2036
'avg' => 0.079520576445218
]
5 => [
'year' => 2037
'avg' => 0.19428488025988
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.021304981703123
'min' => '$0.0213049'
'max_raw' => 0.19428488025988
'max' => '$0.194284'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.19428488025988
]
]
]
]
'prediction_2025_max_price' => '$0.005848'
'last_price' => 0.00567063
'sma_50day_nextmonth' => '$0.005176'
'sma_200day_nextmonth' => '$0.012499'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.00518'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.004946'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0049018'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.005142'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.005643'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.007927'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.015819'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.005276'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.005117'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.005036'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.00519'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.006065'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.010175'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.026516'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.010735'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0552049'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.11252'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.180858'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.005398'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.005553'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.007021'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.016269'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.051006'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.112496'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.266253'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '57.43'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 140.45
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.004947'
'vwma_10_action' => 'BUY'
'hma_9' => '0.005148'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 133.36
'cci_20_action' => 'SELL'
'adx_14' => 26.33
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000558'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 65.51
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.001360'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 19
'sell_pct' => 44.12
'buy_pct' => 55.88
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767677520
'last_updated_date' => '6. Januar 2026'
]
Alpaca Finance Preisprognose für 2026
Die Preisprognose für Alpaca Finance im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.001959 am unteren Ende und $0.005848 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Alpaca Finance im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn ALPACA das prognostizierte Preisziel erreicht.
Alpaca Finance Preisprognose 2027-2032
Die Preisprognose für ALPACA für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.00342 am unteren Ende und $0.0213049 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Alpaca Finance, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Alpaca Finance Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.001886 | $0.00342 | $0.004954 |
| 2028 | $0.0034038 | $0.00587 | $0.008336 |
| 2029 | $0.007477 | $0.016036 | $0.024596 |
| 2030 | $0.006359 | $0.012372 | $0.018385 |
| 2031 | $0.007518 | $0.012151 | $0.016784 |
| 2032 | $0.011476 | $0.0213049 | $0.031133 |
Alpaca Finance Preisprognose 2032-2037
Die Preisprognose für Alpaca Finance für die Jahre 2032-2037 wird derzeit zwischen $0.0213049 am unteren Ende und $0.194284 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Alpaca Finance bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Alpaca Finance Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.011476 | $0.0213049 | $0.031133 |
| 2033 | $0.026668 | $0.054798 | $0.082929 |
| 2034 | $0.021439 | $0.034733 | $0.048028 |
| 2035 | $0.025348 | $0.040968 | $0.056589 |
| 2036 | $0.041959 | $0.07952 | $0.117081 |
| 2037 | $0.108968 | $0.194284 | $0.2796011 |
Alpaca Finance Potenzielles Preishistogramm
Alpaca Finance Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Alpaca Finance Bullisch, mit 19 technischen Indikatoren, die bullische Signale zeigen, und 15 anzeigen bärische Signale. Die Preisprognose für ALPACA wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Alpaca Finance
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Alpaca Finance im nächsten Monat steigen, und bis zum 04.02.2026 $0.012499 erreichen. Der kurzfristige 50-Tage-SMA für Alpaca Finance wird voraussichtlich bis zum 04.02.2026 $0.005176 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 57.43, was darauf hindeutet, dass sich der ALPACA-Markt in einem NEUTRAL Zustand befindet.
Beliebte ALPACA Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.00518 | BUY |
| SMA 5 | $0.004946 | BUY |
| SMA 10 | $0.0049018 | BUY |
| SMA 21 | $0.005142 | BUY |
| SMA 50 | $0.005643 | BUY |
| SMA 100 | $0.007927 | SELL |
| SMA 200 | $0.015819 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.005276 | BUY |
| EMA 5 | $0.005117 | BUY |
| EMA 10 | $0.005036 | BUY |
| EMA 21 | $0.00519 | BUY |
| EMA 50 | $0.006065 | SELL |
| EMA 100 | $0.010175 | SELL |
| EMA 200 | $0.026516 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.010735 | SELL |
| SMA 50 | $0.0552049 | SELL |
| SMA 100 | $0.11252 | SELL |
| SMA 200 | $0.180858 | SELL |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.016269 | SELL |
| EMA 50 | $0.051006 | SELL |
| EMA 100 | $0.112496 | SELL |
| EMA 200 | $0.266253 | SELL |
Alpaca Finance Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 57.43 | NEUTRAL |
| Stoch RSI (14) | 140.45 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 133.36 | SELL |
| Average Directional Index (14) | 26.33 | SELL |
| Awesome Oscillator (5, 34) | -0.000558 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 65.51 | NEUTRAL |
| VWMA (10) | 0.004947 | BUY |
| Hull Moving Average (9) | 0.005148 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.001360 | SELL |
Auf weltweiten Geldflüssen basierende Alpaca Finance-Preisprognose
Definition weltweiter Geldflüsse, die für Alpaca Finance-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Alpaca Finance-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.007968 | $0.011196 | $0.015733 | $0.0221076 | $0.031064 | $0.043651 |
| Amazon.com aktie | $0.011832 | $0.024688 | $0.051513 | $0.107486 | $0.224277 | $0.467967 |
| Apple aktie | $0.008043 | $0.0114088 | $0.016182 | $0.022953 | $0.032558 | $0.046181 |
| Netflix aktie | $0.008947 | $0.014117 | $0.022275 | $0.035146 | $0.055456 | $0.0875012 |
| Google aktie | $0.007343 | $0.0095097 | $0.012315 | $0.015947 | $0.020652 | $0.026744 |
| Tesla aktie | $0.012854 | $0.029141 | $0.06606 | $0.149754 | $0.339481 | $0.769579 |
| Kodak aktie | $0.004252 | $0.003188 | $0.002391 | $0.001793 | $0.001344 | $0.0010083 |
| Nokia aktie | $0.003756 | $0.002488 | $0.001648 | $0.001092 | $0.000723 | $0.000479 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Alpaca Finance Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Alpaca Finance investieren?", "Sollte ich heute ALPACA kaufen?", "Wird Alpaca Finance auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Alpaca Finance-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Alpaca Finance.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Alpaca Finance zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Alpaca Finance-Preis entspricht heute $0.00567 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
kurzfristige Alpaca Finance-Prognose
basierend auf dem Preisverlauf der letzten 4 Stunden
langfristige Alpaca Finance-Prognose
basierend auf dem Preisverlauf des letzten Monats
Alpaca Finance-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Alpaca Finance 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.005818 | $0.005969 | $0.006124 | $0.006283 |
| Wenn die Wachstumsrate von Alpaca Finance 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.005965 | $0.006275 | $0.0066017 | $0.006944 |
| Wenn die Wachstumsrate von Alpaca Finance 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0064076 | $0.00724 | $0.008181 | $0.009244 |
| Wenn die Wachstumsrate von Alpaca Finance 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.007144 | $0.0090017 | $0.011341 | $0.014289 |
| Wenn die Wachstumsrate von Alpaca Finance 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.008618 | $0.013099 | $0.0199088 | $0.030258 |
| Wenn die Wachstumsrate von Alpaca Finance 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.01304 | $0.029988 | $0.068964 | $0.158593 |
| Wenn die Wachstumsrate von Alpaca Finance 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.02041 | $0.073463 | $0.264419 | $0.951729 |
Fragefeld
Ist ALPACA eine gute Investition?
Die Entscheidung, Alpaca Finance zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Alpaca Finance in den letzten 2026 Stunden um 11.8841% gestiegen, und Alpaca Finance hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Alpaca Finance investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Alpaca Finance steigen?
Es scheint, dass der Durchschnittswert von Alpaca Finance bis zum Ende dieses Jahres potenziell auf $0.005848 steigen könnte. Betrachtet man die Aussichten von Alpaca Finance in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.018385 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Alpaca Finance nächste Woche kosten?
Basierend auf unserer neuen experimentellen Alpaca Finance-Prognose wird der Preis von Alpaca Finance in der nächsten Woche um 0.86% steigen und $0.005719 erreichen bis zum 13. Januar 2026.
Wie viel wird Alpaca Finance nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Alpaca Finance-Prognose wird der Preis von Alpaca Finance im nächsten Monat um -11.62% fallen und $0.0050118 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Alpaca Finance in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Alpaca Finance im Jahr 2026 wird erwartet, dass ALPACA innerhalb der Spanne von $0.001959 bis $0.005848 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Alpaca Finance-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Alpaca Finance in 5 Jahren sein?
Die Zukunft von Alpaca Finance scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.018385 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Alpaca Finance-Prognose für 2030 könnte der Wert von Alpaca Finance seinen höchsten Gipfel von ungefähr $0.018385 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.006359 liegen wird.
Wie viel wird Alpaca Finance im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Alpaca Finance-Preisprognosesimulation wird der Wert von ALPACA im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.005848 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.005848 und $0.001959 während des Jahres 2026 liegen.
Wie viel wird Alpaca Finance im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Alpaca Finance könnte der Wert von ALPACA um -12.62% fallen und bis zu $0.004954 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.004954 und $0.001886 im Laufe des Jahres schwanken.
Wie viel wird Alpaca Finance im Jahr 2028 kosten?
Unser neues experimentelles Alpaca Finance-Preisprognosemodell deutet darauf hin, dass der Wert von ALPACA im Jahr 2028 um 47.02% steigen, und im besten Fall $0.008336 erreichen wird. Der Preis wird voraussichtlich zwischen $0.008336 und $0.0034038 im Laufe des Jahres liegen.
Wie viel wird Alpaca Finance im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Alpaca Finance im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.024596 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.024596 und $0.007477.
Wie viel wird Alpaca Finance im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Alpaca Finance-Preisprognosen wird der Wert von ALPACA im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.018385 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.018385 und $0.006359 während des Jahres 2030 liegen.
Wie viel wird Alpaca Finance im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Alpaca Finance im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.016784 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.016784 und $0.007518 während des Jahres schwanken.
Wie viel wird Alpaca Finance im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Alpaca Finance-Preisprognose könnte ALPACA eine 449.04% Steigerung im Wert erfahren und $0.031133 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.031133 und $0.011476 liegen.
Wie viel wird Alpaca Finance im Jahr 2033 kosten?
Laut unserer experimentellen Alpaca Finance-Preisprognose wird der Wert von ALPACA voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.082929 beträgt. Im Laufe des Jahres könnte der Preis von ALPACA zwischen $0.082929 und $0.026668 liegen.
Wie viel wird Alpaca Finance im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Alpaca Finance-Preisprognosesimulation deuten darauf hin, dass ALPACA im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.048028 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.048028 und $0.021439.
Wie viel wird Alpaca Finance im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Alpaca Finance könnte ALPACA um 897.93% steigen, wobei der Wert im Jahr 2035 $0.056589 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.056589 und $0.025348.
Wie viel wird Alpaca Finance im Jahr 2036 kosten?
Unsere jüngste Alpaca Finance-Preisprognosesimulation deutet darauf hin, dass der Wert von ALPACA im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.117081 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.117081 und $0.041959.
Wie viel wird Alpaca Finance im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Alpaca Finance um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.2796011 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.2796011 und $0.108968 liegen.
Verwandte Prognosen
Vite-Preisprognose
Passage-Preisprognose
Ascendia (ex AirDAO)-Preisprognose
GET Protocol-Preisprognose
ISKRA Token-Preisprognose
Instadapp-Preisprognose
Evmos-Preisprognose
Hive Dollar-Preisprognose
Onomy Protocol-Preisprognose
FEED EVERY GORILLA-Preisprognose
Pluton-Preisprognose
Shuffle-Preisprognose
Advertise Coin-Preisprognose
Frax Price Index Share-Preisprognose
Decimal-Preisprognose
WAGMI Games-Preisprognose
Alkimi-Preisprognose
RabbitX-Preisprognose
GameGPT-Preisprognose
Gamer Arena-Preisprognose
Troll-Preisprognose
Orange-Preisprognose
KRYLL-Preisprognose
Beefy.Finance-Preisprognose
Aura Finance-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Alpaca Finance?
Alpaca Finance-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Alpaca Finance Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Alpaca Finance. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von ALPACA über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von ALPACA über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von ALPACA einzuschätzen.
Wie liest man Alpaca Finance-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Alpaca Finance in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von ALPACA innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Alpaca Finance?
Die Preisentwicklung von Alpaca Finance wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von ALPACA. Die Marktkapitalisierung von Alpaca Finance kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von ALPACA-„Walen“, großen Inhabern von Alpaca Finance, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Alpaca Finance-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


