Alpaca Finance Preisvorhersage bis zu $0.0059022 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.001977 | $0.0059022 |
| 2027 | $0.0019034 | $0.00500048 |
| 2028 | $0.003435 | $0.008413 |
| 2029 | $0.007546 | $0.024823 |
| 2030 | $0.006417 | $0.018555 |
| 2031 | $0.007587 | $0.016939 |
| 2032 | $0.011582 | $0.031421 |
| 2033 | $0.026914 | $0.083694 |
| 2034 | $0.021637 | $0.048471 |
| 2035 | $0.025582 | $0.057111 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Alpaca Finance eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,955.97 Gewinn erzielen könnten, was einer Rendite von 39.56% in den nächsten 90 Tagen entspricht.
Langfristige Alpaca Finance Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Alpaca Finance'
'name_with_ticker' => 'Alpaca Finance <small>ALPACA</small>'
'name_lang' => 'Alpaca Finance'
'name_lang_with_ticker' => 'Alpaca Finance <small>ALPACA</small>'
'name_with_lang' => 'Alpaca Finance'
'name_with_lang_with_ticker' => 'Alpaca Finance <small>ALPACA</small>'
'image' => '/uploads/coins/alpaca-finance.png?1717085056'
'price_for_sd' => 0.005722
'ticker' => 'ALPACA'
'marketcap' => '$869.51K'
'low24h' => '$0.00491'
'high24h' => '$0.005946'
'volume24h' => '$189.95K'
'current_supply' => '151.67M'
'max_supply' => '151.67M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.005722'
'change_24h_pct' => '12.6752%'
'ath_price' => '$8.78'
'ath_days' => 1767
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '06.03.2021'
'ath_pct' => '-99.93%'
'fdv' => '$869.51K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.282183'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.005771'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.0050581'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001977'
'current_year_max_price_prediction' => '$0.0059022'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.006417'
'grand_prediction_max_price' => '$0.018555'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.005831447839702
107 => 0.0058532203491199
108 => 0.0059022749245703
109 => 0.0054831089482348
110 => 0.0056713021655429
111 => 0.0057818480493916
112 => 0.0052823977244695
113 => 0.0057719755223232
114 => 0.005475812201147
115 => 0.005375289921716
116 => 0.0055106299281665
117 => 0.0054578877960303
118 => 0.0054125432079414
119 => 0.0053872401486689
120 => 0.0054866189124748
121 => 0.00548198277436
122 => 0.0053193798281867
123 => 0.0051072709134477
124 => 0.0051784616274719
125 => 0.0051525973736504
126 => 0.0050588619812461
127 => 0.0051220283180722
128 => 0.0048438757384418
129 => 0.0043653286823009
130 => 0.0046814715258804
131 => 0.0046693003702998
201 => 0.0046631631217381
202 => 0.0049007357311417
203 => 0.0048778986064802
204 => 0.0048364490015977
205 => 0.0050581007267473
206 => 0.0049771948654313
207 => 0.0052265276661888
208 => 0.0053907543746022
209 => 0.0053491011691711
210 => 0.0055035571822105
211 => 0.005180101717738
212 => 0.0052875406482549
213 => 0.0053096836629306
214 => 0.005055365578865
215 => 0.0048816350425063
216 => 0.0048700491964042
217 => 0.0045688243879007
218 => 0.0047297362492016
219 => 0.0048713320281611
220 => 0.0048035186383158
221 => 0.0047820509449582
222 => 0.0048917247345477
223 => 0.0049002473272913
224 => 0.0047059313095536
225 => 0.0047463357628292
226 => 0.0049148290496702
227 => 0.0047420901643101
228 => 0.0044064867267922
301 => 0.0043232524342072
302 => 0.004312147445264
303 => 0.0040864094423785
304 => 0.004328814547638
305 => 0.0042229982231393
306 => 0.0045572707243564
307 => 0.0043663360644006
308 => 0.0043581052528262
309 => 0.0043456631739339
310 => 0.0041513611497309
311 => 0.0041939009444935
312 => 0.0043353097012782
313 => 0.0043857659387826
314 => 0.0043805029398351
315 => 0.0043346167212247
316 => 0.0043556231971291
317 => 0.0042879540190996
318 => 0.0042640586239252
319 => 0.0041886381838087
320 => 0.0040777909722657
321 => 0.0040932049568962
322 => 0.003873587626079
323 => 0.0037539284482758
324 => 0.0037208083649425
325 => 0.0036765188053256
326 => 0.0037258109885512
327 => 0.0038729654777742
328 => 0.0036954659432048
329 => 0.0033911554413303
330 => 0.0034094450210128
331 => 0.0034505362763345
401 => 0.0033739629938884
402 => 0.0033014928083616
403 => 0.0033644997549852
404 => 0.0032355593836865
405 => 0.003466118104186
406 => 0.0034598821369299
407 => 0.0035458201702765
408 => 0.0035995589861541
409 => 0.0034757084137045
410 => 0.0034445603296609
411 => 0.0034623036939336
412 => 0.0031690454063385
413 => 0.0035218547117027
414 => 0.0035249058212262
415 => 0.0034987803691036
416 => 0.0036866404324448
417 => 0.0040830837611178
418 => 0.0039339258339751
419 => 0.0038761673762632
420 => 0.0037663685059317
421 => 0.0039126689814366
422 => 0.0039014353875608
423 => 0.0038506328158403
424 => 0.0038199072619501
425 => 0.0038765200370897
426 => 0.0038128923126044
427 => 0.0038014630249139
428 => 0.0037322139766972
429 => 0.0037074952171148
430 => 0.0036891944316021
501 => 0.0036690470649507
502 => 0.0037134871353727
503 => 0.0036127800892183
504 => 0.0034913372639895
505 => 0.0034812406071013
506 => 0.0035091183644767
507 => 0.0034967845320931
508 => 0.003481181557457
509 => 0.0034513912296595
510 => 0.0034425530757716
511 => 0.0034712727882445
512 => 0.0034388499073258
513 => 0.0034866916342871
514 => 0.0034736813317571
515 => 0.0034010068394273
516 => 0.0033104275144411
517 => 0.0033096211684521
518 => 0.0032901060014637
519 => 0.003265250502179
520 => 0.0032583362708948
521 => 0.0033591934856812
522 => 0.0035679649018866
523 => 0.0035269780774089
524 => 0.0035565952585928
525 => 0.0037022824768159
526 => 0.0037485920625215
527 => 0.0037157226154903
528 => 0.0036707288890948
529 => 0.0036727083847092
530 => 0.0038264655683298
531 => 0.0038360552152698
601 => 0.0038602851593499
602 => 0.0038914274848742
603 => 0.0037210262881903
604 => 0.0036646825036693
605 => 0.0036379836927291
606 => 0.0035557616887734
607 => 0.0036444310708577
608 => 0.0035927672191187
609 => 0.0035997384378068
610 => 0.0035951984224909
611 => 0.0035976775778478
612 => 0.0034660536583249
613 => 0.0035140104966495
614 => 0.003434272951553
615 => 0.0033275133296284
616 => 0.0033271554339409
617 => 0.0033532847001607
618 => 0.0033377419901749
619 => 0.0032959169572426
620 => 0.0033018580057621
621 => 0.0032498081692668
622 => 0.0033081777983053
623 => 0.0033098516304096
624 => 0.0032873761438146
625 => 0.0033773026108051
626 => 0.0034141455577041
627 => 0.0033993517109557
628 => 0.0034131075819789
629 => 0.0035286812650104
630 => 0.0035475248181778
701 => 0.0035558938797596
702 => 0.0035446804459282
703 => 0.0034152200567431
704 => 0.0034209621755115
705 => 0.0033788303179444
706 => 0.0033432333380459
707 => 0.0033446570305602
708 => 0.0033629585055115
709 => 0.0034428821199912
710 => 0.0036110766549091
711 => 0.0036174595145607
712 => 0.0036251957266595
713 => 0.0035937286641449
714 => 0.0035842378969913
715 => 0.0035967586686418
716 => 0.0036599236927085
717 => 0.0038224012837447
718 => 0.003764970851559
719 => 0.0037182790162342
720 => 0.0037592403438425
721 => 0.0037529346685227
722 => 0.0036997084230162
723 => 0.0036982145395804
724 => 0.0035960563569934
725 => 0.0035582908029202
726 => 0.003526731079234
727 => 0.0034922686848561
728 => 0.0034718382222789
729 => 0.0035032286982766
730 => 0.0035104080715385
731 => 0.0034417722471579
801 => 0.0034324174379129
802 => 0.0034884669337092
803 => 0.0034638016403451
804 => 0.00348917050624
805 => 0.0034950563007377
806 => 0.0034941085522622
807 => 0.0034683551531991
808 => 0.0034847696017845
809 => 0.0034459445374974
810 => 0.0034037281114213
811 => 0.003376796661761
812 => 0.003353295399994
813 => 0.0033663352659237
814 => 0.0033198505248698
815 => 0.0033049791206537
816 => 0.0034792087559406
817 => 0.0036079140608112
818 => 0.0036060426347055
819 => 0.0035946508095787
820 => 0.0035777248681876
821 => 0.0036586854546705
822 => 0.0036304804051979
823 => 0.0036510019353
824 => 0.0036562255259969
825 => 0.0036720357617915
826 => 0.0036776865621524
827 => 0.0036606059187286
828 => 0.0036032811931734
829 => 0.0034604334273612
830 => 0.0033939374067655
831 => 0.0033719926123901
901 => 0.0033727902639865
902 => 0.0033507874720829
903 => 0.0033572682803945
904 => 0.0033485337114322
905 => 0.0033319925509367
906 => 0.0033653138958749
907 => 0.0033691538704692
908 => 0.0033613762704002
909 => 0.0033632081767697
910 => 0.0032988129700549
911 => 0.0033037087977623
912 => 0.0032764482069553
913 => 0.0032713371748103
914 => 0.0032024247751014
915 => 0.0030803364700049
916 => 0.0031479852424269
917 => 0.003066275038198
918 => 0.0030353301457449
919 => 0.0031818184536998
920 => 0.0031671150905343
921 => 0.0031419493241933
922 => 0.0031047239107698
923 => 0.0030909166428255
924 => 0.0030070280536456
925 => 0.0030020714682686
926 => 0.0030436489182486
927 => 0.0030244623556755
928 => 0.0029975171553035
929 => 0.002899924370947
930 => 0.0027901977694699
1001 => 0.0027935097258517
1002 => 0.0028284117162456
1003 => 0.0029298939604904
1004 => 0.0028902430920033
1005 => 0.0028614759319746
1006 => 0.0028560887076389
1007 => 0.0029235210991185
1008 => 0.0030189520605849
1009 => 0.0030637261325576
1010 => 0.0030193563870415
1011 => 0.0029683868124293
1012 => 0.0029714890942657
1013 => 0.0029921271854763
1014 => 0.0029942959570557
1015 => 0.0029611200037401
1016 => 0.0029704588402692
1017 => 0.0029562722936204
1018 => 0.0028692094830232
1019 => 0.0028676347928587
1020 => 0.0028462681750606
1021 => 0.0028456212023653
1022 => 0.0028092712553383
1023 => 0.0028041856464739
1024 => 0.0027320106203676
1025 => 0.0027795164411169
1026 => 0.0027476520307258
1027 => 0.0026996248482119
1028 => 0.002691344943844
1029 => 0.0026910960399204
1030 => 0.0027404092176807
1031 => 0.0027789401879232
1101 => 0.0027482063257869
1102 => 0.0027412088211294
1103 => 0.002815923863907
1104 => 0.0028064156936708
1105 => 0.0027981816795674
1106 => 0.0030104072646816
1107 => 0.0028424141538948
1108 => 0.0027691595688802
1109 => 0.0026784931092562
1110 => 0.0027080145656898
1111 => 0.0027142351703207
1112 => 0.0024961986787829
1113 => 0.0024077413013207
1114 => 0.0023773860628216
1115 => 0.0023599161939053
1116 => 0.0023678774325433
1117 => 0.0022882554178118
1118 => 0.0023417627285379
1119 => 0.0022728167940618
1120 => 0.0022612577837774
1121 => 0.0023845416553831
1122 => 0.0024016958859031
1123 => 0.0023285106091031
1124 => 0.0023755074044287
1125 => 0.0023584657131393
1126 => 0.0022739986742216
1127 => 0.0022707726546324
1128 => 0.0022283900636635
1129 => 0.0021620695156838
1130 => 0.0021317592456393
1201 => 0.0021159733938342
1202 => 0.0021224869439491
1203 => 0.0021191934936931
1204 => 0.0020977015029971
1205 => 0.0021204253894422
1206 => 0.0020623752497331
1207 => 0.0020392592163592
1208 => 0.0020288182403721
1209 => 0.001977295400139
1210 => 0.002059291151261
1211 => 0.0020754453471873
1212 => 0.0020916313718698
1213 => 0.002232519666063
1214 => 0.0022254812850313
1215 => 0.0022891048217274
1216 => 0.0022866325280876
1217 => 0.0022684860647889
1218 => 0.0021919291210801
1219 => 0.0022224433543461
1220 => 0.0021285252873181
1221 => 0.0021988950889433
1222 => 0.0021667812501947
1223 => 0.0021880373677588
1224 => 0.0021498169517917
1225 => 0.0021709697080702
1226 => 0.0020792761063226
1227 => 0.0019936539111744
1228 => 0.0020281107819697
1229 => 0.0020655693411454
1230 => 0.0021467890417015
1231 => 0.0020984152580982
]
'min_raw' => 0.001977295400139
'max_raw' => 0.0059022749245703
'avg_raw' => 0.0039397851623546
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001977'
'max' => '$0.0059022'
'avg' => '$0.003939'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.003745704599861
'max_diff' => 0.00017927492457026
'year' => 2026
]
1 => [
'items' => [
101 => 0.0021158122998973
102 => 0.0020575351221002
103 => 0.001937292658252
104 => 0.0019379732175391
105 => 0.0019194765341005
106 => 0.0019034926990496
107 => 0.0021039715690529
108 => 0.0020790388524661
109 => 0.0020393118316982
110 => 0.0020924880276851
111 => 0.0021065486579237
112 => 0.0021069489442997
113 => 0.0021457449242154
114 => 0.002166450345651
115 => 0.0021700997659214
116 => 0.0022311460785614
117 => 0.002251607997338
118 => 0.0023358877448997
119 => 0.0021646936353029
120 => 0.0021611680052732
121 => 0.0020932363258134
122 => 0.0020501529807426
123 => 0.0020961862793098
124 => 0.0021369654976684
125 => 0.0020945034497994
126 => 0.0021000480968283
127 => 0.002043046266841
128 => 0.0020634217388761
129 => 0.0020809718402652
130 => 0.0020712817058254
131 => 0.0020567751055612
201 => 0.0021336220668031
202 => 0.0021292860600841
203 => 0.0022008477170965
204 => 0.0022566351461609
205 => 0.00235661619224
206 => 0.0022522807585266
207 => 0.0022484783606263
208 => 0.0022856474100256
209 => 0.0022516023069502
210 => 0.0022731176368969
211 => 0.0023531497399599
212 => 0.0023548406921847
213 => 0.0023265150637506
214 => 0.0023247914466862
215 => 0.0023302316934754
216 => 0.0023620953888426
217 => 0.0023509612346088
218 => 0.0023638459597705
219 => 0.002379958505883
220 => 0.0024466068281823
221 => 0.0024626755130519
222 => 0.0024236369394768
223 => 0.0024271616855742
224 => 0.0024125601874244
225 => 0.0023984553231678
226 => 0.0024301609981665
227 => 0.0024881037424034
228 => 0.0024877432835987
301 => 0.0025011848740156
302 => 0.0025095588734892
303 => 0.0024736115376063
304 => 0.0024502111437666
305 => 0.0024591843437705
306 => 0.0024735326859875
307 => 0.0024545313697716
308 => 0.002337246443821
309 => 0.0023728231981644
310 => 0.0023669014866272
311 => 0.0023584682492936
312 => 0.0023942409508927
313 => 0.0023907905865554
314 => 0.002287438778967
315 => 0.0022940550263646
316 => 0.0022878411348849
317 => 0.0023079194894985
318 => 0.0022505180099096
319 => 0.0022681743184263
320 => 0.0022792481896103
321 => 0.0022857707848112
322 => 0.0023093348712623
323 => 0.0023065698976929
324 => 0.002309162996623
325 => 0.0023441023161417
326 => 0.0025208134045409
327 => 0.0025304313991914
328 => 0.002483068875916
329 => 0.0025019892697801
330 => 0.0024656662509963
331 => 0.0024900501368489
401 => 0.0025067329722657
402 => 0.0024313464469419
403 => 0.0024268825461667
404 => 0.0023904096093636
405 => 0.0024100080996689
406 => 0.0023788254924119
407 => 0.0023864766135115
408 => 0.0023650834119044
409 => 0.0024035869154532
410 => 0.0024466398152605
411 => 0.0024575166779623
412 => 0.0024289043349776
413 => 0.0024081871130114
414 => 0.0023718144959158
415 => 0.0024323029687623
416 => 0.0024499916415754
417 => 0.0024322100576943
418 => 0.0024280896761738
419 => 0.0024202815606377
420 => 0.0024297462047961
421 => 0.0024498953052645
422 => 0.002440393361579
423 => 0.002446669562786
424 => 0.0024227511557758
425 => 0.0024736234376702
426 => 0.0025544208643999
427 => 0.0025546806413385
428 => 0.0025451786464341
429 => 0.0025412906348426
430 => 0.0025510402582438
501 => 0.0025563290289884
502 => 0.0025878575232928
503 => 0.002621688853832
504 => 0.0027795649116924
505 => 0.0027352339463965
506 => 0.002875310977019
507 => 0.0029860937215154
508 => 0.0030193126226476
509 => 0.0029887527966761
510 => 0.0028842092828368
511 => 0.0028790798792967
512 => 0.0030353120261056
513 => 0.0029911692887464
514 => 0.0029859186505986
515 => 0.0029300607317986
516 => 0.0029630796799472
517 => 0.0029558579516284
518 => 0.0029444581001781
519 => 0.0030074559531257
520 => 0.0031253823099865
521 => 0.0031070023813634
522 => 0.0030932826172666
523 => 0.0030331666047576
524 => 0.0030693698716855
525 => 0.0030564785817604
526 => 0.0031118677442935
527 => 0.0030790564314291
528 => 0.0029908348640953
529 => 0.0030048844394753
530 => 0.0030027608744205
531 => 0.0030464636927721
601 => 0.0030333451914736
602 => 0.0030001992764975
603 => 0.003124979250519
604 => 0.0031168767330688
605 => 0.0031283642503199
606 => 0.0031334214106771
607 => 0.0032093727819942
608 => 0.00324048762865
609 => 0.003247551243583
610 => 0.0032771079413974
611 => 0.0032468158460158
612 => 0.0033680058254401
613 => 0.003448590090126
614 => 0.0035421928603869
615 => 0.0036789716657909
616 => 0.0037304017618975
617 => 0.0037211113753688
618 => 0.0038248155045912
619 => 0.0040111695195906
620 => 0.0037587788498654
621 => 0.0040245468379385
622 => 0.0039404077613535
623 => 0.0037409155243679
624 => 0.003728070576165
625 => 0.0038631690352042
626 => 0.0041628044146082
627 => 0.0040877491505038
628 => 0.0041629271781324
629 => 0.0040752280155876
630 => 0.0040708730129807
701 => 0.0041586678255558
702 => 0.0043638051905838
703 => 0.0042663521179181
704 => 0.0041266292417782
705 => 0.0042297984391912
706 => 0.0041404237325335
707 => 0.0039390375040286
708 => 0.0040876917571578
709 => 0.0039882908915197
710 => 0.0040173013485536
711 => 0.004226227183362
712 => 0.0042010886741687
713 => 0.0042336202328282
714 => 0.0041762028832933
715 => 0.0041225660249428
716 => 0.0040224488457062
717 => 0.0039928090846515
718 => 0.0040010004482802
719 => 0.0039928050254185
720 => 0.00393679038376
721 => 0.0039246940272271
722 => 0.0039045329030519
723 => 0.0039107816784647
724 => 0.0038728728666705
725 => 0.0039444146268863
726 => 0.0039576934080061
727 => 0.0040097555350035
728 => 0.0040151607977378
729 => 0.0041601530803674
730 => 0.0040802937675913
731 => 0.0041338702893229
801 => 0.0041290779009374
802 => 0.0037452391260568
803 => 0.0037981287225971
804 => 0.0038804083371442
805 => 0.0038433414823182
806 => 0.0037909376219023
807 => 0.0037486186948993
808 => 0.0036845011931572
809 => 0.0037747453455916
810 => 0.0038934068096471
811 => 0.0040181702482875
812 => 0.0041680653449896
813 => 0.0041346105043769
814 => 0.0040153680637195
815 => 0.0040207171925007
816 => 0.0040537834018217
817 => 0.0040109596563691
818 => 0.0039983300978163
819 => 0.0040520482944166
820 => 0.0040524182221136
821 => 0.0040031443275479
822 => 0.0039483854107656
823 => 0.0039481559689048
824 => 0.0039384121485718
825 => 0.0040769614195788
826 => 0.0041531495097214
827 => 0.004161884351473
828 => 0.0041525615852759
829 => 0.0041561495479778
830 => 0.0041118173770139
831 => 0.0042131475735405
901 => 0.0043061381823912
902 => 0.0042812147127646
903 => 0.0042438508887144
904 => 0.0042140888031728
905 => 0.0042742037112637
906 => 0.0042715268890361
907 => 0.0043053259905461
908 => 0.0043037926680686
909 => 0.0042924273014792
910 => 0.0042812151186577
911 => 0.0043256701561775
912 => 0.0043128678192979
913 => 0.0043000455968529
914 => 0.0042743286667556
915 => 0.0042778240246688
916 => 0.0042404666520096
917 => 0.0042231834220604
918 => 0.0039632851118913
919 => 0.0038938317909919
920 => 0.0039156832195996
921 => 0.0039228772772693
922 => 0.003892651103007
923 => 0.003935987672432
924 => 0.0039292337139919
925 => 0.0039555094153489
926 => 0.0039390934978994
927 => 0.0039397672128776
928 => 0.0039880429258539
929 => 0.0040020575707105
930 => 0.0039949296092244
1001 => 0.003999921789117
1002 => 0.0041149644676756
1003 => 0.0040986090776424
1004 => 0.0040899206026622
1005 => 0.0040923273696098
1006 => 0.0041217232405244
1007 => 0.0041299524794254
1008 => 0.0040950846159434
1009 => 0.0041115285019302
1010 => 0.0041815444814224
1011 => 0.0042060461116834
1012 => 0.0042842435540268
1013 => 0.0042510238906706
1014 => 0.0043120000204743
1015 => 0.0044994198551962
1016 => 0.0046491437876382
1017 => 0.0045114514717613
1018 => 0.0047864004064632
1019 => 0.0050004875912108
1020 => 0.0049922705684793
1021 => 0.0049549395158927
1022 => 0.0047112069478599
1023 => 0.0044869206049082
1024 => 0.0046745456544885
1025 => 0.0046750239493253
1026 => 0.0046589067911699
1027 => 0.0045588045060767
1028 => 0.004655423448633
1029 => 0.0046630927094246
1030 => 0.0046587999628023
1031 => 0.0045820517755236
1101 => 0.004464871478985
1102 => 0.0044877682284386
1103 => 0.0045252735711247
1104 => 0.0044542681329858
1105 => 0.0044315775931292
1106 => 0.0044737636237744
1107 => 0.0046096958043221
1108 => 0.004583998612991
1109 => 0.0045833275554749
1110 => 0.004693271037294
1111 => 0.0046145752315999
1112 => 0.0044880570297748
1113 => 0.0044561095152439
1114 => 0.0043427173610836
1115 => 0.0044210377258511
1116 => 0.004423856336348
1117 => 0.0043809610729796
1118 => 0.0044915377439878
1119 => 0.0044905187604978
1120 => 0.0045954948524547
1121 => 0.0047961697130565
1122 => 0.0047368202821664
1123 => 0.0046678033512409
1124 => 0.0046753074052644
1125 => 0.0047576083563189
1126 => 0.0047078473225634
1127 => 0.0047257417372481
1128 => 0.0047575812709791
1129 => 0.0047767908522101
1130 => 0.0046725434421439
1201 => 0.0046482383841275
1202 => 0.0045985187653419
1203 => 0.0045855478448614
1204 => 0.0046260434369284
1205 => 0.0046153742791491
1206 => 0.00442361944305
1207 => 0.0044035799957638
1208 => 0.0044041945770023
1209 => 0.0043538044339774
1210 => 0.0042769473708443
1211 => 0.0044789231438612
1212 => 0.0044627016626388
1213 => 0.0044447944028122
1214 => 0.0044469879399635
1215 => 0.0045346587774361
1216 => 0.0044838052642186
1217 => 0.0046190076638342
1218 => 0.0045912141150294
1219 => 0.0045627077665724
1220 => 0.004558767320891
1221 => 0.0045477948087824
1222 => 0.0045101659820702
1223 => 0.0044647269126732
1224 => 0.0044347241031925
1225 => 0.0040907985665659
1226 => 0.004154629145641
1227 => 0.0042280604085266
1228 => 0.0042534085862173
1229 => 0.0042100487742368
1230 => 0.0045118780917283
1231 => 0.0045670252165337
]
'min_raw' => 0.0019034926990496
'max_raw' => 0.0050004875912108
'avg_raw' => 0.0034519901451302
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0019034'
'max' => '$0.00500048'
'avg' => '$0.003451'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.380270108935E-5
'max_diff' => -0.0009017873333595
'year' => 2027
]
2 => [
'items' => [
101 => 0.0043999809783403
102 => 0.0043687338217456
103 => 0.0045139266501126
104 => 0.0044263576255059
105 => 0.0044657899519244
106 => 0.004380558830537
107 => 0.0045537418890644
108 => 0.0045524225243194
109 => 0.0044850504030355
110 => 0.0045419928586003
111 => 0.0045320977056609
112 => 0.0044560347466615
113 => 0.0045561532205357
114 => 0.0045562028780497
115 => 0.0044913586761101
116 => 0.0044156348444658
117 => 0.0044020972118848
118 => 0.0043918984242601
119 => 0.0044632816753657
120 => 0.0045272836750974
121 => 0.0046463755291566
122 => 0.0046763180508198
123 => 0.0047931857062576
124 => 0.0047235967076273
125 => 0.0047544446093917
126 => 0.0047879343704591
127 => 0.00480399059346
128 => 0.0047778278397045
129 => 0.0049593714132456
130 => 0.0049746992532038
131 => 0.0049798385453565
201 => 0.0049186230738018
202 => 0.0049729967402019
203 => 0.0049475571023599
204 => 0.0050137439726899
205 => 0.005024122919074
206 => 0.0050153323207284
207 => 0.0050186267621312
208 => 0.0048637113485948
209 => 0.0048556781671591
210 => 0.0047461451682738
211 => 0.0047907806749466
212 => 0.0047073367346573
213 => 0.0047337976676909
214 => 0.0047454613948431
215 => 0.0047393689256895
216 => 0.0047933042995233
217 => 0.0047474482134956
218 => 0.00462642646303
219 => 0.0045053717402694
220 => 0.0045038519968342
221 => 0.0044719804251247
222 => 0.0044489431163482
223 => 0.004453380919311
224 => 0.0044690203157836
225 => 0.0044480341261944
226 => 0.0044525125937701
227 => 0.0045268849953997
228 => 0.0045417998501468
229 => 0.0044911133461062
301 => 0.0042875997183553
302 => 0.0042376569636299
303 => 0.0042735548253186
304 => 0.0042563979595498
305 => 0.003435245351597
306 => 0.0036281629765067
307 => 0.0035135378746489
308 => 0.0035663623952323
309 => 0.0034493598482617
310 => 0.003505199596305
311 => 0.0034948880337825
312 => 0.0038050938657898
313 => 0.0038002504283972
314 => 0.003802568725568
315 => 0.0036919103613124
316 => 0.0038681921402736
317 => 0.0039550348834776
318 => 0.0039389626029553
319 => 0.0039430076496991
320 => 0.00387350034476
321 => 0.0038032417082152
322 => 0.0037253140675604
323 => 0.0038700939917496
324 => 0.0038539969356555
325 => 0.0038909177907974
326 => 0.0039848179207168
327 => 0.0039986450715394
328 => 0.004017228902466
329 => 0.0040105679219659
330 => 0.0041692595012645
331 => 0.0041500409039307
401 => 0.0041963521939373
402 => 0.0041010863567476
403 => 0.0039932840192512
404 => 0.0040137737192853
405 => 0.0040118003964042
406 => 0.0039866777312539
407 => 0.0039639981124665
408 => 0.0039262429371283
409 => 0.0040457058986128
410 => 0.0040408559205415
411 => 0.0041193714280329
412 => 0.0041054930494248
413 => 0.004012809840465
414 => 0.0040161200394049
415 => 0.0040383827181029
416 => 0.0041154341032676
417 => 0.0041383082004428
418 => 0.0041277120072561
419 => 0.0041527924105665
420 => 0.0041726149387327
421 => 0.0041552818149112
422 => 0.0044006822959002
423 => 0.0042987749069317
424 => 0.0043484438592479
425 => 0.0043602896117089
426 => 0.0043299469658695
427 => 0.0043365271992633
428 => 0.0043464944598488
429 => 0.0044070137143339
430 => 0.0045658337494903
501 => 0.0046361740619366
502 => 0.0048477963624609
503 => 0.0046303332781723
504 => 0.0046174299187023
505 => 0.004655549485408
506 => 0.0047797941783113
507 => 0.0048804828321989
508 => 0.0049138870675612
509 => 0.0049183019887081
510 => 0.0049809705549193
511 => 0.0050168910083721
512 => 0.0049733609426344
513 => 0.0049364737697096
514 => 0.0048043484948973
515 => 0.004819642355222
516 => 0.0049250018866676
517 => 0.00507382843048
518 => 0.0052015370878338
519 => 0.0051568179671246
520 => 0.0054979932913568
521 => 0.0055318194311782
522 => 0.0055271457523849
523 => 0.0056042067329026
524 => 0.0054512563797708
525 => 0.0053858671405334
526 => 0.0049444491951831
527 => 0.0050684696326225
528 => 0.0052487406219056
529 => 0.0052248810804925
530 => 0.0050939634694177
531 => 0.0052014377750862
601 => 0.0051659034085999
602 => 0.00513787597943
603 => 0.0052662750658419
604 => 0.0051250949959882
605 => 0.0052473322427117
606 => 0.0050905617094065
607 => 0.0051570222403011
608 => 0.0051192960286311
609 => 0.0051437095111322
610 => 0.0050009887912803
611 => 0.0050779974273627
612 => 0.0049977849788383
613 => 0.0049977469476938
614 => 0.0049959762534468
615 => 0.0050903458434193
616 => 0.0050934232323604
617 => 0.0050236839627861
618 => 0.0050136334445083
619 => 0.0050507954782712
620 => 0.005007288469487
621 => 0.0050276451250672
622 => 0.0050079050518468
623 => 0.0050034611455754
624 => 0.004968051344336
625 => 0.0049527958283493
626 => 0.0049587779092539
627 => 0.0049383579831524
628 => 0.0049260542390552
629 => 0.0049935287290651
630 => 0.004957479830966
701 => 0.0049880037184175
702 => 0.0049532178962448
703 => 0.0048326350811331
704 => 0.0047632866290222
705 => 0.004535516869309
706 => 0.0046001120906162
707 => 0.0046429387891714
708 => 0.0046287845655544
709 => 0.0046591933148411
710 => 0.0046610601650777
711 => 0.0046511739707041
712 => 0.0046397270241193
713 => 0.0046341552835778
714 => 0.0046756824727334
715 => 0.0046997904037792
716 => 0.0046472370213187
717 => 0.0046349244991082
718 => 0.0046880588703275
719 => 0.0047204708060766
720 => 0.0049597823289543
721 => 0.0049420533583735
722 => 0.0049865495953966
723 => 0.0049815400019582
724 => 0.0050281791471648
725 => 0.0051044144384042
726 => 0.0049494067755918
727 => 0.0049763107460943
728 => 0.0049697145138305
729 => 0.0050417304480618
730 => 0.0050419552739477
731 => 0.0049987781239133
801 => 0.0050221851574162
802 => 0.0050091199934533
803 => 0.0050327305105971
804 => 0.0049418165771625
805 => 0.0050525399345332
806 => 0.0051153129433069
807 => 0.0051161845465946
808 => 0.0051459384545559
809 => 0.0051761701482747
810 => 0.0052341972517424
811 => 0.0051745518038532
812 => 0.005067255449468
813 => 0.0050750018996895
814 => 0.0050120940863717
815 => 0.0050131515780788
816 => 0.0050075066044692
817 => 0.0050244475952054
818 => 0.0049455341719546
819 => 0.0049640549946616
820 => 0.0049381257344139
821 => 0.0049762543809464
822 => 0.0049352342601685
823 => 0.0049697113329276
824 => 0.0049845904945973
825 => 0.0050394949214841
826 => 0.0049271248316759
827 => 0.0046979946117708
828 => 0.0047461605619302
829 => 0.0046749193382907
830 => 0.004681512984773
831 => 0.0046948332000383
901 => 0.0046516580242602
902 => 0.0046598944871925
903 => 0.0046596002227774
904 => 0.0046570644110231
905 => 0.0046458328802988
906 => 0.004629544938658
907 => 0.0046944310849911
908 => 0.0047054565056426
909 => 0.0047299646499904
910 => 0.0048028842635361
911 => 0.00479559787458
912 => 0.0048074822772768
913 => 0.0047815386929177
914 => 0.0046827164332434
915 => 0.0046880829573919
916 => 0.0046211623152668
917 => 0.0047282533387131
918 => 0.0047028927708286
919 => 0.0046865426477332
920 => 0.0046820813651638
921 => 0.0047551817323272
922 => 0.0047770545078904
923 => 0.0047634248619868
924 => 0.0047354700605982
925 => 0.0047891515433594
926 => 0.0048035144435064
927 => 0.0048067297671659
928 => 0.0049018430622154
929 => 0.0048120455437823
930 => 0.0048336606989797
1001 => 0.0050022959695119
1002 => 0.0048493670492158
1003 => 0.0049303769090185
1004 => 0.0049264118979361
1005 => 0.004967853800987
1006 => 0.0049230124522875
1007 => 0.0049235683145465
1008 => 0.004960365916938
1009 => 0.0049086903208617
1010 => 0.0048958947165576
1011 => 0.0048782176808555
1012 => 0.0049168148416097
1013 => 0.0049399520938825
1014 => 0.0051264213547617
1015 => 0.005246889001321
1016 => 0.005241659183073
1017 => 0.0052894499320498
1018 => 0.0052679197619227
1019 => 0.0051983931632103
1020 => 0.0053170665893469
1021 => 0.0052795133518102
1022 => 0.0052826091950856
1023 => 0.0052824939676442
1024 => 0.0053074635876451
1025 => 0.0052897703234424
1026 => 0.0052548950835226
1027 => 0.0052780468953407
1028 => 0.0053467994995162
1029 => 0.0055602096924645
1030 => 0.0056796368637473
1031 => 0.0055530200267961
1101 => 0.005640358625458
1102 => 0.0055879865881855
1103 => 0.00557846903108
1104 => 0.0056333241253114
1105 => 0.0056882752361237
1106 => 0.0056847750879252
1107 => 0.0056448834032462
1108 => 0.0056223496027851
1109 => 0.0057929830892536
1110 => 0.0059187029354181
1111 => 0.0059101296847462
1112 => 0.0059479692250414
1113 => 0.0060590672856809
1114 => 0.0060692247000196
1115 => 0.0060679450992784
1116 => 0.0060427688880235
1117 => 0.0061521593566293
1118 => 0.0062434148100825
1119 => 0.0060369413225286
1120 => 0.0061155637236527
1121 => 0.0061508598525729
1122 => 0.0062026850417172
1123 => 0.0062901228227139
1124 => 0.0063851034446024
1125 => 0.0063985347459469
1126 => 0.006389004594896
1127 => 0.0063263623215444
1128 => 0.0064302912513692
1129 => 0.0064911703810273
1130 => 0.0065274225095446
1201 => 0.0066193518756854
1202 => 0.0061510778294488
1203 => 0.0058196101847924
1204 => 0.0057678467256285
1205 => 0.0058731097553358
1206 => 0.0059008667768127
1207 => 0.0058896779562597
1208 => 0.0055165809864791
1209 => 0.0057658824472968
1210 => 0.0060341098572744
1211 => 0.0060444135644822
1212 => 0.0061786938142876
1213 => 0.0062224209679577
1214 => 0.0063305341695658
1215 => 0.0063237716593692
1216 => 0.0063500955035039
1217 => 0.0063440441076028
1218 => 0.0065443010476612
1219 => 0.0067652141909891
1220 => 0.0067575646712964
1221 => 0.0067258057932174
1222 => 0.0067729731428582
1223 => 0.0070009791812637
1224 => 0.0069799880389696
1225 => 0.0070003791456871
1226 => 0.0072692111148244
1227 => 0.0076187309156046
1228 => 0.0074563438769279
1229 => 0.0078086770252447
1230 => 0.0080304520657324
1231 => 0.0084139890662887
]
'min_raw' => 0.003435245351597
'max_raw' => 0.0084139890662887
'avg_raw' => 0.0059246172089428
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003435'
'max' => '$0.008413'
'avg' => '$0.005924'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0015317526525474
'max_diff' => 0.0034135014750779
'year' => 2028
]
3 => [
'items' => [
101 => 0.0083659683448595
102 => 0.0085152764846515
103 => 0.0082800012312742
104 => 0.0077397616925461
105 => 0.0076542667175885
106 => 0.0078254298225312
107 => 0.0082462176141813
108 => 0.0078121777175155
109 => 0.0078999834233163
110 => 0.0078746953741387
111 => 0.0078733478814653
112 => 0.0079247761961596
113 => 0.007850176743375
114 => 0.0075462451525451
115 => 0.0076855352095423
116 => 0.0076317486292777
117 => 0.0076914288501365
118 => 0.0080134983881156
119 => 0.0078711037681962
120 => 0.0077211026033107
121 => 0.0079092373520003
122 => 0.0081487975371959
123 => 0.0081338062913374
124 => 0.0081047170085172
125 => 0.008268691772709
126 => 0.0085395300430558
127 => 0.0086127365392143
128 => 0.0086667760780375
129 => 0.0086742272174357
130 => 0.0087509785840949
131 => 0.0083382671417339
201 => 0.0089932507999423
202 => 0.0091063483841565
203 => 0.0090850907257388
204 => 0.009210793930719
205 => 0.0091738088590313
206 => 0.0091202232929358
207 => 0.0093194896106679
208 => 0.0090910468573507
209 => 0.0087668011291599
210 => 0.0085889135098211
211 => 0.0088231702767514
212 => 0.0089662227098812
213 => 0.0090607712683364
214 => 0.0090893816049972
215 => 0.0083703047561656
216 => 0.0079827622164757
217 => 0.0082311725412326
218 => 0.0085342502818009
219 => 0.0083365835295822
220 => 0.0083443316920366
221 => 0.0080625108492814
222 => 0.008559185173004
223 => 0.0084868239017262
224 => 0.0088622343051202
225 => 0.0087726395994935
226 => 0.0090787722101135
227 => 0.0089981572341162
228 => 0.0093327854923582
301 => 0.0094662777642694
302 => 0.0096904320652213
303 => 0.0098553208814736
304 => 0.0099521467481975
305 => 0.0099463336863441
306 => 0.010330006008759
307 => 0.010103767844721
308 => 0.0098195593904477
309 => 0.0098144189561761
310 => 0.0099616145419091
311 => 0.010270096108469
312 => 0.010350080890453
313 => 0.010394781471858
314 => 0.010326320975398
315 => 0.01008075566297
316 => 0.0099747218061081
317 => 0.010065065724251
318 => 0.0099545828757035
319 => 0.010145307268309
320 => 0.010407212595888
321 => 0.010353130181429
322 => 0.010533919584477
323 => 0.010721017597033
324 => 0.010988576158084
325 => 0.011058525873608
326 => 0.011174150093419
327 => 0.011293165396182
328 => 0.011331389903878
329 => 0.011404372349436
330 => 0.011403987695923
331 => 0.011623925207898
401 => 0.011866523094505
402 => 0.011958098180545
403 => 0.012168670041414
404 => 0.011808073108993
405 => 0.012081590024473
406 => 0.012328309128809
407 => 0.012034160441585
408 => 0.012439575879069
409 => 0.012455317241815
410 => 0.012692993130278
411 => 0.01245206308413
412 => 0.012308999591803
413 => 0.012722018533631
414 => 0.012921865389607
415 => 0.01286166989018
416 => 0.012403579167317
417 => 0.012136950718176
418 => 0.011439132637986
419 => 0.012265728297469
420 => 0.012668338931077
421 => 0.01240253650304
422 => 0.012536591786938
423 => 0.013267953948313
424 => 0.013546409307171
425 => 0.013488492539078
426 => 0.013498279519495
427 => 0.013648528976813
428 => 0.014314817814447
429 => 0.013915562098482
430 => 0.014220778133511
501 => 0.014382663617952
502 => 0.014533031877877
503 => 0.014163774955878
504 => 0.013683377125819
505 => 0.01353121496731
506 => 0.012376107689965
507 => 0.012315979339802
508 => 0.012282227474781
509 => 0.012069426740115
510 => 0.011902223653695
511 => 0.011769257551521
512 => 0.011420314792377
513 => 0.011538072730266
514 => 0.010981930802205
515 => 0.011337730699319
516 => 0.010450114753617
517 => 0.011189347688848
518 => 0.010787016810999
519 => 0.01105717117482
520 => 0.011056228631695
521 => 0.01055878879538
522 => 0.010271875879099
523 => 0.010454707956171
524 => 0.010650718456021
525 => 0.010682520500163
526 => 0.010936653229616
527 => 0.011007576211842
528 => 0.010792676264621
529 => 0.010431720886057
530 => 0.010515562587982
531 => 0.010270176829685
601 => 0.0098401477268982
602 => 0.010149002136108
603 => 0.010254458610782
604 => 0.010301034197721
605 => 0.0098781499643055
606 => 0.0097452705569031
607 => 0.0096745266753683
608 => 0.010377131841876
609 => 0.010415622138938
610 => 0.010218700337186
611 => 0.011108805553999
612 => 0.010907347329729
613 => 0.011132425524702
614 => 0.010507954832319
615 => 0.010531810453729
616 => 0.010236176020368
617 => 0.010401711548751
618 => 0.010284716372749
619 => 0.010388337913911
620 => 0.010450448238436
621 => 0.010746034161096
622 => 0.011192722805278
623 => 0.010701883481172
624 => 0.010488017758711
625 => 0.010620698850099
626 => 0.010974046080977
627 => 0.011509385223269
628 => 0.011192453676328
629 => 0.011333102515014
630 => 0.011363828029235
701 => 0.011130134439964
702 => 0.011518001839242
703 => 0.011725863129545
704 => 0.011939085802561
705 => 0.012124221075178
706 => 0.011853919978091
707 => 0.012143180898114
708 => 0.011910087658002
709 => 0.011700978924885
710 => 0.011701296056516
711 => 0.011570119093641
712 => 0.011315947198709
713 => 0.011269074001587
714 => 0.011512914292448
715 => 0.011708451113957
716 => 0.011724556463134
717 => 0.011832815694566
718 => 0.011896882392569
719 => 0.012524823127447
720 => 0.012777386085614
721 => 0.013086215290088
722 => 0.01320652166989
723 => 0.013568600740872
724 => 0.01327619248443
725 => 0.013212928118815
726 => 0.012334642727774
727 => 0.012478461911354
728 => 0.012708730300754
729 => 0.012338439768702
730 => 0.012573303882157
731 => 0.012619671033255
801 => 0.012325857438116
802 => 0.012482795974216
803 => 0.012066013751367
804 => 0.011201807518802
805 => 0.011518963947826
806 => 0.011752497833287
807 => 0.011419216184213
808 => 0.012016610640397
809 => 0.011667625131819
810 => 0.011557013479859
811 => 0.01112547798966
812 => 0.011329146129709
813 => 0.011604610205373
814 => 0.011434405432749
815 => 0.011787605892319
816 => 0.012287831938193
817 => 0.012644322807459
818 => 0.012671689749836
819 => 0.012442490003932
820 => 0.012809784059477
821 => 0.012812459395688
822 => 0.012398150200592
823 => 0.01214438812548
824 => 0.012086732848094
825 => 0.012230767034986
826 => 0.012405651128051
827 => 0.01268139459987
828 => 0.012848020604845
829 => 0.013282492854216
830 => 0.013400048587601
831 => 0.013529206697919
901 => 0.013701801764189
902 => 0.013909046393714
903 => 0.013455606942757
904 => 0.013473622937461
905 => 0.013051386399026
906 => 0.012600166102864
907 => 0.012942586062247
908 => 0.013390254608922
909 => 0.013287558949685
910 => 0.013276003590139
911 => 0.013295436499706
912 => 0.013218007326368
913 => 0.012867798045019
914 => 0.012691925136352
915 => 0.012918846058497
916 => 0.013039444429529
917 => 0.013226481985716
918 => 0.013203425659032
919 => 0.013685214317403
920 => 0.013872422821513
921 => 0.013824526875058
922 => 0.013833340881886
923 => 0.014172272936334
924 => 0.014549235087574
925 => 0.014902309886746
926 => 0.01526147273738
927 => 0.014828487902576
928 => 0.014608644906255
929 => 0.014835466761824
930 => 0.01471511189251
1001 => 0.015406706671161
1002 => 0.015454591193102
1003 => 0.016146135961578
1004 => 0.016802494294481
1005 => 0.016390247385466
1006 => 0.016778977652659
1007 => 0.017199421130272
1008 => 0.018010524813083
1009 => 0.017737373627684
1010 => 0.017528144100493
1011 => 0.017330423208287
1012 => 0.017741848997659
1013 => 0.018271141702999
1014 => 0.018385146282227
1015 => 0.018569877253677
1016 => 0.018375655225026
1017 => 0.018609574265682
1018 => 0.019435411268432
1019 => 0.019212262820424
1020 => 0.01889535615135
1021 => 0.019547275150792
1022 => 0.019783202102419
1023 => 0.021439061004842
1024 => 0.023529651269271
1025 => 0.022664133172242
1026 => 0.022126878159321
1027 => 0.022253145831217
1028 => 0.02301655862484
1029 => 0.023261742584641
1030 => 0.022595248061923
1031 => 0.02283066519486
1101 => 0.024127836743044
1102 => 0.024823727660399
1103 => 0.023878614324012
1104 => 0.021271084112658
1105 => 0.01886682217315
1106 => 0.019504540704834
1107 => 0.019432243214051
1108 => 0.020825892217129
1109 => 0.019206940803739
1110 => 0.019234199793508
1111 => 0.02065666798207
1112 => 0.02027717785664
1113 => 0.019662452454867
1114 => 0.018871310348879
1115 => 0.017408810994174
1116 => 0.016113434530899
1117 => 0.018653966082763
1118 => 0.01854441374259
1119 => 0.018385765719272
1120 => 0.018738819727657
1121 => 0.020453149776247
1122 => 0.020413628919882
1123 => 0.020162217395407
1124 => 0.020352910820882
1125 => 0.019629022975392
1126 => 0.019815585355795
1127 => 0.018866441325775
1128 => 0.0192954940671
1129 => 0.019661133530242
1130 => 0.019734541065852
1201 => 0.019899931991864
1202 => 0.018486684637416
1203 => 0.019121191208801
1204 => 0.019493904374264
1205 => 0.017809972733281
1206 => 0.019460618459974
1207 => 0.018462083145166
1208 => 0.018123165261823
1209 => 0.018579473542709
1210 => 0.018401649761873
1211 => 0.018248767317274
1212 => 0.018163456286333
1213 => 0.018498518726908
1214 => 0.018482887663569
1215 => 0.017934660477971
1216 => 0.017219520462957
1217 => 0.017459544925666
1218 => 0.017372341788123
1219 => 0.017056306368236
1220 => 0.017269276082978
1221 => 0.016331465240761
1222 => 0.014718010429893
1223 => 0.01578390809941
1224 => 0.015742872198607
1225 => 0.015722180036592
1226 => 0.016523172675986
1227 => 0.016446175715753
1228 => 0.016306425478973
1229 => 0.017053739745544
1230 => 0.01678095998545
1231 => 0.017621602931064
]
'min_raw' => 0.0075462451525451
'max_raw' => 0.024823727660399
'avg_raw' => 0.016184986406472
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.007546'
'max' => '$0.024823'
'avg' => '$0.016184'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0041109998009481
'max_diff' => 0.01640973859411
'year' => 2029
]
4 => [
'items' => [
101 => 0.018175304744423
102 => 0.018034868054178
103 => 0.018555627285915
104 => 0.017465074604506
105 => 0.017827312459891
106 => 0.017901969179845
107 => 0.017044518003497
108 => 0.016458773370685
109 => 0.016419710881654
110 => 0.01540411040894
111 => 0.015946635983823
112 => 0.016424036038486
113 => 0.016195398460043
114 => 0.016123018633062
115 => 0.016492791471842
116 => 0.016521525988306
117 => 0.015866375967792
118 => 0.01600260240296
119 => 0.016570689283369
120 => 0.015988288071134
121 => 0.014856777650459
122 => 0.014576147421776
123 => 0.014538706176228
124 => 0.013777614738976
125 => 0.014594900475542
126 => 0.014238133349635
127 => 0.015365156425649
128 => 0.014721406888976
129 => 0.014693656133095
130 => 0.014651706795432
131 => 0.013996603955097
201 => 0.014140029843173
202 => 0.014616799339517
203 => 0.014786916067005
204 => 0.014769171498603
205 => 0.014614462908884
206 => 0.014685287709021
207 => 0.014457136350784
208 => 0.01437657135763
209 => 0.01412228607809
210 => 0.013748556965268
211 => 0.01380052629062
212 => 0.013060071126577
213 => 0.012656631854276
214 => 0.012544965180948
215 => 0.012395639838501
216 => 0.012561831875717
217 => 0.01305797351013
218 => 0.012459521436708
219 => 0.011433517333357
220 => 0.011495181928195
221 => 0.011633723964411
222 => 0.011375551796469
223 => 0.011131213506258
224 => 0.011343645825804
225 => 0.010908914361641
226 => 0.011686259184901
227 => 0.011665234185916
228 => 0.011954980265346
301 => 0.012136164435002
302 => 0.011718593583017
303 => 0.011613575642974
304 => 0.011673398634422
305 => 0.010684657843155
306 => 0.011874179048549
307 => 0.01188446607733
308 => 0.011796382291477
309 => 0.012429765611003
310 => 0.013766401972413
311 => 0.013263505607178
312 => 0.013068768934435
313 => 0.0126985743772
314 => 0.013191836644738
315 => 0.013153961798681
316 => 0.012982677381204
317 => 0.012879084031073
318 => 0.013069957955034
319 => 0.012855432639586
320 => 0.01281689799817
321 => 0.012583419997293
322 => 0.012500078973552
323 => 0.012438376597476
324 => 0.012370448344167
325 => 0.012520281144301
326 => 0.01218074030705
327 => 0.011771287342924
328 => 0.0117372457593
329 => 0.011831237564654
330 => 0.011789653187651
331 => 0.011737046669301
401 => 0.011636606499237
402 => 0.011606808046344
403 => 0.011703638562093
404 => 0.011594322555382
405 => 0.011755624278035
406 => 0.011711759134705
407 => 0.011466732009844
408 => 0.011161337491606
409 => 0.011158618839807
410 => 0.0110928220918
411 => 0.011009020040606
412 => 0.010985708227095
413 => 0.011325755368374
414 => 0.012029642774065
415 => 0.01189145283373
416 => 0.011991309227897
417 => 0.012482503855693
418 => 0.012638639857131
419 => 0.012527818221594
420 => 0.01237611873169
421 => 0.012382792739358
422 => 0.012901195818919
423 => 0.012933527983105
424 => 0.013015220931251
425 => 0.013120219456044
426 => 0.012545699924393
427 => 0.012355732921083
428 => 0.012265716015946
429 => 0.011988498789053
430 => 0.012287453801449
501 => 0.012113265518256
502 => 0.012136769468777
503 => 0.012121462490166
504 => 0.012129821135541
505 => 0.011686041901181
506 => 0.011847731729832
507 => 0.011578891029442
508 => 0.011218943510404
509 => 0.011217736840106
510 => 0.011305833485453
511 => 0.011253430153579
512 => 0.011112414134917
513 => 0.011132444794791
514 => 0.010956955137044
515 => 0.011153752416584
516 => 0.011159395858387
517 => 0.011083618186144
518 => 0.011386811548068
519 => 0.01151103011583
520 => 0.011461151628644
521 => 0.011507530508203
522 => 0.011897195249641
523 => 0.01196072760476
524 => 0.011988944480192
525 => 0.011951137605133
526 => 0.011514652864359
527 => 0.011534012818689
528 => 0.011391962319349
529 => 0.011271944616319
530 => 0.011276744695031
531 => 0.011338449395597
601 => 0.011607917441904
602 => 0.012174997059347
603 => 0.012196517316299
604 => 0.012222600495515
605 => 0.012116507097288
606 => 0.012084508313205
607 => 0.012126722968997
608 => 0.012339688257679
609 => 0.012887492799681
610 => 0.012693862087902
611 => 0.012536437305184
612 => 0.012674541281044
613 => 0.012653281256455
614 => 0.012473825253593
615 => 0.012468788521289
616 => 0.01212435507624
617 => 0.011997025873976
618 => 0.011890620062138
619 => 0.011774427693406
620 => 0.011705544962417
621 => 0.011811380143857
622 => 0.011835585902057
623 => 0.011604175428157
624 => 0.011572635035656
625 => 0.011761609823984
626 => 0.011678449065331
627 => 0.011763981967893
628 => 0.011783826334976
629 => 0.011780630934821
630 => 0.011693801551835
701 => 0.011749144011261
702 => 0.011618242596337
703 => 0.011475906968365
704 => 0.011385105705541
705 => 0.011305869560688
706 => 0.011349834379085
707 => 0.01119310782916
708 => 0.011142967851557
709 => 0.011730395231252
710 => 0.012164334152541
711 => 0.012158024508766
712 => 0.012119616174999
713 => 0.012062549181868
714 => 0.012335513451683
715 => 0.012240418158172
716 => 0.012309607929679
717 => 0.012327219630413
718 => 0.01238052494423
719 => 0.012399577012173
720 => 0.012341988430337
721 => 0.012148714115843
722 => 0.011667092900095
723 => 0.011442896924053
724 => 0.011368908517679
725 => 0.011371597855727
726 => 0.011297413906638
727 => 0.011319264404336
728 => 0.011289815195252
729 => 0.011234045517774
730 => 0.011346390758655
731 => 0.011359337501098
801 => 0.011333114779451
802 => 0.011339291179675
803 => 0.011122178244307
804 => 0.011138684869238
805 => 0.011046773884059
806 => 0.011029541682341
807 => 0.010797198715412
808 => 0.010385569470846
809 => 0.010613652030153
810 => 0.010338160371771
811 => 0.010233827506362
812 => 0.010727723064119
813 => 0.010678149648651
814 => 0.010593301510415
815 => 0.010467793430062
816 => 0.010421241262195
817 => 0.01013840502686
818 => 0.010121693553204
819 => 0.010261874828657
820 => 0.010197185993379
821 => 0.01010633836907
822 => 0.0097772974829019
823 => 0.0094073465851552
824 => 0.0094185130773297
825 => 0.0095361875747218
826 => 0.0098783420464573
827 => 0.0097446563750178
828 => 0.0096476658865221
829 => 0.0096295024835502
830 => 0.009856855499403
831 => 0.010178607648764
901 => 0.010329566558446
902 => 0.010179970863641
903 => 0.010008123384254
904 => 0.01001858294406
905 => 0.010088165709482
906 => 0.010095477874281
907 => 0.0099836228314064
908 => 0.010015109370781
909 => 0.0099672784382815
910 => 0.0096737400938217
911 => 0.0096684309159906
912 => 0.0095963918723149
913 => 0.0095942105587026
914 => 0.0094716541744287
915 => 0.0094545076890764
916 => 0.0092111645494598
917 => 0.0093713337408664
918 => 0.0092639006565308
919 => 0.0091019736575345
920 => 0.0090740573818735
921 => 0.0090732181849173
922 => 0.0092394810066721
923 => 0.0093693908629912
924 => 0.0092657695010289
925 => 0.0092421769255258
926 => 0.0094940839086882
927 => 0.0094620264488977
928 => 0.0094342648954675
929 => 0.010149798272797
930 => 0.009583397770875
1001 => 0.0093364148230266
1002 => 0.0090307265242744
1003 => 0.0091302601757623
1004 => 0.0091512333785844
1005 => 0.0084161081245429
1006 => 0.0081178679005322
1007 => 0.0080155230945975
1008 => 0.0079566222118389
1009 => 0.0079834640837427
1010 => 0.0077150129020439
1011 => 0.0078954165359183
1012 => 0.0076629605041806
1013 => 0.0076239884939824
1014 => 0.0080396486745059
1015 => 0.0080974853603742
1016 => 0.0078507360900102
1017 => 0.0080091890666621
1018 => 0.007951731814667
1019 => 0.0076669452956555
1020 => 0.0076560685453771
1021 => 0.0075131726808673
1022 => 0.0072895683230012
1023 => 0.0071873751313505
1024 => 0.0071341520298568
1025 => 0.0071561129188307
1026 => 0.0071450088213512
1027 => 0.0070725470741967
1028 => 0.0071491622438774
1029 => 0.006953442144917
1030 => 0.0068755048244869
1031 => 0.0068403023449808
1101 => 0.0066665894919248
1102 => 0.0069430438915932
1103 => 0.0069975088910087
1104 => 0.007052081203298
1105 => 0.0075270959236771
1106 => 0.0075033655306246
1107 => 0.0077178767266488
1108 => 0.0077095412160321
1109 => 0.007648359148075
1110 => 0.0073902420673257
1111 => 0.0074931229352178
1112 => 0.0071764716150827
1113 => 0.0074137283143247
1114 => 0.0073054542648673
1115 => 0.0073771207492893
1116 => 0.0072482579483922
1117 => 0.0073195759430233
1118 => 0.0070104245628883
1119 => 0.0067217433539956
1120 => 0.0068379170995839
1121 => 0.0069642112471176
1122 => 0.0072380491381211
1123 => 0.007074953549353
1124 => 0.007133608890401
1125 => 0.0069371233166756
1126 => 0.0065317174547507
1127 => 0.0065340120079023
1128 => 0.0064716491482919
1129 => 0.006417758532462
1130 => 0.0070936870396659
1201 => 0.0070096246449467
1202 => 0.0068756822207758
1203 => 0.0070549694781889
1204 => 0.0071023758747203
1205 => 0.007103725468184
1206 => 0.0072345288231187
1207 => 0.0073043385970951
1208 => 0.0073166428723314
1209 => 0.0075224647775146
1210 => 0.0075914535652755
1211 => 0.0078756086184038
1212 => 0.007298415725507
1213 => 0.0072865288177101
1214 => 0.007057492417573
1215 => 0.0069122339116838
1216 => 0.0070674383917453
1217 => 0.0072049283735555
1218 => 0.0070617646145597
1219 => 0.0070804587791326
1220 => 0.0068882731295896
1221 => 0.0069569704561259
1222 => 0.0070161418482682
1223 => 0.0069834708834609
1224 => 0.0069345608678518
1225 => 0.0071936557629621
1226 => 0.0071790366135789
1227 => 0.0074203117364716
1228 => 0.007608402948516
1229 => 0.0079454960258255
1230 => 0.0075937218265935
1231 => 0.0075809017765977
]
'min_raw' => 0.006417758532462
'max_raw' => 0.018555627285915
'avg_raw' => 0.012486692909188
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.006417'
'max' => '$0.018555'
'avg' => '$0.012486'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0011284866200831
'max_diff' => -0.0062681003744844
'year' => 2030
]
5 => [
'items' => [
101 => 0.0077062198217075
102 => 0.0075914343797357
103 => 0.0076639748168031
104 => 0.0079338086399431
105 => 0.0079395098034275
106 => 0.0078440079695299
107 => 0.007838196674258
108 => 0.0078565388461336
109 => 0.0079639695197165
110 => 0.0079264299413555
111 => 0.0079698716918207
112 => 0.0080241962659811
113 => 0.0082489057378506
114 => 0.0083030824307681
115 => 0.0081714611543735
116 => 0.008183345081931
117 => 0.0081341151114745
118 => 0.0080865595768634
119 => 0.0081934574737412
120 => 0.0083888154813688
121 => 0.0083876001693425
122 => 0.0084329194298951
123 => 0.0084611529537743
124 => 0.008339954001082
125 => 0.0082610579394883
126 => 0.0082913117097901
127 => 0.0083396881473442
128 => 0.0082756238830927
129 => 0.0078801895666783
130 => 0.0080001390778365
131 => 0.0079801736139483
201 => 0.0079517403654882
202 => 0.0080723505264999
203 => 0.0080607173822399
204 => 0.0077122595471626
205 => 0.0077345666871956
206 => 0.0077136161182316
207 => 0.0077813116926374
208 => 0.0075877785965599
209 => 0.007647308073448
210 => 0.0076846444032981
211 => 0.007706635788411
212 => 0.0077860837510727
213 => 0.0077767614496393
214 => 0.0077855042637265
215 => 0.0079033046188693
216 => 0.0084990983909813
217 => 0.0085315261314525
218 => 0.0083718400774835
219 => 0.0084356315063759
220 => 0.0083131659125543
221 => 0.0083953778861349
222 => 0.0084516252305011
223 => 0.0081974542970528
224 => 0.0081824039439297
225 => 0.0080594328910389
226 => 0.0081255105694259
227 => 0.0080203762319589
228 => 0.0080461725209303
301 => 0.0079740438480863
302 => 0.0081038610985301
303 => 0.0082490169560876
304 => 0.0082856890580851
305 => 0.0081892205460622
306 => 0.0081193709857728
307 => 0.0079967381677802
308 => 0.0082006792771525
309 => 0.0082603178725256
310 => 0.0082003660209999
311 => 0.0081864738670276
312 => 0.0081601482603526
313 => 0.0081920589689328
314 => 0.0082599930679271
315 => 0.0082279566013872
316 => 0.0082491172519467
317 => 0.0081684746727821
318 => 0.0083399941229784
319 => 0.0086124082882938
320 => 0.0086132841443795
321 => 0.0085812475051511
322 => 0.0085681388026178
323 => 0.008601010338612
324 => 0.0086188417984278
325 => 0.0087251423182241
326 => 0.008839207011165
327 => 0.0093714971627959
328 => 0.0092220322182114
329 => 0.0096943117068212
330 => 0.010067823464495
331 => 0.010179823308932
401 => 0.01007678872205
402 => 0.0097243129661459
403 => 0.0097070188239869
404 => 0.010233766414733
405 => 0.010084936093779
406 => 0.010067233200676
407 => 0.0098789043275667
408 => 0.009990230016559
409 => 0.009965881455327
410 => 0.00992744606025
411 => 0.010139847719833
412 => 0.010537444665344
413 => 0.010475475452746
414 => 0.01042921831021
415 => 0.01022653297687
416 => 0.010348594818949
417 => 0.010305130934925
418 => 0.010491879363553
419 => 0.010381253731418
420 => 0.010083808557719
421 => 0.010131177682023
422 => 0.010124017934178
423 => 0.010271365037484
424 => 0.010227135094451
425 => 0.010115381327936
426 => 0.010536085722209
427 => 0.010508767518926
428 => 0.010547498485371
429 => 0.010564549054595
430 => 0.010820624405746
501 => 0.010925530283615
502 => 0.010949345754527
503 => 0.011048998224791
504 => 0.010946866310286
505 => 0.011355466787129
506 => 0.011627162261731
507 => 0.011942750536802
508 => 0.012403909828813
509 => 0.012577309988571
510 => 0.012545986801756
511 => 0.01289563251382
512 => 0.013523938086212
513 => 0.01267298532188
514 => 0.013569040648997
515 => 0.013285359877888
516 => 0.012612757872788
517 => 0.012569450233116
518 => 0.01302494412004
519 => 0.014035185721574
520 => 0.013782131658455
521 => 0.014035599627368
522 => 0.013739915777888
523 => 0.013725232582542
524 => 0.014021238922777
525 => 0.014712873871202
526 => 0.014384304032754
527 => 0.013913218600708
528 => 0.01426106075283
529 => 0.013959727689391
530 => 0.013280739959649
531 => 0.013781938152782
601 => 0.013446801194337
602 => 0.013544611975672
603 => 0.014249020014464
604 => 0.014164263775604
605 => 0.014273946196906
606 => 0.014080359594198
607 => 0.013899519181463
608 => 0.013561967121709
609 => 0.013462034597931
610 => 0.013489652352307
611 => 0.013462020911943
612 => 0.013273163636774
613 => 0.013232379926183
614 => 0.013164405288422
615 => 0.013185473471001
616 => 0.013057661265328
617 => 0.013298869304782
618 => 0.013343639642423
619 => 0.013519170738456
620 => 0.013537394959148
621 => 0.014026246563071
622 => 0.013756995314448
623 => 0.013937632298059
624 => 0.013921474426024
625 => 0.012627335197746
626 => 0.012805656165115
627 => 0.01308306763014
628 => 0.012958094141169
629 => 0.012781410867056
630 => 0.012638729650052
701 => 0.012422553016388
702 => 0.012726817476966
703 => 0.013126892887708
704 => 0.013547541531789
705 => 0.014052923315662
706 => 0.013940127984794
707 => 0.013538093770876
708 => 0.013556128732026
709 => 0.013667613765361
710 => 0.013523230517709
711 => 0.013480649079281
712 => 0.013661763729603
713 => 0.013663010966661
714 => 0.013496880590939
715 => 0.013312257079862
716 => 0.01331148350061
717 => 0.013278631530065
718 => 0.013745760070466
719 => 0.014002633535665
720 => 0.014032083664477
721 => 0.014000651307349
722 => 0.014012748374102
723 => 0.013863279364524
724 => 0.014204921196762
725 => 0.014518445526899
726 => 0.014434414308952
727 => 0.014308439567508
728 => 0.014208094618182
729 => 0.014410776227899
730 => 0.014401751134869
731 => 0.014515707165388
801 => 0.014510537461602
802 => 0.014472218334641
803 => 0.014434415677449
804 => 0.014584298940199
805 => 0.014541134967578
806 => 0.014497903949386
807 => 0.014411197524064
808 => 0.014422982367307
809 => 0.014297029377178
810 => 0.014238757760727
811 => 0.013362492462472
812 => 0.013128325741983
813 => 0.013201999359152
814 => 0.013226254626859
815 => 0.013124344970009
816 => 0.013270457239488
817 => 0.013247685797061
818 => 0.013336276158697
819 => 0.013280928746893
820 => 0.01328320022398
821 => 0.013445965160782
822 => 0.013493216514387
823 => 0.013469184094578
824 => 0.013486015577629
825 => 0.013873890000413
826 => 0.013818746661019
827 => 0.013789452861013
828 => 0.013797567443812
829 => 0.013896677674955
830 => 0.013924423128457
831 => 0.013806863692331
901 => 0.013862305402011
902 => 0.014098369165228
903 => 0.014180978122302
904 => 0.014444626258734
905 => 0.014332623844406
906 => 0.014538209123257
907 => 0.015170108181256
908 => 0.015674912872876
909 => 0.015210673616526
910 => 0.016137683146195
911 => 0.016859493036662
912 => 0.016831788770828
913 => 0.016705924520662
914 => 0.015884163150675
915 => 0.015127966086241
916 => 0.015760557040463
917 => 0.015762169644899
918 => 0.015707829520914
919 => 0.015370327677804
920 => 0.015696085188352
921 => 0.015721942636561
922 => 0.015707469341614
923 => 0.015448707469817
924 => 0.01505362591877
925 => 0.015130823908153
926 => 0.015257275789558
927 => 0.015017875997432
928 => 0.014941373258102
929 => 0.015083606405757
930 => 0.015541911242955
1001 => 0.015455271368262
1002 => 0.015453008850995
1003 => 0.015823690975957
1004 => 0.015558362572693
1005 => 0.015131797622021
1006 => 0.015024084346276
1007 => 0.014641774781737
1008 => 0.014905837359704
1009 => 0.014915340501783
1010 => 0.014770716126485
1011 => 0.015143533093006
1012 => 0.015140097519026
1013 => 0.015494031742256
1014 => 0.016170621045446
1015 => 0.015970520295555
1016 => 0.015737824894331
1017 => 0.015763125336388
1018 => 0.016040608738937
1019 => 0.015872835939426
1020 => 0.015933168207884
1021 => 0.016040517418823
1022 => 0.016105283863114
1023 => 0.015753806441754
1024 => 0.015671860241726
1025 => 0.015504227075678
1026 => 0.015460494711677
1027 => 0.015597028427643
1028 => 0.015561056617293
1029 => 0.01491454179949
1030 => 0.014846977403855
1031 => 0.014849049507409
1101 => 0.014679155622073
1102 => 0.014420026667731
1103 => 0.015101002087956
1104 => 0.015046310231467
1105 => 0.014985934654717
1106 => 0.01499333031837
1107 => 0.015288918667891
1108 => 0.0151174624976
1109 => 0.015573306827434
1110 => 0.015479598937155
1111 => 0.015383487793082
1112 => 0.015370202305354
1113 => 0.015333207714704
1114 => 0.015206339498283
1115 => 0.015053138503356
1116 => 0.014951981936463
1117 => 0.013792412977612
1118 => 0.014007622231473
1119 => 0.014255200861098
1120 => 0.014340664011936
1121 => 0.014194473378558
1122 => 0.015212111995531
1123 => 0.015398044377062
1124 => 0.014834843065336
1125 => 0.01472949109527
1126 => 0.015219018853149
1127 => 0.014923773772814
1128 => 0.015056722614411
1129 => 0.014769359938006
1130 => 0.015353258711086
1201 => 0.015348810380734
1202 => 0.015121660570053
1203 => 0.015313646034586
1204 => 0.015280283835593
1205 => 0.01502383225878
1206 => 0.015361388683496
1207 => 0.015361556107271
1208 => 0.015142929353154
1209 => 0.014887621167896
1210 => 0.014841978094482
1211 => 0.014807592169949
1212 => 0.015048265784871
1213 => 0.015264052995443
1214 => 0.015665579496132
1215 => 0.015766532798439
1216 => 0.016160560258187
1217 => 0.015925936090756
1218 => 0.016029941945286
1219 => 0.016142855012906
1220 => 0.016196989689763
1221 => 0.016108780138851
1222 => 0.016720866972012
1223 => 0.016772545854587
1224 => 0.016789873336894
1225 => 0.01658348110062
1226 => 0.016766805713135
1227 => 0.016681034198012
1228 => 0.01690418785235
1229 => 0.016939181194719
1230 => 0.016909543078656
1231 => 0.016920650517857
]
'min_raw' => 0.0075877785965599
'max_raw' => 0.016939181194719
'avg_raw' => 0.012263479895639
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.007587'
'max' => '$0.016939'
'avg' => '$0.012263'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0011700200640979
'max_diff' => -0.0016164460911961
'year' => 2031
]
6 => [
'items' => [
101 => 0.01639834238527
102 => 0.0163712579532
103 => 0.016001959800109
104 => 0.016152451527208
105 => 0.015871114456653
106 => 0.015960329339819
107 => 0.015999654410248
108 => 0.015979113225134
109 => 0.016160960103662
110 => 0.01600635310805
111 => 0.015598319826886
112 => 0.015190175377328
113 => 0.015185051456231
114 => 0.015077594227011
115 => 0.014999922332057
116 => 0.015014884694584
117 => 0.015067614011699
118 => 0.01499685760829
119 => 0.015011957074398
120 => 0.015262708819007
121 => 0.015312995293109
122 => 0.015142102205918
123 => 0.014455941801088
124 => 0.014287556316639
125 => 0.014408588463632
126 => 0.014350742892838
127 => 0.011582169544081
128 => 0.012232604785542
129 => 0.011846138251759
130 => 0.012024239810997
131 => 0.011629757555028
201 => 0.011818025164163
202 => 0.011783259011188
203 => 0.01282913963168
204 => 0.012812809644353
205 => 0.012820625945123
206 => 0.012447533544115
207 => 0.013041879869483
208 => 0.013334676241362
209 => 0.013280487425451
210 => 0.013294125582963
211 => 0.013059776851516
212 => 0.012822894953104
213 => 0.012560156471902
214 => 0.013048292094518
215 => 0.012994019746036
216 => 0.013118500986879
217 => 0.0134350918308
218 => 0.013481711035179
219 => 0.013544367718629
220 => 0.013521909757819
221 => 0.014056949496916
222 => 0.013992152654205
223 => 0.014148294401814
224 => 0.01382709898048
225 => 0.013463635873092
226 => 0.013532718327302
227 => 0.013526065131436
228 => 0.013441362311873
229 => 0.013364896393691
301 => 0.013237602184056
302 => 0.013640379899339
303 => 0.013624027859657
304 => 0.013888748374941
305 => 0.013841956452507
306 => 0.013529468542564
307 => 0.0135406291094
308 => 0.013615689284961
309 => 0.0138754734096
310 => 0.013952595025245
311 => 0.013916869220113
312 => 0.014001429550932
313 => 0.014068262588609
314 => 0.014009822751485
315 => 0.014837207606454
316 => 0.0144936197296
317 => 0.014661082070109
318 => 0.014701020851576
319 => 0.014598718502672
320 => 0.014620904218977
321 => 0.014654509533933
322 => 0.014858554425749
323 => 0.015394027262739
324 => 0.015631184537156
325 => 0.016344683898371
326 => 0.015611491926904
327 => 0.015567987349567
328 => 0.015696510130138
329 => 0.016115409786749
330 => 0.016454888613188
331 => 0.016567513324922
401 => 0.016582398539809
402 => 0.016793689986169
403 => 0.016914798302871
404 => 0.016768033647064
405 => 0.016643665968168
406 => 0.016198196379446
407 => 0.016249760697314
408 => 0.016604987713551
409 => 0.017106766796752
410 => 0.017537345451354
411 => 0.017386571813694
412 => 0.018536868239443
413 => 0.018650915431516
414 => 0.018635157797159
415 => 0.0188949742732
416 => 0.018379291478964
417 => 0.018158827093544
418 => 0.016670555671979
419 => 0.017088699235636
420 => 0.017696495462123
421 => 0.017616051352428
422 => 0.017174653486314
423 => 0.017537010611491
424 => 0.017417204013953
425 => 0.017322707579694
426 => 0.017755614064069
427 => 0.01727961560168
428 => 0.01769174701334
429 => 0.017163184214933
430 => 0.01738726053497
501 => 0.017260063978365
502 => 0.017342375739112
503 => 0.016861182867689
504 => 0.017120822860812
505 => 0.016850380990358
506 => 0.016850252765699
507 => 0.016844282746419
508 => 0.017162456407686
509 => 0.017172832039357
510 => 0.016937701222947
511 => 0.016903815198869
512 => 0.017029109590271
513 => 0.016882422672592
514 => 0.016951056558137
515 => 0.016884501523067
516 => 0.016869518582809
517 => 0.016750131965697
518 => 0.016698696928442
519 => 0.016718865931867
520 => 0.016650018725342
521 => 0.016608535793099
522 => 0.016836030747086
523 => 0.016714489370291
524 => 0.016817402787943
525 => 0.016700119959819
526 => 0.016293566579847
527 => 0.016059753431801
528 => 0.015291811784551
529 => 0.015509599083082
530 => 0.015653992287326
531 => 0.015606270334185
601 => 0.015708795555476
602 => 0.015715089771388
603 => 0.015681757776825
604 => 0.015643163597215
605 => 0.015624378084972
606 => 0.015764389902546
607 => 0.015845671475229
608 => 0.015668484077104
609 => 0.015626971548838
610 => 0.015806117791127
611 => 0.015915396895434
612 => 0.016722252403013
613 => 0.016662477940903
614 => 0.016812500110654
615 => 0.016795609916618
616 => 0.016952857050924
617 => 0.017209889657915
618 => 0.016687270500454
619 => 0.016777979115378
620 => 0.016755739457767
621 => 0.01699854620802
622 => 0.016999304224191
623 => 0.016853729448317
624 => 0.016932647895999
625 => 0.016888597783517
626 => 0.016968202290502
627 => 0.016661679616519
628 => 0.017034991146352
629 => 0.017246634728104
630 => 0.017249573399442
701 => 0.017349890777485
702 => 0.017451819043567
703 => 0.017647461474231
704 => 0.017446362682361
705 => 0.017084605532359
706 => 0.017110723230121
707 => 0.016898625145437
708 => 0.016902190552559
709 => 0.016883158129914
710 => 0.016940275862964
711 => 0.016674213746914
712 => 0.016736657993754
713 => 0.016649235682506
714 => 0.016777789076347
715 => 0.016639486875211
716 => 0.01675572873313
717 => 0.01680589486553
718 => 0.016991008974083
719 => 0.016612145370866
720 => 0.015839616837094
721 => 0.016002011700896
722 => 0.015761816941492
723 => 0.015784047880961
724 => 0.015828957916716
725 => 0.015683389797185
726 => 0.015711159607013
727 => 0.015710167473993
728 => 0.015701617807618
729 => 0.015663749917621
730 => 0.015608833985191
731 => 0.015827602157759
801 => 0.015864775133256
802 => 0.015947406053029
803 => 0.016193259621183
804 => 0.016168693052098
805 => 0.016208762145533
806 => 0.016121291539543
807 => 0.015788105391501
808 => 0.015806199002347
809 => 0.015580571385172
810 => 0.015941636247577
811 => 0.015856131322336
812 => 0.015801005740791
813 => 0.015785964215132
814 => 0.016032427206728
815 => 0.016106172796647
816 => 0.016060219493892
817 => 0.015965967929268
818 => 0.016146958796319
819 => 0.01619538431695
820 => 0.016206225005155
821 => 0.016526906120013
822 => 0.016224147517153
823 => 0.016297024522023
824 => 0.016865590110361
825 => 0.016349979578427
826 => 0.016623109976679
827 => 0.016609741664987
828 => 0.016749465934504
829 => 0.01659828019664
830 => 0.016600154325056
831 => 0.016724220010645
901 => 0.016549992130599
902 => 0.016506850857327
903 => 0.016447251497286
904 => 0.016577384519537
905 => 0.016655393380966
906 => 0.017284087512888
907 => 0.017690252594046
908 => 0.017672619896688
909 => 0.017833749743507
910 => 0.017761159271735
911 => 0.017526745489984
912 => 0.017926861231718
913 => 0.017800247869479
914 => 0.017810685721227
915 => 0.017810297223864
916 => 0.01789448404102
917 => 0.017834829965456
918 => 0.017717245659155
919 => 0.017795303609108
920 => 0.018027107814239
921 => 0.018746635179588
922 => 0.019149292225707
923 => 0.01872239471982
924 => 0.019016862902995
925 => 0.018840286922832
926 => 0.018808197814556
927 => 0.018993145594618
928 => 0.019178417101286
929 => 0.019166616107262
930 => 0.019032118507218
1001 => 0.018956144225704
1002 => 0.019531446938582
1003 => 0.019955320177405
1004 => 0.019926414864199
1005 => 0.020053993516177
1006 => 0.020428568384242
1007 => 0.020462814815853
1008 => 0.020458500552615
1009 => 0.020373617198622
1010 => 0.020742434800925
1011 => 0.021050108933495
1012 => 0.020353969154689
1013 => 0.020619050069319
1014 => 0.020738053432271
1015 => 0.02091278567579
1016 => 0.021207588259131
1017 => 0.021527822057163
1018 => 0.02157310662739
1019 => 0.021540975057748
1020 => 0.021329772259599
1021 => 0.02168017590259
1022 => 0.021885434138677
1023 => 0.022007660721016
1024 => 0.022317606997263
1025 => 0.020738788356527
1026 => 0.019621222050236
1027 => 0.019446697933655
1028 => 0.019801599587543
1029 => 0.019895184323386
1030 => 0.019857460433713
1031 => 0.018599537951299
1101 => 0.019440075232118
1102 => 0.020344422671898
1103 => 0.02037916234013
1104 => 0.020831897577497
1105 => 0.020979326729028
1106 => 0.021343837936472
1107 => 0.021321037661201
1108 => 0.021409790339574
1109 => 0.021389387635798
1110 => 0.022064567890698
1111 => 0.022809391977091
1112 => 0.022783601087375
1113 => 0.022676523812597
1114 => 0.02283555182503
1115 => 0.023604290102388
1116 => 0.023533517000589
1117 => 0.023602267040548
1118 => 0.024508652793743
1119 => 0.025687083204767
1120 => 0.025139583966368
1121 => 0.026327499775032
1122 => 0.027075229807876
1123 => 0.028368351582949
1124 => 0.028206446367951
1125 => 0.028709849185621
1126 => 0.027916602242466
1127 => 0.026095146919324
1128 => 0.025806894642186
1129 => 0.026383983000727
1130 => 0.027802698418741
1201 => 0.026339302603434
1202 => 0.02663534567094
1203 => 0.026550085247582
1204 => 0.026545542081955
1205 => 0.026718936235557
1206 => 0.026467418972126
1207 => 0.025442692393817
1208 => 0.025912318545905
1209 => 0.025730973335284
1210 => 0.025932189366649
1211 => 0.027018069300123
1212 => 0.026537975897389
1213 => 0.026032236497231
1214 => 0.026666545937587
1215 => 0.027474239827532
1216 => 0.027423695795464
1217 => 0.027325619247487
1218 => 0.027878471613313
1219 => 0.028791621751111
1220 => 0.029038442564023
1221 => 0.029220640642086
1222 => 0.029245762678789
1223 => 0.02950453527009
1224 => 0.028113049827577
1225 => 0.030321372960725
1226 => 0.030702689362125
1227 => 0.030631017682607
1228 => 0.031054834814515
1229 => 0.030930137063105
1230 => 0.030749469585789
1231 => 0.031421309888353
]
'min_raw' => 0.011582169544081
'max_raw' => 0.031421309888353
'avg_raw' => 0.021501739716217
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.011582'
'max' => '$0.031421'
'avg' => '$0.0215017'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0039943909475207
'max_diff' => 0.014482128693635
'year' => 2032
]
7 => [
'items' => [
101 => 0.030651099196181
102 => 0.029557882085471
103 => 0.028958121557154
104 => 0.029747934602144
105 => 0.030230245868043
106 => 0.030549022934045
107 => 0.030645484681606
108 => 0.028221066881428
109 => 0.026914440151508
110 => 0.027751972904881
111 => 0.028773820667419
112 => 0.028107373411662
113 => 0.028133496882336
114 => 0.027183318234884
115 => 0.028857890394008
116 => 0.028613919315793
117 => 0.029879641701153
118 => 0.02957756689583
119 => 0.030609714366032
120 => 0.030337915346099
121 => 0.031466137881761
122 => 0.031916216396642
123 => 0.032671968272255
124 => 0.033227902428419
125 => 0.033554357598245
126 => 0.033534758454351
127 => 0.03482833647652
128 => 0.034065558711021
129 => 0.033107330064638
130 => 0.033089998731597
131 => 0.033586278925764
201 => 0.034626346064915
202 => 0.034896020341735
203 => 0.035046731472837
204 => 0.034815912129263
205 => 0.033987971533589
206 => 0.033630470982131
207 => 0.033935071809761
208 => 0.033562571172216
209 => 0.034205611777837
210 => 0.035088643875417
211 => 0.034906301239154
212 => 0.035515845333845
213 => 0.036146659345941
214 => 0.037048751714868
215 => 0.037284592064489
216 => 0.037674427194208
217 => 0.038075695596858
218 => 0.038204572193302
219 => 0.038450637603974
220 => 0.038449340717798
221 => 0.03919087539497
222 => 0.040008811107308
223 => 0.04031756290346
224 => 0.041027520634038
225 => 0.039811742900309
226 => 0.040733924277191
227 => 0.041565754962835
228 => 0.040574012127056
301 => 0.041940898579733
302 => 0.041993971683259
303 => 0.042795312535213
304 => 0.041983000063426
305 => 0.041500651510672
306 => 0.042893173709108
307 => 0.043566971336893
308 => 0.043364018007857
309 => 0.041819533152853
310 => 0.040920576721169
311 => 0.038567834343707
312 => 0.041354759320718
313 => 0.042712189181304
314 => 0.041816017737445
315 => 0.042267994486548
316 => 0.044733833075699
317 => 0.045672664759223
318 => 0.045477394331979
319 => 0.045510391819758
320 => 0.046016968355187
321 => 0.048263407690072
322 => 0.046917289168553
323 => 0.047946346340156
324 => 0.048492154553432
325 => 0.048999131640145
326 => 0.047754156146931
327 => 0.046134461322581
328 => 0.045621435981547
329 => 0.041726911148962
330 => 0.041524184218362
331 => 0.041410387448962
401 => 0.040692914914764
402 => 0.040129178035151
403 => 0.039680873538275
404 => 0.038504388663416
405 => 0.038901417772605
406 => 0.037026346433558
407 => 0.038225950627832
408 => 0.035233291495531
409 => 0.037725666948258
410 => 0.036369180303745
411 => 0.037280024602944
412 => 0.037276846752991
413 => 0.035599693614717
414 => 0.034632346685854
415 => 0.035248777798631
416 => 0.035909640883891
417 => 0.036016863696064
418 => 0.036873689936395
419 => 0.037112811722653
420 => 0.036388261546763
421 => 0.035171275286835
422 => 0.035453953438515
423 => 0.034626618222133
424 => 0.033176745078412
425 => 0.034218069282589
426 => 0.034573623149688
427 => 0.034730655992856
428 => 0.033304872275063
429 => 0.032856860075662
430 => 0.032618342139887
501 => 0.034987224513093
502 => 0.035116997236947
503 => 0.034453061633696
504 => 0.037454113517345
505 => 0.036774883048854
506 => 0.037533749897663
507 => 0.035428303359142
508 => 0.035508734252273
509 => 0.03451198211966
510 => 0.035070096710922
511 => 0.034675639306691
512 => 0.035025006567344
513 => 0.035234415862884
514 => 0.03623100443828
515 => 0.037737046388947
516 => 0.036082147338416
517 => 0.035361084123509
518 => 0.035808427686624
519 => 0.036999762545444
520 => 0.038804695839866
521 => 0.037736139001901
522 => 0.038210346381318
523 => 0.038313939597703
524 => 0.037526025345511
525 => 0.038833747362214
526 => 0.03953456621488
527 => 0.040253461343687
528 => 0.040877657841045
529 => 0.039966318820398
530 => 0.040941582207808
531 => 0.040155692074719
601 => 0.039450667381509
602 => 0.039451736612947
603 => 0.03900946432413
604 => 0.038152506034651
605 => 0.037994469777972
606 => 0.038816594342995
607 => 0.039475860388657
608 => 0.039530160697849
609 => 0.03989516425504
610 => 0.04011116960035
611 => 0.042228315629415
612 => 0.043079849276256
613 => 0.044121088500905
614 => 0.044526709859934
615 => 0.045747484727303
616 => 0.044761609875415
617 => 0.044548309649766
618 => 0.041587109133943
619 => 0.042072005552519
620 => 0.042848371504205
621 => 0.041599911122533
622 => 0.042391771878736
623 => 0.042548101965915
624 => 0.041557488916493
625 => 0.042086618148052
626 => 0.040681407784914
627 => 0.037767676134866
628 => 0.038836991178475
629 => 0.039624366978122
630 => 0.038500684629289
701 => 0.04051484174706
702 => 0.039338212739501
703 => 0.038965277832257
704 => 0.037510325798206
705 => 0.038197007152039
706 => 0.039125753515427
707 => 0.038551896241207
708 => 0.039742736250317
709 => 0.041429283288648
710 => 0.042631217143774
711 => 0.042723486700699
712 => 0.041950723755167
713 => 0.043189081307089
714 => 0.043198101389909
715 => 0.041801229012501
716 => 0.040945652459157
717 => 0.040751263666089
718 => 0.041236884983341
719 => 0.041826518913126
720 => 0.042756207280158
721 => 0.043317998489389
722 => 0.044782852012028
723 => 0.045179199374612
724 => 0.04561466496108
725 => 0.046196581277215
726 => 0.046895321015016
727 => 0.045366518247983
728 => 0.045427260431962
729 => 0.044003660463016
730 => 0.042482339731311
731 => 0.043636832531369
801 => 0.045146178291703
802 => 0.044799932706604
803 => 0.044760973005125
804 => 0.044826492416493
805 => 0.044565434552651
806 => 0.043384679509752
807 => 0.042791711719126
808 => 0.043556791451251
809 => 0.043963397279094
810 => 0.044594007458324
811 => 0.044516271443168
812 => 0.046140655542276
813 => 0.046771842084364
814 => 0.046610357556903
815 => 0.046640074596298
816 => 0.047782807681349
817 => 0.049053761892909
818 => 0.050244178229215
819 => 0.051455120856077
820 => 0.0499952822555
821 => 0.049254066244455
822 => 0.050018811966703
823 => 0.049613027121903
824 => 0.051944787203728
825 => 0.052106233212645
826 => 0.054437824681676
827 => 0.056650782626534
828 => 0.055260863390628
829 => 0.05657149462675
830 => 0.057989049165947
831 => 0.060723741861995
901 => 0.059802793569616
902 => 0.059097361610752
903 => 0.058430731818249
904 => 0.059817882591949
905 => 0.06160242990204
906 => 0.061986804300452
907 => 0.0626096376682
908 => 0.061954804538453
909 => 0.06274347891573
910 => 0.0655278460286
911 => 0.064775485456414
912 => 0.063707012495913
913 => 0.065905002918064
914 => 0.066700447107368
915 => 0.072283291005265
916 => 0.079331862042139
917 => 0.076413707349461
918 => 0.074602314563452
919 => 0.075028034834975
920 => 0.077601934368454
921 => 0.07842858920712
922 => 0.076181456390615
923 => 0.076975181690611
924 => 0.08134868613094
925 => 0.083694930944355
926 => 0.080508415345019
927 => 0.071716945185493
928 => 0.063610808196236
929 => 0.065760920749893
930 => 0.065517164712069
1001 => 0.070215949627412
1002 => 0.06475754190559
1003 => 0.064849447492758
1004 => 0.069645398304051
1005 => 0.06836592085101
1006 => 0.066293331240175
1007 => 0.06362594039406
1008 => 0.058695021711226
1009 => 0.054327569524999
1010 => 0.062893149026358
1011 => 0.062523785662764
1012 => 0.061988892775696
1013 => 0.06317923901441
1014 => 0.068959222463933
1015 => 0.068825975137441
1016 => 0.067978323629681
1017 => 0.068621259827459
1018 => 0.066180621416154
1019 => 0.066809629507051
1020 => 0.063609524142721
1021 => 0.065056105415604
1022 => 0.066288884393718
1023 => 0.066536383025179
1024 => 0.067094010079454
1025 => 0.062329147954151
1026 => 0.06446843115941
1027 => 0.065725059618771
1028 => 0.060047566522844
1029 => 0.065612833834796
1030 => 0.062246202305411
1031 => 0.061103516999229
1101 => 0.062641992226661
1102 => 0.062042446934314
1103 => 0.061526993098436
1104 => 0.061239361001394
1105 => 0.062369047413106
1106 => 0.062316346191732
1107 => 0.060467959959488
1108 => 0.058056815469386
1109 => 0.058866074703384
1110 => 0.058572063236827
1111 => 0.05750652775379
1112 => 0.058224570016112
1113 => 0.055062675285717
1114 => 0.049622799743059
1115 => 0.053216548154433
1116 => 0.053078192749841
1117 => 0.053008427680928
1118 => 0.055709030288165
1119 => 0.055449429660982
1120 => 0.054978251980628
1121 => 0.057497874206188
1122 => 0.056578178200157
1123 => 0.059412464583112
1124 => 0.061279308905076
1125 => 0.060805816798939
1126 => 0.062561592906987
1127 => 0.058884718401662
1128 => 0.06010602862173
1129 => 0.060357738965424
1130 => 0.057466782459035
1201 => 0.055491903534124
1202 => 0.0553602016251
1203 => 0.051936033724384
1204 => 0.053765196578029
1205 => 0.055374784193335
1206 => 0.054603916634648
1207 => 0.054359882994581
1208 => 0.055606597937244
1209 => 0.055703478365681
1210 => 0.053494594330405
1211 => 0.053953891267599
1212 => 0.05586923584746
1213 => 0.053905629498454
1214 => 0.050090663115612
1215 => 0.049144498706631
1216 => 0.049018262933203
1217 => 0.046452190014799
1218 => 0.0492077259367
1219 => 0.048004860663019
1220 => 0.05180469765004
1221 => 0.049634251141988
1222 => 0.049540687531042
1223 => 0.0493992524103
1224 => 0.047190527446293
1225 => 0.047674097841616
1226 => 0.049281559485522
1227 => 0.049855119909419
1228 => 0.049795292858165
1229 => 0.049273682046519
1230 => 0.049512472805011
1231 => 0.048743244571694
]
'min_raw' => 0.026914440151508
'max_raw' => 0.083694930944355
'avg_raw' => 0.055304685547931
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.026914'
'max' => '$0.083694'
'avg' => '$0.0553046'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.015332270607427
'max_diff' => 0.052273621056002
'year' => 2033
]
8 => [
'items' => [
101 => 0.048471614072408
102 => 0.047614273498808
103 => 0.046354219701994
104 => 0.0465294379108
105 => 0.044032941628302
106 => 0.04267271795451
107 => 0.042296225969065
108 => 0.041792765151444
109 => 0.042353093208073
110 => 0.044025869368002
111 => 0.042008146419868
112 => 0.038548901952102
113 => 0.038756808438881
114 => 0.039223912586682
115 => 0.038353467097458
116 => 0.037529663492859
117 => 0.038245893889758
118 => 0.036780166406352
119 => 0.039401038750456
120 => 0.039330151498458
121 => 0.040307050634681
122 => 0.04091792571255
123 => 0.039510056431217
124 => 0.039155981114246
125 => 0.039357678506619
126 => 0.036024069897185
127 => 0.040034623690891
128 => 0.040069307126641
129 => 0.039772326492826
130 => 0.041907822576018
131 => 0.046414385389485
201 => 0.044718835182989
202 => 0.044062266894758
203 => 0.042814130098882
204 => 0.044477198272357
205 => 0.044349500584539
206 => 0.043772003212317
207 => 0.043422730999695
208 => 0.044066275760721
209 => 0.043342988682009
210 => 0.043213066448073
211 => 0.042425879067203
212 => 0.042144888986976
213 => 0.041936855118114
214 => 0.041707830269482
215 => 0.042213002016127
216 => 0.041068216377351
217 => 0.039687717121706
218 => 0.039572943545808
219 => 0.039889843479858
220 => 0.039749638849467
221 => 0.039572272299979
222 => 0.0392336312541
223 => 0.039133163689709
224 => 0.039459634534047
225 => 0.039091067985223
226 => 0.039634908004872
227 => 0.039487013611568
228 => 0.038660887552852
301 => 0.03763122861265
302 => 0.037622062488299
303 => 0.037400224158612
304 => 0.037117679692139
305 => 0.037039082285308
306 => 0.03818557496346
307 => 0.040558780495599
308 => 0.040092863463645
309 => 0.040429536268329
310 => 0.042085633250057
311 => 0.042612056679974
312 => 0.042238413798441
313 => 0.041726948376909
314 => 0.041749450259726
315 => 0.043497282436212
316 => 0.043606292585125
317 => 0.043881726063421
318 => 0.044235735920523
319 => 0.042298703207887
320 => 0.041658216193155
321 => 0.041354717912708
322 => 0.040420060677548
323 => 0.041428008374213
324 => 0.04084072041599
325 => 0.040919965626168
326 => 0.04086835707908
327 => 0.040896538835545
328 => 0.039400306163222
329 => 0.039945454709342
330 => 0.039039039518118
331 => 0.037825451326949
401 => 0.037821382953793
402 => 0.038118406944293
403 => 0.037941725452194
404 => 0.037466280099852
405 => 0.037533814868113
406 => 0.036942139234721
407 => 0.03760565500264
408 => 0.037624682260691
409 => 0.037369192548094
410 => 0.038391430136105
411 => 0.03881024170998
412 => 0.038642072908028
413 => 0.038798442538531
414 => 0.040112224419812
415 => 0.040326428190782
416 => 0.040421563356341
417 => 0.040294094837487
418 => 0.038822456059577
419 => 0.038887729497269
420 => 0.038408796321095
421 => 0.038004148255962
422 => 0.038020332056468
423 => 0.038228373762512
424 => 0.039136904094293
425 => 0.041048852616738
426 => 0.041121409665549
427 => 0.041209350925346
428 => 0.040851649626016
429 => 0.040743763491398
430 => 0.040886093150733
501 => 0.041604120490286
502 => 0.043451081750137
503 => 0.042798242286511
504 => 0.042267473640531
505 => 0.042733100837254
506 => 0.042661421180025
507 => 0.042056372737155
508 => 0.04203939104254
509 => 0.040878109634984
510 => 0.040448810339708
511 => 0.040090055716081
512 => 0.039698305032606
513 => 0.039466062095841
514 => 0.03982289279924
515 => 0.039904504203004
516 => 0.039124287633689
517 => 0.03901794699829
518 => 0.039655088690938
519 => 0.03937470638704
520 => 0.039663086539745
521 => 0.039729993208852
522 => 0.039719219694134
523 => 0.039426468367163
524 => 0.039613059333004
525 => 0.039171716073345
526 => 0.03869182156608
527 => 0.03838567876893
528 => 0.038118528574466
529 => 0.038266759029215
530 => 0.037738344523847
531 => 0.037569294088698
601 => 0.039549846512207
602 => 0.04101290188198
603 => 0.04099162847747
604 => 0.040862132098591
605 => 0.040669726746957
606 => 0.041590044840395
607 => 0.041269424418982
608 => 0.041502702564293
609 => 0.041562081642927
610 => 0.041741804230119
611 => 0.041806039607362
612 => 0.041611875682996
613 => 0.040960237837699
614 => 0.039336418283084
615 => 0.038580525896994
616 => 0.0383310688192
617 => 0.038340136110192
618 => 0.038090019746481
619 => 0.038163690225023
620 => 0.038064400160516
621 => 0.037876368799186
622 => 0.038255148622511
623 => 0.038298799468571
624 => 0.038210387731725
625 => 0.038231211896304
626 => 0.037499200476367
627 => 0.03755485371478
628 => 0.037244969411227
629 => 0.037186869840022
630 => 0.036403509305353
701 => 0.035015672568263
702 => 0.035784668841183
703 => 0.034855829480734
704 => 0.03450406394072
705 => 0.036169267296384
706 => 0.036002127065027
707 => 0.035716055643056
708 => 0.035292896387452
709 => 0.03513594250332
710 => 0.034182340388895
711 => 0.034125996488705
712 => 0.034598627446037
713 => 0.034380524521466
714 => 0.034074225413333
715 => 0.032964841092715
716 => 0.031717525811815
717 => 0.031755174419801
718 => 0.032151922203529
719 => 0.033305519893448
720 => 0.032854789318554
721 => 0.032527779114931
722 => 0.032466539933683
723 => 0.033233076499912
724 => 0.0343178863355
725 => 0.034826854839106
726 => 0.034322482509636
727 => 0.033743086734875
728 => 0.033778351871023
729 => 0.034012955022758
730 => 0.034037608496895
731 => 0.033660481410374
801 => 0.033766640476195
802 => 0.033605375147824
803 => 0.032615690125285
804 => 0.032597789861552
805 => 0.032354905196195
806 => 0.032347550745056
807 => 0.031934343338863
808 => 0.031876532766369
809 => 0.031056084381476
810 => 0.031596105992959
811 => 0.031233887848383
812 => 0.030687939665885
813 => 0.030593817993442
814 => 0.030590988582313
815 => 0.031151555293959
816 => 0.031589555444555
817 => 0.031240188788087
818 => 0.031160644772597
819 => 0.032009966753913
820 => 0.031901882790049
821 => 0.031808282774409
822 => 0.034220753513021
823 => 0.032311094675971
824 => 0.031478374423501
825 => 0.030447724981783
826 => 0.030783309636992
827 => 0.030854022254609
828 => 0.028375496135801
829 => 0.027369958398082
830 => 0.027024895739387
831 => 0.026826307300838
901 => 0.026916806546001
902 => 0.026011704644241
903 => 0.026619948091228
904 => 0.025836206350662
905 => 0.02570480949734
906 => 0.027106236816442
907 => 0.027301237240875
908 => 0.02646930484836
909 => 0.027003540121975
910 => 0.026809818985336
911 => 0.025849641353329
912 => 0.025812969630375
913 => 0.02533118624651
914 => 0.024577288542406
915 => 0.024232737061855
916 => 0.024053291659251
917 => 0.024127334329687
918 => 0.024089896089771
919 => 0.023845586250122
920 => 0.024103899643801
921 => 0.023444015665415
922 => 0.023181244548175
923 => 0.023062556930761
924 => 0.022476871918439
925 => 0.023408957228351
926 => 0.023592589776505
927 => 0.023776584137506
928 => 0.025378129431733
929 => 0.025298120754753
930 => 0.026021360228842
1001 => 0.025993256472831
1002 => 0.025786976859118
1003 => 0.024916717100213
1004 => 0.025263587129224
1005 => 0.024195975095499
1006 => 0.024995902621727
1007 => 0.024630849104529
1008 => 0.024872477660352
1009 => 0.024438007730214
1010 => 0.024678461328376
1011 => 0.023636135865991
1012 => 0.022662827015131
1013 => 0.023054514909373
1014 => 0.023480324445359
1015 => 0.024403588013629
1016 => 0.023853699849126
1017 => 0.024051460426655
1018 => 0.023388995596655
1019 => 0.022022141428642
1020 => 0.022029877674793
1021 => 0.021819616939581
1022 => 0.021637920965788
1023 => 0.023916861119647
1024 => 0.023633438886802
1025 => 0.023181842652149
1026 => 0.023786322157953
1027 => 0.023946156133668
1028 => 0.023950706382256
1029 => 0.024391719025817
1030 => 0.024627087552742
1031 => 0.024668572275758
1101 => 0.02536251519911
1102 => 0.025595115713689
1103 => 0.026553164314383
1104 => 0.024607118177661
1105 => 0.024567040638106
1106 => 0.023794828424233
1107 => 0.023305079230002
1108 => 0.02382836197056
1109 => 0.024291919043478
1110 => 0.023809232434649
1111 => 0.023872261115691
1112 => 0.023224293780283
1113 => 0.023455911612995
1114 => 0.023655412092817
1115 => 0.023545259653955
1116 => 0.023380356121541
1117 => 0.024253912649834
1118 => 0.024204623167012
1119 => 0.025018099089135
1120 => 0.025652261742652
1121 => 0.026788794587888
1122 => 0.025602763315087
1123 => 0.025559539621459
1124 => 0.025982058159973
1125 => 0.025595051028302
1126 => 0.025839626176486
1127 => 0.026749389750399
1128 => 0.026768611621129
1129 => 0.026446620520418
1130 => 0.026427027332677
1201 => 0.026488869245765
1202 => 0.02685107926232
1203 => 0.026724511952946
1204 => 0.026870978847646
1205 => 0.027054137942248
1206 => 0.027811761615371
1207 => 0.027994422118038
1208 => 0.027550651795169
1209 => 0.027590719286639
1210 => 0.027424737004118
1211 => 0.027264400198955
1212 => 0.027624813921651
1213 => 0.028283477083829
1214 => 0.028279379574481
1215 => 0.028432176625524
1216 => 0.028527367922485
1217 => 0.028118737191642
1218 => 0.027852733611631
1219 => 0.027954736310455
1220 => 0.028117840847204
1221 => 0.027901843707455
1222 => 0.026568609301322
1223 => 0.026973027452799
1224 => 0.026905712497356
1225 => 0.026809847815027
1226 => 0.02721649339361
1227 => 0.027177271435538
1228 => 0.026002421516025
1229 => 0.026077631596081
1230 => 0.026006995290097
1231 => 0.02623523564556
]
'min_raw' => 0.021637920965788
'max_raw' => 0.048471614072408
'avg_raw' => 0.035054767519098
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.021637'
'max' => '$0.048471'
'avg' => '$0.035054'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00527651918572
'max_diff' => -0.035223316871946
'year' => 2034
]
9 => [
'items' => [
101 => 0.025582725300086
102 => 0.02578343308763
103 => 0.025909315130458
104 => 0.025983460620756
105 => 0.02625132497375
106 => 0.026219894183604
107 => 0.026249371191703
108 => 0.026646543313625
109 => 0.028655303613294
110 => 0.028764636004325
111 => 0.028226243324444
112 => 0.02844132058073
113 => 0.028028419280886
114 => 0.02830560268967
115 => 0.028495244538265
116 => 0.027638289490496
117 => 0.027587546174159
118 => 0.027172940683773
119 => 0.027395726189851
120 => 0.027041258430836
121 => 0.027128232420143
122 => 0.026885045563786
123 => 0.027322733487208
124 => 0.027812136595421
125 => 0.02793577914767
126 => 0.027610528824169
127 => 0.027375026154913
128 => 0.026961561047101
129 => 0.027649162736063
130 => 0.027850238424197
131 => 0.027648106571073
201 => 0.027601268204036
202 => 0.027512509583137
203 => 0.027620098765049
204 => 0.027849143322816
205 => 0.027741130139162
206 => 0.027812474749913
207 => 0.027540582663974
208 => 0.028118872465417
209 => 0.029037335843127
210 => 0.02904028885307
211 => 0.028932275087185
212 => 0.028888078181374
213 => 0.028998906859996
214 => 0.029059026871717
215 => 0.029417426495876
216 => 0.029802003571869
217 => 0.031596656981404
218 => 0.031092725485428
219 => 0.032685048754777
220 => 0.033944369723533
221 => 0.034321985018631
222 => 0.033974596715313
223 => 0.032786200095211
224 => 0.032727891687484
225 => 0.034503857966027
226 => 0.03400206614793
227 => 0.033942379607856
228 => 0.033307415663466
301 => 0.033682757996414
302 => 0.033600665122259
303 => 0.033471077504283
304 => 0.034187204528976
305 => 0.035527730390101
306 => 0.035318796863273
307 => 0.035162837677643
308 => 0.034479469925249
309 => 0.034891009947903
310 => 0.034744468428366
311 => 0.035374103793844
312 => 0.035001121751466
313 => 0.033998264581382
314 => 0.034157972891178
315 => 0.034133833301441
316 => 0.034630624347683
317 => 0.034481500006713
318 => 0.034104714380507
319 => 0.035523148618441
320 => 0.035431043388776
321 => 0.035561627546255
322 => 0.035619114730826
323 => 0.036482490655842
324 => 0.036836188147373
325 => 0.036916483670297
326 => 0.037252468931306
327 => 0.036908124050927
328 => 0.038285749086179
329 => 0.039201789347972
330 => 0.040265817251045
331 => 0.041820648001173
401 => 0.04240527874621
402 => 0.042299670434946
403 => 0.043478525364655
404 => 0.04559690146887
405 => 0.042727854812298
406 => 0.045748967908258
407 => 0.044792518382505
408 => 0.042524793762738
409 => 0.042378779031942
410 => 0.043914508473272
411 => 0.047320608565663
412 => 0.046467419124186
413 => 0.047322004077942
414 => 0.046325085335434
415 => 0.046275579917177
416 => 0.047273585959783
417 => 0.049605481476809
418 => 0.048497685326466
419 => 0.04690938790219
420 => 0.04808216200363
421 => 0.047066196541843
422 => 0.044776942005609
423 => 0.0464667667063
424 => 0.045336829052385
425 => 0.045666604930587
426 => 0.048041565813575
427 => 0.047755804236767
428 => 0.048125606177966
429 => 0.047472915431151
430 => 0.046863199353742
501 => 0.045725119017148
502 => 0.045388189536165
503 => 0.045481304723256
504 => 0.045388143392902
505 => 0.044751397904076
506 => 0.044613892776389
507 => 0.044384711539339
508 => 0.04445574438784
509 => 0.044024816612851
510 => 0.044838066358476
511 => 0.044989012677597
512 => 0.045580828023062
513 => 0.045642272255501
514 => 0.047290469568658
515 => 0.046382670185402
516 => 0.046991700387318
517 => 0.046937222993644
518 => 0.04257394223159
519 => 0.043175163823049
520 => 0.04411047594563
521 => 0.043689119102193
522 => 0.04309341910789
523 => 0.042612359423077
524 => 0.041883504809707
525 => 0.042909353681612
526 => 0.044258235861302
527 => 0.045676482133572
528 => 0.047380412102528
529 => 0.047000114769388
530 => 0.045644628348031
531 => 0.04570543447871
601 => 0.046081314052235
602 => 0.04559451585226
603 => 0.045450949559657
604 => 0.046061590248241
605 => 0.046065795395062
606 => 0.045505675234463
607 => 0.044883204176865
608 => 0.044880596000405
609 => 0.044769833288062
610 => 0.046344789775899
611 => 0.047210856598147
612 => 0.047310149763582
613 => 0.047204173376987
614 => 0.047244959482135
615 => 0.046741014280749
616 => 0.04789288357081
617 => 0.048949952739437
618 => 0.048666635621256
619 => 0.048241902985202
620 => 0.047903582982689
621 => 0.048586938180629
622 => 0.048556509449365
623 => 0.048940720162416
624 => 0.048923290145164
625 => 0.04879409453326
626 => 0.048666640235238
627 => 0.049171982120115
628 => 0.049026451772813
629 => 0.048880695376685
630 => 0.048588358610062
701 => 0.048628092031846
702 => 0.048203432731869
703 => 0.048006965908613
704 => 0.045052576276655
705 => 0.044263066829529
706 => 0.044511462573542
707 => 0.044593240902063
708 => 0.04424964537889
709 => 0.044742273096672
710 => 0.044665497588678
711 => 0.044964186178114
712 => 0.044777578514985
713 => 0.044785236958572
714 => 0.045334010306885
715 => 0.045493321544549
716 => 0.045412294563274
717 => 0.045469043083516
718 => 0.046776788780459
719 => 0.046590869161707
720 => 0.046492103069761
721 => 0.04651946195221
722 => 0.046853619016162
723 => 0.04694716474977
724 => 0.046550804903133
725 => 0.046737730498136
726 => 0.047533635957269
727 => 0.047812157823618
728 => 0.048701065922923
729 => 0.048323441963257
730 => 0.049016587084407
731 => 0.051147078876237
801 => 0.052849063138369
802 => 0.051283848073438
803 => 0.054409325424455
804 => 0.05684295786532
805 => 0.056749550998812
806 => 0.056325190891815
807 => 0.053554565059357
808 => 0.051004993860624
809 => 0.053137818428875
810 => 0.053143255437319
811 => 0.052960043915398
812 => 0.051822132887726
813 => 0.0529204470782
814 => 0.053007627270149
815 => 0.052958829545742
816 => 0.052086395828799
817 => 0.050754350795731
818 => 0.051014629206727
819 => 0.051440970553475
820 => 0.050633817439959
821 => 0.050375883113059
822 => 0.05085543210078
823 => 0.052400638857215
824 => 0.052108526470684
825 => 0.052100898235753
826 => 0.053350678900262
827 => 0.052456105664022
828 => 0.051017912151017
829 => 0.050654749321541
830 => 0.049365765932698
831 => 0.050256071350573
901 => 0.050288111857582
902 => 0.049800500678913
903 => 0.051057479110787
904 => 0.051045895833251
905 => 0.052239209777766
906 => 0.054520377851429
907 => 0.053845724202583
908 => 0.053061175411084
909 => 0.053146477617899
910 => 0.054082032282865
911 => 0.053516374575791
912 => 0.05371978903116
913 => 0.054081724390724
914 => 0.054300088979499
915 => 0.053115058314014
916 => 0.05283877097932
917 => 0.052273584056215
918 => 0.05212613733769
919 => 0.052586470293548
920 => 0.052465188823482
921 => 0.050285418977035
922 => 0.050057620899956
923 => 0.05006460714176
924 => 0.049491798045737
925 => 0.048618126684368
926 => 0.05091408285784
927 => 0.050729685445224
928 => 0.050526124972922
929 => 0.050551059969279
930 => 0.051547656727009
1001 => 0.050969580278183
1002 => 0.052506491262254
1003 => 0.052190548567702
1004 => 0.051866503135196
1005 => 0.051821710185758
1006 => 0.0516969803405
1007 => 0.05126923529118
1008 => 0.050752707440634
1009 => 0.050411651012827
1010 => 0.046502083309543
1011 => 0.047227676334363
1012 => 0.048062404969534
1013 => 0.04835054994943
1014 => 0.047857658022292
1015 => 0.051288697668675
1016 => 0.05191558167439
1017 => 0.050016709130448
1018 => 0.049661507607932
1019 => 0.051311984621357
1020 => 0.050316545219652
1021 => 0.050764791521288
1022 => 0.04979592819477
1023 => 0.05176458367472
1024 => 0.051749585818363
1025 => 0.050983734372562
1026 => 0.051631026770228
1027 => 0.05151854378705
1028 => 0.050653899390949
1029 => 0.051791994444315
1030 => 0.051792558925262
1031 => 0.051055443559725
1101 => 0.050194654188079
1102 => 0.050040765379366
1103 => 0.049924830834054
1104 => 0.050736278730058
1105 => 0.051463820376284
1106 => 0.052817595007041
1107 => 0.053157966114105
1108 => 0.054486457204763
1109 => 0.053695405443333
1110 => 0.05404606844334
1111 => 0.054426762734157
1112 => 0.054609281576744
1113 => 0.05431187691725
1114 => 0.056375570409791
1115 => 0.056549809370496
1116 => 0.05660823018686
1117 => 0.055912364352415
1118 => 0.056530456082828
1119 => 0.056241271431215
1120 => 0.056993649556903
1121 => 0.057111632053858
1122 => 0.057011705076286
1123 => 0.057049154583047
1124 => 0.055288156247642
1125 => 0.055196839193945
1126 => 0.053951724687223
1127 => 0.054459118052134
1128 => 0.05351057047643
1129 => 0.053811364683809
1130 => 0.053943951904349
1201 => 0.053874695864597
1202 => 0.054487805311699
1203 => 0.053966537031678
1204 => 0.052590824336261
1205 => 0.05121473682884
1206 => 0.051197461171121
1207 => 0.050835161620379
1208 => 0.050573285403665
1209 => 0.050623732053562
1210 => 0.050801512627659
1211 => 0.050562952473511
1212 => 0.050613861377705
1213 => 0.051459288391584
1214 => 0.051628832749908
1215 => 0.051052654775067
1216 => 0.048739217063993
1217 => 0.048171493646877
1218 => 0.048579561980655
1219 => 0.048384531600076
1220 => 0.039050093259122
1221 => 0.041243081087648
1222 => 0.039940082186768
1223 => 0.04054056402839
1224 => 0.039210539560521
1225 => 0.039845296949143
1226 => 0.039728080437093
1227 => 0.043254339970136
1228 => 0.043199282277739
1229 => 0.043225635481501
1230 => 0.041967728403022
1231 => 0.043971608534937
]
'min_raw' => 0.025582725300086
'max_raw' => 0.057111632053858
'avg_raw' => 0.041347178676972
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.025582'
'max' => '$0.057111'
'avg' => '$0.041347'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0039448043342982
'max_diff' => 0.0086400179814493
'year' => 2035
]
10 => [
'items' => [
101 => 0.044958791945118
102 => 0.044776090568929
103 => 0.044822072569169
104 => 0.04403194945939
105 => 0.043233285600327
106 => 0.04234744446714
107 => 0.043993227799328
108 => 0.043810244787247
109 => 0.044229941981751
110 => 0.045297350115698
111 => 0.045454530018111
112 => 0.045665781400915
113 => 0.045590062818077
114 => 0.047393986653725
115 => 0.047175519574555
116 => 0.047701962378086
117 => 0.046619029589912
118 => 0.045393588347169
119 => 0.045626504664722
120 => 0.045604072950347
121 => 0.045318491480429
122 => 0.045060681298597
123 => 0.044631499983416
124 => 0.045989493171533
125 => 0.045934361128082
126 => 0.046826884827561
127 => 0.046669122594165
128 => 0.045615547788583
129 => 0.045653176418878
130 => 0.045906247041316
131 => 0.046782127355084
201 => 0.04704214826669
202 => 0.046921696220392
203 => 0.047206797279562
204 => 0.047432129532223
205 => 0.04723509554122
206 => 0.050024681345914
207 => 0.048866250830561
208 => 0.049430861803436
209 => 0.049565518193586
210 => 0.049220598681736
211 => 0.049295399373215
212 => 0.049408702038836
213 => 0.050096653637554
214 => 0.051902037692987
215 => 0.052701630001473
216 => 0.055107242912745
217 => 0.052635234991116
218 => 0.052488556271232
219 => 0.052921879799102
220 => 0.054334229238006
221 => 0.055478805803001
222 => 0.055858527881815
223 => 0.055908714423059
224 => 0.056621098286362
225 => 0.057029423431635
226 => 0.056534596147801
227 => 0.056115281835329
228 => 0.05461335001526
229 => 0.054787202713058
301 => 0.055984875399457
302 => 0.057676658611566
303 => 0.059128384607599
304 => 0.058620040761547
305 => 0.062498345472093
306 => 0.06288286354269
307 => 0.062829735578291
308 => 0.063705724967071
309 => 0.061967064422479
310 => 0.061223753354705
311 => 0.056205942349105
312 => 0.057615742567827
313 => 0.059664969980404
314 => 0.059393747048141
315 => 0.057905543325122
316 => 0.059127255671624
317 => 0.058723319363393
318 => 0.058404718037759
319 => 0.059864292474397
320 => 0.0582594304253
321 => 0.059648960253809
322 => 0.057866873875901
323 => 0.058622362833416
324 => 0.058193510762241
325 => 0.058471030610425
326 => 0.056848655248607
327 => 0.057724049612908
328 => 0.056812235965023
329 => 0.056811803646632
330 => 0.056791675309818
331 => 0.057864420022954
401 => 0.057899402189537
402 => 0.057106642225702
403 => 0.056992393129675
404 => 0.057414831918061
405 => 0.056920266733755
406 => 0.057151670670736
407 => 0.056927275723271
408 => 0.056876759694116
409 => 0.056474239379215
410 => 0.05630082256003
411 => 0.056368823763233
412 => 0.056136700599676
413 => 0.055996837997371
414 => 0.056763853117929
415 => 0.056354067880317
416 => 0.056701047653117
417 => 0.056305620409672
418 => 0.054934897304445
419 => 0.054146579951494
420 => 0.051557411071818
421 => 0.05229169615424
422 => 0.052778527923559
423 => 0.052617630026703
424 => 0.05296330096837
425 => 0.052984522356765
426 => 0.052872141209931
427 => 0.052742018238814
428 => 0.052678681572726
429 => 0.05315074119099
430 => 0.053424787688189
501 => 0.052827388004579
502 => 0.052687425617219
503 => 0.053291429680689
504 => 0.053659871810484
505 => 0.056380241487139
506 => 0.056178707714814
507 => 0.056684517934344
508 => 0.056627571465916
509 => 0.05715774115787
510 => 0.058024344537787
511 => 0.056262297560301
512 => 0.056568127988592
513 => 0.056493145430231
514 => 0.057311785340935
515 => 0.057314341045378
516 => 0.056823525524815
517 => 0.057089604581085
518 => 0.056941086551372
519 => 0.057209478704479
520 => 0.056176016108416
521 => 0.057434661995027
522 => 0.058148233107386
523 => 0.058158141042974
524 => 0.058496368086981
525 => 0.058840026352483
526 => 0.059499648466785
527 => 0.058821629849725
528 => 0.057601940361416
529 => 0.057689998002899
530 => 0.05697489450217
531 => 0.056986915521212
601 => 0.056922746379465
602 => 0.057115322804274
603 => 0.056218275804149
604 => 0.056428810942086
605 => 0.056134060516082
606 => 0.05656748725873
607 => 0.056101191731648
608 => 0.056493109271371
609 => 0.056662247889243
610 => 0.057286373030486
611 => 0.056009007940826
612 => 0.053404374052996
613 => 0.053951899674351
614 => 0.053142066273158
615 => 0.053217019437691
616 => 0.053368436758757
617 => 0.052877643680518
618 => 0.052971271533179
619 => 0.052967926487433
620 => 0.052939100690333
621 => 0.052811426455355
622 => 0.05262627355506
623 => 0.053363865722779
624 => 0.053489197005002
625 => 0.053767792920121
626 => 0.054596705390101
627 => 0.054513877487248
628 => 0.054648973233298
629 => 0.054354059978201
630 => 0.053230699617764
701 => 0.053291703489985
702 => 0.052530984225863
703 => 0.053748339618207
704 => 0.053460053792994
705 => 0.053274194046069
706 => 0.053223480492142
707 => 0.054054447675805
708 => 0.054303086080972
709 => 0.054148151312374
710 => 0.053830375581812
711 => 0.054440598926453
712 => 0.054603868950223
713 => 0.054640419087378
714 => 0.055721617855361
715 => 0.054700846087888
716 => 0.054946555997918
717 => 0.05686351457498
718 => 0.055125097667786
719 => 0.05604597587485
720 => 0.056000903678633
721 => 0.056471993808548
722 => 0.05596226053789
723 => 0.055968579292689
724 => 0.056386875413644
725 => 0.055799453951866
726 => 0.055654000137003
727 => 0.05545305673353
728 => 0.055891809303646
729 => 0.056154821626359
730 => 0.058274507786157
731 => 0.059643921714819
801 => 0.059584471844604
802 => 0.06012773237288
803 => 0.059882988529195
804 => 0.059092646097774
805 => 0.060441664256218
806 => 0.060014778465569
807 => 0.060049970411484
808 => 0.0600486605655
809 => 0.060332502297278
810 => 0.0601313744166
811 => 0.059734930718432
812 => 0.059998108546529
813 => 0.060779652608181
814 => 0.063205589356252
815 => 0.064563175699859
816 => 0.063123860953731
817 => 0.064116680992418
818 => 0.063521342747156
819 => 0.063413152078214
820 => 0.064036716431334
821 => 0.064661372251307
822 => 0.064621584376036
823 => 0.064168116327167
824 => 0.063911963732686
825 => 0.065851636995508
826 => 0.067280755214084
827 => 0.067183298932507
828 => 0.067613439264906
829 => 0.06887634458457
830 => 0.068991808819755
831 => 0.068977262980037
901 => 0.068691072825683
902 => 0.069934567121871
903 => 0.070971911940951
904 => 0.068624828073779
905 => 0.069518566884814
906 => 0.069919795031554
907 => 0.070508916989995
908 => 0.07150286448219
909 => 0.072582555090265
910 => 0.072735235180452
911 => 0.072626901350049
912 => 0.071914816370382
913 => 0.073096226717126
914 => 0.073788269190766
915 => 0.074200364646709
916 => 0.075245370156834
917 => 0.069922272879994
918 => 0.066154320052346
919 => 0.06556589980841
920 => 0.066762475512937
921 => 0.067078002983708
922 => 0.066950814255878
923 => 0.062709640781076
924 => 0.065543570907796
925 => 0.068592641440534
926 => 0.068709768657427
927 => 0.070236197119174
928 => 0.070733264796736
929 => 0.071962239781994
930 => 0.071885367062052
1001 => 0.0721846029137
1002 => 0.072115813773448
1003 => 0.074392231142424
1004 => 0.076903457551655
1005 => 0.076816501766315
1006 => 0.076455483258505
1007 => 0.076991657305405
1008 => 0.079583512079108
1009 => 0.079344895625172
1010 => 0.07957669118487
1011 => 0.0826326340336
1012 => 0.08660579443975
1013 => 0.084759862532311
1014 => 0.088765003618857
1015 => 0.091286027629432
1016 => 0.095645877976972
1017 => 0.095100003240745
1018 => 0.096797260986982
1019 => 0.094122773535402
1020 => 0.087981609743479
1021 => 0.087009747065977
1022 => 0.088955440757819
1023 => 0.0937387388412
1024 => 0.088804797678861
1025 => 0.089802927550023
1026 => 0.089515466079981
1027 => 0.089500148479875
1028 => 0.090084758974738
1029 => 0.089236750960706
1030 => 0.085781813757812
1031 => 0.087365191117826
1101 => 0.086753773079098
1102 => 0.087432186977301
1103 => 0.091093306986723
1104 => 0.089474638560357
1105 => 0.087769502863126
1106 => 0.089908121427356
1107 => 0.092631317768692
1108 => 0.092460905035706
1109 => 0.092130233106715
1110 => 0.093994213457014
1111 => 0.097072962900708
1112 => 0.097905136503922
1113 => 0.098519430044774
1114 => 0.098604130745482
1115 => 0.099476600603978
1116 => 0.094785110284135
1117 => 0.10223062590774
1118 => 0.10351626077772
1119 => 0.10327461470627
1120 => 0.10470354375647
1121 => 0.10428311658147
1122 => 0.1036739835679
1123 => 0.10593914005438
1124 => 0.10334232093133
1125 => 0.099656463116593
1126 => 0.097634328621427
1127 => 0.1002972384456
1128 => 0.10192338455247
1129 => 0.1029981636868
1130 => 0.10332339120345
1201 => 0.095149297322704
1202 => 0.090743914077012
1203 => 0.093567714229679
1204 => 0.097012945304209
1205 => 0.094765971851562
1206 => 0.094854048956822
1207 => 0.091650455307583
1208 => 0.097296392256966
1209 => 0.096473826733245
1210 => 0.1007412981254
1211 => 0.099722831829067
1212 => 0.10320278908709
1213 => 0.10228639971498
1214 => 0.10609028076395
1215 => 0.10760775190035
1216 => 0.11015582211389
1217 => 0.11203019293548
1218 => 0.11313085933292
1219 => 0.11306477945091
1220 => 0.11742616806739
1221 => 0.11485440957556
1222 => 0.1116236747929
1223 => 0.11156524099352
1224 => 0.11323848431732
1225 => 0.11674514329214
1226 => 0.1176543689445
1227 => 0.11816250204532
1228 => 0.11738427851317
1229 => 0.11459281898989
1230 => 0.11338748092076
1231 => 0.11441446387766
]
'min_raw' => 0.04234744446714
'max_raw' => 0.11816250204532
'avg_raw' => 0.08025497325623
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.042347'
'max' => '$0.118162'
'avg' => '$0.080254'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.016764719167054
'max_diff' => 0.061050869991463
'year' => 2036
]
11 => [
'items' => [
101 => 0.11315855197102
102 => 0.11532660826853
103 => 0.11830381263685
104 => 0.11768903170793
105 => 0.11974415218019
106 => 0.121870985664
107 => 0.12491245306792
108 => 0.12570760527252
109 => 0.12702196162978
110 => 0.12837486606498
111 => 0.12880938250777
112 => 0.12963900921959
113 => 0.1296346366773
114 => 0.13213477261368
115 => 0.13489249997428
116 => 0.13593347821137
117 => 0.13832715026768
118 => 0.13422807075552
119 => 0.13733726965232
120 => 0.14014184488554
121 => 0.13679811467343
122 => 0.1414066677816
123 => 0.14158560745558
124 => 0.14428738408578
125 => 0.1415486158733
126 => 0.13992234405119
127 => 0.14461732986601
128 => 0.14688908561114
129 => 0.14620481429254
130 => 0.14099747577141
131 => 0.13796658139885
201 => 0.13003414621001
202 => 0.13943045834689
203 => 0.14400712789459
204 => 0.14098562330292
205 => 0.14250949446853
206 => 0.15082324143121
207 => 0.15398857799934
208 => 0.15333021012054
209 => 0.1534414634544
210 => 0.15514942161165
211 => 0.1627234486706
212 => 0.1581849160923
213 => 0.16165445419284
214 => 0.16349468469101
215 => 0.16520399333487
216 => 0.16100647153809
217 => 0.15554555735431
218 => 0.15381585659873
219 => 0.14068519421863
220 => 0.14000168621817
221 => 0.1396180124651
222 => 0.13719900372372
223 => 0.13529832547525
224 => 0.13378683556441
225 => 0.12982023466928
226 => 0.1311588460306
227 => 0.12483691209769
228 => 0.12888146139238
301 => 0.11879150218704
302 => 0.12719472003801
303 => 0.12262123060916
304 => 0.12569220575703
305 => 0.12568149141404
306 => 0.12002685251326
307 => 0.11676537480459
308 => 0.11884371533916
309 => 0.1210718613711
310 => 0.1214333705684
311 => 0.12432222005938
312 => 0.12512843585669
313 => 0.1226855643522
314 => 0.11858241020959
315 => 0.11953547933393
316 => 0.1167460608892
317 => 0.11185771235824
318 => 0.11536860961555
319 => 0.11656738430246
320 => 0.11709683149688
321 => 0.1122897021473
322 => 0.11077919773781
323 => 0.10997501786455
324 => 0.1179618701759
325 => 0.11839940797482
326 => 0.11616090273396
327 => 0.12627915868643
328 => 0.12398908573956
329 => 0.1265476583027
330 => 0.1194489983005
331 => 0.1197201766722
401 => 0.11635955726608
402 => 0.11824127957683
403 => 0.11691133889833
404 => 0.11808925500967
405 => 0.11879529307007
406 => 0.12215536103161
407 => 0.12723308661678
408 => 0.12165347892655
409 => 0.11922236395447
410 => 0.12073061401004
411 => 0.12474728266289
412 => 0.13083274128146
413 => 0.127230027298
414 => 0.12882885058581
415 => 0.12917812234749
416 => 0.12652161443581
417 => 0.13093069051736
418 => 0.13329355020873
419 => 0.13571735532716
420 => 0.13782187739802
421 => 0.13474923426225
422 => 0.13803740286361
423 => 0.1353877194108
424 => 0.1330106794344
425 => 0.13301428442284
426 => 0.13152313252263
427 => 0.12863383781873
428 => 0.1281010075456
429 => 0.13087285791548
430 => 0.13309561941691
501 => 0.13327869670048
502 => 0.13450933167729
503 => 0.13523760878001
504 => 0.14237571443142
505 => 0.14524671957392
506 => 0.14875733031683
507 => 0.15012491104837
508 => 0.15424083874549
509 => 0.15091689285076
510 => 0.15019773624784
511 => 0.14021384196433
512 => 0.14184870409394
513 => 0.14446627610419
514 => 0.14025700476266
515 => 0.14292681858816
516 => 0.1434538963917
517 => 0.14011397533318
518 => 0.14189797148
519 => 0.13716020663203
520 => 0.12733635694364
521 => 0.13094162727036
522 => 0.1335963197517
523 => 0.12980774625961
524 => 0.13659861760613
525 => 0.13263153075753
526 => 0.13137415468028
527 => 0.12646868231597
528 => 0.12878387644298
529 => 0.13191520965014
530 => 0.12998040978467
531 => 0.13399541001718
601 => 0.13968172110787
602 => 0.14373412501677
603 => 0.14404521826999
604 => 0.14143979404654
605 => 0.14561500299222
606 => 0.14564541483121
607 => 0.14093576208426
608 => 0.13805112600021
609 => 0.13739573061259
610 => 0.1390330367887
611 => 0.1410210287499
612 => 0.14415553798812
613 => 0.14604965627305
614 => 0.15098851219743
615 => 0.15232482500247
616 => 0.15379302763049
617 => 0.15575499911844
618 => 0.15811084892888
619 => 0.15295638366223
620 => 0.1531611801764
621 => 0.14836141348852
622 => 0.14323217442636
623 => 0.14712462750587
624 => 0.15221349211599
625 => 0.15104610095173
626 => 0.15091474559812
627 => 0.15113564886796
628 => 0.15025547405354
629 => 0.14627447598872
630 => 0.14427524368294
701 => 0.14685476341596
702 => 0.14822566335284
703 => 0.15035180959991
704 => 0.15008971719746
705 => 0.15556644159848
706 => 0.15769453109317
707 => 0.15715007473434
708 => 0.15725026780744
709 => 0.16110307218677
710 => 0.16538818304623
711 => 0.1694017548363
712 => 0.17348453244808
713 => 0.16856258468356
714 => 0.16606352315227
715 => 0.16864191674767
716 => 0.16727378481243
717 => 0.1751354767266
718 => 0.17567980321746
719 => 0.18354092664182
720 => 0.19100206885669
721 => 0.18631585911178
722 => 0.19073474382971
723 => 0.19551412792911
724 => 0.20473433528399
725 => 0.20162929381767
726 => 0.19925088071668
727 => 0.19700329182865
728 => 0.20168016750995
729 => 0.20769689335904
730 => 0.20899283847945
731 => 0.21109276466365
801 => 0.20888494904772
802 => 0.21154401977419
803 => 0.22093170789354
804 => 0.21839507169627
805 => 0.21479264051154
806 => 0.22220331867862
807 => 0.224885214299
808 => 0.24370816228247
809 => 0.2674729116488
810 => 0.25763414936338
811 => 0.25152691211795
812 => 0.25296225773623
813 => 0.26164033971728
814 => 0.26442746422104
815 => 0.25685109904039
816 => 0.25952719930546
817 => 0.27427277487436
818 => 0.28218330307237
819 => 0.27143974325379
820 => 0.24179868781011
821 => 0.21446828099841
822 => 0.22171753558913
823 => 0.22089569508911
824 => 0.23673797648987
825 => 0.21833457376189
826 => 0.21864443986567
827 => 0.23481432286854
828 => 0.23050047530535
829 => 0.22351259472883
830 => 0.21451930025987
831 => 0.19789436365495
901 => 0.18316919368331
902 => 0.21204864300181
903 => 0.21080330863332
904 => 0.20899987991954
905 => 0.21301321537069
906 => 0.23250083311631
907 => 0.23205158045201
908 => 0.22919366421246
909 => 0.23136136849164
910 => 0.223132585688
911 => 0.2252533303824
912 => 0.21446395172234
913 => 0.21934120148094
914 => 0.22349760187553
915 => 0.22433206079131
916 => 0.22621213933707
917 => 0.21014707400956
918 => 0.21735981669608
919 => 0.22159662728181
920 => 0.20245456291898
921 => 0.22121825021579
922 => 0.20986741696375
923 => 0.20601477367422
924 => 0.21120185031642
925 => 0.20918044150436
926 => 0.20744255290886
927 => 0.20647278121185
928 => 0.21028159782112
929 => 0.21010391197378
930 => 0.20387194874156
1001 => 0.19574260675245
1002 => 0.19847108076055
1003 => 0.19747980057383
1004 => 0.19388727329945
1005 => 0.19630820291898
1006 => 0.18564765407902
1007 => 0.16730673388696
1008 => 0.17942330756341
1009 => 0.17895683265717
1010 => 0.17872161485648
1011 => 0.18782688509683
1012 => 0.18695162345755
1013 => 0.18536301501166
1014 => 0.19385809725954
1015 => 0.19075727796409
1016 => 0.20031327238778
1017 => 0.20660746835818
1018 => 0.20501105666418
1019 => 0.21093077839684
1020 => 0.19853393929095
1021 => 0.20265167196707
1022 => 0.20350033096469
1023 => 0.19375326926326
1024 => 0.18709482708628
1025 => 0.18665078490487
1026 => 0.17510596375984
1027 => 0.18127311402898
1028 => 0.1866999510518
1029 => 0.18410091725743
1030 => 0.18327814080206
1031 => 0.18748152727411
1101 => 0.18780816640256
1102 => 0.18036075965827
1103 => 0.1819093113491
1104 => 0.18836702932519
1105 => 0.1817465934249
1106 => 0.16888416791271
1107 => 0.16569410854873
1108 => 0.16526849582512
1109 => 0.15661680182323
1110 => 0.1659072835693
1111 => 0.16185173931771
1112 => 0.1746631550156
1113 => 0.16734534307796
1114 => 0.16702988683126
1115 => 0.16655302844699
1116 => 0.15910615802259
1117 => 0.16073654937223
1118 => 0.16615621853404
1119 => 0.16809001754792
1120 => 0.16788830646763
1121 => 0.16612965919846
1122 => 0.16693475891255
1123 => 0.16434125221812
1124 => 0.16342543102515
1125 => 0.16053484742365
1126 => 0.15628648807354
1127 => 0.15687724849788
1128 => 0.14846013698163
1129 => 0.14387404789766
1130 => 0.1426046788829
1201 => 0.14090722558578
1202 => 0.14279641074956
1203 => 0.14843629236226
1204 => 0.14163339856971
1205 => 0.1299703143299
1206 => 0.13067128556564
1207 => 0.13224615981212
1208 => 0.12931139207264
1209 => 0.1265338807036
1210 => 0.12894870149236
1211 => 0.12400689894823
1212 => 0.13284335303984
1213 => 0.13260435172054
1214 => 0.13589803536324
1215 => 0.13795764333821
1216 => 0.1332109137619
1217 => 0.13201712410998
1218 => 0.13269716095043
1219 => 0.1214576667786
1220 => 0.13497952890201
1221 => 0.13509646652716
1222 => 0.13409517558572
1223 => 0.14129514972578
1224 => 0.15648934088955
1225 => 0.15077267498882
1226 => 0.14855900916491
1227 => 0.14435082881549
1228 => 0.14995797927407
1229 => 0.14952743760402
1230 => 0.147580364894
1231 => 0.14640276924374
]
'min_raw' => 0.10997501786455
'max_raw' => 0.28218330307237
'avg_raw' => 0.19607916046846
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.109975'
'max' => '$0.282183'
'avg' => '$0.196079'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.067627573397412
'max_diff' => 0.16402080102705
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0034519901451302
]
1 => [
'year' => 2028
'avg' => 0.0059246172089428
]
2 => [
'year' => 2029
'avg' => 0.016184986406472
]
3 => [
'year' => 2030
'avg' => 0.012486692909188
]
4 => [
'year' => 2031
'avg' => 0.012263479895639
]
5 => [
'year' => 2032
'avg' => 0.021501739716217
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0034519901451302
'min' => '$0.003451'
'max_raw' => 0.021501739716217
'max' => '$0.0215017'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.021501739716217
]
1 => [
'year' => 2033
'avg' => 0.055304685547931
]
2 => [
'year' => 2034
'avg' => 0.035054767519098
]
3 => [
'year' => 2035
'avg' => 0.041347178676972
]
4 => [
'year' => 2036
'avg' => 0.08025497325623
]
5 => [
'year' => 2037
'avg' => 0.19607916046846
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.021501739716217
'min' => '$0.0215017'
'max_raw' => 0.19607916046846
'max' => '$0.196079'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.19607916046846
]
]
]
]
'prediction_2025_max_price' => '$0.0059022'
'last_price' => 0.005723
'sma_50day_nextmonth' => '$0.0052068'
'sma_200day_nextmonth' => '$0.0125069'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.005198'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.004957'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.004907'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.005144'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.005644'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.007927'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.01582'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.0053027'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.005135'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.005046'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.005194'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.006067'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.010176'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.026516'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.010737'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.055206'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.112521'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.180858'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.005425'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.005571'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.00703'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.016274'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.051008'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.112497'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.266254'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '58.28'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 142.17
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.004953'
'vwma_10_action' => 'BUY'
'hma_9' => '0.005164'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 144
'cci_20_action' => 'SELL'
'adx_14' => 26.45
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000549'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 66.38
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.001360'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 19
'sell_pct' => 44.12
'buy_pct' => 55.88
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767676125
'last_updated_date' => '6. Januar 2026'
]
Alpaca Finance Preisprognose für 2026
Die Preisprognose für Alpaca Finance im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.001977 am unteren Ende und $0.0059022 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Alpaca Finance im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn ALPACA das prognostizierte Preisziel erreicht.
Alpaca Finance Preisprognose 2027-2032
Die Preisprognose für ALPACA für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.003451 am unteren Ende und $0.0215017 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Alpaca Finance, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Alpaca Finance Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.0019034 | $0.003451 | $0.00500048 |
| 2028 | $0.003435 | $0.005924 | $0.008413 |
| 2029 | $0.007546 | $0.016184 | $0.024823 |
| 2030 | $0.006417 | $0.012486 | $0.018555 |
| 2031 | $0.007587 | $0.012263 | $0.016939 |
| 2032 | $0.011582 | $0.0215017 | $0.031421 |
Alpaca Finance Preisprognose 2032-2037
Die Preisprognose für Alpaca Finance für die Jahre 2032-2037 wird derzeit zwischen $0.0215017 am unteren Ende und $0.196079 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Alpaca Finance bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Alpaca Finance Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.011582 | $0.0215017 | $0.031421 |
| 2033 | $0.026914 | $0.0553046 | $0.083694 |
| 2034 | $0.021637 | $0.035054 | $0.048471 |
| 2035 | $0.025582 | $0.041347 | $0.057111 |
| 2036 | $0.042347 | $0.080254 | $0.118162 |
| 2037 | $0.109975 | $0.196079 | $0.282183 |
Alpaca Finance Potenzielles Preishistogramm
Alpaca Finance Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Alpaca Finance Bullisch, mit 19 technischen Indikatoren, die bullische Signale zeigen, und 15 anzeigen bärische Signale. Die Preisprognose für ALPACA wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Alpaca Finance
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Alpaca Finance im nächsten Monat steigen, und bis zum 04.02.2026 $0.0125069 erreichen. Der kurzfristige 50-Tage-SMA für Alpaca Finance wird voraussichtlich bis zum 04.02.2026 $0.0052068 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 58.28, was darauf hindeutet, dass sich der ALPACA-Markt in einem NEUTRAL Zustand befindet.
Beliebte ALPACA Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.005198 | BUY |
| SMA 5 | $0.004957 | BUY |
| SMA 10 | $0.004907 | BUY |
| SMA 21 | $0.005144 | BUY |
| SMA 50 | $0.005644 | BUY |
| SMA 100 | $0.007927 | SELL |
| SMA 200 | $0.01582 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.0053027 | BUY |
| EMA 5 | $0.005135 | BUY |
| EMA 10 | $0.005046 | BUY |
| EMA 21 | $0.005194 | BUY |
| EMA 50 | $0.006067 | SELL |
| EMA 100 | $0.010176 | SELL |
| EMA 200 | $0.026516 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.010737 | SELL |
| SMA 50 | $0.055206 | SELL |
| SMA 100 | $0.112521 | SELL |
| SMA 200 | $0.180858 | SELL |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.016274 | SELL |
| EMA 50 | $0.051008 | SELL |
| EMA 100 | $0.112497 | SELL |
| EMA 200 | $0.266254 | SELL |
Alpaca Finance Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 58.28 | NEUTRAL |
| Stoch RSI (14) | 142.17 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 144 | SELL |
| Average Directional Index (14) | 26.45 | SELL |
| Awesome Oscillator (5, 34) | -0.000549 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 66.38 | NEUTRAL |
| VWMA (10) | 0.004953 | BUY |
| Hull Moving Average (9) | 0.005164 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.001360 | SELL |
Auf weltweiten Geldflüssen basierende Alpaca Finance-Preisprognose
Definition weltweiter Geldflüsse, die für Alpaca Finance-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Alpaca Finance-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.008041 | $0.01130003 | $0.015878 | $0.022311 | $0.031351 | $0.044054 |
| Amazon.com aktie | $0.011941 | $0.024916 | $0.051989 | $0.108479 | $0.226348 | $0.472289 |
| Apple aktie | $0.008117 | $0.011514 | $0.016332 | $0.023165 | $0.032858 | $0.0466079 |
| Netflix aktie | $0.009029 | $0.014247 | $0.02248 | $0.035471 | $0.055968 | $0.0883093 |
| Google aktie | $0.007411 | $0.009597 | $0.012428 | $0.016095 | $0.020843 | $0.026991 |
| Tesla aktie | $0.012973 | $0.02941 | $0.06667 | $0.151137 | $0.342617 | $0.776686 |
| Kodak aktie | $0.004291 | $0.003218 | $0.002413 | $0.0018097 | $0.001357 | $0.001017 |
| Nokia aktie | $0.003791 | $0.002511 | $0.001663 | $0.0011021 | $0.00073 | $0.000483 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Alpaca Finance Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Alpaca Finance investieren?", "Sollte ich heute ALPACA kaufen?", "Wird Alpaca Finance auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Alpaca Finance-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Alpaca Finance.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Alpaca Finance zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Alpaca Finance-Preis entspricht heute $0.005722 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
kurzfristige Alpaca Finance-Prognose
basierend auf dem Preisverlauf der letzten 4 Stunden
langfristige Alpaca Finance-Prognose
basierend auf dem Preisverlauf des letzten Monats
Alpaca Finance-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Alpaca Finance 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.005871 | $0.006024 | $0.00618 | $0.006341 |
| Wenn die Wachstumsrate von Alpaca Finance 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.00602 | $0.006333 | $0.006662 | $0.0070091 |
| Wenn die Wachstumsrate von Alpaca Finance 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.006466 | $0.0073072 | $0.008256 | $0.00933 |
| Wenn die Wachstumsrate von Alpaca Finance 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.00721 | $0.009084 | $0.011446 | $0.014421 |
| Wenn die Wachstumsrate von Alpaca Finance 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.008698 | $0.01322 | $0.020092 | $0.030538 |
| Wenn die Wachstumsrate von Alpaca Finance 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.01316 | $0.030265 | $0.06960092 | $0.160058 |
| Wenn die Wachstumsrate von Alpaca Finance 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.020598 | $0.074142 | $0.266861 | $0.960519 |
Fragefeld
Ist ALPACA eine gute Investition?
Die Entscheidung, Alpaca Finance zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Alpaca Finance in den letzten 2026 Stunden um 12.6752% gestiegen, und Alpaca Finance hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Alpaca Finance investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Alpaca Finance steigen?
Es scheint, dass der Durchschnittswert von Alpaca Finance bis zum Ende dieses Jahres potenziell auf $0.0059022 steigen könnte. Betrachtet man die Aussichten von Alpaca Finance in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.018555 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Alpaca Finance nächste Woche kosten?
Basierend auf unserer neuen experimentellen Alpaca Finance-Prognose wird der Preis von Alpaca Finance in der nächsten Woche um 0.86% steigen und $0.005771 erreichen bis zum 13. Januar 2026.
Wie viel wird Alpaca Finance nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Alpaca Finance-Prognose wird der Preis von Alpaca Finance im nächsten Monat um -11.62% fallen und $0.0050581 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Alpaca Finance in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Alpaca Finance im Jahr 2026 wird erwartet, dass ALPACA innerhalb der Spanne von $0.001977 bis $0.0059022 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Alpaca Finance-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Alpaca Finance in 5 Jahren sein?
Die Zukunft von Alpaca Finance scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.018555 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Alpaca Finance-Prognose für 2030 könnte der Wert von Alpaca Finance seinen höchsten Gipfel von ungefähr $0.018555 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.006417 liegen wird.
Wie viel wird Alpaca Finance im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Alpaca Finance-Preisprognosesimulation wird der Wert von ALPACA im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.0059022 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.0059022 und $0.001977 während des Jahres 2026 liegen.
Wie viel wird Alpaca Finance im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Alpaca Finance könnte der Wert von ALPACA um -12.62% fallen und bis zu $0.00500048 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.00500048 und $0.0019034 im Laufe des Jahres schwanken.
Wie viel wird Alpaca Finance im Jahr 2028 kosten?
Unser neues experimentelles Alpaca Finance-Preisprognosemodell deutet darauf hin, dass der Wert von ALPACA im Jahr 2028 um 47.02% steigen, und im besten Fall $0.008413 erreichen wird. Der Preis wird voraussichtlich zwischen $0.008413 und $0.003435 im Laufe des Jahres liegen.
Wie viel wird Alpaca Finance im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Alpaca Finance im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.024823 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.024823 und $0.007546.
Wie viel wird Alpaca Finance im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Alpaca Finance-Preisprognosen wird der Wert von ALPACA im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.018555 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.018555 und $0.006417 während des Jahres 2030 liegen.
Wie viel wird Alpaca Finance im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Alpaca Finance im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.016939 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.016939 und $0.007587 während des Jahres schwanken.
Wie viel wird Alpaca Finance im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Alpaca Finance-Preisprognose könnte ALPACA eine 449.04% Steigerung im Wert erfahren und $0.031421 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.031421 und $0.011582 liegen.
Wie viel wird Alpaca Finance im Jahr 2033 kosten?
Laut unserer experimentellen Alpaca Finance-Preisprognose wird der Wert von ALPACA voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.083694 beträgt. Im Laufe des Jahres könnte der Preis von ALPACA zwischen $0.083694 und $0.026914 liegen.
Wie viel wird Alpaca Finance im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Alpaca Finance-Preisprognosesimulation deuten darauf hin, dass ALPACA im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.048471 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.048471 und $0.021637.
Wie viel wird Alpaca Finance im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Alpaca Finance könnte ALPACA um 897.93% steigen, wobei der Wert im Jahr 2035 $0.057111 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.057111 und $0.025582.
Wie viel wird Alpaca Finance im Jahr 2036 kosten?
Unsere jüngste Alpaca Finance-Preisprognosesimulation deutet darauf hin, dass der Wert von ALPACA im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.118162 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.118162 und $0.042347.
Wie viel wird Alpaca Finance im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Alpaca Finance um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.282183 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.282183 und $0.109975 liegen.
Verwandte Prognosen
Vite-Preisprognose
Passage-Preisprognose
Ascendia (ex AirDAO)-Preisprognose
GET Protocol-Preisprognose
ISKRA Token-Preisprognose
Instadapp-Preisprognose
Evmos-Preisprognose
Hive Dollar-Preisprognose
Onomy Protocol-Preisprognose
FEED EVERY GORILLA-Preisprognose
Pluton-Preisprognose
Shuffle-Preisprognose
Advertise Coin-Preisprognose
Frax Price Index Share-Preisprognose
Decimal-Preisprognose
WAGMI Games-Preisprognose
Alkimi-Preisprognose
RabbitX-Preisprognose
GameGPT-Preisprognose
Gamer Arena-Preisprognose
Troll-Preisprognose
Orange-Preisprognose
KRYLL-Preisprognose
Beefy.Finance-Preisprognose
Aura Finance-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Alpaca Finance?
Alpaca Finance-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Alpaca Finance Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Alpaca Finance. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von ALPACA über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von ALPACA über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von ALPACA einzuschätzen.
Wie liest man Alpaca Finance-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Alpaca Finance in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von ALPACA innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Alpaca Finance?
Die Preisentwicklung von Alpaca Finance wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von ALPACA. Die Marktkapitalisierung von Alpaca Finance kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von ALPACA-„Walen“, großen Inhabern von Alpaca Finance, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Alpaca Finance-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


