Alpaca Finance Preisvorhersage bis zu $0.005841 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.001956 | $0.005841 |
| 2027 | $0.001883 | $0.004949 |
| 2028 | $0.003399 | $0.008327 |
| 2029 | $0.007468 | $0.024568 |
| 2030 | $0.006351 | $0.018364 |
| 2031 | $0.0075097 | $0.016764 |
| 2032 | $0.011463 | $0.031098 |
| 2033 | $0.026637 | $0.082833 |
| 2034 | $0.021415 | $0.047973 |
| 2035 | $0.025319 | $0.056524 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Alpaca Finance eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.94 Gewinn erzielen könnten, was einer Rendite von 39.55% in den nächsten 90 Tagen entspricht.
Langfristige Alpaca Finance Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Alpaca Finance'
'name_with_ticker' => 'Alpaca Finance <small>ALPACA</small>'
'name_lang' => 'Alpaca Finance'
'name_lang_with_ticker' => 'Alpaca Finance <small>ALPACA</small>'
'name_with_lang' => 'Alpaca Finance'
'name_with_lang_with_ticker' => 'Alpaca Finance <small>ALPACA</small>'
'image' => '/uploads/coins/alpaca-finance.png?1717085056'
'price_for_sd' => 0.005664
'ticker' => 'ALPACA'
'marketcap' => '$859.07K'
'low24h' => '$0.00491'
'high24h' => '$0.005946'
'volume24h' => '$217.51K'
'current_supply' => '151.67M'
'max_supply' => '151.67M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.005664'
'change_24h_pct' => '11.6499%'
'ath_price' => '$8.78'
'ath_days' => 1767
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '06.03.2021'
'ath_pct' => '-99.94%'
'fdv' => '$859.07K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.27928'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.005712'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00500607'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001956'
'current_year_max_price_prediction' => '$0.005841'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.006351'
'grand_prediction_max_price' => '$0.018364'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0057714622841676
107 => 0.0057930108292959
108 => 0.0058415608017659
109 => 0.0054267066026499
110 => 0.0056129639585736
111 => 0.0057223727052246
112 => 0.005228060007531
113 => 0.0057126017325277
114 => 0.0054194849140106
115 => 0.005319996663339
116 => 0.0054539444862879
117 => 0.0054017448894162
118 => 0.0053568667412891
119 => 0.0053318239635297
120 => 0.0054301804614216
121 => 0.0054255920132335
122 => 0.0052646616925087
123 => 0.0050547346494821
124 => 0.0051251930557421
125 => 0.0050995948561968
126 => 0.005006823678811
127 => 0.0050693402511344
128 => 0.0047940489055357
129 => 0.0043204244538321
130 => 0.0046333152741368
131 => 0.0046212693179148
201 => 0.004615195200547
202 => 0.0048503240043389
203 => 0.0048277217951987
204 => 0.0047866985642879
205 => 0.0050060702550046
206 => 0.0049259966369274
207 => 0.0051727646601241
208 => 0.0053353020401565
209 => 0.0052940773030469
210 => 0.0054469444945787
211 => 0.0051268162751164
212 => 0.0052331500283069
213 => 0.0052550652674672
214 => 0.0050033632423933
215 => 0.0048314197961403
216 => 0.004819953128574
217 => 0.0045218268880378
218 => 0.0046810835193413
219 => 0.0048212227644012
220 => 0.0047541069412623
221 => 0.0047328600766846
222 => 0.004841405699929
223 => 0.0048498406244855
224 => 0.0046575234507045
225 => 0.0046975122810264
226 => 0.0048642723510586
227 => 0.0046933103551238
228 => 0.0043611591235061
301 => 0.0042787810257148
302 => 0.0042677902689399
303 => 0.0040443743342407
304 => 0.0042842859241155
305 => 0.0041795580859042
306 => 0.0045103920719813
307 => 0.0043214214734323
308 => 0.0043132753286196
309 => 0.0043009612359556
310 => 0.004108657911764
311 => 0.0041507601182481
312 => 0.0042907142649486
313 => 0.0043406514811876
314 => 0.0043354426204103
315 => 0.004290028413278
316 => 0.0043108188047448
317 => 0.0042438457099777
318 => 0.004220196116291
319 => 0.0041455514932826
320 => 0.0040358445185636
321 => 0.0040510999462702
322 => 0.0038337417229604
323 => 0.0037153134268272
324 => 0.0036825340353174
325 => 0.0036387000630454
326 => 0.0036874851991233
327 => 0.0038331259744234
328 => 0.0036574522999973
329 => 0.0033562721072693
330 => 0.0033743735500383
331 => 0.0034150421175738
401 => 0.003339256511021
402 => 0.0032675317946226
403 => 0.0033298906163208
404 => 0.0032022765982736
405 => 0.0034304636619716
406 => 0.0034242918413854
407 => 0.0035093458677386
408 => 0.0035625318959016
409 => 0.003439955320167
410 => 0.0034091276428521
411 => 0.0034266884888905
412 => 0.0031364468211434
413 => 0.0034856269313641
414 => 0.0034886466554573
415 => 0.0034627899444436
416 => 0.0036487175734096
417 => 0.0040410828628098
418 => 0.0038934592580802
419 => 0.0038362949363819
420 => 0.0037276255190465
421 => 0.0038724210654944
422 => 0.0038613030266896
423 => 0.0038110230388233
424 => 0.0037806135452786
425 => 0.0038366439695406
426 => 0.0037736707556513
427 => 0.0037623590360485
428 => 0.0036938223225284
429 => 0.0036693578340235
430 => 0.0036512453006938
501 => 0.0036313051811985
502 => 0.0036752881160368
503 => 0.0035756169992563
504 => 0.0034554234032991
505 => 0.003445430606308
506 => 0.0034730215973761
507 => 0.0034608146377362
508 => 0.0034453721640816
509 => 0.0034158882763675
510 => 0.0034071410367063
511 => 0.0034355653220478
512 => 0.003403475961136
513 => 0.0034508255611592
514 => 0.0034379490899258
515 => 0.0033660221683392
516 => 0.0032763745932852
517 => 0.0032755765418251
518 => 0.0032562621188312
519 => 0.0032316622972055
520 => 0.0032248191895969
521 => 0.0033246389302903
522 => 0.0035312628061721
523 => 0.0034906975952462
524 => 0.0035200101174302
525 => 0.003664198714906
526 => 0.0037100319341411
527 => 0.0036775006007473
528 => 0.0036329697051526
529 => 0.0036349288385607
530 => 0.0037871043892266
531 => 0.0037965953916593
601 => 0.0038205760928933
602 => 0.0038513980709244
603 => 0.003682749716884
604 => 0.0036269855162517
605 => 0.003600561344312
606 => 0.0035191851221793
607 => 0.0036069424010794
608 => 0.0035558099928057
609 => 0.0035627095016136
610 => 0.0035582161874512
611 => 0.0035606698408204
612 => 0.0034303998790368
613 => 0.0034778634063231
614 => 0.0033989460865071
615 => 0.0032932846541583
616 => 0.0032929304399874
617 => 0.0033187909258643
618 => 0.0033034080969438
619 => 0.0032620132998474
620 => 0.003267893235397
621 => 0.0032163788128235
622 => 0.0032741480189962
623 => 0.0032758046331211
624 => 0.0032535603420347
625 => 0.0033425617747579
626 => 0.0033790257343629
627 => 0.0033643840654509
628 => 0.0033779984358403
629 => 0.0034923832629012
630 => 0.003511032980672
701 => 0.0035193159533746
702 => 0.0035082178672367
703 => 0.0033800891804998
704 => 0.0033857722326018
705 => 0.0033440737670414
706 => 0.003308842957719
707 => 0.0033102520053306
708 => 0.003328365221007
709 => 0.0034074666961918
710 => 0.0035739310874315
711 => 0.0035802482893951
712 => 0.0035879049224609
713 => 0.0035567615478671
714 => 0.0035473684080876
715 => 0.0035597603840318
716 => 0.0036222756570996
717 => 0.0037830819121609
718 => 0.0037262422417336
719 => 0.003680030704914
720 => 0.0037205706812456
721 => 0.0037143298696522
722 => 0.0036616511392729
723 => 0.0036601726227631
724 => 0.0035590652967564
725 => 0.0035216882204341
726 => 0.0034904531378336
727 => 0.0034563452430463
728 => 0.0034361249397093
729 => 0.0034671925155984
730 => 0.0034742980377849
731 => 0.0034063682401353
801 => 0.0033971096597249
802 => 0.0034525825988521
803 => 0.0034281710265818
804 => 0.0034532789340397
805 => 0.0034591041839415
806 => 0.0034581661845404
807 => 0.0034326776994391
808 => 0.0034489232997651
809 => 0.0034104976119475
810 => 0.0033687154477974
811 => 0.0033420610301905
812 => 0.0033188015156331
813 => 0.0033317072461605
814 => 0.0032857006733236
815 => 0.0032709822447437
816 => 0.0034434196559122
817 => 0.003570801025557
818 => 0.0035689488499938
819 => 0.0035576742075937
820 => 0.0035409223759649
821 => 0.0036210501562752
822 => 0.0035931352398206
823 => 0.0036134456739106
824 => 0.0036186155318128
825 => 0.003634263134621
826 => 0.003639855807668
827 => 0.0036229508653587
828 => 0.0035662158142039
829 => 0.003424837460933
830 => 0.0033590254558418
831 => 0.003337306397976
901 => 0.0033380958444791
902 => 0.0033163193856804
903 => 0.0033227335287491
904 => 0.0033140888084806
905 => 0.0032977177996745
906 => 0.003330696382499
907 => 0.0033344968569528
908 => 0.0033267992616568
909 => 0.003328612324006
910 => 0.0032648795226414
911 => 0.0032697249891088
912 => 0.0032427448160863
913 => 0.0032376863588954
914 => 0.003169482830927
915 => 0.0030486503948714
916 => 0.0031156032939345
917 => 0.0030347336068685
918 => 0.0030041070310009
919 => 0.0031490884777485
920 => 0.0031345363616544
921 => 0.0031096294645541
922 => 0.0030727869726907
923 => 0.0030591217340778
924 => 0.0029760960701547
925 => 0.0029711904710055
926 => 0.0030123402319272
927 => 0.0029933510331387
928 => 0.0029666830062675
929 => 0.0028700941162349
930 => 0.0027614962243557
1001 => 0.0027647741120895
1002 => 0.0027993170809607
1003 => 0.0028997554217076
1004 => 0.0028605124243768
1005 => 0.0028320411795519
1006 => 0.0028267093712386
1007 => 0.0028934481151756
1008 => 0.0029878974200456
1009 => 0.0030322109207065
1010 => 0.0029882975873726
1011 => 0.0029378523145003
1012 => 0.0029409226845192
1013 => 0.0029613484807045
1014 => 0.0029634949430784
1015 => 0.0029306602562964
1016 => 0.0029399030282953
1017 => 0.0029258624124522
1018 => 0.0028396951789405
1019 => 0.0028381366869255
1020 => 0.0028169898581873
1021 => 0.0028163495406174
1022 => 0.0027803735096102
1023 => 0.0027753402141818
1024 => 0.0027039076210279
1025 => 0.0027509247701596
1026 => 0.0027193881350332
1027 => 0.0026718549871576
1028 => 0.0026636602545475
1029 => 0.0026634139109898
1030 => 0.0027122198256407
1031 => 0.0027503544446307
1101 => 0.0027199367283032
1102 => 0.0027130112039181
1103 => 0.0027869576857018
1104 => 0.0027775473218577
1105 => 0.002769398007459
1106 => 0.0029794405207235
1107 => 0.002813175481653
1108 => 0.0027406744345416
1109 => 0.0026509406211657
1110 => 0.0026801584032781
1111 => 0.0026863150192677
1112 => 0.0024705213738345
1113 => 0.0023829739187576
1114 => 0.0023529309313315
1115 => 0.0023356407673222
1116 => 0.0023435201121774
1117 => 0.002264717134316
1118 => 0.0023176740387198
1119 => 0.0022494373209417
1120 => 0.0022379972131447
1121 => 0.0023600129174393
1122 => 0.0023769906898864
1123 => 0.0023045582380463
1124 => 0.0023510715978765
1125 => 0.002334205207018
1126 => 0.0022506070436168
1127 => 0.0022474142086813
1128 => 0.0022054675889041
1129 => 0.0021398292514189
1130 => 0.0021098307698764
1201 => 0.0020942073002304
1202 => 0.0021006538483017
1203 => 0.0020973942763292
1204 => 0.0020761233643493
1205 => 0.002098613500105
1206 => 0.0020411604968148
1207 => 0.0020182822479743
1208 => 0.0020079486737444
1209 => 0.0019569558264527
1210 => 0.0020381081231158
1211 => 0.0020540961478881
1212 => 0.0020701156740082
1213 => 0.0022095547118885
1214 => 0.0022025887316066
1215 => 0.0022655578007847
1216 => 0.0022631109385491
1217 => 0.0022451511399882
1218 => 0.0021693817041033
1219 => 0.0021995820507867
1220 => 0.0021066300778712
1221 => 0.0021762760160993
1222 => 0.0021444925183759
1223 => 0.0021655299835477
1224 => 0.0021277027242971
1225 => 0.0021486378914156
1226 => 0.0020578875016783
1227 => 0.001973146064634
1228 => 0.0020072484926574
1229 => 0.0020443217320045
1230 => 0.0021247059609947
1231 => 0.0020768297773636
]
'min_raw' => 0.0019569558264527
'max_raw' => 0.0058415608017659
'avg_raw' => 0.0038992583141093
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001956'
'max' => '$0.005841'
'avg' => '$0.003899'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0037071741735473
'max_diff' => 0.00017743080176588
'year' => 2026
]
1 => [
'items' => [
101 => 0.0020940478633963
102 => 0.0020363701574596
103 => 0.0019173645752901
104 => 0.0019180381339612
105 => 0.0018997317178219
106 => 0.0018839123014971
107 => 0.0020823289329757
108 => 0.0020576526883485
109 => 0.0020183343220823
110 => 0.0020709635177794
111 => 0.0020848795124594
112 => 0.0020852756812644
113 => 0.0021236725838889
114 => 0.0021441650177026
115 => 0.0021477768979816
116 => 0.0022081952538812
117 => 0.0022284466898414
118 => 0.0023118594884709
119 => 0.0021424263778662
120 => 0.0021389370144518
121 => 0.0020717041184919
122 => 0.0020290639529641
123 => 0.0020746237271059
124 => 0.0021149834674661
125 => 0.0020729582081272
126 => 0.0020784458197953
127 => 0.0020220303427227
128 => 0.0020421962211812
129 => 0.0020595657923469
130 => 0.0020499753360854
131 => 0.0020356179588786
201 => 0.002111674429013
202 => 0.0021073830249003
203 => 0.00217820855842
204 => 0.0022334221265812
205 => 0.0023323747113319
206 => 0.0022291125306296
207 => 0.0022253492463349
208 => 0.0022621359539662
209 => 0.0022284410579881
210 => 0.002249735069138
211 => 0.0023289439169315
212 => 0.0023306174750697
213 => 0.0023025832199968
214 => 0.0023008773330279
215 => 0.0023062616183758
216 => 0.0023377975458335
217 => 0.0023267779237786
218 => 0.0023395301094032
219 => 0.0023554769127952
220 => 0.002421439652929
221 => 0.0024373430462594
222 => 0.0023987060454305
223 => 0.0024021945340052
224 => 0.0023877432350858
225 => 0.0023737834614039
226 => 0.0024051629939796
227 => 0.0024625097065279
228 => 0.0024621529556054
301 => 0.0024754562782558
302 => 0.0024837441380564
303 => 0.0024481665767083
304 => 0.0024250068924939
305 => 0.0024338877891107
306 => 0.0024480885362017
307 => 0.002429282678222
308 => 0.0023132042110502
309 => 0.0023484150028689
310 => 0.0023425542053905
311 => 0.0023342077170839
312 => 0.0023696124405347
313 => 0.0023661975685875
314 => 0.0022639088958781
315 => 0.0022704570848301
316 => 0.0022643071129365
317 => 0.0022841789302906
318 => 0.0022273679146373
319 => 0.0022448426004242
320 => 0.0022558025595348
321 => 0.0022622580596493
322 => 0.0022855797526407
323 => 0.0022828432211462
324 => 0.0022854096460008
325 => 0.0023199895600084
326 => 0.0024948828986654
327 => 0.0025044019572082
328 => 0.0024575266315118
329 => 0.0024762523995526
330 => 0.0024403030197896
331 => 0.0024644360792644
401 => 0.0024809473056438
402 => 0.0024063362485614
403 => 0.0024019182659828
404 => 0.0023658205103416
405 => 0.0023852173995418
406 => 0.0023543555541386
407 => 0.002361927971499
408 => 0.0023407548324078
409 => 0.002378862267242
410 => 0.0024214723006834
411 => 0.0024322372778519
412 => 0.0024039192575357
413 => 0.0023834151445782
414 => 0.0023474166766996
415 => 0.0024072829310599
416 => 0.0024247896482259
417 => 0.0024071909757274
418 => 0.002403112978771
419 => 0.0023953851819072
420 => 0.0024047524674073
421 => 0.0024246943028844
422 => 0.0024152901015413
423 => 0.0024215017422091
424 => 0.0023978293733993
425 => 0.0024481783543615
426 => 0.0025281446532716
427 => 0.0025284017579984
428 => 0.0025189975059631
429 => 0.0025151494886477
430 => 0.0025247988219337
501 => 0.0025300331894049
502 => 0.0025612373638666
503 => 0.0025947206862931
504 => 0.0027509727421395
505 => 0.0027070977901105
506 => 0.0028457339095339
507 => 0.0029553770803507
508 => 0.0029882542731639
509 => 0.0029580088027672
510 => 0.0028545406823684
511 => 0.0028494640427609
512 => 0.0030040890977504
513 => 0.0029604004374397
514 => 0.0029552038103119
515 => 0.0028999204775123
516 => 0.0029325997741708
517 => 0.0029254523326152
518 => 0.0029141697464549
519 => 0.0029765195680199
520 => 0.0030932328679825
521 => 0.003075042005653
522 => 0.0030614633707738
523 => 0.0030019657454143
524 => 0.0030377966051564
525 => 0.0030250379222971
526 => 0.0030798573207208
527 => 0.003047383523493
528 => 0.0029600694528688
529 => 0.0029739745064067
530 => 0.0029718727855375
531 => 0.0030151260520953
601 => 0.0030021424950867
602 => 0.0029693375376529
603 => 0.0030928339546116
604 => 0.0030848147842175
605 => 0.0030961841343988
606 => 0.0031011892739575
607 => 0.0031763593667092
608 => 0.003207154148535
609 => 0.0032141451031479
610 => 0.0032433977641285
611 => 0.0032134172702942
612 => 0.0033333606213612
613 => 0.0034131159509323
614 => 0.0035057558704007
615 => 0.0036411276920071
616 => 0.0036920287491904
617 => 0.0036828339288079
618 => 0.0037854712989726
619 => 0.003969908371658
620 => 0.0037201139344554
621 => 0.003983148083378
622 => 0.0038998745087044
623 => 0.0037024343611809
624 => 0.0036897215433468
625 => 0.003823430303577
626 => 0.0041199834647763
627 => 0.004045700261374
628 => 0.0041201049654858
629 => 0.0040333079259008
630 => 0.0040289977213025
701 => 0.0041158894270078
702 => 0.0043189166336085
703 => 0.0042224660181135
704 => 0.0040841804101403
705 => 0.0041862883511054
706 => 0.0040978330029976
707 => 0.0038985183466178
708 => 0.0040456434584083
709 => 0.0039472650860359
710 => 0.0039759771251761
711 => 0.0041827538312243
712 => 0.0041578739108893
713 => 0.0041900708316214
714 => 0.0041332441092693
715 => 0.0040801589898409
716 => 0.003981071672275
717 => 0.0039517368024895
718 => 0.0039598439051402
719 => 0.003951732785012
720 => 0.0038962943414934
721 => 0.0038843224148939
722 => 0.0038643686793926
723 => 0.0038705531763834
724 => 0.0038330343159697
725 => 0.0039038401573625
726 => 0.0039169823454639
727 => 0.0039685089321124
728 => 0.0039738585932711
729 => 0.0041173594036522
730 => 0.0040383215687275
731 => 0.0040913469721933
801 => 0.0040866038810129
802 => 0.0037067134878686
803 => 0.0037590590322426
804 => 0.0038404922723517
805 => 0.0038038067080627
806 => 0.003751941903258
807 => 0.0037100582925633
808 => 0.0036466003395418
809 => 0.0037359161898175
810 => 0.0038533570352484
811 => 0.0039768370869182
812 => 0.0041251902782659
813 => 0.0040920795729786
814 => 0.0039740637271983
815 => 0.0039793578318293
816 => 0.0040120839035053
817 => 0.0039697006672078
818 => 0.0039572010234046
819 => 0.0040103666443918
820 => 0.0040107327668042
821 => 0.0039619657312588
822 => 0.0039077700955233
823 => 0.0039075430138307
824 => 0.0038978994239193
825 => 0.0040350234991227
826 => 0.0041104278756768
827 => 0.0041190728659285
828 => 0.0041098459989532
829 => 0.0041133970538507
830 => 0.0040695209085559
831 => 0.0041698087656331
901 => 0.0042618428207282
902 => 0.0042371757279419
903 => 0.0042001962492214
904 => 0.0041707403132475
905 => 0.0042302368455496
906 => 0.0042275875586224
907 => 0.0042610389835457
908 => 0.0042595214336864
909 => 0.0042482729776564
910 => 0.0042371761296597
911 => 0.0042811738776358
912 => 0.0042685032328009
913 => 0.0042558129069549
914 => 0.0042303605156789
915 => 0.0042338199183728
916 => 0.0041968468246806
917 => 0.004179741379765
918 => 0.0039225165299348
919 => 0.0038537776449958
920 => 0.0038754042975066
921 => 0.003882524353049
922 => 0.0038526091022322
923 => 0.0038954998873061
924 => 0.0038888154038849
925 => 0.0039148208185847
926 => 0.0038985737645041
927 => 0.0038992405492708
928 => 0.0039470196710845
929 => 0.003960890153414
930 => 0.0039538355141527
1001 => 0.0039587763416724
1002 => 0.0040726356264714
1003 => 0.0040564484771879
1004 => 0.004047849376753
1005 => 0.0040502313863407
1006 => 0.0040793248747775
1007 => 0.0040874694630942
1008 => 0.0040529602700862
1009 => 0.004069235005004
1010 => 0.0041385307607127
1011 => 0.0041627803534107
1012 => 0.0042401734128377
1013 => 0.0042072954656411
1014 => 0.0042676443606446
1015 => 0.0044531362894308
1016 => 0.0046013200772104
1017 => 0.0044650441420142
1018 => 0.0047371647971799
1019 => 0.0049490497606159
1020 => 0.0049409172628063
1021 => 0.0049039702184438
1022 => 0.0046627448208251
1023 => 0.0044407656134683
1024 => 0.0046264606461572
1025 => 0.0046269340209841
1026 => 0.0046109826529913
1027 => 0.0045119100763593
1028 => 0.0046075351420768
1029 => 0.0046151255125342
1030 => 0.0046108769235205
1031 => 0.0045349182113047
1101 => 0.0044189432972677
1102 => 0.0044416045178658
1103 => 0.0044787240594819
1104 => 0.0044084490232551
1105 => 0.004385991891066
1106 => 0.0044277439724497
1107 => 0.0045622778780596
1108 => 0.0045368450225059
1109 => 0.0045361808678651
1110 => 0.004644993409133
1111 => 0.0045671071128013
1112 => 0.0044418903484288
1113 => 0.0044102714640186
1114 => 0.0042980457253948
1115 => 0.0043755604427966
1116 => 0.0043783500594791
1117 => 0.0043358960409394
1118 => 0.0044453352580559
1119 => 0.0044443267564038
1120 => 0.0045482230051781
1121 => 0.0047468336111855
1122 => 0.0046880946819548
1123 => 0.0046197876980367
1124 => 0.0046272145611358
1125 => 0.004708668918273
1126 => 0.0046594197545258
1127 => 0.0046771300971866
1128 => 0.0047086421115483
1129 => 0.004727654092212
1130 => 0.0046244790296961
1201 => 0.0046004239871899
1202 => 0.004551215812395
1203 => 0.004538378318105
1204 => 0.0045784573497133
1205 => 0.0045678979408976
1206 => 0.0043781156029989
1207 => 0.0043582822927495
1208 => 0.0043588905520594
1209 => 0.0043090187504149
1210 => 0.0042329522823031
1211 => 0.0044328504188081
1212 => 0.0044167958008741
1213 => 0.0043990727452037
1214 => 0.004401243718397
1215 => 0.0044880127242773
1216 => 0.0044376823189269
1217 => 0.0045714939505422
1218 => 0.004543986301828
1219 => 0.00451577318572
1220 => 0.0045118732736814
1221 => 0.0045010136310098
1222 => 0.0044637718755938
1223 => 0.0044188002180464
1224 => 0.0043891060343554
1225 => 0.0040487183094257
1226 => 0.0041118922912283
1227 => 0.0041845681988027
1228 => 0.0042096556308669
1229 => 0.0041667418423236
1230 => 0.0044654663735281
1231 => 0.0045200462239604
]
'min_raw' => 0.0018839123014971
'max_raw' => 0.0049490497606159
'avg_raw' => 0.0034164810310565
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001883'
'max' => '$0.004949'
'avg' => '$0.003416'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.3043524955656E-5
'max_diff' => -0.00089251104115
'year' => 2027
]
2 => [
'items' => [
101 => 0.0043547202968455
102 => 0.0043237945660954
103 => 0.0044674938592875
104 => 0.0043808256189685
105 => 0.0044198523222774
106 => 0.004335497936189
107 => 0.0045068995362758
108 => 0.0045055937432594
109 => 0.0044389146495449
110 => 0.0044952713629536
111 => 0.0044854779971283
112 => 0.004410197464548
113 => 0.0045092860634341
114 => 0.0045093352101429
115 => 0.0044451580321712
116 => 0.004370213138491
117 => 0.0043568147616204
118 => 0.004346720884467
119 => 0.0044173698472636
120 => 0.0044807134863934
121 => 0.0045985802945941
122 => 0.004628214810622
123 => 0.0047438802995606
124 => 0.0046750071325481
125 => 0.0047055377154279
126 => 0.0047386829819586
127 => 0.0047545740416102
128 => 0.0047286804126691
129 => 0.0049083565268053
130 => 0.0049235266959723
131 => 0.0049286131224725
201 => 0.0048680273477221
202 => 0.0049218416959776
203 => 0.0048966637445727
204 => 0.0049621697794919
205 => 0.0049724419621902
206 => 0.0049637417888882
207 => 0.004967002341812
208 => 0.0048136804754354
209 => 0.0048057299278265
210 => 0.0046973236470339
211 => 0.0047415000077556
212 => 0.0046589144188144
213 => 0.0046851031597935
214 => 0.0046966469072816
215 => 0.0046906171086957
216 => 0.0047439976729092
217 => 0.0046986132883989
218 => 0.0045788364357928
219 => 0.0044590269500633
220 => 0.0044575228395647
221 => 0.0044259791167852
222 => 0.0044031787827366
223 => 0.0044075709359597
224 => 0.0044230494567953
225 => 0.0044022791429672
226 => 0.0044067115425041
227 => 0.0044803189077395
228 => 0.0044950803398938
229 => 0.0044449152257698
301 => 0.0042434950537704
302 => 0.0041940660383375
303 => 0.0042295946344107
304 => 0.0042126142538223
305 => 0.0033999084838967
306 => 0.0035908416495057
307 => 0.0034773956459785
308 => 0.0035296767838035
309 => 0.0034138777909024
310 => 0.00346914313986
311 => 0.003458937647875
312 => 0.003765952528051
313 => 0.0037611589129822
314 => 0.0037634533628432
315 => 0.003653933292822
316 => 0.0038284017381597
317 => 0.0039143511680154
318 => 0.0038984442160191
319 => 0.0039024476531347
320 => 0.0038336553394663
321 => 0.003764119422812
322 => 0.0036869933897416
323 => 0.0038302840261207
324 => 0.0038143525534081
325 => 0.0038508936198479
326 => 0.003943827840166
327 => 0.0039575127571306
328 => 0.0039759054243098
329 => 0.0039693129624052
330 => 0.0041263721507771
331 => 0.0041073512467554
401 => 0.0041531861527601
402 => 0.0040589002736056
403 => 0.0039522068516444
404 => 0.0039724857830885
405 => 0.0039705327589176
406 => 0.0039456685196448
407 => 0.0039232221961847
408 => 0.0038858553918359
409 => 0.0040040894900419
410 => 0.0039992894015756
411 => 0.0040769972543533
412 => 0.004063261636561
413 => 0.0039715318192684
414 => 0.0039748079676384
415 => 0.0039968416398896
416 => 0.0040731004311272
417 => 0.004095739232461
418 => 0.0040852520376829
419 => 0.0041100744498449
420 => 0.0041296930723264
421 => 0.0041125382467749
422 => 0.0043554144002582
423 => 0.0042545552880656
424 => 0.004303713317575
425 => 0.0043154372179571
426 => 0.0042854066936555
427 => 0.0042919192390641
428 => 0.0043017839707957
429 => 0.0043616806901573
430 => 0.0045188670130178
501 => 0.0045884837654092
502 => 0.0047979291998088
503 => 0.0045827030632351
504 => 0.0045699324349851
505 => 0.0046076598823666
506 => 0.00473062652441
507 => 0.0048302794381168
508 => 0.0048633400587079
509 => 0.0048677095654904
510 => 0.0049297334875477
511 => 0.0049652844429933
512 => 0.0049222021520188
513 => 0.0048856944213219
514 => 0.0047549282614717
515 => 0.0047700648005388
516 => 0.0048743405445275
517 => 0.0050216361747222
518 => 0.0051480311489275
519 => 0.0051037720342704
520 => 0.0054414378370388
521 => 0.0054749160221421
522 => 0.0054702904194402
523 => 0.0055465587073276
524 => 0.0053951816876378
525 => 0.0053304650789288
526 => 0.0048935878070789
527 => 0.0050163325004764
528 => 0.0051947491208727
529 => 0.0051711350121353
530 => 0.0050415640933135
531 => 0.0051479328577667
601 => 0.0051127640177797
602 => 0.0050850248945254
603 => 0.0052121031956469
604 => 0.0050723753834749
605 => 0.0051933552290601
606 => 0.0050381973257209
607 => 0.005103974206178
608 => 0.0050666360675608
609 => 0.0050907984192363
610 => 0.0049495458050593
611 => 0.0050257622869558
612 => 0.0049463749488359
613 => 0.0049463373089011
614 => 0.004944584829012
615 => 0.0050379836802528
616 => 0.0050410294134387
617 => 0.0049720075212539
618 => 0.0049620603882654
619 => 0.0049988401524271
620 => 0.0049557806812293
621 => 0.0049759279367897
622 => 0.0049563909210759
623 => 0.0049519927273262
624 => 0.0049169471712378
625 => 0.0049018485820772
626 => 0.0049077691279298
627 => 0.0048875592526844
628 => 0.0048753820718259
629 => 0.0049421624812441
630 => 0.004906484402406
701 => 0.0049366943039665
702 => 0.0049022663083448
703 => 0.0047829238759564
704 => 0.0047142887810665
705 => 0.0044888619893342
706 => 0.0045527927478284
707 => 0.0045951789068512
708 => 0.004581170281547
709 => 0.0046112662293188
710 => 0.0046131138760828
711 => 0.0046033293766703
712 => 0.0045920001798227
713 => 0.0045864857533411
714 => 0.0046275857704497
715 => 0.0046514457137442
716 => 0.0045994329249628
717 => 0.0045872470562876
718 => 0.0046398348574504
719 => 0.0046719133857807
720 => 0.0049087632156037
721 => 0.0048912166151955
722 => 0.0049352551388736
723 => 0.0049302970769337
724 => 0.0049764564656353
725 => 0.0050519075577492
726 => 0.0048984943910244
727 => 0.0049251216121397
728 => 0.0049185932324346
729 => 0.004989868370222
730 => 0.0049900908834223
731 => 0.0049473578778615
801 => 0.0049705241334398
802 => 0.004957593365109
803 => 0.004980961011181
804 => 0.0048909822696494
805 => 0.0050005666642299
806 => 0.0050626939544946
807 => 0.0050635565919802
808 => 0.005093004434493
809 => 0.0051229251479901
810 => 0.0051803553520027
811 => 0.0051213234507705
812 => 0.0050151308070934
813 => 0.0050227975729667
814 => 0.0049605368648333
815 => 0.0049615834785853
816 => 0.0049559965723523
817 => 0.0049727632985202
818 => 0.0048946616231685
819 => 0.0049129919302661
820 => 0.0048873293929873
821 => 0.0049250658267954
822 => 0.0048844676620738
823 => 0.0049185900842522
824 => 0.0049333161904881
825 => 0.0049876558395293
826 => 0.0048764416517282
827 => 0.0046496683942634
828 => 0.0046973388823425
829 => 0.0046268304860375
830 => 0.0046333563065599
831 => 0.0046465395025918
901 => 0.004603808450979
902 => 0.0046119601890165
903 => 0.0046116689515709
904 => 0.004609159224604
905 => 0.004598043227728
906 => 0.0045819228330248
907 => 0.0046461415239264
908 => 0.0046570535308939
909 => 0.004681309570671
910 => 0.0047534790920187
911 => 0.0047462676549615
912 => 0.0047580298080014
913 => 0.004732353093957
914 => 0.0046345473756818
915 => 0.0046398586967417
916 => 0.0045736264380172
917 => 0.004679615862905
918 => 0.0046545161680995
919 => 0.0046383342315752
920 => 0.00463391884027
921 => 0.0047062672559019
922 => 0.0047279150357815
923 => 0.004714425592089
924 => 0.0046867583495258
925 => 0.0047398876343331
926 => 0.004754102789603
927 => 0.0047572850386332
928 => 0.0048514199447818
929 => 0.0047625461341785
930 => 0.0047839389437204
1001 => 0.0049508395369197
1002 => 0.0047994837295955
1003 => 0.0048796602763724
1004 => 0.0048757360516263
1005 => 0.0049167516599309
1006 => 0.0048723715745894
1007 => 0.0048729217189363
1008 => 0.0049093408004728
1009 => 0.0048581967686707
1010 => 0.0048455327871563
1011 => 0.0048280375873954
1012 => 0.0048662377160243
1013 => 0.0048891369654941
1014 => 0.0050736880985753
1015 => 0.0051929165470999
1016 => 0.0051877405257067
1017 => 0.0052350396721338
1018 => 0.0052137309734579
1019 => 0.0051449195644827
1020 => 0.005262372248946
1021 => 0.0052252053051527
1022 => 0.0052282693028412
1023 => 0.0052281552606942
1024 => 0.0052528680291261
1025 => 0.0052353567678001
1026 => 0.0052008402742326
1027 => 0.00522375393348
1028 => 0.0052917993096619
1029 => 0.0055030142452174
1030 => 0.0056212129213799
1031 => 0.0054958985364977
1101 => 0.005582338721163
1102 => 0.0055305054121509
1103 => 0.005521085757996
1104 => 0.0055753765818453
1105 => 0.0056297624345947
1106 => 0.0056262982908911
1107 => 0.0055868169545394
1108 => 0.0055645149494362
1109 => 0.0057333932037977
1110 => 0.0058578198248453
1111 => 0.0058493347634565
1112 => 0.0058867850649369
1113 => 0.0059967403083774
1114 => 0.0060067932378337
1115 => 0.0060055267997861
1116 => 0.0059806095652141
1117 => 0.006088874781874
1118 => 0.0061791915303569
1119 => 0.0059748419453389
1120 => 0.0060526555921812
1121 => 0.0060875886452479
1122 => 0.0061388807313196
1123 => 0.0062254190780742
1124 => 0.0063194226758127
1125 => 0.0063327158152299
1126 => 0.0063232836966781
1127 => 0.0062612857970172
1128 => 0.0063641456553588
1129 => 0.0064243985480148
1130 => 0.0064602777667285
1201 => 0.0065512614956537
1202 => 0.006087804379891
1203 => 0.005759746398041
1204 => 0.0057085154069604
1205 => 0.005812695641882
1206 => 0.005840167139009
1207 => 0.0058290934129634
1208 => 0.0054598343286643
1209 => 0.0057065713343015
1210 => 0.0059720396061304
1211 => 0.0059822373236049
1212 => 0.0061151362911622
1213 => 0.0061584136427116
1214 => 0.0062654147310611
1215 => 0.0062587217838516
1216 => 0.0062847748461055
1217 => 0.0062787856982695
1218 => 0.0064769826826996
1219 => 0.006695623389063
1220 => 0.0066880525566365
1221 => 0.0066566203682573
1222 => 0.0067033025279849
1223 => 0.0069289631679139
1224 => 0.0069081879523273
1225 => 0.0069283693046411
1226 => 0.0071944359167937
1227 => 0.0075403603601265
1228 => 0.0073796437259521
1229 => 0.0077283525771448
1230 => 0.0079478463147086
1231 => 0.0083274380377491
]
'min_raw' => 0.0033999084838967
'max_raw' => 0.0083274380377491
'avg_raw' => 0.0058636732608229
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003399'
'max' => '$0.008327'
'avg' => '$0.005863'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0015159961823997
'max_diff' => 0.0033783882771332
'year' => 2028
]
3 => [
'items' => [
101 => 0.0082799112844958
102 => 0.0084276835567027
103 => 0.0081948284770396
104 => 0.0076601461463571
105 => 0.0075755306208448
106 => 0.0077449330457267
107 => 0.008161392377252
108 => 0.0077318172593241
109 => 0.0078187197462011
110 => 0.0077936918241342
111 => 0.0077923581925291
112 => 0.0078432574866248
113 => 0.0077694254058104
114 => 0.0074686202264346
115 => 0.0076064774674865
116 => 0.0075532441662679
117 => 0.0076123104827754
118 => 0.0079310670321645
119 => 0.0077901371634725
120 => 0.0076416789950184
121 => 0.0078278784837648
122 => 0.0080649744180251
123 => 0.0080501373805614
124 => 0.0080213473264814
125 => 0.0081836353539323
126 => 0.0084516876293507
127 => 0.008524141082275
128 => 0.0085776247399781
129 => 0.0085849992327616
130 => 0.0086609610916529
131 => 0.008252495031541
201 => 0.008900741159091
202 => 0.009012675357881
203 => 0.0089916363677057
204 => 0.0091160465187496
205 => 0.0090794418963316
206 => 0.0090264075415371
207 => 0.0092236240937398
208 => 0.0089975312311945
209 => 0.0086766208771115
210 => 0.0085005631099744
211 => 0.0087324101799155
212 => 0.0088739910951808
213 => 0.0089675670739337
214 => 0.0089958831085642
215 => 0.0082842030890338
216 => 0.0079006470300903
217 => 0.0081465020663939
218 => 0.0084464621786925
219 => 0.0082508287379719
220 => 0.008258497198465
221 => 0.0079795753235612
222 => 0.0084711405755665
223 => 0.0083995236530639
224 => 0.0087710723736958
225 => 0.0086823992896522
226 => 0.0089853828478893
227 => 0.0089055971229207
228 => 0.0092367832065055
301 => 0.0093689023017528
302 => 0.0095907508253682
303 => 0.0097539435024256
304 => 0.0098497733637722
305 => 0.0098440200983457
306 => 0.010223745751248
307 => 0.0099998348003354
308 => 0.0097185498742297
309 => 0.0097134623173591
310 => 0.0098591437664274
311 => 0.010164452117921
312 => 0.010243614131407
313 => 0.010287854897466
314 => 0.010220098624215
315 => 0.0099770593348418
316 => 0.0098721162019275
317 => 0.0099615307916657
318 => 0.0098521844318992
319 => 0.010040946926026
320 => 0.010300158147955
321 => 0.010246632055659
322 => 0.010425561757125
323 => 0.010610735174188
324 => 0.010875541477248
325 => 0.010944771650617
326 => 0.011059206494607
327 => 0.011176997538962
328 => 0.011214828847851
329 => 0.011287060554886
330 => 0.011286679858135
331 => 0.011504354969039
401 => 0.011744457357204
402 => 0.011835090450353
403 => 0.012043496250511
404 => 0.01168660862115
405 => 0.01195731198765
406 => 0.012201493200377
407 => 0.011910370292154
408 => 0.012311615398202
409 => 0.012327194836429
410 => 0.012562425856894
411 => 0.012323974152842
412 => 0.012182382292141
413 => 0.012591152688607
414 => 0.01278894380731
415 => 0.01272936751268
416 => 0.012275988968894
417 => 0.01201210321009
418 => 0.011321463279538
419 => 0.012139556110701
420 => 0.012538025264665
421 => 0.012274957030048
422 => 0.012407633345824
423 => 0.013131472304256
424 => 0.013407063314525
425 => 0.013349742310916
426 => 0.013359428616942
427 => 0.013508132523752
428 => 0.014167567539288
429 => 0.013772418792395
430 => 0.014074495203453
501 => 0.014234715442661
502 => 0.014383536930009
503 => 0.014018078392598
504 => 0.013542622205079
505 => 0.013392025272198
506 => 0.012248800078623
507 => 0.012189290242522
508 => 0.012155885568186
509 => 0.011945273821683
510 => 0.011779790680343
511 => 0.011648192342355
512 => 0.011302839004884
513 => 0.011419385618327
514 => 0.01086896447924
515 => 0.0112211044183
516 => 0.010342618989936
517 => 0.011074247759013
518 => 0.010676055483083
519 => 0.010943430887023
520 => 0.010942498039427
521 => 0.010450175149324
522 => 0.010166213580828
523 => 0.010347164944223
524 => 0.010541159169719
525 => 0.010572634080131
526 => 0.010824152657254
527 => 0.010894346085756
528 => 0.010681656720379
529 => 0.010324414332053
530 => 0.01040739359103
531 => 0.010164532008794
601 => 0.0097389264274605
602 => 0.010044603786335
603 => 0.010148975476339
604 => 0.010195071960569
605 => 0.0097765377524589
606 => 0.009645025217451
607 => 0.0095750090473099
608 => 0.010270386821514
609 => 0.010308481185711
610 => 0.010113585032477
611 => 0.010994534125909
612 => 0.010795148214353
613 => 0.011017911128295
614 => 0.010399864093025
615 => 0.010423474322083
616 => 0.010130880950944
617 => 0.010294713687686
618 => 0.010178921989932
619 => 0.010281477621584
620 => 0.010342949044343
621 => 0.01063549440379
622 => 0.011077588157096
623 => 0.010591797882616
624 => 0.01038013210338
625 => 0.010511448362365
626 => 0.010861160864694
627 => 0.011390993207177
628 => 0.011077321796558
629 => 0.011216523842105
630 => 0.011246933296389
701 => 0.011015643610945
702 => 0.011399521187788
703 => 0.011605244299834
704 => 0.011816273644393
705 => 0.011999504511366
706 => 0.011731983883541
707 => 0.012018269302889
708 => 0.011787573791074
709 => 0.011580616068112
710 => 0.01158092993755
711 => 0.011451102334766
712 => 0.011199544995042
713 => 0.011153153962014
714 => 0.011394485974363
715 => 0.011588011394041
716 => 0.01160395107453
717 => 0.011711096690558
718 => 0.011774504362436
719 => 0.01239598574539
720 => 0.012645950698778
721 => 0.012951603112187
722 => 0.013070671952835
723 => 0.013429026474646
724 => 0.013139626094153
725 => 0.013077012501419
726 => 0.012207761648377
727 => 0.012350101426867
728 => 0.012578001145974
729 => 0.012211519630805
730 => 0.012443967799763
731 => 0.01248985799224
801 => 0.012199066729155
802 => 0.012354390907118
803 => 0.011941895940859
804 => 0.011086579420142
805 => 0.01140047339958
806 => 0.011631605024018
807 => 0.011301751697622
808 => 0.011893001018101
809 => 0.01154760537094
810 => 0.011438131532705
811 => 0.011011035059509
812 => 0.011212608154407
813 => 0.011485238651505
814 => 0.011316784700995
815 => 0.01166635194179
816 => 0.012161432380933
817 => 0.012514256184416
818 => 0.012541341615017
819 => 0.012314499546736
820 => 0.012678015408842
821 => 0.012680663225039
822 => 0.012270615847577
823 => 0.012019464112035
824 => 0.011962401909292
825 => 0.012104954479447
826 => 0.012278039616272
827 => 0.012550946635499
828 => 0.012715858631578
829 => 0.013145861654788
830 => 0.013262208143716
831 => 0.013390037660996
901 => 0.013560857317246
902 => 0.013765970111835
903 => 0.013317194994353
904 => 0.013335025666392
905 => 0.012917132490707
906 => 0.012470553700544
907 => 0.012809451335446
908 => 0.013252514911416
909 => 0.013150875637547
910 => 0.013139439142935
911 => 0.013158672154653
912 => 0.013082039461384
913 => 0.012735432629868
914 => 0.012561368848954
915 => 0.01278595553474
916 => 0.012905313363031
917 => 0.013090426945615
918 => 0.013067607789288
919 => 0.013544440498276
920 => 0.013729723270316
921 => 0.013682320008531
922 => 0.013691043349523
923 => 0.014026488958043
924 => 0.014399573464368
925 => 0.014749016337378
926 => 0.015104484636725
927 => 0.014675953727699
928 => 0.014458372160207
929 => 0.014682860798471
930 => 0.014563743967102
1001 => 0.015248224612497
1002 => 0.015295616567288
1003 => 0.015980047716941
1004 => 0.016629654378508
1005 => 0.01622164807329
1006 => 0.016606379642103
1007 => 0.017022498201399
1008 => 0.017825258415084
1009 => 0.01755491701656
1010 => 0.01734783974208
1011 => 0.017152152718287
1012 => 0.017559346350361
1013 => 0.018083194452946
1014 => 0.018196026316888
1015 => 0.018378857041564
1016 => 0.018186632890045
1017 => 0.018418145707754
1018 => 0.019235487686155
1019 => 0.019014634668714
1020 => 0.018700987880053
1021 => 0.019346200873642
1022 => 0.01957970094782
1023 => 0.021218526753339
1024 => 0.023287612029324
1025 => 0.022430997138719
1026 => 0.021899268633332
1027 => 0.022024237444867
1028 => 0.0227797973447
1029 => 0.023022459204253
1030 => 0.022362820619427
1031 => 0.022595816119197
1101 => 0.02387964423054
1102 => 0.024568376822138
1103 => 0.02363298545362
1104 => 0.021052277766037
1105 => 0.018672747418418
1106 => 0.019303906018255
1107 => 0.019232352220165
1108 => 0.020611665364985
1109 => 0.019009367397289
1110 => 0.019036345985742
1111 => 0.020444181865679
1112 => 0.020068595389329
1113 => 0.019460193399124
1114 => 0.018677189426245
1115 => 0.017229734163276
1116 => 0.015947682671589
1117 => 0.018462080885613
1118 => 0.018353655462488
1119 => 0.018196639382055
1120 => 0.018546061678144
1121 => 0.020242757162701
1122 => 0.020203642840114
1123 => 0.019954817476122
1124 => 0.020143549321664
1125 => 0.019427107794095
1126 => 0.01961175108882
1127 => 0.018672370488654
1128 => 0.019097009751928
1129 => 0.0194588880417
1130 => 0.019531540466071
1201 => 0.019695230087905
1202 => 0.01829652019139
1203 => 0.01892449987096
1204 => 0.019293379098969
1205 => 0.017626769326884
1206 => 0.019260435582334
1207 => 0.01827217176394
1208 => 0.017936740180753
1209 => 0.018388354617764
1210 => 0.018212360032452
1211 => 0.018061050222749
1212 => 0.017976616749102
1213 => 0.018308232548776
1214 => 0.018292762275355
1215 => 0.017750174463235
1216 => 0.017042390781033
1217 => 0.017279946216987
1218 => 0.017193640100011
1219 => 0.016880855598378
1220 => 0.017091634586734
1221 => 0.01616347059482
1222 => 0.014566612688498
1223 => 0.015621545934494
1224 => 0.01558093215207
1225 => 0.015560452841283
1226 => 0.016353206019437
1227 => 0.016277001093285
1228 => 0.016138688406118
1229 => 0.016878315377412
1230 => 0.016608341583503
1231 => 0.017440337202504
]
'min_raw' => 0.0074686202264346
'max_raw' => 0.024568376822138
'avg_raw' => 0.016018498524286
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.007468'
'max' => '$0.024568'
'avg' => '$0.016018'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0040687117425379
'max_diff' => 0.016240938784389
'year' => 2029
]
4 => [
'items' => [
101 => 0.017988343327281
102 => 0.017849351247896
103 => 0.018364753656993
104 => 0.017285419014437
105 => 0.017643930687304
106 => 0.017717819446206
107 => 0.016869188495395
108 => 0.016289469161645
109 => 0.016250808491368
110 => 0.015245655056891
111 => 0.015782599908274
112 => 0.016255089157203
113 => 0.016028803473613
114 => 0.015957168186281
115 => 0.016323137333462
116 => 0.016351576270512
117 => 0.015703165491953
118 => 0.015837990625315
119 => 0.016400233844245
120 => 0.015823823538765
121 => 0.014703952471307
122 => 0.014426208963149
123 => 0.014389152859332
124 => 0.013635890437091
125 => 0.014444769112446
126 => 0.014091671894053
127 => 0.015207101776203
128 => 0.01456997420969
129 => 0.014542508913708
130 => 0.014500991090549
131 => 0.013852627006847
201 => 0.013994577535491
202 => 0.014466442712378
203 => 0.014634809523433
204 => 0.014617247485651
205 => 0.014464130315586
206 => 0.014534226571955
207 => 0.014308422107035
208 => 0.014228685850759
209 => 0.013977016292765
210 => 0.013607131568003
211 => 0.013658566307616
212 => 0.012925727882261
213 => 0.012526438613448
214 => 0.012415920606389
215 => 0.012268131308483
216 => 0.012432613800839
217 => 0.012923651843078
218 => 0.012331355784606
219 => 0.011315905737094
220 => 0.011376936015192
221 => 0.011514052930027
222 => 0.011258536466352
223 => 0.011016711577355
224 => 0.011226958698464
225 => 0.010796699126892
226 => 0.011566047743662
227 => 0.011545239019653
228 => 0.011832004607785
301 => 0.012011325015067
302 => 0.011598049531954
303 => 0.011494111865567
304 => 0.011553319484045
305 => 0.010574749437209
306 => 0.011752034557795
307 => 0.011762215768406
308 => 0.011675038061965
309 => 0.012301906044077
310 => 0.013624793011359
311 => 0.013127069721262
312 => 0.012934336219571
313 => 0.012567949691968
314 => 0.013056137986119
315 => 0.013018652742052
316 => 0.012849130252524
317 => 0.012746602521915
318 => 0.012935513009234
319 => 0.012723194421957
320 => 0.012685056169557
321 => 0.012453979854843
322 => 0.012371496123793
323 => 0.012310428453095
324 => 0.012243198948042
325 => 0.01239149048364
326 => 0.0120554423546
327 => 0.011650201254181
328 => 0.011616509841451
329 => 0.011709534794178
330 => 0.01166837817749
331 => 0.011616312799404
401 => 0.011516905813477
402 => 0.011487413884246
403 => 0.011583248346795
404 => 0.011475056826074
405 => 0.011634699308395
406 => 0.011591285386625
407 => 0.011348778748719
408 => 0.01104652569043
409 => 0.011043835004214
410 => 0.0109787150786
411 => 0.010895775062485
412 => 0.010872703047412
413 => 0.011209252272351
414 => 0.011905899095905
415 => 0.011769130655096
416 => 0.011867959870174
417 => 0.01235410179349
418 => 0.012508631692115
419 => 0.012398950030312
420 => 0.012248811006767
421 => 0.012255416361835
422 => 0.012768486855462
423 => 0.012800486432805
424 => 0.012881339041295
425 => 0.012985257492148
426 => 0.012416647791849
427 => 0.012228634896085
428 => 0.012139543955513
429 => 0.011865178341087
430 => 0.012161058133916
501 => 0.01198866164947
502 => 0.012011923825124
503 => 0.011996774302713
504 => 0.012005046966356
505 => 0.011565832695044
506 => 0.011725859291087
507 => 0.011459784037496
508 => 0.011103539141287
509 => 0.011102344883479
510 => 0.011189535317135
511 => 0.011137671035434
512 => 0.010998105586931
513 => 0.011017930200161
514 => 0.010844245727832
515 => 0.01103901863976
516 => 0.011044604029944
517 => 0.010969605849499
518 => 0.011269680393807
519 => 0.011392621179447
520 => 0.011343255770462
521 => 0.011389157570755
522 => 0.011774814001284
523 => 0.01183769282683
524 => 0.011865619447596
525 => 0.011828201475338
526 => 0.011396206662346
527 => 0.011415367469286
528 => 0.011274778181355
529 => 0.011155995047988
530 => 0.011160745750387
531 => 0.011221815721664
601 => 0.011488511867938
602 => 0.012049758185176
603 => 0.012071057072649
604 => 0.012096871945599
605 => 0.011991869883795
606 => 0.011960200257221
607 => 0.012001980669297
608 => 0.012212755277121
609 => 0.012754924793195
610 => 0.01256328587593
611 => 0.012407480453156
612 => 0.012544163813769
613 => 0.012523122481763
614 => 0.012345512464377
615 => 0.012340527542738
616 => 0.011999637134018
617 => 0.011873617711613
618 => 0.011768306449862
619 => 0.011653309301249
620 => 0.011585135136812
621 => 0.011689881637991
622 => 0.011713838402135
623 => 0.011484808346652
624 => 0.011453592396385
625 => 0.011640623283649
626 => 0.011558317963378
627 => 0.011642971026351
628 => 0.011662611263101
629 => 0.011659448732631
630 => 0.011573512525562
701 => 0.011628285701293
702 => 0.01149873081202
703 => 0.011357859328451
704 => 0.011267992098537
705 => 0.011189571021279
706 => 0.011233083592802
707 => 0.011077969220406
708 => 0.011028345010841
709 => 0.011609729781791
710 => 0.012039204963032
711 => 0.012032960223806
712 => 0.011994946979783
713 => 0.011938467009871
714 => 0.01220862341553
715 => 0.012114506325747
716 => 0.01218298437231
717 => 0.012200414909175
718 => 0.012253171894524
719 => 0.01227202798217
720 => 0.012215031788909
721 => 0.012023745602826
722 => 0.011547078614051
723 => 0.011325188844039
724 => 0.011251961524068
725 => 0.011254623198071
726 => 0.011181202346847
727 => 0.011202828078024
728 => 0.011173681800084
729 => 0.011118485800907
730 => 0.011229675395391
731 => 0.011242488960352
801 => 0.011216535980383
802 => 0.011222648846677
803 => 0.011007769257195
804 => 0.011024106085689
805 => 0.010933140548648
806 => 0.010916085607059
807 => 0.010686132650695
808 => 0.010278737656282
809 => 0.010504474029976
810 => 0.010231816233892
811 => 0.010128556595075
812 => 0.010617371665065
813 => 0.010568308189658
814 => 0.01048433284714
815 => 0.010360115813562
816 => 0.010314042507502
817 => 0.010034115684919
818 => 0.010017576114889
819 => 0.010156315406822
820 => 0.010092291997322
821 => 0.010002378882824
822 => 0.0096767226964581
823 => 0.0093105773219247
824 => 0.0093216289492741
825 => 0.0094380929805363
826 => 0.0097767278587456
827 => 0.0096444173533863
828 => 0.0095484245636601
829 => 0.009530447999677
830 => 0.0097554623344109
831 => 0.01007390476002
901 => 0.010223310821368
902 => 0.010075253952102
903 => 0.0099051741926363
904 => 0.0099155261595213
905 => 0.0099843931574438
906 => 0.0099916301051986
907 => 0.0098809256662685
908 => 0.0099120883173723
909 => 0.009864749400773
910 => 0.0095742305569839
911 => 0.009568975992345
912 => 0.0094976779828299
913 => 0.0094955191074374
914 => 0.0093742234071303
915 => 0.0093572533001798
916 => 0.0091164133250973
917 => 0.0092749349260272
918 => 0.0091686069588811
919 => 0.0090083456321599
920 => 0.008980716519027
921 => 0.0089798859545231
922 => 0.0091444385032888
923 => 0.0092730120336877
924 => 0.0091704565793925
925 => 0.0091471066904035
926 => 0.0093964224165156
927 => 0.0093646947178045
928 => 0.0093372187353424
929 => 0.010045391733514
930 => 0.009484817546033
1001 => 0.0092403752038354
1002 => 0.0089378313870241
1003 => 0.0090363411793362
1004 => 0.0090570986399863
1005 => 0.0083295352981771
1006 => 0.0080343629410173
1007 => 0.0079330709113757
1008 => 0.0078747759162578
1009 => 0.0079013416775555
1010 => 0.0076356519358474
1011 => 0.007814199836378
1012 => 0.0075841349782535
1013 => 0.0075455638560932
1014 => 0.0079569483219866
1015 => 0.0080141900671425
1016 => 0.0077699789986912
1017 => 0.0079268020388176
1018 => 0.0078699358244645
1019 => 0.0075880787799199
1020 => 0.0075773139140184
1021 => 0.0074358879568201
1022 => 0.0072145837192663
1023 => 0.0071134417443188
1024 => 0.0070607661256112
1025 => 0.0070825011125173
1026 => 0.007071511238036
1027 => 0.0069997948732081
1028 => 0.0070756219361198
1029 => 0.006881915124286
1030 => 0.006804779511012
1031 => 0.0067699391440287
1101 => 0.0065980131991781
1102 => 0.0068716238332501
1103 => 0.0069255285750182
1104 => 0.0069795395257796
1105 => 0.0074496679773157
1106 => 0.0074261816884461
1107 => 0.0076384863015401
1108 => 0.0076302365346784
1109 => 0.0075696838199173
1110 => 0.0073142218767783
1111 => 0.0074160444541422
1112 => 0.0071026503877579
1113 => 0.0073374665310181
1114 => 0.0072303062493907
1115 => 0.0073012355320063
1116 => 0.0071736982864279
1117 => 0.0072442826640148
1118 => 0.0069383113890255
1119 => 0.0066525997175725
1120 => 0.0067675784346088
1121 => 0.0068925734494385
1122 => 0.0071635944897268
1123 => 0.0070021765940061
1124 => 0.0070602285731937
1125 => 0.0068657641606993
1126 => 0.0064645285317102
1127 => 0.0064667994817963
1128 => 0.0064050781216696
1129 => 0.0063517418550541
1130 => 0.0070207173810909
1201 => 0.0069375196994902
1202 => 0.0068049550825028
1203 => 0.0069823980902489
1204 => 0.0070293168378962
1205 => 0.0070306525486817
1206 => 0.0071601103866664
1207 => 0.0072292020580054
1208 => 0.0072413797645393
1209 => 0.0074450844697299
1210 => 0.0075133635999798
1211 => 0.0077945956742547
1212 => 0.0072233401124089
1213 => 0.0072115754800379
1214 => 0.0069848950772581
1215 => 0.0068411307821397
1216 => 0.0069947387415406
1217 => 0.0071308144239922
1218 => 0.0069891233280213
1219 => 0.0070076251938928
1220 => 0.0068174164741399
1221 => 0.0068854071412995
1222 => 0.0069439698631892
1223 => 0.0069116349703194
1224 => 0.0068632280706667
1225 => 0.0071196577698178
1226 => 0.0071051890012356
1227 => 0.0073439822323783
1228 => 0.0075301386323219
1229 => 0.0078637641804577
1230 => 0.0075156085286848
1231 => 0.0075029203529409
]
'min_raw' => 0.0063517418550541
'max_raw' => 0.018364753656993
'avg_raw' => 0.012358247756023
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.006351'
'max' => '$0.018364'
'avg' => '$0.012358'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0011168783713806
'max_diff' => -0.0062036231651457
'year' => 2030
]
5 => [
'items' => [
101 => 0.0076269493060857
102 => 0.0075133446117933
103 => 0.0075851388570853
104 => 0.0078521970176064
105 => 0.0078578395357135
106 => 0.0077633200874461
107 => 0.007757568570429
108 => 0.0077757220643983
109 => 0.0078820476455901
110 => 0.0078448942204666
111 => 0.0078878891046291
112 => 0.0079416548656354
113 => 0.0081640528493679
114 => 0.0082176722503209
115 => 0.008087404904477
116 => 0.0080991665872651
117 => 0.0080504430240008
118 => 0.008003376672392
119 => 0.0081091749573199
120 => 0.0083025234024962
121 => 0.0083013205918536
122 => 0.0083461736729778
123 => 0.0083741167709352
124 => 0.0082541645389042
125 => 0.0081760800466179
126 => 0.0082060226096058
127 => 0.0082539014198877
128 => 0.0081904961567259
129 => 0.0077991295003162
130 => 0.0079178451432721
131 => 0.0078980850553859
201 => 0.0078699442873271
202 => 0.0079893137843202
203 => 0.0079778003051314
204 => 0.0076329269035245
205 => 0.0076550045797563
206 => 0.0076342695201397
207 => 0.0077012687397552
208 => 0.0075097264340613
209 => 0.0075686435572356
210 => 0.0076055958245768
211 => 0.0076273609939215
212 => 0.0077059917101107
213 => 0.0076967653031183
214 => 0.0077054181836976
215 => 0.0078220067780668
216 => 0.0084116718800121
217 => 0.0084437660504883
218 => 0.0082857226171722
219 => 0.0083488578515131
220 => 0.0082276520077366
221 => 0.0083090183026724
222 => 0.0083646870551876
223 => 0.0081131306670568
224 => 0.0080982351303391
225 => 0.00797652902693
226 => 0.008041926993116
227 => 0.0079378741266339
228 => 0.0079634050604539
301 => 0.0078920183437465
302 => 0.0080205002208663
303 => 0.0081641629235514
304 => 0.0082004577956617
305 => 0.0081049816130644
306 => 0.0080358505646769
307 => 0.0079144792168914
308 => 0.0081163224731955
309 => 0.0081753475924006
310 => 0.0081160124393721
311 => 0.0081022631879167
312 => 0.008076208381253
313 => 0.0081077908383194
314 => 0.0081750261289251
315 => 0.0081433192075163
316 => 0.0081642621877109
317 => 0.0080844491435166
318 => 0.0082542042480842
319 => 0.0085238162079283
320 => 0.0085246830544652
321 => 0.0084929759621443
322 => 0.0084800021031054
323 => 0.0085125355039739
324 => 0.0085301835393551
325 => 0.0086353905921585
326 => 0.0087482819514504
327 => 0.0092750966669068
328 => 0.0091271692028898
329 => 0.0095945905587904
330 => 0.009964260164241
331 => 0.010075107915223
401 => 0.0099731332001093
402 => 0.0096242832082713
403 => 0.0096071669633949
404 => 0.010128496131868
405 => 0.0099811967633861
406 => 0.0099636759722078
407 => 0.0097772843559149
408 => 0.0098874648861948
409 => 0.0098633667879717
410 => 0.0098253267610072
411 => 0.010035543537539
412 => 0.010429050577025
413 => 0.010367718814636
414 => 0.010321937499111
415 => 0.01012133710122
416 => 0.010242143346471
417 => 0.010199126556428
418 => 0.010383953985582
419 => 0.01027446631098
420 => 0.0099800808257969
421 => 0.01002696268462
422 => 0.010019876585972
423 => 0.010165707994018
424 => 0.01012193302508
425 => 0.010011328820724
426 => 0.010427705612744
427 => 0.01040066841988
428 => 0.010439000977799
429 => 0.010455876155268
430 => 0.010709317371189
501 => 0.010813144128138
502 => 0.010836714619708
503 => 0.01093534200856
504 => 0.010834260680426
505 => 0.011238658062726
506 => 0.011507558724714
507 => 0.011819900681115
508 => 0.012276316229019
509 => 0.012447932697111
510 => 0.01241693171823
511 => 0.012762980777652
512 => 0.013384823245196
513 => 0.012542623860077
514 => 0.013429461857628
515 => 0.01314869918664
516 => 0.012483015944434
517 => 0.012440153791525
518 => 0.012890962211889
519 => 0.013890811899553
520 => 0.013640360892994
521 => 0.013891221547678
522 => 0.013598579268741
523 => 0.013584047113009
524 => 0.01387700856538
525 => 0.014561528967341
526 => 0.014236338983233
527 => 0.013770099401158
528 => 0.014114363453071
529 => 0.01381613007117
530 => 0.013144126791481
531 => 0.01364016937783
601 => 0.013308479826818
602 => 0.013405284471389
603 => 0.01410244657252
604 => 0.014018562184049
605 => 0.014127116350215
606 => 0.01393552108829
607 => 0.013756540901852
608 => 0.013422461092623
609 => 0.013323556531046
610 => 0.013350890193653
611 => 0.013323542985841
612 => 0.013136628402929
613 => 0.013096264216546
614 => 0.013028988804177
615 => 0.01304984026757
616 => 0.012923342810202
617 => 0.013162069647964
618 => 0.013206379452706
619 => 0.013380104937063
620 => 0.013398141693161
621 => 0.013881964694267
622 => 0.013615483115573
623 => 0.013794261965474
624 => 0.013778270302407
625 => 0.01249744331882
626 => 0.012673929976326
627 => 0.012948487830842
628 => 0.012824799889537
629 => 0.012649934079053
630 => 0.012508720561375
701 => 0.012294767642271
702 => 0.012595902267309
703 => 0.012991862277137
704 => 0.013408183892443
705 => 0.013908367034761
706 => 0.01379673198017
707 => 0.013398833316518
708 => 0.013416682759904
709 => 0.013527020995421
710 => 0.013384122955141
711 => 0.013341979533361
712 => 0.013521231136425
713 => 0.0135224655437
714 => 0.013358044078553
715 => 0.013175319708852
716 => 0.013174554087071
717 => 0.013142040050391
718 => 0.013604363443636
719 => 0.013858594563754
720 => 0.013887741751962
721 => 0.013856632725755
722 => 0.013868605355269
723 => 0.013720673868073
724 => 0.014058801380083
725 => 0.014369100622449
726 => 0.014285933796919
727 => 0.014161254902588
728 => 0.014061942157904
729 => 0.014262538870475
730 => 0.014253606614633
731 => 0.014366390429266
801 => 0.014361273903963
802 => 0.014323348949116
803 => 0.014285935151338
804 => 0.014434276630464
805 => 0.014391556666767
806 => 0.014348770347167
807 => 0.014262955832951
808 => 0.014274619450661
809 => 0.014149962083899
810 => 0.014092289882102
811 => 0.013225038342034
812 => 0.012993280392266
813 => 0.013066196161131
814 => 0.013090201925499
815 => 0.012989340568754
816 => 0.013133949845169
817 => 0.013111412642619
818 => 0.013199091713919
819 => 0.013144313636754
820 => 0.013146561748148
821 => 0.013307652393175
822 => 0.013354417692755
823 => 0.013330632483946
824 => 0.013347290828887
825 => 0.013731175356988
826 => 0.013676599253028
827 => 0.013647606785541
828 => 0.013655637897173
829 => 0.01375372862468
830 => 0.013781188672827
831 => 0.013664838519246
901 => 0.013719709924287
902 => 0.013953345402734
903 => 0.014035104597567
904 => 0.014296040700836
905 => 0.014185190406398
906 => 0.014388660919328
907 => 0.015014059907863
908 => 0.015513671894224
909 => 0.015054208064228
910 => 0.015971681851976
911 => 0.016686066799537
912 => 0.016658647515379
913 => 0.01653407797575
914 => 0.015720769705859
915 => 0.014972351310163
916 => 0.015598435077687
917 => 0.015600031093965
918 => 0.015546249943089
919 => 0.015212219833948
920 => 0.015534626419343
921 => 0.015560217883283
922 => 0.015545893468796
923 => 0.015289793367292
924 => 0.014898775847507
925 => 0.014975179734909
926 => 0.015100330861072
927 => 0.014863393669986
928 => 0.014787677880904
929 => 0.014928447938326
930 => 0.015382038393947
1001 => 0.015296289745783
1002 => 0.015294050502042
1003 => 0.015660919581976
1004 => 0.015398320496046
1005 => 0.014976143432609
1006 => 0.014869538156259
1007 => 0.014491161243139
1008 => 0.014752507524763
1009 => 0.014761912912173
1010 => 0.014618776224622
1011 => 0.014987758185932
1012 => 0.014984357952201
1013 => 0.015334651408748
1014 => 0.016004280933451
1015 => 0.015806238532529
1016 => 0.015575936767208
1017 => 0.015600976954674
1018 => 0.015875606006723
1019 => 0.015709559012683
1020 => 0.01576927066946
1021 => 0.015875515625979
1022 => 0.015939615846161
1023 => 0.015591753919436
1024 => 0.015510650664157
1025 => 0.01534474186723
1026 => 0.015301459358947
1027 => 0.015436588612243
1028 => 0.015400986828186
1029 => 0.014761122425781
1030 => 0.014694253035558
1031 => 0.014696303824288
1101 => 0.014528157563106
1102 => 0.014271694155076
1103 => 0.014945664678744
1104 => 0.014891535413482
1105 => 0.014831780893905
1106 => 0.014839100481599
1107 => 0.015131648242943
1108 => 0.014961955767347
1109 => 0.015413111025768
1110 => 0.015320367067606
1111 => 0.015225244576871
1112 => 0.015212095751149
1113 => 0.015175481707686
1114 => 0.015049918529165
1115 => 0.014898293445923
1116 => 0.014798177432427
1117 => 0.013650536452714
1118 => 0.013863531943028
1119 => 0.014108563839485
1120 => 0.014193147868238
1121 => 0.014048461034019
1122 => 0.015055631647256
1123 => 0.015239651423632
1124 => 0.014682243517677
1125 => 0.014577975257287
1126 => 0.015062467457049
1127 => 0.01477025943383
1128 => 0.014901840688793
1129 => 0.014617433986661
1130 => 0.015195326448231
1201 => 0.015190923875909
1202 => 0.014966110656065
1203 => 0.015156121250022
1204 => 0.015123102233391
1205 => 0.014869288661878
1206 => 0.015203372791167
1207 => 0.015203538492727
1208 => 0.014987160656488
1209 => 0.01473447871496
1210 => 0.014689305151896
1211 => 0.014655272940341
1212 => 0.014893470850963
1213 => 0.015107038352801
1214 => 0.015504434525847
1215 => 0.015604349365651
1216 => 0.015994323637114
1217 => 0.015762112945961
1218 => 0.015865048937717
1219 => 0.015976800517954
1220 => 0.016030378335048
1221 => 0.015943076157238
1222 => 0.016548866720633
1223 => 0.016600014005127
1224 => 0.016617163247196
1225 => 0.016412894077661
1226 => 0.016594332910002
1227 => 0.016509443688972
1228 => 0.016730301859187
1229 => 0.016764935240336
1230 => 0.016735601998621
1231 => 0.016746595180449
]
'min_raw' => 0.0075097264340613
'max_raw' => 0.016764935240336
'avg_raw' => 0.012137330837199
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0075097'
'max' => '$0.016764'
'avg' => '$0.012137'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0011579845790073
'max_diff' => -0.0015998184166568
'year' => 2031
]
6 => [
'items' => [
101 => 0.016229659803369
102 => 0.016202853977016
103 => 0.015837354632639
104 => 0.015986298317107
105 => 0.01570785523805
106 => 0.015796152406701
107 => 0.015835072957316
108 => 0.015814743070396
109 => 0.015994719369554
110 => 0.015841702748541
111 => 0.015437866727427
112 => 0.015033920681459
113 => 0.015028849467899
114 => 0.014922497604235
115 => 0.014845624686122
116 => 0.014860433137364
117 => 0.014912620051037
118 => 0.014842591487829
119 => 0.014857535632327
120 => 0.015105708003321
121 => 0.015155477202439
122 => 0.014986342017754
123 => 0.01430723984515
124 => 0.014140586468595
125 => 0.014260373610783
126 => 0.014203123072097
127 => 0.011463028827488
128 => 0.012106773325866
129 => 0.011724282204427
130 => 0.011900551710757
131 => 0.011510127321363
201 => 0.011696458303877
202 => 0.011662049775125
203 => 0.012697171878733
204 => 0.012681009870849
205 => 0.012688745768749
206 => 0.012319491206225
207 => 0.012907723750679
208 => 0.013197508254235
209 => 0.013143876854992
210 => 0.013157374722738
211 => 0.012925436634279
212 => 0.012690991436437
213 => 0.012430955631172
214 => 0.012914070015957
215 => 0.012860355943406
216 => 0.012983556700124
217 => 0.013296890912386
218 => 0.013343030565383
219 => 0.013405042726913
220 => 0.01338281578133
221 => 0.013912351800449
222 => 0.013848221494542
223 => 0.014002757080228
224 => 0.013684865655829
225 => 0.01332514133459
226 => 0.013393513167783
227 => 0.013386928410435
228 => 0.013303096891762
229 => 0.013227417545063
301 => 0.013101432755334
302 => 0.013500067272277
303 => 0.013483883438881
304 => 0.013745880889911
305 => 0.013699570295534
306 => 0.01339029681216
307 => 0.013401342575123
308 => 0.01347563063946
309 => 0.013732742478336
310 => 0.013809070777624
311 => 0.013773712468237
312 => 0.013857402963886
313 => 0.013923548519311
314 => 0.013865709827253
315 => 0.014684583735793
316 => 0.014344530197278
317 => 0.014510269925873
318 => 0.014549797874548
319 => 0.0144485478652
320 => 0.014470505366737
321 => 0.014503764998503
322 => 0.014705710969687
323 => 0.015235675631609
324 => 0.015470393372783
325 => 0.016176553277875
326 => 0.015450903331808
327 => 0.015407846267046
328 => 0.015535046989939
329 => 0.015949637608845
330 => 0.016285624364952
331 => 0.016397090555494
401 => 0.01641182265268
402 => 0.016620940636268
403 => 0.016740803164641
404 => 0.016595548212711
405 => 0.016472459849778
406 => 0.016031572612042
407 => 0.016082606510306
408 => 0.016434179461464
409 => 0.016930796962518
410 => 0.017356946442666
411 => 0.017207723747527
412 => 0.018346187576634
413 => 0.018459061615082
414 => 0.018443466072623
415 => 0.018700609930118
416 => 0.018190231739427
417 => 0.017972035174796
418 => 0.016499072950957
419 => 0.016912915254507
420 => 0.017514459346824
421 => 0.017434842730531
422 => 0.016997985331371
423 => 0.017356615047155
424 => 0.017238040847729
425 => 0.017144516456993
426 => 0.017572969821548
427 => 0.017101867747326
428 => 0.017509759743259
429 => 0.016986634039372
430 => 0.017208405384229
501 => 0.017082517243015
502 => 0.017163982298651
503 => 0.01668773924801
504 => 0.016944708437989
505 => 0.016677048484871
506 => 0.016676921579203
507 => 0.016671012970903
508 => 0.01698591371876
509 => 0.016996182620843
510 => 0.016763470492387
511 => 0.01672993303903
512 => 0.016853938581782
513 => 0.016708760568323
514 => 0.016776688447081
515 => 0.016710818034571
516 => 0.016695989217272
517 => 0.016577830678117
518 => 0.016526924730612
519 => 0.016546886264314
520 => 0.016478747258915
521 => 0.016437691043467
522 => 0.01666284585628
523 => 0.016542554722514
524 => 0.016644409514813
525 => 0.016528333123888
526 => 0.016125961780868
527 => 0.015894553766498
528 => 0.015134511599376
529 => 0.015350058615142
530 => 0.015492966509595
531 => 0.015445735451331
601 => 0.015547206040475
602 => 0.015553435510539
603 => 0.015520446387638
604 => 0.015482249209487
605 => 0.015463656935599
606 => 0.015602228512792
607 => 0.015682673977458
608 => 0.015507309228664
609 => 0.015466223721635
610 => 0.015643527164819
611 => 0.015751682162736
612 => 0.016550237900311
613 => 0.016491078311971
614 => 0.016639557269223
615 => 0.016622840817231
616 => 0.016778470418984
617 => 0.017032859043874
618 => 0.016515615841296
619 => 0.016605391376339
620 => 0.016583380488366
621 => 0.016823689591688
622 => 0.016824439810478
623 => 0.016680362498707
624 => 0.016758469146805
625 => 0.01671487215858
626 => 0.016793657808789
627 => 0.0164902881996
628 => 0.016859759636867
629 => 0.017069226133583
630 => 0.017072134576093
701 => 0.017171420033108
702 => 0.017272299807661
703 => 0.017465929750138
704 => 0.017266899573658
705 => 0.016908863661367
706 => 0.016934712697785
707 => 0.016724796373409
708 => 0.016728325104747
709 => 0.016709488460317
710 => 0.016766018648207
711 => 0.016502693396874
712 => 0.016564495307035
713 => 0.016477972270898
714 => 0.016605203292156
715 => 0.016468323745324
716 => 0.01658336987405
717 => 0.016633019969368
718 => 0.016816229889983
719 => 0.016441263491086
720 => 0.01567668162074
721 => 0.015837405999545
722 => 0.015599682018664
723 => 0.015621684278174
724 => 0.015666132344017
725 => 0.015522061620117
726 => 0.015549545774047
727 => 0.015548563846666
728 => 0.015540102126973
729 => 0.015502623767411
730 => 0.01544827273118
731 => 0.01566479053116
801 => 0.015701581124503
802 => 0.015783362056114
803 => 0.016026686636053
804 => 0.016002372772528
805 => 0.016042029692709
806 => 0.015955458858618
807 => 0.015625700050876
808 => 0.015643607540654
809 => 0.015420300856176
810 => 0.01577765160213
811 => 0.015693026228689
812 => 0.01563846769991
813 => 0.015623580899852
814 => 0.01586750863436
815 => 0.015940495635624
816 => 0.015895015034412
817 => 0.015801732994445
818 => 0.015980862087541
819 => 0.016028789476004
820 => 0.016039518650786
821 => 0.016356901059156
822 => 0.016057256801736
823 => 0.016129384152704
824 => 0.016692101155303
825 => 0.016181794483584
826 => 0.016452115308791
827 => 0.016438884511078
828 => 0.016577171498096
829 => 0.016427540941848
830 => 0.016429395791924
831 => 0.016552185268023
901 => 0.01637974959404
902 => 0.016337052096193
903 => 0.016278065808724
904 => 0.016406860209444
905 => 0.016484066627806
906 => 0.017106293657938
907 => 0.017508280696403
908 => 0.017490829378897
909 => 0.017650301753397
910 => 0.017578457988085
911 => 0.017346455518466
912 => 0.017742455444419
913 => 0.017617144498507
914 => 0.017627474980635
915 => 0.017627090479574
916 => 0.017710411303733
917 => 0.017651370863575
918 => 0.017534996095648
919 => 0.017612251097581
920 => 0.017841670834154
921 => 0.018553796735936
922 => 0.018952311824986
923 => 0.018529805627185
924 => 0.018821244744844
925 => 0.018646485124624
926 => 0.018614726102982
927 => 0.018797771406054
928 => 0.018981137105697
929 => 0.018969457503342
930 => 0.018836343421333
1001 => 0.018761150654051
1002 => 0.019330535479335
1003 => 0.019750048519386
1004 => 0.019721440542505
1005 => 0.019847706848643
1006 => 0.020218428628733
1007 => 0.020252322782268
1008 => 0.02024805289797
1009 => 0.020164042701945
1010 => 0.02052906643875
1011 => 0.020833575661974
1012 => 0.020144596768853
1013 => 0.020406950911958
1014 => 0.02052473013932
1015 => 0.02069766498861
1016 => 0.020989435066607
1017 => 0.021306374759504
1018 => 0.021351193507147
1019 => 0.02131939246092
1020 => 0.021110362213658
1021 => 0.021457161407503
1022 => 0.021660308241815
1023 => 0.021781277532715
1024 => 0.022088035527068
1025 => 0.020525457503731
1026 => 0.019419387113647
1027 => 0.019246658250385
1028 => 0.019597909186055
1029 => 0.019690531256617
1030 => 0.019653195416112
1031 => 0.018408212632552
1101 => 0.019240103673685
1102 => 0.020135148486559
1103 => 0.020169530803006
1104 => 0.020617608950835
1105 => 0.020763521563112
1106 => 0.02112428320306
1107 => 0.021101717464256
1108 => 0.021189557182612
1109 => 0.021169364352534
1110 => 0.021837599323212
1111 => 0.022574761729722
1112 => 0.022549236139618
1113 => 0.022443260321972
1114 => 0.022600652482738
1115 => 0.023361483085382
1116 => 0.023291437995552
1117 => 0.023359480833895
1118 => 0.024256542992945
1119 => 0.025422851405315
1120 => 0.024880984052319
1121 => 0.02605668029019
1122 => 0.026796718750949
1123 => 0.028076538747428
1124 => 0.027916298980623
1125 => 0.028414523513499
1126 => 0.027629436354992
1127 => 0.025826717546768
1128 => 0.025541430394836
1129 => 0.026112582497625
1130 => 0.027516704210125
1201 => 0.026068361708054
1202 => 0.026361359509897
1203 => 0.026276976123255
1204 => 0.026272479691187
1205 => 0.026444090214906
1206 => 0.026195160199649
1207 => 0.025180974535837
1208 => 0.025645769848928
1209 => 0.02546629005724
1210 => 0.025665436267223
1211 => 0.02674014622836
1212 => 0.026264991336656
1213 => 0.025764454256694
1214 => 0.026392238833036
1215 => 0.027191624328904
1216 => 0.027141600221207
1217 => 0.027044532543818
1218 => 0.027591697958957
1219 => 0.028495454920343
1220 => 0.028739736795416
1221 => 0.028920060681471
1222 => 0.028944924298761
1223 => 0.029201035009501
1224 => 0.027823863169644
1225 => 0.030009470247778
1226 => 0.030386864213995
1227 => 0.030315929789723
1228 => 0.030735387300007
1229 => 0.030611972259872
1230 => 0.030433163229942
1231 => 0.031098092604913
]
'min_raw' => 0.011463028827488
'max_raw' => 0.031098092604913
'avg_raw' => 0.021280560716201
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.011463'
'max' => '$0.031098'
'avg' => '$0.02128'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0039533023934266
'max_diff' => 0.014333157364577
'year' => 2032
]
7 => [
'items' => [
101 => 0.030335804733542
102 => 0.029253833069506
103 => 0.028660242015642
104 => 0.029441930598994
105 => 0.029919280539675
106 => 0.030234778485307
107 => 0.030330247973026
108 => 0.027930769099267
109 => 0.02663758306751
110 => 0.027466500487458
111 => 0.028477836948619
112 => 0.027818245144539
113 => 0.027844099894486
114 => 0.026903695319545
115 => 0.028561041886671
116 => 0.028319580432319
117 => 0.029572282884633
118 => 0.029273315390823
119 => 0.030294845611056
120 => 0.030025842468863
121 => 0.031142459472343
122 => 0.03158790822623
123 => 0.032335886012568
124 => 0.032886101517016
125 => 0.033209198585173
126 => 0.033189801049108
127 => 0.034470072599467
128 => 0.033715141195501
129 => 0.03276676942845
130 => 0.032749616375258
131 => 0.033240791551946
201 => 0.034270159974955
202 => 0.03453706023034
203 => 0.034686221061897
204 => 0.034457776056041
205 => 0.033638352123457
206 => 0.033284529023941
207 => 0.033585996555971
208 => 0.033217327669699
209 => 0.033853753597624
210 => 0.034727702329908
211 => 0.03454723537266
212 => 0.035150509353624
213 => 0.035774834457649
214 => 0.036667647396599
215 => 0.036901061759608
216 => 0.037286886825709
217 => 0.037684027555658
218 => 0.037811578454875
219 => 0.0380551126982
220 => 0.038053829152526
221 => 0.03878773598653
222 => 0.03959725795164
223 => 0.039902833752992
224 => 0.040605488458654
225 => 0.039402216899166
226 => 0.040314912199225
227 => 0.041138186206124
228 => 0.040156644995496
301 => 0.041509470884575
302 => 0.041561998048279
303 => 0.042355095857082
304 => 0.041551139288704
305 => 0.041073752444722
306 => 0.042451950375847
307 => 0.04311881694189
308 => 0.042917951305058
309 => 0.041389353890804
310 => 0.040499644631081
311 => 0.038171103886287
312 => 0.04092936098397
313 => 0.042272827556789
314 => 0.041385874636938
315 => 0.041833202098741
316 => 0.044273675683918
317 => 0.04520285001619
318 => 0.045009588250497
319 => 0.045042246307539
320 => 0.045543611911527
321 => 0.047766943106687
322 => 0.046434671518133
323 => 0.047453143228319
324 => 0.047993336951028
325 => 0.048495098986004
326 => 0.047262930011623
327 => 0.045659896280111
328 => 0.045152148206563
329 => 0.041297684648991
330 => 0.041097043081732
331 => 0.040984416889968
401 => 0.040274324682188
402 => 0.039716386717498
403 => 0.039272693733069
404 => 0.038108310843984
405 => 0.038501255888232
406 => 0.036645472588626
407 => 0.037832736978792
408 => 0.034870862023167
409 => 0.037337599498801
410 => 0.035995066439604
411 => 0.036896541281544
412 => 0.036893396120744
413 => 0.035233495123874
414 => 0.034276098870129
415 => 0.034886189025435
416 => 0.03554025410094
417 => 0.035646373958901
418 => 0.036494386402138
419 => 0.036731048447079
420 => 0.036013951402214
421 => 0.034809483748108
422 => 0.035089254113174
423 => 0.03427042933261
424 => 0.032835470400313
425 => 0.033866082957468
426 => 0.034217979397317
427 => 0.034373396912251
428 => 0.032962279608484
429 => 0.032518875914793
430 => 0.032282811508789
501 => 0.034627326224244
502 => 0.034755764032799
503 => 0.034098658044954
504 => 0.03706883941936
505 => 0.03639659589787
506 => 0.037147656615036
507 => 0.035063867884959
508 => 0.035143471420641
509 => 0.034156972441627
510 => 0.034709345951989
511 => 0.034318946158694
512 => 0.034664719631013
513 => 0.034871974824644
514 => 0.035858311928883
515 => 0.037348861884156
516 => 0.035710986056954
517 => 0.034997340104227
518 => 0.035440082039602
519 => 0.036619162157353
520 => 0.038405528891746
521 => 0.037347963831004
522 => 0.037817293246342
523 => 0.037919820844581
524 => 0.037140011521977
525 => 0.038434281573779
526 => 0.039127891409171
527 => 0.039839391577952
528 => 0.040457167238721
529 => 0.039555202764317
530 => 0.040520434043458
531 => 0.039742628018728
601 => 0.039044855606435
602 => 0.039045913839157
603 => 0.038608191012097
604 => 0.037760047878044
605 => 0.037603637271275
606 => 0.038417305000173
607 => 0.039069789464128
608 => 0.039123531209769
609 => 0.039484780134877
610 => 0.039698563527596
611 => 0.041793931400671
612 => 0.042636705693014
613 => 0.04366723414479
614 => 0.044068683054158
615 => 0.045276900343956
616 => 0.044301166755834
617 => 0.044090060656392
618 => 0.041159320716205
619 => 0.041639229217227
620 => 0.042407609031647
621 => 0.041171991016333
622 => 0.041955706246987
623 => 0.042110428234877
624 => 0.041130005188988
625 => 0.041653691499376
626 => 0.040262935921154
627 => 0.037379176555265
628 => 0.03843749202232
629 => 0.039216768431206
630 => 0.038104644911637
701 => 0.040098083275341
702 => 0.038933557736186
703 => 0.038564459047357
704 => 0.037124473469054
705 => 0.037804091231885
706 => 0.038723283987304
707 => 0.038155329732083
708 => 0.039333920090427
709 => 0.041003118356409
710 => 0.042192688443224
711 => 0.042284008863539
712 => 0.041519194992723
713 => 0.042744814101682
714 => 0.042753741398852
715 => 0.041371238037145
716 => 0.040524462425911
717 => 0.040332073225407
718 => 0.04081269916839
719 => 0.041396267791614
720 => 0.042316392860696
721 => 0.042872405169265
722 => 0.04432219038387
723 => 0.044714460694342
724 => 0.045145446836625
725 => 0.045721377233918
726 => 0.046412929341391
727 => 0.044899852700323
728 => 0.044959970056
729 => 0.04355101403781
730 => 0.042045342467641
731 => 0.043187959504788
801 => 0.044681779284883
802 => 0.044339095376805
803 => 0.04430053643675
804 => 0.044365381878565
805 => 0.044107009402885
806 => 0.042938400271112
807 => 0.042351532081016
808 => 0.043108741772283
809 => 0.043511165023665
810 => 0.044135288391564
811 => 0.044058352012824
812 => 0.045666026782574
813 => 0.046290720584538
814 => 0.046130897177841
815 => 0.046160308531038
816 => 0.047291286820227
817 => 0.048549167281231
818 => 0.049727338324908
819 => 0.050925824514159
820 => 0.049481002635305
821 => 0.048747411189447
822 => 0.049504290306651
823 => 0.049102679593218
824 => 0.05141045387808
825 => 0.051570239162457
826 => 0.053877846568971
827 => 0.056068040782532
828 => 0.0546924190384
829 => 0.055989568383752
830 => 0.057392541158889
831 => 0.060099103266257
901 => 0.059187628366498
902 => 0.058489452877916
903 => 0.057829680414765
904 => 0.059202562174653
905 => 0.060968752626427
906 => 0.061349173133378
907 => 0.061965599686456
908 => 0.061317502538947
909 => 0.062098064167562
910 => 0.064853789712734
911 => 0.064109168344966
912 => 0.063051686298878
913 => 0.065227066954097
914 => 0.066014328756642
915 => 0.071539744379112
916 => 0.078515809846015
917 => 0.075627672935402
918 => 0.073834913155388
919 => 0.074256254228522
920 => 0.076803677182316
921 => 0.077621828583912
922 => 0.075397811040674
923 => 0.076183371635374
924 => 0.080511887746784
925 => 0.082833997765132
926 => 0.079680260459232
927 => 0.07097922431129
928 => 0.06295647161079
929 => 0.065084466896225
930 => 0.064843218270238
1001 => 0.069493668838566
1002 => 0.064091409371608
1003 => 0.064182369566165
1004 => 0.068928986527333
1005 => 0.067662670499709
1006 => 0.065611400712462
1007 => 0.062971448150308
1008 => 0.05809125167311
1009 => 0.053768725558909
1010 => 0.062246194687169
1011 => 0.061880630803081
1012 => 0.06135124012539
1013 => 0.062529341792538
1014 => 0.068249869078218
1015 => 0.068117992408743
1016 => 0.067279060321613
1017 => 0.067915382915693
1018 => 0.065499850285145
1019 => 0.066122388044693
1020 => 0.062955200765772
1021 => 0.064386901689269
1022 => 0.06560699960877
1023 => 0.065851952329968
1024 => 0.066403843318424
1025 => 0.061687995247518
1026 => 0.06380527258133
1027 => 0.065048974652887
1028 => 0.059429883447324
1029 => 0.064937903286508
1030 => 0.061605902824419
1031 => 0.060474971822618
1101 => 0.061997621427713
1102 => 0.061404243395782
1103 => 0.060894091808255
1104 => 0.060609418456898
1105 => 0.061727484278175
1106 => 0.061675325171235
1107 => 0.059845952480401
1108 => 0.057459610379979
1109 => 0.05826054511789
1110 => 0.057969558018803
1111 => 0.056914983233632
1112 => 0.057625639308992
1113 => 0.054496269607914
1114 => 0.049112351687691
1115 => 0.052669132779656
1116 => 0.052532200576649
1117 => 0.052463153150511
1118 => 0.055135975838914
1119 => 0.054879045609935
1120 => 0.05441271472847
1121 => 0.056906418701292
1122 => 0.055996183206161
1123 => 0.058801314523702
1124 => 0.060648955433953
1125 => 0.060180333934191
1126 => 0.061918049140705
1127 => 0.05827899703659
1128 => 0.059487744172148
1129 => 0.059736865281535
1130 => 0.056875646781355
1201 => 0.054921082572906
1202 => 0.054790735423866
1203 => 0.051401790441953
1204 => 0.053212137496683
1205 => 0.054805167987593
1206 => 0.054042230006607
1207 => 0.053800706633951
1208 => 0.055034597164824
1209 => 0.05513048102663
1210 => 0.052944318816124
1211 => 0.053398891166442
1212 => 0.055294533433632
1213 => 0.053351125845026
1214 => 0.049575402354191
1215 => 0.048638970725003
1216 => 0.04851403348381
1217 => 0.045974356636122
1218 => 0.048701547564187
1219 => 0.047511055639914
1220 => 0.05127180536441
1221 => 0.049123685291083
1222 => 0.049031084128115
1223 => 0.048891103888652
1224 => 0.046705099113118
1225 => 0.047183695231109
1226 => 0.048774621619558
1227 => 0.049342282078026
1228 => 0.049283070441502
1229 => 0.048766825212328
1230 => 0.049003159634641
1231 => 0.048241844116
]
'min_raw' => 0.02663758306751
'max_raw' => 0.082833997765132
'avg_raw' => 0.054735790416321
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.026637'
'max' => '$0.082833'
'avg' => '$0.054735'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.015174554240022
'max_diff' => 0.051735905160219
'year' => 2033
]
8 => [
'items' => [
101 => 0.047973007760956
102 => 0.047124486275171
103 => 0.045877394101111
104 => 0.046050809916775
105 => 0.043579994000544
106 => 0.042233762353256
107 => 0.041861143176334
108 => 0.041362861240127
109 => 0.041917425446906
110 => 0.043572994489495
111 => 0.041576026975567
112 => 0.038152366243922
113 => 0.038358134087527
114 => 0.038820433339089
115 => 0.03795894174222
116 => 0.037143612245292
117 => 0.037852475093098
118 => 0.036401824907778
119 => 0.038995737483422
120 => 0.038925579417606
121 => 0.039892429619329
122 => 0.040497020892229
123 => 0.039103633746943
124 => 0.038753200648023
125 => 0.038952823267464
126 => 0.03565350603298
127 => 0.039622805012457
128 => 0.03965713167486
129 => 0.039363205951042
130 => 0.041476735119256
131 => 0.045936940890467
201 => 0.044258832067976
202 => 0.0436090176108
203 => 0.042373719852697
204 => 0.044019680770646
205 => 0.043893296653138
206 => 0.043321739744012
207 => 0.042976060342007
208 => 0.043612985239311
209 => 0.042897138298695
210 => 0.042768552518002
211 => 0.041989462589711
212 => 0.041711362931645
213 => 0.041505469016279
214 => 0.041278800046179
215 => 0.041778775311831
216 => 0.040645765582639
217 => 0.039279466919548
218 => 0.039165873969268
219 => 0.039479514092185
220 => 0.039340751685555
221 => 0.039165209628251
222 => 0.038830052034823
223 => 0.038730617936361
224 => 0.039053730517794
225 => 0.03868895525199
226 => 0.03922720102702
227 => 0.039080827958709
228 => 0.038263199897735
301 => 0.037244132609081
302 => 0.037235060772646
303 => 0.03701550439691
304 => 0.03673586634189
305 => 0.036658077432235
306 => 0.037792776641235
307 => 0.040141570045175
308 => 0.039680445698119
309 => 0.040013655296791
310 => 0.041652716732596
311 => 0.042173725074741
312 => 0.041803925694245
313 => 0.04129772149399
314 => 0.041319991909772
315 => 0.043049844900476
316 => 0.043157733709625
317 => 0.043430333924097
318 => 0.043780702236504
319 => 0.041863594932884
320 => 0.041229696328174
321 => 0.040929320001906
322 => 0.040004277177271
323 => 0.041001856556462
324 => 0.040420609772816
325 => 0.040499039822147
326 => 0.04044796214963
327 => 0.040475854012681
328 => 0.038995012431993
329 => 0.039534553273254
330 => 0.03863746197899
331 => 0.037436357439195
401 => 0.037432330915616
402 => 0.037726299550127
403 => 0.037551435503326
404 => 0.03708088084955
405 => 0.037147720917164
406 => 0.036562131592445
407 => 0.037218822063622
408 => 0.037237653596584
409 => 0.036984791995009
410 => 0.037996514271679
411 => 0.038411017713917
412 => 0.03824457879094
413 => 0.038399339915389
414 => 0.039699607496591
415 => 0.039911607846979
416 => 0.040005764398664
417 => 0.039879607092758
418 => 0.038423106419839
419 => 0.038487708418202
420 => 0.038013701818313
421 => 0.037613216190991
422 => 0.037629233515814
423 => 0.037835135187744
424 => 0.038734319865038
425 => 0.04062660100857
426 => 0.040698411694728
427 => 0.040785448341216
428 => 0.040431426558834
429 => 0.040324650201735
430 => 0.040465515778065
501 => 0.04117615708416
502 => 0.043004119460668
503 => 0.042357995471308
504 => 0.041832686610439
505 => 0.042293524103673
506 => 0.042222581783753
507 => 0.041623757209803
508 => 0.04160695019846
509 => 0.040457614385253
510 => 0.040032731104221
511 => 0.039677666832628
512 => 0.039289945917235
513 => 0.039060091962068
514 => 0.039413252103959
515 => 0.039494024006878
516 => 0.03872183318445
517 => 0.038616586428696
518 => 0.039247174123187
519 => 0.038969675989521
520 => 0.03925508970162
521 => 0.03932130813106
522 => 0.03931064543878
523 => 0.039020905516774
524 => 0.039205577102892
525 => 0.038768773748474
526 => 0.038293815706288
527 => 0.037990822066304
528 => 0.037726419929144
529 => 0.037873125601983
530 => 0.037350146665711
531 => 0.037182835178511
601 => 0.039143014524758
602 => 0.04059102008331
603 => 0.040569965509015
604 => 0.040441801202794
605 => 0.04025137504093
606 => 0.041162226224328
607 => 0.040844903885076
608 => 0.041075782400051
609 => 0.041134550672052
610 => 0.04131242453153
611 => 0.041375999147519
612 => 0.041183832502591
613 => 0.040538897771037
614 => 0.038931781738558
615 => 0.038183664887112
616 => 0.037936773865263
617 => 0.037945747884994
618 => 0.037698204359014
619 => 0.037771117021538
620 => 0.037672848310534
621 => 0.037486751145647
622 => 0.037861634626459
623 => 0.037904836455342
624 => 0.037817334171396
625 => 0.037837944126894
626 => 0.037113462588539
627 => 0.037168543346409
628 => 0.036861846687264
629 => 0.036804344760958
630 => 0.036029042313775
701 => 0.034655481646702
702 => 0.03541656759102
703 => 0.034497282795162
704 => 0.034149135713533
705 => 0.035797209849986
706 => 0.035631788917147
707 => 0.035348660186878
708 => 0.034929853785612
709 => 0.034774514417496
710 => 0.03383072159129
711 => 0.033774957276179
712 => 0.034242726485396
713 => 0.034026867090298
714 => 0.033723718747234
715 => 0.032625746178312
716 => 0.031391261484619
717 => 0.031428522817828
718 => 0.031821189430487
719 => 0.032962920565102
720 => 0.032516826458659
721 => 0.032193180066094
722 => 0.032132570825542
723 => 0.032891222365096
724 => 0.033964873235977
725 => 0.03446860620301
726 => 0.033969422131278
727 => 0.033395986347651
728 => 0.033430888726755
729 => 0.033663078618391
730 => 0.033687478493014
731 => 0.033314230748024
801 => 0.033419297801928
802 => 0.033259691339515
803 => 0.032280186774302
804 => 0.03226247064276
805 => 0.032022084425812
806 => 0.032014805626699
807 => 0.031605848704518
808 => 0.031548632804119
809 => 0.030736624013218
810 => 0.031271090658378
811 => 0.030912598493563
812 => 0.030372266241435
813 => 0.030279112757504
814 => 0.030276312451291
815 => 0.030831112858146
816 => 0.031264607492604
817 => 0.030918834618254
818 => 0.03084010883729
819 => 0.031680694214546
820 => 0.031573722063184
821 => 0.031481084870001
822 => 0.033868739576396
823 => 0.031978724565264
824 => 0.031154570142126
825 => 0.030134522540812
826 => 0.030466655183326
827 => 0.030536640411148
828 => 0.028083609807387
829 => 0.027088415596947
830 => 0.026746902447027
831 => 0.02655035680096
901 => 0.026639925119938
902 => 0.025744133605903
903 => 0.026346120318359
904 => 0.025570440586577
905 => 0.025440395355263
906 => 0.026827406803969
907 => 0.027020401344253
908 => 0.026197026676698
909 => 0.026725766505519
910 => 0.026534038093555
911 => 0.025583737389242
912 => 0.025547442892276
913 => 0.025070615403537
914 => 0.024324472715656
915 => 0.023983465485614
916 => 0.023805865959447
917 => 0.023879146985289
918 => 0.023842093856187
919 => 0.023600297125093
920 => 0.023855953361776
921 => 0.023202857321501
922 => 0.022942789215911
923 => 0.02282532248615
924 => 0.0222456621596
925 => 0.023168159515258
926 => 0.023349903115638
927 => 0.023532004807054
928 => 0.025117075704728
929 => 0.025037890042044
930 => 0.025753689867725
1001 => 0.025725875202771
1002 => 0.025521717497298
1003 => 0.024660409720222
1004 => 0.02500371164883
1005 => 0.02394708167354
1006 => 0.024738780694881
1007 => 0.024377482323683
1008 => 0.024616625352146
1009 => 0.024186624624312
1010 => 0.02442460478139
1011 => 0.023393001265531
1012 => 0.022429704417476
1013 => 0.022817363189521
1014 => 0.023238792608893
1015 => 0.02415255896831
1016 => 0.02360832726305
1017 => 0.02380405356394
1018 => 0.023148403220144
1019 => 0.02179560928363
1020 => 0.021803265950398
1021 => 0.021595168075483
1022 => 0.021415341128769
1023 => 0.023670838821183
1024 => 0.023390332028989
1025 => 0.02294338116745
1026 => 0.023541642656741
1027 => 0.023699832490196
1028 => 0.023704335932366
1029 => 0.024140812071589
1030 => 0.024373759465335
1031 => 0.024414817453134
1101 => 0.025101622088893
1102 => 0.025331829943627
1103 => 0.026280023517041
1104 => 0.024353995506488
1105 => 0.024314330227069
1106 => 0.023550061422777
1107 => 0.023065350064483
1108 => 0.023583250024168
1109 => 0.024042038688054
1110 => 0.023564317265432
1111 => 0.023626697597977
1112 => 0.022985395619381
1113 => 0.023214630900666
1114 => 0.023412079206236
1115 => 0.023303059857376
1116 => 0.023139852615535
1117 => 0.024004423249572
1118 => 0.02395564078612
1119 => 0.024760748836929
1120 => 0.025388388136364
1121 => 0.026513229964895
1122 => 0.025339398877492
1123 => 0.025296619807111
1124 => 0.025714792082064
1125 => 0.02533176592363
1126 => 0.025573825234147
1127 => 0.026474230467749
1128 => 0.026493254611495
1129 => 0.026174575692524
1130 => 0.026155184051343
1201 => 0.026216389823697
1202 => 0.0265748739441
1203 => 0.026449608577327
1204 => 0.026594568831088
1205 => 0.026775843848126
1206 => 0.027525674177611
1207 => 0.027706455731512
1208 => 0.027267250280023
1209 => 0.027306905614718
1210 => 0.027142630719402
1211 => 0.026983943228885
1212 => 0.02734064953312
1213 => 0.027992537315189
1214 => 0.02798848195513
1215 => 0.028139707249682
1216 => 0.02823391935537
1217 => 0.02782949203028
1218 => 0.027566224712852
1219 => 0.027667178154489
1220 => 0.027828604906146
1221 => 0.027614829634582
1222 => 0.026295309628149
1223 => 0.026695567706836
1224 => 0.026628945190923
1225 => 0.026534066626687
1226 => 0.026936529219911
1227 => 0.026897710720981
1228 => 0.025734945969171
1229 => 0.025809382396001
1230 => 0.025739472694828
1231 => 0.025965365241497
]
'min_raw' => 0.021415341128769
'max_raw' => 0.047973007760956
'avg_raw' => 0.034694174444863
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.021415'
'max' => '$0.047973'
'avg' => '$0.034694'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0052222419387406
'max_diff' => -0.034860990004176
'year' => 2034
]
9 => [
'items' => [
101 => 0.025319566984794
102 => 0.025518210179038
103 => 0.025642797328304
104 => 0.025716180116345
105 => 0.025981289065799
106 => 0.025950181590456
107 => 0.025979355381454
108 => 0.026372441967326
109 => 0.028360539027637
110 => 0.028468746764141
111 => 0.027935892294476
112 => 0.028148757145017
113 => 0.027740103180403
114 => 0.028014435324592
115 => 0.028202126410366
116 => 0.027353986484676
117 => 0.02730376514266
118 => 0.026893424517767
119 => 0.027113918326703
120 => 0.02676309682262
121 => 0.026849176148507
122 => 0.026608490849066
123 => 0.027041676468094
124 => 0.027526045300406
125 => 0.027648415995753
126 => 0.027326511380192
127 => 0.027093431223978
128 => 0.026684219251042
129 => 0.027364747881918
130 => 0.02756375519232
131 => 0.027363702581236
201 => 0.027317346020012
202 => 0.027229500420257
203 => 0.027335982879273
204 => 0.027562671355769
205 => 0.027455769256532
206 => 0.027526379976451
207 => 0.027257284725581
208 => 0.027829625912553
209 => 0.028738641458874
210 => 0.028741564092494
211 => 0.028634661417016
212 => 0.02859091914546
213 => 0.028700607777898
214 => 0.028760109361332
215 => 0.02911482228518
216 => 0.029495443384856
217 => 0.031271635979046
218 => 0.030772888206147
219 => 0.032348831941883
220 => 0.033595198826167
221 => 0.033968929757746
222 => 0.033625114886093
223 => 0.032448942782682
224 => 0.032391234168064
225 => 0.034148931857612
226 => 0.03365230175266
227 => 0.03359322918194
228 => 0.032964796834162
301 => 0.033336278184559
302 => 0.033255029763925
303 => 0.033126775157144
304 => 0.033835535696088
305 => 0.035162272153501
306 => 0.034955487834557
307 => 0.034801132932914
308 => 0.034124794685952
309 => 0.03453210137624
310 => 0.034387067265274
311 => 0.035010225846904
312 => 0.034641080507799
313 => 0.033648539291166
314 => 0.033806604751374
315 => 0.033782713475047
316 => 0.034274394248898
317 => 0.034126803884855
318 => 0.033753894087727
319 => 0.035157737512524
320 => 0.035066579729105
321 => 0.035195820624422
322 => 0.035252716463449
323 => 0.036107211217627
324 => 0.036457270377631
325 => 0.0365367399356
326 => 0.036869269063057
327 => 0.036528466307982
328 => 0.03789192031653
329 => 0.038798537672467
330 => 0.03985162038549
331 => 0.041390457271167
401 => 0.041969074175218
402 => 0.0418645522105
403 => 0.043031280774717
404 => 0.045127866069696
405 => 0.042288332042283
406 => 0.045278368268077
407 => 0.044331757320619
408 => 0.042087359793
409 => 0.04194284705193
410 => 0.043462779115624
411 => 0.046833842144859
412 => 0.045989429090316
413 => 0.046835223302114
414 => 0.045848559427047
415 => 0.045799563249394
416 => 0.046787303239977
417 => 0.049095211566877
418 => 0.047998810831417
419 => 0.046426851528645
420 => 0.047587561815416
421 => 0.046582047146349
422 => 0.044316341171105
423 => 0.045988783383568
424 => 0.044870468904506
425 => 0.045196852522364
426 => 0.047547383220627
427 => 0.047264561148279
428 => 0.047630559098516
429 => 0.046984582296182
430 => 0.04638113810161
501 => 0.045254764700087
502 => 0.044921301065434
503 => 0.045013458417287
504 => 0.044921255396827
505 => 0.044291059830581
506 => 0.044154969158052
507 => 0.043928145408234
508 => 0.043998447572864
509 => 0.043571952563577
510 => 0.044376836764466
511 => 0.044526230364766
512 => 0.045111957964402
513 => 0.045172770146872
514 => 0.046804013174546
515 => 0.045905551926829
516 => 0.046508317301209
517 => 0.046454400292677
518 => 0.042136002693032
519 => 0.042731039780718
520 => 0.043656730756234
521 => 0.043239708226508
522 => 0.04265013593772
523 => 0.042174024703658
524 => 0.04145266749918
525 => 0.042467963912045
526 => 0.043802970730225
527 => 0.045206628122878
528 => 0.046893030508875
529 => 0.046516645128208
530 => 0.045175102003309
531 => 0.045235282647894
601 => 0.045607295712509
602 => 0.045125504992882
603 => 0.044983415503992
604 => 0.045587774798668
605 => 0.04559193668898
606 => 0.045037578239696
607 => 0.044421510269842
608 => 0.044418928922554
609 => 0.044309305577829
610 => 0.045868061176544
611 => 0.046725219147871
612 => 0.046823490927905
613 => 0.046718604674086
614 => 0.046758971230394
615 => 0.046260209893066
616 => 0.047400230407118
617 => 0.048446425967155
618 => 0.048166023208357
619 => 0.047745659611318
620 => 0.047410819758822
621 => 0.048087145580473
622 => 0.04805702985627
623 => 0.04843728836162
624 => 0.048420037639337
625 => 0.048292171006234
626 => 0.048166027774877
627 => 0.048666171428623
628 => 0.048522138088405
629 => 0.048377881024628
630 => 0.04808855139857
701 => 0.048127876100007
702 => 0.04770758508467
703 => 0.047513139229766
704 => 0.044589140112859
705 => 0.043807752004394
706 => 0.044053592609938
707 => 0.044134529720532
708 => 0.043794468614352
709 => 0.044282028886084
710 => 0.044206043134188
711 => 0.044501659244635
712 => 0.044316971132987
713 => 0.044324550797511
714 => 0.044867679154209
715 => 0.045025351626792
716 => 0.044945158134663
717 => 0.045001322907678
718 => 0.046295616396133
719 => 0.04611160925125
720 => 0.04601385912293
721 => 0.046040936576511
722 => 0.046371656312776
723 => 0.046464239782303
724 => 0.046071957116195
725 => 0.04625695988929
726 => 0.047044678216783
727 => 0.047320335050409
728 => 0.048200099340557
729 => 0.047826359833539
730 => 0.048512374873738
731 => 0.050620951227549
801 => 0.052305427921358
802 => 0.050756313539788
803 => 0.053849640471155
804 => 0.056258239198619
805 => 0.056165793167728
806 => 0.055745798267702
807 => 0.053003672652395
808 => 0.0504803277784
809 => 0.05259121291238
810 => 0.052596593992694
811 => 0.052415267087633
812 => 0.051289061253426
813 => 0.052376077565796
814 => 0.052462360973208
815 => 0.052414065209667
816 => 0.05155060583711
817 => 0.050232262969181
818 => 0.050489864009908
819 => 0.050911819769536
820 => 0.050112969487367
821 => 0.049857688418168
822 => 0.050332304495019
823 => 0.051861616384819
824 => 0.051572508830753
825 => 0.051564959064141
826 => 0.052801883781119
827 => 0.051916512628824
828 => 0.050493113183984
829 => 0.05013368605183
830 => 0.048857961871811
831 => 0.049739109106924
901 => 0.049770820027239
902 => 0.049288224691674
903 => 0.05053227313573
904 => 0.050520809010308
905 => 0.051701847855764
906 => 0.053959550550344
907 => 0.053291836768754
908 => 0.052515358287819
909 => 0.052599783028109
910 => 0.053525714051083
911 => 0.052965875017644
912 => 0.053167197037405
913 => 0.053525409326094
914 => 0.053741527693771
915 => 0.052568686920874
916 => 0.052295241633252
917 => 0.051735868541033
918 => 0.051589938542466
919 => 0.052045536254376
920 => 0.051925502353792
921 => 0.049768154847177
922 => 0.049542700029368
923 => 0.049549614406755
924 => 0.048982697547581
925 => 0.048118013261704
926 => 0.050390351937372
927 => 0.050207851340357
928 => 0.050006384805676
929 => 0.050031063306622
930 => 0.051017408509026
1001 => 0.050445278480005
1002 => 0.051966379932426
1003 => 0.051653687202303
1004 => 0.05133297508355
1005 => 0.051288642899609
1006 => 0.051165196095761
1007 => 0.050741851072835
1008 => 0.05023063651856
1009 => 0.049893088389182
1010 => 0.046023736700347
1011 => 0.046741865866811
1012 => 0.047568008013295
1013 => 0.047853188971705
1014 => 0.047365367208424
1015 => 0.050761113249358
1016 => 0.05138154877326
1017 => 0.049502209101354
1018 => 0.049150661381673
1019 => 0.050784160659334
1020 => 0.049798960907739
1021 => 0.050242596295558
1022 => 0.049283699242677
1023 => 0.051232104024025
1024 => 0.051217260444062
1025 => 0.0504592869774
1026 => 0.051099920961044
1027 => 0.050988595041158
1028 => 0.050132844864103
1029 => 0.051259232831012
1030 => 0.05125979150539
1031 => 0.050530258523492
1101 => 0.049678323715941
1102 => 0.049526017894152
1103 => 0.049411275916843
1104 => 0.050214376802951
1105 => 0.050934434546204
1106 => 0.052274283488945
1107 => 0.052611153347176
1108 => 0.053925978830547
1109 => 0.05314306427289
1110 => 0.053490120155859
1111 => 0.053866898410873
1112 => 0.054047539761888
1113 => 0.053753194374158
1114 => 0.055795659553593
1115 => 0.055968106194253
1116 => 0.056025926061209
1117 => 0.055337218294504
1118 => 0.055948951985398
1119 => 0.055662742049919
1120 => 0.056407380790625
1121 => 0.056524149653192
1122 => 0.05642525058077
1123 => 0.05646231486082
1124 => 0.05471943114572
1125 => 0.054629053430648
1126 => 0.053396746872732
1127 => 0.053898920903833
1128 => 0.052960130622517
1129 => 0.053257830691334
1130 => 0.053389054045078
1201 => 0.053320510411942
1202 => 0.053927313070096
1203 => 0.053411406849072
1204 => 0.052049845508954
1205 => 0.05068791321236
1206 => 0.050670815261783
1207 => 0.050312242528191
1208 => 0.050053060117677
1209 => 0.050102987844932
1210 => 0.050278939667955
1211 => 0.05004283347786
1212 => 0.050093218704404
1213 => 0.05092994918005
1214 => 0.051097749509652
1215 => 0.050527498425843
1216 => 0.048237858037511
1217 => 0.047675974543087
1218 => 0.048079845256245
1219 => 0.047886821067961
1220 => 0.038648402014991
1221 => 0.040818831536079
1222 => 0.039529236015471
1223 => 0.040123540962804
1224 => 0.038807197875404
1225 => 0.039435425792164
1226 => 0.039319415035148
1227 => 0.04280940147738
1228 => 0.042754910139404
1229 => 0.042780992259276
1230 => 0.041536024721198
1231 => 0.043519291813908
]
'min_raw' => 0.025319566984794
'max_raw' => 0.056524149653192
'avg_raw' => 0.040921858318993
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.025319'
'max' => '$0.056524'
'avg' => '$0.040921'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0039042258560246
'max_diff' => 0.0085511418922362
'year' => 2035
]
10 => [
'items' => [
101 => 0.044496320499756
102 => 0.044315498492782
103 => 0.04436100749628
104 => 0.04357901203764
105 => 0.042788563684673
106 => 0.041911834812102
107 => 0.043540688690374
108 => 0.043359587944573
109 => 0.043774967897449
110 => 0.044831396070388
111 => 0.044986959131834
112 => 0.045196037463982
113 => 0.045121097765116
114 => 0.046906465424597
115 => 0.046690245620798
116 => 0.047211273137269
117 => 0.046139480005436
118 => 0.044926644341229
119 => 0.045157164750409
120 => 0.045134963781277
121 => 0.044852319963139
122 => 0.044597161761982
123 => 0.044172395247434
124 => 0.04551641935308
125 => 0.045461854428867
126 => 0.04634519712709
127 => 0.046189057724846
128 => 0.045146320582867
129 => 0.045183562143887
130 => 0.045434029539426
131 => 0.046300900055173
201 => 0.046558246245292
202 => 0.046439033236556
203 => 0.046721201585722
204 => 0.046944215943972
205 => 0.046749208755529
206 => 0.049510099310123
207 => 0.048363585063238
208 => 0.048922388129775
209 => 0.049055659368485
210 => 0.048714287892921
211 => 0.048788319142375
212 => 0.048900456312989
213 => 0.049581331254251
214 => 0.051368144112874
215 => 0.052159511364712
216 => 0.054540378787239
217 => 0.052093799330811
218 => 0.051948629430819
219 => 0.052377495548924
220 => 0.053775316766359
221 => 0.054908119572419
222 => 0.055283935616151
223 => 0.055333605910376
224 => 0.056038661792196
225 => 0.05644278667514
226 => 0.055953049463332
227 => 0.055538048453948
228 => 0.054051566350155
229 => 0.054223630701226
301 => 0.055408983452094
302 => 0.057083364029623
303 => 0.058520156754751
304 => 0.058017042019693
305 => 0.061855452304534
306 => 0.062236015005776
307 => 0.06218343354553
308 => 0.063050412014283
309 => 0.061329636310904
310 => 0.06059397135925
311 => 0.055627776382638
312 => 0.057023074602605
313 => 0.059051222508319
314 => 0.058782789527834
315 => 0.057309894306155
316 => 0.058519039431648
317 => 0.058119258239696
318 => 0.057803934226667
319 => 0.059248494658922
320 => 0.057660141124386
321 => 0.059035377466785
322 => 0.057271622632659
323 => 0.058019340205424
324 => 0.057594899548093
325 => 0.057869564670877
326 => 0.056263877975415
327 => 0.057130267540445
328 => 0.056227833321085
329 => 0.056227405449764
330 => 0.056207484164355
331 => 0.057269194021426
401 => 0.057303816341748
402 => 0.056519211153218
403 => 0.056406137287714
404 => 0.056824230632894
405 => 0.056334752824509
406 => 0.056563776410316
407 => 0.056341689715613
408 => 0.056291693322774
409 => 0.055893313558448
410 => 0.055721680602297
411 => 0.05578898230684
412 => 0.055559246892827
413 => 0.055420822995991
414 => 0.056179948167195
415 => 0.055774378211242
416 => 0.056117788754753
417 => 0.055726429098557
418 => 0.054369806022895
419 => 0.053589597746053
420 => 0.051027062515153
421 => 0.051753794327821
422 => 0.052235618271479
423 => 0.052076375460974
424 => 0.052418490636725
425 => 0.052439493729972
426 => 0.052328268598884
427 => 0.052199484145905
428 => 0.052136798996423
429 => 0.052604002743688
430 => 0.05287523024433
501 => 0.052283975750197
502 => 0.052145453094751
503 => 0.052743244032375
504 => 0.053107896158993
505 => 0.05580028258161
506 => 0.055600821899129
507 => 0.056101429069974
508 => 0.05604506838498
509 => 0.056569784453002
510 => 0.057427473462663
511 => 0.055683551892404
512 => 0.05598623637673
513 => 0.055912025131179
514 => 0.056722244050874
515 => 0.056724773465903
516 => 0.056239006750109
517 => 0.056502348767406
518 => 0.056355358477761
519 => 0.056620989798078
520 => 0.055598157980109
521 => 0.056843856726524
522 => 0.057550087644687
523 => 0.057559893661671
524 => 0.057894641511885
525 => 0.058234764714991
526 => 0.058887601584864
527 => 0.058216557449018
528 => 0.05700941437346
529 => 0.057096566204467
530 => 0.056388818660944
531 => 0.056400716025015
601 => 0.056337206963188
602 => 0.056527802438472
603 => 0.05563998296882
604 => 0.055848352423799
605 => 0.055556633966619
606 => 0.055985602237776
607 => 0.055524103289006
608 => 0.055911989344269
609 => 0.056079388107095
610 => 0.056697093145757
611 => 0.055432867752555
612 => 0.052855026595282
613 => 0.053396920059844
614 => 0.052595417060944
615 => 0.052669599215029
616 => 0.052819458972284
617 => 0.05233371446796
618 => 0.052426379211817
619 => 0.052423068575094
620 => 0.052394539296372
621 => 0.052268178390455
622 => 0.052084930077131
623 => 0.052814934956556
624 => 0.052938977010649
625 => 0.053214707131338
626 => 0.054035092940981
627 => 0.053953117052568
628 => 0.054086823127717
629 => 0.053794943516395
630 => 0.052683138673068
701 => 0.052743515025115
702 => 0.051990620947621
703 => 0.05319545393704
704 => 0.052910133582127
705 => 0.052726185693196
706 => 0.052675993807436
707 => 0.053498413194821
708 => 0.053744493965371
709 => 0.05359115294303
710 => 0.053276646032538
711 => 0.053880592276305
712 => 0.054042182812691
713 => 0.054078356974558
714 => 0.055148433923307
715 => 0.054138162388921
716 => 0.054381344788483
717 => 0.056278584450391
718 => 0.054558049878218
719 => 0.055469455413597
720 => 0.055424846855366
721 => 0.055891091086985
722 => 0.055386601219724
723 => 0.055392854976254
724 => 0.055806848267812
725 => 0.055225469353903
726 => 0.055081511758869
727 => 0.054882635372374
728 => 0.055316874686539
729 => 0.055577181516427
730 => 0.05767506339102
731 => 0.059030390757044
801 => 0.058971552421663
802 => 0.059509224666294
803 => 0.059266998395575
804 => 0.058484785871359
805 => 0.05981992726954
806 => 0.059397432666467
807 => 0.059432262608213
808 => 0.059430966236042
809 => 0.059711888211966
810 => 0.059512829245903
811 => 0.059120463590808
812 => 0.059380934223598
813 => 0.06015443888303
814 => 0.062555421079928
815 => 0.063899042526096
816 => 0.062474533381768
817 => 0.063457140714588
818 => 0.062867926453688
819 => 0.062760848694876
820 => 0.063377998713999
821 => 0.063996228972532
822 => 0.063956850377746
823 => 0.063508046956526
824 => 0.063254529291844
825 => 0.065174249983465
826 => 0.066588667487463
827 => 0.066492213696066
828 => 0.06691792936284
829 => 0.068167843727381
830 => 0.068282120232438
831 => 0.068267724019416
901 => 0.067984477778113
902 => 0.069215180791893
903 => 0.070241854898149
904 => 0.067918914457022
905 => 0.06880345976748
906 => 0.069200560655614
907 => 0.06978362257392
908 => 0.070767345762626
909 => 0.07183593006525
910 => 0.071987039602072
911 => 0.071879820154439
912 => 0.071175060081771
913 => 0.072344317776564
914 => 0.073029241511707
915 => 0.073437097921784
916 => 0.074471353916902
917 => 0.06920301301551
918 => 0.065473819471972
919 => 0.064891452049941
920 => 0.066075719103109
921 => 0.066388000880677
922 => 0.066262120487707
923 => 0.062064574111012
924 => 0.06486935283697
925 => 0.067887058913608
926 => 0.068002981294006
927 => 0.069513708053229
928 => 0.070005662612815
929 => 0.071221995669472
930 => 0.071145913705607
1001 => 0.071442071448816
1002 => 0.07137398991239
1003 => 0.073626990770705
1004 => 0.076112385291292
1005 => 0.076026323982114
1006 => 0.075669019113927
1007 => 0.076199677772719
1008 => 0.078764871269027
1009 => 0.078528709358275
1010 => 0.078758120538347
1011 => 0.081782628238466
1012 => 0.085714918479823
1013 => 0.083887974867227
1014 => 0.087851916817697
1015 => 0.090347008155984
1016 => 0.094662010628292
1017 => 0.094121751066923
1018 => 0.095801549864442
1019 => 0.093154573696502
1020 => 0.087076581372765
1021 => 0.086114715821914
1022 => 0.088040395013033
1023 => 0.092774489399373
1024 => 0.087891301533596
1025 => 0.088879164078965
1026 => 0.088594659599442
1027 => 0.088579499564794
1028 => 0.089158096426976
1029 => 0.088318811500798
1030 => 0.084899413727073
1031 => 0.086466503576134
1101 => 0.085861374927576
1102 => 0.08653281027848
1103 => 0.090156269946307
1104 => 0.088554252054671
1105 => 0.086866656343198
1106 => 0.088983275872853
1107 => 0.091678459883485
1108 => 0.091509800111811
1109 => 0.091182529660448
1110 => 0.093027336059459
1111 => 0.096074415753066
1112 => 0.09689802915009
1113 => 0.097506003721738
1114 => 0.097589833143354
1115 => 0.098453328285692
1116 => 0.093810097276547
1117 => 0.10117902413469
1118 => 0.10245143424059
1119 => 0.10221227387668
1120 => 0.10362650415819
1121 => 0.10321040173381
1122 => 0.10260753460535
1123 => 0.10484939041696
1124 => 0.10227928363739
1125 => 0.098631340631241
1126 => 0.096630006949936
1127 => 0.099265524584461
1128 => 0.10087494323698
1129 => 0.10193866658804
1130 => 0.10226054863135
1201 => 0.094170538082204
1202 => 0.08981047108877
1203 => 0.092605224043291
1204 => 0.096015015531353
1205 => 0.093791155712666
1206 => 0.093878326807235
1207 => 0.090707687125868
1208 => 0.096295546789176
1209 => 0.095481442637529
1210 => 0.099705016416397
1211 => 0.098697026637773
1212 => 0.10214118709625
1213 => 0.10123422422115
1214 => 0.10499897640809
1215 => 0.10650083798206
1216 => 0.10902269731084
1217 => 0.11087778729891
1218 => 0.11196713162212
1219 => 0.11190173147498
1220 => 0.11621825639272
1221 => 0.11367295245662
1222 => 0.1104754508308
1223 => 0.11041761811438
1224 => 0.11207364951534
1225 => 0.11554423702172
1226 => 0.11644410986713
1227 => 0.11694701602481
1228 => 0.11617679773804
1229 => 0.11341405273898
1230 => 0.11222111345582
1231 => 0.11323753228785
]
'min_raw' => 0.041911834812102
'max_raw' => 0.11694701602481
'avg_raw' => 0.079429425418455
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.041911'
'max' => '$0.116947'
'avg' => '$0.079429'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.016592267827308
'max_diff' => 0.060422866371615
'year' => 2036
]
11 => [
'items' => [
101 => 0.11199453939815
102 => 0.11414029384799
103 => 0.11708687301604
104 => 0.11647841606987
105 => 0.11851239641594
106 => 0.12061735209314
107 => 0.12362753325102
108 => 0.12441450607238
109 => 0.12571534222018
110 => 0.12705432991869
111 => 0.12748437668072
112 => 0.1283054693851
113 => 0.12830114182125
114 => 0.13077555995183
115 => 0.13350491977622
116 => 0.1345351899251
117 => 0.13690423932302
118 => 0.13284732525047
119 => 0.13592454117697
120 => 0.13870026697039
121 => 0.13539093224974
122 => 0.13995207918605
123 => 0.14012917818581
124 => 0.14280316282051
125 => 0.14009256711977
126 => 0.1384830240452
127 => 0.14312971459269
128 => 0.14537810177925
129 => 0.14470086926067
130 => 0.13954709635525
131 => 0.13654737946858
201 => 0.12869654177399
202 => 0.13799619815419
203 => 0.14252578950228
204 => 0.13953536580793
205 => 0.14104356157681
206 => 0.14927178865765
207 => 0.15240456479179
208 => 0.15175296925565
209 => 0.15186307817508
210 => 0.15355346731315
211 => 0.16104958366566
212 => 0.15655773698862
213 => 0.15999158546694
214 => 0.16181288631817
215 => 0.163504612051
216 => 0.15935026832659
217 => 0.15394552818055
218 => 0.15223362010075
219 => 0.13923802710634
220 => 0.13856155005398
221 => 0.13818182298514
222 => 0.13578769752955
223 => 0.13390657072762
224 => 0.13241062885296
225 => 0.12848483064779
226 => 0.12980967229902
227 => 0.12355276933775
228 => 0.12755571412134
301 => 0.11756954591695
302 => 0.12588632353816
303 => 0.12135987959641
304 => 0.12439926496497
305 => 0.12438866083575
306 => 0.11879218873421
307 => 0.11556426042144
308 => 0.11762122197519
309 => 0.11982644804262
310 => 0.12018423855279
311 => 0.1230433717115
312 => 0.12384129431924
313 => 0.12142355156635
314 => 0.11736260477729
315 => 0.11830587009606
316 => 0.11554514517986
317 => 0.11070708095399
318 => 0.11418186314551
319 => 0.11536830656108
320 => 0.11589230756359
321 => 0.11113462705287
322 => 0.10963966054214
323 => 0.1088437529158
324 => 0.11674844796775
325 => 0.11718148500654
326 => 0.11496600629084
327 => 0.12498018016609
328 => 0.12271366419885
329 => 0.12524591784416
330 => 0.11822027865522
331 => 0.11848866753351
401 => 0.11516261735061
402 => 0.11702498320628
403 => 0.11570872304634
404 => 0.1168745224494
405 => 0.11757329780482
406 => 0.12089880221562
407 => 0.1259242954567
408 => 0.12040208275245
409 => 0.11799597559766
410 => 0.11948871094403
411 => 0.12346406188177
412 => 0.12948692204692
413 => 0.1259212676078
414 => 0.12750364449914
415 => 0.12784932345485
416 => 0.12522014187914
417 => 0.12958386372184
418 => 0.13192241770816
419 => 0.13432129020256
420 => 0.13640416397456
421 => 0.13336312777596
422 => 0.13661747242388
423 => 0.13399504510682
424 => 0.13164245670186
425 => 0.13164602460737
426 => 0.1301702115351
427 => 0.12731063774318
428 => 0.12678328846222
429 => 0.12952662601866
430 => 0.1317265229439
501 => 0.13190771699146
502 => 0.13312569296405
503 => 0.13384647859848
504 => 0.14091115767647
505 => 0.14375263004373
506 => 0.14722712866809
507 => 0.14858064169429
508 => 0.15265423064188
509 => 0.14936447672598
510 => 0.14865271777276
511 => 0.13877152344669
512 => 0.14038956846403
513 => 0.14298021465491
514 => 0.13881424224818
515 => 0.14145659286559
516 => 0.1419782488501
517 => 0.13867268409993
518 => 0.14043832905802
519 => 0.13574929952659
520 => 0.12602650348684
521 => 0.12959468797325
522 => 0.13222207279315
523 => 0.12847247070093
524 => 0.13519348732159
525 => 0.13126720816175
526 => 0.13002276616271
527 => 0.12516775424888
528 => 0.12745913298567
529 => 0.13055825553655
530 => 0.12864335811177
531 => 0.13261705779148
601 => 0.13824487628494
602 => 0.14225559488576
603 => 0.14256348805864
604 => 0.13998486469559
605 => 0.14411712509144
606 => 0.14414722409713
607 => 0.13948601748984
608 => 0.13663105439657
609 => 0.13598240077489
610 => 0.13760286469789
611 => 0.13957040705455
612 => 0.14267267296604
613 => 0.14454730728392
614 => 0.14943535935573
615 => 0.15075792609493
616 => 0.15221102596412
617 => 0.15415281550877
618 => 0.15648443172175
619 => 0.15138298818675
620 => 0.15158567804867
621 => 0.14683528446318
622 => 0.14175880764172
623 => 0.14561122075744
624 => 0.15064773844119
625 => 0.14949235571968
626 => 0.14936235156118
627 => 0.14958098249563
628 => 0.14870986165488
629 => 0.14476981437743
630 => 0.14279114730069
701 => 0.14534413264149
702 => 0.14670093072982
703 => 0.14880520623959
704 => 0.14854580986714
705 => 0.15396619759762
706 => 0.15607239636567
707 => 0.15553354059148
708 => 0.15563270302222
709 => 0.1594458752866
710 => 0.16368690708329
711 => 0.16765919301432
712 => 0.17169997287701
713 => 0.16682865503821
714 => 0.16435530026079
715 => 0.16690717104805
716 => 0.16555311248815
717 => 0.17333393461321
718 => 0.17387266185534
719 => 0.18165292133841
720 => 0.18903731404391
721 => 0.18439930929072
722 => 0.18877273887265
723 => 0.19350295953646
724 => 0.20262832264758
725 => 0.1995552213859
726 => 0.19720127398109
727 => 0.19497680505773
728 => 0.19960557176274
729 => 0.20556040618237
730 => 0.20684302048167
731 => 0.2089213456429
801 => 0.20673624086138
802 => 0.20936795888933
803 => 0.21865907996349
804 => 0.21614853703425
805 => 0.21258316248483
806 => 0.21991761024412
807 => 0.22257191837627
808 => 0.24120124291963
809 => 0.26472153469463
810 => 0.25498397945721
811 => 0.24893956469241
812 => 0.25036014553757
813 => 0.25894895988168
814 => 0.26170741445367
815 => 0.2542089840307
816 => 0.25685755642182
817 => 0.27145145069878
818 => 0.27928060675018
819 => 0.26864756123643
820 => 0.2393114103767
821 => 0.21226213951626
822 => 0.21943682419299
823 => 0.21862343760704
824 => 0.23430275638224
825 => 0.21608866141568
826 => 0.21639534006227
827 => 0.23239889054506
828 => 0.22812941764657
829 => 0.22121341834378
830 => 0.21231263396487
831 => 0.19585871081756
901 => 0.1812850122344
902 => 0.20986739127832
903 => 0.20863486712026
904 => 0.20684998948955
905 => 0.21082204151277
906 => 0.2301091986509
907 => 0.22966456725243
908 => 0.22683604914831
909 => 0.22898145520087
910 => 0.22083731828988
911 => 0.22293624781039
912 => 0.21225785477356
913 => 0.21708493439529
914 => 0.22119857971541
915 => 0.22202445491698
916 => 0.22388519391636
917 => 0.2079853828953
918 => 0.21512393124983
919 => 0.21931715961659
920 => 0.20037200130461
921 => 0.21894267475009
922 => 0.20770860255931
923 => 0.20389558972766
924 => 0.20902930917924
925 => 0.20702869371625
926 => 0.20530868202126
927 => 0.2043488859419
928 => 0.2081185229192
929 => 0.20794266484851
930 => 0.20177480709865
1001 => 0.19372908809798
1002 => 0.19642949548633
1003 => 0.19544841216569
1004 => 0.19189283964942
1005 => 0.19428886622392
1006 => 0.18373797779112
1007 => 0.16558572262995
1008 => 0.17757765840803
1009 => 0.17711598192529
1010 => 0.17688318370733
1011 => 0.1858947920118
1012 => 0.1850285338065
1013 => 0.18345626668146
1014 => 0.19186396373069
1015 => 0.18879504120824
1016 => 0.19825273729334
1017 => 0.20448218762042
1018 => 0.20290219751586
1019 => 0.20876102565803
1020 => 0.1964917074185
1021 => 0.20056708277806
1022 => 0.20140701199144
1023 => 0.19176021405419
1024 => 0.18517026436209
1025 => 0.18473078984855
1026 => 0.17330472523345
1027 => 0.17940843672287
1028 => 0.18477945024481
1029 => 0.18220715157528
1030 => 0.18139283866175
1031 => 0.18555298673407
1101 => 0.18587626586855
1102 => 0.17850546734286
1103 => 0.18003808975918
1104 => 0.18642938001253
1105 => 0.17987704564316
1106 => 0.16714693028122
1107 => 0.16398968566384
1108 => 0.16356845103232
1109 => 0.15500575322576
1110 => 0.16420066784613
1111 => 0.16018684120595
1112 => 0.17286647146925
1113 => 0.16562393466507
1114 => 0.16531172337892
1115 => 0.16483977022846
1116 => 0.15746950250576
1117 => 0.15908312273209
1118 => 0.16444704212568
1119 => 0.16636094899419
1120 => 0.16616131282762
1121 => 0.16442075599437
1122 => 0.16521757399954
1123 => 0.16265074557509
1124 => 0.16174434503451
1125 => 0.15888349560331
1126 => 0.15467883726927
1127 => 0.15526352079928
1128 => 0.14693299243085
1129 => 0.14239407844113
1130 => 0.1411377668707
1201 => 0.13945777453384
1202 => 0.14132752647543
1203 => 0.14690939309066
1204 => 0.14017647769363
1205 => 0.12863336650453
1206 => 0.1293271271555
1207 => 0.13088580135884
1208 => 0.12798122229257
1209 => 0.1252322819692
1210 => 0.1276222625518
1211 => 0.12273129417083
1212 => 0.1314768515208
1213 => 0.13124030870363
1214 => 0.13450011166206
1215 => 0.13653853334986
1216 => 0.13184063130634
1217 => 0.13065912164688
1218 => 0.13133216324553
1219 => 0.12020828483849
1220 => 0.1335910534754
1221 => 0.13370678821431
1222 => 0.13271579711522
1223 => 0.13984170826774
1224 => 0.154879603427
1225 => 0.14922174237016
1226 => 0.14703084755919
1227 => 0.14286595492201
1228 => 0.1484154270742
1229 => 0.14798931419816
1230 => 0.14606227017422
1231 => 0.14489678793579
]
'min_raw' => 0.1088437529158
'max_raw' => 0.27928060675018
'avg_raw' => 0.19406217983299
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.108843'
'max' => '$0.27928'
'avg' => '$0.194062'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.066931918103702
'max_diff' => 0.16233359072538
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0034164810310565
]
1 => [
'year' => 2028
'avg' => 0.0058636732608229
]
2 => [
'year' => 2029
'avg' => 0.016018498524286
]
3 => [
'year' => 2030
'avg' => 0.012358247756023
]
4 => [
'year' => 2031
'avg' => 0.012137330837199
]
5 => [
'year' => 2032
'avg' => 0.021280560716201
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0034164810310565
'min' => '$0.003416'
'max_raw' => 0.021280560716201
'max' => '$0.02128'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.021280560716201
]
1 => [
'year' => 2033
'avg' => 0.054735790416321
]
2 => [
'year' => 2034
'avg' => 0.034694174444863
]
3 => [
'year' => 2035
'avg' => 0.040921858318993
]
4 => [
'year' => 2036
'avg' => 0.079429425418455
]
5 => [
'year' => 2037
'avg' => 0.19406217983299
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.021280560716201
'min' => '$0.02128'
'max_raw' => 0.19406217983299
'max' => '$0.194062'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.19406217983299
]
]
]
]
'prediction_2025_max_price' => '$0.005841'
'last_price' => 0.00566413
'sma_50day_nextmonth' => '$0.005173'
'sma_200day_nextmonth' => '$0.012498'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.005178'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.004945'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0049011'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.005141'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.005643'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.007927'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.015819'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.005273'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.005115'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.005035'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.005189'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.006065'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.010175'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.026516'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.010735'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0552048'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.11252'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.180858'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.005395'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.005551'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.00702'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.016268'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.0510057'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.112496'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.266253'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '57.33'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 140.23
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.004960'
'vwma_10_action' => 'BUY'
'hma_9' => '0.005146'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 132.02
'cci_20_action' => 'SELL'
'adx_14' => 26.31
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000559'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 65.4
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.001360'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 19
'sell_pct' => 44.12
'buy_pct' => 55.88
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767681916
'last_updated_date' => '6. Januar 2026'
]
Alpaca Finance Preisprognose für 2026
Die Preisprognose für Alpaca Finance im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.001956 am unteren Ende und $0.005841 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Alpaca Finance im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn ALPACA das prognostizierte Preisziel erreicht.
Alpaca Finance Preisprognose 2027-2032
Die Preisprognose für ALPACA für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.003416 am unteren Ende und $0.02128 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Alpaca Finance, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Alpaca Finance Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.001883 | $0.003416 | $0.004949 |
| 2028 | $0.003399 | $0.005863 | $0.008327 |
| 2029 | $0.007468 | $0.016018 | $0.024568 |
| 2030 | $0.006351 | $0.012358 | $0.018364 |
| 2031 | $0.0075097 | $0.012137 | $0.016764 |
| 2032 | $0.011463 | $0.02128 | $0.031098 |
Alpaca Finance Preisprognose 2032-2037
Die Preisprognose für Alpaca Finance für die Jahre 2032-2037 wird derzeit zwischen $0.02128 am unteren Ende und $0.194062 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Alpaca Finance bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Alpaca Finance Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.011463 | $0.02128 | $0.031098 |
| 2033 | $0.026637 | $0.054735 | $0.082833 |
| 2034 | $0.021415 | $0.034694 | $0.047973 |
| 2035 | $0.025319 | $0.040921 | $0.056524 |
| 2036 | $0.041911 | $0.079429 | $0.116947 |
| 2037 | $0.108843 | $0.194062 | $0.27928 |
Alpaca Finance Potenzielles Preishistogramm
Alpaca Finance Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Alpaca Finance Bullisch, mit 19 technischen Indikatoren, die bullische Signale zeigen, und 15 anzeigen bärische Signale. Die Preisprognose für ALPACA wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Alpaca Finance
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Alpaca Finance im nächsten Monat steigen, und bis zum 04.02.2026 $0.012498 erreichen. Der kurzfristige 50-Tage-SMA für Alpaca Finance wird voraussichtlich bis zum 04.02.2026 $0.005173 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 57.33, was darauf hindeutet, dass sich der ALPACA-Markt in einem NEUTRAL Zustand befindet.
Beliebte ALPACA Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.005178 | BUY |
| SMA 5 | $0.004945 | BUY |
| SMA 10 | $0.0049011 | BUY |
| SMA 21 | $0.005141 | BUY |
| SMA 50 | $0.005643 | BUY |
| SMA 100 | $0.007927 | SELL |
| SMA 200 | $0.015819 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.005273 | BUY |
| EMA 5 | $0.005115 | BUY |
| EMA 10 | $0.005035 | BUY |
| EMA 21 | $0.005189 | BUY |
| EMA 50 | $0.006065 | SELL |
| EMA 100 | $0.010175 | SELL |
| EMA 200 | $0.026516 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.010735 | SELL |
| SMA 50 | $0.0552048 | SELL |
| SMA 100 | $0.11252 | SELL |
| SMA 200 | $0.180858 | SELL |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.016268 | SELL |
| EMA 50 | $0.0510057 | SELL |
| EMA 100 | $0.112496 | SELL |
| EMA 200 | $0.266253 | SELL |
Alpaca Finance Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 57.33 | NEUTRAL |
| Stoch RSI (14) | 140.23 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 132.02 | SELL |
| Average Directional Index (14) | 26.31 | SELL |
| Awesome Oscillator (5, 34) | -0.000559 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 65.4 | NEUTRAL |
| VWMA (10) | 0.004960 | BUY |
| Hull Moving Average (9) | 0.005146 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.001360 | SELL |
Auf weltweiten Geldflüssen basierende Alpaca Finance-Preisprognose
Definition weltweiter Geldflüsse, die für Alpaca Finance-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Alpaca Finance-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.007959 | $0.011183 | $0.015715 | $0.022082 | $0.031029 | $0.0436014 |
| Amazon.com aktie | $0.011818 | $0.02466 | $0.051454 | $0.107363 | $0.22402 | $0.467431 |
| Apple aktie | $0.008034 | $0.011395 | $0.016164 | $0.022927 | $0.03252 | $0.046128 |
| Netflix aktie | $0.008937 | $0.0141013 | $0.022249 | $0.0351065 | $0.055392 | $0.08740099 |
| Google aktie | $0.007335 | $0.009498 | $0.01230093 | $0.015929 | $0.020628 | $0.026714 |
| Tesla aktie | $0.01284 | $0.0291076 | $0.065984 | $0.149582 | $0.339092 | $0.768697 |
| Kodak aktie | $0.004247 | $0.003185 | $0.002388 | $0.001791 | $0.001343 | $0.0010072 |
| Nokia aktie | $0.003752 | $0.002485 | $0.001646 | $0.00109 | $0.000722 | $0.000478 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Alpaca Finance Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Alpaca Finance investieren?", "Sollte ich heute ALPACA kaufen?", "Wird Alpaca Finance auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Alpaca Finance-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Alpaca Finance.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Alpaca Finance zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Alpaca Finance-Preis entspricht heute $0.005664 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
kurzfristige Alpaca Finance-Prognose
basierend auf dem Preisverlauf der letzten 4 Stunden
langfristige Alpaca Finance-Prognose
basierend auf dem Preisverlauf des letzten Monats
Alpaca Finance-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Alpaca Finance 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.005811 | $0.005962 | $0.006117 | $0.006276 |
| Wenn die Wachstumsrate von Alpaca Finance 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.005958 | $0.006268 | $0.006594 | $0.006937 |
| Wenn die Wachstumsrate von Alpaca Finance 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.00640027 | $0.007232 | $0.008172 | $0.009234 |
| Wenn die Wachstumsrate von Alpaca Finance 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.007136 | $0.008991 | $0.011328 | $0.014273 |
| Wenn die Wachstumsrate von Alpaca Finance 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0086087 | $0.013084 | $0.019886 | $0.030224 |
| Wenn die Wachstumsrate von Alpaca Finance 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.013025 | $0.029954 | $0.068884 | $0.158412 |
| Wenn die Wachstumsrate von Alpaca Finance 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.020387 | $0.073379 | $0.264116 | $0.950639 |
Fragefeld
Ist ALPACA eine gute Investition?
Die Entscheidung, Alpaca Finance zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Alpaca Finance in den letzten 2026 Stunden um 11.6499% gestiegen, und Alpaca Finance hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Alpaca Finance investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Alpaca Finance steigen?
Es scheint, dass der Durchschnittswert von Alpaca Finance bis zum Ende dieses Jahres potenziell auf $0.005841 steigen könnte. Betrachtet man die Aussichten von Alpaca Finance in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.018364 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Alpaca Finance nächste Woche kosten?
Basierend auf unserer neuen experimentellen Alpaca Finance-Prognose wird der Preis von Alpaca Finance in der nächsten Woche um 0.86% steigen und $0.005712 erreichen bis zum 13. Januar 2026.
Wie viel wird Alpaca Finance nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Alpaca Finance-Prognose wird der Preis von Alpaca Finance im nächsten Monat um -11.62% fallen und $0.00500607 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Alpaca Finance in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Alpaca Finance im Jahr 2026 wird erwartet, dass ALPACA innerhalb der Spanne von $0.001956 bis $0.005841 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Alpaca Finance-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Alpaca Finance in 5 Jahren sein?
Die Zukunft von Alpaca Finance scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.018364 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Alpaca Finance-Prognose für 2030 könnte der Wert von Alpaca Finance seinen höchsten Gipfel von ungefähr $0.018364 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.006351 liegen wird.
Wie viel wird Alpaca Finance im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Alpaca Finance-Preisprognosesimulation wird der Wert von ALPACA im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.005841 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.005841 und $0.001956 während des Jahres 2026 liegen.
Wie viel wird Alpaca Finance im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Alpaca Finance könnte der Wert von ALPACA um -12.62% fallen und bis zu $0.004949 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.004949 und $0.001883 im Laufe des Jahres schwanken.
Wie viel wird Alpaca Finance im Jahr 2028 kosten?
Unser neues experimentelles Alpaca Finance-Preisprognosemodell deutet darauf hin, dass der Wert von ALPACA im Jahr 2028 um 47.02% steigen, und im besten Fall $0.008327 erreichen wird. Der Preis wird voraussichtlich zwischen $0.008327 und $0.003399 im Laufe des Jahres liegen.
Wie viel wird Alpaca Finance im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Alpaca Finance im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.024568 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.024568 und $0.007468.
Wie viel wird Alpaca Finance im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Alpaca Finance-Preisprognosen wird der Wert von ALPACA im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.018364 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.018364 und $0.006351 während des Jahres 2030 liegen.
Wie viel wird Alpaca Finance im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Alpaca Finance im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.016764 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.016764 und $0.0075097 während des Jahres schwanken.
Wie viel wird Alpaca Finance im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Alpaca Finance-Preisprognose könnte ALPACA eine 449.04% Steigerung im Wert erfahren und $0.031098 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.031098 und $0.011463 liegen.
Wie viel wird Alpaca Finance im Jahr 2033 kosten?
Laut unserer experimentellen Alpaca Finance-Preisprognose wird der Wert von ALPACA voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.082833 beträgt. Im Laufe des Jahres könnte der Preis von ALPACA zwischen $0.082833 und $0.026637 liegen.
Wie viel wird Alpaca Finance im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Alpaca Finance-Preisprognosesimulation deuten darauf hin, dass ALPACA im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.047973 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.047973 und $0.021415.
Wie viel wird Alpaca Finance im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Alpaca Finance könnte ALPACA um 897.93% steigen, wobei der Wert im Jahr 2035 $0.056524 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.056524 und $0.025319.
Wie viel wird Alpaca Finance im Jahr 2036 kosten?
Unsere jüngste Alpaca Finance-Preisprognosesimulation deutet darauf hin, dass der Wert von ALPACA im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.116947 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.116947 und $0.041911.
Wie viel wird Alpaca Finance im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Alpaca Finance um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.27928 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.27928 und $0.108843 liegen.
Verwandte Prognosen
Vite-Preisprognose
Passage-Preisprognose
Ascendia (ex AirDAO)-Preisprognose
GET Protocol-Preisprognose
ISKRA Token-Preisprognose
Instadapp-Preisprognose
Evmos-Preisprognose
Hive Dollar-Preisprognose
Onomy Protocol-Preisprognose
FEED EVERY GORILLA-Preisprognose
Pluton-Preisprognose
Shuffle-Preisprognose
Advertise Coin-Preisprognose
Frax Price Index Share-Preisprognose
Decimal-Preisprognose
WAGMI Games-Preisprognose
Alkimi-Preisprognose
RabbitX-Preisprognose
GameGPT-Preisprognose
Gamer Arena-Preisprognose
Troll-Preisprognose
Orange-Preisprognose
KRYLL-Preisprognose
Beefy.Finance-Preisprognose
Aura Finance-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Alpaca Finance?
Alpaca Finance-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Alpaca Finance Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Alpaca Finance. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von ALPACA über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von ALPACA über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von ALPACA einzuschätzen.
Wie liest man Alpaca Finance-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Alpaca Finance in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von ALPACA innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Alpaca Finance?
Die Preisentwicklung von Alpaca Finance wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von ALPACA. Die Marktkapitalisierung von Alpaca Finance kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von ALPACA-„Walen“, großen Inhabern von Alpaca Finance, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Alpaca Finance-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


