Alpaca Finance Preisvorhersage bis zu $0.005869 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.001966 | $0.005869 |
| 2027 | $0.001892 | $0.004972 |
| 2028 | $0.003416 | $0.008367 |
| 2029 | $0.0075043 | $0.024686 |
| 2030 | $0.006382 | $0.018452 |
| 2031 | $0.007545 | $0.016845 |
| 2032 | $0.011517 | $0.031246 |
| 2033 | $0.026765 | $0.08323 |
| 2034 | $0.021517 | $0.0482027 |
| 2035 | $0.02544 | $0.056794 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Alpaca Finance eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,955.63 Gewinn erzielen könnten, was einer Rendite von 39.56% in den nächsten 90 Tagen entspricht.
Langfristige Alpaca Finance Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Alpaca Finance'
'name_with_ticker' => 'Alpaca Finance <small>ALPACA</small>'
'name_lang' => 'Alpaca Finance'
'name_lang_with_ticker' => 'Alpaca Finance <small>ALPACA</small>'
'name_with_lang' => 'Alpaca Finance'
'name_with_lang_with_ticker' => 'Alpaca Finance <small>ALPACA</small>'
'image' => '/uploads/coins/alpaca-finance.png?1717085056'
'price_for_sd' => 0.005691
'ticker' => 'ALPACA'
'marketcap' => '$868K'
'low24h' => '$0.00491'
'high24h' => '$0.005946'
'volume24h' => '$190.69K'
'current_supply' => '151.67M'
'max_supply' => '151.67M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.005691'
'change_24h_pct' => '12.2734%'
'ath_price' => '$8.78'
'ath_days' => 1767
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '06.03.2021'
'ath_pct' => '-99.93%'
'fdv' => '$868K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.280617'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.005739'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00503'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001966'
'current_year_max_price_prediction' => '$0.005869'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.006382'
'grand_prediction_max_price' => '$0.018452'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0057990961939025
107 => 0.0058207479140186
108 => 0.0058695303450045
109 => 0.005452689813322
110 => 0.0056398389742524
111 => 0.005749771572794
112 => 0.0052530920932006
113 => 0.0057399538164287
114 => 0.0054454335470518
115 => 0.0053454689440793
116 => 0.0054800581126468
117 => 0.0054276085827638
118 => 0.0053825155569101
119 => 0.0053573528736872
120 => 0.0054561803050187
121 => 0.0054515698872228
122 => 0.0052898690279866
123 => 0.0050789368488833
124 => 0.0051497326118031
125 => 0.0051240118474205
126 => 0.0050307964792534
127 => 0.0050936123825316
128 => 0.0048170029348955
129 => 0.0043411107571457
130 => 0.0046554997067389
131 => 0.0046433960741689
201 => 0.0046372928737711
202 => 0.004873547480318
203 => 0.0048508370512197
204 => 0.004809617400025
205 => 0.0050300394480343
206 => 0.004949582435416
207 => 0.0051975319902494
208 => 0.0053608476034344
209 => 0.005319425481224
210 => 0.0054730246047974
211 => 0.0051513636031934
212 => 0.0052582064851268
213 => 0.0052802266550155
214 => 0.0050273194741771
215 => 0.0048545527582848
216 => 0.0048430311880195
217 => 0.0045434775113821
218 => 0.004703496667529
219 => 0.0048443069028957
220 => 0.0047768697274707
221 => 0.0047555211323595
222 => 0.0048645864748374
223 => 0.0048730617860294
224 => 0.0046798237926781
225 => 0.0047200040905473
226 => 0.0048875626120803
227 => 0.0047157820457155
228 => 0.004382040465465
301 => 0.0042992679392245
302 => 0.0042882245584237
303 => 0.0040637389024876
304 => 0.0043047991952201
305 => 0.0041995699174282
306 => 0.0045319879451325
307 => 0.0043421125505015
308 => 0.0043339274017381
309 => 0.0043215543488819
310 => 0.0041283302714321
311 => 0.0041706340643629
312 => 0.0043112583151143
313 => 0.0043614346320281
314 => 0.0043562008310915
315 => 0.0043105691795684
316 => 0.0043314591159638
317 => 0.0042641653522978
318 => 0.0042404025237488
319 => 0.0041654005003671
320 => 0.0040551682458339
321 => 0.0040704967169204
322 => 0.0038520977768516
323 => 0.0037331024429931
324 => 0.0037001661029143
325 => 0.0036561222524566
326 => 0.0037051409730198
327 => 0.0038514790800948
328 => 0.003674964275601
329 => 0.0033723420243703
330 => 0.0033905301373125
331 => 0.0034313934269944
401 => 0.0033552449570098
402 => 0.0032831768208262
403 => 0.0033458342181652
404 => 0.0032176091809201
405 => 0.0034468888101431
406 => 0.0034406874387213
407 => 0.0035261487059385
408 => 0.0035795893901712
409 => 0.0034564259146419
410 => 0.0034254506336157
411 => 0.0034430955614362
412 => 0.0031514642091253
413 => 0.003502316202687
414 => 0.0035053503852968
415 => 0.0034793698716863
416 => 0.0036661877269179
417 => 0.0040604316714069
418 => 0.0039121012410642
419 => 0.0038546632151246
420 => 0.0037454734858263
421 => 0.0038909623170716
422 => 0.0038797910448113
423 => 0.0038292703150709
424 => 0.0037987152200897
425 => 0.003855013919463
426 => 0.0037917391882072
427 => 0.0037803733078004
428 => 0.0037115084387346
429 => 0.00368692681363
430 => 0.0036687275570252
501 => 0.0036486919637254
502 => 0.003692885489986
503 => 0.003592737145337
504 => 0.0034719680593535
505 => 0.0034619274165936
506 => 0.003489650514036
507 => 0.0034773851071596
508 => 0.0034618686945443
509 => 0.0034322436372182
510 => 0.0034234545155487
511 => 0.0034520148970988
512 => 0.0034197718915024
513 => 0.0034673482026273
514 => 0.0034544100785187
515 => 0.0033821387689831
516 => 0.003292061959036
517 => 0.0032912600864849
518 => 0.0032718531855374
519 => 0.0032471355793336
520 => 0.0032402597067499
521 => 0.003340557386927
522 => 0.0035481705832365
523 => 0.0035074111450382
524 => 0.0035368640163317
525 => 0.0036817429925176
526 => 0.0037277956623843
527 => 0.0036951085681302
528 => 0.003650364457463
529 => 0.0036523329712521
530 => 0.0038052371423654
531 => 0.0038147735879616
601 => 0.0038388691094094
602 => 0.0038698386638634
603 => 0.0037003828171698
604 => 0.0036443516161118
605 => 0.0036178009245578
606 => 0.0035360350709823
607 => 0.003624212533989
608 => 0.0035728353024304
609 => 0.0035797678462638
610 => 0.0035752530179977
611 => 0.0035777184195224
612 => 0.003446824721814
613 => 0.0034945155056887
614 => 0.0034152203277173
615 => 0.0033090529857151
616 => 0.0033086970755576
617 => 0.0033346813821055
618 => 0.0033192248998048
619 => 0.0032776319033561
620 => 0.0032835399921883
621 => 0.0032317789172356
622 => 0.003289824723852
623 => 0.0032914892698879
624 => 0.0032691384725641
625 => 0.0033585660464345
626 => 0.0033952045964151
627 => 0.0033804928228161
628 => 0.0033941723791608
629 => 0.0035091048837132
630 => 0.0035278438968119
701 => 0.0035361665286007
702 => 0.0035250153045412
703 => 0.0033962731343594
704 => 0.003401983397061
705 => 0.0033600852781759
706 => 0.003324685782833
707 => 0.0033261015770008
708 => 0.0033443015192194
709 => 0.0034237817343001
710 => 0.003591043161323
711 => 0.003597390610212
712 => 0.0036050839034336
713 => 0.0035737914135619
714 => 0.0035643532991878
715 => 0.0035768046082313
716 => 0.003639619206033
717 => 0.0038011954055761
718 => 0.003744083585346
719 => 0.0036976507865006
720 => 0.0037383848692807
721 => 0.003732114176521
722 => 0.0036791832190269
723 => 0.0036776976233421
724 => 0.0035761061928601
725 => 0.0035385501541359
726 => 0.0035071655171572
727 => 0.0034728943128931
728 => 0.0034525771942241
729 => 0.0034837935224649
730 => 0.0034909330660743
731 => 0.0034226780188078
801 => 0.0034133751080765
802 => 0.0034691136530618
803 => 0.0034445851975562
804 => 0.0034698133223201
805 => 0.0034756664636682
806 => 0.0034747239731019
807 => 0.0034491134484788
808 => 0.0034654368331567
809 => 0.0034268271621583
810 => 0.0033848449439326
811 => 0.0033580629042893
812 => 0.0033346920225784
813 => 0.0033476595460752
814 => 0.0033014326925853
815 => 0.0032866437917911
816 => 0.0034599068377157
817 => 0.0035878981126318
818 => 0.0035860370688044
819 => 0.0035747084431268
820 => 0.0035578764032976
821 => 0.0036383878374792
822 => 0.0036103392636873
823 => 0.0036307469446577
824 => 0.0036359415559723
825 => 0.0036516640799049
826 => 0.0036572835308142
827 => 0.0036402976472067
828 => 0.003583290947169
829 => 0.0034412356707093
830 => 0.0033751085560465
831 => 0.0033532855067735
901 => 0.0033540787331667
902 => 0.0033321980081237
903 => 0.0033386428622742
904 => 0.0033299567508629
905 => 0.0033135073572459
906 => 0.0033466438423725
907 => 0.0033504625135956
908 => 0.0033427280620156
909 => 0.0033445498053539
910 => 0.0032805118496985
911 => 0.0032853805163839
912 => 0.0032582711615996
913 => 0.0032531884843857
914 => 0.0031846583961726
915 => 0.003063247411308
916 => 0.0031305208825724
917 => 0.0030492639893665
918 => 0.0030184907726665
919 => 0.003164166394307
920 => 0.0031495446023071
921 => 0.0031245184503434
922 => 0.0030874995556821
923 => 0.0030737688875556
924 => 0.00299034569462
925 => 0.002985416607336
926 => 0.0030267633943705
927 => 0.0030076832748101
928 => 0.002980887560741
929 => 0.0028838362006207
930 => 0.0027747183392444
1001 => 0.0027780119215889
1002 => 0.0028127202830827
1003 => 0.0029136395251863
1004 => 0.0028742086313758
1005 => 0.0028456010654989
1006 => 0.0028402437283505
1007 => 0.0029073020191085
1008 => 0.0030022035496774
1009 => 0.0030467292245183
1010 => 0.0030026056330158
1011 => 0.0029519188268807
1012 => 0.0029550038979101
1013 => 0.0029755274933326
1014 => 0.0029776842330234
1015 => 0.0029446923329173
1016 => 0.002953979359546
1017 => 0.0029398715168735
1018 => 0.0028532917124333
1019 => 0.0028517257583185
1020 => 0.0028304776780209
1021 => 0.002829834294594
1022 => 0.0027936860094258
1023 => 0.0027886286144495
1024 => 0.002716854000204
1025 => 0.0027640962686539
1026 => 0.0027324086353081
1027 => 0.0026846478974989
1028 => 0.0026764139282985
1029 => 0.0026761664052415
1030 => 0.002725206003866
1031 => 0.0027635232123918
1101 => 0.0027329598552568
1102 => 0.002726001171283
1103 => 0.0028003017107217
1104 => 0.0027908462898137
1105 => 0.0027826579562883
1106 => 0.0029937061585041
1107 => 0.0028266450381537
1108 => 0.0027537968541655
1109 => 0.0026636333929853
1110 => 0.0026929910705892
1111 => 0.0026991771646144
1112 => 0.0024823502936612
1113 => 0.0023943836591196
1114 => 0.0023641968250976
1115 => 0.0023468238753388
1116 => 0.0023547409466996
1117 => 0.0022755606581551
1118 => 0.0023287711215781
1119 => 0.0022602076846417
1120 => 0.0022487128013146
1121 => 0.0023713127199369
1122 => 0.0023883717823949
1123 => 0.0023155925221139
1124 => 0.0023623285891062
1125 => 0.0023453814415349
1126 => 0.002261383007979
1127 => 0.0022581748856678
1128 => 0.0022160274243971
1129 => 0.0021500748088652
1130 => 0.0021199326938222
1201 => 0.002104234418602
1202 => 0.0021107118329111
1203 => 0.0021074366540243
1204 => 0.0020860638963712
1205 => 0.0021086617154749
1206 => 0.0020509336257284
1207 => 0.0020279458352445
1208 => 0.0020175627835956
1209 => 0.0019663257812408
1210 => 0.0020478666371857
1211 => 0.0020639312130315
1212 => 0.0020800274410544
1213 => 0.0022201341166314
1214 => 0.0022131347830569
1215 => 0.0022764053497564
1216 => 0.0022739467718816
1217 => 0.0022559009813437
1218 => 0.0021797687594526
1219 => 0.002210113706172
1220 => 0.0021167166768214
1221 => 0.0021866960815915
1222 => 0.0021547604036643
1223 => 0.0021758985967599
1224 => 0.0021378902196199
1225 => 0.0021589256248566
1226 => 0.0020677407199211
1227 => 0.0019825935386985
1228 => 0.0020168592500236
1229 => 0.0020541099969934
1230 => 0.0021348791077379
1231 => 0.0020867736917092
]
'min_raw' => 0.0019663257812408
'max_raw' => 0.0058695303450045
'avg_raw' => 0.0039179280631226
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001966'
'max' => '$0.005869'
'avg' => '$0.003917'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0037249242187592
'max_diff' => 0.00017828034500445
'year' => 2026
]
1 => [
'items' => [
101 => 0.0021040742183803
102 => 0.0020461203501053
103 => 0.0019265449661501
104 => 0.0019272217498374
105 => 0.0019088276821072
106 => 0.0018929325220105
107 => 0.0020922991774196
108 => 0.0020675047822991
109 => 0.0020279981586847
110 => 0.0020808793443234
111 => 0.0020948619691435
112 => 0.0020952600348149
113 => 0.0021338407827959
114 => 0.0021544313349093
115 => 0.0021580605089639
116 => 0.0022187681495043
117 => 0.0022391165498602
118 => 0.0023229287311132
119 => 0.0021526843704207
120 => 0.0021491782998446
121 => 0.0020816234910511
122 => 0.0020387791633149
123 => 0.0020845570788261
124 => 0.0021251100626604
125 => 0.0020828835852998
126 => 0.0020883974717935
127 => 0.0020317118759669
128 => 0.0020519743091697
129 => 0.0020694270462885
130 => 0.002059790670676
131 => 0.0020453645499782
201 => 0.0021217851804461
202 => 0.0021174732289802
203 => 0.0021886378769746
204 => 0.002244115809119
205 => 0.0023435421813884
206 => 0.0022397855787113
207 => 0.0022360042757146
208 => 0.0022729671190474
209 => 0.0022391108910415
210 => 0.002260506858464
211 => 0.0023400949602563
212 => 0.0023417765314339
213 => 0.0023136080476273
214 => 0.0023118939928277
215 => 0.0023173040582722
216 => 0.002348990980561
217 => 0.0023379185962725
218 => 0.0023507318396896
219 => 0.002366754996786
220 => 0.0024330335682147
221 => 0.0024490131074011
222 => 0.0024101911116193
223 => 0.0024136963031669
224 => 0.0023991758110569
225 => 0.0023851491976199
226 => 0.002416678976204
227 => 0.0024743002662857
228 => 0.0024739418072307
301 => 0.0024873088265318
302 => 0.002495636368818
303 => 0.002459888461192
304 => 0.0024366178878144
305 => 0.0024455413063924
306 => 0.0024598100470254
307 => 0.0024409141461144
308 => 0.0023242798922587
309 => 0.0023596592742535
310 => 0.0023537704151262
311 => 0.0023453839636191
312 => 0.0023809582057956
313 => 0.0023775269833537
314 => 0.0022747485498507
315 => 0.0022813280916998
316 => 0.0022751486735827
317 => 0.002295115637709
318 => 0.0022380326094527
319 => 0.0022555909644843
320 => 0.0022666034001607
321 => 0.0022730898093757
322 => 0.0022965231672325
323 => 0.0022937735331548
324 => 0.0022963522461176
325 => 0.0023310977296421
326 => 0.0025068284620992
327 => 0.0025163930981388
328 => 0.0024692933321784
329 => 0.0024881087596778
330 => 0.0024519872533606
331 => 0.0024762358625444
401 => 0.0024928261451
402 => 0.0024178578483589
403 => 0.0024134187123662
404 => 0.0023771481197433
405 => 0.0023966378817474
406 => 0.0023656282690354
407 => 0.0023732369433247
408 => 0.0023519624266994
409 => 0.0023902523209109
410 => 0.0024330663722874
411 => 0.0024438828924433
412 => 0.002415429284718
413 => 0.0023948269975408
414 => 0.0023586561680729
415 => 0.0024188090635975
416 => 0.0024363996033752
417 => 0.0024187166679806
418 => 0.0024146191454699
419 => 0.0024068543477162
420 => 0.0024162664840199
421 => 0.0024363038015178
422 => 0.0024268545726169
423 => 0.0024330959547799
424 => 0.0024093102420599
425 => 0.0024599002952369
426 => 0.0025402494748412
427 => 0.002540507810592
428 => 0.0025310585307563
429 => 0.0025271920890351
430 => 0.0025368876235768
501 => 0.002542147053334
502 => 0.0025735006341849
503 => 0.0026071442756196
504 => 0.0027641444703249
505 => 0.0027200594438981
506 => 0.002859359356624
507 => 0.0029695275017604
508 => 0.0030025621114176
509 => 0.0029721718249314
510 => 0.0028682082965132
511 => 0.0028631073498248
512 => 0.0030184727535512
513 => 0.0029745749108122
514 => 0.0029693534021001
515 => 0.0029138053712824
516 => 0.0029466411372531
517 => 0.0029394594735637
518 => 0.0029281228660909
519 => 0.0029907712202038
520 => 0.0031080433464461
521 => 0.0030897653858002
522 => 0.0030761217360682
523 => 0.0030163392345495
524 => 0.0030523416533689
525 => 0.0030395218816082
526 => 0.0030946037567203
527 => 0.0030619744741168
528 => 0.0029742423414787
529 => 0.0029882139727702
530 => 0.0029861021888075
531 => 0.0030295625531171
601 => 0.0030165168305039
602 => 0.0029835548020909
603 => 0.0031076425230677
604 => 0.0030995849566796
605 => 0.0031110087436018
606 => 0.0031160378478973
607 => 0.0031915678569849
608 => 0.0032225100850174
609 => 0.0032295345125007
610 => 0.0032589272359738
611 => 0.0032288031947646
612 => 0.0033493208376789
613 => 0.0034294580378175
614 => 0.0035225415196011
615 => 0.0036585615049681
616 => 0.0037097062777214
617 => 0.0037004674323026
618 => 0.0038035962328333
619 => 0.0039889163949624
620 => 0.0037379259355751
621 => 0.0040022194987624
622 => 0.0039185472080732
623 => 0.0037201617120494
624 => 0.0037073880249169
625 => 0.0038417369861271
626 => 0.0041397100514833
627 => 0.0040650711781941
628 => 0.0041398321339413
629 => 0.0040526195079002
630 => 0.0040482886659315
701 => 0.0041355964113567
702 => 0.0043395957174401
703 => 0.0042426832939196
704 => 0.0041037355709016
705 => 0.004206332407312
706 => 0.0041174535327244
707 => 0.0039171845526477
708 => 0.0040650141032543
709 => 0.0039661646927069
710 => 0.0039950142058283
711 => 0.0042027809640589
712 => 0.004177781918026
713 => 0.004210132998442
714 => 0.0041530341882829
715 => 0.0040996948959385
716 => 0.0040001331457497
717 => 0.0039706578198538
718 => 0.0039788037395203
719 => 0.0039706537831405
720 => 0.0039149498989296
721 => 0.0039029206504379
722 => 0.0038828713759382
723 => 0.0038890854844596
724 => 0.003851386982778
725 => 0.003922531844359
726 => 0.0039357369575948
727 => 0.0039875102548643
728 => 0.0039928855303382
729 => 0.0041370734262871
730 => 0.0040576571561776
731 => 0.0041109364466379
801 => 0.004106170645415
802 => 0.0037244613273057
803 => 0.0037770575034913
804 => 0.0038588806480469
805 => 0.0038220194323333
806 => 0.0037699062975103
807 => 0.0037278221470113
808 => 0.0036640603556799
809 => 0.003753803852542
810 => 0.0038718070077589
811 => 0.0039958782850893
812 => 0.0041449417953297
813 => 0.0041116725551346
814 => 0.0039930916464518
815 => 0.0039984110993919
816 => 0.00403129386434
817 => 0.003988707696018
818 => 0.003976148203599
819 => 0.0040295683829458
820 => 0.0040299362583617
821 => 0.0039809357249968
822 => 0.0039264805991647
823 => 0.0039262524301991
824 => 0.0039165626665314
825 => 0.0040543432953308
826 => 0.0041301087099776
827 => 0.0041387950926648
828 => 0.0041295240472133
829 => 0.0041330921046529
830 => 0.0040890058792469
831 => 0.004189773917161
901 => 0.0042822486336771
902 => 0.0042574634342166
903 => 0.0042203068968017
904 => 0.0041907099250494
905 => 0.0042504913282771
906 => 0.004247829356496
907 => 0.0042814409477015
908 => 0.0042799161317745
909 => 0.0042686138178479
910 => 0.0042574638378579
911 => 0.004301672248182
912 => 0.004288940935974
913 => 0.0042761898485216
914 => 0.0042506155905421
915 => 0.004254091556945
916 => 0.0042169414351301
917 => 0.0041997540889046
918 => 0.0039412976398832
919 => 0.0038722296313966
920 => 0.0038939598328754
921 => 0.0039011139794267
922 => 0.0038710554936202
923 => 0.0039141516408752
924 => 0.0039074351519756
925 => 0.0039335650812693
926 => 0.0039172402358763
927 => 0.0039179102132255
928 => 0.0039659181027024
929 => 0.0039798549972577
930 => 0.0039727665802024
1001 => 0.0039777310645312
1002 => 0.0040921355105118
1003 => 0.0040758708567416
1004 => 0.0040672305835927
1005 => 0.0040696239983037
1006 => 0.0040988567871107
1007 => 0.0041070403719256
1008 => 0.0040723659480146
1009 => 0.0040887186067815
1010 => 0.0041583461523493
1011 => 0.0041827118527203
1012 => 0.0042604754721047
1013 => 0.0042274401044521
1014 => 0.0042880779515157
1015 => 0.0044744580204238
1016 => 0.0046233513159874
1017 => 0.0044864228881114
1018 => 0.0047598464639671
1019 => 0.0049727459380532
1020 => 0.0049645745016351
1021 => 0.0049274505538746
1022 => 0.004685070162853
1023 => 0.0044620281133468
1024 => 0.0046486122586244
1025 => 0.0046490878999821
1026 => 0.0046330601564295
1027 => 0.0045335132177545
1028 => 0.0046295961387441
1029 => 0.0046372228520903
1030 => 0.0046329539207232
1031 => 0.0045566315162413
1101 => 0.0044401013113355
1102 => 0.0044628710344402
1103 => 0.0045001683053755
1104 => 0.0044295567904692
1105 => 0.0044069921329541
1106 => 0.0044489441243764
1107 => 0.0045841221817837
1108 => 0.004558567553064
1109 => 0.0045579002184338
1110 => 0.0046672337569456
1111 => 0.0045889745390255
1112 => 0.0044631582335673
1113 => 0.0044313879571259
1114 => 0.0043186248787816
1115 => 0.0043965107386423
1116 => 0.0043993137120812
1117 => 0.0043566564226097
1118 => 0.0044666196375102
1119 => 0.0044656063071262
1120 => 0.0045700000138096
1121 => 0.0047695615725027
1122 => 0.0047105413997693
1123 => 0.0046419073602568
1124 => 0.0046493697833673
1125 => 0.0047312141460597
1126 => 0.0046817291760508
1127 => 0.0046995243162875
1128 => 0.0047311872109837
1129 => 0.0047502902214994
1130 => 0.0046466211541327
1201 => 0.0046224509354649
1202 => 0.0045730071506644
1203 => 0.0045601081901219
1204 => 0.0046003791211635
1205 => 0.004589769153627
1206 => 0.0043990781330173
1207 => 0.0043791498603688
1208 => 0.0043797610320399
1209 => 0.0043296504429274
1210 => 0.0042532197666115
1211 => 0.0044540750205312
1212 => 0.004437943532674
1213 => 0.0044201356185576
1214 => 0.0044223169864263
1215 => 0.0045095014445366
1216 => 0.004458930055912
1217 => 0.0045933823810582
1218 => 0.004565743025015
1219 => 0.0045373948237821
1220 => 0.0045334762388644
1221 => 0.0045225645999446
1222 => 0.0044851445300466
1223 => 0.0044399575470472
1224 => 0.0044101211868416
1225 => 0.0040681036767375
1226 => 0.0041315801371885
1227 => 0.0042046040188759
1228 => 0.0042298115702096
1229 => 0.0041866923093439
1230 => 0.0044868471412806
1231 => 0.0045416883214394
]
'min_raw' => 0.0018929325220105
'max_raw' => 0.0049727459380532
'avg_raw' => 0.0034328392300318
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001892'
'max' => '$0.004972'
'avg' => '$0.003432'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.3393259230257E-5
'max_diff' => -0.00089678440695129
'year' => 2027
]
2 => [
'items' => [
101 => 0.0043755708095368
102 => 0.0043444970055931
103 => 0.0044888843346939
104 => 0.004401801124613
105 => 0.0044410146887803
106 => 0.0043562564117235
107 => 0.0045284786870763
108 => 0.0045271666418894
109 => 0.0044601682869606
110 => 0.0045167948377615
111 => 0.0045069545810488
112 => 0.0044313136033439
113 => 0.0045308766409879
114 => 0.0045309260230124
115 => 0.0044664415630634
116 => 0.0043911378313063
117 => 0.0043776753026629
118 => 0.0043675330957663
119 => 0.0044385203276123
120 => 0.0045021672577141
121 => 0.0046205984152215
122 => 0.0046503748220738
123 => 0.0047665941203458
124 => 0.0046973911868397
125 => 0.0047280679509349
126 => 0.0047613719178535
127 => 0.0047773390643071
128 => 0.0047513214560053
129 => 0.0049318578639933
130 => 0.0049471006683201
131 => 0.0049522114487612
201 => 0.0048913355877642
202 => 0.0049454076005022
203 => 0.0049201090964189
204 => 0.0049859287759167
205 => 0.0049962501420898
206 => 0.0049875083121344
207 => 0.0049907844766694
208 => 0.0048367285012564
209 => 0.0048287398862212
210 => 0.0047198145533703
211 => 0.0047642024316425
212 => 0.0046812214207791
213 => 0.004707535554123
214 => 0.0047191345733707
215 => 0.0047130759039543
216 => 0.004766712055681
217 => 0.0047211103695714
218 => 0.0046007600223169
219 => 0.0044803768856908
220 => 0.0044788655734724
221 => 0.0044471708185376
222 => 0.0044242613159037
223 => 0.0044286744988693
224 => 0.0044442271312604
225 => 0.004423357368636
226 => 0.0044278109906157
227 => 0.0045017707898075
228 => 0.0045166029000783
229 => 0.0044661975940987
301 => 0.0042638130171395
302 => 0.0042141473343105
303 => 0.0042498460422147
304 => 0.0042327843591277
305 => 0.0034161873330904
306 => 0.003608034691603
307 => 0.0034940455056955
308 => 0.0035465769669519
309 => 0.003430223525497
310 => 0.0034857534863657
311 => 0.0034754991302227
312 => 0.0037839840055349
313 => 0.0037791674385139
314 => 0.0037814728742598
315 => 0.0036714284193289
316 => 0.0038467322240664
317 => 0.003933093182001
318 => 0.0039171100671098
319 => 0.0039211326727852
320 => 0.0038520109797511
321 => 0.0037821421233409
322 => 0.0037046468088421
323 => 0.0038486235244705
324 => 0.0038326157714572
325 => 0.0038693317974621
326 => 0.0039627109892154
327 => 0.0039764614299141
328 => 0.0039949421616564
329 => 0.0039883181348748
330 => 0.0041461293266768
331 => 0.0041270173500778
401 => 0.0041730717147905
402 => 0.0040783343924235
403 => 0.0039711301196161
404 => 0.0039915061471051
405 => 0.0039895437718042
406 => 0.0039645604819149
407 => 0.0039420066848811
408 => 0.0039044609673129
409 => 0.0040232611734196
410 => 0.0040184381020063
411 => 0.0040965180219801
412 => 0.0040827166376968
413 => 0.0039905476156817
414 => 0.0039938394503342
415 => 0.0040159786203745
416 => 0.0040926025406643
417 => 0.0041153497371606
418 => 0.0041048123294245
419 => 0.0041297535919337
420 => 0.0041494661488838
421 => 0.0041322291855868
422 => 0.0043762682363345
423 => 0.0042749262081208
424 => 0.0043243196075388
425 => 0.0043360996422572
426 => 0.0043059253310335
427 => 0.0043124690586768
428 => 0.0043223810229975
429 => 0.0043825645293907
430 => 0.0045405034644045
501 => 0.0046104535435954
502 => 0.0048209018081174
503 => 0.0046046451632707
504 => 0.0045918133889245
505 => 0.0046297214762936
506 => 0.0047532768857792
507 => 0.0048534069401978
508 => 0.0048866258558898
509 => 0.0048910162839831
510 => 0.0049533371781731
511 => 0.004989058352507
512 => 0.0049457697824162
513 => 0.0049090872517665
514 => 0.0047776949801824
515 => 0.0047929039933876
516 => 0.0048976790123182
517 => 0.0050456798977756
518 => 0.0051726800543656
519 => 0.0051282090259301
520 => 0.0054674915812396
521 => 0.0055011300607536
522 => 0.005496482310547
523 => 0.0055731157729568
524 => 0.0054210139562066
525 => 0.005355987482712
526 => 0.0049170184312574
527 => 0.0050403508294012
528 => 0.005219621713161
529 => 0.0051958945394641
530 => 0.0050657032317532
531 => 0.0051725812925841
601 => 0.0051372440632875
602 => 0.0051093721243982
603 => 0.0052370588796912
604 => 0.0050966620471637
605 => 0.0052182211473586
606 => 0.0050623203439908
607 => 0.005128412165842
608 => 0.0050908952512576
609 => 0.0051151732928938
610 => 0.0049732443575701
611 => 0.0050498257659406
612 => 0.0049700583192056
613 => 0.0049700204990498
614 => 0.004968259628242
615 => 0.0050621056755828
616 => 0.0050651659918174
617 => 0.0049958136210391
618 => 0.0049858188609223
619 => 0.0050227747275399
620 => 0.0049795090864874
621 => 0.0049997528076252
622 => 0.0049801222481781
623 => 0.0049757029957637
624 => 0.0049404896406521
625 => 0.0049253187590587
626 => 0.0049312676526369
627 => 0.0049109610119895
628 => 0.0048987255264761
629 => 0.0049658256822107
630 => 0.0049299767758143
701 => 0.0049603313231598
702 => 0.0049257384854103
703 => 0.0048058246383887
704 => 0.0047368609169007
705 => 0.0045103547758964
706 => 0.0045745916365052
707 => 0.0046171807415467
708 => 0.0046031050425845
709 => 0.0046333450905276
710 => 0.0046352015838719
711 => 0.0046253702360248
712 => 0.0046139867946915
713 => 0.0046084459649942
714 => 0.0046497427700409
715 => 0.0046737169553571
716 => 0.0046214551280063
717 => 0.0046092109130787
718 => 0.0046620505059849
719 => 0.0046942826271332
720 => 0.0049322665000282
721 => 0.0049146358860463
722 => 0.0049588852673075
723 => 0.0049539034660396
724 => 0.0050002838670805
725 => 0.0050760962209625
726 => 0.0049219485080529
727 => 0.0049487032209871
728 => 0.0049421435832322
729 => 0.0050137599882111
730 => 0.0050139835668102
731 => 0.0049710459545206
801 => 0.004994323130726
802 => 0.0049813304495441
803 => 0.005004809980506
804 => 0.0049144004184477
805 => 0.0050245095059256
806 => 0.0050869342632527
807 => 0.0050878010310687
808 => 0.0051173898706083
809 => 0.0051474538452505
810 => 0.0052051590265558
811 => 0.0051458444790634
812 => 0.0050391433822794
813 => 0.0050468468568248
814 => 0.0049842880428207
815 => 0.0049853396677863
816 => 0.0049797260113027
817 => 0.0049965730169863
818 => 0.0049180973888059
819 => 0.004936515461885
820 => 0.0049107300517182
821 => 0.0049486471685412
822 => 0.0049078546187636
823 => 0.0049421404199763
824 => 0.0049569370351873
825 => 0.0050115368638645
826 => 0.0048997901796742
827 => 0.0046719311260249
828 => 0.004719829861626
829 => 0.0046489838693075
830 => 0.0046555409356263
831 => 0.0046687872531396
901 => 0.0046258516041535
902 => 0.0046340423729223
903 => 0.0046337497410243
904 => 0.0046312279974201
905 => 0.0046200587768654
906 => 0.0046038611972981
907 => 0.0046683873689421
908 => 0.0046793516228794
909 => 0.0047037238011983
910 => 0.0047762388720688
911 => 0.0047689929064657
912 => 0.0047808113769966
913 => 0.0047550117221856
914 => 0.0046567377076178
915 => 0.0046620744594193
916 => 0.004595525078938
917 => 0.0047020219839159
918 => 0.0046768021111267
919 => 0.0046605426950745
920 => 0.0046561061627622
921 => 0.0047288009844675
922 => 0.0047505524144734
923 => 0.0047369983829779
924 => 0.0047091986689463
925 => 0.0047625823381346
926 => 0.0047768655559332
927 => 0.0047800630416535
928 => 0.0048746486681519
929 => 0.0047853493274595
930 => 0.0048068445663233
1001 => 0.0049745442838519
1002 => 0.0048224637810326
1003 => 0.0049030242151759
1004 => 0.0048990812011409
1005 => 0.0049402931932321
1006 => 0.0048957006149015
1007 => 0.0048962533933536
1008 => 0.0049328468503885
1009 => 0.0048814579396477
1010 => 0.0048687333226645
1011 => 0.0048511543554375
1012 => 0.0048895373872639
1013 => 0.0049125462789287
1014 => 0.0050979810475777
1015 => 0.0052177803649778
1016 => 0.0052125795606613
1017 => 0.0052601051766169
1018 => 0.0052386944513441
1019 => 0.0051695535715744
1020 => 0.0052875686225093
1021 => 0.005250223722434
1022 => 0.0052533023906222
1023 => 0.0052531878024385
1024 => 0.0052780188962407
1025 => 0.0052604237905455
1026 => 0.0052257420311197
1027 => 0.0052487654015565
1028 => 0.0053171365807481
1029 => 0.005529362818843
1030 => 0.0056481274333046
1031 => 0.0055222130399272
1101 => 0.005609067102418
1102 => 0.0055569856141903
1103 => 0.0055475208584892
1104 => 0.0056020716281983
1105 => 0.0056567178818084
1106 => 0.0056532371516956
1107 => 0.0056135667776909
1108 => 0.0055911579900141
1109 => 0.0057608448377975
1110 => 0.0058858672167042
1111 => 0.0058773415286234
1112 => 0.0059149711431097
1113 => 0.0060254528550815
1114 => 0.0060355539182223
1115 => 0.0060342814164369
1116 => 0.0060092448775054
1117 => 0.0061180284708049
1118 => 0.0062087776582006
1119 => 0.006003449642118
1120 => 0.0060816358627011
1121 => 0.0061167361761236
1122 => 0.0061682738500215
1123 => 0.0062552265446044
1124 => 0.0063496802339845
1125 => 0.0063630370212949
1126 => 0.006353559741517
1127 => 0.0062912649943194
1128 => 0.006394617348306
1129 => 0.0064551587333604
1130 => 0.0064912097426954
1201 => 0.0065826291040528
1202 => 0.0061169529437097
1203 => 0.005787324211812
1204 => 0.0057358479254295
1205 => 0.0058405269779932
1206 => 0.0058681300093544
1207 => 0.005857003262024
1208 => 0.0054859761557399
1209 => 0.0057338945445008
1210 => 0.0060006338852373
1211 => 0.0060108804296452
1212 => 0.0061444157208745
1213 => 0.0061879002854953
1214 => 0.0062954136978056
1215 => 0.0062886887045928
1216 => 0.0063148665095784
1217 => 0.0063088486855486
1218 => 0.0065079946422335
1219 => 0.0067276822059177
1220 => 0.006720075124151
1221 => 0.0066884924376461
1222 => 0.0067353981127541
1223 => 0.0069621392216263
1224 => 0.0069412645337736
1225 => 0.0069615425149208
1226 => 0.00722888306085
1227 => 0.0075764637993072
1228 => 0.0074149776497582
1229 => 0.0077653561278916
1230 => 0.0079859008071116
1231 => 0.008367310025077
]
'min_raw' => 0.0034161873330904
'max_raw' => 0.008367310025077
'avg_raw' => 0.0058917486790837
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003416'
'max' => '$0.008367'
'avg' => '$0.005891'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0015232548110799
'max_diff' => 0.0033945640870238
'year' => 2028
]
3 => [
'items' => [
101 => 0.0083195557125077
102 => 0.0084680355221515
103 => 0.0082340655263829
104 => 0.0076968231229605
105 => 0.0076118024561376
106 => 0.0077820159841833
107 => 0.0082004693336903
108 => 0.0077688373990583
109 => 0.0078561559772757
110 => 0.0078310082208748
111 => 0.0078296682038073
112 => 0.0078808112050312
113 => 0.0078066256143164
114 => 0.0075043801720116
115 => 0.0076428974770763
116 => 0.0075894092934435
117 => 0.0076487584209923
118 => 0.0079690411849315
119 => 0.0078274365404065
120 => 0.0076782675504267
121 => 0.0078653585671102
122 => 0.0081035897227968
123 => 0.0080886816452165
124 => 0.0080597537436177
125 => 0.0082228188103146
126 => 0.0084921545269162
127 => 0.0085649548888351
128 => 0.0086186946276657
129 => 0.0086261044297102
130 => 0.008702429995934
131 => 0.0082920081898293
201 => 0.0089433581364969
202 => 0.0090558282791073
203 => 0.0090346885537063
204 => 0.0091596943837506
205 => 0.0091229144974598
206 => 0.0090696262128117
207 => 0.0092677870429345
208 => 0.0090406116419531
209 => 0.0087181647608477
210 => 0.0085412640245972
211 => 0.0087742211842672
212 => 0.0089164799925933
213 => 0.0090105040155372
214 => 0.0090389556280692
215 => 0.0083238680663161
216 => 0.0079384755311056
217 => 0.0081855077276412
218 => 0.008486904056666
219 => 0.0082903339180037
220 => 0.0082980390952828
221 => 0.008017781735274
222 => 0.0085117006143384
223 => 0.0084397407881704
224 => 0.008813068493625
225 => 0.0087239708405762
226 => 0.0090284050918764
227 => 0.0089482373508063
228 => 0.0092810091618703
301 => 0.0094137608467409
302 => 0.0096366715867885
303 => 0.0098006456345775
304 => 0.0098969343317629
305 => 0.0098911535195537
306 => 0.010272697308641
307 => 0.010047714266341
308 => 0.0097650825407803
309 => 0.0097599706245565
310 => 0.0099063496001468
311 => 0.010213119775873
312 => 0.010292660819115
313 => 0.010337113411098
314 => 0.01026903271907
315 => 0.010024829751333
316 => 0.0099193841480015
317 => 0.010009226857093
318 => 0.009899356944146
319 => 0.010089023237946
320 => 0.010349475569867
321 => 0.010295693193265
322 => 0.01047547961474
323 => 0.010661539646883
324 => 0.010927613849327
325 => 0.010997175498545
326 => 0.011112158259509
327 => 0.011230513290411
328 => 0.011268525736579
329 => 0.011341103290884
330 => 0.011340720771347
331 => 0.011559438116276
401 => 0.011800690120846
402 => 0.011891757167574
403 => 0.012101160820059
404 => 0.011742564403557
405 => 0.012014563904732
406 => 0.012259914263382
407 => 0.011967397451192
408 => 0.012370563729119
409 => 0.012386217762097
410 => 0.012622575074733
411 => 0.012382981657794
412 => 0.012240711851625
413 => 0.012651439451255
414 => 0.012850177598917
415 => 0.012790316051457
416 => 0.012334766719552
417 => 0.012069617468953
418 => 0.011375670736666
419 => 0.012197680617328
420 => 0.012598057651842
421 => 0.012333729839756
422 => 0.012467041413142
423 => 0.013194346131109
424 => 0.013471256678217
425 => 0.01341366122017
426 => 0.013423393904478
427 => 0.013572809809416
428 => 0.014235402216752
429 => 0.013838361487504
430 => 0.014141884248182
501 => 0.014302871626013
502 => 0.014452405674466
503 => 0.014085197312186
504 => 0.013607464628222
505 => 0.013456146633357
506 => 0.012307447648176
507 => 0.012247652877451
508 => 0.012214088260676
509 => 0.012002468099717
510 => 0.011836192620844
511 => 0.011703964186632
512 => 0.011356957288506
513 => 0.011474061930129
514 => 0.010921005360484
515 => 0.011274831354621
516 => 0.01039213971545
517 => 0.011127271541876
518 => 0.010727172711095
519 => 0.010995828315341
520 => 0.010994891001246
521 => 0.010500210856493
522 => 0.01021488967271
523 => 0.010396707435883
524 => 0.010591630510716
525 => 0.010623256123808
526 => 0.010875978978342
527 => 0.010946508494783
528 => 0.010732800767259
529 => 0.010373847893198
530 => 0.010457224458999
531 => 0.010213200049266
601 => 0.0097855566574716
602 => 0.010092697607395
603 => 0.010197569031734
604 => 0.010243886227115
605 => 0.0098233480664606
606 => 0.0096912058460554
607 => 0.0096208544366923
608 => 0.010319561697549
609 => 0.010357838458542
610 => 0.010162009137517
611 => 0.011047176237847
612 => 0.010846835661423
613 => 0.011070665169922
614 => 0.010449658909564
615 => 0.010473382185006
616 => 0.010179387869286
617 => 0.010344005041382
618 => 0.010227658930003
619 => 0.010330705600655
620 => 0.010392471350166
621 => 0.010686417424312
622 => 0.01113062793387
623 => 0.010642511683072
624 => 0.010429832442646
625 => 0.010561777447253
626 => 0.010913164382031
627 => 0.011445533575385
628 => 0.011130360297991
629 => 0.011270228846509
630 => 0.011300783902042
701 => 0.01106838679564
702 => 0.011454102388186
703 => 0.011660810507779
704 => 0.011872850266263
705 => 0.012056958447336
706 => 0.011788156923871
707 => 0.012075813085164
708 => 0.011844012997309
709 => 0.011636064355452
710 => 0.011636379727704
711 => 0.011505930507022
712 => 0.01125316870429
713 => 0.011206555549805
714 => 0.011449043066031
715 => 0.011643495090391
716 => 0.011659511090479
717 => 0.011767169722471
718 => 0.011830880991911
719 => 0.012455338043698
720 => 0.012706499835707
721 => 0.013013615720725
722 => 0.013133254666043
723 => 0.013493324998513
724 => 0.013202538961561
725 => 0.013139625573336
726 => 0.012266212724872
727 => 0.012409234029878
728 => 0.012638224938697
729 => 0.012269988700616
730 => 0.01250354983738
731 => 0.012549659753279
801 => 0.012257476174153
802 => 0.012413544048271
803 => 0.011999074045513
804 => 0.011139662247315
805 => 0.011455059159193
806 => 0.011687297447789
807 => 0.011355864775189
808 => 0.011949945012608
809 => 0.011602895602213
810 => 0.011492897600427
811 => 0.011063756178342
812 => 0.011266294410398
813 => 0.011540230269322
814 => 0.011370969756969
815 => 0.011722210734696
816 => 0.012219661631704
817 => 0.012574174764625
818 => 0.012601389880964
819 => 0.012373461687031
820 => 0.012738718072427
821 => 0.012741378566435
822 => 0.012329367871592
823 => 0.012077013615086
824 => 0.01201967819705
825 => 0.012162913312575
826 => 0.012336827185483
827 => 0.012611040890531
828 => 0.012776742489486
829 => 0.013208804378221
830 => 0.013325707937128
831 => 0.013454149505422
901 => 0.013625787050575
902 => 0.013831881930496
903 => 0.013380958066218
904 => 0.013398874111973
905 => 0.012978980053024
906 => 0.012530263032138
907 => 0.012870783317624
908 => 0.013315968293383
909 => 0.013213842368058
910 => 0.013202351115216
911 => 0.013221676215089
912 => 0.013144676602515
913 => 0.012796410208582
914 => 0.012621513005812
915 => 0.012847175018421
916 => 0.012967104335061
917 => 0.013153104246235
918 => 0.013130175831201
919 => 0.013609291627454
920 => 0.013795461538168
921 => 0.013747831308348
922 => 0.01375659641692
923 => 0.014093648147634
924 => 0.014468518992164
925 => 0.01481963500663
926 => 0.015176805297329
927 => 0.014746222571298
928 => 0.01452759921767
929 => 0.014753162713303
930 => 0.014633475547484
1001 => 0.015321233503799
1002 => 0.015368852372487
1003 => 0.016056560596074
1004 => 0.016709277591031
1005 => 0.016299317741138
1006 => 0.016685891414589
1007 => 0.017104002360241
1008 => 0.017910606210459
1009 => 0.017638970410371
1010 => 0.01743090164458
1011 => 0.017234277666288
1012 => 0.017643420951936
1013 => 0.018169777252699
1014 => 0.018283149358505
1015 => 0.018466855481389
1016 => 0.018273710955693
1017 => 0.018506332262723
1018 => 0.01932758769552
1019 => 0.019105677228156
1020 => 0.018790528690611
1021 => 0.019438830980595
1022 => 0.019673449059128
1023 => 0.021320121604719
1024 => 0.023399113714178
1025 => 0.022538397329464
1026 => 0.022004122894328
1027 => 0.022129690059744
1028 => 0.022888867599794
1029 => 0.023132691330567
1030 => 0.022469894379245
1031 => 0.022704005467455
1101 => 0.023993980580788
1102 => 0.024686010841734
1103 => 0.023746140795305
1104 => 0.021153076612994
1105 => 0.01876215301292
1106 => 0.019396333616353
1107 => 0.019324437216839
1108 => 0.020710354548442
1109 => 0.0191003847369
1110 => 0.019127492499529
1111 => 0.020542069133838
1112 => 0.020164684339787
1113 => 0.019553369305218
1114 => 0.018766616289194
1115 => 0.017312230573229
1116 => 0.016024040586053
1117 => 0.018550477803342
1118 => 0.018441533236505
1119 => 0.018283765359044
1120 => 0.018634860698066
1121 => 0.020339680004205
1122 => 0.020300378401237
1123 => 0.020050361655008
1124 => 0.020239997153476
1125 => 0.019520125285462
1126 => 0.019705652657027
1127 => 0.018761774278406
1128 => 0.019188446725386
1129 => 0.019552057697709
1130 => 0.019625057983755
1201 => 0.019789531355705
1202 => 0.018384124400261
1203 => 0.019015110862675
1204 => 0.019385756293907
1205 => 0.017711166751404
1206 => 0.019352655042867
1207 => 0.018359659391915
1208 => 0.018022621753687
1209 => 0.018476398532228
1210 => 0.018299561280318
1211 => 0.018147526995358
1212 => 0.01806268925207
1213 => 0.018395892836715
1214 => 0.018380348491227
1215 => 0.017835162754718
1216 => 0.017123990186057
1217 => 0.017362683043544
1218 => 0.017275963690661
1219 => 0.016961681568796
1220 => 0.017173469772365
1221 => 0.016240861707405
1222 => 0.014636358004391
1223 => 0.01569634229788
1224 => 0.015655534055622
1225 => 0.015634956689369
1226 => 0.016431505590111
1227 => 0.016354935792815
1228 => 0.016215960860948
1229 => 0.016959129185187
1230 => 0.016687862749815
1231 => 0.017523841985221
]
'min_raw' => 0.0075043801720116
'max_raw' => 0.024686010841734
'avg_raw' => 0.016095195506873
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0075043'
'max' => '$0.024686'
'avg' => '$0.016095'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0040881928389212
'max_diff' => 0.016318700816658
'year' => 2029
]
4 => [
'items' => [
101 => 0.018074471977406
102 => 0.017934814400374
103 => 0.01845268456945
104 => 0.017368182044888
105 => 0.017728410280858
106 => 0.017802652821037
107 => 0.016949958603425
108 => 0.016367463558607
109 => 0.016328617780048
110 => 0.015318651645095
111 => 0.015858167402225
112 => 0.01633291894182
113 => 0.016105549796562
114 => 0.016033571517633
115 => 0.016401292934496
116 => 0.016429868037907
117 => 0.015778352651878
118 => 0.015913823331442
119 => 0.016478758585353
120 => 0.015899588412518
121 => 0.01477435537361
122 => 0.014495282022397
123 => 0.014458048493003
124 => 0.013701179430927
125 => 0.014513931038167
126 => 0.014159143181218
127 => 0.015279913770308
128 => 0.014639735620633
129 => 0.014612138820108
130 => 0.014570422208545
131 => 0.013918953740949
201 => 0.014061583932371
202 => 0.014535708411851
203 => 0.014704881367525
204 => 0.014687235242255
205 => 0.014533384943244
206 => 0.01460381682229
207 => 0.01437693119979
208 => 0.014296813164269
209 => 0.014043938605964
210 => 0.013672282863635
211 => 0.013723963874103
212 => 0.012987616599534
213 => 0.012586415523441
214 => 0.012475368353323
215 => 0.012326871436462
216 => 0.012492141475218
217 => 0.012985530620222
218 => 0.012390398633001
219 => 0.011370086584566
220 => 0.011431409077204
221 => 0.01156918251135
222 => 0.011312442628281
223 => 0.011069459875501
224 => 0.011280713665229
225 => 0.010848393999771
226 => 0.011621426277489
227 => 0.011600517920775
228 => 0.011888656549913
301 => 0.012068835547912
302 => 0.011653581291166
303 => 0.011549145968561
304 => 0.011608637074638
305 => 0.010625381609271
306 => 0.011808303601268
307 => 0.011818533559777
308 => 0.011730938444237
309 => 0.012360807886357
310 => 0.013690028870435
311 => 0.013189922468434
312 => 0.012996266153784
313 => 0.012628125358071
314 => 0.013118651110321
315 => 0.013080986385942
316 => 0.012910652218378
317 => 0.01280763358236
318 => 0.012997448577946
319 => 0.012784113403817
320 => 0.012745792544485
321 => 0.012513609830438
322 => 0.012430731165163
323 => 0.012369371100889
324 => 0.012301819699238
325 => 0.012450821258519
326 => 0.012113164122401
327 => 0.011705982717179
328 => 0.011672129989099
329 => 0.011765600347691
330 => 0.011724246672064
331 => 0.01167193200361
401 => 0.011572049054479
402 => 0.011542415917134
403 => 0.011638709237552
404 => 0.011529999693049
405 => 0.011690406547679
406 => 0.011646784758936
407 => 0.011403116993015
408 => 0.011099416739316
409 => 0.011096713170025
410 => 0.011031281448534
411 => 0.01094794431349
412 => 0.010924761829016
413 => 0.011262922460293
414 => 0.011962904846741
415 => 0.011825481555122
416 => 0.011924783967022
417 => 0.01241325355036
418 => 0.01256852334211
419 => 0.012458316521693
420 => 0.012307458628644
421 => 0.012314095610322
422 => 0.012829622698658
423 => 0.012861775490799
424 => 0.012943015223656
425 => 0.013047431238723
426 => 0.012476099020566
427 => 0.012287185914225
428 => 0.012197668403941
429 => 0.011921989119902
430 => 0.012219285592783
501 => 0.012046063669539
502 => 0.012069437225088
503 => 0.012054215166374
504 => 0.012062527439743
505 => 0.011621210199213
506 => 0.011782003006711
507 => 0.011514653777968
508 => 0.01115670317204
509 => 0.011155503196095
510 => 0.011243111099788
511 => 0.011190998490574
512 => 0.011050764799117
513 => 0.011070684333104
514 => 0.010896168255058
515 => 0.011091873744694
516 => 0.011097485877869
517 => 0.011022128604209
518 => 0.011323639913147
519 => 0.011447169342429
520 => 0.011397567570596
521 => 0.011443689149889
522 => 0.011831192113318
523 => 0.011894372004297
524 => 0.01192243233844
525 => 0.01188483520797
526 => 0.011450771992711
527 => 0.011470024542087
528 => 0.011328762109033
529 => 0.01120941023897
530 => 0.011214183687855
531 => 0.011275546063724
601 => 0.011543519158
602 => 0.012107452737028
603 => 0.012128853604122
604 => 0.012154792079347
605 => 0.012049287264973
606 => 0.012017466003412
607 => 0.012059446461175
608 => 0.012271230263239
609 => 0.012815995700888
610 => 0.012623439211562
611 => 0.01246688778842
612 => 0.012604225592477
613 => 0.012583083514031
614 => 0.012404623095319
615 => 0.012399614305746
616 => 0.012057091704989
617 => 0.011930468898352
618 => 0.011824653403572
619 => 0.011709105645657
620 => 0.011640605061569
621 => 0.011745853091687
622 => 0.011769924561433
623 => 0.011539797904159
624 => 0.01150843249112
625 => 0.011696358887079
626 => 0.011613659486819
627 => 0.011698717870832
628 => 0.011718452145541
629 => 0.011715274472794
630 => 0.011628926800957
701 => 0.011683962232061
702 => 0.011553787030649
703 => 0.011412241050796
704 => 0.011321943534276
705 => 0.011243146974885
706 => 0.011286867885718
707 => 0.011131010821721
708 => 0.011081149010165
709 => 0.01166531746634
710 => 0.012096848985785
711 => 0.012090574346587
712 => 0.012052379094175
713 => 0.011995628696716
714 => 0.012267078618188
715 => 0.01217251089336
716 => 0.01224131681457
717 => 0.012258830809294
718 => 0.012311840396444
719 => 0.012330786767522
720 => 0.012273517675023
721 => 0.012081315605765
722 => 0.011602366323199
723 => 0.011379414139265
724 => 0.011305836205005
725 => 0.011308510623171
726 => 0.011234738231025
727 => 0.011256467506758
728 => 0.01122718167569
729 => 0.011171721396651
730 => 0.01128344336977
731 => 0.01129631828641
801 => 0.011270241042906
802 => 0.011276383177761
803 => 0.011060474739282
804 => 0.011076889788931
805 => 0.010985488706561
806 => 0.010968352105473
807 => 0.010737298128445
808 => 0.010327952516329
809 => 0.010554769721581
810 => 0.010280806432962
811 => 0.010177052384341
812 => 0.010668207913449
813 => 0.01061890952086
814 => 0.010534532102245
815 => 0.010409720314317
816 => 0.010363426408084
817 => 0.010082159288681
818 => 0.010065540526765
819 => 0.010204944105992
820 => 0.010140614150763
821 => 0.010050270529962
822 => 0.0097230550934065
823 => 0.0093551566054105
824 => 0.0093662611482357
825 => 0.0094832828122725
826 => 0.009823539082981
827 => 0.009690595071522
828 => 0.0095941426658517
829 => 0.0095760800296183
830 => 0.0098021717387694
831 => 0.010122138874896
901 => 0.010272260296305
902 => 0.010123494526944
903 => 0.0099526004212194
904 => 0.0099630019535878
905 => 0.010032198688466
906 => 0.010039470286913
907 => 0.0099282357922841
908 => 0.0099595476509623
909 => 0.0099119820744138
910 => 0.0096200722189347
911 => 0.0096147924953052
912 => 0.0095431531090883
913 => 0.009540983896945
914 => 0.0094191074297077
915 => 0.009402056069449
916 => 0.0091600629463766
917 => 0.0093193435528055
918 => 0.0092125064846202
919 => 0.0090514778225482
920 => 0.0090237164205116
921 => 0.0090228818792435
922 => 0.0091882223098414
923 => 0.0093174114536081
924 => 0.0092143649611621
925 => 0.0091909032723046
926 => 0.0094414127285204
927 => 0.0094095331167725
928 => 0.0093819255786003
929 => 0.010093489327286
930 => 0.0095302310961895
1001 => 0.0092846183577757
1002 => 0.0089806259533945
1003 => 0.0090796074131238
1004 => 0.0091004642610289
1005 => 0.0083694173272418
1006 => 0.0080728316772504
1007 => 0.0079710546587678
1008 => 0.0079124805457153
1009 => 0.0079391735045607
1010 => 0.0076722116335414
1011 => 0.0078516144260082
1012 => 0.0076204480114307
1013 => 0.0075816922097462
1014 => 0.0079950463950344
1015 => 0.0080525622151371
1016 => 0.0078071818578142
1017 => 0.0079647557706868
1018 => 0.007907617279438
1019 => 0.0076244106961208
1020 => 0.0076135942877647
1021 => 0.0074714911794489
1022 => 0.0072491273315186
1023 => 0.0071475010861958
1024 => 0.0070945732552722
1025 => 0.0071164123098541
1026 => 0.0071053698155714
1027 => 0.0070333100709456
1028 => 0.0071095001957832
1029 => 0.0069148659107564
1030 => 0.0068373609701837
1031 => 0.006802353786628
1101 => 0.0066296046559352
1102 => 0.0069045253447545
1103 => 0.0069586881838115
1104 => 0.0070129577403932
1105 => 0.0074853371790368
1106 => 0.0074617384372126
1107 => 0.0076750595702499
1108 => 0.0076667703032925
1109 => 0.007605927660577
1110 => 0.0073492425590893
1111 => 0.0074515526655703
1112 => 0.0071366580603424
1113 => 0.0073725985093309
1114 => 0.0072649251415213
1115 => 0.0073361940353648
1116 => 0.007208046138177
1117 => 0.0072789684755777
1118 => 0.0069715322022608
1119 => 0.0066844525359825
1120 => 0.0067999817740707
1121 => 0.0069255752682436
1122 => 0.0071978939642377
1123 => 0.0070357031954841
1124 => 0.0070940331290398
1125 => 0.006898637615941
1126 => 0.0064954808604491
1127 => 0.0064977626839025
1128 => 0.0064357458003174
1129 => 0.0063821541582867
1130 => 0.0070543327563339
1201 => 0.0069707367220956
1202 => 0.0068375373823153
1203 => 0.0070158299917426
1204 => 0.0070629733875593
1205 => 0.0070643154937624
1206 => 0.0071943931792023
1207 => 0.0072638156632392
1208 => 0.007276051676945
1209 => 0.0074807317254989
1210 => 0.0075493377779791
1211 => 0.0078319163986529
1212 => 0.0072579256504966
1213 => 0.0072461046887634
1214 => 0.0070183389343897
1215 => 0.0068738862921318
1216 => 0.0070282297303897
1217 => 0.0071649569467059
1218 => 0.0070225874301263
1219 => 0.0070411778834071
1220 => 0.0068500584394158
1221 => 0.006918374647637
1222 => 0.0069772177693442
1223 => 0.0069447280561763
1224 => 0.0068960893830441
1225 => 0.0071537468741846
1226 => 0.0071392088287666
1227 => 0.0073791454080367
1228 => 0.0075661931296072
1229 => 0.0079014160854411
1230 => 0.0075515934554605
1231 => 0.007538844528405
]
'min_raw' => 0.0063821541582867
'max_raw' => 0.01845268456945
'avg_raw' => 0.012417419363868
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.006382'
'max' => '$0.018452'
'avg' => '$0.012417'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0011222260137249
'max_diff' => -0.0062333262722846
'year' => 2030
]
5 => [
'items' => [
101 => 0.0076634673353648
102 => 0.0075493186988766
103 => 0.0076214566968602
104 => 0.0078897935387168
105 => 0.0078954630733456
106 => 0.0078004910635309
107 => 0.0077947120081026
108 => 0.0078129524214674
109 => 0.0079197870922744
110 => 0.0078824557755966
111 => 0.0079256565203695
112 => 0.0079796797132212
113 => 0.008203142544215
114 => 0.0082570186762378
115 => 0.0081261276069942
116 => 0.0081379456050218
117 => 0.0080889887520845
118 => 0.0080416970455746
119 => 0.0081480018954097
120 => 0.0083422760979103
121 => 0.0083410675281794
122 => 0.0083861353670086
123 => 0.0084142122572371
124 => 0.0082936856908366
125 => 0.0082152273279945
126 => 0.0082453132567435
127 => 0.0082934213119994
128 => 0.0082297124628082
129 => 0.0078364719327901
130 => 0.0079557559892953
131 => 0.0079359012896004
201 => 0.007907625782821
202 => 0.0080275668240333
203 => 0.0080159982180103
204 => 0.0076694735536938
205 => 0.0076916569384068
206 => 0.0076708225987918
207 => 0.0077381426123926
208 => 0.0075456831972168
209 => 0.0076048824170909
210 => 0.0076420116128377
211 => 0.0076638809943726
212 => 0.0077428881964516
213 => 0.0077336176131853
214 => 0.0077423119239793
215 => 0.0078594587475345
216 => 0.0084519471811414
217 => 0.0084841950193306
218 => 0.0083253948699944
219 => 0.0083888323974598
220 => 0.0082670462169884
221 => 0.0083488020958353
222 => 0.0084047373917682
223 => 0.0081519765451864
224 => 0.0081370096882561
225 => 0.0080147208528962
226 => 0.008080431946225
227 => 0.0079758808719441
228 => 0.0080015340485313
301 => 0.0079298055303898
302 => 0.008058902582039
303 => 0.0082032531454366
304 => 0.0082397217983273
305 => 0.0081437884733141
306 => 0.0080743264236903
307 => 0.0079523739467726
308 => 0.0081551836337749
309 => 0.0082144913667677
310 => 0.0081548721155016
311 => 0.0081410570322769
312 => 0.0081148774745294
313 => 0.0081466111492118
314 => 0.0082141683641168
315 => 0.0081823096291535
316 => 0.0082033528848754
317 => 0.0081231576937744
318 => 0.0082937255901452
319 => 0.0085646284589816
320 => 0.008565499456002
321 => 0.0085336405493083
322 => 0.0085206045710989
323 => 0.0085532937427268
324 => 0.0085710262773549
325 => 0.0086767370642308
326 => 0.0087901689502522
327 => 0.0093195060681046
328 => 0.0091708703235883
329 => 0.009640529704953
330 => 0.010011969297974
331 => 0.010123347790837
401 => 0.010020884818167
402 => 0.0096703645236027
403 => 0.009653166325706
404 => 0.010176991631636
405 => 0.010028986989992
406 => 0.010011382308815
407 => 0.0098240982446731
408 => 0.0099348063221634
409 => 0.0099105928416268
410 => 0.0098723706780357
411 => 0.010083593977896
412 => 0.0104789851392
413 => 0.010417359718756
414 => 0.010371359201115
415 => 0.010169798323364
416 => 0.010291182992022
417 => 0.010247960236483
418 => 0.010433672624117
419 => 0.010323660719716
420 => 0.010027865709264
421 => 0.010074972039632
422 => 0.010067852012562
423 => 0.010214381665137
424 => 0.010170397100524
425 => 0.010059263320394
426 => 0.010477633735195
427 => 0.010450467087556
428 => 0.010488983182748
429 => 0.010505939159001
430 => 0.010760593857977
501 => 0.010864917740106
502 => 0.010888601087795
503 => 0.010987700707119
504 => 0.010886135398989
505 => 0.011292469046348
506 => 0.011562657211616
507 => 0.01187649466933
508 => 0.012335095546607
509 => 0.012507533718759
510 => 0.012476384306394
511 => 0.012824090257606
512 => 0.013448910122865
513 => 0.012602678265446
514 => 0.01349376246612
515 => 0.013211655496248
516 => 0.012542784945571
517 => 0.012499717567573
518 => 0.012952684470239
519 => 0.013957321463902
520 => 0.013705671291488
521 => 0.013957733073433
522 => 0.013663689615744
523 => 0.013649087879677
524 => 0.01394345203901
525 => 0.014631249942247
526 => 0.014304502940138
527 => 0.013836030990963
528 => 0.014181943388003
529 => 0.013882282057006
530 => 0.013207061208344
531 => 0.013705478859344
601 => 0.013372201170237
602 => 0.013469469317935
603 => 0.014169969449121
604 => 0.014085683420043
605 => 0.014194757346346
606 => 0.014002244721383
607 => 0.013822407573214
608 => 0.013486728181273
609 => 0.013387350062113
610 => 0.013414814598999
611 => 0.013387336452053
612 => 0.013199526917315
613 => 0.013158969466169
614 => 0.013091371937398
615 => 0.013112323238133
616 => 0.012985220107688
617 => 0.013225089975684
618 => 0.01326961193691
619 => 0.013444169223351
620 => 0.0134622923399
621 => 0.01394843189797
622 => 0.013680674398629
623 => 0.013860309246257
624 => 0.013844241014696
625 => 0.012557281398597
626 => 0.012734613078755
627 => 0.013010485523333
628 => 0.012886205360987
629 => 0.012710502288508
630 => 0.012568612636879
701 => 0.012353635305699
702 => 0.012656211771061
703 => 0.013054067647592
704 => 0.013472382621491
705 => 0.013974960653549
706 => 0.013862791087447
707 => 0.013462987274768
708 => 0.013480922181748
709 => 0.013591788719572
710 => 0.013448206479803
711 => 0.013405861274237
712 => 0.013585971138582
713 => 0.013587211456231
714 => 0.013422002736883
715 => 0.013238403478205
716 => 0.013237634190607
717 => 0.013204964475884
718 => 0.013669501485417
719 => 0.013924949870671
720 => 0.013954236616365
721 => 0.013922978639342
722 => 0.013935008594113
723 => 0.013786368807155
724 => 0.014126115282382
725 => 0.014437900245494
726 => 0.014354335215066
727 => 0.014229059354985
728 => 0.014129271098327
729 => 0.014330828273114
730 => 0.014321853249401
731 => 0.014435177075837
801 => 0.01443003605248
802 => 0.014391929511974
803 => 0.014354336575971
804 => 0.014503388317911
805 => 0.01446046380993
806 => 0.014417472628332
807 => 0.014331247232016
808 => 0.014342966695428
809 => 0.01421771246599
810 => 0.014159764128209
811 => 0.01328836016548
812 => 0.013055492552693
813 => 0.013128757444133
814 => 0.013152878148717
815 => 0.013051533865204
816 => 0.013196835534552
817 => 0.013174190423296
818 => 0.013262289304243
819 => 0.013207248948236
820 => 0.013209507823646
821 => 0.013371369774821
822 => 0.013418358987857
823 => 0.013394459894857
824 => 0.013411198000381
825 => 0.013796920577468
826 => 0.01374208316172
827 => 0.013712951877554
828 => 0.013721021442355
829 => 0.013819581830786
830 => 0.013847173358349
831 => 0.013730266117242
901 => 0.013785400247981
902 => 0.014020154379103
903 => 0.014102305039062
904 => 0.014364490511099
905 => 0.014253109462603
906 => 0.014457554197577
907 => 0.015085947612542
908 => 0.015587951753932
909 => 0.015126287999311
910 => 0.016048154675133
911 => 0.016765960116181
912 => 0.016738409547786
913 => 0.016613243566
914 => 0.015796041155212
915 => 0.015044039313003
916 => 0.015673120785696
917 => 0.015674724443741
918 => 0.015620685787332
919 => 0.015285056333445
920 => 0.015609006609856
921 => 0.015634720606383
922 => 0.015620327606232
923 => 0.015363001290861
924 => 0.014970111569142
925 => 0.015046881280321
926 => 0.015172631633291
927 => 0.014934559980846
928 => 0.01485848166262
929 => 0.014999925730695
930 => 0.015455687989074
1001 => 0.015369528774178
1002 => 0.015367278808881
1003 => 0.015735904467397
1004 => 0.015472048050295
1005 => 0.015047849592229
1006 => 0.014940733887077
1007 => 0.014560545295573
1008 => 0.01482314290991
1009 => 0.014832593330557
1010 => 0.014688771300867
1011 => 0.01505951995729
1012 => 0.015056103443152
1013 => 0.015408074113771
1014 => 0.016080909841848
1015 => 0.01588191920882
1016 => 0.015650514752728
1017 => 0.015675674833255
1018 => 0.015951618816264
1019 => 0.015784776784948
1020 => 0.015844774342673
1021 => 0.015951528002774
1022 => 0.016015935136457
1023 => 0.015666407637888
1024 => 0.015584916058138
1025 => 0.015418212885628
1026 => 0.015374723139583
1027 => 0.015510499395216
1028 => 0.015474727148903
1029 => 0.014831799059295
1030 => 0.014764609496713
1031 => 0.014766670104673
1101 => 0.014597718754871
1102 => 0.014340027393452
1103 => 0.015017224905308
1104 => 0.014962836467733
1105 => 0.014902795841981
1106 => 0.014910150476048
1107 => 0.015204098963592
1108 => 0.015033593996062
1109 => 0.015486909397454
1110 => 0.015393721378837
1111 => 0.015298143439172
1112 => 0.015284931656535
1113 => 0.01524814230409
1114 => 0.015121977925843
1115 => 0.014969626857807
1116 => 0.014869031486265
1117 => 0.013715895572049
1118 => 0.013929910890244
1119 => 0.014176116005718
1120 => 0.014261105024975
1121 => 0.014115725426475
1122 => 0.015127718398491
1123 => 0.015312619266285
1124 => 0.014752542476952
1125 => 0.014647774977452
1126 => 0.015134586938317
1127 => 0.014840979815573
1128 => 0.014973191084967
1129 => 0.014687422636236
1130 => 0.015268082061763
1201 => 0.015263658409811
1202 => 0.015037768778493
1203 => 0.015228689148058
1204 => 0.015195512035526
1205 => 0.01494048319811
1206 => 0.015276166930796
1207 => 0.015276333425739
1208 => 0.01505891956686
1209 => 0.014805027777702
1210 => 0.014759637922457
1211 => 0.014725442763799
1212 => 0.014964781172138
1213 => 0.015179371240663
1214 => 0.015578670156799
1215 => 0.015679063391423
1216 => 0.01607090486972
1217 => 0.01583758234781
1218 => 0.01594101119974
1219 => 0.016053297849415
1220 => 0.016107132198473
1221 => 0.016019412015592
1222 => 0.016628103119774
1223 => 0.01667949529878
1224 => 0.01669672665186
1225 => 0.016491479436292
1226 => 0.016673787002426
1227 => 0.016588491329624
1228 => 0.016810406974434
1229 => 0.016845206181101
1230 => 0.016815732491072
1231 => 0.016826778308536
]
'min_raw' => 0.0075456831972168
'max_raw' => 0.016845206181101
'avg_raw' => 0.012195444689159
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.007545'
'max' => '$0.016845'
'avg' => '$0.012195'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0011635290389301
'max_diff' => -0.0016074783883488
'year' => 2031
]
6 => [
'items' => [
101 => 0.016307367831586
102 => 0.016280433658248
103 => 0.015913184293617
104 => 0.016062841124274
105 => 0.015783064852599
106 => 0.015871784790362
107 => 0.015910891693574
108 => 0.015890464466633
109 => 0.016071302496936
110 => 0.01591755322841
111 => 0.015511783630049
112 => 0.015105903480031
113 => 0.015100807985371
114 => 0.014993946906251
115 => 0.01491670591863
116 => 0.014931585273117
117 => 0.014984022059074
118 => 0.014913658197306
119 => 0.014928673894752
120 => 0.015178034521436
121 => 0.015228042016758
122 => 0.015058097008462
123 => 0.014375743277204
124 => 0.014208291959999
125 => 0.014328652646102
126 => 0.014271127990366
127 => 0.011517914104097
128 => 0.012164740867677
129 => 0.011780418368919
130 => 0.011957531858175
131 => 0.011565238106772
201 => 0.011752461246819
202 => 0.011717887969146
203 => 0.012757966263987
204 => 0.012741726871994
205 => 0.012749499809572
206 => 0.012378477246714
207 => 0.012969526263707
208 => 0.013260698262913
209 => 0.013206810075152
210 => 0.013220372571036
211 => 0.012987323957049
212 => 0.012751756229574
213 => 0.012490475366192
214 => 0.012975902915066
215 => 0.012921931658156
216 => 0.013045722303263
217 => 0.013360556767786
218 => 0.013406917338627
219 => 0.013469226415979
220 => 0.013446893047211
221 => 0.013978964498396
222 => 0.013914527134937
223 => 0.014069802640979
224 => 0.01375038914427
225 => 0.013388942453737
226 => 0.013457641653025
227 => 0.013451025367689
228 => 0.01336679246155
229 => 0.013290750760195
301 => 0.013164162752055
302 => 0.013564705941309
303 => 0.013548444619303
304 => 0.013811696520861
305 => 0.013765164190168
306 => 0.013454409897408
307 => 0.013465508547768
308 => 0.013540152305266
309 => 0.013798495202234
310 => 0.01387518896338
311 => 0.0138396613575
312 => 0.013923752565393
313 => 0.013990214827437
314 => 0.013932099202235
315 => 0.014754893900093
316 => 0.014413212176496
317 => 0.014579745471171
318 => 0.01461946268068
319 => 0.014517727883686
320 => 0.014539790518304
321 => 0.014573209398042
322 => 0.014776122291725
323 => 0.015308624438068
324 => 0.015544466013819
325 => 0.016254007030684
326 => 0.015524882654026
327 => 0.015481619430932
328 => 0.015609429194155
329 => 0.016026004883599
330 => 0.016363600352928
331 => 0.016475600246455
401 => 0.016490402881301
402 => 0.016700522127169
403 => 0.016820958560408
404 => 0.016675008124036
405 => 0.016551330410857
406 => 0.016108332193696
407 => 0.016159610443577
408 => 0.01651286673506
409 => 0.017011862053471
410 => 0.017440051948282
411 => 0.017290114771044
412 => 0.018434029594222
413 => 0.018547444076467
414 => 0.01853177386215
415 => 0.018790148931042
416 => 0.018277327036459
417 => 0.018058085741068
418 => 0.016578070936248
419 => 0.016993894727383
420 => 0.017598319028273
421 => 0.017518321205575
422 => 0.017079372121961
423 => 0.017439718966041
424 => 0.0173205770303
425 => 0.017226604842379
426 => 0.017657109652653
427 => 0.017183751929593
428 => 0.017593596922886
429 => 0.017067966479685
430 => 0.01729079967144
501 => 0.017164308774571
502 => 0.017246163886986
503 => 0.016767640572381
504 => 0.017025840137445
505 => 0.016756898621593
506 => 0.016756771108297
507 => 0.016750834209428
508 => 0.017067242710159
509 => 0.017077560780009
510 => 0.016843734419902
511 => 0.016810036388356
512 => 0.016934635672834
513 => 0.016788762543315
514 => 0.016857015662502
515 => 0.016790829860764
516 => 0.016775930042707
517 => 0.01665720575743
518 => 0.016606056070941
519 => 0.016626113180978
520 => 0.016557647924271
521 => 0.016516395130609
522 => 0.016742627990451
523 => 0.016621760899645
524 => 0.016724103375307
525 => 0.01660747120764
526 => 0.016203173300289
527 => 0.015970657298399
528 => 0.015206976029849
529 => 0.015423555090266
530 => 0.01556714723139
531 => 0.015519690029605
601 => 0.015621646462538
602 => 0.015627905759464
603 => 0.015594758683795
604 => 0.015556378616573
605 => 0.0155376973224
606 => 0.015676932383866
607 => 0.015757763023484
608 => 0.015581558623767
609 => 0.015540276398274
610 => 0.0157184287749
611 => 0.015827101621727
612 => 0.016629480864695
613 => 0.016570038018725
614 => 0.01671922789704
615 => 0.016702431406247
616 => 0.016858806166533
617 => 0.017114412810696
618 => 0.016594693034371
619 => 0.016684898416984
620 => 0.016662782140314
621 => 0.016904241849798
622 => 0.016904995660654
623 => 0.016760228503012
624 => 0.016838709127749
625 => 0.016794903396024
626 => 0.01687406627395
627 => 0.016569244123277
628 => 0.016940484599279
629 => 0.017150954026965
630 => 0.017153876395173
701 => 0.017253637233507
702 => 0.017355000023013
703 => 0.017549557070631
704 => 0.017349573932551
705 => 0.016989823735111
706 => 0.01701579653738
707 => 0.016804875128248
708 => 0.016808420755242
709 => 0.016789493920475
710 => 0.016846294776357
711 => 0.016581708716954
712 => 0.016643806536249
713 => 0.016556869225591
714 => 0.016684709432249
715 => 0.016547174502629
716 => 0.016662771475175
717 => 0.016712659296426
718 => 0.016896746430849
719 => 0.016519984683198
720 => 0.015751741975208
721 => 0.01591323590647
722 => 0.015674373697059
723 => 0.015696481303952
724 => 0.015741142188277
725 => 0.015596381650049
726 => 0.015623997398814
727 => 0.015623010769939
728 => 0.015614508535315
729 => 0.015576850728405
730 => 0.015522239458015
731 => 0.015739793950786
801 => 0.015776760698435
802 => 0.015858933199249
803 => 0.016103422823529
804 => 0.016078992544601
805 => 0.016118839343135
806 => 0.016031854005666
807 => 0.015700516304278
808 => 0.015718509535577
809 => 0.015494133652955
810 => 0.015853195403464
811 => 0.01576816484156
812 => 0.015713345085144
813 => 0.015698387006704
814 => 0.015943482673474
815 => 0.016016819138375
816 => 0.015971120774876
817 => 0.015877392098104
818 => 0.016057378865901
819 => 0.016105535731932
820 => 0.016116316278279
821 => 0.016435218321776
822 => 0.016134139359951
823 => 0.01620661205853
824 => 0.016772023364598
825 => 0.016259273331421
826 => 0.016530888459685
827 => 0.016517594312573
828 => 0.016656543421238
829 => 0.016506196430042
830 => 0.016508060161187
831 => 0.016631437556454
901 => 0.016458176256032
902 => 0.016415274321469
903 => 0.016356005606139
904 => 0.016485416677759
905 => 0.016562992762436
906 => 0.017188199031579
907 => 0.017592110794315
908 => 0.017574575919453
909 => 0.01773481185178
910 => 0.017662624096673
911 => 0.017429510793268
912 => 0.017827406777042
913 => 0.017701495839101
914 => 0.017711875783843
915 => 0.017711489441781
916 => 0.017795209208187
917 => 0.017735886080885
918 => 0.017618954107578
919 => 0.017696579008446
920 => 0.017927097212614
921 => 0.018642632791513
922 => 0.019043055981051
923 => 0.018618526812717
924 => 0.018911361348362
925 => 0.018735764974588
926 => 0.018703853889934
927 => 0.018887775618621
928 => 0.019072019277947
929 => 0.019060283753356
930 => 0.018926532317702
1001 => 0.018850979525518
1002 => 0.019423090579977
1003 => 0.019844612259245
1004 => 0.019815867306636
1005 => 0.019942738179092
1006 => 0.020315234984592
1007 => 0.020349291424205
1008 => 0.020345001095592
1009 => 0.020260588656589
1010 => 0.020627360136426
1011 => 0.020933327357636
1012 => 0.02024104961587
1013 => 0.020504659917353
1014 => 0.020623003074683
1015 => 0.020796765940475
1016 => 0.021089933021105
1017 => 0.021408390229396
1018 => 0.021453423570354
1019 => 0.0214214702599
1020 => 0.021211439170443
1021 => 0.02155989884774
1022 => 0.021764018354315
1023 => 0.021885566849289
1024 => 0.022193793608802
1025 => 0.020623733921734
1026 => 0.019512367638197
1027 => 0.019338811744699
1028 => 0.019691744478876
1029 => 0.019784810026292
1030 => 0.019747295420823
1031 => 0.018496351627701
1101 => 0.019332225784517
1102 => 0.020231556094957
1103 => 0.020266103034819
1104 => 0.020716326592335
1105 => 0.020862937837949
1106 => 0.0212254268139
1107 => 0.021202753029759
1108 => 0.021291013326944
1109 => 0.021270723813076
1110 => 0.021942158309966
1111 => 0.022682850269023
1112 => 0.022657202461737
1113 => 0.022550719229153
1114 => 0.02270886498763
1115 => 0.023473338466751
1116 => 0.023402957999231
1117 => 0.023471326628433
1118 => 0.024372683944154
1119 => 0.025544576671174
1120 => 0.025000114843367
1121 => 0.026181440345038
1122 => 0.026925022128966
1123 => 0.028210969936478
1124 => 0.028049962937551
1125 => 0.028550572982294
1126 => 0.027761726806297
1127 => 0.025950376534091
1128 => 0.025663723419945
1129 => 0.026237610213679
1130 => 0.027648454897022
1201 => 0.026193177693831
1202 => 0.02648757837668
1203 => 0.026402790960214
1204 => 0.026398272999114
1205 => 0.02657070519843
1206 => 0.026320583299863
1207 => 0.025301541689029
1208 => 0.025768562454024
1209 => 0.025588223308481
1210 => 0.025788323035635
1211 => 0.026868178735685
1212 => 0.026390748790148
1213 => 0.025887815125785
1214 => 0.026518605550811
1215 => 0.027321818524976
1216 => 0.027271554900566
1217 => 0.027174022460644
1218 => 0.027723807717852
1219 => 0.028631891890793
1220 => 0.028877343393762
1221 => 0.029058530675218
1222 => 0.029083513340147
1223 => 0.029340850315551
1224 => 0.027957084541534
1225 => 0.030153156362525
1226 => 0.03053235730075
1227 => 0.030461083240632
1228 => 0.030882549124255
1229 => 0.030758543169736
1230 => 0.030578877997576
1231 => 0.031246991071482
]
'min_raw' => 0.011517914104097
'max_raw' => 0.031246991071482
'avg_raw' => 0.02138245258779
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.011517'
'max' => '$0.031246'
'avg' => '$0.021382'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0039722309068805
'max_diff' => 0.014401784890381
'year' => 2032
]
7 => [
'items' => [
101 => 0.030481053346193
102 => 0.029393901174024
103 => 0.02879746799094
104 => 0.029582899319318
105 => 0.030062534823782
106 => 0.030379543381685
107 => 0.030475469979765
108 => 0.028064502339495
109 => 0.026765124499785
110 => 0.027598010797642
111 => 0.028614189563769
112 => 0.02795143961718
113 => 0.027977418160334
114 => 0.027032510904121
115 => 0.028697792889202
116 => 0.028455175311201
117 => 0.02971387573505
118 => 0.029413476777196
119 => 0.030439898110375
120 => 0.030169606974225
121 => 0.031291570368613
122 => 0.031739151942581
123 => 0.032490711065782
124 => 0.033043561016205
125 => 0.033368205081428
126 => 0.033348714669461
127 => 0.034635116192905
128 => 0.033876570157976
129 => 0.032923657562532
130 => 0.032906422380081
131 => 0.033399949316137
201 => 0.034434246381609
202 => 0.034702424562275
203 => 0.034852299579728
204 => 0.034622760773313
205 => 0.033799413417882
206 => 0.033443896204272
207 => 0.033746807170593
208 => 0.033376373088219
209 => 0.034015846239842
210 => 0.034893979461116
211 => 0.034712648423438
212 => 0.035318810895727
213 => 0.035946125284394
214 => 0.03684321303464
215 => 0.037077744991617
216 => 0.03746541739805
217 => 0.03786445964802
218 => 0.03799262126422
219 => 0.038237321555761
220 => 0.038236031864437
221 => 0.038973452663223
222 => 0.039786850640305
223 => 0.040093889546447
224 => 0.040799908580897
225 => 0.039590875726259
226 => 0.04050794103487
227 => 0.041335156898871
228 => 0.040348916043702
301 => 0.041708219297904
302 => 0.041760997963018
303 => 0.04255789314451
304 => 0.041750087211423
305 => 0.041270414626964
306 => 0.0426552114052
307 => 0.043325270945499
308 => 0.043123443558836
309 => 0.04158752718088
310 => 0.040693557970358
311 => 0.038353868112637
312 => 0.041125331816187
313 => 0.042475230941482
314 => 0.041584031268257
315 => 0.042033500545443
316 => 0.044485659180862
317 => 0.045419282423716
318 => 0.045225095315722
319 => 0.045257909740381
320 => 0.045761675895764
321 => 0.047995652457824
322 => 0.046657001918666
323 => 0.047680350097573
324 => 0.048223130281709
325 => 0.048727294766203
326 => 0.047489226135108
327 => 0.045878517036894
328 => 0.045368337852521
329 => 0.041495419024381
330 => 0.041293816780142
331 => 0.041180651331278
401 => 0.040467159183759
402 => 0.039906549797756
403 => 0.039460732399914
404 => 0.038290774415633
405 => 0.038685600890851
406 => 0.036820932053116
407 => 0.038013881095693
408 => 0.035037824606665
409 => 0.037516372884724
410 => 0.036167411742738
411 => 0.037073202869388
412 => 0.037070042649478
413 => 0.035402194003977
414 => 0.034440213712365
415 => 0.035053224995013
416 => 0.035710421750908
417 => 0.035817049713477
418 => 0.036669122462085
419 => 0.036906917650979
420 => 0.036186387127034
421 => 0.034976152450847
422 => 0.035257262363611
423 => 0.034434517028956
424 => 0.032992687476414
425 => 0.034028234632978
426 => 0.034381815962024
427 => 0.034537977620014
428 => 0.033120103850332
429 => 0.032674577128361
430 => 0.032437382439915
501 => 0.034793122752078
502 => 0.034922175524161
503 => 0.034261923295959
504 => 0.037246325975116
505 => 0.036570863734369
506 => 0.03732552054955
507 => 0.035231754585483
508 => 0.03531173926494
509 => 0.034320516903462
510 => 0.034875535192388
511 => 0.03448326615485
512 => 0.03483069519944
513 => 0.035038942736264
514 => 0.036030002447906
515 => 0.03752768919467
516 => 0.035881971175915
517 => 0.035164908268028
518 => 0.035609770063166
519 => 0.036794495646822
520 => 0.038589415551047
521 => 0.037526786841616
522 => 0.037998363418256
523 => 0.03810138192127
524 => 0.037317838851589
525 => 0.03861830590166
526 => 0.039315236758769
527 => 0.040030143608642
528 => 0.040650877195151
529 => 0.039744594091664
530 => 0.040714446922975
531 => 0.03993291674301
601 => 0.039231803378475
602 => 0.039232866678042
603 => 0.038793048022838
604 => 0.037940843957663
605 => 0.037783684452889
606 => 0.038601248043783
607 => 0.039256856620119
608 => 0.03931085568262
609 => 0.039673834276865
610 => 0.039888641269962
611 => 0.041994041818261
612 => 0.042840851335574
613 => 0.043876313984061
614 => 0.044279685041123
615 => 0.045493687306354
616 => 0.044513281880737
617 => 0.044301164999865
618 => 0.041356392601529
619 => 0.041838598916788
620 => 0.042610657753505
621 => 0.04136912356738
622 => 0.042156591246699
623 => 0.042312054047443
624 => 0.041326936710814
625 => 0.041853130444715
626 => 0.040455715893044
627 => 0.037558149013203
628 => 0.038621531721911
629 => 0.039404539326269
630 => 0.038287090930708
701 => 0.040290073928527
702 => 0.039119972611163
703 => 0.038749106668327
704 => 0.037302226402069
705 => 0.037985098192214
706 => 0.038908692066167
707 => 0.038338018431377
708 => 0.039522251910645
709 => 0.041199442340821
710 => 0.042394708119781
711 => 0.042486465784615
712 => 0.041717989965332
713 => 0.042949477370081
714 => 0.042958447411379
715 => 0.041569324588048
716 => 0.040718494593426
717 => 0.040525184228487
718 => 0.041008111420835
719 => 0.041594474185625
720 => 0.042519004837184
721 => 0.043077679346974
722 => 0.044534406170444
723 => 0.044928554681244
724 => 0.045361604396251
725 => 0.045940292363087
726 => 0.046635155639823
727 => 0.045114834348914
728 => 0.045175239548035
729 => 0.043759537412221
730 => 0.042246656647881
731 => 0.043394744564766
801 => 0.044895716792357
802 => 0.04455139210492
803 => 0.044512648543669
804 => 0.044577804467126
805 => 0.044318194897392
806 => 0.043143990435065
807 => 0.042554312304993
808 => 0.043315147535721
809 => 0.043719497599973
810 => 0.044346609286596
811 => 0.044269304534498
812 => 0.04588467689236
813 => 0.046512361744301
814 => 0.046351773099026
815 => 0.046381325274538
816 => 0.047517718716841
817 => 0.048781621941818
818 => 0.049965434098729
819 => 0.051169658670653
820 => 0.049717918947513
821 => 0.048980815046961
822 => 0.049741318120828
823 => 0.049337784484978
824 => 0.051656608452423
825 => 0.051817158792848
826 => 0.054135815082927
827 => 0.056336496002666
828 => 0.054954287746272
829 => 0.056257647876025
830 => 0.057667338120863
831 => 0.060386859317156
901 => 0.059471020252154
902 => 0.05876950188139
903 => 0.05810657041073
904 => 0.059486025563766
905 => 0.061260672580812
906 => 0.061642914550926
907 => 0.062262292570181
908 => 0.061611092316875
909 => 0.062395391294627
910 => 0.065164311324527
911 => 0.064416124690515
912 => 0.063353579393215
913 => 0.065539375826914
914 => 0.066330407059202
915 => 0.071882278513667
916 => 0.078891745561301
917 => 0.075989780176939
918 => 0.074188436617027
919 => 0.074611795082047
920 => 0.077171415162409
921 => 0.077993483893941
922 => 0.075758817697552
923 => 0.076548139576567
924 => 0.080897380734355
925 => 0.083230609075146
926 => 0.080061771593979
927 => 0.071319074661356
928 => 0.063257908814753
929 => 0.065396092996301
930 => 0.065153689265694
1001 => 0.069826406310852
1002 => 0.064398280686736
1003 => 0.064489676401042
1004 => 0.069259020286201
1005 => 0.067986641104895
1006 => 0.065925549785191
1007 => 0.063272957062327
1008 => 0.058369394078982
1009 => 0.054026171598664
1010 => 0.062544231066969
1011 => 0.062176916853609
1012 => 0.061644991439748
1013 => 0.062828733887955
1014 => 0.068576651205288
1015 => 0.06844414310693
1016 => 0.067601194191407
1017 => 0.068240563514421
1018 => 0.065813465251562
1019 => 0.066438983737901
1020 => 0.063256631884897
1021 => 0.064695187829208
1022 => 0.065921127608902
1023 => 0.066167253170025
1024 => 0.066721786626716
1025 => 0.061983358954056
1026 => 0.064110773866153
1027 => 0.06536043081519
1028 => 0.059714435256533
1029 => 0.065248827636255
1030 => 0.061900873470325
1031 => 0.060764527541824
1101 => 0.062294467632358
1102 => 0.061698248491162
1103 => 0.061185654284724
1104 => 0.060899617910045
1105 => 0.062023037059207
1106 => 0.061970628213122
1107 => 0.060132496438832
1108 => 0.057734728471107
1109 => 0.058539498105126
1110 => 0.058247117752331
1111 => 0.057187493635987
1112 => 0.0579015523509
1113 => 0.054757199147272
1114 => 0.049347502889688
1115 => 0.052921313940926
1116 => 0.052783726103011
1117 => 0.052714348076023
1118 => 0.055399968308146
1119 => 0.055141807890628
1120 => 0.054673244204919
1121 => 0.057178888096447
1122 => 0.056264294370373
1123 => 0.05908285672875
1124 => 0.060939344191161
1125 => 0.060468478919616
1126 => 0.062214514351196
1127 => 0.058558038372088
1128 => 0.059772573019994
1129 => 0.060022886927655
1130 => 0.057147968839767
1201 => 0.055184046127658
1202 => 0.055053074873118
1203 => 0.051647903535541
1204 => 0.053466918578492
1205 => 0.055067576540332
1206 => 0.054300985592686
1207 => 0.054058305799915
1208 => 0.055298104230359
1209 => 0.05539444718656
1210 => 0.053197817575209
1211 => 0.053654566429622
1212 => 0.055559285080702
1213 => 0.053606572406619
1214 => 0.04981277065468
1215 => 0.048871855366786
1216 => 0.048746319922871
1217 => 0.04619448303717
1218 => 0.048934731825484
1219 => 0.047738539795283
1220 => 0.051517296086107
1221 => 0.049358890758665
1222 => 0.049265846218949
1223 => 0.049125195750502
1224 => 0.046928724327925
1225 => 0.047409611976428
1226 => 0.04900815576131
1227 => 0.049578534192641
1228 => 0.04951903904928
1229 => 0.049000322024682
1230 => 0.049237788022282
1231 => 0.048472827305374
]
'min_raw' => 0.026765124499785
'max_raw' => 0.083230609075146
'avg_raw' => 0.054997866787465
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.026765'
'max' => '$0.08323'
'avg' => '$0.054997'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.015247210395688
'max_diff' => 0.051983618003664
'year' => 2033
]
8 => [
'items' => [
101 => 0.048202703754953
102 => 0.047350119526488
103 => 0.04609705624305
104 => 0.046271302378096
105 => 0.043788656131762
106 => 0.04243597869275
107 => 0.042061575405633
108 => 0.041560907682711
109 => 0.042118127157164
110 => 0.043781623106874
111 => 0.04177509406117
112 => 0.038335040753958
113 => 0.038541793819287
114 => 0.039006306571546
115 => 0.038140690130772
116 => 0.03732145681526
117 => 0.038033713716598
118 => 0.03657611778091
119 => 0.039182450076627
120 => 0.039111956092189
121 => 0.040083435597524
122 => 0.040690921668977
123 => 0.03929086295023
124 => 0.038938751968627
125 => 0.0391393303863
126 => 0.03582421593611
127 => 0.039812520021105
128 => 0.03984701104045
129 => 0.039551677992713
130 => 0.0416753267929
131 => 0.046156888143964
201 => 0.044470744493306
202 => 0.04381781870781
203 => 0.042576606312295
204 => 0.044230448133419
205 => 0.044103458885508
206 => 0.043529165347213
207 => 0.043181830823347
208 => 0.043821805333427
209 => 0.043102530899264
210 => 0.042973329446548
211 => 0.04219050921566
212 => 0.041911078009283
213 => 0.041704198268559
214 => 0.041476444001606
215 => 0.041978813161678
216 => 0.040840378552787
217 => 0.039467538016584
218 => 0.039353401180339
219 => 0.039668543020225
220 => 0.039529116215626
221 => 0.03935273365844
222 => 0.039015971321842
223 => 0.038916061130362
224 => 0.039240720783138
225 => 0.038874198963987
226 => 0.03941502187362
227 => 0.039267947967297
228 => 0.038446405082154
301 => 0.037422458473133
302 => 0.037413343200512
303 => 0.037192735583208
304 => 0.036911758613994
305 => 0.03683359724904
306 => 0.037973729427013
307 => 0.040333768914132
308 => 0.039870436691852
309 => 0.040205241706645
310 => 0.041852151010726
311 => 0.042375653954203
312 => 0.04200408396477
313 => 0.041495456045795
314 => 0.0415178330929
315 => 0.043255968664178
316 => 0.043364374047718
317 => 0.043638279479022
318 => 0.043990325363913
319 => 0.042064038901256
320 => 0.041427105173737
321 => 0.0411252906379
322 => 0.040195818684448
323 => 0.041198174499343
324 => 0.040614144691159
325 => 0.040692950265583
326 => 0.040641628031857
327 => 0.040669653441865
328 => 0.039181721553633
329 => 0.039723845730307
330 => 0.038822459139873
331 => 0.037615603680674
401 => 0.037611557877997
402 => 0.037906934041885
403 => 0.037731232741534
404 => 0.037258425059983
405 => 0.037325585159558
406 => 0.036737192018104
407 => 0.037397026740132
408 => 0.037415948438958
409 => 0.037161876129537
410 => 0.038178442558467
411 => 0.038594930653839
412 => 0.038427694817022
413 => 0.038583196941712
414 => 0.039889690237507
415 => 0.040102705651021
416 => 0.040197313026695
417 => 0.040070551676367
418 => 0.038607077240795
419 => 0.038671988555187
420 => 0.038195712399516
421 => 0.037793309236719
422 => 0.037809403252905
423 => 0.038016290787332
424 => 0.038919780783968
425 => 0.040821122218244
426 => 0.040893276735813
427 => 0.040980730116001
428 => 0.040625013268227
429 => 0.040517725663187
430 => 0.040659265707516
501 => 0.041373309582446
502 => 0.04321002428979
503 => 0.042560806642164
504 => 0.042032982588969
505 => 0.042496026583964
506 => 0.042424744590393
507 => 0.041823052828995
508 => 0.041806165345249
509 => 0.040651326482632
510 => 0.040224408849531
511 => 0.039867644521081
512 => 0.039478067187982
513 => 0.039247112686171
514 => 0.039601963767897
515 => 0.039683122408762
516 => 0.038907234316833
517 => 0.038801483636907
518 => 0.039435090601485
519 => 0.039156263799623
520 => 0.03944304407991
521 => 0.039509579564892
522 => 0.039498865819368
523 => 0.03920773861517
524 => 0.039393294413588
525 => 0.038954399633484
526 => 0.038477167479985
527 => 0.038172723098667
528 => 0.03790705499728
529 => 0.03805446310065
530 => 0.037528980127791
531 => 0.037360867548891
601 => 0.039330432284221
602 => 0.040785370930599
603 => 0.040764215546462
604 => 0.040635437586249
605 => 0.040444099659029
606 => 0.0413593120213
607 => 0.041040470334533
608 => 0.04127245430177
609 => 0.041331503957769
610 => 0.041510229481857
611 => 0.041574108494741
612 => 0.041381021750979
613 => 0.040732999055356
614 => 0.039118188110013
615 => 0.038366489255856
616 => 0.03811841611345
617 => 0.038127433101019
618 => 0.037878704330275
619 => 0.0379519661005
620 => 0.037853226876383
621 => 0.037666238673488
622 => 0.03804291710604
623 => 0.03808632578639
624 => 0.03799840453926
625 => 0.038019113175754
626 => 0.037291162801175
627 => 0.037346507287129
628 => 0.037038342156499
629 => 0.036980564909492
630 => 0.036201550294267
701 => 0.034821412983422
702 => 0.035586143026801
703 => 0.034662456671716
704 => 0.034312642652913
705 => 0.035968607810684
706 => 0.035802394838168
707 => 0.035517910480262
708 => 0.035097098823185
709 => 0.034941015686182
710 => 0.03399270395567
711 => 0.033936672639585
712 => 0.034406681539797
713 => 0.034189788604368
714 => 0.033885188779247
715 => 0.032781959089449
716 => 0.031541563651318
717 => 0.031579003392747
718 => 0.031973550103239
719 => 0.033120747875867
720 => 0.032672517859379
721 => 0.032347321839569
722 => 0.032286422400415
723 => 0.033048706383037
724 => 0.034127497921879
725 => 0.034633642775304
726 => 0.034132068597408
727 => 0.033555887188513
728 => 0.033590956681105
729 => 0.033824258303909
730 => 0.033848775005758
731 => 0.033473740140973
801 => 0.033579310258631
802 => 0.033418939596375
803 => 0.032434745138132
804 => 0.032416944181297
805 => 0.032175406988964
806 => 0.032168093338774
807 => 0.03175717832034
808 => 0.03169968846874
809 => 0.030883791758881
810 => 0.031420817444073
811 => 0.03106060880956
812 => 0.030517689432722
813 => 0.030424089927517
814 => 0.030421276213365
815 => 0.030978733018826
816 => 0.031414303236734
817 => 0.031066874792976
818 => 0.03098777207095
819 => 0.031832382192593
820 => 0.031724897855822
821 => 0.031631817113377
822 => 0.034030903971865
823 => 0.03213183952029
824 => 0.031303739024594
825 => 0.030278807409151
826 => 0.030612530311293
827 => 0.030682850630184
828 => 0.028218074852853
829 => 0.027218115626959
830 => 0.0268749673033
831 => 0.026677480591629
901 => 0.02676747776602
902 => 0.025867397179196
903 => 0.0264722662195
904 => 0.025692872513229
905 => 0.025562204622006
906 => 0.026955857117172
907 => 0.027149775720275
908 => 0.026322458713651
909 => 0.026853730162361
910 => 0.026661083749833
911 => 0.025706232981327
912 => 0.025669764705377
913 => 0.025190654154368
914 => 0.024440938916123
915 => 0.024098298934699
916 => 0.023919849057437
917 => 0.023993480954714
918 => 0.023956250414278
919 => 0.023713295954221
920 => 0.023970176279536
921 => 0.023313953198636
922 => 0.023052639880273
923 => 0.022934610716791
924 => 0.022352174961702
925 => 0.023279089258405
926 => 0.023461703051815
927 => 0.023644676650809
928 => 0.025237336908675
929 => 0.025157772103004
930 => 0.025876999196645
1001 => 0.02584905135436
1002 => 0.025643916136547
1003 => 0.024778484395699
1004 => 0.025123430062764
1005 => 0.024061740915999
1006 => 0.0248572306126
1007 => 0.024494202335515
1008 => 0.024734490386944
1009 => 0.024302430804575
1010 => 0.02454155041676
1011 => 0.023505007556757
1012 => 0.022537098418638
1013 => 0.022926613310846
1014 => 0.023350060545108
1015 => 0.024268202041336
1016 => 0.023721364540685
1017 => 0.023918027984134
1018 => 0.023259238369643
1019 => 0.021899967220996
1020 => 0.021907660548081
1021 => 0.021698566295193
1022 => 0.021517878332437
1023 => 0.023784175405765
1024 => 0.023502325539842
1025 => 0.023053234666091
1026 => 0.023654360646768
1027 => 0.023813307897211
1028 => 0.023817832901978
1029 => 0.024256398900172
1030 => 0.024490461652025
1031 => 0.024531716226526
1101 => 0.02522180930053
1102 => 0.025453119396388
1103 => 0.026405852945
1104 => 0.024470603062836
1105 => 0.02443074786504
1106 => 0.023662819722072
1107 => 0.023175787553338
1108 => 0.023696167231339
1109 => 0.024157152587138
1110 => 0.023677143822068
1111 => 0.023739822833248
1112 => 0.023095450284298
1113 => 0.023325783150001
1114 => 0.023524176843133
1115 => 0.023414635506828
1116 => 0.023250646824519
1117 => 0.02411935704497
1118 => 0.02407034100983
1119 => 0.024879303938676
1120 => 0.025509948391206
1121 => 0.026640175991319
1122 => 0.025460724570503
1123 => 0.025417740672834
1124 => 0.025837915167386
1125 => 0.025453055069863
1126 => 0.025696273366578
1127 => 0.026600989763578
1128 => 0.026620104995413
1129 => 0.026299900233589
1130 => 0.026280415744732
1201 => 0.026341914571896
1202 => 0.02670211512348
1203 => 0.026576249982912
1204 => 0.026721904310093
1205 => 0.026904047276572
1206 => 0.027657467812944
1207 => 0.02783911495357
1208 => 0.027397806575093
1209 => 0.027437651780549
1210 => 0.027272590332813
1211 => 0.027113143042513
1212 => 0.0274715572657
1213 => 0.028126566303222
1214 => 0.028122491525995
1215 => 0.028274440891144
1216 => 0.028369104086815
1217 => 0.027962740353299
1218 => 0.027698212505189
1219 => 0.027799649314499
1220 => 0.027961848981592
1221 => 0.027747050148533
1222 => 0.0264212122464
1223 => 0.026823386771054
1224 => 0.026756445264822
1225 => 0.026661112419583
1226 => 0.027065502014046
1227 => 0.027026497651145
1228 => 0.025858165551823
1229 => 0.025932958382177
1230 => 0.025862713951558
1231 => 0.026089688077546
]
'min_raw' => 0.021517878332437
'max_raw' => 0.048202703754953
'avg_raw' => 0.034860291043695
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.021517'
'max' => '$0.0482027'
'avg' => '$0.03486'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0052472461673474
'max_diff' => -0.035027905320193
'year' => 2034
]
9 => [
'items' => [
101 => 0.025440797722194
102 => 0.025640392025157
103 => 0.025765575700895
104 => 0.025839309847611
105 => 0.026105688145527
106 => 0.026074431726794
107 => 0.026103745202653
108 => 0.026498713897199
109 => 0.028496330017326
110 => 0.028605055855253
111 => 0.028069650064694
112 => 0.02828353411761
113 => 0.027872923507312
114 => 0.028148569160857
115 => 0.028337158916372
116 => 0.027484958074923
117 => 0.02743449627183
118 => 0.02702219092548
119 => 0.02724374046444
120 => 0.02689123921798
121 => 0.026977730693891
122 => 0.026735892987052
123 => 0.027171152709955
124 => 0.027657840712684
125 => 0.027780797322065
126 => 0.027457351418933
127 => 0.027223155268941
128 => 0.026811983978562
129 => 0.027495770998011
130 => 0.02769573116053
131 => 0.027494720692403
201 => 0.027448142174773
202 => 0.027359875968029
203 => 0.027466868267795
204 => 0.027694642134541
205 => 0.027587228185306
206 => 0.027658176991166
207 => 0.02738779330532
208 => 0.027962874876604
209 => 0.02887624281272
210 => 0.028879179439986
211 => 0.02877176491175
212 => 0.028727813201074
213 => 0.028838027025503
214 => 0.028897813504047
215 => 0.029254224802491
216 => 0.029636668325773
217 => 0.03142136537575
218 => 0.030920229585697
219 => 0.032503718980539
220 => 0.033756053501495
221 => 0.034131573866378
222 => 0.033786112800284
223 => 0.032604309154617
224 => 0.032546324229668
225 => 0.034312437820925
226 => 0.033813429838268
227 => 0.033754074426561
228 => 0.033122633128551
301 => 0.033495893141201
302 => 0.033414255701041
303 => 0.033285387007907
304 => 0.033997541110525
305 => 0.035330630016191
306 => 0.035122855608615
307 => 0.034967761651736
308 => 0.034288185079866
309 => 0.034697441965054
310 => 0.034551713427038
311 => 0.035177855707971
312 => 0.034806942891496
313 => 0.033809649362011
314 => 0.033968471643704
315 => 0.033944465975332
316 => 0.034438500929364
317 => 0.034290203898865
318 => 0.033915508600045
319 => 0.035326073663237
320 => 0.035234479414008
321 => 0.035364339118054
322 => 0.03542150737582
323 => 0.03628009347284
324 => 0.036631828725099
325 => 0.036711678785354
326 => 0.037045800070818
327 => 0.036703365543394
328 => 0.038073347804773
329 => 0.038984306067909
330 => 0.040042430968025
331 => 0.041588635844256
401 => 0.042170023180914
402 => 0.042065000762343
403 => 0.043237315652909
404 => 0.045343939452159
405 => 0.042490809662851
406 => 0.045495162258933
407 => 0.044544018913932
408 => 0.042288875153273
409 => 0.042143670481485
410 => 0.043670880018961
411 => 0.047058083784611
412 => 0.046209627658663
413 => 0.047059471554882
414 => 0.046068083507826
415 => 0.046018852735215
416 => 0.047011322050256
417 => 0.049330280701536
418 => 0.048228630371178
419 => 0.046649144486867
420 => 0.04781541228432
421 => 0.046805083185177
422 => 0.044528528951498
423 => 0.046208978860254
424 => 0.045085309862727
425 => 0.045413256213735
426 => 0.047775041313387
427 => 0.047490865081688
428 => 0.047858615439516
429 => 0.047209545683652
430 => 0.046603212182769
501 => 0.045471445676454
502 => 0.045136385409348
503 => 0.045228984012971
504 => 0.045136339522079
505 => 0.044503126563266
506 => 0.0443663842851
507 => 0.044138474497338
508 => 0.044209113270539
509 => 0.043780576192188
510 => 0.044589314199315
511 => 0.044739423100013
512 => 0.045327955178448
513 => 0.045389058531211
514 => 0.047028111992421
515 => 0.046125348889161
516 => 0.046731000319644
517 => 0.04667682515509
518 => 0.04233775095676
519 => 0.042935637097314
520 => 0.04386576030501
521 => 0.043446741060695
522 => 0.042854345884637
523 => 0.042375955017751
524 => 0.04165114393644
525 => 0.042671301614621
526 => 0.044012700479755
527 => 0.045423078620076
528 => 0.047117555544035
529 => 0.046739368020493
530 => 0.045391401552636
531 => 0.045451870343694
601 => 0.045825664616422
602 => 0.045341567070448
603 => 0.045198797253434
604 => 0.045806050235944
605 => 0.045810232053494
606 => 0.045253219321709
607 => 0.044634201602583
608 => 0.044631607895738
609 => 0.044521459671621
610 => 0.046087678632201
611 => 0.046948940697922
612 => 0.047047683005764
613 => 0.046942294553867
614 => 0.046982854386284
615 => 0.046481704966855
616 => 0.047627183928425
617 => 0.04867838869969
618 => 0.048396643365276
619 => 0.047974267056532
620 => 0.047637823982217
621 => 0.048317388069283
622 => 0.048287128150219
623 => 0.048669207343064
624 => 0.04865187402388
625 => 0.048523395162051
626 => 0.048396647953661
627 => 0.048899186308073
628 => 0.048754463332522
629 => 0.048609515562215
630 => 0.048318800618473
701 => 0.048358313607591
702 => 0.047936010228071
703 => 0.047740633361418
704 => 0.044802634061596
705 => 0.044017504646787
706 => 0.044264522343469
707 => 0.044345846983028
708 => 0.044004157655532
709 => 0.044494052378375
710 => 0.044417702804746
711 => 0.044714734332727
712 => 0.044529161929654
713 => 0.044536777885807
714 => 0.045082506755034
715 => 0.045240934167467
716 => 0.045160356706838
717 => 0.045216790398229
718 => 0.046517280997168
719 => 0.046332392821347
720 => 0.0462341746629
721 => 0.046261381764025
722 => 0.046593684994887
723 => 0.046686711756444
724 => 0.04629255083085
725 => 0.046478439401978
726 => 0.047269929345065
727 => 0.047546906030695
728 => 0.048430882654873
729 => 0.04805535367349
730 => 0.048744653371332
731 => 0.050863325642912
801 => 0.05255586765442
802 => 0.05099933607338
803 => 0.054107473933589
804 => 0.056527605093658
805 => 0.056434716428795
806 => 0.056012710582395
807 => 0.053257455599173
808 => 0.050722028885074
809 => 0.052843020991323
810 => 0.052848427836387
811 => 0.052666232733446
812 => 0.051534634596763
813 => 0.05262685557117
814 => 0.052713552105755
815 => 0.052665025100857
816 => 0.051797431462634
817 => 0.050472776335175
818 => 0.050731610776304
819 => 0.051155586870953
820 => 0.050352911673103
821 => 0.050096408311585
822 => 0.050573296862409
823 => 0.052109931136839
824 => 0.051819439328374
825 => 0.051811853413285
826 => 0.053054700557595
827 => 0.05216509022547
828 => 0.050734875507509
829 => 0.05037372742901
830 => 0.049091895048832
831 => 0.049977261239551
901 => 0.050009123992568
902 => 0.049524217978134
903 => 0.050774222958111
904 => 0.050762703942161
905 => 0.051949397631961
906 => 0.054217910265062
907 => 0.053546999452727
908 => 0.05276680317287
909 => 0.052851632140987
910 => 0.053781996545493
911 => 0.053219476988375
912 => 0.05342176294314
913 => 0.053781690361473
914 => 0.053998843509449
915 => 0.05282038714479
916 => 0.052545632594104
917 => 0.051983581209144
918 => 0.051836952493994
919 => 0.052294731619457
920 => 0.052174122993473
921 => 0.050006446051556
922 => 0.049779911750285
923 => 0.049786859233888
924 => 0.049217227962223
925 => 0.048348403545764
926 => 0.050631622237408
927 => 0.050448247822844
928 => 0.050245816661217
929 => 0.05027061332346
930 => 0.051261681172041
1001 => 0.050686811769738
1002 => 0.052215196295003
1003 => 0.051901006384053
1004 => 0.051578758687434
1005 => 0.051534214239856
1006 => 0.05141017636954
1007 => 0.050984804359765
1008 => 0.050471142097066
1009 => 0.05013197777857
1010 => 0.046244099534412
1011 => 0.04696566712178
1012 => 0.047795764858092
1013 => 0.04808231127026
1014 => 0.04759215380384
1015 => 0.051004158764084
1016 => 0.051627564949218
1017 => 0.049739226950667
1018 => 0.04938599601147
1019 => 0.051027316525651
1020 => 0.050037399612327
1021 => 0.050483159137784
1022 => 0.049519670861172
1023 => 0.051477404654683
1024 => 0.051462490003278
1025 => 0.050700887340179
1026 => 0.0513445886958
1027 => 0.051232729744549
1028 => 0.050372882213654
1029 => 0.051504663355095
1030 => 0.051505224704421
1031 => 0.050772198699858
1101 => 0.049916184806554
1102 => 0.049763149740577
1103 => 0.049647858375732
1104 => 0.050454804529521
1105 => 0.051178309927753
1106 => 0.052524574101664
1107 => 0.052863056901433
1108 => 0.054184177803007
1109 => 0.053397514630329
1110 => 0.053746232225784
1111 => 0.054124814504766
1112 => 0.054306320771212
1113 => 0.054010566050201
1114 => 0.056062810605404
1115 => 0.056236082925011
1116 => 0.056294179634976
1117 => 0.055602174317785
1118 => 0.056216837005312
1119 => 0.055929256689307
1120 => 0.056677460779439
1121 => 0.056794788734321
1122 => 0.056695416130599
1123 => 0.056732657875374
1124 => 0.054981429188257
1125 => 0.054890618742362
1126 => 0.053652411868978
1127 => 0.054156990322245
1128 => 0.053213705088937
1129 => 0.053512830553334
1130 => 0.053644682207868
1201 => 0.053575810386055
1202 => 0.05418551843093
1203 => 0.053667142037662
1204 => 0.052299061506857
1205 => 0.050930608243428
1206 => 0.050913428427423
1207 => 0.050553138838368
1208 => 0.050292715455812
1209 => 0.050342882238308
1210 => 0.050519676523181
1211 => 0.05028243985058
1212 => 0.050333066322884
1213 => 0.051173803085551
1214 => 0.051342406847443
1215 => 0.05076942538679
1216 => 0.048468822141439
1217 => 0.047904248334403
1218 => 0.048310052790915
1219 => 0.048116104397857
1220 => 0.038833451557047
1221 => 0.041014273150459
1222 => 0.039718503013357
1223 => 0.040315653508051
1224 => 0.038993007736121
1225 => 0.03962424362429
1226 => 0.039507677404789
1227 => 0.043014373991794
1228 => 0.042959621747891
1229 => 0.042985828749623
1230 => 0.041734900274979
1231 => 0.043727663301497
]
'min_raw' => 0.025440797722194
'max_raw' => 0.056794788734321
'avg_raw' => 0.041117793228257
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.02544'
'max' => '$0.056794'
'avg' => '$0.041117'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0039229193897562
'max_diff' => 0.0085920849793683
'year' => 2035
]
10 => [
'items' => [
101 => 0.0447093700258
102 => 0.04452768223841
103 => 0.044573409140186
104 => 0.043787669467194
105 => 0.042993436427199
106 => 0.042112509754257
107 => 0.043749162626757
108 => 0.043567194765931
109 => 0.043984563568696
110 => 0.045046049946875
111 => 0.045202357848257
112 => 0.045412437252832
113 => 0.045337138740762
114 => 0.047131054786478
115 => 0.046913799716703
116 => 0.047437321926312
117 => 0.04636039702142
118 => 0.045141754268885
119 => 0.045373378415709
120 => 0.045351071147766
121 => 0.045067074023763
122 => 0.044810694118582
123 => 0.044383893811046
124 => 0.045734353138649
125 => 0.045679526956177
126 => 0.046567099121939
127 => 0.046410212120225
128 => 0.045362482326014
129 => 0.045399902200584
130 => 0.04565156884045
131 => 0.046522589954504
201 => 0.046781168324795
202 => 0.046661384521109
203 => 0.046944903899582
204 => 0.047168986056311
205 => 0.046973045168438
206 => 0.049747154937958
207 => 0.048595151151395
208 => 0.049156629781375
209 => 0.049290539126201
210 => 0.048947533155239
211 => 0.049021918868218
212 => 0.049134592954487
213 => 0.049818727942465
214 => 0.051614096106974
215 => 0.052409252445551
216 => 0.054801519522481
217 => 0.052343225780743
218 => 0.052197360803539
219 => 0.052628280343639
220 => 0.054032794364984
221 => 0.055171021059991
222 => 0.055548636520598
223 => 0.055598544637469
224 => 0.05630697634497
225 => 0.056713036188239
226 => 0.056220954102075
227 => 0.055803966057193
228 => 0.054310366638887
229 => 0.054483254838492
301 => 0.055674283088793
302 => 0.057356680643558
303 => 0.058800352769177
304 => 0.058294829107838
305 => 0.062151617799765
306 => 0.062534002645
307 => 0.062481169423371
308 => 0.063352299007312
309 => 0.061623284185644
310 => 0.060884096851296
311 => 0.055894123605512
312 => 0.057296102549214
313 => 0.05933396127922
314 => 0.059064243034726
315 => 0.057584295552875
316 => 0.058799230096302
317 => 0.058397534741729
318 => 0.058080700949222
319 => 0.05953217797395
320 => 0.057936219361872
321 => 0.05931804037122
322 => 0.057545840633623
323 => 0.058297138297341
324 => 0.057870665407236
325 => 0.058146645633685
326 => 0.056533270869062
327 => 0.057403808729594
328 => 0.056497053632001
329 => 0.056496623712021
330 => 0.056476607042985
331 => 0.057543400394136
401 => 0.057578188487018
402 => 0.056789826588682
403 => 0.056676211322604
404 => 0.057096306509465
405 => 0.056604485068755
406 => 0.056834605225376
407 => 0.056611455173872
408 => 0.056561219397019
409 => 0.056160932180144
410 => 0.055988477440988
411 => 0.056056101387822
412 => 0.055825265994742
413 => 0.055686179320731
414 => 0.056448939202763
415 => 0.056041427367439
416 => 0.056386482169457
417 => 0.05599324867317
418 => 0.054630130051358
419 => 0.053846186117237
420 => 0.051271381401798
421 => 0.052001592825061
422 => 0.052485723754143
423 => 0.052325718484969
424 => 0.052669471716973
425 => 0.05269057537357
426 => 0.052578817693696
427 => 0.052449416617448
428 => 0.052386431329858
429 => 0.052855872060672
430 => 0.053128398205558
501 => 0.052534312769712
502 => 0.052395126864232
503 => 0.052995780040228
504 => 0.053362178130599
505 => 0.056067455768597
506 => 0.055867040063243
507 => 0.056370044154087
508 => 0.056313413612685
509 => 0.056840642034725
510 => 0.057702437681405
511 => 0.055950166169852
512 => 0.056254299915268
513 => 0.056179733344366
514 => 0.05699383161307
515 => 0.056996373139003
516 => 0.05650828055969
517 => 0.056772883465333
518 => 0.056625189382404
519 => 0.056892092552309
520 => 0.05586436338931
521 => 0.057116026573336
522 => 0.057825638943284
523 => 0.057835491911729
524 => 0.058171842543253
525 => 0.058513594264996
526 => 0.059169556934579
527 => 0.058495299822165
528 => 0.05728237691454
529 => 0.057369946030753
530 => 0.056658809773804
531 => 0.05667076410276
601 => 0.056606950957913
602 => 0.05679845900923
603 => 0.055906388637142
604 => 0.056115755770427
605 => 0.055822640557777
606 => 0.05625366274004
607 => 0.055789954122444
608 => 0.056179697386108
609 => 0.056347897658511
610 => 0.056968560284773
611 => 0.055698281747899
612 => 0.053108097820919
613 => 0.053652585885315
614 => 0.052847245269458
615 => 0.052921782609604
616 => 0.053072359899227
617 => 0.052584289637734
618 => 0.052677398062766
619 => 0.052674071574629
620 => 0.052645405696987
621 => 0.052518439771805
622 => 0.052334314060848
623 => 0.053067814222396
624 => 0.053192450193031
625 => 0.053469500516624
626 => 0.054293814354607
627 => 0.054211445963533
628 => 0.054345792226806
629 => 0.054052515088404
630 => 0.052935386894915
701 => 0.052996052330488
702 => 0.052239553376803
703 => 0.053450155137537
704 => 0.053163468661433
705 => 0.052978640025282
706 => 0.052928207819483
707 => 0.05375456497203
708 => 0.054001823983633
709 => 0.053847748760537
710 => 0.053531735982875
711 => 0.054138573936778
712 => 0.054300938172804
713 => 0.054337285537488
714 => 0.055412486042168
715 => 0.054397377301712
716 => 0.054641724064853
717 => 0.056548047759018
718 => 0.054819275223098
719 => 0.055735044591603
720 => 0.055690222446448
721 => 0.05615869906743
722 => 0.05565179368972
723 => 0.055658077389397
724 => 0.056074052891474
725 => 0.055489890320385
726 => 0.055345243452686
727 => 0.055145414840941
728 => 0.055581733304103
729 => 0.055843286489781
730 => 0.057951213076702
731 => 0.059313029784985
801 => 0.059253909730142
802 => 0.059794156363298
803 => 0.059550770306969
804 => 0.058764812529086
805 => 0.060106346618592
806 => 0.059681829100502
807 => 0.059716825808905
808 => 0.05971552322967
809 => 0.059997790267235
810 => 0.059797778201726
811 => 0.059403533889791
812 => 0.059665251662665
813 => 0.060442459882285
814 => 0.062854938043643
815 => 0.064204992783824
816 => 0.062773663053106
817 => 0.063760975135087
818 => 0.063168939701163
819 => 0.063061349251291
820 => 0.063681454200565
821 => 0.064302644561464
822 => 0.064263077420954
823 => 0.063812125117419
824 => 0.063557393603644
825 => 0.065486305967271
826 => 0.066907495738626
827 => 0.066810580123997
828 => 0.067238334128324
829 => 0.068494233114963
830 => 0.068609056778863
831 => 0.068594591636403
901 => 0.068309989204818
902 => 0.069546584856256
903 => 0.070578174704516
904 => 0.06824411196486
905 => 0.069132892500996
906 => 0.069531894718388
907 => 0.070117748352143
908 => 0.071106181632756
909 => 0.072179882344482
910 => 0.07233171539765
911 => 0.072223982580547
912 => 0.071515848098539
913 => 0.072690704229223
914 => 0.073378907396812
915 => 0.073788716633861
916 => 0.074827924673263
917 => 0.069534358820246
918 => 0.065787309802187
919 => 0.065202153989973
920 => 0.066392091344226
921 => 0.066705868334969
922 => 0.066579385223443
923 => 0.062361740886826
924 => 0.065179948965403
925 => 0.068212103896286
926 => 0.068328581316021
927 => 0.069846541473791
928 => 0.07034085152445
929 => 0.071563008415041
930 => 0.071486562168777
1001 => 0.071784137922872
1002 => 0.071715730410299
1003 => 0.073979518694623
1004 => 0.076476813348045
1005 => 0.076390339975108
1006 => 0.076031324322029
1007 => 0.076564523788116
1008 => 0.079141999496808
1009 => 0.078904706836758
1010 => 0.079135216443455
1011 => 0.082174205564167
1012 => 0.086125323712255
1013 => 0.084289632646692
1014 => 0.088272554053088
1015 => 0.090779591952823
1016 => 0.095115254767857
1017 => 0.094572408429826
1018 => 0.096260250147155
1019 => 0.093600600189299
1020 => 0.087493506282121
1021 => 0.086527035294294
1022 => 0.088461934686867
1023 => 0.093218696038788
1024 => 0.088312127344019
1025 => 0.089304719800642
1026 => 0.089018853106359
1027 => 0.089003620485076
1028 => 0.089584987683904
1029 => 0.088741684239931
1030 => 0.085305914301791
1031 => 0.086880507417321
1101 => 0.086272481397243
1102 => 0.086947131597862
1103 => 0.090587940483696
1104 => 0.088978252089225
1105 => 0.087282576126117
1106 => 0.089409330084474
1107 => 0.092117418705412
1108 => 0.091947951386417
1109 => 0.091619113955722
1110 => 0.09347275333518
1111 => 0.096534422524666
1112 => 0.0973619794038
1113 => 0.097972864973322
1114 => 0.098057095772363
1115 => 0.098924725351633
1116 => 0.094259262433092
1117 => 0.1016634719024
1118 => 0.10294197434059
1119 => 0.10270166887071
1120 => 0.10412267052315
1121 => 0.10370457578967
1122 => 0.10309882211791
1123 => 0.10535141199275
1124 => 0.10276899947588
1125 => 0.099103590024867
1126 => 0.097092673906465
1127 => 0.099740810467153
1128 => 0.10135793505753
1129 => 0.10242675154334
1130 => 0.10275017476614
1201 => 0.094621429038589
1202 => 0.090240485932343
1203 => 0.093048620235832
1204 => 0.096474737893165
1205 => 0.094240230176517
1206 => 0.094327818648527
1207 => 0.091141997862884
1208 => 0.09675661234186
1209 => 0.095938610238613
1210 => 0.10018240659727
1211 => 0.099169590537687
1212 => 0.10263024172495
1213 => 0.10171893628829
1214 => 0.10550171420546
1215 => 0.10701076673124
1216 => 0.10954470078729
1217 => 0.11140867299389
1218 => 0.11250323312572
1219 => 0.11243751984099
1220 => 0.11677471239097
1221 => 0.11421722147421
1222 => 0.11100441012844
1223 => 0.11094630050749
1224 => 0.11261026102935
1225 => 0.1160974657979
1226 => 0.11700164725762
1227 => 0.1175069613429
1228 => 0.11673305523119
1229 => 0.11395708213808
1230 => 0.11275843103097
1231 => 0.11377971650249
]
'min_raw' => 0.042112509754257
'max_raw' => 0.1175069613429
'avg_raw' => 0.07980973554858
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.042112'
'max' => '$0.1175069'
'avg' => '$0.0798097'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.016671712032063
'max_diff' => 0.060712172608583
'year' => 2036
]
11 => [
'items' => [
101 => 0.11253077213089
102 => 0.11468680050817
103 => 0.117647487973
104 => 0.11703611771934
105 => 0.11907983681557
106 => 0.12119487107466
107 => 0.12421946505728
108 => 0.12501020592473
109 => 0.12631727050944
110 => 0.12766266931545
111 => 0.12809477515243
112 => 0.12891979926979
113 => 0.12891545098544
114 => 0.13140171669363
115 => 0.13414414476299
116 => 0.13517934787182
117 => 0.13755974033914
118 => 0.13348340165776
119 => 0.13657535137319
120 => 0.13936436741304
121 => 0.1360391875127
122 => 0.14062217333776
123 => 0.14080012029208
124 => 0.14348690803393
125 => 0.14076333393132
126 => 0.13914608432314
127 => 0.14381502334439
128 => 0.14607417586657
129 => 0.1453937007413
130 => 0.14021525143876
131 => 0.13720117183055
201 => 0.12931274412332
202 => 0.13865692749725
203 => 0.14320820664513
204 => 0.14020346472528
205 => 0.14171888177425
206 => 0.14998650581782
207 => 0.15313428176459
208 => 0.15247956637228
209 => 0.15259020249605
210 => 0.15428868526075
211 => 0.161820693211
212 => 0.15730733945663
213 => 0.16075762928971
214 => 0.16258765057622
215 => 0.16428747633533
216 => 0.16011324150641
217 => 0.15468262332566
218 => 0.15296251858597
219 => 0.13990470235834
220 => 0.13922498631647
221 => 0.13884344110467
222 => 0.13643785251487
223 => 0.13454771882947
224 => 0.13304461434667
225 => 0.12910001931881
226 => 0.13043120434591
227 => 0.12414434317246
228 => 0.12816645415855
301 => 0.11813247192417
302 => 0.12648907049036
303 => 0.12194095381869
304 => 0.12499489184251
305 => 0.12498423694044
306 => 0.11936096878666
307 => 0.11611758507018
308 => 0.1181843954087
309 => 0.12040018015522
310 => 0.12075968377554
311 => 0.12363250653729
312 => 0.12443424961898
313 => 0.12200493065166
314 => 0.11792453994501
315 => 0.11887232164237
316 => 0.11609837830433
317 => 0.11123714930261
318 => 0.11472856884056
319 => 0.1159206929777
320 => 0.11644720291047
321 => 0.1116667425032
322 => 0.11016461805439
323 => 0.10936489960189
324 => 0.11730744253689
325 => 0.11774255296814
326 => 0.11551646648342
327 => 0.12557858848054
328 => 0.12330122037659
329 => 0.12584559851743
330 => 0.11878632038751
331 => 0.11905599431865
401 => 0.11571401892199
402 => 0.11758530183325
403 => 0.11626273938584
404 => 0.11743412066639
405 => 0.11813624177617
406 => 0.12147766878755
407 => 0.12652722421942
408 => 0.12097857101882
409 => 0.11856094336115
410 => 0.12006082596272
411 => 0.12405521098291
412 => 0.13010690875731
413 => 0.1265241818731
414 => 0.12811413522566
415 => 0.1284614693011
416 => 0.12581969913644
417 => 0.13020431459146
418 => 0.13255406563436
419 => 0.13496442399191
420 => 0.13705727061707
421 => 0.13400167385899
422 => 0.13727160039272
423 => 0.13463661682627
424 => 0.13227276416757
425 => 0.1322763491563
426 => 0.13079346985312
427 => 0.1279202043484
428 => 0.12739033010552
429 => 0.13014680283269
430 => 0.13235723292094
501 => 0.13253929453025
502 => 0.1337631022031
503 => 0.13448733897768
504 => 0.14158584392064
505 => 0.14444092133061
506 => 0.14793205594368
507 => 0.14929204962503
508 => 0.15338514302119
509 => 0.150079637679
510 => 0.14936447080561
511 => 0.13943596506718
512 => 0.14106175732564
513 => 0.14366480759706
514 => 0.13947888840739
515 => 0.14213389066746
516 => 0.14265804435423
517 => 0.13933665247509
518 => 0.14111075138661
519 => 0.13639927066128
520 => 0.12662992162424
521 => 0.13021519066966
522 => 0.1328551554756
523 => 0.12908760019221
524 => 0.13584079721316
525 => 0.1318957189278
526 => 0.1306453185085
527 => 0.12576706067286
528 => 0.12806941058992
529 => 0.13118337181921
530 => 0.12925930581636
531 => 0.13325203167225
601 => 0.13890679630528
602 => 0.14293671832984
603 => 0.14324608570315
604 => 0.14065511582516
605 => 0.14480716158998
606 => 0.14483740471048
607 => 0.14015388012617
608 => 0.13728524739625
609 => 0.13663348800435
610 => 0.13826171075026
611 => 0.14023867375028
612 => 0.14335579339068
613 => 0.14523940350585
614 => 0.1501508596966
615 => 0.15147975891933
616 => 0.15293981626804
617 => 0.15489090315094
618 => 0.15723368320226
619 => 0.15210781382451
620 => 0.1523114741707
621 => 0.14753833557864
622 => 0.14243755245571
623 => 0.14630841102442
624 => 0.15136904368428
625 => 0.15020812896061
626 => 0.15007750233886
627 => 0.15029718008384
628 => 0.14942188829412
629 => 0.14546297596904
630 => 0.14347483498349
701 => 0.14604004408371
702 => 0.14740333855616
703 => 0.14951768939114
704 => 0.1492570510222
705 => 0.15470339170843
706 => 0.15681967501031
707 => 0.15627823918082
708 => 0.15637787640383
709 => 0.16020930623501
710 => 0.16447064420092
711 => 0.16846194953907
712 => 0.17252207675959
713 => 0.16762743492579
714 => 0.16514223766213
715 => 0.1677063268723
716 => 0.16634578504522
717 => 0.17416386194657
718 => 0.17470516862858
719 => 0.182522680194
720 => 0.18994242956154
721 => 0.1852822179224
722 => 0.18967658759756
723 => 0.19442945667947
724 => 0.20359851226367
725 => 0.20051069691418
726 => 0.1981454787487
727 => 0.19591035901097
728 => 0.20056128836991
729 => 0.20654463468978
730 => 0.2078333901793
731 => 0.20992166641482
801 => 0.20772609929544
802 => 0.21037041805694
803 => 0.21970602525757
804 => 0.21718346178428
805 => 0.21360101612989
806 => 0.22097058141354
807 => 0.22363759844123
808 => 0.24235612066925
809 => 0.26598902820571
810 => 0.25620484930358
811 => 0.25013149372554
812 => 0.2515588763483
813 => 0.26018881415621
814 => 0.26296047627958
815 => 0.25542614317904
816 => 0.25808739700283
817 => 0.27275116722064
818 => 0.28061780947241
819 => 0.26993385266349
820 => 0.24045723955955
821 => 0.2132784560951
822 => 0.22048749334644
823 => 0.21967021224461
824 => 0.23542460400105
825 => 0.21712329947971
826 => 0.21743144651154
827 => 0.23351162240531
828 => 0.22922170716086
829 => 0.22227259387567
830 => 0.21332919231243
831 => 0.19679648735825
901 => 0.18215300953174
902 => 0.21087224174105
903 => 0.20963381622565
904 => 0.20784039255497
905 => 0.21183146286536
906 => 0.23121096740752
907 => 0.23076420710249
908 => 0.22792214598099
909 => 0.23007782429287
910 => 0.22189469304505
911 => 0.22400367229405
912 => 0.21327415083693
913 => 0.21812434263995
914 => 0.22225768419957
915 => 0.22308751371283
916 => 0.22495716197836
917 => 0.20898122225353
918 => 0.21615395016103
919 => 0.22036725581297
920 => 0.20133138759613
921 => 0.2199909779033
922 => 0.20870311668618
923 => 0.2048718470511
924 => 0.21003014688334
925 => 0.2080199524221
926 => 0.20629170526691
927 => 0.20532731365926
928 => 0.20911499975528
929 => 0.20893829967164
930 => 0.20274091006036
1001 => 0.19465666795036
1002 => 0.19737000495867
1003 => 0.19638422418588
1004 => 0.19281162749703
1005 => 0.19521912630835
1006 => 0.18461771995059
1007 => 0.16637855132521
1008 => 0.17842790479998
1009 => 0.17796401779838
1010 => 0.17773010493657
1011 => 0.18678486105318
1012 => 0.18591445518134
1013 => 0.1843346600009
1014 => 0.19278261331966
1015 => 0.1896989967173
1016 => 0.19920197649431
1017 => 0.20546125358964
1018 => 0.20387369845186
1019 => 0.20976057881374
1020 => 0.19743251476317
1021 => 0.20152740312469
1022 => 0.20237135394073
1023 => 0.19267836688704
1024 => 0.18605686434646
1025 => 0.18561528561766
1026 => 0.17413451271155
1027 => 0.18026744892843
1028 => 0.18566417900115
1029 => 0.18307956409949
1030 => 0.1822613522348
1031 => 0.186441419203
1101 => 0.18676624620628
1102 => 0.17936015610783
1103 => 0.18090011675967
1104 => 0.187322008675
1105 => 0.18073830156028
1106 => 0.16794723407884
1107 => 0.1647748724931
1108 => 0.16435162097933
1109 => 0.15574792475563
1110 => 0.16498686486349
1111 => 0.16095381991821
1112 => 0.17369416057706
1113 => 0.16641694632054
1114 => 0.16610324015873
1115 => 0.16562902728446
1116 => 0.1582234705305
1117 => 0.15984481681193
1118 => 0.16523441878943
1119 => 0.16715748949321
1120 => 0.16695689746355
1121 => 0.16520800679945
1122 => 0.16600863998971
1123 => 0.1634295215248
1124 => 0.16251878111513
1125 => 0.15964423386333
1126 => 0.15541944351714
1127 => 0.15600692652692
1128 => 0.14763651137458
1129 => 0.14307586494803
1130 => 0.14181353812551
1201 => 0.14012550194217
1202 => 0.14200420630411
1203 => 0.14761279904014
1204 => 0.14084764627116
1205 => 0.12924926636905
1206 => 0.12994634876384
1207 => 0.13151248593932
1208 => 0.12859399967384
1209 => 0.12583189735355
1210 => 0.1282333212246
1211 => 0.12331893476133
1212 => 0.13210636606465
1213 => 0.13186869067439
1214 => 0.13514410165316
1215 => 0.13719228335638
1216 => 0.13247188763715
1217 => 0.13128472087907
1218 => 0.13196098501819
1219 => 0.12078384519548
1220 => 0.13423069087254
1221 => 0.13434697975235
1222 => 0.13335124376241
1223 => 0.14051127396066
1224 => 0.1556211709484
1225 => 0.14993621990741
1226 => 0.14773483503579
1227 => 0.14355000078563
1228 => 0.1491260439531
1229 => 0.14869789083766
1230 => 0.1467616200774
1231 => 0.14559055748007
]
'min_raw' => 0.10936489960189
'max_raw' => 0.28061780947241
'avg_raw' => 0.19499135453715
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.109364'
'max' => '$0.280617'
'avg' => '$0.194991'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.067252389847637
'max_diff' => 0.16311084812951
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0034328392300318
]
1 => [
'year' => 2028
'avg' => 0.0058917486790837
]
2 => [
'year' => 2029
'avg' => 0.016095195506873
]
3 => [
'year' => 2030
'avg' => 0.012417419363868
]
4 => [
'year' => 2031
'avg' => 0.012195444689159
]
5 => [
'year' => 2032
'avg' => 0.02138245258779
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0034328392300318
'min' => '$0.003432'
'max_raw' => 0.02138245258779
'max' => '$0.021382'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.02138245258779
]
1 => [
'year' => 2033
'avg' => 0.054997866787465
]
2 => [
'year' => 2034
'avg' => 0.034860291043695
]
3 => [
'year' => 2035
'avg' => 0.041117793228257
]
4 => [
'year' => 2036
'avg' => 0.07980973554858
]
5 => [
'year' => 2037
'avg' => 0.19499135453715
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.02138245258779
'min' => '$0.021382'
'max_raw' => 0.19499135453715
'max' => '$0.194991'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.19499135453715
]
]
]
]
'prediction_2025_max_price' => '$0.005869'
'last_price' => 0.00569125
'sma_50day_nextmonth' => '$0.005188'
'sma_200day_nextmonth' => '$0.0125024'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.005187'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.004951'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0049038'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.005143'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.005643'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.007927'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.015819'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.005286'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.005124'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.00504'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.005192'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.006066'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.010175'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.026516'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.010736'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0552054'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.11252'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.180858'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.0054092'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.00556'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.007024'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.016271'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.0510068'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.112496'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.266253'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '57.77'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 141.13
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.004948'
'vwma_10_action' => 'BUY'
'hma_9' => '0.005155'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 137.57
'cci_20_action' => 'SELL'
'adx_14' => 26.37
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000554'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 65.86
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.001360'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 19
'sell_pct' => 44.12
'buy_pct' => 55.88
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767676582
'last_updated_date' => '6. Januar 2026'
]
Alpaca Finance Preisprognose für 2026
Die Preisprognose für Alpaca Finance im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.001966 am unteren Ende und $0.005869 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Alpaca Finance im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn ALPACA das prognostizierte Preisziel erreicht.
Alpaca Finance Preisprognose 2027-2032
Die Preisprognose für ALPACA für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.003432 am unteren Ende und $0.021382 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Alpaca Finance, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Alpaca Finance Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.001892 | $0.003432 | $0.004972 |
| 2028 | $0.003416 | $0.005891 | $0.008367 |
| 2029 | $0.0075043 | $0.016095 | $0.024686 |
| 2030 | $0.006382 | $0.012417 | $0.018452 |
| 2031 | $0.007545 | $0.012195 | $0.016845 |
| 2032 | $0.011517 | $0.021382 | $0.031246 |
Alpaca Finance Preisprognose 2032-2037
Die Preisprognose für Alpaca Finance für die Jahre 2032-2037 wird derzeit zwischen $0.021382 am unteren Ende und $0.194991 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Alpaca Finance bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Alpaca Finance Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.011517 | $0.021382 | $0.031246 |
| 2033 | $0.026765 | $0.054997 | $0.08323 |
| 2034 | $0.021517 | $0.03486 | $0.0482027 |
| 2035 | $0.02544 | $0.041117 | $0.056794 |
| 2036 | $0.042112 | $0.0798097 | $0.1175069 |
| 2037 | $0.109364 | $0.194991 | $0.280617 |
Alpaca Finance Potenzielles Preishistogramm
Alpaca Finance Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Alpaca Finance Bullisch, mit 19 technischen Indikatoren, die bullische Signale zeigen, und 15 anzeigen bärische Signale. Die Preisprognose für ALPACA wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Alpaca Finance
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Alpaca Finance im nächsten Monat steigen, und bis zum 04.02.2026 $0.0125024 erreichen. Der kurzfristige 50-Tage-SMA für Alpaca Finance wird voraussichtlich bis zum 04.02.2026 $0.005188 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 57.77, was darauf hindeutet, dass sich der ALPACA-Markt in einem NEUTRAL Zustand befindet.
Beliebte ALPACA Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.005187 | BUY |
| SMA 5 | $0.004951 | BUY |
| SMA 10 | $0.0049038 | BUY |
| SMA 21 | $0.005143 | BUY |
| SMA 50 | $0.005643 | BUY |
| SMA 100 | $0.007927 | SELL |
| SMA 200 | $0.015819 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.005286 | BUY |
| EMA 5 | $0.005124 | BUY |
| EMA 10 | $0.00504 | BUY |
| EMA 21 | $0.005192 | BUY |
| EMA 50 | $0.006066 | SELL |
| EMA 100 | $0.010175 | SELL |
| EMA 200 | $0.026516 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.010736 | SELL |
| SMA 50 | $0.0552054 | SELL |
| SMA 100 | $0.11252 | SELL |
| SMA 200 | $0.180858 | SELL |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.016271 | SELL |
| EMA 50 | $0.0510068 | SELL |
| EMA 100 | $0.112496 | SELL |
| EMA 200 | $0.266253 | SELL |
Alpaca Finance Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 57.77 | NEUTRAL |
| Stoch RSI (14) | 141.13 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 137.57 | SELL |
| Average Directional Index (14) | 26.37 | SELL |
| Awesome Oscillator (5, 34) | -0.000554 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 65.86 | NEUTRAL |
| VWMA (10) | 0.004948 | BUY |
| Hull Moving Average (9) | 0.005155 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.001360 | SELL |
Auf weltweiten Geldflüssen basierende Alpaca Finance-Preisprognose
Definition weltweiter Geldflüsse, die für Alpaca Finance-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Alpaca Finance-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.007997 | $0.011237 | $0.01579 | $0.022188 | $0.031177 | $0.04381 |
| Amazon.com aktie | $0.011875 | $0.024778 | $0.0517011 | $0.107877 | $0.225092 | $0.469669 |
| Apple aktie | $0.008072 | $0.01145 | $0.016241 | $0.023037 | $0.032676 | $0.046349 |
| Netflix aktie | $0.008979 | $0.014168 | $0.022356 | $0.035274 | $0.055657 | $0.087819 |
| Google aktie | $0.00737 | $0.009544 | $0.012359 | $0.0160059 | $0.020727 | $0.026842 |
| Tesla aktie | $0.0129016 | $0.029247 | $0.0663008 | $0.150298 | $0.340716 | $0.772377 |
| Kodak aktie | $0.004267 | $0.00320042 | $0.002399 | $0.001799 | $0.001349 | $0.001012 |
| Nokia aktie | $0.00377 | $0.002497 | $0.001654 | $0.001096 | $0.000726 | $0.000481 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Alpaca Finance Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Alpaca Finance investieren?", "Sollte ich heute ALPACA kaufen?", "Wird Alpaca Finance auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Alpaca Finance-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Alpaca Finance.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Alpaca Finance zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Alpaca Finance-Preis entspricht heute $0.005691 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
kurzfristige Alpaca Finance-Prognose
basierend auf dem Preisverlauf der letzten 4 Stunden
langfristige Alpaca Finance-Prognose
basierend auf dem Preisverlauf des letzten Monats
Alpaca Finance-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Alpaca Finance 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.005839 | $0.00599 | $0.006146 | $0.0063064 |
| Wenn die Wachstumsrate von Alpaca Finance 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.005987 | $0.006298 | $0.006625 | $0.00697 |
| Wenn die Wachstumsrate von Alpaca Finance 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.00643 | $0.007266 | $0.008211 | $0.009278 |
| Wenn die Wachstumsrate von Alpaca Finance 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.00717 | $0.009034 | $0.011382 | $0.014341 |
| Wenn die Wachstumsrate von Alpaca Finance 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.008649 | $0.013146 | $0.019981 | $0.030368 |
| Wenn die Wachstumsrate von Alpaca Finance 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.013087 | $0.030097 | $0.069214 | $0.15917 |
| Wenn die Wachstumsrate von Alpaca Finance 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.020484 | $0.07373 | $0.26538 | $0.95519 |
Fragefeld
Ist ALPACA eine gute Investition?
Die Entscheidung, Alpaca Finance zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Alpaca Finance in den letzten 2026 Stunden um 12.2734% gestiegen, und Alpaca Finance hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Alpaca Finance investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Alpaca Finance steigen?
Es scheint, dass der Durchschnittswert von Alpaca Finance bis zum Ende dieses Jahres potenziell auf $0.005869 steigen könnte. Betrachtet man die Aussichten von Alpaca Finance in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.018452 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Alpaca Finance nächste Woche kosten?
Basierend auf unserer neuen experimentellen Alpaca Finance-Prognose wird der Preis von Alpaca Finance in der nächsten Woche um 0.86% steigen und $0.005739 erreichen bis zum 13. Januar 2026.
Wie viel wird Alpaca Finance nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Alpaca Finance-Prognose wird der Preis von Alpaca Finance im nächsten Monat um -11.62% fallen und $0.00503 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Alpaca Finance in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Alpaca Finance im Jahr 2026 wird erwartet, dass ALPACA innerhalb der Spanne von $0.001966 bis $0.005869 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Alpaca Finance-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Alpaca Finance in 5 Jahren sein?
Die Zukunft von Alpaca Finance scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.018452 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Alpaca Finance-Prognose für 2030 könnte der Wert von Alpaca Finance seinen höchsten Gipfel von ungefähr $0.018452 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.006382 liegen wird.
Wie viel wird Alpaca Finance im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Alpaca Finance-Preisprognosesimulation wird der Wert von ALPACA im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.005869 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.005869 und $0.001966 während des Jahres 2026 liegen.
Wie viel wird Alpaca Finance im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Alpaca Finance könnte der Wert von ALPACA um -12.62% fallen und bis zu $0.004972 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.004972 und $0.001892 im Laufe des Jahres schwanken.
Wie viel wird Alpaca Finance im Jahr 2028 kosten?
Unser neues experimentelles Alpaca Finance-Preisprognosemodell deutet darauf hin, dass der Wert von ALPACA im Jahr 2028 um 47.02% steigen, und im besten Fall $0.008367 erreichen wird. Der Preis wird voraussichtlich zwischen $0.008367 und $0.003416 im Laufe des Jahres liegen.
Wie viel wird Alpaca Finance im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Alpaca Finance im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.024686 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.024686 und $0.0075043.
Wie viel wird Alpaca Finance im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Alpaca Finance-Preisprognosen wird der Wert von ALPACA im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.018452 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.018452 und $0.006382 während des Jahres 2030 liegen.
Wie viel wird Alpaca Finance im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Alpaca Finance im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.016845 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.016845 und $0.007545 während des Jahres schwanken.
Wie viel wird Alpaca Finance im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Alpaca Finance-Preisprognose könnte ALPACA eine 449.04% Steigerung im Wert erfahren und $0.031246 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.031246 und $0.011517 liegen.
Wie viel wird Alpaca Finance im Jahr 2033 kosten?
Laut unserer experimentellen Alpaca Finance-Preisprognose wird der Wert von ALPACA voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.08323 beträgt. Im Laufe des Jahres könnte der Preis von ALPACA zwischen $0.08323 und $0.026765 liegen.
Wie viel wird Alpaca Finance im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Alpaca Finance-Preisprognosesimulation deuten darauf hin, dass ALPACA im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.0482027 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.0482027 und $0.021517.
Wie viel wird Alpaca Finance im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Alpaca Finance könnte ALPACA um 897.93% steigen, wobei der Wert im Jahr 2035 $0.056794 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.056794 und $0.02544.
Wie viel wird Alpaca Finance im Jahr 2036 kosten?
Unsere jüngste Alpaca Finance-Preisprognosesimulation deutet darauf hin, dass der Wert von ALPACA im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.1175069 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.1175069 und $0.042112.
Wie viel wird Alpaca Finance im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Alpaca Finance um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.280617 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.280617 und $0.109364 liegen.
Verwandte Prognosen
Vite-Preisprognose
Passage-Preisprognose
Ascendia (ex AirDAO)-Preisprognose
GET Protocol-Preisprognose
ISKRA Token-Preisprognose
Instadapp-Preisprognose
Evmos-Preisprognose
Hive Dollar-Preisprognose
Onomy Protocol-Preisprognose
FEED EVERY GORILLA-Preisprognose
Pluton-Preisprognose
Shuffle-Preisprognose
Advertise Coin-Preisprognose
Frax Price Index Share-Preisprognose
Decimal-Preisprognose
WAGMI Games-Preisprognose
Alkimi-Preisprognose
RabbitX-Preisprognose
GameGPT-Preisprognose
Gamer Arena-Preisprognose
Troll-Preisprognose
Orange-Preisprognose
KRYLL-Preisprognose
Beefy.Finance-Preisprognose
Aura Finance-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Alpaca Finance?
Alpaca Finance-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Alpaca Finance Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Alpaca Finance. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von ALPACA über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von ALPACA über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von ALPACA einzuschätzen.
Wie liest man Alpaca Finance-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Alpaca Finance in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von ALPACA innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Alpaca Finance?
Die Preisentwicklung von Alpaca Finance wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von ALPACA. Die Marktkapitalisierung von Alpaca Finance kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von ALPACA-„Walen“, großen Inhabern von Alpaca Finance, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Alpaca Finance-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


