Aave v3 WMATIC Preisvorhersage bis zu $0.132437 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.044367 | $0.132437 |
| 2027 | $0.042711 | $0.1122029 |
| 2028 | $0.077081 | $0.188796 |
| 2029 | $0.169325 | $0.5570048 |
| 2030 | $0.1440042 | $0.416358 |
| 2031 | $0.170257 | $0.380088 |
| 2032 | $0.259885 | $0.705044 |
| 2033 | $0.603917 | $1.87 |
| 2034 | $0.48552 | $1.08 |
| 2035 | $0.574035 | $1.28 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Aave v3 WMATIC eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.44 Gewinn erzielen könnten, was einer Rendite von 39.54% in den nächsten 90 Tagen entspricht.
Langfristige Aave v3 WMATIC Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Aave v3 WMATIC'
'name_with_ticker' => 'Aave v3 WMATIC <small>AWMATIC</small>'
'name_lang' => 'Aave v3 WMATIC'
'name_lang_with_ticker' => 'Aave v3 WMATIC <small>AWMATIC</small>'
'name_with_lang' => 'Aave v3 WMATIC'
'name_with_lang_with_ticker' => 'Aave v3 WMATIC <small>AWMATIC</small>'
'image' => '/uploads/coins/aave-v3-wmatic.png?1717131421'
'price_for_sd' => 0.1284
'ticker' => 'AWMATIC'
'marketcap' => '$0'
'low24h' => '$0.1206'
'high24h' => '$0.1276'
'volume24h' => '$0'
'current_supply' => '0'
'max_supply' => '57.28M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.1284'
'change_24h_pct' => '5.293%'
'ath_price' => '$1.28'
'ath_days' => 664
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '13.03.2024'
'ath_pct' => '-90.04%'
'fdv' => '$7.36M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$6.33'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.129513'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.113495'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.044367'
'current_year_max_price_prediction' => '$0.132437'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.1440042'
'grand_prediction_max_price' => '$0.416358'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.13084839670371
107 => 0.13133693711903
108 => 0.13243764362025
109 => 0.12303222708153
110 => 0.12725498297889
111 => 0.12973545644987
112 => 0.11852858706758
113 => 0.12951393267502
114 => 0.12286849970475
115 => 0.12061293994359
116 => 0.12364975401459
117 => 0.12246630461772
118 => 0.12144884432078
119 => 0.12088108399289
120 => 0.1231109850857
121 => 0.12300695753441
122 => 0.11935840654143
123 => 0.11459902050505
124 => 0.11619642668038
125 => 0.11561607404112
126 => 0.11351280120946
127 => 0.11493015314787
128 => 0.10868885251651
129 => 0.097951019174851
130 => 0.10504476078908
131 => 0.10477165945344
201 => 0.10463394937585
202 => 0.10996470014233
203 => 0.10945227145748
204 => 0.10852220837676
205 => 0.11349571987162
206 => 0.11168032127282
207 => 0.1172749519926
208 => 0.12095993762267
209 => 0.12002530607009
210 => 0.12349105286625
211 => 0.11623322769235
212 => 0.11864398608172
213 => 0.1191408400446
214 => 0.11343434751179
215 => 0.10953611112763
216 => 0.10927614320396
217 => 0.1025171385239
218 => 0.10612774426721
219 => 0.1093049279043
220 => 0.10778330350154
221 => 0.10730160267287
222 => 0.10976250773841
223 => 0.10995374113823
224 => 0.10559359935634
225 => 0.10650021090053
226 => 0.11028093175142
227 => 0.10640494643542
228 => 0.098874540105018
301 => 0.097006895219067
302 => 0.096757716963756
303 => 0.091692515908271
304 => 0.097131700180837
305 => 0.094757350484786
306 => 0.10225789272553
307 => 0.097973623223834
308 => 0.097788936928477
309 => 0.097509756505455
310 => 0.093149928716179
311 => 0.09410445392052
312 => 0.097277441078043
313 => 0.098409598642105
314 => 0.09829150533268
315 => 0.097261891709954
316 => 0.097733243553963
317 => 0.09621485503454
318 => 0.095678680445807
319 => 0.093986365957328
320 => 0.091499131173074
321 => 0.091844996424922
322 => 0.08691713349693
323 => 0.084232172232279
324 => 0.083489010341445
325 => 0.082495223202147
326 => 0.083601261243195
327 => 0.086903173480408
328 => 0.08292036678257
329 => 0.076092124060533
330 => 0.076502513082887
331 => 0.077424535370522
401 => 0.075706352937302
402 => 0.074080237460381
403 => 0.075494012936645
404 => 0.072600796480184
405 => 0.07777416675678
406 => 0.077634241589001
407 => 0.079562554109044
408 => 0.080768367500783
409 => 0.077989358019545
410 => 0.077290444650255
411 => 0.077688577469244
412 => 0.071108328823162
413 => 0.079024807409278
414 => 0.07909326944483
415 => 0.07850705593193
416 => 0.082722336385181
417 => 0.091617892920487
418 => 0.088271026728972
419 => 0.086975018980052
420 => 0.084511307301978
421 => 0.087794056832287
422 => 0.087541992887229
423 => 0.086402064135267
424 => 0.085712631669285
425 => 0.086982932127009
426 => 0.085555227384781
427 => 0.085298772382374
428 => 0.083744934093582
429 => 0.083190284519621
430 => 0.082779644056296
501 => 0.082327569254874
502 => 0.08332473361679
503 => 0.081065027984792
504 => 0.078340044514277
505 => 0.078113491623434
506 => 0.078739024073787
507 => 0.07846227252992
508 => 0.078112166643516
509 => 0.077443719160706
510 => 0.077245405071677
511 => 0.077889829652703
512 => 0.077162311873012
513 => 0.07823580398689
514 => 0.077943873530943
515 => 0.076313173734938
516 => 0.074280718026726
517 => 0.074262624907703
518 => 0.073824735659264
519 => 0.073267017864287
520 => 0.073111873532579
521 => 0.075374948709374
522 => 0.0800594465972
523 => 0.079139767571286
524 => 0.079804329920006
525 => 0.083073318934179
526 => 0.084112432239856
527 => 0.083374894228234
528 => 0.082365306708563
529 => 0.082409723435685
530 => 0.085859789613327
531 => 0.086074966008889
601 => 0.086618647341939
602 => 0.087317431499234
603 => 0.08349390019185
604 => 0.082229635454952
605 => 0.081630556683873
606 => 0.079785625941611
607 => 0.081775225574733
608 => 0.080615971071663
609 => 0.0807723941099
610 => 0.080670523401042
611 => 0.080726151696546
612 => 0.077772720694354
613 => 0.078848795723789
614 => 0.077059612279169
615 => 0.074664096492089
616 => 0.074656065883195
617 => 0.075242364978358
618 => 0.074893611334669
619 => 0.073955124246779
620 => 0.074088431908079
621 => 0.072920516522172
622 => 0.074230237981719
623 => 0.07426779610677
624 => 0.073763482003835
625 => 0.075781288618999
626 => 0.076607985635606
627 => 0.076276035289599
628 => 0.076584695114418
629 => 0.079177984386914
630 => 0.079600803691474
701 => 0.079788592096685
702 => 0.079536980510899
703 => 0.076632095681751
704 => 0.076760939676448
705 => 0.075815567932697
706 => 0.075016828430047
707 => 0.075048773821316
708 => 0.075459429754545
709 => 0.077252788299609
710 => 0.081026805633436
711 => 0.081170026832484
712 => 0.081343615103787
713 => 0.080637544365922
714 => 0.080424586675195
715 => 0.080705532838308
716 => 0.082122855320489
717 => 0.085768593543958
718 => 0.084479946165115
719 => 0.083432255787124
720 => 0.08435136270392
721 => 0.084209873398278
722 => 0.08301556126885
723 => 0.082982040905157
724 => 0.0806897740841
725 => 0.079842375232745
726 => 0.079134225325849
727 => 0.078360944114239
728 => 0.077902517091376
729 => 0.078606869349849
730 => 0.078767963045013
731 => 0.07722788452189
801 => 0.077017977509974
802 => 0.07827563887686
803 => 0.077722188999635
804 => 0.078291425923258
805 => 0.078423493772362
806 => 0.078402227806876
807 => 0.077824362571739
808 => 0.078192676640426
809 => 0.077321504068274
810 => 0.076374234741948
811 => 0.075769935928716
812 => 0.075242605065566
813 => 0.075535198877091
814 => 0.074492155364522
815 => 0.074158464752533
816 => 0.078067900121284
817 => 0.080955842061693
818 => 0.080913850242129
819 => 0.080658235839952
820 => 0.080278444687805
821 => 0.082095071232136
822 => 0.081462194868685
823 => 0.081922665301685
824 => 0.082039874352767
825 => 0.082394630849284
826 => 0.082521425804437
827 => 0.082138163385205
828 => 0.080851887894698
829 => 0.07764661166776
830 => 0.076154546931642
831 => 0.07566214071642
901 => 0.07568003874713
902 => 0.075186331159799
903 => 0.07533175017069
904 => 0.075135760362321
905 => 0.074764603080296
906 => 0.07551228096082
907 => 0.075598443871449
908 => 0.075423926920049
909 => 0.07546503197971
910 => 0.074020106159286
911 => 0.074129960731199
912 => 0.073518276515144
913 => 0.073403593098597
914 => 0.071857308665847
915 => 0.069117841655719
916 => 0.070635772305827
917 => 0.068802325533845
918 => 0.068107971460044
919 => 0.071394935651207
920 => 0.071065015612609
921 => 0.070500335919324
922 => 0.069665056963394
923 => 0.069355243873569
924 => 0.067472917614695
925 => 0.0673616997375
926 => 0.068294631458483
927 => 0.06786411556947
928 => 0.067259508212178
929 => 0.065069681652134
930 => 0.062607591571987
1001 => 0.06268190659536
1002 => 0.06346505164104
1003 => 0.065742151482854
1004 => 0.06485244918043
1005 => 0.064206959951864
1006 => 0.064086079222689
1007 => 0.065599154629268
1008 => 0.067740473328676
1009 => 0.068745132153133
1010 => 0.067749545770038
1011 => 0.066605869739317
1012 => 0.066675480000023
1013 => 0.06713856587855
1014 => 0.067187229656702
1015 => 0.066442814132498
1016 => 0.066652362742123
1017 => 0.066334039242576
1018 => 0.064380488513441
1019 => 0.064345154975527
1020 => 0.063865722121337
1021 => 0.063851205085051
1022 => 0.063035570199942
1023 => 0.062921457241297
1024 => 0.061301964671415
1025 => 0.062367919585187
1026 => 0.061652932994174
1027 => 0.06057527955323
1028 => 0.060389491693819
1029 => 0.06038390668642
1030 => 0.061490415811369
1031 => 0.062354989381821
1101 => 0.061665370492037
1102 => 0.061508357638533
1103 => 0.063184844134827
1104 => 0.06297149594666
1105 => 0.062786737791655
1106 => 0.067548741725333
1107 => 0.063779244028026
1108 => 0.062135527876594
1109 => 0.060101117005965
1110 => 0.060763531443832
1111 => 0.060903111898784
1112 => 0.056010720485044
1113 => 0.054025877897798
1114 => 0.05334475471907
1115 => 0.052952758700044
1116 => 0.053131396208291
1117 => 0.051344805080954
1118 => 0.052545423866014
1119 => 0.05099838696653
1120 => 0.050739021195838
1121 => 0.053505314813213
1122 => 0.053890228409617
1123 => 0.052248067424074
1124 => 0.053302600618507
1125 => 0.052920212223098
1126 => 0.051024906473906
1127 => 0.050952519735213
1128 => 0.050001521933487
1129 => 0.048513394523247
1130 => 0.047833280364978
1201 => 0.04747907100633
1202 => 0.047625224691111
1203 => 0.047551324915709
1204 => 0.047069078893477
1205 => 0.047578966693206
1206 => 0.046276414065085
1207 => 0.045757727113187
1208 => 0.045523448250461
1209 => 0.044367357820871
1210 => 0.046207211810096
1211 => 0.046569686223843
1212 => 0.046932874824159
1213 => 0.050094183630524
1214 => 0.049936253576323
1215 => 0.051363864351236
1216 => 0.05130839002173
1217 => 0.050901212302964
1218 => 0.049183396484973
1219 => 0.049868087252902
1220 => 0.047760715493788
1221 => 0.049339701703066
1222 => 0.048619118337192
1223 => 0.049096071742223
1224 => 0.048238466514823
1225 => 0.048713100657318
1226 => 0.046655642354257
1227 => 0.044734416740077
1228 => 0.045507574011295
1229 => 0.046348084386367
1230 => 0.048170525037585
1231 => 0.047085094420529
]
'min_raw' => 0.044367357820871
'max_raw' => 0.13243764362025
'avg_raw' => 0.08840250072056
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.044367'
'max' => '$0.132437'
'avg' => '$0.0884025'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.084047642179129
'max_diff' => 0.0040226436202499
'year' => 2026
]
1 => [
'items' => [
101 => 0.047475456315098
102 => 0.046167809314083
103 => 0.04346976004009
104 => 0.043485030705973
105 => 0.043069994605368
106 => 0.042711342818182
107 => 0.047209769183982
108 => 0.046650318755798
109 => 0.045758907717548
110 => 0.046952096815512
111 => 0.047267594951471
112 => 0.047276576739864
113 => 0.048147096705071
114 => 0.048611693366551
115 => 0.048693580541814
116 => 0.050063362515895
117 => 0.050522495365746
118 => 0.052413598595369
119 => 0.04857227558578
120 => 0.048493166066251
121 => 0.046968887433046
122 => 0.046002165825976
123 => 0.047035079688548
124 => 0.047950100363985
125 => 0.046997319676042
126 => 0.047121732719589
127 => 0.045842702491068
128 => 0.046299895613799
129 => 0.046693691921659
130 => 0.046476260746735
131 => 0.046150755754088
201 => 0.047875079103357
202 => 0.047777786022314
203 => 0.049383515567176
204 => 0.050635296574218
205 => 0.052878711921457
206 => 0.050537591054726
207 => 0.05045227130523
208 => 0.051286285542275
209 => 0.050522367682512
210 => 0.051005137400334
211 => 0.052800930256325
212 => 0.052838872529599
213 => 0.052203290566405
214 => 0.052164615346183
215 => 0.05228668581472
216 => 0.053001656361738
217 => 0.052751823683784
218 => 0.053040936383701
219 => 0.053402476241999
220 => 0.054897958385643
221 => 0.055258514067545
222 => 0.054382550687212
223 => 0.05446164037271
224 => 0.054134006022733
225 => 0.053817515345901
226 => 0.054528940167667
227 => 0.055829083012533
228 => 0.055820994891373
301 => 0.056122602760216
302 => 0.056310501963851
303 => 0.055503901031226
304 => 0.054978833483626
305 => 0.055180177792292
306 => 0.055502131726558
307 => 0.055075772470596
308 => 0.052444085633982
309 => 0.053242371307405
310 => 0.053109497537172
311 => 0.052920269130358
312 => 0.053722951547945
313 => 0.053645530870612
314 => 0.051326481006647
315 => 0.051474939054799
316 => 0.051335509232264
317 => 0.051786035513534
318 => 0.050498037784822
319 => 0.050894217211377
320 => 0.05114269723376
321 => 0.051289053875858
322 => 0.051817794424803
323 => 0.051755752824085
324 => 0.051813937831792
325 => 0.052597920483548
326 => 0.05656303570577
327 => 0.056778848178782
328 => 0.055716108631967
329 => 0.056140652119309
330 => 0.055325621461068
331 => 0.055872757002176
401 => 0.056247093243666
402 => 0.054555539749091
403 => 0.054455376929233
404 => 0.053636982349543
405 => 0.05407674124043
406 => 0.053377053225245
407 => 0.053548732190124
408 => 0.05306870283762
409 => 0.053932660099236
410 => 0.054898698563109
411 => 0.055142758029098
412 => 0.054500742648287
413 => 0.054035881201704
414 => 0.053219737636385
415 => 0.054577002574456
416 => 0.054973908204248
417 => 0.054574917798151
418 => 0.054482463002946
419 => 0.054307261333094
420 => 0.054519632865436
421 => 0.054971746570948
422 => 0.054758538096658
423 => 0.054899366050176
424 => 0.054362675112519
425 => 0.055504168049698
426 => 0.057317133549172
427 => 0.057322962529703
428 => 0.05710975290614
429 => 0.057022512121843
430 => 0.057241278134261
501 => 0.057359949721746
502 => 0.058067398891079
503 => 0.058826520035791
504 => 0.062369007187661
505 => 0.061374290970907
506 => 0.06451739631555
507 => 0.067003184562013
508 => 0.067748563766781
509 => 0.067062849971196
510 => 0.064717060118031
511 => 0.064601964476653
512 => 0.068107564884212
513 => 0.067117072202406
514 => 0.066999256249627
515 => 0.06574589356525
516 => 0.066486786143705
517 => 0.066324742068559
518 => 0.066068947568472
519 => 0.067482518997141
520 => 0.070128598521217
521 => 0.069716182212613
522 => 0.069408332569682
523 => 0.068059425048043
524 => 0.068871768665472
525 => 0.068582508662723
526 => 0.069825353203468
527 => 0.069089119629908
528 => 0.067109568246165
529 => 0.067424818328713
530 => 0.067377168912931
531 => 0.068357790513249
601 => 0.068063432249358
602 => 0.067319690737625
603 => 0.070119554509069
604 => 0.069937746929412
605 => 0.070195508510367
606 => 0.070308983129844
607 => 0.072013210868389
608 => 0.072711378443665
609 => 0.072869874706397
610 => 0.073533079904691
611 => 0.072853373556897
612 => 0.075572683570487
613 => 0.077380866053386
614 => 0.079481163055493
615 => 0.082550261482185
616 => 0.083704270881369
617 => 0.083495809412544
618 => 0.085822764812525
619 => 0.09000425194098
620 => 0.084341007514497
621 => 0.090304417647015
622 => 0.088416470849941
623 => 0.08394018295679
624 => 0.083651962788438
625 => 0.086683356920451
626 => 0.093406697344384
627 => 0.091722576823684
628 => 0.093409451962236
629 => 0.091441622509467
630 => 0.091343903190968
701 => 0.093313878877992
702 => 0.097916834448509
703 => 0.095730142796166
704 => 0.092594984113742
705 => 0.094909936496372
706 => 0.092904510503809
707 => 0.088385724459171
708 => 0.091721289008462
709 => 0.08949089198576
710 => 0.090141840411412
711 => 0.094829803206612
712 => 0.094265735120282
713 => 0.094995691455291
714 => 0.093707337630284
715 => 0.092503812002977
716 => 0.090257342044621
717 => 0.089592273039582
718 => 0.089776074185899
719 => 0.089592181956862
720 => 0.088335302661287
721 => 0.088063879697076
722 => 0.087611496198745
723 => 0.087751708761146
724 => 0.086901095434823
725 => 0.088506378527276
726 => 0.088804333214941
727 => 0.089972524380128
728 => 0.090093809862223
729 => 0.093347205629107
730 => 0.091555289911802
731 => 0.09275746168153
801 => 0.092649928123166
802 => 0.084037197688726
803 => 0.085223955951828
804 => 0.087070179383956
805 => 0.086238458230279
806 => 0.085062599111757
807 => 0.084113029827973
808 => 0.082674335264596
809 => 0.084699270234867
810 => 0.087361844392947
811 => 0.090161337136788
812 => 0.093524744238483
813 => 0.092774070927759
814 => 0.090098460580559
815 => 0.0902184865062
816 => 0.090960439550051
817 => 0.089999542944722
818 => 0.08971615577688
819 => 0.090921506504895
820 => 0.09092980709291
821 => 0.089824179420245
822 => 0.088595476589806
823 => 0.088590328280083
824 => 0.088371692479268
825 => 0.09148051733273
826 => 0.093190056664489
827 => 0.093386052593815
828 => 0.093176864576832
829 => 0.093257372742193
830 => 0.092262629472171
831 => 0.094536317605488
901 => 0.096622878681071
902 => 0.096063635739939
903 => 0.095225251070114
904 => 0.094557437298522
905 => 0.095906320038779
906 => 0.095846256413694
907 => 0.096604654390352
908 => 0.096570249077412
909 => 0.096315228362652
910 => 0.096063644847532
911 => 0.097061145047272
912 => 0.09677388100911
913 => 0.096486170770552
914 => 0.095909123840891
915 => 0.095987554102367
916 => 0.095149314191475
917 => 0.094761506053448
918 => 0.088929802139354
919 => 0.087371380297086
920 => 0.087861691533265
921 => 0.088023114723141
922 => 0.087344887540214
923 => 0.088317291098263
924 => 0.088165743033772
925 => 0.088755327900057
926 => 0.088386980872401
927 => 0.088402097962901
928 => 0.089485328031369
929 => 0.089799794328636
930 => 0.089639854231792
1001 => 0.089751870793196
1002 => 0.092333245171513
1003 => 0.091966256282622
1004 => 0.091771300749759
1005 => 0.091825304764712
1006 => 0.092484901263663
1007 => 0.092669552270735
1008 => 0.091887172978573
1009 => 0.092256147575637
1010 => 0.09382719458009
1011 => 0.094376972118089
1012 => 0.096131598111193
1013 => 0.095386201803332
1014 => 0.096754408986407
1015 => 0.10095981141098
1016 => 0.10431937785944
1017 => 0.10122978171348
1018 => 0.10739919765787
1019 => 0.11220297292073
1020 => 0.11201859602503
1021 => 0.11118094669463
1022 => 0.10571197627283
1023 => 0.10067934815294
1024 => 0.10488935527191
1025 => 0.10490008744585
1026 => 0.10453844410066
1027 => 0.10229230834315
1028 => 0.10446028344508
1029 => 0.10463236943574
1030 => 0.10453604704233
1031 => 0.10281394002339
1101 => 0.10018460090405
1102 => 0.10069836747422
1103 => 0.10153992759671
1104 => 0.099946678716996
1105 => 0.099437539161573
1106 => 0.10038412646287
1107 => 0.10343422797694
1108 => 0.10285762395374
1109 => 0.10284256649245
1110 => 0.10530952302186
1111 => 0.10354371454935
1112 => 0.10070484771598
1113 => 0.099987996400496
1114 => 0.097443657159454
1115 => 0.099201041335867
1116 => 0.099264286463766
1117 => 0.098301785110375
1118 => 0.10078294939616
1119 => 0.10076008503046
1120 => 0.10311558124724
1121 => 0.10761840532975
1122 => 0.10628669867804
1123 => 0.10473806873136
1124 => 0.10490644774542
1125 => 0.10675314993477
1126 => 0.10563659163498
1127 => 0.1060381137845
1128 => 0.10675254218291
1129 => 0.10718357457392
1130 => 0.10484442881756
1201 => 0.10429906204748
1202 => 0.10318343303362
1203 => 0.1028923862481
1204 => 0.10380104280153
1205 => 0.10356164390301
1206 => 0.099258970955663
1207 => 0.098809317692819
1208 => 0.098823107916434
1209 => 0.097692433407165
1210 => 0.095967883387554
1211 => 0.10049989787156
1212 => 0.10013591368299
1213 => 0.099734103308952
1214 => 0.099783322787073
1215 => 0.10175051667036
1216 => 0.10060944487238
1217 => 0.10364317126529
1218 => 0.10301952832107
1219 => 0.10237989128855
1220 => 0.10229147396684
1221 => 0.10204526828059
1222 => 0.10120093737333
1223 => 0.10018135706639
1224 => 0.099508141833211
1225 => 0.091791000860662
1226 => 0.093223257336623
1227 => 0.094870937857931
1228 => 0.095439710571221
1229 => 0.094466785487265
1230 => 0.10123935438569
1231 => 0.10247676798553
]
'min_raw' => 0.042711342818182
'max_raw' => 0.11220297292073
'avg_raw' => 0.077457157869455
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.042711'
'max' => '$0.1122029'
'avg' => '$0.077457'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.001656015002689
'max_diff' => -0.020234670699521
'year' => 2027
]
2 => [
'items' => [
101 => 0.098728561477121
102 => 0.098027425077662
103 => 0.10128532077131
104 => 0.099320411406489
105 => 0.10020520997316
106 => 0.098292759430964
107 => 0.10217871128503
108 => 0.10214910684265
109 => 0.10063738380321
110 => 0.10191508176431
111 => 0.10169305030097
112 => 0.099986318712657
113 => 0.10223281772062
114 => 0.1022339319561
115 => 0.10077893139834
116 => 0.099079809287449
117 => 0.098776046385496
118 => 0.098547201843678
119 => 0.10014892824429
120 => 0.10158503112662
121 => 0.10425726255052
122 => 0.10492912502115
123 => 0.10755144897241
124 => 0.10598998273807
125 => 0.10668216049538
126 => 0.10743361736546
127 => 0.10779389342289
128 => 0.10720684292079
129 => 0.11128039140869
130 => 0.11162432371137
131 => 0.11173964123745
201 => 0.1103660636069
202 => 0.11158612203268
203 => 0.11101529709934
204 => 0.11250042499615
205 => 0.11273331201343
206 => 0.11253606499499
207 => 0.11260998701015
208 => 0.10913393199892
209 => 0.10895368020893
210 => 0.10649593426243
211 => 0.10749748390237
212 => 0.10562513485602
213 => 0.10621887602595
214 => 0.10648059147628
215 => 0.10634388617725
216 => 0.1075541100163
217 => 0.10652517252071
218 => 0.10380963729687
219 => 0.10109336222728
220 => 0.10105926160641
221 => 0.10034411432682
222 => 0.099827193829435
223 => 0.099926771055972
224 => 0.10027769419035
225 => 0.099806797538922
226 => 0.09990728721457
227 => 0.10157608538953
228 => 0.10191075096219
229 => 0.100773426584
301 => 0.096206905090441
302 => 0.09508626926167
303 => 0.095891760072216
304 => 0.095506787345027
305 => 0.077081431386568
306 => 0.08141019546184
307 => 0.078838190839251
308 => 0.080023488901583
309 => 0.077398138199288
310 => 0.078651093160843
311 => 0.078419718130033
312 => 0.085380242665629
313 => 0.085271563648894
314 => 0.085323582543039
315 => 0.082840585190972
316 => 0.086796067393541
317 => 0.088744680161065
318 => 0.088384043798446
319 => 0.088474808201312
320 => 0.086915175043223
321 => 0.085338683201199
322 => 0.08359011112804
323 => 0.086838741909929
324 => 0.08647754962296
325 => 0.087305994776385
326 => 0.089412964055365
327 => 0.089723223285292
328 => 0.090140214836654
329 => 0.08999075304897
330 => 0.09355153920232
331 => 0.093120304504326
401 => 0.094159456051802
402 => 0.092021842478026
403 => 0.089602929815156
404 => 0.090062686032155
405 => 0.090018407811332
406 => 0.089454695240079
407 => 0.088945800736044
408 => 0.088098634766964
409 => 0.090779193250108
410 => 0.090670367470967
411 => 0.09243213033913
412 => 0.092120721639331
413 => 0.090041058127435
414 => 0.090115333716613
415 => 0.090614872749464
416 => 0.092343783045799
417 => 0.092857041334941
418 => 0.092619279645604
419 => 0.093182043928516
420 => 0.093626829871982
421 => 0.093237902194971
422 => 0.098744297925568
423 => 0.096457658513653
424 => 0.097572150652686
425 => 0.097837950460876
426 => 0.097157109841365
427 => 0.097304759792662
428 => 0.097528409236674
429 => 0.098886364865664
430 => 0.10245003336376
501 => 0.10402835788286
502 => 0.10877682507171
503 => 0.10389730000288
504 => 0.10360776917878
505 => 0.10446311150947
506 => 0.10725096442562
507 => 0.10951025736446
508 => 0.11025979517401
509 => 0.11035885896906
510 => 0.11176504172811
511 => 0.11257103946184
512 => 0.11159429415488
513 => 0.11076660477673
514 => 0.1078019241608
515 => 0.10814509401465
516 => 0.11050919400252
517 => 0.11384862448018
518 => 0.11671420323854
519 => 0.11571077743287
520 => 0.12336620802194
521 => 0.12412521269522
522 => 0.12402034279093
523 => 0.1257494683917
524 => 0.12231750620448
525 => 0.12085027587832
526 => 0.11094556061496
527 => 0.11372838159588
528 => 0.11777337532099
529 => 0.11723800523352
530 => 0.11430042266736
531 => 0.11671197481875
601 => 0.11591464026129
602 => 0.11528574941438
603 => 0.11816682030056
604 => 0.11499896451334
605 => 0.11774177353623
606 => 0.11422409259365
607 => 0.11571536099743
608 => 0.1148688449269
609 => 0.11541664456964
610 => 0.11221421905159
611 => 0.11394217012664
612 => 0.11214233060589
613 => 0.11214147724761
614 => 0.11210174569044
615 => 0.11421924890489
616 => 0.11428830060869
617 => 0.11272346253384
618 => 0.11249794491989
619 => 0.11333180173724
620 => 0.11235557379157
621 => 0.11281234470304
622 => 0.11236940891716
623 => 0.1122696947421
624 => 0.11147515523028
625 => 0.11113284576227
626 => 0.11126707412491
627 => 0.11080888352377
628 => 0.1105328071131
629 => 0.11204682714361
630 => 0.1112379473167
701 => 0.11192285470917
702 => 0.11114231629325
703 => 0.10843663007928
704 => 0.10688056132551
705 => 0.10176977088456
706 => 0.10321918471369
707 => 0.10418014758194
708 => 0.10386254935972
709 => 0.10454487323525
710 => 0.1045867623796
711 => 0.1043649319322
712 => 0.10410808069234
713 => 0.10398305971355
714 => 0.10491486366173
715 => 0.10545580721672
716 => 0.10427659306179
717 => 0.10400031968425
718 => 0.10519257030109
719 => 0.10591984248861
720 => 0.11128961170237
721 => 0.11089180185489
722 => 0.11189022650583
723 => 0.11177781921221
724 => 0.11282432730791
725 => 0.11453492575706
726 => 0.11105680081908
727 => 0.11166048304381
728 => 0.11151247410336
729 => 0.1131283969051
730 => 0.1131334416397
731 => 0.11216461519873
801 => 0.11268983172979
802 => 0.11239667027072
803 => 0.11292645265042
804 => 0.11088648886184
805 => 0.11337094455584
806 => 0.11477947083955
807 => 0.11479902822837
808 => 0.11546665850809
809 => 0.11614500953883
810 => 0.1174470452704
811 => 0.11610869646895
812 => 0.11370113726078
813 => 0.11387495525924
814 => 0.11246340417638
815 => 0.1124871326051
816 => 0.11236046839296
817 => 0.11274059722843
818 => 0.11096990576473
819 => 0.11138548351205
820 => 0.11080367223218
821 => 0.11165921829971
822 => 0.11073879215788
823 => 0.11151240272897
824 => 0.11184626740586
825 => 0.11307823525116
826 => 0.11055682950545
827 => 0.10541551250577
828 => 0.10649627967155
829 => 0.10489774014094
830 => 0.10504569106057
831 => 0.10534457546443
901 => 0.10437579332262
902 => 0.10456060642545
903 => 0.1045540036009
904 => 0.10449710402613
905 => 0.1042450863749
906 => 0.10387961092045
907 => 0.10533555264357
908 => 0.10558294551321
909 => 0.10613286921693
910 => 0.10776906914241
911 => 0.1076055741856
912 => 0.10787224124349
913 => 0.10729010855339
914 => 0.10507269452646
915 => 0.10519311077643
916 => 0.10369151820985
917 => 0.10609447011897
918 => 0.10552541938947
919 => 0.10515854868227
920 => 0.10505844461078
921 => 0.10669870035939
922 => 0.10718949058724
923 => 0.10688366305295
924 => 0.10625640185772
925 => 0.10746092878569
926 => 0.1077832093767
927 => 0.10785535611578
928 => 0.10998954688702
929 => 0.10797463367199
930 => 0.10845964330936
1001 => 0.11224355004803
1002 => 0.1088120687795
1003 => 0.1106298009386
1004 => 0.11054083240843
1005 => 0.11147072267233
1006 => 0.11046455426533
1007 => 0.11047702692862
1008 => 0.11130270648674
1009 => 0.11014318845945
1010 => 0.10985607548956
1011 => 0.10945943097799
1012 => 0.11032548975805
1013 => 0.11084465282822
1014 => 0.11502872589057
1015 => 0.11773182790576
1016 => 0.11761447911835
1017 => 0.1186868273675
1018 => 0.11820372465967
1019 => 0.11664365858005
1020 => 0.11930650114817
1021 => 0.11846386634155
1022 => 0.11853333213121
1023 => 0.11853074661105
1024 => 0.11909102509304
1025 => 0.11869401643978
1026 => 0.11791147163211
1027 => 0.11843096139528
1028 => 0.1199736602709
1029 => 0.12476224491662
1030 => 0.12744200032467
1031 => 0.12460092027626
1101 => 0.12656065925008
1102 => 0.12538551419218
1103 => 0.12517195537762
1104 => 0.12640281627676
1105 => 0.12763583163495
1106 => 0.12755729388711
1107 => 0.1266621880531
1108 => 0.12615656547993
1109 => 0.12998530899991
1110 => 0.13280626200449
1111 => 0.13261389192149
1112 => 0.13346295090576
1113 => 0.135955814344
1114 => 0.13618373053521
1115 => 0.13615501833371
1116 => 0.1355901042732
1117 => 0.13804465206737
1118 => 0.14009227902092
1119 => 0.13545934299013
1120 => 0.13722350438107
1121 => 0.13801549326719
1122 => 0.13917836792454
1123 => 0.14114033239189
1124 => 0.14327154618882
1125 => 0.14357292318728
1126 => 0.14335908178465
1127 => 0.14195348899548
1128 => 0.14428548856274
1129 => 0.14565151921713
1130 => 0.14646495921076
1201 => 0.1485277076911
1202 => 0.13802038432093
1203 => 0.13058277859167
1204 => 0.12942128905672
1205 => 0.13178322369936
1206 => 0.13240604702855
1207 => 0.13215498772551
1208 => 0.1237832862797
1209 => 0.12937721378117
1210 => 0.13539580942196
1211 => 0.13562700819203
1212 => 0.13864004301271
1213 => 0.1396212106588
1214 => 0.14204709861695
1215 => 0.14189535866467
1216 => 0.14248602377817
1217 => 0.14235024009747
1218 => 0.14684368670897
1219 => 0.15180062560473
1220 => 0.15162898257287
1221 => 0.15091636395877
1222 => 0.15197472412024
1223 => 0.15709081627852
1224 => 0.15661980849629
1225 => 0.15707735243638
1226 => 0.16310951342131
1227 => 0.17095218076662
1228 => 0.1673084743938
1229 => 0.17521426877456
1230 => 0.18019054726909
1231 => 0.18879650636859
]
'min_raw' => 0.077081431386568
'max_raw' => 0.18879650636859
'avg_raw' => 0.13293896887758
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.077081'
'max' => '$0.188796'
'avg' => '$0.132938'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.034370088568386
'max_diff' => 0.076593533447866
'year' => 2028
]
3 => [
'items' => [
101 => 0.18771899790409
102 => 0.19106923462809
103 => 0.18579003286984
104 => 0.1736679185302
105 => 0.17174954753436
106 => 0.17559017484892
107 => 0.18503198233883
108 => 0.17529281873052
109 => 0.17726303884417
110 => 0.17669561531889
111 => 0.17666537973062
112 => 0.17781934915776
113 => 0.1761454563167
114 => 0.16932571575469
115 => 0.17245116266528
116 => 0.17124427751681
117 => 0.17258340656828
118 => 0.17981013376024
119 => 0.17661502540502
120 => 0.17324923830231
121 => 0.17747068225705
122 => 0.18284603105697
123 => 0.1825096513895
124 => 0.18185693423882
125 => 0.18553626664205
126 => 0.19161344582894
127 => 0.19325608294307
128 => 0.19446864407849
129 => 0.19463583577267
130 => 0.19635801413184
131 => 0.18709742704976
201 => 0.20179421657777
202 => 0.20433194613864
203 => 0.20385495815931
204 => 0.20667553776224
205 => 0.20584565169186
206 => 0.20464327698102
207 => 0.20911449560614
208 => 0.20398860426117
209 => 0.19671304682877
210 => 0.19272153212715
211 => 0.19797788067256
212 => 0.20118774930795
213 => 0.20330926828996
214 => 0.20395123865206
215 => 0.18781630006343
216 => 0.17912046304888
217 => 0.18469439487723
218 => 0.19149497640005
219 => 0.18705964947603
220 => 0.18723350589427
221 => 0.18090989528402
222 => 0.19205447562315
223 => 0.19043080400842
224 => 0.1988544152179
225 => 0.19684405279905
226 => 0.20371318073768
227 => 0.20190430914189
228 => 0.20941283400335
301 => 0.21240818785578
302 => 0.21743785316362
303 => 0.22113769543848
304 => 0.22331031358899
305 => 0.22317987774452
306 => 0.23178887325089
307 => 0.22671244937617
308 => 0.22033526456829
309 => 0.22021992141488
310 => 0.22352275579229
311 => 0.23044459055898
312 => 0.23223932160538
313 => 0.23324233141861
314 => 0.23170618697463
315 => 0.2261960926892
316 => 0.22381686191357
317 => 0.22584403546736
318 => 0.22336497640809
319 => 0.22764452784552
320 => 0.23352126603197
321 => 0.23230774283561
322 => 0.23636436893948
323 => 0.24056255018748
324 => 0.24656613792423
325 => 0.24813569807083
326 => 0.25073012130813
327 => 0.25340063504294
328 => 0.2542583320822
329 => 0.25589594185791
330 => 0.25588731084605
331 => 0.26082235812899
401 => 0.26626586810778
402 => 0.26832066710722
403 => 0.27304556410417
404 => 0.26495434357704
405 => 0.27109162729211
406 => 0.27662761082928
407 => 0.27002738303445
408 => 0.27912425939378
409 => 0.27947747048885
410 => 0.28481053867284
411 => 0.27940445237612
412 => 0.27619433558997
413 => 0.28546182247008
414 => 0.28994606744827
415 => 0.28859537636684
416 => 0.27831655054535
417 => 0.27233383303767
418 => 0.25667590734003
419 => 0.27522339670093
420 => 0.28425733773095
421 => 0.27829315482053
422 => 0.28130114176474
423 => 0.29771174318934
424 => 0.30395983770407
425 => 0.30266027772248
426 => 0.30287988196679
427 => 0.306251240356
428 => 0.32120170009474
429 => 0.31224303807035
430 => 0.31909159951334
501 => 0.32272405180837
502 => 0.32609807593877
503 => 0.31781253904579
504 => 0.30703317728675
505 => 0.30361890093083
506 => 0.27770013437128
507 => 0.27635095001236
508 => 0.27559361194723
509 => 0.27081870257416
510 => 0.26706693176468
511 => 0.26408338432266
512 => 0.25625366487212
513 => 0.25889596534285
514 => 0.24641702672814
515 => 0.2544006094274
516 => 0.23448392208382
517 => 0.25107113113111
518 => 0.24204346737452
519 => 0.24810530078884
520 => 0.24808415162311
521 => 0.23692239440132
522 => 0.23048452577573
523 => 0.23458698622955
524 => 0.23898514948977
525 => 0.23969873668154
526 => 0.24540107015222
527 => 0.24699246885264
528 => 0.24217045649507
529 => 0.23407119300769
530 => 0.23595246719127
531 => 0.23044640181444
601 => 0.22079723402929
602 => 0.22772743479089
603 => 0.23009371003032
604 => 0.23113879197978
605 => 0.22164994367749
606 => 0.218668341528
607 => 0.21708096156167
608 => 0.23284630184772
609 => 0.23370996277683
610 => 0.22929135135414
611 => 0.24926389397463
612 => 0.24474349245976
613 => 0.24979388847713
614 => 0.2357817612777
615 => 0.23631704340655
616 => 0.22968347783603
617 => 0.23339783130051
618 => 0.23077264599102
619 => 0.23309774824654
620 => 0.23449140495174
621 => 0.24112388201941
622 => 0.25114686336533
623 => 0.24013321111912
624 => 0.23533440511704
625 => 0.23831155737122
626 => 0.24624010614864
627 => 0.25825226340138
628 => 0.25114082454056
629 => 0.25429676034693
630 => 0.25498619192281
701 => 0.24974248018662
702 => 0.25844560653264
703 => 0.26310968264555
704 => 0.26789405964282
705 => 0.27204820013436
706 => 0.26598307425941
707 => 0.27247362834725
708 => 0.26724338748948
709 => 0.2625513207477
710 => 0.26255843667614
711 => 0.25961503466887
712 => 0.25391182238725
713 => 0.25286006253954
714 => 0.25833145008993
715 => 0.26271898476302
716 => 0.26308036313356
717 => 0.26550952776826
718 => 0.26694708237668
719 => 0.28103707179996
720 => 0.28670418210451
721 => 0.29363381731201
722 => 0.29633330075817
723 => 0.30445777811273
724 => 0.29789660281113
725 => 0.2964770512629
726 => 0.27676972669702
727 => 0.27999679999066
728 => 0.28516365570003
729 => 0.2768549262446
730 => 0.28212490267817
731 => 0.28316530765953
801 => 0.27657259879707
802 => 0.28009404945464
803 => 0.27074212054549
804 => 0.25135070985968
805 => 0.25846719471606
806 => 0.26370732295327
807 => 0.25622901385563
808 => 0.26963359346261
809 => 0.2618029147829
810 => 0.2593209655803
811 => 0.24963799686217
812 => 0.25420798536548
813 => 0.26038896025214
814 => 0.25656983638764
815 => 0.26449509185081
816 => 0.2757193671751
817 => 0.28371845418833
818 => 0.28433252476415
819 => 0.27918964771185
820 => 0.28743114100956
821 => 0.28749117129079
822 => 0.27819473318348
823 => 0.27250071660554
824 => 0.27120702405871
825 => 0.27443892168404
826 => 0.2783630420424
827 => 0.28455028613355
828 => 0.28828910815502
829 => 0.29803797306906
830 => 0.30067573639293
831 => 0.303573838566
901 => 0.30744659681083
902 => 0.31209683603858
903 => 0.30192237734653
904 => 0.30232662755793
905 => 0.29285231249885
906 => 0.28272764810402
907 => 0.29041100632247
908 => 0.30045597511877
909 => 0.2981516481782
910 => 0.29789236432425
911 => 0.29832840784724
912 => 0.29659102058633
913 => 0.2887328823958
914 => 0.28478657459106
915 => 0.28987831846966
916 => 0.29258435373369
917 => 0.29678117843713
918 => 0.29626383120821
919 => 0.3070744009382
920 => 0.31127506144061
921 => 0.3102003527277
922 => 0.31039812499518
923 => 0.3180032201851
924 => 0.32646165014341
925 => 0.33438408598751
926 => 0.34244312800466
927 => 0.33272763830322
928 => 0.32779471180093
929 => 0.33288423278344
930 => 0.33018366130993
1001 => 0.34570194603828
1002 => 0.34677639840333
1003 => 0.36229356098307
1004 => 0.37702119602059
1005 => 0.36777103232651
1006 => 0.3764935200535
1007 => 0.38592760168511
1008 => 0.40412747577705
1009 => 0.39799839846217
1010 => 0.39330362129386
1011 => 0.38886707955481
1012 => 0.39809881863261
1013 => 0.40997530347557
1014 => 0.41253338455919
1015 => 0.41667845317683
1016 => 0.41232042036025
1017 => 0.41756919086625
1018 => 0.43609965717904
1019 => 0.43109256160838
1020 => 0.42398168096725
1021 => 0.4386097044363
1022 => 0.44390352926474
1023 => 0.48105836430838
1024 => 0.52796787834064
1025 => 0.50854703150681
1026 => 0.49649188517024
1027 => 0.49932513051122
1028 => 0.51645489704855
1029 => 0.52195643438872
1030 => 0.50700135940448
1031 => 0.51228374471395
1101 => 0.54139020712179
1102 => 0.55700489035648
1103 => 0.53579805319203
1104 => 0.47728923053066
1105 => 0.42334142396735
1106 => 0.43765081156933
1107 => 0.43602857108726
1108 => 0.46729983383935
1109 => 0.43097314403497
1110 => 0.43158479232629
1111 => 0.46350271167525
1112 => 0.45498755800462
1113 => 0.44119409959667
1114 => 0.42344213147848
1115 => 0.3906259765537
1116 => 0.36155979299064
1117 => 0.4185652725001
1118 => 0.41610709256591
1119 => 0.41254728373935
1120 => 0.42046925307131
1121 => 0.45893608745707
1122 => 0.45804930241948
1123 => 0.45240802845208
1124 => 0.45668688503645
1125 => 0.44044399534946
1126 => 0.44463015786552
1127 => 0.42333287835916
1128 => 0.43296013814899
1129 => 0.44116450502988
1130 => 0.44281165314895
1201 => 0.44652276196667
1202 => 0.41481174344115
1203 => 0.42904905977252
1204 => 0.43741214926107
1205 => 0.39962740670003
1206 => 0.43666526638784
1207 => 0.41425972515927
1208 => 0.40665494794636
1209 => 0.41689377861034
1210 => 0.412903696343
1211 => 0.40947325791503
1212 => 0.40755901432981
1213 => 0.41507728155093
1214 => 0.41472654539879
1215 => 0.40242520099225
1216 => 0.38637859868087
1217 => 0.39176436512834
1218 => 0.38980766568614
1219 => 0.38271633448838
1220 => 0.38749503550508
1221 => 0.36645205467278
1222 => 0.33024869986978
1223 => 0.35416574499139
1224 => 0.35324496477095
1225 => 0.35278066562974
1226 => 0.37075366402006
1227 => 0.36902597493245
1228 => 0.36589020232087
1229 => 0.38265874356527
1230 => 0.37653800044235
1231 => 0.39540068851872
]
'min_raw' => 0.16932571575469
'max_raw' => 0.55700489035648
'avg_raw' => 0.36316530305559
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.169325'
'max' => '$0.5570048'
'avg' => '$0.363165'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.09224428436812
'max_diff' => 0.36820838398789
'year' => 2029
]
4 => [
'items' => [
101 => 0.40782487484799
102 => 0.40467369931457
103 => 0.41635870660855
104 => 0.39188844230957
105 => 0.40001648253309
106 => 0.40169166035818
107 => 0.38245182236922
108 => 0.36930864623388
109 => 0.36843214622883
110 => 0.34564369005137
111 => 0.35781709939938
112 => 0.36852919585571
113 => 0.36339893294539
114 => 0.36177484497023
115 => 0.37007195821363
116 => 0.37071671497261
117 => 0.35601619253958
118 => 0.35907289665841
119 => 0.3718198609687
120 => 0.35875170586313
121 => 0.33336241516401
122 => 0.32706552003622
123 => 0.32622539815137
124 => 0.30914771915176
125 => 0.32748630867844
126 => 0.3194810229064
127 => 0.34476962474222
128 => 0.33032491099909
129 => 0.32970222825991
130 => 0.32876095197194
131 => 0.31406148818694
201 => 0.31727973655619
202 => 0.32797768428867
203 => 0.33179483256063
204 => 0.33139667272289
205 => 0.32792525850854
206 => 0.32951445415935
207 => 0.32439510125561
208 => 0.32258735119519
209 => 0.31688159474366
210 => 0.30849570901535
211 => 0.3096618178595
212 => 0.29304718394537
213 => 0.28399464958359
214 => 0.28148902738274
215 => 0.2781384046586
216 => 0.2818674891351
217 => 0.29300011677501
218 => 0.27957180592257
219 => 0.25654990885254
220 => 0.25793356409385
221 => 0.26104222661015
222 => 0.25524925457688
223 => 0.24976669271469
224 => 0.25453333543956
225 => 0.24477865415869
226 => 0.2622210332394
227 => 0.26174926576697
228 => 0.26825070605878
301 => 0.27231619009623
302 => 0.26294656560599
303 => 0.26059013038486
304 => 0.26193246298082
305 => 0.23974669525227
306 => 0.26643765551625
307 => 0.26666848004897
308 => 0.26469202026211
309 => 0.27890413261173
310 => 0.30889612253844
311 => 0.29761192950301
312 => 0.29324234889315
313 => 0.28493577295967
314 => 0.29600379219536
315 => 0.29515394100606
316 => 0.29131059163153
317 => 0.28898612193784
318 => 0.2932690286206
319 => 0.28845542240301
320 => 0.28759076645728
321 => 0.2823518921811
322 => 0.28048185241809
323 => 0.27909734942599
324 => 0.27757314767014
325 => 0.28093515693613
326 => 0.27331640163024
327 => 0.26412892960713
328 => 0.26336509071823
329 => 0.26547411704788
330 => 0.26454102989556
331 => 0.26336062345593
401 => 0.26110690609813
402 => 0.26043827630112
403 => 0.26261099876833
404 => 0.26015812178044
405 => 0.2637774753912
406 => 0.26279321147705
407 => 0.25729519326299
408 => 0.25044262694123
409 => 0.25038162472722
410 => 0.24890525055365
411 => 0.24702486606928
412 => 0.2465017861231
413 => 0.25413190208452
414 => 0.26992601377452
415 => 0.26682525172871
416 => 0.26906587008569
417 => 0.2800874947805
418 => 0.28359093783916
419 => 0.28110427693972
420 => 0.27770038213
421 => 0.27785013622657
422 => 0.28948227522041
423 => 0.29020775746119
424 => 0.29204081703418
425 => 0.29439681660806
426 => 0.28150551385478
427 => 0.27724295702618
428 => 0.27522312112315
429 => 0.26900280831666
430 => 0.27571088238914
501 => 0.27180237489548
502 => 0.27232976609
503 => 0.2719863018827
504 => 0.27217385656483
505 => 0.26221615773897
506 => 0.26584421982987
507 => 0.25981186292954
508 => 0.25173521420383
509 => 0.25170813844526
510 => 0.2536848867787
511 => 0.2525090395198
512 => 0.2493448647799
513 => 0.24979432086722
514 => 0.24585661260239
515 => 0.25027242994508
516 => 0.25039905978592
517 => 0.24869872957778
518 => 0.25550190545957
519 => 0.2582891721692
520 => 0.25716997840161
521 => 0.25821064655092
522 => 0.26695410239082
523 => 0.26837966719645
524 => 0.26901280891558
525 => 0.26816448288714
526 => 0.25837046087309
527 => 0.25880486739681
528 => 0.25561748055901
529 => 0.25292447455961
530 => 0.25303218067663
531 => 0.25441673582659
601 => 0.26046316936957
602 => 0.27318753230405
603 => 0.27367041257602
604 => 0.27425567755227
605 => 0.27187511076327
606 => 0.27115710904075
607 => 0.27210433864472
608 => 0.27688294034769
609 => 0.28917480130543
610 => 0.28483003669717
611 => 0.28129767544037
612 => 0.28439650858034
613 => 0.2839194675079
614 => 0.27989276077933
615 => 0.27977974453282
616 => 0.27205120690467
617 => 0.26919414251383
618 => 0.26680656566128
619 => 0.26419939406757
620 => 0.26265377535363
621 => 0.26502854816938
622 => 0.26557168680983
623 => 0.26037920454427
624 => 0.25967148839835
625 => 0.26391178150392
626 => 0.26204578660222
627 => 0.26396500863307
628 => 0.264410284607
629 => 0.26433858491963
630 => 0.2623902719341
701 => 0.26363206853154
702 => 0.26069484938121
703 => 0.25750106471127
704 => 0.25546362907166
705 => 0.25368569624948
706 => 0.25467219671329
707 => 0.25115550268769
708 => 0.25003044149183
709 => 0.26321137578564
710 => 0.2729482736674
711 => 0.27280669531596
712 => 0.27194487351259
713 => 0.27066438112696
714 => 0.27678926435398
715 => 0.27465547750859
716 => 0.27620798572247
717 => 0.27660316422147
718 => 0.27779925051778
719 => 0.27822674856162
720 => 0.27693455255665
721 => 0.27259778493552
722 => 0.26179097235116
723 => 0.25676037192071
724 => 0.25510018998738
725 => 0.25516053444752
726 => 0.25349596484727
727 => 0.25398625519532
728 => 0.25332546187283
729 => 0.25207407918311
730 => 0.2545949273585
731 => 0.25488543162739
801 => 0.25429703554136
802 => 0.25443562411987
803 => 0.24956395583481
804 => 0.24993433819382
805 => 0.24787200215296
806 => 0.24748533900713
807 => 0.24227193308399
808 => 0.23303562879586
809 => 0.23815343796123
810 => 0.23197184416233
811 => 0.22963078092426
812 => 0.24071301018327
813 => 0.23960066173886
814 => 0.23769680472827
815 => 0.23488060341104
816 => 0.23383604694823
817 => 0.22748965254662
818 => 0.22711467370867
819 => 0.23026011814118
820 => 0.22880860376371
821 => 0.22677012784626
822 => 0.21938697471027
823 => 0.21108586610741
824 => 0.21133642439722
825 => 0.21397685259617
826 => 0.22165425369489
827 => 0.21865456026523
828 => 0.2164782482645
829 => 0.21607069044646
830 => 0.2211721298193
831 => 0.22839173531645
901 => 0.23177901268614
902 => 0.22842232368592
903 => 0.22456634009943
904 => 0.22480103595343
905 => 0.22636236232451
906 => 0.22652643565015
907 => 0.22401658673686
908 => 0.22472309450443
909 => 0.22364984460107
910 => 0.21706331192524
911 => 0.21694418243525
912 => 0.21532774109441
913 => 0.21527879589303
914 => 0.21252882593207
915 => 0.21214408612489
916 => 0.20668385385617
917 => 0.21027779527055
918 => 0.20786716806018
919 => 0.20423378424468
920 => 0.20360738750538
921 => 0.203588557263
922 => 0.20731923003177
923 => 0.21023420018714
924 => 0.20790910195258
925 => 0.20737972215471
926 => 0.21303211342551
927 => 0.21231279511361
928 => 0.21168987009461
929 => 0.2277452988295
930 => 0.21503617416511
1001 => 0.20949427039996
1002 => 0.2026351121116
1003 => 0.20486848863717
1004 => 0.20533909388624
1005 => 0.18884405465895
1006 => 0.18215201929877
1007 => 0.17985556494719
1008 => 0.17853392300075
1009 => 0.17913621183188
1010 => 0.17311259511025
1011 => 0.17716056516861
1012 => 0.17194462225133
1013 => 0.1710701524471
1014 => 0.18039690451453
1015 => 0.18169466757862
1016 => 0.17615800716384
1017 => 0.17971343945403
1018 => 0.1784241902814
1019 => 0.17203403462198
1020 => 0.1717899776786
1021 => 0.16858362219353
1022 => 0.16356629673217
1023 => 0.16127324436351
1024 => 0.16007900278072
1025 => 0.16057177013308
1026 => 0.1603226118808
1027 => 0.1586966857475
1028 => 0.16041580806352
1029 => 0.15602416093649
1030 => 0.1542753716646
1031 => 0.15348548412209
1101 => 0.14958764452307
1102 => 0.15579084070224
1103 => 0.15701294849535
1104 => 0.15823746421833
1105 => 0.16889603757452
1106 => 0.16836356537046
1107 => 0.17317685477068
1108 => 0.17298981919566
1109 => 0.1716169910886
1110 => 0.16582525512417
1111 => 0.16813373785183
1112 => 0.16102858683398
1113 => 0.16635224907986
1114 => 0.16392275195229
1115 => 0.16553083365717
1116 => 0.16263935775691
1117 => 0.16423961990623
1118 => 0.1573027555903
1119 => 0.15082520929641
1120 => 0.15343196301644
1121 => 0.15626580242855
1122 => 0.16241028832288
1123 => 0.15875068321513
1124 => 0.16006681559686
1125 => 0.15565799243594
1126 => 0.14656133093689
1127 => 0.14661281705308
1128 => 0.14521349386299
1129 => 0.14400427432223
1130 => 0.15917103288462
1201 => 0.15728480670642
1202 => 0.15427935215463
1203 => 0.15830227250422
1204 => 0.15936599649698
1205 => 0.15939627922363
1206 => 0.16233129806409
1207 => 0.16389771814537
1208 => 0.16417380647395
1209 => 0.16879212203469
1210 => 0.1703401204936
1211 => 0.17671610706488
1212 => 0.16376481834545
1213 => 0.1634980950771
1214 => 0.15835888324352
1215 => 0.15509951385093
1216 => 0.15858205505434
1217 => 0.16166711114628
1218 => 0.15845474453585
1219 => 0.15887421179841
1220 => 0.15456187208392
1221 => 0.15610333061741
1222 => 0.15743104236334
1223 => 0.15669795797652
1224 => 0.15560049516778
1225 => 0.16141417172825
1226 => 0.16108614131273
1227 => 0.16649997058169
1228 => 0.17072043764349
1229 => 0.17828426911696
1230 => 0.17039101666294
1231 => 0.17010335517068
]
'min_raw' => 0.14400427432223
'max_raw' => 0.41635870660855
'avg_raw' => 0.28018149046539
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.1440042'
'max' => '$0.416358'
'avg' => '$0.280181'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.025321441432459
'max_diff' => -0.14064618374793
'year' => 2030
]
5 => [
'items' => [
101 => 0.17291529239989
102 => 0.17033969000066
103 => 0.1719673818102
104 => 0.17802202280243
105 => 0.17814994782582
106 => 0.17600703886199
107 => 0.1758766426568
108 => 0.17628821176415
109 => 0.17869878488108
110 => 0.17785645656459
111 => 0.17883122021757
112 => 0.18005017709173
113 => 0.18509229955025
114 => 0.18630793820498
115 => 0.18335456651037
116 => 0.1836212229069
117 => 0.18251658082125
118 => 0.18144951040764
119 => 0.18384812886432
120 => 0.18823165123886
121 => 0.18820438157367
122 => 0.18922127356107
123 => 0.18985478884482
124 => 0.1871352774854
125 => 0.18536497558962
126 => 0.1860438219837
127 => 0.18712931215118
128 => 0.18569181215225
129 => 0.1768188962441
130 => 0.17951037212657
131 => 0.17906237893328
201 => 0.1784243821482
202 => 0.1811306819606
203 => 0.18086965274163
204 => 0.17305081421438
205 => 0.17355135088873
206 => 0.17308125350738
207 => 0.17460023431942
208 => 0.17025766005194
209 => 0.17159340664893
210 => 0.17243117439272
211 => 0.17292462602984
212 => 0.1747073117061
213 => 0.17449813411767
214 => 0.1746943089335
215 => 0.17733756117982
216 => 0.19070622398705
217 => 0.19143385080735
218 => 0.18785075022716
219 => 0.18928212823541
220 => 0.18653419546753
221 => 0.18837890114416
222 => 0.18964100191767
223 => 0.18393781121021
224 => 0.18360010526992
225 => 0.180840830806
226 => 0.18232350860962
227 => 0.17996446161576
228 => 0.18054328923209
301 => 0.17892483675555
302 => 0.18183772898266
303 => 0.18509479511025
304 => 0.18591765863953
305 => 0.18375305895904
306 => 0.1821857461363
307 => 0.1794340611245
308 => 0.18401017462442
309 => 0.18534836966632
310 => 0.18400314565555
311 => 0.18369142785853
312 => 0.18310072319643
313 => 0.18381674864503
314 => 0.18534108156873
315 => 0.18462223431193
316 => 0.18509704558951
317 => 0.18328755462263
318 => 0.18713617775682
319 => 0.19324871751551
320 => 0.19326837033033
321 => 0.19254951919867
322 => 0.19225538080346
323 => 0.19299296568808
324 => 0.19339307523067
325 => 0.1957782894976
326 => 0.19833771943714
327 => 0.21028146219823
328 => 0.20692770702457
329 => 0.21752490613864
330 => 0.22590591476379
331 => 0.22841901279338
401 => 0.22610708085655
402 => 0.21819808658879
403 => 0.21781003359816
404 => 0.22962941012545
405 => 0.22628989489475
406 => 0.22589267018431
407 => 0.22166687038694
408 => 0.22416484144267
409 => 0.22361849852976
410 => 0.22275606951372
411 => 0.22752202427788
412 => 0.23644346613667
413 => 0.23505297575823
414 => 0.23401503919371
415 => 0.22946710330679
416 => 0.23220597652897
417 => 0.23123071623422
418 => 0.23542105337597
419 => 0.23293879048053
420 => 0.22626459478238
421 => 0.22732748244574
422 => 0.22716682911366
423 => 0.23047306330395
424 => 0.2294806138658
425 => 0.22697303743262
426 => 0.23641297361829
427 => 0.23579999667007
428 => 0.2366690578366
429 => 0.23705164543872
430 => 0.2427975682446
501 => 0.24515148896915
502 => 0.2456858701848
503 => 0.24792191281436
504 => 0.24563023540719
505 => 0.25479857897417
506 => 0.26089499245853
507 => 0.26797629043919
508 => 0.27832397006239
509 => 0.2822147933221
510 => 0.28151195092565
511 => 0.28935744351952
512 => 0.30345561931522
513 => 0.28436159533623
514 => 0.30446764895001
515 => 0.29810230451144
516 => 0.28301018735524
517 => 0.28203843293475
518 => 0.29225898989602
519 => 0.31492720154394
520 => 0.30924907162687
521 => 0.31493648893035
522 => 0.30830181454088
523 => 0.30797234703601
524 => 0.31461425760413
525 => 0.33013344367822
526 => 0.32276086010241
527 => 0.31219045371483
528 => 0.31999547729768
529 => 0.31323404354938
530 => 0.29799864090832
531 => 0.30924472966793
601 => 0.30172479038454
602 => 0.3039195084494
603 => 0.31972530231652
604 => 0.31782350738149
605 => 0.32028460612889
606 => 0.31594083125789
607 => 0.31188306057795
608 => 0.30430893026983
609 => 0.3020666036857
610 => 0.3026863020831
611 => 0.30206629659395
612 => 0.29782864029641
613 => 0.29691351882243
614 => 0.2953882762734
615 => 0.29586101271686
616 => 0.29299311049924
617 => 0.29840543452273
618 => 0.29941000955473
619 => 0.30334864762865
620 => 0.30375757009942
621 => 0.31472662107231
622 => 0.30868505212386
623 => 0.31273825817845
624 => 0.31237570127867
625 => 0.28333727929732
626 => 0.28733851763818
627 => 0.2935631888388
628 => 0.29075898290027
629 => 0.28679449178631
630 => 0.28359295264922
701 => 0.27874229348235
702 => 0.28556950311106
703 => 0.29454655778002
704 => 0.30398524302022
705 => 0.31532520488917
706 => 0.31279425741173
707 => 0.30377325032099
708 => 0.30417792610923
709 => 0.30667947259808
710 => 0.30343974260556
711 => 0.30248428298372
712 => 0.30654820711812
713 => 0.30657619313014
714 => 0.3028484922393
715 => 0.29870583486118
716 => 0.2986884769755
717 => 0.29795133110839
718 => 0.30843295115306
719 => 0.31419678236631
720 => 0.31485759632603
721 => 0.31415230432173
722 => 0.31442374322215
723 => 0.31106989683651
724 => 0.31873579512183
725 => 0.32577078146719
726 => 0.32388525484607
727 => 0.32105858239761
728 => 0.31880700164142
729 => 0.32335485397618
730 => 0.3231523452707
731 => 0.32570933699866
801 => 0.32559333708398
802 => 0.32473351693919
803 => 0.32388528555296
804 => 0.32724842711962
805 => 0.32627989635882
806 => 0.32530986120224
807 => 0.32336430719076
808 => 0.32362874029315
809 => 0.32080255590954
810 => 0.31949503369628
811 => 0.29983303679334
812 => 0.2945787087466
813 => 0.29623182731181
814 => 0.29677607686669
815 => 0.29448938656714
816 => 0.29776791305415
817 => 0.29725695817397
818 => 0.29924478471415
819 => 0.29800287699324
820 => 0.2980538453193
821 => 0.30170603112385
822 => 0.30276627620042
823 => 0.30222702699725
824 => 0.30260469865477
825 => 0.31130798259707
826 => 0.31007065393583
827 => 0.30941334774542
828 => 0.30959542605227
829 => 0.31181930170004
830 => 0.31244186546231
831 => 0.30980401905481
901 => 0.31104804266979
902 => 0.31634493733231
903 => 0.31819855068591
904 => 0.32411439472574
905 => 0.32160123903188
906 => 0.32621424507479
907 => 0.34039305296105
908 => 0.35172006579947
909 => 0.34130327668465
910 => 0.36210389327603
911 => 0.37830015696364
912 => 0.37767851738702
913 => 0.37485432418676
914 => 0.35641530857835
915 => 0.33944745150526
916 => 0.35364178444017
917 => 0.35367796871391
918 => 0.35245866292647
919 => 0.34488565939983
920 => 0.35219513881918
921 => 0.35277533875136
922 => 0.35245058107696
923 => 0.34664437702893
924 => 0.33777937661346
925 => 0.33951157647483
926 => 0.34234895518367
927 => 0.33697720534862
928 => 0.33526060579053
929 => 0.33845209096546
930 => 0.34873572117143
1001 => 0.34679166045001
1002 => 0.346740893168
1003 => 0.35505840934431
1004 => 0.34910486279441
1005 => 0.33953342506235
1006 => 0.33711651080325
1007 => 0.32853809341199
1008 => 0.33446323685941
1009 => 0.33467647222375
1010 => 0.3314313317111
1011 => 0.33979675032996
1012 => 0.33971966152469
1013 => 0.34766138147506
1014 => 0.36284296724637
1015 => 0.35835302529333
1016 => 0.35313171130624
1017 => 0.35369941290797
1018 => 0.35992569827199
1019 => 0.35616114400863
1020 => 0.35751490396914
1021 => 0.35992364919416
1022 => 0.36137690499419
1023 => 0.35349031176268
1024 => 0.35165156962105
1025 => 0.34789014851008
1026 => 0.34690886395248
1027 => 0.34997246296274
1028 => 0.34916531286208
1029 => 0.33465855061707
1030 => 0.3331425132476
1031 => 0.33318900794932
1101 => 0.32937685990015
1102 => 0.32356241910479
1103 => 0.33884242235276
1104 => 0.33761522424844
1105 => 0.33626049251886
1106 => 0.33642643942574
1107 => 0.34305897094833
1108 => 0.33921176771436
1109 => 0.34944018805607
1110 => 0.34733753232828
1111 => 0.34518095141511
1112 => 0.34488284624185
1113 => 0.34405274658111
1114 => 0.34120602597798
1115 => 0.33776843978831
1116 => 0.33549864762728
1117 => 0.30947976804475
1118 => 0.31430872075041
1119 => 0.31986399066538
1120 => 0.32178164757868
1121 => 0.31850136273066
1122 => 0.34133555161735
1123 => 0.34550757796267
1124 => 0.33287023802816
1125 => 0.3305063077056
1126 => 0.34149053049575
1127 => 0.33486570138666
1128 => 0.33784886152884
1129 => 0.33140090100281
1130 => 0.34450265898728
1201 => 0.34440284554288
1202 => 0.3393059657703
1203 => 0.34361381365216
1204 => 0.34286521907176
1205 => 0.33711085436157
1206 => 0.34468508261246
1207 => 0.34468883933518
1208 => 0.33978320336979
1209 => 0.33405449454402
1210 => 0.33303033671203
1211 => 0.33225877136188
1212 => 0.33765910375052
1213 => 0.34250102488377
1214 => 0.35151063969872
1215 => 0.35377587092636
1216 => 0.36261721921284
1217 => 0.35735262678568
1218 => 0.35968635242075
1219 => 0.36221994172327
1220 => 0.36343463760456
1221 => 0.36145535585018
1222 => 0.37518960898322
1223 => 0.37634920075429
1224 => 0.3767380018447
1225 => 0.37210688896314
1226 => 0.37622040112743
1227 => 0.37429582501097
1228 => 0.37930303740337
1229 => 0.38008823224179
1230 => 0.37942320014776
1231 => 0.37967243338294
]
'min_raw' => 0.17025766005194
'max_raw' => 0.38008823224179
'avg_raw' => 0.27517294614687
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.170257'
'max' => '$0.380088'
'avg' => '$0.275172'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.02625338572971
'max_diff' => -0.036270474366756
'year' => 2031
]
6 => [
'items' => [
101 => 0.36795267122216
102 => 0.36734493972746
103 => 0.35905847767447
104 => 0.3624352722115
105 => 0.3561225166785
106 => 0.3581243564866
107 => 0.35900674839978
108 => 0.35854583693964
109 => 0.36262619110812
110 => 0.35915705650363
111 => 0.35000143990383
112 => 0.34084332886242
113 => 0.34072835623833
114 => 0.33831718725521
115 => 0.33657435370804
116 => 0.33691008527957
117 => 0.33809324712779
118 => 0.33650558619056
119 => 0.33684439414797
120 => 0.3424708637066
121 => 0.34359921205044
122 => 0.33976464350392
123 => 0.32436829746404
124 => 0.32058999552704
125 => 0.32330576403237
126 => 0.32200780160471
127 => 0.25988542757349
128 => 0.27448015787793
129 => 0.26580846472125
130 => 0.26980477989326
131 => 0.26095322670435
201 => 0.26517765183575
202 => 0.26439755476528
203 => 0.28786544920535
204 => 0.2874990303127
205 => 0.28767441564616
206 => 0.27930281671632
207 => 0.29263900112523
208 => 0.29920888511874
209 => 0.29799297444334
210 => 0.29829899296457
211 => 0.29304058088196
212 => 0.28772532856944
213 => 0.28182989574338
214 => 0.29278288123668
215 => 0.29156509622352
216 => 0.29435825689848
217 => 0.30146205092646
218 => 0.30250811158177
219 => 0.30391402771061
220 => 0.30341010685834
221 => 0.31541554598051
222 => 0.31396160808838
223 => 0.31746518008194
224 => 0.31025806667454
225 => 0.30210253374858
226 => 0.30365263393335
227 => 0.30350334682044
228 => 0.3016027505293
229 => 0.29988697717907
301 => 0.29703069796708
302 => 0.30606838804361
303 => 0.30570147433127
304 => 0.31164138084363
305 => 0.3105914446704
306 => 0.30357971394257
307 => 0.30383013927724
308 => 0.3055143700032
309 => 0.31134351177596
310 => 0.31307399793235
311 => 0.31227236779676
312 => 0.31416976686755
313 => 0.3156693937299
314 => 0.3143580969128
315 => 0.33292329456278
316 => 0.32521373013744
317 => 0.32897131819555
318 => 0.32986748080641
319 => 0.32757197912295
320 => 0.32806979124234
321 => 0.32882384095753
322 => 0.33340228317011
323 => 0.34541744031883
324 => 0.35073887163006
325 => 0.36674866028469
326 => 0.35029700083756
327 => 0.3493208274497
328 => 0.3522046738357
329 => 0.36160411458421
330 => 0.3692214784663
331 => 0.37174859752225
401 => 0.37208259802368
402 => 0.37682364137235
403 => 0.37954111900458
404 => 0.376247954008
405 => 0.37345734148215
406 => 0.36346171379812
407 => 0.36461873491973
408 => 0.37258946308504
409 => 0.38384858609207
410 => 0.3935100849442
411 => 0.39012696478341
412 => 0.41593778349958
413 => 0.41849682074754
414 => 0.41814324454345
415 => 0.42397311223013
416 => 0.41240201210399
417 => 0.40745514262056
418 => 0.37406070358503
419 => 0.38344317881255
420 => 0.39708115756919
421 => 0.39527611994096
422 => 0.38537185522366
423 => 0.39350257167127
424 => 0.39081430254268
425 => 0.38869395314457
426 => 0.39840768478726
427 => 0.38772703782802
428 => 0.39697460994551
429 => 0.38511450305095
430 => 0.39014241859133
501 => 0.3872883305577
502 => 0.38913527529933
503 => 0.37833807407903
504 => 0.38416398177026
505 => 0.37809569716526
506 => 0.37809282000825
507 => 0.37795886228926
508 => 0.38509817221614
509 => 0.38533098485655
510 => 0.38005502403368
511 => 0.37929467565311
512 => 0.38210608213081
513 => 0.37881466145395
514 => 0.38035469647269
515 => 0.3788613075458
516 => 0.37852511424278
517 => 0.37584626880569
518 => 0.37469214853501
519 => 0.37514470883116
520 => 0.37359988722957
521 => 0.37266907633597
522 => 0.37777370057435
523 => 0.37504650576374
524 => 0.37735571885614
525 => 0.37472407909142
526 => 0.36560166911603
527 => 0.36035527467145
528 => 0.34312388787578
529 => 0.34801068779557
530 => 0.35125064119814
531 => 0.35017983661792
601 => 0.3524803392026
602 => 0.35262157137739
603 => 0.35187365453626
604 => 0.35100766264832
605 => 0.35058614568962
606 => 0.35372778775738
607 => 0.35555161672053
608 => 0.35157581386707
609 => 0.3506443388859
610 => 0.35466409508083
611 => 0.3571161440376
612 => 0.3752206958471
613 => 0.37387945217213
614 => 0.37724571059055
615 => 0.37686672155208
616 => 0.3803950966616
617 => 0.3861624987631
618 => 0.37443575769977
619 => 0.37647111446817
620 => 0.37597209199181
621 => 0.38142028853798
622 => 0.3814372972129
623 => 0.37817083122587
624 => 0.3799416354298
625 => 0.37895322110264
626 => 0.38073941938403
627 => 0.37386153904513
628 => 0.3822380548766
629 => 0.38698699958229
630 => 0.38705293868414
701 => 0.38930390078468
702 => 0.39159100864576
703 => 0.39598091302
704 => 0.39146857659539
705 => 0.38335132263462
706 => 0.38393736215202
707 => 0.3791782191248
708 => 0.3792582211789
709 => 0.37883116394426
710 => 0.38011279485279
711 => 0.37414278495719
712 => 0.375543934347
713 => 0.37358231699615
714 => 0.37646685029514
715 => 0.37336356929586
716 => 0.37597185134806
717 => 0.37709749941587
718 => 0.38125116501955
719 => 0.37275006950895
720 => 0.35541576028927
721 => 0.35905964224543
722 => 0.35367005461152
723 => 0.35416888146664
724 => 0.3551765911017
725 => 0.3519102744724
726 => 0.35253338475181
727 => 0.35251112286787
728 => 0.35231928197891
729 => 0.3514695868725
730 => 0.35023736086114
731 => 0.35514617003122
801 => 0.35598027236364
802 => 0.35783437852519
803 => 0.36335094080975
804 => 0.36279970614803
805 => 0.36369879275181
806 => 0.36173609174391
807 => 0.35425992553724
808 => 0.35466591733118
809 => 0.34960319315513
810 => 0.35770491328546
811 => 0.35578631902111
812 => 0.3545493888177
813 => 0.35421188095162
814 => 0.35974211772706
815 => 0.36139685124611
816 => 0.36036573236207
817 => 0.35825087744837
818 => 0.36231202408341
819 => 0.36339861559693
820 => 0.36364186336485
821 => 0.37083743655451
822 => 0.3640440159733
823 => 0.36567925982799
824 => 0.37843696558134
825 => 0.36686748690611
826 => 0.37299609779054
827 => 0.3726961341795
828 => 0.37583132412709
829 => 0.37243895709446
830 => 0.37248100954954
831 => 0.37526484582684
901 => 0.3713554498429
902 => 0.37038742841931
903 => 0.36905011375573
904 => 0.37197009139898
905 => 0.37372048593688
906 => 0.38782738038923
907 => 0.39694107755799
908 => 0.39654542792823
909 => 0.40016092491918
910 => 0.3985321104106
911 => 0.39327223870283
912 => 0.40225019833497
913 => 0.39940919625358
914 => 0.39964340501335
915 => 0.39963468775161
916 => 0.40152370577103
917 => 0.40018516337831
918 => 0.39754675892371
919 => 0.39929825492986
920 => 0.40449957189682
921 => 0.42064461935817
922 => 0.42967960181097
923 => 0.42010070206985
924 => 0.42670809884469
925 => 0.42274601523598
926 => 0.4220259867825
927 => 0.42617592023989
928 => 0.43033311760643
929 => 0.43006832210624
930 => 0.42705041029258
1001 => 0.42534566848572
1002 => 0.43825454457768
1003 => 0.44776558458526
1004 => 0.44711699541957
1005 => 0.44997965706445
1006 => 0.45838452019264
1007 => 0.4591529555439
1008 => 0.45905615035193
1009 => 0.45715150315588
1010 => 0.46542718241496
1011 => 0.47233089964962
1012 => 0.45671063236054
1013 => 0.46265862565991
1014 => 0.46532887148437
1015 => 0.46924958458091
1016 => 0.4758644847626
1017 => 0.48305002087553
1018 => 0.48406613446729
1019 => 0.48334515324842
1020 => 0.47860609902437
1021 => 0.48646859838041
1022 => 0.49107426610488
1023 => 0.49381683583597
1024 => 0.50077153635393
1025 => 0.46534536201352
1026 => 0.44026895502027
1027 => 0.43635291196057
1028 => 0.44431633951326
1029 => 0.44641623185176
1030 => 0.44556976788315
1031 => 0.41734399196507
1101 => 0.43620430909182
1102 => 0.45649642449969
1103 => 0.45727592729475
1104 => 0.46743458455606
1105 => 0.47074265977777
1106 => 0.47892171039876
1107 => 0.4784101085555
1108 => 0.4804015772246
1109 => 0.479943773065
1110 => 0.49509374203809
1111 => 0.51180640760758
1112 => 0.51122770114193
1113 => 0.50882505773103
1114 => 0.51239339290779
1115 => 0.52964265481359
1116 => 0.52805461919109
1117 => 0.52959726052979
1118 => 0.54993511244252
1119 => 0.57637721295478
1120 => 0.56409220252335
1121 => 0.59074714024302
1122 => 0.60752501062002
1123 => 0.63654060257286
1124 => 0.63290770755556
1125 => 0.64420326457655
1126 => 0.62640406726652
1127 => 0.58553351243143
1128 => 0.57906559068257
1129 => 0.59201453381764
1130 => 0.62384824697582
1201 => 0.59101197690372
1202 => 0.59765471157326
1203 => 0.59574160354155
1204 => 0.59563966214473
1205 => 0.59953035063587
1206 => 0.5938867040548
1207 => 0.57089347261088
1208 => 0.58143113508167
1209 => 0.57736203754158
1210 => 0.58187700463362
1211 => 0.6062424199153
1212 => 0.59546988902032
1213 => 0.5841219028118
1214 => 0.59835479583701
1215 => 0.61647815961078
1216 => 0.61534403207664
1217 => 0.61314335063186
1218 => 0.62554847671213
1219 => 0.64603811063584
1220 => 0.6515763763514
1221 => 0.65566461087777
1222 => 0.65622830934767
1223 => 0.66203475392427
1224 => 0.63081203802347
1225 => 0.68036329001425
1226 => 0.68891942240735
1227 => 0.6873112241328
1228 => 0.69682100519064
1229 => 0.69402298636356
1230 => 0.68996909607883
1231 => 0.70504412184394
]
'min_raw' => 0.25988542757349
'max_raw' => 0.70504412184394
'avg_raw' => 0.48246477470872
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.259885'
'max' => '$0.705044'
'avg' => '$0.482464'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.089627767521557
'max_diff' => 0.32495588960215
'year' => 2032
]
7 => [
'items' => [
101 => 0.68776182129609
102 => 0.66323177144956
103 => 0.64977410095438
104 => 0.66749624706175
105 => 0.67831854327185
106 => 0.68547139263941
107 => 0.68763584053617
108 => 0.63323576857917
109 => 0.60391714696066
110 => 0.62271004727945
111 => 0.64563868268506
112 => 0.63068466829609
113 => 0.63127083734845
114 => 0.60995034267563
115 => 0.64752507337875
116 => 0.64205075116854
117 => 0.67045154447905
118 => 0.66367346722489
119 => 0.68683321165717
120 => 0.68073447478059
121 => 0.70604999057947
122 => 0.71614903522188
123 => 0.73310690296726
124 => 0.7455811795117
125 => 0.75290631329349
126 => 0.75246653973711
127 => 0.7814923691477
128 => 0.76437685162952
129 => 0.74287572780892
130 => 0.74248684031418
131 => 0.75362257701415
201 => 0.77696002619711
202 => 0.78301108722418
203 => 0.78639280483738
204 => 0.78121358659432
205 => 0.76263591900853
206 => 0.75461417633589
207 => 0.76144893350524
208 => 0.75309061280451
209 => 0.76751941926455
210 => 0.78733325236094
211 => 0.78324177417892
212 => 0.79691897231272
213 => 0.81107343349799
214 => 0.83131494870956
215 => 0.836606830327
216 => 0.8453541094084
217 => 0.85435793291465
218 => 0.85724971836501
219 => 0.86277103405807
220 => 0.86274193399897
221 => 0.87938079046743
222 => 0.89773396441463
223 => 0.90466186270275
224 => 0.92059218280972
225 => 0.89331206789152
226 => 0.91400434842835
227 => 0.93266930343395
228 => 0.9104161746105
301 => 0.9410869283796
302 => 0.94227780424703
303 => 0.96025861597229
304 => 0.94203161858202
305 => 0.93120848571431
306 => 0.96245446476588
307 => 0.97757340978982
308 => 0.97301946050655
309 => 0.9383636816047
310 => 0.91819253182754
311 => 0.86540074213649
312 => 0.92793489746113
313 => 0.95839346037344
314 => 0.938284801285
315 => 0.94842643927837
316 => 1.003755927733
317 => 1.0248218146174
318 => 1.0204402574071
319 => 1.0211806684491
320 => 1.0325474386391
321 => 1.082953957456
322 => 1.0527492029669
323 => 1.0758396060233
324 => 1.0880866725457
325 => 1.0994624304682
326 => 1.0715271643558
327 => 1.0351837935942
328 => 1.023672322483
329 => 0.93628539143701
330 => 0.93173652217386
331 => 0.92918310401161
401 => 0.91308416368678
402 => 0.90043480646234
403 => 0.89037556795695
404 => 0.8639771221759
405 => 0.8728858226925
406 => 0.83081220990133
407 => 0.85772941636783
408 => 0.79057891445023
409 => 0.84650384783515
410 => 0.81606644918844
411 => 0.83650434376849
412 => 0.83643303787967
413 => 0.79880039411741
414 => 0.77709467056858
415 => 0.79092640241329
416 => 0.80575511691507
417 => 0.80816102595319
418 => 0.8273868413738
419 => 0.83275235320017
420 => 0.81649460187447
421 => 0.78918736955424
422 => 0.79553021681057
423 => 0.77696613297137
424 => 0.74443329010036
425 => 0.76779894581927
426 => 0.77577700799706
427 => 0.77930057475495
428 => 0.74730826021356
429 => 0.73725558039771
430 => 0.73190361801391
501 => 0.78505756348922
502 => 0.78796945661061
503 => 0.77307179970141
504 => 0.8404106215848
505 => 0.82516977227305
506 => 0.84219753505302
507 => 0.79495466990464
508 => 0.79675941097426
509 => 0.77439388151252
510 => 0.78691708354587
511 => 0.77806608799034
512 => 0.78590533257827
513 => 0.79060414346186
514 => 0.8129660029603
515 => 0.84675918435027
516 => 0.80962588685353
517 => 0.79344637737558
518 => 0.80348405405869
519 => 0.83021570981535
520 => 0.87071553665498
521 => 0.84673882403095
522 => 0.85737928194251
523 => 0.85970374863516
524 => 0.84202420841235
525 => 0.87136740652083
526 => 0.88709266477089
527 => 0.90322352585174
528 => 0.91722950055179
529 => 0.89678050521081
530 => 0.91866386147399
531 => 0.90102973925826
601 => 0.8852101086487
602 => 0.88523410049828
603 => 0.87531021512898
604 => 0.85608143673593
605 => 0.85253535497786
606 => 0.87098252010408
607 => 0.88577539958228
608 => 0.88699381198921
609 => 0.89518391015393
610 => 0.90003072588309
611 => 0.94753610895533
612 => 0.96664316701213
613 => 0.99000691592588
614 => 0.99910841283652
615 => 1.0265006554703
616 => 1.0043791948544
617 => 0.99959307769958
618 => 0.93314845700424
619 => 0.94402875992081
620 => 0.96144917468331
621 => 0.93343571322734
622 => 0.95120380671116
623 => 0.95471160474454
624 => 0.93248382652655
625 => 0.94435664327838
626 => 0.91282596203035
627 => 0.84744646703807
628 => 0.87144019258848
629 => 0.88910765079427
630 => 0.86389400955272
701 => 0.90908848557553
702 => 0.88268680568636
703 => 0.87431874066562
704 => 0.84167193558915
705 => 0.85707997089448
706 => 0.87791955926675
707 => 0.86504311651487
708 => 0.89176366863263
709 => 0.92960709654232
710 => 0.95657657688586
711 => 0.95864695870527
712 => 0.94130738965923
713 => 0.96909415971517
714 => 0.96929655599952
715 => 0.93795296586413
716 => 0.91875519142804
717 => 0.9143934166837
718 => 0.92528998517137
719 => 0.93852043093292
720 => 0.95938115636582
721 => 0.97198685584744
722 => 1.0048558345491
723 => 1.0137492377583
724 => 1.0235203915738
725 => 1.0365776663836
726 => 1.0522562726093
727 => 1.0179523747711
728 => 1.0193153325826
729 => 0.98737201788542
730 => 0.95323600499673
731 => 0.97914098366517
801 => 1.0130082972792
802 => 1.0052390981161
803 => 1.0043649044999
804 => 1.0058350556813
805 => 0.9999773332306
806 => 0.97348307168353
807 => 0.96017781939744
808 => 0.97734498937836
809 => 0.9864685762004
810 => 1.000618463701
811 => 0.99887419139864
812 => 1.0353227820132
813 => 1.0494856021778
814 => 1.0458621467184
815 => 1.0465289497263
816 => 1.0721700591299
817 => 1.1006882462831
818 => 1.1273992918582
819 => 1.1545709146834
820 => 1.1218144628412
821 => 1.1051827567328
822 => 1.1223424320643
823 => 1.1132372667935
824 => 1.1655582472072
825 => 1.1691808383718
826 => 1.2214980353831
827 => 1.2711532851627
828 => 1.2399657124423
829 => 1.2693741887985
830 => 1.301181853686
831 => 1.3625439998616
901 => 1.341879387776
902 => 1.3260506187742
903 => 1.3110925085515
904 => 1.3422179613918
905 => 1.3822603592295
906 => 1.3908851082024
907 => 1.4048604964463
908 => 1.3901670845371
909 => 1.4078636807555
910 => 1.4703404416849
911 => 1.4534586693841
912 => 1.4294838388368
913 => 1.4788032412586
914 => 1.4966517412708
915 => 1.6219218616881
916 => 1.7800805633656
917 => 1.7146018223451
918 => 1.6739570548079
919 => 1.6835095392859
920 => 1.7412637431286
921 => 1.7598125603761
922 => 1.7093904809367
923 => 1.727200411812
924 => 1.8253348819683
925 => 1.8779808766765
926 => 1.8064805445624
927 => 1.6092139640041
928 => 1.4273251676603
929 => 1.4755702670099
930 => 1.4701007699634
1001 => 1.5755340156219
1002 => 1.4530560446979
1003 => 1.455118259616
1004 => 1.562731753139
1005 => 1.5340223180294
1006 => 1.4875167099785
1007 => 1.4276647100652
1008 => 1.3170227525855
1009 => 1.2190240853666
1010 => 1.4112220395282
1011 => 1.4029341142554
1012 => 1.3909319702588
1013 => 1.4176414429557
1014 => 1.5473350607559
1015 => 1.5443452030883
1016 => 1.525325254046
1017 => 1.5397517177605
1018 => 1.4849876811385
1019 => 1.4991016203299
1020 => 1.4272963555456
1021 => 1.4597553340809
1022 => 1.4874169298304
1023 => 1.492970404714
1024 => 1.5054826671943
1025 => 1.3985667542429
1026 => 1.4465688602718
1027 => 1.4747656003747
1028 => 1.3473717027837
1029 => 1.4722474326219
1030 => 1.3967055860649
1031 => 1.371065548743
1101 => 1.4055864811789
1102 => 1.3921336402359
1103 => 1.3805676775704
1104 => 1.3741136716747
1105 => 1.3994620345193
1106 => 1.3982795030948
1107 => 1.3568046615757
1108 => 1.3027024215449
1109 => 1.3208609091447
1110 => 1.314263760363
1111 => 1.2903548421288
1112 => 1.3064665662448
1113 => 1.2355186871947
1114 => 1.1134565488389
1115 => 1.1940945363012
1116 => 1.1909900615011
1117 => 1.1894246445302
1118 => 1.2500218634378
1119 => 1.2441968390556
1120 => 1.233624362763
1121 => 1.2901606703106
1122 => 1.2695241575351
1123 => 1.3331210273354
1124 => 1.3750100389735
1125 => 1.3643856306545
1126 => 1.4037824485673
1127 => 1.321279244024
1128 => 1.3486834991193
1129 => 1.3543314781137
1130 => 1.2894630210514
1201 => 1.2451498850838
1202 => 1.2421947041215
1203 => 1.16536183308
1204 => 1.2064053326171
1205 => 1.2425219137143
1206 => 1.2252248741287
1207 => 1.2197491481302
1208 => 1.2477234447163
1209 => 1.2498972871447
1210 => 1.200333449404
1211 => 1.2106393407529
1212 => 1.2536166208897
1213 => 1.2095564235618
1214 => 1.123954657346
1215 => 1.1027242357875
1216 => 1.0998917061973
1217 => 1.0423131191247
1218 => 1.1041429540733
1219 => 1.0771525741817
1220 => 1.1624148608649
1221 => 1.1137134999822
1222 => 1.1116140816528
1223 => 1.1084405029301
1224 => 1.0588802344951
1225 => 1.069730783563
1226 => 1.1057996612499
1227 => 1.1186694431536
1228 => 1.117327019462
1229 => 1.105622904072
1230 => 1.1109809881628
1231 => 1.093720732426
]
'min_raw' => 0.60391714696066
'max_raw' => 1.8779808766765
'avg_raw' => 1.2409490118186
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.603917'
'max' => '$1.87'
'avg' => '$1.24'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.34403171938717
'max_diff' => 1.1729367548325
'year' => 2033
]
8 => [
'items' => [
101 => 1.0876257768842
102 => 1.0683884206447
103 => 1.0401148214279
104 => 1.044046438811
105 => 0.98802904057284
106 => 0.95750778894434
107 => 0.9490599087572
108 => 0.93776305030974
109 => 0.95033591897863
110 => 0.98787035032185
111 => 0.94259586274811
112 => 0.86497592943897
113 => 0.86964101968878
114 => 0.88012209240238
115 => 0.86059068273983
116 => 0.84210584264118
117 => 0.85817691138447
118 => 0.82528832239589
119 => 0.88409652125456
120 => 0.8825059242835
121 => 0.90442598414339
122 => 0.91813304741869
123 => 0.88654270428356
124 => 0.87859781841444
125 => 0.88312358648042
126 => 0.80832272162276
127 => 0.89831315765609
128 => 0.89909139868384
129 => 0.89242762652041
130 => 0.94034475556516
131 => 1.0414648435769
201 => 1.0034193989208
202 => 0.98868705282027
203 => 0.96068085211392
204 => 0.99799745171148
205 => 0.99513211909202
206 => 0.98217399834172
207 => 0.97433688648014
208 => 0.98877700538407
209 => 0.97254759594622
210 => 0.96963234805684
211 => 0.95196911766816
212 => 0.94566414804518
213 => 0.9409961995444
214 => 0.93585724690818
215 => 0.94719249587646
216 => 0.92150533043815
217 => 0.89052912706342
218 => 0.88795379091997
219 => 0.89506452043789
220 => 0.89191855195776
221 => 0.88793872923323
222 => 0.88034016381187
223 => 0.87808583176901
224 => 0.88541131726187
225 => 0.87714127124277
226 => 0.88934417463667
227 => 0.88602566013097
228 => 0.86748870786291
301 => 0.84438480207818
302 => 0.84417912885461
303 => 0.83920143025129
304 => 0.83286158267797
305 => 0.83109798211913
306 => 0.85682345080077
307 => 0.91007440107327
308 => 0.89961996534753
309 => 0.90717436657305
310 => 0.94433454373686
311 => 0.95614664661173
312 => 0.94776269577614
313 => 0.93628622677282
314 => 0.9367911331649
315 => 0.97600970191266
316 => 0.97845571593899
317 => 0.98463600426947
318 => 0.99257942132342
319 => 0.94911549404873
320 => 0.93474398609891
321 => 0.92793396833137
322 => 0.90696174941593
323 => 0.92957848949408
324 => 0.91640068359591
325 => 0.91817881982952
326 => 0.9170208062747
327 => 0.91765315998017
328 => 0.88408008316446
329 => 0.89631234780714
330 => 0.87597383535194
331 => 0.84874285027961
401 => 0.84865156246923
402 => 0.85531630748757
403 => 0.85135185635916
404 => 0.84068362030797
405 => 0.84219899288639
406 => 0.82892273454949
407 => 0.8438109710229
408 => 0.84423791237229
409 => 0.8385051303623
410 => 0.86144251283032
411 => 0.87083997714259
412 => 0.86706653721553
413 => 0.87057522253809
414 => 0.90005439435089
415 => 0.90486078562281
416 => 0.90699546713342
417 => 0.90413527670031
418 => 0.87111404768315
419 => 0.87257867960717
420 => 0.86183218234727
421 => 0.85275252460063
422 => 0.85311566329396
423 => 0.85778378764862
424 => 0.87816976048728
425 => 0.92107083850751
426 => 0.92269890305809
427 => 0.9246721647874
428 => 0.91664591765243
429 => 0.91422512471568
430 => 0.91741877545892
501 => 0.9335301647318
502 => 0.97497303214116
503 => 0.96032435492264
504 => 0.94841475232374
505 => 0.95886268460878
506 => 0.9572543073271
507 => 0.94367798445602
508 => 0.94329694229038
509 => 0.9172396380878
510 => 0.90760684602021
511 => 0.89955696396655
512 => 0.89076670291144
513 => 0.88555554150575
514 => 0.89356225385539
515 => 0.89539348370239
516 => 0.87788666721653
517 => 0.87550055281941
518 => 0.88979699707265
519 => 0.88350566498196
520 => 0.88997645605476
521 => 0.89147773508907
522 => 0.89123599458716
523 => 0.88466712132959
524 => 0.88885392525734
525 => 0.87895088582189
526 => 0.86818281782426
527 => 0.86131346131611
528 => 0.85531903667484
529 => 0.85864509186382
530 => 0.84678831242878
531 => 0.84299509005768
601 => 0.88743553029269
602 => 0.92026416130954
603 => 0.91978682001299
604 => 0.91688112763246
605 => 0.91256385815316
606 => 0.93321432957878
607 => 0.9260201182533
608 => 0.93125450808906
609 => 0.93258687998891
610 => 0.93661956844501
611 => 0.93806090794678
612 => 0.93370417889778
613 => 0.91908246407969
614 => 0.88264654094395
615 => 0.86568552036737
616 => 0.86008810106896
617 => 0.86029155662944
618 => 0.85467934400566
619 => 0.85633239214509
620 => 0.8541044813232
621 => 0.84988535721606
622 => 0.85838457283939
623 => 0.8593640282643
624 => 0.85738020977975
625 => 0.85784747084814
626 => 0.84142230109605
627 => 0.84267107107871
628 => 0.83571776112925
629 => 0.83441409933713
630 => 0.81683673727887
701 => 0.78569589251328
702 => 0.80295094342836
703 => 0.78210926835026
704 => 0.77421621019527
705 => 0.81158071987859
706 => 0.80783035943656
707 => 0.80141137260231
708 => 0.79191635324037
709 => 0.78839455819742
710 => 0.76699724638126
711 => 0.76573297904894
712 => 0.77633806456104
713 => 0.77144418249592
714 => 0.76457131861841
715 => 0.7396785023451
716 => 0.71169073512567
717 => 0.7125355098932
718 => 0.72143789791478
719 => 0.74732279173811
720 => 0.73720911590812
721 => 0.72987152805241
722 => 0.72849741841411
723 => 0.74569727743075
724 => 0.77003868142115
725 => 0.78145912356523
726 => 0.77014181224443
727 => 0.75714109436641
728 => 0.75793238782412
729 => 0.76319650869255
730 => 0.76374969336516
731 => 0.75528756252196
801 => 0.7576696027871
802 => 0.75405106580602
803 => 0.73184411103241
804 => 0.73144245763957
805 => 0.72599251280261
806 => 0.72582749063889
807 => 0.71655577491877
808 => 0.71525859779718
809 => 0.69684904348195
810 => 0.7089662678815
811 => 0.70083866993712
812 => 0.6885884627284
813 => 0.68647652238823
814 => 0.68641303491136
815 => 0.69899125861851
816 => 0.70881928401408
817 => 0.70098005298309
818 => 0.69919521203444
819 => 0.7182526438413
820 => 0.71582741193153
821 => 0.71372717673874
822 => 0.76785917567267
823 => 0.72500947454391
824 => 0.70632455907634
825 => 0.68319842801601
826 => 0.69072841290133
827 => 0.69231509135516
828 => 0.63670091495351
829 => 0.61413825051366
830 => 0.60639559433398
831 => 0.60193958623748
901 => 0.60397024508209
902 => 0.58366120074964
903 => 0.59730921442163
904 => 0.57972329871052
905 => 0.57677496271203
906 => 0.60822075848042
907 => 0.61259625725791
908 => 0.5939290201122
909 => 0.60591640831093
910 => 0.60156961471291
911 => 0.58002475876075
912 => 0.57920190373661
913 => 0.56839145235812
914 => 0.55147518926666
915 => 0.54374400310993
916 => 0.53971753423427
917 => 0.54137893376668
918 => 0.54053887932343
919 => 0.53505695584649
920 => 0.54085309676022
921 => 0.52604635185642
922 => 0.52015018672967
923 => 0.51748702573192
924 => 0.50434518738535
925 => 0.52525969639677
926 => 0.52938011814606
927 => 0.53350865839906
928 => 0.56944478262729
929 => 0.56764951541528
930 => 0.58387785668125
1001 => 0.58324725318165
1002 => 0.5786186673709
1003 => 0.55909142520074
1004 => 0.56687463589014
1005 => 0.54291912316766
1006 => 0.56086822211587
1007 => 0.5526770029282
1008 => 0.5580987626689
1009 => 0.54834994979476
1010 => 0.55374534535793
1011 => 0.53035722300039
1012 => 0.50851772342268
1013 => 0.51730657558749
1014 => 0.52686106301779
1015 => 0.54757762620481
1016 => 0.53523901207856
1017 => 0.53967644429301
1018 => 0.52481178919177
1019 => 0.49414175983908
1020 => 0.49431534887446
1021 => 0.48959743304146
1022 => 0.48552046493476
1023 => 0.53665625033715
1024 => 0.53029670708522
1025 => 0.52016360722972
1026 => 0.53372716405969
1027 => 0.53731358376812
1028 => 0.53741568409531
1029 => 0.54731130503239
1030 => 0.55259259970039
1031 => 0.55352345077607
1101 => 0.56909442412959
1102 => 0.57431360901159
1103 => 0.59581069289385
1104 => 0.55214451874616
1105 => 0.55124524262491
1106 => 0.53391803111967
1107 => 0.52292883965067
1108 => 0.53467047046121
1109 => 0.54507195246692
1110 => 0.5342412341596
1111 => 0.5356554973216
1112 => 0.52111614289622
1113 => 0.52631327796308
1114 => 0.53078975081236
1115 => 0.5283181056199
1116 => 0.52461793313781
1117 => 0.54421914955939
1118 => 0.5431131721111
1119 => 0.56136627547289
1120 => 0.57559587483535
1121 => 0.60109786073802
1122 => 0.57448520899999
1123 => 0.57351533819494
1124 => 0.58299598088642
1125 => 0.57431215757459
1126 => 0.57980003415227
1127 => 0.60021367897911
1128 => 0.6006449871269
1129 => 0.59342001994224
1130 => 0.59298038003245
1201 => 0.59436801401275
1202 => 0.60249542957729
1203 => 0.59965546084878
1204 => 0.60294194456062
1205 => 0.60705174276669
1206 => 0.62405161066536
1207 => 0.62815022126294
1208 => 0.61819272239676
1209 => 0.61909177305499
1210 => 0.61536739513958
1211 => 0.61176969273962
1212 => 0.6198568023325
1213 => 0.63463615406602
1214 => 0.63454421248594
1215 => 0.63797273481857
1216 => 0.64010867582839
1217 => 0.63093965340987
1218 => 0.62497095696971
1219 => 0.62725973498289
1220 => 0.63091954086907
1221 => 0.62607290925964
1222 => 0.5961572537881
1223 => 0.60523175263869
1224 => 0.60372131230963
1225 => 0.60157026160522
1226 => 0.61069474037052
1227 => 0.60981466213429
1228 => 0.5834529021458
1229 => 0.58514049648974
1230 => 0.58355553034734
1231 => 0.588676880207
]
'min_raw' => 0.48552046493476
'max_raw' => 1.0876257768842
'avg_raw' => 0.78657312090948
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.48552'
'max' => '$1.08'
'avg' => '$0.786573'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.1183966820259
'max_diff' => -0.79035509979225
'year' => 2034
]
9 => [
'items' => [
101 => 0.57403558787533
102 => 0.57853915078595
103 => 0.5813637432252
104 => 0.58302744987146
105 => 0.5890378990921
106 => 0.5883326422484
107 => 0.58899405933647
108 => 0.5979059688309
109 => 0.64297934885569
110 => 0.64543259348164
111 => 0.63335191971143
112 => 0.63817791060187
113 => 0.62891306342041
114 => 0.63513261740241
115 => 0.63938787827735
116 => 0.6201591726231
117 => 0.61902057346753
118 => 0.60971748696605
119 => 0.61471643869819
120 => 0.60676274705501
121 => 0.60871430477593
122 => 0.60325757925451
123 => 0.61307859876985
124 => 0.62406002462014
125 => 0.62683436645957
126 => 0.61953626750929
127 => 0.61425196290112
128 => 0.60497446476733
129 => 0.62040315092635
130 => 0.62491496893994
131 => 0.62037945226706
201 => 0.61932847395096
202 => 0.61733687194103
203 => 0.61975100173228
204 => 0.62489039661007
205 => 0.62246675289543
206 => 0.62406761226806
207 => 0.61796678713861
208 => 0.63094268873781
209 => 0.65155154329813
210 => 0.65161780413543
211 => 0.64919414735644
212 => 0.64820243922089
213 => 0.65068925815592
214 => 0.65203825541353
215 => 0.66008017184482
216 => 0.66870946857969
217 => 0.70897863118417
218 => 0.69767121146449
219 => 0.73340040815039
220 => 0.7616575638734
221 => 0.77013064933907
222 => 0.76233580940013
223 => 0.73567008303802
224 => 0.73436173528713
225 => 0.77421158845141
226 => 0.76295217969359
227 => 0.76161290884899
228 => 0.74736532979625
301 => 0.75578741361342
302 => 0.75394538033809
303 => 0.75103764069763
304 => 0.76710638993333
305 => 0.79718565403544
306 => 0.79249751864357
307 => 0.78899804304989
308 => 0.77366435968039
309 => 0.782898661971
310 => 0.77961050379672
311 => 0.79373851803015
312 => 0.7853693953721
313 => 0.76286687859832
314 => 0.76645047856381
315 => 0.76590882463823
316 => 0.77705602404468
317 => 0.77370991147336
318 => 0.76525544245549
319 => 0.79708284638077
320 => 0.79501615180319
321 => 0.79794625220205
322 => 0.79923617301399
323 => 0.81860895292154
324 => 0.82654536098986
325 => 0.82834706456774
326 => 0.83588603840881
327 => 0.82815948803073
328 => 0.85907119848011
329 => 0.87962568218064
330 => 0.90350077272286
331 => 0.9383886970244
401 => 0.95150687929313
402 => 0.94913719708258
403 => 0.97558882311763
404 => 1.023121807116
405 => 0.95874497216868
406 => 1.0265339356874
407 => 1.0050727324986
408 => 0.95418860580849
409 => 0.95091226793409
410 => 0.98537158930548
411 => 1.0617990475205
412 => 1.0426548360707
413 => 1.0618303605922
414 => 1.0394610926699
415 => 1.0383502699745
416 => 1.0607439351783
417 => 1.1130679545421
418 => 1.0882107742789
419 => 1.052571911141
420 => 1.0788870930799
421 => 1.0560904471293
422 => 1.0047232234231
423 => 1.042640196853
424 => 1.0172861965336
425 => 1.0246858417196
426 => 1.0779761792679
427 => 1.0715641448654
428 => 1.0798619111207
429 => 1.0652165708704
430 => 1.0515355137185
501 => 1.0259988045758
502 => 1.0184386439431
503 => 1.0205280003559
504 => 1.0184376085619
505 => 1.004150054491
506 => 1.0010646585497
507 => 0.99592219680662
508 => 0.99751606073117
509 => 0.98784672817391
510 => 1.0060947564955
511 => 1.0094817513531
512 => 1.0227611446063
513 => 1.0241398552665
514 => 1.0611227764563
515 => 1.0407532049377
516 => 1.0544188721365
517 => 1.053196486236
518 => 0.95529141912803
519 => 0.96878187355179
520 => 0.98976878709735
521 => 0.98031421099217
522 => 0.96694765240952
523 => 0.95615343968451
524 => 0.93979910364119
525 => 0.96281751756495
526 => 0.99308428413928
527 => 1.0249074704146
528 => 1.0631409435866
529 => 1.0546076774613
530 => 1.0241927222283
531 => 1.0255571149019
601 => 1.0339912535415
602 => 1.0230682776809
603 => 1.0198468788578
604 => 1.0335486828111
605 => 1.0336430396046
606 => 1.0210748357913
607 => 1.0071075772099
608 => 1.0070490538864
609 => 1.0045637151296
610 => 1.0399032289135
611 => 1.0593363882668
612 => 1.0615643686686
613 => 1.0591864274342
614 => 1.0601016026382
615 => 1.0487938753909
616 => 1.0746399866758
617 => 1.0983589343063
618 => 1.0920017496599
619 => 1.0824714261479
620 => 1.0748800644281
621 => 1.0902134660957
622 => 1.0895306938564
623 => 1.0981517699907
624 => 1.0977606681795
625 => 1.0948617245306
626 => 1.0920018531903
627 => 1.1033409197894
628 => 1.1000754507087
629 => 1.0968049094526
630 => 1.0902453382686
701 => 1.0911368929354
702 => 1.0816082149682
703 => 1.0771998125379
704 => 1.0109080172229
705 => 0.99319268336782
706 => 0.9987662880275
707 => 1.0006012634
708 => 0.9928915274035
709 => 1.0039453083539
710 => 1.0022225883016
711 => 1.0089246842674
712 => 1.0047375056792
713 => 1.004909348949
714 => 1.0172229483765
715 => 1.0207976386761
716 => 1.0189795223384
717 => 1.0202528686999
718 => 1.0495965981553
719 => 1.0454248581864
720 => 1.0432087044738
721 => 1.0438225941976
722 => 1.0513205462101
723 => 1.0534195634006
724 => 1.0445258800692
725 => 1.048720192542
726 => 1.0665790427141
727 => 1.0728286295509
728 => 1.0927743107622
729 => 1.0843010308774
730 => 1.0998541028209
731 => 1.1476589435422
801 => 1.1858487581537
802 => 1.1507278263761
803 => 1.2208585574666
804 => 1.2754653912764
805 => 1.2733694900424
806 => 1.2638475254888
807 => 1.2016790969941
808 => 1.1444707822142
809 => 1.192327966721
810 => 1.1924499645262
811 => 1.1883389899346
812 => 1.1628060798143
813 => 1.1874505000082
814 => 1.1894066845878
815 => 1.1883117414147
816 => 1.1687357190906
817 => 1.1388467512552
818 => 1.1446869840262
819 => 1.1542534044425
820 => 1.1361421748301
821 => 1.1303545395708
822 => 1.1411148546604
823 => 1.17578683188
824 => 1.1692322954277
825 => 1.169061129992
826 => 1.1971042164909
827 => 1.1770314186345
828 => 1.1447606480644
829 => 1.1366118528963
830 => 1.1076891197357
831 => 1.127666154549
901 => 1.1283850924675
902 => 1.1174438746606
903 => 1.145648467589
904 => 1.1453885572998
905 => 1.1721646205857
906 => 1.2233503969581
907 => 1.2082122441857
908 => 1.1906082195377
909 => 1.1925222651236
910 => 1.2135146209338
911 => 1.2008221634021
912 => 1.2053864596255
913 => 1.2135077123248
914 => 1.2184074657177
915 => 1.1918172660133
916 => 1.1856178185059
917 => 1.1729359246163
918 => 1.1696274552192
919 => 1.1799565931759
920 => 1.1772352302582
921 => 1.1283246685193
922 => 1.1232132426818
923 => 1.1233700028148
924 => 1.1105170795113
925 => 1.0909132864185
926 => 1.1424308841848
927 => 1.1382933000958
928 => 1.1337257274852
929 => 1.1342852290678
930 => 1.1566472721648
1001 => 1.1436761578583
1002 => 1.1781619911659
1003 => 1.1710727405769
1004 => 1.1638016774605
1005 => 1.1627965950558
1006 => 1.1599978560939
1007 => 1.1503999388288
1008 => 1.1388098769857
1009 => 1.1311571142429
1010 => 1.0434326451503
1011 => 1.0597137963441
1012 => 1.078443776719
1013 => 1.0849092908887
1014 => 1.0738495815014
1015 => 1.1508366435651
1016 => 1.1649029216699
1017 => 1.1222952477698
1018 => 1.1143250916429
1019 => 1.1513591656739
1020 => 1.1290230918018
1021 => 1.1390810244987
1022 => 1.117341275403
1023 => 1.1615147671832
1024 => 1.1611782391866
1025 => 1.1439937531806
1026 => 1.1585179630786
1027 => 1.1559940241856
1028 => 1.1365927818083
1029 => 1.1621298211719
1030 => 1.1621424872248
1031 => 1.1456027930669
1101 => 1.1262880512952
1102 => 1.1228350316602
1103 => 1.1202336452132
1104 => 1.1384412429007
1105 => 1.1547661180536
1106 => 1.1851426634334
1107 => 1.1927800486708
1108 => 1.2225892717019
1109 => 1.2048393307716
1110 => 1.2127076496857
1111 => 1.2212498229088
1112 => 1.2253452548799
1113 => 1.2186719682559
1114 => 1.2649779615889
1115 => 1.2688876062052
1116 => 1.2701984762267
1117 => 1.2545843558126
1118 => 1.2684533492707
1119 => 1.2619645065245
1120 => 1.2788466726978
1121 => 1.2814940119162
1122 => 1.2792518097801
1123 => 1.2800921170334
1124 => 1.2405781206607
1125 => 1.2385291114958
1126 => 1.2105907261419
1127 => 1.2219758246837
1128 => 1.2006919286617
1129 => 1.2074412713387
1130 => 1.2104163172806
1201 => 1.2088623221129
1202 => 1.2226195210732
1203 => 1.2109230915469
1204 => 1.180054290956
1205 => 1.1491770801809
1206 => 1.1487894419517
1207 => 1.1406600173827
1208 => 1.1347839323976
1209 => 1.1359158748311
1210 => 1.139904987608
1211 => 1.1345520779112
1212 => 1.1356943925945
1213 => 1.1546644275389
1214 => 1.1584687327589
1215 => 1.1455402171833
1216 => 1.0936303615713
1217 => 1.0808915527981
1218 => 1.0900479559227
1219 => 1.0856717849771
1220 => 0.87622186368516
1221 => 0.9254290158781
1222 => 0.89619179696205
1223 => 0.90966565257833
1224 => 0.87982202300618
1225 => 0.89406496727665
1226 => 0.89143481553894
1227 => 0.97055846011969
1228 => 0.96932305324058
1229 => 0.96991437713733
1230 => 0.94168894685902
1231 => 0.98665282369632
]
'min_raw' => 0.57403558787533
'max_raw' => 1.2814940119162
'avg_raw' => 0.92776479989574
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.574035'
'max' => '$1.28'
'avg' => '$0.927764'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.088515122940574
'max_diff' => 0.19386823503194
'year' => 2035
]
10 => [
'items' => [
101 => 1.0088036462751
102 => 1.0047041185408
103 => 1.0057358813507
104 => 0.98800677788355
105 => 0.97008603361279
106 => 0.95020917023375
107 => 0.98713792553744
108 => 0.98303207834255
109 => 0.99244941457044
110 => 1.0164003521068
111 => 1.0199272186398
112 => 1.0246673630261
113 => 1.0229683586901
114 => 1.0634455348835
115 => 1.0585434817694
116 => 1.0703560193573
117 => 1.0460567333197
118 => 1.0185597846587
119 => 1.0237860556562
120 => 1.0232827237321
121 => 1.0168747306412
122 => 1.0110898809994
123 => 1.0014597362171
124 => 1.0319309393015
125 => 1.0306938641032
126 => 1.0507206736207
127 => 1.0471807405084
128 => 1.0235402008162
129 => 1.0243845273161
130 => 1.0300630287979
131 => 1.0497163872625
201 => 1.0555508421574
202 => 1.0528480901873
203 => 1.0592453036266
204 => 1.0643014002936
205 => 1.0598802715229
206 => 1.1224741315806
207 => 1.0964807968559
208 => 1.1091497673403
209 => 1.1121712421509
210 => 1.1044317979583
211 => 1.1061102062749
212 => 1.1086525375358
213 => 1.1240890751121
214 => 1.1645990163105
215 => 1.1825405935068
216 => 1.2365187137236
217 => 1.1810507952794
218 => 1.177759558548
219 => 1.1874826479821
220 => 1.2191735187137
221 => 1.2448559928695
222 => 1.2533763512045
223 => 1.2545024572143
224 => 1.2704872158734
225 => 1.2796493814387
226 => 1.2685462457313
227 => 1.259137500766
228 => 1.2254365441568
229 => 1.229337521649
301 => 1.2562113881568
302 => 1.2941723074619
303 => 1.3267467253861
304 => 1.3153402995621
305 => 1.4023632769175
306 => 1.4109912496653
307 => 1.4097991428073
308 => 1.4294549487413
309 => 1.3904421767976
310 => 1.3737634609548
311 => 1.2611717782213
312 => 1.2928054485143
313 => 1.3387868460656
314 => 1.3327010356783
315 => 1.2993081156903
316 => 1.3267213938619
317 => 1.3176577068059
318 => 1.3105088007721
319 => 1.3432593251965
320 => 1.3072487782745
321 => 1.3384276133135
322 => 1.2984404348722
323 => 1.3153924031545
324 => 1.305769646083
325 => 1.311996749229
326 => 1.2755932314782
327 => 1.2952356860111
328 => 1.2747760407913
329 => 1.2747663402555
330 => 1.2743146924533
331 => 1.2983853743225
401 => 1.2991703183941
402 => 1.281382048124
403 => 1.278818480473
404 => 1.2882973336987
405 => 1.277200079087
406 => 1.2823924146746
407 => 1.2773573496425
408 => 1.2762238504491
409 => 1.2671919360269
410 => 1.2633007389562
411 => 1.2648265775914
412 => 1.2596181037057
413 => 1.2564798097908
414 => 1.2736904068039
415 => 1.2644954790933
416 => 1.2722811522584
417 => 1.2634083950565
418 => 1.2326515529181
419 => 1.2149629677566
420 => 1.156866144118
421 => 1.1733423312331
422 => 1.1842660603362
423 => 1.1806557679328
424 => 1.188412073013
425 => 1.1888882471508
426 => 1.1863665933031
427 => 1.1834468411912
428 => 1.1820256673356
429 => 1.1926179329095
430 => 1.1987670995944
501 => 1.1853624026923
502 => 1.1822218697598
503 => 1.1957747584214
504 => 1.2040420126757
505 => 1.2650827731209
506 => 1.2605606764281
507 => 1.2719102517104
508 => 1.2706324637071
509 => 1.2825286267321
510 => 1.3019738255845
511 => 1.2624362993545
512 => 1.2692986468033
513 => 1.2676161576836
514 => 1.2859851327199
515 => 1.286042478655
516 => 1.2750293605223
517 => 1.2809997505295
518 => 1.2776672426165
519 => 1.2836895348306
520 => 1.2605002810698
521 => 1.2887422890252
522 => 1.3047536876612
523 => 1.3049760059468
524 => 1.3125652818259
525 => 1.3202764256603
526 => 1.3350772947514
527 => 1.3198636374546
528 => 1.2924957489973
529 => 1.2944716221461
530 => 1.2784258391571
531 => 1.2786955716681
601 => 1.2772557183853
602 => 1.281576826474
603 => 1.2614485212982
604 => 1.2661725942911
605 => 1.259558864437
606 => 1.2692842698462
607 => 1.258821341293
608 => 1.2676153463364
609 => 1.2714105473872
610 => 1.2854149209697
611 => 1.2567528839282
612 => 1.1983090501512
613 => 1.2105946525742
614 => 1.1924232815774
615 => 1.1941051111465
616 => 1.1975026745371
617 => 1.1864900599745
618 => 1.1885909197856
619 => 1.1885158622897
620 => 1.1878690573387
621 => 1.1850042509636
622 => 1.180849714935
623 => 1.197400107774
624 => 1.2002123420229
625 => 1.2064635903962
626 => 1.2250630652926
627 => 1.2232045391447
628 => 1.2262358724015
629 => 1.219618488922
630 => 1.194412072587
701 => 1.1957809022657
702 => 1.178711574238
703 => 1.2060270893014
704 => 1.1995584147872
705 => 1.1953880182467
706 => 1.1942500869122
707 => 1.2128956663094
708 => 1.2184747158987
709 => 1.2149982265907
710 => 1.2078678455947
711 => 1.2215602850149
712 => 1.2252238041662
713 => 1.2260439309987
714 => 1.2503043083865
715 => 1.2273998165955
716 => 1.2329131554207
717 => 1.2759266510827
718 => 1.2369193459739
719 => 1.2575823854567
720 => 1.2565710371993
721 => 1.2671415489996
722 => 1.2557039467016
723 => 1.2558457294899
724 => 1.2652316278601
725 => 1.2520508263549
726 => 1.2487870745402
727 => 1.2442782247836
728 => 1.2541231332741
729 => 1.2600247106673
730 => 1.3075870902253
731 => 1.3383145565278
801 => 1.3369805961777
802 => 1.3491704967086
803 => 1.3436788348727
804 => 1.3259448101775
805 => 1.3562146278984
806 => 1.3466359910285
807 => 1.347425642214
808 => 1.3473962513574
809 => 1.3537652074969
810 => 1.3492522183658
811 => 1.3403566535397
812 => 1.3462619446099
813 => 1.3637985479084
814 => 1.4182327026355
815 => 1.4486947767775
816 => 1.4163988475229
817 => 1.438676147063
818 => 1.4253177055524
819 => 1.4228900793507
820 => 1.4368818697414
821 => 1.4508981509089
822 => 1.4500053743926
823 => 1.4398302740089
824 => 1.4340826179858
825 => 1.4776057949988
826 => 1.509672930424
827 => 1.5074861667688
828 => 1.5171378303692
829 => 1.5454754132147
830 => 1.5480662466519
831 => 1.5477398611884
901 => 1.5413182101887
902 => 1.5692202406002
903 => 1.592496605259
904 => 1.5398317835216
905 => 1.5598858582061
906 => 1.5688887784339
907 => 1.5821077363743
908 => 1.6044103341745
909 => 1.6286368708573
910 => 1.6320627687747
911 => 1.629631930258
912 => 1.6136538780714
913 => 1.6401628435925
914 => 1.655691173883
915 => 1.6649379392115
916 => 1.6883861975694
917 => 1.5689443774042
918 => 1.4843975204477
919 => 1.4711943078625
920 => 1.4980435598452
921 => 1.5051234934742
922 => 1.5022695811058
923 => 1.4071044069373
924 => 1.4706932829154
925 => 1.5391095667633
926 => 1.54173771486
927 => 1.5759883370713
928 => 1.5871417436437
929 => 1.6147179838555
930 => 1.612993082522
1001 => 1.6197074581798
1002 => 1.6181639394928
1003 => 1.6692431176227
1004 => 1.7255910364312
1005 => 1.7236398871783
1006 => 1.7155392071712
1007 => 1.7275700983529
1008 => 1.7857271891733
1009 => 1.7803730161989
1010 => 1.7855741391762
1011 => 1.8541446268434
1012 => 1.943296014849
1013 => 1.9018762444674
1014 => 1.9917452279776
1015 => 2.0483129893471
1016 => 2.1461410834201
1017 => 2.1338925242286
1018 => 2.1719762833555
1019 => 2.1119650469245
1020 => 1.9741671178069
1021 => 1.9523600680548
1022 => 1.996018333901
1023 => 2.1033479203727
1024 => 1.9926381432694
1025 => 2.0150345869887
1026 => 2.0085844096909
1027 => 2.0082407071541
1028 => 2.0213584350412
1029 => 2.0023304865663
1030 => 1.924807201417
1031 => 1.9603356661534
1101 => 1.9466164197016
1102 => 1.9618389464774
1103 => 2.0439886452385
1104 => 2.007668305212
1105 => 1.9694077774189
1106 => 2.0173949699623
1107 => 2.0784991562584
1108 => 2.0746753660947
1109 => 2.067255614957
1110 => 2.1090803636349
1111 => 2.1781625949492
1112 => 2.1968352444786
1113 => 2.2106190126157
1114 => 2.2125195613631
1115 => 2.2320963946461
1116 => 2.1268268280862
1117 => 2.2938923337311
1118 => 2.3227399314645
1119 => 2.317317778701
1120 => 2.3493806694892
1121 => 2.3399469536623
1122 => 2.3262789795337
1123 => 2.3771054814055
1124 => 2.3188369984967
1125 => 2.2361322228058
1126 => 2.1907587471467
1127 => 2.2505102000684
1128 => 2.2869983273294
1129 => 2.3111146583681
1130 => 2.3184122455689
1201 => 2.1349986048742
1202 => 2.0361488251266
1203 => 2.0995104006298
1204 => 2.176815895726
1205 => 2.1263973921577
1206 => 2.1283737020427
1207 => 2.0564901657039
1208 => 2.1831759936534
1209 => 2.1647189341167
1210 => 2.2604741916431
1211 => 2.2376214309505
1212 => 2.3157061262656
1213 => 2.2951438090861
1214 => 2.3804968380749
1215 => 2.4145464721795
1216 => 2.4717211072436
1217 => 2.5137790015393
1218 => 2.5384762015091
1219 => 2.5369934742598
1220 => 2.6348560846363
1221 => 2.5771499223565
1222 => 2.5046573822348
1223 => 2.503346220895
1224 => 2.5408911346513
1225 => 2.6195749739403
1226 => 2.6399765486647
1227 => 2.6513782457016
1228 => 2.6339161497936
1229 => 2.5712802464768
1230 => 2.5442343809958
1231 => 2.5672782419797
]
'min_raw' => 0.95020917023375
'max_raw' => 2.6513782457016
'avg_raw' => 1.8007937079677
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.9502091'
'max' => '$2.65'
'avg' => '$1.80'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.37617358235842
'max_diff' => 1.3698842337854
'year' => 2036
]
11 => [
'items' => [
101 => 2.5390975801779
102 => 2.587745308545
103 => 2.6545490301872
104 => 2.6407543258386
105 => 2.6868679542582
106 => 2.7345907083773
107 => 2.8028363901305
108 => 2.8206783384711
109 => 2.8501704006096
110 => 2.8805274201878
111 => 2.8902772767317
112 => 2.9088927780768
113 => 2.9087946651958
114 => 2.9648937314671
115 => 3.0267727388078
116 => 3.0501306315766
117 => 3.1038408180367
118 => 3.0118640059531
119 => 3.081629474472
120 => 3.1445596734189
121 => 3.0695316959268
122 => 3.1729402836229
123 => 3.1769554047543
124 => 3.2375789668662
125 => 3.1761253725966
126 => 3.1396344244861
127 => 3.244982424383
128 => 3.2959570031023
129 => 3.2806030451472
130 => 3.1637586669903
131 => 3.0957502272119
201 => 2.9177590224635
202 => 3.1285972931359
203 => 3.2312904645437
204 => 3.1634927164852
205 => 3.1976859570464
206 => 3.3842331903527
207 => 3.4552582987569
208 => 3.4404855727118
209 => 3.4429819202337
210 => 3.4813057795316
211 => 3.6512548769937
212 => 3.5494174384052
213 => 3.6272683444301
214 => 3.6685601842733
215 => 3.706914346339
216 => 3.6127286462631
217 => 3.4901944343271
218 => 3.4513827057707
219 => 3.1567515665884
220 => 3.1414147362758
221 => 3.1328057086678
222 => 3.0785270073705
223 => 3.0358788163384
224 => 3.0019633914039
225 => 2.9129591883724
226 => 2.9429954941497
227 => 2.8011413711385
228 => 2.8918946120396
301 => 2.6654920065261
302 => 2.8540468239875
303 => 2.7514250093788
304 => 2.8203327978837
305 => 2.8200923851011
306 => 2.6932112992294
307 => 2.6200289368393
308 => 2.6666635864544
309 => 2.7166596327049
310 => 2.7247713230022
311 => 2.7895925019963
312 => 2.807682699727
313 => 2.7528685560525
314 => 2.6608003157547
315 => 2.6821856681229
316 => 2.6195955633561
317 => 2.5099088122459
318 => 2.5886877518402
319 => 2.6155863454831
320 => 2.627466296815
321 => 2.5196019747066
322 => 2.4857086628517
323 => 2.4676641480127
324 => 2.6468763862727
325 => 2.6566940372333
326 => 2.6064655468427
327 => 2.833503086269
328 => 2.7821174987323
329 => 2.8395277897854
330 => 2.6802451715461
331 => 2.6863299820654
401 => 2.6109230379737
402 => 2.6531458879712
403 => 2.6233041384989
404 => 2.6497346989457
405 => 2.6655770679003
406 => 2.7409716384544
407 => 2.8549077088753
408 => 2.729710203801
409 => 2.6751598579788
410 => 2.7090025857241
411 => 2.7991302294523
412 => 2.9356782232497
413 => 2.8548390626372
414 => 2.8907141093791
415 => 2.8985512111224
416 => 2.8389434069151
417 => 2.9378760480145
418 => 2.9908948541071
419 => 3.0452811784619
420 => 3.0925033000291
421 => 3.0235580845337
422 => 3.0973393480222
423 => 3.0378846737967
424 => 2.9845476847053
425 => 2.9846285749012
426 => 2.951169502515
427 => 2.8863383336524
428 => 2.8743824714256
429 => 2.9365783765886
430 => 2.9864536025552
501 => 2.990561565052
502 => 3.0181750528287
503 => 3.0345164304535
504 => 3.1946841462014
505 => 3.2591049264521
506 => 3.3378774371197
507 => 3.3685637694001
508 => 3.4609186279053
509 => 3.3863345789675
510 => 3.3701978508242
511 => 3.1461751731346
512 => 3.1828588740563
513 => 3.2415930186825
514 => 3.1471436775463
515 => 3.2070500452557
516 => 3.2188768312319
517 => 3.143934325076
518 => 3.1839643556884
519 => 3.0776564624588
520 => 2.8572249304418
521 => 2.9381214513234
522 => 2.9976885201667
523 => 2.9126789683606
524 => 3.0650552996491
525 => 2.9760401925963
526 => 2.9478266771393
527 => 2.8377556944968
528 => 2.8897049612834
529 => 2.9599670884541
530 => 2.9165532627116
531 => 3.006643469746
601 => 3.1342352290873
602 => 3.2251647150145
603 => 3.2321451518681
604 => 3.1736835842193
605 => 3.2673686194733
606 => 3.2680510126768
607 => 3.1623739101958
608 => 3.0976472733387
609 => 3.0829412452587
610 => 3.1196797866891
611 => 3.1642871582944
612 => 3.2346205505407
613 => 3.2771215464448
614 => 3.3879416029763
615 => 3.4179263328137
616 => 3.450870460103
617 => 3.494893973754
618 => 3.5477554892893
619 => 3.4320975027058
620 => 3.4366928101262
621 => 3.3289936944136
622 => 3.2139017436591
623 => 3.3012421878675
624 => 3.4154282002577
625 => 3.3892338028511
626 => 3.3862863980399
627 => 3.3912431153904
628 => 3.3714933951749
629 => 3.2821661425986
630 => 3.237306555573
701 => 3.2951868677373
702 => 3.3259476776962
703 => 3.373655011318
704 => 3.3677740754695
705 => 3.4906630434857
706 => 3.5384139804873
707 => 3.5261972474245
708 => 3.5284454203202
709 => 3.6148962108795
710 => 3.7110472699427
711 => 3.801105425005
712 => 3.8927164484222
713 => 3.7822757840537
714 => 3.7262008257206
715 => 3.7840558691512
716 => 3.7533571687382
717 => 3.9297610071372
718 => 3.9419748261699
719 => 4.1183659085635
720 => 4.2857820500144
721 => 4.1806309711408
722 => 4.27978370241
723 => 4.3870254653184
724 => 4.5939122253177
725 => 4.5242400429139
726 => 4.4708722430949
727 => 4.4204399301373
728 => 4.5253815674979
729 => 4.6603873074787
730 => 4.6894662508017
731 => 4.7365852479962
801 => 4.687045383883
802 => 4.7467106935703
803 => 4.9573554550321
804 => 4.9004373810724
805 => 4.8196045660126
806 => 4.9858883746487
807 => 5.0460658385822
808 => 5.4684227956498
809 => 6.0016659006433
810 => 5.7808997537129
811 => 5.6438630822343
812 => 5.6760699505851
813 => 5.8707922811104
814 => 5.9333309134973
815 => 5.7633293523104
816 => 5.8233767777059
817 => 6.154243995368
818 => 6.3317436421524
819 => 6.0906752804361
820 => 5.4255772313708
821 => 4.8123264554275
822 => 4.97498817625
823 => 4.9565473850896
824 => 5.3120229339414
825 => 4.8990799038325
826 => 4.9060328054081
827 => 5.2688592121551
828 => 5.1720633472543
829 => 5.0152664427928
830 => 4.8134712463519
831 => 4.4404341619344
901 => 4.1100248133571
902 => 4.7580336346457
903 => 4.7300903159441
904 => 4.6896242494965
905 => 4.77967710149
906 => 5.2169481888226
907 => 5.2068676749512
908 => 5.1427405888247
909 => 5.1913804184614
910 => 5.0067396454874
911 => 5.054325776875
912 => 4.8122293133714
913 => 4.9216670257164
914 => 5.0149300270569
915 => 5.0336539553583
916 => 5.0758399218889
917 => 4.7153654567426
918 => 4.8772079086191
919 => 4.9722751865095
920 => 4.5427577664234
921 => 4.9637850081182
922 => 4.7090903982877
923 => 4.6226432223266
924 => 4.7390329562089
925 => 4.6936757637222
926 => 4.6546803130859
927 => 4.632920181604
928 => 4.7183839567009
929 => 4.7143969694414
930 => 4.5745616455788
1001 => 4.3921521660171
1002 => 4.4533747747451
1003 => 4.4311320270292
1004 => 4.3505214399353
1005 => 4.4048432426772
1006 => 4.1656375150371
1007 => 3.754096493464
1008 => 4.0259730981576
1009 => 4.0155061446217
1010 => 4.0102282320104
1011 => 4.2145359863202
1012 => 4.1948965099251
1013 => 4.1592506679579
1014 => 4.3498667760937
1015 => 4.2802893324757
1016 => 4.4947106191991
1017 => 4.6359423465344
1018 => 4.6001214121144
1019 => 4.7329505343055
1020 => 4.4547852199979
1021 => 4.5471805793555
1022 => 4.5662231348647
1023 => 4.3475146029079
1024 => 4.1981097711489
1025 => 4.1881461722103
1026 => 3.9290987831942
1027 => 4.0674798074491
1028 => 4.1892493821976
1029 => 4.1309312055938
1030 => 4.112469413087
1031 => 4.20678670713
1101 => 4.2141159686501
1102 => 4.0470080292708
1103 => 4.0817550614879
1104 => 4.226655962047
1105 => 4.0781039305713
1106 => 3.7894915992504
1107 => 3.7179117507052
1108 => 3.7083616794309
1109 => 3.5142314531069
1110 => 3.7226950584574
1111 => 3.6316951082446
1112 => 3.9191628606199
1113 => 3.7549628221836
1114 => 3.7478844867091
1115 => 3.7371845444733
1116 => 3.5700886392575
1117 => 3.606672023001
1118 => 3.728280762371
1119 => 3.7716721305988
1120 => 3.7671460553976
1121 => 3.7276848132047
1122 => 3.7457499678064
1123 => 3.6875558105173
1124 => 3.6670062423719
1125 => 3.602146152701
1126 => 3.5068197389419
1127 => 3.5200754614459
1128 => 3.3312088922761
1129 => 3.2283043614848
1130 => 3.1998217436217
1201 => 3.1617335966447
1202 => 3.2041239011715
1203 => 3.3306738570155
1204 => 3.1780277611968
1205 => 2.9163267367944
1206 => 2.9320554142778
1207 => 2.9673930826968
1208 => 2.9015415713801
1209 => 2.8392186424172
1210 => 2.8934033727313
1211 => 2.7825171987484
1212 => 2.9807931470577
1213 => 2.9754303383179
1214 => 3.0493353505452
1215 => 3.0955496713745
1216 => 2.989040623927
1217 => 2.9622538865251
1218 => 2.9775128295386
1219 => 2.7253164912413
1220 => 3.0287255292593
1221 => 3.0313494232195
1222 => 3.0088820501207
1223 => 3.1704379961622
1224 => 3.511371432873
1225 => 3.3830985599667
1226 => 3.3334274265092
1227 => 3.2390025654973
1228 => 3.3648180864022
1229 => 3.3551574174246
1230 => 3.3114682086079
1231 => 3.2850448387969
]
'min_raw' => 2.4676641480127
'max_raw' => 6.3317436421524
'avg_raw' => 4.3997038950825
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$2.46'
'max' => '$6.33'
'avg' => '$4.39'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 1.5174549777789
'max_diff' => 3.6803653964508
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.077457157869455
]
1 => [
'year' => 2028
'avg' => 0.13293896887758
]
2 => [
'year' => 2029
'avg' => 0.36316530305559
]
3 => [
'year' => 2030
'avg' => 0.28018149046539
]
4 => [
'year' => 2031
'avg' => 0.27517294614687
]
5 => [
'year' => 2032
'avg' => 0.48246477470872
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.077457157869455
'min' => '$0.077457'
'max_raw' => 0.48246477470872
'max' => '$0.482464'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.48246477470872
]
1 => [
'year' => 2033
'avg' => 1.2409490118186
]
2 => [
'year' => 2034
'avg' => 0.78657312090948
]
3 => [
'year' => 2035
'avg' => 0.92776479989574
]
4 => [
'year' => 2036
'avg' => 1.8007937079677
]
5 => [
'year' => 2037
'avg' => 4.3997038950825
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.48246477470872
'min' => '$0.482464'
'max_raw' => 4.3997038950825
'max' => '$4.39'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 4.3997038950825
]
]
]
]
'prediction_2025_max_price' => '$0.132437'
'last_price' => 0.128415
'sma_50day_nextmonth' => '$0.1143087'
'sma_200day_nextmonth' => '$0.182989'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.121785'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.116922'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.110658'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.108815'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.120965'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.158847'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.195015'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.122586'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.118658'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.113912'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.113055'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.126021'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.151523'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.188451'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.183095'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.212531'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.403547'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.121371'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.122291'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.1358054'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.165591'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.244273'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.409934'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.254034'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '64.63'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 119.57
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.02
'momentum_10_action' => 'BUY'
'vwma_10' => '0.128415'
'vwma_10_action' => 'SELL'
'hma_9' => '0.124554'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 285.09
'cci_20_action' => 'SELL'
'adx_14' => 27.63
'adx_14_action' => 'SELL'
'ao_5_34' => '0.003143'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 79.13
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.029725'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 20
'sell_pct' => 41.18
'buy_pct' => 58.82
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767708526
'last_updated_date' => '6. Januar 2026'
]
Aave v3 WMATIC Preisprognose für 2026
Die Preisprognose für Aave v3 WMATIC im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.044367 am unteren Ende und $0.132437 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Aave v3 WMATIC im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn AWMATIC das prognostizierte Preisziel erreicht.
Aave v3 WMATIC Preisprognose 2027-2032
Die Preisprognose für AWMATIC für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.077457 am unteren Ende und $0.482464 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Aave v3 WMATIC, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Aave v3 WMATIC Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.042711 | $0.077457 | $0.1122029 |
| 2028 | $0.077081 | $0.132938 | $0.188796 |
| 2029 | $0.169325 | $0.363165 | $0.5570048 |
| 2030 | $0.1440042 | $0.280181 | $0.416358 |
| 2031 | $0.170257 | $0.275172 | $0.380088 |
| 2032 | $0.259885 | $0.482464 | $0.705044 |
Aave v3 WMATIC Preisprognose 2032-2037
Die Preisprognose für Aave v3 WMATIC für die Jahre 2032-2037 wird derzeit zwischen $0.482464 am unteren Ende und $4.39 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Aave v3 WMATIC bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Aave v3 WMATIC Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.259885 | $0.482464 | $0.705044 |
| 2033 | $0.603917 | $1.24 | $1.87 |
| 2034 | $0.48552 | $0.786573 | $1.08 |
| 2035 | $0.574035 | $0.927764 | $1.28 |
| 2036 | $0.9502091 | $1.80 | $2.65 |
| 2037 | $2.46 | $4.39 | $6.33 |
Aave v3 WMATIC Potenzielles Preishistogramm
Aave v3 WMATIC Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Aave v3 WMATIC Bullisch, mit 20 technischen Indikatoren, die bullische Signale zeigen, und 14 anzeigen bärische Signale. Die Preisprognose für AWMATIC wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Aave v3 WMATIC
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Aave v3 WMATIC im nächsten Monat steigen, und bis zum 04.02.2026 $0.182989 erreichen. Der kurzfristige 50-Tage-SMA für Aave v3 WMATIC wird voraussichtlich bis zum 04.02.2026 $0.1143087 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 64.63, was darauf hindeutet, dass sich der AWMATIC-Markt in einem NEUTRAL Zustand befindet.
Beliebte AWMATIC Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.121785 | BUY |
| SMA 5 | $0.116922 | BUY |
| SMA 10 | $0.110658 | BUY |
| SMA 21 | $0.108815 | BUY |
| SMA 50 | $0.120965 | BUY |
| SMA 100 | $0.158847 | SELL |
| SMA 200 | $0.195015 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.122586 | BUY |
| EMA 5 | $0.118658 | BUY |
| EMA 10 | $0.113912 | BUY |
| EMA 21 | $0.113055 | BUY |
| EMA 50 | $0.126021 | BUY |
| EMA 100 | $0.151523 | SELL |
| EMA 200 | $0.188451 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.183095 | SELL |
| SMA 50 | $0.212531 | SELL |
| SMA 100 | $0.403547 | SELL |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.165591 | SELL |
| EMA 50 | $0.244273 | SELL |
| EMA 100 | $0.409934 | SELL |
| EMA 200 | $0.254034 | SELL |
Aave v3 WMATIC Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 64.63 | NEUTRAL |
| Stoch RSI (14) | 119.57 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 285.09 | SELL |
| Average Directional Index (14) | 27.63 | SELL |
| Awesome Oscillator (5, 34) | 0.003143 | BUY |
| Momentum (10) | 0.02 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 79.13 | SELL |
| VWMA (10) | 0.128415 | SELL |
| Hull Moving Average (9) | 0.124554 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.029725 | SELL |
Auf weltweiten Geldflüssen basierende Aave v3 WMATIC-Preisprognose
Definition weltweiter Geldflüsse, die für Aave v3 WMATIC-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Aave v3 WMATIC-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.180444 | $0.253554 | $0.356286 | $0.500642 | $0.703486 | $0.988515 |
| Amazon.com aktie | $0.267945 | $0.559084 | $1.16 | $2.43 | $5.07 | $10.59 |
| Apple aktie | $0.182146 | $0.258361 | $0.366465 | $0.519804 | $0.7373023 | $1.04 |
| Netflix aktie | $0.202618 | $0.31970061 | $0.504437 | $0.795923 | $1.25 | $1.98 |
| Google aktie | $0.166296 | $0.215353 | $0.278882 | $0.361151 | $0.467688 | $0.605655 |
| Tesla aktie | $0.291107 | $0.659917 | $1.49 | $3.39 | $7.68 | $17.42 |
| Kodak aktie | $0.096297 | $0.072212 | $0.054152 | $0.0406082 | $0.030451 | $0.022835 |
| Nokia aktie | $0.085069 | $0.056355 | $0.037332 | $0.024731 | $0.016383 | $0.010853 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Aave v3 WMATIC Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Aave v3 WMATIC investieren?", "Sollte ich heute AWMATIC kaufen?", "Wird Aave v3 WMATIC auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Aave v3 WMATIC-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Aave v3 WMATIC.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Aave v3 WMATIC zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Aave v3 WMATIC-Preis entspricht heute $0.1284 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
Aave v3 WMATIC-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Aave v3 WMATIC 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.131752 | $0.135177 | $0.138691 | $0.142296 |
| Wenn die Wachstumsrate von Aave v3 WMATIC 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.13509 | $0.142113 | $0.1495017 | $0.157273 |
| Wenn die Wachstumsrate von Aave v3 WMATIC 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.1451045 | $0.163963 | $0.185272 | $0.209352 |
| Wenn die Wachstumsrate von Aave v3 WMATIC 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.161794 | $0.203849 | $0.256836 | $0.323596 |
| Wenn die Wachstumsrate von Aave v3 WMATIC 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.195173 | $0.296637 | $0.450848 | $0.685227 |
| Wenn die Wachstumsrate von Aave v3 WMATIC 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.29531 | $0.679114 | $1.56 | $3.59 |
| Wenn die Wachstumsrate von Aave v3 WMATIC 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.4622068 | $1.66 | $5.98 | $21.55 |
Fragefeld
Ist AWMATIC eine gute Investition?
Die Entscheidung, Aave v3 WMATIC zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Aave v3 WMATIC in den letzten 2026 Stunden um 5.293% gestiegen, und Aave v3 WMATIC hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Aave v3 WMATIC investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Aave v3 WMATIC steigen?
Es scheint, dass der Durchschnittswert von Aave v3 WMATIC bis zum Ende dieses Jahres potenziell auf $0.132437 steigen könnte. Betrachtet man die Aussichten von Aave v3 WMATIC in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.416358 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Aave v3 WMATIC nächste Woche kosten?
Basierend auf unserer neuen experimentellen Aave v3 WMATIC-Prognose wird der Preis von Aave v3 WMATIC in der nächsten Woche um 0.86% steigen und $0.129513 erreichen bis zum 13. Januar 2026.
Wie viel wird Aave v3 WMATIC nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Aave v3 WMATIC-Prognose wird der Preis von Aave v3 WMATIC im nächsten Monat um -11.62% fallen und $0.113495 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Aave v3 WMATIC in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Aave v3 WMATIC im Jahr 2026 wird erwartet, dass AWMATIC innerhalb der Spanne von $0.044367 bis $0.132437 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Aave v3 WMATIC-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Aave v3 WMATIC in 5 Jahren sein?
Die Zukunft von Aave v3 WMATIC scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.416358 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Aave v3 WMATIC-Prognose für 2030 könnte der Wert von Aave v3 WMATIC seinen höchsten Gipfel von ungefähr $0.416358 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.1440042 liegen wird.
Wie viel wird Aave v3 WMATIC im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Aave v3 WMATIC-Preisprognosesimulation wird der Wert von AWMATIC im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.132437 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.132437 und $0.044367 während des Jahres 2026 liegen.
Wie viel wird Aave v3 WMATIC im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Aave v3 WMATIC könnte der Wert von AWMATIC um -12.62% fallen und bis zu $0.1122029 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.1122029 und $0.042711 im Laufe des Jahres schwanken.
Wie viel wird Aave v3 WMATIC im Jahr 2028 kosten?
Unser neues experimentelles Aave v3 WMATIC-Preisprognosemodell deutet darauf hin, dass der Wert von AWMATIC im Jahr 2028 um 47.02% steigen, und im besten Fall $0.188796 erreichen wird. Der Preis wird voraussichtlich zwischen $0.188796 und $0.077081 im Laufe des Jahres liegen.
Wie viel wird Aave v3 WMATIC im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Aave v3 WMATIC im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.5570048 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.5570048 und $0.169325.
Wie viel wird Aave v3 WMATIC im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Aave v3 WMATIC-Preisprognosen wird der Wert von AWMATIC im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.416358 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.416358 und $0.1440042 während des Jahres 2030 liegen.
Wie viel wird Aave v3 WMATIC im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Aave v3 WMATIC im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.380088 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.380088 und $0.170257 während des Jahres schwanken.
Wie viel wird Aave v3 WMATIC im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Aave v3 WMATIC-Preisprognose könnte AWMATIC eine 449.04% Steigerung im Wert erfahren und $0.705044 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.705044 und $0.259885 liegen.
Wie viel wird Aave v3 WMATIC im Jahr 2033 kosten?
Laut unserer experimentellen Aave v3 WMATIC-Preisprognose wird der Wert von AWMATIC voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $1.87 beträgt. Im Laufe des Jahres könnte der Preis von AWMATIC zwischen $1.87 und $0.603917 liegen.
Wie viel wird Aave v3 WMATIC im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Aave v3 WMATIC-Preisprognosesimulation deuten darauf hin, dass AWMATIC im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $1.08 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $1.08 und $0.48552.
Wie viel wird Aave v3 WMATIC im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Aave v3 WMATIC könnte AWMATIC um 897.93% steigen, wobei der Wert im Jahr 2035 $1.28 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $1.28 und $0.574035.
Wie viel wird Aave v3 WMATIC im Jahr 2036 kosten?
Unsere jüngste Aave v3 WMATIC-Preisprognosesimulation deutet darauf hin, dass der Wert von AWMATIC im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $2.65 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $2.65 und $0.9502091.
Wie viel wird Aave v3 WMATIC im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Aave v3 WMATIC um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $6.33 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $6.33 und $2.46 liegen.
Verwandte Prognosen
SolPod-Preisprognose
zuzalu-Preisprognose
SOFT COQ INU-Preisprognose
All Street Bets-Preisprognose
MagicRing-Preisprognose
AI INU-Preisprognose
Wall Street Baby On Solana-Preisprognose
Meta Masters Guild Games-Preisprognose
Morfey-Preisprognose
PANTIES-PreisprognoseCeler Bridged BUSD (zkSync)-Preisprognose
Bridged BUSD-Preisprognose
Multichain Bridged BUSD (Moonriver)-Preisprognose
tooker kurlson-Preisprognose
dogwifsaudihat-PreisprognoseHarmony Horizen Bridged BUSD (Harmony)-Preisprognose
IoTeX Bridged BUSD (IoTeX)-Preisprognose
MIMANY-Preisprognose
The Open League MEME-Preisprognose
Sandwich Cat-Preisprognose
Hege-Preisprognose
DexNet-Preisprognose
SolDocs-Preisprognose
Secret Society-Preisprognose
duk-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Aave v3 WMATIC?
Aave v3 WMATIC-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Aave v3 WMATIC Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Aave v3 WMATIC. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von AWMATIC über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von AWMATIC über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von AWMATIC einzuschätzen.
Wie liest man Aave v3 WMATIC-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Aave v3 WMATIC in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von AWMATIC innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Aave v3 WMATIC?
Die Preisentwicklung von Aave v3 WMATIC wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von AWMATIC. Die Marktkapitalisierung von Aave v3 WMATIC kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von AWMATIC-„Walen“, großen Inhabern von Aave v3 WMATIC, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Aave v3 WMATIC-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


