Predicción del precio de Cudos - Pronóstico de CUDOS
Predicción de precio de Cudos hasta $0.002471 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000828 | $0.002471 |
| 2027 | $0.000797 | $0.002093 |
| 2028 | $0.001438 | $0.003523 |
| 2029 | $0.00316 | $0.010395 |
| 2030 | $0.002687 | $0.00777 |
| 2031 | $0.003177 | $0.007093 |
| 2032 | $0.00485 | $0.013157 |
| 2033 | $0.01127 | $0.035047 |
| 2034 | $0.009061 | $0.020297 |
| 2035 | $0.010712 | $0.023915 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Cudos hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,957.96, equivalente a un ROI del 39.58% en los próximos 90 días.
Predicción del precio a largo plazo de Cudos para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Cudos'
'name_with_ticker' => 'Cudos <small>CUDOS</small>'
'name_lang' => 'Cudos'
'name_lang_with_ticker' => 'Cudos <small>CUDOS</small>'
'name_with_lang' => 'Cudos'
'name_with_lang_with_ticker' => 'Cudos <small>CUDOS</small>'
'image' => '/uploads/coins/cudos.png?1717139448'
'price_for_sd' => 0.002396
'ticker' => 'CUDOS'
'marketcap' => '$17.67M'
'low24h' => '$0.002181'
'high24h' => '$0.002442'
'volume24h' => '$96.87'
'current_supply' => '7.38B'
'max_supply' => '9.32B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.002396'
'change_24h_pct' => '9.8532%'
'ath_price' => '$0.1295'
'ath_days' => 1815
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '17 ene. 2021'
'ath_pct' => '-98.15%'
'fdv' => '$22.33M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.118165'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.002417'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.002118'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000828'
'current_year_max_price_prediction' => '$0.002471'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.002687'
'grand_prediction_max_price' => '$0.00777'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00244195317242
107 => 0.0024510705391368
108 => 0.002471612431894
109 => 0.0022960842073742
110 => 0.0023748912269457
111 => 0.0024211829677248
112 => 0.0022120351987769
113 => 0.002417048788794
114 => 0.0022930286515004
115 => 0.002250934354183
116 => 0.0023076087800189
117 => 0.002285522701153
118 => 0.0022665343874821
119 => 0.0022559385821931
120 => 0.0022975540255989
121 => 0.0022956126154228
122 => 0.0022275216728014
123 => 0.0021386998138937
124 => 0.0021685113452213
125 => 0.0021576805364054
126 => 0.0021184282880544
127 => 0.0021448795641084
128 => 0.0020284015310511
129 => 0.0018280071291773
130 => 0.0019603938093016
131 => 0.0019552970661259
201 => 0.0019527270570977
202 => 0.0020522119883121
203 => 0.0020426488076837
204 => 0.0020252915412003
205 => 0.0021181095082437
206 => 0.002084229701695
207 => 0.0021886392823918
208 => 0.002257410185027
209 => 0.002239967659613
210 => 0.00230464702594
211 => 0.0021691981426922
212 => 0.0022141888284412
213 => 0.0022234613464196
214 => 0.0021169641489382
215 => 0.0020442134623044
216 => 0.0020393618209244
217 => 0.0019132221559636
218 => 0.0019806049468219
219 => 0.0020398990142878
220 => 0.0020115017573772
221 => 0.0020025120341832
222 => 0.0020484385803482
223 => 0.0020520074663195
224 => 0.0019706364879604
225 => 0.001987556091045
226 => 0.0020581136485579
227 => 0.0019857782216278
228 => 0.0018452423030275
301 => 0.0018103874521536
302 => 0.0018057371725446
303 => 0.0017112080526014
304 => 0.0018127166199539
305 => 0.0017684054100441
306 => 0.0019083839912195
307 => 0.0018284289763723
308 => 0.0018249822754863
309 => 0.001819772081576
310 => 0.0017384069630921
311 => 0.001756220753017
312 => 0.0018154365038443
313 => 0.0018365653508527
314 => 0.0018343614390062
315 => 0.0018151463143603
316 => 0.0018239429000258
317 => 0.0017956060326634
318 => 0.0017855996950169
319 => 0.0017540169409444
320 => 0.0017075990174163
321 => 0.0017140537143806
322 => 0.0016220876619611
323 => 0.0015719796755951
324 => 0.0015581104453817
325 => 0.0015395639311052
326 => 0.0015602053235196
327 => 0.0016218271336895
328 => 0.0015474981568283
329 => 0.0014200663395712
330 => 0.0014277252089216
331 => 0.0014449324144132
401 => 0.0014128669008166
402 => 0.001382519583252
403 => 0.0014089041137187
404 => 0.0013549095728429
405 => 0.0014514573967161
406 => 0.0014488460486524
407 => 0.001484833106915
408 => 0.0015073365529753
409 => 0.0014554733953834
410 => 0.0014424299515019
411 => 0.0014498600899283
412 => 0.0013270564525784
413 => 0.0014747974298067
414 => 0.0014760750999129
415 => 0.001465134912768
416 => 0.0015438024221512
417 => 0.0017098154039611
418 => 0.0016473546423475
419 => 0.0016231679475642
420 => 0.0015771890231007
421 => 0.0016384532099899
422 => 0.001633749076307
423 => 0.0016124751998032
424 => 0.0015996086929152
425 => 0.001623315626365
426 => 0.0015966711415078
427 => 0.0015918850598859
428 => 0.0015628866125658
429 => 0.0015525354862178
430 => 0.0015448719243599
501 => 0.0015364350957604
502 => 0.0015550446373242
503 => 0.0015128729678517
504 => 0.0014620180686076
505 => 0.0014577900339931
506 => 0.0014694640092964
507 => 0.0014642991442499
508 => 0.0014577653066063
509 => 0.0014452904311599
510 => 0.0014415894020985
511 => 0.001453615951064
512 => 0.0014400386784733
513 => 0.0014600726837732
514 => 0.0014546245428637
515 => 0.0014241916706205
516 => 0.001386261044113
517 => 0.0013859233819749
518 => 0.0013777512907125
519 => 0.0013673429038078
520 => 0.0013644475286825
521 => 0.0014066820821552
522 => 0.0014941063438699
523 => 0.00147694286941
524 => 0.0014893452386909
525 => 0.0015503526204767
526 => 0.0015697450325905
527 => 0.0015559807578066
528 => 0.0015371393695389
529 => 0.001537968295001
530 => 0.0016023550223878
531 => 0.0016063707435965
601 => 0.0016165171755702
602 => 0.0016295582080378
603 => 0.0015582017020268
604 => 0.0015346074099849
605 => 0.0015234271254539
606 => 0.0014889961764133
607 => 0.0015261270030672
608 => 0.0015044924604765
609 => 0.0015074116994132
610 => 0.001505510541226
611 => 0.0015065487021519
612 => 0.0014514304096316
613 => 0.0014715126184939
614 => 0.001438122051252
615 => 0.0013934158299821
616 => 0.0013932659590524
617 => 0.0014042077433729
618 => 0.001397699141907
619 => 0.0013801846627137
620 => 0.0013826725118171
621 => 0.0013608763358334
622 => 0.001385318962214
623 => 0.0013860198892787
624 => 0.0013766081467233
625 => 0.001414265385095
626 => 0.0014296935863813
627 => 0.0014234985758123
628 => 0.0014292589279251
629 => 0.0014776560892623
630 => 0.0014855469382764
701 => 0.0014890515321683
702 => 0.0014843558406229
703 => 0.0014301435391905
704 => 0.0014325480852875
705 => 0.0014149051214689
706 => 0.0013999986762118
707 => 0.0014005948558481
708 => 0.0014082587064125
709 => 0.0014417271913059
710 => 0.0015121596446891
711 => 0.0015148325048096
712 => 0.0015180720892484
713 => 0.0015048950712511
714 => 0.001500920756536
715 => 0.0015061639035028
716 => 0.0015326146298311
717 => 0.0016006530792496
718 => 0.0015766037470899
719 => 0.0015570512656938
720 => 0.0015742040631893
721 => 0.0015715635244629
722 => 0.0015492747202683
723 => 0.0015486491477697
724 => 0.0015058698063584
725 => 0.0014900552578771
726 => 0.0014768394374677
727 => 0.0014624081065883
728 => 0.0014538527299004
729 => 0.0014669976768422
730 => 0.0014700040817342
731 => 0.0014412624255117
801 => 0.0014373450439727
802 => 0.0014608161008757
803 => 0.0014504873638219
804 => 0.0014611107260221
805 => 0.001463575437178
806 => 0.0014631785619148
807 => 0.0014523941741827
808 => 0.0014592678213281
809 => 0.0014430095966965
810 => 0.001425331219316
811 => 0.0014140535159491
812 => 0.0014042122239912
813 => 0.0014096727447487
814 => 0.0013902069852999
815 => 0.0013839794970839
816 => 0.0014569391843372
817 => 0.00151083528976
818 => 0.0015100516190419
819 => 0.0015052812250896
820 => 0.0014981933873154
821 => 0.0015320961103505
822 => 0.0015202850795514
823 => 0.0015288785913024
824 => 0.0015310660007116
825 => 0.0015376866301876
826 => 0.001540052936163
827 => 0.0015329003160003
828 => 0.0015088952491154
829 => 0.0014490769047717
830 => 0.0014212313040031
831 => 0.0014120417919443
901 => 0.0014123758132543
902 => 0.0014031620143885
903 => 0.001405875891088
904 => 0.001402218238825
905 => 0.0013952915303201
906 => 0.0014092450400175
907 => 0.0014108530520242
908 => 0.0014075961361288
909 => 0.0014083632577242
910 => 0.0013813973851573
911 => 0.0013834475418818
912 => 0.0013720320087186
913 => 0.0013698917338668
914 => 0.0013410342600946
915 => 0.0012899090623494
916 => 0.0013182373847433
917 => 0.0012840207548564
918 => 0.0012710623986517
919 => 0.0013324052414869
920 => 0.0013262481214519
921 => 0.0013157098083876
922 => 0.0013001214469887
923 => 0.001294339572112
924 => 0.0012592107306804
925 => 0.0012571351313235
926 => 0.0012745459336955
927 => 0.00126651144747
928 => 0.0012552279859114
929 => 0.0012143604319324
930 => 0.001168411770478
1001 => 0.0011697986717443
1002 => 0.0011844140860477
1003 => 0.0012269103742921
1004 => 0.0012103063392818
1005 => 0.0011982599213724
1006 => 0.001196003989412
1007 => 0.0012242417010102
1008 => 0.0012642039789052
1009 => 0.0012829533855879
1010 => 0.0012643732929932
1011 => 0.0012430294830437
1012 => 0.0012443285818577
1013 => 0.0012529709042603
1014 => 0.0012538790901489
1015 => 0.0012399864640509
1016 => 0.001243897156921
1017 => 0.0012379564568501
1018 => 0.0012014983914808
1019 => 0.001200838980688
1020 => 0.0011918915834807
1021 => 0.0011916206598491
1022 => 0.0011763989051666
1023 => 0.0011742692764635
1024 => 0.0011440455586468
1025 => 0.0011639389012396
1026 => 0.0011505954914757
1027 => 0.0011304838255694
1028 => 0.0011270165667866
1029 => 0.0011269123368008
1030 => 0.0011475625208004
1031 => 0.0011636975918164
1101 => 0.0011508276058014
1102 => 0.00114789735946
1103 => 0.0011791847242369
1104 => 0.0011752031218783
1105 => 0.0011717550799144
1106 => 0.0012606257952298
1107 => 0.0011902776893893
1108 => 0.0011596018999134
1109 => 0.0011216347852624
1110 => 0.0011339970692396
1111 => 0.0011366019841133
1112 => 0.0010452979174647
1113 => 0.0010082558689965
1114 => 0.00099554443386241
1115 => 0.00098822882322941
1116 => 0.00099156263885852
1117 => 0.00095822045063825
1118 => 0.00098062695255117
1119 => 0.00095175543589742
1120 => 0.00094691503217438
1121 => 0.00099854088044587
1122 => 0.001005724315639
1123 => 0.00097507754938667
1124 => 0.00099475773458145
1125 => 0.00098762142585479
1126 => 0.00095225035518417
1127 => 0.00095089944045654
1128 => 0.00093315148054728
1129 => 0.00090537935997151
1130 => 0.00089268675564291
1201 => 0.00088607633710633
1202 => 0.00088880392462901
1203 => 0.00088742477291199
1204 => 0.00087842487506424
1205 => 0.00088794063652172
1206 => 0.00086363179818197
1207 => 0.00085395182288547
1208 => 0.00084957960261775
1209 => 0.0008280041094267
1210 => 0.00086234031375904
1211 => 0.00086910497856861
1212 => 0.00087588297185757
1213 => 0.00093488077590542
1214 => 0.00093193341234126
1215 => 0.00095857614353705
1216 => 0.00095754085599562
1217 => 0.00094994191747495
1218 => 0.00091788324582095
1219 => 0.00093066126095136
1220 => 0.00089133251652441
1221 => 0.00092080028594375
1222 => 0.00090735242658424
1223 => 0.00091625355116697
1224 => 0.00090024852658517
1225 => 0.00090910636802001
1226 => 0.00087070913154748
1227 => 0.00083485433239314
1228 => 0.00084928335023968
1229 => 0.00086496934279722
1230 => 0.00089898057137854
1231 => 0.00087872376422205
]
'min_raw' => 0.0008280041094267
'max_raw' => 0.002471612431894
'avg_raw' => 0.0016498082706604
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000828'
'max' => '$0.002471'
'avg' => '$0.001649'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0015685358905733
'max_diff' => 7.5072431894044E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.0008860088780702
102 => 0.00086160496619221
103 => 0.00081125272535511
104 => 0.00081153771357001
105 => 0.00080379211830042
106 => 0.00079709879311206
107 => 0.00088105050220131
108 => 0.00087060978009594
109 => 0.00085397385586896
110 => 0.00087624170153212
111 => 0.0008821296733637
112 => 0.00088229729564423
113 => 0.00089854334102379
114 => 0.00090721385835513
115 => 0.00090874207461495
116 => 0.00093430557803873
117 => 0.00094287412719562
118 => 0.00097816676850638
119 => 0.0009064782255371
120 => 0.0009050018471706
121 => 0.00087655505578625
122 => 0.00085851365096432
123 => 0.00087779036620951
124 => 0.0008948669043827
125 => 0.00087708567142796
126 => 0.00087940752506954
127 => 0.00085553767260791
128 => 0.00086407002168199
129 => 0.00087141923013613
130 => 0.00086736142919426
131 => 0.0008612867047845
201 => 0.00089346682299077
202 => 0.00089165109460667
203 => 0.00092161796049808
204 => 0.00094497927541157
205 => 0.00098684692807109
206 => 0.00094315584991078
207 => 0.00094156357336631
208 => 0.00095712833199769
209 => 0.00094287174431217
210 => 0.00095188141560873
211 => 0.00098539533073624
212 => 0.00098610342695235
213 => 0.00097424190300209
214 => 0.00097352012819174
215 => 0.00097579826361724
216 => 0.00098914137396066
217 => 0.0009844788812143
218 => 0.00098987443586026
219 => 0.0009966216595647
220 => 0.0010245310375698
221 => 0.0010312598941201
222 => 0.001014912261215
223 => 0.0010163882694297
224 => 0.0010102738059706
225 => 0.0010043673108832
226 => 0.0010176442492654
227 => 0.0010419081151178
228 => 0.0010417571708677
301 => 0.0010473859161233
302 => 0.0010508925777865
303 => 0.0010358394188948
304 => 0.0010260403659763
305 => 0.0010297979463952
306 => 0.0010358063993144
307 => 0.0010278494860934
308 => 0.00097873573169227
309 => 0.00099363370737879
310 => 0.00099115395575076
311 => 0.00098762248788434
312 => 0.0010026025176398
313 => 0.0010011576572258
314 => 0.00095787847830604
315 => 0.00096064907092153
316 => 0.00095804696721948
317 => 0.00096645489662115
318 => 0.00094241768853201
319 => 0.00094981137184716
320 => 0.00095444862071095
321 => 0.00095717999591674
322 => 0.00096704759608159
323 => 0.00096588974709366
324 => 0.0009669756225628
325 => 0.00098160666865741
326 => 0.0010556054790352
327 => 0.0010596330710149
328 => 0.0010397997350843
329 => 0.0010477227615933
330 => 0.0010325122832715
331 => 0.0010427231792703
401 => 0.001049709214984
402 => 0.001018140662931
403 => 0.0010162713781566
404 => 0.0010009981207801
405 => 0.0010092051041727
406 => 0.00099614720349203
407 => 0.00099935115557309
408 => 0.00099039262623891
409 => 0.001006516195415
410 => 0.0010245448511033
411 => 0.0010290996015034
412 => 0.0010171180141442
413 => 0.0010084425552711
414 => 0.00099321130736365
415 => 0.0010185412120842
416 => 0.0010259484481393
417 => 0.0010185023050265
418 => 0.0010167768709658
419 => 0.0010135071765387
420 => 0.0010174705520954
421 => 0.001025908106741
422 => 0.0010219291117873
423 => 0.0010245573080551
424 => 0.0010145413340666
425 => 0.0010358444021167
426 => 0.001069678801043
427 => 0.001069787584168
428 => 0.0010658085677661
429 => 0.0010641804399835
430 => 0.0010682631522788
501 => 0.0010704778562174
502 => 0.0010836805991389
503 => 0.0010978476683143
504 => 0.001163959198579
505 => 0.0011453953454302
506 => 0.0012040534280736
507 => 0.0012504443556457
508 => 0.0012643549663952
509 => 0.0012515578590505
510 => 0.0012077796461104
511 => 0.0012056316781286
512 => 0.0012710548109458
513 => 0.0012525697793556
514 => 0.0012503710436669
515 => 0.0012269802107609
516 => 0.0012408070900194
517 => 0.0012377829486975
518 => 0.0012330091936748
519 => 0.0012593899161111
520 => 0.0013087722734886
521 => 0.0013010755699865
522 => 0.001295330337862
523 => 0.0012701564031043
524 => 0.0012853167346303
525 => 0.0012799184309509
526 => 0.0013031129694057
527 => 0.001289373038647
528 => 0.0012524297370608
529 => 0.0012583130796051
530 => 0.0012574238242152
531 => 0.0012757246371267
601 => 0.0012702311873448
602 => 0.0012563511399786
603 => 0.0013086034899596
604 => 0.0013052105129947
605 => 0.0013100209785884
606 => 0.0013121386943114
607 => 0.0013439437789552
608 => 0.0013569733044845
609 => 0.0013599312348937
610 => 0.0013723082764069
611 => 0.0013596232828256
612 => 0.0014103723013979
613 => 0.0014441174374612
614 => 0.0014833141495075
615 => 0.0015405910808902
616 => 0.0015621277369313
617 => 0.0015582373327846
618 => 0.0016016640484664
619 => 0.0016797008912248
620 => 0.0015740108098648
621 => 0.0016853027221725
622 => 0.0016500689876628
623 => 0.0015665304369681
624 => 0.0015611515391582
625 => 0.0016177248155912
626 => 0.0017431988977433
627 => 0.0017117690632795
628 => 0.0017432503056931
629 => 0.001706525764193
630 => 0.0017047020811687
701 => 0.0017414666766831
702 => 0.0018273691580363
703 => 0.0017865601091518
704 => 0.0017280503307865
705 => 0.0017712530406184
706 => 0.00173382685514
707 => 0.0016494951843272
708 => 0.0017117450294774
709 => 0.001670120330799
710 => 0.001682268630764
711 => 0.0017697575561794
712 => 0.0017592306572064
713 => 0.001772853439242
714 => 0.0017488095855194
715 => 0.0017263488347749
716 => 0.0016844241755528
717 => 0.0016720123508179
718 => 0.001675442532644
719 => 0.0016720106509901
720 => 0.0016485541894629
721 => 0.0016434887688294
722 => 0.0016350461791858
723 => 0.0016376628907405
724 => 0.0016217883522437
725 => 0.0016517468862341
726 => 0.0016573074541365
727 => 0.0016791087768403
728 => 0.0016813722624866
729 => 0.0017420886358944
730 => 0.0017086470777186
731 => 0.0017310825621481
801 => 0.0017290757212498
802 => 0.0015683409706727
803 => 0.0015904888011275
804 => 0.0016249438749432
805 => 0.001609421910892
806 => 0.0015874774853038
807 => 0.0015697561850557
808 => 0.0015429066030839
809 => 0.0015806968741087
810 => 0.0016303870619591
811 => 0.0016826324876517
812 => 0.0017454019433656
813 => 0.0017313925315673
814 => 0.0016814590563387
815 => 0.001683699035561
816 => 0.0016975457057141
817 => 0.0016796130097632
818 => 0.0016743243076395
819 => 0.0016968191192559
820 => 0.0016969740286605
821 => 0.0016763402947303
822 => 0.0016534096754003
823 => 0.0016533135952681
824 => 0.0016492333130418
825 => 0.0017072516373366
826 => 0.0017391558493845
827 => 0.0017428136158796
828 => 0.0017389096525559
829 => 0.0017404121330964
830 => 0.0017218477750671
831 => 0.0017642803924328
901 => 0.0018032207582785
902 => 0.0017927839083923
903 => 0.0017771375867272
904 => 0.001764674537892
905 => 0.0017898480101681
906 => 0.0017887270750744
907 => 0.0018028806481537
908 => 0.0018022385603238
909 => 0.00179747924604
910 => 0.0017927840783624
911 => 0.0018113998874866
912 => 0.0018060388334196
913 => 0.0018006694521548
914 => 0.0017899003360172
915 => 0.0017913640377564
916 => 0.0017757204176493
917 => 0.0017684829631844
918 => 0.0016596490131141
919 => 0.0016305650254034
920 => 0.0016397154399964
921 => 0.0016427279940708
922 => 0.0016300706053469
923 => 0.0016482180493605
924 => 0.0016453897894339
925 => 0.0016563928943317
926 => 0.0016495186320908
927 => 0.001649800754211
928 => 0.0016700164937141
929 => 0.0016758852088958
930 => 0.001672900332988
1001 => 0.0016749908377582
1002 => 0.0017231656378409
1003 => 0.0017163167218125
1004 => 0.0017126783716764
1005 => 0.001713686219529
1006 => 0.0017259959138295
1007 => 0.0017294419561493
1008 => 0.0017148408326914
1009 => 0.0017217268069222
1010 => 0.0017510464112368
1011 => 0.001761306613401
1012 => 0.0017940522535327
1013 => 0.0017801413235974
1014 => 0.0018056754375445
1015 => 0.0018841585985972
1016 => 0.0019468563782678
1017 => 0.0018891969089874
1018 => 0.0020043333968382
1019 => 0.0020939836679784
1020 => 0.0020905427412517
1021 => 0.0020749101428303
1022 => 0.001972845692613
1023 => 0.0018789244638278
1024 => 0.0019574935598127
1025 => 0.0019576938485962
1026 => 0.0019509446935716
1027 => 0.00190902627136
1028 => 0.0019494860233421
1029 => 0.0019526975715262
1030 => 0.0019508999585627
1031 => 0.001918761202536
1101 => 0.0018696912623181
1102 => 0.0018792794111799
1103 => 0.0018949849946083
1104 => 0.0018652510486503
1105 => 0.0018557492512734
1106 => 0.001873414900388
1107 => 0.0019303373026193
1108 => 0.0019195764522065
1109 => 0.0019192954429142
1110 => 0.0019653349242909
1111 => 0.0019323805915671
1112 => 0.0018794003484425
1113 => 0.00186602213833
1114 => 0.0018185385050728
1115 => 0.0018513356196944
1116 => 0.0018525159294621
1117 => 0.0018345532849622
1118 => 0.0018808579180459
1119 => 0.0018804312127002
1120 => 0.0019243905702781
1121 => 0.0020084243515863
1122 => 0.0019835714274022
1123 => 0.0019546701805666
1124 => 0.0019578125474423
1125 => 0.0019922765560462
1126 => 0.0019714388297075
1127 => 0.0019789322213847
1128 => 0.0019922652139004
1129 => 0.0020003093393248
1130 => 0.0019566551215858
1201 => 0.0019464772352083
1202 => 0.0019256568516325
1203 => 0.0019202252021884
1204 => 0.0019371829701793
1205 => 0.0019327151974405
1206 => 0.0018524167289965
1207 => 0.0018440250922676
1208 => 0.0018442824517856
1209 => 0.0018231812822303
1210 => 0.0017909969337975
1211 => 0.0018755754798513
1212 => 0.0018687826389272
1213 => 0.0018612838682711
1214 => 0.0018622024248891
1215 => 0.0018989151050981
1216 => 0.0018776198965421
1217 => 0.0019342366987044
1218 => 0.0019225979862367
1219 => 0.0019106607847111
1220 => 0.0019090106998442
1221 => 0.001904415895691
1222 => 0.0018886586025984
1223 => 0.0018696307243225
1224 => 0.0018570668709182
1225 => 0.0017130460242387
1226 => 0.0017397754556517
1227 => 0.001770525230028
1228 => 0.0017811399289207
1229 => 0.0017629827519499
1230 => 0.0018893755586145
1231 => 0.0019124687423435
]
'min_raw' => 0.00079709879311206
'max_raw' => 0.0020939836679784
'avg_raw' => 0.0014455412305452
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000797'
'max' => '$0.002093'
'avg' => '$0.001445'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -3.0905316314638E-5
'max_diff' => -0.00037762876391567
'year' => 2027
]
2 => [
'items' => [
101 => 0.0018425179824972
102 => 0.0018294330514007
103 => 0.0018902334045188
104 => 0.0018535633590477
105 => 0.001870075878278
106 => 0.0018343848435672
107 => 0.0019069062706305
108 => 0.0019063537788629
109 => 0.0018781413057646
110 => 0.0019019862948366
111 => 0.001897842641189
112 => 0.0018659908285452
113 => 0.0019079160299044
114 => 0.0019079368242812
115 => 0.0018807829323161
116 => 0.0018490731312521
117 => 0.001843404167774
118 => 0.0018391333653113
119 => 0.0018690255226771
120 => 0.0018958267375009
121 => 0.0019456971537035
122 => 0.0019582357612287
123 => 0.0020071747811418
124 => 0.0019780339775812
125 => 0.001990951718363
126 => 0.0020049757533077
127 => 0.002011699391377
128 => 0.0020007435839534
129 => 0.0020767660259828
130 => 0.0020831846493575
131 => 0.0020853367582542
201 => 0.0020597024185373
202 => 0.0020824717119978
203 => 0.0020718187136274
204 => 0.002099534855899
205 => 0.0021038811009047
206 => 0.002100199986007
207 => 0.0021015795527727
208 => 0.0020367078097784
209 => 0.0020333438676784
210 => 0.001987476278451
211 => 0.0020061676600973
212 => 0.0019712250180108
213 => 0.0019823056897655
214 => 0.0019871899442945
215 => 0.0019846386869075
216 => 0.0020072244427712
217 => 0.001988021936322
218 => 0.0019373433646182
219 => 0.0018866509855714
220 => 0.0018860145840456
221 => 0.0018726681754374
222 => 0.0018630211665304
223 => 0.0018648795226919
224 => 0.0018714286121943
225 => 0.0018626405215429
226 => 0.0018645159062509
227 => 0.0018956597880264
228 => 0.0019019054714085
229 => 0.0018806801989302
301 => 0.0017954576671374
302 => 0.0017745438440709
303 => 0.0017895762853519
304 => 0.0017823917466328
305 => 0.0014385292495048
306 => 0.0015193146426205
307 => 0.0014713147052439
308 => 0.001493435284758
309 => 0.00144443977822
310 => 0.0014678230020145
311 => 0.0014635049743982
312 => 0.0015934054959147
313 => 0.0015913772779435
314 => 0.0015923480785554
315 => 0.0015460092359426
316 => 0.0016198282704615
317 => 0.0016561941813121
318 => 0.0016494638190611
319 => 0.0016511577062397
320 => 0.0016220511123941
321 => 0.0015926298940077
322 => 0.0015599972349242
323 => 0.0016206246819828
324 => 0.0016138839448149
325 => 0.0016293447706374
326 => 0.0016686660037943
327 => 0.0016744562047435
328 => 0.0016822382935376
329 => 0.0016794489686717
330 => 0.001745902003348
331 => 0.0017378541023774
401 => 0.0017572472281773
402 => 0.001717354097047
403 => 0.0016722112324823
404 => 0.0016807914152046
405 => 0.001679965074611
406 => 0.0016694448104245
407 => 0.0016599475863097
408 => 0.0016441373839849
409 => 0.0016941632036103
410 => 0.0016921322466914
411 => 0.0017250110784794
412 => 0.001719199425593
413 => 0.0016803877852644
414 => 0.0016817739505915
415 => 0.0016910965785851
416 => 0.0017233623005146
417 => 0.0017329409636011
418 => 0.0017285037452157
419 => 0.0017390063120075
420 => 0.0017473071125756
421 => 0.0017400487647575
422 => 0.0018428116633613
423 => 0.0018001373432567
424 => 0.0018209365099497
425 => 0.0018258969886501
426 => 0.0018131908267665
427 => 0.0018159463383055
428 => 0.0018201201874552
429 => 0.0018454629821684
430 => 0.0019119698084927
501 => 0.0019414252291444
502 => 0.00203004331548
503 => 0.0019389793664985
504 => 0.0019335760086261
505 => 0.0019495388019849
506 => 0.002001566999841
507 => 0.0020437309674433
508 => 0.0020577191879946
509 => 0.0020595679622608
510 => 0.0020858107939344
511 => 0.0021008526956498
512 => 0.0020826242239142
513 => 0.0020671775027188
514 => 0.0020118492647145
515 => 0.0020182536589173
516 => 0.0020623735840424
517 => 0.0021246955769321
518 => 0.0021781743303298
519 => 0.0021594479348126
520 => 0.0023023171138334
521 => 0.002316482009365
522 => 0.0023145248788084
523 => 0.0023467946188486
524 => 0.0022827457564871
525 => 0.0022553636269394
526 => 0.002070517259169
527 => 0.0021224515487271
528 => 0.0021979410885937
529 => 0.0021879497649211
530 => 0.0021331272432288
531 => 0.002178132742531
601 => 0.0021632525170096
602 => 0.0021515158657598
603 => 0.0022052837403971
604 => 0.0021461637535708
605 => 0.0021973513215007
606 => 0.002131702736163
607 => 0.00215953347541
608 => 0.002143735401792
609 => 0.0021539586915619
610 => 0.0020941935484632
611 => 0.0021264413689624
612 => 0.0020928519331094
613 => 0.0020928360073434
614 => 0.0020920945186852
615 => 0.0021316123410079
616 => 0.0021329010157751
617 => 0.0021036972853705
618 => 0.0020994885715712
619 => 0.0021150503923635
620 => 0.0020968315758631
621 => 0.0021053560454357
622 => 0.0020970897733624
623 => 0.0020952288614044
624 => 0.0020804007983147
625 => 0.0020740124610296
626 => 0.0020765174926862
627 => 0.0020679665282097
628 => 0.0020628142628107
629 => 0.0020910696034167
630 => 0.0020759739147481
701 => 0.0020887559726256
702 => 0.0020741892044499
703 => 0.002023694439514
704 => 0.001994654366227
705 => 0.0018992744361303
706 => 0.0019263240659873
707 => 0.0019442579985673
708 => 0.0019383308339566
709 => 0.0019510646770486
710 => 0.0019518464315945
711 => 0.0019477065293991
712 => 0.0019429130530112
713 => 0.0019405798538014
714 => 0.0019579696091568
715 => 0.0019680649474529
716 => 0.0019460579086268
717 => 0.001940901967341
718 => 0.0019631522986362
719 => 0.0019767249878726
720 => 0.0020769380993591
721 => 0.0020695139883761
722 => 0.0020881470500352
723 => 0.0020860492532401
724 => 0.0021055796703383
725 => 0.0021375036481239
726 => 0.0020725932752012
727 => 0.0020838594715088
728 => 0.0020810972603487
729 => 0.0021112543575045
730 => 0.00211134850467
731 => 0.0020932678184664
801 => 0.002103069651783
802 => 0.0020975985373249
803 => 0.0021074855806162
804 => 0.0020694148348476
805 => 0.0021157808937107
806 => 0.0021420674613232
807 => 0.00214243245034
808 => 0.0021548920747652
809 => 0.002167551774794
810 => 0.0021918509665718
811 => 0.0021668740835238
812 => 0.0021219431023708
813 => 0.0021251869740839
814 => 0.0020988439562735
815 => 0.0020992867871622
816 => 0.0020969229211733
817 => 0.0021040170609494
818 => 0.0020709715995904
819 => 0.0020787273033211
820 => 0.0020678692726808
821 => 0.0020838358682707
822 => 0.0020666584507888
823 => 0.0020810959283268
824 => 0.0020873266650222
825 => 0.0021103182175666
826 => 0.0020632625797841
827 => 0.0019673129489591
828 => 0.0019874827246354
829 => 0.0019576500421085
830 => 0.0019604111704574
831 => 0.0019659890891525
901 => 0.0019479092296803
902 => 0.0019513582971058
903 => 0.0019512350721466
904 => 0.0019501731860202
905 => 0.0019454699162941
906 => 0.0019386492446779
907 => 0.0019658207011051
908 => 0.0019704376610227
909 => 0.0019807005909991
910 => 0.0020112361091971
911 => 0.002008184890852
912 => 0.0020131615545666
913 => 0.0020022975256203
914 => 0.0019609151216015
915 => 0.0019631623852364
916 => 0.0019351389716983
917 => 0.0019799839693097
918 => 0.0019693640819503
919 => 0.0019625173714832
920 => 0.001960649183098
921 => 0.0019912603929393
922 => 0.0020004197466957
923 => 0.0019947122520961
924 => 0.001983006014158
925 => 0.0020054854516377
926 => 0.002011500000776
927 => 0.00201284643652
928 => 0.0020526756897295
929 => 0.0020150724493266
930 => 0.0020241239230356
1001 => 0.0020947409370564
1002 => 0.0020307010498214
1003 => 0.0020646244063497
1004 => 0.0020629640345763
1005 => 0.0020803180758724
1006 => 0.0020615404966635
1007 => 0.0020617732672625
1008 => 0.0020771824802688
1009 => 0.0020555430196676
1010 => 0.0020501847849064
1011 => 0.0020427824219601
1012 => 0.0020589452106433
1013 => 0.0020686340714788
1014 => 0.002146719174129
1015 => 0.0021971657115544
1016 => 0.0021949756943215
1017 => 0.0022149883522898
1018 => 0.0022059724665802
1019 => 0.0021768577933531
1020 => 0.0022265529903955
1021 => 0.0022108273507159
1022 => 0.0022121237533445
1023 => 0.0022120755011739
1024 => 0.0022225316768015
1025 => 0.0022151225180749
1026 => 0.0022005183056903
1027 => 0.0022102132634212
1028 => 0.0022390038218715
1029 => 0.0023283705987033
1030 => 0.0023783814309706
1031 => 0.0023253598838053
1101 => 0.0023619334370532
1102 => 0.002340002337594
1103 => 0.0023360168044285
1104 => 0.0023589876986325
1105 => 0.002381998800346
1106 => 0.0023805330926465
1107 => 0.0023638282144357
1108 => 0.002354392052605
1109 => 0.0024258458313332
1110 => 0.0024784917583168
1111 => 0.0024749016590393
1112 => 0.0024907471896873
1113 => 0.0025372701577539
1114 => 0.0025415236349091
1115 => 0.0025409877945526
1116 => 0.002530445107619
1117 => 0.0025762530114514
1118 => 0.0026144667707417
1119 => 0.0025280047802014
1120 => 0.0025609283743286
1121 => 0.0025757088364643
1122 => 0.0025974109400449
1123 => 0.0026340260264803
1124 => 0.0026737997220212
1125 => 0.0026794241586671
1126 => 0.0026754333517128
1127 => 0.0026492015303292
1128 => 0.0026927223825889
1129 => 0.0027182158771531
1130 => 0.0027333966697578
1201 => 0.0027718926339603
1202 => 0.0025758001155665
1203 => 0.0024369960846169
1204 => 0.0024153198308296
1205 => 0.0024593993452826
1206 => 0.0024710227617164
1207 => 0.0024663373771264
1208 => 0.0023101008207822
1209 => 0.0024144972776943
1210 => 0.0025268190874284
1211 => 0.0025311338255852
1212 => 0.0025873644720763
1213 => 0.0026056754755459
1214 => 0.0026509485162906
1215 => 0.0026481166752655
1216 => 0.0026591399402354
1217 => 0.0026566058825152
1218 => 0.0027404646571312
1219 => 0.0028329733386813
1220 => 0.0028297700571988
1221 => 0.0028164708397129
1222 => 0.002836222445533
1223 => 0.0029317013187254
1224 => 0.0029229111540997
1225 => 0.0029314500502892
1226 => 0.0030440250227366
1227 => 0.0031903885005213
1228 => 0.0031223879704373
1229 => 0.003269929554094
1230 => 0.0033627991601626
1231 => 0.0035234075409616
]
'min_raw' => 0.0014385292495048
'max_raw' => 0.0035234075409616
'avg_raw' => 0.0024809683952332
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001438'
'max' => '$0.003523'
'avg' => '$0.00248'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00064143045639278
'max_diff' => 0.0014294238729833
'year' => 2028
]
3 => [
'items' => [
101 => 0.0035032985806727
102 => 0.003565822244719
103 => 0.0034672993448887
104 => 0.0032410708521151
105 => 0.0032052693271658
106 => 0.0032769448867533
107 => 0.0034531522560004
108 => 0.0032713954896269
109 => 0.0033081646467437
110 => 0.0032975751270205
111 => 0.003297010856517
112 => 0.0033185467665812
113 => 0.0032873078057955
114 => 0.0031600346597729
115 => 0.0032183631925697
116 => 0.0031958397448907
117 => 0.0032208311893248
118 => 0.0033556997076803
119 => 0.0032960711208515
120 => 0.0032332572484603
121 => 0.003312039783953
122 => 0.0034123570242515
123 => 0.003406079351641
124 => 0.0033938980429131
125 => 0.0034625634424197
126 => 0.0035759785653303
127 => 0.0036066342173141
128 => 0.0036292635928814
129 => 0.0036323838014457
130 => 0.0036645238888567
131 => 0.0034916985385027
201 => 0.0037659768079842
202 => 0.0038133370883394
203 => 0.0038044353185151
204 => 0.0038570742769047
205 => 0.003841586560025
206 => 0.0038191472882147
207 => 0.0039025912338896
208 => 0.0038069294837525
209 => 0.0036711496729123
210 => 0.0035966581832652
211 => 0.0036947545858895
212 => 0.0037546586358795
213 => 0.0037942514023098
214 => 0.003806232149509
215 => 0.00350511447848
216 => 0.003342828754547
217 => 0.0034468520429785
218 => 0.0035737676341687
219 => 0.0034909935159855
220 => 0.0034942381047062
221 => 0.0033762239648326
222 => 0.0035842092669074
223 => 0.0035539075578268
224 => 0.0037111128781396
225 => 0.0036735945667954
226 => 0.0038017894028351
227 => 0.0037680314062291
228 => 0.0039081589627566
301 => 0.0039640596388576
302 => 0.0040579255742767
303 => 0.004126973738474
304 => 0.0041675201411716
305 => 0.0041650858872394
306 => 0.0043257509348649
307 => 0.0042310123694893
308 => 0.0041119984032122
309 => 0.0041098458160465
310 => 0.0041714848356224
311 => 0.0043006633108142
312 => 0.0043341574099611
313 => 0.0043528760420352
314 => 0.0043242078054135
315 => 0.0042213758826725
316 => 0.0041769735798026
317 => 0.0042148056283063
318 => 0.0041685402839313
319 => 0.0042484072480855
320 => 0.0043580816485322
321 => 0.0043354343185395
322 => 0.0044111409472276
323 => 0.0044894893433501
324 => 0.0046015310686519
325 => 0.0046308229245389
326 => 0.0046792412484505
327 => 0.0047290796083465
328 => 0.0047450863463636
329 => 0.0047756481758374
330 => 0.0047754870999103
331 => 0.0048675872300779
401 => 0.0049691765257564
402 => 0.0050075241330775
403 => 0.0050957023416128
404 => 0.004944700249629
405 => 0.0050592370709857
406 => 0.0051625521508921
407 => 0.0050393756534469
408 => 0.005209145758732
409 => 0.0052157375472129
410 => 0.0053152657271425
411 => 0.0052143748494917
412 => 0.0051544661683977
413 => 0.005327420285967
414 => 0.0054111073354552
415 => 0.0053859001150815
416 => 0.0051940719234043
417 => 0.0050824196879499
418 => 0.0047902042516581
419 => 0.0051363460587132
420 => 0.0053049416358348
421 => 0.0051936353015892
422 => 0.0052497717422799
423 => 0.0055560339603861
424 => 0.0056726387840307
425 => 0.0056483857958419
426 => 0.0056524841516076
427 => 0.0057154019979191
428 => 0.0059944143779547
429 => 0.005827223692381
430 => 0.0059550347069866
501 => 0.0060228252082766
502 => 0.0060857928038803
503 => 0.0059311642901904
504 => 0.0057299948658239
505 => 0.0056662760646091
506 => 0.0051825680802566
507 => 0.0051573889790338
508 => 0.0051432551865125
509 => 0.0050541436239308
510 => 0.0049841263454528
511 => 0.0049284460060322
512 => 0.0047823241678357
513 => 0.0048316359987755
514 => 0.0045987482866881
515 => 0.0047477415918479
516 => 0.004376047180086
517 => 0.0046856053311604
518 => 0.0045171269034126
519 => 0.0046302556364325
520 => 0.0046298609409403
521 => 0.0044215550759533
522 => 0.0043014086002614
523 => 0.0043779706107431
524 => 0.0044600511634795
525 => 0.0044733684570088
526 => 0.0045797880361531
527 => 0.0046094874532111
528 => 0.0045194968329922
529 => 0.004368344639572
530 => 0.0044034538466891
531 => 0.0043006971132997
601 => 0.0041206198905156
602 => 0.0042499544957658
603 => 0.0042941150164394
604 => 0.0043136188181383
605 => 0.0041365335515388
606 => 0.0040808895160651
607 => 0.0040512650984776
608 => 0.0043454851553956
609 => 0.0043616031942778
610 => 0.0042791410284954
611 => 0.004651877837215
612 => 0.0045675160177511
613 => 0.0046617688392399
614 => 0.0044002680541405
615 => 0.0044102577362888
616 => 0.0042864590738867
617 => 0.0043557780526023
618 => 0.0043067856327011
619 => 0.0043501777641456
620 => 0.0043761868288209
621 => 0.0044999651770806
622 => 0.0046870186810696
623 => 0.0044814768194948
624 => 0.0043919192869929
625 => 0.0044474802764664
626 => 0.0045954465131758
627 => 0.0048196229360428
628 => 0.0046869059817345
629 => 0.0047458035123765
630 => 0.004758670002653
701 => 0.0046608094339948
702 => 0.0048232311947961
703 => 0.0049102743359215
704 => 0.004999562587676
705 => 0.0050770890748744
706 => 0.0049638988964345
707 => 0.00508502861254
708 => 0.0049874194436323
709 => 0.0048998539284716
710 => 0.0048999867292127
711 => 0.0048450556024244
712 => 0.0047386196225046
713 => 0.0047189911947865
714 => 0.0048211007545732
715 => 0.0049029829517109
716 => 0.0049097271616564
717 => 0.004955061353251
718 => 0.0049818896608574
719 => 0.0052448435467155
720 => 0.0053506057748763
721 => 0.0054799298254948
722 => 0.0055303088315148
723 => 0.0056819315777618
724 => 0.00555948389597
725 => 0.0055329915697823
726 => 0.0051652043828094
727 => 0.0052254295140724
728 => 0.0053218557600853
729 => 0.0051667944160902
730 => 0.0052651451486536
731 => 0.005284561666615
801 => 0.0051615254909562
802 => 0.0052272444284549
803 => 0.0050527144147654
804 => 0.0046908229584325
805 => 0.0048236340834391
806 => 0.0049214277751853
807 => 0.0047818641191883
808 => 0.0050320265707035
809 => 0.0048858868309295
810 => 0.0048395675493658
811 => 0.0046588595179695
812 => 0.0047441467526986
813 => 0.0048594989588651
814 => 0.0047882247065875
815 => 0.0049361294819464
816 => 0.0051456020886174
817 => 0.0052948847424405
818 => 0.005306344810951
819 => 0.0052103660657038
820 => 0.0053641726174906
821 => 0.005365292930306
822 => 0.0051917985115722
823 => 0.0050855341461187
824 => 0.0050613906587055
825 => 0.0051217058238731
826 => 0.0051949395691804
827 => 0.0053104087741346
828 => 0.0053801843963543
829 => 0.0055621222129729
830 => 0.0056113493695839
831 => 0.005665435089958
901 => 0.0057377102917963
902 => 0.0058244952025846
903 => 0.0056346147584476
904 => 0.0056421590624746
905 => 0.0054653450219679
906 => 0.0052763938619881
907 => 0.0054197842393181
908 => 0.0056072480832546
909 => 0.0055642436703265
910 => 0.0055594047953716
911 => 0.0055675424408537
912 => 0.0055351185178987
913 => 0.0053884663160598
914 => 0.0053148184983877
915 => 0.0054098429727468
916 => 0.005460344251816
917 => 0.0055386673314778
918 => 0.0055290123587099
919 => 0.0057307642006341
920 => 0.0058091588657469
921 => 0.0057891021557142
922 => 0.0057927930730519
923 => 0.0059347228696212
924 => 0.0060925779934953
925 => 0.0062404301478216
926 => 0.0063908317096
927 => 0.0062095167566032
928 => 0.0061174562054231
929 => 0.0062124391950694
930 => 0.0061620398837807
1001 => 0.0064516492758524
1002 => 0.0064717012018029
1003 => 0.0067612896518192
1004 => 0.0070361435744359
1005 => 0.0068635127501599
1006 => 0.007026295841989
1007 => 0.0072023590277025
1008 => 0.0075420134781663
1009 => 0.0074276298084377
1010 => 0.0073400137100463
1011 => 0.0072572169204243
1012 => 0.0074295038960075
1013 => 0.0076511483377436
1014 => 0.0076988884276095
1015 => 0.0077762456113102
1016 => 0.0076949139914353
1017 => 0.0077928689691905
1018 => 0.0081386930842648
1019 => 0.0080452483556978
1020 => 0.007912541819143
1021 => 0.0081855367446931
1022 => 0.0082843325470088
1023 => 0.0089777332274235
1024 => 0.0098531802294006
1025 => 0.0094907394220872
1026 => 0.0092657607170959
1027 => 0.0093186360493351
1028 => 0.0096383196587059
1029 => 0.0097409918877852
1030 => 0.0094618933759079
1031 => 0.0095604756886405
1101 => 0.010103673924196
1102 => 0.010395082349686
1103 => 0.0099993105664979
1104 => 0.0089073919132184
1105 => 0.0079005930474999
1106 => 0.0081676414434323
1107 => 0.0081373664428101
1108 => 0.0087209651815548
1109 => 0.0080430197298257
1110 => 0.0080544345925448
1111 => 0.008650101535165
1112 => 0.0084911878071906
1113 => 0.0082337679200047
1114 => 0.0079024724975543
1115 => 0.0072900422680372
1116 => 0.0067475957348735
1117 => 0.0078114583043833
1118 => 0.0077655826158775
1119 => 0.0076991478205249
1120 => 0.0078469912685864
1121 => 0.0085648770862777
1122 => 0.0085483274946103
1123 => 0.0084430474360981
1124 => 0.0085229014325838
1125 => 0.0082197691283323
1126 => 0.0082978932253322
1127 => 0.0079004335654157
1128 => 0.0080801019310796
1129 => 0.0082332156125399
1130 => 0.0082639554509799
1201 => 0.0083332138766002
1202 => 0.0077414082126423
1203 => 0.008007111581258
1204 => 0.0081631874172808
1205 => 0.0074580311120421
1206 => 0.0081492487443766
1207 => 0.0077311061926816
1208 => 0.0075891823303459
1209 => 0.0077802641139338
1210 => 0.0077057993570365
1211 => 0.0076417789317734
1212 => 0.0076060544344661
1213 => 0.0077463638074061
1214 => 0.0077398182074525
1215 => 0.0075102448404468
1216 => 0.0072107757417954
1217 => 0.0073112874010409
1218 => 0.0072747705729352
1219 => 0.0071424288771155
1220 => 0.0072316112011007
1221 => 0.0068388973804112
1222 => 0.0061632536634032
1223 => 0.0066096045983855
1224 => 0.006592420572925
1225 => 0.0065837556080544
1226 => 0.0069191759994598
1227 => 0.0068869330682912
1228 => 0.0068284118324966
1229 => 0.0071413540887272
1230 => 0.0070271259555357
1231 => 0.0073791501464989
]
'min_raw' => 0.0031600346597729
'max_raw' => 0.010395082349686
'avg_raw' => 0.0067775585047294
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.00316'
'max' => '$0.010395'
'avg' => '$0.006777'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0017215054102681
'max_diff' => 0.0068716748087243
'year' => 2029
]
4 => [
'items' => [
101 => 0.0076110160461645
102 => 0.0075522073539332
103 => 0.0077702783532738
104 => 0.0073136029866649
105 => 0.0074652922248168
106 => 0.0074965551665677
107 => 0.0071374924298621
108 => 0.0068922084105855
109 => 0.0068758507629422
110 => 0.0064505620757365
111 => 0.0066777478596315
112 => 0.0068776619478725
113 => 0.006781918613565
114 => 0.006751609134174
115 => 0.0069064536910586
116 => 0.0069184864392825
117 => 0.0066441385046046
118 => 0.0067011841276933
119 => 0.0069390738590191
120 => 0.0066951899168261
121 => 0.0062213632553608
122 => 0.0061038476921513
123 => 0.0060881689497776
124 => 0.0057694574220766
125 => 0.0061117006440075
126 => 0.0059623023060866
127 => 0.0064342498655119
128 => 0.0061646759506737
129 => 0.0061530551579956
130 => 0.0061354886254629
131 => 0.0058611604477633
201 => 0.0059212208842143
202 => 0.0061208709224403
203 => 0.006192108305298
204 => 0.0061846776626353
205 => 0.0061198925283343
206 => 0.0061495508310637
207 => 0.0060540111043346
208 => 0.0060202740383391
209 => 0.0059137905779462
210 => 0.0057572893079753
211 => 0.0057790517694429
212 => 0.0054689818028458
213 => 0.0053000392283851
214 => 0.0052532781504017
215 => 0.0051907472826423
216 => 0.0052603411783034
217 => 0.0054681034135887
218 => 0.0052174980786175
219 => 0.0047878528097299
220 => 0.0048136752224699
221 => 0.0048716905171537
222 => 0.0047635793993201
223 => 0.0046612612993689
224 => 0.0047502185859466
225 => 0.0045681722216054
226 => 0.0048936899505475
227 => 0.0048848856082325
228 => 0.0050062184877009
301 => 0.0050820904272337
302 => 0.0049072301704426
303 => 0.004863253288732
304 => 0.0048883045191922
305 => 0.004474263481991
306 => 0.0049723825016618
307 => 0.0049766902556288
308 => 0.0049398046508504
309 => 0.0052050376511258
310 => 0.0057647620099542
311 => 0.0055541711913028
312 => 0.0054726240611798
313 => 0.0053176029072053
314 => 0.0055241593906309
315 => 0.005508299075487
316 => 0.0054365727155599
317 => 0.0053931923892762
318 => 0.0054731219705674
319 => 0.0053832882296127
320 => 0.0053671516212711
321 => 0.0052693813315242
322 => 0.0052344817863494
323 => 0.0052086435524928
324 => 0.0051801981958291
325 => 0.0052429415644879
326 => 0.0051007568365295
327 => 0.0049292959931525
328 => 0.0049150408792577
329 => 0.0049544005020436
330 => 0.0049369867989401
331 => 0.0049149575091468
401 => 0.0048728975956112
402 => 0.004860419317733
403 => 0.0049009676672372
404 => 0.0048551909447626
405 => 0.004922736992361
406 => 0.0049043682049075
407 => 0.0048017616513841
408 => 0.0046738758958823
409 => 0.0046727374444089
410 => 0.0046451846681607
411 => 0.004610092065021
412 => 0.0046003301056375
413 => 0.0047427268513931
414 => 0.0050374838535311
415 => 0.0049796160010741
416 => 0.0050214314550103
417 => 0.0052271221021006
418 => 0.0052925049734771
419 => 0.0052460977600523
420 => 0.0051825727040441
421 => 0.0051853674841134
422 => 0.0054024518308354
423 => 0.0054159911152594
424 => 0.0054502005190601
425 => 0.0054941692705203
426 => 0.0052535858285522
427 => 0.005174036025632
428 => 0.0051363409157533
429 => 0.0050202545671705
430 => 0.0051454437416257
501 => 0.0050725013708056
502 => 0.0050823437886954
503 => 0.0050759339011327
504 => 0.0050794341331767
505 => 0.0048935989617082
506 => 0.0049613075309823
507 => 0.0048487289022712
508 => 0.0046979987559712
509 => 0.004697493455668
510 => 0.0047343844454357
511 => 0.0047124402411773
512 => 0.0046533889517551
513 => 0.0046617769087033
514 => 0.0045882895796139
515 => 0.0046706996009858
516 => 0.0046730628255215
517 => 0.0046413304783891
518 => 0.0047682944867039
519 => 0.0048203117445032
520 => 0.0047994248338479
521 => 0.0048188462631714
522 => 0.0049820206716014
523 => 0.0050086252199741
524 => 0.0050204412029634
525 => 0.0050046093510755
526 => 0.004821828791814
527 => 0.0048299358868602
528 => 0.0047704514025533
529 => 0.0047201932816344
530 => 0.0047222033429021
531 => 0.0047480425501527
601 => 0.0048608838836659
602 => 0.0050983518176844
603 => 0.0051073635521936
604 => 0.0051182860373096
605 => 0.0050738588011416
606 => 0.005060459121602
607 => 0.0050781367576655
608 => 0.005167317228212
609 => 0.0053967136107193
610 => 0.005315629608272
611 => 0.0052497070521346
612 => 0.0053075389064606
613 => 0.0052986361457882
614 => 0.0052234878862912
615 => 0.0052213787249362
616 => 0.0050771451886097
617 => 0.0050238253342685
618 => 0.004979267273059
619 => 0.004930611033436
620 => 0.0049017659836155
621 => 0.0049460850899804
622 => 0.0049562213939744
623 => 0.004859316893342
624 => 0.0048461091679803
625 => 0.0049252434750256
626 => 0.0048904194169193
627 => 0.0049262368242767
628 => 0.0049345467700196
629 => 0.0049332086773607
630 => 0.0048968483611801
701 => 0.0049200233424334
702 => 0.004865207602975
703 => 0.0048056037193719
704 => 0.0047675801550862
705 => 0.0047343995521531
706 => 0.0047528100791283
707 => 0.0046871799120909
708 => 0.0046661835007813
709 => 0.0049121721802384
710 => 0.0050938866625773
711 => 0.0050912444620372
712 => 0.0050751607457685
713 => 0.005051263605856
714 => 0.0051655690035813
715 => 0.0051257472886224
716 => 0.0051547209134707
717 => 0.0051620959170137
718 => 0.0051844178315297
719 => 0.0051923959973358
720 => 0.0051682804390774
721 => 0.0050873456800949
722 => 0.0048856639557564
723 => 0.0047917805686474
724 => 0.0047607974871499
725 => 0.0047619236633171
726 => 0.0047308586971544
727 => 0.0047400087219234
728 => 0.0047276766919497
729 => 0.0047043228106179
730 => 0.0047513680427656
731 => 0.004756789567514
801 => 0.004745808648182
802 => 0.0047483950521998
803 => 0.0046574777301434
804 => 0.0046643899766773
805 => 0.0046259017096107
806 => 0.0046186856235187
807 => 0.0045213906359311
808 => 0.0043490184622858
809 => 0.0044445293790571
810 => 0.0043291656224646
811 => 0.0042854756197969
812 => 0.0044922972972364
813 => 0.0044715381371619
814 => 0.0044360074789042
815 => 0.0043834502301031
816 => 0.0043639562352787
817 => 0.0042455168937746
818 => 0.0042385188656292
819 => 0.0042972206014099
820 => 0.0042701317701505
821 => 0.0042320887917197
822 => 0.0040943009801981
823 => 0.0039393818600713
824 => 0.003944057894521
825 => 0.0039933347842607
826 => 0.0041366139870727
827 => 0.0040806323237787
828 => 0.0040400169847433
829 => 0.0040324109526345
830 => 0.004127616368782
831 => 0.0042623519787819
901 => 0.0043255669124545
902 => 0.004262922833051
903 => 0.0041909606876291
904 => 0.0041953406899805
905 => 0.0042244788833484
906 => 0.0042275408954795
907 => 0.0041807009366379
908 => 0.0041938861106852
909 => 0.0041738566256298
910 => 0.0040509357128163
911 => 0.0040487124632899
912 => 0.004018545688918
913 => 0.0040176322509791
914 => 0.0039663110423179
915 => 0.0039591308504594
916 => 0.003857229475688
917 => 0.0039243012691483
918 => 0.0038793130315224
919 => 0.0038115051457676
920 => 0.0037998150407051
921 => 0.0037994636220307
922 => 0.0038690871591351
923 => 0.0039234876775805
924 => 0.003880095621177
925 => 0.0038702160910536
926 => 0.003975703625813
927 => 0.0039622793754746
928 => 0.0039506540612587
929 => 0.0042502878826995
930 => 0.0040131043323105
1001 => 0.0039096787663771
1002 => 0.0037816699885523
1003 => 0.0038233502920883
1004 => 0.0038321329444544
1005 => 0.0035242949091022
1006 => 0.0033994050564986
1007 => 0.0033565475654599
1008 => 0.0033318824734511
1009 => 0.0033431226656042
1010 => 0.0032307071501423
1011 => 0.0033062522357137
1012 => 0.0032089099015707
1013 => 0.0031925901424723
1014 => 0.0033666502943212
1015 => 0.0033908697476064
1016 => 0.0032875420354977
1017 => 0.0033538951539085
1018 => 0.0033298345907954
1019 => 0.0032105785565001
1020 => 0.0032060238531781
1021 => 0.003146185367221
1022 => 0.0030525497237123
1023 => 0.0030097557220491
1024 => 0.0029874682344283
1025 => 0.0029966644861951
1026 => 0.0029920145798918
1027 => 0.0029616707959454
1028 => 0.0029937538500685
1029 => 0.0029117949044172
1030 => 0.0028791581918707
1031 => 0.0028644169459794
1101 => 0.002791673664333
1102 => 0.0029074405745167
1103 => 0.002930248114216
1104 => 0.0029531005918141
1105 => 0.0031520158072565
1106 => 0.0031420785652216
1107 => 0.0032319063935843
1108 => 0.0032284158493569
1109 => 0.0032027954975935
1110 => 0.0030947074478471
1111 => 0.0031377894179918
1112 => 0.0030051898103111
1113 => 0.0031045424522824
1114 => 0.0030592020555522
1115 => 0.0030892128185395
1116 => 0.0030352507607269
1117 => 0.0030651155915592
1118 => 0.0029356566279826
1119 => 0.0028147696693316
1120 => 0.0028634181104031
1121 => 0.0029163045294718
1122 => 0.0030309757612219
1123 => 0.0029626785216087
1124 => 0.0029872407915782
1125 => 0.0029049612988548
1126 => 0.0027351952033913
1127 => 0.0027361560610551
1128 => 0.0027100412458235
1129 => 0.0026874742326379
1130 => 0.0029705232811534
1201 => 0.0029353216576272
1202 => 0.0028792324776128
1203 => 0.0029543100739575
1204 => 0.0029741617820727
1205 => 0.0029747269322946
1206 => 0.0030295016085544
1207 => 0.0030587348630932
1208 => 0.0030638873509099
1209 => 0.00315007648749
1210 => 0.0031789659492094
1211 => 0.0032979575534422
1212 => 0.003056254625687
1213 => 0.0030512769129469
1214 => 0.002955366569703
1215 => 0.0028945387137352
1216 => 0.0029595315050416
1217 => 0.0030171062457384
1218 => 0.0029571555773854
1219 => 0.0029649838690447
1220 => 0.0028845049949304
1221 => 0.0029132724055433
1222 => 0.0029380507749517
1223 => 0.0029243696157696
1224 => 0.0029038882582984
1225 => 0.0030123857735749
1226 => 0.0030062639185578
1227 => 0.0031072992991305
1228 => 0.0031860636033962
1229 => 0.003327223317444
1230 => 0.0031799157970128
1231 => 0.003174547325474
]
'min_raw' => 0.0026874742326379
'max_raw' => 0.0077702783532738
'avg_raw' => 0.0052288762929558
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.002687'
'max' => '$0.00777'
'avg' => '$0.005228'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00047256042713503
'max_diff' => -0.0026248039964122
'year' => 2030
]
5 => [
'items' => [
101 => 0.0032270249958964
102 => 0.0031789579151515
103 => 0.003209334650963
104 => 0.0033223291556822
105 => 0.0033247165515125
106 => 0.0032847245953691
107 => 0.0032822910812033
108 => 0.0032899719738447
109 => 0.0033349592019538
110 => 0.0033192392821346
111 => 0.003337430771329
112 => 0.0033601795071246
113 => 0.0034542779236395
114 => 0.0034769647332925
115 => 0.0034218475475978
116 => 0.0034268240123451
117 => 0.0034062086718947
118 => 0.0033862945113291
119 => 0.003431058636051
120 => 0.0035128659538214
121 => 0.0035123570347433
122 => 0.003531334742359
123 => 0.0035431576969838
124 => 0.0034924049208026
125 => 0.0034593667297399
126 => 0.003472035674468
127 => 0.0034922935929821
128 => 0.0034654663045233
129 => 0.0032998758525471
130 => 0.0033501054177177
131 => 0.003341744761973
201 => 0.0033298381715022
202 => 0.0033803443876949
203 => 0.0033754729399324
204 => 0.0032295541665485
205 => 0.0032388954129883
206 => 0.0032301222386837
207 => 0.0032584701596843
208 => 0.0031774270343875
209 => 0.003202355353895
210 => 0.0032179901622017
211 => 0.0032271991844065
212 => 0.0032604684872961
213 => 0.0032565647185949
214 => 0.0032602258235525
215 => 0.0033095554169675
216 => 0.0035590475725882
217 => 0.0035726268801452
218 => 0.0035057574033361
219 => 0.0035324704403792
220 => 0.0034811872507554
221 => 0.0035156139995174
222 => 0.0035391679066757
223 => 0.003432732329383
224 => 0.0034264299052569
225 => 0.003374935051667
226 => 0.0034026054691686
227 => 0.0033585798453502
228 => 0.0033693821934843
301 => 0.0033391778863695
302 => 0.0033935396255585
303 => 0.0034543244969321
304 => 0.0034696811559083
305 => 0.0034292843975991
306 => 0.0034000344823072
307 => 0.0033486812665756
308 => 0.0034340828088183
309 => 0.0034590568223349
310 => 0.003433951630957
311 => 0.0034281342095555
312 => 0.0034171102065115
313 => 0.0034304730039151
314 => 0.0034589208084938
315 => 0.003445505349203
316 => 0.0034543664964146
317 => 0.0034205969408194
318 => 0.0034924217220833
319 => 0.0036064967603054
320 => 0.0036068635302064
321 => 0.0035934479986012
322 => 0.0035879586521101
323 => 0.0036017238016595
324 => 0.0036091908306141
325 => 0.0036537048001602
326 => 0.003701470062998
327 => 0.0039243697030451
328 => 0.0038617803760672
329 => 0.0040595501970759
330 => 0.0042159604482966
331 => 0.0042628610436463
401 => 0.0042197147027681
402 => 0.0040721134013432
403 => 0.0040648713773262
404 => 0.0042854500373169
405 => 0.0042231264627269
406 => 0.0042157132718414
407 => 0.0041368494456031
408 => 0.0041834677343848
409 => 0.0041732716307792
410 => 0.0041571765824273
411 => 0.0042461210299647
412 => 0.0044126170956289
413 => 0.0043866671224049
414 => 0.0043672966711778
415 => 0.0042824209925543
416 => 0.0043335351087548
417 => 0.0043153343510022
418 => 0.0043935363567936
419 => 0.0043472112209493
420 => 0.0042226543003524
421 => 0.0042424904005025
422 => 0.0042394922138695
423 => 0.0043011946823225
424 => 0.0042826731328423
425 => 0.0042358755840732
426 => 0.0044120480301769
427 => 0.0044006083714496
428 => 0.0044168271920549
429 => 0.004423967218469
430 => 0.0045312002819056
501 => 0.0045751302369203
502 => 0.0045851031058107
503 => 0.00462683316541
504 => 0.0045840648239127
505 => 0.0047551686832127
506 => 0.0048689427654602
507 => 0.0050010972167515
508 => 0.0051942103898557
509 => 0.0052668227293397
510 => 0.0052537059601398
511 => 0.0054001221640173
512 => 0.0056632288277357
513 => 0.0053068873393847
514 => 0.0056821157918831
515 => 0.0055633227960429
516 => 0.0052816667399005
517 => 0.0052635314103918
518 => 0.0054542721617054
519 => 0.0058773167900021
520 => 0.0057713489087462
521 => 0.0058774901154939
522 => 0.0057536707598006
523 => 0.005747522085159
524 => 0.0058714764857578
525 => 0.0061611026991597
526 => 0.0060235121416488
527 => 0.0058262423388679
528 => 0.0059719032913832
529 => 0.0058457182940297
530 => 0.0055613881780354
531 => 0.0057712678771045
601 => 0.0056309272993667
602 => 0.005671886140866
603 => 0.0059668611611855
604 => 0.0059313689863336
605 => 0.0059772991470789
606 => 0.005896233615565
607 => 0.0058205056262701
608 => 0.0056791537106168
609 => 0.005637306376957
610 => 0.0056488714744712
611 => 0.0056373006458691
612 => 0.0055582155481522
613 => 0.00554113712883
614 => 0.0055126723484036
615 => 0.0055214947741033
616 => 0.0054679726592364
617 => 0.0055689799482234
618 => 0.0055877277911325
619 => 0.0056612324727483
620 => 0.0056688639726361
621 => 0.0058735734646625
622 => 0.0057608229164576
623 => 0.0058364657186074
624 => 0.0058296995144055
625 => 0.005287771080693
626 => 0.0053624440373835
627 => 0.0054786117243293
628 => 0.0054262783388218
629 => 0.0053522911758405
630 => 0.0052925425747923
701 => 0.0052020173345963
702 => 0.005329429871789
703 => 0.0054969638093846
704 => 0.0056731129097666
705 => 0.0058847445121293
706 => 0.0058375108021454
707 => 0.0056691566041683
708 => 0.0056767088505067
709 => 0.0057233938656715
710 => 0.0056629325292522
711 => 0.0056451013007967
712 => 0.0057209441286989
713 => 0.0057214664165722
714 => 0.0056518983420252
715 => 0.0055745861579894
716 => 0.0055742622171154
717 => 0.0055605052607133
718 => 0.0057561180917833
719 => 0.0058636853701838
720 => 0.0058760177852991
721 => 0.005862855300387
722 => 0.0058679210184293
723 => 0.0058053299892113
724 => 0.0059483945212106
725 => 0.0060796846833889
726 => 0.0060444961153199
727 => 0.0059917434494348
728 => 0.0059497234101446
729 => 0.0060345975294792
730 => 0.0060308182185495
731 => 0.0060785379783573
801 => 0.0060763731344098
802 => 0.0060603267740173
803 => 0.006044496688386
804 => 0.0061072611885625
805 => 0.0060891860204787
806 => 0.0060710827766664
807 => 0.0060347739497328
808 => 0.0060397089223388
809 => 0.0059869653649452
810 => 0.0059625637819139
811 => 0.005595622520708
812 => 0.0054975638255622
813 => 0.0055284150872239
814 => 0.0055385721236156
815 => 0.0054958968538225
816 => 0.0055570822283284
817 => 0.005547546552523
818 => 0.0055846442888981
819 => 0.0055614672338074
820 => 0.0055624184282328
821 => 0.0056305772053853
822 => 0.0056503639883609
823 => 0.0056403002708406
824 => 0.0056473485536277
825 => 0.0058097732555635
826 => 0.0057866816569978
827 => 0.0057744147054924
828 => 0.0057778127348933
829 => 0.0058193157286627
830 => 0.0058309343009387
831 => 0.0057817055937827
901 => 0.0058049221366653
902 => 0.0059037752296411
903 => 0.0059383682175822
904 => 0.0060487724295138
905 => 0.0060018707580069
906 => 0.0060879608059146
907 => 0.006352572262923
908 => 0.0065639622045014
909 => 0.0063695592781671
910 => 0.0067577499855292
911 => 0.0070600121338601
912 => 0.0070484108091632
913 => 0.0069957044121523
914 => 0.0066515869923324
915 => 0.0063349250121125
916 => 0.0065998262047444
917 => 0.0066005014923618
918 => 0.0065777462449855
919 => 0.0064364153578481
920 => 0.0065728282364656
921 => 0.0065836561953914
922 => 0.0065775954177796
923 => 0.0064692373579792
924 => 0.0063037946285809
925 => 0.0063361217418914
926 => 0.0063890742129492
927 => 0.0062888241381941
928 => 0.0062567881649436
929 => 0.0063163491343096
930 => 0.0065082669876275
1001 => 0.0064719860291622
1002 => 0.0064710385867138
1003 => 0.0066262639125493
1004 => 0.006515156078973
1005 => 0.006336529490316
1006 => 0.0062914239208849
1007 => 0.0061313295361567
1008 => 0.0062419072979251
1009 => 0.0062458867947133
1010 => 0.0061853244846701
1011 => 0.0063414437879981
1012 => 0.0063400051211336
1013 => 0.0064882171643518
1014 => 0.0067715429250836
1015 => 0.0066877495560212
1016 => 0.0065903069844944
1017 => 0.0066009016938088
1018 => 0.006717099505017
1019 => 0.0066468436558225
1020 => 0.006672108149034
1021 => 0.0067170612641807
1022 => 0.0067441825946717
1023 => 0.0065969993517247
1024 => 0.0065626838972054
1025 => 0.0064924865203469
1026 => 0.0064741733350206
1027 => 0.0065313476337555
1028 => 0.0065162842260367
1029 => 0.0062455523334176
1030 => 0.0062172593443009
1031 => 0.006218127049884
1101 => 0.0061469829834918
1102 => 0.0060384712057112
1103 => 0.006323633678817
1104 => 0.0063007311413804
1105 => 0.0062754485125659
1106 => 0.006278545490335
1107 => 0.0064023248548573
1108 => 0.0063305265724266
1109 => 0.0065214140737756
1110 => 0.0064821733421018
1111 => 0.0064419262337294
1112 => 0.0064363628573954
1113 => 0.0064208711543939
1114 => 0.0063677443405931
1115 => 0.0063035905205021
1116 => 0.0062612306115693
1117 => 0.0057756542717748
1118 => 0.005865774415973
1119 => 0.0059694494271635
1120 => 0.0060052376255749
1121 => 0.0059440194357242
1122 => 0.0063701616078577
1123 => 0.0064480218891146
1124 => 0.0062121780184869
1125 => 0.0061680612597342
1126 => 0.0063730538952169
1127 => 0.0062494182766904
1128 => 0.0063050913881425
1129 => 0.0061847565727467
1130 => 0.006429267627375
1201 => 0.0064274048628068
1202 => 0.0063322845400238
1203 => 0.0064126795854841
1204 => 0.0063987089679105
1205 => 0.0062913183577595
1206 => 0.006432672101266
1207 => 0.0064327422109592
1208 => 0.0063411909683747
1209 => 0.00623427916018
1210 => 0.006215165854019
1211 => 0.0062007665453381
1212 => 0.0063015500409007
1213 => 0.0063919122078804
1214 => 0.0065600537979485
1215 => 0.0066023285886373
1216 => 0.0067673299110878
1217 => 0.0066690796573371
1218 => 0.006712632722271
1219 => 0.0067599157352139
1220 => 0.006782584950394
1221 => 0.0067456466807552
1222 => 0.0070019616517747
1223 => 0.0070236024886165
1224 => 0.007030858474017
1225 => 0.0069444305079292
1226 => 0.0070211987705325
1227 => 0.0069852814427581
1228 => 0.0070787283515062
1229 => 0.0070933820199879
1230 => 0.0070809708841033
1231 => 0.0070856221897718
]
'min_raw' => 0.0031774270343875
'max_raw' => 0.0070933820199879
'avg_raw' => 0.0051354045271877
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.003177'
'max' => '$0.007093'
'avg' => '$0.005135'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00048995280174963
'max_diff' => -0.00067689633328587
'year' => 2031
]
6 => [
'items' => [
101 => 0.006866902579066
102 => 0.0068555608134131
103 => 0.0067009150339601
104 => 0.0067639343321711
105 => 0.0066461227747592
106 => 0.006683482033208
107 => 0.0066999496383601
108 => 0.006691347895957
109 => 0.0067674973487385
110 => 0.0067027547575688
111 => 0.0065318884148046
112 => 0.0063609755196195
113 => 0.0063588298474431
114 => 0.006313831499004
115 => 0.0062813059349412
116 => 0.0062875715124861
117 => 0.0063096522249864
118 => 0.0062800225637902
119 => 0.0062863455542683
120 => 0.006391349326071
121 => 0.0064124070836534
122 => 0.0063408445955914
123 => 0.0060535108796049
124 => 0.0059829984649797
125 => 0.0060336813902903
126 => 0.0060094582163903
127 => 0.0048501017996105
128 => 0.0051224753927561
129 => 0.0049606402526422
130 => 0.0050352213308835
131 => 0.0048700295598336
201 => 0.0049488677314211
202 => 0.004934309199838
203 => 0.0053722778774956
204 => 0.0053654395990001
205 => 0.0053687127210422
206 => 0.0052124780778985
207 => 0.0054613641066593
208 => 0.0055839743140791
209 => 0.0055612824278507
210 => 0.0055669934867369
211 => 0.0054688585734288
212 => 0.0053696628815154
213 => 0.0052596395930758
214 => 0.0054640492637071
215 => 0.0054413223977223
216 => 0.005493449651423
217 => 0.0056260239343324
218 => 0.0056455460010916
219 => 0.0056717838567891
220 => 0.0056623794532593
221 => 0.0058864304992729
222 => 0.0058592964392643
223 => 0.0059246817168833
224 => 0.005790179240028
225 => 0.005637976920374
226 => 0.0056669056054715
227 => 0.0056641195404669
228 => 0.0056286497352607
229 => 0.0055966291810827
301 => 0.0055433239801115
302 => 0.0057119895236697
303 => 0.0057051420106206
304 => 0.0058159952875209
305 => 0.0057964008940575
306 => 0.0056655447389474
307 => 0.005670218292127
308 => 0.0057016501832923
309 => 0.0058104363174984
310 => 0.0058427314488556
311 => 0.0058277710572725
312 => 0.0058631811944769
313 => 0.0058911679231356
314 => 0.0058666958967052
315 => 0.0062131681840243
316 => 0.0060692887343658
317 => 0.0061394145770226
318 => 0.0061561391772908
319 => 0.0061132994653843
320 => 0.0061225898649217
321 => 0.0061366622887386
322 => 0.0062221072904917
323 => 0.0064463396988022
324 => 0.0065456507060414
325 => 0.0068444327712391
326 => 0.0065374043093661
327 => 0.0065191865110487
328 => 0.0065730061833447
329 => 0.0067484228849094
330 => 0.0068905816454745
331 => 0.0069377439076897
401 => 0.0069439771792055
402 => 0.0070324567184089
403 => 0.0070831715402346
404 => 0.0070217129751067
405 => 0.0069696332761408
406 => 0.0067830902588151
407 => 0.0068046831210103
408 => 0.0069534365289243
409 => 0.0071635594791348
410 => 0.0073438668299822
411 => 0.007280729480061
412 => 0.0077624228919369
413 => 0.0078101808261832
414 => 0.0078035822238693
415 => 0.007912381905416
416 => 0.0076964366942156
417 => 0.007604115932686
418 => 0.0069808934981869
419 => 0.0071559935813684
420 => 0.00741051183554
421 => 0.0073768253902059
422 => 0.0071919874307341
423 => 0.0073437266138151
424 => 0.0072935568945656
425 => 0.0072539859554499
426 => 0.0074352680987428
427 => 0.0072359409355322
428 => 0.0074085233946097
429 => 0.0071871846057059
430 => 0.0072810178861572
501 => 0.0072277535779679
502 => 0.0072622221131945
503 => 0.0070607197605681
504 => 0.0071694455388522
505 => 0.0070561964107343
506 => 0.007056142715902
507 => 0.007053642735122
508 => 0.0071868798321292
509 => 0.0071912246890793
510 => 0.0070927622730808
511 => 0.0070785723006635
512 => 0.0071310400659562
513 => 0.0070696140541279
514 => 0.0070983548984516
515 => 0.0070704845850237
516 => 0.0070642103904325
517 => 0.0070142165404633
518 => 0.006992677815287
519 => 0.0070011237044132
520 => 0.0069722935306713
521 => 0.0069549223081588
522 => 0.007050187161737
523 => 0.0069992909934434
524 => 0.0070423865939922
525 => 0.0069932737180684
526 => 0.0068230270926553
527 => 0.0067251164580548
528 => 0.00640353636452
529 => 0.0064947360801276
530 => 0.0065552015859284
531 => 0.0065352177366219
601 => 0.0065781507776553
602 => 0.006580786517687
603 => 0.0065668285483965
604 => 0.0065506670080847
605 => 0.0065428004640502
606 => 0.006601431238345
607 => 0.0066354683762443
608 => 0.0065612701083596
609 => 0.0065438864923383
610 => 0.0066189050377683
611 => 0.0066646663071439
612 => 0.0070025418091766
613 => 0.0069775109006626
614 => 0.0070403335689652
615 => 0.0070332607006067
616 => 0.0070991088654238
617 => 0.0072067427853889
618 => 0.0069878929311825
619 => 0.0070258776986142
620 => 0.0070165647108363
621 => 0.0071182414693984
622 => 0.0071185588931403
623 => 0.0070575985972515
624 => 0.0070906461626207
625 => 0.0070721999182441
626 => 0.007105534774992
627 => 0.0069771765976187
628 => 0.0071335030022503
629 => 0.0072221300002254
630 => 0.0072233605861783
701 => 0.0072653690798311
702 => 0.0073080521423503
703 => 0.0073899785639446
704 => 0.0073057672589177
705 => 0.0071542793189796
706 => 0.0071652162589401
707 => 0.0070763989351817
708 => 0.0070778919704402
709 => 0.0070699220312188
710 => 0.0070938404187712
711 => 0.0069824253386389
712 => 0.0070085742352526
713 => 0.0069719656268656
714 => 0.0070257981186491
715 => 0.0069678832563198
716 => 0.0070165602198316
717 => 0.0070375675836164
718 => 0.0071150852082386
719 => 0.0069564338401354
720 => 0.0066329329608196
721 => 0.0067009367677208
722 => 0.0066003537957302
723 => 0.0066096631327343
724 => 0.0066284694750526
725 => 0.0065675119665466
726 => 0.0065791407381777
727 => 0.0065787252766246
728 => 0.0065751450534108
729 => 0.0065592876511577
730 => 0.0065362912805993
731 => 0.0066279017429943
801 => 0.0066434681457023
802 => 0.0066780703306527
803 => 0.0067810229621789
804 => 0.0067707355664992
805 => 0.0067875147356727
806 => 0.0067508859035779
807 => 0.0066113622392011
808 => 0.0066189390454454
809 => 0.0065244561501694
810 => 0.006675654190594
811 => 0.0066398484989048
812 => 0.006616764336543
813 => 0.0066104656089693
814 => 0.0067136734401558
815 => 0.0067445548408313
816 => 0.006725311624304
817 => 0.0066858432257923
818 => 0.0067616342187194
819 => 0.0067819126910614
820 => 0.0067864522931775
821 => 0.006920739401163
822 => 0.0067939574507702
823 => 0.006824475126334
824 => 0.0070625653194277
825 => 0.0068466503684925
826 => 0.0069610253334808
827 => 0.0069554272741232
828 => 0.0070139376359735
829 => 0.006950627716662
830 => 0.0069514125189882
831 => 0.007003365756476
901 => 0.0069304068042401
902 => 0.0069123411416424
903 => 0.0068873835581525
904 => 0.0069418775286479
905 => 0.0069745441994095
906 => 0.0072378135747226
907 => 0.0074078975977169
908 => 0.0074005138017141
909 => 0.0074679878752935
910 => 0.0074375901871543
911 => 0.0073394280336478
912 => 0.007506978860084
913 => 0.0074539587679753
914 => 0.0074583296799493
915 => 0.0074581669943873
916 => 0.0074934207205427
917 => 0.0074684402246051
918 => 0.0074192011029166
919 => 0.007451888329787
920 => 0.0075489577076946
921 => 0.0078502640351721
922 => 0.0080188790478063
923 => 0.0078401131996922
924 => 0.0079634234879512
925 => 0.007889481254944
926 => 0.0078760437516158
927 => 0.0079534917252011
928 => 0.0080310752612119
929 => 0.0080261335253708
930 => 0.0079698118621857
1001 => 0.0079379971837617
1002 => 0.0081789085874873
1003 => 0.0083564080059336
1004 => 0.0083443037355668
1005 => 0.0083977280484464
1006 => 0.0085545834834128
1007 => 0.0085689243786098
1008 => 0.0085671177554367
1009 => 0.0085315723503732
1010 => 0.0086860168963498
1011 => 0.0088148572537966
1012 => 0.0085233446161065
1013 => 0.0086343488123583
1014 => 0.0086841821723875
1015 => 0.0087573523298022
1016 => 0.0088808026501029
1017 => 0.0090149024415297
1018 => 0.0090338656223669
1019 => 0.0090204103380912
1020 => 0.0089319679208493
1021 => 0.0090787015127718
1022 => 0.0091646546095938
1023 => 0.0092158377117497
1024 => 0.0093456295427609
1025 => 0.0086844899262538
1026 => 0.008216502444919
1027 => 0.0081434194418875
1028 => 0.0082920366023993
1029 => 0.0083312257624267
1030 => 0.0083154286611587
1031 => 0.0077886662033561
1101 => 0.0081406461465631
1102 => 0.0085193469701397
1103 => 0.0085338944110809
1104 => 0.0087234799616242
1105 => 0.0087852167882553
1106 => 0.0089378580059888
1107 => 0.0089283102562598
1108 => 0.0089654759637257
1109 => 0.0089569322111996
1110 => 0.0092396679246503
1111 => 0.0095515674032462
1112 => 0.009540767316082
1113 => 0.0094959280758068
1114 => 0.0095625219938422
1115 => 0.0098844356809325
1116 => 0.009854799027187
1117 => 0.0098835885118566
1118 => 0.010263142891197
1119 => 0.010756617575319
1120 => 0.010527349040496
1121 => 0.011024795790819
1122 => 0.011337912151628
1123 => 0.011879414520811
1124 => 0.011811615757234
1125 => 0.012022418655829
1126 => 0.011690241820402
1127 => 0.010927496662247
1128 => 0.010806789321297
1129 => 0.011048448474675
1130 => 0.011642543922497
1201 => 0.011029738294816
1202 => 0.011153708075176
1203 => 0.011118004770093
1204 => 0.011116102292694
1205 => 0.011188712117065
1206 => 0.011083387779741
1207 => 0.010654277481999
1208 => 0.010850936202691
1209 => 0.010774996826305
1210 => 0.010859257226061
1211 => 0.011313975851916
1212 => 0.011112933908288
1213 => 0.010901152551996
1214 => 0.011166773370831
1215 => 0.011504999950423
1216 => 0.011483834338924
1217 => 0.011442764206076
1218 => 0.011674274394578
1219 => 0.012056661399862
1220 => 0.012160019070834
1221 => 0.012236315590492
1222 => 0.012246835591512
1223 => 0.012355198140168
1224 => 0.011772505405169
1225 => 0.012697253740223
1226 => 0.01285693223203
1227 => 0.012826919293566
1228 => 0.013004395216911
1229 => 0.012952177298133
1230 => 0.012876521726564
1231 => 0.013157858815278
]
'min_raw' => 0.0048501017996105
'max_raw' => 0.013157858815278
'avg_raw' => 0.0090039803074441
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.00485'
'max' => '$0.013157'
'avg' => '$0.0090039'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.001672674765223
'max_diff' => 0.0060644767952897
'year' => 2032
]
7 => [
'items' => [
101 => 0.0128353285458
102 => 0.012377537433709
103 => 0.012126384175534
104 => 0.012457123045854
105 => 0.012659093732763
106 => 0.012792583509061
107 => 0.012832977434712
108 => 0.011817738183473
109 => 0.011270580534806
110 => 0.011621302314427
111 => 0.012049207091088
112 => 0.011770128372529
113 => 0.011781067729931
114 => 0.011383174817863
115 => 0.012084411784878
116 => 0.011982247457115
117 => 0.012512276170275
118 => 0.012385780564133
119 => 0.012817998404118
120 => 0.012704180961653
121 => 0.013176630801879
122 => 0.013365103834214
123 => 0.01368157938899
124 => 0.01391438009537
125 => 0.014051085122925
126 => 0.014042877865838
127 => 0.014584571291183
128 => 0.014265153603584
129 => 0.013863889706991
130 => 0.013856632109073
131 => 0.014064452367072
201 => 0.014499986615134
202 => 0.014612914308891
203 => 0.014676025483822
204 => 0.014579368522499
205 => 0.014232663515483
206 => 0.014082958051287
207 => 0.014210511444166
208 => 0.014054524605463
209 => 0.014323801651242
210 => 0.01469357654957
211 => 0.014617219495314
212 => 0.014872469679604
213 => 0.015136626767241
214 => 0.0155143832666
215 => 0.015613142803815
216 => 0.015776388563342
217 => 0.015944422073335
218 => 0.015998389908114
219 => 0.016101431249944
220 => 0.01610088817121
221 => 0.016411410190296
222 => 0.016753925593414
223 => 0.016883217228841
224 => 0.017180516215324
225 => 0.016671402119571
226 => 0.017057571009481
227 => 0.017405905014614
228 => 0.016990606853569
301 => 0.017562998616508
302 => 0.017585223291595
303 => 0.017920789499063
304 => 0.017580628861088
305 => 0.017378642560089
306 => 0.017961769442744
307 => 0.018243926172937
308 => 0.018158938269535
309 => 0.017512176128279
310 => 0.017135732821134
311 => 0.016150508075846
312 => 0.017317549345182
313 => 0.017885981104414
314 => 0.017510704027345
315 => 0.017699971956455
316 => 0.018732556407345
317 => 0.019125697711352
318 => 0.019043927068384
319 => 0.019057744960986
320 => 0.019269876872609
321 => 0.020210586591921
322 => 0.019646891522629
323 => 0.020077815281852
324 => 0.020306375689932
325 => 0.020518675334768
326 => 0.019997334505044
327 => 0.019319077745591
328 => 0.019104245358591
329 => 0.017473390117934
330 => 0.017388497020212
331 => 0.017340843951937
401 => 0.017040398097122
402 => 0.016804329954283
403 => 0.016616599802449
404 => 0.016123939823069
405 => 0.016290198103925
406 => 0.015505000922921
407 => 0.016007342253648
408 => 0.014754148593518
409 => 0.015797845512525
410 => 0.015229808730585
411 => 0.015611230152357
412 => 0.015609899408949
413 => 0.014907581641694
414 => 0.014502499410539
415 => 0.014760633574267
416 => 0.015037373888499
417 => 0.015082274073417
418 => 0.01544107511448
419 => 0.015541208772638
420 => 0.015237799113626
421 => 0.0147281789404
422 => 0.014846552083442
423 => 0.014500100582574
424 => 0.013892957653367
425 => 0.014329018304822
426 => 0.014477908583462
427 => 0.014543667012602
428 => 0.013946611672563
429 => 0.013759003922021
430 => 0.013659123129814
501 => 0.014651106593501
502 => 0.014705449686918
503 => 0.014427422737658
504 => 0.015684130911909
505 => 0.015399699147633
506 => 0.015717479115804
507 => 0.01483581096144
508 => 0.01486949187226
509 => 0.014452096038625
510 => 0.014685809815061
511 => 0.014520628450822
512 => 0.014666928051529
513 => 0.014754619428977
514 => 0.015171946772063
515 => 0.015802610720421
516 => 0.015109611983646
517 => 0.014807662510109
518 => 0.014994990265263
519 => 0.015493868763002
520 => 0.016249695224196
521 => 0.015802230746744
522 => 0.016000807883398
523 => 0.016044188153675
524 => 0.015714244414037
525 => 0.016261860720503
526 => 0.016555332747966
527 => 0.016856374322663
528 => 0.017117760286979
529 => 0.016736131697683
530 => 0.017144528992539
531 => 0.016815432864712
601 => 0.016520199616719
602 => 0.016520647363689
603 => 0.016335443234554
604 => 0.015976586897131
605 => 0.015910408282667
606 => 0.016254677792549
607 => 0.016530749337032
608 => 0.016553487911729
609 => 0.016706335303822
610 => 0.01679678881601
611 => 0.017683356201034
612 => 0.018039940937361
613 => 0.018475966003138
614 => 0.018645822339285
615 => 0.019157029014218
616 => 0.018744188106033
617 => 0.018654867378656
618 => 0.017414847199696
619 => 0.017617900434533
620 => 0.017943008255231
621 => 0.017420208107915
622 => 0.017751804469381
623 => 0.017817268615306
624 => 0.017402443558961
625 => 0.017624019545087
626 => 0.017035579418637
627 => 0.015815437107156
628 => 0.016263219087692
629 => 0.016592937347152
630 => 0.016122388736935
701 => 0.016965828908003
702 => 0.016473108572204
703 => 0.016316939880503
704 => 0.015707670136019
705 => 0.015995222002472
706 => 0.016384140019197
707 => 0.016143833901433
708 => 0.016642505177937
709 => 0.017348756696239
710 => 0.017852073586186
711 => 0.017890712007285
712 => 0.017567112966662
713 => 0.018085682494442
714 => 0.018089459707317
715 => 0.017504511161562
716 => 0.017146233434295
717 => 0.017064831980837
718 => 0.01726818877127
719 => 0.01751510145659
720 => 0.017904413942896
721 => 0.018139667324788
722 => 0.01875308337601
723 => 0.018919056171454
724 => 0.01910140995384
725 => 0.019345090842931
726 => 0.019637692228783
727 => 0.018997497054346
728 => 0.019022933202099
729 => 0.018426792319769
730 => 0.017789730291748
731 => 0.018273180960113
801 => 0.018905228398253
802 => 0.018760236017593
803 => 0.018743921412843
804 => 0.018771358052738
805 => 0.018662038532729
806 => 0.0181675903953
807 => 0.017919281636092
808 => 0.018239663285791
809 => 0.018409931874059
810 => 0.018674003605482
811 => 0.018641451190706
812 => 0.019321671611617
813 => 0.019585984698386
814 => 0.019518362100196
815 => 0.019530806285691
816 => 0.020009332504047
817 => 0.020541552075281
818 => 0.0210400459363
819 => 0.021547135302538
820 => 0.020935819279503
821 => 0.020625430703737
822 => 0.02094567248483
823 => 0.020775747688053
824 => 0.021752185973305
825 => 0.021819792441627
826 => 0.022796160119277
827 => 0.023722849309067
828 => 0.023140812432322
829 => 0.023689646991576
830 => 0.024283256314548
831 => 0.025428425008203
901 => 0.025042772479701
902 => 0.024747368686813
903 => 0.024468213529916
904 => 0.025049091096787
905 => 0.025796380806821
906 => 0.02595733985291
907 => 0.026218154998663
908 => 0.025943939763863
909 => 0.026274201810363
910 => 0.027440171959004
911 => 0.027125116532538
912 => 0.026677687179269
913 => 0.027598108630658
914 => 0.027931205575868
915 => 0.030269054381576
916 => 0.0332206850705
917 => 0.031998690583833
918 => 0.031240159172444
919 => 0.031418432046726
920 => 0.032496267655316
921 => 0.032842434244003
922 => 0.031901434125173
923 => 0.032233811275348
924 => 0.034065242051414
925 => 0.03504774590344
926 => 0.033713373704517
927 => 0.03003189372966
928 => 0.026637401061438
929 => 0.027537773373047
930 => 0.027435699094716
1001 => 0.029403342987957
1002 => 0.027117602564813
1003 => 0.02715608857143
1004 => 0.029164421256612
1005 => 0.028628632527744
1006 => 0.027760723405614
1007 => 0.026643737758515
1008 => 0.024578886481185
1009 => 0.022749990122216
1010 => 0.026336877051831
1011 => 0.026182203965095
1012 => 0.025958214414235
1013 => 0.026456678921474
1014 => 0.028877081077008
1015 => 0.028821282973245
1016 => 0.028466323905552
1017 => 0.028735557229932
1018 => 0.027713525502127
1019 => 0.027976926349612
1020 => 0.026636863356456
1021 => 0.027242627795337
1022 => 0.027758861262436
1023 => 0.027862502773923
1024 => 0.028096012391371
1025 => 0.026100698276785
1026 => 0.02699653573489
1027 => 0.027522756312907
1028 => 0.025145272597354
1029 => 0.027475761104044
1030 => 0.026065964297223
1031 => 0.025587458086551
1101 => 0.026231703660822
1102 => 0.025980640533979
1103 => 0.025764791200441
1104 => 0.025644343563565
1105 => 0.02611740641052
1106 => 0.026095337463277
1107 => 0.025321314828117
1108 => 0.024311633853749
1109 => 0.024650515930395
1110 => 0.024527396894913
1111 => 0.024081197627655
1112 => 0.024381882059482
1113 => 0.023057819994624
1114 => 0.020779840030793
1115 => 0.022284743371313
1116 => 0.022226806229723
1117 => 0.022197591695693
1118 => 0.02332848496362
1119 => 0.023219775670056
1120 => 0.023022467237752
1121 => 0.024077573903564
1122 => 0.023692445777355
1123 => 0.024879319914732
1124 => 0.025661071983815
1125 => 0.025462794372065
1126 => 0.026198035971573
1127 => 0.024658323088995
1128 => 0.025169753946029
1129 => 0.025275159136851
1130 => 0.024064554051088
1201 => 0.023237561854914
1202 => 0.02318241090383
1203 => 0.021748520402208
1204 => 0.022514493134215
1205 => 0.023188517440275
1206 => 0.022865712104071
1207 => 0.022763521578164
1208 => 0.023285590812603
1209 => 0.023326160063339
1210 => 0.022401176847211
1211 => 0.022593510148253
1212 => 0.023395571986349
1213 => 0.022573300247812
1214 => 0.020975760577161
1215 => 0.020579548651125
1216 => 0.020526686676557
1217 => 0.019452128509185
1218 => 0.020606025426584
1219 => 0.020102318499625
1220 => 0.021693522646554
1221 => 0.020784635371627
1222 => 0.020745455057775
1223 => 0.020686228266885
1224 => 0.019761311662789
1225 => 0.019963809617569
1226 => 0.020636943660568
1227 => 0.020877125470508
1228 => 0.02085207253998
1229 => 0.020633644936531
1230 => 0.02073363997486
1231 => 0.020411521115822
]
'min_raw' => 0.011270580534806
'max_raw' => 0.03504774590344
'avg_raw' => 0.023159163219123
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.01127'
'max' => '$0.035047'
'avg' => '$0.023159'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0064204787351954
'max_diff' => 0.021889887088162
'year' => 2033
]
8 => [
'items' => [
101 => 0.020297774242371
102 => 0.019938757821219
103 => 0.019411102862942
104 => 0.019484476521186
105 => 0.018439053980411
106 => 0.017869452295422
107 => 0.017711794056247
108 => 0.017500966869831
109 => 0.017735607547943
110 => 0.018436092429703
111 => 0.017591159046142
112 => 0.016142580025213
113 => 0.016229642092629
114 => 0.016425244709154
115 => 0.016060740527301
116 => 0.015715767909694
117 => 0.01601569361219
118 => 0.015401911584742
119 => 0.016499417334793
120 => 0.016469732879978
121 => 0.016878815154297
122 => 0.017134622695641
123 => 0.016545069131517
124 => 0.016396798004462
125 => 0.016481259976979
126 => 0.015085291712633
127 => 0.016764734765013
128 => 0.01677925865827
129 => 0.016654896266489
130 => 0.017549147844895
131 => 0.019436297599391
201 => 0.018726275951327
202 => 0.018451334108678
203 => 0.017928669464822
204 => 0.018625089070004
205 => 0.018571614910165
206 => 0.018329784479896
207 => 0.018183524681113
208 => 0.018453012844941
209 => 0.018150132115321
210 => 0.018095726413676
211 => 0.01776608705569
212 => 0.017648420802525
213 => 0.017561305393109
214 => 0.017465399887126
215 => 0.017676943535162
216 => 0.017197557797829
217 => 0.01661946559337
218 => 0.016571403481613
219 => 0.016704107197837
220 => 0.016645395682038
221 => 0.016571122393463
222 => 0.016429314458449
223 => 0.016387243073377
224 => 0.016523954664726
225 => 0.016369615248874
226 => 0.016597351464266
227 => 0.016535419814899
228 => 0.016189474655934
301 => 0.015758298902562
302 => 0.015754460533935
303 => 0.015661564425141
304 => 0.015543247263568
305 => 0.015510334135948
306 => 0.015990434706086
307 => 0.016984228518071
308 => 0.016789123013308
309 => 0.016930106735716
310 => 0.017623607113243
311 => 0.017844050028975
312 => 0.017687584868865
313 => 0.017473405707356
314 => 0.017482828503485
315 => 0.018214743534803
316 => 0.018260392177521
317 => 0.01837573157086
318 => 0.018523975286208
319 => 0.017712831414613
320 => 0.017444623700078
321 => 0.017317532005333
322 => 0.016926138776196
323 => 0.017348222818301
324 => 0.017102292522407
325 => 0.017135476921499
326 => 0.017113865538057
327 => 0.017125666814771
328 => 0.016499110559568
329 => 0.016727394728137
330 => 0.016347828021449
331 => 0.015839630809556
401 => 0.015837927154304
402 => 0.015962307701953
403 => 0.0158883212852
404 => 0.015689225740084
405 => 0.015717506322563
406 => 0.015469738661817
407 => 0.015747589802556
408 => 0.015755557579073
409 => 0.015648569755235
410 => 0.016076637773612
411 => 0.016252017590011
412 => 0.01618159591246
413 => 0.016247076617385
414 => 0.01679723052788
415 => 0.016886929620188
416 => 0.016926768031802
417 => 0.016873389837818
418 => 0.016257132420937
419 => 0.016284466057904
420 => 0.016083909965989
421 => 0.015914461202402
422 => 0.015921238264303
423 => 0.016008356955585
424 => 0.016388809389855
425 => 0.01718944910888
426 => 0.017219832800957
427 => 0.017256658722109
428 => 0.017106869193558
429 => 0.017061691238454
430 => 0.017121292622656
501 => 0.017421970805485
502 => 0.018195396725052
503 => 0.017922016349697
504 => 0.017699753849114
505 => 0.017894737983665
506 => 0.017864721704487
507 => 0.017611354100909
508 => 0.017604242916144
509 => 0.017117949478355
510 => 0.01693817786677
511 => 0.016787947252458
512 => 0.016623899343499
513 => 0.016526646244132
514 => 0.016676071205502
515 => 0.016710246462112
516 => 0.016383526172574
517 => 0.016338995404383
518 => 0.016605802245567
519 => 0.016488390502324
520 => 0.016609151391921
521 => 0.016637168954175
522 => 0.016632657481353
523 => 0.016510066136754
524 => 0.016588202204075
525 => 0.016403387111378
526 => 0.0162024284564
527 => 0.01607422935469
528 => 0.015962358635305
529 => 0.016024431012384
530 => 0.015803154322066
531 => 0.015732363455413
601 => 0.016561731462583
602 => 0.017174394526689
603 => 0.017165486163096
604 => 0.017111258790767
605 => 0.017030687915106
606 => 0.017416076544085
607 => 0.017281814851838
608 => 0.017379501450888
609 => 0.01740436679024
610 => 0.017479626683496
611 => 0.017506525626529
612 => 0.017425218338167
613 => 0.017152341147573
614 => 0.016472357132997
615 => 0.01615582273863
616 => 0.016051361116192
617 => 0.016055158097767
618 => 0.015950420395463
619 => 0.015981270342806
620 => 0.015939692042754
621 => 0.015860952801328
622 => 0.016019569086108
623 => 0.016037848135315
624 => 0.016000825199125
625 => 0.016009545440847
626 => 0.015703011341889
627 => 0.015726316463676
628 => 0.015596550584096
629 => 0.015572221046026
630 => 0.015244184202455
701 => 0.014663019384369
702 => 0.014985041108623
703 => 0.014596084148831
704 => 0.014448780254498
705 => 0.015146093979814
706 => 0.015076103022265
707 => 0.014956308927277
708 => 0.014779108493515
709 => 0.014713383128937
710 => 0.014314056619885
711 => 0.014290462279406
712 => 0.014488379280015
713 => 0.014397047394142
714 => 0.014268782836287
715 => 0.013804221609704
716 => 0.013281900980089
717 => 0.013297666556706
718 => 0.013463807030866
719 => 0.013946882866581
720 => 0.013758136780271
721 => 0.01362119932904
722 => 0.01359555506075
723 => 0.013916546768321
724 => 0.014370817284375
725 => 0.014583950846778
726 => 0.014372741959399
727 => 0.014130116561873
728 => 0.014144884045602
729 => 0.014243125498906
730 => 0.014253449286589
731 => 0.014095525095093
801 => 0.014139979829953
802 => 0.014072449022675
803 => 0.01365801258306
804 => 0.013650516742059
805 => 0.013548807356087
806 => 0.013545727636302
807 => 0.013372694598169
808 => 0.013348486080013
809 => 0.013004918480444
810 => 0.013231055714899
811 => 0.013079374730764
812 => 0.012850755709747
813 => 0.012811341704351
814 => 0.012810156871756
815 => 0.013044897488063
816 => 0.013228312634125
817 => 0.013082013286424
818 => 0.013048703760846
819 => 0.013404362349192
820 => 0.013359101551925
821 => 0.013319905993392
822 => 0.014330142342145
823 => 0.013530461442382
824 => 0.013181754925895
825 => 0.012750164394171
826 => 0.012890692447569
827 => 0.012920303773206
828 => 0.011882406344451
829 => 0.011461331486867
830 => 0.011316834463615
831 => 0.011233674383846
901 => 0.011271571476455
902 => 0.010892554717475
903 => 0.011147260247868
904 => 0.01081906377208
905 => 0.010764040564871
906 => 0.011350896519321
907 => 0.01143255409702
908 => 0.011084177501536
909 => 0.011307891672885
910 => 0.011226769804494
911 => 0.010824689758677
912 => 0.010809333258427
913 => 0.010607583625233
914 => 0.010291884515712
915 => 0.010147601551322
916 => 0.010072457730746
917 => 0.01010346353564
918 => 0.010087786051892
919 => 0.0099854798657816
920 => 0.010093650122725
921 => 0.0098173198152706
922 => 0.0097072828602977
923 => 0.0096575817205744
924 => 0.0094123226677296
925 => 0.0098026388880015
926 => 0.0098795361004693
927 => 0.0099565848242004
928 => 0.010627241360881
929 => 0.010593737255565
930 => 0.010896598050468
1001 => 0.010884829436904
1002 => 0.010798448632177
1003 => 0.010434022225991
1004 => 0.010579276096221
1005 => 0.010132207261116
1006 => 0.010467181630102
1007 => 0.010314313316961
1008 => 0.010415496699658
1009 => 0.010233559854232
1010 => 0.010334251216478
1011 => 0.0098977712822439
1012 => 0.0094901924610941
1013 => 0.0096542140766923
1014 => 0.0098325243309945
1015 => 0.01021914639493
1016 => 0.0099888774832126
1017 => 0.010071690891298
1018 => 0.00979427983701
1019 => 0.0092219015934646
1020 => 0.009225141192163
1021 => 0.0091370932693314
1022 => 0.0090610070087977
1023 => 0.010015326637721
1024 => 0.0098966419063039
1025 => 0.0097075333198638
1026 => 0.0099606626776904
1027 => 0.010027594097603
1028 => 0.010029499541033
1029 => 0.010214176186289
1030 => 0.010312738144967
1031 => 0.010330110117376
1101 => 0.010620702808889
1102 => 0.010718105646074
1103 => 0.011119294147474
1104 => 0.010304375851388
1105 => 0.010287593145352
1106 => 0.0099642247268585
1107 => 0.0097591393635978
1108 => 0.0099782670971391
1109 => 0.010172384355138
1110 => 0.0099702564911643
1111 => 0.0099966501230472
1112 => 0.0097253099801154
1113 => 0.0098223013134731
1114 => 0.0099058433159044
1115 => 0.0098597163325338
1116 => 0.0097906620058568
1117 => 0.010156468953666
1118 => 0.010135828692062
1119 => 0.010476476531728
1120 => 0.010742035882708
1121 => 0.011217965714076
1122 => 0.01072130812426
1123 => 0.010703207947652
1124 => 0.010880140077355
1125 => 0.010718078558687
1126 => 0.010820495844312
1127 => 0.011201464705997
1128 => 0.011209513977722
1129 => 0.011074678305435
1130 => 0.011066473542522
1201 => 0.011092370208325
1202 => 0.011244047788803
1203 => 0.011191046981603
1204 => 0.011252380857511
1205 => 0.011329079808512
1206 => 0.011646339189534
1207 => 0.011722829352221
1208 => 0.011536997912493
1209 => 0.011553776410834
1210 => 0.011484270351188
1211 => 0.011417128368479
1212 => 0.01156805374031
1213 => 0.011843872823778
1214 => 0.011842156967574
1215 => 0.011906141633782
1216 => 0.011946003550752
1217 => 0.011774887022411
1218 => 0.01166349645459
1219 => 0.011706210686259
1220 => 0.011774511672891
1221 => 0.011684061596831
1222 => 0.011125761826837
1223 => 0.011295114312726
1224 => 0.011266925778161
1225 => 0.011226781877097
1226 => 0.011397067111222
1227 => 0.011380642684977
1228 => 0.01088866735279
1229 => 0.010920162017346
1230 => 0.010890582647655
1231 => 0.010986159642497
]
'min_raw' => 0.0090610070087977
'max_raw' => 0.020297774242371
'avg_raw' => 0.014679390625584
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.009061'
'max' => '$0.020297'
'avg' => '$0.014679'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0022095735260083
'max_diff' => -0.014749971661068
'year' => 2034
]
9 => [
'items' => [
101 => 0.010712917087309
102 => 0.010796964656968
103 => 0.010849678504761
104 => 0.010880727366078
105 => 0.010992897143559
106 => 0.010979735314831
107 => 0.010992078985806
108 => 0.011158397154086
109 => 0.011999577375748
110 => 0.012045360959253
111 => 0.011819905849513
112 => 0.011909970718949
113 => 0.011737065864654
114 => 0.011853138051704
115 => 0.01193255169417
116 => 0.011573696714233
117 => 0.01155244765127
118 => 0.011378829157136
119 => 0.01147212190163
120 => 0.011323686437155
121 => 0.011360107308085
122 => 0.01125827137785
123 => 0.011441555776941
124 => 0.011646496214641
125 => 0.011698272262547
126 => 0.011562071771496
127 => 0.011463453639926
128 => 0.01129031268772
129 => 0.011578249949936
130 => 0.011662451580137
131 => 0.011577807674618
201 => 0.011558193832204
202 => 0.01152102563627
203 => 0.011566079240677
204 => 0.011661992999976
205 => 0.011616761842339
206 => 0.011646637818829
207 => 0.011532781404424
208 => 0.011774943669102
209 => 0.012159555624932
210 => 0.012160792215261
211 => 0.012115560813812
212 => 0.012097053098863
213 => 0.012143463261621
214 => 0.012168638871072
215 => 0.012318720827263
216 => 0.012479764745785
217 => 0.01323128644456
218 => 0.013020262158806
219 => 0.013687056918185
220 => 0.014214405000391
221 => 0.014372533632107
222 => 0.014227062731455
223 => 0.013729414638507
224 => 0.013704997648912
225 => 0.014448694001381
226 => 0.014238565718358
227 => 0.014213571627715
228 => 0.013947676731456
301 => 0.014104853546868
302 => 0.014070476671693
303 => 0.014016211092454
304 => 0.014316093507229
305 => 0.014877446617
306 => 0.014789954470506
307 => 0.014724645641793
308 => 0.014438481365483
309 => 0.014610816176926
310 => 0.014549451051427
311 => 0.014813114573842
312 => 0.014656926144026
313 => 0.014236973789947
314 => 0.014303852586515
315 => 0.014293743990955
316 => 0.014501778171273
317 => 0.014439331474067
318 => 0.014281550271092
319 => 0.014875527973098
320 => 0.014836958365007
321 => 0.01489164125104
322 => 0.014915714348596
323 => 0.015277258108746
324 => 0.015425371019169
325 => 0.015458995242917
326 => 0.015599691052356
327 => 0.015455494603007
328 => 0.016032383210727
329 => 0.016415980472477
330 => 0.016861548431735
331 => 0.017512642977587
401 => 0.017757460549789
402 => 0.017713236446648
403 => 0.018206888900474
404 => 0.019093971386721
405 => 0.017892541179777
406 => 0.01915765010499
407 => 0.018757131225653
408 => 0.017807508167771
409 => 0.017746363638164
410 => 0.018389459398311
411 => 0.019815783898647
412 => 0.019458505788551
413 => 0.019816368277643
414 => 0.019398902675132
415 => 0.019378171989291
416 => 0.01979609290513
417 => 0.020772587904671
418 => 0.020308691733757
419 => 0.019643582820743
420 => 0.020134688891872
421 => 0.019709247363339
422 => 0.01875060852597
423 => 0.019458232584714
424 => 0.018985064528604
425 => 0.019123160122374
426 => 0.02011768899788
427 => 0.019998024652382
428 => 0.020152881396076
429 => 0.019879563296763
430 => 0.019624241093695
501 => 0.019147663241194
502 => 0.019006572034073
503 => 0.019045564567792
504 => 0.01900655271131
505 => 0.018739911782812
506 => 0.01868233069969
507 => 0.018586359705135
508 => 0.018616105129344
509 => 0.018435651582276
510 => 0.018776204709199
511 => 0.018839414370499
512 => 0.0190872405365
513 => 0.019112970671186
514 => 0.019803163015913
515 => 0.019423016670649
516 => 0.019678051659309
517 => 0.01965523892944
518 => 0.017828089378944
519 => 0.018079854465925
520 => 0.018471521933032
521 => 0.018295076269993
522 => 0.018045623384383
523 => 0.017844176804435
524 => 0.017538964636843
525 => 0.017968544901648
526 => 0.018533397269098
527 => 0.019127296259373
528 => 0.019840826982386
529 => 0.019681575231422
530 => 0.019113957298828
531 => 0.019139420224639
601 => 0.019296822012711
602 => 0.019092972395697
603 => 0.019032853164023
604 => 0.019288562553472
605 => 0.019290323483502
606 => 0.019055769863079
607 => 0.018795106436838
608 => 0.018794014247564
609 => 0.018747631708575
610 => 0.019407154025779
611 => 0.019769824615014
612 => 0.019811404213597
613 => 0.01976702597674
614 => 0.019784105398797
615 => 0.019573075373822
616 => 0.020055427431905
617 => 0.020498081380075
618 => 0.020379440666043
619 => 0.020201581369938
620 => 0.020059907873726
621 => 0.020346066892784
622 => 0.020333324682122
623 => 0.020494215184001
624 => 0.020486916261487
625 => 0.020432814837103
626 => 0.020379442598176
627 => 0.020591057492598
628 => 0.020530115801436
629 => 0.020469079450994
630 => 0.020346661705986
701 => 0.020363300310676
702 => 0.020185471724486
703 => 0.020103200083632
704 => 0.018866032002456
705 => 0.018535420265532
706 => 0.018639437448191
707 => 0.018673682605527
708 => 0.018529799953927
709 => 0.018736090715901
710 => 0.018703940519163
711 => 0.018829018127433
712 => 0.018750875068024
713 => 0.01875408208644
714 => 0.018983884162303
715 => 0.019050596682575
716 => 0.019016666156329
717 => 0.019040429933841
718 => 0.019588056156548
719 => 0.01951020121978
720 => 0.019468842336328
721 => 0.019480299029696
722 => 0.019620229270836
723 => 0.019659402098447
724 => 0.019493424075232
725 => 0.019571700270488
726 => 0.019904990375159
727 => 0.020021623049207
728 => 0.020393858557911
729 => 0.020235726297855
730 => 0.020525984904991
731 => 0.021418140906877
801 => 0.022130856853683
802 => 0.021475413814768
803 => 0.022784225887249
804 => 0.023803323823616
805 => 0.023764209147422
806 => 0.023586505850056
807 => 0.022426289943623
808 => 0.021358641968678
809 => 0.022251774834447
810 => 0.022254051613796
811 => 0.022177330708546
812 => 0.021700823755155
813 => 0.022160749299457
814 => 0.022197256518959
815 => 0.022176822184091
816 => 0.021811485420156
817 => 0.021253683707147
818 => 0.02136267682668
819 => 0.021541209779875
820 => 0.021203209653601
821 => 0.021095198133107
822 => 0.021296012099739
823 => 0.021943076541477
824 => 0.021820752756955
825 => 0.021817558388592
826 => 0.022340911412133
827 => 0.021966303593929
828 => 0.021364051578962
829 => 0.021211975002454
830 => 0.02067220560691
831 => 0.021045026251005
901 => 0.021058443402266
902 => 0.02085425334563
903 => 0.021380620476702
904 => 0.021375769910924
905 => 0.021875477162469
906 => 0.022830729745949
907 => 0.022548214551889
908 => 0.022219680118763
909 => 0.022255400920915
910 => 0.022647169954076
911 => 0.02241029745341
912 => 0.022495478456183
913 => 0.022647041022427
914 => 0.022738482481728
915 => 0.022242243902126
916 => 0.022126546951386
917 => 0.021889871594283
918 => 0.02182812741137
919 => 0.022020894551337
920 => 0.021970107220519
921 => 0.021057315742657
922 => 0.020961923954496
923 => 0.020964849484451
924 => 0.020724982297489
925 => 0.020359127262652
926 => 0.021320572450136
927 => 0.021243354946164
928 => 0.02115811279794
929 => 0.021168554474712
930 => 0.021585885244198
1001 => 0.021343812322187
1002 => 0.021987402860325
1003 => 0.021855099993787
1004 => 0.021719404057946
1005 => 0.021700646746213
1006 => 0.021648415387947
1007 => 0.021469294626022
1008 => 0.021252995542509
1009 => 0.021110176152067
1010 => 0.019473021620593
1011 => 0.019776867978745
1012 => 0.020126415517331
1013 => 0.020247077926928
1014 => 0.020040676525729
1015 => 0.021477444611373
1016 => 0.021739955985662
1017 => 0.020944791909747
1018 => 0.020796049177479
1019 => 0.021487196160138
1020 => 0.021070350040312
1021 => 0.021258055822546
1022 => 0.02085233859093
1023 => 0.021676724682826
1024 => 0.02167044424203
1025 => 0.021349739432679
1026 => 0.021620796941451
1027 => 0.021573694028904
1028 => 0.021211619089007
1029 => 0.021688203104242
1030 => 0.021688439483968
1031 => 0.021379768077691
1101 => 0.021019307452018
1102 => 0.020954865605848
1103 => 0.020906317331303
1104 => 0.021246115923071
1105 => 0.021550778277928
1106 => 0.022117679388114
1107 => 0.022260211796452
1108 => 0.022816525275119
1109 => 0.022485267684985
1110 => 0.022632109884187
1111 => 0.022791527863519
1112 => 0.022867958705212
1113 => 0.022743418750178
1114 => 0.02360760257031
1115 => 0.023680566162637
1116 => 0.023705030224011
1117 => 0.023413632302138
1118 => 0.023672461859294
1119 => 0.023551364081035
1120 => 0.023866426858134
1121 => 0.023915832724507
1122 => 0.023873987713354
1123 => 0.023889669915159
1124 => 0.023152241477149
1125 => 0.023114001922393
1126 => 0.022592602879944
1127 => 0.022805076843729
1128 => 0.022407866952575
1129 => 0.022533826300775
1130 => 0.022589347981277
1201 => 0.02256034660621
1202 => 0.022817089802848
1203 => 0.022598805636536
1204 => 0.0220227178324
1205 => 0.021446473073526
1206 => 0.021439238789977
1207 => 0.02128752371653
1208 => 0.02117786150643
1209 => 0.021198986338571
1210 => 0.021273433002392
1211 => 0.021173534530992
1212 => 0.021194852934847
1213 => 0.021548880482608
1214 => 0.021619878182503
1215 => 0.021378600257669
1216 => 0.020409834573221
1217 => 0.020172097044293
1218 => 0.020342978065546
1219 => 0.020261307943534
1220 => 0.016352456840681
1221 => 0.017270783426488
1222 => 0.016725144952626
1223 => 0.016976600265001
1224 => 0.016419644675585
1225 => 0.016685453075398
1226 => 0.016636367969721
1227 => 0.01811300994444
1228 => 0.018089954211059
1229 => 0.018100989770546
1230 => 0.017574233763233
1231 => 0.018413370385867
]
'min_raw' => 0.010712917087309
'max_raw' => 0.023915832724507
'avg_raw' => 0.017314374905908
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.010712'
'max' => '$0.023915'
'avg' => '$0.017314'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0016519100785111
'max_diff' => 0.0036180584821358
'year' => 2035
]
10 => [
'items' => [
101 => 0.018826759260554
102 => 0.018750251981838
103 => 0.018769507215607
104 => 0.018438638503828
105 => 0.018104193302919
106 => 0.017733242104365
107 => 0.018422423580326
108 => 0.018345798364919
109 => 0.01852154904018
110 => 0.018968532491049
111 => 0.019034352502115
112 => 0.019122815264468
113 => 0.019091107661373
114 => 0.019846511405752
115 => 0.019755027027993
116 => 0.01997547805654
117 => 0.01952199356516
118 => 0.019008832818019
119 => 0.019106367899562
120 => 0.019096974486882
121 => 0.018977385562207
122 => 0.018869426028192
123 => 0.018689703821467
124 => 0.019258371477426
125 => 0.019235284609103
126 => 0.019609034171701
127 => 0.019542970306102
128 => 0.019101779643063
129 => 0.019117536853905
130 => 0.019223511669474
131 => 0.019590291716155
201 => 0.0196991770063
202 => 0.019648737001576
203 => 0.019768124751417
204 => 0.019862483961062
205 => 0.019779974815369
206 => 0.020948130321988
207 => 0.020463030712122
208 => 0.020699464886669
209 => 0.020755853044148
210 => 0.020611415964482
211 => 0.020642739195157
212 => 0.020690185354561
213 => 0.020978269143551
214 => 0.021734284363577
215 => 0.022069118358157
216 => 0.023076482951269
217 => 0.022041315056021
218 => 0.021979892477068
219 => 0.022161349259784
220 => 0.022752778916312
221 => 0.023232077102765
222 => 0.023391087962587
223 => 0.023412103872696
224 => 0.023710418816565
225 => 0.023881407379146
226 => 0.023674195535917
227 => 0.023498605194765
228 => 0.022869662387834
229 => 0.02294246423029
301 => 0.023443996730704
302 => 0.024152440927654
303 => 0.024760359749694
304 => 0.024547487766325
305 => 0.026171550735225
306 => 0.026332569944889
307 => 0.026310322296488
308 => 0.026677148018974
309 => 0.025949073662598
310 => 0.025637807769472
311 => 0.023536569819557
312 => 0.024126931975101
313 => 0.024985058038937
314 => 0.024871481836581
315 => 0.024248287751248
316 => 0.024759887001097
317 => 0.024590736289909
318 => 0.024457320105926
319 => 0.025068525508753
320 => 0.02439648006141
321 => 0.024978353871512
322 => 0.024232094691342
323 => 0.024548460147614
324 => 0.024368875813759
325 => 0.024485088886792
326 => 0.023805709636467
327 => 0.024172286188943
328 => 0.023790458846692
329 => 0.023790277810816
330 => 0.023781848951073
331 => 0.02423106712595
401 => 0.024245716114505
402 => 0.02391374320454
403 => 0.023865900721823
404 => 0.02404279945569
405 => 0.023835697368183
406 => 0.023932599131443
407 => 0.023838632423877
408 => 0.023817478538763
409 => 0.023648920783132
410 => 0.023576301467415
411 => 0.023604777372277
412 => 0.023507574428647
413 => 0.023449006139127
414 => 0.023770198244145
415 => 0.023598598259286
416 => 0.023743898085375
417 => 0.023578310595247
418 => 0.023004312211427
419 => 0.022674199670969
420 => 0.021589969933611
421 => 0.021897456142143
422 => 0.022101319816517
423 => 0.022033942873353
424 => 0.022178694618686
425 => 0.022187581200224
426 => 0.022140520932247
427 => 0.022086031170723
428 => 0.022059508568286
429 => 0.022257186317291
430 => 0.022371944904115
501 => 0.022121780263585
502 => 0.022063170188484
503 => 0.022316100452029
504 => 0.022470387766678
505 => 0.023609558611496
506 => 0.023525165155838
507 => 0.023736976168159
508 => 0.023713129498677
509 => 0.02393514118373
510 => 0.024298036459652
511 => 0.023560168896586
512 => 0.023688237191994
513 => 0.023656837803489
514 => 0.023999648093826
515 => 0.024000718310133
516 => 0.023795186416432
517 => 0.023906608590382
518 => 0.023844415789591
519 => 0.023956806586481
520 => 0.023524038029786
521 => 0.024051103417362
522 => 0.024349915528775
523 => 0.024354064535231
524 => 0.024495699104521
525 => 0.024639608029841
526 => 0.024915828680166
527 => 0.024631904385822
528 => 0.024121152219771
529 => 0.02415802687644
530 => 0.023858573068361
531 => 0.023863606940976
601 => 0.023836735734448
602 => 0.023917378248009
603 => 0.02354173452659
604 => 0.023629897357181
605 => 0.023506468878073
606 => 0.023687968882586
607 => 0.023492704880756
608 => 0.023656822661753
609 => 0.023727650455441
610 => 0.023989006538962
611 => 0.023454102374718
612 => 0.022363396573994
613 => 0.022592676156836
614 => 0.02225355364429
615 => 0.022284940723957
616 => 0.0223483476201
617 => 0.022142825124255
618 => 0.022182032339704
619 => 0.022180631582071
620 => 0.022168560609542
621 => 0.022115096270718
622 => 0.022037562401825
623 => 0.022346433471828
624 => 0.022398916685369
625 => 0.022515580367777
626 => 0.022862692352891
627 => 0.022828007680113
628 => 0.022884579820466
629 => 0.022761083155715
630 => 0.022290669380038
701 => 0.022316215111286
702 => 0.021997659433278
703 => 0.022507434182879
704 => 0.022386712793476
705 => 0.022308882928388
706 => 0.022287646328611
707 => 0.022635618737196
708 => 0.022739737535644
709 => 0.022674857687604
710 => 0.022541787226426
711 => 0.022797321850638
712 => 0.022865692135937
713 => 0.022880997721416
714 => 0.023333756081616
715 => 0.022906301884234
716 => 0.023009194358073
717 => 0.023811932067015
718 => 0.023083959735236
719 => 0.023469582915099
720 => 0.023450708667131
721 => 0.023647980437172
722 => 0.023434526624056
723 => 0.023437172639892
724 => 0.023612336607341
725 => 0.023366350406047
726 => 0.023305440763295
727 => 0.023221294528075
728 => 0.023405024754248
729 => 0.023515162715435
730 => 0.024402793795184
731 => 0.024976243953597
801 => 0.024951348969853
802 => 0.025178842519815
803 => 0.025076354591955
804 => 0.024745394037945
805 => 0.0253103033473
806 => 0.025131542405011
807 => 0.025146279239899
808 => 0.025145730734168
809 => 0.025264591133238
810 => 0.025180367647101
811 => 0.025014354510563
812 => 0.025124561778106
813 => 0.025451837962889
814 => 0.026467713282515
815 => 0.027036210569936
816 => 0.026433489031986
817 => 0.026849238278101
818 => 0.026599936877035
819 => 0.026554631396387
820 => 0.026815752646575
821 => 0.027077330954945
822 => 0.027060669547536
823 => 0.026870777127854
824 => 0.026763511718318
825 => 0.027575761335876
826 => 0.028174213017781
827 => 0.028133402625146
828 => 0.028313526425986
829 => 0.028842375476272
830 => 0.028890726805678
831 => 0.028884635649516
901 => 0.028764791834643
902 => 0.029285512404377
903 => 0.029719906664856
904 => 0.028737051454121
905 => 0.029111309851849
906 => 0.029279326504442
907 => 0.029526024798743
908 => 0.029942246172663
909 => 0.030394372982007
910 => 0.030458308670166
911 => 0.030412943239813
912 => 0.030114753455229
913 => 0.030609476005008
914 => 0.030899272871997
915 => 0.031071840274406
916 => 0.031509442494437
917 => 0.029280364118089
918 => 0.027702511650926
919 => 0.027456107203713
920 => 0.027957180336497
921 => 0.028089309325629
922 => 0.028036048295786
923 => 0.026260031891924
924 => 0.027446756844902
925 => 0.028723573111637
926 => 0.02877262082444
927 => 0.029411821744537
928 => 0.029619971765852
929 => 0.03013461228851
930 => 0.030102421383696
1001 => 0.030227728161244
1002 => 0.030198922303097
1003 => 0.031152185500973
1004 => 0.032203776369185
1005 => 0.032167363121273
1006 => 0.032016184492109
1007 => 0.032240710536204
1008 => 0.033326065007525
1009 => 0.033226142960257
1010 => 0.033323208717839
1011 => 0.034602902807424
1012 => 0.036266687158246
1013 => 0.035493692286071
1014 => 0.037170868735408
1015 => 0.038226562406961
1016 => 0.040052275451151
1017 => 0.039823687186192
1018 => 0.040534423876594
1019 => 0.039414466484105
1020 => 0.036842817930218
1021 => 0.03643584470269
1022 => 0.037250615410405
1023 => 0.039253649691157
1024 => 0.03718753273271
1025 => 0.037605505502487
1026 => 0.037485129316673
1027 => 0.037478714981297
1028 => 0.037723524073619
1029 => 0.037368415716822
1030 => 0.035921640388459
1031 => 0.036584688995547
1101 => 0.036328654086141
1102 => 0.036612743906794
1103 => 0.038145859501304
1104 => 0.03746803255206
1105 => 0.036753996923222
1106 => 0.037649556058976
1107 => 0.038789910586298
1108 => 0.038718549249392
1109 => 0.03858007842907
1110 => 0.039360631193129
1111 => 0.040649875678851
1112 => 0.040998353282738
1113 => 0.041255592325617
1114 => 0.04129106124354
1115 => 0.041656413141964
1116 => 0.039691823903607
1117 => 0.042809677479109
1118 => 0.043348044662632
1119 => 0.043246853945163
1120 => 0.043845226411694
1121 => 0.043669170052796
1122 => 0.04341409201115
1123 => 0.044362639648075
1124 => 0.043275206326188
1125 => 0.041731731629817
1126 => 0.04088495088492
1127 => 0.042000060077654
1128 => 0.04268101834971
1129 => 0.043131088450458
1130 => 0.043267279391004
1201 => 0.039844329373712
1202 => 0.037999549159903
1203 => 0.039182032126506
1204 => 0.040624742956378
1205 => 0.039683809572103
1206 => 0.039720692379344
1207 => 0.038379168646311
1208 => 0.040743438039404
1209 => 0.040398983875466
1210 => 0.042186012687306
1211 => 0.041759523919559
1212 => 0.043216776543555
1213 => 0.042833033089803
1214 => 0.044425930711521
1215 => 0.045061380698805
1216 => 0.046128400127349
1217 => 0.046913303962536
1218 => 0.047374214507376
1219 => 0.047346543167096
1220 => 0.049172900370473
1221 => 0.048095961335702
1222 => 0.046743072092988
1223 => 0.046718602594898
1224 => 0.047419283104289
1225 => 0.048887717229661
1226 => 0.049268460833523
1227 => 0.049481244566084
1228 => 0.049155358872612
1229 => 0.047986418735284
1230 => 0.047481676310647
1231 => 0.047911731480233
]
'min_raw' => 0.017733242104365
'max_raw' => 0.049481244566084
'avg_raw' => 0.033607243335224
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.017733'
'max' => '$0.049481'
'avg' => '$0.0336072'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0070203250170561
'max_diff' => 0.025565411841577
'year' => 2036
]
11 => [
'items' => [
101 => 0.047385810962891
102 => 0.048293697323059
103 => 0.049540419209631
104 => 0.049282976070127
105 => 0.050143569887458
106 => 0.051034193951287
107 => 0.052307826362991
108 => 0.052640801037882
109 => 0.053191195513584
110 => 0.053757732224248
111 => 0.053939688547121
112 => 0.054287099625216
113 => 0.054285268597348
114 => 0.055332215264651
115 => 0.056487029859926
116 => 0.056922945635623
117 => 0.057925309925302
118 => 0.056208796206261
119 => 0.057510791580042
120 => 0.05868522399825
121 => 0.057285017253097
122 => 0.059214876044961
123 => 0.059289808088696
124 => 0.06042119298566
125 => 0.059274317645467
126 => 0.058593306729416
127 => 0.060559359726909
128 => 0.061510670842306
129 => 0.061224128192322
130 => 0.059043524477585
131 => 0.057774319585115
201 => 0.054452565570181
202 => 0.058387326689965
203 => 0.060303834052856
204 => 0.059038561186509
205 => 0.059676691223767
206 => 0.063158121792688
207 => 0.064483625147396
208 => 0.064207929715585
209 => 0.064254517705228
210 => 0.064969735255841
211 => 0.068141403752758
212 => 0.066240866470705
213 => 0.067693756011061
214 => 0.068464363384483
215 => 0.069180146459333
216 => 0.067422409453066
217 => 0.065135619434197
218 => 0.064411297042307
219 => 0.058912754735754
220 => 0.058626531729739
221 => 0.058465866083018
222 => 0.057452891907049
223 => 0.056656971681717
224 => 0.056024026367909
225 => 0.054362988851007
226 => 0.054923540252694
227 => 0.052276193136224
228 => 0.05396987200512
301 => 0.049744642084804
302 => 0.053263539115828
303 => 0.051348363446457
304 => 0.052634352399955
305 => 0.052629865705644
306 => 0.050261952319084
307 => 0.048896189294808
308 => 0.049766506650169
309 => 0.050699555940994
310 => 0.050850940049275
311 => 0.052060662809907
312 => 0.052398270429496
313 => 0.05137530358075
314 => 0.049657083586176
315 => 0.05005618690249
316 => 0.048888101478842
317 => 0.046841076703655
318 => 0.048311285634818
319 => 0.04881327960444
320 => 0.049034988739391
321 => 0.047021974975379
322 => 0.046389442346071
323 => 0.046052687281691
324 => 0.049397228787586
325 => 0.049580450321155
326 => 0.048643063050504
327 => 0.052880142400554
328 => 0.051921160848904
329 => 0.052992578198282
330 => 0.050019972459738
331 => 0.050133530002094
401 => 0.048726250807347
402 => 0.049514233121976
403 => 0.048957312619852
404 => 0.049450571937947
405 => 0.049746229539429
406 => 0.051153277813507
407 => 0.053279605346946
408 => 0.050943111722285
409 => 0.049925067990815
410 => 0.050556656596124
411 => 0.052238660281833
412 => 0.054786981965868
413 => 0.053278324239166
414 => 0.053947840919607
415 => 0.054094100529559
416 => 0.052981672175434
417 => 0.054827998786036
418 => 0.055817460216188
419 => 0.05683244290333
420 => 0.057713723931407
421 => 0.056427036498138
422 => 0.057803976491135
423 => 0.056694405919408
424 => 0.055699006411272
425 => 0.055700516021443
426 => 0.055076087369523
427 => 0.053866178173355
428 => 0.053643052354244
429 => 0.054803781042943
430 => 0.055734575529864
501 => 0.055811240222012
502 => 0.056326575875919
503 => 0.056631546207522
504 => 0.059620670044291
505 => 0.060822920378769
506 => 0.062293009330334
507 => 0.062865691826642
508 => 0.064589260822492
509 => 0.063197338876913
510 => 0.062896187808388
511 => 0.058715373199579
512 => 0.059399981357558
513 => 0.060496105073344
514 => 0.058733447875925
515 => 0.059851448159927
516 => 0.060072165098473
517 => 0.058673553458846
518 => 0.059420612366012
519 => 0.057436645396107
520 => 0.053322850405333
521 => 0.054832578615851
522 => 0.055944246747813
523 => 0.054357759255811
524 => 0.05720147667968
525 => 0.055540235666899
526 => 0.055013702019479
527 => 0.052959506538094
528 => 0.053929007732073
529 => 0.055240271978848
530 => 0.054430063125172
531 => 0.056111368150022
601 => 0.058492544452883
602 => 0.060189512487801
603 => 0.060319784622186
604 => 0.059228747863762
605 => 0.06097714123204
606 => 0.060989876368964
607 => 0.059017681507149
608 => 0.057809723135515
609 => 0.057535272451913
610 => 0.058220904068776
611 => 0.059053387426226
612 => 0.060365981654735
613 => 0.061159154856651
614 => 0.063227329900688
615 => 0.063786918768379
616 => 0.064401737277227
617 => 0.065223324408055
618 => 0.06620985040923
619 => 0.064051387681615
620 => 0.064137147429661
621 => 0.062127216823657
622 => 0.059979317717935
623 => 0.061609305399775
624 => 0.063740297465605
625 => 0.063251445531167
626 => 0.063196439702203
627 => 0.063288944249175
628 => 0.06292036585502
629 => 0.06125329943841
630 => 0.060416109120376
701 => 0.061496298220668
702 => 0.062070370653788
703 => 0.062960706933179
704 => 0.062850954194025
705 => 0.065144364834601
706 => 0.066035514860391
707 => 0.065807520549335
708 => 0.065849476989559
709 => 0.067462861544378
710 => 0.069257276987178
711 => 0.070937983843333
712 => 0.072647671045452
713 => 0.07058657639307
714 => 0.069540079639235
715 => 0.070619797162758
716 => 0.070046883846652
717 => 0.073339013698123
718 => 0.073566953626206
719 => 0.076858845419218
720 => 0.079983242721969
721 => 0.078020864755503
722 => 0.079871298790435
723 => 0.081872694067315
724 => 0.085733710271097
725 => 0.084433455845851
726 => 0.083437481333697
727 => 0.082496290232226
728 => 0.084454759504509
729 => 0.08697429893599
730 => 0.087516983597682
731 => 0.08839634007112
801 => 0.087471804261894
802 => 0.088585305809828
803 => 0.09251645557141
804 => 0.091454224204612
805 => 0.089945684901545
806 => 0.093048950086677
807 => 0.094172009693539
808 => 0.10205423016537
809 => 0.11200585910935
810 => 0.10788581938063
811 => 0.10532837776816
812 => 0.10592943721041
813 => 0.10956343521686
814 => 0.11073056003919
815 => 0.10755791244003
816 => 0.10867854520767
817 => 0.11485334193559
818 => 0.11816592226892
819 => 0.11366699323737
820 => 0.10125462646941
821 => 0.08980985744259
822 => 0.092845525553169
823 => 0.092501374997178
824 => 0.099135423759748
825 => 0.091428890337817
826 => 0.091558648596136
827 => 0.098329882461536
828 => 0.096523433354584
829 => 0.093597217153843
830 => 0.0898312220592
831 => 0.082869431814369
901 => 0.07670318005064
902 => 0.088796619762285
903 => 0.088275128651425
904 => 0.087519932242249
905 => 0.089200540130085
906 => 0.097361094984549
907 => 0.097172967782016
908 => 0.095976198502838
909 => 0.096883937453254
910 => 0.093438086126982
911 => 0.094326160474338
912 => 0.089808044532703
913 => 0.091850421631511
914 => 0.093590938808107
915 => 0.093940373400105
916 => 0.094727667378451
917 => 0.088000326532742
918 => 0.091020705068115
919 => 0.09279489448645
920 => 0.084779042148849
921 => 0.092636446858666
922 => 0.087883218495601
923 => 0.086269901398082
924 => 0.088442020331526
925 => 0.087595543470708
926 => 0.086867792372566
927 => 0.086461694755451
928 => 0.088056659172154
929 => 0.08798225217572
930 => 0.085372580820741
1001 => 0.081968370921985
1002 => 0.083110935503389
1003 => 0.082695831079365
1004 => 0.081191439097166
1005 => 0.082205217652187
1006 => 0.077741049957458
1007 => 0.070060681465921
1008 => 0.07513456814748
1009 => 0.074939229029566
1010 => 0.074840730188391
1011 => 0.078653615797654
1012 => 0.078287094824561
1013 => 0.077621855669414
1014 => 0.081179221458395
1015 => 0.079880735092095
1016 => 0.083882364111166
1017 => 0.086518095792265
1018 => 0.08584958898095
1019 => 0.08832850736662
1020 => 0.083137257883688
1021 => 0.084861582725139
1022 => 0.085216963685151
1023 => 0.081135324116754
1024 => 0.078347062188601
1025 => 0.078161116906506
1026 => 0.073326654969249
1027 => 0.075909185513718
1028 => 0.078181705520476
1029 => 0.077093344791916
1030 => 0.076748802299105
1031 => 0.078508995172724
1101 => 0.078645777234036
1102 => 0.075527131740596
1103 => 0.07617559689334
1104 => 0.078879804378649
1105 => 0.076107457802992
1106 => 0.070721241266734
1107 => 0.069385385095472
1108 => 0.069207157257512
1109 => 0.065584209372961
1110 => 0.069474653392481
1111 => 0.067776370320543
1112 => 0.07314122619624
1113 => 0.070076849292341
1114 => 0.069944750128706
1115 => 0.069745062868139
1116 => 0.066626641961813
1117 => 0.067309377954311
1118 => 0.069578896377002
1119 => 0.070388686118173
1120 => 0.070304218413757
1121 => 0.069567774498599
1122 => 0.069904914751756
1123 => 0.068818868528888
1124 => 0.068435363003497
1125 => 0.067224914073855
1126 => 0.065445888542334
1127 => 0.065693272953889
1128 => 0.062168557868593
1129 => 0.060248106019335
1130 => 0.059716550258609
1201 => 0.059005731680122
1202 => 0.059796839108465
1203 => 0.062158572793613
1204 => 0.059309820899573
1205 => 0.054425835593951
1206 => 0.054719371432725
1207 => 0.055378859310877
1208 => 0.054149908012889
1209 => 0.052986808747408
1210 => 0.053998029193518
1211 => 0.051928620235085
1212 => 0.055628937496785
1213 => 0.055528854284876
1214 => 0.056908103733953
1215 => 0.057770576719509
1216 => 0.055782855716747
1217 => 0.055282949259922
1218 => 0.055567718697211
1219 => 0.050861114230577
1220 => 0.056523473736644
1221 => 0.056572442056788
1222 => 0.056153145570193
1223 => 0.059168177201438
1224 => 0.065530834355312
1225 => 0.063136946796733
1226 => 0.062209961178417
1227 => 0.060447760840376
1228 => 0.062795788161713
1229 => 0.062615496298367
1230 => 0.061800148118655
1231 => 0.061307022995524
]
'min_raw' => 0.046052687281691
'max_raw' => 0.11816592226892
'avg_raw' => 0.082109304775308
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.046052'
'max' => '$0.118165'
'avg' => '$0.0821093'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.028319445177326
'max_diff' => 0.068684677702841
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0014455412305452
]
1 => [
'year' => 2028
'avg' => 0.0024809683952332
]
2 => [
'year' => 2029
'avg' => 0.0067775585047294
]
3 => [
'year' => 2030
'avg' => 0.0052288762929558
]
4 => [
'year' => 2031
'avg' => 0.0051354045271877
]
5 => [
'year' => 2032
'avg' => 0.0090039803074441
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0014455412305452
'min' => '$0.001445'
'max_raw' => 0.0090039803074441
'max' => '$0.0090039'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0090039803074441
]
1 => [
'year' => 2033
'avg' => 0.023159163219123
]
2 => [
'year' => 2034
'avg' => 0.014679390625584
]
3 => [
'year' => 2035
'avg' => 0.017314374905908
]
4 => [
'year' => 2036
'avg' => 0.033607243335224
]
5 => [
'year' => 2037
'avg' => 0.082109304775308
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0090039803074441
'min' => '$0.0090039'
'max_raw' => 0.082109304775308
'max' => '$0.0821093'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.082109304775308
]
]
]
]
'prediction_2025_max_price' => '$0.002471'
'last_price' => 0.00239654
'sma_50day_nextmonth' => '$0.001986'
'sma_200day_nextmonth' => '$0.002958'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.001951'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.001797'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.001698'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.001665'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.001899'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.00221'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.003352'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.00206'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.001916'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.00178'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.001746'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.00192'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.002356'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.00328'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.002724'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.004129'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.00875'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.00773'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.0020063'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.001945'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.002094'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.0027028'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.004379'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.006793'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.011979'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '69.85'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 137.19
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.001719'
'vwma_10_action' => 'BUY'
'hma_9' => '0.001942'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 420.59
'cci_20_action' => 'SELL'
'adx_14' => 16.4
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000030'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 81.72
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000792'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 11
'buy_signals' => 24
'sell_pct' => 31.43
'buy_pct' => 68.57
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767708042
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Cudos para 2026
La previsión del precio de Cudos para 2026 sugiere que el precio medio podría oscilar entre $0.000828 en el extremo inferior y $0.002471 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Cudos podría potencialmente ganar 3.13% para 2026 si CUDOS alcanza el objetivo de precio previsto.
Predicción de precio de Cudos 2027-2032
La predicción del precio de CUDOS para 2027-2032 está actualmente dentro de un rango de precios de $0.001445 en el extremo inferior y $0.0090039 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Cudos alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Cudos | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000797 | $0.001445 | $0.002093 |
| 2028 | $0.001438 | $0.00248 | $0.003523 |
| 2029 | $0.00316 | $0.006777 | $0.010395 |
| 2030 | $0.002687 | $0.005228 | $0.00777 |
| 2031 | $0.003177 | $0.005135 | $0.007093 |
| 2032 | $0.00485 | $0.0090039 | $0.013157 |
Predicción de precio de Cudos 2032-2037
La predicción de precio de Cudos para 2032-2037 se estima actualmente entre $0.0090039 en el extremo inferior y $0.0821093 en el extremo superior. Comparado con el precio actual, Cudos podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Cudos | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.00485 | $0.0090039 | $0.013157 |
| 2033 | $0.01127 | $0.023159 | $0.035047 |
| 2034 | $0.009061 | $0.014679 | $0.020297 |
| 2035 | $0.010712 | $0.017314 | $0.023915 |
| 2036 | $0.017733 | $0.0336072 | $0.049481 |
| 2037 | $0.046052 | $0.0821093 | $0.118165 |
Cudos Histograma de precios potenciales
Pronóstico de precio de Cudos basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Cudos es Alcista, con 24 indicadores técnicos mostrando señales alcistas y 11 indicando señales bajistas. La predicción de precio de CUDOS se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Cudos
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Cudos aumentar durante el próximo mes, alcanzando $0.002958 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Cudos alcance $0.001986 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 69.85, lo que sugiere que el mercado de CUDOS está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de CUDOS para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.001951 | BUY |
| SMA 5 | $0.001797 | BUY |
| SMA 10 | $0.001698 | BUY |
| SMA 21 | $0.001665 | BUY |
| SMA 50 | $0.001899 | BUY |
| SMA 100 | $0.00221 | BUY |
| SMA 200 | $0.003352 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.00206 | BUY |
| EMA 5 | $0.001916 | BUY |
| EMA 10 | $0.00178 | BUY |
| EMA 21 | $0.001746 | BUY |
| EMA 50 | $0.00192 | BUY |
| EMA 100 | $0.002356 | BUY |
| EMA 200 | $0.00328 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.002724 | SELL |
| SMA 50 | $0.004129 | SELL |
| SMA 100 | $0.00875 | SELL |
| SMA 200 | $0.00773 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.0027028 | SELL |
| EMA 50 | $0.004379 | SELL |
| EMA 100 | $0.006793 | SELL |
| EMA 200 | $0.011979 | SELL |
Osciladores de Cudos
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 69.85 | NEUTRAL |
| Stoch RSI (14) | 137.19 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 420.59 | SELL |
| Índice Direccional Medio (14) | 16.4 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.000030 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 81.72 | SELL |
| VWMA (10) | 0.001719 | BUY |
| Promedio Móvil de Hull (9) | 0.001942 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000792 | NEUTRAL |
Predicción de precios de Cudos basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Cudos
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Cudos por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.003367 | $0.004731 | $0.006649 | $0.009343 | $0.013128 | $0.018448 |
| Amazon.com acción | $0.00500052 | $0.010433 | $0.02177 | $0.045426 | $0.094784 | $0.197774 |
| Apple acción | $0.003399 | $0.004821 | $0.006839 | $0.00970082 | $0.013759 | $0.019517 |
| Netflix acción | $0.003781 | $0.005966 | $0.009414 | $0.014853 | $0.023437 | $0.03698 |
| Google acción | $0.0031035 | $0.004019 | $0.0052046 | $0.006739 | $0.008728 | $0.011303 |
| Tesla acción | $0.005432 | $0.012315 | $0.027918 | $0.063289 | $0.143472 | $0.325242 |
| Kodak acción | $0.001797 | $0.001347 | $0.00101 | $0.000757 | $0.000568 | $0.000426 |
| Nokia acción | $0.001587 | $0.001051 | $0.000696 | $0.000461 | $0.0003057 | $0.0002025 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Cudos
Podría preguntarse cosas como: "¿Debo invertir en Cudos ahora?", "¿Debería comprar CUDOS hoy?", "¿Será Cudos una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Cudos regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Cudos, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Cudos a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Cudos es de $0.002396 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Cudos
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Cudos
basado en el historial de precios del último mes
Predicción de precios de Cudos basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Cudos ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.002458 | $0.002522 | $0.002588 | $0.002655 |
| Si Cudos ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.002521 | $0.002652 | $0.00279 | $0.002935 |
| Si Cudos ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.002708 | $0.003059 | $0.003457 | $0.003907 |
| Si Cudos ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.003019 | $0.0038043 | $0.004793 | $0.006039 |
| Si Cudos ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.003642 | $0.005535 | $0.008413 | $0.012788 |
| Si Cudos ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.005511 | $0.012673 | $0.029145 | $0.067025 |
| Si Cudos ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.008625 | $0.031047 | $0.111749 | $0.402223 |
Cuadro de preguntas
¿Es CUDOS una buena inversión?
La decisión de adquirir Cudos depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Cudos ha experimentado un aumento de 9.8532% durante las últimas 24 horas, y Cudos ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Cudos dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Cudos subir?
Parece que el valor medio de Cudos podría potencialmente aumentar hasta $0.002471 para el final de este año. Mirando las perspectivas de Cudos en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.00777. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Cudos la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Cudos, el precio de Cudos aumentará en un 0.86% durante la próxima semana y alcanzará $0.002417 para el 13 de enero de 2026.
¿Cuál será el precio de Cudos el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Cudos, el precio de Cudos disminuirá en un -11.62% durante el próximo mes y alcanzará $0.002118 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Cudos este año en 2026?
Según nuestra predicción más reciente sobre el valor de Cudos en 2026, se anticipa que CUDOS fluctúe dentro del rango de $0.000828 y $0.002471. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Cudos no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Cudos en 5 años?
El futuro de Cudos parece estar en una tendencia alcista, con un precio máximo de $0.00777 proyectada después de un período de cinco años. Basado en el pronóstico de Cudos para 2030, el valor de Cudos podría potencialmente alcanzar su punto más alto de aproximadamente $0.00777, mientras que su punto más bajo se anticipa que esté alrededor de $0.002687.
¿Cuánto será Cudos en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Cudos, se espera que el valor de CUDOS en 2026 crezca en un 3.13% hasta $0.002471 si ocurre lo mejor. El precio estará entre $0.002471 y $0.000828 durante 2026.
¿Cuánto será Cudos en 2027?
Según nuestra última simulación experimental para la predicción de precios de Cudos, el valor de CUDOS podría disminuir en un -12.62% hasta $0.002093 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.002093 y $0.000797 a lo largo del año.
¿Cuánto será Cudos en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Cudos sugiere que el valor de CUDOS en 2028 podría aumentar en un 47.02% , alcanzando $0.003523 en el mejor escenario. Se espera que el precio oscile entre $0.003523 y $0.001438 durante el año.
¿Cuánto será Cudos en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Cudos podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.010395 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.010395 y $0.00316.
¿Cuánto será Cudos en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Cudos, se espera que el valor de CUDOS en 2030 aumente en un 224.23% , alcanzando $0.00777 en el mejor escenario. Se pronostica que el precio oscile entre $0.00777 y $0.002687 durante el transcurso de 2030.
¿Cuánto será Cudos en 2031?
Nuestra simulación experimental indica que el precio de Cudos podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.007093 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.007093 y $0.003177 durante el año.
¿Cuánto será Cudos en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Cudos, CUDOS podría experimentar un 449.04% aumento en valor, alcanzando $0.013157 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.013157 y $0.00485 a lo largo del año.
¿Cuánto será Cudos en 2033?
Según nuestra predicción experimental de precios de Cudos, se anticipa que el valor de CUDOS aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.035047. A lo largo del año, el precio de CUDOS podría oscilar entre $0.035047 y $0.01127.
¿Cuánto será Cudos en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Cudos sugieren que CUDOS podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.020297 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.020297 y $0.009061.
¿Cuánto será Cudos en 2035?
Basado en nuestra predicción experimental para el precio de Cudos, CUDOS podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.023915 en 2035. El rango de precios esperado para el año está entre $0.023915 y $0.010712.
¿Cuánto será Cudos en 2036?
Nuestra reciente simulación de predicción de precios de Cudos sugiere que el valor de CUDOS podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.049481 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.049481 y $0.017733.
¿Cuánto será Cudos en 2037?
Según la simulación experimental, el valor de Cudos podría aumentar en un 4830.69% en 2037, con un máximo de $0.118165 bajo condiciones favorables. Se espera que el precio caiga entre $0.118165 y $0.046052 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Acala
Predicción de precios de WINk
Predicción de precios de Radiant Capital
Predicción de precios de APEX
Predicción de precios de Metars Genesis
Predicción de precios de Liquity
Predicción de precios de Steem
Predicción de precios de Alpha Finance
Predicción de precios de Zignaly
Predicción de precios de Heroes of Mavia
Predicción de precios de Sovryn
Predicción de precios de Verge
Predicción de precios de Quasar
Predicción de precios de Auction
Predicción de precios de Pundi X
Predicción de precios de XYO Network
Predicción de precios de f(x) Coin
Predicción de precios de Multibit
Predicción de precios de dKargo
Predicción de precios de Aurora
Predicción de precios de NKN
Predicción de precios de Mil.k Alliance
Predicción de precios de Dogelon Mars
Predicción de precios de Medibloc
Predicción de precios de ChainGPT
¿Cómo leer y predecir los movimientos de precio de Cudos?
Los traders de Cudos utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Cudos
Las medias móviles son herramientas populares para la predicción de precios de Cudos. Una media móvil simple (SMA) calcula el precio de cierre promedio de CUDOS durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de CUDOS por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de CUDOS.
¿Cómo leer gráficos de Cudos y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Cudos en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de CUDOS dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Cudos?
La acción del precio de Cudos está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de CUDOS. La capitalización de mercado de Cudos puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de CUDOS, grandes poseedores de Cudos, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Cudos.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


