Predicción del precio de Bella Protocol - Pronóstico de BEL
Predicción de precio de Bella Protocol hasta $0.148596 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.04978 | $0.148596 |
| 2027 | $0.047922 | $0.125892 |
| 2028 | $0.086486 | $0.211831 |
| 2029 | $0.189985 | $0.624965 |
| 2030 | $0.161574 | $0.467158 |
| 2031 | $0.19103 | $0.426463 |
| 2032 | $0.291594 | $0.791067 |
| 2033 | $0.6776014 | $2.10 |
| 2034 | $0.544759 | $1.22 |
| 2035 | $0.644074 | $1.43 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Bella Protocol hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.46, equivalente a un ROI del 39.54% en los próximos 90 días.
Predicción del precio a largo plazo de Bella Protocol para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Bella Protocol'
'name_with_ticker' => 'Bella Protocol <small>BEL</small>'
'name_lang' => 'Bella Protocol'
'name_lang_with_ticker' => 'Bella Protocol <small>BEL</small>'
'name_with_lang' => 'Bella Protocol'
'name_with_lang_with_ticker' => 'Bella Protocol <small>BEL</small>'
'image' => '/uploads/coins/bella-protocol.png?1717212612'
'price_for_sd' => 0.144
'ticker' => 'BEL'
'marketcap' => '$11.54M'
'low24h' => '$0.1367'
'high24h' => '$0.1458'
'volume24h' => '$2.04M'
'current_supply' => '80M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.144'
'change_24h_pct' => '4.0853%'
'ath_price' => '$9.99'
'ath_days' => 1939
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '15 sept. 2020'
'ath_pct' => '-98.56%'
'fdv' => '$14.42M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$7.10'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.145316'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.127343'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.04978'
'current_year_max_price_prediction' => '$0.148596'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.161574'
'grand_prediction_max_price' => '$0.467158'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.14681329706234
107 => 0.14736144462035
108 => 0.14859644905764
109 => 0.13804347135917
110 => 0.14278144852663
111 => 0.14556456622409
112 => 0.13299033921628
113 => 0.14531601418537
114 => 0.13785976749569
115 => 0.13532900538015
116 => 0.13873634316617
117 => 0.13740850031722
118 => 0.13626689900923
119 => 0.13562986586417
120 => 0.13813183868008
121 => 0.13801511865772
122 => 0.13392140551889
123 => 0.12858132361039
124 => 0.1303736303811
125 => 0.12972246852834
126 => 0.12736257397237
127 => 0.12895285796834
128 => 0.12195005207442
129 => 0.10990208850812
130 => 0.11786134227912
131 => 0.11755491966694
201 => 0.11740040749072
202 => 0.12338156672201
203 => 0.12280661627075
204 => 0.12176307557176
205 => 0.12734340852908
206 => 0.12530651193359
207 => 0.1315837472877
208 => 0.13571834047804
209 => 0.13466967390489
210 => 0.13855827878463
211 => 0.13041492150915
212 => 0.13311981814127
213 => 0.13367729358833
214 => 0.1272745480866
215 => 0.12290068527511
216 => 0.12260899849127
217 => 0.11502532313156
218 => 0.11907646129542
219 => 0.12264129523214
220 => 0.12093401641874
221 => 0.12039354294992
222 => 0.12315470468772
223 => 0.1233692706025
224 => 0.11847714500689
225 => 0.11949437283168
226 => 0.12373638196114
227 => 0.1193874850855
228 => 0.11093828884438
301 => 0.10884277135731
302 => 0.10856319069648
303 => 0.10287998107395
304 => 0.1089828038559
305 => 0.1063187581661
306 => 0.11473444658002
307 => 0.10992745049223
308 => 0.10972023049851
309 => 0.10940698708543
310 => 0.10451521379288
311 => 0.10558620125554
312 => 0.10914632669741
313 => 0.11041661956275
314 => 0.11028411760969
315 => 0.10912888014052
316 => 0.10965774193814
317 => 0.10795409382036
318 => 0.10735250021161
319 => 0.10545370530101
320 => 0.10266300133793
321 => 0.10305106584038
322 => 0.097521951062089
323 => 0.094509395878546
324 => 0.09367556030858
325 => 0.092560520536035
326 => 0.093801507017897
327 => 0.097506287774619
328 => 0.093037536168929
329 => 0.085376174987453
330 => 0.085836635848784
331 => 0.086871154692138
401 => 0.084943335671575
402 => 0.083118816758198
403 => 0.084705087925481
404 => 0.081458868194949
405 => 0.087263444837574
406 => 0.087106447306529
407 => 0.089270034526288
408 => 0.090622970016083
409 => 0.087504891730173
410 => 0.086720703473447
411 => 0.087167412743847
412 => 0.079784303561325
413 => 0.088666676992182
414 => 0.088743492126461
415 => 0.088085754310947
416 => 0.092815343950365
417 => 0.10279625328554
418 => 0.099041033712499
419 => 0.097586899191705
420 => 0.09482258840471
421 => 0.098505868399847
422 => 0.09822304996434
423 => 0.096944037743267
424 => 0.096170487161201
425 => 0.097595777827013
426 => 0.095993877874713
427 => 0.095706132626014
428 => 0.093962709488811
429 => 0.093340386749528
430 => 0.092879643768745
501 => 0.092372411018573
502 => 0.093491240070926
503 => 0.090955826244074
504 => 0.087898365718574
505 => 0.087644170958059
506 => 0.088346025040871
507 => 0.088035506856118
508 => 0.087642684316456
509 => 0.086892679109388
510 => 0.086670168585776
511 => 0.087393219840754
512 => 0.086576937130391
513 => 0.087781406734751
514 => 0.087453857648709
515 => 0.085624195080412
516 => 0.083343758092471
517 => 0.0833234574199
518 => 0.082832141011515
519 => 0.082206375695519
520 => 0.08203230210018
521 => 0.084571496592242
522 => 0.089827553199115
523 => 0.088795663520411
524 => 0.089541309565582
525 => 0.09320915011481
526 => 0.094375046329597
527 => 0.093547520812107
528 => 0.092414752844215
529 => 0.092464588885908
530 => 0.096335599944376
531 => 0.096577030155814
601 => 0.097187046411779
602 => 0.097971089691267
603 => 0.093681046772903
604 => 0.09226252825025
605 => 0.091590355477806
606 => 0.089520323502278
607 => 0.091752675516756
608 => 0.090451979596764
609 => 0.090627487914471
610 => 0.09051318789232
611 => 0.090575603433348
612 => 0.087261822340105
613 => 0.088469190003276
614 => 0.086461707090445
615 => 0.083773912820696
616 => 0.083764902391842
617 => 0.084422736231567
618 => 0.084031430922658
619 => 0.082978438397762
620 => 0.083128011015939
621 => 0.081817597493004
622 => 0.083287118943426
623 => 0.083329259560423
624 => 0.082763413756637
625 => 0.085027414305893
626 => 0.085954977178173
627 => 0.085582525348528
628 => 0.085928844964924
629 => 0.088838543195263
630 => 0.089312950965843
701 => 0.089523651559916
702 => 0.089241340676338
703 => 0.085982028907167
704 => 0.086126593243793
705 => 0.085065876061572
706 => 0.084169681818218
707 => 0.084205524888032
708 => 0.084666285226213
709 => 0.086678452646284
710 => 0.090912940358076
711 => 0.091073636071369
712 => 0.091268403963704
713 => 0.090476185063078
714 => 0.090237244262135
715 => 0.090552468854432
716 => 0.092142719800194
717 => 0.096233276981615
718 => 0.094787400874573
719 => 0.093611881093145
720 => 0.094643128859315
721 => 0.0944843763489
722 => 0.093144345398121
723 => 0.093106735192444
724 => 0.090534787364088
725 => 0.089583996812363
726 => 0.088789445061903
727 => 0.087921815292699
728 => 0.087407455282301
729 => 0.088197746030716
730 => 0.088378494875323
731 => 0.086650510341997
801 => 0.086414992435226
802 => 0.087826101906278
803 => 0.087205125239532
804 => 0.08784381514076
805 => 0.087991996676426
806 => 0.087968136036274
807 => 0.087319765077475
808 => 0.087733017391913
809 => 0.086755552471823
810 => 0.085692706181708
811 => 0.085014676466279
812 => 0.084423005611976
813 => 0.084751298990055
814 => 0.083580993041206
815 => 0.083206588614564
816 => 0.087593016806253
817 => 0.090833318473503
818 => 0.090786203203961
819 => 0.090499401117687
820 => 0.090073271393162
821 => 0.092111545756647
822 => 0.091401451724991
823 => 0.091918104463363
824 => 0.092049614269125
825 => 0.09244765484295
826 => 0.092589920135348
827 => 0.092159895612121
828 => 0.090716680789097
829 => 0.087120326666868
830 => 0.085446214114798
831 => 0.084893729088065
901 => 0.084913810869468
902 => 0.084359865689346
903 => 0.084523027370973
904 => 0.084303124715059
905 => 0.083886682284922
906 => 0.084725584843498
907 => 0.084822260548456
908 => 0.084626450667145
909 => 0.084672570982615
910 => 0.083051348796857
911 => 0.083174606798531
912 => 0.082488290582342
913 => 0.082359614565472
914 => 0.080624666935337
915 => 0.077550955723872
916 => 0.07925409010739
917 => 0.077196943269034
918 => 0.076417870590488
919 => 0.080105879480067
920 => 0.079735705676997
921 => 0.079102129036825
922 => 0.078164937137069
923 => 0.077817323545033
924 => 0.075705333400911
925 => 0.075580545756168
926 => 0.076627305100125
927 => 0.076144261679678
928 => 0.075465885774522
929 => 0.07300887701191
930 => 0.070246385675089
1001 => 0.070329767924146
1002 => 0.071208465020411
1003 => 0.073763395336247
1004 => 0.072765139861106
1005 => 0.07204089406023
1006 => 0.071905264592475
1007 => 0.073602951340956
1008 => 0.076005533766426
1009 => 0.077132771685705
1010 => 0.076015713142424
1011 => 0.074732496434607
1012 => 0.074810599889758
1013 => 0.075330187185914
1014 => 0.075384788464172
1015 => 0.074549546304191
1016 => 0.074784662079767
1017 => 0.07442749971723
1018 => 0.072235594957615
1019 => 0.072195950351119
1020 => 0.07165802157387
1021 => 0.071641733304282
1022 => 0.07072658226156
1023 => 0.070598546304543
1024 => 0.068781458363521
1025 => 0.069977471148951
1026 => 0.069175248565974
1027 => 0.067966109908251
1028 => 0.067757653947908
1029 => 0.067751387510022
1030 => 0.068992902553047
1031 => 0.069962963322827
1101 => 0.069189203571266
1102 => 0.069013033474538
1103 => 0.070894069209035
1104 => 0.070654690265799
1105 => 0.070447389644785
1106 => 0.07579040886198
1107 => 0.071560992230582
1108 => 0.06971672517263
1109 => 0.0674340944716
1110 => 0.068177330537879
1111 => 0.068333941297453
1112 => 0.062844625936585
1113 => 0.060617611378332
1114 => 0.059853383905212
1115 => 0.059413560189842
1116 => 0.059613993379895
1117 => 0.057609419074712
1118 => 0.058956526160394
1119 => 0.057220734254554
1120 => 0.056929723092784
1121 => 0.060033534043781
1122 => 0.060465411205412
1123 => 0.058622889060178
1124 => 0.059806086554658
1125 => 0.059377042695484
1126 => 0.057250489424754
1127 => 0.05716927073168
1128 => 0.056102241052389
1129 => 0.05443254622196
1130 => 0.05366945088056
1201 => 0.053272024201261
1202 => 0.053436010194832
1203 => 0.053353093858428
1204 => 0.052812008676626
1205 => 0.053384108227678
1206 => 0.051922630282596
1207 => 0.051340657988937
1208 => 0.051077794605545
1209 => 0.049780648809754
1210 => 0.051844984614212
1211 => 0.052251684773507
1212 => 0.052659186257753
1213 => 0.056206208465029
1214 => 0.056029009259334
1215 => 0.057630803779302
1216 => 0.057568560989767
1217 => 0.057111703245322
1218 => 0.055184295570957
1219 => 0.05595252591722
1220 => 0.053588032320924
1221 => 0.055359671693205
1222 => 0.054551169469125
1223 => 0.055086316277964
1224 => 0.054124074063429
1225 => 0.05465661863496
1226 => 0.052348128468858
1227 => 0.050192492833084
1228 => 0.051059983539847
1229 => 0.052003045147693
1230 => 0.054047843001132
1231 => 0.05282997826884
]
'min_raw' => 0.049780648809754
'max_raw' => 0.14859644905764
'avg_raw' => 0.099188548933695
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.04978'
'max' => '$0.148596'
'avg' => '$0.099188'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.094302351190246
'max_diff' => 0.0045134490576371
'year' => 2026
]
1 => [
'items' => [
101 => 0.053267968479136
102 => 0.051800774593319
103 => 0.048773534523663
104 => 0.0487906683737
105 => 0.048324993440994
106 => 0.047922582309482
107 => 0.052969864683532
108 => 0.052342155334592
109 => 0.051341982639625
110 => 0.052680753537121
111 => 0.053034745811571
112 => 0.05304482347397
113 => 0.054021556162105
114 => 0.054542838572852
115 => 0.054634716857113
116 => 0.0561716268456
117 => 0.056686778801408
118 => 0.058808616800347
119 => 0.054498611402297
120 => 0.054409849677402
121 => 0.052699592789126
122 => 0.051614920832489
123 => 0.052773861205974
124 => 0.053800524165744
125 => 0.052731494069098
126 => 0.052871086831263
127 => 0.051436001269482
128 => 0.051948976830767
129 => 0.052390820489416
130 => 0.05214686039148
131 => 0.051781640317067
201 => 0.053716349510953
202 => 0.053607185636047
203 => 0.055408831316166
204 => 0.056813342960737
205 => 0.059330478914296
206 => 0.056703716325492
207 => 0.056607986656321
208 => 0.057543759527996
209 => 0.056686635539457
210 => 0.057228308313299
211 => 0.059243207056202
212 => 0.059285778691603
213 => 0.058572648948171
214 => 0.058529254938474
215 => 0.058666219306485
216 => 0.059468423887928
217 => 0.059188108957915
218 => 0.059512496491631
219 => 0.059918148069743
220 => 0.061596094989515
221 => 0.06200064231121
222 => 0.06101780205323
223 => 0.06110654152413
224 => 0.060738932288077
225 => 0.06038382637218
226 => 0.061182052612062
227 => 0.062640826754622
228 => 0.062631751796392
301 => 0.062970159042949
302 => 0.063180983954036
303 => 0.06227596910238
304 => 0.061686837712271
305 => 0.061912748174643
306 => 0.062273983923666
307 => 0.061795604289849
308 => 0.058842823582923
309 => 0.059738508625042
310 => 0.059589422837272
311 => 0.059377106546037
312 => 0.060277724782016
313 => 0.060190857956083
314 => 0.057588859267848
315 => 0.057755430781705
316 => 0.057598989033308
317 => 0.058104484327349
318 => 0.056659337134685
319 => 0.057103854677933
320 => 0.057382651913966
321 => 0.05754686562781
322 => 0.058140118164614
323 => 0.058070506826715
324 => 0.058135791026111
325 => 0.059015427925328
326 => 0.063464329506634
327 => 0.063706473403757
328 => 0.062514068294356
329 => 0.062990410616411
330 => 0.06207593752268
331 => 0.062689829436939
401 => 0.063109838693511
402 => 0.061211897626198
403 => 0.061099513873728
404 => 0.060181266424243
405 => 0.060674680591402
406 => 0.059889623173718
407 => 0.060082248803875
408 => 0.059543650749155
409 => 0.060513020013848
410 => 0.061596925476528
411 => 0.061870762801125
412 => 0.061150414694491
413 => 0.060628835192035
414 => 0.05971311340469
415 => 0.061235979145235
416 => 0.061681311496263
417 => 0.061233640003979
418 => 0.061129904737402
419 => 0.060933326594683
420 => 0.061171609719664
421 => 0.061678886120639
422 => 0.061439663937864
423 => 0.061597674404139
424 => 0.060995501446382
425 => 0.062276268699954
426 => 0.064310435332051
427 => 0.064316975510393
428 => 0.064077752038121
429 => 0.063979866947409
430 => 0.064225324747254
501 => 0.064358475534465
502 => 0.065152241049903
503 => 0.066003983072981
504 => 0.069978691450529
505 => 0.068862609243166
506 => 0.072389206972187
507 => 0.075178287904439
508 => 0.076014611324294
509 => 0.075245233130085
510 => 0.072613231888691
511 => 0.072484093351163
512 => 0.076417414408067
513 => 0.075306071051975
514 => 0.075173880296033
515 => 0.073767593992617
516 => 0.074598883369882
517 => 0.074417068188795
518 => 0.074130064030745
519 => 0.075716106254449
520 => 0.078685035710255
521 => 0.078222300212124
522 => 0.077876889628451
523 => 0.076363400998304
524 => 0.077274859203576
525 => 0.076950306394511
526 => 0.078344791228558
527 => 0.077518729304489
528 => 0.075297651533016
529 => 0.075651365488891
530 => 0.075597902336034
531 => 0.076698170233388
601 => 0.07636789712093
602 => 0.075533411210133
603 => 0.078674888232139
604 => 0.078470898188144
605 => 0.078760109431913
606 => 0.078887429165575
607 => 0.080799590869837
608 => 0.081582942337722
609 => 0.08176077683543
610 => 0.082504900143345
611 => 0.081742262369649
612 => 0.084793357215952
613 => 0.086822157252424
614 => 0.089178712895881
615 => 0.092622274073415
616 => 0.09391708493089
617 => 0.09368318893889
618 => 0.096294057722876
619 => 0.10098573089135
620 => 0.094631510226307
621 => 0.10132252001585
622 => 0.099204223567901
623 => 0.094181780796349
624 => 0.093858394692571
625 => 0.097259651249226
626 => 0.10480331093307
627 => 0.10291370974175
628 => 0.10480640164369
629 => 0.10259847600383
630 => 0.10248883388595
701 => 0.10469916762355
702 => 0.10986373288046
703 => 0.10741024151774
704 => 0.1038925600285
705 => 0.10648996129897
706 => 0.10423985194035
707 => 0.099169725789439
708 => 0.10291226479933
709 => 0.10040973554479
710 => 0.10114010662304
711 => 0.10640005089295
712 => 0.10576716048231
713 => 0.10658617927775
714 => 0.10514063254125
715 => 0.10379026394755
716 => 0.10126970068773
717 => 0.10052348616877
718 => 0.10072971301582
719 => 0.10052338397298
720 => 0.099113151994286
721 => 0.098808612532755
722 => 0.098301033421358
723 => 0.098458353412236
724 => 0.097503956185303
725 => 0.099305100941054
726 => 0.099639409279355
727 => 0.10095013222958
728 => 0.10108621583443
729 => 0.10473656059385
730 => 0.10272601204191
731 => 0.10407486159296
801 => 0.10395420779325
802 => 0.094290632360587
803 => 0.09562218779276
804 => 0.097693670180107
805 => 0.096760470172435
806 => 0.095441143696758
807 => 0.094375716829839
808 => 0.092761486180966
809 => 0.095033484820701
810 => 0.098020921431834
811 => 0.10116198215691
812 => 0.10493576080764
813 => 0.10409349734443
814 => 0.10109143399002
815 => 0.10122610435909
816 => 0.10205858358984
817 => 0.10098044734731
818 => 0.10066248392166
819 => 0.10201490029782
820 => 0.10202421364613
821 => 0.10078368760197
822 => 0.099405069917759
823 => 0.099399293459325
824 => 0.099153981758286
825 => 0.10264211641048
826 => 0.10456023777899
827 => 0.10478014730269
828 => 0.1045454361159
829 => 0.10463576713634
830 => 0.10351965457492
831 => 0.10607075691743
901 => 0.10841190070478
902 => 0.10778442415853
903 => 0.10684374761465
904 => 0.10609445343833
905 => 0.1076079142635
906 => 0.10754052223536
907 => 0.10839145285617
908 => 0.108352849728
909 => 0.10806671376534
910 => 0.10778443437735
911 => 0.10890364024332
912 => 0.10858132692782
913 => 0.10825851297071
914 => 0.10761106015938
915 => 0.10769905974949
916 => 0.10675854562668
917 => 0.10632342075847
918 => 0.099780186751116
919 => 0.098031620818012
920 => 0.098581755255908
921 => 0.098762873797098
922 => 0.098001895662163
923 => 0.099092942828416
924 => 0.098922904283261
925 => 0.099584424793239
926 => 0.099171135498487
927 => 0.099188097035304
928 => 0.1004034927286
929 => 0.10075632726903
930 => 0.10057687277405
1001 => 0.100702556551
1002 => 0.10359888614295
1003 => 0.10318712069438
1004 => 0.10296837850662
1005 => 0.10302897158754
1006 => 0.10376904589629
1007 => 0.10397622629618
1008 => 0.10309838838354
1009 => 0.10351238181786
1010 => 0.10527511331763
1011 => 0.10589196958058
1012 => 0.10786067866414
1013 => 0.10702433605443
1014 => 0.10855947911061
1015 => 0.11327798549646
1016 => 0.11704745489328
1017 => 0.11358089505605
1018 => 0.12050304556429
1019 => 0.12589293265847
1020 => 0.12568605981447
1021 => 0.12474620832926
1022 => 0.1186099651701
1023 => 0.11296330272881
1024 => 0.1176869756309
1025 => 0.11769901724456
1026 => 0.11729324955306
1027 => 0.11477306127015
1028 => 0.11720555246364
1029 => 0.11739863478106
1030 => 0.11729056002804
1031 => 0.11535833758042
1101 => 0.11240819103732
1102 => 0.11298464261019
1103 => 0.11392888204584
1104 => 0.11214123980517
1105 => 0.11156997979221
1106 => 0.11263206084297
1107 => 0.11605430728187
1108 => 0.11540735141632
1109 => 0.11539045678411
1110 => 0.11815840832892
1111 => 0.11617715238417
1112 => 0.11299191351058
1113 => 0.11218759868686
1114 => 0.10933282291403
1115 => 0.11130462670868
1116 => 0.11137558841692
1117 => 0.11029565162994
1118 => 0.11307954442897
1119 => 0.11305389036673
1120 => 0.11569678225166
1121 => 0.12074899891077
1122 => 0.11925480984019
1123 => 0.11751723051841
1124 => 0.11770615356853
1125 => 0.11977817312659
1126 => 0.11852538280218
1127 => 0.11897589493761
1128 => 0.11977749122252
1129 => 0.12026111416372
1130 => 0.11763656766983
1201 => 0.11702466033553
1202 => 0.11577291267985
1203 => 0.11544635508146
1204 => 0.11646587742844
1205 => 0.11619726931026
1206 => 0.11136962436012
1207 => 0.11086510860207
1208 => 0.11088058138008
1209 => 0.10961195251804
1210 => 0.10767698899762
1211 => 0.11276195759863
1212 => 0.11235356345588
1213 => 0.11190272792948
1214 => 0.11195795270903
1215 => 0.11416516523315
1216 => 0.11288487050226
1217 => 0.11628874388052
1218 => 0.11558900984375
1219 => 0.11487133026927
1220 => 0.11477212509103
1221 => 0.1144958796844
1222 => 0.11354853139867
1223 => 0.11240455141686
1224 => 0.11164919674302
1225 => 0.10299048224122
1226 => 0.10459748928733
1227 => 0.10644620441058
1228 => 0.10708437346286
1229 => 0.10599274113898
1230 => 0.1135916356964
1231 => 0.11498002695681
]
'min_raw' => 0.047922582309482
'max_raw' => 0.12589293265847
'avg_raw' => 0.086907757483976
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.047922'
'max' => '$0.125892'
'avg' => '$0.0869077'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0018580665002721
'max_diff' => -0.022703516399168
'year' => 2027
]
2 => [
'items' => [
101 => 0.1107744992665
102 => 0.10998781674621
103 => 0.11364321047146
104 => 0.11143856120143
105 => 0.11243131463273
106 => 0.11028552472135
107 => 0.11464560415902
108 => 0.11461238765883
109 => 0.11291621828072
110 => 0.11434980902424
111 => 0.11410068735361
112 => 0.1121857163032
113 => 0.11470631215699
114 => 0.11470756234109
115 => 0.11307503619255
116 => 0.11116860305699
117 => 0.11082777784029
118 => 0.11057101182294
119 => 0.1123681659325
120 => 0.11397948868759
121 => 0.11697776085401
122 => 0.11773159771383
123 => 0.1206738731635
124 => 0.11892189139002
125 => 0.11969852221824
126 => 0.12054166484341
127 => 0.12094589842347
128 => 0.12028722149714
129 => 0.12485778635937
130 => 0.12524368207223
131 => 0.12537306956677
201 => 0.12383190081122
202 => 0.12520081938118
203 => 0.12456034771611
204 => 0.12622667706047
205 => 0.12648797877843
206 => 0.1262666655194
207 => 0.12634960680904
208 => 0.12244943600203
209 => 0.12224719157064
210 => 0.11948957439811
211 => 0.1206133237792
212 => 0.11851252817397
213 => 0.11917871210098
214 => 0.11947235962837
215 => 0.11931897482441
216 => 0.12067685888314
217 => 0.11952238003584
218 => 0.1164755205439
219 => 0.11342783093714
220 => 0.11338956967672
221 => 0.11258716679945
222 => 0.1120071764866
223 => 0.11211890319712
224 => 0.11251264269772
225 => 0.11198429163104
226 => 0.1120970421192
227 => 0.11396945147513
228 => 0.11434494981805
229 => 0.11306885973214
301 => 0.10794517389827
302 => 0.10668780854284
303 => 0.10759157782568
304 => 0.10715963431868
305 => 0.086486188361724
306 => 0.091343107835753
307 => 0.088457291209686
308 => 0.089787208281017
309 => 0.086841536784394
310 => 0.088247365618453
311 => 0.087987760365452
312 => 0.095797543152995
313 => 0.095675604136772
314 => 0.095733969890969
315 => 0.092948020372003
316 => 0.097386113602488
317 => 0.099572477916495
318 => 0.099167840070175
319 => 0.099269678698514
320 => 0.097519753656135
321 => 0.095750912990526
322 => 0.093788996469737
323 => 0.097433994865151
324 => 0.097028733265779
325 => 0.097958257566218
326 => 0.10032229957551
327 => 0.1006704137415
328 => 0.10113828271082
329 => 0.1009705849905
330 => 0.10496582504293
331 => 0.10448197511114
401 => 0.10564791423363
402 => 0.10324948899865
403 => 0.10053544318465
404 => 0.10105129456505
405 => 0.1010016139289
406 => 0.10036912240997
407 => 0.099798137347284
408 => 0.098847608091955
409 => 0.10185522330768
410 => 0.10173311962247
411 => 0.10370983635598
412 => 0.10336043247253
413 => 0.10102702782522
414 => 0.10111036582869
415 => 0.1016708539529
416 => 0.10361070975032
417 => 0.10418659102646
418 => 0.10391981987445
419 => 0.10455124740375
420 => 0.10505030197753
421 => 0.10461392097464
422 => 0.11079215572955
423 => 0.10822652191428
424 => 0.10947699398428
425 => 0.10977522420476
426 => 0.1090113137661
427 => 0.10917697858666
428 => 0.10942791564885
429 => 0.11095155635198
430 => 0.11495003042597
501 => 0.1167209273748
502 => 0.12204875821989
503 => 0.11657387903528
504 => 0.11624902236177
505 => 0.11720872558205
506 => 0.12033672629628
507 => 0.12287167707701
508 => 0.12371266649579
509 => 0.12382381713071
510 => 0.12540156918827
511 => 0.12630590724433
512 => 0.12520998858948
513 => 0.12428131227696
514 => 0.12095490899708
515 => 0.12133994923422
516 => 0.1239924946421
517 => 0.12773937126487
518 => 0.13095458120328
519 => 0.12982872674423
520 => 0.1384182015374
521 => 0.13926981287829
522 => 0.13915214772687
523 => 0.14109224509817
524 => 0.1372415469101
525 => 0.13559529883094
526 => 0.12448210263665
527 => 0.12760445746587
528 => 0.1321429835796
529 => 0.13154229262984
530 => 0.1282462936509
531 => 0.13095208089249
601 => 0.13005746301263
602 => 0.12935184077306
603 => 0.13258443304415
604 => 0.12903006505451
605 => 0.13210752603995
606 => 0.12816065049387
607 => 0.12983386955256
608 => 0.12888406949035
609 => 0.12949870653372
610 => 0.12590555093728
611 => 0.12784433047819
612 => 0.12582489133426
613 => 0.12582393385717
614 => 0.12577935462614
615 => 0.12815521582341
616 => 0.12823269257176
617 => 0.12647692755725
618 => 0.12622389438845
619 => 0.12715949063354
620 => 0.12606415246358
621 => 0.12657665429933
622 => 0.12607967562209
623 => 0.12596779525388
624 => 0.12507631344504
625 => 0.12469223856999
626 => 0.12484284422489
627 => 0.12432874948218
628 => 0.12401898880409
629 => 0.1257177354307
630 => 0.12481016363534
701 => 0.12557863703665
702 => 0.12470286460679
703 => 0.121667055809
704 => 0.11992113006629
705 => 0.1141867686669
706 => 0.11581302644631
707 => 0.11689123703655
708 => 0.11653488844291
709 => 0.11730046311065
710 => 0.11734746317751
711 => 0.11709856704892
712 => 0.11681037721758
713 => 0.11667010234558
714 => 0.11771559631642
715 => 0.1183225407562
716 => 0.11699944989388
717 => 0.11668946821685
718 => 0.1180271861285
719 => 0.11884319328183
720 => 0.12486813162724
721 => 0.12442178473432
722 => 0.1255420278444
723 => 0.12541590566174
724 => 0.12659009890983
725 => 0.12850940861936
726 => 0.12460691533245
727 => 0.12528425322899
728 => 0.12511818561877
729 => 0.12693126824185
730 => 0.12693692848789
731 => 0.12584989488517
801 => 0.12643919343631
802 => 0.12611026315162
803 => 0.12670468463365
804 => 0.12441582349944
805 => 0.12720340929361
806 => 0.12878379081085
807 => 0.12880573440975
808 => 0.12955482270623
809 => 0.13031593979973
810 => 0.13177683778137
811 => 0.13027519614793
812 => 0.12757388903123
813 => 0.12776891467988
814 => 0.12618513930573
815 => 0.1262117628559
816 => 0.12606964425856
817 => 0.12649615286737
818 => 0.12450941815442
819 => 0.12497570082052
820 => 0.12432290235743
821 => 0.12528283417262
822 => 0.12425010622189
823 => 0.12511810553594
824 => 0.12549270526526
825 => 0.12687498633098
826 => 0.12404594218458
827 => 0.11827732966063
828 => 0.11948996195083
829 => 0.11769638354341
830 => 0.11786238605365
831 => 0.11819773754344
901 => 0.11711075364485
902 => 0.1173181159179
903 => 0.11731070747832
904 => 0.11724686554839
905 => 0.11696409905506
906 => 0.11655403169608
907 => 0.11818761384218
908 => 0.11846519128123
909 => 0.11908221154369
910 => 0.12091804531593
911 => 0.12073460223014
912 => 0.12103380551404
913 => 0.12038064642524
914 => 0.11789268423047
915 => 0.1180277925476
916 => 0.11634298966811
917 => 0.11903912734611
918 => 0.11840064635668
919 => 0.11798901350923
920 => 0.11787669567305
921 => 0.11971708012212
922 => 0.12026775199377
923 => 0.11992461023758
924 => 0.11922081648457
925 => 0.12057230854829
926 => 0.12093391080967
927 => 0.12101486022061
928 => 0.12340944503463
929 => 0.1211486909112
930 => 0.12169287689867
1001 => 0.1259384606282
1002 => 0.12208830203602
1003 => 0.12412781691108
1004 => 0.12402799327107
1005 => 0.12507134006773
1006 => 0.12394240838073
1007 => 0.12395640284201
1008 => 0.12488282411501
1009 => 0.12358183251803
1010 => 0.12325968870274
1011 => 0.12281464932915
1012 => 0.12378637651995
1013 => 0.12436888302339
1014 => 0.12906345763728
1015 => 0.13209636693646
1016 => 0.13196470034505
1017 => 0.13316788652097
1018 => 0.1326258401288
1019 => 0.13087542934385
1020 => 0.1338631671139
1021 => 0.1329177218712
1022 => 0.13299566322829
1023 => 0.13299276224709
1024 => 0.13362140068123
1025 => 0.13317595273677
1026 => 0.13229792911396
1027 => 0.13288080217043
1028 => 0.13461172676722
1029 => 0.1399845698269
1030 => 0.1429912839838
1031 => 0.13980356185931
1101 => 0.14200240989549
1102 => 0.14068388460345
1103 => 0.14044426933516
1104 => 0.14182530839547
1105 => 0.14320876478183
1106 => 0.14312064459087
1107 => 0.14211632629564
1108 => 0.14154901237429
1109 => 0.1458449034508
1110 => 0.14901004281738
1111 => 0.14879420153194
1112 => 0.14974685477051
1113 => 0.15254387414342
1114 => 0.15279959854149
1115 => 0.15276738314509
1116 => 0.15213354354239
1117 => 0.15488757235387
1118 => 0.15718503164094
1119 => 0.15198682798775
1120 => 0.1539662358894
1121 => 0.15485485586899
1122 => 0.1561596136407
1123 => 0.15836095870437
1124 => 0.16075220332145
1125 => 0.16109035152897
1126 => 0.16085041919385
1127 => 0.15927332908878
1128 => 0.16188985748227
1129 => 0.16342255845004
1130 => 0.1643352468011
1201 => 0.16664967260255
1202 => 0.15486034368347
1203 => 0.14651527070688
1204 => 0.14521206705727
1205 => 0.1478621829247
1206 => 0.14856099734466
1207 => 0.14827930612821
1208 => 0.13888616779222
1209 => 0.14516261412788
1210 => 0.15191554264646
1211 => 0.15217495013302
1212 => 0.1555556073465
1213 => 0.15665648791303
1214 => 0.15937836008274
1215 => 0.15920810623744
1216 => 0.15987083879632
1217 => 0.15971848805797
1218 => 0.16476018309456
1219 => 0.17032192141889
1220 => 0.17012933610596
1221 => 0.16932977041834
1222 => 0.17051726181067
1223 => 0.17625757179347
1224 => 0.17572909603684
1225 => 0.17624246521895
1226 => 0.18301061419837
1227 => 0.19181017062958
1228 => 0.18772189320626
1229 => 0.19659227884472
1230 => 0.20217571640519
1231 => 0.21183169432781
]
'min_raw' => 0.086486188361724
'max_raw' => 0.21183169432781
'avg_raw' => 0.14915894134477
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.086486'
'max' => '$0.211831'
'avg' => '$0.149158'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.038563606052242
'max_diff' => 0.085938761669344
'year' => 2028
]
3 => [
'items' => [
101 => 0.21062271833521
102 => 0.21438171968164
103 => 0.20845839898754
104 => 0.19485725737325
105 => 0.19270482464971
106 => 0.19701404947052
107 => 0.20760785820445
108 => 0.19668041273332
109 => 0.1988910207202
110 => 0.19825436547126
111 => 0.19822044081865
112 => 0.19951520682706
113 => 0.19763708120141
114 => 0.18998525953419
115 => 0.19349204431181
116 => 0.19213790629953
117 => 0.19364042338183
118 => 0.20174888838981
119 => 0.19816394272812
120 => 0.19438749369086
121 => 0.19912399884471
122 => 0.20515519754531
123 => 0.20477777596973
124 => 0.20404542036313
125 => 0.20817367057264
126 => 0.21499233045494
127 => 0.21683538682153
128 => 0.21819589335172
129 => 0.21838348421628
130 => 0.22031578670839
131 => 0.20992530920539
201 => 0.22641526384905
202 => 0.2292626234902
203 => 0.22872743788863
204 => 0.23189215829456
205 => 0.23096101726993
206 => 0.22961194001679
207 => 0.23462869501553
208 => 0.22887739024072
209 => 0.22071413718203
210 => 0.21623561510319
211 => 0.22213329424868
212 => 0.22573480110219
213 => 0.2281151680335
214 => 0.22883546562866
215 => 0.21073189239605
216 => 0.20097507049388
217 => 0.20722908147098
218 => 0.21485940649183
219 => 0.20988292236463
220 => 0.21007799112069
221 => 0.20298283255234
222 => 0.21548717058919
223 => 0.21366539371526
224 => 0.22311677535989
225 => 0.22086112727832
226 => 0.228568362109
227 => 0.22653878888051
228 => 0.23496343388004
301 => 0.2383242528585
302 => 0.24396759099306
303 => 0.24811885349736
304 => 0.25055655424088
305 => 0.25041020383182
306 => 0.26006958863534
307 => 0.25437378688991
308 => 0.24721851750024
309 => 0.24708910125157
310 => 0.25079491665943
311 => 0.25856128911349
312 => 0.26057499649471
313 => 0.26170038420579
314 => 0.25997681375124
315 => 0.25379442917836
316 => 0.25112490686519
317 => 0.25339941721951
318 => 0.25061788650708
319 => 0.25541958887642
320 => 0.26201335181781
321 => 0.26065176584498
322 => 0.26520334361179
323 => 0.26991374776048
324 => 0.27664983725061
325 => 0.27841090048
326 => 0.28132187103094
327 => 0.28431821593188
328 => 0.2852805611603
329 => 0.28711797679954
330 => 0.28710829271215
331 => 0.29264546841335
401 => 0.29875314468382
402 => 0.3010586510829
403 => 0.3063600359212
404 => 0.29728160016828
405 => 0.30416769797243
406 => 0.31037913056197
407 => 0.30297360456141
408 => 0.31318039688692
409 => 0.31357670350383
410 => 0.3195604629023
411 => 0.31349477640236
412 => 0.30989299112105
413 => 0.32029121027105
414 => 0.3253225809769
415 => 0.32380709117365
416 => 0.31227413894192
417 => 0.30556146607146
418 => 0.28799310639157
419 => 0.30880358732906
420 => 0.31893976554365
421 => 0.31224788868906
422 => 0.31562288213129
423 => 0.33403575200677
424 => 0.34104618071032
425 => 0.33958806054657
426 => 0.33983445885155
427 => 0.3436171589317
428 => 0.36039173425808
429 => 0.3503400198909
430 => 0.35802417889405
501 => 0.36209982912203
502 => 0.36588552019223
503 => 0.35658905940377
504 => 0.34449450051011
505 => 0.34066364601345
506 => 0.31158251341835
507 => 0.31006871417382
508 => 0.30921897278505
509 => 0.30386147352718
510 => 0.29965194665304
511 => 0.29630437459301
512 => 0.28751934583786
513 => 0.2904840351555
514 => 0.2764825328978
515 => 0.2854401978595
516 => 0.26309346217811
517 => 0.28170448769041
518 => 0.27157535264356
519 => 0.27837679440531
520 => 0.27835306481574
521 => 0.26582945413329
522 => 0.25860609685274
523 => 0.26320910124917
524 => 0.2681438873491
525 => 0.2689445397912
526 => 0.27534261878085
527 => 0.27712818510061
528 => 0.27171783579161
529 => 0.26263037575148
530 => 0.26474118545591
531 => 0.25856332136145
601 => 0.24773685216402
602 => 0.25551261135363
603 => 0.25816759741696
604 => 0.25934019051375
605 => 0.24869360148646
606 => 0.2453482120654
607 => 0.24356715480816
608 => 0.2612560348022
609 => 0.26222507157866
610 => 0.25726734242229
611 => 0.27967674832027
612 => 0.27460480959451
613 => 0.28027140780634
614 => 0.26454965159969
615 => 0.26515024385894
616 => 0.25770731251839
617 => 0.26187485673224
618 => 0.25892937080811
619 => 0.26153816034424
620 => 0.26310185803575
621 => 0.2705435680645
622 => 0.28178946006516
623 => 0.26943202474537
624 => 0.2640477132148
625 => 0.26738810980585
626 => 0.27628402612012
627 => 0.28976179470981
628 => 0.28178268443934
629 => 0.2853236780833
630 => 0.28609722766666
701 => 0.28021372715593
702 => 0.28997872776578
703 => 0.29521187092332
704 => 0.30057999295656
705 => 0.30524098290666
706 => 0.29843584696895
707 => 0.30571831790022
708 => 0.29984993185879
709 => 0.29458538291703
710 => 0.29459336706466
711 => 0.29129083861071
712 => 0.28489177358581
713 => 0.28371168781594
714 => 0.28985064301918
715 => 0.29477350373095
716 => 0.29517897411808
717 => 0.29790452275383
718 => 0.29951747436109
719 => 0.31532659281356
720 => 0.32168515103504
721 => 0.32946027566691
722 => 0.33248912489303
723 => 0.34160487516113
724 => 0.3342431664746
725 => 0.33265041449295
726 => 0.31053858608174
727 => 0.31415939674535
728 => 0.31995666397405
729 => 0.31063418088307
730 => 0.31654715066448
731 => 0.31771449615316
801 => 0.31031740647494
802 => 0.31426851168145
803 => 0.303775547674
804 => 0.28201817800656
805 => 0.29000294993789
806 => 0.29588242972453
807 => 0.28749168713437
808 => 0.30253176846064
809 => 0.29374566344013
810 => 0.29096088995605
811 => 0.28009649575121
812 => 0.28522407160701
813 => 0.2921591913718
814 => 0.28787409365137
815 => 0.29676631483192
816 => 0.30936007149234
817 => 0.31833513245974
818 => 0.31902412619704
819 => 0.31325376327739
820 => 0.32250080668209
821 => 0.32256816129807
822 => 0.31213745856228
823 => 0.30574871121501
824 => 0.30429717437567
825 => 0.3079233979909
826 => 0.3123263028976
827 => 0.3192684567767
828 => 0.32346345497255
829 => 0.33440178541221
830 => 0.33736138400267
831 => 0.34061308555936
901 => 0.34495836162672
902 => 0.3501759796515
903 => 0.33876012845244
904 => 0.33921370150239
905 => 0.32858341892904
906 => 0.31722343746269
907 => 0.32584424735397
908 => 0.33711480950853
909 => 0.33452933009741
910 => 0.33423841084711
911 => 0.33472765633185
912 => 0.33277828928972
913 => 0.32396137440512
914 => 0.31953357494688
915 => 0.32524656590012
916 => 0.3282827663358
917 => 0.33299164842703
918 => 0.33241117931685
919 => 0.34454075388684
920 => 0.34925393978544
921 => 0.34804810514398
922 => 0.34827000773804
923 => 0.35680300567636
924 => 0.36629345432865
925 => 0.37518251186651
926 => 0.38422484298793
927 => 0.37332395989287
928 => 0.3677891637302
929 => 0.37349966057031
930 => 0.37046959056589
1001 => 0.38788127158847
1002 => 0.38908681860489
1003 => 0.40649724056476
1004 => 0.42302180419916
1005 => 0.4126430218487
1006 => 0.42242974613456
1007 => 0.43301488637305
1008 => 0.45343533927021
1009 => 0.44655844913464
1010 => 0.4412908590654
1011 => 0.43631301190278
1012 => 0.44667112163721
1013 => 0.45999666433571
1014 => 0.46286685860251
1015 => 0.46751766981331
1016 => 0.46262791049929
1017 => 0.46851708700371
1018 => 0.48930846789961
1019 => 0.48369045325094
1020 => 0.47571196930891
1021 => 0.49212476770077
1022 => 0.49806449563565
1023 => 0.53975261694229
1024 => 0.59238559214231
1025 => 0.57059519480275
1026 => 0.55706919200236
1027 => 0.56024812350153
1028 => 0.57946790430593
1029 => 0.58564068789495
1030 => 0.56886093421388
1031 => 0.57478782688642
1101 => 0.60744558823135
1102 => 0.62496542940648
1103 => 0.60117113186206
1104 => 0.53552360863255
1105 => 0.47499359412442
1106 => 0.49104887967405
1107 => 0.48922870854624
1108 => 0.52431539897267
1109 => 0.48355646545957
1110 => 0.48424274136782
1111 => 0.52005498739482
1112 => 0.51050089413214
1113 => 0.49502448664242
1114 => 0.47510658902631
1115 => 0.43828651310039
1116 => 0.40567394504902
1117 => 0.46963470122362
1118 => 0.46687659711228
1119 => 0.46288245363094
1120 => 0.47177098773721
1121 => 0.51493118630282
1122 => 0.51393620402995
1123 => 0.50760663445439
1124 => 0.51240755719119
1125 => 0.49418286167454
1126 => 0.49887978067778
1127 => 0.47498400586086
1128 => 0.48578589405382
1129 => 0.49499128122276
1130 => 0.49683939898501
1201 => 0.50100330267059
1202 => 0.46542320157483
1203 => 0.48139762238994
1204 => 0.49078109801801
1205 => 0.44838621375665
1206 => 0.4899430874661
1207 => 0.46480383117333
1208 => 0.45627119000861
1209 => 0.46775926724692
1210 => 0.46328235237463
1211 => 0.45943336386069
1212 => 0.4572855621359
1213 => 0.4657211381669
1214 => 0.46532760846236
1215 => 0.45152536880089
1216 => 0.43352090981378
1217 => 0.43956379722607
1218 => 0.43736835957681
1219 => 0.42941181031881
1220 => 0.43477356384128
1221 => 0.41116311484965
1222 => 0.37054256452391
1223 => 0.3973777443102
1224 => 0.39634461907949
1225 => 0.39582367048966
1226 => 0.41598956642917
1227 => 0.41405108084096
1228 => 0.41053271051666
1229 => 0.42934719268866
1230 => 0.42247965360538
1231 => 0.44364379086433
]
'min_raw' => 0.18998525953419
'max_raw' => 0.62496542940648
'avg_raw' => 0.40747534447033
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.189985'
'max' => '$0.624965'
'avg' => '$0.407475'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.10349907117246
'max_diff' => 0.41313373507867
'year' => 2029
]
4 => [
'items' => [
101 => 0.45758386047365
102 => 0.45404820790671
103 => 0.46715891075248
104 => 0.43970301314713
105 => 0.44882276099221
106 => 0.45070232838366
107 => 0.42911502489915
108 => 0.41436824105685
109 => 0.41338479870021
110 => 0.38781590774965
111 => 0.40147460291056
112 => 0.41349368941696
113 => 0.40773747969919
114 => 0.40591523566441
115 => 0.41522468524156
116 => 0.41594810920374
117 => 0.39945396620083
118 => 0.40288362083271
119 => 0.41718585078031
120 => 0.40252324133378
121 => 0.37403618630282
122 => 0.36697100279079
123 => 0.36602837707312
124 => 0.34686703904173
125 => 0.36744313213655
126 => 0.35846111609565
127 => 0.38683519714779
128 => 0.37062807422406
129 => 0.36992941754758
130 => 0.36887329551043
131 => 0.35238034032191
201 => 0.35599124932622
202 => 0.36799446081349
203 => 0.37227734189801
204 => 0.37183060231228
205 => 0.36793563852888
206 => 0.36971873300348
207 => 0.36397476442949
208 => 0.36194644957564
209 => 0.35554452996496
210 => 0.34613547671268
211 => 0.34744386327649
212 => 0.32880206677102
213 => 0.31864502663982
214 => 0.31583369179914
215 => 0.31207425735642
216 => 0.31625832992292
217 => 0.32874925690374
218 => 0.31368254886689
219 => 0.28785173474438
220 => 0.28940421068671
221 => 0.29289216319488
222 => 0.28639238677102
223 => 0.28024089387073
224 => 0.28558911786114
225 => 0.27464426139583
226 => 0.29421479680904
227 => 0.29368546867191
228 => 0.30098015404016
301 => 0.30554167050294
302 => 0.29502885186472
303 => 0.29238490640689
304 => 0.29389101790029
305 => 0.2689983498192
306 => 0.29894589198884
307 => 0.29920487957712
308 => 0.29698727061033
309 => 0.31293341228903
310 => 0.34658474495741
311 => 0.33392375998585
312 => 0.32902104392456
313 => 0.31970097710819
314 => 0.33211941277019
315 => 0.33116587066913
316 => 0.326853591668
317 => 0.32424551187298
318 => 0.32905097886339
319 => 0.32365006133313
320 => 0.3226799081374
321 => 0.31680183530841
322 => 0.31470363074373
323 => 0.31315020361597
324 => 0.31144003298491
325 => 0.31521224324906
326 => 0.30666391851489
327 => 0.29635547688809
328 => 0.29549844150571
329 => 0.29786479154779
330 => 0.29681785780821
331 => 0.29549342918975
401 => 0.29296473427042
402 => 0.29221452450488
403 => 0.29465234229286
404 => 0.29190018814384
405 => 0.29596114150832
406 => 0.29485678689598
407 => 0.28868795180401
408 => 0.28099929928414
409 => 0.28093085414922
410 => 0.27927434657573
411 => 0.27716453512331
412 => 0.27657763384319
413 => 0.28513870535408
414 => 0.3028598671703
415 => 0.29938077907432
416 => 0.30189477677496
417 => 0.31426115726713
418 => 0.31819205775556
419 => 0.31540199769735
420 => 0.31158279140627
421 => 0.31175081710028
422 => 0.32480220114927
423 => 0.32561619996325
424 => 0.32767291236021
425 => 0.33031636901716
426 => 0.31585218979666
427 => 0.31106955555974
428 => 0.30880327812784
429 => 0.30182402079733
430 => 0.30935055147198
501 => 0.30496516436604
502 => 0.30555690291278
503 => 0.30517153240793
504 => 0.30538197076222
505 => 0.29420932644554
506 => 0.29828005081764
507 => 0.29151168201905
508 => 0.28244959598279
509 => 0.28241921669282
510 => 0.28463714941195
511 => 0.2833178362429
512 => 0.27976759842762
513 => 0.28027189295263
514 => 0.2758537422699
515 => 0.28080833643871
516 => 0.28095041647108
517 => 0.27904262783752
518 => 0.28667586375681
519 => 0.28980320674107
520 => 0.28854745939367
521 => 0.28971510015961
522 => 0.29952535089185
523 => 0.30112484981245
524 => 0.30183524157601
525 => 0.30088341072171
526 => 0.28989441353407
527 => 0.29038182228816
528 => 0.2868055402514
529 => 0.28378395878964
530 => 0.28390480620201
531 => 0.28545829185144
601 => 0.29224245479326
602 => 0.30651932575605
603 => 0.30706112257284
604 => 0.3077177961201
605 => 0.30504677478569
606 => 0.30424116919299
607 => 0.3053039709142
608 => 0.31066561300561
609 => 0.32445721213636
610 => 0.31958233989362
611 => 0.31561899287836
612 => 0.31909591672142
613 => 0.31856067154882
614 => 0.31404266364029
615 => 0.31391585820599
616 => 0.30524435653502
617 => 0.30203869980781
618 => 0.2993598131073
619 => 0.29643453876445
620 => 0.29470033807793
621 => 0.29736485851254
622 => 0.29797426586162
623 => 0.29214824536348
624 => 0.29135418029747
625 => 0.29611183439964
626 => 0.2940181682125
627 => 0.29617155580639
628 => 0.2966711601996
629 => 0.29659071238542
630 => 0.29440468443002
701 => 0.2957979934605
702 => 0.292502402238
703 => 0.28891894176532
704 => 0.28663291724123
705 => 0.2846380576468
706 => 0.28574492169171
707 => 0.28179915347701
708 => 0.2805368228125
709 => 0.29532597171142
710 => 0.30625087501319
711 => 0.30609202259245
712 => 0.30512504933469
713 => 0.30368832321703
714 => 0.31056050754129
715 => 0.30816637593638
716 => 0.30990830671534
717 => 0.31035170120719
718 => 0.31169372279215
719 => 0.31217338015812
720 => 0.3107235224547
721 => 0.30585762291683
722 => 0.29373226390431
723 => 0.2880878765522
724 => 0.2862251347113
725 => 0.28629284183937
726 => 0.28442517698937
727 => 0.28497528799056
728 => 0.28423387083303
729 => 0.28282980610474
730 => 0.28565822465129
731 => 0.28598417354024
801 => 0.28532398685439
802 => 0.28547948471801
803 => 0.28001342092861
804 => 0.28042899388685
805 => 0.2781150308469
806 => 0.27768119067215
807 => 0.27183169360698
808 => 0.26146846165786
809 => 0.26721069814094
810 => 0.26027488395001
811 => 0.25764818602118
812 => 0.27008256548095
813 => 0.26883449865919
814 => 0.26669835078194
815 => 0.26353854285927
816 => 0.26236653936411
817 => 0.25524581713876
818 => 0.25482508688211
819 => 0.25835430909267
820 => 0.25672569447562
821 => 0.25443850274869
822 => 0.24615452616267
823 => 0.23684059374959
824 => 0.23712172282385
825 => 0.24008431143258
826 => 0.24869843737196
827 => 0.24533274934155
828 => 0.24289090405867
829 => 0.24243361983879
830 => 0.24815748923999
831 => 0.25625796363041
901 => 0.2600585249765
902 => 0.25629228410729
903 => 0.25196582938556
904 => 0.25222916063761
905 => 0.25398098548303
906 => 0.25416507750481
907 => 0.25134900024769
908 => 0.2521417095003
909 => 0.25093751165873
910 => 0.24354735172779
911 => 0.24341368716909
912 => 0.2416000227396
913 => 0.24154510570148
914 => 0.23845961006713
915 => 0.23802792789887
916 => 0.23190148904068
917 => 0.2359339296497
918 => 0.23322918020181
919 => 0.22915248479793
920 => 0.2284496609737
921 => 0.22842853324086
922 => 0.23261438788823
923 => 0.23588501550103
924 => 0.23327623047646
925 => 0.23268226069553
926 => 0.23902430400411
927 => 0.23821722118409
928 => 0.23751829266707
929 => 0.25553265499553
930 => 0.24127288153433
1001 => 0.23505480638584
1002 => 0.22735875760913
1003 => 0.22986462989767
1004 => 0.23039265400779
1005 => 0.21188504401686
1006 => 0.20437650894852
1007 => 0.20179986266624
1008 => 0.20031696630236
1009 => 0.20099274079642
1010 => 0.19423417857159
1011 => 0.19877604416298
1012 => 0.19292370056332
1013 => 0.19194253611366
1014 => 0.20240725143611
1015 => 0.20386335543924
1016 => 0.1976511633858
1017 => 0.20164039634665
1018 => 0.20019384502056
1019 => 0.19302402219709
1020 => 0.19275018770288
1021 => 0.18915262264152
1022 => 0.18352312994635
1023 => 0.18095030072521
1024 => 0.17961034892851
1025 => 0.18016323915497
1026 => 0.17988368093775
1027 => 0.17805937446994
1028 => 0.17998824804903
1029 => 0.17506077312005
1030 => 0.17309861289997
1031 => 0.17221235065033
1101 => 0.167838933036
1102 => 0.17479898532805
1103 => 0.17617020331001
1104 => 0.17754412301499
1105 => 0.18950315603201
1106 => 0.18890571653835
1107 => 0.19430627859615
1108 => 0.19409642268558
1109 => 0.19255609490339
1110 => 0.18605770536196
1111 => 0.18864784761052
1112 => 0.18067579236693
1113 => 0.18664899820249
1114 => 0.18392307650618
1115 => 0.18572736133494
1116 => 0.18248309452703
1117 => 0.18427860573102
1118 => 0.17649536996237
1119 => 0.16922749391469
1120 => 0.1721522993988
1121 => 0.17533189745211
1122 => 0.18222607617821
1123 => 0.17811996020469
1124 => 0.1795966747782
1125 => 0.17464992815596
1126 => 0.16444337690597
1127 => 0.16450114487761
1128 => 0.16293108932961
1129 => 0.16157433210427
1130 => 0.17859159701838
1201 => 0.17647523112316
1202 => 0.17310307905225
1203 => 0.17761683860316
1204 => 0.17881034827142
1205 => 0.1788443258138
1206 => 0.18213744826514
1207 => 0.18389498830775
1208 => 0.18420476235788
1209 => 0.18938656168769
1210 => 0.19112343247346
1211 => 0.19827735742888
1212 => 0.18374587331439
1213 => 0.18344660696176
1214 => 0.17768035645661
1215 => 0.17402330922543
1216 => 0.17793075760927
1217 => 0.18139222345745
1218 => 0.17778791384931
1219 => 0.178258560593
1220 => 0.17342006942699
1221 => 0.17514960234667
1222 => 0.17663930909034
1223 => 0.1758167805874
1224 => 0.17458541560767
1225 => 0.18110842273194
1226 => 0.18074036910611
1227 => 0.18681474330352
1228 => 0.19155015237306
1229 => 0.20003685198131
1230 => 0.19118053851845
1231 => 0.1908577792552
]
'min_raw' => 0.16157433210427
'max_raw' => 0.46715891075248
'avg_raw' => 0.31436662142837
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.161574'
'max' => '$0.467158'
'avg' => '$0.314366'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.028410927429919
'max_diff' => -0.157806518654
'year' => 2030
]
5 => [
'items' => [
101 => 0.19401280282563
102 => 0.19112294945579
103 => 0.19294923703118
104 => 0.19974260881861
105 => 0.19988614205963
106 => 0.19748177534052
107 => 0.19733546940715
108 => 0.19779725433645
109 => 0.20050194309092
110 => 0.19955684173341
111 => 0.20065053695135
112 => 0.20201821956864
113 => 0.20767553475917
114 => 0.20903949429886
115 => 0.20572577974936
116 => 0.20602497107109
117 => 0.20478555086608
118 => 0.20358828647793
119 => 0.20627956197607
120 => 0.21119792084607
121 => 0.2111673239908
122 => 0.21230828764941
123 => 0.21301909855647
124 => 0.20996777779799
125 => 0.20798148018439
126 => 0.20874315308085
127 => 0.20996108462935
128 => 0.20834819429454
129 => 0.19839268798457
130 => 0.20141255263881
131 => 0.20090989949651
201 => 0.20019406029716
202 => 0.20323055755892
203 => 0.20293767999044
204 => 0.19416485974731
205 => 0.19472646723593
206 => 0.19419901295879
207 => 0.19590332563521
208 => 0.19103091097818
209 => 0.19252963291047
210 => 0.19346961725675
211 => 0.19402327525802
212 => 0.19602346760542
213 => 0.19578876811958
214 => 0.19600887835585
215 => 0.19897463557584
216 => 0.21397441786961
217 => 0.2147908229247
218 => 0.21077054584729
219 => 0.21237656724326
220 => 0.20929335736127
221 => 0.21136313681076
222 => 0.2127792273434
223 => 0.20638018652494
224 => 0.20600127685711
225 => 0.20290534147118
226 => 0.20456892178483
227 => 0.20192204589015
228 => 0.20257149665092
301 => 0.20075557570572
302 => 0.20402387186083
303 => 0.20767833480412
304 => 0.20860159646271
305 => 0.20617289252809
306 => 0.20441435082004
307 => 0.20132693088036
308 => 0.2064613790477
309 => 0.2079628481613
310 => 0.20645349246964
311 => 0.20610374177581
312 => 0.20544096484298
313 => 0.20624435303525
314 => 0.20795467083805
315 => 0.20714811654686
316 => 0.20768085986585
317 => 0.20565059169639
318 => 0.20996878791213
319 => 0.21682712273322
320 => 0.21684917340112
321 => 0.21604261476231
322 => 0.21571258834485
323 => 0.21654016645435
324 => 0.21698909362972
325 => 0.21966532948396
326 => 0.22253703718149
327 => 0.23593804398168
328 => 0.23217509489718
329 => 0.24406526535976
330 => 0.25346884645026
331 => 0.25628856925054
401 => 0.25369455695249
402 => 0.24482058100668
403 => 0.24438518141124
404 => 0.2576466479703
405 => 0.25389967625371
406 => 0.25345398589079
407 => 0.24871259343505
408 => 0.25151534360927
409 => 0.25090234103231
410 => 0.24993468647545
411 => 0.2552821385666
412 => 0.26529209151089
413 => 0.26373194647178
414 => 0.26256737057312
415 => 0.25746453798818
416 => 0.26053758296324
417 => 0.25944333050792
418 => 0.26414493348573
419 => 0.26135980803493
420 => 0.25387128925771
421 => 0.25506386055547
422 => 0.25488360580293
423 => 0.25859323583711
424 => 0.25747969697953
425 => 0.25466616946933
426 => 0.26525787857994
427 => 0.26457011190448
428 => 0.26554520780494
429 => 0.26597447517616
430 => 0.27242146186494
501 => 0.27506258603077
502 => 0.2756621674558
503 => 0.27817103114147
504 => 0.27559974464178
505 => 0.28588672393673
506 => 0.29272696490599
507 => 0.30067225678737
508 => 0.31228246371919
509 => 0.31664800892597
510 => 0.31585941225885
511 => 0.32466213864909
512 => 0.34048044229875
513 => 0.31905674368905
514 => 0.34161595034587
515 => 0.33447396597689
516 => 0.31754044951684
517 => 0.31645013068986
518 => 0.32791770463877
519 => 0.35335167994437
520 => 0.34698075760007
521 => 0.353362100491
522 => 0.34591792504375
523 => 0.34554825898836
524 => 0.35300055350524
525 => 0.37041324584736
526 => 0.36214112842063
527 => 0.35028101968301
528 => 0.35903833941114
529 => 0.35145193861095
530 => 0.33435765430824
531 => 0.34697588587583
601 => 0.33853843377313
602 => 0.34100093085632
603 => 0.35873520019991
604 => 0.35660136599343
605 => 0.35936274504434
606 => 0.35448898329736
607 => 0.34993612130399
608 => 0.3414378662934
609 => 0.33892195194368
610 => 0.33961726015683
611 => 0.33892160738346
612 => 0.33416691180803
613 => 0.33314013575121
614 => 0.3314287973391
615 => 0.33195921267207
616 => 0.32874139578758
617 => 0.33481408108351
618 => 0.33594122498675
619 => 0.3403604189252
620 => 0.3408192343
621 => 0.35312662651529
622 => 0.34634792170044
623 => 0.35089566213546
624 => 0.35048886942596
625 => 0.31790745016544
626 => 0.32239688227125
627 => 0.32938102976647
628 => 0.32623468078666
629 => 0.32178647946148
630 => 0.31819431839394
701 => 0.31275182705928
702 => 0.32041202909902
703 => 0.33048438020962
704 => 0.34107468574608
705 => 0.35379824394382
706 => 0.35095849387263
707 => 0.34083682767589
708 => 0.3412908782276
709 => 0.34409764007592
710 => 0.34046262846114
711 => 0.33939059257208
712 => 0.343950358807
713 => 0.34398175941105
714 => 0.33979923924241
715 => 0.33515113346808
716 => 0.33513165773517
717 => 0.334304572208
718 => 0.34606506172165
719 => 0.35253214183456
720 => 0.35327358214728
721 => 0.35248223699403
722 => 0.35278679433615
723 => 0.34902374291083
724 => 0.35762496257087
725 => 0.36551829230337
726 => 0.36340271131867
727 => 0.36023115467504
728 => 0.35770485704552
729 => 0.36280759588405
730 => 0.36258037895602
731 => 0.36544935095415
801 => 0.36531919781233
802 => 0.36435447043685
803 => 0.36340274577212
804 => 0.36717622648971
805 => 0.36608952464329
806 => 0.36500113484875
807 => 0.36281820249165
808 => 0.36311489925365
809 => 0.35994389022399
810 => 0.35847683635137
811 => 0.33641586606156
812 => 0.33052045393713
813 => 0.33237527060365
814 => 0.33298592441057
815 => 0.33042023349884
816 => 0.33409877519434
817 => 0.33352547836764
818 => 0.33575584095292
819 => 0.33436240724072
820 => 0.33441959424632
821 => 0.3385173856825
822 => 0.33970699196967
823 => 0.33910194861072
824 => 0.33952570023966
825 => 0.34929087767421
826 => 0.34790258171581
827 => 0.34716507715768
828 => 0.34736937096048
829 => 0.34986458316277
830 => 0.35056310634588
831 => 0.3476034145347
901 => 0.34899922230263
902 => 0.35494239462408
903 => 0.35702216858216
904 => 0.36365980870824
905 => 0.36084002120803
906 => 0.3660158632022
907 => 0.3819246369177
908 => 0.39463366616505
909 => 0.38294591764634
910 => 0.40628443137398
911 => 0.4244568120219
912 => 0.42375932578495
913 => 0.42059055088425
914 => 0.39990177865432
915 => 0.38086366199613
916 => 0.39678985498184
917 => 0.39683045412301
918 => 0.3954623800213
919 => 0.38696538927155
920 => 0.3951667031615
921 => 0.39581769367529
922 => 0.39545331209992
923 => 0.38893868921433
924 => 0.37899206417161
925 => 0.3809356108961
926 => 0.3841191800781
927 => 0.37809201945447
928 => 0.37616597643668
929 => 0.37974685685143
930 => 0.39128519965381
1001 => 0.38910394278409
1002 => 0.38904698135207
1003 => 0.3983793232376
1004 => 0.39169938049299
1005 => 0.38096012524439
1006 => 0.37824832166075
1007 => 0.3686232458286
1008 => 0.37527131998921
1009 => 0.37551057234291
1010 => 0.37186949006681
1011 => 0.38125557900395
1012 => 0.381169084542
1013 => 0.39007977905284
1014 => 0.40711368025354
1015 => 0.40207591748112
1016 => 0.39621754748383
1017 => 0.39685451473752
1018 => 0.4038404733413
1019 => 0.39961660329553
1020 => 0.40113553641386
1021 => 0.40383817425411
1022 => 0.40546874276586
1023 => 0.3966199010217
1024 => 0.39455681272211
1025 => 0.39033645810674
1026 => 0.38923544636425
1027 => 0.39267283713787
1028 => 0.39176720611383
1029 => 0.37549046410901
1030 => 0.37378945400657
1031 => 0.37384162155793
1101 => 0.36956435077672
1102 => 0.36304048617277
1103 => 0.38018481283225
1104 => 0.37880788346679
1105 => 0.3772878600132
1106 => 0.37747405421313
1107 => 0.38491582534087
1108 => 0.38059922226833
1109 => 0.392075619014
1110 => 0.38971641685516
1111 => 0.38729671006302
1112 => 0.38696223287828
1113 => 0.38603085220299
1114 => 0.38283680131593
1115 => 0.37897979293711
1116 => 0.37643306191707
1117 => 0.34723960144213
1118 => 0.35265773789573
1119 => 0.35889081000692
1120 => 0.36104244152224
1121 => 0.35736192692693
1122 => 0.38298213046516
1123 => 0.38766318853401
1124 => 0.37348395830558
1125 => 0.37083160326399
1126 => 0.38315601842011
1127 => 0.37572288948249
1128 => 0.37907002698797
1129 => 0.37183534648746
1130 => 0.38653565872261
1201 => 0.38642366697313
1202 => 0.38070491349205
1203 => 0.38553836477393
1204 => 0.38469843366831
1205 => 0.37824197507284
1206 => 0.38674033997626
1207 => 0.38674455505923
1208 => 0.38124037917011
1209 => 0.37481270675066
1210 => 0.3736635907369
1211 => 0.37279788618256
1212 => 0.37885711673625
1213 => 0.38428980390397
1214 => 0.39439868784573
1215 => 0.39694030144985
1216 => 0.40686038855152
1217 => 0.40095345968275
1218 => 0.40357192474274
1219 => 0.40641463896986
1220 => 0.40777754070769
1221 => 0.40555676546323
1222 => 0.42096674400287
1223 => 0.42226781834116
1224 => 0.42270405731254
1225 => 0.41750789925224
1226 => 0.42212330378572
1227 => 0.41996390885064
1228 => 0.42558205457454
1229 => 0.42646305156013
1230 => 0.42571687845571
1231 => 0.42599652080453
]
'min_raw' => 0.19103091097818
'max_raw' => 0.42646305156013
'avg_raw' => 0.30874698126916
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.19103'
'max' => '$0.426463'
'avg' => '$0.308746'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.029456578873915
'max_diff' => -0.040695859192347
'year' => 2031
]
6 => [
'items' => [
101 => 0.41284682262744
102 => 0.41216494140678
103 => 0.40286744257891
104 => 0.40665624207491
105 => 0.39957326301903
106 => 0.40181934864042
107 => 0.40280940178084
108 => 0.4022922542053
109 => 0.40687045511374
110 => 0.40297804907692
111 => 0.39270534957492
112 => 0.38242985128282
113 => 0.38230085077201
114 => 0.37959549344931
115 => 0.3776400156159
116 => 0.37801671002092
117 => 0.37934423023722
118 => 0.37756285772763
119 => 0.37794300387043
120 => 0.38425596274141
121 => 0.38552198162102
122 => 0.38121955480259
123 => 0.36394469028938
124 => 0.35970539520712
125 => 0.36275251644337
126 => 0.36129618875219
127 => 0.2915942223344
128 => 0.30796966544038
129 => 0.29823993320431
130 => 0.30272384146214
131 => 0.29279230435107
201 => 0.29753215441693
202 => 0.29665687718138
203 => 0.3229881051112
204 => 0.32257697920449
205 => 0.32277376341973
206 => 0.31338074010776
207 => 0.32834408129211
208 => 0.33571556122387
209 => 0.33435129647409
210 => 0.33469465251968
211 => 0.32879465806344
212 => 0.32283088826282
213 => 0.31621614973635
214 => 0.32850551631214
215 => 0.3271391485354
216 => 0.33027310461164
217 => 0.33824363729811
218 => 0.33941732851331
219 => 0.34099478140893
220 => 0.34042937683659
221 => 0.35389960761212
222 => 0.35226827378576
223 => 0.35619931894051
224 => 0.34811286080806
225 => 0.33896226585755
226 => 0.34070149480215
227 => 0.34053399306879
228 => 0.33840150375356
229 => 0.33647638774981
301 => 0.33327161200164
302 => 0.34341199668643
303 => 0.34300031558674
304 => 0.34966495406373
305 => 0.34848691447607
306 => 0.34061967779456
307 => 0.34090065769173
308 => 0.34279038253453
309 => 0.34933074179197
310 => 0.35127236572119
311 => 0.35037292815684
312 => 0.35250183015673
313 => 0.35418442749512
314 => 0.35271313847671
315 => 0.37354348830346
316 => 0.36489327476847
317 => 0.36910932865763
318 => 0.37011483266776
319 => 0.36753925528928
320 => 0.36809780579816
321 => 0.36894385762321
322 => 0.37408091863099
323 => 0.38756205313599
324 => 0.39353275583907
325 => 0.41149590951056
326 => 0.39303697209577
327 => 0.39194169514025
328 => 0.39517740155176
329 => 0.40572367434985
330 => 0.41427043789167
331 => 0.41710589243311
401 => 0.41748064455902
402 => 0.42280014577621
403 => 0.42584918467108
404 => 0.42215421841167
405 => 0.41902312138591
406 => 0.40780792048572
407 => 0.4091061105279
408 => 0.41804935256536
409 => 0.43068220869761
410 => 0.44152251348374
411 => 0.4377266165704
412 => 0.46668663053358
413 => 0.46955789762698
414 => 0.46916118135385
415 => 0.47570235509445
416 => 0.46271945730623
417 => 0.45716901696996
418 => 0.41970010010234
419 => 0.43022733740489
420 => 0.4455292950671
421 => 0.44350402359111
422 => 0.43239133291431
423 => 0.44151408351136
424 => 0.43849781686919
425 => 0.43611876222349
426 => 0.44701767275788
427 => 0.43503387292275
428 => 0.44540974749662
429 => 0.43210258103095
430 => 0.43774395590776
501 => 0.43454163868509
502 => 0.43661393038939
503 => 0.42449935542988
504 => 0.43103608601335
505 => 0.42422740594683
506 => 0.42422417774597
507 => 0.42407387575613
508 => 0.43208425766007
509 => 0.43234547592638
510 => 0.42642579159635
511 => 0.42557267260154
512 => 0.42872710066311
513 => 0.42503409154903
514 => 0.42676202726998
515 => 0.42508642896174
516 => 0.42470921648906
517 => 0.42170352332929
518 => 0.42040858807281
519 => 0.42091636555324
520 => 0.41918305923528
521 => 0.41813867948227
522 => 0.4238661223366
523 => 0.42080618066392
524 => 0.42339714238952
525 => 0.42044441449776
526 => 0.41020897318261
527 => 0.40432246264444
528 => 0.38498866282605
529 => 0.39047170447104
530 => 0.39410696675429
531 => 0.39290551259136
601 => 0.39548670103437
602 => 0.39564516504122
603 => 0.3948059943663
604 => 0.39383434222916
605 => 0.39336139570453
606 => 0.39688635162128
607 => 0.39893270717551
608 => 0.39447181395795
609 => 0.3934266890916
610 => 0.39793689842722
611 => 0.40068812351649
612 => 0.42100162379581
613 => 0.41949673408337
614 => 0.42327371194189
615 => 0.42284848219747
616 => 0.42680735671295
617 => 0.43327844340056
618 => 0.42012091482035
619 => 0.42240460682877
620 => 0.42184469828646
621 => 0.42795763293554
622 => 0.42797671685026
623 => 0.42431170716441
624 => 0.4262985683731
625 => 0.42518955695309
626 => 0.42719369048093
627 => 0.41947663536377
628 => 0.42887517549185
629 => 0.43420354211592
630 => 0.43427752649166
701 => 0.43680312998294
702 => 0.43936928940316
703 => 0.44429480894491
704 => 0.43923191933648
705 => 0.43012427379328
706 => 0.43078181638398
707 => 0.42544200713436
708 => 0.42553177029256
709 => 0.42505260751922
710 => 0.42649061107171
711 => 0.41979219627759
712 => 0.42136430084117
713 => 0.41916334524593
714 => 0.42239982238115
715 => 0.41891790799249
716 => 0.42184442828161
717 => 0.4231074174227
718 => 0.42776787454357
719 => 0.41822955468644
720 => 0.39878027481026
721 => 0.40286874923995
722 => 0.39682157441569
723 => 0.3973812634689
724 => 0.39851192443022
725 => 0.39484708232533
726 => 0.39554621870649
727 => 0.39552124063521
728 => 0.39530599311115
729 => 0.39435262613675
730 => 0.39297005540596
731 => 0.39847779166459
801 => 0.39941366338021
802 => 0.40149399027407
803 => 0.40768363201099
804 => 0.40706514083967
805 => 0.40807392560105
806 => 0.40587175413104
807 => 0.39748341588741
808 => 0.39793894301155
809 => 0.39225851247417
810 => 0.40134872889388
811 => 0.3991960456607
812 => 0.39780819677624
813 => 0.39742950934978
814 => 0.40363449401135
815 => 0.40549112267331
816 => 0.40433419628489
817 => 0.40196130650931
818 => 0.40651795636032
819 => 0.40773712363082
820 => 0.40801005022153
821 => 0.41608356010656
822 => 0.40846126973859
823 => 0.41029603078921
824 => 0.42461031275051
825 => 0.4116292342475
826 => 0.41850560104314
827 => 0.41816903867138
828 => 0.42168675524046
829 => 0.41788048323826
830 => 0.4179276665415
831 => 0.42105116054409
901 => 0.41666477654257
902 => 0.41557864617793
903 => 0.41407816485821
904 => 0.41735441092582
905 => 0.41931837227149
906 => 0.43514645834693
907 => 0.44537212380008
908 => 0.44492820069449
909 => 0.4489848268904
910 => 0.4471572796347
911 => 0.44125564746346
912 => 0.4513290139524
913 => 0.44814137930774
914 => 0.44840416403487
915 => 0.4483943831742
916 => 0.45051388154504
917 => 0.44901202270013
918 => 0.44605170475416
919 => 0.44801690195895
920 => 0.45385283508632
921 => 0.47196775058196
922 => 0.48210509728403
923 => 0.47135746958167
924 => 0.47877103925429
925 => 0.47432553917569
926 => 0.47351765956923
927 => 0.47817392918214
928 => 0.48283834897861
929 => 0.48254124560241
930 => 0.47915511635078
1001 => 0.47724237785638
1002 => 0.49172627455037
1003 => 0.50239776290775
1004 => 0.50167003894434
1005 => 0.50488197585031
1006 => 0.51431232194771
1007 => 0.51517451460991
1008 => 0.51506589815175
1009 => 0.51292886367798
1010 => 0.52221426409606
1011 => 0.52996030848589
1012 => 0.51243420194217
1013 => 0.51910791388044
1014 => 0.5221039581831
1015 => 0.52650304010569
1016 => 0.53392502868084
1017 => 0.54198727685869
1018 => 0.54312736714909
1019 => 0.54231841852971
1020 => 0.53700114913155
1021 => 0.54582295729038
1022 => 0.55099056561297
1023 => 0.55406775811046
1024 => 0.56187100628807
1025 => 0.52212246073273
1026 => 0.49398646455777
1027 => 0.48959262246633
1028 => 0.49852767313857
1029 => 0.50088377474514
1030 => 0.49993403314183
1031 => 0.46826441143405
1101 => 0.48942588846222
1102 => 0.51219385843701
1103 => 0.51306846888922
1104 => 0.5244665907144
1105 => 0.52817828640548
1106 => 0.53735526846073
1107 => 0.53678124573455
1108 => 0.53901569482733
1109 => 0.53850203367616
1110 => 0.55550046049196
1111 => 0.57425224956059
1112 => 0.57360293473218
1113 => 0.57090714319246
1114 => 0.5749108533297
1115 => 0.59426470921237
1116 => 0.59248291630191
1117 => 0.59421377634166
1118 => 0.61703306316284
1119 => 0.64670138203608
1120 => 0.63291746926894
1121 => 0.66282459375957
1122 => 0.68164954331787
1123 => 0.71420534704283
1124 => 0.71012920007575
1125 => 0.72280293556036
1126 => 0.70283204628714
1127 => 0.65697484773319
1128 => 0.64971777052772
1129 => 0.66424662287153
1130 => 0.6999643886541
1201 => 0.6631217433183
1202 => 0.67057496248577
1203 => 0.66842843486413
1204 => 0.66831405552933
1205 => 0.67267944952434
1206 => 0.66634721785094
1207 => 0.64054856686675
1208 => 0.6523719365804
1209 => 0.64780636572911
1210 => 0.65287220697447
1211 => 0.68021046286381
1212 => 0.66812356827251
1213 => 0.65539100668016
1214 => 0.67136046449857
1215 => 0.69169507200249
1216 => 0.6904225688097
1217 => 0.68795338075061
1218 => 0.70187206455721
1219 => 0.724861652414
1220 => 0.73107564563205
1221 => 0.73566268838611
1222 => 0.73629516408317
1223 => 0.74281005684437
1224 => 0.70777783650302
1225 => 0.76337486987598
1226 => 0.77297494170244
1227 => 0.77117052608127
1228 => 0.7818406018836
1229 => 0.77870119490886
1230 => 0.77415268676032
1231 => 0.79106702649722
]
'min_raw' => 0.2915942223344
'max_raw' => 0.79106702649722
'avg_raw' => 0.54133062441581
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.291594'
'max' => '$0.791067'
'avg' => '$0.54133'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.10056331135622
'max_diff' => 0.36460397493709
'year' => 2032
]
7 => [
'items' => [
101 => 0.7716761009057
102 => 0.74415312327817
103 => 0.72905347340894
104 => 0.74893791041076
105 => 0.76108064221655
106 => 0.76910621551738
107 => 0.77153474914903
108 => 0.71049728804418
109 => 0.67760148180145
110 => 0.69868731645185
111 => 0.72441348999192
112 => 0.70763492631006
113 => 0.70829261424036
114 => 0.68437079175901
115 => 0.72653004047526
116 => 0.7203877925524
117 => 0.75225378564167
118 => 0.74464871065034
119 => 0.77063419098392
120 => 0.76379134314381
121 => 0.79219562194963
122 => 0.80352685778043
123 => 0.82255376630636
124 => 0.83655003767149
125 => 0.8447689159231
126 => 0.84427548530111
127 => 0.87684277556289
128 => 0.85763898230998
129 => 0.83351449199776
130 => 0.83307815607981
131 => 0.84557257145917
201 => 0.87175743841887
202 => 0.87854679344719
203 => 0.88234111668718
204 => 0.8765299785638
205 => 0.85568563733602
206 => 0.84668515647708
207 => 0.85435382693793
208 => 0.84497570194068
209 => 0.86116497672308
210 => 0.88339630884181
211 => 0.87880562667151
212 => 0.8941515888933
213 => 0.91003304535055
214 => 0.93274424136526
215 => 0.93868178899665
216 => 0.94849632944664
217 => 0.95859871547826
218 => 0.96184332960468
219 => 0.96803830471665
220 => 0.96800565413989
221 => 0.98667462860973
222 => 1.00726708558
223 => 1.0150402613698
224 => 1.032914250483
225 => 1.0023056705059
226 => 1.0255226300245
227 => 1.0464649086686
228 => 1.0214966607204
301 => 1.0559095736613
302 => 1.0572457490895
303 => 1.0774204116741
304 => 1.0569695261469
305 => 1.0448258556023
306 => 1.079884177447
307 => 1.0968477950609
308 => 1.0917382153811
309 => 1.0528540617268
310 => 1.0302218164802
311 => 0.97098886523578
312 => 1.0411528546579
313 => 1.0753276871938
314 => 1.0527655571666
315 => 1.0641445831916
316 => 1.1262248595223
317 => 1.1498610093488
318 => 1.144944855414
319 => 1.1457756045022
320 => 1.1585292419221
321 => 1.2150858937985
322 => 1.1811958370213
323 => 1.2071035155912
324 => 1.2208448548877
325 => 1.2336085766394
326 => 1.2022649100329
327 => 1.1614872603078
328 => 1.1485712669106
329 => 1.0505221979864
330 => 1.0454183181433
331 => 1.0425533557241
401 => 1.0244901729275
402 => 1.0102974591715
403 => 0.99901088625115
404 => 0.96939154845205
405 => 0.97938720547446
406 => 0.93218016305894
407 => 0.96238155588153
408 => 0.88703797633246
409 => 0.94978634822748
410 => 0.9156352622234
411 => 0.93856679798463
412 => 0.93848679201664
413 => 0.89626256423018
414 => 0.87190851084011
415 => 0.8874278615342
416 => 0.90406583740586
417 => 0.90676529301417
418 => 0.92833686302738
419 => 0.93435702453872
420 => 0.91611565410489
421 => 0.88547664811341
422 => 0.8925933904039
423 => 0.87176429028474
424 => 0.83526209350567
425 => 0.86147860849961
426 => 0.87043007937734
427 => 0.87438355887099
428 => 0.83848784064439
429 => 0.82720862664364
430 => 0.82120366775141
501 => 0.88084296164948
502 => 0.88411013679731
503 => 0.867394806809
504 => 0.94294968336879
505 => 0.92584928784346
506 => 0.94495461934388
507 => 0.8919476206352
508 => 0.89397255936927
509 => 0.86887819670574
510 => 0.8829293629914
511 => 0.87299845155093
512 => 0.88179416761185
513 => 0.88706628355267
514 => 0.9121565284782
515 => 0.95007283852152
516 => 0.90840888257226
517 => 0.89025530032633
518 => 0.90151768065209
519 => 0.93151088359869
520 => 0.9769521213866
521 => 0.95004999402602
522 => 0.9619887013209
523 => 0.96459677774871
524 => 0.9447601450039
525 => 0.97768352633058
526 => 0.99532743385261
527 => 1.013426432078
528 => 1.0291412851147
529 => 1.0061972941813
530 => 1.0307506533719
531 => 1.0109649801156
601 => 0.99321518579941
602 => 0.99324210491059
603 => 0.98210739965291
604 => 0.960532505153
605 => 0.95655376358895
606 => 0.97725167966481
607 => 0.9938494482577
608 => 0.99521651997697
609 => 1.0044058974941
610 => 1.0098440764507
611 => 1.0631456230706
612 => 1.0845839460547
613 => 1.1107983215929
614 => 1.1210102982263
615 => 1.1517446866965
616 => 1.1269241718818
617 => 1.1215540973733
618 => 1.0470025240863
619 => 1.0592103400356
620 => 1.0787562312494
621 => 1.0473248286332
622 => 1.0672608190816
623 => 1.0711966058981
624 => 1.0462568015997
625 => 1.0595782286608
626 => 1.0242004679143
627 => 0.95084397702952
628 => 0.977765193075
629 => 0.9975882696678
630 => 0.96929829520215
701 => 1.0200069794586
702 => 0.99038401295571
703 => 0.98099495472745
704 => 0.94436489113804
705 => 0.96165287113179
706 => 0.98503511161337
707 => 0.97058760547298
708 => 1.0005683500183
709 => 1.0430290798669
710 => 1.0732891245372
711 => 1.0756121150265
712 => 1.0561569335691
713 => 1.087333986016
714 => 1.0875610768063
715 => 1.0523932342842
716 => 1.0308531265547
717 => 1.0259591687578
718 => 1.0381852348514
719 => 1.0530299361454
720 => 1.0764358926345
721 => 1.0905796219372
722 => 1.1274589667044
723 => 1.1374374599847
724 => 1.1484007988096
725 => 1.1630512004482
726 => 1.1806427639012
727 => 1.1421534245543
728 => 1.1436826777596
729 => 1.107841937881
730 => 1.0695409672386
731 => 1.0986066296728
801 => 1.1366061168624
802 => 1.1278889925154
803 => 1.1269081379517
804 => 1.1285576632615
805 => 1.1219852361785
806 => 1.0922583920677
807 => 1.0773297570552
808 => 1.0965915049223
809 => 1.106828266672
810 => 1.1227045914062
811 => 1.1207474992742
812 => 1.1616432067967
813 => 1.177534042118
814 => 1.1734684864357
815 => 1.1742166465243
816 => 1.2029862448282
817 => 1.2349839550614
818 => 1.2649540331644
819 => 1.2954408838557
820 => 1.2586877954253
821 => 1.2400268437358
822 => 1.2592801825264
823 => 1.2490640899537
824 => 1.3077687881661
825 => 1.3118333741006
826 => 1.3705338272951
827 => 1.4262475472967
828 => 1.3912547579787
829 => 1.4242513821957
830 => 1.4599399215407
831 => 1.5287889041939
901 => 1.5056029889727
902 => 1.4878429412829
903 => 1.4710597820319
904 => 1.5059828721817
905 => 1.5509108697494
906 => 1.5605879301104
907 => 1.5762684648169
908 => 1.5597822998976
909 => 1.5796380696514
910 => 1.6497376619498
911 => 1.6307961333246
912 => 1.6038961176741
913 => 1.6592330133572
914 => 1.6792592207882
915 => 1.8198136323452
916 => 1.9972693829491
917 => 1.9238015369618
918 => 1.8781976741649
919 => 1.8889156636603
920 => 1.9537164965246
921 => 1.9745284673649
922 => 1.9179543563042
923 => 1.9379372887521
924 => 2.0480452112186
925 => 2.1071145789368
926 => 2.026890443501
927 => 1.805555235569
928 => 1.6014740655842
929 => 1.655605581759
930 => 1.6494687477213
1001 => 1.7677659741685
1002 => 1.6303443841312
1003 => 1.6326582112702
1004 => 1.7534016990814
1005 => 1.7211894066008
1006 => 1.6690096182209
1007 => 1.601855035785
1008 => 1.4777135791051
1009 => 1.3677580289831
1010 => 1.5834061840232
1011 => 1.5741070434472
1012 => 1.5606405098376
1013 => 1.5906088231545
1014 => 1.7361264459673
1015 => 1.7327717937669
1016 => 1.7114312080265
1017 => 1.7276178542233
1018 => 1.6661720208813
1019 => 1.6820080112292
1020 => 1.6014417380842
1021 => 1.6378610582905
1022 => 1.6688976638302
1023 => 1.6751287218971
1024 => 1.6891676138875
1025 => 1.5692068189198
1026 => 1.6230656939964
1027 => 1.6547027372097
1028 => 1.5117654250063
1029 => 1.651877326126
1030 => 1.5671185683681
1031 => 1.5383501729512
1101 => 1.5770830274321
1102 => 1.561988796372
1103 => 1.5490116628695
1104 => 1.5417701993996
1105 => 1.5702113329412
1106 => 1.568884520067
1107 => 1.5223493054068
1108 => 1.4616460149005
1109 => 1.482020031712
1110 => 1.474617960397
1111 => 1.4477918990651
1112 => 1.4658694254118
1113 => 1.3862651482076
1114 => 1.2493101267481
1115 => 1.33978680897
1116 => 1.3363035551241
1117 => 1.3345471405821
1118 => 1.40253786668
1119 => 1.3960021271786
1120 => 1.3841396959855
1121 => 1.4475740362136
1122 => 1.424419648718
1123 => 1.4957760151194
1124 => 1.5427759330718
1125 => 1.530855233591
1126 => 1.5750588835956
1127 => 1.4824894079096
1128 => 1.5132372744897
1129 => 1.5195743671772
1130 => 1.4467912663018
1201 => 1.3970714549899
1202 => 1.3937557104227
1203 => 1.30754840942
1204 => 1.3535996537746
1205 => 1.3941228430768
1206 => 1.3747153801276
1207 => 1.3685715571393
1208 => 1.3999590163537
1209 => 1.40239809075
1210 => 1.3467869360314
1211 => 1.3583502560737
1212 => 1.4065712228918
1213 => 1.3571352114321
1214 => 1.2610891164925
1215 => 1.2372683570064
1216 => 1.2340902285872
1217 => 1.1694864396125
1218 => 1.2388601740586
1219 => 1.2085766798724
1220 => 1.3042418751548
1221 => 1.2495984286722
1222 => 1.2472428589088
1223 => 1.2436820697245
1224 => 1.188074919805
1225 => 1.2002493516187
1226 => 1.2407190171855
1227 => 1.2551590497831
1228 => 1.2536528360795
1229 => 1.2405206937461
1230 => 1.2465325212589
1231 => 1.2271663301806
]
'min_raw' => 0.67760148180145
'max_raw' => 2.1071145789368
'avg_raw' => 1.3923580303691
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.6776014'
'max' => '$2.10'
'avg' => '$1.39'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.38600725946705
'max_diff' => 1.3160475524396
'year' => 2033
]
8 => [
'items' => [
101 => 1.2203277250384
102 => 1.1987432061032
103 => 1.1670199261441
104 => 1.1714312427926
105 => 1.1085791243457
106 => 1.0743339544015
107 => 1.064855342705
108 => 1.052180147006
109 => 1.0662870397866
110 => 1.1084010721911
111 => 1.0576026141209
112 => 0.97051222085703
113 => 0.975746501887
114 => 0.98750637728935
115 => 0.96559192727643
116 => 0.94485173947957
117 => 0.96288365006431
118 => 0.92598230234604
119 => 0.99196572886283
120 => 0.99018106209197
121 => 1.0147756031097
122 => 1.0301550743389
123 => 0.99471037231856
124 => 0.98579612561312
125 => 0.99087408566646
126 => 0.90694671728047
127 => 1.007916946576
128 => 1.0087901413119
129 => 1.0013133178518
130 => 1.0550768478456
131 => 1.1685346653981
201 => 1.1258472706047
202 => 1.1093174211074
203 => 1.0778941651297
204 => 1.1197637879916
205 => 1.1165488542237
206 => 1.1020097044977
207 => 1.0932163813785
208 => 1.1094183488436
209 => 1.0912087783103
210 => 1.087937839077
211 => 1.0681195061401
212 => 1.0610452629583
213 => 1.0558077749403
214 => 1.0500418152573
215 => 1.0627600855303
216 => 1.033938811864
217 => 0.99918318120685
218 => 0.99629362657884
219 => 1.004271940959
220 => 1.0007421307614
221 => 0.99627672720563
222 => 0.9877510557373
223 => 0.9852216711348
224 => 0.99344094400998
225 => 0.98416186414728
226 => 0.99785365194234
227 => 0.99413024326325
228 => 0.97333158505636
301 => 0.94740875628104
302 => 0.94717798872997
303 => 0.94159295779229
304 => 0.93447958117813
305 => 0.93250080253608
306 => 0.96136505284996
307 => 1.0211131871654
308 => 1.0093831987476
309 => 1.017859317517
310 => 1.0595534327395
311 => 1.0728067381829
312 => 1.0633998559009
313 => 1.0505231352421
314 => 1.0510896456006
315 => 1.0950932981403
316 => 1.0978377519732
317 => 1.1047721014146
318 => 1.1136847000938
319 => 1.0649177099951
320 => 1.0487927247525
321 => 1.0411518121644
322 => 1.0176207587984
323 => 1.0429969824536
324 => 1.0282113436479
325 => 1.0302064314722
326 => 1.0289071279093
327 => 1.0296166355132
328 => 0.99194728515037
329 => 1.0056720165798
330 => 0.98285198862293
331 => 0.95229853285704
401 => 0.95219610695989
402 => 0.95967402197354
403 => 0.95522586551258
404 => 0.94325599084868
405 => 0.94495625504847
406 => 0.93006015155624
407 => 0.94676491171509
408 => 0.94724394446394
409 => 0.94081170188835
410 => 0.96654768972574
411 => 0.97709174494129
412 => 0.97285790508605
413 => 0.9767946874505
414 => 1.009870632724
415 => 1.0152634550083
416 => 1.0176585904371
417 => 1.0144494262571
418 => 0.97739925501173
419 => 0.97904258765596
420 => 0.96698490308096
421 => 0.95679743022258
422 => 0.95720487571066
423 => 0.96244256103863
424 => 0.98531584005209
425 => 1.0334513072825
426 => 1.0352780130773
427 => 1.0374920337894
428 => 1.0284864988756
429 => 1.0257703433743
430 => 1.0293536535798
501 => 1.0474308042289
502 => 1.0939301435969
503 => 1.0774941714778
504 => 1.0641314703038
505 => 1.0758541617917
506 => 1.0740495453227
507 => 1.0588167662218
508 => 1.0583892328468
509 => 1.0291526595383
510 => 1.0183445640706
511 => 1.009312510526
512 => 0.99944974384293
513 => 0.99360276515029
514 => 1.0025863818265
515 => 1.0046410412513
516 => 0.98499820638211
517 => 0.9823209605722
518 => 0.99836172354646
519 => 0.99130278182141
520 => 0.99856307843895
521 => 1.0002475295319
522 => 0.99997629410973
523 => 0.99260594823449
524 => 0.99730358690849
525 => 0.98619227101098
526 => 0.97411038383812
527 => 0.96640289255001
528 => 0.95967708415077
529 => 0.96340895355695
530 => 0.95010552053635
531 => 0.94584948456786
601 => 0.99571213262596
602 => 1.0325462068603
603 => 1.032010624833
604 => 1.0287504069826
605 => 1.0239063845679
606 => 1.0470764338177
607 => 1.0390044519588
608 => 1.0448774931978
609 => 1.0463724286839
610 => 1.0508971481545
611 => 1.0525143464525
612 => 1.0476260499796
613 => 1.0312203299614
614 => 0.99033883548517
615 => 0.97130838944899
616 => 0.9650280252799
617 => 0.96525630458934
618 => 0.95895934215136
619 => 0.96081407979941
620 => 0.95831434008871
621 => 0.95358043782862
622 => 0.96311664843217
623 => 0.96421560786828
624 => 0.96198974236418
625 => 0.96251401426791
626 => 0.94408479857355
627 => 0.94548593181664
628 => 0.93768424387172
629 => 0.93622152143279
630 => 0.91649953367871
701 => 0.8815591736245
702 => 0.90091952483735
703 => 0.87753494304957
704 => 0.8686788475923
705 => 0.91060222608159
706 => 0.90639428165478
707 => 0.89919210994555
708 => 0.88853859692351
709 => 0.88458710531292
710 => 0.8605790931772
711 => 0.85916057174246
712 => 0.87105959082778
713 => 0.86556860294015
714 => 0.85785717634619
715 => 0.82992717091764
716 => 0.79852459750896
717 => 0.79947244381063
718 => 0.80946101814628
719 => 0.83850414516997
720 => 0.82715649299062
721 => 0.81892364113519
722 => 0.81738187546128
723 => 0.83668030077526
724 => 0.86399161573962
725 => 0.87680547366468
726 => 0.8641073296236
727 => 0.84952038546584
728 => 0.85040822516734
729 => 0.85631462494217
730 => 0.8569353040465
731 => 0.84744070296189
801 => 0.85011337755227
802 => 0.846053340455
803 => 0.82113690028333
804 => 0.82068624089151
805 => 0.81457134464151
806 => 0.81438618801327
807 => 0.80398322405966
808 => 0.80252777749026
809 => 0.78187206114559
810 => 0.79546771619492
811 => 0.78634846459175
812 => 0.7726036014118
813 => 0.77023398181882
814 => 0.77016274819246
815 => 0.7842756493831
816 => 0.79530279872757
817 => 0.78650709787768
818 => 0.78450448729166
819 => 0.80588712909385
820 => 0.80316599301742
821 => 0.80080950672467
822 => 0.86154618703769
823 => 0.81346836522766
824 => 0.79250369073236
825 => 0.76655592496072
826 => 0.77500464833596
827 => 0.77678491848869
828 => 0.71438521924422
829 => 0.68906966903213
830 => 0.68038232619572
831 => 0.67538263757237
901 => 0.67766105846017
902 => 0.6548740940514
903 => 0.6701873109957
904 => 0.65045572595186
905 => 0.64714766150713
906 => 0.68243017983985
907 => 0.68733953614836
908 => 0.66639469691879
909 => 0.67984467436564
910 => 0.67496752557474
911 => 0.65079396734436
912 => 0.64987071522861
913 => 0.63774127345027
914 => 0.61876104578989
915 => 0.6100865724416
916 => 0.60556883140658
917 => 0.60743293940665
918 => 0.60649038935917
919 => 0.60033961273394
920 => 0.60684294467549
921 => 0.59022961892714
922 => 0.58361405875148
923 => 0.58062596369997
924 => 0.56588068087096
925 => 0.58934698310895
926 => 0.59397014027052
927 => 0.59860240647987
928 => 0.63892312124976
929 => 0.63690881228501
930 => 0.65511718431806
1001 => 0.65440964046391
1002 => 0.64921631780401
1003 => 0.62730654376201
1004 => 0.63603938919098
1005 => 0.60916104834611
1006 => 0.62930012885661
1007 => 0.62010949353973
1008 => 0.62619276581102
1009 => 0.61525449376069
1010 => 0.62130818514353
1011 => 0.59506646234136
1012 => 0.57056231081969
1013 => 0.58042349671278
1014 => 0.59114373354197
1015 => 0.6143879384532
1016 => 0.6005438817686
1017 => 0.60552272805412
1018 => 0.58884442644642
1019 => 0.55443232630841
1020 => 0.55462709505805
1021 => 0.54933354316017
1022 => 0.54475914144917
1023 => 0.60213403821459
1024 => 0.59499856283892
1025 => 0.58362911669571
1026 => 0.59884757216223
1027 => 0.60287157333694
1028 => 0.6029861309933
1029 => 0.61408912325649
1030 => 0.62001479221767
1031 => 0.62105921705539
1101 => 0.63853001527753
1102 => 0.64438599639619
1103 => 0.66850595385449
1104 => 0.61951204060666
1105 => 0.61850304320466
1106 => 0.5990617270398
1107 => 0.58673173697299
1108 => 0.59990597200844
1109 => 0.61157654578742
1110 => 0.59942436429871
1111 => 0.60101118265458
1112 => 0.58469787187569
1113 => 0.59052911286653
1114 => 0.59555176316083
1115 => 0.59277855088605
1116 => 0.58862691788573
1117 => 0.61061969182701
1118 => 0.60937877333087
1119 => 0.62985895003668
1120 => 0.64582471233035
1121 => 0.67443821258199
1122 => 0.6445785334139
1123 => 0.64349032802354
1124 => 0.65412771026794
1125 => 0.6443843678684
1126 => 0.65054182393616
1127 => 0.67344615121557
1128 => 0.67393008355882
1129 => 0.66582359329781
1130 => 0.66533031262871
1201 => 0.66688725275862
1202 => 0.67600629972966
1203 => 0.67281982451797
1204 => 0.67650729430462
1205 => 0.68111853173737
1206 => 0.70019256488336
1207 => 0.70479124970003
1208 => 0.69361882974024
1209 => 0.69462757417032
1210 => 0.69044878241558
1211 => 0.6864121219406
1212 => 0.69548594518143
1213 => 0.71206853550049
1214 => 0.71196537606675
1215 => 0.71581221470128
1216 => 0.71820876330166
1217 => 0.70792102232804
1218 => 0.70122408124493
1219 => 0.70379211459363
1220 => 0.70789845584268
1221 => 0.70246048347044
1222 => 0.66889479887513
1223 => 0.67907648339712
1224 => 0.67738175323372
1225 => 0.67496825139482
1226 => 0.68520601391431
1227 => 0.68421855674412
1228 => 0.65464038079565
1229 => 0.65653387965372
1230 => 0.65475553073267
1231 => 0.66050173991251
]
'min_raw' => 0.54475914144917
'max_raw' => 1.2203277250384
'avg_raw' => 0.88254343324379
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.544759'
'max' => '$1.22'
'avg' => '$0.882543'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.13284234035228
'max_diff' => -0.88678685389842
'year' => 2034
]
9 => [
'items' => [
101 => 0.64407405371524
102 => 0.64912709934736
103 => 0.65229632219847
104 => 0.6541630188049
105 => 0.66090680695313
106 => 0.66011550125045
107 => 0.66085761827961
108 => 0.67085687580939
109 => 0.72142968906417
110 => 0.724182255707
111 => 0.71062761085373
112 => 0.71604242411907
113 => 0.70564716673911
114 => 0.71262557266045
115 => 0.71740002075953
116 => 0.69582520787334
117 => 0.6945476874736
118 => 0.68410952516864
119 => 0.68971840234359
120 => 0.6807942754657
121 => 0.68298394404883
122 => 0.67686143979852
123 => 0.68788072847063
124 => 0.70020200543039
125 => 0.7033148465724
126 => 0.69512630169015
127 => 0.689197255544
128 => 0.67878780366057
129 => 0.69609895413247
130 => 0.70116126207821
131 => 0.69607236398393
201 => 0.69489315510086
202 => 0.69265855639824
203 => 0.69536723577925
204 => 0.70113369166195
205 => 0.69841433755739
206 => 0.70021051885231
207 => 0.6933653279702
208 => 0.70792442799837
209 => 0.73104778268134
210 => 0.7311221280477
211 => 0.72840275928481
212 => 0.72729005217665
213 => 0.73008028955247
214 => 0.73159387886733
215 => 0.74061699489871
216 => 0.75029915789719
217 => 0.79548158795242
218 => 0.78279454239332
219 => 0.82288308225311
220 => 0.8545879124368
221 => 0.86409480472469
222 => 0.85534891115368
223 => 0.82542968169113
224 => 0.82396170155648
225 => 0.86867366194638
226 => 0.85604048519871
227 => 0.85453780902301
228 => 0.83855187332503
301 => 0.84800154121919
302 => 0.84593476023247
303 => 0.84267224533455
304 => 0.86070155340704
305 => 0.8944508086313
306 => 0.88919067070609
307 => 0.8852642217557
308 => 0.86805966542717
309 => 0.87842065111372
310 => 0.87473130256235
311 => 0.89058308525748
312 => 0.88119284034886
313 => 0.85594477645977
314 => 0.85996561385282
315 => 0.85935787236966
316 => 0.871865149028
317 => 0.86811077502486
318 => 0.85862477059
319 => 0.89433545734596
320 => 0.8920166039813
321 => 0.8953042078887
322 => 0.89675151280127
323 => 0.91848797853674
324 => 0.92739271305924
325 => 0.92941424369516
326 => 0.93787305277465
327 => 0.92920378081947
328 => 0.96388704972636
329 => 0.98694939972459
330 => 1.0137375060252
331 => 1.0528821292946
401 => 1.0676008697519
402 => 1.0649420610306
403 => 1.0946210676421
404 => 1.1479535827956
405 => 1.0757220871781
406 => 1.1517820274551
407 => 1.1277023285177
408 => 1.0706097955122
409 => 1.0669337094634
410 => 1.1055974356726
411 => 1.1913498591589
412 => 1.1698698496715
413 => 1.1913849927594
414 => 1.1662864355033
415 => 1.1650400805883
416 => 1.1901660118545
417 => 1.2488741198013
418 => 1.2209840983563
419 => 1.1809969137011
420 => 1.210522828581
421 => 1.1849447486176
422 => 1.1273101756062
423 => 1.1698534243131
424 => 1.1414059654648
425 => 1.1497084463068
426 => 1.2095007735659
427 => 1.2023064025592
428 => 1.2116165848226
429 => 1.1951843568175
430 => 1.1798340647362
501 => 1.1511816046388
502 => 1.1426990237531
503 => 1.1450433039387
504 => 1.1426978620443
505 => 1.1266670739495
506 => 1.1232052267867
507 => 1.1174353298485
508 => 1.119223662176
509 => 1.1083745678891
510 => 1.1288490503457
511 => 1.1326492947102
512 => 1.1475489156119
513 => 1.1490958436815
514 => 1.1905910758101
515 => 1.1677361992527
516 => 1.1830692236425
517 => 1.181697693621
518 => 1.0718471638222
519 => 1.086983597609
520 => 1.1105311385068
521 => 1.0999230032503
522 => 1.0849255819189
523 => 1.072814360083
524 => 1.0544646205656
525 => 1.0802915265609
526 => 1.1142511615593
527 => 1.149957116067
528 => 1.1928554808612
529 => 1.1832810652311
530 => 1.1491551609767
531 => 1.1506860241125
601 => 1.160149217646
602 => 1.1478935221984
603 => 1.1442790783512
604 => 1.159652648565
605 => 1.1597585178939
606 => 1.1456568591311
607 => 1.1299854459925
608 => 1.1299197821993
609 => 1.1271312055992
610 => 1.1667825170856
611 => 1.1885867292034
612 => 1.1910865469834
613 => 1.1884184715493
614 => 1.1894453078918
615 => 1.1767579172834
616 => 1.2057575298852
617 => 1.2323704421731
618 => 1.225237613178
619 => 1.214544488523
620 => 1.2060268996846
621 => 1.2232311399405
622 => 1.2224650622039
623 => 1.2321380016008
624 => 1.2316991811962
625 => 1.2284465354946
626 => 1.2252377293402
627 => 1.2379602830356
628 => 1.2342963918893
629 => 1.230626809708
630 => 1.2232669008586
701 => 1.2242672347064
702 => 1.2135759563701
703 => 1.2086296818121
704 => 1.1342495802323
705 => 1.1143727866502
706 => 1.1206264305406
707 => 1.1226852924851
708 => 1.1140348864453
709 => 1.1264373465993
710 => 1.1245044363218
711 => 1.132024259497
712 => 1.1273262004499
713 => 1.1275190104319
714 => 1.1413350003577
715 => 1.1453458410105
716 => 1.143305895083
717 => 1.1447346032854
718 => 1.1776585807889
719 => 1.1729778440375
720 => 1.1704912959288
721 => 1.1711800867483
722 => 1.1795928688984
723 => 1.1819479885796
724 => 1.1719691809992
725 => 1.1766752443409
726 => 1.1967130647617
727 => 1.2037251678666
728 => 1.2261044349769
729 => 1.2165973245487
730 => 1.2340480371977
731 => 1.2876855784947
801 => 1.3305349579182
802 => 1.2911288977748
803 => 1.3698163262505
804 => 1.4310857763601
805 => 1.4287341528153
806 => 1.4180504070008
807 => 1.3482967669836
808 => 1.2841084274717
809 => 1.3378046990543
810 => 1.3379415818933
811 => 1.3333290245435
812 => 1.3046808269897
813 => 1.3323321293672
814 => 1.3345269893351
815 => 1.3332984514134
816 => 1.3113339455182
817 => 1.2777982047355
818 => 1.2843510082112
819 => 1.295084633978
820 => 1.2747636411326
821 => 1.2682698526261
822 => 1.2803430409535
823 => 1.3192453692931
824 => 1.3118911094663
825 => 1.3116990600213
826 => 1.3431637022517
827 => 1.3206418089095
828 => 1.2844336600481
829 => 1.2752906249337
830 => 1.2428390097643
831 => 1.2652534559505
901 => 1.2660601119651
902 => 1.253783948859
903 => 1.2854298030263
904 => 1.285138180909
905 => 1.3151812095771
906 => 1.3726121967443
907 => 1.3556270278317
908 => 1.3358751243675
909 => 1.338022703935
910 => 1.3615763511117
911 => 1.3473352783512
912 => 1.3524564674081
913 => 1.3615685995787
914 => 1.3670661751587
915 => 1.3372316874119
916 => 1.3302758411696
917 => 1.3160466209281
918 => 1.3123344829681
919 => 1.3239238859523
920 => 1.3208704877256
921 => 1.2659923156506
922 => 1.2602572413295
923 => 1.2604331278711
924 => 1.2460120108027
925 => 1.2240163458088
926 => 1.2818196401199
927 => 1.2771772266301
928 => 1.2720523614317
929 => 1.2726801281764
930 => 1.2977705791015
1001 => 1.2832168504668
1002 => 1.3219103233513
1003 => 1.3139561085585
1004 => 1.3057978981703
1005 => 1.3046701849895
1006 => 1.3015299700158
1007 => 1.2907610044486
1008 => 1.2777568314117
1009 => 1.2691703499705
1010 => 1.1707425597569
1011 => 1.1890101850925
1012 => 1.2100254228945
1013 => 1.2172797987705
1014 => 1.2048706868471
1015 => 1.2912509918217
1016 => 1.3070335059219
1017 => 1.2592272412445
1018 => 1.2502846410403
1019 => 1.2918372672024
1020 => 1.2667759540247
1021 => 1.2780610618141
1022 => 1.2536688313974
1023 => 1.3032319604412
1024 => 1.3028543724388
1025 => 1.2835731958067
1026 => 1.2998695142644
1027 => 1.2970376278996
1028 => 1.2752692269695
1029 => 1.3039220575782
1030 => 1.3039362690247
1031 => 1.2853785557253
1101 => 1.2637072093974
1102 => 1.2598328845283
1103 => 1.2569141011817
1104 => 1.2773432200355
1105 => 1.2956599041196
1106 => 1.329742712109
1107 => 1.338311939825
1108 => 1.3717582060867
1109 => 1.351842582997
1110 => 1.3606709207622
1111 => 1.3702553302509
1112 => 1.3748504486147
1113 => 1.3673629498284
1114 => 1.4193187683652
1115 => 1.4237054313348
1116 => 1.4251762414841
1117 => 1.4076570317996
1118 => 1.4232181904215
1119 => 1.4159376396337
1120 => 1.4348796101883
1121 => 1.4378499530344
1122 => 1.4353341783167
1123 => 1.4362770120198
1124 => 1.3919418865331
1125 => 1.3896428763902
1126 => 1.3582957099614
1127 => 1.3710699119877
1128 => 1.347189153583
1129 => 1.3547619880722
1130 => 1.3581000213584
1201 => 1.3563564222014
1202 => 1.371792146204
1203 => 1.3586686274917
1204 => 1.3240335039038
1205 => 1.2893889439996
1206 => 1.2889540097709
1207 => 1.2798327086754
1208 => 1.2732396786329
1209 => 1.2745097301194
1210 => 1.2789855572132
1211 => 1.2729795354256
1212 => 1.274261224687
1213 => 1.2955458062773
1214 => 1.2998142773205
1215 => 1.2853083449163
1216 => 1.2270649331175
1217 => 1.2127718537695
1218 => 1.2230454357608
1219 => 1.2181353252724
1220 => 0.98313027905891
1221 => 1.0383412287876
1222 => 1.0055367572455
1223 => 1.0206545669933
1224 => 0.98716969622552
1225 => 1.0031504316483
1226 => 1.0001993733388
1227 => 1.0889769466918
1228 => 1.0875908069934
1229 => 1.0882542787142
1230 => 1.0565850448179
1231 => 1.1070349943281
]
'min_raw' => 0.64407405371524
'max_raw' => 1.4378499530344
'avg_raw' => 1.0409620033748
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.644074'
'max' => '$1.43'
'avg' => '$1.04'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.099314912266066
'max_diff' => 0.21752222799602
'year' => 2035
]
10 => [
'items' => [
101 => 1.1318884535783
102 => 1.1272887397245
103 => 1.1284463886045
104 => 1.1085541453708
105 => 1.088446879111
106 => 1.0661448263426
107 => 1.1075792837691
108 => 1.1029724794131
109 => 1.11353883113
110 => 1.1404120385672
111 => 1.1443692204437
112 => 1.1496877130156
113 => 1.1477814120246
114 => 1.1931972355458
115 => 1.1876970796542
116 => 1.2009508728502
117 => 1.1736868146782
118 => 1.1428349449284
119 => 1.1486988767442
120 => 1.1481341329556
121 => 1.1409442963436
122 => 1.1344536333297
123 => 1.1236485081444
124 => 1.1578375230883
125 => 1.156449511518
126 => 1.1789198054533
127 => 1.1749479627355
128 => 1.1484230249908
129 => 1.1493703683315
130 => 1.1557417075754
131 => 1.1777929854452
201 => 1.1843393060824
202 => 1.1813067895375
203 => 1.1884845312653
204 => 1.1941575256669
205 => 1.1891969720192
206 => 1.2594279507886
207 => 1.2302631519168
208 => 1.2444778719596
209 => 1.2478679989318
210 => 1.2391842599792
211 => 1.2410674520166
212 => 1.2439199748142
213 => 1.2612399346601
214 => 1.3066925208665
215 => 1.326823161891
216 => 1.3873871886418
217 => 1.325151592386
218 => 1.3214587896607
219 => 1.3323681997369
220 => 1.3679256947929
221 => 1.3967417047901
222 => 1.4063016377417
223 => 1.4075651406985
224 => 1.425500210448
225 => 1.4357802579592
226 => 1.4233224212413
227 => 1.4127657090127
228 => 1.3749528761574
229 => 1.3793298145213
301 => 1.4094825794479
302 => 1.4520751358956
303 => 1.4886239803279
304 => 1.4758258488636
305 => 1.573466557864
306 => 1.5831472353349
307 => 1.5818096787222
308 => 1.6038637026788
309 => 1.5600909563488
310 => 1.5413772592357
311 => 1.4150481900203
312 => 1.4505415055741
313 => 1.5021331241808
314 => 1.4953047799995
315 => 1.4578375675194
316 => 1.4885955580875
317 => 1.4784260045144
318 => 1.4704048556761
319 => 1.5071512934804
320 => 1.4667470756541
321 => 1.5017300612004
322 => 1.4568640203847
323 => 1.47588430965
324 => 1.4650874735551
325 => 1.472074349719
326 => 1.4312292144304
327 => 1.4532682579725
328 => 1.4303123177614
329 => 1.4303014336568
330 => 1.4297946800043
331 => 1.4568022418605
401 => 1.457682957483
402 => 1.4377243284651
403 => 1.4348479782113
404 => 1.445483352656
405 => 1.4330321145902
406 => 1.438857970514
407 => 1.4332085738312
408 => 1.4319367756434
409 => 1.4218028713045
410 => 1.4174369066778
411 => 1.419148913905
412 => 1.4133049506383
413 => 1.4097837513848
414 => 1.4290942248455
415 => 1.4187774178577
416 => 1.4275130262108
417 => 1.4175576979708
418 => 1.3830481929611
419 => 1.3632014116986
420 => 1.2980161557681
421 => 1.3165026134879
422 => 1.3287591540818
423 => 1.3247083674887
424 => 1.3334110245371
425 => 1.3339452969998
426 => 1.3311159744803
427 => 1.3278399814613
428 => 1.3262454092335
429 => 1.3381300442113
430 => 1.3450294748344
501 => 1.3299892619018
502 => 1.3264655504466
503 => 1.3416720361144
504 => 1.3509479835873
505 => 1.4194363680223
506 => 1.4143625272888
507 => 1.4270968718389
508 => 1.425663180067
509 => 1.4390108018958
510 => 1.4608285224599
511 => 1.4164669962224
512 => 1.4241666232711
513 => 1.4222788525291
514 => 1.4428890384899
515 => 1.4429533812408
516 => 1.4305965452022
517 => 1.4372953864855
518 => 1.4335562770542
519 => 1.4403133531675
520 => 1.4142947630524
521 => 1.4459825972793
522 => 1.463947557367
523 => 1.4641970008553
524 => 1.4727122493581
525 => 1.481364235007
526 => 1.4979709680307
527 => 1.4809010822362
528 => 1.4501940194118
529 => 1.4524109701646
530 => 1.4344074304659
531 => 1.4347100732208
601 => 1.4330945424764
602 => 1.4379428718519
603 => 1.4153586987051
604 => 1.420659159002
605 => 1.4132384835469
606 => 1.4241504921719
607 => 1.412410974711
608 => 1.4222779421889
609 => 1.4265361982572
610 => 1.4422492548229
611 => 1.4100901434804
612 => 1.3445155384725
613 => 1.3583001154604
614 => 1.3379116433401
615 => 1.3397986740592
616 => 1.3436107764306
617 => 1.3312545054028
618 => 1.333611692524
619 => 1.3335274772128
620 => 1.3328017551573
621 => 1.3295874118412
622 => 1.3249259780943
623 => 1.3434956954281
624 => 1.3466510522579
625 => 1.3536650196243
626 => 1.3745338288873
627 => 1.3724485427215
628 => 1.3758497309756
629 => 1.3684249561138
630 => 1.3401430880703
701 => 1.3416789295732
702 => 1.3225269614215
703 => 1.3531752607392
704 => 1.3459173389229
705 => 1.3412381095125
706 => 1.339961338415
707 => 1.3608818774197
708 => 1.3671416305792
709 => 1.3632409724866
710 => 1.3552406089384
711 => 1.3706036720462
712 => 1.3747141796182
713 => 1.3756343706739
714 => 1.4028547729257
715 => 1.3771556887788
716 => 1.3833417137599
717 => 1.4316033147837
718 => 1.3878367023008
719 => 1.4110208530449
720 => 1.4098861095105
721 => 1.4217463365223
722 => 1.4089132247214
723 => 1.4090723065226
724 => 1.4196033846277
725 => 1.404814384719
726 => 1.4011524203634
727 => 1.3960934428337
728 => 1.4071395351909
729 => 1.4137611679872
730 => 1.4671266652722
731 => 1.5016032102807
801 => 1.5001064925365
802 => 1.5137836909806
803 => 1.5076219878127
804 => 1.4877242229086
805 => 1.521687281326
806 => 1.510939948568
807 => 1.5118259456226
808 => 1.5117929687679
809 => 1.5189390055039
810 => 1.5138753835518
811 => 1.5038944649142
812 => 1.5105202644958
813 => 1.5301965204866
814 => 1.5912722228232
815 => 1.6254509949961
816 => 1.5892146178222
817 => 1.6142099855724
818 => 1.5992216716824
819 => 1.5964978491849
820 => 1.6121967872752
821 => 1.6279232042784
822 => 1.6269214995025
823 => 1.6155049283186
824 => 1.6090559969416
825 => 1.6578894658787
826 => 1.6938691339352
827 => 1.6914155617845
828 => 1.7022448313132
829 => 1.7340399015863
830 => 1.7369468443433
831 => 1.7365806363713
901 => 1.72937547544
902 => 1.7606818512355
903 => 1.7867981807074
904 => 1.7277076888615
905 => 1.7502085746051
906 => 1.7603099471486
907 => 1.7751417589847
908 => 1.8001655116525
909 => 1.8273479442724
910 => 1.831191838285
911 => 1.8284644115358
912 => 1.81053686652
913 => 1.8402802086465
914 => 1.857703160897
915 => 1.868078130245
916 => 1.8943873262812
917 => 1.7603723297865
918 => 1.6655098542901
919 => 1.6506957089106
920 => 1.6808208560773
921 => 1.6887646171417
922 => 1.6855624970173
923 => 1.5787861563271
924 => 1.6501335535747
925 => 1.7268973539536
926 => 1.7298461641566
927 => 1.7682757276817
928 => 1.7807899688464
929 => 1.8117308045621
930 => 1.8097954468638
1001 => 1.8173290479844
1002 => 1.8155972035506
1003 => 1.8729085863523
1004 => 1.9361315524053
1005 => 1.9339423421276
1006 => 1.9248532927373
1007 => 1.9383520809951
1008 => 2.0036049573465
1009 => 1.9975975181481
1010 => 2.0034332336169
1011 => 2.0803700523263
1012 => 2.1803988607833
1013 => 2.1339254365268
1014 => 2.2347593947957
1015 => 2.2982290265475
1016 => 2.4079931917799
1017 => 2.3942501776929
1018 => 2.4369805617312
1019 => 2.3696473142236
1020 => 2.2150365676516
1021 => 2.1905688251804
1022 => 2.2395538652296
1023 => 2.3599788063003
1024 => 2.2357612552793
1025 => 2.2608903040696
1026 => 2.2536531363275
1027 => 2.2532674984145
1028 => 2.2679857290507
1029 => 2.2466361678615
1030 => 2.1596542148641
1031 => 2.1995175313349
1101 => 2.1841243904518
1102 => 2.2012042278963
1103 => 2.2933770663233
1104 => 2.2526252573287
1105 => 2.209696536961
1106 => 2.2635386789477
1107 => 2.3320982278642
1108 => 2.3278078945063
1109 => 2.3194828545719
1110 => 2.3664106687973
1111 => 2.4439216693383
1112 => 2.4648725813201
1113 => 2.4803381162225
1114 => 2.4824705521932
1115 => 2.5044359679928
1116 => 2.3863223912405
1117 => 2.5737716709183
1118 => 2.6061389833368
1119 => 2.6000552700898
1120 => 2.6360301756182
1121 => 2.6254454458165
1122 => 2.610109833027
1123 => 2.6671377103715
1124 => 2.6017598509084
1125 => 2.5089642102443
1126 => 2.4580546864863
1127 => 2.525096454125
1128 => 2.5660365221867
1129 => 2.5930953028981
1130 => 2.601283273592
1201 => 2.3954912119775
1202 => 2.2845807045183
1203 => 2.3556730682081
1204 => 2.4424106584425
1205 => 2.3858405595472
1206 => 2.3880580003225
1207 => 2.3074039056583
1208 => 2.4495467561699
1209 => 2.4288377384599
1210 => 2.536276158973
1211 => 2.5106351176704
1212 => 2.5982469788633
1213 => 2.575175839618
1214 => 2.6709428487353
1215 => 2.7091469014604
1216 => 2.7732974519719
1217 => 2.8204868580679
1218 => 2.848197379917
1219 => 2.8465337441247
1220 => 2.9563366370179
1221 => 2.8915897072997
1222 => 2.8102523038939
1223 => 2.8087811668825
1224 => 2.8509069606663
1225 => 2.9391910677899
1226 => 2.9620818522856
1227 => 2.9748746780004
1228 => 2.9552820200967
1229 => 2.8850038683418
1230 => 2.8546581187324
1231 => 2.8805135766006
]
'min_raw' => 1.0661448263426
'max_raw' => 2.9748746780004
'avg_raw' => 2.0205097521715
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$1.06'
'max' => '$2.97'
'avg' => '$2.02'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.42207077262741
'max_diff' => 1.537024724966
'year' => 2036
]
11 => [
'items' => [
101 => 2.8488945734126
102 => 2.9034778436405
103 => 2.9784323320209
104 => 2.9629545265725
105 => 3.0146945096242
106 => 3.0682399488776
107 => 3.1448123318863
108 => 3.1648311882719
109 => 3.1979215966283
110 => 3.23198249646
111 => 3.242921939519
112 => 3.2638087306283
113 => 3.2636986469292
114 => 3.3266423977804
115 => 3.3960713041751
116 => 3.4222791090562
117 => 3.4825425112734
118 => 3.3793435468578
119 => 3.4576211468313
120 => 3.5282295014229
121 => 3.4440473102381
122 => 3.5600728488513
123 => 3.5645778575962
124 => 3.6325981410504
125 => 3.56364655266
126 => 3.5227033195751
127 => 3.6409048993683
128 => 3.6980989205154
129 => 3.6808716158855
130 => 3.5497709770352
131 => 3.4734647820533
201 => 3.2737567514201
202 => 3.5103195404501
203 => 3.6255423743554
204 => 3.5494725777312
205 => 3.5878377584326
206 => 3.7971457443881
207 => 3.8768366737514
208 => 3.8602615175255
209 => 3.8630624460774
210 => 3.9060622250692
211 => 4.0967469255296
212 => 3.982484232977
213 => 4.069833780092
214 => 4.1161636649196
215 => 4.1591974439401
216 => 4.0535200836314
217 => 3.9160353905787
218 => 3.8724882170741
219 => 3.5419089356287
220 => 3.5247008483964
221 => 3.5150414275745
222 => 3.4541401456447
223 => 3.406288420313
224 => 3.3682349517085
225 => 3.2683712863627
226 => 3.3020723418882
227 => 3.1429105024939
228 => 3.2447366069891
301 => 2.9907104682187
302 => 3.2022709850142
303 => 3.0871282141987
304 => 3.1644434880464
305 => 3.1641737423395
306 => 3.021811810356
307 => 2.9397004190057
308 => 2.9920249933973
309 => 3.048121090675
310 => 3.0572224937283
311 => 3.1299525481068
312 => 3.1502499429565
313 => 3.0887478889671
314 => 2.9854463411197
315 => 3.0094409346272
316 => 2.9392141693341
317 => 2.8161444643915
318 => 2.9045352750722
319 => 2.9347157841082
320 => 2.9480452162441
321 => 2.8270202960842
322 => 2.7889916385911
323 => 2.7687455004331
324 => 2.9698235436929
325 => 2.9808390528107
326 => 2.9244821507281
327 => 3.1792206921224
328 => 3.1215655146973
329 => 3.1859804737426
330 => 3.0072636767658
331 => 3.0140908990844
401 => 2.9294835033319
402 => 2.9768579914851
403 => 2.9433752302094
404 => 2.9730306010061
405 => 2.990805907988
406 => 3.0753994204994
407 => 3.2032369070426
408 => 3.0627639706752
409 => 3.0015579006904
410 => 3.039529802273
411 => 3.140653980066
412 => 3.2938622858739
413 => 3.2031598852311
414 => 3.2434120704097
415 => 3.2522053821762
416 => 3.1853247899276
417 => 3.2963282687076
418 => 3.3558159347764
419 => 3.416837970925
420 => 3.4698216951142
421 => 3.3924644277839
422 => 3.475247792556
423 => 3.4085390137807
424 => 3.3486943429926
425 => 3.3487851026553
426 => 3.3112436664788
427 => 3.2385024033613
428 => 3.2250877983912
429 => 3.2948722675234
430 => 3.3508328031535
501 => 3.3554419809009
502 => 3.3864246087819
503 => 3.4047598088154
504 => 3.5844696946396
505 => 3.6567504973563
506 => 3.7451340947126
507 => 3.7795644869095
508 => 3.8831876234434
509 => 3.7995035248326
510 => 3.7813979437005
511 => 3.5300421093389
512 => 3.5712016131344
513 => 3.6371019500124
514 => 3.5311287816214
515 => 3.5983443653045
516 => 3.6116141453443
517 => 3.5275278539106
518 => 3.5724419753195
519 => 3.4531633849663
520 => 3.2058368543616
521 => 3.2966036138382
522 => 3.3634385005738
523 => 3.2680568765199
524 => 3.4390247458579
525 => 3.3391488460839
526 => 3.3074929807441
527 => 3.1839921639231
528 => 3.2422797954803
529 => 3.3211146517598
530 => 3.2724038761148
531 => 3.3734860495379
601 => 3.5166453647361
602 => 3.6186692180309
603 => 3.6265013426517
604 => 3.5609068400504
605 => 3.6660224490875
606 => 3.666788101542
607 => 3.5482172651383
608 => 3.4755932880463
609 => 3.4590929676488
610 => 3.50031400308
611 => 3.5503639499165
612 => 3.6292787663712
613 => 3.676965337199
614 => 3.8013066229151
615 => 3.8349498096858
616 => 3.8719134719699
617 => 3.9213083239528
618 => 3.9806195083383
619 => 3.8508500134904
620 => 3.8560059974413
621 => 3.7351664406198
622 => 3.6060320440107
623 => 3.7040289542072
624 => 3.8321468783066
625 => 3.8027564849604
626 => 3.7994494653177
627 => 3.805010955066
628 => 3.7828515582835
629 => 3.682625427902
630 => 3.6322924926732
701 => 3.6972348204197
702 => 3.7317487773664
703 => 3.7852769146575
704 => 3.7786784418945
705 => 3.916561175054
706 => 3.9701382358023
707 => 3.9564309309712
708 => 3.9589534049449
709 => 4.0559521142558
710 => 4.1638346283156
711 => 4.2648808390842
712 => 4.3676693847138
713 => 4.2437537810521
714 => 4.1808370795647
715 => 4.2457510555224
716 => 4.2113067861489
717 => 4.4092337748031
718 => 4.4229378100615
719 => 4.6208504863416
720 => 4.8086931831346
721 => 4.6907125508304
722 => 4.8019629731289
723 => 4.9222893752247
724 => 5.1544185271227
725 => 5.0762455951655
726 => 5.0163663544123
727 => 4.9597807612349
728 => 5.0775263979271
729 => 5.2290042784991
730 => 5.2616311631372
731 => 5.3144991806802
801 => 5.2589149246274
802 => 5.325860038638
803 => 5.5622057082692
804 => 5.4983430220539
805 => 5.4076477411891
806 => 5.5942199484835
807 => 5.6617397050223
808 => 6.1356287167824
809 => 6.7339331695081
810 => 6.4862311974008
811 => 6.3324745900211
812 => 6.3686110399108
813 => 6.5870915721624
814 => 6.6572605848962
815 => 6.4665170195767
816 => 6.5338908714886
817 => 6.9051274195741
818 => 7.1042839169275
819 => 6.8338026432355
820 => 6.0875555365619
821 => 5.3994816234658
822 => 5.581989809591
823 => 5.5612990451728
824 => 5.9601464033881
825 => 5.4968199181085
826 => 5.5046211478536
827 => 5.9117162470501
828 => 5.8031102539614
829 => 5.6271824543622
830 => 5.4007660910962
831 => 4.9822145026204
901 => 4.6114916885328
902 => 5.3385644993237
903 => 5.3072117976263
904 => 5.2618084393584
905 => 5.3628487000272
906 => 5.8534715250565
907 => 5.8421610809484
908 => 5.7702098061724
909 => 5.8247842139406
910 => 5.617615296817
911 => 5.6710074439083
912 => 5.3993726290425
913 => 5.5221629098338
914 => 5.6268049923174
915 => 5.6478134396285
916 => 5.6951465441384
917 => 5.2906903485095
918 => 5.4722793061369
919 => 5.5789458061585
920 => 5.0970226785001
921 => 5.5694197354257
922 => 5.2836496659775
923 => 5.1866550122843
924 => 5.3172455354082
925 => 5.2663542815434
926 => 5.2226009699051
927 => 5.1981858702336
928 => 5.2940771376657
929 => 5.2896036954252
930 => 5.1327069702133
1001 => 4.928041588103
1002 => 4.9967340082514
1003 => 4.9717774080166
1004 => 4.8813314693003
1005 => 4.9422811115108
1006 => 4.6738897331238
1007 => 4.2121363163788
1008 => 4.5171847673702
1009 => 4.5054407338359
1010 => 4.4995188595784
1011 => 4.7287543395785
1012 => 4.7067186375388
1013 => 4.6667236225626
1014 => 4.8805969294858
1015 => 4.8025302954569
1016 => 5.0431132667217
1017 => 5.2015767715276
1018 => 5.1613853009515
1019 => 5.3104209931421
1020 => 4.9983165428724
1021 => 5.1019851217948
1022 => 5.1233510722323
1023 => 4.877957766077
1024 => 4.7103239509126
1025 => 4.6991446866066
1026 => 4.4084907524741
1027 => 4.5637557380111
1028 => 4.700382499982
1029 => 4.6349488836629
1030 => 4.61423455551
1031 => 4.7200595656536
1101 => 4.7282830752717
1102 => 4.5407861844911
1103 => 4.5797727253387
1104 => 4.7423530816464
1105 => 4.575676117498
1106 => 4.2518500026851
1107 => 4.1715366489652
1108 => 4.1608213671101
1109 => 3.9430051820893
1110 => 4.176903571294
1111 => 4.074800656319
1112 => 4.3973425413441
1113 => 4.2131083464446
1114 => 4.2051663785267
1115 => 4.1931609291854
1116 => 4.0056775408647
1117 => 4.0467244877161
1118 => 4.1831707906764
1119 => 4.2318563687503
1120 => 4.226778064088
1121 => 4.1825021293539
1122 => 4.2027714255457
1123 => 4.1374769602209
1124 => 4.114420125528
1125 => 4.041646412955
1126 => 3.934689159724
1127 => 3.9495622217928
1128 => 3.7376519162545
1129 => 3.622191934866
1130 => 3.5902341337558
1201 => 3.5474988265028
1202 => 3.5950612004244
1203 => 3.737051600984
1204 => 3.5657810529652
1205 => 3.2721497116189
1206 => 3.2897974555573
1207 => 3.3294466965246
1208 => 3.255560598288
1209 => 3.1856336070972
1210 => 3.2464294525815
1211 => 3.1220139823795
1212 => 3.3444817116966
1213 => 3.3384645830772
1214 => 3.4213867952545
1215 => 3.473239756264
1216 => 3.3537354687325
1217 => 3.3236804635922
1218 => 3.3408011604439
1219 => 3.0578341783088
1220 => 3.3982623558951
1221 => 3.4012063929115
1222 => 3.3759977606008
1223 => 3.5572652556247
1224 => 3.9397962088746
1225 => 3.7958726769901
1226 => 3.7401411353326
1227 => 3.6341954339022
1228 => 3.7753617906249
1229 => 3.7645224169668
1230 => 3.7155026585745
1231 => 3.6858553557479
]
'min_raw' => 2.7687455004331
'max_raw' => 7.1042839169275
'avg_raw' => 4.9365147086803
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$2.76'
'max' => '$7.10'
'avg' => '$4.93'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 1.7026006740904
'max_diff' => 4.1294092389272
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.086907757483976
]
1 => [
'year' => 2028
'avg' => 0.14915894134477
]
2 => [
'year' => 2029
'avg' => 0.40747534447033
]
3 => [
'year' => 2030
'avg' => 0.31436662142837
]
4 => [
'year' => 2031
'avg' => 0.30874698126916
]
5 => [
'year' => 2032
'avg' => 0.54133062441581
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.086907757483976
'min' => '$0.0869077'
'max_raw' => 0.54133062441581
'max' => '$0.54133'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.54133062441581
]
1 => [
'year' => 2033
'avg' => 1.3923580303691
]
2 => [
'year' => 2034
'avg' => 0.88254343324379
]
3 => [
'year' => 2035
'avg' => 1.0409620033748
]
4 => [
'year' => 2036
'avg' => 2.0205097521715
]
5 => [
'year' => 2037
'avg' => 4.9365147086803
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.54133062441581
'min' => '$0.54133'
'max_raw' => 4.9365147086803
'max' => '$4.93'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 4.9365147086803
]
]
]
]
'prediction_2025_max_price' => '$0.148596'
'last_price' => 0.144083
'sma_50day_nextmonth' => '$0.131172'
'sma_200day_nextmonth' => '$0.20210021'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.139939'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.138147'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.133432'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.129038'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.140782'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.183074'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.2196064'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.140598'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.1384079'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.135036'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.13389'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.146687'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.175548'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.237263'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.200275'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.361451'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.521767'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.590968'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.139847'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.141572'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.156625'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.198532'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.312375'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.458639'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.748994'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '60.03'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 113.59
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.02
'momentum_10_action' => 'BUY'
'vwma_10' => '0.132566'
'vwma_10_action' => 'BUY'
'hma_9' => '0.141986'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 204.49
'cci_20_action' => 'SELL'
'adx_14' => 18.75
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.004727'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 80.68
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.052273'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 20
'sell_pct' => 42.86
'buy_pct' => 57.14
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767678868
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Bella Protocol para 2026
La previsión del precio de Bella Protocol para 2026 sugiere que el precio medio podría oscilar entre $0.04978 en el extremo inferior y $0.148596 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Bella Protocol podría potencialmente ganar 3.13% para 2026 si BEL alcanza el objetivo de precio previsto.
Predicción de precio de Bella Protocol 2027-2032
La predicción del precio de BEL para 2027-2032 está actualmente dentro de un rango de precios de $0.0869077 en el extremo inferior y $0.54133 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Bella Protocol alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Bella Protocol | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.047922 | $0.0869077 | $0.125892 |
| 2028 | $0.086486 | $0.149158 | $0.211831 |
| 2029 | $0.189985 | $0.407475 | $0.624965 |
| 2030 | $0.161574 | $0.314366 | $0.467158 |
| 2031 | $0.19103 | $0.308746 | $0.426463 |
| 2032 | $0.291594 | $0.54133 | $0.791067 |
Predicción de precio de Bella Protocol 2032-2037
La predicción de precio de Bella Protocol para 2032-2037 se estima actualmente entre $0.54133 en el extremo inferior y $4.93 en el extremo superior. Comparado con el precio actual, Bella Protocol podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Bella Protocol | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.291594 | $0.54133 | $0.791067 |
| 2033 | $0.6776014 | $1.39 | $2.10 |
| 2034 | $0.544759 | $0.882543 | $1.22 |
| 2035 | $0.644074 | $1.04 | $1.43 |
| 2036 | $1.06 | $2.02 | $2.97 |
| 2037 | $2.76 | $4.93 | $7.10 |
Bella Protocol Histograma de precios potenciales
Pronóstico de precio de Bella Protocol basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Bella Protocol es Alcista, con 20 indicadores técnicos mostrando señales alcistas y 15 indicando señales bajistas. La predicción de precio de BEL se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Bella Protocol
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Bella Protocol aumentar durante el próximo mes, alcanzando $0.20210021 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Bella Protocol alcance $0.131172 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 60.03, lo que sugiere que el mercado de BEL está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de BEL para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.139939 | BUY |
| SMA 5 | $0.138147 | BUY |
| SMA 10 | $0.133432 | BUY |
| SMA 21 | $0.129038 | BUY |
| SMA 50 | $0.140782 | BUY |
| SMA 100 | $0.183074 | SELL |
| SMA 200 | $0.2196064 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.140598 | BUY |
| EMA 5 | $0.1384079 | BUY |
| EMA 10 | $0.135036 | BUY |
| EMA 21 | $0.13389 | BUY |
| EMA 50 | $0.146687 | SELL |
| EMA 100 | $0.175548 | SELL |
| EMA 200 | $0.237263 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.200275 | SELL |
| SMA 50 | $0.361451 | SELL |
| SMA 100 | $0.521767 | SELL |
| SMA 200 | $0.590968 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.198532 | SELL |
| EMA 50 | $0.312375 | SELL |
| EMA 100 | $0.458639 | SELL |
| EMA 200 | $0.748994 | SELL |
Osciladores de Bella Protocol
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 60.03 | NEUTRAL |
| Stoch RSI (14) | 113.59 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 204.49 | SELL |
| Índice Direccional Medio (14) | 18.75 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.004727 | BUY |
| Momentum (10) | 0.02 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 80.68 | SELL |
| VWMA (10) | 0.132566 | BUY |
| Promedio Móvil de Hull (9) | 0.141986 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.052273 | SELL |
Predicción de precios de Bella Protocol basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Bella Protocol
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Bella Protocol por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.20246 | $0.284491 | $0.399757 | $0.561725 | $0.789318 | $1.10 |
| Amazon.com acción | $0.300637 | $0.627298 | $1.30 | $2.73 | $5.69 | $11.89 |
| Apple acción | $0.20437 | $0.289884 | $0.411178 | $0.583225 | $0.827261 | $1.17 |
| Netflix acción | $0.22734 | $0.3587075 | $0.565984 | $0.893034 | $1.40 | $2.22 |
| Google acción | $0.186586 | $0.241629 | $0.3129086 | $0.405215 | $0.524752 | $0.679551 |
| Tesla acción | $0.326625 | $0.740434 | $1.67 | $3.80 | $8.62 | $19.55 |
| Kodak acción | $0.108046 | $0.081023 | $0.060759 | $0.045562 | $0.034167 | $0.025621 |
| Nokia acción | $0.095448 | $0.06323 | $0.041887 | $0.027748 | $0.018382 | $0.012177 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Bella Protocol
Podría preguntarse cosas como: "¿Debo invertir en Bella Protocol ahora?", "¿Debería comprar BEL hoy?", "¿Será Bella Protocol una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Bella Protocol regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Bella Protocol, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Bella Protocol a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Bella Protocol es de $0.144 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Bella Protocol
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Bella Protocol
basado en el historial de precios del último mes
Predicción de precios de Bella Protocol basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Bella Protocol ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.147828 | $0.15167 | $0.155613 | $0.159658 |
| Si Bella Protocol ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.151573 | $0.159453 | $0.167742 | $0.176462 |
| Si Bella Protocol ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.1628089 | $0.183968 | $0.207878 | $0.234895 |
| Si Bella Protocol ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.181534 | $0.228721 | $0.288173 | $0.363079 |
| Si Bella Protocol ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.218986 | $0.332829 | $0.505856 | $0.768832 |
| Si Bella Protocol ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.331342 | $0.761974 | $1.75 | $4.02 |
| Si Bella Protocol ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.518601 | $1.86 | $6.71 | $24.18 |
Cuadro de preguntas
¿Es BEL una buena inversión?
La decisión de adquirir Bella Protocol depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Bella Protocol ha experimentado un aumento de 4.0853% durante las últimas 24 horas, y Bella Protocol ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Bella Protocol dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Bella Protocol subir?
Parece que el valor medio de Bella Protocol podría potencialmente aumentar hasta $0.148596 para el final de este año. Mirando las perspectivas de Bella Protocol en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.467158. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Bella Protocol la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Bella Protocol, el precio de Bella Protocol aumentará en un 0.86% durante la próxima semana y alcanzará $0.145316 para el 13 de enero de 2026.
¿Cuál será el precio de Bella Protocol el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Bella Protocol, el precio de Bella Protocol disminuirá en un -11.62% durante el próximo mes y alcanzará $0.127343 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Bella Protocol este año en 2026?
Según nuestra predicción más reciente sobre el valor de Bella Protocol en 2026, se anticipa que BEL fluctúe dentro del rango de $0.04978 y $0.148596. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Bella Protocol no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Bella Protocol en 5 años?
El futuro de Bella Protocol parece estar en una tendencia alcista, con un precio máximo de $0.467158 proyectada después de un período de cinco años. Basado en el pronóstico de Bella Protocol para 2030, el valor de Bella Protocol podría potencialmente alcanzar su punto más alto de aproximadamente $0.467158, mientras que su punto más bajo se anticipa que esté alrededor de $0.161574.
¿Cuánto será Bella Protocol en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Bella Protocol, se espera que el valor de BEL en 2026 crezca en un 3.13% hasta $0.148596 si ocurre lo mejor. El precio estará entre $0.148596 y $0.04978 durante 2026.
¿Cuánto será Bella Protocol en 2027?
Según nuestra última simulación experimental para la predicción de precios de Bella Protocol, el valor de BEL podría disminuir en un -12.62% hasta $0.125892 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.125892 y $0.047922 a lo largo del año.
¿Cuánto será Bella Protocol en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Bella Protocol sugiere que el valor de BEL en 2028 podría aumentar en un 47.02% , alcanzando $0.211831 en el mejor escenario. Se espera que el precio oscile entre $0.211831 y $0.086486 durante el año.
¿Cuánto será Bella Protocol en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Bella Protocol podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.624965 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.624965 y $0.189985.
¿Cuánto será Bella Protocol en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Bella Protocol, se espera que el valor de BEL en 2030 aumente en un 224.23% , alcanzando $0.467158 en el mejor escenario. Se pronostica que el precio oscile entre $0.467158 y $0.161574 durante el transcurso de 2030.
¿Cuánto será Bella Protocol en 2031?
Nuestra simulación experimental indica que el precio de Bella Protocol podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.426463 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.426463 y $0.19103 durante el año.
¿Cuánto será Bella Protocol en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Bella Protocol, BEL podría experimentar un 449.04% aumento en valor, alcanzando $0.791067 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.791067 y $0.291594 a lo largo del año.
¿Cuánto será Bella Protocol en 2033?
Según nuestra predicción experimental de precios de Bella Protocol, se anticipa que el valor de BEL aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $2.10. A lo largo del año, el precio de BEL podría oscilar entre $2.10 y $0.6776014.
¿Cuánto será Bella Protocol en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Bella Protocol sugieren que BEL podría aumentar en un 746.96% en 2034, alcanzando potencialmente $1.22 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $1.22 y $0.544759.
¿Cuánto será Bella Protocol en 2035?
Basado en nuestra predicción experimental para el precio de Bella Protocol, BEL podría crecer en un 897.93% , con el valor potencialmente alcanzando $1.43 en 2035. El rango de precios esperado para el año está entre $1.43 y $0.644074.
¿Cuánto será Bella Protocol en 2036?
Nuestra reciente simulación de predicción de precios de Bella Protocol sugiere que el valor de BEL podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $2.97 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $2.97 y $1.06.
¿Cuánto será Bella Protocol en 2037?
Según la simulación experimental, el valor de Bella Protocol podría aumentar en un 4830.69% en 2037, con un máximo de $7.10 bajo condiciones favorables. Se espera que el precio caiga entre $7.10 y $2.76 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Aavegotchi
Predicción de precios de Tokamak Network
Predicción de precios de Chainflip
Predicción de precios de Kyber Network Crystal
Predicción de precios de Radicle
Predicción de precios de Ergo
Predicción de precios de CANTO
Predicción de precios de Mines of Dalarnia
Predicción de precios de Ethernity Chain
Predicción de precios de Huobi Token
Predicción de precios de MARBLEX
Predicción de precios de Loom Network (NEW)
Predicción de precios de Ardor
Predicción de precios de BTSE Token
Predicción de precios de Keep Network
Predicción de precios de Energy Web Token
Predicción de precios de Nakamoto Games
Predicción de precios de Gelato
Predicción de precios de Bifrost
Predicción de precios de Request
Predicción de precios de POL (ex-MATIC)
Predicción de precios de Maya Protocol
Predicción de precios de CertiK
Predicción de precios de Badger DAO
Predicción de precios de Electroneum
¿Cómo leer y predecir los movimientos de precio de Bella Protocol?
Los traders de Bella Protocol utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Bella Protocol
Las medias móviles son herramientas populares para la predicción de precios de Bella Protocol. Una media móvil simple (SMA) calcula el precio de cierre promedio de BEL durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de BEL por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de BEL.
¿Cómo leer gráficos de Bella Protocol y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Bella Protocol en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de BEL dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Bella Protocol?
La acción del precio de Bella Protocol está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de BEL. La capitalización de mercado de Bella Protocol puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de BEL, grandes poseedores de Bella Protocol, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Bella Protocol.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


