Predicción del precio de Bella Protocol - Pronóstico de BEL
Predicción de precio de Bella Protocol hasta $0.148857 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.049868 | $0.148857 |
| 2027 | $0.0480067 | $0.126113 |
| 2028 | $0.086638 | $0.2122036 |
| 2029 | $0.190318 | $0.626062 |
| 2030 | $0.161858 | $0.467979 |
| 2031 | $0.191366 | $0.427211 |
| 2032 | $0.2921062 | $0.792456 |
| 2033 | $0.678791 | $2.11 |
| 2034 | $0.545715 | $1.22 |
| 2035 | $0.645205 | $1.44 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Bella Protocol hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.45, equivalente a un ROI del 39.54% en los próximos 90 días.
Predicción del precio a largo plazo de Bella Protocol para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Bella Protocol'
'name_with_ticker' => 'Bella Protocol <small>BEL</small>'
'name_lang' => 'Bella Protocol'
'name_lang_with_ticker' => 'Bella Protocol <small>BEL</small>'
'name_with_lang' => 'Bella Protocol'
'name_with_lang_with_ticker' => 'Bella Protocol <small>BEL</small>'
'image' => '/uploads/coins/bella-protocol.png?1717212612'
'price_for_sd' => 0.1443
'ticker' => 'BEL'
'marketcap' => '$11.53M'
'low24h' => '$0.1368'
'high24h' => '$0.1458'
'volume24h' => '$2.02M'
'current_supply' => '80M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.1443'
'change_24h_pct' => '5.2663%'
'ath_price' => '$9.99'
'ath_days' => 1939
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '15 sept. 2020'
'ath_pct' => '-98.56%'
'fdv' => '$14.41M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$7.11'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.145571'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.127567'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.049868'
'current_year_max_price_prediction' => '$0.148857'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.161858'
'grand_prediction_max_price' => '$0.467979'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.14707109127926
107 => 0.14762020134729
108 => 0.14885737436882
109 => 0.13828586635548
110 => 0.1430321630903
111 => 0.14582016775415
112 => 0.13322386125442
113 => 0.14557117927486
114 => 0.13810183992045
115 => 0.13556663395785
116 => 0.13897995479851
117 => 0.13764978034734
118 => 0.13650617446469
119 => 0.13586802273253
120 => 0.13837438884343
121 => 0.1382574638686
122 => 0.13415656244647
123 => 0.12880710371543
124 => 0.13060255765556
125 => 0.12995025240664
126 => 0.1275862140355
127 => 0.12917929046257
128 => 0.12216418811528
129 => 0.11009506914006
130 => 0.1180682988222
131 => 0.11776133815265
201 => 0.1176065546635
202 => 0.12359821640574
203 => 0.12302225638038
204 => 0.12197688329453
205 => 0.12756701493898
206 => 0.12552654169088
207 => 0.13181479944558
208 => 0.13595665270183
209 => 0.13490614474113
210 => 0.13880157774795
211 => 0.13064392128804
212 => 0.13335356753565
213 => 0.13391202187188
214 => 0.12749803358222
215 => 0.12311649056355
216 => 0.12282429159745
217 => 0.11522729981689
218 => 0.11928555150529
219 => 0.12285664504922
220 => 0.12114636836973
221 => 0.12060494586607
222 => 0.12337095601707
223 => 0.12358589869508
224 => 0.11868518285789
225 => 0.11970419686593
226 => 0.12395365467643
227 => 0.11959712143209
228 => 0.11113308897401
301 => 0.10903389190001
302 => 0.10875382031445
303 => 0.10306063136033
304 => 0.10917417028619
305 => 0.10650544671239
306 => 0.1149359125058
307 => 0.1101204756581
308 => 0.10991289180009
309 => 0.10959909835277
310 => 0.10469873543728
311 => 0.10577160348146
312 => 0.10933798026274
313 => 0.11061050367642
314 => 0.11047776905889
315 => 0.10932050307089
316 => 0.10985029351404
317 => 0.10814365390543
318 => 0.107541003939
319 => 0.105638874873
320 => 0.10284327062257
321 => 0.10323201654003
322 => 0.097693193010263
323 => 0.094675347983633
324 => 0.09384004825482
325 => 0.092723050547873
326 => 0.093966216118037
327 => 0.097677502219119
328 => 0.093200903787946
329 => 0.085526089774568
330 => 0.085987359174018
331 => 0.08702369456247
401 => 0.085092490422135
402 => 0.083264767776985
403 => 0.084853824329117
404 => 0.081601904456363
405 => 0.087416673542862
406 => 0.087259400334774
407 => 0.089426786667312
408 => 0.090782097820294
409 => 0.087658544399868
410 => 0.086872979161618
411 => 0.087320472823275
412 => 0.079924399400536
413 => 0.088822369678197
414 => 0.088899319694654
415 => 0.088240426936035
416 => 0.092978321414878
417 => 0.10297675655158
418 => 0.099214943067032
419 => 0.0977582551844
420 => 0.094989090454684
421 => 0.098678838040299
422 => 0.098395522994753
423 => 0.097114264914752
424 => 0.096339356030199
425 => 0.097767149409991
426 => 0.096162436629753
427 => 0.095874186119864
428 => 0.094127701649584
429 => 0.093504286153674
430 => 0.093042734139389
501 => 0.092534610722825
502 => 0.093655404363299
503 => 0.091115538521302
504 => 0.088052709301972
505 => 0.087798068192656
506 => 0.088501154683753
507 => 0.088190091250076
508 => 0.08779657894061
509 => 0.087045256775141
510 => 0.086822355538104
511 => 0.087546676422167
512 => 0.086728960374591
513 => 0.087935544946087
514 => 0.08760742070601
515 => 0.08577454537403
516 => 0.083490104093023
517 => 0.083469767773844
518 => 0.082977588647085
519 => 0.082350724529531
520 => 0.082176345272736
521 => 0.084719998418536
522 => 0.089985284305209
523 => 0.088951582698042
524 => 0.089698538047222
525 => 0.093372819076305
526 => 0.094540762525965
527 => 0.093711783929653
528 => 0.092577026897848
529 => 0.092626950448258
530 => 0.09650475874025
531 => 0.096746612886805
601 => 0.097357700290045
602 => 0.098143120296487
603 => 0.093845544353003
604 => 0.092424535007795
605 => 0.091751181945438
606 => 0.089677515133811
607 => 0.091913787007395
608 => 0.090610807153367
609 => 0.090786623651805
610 => 0.090672122926549
611 => 0.090734648065044
612 => 0.087415048196397
613 => 0.088624535915499
614 => 0.08661352799849
615 => 0.083921014143848
616 => 0.08391198789329
617 => 0.084570976844732
618 => 0.084178984430174
619 => 0.083124142921645
620 => 0.08327397817922
621 => 0.081961263658796
622 => 0.083433365489463
623 => 0.083475580102533
624 => 0.082908740711798
625 => 0.085176716692847
626 => 0.086105908302775
627 => 0.085732802472916
628 => 0.086079730203128
629 => 0.088994537666703
630 => 0.089469778465231
701 => 0.089680849035293
702 => 0.089398042432902
703 => 0.086133007532775
704 => 0.086277825714596
705 => 0.085215245984766
706 => 0.084317478084953
707 => 0.084353384092773
708 => 0.084814953494935
709 => 0.086830654144862
710 => 0.091072577330589
711 => 0.091233555214682
712 => 0.091428665106259
713 => 0.090635055122842
714 => 0.090395694758018
715 => 0.090711472863372
716 => 0.092304516182206
717 => 0.09640225610529
718 => 0.094953841137625
719 => 0.093776257222991
720 => 0.094809315790469
721 => 0.094650284521386
722 => 0.093307900566918
723 => 0.093270224320264
724 => 0.090693760325528
725 => 0.08974130024992
726 => 0.088945353320342
727 => 0.088076200051963
728 => 0.087560936860186
729 => 0.088352615305688
730 => 0.088533681533038
731 => 0.086802662775778
801 => 0.086566731315498
802 => 0.087980318599311
803 => 0.087358251539551
804 => 0.087998062937035
805 => 0.088146504669452
806 => 0.08812260213163
807 => 0.087473092677293
808 => 0.087887070634836
809 => 0.086907889352477
810 => 0.085843176776185
811 => 0.085163956486448
812 => 0.084571246698154
813 => 0.084900116537195
814 => 0.083727755610276
815 => 0.083352693754792
816 => 0.08774682421762
817 => 0.090992815635374
818 => 0.090945617634606
819 => 0.090658311943272
820 => 0.090231433963781
821 => 0.092273287399148
822 => 0.091561946490414
823 => 0.09207950643604
824 => 0.092211247164124
825 => 0.092609986670266
826 => 0.092752501770893
827 => 0.092321722153696
828 => 0.090875973143084
829 => 0.08727330406633
830 => 0.085596251885882
831 => 0.085042796732821
901 => 0.085062913776473
902 => 0.084507995906092
903 => 0.084671444088593
904 => 0.084451155298493
905 => 0.084033981623624
906 => 0.084874357238336
907 => 0.084971202699291
908 => 0.084775048989077
909 => 0.0848212502887
910 => 0.083197181346468
911 => 0.083320655780854
912 => 0.082633134439823
913 => 0.082504232476573
914 => 0.080766238395777
915 => 0.077687129955378
916 => 0.079393254927648
917 => 0.077332495878621
918 => 0.07655205520116
919 => 0.080246539984835
920 => 0.079875716181611
921 => 0.079241027023724
922 => 0.078302189478398
923 => 0.077953965500412
924 => 0.075838266844485
925 => 0.07571326008108
926 => 0.076761857463626
927 => 0.076277965851614
928 => 0.075598398764264
929 => 0.073137075660495
930 => 0.070369733575784
1001 => 0.070453262238429
1002 => 0.071333502267346
1003 => 0.073892918867962
1004 => 0.072892910523744
1005 => 0.072167392996241
1006 => 0.072031525372316
1007 => 0.07373219314387
1008 => 0.076138994341532
1009 => 0.077268211614333
1010 => 0.076149191591825
1011 => 0.074863721642285
1012 => 0.07494196224182
1013 => 0.075462461898115
1014 => 0.075517159052523
1015 => 0.074680450263818
1016 => 0.074915978886789
1017 => 0.074558189371308
1018 => 0.072362435775229
1019 => 0.072322721555486
1020 => 0.071783848211699
1021 => 0.071767531341011
1022 => 0.070850773354973
1023 => 0.070722512575477
1024 => 0.068902233950967
1025 => 0.070100346853931
1026 => 0.069296715622373
1027 => 0.068085453798972
1028 => 0.067876631804066
1029 => 0.067870354362739
1030 => 0.069114049422184
1031 => 0.070085813553047
1101 => 0.069310695131711
1102 => 0.069134215692212
1103 => 0.071018554398196
1104 => 0.070778755121731
1105 => 0.070571090494852
1106 => 0.075923491692308
1107 => 0.071686648491447
1108 => 0.069839143025317
1109 => 0.067552504179208
1110 => 0.068297045317735
1111 => 0.068453931075208
1112 => 0.062954976847948
1113 => 0.0607240518028
1114 => 0.059958482397942
1115 => 0.059517886381884
1116 => 0.059718671519058
1117 => 0.057710577317016
1118 => 0.059060049831601
1119 => 0.05732120999261
1120 => 0.057029687834929
1121 => 0.060138948867966
1122 => 0.060571584376674
1123 => 0.05872582688721
1124 => 0.05991110199644
1125 => 0.059481304765277
1126 => 0.057351017410877
1127 => 0.057269656103272
1128 => 0.056200752792055
1129 => 0.054528126090467
1130 => 0.053763690805275
1201 => 0.053365566271616
1202 => 0.053529840213496
1203 => 0.053446778281616
1204 => 0.052904742990842
1205 => 0.05347784711
1206 => 0.052013802908524
1207 => 0.05143080871089
1208 => 0.051167483757182
1209 => 0.049868060261132
1210 => 0.051936020899599
1211 => 0.052343435196858
1212 => 0.05275165222614
1213 => 0.056304902764438
1214 => 0.056127392408926
1215 => 0.057731999571701
1216 => 0.057669647488039
1217 => 0.057211987532303
1218 => 0.055281195460461
1219 => 0.056050774767238
1220 => 0.053682129280157
1221 => 0.055456879531315
1222 => 0.054646957632029
1223 => 0.055183044122458
1224 => 0.054219112275696
1225 => 0.054752591959465
1226 => 0.052440048240813
1227 => 0.050280627454704
1228 => 0.051149641416457
1229 => 0.052094358976683
1230 => 0.054142747356811
1231 => 0.052922744136444
]
'min_raw' => 0.049868060261132
'max_raw' => 0.14885737436882
'avg_raw' => 0.099362717314977
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.049868'
'max' => '$0.148857'
'avg' => '$0.099362'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.094467939738868
'max_diff' => 0.0045213743688229
'year' => 2026
]
1 => [
'items' => [
101 => 0.053361503427917
102 => 0.0518917332489
103 => 0.048859177550492
104 => 0.04887634148641
105 => 0.048409848860027
106 => 0.048006731121793
107 => 0.053062876182216
108 => 0.052434064618128
109 => 0.051432135687575
110 => 0.052773257376193
111 => 0.053127871237126
112 => 0.053137966595219
113 => 0.054116414359873
114 => 0.054638612107265
115 => 0.054730651723578
116 => 0.056270260422024
117 => 0.056786316949814
118 => 0.058911880752725
119 => 0.054594307276792
120 => 0.054505389692313
121 => 0.052792129708649
122 => 0.05170555314144
123 => 0.052866528535812
124 => 0.053894994246281
125 => 0.05282408700511
126 => 0.052963924882721
127 => 0.051526319407786
128 => 0.05204019571945
129 => 0.052482815225671
130 => 0.052238426750308
131 => 0.051872565374154
201 => 0.053810671786491
202 => 0.053701316227206
203 => 0.055506125475248
204 => 0.056913103347244
205 => 0.059434659221239
206 => 0.056803284215044
207 => 0.05670738645105
208 => 0.057644802476578
209 => 0.056786173436304
210 => 0.05732879735089
211 => 0.059347234119666
212 => 0.05938988050798
213 => 0.058675498556965
214 => 0.058632028350323
215 => 0.058769233218497
216 => 0.059572846416912
217 => 0.059292039272847
218 => 0.059616996409126
219 => 0.060023360283964
220 => 0.061704253565006
221 => 0.062109511244427
222 => 0.061124945185449
223 => 0.061213840476856
224 => 0.060845585743855
225 => 0.060489856285994
226 => 0.061289484157149
227 => 0.06275081980841
228 => 0.062741728915167
301 => 0.063080730381954
302 => 0.063291925487322
303 => 0.062385321490815
304 => 0.061795155625843
305 => 0.062021462771703
306 => 0.062383332826262
307 => 0.061904113190172
308 => 0.058946147600096
309 => 0.059843405404552
310 => 0.059694057832225
311 => 0.059481368727947
312 => 0.060383568388617
313 => 0.060296549030414
314 => 0.057689981408522
315 => 0.057856845410688
316 => 0.057700128961165
317 => 0.058206511870743
318 => 0.05675882709738
319 => 0.057204125183361
320 => 0.057483411968478
321 => 0.057647914030493
322 => 0.058242208278615
323 => 0.058172474707916
324 => 0.05823787354195
325 => 0.059119055024049
326 => 0.06357576857554
327 => 0.063818337660964
328 => 0.062623838768864
329 => 0.063101017515809
330 => 0.062184938669195
331 => 0.062799908536122
401 => 0.063220655300532
402 => 0.061319381577111
403 => 0.061206800486375
404 => 0.060286940656493
405 => 0.060781221225548
406 => 0.059994785300151
407 => 0.060187749167883
408 => 0.059648205371418
409 => 0.060619276782956
410 => 0.061705085510297
411 => 0.06197940367471
412 => 0.061257790685536
413 => 0.060735295324761
414 => 0.059817965591911
415 => 0.061343505381667
416 => 0.061789619706174
417 => 0.061341162133037
418 => 0.061237244714349
419 => 0.061040321393711
420 => 0.061279022927739
421 => 0.061787190071754
422 => 0.061547547831011
423 => 0.061705835752975
424 => 0.061102605420243
425 => 0.062385621614462
426 => 0.064423360105543
427 => 0.064429911767996
428 => 0.064190268235491
429 => 0.064092211265182
430 => 0.064338100072317
501 => 0.064471484663302
502 => 0.065266643977282
503 => 0.066119881601728
504 => 0.070101569298277
505 => 0.068983527326067
506 => 0.072516317522105
507 => 0.075310295891778
508 => 0.076148087838976
509 => 0.075377358668711
510 => 0.072740735811206
511 => 0.072611370515144
512 => 0.076551598217713
513 => 0.075438303417876
514 => 0.07530588054391
515 => 0.073897124896888
516 => 0.074729873962059
517 => 0.074547739525814
518 => 0.074260231407881
519 => 0.075849058614424
520 => 0.078823201309491
521 => 0.078359653279131
522 => 0.078013636177842
523 => 0.076497489964057
524 => 0.077410548628272
525 => 0.077085425926432
526 => 0.078482359381503
527 => 0.077654846948584
528 => 0.075429869114811
529 => 0.075784204168462
530 => 0.075730647137926
531 => 0.076832847031269
601 => 0.07650199398157
602 => 0.075666042769971
603 => 0.07881303601309
604 => 0.078608687776378
605 => 0.078898406855525
606 => 0.079025950154026
607 => 0.080941469484871
608 => 0.081726196464937
609 => 0.081904343227991
610 => 0.082649773166091
611 => 0.08188579625206
612 => 0.08494224861449
613 => 0.086974611086567
614 => 0.0893353046823
615 => 0.092784912520287
616 => 0.094081996978026
617 => 0.093847690280488
618 => 0.096463143573419
619 => 0.10116305500256
620 => 0.094797676755927
621 => 0.10150043550597
622 => 0.09937841947278
623 => 0.094347157631516
624 => 0.09402320368362
625 => 0.097430432616674
626 => 0.10498733845656
627 => 0.10309441925338
628 => 0.10499043459425
629 => 0.10277863198634
630 => 0.10266879734433
701 => 0.10488301227842
702 => 0.11005664616252
703 => 0.10759884663495
704 => 0.10407498833502
705 => 0.10667695046638
706 => 0.10442289006796
707 => 0.099343861118552
708 => 0.10309297177374
709 => 0.10058604824714
710 => 0.10131770180759
711 => 0.10658688218378
712 => 0.10595288046039
713 => 0.10677333739743
714 => 0.10532525237865
715 => 0.10397251262907
716 => 0.10144752343069
717 => 0.10069999860952
718 => 0.10090658757696
719 => 0.10069989623428
720 => 0.099287187983643
721 => 0.098982113771422
722 => 0.098473643385446
723 => 0.098631239619583
724 => 0.09767516653569
725 => 0.099479473979776
726 => 0.099814369340901
727 => 0.10112739383195
728 => 0.1012637163904
729 => 0.10492047090825
730 => 0.10290639196908
731 => 0.10425761000869
801 => 0.10413674434907
802 => 0.094456200331737
803 => 0.095790093885162
804 => 0.097865213655435
805 => 0.096930375011685
806 => 0.095608731887977
807 => 0.094541434203561
808 => 0.09292436907488
809 => 0.095200357190513
810 => 0.098193039538219
811 => 0.10133961575342
812 => 0.10512002090414
813 => 0.10427627848327
814 => 0.10126894370872
815 => 0.10140385054985
816 => 0.10223779155781
817 => 0.10115776218097
818 => 0.10083924043306
819 => 0.10219403156088
820 => 0.1022033612628
821 => 0.10096065693883
822 => 0.09957961849524
823 => 0.099573831893735
824 => 0.099328089441947
825 => 0.1028223490226
826 => 0.10474383848246
827 => 0.1049641341524
828 => 0.10472901082865
829 => 0.10481950046425
830 => 0.10370142808469
831 => 0.10625700999031
901 => 0.10860226466777
902 => 0.10797368631515
903 => 0.1070313580069
904 => 0.1062807481207
905 => 0.10779686648069
906 => 0.10772935611671
907 => 0.10858178091411
908 => 0.10854311000146
909 => 0.10825647160341
910 => 0.10797369655191
911 => 0.10909486766766
912 => 0.10877198839178
913 => 0.10844860759521
914 => 0.10780001790055
915 => 0.10788817201199
916 => 0.10694600641
917 => 0.10651011749196
918 => 0.099955394008378
919 => 0.098203757711795
920 => 0.098754858148545
921 => 0.098936294721639
922 => 0.098173980360584
923 => 0.099266943331846
924 => 0.099096606210509
925 => 0.099759288305747
926 => 0.099345273302954
927 => 0.099362264623083
928 => 0.10057979446899
929 => 0.100933248563
930 => 0.10075347895807
1001 => 0.10087938342722
1002 => 0.10378079877799
1003 => 0.10336831029715
1004 => 0.1031491840129
1005 => 0.10320988349118
1006 => 0.10395125732034
1007 => 0.104158801515
1008 => 0.10327942217837
1009 => 0.10369414255716
1010 => 0.10545996929418
1011 => 0.106077908715
1012 => 0.10805007471851
1013 => 0.10721226354776
1014 => 0.10875010221128
1015 => 0.11347689397512
1016 => 0.11725298230518
1017 => 0.1137803354234
1018 => 0.12071464075961
1019 => 0.12611399213087
1020 => 0.12590675603216
1021 => 0.12496525423133
1022 => 0.11881823624433
1023 => 0.11316165864582
1024 => 0.11789362599795
1025 => 0.11790568875587
1026 => 0.11749920856374
1027 => 0.11497459500072
1028 => 0.11741135748417
1029 => 0.11760477884108
1030 => 0.1174965143161
1031 => 0.1155608990166
1101 => 0.11260557221576
1102 => 0.11318303599859
1103 => 0.11412893345481
1104 => 0.1123381522353
1105 => 0.11176588912841
1106 => 0.11282983512163
1107 => 0.11625809079375
1108 => 0.11560999891747
1109 => 0.11559307461943
1110 => 0.11836588649989
1111 => 0.11638115160374
1112 => 0.11319031966618
1113 => 0.11238459252005
1114 => 0.10952480395411
1115 => 0.11150007010282
1116 => 0.11157115641501
1117 => 0.1104893233321
1118 => 0.11327810445854
1119 => 0.11325240534951
1120 => 0.11589993797377
1121 => 0.12096102598353
1122 => 0.11946421321803
1123 => 0.11772358282452
1124 => 0.11791283761074
1125 => 0.11998849549496
1126 => 0.1187335053555
1127 => 0.11918480855975
1128 => 0.11998781239351
1129 => 0.12047228454388
1130 => 0.1178431295239
1201 => 0.11723014772172
1202 => 0.11597620208184
1203 => 0.1156490710704
1204 => 0.11667038362965
1205 => 0.11640130385379
1206 => 0.11156518188573
1207 => 0.11105978023214
1208 => 0.11107528017931
1209 => 0.10980442369082
1210 => 0.10786606250536
1211 => 0.11295995996721
1212 => 0.11255084871197
1213 => 0.11209922154889
1214 => 0.11215454329942
1215 => 0.1143656315394
1216 => 0.11308308869758
1217 => 0.11649293904721
1218 => 0.11579197632481
1219 => 0.11507303655355
1220 => 0.11497365717773
1221 => 0.11469692670285
1222 => 0.11374791493763
1223 => 0.11260192620437
1224 => 0.11184524517882
1225 => 0.10317132656017
1226 => 0.10478115540193
1227 => 0.10663311674386
1228 => 0.10727240637782
1229 => 0.10617885722143
1230 => 0.11379109492359
1231 => 0.11518192410512
]
'min_raw' => 0.048006731121793
'max_raw' => 0.12611399213087
'avg_raw' => 0.087060361626334
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0480067'
'max' => '$0.126113'
'avg' => '$0.08706'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0018613291393382
'max_diff' => -0.022743382237948
'year' => 2027
]
2 => [
'items' => [
101 => 0.11096901179272
102 => 0.11018094791114
103 => 0.11384276026047
104 => 0.11163423977547
105 => 0.11262873641463
106 => 0.11047917864134
107 => 0.11484691408352
108 => 0.11481363925741
109 => 0.11311449152062
110 => 0.11455059955249
111 => 0.11430104044107
112 => 0.11238270683106
113 => 0.11490772868063
114 => 0.11490898105996
115 => 0.11327358830596
116 => 0.1113638076028
117 => 0.11102238392008
118 => 0.11076516703897
119 => 0.11256547682956
120 => 0.11417962895839
121 => 0.11718316588788
122 => 0.11793832643423
123 => 0.12088576832053
124 => 0.11913071018558
125 => 0.119908704725
126 => 0.12075332785158
127 => 0.12115827123845
128 => 0.12049843772
129 => 0.12507702818491
130 => 0.12546360150453
131 => 0.12559321619475
201 => 0.12404934125114
202 => 0.1254206635495
203 => 0.12477906725952
204 => 0.12644832256547
205 => 0.12671008311156
206 => 0.12648838124142
207 => 0.12657146817036
208 => 0.12266444892727
209 => 0.12246184936835
210 => 0.11969939000663
211 => 0.1208251126156
212 => 0.11872062815543
213 => 0.11938798185634
214 => 0.11968214500892
215 => 0.11952849087163
216 => 0.12088875928289
217 => 0.11973225324884
218 => 0.11668004367777
219 => 0.11362700253425
220 => 0.11358867408965
221 => 0.11278486224721
222 => 0.11220385351061
223 => 0.11231577640567
224 => 0.1127102072862
225 => 0.1121809284708
226 => 0.11229387694118
227 => 0.11416957412127
228 => 0.11454573181387
229 => 0.1132674010001
301 => 0.10813471832055
302 => 0.10687514511663
303 => 0.10778050135719
304 => 0.10734779938661
305 => 0.086638052257225
306 => 0.091503500153254
307 => 0.088612616228432
308 => 0.089944868544164
309 => 0.086994024647685
310 => 0.088402322022064
311 => 0.088142260919802
312 => 0.095965757157546
313 => 0.09584360402466
314 => 0.095902072265172
315 => 0.093111230807336
316 => 0.097557117029273
317 => 0.099747320451096
318 => 0.099341972088093
319 => 0.099443989538173
320 => 0.097690991745813
321 => 0.095919045115666
322 => 0.093953683602202
323 => 0.097605082368193
324 => 0.097199109156871
325 => 0.098130265639094
326 => 0.10049845874621
327 => 0.10084718417713
328 => 0.1013158746927
329 => 0.10114788250653
330 => 0.1051501379302
331 => 0.10466543839066
401 => 0.10583342482337
402 => 0.10343078811594
403 => 0.10071197662111
404 => 0.10122873380164
405 => 0.10117896592965
406 => 0.1005453637984
407 => 0.099973376124578
408 => 0.099021177804185
409 => 0.10203407418874
410 => 0.10191175609773
411 => 0.10389194381208
412 => 0.10354192639905
413 => 0.10120442445105
414 => 0.10128790879041
415 => 0.10184938109385
416 => 0.10379264314682
417 => 0.10436953563151
418 => 0.10410229604741
419 => 0.10473483232073
420 => 0.10523476320058
421 => 0.10479761594217
422 => 0.11098669925931
423 => 0.10841656036465
424 => 0.109669228179
425 => 0.10996798207157
426 => 0.10920273025786
427 => 0.10936868597464
428 => 0.10962006366534
429 => 0.11114637977846
430 => 0.1151518749024
501 => 0.11692588142647
502 => 0.12226306758207
503 => 0.11677857488001
504 => 0.11645314778015
505 => 0.11741453617436
506 => 0.12054802944622
507 => 0.12308743142902
508 => 0.12392989756832
509 => 0.12404124337623
510 => 0.12562176585966
511 => 0.12652769187216
512 => 0.1254298488583
513 => 0.12449954185301
514 => 0.12116729763402
515 => 0.12155301397577
516 => 0.12421021707392
517 => 0.12796367295855
518 => 0.13118452858808
519 => 0.13005669720477
520 => 0.13866125453456
521 => 0.13951436124734
522 => 0.13939648948388
523 => 0.1413399935349
524 => 0.13748253378134
525 => 0.13583339500193
526 => 0.12470068478699
527 => 0.12782852226004
528 => 0.13237501771857
529 => 0.13177327199615
530 => 0.12847148546599
531 => 0.13118202388692
601 => 0.13028583511859
602 => 0.1295789738541
603 => 0.13281724233852
604 => 0.12925663311916
605 => 0.13233949791788
606 => 0.12838569192537
607 => 0.13006184904353
608 => 0.12911038119666
609 => 0.1297260975011
610 => 0.12612663256653
611 => 0.12806881647315
612 => 0.1260458313307
613 => 0.12604487217234
614 => 0.1260002146632
615 => 0.128380247712
616 => 0.12845786050428
617 => 0.12669901248518
618 => 0.12644553500726
619 => 0.12738277409606
620 => 0.12628551258638
621 => 0.12679891434068
622 => 0.12630106300251
623 => 0.12618898617993
624 => 0.12529593898935
625 => 0.12491118970481
626 => 0.12506205981305
627 => 0.12454706235476
628 => 0.12423675775787
629 => 0.12593848726863
630 => 0.1250293218386
701 => 0.12579914462721
702 => 0.12492183440021
703 => 0.12188069492756
704 => 0.12013170345737
705 => 0.11438727290732
706 => 0.11601638628537
707 => 0.11709649014046
708 => 0.11673951582279
709 => 0.11750643478786
710 => 0.11755351738366
711 => 0.1173041842103
712 => 0.11701548833711
713 => 0.11687496715193
714 => 0.11792229693945
715 => 0.1185303071326
716 => 0.11720489301224
717 => 0.11689436702836
718 => 0.11823443388216
719 => 0.11905187388885
720 => 0.12508739161837
721 => 0.1246402609705
722 => 0.1257624711517
723 => 0.12563612750701
724 => 0.126812382559
725 => 0.12873506244653
726 => 0.12482571664543
727 => 0.1255042439015
728 => 0.12533788468779
729 => 0.12715415096129
730 => 0.12715982114634
731 => 0.12607087878615
801 => 0.12666121210568
802 => 0.12633170424167
803 => 0.1269271694876
804 => 0.1246342892681
805 => 0.12742676987433
806 => 0.12900992643459
807 => 0.12903190856496
808 => 0.12978231220982
809 => 0.13054476577344
810 => 0.1320082289931
811 => 0.13050395057854
812 => 0.1277979001493
813 => 0.1279932682498
814 => 0.12640671187324
815 => 0.12643338217256
816 => 0.12629101402458
817 => 0.12671827155366
818 => 0.12472804826896
819 => 0.12519514969587
820 => 0.12454120496285
821 => 0.12550282235336
822 => 0.12446828100222
823 => 0.12533780446434
824 => 0.12571306196544
825 => 0.12709777022319
826 => 0.12426375846667
827 => 0.11848501664941
828 => 0.11969977823987
829 => 0.11790305043011
830 => 0.11806934442953
831 => 0.11840528477385
901 => 0.11731639220507
902 => 0.11752411859224
903 => 0.11751669714395
904 => 0.1174527431119
905 => 0.11716948009974
906 => 0.11675869269022
907 => 0.11839514329605
908 => 0.11867320814231
909 => 0.1192913118506
910 => 0.12113036922274
911 => 0.1209466040233
912 => 0.12124633268793
913 => 0.12059202669596
914 => 0.1180996958079
915 => 0.11823504136609
916 => 0.11654728008673
917 => 0.11924815200009
918 => 0.11860854988124
919 => 0.11819619423436
920 => 0.11808367917566
921 => 0.1199272952153
922 => 0.12047893402951
923 => 0.1201351897396
924 => 0.11943016017238
925 => 0.12078402536473
926 => 0.12114626257521
927 => 0.12122735412785
928 => 0.12362614367079
929 => 0.12136141981607
930 => 0.12190656135732
1001 => 0.12615960004464
1002 => 0.12230268083446
1003 => 0.12434577695965
1004 => 0.12424577803608
1005 => 0.12529095687913
1006 => 0.12416004286447
1007 => 0.12417406189907
1008 => 0.12510210990515
1009 => 0.12379883385495
1010 => 0.12347612437691
1011 => 0.12303030354429
1012 => 0.12400373702229
1013 => 0.12458726636775
1014 => 0.12929008433704
1015 => 0.13232831921976
1016 => 0.13219642143072
1017 => 0.13340172032017
1018 => 0.1328587221312
1019 => 0.13110523774334
1020 => 0.13409822177878
1021 => 0.1331511163982
1022 => 0.13322919461504
1023 => 0.13322628853991
1024 => 0.13385603082061
1025 => 0.1334098006997
1026 => 0.13253023532681
1027 => 0.13311413186893
1028 => 0.13484809585221
1029 => 0.1402303732608
1030 => 0.14324236700434
1031 => 0.14004904745547
1101 => 0.14225175652003
1102 => 0.14093091598678
1103 => 0.14069087997029
1104 => 0.14207434404175
1105 => 0.14346022968393
1106 => 0.14337195475988
1107 => 0.14236587294967
1108 => 0.14179756286346
1109 => 0.14610099723406
1110 => 0.14927169437122
1111 => 0.14905547408309
1112 => 0.1500098001163
1113 => 0.15281173086599
1114 => 0.1530679042988
1115 => 0.15303563233434
1116 => 0.15240067975219
1117 => 0.15515954445194
1118 => 0.15746103792208
1119 => 0.15225370657496
1120 => 0.15423659018297
1121 => 0.15512677051913
1122 => 0.15643381935721
1123 => 0.15863902983387
1124 => 0.16103447331472
1125 => 0.16137321528761
1126 => 0.16113286164755
1127 => 0.15955300227895
1128 => 0.16217412511928
1129 => 0.16370951740625
1130 => 0.16462380837631
1201 => 0.16694229815288
1202 => 0.15513226796983
1203 => 0.14677254160968
1204 => 0.14546704962263
1205 => 0.14812181891423
1206 => 0.14882186040504
1207 => 0.14853967455787
1208 => 0.13913004250646
1209 => 0.14541750985725
1210 => 0.15218229606143
1211 => 0.15244215904999
1212 => 0.15582875246881
1213 => 0.15693156610714
1214 => 0.15965821770024
1215 => 0.1594876649007
1216 => 0.16015156117312
1217 => 0.15999894291717
1218 => 0.16504949082915
1219 => 0.17062099518969
1220 => 0.17042807170998
1221 => 0.16962710203911
1222 => 0.17081667858598
1223 => 0.17656706816475
1224 => 0.17603766444045
1225 => 0.17655193506411
1226 => 0.18333196845523
1227 => 0.1921469763122
1228 => 0.18805152015032
1229 => 0.19693748158583
1230 => 0.20253072328491
1231 => 0.21220365645148
]
'min_raw' => 0.086638052257225
'max_raw' => 0.21220365645148
'avg_raw' => 0.14942085435435
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.086638'
'max' => '$0.2122036'
'avg' => '$0.14942'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.038631321135432
'max_diff' => 0.086089664320609
'year' => 2028
]
3 => [
'items' => [
101 => 0.21099255757883
102 => 0.21475815947731
103 => 0.20882443783281
104 => 0.19519941353404
105 => 0.19304320128427
106 => 0.19735999281231
107 => 0.20797240355766
108 => 0.19702577023158
109 => 0.19924025989652
110 => 0.19860248672404
111 => 0.19856850250204
112 => 0.19986554203196
113 => 0.19798411854478
114 => 0.19031886079639
115 => 0.19383180325083
116 => 0.19247528746382
117 => 0.19398044286446
118 => 0.20210314578841
119 => 0.19851190520468
120 => 0.19472882497841
121 => 0.19947364711486
122 => 0.20551543619233
123 => 0.20513735189
124 => 0.2044037103165
125 => 0.20853920945409
126 => 0.21536984244182
127 => 0.21721613509069
128 => 0.2185790305783
129 => 0.21876695083974
130 => 0.22070264632429
131 => 0.21029392384576
201 => 0.22681283373414
202 => 0.22966519314619
203 => 0.22912906779491
204 => 0.23229934523576
205 => 0.23136656919049
206 => 0.23001512304896
207 => 0.23504068713007
208 => 0.22927928345319
209 => 0.22110169627441
210 => 0.21661531021379
211 => 0.22252334528485
212 => 0.22613117614073
213 => 0.22851572283533
214 => 0.22923728522434
215 => 0.21110192334194
216 => 0.20132796912061
217 => 0.20759296171787
218 => 0.21523668507322
219 => 0.21025146257658
220 => 0.21044687386018
221 => 0.2033392566734
222 => 0.21586555148186
223 => 0.21404057569099
224 => 0.22350855332235
225 => 0.22124894447536
226 => 0.22896971268896
227 => 0.2269365756672
228 => 0.23537601377337
301 => 0.23874273412259
302 => 0.24439598157711
303 => 0.2485545334175
304 => 0.25099651459861
305 => 0.25084990720814
306 => 0.26052625323786
307 => 0.25482045004991
308 => 0.24765261649129
309 => 0.24752297299644
310 => 0.25123529556544
311 => 0.25901530524409
312 => 0.26103254855923
313 => 0.262159912375
314 => 0.26043331544734
315 => 0.25424007502542
316 => 0.25156586521167
317 => 0.2538443694523
318 => 0.25105795456012
319 => 0.25586808839396
320 => 0.26247342953698
321 => 0.26110945271129
322 => 0.26566902274072
323 => 0.27038769804041
324 => 0.27713561564795
325 => 0.27889977118523
326 => 0.28181585320352
327 => 0.28481745948338
328 => 0.28578149452491
329 => 0.28762213654171
330 => 0.28761243544971
331 => 0.29315933405682
401 => 0.29927773499361
402 => 0.30158728970594
403 => 0.30689798341735
404 => 0.29780360654546
405 => 0.30470179587146
406 => 0.3109241353164
407 => 0.3035056057132
408 => 0.31373032047549
409 => 0.31412732298001
410 => 0.32012158945515
411 => 0.31404525202009
412 => 0.31043714224751
413 => 0.32085361996684
414 => 0.32589382541925
415 => 0.32437567451843
416 => 0.31282247120285
417 => 0.30609801133298
418 => 0.28849880280209
419 => 0.30934582553616
420 => 0.31949980219393
421 => 0.31279617485633
422 => 0.3161770945587
423 => 0.33462229618795
424 => 0.34164503473001
425 => 0.34018435420591
426 => 0.34043118516964
427 => 0.34422052741521
428 => 0.36102455776097
429 => 0.35095519326342
430 => 0.35865284512991
501 => 0.36273565192394
502 => 0.36652799041154
503 => 0.35721520566689
504 => 0.34509940954608
505 => 0.3412618283281
506 => 0.31212963123166
507 => 0.31061317385807
508 => 0.30976194038091
509 => 0.3043950337168
510 => 0.30017811519827
511 => 0.29682466502819
512 => 0.28802421035691
513 => 0.29099410546841
514 => 0.27696801752002
515 => 0.28594141153536
516 => 0.26355543649799
517 => 0.28219914171195
518 => 0.27205222058925
519 => 0.27886560522258
520 => 0.27884183396545
521 => 0.26629623266993
522 => 0.2590601916627
523 => 0.26367127862344
524 => 0.26861472987389
525 => 0.26941678820751
526 => 0.275826101791
527 => 0.27761480344441
528 => 0.27219495392806
529 => 0.26309153692293
530 => 0.26520605306638
531 => 0.25901734106054
601 => 0.24817186131567
602 => 0.25596127421235
603 => 0.25862092225158
604 => 0.25979557434251
605 => 0.2491302906252
606 => 0.24577902692664
607 => 0.24399484225336
608 => 0.26171478272392
609 => 0.2626855210634
610 => 0.25771908647004
611 => 0.28016784176866
612 => 0.27508699706165
613 => 0.28076354543656
614 => 0.26501418288967
615 => 0.26561582974829
616 => 0.25815982912387
617 => 0.26233469126341
618 => 0.25938403326527
619 => 0.26199740365932
620 => 0.26356384709819
621 => 0.27101862426628
622 => 0.28228426329244
623 => 0.26990512915228
624 => 0.26451136313494
625 => 0.2678576252364
626 => 0.27676916217786
627 => 0.29027059681736
628 => 0.28227747576908
629 => 0.28582468715831
630 => 0.28659959504241
701 => 0.28070576350283
702 => 0.2904879107931
703 => 0.29573024299597
704 => 0.30110779108832
705 => 0.30577696542143
706 => 0.29895988012542
707 => 0.30625513858294
708 => 0.30037644805265
709 => 0.29510265491913
710 => 0.29511065308638
711 => 0.2918023256159
712 => 0.28539202426574
713 => 0.28420986634511
714 => 0.29035960113834
715 => 0.29529110606046
716 => 0.29569728842617
717 => 0.29842762294092
718 => 0.30004340678208
719 => 0.31588028497698
720 => 0.3222500083965
721 => 0.33003878562119
722 => 0.33307295330164
723 => 0.34220471021048
724 => 0.33483007486156
725 => 0.33323452611519
726 => 0.31108387082927
727 => 0.31471103939144
728 => 0.32051848622918
729 => 0.31117963348861
730 => 0.31710298604491
731 => 0.31827238131328
801 => 0.31086230284604
802 => 0.31482034592599
803 => 0.30430895698364
804 => 0.28251338284707
805 => 0.29051217549771
806 => 0.29640197925307
807 => 0.2879965030866
808 => 0.30306299377814
809 => 0.29426146095164
810 => 0.29147179759372
811 => 0.28058832624769
812 => 0.28572490577979
813 => 0.29267220314568
814 => 0.28837958108357
815 => 0.29728741640291
816 => 0.30990328684799
817 => 0.31889410741523
818 => 0.31958431097892
819 => 0.31380381569238
820 => 0.32306709627969
821 => 0.32313456916581
822 => 0.31268555082172
823 => 0.30628558526634
824 => 0.30483149962651
825 => 0.30846409064508
826 => 0.31287472675491
827 => 0.31982907058655
828 => 0.32403143491542
829 => 0.33498897232329
830 => 0.33795376776864
831 => 0.34121117909327
901 => 0.34556408517142
902 => 0.35079086498045
903 => 0.33935496831903
904 => 0.33980933781257
905 => 0.32916038918222
906 => 0.31778046035698
907 => 0.32641640780718
908 => 0.33770676030638
909 => 0.33511674096833
910 => 0.33482531088351
911 => 0.33531541545022
912 => 0.33336262545145
913 => 0.32453022866082
914 => 0.3200946542863
915 => 0.32581767686514
916 => 0.32885920866337
917 => 0.33357635923297
918 => 0.3329948708583
919 => 0.34514574414061
920 => 0.34986720607477
921 => 0.34865925406927
922 => 0.34888154630927
923 => 0.35742952761467
924 => 0.3669366408527
925 => 0.37584130697421
926 => 0.38489951581731
927 => 0.37397949150904
928 => 0.36843497661877
929 => 0.37415550070499
930 => 0.37112011010263
1001 => 0.3885623648591
1002 => 0.38977002873452
1003 => 0.40721102221744
1004 => 0.4237646018676
1005 => 0.41336759507752
1006 => 0.42317150418909
1007 => 0.4337752312177
1008 => 0.4542315410486
1009 => 0.44734257555921
1010 => 0.44206573595819
1011 => 0.43707914803273
1012 => 0.44745544590707
1013 => 0.460804387357
1014 => 0.46367962149075
1015 => 0.46833859921139
1016 => 0.46344025381083
1017 => 0.46933977131076
1018 => 0.49016766046486
1019 => 0.48453978096256
1020 => 0.47654728734251
1021 => 0.49298890549794
1022 => 0.49893906319321
1023 => 0.54070038602043
1024 => 0.593425781164
1025 => 0.57159712136095
1026 => 0.55804736781475
1027 => 0.56123188130256
1028 => 0.58048541074173
1029 => 0.58666903332111
1030 => 0.56985981552782
1031 => 0.57579711542291
1101 => 0.60851222158728
1102 => 0.6260628264182
1103 => 0.60222674769711
1104 => 0.53646395185822
1105 => 0.47582765073979
1106 => 0.49191112828463
1107 => 0.49008776105946
1108 => 0.52523606134047
1109 => 0.48440555789769
1110 => 0.48509303886
1111 => 0.52096816876813
1112 => 0.51139729916407
1113 => 0.49589371614986
1114 => 0.47594084405309
1115 => 0.43905611456492
1116 => 0.40638628105047
1117 => 0.47045934798562
1118 => 0.46769640083007
1119 => 0.463695243903
1120 => 0.4725993856738
1121 => 0.51583537062806
1122 => 0.51483864123364
1123 => 0.50849795736214
1124 => 0.51330731019445
1125 => 0.49505061334548
1126 => 0.49975577982072
1127 => 0.4758180456399
1128 => 0.48663890121771
1129 => 0.49586045242373
1130 => 0.49771181535573
1201 => 0.50188303057448
1202 => 0.46624045322838
1203 => 0.48224292404569
1204 => 0.49164287642211
1205 => 0.44917354961223
1206 => 0.49080339438037
1207 => 0.46561999525436
1208 => 0.45707237134903
1209 => 0.46858062087374
1210 => 0.46409584484182
1211 => 0.46024009776446
1212 => 0.45808852464515
1213 => 0.46653891297695
1214 => 0.46614469226087
1215 => 0.45231821680036
1216 => 0.43428214320136
1217 => 0.44033564151512
1218 => 0.43813634882588
1219 => 0.43016582840568
1220 => 0.43553699680459
1221 => 0.41188508946191
1222 => 0.37119321219799
1223 => 0.39807551274444
1224 => 0.39704057341572
1225 => 0.39651871007542
1226 => 0.41672001596386
1227 => 0.41477812652611
1228 => 0.41125357818156
1229 => 0.43010109731134
1230 => 0.42322149929407
1231 => 0.44442279934617
]
'min_raw' => 0.19031886079639
'max_raw' => 0.6260628264182
'avg_raw' => 0.4081908436073
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.190318'
'max' => '$0.626062'
'avg' => '$0.40819'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.10368080853917
'max_diff' => 0.41385916996672
'year' => 2029
]
4 => [
'items' => [
101 => 0.4583873467746
102 => 0.45484548584096
103 => 0.46797921019392
104 => 0.44047510188992
105 => 0.44961086339521
106 => 0.45149373117983
107 => 0.42986852185091
108 => 0.41509584365388
109 => 0.414110674439
110 => 0.3884968862458
111 => 0.40217956515133
112 => 0.41421975636047
113 => 0.40845343912788
114 => 0.40662799535586
115 => 0.41595379169663
116 => 0.41667848594235
117 => 0.40015538034024
118 => 0.40359105721362
119 => 0.41791840090938
120 => 0.40323004491267
121 => 0.37469296854038
122 => 0.3676153790441
123 => 0.36667109813944
124 => 0.34747611409484
125 => 0.36808833741706
126 => 0.35909054956367
127 => 0.38751445358247
128 => 0.37127887204738
129 => 0.37057898857705
130 => 0.36952101206106
131 => 0.35299909635907
201 => 0.35661634587529
202 => 0.36864063418985
203 => 0.37293103572379
204 => 0.37248351169358
205 => 0.36858170861728
206 => 0.37036793408514
207 => 0.36461387949095
208 => 0.36258200305345
209 => 0.35616884210505
210 => 0.34674326719184
211 => 0.34805395119393
212 => 0.32937942095502
213 => 0.31920454574853
214 => 0.31638827439407
215 => 0.31262223863881
216 => 0.31681365815367
217 => 0.32932651835719
218 => 0.31423335420036
219 => 0.28835718291586
220 => 0.28991238490091
221 => 0.2934064620177
222 => 0.28689527242619
223 => 0.28073297792055
224 => 0.28609059303045
225 => 0.27512651813766
226 => 0.294731418087
227 => 0.29420116048547
228 => 0.30150865482771
301 => 0.30607818100479
302 => 0.29554690256829
303 => 0.29289831452111
304 => 0.2944070706444
305 => 0.26947069272228
306 => 0.29947082074986
307 => 0.29973026310282
308 => 0.29750876016471
309 => 0.31348290218936
310 => 0.34719332432121
311 => 0.33451010751662
312 => 0.32959878261762
313 => 0.32026235039448
314 => 0.33270259198933
315 => 0.33174737553285
316 => 0.32742752446154
317 => 0.32481486505486
318 => 0.32962877012018
319 => 0.32421836894414
320 => 0.32324651222504
321 => 0.31735811789784
322 => 0.3152562290279
323 => 0.3137000741872
324 => 0.31198690061221
325 => 0.31576573462238
326 => 0.30720239960832
327 => 0.29687585705544
328 => 0.29601731677691
329 => 0.29838782196957
330 => 0.29733904988518
331 => 0.29601229565966
401 => 0.29347916052314
402 => 0.29272763344001
403 => 0.29516973187109
404 => 0.29241274512558
405 => 0.29648082924942
406 => 0.2953745354651
407 => 0.28919486831606
408 => 0.28149271504255
409 => 0.2814241497226
410 => 0.27976473343388
411 => 0.2776512172953
412 => 0.27706328545624
413 => 0.28563938962949
414 => 0.30339166860693
415 => 0.29990647146763
416 => 0.30242488357815
417 => 0.31481297859781
418 => 0.31875078148155
419 => 0.31595582226664
420 => 0.31212990970771
421 => 0.31229823044347
422 => 0.32537253183984
423 => 0.32618795998067
424 => 0.32824828382546
425 => 0.33089638221345
426 => 0.31640680487282
427 => 0.31161577265375
428 => 0.309345515792
429 => 0.30235400335781
430 => 0.30989375011111
501 => 0.30550066256211
502 => 0.30609344016171
503 => 0.30570739297232
504 => 0.30591820084213
505 => 0.29472593811792
506 => 0.29880381040661
507 => 0.29202355681032
508 => 0.28294555836408
509 => 0.28291512573014
510 => 0.28513695298906
511 => 0.28381532319534
512 => 0.28025885140265
513 => 0.28076403143473
514 => 0.27633812277832
515 => 0.28130141687928
516 => 0.28144374639458
517 => 0.27953260781325
518 => 0.28717924717839
519 => 0.29031208156535
520 => 0.28905412921056
521 => 0.29022382027469
522 => 0.30005129714349
523 => 0.30165360467598
524 => 0.30236524383942
525 => 0.30141174163453
526 => 0.2904034485113
527 => 0.29089171312219
528 => 0.28730915137612
529 => 0.28428226422175
530 => 0.28440332383399
531 => 0.28595953729913
601 => 0.29275561277208
602 => 0.30705755295438
603 => 0.30760030112972
604 => 0.3082581277513
605 => 0.30558241628413
606 => 0.30477539610252
607 => 0.30584006403165
608 => 0.31121112080383
609 => 0.32502693704957
610 => 0.32014350486098
611 => 0.31617319847651
612 => 0.31965622756261
613 => 0.31912004253569
614 => 0.31459410131094
615 => 0.31446707321488
616 => 0.30578034497366
617 => 0.30256905933011
618 => 0.29988546868579
619 => 0.29695505775911
620 => 0.29521781193351
621 => 0.29788701108574
622 => 0.29849748851289
623 => 0.29266123791692
624 => 0.29186577852638
625 => 0.29663178674726
626 => 0.29453444422395
627 => 0.29669161302077
628 => 0.29719209468549
629 => 0.2971115056104
630 => 0.2949216391378
701 => 0.29631739472467
702 => 0.29301601666695
703 => 0.28942626388012
704 => 0.28713622525162
705 => 0.28513786281872
706 => 0.286246670442
707 => 0.28229397372527
708 => 0.28102942649352
709 => 0.29584454413734
710 => 0.30678863083018
711 => 0.30662949947533
712 => 0.30566082827795
713 => 0.30422157936643
714 => 0.31110583078143
715 => 0.30870749524339
716 => 0.31045248473495
717 => 0.31089665779753
718 => 0.31224103588159
719 => 0.31272153549344
720 => 0.31126913193799
721 => 0.30639468820974
722 => 0.29424803788714
723 => 0.28859373937272
724 => 0.28672772668316
725 => 0.28679555270037
726 => 0.28492460835725
727 => 0.28547568531614
728 => 0.28473296628024
729 => 0.28332643610929
730 => 0.28615982116744
731 => 0.28648634240058
801 => 0.28582499647158
802 => 0.28598076737893
803 => 0.28050510555133
804 => 0.28092140822757
805 => 0.27860338202507
806 => 0.27816878005633
807 => 0.27230901167006
808 => 0.26192758258676
809 => 0.26767990204861
810 => 0.26073190903722
811 => 0.25810059880453
812 => 0.27055681219338
813 => 0.26930655385072
814 => 0.26716665504232
815 => 0.26400129871071
816 => 0.26282723725671
817 => 0.25569401152489
818 => 0.25527254249437
819 => 0.25880796178036
820 => 0.25717648742623
821 => 0.25488527954537
822 => 0.24658675685692
823 => 0.23725646980866
824 => 0.23753809252655
825 => 0.24050588324044
826 => 0.24913513500218
827 => 0.2457635370513
828 => 0.2433174040533
829 => 0.24285931687327
830 => 0.24859323700189
831 => 0.2567079352773
901 => 0.26051517015198
902 => 0.25674231601862
903 => 0.2524082643351
904 => 0.25267205797901
905 => 0.25442695891034
906 => 0.25461137418526
907 => 0.251790352087
908 => 0.25258445328343
909 => 0.25137814095191
910 => 0.24397500440012
911 => 0.24384110513549
912 => 0.24202425603398
913 => 0.24196924256525
914 => 0.23887832900932
915 => 0.23844588883637
916 => 0.23230869236604
917 => 0.23634821366795
918 => 0.23363871486302
919 => 0.22955486105782
920 => 0.22885080312251
921 => 0.2288296382908
922 => 0.23302284301573
923 => 0.23629921362934
924 => 0.23368584775476
925 => 0.23309083500309
926 => 0.23944401451065
927 => 0.23863551450779
928 => 0.23793535871959
929 => 0.25598135304953
930 => 0.24169654039088
1001 => 0.23546754672311
1002 => 0.22775798420543
1003 => 0.23026825663618
1004 => 0.23079720792091
1005 => 0.21225709981898
1006 => 0.20473538027105
1007 => 0.20215420957222
1008 => 0.20066870934265
1009 => 0.201345670451
1010 => 0.19457524064816
1011 => 0.19912508144824
1012 => 0.19326246152917
1013 => 0.19227957422112
1014 => 0.20276266487567
1015 => 0.20422132569893
1016 => 0.19799822545653
1017 => 0.20199446324056
1018 => 0.20054537186821
1019 => 0.19336295932094
1020 => 0.19308864399188
1021 => 0.18948476184967
1022 => 0.1838453841462
1023 => 0.18126803721101
1024 => 0.17992573254961
1025 => 0.1804795936139
1026 => 0.18019954451137
1027 => 0.17837203468483
1028 => 0.18030429523542
1029 => 0.17536816799384
1030 => 0.17340256235316
1031 => 0.17251474388697
1101 => 0.16813364684719
1102 => 0.17510592052018
1103 => 0.17647954626815
1104 => 0.17785587848318
1105 => 0.18983591075308
1106 => 0.18923742219609
1107 => 0.19464746727548
1108 => 0.19443724287213
1109 => 0.19289421037857
1110 => 0.18638441010476
1111 => 0.18897910046787
1112 => 0.18099304683463
1113 => 0.18697674121551
1114 => 0.18424603298513
1115 => 0.18605348601597
1116 => 0.18280352249504
1117 => 0.18460218649523
1118 => 0.17680528389115
1119 => 0.16952464594484
1120 => 0.17245458718951
1121 => 0.17563976840188
1122 => 0.1825460528394
1123 => 0.17843272680402
1124 => 0.17991203438842
1125 => 0.17495660161379
1126 => 0.16473212835032
1127 => 0.16478999775862
1128 => 0.1632171852993
1129 => 0.16185804570006
1130 => 0.17890519178005
1201 => 0.1767851096895
1202 => 0.1734070363477
1203 => 0.177928721755
1204 => 0.17912432714549
1205 => 0.17915836435013
1206 => 0.18245726930171
1207 => 0.18421789546572
1208 => 0.18452821345812
1209 => 0.18971911167698
1210 => 0.19145903229034
1211 => 0.19862551905398
1212 => 0.18406851863652
1213 => 0.18376872679242
1214 => 0.1779923511415
1215 => 0.17432888238281
1216 => 0.17824319198164
1217 => 0.18171073592967
1218 => 0.17810009739771
1219 => 0.17857157056524
1220 => 0.17372458333609
1221 => 0.17545715319857
1222 => 0.1769494757665
1223 => 0.17612550295915
1224 => 0.17489197578582
1225 => 0.18142643686928
1226 => 0.18105773696619
1227 => 0.18714277735373
1228 => 0.19188650148122
1229 => 0.2003881031598
1230 => 0.19151623860968
1231 => 0.19119291260301
]
'min_raw' => 0.16185804570006
'max_raw' => 0.46797921019392
'avg_raw' => 0.31491862794699
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.161858'
'max' => '$0.467979'
'avg' => '$0.314918'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.028460815096331
'max_diff' => -0.15808361622429
'year' => 2030
]
5 => [
'items' => [
101 => 0.19435347618137
102 => 0.19145854842452
103 => 0.19328804283734
104 => 0.20009334332602
105 => 0.2002371286017
106 => 0.1978285399773
107 => 0.19768197714061
108 => 0.198144572933
109 => 0.20085401093793
110 => 0.19990725004639
111 => 0.20100286571914
112 => 0.20237294989457
113 => 0.20804019894783
114 => 0.20940655350819
115 => 0.20608702030013
116 => 0.20638673698158
117 => 0.20514514043855
118 => 0.20394577373513
119 => 0.20664177493097
120 => 0.21156877010639
121 => 0.21153811952511
122 => 0.21268108663871
123 => 0.21339314568163
124 => 0.21033646701034
125 => 0.20834668159252
126 => 0.20910969193505
127 => 0.21032976208895
128 => 0.20871403962783
129 => 0.19874105212233
130 => 0.20176621945459
131 => 0.20126268368738
201 => 0.20054558752282
202 => 0.20358741666834
203 => 0.20329402482666
204 => 0.19450580010471
205 => 0.19506839373809
206 => 0.19454001328693
207 => 0.19624731862109
208 => 0.19136634833358
209 => 0.19286770192018
210 => 0.19380933681538
211 => 0.19436396700264
212 => 0.19636767155248
213 => 0.19613255995023
214 => 0.19635305668517
215 => 0.1993240215742
216 => 0.21435014247085
217 => 0.21516798107799
218 => 0.21114064466602
219 => 0.21274948612691
220 => 0.20966086233696
221 => 0.21173427617913
222 => 0.21315285327094
223 => 0.20674257616974
224 => 0.20636300116216
225 => 0.20326162952315
226 => 0.20492813097129
227 => 0.20227660734161
228 => 0.20292719849397
301 => 0.20110808891445
302 => 0.20438212397649
303 => 0.20804300390946
304 => 0.20896788675306
305 => 0.20653491817865
306 => 0.20477328859034
307 => 0.20168044735012
308 => 0.20682391126107
309 => 0.20832801685285
310 => 0.20681601083471
311 => 0.20646564600232
312 => 0.20580170527805
313 => 0.20660650416563
314 => 0.20831982517077
315 => 0.20751185462482
316 => 0.20804553340503
317 => 0.20601170022203
318 => 0.21033747889817
319 => 0.21720785649121
320 => 0.21722994587859
321 => 0.21642197097737
322 => 0.21609136505585
323 => 0.21692039633652
324 => 0.21737011179764
325 => 0.22005104694097
326 => 0.22292779716294
327 => 0.23635233522441
328 => 0.23258277865591
329 => 0.24449382745339
330 => 0.25391392059608
331 => 0.25673859463883
401 => 0.25414002743068
402 => 0.24525046938348
403 => 0.24481430525581
404 => 0.25809905805293
405 => 0.25434550690752
406 => 0.25389903394247
407 => 0.24914931592236
408 => 0.25195698753627
409 => 0.25134290856825
410 => 0.25037355487546
411 => 0.25573039673069
412 => 0.26575792647512
413 => 0.26419504192688
414 => 0.26302842111174
415 => 0.25791662829801
416 => 0.26099506933213
417 => 0.25989889544354
418 => 0.26460875411809
419 => 0.26181873817543
420 => 0.25431707006587
421 => 0.25551173543814
422 => 0.25533116417046
423 => 0.259047308064
424 => 0.25793181390752
425 => 0.25511334603336
426 => 0.26572365346859
427 => 0.26503467912138
428 => 0.26601148722426
429 => 0.26644150835995
430 => 0.27289981552118
501 => 0.27554557732236
502 => 0.27614621157181
503 => 0.27865948065237
504 => 0.27608367914755
505 => 0.28638872168217
506 => 0.29324097365179
507 => 0.30120021692817
508 => 0.31283081059787
509 => 0.31720402140668
510 => 0.31641404001716
511 => 0.3252322233994
512 => 0.34107830292007
513 => 0.31961698574504
514 => 0.3422158048425
515 => 0.33506127963216
516 => 0.31809802906285
517 => 0.31700579570978
518 => 0.3284935059427
519 => 0.35397214158818
520 => 0.34759003233528
521 => 0.35398258043259
522 => 0.3465253335169
523 => 0.34615501835292
524 => 0.35362039859478
525 => 0.37106366644659
526 => 0.36277702374132
527 => 0.35089608945515
528 => 0.35966878644424
529 => 0.35206906443751
530 => 0.33494476372809
531 => 0.34758515205661
601 => 0.33913288435886
602 => 0.34159970542033
603 => 0.35936511494107
604 => 0.35722753386609
605 => 0.35999376171179
606 => 0.35511144196892
607 => 0.35055058545792
608 => 0.34203740808648
609 => 0.33951707596137
610 => 0.3402136050887
611 => 0.33951673079613
612 => 0.33475368629695
613 => 0.33372510729085
614 => 0.33201076388426
615 => 0.33254211059067
616 => 0.32931864343743
617 => 0.33540199195789
618 => 0.33653111504957
619 => 0.34095806879359
620 => 0.34141768981715
621 => 0.35374669298052
622 => 0.34695608521862
623 => 0.35151181117817
624 => 0.35110430416819
625 => 0.31846567413976
626 => 0.32296298938461
627 => 0.32995940057032
628 => 0.32680752681457
629 => 0.32235151474881
630 => 0.31875304608946
701 => 0.31330099810823
702 => 0.3209746509445
703 => 0.3310646884222
704 => 0.34167358981869
705 => 0.35441948972381
706 => 0.35157475324362
707 => 0.34143531408582
708 => 0.34189016191958
709 => 0.34470185225182
710 => 0.34106045780256
711 => 0.33998653949101
712 => 0.34455431236695
713 => 0.34458576810834
714 => 0.34039590371725
715 => 0.33573963618365
716 => 0.33572012625267
717 => 0.33489158841927
718 => 0.34667272855685
719 => 0.3531511644249
720 => 0.35389390665665
721 => 0.35310117195484
722 => 0.35340626407906
723 => 0.34963660499003
724 => 0.35825292780986
725 => 0.36616011769535
726 => 0.36404082189357
727 => 0.36086369621105
728 => 0.35833296257381
729 => 0.36344466147651
730 => 0.36321704557093
731 => 0.36609105528979
801 => 0.36596067360786
802 => 0.36499425223638
803 => 0.36404085640752
804 => 0.36782096310196
805 => 0.36673235308062
806 => 0.36564205214723
807 => 0.3634552867086
808 => 0.36375250445004
809 => 0.36057592734306
810 => 0.35910629742309
811 => 0.337006589562
812 => 0.33110082549273
813 => 0.33295889909184
814 => 0.33357062516552
815 => 0.33100042907413
816 => 0.33468543003998
817 => 0.33411112654283
818 => 0.33634540549392
819 => 0.3349495250064
820 => 0.33500681242851
821 => 0.33911179930921
822 => 0.34030349446454
823 => 0.33969738869038
824 => 0.34012188439851
825 => 0.34990420882398
826 => 0.3485134751118
827 => 0.34777467554556
828 => 0.34797932807445
829 => 0.35047892170056
830 => 0.35117867144312
831 => 0.34821378261336
901 => 0.34961204132529
902 => 0.35556564945525
903 => 0.3576490753557
904 => 0.36429837072876
905 => 0.36147363187248
906 => 0.36665856229502
907 => 0.38259527074084
908 => 0.39532661618372
909 => 0.38361834476935
910 => 0.40699783934812
911 => 0.425202129467
912 => 0.4245034184914
913 => 0.42132907943636
914 => 0.40060397912211
915 => 0.38153243281909
916 => 0.39748659112219
917 => 0.39752726155271
918 => 0.39615678520543
919 => 0.38764487431479
920 => 0.39586058915707
921 => 0.39651272276616
922 => 0.3961477013614
923 => 0.38962163923877
924 => 0.37965754859541
925 => 0.38160450805646
926 => 0.38479366737056
927 => 0.37875592346065
928 => 0.37682649844163
929 => 0.38041366664012
930 => 0.39197226999182
1001 => 0.38978718298261
1002 => 0.38973012153017
1003 => 0.39907885037667
1004 => 0.39238717810454
1005 => 0.3816290654503
1006 => 0.37891250012303
1007 => 0.3692705233089
1008 => 0.37593027103796
1009 => 0.37616994350261
1010 => 0.37252246773237
1011 => 0.38192503800666
1012 => 0.3818383916663
1013 => 0.39076473275384
1014 => 0.40782854433261
1015 => 0.40278193558959
1016 => 0.39691327869094
1017 => 0.39755136441603
1018 => 0.40454958989048
1019 => 0.40031830301468
1020 => 0.4018399032768
1021 => 0.40454728676625
1022 => 0.40618071844598
1023 => 0.3973163387344
1024 => 0.39524962779133
1025 => 0.39102186251879
1026 => 0.38991891747416
1027 => 0.39336234407343
1028 => 0.39245512282258
1029 => 0.37614979996001
1030 => 0.37444580299891
1031 => 0.37449806215296
1101 => 0.37021328077364
1102 => 0.36367796070482
1103 => 0.38085239164201
1104 => 0.37947304448174
1105 => 0.3779503519698
1106 => 0.37813687311415
1107 => 0.38559171148851
1108 => 0.38126752875302
1109 => 0.39276407727494
1110 => 0.39040073251672
1111 => 0.38797677688316
1112 => 0.38764171237911
1113 => 0.38670869626236
1114 => 0.38350903683805
1115 => 0.37964525581346
1116 => 0.37709405290605
1117 => 0.34784933068961
1118 => 0.35327698102426
1119 => 0.35952099798838
1120 => 0.36167640762306
1121 => 0.35798943029313
1122 => 0.38365462117542
1123 => 0.38834389886555
1124 => 0.37413977086814
1125 => 0.37148275847055
1126 => 0.38382881446587
1127 => 0.37638263345673
1128 => 0.37973564830921
1129 => 0.37248826419921
1130 => 0.38721438918808
1201 => 0.38710220078867
1202 => 0.38137340556338
1203 => 0.3862153440587
1204 => 0.38537393809089
1205 => 0.37890614239093
1206 => 0.38741942984817
1207 => 0.38742365233253
1208 => 0.38190981148294
1209 => 0.37547085250559
1210 => 0.37431971872186
1211 => 0.37345249404889
1212 => 0.37952236420149
1213 => 0.38496459080033
1214 => 0.39509122525837
1215 => 0.39763730176402
1216 => 0.4075748078675
1217 => 0.40165750683127
1218 => 0.40428056973875
1219 => 0.40712827557973
1220 => 0.4084935704808
1221 => 0.40626889570526
1222 => 0.42170593312465
1223 => 0.42300929206145
1224 => 0.42344629703895
1225 => 0.41824101487664
1226 => 0.42286452374823
1227 => 0.42070133706173
1228 => 0.42632934786943
1229 => 0.42721189182612
1230 => 0.42646440849221
1231 => 0.42674454187408
]
'min_raw' => 0.19136634833358
'max_raw' => 0.42721189182612
'avg_raw' => 0.30928912007985
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.191366'
'max' => '$0.427211'
'avg' => '$0.309289'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.029508302633519
'max_diff' => -0.040767318367792
'year' => 2031
]
6 => [
'items' => [
101 => 0.41357175371664
102 => 0.41288867515868
103 => 0.4035748505519
104 => 0.40737030292348
105 => 0.40027488663558
106 => 0.40252491623136
107 => 0.40351670783811
108 => 0.40299865218642
109 => 0.40758489210592
110 => 0.40368565126743
111 => 0.39339491360012
112 => 0.38310137222821
113 => 0.38297214520123
114 => 0.3802620374541
115 => 0.37830312593392
116 => 0.37868048178883
117 => 0.38001033304081
118 => 0.37822583256162
119 => 0.37860664621532
120 => 0.38493069021497
121 => 0.38619893213808
122 => 0.38188895054924
123 => 0.36458375254269
124 => 0.36033701354508
125 => 0.36338948532006
126 => 0.36193060041598
127 => 0.29210624206088
128 => 0.30851043933706
129 => 0.29876362234946
130 => 0.30325540404683
131 => 0.29330642782851
201 => 0.29805460075042
202 => 0.29717778658725
203 => 0.32355525037187
204 => 0.32314340255589
205 => 0.3233405323109
206 => 0.31393101548547
207 => 0.3289206312846
208 => 0.33630505503639
209 => 0.33493839473001
210 => 0.33528235368559
211 => 0.32937199923824
212 => 0.32339775746134
213 => 0.31677140390154
214 => 0.3290823497736
215 => 0.32771358274748
216 => 0.33085304183857
217 => 0.33883757024118
218 => 0.34001332237874
219 => 0.34159354517492
220 => 0.34102714779041
221 => 0.35452103137985
222 => 0.35288683304166
223 => 0.35682478084575
224 => 0.34872412343991
225 => 0.33955746066375
226 => 0.34129974357672
227 => 0.34113194772164
228 => 0.33899571389945
229 => 0.33706721752224
301 => 0.33385681440467
302 => 0.34401500491892
303 => 0.34360260093507
304 => 0.35027894206632
305 => 0.34909883392086
306 => 0.34121778290399
307 => 0.34149925618285
308 => 0.34339229925462
309 => 0.34994414294043
310 => 0.35188917622991
311 => 0.35098815931404
312 => 0.35312079952182
313 => 0.35480635138729
314 => 0.35333247888491
315 => 0.37419940539667
316 => 0.36553400267194
317 => 0.36975745966649
318 => 0.37076472927364
319 => 0.36818462935553
320 => 0.36874416064132
321 => 0.36959169807613
322 => 0.37473777941549
323 => 0.38824258588061
324 => 0.39422377273369
325 => 0.41221846848772
326 => 0.39372711842768
327 => 0.39262991823993
328 => 0.39587130633298
329 => 0.40643609767259
330 => 0.41499786875296
331 => 0.41783830216074
401 => 0.41821371232602
402 => 0.42354255422746
403 => 0.42659694702834
404 => 0.42289549265817
405 => 0.41975889763787
406 => 0.40852400360367
407 => 0.40982447317973
408 => 0.41878341894515
409 => 0.43143845751809
410 => 0.44229779714602
411 => 0.43849523489451
412 => 0.4675061006829
413 => 0.47038240952706
414 => 0.469984996647
415 => 0.47653765624614
416 => 0.46353196136776
417 => 0.45797177483379
418 => 0.42043706508313
419 => 0.43098278750215
420 => 0.44631161436676
421 => 0.44428278665107
422 => 0.43315058284128
423 => 0.44228935237118
424 => 0.43926778936885
425 => 0.43688455726415
426 => 0.44780260554806
427 => 0.43579776297119
428 => 0.44619185687883
429 => 0.43286132392915
430 => 0.43851260467857
501 => 0.43530466440351
502 => 0.43738059491185
503 => 0.42524474757832
504 => 0.43179295621845
505 => 0.42497232057038
506 => 0.42496908670101
507 => 0.42481852079105
508 => 0.43284296838367
509 => 0.43310464533158
510 => 0.42717456643636
511 => 0.42631994942232
512 => 0.42947991644615
513 => 0.42578042265792
514 => 0.42751139251709
515 => 0.42583285197159
516 => 0.42545497713932
517 => 0.42244400618571
518 => 0.42114679711053
519 => 0.42165546621387
520 => 0.41991911632728
521 => 0.41887290271408
522 => 0.42461040257057
523 => 0.42154508784733
524 => 0.42414059912643
525 => 0.42118268644426
526 => 0.41092927238665
527 => 0.40503242553423
528 => 0.38566467687139
529 => 0.39115734636655
530 => 0.39479899192442
531 => 0.39359542808927
601 => 0.39618114892455
602 => 0.39633989118349
603 => 0.39549924698163
604 => 0.39452588868908
605 => 0.39405211170235
606 => 0.3975832572032
607 => 0.39963320601934
608 => 0.39516447977509
609 => 0.39411751974018
610 => 0.39863564869826
611 => 0.40139170475265
612 => 0.42174087416414
613 => 0.42023334196718
614 => 0.42401695194329
615 => 0.4235909755242
616 => 0.4275568015555
617 => 0.43403925103353
618 => 0.42085861872331
619 => 0.42314632074039
620 => 0.42258542903656
621 => 0.42870909758531
622 => 0.4287282150101
623 => 0.42505676981519
624 => 0.42704711981774
625 => 0.42593616104871
626 => 0.42794381369943
627 => 0.42021320795559
628 => 0.42962825128427
629 => 0.43496597415964
630 => 0.43504008844694
701 => 0.43757012672708
702 => 0.44014079214963
703 => 0.44507496057045
704 => 0.4400031808704
705 => 0.43087954291781
706 => 0.43153824010881
707 => 0.42618905451542
708 => 0.42627897529165
709 => 0.4257989711409
710 => 0.42723949973034
711 => 0.42052932297303
712 => 0.42210418804586
713 => 0.4198993677215
714 => 0.4231415278916
715 => 0.41965349949685
716 => 0.42258515855759
717 => 0.42385036542218
718 => 0.42851900599044
719 => 0.41896393748896
720 => 0.39948050599316
721 => 0.40357615950735
722 => 0.39751836625323
723 => 0.39807903808254
724 => 0.39921168440802
725 => 0.39554040708833
726 => 0.39624077110569
727 => 0.3962157491746
728 => 0.39600012369044
729 => 0.39504508266814
730 => 0.39366008423668
731 => 0.39917749170756
801 => 0.4001150067506
802 => 0.40219898655774
803 => 0.40839949688678
804 => 0.40777991968681
805 => 0.40879047580598
806 => 0.40658443747186
807 => 0.39818136987379
808 => 0.39863769687274
809 => 0.39294729188365
810 => 0.40205347010839
811 => 0.3998970069091
812 => 0.39850672105589
813 => 0.39812736867993
814 => 0.40434324887476
815 => 0.40620313765104
816 => 0.40504417977816
817 => 0.40266712336867
818 => 0.40723177438853
819 => 0.40845308243428
820 => 0.40872648826561
821 => 0.41681417468779
822 => 0.40917850009362
823 => 0.41101648286052
824 => 0.4253558997325
825 => 0.41235202733388
826 => 0.41924046856439
827 => 0.41890331521187
828 => 0.42242720865326
829 => 0.41861425309493
830 => 0.41866151924887
831 => 0.4217904978956
901 => 0.41739641170054
902 => 0.41630837416446
903 => 0.41480525810106
904 => 0.41808725703511
905 => 0.42005466696403
906 => 0.43591054608776
907 => 0.44615416711763
908 => 0.44570946451309
909 => 0.44977321387015
910 => 0.44794245756511
911 => 0.44203046252706
912 => 0.45212151716603
913 => 0.4489282852506
914 => 0.44919153140993
915 => 0.44918173337474
916 => 0.45130495344132
917 => 0.44980045743388
918 => 0.44683494136988
919 => 0.44880358932801
920 => 0.45464976995911
921 => 0.47279649402079
922 => 0.48295164121783
923 => 0.47218514140835
924 => 0.47961172880775
925 => 0.47515842273177
926 => 0.47434912454339
927 => 0.47901357025071
928 => 0.48368618045277
929 => 0.48338855538315
930 => 0.47999648031764
1001 => 0.47808038318385
1002 => 0.49258971262052
1003 => 0.50327993938947
1004 => 0.50255093759202
1005 => 0.50576851444189
1006 => 0.51521541958902
1007 => 0.51607912620321
1008 => 0.51597031902189
1009 => 0.51382953206017
1010 => 0.52313123701317
1011 => 0.53089088293289
1012 => 0.51333400173181
1013 => 0.52001943225673
1014 => 0.52302073741049
1015 => 0.52742754382331
1016 => 0.53486256490826
1017 => 0.54293896984846
1018 => 0.54408106206028
1019 => 0.54327069298185
1020 => 0.53794408681837
1021 => 0.54678138547549
1022 => 0.55195806776867
1023 => 0.555040663608
1024 => 0.56285761376148
1025 => 0.52303927244935
1026 => 0.49485387136865
1027 => 0.49045231398778
1028 => 0.49940305400449
1029 => 0.50176329276608
1030 => 0.50081188348077
1031 => 0.46908665205989
1101 => 0.49028528721004
1102 => 0.51309323619972
1103 => 0.51396938240871
1104 => 0.52538751856468
1105 => 0.52910573174227
1106 => 0.53829882795714
1107 => 0.53772379728589
1108 => 0.5399621699201
1109 => 0.5394476068147
1110 => 0.55647588171795
1111 => 0.57526059765952
1112 => 0.5746101426782
1113 => 0.57190961751093
1114 => 0.5759203578923
1115 => 0.5953081978365
1116 => 0.59352327621824
1117 => 0.59525717553112
1118 => 0.61811653147611
1119 => 0.64783694591006
1120 => 0.63402882952467
1121 => 0.66398846890252
1122 => 0.68284647379863
1123 => 0.71545944331236
1124 => 0.71137613890698
1125 => 0.72407212861364
1126 => 0.70406617181
1127 => 0.65812845111788
1128 => 0.65085863097582
1129 => 0.66541299500139
1130 => 0.70119347876418
1201 => 0.66428614023577
1202 => 0.67175244675184
1203 => 0.66960214997293
1204 => 0.66948756979575
1205 => 0.67386062912728
1206 => 0.66751727848346
1207 => 0.64167332681357
1208 => 0.65351745756452
1209 => 0.6489438698797
1210 => 0.65401860639955
1211 => 0.68140486641665
1212 => 0.6692967480562
1213 => 0.65654182894712
1214 => 0.67253932805304
1215 => 0.69290964175199
1216 => 0.69163490412968
1217 => 0.68916138034342
1218 => 0.70310450441711
1219 => 0.7261344604348
1220 => 0.73235936500453
1221 => 0.73695446229533
1222 => 0.73758804857692
1223 => 0.74411438104905
1224 => 0.70902064649889
1225 => 0.76471530450101
1226 => 0.7743322334041
1227 => 0.77252464935118
1228 => 0.78321346108473
1229 => 0.78006854152374
1230 => 0.77551204650263
1231 => 0.79245608667576
]
'min_raw' => 0.29210624206088
'max_raw' => 0.79245608667576
'avg_raw' => 0.54228116436832
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.2921062'
'max' => '$0.792456'
'avg' => '$0.542281'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.1007398937273
'max_diff' => 0.36524419484963
'year' => 2032
]
7 => [
'items' => [
101 => 0.7730311119308
102 => 0.74545980581664
103 => 0.73033364198381
104 => 0.75025299471171
105 => 0.76241704833303
106 => 0.7704567139976
107 => 0.77288951197001
108 => 0.71174487321297
109 => 0.67879130416006
110 => 0.69991416410954
111 => 0.72568551106982
112 => 0.7088774853653
113 => 0.70953632815112
114 => 0.68557250056792
115 => 0.72780577807262
116 => 0.72165274477796
117 => 0.75357469239519
118 => 0.7459562634067
119 => 0.77198737248568
120 => 0.76513250906772
121 => 0.79358666386543
122 => 0.80493779657972
123 => 0.82399811506975
124 => 0.83801896294048
125 => 0.84625227298625
126 => 0.84575797593347
127 => 0.87838245215359
128 => 0.85914493833896
129 => 0.83497808705392
130 => 0.83454098495961
131 => 0.84705733968707
201 => 0.87328818550159
202 => 0.88008946217801
203 => 0.8838904479929
204 => 0.87806910590413
205 => 0.85718816342339
206 => 0.84817187832899
207 => 0.85585401445635
208 => 0.84645942210607
209 => 0.8626771241597
210 => 0.88494749299357
211 => 0.88034874989596
212 => 0.89572165858917
213 => 0.91163100180949
214 => 0.93438207714786
215 => 0.94033005071119
216 => 0.9501618248302
217 => 0.96028194996822
218 => 0.96353226141753
219 => 0.96973811448667
220 => 0.9697054065777
221 => 0.98840716250366
222 => 1.0090357784352
223 => 1.0168226033957
224 => 1.0347279780246
225 => 1.0040656514519
226 => 1.0273233783807
227 => 1.0483024302491
228 => 1.0232903397468
301 => 1.0577636794346
302 => 1.0591022010964
303 => 1.0793122890237
304 => 1.0588254931251
305 => 1.0466604991166
306 => 1.0817803810026
307 => 1.0987737855813
308 => 1.0936552338253
309 => 1.0547028022279
310 => 1.0320308162898
311 => 0.97269385599045
312 => 1.042981048631
313 => 1.0772158898607
314 => 1.0546141422596
315 => 1.0660131490845
316 => 1.1282024341804
317 => 1.1518800874868
318 => 1.1469553011184
319 => 1.1477875089458
320 => 1.1605635408901
321 => 1.2172195024208
322 => 1.1832699369967
323 => 1.2092231076975
324 => 1.2229885758561
325 => 1.2357747098396
326 => 1.2043760058752
327 => 1.163526753356
328 => 1.1505880803482
329 => 1.0523668438925
330 => 1.0472540019818
331 => 1.0443840088823
401 => 1.0262891083588
402 => 1.0120714731577
403 => 1.0007650817789
404 => 0.97109373442651
405 => 0.9811069431464
406 => 0.9338170083582
407 => 0.9640714327833
408 => 0.88859555500595
409 => 0.95145410879675
410 => 0.91724305579615
411 => 0.94021485778273
412 => 0.94013471132967
413 => 0.89783634065592
414 => 0.87343952319578
415 => 0.88898612481973
416 => 0.90565331585137
417 => 0.90835751152109
418 => 0.92996695975181
419 => 0.93599769225946
420 => 0.91772429121328
421 => 0.88703148520017
422 => 0.89416072400865
423 => 0.87329504939887
424 => 0.83672875723183
425 => 0.86299130665241
426 => 0.87195849570739
427 => 0.87591891724355
428 => 0.8399601685643
429 => 0.82866114902686
430 => 0.82264564583308
501 => 0.88238966229631
502 => 0.88566257438266
503 => 0.86891789340577
504 => 0.9446054392171
505 => 0.92747501655416
506 => 0.94661389572412
507 => 0.89351382031192
508 => 0.8955423147014
509 => 0.87040388803481
510 => 0.88447972721783
511 => 0.87453137776875
512 => 0.88334253851199
513 => 0.88862391193172
514 => 0.91375821362985
515 => 0.95174110214836
516 => 0.91000398711125
517 => 0.89181852840309
518 => 0.90310068470673
519 => 0.9331465536885
520 => 0.97866758321562
521 => 0.95171821753947
522 => 0.96367788839664
523 => 0.96629054443021
524 => 0.94641907990036
525 => 0.9794002724572
526 => 0.99707516148714
527 => 1.0152059403289
528 => 1.0309483875843
529 => 1.0079641085551
530 => 1.0325605817834
531 => 1.0127401662234
601 => 0.99495920446925
602 => 0.99498617084857
603 => 0.98383191380178
604 => 0.96221913524679
605 => 0.95823340728174
606 => 0.9789676674979
607 => 0.99559458064952
608 => 0.99696405285423
609 => 1.0061695662966
610 => 1.0116172943275
611 => 1.0650124348571
612 => 1.0864884020859
613 => 1.112748808294
614 => 1.1229787164675
615 => 1.1537670724445
616 => 1.1289029744851
617 => 1.123523470489
618 => 1.0488409896832
619 => 1.0610702417313
620 => 1.0806504542078
621 => 1.0491638601751
622 => 1.0691348568739
623 => 1.0730775546658
624 => 1.0480939577583
625 => 1.0614387763441
626 => 1.0259988946433
627 => 0.95251359472341
628 => 0.9794820826029
629 => 0.99933996717706
630 => 0.97100031743022
701 => 1.0217980427055
702 => 0.99212306027759
703 => 0.9827175154983
704 => 0.94602313199545
705 => 0.96334146851245
706 => 0.98676476662637
707 => 0.97229189164265
708 => 1.002325280347
709 => 1.0448605683645
710 => 1.075173747626
711 => 1.0775008171295
712 => 1.0580114736896
713 => 1.0892432709313
714 => 1.0894707604777
715 => 1.0542411656034
716 => 1.0326632349021
717 => 1.0277606836464
718 => 1.0400082178849
719 => 1.05487898547
720 => 1.0783260412352
721 => 1.0924946059697
722 => 1.1294387083711
723 => 1.1394347232106
724 => 1.1504173129167
725 => 1.1650934396694
726 => 1.1827158927177
727 => 1.1441589686949
728 => 1.1456909071654
729 => 1.1097872333723
730 => 1.0714190088168
731 => 1.1005357085877
801 => 1.138601920306
802 => 1.1298694892784
803 => 1.1288869124004
804 => 1.1305393341651
805 => 1.1239553663448
806 => 1.094176323907
807 => 1.0792214752213
808 => 1.0985170454146
809 => 1.1087717822253
810 => 1.1246759847116
811 => 1.1227154560582
812 => 1.1636829736764
813 => 1.1796017122294
814 => 1.1755290177063
815 => 1.1762784915134
816 => 1.2050986072856
817 => 1.237152503333
818 => 1.2671752068656
819 => 1.2977155904041
820 => 1.260897966037
821 => 1.2422042469788
822 => 1.2614913933297
823 => 1.2512573619897
824 => 1.3100651416805
825 => 1.3141368647528
826 => 1.3729403919718
827 => 1.4287519414963
828 => 1.3936977072077
829 => 1.4267522712645
830 => 1.46250347727
831 => 1.5314733540788
901 => 1.5082467259591
902 => 1.4904554928271
903 => 1.473642863484
904 => 1.5086272762173
905 => 1.5536341643091
906 => 1.5633282169334
907 => 1.579036285598
908 => 1.5625211720885
909 => 1.5824118072306
910 => 1.6526344896705
911 => 1.6336597010025
912 => 1.6067124507444
913 => 1.6621465142725
914 => 1.6822078863689
915 => 1.8230091019633
916 => 2.0007764528594
917 => 1.9271796023051
918 => 1.8814956622105
919 => 1.8922324717702
920 => 1.9571470905129
921 => 1.977995605766
922 => 1.9213221543938
923 => 1.9413401755192
924 => 2.0516414400481
925 => 2.1108145295797
926 => 2.0304495259896
927 => 1.808725668407
928 => 1.6042861456949
929 => 1.6585127131499
930 => 1.6523651032468
1001 => 1.7708700516202
1002 => 1.6332071585681
1003 => 1.6355250486309
1004 => 1.7564805538378
1005 => 1.7242116987509
1006 => 1.6719402861929
1007 => 1.6046677848536
1008 => 1.4803083441747
1009 => 1.3701597195458
1010 => 1.5861865381563
1011 => 1.5768710689185
1012 => 1.5633808889871
1013 => 1.5934018246346
1014 => 1.739174966548
1015 => 1.7358144238053
1016 => 1.7144363654401
1017 => 1.7306514342925
1018 => 1.6690977062244
1019 => 1.6849615034999
1020 => 1.60425376143
1021 => 1.6407370314986
1022 => 1.6718281352178
1023 => 1.6780701346011
1024 => 1.6921336779361
1025 => 1.5719622399284
1026 => 1.6259156875458
1027 => 1.6576082832666
1028 => 1.5144199828134
1029 => 1.6547779109522
1030 => 1.56987032255
1031 => 1.5410514117772
1101 => 1.57985227853
1102 => 1.5647315430214
1103 => 1.5517316225504
1104 => 1.5444774435606
1105 => 1.5729685178085
1106 => 1.5716393751406
1107 => 1.5250224477918
1108 => 1.4642125664144
1109 => 1.484622358621
1110 => 1.4772072897695
1111 => 1.4503341236888
1112 => 1.4684433929487
1113 => 1.3886993360194
1114 => 1.251503830808
1115 => 1.3421393839627
1116 => 1.3386500137587
1117 => 1.3368905150715
1118 => 1.4050006282846
1119 => 1.3984534124668
1120 => 1.386570151647
1121 => 1.4501158782849
1122 => 1.4269208332514
1123 => 1.4984024966046
1124 => 1.5454849432331
1125 => 1.5335433118105
1126 => 1.5778245804339
1127 => 1.4850925590114
1128 => 1.515894416765
1129 => 1.5222426369585
1130 => 1.4493317338821
1201 => 1.3995246179454
1202 => 1.3962030511551
1203 => 1.3098443759641
1204 => 1.3559764831883
1205 => 1.3965708284692
1206 => 1.3771292873281
1207 => 1.3709746762023
1208 => 1.4024172496715
1209 => 1.4048606069175
1210 => 1.3491518027736
1211 => 1.3607354272235
1212 => 1.409041066797
1213 => 1.3595182490458
1214 => 1.2633035036616
1215 => 1.2394409165333
1216 => 1.2362572075357
1217 => 1.1715399786783
1218 => 1.2410355287087
1219 => 1.2106988587555
1220 => 1.3065320356485
1221 => 1.2517926389708
1222 => 1.2494329329863
1223 => 1.2458658912971
1224 => 1.1901610989845
1225 => 1.2023569082767
1226 => 1.2428976358383
1227 => 1.2573630241562
1228 => 1.2558541656432
1229 => 1.2426989641563
1230 => 1.2487213480315
1231 => 1.2293211512319
]
'min_raw' => 0.67879130416006
'max_raw' => 2.1108145295797
'avg_raw' => 1.3948029168699
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.678791'
'max' => '$2.11'
'avg' => '$1.39'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.38668506209918
'max_diff' => 1.3183584429039
'year' => 2033
]
8 => [
'items' => [
101 => 1.2224705379618
102 => 1.2008481180716
103 => 1.1690691341791
104 => 1.1734881968012
105 => 1.1105257142867
106 => 1.0762204121409
107 => 1.0667251566435
108 => 1.0540277041584
109 => 1.0681593676884
110 => 1.1103473494845
111 => 1.0594596927587
112 => 0.97221637465642
113 => 0.97745984672975
114 => 0.98924037167768
115 => 0.96728744137317
116 => 0.94651083520973
117 => 0.9645744086095
118 => 0.92760826462122
119 => 0.99370755357083
120 => 0.99191975304586
121 => 1.0165574804137
122 => 1.0319639569538
123 => 0.99645701643478
124 => 0.98752711691522
125 => 0.99261399352286
126 => 0.90853925435613
127 => 1.0096867805432
128 => 1.0105615085499
129 => 1.0030715562937
130 => 1.0569294914087
131 => 1.1705865332128
201 => 1.1278241822422
202 => 1.1112653074475
203 => 1.0797868743583
204 => 1.1217300174452
205 => 1.1185094384711
206 => 1.1039447589818
207 => 1.0951359953821
208 => 1.111366412406
209 => 1.0931248670988
210 => 1.0898481843175
211 => 1.0699950517288
212 => 1.0629083866546
213 => 1.0576617019619
214 => 1.0518856176439
215 => 1.0646262203389
216 => 1.0357543384661
217 => 1.0009376792729
218 => 0.99804305078243
219 => 1.0060353745429
220 => 1.0024993662374
221 => 0.99802612173506
222 => 0.98948547976444
223 => 0.9869516537337
224 => 0.99518535909597
225 => 0.98588998579681
226 => 0.99960581544491
227 => 0.9958758687121
228 => 0.97504068946853
301 => 0.94907234195971
302 => 0.94884116919643
303 => 0.94324633132228
304 => 0.93612046410004
305 => 0.93413821085658
306 => 0.96305314484118
307 => 1.0229061928382
308 => 1.0111556073543
309 => 1.0196466096148
310 => 1.0614139368828
311 => 1.0746905142339
312 => 1.0652671141031
313 => 1.0523677827939
314 => 1.0529352879063
315 => 1.0970162078828
316 => 1.099765480791
317 => 1.1067120064809
318 => 1.1156402550803
319 => 1.0667876334464
320 => 1.0506343338206
321 => 1.042980004307
322 => 1.0194076320033
323 => 1.0448284145903
324 => 1.0300168132033
325 => 1.0320154042667
326 => 1.0307138192148
327 => 1.0314245726659
328 => 0.99368907747246
329 => 1.0074379086017
330 => 0.98457781021967
331 => 0.95397070465255
401 => 0.95386809890246
402 => 0.96135914462895
403 => 0.95690317750618
404 => 0.9449122845522
405 => 0.9466155343009
406 => 0.93169327425873
407 => 0.94842736684626
408 => 0.94890724074421
409 => 0.94246370358583
410 => 0.96824488207669
411 => 0.97880745193983
412 => 0.97456617774824
413 => 0.97850987283618
414 => 1.0116438972319
415 => 1.0170461889472
416 => 1.0194455300718
417 => 1.0162307308166
418 => 0.97911550197715
419 => 0.98076172020232
420 => 0.96868286314897
421 => 0.95847750177749
422 => 0.95888566271228
423 => 0.96413254506134
424 => 0.98704598800524
425 => 1.0352659778594
426 => 1.0370958912261
427 => 1.0393137996087
428 => 1.0302924515849
429 => 1.0275715266983
430 => 1.0311611289541
501 => 1.0492700218567
502 => 1.0958510109187
503 => 1.0793861783445
504 => 1.0660000131714
505 => 1.0777432889125
506 => 1.075935503659
507 => 1.0606759768286
508 => 1.0602476927339
509 => 1.0309597819806
510 => 1.0201327082286
511 => 1.011084795009
512 => 1.0012047099749
513 => 0.99534746438325
514 => 1.0043468556825
515 => 1.0064051229503
516 => 0.98672779659202
517 => 0.9840458497196
518 => 1.0001147791884
519 => 0.99304344243925
520 => 1.0003164876465
521 => 1.0020038965216
522 => 1.0017321848283
523 => 0.99434889712439
524 => 0.99905478453408
525 => 0.9879239579176
526 => 0.97582085576827
527 => 0.96809983064691
528 => 0.96136221218315
529 => 0.96510063449953
530 => 0.9517738415506
531 => 0.94751033227089
601 => 0.9974605357655
602 => 1.0343592881421
603 => 1.0338227656691
604 => 1.0305568230967
605 => 1.0257042949063
606 => 1.0489150291951
607 => 1.0408288734821
608 => 1.0467122273842
609 => 1.0482097878759
610 => 1.0527424524478
611 => 1.0543624904365
612 => 1.0494656104457
613 => 1.0330310830931
614 => 0.99207780347846
615 => 0.97301394126656
616 => 0.96672254920289
617 => 0.96695122935535
618 => 0.96064320987736
619 => 0.96250120431923
620 => 0.95999707523472
621 => 0.95525486056254
622 => 0.96480781610673
623 => 0.96590870524126
624 => 0.96367893126793
625 => 0.96420412375764
626 => 0.94574254760737
627 => 0.94714614114564
628 => 0.93933075396451
629 => 0.93786546308395
630 => 0.91810884485366
701 => 0.88310713189111
702 => 0.90250147857085
703 => 0.87907583503955
704 => 0.87020418887782
705 => 0.91220118198338
706 => 0.90798584869085
707 => 0.90077103045537
708 => 0.89009881058523
709 => 0.88614038042271
710 => 0.86209021184196
711 => 0.86066919957955
712 => 0.87258911253735
713 => 0.86708848284648
714 => 0.85936351550914
715 => 0.83138446688068
716 => 0.79992675267764
717 => 0.80087626333329
718 => 0.8108823769297
719 => 0.83997650171951
720 => 0.82860892383066
721 => 0.82036161564438
722 => 0.81881714273426
723 => 0.83814945477744
724 => 0.86550872656312
725 => 0.87834508475576
726 => 0.86562464363285
727 => 0.85101208578804
728 => 0.85190148447598
729 => 0.85781825548922
730 => 0.85844002446407
731 => 0.84892875150231
801 => 0.85160611912845
802 => 0.84753895288072
803 => 0.82257876112584
804 => 0.82212731040662
805 => 0.81600167681251
806 => 0.81581619506176
807 => 0.80539496420726
808 => 0.80393696197215
809 => 0.78324497558705
810 => 0.79686450368683
811 => 0.78772923929482
812 => 0.77396024106503
813 => 0.77158646058037
814 => 0.77151510187258
815 => 0.7856527843629
816 => 0.79669929663557
817 => 0.78788815113006
818 => 0.78588202409534
819 => 0.80730221236989
820 => 0.8045762981626
821 => 0.80221567403935
822 => 0.86305900385384
823 => 0.81489676064144
824 => 0.7938952735961
825 => 0.76790194530327
826 => 0.77636550406515
827 => 0.77814890025183
828 => 0.71563963135716
829 => 0.69027962875163
830 => 0.68157703152895
831 => 0.67656856379063
901 => 0.67885098543136
902 => 0.65602400865476
903 => 0.67136411457198
904 => 0.65159788219976
905 => 0.64828400901767
906 => 0.68362848106553
907 => 0.68854645787158
908 => 0.66756484092134
909 => 0.68103843561863
910 => 0.67615272288442
911 => 0.65193671752125
912 => 0.65101184423726
913 => 0.63886110397977
914 => 0.61984754832374
915 => 0.61115784318713
916 => 0.6066321693045
917 => 0.6084995505521
918 => 0.6075553454505
919 => 0.60139376847766
920 => 0.6079085198301
921 => 0.59126602220572
922 => 0.58463884555398
923 => 0.58164550360972
924 => 0.56687432906166
925 => 0.59038183653876
926 => 0.59501311165152
927 => 0.59965351180693
928 => 0.64004502702404
929 => 0.63802718106903
930 => 0.65626752577148
1001 => 0.65555873951818
1002 => 0.65035629773505
1003 => 0.62840805161215
1004 => 0.63715623132687
1005 => 0.61023069393395
1006 => 0.6304051373073
1007 => 0.6211983638566
1008 => 0.62729231794244
1009 => 0.61633483902641
1010 => 0.62239916028176
1011 => 0.59611135878974
1012 => 0.57156417963584
1013 => 0.5814426811042
1014 => 0.59218174194398
1015 => 0.61546676210643
1016 => 0.60159839619492
1017 => 0.60658598499768
1018 => 0.58987839742073
1019 => 0.55540587196304
1020 => 0.55560098271343
1021 => 0.55029813569655
1022 => 0.54571570164563
1023 => 0.60319134484805
1024 => 0.59604334006037
1025 => 0.58465392993894
1026 => 0.59989910798364
1027 => 0.60393017503217
1028 => 0.60404493384403
1029 => 0.61516742221045
1030 => 0.62110349624542
1031 => 0.6221497550225
1101 => 0.63965123078433
1102 => 0.64551749460964
1103 => 0.66967980508139
1104 => 0.6205998618366
1105 => 0.61958909270342
1106 => 0.60011363890269
1107 => 0.58776199820752
1108 => 0.60095936630838
1109 => 0.61265043282534
1110 => 0.60047691292809
1111 => 0.60206651762964
1112 => 0.58572456178071
1113 => 0.59156604203621
1114 => 0.59659751176462
1115 => 0.59381942991671
1116 => 0.58966050692972
1117 => 0.61169189869411
1118 => 0.61044880122904
1119 => 0.63096493973955
1120 => 0.64695873683164
1121 => 0.67562248045386
1122 => 0.64571036970932
1123 => 0.64462025350392
1124 => 0.65527631427187
1125 => 0.64551586322226
1126 => 0.6516841313663
1127 => 0.6746286770948
1128 => 0.67511345919051
1129 => 0.66699273448105
1130 => 0.66649858764447
1201 => 0.66805826165591
1202 => 0.67719332105648
1203 => 0.6740012506099
1204 => 0.67769519534402
1205 => 0.68231452979772
1206 => 0.70142205565545
1207 => 0.70602881545153
1208 => 0.69483677747817
1209 => 0.69584729319523
1210 => 0.69166116376488
1211 => 0.68761741518721
1212 => 0.69670717144776
1213 => 0.71331887967351
1214 => 0.71321553909879
1215 => 0.7170691325217
1216 => 0.71946988929928
1217 => 0.70916408374853
1218 => 0.70245538328997
1219 => 0.70502792593148
1220 => 0.70914147763795
1221 => 0.70369395655414
1222 => 0.67006933288758
1223 => 0.68026889575874
1224 => 0.67857118976383
1225 => 0.67615344997899
1226 => 0.68640918931682
1227 => 0.68541999823865
1228 => 0.65578988501434
1229 => 0.65768670872829
1230 => 0.65590523714686
1231 => 0.66166153628126
]
'min_raw' => 0.54571570164563
'max_raw' => 1.2224705379618
'avg_raw' => 0.88409311980369
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.545715'
'max' => '$1.22'
'avg' => '$0.884093'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.13307560251443
'max_diff' => -0.88834399161791
'year' => 2034
]
9 => [
'items' => [
101 => 0.64520500417844
102 => 0.65026692261683
103 => 0.65344171040885
104 => 0.65531168480822
105 => 0.6620673145922
106 => 0.66127461941023
107 => 0.66201803954669
108 => 0.67203485509618
109 => 0.72269647078952
110 => 0.72545387075315
111 => 0.71187542486056
112 => 0.71729974617165
113 => 0.70688623542303
114 => 0.71387689495304
115 => 0.71865972665997
116 => 0.697047029862
117 => 0.69576726622286
118 => 0.6853107752111
119 => 0.6909295011949
120 => 0.68198970415397
121 => 0.68418321764699
122 => 0.67804996269345
123 => 0.68908860049095
124 => 0.70143151277945
125 => 0.7045498198599
126 => 0.69634689644684
127 => 0.69040743929678
128 => 0.67997970912011
129 => 0.69732125680104
130 => 0.70239245381704
131 => 0.69729461996199
201 => 0.69611334046791
202 => 0.69387481796115
203 => 0.6965882535999
204 => 0.702364834989
205 => 0.69964070588261
206 => 0.70144004115036
207 => 0.69458283057617
208 => 0.70916749539899
209 => 0.73233145312837
210 => 0.73240592904016
211 => 0.72968178524969
212 => 0.72856712430313
213 => 0.73136226114702
214 => 0.7328785082223
215 => 0.74191746823498
216 => 0.75161663245663
217 => 0.7968783998022
218 => 0.78416907664945
219 => 0.82432800927302
220 => 0.85608851099351
221 => 0.86561209674107
222 => 0.85685084597265
223 => 0.82687908036737
224 => 0.82540852255892
225 => 0.87019899412625
226 => 0.85754363437492
227 => 0.85603831960152
228 => 0.84002431368199
301 => 0.84949057455365
302 => 0.84742016443935
303 => 0.84415192078599
304 => 0.86221288710367
305 => 0.89602140373679
306 => 0.89075202936526
307 => 0.88681868583615
308 => 0.8695839194707
309 => 0.87996309834713
310 => 0.87626727154931
311 => 0.89214688890239
312 => 0.88274015535902
313 => 0.85744775757791
314 => 0.86147565528939
315 => 0.8608668466533
316 => 0.87339608524326
317 => 0.86963511881338
318 => 0.86013245759651
319 => 0.89590584990239
320 => 0.89358292478811
321 => 0.89687630150555
322 => 0.89832614778762
323 => 0.92010078128633
324 => 0.9290211519202
325 => 0.93104623222716
326 => 0.9395198944031
327 => 0.93083539979289
328 => 0.96557957017347
329 => 0.988682416098
330 => 1.0155175605009
331 => 1.0547309190804
401 => 1.0694755046502
402 => 1.0668120272407
403 => 1.0965431481798
404 => 1.1499693116217
405 => 1.0776109823848
406 => 1.153804478771
407 => 1.1296824975113
408 => 1.0724897138806
409 => 1.0688071728734
410 => 1.10753878997
411 => 1.1934417889103
412 => 1.1719240619795
413 => 1.193476984203
414 => 1.1683343555784
415 => 1.1670858121485
416 => 1.1922558628501
417 => 1.2510670582626
418 => 1.2231280638268
419 => 1.1830706643807
420 => 1.2126484247695
421 => 1.1870254314282
422 => 1.1292896560059
423 => 1.1719076077792
424 => 1.1434101971178
425 => 1.1517272565545
426 => 1.2116245750949
427 => 1.2044175712595
428 => 1.2137441015731
429 => 1.1972830196873
430 => 1.1819057735317
501 => 1.1532030016528
502 => 1.144705525929
503 => 1.1470539225119
504 => 1.1447043621803
505 => 1.1286454251062
506 => 1.125177499174
507 => 1.1193974706871
508 => 1.1211889432052
509 => 1.1103207986428
510 => 1.1308312329053
511 => 1.1346381502418
512 => 1.1495639338698
513 => 1.1511135782404
514 => 1.1926816731892
515 => 1.1697866650149
516 => 1.1851466131581
517 => 1.1837726748228
518 => 1.0737292549255
519 => 1.0888922672661
520 => 1.1124811560525
521 => 1.1018543936282
522 => 1.0868306378397
523 => 1.0746981495176
524 => 1.0563161890991
525 => 1.0821884453939
526 => 1.1162077112139
527 => 1.151976362962
528 => 1.1949500543824
529 => 1.1853588267263
530 => 1.1511729996927
531 => 1.1527065509207
601 => 1.1621863611818
602 => 1.1499091455621
603 => 1.1462883549961
604 => 1.161688920159
605 => 1.1617949753873
606 => 1.1476685550658
607 => 1.131969623986
608 => 1.1319038448916
609 => 1.1291103717396
610 => 1.1688313082464
611 => 1.1906738070855
612 => 1.1931780143764
613 => 1.1905052539823
614 => 1.19153389338
615 => 1.1788242245721
616 => 1.2078747585316
617 => 1.2345344012929
618 => 1.2273890475327
619 => 1.2166771464742
620 => 1.2081446013261
621 => 1.225379051064
622 => 1.2246116281467
623 => 1.2343015525708
624 => 1.2338619616272
625 => 1.2306036044999
626 => 1.2273891638989
627 => 1.2401340575378
628 => 1.2364637328465
629 => 1.2327877071272
630 => 1.2254148747758
701 => 1.2264169651422
702 => 1.2157069136444
703 => 1.210751953763
704 => 1.136241245757
705 => 1.1163295498702
706 => 1.1225941747361
707 => 1.1246566519029
708 => 1.1159910563354
709 => 1.1284152943703
710 => 1.1264789900331
711 => 1.1340120175091
712 => 1.1293057089881
713 => 1.1294988575314
714 => 1.1433391074008
715 => 1.1473569908185
716 => 1.1453134628839
717 => 1.1467446798012
718 => 1.1797264695818
719 => 1.1750375137732
720 => 1.1725465994543
721 => 1.1732365997439
722 => 1.1816641541703
723 => 1.1840234092823
724 => 1.1740270795909
725 => 1.1787414064615
726 => 1.1988144119393
727 => 1.2058388278228
728 => 1.228257391412
729 => 1.2187335871411
730 => 1.236214942061
731 => 1.2899466672515
801 => 1.3328712872863
802 => 1.2933960327674
803 => 1.3722216310439
804 => 1.4335986661627
805 => 1.431242913326
806 => 1.4205404075766
807 => 1.3506642848868
808 => 1.2863632349934
809 => 1.3401537935961
810 => 1.3402909167921
811 => 1.3356702601036
812 => 1.3069717582532
813 => 1.3346716144468
814 => 1.3368703284404
815 => 1.3356396332892
816 => 1.3136365592077
817 => 1.280041931933
818 => 1.2866062416883
819 => 1.2973587149758
820 => 1.2770020398417
821 => 1.2704968486819
822 => 1.2825912367112
823 => 1.3215618749074
824 => 1.3141947014979
825 => 1.3140023148271
826 => 1.3455222068405
827 => 1.3229607665774
828 => 1.2866890386562
829 => 1.2775299489907
830 => 1.2450213509806
831 => 1.2674751554179
901 => 1.2682832278658
902 => 1.2559855086478
903 => 1.2876869307941
904 => 1.2873947966081
905 => 1.317490578802
906 => 1.3750224108971
907 => 1.358007417177
908 => 1.3382208307067
909 => 1.3403721812785
910 => 1.3639671870662
911 => 1.3497011079454
912 => 1.3548312894638
913 => 1.363959421922
914 => 1.3694666508728
915 => 1.339579775784
916 => 1.3326117155463
917 => 1.3183575097567
918 => 1.3146388535336
919 => 1.3262486067254
920 => 1.323189846938
921 => 1.2682153125056
922 => 1.262470167782
923 => 1.2626463631685
924 => 1.2481999235942
925 => 1.2261656357007
926 => 1.2840704286859
927 => 1.2794198634321
928 => 1.2742859993171
929 => 1.2749148683778
930 => 1.3000493764371
1001 => 1.2854700924396
1002 => 1.3242315084446
1003 => 1.3162633265888
1004 => 1.3080907909351
1005 => 1.3069610975662
1006 => 1.3038153685875
1007 => 1.2930274934454
1008 => 1.2800004859604
1009 => 1.2713989272388
1010 => 1.1727983044848
1011 => 1.1910980065345
1012 => 1.2121501456723
1013 => 1.2194172597416
1014 => 1.2069863582571
1015 => 1.2935183412032
1016 => 1.3093285683304
1017 => 1.2614383590866
1018 => 1.2524800562814
1019 => 1.2941056460437
1020 => 1.2690003268957
1021 => 1.2803052505708
1022 => 1.2558701890478
1023 => 1.305520347593
1024 => 1.3051420965716
1025 => 1.2858270634978
1026 => 1.3021519971881
1027 => 1.2993151382226
1028 => 1.2775085134531
1029 => 1.3062116564939
1030 => 1.3062258928948
1031 => 1.2876355935063
1101 => 1.2659261937604
1102 => 1.2620450658389
1103 => 1.2591211573063
1104 => 1.2795861483106
1105 => 1.2979349952527
1106 => 1.3320776503471
1107 => 1.3406619250473
1108 => 1.3741669206896
1109 => 1.3542163271132
1110 => 1.3630601668422
1111 => 1.3726614059055
1112 => 1.3772645929864
1113 => 1.3697639466588
1114 => 1.4218109960978
1115 => 1.4262053617508
1116 => 1.4276787545432
1117 => 1.4101287823118
1118 => 1.4257172652754
1119 => 1.418423930333
1120 => 1.4373991617063
1121 => 1.4403747202736
1122 => 1.4378545280257
1123 => 1.4387990172809
1124 => 1.3943860423134
1125 => 1.3920829952642
1126 => 1.360680785332
1127 => 1.3734774179928
1128 => 1.349554726592
1129 => 1.3571408584662
1130 => 1.3604847531131
1201 => 1.3587380923139
1202 => 1.3742009204035
1203 => 1.3610543576803
1204 => 1.3263584171586
1205 => 1.2916530237511
1206 => 1.2912173258073
1207 => 1.2820800083241
1208 => 1.275475401367
1209 => 1.276747682978
1210 => 1.2812313693213
1211 => 1.2752148013658
1212 => 1.2764987411869
1213 => 1.2978206970623
1214 => 1.3020966632519
1215 => 1.2875652594119
1216 => 1.2292195761224
1217 => 1.2149013990941
1218 => 1.2251930208003
1219 => 1.2202742884901
1220 => 0.98485658931481
1221 => 1.0401644857359
1222 => 1.0073024117612
1223 => 1.0224467673601
1224 => 0.98890309942468
1225 => 1.0049118959377
1226 => 1.0019556557694
1227 => 1.090889116535
1228 => 1.0895005428691
1229 => 1.0901651796012
1230 => 1.0584403366728
1231 => 1.1089788728811
]
'min_raw' => 0.64520500417844
'max_raw' => 1.4403747202736
'avg_raw' => 1.042789862226
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.645205'
'max' => '$1.44'
'avg' => '$1.04'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.09948930253281
'max_diff' => 0.21790418231181
'year' => 2035
]
10 => [
'items' => [
101 => 1.1338759731243
102 => 1.1292681824842
103 => 1.1304278641174
104 => 1.1105006914504
105 => 1.0903581181913
106 => 1.0680169045272
107 => 1.1095241180576
108 => 1.1049092244648
109 => 1.1154941299805
110 => 1.1424145249519
111 => 1.146378655372
112 => 1.151706486857
113 => 1.1497968385305
114 => 1.1952924091651
115 => 1.1897825953718
116 => 1.2030596613321
117 => 1.1757477293185
118 => 1.1448416857727
119 => 1.150715914256
120 => 1.1501501788155
121 => 1.1429477173369
122 => 1.1364456571579
123 => 1.1256215589038
124 => 1.1598706074448
125 => 1.1584801586201
126 => 1.1809899088714
127 => 1.1770110918664
128 => 1.1504395781256
129 => 1.1513885849371
130 => 1.1577711118217
131 => 1.1798611102435
201 => 1.1864189257769
202 => 1.183381084338
203 => 1.1905714296947
204 => 1.1962543854907
205 => 1.1912851214464
206 => 1.2616394210631
207 => 1.2324234107776
208 => 1.246663090907
209 => 1.2500591707128
210 => 1.2413601837021
211 => 1.2432466824974
212 => 1.246104214132
213 => 1.2634545866556
214 => 1.3089869845282
215 => 1.3291529735965
216 => 1.3898233466808
217 => 1.3274784689285
218 => 1.3237791818914
219 => 1.3347077481536
220 => 1.3703276797653
221 => 1.3991942887265
222 => 1.4087710082736
223 => 1.4100367298561
224 => 1.4280032923747
225 => 1.4383013909538
226 => 1.4258216791174
227 => 1.4152464300164
228 => 1.3773672003849
229 => 1.3817518243564
301 => 1.4119575354982
302 => 1.4546248815934
303 => 1.4912379033239
304 => 1.4784172992065
305 => 1.576229458686
306 => 1.5859271347716
307 => 1.5845872295
308 => 1.6066799788306
309 => 1.5628303705195
310 => 1.5440838134204
311 => 1.4175329189063
312 => 1.4530885583208
313 => 1.5047707683194
314 => 1.4979304340277
315 => 1.4603974316573
316 => 1.4912094311759
317 => 1.4810220205548
318 => 1.4729867871218
319 => 1.5097977491848
320 => 1.4693225842856
321 => 1.5043669975876
322 => 1.4594221750397
323 => 1.4784758626462
324 => 1.4676600680376
325 => 1.4746592126833
326 => 1.4337423561005
327 => 1.455820098712
328 => 1.432823849423
329 => 1.4328129462066
330 => 1.432305302729
331 => 1.4593602880366
401 => 1.4602425501361
402 => 1.440248875116
403 => 1.4373674741857
404 => 1.4480215236284
405 => 1.435548422031
406 => 1.4413845077637
407 => 1.4357251911225
408 => 1.4344511597431
409 => 1.4242994609538
410 => 1.4199258299886
411 => 1.4216408433846
412 => 1.4157866185139
413 => 1.4122592362727
414 => 1.4316036176183
415 => 1.4212686950155
416 => 1.4300196425057
417 => 1.4200468333829
418 => 1.3854767320172
419 => 1.3655951011496
420 => 1.3002953843198
421 => 1.3188143030086
422 => 1.3310923652586
423 => 1.3270344657582
424 => 1.3357524040836
425 => 1.3362876146927
426 => 1.3334533240742
427 => 1.3301715786332
428 => 1.3285742064444
429 => 1.3404797100372
430 => 1.3473912555937
501 => 1.3323246330646
502 => 1.3287947342106
503 => 1.3440279214384
504 => 1.3533201568475
505 => 1.4219288022519
506 => 1.4168460521974
507 => 1.429602757395
508 => 1.4281665481573
509 => 1.441537607507
510 => 1.4633936385123
511 => 1.4189542164361
512 => 1.4266673635089
513 => 1.4247762779692
514 => 1.4454226540222
515 => 1.4454871097546
516 => 1.4331085759479
517 => 1.4398191799433
518 => 1.4360735048889
519 => 1.4428424459706
520 => 1.4167781689716
521 => 1.4485216448915
522 => 1.4665181502338
523 => 1.4667680317279
524 => 1.475298232431
525 => 1.4839654103813
526 => 1.5006013037047
527 => 1.4835014443456
528 => 1.4527404619964
529 => 1.4549613055647
530 => 1.4369261528683
531 => 1.4372293270435
601 => 1.4356109595364
602 => 1.4404678022502
603 => 1.4178439728233
604 => 1.4231537403699
605 => 1.4157200347107
606 => 1.4266512040846
607 => 1.4148910728253
608 => 1.4247753660305
609 => 1.4290410993084
610 => 1.4447817469384
611 => 1.412566166372
612 => 1.3468764167942
613 => 1.3606851985667
614 => 1.3402609256688
615 => 1.3421512698862
616 => 1.3459700660514
617 => 1.3335920982477
618 => 1.33595342443
619 => 1.3358690612424
620 => 1.3351420648681
621 => 1.3319220773825
622 => 1.3272524584734
623 => 1.3458547829745
624 => 1.3490156803973
625 => 1.3560419638159
626 => 1.3769474172961
627 => 1.3748584695089
628 => 1.3782656300195
629 => 1.3708278177553
630 => 1.342496288665
701 => 1.3440348270017
702 => 1.3248492292896
703 => 1.3555513449473
704 => 1.3482806787115
705 => 1.3435932328907
706 => 1.3423142198696
707 => 1.3632714939254
708 => 1.3695422387879
709 => 1.3656347314036
710 => 1.3576203197583
711 => 1.3730103593655
712 => 1.3771280847107
713 => 1.3780498915597
714 => 1.4053180909962
715 => 1.3795738809962
716 => 1.3857707682187
717 => 1.4341171133487
718 => 1.3902736496554
719 => 1.4134985101996
720 => 1.4123617741323
721 => 1.4242428269003
722 => 1.4113871810234
723 => 1.4115465421614
724 => 1.4220961121272
725 => 1.4072811437352
726 => 1.403612749218
727 => 1.398544888466
728 => 1.409610377014
729 => 1.4162436369495
730 => 1.4697028404373
731 => 1.5042399239263
801 => 1.502740578047
802 => 1.5164417927262
803 => 1.5102692700245
804 => 1.4903365659913
805 => 1.5243592612416
806 => 1.5135930568944
807 => 1.5144806096998
808 => 1.5144475749401
809 => 1.521606159633
810 => 1.5165336463034
811 => 1.5065352018479
812 => 1.5131726358853
813 => 1.5328834420504
814 => 1.5940663891882
815 => 1.6283051769727
816 => 1.5920051711721
817 => 1.6170444290969
818 => 1.6020297967419
819 => 1.5993011913963
820 => 1.6150276957598
821 => 1.6307817272872
822 => 1.6297782635855
823 => 1.618341645675
824 => 1.6118813904108
825 => 1.6608006076155
826 => 1.6968434535349
827 => 1.6943855730775
828 => 1.7052338580709
829 => 1.7370847583363
830 => 1.7399968054881
831 => 1.7396299544796
901 => 1.7324121417732
902 => 1.7637734894465
903 => 1.789935677426
904 => 1.7307414266743
905 => 1.7532818224509
906 => 1.7634009323212
907 => 1.7782587878155
908 => 1.8033264805
909 => 1.8305566436325
910 => 1.8344072872629
911 => 1.8316750713368
912 => 1.8137160467649
913 => 1.8435116161879
914 => 1.8609651619638
915 => 1.871358349056
916 => 1.8977137422605
917 => 1.7634634244988
918 => 1.6684343769134
919 => 1.6535942188969
920 => 1.6837722637839
921 => 1.6917299735552
922 => 1.6885222307245
923 => 1.5815583980041
924 => 1.6530310764543
925 => 1.7299296688732
926 => 1.7328836569873
927 => 1.771380700226
928 => 1.7839169155516
929 => 1.8149120812815
930 => 1.812973325226
1001 => 1.8205201548404
1002 => 1.818785269405
1003 => 1.8761972871174
1004 => 1.9395312684214
1005 => 1.9373382140386
1006 => 1.9282332048925
1007 => 1.9417556961092
1008 => 2.0071231520969
1009 => 2.0011051642417
1010 => 2.006951126832
1011 => 2.0840230413898
1012 => 2.1842274936669
1013 => 2.1376724652217
1014 => 2.2386834810993
1015 => 2.3022645612304
1016 => 2.4122214649108
1017 => 2.3984543190208
1018 => 2.4412597347226
1019 => 2.3738082545878
1020 => 2.2189260220051
1021 => 2.1944153158335
1022 => 2.2434863702989
1023 => 2.3641227694188
1024 => 2.2396871007821
1025 => 2.264860274482
1026 => 2.2576103987629
1027 => 2.2572240836958
1028 => 2.2719681585493
1029 => 2.2505811089751
1030 => 2.163446421553
1031 => 2.2033797353106
1101 => 2.1879595651136
1102 => 2.205069393597
1103 => 2.2974040812923
1104 => 2.2565807148782
1105 => 2.2135766145819
1106 => 2.2675132997273
1107 => 2.3361932345731
1108 => 2.3318953676802
1109 => 2.3235557095389
1110 => 2.3705659258312
1111 => 2.448213030445
1112 => 2.4692007308108
1113 => 2.4846934221462
1114 => 2.4868296025302
1115 => 2.5088335881139
1116 => 2.3905126119118
1117 => 2.5782910398427
1118 => 2.610715187072
1119 => 2.6046207912361
1120 => 2.6406588662648
1121 => 2.6300555503937
1122 => 2.6146930093056
1123 => 2.6718210237445
1124 => 2.6063283651834
1125 => 2.5133697816524
1126 => 2.462370864215
1127 => 2.5295303526619
1128 => 2.5705423087133
1129 => 2.5976486028129
1130 => 2.6058509510294
1201 => 2.3996975324777
1202 => 2.2885922736711
1203 => 2.3598094707418
1204 => 2.4466993663163
1205 => 2.3900299341547
1206 => 2.392251268606
1207 => 2.3114555508082
1208 => 2.4538479945486
1209 => 2.4331026132046
1210 => 2.5407296883153
1211 => 2.5150436230789
1212 => 2.6028093247726
1213 => 2.5796976741677
1214 => 2.6756328436738
1215 => 2.7139039801308
1216 => 2.7781671746689
1217 => 2.8254394421694
1218 => 2.8531986218201
1219 => 2.8515320647959
1220 => 2.9615277641402
1221 => 2.8966671431939
1222 => 2.8151869168107
1223 => 2.8137131965822
1224 => 2.8559129604098
1225 => 2.9443520884527
1226 => 2.9672830676172
1227 => 2.9800983566685
1228 => 2.960471295383
1229 => 2.8900697399484
1230 => 2.8596707052557
1231 => 2.8855715635587
]
'min_raw' => 1.0680169045272
'max_raw' => 2.9800983566685
'avg_raw' => 2.0240576305978
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$1.06'
'max' => '$2.98'
'avg' => '$2.02'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.42281190034875
'max_diff' => 1.5397236363949
'year' => 2036
]
11 => [
'items' => [
101 => 2.8538970395403
102 => 2.9085761542979
103 => 2.9836622576887
104 => 2.9681572742612
105 => 3.0199881092225
106 => 3.0736275706447
107 => 3.1503344095774
108 => 3.1703884177204
109 => 3.2035369305952
110 => 3.2376576390626
111 => 3.2486162910434
112 => 3.2695397579449
113 => 3.2694294809462
114 => 3.3324837567655
115 => 3.4020345756225
116 => 3.4282883996358
117 => 3.4886576203103
118 => 3.3852774454951
119 => 3.4636924956383
120 => 3.5344248337234
121 => 3.4500948243063
122 => 3.5663240959156
123 => 3.570837015151
124 => 3.638976737621
125 => 3.5699040749064
126 => 3.5288889482742
127 => 3.6472980820446
128 => 3.7045925320233
129 => 3.687334977412
130 => 3.5560041347095
131 => 3.4795639512118
201 => 3.2795052467881
202 => 3.5164834240709
203 => 3.6319085814771
204 => 3.5557052114365
205 => 3.5941377587996
206 => 3.8038132754176
207 => 3.8836441366614
208 => 3.8670398755826
209 => 3.8698457223755
210 => 3.91292100607
211 => 4.1039405359636
212 => 3.9894772058533
213 => 4.0769801328634
214 => 4.1233913698343
215 => 4.1665007132593
216 => 4.0606377906556
217 => 3.9229116837834
218 => 3.8792880443883
219 => 3.5481282880902
220 => 3.530889984621
221 => 3.5212136025096
222 => 3.4602053820491
223 => 3.412269632325
224 => 3.3741493444042
225 => 3.2741103252184
226 => 3.3078705575174
227 => 3.1484292407012
228 => 3.2504341449469
301 => 2.995961953463
302 => 3.2078939562128
303 => 3.0925490024818
304 => 3.1700000367196
305 => 3.1697298173575
306 => 3.027117907453
307 => 2.9448623340547
308 => 2.9972787868589
309 => 3.0534733850882
310 => 3.0625907695896
311 => 3.1354485330229
312 => 3.1557815687248
313 => 3.0941715212895
314 => 2.990688582913
315 => 3.0147253093033
316 => 2.9443752305616
317 => 2.8210894235434
318 => 2.9096354425076
319 => 2.9398689464755
320 => 2.9532217841925
321 => 2.8319843524608
322 => 2.7938889192179
323 => 2.7736072302111
324 => 2.9750383529109
325 => 2.9860732045174
326 => 2.9296173435276
327 => 3.1848031885662
328 => 3.1270467725502
329 => 3.1915748399055
330 => 3.0125442283245
331 => 3.0193834387835
401 => 2.9346274781682
402 => 2.9820851527175
403 => 2.9485435979783
404 => 2.9782510415998
405 => 2.9960575608181
406 => 3.0807996138143
407 => 3.208861574335
408 => 3.0681419769951
409 => 3.0068284332923
410 => 3.044867010965
411 => 3.1461687559727
412 => 3.2996460852001
413 => 3.2087844172784
414 => 3.2491072825709
415 => 3.2579160347979
416 => 3.1909180047541
417 => 3.3021163981328
418 => 3.3617085205186
419 => 3.4228377072342
420 => 3.4759144672585
421 => 3.3984213658004
422 => 3.4813500925603
423 => 3.4145241776827
424 => 3.3545744237014
425 => 3.354665342732
426 => 3.3170579863334
427 => 3.2441889944793
428 => 3.2307508343704
429 => 3.3006578403091
430 => 3.3567166388537
501 => 3.3613339100054
502 => 3.3923709412848
503 => 3.4107383366891
504 => 3.5907637809145
505 => 3.6631715038305
506 => 3.7517102968042
507 => 3.7862011464404
508 => 3.8900062381914
509 => 3.8061751959651
510 => 3.7880378226575
511 => 3.5362406244563
512 => 3.5774724015558
513 => 3.6434884549668
514 => 3.5373292048618
515 => 3.6046628145624
516 => 3.6179558954381
517 => 3.5337219541656
518 => 3.578714941733
519 => 3.459226906245
520 => 3.2114660869855
521 => 3.3023922267509
522 => 3.3693444710259
523 => 3.2737953632932
524 => 3.4450634406429
525 => 3.345012165546
526 => 3.3133007146484
527 => 3.1895830387485
528 => 3.2479730194432
529 => 3.3269463043968
530 => 3.2781499959253
531 => 3.3794096628062
601 => 3.5228203560764
602 => 3.6250233563551
603 => 3.6328692336568
604 => 3.5671595515468
605 => 3.6724597364817
606 => 3.6732267333701
607 => 3.5544476945997
608 => 3.4816961947172
609 => 3.4651669008735
610 => 3.5064603176541
611 => 3.5565981488111
612 => 3.6356515343445
613 => 3.6834218395644
614 => 3.8079814601658
615 => 3.8416837220963
616 => 3.8787122900706
617 => 3.9281938760718
618 => 3.9876092068844
619 => 3.8576118455831
620 => 3.862776883093
621 => 3.7417251401852
622 => 3.6123639923122
623 => 3.7105329784531
624 => 3.8388758689592
625 => 3.8094338680708
626 => 3.8061210415254
627 => 3.8116922968734
628 => 3.7894939896894
629 => 3.6890918690038
630 => 3.638670552546
701 => 3.7037269146262
702 => 3.7383014757463
703 => 3.791923604825
704 => 3.7853135455902
705 => 3.9234383915007
706 => 3.9771095299429
707 => 3.9633781560119
708 => 3.9659050592792
709 => 4.0630740917612
710 => 4.1711460402168
711 => 4.2723696812952
712 => 4.3753387166567
713 => 4.2512055255786
714 => 4.18817834662
715 => 4.2532063071277
716 => 4.2187015559475
717 => 4.416976091003
718 => 4.4307041896201
719 => 4.6289643871699
720 => 4.8171369230299
721 => 4.6989491247174
722 => 4.8103948952307
723 => 4.9309325823479
724 => 5.1634693373318
725 => 5.0851591389949
726 => 5.0251747543461
727 => 4.9684898006954
728 => 5.0864421907595
729 => 5.2381860562415
730 => 5.2708702314817
731 => 5.3238310816866
801 => 5.2681492234408
802 => 5.3352118885424
803 => 5.5719725651794
804 => 5.5079977404078
805 => 5.4171432047658
806 => 5.6040430202336
807 => 5.6716813368968
808 => 6.1464024657003
809 => 6.7457575005665
810 => 6.4976205805546
811 => 6.3435939869748
812 => 6.3797938900257
813 => 6.5986580593105
814 => 6.6689502840833
815 => 6.4778717859679
816 => 6.5453639418056
817 => 6.9172523561534
818 => 7.1167585588421
819 => 6.845802338333
820 => 6.0982448722278
821 => 5.4089627478922
822 => 5.5917914060446
823 => 5.5710643100439
824 => 5.9706120172361
825 => 5.5064719619949
826 => 5.5142868901716
827 => 5.9220968208201
828 => 5.8133001229553
829 => 5.6370634060425
830 => 5.4102494709609
831 => 4.990962934213
901 => 4.6195891559453
902 => 5.3479386574016
903 => 5.3165309024811
904 => 5.2710478189879
905 => 5.3722654995185
906 => 5.8637498250352
907 => 5.8524195205525
908 => 5.7803419042059
909 => 5.8350121409419
910 => 5.627479449216
911 => 5.6809653493053
912 => 5.4088535620821
913 => 5.531859454299
914 => 5.6366852811999
915 => 5.6577306179232
916 => 5.7051468361622
917 => 5.2999804428175
918 => 5.4818882583689
919 => 5.5887420575481
920 => 5.1059727054822
921 => 5.5791992596795
922 => 5.2929273973232
923 => 5.1957624275804
924 => 5.3265822588278
925 => 5.2756016433642
926 => 5.2317715038708
927 => 5.2073135329362
928 => 5.3033731789463
929 => 5.2988918816438
930 => 5.1417196563974
1001 => 4.9366948957229
1002 => 5.0055079351136
1003 => 4.9805075127772
1004 => 4.8899027571117
1005 => 4.9509594227704
1006 => 4.682096767281
1007 => 4.2195325427763
1008 => 4.5251166382095
1009 => 4.5133519829469
1010 => 4.5074197102788
1011 => 4.7370577122728
1012 => 4.7149833170312
1013 => 4.6749180735145
1014 => 4.889166927495
1015 => 4.8109632137384
1016 => 5.0519686324239
1017 => 5.2107103884234
1018 => 5.1704483443441
1019 => 5.3197457331271
1020 => 5.0070932485583
1021 => 5.1109438624916
1022 => 5.1323473300925
1023 => 4.8865231298939
1024 => 4.7185949610913
1025 => 4.7073960667535
1026 => 4.4162317639771
1027 => 4.5717693843241
1028 => 4.7086360536454
1029 => 4.6430875403231
1030 => 4.6223368392114
1031 => 4.7283476709132
1101 => 4.7365856204578
1102 => 4.5487594978221
1103 => 4.5878144963978
1104 => 4.7506803328117
1105 => 4.5837106951909
1106 => 4.259315963629
1107 => 4.1788615850936
1108 => 4.1681274879285
1109 => 3.9499288324233
1110 => 4.1842379313749
1111 => 4.0819557305891
1112 => 4.4050639773425
1113 => 4.2205062796612
1114 => 4.212550366185
1115 => 4.2005238360869
1116 => 4.0127112396206
1117 => 4.0538302621335
1118 => 4.1905161555705
1119 => 4.2392872222256
1120 => 4.2342000004039
1121 => 4.1898463201239
1122 => 4.2101512078285
1123 => 4.1447420898402
1124 => 4.1216447689055
1125 => 4.0487432706168
1126 => 3.9415982076853
1127 => 3.9564973858448
1128 => 3.7442149801469
1129 => 3.6285522588426
1130 => 3.5965383419958
1201 => 3.5537279944345
1202 => 3.6013738846668
1203 => 3.7436136107634
1204 => 3.5720423232496
1205 => 3.2778953851338
1206 => 3.2955741173165
1207 => 3.3352929796685
1208 => 3.2612771424422
1209 => 3.1912273641858
1210 => 3.2521299630616
1211 => 3.1274960277113
1212 => 3.3503543953099
1213 => 3.3443267010197
1214 => 3.4273945189915
1215 => 3.4793385302924
1216 => 3.3596244013171
1217 => 3.3295166216212
1218 => 3.3466673812583
1219 => 3.0632035282468
1220 => 3.4042294746811
1221 => 3.4071786812273
1222 => 3.3819257842637
1223 => 3.5635115727452
1224 => 3.9467142244687
1225 => 3.8025379725994
1226 => 3.7467085701253
1227 => 3.640576835211
1228 => 3.7819910705054
1229 => 3.7711326636405
1230 => 3.722026829869
1231 => 3.6923274683844
]
'min_raw' => 2.7736072302111
'max_raw' => 7.1167585588421
'avg_raw' => 4.9451828945266
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$2.77'
'max' => '$7.11'
'avg' => '$4.94'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 1.7055903256839
'max_diff' => 4.1366602021737
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.087060361626334
]
1 => [
'year' => 2028
'avg' => 0.14942085435435
]
2 => [
'year' => 2029
'avg' => 0.4081908436073
]
3 => [
'year' => 2030
'avg' => 0.31491862794699
]
4 => [
'year' => 2031
'avg' => 0.30928912007985
]
5 => [
'year' => 2032
'avg' => 0.54228116436832
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.087060361626334
'min' => '$0.08706'
'max_raw' => 0.54228116436832
'max' => '$0.542281'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.54228116436832
]
1 => [
'year' => 2033
'avg' => 1.3948029168699
]
2 => [
'year' => 2034
'avg' => 0.88409311980369
]
3 => [
'year' => 2035
'avg' => 1.042789862226
]
4 => [
'year' => 2036
'avg' => 2.0240576305978
]
5 => [
'year' => 2037
'avg' => 4.9451828945266
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.54228116436832
'min' => '$0.542281'
'max_raw' => 4.9451828945266
'max' => '$4.94'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 4.9451828945266
]
]
]
]
'prediction_2025_max_price' => '$0.148857'
'last_price' => 0.144336
'sma_50day_nextmonth' => '$0.131317'
'sma_200day_nextmonth' => '$0.202136'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.140024'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.138198'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.133457'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.12905'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.140787'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.183077'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.2196077'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.140724'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.138492'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.135082'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.133913'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.146697'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.175553'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.237265'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.200287'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.361456'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.521769'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.590969'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.139973'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.141657'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.156671'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.198555'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.312385'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.458644'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.748996'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '60.24'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 114
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.02
'momentum_10_action' => 'BUY'
'vwma_10' => '0.132572'
'vwma_10_action' => 'BUY'
'hma_9' => '0.142062'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 207.13
'cci_20_action' => 'SELL'
'adx_14' => 18.78
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.004770'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 80.81
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.052273'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 20
'sell_pct' => 42.86
'buy_pct' => 57.14
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767690483
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Bella Protocol para 2026
La previsión del precio de Bella Protocol para 2026 sugiere que el precio medio podría oscilar entre $0.049868 en el extremo inferior y $0.148857 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Bella Protocol podría potencialmente ganar 3.13% para 2026 si BEL alcanza el objetivo de precio previsto.
Predicción de precio de Bella Protocol 2027-2032
La predicción del precio de BEL para 2027-2032 está actualmente dentro de un rango de precios de $0.08706 en el extremo inferior y $0.542281 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Bella Protocol alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Bella Protocol | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.0480067 | $0.08706 | $0.126113 |
| 2028 | $0.086638 | $0.14942 | $0.2122036 |
| 2029 | $0.190318 | $0.40819 | $0.626062 |
| 2030 | $0.161858 | $0.314918 | $0.467979 |
| 2031 | $0.191366 | $0.309289 | $0.427211 |
| 2032 | $0.2921062 | $0.542281 | $0.792456 |
Predicción de precio de Bella Protocol 2032-2037
La predicción de precio de Bella Protocol para 2032-2037 se estima actualmente entre $0.542281 en el extremo inferior y $4.94 en el extremo superior. Comparado con el precio actual, Bella Protocol podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Bella Protocol | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.2921062 | $0.542281 | $0.792456 |
| 2033 | $0.678791 | $1.39 | $2.11 |
| 2034 | $0.545715 | $0.884093 | $1.22 |
| 2035 | $0.645205 | $1.04 | $1.44 |
| 2036 | $1.06 | $2.02 | $2.98 |
| 2037 | $2.77 | $4.94 | $7.11 |
Bella Protocol Histograma de precios potenciales
Pronóstico de precio de Bella Protocol basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Bella Protocol es Alcista, con 20 indicadores técnicos mostrando señales alcistas y 15 indicando señales bajistas. La predicción de precio de BEL se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Bella Protocol
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Bella Protocol aumentar durante el próximo mes, alcanzando $0.202136 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Bella Protocol alcance $0.131317 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 60.24, lo que sugiere que el mercado de BEL está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de BEL para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.140024 | BUY |
| SMA 5 | $0.138198 | BUY |
| SMA 10 | $0.133457 | BUY |
| SMA 21 | $0.12905 | BUY |
| SMA 50 | $0.140787 | BUY |
| SMA 100 | $0.183077 | SELL |
| SMA 200 | $0.2196077 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.140724 | BUY |
| EMA 5 | $0.138492 | BUY |
| EMA 10 | $0.135082 | BUY |
| EMA 21 | $0.133913 | BUY |
| EMA 50 | $0.146697 | SELL |
| EMA 100 | $0.175553 | SELL |
| EMA 200 | $0.237265 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.200287 | SELL |
| SMA 50 | $0.361456 | SELL |
| SMA 100 | $0.521769 | SELL |
| SMA 200 | $0.590969 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.198555 | SELL |
| EMA 50 | $0.312385 | SELL |
| EMA 100 | $0.458644 | SELL |
| EMA 200 | $0.748996 | SELL |
Osciladores de Bella Protocol
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 60.24 | NEUTRAL |
| Stoch RSI (14) | 114 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 207.13 | SELL |
| Índice Direccional Medio (14) | 18.78 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.004770 | BUY |
| Momentum (10) | 0.02 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 80.81 | SELL |
| VWMA (10) | 0.132572 | BUY |
| Promedio Móvil de Hull (9) | 0.142062 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.052273 | SELL |
Predicción de precios de Bella Protocol basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Bella Protocol
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Bella Protocol por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.202816 | $0.28499 | $0.400459 | $0.562712 | $0.7907048 | $1.11 |
| Amazon.com acción | $0.301165 | $0.628400018 | $1.31 | $2.73 | $5.70 | $11.91 |
| Apple acción | $0.204729 | $0.290393 | $0.41190074 | $0.584249 | $0.828713 | $1.17 |
| Netflix acción | $0.227739 | $0.359337 | $0.566978 | $0.8946025 | $1.41 | $2.22 |
| Google acción | $0.186914 | $0.242053 | $0.313458 | $0.405926 | $0.525673 | $0.680744 |
| Tesla acción | $0.327198 | $0.741734 | $1.68 | $3.81 | $8.64 | $19.58 |
| Kodak acción | $0.108236 | $0.081165 | $0.060865 | $0.045642 | $0.034227 | $0.025666 |
| Nokia acción | $0.095616 | $0.063342 | $0.041961 | $0.027797 | $0.018414 | $0.012199 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Bella Protocol
Podría preguntarse cosas como: "¿Debo invertir en Bella Protocol ahora?", "¿Debería comprar BEL hoy?", "¿Será Bella Protocol una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Bella Protocol regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Bella Protocol, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Bella Protocol a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Bella Protocol es de $0.1443 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Bella Protocol
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Bella Protocol
basado en el historial de precios del último mes
Predicción de precios de Bella Protocol basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Bella Protocol ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.148087 | $0.151937 | $0.155886 | $0.159938 |
| Si Bella Protocol ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.151839 | $0.159733 | $0.168037 | $0.176772 |
| Si Bella Protocol ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.163094 | $0.184291 | $0.208243 | $0.2353077 |
| Si Bella Protocol ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.181853 | $0.229123 | $0.288679 | $0.363716 |
| Si Bella Protocol ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.219371 | $0.333414 | $0.506744 | $0.770182 |
| Si Bella Protocol ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.331923 | $0.763312 | $1.75 | $4.03 |
| Si Bella Protocol ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.519511 | $1.86 | $6.73 | $24.22 |
Cuadro de preguntas
¿Es BEL una buena inversión?
La decisión de adquirir Bella Protocol depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Bella Protocol ha experimentado un aumento de 5.2663% durante las últimas 24 horas, y Bella Protocol ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Bella Protocol dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Bella Protocol subir?
Parece que el valor medio de Bella Protocol podría potencialmente aumentar hasta $0.148857 para el final de este año. Mirando las perspectivas de Bella Protocol en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.467979. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Bella Protocol la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Bella Protocol, el precio de Bella Protocol aumentará en un 0.86% durante la próxima semana y alcanzará $0.145571 para el 13 de enero de 2026.
¿Cuál será el precio de Bella Protocol el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Bella Protocol, el precio de Bella Protocol disminuirá en un -11.62% durante el próximo mes y alcanzará $0.127567 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Bella Protocol este año en 2026?
Según nuestra predicción más reciente sobre el valor de Bella Protocol en 2026, se anticipa que BEL fluctúe dentro del rango de $0.049868 y $0.148857. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Bella Protocol no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Bella Protocol en 5 años?
El futuro de Bella Protocol parece estar en una tendencia alcista, con un precio máximo de $0.467979 proyectada después de un período de cinco años. Basado en el pronóstico de Bella Protocol para 2030, el valor de Bella Protocol podría potencialmente alcanzar su punto más alto de aproximadamente $0.467979, mientras que su punto más bajo se anticipa que esté alrededor de $0.161858.
¿Cuánto será Bella Protocol en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Bella Protocol, se espera que el valor de BEL en 2026 crezca en un 3.13% hasta $0.148857 si ocurre lo mejor. El precio estará entre $0.148857 y $0.049868 durante 2026.
¿Cuánto será Bella Protocol en 2027?
Según nuestra última simulación experimental para la predicción de precios de Bella Protocol, el valor de BEL podría disminuir en un -12.62% hasta $0.126113 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.126113 y $0.0480067 a lo largo del año.
¿Cuánto será Bella Protocol en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Bella Protocol sugiere que el valor de BEL en 2028 podría aumentar en un 47.02% , alcanzando $0.2122036 en el mejor escenario. Se espera que el precio oscile entre $0.2122036 y $0.086638 durante el año.
¿Cuánto será Bella Protocol en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Bella Protocol podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.626062 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.626062 y $0.190318.
¿Cuánto será Bella Protocol en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Bella Protocol, se espera que el valor de BEL en 2030 aumente en un 224.23% , alcanzando $0.467979 en el mejor escenario. Se pronostica que el precio oscile entre $0.467979 y $0.161858 durante el transcurso de 2030.
¿Cuánto será Bella Protocol en 2031?
Nuestra simulación experimental indica que el precio de Bella Protocol podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.427211 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.427211 y $0.191366 durante el año.
¿Cuánto será Bella Protocol en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Bella Protocol, BEL podría experimentar un 449.04% aumento en valor, alcanzando $0.792456 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.792456 y $0.2921062 a lo largo del año.
¿Cuánto será Bella Protocol en 2033?
Según nuestra predicción experimental de precios de Bella Protocol, se anticipa que el valor de BEL aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $2.11. A lo largo del año, el precio de BEL podría oscilar entre $2.11 y $0.678791.
¿Cuánto será Bella Protocol en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Bella Protocol sugieren que BEL podría aumentar en un 746.96% en 2034, alcanzando potencialmente $1.22 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $1.22 y $0.545715.
¿Cuánto será Bella Protocol en 2035?
Basado en nuestra predicción experimental para el precio de Bella Protocol, BEL podría crecer en un 897.93% , con el valor potencialmente alcanzando $1.44 en 2035. El rango de precios esperado para el año está entre $1.44 y $0.645205.
¿Cuánto será Bella Protocol en 2036?
Nuestra reciente simulación de predicción de precios de Bella Protocol sugiere que el valor de BEL podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $2.98 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $2.98 y $1.06.
¿Cuánto será Bella Protocol en 2037?
Según la simulación experimental, el valor de Bella Protocol podría aumentar en un 4830.69% en 2037, con un máximo de $7.11 bajo condiciones favorables. Se espera que el precio caiga entre $7.11 y $2.77 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Aavegotchi
Predicción de precios de Tokamak Network
Predicción de precios de Chainflip
Predicción de precios de Kyber Network Crystal
Predicción de precios de Radicle
Predicción de precios de Ergo
Predicción de precios de CANTO
Predicción de precios de Mines of Dalarnia
Predicción de precios de Ethernity Chain
Predicción de precios de Huobi Token
Predicción de precios de MARBLEX
Predicción de precios de Loom Network (NEW)
Predicción de precios de Ardor
Predicción de precios de BTSE Token
Predicción de precios de Keep Network
Predicción de precios de Energy Web Token
Predicción de precios de Nakamoto Games
Predicción de precios de Gelato
Predicción de precios de Bifrost
Predicción de precios de Request
Predicción de precios de POL (ex-MATIC)
Predicción de precios de Maya Protocol
Predicción de precios de CertiK
Predicción de precios de Badger DAO
Predicción de precios de Electroneum
¿Cómo leer y predecir los movimientos de precio de Bella Protocol?
Los traders de Bella Protocol utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Bella Protocol
Las medias móviles son herramientas populares para la predicción de precios de Bella Protocol. Una media móvil simple (SMA) calcula el precio de cierre promedio de BEL durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de BEL por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de BEL.
¿Cómo leer gráficos de Bella Protocol y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Bella Protocol en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de BEL dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Bella Protocol?
La acción del precio de Bella Protocol está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de BEL. La capitalización de mercado de Bella Protocol puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de BEL, grandes poseedores de Bella Protocol, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Bella Protocol.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


