Predicción del precio de Bella Protocol - Pronóstico de BEL
Predicción de precio de Bella Protocol hasta $0.149757 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.050169 | $0.149757 |
| 2027 | $0.048297 | $0.126876 |
| 2028 | $0.087162 | $0.213487 |
| 2029 | $0.191469 | $0.629849 |
| 2030 | $0.162837 | $0.4708097 |
| 2031 | $0.192523 | $0.429795 |
| 2032 | $0.293873 | $0.797249 |
| 2033 | $0.682896 | $2.12 |
| 2034 | $0.549016 | $1.22 |
| 2035 | $0.6491074 | $1.44 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Bella Protocol hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.44, equivalente a un ROI del 39.54% en los próximos 90 días.
Predicción del precio a largo plazo de Bella Protocol para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Bella Protocol'
'name_with_ticker' => 'Bella Protocol <small>BEL</small>'
'name_lang' => 'Bella Protocol'
'name_lang_with_ticker' => 'Bella Protocol <small>BEL</small>'
'name_with_lang' => 'Bella Protocol'
'name_with_lang_with_ticker' => 'Bella Protocol <small>BEL</small>'
'image' => '/uploads/coins/bella-protocol.png?1717212612'
'price_for_sd' => 0.1452
'ticker' => 'BEL'
'marketcap' => '$11.61M'
'low24h' => '$0.1368'
'high24h' => '$0.1458'
'volume24h' => '$2.05M'
'current_supply' => '80M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.1452'
'change_24h_pct' => '6.1281%'
'ath_price' => '$9.99'
'ath_days' => 1939
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '15 sept. 2020'
'ath_pct' => '-98.55%'
'fdv' => '$14.52M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$7.15'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.146451'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.128338'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.050169'
'current_year_max_price_prediction' => '$0.149757'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.162837'
'grand_prediction_max_price' => '$0.4708097'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.14796063417007
107 => 0.14851306546835
108 => 0.14975772139121
109 => 0.13912227280521
110 => 0.14389727697996
111 => 0.14670214457524
112 => 0.13402965073781
113 => 0.14645165011725
114 => 0.13893713330707
115 => 0.13638659343744
116 => 0.13982055936382
117 => 0.13848233950267
118 => 0.13733181664895
119 => 0.13668980512809
120 => 0.13921133071144
121 => 0.1390936985291
122 => 0.13496799326772
123 => 0.12958617893951
124 => 0.13139249248009
125 => 0.13073624183652
126 => 0.12835790484619
127 => 0.12996061681617
128 => 0.12290308441436
129 => 0.11076096673567
130 => 0.11878242159734
131 => 0.11847360431083
201 => 0.11831788463122
202 => 0.12434578626303
203 => 0.12376634260849
204 => 0.12271464670156
205 => 0.12833858962611
206 => 0.12628577480594
207 => 0.13261206637771
208 => 0.13677897116576
209 => 0.13572210932626
210 => 0.13964110341982
211 => 0.13143410629583
212 => 0.13416014153284
213 => 0.13472197361707
214 => 0.12826919104341
215 => 0.12386114675647
216 => 0.12356718045792
217 => 0.11592423913029
218 => 0.12000703669584
219 => 0.12359972959588
220 => 0.121879108501
221 => 0.12133441126445
222 => 0.12411715131556
223 => 0.12433339405009
224 => 0.11940303678647
225 => 0.12042821418568
226 => 0.12470337436197
227 => 0.12032049111817
228 => 0.11180526491539
301 => 0.10969337108488
302 => 0.10941160551797
303 => 0.10368398195323
304 => 0.10983449792905
305 => 0.10714963288203
306 => 0.11563108939596
307 => 0.11078652692216
308 => 0.11057768751662
309 => 0.11026199612507
310 => 0.10533199391775
311 => 0.10641135108317
312 => 0.10999929869175
313 => 0.11127951881962
314 => 0.11114598137175
315 => 0.10998171579107
316 => 0.1105147106119
317 => 0.10879774858631
318 => 0.10819145355959
319 => 0.1062778196807
320 => 0.10346530653359
321 => 0.10385640373684
322 => 0.098284079258309
323 => 0.09524798113676
324 => 0.094407629191845
325 => 0.09328387545038
326 => 0.094534560167138
327 => 0.098268293563186
328 => 0.093764618931824
329 => 0.086043384672398
330 => 0.086507444007732
331 => 0.087550047553776
401 => 0.085607162743236
402 => 0.083768385324023
403 => 0.085367053105301
404 => 0.08209546436235
405 => 0.087945403423161
406 => 0.087787178965831
407 => 0.089967674489897
408 => 0.091331183089368
409 => 0.088188737208738
410 => 0.087398420567837
411 => 0.087848620844383
412 => 0.080407813106588
413 => 0.089359601752863
414 => 0.089437017192807
415 => 0.088774139195729
416 => 0.093540690294403
417 => 0.10359959983718
418 => 0.099815033448486
419 => 0.098349534953661
420 => 0.095563621243725
421 => 0.099275685851026
422 => 0.098990657206414
423 => 0.097701649581575
424 => 0.096922053748123
425 => 0.098358482974971
426 => 0.096744064270658
427 => 0.096454070310105
428 => 0.09469702242569
429 => 0.094069836271539
430 => 0.093605492612006
501 => 0.093094295868325
502 => 0.094221868502593
503 => 0.09166664056881
504 => 0.08858528617275
505 => 0.088329104895434
506 => 0.089036443925791
507 => 0.088723499060056
508 => 0.088327606635816
509 => 0.087571740183055
510 => 0.087347490753052
511 => 0.088076192610204
512 => 0.087253530699437
513 => 0.088467413161487
514 => 0.08813730429899
515 => 0.086293343027502
516 => 0.083995084561327
517 => 0.083974625240218
518 => 0.08347946922358
519 => 0.082848813589186
520 => 0.082673379619144
521 => 0.085232417763809
522 => 0.0905295501377
523 => 0.089489596303071
524 => 0.090241069527346
525 => 0.093937574030396
526 => 0.095112581654147
527 => 0.094278589074389
528 => 0.093136968592795
529 => 0.093187194100163
530 => 0.097088456877792
531 => 0.097331773851846
601 => 0.097946557348251
602 => 0.098736727878926
603 => 0.094413158532557
604 => 0.092983554372761
605 => 0.092306128610431
606 => 0.090219919459217
607 => 0.092469717170746
608 => 0.091158856390181
609 => 0.09133573629486
610 => 0.091220543024895
611 => 0.091283446339631
612 => 0.087943768245972
613 => 0.089160571414988
614 => 0.087137400143642
615 => 0.084428600922944
616 => 0.084419520078128
617 => 0.085082494849841
618 => 0.084688131513421
619 => 0.083626909915123
620 => 0.083777651434336
621 => 0.082456997108345
622 => 0.08393800278073
623 => 0.083980472724121
624 => 0.083410204869329
625 => 0.085691898447037
626 => 0.086626710167509
627 => 0.086251347649164
628 => 0.086600373732582
629 => 0.089532811080009
630 => 0.090010926318851
701 => 0.090223273525425
702 => 0.08993875639923
703 => 0.086653973304142
704 => 0.086799667402386
705 => 0.085730660779029
706 => 0.084827462831435
707 => 0.084863586012689
708 => 0.085327947165267
709 => 0.087355839552996
710 => 0.091623419532186
711 => 0.091785371072836
712 => 0.091981661064563
713 => 0.091183251020762
714 => 0.090942442911797
715 => 0.091260130965369
716 => 0.092862809626857
717 => 0.096985334267217
718 => 0.095528158725151
719 => 0.094343452327162
720 => 0.09538275923275
721 => 0.095222766080991
722 => 0.093872262868734
723 => 0.093834358741556
724 => 0.091242311295239
725 => 0.0902840903724
726 => 0.089483329247683
727 => 0.08860891900389
728 => 0.088090539300873
729 => 0.088887006124069
730 => 0.089069167510052
731 => 0.087327678881277
801 => 0.087090320416196
802 => 0.088512457623097
803 => 0.087886628060959
804 => 0.088530309285444
805 => 0.08867964885092
806 => 0.088655601741297
807 => 0.088002163802357
808 => 0.088418645658837
809 => 0.087433541909045
810 => 0.086362389538944
811 => 0.08567906106197
812 => 0.085082766335442
813 => 0.085413625306573
814 => 0.084234173486951
815 => 0.083856843112179
816 => 0.088277550977
817 => 0.091543175407362
818 => 0.091495691934815
819 => 0.091206648507445
820 => 0.090777188604691
821 => 0.09283139196003
822 => 0.092115748586122
823 => 0.092636438934645
824 => 0.092768976481649
825 => 0.093170127718675
826 => 0.093313504805798
827 => 0.092880119666723
828 => 0.09142562620645
829 => 0.087801166792538
830 => 0.086113971151321
831 => 0.085557168487253
901 => 0.085577407206573
902 => 0.085019132978104
903 => 0.085183569758484
904 => 0.084961948576508
905 => 0.084542251673766
906 => 0.085387710205503
907 => 0.085485141425295
908 => 0.08528780130151
909 => 0.085334282044478
910 => 0.083700390104612
911 => 0.083824611360173
912 => 0.083132931623934
913 => 0.083003250011713
914 => 0.081254743869945
915 => 0.078157011789786
916 => 0.079873456066323
917 => 0.077800232748855
918 => 0.07701507166407
919 => 0.08073190212184
920 => 0.080358835432709
921 => 0.079720307429109
922 => 0.078775791430888
923 => 0.078425461259487
924 => 0.076296966039109
925 => 0.076171203186409
926 => 0.077226142891833
927 => 0.076739324516039
928 => 0.076055647143887
929 => 0.073579437005215
930 => 0.070795356964347
1001 => 0.070879390840677
1002 => 0.071764954902027
1003 => 0.074339851844985
1004 => 0.073333795063202
1005 => 0.072603889324847
1006 => 0.072467199920939
1007 => 0.074178153989498
1008 => 0.076599512452468
1009 => 0.077735559668452
1010 => 0.076609771379679
1011 => 0.075316526410283
1012 => 0.07539524023925
1013 => 0.07591888807895
1014 => 0.075973916062921
1015 => 0.075132146535575
1016 => 0.07536909972683
1017 => 0.07500914616186
1018 => 0.072800111798063
1019 => 0.072760157371346
1020 => 0.072218024712979
1021 => 0.072201609151541
1022 => 0.071279306258329
1023 => 0.07115026970799
1024 => 0.069318981333735
1025 => 0.070524340887322
1026 => 0.069715848982992
1027 => 0.068497260979208
1028 => 0.068287175948042
1029 => 0.06828086053832
1030 => 0.069532077946915
1031 => 0.070509719683408
1101 => 0.069729913045814
1102 => 0.06955236619035
1103 => 0.07144810210625
1104 => 0.071206852430935
1105 => 0.070997931768006
1106 => 0.076382706359801
1107 => 0.072120237091194
1108 => 0.070261557196841
1109 => 0.067961087873841
1110 => 0.068710132285383
1111 => 0.068867966948647
1112 => 0.063335752917593
1113 => 0.061091334374188
1114 => 0.06032113450922
1115 => 0.059877873597903
1116 => 0.060079873161311
1117 => 0.058059633228208
1118 => 0.059417267874937
1119 => 0.057667910859501
1120 => 0.057374625462963
1121 => 0.060502692510313
1122 => 0.060937944766049
1123 => 0.059081023420802
1124 => 0.060273467532709
1125 => 0.059841070721518
1126 => 0.057697898564572
1127 => 0.057616045152283
1128 => 0.056540676700072
1129 => 0.054857933304724
1130 => 0.054088874419017
1201 => 0.053688341874065
1202 => 0.053853609408336
1203 => 0.053770045085739
1204 => 0.053224731355706
1205 => 0.053801301830423
1206 => 0.05232840252289
1207 => 0.051741882150674
1208 => 0.051476964505713
1209 => 0.050169681593356
1210 => 0.052250150058266
1211 => 0.052660028554904
1212 => 0.053070714638799
1213 => 0.056645456611803
1214 => 0.056466872604948
1215 => 0.058081185052981
1216 => 0.058018455839781
1217 => 0.057558027779474
1218 => 0.055615557529778
1219 => 0.056389791550104
1220 => 0.054006819578222
1221 => 0.055792304205899
1222 => 0.054977483585448
1223 => 0.055516812534489
1224 => 0.054547050454783
1225 => 0.055083756830187
1226 => 0.052757225951947
1227 => 0.050584744153018
1228 => 0.051459014247604
1229 => 0.052409445825332
1230 => 0.054470223651308
1231 => 0.053242841379205
]
'min_raw' => 0.050169681593356
'max_raw' => 0.14975772139121
'avg_raw' => 0.099963701492286
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.050169'
'max' => '$0.149757'
'avg' => '$0.099963'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.095039318406644
'max_diff' => 0.0045487213912149
'year' => 2026
]
1 => [
'items' => [
101 => 0.053684254456715
102 => 0.052205594538712
103 => 0.049154696769547
104 => 0.049171964519594
105 => 0.048702650365229
106 => 0.048297094414869
107 => 0.053383820997834
108 => 0.052751206137995
109 => 0.051743217153427
110 => 0.053092450465161
111 => 0.053449209167996
112 => 0.053459365586722
113 => 0.054443731382211
114 => 0.05496908758372
115 => 0.055061683891261
116 => 0.056610604739093
117 => 0.057129782576526
118 => 0.059268202612117
119 => 0.054924514780482
120 => 0.054835059388033
121 => 0.05311143694479
122 => 0.052018288341892
123 => 0.053186285764859
124 => 0.05422097203406
125 => 0.053143587531351
126 => 0.053284271202576
127 => 0.051837970533236
128 => 0.052354954967754
129 => 0.052800251608084
130 => 0.05255438497662
131 => 0.05218631072924
201 => 0.054136139559393
202 => 0.054026122575355
203 => 0.055841848008364
204 => 0.057257335827167
205 => 0.059794143047174
206 => 0.057146852466345
207 => 0.057050374675553
208 => 0.057993460556073
209 => 0.057129638194992
210 => 0.057675544109061
211 => 0.059706189164745
212 => 0.059749093494923
213 => 0.059030390685334
214 => 0.058986657554055
215 => 0.059124692290384
216 => 0.059933166052498
217 => 0.059650660478126
218 => 0.059977583080956
219 => 0.06038640480181
220 => 0.062077464776084
221 => 0.062485173610825
222 => 0.061494652515199
223 => 0.06158408547974
224 => 0.061213603399564
225 => 0.06085572235224
226 => 0.061660186682293
227 => 0.063130361057251
228 => 0.063121215178767
301 => 0.063462267057651
302 => 0.063674739552769
303 => 0.062762652064349
304 => 0.062168916647773
305 => 0.062396592586854
306 => 0.062760651371582
307 => 0.062278533229629
308 => 0.059302676718645
309 => 0.060205361485628
310 => 0.060055110601372
311 => 0.05984113507106
312 => 0.060748791584515
313 => 0.06066124589955
314 => 0.058038912747687
315 => 0.05820678600793
316 => 0.058049121676656
317 => 0.05855856738609
318 => 0.057102126454824
319 => 0.057550117876002
320 => 0.057831093895706
321 => 0.057996590929872
322 => 0.058594479699655
323 => 0.058524324353327
324 => 0.058590118744825
325 => 0.05947662995363
326 => 0.06396029943386
327 => 0.06420433567101
328 => 0.063002611987224
329 => 0.063482676895945
330 => 0.062561057249855
331 => 0.06317974669259
401 => 0.063603038296302
402 => 0.061690264933425
403 => 0.061577002908671
404 => 0.060651579410464
405 => 0.061148849579735
406 => 0.060357656985435
407 => 0.060551787973334
408 => 0.060008980807133
409 => 0.060985925634466
410 => 0.062078301753303
411 => 0.062354279100162
412 => 0.061628301516295
413 => 0.061102645901322
414 => 0.060179767803153
415 => 0.061714534648088
416 => 0.062163347244719
417 => 0.061712177226583
418 => 0.061607631275122
419 => 0.061409516886012
420 => 0.061649662179318
421 => 0.06216090291493
422 => 0.06191981122515
423 => 0.062079056533739
424 => 0.061472177630446
425 => 0.062762954003259
426 => 0.064813017525536
427 => 0.06481960881498
428 => 0.064578515825625
429 => 0.064479865768802
430 => 0.064727241806626
501 => 0.064861433159249
502 => 0.065661401904564
503 => 0.066519800240448
504 => 0.070525570725484
505 => 0.069400766402636
506 => 0.072954924281312
507 => 0.075765801713704
508 => 0.076608660950906
509 => 0.075833270112272
510 => 0.073180699939097
511 => 0.073050552191647
512 => 0.077014611916611
513 => 0.075894583478871
514 => 0.075761359660103
515 => 0.074344083313603
516 => 0.075181869167475
517 => 0.074998633111656
518 => 0.074709386033332
519 => 0.07630782308185
520 => 0.079299954543218
521 => 0.078833602794933
522 => 0.078485492848273
523 => 0.076960176395291
524 => 0.07787875759175
525 => 0.077551668421955
526 => 0.07895705107131
527 => 0.078124533522869
528 => 0.075886098161877
529 => 0.076242576371094
530 => 0.076188695406906
531 => 0.077297561831861
601 => 0.076964707654846
602 => 0.076123700286725
603 => 0.079289727763169
604 => 0.079084143549219
605 => 0.079375614961506
606 => 0.079503929691248
607 => 0.081431034824498
608 => 0.082220508137104
609 => 0.082399732400741
610 => 0.08314967098766
611 => 0.08238107324552
612 => 0.085456012214981
613 => 0.08750066720201
614 => 0.089875639186427
615 => 0.09334611158795
616 => 0.094651041314587
617 => 0.094415317439443
618 => 0.097046590006323
619 => 0.1017749283191
620 => 0.095371049800822
621 => 0.1021143494304
622 => 0.099979498622817
623 => 0.094917805762352
624 => 0.094591892415577
625 => 0.098019729588146
626 => 0.1056223425198
627 => 0.10371797420855
628 => 0.10562545738414
629 => 0.10340027693787
630 => 0.10328977797342
701 => 0.10551738533656
702 => 0.11072231136108
703 => 0.10824964611057
704 => 0.10470447415156
705 => 0.10732217395711
706 => 0.10505448012886
707 => 0.099944731246286
708 => 0.10371651797399
709 => 0.10119443160347
710 => 0.10193051048788
711 => 0.10723156090666
712 => 0.10659372449543
713 => 0.10741914387362
714 => 0.1059623002761
715 => 0.10460137863287
716 => 0.10206111732241
717 => 0.10130907118175
718 => 0.10151690967924
719 => 0.10130896818731
720 => 0.099887715330318
721 => 0.099580795911169
722 => 0.099069250099471
723 => 0.099227799536637
724 => 0.09826594375264
725 => 0.10008116434659
726 => 0.10041808528449
727 => 0.10173905145594
728 => 0.10187619854599
729 => 0.10555507053068
730 => 0.10352880966245
731 => 0.1048882003918
801 => 0.10476660368989
802 => 0.095027507995034
803 => 0.096369469453016
804 => 0.098457140350931
805 => 0.097516647441191
806 => 0.096187010508267
807 => 0.095113257394308
808 => 0.093486411629768
809 => 0.095776165802553
810 => 0.098786949051555
811 => 0.10195255697774
812 => 0.10575582748219
813 => 0.10490698178055
814 => 0.10188145748115
815 => 0.10201718029108
816 => 0.10285616529707
817 => 0.10176960348448
818 => 0.10144915519375
819 => 0.10281214062274
820 => 0.10282152675431
821 => 0.10157130607355
822 => 0.10018191457485
823 => 0.10017609297374
824 => 0.099928864176475
825 => 0.10344425839169
826 => 0.10537736976361
827 => 0.10559899786704
828 => 0.10536245242641
829 => 0.10545348937835
830 => 0.10432865446423
831 => 0.10689969351848
901 => 0.10925913320406
902 => 0.10862675296625
903 => 0.10767872509162
904 => 0.10692357522627
905 => 0.10844886365698
906 => 0.10838094496419
907 => 0.10923852555674
908 => 0.10919962074744
909 => 0.1089112486494
910 => 0.10862676326492
911 => 0.10975471565759
912 => 0.10942988348286
913 => 0.10910454675405
914 => 0.10845203413785
915 => 0.10854072143948
916 => 0.10759285725523
917 => 0.10715433191228
918 => 0.10055996292375
919 => 0.098797732052794
920 => 0.099352165758314
921 => 0.099534699730036
922 => 0.098767774596636
923 => 0.09986734823103
924 => 0.099695980844846
925 => 0.10036267109792
926 => 0.099946151972125
927 => 0.099963246062336
928 => 0.10118814000006
929 => 0.10154373192125
930 => 0.10136287500015
1001 => 0.10148954098827
1002 => 0.10440850522221
1003 => 0.10399352185137
1004 => 0.10377307020653
1005 => 0.10383413681874
1006 => 0.10457999476381
1007 => 0.1047887942661
1008 => 0.10390409610283
1009 => 0.10432132487101
1010 => 0.10609783201168
1011 => 0.10671950896932
1012 => 0.10870360339624
1013 => 0.10786072481922
1014 => 0.10940786492627
1015 => 0.11416324615642
1016 => 0.11796217373041
1017 => 0.11446852293605
1018 => 0.12144476963518
1019 => 0.1268767783736
1020 => 0.12666828883074
1021 => 0.12572109246257
1022 => 0.11953689493129
1023 => 0.11384610416182
1024 => 0.11860669228422
1025 => 0.11861882800237
1026 => 0.1182098892607
1027 => 0.11567000585757
1028 => 0.11812150682379
1029 => 0.11831609806794
1030 => 0.11820717871721
1031 => 0.1162598560671
1101 => 0.11328665430577
1102 => 0.1138676108131
1103 => 0.11481922942328
1104 => 0.11301761686576
1105 => 0.11244189249007
1106 => 0.11351227364051
1107 => 0.11696126473
1108 => 0.11630925294318
1109 => 0.11629222628044
1110 => 0.11908180920049
1111 => 0.11708506985941
1112 => 0.11387493853513
1113 => 0.11306433803932
1114 => 0.11018725236512
1115 => 0.11217446568812
1116 => 0.11224598195785
1117 => 0.11115760552967
1118 => 0.11396325428389
1119 => 0.1139373997367
1120 => 0.11660094566313
1121 => 0.1216926450923
1122 => 0.12018677902378
1123 => 0.11843562062386
1124 => 0.11862602009629
1125 => 0.12071423236287
1126 => 0.11945165155724
1127 => 0.11990568441797
1128 => 0.12071354512976
1129 => 0.12120094755523
1130 => 0.11855589038796
1201 => 0.11793920103456
1202 => 0.11667767104605
1203 => 0.11634856141962
1204 => 0.11737605127257
1205 => 0.11710534399807
1206 => 0.1122399712923
1207 => 0.11173151277387
1208 => 0.11174710647072
1209 => 0.11046856335024
1210 => 0.108518478206
1211 => 0.11364318553153
1212 => 0.11323159981306
1213 => 0.11277724103407
1214 => 0.11283289739196
1215 => 0.11505735914952
1216 => 0.11376705899212
1217 => 0.11719753343661
1218 => 0.11649233102032
1219 => 0.11576904282303
1220 => 0.11566906236227
1221 => 0.11539065811436
1222 => 0.11443590635863
1223 => 0.11328298624189
1224 => 0.1125217285166
1225 => 0.1037953466805
1226 => 0.10541491239025
1227 => 0.10727807511126
1228 => 0.1079212314164
1229 => 0.1068210680514
1230 => 0.11447934751385
1231 => 0.11587858896866
]
'min_raw' => 0.048297094414869
'max_raw' => 0.1268767783736
'avg_raw' => 0.087586936394235
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.048297'
'max' => '$0.126876'
'avg' => '$0.087586'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0018725871784874
'max_diff' => -0.022880943017613
'year' => 2027
]
2 => [
'items' => [
101 => 0.11164019533179
102 => 0.1108473649348
103 => 0.11453132534269
104 => 0.11230944687089
105 => 0.11330995861069
106 => 0.1111473994799
107 => 0.11554155267677
108 => 0.11550807659163
109 => 0.11379865175159
110 => 0.11524344592076
111 => 0.11499237737923
112 => 0.11306244094495
113 => 0.1156027351041
114 => 0.11560399505831
115 => 0.11395871081588
116 => 0.11203737901975
117 => 0.11169389027443
118 => 0.11143511764606
119 => 0.11324631640716
120 => 0.11487023155289
121 => 0.1178919350364
122 => 0.11865166308605
123 => 0.12161693224183
124 => 0.1198512588359
125 => 0.12063395898745
126 => 0.12148369072165
127 => 0.12189108336288
128 => 0.12122725891589
129 => 0.12583354246828
130 => 0.12622245393298
131 => 0.12635285258303
201 => 0.12479963968612
202 => 0.12617925627258
203 => 0.12553377935988
204 => 0.12721313096808
205 => 0.12747647474328
206 => 0.12725343193441
207 => 0.12733702140526
208 => 0.1234063709974
209 => 0.12320254603792
210 => 0.12042337825264
211 => 0.12155590966771
212 => 0.11943869647088
213 => 0.12011008658531
214 => 0.12040602895051
215 => 0.12025144545351
216 => 0.12161994129469
217 => 0.12045644026446
218 => 0.11738576974841
219 => 0.11431426263023
220 => 0.11427570236035
221 => 0.11346702875274
222 => 0.1128825058504
223 => 0.11299510569845
224 => 0.11339192224963
225 => 0.11285944215107
226 => 0.11297307377752
227 => 0.11486011590023
228 => 0.11523854874017
229 => 0.1139524860868
301 => 0.10878875895556
302 => 0.10752156736532
303 => 0.10843239955088
304 => 0.10799708043129
305 => 0.087162072734588
306 => 0.09205694874289
307 => 0.08914857963304
308 => 0.090488889926488
309 => 0.08752019818386
310 => 0.088937013485907
311 => 0.08867537943343
312 => 0.09654619520487
313 => 0.096423303242552
314 => 0.096482125121615
315 => 0.093674403574316
316 => 0.098147180237111
317 => 0.10035063085705
318 => 0.099942830790239
319 => 0.10004546528135
320 => 0.098281864679759
321 => 0.096499200630479
322 => 0.094521951849796
323 => 0.098195435688969
324 => 0.097787006994513
325 => 0.098723795471589
326 => 0.10110631232734
327 => 0.10145714698465
328 => 0.10192867232189
329 => 0.10175966405395
330 => 0.10578612666768
331 => 0.1052984954777
401 => 0.10647354634448
402 => 0.10405637756019
403 => 0.101321121641
404 => 0.10184100436898
405 => 0.10179093548165
406 => 0.10115350107944
407 => 0.10057805380275
408 => 0.099620096218324
409 => 0.1026512157665
410 => 0.10252815784832
411 => 0.10452032250449
412 => 0.10416818805066
413 => 0.10181654798604
414 => 0.101900537271
415 => 0.10246540557627
416 => 0.10442042123037
417 => 0.10500080298412
418 => 0.10473194703157
419 => 0.10536830912912
420 => 0.10587126378445
421 => 0.1054314724902
422 => 0.11165798977903
423 => 0.10907230568944
424 => 0.11033255012363
425 => 0.11063311099539
426 => 0.10986323064249
427 => 0.11003019012368
428 => 0.11028308824396
429 => 0.11181863610776
430 => 0.11584835801673
501 => 0.11763309441897
502 => 0.12300256194244
503 => 0.11748489690549
504 => 0.11715750149657
505 => 0.11812470473993
506 => 0.12127715059207
507 => 0.12383191186105
508 => 0.12467947356168
509 => 0.12479149283214
510 => 0.12638157492736
511 => 0.12729298033107
512 => 0.12618849713769
513 => 0.12525256327551
514 => 0.12190016435358
515 => 0.12228821365707
516 => 0.12496148854816
517 => 0.12873764678693
518 => 0.13197798339809
519 => 0.13084333045399
520 => 0.13949993147731
521 => 0.14035819810973
522 => 0.14023961341221
523 => 0.14219487252805
524 => 0.13831408136469
525 => 0.13665496795557
526 => 0.12545492279982
527 => 0.12860167864468
528 => 0.13317567306767
529 => 0.13257028775419
530 => 0.12924853074099
531 => 0.13197546354753
601 => 0.13107385428261
602 => 0.13036271764757
603 => 0.13362057243331
604 => 0.13003842727109
605 => 0.13313993842948
606 => 0.12916221828782
607 => 0.13084851345306
608 => 0.12989129076035
609 => 0.13051073115534
610 => 0.1268894952635
611 => 0.1288434262502
612 => 0.12680820531053
613 => 0.12680724035081
614 => 0.12676231273576
615 => 0.12915674114574
616 => 0.12923482337023
617 => 0.12746533715747
618 => 0.12721032654964
619 => 0.12815323442325
620 => 0.12704933625122
621 => 0.12756584325806
622 => 0.12706498072228
623 => 0.1269522260157
624 => 0.12605377733002
625 => 0.12566670093286
626 => 0.12581848356192
627 => 0.12530037119965
628 => 0.12498818976043
629 => 0.12670021199001
630 => 0.12578554757553
701 => 0.12656002655036
702 => 0.1256774100115
703 => 0.12261787655011
704 => 0.12085830650248
705 => 0.11507913141281
706 => 0.11671809829919
707 => 0.1178047350405
708 => 0.11744560160398
709 => 0.11821715919182
710 => 0.11826452656138
711 => 0.11801368532448
712 => 0.11772324330689
713 => 0.11758187219518
714 => 0.11863553663868
715 => 0.11924722431284
716 => 0.11791379357482
717 => 0.11760138940958
718 => 0.11894956150645
719 => 0.11977194570672
720 => 0.12584396858381
721 => 0.1253941335167
722 => 0.12652313125947
723 => 0.12639602343952
724 => 0.12757939293738
725 => 0.12951370193714
726 => 0.12558071089934
727 => 0.1262633421509
728 => 0.12609597673228
729 => 0.12792322848726
730 => 0.12792893296779
731 => 0.12683340426268
801 => 0.12742730814665
802 => 0.12709580729152
803 => 0.12769487414176
804 => 0.12538812569512
805 => 0.12819749630502
806 => 0.12979022840899
807 => 0.1298123434958
808 => 0.13056728587238
809 => 0.13133435105029
810 => 0.13280666586201
811 => 0.13129328898929
812 => 0.12857087131955
813 => 0.12876742108195
814 => 0.12717126859828
815 => 0.1271981002099
816 => 0.12705487096424
817 => 0.12748471271225
818 => 0.12548245178671
819 => 0.12595237842387
820 => 0.12529447837996
821 => 0.12626191200469
822 => 0.12522111334699
823 => 0.1260958960236
824 => 0.12647342322733
825 => 0.12786650673664
826 => 0.12501535377998
827 => 0.11920165989527
828 => 0.12042376883406
829 => 0.118616173719
830 => 0.1187834735289
831 => 0.11912144577046
901 => 0.11802596715792
902 => 0.1182349499547
903 => 0.11822748361861
904 => 0.11816314276782
905 => 0.11787816647131
906 => 0.11746489446052
907 => 0.11911124295308
908 => 0.11939098964317
909 => 0.12001283188196
910 => 0.12186301258497
911 => 0.12167813590248
912 => 0.12197967744209
913 => 0.1213214139542
914 => 0.11881400848416
915 => 0.11895017266467
916 => 0.11725220315177
917 => 0.11996941098396
918 => 0.1193259403039
919 => 0.11891109057045
920 => 0.11879789497712
921 => 0.12065266192023
922 => 0.12120763725952
923 => 0.12086181387109
924 => 0.12015252001213
925 => 0.12151457390524
926 => 0.12187900206659
927 => 0.12196058409233
928 => 0.12437388244299
929 => 0.12209546066173
930 => 0.12264389943004
1001 => 0.12692266214168
1002 => 0.12304241479112
1003 => 0.12509786835256
1004 => 0.12499726459679
1005 => 0.12604876508606
1006 => 0.12491101086567
1007 => 0.12492511469281
1008 => 0.12585877589248
1009 => 0.12454761712424
1010 => 0.12422295577435
1011 => 0.12377443844476
1012 => 0.12475375962525
1013 => 0.12534081838207
1014 => 0.13007208081489
1015 => 0.13312869211826
1016 => 0.13299599656035
1017 => 0.13420858556404
1018 => 0.13366230311184
1019 => 0.13189821297162
1020 => 0.13490929973309
1021 => 0.13395646589254
1022 => 0.13403501635666
1023 => 0.13403209270447
1024 => 0.13466564391025
1025 => 0.13421671481684
1026 => 0.13333182949209
1027 => 0.13391925766653
1028 => 0.13566370933518
1029 => 0.14107854084101
1030 => 0.14410875228864
1031 => 0.14089611830701
1101 => 0.14311215020866
1102 => 0.14178332072057
1103 => 0.14154183287333
1104 => 0.14293366467104
1105 => 0.14432793268605
1106 => 0.14423912384108
1107 => 0.14322695685864
1108 => 0.14265520941304
1109 => 0.14698467262055
1110 => 0.15017454736137
1111 => 0.14995701928924
1112 => 0.15091711745571
1113 => 0.15373599536719
1114 => 0.15399371823609
1115 => 0.1539612510783
1116 => 0.15332245805714
1117 => 0.15609800943854
1118 => 0.15841342323209
1119 => 0.15317459592924
1120 => 0.15516947278488
1121 => 0.1560650372763
1122 => 0.15737999165171
1123 => 0.15959854009496
1124 => 0.16200847214525
1125 => 0.16234926296072
1126 => 0.1621074555688
1127 => 0.16051804059919
1128 => 0.16315501700508
1129 => 0.16469969593895
1130 => 0.16561951689472
1201 => 0.16795202979493
1202 => 0.15607056797771
1203 => 0.14766027875651
1204 => 0.14634689064857
1205 => 0.1490177170125
1206 => 0.14972199262523
1207 => 0.14943810000883
1208 => 0.13997155486033
1209 => 0.14629705124751
1210 => 0.15310275349729
1211 => 0.15336418823779
1212 => 0.15677126508455
1213 => 0.15788074896666
1214 => 0.16062389240407
1215 => 0.16045230803518
1216 => 0.16112021980924
1217 => 0.16096667845901
1218 => 0.16604777403981
1219 => 0.17165297701544
1220 => 0.17145888665984
1221 => 0.17065307241435
1222 => 0.17184984398066
1223 => 0.17763501414156
1224 => 0.1771024083786
1225 => 0.17761978951006
1226 => 0.18444083116766
1227 => 0.19330915560441
1228 => 0.18918892853832
1229 => 0.19812863570833
1230 => 0.20375570749833
1231 => 0.21348714630905
]
'min_raw' => 0.087162072734588
'max_raw' => 0.21348714630905
'avg_raw' => 0.15032460952182
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.087162'
'max' => '$0.213487'
'avg' => '$0.150324'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.038864978319719
'max_diff' => 0.086610367935452
'year' => 2028
]
3 => [
'items' => [
101 => 0.2122687222416
102 => 0.21605709995802
103 => 0.21008748886809
104 => 0.19638005514816
105 => 0.19421080129203
106 => 0.19855370244626
107 => 0.20923030115982
108 => 0.19821745835798
109 => 0.20044534211364
110 => 0.19980371144213
111 => 0.1997695216704
112 => 0.20107440619747
113 => 0.19918160313275
114 => 0.1914699829383
115 => 0.19500417302856
116 => 0.19363945250896
117 => 0.19515371167211
118 => 0.20332554384761
119 => 0.19971258205067
120 => 0.19590662029078
121 => 0.20068014094821
122 => 0.20675847310478
123 => 0.20637810200224
124 => 0.20564002308051
125 => 0.20980053531772
126 => 0.21667248261787
127 => 0.21852994235939
128 => 0.21990108116648
129 => 0.2200901380424
130 => 0.22203754136254
131 => 0.21156586290128
201 => 0.22818468555108
202 => 0.23105429713699
203 => 0.23051492909205
204 => 0.23370438159808
205 => 0.2327659637622
206 => 0.23140634355127
207 => 0.23646230418932
208 => 0.23066605331278
209 => 0.22243900492123
210 => 0.21792548346106
211 => 0.2238692526152
212 => 0.22749890502868
213 => 0.22989787438474
214 => 0.23062380106239
215 => 0.21237874949118
216 => 0.20254567861126
217 => 0.2088485643089
218 => 0.21653851986197
219 => 0.21152314480991
220 => 0.21171973801659
221 => 0.20456913120973
222 => 0.21717118989808
223 => 0.21533517594719
224 => 0.22486041957229
225 => 0.2225871437363
226 => 0.23035461014474
227 => 0.22830917592326
228 => 0.23679965901797
301 => 0.24018674259511
302 => 0.24587418307858
303 => 0.25005788745027
304 => 0.25251463867884
305 => 0.25236714455012
306 => 0.26210201686631
307 => 0.25636170277199
308 => 0.24915051538136
309 => 0.24902008775247
310 => 0.25275486388539
311 => 0.2605819300742
312 => 0.26261137445778
313 => 0.2637455570063
314 => 0.26200851695206
315 => 0.25577781741468
316 => 0.25308743294481
317 => 0.25537971846108
318 => 0.25257645025302
319 => 0.25741567763828
320 => 0.26406097044143
321 => 0.26268874375592
322 => 0.26727589182987
323 => 0.27202310750437
324 => 0.27881183912969
325 => 0.28058666496256
326 => 0.2835203845737
327 => 0.28654014573025
328 => 0.28751001162889
329 => 0.28936178656111
330 => 0.28935202679316
331 => 0.29493247519023
401 => 0.3010878825843
402 => 0.30341140637755
403 => 0.30875422122028
404 => 0.29960483803666
405 => 0.30654475028198
406 => 0.31280472484452
407 => 0.3053413251026
408 => 0.31562788289772
409 => 0.31602728662707
410 => 0.32205780874621
411 => 0.31594471927021
412 => 0.31231478625304
413 => 0.3227942668618
414 => 0.32786495742784
415 => 0.3263376241627
416 => 0.31471454260126
417 => 0.30794941059508
418 => 0.2902437552384
419 => 0.31121686883577
420 => 0.32143226067495
421 => 0.31468808720425
422 => 0.31808945601773
423 => 0.33664622136651
424 => 0.34371143614975
425 => 0.34224192086442
426 => 0.34249024475736
427 => 0.34630250641167
428 => 0.36320817403775
429 => 0.3530779061259
430 => 0.36082211637061
501 => 0.36492961756058
502 => 0.36874489357935
503 => 0.35937578150762
504 => 0.34718670436188
505 => 0.34332591196718
506 => 0.31401751206572
507 => 0.31249188257092
508 => 0.31163550050418
509 => 0.30623613271106
510 => 0.30199370863697
511 => 0.29861997550215
512 => 0.28976629227439
513 => 0.29275415046116
514 => 0.2786432273034
515 => 0.28767089587933
516 => 0.26514952179939
517 => 0.2839059913594
518 => 0.27369769772991
519 => 0.28055229235094
520 => 0.28052837731605
521 => 0.26790689536753
522 => 0.26062708798324
523 => 0.26526606458285
524 => 0.27023941574006
525 => 0.27104632523296
526 => 0.27749440482602
527 => 0.27929392523944
528 => 0.27384129437521
529 => 0.26468281638012
530 => 0.26681012193574
531 => 0.26058397820405
601 => 0.24967290079944
602 => 0.25750942708057
603 => 0.26018516170068
604 => 0.26136691854216
605 => 0.25063712706043
606 => 0.24726559362176
607 => 0.24547061750892
608 => 0.26329773503878
609 => 0.26427434477951
610 => 0.25927787126724
611 => 0.28186240532775
612 => 0.27675082970517
613 => 0.28246171204202
614 => 0.26661709125393
615 => 0.26722237710564
616 => 0.25972127970325
617 => 0.26392139302508
618 => 0.26095288830518
619 => 0.263582065375
620 => 0.26515798327015
621 => 0.27265784981628
622 => 0.28399162778816
623 => 0.27153761985279
624 => 0.26611123025068
625 => 0.26947773184066
626 => 0.27844316920717
627 => 0.29202626574972
628 => 0.28398479921123
629 => 0.28755346550806
630 => 0.288333060335
701 => 0.28240358062079
702 => 0.29224489412451
703 => 0.29751893398183
704 => 0.30292900756668
705 => 0.30762642287358
706 => 0.30076810520682
707 => 0.30810748821147
708 => 0.30219324108523
709 => 0.29688755000936
710 => 0.29689559655263
711 => 0.29356725903696
712 => 0.28711818570283
713 => 0.28592887763349
714 => 0.29211580840329
715 => 0.29707714097615
716 => 0.29748578009003
717 => 0.30023262872484
718 => 0.30185818545213
719 => 0.31779085121676
720 => 0.32419910118922
721 => 0.33203498795358
722 => 0.33508750745468
723 => 0.34427449676417
724 => 0.33685525676596
725 => 0.33525005752314
726 => 0.31296542649961
727 => 0.31661453358131
728 => 0.32245710610556
729 => 0.31306176836858
730 => 0.31902094765405
731 => 0.32019741587768
801 => 0.31274251838745
802 => 0.31672450124409
803 => 0.30614953535249
804 => 0.28422213314655
805 => 0.29226930559144
806 => 0.29819473315984
807 => 0.28973841741979
808 => 0.30489603607922
809 => 0.29604126817514
810 => 0.29323473185336
811 => 0.28228543305968
812 => 0.28745308061314
813 => 0.29444239792278
814 => 0.29012381242077
815 => 0.29908552577631
816 => 0.31177770188941
817 => 0.32082290241976
818 => 0.32151728060178
819 => 0.31570182264213
820 => 0.32502113113622
821 => 0.32508901212448
822 => 0.31457679407266
823 => 0.30813811904819
824 => 0.30667523853554
825 => 0.31032980087075
826 => 0.31476711421512
827 => 0.32176352061026
828 => 0.32599130246531
829 => 0.33701511530105
830 => 0.33999784297692
831 => 0.34327495638617
901 => 0.34765419052528
902 => 0.35291258392187
903 => 0.34140751853064
904 => 0.34186463622676
905 => 0.33115127863292
906 => 0.31970251959301
907 => 0.32839070059634
908 => 0.33974934151791
909 => 0.33714365674032
910 => 0.33685046397353
911 => 0.33734353288237
912 => 0.33537893165378
913 => 0.32649311310837
914 => 0.32203071066303
915 => 0.32778834829779
916 => 0.3308482764577
917 => 0.33559395817994
918 => 0.33500895273849
919 => 0.34723331920597
920 => 0.35198333836958
921 => 0.35076808020275
922 => 0.35099171695227
923 => 0.3595913997575
924 => 0.36915601569657
925 => 0.37811454068575
926 => 0.38722753708234
927 => 0.37624146423994
928 => 0.37066341397735
929 => 0.37641853800764
930 => 0.37336478818793
1001 => 0.39091254045301
1002 => 0.39212750874702
1003 => 0.40967399210988
1004 => 0.42632769421761
1005 => 0.41586780230581
1006 => 0.42573100925475
1007 => 0.4363988717291
1008 => 0.45697890924042
1009 => 0.45004827662106
1010 => 0.44473952065149
1011 => 0.43972277191196
1012 => 0.45016182965248
1013 => 0.46359151066763
1014 => 0.46648413533041
1015 => 0.47117129235178
1016 => 0.4662433198621
1017 => 0.47217851992756
1018 => 0.49313238421767
1019 => 0.4874704651216
1020 => 0.47942962980628
1021 => 0.4959706932328
1022 => 0.5019568397851
1023 => 0.54397075125846
1024 => 0.59701505000168
1025 => 0.57505436201434
1026 => 0.56142265431363
1027 => 0.56462642897173
1028 => 0.58399641120992
1029 => 0.59021743473233
1030 => 0.57330654828303
1031 => 0.57927975926619
1101 => 0.61219273905656
1102 => 0.62984949673928
1103 => 0.60586924818722
1104 => 0.53970869350252
1105 => 0.47870564056282
1106 => 0.4948863972057
1107 => 0.49305200154974
1108 => 0.52841289235664
1109 => 0.48733543022368
1110 => 0.48802706933698
1111 => 0.52411918591794
1112 => 0.51449042798966
1113 => 0.498893073304
1114 => 0.47881951851309
1115 => 0.44171169590301
1116 => 0.40884426258908
1117 => 0.47330486823554
1118 => 0.47052520970606
1119 => 0.46649985223306
1120 => 0.47545784970005
1121 => 0.51895534262783
1122 => 0.5179525846282
1123 => 0.51157354984618
1124 => 0.51641199150611
1125 => 0.49804487108749
1126 => 0.50277849623093
1127 => 0.47869597736756
1128 => 0.48958228166863
1129 => 0.49885960838597
1130 => 0.50072216907764
1201 => 0.5049186134207
1202 => 0.46906045596968
1203 => 0.485159715925
1204 => 0.49461652285208
1205 => 0.45189032511392
1206 => 0.493771963298
1207 => 0.46843624522566
1208 => 0.45983692198219
1209 => 0.47141477785483
1210 => 0.46690287616143
1211 => 0.4630238080332
1212 => 0.4608592213668
1213 => 0.46936072091834
1214 => 0.46896411580277
1215 => 0.45505401246649
1216 => 0.43690884971266
1217 => 0.44299896192751
1218 => 0.44078636706474
1219 => 0.43276763785168
1220 => 0.43817129315623
1221 => 0.41437632992236
1222 => 0.37343833243306
1223 => 0.40048322753927
1224 => 0.39944202849686
1225 => 0.39891700872507
1226 => 0.41924049993138
1227 => 0.41728686519461
1228 => 0.41374099901733
1229 => 0.43270251523863
1230 => 0.42578130674947
1231 => 0.44711084047125
]
'min_raw' => 0.1914699829383
'max_raw' => 0.62984949673928
'avg_raw' => 0.41065973983879
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.191469'
'max' => '$0.629849'
'avg' => '$0.410659'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.10430791020372
'max_diff' => 0.41636235043022
'year' => 2029
]
4 => [
'items' => [
101 => 0.46115985088815
102 => 0.45759656740855
103 => 0.47080972961041
104 => 0.44313926581264
105 => 0.45233028393994
106 => 0.45422454003777
107 => 0.43246853307178
108 => 0.41760650399856
109 => 0.41661537609891
110 => 0.39084666579971
111 => 0.40461210284378
112 => 0.41672511779007
113 => 0.41092392363873
114 => 0.40908743887616
115 => 0.41846964124318
116 => 0.41919871872023
117 => 0.4025756749794
118 => 0.40603213215645
119 => 0.42044613317295
120 => 0.40566893631335
121 => 0.37695925665655
122 => 0.36983885915929
123 => 0.36888886687819
124 => 0.34957778413977
125 => 0.37031467816756
126 => 0.36126246821022
127 => 0.38985829100333
128 => 0.37352451038638
129 => 0.3728203937499
130 => 0.3717560181824
131 => 0.35513417153866
201 => 0.35877329958018
202 => 0.37087031544503
203 => 0.37518666698825
204 => 0.37473643615947
205 => 0.37081103346779
206 => 0.37260806271872
207 => 0.36681920537497
208 => 0.36477503936224
209 => 0.35832308913391
210 => 0.34884050469502
211 => 0.35015911622131
212 => 0.33137163519467
213 => 0.32113521840427
214 => 0.31830191315049
215 => 0.31451309895316
216 => 0.31872986979573
217 => 0.33131841262145
218 => 0.31613395916529
219 => 0.29010127878027
220 => 0.29166588722894
221 => 0.29518109787668
222 => 0.28863052609006
223 => 0.28243095964184
224 => 0.28782097968184
225 => 0.27679058981995
226 => 0.29651406779318
227 => 0.29598060298841
228 => 0.30333229588513
301 => 0.30792946032538
302 => 0.29733448464027
303 => 0.29466987690733
304 => 0.29618775857168
305 => 0.2711005557831
306 => 0.30128213619794
307 => 0.30154314775869
308 => 0.29930820831087
309 => 0.31537896813002
310 => 0.34929328394412
311 => 0.33653335413466
312 => 0.33159232364152
313 => 0.32219942106219
314 => 0.33471490605378
315 => 0.33375391207841
316 => 0.32940793287562
317 => 0.3267794710935
318 => 0.3316224925201
319 => 0.3261793671434
320 => 0.32520163225866
321 => 0.31927762264319
322 => 0.31716302073573
323 => 0.31559745366817
324 => 0.31387391815624
325 => 0.31767560801728
326 => 0.30906047863821
327 => 0.2986714771586
328 => 0.29780774409613
329 => 0.30019258702181
330 => 0.29913747155787
331 => 0.29780269260922
401 => 0.29525423609082
402 => 0.29449816348097
403 => 0.2969550326687
404 => 0.29418137060013
405 => 0.2982740600715
406 => 0.29716107499412
407 => 0.29094403082604
408 => 0.28319529194805
409 => 0.2831263119185
410 => 0.28145685883772
411 => 0.27933055933539
412 => 0.27873907145698
413 => 0.28736704722806
414 => 0.30522669886061
415 => 0.30172042189989
416 => 0.30425406634172
417 => 0.31671708935546
418 => 0.32067870959535
419 => 0.31786684538519
420 => 0.3140177922261
421 => 0.31418713103083
422 => 0.32734051086307
423 => 0.32816087102894
424 => 0.33023365650988
425 => 0.332897771622
426 => 0.31832055570875
427 => 0.31350054547222
428 => 0.31121655721817
429 => 0.30418275741038
430 => 0.31176810747066
501 => 0.30734844882761
502 => 0.30794481177559
503 => 0.30755642962337
504 => 0.30776851254077
505 => 0.29650855467912
506 => 0.30061109151794
507 => 0.29378982832329
508 => 0.28465692262838
509 => 0.28462630592608
510 => 0.28686157165633
511 => 0.28553194813402
512 => 0.28195396542324
513 => 0.2824622009797
514 => 0.27800952271448
515 => 0.28300283673944
516 => 0.28314602711874
517 => 0.28122332923148
518 => 0.28891621843148
519 => 0.29206800141352
520 => 0.29080244047595
521 => 0.29197920628442
522 => 0.3018661235375
523 => 0.3034781224462
524 => 0.30419406587877
525 => 0.30323479652345
526 => 0.29215992098213
527 => 0.2926511388064
528 => 0.28904690834009
529 => 0.28600171340051
530 => 0.28612350522815
531 => 0.28768913127473
601 => 0.29452631204288
602 => 0.30891475589564
603 => 0.30946078682203
604 => 0.31012259223367
605 => 0.30743069702779
606 => 0.30661879567573
607 => 0.30768990312861
608 => 0.31309344613127
609 => 0.32699282578173
610 => 0.3220798567049
611 => 0.31808553637053
612 => 0.3215896321648
613 => 0.32105020408328
614 => 0.31649688821404
615 => 0.31636909180287
616 => 0.30762982286664
617 => 0.30439911412444
618 => 0.3016992920851
619 => 0.29875115689878
620 => 0.29700340353794
621 => 0.29968874703989
622 => 0.30030291687083
623 => 0.29443136637206
624 => 0.2936310957352
625 => 0.29842593061872
626 => 0.29631590255595
627 => 0.29848611874469
628 => 0.29898962751624
629 => 0.29890855100723
630 => 0.29670543937452
701 => 0.29810963703148
702 => 0.2947882909613
703 => 0.29117682596004
704 => 0.28887293629145
705 => 0.28686248698899
706 => 0.28797800110999
707 => 0.28400139695345
708 => 0.28272920125054
709 => 0.29763392646075
710 => 0.30864420722633
711 => 0.30848411338345
712 => 0.3075095832877
713 => 0.30606162924163
714 => 0.31298751927405
715 => 0.3105746776743
716 => 0.31233022153778
717 => 0.31277708113098
718 => 0.3141295905341
719 => 0.31461299639361
720 => 0.31315180813923
721 => 0.30824788188843
722 => 0.29602776392275
723 => 0.29033926602215
724 => 0.28846196696552
725 => 0.28853020322073
726 => 0.28664794268199
727 => 0.28720235276765
728 => 0.28645514147952
729 => 0.28504010406962
730 => 0.2878906265374
731 => 0.28821912269736
801 => 0.28755377669218
802 => 0.28771048976227
803 => 0.28220170901232
804 => 0.2826205296483
805 => 0.28028848312603
806 => 0.27985125251635
807 => 0.27395604198258
808 => 0.26351182199757
809 => 0.26929893371423
810 => 0.26230891655155
811 => 0.25966169113601
812 => 0.27219324452519
813 => 0.2709354241361
814 => 0.26878258239137
815 => 0.26559808075936
816 => 0.26441691812721
817 => 0.25724054788492
818 => 0.25681652964656
819 => 0.26037333251693
820 => 0.25873199037437
821 => 0.25642692438133
822 => 0.24807820901533
823 => 0.23869148877928
824 => 0.23897481486038
825 => 0.24196055592133
826 => 0.25064200073808
827 => 0.24725001005766
828 => 0.2447890819004
829 => 0.24432822403177
830 => 0.25009682512892
831 => 0.25826060424067
901 => 0.26209086674565
902 => 0.25829519293002
903 => 0.25393492722422
904 => 0.25420031639421
905 => 0.25596583164568
906 => 0.25615136233557
907 => 0.25331327760365
908 => 0.25411218183151
909 => 0.25289857325606
910 => 0.24545065966866
911 => 0.24531595052946
912 => 0.24348811242128
913 => 0.24343276620979
914 => 0.2403231576122
915 => 0.23988810187369
916 => 0.23371378526341
917 => 0.23777773915385
918 => 0.2350518522513
919 => 0.23094329771744
920 => 0.2302349813672
921 => 0.23021368852239
922 => 0.23443225537268
923 => 0.23772844274403
924 => 0.23509927022102
925 => 0.2345006586019
926 => 0.24089226459841
927 => 0.24007887447457
928 => 0.23937448387313
929 => 0.25752962736233
930 => 0.24315841462712
1001 => 0.23689174559442
1002 => 0.22913555265829
1003 => 0.23166100818841
1004 => 0.23219315877527
1005 => 0.21354091292272
1006 => 0.20597369910333
1007 => 0.20337691648496
1008 => 0.20188243137496
1009 => 0.20256348700615
1010 => 0.19575210702305
1011 => 0.20032946702152
1012 => 0.19443138770777
1013 => 0.19344255551681
1014 => 0.20398905196162
1015 => 0.20545653533017
1016 => 0.19919579536856
1017 => 0.20321620394565
1018 => 0.20175834790774
1019 => 0.19453249334909
1020 => 0.19425651885474
1021 => 0.19063083903828
1022 => 0.18495735219547
1023 => 0.18236441646833
1024 => 0.18101399302874
1025 => 0.18157120405914
1026 => 0.18128946111123
1027 => 0.17945089779784
1028 => 0.18139484540821
1029 => 0.17642886255832
1030 => 0.17445136817385
1031 => 0.1735581798379
1101 => 0.16915058422731
1102 => 0.17616502891043
1103 => 0.17754696287864
1104 => 0.17893161968368
1105 => 0.19098411182618
1106 => 0.19038200337873
1107 => 0.19582477050497
1108 => 0.19561327458305
1109 => 0.19406090923167
1110 => 0.18751173516588
1111 => 0.1901221192207
1112 => 0.18208776284371
1113 => 0.18810764892448
1114 => 0.18536042431367
1115 => 0.1871788095201
1116 => 0.18390918896175
1117 => 0.18571873197807
1118 => 0.17787467068888
1119 => 0.17054999662596
1120 => 0.17349765928944
1121 => 0.17670210571077
1122 => 0.18365016202996
1123 => 0.17951195700647
1124 => 0.18100021201577
1125 => 0.17601480686548
1126 => 0.16572849202986
1127 => 0.16578671145474
1128 => 0.16420438601683
1129 => 0.16283702581518
1130 => 0.17998727963356
1201 => 0.17785437446585
1202 => 0.17445586922884
1203 => 0.17900490353981
1204 => 0.18020774041451
1205 => 0.18024198348935
1206 => 0.18356084149506
1207 => 0.18533211660765
1208 => 0.18564431152339
1209 => 0.19086660630406
1210 => 0.1926170506308
1211 => 0.19982688308052
1212 => 0.18518183628956
1213 => 0.18488023118834
1214 => 0.17906891778147
1215 => 0.1753832909456
1216 => 0.17932127580411
1217 => 0.18280979280021
1218 => 0.17917731572874
1219 => 0.1796516405485
1220 => 0.17477533686433
1221 => 0.17651838598001
1222 => 0.1780197346925
1223 => 0.17719077817866
1224 => 0.17594979015549
1225 => 0.18252377418906
1226 => 0.18215284424623
1227 => 0.18827468931353
1228 => 0.19304710532082
1229 => 0.2016001279773
1230 => 0.19267460295611
1231 => 0.19234932134859
]
'min_raw' => 0.16283702581518
'max_raw' => 0.47080972961041
'avg_raw' => 0.3168233777128
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.162837'
'max' => '$0.4708097'
'avg' => '$0.316823'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.028632957123124
'max_diff' => -0.15903976712887
'year' => 2030
]
5 => [
'items' => [
101 => 0.19552900123892
102 => 0.19261656383838
103 => 0.1944571237416
104 => 0.20130358532195
105 => 0.20144824026663
106 => 0.19902508356587
107 => 0.19887763426041
108 => 0.19934302801122
109 => 0.20206885374603
110 => 0.20111636647812
111 => 0.20221860885857
112 => 0.20359697983345
113 => 0.20929850660275
114 => 0.2106731254044
115 => 0.20733351437453
116 => 0.20763504385849
117 => 0.20638593765894
118 => 0.20517931672143
119 => 0.20789162437611
120 => 0.21284841992558
121 => 0.21281758395772
122 => 0.21396746417886
123 => 0.21468383003051
124 => 0.21160866338339
125 => 0.20960684297312
126 => 0.21037446829756
127 => 0.21160191790804
128 => 0.20997642293203
129 => 0.19994311493758
130 => 0.2029865796529
131 => 0.20247999830645
201 => 0.20175856486671
202 => 0.20481879217238
203 => 0.20452362578327
204 => 0.19568224647631
205 => 0.19624824289376
206 => 0.1957166665931
207 => 0.19743429837082
208 => 0.1925238060856
209 => 0.19403424043986
210 => 0.19498157070741
211 => 0.19553955551273
212 => 0.19755537924332
213 => 0.19731884559509
214 => 0.19754067597964
215 => 0.20052961041436
216 => 0.21564661510676
217 => 0.21646940031838
218 => 0.21241770501683
219 => 0.21403627737364
220 => 0.21092897239142
221 => 0.21301492704312
222 => 0.21444208423831
223 => 0.2079930352998
224 => 0.20761116447564
225 => 0.20449103454043
226 => 0.20616761563442
227 => 0.20350005456343
228 => 0.20415458074293
301 => 0.20232446848449
302 => 0.20561830617796
303 => 0.20930132852988
304 => 0.21023180542294
305 => 0.2077841213128
306 => 0.20601183670681
307 => 0.20290028876554
308 => 0.20807486233724
309 => 0.20958806534188
310 => 0.20806691412605
311 => 0.20771443015153
312 => 0.20704647365674
313 => 0.20785614027953
314 => 0.20957982411334
315 => 0.20876696664876
316 => 0.20930387332482
317 => 0.20725773873144
318 => 0.2116096813915
319 => 0.21852161368773
320 => 0.21854383668027
321 => 0.21773097483409
322 => 0.21739836927998
323 => 0.21823241486275
324 => 0.21868485037706
325 => 0.22138200085392
326 => 0.22427615077482
327 => 0.23778188563908
328 => 0.23398952933326
329 => 0.2459726207646
330 => 0.25544969027711
331 => 0.25829144904188
401 => 0.25567716469337
402 => 0.24673383915797
403 => 0.24629503694082
404 => 0.25966014106535
405 => 0.25588388698962
406 => 0.25543471358325
407 => 0.25065626742996
408 => 0.25348092092862
409 => 0.2528631277733
410 => 0.25188791105414
411 => 0.25727715316253
412 => 0.26736533328848
413 => 0.2657929958095
414 => 0.26461931882007
415 => 0.25947660790465
416 => 0.2625736685418
417 => 0.2614708645692
418 => 0.26620921029219
419 => 0.2634023192531
420 => 0.25585527815095
421 => 0.25705716932184
422 => 0.25687550588923
423 => 0.26061412645955
424 => 0.2594918853626
425 => 0.25665637030372
426 => 0.26733085298554
427 => 0.26663771145477
428 => 0.26762042767118
429 => 0.26805304974115
430 => 0.27455041924409
501 => 0.27721218363681
502 => 0.2778164507547
503 => 0.28034492105954
504 => 0.27775354011013
505 => 0.28812091153105
506 => 0.29501460857307
507 => 0.30302199243378
508 => 0.31472293243616
509 => 0.3191225941168
510 => 0.31832783461404
511 => 0.32719935378286
512 => 0.34314127652644
513 => 0.32155015299753
514 => 0.34428565850082
515 => 0.33708785995251
516 => 0.32002200907734
517 => 0.31892316947415
518 => 0.33048036182541
519 => 0.35611310212198
520 => 0.34969239140183
521 => 0.35612360410456
522 => 0.34862125287284
523 => 0.34824869789941
524 => 0.3557592316508
525 => 0.37330800313881
526 => 0.36497123961072
527 => 0.35301844483492
528 => 0.36184420249129
529 => 0.35419851442403
530 => 0.33697063931516
531 => 0.34968748160534
601 => 0.34118409132071
602 => 0.34366583267086
603 => 0.36153869426531
604 => 0.35938818427254
605 => 0.36217114333505
606 => 0.35725929343244
607 => 0.35267085109577
608 => 0.34410618273217
609 => 0.34157060666275
610 => 0.34227134866787
611 => 0.34157025940982
612 => 0.33677840617375
613 => 0.33574360592365
614 => 0.33401889350453
615 => 0.3345534540015
616 => 0.33131049007113
617 => 0.33743063303828
618 => 0.3385665855035
619 => 0.34302031517743
620 => 0.34348271616685
621 => 0.35588628991386
622 => 0.3490546099276
623 => 0.35363789068126
624 => 0.35322791891114
625 => 0.320391877814
626 => 0.32491639456234
627 => 0.33195512275119
628 => 0.32878418524288
629 => 0.32430122149124
630 => 0.32068098790048
701 => 0.31519596382259
702 => 0.32291602988166
703 => 0.33306709581185
704 => 0.34374016395065
705 => 0.3565631559923
706 => 0.35370121344469
707 => 0.34350044703392
708 => 0.34395804596345
709 => 0.34678674248721
710 => 0.34312332347475
711 => 0.34204290968955
712 => 0.34663831022401
713 => 0.3466699562219
714 => 0.34245474990909
715 => 0.33777031946702
716 => 0.33775069153242
717 => 0.33691714238148
718 => 0.34876953941506
719 => 0.35528715937102
720 => 0.3560343939953
721 => 0.35523686452715
722 => 0.35554380196663
723 => 0.35175134252021
724 => 0.36041978019581
725 => 0.36837479582658
726 => 0.36624268170341
727 => 0.3630463395349
728 => 0.36050029904099
729 => 0.36564291547738
730 => 0.36541392286269
731 => 0.36830531570485
801 => 0.36817414542403
802 => 0.367201878762
803 => 0.36624271642612
804 => 0.37004568666911
805 => 0.36895049231296
806 => 0.36785359681747
807 => 0.36565360497498
808 => 0.36595262040437
809 => 0.36275683012941
810 => 0.36127831131879
811 => 0.33904493586983
812 => 0.33310345145337
813 => 0.33497276340086
814 => 0.33558818943064
815 => 0.33300244779837
816 => 0.33670973707651
817 => 0.3361319599695
818 => 0.33837975270457
819 => 0.33697542939152
820 => 0.33703306331013
821 => 0.34116287874052
822 => 0.34236178172945
823 => 0.34175200999294
824 => 0.34217907321544
825 => 0.35202056492573
826 => 0.35062141951772
827 => 0.34987815140571
828 => 0.35008404175232
829 => 0.35259875388827
830 => 0.35330273598814
831 => 0.35031991436304
901 => 0.35172663028492
902 => 0.35771624814147
903 => 0.35981227540825
904 => 0.36650178829365
905 => 0.36365996432332
906 => 0.36887625521212
907 => 0.38490935503968
908 => 0.39771770458805
909 => 0.38593861701594
910 => 0.40945951982805
911 => 0.42777391654039
912 => 0.42707097949034
913 => 0.42387744080392
914 => 0.40302698706035
915 => 0.38384008866276
916 => 0.39989074389108
917 => 0.3999316603121
918 => 0.39855289479337
919 => 0.38998950057073
920 => 0.39825490723665
921 => 0.39891098520225
922 => 0.39854375600673
923 => 0.39197822173417
924 => 0.38195386441353
925 => 0.38391259983906
926 => 0.3871210484232
927 => 0.38104678590093
928 => 0.37910569097252
929 => 0.38271455575286
930 => 0.39434307001194
1001 => 0.39214476675065
1002 => 0.39208736016846
1003 => 0.40149263374589
1004 => 0.39476048764952
1005 => 0.38393730576552
1006 => 0.38120430959958
1007 => 0.3715040143773
1008 => 0.37820404283859
1009 => 0.37844516493508
1010 => 0.37477562781947
1011 => 0.38423506847848
1012 => 0.3841478980675
1013 => 0.3931282291213
1014 => 0.41029524923784
1015 => 0.40521811665163
1016 => 0.39931396384431
1017 => 0.39995590895887
1018 => 0.40699646240998
1019 => 0.40273958307324
1020 => 0.40427038656275
1021 => 0.40699414535556
1022 => 0.40863745666239
1023 => 0.39971946175094
1024 => 0.39764025054007
1025 => 0.39338691410661
1026 => 0.3922772980234
1027 => 0.39574155179968
1028 => 0.39482884332352
1029 => 0.37842489955655
1030 => 0.37671059616221
1031 => 0.37676317139986
1101 => 0.37245247400413
1102 => 0.36587762578973
1103 => 0.38315593433339
1104 => 0.38176824434756
1105 => 0.38023634200188
1106 => 0.38042399129831
1107 => 0.3879239194209
1108 => 0.38357358235435
1109 => 0.39513966645201
1110 => 0.39276202726984
1111 => 0.39032341061431
1112 => 0.38998631951043
1113 => 0.38904766015105
1114 => 0.38582864794795
1115 => 0.38194149728008
1116 => 0.37937486370992
1117 => 0.34995325809298
1118 => 0.35541373695788
1119 => 0.36169552015363
1120 => 0.36386396654014
1121 => 0.36015468894409
1122 => 0.38597511283576
1123 => 0.39069275309256
1124 => 0.37640271303065
1125 => 0.37372962999355
1126 => 0.38615035971465
1127 => 0.37865914132037
1128 => 0.38203243650462
1129 => 0.37474121741009
1130 => 0.38955641170333
1201 => 0.38944354474506
1202 => 0.38368009954865
1203 => 0.38855132396228
1204 => 0.38770482884547
1205 => 0.38119791341346
1206 => 0.3897626925287
1207 => 0.38976694055229
1208 => 0.38421974985885
1209 => 0.3777418455651
1210 => 0.37658374927865
1211 => 0.37571127929515
1212 => 0.38181786237207
1213 => 0.38729300566404
1214 => 0.39748088992727
1215 => 0.40004236608921
1216 => 0.41003997807637
1217 => 0.40408688691291
1218 => 0.40672581512024
1219 => 0.40959074498847
1220 => 0.41096429772161
1221 => 0.40872616725186
1222 => 0.42425657384919
1223 => 0.42556781600537
1224 => 0.42600746415814
1225 => 0.42077069843436
1226 => 0.42542217207735
1227 => 0.42324590160041
1228 => 0.42890795279606
1229 => 0.42979583472023
1230 => 0.42904383031777
1231 => 0.42932565805477
]
'min_raw' => 0.1925238060856
'max_raw' => 0.42979583472023
'avg_raw' => 0.31115982040291
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.192523'
'max' => '$0.429795'
'avg' => '$0.311159'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.029686780270415
'max_diff' => -0.041013894890179
'year' => 2031
]
6 => [
'items' => [
101 => 0.41607319577541
102 => 0.41538598569392
103 => 0.40601582747056
104 => 0.40983423620729
105 => 0.40269590409507
106 => 0.40495954274083
107 => 0.40595733308713
108 => 0.40543614403433
109 => 0.41005012330817
110 => 0.40612729835171
111 => 0.39577431831948
112 => 0.38541851762476
113 => 0.38528850898269
114 => 0.38256200945483
115 => 0.38059124967949
116 => 0.38097088792868
117 => 0.38230878263582
118 => 0.38051348880695
119 => 0.38089660576905
120 => 0.38725890003482
121 => 0.38853481277601
122 => 0.38419876275015
123 => 0.36678889620726
124 => 0.36251647128829
125 => 0.36558740559418
126 => 0.36411969678946
127 => 0.29387301368625
128 => 0.31037642989757
129 => 0.30057066038786
130 => 0.3050896101197
131 => 0.29508045864199
201 => 0.29985735035173
202 => 0.29897523287709
203 => 0.32551223777331
204 => 0.32509789894231
205 => 0.32529622101439
206 => 0.31582979178881
207 => 0.33091007058672
208 => 0.33833915819185
209 => 0.33696423179491
210 => 0.33731027114739
211 => 0.33136416858848
212 => 0.3253537922847
213 => 0.31868735997352
214 => 0.33107276721175
215 => 0.32969572135281
216 => 0.33285416910775
217 => 0.34088699102893
218 => 0.34206985457055
219 => 0.3436596351659
220 => 0.34308981199076
221 => 0.35666531181158
222 => 0.35502122920925
223 => 0.35898299524602
224 => 0.35083334192846
225 => 0.34161123562744
226 => 0.3433640565419
227 => 0.34319524579254
228 => 0.34104609120126
229 => 0.33910593053145
301 => 0.33587610965309
302 => 0.34609574083577
303 => 0.34568084247299
304 => 0.35239756469979
305 => 0.35121031880344
306 => 0.34328160013929
307 => 0.3435647758775
308 => 0.34546926880657
309 => 0.35206074057918
310 => 0.35401753818291
311 => 0.35311107156796
312 => 0.35525661080925
313 => 0.35695235754488
314 => 0.35546957049107
315 => 0.37646270825189
316 => 0.36774489381714
317 => 0.37199389591447
318 => 0.37300725787811
319 => 0.37041155251696
320 => 0.37097446806455
321 => 0.37182713173385
322 => 0.37700433856518
323 => 0.39059082732747
324 => 0.39660819071393
325 => 0.41471172535357
326 => 0.39610853245043
327 => 0.39500469597122
328 => 0.39826568923419
329 => 0.40889438052142
330 => 0.41750793650751
331 => 0.42036554995607
401 => 0.42074323074735
402 => 0.42610430354738
403 => 0.42917717049827
404 => 0.42545332829925
405 => 0.4222977619381
406 => 0.41099491491579
407 => 0.41230325023525
408 => 0.42131638317264
409 => 0.43404796431759
410 => 0.44497298543521
411 => 0.44114742381524
412 => 0.47033375854994
413 => 0.47322746442339
414 => 0.47282764783639
415 => 0.4794199404573
416 => 0.46633558210184
417 => 0.46074176540738
418 => 0.42298003120258
419 => 0.43358953823301
420 => 0.44901107977623
421 => 0.44696998092517
422 => 0.4357704452375
423 => 0.4449644895831
424 => 0.44192465099809
425 => 0.43952700418308
426 => 0.45051108904936
427 => 0.43843363653755
428 => 0.44889059794866
429 => 0.4354794367755
430 => 0.44116489865848
501 => 0.43793755551885
502 => 0.44002604205849
503 => 0.42781679242255
504 => 0.43440460716332
505 => 0.42754271767061
506 => 0.42753946424154
507 => 0.42738798765067
508 => 0.43546097020857
509 => 0.43572422987996
510 => 0.42975828357207
511 => 0.4288984975035
512 => 0.4320775772311
513 => 0.42835570747238
514 => 0.43009714690732
515 => 0.42840845389883
516 => 0.42802829353331
517 => 0.42499911106184
518 => 0.42369405596402
519 => 0.424205801695
520 => 0.42245894969216
521 => 0.42140640817405
522 => 0.42717861065063
523 => 0.42409475571738
524 => 0.4267059656534
525 => 0.42373016237033
526 => 0.41341473169544
527 => 0.40748221843061
528 => 0.38799732612666
529 => 0.39352321741312
530 => 0.397186889053
531 => 0.39597604559788
601 => 0.39857740587369
602 => 0.39873710826726
603 => 0.39789137952386
604 => 0.39691213398357
605 => 0.39643549141023
606 => 0.39998799464596
607 => 0.40205034234607
608 => 0.39755458751566
609 => 0.39650129506119
610 => 0.40104675141216
611 => 0.40381947716043
612 => 0.42429172622561
613 => 0.42277507589037
614 => 0.42658157060423
615 => 0.42615301771487
616 => 0.43014283059716
617 => 0.43666448843897
618 => 0.42340413456236
619 => 0.4257056734868
620 => 0.42514138929283
621 => 0.43130209615941
622 => 0.43132132921379
623 => 0.42762767769714
624 => 0.42963006610696
625 => 0.42851238782925
626 => 0.43053218354036
627 => 0.42275482010049
628 => 0.43222680925575
629 => 0.43759681674528
630 => 0.43767137930448
701 => 0.44021672023551
702 => 0.44280293403763
703 => 0.44776694621906
704 => 0.44266449043211
705 => 0.43348566918546
706 => 0.43414835043205
707 => 0.42876681089354
708 => 0.42885727554543
709 => 0.42837436814376
710 => 0.42982360960774
711 => 0.42307284710391
712 => 0.42465723757033
713 => 0.42243908163917
714 => 0.42570085164901
715 => 0.42219172630832
716 => 0.4251411171779
717 => 0.42641397650336
718 => 0.43111085481699
719 => 0.42149799356248
720 => 0.40189671873103
721 => 0.40601714434308
722 => 0.3999227112104
723 => 0.40048677419998
724 => 0.40162627120887
725 => 0.39793278858282
726 => 0.39863738867286
727 => 0.39861221539945
728 => 0.39839528572889
729 => 0.39743446824879
730 => 0.3960410928107
731 => 0.40159187169772
801 => 0.40253505719466
802 => 0.40463164171837
803 => 0.41086965513408
804 => 0.41024633049137
805 => 0.41126299884513
806 => 0.40904361753722
807 => 0.40058972493351
808 => 0.4010488119748
809 => 0.3953239892136
810 => 0.40448524512921
811 => 0.40231573880572
812 => 0.4009170439655
813 => 0.40053539711953
814 => 0.40678887336393
815 => 0.40866001146748
816 => 0.40749404376875
817 => 0.40510261000195
818 => 0.40969486979814
819 => 0.41092356478771
820 => 0.41119862428335
821 => 0.41933522816372
822 => 0.41165337005387
823 => 0.41350246965201
824 => 0.42792861686797
825 => 0.41484609201533
826 => 0.4217761972049
827 => 0.42143700461839
828 => 0.4249822119314
829 => 0.42114619414188
830 => 0.42119374617981
831 => 0.42434165010061
901 => 0.4199209867713
902 => 0.41882636836304
903 => 0.41731416087183
904 => 0.42061601060589
905 => 0.42259532019163
906 => 0.43854710181006
907 => 0.44885268022519
908 => 0.44840528788716
909 => 0.45249361637339
910 => 0.45065178694555
911 => 0.44470403387299
912 => 0.45485612311663
913 => 0.45164357729849
914 => 0.45190841567249
915 => 0.45189855837499
916 => 0.45403462049842
917 => 0.45252102471675
918 => 0.44953757206365
919 => 0.45151812716668
920 => 0.45739966776128
921 => 0.47565615023463
922 => 0.48587271969294
923 => 0.47504109992494
924 => 0.48251260619973
925 => 0.47803236480475
926 => 0.47721817166764
927 => 0.48191082974819
928 => 0.48661170170551
929 => 0.48631227648425
930 => 0.48289968483569
1001 => 0.48097199840472
1002 => 0.49556908588233
1003 => 0.50632397128094
1004 => 0.50559056019842
1005 => 0.50882759819859
1006 => 0.51833164188492
1007 => 0.51920057253105
1008 => 0.51909110724178
1009 => 0.51693737197182
1010 => 0.52629533723704
1011 => 0.53410191649902
1012 => 0.51643884448422
1013 => 0.52316471108087
1014 => 0.52618416928999
1015 => 0.53061762977386
1016 => 0.5380976207444
1017 => 0.54622287490803
1018 => 0.54737187493565
1019 => 0.54655660443134
1020 => 0.54119778089187
1021 => 0.55008853095216
1022 => 0.55529652382373
1023 => 0.55839776439595
1024 => 0.56626199448988
1025 => 0.52620281643594
1026 => 0.49784693913903
1027 => 0.49341875943528
1028 => 0.50242363699242
1029 => 0.50479815139168
1030 => 0.50384098761472
1031 => 0.47192386971348
1101 => 0.49325072241493
1102 => 0.516196622709
1103 => 0.51707806818941
1104 => 0.52856526565277
1105 => 0.53230596802297
1106 => 0.54155466764236
1107 => 0.54097615896302
1108 => 0.54322807014139
1109 => 0.54271039475915
1110 => 0.5598416632606
1111 => 0.57873999643569
1112 => 0.57808560725085
1113 => 0.575368748262
1114 => 0.57940374715374
1115 => 0.5989088522589
1116 => 0.59711313474375
1117 => 0.59885752135086
1118 => 0.62185513952939
1119 => 0.65175531453452
1120 => 0.63786368131615
1121 => 0.66800452819023
1122 => 0.68697659359983
1123 => 0.71978681897755
1124 => 0.71567881716649
1125 => 0.72845159713348
1126 => 0.70832463655885
1127 => 0.66210906674964
1128 => 0.65479527592124
1129 => 0.66943767037438
1130 => 0.70543456835347
1201 => 0.66830399995493
1202 => 0.675815465583
1203 => 0.6736521629768
1204 => 0.67353688977436
1205 => 0.67793639906152
1206 => 0.67155468137752
1207 => 0.64555441548381
1208 => 0.65747018412237
1209 => 0.65286893360881
1210 => 0.65797436409955
1211 => 0.68552626681837
1212 => 0.67334491387105
1213 => 0.66051284807381
1214 => 0.67660710624691
1215 => 0.69710062748839
1216 => 0.6958181797595
1217 => 0.69332969514388
1218 => 0.70735715262931
1219 => 0.73052640273582
1220 => 0.73678895793802
1221 => 0.74141184815598
1222 => 0.74204926661267
1223 => 0.74861507286991
1224 => 0.71330907782852
1225 => 0.76934059868146
1226 => 0.77901569449324
1227 => 0.77719717747226
1228 => 0.78795063927678
1229 => 0.78478669802489
1230 => 0.78020264355808
1231 => 0.79724916784517
]
'min_raw' => 0.29387301368625
'max_raw' => 0.79724916784517
'avg_raw' => 0.54556109076571
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.293873'
'max' => '$0.797249'
'avg' => '$0.545561'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.10134920760065
'max_diff' => 0.36745333312493
'year' => 2032
]
7 => [
'items' => [
101 => 0.7777067033336
102 => 0.7499686352873
103 => 0.73475098256033
104 => 0.75479081524424
105 => 0.76702844177052
106 => 0.77511673444517
107 => 0.77756424692144
108 => 0.71604978172031
109 => 0.68289689672554
110 => 0.70414751590859
111 => 0.73007473795129
112 => 0.71316505080098
113 => 0.713827878523
114 => 0.68971910843426
115 => 0.73220782914967
116 => 0.72601757992783
117 => 0.75813260384113
118 => 0.75046809564505
119 => 0.7766566509483
120 => 0.76976032666289
121 => 0.79838658320332
122 => 0.80980637196226
123 => 0.82898197463671
124 => 0.84308762602278
125 => 0.85137073431479
126 => 0.8508734475621
127 => 0.88369524924323
128 => 0.86434137949827
129 => 0.84002835774174
130 => 0.83958861188477
131 => 0.85218067037066
201 => 0.87857017049454
202 => 0.88541258392505
203 => 0.8892365595735
204 => 0.88338000775435
205 => 0.86237276925055
206 => 0.85330195017372
207 => 0.86103055083411
208 => 0.85157913635268
209 => 0.86789492934615
210 => 0.89029999799151
211 => 0.88567343991549
212 => 0.90113932991128
213 => 0.91714489899786
214 => 0.94003358164674
215 => 0.94601753085662
216 => 0.95590877135135
217 => 0.96609010692367
218 => 0.96936007751481
219 => 0.97560346598558
220 => 0.97557056024652
221 => 0.9943854316317
222 => 1.0151388174176
223 => 1.0229727401098
224 => 1.0409864133755
225 => 1.0101386291824
226 => 1.0335370278467
227 => 1.0546429691418
228 => 1.029479595834
301 => 1.0641614436248
302 => 1.0655080611837
303 => 1.085840387546
304 => 1.0652296795754
305 => 1.0529911069742
306 => 1.0883234075006
307 => 1.1054195947683
308 => 1.1002700840299
309 => 1.0610820530478
310 => 1.0382729381626
311 => 0.97857708495813
312 => 1.0492894017477
313 => 1.0837313085494
314 => 1.0609928568298
315 => 1.0724608092604
316 => 1.1350262392258
317 => 1.158847104145
318 => 1.1538925307622
319 => 1.1547297721047
320 => 1.1675830784358
321 => 1.2245817171532
322 => 1.1904268116157
323 => 1.2165369571392
324 => 1.2303856841778
325 => 1.2432491536491
326 => 1.2116605381687
327 => 1.1705642135577
328 => 1.157547282447
329 => 1.0587319659321
330 => 1.0535881995744
331 => 1.0507008476457
401 => 1.0324965021594
402 => 1.018192873197
403 => 1.0068180963864
404 => 0.97696728523957
405 => 0.98704105772188
406 => 0.93946509510231
407 => 0.96990250999772
408 => 0.8939701248951
409 => 0.95720887155157
410 => 0.92279089685943
411 => 0.94590164119674
412 => 0.94582100998691
413 => 0.90326680239376
414 => 0.87872242353769
415 => 0.8943630570263
416 => 0.91113105768111
417 => 0.91385160937303
418 => 0.9355917599116
419 => 0.94165896862394
420 => 0.92327504297465
421 => 0.89239659498969
422 => 0.89956895419418
423 => 0.87857707590734
424 => 0.84178961665057
425 => 0.8682110121362
426 => 0.87723243822175
427 => 0.88121681392043
428 => 0.84504057280964
429 => 0.83367321242823
430 => 0.82762132514256
501 => 0.88772669654407
502 => 0.89101940446965
503 => 0.8741734451804
504 => 0.95031877856721
505 => 0.93308474447687
506 => 0.95233938299664
507 => 0.89891813777349
508 => 0.90095890128226
509 => 0.87566842768019
510 => 0.88982940298729
511 => 0.87982088206977
512 => 0.88868533612396
513 => 0.89399865333453
514 => 0.91928497701874
515 => 0.95749760075006
516 => 0.91550804348491
517 => 0.89721259208294
518 => 0.9085629872352
519 => 0.93879058526323
520 => 0.98458694359797
521 => 0.9574745777262
522 => 0.96950658530226
523 => 0.97213504369087
524 => 0.95214338885137
525 => 0.98532406442771
526 => 1.0031058580284
527 => 1.021346298839
528 => 1.0371839625092
529 => 1.0140606656633
530 => 1.0388059078829
531 => 1.0188656107772
601 => 1.0009771028834
602 => 1.0010042323658
603 => 0.98978251005462
604 => 0.96803900904869
605 => 0.96402917385804
606 => 0.98488884290616
607 => 1.0016163220647
608 => 1.0029940773675
609 => 1.0122552693186
610 => 1.0177359473174
611 => 1.071454042326
612 => 1.0930599045179
613 => 1.1194791438281
614 => 1.1297709264461
615 => 1.1607455023182
616 => 1.1357310166694
617 => 1.1303189753508
618 => 1.0551847859917
619 => 1.0674880052902
620 => 1.0871866464711
621 => 1.0555096093294
622 => 1.0756013983469
623 => 1.0795679431013
624 => 1.0544332357286
625 => 1.067858768943
626 => 1.0322045331189
627 => 0.95827476565924
628 => 0.98540636939283
629 => 1.0053843621398
630 => 0.97687330322113
701 => 1.0279782728025
702 => 0.99812380459378
703 => 0.98866137143881
704 => 0.95174504610026
705 => 0.96916813062039
706 => 0.99273310190839
707 => 0.97817268937436
708 => 1.0083877316394
709 => 1.0511802895442
710 => 1.081676814648
711 => 1.0840179591686
712 => 1.0644107366353
713 => 1.0958314358765
714 => 1.0960603013677
715 => 1.0606176242664
716 => 1.0389091818874
717 => 1.033976978104
718 => 1.0462985901705
719 => 1.0612593019144
720 => 1.0848481745491
721 => 1.0991024362477
722 => 1.1362699908815
723 => 1.146326465488
724 => 1.1573754821481
725 => 1.1721403757965
726 => 1.1898694162624
727 => 1.1510792850378
728 => 1.1526204892652
729 => 1.1164996561548
730 => 1.077899365725
731 => 1.1071921745671
801 => 1.1454886254692
802 => 1.1367033773184
803 => 1.1357148574351
804 => 1.1373772736863
805 => 1.13075348348
806 => 1.1007943258661
807 => 1.0857490244666
808 => 1.1051613017377
809 => 1.1154780631662
810 => 1.1314784604256
811 => 1.129506073736
812 => 1.1707213787591
813 => 1.186736400005
814 => 1.1826390722489
815 => 1.1833930791637
816 => 1.2123875101522
817 => 1.2446352805709
818 => 1.2748395730362
819 => 1.3055646766364
820 => 1.2685243650252
821 => 1.2497175791178
822 => 1.2691213815958
823 => 1.2588254508727
824 => 1.3179889227793
825 => 1.322085273209
826 => 1.3812444669232
827 => 1.4373935863037
828 => 1.4021273304368
829 => 1.4353818212923
830 => 1.4713492644309
831 => 1.5407362977527
901 => 1.5173691859952
902 => 1.4994703445982
903 => 1.4825560259647
904 => 1.5177520379686
905 => 1.5630311451416
906 => 1.5727838311488
907 => 1.5885869082932
908 => 1.5719719049842
909 => 1.5919828463873
910 => 1.6626302627935
911 => 1.6435407072585
912 => 1.6164304695997
913 => 1.6721998198024
914 => 1.6923825308429
915 => 1.8340353666929
916 => 2.0128779233404
917 => 1.9388359305448
918 => 1.8928756762964
919 => 1.9036774262366
920 => 1.9689846737216
921 => 1.9899592888654
922 => 1.9329430545212
923 => 1.9530821523872
924 => 2.0640505616613
925 => 2.1235815529441
926 => 2.0427304707033
927 => 1.8196655414014
928 => 1.6139894893181
929 => 1.6685440400439
930 => 1.6623592470164
1001 => 1.7815809591904
1002 => 1.6430854276723
1003 => 1.6454173372315
1004 => 1.7671044281553
1005 => 1.7346403985417
1006 => 1.6820528282465
1007 => 1.6143734367781
1008 => 1.4892618220628
1009 => 1.378446975914
1010 => 1.5957804083468
1011 => 1.5864085955451
1012 => 1.5728368217833
1013 => 1.6030393356707
1014 => 1.7496941699747
1015 => 1.7463133013686
1016 => 1.7248059402311
1017 => 1.7411190840967
1018 => 1.679193055254
1019 => 1.6951528029162
1020 => 1.6139569091806
1021 => 1.6506608441891
1022 => 1.6819399989389
1023 => 1.6882197523507
1024 => 1.7023683574397
1025 => 1.581470076057
1026 => 1.6357498550108
1027 => 1.6676341398186
1028 => 1.5235797810966
1029 => 1.6647866483168
1030 => 1.5793655059525
1031 => 1.5503722872516
1101 => 1.5894078366663
1102 => 1.5741956450961
1103 => 1.5611170960739
1104 => 1.5538190410015
1105 => 1.5824824402953
1106 => 1.581145258458
1107 => 1.5342463738874
1108 => 1.473068690808
1109 => 1.4936019293384
1110 => 1.4861420112802
1111 => 1.4591063058885
1112 => 1.477325107019
1113 => 1.3970987271647
1114 => 1.2590734104298
1115 => 1.3502571624947
1116 => 1.346746687229
1117 => 1.3449765464127
1118 => 1.4134986159556
1119 => 1.4069118000422
1120 => 1.394956664661
1121 => 1.4588867404519
1122 => 1.4355514028074
1123 => 1.5074654149308
1124 => 1.554832634422
1125 => 1.54281877539
1126 => 1.5873678742671
1127 => 1.4940749736828
1128 => 1.5250631329954
1129 => 1.531449749682
1130 => 1.4580978532403
1201 => 1.4079894845862
1202 => 1.4046478276742
1203 => 1.3177668217865
1204 => 1.3641779538527
1205 => 1.4050178294478
1206 => 1.3854586983402
1207 => 1.3792668617439
1208 => 1.4108996120687
1209 => 1.4133577476852
1210 => 1.3573119951291
1211 => 1.3689656818237
1212 => 1.4175634926042
1213 => 1.3677411416811
1214 => 1.2709444522724
1215 => 1.2469375349801
1216 => 1.2437345696781
1217 => 1.1786259059687
1218 => 1.2485417919871
1219 => 1.2180216341108
1220 => 1.3144344471544
1221 => 1.2593639654162
1222 => 1.2569899870165
1223 => 1.2534013704783
1224 => 1.1973596540187
1225 => 1.2096292282864
1226 => 1.2504151618615
1227 => 1.2649680424475
1228 => 1.2634500577741
1229 => 1.2502152885363
1230 => 1.2562740981204
1231 => 1.2367565614208
]
'min_raw' => 0.68289689672554
'max_raw' => 2.1235815529441
'avg_raw' => 1.4032392248348
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.682896'
'max' => '$2.12'
'avg' => '$1.40'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.3890238830393
'max_diff' => 1.3263323850989
'year' => 2033
]
8 => [
'items' => [
101 => 1.2298645129898
102 => 1.2081113123342
103 => 1.1761401168455
104 => 1.180585907669
105 => 1.1172426036876
106 => 1.082729809795
107 => 1.0731771233168
108 => 1.0604028717239
109 => 1.0746200090252
110 => 1.1170631600661
111 => 1.065867715094
112 => 0.97809671563216
113 => 0.98337190225432
114 => 0.99522368037735
115 => 0.97313797025244
116 => 0.95223569913237
117 => 0.97040852801642
118 => 0.93321879847981
119 => 0.99971788151581
120 => 0.99791926768122
121 => 1.0227060135613
122 => 1.0382056744354
123 => 1.0024839741955
124 => 0.99350006318688
125 => 0.99861770719336
126 => 0.91403445145909
127 => 1.0157937570384
128 => 1.0166737757387
129 => 1.0091385213519
130 => 1.0633222101068
131 => 1.1776666936959
201 => 1.1346456994735
202 => 1.1179866701941
203 => 1.0863178433564
204 => 1.1285146748088
205 => 1.1252746165264
206 => 1.1106218442176
207 => 1.1017598018058
208 => 1.1180883866746
209 => 1.0997365094401
210 => 1.096440008013
211 => 1.0764667959933
212 => 1.0693372680255
213 => 1.0640588493528
214 => 1.0582478290409
215 => 1.0710654918329
216 => 1.0420189816423
217 => 1.0069917378169
218 => 1.0040796014928
219 => 1.0121202659212
220 => 1.0085628704687
221 => 1.004062570052
222 => 0.99547027097269
223 => 0.99292111938128
224 => 1.0012046253808
225 => 0.99185303006574
226 => 1.0056518183609
227 => 1.0018993114664
228 => 0.98093811299354
301 => 0.95481269886672
302 => 0.95458012788109
303 => 0.94895145026173
304 => 0.94178248303613
305 => 0.93978824035772
306 => 0.96887806305594
307 => 1.0290931254561
308 => 1.0172714678826
309 => 1.0258138270117
310 => 1.067833779243
311 => 1.0811906584732
312 => 1.0717102619706
313 => 1.0587329105124
314 => 1.0593038481154
315 => 1.1036513865595
316 => 1.1064172881344
317 => 1.1134058291007
318 => 1.1223880792038
319 => 1.0732399780035
320 => 1.0569889769687
321 => 1.0492883511072
322 => 1.025573403971
323 => 1.0511479412915
324 => 1.0362467536057
325 => 1.0382574329216
326 => 1.0369479753794
327 => 1.0376630277426
328 => 0.99969929366685
329 => 1.0135312830489
330 => 0.99053291794277
331 => 0.95974068875327
401 => 0.95963746240388
402 => 0.96717381687469
403 => 0.96269089833787
404 => 0.95062747982167
405 => 0.95234103148417
406 => 0.93732851583691
407 => 0.95416382269412
408 => 0.95464659905516
409 => 0.94816408888977
410 => 0.97410120192796
411 => 0.98472765830237
412 => 0.98046073124269
413 => 0.98442827932511
414 => 1.0177627111264
415 => 1.0231976779932
416 => 1.0256115312617
417 => 1.0223772876562
418 => 0.98503757154556
419 => 0.9866937467358
420 => 0.97454183207931
421 => 0.96427474473179
422 => 0.96468537438191
423 => 0.96996399190646
424 => 0.99301602422301
425 => 1.0415276672417
426 => 1.0433686486327
427 => 1.0455999717838
428 => 1.036524059155
429 => 1.0337866770614
430 => 1.0373979906212
501 => 1.0556164131179
502 => 1.1024791420331
503 => 1.0859147237781
504 => 1.0724475938962
505 => 1.0842618975148
506 => 1.0824431780762
507 => 1.0670913557207
508 => 1.066660481198
509 => 1.0371954258232
510 => 1.026302865738
511 => 1.0172002272368
512 => 1.0072603836239
513 => 1.0013677111436
514 => 1.0104215342451
515 => 1.0124922507101
516 => 0.99269590826496
517 => 0.98999773993968
518 => 1.0061638605141
519 => 0.99904975358304
520 => 1.006366788983
521 => 1.0080644039602
522 => 1.0077910488495
523 => 1.0003631041634
524 => 1.0050974546018
525 => 0.99389930443726
526 => 0.98172299804106
527 => 0.97395527317098
528 => 0.96717690298265
529 => 0.97093793672432
530 => 0.95753053817288
531 => 0.95324124153865
601 => 1.0034935631996
602 => 1.040615493514
603 => 1.0400757259453
604 => 1.036790029688
605 => 1.0319081515287
606 => 1.0552592733232
607 => 1.0471242094105
608 => 1.0530431481143
609 => 1.0545497664316
610 => 1.0591098463134
611 => 1.060739682919
612 => 1.0558131847025
613 => 1.0392792549667
614 => 0.99807827406402
615 => 0.9788991062339
616 => 0.97256966139565
617 => 0.97279972469419
618 => 0.96645355187258
619 => 0.96832278418406
620 => 0.96580350915751
621 => 0.96103261173529
622 => 0.97064334725254
623 => 0.9717508949907
624 => 0.96950763448124
625 => 0.97003600353843
626 => 0.95146276462919
627 => 0.9528748476445
628 => 0.94501218997639
629 => 0.94353803644937
630 => 0.92366192254431
701 => 0.88844850567271
702 => 0.90796015686866
703 => 0.88439282597729
704 => 0.87546752066539
705 => 0.91771852784215
706 => 0.91347769858213
707 => 0.90621924233313
708 => 0.89548247274603
709 => 0.89150010046559
710 => 0.86730446715552
711 => 0.86587486006088
712 => 0.8778668692664
713 => 0.87233296963789
714 => 0.86456127870779
715 => 0.83641300196262
716 => 0.8047650193269
717 => 0.80572027299055
718 => 0.81578690743532
719 => 0.84505700475411
720 => 0.83362067135383
721 => 0.82532348025513
722 => 0.82376966577499
723 => 0.84321890712488
724 => 0.87074365837701
725 => 0.88365765583291
726 => 0.87086027655805
727 => 0.85615933630692
728 => 0.85705411442241
729 => 0.86300667235709
730 => 0.86363220203139
731 => 0.85406340120898
801 => 0.85675696259092
802 => 0.85266519654734
803 => 0.82755403589071
804 => 0.82709985462279
805 => 0.82093717082549
806 => 0.82075056720931
807 => 0.81026630471658
808 => 0.80879948391956
809 => 0.78798234439101
810 => 0.80168424866881
811 => 0.79249373066152
812 => 0.77864145220051
813 => 0.77625331417259
814 => 0.77618152385971
815 => 0.79040471652638
816 => 0.80151804238135
817 => 0.79265360365706
818 => 0.79063534278946
819 => 0.81218508865438
820 => 0.80944268706277
821 => 0.80706778497104
822 => 0.8682791187965
823 => 0.8198255716937
824 => 0.79869705952511
825 => 0.77254651352083
826 => 0.78106126316232
827 => 0.78285544601948
828 => 0.7199680968694
829 => 0.69445470715134
830 => 0.6856994732519
831 => 0.68066071236194
901 => 0.68295693897228
902 => 0.65999189580388
903 => 0.6754247846198
904 => 0.65553899842274
905 => 0.65220508165286
906 => 0.68776333074939
907 => 0.6927110533829
908 => 0.67160253149143
909 => 0.68515761970503
910 => 0.68024235628896
911 => 0.65587988315142
912 => 0.65494941587579
913 => 0.64272518323771
914 => 0.62359662623699
915 => 0.61485436239995
916 => 0.61030131548981
917 => 0.61217999138205
918 => 0.6112300753625
919 => 0.605031230787
920 => 0.61158538587746
921 => 0.59484222798519
922 => 0.5881749676037
923 => 0.58516352076865
924 => 0.57030300443905
925 => 0.59395269442105
926 => 0.59861198127845
927 => 0.60328044837028
928 => 0.64391626710685
929 => 0.6418862164384
930 => 0.66023688580639
1001 => 0.65952381253946
1002 => 0.65428990437458
1003 => 0.63220890676303
1004 => 0.64100999885506
1005 => 0.61392160538919
1006 => 0.63421807160553
1007 => 0.62495561202509
1008 => 0.63108642470418
1009 => 0.62006267071407
1010 => 0.62616367133185
1011 => 0.59971687104048
1012 => 0.57502122104493
1013 => 0.5849594715141
1014 => 0.5957634863509
1015 => 0.61918934332885
1016 => 0.60523709617191
1017 => 0.61025485184242
1018 => 0.59344621030836
1019 => 0.5587651816725
1020 => 0.55896147252823
1021 => 0.55362655183988
1022 => 0.54901640145397
1023 => 0.60683967959512
1024 => 0.59964844090751
1025 => 0.58819014322486
1026 => 0.60352753000774
1027 => 0.60758297851019
1028 => 0.60769843142776
1029 => 0.6188881929093
1030 => 0.62486017061787
1031 => 0.62591275757304
1101 => 0.64352008903504
1102 => 0.64942183429478
1103 => 0.67373028777341
1104 => 0.62435349003319
1105 => 0.62333660737703
1106 => 0.60374335849282
1107 => 0.59131701029345
1108 => 0.60459420118524
1109 => 0.61635597979807
1110 => 0.60410882974016
1111 => 0.60570804898627
1112 => 0.58926725066245
1113 => 0.59514406245175
1114 => 0.60020596445674
1115 => 0.59741107969443
1116 => 0.59322700193131
1117 => 0.61539164808137
1118 => 0.61414103188164
1119 => 0.63478125993959
1120 => 0.65087179370763
1121 => 0.67970890674693
1122 => 0.64961587597772
1123 => 0.64851916632753
1124 => 0.65923967907593
1125 => 0.64942019304014
1126 => 0.65562576925762
1127 => 0.67870909248046
1128 => 0.67919680672593
1129 => 0.67102696472993
1130 => 0.67052982910199
1201 => 0.6720989366256
1202 => 0.68128924840157
1203 => 0.67807787107729
1204 => 0.68179415821908
1205 => 0.68644143219569
1206 => 0.70566452776627
1207 => 0.71029915102886
1208 => 0.69903941927743
1209 => 0.70005604698471
1210 => 0.69584459822313
1211 => 0.69177639148874
1212 => 0.70092112611377
1213 => 0.71763330838121
1214 => 0.71752934276269
1215 => 0.72140624421033
1216 => 0.72382152169423
1217 => 0.71345338264217
1218 => 0.70670410536631
1219 => 0.70929220774155
1220 => 0.71343063980108
1221 => 0.70795017000103
1222 => 0.67412217159456
1223 => 0.68438342537018
1224 => 0.68267545099224
1225 => 0.68024308778128
1226 => 0.69056085780059
1227 => 0.68956568371186
1228 => 0.65975635609306
1229 => 0.66166465253108
1230 => 0.65987240591993
1231 => 0.66566352137973
]
'min_raw' => 0.54901640145397
'max_raw' => 1.2298645129898
'avg_raw' => 0.88944045722186
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.549016'
'max' => '$1.22'
'avg' => '$0.88944'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.13388049527157
'max_diff' => -0.89371703995431
'year' => 2034
]
9 => [
'items' => [
101 => 0.64910745380049
102 => 0.65419998868105
103 => 0.65739397881858
104 => 0.65927526354698
105 => 0.66607175399497
106 => 0.6652742642857
107 => 0.66602218091492
108 => 0.67609958204233
109 => 0.72706761879832
110 => 0.72984169658432
111 => 0.7161811229948
112 => 0.72163825270091
113 => 0.71116175700825
114 => 0.71819469875315
115 => 0.72300645887767
116 => 0.70126304012326
117 => 0.69997553597824
118 => 0.68945580006116
119 => 0.6951085102747
120 => 0.68611464188071
121 => 0.68832142259243
122 => 0.68215107133877
123 => 0.69325647509069
124 => 0.70567404209061
125 => 0.70881120989937
126 => 0.70055867203018
127 => 0.69458329074414
128 => 0.68409248961881
129 => 0.70153892569298
130 => 0.70664079527158
131 => 0.70151212774402
201 => 0.70032370341429
202 => 0.69807164145688
203 => 0.70080148900473
204 => 0.70661300939417
205 => 0.70387240370044
206 => 0.70568262204441
207 => 0.69878393640626
208 => 0.71345681492761
209 => 0.73676087724003
210 => 0.73683580361096
211 => 0.73409518314435
212 => 0.7329737802969
213 => 0.7357858232104
214 => 0.73731124113494
215 => 0.74640487227672
216 => 0.7561627007981
217 => 0.80169822883326
218 => 0.78891203477434
219 => 0.82931386416782
220 => 0.8612664656971
221 => 0.87084765377781
222 => 0.86203341157329
223 => 0.83188036512765
224 => 0.83040091281633
225 => 0.87546229449395
226 => 0.86273039022799
227 => 0.86121597072814
228 => 0.84510510590183
301 => 0.85462862238361
302 => 0.85254568962748
303 => 0.84925767837139
304 => 0.8674278844047
305 => 0.90144088803358
306 => 0.89613964244609
307 => 0.89218250853274
308 => 0.87484349962878
309 => 0.88528545579681
310 => 0.88156727520787
311 => 0.89754293863365
312 => 0.88807930952449
313 => 0.862633933531
314 => 0.86668619352702
315 => 0.86607370258064
316 => 0.87867872285562
317 => 0.87489500864491
318 => 0.86533487165455
319 => 0.90132463528486
320 => 0.89898766022029
321 => 0.90230095655498
322 => 0.9037595720686
323 => 0.9256659069796
324 => 0.9346402314681
325 => 0.93667756024466
326 => 0.94520247440957
327 => 0.93646545261421
328 => 0.97141976918661
329 => 0.99466235006633
330 => 1.0216598038104
331 => 1.061110339962
401 => 1.0759441064928
402 => 1.0732645193409
403 => 1.1031754656083
404 => 1.1569247711678
405 => 1.084128790746
406 => 1.1607831348926
407 => 1.1365152545527
408 => 1.0789765468274
409 => 1.0752717323867
410 => 1.1142376132964
411 => 1.2006601868271
412 => 1.1790123123544
413 => 1.2006955949946
414 => 1.1754008940194
415 => 1.1741447989155
416 => 1.199467087827
417 => 1.258633996115
418 => 1.2305260158258
419 => 1.1902263337217
420 => 1.2199829918548
421 => 1.1942050207312
422 => 1.1361200369898
423 => 1.1789957586327
424 => 1.1503259846003
425 => 1.158693348832
426 => 1.2189529495411
427 => 1.2117023549566
428 => 1.2210852957359
429 => 1.2045246508548
430 => 1.1890543971619
501 => 1.160178019808
502 => 1.1516291480617
503 => 1.1539917486562
504 => 1.1516279772742
505 => 1.1354719095322
506 => 1.1319830082416
507 => 1.1261680199049
508 => 1.1279703279423
509 => 1.1170364486346
510 => 1.137670937943
511 => 1.1415008809892
512 => 1.1565169415343
513 => 1.158075958754
514 => 1.1998954736319
515 => 1.1768619875855
516 => 1.1923148386409
517 => 1.1909325901947
518 => 1.0802235850965
519 => 1.0954783092052
520 => 1.1192098727222
521 => 1.1085188355251
522 => 1.093404210246
523 => 1.0811983399381
524 => 1.0627051983073
525 => 1.0887339400233
526 => 1.1229589675317
527 => 1.1589439619315
528 => 1.2021775748726
529 => 1.1925283357589
530 => 1.1581357396102
531 => 1.1596785663497
601 => 1.1692157141728
602 => 1.1568642412006
603 => 1.1532215506917
604 => 1.1687152644342
605 => 1.1688219611256
606 => 1.1546100987456
607 => 1.1388162144537
608 => 1.1387500375018
609 => 1.1359396683429
610 => 1.1759008524495
611 => 1.1978754631767
612 => 1.2003948168827
613 => 1.1977058905992
614 => 1.198740751606
615 => 1.1859542098014
616 => 1.2151804526357
617 => 1.2420013432362
618 => 1.2348127716105
619 => 1.2240360808279
620 => 1.2154519275438
621 => 1.2327906179051
622 => 1.232018553317
623 => 1.2417670861549
624 => 1.2413248363951
625 => 1.2380467714626
626 => 1.2348128886806
627 => 1.2476348683697
628 => 1.2439423441339
629 => 1.2402440843881
630 => 1.2328266582926
701 => 1.2338348096894
702 => 1.2230599796544
703 => 1.2180750502575
704 => 1.1431136726467
705 => 1.1230815431154
706 => 1.1293840588575
707 => 1.1314590106846
708 => 1.1227410022407
709 => 1.1352403868766
710 => 1.1332923710212
711 => 1.1408709611633
712 => 1.1361361870667
713 => 1.1363305038472
714 => 1.1502544649052
715 => 1.1542966500371
716 => 1.1522407620546
717 => 1.1536806355258
718 => 1.1868619119381
719 => 1.1821445955098
720 => 1.1796386151768
721 => 1.1803327888552
722 => 1.1888113163931
723 => 1.1911848411933
724 => 1.1811280498303
725 => 1.1858708907747
726 => 1.2060653055599
727 => 1.2131322078298
728 => 1.2356863675698
729 => 1.226104959644
730 => 1.2436920485654
731 => 1.2977487640293
801 => 1.340933008782
802 => 1.301218992643
803 => 1.380521358651
804 => 1.442269625837
805 => 1.4398996244953
806 => 1.4291323858483
807 => 1.3588336253196
808 => 1.2941436577857
809 => 1.3482595625089
810 => 1.3483975150791
811 => 1.3437489108704
812 => 1.3148768293716
813 => 1.3427442250181
814 => 1.344956237685
815 => 1.3437180988131
816 => 1.3215819416223
817 => 1.2877841210374
818 => 1.2943881342792
819 => 1.3052056426873
820 => 1.284725842502
821 => 1.278181305428
822 => 1.2903488449978
823 => 1.3295551926992
824 => 1.3221434597731
825 => 1.3219499094733
826 => 1.3536604459948
827 => 1.3309625454075
828 => 1.2944714320351
829 => 1.28525694465
830 => 1.2525517220551
831 => 1.2751413357934
901 => 1.2759542957763
902 => 1.2635821951921
903 => 1.295475359811
904 => 1.2951814586844
905 => 1.3254592718189
906 => 1.3833390787049
907 => 1.3662211717164
908 => 1.3463149083118
909 => 1.3484792710847
910 => 1.3722169886008
911 => 1.3578646227112
912 => 1.3630258335533
913 => 1.3722091764901
914 => 1.3777497152934
915 => 1.3476820728149
916 => 1.3406718670516
917 => 1.3263314463077
918 => 1.3225902982122
919 => 1.3342702716854
920 => 1.3311930113348
921 => 1.2758859696377
922 => 1.2701060760548
923 => 1.2702833371392
924 => 1.2557495199063
925 => 1.2335819601102
926 => 1.2918369836981
927 => 1.2871582900254
928 => 1.281993374313
929 => 1.2826260470172
930 => 1.3079125783107
1001 => 1.29324511316
1002 => 1.3322409732135
1003 => 1.3242245967093
1004 => 1.3160026303964
1005 => 1.3148661042048
1006 => 1.3117013486395
1007 => 1.3008482242525
1008 => 1.2877424243836
1009 => 1.2790888401051
1010 => 1.1798918426167
1011 => 1.1983022283482
1012 => 1.2194816989728
1013 => 1.226792767361
1014 => 1.2142866789724
1015 => 1.3013420408476
1016 => 1.3172478943485
1017 => 1.269068026581
1018 => 1.2600555404928
1019 => 1.3019328979351
1020 => 1.2766757320986
1021 => 1.2880490323283
1022 => 1.2634661780944
1023 => 1.3134166400179
1024 => 1.313036101188
1025 => 1.2936042433174
1026 => 1.310027916526
1027 => 1.3071738991392
1028 => 1.2852353794619
1029 => 1.3141121302227
1030 => 1.3141264527308
1031 => 1.2954237120154
1101 => 1.2735830054162
1102 => 1.2696784029307
1103 => 1.2667368094674
1104 => 1.2873255806593
1105 => 1.3057854085305
1106 => 1.3401345716193
1107 => 1.3487707673359
1108 => 1.3824784141615
1109 => 1.3624071516724
1110 => 1.3713044823675
1111 => 1.3809637934412
1112 => 1.3855948223794
1113 => 1.3780488092394
1114 => 1.4304106593806
1115 => 1.4348316038582
1116 => 1.4363139083005
1117 => 1.4186577870435
1118 => 1.4343405551864
1119 => 1.427003107331
1120 => 1.4460931082489
1121 => 1.4490866641462
1122 => 1.4465512288
1123 => 1.4475014306919
1124 => 1.4028198288597
1125 => 1.4005028520904
1126 => 1.3689107094368
1127 => 1.3817847410855
1128 => 1.3577173559867
1129 => 1.3653493717231
1130 => 1.3687134915392
1201 => 1.3669562662594
1202 => 1.3825126195189
1203 => 1.3692865412953
1204 => 1.3343807462946
1205 => 1.2994654412335
1206 => 1.2990271080198
1207 => 1.2898345245035
1208 => 1.2831899703269
1209 => 1.2844699471895
1210 => 1.2889807526035
1211 => 1.282927794116
1212 => 1.2842194997021
1213 => 1.3056704190204
1214 => 1.3099722479087
1215 => 1.2953529525131
1216 => 1.2366543719457
1217 => 1.2222495930403
1218 => 1.2326034624583
1219 => 1.2276549797511
1220 => 0.9908133832018
1221 => 1.04645580319
1222 => 1.013394966671
1223 => 1.0286309211949
1224 => 0.9948843681712
1225 => 1.0109899920825
1226 => 1.0080158714293
1227 => 1.0974872361914
1228 => 1.0960902638945
1229 => 1.0967589206069
1230 => 1.0648421935479
1231 => 1.1156864063865
]
'min_raw' => 0.64910745380049
'max_raw' => 1.4490866641462
'avg_raw' => 1.0490970589733
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.6491074'
'max' => '$1.44'
'avg' => '$1.04'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.10009105234652
'max_diff' => 0.21922215115644
'year' => 2035
]
10 => [
'items' => [
101 => 1.1407340939295
102 => 1.1360984335879
103 => 1.1372651294245
104 => 1.1172174295035
105 => 1.0969530261642
106 => 1.0744766841917
107 => 1.1162349494169
108 => 1.1115921431612
109 => 1.1222410702828
110 => 1.1493242902237
111 => 1.1533123972392
112 => 1.1586724535114
113 => 1.1567512548926
114 => 1.2025220003496
115 => 1.1969788610697
116 => 1.2103362318643
117 => 1.1828591067135
118 => 1.1517661314528
119 => 1.1576758895439
120 => 1.1571067323164
121 => 1.1498607075628
122 => 1.1433193204068
123 => 1.1324297538165
124 => 1.1668859538608
125 => 1.1654870950634
126 => 1.1881329929976
127 => 1.1841301105672
128 => 1.1573978820256
129 => 1.1583526287977
130 => 1.1647737596754
131 => 1.1869973669587
201 => 1.1935948466989
202 => 1.1905386312191
203 => 1.1977724665679
204 => 1.2034897950803
205 => 1.1984904750035
206 => 1.2692703046582
207 => 1.2398775846331
208 => 1.2542033918601
209 => 1.2576200124712
210 => 1.2488684106197
211 => 1.2507663196899
212 => 1.253641134782
213 => 1.2710964490749
214 => 1.3169042445153
215 => 1.3371922052916
216 => 1.3982295362776
217 => 1.3355075725712
218 => 1.3317859108142
219 => 1.3427805772755
220 => 1.378615952022
221 => 1.4076571574084
222 => 1.4172918006623
223 => 1.418565177819
224 => 1.4366404090625
225 => 1.4470007945281
226 => 1.4344456005637
227 => 1.4238063882625
228 => 1.3856980503872
229 => 1.3901091942618
301 => 1.4204976012371
302 => 1.4634230159579
303 => 1.5002574874166
304 => 1.4873593393227
305 => 1.5857631046055
306 => 1.59551943599
307 => 1.5941714264526
308 => 1.6163978012832
309 => 1.572282973567
310 => 1.5534230300338
311 => 1.4261067067222
312 => 1.4618774004074
313 => 1.5138722044181
314 => 1.5069904971368
315 => 1.4692304806391
316 => 1.500228843058
317 => 1.4899798150339
318 => 1.4818959813987
319 => 1.5189295904097
320 => 1.4782096160453
321 => 1.5134659915246
322 => 1.4682493252919
323 => 1.4874182569767
324 => 1.4765370442555
325 => 1.4835785224374
326 => 1.4424141848672
327 => 1.4646254622123
328 => 1.4414901227058
329 => 1.4414791535425
330 => 1.4409684396406
331 => 1.4681870639723
401 => 1.4690746623345
402 => 1.4489600578284
403 => 1.4460612290699
404 => 1.4567797183278
405 => 1.4442311745836
406 => 1.4501025592219
407 => 1.444409012843
408 => 1.4431272756287
409 => 1.4329141754354
410 => 1.428514091057
411 => 1.430239477518
412 => 1.4243498440291
413 => 1.4208011268147
414 => 1.4402625104668
415 => 1.4298650782514
416 => 1.4386689548596
417 => 1.4286358263268
418 => 1.393856631606
419 => 1.3738547489388
420 => 1.3081600741443
421 => 1.326791002422
422 => 1.3391433271452
423 => 1.3350608838979
424 => 1.343831551689
425 => 1.344369999459
426 => 1.3415185659537
427 => 1.3382169712459
428 => 1.3366099375317
429 => 1.3485874502189
430 => 1.3555407994783
501 => 1.340383048184
502 => 1.3368317991352
503 => 1.3521571225761
504 => 1.3615055610219
505 => 1.430529178072
506 => 1.4254156855776
507 => 1.4382495482663
508 => 1.4368046522793
509 => 1.4502565849717
510 => 1.472244809713
511 => 1.4275366008097
512 => 1.4352963999817
513 => 1.4333938764247
514 => 1.4541651297522
515 => 1.4542299753378
516 => 1.4417765713669
517 => 1.448527763693
518 => 1.4447594333458
519 => 1.4515693156035
520 => 1.4253473917678
521 => 1.4572828645179
522 => 1.4753882196908
523 => 1.475639612565
524 => 1.4842214072239
525 => 1.4929410076215
526 => 1.5096775212674
527 => 1.4924742353397
528 => 1.4615271986617
529 => 1.4637614747515
530 => 1.4456172384703
531 => 1.4459222463602
601 => 1.44429409034
602 => 1.4491803091186
603 => 1.4264196420138
604 => 1.4317615250899
605 => 1.4242828575013
606 => 1.435280142819
607 => 1.4234488817335
608 => 1.4333929589702
609 => 1.4376844930542
610 => 1.4535203462142
611 => 1.4211099133461
612 => 1.3550228467345
613 => 1.3689151493645
614 => 1.3483673425579
615 => 1.3502691203089
616 => 1.3541110140315
617 => 1.3416581794871
618 => 1.3440337878842
619 => 1.3439489144354
620 => 1.3432175209056
621 => 1.3399780576893
622 => 1.3352801951174
623 => 1.353995033678
624 => 1.357175049432
625 => 1.3642438305326
626 => 1.3852757282878
627 => 1.3831741457358
628 => 1.386601914072
629 => 1.3791191150401
630 => 1.3506162258948
701 => 1.3521640699069
702 => 1.3328624302732
703 => 1.3637502442111
704 => 1.3564356021714
705 => 1.3517198048638
706 => 1.3504330558769
707 => 1.3715170876387
708 => 1.3778257603935
709 => 1.373894618892
710 => 1.3658317329826
711 => 1.3813148575068
712 => 1.3854574884489
713 => 1.3863848707425
714 => 1.4138179988047
715 => 1.3879180778571
716 => 1.3941524462523
717 => 1.4427912087923
718 => 1.3986825628589
719 => 1.42204789635
720 => 1.420904284863
721 => 1.4328571988372
722 => 1.4199237970377
723 => 1.4200841220535
724 => 1.4306974999021
725 => 1.4157929248465
726 => 1.4121023424592
727 => 1.4070038293237
728 => 1.4181362462298
729 => 1.4248096266892
730 => 1.4785921721335
731 => 1.5133381492726
801 => 1.511829734769
802 => 1.5256138196983
803 => 1.5194039631899
804 => 1.4993506984469
805 => 1.5335791761281
806 => 1.5227478536095
807 => 1.5236407746778
808 => 1.5236075401111
809 => 1.5308094226953
810 => 1.5257062288415
811 => 1.5156473099236
812 => 1.5223248897314
813 => 1.5421549144822
814 => 1.603707919768
815 => 1.6381537969947
816 => 1.6016342347074
817 => 1.6268249397568
818 => 1.6117194930931
819 => 1.6089743840862
820 => 1.6247960084357
821 => 1.6406453264442
822 => 1.6396357934055
823 => 1.6281300024029
824 => 1.6216306730141
825 => 1.670845772581
826 => 1.7071066195845
827 => 1.7046338729146
828 => 1.715547772535
829 => 1.7475913193746
830 => 1.7505209797148
831 => 1.7501519098494
901 => 1.7428904410178
902 => 1.7744414742617
903 => 1.8007619012814
904 => 1.7412096207872
905 => 1.7638863496028
906 => 1.7740666637667
907 => 1.7890143853224
908 => 1.8142336971159
909 => 1.8416285588157
910 => 1.8455024926294
911 => 1.8427537512038
912 => 1.8246861034994
913 => 1.85466188806
914 => 1.8722209996369
915 => 1.8826770487479
916 => 1.9091918495726
917 => 1.7741295339212
918 => 1.6785257138706
919 => 1.6635957968337
920 => 1.6939563702181
921 => 1.7019622112985
922 => 1.6987350667975
923 => 1.5911242754114
924 => 1.6630292482877
925 => 1.7403929531607
926 => 1.7433648081385
927 => 1.7820946963967
928 => 1.7947067356053
929 => 1.8258893720957
930 => 1.8239388896931
1001 => 1.8315313654544
1002 => 1.8297859867602
1003 => 1.8875452545798
1004 => 1.9512623043191
1005 => 1.9490559854945
1006 => 1.9398959057285
1007 => 1.9535001862067
1008 => 2.0192630098716
1009 => 2.0132086228963
1010 => 2.0190899441314
1011 => 2.0966280194627
1012 => 2.1974385470561
1013 => 2.1506019357775
1014 => 2.2522239053802
1015 => 2.3161895484959
1016 => 2.4268115140937
1017 => 2.4129610991762
1018 => 2.4560254186019
1019 => 2.388165965805
1020 => 2.2323469455252
1021 => 2.2076879891147
1022 => 2.2570558443128
1023 => 2.3784218990725
1024 => 2.2532335953433
1025 => 2.2785590261421
1026 => 2.2712653003683
1027 => 2.2708766487182
1028 => 2.2857099014438
1029 => 2.2641934947149
1030 => 2.1765317829737
1031 => 2.216706628871
1101 => 2.2011931915155
1102 => 2.2184065068648
1103 => 2.3112996704937
1104 => 2.2702293885569
1105 => 2.2269651828153
1106 => 2.2812280979111
1107 => 2.3503234355887
1108 => 2.3459995735331
1109 => 2.3376094739111
1110 => 2.384904026189
1111 => 2.4630207705485
1112 => 2.4841354126504
1113 => 2.4997218097801
1114 => 2.50187091061
1115 => 2.5240079848162
1116 => 2.4049713575483
1117 => 2.5938855420999
1118 => 2.6265058031229
1119 => 2.6203745460218
1120 => 2.6566305932785
1121 => 2.6459631444485
1122 => 2.6305076847652
1123 => 2.6879812315494
1124 => 2.6220924480373
1125 => 2.5285716150092
1126 => 2.4772642363776
1127 => 2.5448299314078
1128 => 2.586089943645
1129 => 2.6133601871041
1130 => 2.6216121462977
1201 => 2.4142118320693
1202 => 2.302434565649
1203 => 2.3740825118954
1204 => 2.4614979511932
1205 => 2.4044857603693
1206 => 2.4067205303113
1207 => 2.3254361287365
1208 => 2.4686898170963
1209 => 2.4478189596554
1210 => 2.5560970049785
1211 => 2.5302555804765
1212 => 2.618552123108
1213 => 2.5953006842937
1214 => 2.6918161068412
1215 => 2.7303187219461
1216 => 2.7949706051609
1217 => 2.8425287936341
1218 => 2.8704558715488
1219 => 2.8687792345427
1220 => 2.9794402304556
1221 => 2.9141873073664
1222 => 2.8322142570333
1223 => 2.8307316231745
1224 => 2.8731866275091
1225 => 2.9621606696328
1226 => 2.9852303442359
1227 => 2.9981231451161
1228 => 2.9783773717664
1229 => 2.9075500004723
1230 => 2.8769671006504
1231 => 2.9030246173705
]
'min_raw' => 1.0744766841917
'max_raw' => 2.9981231451161
'avg_raw' => 2.0362999146539
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$1.07'
'max' => '$2.99'
'avg' => '$2.03'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.42536923039119
'max_diff' => 1.5490364809699
'year' => 2036
]
11 => [
'items' => [
101 => 2.8711585135697
102 => 2.9261683487795
103 => 3.0017086019893
104 => 2.98610983842
105 => 3.0382541663348
106 => 3.0922180599833
107 => 3.1693888515708
108 => 3.1895641541179
109 => 3.2229131620303
110 => 3.2572402457505
111 => 3.2682651799005
112 => 3.2893152000292
113 => 3.2892042560326
114 => 3.3526399085201
115 => 3.4226113976524
116 => 3.4490240149562
117 => 3.509758372046
118 => 3.4057529139154
119 => 3.4846422486361
120 => 3.5558024032822
121 => 3.4709623333243
122 => 3.5878946045603
123 => 3.5924348196781
124 => 3.6609866775663
125 => 3.5914962366497
126 => 3.5502330346549
127 => 3.6693583527021
128 => 3.7269993416928
129 => 3.7096374067109
130 => 3.5775122242339
131 => 3.5006097009167
201 => 3.2993409640066
202 => 3.537752477039
203 => 3.6538757704779
204 => 3.5772114929573
205 => 3.615876495244
206 => 3.8268202105512
207 => 3.9071339197461
208 => 3.8904292296687
209 => 3.8932520473092
210 => 3.9365878669938
211 => 4.1287627569472
212 => 4.0136071083081
213 => 4.1016392868929
214 => 4.1483312369906
215 => 4.191701322412
216 => 4.0851980998733
217 => 3.9466389721934
218 => 3.9027514801407
219 => 3.5695887414456
220 => 3.5522461740441
221 => 3.542511265428
222 => 3.481134043634
223 => 3.4329083599399
224 => 3.3945575057615
225 => 3.2939134118629
226 => 3.3278778391153
227 => 3.1674721594958
228 => 3.2700940288881
301 => 3.0140826910848
302 => 3.2272965406254
303 => 3.1112539359646
304 => 3.1891734240385
305 => 3.188901570285
306 => 3.0454270883448
307 => 2.9626740013978
308 => 3.0154074891988
309 => 3.0719419741109
310 => 3.0811145040831
311 => 3.1544129394727
312 => 3.1748689572453
313 => 3.112886268394
314 => 3.0087774251484
315 => 3.0329595349644
316 => 2.9621839517142
317 => 2.8381524644116
318 => 2.9272340439743
319 => 2.9576504118776
320 => 2.971084012726
321 => 2.8491132900764
322 => 2.8107874409068
323 => 2.7903830803938
324 => 2.9930325364971
325 => 3.0041341311577
326 => 2.9473368032667
327 => 3.2040661110777
328 => 3.1459603619003
329 => 3.2108787199856
330 => 3.0307652619635
331 => 3.0376458386149
401 => 2.952377241141
402 => 3.0001219580766
403 => 2.9663775310306
404 => 2.9962646567707
405 => 3.0141788767101
406 => 3.0994334824462
407 => 3.2282700112765
408 => 3.0866992873398
409 => 3.0250148955904
410 => 3.0632835453055
411 => 3.1651980024806
412 => 3.3196036220058
413 => 3.2281923875442
414 => 3.2687591411348
415 => 3.2776211721051
416 => 3.210217912041
417 => 3.3220888763474
418 => 3.3820414349572
419 => 3.443540354657
420 => 3.4969381434717
421 => 3.4189763337387
422 => 3.5024066455395
423 => 3.4351765416606
424 => 3.3748641883609
425 => 3.374955657305
426 => 3.3371208370572
427 => 3.263811105333
428 => 3.2502916660299
429 => 3.3206214966013
430 => 3.3770193604597
501 => 3.3816645586546
502 => 3.4128893139135
503 => 3.4313678024352
504 => 3.6124821102345
505 => 3.6853277830875
506 => 3.7744020929542
507 => 3.8091015566003
508 => 3.9135345017288
509 => 3.8291964169084
510 => 3.8109493417461
511 => 3.5576291766203
512 => 3.5991103394684
513 => 3.6655256835251
514 => 3.5587243411815
515 => 3.6264652106182
516 => 3.6398386931928
517 => 3.5550952724367
518 => 3.6003603950096
519 => 3.4801496496296
520 => 3.2308902770277
521 => 3.3223663732836
522 => 3.389723570649
523 => 3.2935965449261
524 => 3.4659005179048
525 => 3.3652440939666
526 => 3.3333408399386
527 => 3.2088748716442
528 => 3.2676180175447
529 => 3.347068963496
530 => 3.2979775160619
531 => 3.3998496406055
601 => 3.5441277372623
602 => 3.6469489008492
603 => 3.6548422330539
604 => 3.5887351133505
605 => 3.6946721945652
606 => 3.6954438305477
607 => 3.5759463701718
608 => 3.5027548410563
609 => 3.4861255716449
610 => 3.5276687469948
611 => 3.5781098311628
612 => 3.6576413621732
613 => 3.7057006006908
614 => 3.8310136060942
615 => 3.864919712351
616 => 3.902172243438
617 => 3.9519531132254
618 => 4.0117278109583
619 => 3.8809441752943
620 => 3.8861404529504
621 => 3.7643565422427
622 => 3.6342129680722
623 => 3.7329757182421
624 => 3.8620948762312
625 => 3.8324747987245
626 => 3.8291419349217
627 => 3.8347468873787
628 => 3.8124143162399
629 => 3.7114049246631
630 => 3.6606786405654
701 => 3.7261284887066
702 => 3.7609121701561
703 => 3.8148586266284
704 => 3.8082085871966
705 => 3.9471688656428
706 => 4.0011646279063
707 => 3.9873502013104
708 => 3.9898923882668
709 => 4.087649136671
710 => 4.1963747461053
711 => 4.2982106269482
712 => 4.4018024588945
713 => 4.2769184622252
714 => 4.2135100704907
715 => 4.2789313452757
716 => 4.2442178960036
717 => 4.4436916721986
718 => 4.4575028036702
719 => 4.6569621556407
720 => 4.8462728318385
721 => 4.7273701879717
722 => 4.8394900256454
723 => 4.960756771354
724 => 5.1946999986463
725 => 5.1159161499162
726 => 5.0555689564893
727 => 4.9985411502964
728 => 5.1172069620746
729 => 5.2698686331946
730 => 5.3027504949785
731 => 5.3560316729065
801 => 5.3000130292277
802 => 5.3674813152876
803 => 5.6056740121462
804 => 5.5413122428699
805 => 5.4499081838269
806 => 5.637938441727
807 => 5.7059858611119
808 => 6.1835782870655
809 => 6.7865584531909
810 => 6.5369207050337
811 => 6.3819624989928
812 => 6.4183813530702
813 => 6.6385692975725
814 => 6.7092866769306
815 => 6.5170524620928
816 => 6.5849528366149
817 => 6.9590905760495
818 => 7.1598034694803
819 => 6.8872084008632
820 => 6.135129417826
821 => 5.4416782483835
822 => 5.6256127250328
823 => 5.6047602635321
824 => 6.006724589921
825 => 5.5397772359585
826 => 5.547639431846
827 => 5.957915954817
828 => 5.8484612124086
829 => 5.6711585476113
830 => 5.4429727540514
831 => 5.0211502100248
901 => 4.6475302193885
902 => 5.3802850605713
903 => 5.3486873393913
904 => 5.3029291566027
905 => 5.4047590408462
906 => 5.8992160538157
907 => 5.8878172192656
908 => 5.8153036495943
909 => 5.8703045530847
910 => 5.661516623304
911 => 5.7153260268212
912 => 5.4415684021753
913 => 5.5653182816436
914 => 5.6707781357233
915 => 5.6919507627896
916 => 5.7396537726712
917 => 5.332036776141
918 => 5.5150448405768
919 => 5.6225449328961
920 => 5.1368556049105
921 => 5.6129444164921
922 => 5.3249410710974
923 => 5.2271884100053
924 => 5.358799490232
925 => 5.3075105242717
926 => 5.2634152831281
927 => 5.2388093809176
928 => 5.3354500328512
929 => 5.330941630928
930 => 5.1728187672224
1001 => 4.9665539374309
1002 => 5.0357831847211
1003 => 5.0106315501529
1004 => 4.9194787818523
1005 => 4.9809047418597
1006 => 4.7104159009541
1007 => 4.2450539089625
1008 => 4.5524862952955
1009 => 4.5406504828437
1010 => 4.5346823294942
1011 => 4.7657092710164
1012 => 4.7435013612874
1013 => 4.7031937876689
1014 => 4.9187385016532
1015 => 4.8400617815634
1016 => 5.0825248943136
1017 => 5.2422267819018
1018 => 5.2017212173946
1019 => 5.3519216145775
1020 => 5.0373780867553
1021 => 5.1418568294019
1022 => 5.16338975346
1023 => 4.9160787133408
1024 => 4.7471348499689
1025 => 4.7358682203831
1026 => 4.4429428431947
1027 => 4.5994212152777
1028 => 4.7371157071957
1029 => 4.6711707310912
1030 => 4.6502945217066
1031 => 4.756946547955
1101 => 4.7652343238073
1102 => 4.5762721560751
1103 => 4.6155633744002
1104 => 4.7794142864376
1105 => 4.611434751815
1106 => 4.2850779553445
1107 => 4.204136957584
1108 => 4.1933379364442
1109 => 3.9738195310065
1110 => 4.2095458220888
1111 => 4.1066449789596
1112 => 4.4317075094636
1113 => 4.246033535385
1114 => 4.2380295014643
1115 => 4.2259302302568
1116 => 4.0369816705054
1117 => 4.0783493967835
1118 => 4.2158620194147
1119 => 4.2649280723601
1120 => 4.2598100810515
1121 => 4.215188132544
1122 => 4.2356158320694
1123 => 4.1698110944159
1124 => 4.1465740719432
1125 => 4.0732316371729
1126 => 3.9654385194254
1127 => 3.9804278135818
1128 => 3.7668614417204
1129 => 3.650499147505
1130 => 3.6182915980966
1201 => 3.5752223169815
1202 => 3.6231563880015
1203 => 3.7662564350221
1204 => 3.5936474179467
1205 => 3.2977213652858
1206 => 3.3155070252842
1207 => 3.3554661226907
1208 => 3.2810026090295
1209 => 3.2105291425982
1210 => 3.2718001039672
1211 => 3.1464123343305
1212 => 3.3706186356041
1213 => 3.3645544834856
1214 => 3.4481247277757
1215 => 3.5003829165644
1216 => 3.379944710196
1217 => 3.3496548269939
1218 => 3.3669093210643
1219 => 3.0817309689418
1220 => 3.4248195723103
1221 => 3.4277866167992
1222 => 3.4023809805395
1223 => 3.585065070161
1224 => 3.9705854798587
1225 => 3.8255371942078
1226 => 3.7693701138962
1227 => 3.6625964531659
1228 => 3.8048660164964
1229 => 3.7939419337835
1230 => 3.7445390889206
1231 => 3.7146600942013
]
'min_raw' => 2.7903830803938
'max_raw' => 7.1598034694803
'avg_raw' => 4.9750932749371
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$2.79'
'max' => '$7.15'
'avg' => '$4.97'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 1.7159063962022
'max_diff' => 4.1616803243642
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.087586936394235
]
1 => [
'year' => 2028
'avg' => 0.15032460952182
]
2 => [
'year' => 2029
'avg' => 0.41065973983879
]
3 => [
'year' => 2030
'avg' => 0.3168233777128
]
4 => [
'year' => 2031
'avg' => 0.31115982040291
]
5 => [
'year' => 2032
'avg' => 0.54556109076571
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.087586936394235
'min' => '$0.087586'
'max_raw' => 0.54556109076571
'max' => '$0.545561'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.54556109076571
]
1 => [
'year' => 2033
'avg' => 1.4032392248348
]
2 => [
'year' => 2034
'avg' => 0.88944045722186
]
3 => [
'year' => 2035
'avg' => 1.0490970589733
]
4 => [
'year' => 2036
'avg' => 2.0362999146539
]
5 => [
'year' => 2037
'avg' => 4.9750932749371
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.54556109076571
'min' => '$0.545561'
'max_raw' => 4.9750932749371
'max' => '$4.97'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 4.9750932749371
]
]
]
]
'prediction_2025_max_price' => '$0.149757'
'last_price' => 0.145209
'sma_50day_nextmonth' => '$0.131816'
'sma_200day_nextmonth' => '$0.202261'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.140315'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.138372'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.133545'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.129091'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.1408054'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.183085'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.219612'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.141161'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.138783'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.135241'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.133992'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.146731'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.17557'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.237274'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.200328'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.361473'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.521778'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.590973'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.14041'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.141948'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.15683'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.198634'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.312419'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.458662'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.7490052'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '60.97'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 115.37
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.02
'momentum_10_action' => 'BUY'
'vwma_10' => '0.132624'
'vwma_10_action' => 'BUY'
'hma_9' => '0.142324'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 216.11
'cci_20_action' => 'SELL'
'adx_14' => 18.88
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.004919'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 81.25
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.052273'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 20
'sell_pct' => 42.86
'buy_pct' => 57.14
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767682407
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Bella Protocol para 2026
La previsión del precio de Bella Protocol para 2026 sugiere que el precio medio podría oscilar entre $0.050169 en el extremo inferior y $0.149757 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Bella Protocol podría potencialmente ganar 3.13% para 2026 si BEL alcanza el objetivo de precio previsto.
Predicción de precio de Bella Protocol 2027-2032
La predicción del precio de BEL para 2027-2032 está actualmente dentro de un rango de precios de $0.087586 en el extremo inferior y $0.545561 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Bella Protocol alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Bella Protocol | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.048297 | $0.087586 | $0.126876 |
| 2028 | $0.087162 | $0.150324 | $0.213487 |
| 2029 | $0.191469 | $0.410659 | $0.629849 |
| 2030 | $0.162837 | $0.316823 | $0.4708097 |
| 2031 | $0.192523 | $0.311159 | $0.429795 |
| 2032 | $0.293873 | $0.545561 | $0.797249 |
Predicción de precio de Bella Protocol 2032-2037
La predicción de precio de Bella Protocol para 2032-2037 se estima actualmente entre $0.545561 en el extremo inferior y $4.97 en el extremo superior. Comparado con el precio actual, Bella Protocol podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Bella Protocol | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.293873 | $0.545561 | $0.797249 |
| 2033 | $0.682896 | $1.40 | $2.12 |
| 2034 | $0.549016 | $0.88944 | $1.22 |
| 2035 | $0.6491074 | $1.04 | $1.44 |
| 2036 | $1.07 | $2.03 | $2.99 |
| 2037 | $2.79 | $4.97 | $7.15 |
Bella Protocol Histograma de precios potenciales
Pronóstico de precio de Bella Protocol basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Bella Protocol es Alcista, con 20 indicadores técnicos mostrando señales alcistas y 15 indicando señales bajistas. La predicción de precio de BEL se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Bella Protocol
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Bella Protocol aumentar durante el próximo mes, alcanzando $0.202261 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Bella Protocol alcance $0.131816 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 60.97, lo que sugiere que el mercado de BEL está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de BEL para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.140315 | BUY |
| SMA 5 | $0.138372 | BUY |
| SMA 10 | $0.133545 | BUY |
| SMA 21 | $0.129091 | BUY |
| SMA 50 | $0.1408054 | BUY |
| SMA 100 | $0.183085 | SELL |
| SMA 200 | $0.219612 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.141161 | BUY |
| EMA 5 | $0.138783 | BUY |
| EMA 10 | $0.135241 | BUY |
| EMA 21 | $0.133992 | BUY |
| EMA 50 | $0.146731 | SELL |
| EMA 100 | $0.17557 | SELL |
| EMA 200 | $0.237274 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.200328 | SELL |
| SMA 50 | $0.361473 | SELL |
| SMA 100 | $0.521778 | SELL |
| SMA 200 | $0.590973 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.198634 | SELL |
| EMA 50 | $0.312419 | SELL |
| EMA 100 | $0.458662 | SELL |
| EMA 200 | $0.7490052 | SELL |
Osciladores de Bella Protocol
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 60.97 | NEUTRAL |
| Stoch RSI (14) | 115.37 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 216.11 | SELL |
| Índice Direccional Medio (14) | 18.88 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.004919 | BUY |
| Momentum (10) | 0.02 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 81.25 | SELL |
| VWMA (10) | 0.132624 | BUY |
| Promedio Móvil de Hull (9) | 0.142324 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.052273 | SELL |
Predicción de precios de Bella Protocol basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Bella Protocol
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Bella Protocol por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.204042 | $0.286714 | $0.402881 | $0.566115 | $0.795487 | $1.11 |
| Amazon.com acción | $0.302987 | $0.63220082 | $1.31 | $2.75 | $5.74 | $11.98 |
| Apple acción | $0.205967 | $0.292149 | $0.414392 | $0.587783 | $0.833726 | $1.18 |
| Netflix acción | $0.229117 | $0.36151 | $0.5704073 | $0.900013 | $1.42 | $2.24 |
| Google acción | $0.188045 | $0.243517 | $0.315354 | $0.408382 | $0.528852 | $0.684862 |
| Tesla acción | $0.329177 | $0.746221 | $1.69 | $3.83 | $8.69 | $19.70 |
| Kodak acción | $0.108891 | $0.081656 | $0.061233 | $0.045918 | $0.034434 | $0.025822 |
| Nokia acción | $0.096194 | $0.063725 | $0.042215 | $0.027965 | $0.018526 | $0.012272 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Bella Protocol
Podría preguntarse cosas como: "¿Debo invertir en Bella Protocol ahora?", "¿Debería comprar BEL hoy?", "¿Será Bella Protocol una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Bella Protocol regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Bella Protocol, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Bella Protocol a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Bella Protocol es de $0.1452 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Bella Protocol
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Bella Protocol
basado en el historial de precios del último mes
Predicción de precios de Bella Protocol basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Bella Protocol ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.148983 | $0.152856 | $0.156829 | $0.1609057 |
| Si Bella Protocol ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.152757 | $0.160699 | $0.169053 | $0.177841 |
| Si Bella Protocol ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.164081 | $0.1854062 | $0.2095027 | $0.236731 |
| Si Bella Protocol ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.182953 | $0.2305089 | $0.290425 | $0.365916 |
| Si Bella Protocol ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.220697 | $0.33543 | $0.5098095 | $0.774841 |
| Si Bella Protocol ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.333931 | $0.767928 | $1.76 | $4.06 |
| Si Bella Protocol ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.522653 | $1.88 | $6.77 | $24.37 |
Cuadro de preguntas
¿Es BEL una buena inversión?
La decisión de adquirir Bella Protocol depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Bella Protocol ha experimentado un aumento de 6.1281% durante las últimas 24 horas, y Bella Protocol ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Bella Protocol dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Bella Protocol subir?
Parece que el valor medio de Bella Protocol podría potencialmente aumentar hasta $0.149757 para el final de este año. Mirando las perspectivas de Bella Protocol en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.4708097. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Bella Protocol la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Bella Protocol, el precio de Bella Protocol aumentará en un 0.86% durante la próxima semana y alcanzará $0.146451 para el 13 de enero de 2026.
¿Cuál será el precio de Bella Protocol el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Bella Protocol, el precio de Bella Protocol disminuirá en un -11.62% durante el próximo mes y alcanzará $0.128338 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Bella Protocol este año en 2026?
Según nuestra predicción más reciente sobre el valor de Bella Protocol en 2026, se anticipa que BEL fluctúe dentro del rango de $0.050169 y $0.149757. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Bella Protocol no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Bella Protocol en 5 años?
El futuro de Bella Protocol parece estar en una tendencia alcista, con un precio máximo de $0.4708097 proyectada después de un período de cinco años. Basado en el pronóstico de Bella Protocol para 2030, el valor de Bella Protocol podría potencialmente alcanzar su punto más alto de aproximadamente $0.4708097, mientras que su punto más bajo se anticipa que esté alrededor de $0.162837.
¿Cuánto será Bella Protocol en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Bella Protocol, se espera que el valor de BEL en 2026 crezca en un 3.13% hasta $0.149757 si ocurre lo mejor. El precio estará entre $0.149757 y $0.050169 durante 2026.
¿Cuánto será Bella Protocol en 2027?
Según nuestra última simulación experimental para la predicción de precios de Bella Protocol, el valor de BEL podría disminuir en un -12.62% hasta $0.126876 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.126876 y $0.048297 a lo largo del año.
¿Cuánto será Bella Protocol en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Bella Protocol sugiere que el valor de BEL en 2028 podría aumentar en un 47.02% , alcanzando $0.213487 en el mejor escenario. Se espera que el precio oscile entre $0.213487 y $0.087162 durante el año.
¿Cuánto será Bella Protocol en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Bella Protocol podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.629849 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.629849 y $0.191469.
¿Cuánto será Bella Protocol en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Bella Protocol, se espera que el valor de BEL en 2030 aumente en un 224.23% , alcanzando $0.4708097 en el mejor escenario. Se pronostica que el precio oscile entre $0.4708097 y $0.162837 durante el transcurso de 2030.
¿Cuánto será Bella Protocol en 2031?
Nuestra simulación experimental indica que el precio de Bella Protocol podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.429795 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.429795 y $0.192523 durante el año.
¿Cuánto será Bella Protocol en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Bella Protocol, BEL podría experimentar un 449.04% aumento en valor, alcanzando $0.797249 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.797249 y $0.293873 a lo largo del año.
¿Cuánto será Bella Protocol en 2033?
Según nuestra predicción experimental de precios de Bella Protocol, se anticipa que el valor de BEL aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $2.12. A lo largo del año, el precio de BEL podría oscilar entre $2.12 y $0.682896.
¿Cuánto será Bella Protocol en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Bella Protocol sugieren que BEL podría aumentar en un 746.96% en 2034, alcanzando potencialmente $1.22 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $1.22 y $0.549016.
¿Cuánto será Bella Protocol en 2035?
Basado en nuestra predicción experimental para el precio de Bella Protocol, BEL podría crecer en un 897.93% , con el valor potencialmente alcanzando $1.44 en 2035. El rango de precios esperado para el año está entre $1.44 y $0.6491074.
¿Cuánto será Bella Protocol en 2036?
Nuestra reciente simulación de predicción de precios de Bella Protocol sugiere que el valor de BEL podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $2.99 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $2.99 y $1.07.
¿Cuánto será Bella Protocol en 2037?
Según la simulación experimental, el valor de Bella Protocol podría aumentar en un 4830.69% en 2037, con un máximo de $7.15 bajo condiciones favorables. Se espera que el precio caiga entre $7.15 y $2.79 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Aavegotchi
Predicción de precios de Tokamak Network
Predicción de precios de Chainflip
Predicción de precios de Kyber Network Crystal
Predicción de precios de Radicle
Predicción de precios de Ergo
Predicción de precios de CANTO
Predicción de precios de Mines of Dalarnia
Predicción de precios de Ethernity Chain
Predicción de precios de Huobi Token
Predicción de precios de MARBLEX
Predicción de precios de Loom Network (NEW)
Predicción de precios de Ardor
Predicción de precios de BTSE Token
Predicción de precios de Keep Network
Predicción de precios de Energy Web Token
Predicción de precios de Nakamoto Games
Predicción de precios de Gelato
Predicción de precios de Bifrost
Predicción de precios de Request
Predicción de precios de POL (ex-MATIC)
Predicción de precios de Maya Protocol
Predicción de precios de CertiK
Predicción de precios de Badger DAO
Predicción de precios de Electroneum
¿Cómo leer y predecir los movimientos de precio de Bella Protocol?
Los traders de Bella Protocol utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Bella Protocol
Las medias móviles son herramientas populares para la predicción de precios de Bella Protocol. Una media móvil simple (SMA) calcula el precio de cierre promedio de BEL durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de BEL por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de BEL.
¿Cómo leer gráficos de Bella Protocol y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Bella Protocol en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de BEL dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Bella Protocol?
La acción del precio de Bella Protocol está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de BEL. La capitalización de mercado de Bella Protocol puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de BEL, grandes poseedores de Bella Protocol, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Bella Protocol.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


