Predicción del precio de NKN - Pronóstico de NKN
Predicción de precio de NKN hasta $0.013875 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.004648 | $0.013875 |
| 2027 | $0.004474 | $0.011755 |
| 2028 | $0.008075 | $0.01978 |
| 2029 | $0.01774 | $0.058357 |
| 2030 | $0.015087 | $0.043622 |
| 2031 | $0.017838 | $0.039822 |
| 2032 | $0.027228 | $0.073868 |
| 2033 | $0.063272 | $0.196757 |
| 2034 | $0.050868 | $0.113951 |
| 2035 | $0.060142 | $0.134263 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en NKN hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,955.02, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de NKN para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'NKN'
'name_with_ticker' => 'NKN <small>NKN</small>'
'name_lang' => 'NKN'
'name_lang_with_ticker' => 'NKN <small>NKN</small>'
'name_with_lang' => 'NKN'
'name_with_lang_with_ticker' => 'NKN <small>NKN</small>'
'image' => '/uploads/coins/nkn.png?1717200595'
'price_for_sd' => 0.01345
'ticker' => 'NKN'
'marketcap' => '$10.67M'
'low24h' => '$0.01292'
'high24h' => '$0.01363'
'volume24h' => '$1.42M'
'current_supply' => '795.75M'
'max_supply' => '795.75M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.18 USD 0.07x'
'price' => '$0.01345'
'change_24h_pct' => '4.108%'
'ath_price' => '$1.44'
'ath_days' => 1733
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '9 abr. 2021'
'ath_pct' => '-99.07%'
'fdv' => '$10.67M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.663381'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.013569'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.011891'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004648'
'current_year_max_price_prediction' => '$0.013875'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.015087'
'grand_prediction_max_price' => '$0.043622'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.013709088876122
107 => 0.013760273637587
108 => 0.013875595518724
109 => 0.012890182670768
110 => 0.013332604109299
111 => 0.013592485255153
112 => 0.012418332783627
113 => 0.013569276035979
114 => 0.012873028825431
115 => 0.012636712064888
116 => 0.012954881450593
117 => 0.012830890531554
118 => 0.012724290420355
119 => 0.012664805726684
120 => 0.012898434208472
121 => 0.01288753516055
122 => 0.012505273619011
123 => 0.012006629021047
124 => 0.012173990515575
125 => 0.01211318651559
126 => 0.011892824975775
127 => 0.012041322047057
128 => 0.011387416097781
129 => 0.010262404899125
130 => 0.011005621756982
131 => 0.010977008716419
201 => 0.010962580723869
202 => 0.011521087651543
203 => 0.011467400097395
204 => 0.011369956660904
205 => 0.011891035350648
206 => 0.011700834619394
207 => 0.01228698845619
208 => 0.012673067283158
209 => 0.012575145204297
210 => 0.012938254207141
211 => 0.012177846186386
212 => 0.012430423228606
213 => 0.012482479006951
214 => 0.011884605320502
215 => 0.011476184045218
216 => 0.0114489470025
217 => 0.010740800795078
218 => 0.011119086783127
219 => 0.011451962798072
220 => 0.011292541019135
221 => 0.011242072846514
222 => 0.011499903795224
223 => 0.011519939468112
224 => 0.011063124002991
225 => 0.011158110403654
226 => 0.011554219484594
227 => 0.011148129471125
228 => 0.010359162909384
301 => 0.010163488293756
302 => 0.010137381693032
303 => 0.0096066966162996
304 => 0.010176564207227
305 => 0.0099278017322851
306 => 0.010713639409994
307 => 0.010264773143018
308 => 0.010245423415387
309 => 0.010216173464084
310 => 0.0097593908962153
311 => 0.0098593972485319
312 => 0.01019183359503
313 => 0.010310450628624
314 => 0.010298077900219
315 => 0.010190204475572
316 => 0.010239588376974
317 => 0.010080505624066
318 => 0.010024330192993
319 => 0.0098470250802564
320 => 0.0095864355463217
321 => 0.0096226721193038
322 => 0.0091063760656184
323 => 0.008825070573665
324 => 0.0087472089210392
325 => 0.0086430890650854
326 => 0.0087589695358215
327 => 0.0091049134637675
328 => 0.0086876316905661
329 => 0.0079722313593255
330 => 0.0080152281382159
331 => 0.0081118291345244
401 => 0.007931813816983
402 => 0.0077614444264705
403 => 0.0079095667890156
404 => 0.007606442237713
405 => 0.0081484602883547
406 => 0.0081338002190728
407 => 0.0083358310301807
408 => 0.008462165042456
409 => 0.0081710060452835
410 => 0.0080977803448723
411 => 0.0081394930317491
412 => 0.0074500752338345
413 => 0.0082794908878049
414 => 0.0082866637088227
415 => 0.0082252456605226
416 => 0.0086668838909265
417 => 0.0095988783074971
418 => 0.0092482245185947
419 => 0.0091124407729648
420 => 0.0088543157732651
421 => 0.009198252009419
422 => 0.0091718430727235
423 => 0.0090524118456945
424 => 0.0089801794669392
425 => 0.0091132698395614
426 => 0.0089636880969254
427 => 0.0089368191057165
428 => 0.0087740222527417
429 => 0.0087159111830146
430 => 0.0086728880604569
501 => 0.0086255238298857
502 => 0.008729997520095
503 => 0.0084932463934222
504 => 0.0082077477436539
505 => 0.0081840116200639
506 => 0.0082495491441973
507 => 0.0082205536684631
508 => 0.0081838728008814
509 => 0.0081138390352282
510 => 0.0080930615129935
511 => 0.0081605783804354
512 => 0.0080843557735714
513 => 0.0081968263820596
514 => 0.0081662405998334
515 => 0.0079953909066245
516 => 0.0077824489322283
517 => 0.0077805533019952
518 => 0.0077346753029064
519 => 0.0076762427732634
520 => 0.0076599881802719
521 => 0.0078970923367889
522 => 0.0083878908448487
523 => 0.0082915353539036
524 => 0.0083611620710194
525 => 0.0087036566071339
526 => 0.0088125253209947
527 => 0.0087352528865931
528 => 0.0086294776124281
529 => 0.0086341311876727
530 => 0.0089955973198478
531 => 0.0090181415191281
601 => 0.0090751034376753
602 => 0.0091483156004447
603 => 0.0087477212344911
604 => 0.0086152632290612
605 => 0.0085524972775981
606 => 0.0083592024405721
607 => 0.0085676543504578
608 => 0.0084461983493681
609 => 0.0084625869134429
610 => 0.0084519138395896
611 => 0.0084577420596236
612 => 0.0081483087832631
613 => 0.0082610500058347
614 => 0.0080735958567898
615 => 0.0078226157939343
616 => 0.0078217744207587
617 => 0.0078832014355794
618 => 0.0078466622435247
619 => 0.0077483362172141
620 => 0.0077623029651658
621 => 0.0076399395566065
622 => 0.0077771600984259
623 => 0.0077810950925666
624 => 0.0077282577095127
625 => 0.0079396648869714
626 => 0.008026278580068
627 => 0.0079914998826555
628 => 0.0080238384139446
629 => 0.0082955393595714
630 => 0.0083398384688519
701 => 0.0083595132069594
702 => 0.0083331516642986
703 => 0.0080288046084622
704 => 0.0080423036945722
705 => 0.0079432563574817
706 => 0.0078595717949915
707 => 0.0078629187386234
708 => 0.007905943481975
709 => 0.0080938350595593
710 => 0.008489241807772
711 => 0.0085042472048281
712 => 0.0085224341837984
713 => 0.0084484586002829
714 => 0.0084261468564436
715 => 0.0084555818057173
716 => 0.0086040757908469
717 => 0.0089860426363237
718 => 0.0088510300424244
719 => 0.008741262701988
720 => 0.0088375582526132
721 => 0.0088227343073839
722 => 0.0086976052913576
723 => 0.0086940933366329
724 => 0.008453930748712
725 => 0.0083651481081952
726 => 0.0082909546885139
727 => 0.0082099374110902
728 => 0.0081619076533097
729 => 0.0082357031903951
730 => 0.0082525811028496
731 => 0.0080912258712872
801 => 0.0080692337494533
802 => 0.0082009999146418
803 => 0.0081430145380801
804 => 0.0082026539358419
805 => 0.0082164907877
806 => 0.0082142627358611
807 => 0.0081537193431526
808 => 0.008192307896235
809 => 0.0081010344643938
810 => 0.0080017883160926
811 => 0.00793847545673
812 => 0.0078832265897039
813 => 0.007913881872213
814 => 0.0078046013875017
815 => 0.007769640361061
816 => 0.0081792349627206
817 => 0.0084818068988507
818 => 0.0084774073830677
819 => 0.0084506264622025
820 => 0.0084108354461082
821 => 0.0086011648301766
822 => 0.0085348578785233
823 => 0.0085831017259823
824 => 0.0085953818099485
825 => 0.0086325499255896
826 => 0.0086458343322238
827 => 0.0086056796287616
828 => 0.0084709155394586
829 => 0.0081350962419007
830 => 0.0079787714523606
831 => 0.0079271816680171
901 => 0.007929056858695
902 => 0.0078773307285776
903 => 0.0078925663920998
904 => 0.0078720323865679
905 => 0.0078331459478
906 => 0.0079114807441982
907 => 0.0079205080997439
908 => 0.0079022238222335
909 => 0.0079065304314877
910 => 0.0077551444230183
911 => 0.0077666539724491
912 => 0.0077025673386556
913 => 0.0076905518673952
914 => 0.0075285464378268
915 => 0.0072415303362838
916 => 0.0074005651178657
917 => 0.007208473465389
918 => 0.0071357254459326
919 => 0.0074801032554011
920 => 0.007445537274884
921 => 0.0073863753417094
922 => 0.0072988625121168
923 => 0.0072664031523509
924 => 0.0070691903577975
925 => 0.007057537973806
926 => 0.00715528195998
927 => 0.0071101764735259
928 => 0.0070468312877608
929 => 0.006817401446118
930 => 0.0065594463425015
1001 => 0.0065672323856317
1002 => 0.0066492831046668
1003 => 0.0068878566363083
1004 => 0.006794641830132
1005 => 0.0067270134187344
1006 => 0.0067143486501822
1007 => 0.0068728747441017
1008 => 0.0070972223792413
1009 => 0.0072024812701534
1010 => 0.0070981729060196
1011 => 0.0069783490736638
1012 => 0.0069856421951291
1013 => 0.0070341600648619
1014 => 0.0070392586069651
1015 => 0.0069612656101905
1016 => 0.0069832201819359
1017 => 0.0069498691798864
1018 => 0.00674519414187
1019 => 0.0067414922194638
1020 => 0.0066912616643037
1021 => 0.0066897407030564
1022 => 0.0066042859981299
1023 => 0.0065923302941902
1024 => 0.0064226547908288
1025 => 0.006534335720966
1026 => 0.0064594260165419
1027 => 0.006346519422562
1028 => 0.0063270542832028
1029 => 0.0063264691376088
1030 => 0.0064423989641738
1031 => 0.0065329810134449
1101 => 0.006460729102922
1102 => 0.0064442787434404
1103 => 0.0066199255450542
1104 => 0.0065975728884927
1105 => 0.0065782156320696
1106 => 0.007077134509181
1107 => 0.0066822012868219
1108 => 0.0065099878598731
1109 => 0.0062968410415811
1110 => 0.0063662427203965
1111 => 0.0063808666738457
1112 => 0.0058682869984554
1113 => 0.0056603334879873
1114 => 0.0055889716797573
1115 => 0.0055479019502131
1116 => 0.0055666179416876
1117 => 0.0053794353917523
1118 => 0.0055052251610225
1119 => 0.0053431408949256
1120 => 0.0053159669402466
1121 => 0.0056057936864154
1122 => 0.0056461213850015
1123 => 0.0054740708939993
1124 => 0.0055845551616671
1125 => 0.0055444920303646
1126 => 0.0053459193644578
1127 => 0.0053383353492218
1128 => 0.0052386985656364
1129 => 0.0050827862928084
1130 => 0.0050115302004413
1201 => 0.0049744194088627
1202 => 0.0049897320447429
1203 => 0.0049819895074675
1204 => 0.0049314642144912
1205 => 0.0049848855581181
1206 => 0.0048484161003747
1207 => 0.0047940728626922
1208 => 0.0047695272829845
1209 => 0.0046484027843483
1210 => 0.0048411657259875
1211 => 0.0048791424538539
1212 => 0.0049171940076059
1213 => 0.0052484068041177
1214 => 0.0052318603488016
1215 => 0.0053814322464084
1216 => 0.0053756201575125
1217 => 0.0053329598294109
1218 => 0.0051529829224338
1219 => 0.005224718509775
1220 => 0.0050039275221243
1221 => 0.0051693591424
1222 => 0.0050938630594958
1223 => 0.0051438338408279
1224 => 0.0050539818703091
1225 => 0.0051037096606911
1226 => 0.0048881481448748
1227 => 0.0046868598344379
1228 => 0.0047678641265298
1229 => 0.0048559250559981
1230 => 0.0050468635885931
1231 => 0.0049331421737882
]
'min_raw' => 0.0046484027843483
'max_raw' => 0.013875595518724
'avg_raw' => 0.0092619991515362
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004648'
'max' => '$0.013875'
'avg' => '$0.009261'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0088057372156517
'max_diff' => 0.00042145551872405
'year' => 2026
]
1 => [
'items' => [
101 => 0.0049740406948348
102 => 0.0048370374956584
103 => 0.0045543607627284
104 => 0.0045559606823382
105 => 0.0045124770254243
106 => 0.0044749007971328
107 => 0.0049462044462795
108 => 0.0048875903873
109 => 0.0047941965555345
110 => 0.004919207910676
111 => 0.0049522628971724
112 => 0.0049532039261681
113 => 0.0050444089838692
114 => 0.0050930851395137
115 => 0.0051016645229205
116 => 0.0052451776518289
117 => 0.005293281359655
118 => 0.0054914137242994
119 => 0.0050889553077886
120 => 0.0050806669415457
121 => 0.0049209670768091
122 => 0.0048196828978382
123 => 0.0049279020911956
124 => 0.0050237695231173
125 => 0.0049239459451483
126 => 0.0049369807970403
127 => 0.004802975799503
128 => 0.0048508762806014
129 => 0.004892134627815
130 => 0.0048693541935372
131 => 0.0048352507808379
201 => 0.0050159094869575
202 => 0.005005716014751
203 => 0.0051739495552153
204 => 0.0053050996305031
205 => 0.005540144011299
206 => 0.0052948629467977
207 => 0.0052859239299034
208 => 0.0053733042539091
209 => 0.0052932679821827
210 => 0.0053438481431556
211 => 0.0055319947654
212 => 0.0055359700070504
213 => 0.0054693795875957
214 => 0.0054653275545201
215 => 0.0054781169729958
216 => 0.0055530249964779
217 => 0.0055268498313822
218 => 0.005557140395105
219 => 0.0055950192088661
220 => 0.0057517020428658
221 => 0.005789477743696
222 => 0.0056977023751341
223 => 0.00570598866335
224 => 0.0056716621562176
225 => 0.0056385031804377
226 => 0.0057130397155115
227 => 0.0058492566983783
228 => 0.0058484092995975
301 => 0.0058800089919428
302 => 0.005899695338488
303 => 0.0058151871278298
304 => 0.0057601753901443
305 => 0.0057812703908608
306 => 0.0058150017563957
307 => 0.0057703317636378
308 => 0.0054946078751826
309 => 0.0055782448896297
310 => 0.0055643236007847
311 => 0.0055444979925828
312 => 0.0056285956573552
313 => 0.0056204842324303
314 => 0.0053775155641535
315 => 0.0053930696299867
316 => 0.0053784614584135
317 => 0.0054256634493171
318 => 0.0052907189197702
319 => 0.0053322269481935
320 => 0.0053582603945071
321 => 0.0053735942943841
322 => 0.0054289908552935
323 => 0.0054224907082555
324 => 0.005428586797027
325 => 0.0055107252727058
326 => 0.0059261534961681
327 => 0.0059487643377805
328 => 0.0058374202841545
329 => 0.0058819000374137
330 => 0.0057965086378087
331 => 0.0058538324564362
401 => 0.005893051957274
402 => 0.0057158265744643
403 => 0.0057053324374775
404 => 0.005619588597191
405 => 0.0056656624801816
406 => 0.0055923556195141
407 => 0.0056103425589567
408 => 0.0055600495082018
409 => 0.0056505669863142
410 => 0.0057517795918379
411 => 0.0057773498930001
412 => 0.0057100854393492
413 => 0.0056613815419624
414 => 0.0055758735422123
415 => 0.0057180752514667
416 => 0.0057596593647712
417 => 0.0057178568278224
418 => 0.0057081702666079
419 => 0.0056898142506096
420 => 0.0057120645821764
421 => 0.0057594328887595
422 => 0.0057370948701302
423 => 0.0057518495249801
424 => 0.0056956199956263
425 => 0.0058152151035639
426 => 0.0060051609170989
427 => 0.0060057716239487
428 => 0.0059834334849092
429 => 0.0059742931996961
430 => 0.0059972134859423
501 => 0.0060096468009915
502 => 0.0060837668038501
503 => 0.0061633005199886
504 => 0.0065344496699279
505 => 0.0064302324738023
506 => 0.0067595380793902
507 => 0.007019976058429
508 => 0.0070980700207702
509 => 0.0070262272500212
510 => 0.006780457012159
511 => 0.0067683983517807
512 => 0.0071356828486647
513 => 0.0070319081555993
514 => 0.0070195644860675
515 => 0.006888248697208
516 => 0.0069658725922008
517 => 0.0069488951076921
518 => 0.006922095317828
519 => 0.0070701963021469
520 => 0.0073474281237257
521 => 0.0073042189444691
522 => 0.0072719652965702
523 => 0.0071306392003728
524 => 0.00721574907661
525 => 0.0071854430798543
526 => 0.0073156568745777
527 => 0.0072385211071723
528 => 0.0070311219602341
529 => 0.0070641509579805
530 => 0.0070591586914163
531 => 0.0071618991835528
601 => 0.0071310590379892
602 => 0.0070531366580283
603 => 0.0073464805754985
604 => 0.0073274324531626
605 => 0.0073544383356279
606 => 0.0073663271602738
607 => 0.0075448804335383
608 => 0.0076180279965273
609 => 0.0076346337739541
610 => 0.0077041183013581
611 => 0.0076329049356134
612 => 0.0079178091728617
613 => 0.0081072538660087
614 => 0.0083273036258336
615 => 0.0086488554687375
616 => 0.0087697619361901
617 => 0.0087479212650366
618 => 0.0089917182025059
619 => 0.0094298158798366
620 => 0.0088364733313172
621 => 0.0094612644756564
622 => 0.0092634628129192
623 => 0.0087944786288694
624 => 0.0087642815763769
625 => 0.0090818831108338
626 => 0.0097862927462443
627 => 0.0096098461219219
628 => 0.0097865813497114
629 => 0.0095804103186506
630 => 0.0095701721892126
701 => 0.0097765680829152
702 => 0.010258823338606
703 => 0.010029721943695
704 => 0.009701248916124
705 => 0.0099437882880761
706 => 0.0097336782381319
707 => 0.0092602414895075
708 => 0.0096097111965137
709 => 0.0093760307557629
710 => 0.0094442311315095
711 => 0.0099353926606253
712 => 0.0098762948059899
713 => 0.0099527729022021
714 => 0.0098177910641678
715 => 0.0096916967427616
716 => 0.0094563323279696
717 => 0.0093866525280751
718 => 0.0094059095179494
719 => 0.0093866429852673
720 => 0.0092549587583018
721 => 0.0092265215620264
722 => 0.0091791249890385
723 => 0.0091938151688797
724 => 0.009104695745306
725 => 0.0092728825106021
726 => 0.0093040994562977
727 => 0.0094264917584679
728 => 0.0094391989333001
729 => 0.0097800597526986
730 => 0.0095923193413073
731 => 0.0097182718179959
801 => 0.0097070054429702
802 => 0.0088046429382222
803 => 0.0089289805297646
804 => 0.0091224108029191
805 => 0.0090352707270516
806 => 0.0089120750474123
807 => 0.0088125879307692
808 => 0.0086618547759748
809 => 0.008874008796774
810 => 0.0091529687740601
811 => 0.0094462738186781
812 => 0.0097986606116789
813 => 0.0097200119817156
814 => 0.0094396861926981
815 => 0.0094522614028153
816 => 0.0095299964035971
817 => 0.0094293225146151
818 => 0.0093996318193665
819 => 0.0095259173580016
820 => 0.0095267870171008
821 => 0.0094109495409812
822 => 0.0092822173843085
823 => 0.0092816779918716
824 => 0.0092587713479968
825 => 0.0095844853597086
826 => 0.0097635951327491
827 => 0.0097841297795783
828 => 0.009762212987406
829 => 0.0097706478908667
830 => 0.009666427860349
831 => 0.0099046439446225
901 => 0.010123254580681
902 => 0.010064662260282
903 => 0.0099768240426155
904 => 0.0099068566713821
905 => 0.010048180171215
906 => 0.010041887258231
907 => 0.010121345207487
908 => 0.010117740535937
909 => 0.010091021816167
910 => 0.010064663214492
911 => 0.010169172090693
912 => 0.010139075212708
913 => 0.010108931585959
914 => 0.010048473927755
915 => 0.0100566911276
916 => 0.0099688680764404
917 => 0.0099282371144644
918 => 0.009317244933654
919 => 0.009153967858196
920 => 0.0092053381499464
921 => 0.0092222505838197
922 => 0.0091511921913351
923 => 0.0092530716727547
924 => 0.0092371938634925
925 => 0.0092989651311238
926 => 0.0092603731249044
927 => 0.0092619569543011
928 => 0.0093754478159091
929 => 0.0094083946958585
930 => 0.0093916376468023
1001 => 0.0094033737095633
1002 => 0.0096738263224067
1003 => 0.0096353766094481
1004 => 0.00961495096577
1005 => 0.0096206090086602
1006 => 0.0096897154498111
1007 => 0.0097090614802616
1008 => 0.0096270909898215
1009 => 0.0096657487469788
1010 => 0.0098303485705546
1011 => 0.009887949193263
1012 => 0.010071782731081
1013 => 0.0099936869768351
1014 => 0.010137035113658
1015 => 0.01057763841527
1016 => 0.010929622820027
1017 => 0.010605923415042
1018 => 0.011252297949434
1019 => 0.011755593241379
1020 => 0.011736275929792
1021 => 0.011648514754212
1022 => 0.01107552644513
1023 => 0.010548254060339
1024 => 0.010989339799385
1025 => 0.010990464217644
1026 => 0.01095257456148
1027 => 0.010717245161172
1028 => 0.010944385608455
1029 => 0.010962415192308
1030 => 0.010952323419804
1031 => 0.010771896920347
1101 => 0.010496419004066
1102 => 0.010550246729506
1103 => 0.010638417641833
1104 => 0.010471491710419
1105 => 0.010418148760934
1106 => 0.010517323452939
1107 => 0.010836884974447
1108 => 0.0107764737199
1109 => 0.010774896137903
1110 => 0.011033361103215
1111 => 0.010848355968282
1112 => 0.010550925669504
1113 => 0.010475820596439
1114 => 0.010209248183898
1115 => 0.010393370698739
1116 => 0.010399996940261
1117 => 0.010299154920569
1118 => 0.01055910844363
1119 => 0.010556712926151
1120 => 0.010803500107322
1121 => 0.011275264508688
1122 => 0.011135740561088
1123 => 0.010973489390191
1124 => 0.010991130591205
1125 => 0.011184611024128
1126 => 0.011067628337654
1127 => 0.011109696127342
1128 => 0.01118454734949
1129 => 0.011229706950263
1130 => 0.01098463281962
1201 => 0.010927494316517
1202 => 0.010810608992056
1203 => 0.010780115792672
1204 => 0.010875316450553
1205 => 0.01085023444069
1206 => 0.010399440030319
1207 => 0.010352329506239
1208 => 0.010353774318754
1209 => 0.010235312665971
1210 => 0.010054630211423
1211 => 0.010529452913987
1212 => 0.010491318005832
1213 => 0.010449220018636
1214 => 0.010454376781859
1215 => 0.010660481223808
1216 => 0.010540930238954
1217 => 0.01085877612621
1218 => 0.010793436567112
1219 => 0.010726421294872
1220 => 0.010717157742913
1221 => 0.010691362580575
1222 => 0.010602901370961
1223 => 0.010496079144657
1224 => 0.010425545858069
1225 => 0.0096170149617993
1226 => 0.0097670735931391
1227 => 0.0099397023702208
1228 => 0.009999293132303
1229 => 0.0098973590102062
1230 => 0.010606926351397
1231 => 0.010736571142194
]
'min_raw' => 0.0044749007971328
'max_raw' => 0.011755593241379
'avg_raw' => 0.008115247019256
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004474'
'max' => '$0.011755'
'avg' => '$0.008115'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0001735019872155
'max_diff' => -0.002120002277345
'year' => 2027
]
2 => [
'items' => [
101 => 0.01034386861435
102 => 0.010270410005329
103 => 0.010611742285575
104 => 0.010405877194413
105 => 0.010498578232358
106 => 0.010298209293077
107 => 0.010705343508533
108 => 0.010702241827948
109 => 0.010543857422592
110 => 0.010677722837429
111 => 0.010654460427335
112 => 0.010475644823772
113 => 0.010711012282114
114 => 0.010711129021437
115 => 0.010558687474856
116 => 0.010380669122195
117 => 0.010348843645345
118 => 0.01032486742369
119 => 0.0104926815516
120 => 0.010643143173943
121 => 0.010923114950524
122 => 0.010993506507122
123 => 0.011268249438754
124 => 0.011104653399957
125 => 0.011177173405033
126 => 0.011255904129123
127 => 0.011293650533478
128 => 0.011232144793165
129 => 0.011658933654692
130 => 0.011694967711078
131 => 0.011707049618491
201 => 0.011563138815684
202 => 0.011690965291319
203 => 0.011631159516537
204 => 0.011786757527997
205 => 0.011811157282969
206 => 0.011790491558554
207 => 0.011798236425906
208 => 0.011434047423307
209 => 0.011415162302272
210 => 0.011157662336935
211 => 0.011262595476153
212 => 0.011066428001961
213 => 0.011128634728776
214 => 0.011156054861229
215 => 0.011141732140115
216 => 0.011268528238404
217 => 0.011160725652127
218 => 0.010876216902553
219 => 0.010591630638761
220 => 0.010588057890038
221 => 0.010513131350146
222 => 0.010458973185285
223 => 0.010469405969201
224 => 0.010506172460492
225 => 0.010456836249973
226 => 0.010467364631897
227 => 0.01064220592207
228 => 0.010677269095903
229 => 0.010558110731152
301 => 0.010079672702204
302 => 0.0099622628098291
303 => 0.010046654712129
304 => 0.010006320818364
305 => 0.0080758818617395
306 => 0.0085294098599926
307 => 0.0082599389237862
308 => 0.0083841235289518
309 => 0.0081090634822456
310 => 0.008240336553666
311 => 0.0082160952106997
312 => 0.0089453548110216
313 => 0.0089339684254264
314 => 0.0089394184856567
315 => 0.0086792729108068
316 => 0.0090936918752648
317 => 0.0092978495591807
318 => 0.0092600654053687
319 => 0.0092695748628556
320 => 0.0091061708768915
321 => 0.0089410005934243
322 => 0.0087578013295347
323 => 0.0090981629177281
324 => 0.0090603205192871
325 => 0.0091471173660456
326 => 0.0093678661855378
327 => 0.0094003722877513
328 => 0.0094440608187705
329 => 0.0094284015903615
330 => 0.0098014679409999
331 => 0.0097562871443666
401 => 0.0098651598648506
402 => 0.0096412004186217
403 => 0.009387769046788
404 => 0.0094359380652778
405 => 0.0094312990014465
406 => 0.0093722383944038
407 => 0.0093189211191437
408 => 0.0092301628778849
409 => 0.0095110070869758
410 => 0.0094996053249685
411 => 0.0096841865987688
412 => 0.0096515600656978
413 => 0.0094336720927824
414 => 0.0094414540043611
415 => 0.0094937910995871
416 => 0.0096749303837387
417 => 0.0097287048561778
418 => 0.0097037943780018
419 => 0.0097627556321334
420 => 0.009809356203355
421 => 0.0097686079464038
422 => 0.010345517334364
423 => 0.0101059443345
424 => 0.010222710547696
425 => 0.010250558601516
426 => 0.010179226397236
427 => 0.01019469579813
428 => 0.010218127725324
429 => 0.010360401798806
430 => 0.010733770134959
501 => 0.010899132429436
502 => 0.011396633051204
503 => 0.010885401392834
504 => 0.010855067021913
505 => 0.010944681906973
506 => 0.01123676743774
507 => 0.011473475326228
508 => 0.011552004988845
509 => 0.011562383980143
510 => 0.011709710847766
511 => 0.011794155860804
512 => 0.011691821490955
513 => 0.011605103827363
514 => 0.011294491920171
515 => 0.011330446094196
516 => 0.011578134699195
517 => 0.01192800944254
518 => 0.012228238370594
519 => 0.012123108664024
520 => 0.012925174115145
521 => 0.01300469562848
522 => 0.012993708326576
523 => 0.013174870168341
524 => 0.012815300805404
525 => 0.012661577936421
526 => 0.011623853170519
527 => 0.011915411501494
528 => 0.012339208658187
529 => 0.012283117515341
530 => 0.01197534469202
531 => 0.012228004897309
601 => 0.012144467532025
602 => 0.012078578146058
603 => 0.012380430196461
604 => 0.012048531467644
605 => 0.012335897714478
606 => 0.01196734753049
607 => 0.012123588887668
608 => 0.01203489873679
609 => 0.012092292133864
610 => 0.011756771507307
611 => 0.011937810293094
612 => 0.011749239698618
613 => 0.011749150291603
614 => 0.011744987585279
615 => 0.01196684005343
616 => 0.011974074654452
617 => 0.011810125345287
618 => 0.011786497688467
619 => 0.011873861519488
620 => 0.011771581353986
621 => 0.011819437599681
622 => 0.011773030870916
623 => 0.011762583738796
624 => 0.01167933921263
625 => 0.011643475181902
626 => 0.011657538392453
627 => 0.011609533404761
628 => 0.011580608663261
629 => 0.011739233726169
630 => 0.011654486753974
701 => 0.011726245037237
702 => 0.011644467416841
703 => 0.011360990555736
704 => 0.011197960015201
705 => 0.010662498502891
706 => 0.010814354723544
707 => 0.010915035554944
708 => 0.010881760540767
709 => 0.01095324814694
710 => 0.010957636905361
711 => 0.010934395555864
712 => 0.010907485050548
713 => 0.010894386504804
714 => 0.010992012333339
715 => 0.011048687412738
716 => 0.01092514022331
717 => 0.010896194845436
718 => 0.011021107875175
719 => 0.011097304751156
720 => 0.011659899672074
721 => 0.011618220823174
722 => 0.01172282655485
723 => 0.011711049554769
724 => 0.011820693026566
725 => 0.011999913764164
726 => 0.01163550789372
727 => 0.011698756152622
728 => 0.011683249140155
729 => 0.011852550636115
730 => 0.011853079176906
731 => 0.011751574472841
801 => 0.01180660181964
802 => 0.011775887064253
803 => 0.011831392778586
804 => 0.011617664176737
805 => 0.011877962543212
806 => 0.012025534943747
807 => 0.012027583986671
808 => 0.012097532133318
809 => 0.012168603501434
810 => 0.012305018803522
811 => 0.012164798952699
812 => 0.011912557091194
813 => 0.011930768138859
814 => 0.011782878827751
815 => 0.011785364873789
816 => 0.011772094165202
817 => 0.011811920560642
818 => 0.011626403830904
819 => 0.011669944236568
820 => 0.011608987413666
821 => 0.011698623644394
822 => 0.01160218987753
823 => 0.011683241662204
824 => 0.01171822092556
825 => 0.011847295160394
826 => 0.011583125508098
827 => 0.011044465704353
828 => 0.011157698525719
829 => 0.010990218288672
830 => 0.011005719222253
831 => 0.011037033575042
901 => 0.010935533512235
902 => 0.010954896525584
903 => 0.010954204742491
904 => 0.010948243329534
905 => 0.010921839243079
906 => 0.010883548093831
907 => 0.011036088247042
908 => 0.011062007791513
909 => 0.011119623728118
910 => 0.011291049674194
911 => 0.011273920179679
912 => 0.011301859095929
913 => 0.011240868598625
914 => 0.011008548396498
915 => 0.0110211645012
916 => 0.01086384147341
917 => 0.011115600624587
918 => 0.01105598073453
919 => 0.01101754340356
920 => 0.011007055421685
921 => 0.011178906299523
922 => 0.011230326775605
923 => 0.011198284985611
924 => 0.011132566339524
925 => 0.011258765567984
926 => 0.011292531157602
927 => 0.011300090027891
928 => 0.01152369086442
929 => 0.011312586830757
930 => 0.011363401669853
1001 => 0.011759844538747
1002 => 0.011400325562037
1003 => 0.01159077078223
1004 => 0.011581449479731
1005 => 0.011678874810067
1006 => 0.011573457759011
1007 => 0.0115747645297
1008 => 0.011661271622875
1009 => 0.011539788012147
1010 => 0.011509706961703
1011 => 0.011468150205959
1012 => 0.011558887861802
1013 => 0.011613280982769
1014 => 0.012051649590416
1015 => 0.012334855702994
1016 => 0.012322560978744
1017 => 0.012434911743629
1018 => 0.012384296695033
1019 => 0.012220847351542
1020 => 0.012499835450358
1021 => 0.012411551942534
1022 => 0.012418829927655
1023 => 0.012418559040685
1024 => 0.012477259855509
1025 => 0.012435664948356
1026 => 0.012353677116726
1027 => 0.012408104465574
1028 => 0.012569734233518
1029 => 0.013071437992622
1030 => 0.013352198062907
1031 => 0.013054535883858
1101 => 0.013259859269111
1102 => 0.013136738402162
1103 => 0.013114363678108
1104 => 0.013243321937326
1105 => 0.013372505920905
1106 => 0.013364277459629
1107 => 0.013270496521222
1108 => 0.013217522048718
1109 => 0.013618662502263
1110 => 0.013914215955185
1111 => 0.013894061191112
1112 => 0.013983017765053
1113 => 0.014244197017468
1114 => 0.014268075975104
1115 => 0.014265067775294
1116 => 0.014205881287282
1117 => 0.014463046179696
1118 => 0.014677577657334
1119 => 0.014192181325369
1120 => 0.014377013894277
1121 => 0.014459991189393
1122 => 0.014581826476877
1123 => 0.014787383028829
1124 => 0.015010671965431
1125 => 0.015042247469305
1126 => 0.01501984313828
1127 => 0.014872578082262
1128 => 0.015116903501083
1129 => 0.015260023601292
1130 => 0.015345248345722
1201 => 0.015561364117549
1202 => 0.014460503628919
1203 => 0.013681259858749
1204 => 0.013559569691621
1205 => 0.013807031431706
1206 => 0.013872285119096
1207 => 0.01384598143953
1208 => 0.012968871730461
1209 => 0.013554951890525
1210 => 0.014185524863734
1211 => 0.014209747739724
1212 => 0.014525425754772
1213 => 0.014628223456551
1214 => 0.014882385635527
1215 => 0.014866487722031
1216 => 0.014928372168009
1217 => 0.014914146005568
1218 => 0.015384927921961
1219 => 0.015904270287533
1220 => 0.015886287112821
1221 => 0.01581162550319
1222 => 0.015922510725189
1223 => 0.01645852770257
1224 => 0.01640917984879
1225 => 0.016457117085297
1226 => 0.017089111310223
1227 => 0.017910793702756
1228 => 0.017529039735861
1229 => 0.018357335997279
1230 => 0.018878704587743
1231 => 0.019780357654433
]
'min_raw' => 0.0080758818617395
'max_raw' => 0.019780357654433
'avg_raw' => 0.013928119758086
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.008075'
'max' => '$0.01978'
'avg' => '$0.013928'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0036009810646066
'max_diff' => 0.0080247644130535
'year' => 2028
]
3 => [
'items' => [
101 => 0.019667466249748
102 => 0.020018473171974
103 => 0.019465367074216
104 => 0.018195323672576
105 => 0.017994334442736
106 => 0.018396719970734
107 => 0.019385945527112
108 => 0.018365565737609
109 => 0.01857198724008
110 => 0.018512537833481
111 => 0.018509370027247
112 => 0.018630272306797
113 => 0.018454897244472
114 => 0.017740387691187
115 => 0.018067843208826
116 => 0.01794139690776
117 => 0.018081698505989
118 => 0.01883884836685
119 => 0.018504094365165
120 => 0.018151458217597
121 => 0.018593742202873
122 => 0.019156921701396
123 => 0.019121678940509
124 => 0.019053293254058
125 => 0.019438779788027
126 => 0.020075490605186
127 => 0.020247590980553
128 => 0.020374631959212
129 => 0.020392148763794
130 => 0.020572582737623
131 => 0.019602343785128
201 => 0.02114213792024
202 => 0.02140801783142
203 => 0.021358043427711
204 => 0.02165355775905
205 => 0.021566609946295
206 => 0.021440636207307
207 => 0.02190908928018
208 => 0.021372045634345
209 => 0.020609779790997
210 => 0.020191585673427
211 => 0.0207422974222
212 => 0.021078597869984
213 => 0.021300871073244
214 => 0.021368130810249
215 => 0.019677660673094
216 => 0.018766591026939
217 => 0.01935057622469
218 => 0.020063078470451
219 => 0.019598385799178
220 => 0.019616600872112
221 => 0.018954071241962
222 => 0.020121697641712
223 => 0.019951584296553
224 => 0.020834132632167
225 => 0.02062350538898
226 => 0.021343189296344
227 => 0.021153672404301
228 => 0.021940346427426
301 => 0.022254171993599
302 => 0.022781133962253
303 => 0.023168769331517
304 => 0.023396396234631
305 => 0.023382730369175
306 => 0.024284701562587
307 => 0.023752840662305
308 => 0.023084698021562
309 => 0.023072613429154
310 => 0.023418653970449
311 => 0.024143860013419
312 => 0.024331895389042
313 => 0.024436981511757
314 => 0.024276038456744
315 => 0.023698741568302
316 => 0.023449467698835
317 => 0.02366185625778
318 => 0.023402123300947
319 => 0.023850495252638
320 => 0.024466205709391
321 => 0.024339063934854
322 => 0.024764079824969
323 => 0.025203926558263
324 => 0.025832927141626
325 => 0.025997371185941
326 => 0.026269190937947
327 => 0.026548982750899
328 => 0.026638844340618
329 => 0.026810417997805
330 => 0.026809513719941
331 => 0.027326562484115
401 => 0.027896883282666
402 => 0.028112166181162
403 => 0.028607197335486
404 => 0.027759473831667
405 => 0.02840248184726
406 => 0.028982491172859
407 => 0.028290980143902
408 => 0.029244066995913
409 => 0.029281073198636
410 => 0.029839822923956
411 => 0.029273423033849
412 => 0.028937096587116
413 => 0.029908058436847
414 => 0.03037787629092
415 => 0.030236363329768
416 => 0.02915944270805
417 => 0.028532628714912
418 => 0.026892135591479
419 => 0.028835370560214
420 => 0.029781863628544
421 => 0.029156991519659
422 => 0.029472140664741
423 => 0.031191492212852
424 => 0.031846109962604
425 => 0.031709954046779
426 => 0.031732962155236
427 => 0.03208618201085
428 => 0.033652553372368
429 => 0.032713947344343
430 => 0.033431476483871
501 => 0.033812051352234
502 => 0.034165550499636
503 => 0.033297468318168
504 => 0.032168106154738
505 => 0.031810389750181
506 => 0.029094860303314
507 => 0.028953505202658
508 => 0.028874158301162
509 => 0.02837388731107
510 => 0.027980811348615
511 => 0.027668222749296
512 => 0.026847896917825
513 => 0.027124732805029
514 => 0.025817304644972
515 => 0.026653750849368
516 => 0.02456706393696
517 => 0.02630491880385
518 => 0.025359083410367
519 => 0.025994186438929
520 => 0.025991970624293
521 => 0.024822544589111
522 => 0.024148044057316
523 => 0.024577862048129
524 => 0.025038661053275
525 => 0.025113424141546
526 => 0.025710862079802
527 => 0.025877594166484
528 => 0.025372388159861
529 => 0.024523821988805
530 => 0.024720924556608
531 => 0.024144049780071
601 => 0.023133098923357
602 => 0.023859181478157
603 => 0.024107097985962
604 => 0.024216592039301
605 => 0.023222437980213
606 => 0.022910053190713
607 => 0.022743742149946
608 => 0.024395489183829
609 => 0.024485975614953
610 => 0.02402303423983
611 => 0.026115573153291
612 => 0.025641967150586
613 => 0.026171101091895
614 => 0.024703039564511
615 => 0.024759121491864
616 => 0.024064117638071
617 => 0.024453273356021
618 => 0.024178230637648
619 => 0.024421833419722
620 => 0.024567847922886
621 => 0.025262737733385
622 => 0.026312853329269
623 => 0.02515894436823
624 => 0.024656169709624
625 => 0.024968088280111
626 => 0.025798768537466
627 => 0.027057291649099
628 => 0.026312220636874
629 => 0.026642870499973
630 => 0.026715102785472
701 => 0.026165715005085
702 => 0.0270775483602
703 => 0.027566207262927
704 => 0.028067470183412
705 => 0.028502702732202
706 => 0.027867254749963
707 => 0.028547275178849
708 => 0.027999298752932
709 => 0.027507707250122
710 => 0.027508452791512
711 => 0.027200070260793
712 => 0.026602540248827
713 => 0.026492346546865
714 => 0.027065588100401
715 => 0.027525273540159
716 => 0.027563135434722
717 => 0.027817640913663
718 => 0.027968254634485
719 => 0.029444473847967
720 => 0.030038221427556
721 => 0.03076424472881
722 => 0.03104707172108
723 => 0.031898279568723
724 => 0.03121086010003
725 => 0.031062132573907
726 => 0.028997380763489
727 => 0.029335483756775
728 => 0.029876819271113
729 => 0.029006307186734
730 => 0.029558446740011
731 => 0.029667450783743
801 => 0.028976727519212
802 => 0.029345672659189
803 => 0.028365863752022
804 => 0.026334210485936
805 => 0.027079810171064
806 => 0.027628822505458
807 => 0.026845314211545
808 => 0.028249722502426
809 => 0.027429296171765
810 => 0.027169260412355
811 => 0.026154768205452
812 => 0.026633569475724
813 => 0.027281155049541
814 => 0.026881022454825
815 => 0.027711357669071
816 => 0.028887333774755
817 => 0.029725404378253
818 => 0.029789741032826
819 => 0.029250917781146
820 => 0.030114385480687
821 => 0.030120674900209
822 => 0.029146679807758
823 => 0.028550113236859
824 => 0.028414572056764
825 => 0.028753180499055
826 => 0.029164313658563
827 => 0.029812556061837
828 => 0.030204275369644
829 => 0.031225671572537
830 => 0.031502032099315
831 => 0.031805668530969
901 => 0.032211420441665
902 => 0.032698629643111
903 => 0.031632643647183
904 => 0.031674997258048
905 => 0.03068236585822
906 => 0.029621596849762
907 => 0.030426588300458
908 => 0.031479007538718
909 => 0.031237581402641
910 => 0.031210416030444
911 => 0.031256100651434
912 => 0.031074073229072
913 => 0.030250769943983
914 => 0.029837312188362
915 => 0.030370778177436
916 => 0.030654291608789
917 => 0.031093996215848
918 => 0.03103979334199
919 => 0.032172425188947
920 => 0.032612531675666
921 => 0.032499933603145
922 => 0.032520654358312
923 => 0.03331744613029
924 => 0.034203642453456
925 => 0.035033682254005
926 => 0.035878034390162
927 => 0.034860134934399
928 => 0.034343308366074
929 => 0.034876541460585
930 => 0.034593600474838
1001 => 0.036219463304688
1002 => 0.036332034519442
1003 => 0.037957779780904
1004 => 0.039500805624175
1005 => 0.038531658738196
1006 => 0.03944552060034
1007 => 0.0404339367125
1008 => 0.04234075175759
1009 => 0.041698603532966
1010 => 0.041206728056649
1011 => 0.040741908108255
1012 => 0.041709124632775
1013 => 0.042953433239908
1014 => 0.043221445396045
1015 => 0.04365572747751
1016 => 0.043199132970336
1017 => 0.043749050761992
1018 => 0.045690502212661
1019 => 0.045165904893024
1020 => 0.044420892365913
1021 => 0.045953481827236
1022 => 0.046508119995499
1023 => 0.050400861126628
1024 => 0.055315607605793
1025 => 0.053280870291453
1026 => 0.05201784317988
1027 => 0.052314684510503
1028 => 0.054109383550027
1029 => 0.054685783920622
1030 => 0.053118929016222
1031 => 0.053672368657133
1101 => 0.056721875491536
1102 => 0.0583578380683
1103 => 0.056135981149967
1104 => 0.050005966032409
1105 => 0.044353812139205
1106 => 0.04585301787149
1107 => 0.045683054467219
1108 => 0.04895936912706
1109 => 0.045153393420447
1110 => 0.045217476290377
1111 => 0.048561541667706
1112 => 0.047669402356829
1113 => 0.046224250929779
1114 => 0.044364363343923
1115 => 0.040926189122689
1116 => 0.037880902334362
1117 => 0.043853411013935
1118 => 0.043595865579369
1119 => 0.043222901624024
1120 => 0.044052892547731
1121 => 0.048083092876219
1122 => 0.047990183714161
1123 => 0.047399143027825
1124 => 0.047847442179218
1125 => 0.046145661921045
1126 => 0.046584249442392
1127 => 0.044352916809151
1128 => 0.045361572348058
1129 => 0.046221150283867
1130 => 0.046393723280749
1201 => 0.046782539054521
1202 => 0.043460150838308
1203 => 0.044951805607195
1204 => 0.045828013034764
1205 => 0.041869276000304
1206 => 0.045749761531903
1207 => 0.043402315451111
1208 => 0.042605556993833
1209 => 0.043678287291613
1210 => 0.043260243251304
1211 => 0.042900833533815
1212 => 0.042700276736014
1213 => 0.043487971473781
1214 => 0.043451224572766
1215 => 0.042162403096818
1216 => 0.040481188020529
1217 => 0.041045458984135
1218 => 0.040840454052989
1219 => 0.040097489736351
1220 => 0.040598157979911
1221 => 0.038393468417671
1222 => 0.034600414615629
1223 => 0.037106222141638
1224 => 0.037009751277681
1225 => 0.036961106293468
1226 => 0.038844151393831
1227 => 0.038663140056673
1228 => 0.038334602707264
1229 => 0.040091455890287
1230 => 0.039450180845473
1231 => 0.041426439430186
]
'min_raw' => 0.017740387691187
'max_raw' => 0.0583578380683
'avg_raw' => 0.038049112879744
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.01774'
'max' => '$0.058357'
'avg' => '$0.038049'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0096645058294475
'max_diff' => 0.038577480413868
'year' => 2029
]
4 => [
'items' => [
101 => 0.042728131150468
102 => 0.042397980024889
103 => 0.043622227379437
104 => 0.04105845864747
105 => 0.041910039779681
106 => 0.042085549470789
107 => 0.040069776594718
108 => 0.038692755750037
109 => 0.038600924158884
110 => 0.036213359779369
111 => 0.03748877739916
112 => 0.038611092124208
113 => 0.038073590466051
114 => 0.037903433498484
115 => 0.038772728543241
116 => 0.038840280213228
117 => 0.037300094978736
118 => 0.03762034826031
119 => 0.038955857682151
120 => 0.037586696849444
121 => 0.034926641002646
122 => 0.03426691037449
123 => 0.034178890147446
124 => 0.032389648359993
125 => 0.034310996729688
126 => 0.033472276677381
127 => 0.03612178327321
128 => 0.034608399315262
129 => 0.034543160357597
130 => 0.034444542104612
131 => 0.032904467785503
201 => 0.033241646184559
202 => 0.034362478536741
203 => 0.03476240414708
204 => 0.034720688629427
205 => 0.034356985846747
206 => 0.034523487118199
207 => 0.033987128509965
208 => 0.033797729122059
209 => 0.033199932555421
210 => 0.03232133674798
211 => 0.032443510883746
212 => 0.030702782692106
213 => 0.029754341585863
214 => 0.029491825587908
215 => 0.029140778224144
216 => 0.029531477321747
217 => 0.03069785142785
218 => 0.029290956795819
219 => 0.026878934631385
220 => 0.027023901273353
221 => 0.027349598276873
222 => 0.026742664065514
223 => 0.02616825177059
224 => 0.026667656657484
225 => 0.025645651069287
226 => 0.027473102769518
227 => 0.027423675322401
228 => 0.028104836307391
301 => 0.028530780250137
302 => 0.027549117363098
303 => 0.027302231801706
304 => 0.027442869037798
305 => 0.025118448798515
306 => 0.027914881583828
307 => 0.02793906525068
308 => 0.027731990012765
309 => 0.029221004140769
310 => 0.032363288386009
311 => 0.031181034654858
312 => 0.030723230276349
313 => 0.029852943818149
314 => 0.031012548851204
315 => 0.030923509277322
316 => 0.030520838556971
317 => 0.030277302048894
318 => 0.030726025532263
319 => 0.030221700243502
320 => 0.030131109563708
321 => 0.02958222860779
322 => 0.02938630307902
323 => 0.029241247617538
324 => 0.029081555807302
325 => 0.029433796147963
326 => 0.02863557319495
327 => 0.027672994564377
328 => 0.02759296656649
329 => 0.02781393090479
330 => 0.027716170633952
331 => 0.027592498527924
401 => 0.027356374797423
402 => 0.027286321930568
403 => 0.027513959763026
404 => 0.027256969922292
405 => 0.027636172431257
406 => 0.02753305033105
407 => 0.026957018662051
408 => 0.026239069928241
409 => 0.026232678678561
410 => 0.026077997801534
411 => 0.025880988448213
412 => 0.025826184953083
413 => 0.026625598170864
414 => 0.028280359607245
415 => 0.027955490342198
416 => 0.028190241680136
417 => 0.029344985920851
418 => 0.029712044390604
419 => 0.02945151498303
420 => 0.029094886261188
421 => 0.029110576115028
422 => 0.030329284416415
423 => 0.030405293758275
424 => 0.030597344843611
425 => 0.030844184761898
426 => 0.02949355288848
427 => 0.02904696147525
428 => 0.028835341687714
429 => 0.028183634649266
430 => 0.028886444817093
501 => 0.028476947429632
502 => 0.028532202617623
503 => 0.028496217603957
504 => 0.028515867854715
505 => 0.027472591959524
506 => 0.027852706862765
507 => 0.027220692111629
508 => 0.026374495306843
509 => 0.026371658558439
510 => 0.026578764027604
511 => 0.026455569590507
512 => 0.026124056527897
513 => 0.026171146393743
514 => 0.025758589618645
515 => 0.026221238255821
516 => 0.026234505363299
517 => 0.026056360437345
518 => 0.026769134496124
519 => 0.027061158609575
520 => 0.026943899803077
521 => 0.027052931419123
522 => 0.027968990126858
523 => 0.028118347666662
524 => 0.028184682419838
525 => 0.028095802638253
526 => 0.027069675290668
527 => 0.027115188401963
528 => 0.026781243389699
529 => 0.026499095044593
530 => 0.026510379498724
531 => 0.026655440424826
601 => 0.027288929996822
602 => 0.028622071454839
603 => 0.028672663198657
604 => 0.02873398186803
605 => 0.028484568023397
606 => 0.028409342421287
607 => 0.028508584407845
608 => 0.029009242246229
609 => 0.030297070133827
610 => 0.029841865747217
611 => 0.029471777495225
612 => 0.029796444667299
613 => 0.029746464700983
614 => 0.029324583487222
615 => 0.02931274268667
616 => 0.028503017753879
617 => 0.02820368088277
618 => 0.027953532588296
619 => 0.027680377181016
620 => 0.027518441499329
621 => 0.027767248304852
622 => 0.027824153365071
623 => 0.027280132936395
624 => 0.027205984962191
625 => 0.027650243787744
626 => 0.027454742042257
627 => 0.027655820435701
628 => 0.027702472347798
629 => 0.027694960315466
630 => 0.027490834039944
701 => 0.027620938040828
702 => 0.027313203292868
703 => 0.026978587974726
704 => 0.026765124249022
705 => 0.026578848836491
706 => 0.026682205261754
707 => 0.02631375847783
708 => 0.026195884936284
709 => 0.027576861732762
710 => 0.028597004140322
711 => 0.028582170865695
712 => 0.028491877121214
713 => 0.028357718932332
714 => 0.028999427739092
715 => 0.02877586922219
716 => 0.028938526722175
717 => 0.028979929882635
718 => 0.029105244779514
719 => 0.029150034083969
720 => 0.029014649697735
721 => 0.028560283161721
722 => 0.02742804495385
723 => 0.026900985011667
724 => 0.026727046451869
725 => 0.026733368788162
726 => 0.026558970529068
727 => 0.026610338632353
728 => 0.026541106799064
729 => 0.026409998455793
730 => 0.026674109691011
731 => 0.026704546050503
801 => 0.026642899332309
802 => 0.026657419366087
803 => 0.026147010869099
804 => 0.026185816118576
805 => 0.025969743558356
806 => 0.025929232558108
807 => 0.02538301994146
808 => 0.024415325116283
809 => 0.024951521985841
810 => 0.024303871568105
811 => 0.024058596541403
812 => 0.025219690369717
813 => 0.025103148753084
814 => 0.024903680164831
815 => 0.024608624549909
816 => 0.024499185552218
817 => 0.023834268846424
818 => 0.023794982020253
819 => 0.024124532693906
820 => 0.023972456397161
821 => 0.023758883680735
822 => 0.022985344951356
823 => 0.022115631309663
824 => 0.02214188249768
825 => 0.022418522225505
826 => 0.023222889544107
827 => 0.022908609317033
828 => 0.022680595406342
829 => 0.022637895254942
830 => 0.02317237704853
831 => 0.023928780763855
901 => 0.024283668463506
902 => 0.023931985531251
903 => 0.023527991114631
904 => 0.023552580382841
905 => 0.023716161768055
906 => 0.023733351858724
907 => 0.023470393024801
908 => 0.023544414396261
909 => 0.023431969164358
910 => 0.022741892983731
911 => 0.022729411693878
912 => 0.022560055870171
913 => 0.022554927843135
914 => 0.022266811339219
915 => 0.022226501848665
916 => 0.021654429042717
917 => 0.022030969095988
918 => 0.021778405797494
919 => 0.021397733333004
920 => 0.021332105256642
921 => 0.021330132397418
922 => 0.021720997901644
923 => 0.022026401604998
924 => 0.021782799244203
925 => 0.021727335708683
926 => 0.022319541163592
927 => 0.022244177621383
928 => 0.022178913279872
929 => 0.023861053107456
930 => 0.022529508174915
1001 => 0.0219488785824
1002 => 0.021230239203093
1003 => 0.02146423180869
1004 => 0.021513537488756
1005 => 0.019785339326007
1006 => 0.019084209546613
1007 => 0.018843608227843
1008 => 0.018705138767288
1009 => 0.018768241039253
1010 => 0.018137142003478
1011 => 0.018561250992934
1012 => 0.018014772573426
1013 => 0.017923153688001
1014 => 0.018900324797766
1015 => 0.019036292449139
1016 => 0.018456212206544
1017 => 0.018828717628751
1018 => 0.018693641984446
1019 => 0.01802414037744
1020 => 0.017998570340573
1021 => 0.017662637968297
1022 => 0.01713696885501
1023 => 0.016896723964653
1024 => 0.016771602339853
1025 => 0.016823229960817
1026 => 0.016797125455826
1027 => 0.016626775902994
1028 => 0.016806889692791
1029 => 0.016346773388016
1030 => 0.016163551368045
1031 => 0.016080794232343
1101 => 0.015672414528549
1102 => 0.016322328244564
1103 => 0.016450369434016
1104 => 0.016578662904166
1105 => 0.017695369972144
1106 => 0.017639582442809
1107 => 0.018143874538367
1108 => 0.018124278674867
1109 => 0.017980446400224
1110 => 0.017373641692764
1111 => 0.017615503233904
1112 => 0.016871091003905
1113 => 0.017428855261732
1114 => 0.017174314947252
1115 => 0.017342794925361
1116 => 0.017039852733493
1117 => 0.01720751345065
1118 => 0.01648073275005
1119 => 0.015802075157911
1120 => 0.016075186784238
1121 => 0.016372090356159
1122 => 0.017015852949705
1123 => 0.016632433259915
1124 => 0.016770325479067
1125 => 0.016308409627786
1126 => 0.015355345286853
1127 => 0.01536073952752
1128 => 0.015214131342303
1129 => 0.01508744046513
1130 => 0.016676473623598
1201 => 0.016478852231446
1202 => 0.016163968407099
1203 => 0.016585452918973
1204 => 0.016696900113771
1205 => 0.01670007285873
1206 => 0.017007577078503
1207 => 0.017171692135719
1208 => 0.017200618125869
1209 => 0.01768448265975
1210 => 0.01784666766918
1211 => 0.018514684769738
1212 => 0.017157768119723
1213 => 0.017129823314259
1214 => 0.016591384070412
1215 => 0.016249897389576
1216 => 0.016614765955603
1217 => 0.016937989695577
1218 => 0.016601427532995
1219 => 0.016645375446213
1220 => 0.016193568241086
1221 => 0.016355068057414
1222 => 0.016494173455611
1223 => 0.016417367630964
1224 => 0.016302385594024
1225 => 0.016911489034894
1226 => 0.016877121031665
1227 => 0.017444332159031
1228 => 0.017886513794469
1229 => 0.018678982334597
1230 => 0.017852000100654
1231 => 0.017821861581093
]
'min_raw' => 0.01508744046513
'max_raw' => 0.043622227379437
'avg_raw' => 0.029354833922283
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.015087'
'max' => '$0.043622'
'avg' => '$0.029354'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.002652947226057
'max_diff' => -0.014735610688864
'year' => 2030
]
5 => [
'items' => [
101 => 0.018116470444177
102 => 0.017846622566098
103 => 0.018017157110212
104 => 0.018651506583087
105 => 0.018664909387854
106 => 0.018440395139467
107 => 0.018426733427049
108 => 0.018469853844368
109 => 0.01872241147545
110 => 0.018634160078838
111 => 0.018736286829249
112 => 0.018863997894459
113 => 0.019392265008535
114 => 0.019519628421299
115 => 0.019210201358641
116 => 0.019238139157891
117 => 0.019122404942494
118 => 0.019010607140566
119 => 0.019261912272542
120 => 0.019721177340644
121 => 0.019718320276491
122 => 0.019824860845453
123 => 0.019891234737287
124 => 0.019606309404878
125 => 0.019420833490475
126 => 0.019491956758196
127 => 0.019605684412146
128 => 0.019455076412803
129 => 0.01852545407245
130 => 0.018807442106008
131 => 0.018760505508713
201 => 0.018693662086481
202 => 0.018977203234773
203 => 0.018949854999317
204 => 0.018130669170691
205 => 0.018183110789597
206 => 0.018133858319228
207 => 0.018293003127098
208 => 0.017838028224204
209 => 0.017977975440032
210 => 0.018065749021875
211 => 0.018117448335889
212 => 0.018304221708659
213 => 0.018282306009095
214 => 0.018302859398003
215 => 0.01857979500348
216 => 0.019980440263155
217 => 0.02005667429429
218 => 0.019681270043696
219 => 0.019831236637287
220 => 0.019543333571682
221 => 0.019736604828405
222 => 0.019868836113698
223 => 0.019271308362074
224 => 0.019235926646546
225 => 0.018946835302576
226 => 0.019102176615855
227 => 0.018855017416993
228 => 0.018915661639132
301 => 0.018746095107163
302 => 0.019051281104347
303 => 0.019392526470309
304 => 0.019478738525938
305 => 0.0192519517242
306 => 0.019087743133763
307 => 0.018799446942628
308 => 0.019278889933585
309 => 0.019419093674902
310 => 0.019278153503019
311 => 0.01924549458559
312 => 0.019183605996075
313 => 0.019258624542421
314 => 0.019418330095216
315 => 0.019343015905817
316 => 0.01939276225478
317 => 0.019203180470743
318 => 0.019606403727019
319 => 0.020246819298945
320 => 0.020248878339728
321 => 0.020173563744357
322 => 0.020142746634606
323 => 0.020220023979929
324 => 0.020261943769684
325 => 0.020511844534215
326 => 0.020779998011042
327 => 0.022031353282869
328 => 0.021679977729919
329 => 0.022790254570542
330 => 0.02366833940007
331 => 0.02393163864645
401 => 0.023689415728968
402 => 0.022860784212885
403 => 0.022820127597511
404 => 0.02405845292174
405 => 0.023708569298752
406 => 0.023666951755118
407 => 0.023224211404803
408 => 0.023485925786299
409 => 0.023428685011947
410 => 0.023338327649319
411 => 0.023837660458031
412 => 0.024772366900191
413 => 0.024626684135559
414 => 0.02451793870979
415 => 0.024041447909388
416 => 0.024328401799303
417 => 0.024226223015344
418 => 0.024665247915491
419 => 0.024405179290236
420 => 0.023705918586188
421 => 0.023817278158101
422 => 0.023800446382831
423 => 0.024146843125181
424 => 0.024042863421223
425 => 0.023780142676819
426 => 0.024769172175188
427 => 0.024704950100835
428 => 0.024796002319057
429 => 0.024836086321402
430 => 0.025438091148405
501 => 0.025684713264022
502 => 0.025740700801995
503 => 0.025974972737392
504 => 0.025734871902825
505 => 0.026695446430086
506 => 0.027334172439637
507 => 0.028076085568271
508 => 0.029160220056654
509 => 0.029567864653091
510 => 0.02949422730543
511 => 0.030316205701466
512 => 0.031793282607589
513 => 0.029792786779402
514 => 0.031899313744067
515 => 0.031232411628077
516 => 0.029651198708123
517 => 0.029549387237354
518 => 0.030620202985006
519 => 0.032995169251103
520 => 0.03240026713809
521 => 0.032996142297842
522 => 0.032301022272219
523 => 0.032266503704015
524 => 0.032962381869735
525 => 0.034588339134282
526 => 0.033815907785992
527 => 0.032708438040282
528 => 0.033526176466377
529 => 0.032817775763575
530 => 0.031221550711289
531 => 0.032399812227656
601 => 0.031611942306618
602 => 0.031841884635045
603 => 0.033497870022262
604 => 0.033298617479278
605 => 0.033556468720188
606 => 0.033101368029124
607 => 0.032676232220879
608 => 0.031882684663789
609 => 0.031647754353557
610 => 0.031712680639398
611 => 0.031647722179314
612 => 0.031203739614201
613 => 0.031107861621536
614 => 0.030948060766585
615 => 0.030997589733555
616 => 0.030697117374857
617 => 0.031264170796477
618 => 0.031369420908388
619 => 0.031782075100312
620 => 0.031824918227445
621 => 0.03297415427819
622 => 0.032341174373567
623 => 0.032765831942444
624 => 0.032727846572452
625 => 0.029685468386755
626 => 0.030104681257614
627 => 0.030756844928425
628 => 0.030463046078712
629 => 0.03004768324356
630 => 0.029712255483829
701 => 0.029204048128587
702 => 0.029919340221833
703 => 0.030859873261616
704 => 0.03184877169745
705 => 0.033036868372912
706 => 0.032771699025919
707 => 0.031826561056525
708 => 0.031868959255409
709 => 0.032131048237829
710 => 0.0317916191923
711 => 0.031691514940331
712 => 0.032117295450814
713 => 0.032120227567184
714 => 0.031729673428933
715 => 0.031295643974919
716 => 0.031293825375658
717 => 0.031216594026544
718 => 0.032314761557656
719 => 0.032918642662507
720 => 0.032987876657975
721 => 0.032913982662984
722 => 0.032942421528909
723 => 0.032591036419608
724 => 0.033394198579452
725 => 0.03413125960183
726 => 0.033933711502821
727 => 0.033637558819289
728 => 0.03340165894221
729 => 0.033878140988787
730 => 0.033856923993305
731 => 0.034124822016798
801 => 0.034112668614998
802 => 0.034022584585852
803 => 0.033933714720005
804 => 0.034286073692693
805 => 0.034184599967271
806 => 0.034082968625125
807 => 0.033879131409473
808 => 0.033906836272457
809 => 0.033610734723862
810 => 0.033473744598796
811 => 0.031413741803082
812 => 0.030863241743534
813 => 0.03103644026873
814 => 0.031093461720322
815 => 0.030853883388922
816 => 0.031197377173526
817 => 0.031143844031046
818 => 0.031352110172597
819 => 0.03122199452922
820 => 0.031227334520611
821 => 0.031609976884201
822 => 0.031721059590228
823 => 0.031664562029395
824 => 0.03170413098438
825 => 0.03261598085098
826 => 0.032486344959266
827 => 0.032417478475533
828 => 0.032436554962169
829 => 0.032669552153367
830 => 0.032734778645727
831 => 0.032458409414212
901 => 0.032588746741466
902 => 0.033143706538645
903 => 0.033337911059653
904 => 0.033957718667253
905 => 0.033694413379343
906 => 0.034177721630888
907 => 0.035663246424213
908 => 0.036849986419618
909 => 0.035758611275739
910 => 0.037937908146873
911 => 0.03963480336262
912 => 0.039569673697913
913 => 0.039273780767154
914 => 0.037341910678319
915 => 0.035564175020013
916 => 0.037051326384829
917 => 0.037055117439494
918 => 0.036927369818367
919 => 0.036133940315054
920 => 0.03689976019151
921 => 0.036960548192254
922 => 0.036926523076671
923 => 0.036318202536775
924 => 0.035389409508782
925 => 0.035570893443235
926 => 0.035868167830042
927 => 0.035305365397883
928 => 0.035125515919406
929 => 0.035459890317658
930 => 0.036537314298496
1001 => 0.036333633536011
1002 => 0.036328314608164
1003 => 0.037199747284162
1004 => 0.036575989555089
1005 => 0.035573182536841
1006 => 0.035319960539333
1007 => 0.034421193038959
1008 => 0.035041974952767
1009 => 0.035064315788689
1010 => 0.034724319878733
1011 => 0.035600771331109
1012 => 0.035592694676679
1013 => 0.036424754888127
1014 => 0.038015341504871
1015 => 0.037544926774286
1016 => 0.036997885623593
1017 => 0.037057364164479
1018 => 0.037709696952452
1019 => 0.037315281657534
1020 => 0.037457116147548
1021 => 0.037709482268964
1022 => 0.037861741015913
1023 => 0.037035456473922
1024 => 0.036842810021425
1025 => 0.036448722989334
1026 => 0.036345913038645
1027 => 0.036666888703387
1028 => 0.036582322955965
1029 => 0.035062438127938
1030 => 0.034903601706849
1031 => 0.034908472993118
1101 => 0.034509071260031
1102 => 0.033899887749675
1103 => 0.035500785642434
1104 => 0.035372211137094
1105 => 0.035230274834075
1106 => 0.035247661221317
1107 => 0.0359425567371
1108 => 0.035539482244881
1109 => 0.036611121845055
1110 => 0.036390824959694
1111 => 0.03616487829048
1112 => 0.036133645578291
1113 => 0.036046675387508
1114 => 0.035748422243129
1115 => 0.035388263649056
1116 => 0.035150455748846
1117 => 0.032424437382249
1118 => 0.03293037053457
1119 => 0.033512400509058
1120 => 0.033713314923912
1121 => 0.033369636914449
1122 => 0.035761992745684
1123 => 0.036199099209365
1124 => 0.034875075219126
1125 => 0.034627404390096
1126 => 0.035778230004003
1127 => 0.035084141476107
1128 => 0.035396689497719
1129 => 0.034721131629622
1130 => 0.036093813062236
1201 => 0.03608335552959
1202 => 0.035549351448887
1203 => 0.036000688041195
1204 => 0.035922257201433
1205 => 0.035319367909514
1206 => 0.036112925728144
1207 => 0.036113319322922
1208 => 0.035599352005495
1209 => 0.034999150700654
1210 => 0.03489184888347
1211 => 0.034811011378193
1212 => 0.03537680842685
1213 => 0.035884100291475
1214 => 0.036828044683223
1215 => 0.037065374730874
1216 => 0.037991689706812
1217 => 0.037440114240098
1218 => 0.037684620500394
1219 => 0.037950066633468
1220 => 0.038077331271121
1221 => 0.037869960373462
1222 => 0.039308908817548
1223 => 0.03943040015447
1224 => 0.039471135148844
1225 => 0.03898592982965
1226 => 0.039416905716814
1227 => 0.039215266371631
1228 => 0.039739875930772
1229 => 0.039822141408197
1230 => 0.039752465475498
1231 => 0.039778577836504
]
'min_raw' => 0.017838028224204
'max_raw' => 0.039822141408197
'avg_raw' => 0.028830084816201
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.017838'
'max' => '$0.039822'
'avg' => '$0.02883'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0027505877590742
'max_diff' => -0.0038000859712398
'year' => 2031
]
6 => [
'items' => [
101 => 0.038550689187377
102 => 0.038487016683291
103 => 0.037618837572084
104 => 0.037972626977157
105 => 0.037311234641941
106 => 0.037520968964534
107 => 0.037613417855511
108 => 0.037565127801293
109 => 0.037992629699298
110 => 0.037629165753126
111 => 0.036669924640172
112 => 0.035710422182619
113 => 0.035698376410858
114 => 0.035445756350409
115 => 0.035263158316377
116 => 0.035298333175745
117 => 0.035422293968086
118 => 0.035255953489778
119 => 0.035291450664501
120 => 0.035880940281349
121 => 0.035999158219961
122 => 0.035597407473829
123 => 0.033984320255755
124 => 0.033588464606317
125 => 0.033872997796974
126 => 0.033737009258124
127 => 0.027228399536921
128 => 0.028757500847345
129 => 0.027848960772065
130 => 0.028267657838673
131 => 0.027340273687124
201 => 0.027782870012611
202 => 0.027701138632323
203 => 0.030159888290088
204 => 0.030121498296082
205 => 0.030139873554659
206 => 0.029262774586269
207 => 0.030660017058747
208 => 0.031348348943904
209 => 0.031220957031321
210 => 0.031253018831167
211 => 0.030702090883988
212 => 0.030145207741457
213 => 0.029527538632689
214 => 0.03067509149057
215 => 0.030547503202155
216 => 0.030840144830963
217 => 0.031584414888072
218 => 0.031694011481188
219 => 0.031841310413755
220 => 0.031788514231882
221 => 0.03304633347972
222 => 0.032894003269448
223 => 0.033261075247811
224 => 0.032505980338501
225 => 0.03165151877435
226 => 0.031813923983242
227 => 0.031798283055646
228 => 0.031599156095521
229 => 0.031419393179489
301 => 0.031120138572182
302 => 0.032067024431048
303 => 0.032028582594395
304 => 0.032650911246066
305 => 0.032540908611905
306 => 0.031806284098768
307 => 0.031832521356972
308 => 0.032008979527585
309 => 0.032619703270844
310 => 0.032801007659086
311 => 0.032717020242721
312 => 0.032915812227569
313 => 0.033072929306991
314 => 0.032935543713728
315 => 0.034880633993761
316 => 0.03407289689827
317 => 0.034466582338414
318 => 0.034560473996159
319 => 0.034319972489174
320 => 0.034372128654326
321 => 0.034451131032826
322 => 0.03493081800483
323 => 0.036189655417912
324 => 0.03674718593897
325 => 0.038424544019644
326 => 0.036700890790396
327 => 0.036598616340958
328 => 0.036900759182649
329 => 0.03788554594239
330 => 0.038683623114843
331 => 0.038948391355122
401 => 0.038983384848922
402 => 0.039480107669146
403 => 0.039764819926366
404 => 0.039419792453663
405 => 0.03912741779643
406 => 0.0380801680651
407 => 0.038201390073068
408 => 0.039036489497885
409 => 0.04021611662255
410 => 0.041228359414797
411 => 0.040873907269175
412 => 0.043578126936051
413 => 0.043846239270275
414 => 0.043809194814795
415 => 0.044419994612622
416 => 0.043207681401151
417 => 0.042689394015784
418 => 0.039190632515917
419 => 0.040173641784753
420 => 0.041602503487116
421 => 0.041413388282852
422 => 0.040375710721013
423 => 0.041227572243315
424 => 0.040945920183869
425 => 0.04072376951883
426 => 0.041741484781401
427 => 0.040622465044765
428 => 0.041591340409237
429 => 0.040348747732569
430 => 0.040875526376719
501 => 0.040576501340884
502 => 0.040770007186199
503 => 0.039638775968458
504 => 0.040249160874466
505 => 0.039613381949609
506 => 0.039613080507618
507 => 0.039599045652614
508 => 0.040347036738232
509 => 0.04037142870068
510 => 0.039818662158256
511 => 0.039738999863657
512 => 0.04003355311949
513 => 0.039688708400529
514 => 0.039850059074104
515 => 0.039693595548061
516 => 0.039658372312723
517 => 0.039377707580808
518 => 0.039256789497261
519 => 0.039304204593495
520 => 0.039142352425891
521 => 0.039044830640461
522 => 0.039579646114904
523 => 0.039293915781304
524 => 0.03953585384333
525 => 0.039260134886634
526 => 0.038304372857694
527 => 0.03775470400785
528 => 0.03594935813437
529 => 0.036461351984564
530 => 0.036800804436939
531 => 0.036688615403454
601 => 0.036929640858772
602 => 0.036944437864201
603 => 0.036866078031714
604 => 0.036775347384209
605 => 0.036731184722724
606 => 0.037060337019648
607 => 0.037251421006769
608 => 0.036834873031823
609 => 0.036737281669419
610 => 0.037158434670333
611 => 0.037415337757599
612 => 0.039312165812595
613 => 0.039171642663607
614 => 0.039524328191291
615 => 0.039484621213275
616 => 0.039854291833499
617 => 0.040458547063104
618 => 0.039229927228897
619 => 0.039443173149638
620 => 0.039390890174439
621 => 0.039961701988322
622 => 0.039963484000498
623 => 0.039621253803911
624 => 0.039806782345532
625 => 0.039703225403309
626 => 0.039890366794466
627 => 0.039169765891279
628 => 0.040047380007301
629 => 0.04054493065888
630 => 0.04055183915016
701 => 0.040787674210203
702 => 0.041027296289852
703 => 0.041487230005053
704 => 0.041014468988164
705 => 0.040164017941139
706 => 0.040225417759794
707 => 0.039726798622091
708 => 0.039735180499878
709 => 0.039690437379348
710 => 0.039824714852164
711 => 0.039199232245485
712 => 0.039346031763076
713 => 0.039140511578792
714 => 0.039442726388894
715 => 0.039117593211122
716 => 0.039390864962006
717 => 0.039508799990585
718 => 0.039943982785003
719 => 0.03905331635855
720 => 0.037237187222196
721 => 0.037618959585095
722 => 0.037054288272795
723 => 0.037106550752604
724 => 0.037212129279329
725 => 0.036869914731068
726 => 0.036935198482456
727 => 0.036932866087462
728 => 0.036912766767463
729 => 0.036823743546507
730 => 0.036694642263414
731 => 0.037208942039978
801 => 0.037296331593805
802 => 0.037490587746688
803 => 0.038068562292459
804 => 0.038010809005758
805 => 0.038105007012528
806 => 0.037899373292648
807 => 0.037116089511097
808 => 0.037158625588928
809 => 0.036628200016791
810 => 0.037477023572249
811 => 0.037276010950393
812 => 0.037146416805418
813 => 0.03711105584228
814 => 0.037690463075157
815 => 0.03786383080033
816 => 0.037755799668278
817 => 0.037534224664667
818 => 0.037959714174369
819 => 0.038073557217204
820 => 0.038099042476125
821 => 0.038852928307795
822 => 0.038141176319488
823 => 0.03831250209728
824 => 0.039649136908512
825 => 0.03843699357772
826 => 0.039079092934062
827 => 0.039047665511893
828 => 0.03937614181514
829 => 0.039020720867522
830 => 0.039025126736136
831 => 0.039316791440507
901 => 0.038907200965224
902 => 0.03880578060346
903 => 0.03866566910007
904 => 0.038971597441846
905 => 0.039154987646792
906 => 0.040632978013393
907 => 0.041587827194767
908 => 0.041546374673568
909 => 0.041925173121459
910 => 0.041754520951288
911 => 0.041203440078038
912 => 0.042144067931522
913 => 0.041846413921139
914 => 0.041870952156105
915 => 0.041870038841774
916 => 0.042067952737314
917 => 0.041927712603782
918 => 0.041651284905236
919 => 0.041834790511871
920 => 0.042379736559124
921 => 0.044071265810781
922 => 0.045017867989791
923 => 0.044014279171016
924 => 0.044706541299617
925 => 0.044291430700674
926 => 0.044215992756375
927 => 0.044650784530906
928 => 0.045086337350881
929 => 0.045058594519195
930 => 0.044742405537778
1001 => 0.044563798405174
1002 => 0.045916271451032
1003 => 0.046912750552443
1004 => 0.046844797358207
1005 => 0.047144720658001
1006 => 0.048025304742472
1007 => 0.048105814315317
1008 => 0.04809567195963
1009 => 0.047896120583028
1010 => 0.048763169972483
1011 => 0.049486477827449
1012 => 0.047849930204939
1013 => 0.048473106115609
1014 => 0.048752869859383
1015 => 0.049163646037406
1016 => 0.049856694303811
1017 => 0.050609528543101
1018 => 0.050715987558944
1019 => 0.05064044979267
1020 => 0.050143935374588
1021 => 0.050967695582399
1022 => 0.051450234992581
1023 => 0.051737576168626
1024 => 0.052466225582065
1025 => 0.048754597585022
1026 => 0.046127322808834
1027 => 0.045717035914224
1028 => 0.046551370448148
1029 => 0.04677137781105
1030 => 0.04668269311893
1031 => 0.043725456496958
1101 => 0.045701466675424
1102 => 0.047827487479798
1103 => 0.047909156597386
1104 => 0.048973487065055
1105 => 0.049320076693707
1106 => 0.050177002225164
1107 => 0.050123401299855
1108 => 0.050332049030102
1109 => 0.050284084530193
1110 => 0.051871358630256
1111 => 0.053622357675111
1112 => 0.053561726146024
1113 => 0.053309999316446
1114 => 0.053683856584172
1115 => 0.055491075246923
1116 => 0.055324695512546
1117 => 0.055486319252301
1118 => 0.057617131906066
1119 => 0.060387491460525
1120 => 0.059100381307927
1121 => 0.061893039983095
1122 => 0.063650870586638
1123 => 0.066690856852389
1124 => 0.066310235599669
1125 => 0.067493679944476
1126 => 0.065628844119248
1127 => 0.061346804119021
1128 => 0.060669154897995
1129 => 0.062025825799301
1130 => 0.065361068828152
1201 => 0.061920787127201
1202 => 0.062616751634671
1203 => 0.062416313809699
1204 => 0.062405633329812
1205 => 0.062813263806441
1206 => 0.062221974539515
1207 => 0.059812955695152
1208 => 0.060916994835087
1209 => 0.060490672302844
1210 => 0.060963708936817
1211 => 0.063516492555225
1212 => 0.062387846066766
1213 => 0.06119890867497
1214 => 0.062690100010611
1215 => 0.064588899009818
1216 => 0.064470075580917
1217 => 0.06423950846451
1218 => 0.065539203227596
1219 => 0.067685918201379
1220 => 0.068266166632593
1221 => 0.068694494161859
1222 => 0.068753553291491
1223 => 0.069361899031754
1224 => 0.066090670663498
1225 => 0.071282194095023
1226 => 0.072178626778707
1227 => 0.072010134587502
1228 => 0.073006481787763
1229 => 0.072713331166557
1230 => 0.072288601910354
1231 => 0.073868024151894
]
'min_raw' => 0.027228399536921
'max_raw' => 0.073868024151894
'avg_raw' => 0.050548211844407
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.027228'
'max' => '$0.073868'
'avg' => '$0.050548'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0093903713127164
'max_diff' => 0.034045882743697
'year' => 2032
]
7 => [
'items' => [
101 => 0.07205734400477
102 => 0.069487311494221
103 => 0.068077340829454
104 => 0.069934103939908
105 => 0.07106796437936
106 => 0.071817374002769
107 => 0.072044144902007
108 => 0.066344606809732
109 => 0.063272871888871
110 => 0.065241818755631
111 => 0.067644069822532
112 => 0.066077326037528
113 => 0.066138739427662
114 => 0.063904974523271
115 => 0.0678417084511
116 => 0.067268159430959
117 => 0.07024373276204
118 => 0.06953358830611
119 => 0.071960052846514
120 => 0.071321083413344
121 => 0.073973409806136
122 => 0.075031494613091
123 => 0.076808183681719
124 => 0.078115123393027
125 => 0.07888258338928
126 => 0.078836507969775
127 => 0.081877566821982
128 => 0.080084360663339
129 => 0.077831671101843
130 => 0.07779092705482
131 => 0.078957626899577
201 => 0.081402709705717
202 => 0.082036684102841
203 => 0.082390989302455
204 => 0.081848358555793
205 => 0.079901961790829
206 => 0.079061517536174
207 => 0.079777600391155
208 => 0.078901892593214
209 => 0.080413609932671
210 => 0.082489520725144
211 => 0.08206085335554
212 => 0.083493824102725
213 => 0.084976798073143
214 => 0.087097517455369
215 => 0.087651952031894
216 => 0.088568411303632
217 => 0.089511748935438
218 => 0.089814723559112
219 => 0.09039319612321
220 => 0.090390147287255
221 => 0.09213341329486
222 => 0.094056289685702
223 => 0.094782131008554
224 => 0.096451163107329
225 => 0.093593004128038
226 => 0.095760950545994
227 => 0.097716492482209
228 => 0.095385014768323
301 => 0.098598413632278
302 => 0.098723182628447
303 => 0.10060704633802
304 => 0.098697389563751
305 => 0.097563441467028
306 => 0.10083710713379
307 => 0.10242113083043
308 => 0.10194401000179
309 => 0.098313096937468
310 => 0.096199749796847
311 => 0.090668712695622
312 => 0.097220465065044
313 => 0.10041163252695
314 => 0.098304832584671
315 => 0.099367379930324
316 => 0.10516429371607
317 => 0.10737138316331
318 => 0.10691232398701
319 => 0.10698989743105
320 => 0.10818080283527
321 => 0.11346193324119
322 => 0.11029735748632
323 => 0.11271655707652
324 => 0.1139996918161
325 => 0.11519153887209
326 => 0.1122647391897
327 => 0.10845701580615
328 => 0.10725094997323
329 => 0.0980953528509
330 => 0.09761876425994
331 => 0.097351240641722
401 => 0.095664542070823
402 => 0.094339259019719
403 => 0.093285344732876
404 => 0.090519558918752
405 => 0.091452930440525
406 => 0.087044845117174
407 => 0.089864981894102
408 => 0.082829571281092
409 => 0.088688870297962
410 => 0.085499920232715
411 => 0.087641214434991
412 => 0.087633743661242
413 => 0.083690942136906
414 => 0.081416816501838
415 => 0.082865977866797
416 => 0.084419593884606
417 => 0.084671662856503
418 => 0.08668596657712
419 => 0.08724811544823
420 => 0.085544778124544
421 => 0.082683778033831
422 => 0.083348323102439
423 => 0.081403349517233
424 => 0.077994858121488
425 => 0.080442896148462
426 => 0.081278763963506
427 => 0.081647930808968
428 => 0.078296070989134
429 => 0.077242843861325
430 => 0.076682114575911
501 => 0.082251095021944
502 => 0.08255617634204
503 => 0.080995337174276
504 => 0.088050478217412
505 => 0.086453682513178
506 => 0.088237694539253
507 => 0.083288022602895
508 => 0.083477106736481
509 => 0.081133852719797
510 => 0.08244591839285
511 => 0.081518592664987
512 => 0.082339916452553
513 => 0.082832214544375
514 => 0.085175084056132
515 => 0.088715622104383
516 => 0.084825137478889
517 => 0.083129997614795
518 => 0.08418165285265
519 => 0.086982349336566
520 => 0.091225547874713
521 => 0.088713488937801
522 => 0.089828298036475
523 => 0.090071834230131
524 => 0.088219534971529
525 => 0.09129384479047
526 => 0.092941392398089
527 => 0.094631435331565
528 => 0.096098852256775
529 => 0.093956395019094
530 => 0.096249131372594
531 => 0.094401590594122
601 => 0.092744155520577
602 => 0.092746669165424
603 => 0.091706935932526
604 => 0.089692321778969
605 => 0.089320796019326
606 => 0.091253519939517
607 => 0.092803381493874
608 => 0.092931035514827
609 => 0.093789118506081
610 => 0.094296923181347
611 => 0.099274099325938
612 => 0.10127596074465
613 => 0.10372379899416
614 => 0.10467736994495
615 => 0.10754727663271
616 => 0.10522959389992
617 => 0.10472814866177
618 => 0.097766693776576
619 => 0.098906631624039
620 => 0.10073178210547
621 => 0.09779678983577
622 => 0.099658366888797
623 => 0.10002588163266
624 => 0.097697059921535
625 => 0.098940984219892
626 => 0.095637490081307
627 => 0.088787629249197
628 => 0.091301470643713
629 => 0.09315250405994
630 => 0.090510851144209
701 => 0.095245911749571
702 => 0.09247978709541
703 => 0.09160305837744
704 => 0.088182627072284
705 => 0.089796938983843
706 => 0.091980318958947
707 => 0.090631243979499
708 => 0.09343077712648
709 => 0.097395662670824
710 => 0.10022127622274
711 => 0.10043819174547
712 => 0.098621511532997
713 => 0.10153275316739
714 => 0.10155395838442
715 => 0.098270065928055
716 => 0.096258700083321
717 => 0.095801713531447
718 => 0.096943355535518
719 => 0.098329519687201
720 => 0.10051511420868
721 => 0.10183582320392
722 => 0.10527953181358
723 => 0.10621130062449
724 => 0.10723503205303
725 => 0.10860305294863
726 => 0.11024571278717
727 => 0.10665166657713
728 => 0.1067944647332
729 => 0.10344773866537
730 => 0.099871281892822
731 => 0.10258536677155
801 => 0.10613367171091
802 => 0.10531968663729
803 => 0.1052280966883
804 => 0.10538212557757
805 => 0.10476840741433
806 => 0.10199258290745
807 => 0.10059858121768
808 => 0.10239719904524
809 => 0.10335308437333
810 => 0.10483557915522
811 => 0.10465283038169
812 => 0.10847157773153
813 => 0.10995542747876
814 => 0.10957579521591
815 => 0.10964565668863
816 => 0.11233209577808
817 => 0.11531996855388
818 => 0.11811850569296
819 => 0.1209652978708
820 => 0.11753337878823
821 => 0.11579086192944
822 => 0.11758869453673
823 => 0.11663473924897
824 => 0.12211644929393
825 => 0.12249599100395
826 => 0.12797730465887
827 => 0.13317972402009
828 => 0.12991217763033
829 => 0.13299332670235
830 => 0.1363258406335
831 => 0.1427548006876
901 => 0.14058975311492
902 => 0.13893136060487
903 => 0.13736418769617
904 => 0.14062522573749
905 => 0.14482049908129
906 => 0.14572412077772
907 => 0.14718833313599
908 => 0.14564889287664
909 => 0.14750297910524
910 => 0.15404871821898
911 => 0.15228000172961
912 => 0.14976813997934
913 => 0.15493537235017
914 => 0.15680537365807
915 => 0.16993002216418
916 => 0.18650043305533
917 => 0.17964017413921
918 => 0.1753817900508
919 => 0.1763826113218
920 => 0.18243356443544
921 => 0.18437693852788
922 => 0.17909417782339
923 => 0.18096013821264
924 => 0.1912417634146
925 => 0.19675752546142
926 => 0.18926637973616
927 => 0.16859860578332
928 => 0.1495419743116
929 => 0.1545966511092
930 => 0.15402360762524
1001 => 0.16506993124588
1002 => 0.15223781842629
1003 => 0.15245387829639
1004 => 0.16372862819124
1005 => 0.16072071821744
1006 => 0.15584828928389
1007 => 0.14957754843497
1008 => 0.13798550400242
1009 => 0.12771810698044
1010 => 0.14785483698086
1011 => 0.14698650456698
1012 => 0.14572903055202
1013 => 0.14852740289941
1014 => 0.16211550468651
1015 => 0.16180225495993
1016 => 0.1598095200208
1017 => 0.16132099190897
1018 => 0.15558332095403
1019 => 0.15706204940346
1020 => 0.14953895564382
1021 => 0.15293970821532
1022 => 0.15583783523972
1023 => 0.15641967714737
1024 => 0.15773059667489
1025 => 0.14652893284219
1026 => 0.1515581510395
1027 => 0.1545123455564
1028 => 0.14116518725453
1029 => 0.15424851515116
1030 => 0.14633393679632
1031 => 0.14364761002971
1101 => 0.14726439512431
1102 => 0.1458549304555
1103 => 0.14464315549981
1104 => 0.14396696425359
1105 => 0.14662273205706
1106 => 0.1464988373147
1107 => 0.1421534857259
1108 => 0.13648515171751
1109 => 0.13838763066745
1110 => 0.1376964422291
1111 => 0.13519148616344
1112 => 0.13687952410214
1113 => 0.12944625931654
1114 => 0.1166577136004
1115 => 0.12510621862423
1116 => 0.12478096037102
1117 => 0.12461695041046
1118 => 0.13096576843635
1119 => 0.13035547607531
1120 => 0.12924778946403
1121 => 0.13517114263017
1122 => 0.13300903904418
1123 => 0.13967213284051
1124 => 0.14406087735666
1125 => 0.14294774978635
1126 => 0.14707538521643
1127 => 0.13843145993999
1128 => 0.14130262518273
1129 => 0.14189436836
1130 => 0.13509804937155
1201 => 0.13045532745319
1202 => 0.13014571083214
1203 => 0.12209587083218
1204 => 0.12639603038412
1205 => 0.13017999283713
1206 => 0.12836776846949
1207 => 0.12779407237336
1208 => 0.130724961309
1209 => 0.13095271648066
1210 => 0.12575987443028
1211 => 0.12683963072847
1212 => 0.1313423939865
1213 => 0.12672617264727
1214 => 0.11775760864062
1215 => 0.11553328076688
1216 => 0.11523651442602
1217 => 0.10920396081875
1218 => 0.11568192099144
1219 => 0.11285411777752
1220 => 0.121787114248
1221 => 0.11668463457268
1222 => 0.11646467687208
1223 => 0.11613217854683
1224 => 0.1109397104554
1225 => 0.11207653096886
1226 => 0.11585549549826
1227 => 0.11720387261543
1228 => 0.11706322583518
1229 => 0.11583697651046
1230 => 0.1163983471719
1231 => 0.11458997667688
]
'min_raw' => 0.063272871888871
'max_raw' => 0.19675752546142
'avg_raw' => 0.13001519867514
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.063272'
'max' => '$0.196757'
'avg' => '$0.130015'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.03604447235195
'max_diff' => 0.12288950130952
'year' => 2033
]
8 => [
'items' => [
101 => 0.11395140341712
102 => 0.11193589055587
103 => 0.10897364344948
104 => 0.10938556207814
105 => 0.10351657544627
106 => 0.10031884003853
107 => 0.099433749023141
108 => 0.098250168326865
109 => 0.099567437612173
110 => 0.10349994934454
111 => 0.0987565058664
112 => 0.090624204737002
113 => 0.091112969891645
114 => 0.092211080078453
115 => 0.090164759010063
116 => 0.088228087853541
117 => 0.089911866297039
118 => 0.086466103102281
119 => 0.092627484098211
120 => 0.092460836009342
121 => 0.09475741782738
122 => 0.096193517568802
123 => 0.092883772607636
124 => 0.092051380700405
125 => 0.092525548960867
126 => 0.084688603838287
127 => 0.094116972214672
128 => 0.094198509135913
129 => 0.093500340513751
130 => 0.098520655605961
131 => 0.10911508632607
201 => 0.10512903532917
202 => 0.10358551590415
203 => 0.10065128434887
204 => 0.10456097367885
205 => 0.10426077053896
206 => 0.10290313809173
207 => 0.10208203775157
208 => 0.10359494030462
209 => 0.1018945723827
210 => 0.10158913958093
211 => 0.099738549116411
212 => 0.099077972517078
213 => 0.098588907901244
214 => 0.098050495813707
215 => 0.09923809871488
216 => 0.09654683429865
217 => 0.093301433240579
218 => 0.093031613258327
219 => 0.093776609952141
220 => 0.093447004373609
221 => 0.093030035233625
222 => 0.092233927590607
223 => 0.091997739459072
224 => 0.092765236304369
225 => 0.091898777113875
226 => 0.093177284847924
227 => 0.092829601487322
228 => 0.090887470498047
301 => 0.088466856216424
302 => 0.088445307671907
303 => 0.087923790295535
304 => 0.087259559506062
305 => 0.087074785695972
306 => 0.089770063172968
307 => 0.095349206887481
308 => 0.094253887478728
309 => 0.0950453680044
310 => 0.09893866883364
311 => 0.10017623209161
312 => 0.099297839004396
313 => 0.098095440369686
314 => 0.098148339807337
315 => 0.10225729993296
316 => 0.10251357073584
317 => 0.10316108437863
318 => 0.10399332239695
319 => 0.099439572737615
320 => 0.097933858607894
321 => 0.097220367719393
322 => 0.095023091938534
323 => 0.097392665488002
324 => 0.096012016455983
325 => 0.096198313180089
326 => 0.096076987194118
327 => 0.096143239386486
328 => 0.092625761866653
329 => 0.093907345801705
330 => 0.09177646394239
331 => 0.088923452335481
401 => 0.08891388804018
402 => 0.089612158589112
403 => 0.089196799943278
404 => 0.088079080507186
405 => 0.088237847277596
406 => 0.086846883306558
407 => 0.088406735487895
408 => 0.088451466467037
409 => 0.087850838411499
410 => 0.090254005914971
411 => 0.091238585601941
412 => 0.090843239349086
413 => 0.091210847054928
414 => 0.094299402945232
415 => 0.094802972318493
416 => 0.09502662457017
417 => 0.094726960181168
418 => 0.091267300186861
419 => 0.091420750819219
420 => 0.090294831895072
421 => 0.08934354905058
422 => 0.089381595375539
423 => 0.089870678415721
424 => 0.092006532736537
425 => 0.096501312239204
426 => 0.096671885835689
427 => 0.096878626010612
428 => 0.096037709819914
429 => 0.095784081450315
430 => 0.096118682736853
501 => 0.097806685593776
502 => 0.10214868723009
503 => 0.10061393385928
504 => 0.099366155478947
505 => 0.10046079351713
506 => 0.10029228257121
507 => 0.098869880604206
508 => 0.098829958518449
509 => 0.096099914374353
510 => 0.095090679214378
511 => 0.094247286774761
512 => 0.093326324248016
513 => 0.092780346791218
514 => 0.093619216307176
515 => 0.093811075690688
516 => 0.091976872833116
517 => 0.091726877761241
518 => 0.093224727408753
519 => 0.092565579624346
520 => 0.093243529466687
521 => 0.093400819645456
522 => 0.093375492303974
523 => 0.092687266314413
524 => 0.093125921036965
525 => 0.092088371848863
526 => 0.090960192941651
527 => 0.090240485086879
528 => 0.089612444528197
529 => 0.089960917932085
530 => 0.088718673875953
531 => 0.088321255000963
601 => 0.092977314687008
602 => 0.096416796038166
603 => 0.096366784617136
604 => 0.096062352953509
605 => 0.095610029253068
606 => 0.097773595297738
607 => 0.097019852149644
608 => 0.09756826326723
609 => 0.097707856913398
610 => 0.098130364837431
611 => 0.09828137510449
612 => 0.097824917194064
613 => 0.096292988695037
614 => 0.092475568526852
615 => 0.090698549133633
616 => 0.090112103135272
617 => 0.090133419333493
618 => 0.08954542342686
619 => 0.089718614573492
620 => 0.089485194613945
621 => 0.089043153680917
622 => 0.089933623150109
623 => 0.090036241461137
624 => 0.089828395246709
625 => 0.08987735055435
626 => 0.088156472671171
627 => 0.088287307279079
628 => 0.08755880355659
629 => 0.087422217890867
630 => 0.085580623918492
701 => 0.082317973253114
702 => 0.084125798434896
703 => 0.081942199833991
704 => 0.08111523795691
705 => 0.085029946864053
706 => 0.084637018666899
707 => 0.083964496395153
708 => 0.082969695789319
709 => 0.082600714567817
710 => 0.080358901471229
711 => 0.080226443193875
712 => 0.081337546298589
713 => 0.080824810446487
714 => 0.080104735121883
715 => 0.077496695289034
716 => 0.074564395024598
717 => 0.074652902737799
718 => 0.07558561289453
719 => 0.078297593468328
720 => 0.077237975740405
721 => 0.076469210921084
722 => 0.076325244379411
723 => 0.078127287062821
724 => 0.080677554999459
725 => 0.081874083656301
726 => 0.080688360096486
727 => 0.079326264714862
728 => 0.079409169149399
729 => 0.079960695210534
730 => 0.080018652801401
731 => 0.079132068733631
801 => 0.079381636955512
802 => 0.079002520005478
803 => 0.076675879982912
804 => 0.076633798442759
805 => 0.076062803459083
806 => 0.076045513957905
807 => 0.075074109049298
808 => 0.074938202787579
809 => 0.073009419381476
810 => 0.074278950460267
811 => 0.073427415665987
812 => 0.072143951874256
813 => 0.071922682232795
814 => 0.071916030600182
815 => 0.073233860937037
816 => 0.074263550845503
817 => 0.073442228478308
818 => 0.073255229295962
819 => 0.075251891333653
820 => 0.074997797889378
821 => 0.074777754605363
822 => 0.080449206477317
823 => 0.075959809771757
824 => 0.074002176562328
825 => 0.071579233721196
826 => 0.072368156127807
827 => 0.072534393670561
828 => 0.066707652905911
829 => 0.064343744903367
830 => 0.063532540758888
831 => 0.063065681304997
901 => 0.063278435020587
902 => 0.061150640559544
903 => 0.062580553627837
904 => 0.060738063482562
905 => 0.060429164013725
906 => 0.063723764634207
907 => 0.06418218906377
908 => 0.06222640802595
909 => 0.063482336064419
910 => 0.063026919098964
911 => 0.060769647687835
912 => 0.060683436523295
913 => 0.059550817076117
914 => 0.057778486959625
915 => 0.056968484538422
916 => 0.056546628244696
917 => 0.056720694373303
918 => 0.056632681212168
919 => 0.056058335801366
920 => 0.05666560201881
921 => 0.055114287772967
922 => 0.054496541940483
923 => 0.054217520479545
924 => 0.052840639796043
925 => 0.055031869265114
926 => 0.055463569074903
927 => 0.055896119466676
928 => 0.059661175312363
929 => 0.05947308376225
930 => 0.061173339770972
1001 => 0.061107270949044
1002 => 0.060622330393035
1003 => 0.058576445956082
1004 => 0.059391899028268
1005 => 0.056882061221625
1006 => 0.058762602358744
1007 => 0.057904401917038
1008 => 0.058472443926131
1009 => 0.057451053175499
1010 => 0.058016332989089
1011 => 0.055565941114811
1012 => 0.053277799660554
1013 => 0.05419861457676
1014 => 0.055199645698635
1015 => 0.057370136228845
1016 => 0.05607740997521
1017 => 0.056542323219409
1018 => 0.05498494167688
1019 => 0.051771618710598
1020 => 0.051789805769621
1021 => 0.051295506037305
1022 => 0.050868358899641
1023 => 0.056225895136168
1024 => 0.055559600815041
1025 => 0.054497948016771
1026 => 0.055919012475661
1027 => 0.056294764473917
1028 => 0.056305461605063
1029 => 0.057342233551286
1030 => 0.057895558924838
1031 => 0.057993084920175
1101 => 0.059624467978499
1102 => 0.060171286061186
1103 => 0.062423552355183
1104 => 0.057848613132761
1105 => 0.057754395270098
1106 => 0.055939009766837
1107 => 0.05478766358056
1108 => 0.056017843425231
1109 => 0.057107614831315
1110 => 0.05597287200215
1111 => 0.05612104545991
1112 => 0.054597745923652
1113 => 0.05514225382996
1114 => 0.055611257392007
1115 => 0.0553523011918
1116 => 0.054964631226467
1117 => 0.057018266003605
1118 => 0.056902391881219
1119 => 0.05881478379855
1120 => 0.060305630054567
1121 => 0.062977493065995
1122 => 0.060189264726201
1123 => 0.060087650603295
1124 => 0.061080944954119
1125 => 0.060171133992996
1126 => 0.060746103114819
1127 => 0.062884856651482
1128 => 0.062930045143508
1129 => 0.062173079679989
1130 => 0.06212701826274
1201 => 0.062272401760304
1202 => 0.063123917446505
1203 => 0.062826371701312
1204 => 0.063170699170586
1205 => 0.063601285943442
1206 => 0.065382375400983
1207 => 0.065811790039346
1208 => 0.064768535094087
1209 => 0.064862729334813
1210 => 0.064472523347298
1211 => 0.064095589252624
1212 => 0.064942882050646
1213 => 0.066491326292613
1214 => 0.066481693501348
1215 => 0.066840902468029
1216 => 0.067064686678424
1217 => 0.066104041027356
1218 => 0.06547869603243
1219 => 0.06571849309522
1220 => 0.066101933820723
1221 => 0.065594148435825
1222 => 0.062459861811164
1223 => 0.063410604154081
1224 => 0.063252354139294
1225 => 0.063026986874378
1226 => 0.063982965652055
1227 => 0.063890759166822
1228 => 0.061128816951882
1229 => 0.061305627531383
1230 => 0.061139569388836
1231 => 0.061676137219703
]
'min_raw' => 0.050868358899641
'max_raw' => 0.11395140341712
'avg_raw' => 0.082409881158378
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.050868'
'max' => '$0.113951'
'avg' => '$0.0824098'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.01240451298923
'max_diff' => -0.0828061220443
'year' => 2034
]
9 => [
'items' => [
101 => 0.060142157569264
102 => 0.060613999378229
103 => 0.060909934137569
104 => 0.061084241984298
105 => 0.061713961450694
106 => 0.061640071139508
107 => 0.061709368325204
108 => 0.062643076054094
109 => 0.067365449337019
110 => 0.06762247769548
111 => 0.066356776054716
112 => 0.06686239889534
113 => 0.065891713608901
114 => 0.066543341144714
115 => 0.066989168155172
116 => 0.064974561622516
117 => 0.06485526969834
118 => 0.063880578048433
119 => 0.064404322131736
120 => 0.063571007636668
121 => 0.063775473865654
122 => 0.063203768464363
123 => 0.064232724361277
124 => 0.065383256937607
125 => 0.065673926902296
126 => 0.064909299366487
127 => 0.06435565863915
128 => 0.063383647902541
129 => 0.065000123420194
130 => 0.065472830122755
131 => 0.064997640493123
201 => 0.064887528672839
202 => 0.064678866972368
203 => 0.064931797239001
204 => 0.065470255660534
205 => 0.065216328612705
206 => 0.065384051901415
207 => 0.064744863680357
208 => 0.066104359041039
209 => 0.068263564854177
210 => 0.068270507053932
211 => 0.068016578637341
212 => 0.067912676600236
213 => 0.068173222565323
214 => 0.068314558063227
215 => 0.069157115938358
216 => 0.070061214107361
217 => 0.074280245773159
218 => 0.073095558564131
219 => 0.076838934449344
220 => 0.079799458758024
221 => 0.080687190550159
222 => 0.079870519072404
223 => 0.077076730062727
224 => 0.076939653445438
225 => 0.08111475373319
226 => 0.079935096670192
227 => 0.079794780216187
228 => 0.078302050213954
301 => 0.079184438523481
302 => 0.078991447256332
303 => 0.078686801099681
304 => 0.080370336526556
305 => 0.083521764555421
306 => 0.083030584943217
307 => 0.082663942147874
308 => 0.081057420146792
309 => 0.082024905221123
310 => 0.08168040231711
311 => 0.083160605419695
312 => 0.082283765892237
313 => 0.079926159607715
314 => 0.080301616179298
315 => 0.080244866673817
316 => 0.081412767475299
317 => 0.081062192643774
318 => 0.080176411311436
319 => 0.083510993317022
320 => 0.083294464109499
321 => 0.083601453020299
322 => 0.08373659903278
323 => 0.085766300337654
324 => 0.086597804019064
325 => 0.086786569912264
326 => 0.087576434098801
327 => 0.086766917371754
328 => 0.090005561455587
329 => 0.092159070791214
330 => 0.094660482703123
331 => 0.098315717822559
401 => 0.099690120040282
402 => 0.099441846581448
403 => 0.10221320413238
404 => 0.10719327204759
405 => 0.1004484606927
406 => 0.10755076342709
407 => 0.10530225638141
408 => 0.099971086625022
409 => 0.099627822143073
410 => 0.10323815219825
411 => 0.11124551677925
412 => 0.10923976277048
413 => 0.11124879747426
414 => 0.10890515177614
415 => 0.10878877001344
416 => 0.11113497183382
417 => 0.11661700027195
418 => 0.11401269405176
419 => 0.11027878248303
420 => 0.11303584467928
421 => 0.11064742225083
422 => 0.10526563804217
423 => 0.1092382290082
424 => 0.10658187056209
425 => 0.10735713717645
426 => 0.11294040752666
427 => 0.11226861366662
428 => 0.11313797712794
429 => 0.11160357337391
430 => 0.11017019831437
501 => 0.10749469732192
502 => 0.10670261337866
503 => 0.10692151688439
504 => 0.10670250490096
505 => 0.10520558668481
506 => 0.10488232733855
507 => 0.10434354759914
508 => 0.10451053796928
509 => 0.10349747443362
510 => 0.10540933463502
511 => 0.10576419273566
512 => 0.10715548515433
513 => 0.10729993374867
514 => 0.11117466333085
515 => 0.10904052738917
516 => 0.11047229003128
517 => 0.1103442197043
518 => 0.10008662923916
519 => 0.10150003470177
520 => 0.10369885005052
521 => 0.10270828671633
522 => 0.10130786191791
523 => 0.10017694380716
524 => 0.098463487227061
525 => 0.10087514445954
526 => 0.10404621726909
527 => 0.10738035738818
528 => 0.11138610827977
529 => 0.11049207131285
530 => 0.10730547266161
531 => 0.10744842114929
601 => 0.10833207245199
602 => 0.10718766372681
603 => 0.10685015525224
604 => 0.10828570397038
605 => 0.10829558980544
606 => 0.1069788092607
607 => 0.10551544865352
608 => 0.10550931711915
609 => 0.10524892623349
610 => 0.10895147473624
611 => 0.11098750204288
612 => 0.11122092929236
613 => 0.11097179052914
614 => 0.11106767415114
615 => 0.10988295472221
616 => 0.11259087201911
617 => 0.11507592471602
618 => 0.11440987750784
619 => 0.11341137805859
620 => 0.11261602515302
621 => 0.11422251763997
622 => 0.11415098305838
623 => 0.11505421994862
624 => 0.11501324390593
625 => 0.1147095193122
626 => 0.1144098883548
627 => 0.11559789123214
628 => 0.11525576548221
629 => 0.11491310831649
630 => 0.11422585691246
701 => 0.1143192657923
702 => 0.11332093874806
703 => 0.11285906697706
704 => 0.10591362372651
705 => 0.10405757434105
706 => 0.10464152526109
707 => 0.10483377706624
708 => 0.1040260219951
709 => 0.10518413527186
710 => 0.10500364454442
711 => 0.10570582838134
712 => 0.10526713440531
713 => 0.10528513855911
714 => 0.10657524400319
715 => 0.10694976710211
716 => 0.10675928163123
717 => 0.10689269112557
718 => 0.10996705661414
719 => 0.10952998015434
720 => 0.10929779199633
721 => 0.1093621097029
722 => 0.11014767600037
723 => 0.11036759167333
724 => 0.10943579351379
725 => 0.10987523491249
726 => 0.11174632061474
727 => 0.11240109471624
728 => 0.11449081933885
729 => 0.11360306717727
730 => 0.11523257469086
731 => 0.12024112524759
801 => 0.12424230199763
802 => 0.12056265450267
803 => 0.12791030605734
804 => 0.13363150675068
805 => 0.13341191753891
806 => 0.13241429386427
807 => 0.1259008589809
808 => 0.11990709909138
809 => 0.12492113374745
810 => 0.12493391555294
811 => 0.12450320552925
812 => 0.12182810256335
813 => 0.12441011774466
814 => 0.12461506873325
815 => 0.12450035068051
816 => 0.12244935550866
817 => 0.11931786496853
818 => 0.11992975072434
819 => 0.12093203207449
820 => 0.11903450438086
821 => 0.11842812930749
822 => 0.11955549593647
823 => 0.1231881061112
824 => 0.12250138219995
825 => 0.12248344906335
826 => 0.12542154517197
827 => 0.12331850243903
828 => 0.11993746856325
829 => 0.11908371291926
830 => 0.1160534555418
831 => 0.11814646510582
901 => 0.11822178879391
902 => 0.11707546884574
903 => 0.12003048610931
904 => 0.12000325510501
905 => 0.1228086042005
906 => 0.12817137803006
907 => 0.12658534192258
908 => 0.12474095448983
909 => 0.12494149054309
910 => 0.12714087608216
911 => 0.12581107737815
912 => 0.12628928226379
913 => 0.12714015226179
914 => 0.12765350325749
915 => 0.12486762723483
916 => 0.12421810627009
917 => 0.12288941432712
918 => 0.1225427834004
919 => 0.12362497526389
920 => 0.12333985594226
921 => 0.1182154581296
922 => 0.11767993004629
923 => 0.11769635392805
924 => 0.11634974309961
925 => 0.11429583836261
926 => 0.11969337737917
927 => 0.11925987945763
928 => 0.11878133130232
929 => 0.11883995072079
930 => 0.12118283946831
1001 => 0.11982384567603
1002 => 0.1234369534075
1003 => 0.12269420707787
1004 => 0.12193241210752
1005 => 0.12182710883778
1006 => 0.12153388276749
1007 => 0.12052830146785
1008 => 0.11931400162246
1009 => 0.11851221568368
1010 => 0.10932125443618
1011 => 0.11102704338235
1012 => 0.11298939807737
1013 => 0.11366679505445
1014 => 0.11250806065072
1015 => 0.12057405536468
1016 => 0.12204779032477
1017 => 0.11758375100128
1018 => 0.11674871150938
1019 => 0.12062880041475
1020 => 0.11828863248323
1021 => 0.1193424099595
1022 => 0.11706471944127
1023 => 0.12169281072888
1024 => 0.12165755242745
1025 => 0.11985712038638
1026 => 0.12137883321866
1027 => 0.12111439816654
1028 => 0.11908171482645
1029 => 0.1217572504164
1030 => 0.12175857744867
1031 => 0.12002570075391
1101 => 0.11800208014992
1102 => 0.11764030458171
1103 => 0.11736775528878
1104 => 0.11927537954102
1105 => 0.12098574948058
1106 => 0.12416832390146
1107 => 0.12496849872697
1108 => 0.12809163434159
1109 => 0.12623195914579
1110 => 0.12705632907326
1111 => 0.12795129924378
1112 => 0.12838038085496
1113 => 0.12768121539533
1114 => 0.13253273053874
1115 => 0.13294234706342
1116 => 0.13307968794098
1117 => 0.13144378433137
1118 => 0.13289684962471
1119 => 0.13221700849442
1120 => 0.13398576625013
1121 => 0.13426313005086
1122 => 0.13402821277915
1123 => 0.13411625242739
1124 => 0.12997634011841
1125 => 0.12976166382541
1126 => 0.12683453733765
1127 => 0.12802736301764
1128 => 0.12579743258252
1129 => 0.12650456649433
1130 => 0.12681626438483
1201 => 0.12665345109553
1202 => 0.12809480359188
1203 => 0.12686935952112
1204 => 0.12363521113672
1205 => 0.12040018161076
1206 => 0.12035956845026
1207 => 0.11950784227909
1208 => 0.11889220025876
1209 => 0.11901079475295
1210 => 0.11942873721899
1211 => 0.11886790868285
1212 => 0.11898758988577
1213 => 0.12097509528582
1214 => 0.12137367531956
1215 => 0.12001914462964
1216 => 0.11458050845175
1217 => 0.11324585349191
1218 => 0.11420517700968
1219 => 0.11374668215653
1220 => 0.091802450064876
1221 => 0.096957921891416
1222 => 0.093894715595367
1223 => 0.095306381987931
1224 => 0.09217964157309
1225 => 0.093671885985558
1226 => 0.093396322930616
1227 => 0.10168616906619
1228 => 0.10155673452109
1229 => 0.10161868798831
1230 => 0.098661487579284
1231 => 0.1033723881276
]
'min_raw' => 0.060142157569264
'max_raw' => 0.13426313005086
'avg_raw' => 0.097202643810064
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.060142'
'max' => '$0.134263'
'avg' => '$0.0972026'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0092737986696234
'max_diff' => 0.020311726633748
'year' => 2035
]
10 => [
'items' => [
101 => 0.1056931471362
102 => 0.10526363640871
103 => 0.10537173500538
104 => 0.1035142429669
105 => 0.10163667257152
106 => 0.099554158047025
107 => 0.10342321262695
108 => 0.10299303980463
109 => 0.10397970148775
110 => 0.10648905994856
111 => 0.10685857251404
112 => 0.10735520114928
113 => 0.10717719513598
114 => 0.1114180205482
115 => 0.11090442860891
116 => 0.11214203741211
117 => 0.10959618220633
118 => 0.10671530538619
119 => 0.10726286588674
120 => 0.10721013140734
121 => 0.10653876095868
122 => 0.10593267773663
123 => 0.1049237199348
124 => 0.10811621171743
125 => 0.10798660238123
126 => 0.11008482687994
127 => 0.10971394531873
128 => 0.10723710748284
129 => 0.1073255682307
130 => 0.10792050927284
131 => 0.1099796070126
201 => 0.11059088741583
202 => 0.11030771797774
203 => 0.11097795903387
204 => 0.11150769023671
205 => 0.11104448511706
206 => 0.11760249279806
207 => 0.11487915078621
208 => 0.1162064887339
209 => 0.11652305101329
210 => 0.11571218339121
211 => 0.11588803154345
212 => 0.11615439357833
213 => 0.11777169169512
214 => 0.12201594992255
215 => 0.12389570299983
216 => 0.12955103287822
217 => 0.12373961567419
218 => 0.12339479022734
219 => 0.12441348591303
220 => 0.12773376322912
221 => 0.13042453613601
222 => 0.13131722074364
223 => 0.13143520375115
224 => 0.13310993941962
225 => 0.13406986667281
226 => 0.13290658245955
227 => 0.13192082088974
228 => 0.12838994530392
229 => 0.12879865376723
301 => 0.13161424978278
302 => 0.13559144499253
303 => 0.13900429223912
304 => 0.1378092320831
305 => 0.14692669749256
306 => 0.1478306569464
307 => 0.14770575897839
308 => 0.14976511314144
309 => 0.14567771450796
310 => 0.14393027240253
311 => 0.13213395373
312 => 0.13544823811139
313 => 0.14026574510085
314 => 0.13962812998607
315 => 0.136129527638
316 => 0.13900163823551
317 => 0.13805202865277
318 => 0.13730303217553
319 => 0.1407343302379
320 => 0.13696147706837
321 => 0.1402281080044
322 => 0.13603862003996
323 => 0.13781469101723
324 => 0.13680650723165
325 => 0.13745892569927
326 => 0.13364490066862
327 => 0.13570285599494
328 => 0.13355928296111
329 => 0.13355826662839
330 => 0.13351094713487
331 => 0.1360328513031
401 => 0.13611509050749
402 => 0.13425139951678
403 => 0.13398281252869
404 => 0.13497591939578
405 => 0.13381325134952
406 => 0.13435725641062
407 => 0.13382972870863
408 => 0.13371097111148
409 => 0.13276469037244
410 => 0.13235700661153
411 => 0.1325168699189
412 => 0.13197117403567
413 => 0.13164237252734
414 => 0.13344554023905
415 => 0.13248218047026
416 => 0.13329789153795
417 => 0.13236828582537
418 => 0.12914586741563
419 => 0.12729262051173
420 => 0.12120577085406
421 => 0.12293199386626
422 => 0.12407648150926
423 => 0.12369822835007
424 => 0.12451086250054
425 => 0.12456075163744
426 => 0.1242965559913
427 => 0.12399065127862
428 => 0.12384175378209
429 => 0.12495151373185
430 => 0.12559576673548
501 => 0.1241913461555
502 => 0.12386231006354
503 => 0.12528225681009
504 => 0.12614842350521
505 => 0.13254371172493
506 => 0.13206992811711
507 => 0.13325903199741
508 => 0.13312515714878
509 => 0.13437152745444
510 => 0.13640881614881
511 => 0.13226643859828
512 => 0.13298541210841
513 => 0.13280913640725
514 => 0.13473366829056
515 => 0.13473967646903
516 => 0.13358582346749
517 => 0.13421134589875
518 => 0.13386219643793
519 => 0.13449315670402
520 => 0.13206360044817
521 => 0.1350225377134
522 => 0.13670006447308
523 => 0.13672335693376
524 => 0.13751849130417
525 => 0.13832639387559
526 => 0.13987709250794
527 => 0.13828314573238
528 => 0.13541579065073
529 => 0.13562280442613
530 => 0.13394167519088
531 => 0.13396993527705
601 => 0.13381908072232
602 => 0.13427180659687
603 => 0.13216294831865
604 => 0.13265789314142
605 => 0.13196496749115
606 => 0.13298390582337
607 => 0.13188769661444
608 => 0.13280905140177
609 => 0.13320667758459
610 => 0.13467392675946
611 => 0.13167098271833
612 => 0.12554777653702
613 => 0.12683494871303
614 => 0.12493111995952
615 => 0.12510732655905
616 => 0.12546329193316
617 => 0.12430949169104
618 => 0.12452960041681
619 => 0.12452173658424
620 => 0.12445397032358
621 => 0.12415382231872
622 => 0.12371854832921
623 => 0.12545254593316
624 => 0.12574718591523
625 => 0.12640213409721
626 => 0.12835081563117
627 => 0.12815609639285
628 => 0.12847369154937
629 => 0.12778038310591
630 => 0.12513948714928
701 => 0.12528290050546
702 => 0.12349453365587
703 => 0.12635640153607
704 => 0.12567867344723
705 => 0.12524173773947
706 => 0.12512251578343
707 => 0.12707602772199
708 => 0.12766054911156
709 => 0.12729631460735
710 => 0.12654925901281
711 => 0.12798382660149
712 => 0.12836765636868
713 => 0.12845358169846
714 => 0.13099536041456
715 => 0.12859563889305
716 => 0.12917327571446
717 => 0.13367983330139
718 => 0.12959300743248
719 => 0.13175789024233
720 => 0.1316519304943
721 => 0.13275941128418
722 => 0.13156108474458
723 => 0.13157593943822
724 => 0.13255930735239
725 => 0.13117834446828
726 => 0.13083639863765
727 => 0.1303640029217
728 => 0.13139546168523
729 => 0.1320137745651
730 => 0.13699692227609
731 => 0.14021626295653
801 => 0.14007650288719
802 => 0.14135364830111
803 => 0.14077828259483
804 => 0.13892027495543
805 => 0.14209166743599
806 => 0.14108810615844
807 => 0.14117083853084
808 => 0.1411677592278
809 => 0.14183503974452
810 => 0.14136221034307
811 => 0.14043021505785
812 => 0.14104891702258
813 => 0.1428862406678
814 => 0.14858934963857
815 => 0.15178088497475
816 => 0.14839721520392
817 => 0.1507312253027
818 => 0.14933165093626
819 => 0.14907730664015
820 => 0.15054323746417
821 => 0.15201173420605
822 => 0.15191819731208
823 => 0.15085214408562
824 => 0.15024995766809
825 => 0.15480991496885
826 => 0.15816961383121
827 => 0.15794050489251
828 => 0.15895171723773
829 => 0.16192066795895
830 => 0.16219211160479
831 => 0.16215791594448
901 => 0.16148511454603
902 => 0.16440843209804
903 => 0.16684711503079
904 => 0.16132938046139
905 => 0.16343046155297
906 => 0.16437370454759
907 => 0.16575866511127
908 => 0.16809532572854
909 => 0.17063355892751
910 => 0.17099249293216
911 => 0.17073781207929
912 => 0.16906377905319
913 => 0.17184114410693
914 => 0.17346805941818
915 => 0.17443685025474
916 => 0.17689354262482
917 => 0.1643795296952
918 => 0.15552148935682
919 => 0.15413817844633
920 => 0.15695119557883
921 => 0.15769296576328
922 => 0.15739395913203
923 => 0.14742342939338
924 => 0.1540856856707
925 => 0.16125371324668
926 => 0.16152906637859
927 => 0.16511753085951
928 => 0.16628608199063
929 => 0.16917526624856
930 => 0.16899454698659
1001 => 0.16969801737643
1002 => 0.16953630171622
1003 => 0.17488790716452
1004 => 0.1807915226951
1005 => 0.18058709926162
1006 => 0.17973838468069
1007 => 0.18099887056071
1008 => 0.18709203445816
1009 => 0.18653107356744
1010 => 0.18707599929023
1011 => 0.19426018292099
1012 => 0.20360064357918
1013 => 0.19926106183653
1014 => 0.20867670553706
1015 => 0.21460335414472
1016 => 0.22485288008477
1017 => 0.22356958895709
1018 => 0.22755965419106
1019 => 0.22127223000762
1020 => 0.20683503318437
1021 => 0.20455029152372
1022 => 0.20912440218721
1023 => 0.22036940691822
1024 => 0.20877025697066
1025 => 0.21111674989828
1026 => 0.21044095977727
1027 => 0.21040494979364
1028 => 0.21177930440545
1029 => 0.20978573135951
1030 => 0.20166355613342
1031 => 0.20538590117526
1101 => 0.20394852499291
1102 => 0.20554340103072
1103 => 0.21415028922984
1104 => 0.21034497879442
1105 => 0.20633639336902
1106 => 0.21136404906879
1107 => 0.21776598246453
1108 => 0.217365360978
1109 => 0.21658798784735
1110 => 0.22096999948289
1111 => 0.22820779889585
1112 => 0.23016414699334
1113 => 0.23160828316313
1114 => 0.23180740514206
1115 => 0.2338584852787
1116 => 0.22282931044526
1117 => 0.24033289415523
1118 => 0.2433552795352
1119 => 0.24278719634881
1120 => 0.24614645049723
1121 => 0.24515807271071
1122 => 0.24372606836977
1123 => 0.24905120072886
1124 => 0.24294636619519
1125 => 0.23428132215193
1126 => 0.22952750761466
1127 => 0.23578771407662
1128 => 0.23961060371183
1129 => 0.24213729057927
1130 => 0.24290186449869
1201 => 0.22368547389154
1202 => 0.21332890514417
1203 => 0.21996734697293
1204 => 0.2280667041648
1205 => 0.22278431810711
1206 => 0.22299137763969
1207 => 0.21546008330805
1208 => 0.22873305659971
1209 => 0.22679929603439
1210 => 0.23683164926803
1211 => 0.23443734765415
1212 => 0.24261834226247
1213 => 0.24046401220712
1214 => 0.24940651581993
1215 => 0.2529739226197
1216 => 0.25896415385905
1217 => 0.26337059234334
1218 => 0.26595813730306
1219 => 0.26580279080931
1220 => 0.27605593304948
1221 => 0.27001001328796
1222 => 0.26241491315361
1223 => 0.26227754175441
1224 => 0.26621115173739
1225 => 0.27445491912852
1226 => 0.27659240807111
1227 => 0.27778697278841
1228 => 0.27595745534076
1229 => 0.26939504275461
1230 => 0.26656142627209
1231 => 0.26897574961297
]
'min_raw' => 0.099554158047025
'max_raw' => 0.27778697278841
'avg_raw' => 0.18867056541772
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.099554'
'max' => '$0.277786'
'avg' => '$0.18867'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.039412000477761
'max_diff' => 0.14352384273754
'year' => 2036
]
11 => [
'items' => [
101 => 0.26602323963225
102 => 0.27112010018696
103 => 0.27811917835925
104 => 0.27667389639402
105 => 0.28150525731498
106 => 0.28650520759418
107 => 0.29365536105526
108 => 0.2955246759394
109 => 0.2986145823592
110 => 0.30179511104657
111 => 0.3028166111433
112 => 0.30476697178082
113 => 0.30475669241754
114 => 0.31063423547312
115 => 0.31711734747579
116 => 0.31956457217241
117 => 0.32519183042152
118 => 0.31555534787256
119 => 0.32286473058188
120 => 0.32945797675141
121 => 0.32159723686046
122 => 0.33243143548264
123 => 0.33285210286431
124 => 0.33920368088832
125 => 0.33276513974587
126 => 0.32894195456804
127 => 0.33997934692356
128 => 0.34531999340979
129 => 0.34371134722452
130 => 0.33146947032591
131 => 0.32434417289212
201 => 0.30569589514066
202 => 0.32778558568291
203 => 0.33854482958093
204 => 0.33144160648345
205 => 0.33502405904401
206 => 0.35456875860026
207 => 0.3620101147657
208 => 0.36046236470229
209 => 0.36072390898487
210 => 0.36473912970158
211 => 0.38254482958187
212 => 0.37187524148071
213 => 0.38003174180221
214 => 0.38435792016228
215 => 0.38837631572366
216 => 0.37850840625188
217 => 0.36567040101747
218 => 0.36160406585693
219 => 0.33073533093564
220 => 0.32912847922686
221 => 0.32822650467014
222 => 0.32253968267682
223 => 0.31807139834171
224 => 0.31451805274168
225 => 0.30519301276836
226 => 0.30833994001993
227 => 0.29347777258957
228 => 0.30298606062864
301 => 0.2792656825502
302 => 0.29902071826877
303 => 0.2882689504784
304 => 0.29548847338176
305 => 0.29546328514647
306 => 0.28216985452957
307 => 0.27450248117655
308 => 0.27938842989573
309 => 0.28462655476978
310 => 0.28547642290742
311 => 0.29226778853567
312 => 0.2941631127026
313 => 0.28842019199258
314 => 0.2787741304381
315 => 0.28101469053396
316 => 0.27445707629772
317 => 0.2629651095837
318 => 0.2712188407082
319 => 0.27403702740504
320 => 0.27528169919893
321 => 0.26398066979698
322 => 0.2604296410016
323 => 0.25853910306696
324 => 0.27731530945455
325 => 0.27834391242536
326 => 0.27308143419693
327 => 0.29686833479808
328 => 0.29148462659654
329 => 0.29749954769819
330 => 0.2808113831897
331 => 0.28144889354752
401 => 0.2735484490295
402 => 0.2779721700517
403 => 0.27484562661639
404 => 0.27761477710917
405 => 0.2792745944969
406 => 0.28717374262972
407 => 0.29911091385187
408 => 0.28599387331205
409 => 0.28027859090937
410 => 0.28382431996803
411 => 0.29326706370193
412 => 0.30757330382396
413 => 0.2991037217318
414 => 0.30286237844147
415 => 0.30368347772153
416 => 0.29743832144775
417 => 0.30780357164377
418 => 0.31335839343096
419 => 0.3190564911762
420 => 0.32400398979132
421 => 0.3167805456329
422 => 0.32451066632246
423 => 0.31828155359666
424 => 0.31269339552778
425 => 0.31270187045688
426 => 0.30919633727031
427 => 0.30240392499573
428 => 0.30115129995799
429 => 0.30766761359339
430 => 0.31289308003178
501 => 0.31332347447595
502 => 0.3162165611904
503 => 0.31792866010685
504 => 0.33470955697368
505 => 0.34145897251237
506 => 0.3497120300732
507 => 0.35292706110997
508 => 0.36260315187826
509 => 0.3547889227292
510 => 0.35309826509899
511 => 0.32962723392031
512 => 0.33347061396095
513 => 0.33962423623702
514 => 0.32972870488512
515 => 0.33600514189056
516 => 0.33724424350855
517 => 0.32939245851636
518 => 0.33358643613629
519 => 0.32244847500546
520 => 0.29935369096798
521 => 0.3078292827404
522 => 0.31407017113823
523 => 0.30516365389853
524 => 0.32112824132088
525 => 0.31180205892472
526 => 0.30884610684084
527 => 0.29731388388862
528 => 0.3027566492061
529 => 0.31011806723088
530 => 0.30556956674827
531 => 0.31500838821048
601 => 0.3283762766427
602 => 0.33790303001103
603 => 0.33863437584048
604 => 0.33250931166755
605 => 0.3423247660943
606 => 0.34239626096403
607 => 0.33132438827334
608 => 0.32454292789874
609 => 0.32300216583332
610 => 0.32685129155694
611 => 0.33152484077323
612 => 0.33889372529573
613 => 0.34334658788214
614 => 0.35495729189166
615 => 0.35809881549167
616 => 0.36155039747763
617 => 0.36616277543934
618 => 0.37170111777181
619 => 0.35958354004637
620 => 0.36006499399939
621 => 0.34878127340075
622 => 0.33672299969188
623 => 0.34587372635188
624 => 0.35783708418966
625 => 0.35509267668334
626 => 0.35478387477572
627 => 0.35530319392983
628 => 0.35323400029403
629 => 0.34387511416721
630 => 0.33917514014405
701 => 0.34523930572518
702 => 0.34846213984659
703 => 0.35346047450823
704 => 0.35284432425914
705 => 0.36571949756557
706 => 0.37072240058742
707 => 0.36944244390814
708 => 0.36967798674101
709 => 0.37873550369227
710 => 0.38880932536251
711 => 0.39824478871454
712 => 0.4078429472988
713 => 0.39627199250296
714 => 0.39039697525492
715 => 0.39645849341106
716 => 0.39324216655537
717 => 0.41172413469271
718 => 0.41300378606678
719 => 0.43148441774747
720 => 0.44902473784512
721 => 0.43800797705926
722 => 0.44839628627452
723 => 0.45963208966211
724 => 0.48130777734016
725 => 0.47400816829008
726 => 0.46841678215717
727 => 0.46313294927896
728 => 0.47412776671367
729 => 0.48827242369694
730 => 0.49131904733529
731 => 0.49625574152923
801 => 0.49106541121455
802 => 0.49731659238245
803 => 0.51938600881334
804 => 0.51342265768159
805 => 0.50495374041797
806 => 0.52237542512087
807 => 0.52868026508976
808 => 0.5729309338618
809 => 0.62879923109045
810 => 0.60566938918677
811 => 0.59131194992183
812 => 0.5946862887121
813 => 0.61508749959879
814 => 0.62163972103353
815 => 0.60382852448774
816 => 0.6101197402173
817 => 0.64478495742585
818 => 0.66338173426491
819 => 0.63812481343711
820 => 0.56844197057723
821 => 0.50419120707881
822 => 0.52123340280818
823 => 0.51930134669337
824 => 0.55654479801004
825 => 0.51328043372931
826 => 0.51400889466615
827 => 0.55202250111454
828 => 0.54188112263231
829 => 0.52545338830072
830 => 0.50431114771945
831 => 0.46522776058442
901 => 0.43061051467804
902 => 0.49850290577605
903 => 0.4955752624176
904 => 0.49133560098213
905 => 0.50077050872749
906 => 0.54658374259366
907 => 0.54552759927008
908 => 0.53880895429451
909 => 0.54390498729306
910 => 0.52456002907711
911 => 0.52954566528587
912 => 0.5041810294296
913 => 0.5156469041574
914 => 0.52541814176091
915 => 0.52737986237546
916 => 0.53179971908798
917 => 0.49403252740085
918 => 0.51098888768188
919 => 0.52094916075088
920 => 0.47594828466728
921 => 0.52005963811956
922 => 0.49337508461799
923 => 0.48431794637101
924 => 0.49651218983334
925 => 0.49176008129678
926 => 0.48767449743022
927 => 0.48539467143344
928 => 0.49434877800263
929 => 0.49393105822871
930 => 0.47928040196432
1001 => 0.46016921810457
1002 => 0.46658355871112
1003 => 0.464253168634
1004 => 0.45580753436819
1005 => 0.46149887213357
1006 => 0.43643710093494
1007 => 0.39331962618521
1008 => 0.42180435072885
1009 => 0.42070771981934
1010 => 0.42015474878651
1011 => 0.4415602320211
1012 => 0.43950258871662
1013 => 0.43576794597048
1014 => 0.45573894472541
1015 => 0.44844926153202
1016 => 0.47091434746868
1017 => 0.48571130601723
1018 => 0.48195831869786
1019 => 0.49587492973267
1020 => 0.46673133216355
1021 => 0.47641166623783
1022 => 0.47840676967417
1023 => 0.45549250570079
1024 => 0.43983924460853
1025 => 0.43879535055392
1026 => 0.41165475297219
1027 => 0.4261530411291
1028 => 0.43891093472725
1029 => 0.43280089374628
1030 => 0.43086663730398
1031 => 0.44074833397863
1101 => 0.44151622644126
1102 => 0.42400819691573
1103 => 0.42764867066127
1104 => 0.4428300513586
1105 => 0.42726613881911
1106 => 0.39702799910555
1107 => 0.3895285223816
1108 => 0.38852795394384
1109 => 0.36818877827749
1110 => 0.39002967327644
1111 => 0.3804955373098
1112 => 0.41061375859192
1113 => 0.39341039212283
1114 => 0.39266878937828
1115 => 0.39154774806043
1116 => 0.37404097936363
1117 => 0.37787384909503
1118 => 0.39061489184477
1119 => 0.395161039436
1120 => 0.39468683899675
1121 => 0.39055245378445
1122 => 0.39244515416316
1123 => 0.3863481067828
1124 => 0.38419511245373
1125 => 0.37739967012343
1126 => 0.36741224718676
1127 => 0.36880105960253
1128 => 0.3490133614136
1129 => 0.33823197322764
1130 => 0.33524782707418
1201 => 0.33125730212172
1202 => 0.33569856748594
1203 => 0.34895730535082
1204 => 0.33296445448763
1205 => 0.30554583345072
1206 => 0.3071937392941
1207 => 0.31089609445653
1208 => 0.30399678010487
1209 => 0.2974671580866
1210 => 0.30314413466651
1211 => 0.29152650347988
1212 => 0.31230002968154
1213 => 0.31173816401492
1214 => 0.31948124995666
1215 => 0.32432316050014
1216 => 0.31316412428456
1217 => 0.31035765685358
1218 => 0.3119563482491
1219 => 0.28553354061029
1220 => 0.31732194285893
1221 => 0.31759685028162
1222 => 0.31524292602742
1223 => 0.33216926886801
1224 => 0.36788913172039
1225 => 0.35444988248717
1226 => 0.34924579898061
1227 => 0.33935283243048
1228 => 0.3525346229723
1229 => 0.35152246712665
1230 => 0.34694511454394
1231 => 0.3441767174197
]
'min_raw' => 0.25853910306696
'max_raw' => 0.66338173426491
'avg_raw' => 0.46096041866593
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.258539'
'max' => '$0.663381'
'avg' => '$0.46096'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.15898494501993
'max_diff' => 0.3855947614765
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.008115247019256
]
1 => [
'year' => 2028
'avg' => 0.013928119758086
]
2 => [
'year' => 2029
'avg' => 0.038049112879744
]
3 => [
'year' => 2030
'avg' => 0.029354833922283
]
4 => [
'year' => 2031
'avg' => 0.028830084816201
]
5 => [
'year' => 2032
'avg' => 0.050548211844407
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.008115247019256
'min' => '$0.008115'
'max_raw' => 0.050548211844407
'max' => '$0.050548'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.050548211844407
]
1 => [
'year' => 2033
'avg' => 0.13001519867514
]
2 => [
'year' => 2034
'avg' => 0.082409881158378
]
3 => [
'year' => 2035
'avg' => 0.097202643810064
]
4 => [
'year' => 2036
'avg' => 0.18867056541772
]
5 => [
'year' => 2037
'avg' => 0.46096041866593
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.050548211844407
'min' => '$0.050548'
'max_raw' => 0.46096041866593
'max' => '$0.46096'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.46096041866593
]
]
]
]
'prediction_2025_max_price' => '$0.013875'
'last_price' => 0.01345414
'sma_50day_nextmonth' => '$0.012224'
'sma_200day_nextmonth' => '$0.019879'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.013134'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0130084'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.012397'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.011984'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.013123'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.016663'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.021851'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.013169'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.012948'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.012591'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.01247'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.01361'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.016485'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.022969'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.019348'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.029936'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.064017'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.086771'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.013100084'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.013232'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.014617'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.018817'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.032729'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.055033'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.0764037'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '59.88'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 105.91
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.012455'
'vwma_10_action' => 'BUY'
'hma_9' => '0.013468'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 182.01
'cci_20_action' => 'SELL'
'adx_14' => 19.82
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000519'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 82.97
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.002869'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 20
'sell_pct' => 42.86
'buy_pct' => 57.14
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767712141
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de NKN para 2026
La previsión del precio de NKN para 2026 sugiere que el precio medio podría oscilar entre $0.004648 en el extremo inferior y $0.013875 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, NKN podría potencialmente ganar 3.13% para 2026 si NKN alcanza el objetivo de precio previsto.
Predicción de precio de NKN 2027-2032
La predicción del precio de NKN para 2027-2032 está actualmente dentro de un rango de precios de $0.008115 en el extremo inferior y $0.050548 en el extremo superior. Considerando la volatilidad de precios en el mercado, si NKN alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de NKN | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.004474 | $0.008115 | $0.011755 |
| 2028 | $0.008075 | $0.013928 | $0.01978 |
| 2029 | $0.01774 | $0.038049 | $0.058357 |
| 2030 | $0.015087 | $0.029354 | $0.043622 |
| 2031 | $0.017838 | $0.02883 | $0.039822 |
| 2032 | $0.027228 | $0.050548 | $0.073868 |
Predicción de precio de NKN 2032-2037
La predicción de precio de NKN para 2032-2037 se estima actualmente entre $0.050548 en el extremo inferior y $0.46096 en el extremo superior. Comparado con el precio actual, NKN podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de NKN | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.027228 | $0.050548 | $0.073868 |
| 2033 | $0.063272 | $0.130015 | $0.196757 |
| 2034 | $0.050868 | $0.0824098 | $0.113951 |
| 2035 | $0.060142 | $0.0972026 | $0.134263 |
| 2036 | $0.099554 | $0.18867 | $0.277786 |
| 2037 | $0.258539 | $0.46096 | $0.663381 |
NKN Histograma de precios potenciales
Pronóstico de precio de NKN basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para NKN es Alcista, con 20 indicadores técnicos mostrando señales alcistas y 15 indicando señales bajistas. La predicción de precio de NKN se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de NKN
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de NKN aumentar durante el próximo mes, alcanzando $0.019879 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para NKN alcance $0.012224 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 59.88, lo que sugiere que el mercado de NKN está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de NKN para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.013134 | BUY |
| SMA 5 | $0.0130084 | BUY |
| SMA 10 | $0.012397 | BUY |
| SMA 21 | $0.011984 | BUY |
| SMA 50 | $0.013123 | BUY |
| SMA 100 | $0.016663 | SELL |
| SMA 200 | $0.021851 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.013169 | BUY |
| EMA 5 | $0.012948 | BUY |
| EMA 10 | $0.012591 | BUY |
| EMA 21 | $0.01247 | BUY |
| EMA 50 | $0.01361 | SELL |
| EMA 100 | $0.016485 | SELL |
| EMA 200 | $0.022969 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.019348 | SELL |
| SMA 50 | $0.029936 | SELL |
| SMA 100 | $0.064017 | SELL |
| SMA 200 | $0.086771 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.018817 | SELL |
| EMA 50 | $0.032729 | SELL |
| EMA 100 | $0.055033 | SELL |
| EMA 200 | $0.0764037 | SELL |
Osciladores de NKN
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 59.88 | NEUTRAL |
| Stoch RSI (14) | 105.91 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 182.01 | SELL |
| Índice Direccional Medio (14) | 19.82 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.000519 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 82.97 | SELL |
| VWMA (10) | 0.012455 | BUY |
| Promedio Móvil de Hull (9) | 0.013468 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.002869 | SELL |
Predicción de precios de NKN basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de NKN
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de NKN por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.0189053 | $0.026565 | $0.037328 | $0.052452 | $0.0737047 | $0.103567 |
| Amazon.com acción | $0.028072 | $0.058575 | $0.122221 | $0.255022 | $0.53212 | $1.11 |
| Apple acción | $0.019083 | $0.027068 | $0.038394 | $0.05446 | $0.077247 | $0.10957 |
| Netflix acción | $0.021228 | $0.033495 | $0.05285 | $0.083389 | $0.131575 | $0.2076056 |
| Google acción | $0.017423 | $0.022562 | $0.029218 | $0.037838 | $0.04900013 | $0.063454 |
| Tesla acción | $0.030499 | $0.06914 | $0.156735 | $0.3553072 | $0.805454 | $1.82 |
| Kodak acción | $0.010089 | $0.007565 | $0.005673 | $0.004254 | $0.00319 | $0.002392 |
| Nokia acción | $0.008912 | $0.0059043 | $0.003911 | $0.002591 | $0.001716 | $0.001137 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de NKN
Podría preguntarse cosas como: "¿Debo invertir en NKN ahora?", "¿Debería comprar NKN hoy?", "¿Será NKN una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de NKN regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como NKN, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de NKN a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de NKN es de $0.01345 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de NKN
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de NKN
basado en el historial de precios del último mes
Predicción de precios de NKN basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si NKN ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.0138038 | $0.014162 | $0.01453 | $0.0149084 |
| Si NKN ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.014153 | $0.014889 | $0.015663 | $0.016477 |
| Si NKN ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.0152027 | $0.017178 | $0.019411 | $0.021933 |
| Si NKN ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.016951 | $0.021357 | $0.0269089 | $0.0339035 |
| Si NKN ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.020448 | $0.031078 | $0.047235 | $0.071791 |
| Si NKN ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.030939 | $0.071151 | $0.163624 | $0.376279 |
| Si NKN ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.048425 | $0.174299 | $0.627361 | $2.25 |
Cuadro de preguntas
¿Es NKN una buena inversión?
La decisión de adquirir NKN depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de NKN ha experimentado un aumento de 4.108% durante las últimas 24 horas, y NKN ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en NKN dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede NKN subir?
Parece que el valor medio de NKN podría potencialmente aumentar hasta $0.013875 para el final de este año. Mirando las perspectivas de NKN en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.043622. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de NKN la próxima semana?
Basado en nuestro nuevo pronóstico experimental de NKN, el precio de NKN aumentará en un 0.86% durante la próxima semana y alcanzará $0.013569 para el 13 de enero de 2026.
¿Cuál será el precio de NKN el próximo mes?
Basado en nuestro nuevo pronóstico experimental de NKN, el precio de NKN disminuirá en un -11.62% durante el próximo mes y alcanzará $0.011891 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de NKN este año en 2026?
Según nuestra predicción más reciente sobre el valor de NKN en 2026, se anticipa que NKN fluctúe dentro del rango de $0.004648 y $0.013875. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de NKN no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará NKN en 5 años?
El futuro de NKN parece estar en una tendencia alcista, con un precio máximo de $0.043622 proyectada después de un período de cinco años. Basado en el pronóstico de NKN para 2030, el valor de NKN podría potencialmente alcanzar su punto más alto de aproximadamente $0.043622, mientras que su punto más bajo se anticipa que esté alrededor de $0.015087.
¿Cuánto será NKN en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de NKN, se espera que el valor de NKN en 2026 crezca en un 3.13% hasta $0.013875 si ocurre lo mejor. El precio estará entre $0.013875 y $0.004648 durante 2026.
¿Cuánto será NKN en 2027?
Según nuestra última simulación experimental para la predicción de precios de NKN, el valor de NKN podría disminuir en un -12.62% hasta $0.011755 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.011755 y $0.004474 a lo largo del año.
¿Cuánto será NKN en 2028?
Nuestro nuevo modelo experimental de predicción de precios de NKN sugiere que el valor de NKN en 2028 podría aumentar en un 47.02% , alcanzando $0.01978 en el mejor escenario. Se espera que el precio oscile entre $0.01978 y $0.008075 durante el año.
¿Cuánto será NKN en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de NKN podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.058357 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.058357 y $0.01774.
¿Cuánto será NKN en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de NKN, se espera que el valor de NKN en 2030 aumente en un 224.23% , alcanzando $0.043622 en el mejor escenario. Se pronostica que el precio oscile entre $0.043622 y $0.015087 durante el transcurso de 2030.
¿Cuánto será NKN en 2031?
Nuestra simulación experimental indica que el precio de NKN podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.039822 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.039822 y $0.017838 durante el año.
¿Cuánto será NKN en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de NKN, NKN podría experimentar un 449.04% aumento en valor, alcanzando $0.073868 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.073868 y $0.027228 a lo largo del año.
¿Cuánto será NKN en 2033?
Según nuestra predicción experimental de precios de NKN, se anticipa que el valor de NKN aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.196757. A lo largo del año, el precio de NKN podría oscilar entre $0.196757 y $0.063272.
¿Cuánto será NKN en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de NKN sugieren que NKN podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.113951 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.113951 y $0.050868.
¿Cuánto será NKN en 2035?
Basado en nuestra predicción experimental para el precio de NKN, NKN podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.134263 en 2035. El rango de precios esperado para el año está entre $0.134263 y $0.060142.
¿Cuánto será NKN en 2036?
Nuestra reciente simulación de predicción de precios de NKN sugiere que el valor de NKN podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.277786 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.277786 y $0.099554.
¿Cuánto será NKN en 2037?
Según la simulación experimental, el valor de NKN podría aumentar en un 4830.69% en 2037, con un máximo de $0.663381 bajo condiciones favorables. Se espera que el precio caiga entre $0.663381 y $0.258539 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Mil.k Alliance
Predicción de precios de Dogelon Mars
Predicción de precios de Medibloc
Predicción de precios de ChainGPT
Predicción de precios de Hifi Finance
Predicción de precios de The Truth
Predicción de precios de Metal
Predicción de precios de Telos
Predicción de precios de Stader MaticX
Predicción de precios de OmiseGO
Predicción de precios de WazirX
Predicción de precios de STP Network
Predicción de precios de Ultima
Predicción de precios de LUKSO
Predicción de precios de Bella Protocol
Predicción de precios de Aavegotchi
Predicción de precios de Tokamak Network
Predicción de precios de Chainflip
Predicción de precios de Kyber Network Crystal
Predicción de precios de Radicle
Predicción de precios de Ergo
Predicción de precios de CANTO
Predicción de precios de Mines of Dalarnia
Predicción de precios de Ethernity Chain
Predicción de precios de Huobi Token
¿Cómo leer y predecir los movimientos de precio de NKN?
Los traders de NKN utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de NKN
Las medias móviles son herramientas populares para la predicción de precios de NKN. Una media móvil simple (SMA) calcula el precio de cierre promedio de NKN durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de NKN por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de NKN.
¿Cómo leer gráficos de NKN y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de NKN en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de NKN dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de NKN?
La acción del precio de NKN está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de NKN. La capitalización de mercado de NKN puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de NKN, grandes poseedores de NKN, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de NKN.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


