Previsione del prezzo di iMe Lab LIME
Previsione del prezzo di iMe Lab fino a $0.005196 entro il 2026
| Anno | Prezzo min. | Prezzo max. |
|---|---|---|
| 2026 | $0.00174 | $0.005196 |
| 2027 | $0.001675 | $0.0044028 |
| 2028 | $0.003024 | $0.0074083 |
| 2029 | $0.006644 | $0.021856 |
| 2030 | $0.00565 | $0.016337 |
| 2031 | $0.00668 | $0.014914 |
| 2032 | $0.010197 | $0.027666 |
| 2033 | $0.023697 | $0.073692 |
| 2034 | $0.019051 | $0.042678 |
| 2035 | $0.022525 | $0.050285 |
Calcolatore di profitto dell’investimento
Se apri uno short di $10,000.00 su iMe Lab oggi e lo chiudi il Apr 06, 2026, la nostra previsione suggerisce che potresti guadagnare circa $3,954.58, con un rendimento del 39.55% nei prossimi 90 giorni.
Previsione a lungo termine del prezzo di iMe Lab per gli anni 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'iMe Lab'
'name_with_ticker' => 'iMe Lab <small>LIME</small>'
'name_lang' => 'iMe Lab'
'name_lang_with_ticker' => 'iMe Lab <small>LIME</small>'
'name_with_lang' => 'iMe Lab'
'name_with_lang_with_ticker' => 'iMe Lab <small>LIME</small>'
'image' => '/uploads/coins/ime-lab.png?1717083250'
'price_for_sd' => 0.005039
'ticker' => 'LIME'
'marketcap' => '$3.83M'
'low24h' => '$0.005015'
'high24h' => '$0.005155'
'volume24h' => '$201.45K'
'current_supply' => '760.15M'
'max_supply' => '996.08M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.005039'
'change_24h_pct' => '-1.3327%'
'ath_price' => '$0.2713'
'ath_days' => 1508
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '20 nov 2021'
'ath_pct' => '-98.14%'
'fdv' => '$5.02M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.248458'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.0050821'
'next_week_prediction_price_date' => '13 gennaio 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.004453'
'next_month_prediction_price_date' => '5 febbraio 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00174'
'current_year_max_price_prediction' => '$0.005196'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.00565'
'grand_prediction_max_price' => '$0.016337'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0051345067784755
107 => 0.0051536771629603
108 => 0.0051968690180689
109 => 0.0048277993451571
110 => 0.0049935007929782
111 => 0.005090834869447
112 => 0.0046510759709167
113 => 0.0050821422499558
114 => 0.0048213746632577
115 => 0.0047328662277346
116 => 0.0048520311760667
117 => 0.00480559247981
118 => 0.0047656672157402
119 => 0.0047433882323861
120 => 0.0048308898186858
121 => 0.0048268077650979
122 => 0.0046836381865856
123 => 0.0044968793077549
124 => 0.0045595617176417
125 => 0.0045367886104791
126 => 0.0044542559323325
127 => 0.0045098729923697
128 => 0.0042649636071157
129 => 0.0038436097390683
130 => 0.0041219690107184
131 => 0.0041112524815565
201 => 0.0041058487215972
202 => 0.0043150280209571
203 => 0.0042949202579112
204 => 0.004258424471087
205 => 0.0044535856585871
206 => 0.0043823491998612
207 => 0.004601883180234
208 => 0.0047464824582751
209 => 0.0047098074040672
210 => 0.0048458037239739
211 => 0.0045610057937648
212 => 0.0046556042420705
213 => 0.0046751008511585
214 => 0.0044511773998275
215 => 0.0042982101366224
216 => 0.0042880089641211
217 => 0.0040227848099108
218 => 0.0041644654122754
219 => 0.0042891384792145
220 => 0.0042294297551715
221 => 0.0042105277568868
222 => 0.0043070939667797
223 => 0.0043145979883221
224 => 0.0041435055019163
225 => 0.0041790810476344
226 => 0.0043274369872216
227 => 0.004175342858599
228 => 0.0038798488111201
301 => 0.0038065622018205
302 => 0.0037967844171997
303 => 0.003598025320345
304 => 0.0038114595634875
305 => 0.0037182897966737
306 => 0.0040126119736933
307 => 0.0038444967246612
308 => 0.0038372496122831
309 => 0.0038262945390034
310 => 0.0036552143737056
311 => 0.0036926700571941
312 => 0.0038171784537716
313 => 0.0038616044523579
314 => 0.0038569704567339
315 => 0.003816568294703
316 => 0.0038350641975882
317 => 0.0037754824499953
318 => 0.0037544428948334
319 => 0.0036880362713569
320 => 0.0035904368801444
321 => 0.0036040086741043
322 => 0.0034106387418425
323 => 0.0033052805398271
324 => 0.0032761187781081
325 => 0.0032371224515834
326 => 0.0032805235169543
327 => 0.00341009094912
328 => 0.003253805136664
329 => 0.0029858640733832
330 => 0.0030019677878358
331 => 0.0030381480529749
401 => 0.0029707263682445
402 => 0.0029069174019204
403 => 0.0029623941211542
404 => 0.0028488639604375
405 => 0.0030518676305007
406 => 0.0030463769501367
407 => 0.0031220441646735
408 => 0.003169360426771
409 => 0.0030603117614582
410 => 0.0030328863170309
411 => 0.0030485090965936
412 => 0.0027902993505937
413 => 0.0031009429196862
414 => 0.0031036293781715
415 => 0.0030806262896244
416 => 0.0032460344001219
417 => 0.0035950971053552
418 => 0.0034637656746317
419 => 0.003412910175142
420 => 0.003316233833437
421 => 0.0034450493186858
422 => 0.0034351582992533
423 => 0.0033904273583218
424 => 0.0033633739456774
425 => 0.0034132206879776
426 => 0.0033571973826769
427 => 0.0033471340576274
428 => 0.0032861612568333
429 => 0.0032643967410354
430 => 0.003248283160009
501 => 0.0032305436905867
502 => 0.0032696725397319
503 => 0.0031810014197401
504 => 0.0030740727415671
505 => 0.0030651827789613
506 => 0.0030897287473293
507 => 0.0030788689835589
508 => 0.0030651307865904
509 => 0.0030389008272023
510 => 0.0030311189585662
511 => 0.0030564062564075
512 => 0.0030278583714858
513 => 0.0030699823307715
514 => 0.0030585269446707
515 => 0.002994538089116
516 => 0.0029147842833861
517 => 0.0029140743072259
518 => 0.0028968914806038
519 => 0.0028750065674454
520 => 0.0028689186852637
521 => 0.0029577220265975
522 => 0.003141542285498
523 => 0.0031054539702298
524 => 0.0031315314764904
525 => 0.0032598069974357
526 => 0.0033005819281648
527 => 0.0032716408481405
528 => 0.0032320245127951
529 => 0.003233767430494
530 => 0.0033691484410493
531 => 0.0033775919886159
601 => 0.0033989261093251
602 => 0.0034263464834581
603 => 0.0032763106564244
604 => 0.0032267007565332
605 => 0.0032031928337123
606 => 0.0031307975301351
607 => 0.0032088696583389
608 => 0.0031633803726164
609 => 0.0031695184313956
610 => 0.0031655210125633
611 => 0.00316770387355
612 => 0.0030518108868377
613 => 0.0030940362000396
614 => 0.0030238284271072
615 => 0.0029298281003432
616 => 0.0029295129782871
617 => 0.0029525194250924
618 => 0.0029388342902903
619 => 0.0029020079444146
620 => 0.0029072389530308
621 => 0.0028614098132271
622 => 0.0029128034403663
623 => 0.0029142772256974
624 => 0.002894487879819
625 => 0.0029736668533809
626 => 0.0030061065434531
627 => 0.0029930807720671
628 => 0.0030051926206086
629 => 0.0031069536026582
630 => 0.0031235450828752
701 => 0.0031309139224159
702 => 0.0031210406536155
703 => 0.0030070526245552
704 => 0.0030121084783586
705 => 0.0029750119777613
706 => 0.0029436693438895
707 => 0.0029449228848739
708 => 0.0029610370729412
709 => 0.0030314086773157
710 => 0.0031795015700891
711 => 0.0031851215871154
712 => 0.0031919332116987
713 => 0.0031642269112702
714 => 0.0031558704259474
715 => 0.0031668947870801
716 => 0.0032225106912514
717 => 0.0033655698963507
718 => 0.0033150032186656
719 => 0.0032738917225903
720 => 0.0033099575882281
721 => 0.0033044055309067
722 => 0.0032575405797217
723 => 0.0032562252366305
724 => 0.0031662764116751
725 => 0.0031330243791248
726 => 0.0031052364918542
727 => 0.0030748928443759
728 => 0.0030569041130225
729 => 0.0030845429801135
730 => 0.0030908643160307
731 => 0.0030304314500915
801 => 0.0030221946737711
802 => 0.0030715454566311
803 => 0.003049828017077
804 => 0.0030721649422249
805 => 0.0030773473004618
806 => 0.0030765128214259
807 => 0.0030538373202994
808 => 0.0030682900085242
809 => 0.0030341050923188
810 => 0.0029969341303537
811 => 0.0029732213724527
812 => 0.0029525288461433
813 => 0.0029640102623965
814 => 0.0029230811098776
815 => 0.0029099870502457
816 => 0.0030633937629494
817 => 0.0031767169510237
818 => 0.0031750691869882
819 => 0.0031650388471926
820 => 0.0031501357968364
821 => 0.0032214204402925
822 => 0.0031965862958938
823 => 0.003214655210906
824 => 0.0032192545081266
825 => 0.0032331751955936
826 => 0.0032381506448396
827 => 0.0032231113815467
828 => 0.0031726377770443
829 => 0.0030468623535107
830 => 0.0029883135543315
831 => 0.002968991475395
901 => 0.0029696937962665
902 => 0.0029503206513324
903 => 0.002956026910759
904 => 0.0029483362471747
905 => 0.0029337719909175
906 => 0.0029631109606136
907 => 0.0029664920035596
908 => 0.002959643937458
909 => 0.0029612569049285
910 => 0.0029045578424543
911 => 0.0029088685490303
912 => 0.0028848659870369
913 => 0.0028803657960183
914 => 0.0028196894094411
915 => 0.0027121923954367
916 => 0.0027717561761828
917 => 0.0026998115049765
918 => 0.002672564967851
919 => 0.0028015458368971
920 => 0.0027885997350173
921 => 0.0027664416361343
922 => 0.0027336651897339
923 => 0.0027215080869353
924 => 0.0026476453788015
925 => 0.0026432811759628
926 => 0.0026798895285747
927 => 0.0026629960334608
928 => 0.0026392711682539
929 => 0.0025533421114257
930 => 0.0024567294014178
1001 => 0.0024596455318471
1002 => 0.0024903762373573
1003 => 0.0025797299082283
1004 => 0.0025448178831848
1005 => 0.0025194888084464
1006 => 0.0025147454341371
1007 => 0.0025741186945448
1008 => 0.0026581442971044
1009 => 0.0026975672298585
1010 => 0.0026585003007915
1011 => 0.0026136223161921
1012 => 0.0026163538311701
1013 => 0.0026345253765785
1014 => 0.0026364349490691
1015 => 0.0026072239946263
1016 => 0.0026154467071978
1017 => 0.0026029556549011
1018 => 0.0025262980900129
1019 => 0.0025249115977478
1020 => 0.002506098595054
1021 => 0.0025055289448092
1022 => 0.0024735233341036
1023 => 0.0024690455279215
1024 => 0.0024054964452638
1025 => 0.0024473246439135
1026 => 0.0024192684843383
1027 => 0.0023769812340795
1028 => 0.0023696908961959
1029 => 0.0023694717398357
1030 => 0.0024128912905954
1031 => 0.0024468172611827
1101 => 0.002419756533246
1102 => 0.002413595330045
1103 => 0.0024793808612099
1104 => 0.0024710090527208
1105 => 0.0024637591205615
1106 => 0.0026506207259961
1107 => 0.0025027051843017
1108 => 0.002438205565399
1109 => 0.0023583750388615
1110 => 0.0023843682608426
1111 => 0.0023898454146339
1112 => 0.0021978673888451
1113 => 0.002119981927692
1114 => 0.0020932545724759
1115 => 0.0020778726016797
1116 => 0.0020848823589261
1117 => 0.0020147763088349
1118 => 0.0020618887339433
1119 => 0.0020011828204811
1120 => 0.0019910052765351
1121 => 0.002099554969825
1122 => 0.0021146590255082
1123 => 0.0020502204315014
1124 => 0.0020916004405145
1125 => 0.0020765954740212
1126 => 0.0020022234491309
1127 => 0.0019993829848237
1128 => 0.0019620657170368
1129 => 0.0019036714189972
1130 => 0.001876983657865
1201 => 0.0018630844401535
1202 => 0.0018688195282716
1203 => 0.0018659196922225
1204 => 0.0018469963004774
1205 => 0.0018670043588864
1206 => 0.001815892037552
1207 => 0.0017955386993567
1208 => 0.0017863455686877
1209 => 0.001740980441588
1210 => 0.0018131765327673
1211 => 0.001827400072232
1212 => 0.0018416516364633
1213 => 0.0019657017731408
1214 => 0.0019595045788745
1215 => 0.0020155241968864
1216 => 0.0020133473775439
1217 => 0.0019973696750293
1218 => 0.0019299623763245
1219 => 0.0019568297241686
1220 => 0.0018741362036172
1221 => 0.0019360958118272
1222 => 0.0019078200341353
1223 => 0.0019265357429467
1224 => 0.0018928832109763
1225 => 0.0019115079116477
1226 => 0.0018307730010976
1227 => 0.0017553838775967
1228 => 0.0017857226616392
1229 => 0.0018187043895541
1230 => 0.0018902171792617
1231 => 0.0018476247516796
]
'min_raw' => 0.001740980441588
'max_raw' => 0.0051968690180689
'avg_raw' => 0.0034689247298284
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00174'
'max' => '$0.005196'
'avg' => '$0.003468'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.003298039558412
'max_diff' => 0.00015784901806885
'year' => 2026
]
1 => [
'items' => [
101 => 0.0018629425992361
102 => 0.0018116303740984
103 => 0.0017057585970269
104 => 0.0017063578197875
105 => 0.0016900717534271
106 => 0.0016759982142871
107 => 0.001852517004349
108 => 0.0018305641024556
109 => 0.0017955850264134
110 => 0.0018424059097092
111 => 0.0018547860943999
112 => 0.0018551385408536
113 => 0.0018892978486842
114 => 0.0019075286773969
115 => 0.0019107419399744
116 => 0.0019644923489066
117 => 0.0019825087769957
118 => 0.0020567158945142
119 => 0.0019059819189523
120 => 0.0019028776519188
121 => 0.0018430647755548
122 => 0.0018051305037605
123 => 0.0018456621675987
124 => 0.0018815676886355
125 => 0.0018441804601796
126 => 0.0018490624429285
127 => 0.0017988731433753
128 => 0.0018168134563396
129 => 0.0018322660706855
130 => 0.0018237340453063
131 => 0.0018109611903591
201 => 0.0018786238453716
202 => 0.0018748060532037
203 => 0.0019378150731092
204 => 0.0019869351099437
205 => 0.002074966997208
206 => 0.0019831011336416
207 => 0.0019797531764395
208 => 0.0020124799951192
209 => 0.0019825037666903
210 => 0.0020014477083131
211 => 0.0020719148353403
212 => 0.0020734036946938
213 => 0.0020484633822367
214 => 0.0020469457619571
215 => 0.0020517358217816
216 => 0.0020797913517885
217 => 0.0020699878875448
218 => 0.002081332704561
219 => 0.0020955195719578
220 => 0.0021542024706181
221 => 0.0021683507188151
222 => 0.0021339778107221
223 => 0.0021370812994657
224 => 0.0021242248882815
225 => 0.0021118057561679
226 => 0.0021397221514907
227 => 0.0021907399126412
228 => 0.0021904225337969
301 => 0.0022022576627402
302 => 0.0022096308500244
303 => 0.0021779797326977
304 => 0.0021573760191618
305 => 0.0021652767939798
306 => 0.0021779103049703
307 => 0.0021611799166358
308 => 0.0020579122095654
309 => 0.0020892370351239
310 => 0.0020840230524453
311 => 0.0020765977070689
312 => 0.0021080950613957
313 => 0.0021050570647326
314 => 0.0020140572699616
315 => 0.0020198827815747
316 => 0.0020144115386175
317 => 0.0020320902439233
318 => 0.0019815490585872
319 => 0.0019970951867965
320 => 0.0020068455726735
321 => 0.002012588624861
322 => 0.0020333364674101
323 => 0.0020309019475577
324 => 0.0020331851342379
325 => 0.0020639487075108
326 => 0.0022195403043421
327 => 0.0022280088116641
328 => 0.0021863067843995
329 => 0.0022029659217556
330 => 0.0021709840209847
331 => 0.0021924536852323
401 => 0.0022071426842402
402 => 0.0021407659222557
403 => 0.0021368355211926
404 => 0.0021047216197406
405 => 0.0021219778113566
406 => 0.0020945219697315
407 => 0.0021012586729017
408 => 0.0020824222635426
409 => 0.0021163240500974
410 => 0.0021542315152706
411 => 0.0021638084379845
412 => 0.0021386156774487
413 => 0.0021203744585369
414 => 0.0020883488871588
415 => 0.0021416081260969
416 => 0.0021571827506083
417 => 0.0021415263192247
418 => 0.0021378983819733
419 => 0.0021310234474375
420 => 0.002139356931835
421 => 0.0021570979278584
422 => 0.0021487316017585
423 => 0.0021542577075432
424 => 0.0021331978907876
425 => 0.0021779902105345
426 => 0.0022491311941514
427 => 0.0022493599240464
428 => 0.0022409935528489
429 => 0.0022375702140109
430 => 0.0022461546185734
501 => 0.0022508113058978
502 => 0.0022785716961424
503 => 0.0023083597008975
504 => 0.002447367321565
505 => 0.0024083345379295
506 => 0.0025316703685861
507 => 0.0026292129974822
508 => 0.0026584617668659
509 => 0.0026315542752938
510 => 0.0025395052001398
511 => 0.0025349888333695
512 => 0.0026725490137666
513 => 0.002633681962149
514 => 0.0026290588500331
515 => 0.0025798767479902
516 => 0.0026089494616194
517 => 0.0026025908326777
518 => 0.0025925534258185
519 => 0.0026480221382001
520 => 0.0027518546160525
521 => 0.0027356713506444
522 => 0.0027235912937373
523 => 0.0026706600008223
524 => 0.0027025364617894
525 => 0.0026911858645924
526 => 0.0027399552334177
527 => 0.0027110653396994
528 => 0.0026333875060062
529 => 0.0026457579570514
530 => 0.0026438881882618
531 => 0.002682367897458
601 => 0.0026708172438824
602 => 0.0026416327377698
603 => 0.0027514997279312
604 => 0.0027443655767024
605 => 0.0027544801720508
606 => 0.0027589329297274
607 => 0.0028258070305652
608 => 0.0028532032099459
609 => 0.0028594226223029
610 => 0.002885446873818
611 => 0.0028587751152177
612 => 0.0029654811662606
613 => 0.0030364344637335
614 => 0.0031188503699715
615 => 0.0032392821602925
616 => 0.0032845656275095
617 => 0.0032763855744734
618 => 0.0033676955834257
619 => 0.0035317776398056
620 => 0.0033095512493533
621 => 0.0035435561781074
622 => 0.0034694729193807
623 => 0.0032938228456405
624 => 0.0032825130516699
625 => 0.0034014653209461
626 => 0.003665290005469
627 => 0.0035992049142708
628 => 0.0036653980970038
629 => 0.0035881802332878
630 => 0.0035843457155111
701 => 0.0036616477977166
702 => 0.0038422683263071
703 => 0.003756462283633
704 => 0.0036334382809549
705 => 0.003724277290067
706 => 0.0036455841336207
707 => 0.0034682664273196
708 => 0.003599154380247
709 => 0.0035116333335988
710 => 0.0035371766278855
711 => 0.0037211328501669
712 => 0.0036989987508142
713 => 0.003727642324939
714 => 0.0036770871663416
715 => 0.0036298606763948
716 => 0.003541708925824
717 => 0.0035156115383087
718 => 0.0035228239173323
719 => 0.0035156079642119
720 => 0.0034662878699239
721 => 0.0034556372002582
722 => 0.0034378856175322
723 => 0.0034433875752957
724 => 0.003410009406362
725 => 0.0034730009074214
726 => 0.0034846926850972
727 => 0.0035305326465129
728 => 0.0035352919033753
729 => 0.003662955543427
730 => 0.0035926405557869
731 => 0.0036398139201998
801 => 0.0036355942904738
802 => 0.003297629715356
803 => 0.0033441982519206
804 => 0.0034166442808032
805 => 0.0033840074429898
806 => 0.0033378665901657
807 => 0.0033006053775941
808 => 0.0032441508303937
809 => 0.0033236095214648
810 => 0.0034280892507335
811 => 0.0035379416817274
812 => 0.00366992217975
813 => 0.0036404656690137
814 => 0.0035354743981205
815 => 0.0035401842298366
816 => 0.0035692985562551
817 => 0.0035315928582277
818 => 0.0035204727117768
819 => 0.0035677708188942
820 => 0.0035680965349633
821 => 0.003524711572497
822 => 0.00347649712608
823 => 0.0034762951057891
824 => 0.0034677158107455
825 => 0.0035897064708171
826 => 0.0036567889992095
827 => 0.0036644799029809
828 => 0.0036562713401078
829 => 0.0036594304901714
830 => 0.0036203966449625
831 => 0.0037096164399829
901 => 0.0037914933468169
902 => 0.0037695485867404
903 => 0.0037366502717543
904 => 0.0037104451792703
905 => 0.003763375499761
906 => 0.0037610185959096
907 => 0.0037907782234635
908 => 0.0037894281548578
909 => 0.0037794211114276
910 => 0.0037695489441234
911 => 0.0038086909715851
912 => 0.0037974186962779
913 => 0.0037861289120136
914 => 0.0037634855212921
915 => 0.0037665631341581
916 => 0.0037336704995299
917 => 0.0037184528616863
918 => 0.0034896161007378
919 => 0.0034284634407555
920 => 0.0034477033124631
921 => 0.0034540375777923
922 => 0.0034274238617988
923 => 0.0034655810940308
924 => 0.003459634329806
925 => 0.0034827697106642
926 => 0.0034683157291255
927 => 0.0034689089255696
928 => 0.0035114150033612
929 => 0.0035237546985779
930 => 0.0035174786299972
1001 => 0.0035218741733001
1002 => 0.0036231676134732
1003 => 0.0036087669254624
1004 => 0.0036011168469731
1005 => 0.0036032359709962
1006 => 0.0036291186167163
1007 => 0.0036363643443778
1008 => 0.0036056636871276
1009 => 0.0036201422945652
1010 => 0.0036817903674256
1011 => 0.0037033637039481
1012 => 0.0037722154383387
1013 => 0.0037429659978276
1014 => 0.0037966546117719
1015 => 0.0039616751072393
1016 => 0.0040935048975685
1017 => 0.0039722687742853
1018 => 0.0042143573958022
1019 => 0.0044028581132034
1020 => 0.0043956231417051
1021 => 0.0043627536815261
1022 => 0.0041481506263158
1023 => 0.0039506696953599
1024 => 0.0041158708795877
1025 => 0.0041162920113802
1026 => 0.0041021010831454
1027 => 0.0040139624466557
1028 => 0.0040990340496471
1029 => 0.0041057867245579
1030 => 0.0041020070222891
1031 => 0.0040344313363444
1101 => 0.0039312557539813
1102 => 0.0039514160158076
1103 => 0.0039844389359373
1104 => 0.0039219196588289
1105 => 0.0039019409616162
1106 => 0.0039390851608373
1107 => 0.0040587715100288
1108 => 0.00403614549901
1109 => 0.0040355546424234
1110 => 0.0041323583124839
1111 => 0.0040630677762601
1112 => 0.0039516703012713
1113 => 0.0039235409696845
1114 => 0.0038237007927394
1115 => 0.0038926607585739
1116 => 0.0038951425049772
1117 => 0.0038573738364434
1118 => 0.0039547350205678
1119 => 0.003953837820116
1120 => 0.0040462677741423
1121 => 0.0042229591311351
1122 => 0.0041707028024187
1123 => 0.0041099343775939
1124 => 0.004116541590298
1125 => 0.0041890064056715
1126 => 0.0041451925240859
1127 => 0.0041609483013853
1128 => 0.0041889825574155
1129 => 0.00420589632013
1130 => 0.0041141079601314
1201 => 0.004092707702671
1202 => 0.0040489302863766
1203 => 0.0040375095756096
1204 => 0.0040731653677356
1205 => 0.0040637713262481
1206 => 0.0038949339238018
1207 => 0.0038772894758437
1208 => 0.0038778306058721
1209 => 0.0038334628025337
1210 => 0.0037657912529498
1211 => 0.0039436280447981
1212 => 0.0039293452615884
1213 => 0.0039135781743244
1214 => 0.0039155095525485
1215 => 0.0039927024764417
1216 => 0.0039479266822476
1217 => 0.0040669704697211
1218 => 0.0040424986458003
1219 => 0.0040173992119367
1220 => 0.0040139297056293
1221 => 0.0040042685649748
1222 => 0.0039711369189186
1223 => 0.0039311284654025
1224 => 0.0039047114189183
1225 => 0.0036018898816874
1226 => 0.0036580917975656
1227 => 0.0037227469788177
1228 => 0.0037450656882965
1229 => 0.0037068879913253
1230 => 0.0039726444070908
1231 => 0.0040212006651437
]
'min_raw' => 0.0016759982142871
'max_raw' => 0.0044028581132034
'avg_raw' => 0.0030394281637452
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001675'
'max' => '$0.0044028'
'avg' => '$0.003039'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -6.4982227300937E-5
'max_diff' => -0.00079401090486548
'year' => 2027
]
2 => [
'items' => [
101 => 0.0038741205922551
102 => 0.0038466079158575
103 => 0.0039744481335751
104 => 0.0038973448544604
105 => 0.0039320644563246
106 => 0.0038570196677009
107 => 0.004009504884472
108 => 0.0040083432026028
109 => 0.0039490230092441
110 => 0.0039991600304637
111 => 0.0039904474892153
112 => 0.0039234751370125
113 => 0.0040116280274933
114 => 0.0040116717502271
115 => 0.0039545773538515
116 => 0.0038879035984553
117 => 0.0038759839057543
118 => 0.0038670040184895
119 => 0.0039298559545346
120 => 0.0039862088038597
121 => 0.0040910674853977
122 => 0.0041174314493171
123 => 0.0042203317556433
124 => 0.004159059633351
125 => 0.0041862207715564
126 => 0.0042157080292558
127 => 0.0042298453049549
128 => 0.0042068093728513
129 => 0.0043666559040316
130 => 0.0043801518488344
131 => 0.0043846769223873
201 => 0.0043307775714396
202 => 0.0043786528103813
203 => 0.0043562535715417
204 => 0.0044145301683145
205 => 0.0044236686828014
206 => 0.004415928686143
207 => 0.0044188293948828
208 => 0.0042824285793808
209 => 0.0042753554775254
210 => 0.0041789132318426
211 => 0.0042182141598234
212 => 0.0041447429587058
213 => 0.0041680414334174
214 => 0.0041783111790743
215 => 0.0041729468467461
216 => 0.0042204361753248
217 => 0.004180060544604
218 => 0.0040735026167635
219 => 0.0039669156572868
220 => 0.0039655775448345
221 => 0.0039375150798203
222 => 0.003917231057512
223 => 0.0039211384798229
224 => 0.0039349087456998
225 => 0.0039164307046262
226 => 0.0039203739315498
227 => 0.0039858577720634
228 => 0.0039989900892691
229 => 0.0039543613442768
301 => 0.0037751704932355
302 => 0.0037311966089237
303 => 0.003762804164927
304 => 0.0037476977889447
305 => 0.0030246846114982
306 => 0.0031945458329332
307 => 0.0030936200630986
308 => 0.0031401313012098
309 => 0.00303711222481
310 => 0.0030862783277604
311 => 0.003077199143804
312 => 0.0033503309613126
313 => 0.0033460663836627
314 => 0.0033481076113073
315 => 0.003250674497442
316 => 0.0034058880934268
317 => 0.0034823518921093
318 => 0.0034682004779912
319 => 0.0034717620840445
320 => 0.0034105618918841
321 => 0.0033487001629444
322 => 0.0032800859850984
323 => 0.0034075626465676
324 => 0.0033933894179114
325 => 0.003425897705082
326 => 0.0035085754322646
327 => 0.0035207500416544
328 => 0.003537112840137
329 => 0.0035312479416643
330 => 0.0036709736173443
331 => 0.0036540519160798
401 => 0.0036948283474216
402 => 0.0036109481344362
403 => 0.0035160297114602
404 => 0.0035340706005509
405 => 0.0035323331178558
406 => 0.0035102129689574
407 => 0.0034902438875906
408 => 0.0034570009933686
409 => 0.0035621864297096
410 => 0.0035579160930853
411 => 0.0036270478793091
412 => 0.0036148281645837
413 => 0.003533221918976
414 => 0.0035361365020028
415 => 0.0035557384735584
416 => 0.0036235811209239
417 => 0.0036437214377416
418 => 0.0036343916405388
419 => 0.0036564745784891
420 => 0.003673928032251
421 => 0.0036586664635635
422 => 0.0038747380923794
423 => 0.0037850100876336
424 => 0.0038287428928232
425 => 0.0038391729091723
426 => 0.0038124566416138
427 => 0.0038182504434094
428 => 0.0038270264744133
429 => 0.0038803128161459
430 => 0.0040201515953795
501 => 0.0040820852387873
502 => 0.0042684156607318
503 => 0.0040769425118602
504 => 0.0040655812876008
505 => 0.0040991450232327
506 => 0.0042085407059924
507 => 0.0042971956318551
508 => 0.0043266075853891
509 => 0.0043304948605871
510 => 0.0043856736406867
511 => 0.0044173010884164
512 => 0.0043789734854366
513 => 0.0043464948549785
514 => 0.0042301604320736
515 => 0.004243626458293
516 => 0.0043363940253287
517 => 0.004467433677749
518 => 0.0045798793318778
519 => 0.0045405047829286
520 => 0.0048409047973113
521 => 0.0048706882317134
522 => 0.0048665731240927
523 => 0.0049344242200299
524 => 0.00479975361223
525 => 0.0047421793182755
526 => 0.0043535171035316
527 => 0.0044627153325489
528 => 0.0046214413714127
529 => 0.004600433384977
530 => 0.0044851622927949
531 => 0.0045797918884177
601 => 0.0045485043847638
602 => 0.0045238266325122
603 => 0.0046368801995944
604 => 0.004512573158603
605 => 0.0046202013135889
606 => 0.0044821670915487
607 => 0.0045406846425515
608 => 0.0045074672504269
609 => 0.004528962974102
610 => 0.0044032994127271
611 => 0.0044711044201345
612 => 0.0044004785014968
613 => 0.0044004450156156
614 => 0.0043988859445472
615 => 0.0044819770246212
616 => 0.0044846866217593
617 => 0.004423282188041
618 => 0.0044144328498246
619 => 0.0044471534913364
620 => 0.0044088461896757
621 => 0.0044267699350195
622 => 0.004409389081663
623 => 0.0044054762854757
624 => 0.0043742984597476
625 => 0.0043608661951718
626 => 0.0043661333322188
627 => 0.0043481538780822
628 => 0.0043373206066196
629 => 0.0043967309341838
630 => 0.004364990392772
701 => 0.004391866240989
702 => 0.0043612378199433
703 => 0.0042550663684311
704 => 0.0041940060439237
705 => 0.0039934580141159
706 => 0.0040503331865904
707 => 0.0040880414847825
708 => 0.004075578892455
709 => 0.0041023533631576
710 => 0.0041039970982055
711 => 0.0040952924448466
712 => 0.0040852135713923
713 => 0.0040803077331913
714 => 0.0041168718318632
715 => 0.0041380985218332
716 => 0.0040918260169781
717 => 0.0040809850165116
718 => 0.0041277690736952
719 => 0.004156307321551
720 => 0.0043670177094613
721 => 0.0043514076033394
722 => 0.0043905859063769
723 => 0.004386175030695
724 => 0.0044272401338715
725 => 0.0044943642221576
726 => 0.0043578821824817
727 => 0.0043815707453755
728 => 0.0043757628568028
729 => 0.0044391718613302
730 => 0.004439369817321
731 => 0.0044013529515921
801 => 0.0044219625112569
802 => 0.0044104588204457
803 => 0.0044312475445587
804 => 0.0043511991208551
805 => 0.0044486894602327
806 => 0.0045039602005211
807 => 0.0045047276348036
808 => 0.0045309255270446
809 => 0.004557544102841
810 => 0.0046086361410929
811 => 0.0045561191736244
812 => 0.0044616462615723
813 => 0.0044684669006768
814 => 0.004413077466907
815 => 0.0044140085732956
816 => 0.0044090382544212
817 => 0.0044239545555114
818 => 0.004354472410128
819 => 0.0043707797307706
820 => 0.0043479493863754
821 => 0.0043815211166655
822 => 0.0043454034844792
823 => 0.004375760056063
824 => 0.0043888609460223
825 => 0.0044372035120141
826 => 0.0043382632481761
827 => 0.0041365173525433
828 => 0.0041789267857378
829 => 0.004116199902854
830 => 0.004122005514683
831 => 0.0041337337745338
901 => 0.0040957186471095
902 => 0.0041029707354277
903 => 0.0041027116398008
904 => 0.0041004788936631
905 => 0.0040905896908061
906 => 0.0040762483901444
907 => 0.0041333797179612
908 => 0.0041430874438342
909 => 0.0041646665159172
910 => 0.0042288711972119
911 => 0.0042224556354999
912 => 0.0042329196828312
913 => 0.00421007672626
914 => 0.0041230651339231
915 => 0.0041277902820124
916 => 0.0040688676096236
917 => 0.004163159730708
918 => 0.0041408301118401
919 => 0.0041264340612931
920 => 0.0041225059655229
921 => 0.0041868697978039
922 => 0.0042061284652018
923 => 0.0041941277560805
924 => 0.0041695139515561
925 => 0.004216779732661
926 => 0.0042294260617015
927 => 0.004232257108395
928 => 0.0043160030101983
929 => 0.0042369375740048
930 => 0.0042559694103395
1001 => 0.0044044503645448
1002 => 0.0042697986280516
1003 => 0.0043411266559641
1004 => 0.0043376355201709
1005 => 0.0043741245256421
1006 => 0.004334642356688
1007 => 0.0043351317854912
1008 => 0.0043675315503702
1009 => 0.004322031923926
1010 => 0.0043107655765557
1011 => 0.0042952011983548
1012 => 0.0043291854487451
1013 => 0.0043495574698787
1014 => 0.0045137409986146
1015 => 0.0046198110458565
1016 => 0.0046152062653658
1017 => 0.0046572853392622
1018 => 0.0046383283310718
1019 => 0.0045771111510187
1020 => 0.0046816014127295
1021 => 0.0046485363218659
1022 => 0.0046512621677827
1023 => 0.0046511607116615
1024 => 0.0046731461064853
1025 => 0.0046575674393208
1026 => 0.0046268602872221
1027 => 0.004647245127828
1028 => 0.0047077808167136
1029 => 0.0048956854524764
1030 => 0.0050008393760545
1031 => 0.0048893550542418
1101 => 0.0049662554465937
1102 => 0.004920142613594
1103 => 0.0049117625401001
1104 => 0.0049600616693914
1105 => 0.0050084453399148
1106 => 0.0050053635092708
1107 => 0.0049702394489998
1108 => 0.0049503987585927
1109 => 0.0051006391134739
1110 => 0.0052113336476726
1111 => 0.0052037850225458
1112 => 0.0052371021989111
1113 => 0.0053349224591808
1114 => 0.0053438659178565
1115 => 0.0053427392476264
1116 => 0.0053205719521454
1117 => 0.0054168887019469
1118 => 0.0054972378291633
1119 => 0.0053154408637163
1120 => 0.0053846667682615
1121 => 0.0054157445071312
1122 => 0.0054613758481415
1123 => 0.0055383635691267
1124 => 0.005621992654101
1125 => 0.0056338187236627
1126 => 0.0056254275613792
1127 => 0.0055702719317681
1128 => 0.0056617798744495
1129 => 0.005715383081147
1130 => 0.0057473025640478
1201 => 0.0058282450617886
1202 => 0.0054159364326663
1203 => 0.0051240838919051
1204 => 0.0050785069032634
1205 => 0.0051711895018928
1206 => 0.0051956291640214
1207 => 0.0051857775668621
1208 => 0.0048572709981632
1209 => 0.0050767773841652
1210 => 0.0053129477988822
1211 => 0.0053220200663458
1212 => 0.0054402519140436
1213 => 0.0054787530501412
1214 => 0.0055739451845405
1215 => 0.0055679908906158
1216 => 0.0055911686605044
1217 => 0.00558584049259
1218 => 0.0057621638764959
1219 => 0.00595667475322
1220 => 0.0059499394600657
1221 => 0.0059219762201884
1222 => 0.0059635063998472
1223 => 0.0061642624696787
1224 => 0.0061457800678191
1225 => 0.0061637341468985
1226 => 0.0064004368673462
1227 => 0.0067081840744976
1228 => 0.0065652045994614
1229 => 0.0068754289190544
1230 => 0.0070706986839537
1231 => 0.0074083975510764
]
'min_raw' => 0.0030246846114982
'max_raw' => 0.0074083975510764
'avg_raw' => 0.0052165410812873
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003024'
'max' => '$0.0074083'
'avg' => '$0.005216'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0013486863972111
'max_diff' => 0.003005539437873
'year' => 2028
]
3 => [
'items' => [
101 => 0.0073661159897106
102 => 0.0074975796805327
103 => 0.0072904231704378
104 => 0.0068147499500216
105 => 0.0067394728420868
106 => 0.0068901795184923
107 => 0.0072606771766926
108 => 0.0068785112287463
109 => 0.0069558229022819
110 => 0.0069335571351026
111 => 0.006932370686993
112 => 0.0069776525857019
113 => 0.0069119688298797
114 => 0.0066443613923777
115 => 0.0067670043039643
116 => 0.0067196459860044
117 => 0.0067721935705774
118 => 0.0070557712122457
119 => 0.0069303947772175
120 => 0.0067983208876698
121 => 0.006963970854705
122 => 0.0071749001862451
123 => 0.0071617006077538
124 => 0.0071360879084848
125 => 0.0072804653532267
126 => 0.0075189345933181
127 => 0.0075833918706677
128 => 0.0076309729150363
129 => 0.0076375335371664
130 => 0.0077051120225102
131 => 0.0073417254748453
201 => 0.0079184292584179
202 => 0.0080180100707203
203 => 0.0079992930052093
204 => 0.0081099728870823
205 => 0.0080774080581576
206 => 0.008030226730311
207 => 0.0082056778853657
208 => 0.0080045372942736
209 => 0.0077190435481145
210 => 0.0075624160325457
211 => 0.007768675779828
212 => 0.0078946314100202
213 => 0.0079778800692945
214 => 0.0080030710632907
215 => 0.0073699341381117
216 => 0.0070287084508239
217 => 0.007247430204215
218 => 0.007514285838721
219 => 0.0073402430783218
220 => 0.0073470652250229
221 => 0.0070989259863264
222 => 0.007536240655333
223 => 0.007472527586454
224 => 0.0078030711005045
225 => 0.0077241842380989
226 => 0.0079937296421817
227 => 0.0079227493038365
228 => 0.0082173847198502
301 => 0.0083349227642335
302 => 0.008532287434089
303 => 0.0086774696886534
304 => 0.0087627234854276
305 => 0.0087576051672482
306 => 0.0090954231833405
307 => 0.0088962237017134
308 => 0.0086459822050767
309 => 0.0086414561259043
310 => 0.0087710597429619
311 => 0.0090426733692987
312 => 0.0091130988307903
313 => 0.0091524570561459
314 => 0.0090921785639441
315 => 0.0088759618033933
316 => 0.0087826005024314
317 => 0.0088621470357882
318 => 0.0087648684610043
319 => 0.0089327985726287
320 => 0.0091634024838253
321 => 0.0091157836880699
322 => 0.0092749661828714
323 => 0.0094397033185041
324 => 0.0096752848212666
325 => 0.0097368745496465
326 => 0.0098386800286109
327 => 0.0099434713078229
328 => 0.0099771274425017
329 => 0.010041387446489
330 => 0.010041048764548
331 => 0.01023470061176
401 => 0.010448304596133
402 => 0.010528935155291
403 => 0.010714340680078
404 => 0.010396840216264
405 => 0.010637667965249
406 => 0.010854900623143
407 => 0.010595906892951
408 => 0.010952869412222
409 => 0.01096672945795
410 => 0.011175999693052
411 => 0.010963864218451
412 => 0.010837898850793
413 => 0.01120155614736
414 => 0.011377518458071
415 => 0.011324517178056
416 => 0.010921174820146
417 => 0.010686412267675
418 => 0.010071993385543
419 => 0.010799799092349
420 => 0.01115429202175
421 => 0.010920256769098
422 => 0.011038290537518
423 => 0.011682244505439
424 => 0.011927420483491
425 => 0.011876425593966
426 => 0.011885042890848
427 => 0.012017335398347
428 => 0.012603993231409
429 => 0.012252454259216
430 => 0.012521192631544
501 => 0.012663730495218
502 => 0.01279612760672
503 => 0.012471002145408
504 => 0.012048018697282
505 => 0.011914042083623
506 => 0.010896986575553
507 => 0.010844044419509
508 => 0.010814326383011
509 => 0.010626958366587
510 => 0.010479738430096
511 => 0.010362663670674
512 => 0.010055424540466
513 => 0.010159108727812
514 => 0.0096694336800501
515 => 0.0099827104225898
516 => 0.0092011772227449
517 => 0.0098520612949601
518 => 0.0094978146865207
519 => 0.0097356817566558
520 => 0.0097348518608565
521 => 0.0092968631689145
522 => 0.0090442404319932
523 => 0.0092052214721835
524 => 0.0093778059259584
525 => 0.0094058071729395
526 => 0.0096295674221738
527 => 0.0096920140980246
528 => 0.0095027977548401
529 => 0.0091849816843016
530 => 0.0092588031088749
531 => 0.0090427444431804
601 => 0.0086641099421274
602 => 0.0089360518511078
603 => 0.0090289047752755
604 => 0.0090699139163023
605 => 0.0086975703709829
606 => 0.0085805719450718
607 => 0.0085182829648287
608 => 0.0091369168082909
609 => 0.0091708069667227
610 => 0.0089974201246001
611 => 0.0097811450922093
612 => 0.0096037639946624
613 => 0.0098019421400463
614 => 0.0092521045883545
615 => 0.0092731091232835
616 => 0.009012807214775
617 => 0.00915855889016
618 => 0.0090555463037936
619 => 0.009146783595135
620 => 0.0092014708513795
621 => 0.0094617300469063
622 => 0.009855033036913
623 => 0.0094228560019739
624 => 0.0092345502789618
625 => 0.0093513740904469
626 => 0.0096624912952936
627 => 0.010133849786433
628 => 0.0098547960727048
629 => 0.0099786353722181
630 => 0.010005688749935
701 => 0.0097999248725615
702 => 0.01014143659409
703 => 0.010324455500094
704 => 0.010512195027227
705 => 0.010675203998295
706 => 0.01043720773161
707 => 0.010691897852388
708 => 0.010486662573899
709 => 0.010302545312262
710 => 0.010302824542147
711 => 0.010187325094398
712 => 0.0099635303605169
713 => 0.009922259177962
714 => 0.010136957081588
715 => 0.010309124468329
716 => 0.010323304998928
717 => 0.010418625710507
718 => 0.010475035525739
719 => 0.011027928400432
720 => 0.011250306488403
721 => 0.011522226204972
722 => 0.011628154259132
723 => 0.011946959724842
724 => 0.011689498419167
725 => 0.011633795046177
726 => 0.010860477266837
727 => 0.010987108009881
728 => 0.011189856047546
729 => 0.010863820507301
730 => 0.01107061501455
731 => 0.011111440630787
801 => 0.010852741944402
802 => 0.010990924090511
803 => 0.010623953278598
804 => 0.0098630319977972
805 => 0.010142283716997
806 => 0.01034790697744
807 => 0.010054457231622
808 => 0.010580454542927
809 => 0.010273177772451
810 => 0.010175785788097
811 => 0.0097958249343799
812 => 0.0099751518312997
813 => 0.010217694027098
814 => 0.010067831148651
815 => 0.010378819123452
816 => 0.010819261033233
817 => 0.011133146166913
818 => 0.011157242369949
819 => 0.010955435257664
820 => 0.011278832443017
821 => 0.011281188038451
822 => 0.010916394692257
823 => 0.010692960798891
824 => 0.01064219614821
825 => 0.010769016198608
826 => 0.010922999152066
827 => 0.011165787352199
828 => 0.011312499176695
829 => 0.011695045805042
830 => 0.011798551954201
831 => 0.011912273831023
901 => 0.012064241328986
902 => 0.012246717273957
903 => 0.011847470294722
904 => 0.011863333121496
905 => 0.011491559862384
906 => 0.011094266817343
907 => 0.011395762715252
908 => 0.011789928495448
909 => 0.011699506429957
910 => 0.011689332100434
911 => 0.011706442500568
912 => 0.011638267216096
913 => 0.011329912931122
914 => 0.011175059339609
915 => 0.011374859980026
916 => 0.011481045128304
917 => 0.011645729032966
918 => 0.011625428265661
919 => 0.012049636318309
920 => 0.012214470740182
921 => 0.012172299041404
922 => 0.012180059648898
923 => 0.012478484496181
924 => 0.012810394302112
925 => 0.013121271634722
926 => 0.013437509409945
927 => 0.013056272428943
928 => 0.012862703801418
929 => 0.013062417215126
930 => 0.012956446466643
1001 => 0.013565385820393
1002 => 0.01360754746005
1003 => 0.014216442780554
1004 => 0.014794356945619
1005 => 0.01443137941295
1006 => 0.01477365087739
1007 => 0.015143845371984
1008 => 0.015858010613947
1009 => 0.01561750488509
1010 => 0.015433281265991
1011 => 0.015259190836104
1012 => 0.015621445384621
1013 => 0.01608748007413
1014 => 0.016187859482626
1015 => 0.016350512472274
1016 => 0.016179502741921
1017 => 0.016385465126028
1018 => 0.017112602846384
1019 => 0.016916123815721
1020 => 0.0166370920066
1021 => 0.017211097401772
1022 => 0.017418827722896
1023 => 0.018876787905752
1024 => 0.02071752286194
1025 => 0.019955446503161
1026 => 0.019482401115216
1027 => 0.01959357800217
1028 => 0.020265752095359
1029 => 0.020481633080352
1030 => 0.019894794144503
1031 => 0.02010207557753
1101 => 0.021244216652968
1102 => 0.021856938695667
1103 => 0.021024779862132
1104 => 0.018728886644306
1105 => 0.016611968245142
1106 => 0.017173470330678
1107 => 0.017109813419617
1108 => 0.018336901520174
1109 => 0.01691143785582
1110 => 0.016935439008122
1111 => 0.01818790199109
1112 => 0.017853766339886
1113 => 0.017312509377795
1114 => 0.016615920019956
1115 => 0.015328210165274
1116 => 0.014187649636535
1117 => 0.016424551488794
1118 => 0.016328092213382
1119 => 0.016188404888123
1120 => 0.01649926391474
1121 => 0.018008707109122
1122 => 0.017973909557901
1123 => 0.017752545290897
1124 => 0.017920448136404
1125 => 0.01728307519718
1126 => 0.01744734071633
1127 => 0.016611632914452
1128 => 0.016989407743142
1129 => 0.017311348083446
1130 => 0.01737598237317
1201 => 0.017521606728227
1202 => 0.016277262558384
1203 => 0.016835936558618
1204 => 0.017164105193081
1205 => 0.0156814273637
1206 => 0.017134797419567
1207 => 0.016255601294803
1208 => 0.015957188924975
1209 => 0.016358961868108
1210 => 0.016202390561432
1211 => 0.016067779746128
1212 => 0.015992664598281
1213 => 0.016287682305656
1214 => 0.016273919376984
1215 => 0.015791213147249
1216 => 0.015161542548183
1217 => 0.015372880669462
1218 => 0.015296099548696
1219 => 0.015017834862077
1220 => 0.015205351663052
1221 => 0.014379622571641
1222 => 0.012958998587531
1223 => 0.013897506306323
1224 => 0.01386137478005
1225 => 0.013843155626068
1226 => 0.014548418238293
1227 => 0.014480623511304
1228 => 0.014357575417972
1229 => 0.015015574987348
1230 => 0.014775396293182
1231 => 0.015515570435382
]
'min_raw' => 0.0066443613923777
'max_raw' => 0.021856938695667
'avg_raw' => 0.014250650044023
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.006644'
'max' => '$0.021856'
'avg' => '$0.01425'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0036196767808795
'max_diff' => 0.014448541144591
'year' => 2029
]
4 => [
'items' => [
101 => 0.016003096996897
102 => 0.015879444491065
103 => 0.01633796557859
104 => 0.015377749472933
105 => 0.015696694746049
106 => 0.015762428924799
107 => 0.0150074553748
108 => 0.014491715567071
109 => 0.01445732160176
110 => 0.013563099848481
111 => 0.014040785891177
112 => 0.014461129840757
113 => 0.014259817708916
114 => 0.014196088302004
115 => 0.014521668020696
116 => 0.01454696835324
117 => 0.013970118090027
118 => 0.014090063526221
119 => 0.01459025593442
120 => 0.014077459960896
121 => 0.013081181149085
122 => 0.012834090229124
123 => 0.012801123745612
124 => 0.012130993573649
125 => 0.012850602025907
126 => 0.012536473652189
127 => 0.013528801420929
128 => 0.012961989121385
129 => 0.012937554976025
130 => 0.012900619181604
131 => 0.012323810459866
201 => 0.01245009491182
202 => 0.01286988366378
203 => 0.013019669019738
204 => 0.013004045179956
205 => 0.01286782646988
206 => 0.0129301866978
207 => 0.012729302675926
208 => 0.012658366346763
209 => 0.01243447177935
210 => 0.012105408617705
211 => 0.012151166868593
212 => 0.011499206641315
213 => 0.011143984107345
214 => 0.0110456631917
215 => 0.010914184354186
216 => 0.011060514076249
217 => 0.011497359719905
218 => 0.010970431191683
219 => 0.010067049189784
220 => 0.010121343987386
221 => 0.010243328277328
222 => 0.010016011360028
223 => 0.0098008749750665
224 => 0.009987918607224
225 => 0.009605143743945
226 => 0.010289584790827
227 => 0.010271072578633
228 => 0.01052618987536
301 => 0.010685719956537
302 => 0.0103180547679
303 => 0.01022558796723
304 => 0.010278261259274
305 => 0.0094076890730062
306 => 0.010455045554643
307 => 0.010464103136989
308 => 0.010386546617928
309 => 0.010944231610896
310 => 0.01212112089237
311 => 0.011678327804417
312 => 0.01150686493727
313 => 0.011180913901485
314 => 0.011615224303612
315 => 0.011581876041026
316 => 0.011431062550661
317 => 0.011339850081121
318 => 0.011507911852975
319 => 0.011319025367731
320 => 0.011285096164728
321 => 0.011079522109866
322 => 0.011006141525303
323 => 0.010951813461858
324 => 0.010892003602171
325 => 0.011023929248953
326 => 0.010724968377081
327 => 0.010364450873098
328 => 0.010334477743496
329 => 0.010417236189593
330 => 0.010380621737837
331 => 0.010334302447587
401 => 0.010245866308193
402 => 0.010219629194774
403 => 0.010304887084948
404 => 0.010208635897785
405 => 0.010350659767518
406 => 0.01031203713349
407 => 0.010096294239427
408 => 0.0098273987151764
409 => 0.0098250049809831
410 => 0.0097670718813602
411 => 0.0096932853686907
412 => 0.0096727596488728
413 => 0.0099721663142308
414 => 0.010591929151035
415 => 0.010470254876502
416 => 0.010558177009533
417 => 0.010990666884311
418 => 0.011128142410079
419 => 0.011030565538175
420 => 0.010896996297634
421 => 0.010902872666343
422 => 0.01135931919543
423 => 0.011387787205561
424 => 0.011459716683032
425 => 0.011552166388851
426 => 0.01104631012284
427 => 0.010879046881704
428 => 0.010799788278643
429 => 0.010555702458154
430 => 0.010818928089215
501 => 0.010665557786441
502 => 0.010686252680161
503 => 0.010672775103477
504 => 0.010680134771696
505 => 0.010289393475605
506 => 0.010431759067143
507 => 0.010195048658951
508 => 0.0098781199943727
509 => 0.0098770575383596
510 => 0.0099546253800226
511 => 0.0099084849925715
512 => 0.0097843223963184
513 => 0.0098019591070852
514 => 0.0096474429625486
515 => 0.009820720164637
516 => 0.0098256891347773
517 => 0.0097589679735003
518 => 0.010025925410964
519 => 0.010135298090909
520 => 0.01009138079325
521 => 0.010132216736231
522 => 0.010475310991935
523 => 0.010531250325867
524 => 0.010556094882855
525 => 0.010522806467764
526 => 0.010138487869398
527 => 0.010155534033484
528 => 0.010030460591726
529 => 0.0099247867133541
530 => 0.0099290131143025
531 => 0.009983343224428
601 => 0.010220606001765
602 => 0.010719911529266
603 => 0.010738859809047
604 => 0.010761825676902
605 => 0.010668411950616
606 => 0.010640237476919
607 => 0.010677406880174
608 => 0.010864919784066
609 => 0.011347253882133
610 => 0.011176764797865
611 => 0.011038154518534
612 => 0.01115975310257
613 => 0.011141033953679
614 => 0.010983025498752
615 => 0.010978590727686
616 => 0.010675321984322
617 => 0.010563210434996
618 => 0.010469521632975
619 => 0.010367215906976
620 => 0.010306565643285
621 => 0.010399752013366
622 => 0.010421064838753
623 => 0.010217311211951
624 => 0.010189540345513
625 => 0.010355929955487
626 => 0.010282708091768
627 => 0.010358018594418
628 => 0.010375491277035
629 => 0.010372677772703
630 => 0.010296225737502
701 => 0.010344953984907
702 => 0.010229697153206
703 => 0.010104372659747
704 => 0.010024423440912
705 => 0.0099546571437532
706 => 0.0099933675402577
707 => 0.0098553720449583
708 => 0.0098112245087114
709 => 0.010328445951107
710 => 0.010710522991671
711 => 0.010704967440182
712 => 0.010671149449265
713 => 0.010620902774492
714 => 0.010861243926839
715 => 0.010777513875134
716 => 0.010838434483629
717 => 0.010853941335321
718 => 0.010900875905028
719 => 0.010917650979535
720 => 0.010866945053335
721 => 0.010696769771801
722 => 0.010272709149998
723 => 0.010075307785819
724 => 0.01001016204766
725 => 0.010012529971512
726 => 0.0099472120607772
727 => 0.0099664511128321
728 => 0.0099405215036129
729 => 0.0098914170967978
730 => 0.0099903354815095
731 => 0.010001734903859
801 => 0.0099786461708806
802 => 0.0099840844033214
803 => 0.0097929195555873
804 => 0.0098074534037723
805 => 0.0097265270902061
806 => 0.0097113543819937
807 => 0.0095067797083586
808 => 0.0091443460204409
809 => 0.0093451694658366
810 => 0.0091026029838482
811 => 0.0090107393816372
812 => 0.0094456073867828
813 => 0.0094019587004271
814 => 0.009327251123014
815 => 0.0092167430455967
816 => 0.0091757545247291
817 => 0.0089267212473266
818 => 0.0089120070327568
819 => 0.0090354346495016
820 => 0.0089784770512589
821 => 0.0088984870117968
822 => 0.0086087711973253
823 => 0.0082830347002497
824 => 0.0082928666375897
825 => 0.0083964773567665
826 => 0.0086977394965822
827 => 0.0085800311666683
828 => 0.0084946324227683
829 => 0.0084786398051126
830 => 0.008678820897886
831 => 0.0089621190833959
901 => 0.0090950362535975
902 => 0.0089633193746822
903 => 0.0088120101163247
904 => 0.0088212196097813
905 => 0.0088824862438225
906 => 0.0088889245007967
907 => 0.008790437728449
908 => 0.0088181611779753
909 => 0.0087760467230595
910 => 0.0085175903909785
911 => 0.008512915735505
912 => 0.008449486383441
913 => 0.0084475657678689
914 => 0.0083396566168146
915 => 0.0083245593806413
916 => 0.0081102992116056
917 => 0.0082513259037045
918 => 0.0081567326028782
919 => 0.0080141581862292
920 => 0.0079895783030593
921 => 0.0079888394020902
922 => 0.0081352314489325
923 => 0.0082496152274035
924 => 0.008158378093845
925 => 0.0081376051670913
926 => 0.0083594056784131
927 => 0.0083311795415909
928 => 0.0083067358891419
929 => 0.0089367528381252
930 => 0.0084380452621693
1001 => 0.0082205802938193
1002 => 0.0079514261000087
1003 => 0.0080390640627066
1004 => 0.0080575306691167
1005 => 0.0074102633516921
1006 => 0.007147667081625
1007 => 0.0070575539374697
1008 => 0.0070056925489954
1009 => 0.0070293264349575
1010 => 0.0067929589924266
1011 => 0.006951801822964
1012 => 0.0067471275973749
1013 => 0.0067128132973873
1014 => 0.0070787961670118
1015 => 0.0071297205452792
1016 => 0.0069124613266265
1017 => 0.0070519769160741
1018 => 0.0070013866239286
1019 => 0.006750636149522
1020 => 0.0067410593257953
1021 => 0.0066152415520434
1022 => 0.0064183610992433
1023 => 0.0063283814493059
1024 => 0.0062815192663794
1025 => 0.0063008555163806
1026 => 0.006291078516681
1027 => 0.0062272769802234
1028 => 0.0062947355460673
1029 => 0.0061224067861401
1030 => 0.0060537840853899
1031 => 0.0060227888034956
1101 => 0.0058698371101868
1102 => 0.0061132512721678
1103 => 0.0061612069285289
1104 => 0.0062092570723472
1105 => 0.0066275007690595
1106 => 0.0066066064959162
1107 => 0.0067954805492081
1108 => 0.0067881412508143
1109 => 0.0067342713112586
1110 => 0.0065070028974482
1111 => 0.0065975880365231
1112 => 0.0063187810585068
1113 => 0.0065276822034683
1114 => 0.0064323484448282
1115 => 0.0064954497637749
1116 => 0.0063819879026922
1117 => 0.0064447823813408
1118 => 0.0061725789936896
1119 => 0.005918399300306
1120 => 0.0060206886288914
1121 => 0.0061318888272673
1122 => 0.00637299919063
1123 => 0.0062293958473285
1124 => 0.0062810410398233
1125 => 0.0061080382902665
1126 => 0.0057510842021384
1127 => 0.0057531045235121
1128 => 0.0056981949137212
1129 => 0.0056507449939275
1130 => 0.0062458904187695
1201 => 0.0061718746773335
1202 => 0.006053940280296
1203 => 0.0062118001572573
1204 => 0.006253540814299
1205 => 0.0062547291121246
1206 => 0.0063698996034024
1207 => 0.0064313661152428
1208 => 0.0064421998543658
1209 => 0.0066234231108146
1210 => 0.0066841667559837
1211 => 0.0069343612336728
1212 => 0.0064261511111558
1213 => 0.0064156848581195
1214 => 0.0062140215694564
1215 => 0.0060861235236158
1216 => 0.0062227788580766
1217 => 0.0063438368290955
1218 => 0.0062177831780637
1219 => 0.0062342431237507
1220 => 0.0060650263962021
1221 => 0.0061255134139136
1222 => 0.006177612982048
1223 => 0.0061488466627953
1224 => 0.0061057820905683
1225 => 0.0063339114559989
1226 => 0.0063210395031551
1227 => 0.0065334788129155
1228 => 0.0066990904465545
1229 => 0.0069958961006562
1230 => 0.0066861639277724
1231 => 0.0066748760563186
]
'min_raw' => 0.0056507449939275
'max_raw' => 0.01633796557859
'avg_raw' => 0.010994355286259
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.00565'
'max' => '$0.016337'
'avg' => '$0.010994'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00099361639845024
'max_diff' => -0.0055189731170775
'year' => 2030
]
5 => [
'items' => [
101 => 0.0067852168104107
102 => 0.0066841498633891
103 => 0.0067480206851944
104 => 0.0069856055238243
105 => 0.0069906253170833
106 => 0.0069065373123573
107 => 0.0069014205496278
108 => 0.0069175705707574
109 => 0.0070121617489502
110 => 0.0069791086847963
111 => 0.0070173585274364
112 => 0.0070651905413601
113 => 0.0072630440313025
114 => 0.0073107458378978
115 => 0.0071948551784224
116 => 0.0072053188074003
117 => 0.0071619725194867
118 => 0.0071201005484896
119 => 0.0072142226243808
120 => 0.007386232568046
121 => 0.0073851625031138
122 => 0.0074250654666486
123 => 0.0074499246823568
124 => 0.0073432107304792
125 => 0.0072737438717876
126 => 0.007300381885701
127 => 0.007342976650049
128 => 0.0072865689777008
129 => 0.0069383946933922
130 => 0.007044008529792
131 => 0.0070264292231623
201 => 0.0070013941528049
202 => 0.0071075896819926
203 => 0.0070973468641368
204 => 0.0067905347026636
205 => 0.0068101758217915
206 => 0.0067917291441711
207 => 0.0068513341333975
208 => 0.006680930998364
209 => 0.0067333458550177
210 => 0.0067662199617521
211 => 0.0067855830631695
212 => 0.0068555358628919
213 => 0.0068473277092367
214 => 0.006855025632536
215 => 0.0069587471676699
216 => 0.0074833350994448
217 => 0.0075118872631333
218 => 0.007371285966668
219 => 0.0074274534113679
220 => 0.0073196242000139
221 => 0.0073920106719888
222 => 0.007441535657697
223 => 0.0072177417703888
224 => 0.0072044901487927
225 => 0.0070962158879264
226 => 0.0071543963427484
227 => 0.0070618270558039
228 => 0.0070845403208839
301 => 0.0070210320516134
302 => 0.00713533429193
303 => 0.0072631419573763
304 => 0.0072954312209457
305 => 0.0072104920698966
306 => 0.0071489905267743
307 => 0.0070410140769191
308 => 0.0072205813194403
309 => 0.0072730922533661
310 => 0.007220305501859
311 => 0.0072080736581215
312 => 0.0071848943363414
313 => 0.0072129912608129
314 => 0.0072728062675426
315 => 0.0072445986149786
316 => 0.007263230266452
317 => 0.007192225623911
318 => 0.0073432460572376
319 => 0.0075831028504068
320 => 0.0075838740292174
321 => 0.0075556662246036
322 => 0.0075441241987013
323 => 0.0075730671180277
324 => 0.0075887674644616
325 => 0.0076823635583396
326 => 0.0077827958961036
327 => 0.0082514697943862
328 => 0.0081198680391773
329 => 0.0085357034032686
330 => 0.0088645751868007
331 => 0.0089631894548618
401 => 0.0088724689684055
402 => 0.0085621190848626
403 => 0.0085468918389737
404 => 0.0090106855913278
405 => 0.0088796426131882
406 => 0.0088640554679138
407 => 0.0086982345770916
408 => 0.0087962552608844
409 => 0.0087748166994622
410 => 0.008740974881447
411 => 0.0089279915179436
412 => 0.0092780699663749
413 => 0.009223506957172
414 => 0.0091827782019071
415 => 0.0090043166522991
416 => 0.0091117903659933
417 => 0.0090735210350702
418 => 0.0092379503670334
419 => 0.0091405460733341
420 => 0.0088786498337444
421 => 0.0089203576731204
422 => 0.0089140536171032
423 => 0.0090437906432259
424 => 0.0090048468082548
425 => 0.0089064492082989
426 => 0.0092768734362965
427 => 0.0092528201473382
428 => 0.0092869222117337
429 => 0.009301934995122
430 => 0.0095274056950971
501 => 0.0096197738266192
502 => 0.0096407430096065
503 => 0.0097284855905448
504 => 0.0096385598942611
505 => 0.009998326795331
506 => 0.010237550791562
507 => 0.010515421773538
508 => 0.010921465962884
509 => 0.011074142334197
510 => 0.011046562714273
511 => 0.011354420784517
512 => 0.011907634893445
513 => 0.011158383102684
514 => 0.011947347057681
515 => 0.011697570178556
516 => 0.011105353691444
517 => 0.011067221931448
518 => 0.011468277812295
519 => 0.012357781155815
520 => 0.012134970656926
521 => 0.012358145593971
522 => 0.012097800175274
523 => 0.012084871830872
524 => 0.012345501198087
525 => 0.012954475920752
526 => 0.01266517485709
527 => 0.012250390842799
528 => 0.012556660904198
529 => 0.012291341433058
530 => 0.011693502406337
531 => 0.012134800277937
601 => 0.011839716958638
602 => 0.011925837958702
603 => 0.012546059205537
604 => 0.012471432544216
605 => 0.012568006354208
606 => 0.012397556107348
607 => 0.012238328699245
608 => 0.011941118917636
609 => 0.011853129753567
610 => 0.011877446792997
611 => 0.01185311770325
612 => 0.011686831561939
613 => 0.011650922085555
614 => 0.011591071385019
615 => 0.011609621619753
616 => 0.011497084792804
617 => 0.011709465036551
618 => 0.011748884681279
619 => 0.011903437311636
620 => 0.011919483478428
621 => 0.012349910354054
622 => 0.012112838463989
623 => 0.012271886755647
624 => 0.01225765997942
625 => 0.011118188818477
626 => 0.011275197890816
627 => 0.011519454735214
628 => 0.011409417357895
629 => 0.011253850251147
630 => 0.011128221471467
701 => 0.01093788102405
702 => 0.011205781548625
703 => 0.011558042250397
704 => 0.011928417391144
705 => 0.012373398854812
706 => 0.012274084172276
707 => 0.011920098772203
708 => 0.011935978298664
709 => 0.012034139282881
710 => 0.011907011889454
711 => 0.011869519539311
712 => 0.012028988409706
713 => 0.012030086584174
714 => 0.011883811154177
715 => 0.011721252781857
716 => 0.011720571656342
717 => 0.011691645964115
718 => 0.012102945991662
719 => 0.01232911941969
720 => 0.012355049838717
721 => 0.012327374095887
722 => 0.012338025390891
723 => 0.012206420056513
724 => 0.012507230824551
725 => 0.012783284532405
726 => 0.012709296241673
727 => 0.012598377275811
728 => 0.01251002497692
729 => 0.012688483247931
730 => 0.012680536782042
731 => 0.012780873444091
801 => 0.012776321593528
802 => 0.012742582147934
803 => 0.012709297446615
804 => 0.012841267525011
805 => 0.012803262261808
806 => 0.012765197965933
807 => 0.012688854193205
808 => 0.012699230579854
809 => 0.012588330765715
810 => 0.012537023437264
811 => 0.011765484320853
812 => 0.011559303858181
813 => 0.011624172428928
814 => 0.01164552884673
815 => 0.011555798845147
816 => 0.01168444861767
817 => 0.011664398686896
818 => 0.011742401238721
819 => 0.011693668630818
820 => 0.011695668634045
821 => 0.011838980842999
822 => 0.011880584986952
823 => 0.011859424783551
824 => 0.011874244664684
825 => 0.01221576257031
826 => 0.012167209645257
827 => 0.012141416871519
828 => 0.012148561646116
829 => 0.012235826793229
830 => 0.012260256269921
831 => 0.01215674686055
901 => 0.01220556249639
902 => 0.01241341327817
903 => 0.012486149288458
904 => 0.01271828771803
905 => 0.012619671187216
906 => 0.012800686097549
907 => 0.013357064219381
908 => 0.013801537561537
909 => 0.013392781507452
910 => 0.014209000196984
911 => 0.014844543526402
912 => 0.014820150314866
913 => 0.014709328635
914 => 0.013985779451252
915 => 0.013319958704856
916 => 0.013876946031458
917 => 0.013878365906699
918 => 0.013830520201376
919 => 0.013533354634809
920 => 0.013820179483804
921 => 0.013842946598722
922 => 0.013830203068632
923 => 0.013602366925486
924 => 0.01325450324606
925 => 0.013322474976352
926 => 0.013433814057156
927 => 0.013223025949428
928 => 0.013155666376908
929 => 0.013280900637907
930 => 0.01368443152044
1001 => 0.013608146344592
1002 => 0.013606154230358
1003 => 0.013932534562584
1004 => 0.013698916681994
1005 => 0.013323332317546
1006 => 0.013228492312174
1007 => 0.012891874184985
1008 => 0.013124377524427
1009 => 0.013132744905696
1010 => 0.01300540520281
1011 => 0.013333665232626
1012 => 0.013330640258662
1013 => 0.013642274301915
1014 => 0.014238001548213
1015 => 0.014061815687525
1016 => 0.013856930700513
1017 => 0.013879207379446
1018 => 0.014123527563809
1019 => 0.013975806003056
1020 => 0.014028927706254
1021 => 0.014123447157749
1022 => 0.014180473089622
1023 => 0.013871002225428
1024 => 0.013798849763282
1025 => 0.013651251147804
1026 => 0.013612745424084
1027 => 0.013732961416645
1028 => 0.013701288749899
1029 => 0.0131320416597
1030 => 0.013072552171514
1031 => 0.013074376629185
1101 => 0.012924787482568
1102 => 0.01269662812847
1103 => 0.013296217288354
1104 => 0.013248061887571
1105 => 0.013194902052037
1106 => 0.013201413828564
1107 => 0.013461675160908
1108 => 0.013310710444637
1109 => 0.013712074885475
1110 => 0.013629566422558
1111 => 0.0135449419289
1112 => 0.013533244246152
1113 => 0.013500671035916
1114 => 0.01338896537806
1115 => 0.013254074083729
1116 => 0.013165007167128
1117 => 0.01214402321203
1118 => 0.012333511895306
1119 => 0.012551501352978
1120 => 0.012626750440228
1121 => 0.012498031669408
1122 => 0.013394047979682
1123 => 0.013557758793797
1124 => 0.01306186805925
1125 => 0.012969107149902
1126 => 0.013400129369456
1127 => 0.013140170280742
1128 => 0.013257229842472
1129 => 0.013004211098167
1130 => 0.013518325652689
1201 => 0.013514408961161
1202 => 0.013314406787648
1203 => 0.013483447255145
1204 => 0.013454072314036
1205 => 0.013228270352724
1206 => 0.013525483977618
1207 => 0.013525631391868
1208 => 0.013333133648284
1209 => 0.013108338426953
1210 => 0.013068150350805
1211 => 0.013037874033936
1212 => 0.013249783724494
1213 => 0.013439781290424
1214 => 0.013793319656229
1215 => 0.013882207601256
1216 => 0.014229143168305
1217 => 0.014022559930114
1218 => 0.014114135603903
1219 => 0.014213553951971
1220 => 0.014261218764024
1221 => 0.014183551510619
1222 => 0.014722485250622
1223 => 0.014767987770781
1224 => 0.014783244372195
1225 => 0.014601518947343
1226 => 0.014762933657977
1227 => 0.014687413060365
1228 => 0.014883896675126
1229 => 0.014914707814749
1230 => 0.014888611875627
1231 => 0.014898391817664
]
'min_raw' => 0.006680930998364
'max_raw' => 0.014914707814749
'avg_raw' => 0.010797819406557
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.00668'
'max' => '$0.014914'
'avg' => '$0.010797'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0010301860044366
'max_diff' => -0.0014232577638404
'year' => 2031
]
6 => [
'items' => [
101 => 0.014438506944998
102 => 0.014414659488264
103 => 0.014089497723562
104 => 0.014222003546153
105 => 0.013974290261989
106 => 0.014052842696127
107 => 0.01408746786062
108 => 0.014069381639649
109 => 0.014229495226552
110 => 0.01409336596864
111 => 0.013734098475289
112 => 0.013374733099749
113 => 0.013370221560192
114 => 0.013275607000138
115 => 0.01320721800274
116 => 0.013220392149869
117 => 0.013266819562682
118 => 0.013204519557107
119 => 0.013217814421987
120 => 0.013438597762215
121 => 0.013482874286543
122 => 0.013332405356922
123 => 0.01272825089193
124 => 0.012579989870815
125 => 0.012686556952649
126 => 0.012635624751331
127 => 0.010197935344402
128 => 0.010770634311802
129 => 0.010430356032392
130 => 0.010587171918995
131 => 0.010239835910351
201 => 0.010405602859116
202 => 0.010374991756519
203 => 0.011295874748703
204 => 0.011281496427414
205 => 0.011288378568931
206 => 0.010959876022971
207 => 0.011483189498501
208 => 0.011740992534291
209 => 0.011693280053572
210 => 0.011705288257044
211 => 0.011498947536315
212 => 0.011290376398146
213 => 0.01105903890705
214 => 0.011488835371329
215 => 0.011441049341372
216 => 0.011550653301223
217 => 0.011829407030794
218 => 0.011870454576356
219 => 0.011925622893854
220 => 0.011905848979179
221 => 0.01237694385007
222 => 0.012319891152821
223 => 0.012457371738009
224 => 0.0121745637436
225 => 0.011854539653544
226 => 0.011915365770687
227 => 0.011909507726474
228 => 0.011834928100083
229 => 0.011767600948058
301 => 0.011655520209244
302 => 0.01201016025168
303 => 0.011995762513606
304 => 0.012228845157487
305 => 0.012187645536137
306 => 0.011912504381505
307 => 0.011922331101669
308 => 0.011988420517335
309 => 0.01221715673955
310 => 0.012285061223853
311 => 0.012253605161198
312 => 0.012328059328279
313 => 0.012386904866198
314 => 0.01233544942184
315 => 0.013063950004032
316 => 0.012761425771422
317 => 0.012908873977446
318 => 0.012944039505767
319 => 0.012853963744423
320 => 0.012873497951688
321 => 0.01290308695294
322 => 0.013082745574425
323 => 0.013554221781843
324 => 0.013763035384662
325 => 0.014391261411422
326 => 0.013745696321773
327 => 0.013707391160967
328 => 0.013820553638995
329 => 0.014189388821182
330 => 0.014488295093418
331 => 0.014587459548235
401 => 0.014600565767966
402 => 0.014786604877531
403 => 0.014893239025709
404 => 0.014764014836315
405 => 0.01465451086614
406 => 0.014262281237106
407 => 0.014307682884673
408 => 0.014620455213758
409 => 0.01506226455079
410 => 0.01544138292439
411 => 0.015308628883564
412 => 0.016321448505315
413 => 0.016421865433815
414 => 0.016407991061164
415 => 0.016636755768328
416 => 0.01618270441173
417 => 0.015988588659953
418 => 0.014678186867415
419 => 0.015046356320523
420 => 0.015581512242451
421 => 0.015510682349452
422 => 0.01512203781419
423 => 0.015441088102659
424 => 0.015335600099666
425 => 0.015252397335004
426 => 0.01563356532957
427 => 0.015214455462027
428 => 0.01557733130092
429 => 0.01511193928407
430 => 0.01530923529284
501 => 0.015197240536128
502 => 0.015269714869282
503 => 0.014846031398557
504 => 0.015074640715025
505 => 0.014836520499394
506 => 0.014836407599408
507 => 0.01483115108245
508 => 0.015111298460153
509 => 0.015120434056083
510 => 0.014913404720681
511 => 0.014883568559043
512 => 0.014993888486382
513 => 0.014864732744303
514 => 0.014925163903125
515 => 0.014866563142541
516 => 0.014853370877013
517 => 0.014748252660805
518 => 0.014702964842977
519 => 0.014720723363271
520 => 0.014660104378363
521 => 0.014623579247272
522 => 0.014823885314552
523 => 0.014716869863128
524 => 0.014807483661803
525 => 0.01470421780184
526 => 0.014346253340412
527 => 0.01414038419324
528 => 0.013464222508927
529 => 0.013655981123822
530 => 0.013783117283886
531 => 0.013741098783743
601 => 0.013831370781051
602 => 0.013836912748527
603 => 0.013807564401988
604 => 0.013773582776452
605 => 0.013757042400443
606 => 0.013880320811939
607 => 0.013951888079173
608 => 0.013795877098411
609 => 0.013759325908444
610 => 0.013917061623597
611 => 0.01401328031872
612 => 0.014723705102889
613 => 0.014671074540236
614 => 0.014803166924269
615 => 0.01478829534895
616 => 0.014926749211383
617 => 0.015153062761494
618 => 0.014692904035855
619 => 0.014772771679534
620 => 0.014753189977717
621 => 0.014966977863557
622 => 0.014967645286001
623 => 0.014839468768943
624 => 0.014908955338266
625 => 0.014870169841534
626 => 0.014940260476303
627 => 0.014670371626984
628 => 0.014999067112754
629 => 0.015185416272516
630 => 0.01518800373078
701 => 0.015276331753549
702 => 0.015366078140296
703 => 0.015538338514395
704 => 0.015361273891957
705 => 0.015042751873086
706 => 0.015065748134028
707 => 0.014878998790907
708 => 0.014882138081103
709 => 0.014865380304002
710 => 0.01491567165455
711 => 0.014681407750302
712 => 0.014736389020389
713 => 0.014659414920297
714 => 0.014772604352873
715 => 0.014650831234305
716 => 0.014753180534828
717 => 0.0147973511
718 => 0.014960341436412
719 => 0.014626757429093
720 => 0.013946557056519
721 => 0.014089543421466
722 => 0.013878055356372
723 => 0.013897629381989
724 => 0.013937172028916
725 => 0.013809001372674
726 => 0.013833452294763
727 => 0.013832578735768
728 => 0.013825050876279
729 => 0.013791708738405
730 => 0.013743356041946
731 => 0.013935978302462
801 => 0.013968708578015
802 => 0.014041463926146
803 => 0.014257934491758
804 => 0.014236303977526
805 => 0.01427158424368
806 => 0.014194567620756
807 => 0.013901201962237
808 => 0.013917133128919
809 => 0.013718471225111
810 => 0.014036383694613
811 => 0.013961097825595
812 => 0.013912560536076
813 => 0.013899316686936
814 => 0.01411632384121
815 => 0.01418125578294
816 => 0.014140794554274
817 => 0.014057807393839
818 => 0.014217167274826
819 => 0.014259805256124
820 => 0.014269350327709
821 => 0.014551705482591
822 => 0.014285130844292
823 => 0.014349298009255
824 => 0.014849911912967
825 => 0.014395924182297
826 => 0.014636411608367
827 => 0.014624641000297
828 => 0.014747666229824
829 => 0.014614549340639
830 => 0.014616199484019
831 => 0.014725437553388
901 => 0.014572032386149
902 => 0.014534047109399
903 => 0.014481570721624
904 => 0.01459615099452
905 => 0.014664836686101
906 => 0.015218392916162
907 => 0.015576015486012
908 => 0.015560490147093
909 => 0.015702362682601
910 => 0.015638447805951
911 => 0.015432049809355
912 => 0.01578434602199
913 => 0.015672864759613
914 => 0.015682055139434
915 => 0.015681713073038
916 => 0.015755838366657
917 => 0.015703313802644
918 => 0.015599782495439
919 => 0.015668511408766
920 => 0.01587261171031
921 => 0.016506145308867
922 => 0.016860679103823
923 => 0.016484801929245
924 => 0.016744076971073
925 => 0.01658860433512
926 => 0.016560350332257
927 => 0.0167231942188
928 => 0.01688632314201
929 => 0.016875932534827
930 => 0.01675750931334
1001 => 0.0166906150404
1002 => 0.017197160886328
1003 => 0.017570375236825
1004 => 0.017544924520182
1005 => 0.017657255706428
1006 => 0.01798706354352
1007 => 0.018017217038857
1008 => 0.018013418391515
1009 => 0.017938679807129
1010 => 0.018263418453706
1011 => 0.018534321145913
1012 => 0.01792137998425
1013 => 0.018154779954622
1014 => 0.018259560721
1015 => 0.018413409973094
1016 => 0.018672979449507
1017 => 0.018954940748294
1018 => 0.018994813167491
1019 => 0.018966521778
1020 => 0.018780560721923
1021 => 0.019089086139554
1022 => 0.019269813093391
1023 => 0.019377431858538
1024 => 0.019650335140896
1025 => 0.018260207811341
1026 => 0.017276206593671
1027 => 0.017122540594382
1028 => 0.017435026446553
1029 => 0.017517426473743
1030 => 0.017484211126103
1031 => 0.016376628294139
1101 => 0.017116709399991
1102 => 0.017912974442101
1103 => 0.01794356222526
1104 => 0.018342189154457
1105 => 0.018471998422874
1106 => 0.018792945350104
1107 => 0.018772870032421
1108 => 0.018851015501821
1109 => 0.018833051211697
1110 => 0.019427537811041
1111 => 0.020083344812232
1112 => 0.020060636301119
1113 => 0.019966356285542
1114 => 0.020106378185806
1115 => 0.020783241291584
1116 => 0.020720926583314
1117 => 0.020781460014444
1118 => 0.02157951976249
1119 => 0.022617110957625
1120 => 0.022135045675032
1121 => 0.02318098862771
1122 => 0.023839354273367
1123 => 0.024977929581254
1124 => 0.024835374345105
1125 => 0.025278613357213
1126 => 0.024580170720222
1127 => 0.022976405247146
1128 => 0.022722603222064
1129 => 0.023230721303569
1130 => 0.024479880025512
1201 => 0.023191380850036
1202 => 0.02345204255509
1203 => 0.023376971966499
1204 => 0.023372971773862
1205 => 0.023525642856841
1206 => 0.023304185488192
1207 => 0.0224019283289
1208 => 0.022815427467969
1209 => 0.022655755592515
1210 => 0.022832923442658
1211 => 0.023789025260301
1212 => 0.023366309856101
1213 => 0.022921013516386
1214 => 0.023479513945556
1215 => 0.02419067691346
1216 => 0.024146173613011
1217 => 0.024059818609204
1218 => 0.024546597244263
1219 => 0.025350612936621
1220 => 0.025567935147469
1221 => 0.02572835796056
1222 => 0.02575047755612
1223 => 0.025978323137636
1224 => 0.024753140021345
1225 => 0.026697537091832
1226 => 0.02703328075302
1227 => 0.026970174859866
1228 => 0.027343339809023
1229 => 0.0272335452147
1230 => 0.02707447007377
1231 => 0.027666015892645
]
'min_raw' => 0.010197935344402
'max_raw' => 0.027666015892645
'avg_raw' => 0.018931975618524
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.010197'
'max' => '$0.027666'
'avg' => '$0.018931'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.003517004346038
'max_diff' => 0.012751308077896
'year' => 2032
]
7 => [
'items' => [
101 => 0.026987856346591
102 => 0.026025294248879
103 => 0.025497213644754
104 => 0.026192632783313
105 => 0.026617300984447
106 => 0.026897979651426
107 => 0.026982912846463
108 => 0.024848247499014
109 => 0.023697781270706
110 => 0.024435216932929
111 => 0.025334939335932
112 => 0.024748142017968
113 => 0.024771143361878
114 => 0.023934524594084
115 => 0.025408961532975
116 => 0.025194148472945
117 => 0.026308599008378
118 => 0.026042626444072
119 => 0.026951417592997
120 => 0.026712102426577
121 => 0.027705486302455
122 => 0.028101774025338
123 => 0.028767202789317
124 => 0.029256694896882
125 => 0.029544134024936
126 => 0.029526877257845
127 => 0.030665854284801
128 => 0.029994239324831
129 => 0.029150532647617
130 => 0.029135272655687
131 => 0.029572240299232
201 => 0.030488004603884
202 => 0.030725448964252
203 => 0.030858147968942
204 => 0.030654914823973
205 => 0.029925924920004
206 => 0.029611150775533
207 => 0.029879347466507
208 => 0.02955136595985
209 => 0.030117554055698
210 => 0.030895051242548
211 => 0.030734501148021
212 => 0.031271196043011
213 => 0.031826618797376
214 => 0.032620898281715
215 => 0.032828552351005
216 => 0.033171796631165
217 => 0.033525107745322
218 => 0.033638581753188
219 => 0.03385523884312
220 => 0.033854096953312
221 => 0.034507007676527
222 => 0.035227188423195
223 => 0.03549903998284
224 => 0.036124147654261
225 => 0.035053672673338
226 => 0.035865640243098
227 => 0.036598055315888
228 => 0.035724839872179
301 => 0.036928363928228
302 => 0.03697509404008
303 => 0.037680663248504
304 => 0.036965433685062
305 => 0.036540732653383
306 => 0.037766828618499
307 => 0.038360097834358
308 => 0.038181400318356
309 => 0.036821503398199
310 => 0.036029985061944
311 => 0.033958428903482
312 => 0.036412276657747
313 => 0.037607474319129
314 => 0.036818408124994
315 => 0.037216367216077
316 => 0.039387502978352
317 => 0.040214130905997
318 => 0.040042198075612
319 => 0.040071251893692
320 => 0.040517285319091
321 => 0.042495243162402
322 => 0.041310004973986
323 => 0.042216075159003
324 => 0.042696651518056
325 => 0.043143037623157
326 => 0.042046854430807
327 => 0.04062073620369
328 => 0.040169024696791
329 => 0.036739951042783
330 => 0.036561452867379
331 => 0.036461256432477
401 => 0.035829532083487
402 => 0.035333169789042
403 => 0.03493844406375
404 => 0.033902565885502
405 => 0.034252144362138
406 => 0.03260117075059
407 => 0.033657405160346
408 => 0.031022411412164
409 => 0.033216912504912
410 => 0.03202254533185
411 => 0.032824530766159
412 => 0.03282173271453
413 => 0.031345023260254
414 => 0.030493288065167
415 => 0.031036046881506
416 => 0.03161792741687
417 => 0.031712335576052
418 => 0.032466758878787
419 => 0.032677302206305
420 => 0.032039346094596
421 => 0.030967807023566
422 => 0.031216701110562
423 => 0.030488244234439
424 => 0.029211651578721
425 => 0.030128522711227
426 => 0.030441582827842
427 => 0.030579848009981
428 => 0.02932446575074
429 => 0.028929997389212
430 => 0.028719985743445
501 => 0.030805752938313
502 => 0.030920015973601
503 => 0.030335430129902
504 => 0.032977813576126
505 => 0.032379760821394
506 => 0.033047932274912
507 => 0.031194116580951
508 => 0.031264934836955
509 => 0.030387308778719
510 => 0.030878720728337
511 => 0.030531406601293
512 => 0.030839019499035
513 => 0.031023401401606
514 => 0.031900883450041
515 => 0.033226931940386
516 => 0.031769816893452
517 => 0.031134931001231
518 => 0.031528810638031
519 => 0.032577764015682
520 => 0.034166982077757
521 => 0.033226132999014
522 => 0.033643665843507
523 => 0.033734878195285
524 => 0.033041130916746
525 => 0.034192561529468
526 => 0.034809622549031
527 => 0.035442599472316
528 => 0.035992195599194
529 => 0.035189774569695
530 => 0.036048480093795
531 => 0.035356515023301
601 => 0.034735750821033
602 => 0.034736692264088
603 => 0.034347277812088
604 => 0.033592738241958
605 => 0.033453589568513
606 => 0.034177458540318
607 => 0.034757932905059
608 => 0.034805743554023
609 => 0.035127123988194
610 => 0.035317313618654
611 => 0.037181430547429
612 => 0.037931193796967
613 => 0.038847990106209
614 => 0.039205133936468
615 => 0.040280008822397
616 => 0.039411960054939
617 => 0.039224152243817
618 => 0.036616857359448
619 => 0.0370438017507
620 => 0.037727380915101
621 => 0.036628129328091
622 => 0.037325351447212
623 => 0.03746299786271
624 => 0.036590777179798
625 => 0.037056667932972
626 => 0.035819400219524
627 => 0.033253900995477
628 => 0.034195417663491
629 => 0.034888690842233
630 => 0.033899304536202
701 => 0.035672741195225
702 => 0.034636736110187
703 => 0.034308372235244
704 => 0.033027307688918
705 => 0.033631920842088
706 => 0.034449668788976
707 => 0.033944395631202
708 => 0.03499291330073
709 => 0.036477893950229
710 => 0.037536179593189
711 => 0.037617421624071
712 => 0.036937014855279
713 => 0.038027371044566
714 => 0.038035313099036
715 => 0.036805386863284
716 => 0.036052063892144
717 => 0.035880907328096
718 => 0.036308489982309
719 => 0.036827654260636
720 => 0.037646231628318
721 => 0.038140880787699
722 => 0.039430663453722
723 => 0.03977964166218
724 => 0.040163062909695
725 => 0.040675431939107
726 => 0.04129066232764
727 => 0.039944573262616
728 => 0.039998055890593
729 => 0.038744596391115
730 => 0.037405095151646
731 => 0.038421609621216
801 => 0.039750567068926
802 => 0.039445702762053
803 => 0.039411399299718
804 => 0.039469088208379
805 => 0.039239230476935
806 => 0.038199592476539
807 => 0.037677492781218
808 => 0.03835113459002
809 => 0.03870914523105
810 => 0.03926438851348
811 => 0.039195943059157
812 => 0.04062619012592
813 => 0.041181940887638
814 => 0.041039756060875
815 => 0.041065921490868
816 => 0.042072081698842
817 => 0.043191138782738
818 => 0.044239283414395
819 => 0.045305501152576
820 => 0.044020134054012
821 => 0.043367503911783
822 => 0.044040851629645
823 => 0.043683563852492
824 => 0.04573664539845
825 => 0.045878796310184
826 => 0.047931729394978
827 => 0.049880207351172
828 => 0.048656403257495
829 => 0.049810395396485
830 => 0.051058531981163
831 => 0.053466389955868
901 => 0.052655508099452
902 => 0.052034385305577
903 => 0.051447427266607
904 => 0.052668793768738
905 => 0.054240062261922
906 => 0.054578498445931
907 => 0.055126894356599
908 => 0.054550323111193
909 => 0.055244739669045
910 => 0.05769633526036
911 => 0.057033892490754
912 => 0.056093117264924
913 => 0.058028416530523
914 => 0.058728793811458
915 => 0.063644408359489
916 => 0.069850574780287
917 => 0.067281181130191
918 => 0.065686275577761
919 => 0.066061116214248
920 => 0.068327398099132
921 => 0.069055255912365
922 => 0.067076687468363
923 => 0.06777555129174
924 => 0.071626359669322
925 => 0.073692194815171
926 => 0.070886513208433
927 => 0.063145748930387
928 => 0.056008410749082
929 => 0.057901554233292
930 => 0.057686930513264
1001 => 0.061824143716848
1002 => 0.057018093449783
1003 => 0.057099015010477
1004 => 0.061321781401726
1005 => 0.060195219725085
1006 => 0.058370334088043
1007 => 0.056021734433772
1008 => 0.051680130753679
1009 => 0.047834651299644
1010 => 0.055376522070033
1011 => 0.055051302888412
1012 => 0.054580337318642
1013 => 0.055628420230368
1014 => 0.060717613346184
1015 => 0.060600290972754
1016 => 0.059853945891392
1017 => 0.060420042057621
1018 => 0.058271094693068
1019 => 0.058824927359536
1020 => 0.056007280158249
1021 => 0.057280974368572
1022 => 0.058366418703064
1023 => 0.058584337723491
1024 => 0.059075320403735
1025 => 0.054879927157772
1026 => 0.056763535554935
1027 => 0.057869979018029
1028 => 0.052871027199011
1029 => 0.057771165813422
1030 => 0.054806894695267
1031 => 0.053800776555907
1101 => 0.05515538208457
1102 => 0.054627490992653
1103 => 0.054173641230627
1104 => 0.053920385265289
1105 => 0.054915058063182
1106 => 0.054868655388269
1107 => 0.053241177633245
1108 => 0.051118199246295
1109 => 0.051830740477346
1110 => 0.051571867567995
1111 => 0.05063367874924
1112 => 0.051265904735731
1113 => 0.048481901453474
1114 => 0.04369216850625
1115 => 0.046856412804674
1116 => 0.046734592841221
1117 => 0.046673165691552
1118 => 0.049051007828529
1119 => 0.04882243317321
1120 => 0.048407567935598
1121 => 0.05062605942381
1122 => 0.049816280187691
1123 => 0.052311828985426
1124 => 0.053955558825591
1125 => 0.053538655769035
1126 => 0.055084591628546
1127 => 0.051847155988178
1128 => 0.052922502244535
1129 => 0.053144129617604
1130 => 0.050598683583213
1201 => 0.048859830813651
1202 => 0.048743869158294
1203 => 0.045728938084544
1204 => 0.047339489928468
1205 => 0.048756708901957
1206 => 0.048077970994291
1207 => 0.047863102849442
1208 => 0.04896081760226
1209 => 0.049046119439845
1210 => 0.047101228503023
1211 => 0.047505632915474
1212 => 0.049192066542036
1213 => 0.047463139115028
1214 => 0.044104115543043
1215 => 0.043271031255057
1216 => 0.043159882454249
1217 => 0.040900491792482
1218 => 0.043326701930727
1219 => 0.042267596186994
1220 => 0.045613298541413
1221 => 0.04370225129993
1222 => 0.043619869872912
1223 => 0.043495338263245
1224 => 0.041550587386409
1225 => 0.041976364233071
1226 => 0.043391711319017
1227 => 0.043896723104309
1228 => 0.043844046237664
1229 => 0.043384775346156
1230 => 0.043595027208441
1231 => 0.042917732703417
]
'min_raw' => 0.023697781270706
'max_raw' => 0.073692194815171
'avg_raw' => 0.048694988042939
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.023697'
'max' => '$0.073692'
'avg' => '$0.048694'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.013499845926304
'max_diff' => 0.046026178922526
'year' => 2033
]
8 => [
'items' => [
101 => 0.042678565917027
102 => 0.041923689751173
103 => 0.040814230327231
104 => 0.040968507464841
105 => 0.038770378040162
106 => 0.037572720466038
107 => 0.037241224634394
108 => 0.036797934554155
109 => 0.037291295428507
110 => 0.038764151015682
111 => 0.036987574693805
112 => 0.033941759202286
113 => 0.034124817903144
114 => 0.034536096453354
115 => 0.033769681595917
116 => 0.033044334253676
117 => 0.033674964918464
118 => 0.032384412742432
119 => 0.034692053518142
120 => 0.034629638302247
121 => 0.035489784079884
122 => 0.036027650886608
123 => 0.034788042033555
124 => 0.034476283759271
125 => 0.034653875440927
126 => 0.031718680533516
127 => 0.035249916035449
128 => 0.035280454306708
129 => 0.035018967087871
130 => 0.036899240977985
131 => 0.04086720535826
201 => 0.039374297547403
202 => 0.038796198519662
203 => 0.037697231845338
204 => 0.03916153968869
205 => 0.039049103693082
206 => 0.038540625480854
207 => 0.038233096271551
208 => 0.038799728269053
209 => 0.038162884296421
210 => 0.038048489619635
211 => 0.037355382340943
212 => 0.037107974576822
213 => 0.036924803717854
214 => 0.036723150600127
215 => 0.037167947129007
216 => 0.036159979676708
217 => 0.034944469741503
218 => 0.03484341324239
219 => 0.035122439121418
220 => 0.034998990940982
221 => 0.034842822219996
222 => 0.034544653601614
223 => 0.034456193341905
224 => 0.034743646271144
225 => 0.03441912867358
226 => 0.034897972066173
227 => 0.034767753159001
228 => 0.034040360928983
301 => 0.033133760895285
302 => 0.033125690253327
303 => 0.032930364763189
304 => 0.032681588384114
305 => 0.032612384486687
306 => 0.033621854962848
307 => 0.035711428637591
308 => 0.035301195325979
309 => 0.035597630936019
310 => 0.037055800744313
311 => 0.037519309077673
312 => 0.037190321841451
313 => 0.03673998382146
314 => 0.036759796408835
315 => 0.038298737749733
316 => 0.038394719633461
317 => 0.038637234888712
318 => 0.038948935526513
319 => 0.0372434058079
320 => 0.036679466112464
321 => 0.036412240198584
322 => 0.035589287813276
323 => 0.036476771406225
324 => 0.03595967272245
325 => 0.036029447001498
326 => 0.035984006410734
327 => 0.03600882004597
328 => 0.034691408485515
329 => 0.035171404017032
330 => 0.034373318349221
331 => 0.033304771229342
401 => 0.033301189084715
402 => 0.033562714478496
403 => 0.033407148940785
404 => 0.032988526078762
405 => 0.033047989480469
406 => 0.032527027511191
407 => 0.03311124369586
408 => 0.03312799692561
409 => 0.032903041872042
410 => 0.033803107510822
411 => 0.034171865137414
412 => 0.034023794902152
413 => 0.034161476134983
414 => 0.035318242372168
415 => 0.035506845742079
416 => 0.035590610900554
417 => 0.035478376684954
418 => 0.034182619698293
419 => 0.034240092030636
420 => 0.033818398189398
421 => 0.033462111330554
422 => 0.033476360936429
423 => 0.033659538695925
424 => 0.034459486714875
425 => 0.036142930161244
426 => 0.036206815609452
427 => 0.036284246636351
428 => 0.035969295736238
429 => 0.035874303531089
430 => 0.035999622769248
501 => 0.036631835616453
502 => 0.038258058703578
503 => 0.0376832428528
504 => 0.037215908618576
505 => 0.037625886734395
506 => 0.037562773816979
507 => 0.037030037279396
508 => 0.03701508513912
509 => 0.035992593397323
510 => 0.035614601481391
511 => 0.035298723144233
512 => 0.03495379224627
513 => 0.03474930564777
514 => 0.035063490000564
515 => 0.035135347679368
516 => 0.034448378100981
517 => 0.034354746685886
518 => 0.034915740872866
519 => 0.034668868247147
520 => 0.034922782864845
521 => 0.03498169323419
522 => 0.034972207307905
523 => 0.034714443933514
524 => 0.034878734621736
525 => 0.03449013816668
526 => 0.034067597887107
527 => 0.033798043513928
528 => 0.033562821572131
529 => 0.03369333637662
530 => 0.03322807492968
531 => 0.033079228428941
601 => 0.034823076633224
602 => 0.036111276051256
603 => 0.036092545121534
604 => 0.035978525404061
605 => 0.035809115231951
606 => 0.036619442207173
607 => 0.036337140492005
608 => 0.036542538576887
609 => 0.03659482101002
610 => 0.036753064188652
611 => 0.036809622523552
612 => 0.036638663953195
613 => 0.036064906110243
614 => 0.034635156116866
615 => 0.033969603635413
616 => 0.03374996023088
617 => 0.033757943851473
618 => 0.033537719955078
619 => 0.033602585762309
620 => 0.033515162274479
621 => 0.033349603338542
622 => 0.033683113578859
623 => 0.033721547527192
624 => 0.033643702251952
625 => 0.033662037632311
626 => 0.033017512001472
627 => 0.033066513885349
628 => 0.032793665169066
629 => 0.032742509324003
630 => 0.032052771528894
701 => 0.030830801045768
702 => 0.031507891312965
703 => 0.03069006148349
704 => 0.030380336934924
705 => 0.031846524775786
706 => 0.031699360182284
707 => 0.03144747836912
708 => 0.031074892670679
709 => 0.030936697010847
710 => 0.030097063929137
711 => 0.030047453927401
712 => 0.030463598754697
713 => 0.030271562235569
714 => 0.030001870232796
715 => 0.029025073136994
716 => 0.027926829794907
717 => 0.027959978858093
718 => 0.028309309631667
719 => 0.029325035969506
720 => 0.028928174117069
721 => 0.02864024628966
722 => 0.028586326062665
723 => 0.029261250593148
724 => 0.030216410204842
725 => 0.030664549724157
726 => 0.030220457070716
727 => 0.029710307342088
728 => 0.029741357792264
729 => 0.029947922526433
730 => 0.029969629559326
731 => 0.029637574530229
801 => 0.029731046075897
802 => 0.029589054250811
803 => 0.028717650682355
804 => 0.028701889755052
805 => 0.028488033266072
806 => 0.028481557776578
807 => 0.028117734539822
808 => 0.028066833154008
809 => 0.027344440034937
810 => 0.027819921373517
811 => 0.027500993455488
812 => 0.027020293855528
813 => 0.026937421063309
814 => 0.026934929807103
815 => 0.027428500813798
816 => 0.027814153708933
817 => 0.027506541343167
818 => 0.027436503970298
819 => 0.028184319879837
820 => 0.028089153488854
821 => 0.028006740008021
822 => 0.030130886137897
823 => 0.028449458726911
824 => 0.0277162604032
825 => 0.026808788247021
826 => 0.027104265756945
827 => 0.027166527209753
828 => 0.024984220258296
829 => 0.024098858599878
830 => 0.02379503584286
831 => 0.023620181550772
901 => 0.023699864847359
902 => 0.022902935512218
903 => 0.023438485205427
904 => 0.022748411763955
905 => 0.022632718705799
906 => 0.023866655502846
907 => 0.024038350599601
908 => 0.023305845975359
909 => 0.023776232525849
910 => 0.023605663823779
911 => 0.022760241092478
912 => 0.022727952162651
913 => 0.02230374875413
914 => 0.021639952561761
915 => 0.021336579889818
916 => 0.021178580768268
917 => 0.021243774285161
918 => 0.021210810448066
919 => 0.020995699113418
920 => 0.021223140377967
921 => 0.020642121932263
922 => 0.0204107557056
923 => 0.020306252948671
924 => 0.019790565635935
925 => 0.020611253477688
926 => 0.020772939321266
927 => 0.020934943735904
928 => 0.022345081560211
929 => 0.022274635059517
930 => 0.022911437116956
1001 => 0.022886692160008
1002 => 0.022705065897717
1003 => 0.021938814573181
1004 => 0.022244228694025
1005 => 0.021304211501961
1006 => 0.022008536297211
1007 => 0.021687111873965
1008 => 0.021899862376388
1009 => 0.021517317790093
1010 => 0.021729033759027
1011 => 0.020811281032928
1012 => 0.019954296450425
1013 => 0.020299172063364
1014 => 0.020674091295938
1015 => 0.021487011719804
1016 => 0.021002843021797
1017 => 0.021176968394046
1018 => 0.020593677545249
1019 => 0.019390181915386
1020 => 0.019396993569952
1021 => 0.019211861986875
1022 => 0.019051881269443
1023 => 0.021058455621025
1024 => 0.020808906381159
1025 => 0.020411282327631
1026 => 0.020943517924231
1027 => 0.021084249463686
1028 => 0.021088255892769
1029 => 0.021476561245059
1030 => 0.021683799881184
1031 => 0.021720326589025
1101 => 0.022331333450746
1102 => 0.022536134891419
1103 => 0.023379683040968
1104 => 0.021666217130805
1105 => 0.021630929427963
1106 => 0.020951007570554
1107 => 0.020519790379446
1108 => 0.020980533380551
1109 => 0.021388688781839
1110 => 0.0209636900966
1111 => 0.021019185952681
1112 => 0.020448659941416
1113 => 0.020652596144699
1114 => 0.02082825347614
1115 => 0.020731265822379
1116 => 0.020586070610444
1117 => 0.021355224693476
1118 => 0.021311826005772
1119 => 0.022028079970669
1120 => 0.022586451156117
1121 => 0.02358715214123
1122 => 0.022542868495543
1123 => 0.022504810648842
1124 => 0.022876832205009
1125 => 0.022536077936857
1126 => 0.022751422871892
1127 => 0.023552456742977
1128 => 0.02356938132642
1129 => 0.023285872747649
1130 => 0.023268621224866
1201 => 0.023323072148663
1202 => 0.023641992910085
1203 => 0.023530552196599
1204 => 0.023659514211579
1205 => 0.023820783186047
1206 => 0.024487860041077
1207 => 0.024648690012447
1208 => 0.024257956562798
1209 => 0.024293235418445
1210 => 0.024147090382403
1211 => 0.024005916108778
1212 => 0.024323255259039
1213 => 0.024903198793457
1214 => 0.024899590994829
1215 => 0.025034126622322
1216 => 0.025117941203697
1217 => 0.024758147664412
1218 => 0.024523935300312
1219 => 0.024613747224028
1220 => 0.024757358445898
1221 => 0.024567176040319
1222 => 0.02339328213202
1223 => 0.023749366555164
1224 => 0.023690096695514
1225 => 0.023605689207912
1226 => 0.023963734848903
1227 => 0.023929200473371
1228 => 0.022894761850023
1229 => 0.022960983254462
1230 => 0.022898788992959
1231 => 0.023099751375624
]
'min_raw' => 0.019051881269443
'max_raw' => 0.042678565917027
'avg_raw' => 0.030865223593235
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.019051'
'max' => '$0.042678'
'avg' => '$0.030865'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0046459000012628
'max_diff' => -0.031013628898144
'year' => 2034
]
9 => [
'items' => [
101 => 0.022525225308691
102 => 0.022701945657387
103 => 0.022812783003439
104 => 0.022878067051757
105 => 0.023113917799969
106 => 0.023086243436846
107 => 0.023112197522701
108 => 0.023461901920011
109 => 0.02523058675755
110 => 0.025326852370875
111 => 0.024852805283373
112 => 0.025042177744664
113 => 0.024678624030189
114 => 0.024922680074314
115 => 0.025089657021354
116 => 0.024335120305504
117 => 0.024290441538094
118 => 0.023925387308116
119 => 0.024121546773578
120 => 0.023809442959663
121 => 0.02388602231867
122 => 0.023671899754819
123 => 0.024057277738374
124 => 0.024488190205672
125 => 0.024597055712161
126 => 0.024310677434137
127 => 0.024103320687599
128 => 0.023739270548237
129 => 0.024344694043382
130 => 0.024521738323309
131 => 0.02434376410515
201 => 0.024302523589989
202 => 0.024224372888279
203 => 0.024319103630799
204 => 0.024520774102138
205 => 0.024425670032123
206 => 0.024488487945886
207 => 0.024249090836173
208 => 0.024758266771044
209 => 0.025566960695481
210 => 0.025569560778683
211 => 0.025474456196021
212 => 0.025435541449853
213 => 0.025533124523092
214 => 0.025586059337257
215 => 0.025901625102438
216 => 0.026240239741171
217 => 0.027820406510997
218 => 0.027376702005169
219 => 0.028778719967901
220 => 0.029887534147174
221 => 0.030220019036971
222 => 0.029914148582981
223 => 0.028867782282679
224 => 0.028816442560032
225 => 0.03038015557714
226 => 0.029938335027214
227 => 0.029885781878661
228 => 0.029326705168009
301 => 0.029657188747002
302 => 0.029584907140375
303 => 0.029470807088176
304 => 0.030101346735209
305 => 0.031281660665792
306 => 0.031097697670797
307 => 0.03096037782883
308 => 0.03035868225454
309 => 0.030721037383835
310 => 0.030592009662748
311 => 0.031146394635551
312 => 0.030817989258793
313 => 0.029934987802005
314 => 0.03007560869441
315 => 0.030054354129413
316 => 0.030491771570935
317 => 0.030360469712359
318 => 0.030028715334206
319 => 0.031277626481094
320 => 0.031196529138024
321 => 0.031311506629063
322 => 0.031362123276416
323 => 0.032122313483244
324 => 0.032433739087608
325 => 0.032504438152071
326 => 0.032800268389696
327 => 0.032497077626263
328 => 0.033710056851343
329 => 0.034516617256722
330 => 0.035453478672787
331 => 0.036822485006268
401 => 0.037337244051674
402 => 0.037244257437551
403 => 0.038282222415343
404 => 0.04014742240777
405 => 0.037621267684129
406 => 0.040281314742106
407 => 0.03943917455527
408 => 0.037442475321739
409 => 0.037313911430637
410 => 0.038666099333739
411 => 0.041665121959558
412 => 0.040913900806423
413 => 0.041666350688246
414 => 0.040788577932371
415 => 0.040744989116592
416 => 0.041623719224719
417 => 0.043676920019443
418 => 0.04270152128495
419 => 0.041303048021474
420 => 0.042335658916571
421 => 0.041441115795611
422 => 0.039425459777233
423 => 0.040913326361765
424 => 0.039918432348689
425 => 0.04020879531318
426 => 0.042299914549349
427 => 0.042048305550438
428 => 0.042373910893395
429 => 0.041799225985651
430 => 0.041262379662327
501 => 0.04026031613311
502 => 0.039963654523244
503 => 0.040045641119445
504 => 0.039963613894759
505 => 0.039402968559601
506 => 0.039281897252854
507 => 0.039080106437352
508 => 0.039142649848893
509 => 0.038763224079764
510 => 0.039479278899474
511 => 0.039612184983866
512 => 0.040133269967635
513 => 0.040187370739283
514 => 0.041638585001898
515 => 0.040839280572714
516 => 0.041375522992435
517 => 0.041327556423106
518 => 0.037485749848651
519 => 0.038015116898065
520 => 0.03883864590242
521 => 0.038467647202225
522 => 0.037943141840475
523 => 0.037519575638664
524 => 0.036877829531052
525 => 0.037781074853874
526 => 0.038968746403953
527 => 0.040217492049749
528 => 0.041717778122118
529 => 0.04138293173602
530 => 0.040189445245203
531 => 0.040242984177339
601 => 0.040573940789008
602 => 0.040145321906318
603 => 0.040018913830178
604 => 0.040556574260475
605 => 0.040560276832365
606 => 0.040067099007507
607 => 0.039519022105767
608 => 0.039516725643537
609 => 0.039419200652667
610 => 0.040805927411594
611 => 0.041568486915114
612 => 0.041655913133267
613 => 0.041562602434057
614 => 0.041598514018814
615 => 0.041154797445567
616 => 0.042169001951946
617 => 0.043099736301429
618 => 0.042850279613529
619 => 0.042476308576008
620 => 0.042178422631737
621 => 0.04278010715201
622 => 0.042753315087461
623 => 0.043091607148842
624 => 0.043076260266868
625 => 0.042962505370434
626 => 0.042850283676074
627 => 0.043295230009244
628 => 0.043167092610911
629 => 0.043038756179805
630 => 0.042781357819898
701 => 0.042816342531944
702 => 0.042442436065795
703 => 0.042269449825759
704 => 0.039668151827641
705 => 0.03897300000268
706 => 0.039191708917933
707 => 0.039263713571609
708 => 0.038961182606524
709 => 0.039394934296627
710 => 0.039327334555181
711 => 0.039590325604621
712 => 0.039426020214675
713 => 0.03943276336519
714 => 0.039915950483418
715 => 0.040056221759465
716 => 0.039984878656339
717 => 0.04003484492027
718 => 0.041186296383106
719 => 0.041022596806435
720 => 0.040935634668983
721 => 0.040959723775367
722 => 0.041253944311519
723 => 0.041336309997796
724 => 0.040987320797307
725 => 0.04115190612174
726 => 0.04185268954419
727 => 0.042097924081141
728 => 0.042880595003832
729 => 0.042548102485006
730 => 0.04315840689325
731 => 0.045034274576085
801 => 0.046532847481305
802 => 0.045154697906521
803 => 0.047906636204847
804 => 0.050049414912197
805 => 0.049967171496425
806 => 0.049593528465434
807 => 0.047154031875835
808 => 0.044909170743241
809 => 0.046787092402494
810 => 0.046791879611002
811 => 0.046630564475026
812 => 0.045628650019904
813 => 0.046595700023763
814 => 0.046672460941259
815 => 0.046629495239837
816 => 0.045861329776208
817 => 0.044688483093955
818 => 0.044917654528269
819 => 0.045293042012646
820 => 0.044582355190688
821 => 0.044355247689039
822 => 0.044777483743574
823 => 0.046138016287661
824 => 0.04588081549123
825 => 0.045874098939005
826 => 0.04697451301625
827 => 0.046186854021164
828 => 0.044920545113964
829 => 0.044600785414334
830 => 0.04346585389659
831 => 0.044249755138383
901 => 0.044277966348523
902 => 0.043848631649669
903 => 0.044955383258578
904 => 0.044945184347662
905 => 0.045995880282083
906 => 0.048004416285324
907 => 0.047410393355112
908 => 0.046719609316786
909 => 0.046794716695115
910 => 0.047618459254588
911 => 0.047120405698917
912 => 0.047299509230089
913 => 0.047618188159942
914 => 0.047810455070676
915 => 0.046767052445481
916 => 0.046523785381831
917 => 0.04602614634474
918 => 0.045896321608836
919 => 0.046301638220967
920 => 0.046194851613718
921 => 0.04427559530555
922 => 0.044075022342705
923 => 0.044081173629123
924 => 0.043576823377325
925 => 0.042807568185404
926 => 0.044829124899933
927 => 0.044666765604088
928 => 0.044487533507087
929 => 0.044509488416285
930 => 0.045386977669148
1001 => 0.044877989588218
1002 => 0.046231217822877
1003 => 0.045953034779595
1004 => 0.045667717390934
1005 => 0.045628277836841
1006 => 0.045518454984342
1007 => 0.04514183155984
1008 => 0.044687036143195
1009 => 0.044386740815422
1010 => 0.040944422127985
1011 => 0.041583296453326
1012 => 0.042318263129405
1013 => 0.042571970680793
1014 => 0.042137986358115
1015 => 0.045158967906065
1016 => 0.045710930345778
1017 => 0.044039000112269
1018 => 0.04372625023004
1019 => 0.045179471736277
1020 => 0.044303001518912
1021 => 0.044697676004125
1022 => 0.043844605642497
1023 => 0.045577978757398
1024 => 0.045564773358457
1025 => 0.044890452066753
1026 => 0.045460383804948
1027 => 0.045361344140106
1028 => 0.044600037062552
1029 => 0.045602113549676
1030 => 0.045602610567111
1031 => 0.044953590984855
1101 => 0.044195678201436
1102 => 0.044060181296861
1103 => 0.043958102580712
1104 => 0.044672570897491
1105 => 0.04531316095623
1106 => 0.046505140239801
1107 => 0.04680483215242
1108 => 0.047974549638992
1109 => 0.047278039828249
1110 => 0.047586793606039
1111 => 0.047921989507719
1112 => 0.048082694749405
1113 => 0.047820834181996
1114 => 0.049637886913568
1115 => 0.049791301837169
1116 => 0.049842740534019
1117 => 0.049230040576465
1118 => 0.049774261542984
1119 => 0.049519638575454
1120 => 0.050182096800669
1121 => 0.050285978709074
1122 => 0.050197994428361
1123 => 0.050230968185753
1124 => 0.048680434229424
1125 => 0.04860003086407
1126 => 0.047503725272307
1127 => 0.047950477904433
1128 => 0.047115295272085
1129 => 0.047380140288137
1130 => 0.047496881447677
1201 => 0.047435902490936
1202 => 0.047975736627951
1203 => 0.04751676733066
1204 => 0.046305471893571
1205 => 0.04509384643985
1206 => 0.045078635469247
1207 => 0.044759635874248
1208 => 0.044529057594754
1209 => 0.044573475151589
1210 => 0.044730008415346
1211 => 0.044519959596903
1212 => 0.044564784162063
1213 => 0.045309170608241
1214 => 0.045458452001301
1215 => 0.044951135499678
1216 => 0.042914186540242
1217 => 0.042414314156297
1218 => 0.042773612512976
1219 => 0.042601891040261
1220 => 0.034383051010761
1221 => 0.036313945563914
1222 => 0.035166673587414
1223 => 0.035695389297631
1224 => 0.034524321694262
1225 => 0.035083216535501
1226 => 0.034980009065896
1227 => 0.038084830368044
1228 => 0.038036352853953
1229 => 0.038059556474575
1230 => 0.036951987205557
1231 => 0.038716375124886
]
'min_raw' => 0.022525225308691
'max_raw' => 0.050285978709074
'avg_raw' => 0.036405602008883
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.022525'
'max' => '$0.050285'
'avg' => '$0.0364056'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0034733440392479
'max_diff' => 0.0076074127920469
'year' => 2035
]
10 => [
'items' => [
101 => 0.039585576059285
102 => 0.039424710099362
103 => 0.039465196595753
104 => 0.038769504449564
105 => 0.038066292295258
106 => 0.037286321792558
107 => 0.038735410579307
108 => 0.038574296642991
109 => 0.038943834045935
110 => 0.039883671707148
111 => 0.040022066372857
112 => 0.040208070207031
113 => 0.040141401073134
114 => 0.041729730321135
115 => 0.041537373169068
116 => 0.042000898560619
117 => 0.041047391662443
118 => 0.03996840809945
119 => 0.040173487600145
120 => 0.040153736795083
121 => 0.039902286377724
122 => 0.03967528818404
123 => 0.0392974001479
124 => 0.040493093811152
125 => 0.040444550832017
126 => 0.041230405239171
127 => 0.041091497839324
128 => 0.040163840226739
129 => 0.040196971699853
130 => 0.040419796778986
131 => 0.041190996922037
201 => 0.041419941631804
202 => 0.041313885320371
203 => 0.041564912742908
204 => 0.041763314582468
205 => 0.041589828959308
206 => 0.044046019534456
207 => 0.043026037962645
208 => 0.043523169883759
209 => 0.043641732917674
210 => 0.043338036199414
211 => 0.04340389714304
212 => 0.043503658526601
213 => 0.044109390112303
214 => 0.045699005063029
215 => 0.046403034703831
216 => 0.048521142614395
217 => 0.046344574842729
218 => 0.046215426318691
219 => 0.046596961514114
220 => 0.047840515082107
221 => 0.048848298447919
222 => 0.049182638330776
223 => 0.049226826865645
224 => 0.049854070712379
225 => 0.050213595187922
226 => 0.049777906811235
227 => 0.049408706530467
228 => 0.048086276951581
229 => 0.048239351776193
301 => 0.049293885520772
302 => 0.050783476546717
303 => 0.052061700612509
304 => 0.051614111095274
305 => 0.055028903162815
306 => 0.055367465848137
307 => 0.055320687432068
308 => 0.056091983614114
309 => 0.054561117764488
310 => 0.053906642954644
311 => 0.04948853182177
312 => 0.050729840837696
313 => 0.052534156391868
314 => 0.052295348462437
315 => 0.050985006277505
316 => 0.05206070660046
317 => 0.051705046433432
318 => 0.051424522503343
319 => 0.05270965700932
320 => 0.051296598829582
321 => 0.052520060055592
322 => 0.050950958378149
323 => 0.051616155646487
324 => 0.051238557505007
325 => 0.051482909779232
326 => 0.050054431377047
327 => 0.050825203648513
328 => 0.05002236471649
329 => 0.050021984066304
330 => 0.050004261352382
331 => 0.050948797795574
401 => 0.050979599095077
402 => 0.050281585236442
403 => 0.050180990534387
404 => 0.050552941871702
405 => 0.050117484269916
406 => 0.050321232141054
407 => 0.050123655585371
408 => 0.050079176941088
409 => 0.049724763536023
410 => 0.049572072496321
411 => 0.049631946587351
412 => 0.049427565447455
413 => 0.049304418417878
414 => 0.049979764308633
415 => 0.049618954242578
416 => 0.049924464991266
417 => 0.049576296934606
418 => 0.048369394760623
419 => 0.047675292557607
420 => 0.045395566230843
421 => 0.046042093789122
422 => 0.046470742229141
423 => 0.046329073922272
424 => 0.046633432263784
425 => 0.046652117394057
426 => 0.046553167394666
427 => 0.04643859597165
428 => 0.046382828939123
429 => 0.046798470710506
430 => 0.047039764748653
501 => 0.046513762834674
502 => 0.046390527945777
503 => 0.046922344922172
504 => 0.047246752970552
505 => 0.049641999730653
506 => 0.04946455211412
507 => 0.049909910809282
508 => 0.049859770254793
509 => 0.050326577118528
510 => 0.051089609053434
511 => 0.049538151782686
512 => 0.049807431119531
513 => 0.049741410044705
514 => 0.050462210828006
515 => 0.050464461089374
516 => 0.050032305013115
517 => 0.050266583832986
518 => 0.050135815822837
519 => 0.050372131291533
520 => 0.049462182193016
521 => 0.050570401972075
522 => 0.051198691174696
523 => 0.051207414970884
524 => 0.051505219066515
525 => 0.051807805275326
526 => 0.052388593153434
527 => 0.051791607416629
528 => 0.050717688191506
529 => 0.050795221690821
530 => 0.050165583242064
531 => 0.050176167578141
601 => 0.050119667562652
602 => 0.050289228362257
603 => 0.049499391253298
604 => 0.049684764444067
605 => 0.049425240891447
606 => 0.049806866966012
607 => 0.04939630039483
608 => 0.049741378207344
609 => 0.049890302351714
610 => 0.050439835650547
611 => 0.049315133879781
612 => 0.047021790833572
613 => 0.047503879345982
614 => 0.046790832568892
615 => 0.046856827762872
616 => 0.046990148557769
617 => 0.046558012241658
618 => 0.046640450232592
619 => 0.046637504967448
620 => 0.046612124263604
621 => 0.046499708917887
622 => 0.046336684425899
623 => 0.046986123825686
624 => 0.047096476234867
625 => 0.047341775970706
626 => 0.048071621596161
627 => 0.047998692807233
628 => 0.048117642687761
629 => 0.047857975766443
630 => 0.046868872966609
701 => 0.046922586007358
702 => 0.046252783528536
703 => 0.047324647615401
704 => 0.047070816051717
705 => 0.046907169191337
706 => 0.046862516629305
707 => 0.047594171400898
708 => 0.047813093975842
709 => 0.047676676118484
710 => 0.047396879113099
711 => 0.047934172077997
712 => 0.048077929008834
713 => 0.048110110884096
714 => 0.049062091002188
715 => 0.048163315997518
716 => 0.048379660074197
717 => 0.05006751480231
718 => 0.048536863471943
719 => 0.049347683619236
720 => 0.049307998192331
721 => 0.049722786343028
722 => 0.049273973457215
723 => 0.049279537030832
724 => 0.049647840808468
725 => 0.049130624576714
726 => 0.049002554564104
727 => 0.048825626758937
728 => 0.049211942148744
729 => 0.049443520753391
730 => 0.051309874231103
731 => 0.052515623693764
801 => 0.052463278929652
802 => 0.052941612088344
803 => 0.052726118619323
804 => 0.052030233363552
805 => 0.053218024640988
806 => 0.052842157781509
807 => 0.052873143788726
808 => 0.05287199048799
809 => 0.053121909090692
810 => 0.052944818855974
811 => 0.052595755825405
812 => 0.052827480155186
813 => 0.053515618571672
814 => 0.05565162133111
815 => 0.056846956773564
816 => 0.055579660636567
817 => 0.056453824542096
818 => 0.055929637695226
819 => 0.055834377351942
820 => 0.05638341688482
821 => 0.056933417438719
822 => 0.056898384781153
823 => 0.056499112621863
824 => 0.056273573910237
825 => 0.057981428595686
826 => 0.059239746835379
827 => 0.059153937967305
828 => 0.059532670404447
829 => 0.060644640553651
830 => 0.06074630516843
831 => 0.060733497763702
901 => 0.060481511408366
902 => 0.061576390427827
903 => 0.062489757768425
904 => 0.060423183847691
905 => 0.061210108143268
906 => 0.061563383812669
907 => 0.062082097307519
908 => 0.062957253919806
909 => 0.063907906124576
910 => 0.064042338769702
911 => 0.063946952374791
912 => 0.063319971690842
913 => 0.064360186676941
914 => 0.064969520219755
915 => 0.065332364400151
916 => 0.066252476870119
917 => 0.061565565522934
918 => 0.058247936716788
919 => 0.057729841071567
920 => 0.058783408939228
921 => 0.059061226383884
922 => 0.058949238520296
923 => 0.055214945673364
924 => 0.057710180792558
925 => 0.060394843975482
926 => 0.060497972821973
927 => 0.061841971345005
928 => 0.062279632356465
929 => 0.06336172732942
930 => 0.063294041994239
1001 => 0.063557514900261
1002 => 0.063496947041881
1003 => 0.065501300117299
1004 => 0.067712399208797
1005 => 0.067635835878123
1006 => 0.067317964223183
1007 => 0.06779005783594
1008 => 0.070072149054145
1009 => 0.06986205066454
1010 => 0.070066143353903
1011 => 0.072756857513192
1012 => 0.076255168669893
1013 => 0.074629851912907
1014 => 0.078156321603267
1015 => 0.080376047343223
1016 => 0.08421483348655
1017 => 0.083734198554986
1018 => 0.085228609830269
1019 => 0.082873761715947
1020 => 0.077466554452139
1021 => 0.076610843204683
1022 => 0.078323998792149
1023 => 0.082535624636657
1024 => 0.078191359706402
1025 => 0.07907019884381
1026 => 0.078817093113114
1027 => 0.078803606184355
1028 => 0.079318347399771
1029 => 0.078571688419714
1030 => 0.075529665413576
1031 => 0.076923806630535
1101 => 0.076385461754507
1102 => 0.076982795530729
1103 => 0.080206359561811
1104 => 0.078781145063501
1105 => 0.077279797364556
1106 => 0.079162820554759
1107 => 0.081560556152857
1108 => 0.081410510168273
1109 => 0.081119358243824
1110 => 0.082760566397723
1111 => 0.085471361439094
1112 => 0.086204078445919
1113 => 0.086744955160619
1114 => 0.086819532921389
1115 => 0.08758773020714
1116 => 0.083456939791013
1117 => 0.090012610267628
1118 => 0.091144593462198
1119 => 0.090931827537515
1120 => 0.092189979217144
1121 => 0.09181979907677
1122 => 0.091283466132852
1123 => 0.093277904161601
1124 => 0.09099144190449
1125 => 0.087746096588114
1126 => 0.085965635961899
1127 => 0.088310290140161
1128 => 0.089742088629672
1129 => 0.090688416351751
1130 => 0.090974774548666
1201 => 0.083777601292164
1202 => 0.079898724080438
1203 => 0.082385039901737
1204 => 0.085418516800073
1205 => 0.083440088673678
1206 => 0.083517639310573
1207 => 0.0806969207241
1208 => 0.08566808780547
1209 => 0.08494383057581
1210 => 0.088701278364472
1211 => 0.087804533294305
1212 => 0.090868586102676
1213 => 0.09006171831064
1214 => 0.09341098140401
1215 => 0.094747093129634
1216 => 0.096990632666142
1217 => 0.098640989482045
1218 => 0.099610110570639
1219 => 0.099551928175562
1220 => 0.10339206874278
1221 => 0.10112767201458
1222 => 0.098283056046637
1223 => 0.098231605918425
1224 => 0.099704872836745
1225 => 0.1027924361265
1226 => 0.10359299636532
1227 => 0.10404040032438
1228 => 0.10335518558683
1229 => 0.10089734522915
1230 => 0.099836062224238
1231 => 0.10074030609275
]
'min_raw' => 0.037286321792558
'max_raw' => 0.10404040032438
'avg_raw' => 0.070663361058468
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.037286'
'max' => '$0.10404'
'avg' => '$0.070663'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.014761096483867
'max_diff' => 0.053754421615305
'year' => 2036
]
11 => [
'items' => [
101 => 0.09963449354412
102 => 0.10154343623926
103 => 0.10416482228785
104 => 0.1036235164349
105 => 0.1054330207442
106 => 0.10730566733892
107 => 0.10998363607519
108 => 0.11068375626775
109 => 0.11184102832286
110 => 0.11303224141163
111 => 0.11341482695165
112 => 0.11414530145687
113 => 0.11414145149566
114 => 0.11634278558375
115 => 0.11877092525256
116 => 0.11968749176597
117 => 0.12179508592379
118 => 0.11818590478743
119 => 0.12092351013864
120 => 0.12339289869214
121 => 0.12044879185772
122 => 0.12450655724006
123 => 0.12466411107476
124 => 0.12704298692223
125 => 0.12463154051335
126 => 0.12319963133336
127 => 0.12733349948304
128 => 0.12933374806504
129 => 0.12873125691358
130 => 0.1241462695023
131 => 0.12147761016957
201 => 0.11449321394988
202 => 0.12276653297557
203 => 0.12679622533695
204 => 0.12413583357259
205 => 0.12547758043279
206 => 0.13279771623916
207 => 0.13558475001053
208 => 0.13500506646892
209 => 0.13510302344505
210 => 0.13660685627984
211 => 0.14327567924517
212 => 0.13927956594224
213 => 0.14233444483082
214 => 0.14395474157814
215 => 0.14545976349717
216 => 0.1417639053311
217 => 0.13695564815998
218 => 0.13543267127698
219 => 0.12387131004221
220 => 0.12326949098149
221 => 0.12293167170573
222 => 0.12080176895752
223 => 0.11912824882689
224 => 0.1177974034852
225 => 0.11430486788453
226 => 0.1154834961253
227 => 0.10991712332667
228 => 0.11347829138309
301 => 0.10459422599171
302 => 0.11199313964108
303 => 0.10796624732905
304 => 0.11067019721366
305 => 0.11066076338724
306 => 0.10568193436159
307 => 0.1028102496851
308 => 0.1046401989286
309 => 0.10660204977918
310 => 0.10692035347922
311 => 0.10946394431655
312 => 0.11017380584494
313 => 0.10802289227364
314 => 0.10441012348319
315 => 0.10524928727473
316 => 0.10279324405765
317 => 0.098489122790044
318 => 0.10158041782718
319 => 0.10263592186751
320 => 0.10310209258246
321 => 0.098869483647439
322 => 0.097539506025645
323 => 0.096831437099395
324 => 0.10386374682051
325 => 0.10424899262157
326 => 0.10227802063506
327 => 0.11118700090933
328 => 0.10917062429204
329 => 0.11142341099782
330 => 0.10517314195635
331 => 0.10541191065084
401 => 0.1024529331216
402 => 0.10410976281902
403 => 0.102938768991
404 => 0.10397590735258
405 => 0.10459756381023
406 => 0.10755605580037
407 => 0.11202692086732
408 => 0.10711415575406
409 => 0.10497359364212
410 => 0.10630158633739
411 => 0.10983820588572
412 => 0.11519636553767
413 => 0.1120242271807
414 => 0.11343196831712
415 => 0.11373949712939
416 => 0.1114004797439
417 => 0.11528260844501
418 => 0.11736307275429
419 => 0.11949719864419
420 => 0.12135020035753
421 => 0.11864478183333
422 => 0.12153996746074
423 => 0.11920695891411
424 => 0.11711400906579
425 => 0.11711718320678
426 => 0.11580424519381
427 => 0.11326026235285
428 => 0.11279111288528
429 => 0.11523168766264
430 => 0.11718879751079
501 => 0.1173499944518
502 => 0.11843355102367
503 => 0.11907478864139
504 => 0.12535978901524
505 => 0.12788766815785
506 => 0.13097871092314
507 => 0.13218284628184
508 => 0.13580686200512
509 => 0.13288017498041
510 => 0.13224696783289
511 => 0.12345629109472
512 => 0.12489576391813
513 => 0.12720049879688
514 => 0.12349429532399
515 => 0.12584502837709
516 => 0.12630911287711
517 => 0.12336835994817
518 => 0.12493914314995
519 => 0.12076760867079
520 => 0.11211784891948
521 => 0.11529223810028
522 => 0.1176296570252
523 => 0.11429387201767
524 => 0.12027313753096
525 => 0.11678017405519
526 => 0.11567307232518
527 => 0.11135387376618
528 => 0.11339236922483
529 => 0.1161494635211
530 => 0.11444589979262
531 => 0.1179810503206
601 => 0.12298776625842
602 => 0.12655585019081
603 => 0.12682976337006
604 => 0.1245357244446
605 => 0.12821193646302
606 => 0.12823871365416
607 => 0.12409193147961
608 => 0.12155205048709
609 => 0.12097498418163
610 => 0.12241660895318
611 => 0.12416700756445
612 => 0.12692689831083
613 => 0.12859464248699
614 => 0.13294323479523
615 => 0.13411983918993
616 => 0.13541257069554
617 => 0.13714005865067
618 => 0.13921435085962
619 => 0.13467591759596
620 => 0.13485623801022
621 => 0.13063011179398
622 => 0.12611388984412
623 => 0.12954113934905
624 => 0.13402181216885
625 => 0.13299394087328
626 => 0.13287828435503
627 => 0.13307278653829
628 => 0.13229780514857
629 => 0.12879259304503
630 => 0.12703229747042
701 => 0.12930352786096
702 => 0.1305105857327
703 => 0.13238262722526
704 => 0.1321518585973
705 => 0.13697403643956
706 => 0.13884778893397
707 => 0.13836840286351
708 => 0.13845662143754
709 => 0.14184896082659
710 => 0.14562193991501
711 => 0.14915583271977
712 => 0.15275066026499
713 => 0.14841695535072
714 => 0.14621656726101
715 => 0.14848680610342
716 => 0.14728218541771
717 => 0.15420429319148
718 => 0.15468356491506
719 => 0.16160517214165
720 => 0.16817460160934
721 => 0.16404846066424
722 => 0.16793922573
723 => 0.17214740536736
724 => 0.18026566664035
725 => 0.17753172184748
726 => 0.17543756298252
727 => 0.17345859297403
728 => 0.17757651540905
729 => 0.18287415683629
730 => 0.18401521805953
731 => 0.18586417316013
801 => 0.18392022295133
802 => 0.18626149685874
803 => 0.19452722255979
804 => 0.19229375051179
805 => 0.18912186115508
806 => 0.19564685774732
807 => 0.19800822864878
808 => 0.21458156629471
809 => 0.23550608968313
810 => 0.2268431996025
811 => 0.22146586417973
812 => 0.22272966555618
813 => 0.23037059315782
814 => 0.23282461659254
815 => 0.22615373494435
816 => 0.22851000311798
817 => 0.24149327241786
818 => 0.24845837984409
819 => 0.23899882842054
820 => 0.21290030121421
821 => 0.1888362672229
822 => 0.19521913265496
823 => 0.19449551379834
824 => 0.20844441696523
825 => 0.1922404829421
826 => 0.19251331563375
827 => 0.20675066734598
828 => 0.20295238599916
829 => 0.19679965666442
830 => 0.18888118895606
831 => 0.17424316902753
901 => 0.16127786656545
902 => 0.18670581042442
903 => 0.18560931124751
904 => 0.18402141794726
905 => 0.18755510265896
906 => 0.20471367256505
907 => 0.20431811199184
908 => 0.20180175744188
909 => 0.2037103901899
910 => 0.19646506411559
911 => 0.19833234961795
912 => 0.18883245535697
913 => 0.19312680431356
914 => 0.1967864556706
915 => 0.19752118486259
916 => 0.19917656724835
917 => 0.18503150600658
918 => 0.19138222322696
919 => 0.1951126746122
920 => 0.17825835953871
921 => 0.19477951899395
922 => 0.18478527196029
923 => 0.18139307440851
924 => 0.18596022152393
925 => 0.18418039985135
926 => 0.18265021369191
927 => 0.181796343523
928 => 0.18514995230694
929 => 0.18499350244874
930 => 0.1795063475708
1001 => 0.17234857771759
1002 => 0.17475096022611
1003 => 0.17387815213831
1004 => 0.17071498303362
1005 => 0.17284657708769
1006 => 0.16346011564866
1007 => 0.14731119660861
1008 => 0.15797966718123
1009 => 0.15756894266925
1010 => 0.15736183674543
1011 => 0.16537889752589
1012 => 0.16460824211691
1013 => 0.16320949500333
1014 => 0.17068929394597
1015 => 0.16795906671442
1016 => 0.17637298371963
1017 => 0.1819149336373
1018 => 0.18050931587488
1019 => 0.18572154655902
1020 => 0.17480630626698
1021 => 0.17843191124856
1022 => 0.1791791434104
1023 => 0.17059699438808
1024 => 0.16473433087268
1025 => 0.16434335805546
1026 => 0.15417830744454
1027 => 0.15960839543147
1028 => 0.16438664814766
1029 => 0.16209823590399
1030 => 0.16137379295202
1031 => 0.16507481488114
1101 => 0.16536241598215
1102 => 0.1588050804007
1103 => 0.16016855811189
1104 => 0.16585448682688
1105 => 0.16002528729687
1106 => 0.14870010480438
1107 => 0.14589130296335
1108 => 0.14551655702127
1109 => 0.1378988636595
1110 => 0.14607900053318
1111 => 0.14250815157378
1112 => 0.15378842065118
1113 => 0.14734519145146
1114 => 0.14706743671858
1115 => 0.14664756970207
1116 => 0.14009070634265
1117 => 0.14152624270796
1118 => 0.14629818422461
1119 => 0.14800086671752
1120 => 0.14782326298384
1121 => 0.14627479910785
1122 => 0.14698367794086
1123 => 0.14470013222998
1124 => 0.14389376471158
1125 => 0.14134864701463
1126 => 0.13760802710682
1127 => 0.13812818324756
1128 => 0.13071703642376
1129 => 0.12667905029482
1130 => 0.12556138895413
1201 => 0.12406680549908
1202 => 0.12573020613232
1203 => 0.13069604157597
1204 => 0.12470619047016
1205 => 0.11443701088846
1206 => 0.11505420607915
1207 => 0.11644086042574
1208 => 0.11385683922451
1209 => 0.11141128001801
1210 => 0.11353749533357
1211 => 0.1091863085686
1212 => 0.11696668055824
1213 => 0.11675624330016
1214 => 0.11965628484293
1215 => 0.12146974033446
1216 => 0.11729031253966
1217 => 0.11623919775165
1218 => 0.1168379605054
1219 => 0.10694174594631
1220 => 0.11884755298406
1221 => 0.11895051489773
1222 => 0.11806889248296
1223 => 0.12440836718001
1224 => 0.13778663612254
1225 => 0.13275319320674
1226 => 0.13080409197312
1227 => 0.12709884910324
1228 => 0.13203586523181
1229 => 0.13165677942258
1230 => 0.12994240962924
1231 => 0.12890555342907
]
'min_raw' => 0.096831437099395
'max_raw' => 0.24845837984409
'avg_raw' => 0.17264490847174
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.096831'
'max' => '$0.248458'
'avg' => '$0.172644'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.059545115306838
'max_diff' => 0.14441797951971
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0030394281637452
]
1 => [
'year' => 2028
'avg' => 0.0052165410812873
]
2 => [
'year' => 2029
'avg' => 0.014250650044023
]
3 => [
'year' => 2030
'avg' => 0.010994355286259
]
4 => [
'year' => 2031
'avg' => 0.010797819406557
]
5 => [
'year' => 2032
'avg' => 0.018931975618524
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0030394281637452
'min' => '$0.003039'
'max_raw' => 0.018931975618524
'max' => '$0.018931'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.018931975618524
]
1 => [
'year' => 2033
'avg' => 0.048694988042939
]
2 => [
'year' => 2034
'avg' => 0.030865223593235
]
3 => [
'year' => 2035
'avg' => 0.036405602008883
]
4 => [
'year' => 2036
'avg' => 0.070663361058468
]
5 => [
'year' => 2037
'avg' => 0.17264490847174
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.018931975618524
'min' => '$0.018931'
'max_raw' => 0.17264490847174
'max' => '$0.172644'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.17264490847174
]
]
]
]
'prediction_2025_max_price' => '$0.005196'
'last_price' => 0.00503902
'sma_50day_nextmonth' => '$0.004835'
'sma_200day_nextmonth' => '$0.008211'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentare'
'sma_200day_date_nextmonth' => '4 feb 2026'
'sma_50day_date_nextmonth' => '4 feb 2026'
'daily_sma3' => '$0.005087'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.005143'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.005085'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.00515'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.005559'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.007212'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.008888'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.005085'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.0051036'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.005121'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.00522'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.005783'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.00700028'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.0099033'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.008063'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0127052'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.032135'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.0210057'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.005111'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.005292'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.0060017'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.007864'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.014075'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.020327'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.021415'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '41.61'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 52.76
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.005086'
'vwma_10_action' => 'SELL'
'hma_9' => '0.005117'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 29.84
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -55.73
'cci_20_action' => 'NEUTRAL'
'adx_14' => 17.55
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000188'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -70.16
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 50.3
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.001817'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 31
'buy_signals' => 1
'sell_pct' => 96.88
'buy_pct' => 3.13
'overall_action' => 'bearish'
'overall_action_label' => 'Ribassista'
'overall_action_dir' => -1
'last_updated' => 1767709726
'last_updated_date' => '6 gennaio 2026'
]
Previsione del prezzo di iMe Lab per l'anno 2026
La previsione del prezzo di iMe Lab per 2026 suggerisce che il prezzo medio potrebbe variare tra $0.00174 come limite inferiore e $0.005196 come limite superiore. Nel mercato delle criptovalute, rispetto al prezzo medio di oggi, iMe Lab potrebbe potenzialmente guadagnare 3.13% entro il 2026 se LIME raggiunge l'obiettivo di prezzo previsto.
Previsione del prezzo di iMe Lab 2027-2032
La previsione del prezzo di LIME per gli anni 2027-2032 è attualmente compresa in un intervallo di prezzo tra $0.003039 come limite inferiore e $0.018931 come limite superiore. Considerando la volatilità dei prezzi sul mercato, se iMe Lab raggiunge l'obiettivo di prezzo massimo, potrebbe guadagnare 275.71% entro il 2032 rispetto al prezzo di oggi.
| Previsione del Prezzo di iMe Lab | Potenziale Minimo ($) | Prezzo Medio ($) | Potenziale Massimo ($) |
|---|---|---|---|
| 2027 | $0.001675 | $0.003039 | $0.0044028 |
| 2028 | $0.003024 | $0.005216 | $0.0074083 |
| 2029 | $0.006644 | $0.01425 | $0.021856 |
| 2030 | $0.00565 | $0.010994 | $0.016337 |
| 2031 | $0.00668 | $0.010797 | $0.014914 |
| 2032 | $0.010197 | $0.018931 | $0.027666 |
Previsione del prezzo di iMe Lab 2032-2037
La previsione del prezzo di iMe Lab per gli anni 2032-2037 è attualmente stimata tra $0.018931 come limite inferiore e $0.172644 come limite superiore. Rispetto al prezzo attuale, iMe Lab potrebbe potenzialmente guadagnare 3326.16% entro il 2037 se raggiunge l'obiettivo di prezzo massimo. Si prega di notare che queste informazioni sono solo a scopo generale e non devono essere considerate come consigli di investimento a lungo termine.
| Previsione del Prezzo di iMe Lab | Potenziale Minimo ($) | Prezzo Medio ($) | Potenziale Massimo ($) |
|---|---|---|---|
| 2032 | $0.010197 | $0.018931 | $0.027666 |
| 2033 | $0.023697 | $0.048694 | $0.073692 |
| 2034 | $0.019051 | $0.030865 | $0.042678 |
| 2035 | $0.022525 | $0.0364056 | $0.050285 |
| 2036 | $0.037286 | $0.070663 | $0.10404 |
| 2037 | $0.096831 | $0.172644 | $0.248458 |
iMe Lab Istogramma dei prezzi potenziali
Previsione del prezzo di iMe Lab basata sull'analisi tecnica
Al 6 gennaio 2026, il sentimento generale della previsione di prezzo per iMe Lab è Ribassista, con 1 indicatori tecnici che mostrano segnali rialzisti e 31 indicando segnali ribassisti. La previsione del prezzo di LIME è stata aggiornata l'ultima volta il 6 gennaio 2026.
Medi Mobile Semplici a 50 e 200 giorni e Indice di Forza Relativa a 14 giorni - RSI (14) di iMe Lab
Secondo i nostri indicatori tecnici, il SMA a 200 giorni di iMe Lab è previsto aumentare nel corso del prossimo mese, raggiungendo $0.008211 entro il 4 feb 2026. Il SMA a 50 giorni a breve termine per iMe Lab dovrebbe raggiungere $0.004835 entro il 4 feb 2026.
L'oscillatore di momentum dell'Indice di Forza Relativa (RSI) è uno strumento comunemente utilizzato per identificare se una criptovaluta è ipervenduta (sotto 30) o ipercomprata (sopra 70). Al momento, l'RSI è a 41.61, suggerendo che il mercato di LIME è in uno stato NEUTRAL.
Medie Mobili e Oscillatori Popolari di LIME per Sabato, 19 Ottobre 2024
Le medie mobili (MA) sono indicatori ampiamente utilizzati nei mercati finanziari, progettati per smussare i movimenti dei prezzi su un periodo stabilito. In quanto indicatori ritardati, si basano su dati storici dei prezzi. La tabella seguente evidenzia due tipi: la media mobile semplice (SMA) e la media mobile esponenziale (EMA).
Media Mobile Semplice Giornaliera (SMA)
| Periodo | Valore | Azione |
|---|---|---|
| SMA 3 | $0.005087 | SELL |
| SMA 5 | $0.005143 | SELL |
| SMA 10 | $0.005085 | SELL |
| SMA 21 | $0.00515 | SELL |
| SMA 50 | $0.005559 | SELL |
| SMA 100 | $0.007212 | SELL |
| SMA 200 | $0.008888 | SELL |
Media Mobile Esponenziale Giornaliera (EMA)
| Periodo | Valore | Azione |
|---|---|---|
| EMA 3 | $0.005085 | SELL |
| EMA 5 | $0.0051036 | SELL |
| EMA 10 | $0.005121 | SELL |
| EMA 21 | $0.00522 | SELL |
| EMA 50 | $0.005783 | SELL |
| EMA 100 | $0.00700028 | SELL |
| EMA 200 | $0.0099033 | SELL |
Media Mobile Semplice Settimanale (SMA)
| Periodo | Valore | Azione |
|---|---|---|
| SMA 21 | $0.008063 | SELL |
| SMA 50 | $0.0127052 | SELL |
| SMA 100 | $0.032135 | SELL |
| SMA 200 | $0.0210057 | SELL |
Media Mobile Esponenziale Settimanale (EMA)
| Periodo | Valore | Azione |
|---|---|---|
| EMA 21 | $0.007864 | SELL |
| EMA 50 | $0.014075 | SELL |
| EMA 100 | $0.020327 | SELL |
| EMA 200 | $0.021415 | SELL |
Oscillatori di iMe Lab
Un oscillatore è uno strumento di analisi tecnica che imposta limiti alti e bassi tra due estremi, creando un indicatore di tendenza che fluttua entro questi limiti. I trader utilizzano questo indicatore per identificare condizioni di ipercomprato o ipervenduto a breve termine.
| Periodo | Valore | Azione |
|---|---|---|
| RSI (14) | 41.61 | NEUTRAL |
| Stoch RSI (14) | 52.76 | NEUTRAL |
| Stocastico Veloce (14) | 29.84 | NEUTRAL |
| Indice di Canale delle Materie Prime (20) | -55.73 | NEUTRAL |
| Indice Direzionale Medio (14) | 17.55 | NEUTRAL |
| Oscillatore Awesome (5, 34) | -0.000188 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -70.16 | NEUTRAL |
| Oscillatore Ultimate (7, 14, 28) | 50.3 | NEUTRAL |
| VWMA (10) | 0.005086 | SELL |
| Media Mobile di Hull (9) | 0.005117 | SELL |
| Ichimoku Cloud B/L (9, 26, 52, 26) | -0.001817 | SELL |
Previsione del prezzo di iMe Lab sulla base dei flussi monetari globali
Definizioni dei flussi monetari globali usate per la previsione del prezzo di iMe Lab
M0: Il totale della moneta fisica, più i conti presso la banca centrale che possono essere scambiati con moneta fisica.
M1: La misura M0 più l'ammontare dei conti a vista, tra cui i "conti correnti".
M2: La misura M1 più la maggior parte dei conti di risparmio, dei conti del mercato monetario e dei conti di certificati di deposito (CD) al di sotto dei $100.000.
Previsione del prezzo di iMe Lab sulla base delle società Internet e delle nicchie tecnologiche
| Confronto | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Azioni Facebook | $0.00708 | $0.009949 | $0.01398 | $0.019645 | $0.0276048 | $0.038789 |
| Azioni Amazon.com | $0.010514 | $0.021938 | $0.045776 | $0.095514 | $0.199296 | $0.415844 |
| Azioni Apple | $0.007147 | $0.010138 | $0.01438 | $0.020397 | $0.028931 | $0.041037 |
| Azioni Netflix | $0.00795 | $0.012545 | $0.019794 | $0.031232 | $0.049279 | $0.077755 |
| Azioni Google | $0.006525 | $0.00845 | $0.010943 | $0.014171 | $0.018352 | $0.023765 |
| Azioni Tesla | $0.011423 | $0.025895 | $0.0587025 | $0.133074 | $0.301669 | $0.683861 |
| Azioni Kodak | $0.003778 | $0.002833 | $0.002124 | $0.001593 | $0.001194 | $0.000896 |
| Azioni Nokia | $0.003338 | $0.002211 | $0.001464 | $0.00097 | $0.000642 | $0.000425 |
Questo calcolo mostra quanto può valere la criptovaluta se si assume che la sua capitalizzazione si comporti come quella di alcune società di Internet o di nicchie tecnologiche. Estrapolando i dati si può ottenere un quadro potenziale del prezzo futuro per il 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Panoramica delle previsioni per iMe Lab
Potresti avere domande come: "Dovrei investire su iMe Lab in questo momento?", "Dovrei acquistare LIME oggi?", "iMe Lab sarà un buon investimento, a breve e a lungo termine?".
Aggiorniamo regolarmente le previsioni su iMe Lab con nuovi valori. Consulta le nostre previsioni simili. Effettuiamo previsioni dei prezzi futuri di una grande quantità di valute digitali come iMe Lab con metodi di analisi tecnica.
Se cerchi delle criptovalute con un buon rendimento, dovresti esplorare il massimo delle fonti di informazione disponibili su iMe Lab per prendere decisioni responsabili.
Il prezzo odierno di iMe Lab è di $0.005039 USD, ma il prezzo può salire oppure scendere e potresti perdere il tuo investimento, perché le criptovalute sono beni ad alto rischio
Previsione del prezzo di iMe Lab sulla base dello schema di crescita di Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se iMe Lab ha 1% della precedente crescita media annua di Bitcoin | $0.00517 | $0.0053043 | $0.005442 | $0.005583 |
| Se iMe Lab ha 2% della precedente crescita media annua di Bitcoin | $0.00530098 | $0.005576 | $0.005866 | $0.006171 |
| Se iMe Lab ha 5% della precedente crescita media annua di Bitcoin | $0.005693 | $0.006433 | $0.00727 | $0.008215 |
| Se iMe Lab ha 10% della precedente crescita media annua di Bitcoin | $0.006348 | $0.007999 | $0.010078 | $0.012697 |
| Se iMe Lab ha 20% della precedente crescita media annua di Bitcoin | $0.007658 | $0.01164 | $0.017691 | $0.026888 |
| Se iMe Lab ha 50% della precedente crescita media annua di Bitcoin | $0.011588 | $0.026648 | $0.061282 | $0.140929 |
| Se iMe Lab ha 100% della precedente crescita media annua di Bitcoin | $0.018137 | $0.065281 | $0.234967 | $0.845723 |
Area domande
È LIME un buon investimento?
La decisione di procurarsi iMe Lab dipende interamente dalla tua tolleranza individuale al rischio. Come puoi notare, il valore di iMe Lab ha subito una diminuzione del -1.3327% nelle precedenti 24 ore, e iMe Lab ha registrato una declino di nel corso degli ultimi 30 giorni. Di conseguenza, la decisione di investire o meno in iMe Lab dipenderà da quanto tale investimento si allinea con le tue aspirazioni di trading.
Può iMe Lab salire?
Sembra che il valore medio di iMe Lab possa potenzialmente salire fino a $0.005196 entro la fine di quest'anno. Guardando le prospettive di iMe Lab su una linea temporale più estesa di cinque anni, la valuta digitale potrebbe potenzialmente crescere fino a $0.016337. Tuttavia, data l' imprevedibilità del mercato, è fondamentale condurre ricerche approfondite prima di investire fondi in un particolare progetto, rete o asset.
Quale sarà il prezzo di iMe Lab la prossima settimana?
Basato sul nostro nuovo pronostico sperimentale di iMe Lab, il prezzo di iMe Lab aumenterà del 0.86% nella prossima settimana e raggiungerà $0.0050821 entro 13 gennaio 2026.
Quale sarà il prezzo di iMe Lab il prossimo mese?
Basato sul nostro nuovo pronostico sperimentale di iMe Lab, il prezzo di iMe Lab diminuirà del -11.62% nel prossimo mese e raggiungerà $0.004453 entro 5 febbraio 2026.
Quanto può salire il prezzo di iMe Lab quest'anno in 2026?
Secondo la nostra previsione più recente sul valore di iMe Lab in 2026, LIME dovrebbe fluttuare all'interno dell'intervallo di $0.00174 e $0.005196. Tuttavia, è fondamentale tenere a mente che il mercato delle criptovalute è eccezionalmente instabile, e questa previsione del prezzo di iMe Lab non considera fluttuazioni di prezzo improvvise ed estreme.
Dove sarà iMe Lab tra 5 anni?
Il futuro di iMe Lab sembra seguire una tendenza al rialzo, con un prezzo massimo di $0.016337 prevista dopo un periodo di cinque anni. Basato sulla previsione di iMe Lab per 2030, il valore di iMe Lab potrebbe potenzialmente raggiungere il suo picco più alto di circa $0.016337, mentre il suo picco più basso è previsto intorno a $0.00565.
Quanto varrà iMe Lab in 2026?
Basato sulla nostra nuova simulazione sperimentale di previsione dei prezzi di iMe Lab, si prevede che il valore di LIME in 2026 aumenti del 3.13% fino a $0.005196 se si verifica il migliore scenario. Il prezzo sarà compreso tra $0.005196 e $0.00174 durante 2026.
Quanto varrà iMe Lab in 2027?
Secondo la nostra ultima simulazione sperimentale per la previsione dei prezzi di iMe Lab, il valore di LIME potrebbe diminuire del -12.62% fino a $0.0044028 in 2027, assumendo le condizioni più favorevoli. Il prezzo è previsto oscillare tra $0.0044028 e $0.001675 durante l'anno.
Quanto varrà iMe Lab in 2028?
Il nostro nuovo modello sperimentale di previsione dei prezzi di iMe Lab suggerisce che il valore di LIME in 2028 potrebbe aumentare del 47.02%, raggiungendo $0.0074083 nello scenario migliore. Il prezzo è previsto oscillare tra $0.0074083 e $0.003024 durante l'anno.
Quanto varrà iMe Lab in 2029?
Basato sul nostro modello di previsione sperimentale, il valore di iMe Lab potrebbe subire una 333.75% crescita in 2029, raggiungendo potenzialmente $0.021856 in condizioni ottimali. Il range di prezzo previsto per 2029 è compreso tra $0.021856 e $0.006644.
Quanto varrà iMe Lab in 2030?
Utilizzando la nostra nuova simulazione sperimentale per le previsioni dei prezzi di iMe Lab, si prevede che il valore di LIME in 2030 aumenti del 224.23%, raggiungendo $0.016337 nello scenario migliore. Il prezzo è previsto oscillare tra $0.016337 e $0.00565 nel corso di 2030.
Quanto varrà iMe Lab in 2031?
La nostra simulazione sperimentale indica che il prezzo di iMe Lab potrebbe aumentare del 195.98% in 2031, raggiungendo potenzialmente $0.014914 in condizioni ideali. Il prezzo probabilmente oscillera' tra $0.014914 e $0.00668 durante l'anno.
Quanto varrà iMe Lab in 2032?
Basato sui risultati della nostra ultima previsione sperimentale dei prezzi di iMe Lab, LIME potrebbe subire una 449.04% aumento in valore, raggiungendo $0.027666 se si verifica lo scenario più positivo in 2032. Il prezzo è previsto rimanere entro un intervallo di $0.027666 e $0.010197 durante l'anno.
Quanto varrà iMe Lab in 2033?
Secondo la nostra previsione sperimentale dei prezzi di iMe Lab, si prevede che il valore di LIME sarà aumentare del 1362.43% in 2033, con il prezzo potenziale più alto di $0.073692. Durante l'anno, il prezzo di LIME potrebbe oscillare tra $0.073692 e $0.023697.
Quanto varrà iMe Lab in 2034?
I risultati della nostra nuova simulazione di previsione dei prezzi di iMe Lab suggeriscono che LIME potrebbe aumentare del 746.96% in 2034, raggiungendo potenzialmente $0.042678 nelle migliori circostanze. L'intervallo di prezzo previsto per l'anno è compreso tra $0.042678 e $0.019051.
Quanto varrà iMe Lab in 2035?
Basato sulla nostra previsione sperimentale per il prezzo di iMe Lab, LIME potrebbe aumentare del 897.93%, con il valore potenzialmente raggiungendo $0.050285 in 2035. L'intervallo di prezzo atteso per l'anno si trova tra $0.050285 e $0.022525.
Quanto varrà iMe Lab in 2036?
La nostra recente simulazione di previsione dei prezzi di iMe Lab suggerisce che il valore di LIME potrebbe aumentare del 1964.7% in 2036, potenzialmente raggiungendo $0.10404 se le condizioni sono ottimali. L' intervallo di prezzo previsto per 2036 è compreso tra $0.10404 e $0.037286.
Quanto varrà iMe Lab in 2037?
Secondo la simulazione sperimentale, il valore di iMe Lab potrebbe aumentare del 4830.69% in 2037, con un picco di $0.248458 in condizioni favorevoli. Il prezzo è previsto diminuire tra $0.248458 e $0.096831 nel corso dell' anno.
Previsioni correlate
Previsione del prezzo di The Big Five
Previsione del prezzo di Metahero
Previsione del prezzo di Catcoin
Previsione del prezzo di Aurory
Previsione del prezzo di Taraxa
Previsione del prezzo di NFT Worlds
Previsione del prezzo di WiFi Map
Previsione del prezzo di Celo Dollar
Previsione del prezzo di Morpheus Network
Previsione del prezzo di Virtua
Previsione del prezzo di nuco.cloud
Previsione del prezzo di Tokemak
Previsione del prezzo di PIVX
Previsione del prezzo di Blocksquare
Previsione del prezzo di ZB Token
Previsione del prezzo di Raini Studios Token
Previsione del prezzo di FEG BSC
Previsione del prezzo di ETH 2x Flexible Leverage Index
Previsione del prezzo di PIXL
Previsione del prezzo di Railgun
Previsione del prezzo di Kishu Inu
Previsione del prezzo di STFX
Previsione del prezzo di Dejitaru Tsuka
Previsione del prezzo di Iron Fish
Previsione del prezzo di Minswap
Come leggere e prevedere i movimenti di prezzo di iMe Lab?
I trader di iMe Lab utilizzano indicatori e modelli grafici per prevedere la direzione del mercato. Identificano anche livelli chiave di supporto e resistenza per valutare quando un trend ribassista potrebbe rallentare o un trend rialzista potrebbe fermarsi.
Indicatori di previsione del prezzo di iMe Lab
Le medie mobili sono strumenti popolari per la previsione del prezzo di iMe Lab. Una media mobile semplice (SMA) calcola il prezzo di chiusura medio di LIME su un periodo specifico, come una SMA a 12 giorni. Una media mobile esponenziale (EMA) dà più peso ai prezzi recenti, reagendo più rapidamente ai cambiamenti di prezzo.
Le medie mobili comunemente utilizzate nel mercato delle criptovalute includono quelle a 50 giorni, 100 giorni e 200 giorni, che aiutano a identificare livelli chiave di resistenza e supporto. Un movimento del prezzo di LIME al di sopra di queste medie è considerato rialzista, mentre una caduta al di sotto indica debolezza.
I trader utilizzano anche RSI e livelli di ritracciamento di Fibonacci per valutare la direzione futura di LIME.
Come leggere i grafici di iMe Lab e prevedere i movimenti di prezzo?
La maggior parte dei trader preferisce i grafici a candele rispetto ai semplici grafici a linee perché forniscono informazioni più dettagliate. Le candele possono rappresentare l'azione del prezzo di iMe Lab in diversi intervalli di tempo, come 5 minuti per le tendenze a breve termine e settimanale per le tendenze a lungo termine. Le opzioni popolari includono grafici a 1 ora, 4 ore e 1 giorno.
Ad esempio, un grafico a candele di 1 ora mostra i prezzi di apertura, chiusura, massimo e minimo di LIME all'interno di ogni ora. Il colore della candela è cruciale: il verde indica che il prezzo ha chiuso più alto di quanto ha aperto, mentre il rosso significa il contrario. Alcuni grafici utilizzano candele vuote e piene per trasmettere la stessa informazione.
Cosa influisce sul prezzo di iMe Lab?
L'azione del prezzo di iMe Lab è guidata dall'offerta e dalla domanda, influenzata da fattori come dimezzamenti delle ricompense dei blocchi, hard fork e aggiornamenti del protocollo. Eventi del mondo reale, come regolamentazioni, adozione da parte di aziende e governi e hack degli exchange di criptovalute, influenzano anche il prezzo di LIME. La capitalizzazione di mercato di iMe Lab può cambiare rapidamente.
I trader spesso monitorano l'attività delle "balene" di LIME, grandi detentori di iMe Lab, poiché le loro azioni possono influenzare significativamente i movimenti di prezzo nel relativamente piccolo mercato di iMe Lab.
Modelli di previsione del prezzo rialzisti e ribassisti
I trader spesso identificano modelli di candele per ottenere un vantaggio nelle previsioni dei prezzi delle criptovalute. Alcune formazioni indicano tendenze rialziste, mentre altre suggeriscono movimenti ribassisti.
Modelli di candele rialzisti comunemente seguiti:
- Martello
- Ingolgimento rialzista
- Linea penetrante
- Stella del mattino
- Tre soldati bianchi
Modelli di candele ribassisti comuni:
- Harami ribassista
- Copertura a nuvola scura
- Stella della sera
- Stella cadente
- Impiccato


