Previsão de Preço iMe Lab - Projeção LIME
Previsão de Preço iMe Lab até $0.00520094 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.001742 | $0.00520094 |
| 2027 | $0.001677 | $0.0044063 |
| 2028 | $0.003027 | $0.007414 |
| 2029 | $0.006649 | $0.021874 |
| 2030 | $0.005655 | $0.01635 |
| 2031 | $0.006686 | $0.014926 |
| 2032 | $0.0102059 | $0.027687 |
| 2033 | $0.023716 | $0.073749 |
| 2034 | $0.019066 | $0.042712 |
| 2035 | $0.022542 | $0.050325 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em iMe Lab hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.55, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de iMe Lab para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'iMe Lab'
'name_with_ticker' => 'iMe Lab <small>LIME</small>'
'name_lang' => 'iMe Lab'
'name_lang_with_ticker' => 'iMe Lab <small>LIME</small>'
'name_with_lang' => 'iMe Lab'
'name_with_lang_with_ticker' => 'iMe Lab <small>LIME</small>'
'image' => '/uploads/coins/ime-lab.png?1717083250'
'price_for_sd' => 0.005042
'ticker' => 'LIME'
'marketcap' => '$3.84M'
'low24h' => '$0.005015'
'high24h' => '$0.005155'
'volume24h' => '$183.93K'
'current_supply' => '760.15M'
'max_supply' => '996.08M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.005042'
'change_24h_pct' => '-1.2492%'
'ath_price' => '$0.2713'
'ath_days' => 1508
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '20 de nov. de 2021'
'ath_pct' => '-98.14%'
'fdv' => '$5.03M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.248653'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.0050861'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.004457'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001742'
'current_year_max_price_prediction' => '$0.00520094'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.005655'
'grand_prediction_max_price' => '$0.01635'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0051385316288978
107 => 0.0051577170407131
108 => 0.0052009427531644
109 => 0.0048315837729652
110 => 0.0049974151112647
111 => 0.0050948254862206
112 => 0.0046547218683502
113 => 0.0050861260527363
114 => 0.0048251540548695
115 => 0.0047365762391256
116 => 0.0048558345987849
117 => 0.0048093595000431
118 => 0.0047694029392543
119 => 0.0047471064917933
120 => 0.0048346766690622
121 => 0.0048305914156236
122 => 0.0046873096089727
123 => 0.0045004043331101
124 => 0.0045631358786461
125 => 0.0045403449200415
126 => 0.0044577475459662
127 => 0.004513408203248
128 => 0.0042683068377931
129 => 0.0038466226777884
130 => 0.0041252001504227
131 => 0.0041144752207602
201 => 0.0041090672248876
202 => 0.0043184104962564
203 => 0.0042982869710853
204 => 0.0042617625758496
205 => 0.004457076746805
206 => 0.0043857844470599
207 => 0.0046054905162957
208 => 0.004750203143192
209 => 0.004713499340048
210 => 0.0048496022651008
211 => 0.0045645810867554
212 => 0.0046592536891368
213 => 0.0046787655812771
214 => 0.0044546666002532
215 => 0.0043015794286751
216 => 0.0042913702596524
217 => 0.0040259382008478
218 => 0.0041677298641685
219 => 0.004292500660153
220 => 0.0042327451314813
221 => 0.0042138283162495
222 => 0.0043104702227122
223 => 0.0043179801265263
224 => 0.0041467535237008
225 => 0.0041823569564695
226 => 0.0043308291896934
227 => 0.0041786158371328
228 => 0.0038828901570175
301 => 0.0038095460996215
302 => 0.0037997606503657
303 => 0.0036008457497172
304 => 0.003814447300245
305 => 0.0037212044992739
306 => 0.0040157573903211
307 => 0.0038475103586738
308 => 0.0038402575654106
309 => 0.0038292939046397
310 => 0.0036580796325805
311 => 0.0036955646769269
312 => 0.0038201706734676
313 => 0.0038646314968203
314 => 0.0038599938686878
315 => 0.0038195600361059
316 => 0.0038380704376072
317 => 0.0037784419849202
318 => 0.0037573859372176
319 => 0.0036909272587457
320 => 0.0035932513610705
321 => 0.0036068337937234
322 => 0.00341331228214
323 => 0.0033078714916654
324 => 0.0032786868705493
325 => 0.0032396599754836
326 => 0.0032830950621936
327 => 0.0034127640600124
328 => 0.0032563557378304
329 => 0.0029882046402176
330 => 0.0030043209780914
331 => 0.0030405296043101
401 => 0.0029730550688956
402 => 0.0029091960838342
403 => 0.0029647162903019
404 => 0.0028510971352698
405 => 0.0030542599363738
406 => 0.0030487649519611
407 => 0.0031244914807093
408 => 0.0031718448332003
409 => 0.0030627106865384
410 => 0.003035263743783
411 => 0.0030508987697705
412 => 0.0027924866176486
413 => 0.0031033736948236
414 => 0.0031060622591768
415 => 0.0030830411389093
416 => 0.0032485789099434
417 => 0.0035979152393508
418 => 0.0034664808602064
419 => 0.0034155854959766
420 => 0.0033188333713714
421 => 0.0034477498328351
422 => 0.0034378510600048
423 => 0.0033930850552679
424 => 0.0033660104359246
425 => 0.0034158962522178
426 => 0.003359829031224
427 => 0.0033497578177093
428 => 0.0032887372213987
429 => 0.003266955644776
430 => 0.0032508294325942
501 => 0.0032330760575108
502 => 0.0032722355790793
503 => 0.0031834949513411
504 => 0.0030764824536399
505 => 0.0030675855223473
506 => 0.0030921507318723
507 => 0.0030812824553223
508 => 0.0030675334892205
509 => 0.0030412829686241
510 => 0.0030334949999168
511 => 0.0030588021200303
512 => 0.0030302318569189
513 => 0.0030723888364425
514 => 0.0030609244706642
515 => 0.0029968854553602
516 => 0.0029170691320113
517 => 0.0029163585993131
518 => 0.0028991623033726
519 => 0.002877260235012
520 => 0.0028711675806455
521 => 0.0029600405333716
522 => 0.003144004885771
523 => 0.0031078882815011
524 => 0.0031339862294646
525 => 0.0032623623033563
526 => 0.0033031691968433
527 => 0.0032742054304105
528 => 0.0032345580405099
529 => 0.0032363023244516
530 => 0.0033717894578228
531 => 0.0033802396241393
601 => 0.003401590468294
602 => 0.0034290323367807
603 => 0.0032788788992757
604 => 0.0032292301110482
605 => 0.0032057037607762
606 => 0.0031332517077815
607 => 0.0032113850353667
608 => 0.0031658600913855
609 => 0.0031720029616821
610 => 0.0031680024093428
611 => 0.0031701869814362
612 => 0.0030542031482304
613 => 0.0030964615611198
614 => 0.0030261987535372
615 => 0.0029321247415544
616 => 0.0029318093724797
617 => 0.0029548338536379
618 => 0.0029411379912969
619 => 0.0029042827778903
620 => 0.002909517887003
621 => 0.0028636528225349
622 => 0.0029150867362432
623 => 0.002916561676849
624 => 0.0028967568184471
625 => 0.002975997859027
626 => 0.0030084629780072
627 => 0.0029954269959459
628 => 0.0030075483387545
629 => 0.0031093890894652
630 => 0.0031259935754545
701 => 0.0031333681913002
702 => 0.0031234871830164
703 => 0.0030094098007258
704 => 0.0030144696177249
705 => 0.002977344037827
706 => 0.0029459768350105
707 => 0.0029472313586239
708 => 0.0029633581783225
709 => 0.0030337849457718
710 => 0.0031819939259841
711 => 0.0031876183484438
712 => 0.003194435312541
713 => 0.0031667072936262
714 => 0.0031583442578002
715 => 0.0031693772607375
716 => 0.0032250367612472
717 => 0.0033682081079654
718 => 0.0033176017919425
719 => 0.0032764580692816
720 => 0.0033125522063232
721 => 0.0033069957968408
722 => 0.0032600941090369
723 => 0.0032587777348712
724 => 0.0031687584005988
725 => 0.0031354803023594
726 => 0.003107670632648
727 => 0.003077303199313
728 => 0.0030593003669065
729 => 0.003086960899624
730 => 0.0030932871907262
731 => 0.0030328069525161
801 => 0.0030245637195302
802 => 0.0030739531876092
803 => 0.0030522187241326
804 => 0.0030745731588071
805 => 0.0030797595794043
806 => 0.0030789244462348
807 => 0.003056231170178
808 => 0.0030706951876134
809 => 0.0030364834744476
810 => 0.0029992833748129
811 => 0.0029755520288941
812 => 0.0029548432820737
813 => 0.0029663336984091
814 => 0.0029253724622406
815 => 0.0029122681384035
816 => 0.0030657951039569
817 => 0.0031792071241043
818 => 0.0031775580684153
819 => 0.003167519866011
820 => 0.0031526051334132
821 => 0.0032239456556596
822 => 0.0031990920442077
823 => 0.0032171751231277
824 => 0.0032217780256572
825 => 0.0032357096253087
826 => 0.0032406889747226
827 => 0.0032256379224132
828 => 0.0031751247525315
829 => 0.0030492507358343
830 => 0.0029906560412714
831 => 0.0029713188160938
901 => 0.0029720216875024
902 => 0.0029526333562974
903 => 0.0029583440887613
904 => 0.0029506473965999
905 => 0.0029360717236759
906 => 0.0029654336916792
907 => 0.0029688173849659
908 => 0.0029619639507846
909 => 0.0029635781826322
910 => 0.0029068346747506
911 => 0.0029111487604144
912 => 0.0028871273832307
913 => 0.0028826236645908
914 => 0.0028218997148511
915 => 0.00271431843581
916 => 0.0027739289075662
917 => 0.0027019278401855
918 => 0.0026746599449742
919 => 0.0028037419198767
920 => 0.0027907856697732
921 => 0.0027686102015424
922 => 0.0027358080622567
923 => 0.0027236414297169
924 => 0.0026497208218929
925 => 0.0026453531980315
926 => 0.0026819902472934
927 => 0.002665083509663
928 => 0.0026413400469475
929 => 0.0025553436318285
930 => 0.0024586551888002
1001 => 0.0024615736051334
1002 => 0.0024923283999082
1003 => 0.0025817521135653
1004 => 0.0025468127215935
1005 => 0.0025214637918347
1006 => 0.0025167166992769
1007 => 0.0025761365013492
1008 => 0.002660227970115
1009 => 0.0026996818058193
1010 => 0.0026605842528671
1011 => 0.0026156710891974
1012 => 0.0026184047453624
1013 => 0.0026365905351287
1014 => 0.0026385016044999
1015 => 0.0026092677520988
1016 => 0.0026174969103114
1017 => 0.0026049960664964
1018 => 0.0025282784110784
1019 => 0.0025268908319662
1020 => 0.0025080630820873
1021 => 0.0025074929853036
1022 => 0.0024754622859573
1023 => 0.0024709809697009
1024 => 0.0024073820720244
1025 => 0.0024492430590703
1026 => 0.0024211649067603
1027 => 0.0023788445082627
1028 => 0.0023715484556102
1029 => 0.0023713291274572
1030 => 0.0024147827140463
1031 => 0.0024487352786111
1101 => 0.0024216533382411
1102 => 0.0024154873053802
1103 => 0.0024813244046771
1104 => 0.0024729460336731
1105 => 0.0024656904184183
1106 => 0.0026526985014103
1107 => 0.0025046670112994
1108 => 0.002440116832269
1109 => 0.0023602237279724
1110 => 0.0023862373255874
1111 => 0.0023917187728241
1112 => 0.0021995902588051
1113 => 0.0021216437445957
1114 => 0.0020948954382715
1115 => 0.0020795014098163
1116 => 0.0020865166618894
1117 => 0.0020163556568867
1118 => 0.0020635050126044
1119 => 0.0020027515128342
1120 => 0.0019925659908887
1121 => 0.0021012007743923
1122 => 0.0021163166698816
1123 => 0.0020518275635835
1124 => 0.0020932400096649
1125 => 0.0020782232810397
1126 => 0.0020037929572146
1127 => 0.0020009502663169
1128 => 0.0019636037461739
1129 => 0.0019051636738613
1130 => 0.001878454992658
1201 => 0.0018645448795919
1202 => 0.0018702844633456
1203 => 0.0018673823541656
1204 => 0.0018484441287033
1205 => 0.0018684678710808
1206 => 0.001817315483688
1207 => 0.0017969461908655
1208 => 0.0017877458538615
1209 => 0.0017423451658289
1210 => 0.0018145978502664
1211 => 0.0018288325393159
1212 => 0.0018430952751002
1213 => 0.001967242652519
1214 => 0.00196104060038
1215 => 0.0020171041311946
1216 => 0.0020149256054813
1217 => 0.001998935378324
1218 => 0.001931475240212
1219 => 0.0019583636489021
1220 => 0.0018756053063404
1221 => 0.0019376134836079
1222 => 0.0019093155410264
1223 => 0.001928045920756
1224 => 0.001894367009152
1225 => 0.0019130063094018
1226 => 0.0018322081121617
1227 => 0.0017567598924402
1228 => 0.001787122458527
1229 => 0.0018201300402439
1230 => 0.0018916988875816
1231 => 0.0018490730725374
]
'min_raw' => 0.0017423451658289
'max_raw' => 0.0052009427531644
'avg_raw' => 0.0034716439594967
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001742'
'max' => '$0.00520094'
'avg' => '$0.003471'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0033006248341711
'max_diff' => 0.00015797275316444
'year' => 2026
]
1 => [
'items' => [
101 => 0.0018644029274878
102 => 0.0018130504795907
103 => 0.0017070957114774
104 => 0.0017076954039583
105 => 0.0016913965712341
106 => 0.0016773120000919
107 => 0.0018539691601585
108 => 0.0018319990497678
109 => 0.0017969925542371
110 => 0.0018438501396077
111 => 0.0018562400289096
112 => 0.0018565927516399
113 => 0.0018907788363569
114 => 0.0019090239558986
115 => 0.0019122397372967
116 => 0.0019660322802382
117 => 0.0019840628310914
118 => 0.0020583281182766
119 => 0.001907475984977
120 => 0.0019043692845627
121 => 0.0018445095219268
122 => 0.0018065455141177
123 => 0.0018471089500211
124 => 0.0018830426167704
125 => 0.0018456260811174
126 => 0.0018505118907675
127 => 0.0018002832486967
128 => 0.0018182376247597
129 => 0.0018337023521408
130 => 0.0018251636386556
131 => 0.0018123807712899
201 => 0.001880096465879
202 => 0.0018762756810104
203 => 0.0019393340925889
204 => 0.0019884926337646
205 => 0.0020765935276919
206 => 0.0019846556520753
207 => 0.0019813050704679
208 => 0.0020140575431307
209 => 0.0019840578168584
210 => 0.0020030166083071
211 => 0.0020735389732877
212 => 0.0020750289997321
213 => 0.0020500691369985
214 => 0.0020485503270828
215 => 0.0020533441417518
216 => 0.0020814216639999
217 => 0.0020716105149913
218 => 0.002082964225012
219 => 0.002097162213247
220 => 0.0021558911124094
221 => 0.0021700504511716
222 => 0.0021356505987547
223 => 0.0021387565202692
224 => 0.0021258900311682
225 => 0.0021134611639132
226 => 0.002141399442412
227 => 0.0021924571954967
228 => 0.0021921395678647
301 => 0.0022039839741595
302 => 0.0022113629411567
303 => 0.0021796870130705
304 => 0.0021590671486424
305 => 0.0021669741167402
306 => 0.0021796175309199
307 => 0.0021628740279254
308 => 0.0020595253710984
309 => 0.002090874751642
310 => 0.0020856566818131
311 => 0.0020782255158379
312 => 0.002109747560392
313 => 0.0021067071822962
314 => 0.0020156360543713
315 => 0.0020214661325015
316 => 0.0020159906007322
317 => 0.0020336831640672
318 => 0.0019831023603763
319 => 0.0019986606749247
320 => 0.0020084187039593
321 => 0.0020141662580254
322 => 0.0020349303644469
323 => 0.0020324939362168
324 => 0.0020347789126472
325 => 0.0020655666009494
326 => 0.002221280163323
327 => 0.0022297553089604
328 => 0.002188020592203
329 => 0.0022046927883667
330 => 0.0021726858175409
331 => 0.0021941723114844
401 => 0.0022088728249427
402 => 0.0021424440313707
403 => 0.0021385105493347
404 => 0.0021063714743548
405 => 0.0021236411927988
406 => 0.0020961638290177
407 => 0.0021029058129722
408 => 0.0020840546380799
409 => 0.0021179829996546
410 => 0.0021559201798295
411 => 0.0021655046097263
412 => 0.0021402921010243
413 => 0.0021220365831387
414 => 0.0020899859074731
415 => 0.0021432868954009
416 => 0.0021588737285891
417 => 0.0021432050244017
418 => 0.0021395742432735
419 => 0.0021326939195962
420 => 0.002141033936467
421 => 0.0021587888393482
422 => 0.002150415955031
423 => 0.0021559463926337
424 => 0.0021348700674546
425 => 0.0021796974991207
426 => 0.0022508942489154
427 => 0.0022511231581078
428 => 0.0022427502286577
429 => 0.0022393242063239
430 => 0.0022479153400516
501 => 0.0022525756776722
502 => 0.002280357828803
503 => 0.0023101691838562
504 => 0.0024492857701761
505 => 0.0024102223894214
506 => 0.0025336549008872
507 => 0.0026312739917509
508 => 0.0026605456887355
509 => 0.0026336171048495
510 => 0.0025414958740289
511 => 0.0025369759669573
512 => 0.0026746439783836
513 => 0.0026357464595613
514 => 0.0026311197234683
515 => 0.0025818990684324
516 => 0.0026109945716553
517 => 0.0026046309582952
518 => 0.0025945856832876
519 => 0.0026500978766266
520 => 0.0027540117469496
521 => 0.0027378157957617
522 => 0.0027257262695085
523 => 0.0026727534846749
524 => 0.0027046549330445
525 => 0.0026932954383121
526 => 0.0027421030365961
527 => 0.0027131904965934
528 => 0.0026354517725995
529 => 0.0026478319206257
530 => 0.0026459606861569
531 => 0.0026844705589269
601 => 0.0026729108509952
602 => 0.0026437034676566
603 => 0.0027536565806378
604 => 0.0027465168370721
605 => 0.0027566393610756
606 => 0.0027610956091914
607 => 0.0028280221314719
608 => 0.0028554397862403
609 => 0.0028616640738864
610 => 0.0028877087253589
611 => 0.0028610160592316
612 => 0.0029678057552892
613 => 0.0030388146718159
614 => 0.0031212951824472
615 => 0.0032418213771507
616 => 0.0032871403412889
617 => 0.0032789538760517
618 => 0.0033703354613294
619 => 0.0035345461387751
620 => 0.0033121455489264
621 => 0.0035463339100679
622 => 0.0034721925787651
623 => 0.0032964048159919
624 => 0.0032850861564709
625 => 0.0034041316703588
626 => 0.0036681631624561
627 => 0.0036020262683062
628 => 0.0036682713387221
629 => 0.0035909929452678
630 => 0.0035871554216794
701 => 0.0036645180996406
702 => 0.0038452802135171
703 => 0.0037594069089809
704 => 0.0036362864699301
705 => 0.003727196686159
706 => 0.0036484418435182
707 => 0.003470985140956
708 => 0.0036019756946696
709 => 0.0035143860417975
710 => 0.0035399493590276
711 => 0.0037240497813873
712 => 0.0037018983314997
713 => 0.0037305643588232
714 => 0.0036799695709177
715 => 0.0036327060609481
716 => 0.0035444852097556
717 => 0.0035183673649529
718 => 0.0035255853976347
719 => 0.0035183637880543
720 => 0.0034690050326036
721 => 0.0034583460140635
722 => 0.003440580516181
723 => 0.0034460867868333
724 => 0.0034126824533345
725 => 0.0034757233323342
726 => 0.0034874242749909
727 => 0.0035333001695538
728 => 0.0035380631571148
729 => 0.0036658268704701
730 => 0.003595456764136
731 => 0.0036426671069276
801 => 0.0036384441695073
802 => 0.0033002146698463
803 => 0.0033468197106755
804 => 0.0034193225287381
805 => 0.0033866601074761
806 => 0.0033404830856412
807 => 0.0033031926646542
808 => 0.0032466938637176
809 => 0.0033262148410725
810 => 0.003430776470181
811 => 0.0035407150125819
812 => 0.0036727989678179
813 => 0.003643319366636
814 => 0.0035382457949145
815 => 0.0035429593185856
816 => 0.0035720964672174
817 => 0.0035343612123501
818 => 0.0035232323490101
819 => 0.0035705675322898
820 => 0.0035708935036821
821 => 0.0035274745324994
822 => 0.0034792222916178
823 => 0.0034790201129666
824 => 0.0034704340927631
825 => 0.0035925203791881
826 => 0.003659655492406
827 => 0.0036673524249428
828 => 0.0036591374275203
829 => 0.0036622990539867
830 => 0.0036232346108264
831 => 0.00371252434369
901 => 0.0037944654324049
902 => 0.0037725034702133
903 => 0.0037395793668112
904 => 0.0037133537326117
905 => 0.0037663255442585
906 => 0.0037639667928713
907 => 0.0037937497484789
908 => 0.0037923986215778
909 => 0.0037823837338006
910 => 0.0037725038278765
911 => 0.0038116765380917
912 => 0.0038003954266442
913 => 0.0037890967925147
914 => 0.0037664356520336
915 => 0.0037695156773867
916 => 0.0037365972587952
917 => 0.0037213676921104
918 => 0.0034923515500113
919 => 0.0034311509535241
920 => 0.003450405907032
921 => 0.0034567451376814
922 => 0.0034301105596595
923 => 0.0034682977026812
924 => 0.0034623462768915
925 => 0.0034854997931717
926 => 0.0034710344814086
927 => 0.0034716281428491
928 => 0.0035141675404147
929 => 0.0035265169085035
930 => 0.0035202359202219
1001 => 0.0035246349091147
1002 => 0.003626007751451
1003 => 0.0036115957749918
1004 => 0.0036039396997392
1005 => 0.0036060604849067
1006 => 0.0036319634195819
1007 => 0.0036392148270432
1008 => 0.0036084901040825
1009 => 0.0036229800610482
1010 => 0.0036846764587591
1011 => 0.0037062667062443
1012 => 0.0037751724123101
1013 => 0.0037459000436721
1014 => 0.0037996307431856
1015 => 0.0039647805953449
1016 => 0.0040967137247502
1017 => 0.0039753825665819
1018 => 0.0042176609571521
1019 => 0.004406309436982
1020 => 0.0043990687941157
1021 => 0.0043661735681394
1022 => 0.0041514022893324
1023 => 0.0039537665565148
1024 => 0.0041190972390732
1025 => 0.0041195187009836
1026 => 0.0041053166487273
1027 => 0.0040171089218958
1028 => 0.0041022472110349
1029 => 0.0041090051792499
1030 => 0.0041052225141383
1031 => 0.0040375938567906
1101 => 0.0039343373968857
1102 => 0.0039545134619901
1103 => 0.0039875622682116
1104 => 0.003924993983331
1105 => 0.0039049996251656
1106 => 0.0039421729410774
1107 => 0.0040619531103131
1108 => 0.0040393093631584
1109 => 0.0040387180434096
1110 => 0.0041355975961808
1111 => 0.0040662527443127
1112 => 0.0039547679467837
1113 => 0.0039266165651038
1114 => 0.0038266981251833
1115 => 0.0038957121475337
1116 => 0.0038981958393348
1117 => 0.0038603975645997
1118 => 0.0039578350684603
1119 => 0.0039569371647087
1120 => 0.0040494395729658
1121 => 0.0042262694352355
1122 => 0.0041739721436933
1123 => 0.0041131560835588
1124 => 0.0041197684755419
1125 => 0.0041922900948218
1126 => 0.0041484418682976
1127 => 0.0041642099962764
1128 => 0.0041922662278716
1129 => 0.0042091932489901
1130 => 0.004117332937695
1201 => 0.0040959159049455
1202 => 0.0040521041722971
1203 => 0.0040406745090339
1204 => 0.0040763582511142
1205 => 0.0040669568458013
1206 => 0.0038979870946562
1207 => 0.0038803288155228
1208 => 0.0038808703697336
1209 => 0.003836467787247
1210 => 0.0037687431911142
1211 => 0.0039467193861257
1212 => 0.0039324254068911
1213 => 0.0039166459600821
1214 => 0.0039185788522799
1215 => 0.0039958322863615
1216 => 0.0039510213932022
1217 => 0.0040701584970271
1218 => 0.0040456674900698
1219 => 0.0040205483811972
1220 => 0.0040170761552042
1221 => 0.0040074074413499
1222 => 0.0039742498239735
1223 => 0.0039342100085276
1224 => 0.0039077722541808
1225 => 0.003604713340422
1226 => 0.003660959312003
1227 => 0.0037256651753254
1228 => 0.0037480013800518
1229 => 0.003709793756249
1230 => 0.0039757584938394
1231 => 0.0040243528142972
]
'min_raw' => 0.0016773120000919
'max_raw' => 0.004406309436982
'avg_raw' => 0.003041810718537
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001677'
'max' => '$0.0044063'
'avg' => '$0.003041'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -6.5033165736949E-5
'max_diff' => -0.00079463331618241
'year' => 2027
]
2 => [
'items' => [
101 => 0.0038771574479016
102 => 0.0038496232047961
103 => 0.0039775636342335
104 => 0.0039003999152014
105 => 0.0039351467331567
106 => 0.0038600431182305
107 => 0.0040126478655067
108 => 0.0040114852730154
109 => 0.0039521185795904
110 => 0.0040022949023476
111 => 0.0039935755314899
112 => 0.0039265506808268
113 => 0.0040147726728228
114 => 0.0040148164298302
115 => 0.0039576772781518
116 => 0.0038909512583602
117 => 0.0038790222220197
118 => 0.0038700352955777
119 => 0.0039329365001606
120 => 0.0039893335235027
121 => 0.0040942744019345
122 => 0.004120659032106
123 => 0.0042236400001898
124 => 0.0041623198477482
125 => 0.0041895022770966
126 => 0.0042190126493438
127 => 0.004233161007007
128 => 0.0042101070174375
129 => 0.0043700788495291
130 => 0.0043835853735679
131 => 0.0043881139942471
201 => 0.0043341723925372
202 => 0.0043820851600447
203 => 0.004359668362832
204 => 0.0044179906416138
205 => 0.004427136319623
206 => 0.0044193902557161
207 => 0.004422293238271
208 => 0.0042857855005458
209 => 0.004278706854209
210 => 0.0041821890091298
211 => 0.0042215207444235
212 => 0.0041479919505111
213 => 0.0041713086884912
214 => 0.0041815864844228
215 => 0.0041762179470879
216 => 0.0042237445017241
217 => 0.0041833372212497
218 => 0.0040766957645058
219 => 0.0039700252533683
220 => 0.0039686860919928
221 => 0.0039406016293013
222 => 0.0039203017067011
223 => 0.0039242121919724
224 => 0.0039379932521208
225 => 0.0039195007264327
226 => 0.0039234470443831
227 => 0.0039889822165387
228 => 0.004002124827939
229 => 0.0039574610992509
301 => 0.0037781297836229
302 => 0.0037341214289493
303 => 0.0037657537615651
304 => 0.0037506355439579
305 => 0.0030270556090762
306 => 0.0031970499817638
307 => 0.0030960450979762
308 => 0.0031425927954368
309 => 0.0030394929641776
310 => 0.0030886976075796
311 => 0.0030796113066091
312 => 0.0033529572273916
313 => 0.0033486893068136
314 => 0.0033507321345409
315 => 0.0032532226445549
316 => 0.0034085579097738
317 => 0.0034850816470961
318 => 0.0034709191399311
319 => 0.0034744835378653
320 => 0.0034132353719403
321 => 0.0033513251506689
322 => 0.0032826571873642
323 => 0.0034102337755676
324 => 0.0033960494367644
325 => 0.003428583206615
326 => 0.0035113257434278
327 => 0.0035235098962818
328 => 0.0035398855212771
329 => 0.0035340160254127
330 => 0.0036738512296159
331 => 0.0036569162637245
401 => 0.0036977246590005
402 => 0.0036137786937773
403 => 0.003518785865903
404 => 0.0035368408969324
405 => 0.0035351020522549
406 => 0.0035129645637571
407 => 0.0034929798289752
408 => 0.0034597108762275
409 => 0.0035649787655998
410 => 0.003560705081533
411 => 0.0036298910589598
412 => 0.0036176617654129
413 => 0.0035359915500908
414 => 0.0035389084178084
415 => 0.0035585257550081
416 => 0.0036264215830431
417 => 0.0036465776875043
418 => 0.003637240576836
419 => 0.0036593408252166
420 => 0.0036768079604369
421 => 0.0036615344284715
422 => 0.0038777754320734
423 => 0.0037879770911077
424 => 0.0038317441776815
425 => 0.0038421823699388
426 => 0.0038154451599634
427 => 0.0038212435034194
428 => 0.0038300264138011
429 => 0.0038833545257688
430 => 0.0040233029221854
501 => 0.0040852851142974
502 => 0.0042717615974139
503 => 0.0040801383560763
504 => 0.0040687682259511
505 => 0.0041023582716107
506 => 0.0042118397077405
507 => 0.0043005641286552
508 => 0.0043299991377073
509 => 0.0043338894600726
510 => 0.0043891114938567
511 => 0.0044207637337917
512 => 0.0043824060864716
513 => 0.0043499019965809
514 => 0.0042334763811484
515 => 0.0042469529631511
516 => 0.0043397932490666
517 => 0.0044709356211878
518 => 0.0045834694195061
519 => 0.0045440640055339
520 => 0.004844699498255
521 => 0.0048745062793725
522 => 0.0048703879459907
523 => 0.00493829222922
524 => 0.0048035160554766
525 => 0.0047458966300359
526 => 0.0043569297497523
527 => 0.0044662135773591
528 => 0.0046250640387998
529 => 0.0046040395845695
530 => 0.0044886781333863
531 => 0.0045833819075006
601 => 0.0045520698781176
602 => 0.0045273727814059
603 => 0.00464051496921
604 => 0.0045161104860945
605 => 0.0046238230089163
606 => 0.004485680584254
607 => 0.0045442440061456
608 => 0.0045110005754859
609 => 0.0045325131492844
610 => 0.0044067510824327
611 => 0.0044746092410043
612 => 0.0044039279599393
613 => 0.0044038944478091
614 => 0.004402334154612
615 => 0.0044854903683363
616 => 0.0044882020894804
617 => 0.0044267495218961
618 => 0.0044178932468377
619 => 0.0044506395374903
620 => 0.0044123022074032
621 => 0.0044302400028587
622 => 0.004412845524954
623 => 0.0044089296615939
624 => 0.0043777273961115
625 => 0.0043642846022174
626 => 0.0043695558680814
627 => 0.0043515623201639
628 => 0.0043407205566885
629 => 0.0044001774549736
630 => 0.0043684120327043
701 => 0.0043953089484305
702 => 0.0043646565182991
703 => 0.0042584018408355
704 => 0.0041972936522034
705 => 0.0039965884162885
706 => 0.0040535081722199
707 => 0.0040912460292902
708 => 0.0040787736677536
709 => 0.0041055691264974
710 => 0.0041072141500405
711 => 0.0040985026732556
712 => 0.0040884158991479
713 => 0.0040835062153458
714 => 0.0041200989759777
715 => 0.0041413423051802
716 => 0.0040950335281146
717 => 0.0040841840295767
718 => 0.0041310047599678
719 => 0.0041595653784589
720 => 0.0043704409385718
721 => 0.0043548185959596
722 => 0.0043940276101864
723 => 0.0043896132768959
724 => 0.0044307105702914
725 => 0.004497887275981
726 => 0.0043612982504117
727 => 0.0043850053823574
728 => 0.0043791929410819
729 => 0.0044426516508234
730 => 0.0044428497619885
731 => 0.0044048030955008
801 => 0.0044254288106404
802 => 0.0044139161022864
803 => 0.004434721122318
804 => 0.0043546099500495
805 => 0.0044521767104059
806 => 0.0045074907764648
807 => 0.0045082588123257
808 => 0.0045344772406381
809 => 0.0045611166822724
810 => 0.0046122487706831
811 => 0.0045596906360786
812 => 0.0044651436683564
813 => 0.0044719696540411
814 => 0.004416536801459
815 => 0.0044174686377257
816 => 0.0044124944227049
817 => 0.0044274224164237
818 => 0.0043578858051969
819 => 0.004374205908864
820 => 0.0043513576681596
821 => 0.0043849557147443
822 => 0.0043488097705752
823 => 0.0043791901381467
824 => 0.0043923012976655
825 => 0.0044406817585526
826 => 0.0043416639371653
827 => 0.0041397598964392
828 => 0.0041822025736497
829 => 0.0041194265202551
830 => 0.004125236683002
831 => 0.0041369741364314
901 => 0.0040989292096109
902 => 0.0041061869827148
903 => 0.0041059276839874
904 => 0.0041036931876389
905 => 0.0040937962328081
906 => 0.0040794436902506
907 => 0.00413661980232
908 => 0.0041463351379103
909 => 0.004167931125452
910 => 0.0042321861356779
911 => 0.0042257655449188
912 => 0.0042362377948346
913 => 0.0042133769320677
914 => 0.0041262971328592
915 => 0.0041310259849098
916 => 0.0040720571240645
917 => 0.0041664231591001
918 => 0.0041440760364329
919 => 0.0041296687010727
920 => 0.0041257375261366
921 => 0.0041901518121045
922 => 0.0042094255760363
923 => 0.0041974154597682
924 => 0.0041727823609112
925 => 0.0042200851928386
926 => 0.0042327414351161
927 => 0.0042355747010178
928 => 0.0043193862497747
929 => 0.0042402588355631
930 => 0.0042593055906227
1001 => 0.0044079029364615
1002 => 0.0042731456488177
1003 => 0.0043445295895288
1004 => 0.0043410357170951
1005 => 0.004377553325662
1006 => 0.0043380402073235
1007 => 0.0043385300197813
1008 => 0.0043709551822717
1009 => 0.0043254198894628
1010 => 0.0043141447105991
1011 => 0.0042985681317532
1012 => 0.0043325790218055
1013 => 0.0043529670122115
1014 => 0.0045172792415556
1015 => 0.0046234324352598
1016 => 0.004618824045162
1017 => 0.0046609361041114
1018 => 0.0046419642358524
1019 => 0.0045806990687183
1020 => 0.004685271238525
1021 => 0.0046521802285128
1022 => 0.0046549082111726
1023 => 0.0046548066755217
1024 => 0.0046768093043136
1025 => 0.0046612184253033
1026 => 0.0046304872024029
1027 => 0.0046508880223303
1028 => 0.0047114711640879
1029 => 0.0048995230950214
1030 => 0.0050047594469285
1031 => 0.004893187734498
1101 => 0.0049701484077278
1102 => 0.0049239994276816
1103 => 0.004915612785194
1104 => 0.0049639497753314
1105 => 0.0050123713729713
1106 => 0.005009287126534
1107 => 0.004974135533124
1108 => 0.0049542792899453
1109 => 0.0051046374156235
1110 => 0.0052154187213394
1111 => 0.0052078641789769
1112 => 0.0052412074720963
1113 => 0.0053391044119641
1114 => 0.0053480548812612
1115 => 0.0053469273278539
1116 => 0.0053247426558161
1117 => 0.00542113490664
1118 => 0.0055015470181376
1119 => 0.0053196075452162
1120 => 0.0053888877147421
1121 => 0.0054199898149099
1122 => 0.0054656569255336
1123 => 0.0055427049958521
1124 => 0.0056263996362094
1125 => 0.005638234976021
1126 => 0.0056298372360515
1127 => 0.0055746383709032
1128 => 0.0056662180450669
1129 => 0.0057198632703843
1130 => 0.0057518077744117
1201 => 0.0058328137215665
1202 => 0.0054201818908921
1203 => 0.0051281005720081
1204 => 0.005082487856359
1205 => 0.0051752431072629
1206 => 0.005199701927217
1207 => 0.0051898426075623
1208 => 0.0048610785282867
1209 => 0.0050807569815209
1210 => 0.0053171125261121
1211 => 0.0053261919051681
1212 => 0.0054445164327517
1213 => 0.0054830477492192
1214 => 0.0055783145030745
1215 => 0.0055723555416825
1216 => 0.0055955514802211
1217 => 0.0055902191356487
1218 => 0.0057666807363838
1219 => 0.0059613440867958
1220 => 0.0059546035139626
1221 => 0.0059266183541886
1222 => 0.0059681810886318
1223 => 0.0061690945276494
1224 => 0.0061505976377569
1225 => 0.0061685657907261
1226 => 0.0064054540583131
1227 => 0.0067134425031394
1228 => 0.0065703509489833
1229 => 0.0068808184480165
1230 => 0.0070762412814829
1231 => 0.0074142048648649
]
'min_raw' => 0.0030270556090762
'max_raw' => 0.0074142048648649
'avg_raw' => 0.0052206302369705
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003027'
'max' => '$0.007414'
'avg' => '$0.00522'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0013497436089842
'max_diff' => 0.0030078954278829
'year' => 2028
]
3 => [
'items' => [
101 => 0.0073718901597197
102 => 0.007503456902639
103 => 0.0072961380061644
104 => 0.0068200919137968
105 => 0.0067447557974484
106 => 0.0068955806101923
107 => 0.0072663686950529
108 => 0.0068839031738772
109 => 0.0069612754506869
110 => 0.0069389922297606
111 => 0.006937804851615
112 => 0.0069831222460155
113 => 0.0069173870018413
114 => 0.0066495697915307
115 => 0.0067723088407593
116 => 0.0067249133994389
117 => 0.0067775021751481
118 => 0.0070613021083899
119 => 0.0069358273929583
120 => 0.0068036499729893
121 => 0.006969429790148
122 => 0.0071805244655168
123 => 0.0071673145401058
124 => 0.0071416817634881
125 => 0.0072861723831939
126 => 0.0075248285551685
127 => 0.0075893363594551
128 => 0.0076369547017754
129 => 0.0076435204666629
130 => 0.0077111519256042
131 => 0.0073474805255547
201 => 0.0079246363771772
202 => 0.0080242952491438
203 => 0.0080055635116511
204 => 0.0081163301535555
205 => 0.0080837397976288
206 => 0.008036521485161
207 => 0.0082121101733199
208 => 0.0080108119116222
209 => 0.0077250943718888
210 => 0.0075683440787389
211 => 0.0077747655094442
212 => 0.0079008198740607
213 => 0.0079841337905089
214 => 0.0080093445312865
215 => 0.0073757113011009
216 => 0.0070342181329408
217 => 0.0072531113385043
218 => 0.0075201761564937
219 => 0.0073459969670064
220 => 0.0073528244614695
221 => 0.0071044907107462
222 => 0.0075421481831039
223 => 0.0074783851706601
224 => 0.0078091877920133
225 => 0.0077302390915705
226 => 0.0079999957876002
227 => 0.0079289598090042
228 => 0.0082238261845881
301 => 0.0083414563649969
302 => 0.008538975745579
303 => 0.0086842718059838
304 => 0.0087695924317242
305 => 0.0087644701013843
306 => 0.0091025529271348
307 => 0.008903197296504
308 => 0.0086527596399172
309 => 0.0086482300128302
310 => 0.0087779352239056
311 => 0.0090497617634326
312 => 0.0091202424302167
313 => 0.0091596315077996
314 => 0.0090993057643377
315 => 0.0088829195152348
316 => 0.0087894850299753
317 => 0.008869093918474
318 => 0.0087717390887099
319 => 0.0089398008378235
320 => 0.0091705855154091
321 => 0.0091229293921092
322 => 0.0092822366672954
323 => 0.0094471029374991
324 => 0.0096828691084979
325 => 0.009744507115993
326 => 0.0098463923984989
327 => 0.0099512658217693
328 => 0.0099849483389057
329 => 0.01004925871519
330 => 0.010048919767763
331 => 0.010242723415285
401 => 0.0104564948401
402 => 0.010537188604148
403 => 0.010722739465097
404 => 0.0104049901182
405 => 0.010646006647863
406 => 0.010863409590653
407 => 0.010604212839787
408 => 0.010961455175759
409 => 0.010975326086136
410 => 0.011184760364529
411 => 0.010972458600625
412 => 0.01084639449091
413 => 0.011210336852096
414 => 0.011386437096598
415 => 0.011333394269803
416 => 0.010929735738844
417 => 0.010694789160098
418 => 0.010079888645708
419 => 0.010808264866728
420 => 0.011163035676962
421 => 0.010928816968152
422 => 0.011046943261187
423 => 0.011691402013406
424 => 0.011936770180637
425 => 0.011885735317106
426 => 0.011894359368937
427 => 0.012026755578228
428 => 0.012613873282146
429 => 0.012262058744676
430 => 0.012531007776333
501 => 0.012673657372955
502 => 0.012806158268247
503 => 0.012480777946749
504 => 0.012057462929266
505 => 0.011923381293674
506 => 0.010905528533507
507 => 0.01085254487703
508 => 0.01082280354508
509 => 0.010635288654132
510 => 0.010487953314498
511 => 0.010370786782211
512 => 0.010063306812601
513 => 0.010167072276175
514 => 0.0096770133806737
515 => 0.0099905356953946
516 => 0.0092083898652885
517 => 0.0098597841541897
518 => 0.0095052598580048
519 => 0.0097433133879926
520 => 0.0097424828416525
521 => 0.0093041508180045
522 => 0.0090513300545203
523 => 0.0092124372849437
524 => 0.0093851570246655
525 => 0.0094131802213364
526 => 0.0096371158723322
527 => 0.0096996114990444
528 => 0.0095102468324646
529 => 0.0091921816314447
530 => 0.0092660609233468
531 => 0.0090498328930279
601 => 0.0086709015869852
602 => 0.0089430566664909
603 => 0.0090359823764484
604 => 0.0090770236638265
605 => 0.008704388244888
606 => 0.008587298105949
607 => 0.0085249602984593
608 => 0.009144079078215
609 => 0.0091779958025516
610 => 0.0090044730455038
611 => 0.0097888123614629
612 => 0.0096112922179635
613 => 0.0098096257117434
614 => 0.0092593571519728
615 => 0.0092803781519909
616 => 0.0090198721973506
617 => 0.009165738124935
618 => 0.0090626447887967
619 => 0.0091539535994614
620 => 0.0092086837240934
621 => 0.0094691469322699
622 => 0.0098627582256393
623 => 0.0094302424146509
624 => 0.0092417890820628
625 => 0.0093587044696987
626 => 0.0096700655539027
627 => 0.010141793534752
628 => 0.0098625210756791
629 => 0.0099864574506619
630 => 0.01001353203505
701 => 0.0098076068629578
702 => 0.010149386289576
703 => 0.010332548660912
704 => 0.01052043535379
705 => 0.010683572104751
706 => 0.010445389276938
707 => 0.010700279044865
708 => 0.010494882886017
709 => 0.010310621298065
710 => 0.010310900746834
711 => 0.01019531076108
712 => 0.0099713405984052
713 => 0.0099300370640893
714 => 0.010144903265662
715 => 0.010317205611419
716 => 0.010331397257888
717 => 0.010426792689713
718 => 0.010483246723616
719 => 0.011036573001402
720 => 0.011259125407683
721 => 0.011531258277381
722 => 0.011637269366697
723 => 0.011956324738458
724 => 0.011698661613351
725 => 0.011642914575457
726 => 0.01086899060578
727 => 0.010995720612459
728 => 0.011198627580778
729 => 0.010872336466952
730 => 0.011079293076813
731 => 0.01112015069554
801 => 0.010861249219762
802 => 0.010999539684447
803 => 0.010632281210507
804 => 0.0098707634567696
805 => 0.010150234076527
806 => 0.010356018521463
807 => 0.010062338745501
808 => 0.010588748376935
809 => 0.010281230737552
810 => 0.010183762409317
811 => 0.009803503710906
812 => 0.0099829711790566
813 => 0.010225703499457
814 => 0.01007572314611
815 => 0.010386954898967
816 => 0.010827742063489
817 => 0.011141873246257
818 => 0.011165988337888
819 => 0.010964023032523
820 => 0.011287673723296
821 => 0.01129003116524
822 => 0.010924951863897
823 => 0.010701342824594
824 => 0.010650538380387
825 => 0.010777457842814
826 => 0.010931561500826
827 => 0.011174540018401
828 => 0.01132136684774
829 => 0.011704213347725
830 => 0.011807800633551
831 => 0.011921611654972
901 => 0.012073698277609
902 => 0.012256317262294
903 => 0.011856757320307
904 => 0.011872632581675
905 => 0.011500567895981
906 => 0.011102963419843
907 => 0.011404695655134
908 => 0.011799170415019
909 => 0.011708677469246
910 => 0.011698495164243
911 => 0.011715618976922
912 => 0.011647390251032
913 => 0.011338794252506
914 => 0.011183819273959
915 => 0.011383776534618
916 => 0.011490044919584
917 => 0.01165485791709
918 => 0.011634541236367
919 => 0.012059081818318
920 => 0.012224045451023
921 => 0.012181840694585
922 => 0.012189607385484
923 => 0.012488266162807
924 => 0.012820436147052
925 => 0.013131557170988
926 => 0.013448042839494
927 => 0.013066507013464
928 => 0.012872786650864
929 => 0.013072656616438
930 => 0.012966602799331
1001 => 0.013576019490034
1002 => 0.013618214179465
1003 => 0.014227586802405
1004 => 0.014805953984316
1005 => 0.014442691919882
1006 => 0.014785231684961
1007 => 0.01515571636857
1008 => 0.015870441432226
1009 => 0.015629747175118
1010 => 0.015445379146333
1011 => 0.01527115224999
1012 => 0.015633690763538
1013 => 0.016100090769522
1014 => 0.016200548863688
1015 => 0.016363329354181
1016 => 0.016192185572278
1017 => 0.016398309406711
1018 => 0.017126017117659
1019 => 0.016929384070507
1020 => 0.016650133533212
1021 => 0.017224588881214
1022 => 0.017432482038518
1023 => 0.018891585090964
1024 => 0.02073376296722
1025 => 0.019971089230058
1026 => 0.019497673030074
1027 => 0.019608937066653
1028 => 0.020281638065404
1029 => 0.020497688275741
1030 => 0.019910389327072
1031 => 0.020117833244404
1101 => 0.021260869624335
1102 => 0.02187407196917
1103 => 0.021041260820822
1104 => 0.018743567892296
1105 => 0.016624990077675
1106 => 0.017186932314915
1107 => 0.017123225504309
1108 => 0.018351275497853
1109 => 0.016924694437364
1110 => 0.016948714403751
1111 => 0.018202159170634
1112 => 0.017867761596313
1113 => 0.017326080352319
1114 => 0.016628944950216
1115 => 0.01534022568221
1116 => 0.014198771087941
1117 => 0.016437426408596
1118 => 0.016340891520438
1119 => 0.016201094696718
1120 => 0.016512197400312
1121 => 0.018022823820919
1122 => 0.017987998992504
1123 => 0.017766461201908
1124 => 0.01793449566353
1125 => 0.017296623098762
1126 => 0.017461017382791
1127 => 0.016624654484125
1128 => 0.017002725443922
1129 => 0.017324918147651
1130 => 0.017389603103069
1201 => 0.017535341610521
1202 => 0.016290022020959
1203 => 0.01684913395601
1204 => 0.017177559836149
1205 => 0.015693719761446
1206 => 0.017148229088782
1207 => 0.016268343777491
1208 => 0.015969697487405
1209 => 0.016371785373349
1210 => 0.016215091333153
1211 => 0.016080374998775
1212 => 0.016005200969472
1213 => 0.016300449936089
1214 => 0.016286676218898
1215 => 0.015803591604158
1216 => 0.015173427417277
1217 => 0.015384931202829
1218 => 0.015308089894679
1219 => 0.01502960708122
1220 => 0.015217270873348
1221 => 0.014390894507286
1222 => 0.012969156920783
1223 => 0.013908400319427
1224 => 0.01387224047028
1225 => 0.013854007034621
1226 => 0.014559822489921
1227 => 0.014491974619827
1228 => 0.014368830071238
1229 => 0.015027345435014
1230 => 0.014786978468954
1231 => 0.015527732820771
]
'min_raw' => 0.0066495697915307
'max_raw' => 0.02187407196917
'avg_raw' => 0.014261820880351
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.006649'
'max' => '$0.021874'
'avg' => '$0.014261'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0036225141824545
'max_diff' => 0.014459867104306
'year' => 2029
]
4 => [
'items' => [
101 => 0.016015641545864
102 => 0.015891892110987
103 => 0.016350772625205
104 => 0.01538980382287
105 => 0.015708999111629
106 => 0.015774784818257
107 => 0.015019219457644
108 => 0.014503075370463
109 => 0.014468654444322
110 => 0.013573731726187
111 => 0.014051792218651
112 => 0.014472465668532
113 => 0.014270995731617
114 => 0.014207216368333
115 => 0.014533051303295
116 => 0.014558371468329
117 => 0.013981069022243
118 => 0.014101108481575
119 => 0.014601692981889
120 => 0.014088495036534
121 => 0.013091435259118
122 => 0.012844150648889
123 => 0.012811158323525
124 => 0.012140502848194
125 => 0.012860675388982
126 => 0.012546300775504
127 => 0.013539406412695
128 => 0.012972149798864
129 => 0.012947696500003
130 => 0.012910731752256
131 => 0.012333470880209
201 => 0.012459854324345
202 => 0.012879972141395
203 => 0.013029874911484
204 => 0.013014238824447
205 => 0.012877913334897
206 => 0.012940322445913
207 => 0.012739280954554
208 => 0.012668289019638
209 => 0.012444218945173
210 => 0.012114897836648
211 => 0.012160691956632
212 => 0.011508220669088
213 => 0.011152719682362
214 => 0.011054321694664
215 => 0.01092273979318
216 => 0.011069184220563
217 => 0.01150637229991
218 => 0.010979030721593
219 => 0.010074940574279
220 => 0.010129277932628
221 => 0.010251357843929
222 => 0.010023862736858
223 => 0.0098085577102315
224 => 0.0099957479626341
225 => 0.0096126730488076
226 => 0.010297650617103
227 => 0.010279123893508
228 => 0.01053444117224
301 => 0.010694096306269
302 => 0.010326142911296
303 => 0.010233603627512
304 => 0.010286318209231
305 => 0.0094150635965918
306 => 0.01046324108273
307 => 0.010472305765157
308 => 0.010394688450891
309 => 0.010952810603411
310 => 0.012130622427891
311 => 0.011687482242151
312 => 0.011515884968249
313 => 0.011189678425125
314 => 0.01162432927561
315 => 0.011590954871902
316 => 0.011440023161469
317 => 0.011348739192064
318 => 0.011516932704613
319 => 0.011327898154544
320 => 0.011293942355029
321 => 0.011088207154246
322 => 0.011014769047922
323 => 0.010960398397654
324 => 0.01090054165406
325 => 0.011032570715058
326 => 0.010733375492966
327 => 0.010372575385593
328 => 0.010342578760576
329 => 0.010425402079578
330 => 0.01038875892639
331 => 0.010342403327256
401 => 0.010253897864312
402 => 0.010227640184077
403 => 0.010312964906426
404 => 0.010216638269634
405 => 0.010358773469404
406 => 0.010320120559766
407 => 0.010104208548608
408 => 0.0098351022418393
409 => 0.0098327066312395
410 => 0.009774728118869
411 => 0.0097008837662375
412 => 0.0096803419566654
413 => 0.0099799833216928
414 => 0.010600231979788
415 => 0.010478462326912
416 => 0.010566453380571
417 => 0.010999282276628
418 => 0.011136865567066
419 => 0.011039212206352
420 => 0.01090553826321
421 => 0.010911419238302
422 => 0.011368223567872
423 => 0.01139671389358
424 => 0.011468699755316
425 => 0.011561221930849
426 => 0.011054969132922
427 => 0.010887574777046
428 => 0.010808254044546
429 => 0.010563976889434
430 => 0.010827408858482
501 => 0.010673918331399
502 => 0.010694629447486
503 => 0.010681141305964
504 => 0.010688506743299
505 => 0.010297459151913
506 => 0.010439936341358
507 => 0.010203040380001
508 => 0.0098858632805629
509 => 0.0098847999917089
510 => 0.0099624286374518
511 => 0.0099162520813547
512 => 0.0097919921562053
513 => 0.0098096426920825
514 => 0.0096550054250318
515 => 0.0098284184561005
516 => 0.0098333913213299
517 => 0.0097666178584968
518 => 0.010033784559245
519 => 0.010143242974529
520 => 0.010099291250866
521 => 0.01014015920443
522 => 0.010483522405746
523 => 0.010539505589547
524 => 0.01056436962175
525 => 0.010531055112451
526 => 0.01014643525343
527 => 0.010163494779707
528 => 0.010038323295056
529 => 0.0099325665807723
530 => 0.0099367962947227
531 => 0.0099911689932752
601 => 0.01022861775677
602 => 0.010728314681177
603 => 0.010747277814184
604 => 0.010770261684583
605 => 0.010676774732904
606 => 0.010648578173728
607 => 0.01068577671343
608 => 0.010873436605421
609 => 0.011356148796786
610 => 0.011185526069094
611 => 0.01104680713558
612 => 0.011168501038628
613 => 0.011149767216122
614 => 0.01099163490112
615 => 0.010987196653714
616 => 0.010683690183265
617 => 0.010571490751649
618 => 0.010477728508608
619 => 0.010375342586932
620 => 0.010314644780556
621 => 0.01040790419781
622 => 0.010429233729949
623 => 0.010225320384228
624 => 0.010197527748692
625 => 0.010364047788583
626 => 0.010290768527519
627 => 0.010366138064761
628 => 0.010383624443909
629 => 0.010380808734121
630 => 0.010304296769501
701 => 0.01035306321413
702 => 0.010237716034606
703 => 0.01011229330146
704 => 0.010032281411825
705 => 0.0099624604260815
706 => 0.010001201166991
707 => 0.0098630974994271
708 => 0.0098189153566956
709 => 0.01033654223997
710 => 0.010718918784071
711 => 0.010713358877682
712 => 0.010679514377431
713 => 0.010629228315164
714 => 0.010869757866754
715 => 0.01078596218052
716 => 0.010846930543619
717 => 0.010862449550862
718 => 0.01090942091176
719 => 0.010926209135956
720 => 0.010875463462264
721 => 0.010705154783291
722 => 0.010280761747753
723 => 0.010083205644083
724 => 0.010018008839315
725 => 0.010020378619342
726 => 0.0099550095070346
727 => 0.0099742636402473
728 => 0.0099483137052591
729 => 0.0098991708063549
730 => 0.0099981667314652
731 => 0.010009575089623
801 => 0.0099864682577894
802 => 0.0099919107531658
803 => 0.0098005960546376
804 => 0.009815141295653
805 => 0.0097341515453593
806 => 0.0097189669435253
807 => 0.0095142319073671
808 => 0.0091515141139949
809 => 0.0093524949813912
810 => 0.009109738355763
811 => 0.0090178027432745
812 => 0.009453011633874
813 => 0.0094093287320734
814 => 0.0093345625926918
815 => 0.0092239678899176
816 => 0.0091829472388625
817 => 0.008933718748612
818 => 0.0089189929998257
819 => 0.0090425173693292
820 => 0.0089855151230173
821 => 0.0089054623807567
822 => 0.008615519463105
823 => 0.0082895276268635
824 => 0.0082993672712881
825 => 0.0084030592091027
826 => 0.0087045575030619
827 => 0.0085867569036386
828 => 0.0085012912171509
829 => 0.0084852860631608
830 => 0.0086856240744058
831 => 0.0089691443324283
901 => 0.0091021656940843
902 => 0.0089703455646021
903 => 0.0088189176975527
904 => 0.0088281344101708
905 => 0.0088894490700592
906 => 0.0088958923738708
907 => 0.0087973283994579
908 => 0.0088250735809134
909 => 0.00878292611321
910 => 0.0085242671817124
911 => 0.008519588861858
912 => 0.0084561097886298
913 => 0.0084541876675206
914 => 0.0083461939283625
915 => 0.0083310848577288
916 => 0.008116656733879
917 => 0.0082577939743451
918 => 0.0081631265234781
919 => 0.0080204403452275
920 => 0.0079958411943154
921 => 0.0079951017141346
922 => 0.0081416085151524
923 => 0.0082560819570748
924 => 0.0081647733043166
925 => 0.0081439840940274
926 => 0.0083659584709065
927 => 0.0083377102081072
928 => 0.0083132473947049
929 => 0.0089437582029998
930 => 0.0084446596988624
1001 => 0.0082270242635119
1002 => 0.0079576590844173
1003 => 0.0080453657449876
1004 => 0.0080638468270487
1005 => 0.0074160721280493
1006 => 0.0071532700133404
1007 => 0.0070630862310611
1008 => 0.0070111841893478
1009 => 0.0070348366015014
1010 => 0.0067982838746498
1011 => 0.006957251219315
1012 => 0.0067524165531658
1013 => 0.0067180753547962
1014 => 0.007084345112017
1015 => 0.0071353094090173
1016 => 0.0069178798846477
1017 => 0.0070575048379355
1018 => 0.0070068748889414
1019 => 0.0067559278556058
1020 => 0.0067463435247738
1021 => 0.0066204271246608
1022 => 0.0064233923407034
1023 => 0.0063333421572858
1024 => 0.0062864432399104
1025 => 0.0063057946472611
1026 => 0.0062960099835418
1027 => 0.0062321584341712
1028 => 0.0062996698796097
1029 => 0.0061272060341695
1030 => 0.0060585295412796
1031 => 0.0060275099627237
1101 => 0.0058744383732469
1102 => 0.0061180433433493
1103 => 0.006166036591314
1104 => 0.0062141244008031
1105 => 0.0066326959514636
1106 => 0.0066117852996635
1107 => 0.0068008074080357
1108 => 0.0067934623564937
1109 => 0.0067395501892308
1110 => 0.0065121036236697
1111 => 0.0066027597708572
1112 => 0.0063237342409075
1113 => 0.0065327991398376
1114 => 0.0064373906507248
1115 => 0.0065005414336962
1116 => 0.0063869906318371
1117 => 0.0064498343339836
1118 => 0.0061774175708386
1119 => 0.005923038630421
1120 => 0.0060254081418292
1121 => 0.0061366955081036
1122 => 0.00637799487368
1123 => 0.0062342789622193
1124 => 0.0062859646384808
1125 => 0.0061128262750823
1126 => 0.0057555923768626
1127 => 0.005757614281931
1128 => 0.0057026616294534
1129 => 0.0056551745144942
1130 => 0.0062507864634675
1201 => 0.0061767127023811
1202 => 0.0060586858586241
1203 => 0.0062166694791932
1204 => 0.0062584428560088
1205 => 0.0062596320853203
1206 => 0.00637489285674
1207 => 0.0064364075511083
1208 => 0.0064472497826107
1209 => 0.0066286150968134
1210 => 0.0066894063578678
1211 => 0.0069397969586496
1212 => 0.0064311884590704
1213 => 0.0064207140017207
1214 => 0.0062188926327185
1215 => 0.0060908943298277
1216 => 0.0062276567860248
1217 => 0.0063488096522784
1218 => 0.0062226571899853
1219 => 0.006239130038337
1220 => 0.0060697806647434
1221 => 0.0061303150971745
1222 => 0.0061824555052527
1223 => 0.0061536666365834
1224 => 0.0061105683067885
1225 => 0.0063388764988547
1226 => 0.0063259944559113
1227 => 0.0065386002931459
1228 => 0.0067043417468597
1229 => 0.0070013800617434
1230 => 0.0066914050952047
1231 => 0.0066801083753851
]
'min_raw' => 0.0056551745144942
'max_raw' => 0.016350772625205
'avg_raw' => 0.01100297356985
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.005655'
'max' => '$0.01635'
'avg' => '$0.0110029'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00099439527703654
'max_diff' => -0.0055232993439653
'year' => 2030
]
5 => [
'items' => [
101 => 0.0067905356236722
102 => 0.0066893894520314
103 => 0.0067533103410613
104 => 0.0069910814183076
105 => 0.006996105146495
106 => 0.0069119512266469
107 => 0.0069068304529762
108 => 0.0069229931338261
109 => 0.0070176584603957
110 => 0.0069845794865206
111 => 0.007022859312546
112 => 0.0070707288211523
113 => 0.0072687374049989
114 => 0.0073164766042094
115 => 0.0072004951000648
116 => 0.0072109669312992
117 => 0.0071675866649856
118 => 0.0071256818712799
119 => 0.0072198777278268
120 => 0.0073920225070905
121 => 0.007390951603353
122 => 0.0074308858461258
123 => 0.0074557645485402
124 => 0.0073489669454546
125 => 0.0072794456329025
126 => 0.007306104527891
127 => 0.0073487326815329
128 => 0.0072922807921929
129 => 0.0069438335801278
130 => 0.0070495302053743
131 => 0.0070319371186324
201 => 0.0070068824237194
202 => 0.0071131611977325
203 => 0.0071029103507102
204 => 0.0067958576845282
205 => 0.0068155141999872
206 => 0.0067970530623377
207 => 0.0068567047748768
208 => 0.0066861680637941
209 => 0.0067386240075409
210 => 0.0067715238837149
211 => 0.0067909021635302
212 => 0.0068609097980338
213 => 0.0068526952101498
214 => 0.0068603991677171
215 => 0.0069642020083556
216 => 0.0074892011554721
217 => 0.0075177757007044
218 => 0.007377064189332
219 => 0.0074332756627134
220 => 0.0073253619259189
221 => 0.0073978051403883
222 => 0.00744736894787
223 => 0.007223399632432
224 => 0.0072101376231206
225 => 0.0071017784879473
226 => 0.0071600045494143
227 => 0.0070673626990183
228 => 0.0070900937686312
301 => 0.0070265357163347
302 => 0.0071409275561863
303 => 0.0072688354078352
304 => 0.0073011499823959
305 => 0.0072161442490259
306 => 0.0071545944959152
307 => 0.007046533405202
308 => 0.0072262414073566
309 => 0.0072787935036887
310 => 0.0072259653735666
311 => 0.0072137239414999
312 => 0.0071905264498533
313 => 0.0072186453990144
314 => 0.0072785072936859
315 => 0.0072502775296345
316 => 0.0072689237861349
317 => 0.0071978634842914
318 => 0.007349002299905
319 => 0.0075890471126362
320 => 0.0075898188959604
321 => 0.00756158897974
322 => 0.0075500379062446
323 => 0.0075790035134213
324 => 0.0075947161670833
325 => 0.0076883856293089
326 => 0.0077888966942329
327 => 0.0082579379778202
328 => 0.0081262330622879
329 => 0.0085423943924774
330 => 0.0088715239728718
331 => 0.0089702155429398
401 => 0.0088794239422744
402 => 0.0085688307808641
403 => 0.0085535915986023
404 => 0.0090177489107998
405 => 0.0088866032103523
406 => 0.0088710038465862
407 => 0.0087050529716563
408 => 0.0088031504921556
409 => 0.0087816951254186
410 => 0.0087478267793918
411 => 0.0089349900149719
412 => 0.0092853428838007
413 => 0.0092307371036053
414 => 0.0091899764217787
415 => 0.0090113749792707
416 => 0.0091189329397369
417 => 0.009080633610152
418 => 0.0092451918354042
419 => 0.0091477111881758
420 => 0.0088856096526861
421 => 0.0089273501861108
422 => 0.0089210411884539
423 => 0.0090508799131714
424 => 0.0090119055508065
425 => 0.008913430818686
426 => 0.0092841454157833
427 => 0.0092600732718707
428 => 0.0092942020682805
429 => 0.0093092266199282
430 => 0.0095348740624573
501 => 0.0096273145997488
502 => 0.0096483002201133
503 => 0.0097361115809324
504 => 0.0096461153934618
505 => 0.010006164309538
506 => 0.010245575829293
507 => 0.010523664629491
508 => 0.010930027109804
509 => 0.011082823161465
510 => 0.011055221922357
511 => 0.01136332131718
512 => 0.011916969081011
513 => 0.011167129964823
514 => 0.011956712374921
515 => 0.011706739700051
516 => 0.011114058984751
517 => 0.011075897333933
518 => 0.011477267595498
519 => 0.012367468205195
520 => 0.012144483049037
521 => 0.012367832929028
522 => 0.012107283430092
523 => 0.012094344951386
524 => 0.012355178621422
525 => 0.012964630708764
526 => 0.012675102867038
527 => 0.012259993710783
528 => 0.012566503851948
529 => 0.012300976401497
530 => 0.011702668739177
531 => 0.012144312536491
601 => 0.011848997906518
602 => 0.011935186415333
603 => 0.0125558938428
604 => 0.012481208682939
605 => 0.012577858195459
606 => 0.01240727433562
607 => 0.012247922111924
608 => 0.011950479352746
609 => 0.011862421215504
610 => 0.011886757316637
611 => 0.01186240915574
612 => 0.01169599266562
613 => 0.011660055040423
614 => 0.011600157423965
615 => 0.011618722199905
616 => 0.011506097157297
617 => 0.011718643882218
618 => 0.011758094427319
619 => 0.011912768208791
620 => 0.011928826953894
621 => 0.012359591233649
622 => 0.012122333507059
623 => 0.012281506473902
624 => 0.012267268545554
625 => 0.011126904173017
626 => 0.011284036322033
627 => 0.011528484635116
628 => 0.011418361001414
629 => 0.011262671948321
630 => 0.011136944690429
701 => 0.010946455038451
702 => 0.01121456556558
703 => 0.011567102398379
704 => 0.011937767869748
705 => 0.012383098146633
706 => 0.012283705613048
707 => 0.011929442729987
708 => 0.011945334704132
709 => 0.012043572635035
710 => 0.011916345588658
711 => 0.011878823848915
712 => 0.012038417724179
713 => 0.012039516759487
714 => 0.011893126666729
715 => 0.011730440867733
716 => 0.011729759208295
717 => 0.011700810841722
718 => 0.012112433280196
719 => 0.012338784001634
720 => 0.012364734747064
721 => 0.012337037309702
722 => 0.012347696954071
723 => 0.012215988456564
724 => 0.012517035024923
725 => 0.01279330512647
726 => 0.012719258837605
727 => 0.012608252924298
728 => 0.012519831367579
729 => 0.01269842952892
730 => 0.012690476833935
731 => 0.012790892148146
801 => 0.012786336729466
802 => 0.012752570836108
803 => 0.012719260043492
804 => 0.012851333570934
805 => 0.012813298516066
806 => 0.012775204382253
807 => 0.012698800764971
808 => 0.012709185285489
809 => 0.012598198538918
810 => 0.012546850991546
811 => 0.011774707079062
812 => 0.011568364995116
813 => 0.011633284415206
814 => 0.011654657573931
815 => 0.011564857234564
816 => 0.011693607853403
817 => 0.011673542205837
818 => 0.011751605902503
819 => 0.011702835093958
820 => 0.011704836664953
821 => 0.011848261213851
822 => 0.011889897970568
823 => 0.011868721180052
824 => 0.011883552678231
825 => 0.012225338293794
826 => 0.01217674730895
827 => 0.012150934316705
828 => 0.012158084691966
829 => 0.012245418244709
830 => 0.012269866871241
831 => 0.012166276322648
901 => 0.012215130224214
902 => 0.012423143936602
903 => 0.012495936963381
904 => 0.012728257362224
905 => 0.01262956352763
906 => 0.012810720332397
907 => 0.013367534589347
908 => 0.013812356346414
909 => 0.013403279875578
910 => 0.014220138384723
911 => 0.014856179905486
912 => 0.014831767572536
913 => 0.014720859021486
914 => 0.013996742660136
915 => 0.013330399988455
916 => 0.013887823927721
917 => 0.013889244915977
918 => 0.013841361705239
919 => 0.01354396319576
920 => 0.013831012881758
921 => 0.013853797843421
922 => 0.0138410443239
923 => 0.01361302958397
924 => 0.013264893220265
925 => 0.013332918232413
926 => 0.013444344589982
927 => 0.013233391249129
928 => 0.013165978874613
929 => 0.013291311304568
930 => 0.013695158507931
1001 => 0.013618813533462
1002 => 0.013616819857645
1003 => 0.013943456033727
1004 => 0.013709655024151
1005 => 0.013333776245662
1006 => 0.013238861896862
1007 => 0.012901979900587
1008 => 0.013134665495346
1009 => 0.01314303943566
1010 => 0.013015599913399
1011 => 0.013344117260534
1012 => 0.013341089915346
1013 => 0.013652968243097
1014 => 0.014249162469606
1015 => 0.014072838499891
1016 => 0.013867792907106
1017 => 0.013890087048339
1018 => 0.014134598751039
1019 => 0.013986761393928
1020 => 0.014039924738304
1021 => 0.01413451828195
1022 => 0.014191588915458
1023 => 0.013881875462445
1024 => 0.01380966644124
1025 => 0.013661952125779
1026 => 0.013623416218093
1027 => 0.013743726445876
1028 => 0.013712028951478
1029 => 0.013142335638402
1030 => 0.013082799517441
1031 => 0.013084625405273
1101 => 0.012934918998331
1102 => 0.012706580794089
1103 => 0.013306639961471
1104 => 0.013258446812508
1105 => 0.013205245305905
1106 => 0.013211762186901
1107 => 0.013472227533569
1108 => 0.013321144478686
1109 => 0.013722823542118
1110 => 0.013640250402255
1111 => 0.01355555957293
1112 => 0.013543852720572
1113 => 0.013511253976764
1114 => 0.013399460754789
1115 => 0.013264463721522
1116 => 0.013175326986917
1117 => 0.012153542700281
1118 => 0.012343179920435
1119 => 0.012561340256246
1120 => 0.012636648329945
1121 => 0.012507828658722
1122 => 0.013404547340574
1123 => 0.013568386484744
1124 => 0.013072107030089
1125 => 0.012979273407079
1126 => 0.013410633497443
1127 => 0.013150470631327
1128 => 0.013267621954009
1129 => 0.013014404872718
1130 => 0.013528922432684
1201 => 0.013525002670929
1202 => 0.013324843719197
1203 => 0.013494016694572
1204 => 0.013464618726958
1205 => 0.013238639763422
1206 => 0.013536086368899
1207 => 0.013536233898704
1208 => 0.013343585259493
1209 => 0.013118613825103
1210 => 0.013078394246223
1211 => 0.013048094196276
1212 => 0.013260169999149
1213 => 0.013450316500861
1214 => 0.013804131999232
1215 => 0.013893089621972
1216 => 0.014240297145768
1217 => 0.014033551970575
1218 => 0.01412519942894
1219 => 0.014224695709319
1220 => 0.014272397884988
1221 => 0.014194669749576
1222 => 0.014734025950349
1223 => 0.014779564139142
1224 => 0.01479483269994
1225 => 0.014612964823692
1226 => 0.014774506064507
1227 => 0.014698926267613
1228 => 0.014895563902457
1229 => 0.014926399194396
1230 => 0.014900282799121
1231 => 0.014910070407485
]
'min_raw' => 0.0066861680637941
'max_raw' => 0.014926399194396
'avg_raw' => 0.010806283629095
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.006686'
'max' => '$0.014926'
'avg' => '$0.0108062'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0010309935493
'max_diff' => -0.0014243734308089
'year' => 2031
]
6 => [
'items' => [
101 => 0.014449825039078
102 => 0.014425958888739
103 => 0.014100542235393
104 => 0.01423315192699
105 => 0.013985244464698
106 => 0.014063858474721
107 => 0.014098510781277
108 => 0.014080410382833
109 => 0.014240649479987
110 => 0.014104413512721
111 => 0.01374486439584
112 => 0.013385217320043
113 => 0.013380702243968
114 => 0.013286013517209
115 => 0.013217570910868
116 => 0.013230755384981
117 => 0.013277219191434
118 => 0.01321487034997
119 => 0.013228175636463
120 => 0.013449132044905
121 => 0.013493443276829
122 => 0.013342856397235
123 => 0.012738228346083
124 => 0.012589851105735
125 => 0.012696501723648
126 => 0.012645529597465
127 => 0.010205929328274
128 => 0.010779077224418
129 => 0.010438532206793
130 => 0.010595471018638
131 => 0.010247862739347
201 => 0.010413759629935
202 => 0.010383124531828
203 => 0.011304729388149
204 => 0.011290339795943
205 => 0.011297227332252
206 => 0.010968467278869
207 => 0.011492190970716
208 => 0.011750196093815
209 => 0.011702446212113
210 => 0.011714463828607
211 => 0.011507961360981
212 => 0.01129922672753
213 => 0.011067707895004
214 => 0.011497841269245
215 => 0.011450017780651
216 => 0.011559707657138
217 => 0.011838679896902
218 => 0.011879759618919
219 => 0.0119349711819
220 => 0.011915181766798
221 => 0.012386645920752
222 => 0.012329548500887
223 => 0.012467136854712
224 => 0.012184107172041
225 => 0.011863832220676
226 => 0.011924706018353
227 => 0.011918843382121
228 => 0.01184420529406
229 => 0.011776825365454
301 => 0.011664656768501
302 => 0.012019574807089
303 => 0.012005165782878
304 => 0.012238431136184
305 => 0.012197199219168
306 => 0.011921842386178
307 => 0.011931676809337
308 => 0.011997818031344
309 => 0.012226733555899
310 => 0.012294691269345
311 => 0.01226321054883
312 => 0.012337723079235
313 => 0.012396614745147
314 => 0.012345118965762
315 => 0.01307419060687
316 => 0.012771429230785
317 => 0.012918993018889
318 => 0.012954186112855
319 => 0.012864039742691
320 => 0.01288358926248
321 => 0.012913201458035
322 => 0.013093000910784
323 => 0.013564846700188
324 => 0.013773823988352
325 => 0.014402542470551
326 => 0.013756471333674
327 => 0.01371813614612
328 => 0.013831387330244
329 => 0.014200511635905
330 => 0.01449965221556
331 => 0.014598894403666
401 => 0.014612010897134
402 => 0.014798195839516
403 => 0.014904913576346
404 => 0.014775588090361
405 => 0.014665998281931
406 => 0.014273461190924
407 => 0.014318898428051
408 => 0.014631915933917
409 => 0.015074071597592
410 => 0.015453487155481
411 => 0.015320629051075
412 => 0.016334242604484
413 => 0.016434738248065
414 => 0.016420852999535
415 => 0.016649797031368
416 => 0.016195389751821
417 => 0.016001121836088
418 => 0.014689692842411
419 => 0.015058150897141
420 => 0.015593726318473
421 => 0.015522840903155
422 => 0.015133891716211
423 => 0.015453192102644
424 => 0.015347621409443
425 => 0.015264353423584
426 => 0.0156458202091
427 => 0.015226381808633
428 => 0.015589542099575
429 => 0.01512378527003
430 => 0.015321235935705
501 => 0.015209153388253
502 => 0.015281684532775
503 => 0.014857668943957
504 => 0.015086457463287
505 => 0.014848150589367
506 => 0.01484803760088
507 => 0.01484277696343
508 => 0.015123143943783
509 => 0.015132286700946
510 => 0.014925095078855
511 => 0.01489523552917
512 => 0.015005641934378
513 => 0.014876384949363
514 => 0.014936863479118
515 => 0.014878216782418
516 => 0.014865014175703
517 => 0.014759813559156
518 => 0.014714490240997
519 => 0.014732262681885
520 => 0.014671596178812
521 => 0.014635042416307
522 => 0.014835505500023
523 => 0.014728406161051
524 => 0.014819090990305
525 => 0.014715744182032
526 => 0.014357499118499
527 => 0.014151468594088
528 => 0.013474776878409
529 => 0.013666685809543
530 => 0.013793921629428
531 => 0.013751870191715
601 => 0.013842212951669
602 => 0.013847759263396
603 => 0.0138183879112
604 => 0.01378437964806
605 => 0.013767826306338
606 => 0.013891201353633
607 => 0.013962824721202
608 => 0.013806691446149
609 => 0.013770111604341
610 => 0.013927970965773
611 => 0.014024265085055
612 => 0.014735246758837
613 => 0.014682574940003
614 => 0.014814770868955
615 => 0.014799887636066
616 => 0.014938450030071
617 => 0.015164940983431
618 => 0.014704421547383
619 => 0.014784351797917
620 => 0.014764754746345
621 => 0.014978710216784
622 => 0.014979378162409
623 => 0.014851101170012
624 => 0.014920642208647
625 => 0.01488182630864
626 => 0.014951971886237
627 => 0.01468187147575
628 => 0.015010824620185
629 => 0.015197319855807
630 => 0.015199909342335
701 => 0.015288306603902
702 => 0.015378123341279
703 => 0.015550518747284
704 => 0.015373315326973
705 => 0.015054543624239
706 => 0.01507755791155
707 => 0.014890662178872
708 => 0.014893803929903
709 => 0.014877033016672
710 => 0.014927363789735
711 => 0.014692916250092
712 => 0.014747940619039
713 => 0.014670906180291
714 => 0.014784184340092
715 => 0.014662315765697
716 => 0.014764745296054
717 => 0.014808950485763
718 => 0.01497206858746
719 => 0.014638223089449
720 => 0.013957489519651
721 => 0.014100587969119
722 => 0.013888934122215
723 => 0.013908523491569
724 => 0.013948097135289
725 => 0.013819826008302
726 => 0.013844296097043
727 => 0.01384342185328
728 => 0.013835888092833
729 => 0.013802519818638
730 => 0.013754129219343
731 => 0.013946902473094
801 => 0.013979658405339
802 => 0.01405247078512
803 => 0.014269111038238
804 => 0.014247463568223
805 => 0.014282771489963
806 => 0.01420569449505
807 => 0.013912098872301
808 => 0.013928042527147
809 => 0.013729224895733
810 => 0.014047386571282
811 => 0.013972041686983
812 => 0.013923466349928
813 => 0.013910212119165
814 => 0.014127389381568
815 => 0.014192372222315
816 => 0.014151879276798
817 => 0.014068827064173
818 => 0.014228311864595
819 => 0.014270983269064
820 => 0.014280535822864
821 => 0.014563112311033
822 => 0.014296328709519
823 => 0.014360546174004
824 => 0.014861552500235
825 => 0.014407208896491
826 => 0.014647884836466
827 => 0.014636105001621
828 => 0.014759226668483
829 => 0.014626005431286
830 => 0.014627656868186
831 => 0.014736980567374
901 => 0.014583455148497
902 => 0.01454544009575
903 => 0.014492922572649
904 => 0.014607592663025
905 => 0.014676332196123
906 => 0.01523032234927
907 => 0.015588225253223
908 => 0.01557268774426
909 => 0.015714671491178
910 => 0.01565070651277
911 => 0.01544414672438
912 => 0.015796719095879
913 => 0.015685150445282
914 => 0.015694348029281
915 => 0.015694005694746
916 => 0.015768189093892
917 => 0.015715623356788
918 => 0.015612010893194
919 => 0.015680793681919
920 => 0.015885053974135
921 => 0.016519084188643
922 => 0.016873895896466
923 => 0.016497724078318
924 => 0.016757202361335
925 => 0.01660160785309
926 => 0.016573331702407
927 => 0.016736303239436
928 => 0.016899560036567
929 => 0.016889161284368
930 => 0.01677064523298
1001 => 0.016703698522785
1002 => 0.017210641441178
1003 => 0.017584148347903
1004 => 0.017558677680886
1005 => 0.017671096921593
1006 => 0.018001163289303
1007 => 0.01803134042144
1008 => 0.018027538796404
1009 => 0.017952741625745
1010 => 0.018277734829289
1011 => 0.018548849877398
1012 => 0.017935428241835
1013 => 0.018169011170378
1014 => 0.018273874072573
1015 => 0.018427843924417
1016 => 0.018687616872821
1017 => 0.018969799196158
1018 => 0.01900970287065
1019 => 0.018981389304031
1020 => 0.018795282476322
1021 => 0.019104049741654
1022 => 0.019284918364201
1023 => 0.019392621489824
1024 => 0.019665738696311
1025 => 0.018274521670158
1026 => 0.017289749111074
1027 => 0.017135962655685
1028 => 0.017448693460072
1029 => 0.017531158079208
1030 => 0.017497916694636
1031 => 0.016389465647783
1101 => 0.017130126890322
1102 => 0.017927016110729
1103 => 0.017957627871118
1104 => 0.018356567277021
1105 => 0.018486478300662
1106 => 0.018807676812597
1107 => 0.018787585758223
1108 => 0.018865792484494
1109 => 0.018847814112476
1110 => 0.01944276671951
1111 => 0.020099087796385
1112 => 0.020076361484466
1113 => 0.019982007564427
1114 => 0.020122139225419
1115 => 0.020799532912396
1116 => 0.020737169356711
1117 => 0.020797750238943
1118 => 0.021596435572124
1119 => 0.022634840116922
1120 => 0.022152396951751
1121 => 0.02319915980089
1122 => 0.023858041527909
1123 => 0.024997509345145
1124 => 0.02485484236243
1125 => 0.025298428821879
1126 => 0.024599438687872
1127 => 0.022994416050978
1128 => 0.022740415074909
1129 => 0.023248931461327
1130 => 0.024499069377033
1201 => 0.023209560169499
1202 => 0.023470426202722
1203 => 0.023395296767605
1204 => 0.023391293439287
1205 => 0.023544084198467
1206 => 0.023322453233246
1207 => 0.022419488810283
1208 => 0.022833312084124
1209 => 0.022673515044668
1210 => 0.022850821773603
1211 => 0.023807673062806
1212 => 0.023384626299364
1213 => 0.022938980899605
1214 => 0.023497919127533
1215 => 0.024209639563699
1216 => 0.024165101377888
1217 => 0.024078678681898
1218 => 0.024565838894249
1219 => 0.025370484840503
1220 => 0.025587977406447
1221 => 0.025748525972186
1222 => 0.025770662906911
1223 => 0.02599868709261
1224 => 0.024772543576616
1225 => 0.026718464826096
1226 => 0.027054471670892
1227 => 0.026991316310127
1228 => 0.027364773776788
1229 => 0.027254893116395
1230 => 0.027095693279233
1231 => 0.027687702800571
]
'min_raw' => 0.010205929328274
'max_raw' => 0.027687702800571
'avg_raw' => 0.018946816064423
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0102059'
'max' => '$0.027687'
'avg' => '$0.018946'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0035197612644799
'max_diff' => 0.012761303606175
'year' => 2032
]
7 => [
'items' => [
101 => 0.027009011657062
102 => 0.026045695023689
103 => 0.025517200466378
104 => 0.026213164731885
105 => 0.026638165823024
106 => 0.026919064509121
107 => 0.02700406428181
108 => 0.02486772560738
109 => 0.023716357548637
110 => 0.02445437127383
111 => 0.025354798953551
112 => 0.024767541655392
113 => 0.024790561029655
114 => 0.023953286450982
115 => 0.025428879175305
116 => 0.02521389772706
117 => 0.026329221860854
118 => 0.026063040805288
119 => 0.026972544339764
120 => 0.026733041578354
121 => 0.027727204150548
122 => 0.028123802516473
123 => 0.028789752898468
124 => 0.02927962871037
125 => 0.029567293156949
126 => 0.029550022862579
127 => 0.030689892713786
128 => 0.030017751286548
129 => 0.029173383242367
130 => 0.029158111288395
131 => 0.029595421463264
201 => 0.030511903619602
202 => 0.030749534108468
203 => 0.030882337133596
204 => 0.030678944677706
205 => 0.02994938333125
206 => 0.02963436244081
207 => 0.029902769366498
208 => 0.029574530760851
209 => 0.030141162681685
210 => 0.030919269335036
211 => 0.030758593388086
212 => 0.031295708988855
213 => 0.031851567129442
214 => 0.032646469235633
215 => 0.032854286081331
216 => 0.033197799424703
217 => 0.033551387493288
218 => 0.033664950451452
219 => 0.033881777375103
220 => 0.033880634590186
221 => 0.034534057118744
222 => 0.035254802402555
223 => 0.035526867061901
224 => 0.036152464744336
225 => 0.035081150636724
226 => 0.035893754693717
227 => 0.036626743893924
228 => 0.03575284395184
301 => 0.036957311429431
302 => 0.037004078172204
303 => 0.037710200464041
304 => 0.036994410244602
305 => 0.036569376297183
306 => 0.037796433377568
307 => 0.038390167646831
308 => 0.038211330052959
309 => 0.036850367133295
310 => 0.036058228339604
311 => 0.033985048324355
312 => 0.03644081960713
313 => 0.037636954163139
314 => 0.036847269433759
315 => 0.037245540478041
316 => 0.03941837815582
317 => 0.040245654062698
318 => 0.040073586457162
319 => 0.040102663050024
320 => 0.040549046113255
321 => 0.042528554443265
322 => 0.041342387167279
323 => 0.04224916760493
324 => 0.04273012067942
325 => 0.043176856698813
326 => 0.042079814227554
327 => 0.0406525780912
328 => 0.04020051249552
329 => 0.036768750850408
330 => 0.036590112753394
331 => 0.036489837776252
401 => 0.035857618229549
402 => 0.035360866845348
403 => 0.034965831701436
404 => 0.033929141516329
405 => 0.034278994021443
406 => 0.03262672624044
407 => 0.033683788613951
408 => 0.03104672934007
409 => 0.033242950663997
410 => 0.032047647247314
411 => 0.032850261344035
412 => 0.032847461099062
413 => 0.031369594077968
414 => 0.030517191222499
415 => 0.031060375498019
416 => 0.031642712159399
417 => 0.031737194323492
418 => 0.032492209005512
419 => 0.032702917374277
420 => 0.032064461179885
421 => 0.030992082148043
422 => 0.031241171338778
423 => 0.030512143437999
424 => 0.029234550083537
425 => 0.030152139935352
426 => 0.030465445454339
427 => 0.030603819020145
428 => 0.02934745268862
429 => 0.028952675110215
430 => 0.028742498839977
501 => 0.030829901031416
502 => 0.030944253635507
503 => 0.030359209545148
504 => 0.033003664309726
505 => 0.032405142751858
506 => 0.033073837973339
507 => 0.031218569105548
508 => 0.031289442874749
509 => 0.030411128860734
510 => 0.030902926019619
511 => 0.030555339639081
512 => 0.030863193669215
513 => 0.031047720105547
514 => 0.031925889996875
515 => 0.033252977953533
516 => 0.031794720699496
517 => 0.031159337131283
518 => 0.031553525523469
519 => 0.0326033011574
520 => 0.034193764979831
521 => 0.033252178385884
522 => 0.033670038527101
523 => 0.033761322378653
524 => 0.033067031283707
525 => 0.034219364482828
526 => 0.034836909205775
527 => 0.035470382308644
528 => 0.036020409254352
529 => 0.035217359220986
530 => 0.036076737869388
531 => 0.035384230379529
601 => 0.034762979571017
602 => 0.034763921752052
603 => 0.034374202044847
604 => 0.033619071004292
605 => 0.033479813254625
606 => 0.034204249654708
607 => 0.034785179043191
608 => 0.034833027170091
609 => 0.035154659528785
610 => 0.035344998245584
611 => 0.037210576423147
612 => 0.037960927399036
613 => 0.038878442368934
614 => 0.03923586615802
615 => 0.040311583619649
616 => 0.039442854403883
617 => 0.039254899373489
618 => 0.036645560676079
619 => 0.037072839741602
620 => 0.037756954751802
621 => 0.036656841480622
622 => 0.037354610140016
623 => 0.037492364454141
624 => 0.036619460052631
625 => 0.03708571600945
626 => 0.035847478423394
627 => 0.033279968149196
628 => 0.034222222855725
629 => 0.034916039479235
630 => 0.033925877610513
701 => 0.035700704435641
702 => 0.034663887244264
703 => 0.034335265970599
704 => 0.033053197220091
705 => 0.033658284318979
706 => 0.034476673284238
707 => 0.033971004051637
708 => 0.035020343635901
709 => 0.036506488335864
710 => 0.037565603550505
711 => 0.037646909265599
712 => 0.036965969137794
713 => 0.038057180038304
714 => 0.038065128318412
715 => 0.036834237964909
716 => 0.036080324477015
717 => 0.035909033746318
718 => 0.036336951575125
719 => 0.036856522817286
720 => 0.037675741853507
721 => 0.038170778759747
722 => 0.039461572463934
723 => 0.039810824230331
724 => 0.040194546035083
725 => 0.040707316701652
726 => 0.04132302935857
727 => 0.039975885117776
728 => 0.040029409669853
729 => 0.038774967605308
730 => 0.037434416354151
731 => 0.038451727651707
801 => 0.039781726846009
802 => 0.039476623561318
803 => 0.039442293209096
804 => 0.039500027339088
805 => 0.039269989426172
806 => 0.038229536471657
807 => 0.03770702751148
808 => 0.038381197376361
809 => 0.038739488655697
810 => 0.039295167183663
811 => 0.039226668076141
812 => 0.040658036288665
813 => 0.041214222693724
814 => 0.041071926410752
815 => 0.04109811235137
816 => 0.042105061270804
817 => 0.043224995564055
818 => 0.04427396181803
819 => 0.045341015345723
820 => 0.044054640670281
821 => 0.043401498942652
822 => 0.04407537448606
823 => 0.043717806637243
824 => 0.045772497558061
825 => 0.045914759899419
826 => 0.047969302242696
827 => 0.049919307576818
828 => 0.048694544164431
829 => 0.049849440897756
830 => 0.051098555874961
831 => 0.053508301327588
901 => 0.05269678383501
902 => 0.052075174153796
903 => 0.051487756008645
904 => 0.0527100799187
905 => 0.054282580101886
906 => 0.054621281580124
907 => 0.055170107368794
908 => 0.054593084159232
909 => 0.055288045058127
910 => 0.05774156241252
911 => 0.057078600365566
912 => 0.056137087682425
913 => 0.058073903995406
914 => 0.058774830289891
915 => 0.063694298102538
916 => 0.069905329429084
917 => 0.067333921676063
918 => 0.065737765904954
919 => 0.066112900372486
920 => 0.068380958756261
921 => 0.069109387124555
922 => 0.067129267715216
923 => 0.06782867936577
924 => 0.07168250632496
925 => 0.073749960842994
926 => 0.070942079911318
927 => 0.063195247782996
928 => 0.056052314766621
929 => 0.05794694225303
930 => 0.057732150293207
1001 => 0.061872606586152
1002 => 0.057062788940002
1003 => 0.057143773933698
1004 => 0.061369850477963
1005 => 0.060242405709247
1006 => 0.058416089576143
1007 => 0.056065648895515
1008 => 0.051720641907926
1009 => 0.047872148049535
1010 => 0.055419930761044
1011 => 0.055094456645771
1012 => 0.054623121894295
1013 => 0.055672026379958
1014 => 0.060765208825606
1015 => 0.060647794485211
1016 => 0.059900864356941
1017 => 0.060467404276094
1018 => 0.058316772389136
1019 => 0.058871039195382
1020 => 0.056051183289537
1021 => 0.057325875926564
1022 => 0.058412171121962
1023 => 0.058630260965313
1024 => 0.059121628518327
1025 => 0.054922946576681
1026 => 0.056808031501655
1027 => 0.057915342286506
1028 => 0.052912471876237
1029 => 0.05781645162395
1030 => 0.054849856865301
1031 => 0.053842950047458
1101 => 0.055198617427798
1102 => 0.054670312531249
1103 => 0.054216107004302
1104 => 0.053962652516023
1105 => 0.054958105020596
1106 => 0.054911665971435
1107 => 0.053282912464948
1108 => 0.051158269912223
1109 => 0.051871369691932
1110 => 0.051612293856618
1111 => 0.05067336960799
1112 => 0.051306091185419
1113 => 0.048519905571486
1114 => 0.04372641803604
1115 => 0.046893142730449
1116 => 0.046771227274448
1117 => 0.046709751973107
1118 => 0.049089458059114
1119 => 0.048860704228104
1120 => 0.048445513784859
1121 => 0.050665744309904
1122 => 0.049855330301948
1123 => 0.052352835316914
1124 => 0.053997853648267
1125 => 0.053580623788667
1126 => 0.055127771480369
1127 => 0.051887798070597
1128 => 0.052963987272152
1129 => 0.053185788375059
1130 => 0.050638347009862
1201 => 0.048898131183904
1202 => 0.048782078628225
1203 => 0.045764784202526
1204 => 0.047376598529985
1205 => 0.04879492843674
1206 => 0.048115658478251
1207 => 0.047900621902007
1208 => 0.048999197134298
1209 => 0.049084565838507
1210 => 0.047138150335559
1211 => 0.047542871753585
1212 => 0.049230627346089
1213 => 0.047500344642988
1214 => 0.044138687990938
1215 => 0.043304950662691
1216 => 0.043193714734275
1217 => 0.040932552975525
1218 => 0.043360664977634
1219 => 0.042300729019358
1220 => 0.045649054011571
1221 => 0.043736508733446
1222 => 0.043654062729062
1223 => 0.043529433501236
1224 => 0.041583158168064
1225 => 0.042009268773779
1226 => 0.043425725325651
1227 => 0.043931132980885
1228 => 0.043878414821761
1229 => 0.043418783915802
1230 => 0.043629200590859
1231 => 0.042951375166471
]
'min_raw' => 0.023716357548637
'max_raw' => 0.073749960842994
'avg_raw' => 0.048733159195815
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.023716'
'max' => '$0.073749'
'avg' => '$0.048733'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.013510428220363
'max_diff' => 0.046062258042423
'year' => 2033
]
8 => [
'items' => [
101 => 0.042712020901404
102 => 0.041956553001273
103 => 0.040846223891415
104 => 0.041000621964185
105 => 0.038800769464141
106 => 0.037602173067108
107 => 0.037270417381655
108 => 0.036826779814044
109 => 0.037320527425392
110 => 0.038794537558405
111 => 0.037016568609297
112 => 0.033968365556071
113 => 0.034151567753455
114 => 0.034563168697757
115 => 0.033796153061063
116 => 0.033070237131676
117 => 0.033701362136857
118 => 0.032409798319455
119 => 0.034719248014571
120 => 0.034656783872476
121 => 0.035517603903404
122 => 0.036055892334548
123 => 0.034815311773709
124 => 0.034503309117545
125 => 0.034681040010226
126 => 0.031743544254658
127 => 0.035277547830588
128 => 0.035308110040265
129 => 0.035046417846152
130 => 0.036928165650215
131 => 0.040899240448648
201 => 0.039405162373364
202 => 0.038826610183865
203 => 0.037726782048709
204 => 0.039192237737472
205 => 0.039079713605245
206 => 0.038570836805804
207 => 0.03826306652971
208 => 0.038830142700165
209 => 0.038192799516637
210 => 0.038078315167856
211 => 0.037384664574442
212 => 0.037137062871685
213 => 0.036953748428271
214 => 0.036751937238177
215 => 0.037197082435308
216 => 0.036188324854882
217 => 0.034971862102612
218 => 0.034870726387071
219 => 0.035149970989625
220 => 0.03502642604031
221 => 0.034870134901385
222 => 0.034571732553816
223 => 0.03448320295165
224 => 0.034770881210233
225 => 0.034446109228978
226 => 0.034925327978565
227 => 0.03479500699506
228 => 0.034067044574944
301 => 0.033159733873272
302 => 0.033151656904878
303 => 0.032956178302491
304 => 0.032707206911946
305 => 0.03263794876679
306 => 0.033648210549272
307 => 0.035739422204419
308 => 0.03532886731806
309 => 0.035625535298811
310 => 0.037084848141017
311 => 0.037548719810486
312 => 0.037219474686899
313 => 0.036768783654779
314 => 0.036788611772897
315 => 0.038328759463104
316 => 0.038424816585359
317 => 0.038667521944094
318 => 0.038979466918595
319 => 0.037272600264945
320 => 0.036708218507006
321 => 0.036440783119387
322 => 0.03561718563604
323 => 0.036505364911918
324 => 0.035987860883492
325 => 0.036057689857382
326 => 0.03601221364653
327 => 0.036037046732743
328 => 0.034718602476314
329 => 0.035198974267967
330 => 0.034400262994703
331 => 0.033330878259351
401 => 0.033327293306743
402 => 0.033589023705724
403 => 0.033433336222899
404 => 0.033014385209707
405 => 0.033073895223738
406 => 0.032552524881447
407 => 0.033137199023006
408 => 0.033153965385322
409 => 0.032928833993406
410 => 0.033829605177961
411 => 0.034198651867233
412 => 0.034050465562292
413 => 0.034188254721044
414 => 0.035345927727132
415 => 0.035534678939939
416 => 0.035618509760463
417 => 0.035506187566416
418 => 0.034209414858425
419 => 0.034266932242328
420 => 0.033844907842633
421 => 0.033488341696727
422 => 0.03350260247262
423 => 0.033685923821971
424 => 0.034486498906238
425 => 0.0361712619746
426 => 0.036235197501498
427 => 0.03631268922523
428 => 0.035997491440592
429 => 0.035902424772709
430 => 0.036027842246436
501 => 0.036660550674279
502 => 0.038288048529353
503 => 0.037712782090443
504 => 0.037245081521053
505 => 0.037655381011576
506 => 0.037592218621044
507 => 0.037059064480568
508 => 0.03704410061957
509 => 0.036020807364308
510 => 0.035642519147098
511 => 0.035326393198414
512 => 0.034981191915129
513 => 0.034776545023146
514 => 0.035090975659581
515 => 0.035162889666368
516 => 0.034475381584495
517 => 0.034381676773365
518 => 0.034943110713915
519 => 0.034696044569046
520 => 0.03495015822599
521 => 0.035009114774147
522 => 0.034999621412009
523 => 0.0347416559814
524 => 0.034906075454231
525 => 0.034517174385182
526 => 0.034094302883644
527 => 0.033824537211489
528 => 0.033589130883309
529 => 0.033719747996079
530 => 0.033254121838796
531 => 0.033105158659878
601 => 0.034850373836391
602 => 0.036139583051506
603 => 0.036120837438935
604 => 0.036006728343392
605 => 0.035837185373598
606 => 0.036648147550021
607 => 0.036365624543456
608 => 0.036571183636319
609 => 0.03662350705274
610 => 0.036781874275444
611 => 0.036838476945437
612 => 0.036667384363634
613 => 0.036093176761904
614 => 0.034662306012414
615 => 0.033996231815964
616 => 0.033776416236793
617 => 0.033784406115606
618 => 0.033564009589536
619 => 0.033628926243943
620 => 0.033541434226363
621 => 0.033375745511661
622 => 0.033709517184845
623 => 0.033747981260881
624 => 0.033670074964085
625 => 0.03368842471723
626 => 0.033043393853976
627 => 0.033092434149576
628 => 0.032819371551937
629 => 0.032768175606698
630 => 0.032077897138147
701 => 0.030854968773645
702 => 0.031532589800108
703 => 0.030714118888076
704 => 0.030404151551832
705 => 0.031871488711803
706 => 0.031724208758539
707 => 0.031472129499609
708 => 0.03109925173773
709 => 0.030960947748727
710 => 0.03012065649327
711 => 0.030071007603118
712 => 0.030487478639095
713 => 0.030295291585885
714 => 0.030025388176249
715 => 0.029047825386219
716 => 0.027948721150307
717 => 0.027981896198467
718 => 0.028331500806349
719 => 0.029348023354371
720 => 0.02895085040884
721 => 0.028662696879823
722 => 0.028608734385701
723 => 0.029284187977767
724 => 0.030240096322442
725 => 0.03068858713052
726 => 0.030244146360583
727 => 0.02973359673447
728 => 0.029764671524553
729 => 0.029971398181219
730 => 0.029993122229877
731 => 0.029660806908627
801 => 0.029754351725011
802 => 0.029612248595007
803 => 0.028740161948473
804 => 0.028724388666454
805 => 0.028510364539097
806 => 0.02850388397358
807 => 0.028139775542126
808 => 0.028088834255603
809 => 0.02736587486515
810 => 0.027841728925269
811 => 0.0275225510052
812 => 0.027041474593197
813 => 0.026958536838439
814 => 0.026956043629381
815 => 0.027450001537791
816 => 0.027835956739512
817 => 0.027528103241772
818 => 0.027458010967825
819 => 0.028206413077229
820 => 0.028111172086971
821 => 0.028028694003646
822 => 0.030154505214671
823 => 0.028471759762027
824 => 0.027737986696922
825 => 0.026829803189128
826 => 0.027125512318725
827 => 0.027187822577201
828 => 0.02500380495334
829 => 0.024117749275341
830 => 0.023813688356955
831 => 0.023638696999634
901 => 0.023718442758569
902 => 0.022920888724405
903 => 0.023456858225689
904 => 0.022766243847667
905 => 0.022650460099738
906 => 0.023885364158346
907 => 0.024057193843896
908 => 0.02332411502204
909 => 0.023794870300352
910 => 0.023624167892448
911 => 0.022778082448995
912 => 0.022745768208438
913 => 0.022321232274255
914 => 0.021656915743613
915 => 0.021353305263118
916 => 0.021195182288809
917 => 0.021260426909764
918 => 0.021227437232891
919 => 0.021012157276215
920 => 0.02123977682801
921 => 0.020658302932067
922 => 0.020426755341449
923 => 0.02032217066663
924 => 0.019806079115592
925 => 0.020627410280248
926 => 0.020789222866542
927 => 0.020951354273618
928 => 0.022362597480403
929 => 0.022292095757924
930 => 0.022929396993403
1001 => 0.022904632639314
1002 => 0.02272286400336
1003 => 0.021956012027758
1004 => 0.022261665557411
1005 => 0.021320911502245
1006 => 0.022025788405433
1007 => 0.021704112023181
1008 => 0.021917029297016
1009 => 0.021534184840684
1010 => 0.021746066770079
1011 => 0.020827594633604
1012 => 0.019969938275816
1013 => 0.02031508423074
1014 => 0.02069029735597
1015 => 0.021503855013994
1016 => 0.02101930678458
1017 => 0.021193568650674
1018 => 0.020609820570342
1019 => 0.019405381541219
1020 => 0.019412198535323
1021 => 0.019226921830823
1022 => 0.019066815707293
1023 => 0.021074962977555
1024 => 0.020825218120387
1025 => 0.02042728237629
1026 => 0.020959935183102
1027 => 0.02110077703956
1028 => 0.021104786609213
1029 => 0.021493396347305
1030 => 0.021700797434187
1031 => 0.021737352774677
1101 => 0.022348838594034
1102 => 0.022553800574989
1103 => 0.023398009967238
1104 => 0.021683200900995
1105 => 0.021647885536738
1106 => 0.020967430700429
1107 => 0.020535875485676
1108 => 0.020996979655194
1109 => 0.021405455002391
1110 => 0.020980123168087
1111 => 0.021035662526402
1112 => 0.020464689289735
1113 => 0.020668785355056
1114 => 0.020844580381219
1115 => 0.020747516700526
1116 => 0.020602207672593
1117 => 0.021371964682113
1118 => 0.021328531974934
1119 => 0.022045347398836
1120 => 0.02260415628173
1121 => 0.023605641698914
1122 => 0.022560539457467
1123 => 0.022522451777884
1124 => 0.022894764955268
1125 => 0.022553743575781
1126 => 0.022769257315959
1127 => 0.023570919103541
1128 => 0.023587856953871
1129 => 0.023304126137664
1130 => 0.023286861091712
1201 => 0.02334135469864
1202 => 0.023660525456492
1203 => 0.023548997386571
1204 => 0.023678060492628
1205 => 0.023839455883037
1206 => 0.024507055647993
1207 => 0.024668011691176
1208 => 0.024276971952382
1209 => 0.024312278462509
1210 => 0.024166018865919
1211 => 0.024024733928241
1212 => 0.024342321835134
1213 => 0.024922719977186
1214 => 0.024919109350467
1215 => 0.025053750438095
1216 => 0.025137630720261
1217 => 0.024777555145087
1218 => 0.024543159185995
1219 => 0.024633041511713
1220 => 0.024776765307919
1221 => 0.024586433821665
1222 => 0.02341161971838
1223 => 0.023767983269901
1224 => 0.02370866694964
1225 => 0.023624193296478
1226 => 0.023982519603211
1227 => 0.023947958156784
1228 => 0.022912708655019
1229 => 0.022978981969263
1230 => 0.022916738954762
1231 => 0.023117858868337
]
'min_raw' => 0.019066815707293
'max_raw' => 0.042712020901404
'avg_raw' => 0.030889418304348
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.019066'
'max' => '$0.042712'
'avg' => '$0.030889'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0046495418413438
'max_diff' => -0.03103793994159
'year' => 2034
]
9 => [
'items' => [
101 => 0.022542882440429
102 => 0.022719741317128
103 => 0.022830665546645
104 => 0.02289600076999
105 => 0.023132036397496
106 => 0.023104340340921
107 => 0.023130314771732
108 => 0.023480293296228
109 => 0.025250364575001
110 => 0.025346705649263
111 => 0.024872286964507
112 => 0.025061807871572
113 => 0.024697969173673
114 => 0.02494221652908
115 => 0.025109324366439
116 => 0.024354196182402
117 => 0.024309482392084
118 => 0.023944142002455
119 => 0.024140455233904
120 => 0.023828106767247
121 => 0.023904746155479
122 => 0.02369045574468
123 => 0.024076135819323
124 => 0.024507386071398
125 => 0.024616336915661
126 => 0.024329734150693
127 => 0.024122214860814
128 => 0.02375787934889
129 => 0.024363777424966
130 => 0.02454096048682
131 => 0.024362846757772
201 => 0.024321573914889
202 => 0.024243361952205
203 => 0.024338166952504
204 => 0.024539995509813
205 => 0.024444816889375
206 => 0.024507684045006
207 => 0.024268099276069
208 => 0.024777674345085
209 => 0.025587002190602
210 => 0.025589604311964
211 => 0.025494425178477
212 => 0.025455479927717
213 => 0.025553139494627
214 => 0.025606115803471
215 => 0.025921928935158
216 => 0.026260809008008
217 => 0.027842214443039
218 => 0.027398162124978
219 => 0.028801279105168
220 => 0.029910962464561
221 => 0.030243707983471
222 => 0.029937597762961
223 => 0.028890411234344
224 => 0.028839031267382
225 => 0.030403970051885
226 => 0.029961803166526
227 => 0.029909208822476
228 => 0.029349693861329
301 => 0.029680436500643
302 => 0.029608098233723
303 => 0.029493908740481
304 => 0.03012494265656
305 => 0.031306181814672
306 => 0.031122074614289
307 => 0.030984647129691
308 => 0.030382479896721
309 => 0.03074511906989
310 => 0.03061599020622
311 => 0.031170809751746
312 => 0.030842146943734
313 => 0.029958453317486
314 => 0.030099184440158
315 => 0.030077913214078
316 => 0.030515673539513
317 => 0.030384268755697
318 => 0.030052254321067
319 => 0.031302144467647
320 => 0.031220983553782
321 => 0.031336051173674
322 => 0.031386707498535
323 => 0.032147493605223
324 => 0.032459163330694
325 => 0.032529917814922
326 => 0.032825979948717
327 => 0.032522551519327
328 => 0.033736481577691
329 => 0.034543674231721
330 => 0.035481270037131
331 => 0.036851349510829
401 => 0.037366512066884
402 => 0.037273452562174
403 => 0.038312231182631
404 => 0.040178893272841
405 => 0.037650758340517
406 => 0.040312890563045
407 => 0.039470090237187
408 => 0.037471825825908
409 => 0.037343161155812
410 => 0.038696409015457
411 => 0.041697782522869
412 => 0.040945972500559
413 => 0.041699012214737
414 => 0.040820551388089
415 => 0.040776928403797
416 => 0.041656347333148
417 => 0.043711157596209
418 => 0.04273499426364
419 => 0.041335424761333
420 => 0.042368845102123
421 => 0.041473600764393
422 => 0.039456364708375
423 => 0.040945397605604
424 => 0.039949723712442
425 => 0.040240314287402
426 => 0.042333072715514
427 => 0.042081266484691
428 => 0.042407127064005
429 => 0.041831991670773
430 => 0.041294724522967
501 => 0.040291875493606
502 => 0.039994981335872
503 => 0.040077032199937
504 => 0.039994940675538
505 => 0.039433855860269
506 => 0.039312689647833
507 => 0.039110740652026
508 => 0.039173333090258
509 => 0.038793609895878
510 => 0.039510226018488
511 => 0.039643236285644
512 => 0.040164729738854
513 => 0.040218872919155
514 => 0.041671224763351
515 => 0.040871293773349
516 => 0.041407956544161
517 => 0.041359952374674
518 => 0.037515134274968
519 => 0.038044916285991
520 => 0.038869090840387
521 => 0.038497801320774
522 => 0.037972884808407
523 => 0.037548986580429
524 => 0.036906737419222
525 => 0.037810690780318
526 => 0.038999293325436
527 => 0.040249017841192
528 => 0.041750479961678
529 => 0.041415371095332
530 => 0.040220949051245
531 => 0.040274529951617
601 => 0.040605745994408
602 => 0.040176791124842
603 => 0.040050283959613
604 => 0.040588365852556
605 => 0.040592071326828
606 => 0.040098506908464
607 => 0.039550000378788
608 => 0.039547702116401
609 => 0.03945010067739
610 => 0.040837914467266
611 => 0.041601071727898
612 => 0.04168856647794
613 => 0.041595182634098
614 => 0.041631122369321
615 => 0.041187057974382
616 => 0.042202057498006
617 => 0.043133521433933
618 => 0.04288386920128
619 => 0.042509605014378
620 => 0.042211485562504
621 => 0.042813641732791
622 => 0.04278682866641
623 => 0.043125385909044
624 => 0.043110026996917
625 => 0.042996182930001
626 => 0.042883873267011
627 => 0.04332916838586
628 => 0.043200930542852
629 => 0.043072493511054
630 => 0.042814893381057
701 => 0.042849905517008
702 => 0.042475705952094
703 => 0.042302584111158
704 => 0.039699247000853
705 => 0.039003550258485
706 => 0.039222430615847
707 => 0.039294491712717
708 => 0.038991723598879
709 => 0.039425815299376
710 => 0.03935816256767
711 => 0.039621359771212
712 => 0.039456925585133
713 => 0.039463674021487
714 => 0.03994723990168
715 => 0.040087621133936
716 => 0.040016222106195
717 => 0.040066227537809
718 => 0.041218581603389
719 => 0.041054753705472
720 => 0.040967723399915
721 => 0.04099183138933
722 => 0.041286282559835
723 => 0.041368712811139
724 => 0.041019450044095
725 => 0.041184164384097
726 => 0.041885497138464
727 => 0.042130923910496
728 => 0.04291420835529
729 => 0.042581455201371
730 => 0.043192238016609
731 => 0.045069576159444
801 => 0.046569323769859
802 => 0.04519009388763
803 => 0.047944189382451
804 => 0.050088647776703
805 => 0.050006339891749
806 => 0.049632403968495
807 => 0.047190995100015
808 => 0.044944374259884
809 => 0.046823767989213
810 => 0.04682855895033
811 => 0.046667117362229
812 => 0.045664417523819
813 => 0.04663222558133
814 => 0.046709046670373
815 => 0.046666047288885
816 => 0.045897279673731
817 => 0.044723513617394
818 => 0.044952864695203
819 => 0.04532854643929
820 => 0.044617302522312
821 => 0.044390016995049
822 => 0.044812584033072
823 => 0.046174183074921
824 => 0.045916780663265
825 => 0.045910058846052
826 => 0.047011335518724
827 => 0.046223059091472
828 => 0.044955757546778
829 => 0.04463574719309
830 => 0.043499926022299
831 => 0.04428444175062
901 => 0.044312675075036
902 => 0.043883003828191
903 => 0.044990623000407
904 => 0.044980416094742
905 => 0.046031935651403
906 => 0.04804204611103
907 => 0.04744755753659
908 => 0.046756232004689
909 => 0.046831398258385
910 => 0.0476557865353
911 => 0.047157342564123
912 => 0.047336586491433
913 => 0.047655515228148
914 => 0.047847932853564
915 => 0.046803712323226
916 => 0.046560254566763
917 => 0.0460622254391
918 => 0.045932298935847
919 => 0.04633793326861
920 => 0.046231062953199
921 => 0.044310302173444
922 => 0.044109571984947
923 => 0.044115728093252
924 => 0.043610982490077
925 => 0.042841124292411
926 => 0.044864265670034
927 => 0.044701779103565
928 => 0.044522406509645
929 => 0.044544378628915
930 => 0.045422555730317
1001 => 0.044913168662497
1002 => 0.046267457669196
1003 => 0.045989056563073
1004 => 0.045703515519081
1005 => 0.045664045049008
1006 => 0.045554136108288
1007 => 0.045177217455245
1008 => 0.044722065532395
1009 => 0.044421534808345
1010 => 0.040976517747253
1011 => 0.041615892875049
1012 => 0.042351435678702
1013 => 0.04260534210702
1014 => 0.042171017591592
1015 => 0.045194367234353
1016 => 0.045746762347807
1017 => 0.044073521517312
1018 => 0.043760526475899
1019 => 0.04521488713716
1020 => 0.04433772987006
1021 => 0.044732713733726
1022 => 0.043878974665102
1023 => 0.045613706540993
1024 => 0.04560049079057
1025 => 0.044925640910152
1026 => 0.045496019407908
1027 => 0.045396902107598
1028 => 0.044634998254688
1029 => 0.045637860252114
1030 => 0.045638357659153
1031 => 0.044988829321752
1101 => 0.044230322423704
1102 => 0.044094719305467
1103 => 0.04399256057159
1104 => 0.044707588947637
1105 => 0.045348681153764
1106 => 0.046541594809131
1107 => 0.04684152164502
1108 => 0.048012156052753
1109 => 0.047315100260103
1110 => 0.047624096064601
1111 => 0.047959554720509
1112 => 0.048120385936235
1113 => 0.047858320100888
1114 => 0.049676797188444
1115 => 0.049830332371332
1116 => 0.04988181139008
1117 => 0.049268631147702
1118 => 0.049813278719557
1119 => 0.049558456157518
1120 => 0.050221433672196
1121 => 0.05032539701182
1122 => 0.050237343761762
1123 => 0.050270343366708
1124 => 0.04871859397382
1125 => 0.048638127581669
1126 => 0.04754096261505
1127 => 0.047988065448781
1128 => 0.047152228131317
1129 => 0.047417280754763
1130 => 0.047534113425664
1201 => 0.047473086668581
1202 => 0.048013343972172
1203 => 0.047554014896844
1204 => 0.046341769946363
1205 => 0.045129194720555
1206 => 0.045113971826337
1207 => 0.044794722173112
1208 => 0.044563963147322
1209 => 0.044608415522305
1210 => 0.044765071489762
1211 => 0.044554858017708
1212 => 0.044599717720064
1213 => 0.04534468767781
1214 => 0.045494086089954
1215 => 0.044986371911763
1216 => 0.04294782622352
1217 => 0.042447561998321
1218 => 0.042807142002724
1219 => 0.042635285920537
1220 => 0.034410003285507
1221 => 0.036342411433265
1222 => 0.035194240130247
1223 => 0.0357233702915
1224 => 0.034551384708636
1225 => 0.035110717657806
1226 => 0.035007429285663
1227 => 0.038114684403144
1228 => 0.038066168888375
1229 => 0.038089390697911
1230 => 0.036980953224636
1231 => 0.03874672421692
]
'min_raw' => 0.022542882440429
'max_raw' => 0.05032539701182
'avg_raw' => 0.036434139726124
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.022542'
'max' => '$0.050325'
'avg' => '$0.036434'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0034760667331357
'max_diff' => 0.0076133761104159
'year' => 2035
]
10 => [
'items' => [
101 => 0.039616606502791
102 => 0.039455614442843
103 => 0.039496132675894
104 => 0.03879989518875
105 => 0.038096131798686
106 => 0.037315549890696
107 => 0.038765774592902
108 => 0.038604534362178
109 => 0.038974361439055
110 => 0.039914935822639
111 => 0.040053438973516
112 => 0.040239588612856
113 => 0.040172867218186
114 => 0.041762441529816
115 => 0.041569933592329
116 => 0.04203382233336
117 => 0.041079567997735
118 => 0.039999738638323
119 => 0.040204978897266
120 => 0.040185212609892
121 => 0.039933565084931
122 => 0.039706388951317
123 => 0.039328204695329
124 => 0.040524835642014
125 => 0.040476254610884
126 => 0.041262725035619
127 => 0.041123708748681
128 => 0.040195323961452
129 => 0.040228481405751
130 => 0.040451481153582
131 => 0.041223285826991
201 => 0.041452410002528
202 => 0.0413462705554
203 => 0.04159749475396
204 => 0.041796052117267
205 => 0.041622430501749
206 => 0.044080546441902
207 => 0.043059765324305
208 => 0.043557286938472
209 => 0.043675942911884
210 => 0.043372008131057
211 => 0.043437920701929
212 => 0.043537760286701
213 => 0.044143966694841
214 => 0.045734827717037
215 => 0.046439409234411
216 => 0.048559177492868
217 => 0.046380903547641
218 => 0.046251653786325
219 => 0.046633488060542
220 => 0.047878016428515
221 => 0.048886589778151
222 => 0.049221191744218
223 => 0.04926541491771
224 => 0.04989315044997
225 => 0.050252956750486
226 => 0.04981692684527
227 => 0.049447437154833
228 => 0.048123970946437
229 => 0.048277165763737
301 => 0.049332526138949
302 => 0.050823284829351
303 => 0.052102510872721
304 => 0.051654570497862
305 => 0.055072039361419
306 => 0.055410867440133
307 => 0.055364052355278
308 => 0.056135953142966
309 => 0.054603887274267
310 => 0.053948899433021
311 => 0.049527325019792
312 => 0.050769607076232
313 => 0.052575337001936
314 => 0.05233634187513
315 => 0.051024972535784
316 => 0.052101516081484
317 => 0.051745577118647
318 => 0.051464833290735
319 => 0.052750975191265
320 => 0.051336809339835
321 => 0.052561229615788
322 => 0.050990897946873
323 => 0.051656616651762
324 => 0.051278722517676
325 => 0.051523266335393
326 => 0.050093668173872
327 => 0.050865044640295
328 => 0.050061576376819
329 => 0.050061195428247
330 => 0.050043458821799
331 => 0.050988735670655
401 => 0.05101956111476
402 => 0.050321000095221
403 => 0.050220326538731
404 => 0.05059256944222
405 => 0.050156770492805
406 => 0.050360678078351
407 => 0.050162946645848
408 => 0.05011843313553
409 => 0.04976374191197
410 => 0.049610931180422
411 => 0.049670852205709
412 => 0.049466310854997
413 => 0.04934306729261
414 => 0.050018942575244
415 => 0.049657849676464
416 => 0.049963599909705
417 => 0.049615158930171
418 => 0.048407310686597
419 => 0.047712664388955
420 => 0.045431151024436
421 => 0.046078185384405
422 => 0.04650716983447
423 => 0.046365390476283
424 => 0.046669987398997
425 => 0.046688687176218
426 => 0.046589659611646
427 => 0.046474998378087
428 => 0.046419187630755
429 => 0.046835155216482
430 => 0.047076638400822
501 => 0.046550224163106
502 => 0.046426892672526
503 => 0.046959126530985
504 => 0.047283788877183
505 => 0.049680913229495
506 => 0.049503326514866
507 => 0.049949034318952
508 => 0.049898854460156
509 => 0.050366027245659
510 => 0.051129657308007
511 => 0.04957698387693
512 => 0.049846474297157
513 => 0.04978040146956
514 => 0.05050176727604
515 => 0.050504019301348
516 => 0.050071524465469
517 => 0.050305986932426
518 => 0.050175116415512
519 => 0.050411617127787
520 => 0.049500954736023
521 => 0.050610043229261
522 => 0.051238824936844
523 => 0.051247555571464
524 => 0.051545593110538
525 => 0.051848416511407
526 => 0.052429659659016
527 => 0.05183220595549
528 => 0.050757444903794
529 => 0.050835039180269
530 => 0.050204907168899
531 => 0.050215499801853
601 => 0.050158955496986
602 => 0.050328649212348
603 => 0.049538192963839
604 => 0.049723711465423
605 => 0.049463984476811
606 => 0.049845909701408
607 => 0.049435021294243
608 => 0.049780369607242
609 => 0.049929410490655
610 => 0.050479374559069
611 => 0.049353791154176
612 => 0.047058650396303
613 => 0.047541116809499
614 => 0.046827511087462
615 => 0.046893558013925
616 => 0.047026983316671
617 => 0.046594508256429
618 => 0.046677010869068
619 => 0.046674063295183
620 => 0.046648662695846
621 => 0.046536159229698
622 => 0.046373006945651
623 => 0.047022955429671
624 => 0.047133394342183
625 => 0.047378886364212
626 => 0.048109304102939
627 => 0.048036318146403
628 => 0.048155361269671
629 => 0.047895490799977
630 => 0.046905612659688
701 => 0.046959367805153
702 => 0.046289040279836
703 => 0.047361744582287
704 => 0.047107714044462
705 => 0.046943938904159
706 => 0.046899251339762
707 => 0.047631479642784
708 => 0.047850573827321
709 => 0.047714049034382
710 => 0.047434032700998
711 => 0.047971746840492
712 => 0.048115616459882
713 => 0.048147823561957
714 => 0.04910054992068
715 => 0.048201070381939
716 => 0.048417584046972
717 => 0.050106761855005
718 => 0.048574910673723
719 => 0.049386366408806
720 => 0.049346649873185
721 => 0.049761763169089
722 => 0.049312598466672
723 => 0.049318166401477
724 => 0.049686758886029
725 => 0.049169137217481
726 => 0.049040966813019
727 => 0.048863900317228
728 => 0.049250518532939
729 => 0.04948227866802
730 => 0.051350095147712
731 => 0.052556789776373
801 => 0.052504403980112
802 => 0.052983112095835
803 => 0.052767449705238
804 => 0.052071018957137
805 => 0.053259741323464
806 => 0.052883579828501
807 => 0.05291459012511
808 => 0.052913435920321
809 => 0.053163550429863
810 => 0.052986321377195
811 => 0.052636984722197
812 => 0.052868890696643
813 => 0.053557568532847
814 => 0.055695245667639
815 => 0.056891518112724
816 => 0.055623228564361
817 => 0.056498077711748
818 => 0.05597347996394
819 => 0.055878144947732
820 => 0.056427614863136
821 => 0.056978046552888
822 => 0.056942986433832
823 => 0.056543401292052
824 => 0.056317685784558
825 => 0.058026879227545
826 => 0.059286183840987
827 => 0.059200307708836
828 => 0.059579337027738
829 => 0.060692178830971
830 => 0.060793923138872
831 => 0.060781105694642
901 => 0.060528921811591
902 => 0.061624659087644
903 => 0.062538742400989
904 => 0.060470548528958
905 => 0.061258089680782
906 => 0.061611642276827
907 => 0.062130762382149
908 => 0.063006605014459
909 => 0.063958002418933
910 => 0.064092540443468
911 => 0.063997079276823
912 => 0.063369607113638
913 => 0.064410637506145
914 => 0.065020448694909
915 => 0.065383577302537
916 => 0.066304411032642
917 => 0.061613825697296
918 => 0.058293596259721
919 => 0.057775094488349
920 => 0.058829488229508
921 => 0.05910752345042
922 => 0.058995447801497
923 => 0.055258227707452
924 => 0.057755418797989
925 => 0.060442186441617
926 => 0.060545396129014
927 => 0.061890448189076
928 => 0.06232845227538
929 => 0.063411395483733
930 => 0.063343657091197
1001 => 0.063607336529041
1002 => 0.063546721192572
1003 => 0.065552645445451
1004 => 0.06776547777901
1005 => 0.067688854431675
1006 => 0.067370733602682
1007 => 0.067843197281398
1008 => 0.070127077391156
1009 => 0.069916814309082
1010 => 0.07012106698315
1011 => 0.072813890346396
1012 => 0.076314943768274
1013 => 0.074688352953795
1014 => 0.078217586982315
1015 => 0.080439052726612
1016 => 0.084280848027527
1017 => 0.083799836334611
1018 => 0.085295419052861
1019 => 0.082938725014123
1020 => 0.077527279134733
1021 => 0.076670897110136
1022 => 0.078385395610425
1023 => 0.082600322875067
1024 => 0.078252652551209
1025 => 0.079132180595307
1026 => 0.078878876459438
1027 => 0.078865378958511
1028 => 0.079380523670599
1029 => 0.078633279397574
1030 => 0.075588871802593
1031 => 0.076984105862566
1101 => 0.076445338987368
1102 => 0.077043141003131
1103 => 0.080269231929904
1104 => 0.078842900230775
1105 => 0.077340375651522
1106 => 0.079224874910802
1107 => 0.081624490052068
1108 => 0.081474326449051
1109 => 0.08118294629568
1110 => 0.082825440964061
1111 => 0.085538360950444
1112 => 0.086271652321367
1113 => 0.086812953019901
1114 => 0.086887589240879
1115 => 0.087656388703101
1116 => 0.083522360232323
1117 => 0.090083169584828
1118 => 0.091216040121305
1119 => 0.09100310741312
1120 => 0.092262245335934
1121 => 0.091891775017796
1122 => 0.091355021651827
1123 => 0.093351023085804
1124 => 0.091062768510759
1125 => 0.087814879224723
1126 => 0.086033022926437
1127 => 0.088379515038267
1128 => 0.089812435889672
1129 => 0.090759505421568
1130 => 0.091046088089685
1201 => 0.08384327309444
1202 => 0.079961355298436
1203 => 0.082449620099397
1204 => 0.085485474887431
1205 => 0.083505495905692
1206 => 0.08358310733318
1207 => 0.080760177634542
1208 => 0.085735241527191
1209 => 0.085010416564906
1210 => 0.088770809751436
1211 => 0.08787336173843
1212 => 0.090939816404422
1213 => 0.090132316122779
1214 => 0.093484204645146
1215 => 0.094821363725476
1216 => 0.097066661933545
1217 => 0.098718312435408
1218 => 0.099688193201141
1219 => 0.099629965197898
1220 => 0.10347311598441
1221 => 0.10120694423507
1222 => 0.098360098422215
1223 => 0.098308607963144
1224 => 0.099783029749737
1225 => 0.10287301332657
1226 => 0.10367420111061
1227 => 0.10412195578184
1228 => 0.1034362039164
1229 => 0.10097643690048
1230 => 0.099914321974305
1231 => 0.10081927466384
]
'min_raw' => 0.037315549890696
'max_raw' => 0.10412195578184
'avg_raw' => 0.07071875283627
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.037315'
'max' => '$0.104121'
'avg' => '$0.070718'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.014772667450267
'max_diff' => 0.053796558770025
'year' => 2036
]
11 => [
'items' => [
101 => 0.09971259528801
102 => 0.10162303437008
103 => 0.10424647527752
104 => 0.10370474510434
105 => 0.10551566785255
106 => 0.10738978238232
107 => 0.11006985033163
108 => 0.11077051933621
109 => 0.11192869855673
110 => 0.11312084541669
111 => 0.11350373085885
112 => 0.11423477797031
113 => 0.11423092499118
114 => 0.11643398466672
115 => 0.11886402771191
116 => 0.11978131270585
117 => 0.12189055897001
118 => 0.11827854865944
119 => 0.12101829997179
120 => 0.12348962423596
121 => 0.12054320956748
122 => 0.12460415576141
123 => 0.12476183309982
124 => 0.12714257370663
125 => 0.12472923700692
126 => 0.12329620537827
127 => 0.12743331399518
128 => 0.1294351305372
129 => 0.12883216710342
130 => 0.12424358560038
131 => 0.12157283435209
201 => 0.11458296318587
202 => 0.12286276752222
203 => 0.12689561868925
204 => 0.12423314149012
205 => 0.12557594012231
206 => 0.13290181405563
207 => 0.13569103253422
208 => 0.13511089458878
209 => 0.13520892835168
210 => 0.13671394001483
211 => 0.14338799055432
212 => 0.13938874476778
213 => 0.14244601832271
214 => 0.14406758519242
215 => 0.14557378687192
216 => 0.14187503158701
217 => 0.13706300530685
218 => 0.1355388345888
219 => 0.12396841060436
220 => 0.12336611978816
221 => 0.12302803570175
222 => 0.12089646335988
223 => 0.11922163138598
224 => 0.1178897428178
225 => 0.11439446947932
226 => 0.11557402162623
227 => 0.11000328544493
228 => 0.11356724503896
301 => 0.10467621558347
302 => 0.11208092911237
303 => 0.1080508801896
304 => 0.11075694965342
305 => 0.11074750843199
306 => 0.10576477658899
307 => 0.10289084084891
308 => 0.10472222455774
309 => 0.10668561326903
310 => 0.1070041664818
311 => 0.10954975119567
312 => 0.11026016917215
313 => 0.10810756953717
314 => 0.1044919687602
315 => 0.10533179035762
316 => 0.10287382189104
317 => 0.098566326697752
318 => 0.10166004494722
319 => 0.10271637637878
320 => 0.10318291251683
321 => 0.098946985713398
322 => 0.097615965545314
323 => 0.096907341576167
324 => 0.10394516380237
325 => 0.10433071159091
326 => 0.10235819459379
327 => 0.1112741584625
328 => 0.10925620124271
329 => 0.11151075386874
330 => 0.10525558535025
331 => 0.10549454121136
401 => 0.10253324419118
402 => 0.10419137264854
403 => 0.10301946089885
404 => 0.10405741225513
405 => 0.10467955601845
406 => 0.10764036711892
407 => 0.11211473681912
408 => 0.10719812067486
409 => 0.10505588061357
410 => 0.10638491429918
411 => 0.10992430614197
412 => 0.11528666596193
413 => 0.11211204102097
414 => 0.11352088566114
415 => 0.11382865553988
416 => 0.11148780463942
417 => 0.11537297647359
418 => 0.1174550716226
419 => 0.1195908704166
420 => 0.12144532466571
421 => 0.11873778541106
422 => 0.12163524052405
423 => 0.11930040317266
424 => 0.11720581269741
425 => 0.11720898932655
426 => 0.11589502212435
427 => 0.11334904509955
428 => 0.11287952787389
429 => 0.1153220157753
430 => 0.11728065976777
501 => 0.11744198306826
502 => 0.11852638902125
503 => 0.11916812929396
504 => 0.12545805637012
505 => 0.12798791707316
506 => 0.13108138285303
507 => 0.13228646211246
508 => 0.13591331863854
509 => 0.13298433743485
510 => 0.13235063392727
511 => 0.12355306633074
512 => 0.12499366753183
513 => 0.1273002090521
514 => 0.12359110035086
515 => 0.12594367610266
516 => 0.12640812439043
517 => 0.1234650662565
518 => 0.12503708076787
519 => 0.12086227629549
520 => 0.11220573614819
521 => 0.11538261367738
522 => 0.11772186486427
523 => 0.11438346499298
524 => 0.12036741754835
525 => 0.11687171599936
526 => 0.11576374643159
527 => 0.11144116212807
528 => 0.11348125552781
529 => 0.11624051106227
530 => 0.11453561193986
531 => 0.11807353361075
601 => 0.12308417422599
602 => 0.12665505511721
603 => 0.12692918301224
604 => 0.12463334582962
605 => 0.1283124395666
606 => 0.12833923774792
607 => 0.12418920498306
608 => 0.12164733302207
609 => 0.12106981436439
610 => 0.12251256920048
611 => 0.12426433991873
612 => 0.1270263940954
613 => 0.12869544558716
614 => 0.13304744668116
615 => 0.13422497339555
616 => 0.13551871825087
617 => 0.13724756035371
618 => 0.1393234785642
619 => 0.13478148770175
620 => 0.13496194946605
621 => 0.13073251046308
622 => 0.12621274832551
623 => 0.12964268439162
624 => 0.13412686953279
625 => 0.13309819250683
626 => 0.13298244532744
627 => 0.13317709997758
628 => 0.13240151109345
629 => 0.12889355131519
630 => 0.12713187587555
701 => 0.12940488664403
702 => 0.13061289070741
703 => 0.13248639966068
704 => 0.13225545013722
705 => 0.13708140800068
706 => 0.13895662929703
707 => 0.13847686744418
708 => 0.13856515517122
709 => 0.14196015375602
710 => 0.14573609041703
711 => 0.14927275337879
712 => 0.15287039884671
713 => 0.14853329681664
714 => 0.14633118388104
715 => 0.14860320232413
716 => 0.14739763735725
717 => 0.15432517125073
718 => 0.15480481866706
719 => 0.16173185162098
720 => 0.16830643075
721 => 0.16417705539488
722 => 0.16807087036361
723 => 0.17228234871967
724 => 0.18040697375626
725 => 0.1776708858717
726 => 0.17557508543208
727 => 0.17359456414348
728 => 0.17771571454616
729 => 0.18301750870222
730 => 0.18415946438349
731 => 0.18600986884778
801 => 0.18406439481027
802 => 0.18640750400151
803 => 0.19467970906096
804 => 0.19244448623312
805 => 0.1892701104876
806 => 0.19580022191101
807 => 0.19816344384998
808 => 0.21474977304659
809 => 0.2356906988044
810 => 0.22702101803513
811 => 0.2216394674128
812 => 0.22290425946114
813 => 0.23055117665282
814 => 0.23300712375376
815 => 0.22633101291766
816 => 0.22868912812886
817 => 0.24168257478738
818 => 0.24865314203999
819 => 0.23918617543886
820 => 0.21306719005168
821 => 0.18898429268331
822 => 0.1953721615324
823 => 0.19464797544356
824 => 0.20860781291266
825 => 0.19239117690792
826 => 0.19266422346836
827 => 0.20691273559258
828 => 0.20311147683918
829 => 0.1969539244871
830 => 0.18902924962983
831 => 0.17437975521248
901 => 0.16140428947565
902 => 0.18685216585686
903 => 0.18575480715335
904 => 0.1841656691312
905 => 0.18770212383679
906 => 0.20487414404693
907 => 0.20447827340068
908 => 0.20195994632422
909 => 0.2038700752162
910 => 0.196619069657
911 => 0.19848781889193
912 => 0.18898047782932
913 => 0.19327819305126
914 => 0.19694071314525
915 => 0.19767601827866
916 => 0.19933269828983
917 => 0.18517654898096
918 => 0.19153224441793
919 => 0.19526562003903
920 => 0.17839809316155
921 => 0.19493220326589
922 => 0.18493012191608
923 => 0.18153526527973
924 => 0.18610599250222
925 => 0.18432477565844
926 => 0.18279339001272
927 => 0.18193885050986
928 => 0.1852950881293
929 => 0.18513851563278
930 => 0.17964705946972
1001 => 0.1724836787654
1002 => 0.17488794445973
1003 => 0.17401445219287
1004 => 0.17084880353503
1005 => 0.17298206850854
1006 => 0.16358824918589
1007 => 0.14742667128952
1008 => 0.15810350469038
1009 => 0.15769245821861
1010 => 0.15748518994807
1011 => 0.16550853516282
1012 => 0.16473727565049
1013 => 0.16333743208341
1014 => 0.17082309431015
1015 => 0.16809072690102
1016 => 0.17651123942921
1017 => 0.18205753358488
1018 => 0.18065081398318
1019 => 0.18586713044416
1020 => 0.17494333388539
1021 => 0.17857178091557
1022 => 0.17931959881968
1023 => 0.17073072240024
1024 => 0.16486346324503
1025 => 0.16447218395103
1026 => 0.15429916513402
1027 => 0.15973350967233
1028 => 0.16451550797758
1029 => 0.16222530188742
1030 => 0.16150029105724
1031 => 0.16520421415298
1101 => 0.16549204069948
1102 => 0.1589295649369
1103 => 0.16029411145452
1104 => 0.16598449726998
1105 => 0.16015072833199
1106 => 0.14881666822624
1107 => 0.14600566461437
1108 => 0.14563062491547
1109 => 0.13800696017657
1110 => 0.14619350931705
1111 => 0.14261986123135
1112 => 0.15390897271519
1113 => 0.14746069278034
1114 => 0.14718272032036
1115 => 0.14676252417741
1116 => 0.14020052100702
1117 => 0.14163718266428
1118 => 0.14641286482276
1119 => 0.14811688201881
1120 => 0.14793913906466
1121 => 0.14638946137482
1122 => 0.14709889588559
1123 => 0.14481356014301
1124 => 0.14400656052715
1125 => 0.14145944775678
1126 => 0.13771589564219
1127 => 0.13823645952426
1128 => 0.13081950323157
1129 => 0.12677835179564
1130 => 0.1256598143397
1201 => 0.12416405930671
1202 => 0.12582876385073
1203 => 0.13079849192628
1204 => 0.12480394548053
1205 => 0.11452671606784
1206 => 0.11514439506709
1207 => 0.11653213638786
1208 => 0.11394608961743
1209 => 0.11149861337967
1210 => 0.11362649539838
1211 => 0.1092718978139
1212 => 0.11705836870161
1213 => 0.11684776648543
1214 => 0.11975008132024
1215 => 0.12156495834794
1216 => 0.11738225437251
1217 => 0.11633031563392
1218 => 0.11692954774737
1219 => 0.10702557571807
1220 => 0.11894071551056
1221 => 0.11904375813428
1222 => 0.11816144463106
1223 => 0.12450588873189
1224 => 0.1378946446664
1225 => 0.13285725612238
1226 => 0.13090662702226
1227 => 0.12719847967703
1228 => 0.13213936584654
1229 => 0.13175998287856
1230 => 0.1300442692206
1231 => 0.12900660024691
]
'min_raw' => 0.096907341576167
'max_raw' => 0.24865314203999
'avg_raw' => 0.17278024180808
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.0969073'
'max' => '$0.248653'
'avg' => '$0.17278'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.059591791685471
'max_diff' => 0.14453118625815
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.003041810718537
]
1 => [
'year' => 2028
'avg' => 0.0052206302369705
]
2 => [
'year' => 2029
'avg' => 0.014261820880351
]
3 => [
'year' => 2030
'avg' => 0.01100297356985
]
4 => [
'year' => 2031
'avg' => 0.010806283629095
]
5 => [
'year' => 2032
'avg' => 0.018946816064423
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.003041810718537
'min' => '$0.003041'
'max_raw' => 0.018946816064423
'max' => '$0.018946'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.018946816064423
]
1 => [
'year' => 2033
'avg' => 0.048733159195815
]
2 => [
'year' => 2034
'avg' => 0.030889418304348
]
3 => [
'year' => 2035
'avg' => 0.036434139726124
]
4 => [
'year' => 2036
'avg' => 0.07071875283627
]
5 => [
'year' => 2037
'avg' => 0.17278024180808
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.018946816064423
'min' => '$0.018946'
'max_raw' => 0.17278024180808
'max' => '$0.17278'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.17278024180808
]
]
]
]
'prediction_2025_max_price' => '$0.00520094'
'last_price' => 0.00504297
'sma_50day_nextmonth' => '$0.004838'
'sma_200day_nextmonth' => '$0.008211'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.005089'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.005144'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.005085'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.005151'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.005559'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.007212'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.008888'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.005087'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.0051049'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.005122'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.00522'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.005783'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.00700036'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.0099033'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.008063'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0127053'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.032135'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.0210057'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.005113'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.005294'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.0060024'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.007864'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.014075'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.020327'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.021415'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '41.71'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 53.05
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.005087'
'vwma_10_action' => 'SELL'
'hma_9' => '0.005118'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 30.88
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -53.69
'cci_20_action' => 'NEUTRAL'
'adx_14' => 17.54
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000187'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -69.12
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 50.55
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.001817'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 31
'buy_signals' => 1
'sell_pct' => 96.88
'buy_pct' => 3.13
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767711845
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de iMe Lab para 2026
A previsão de preço para iMe Lab em 2026 sugere que o preço médio poderia variar entre $0.001742 na extremidade inferior e $0.00520094 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, iMe Lab poderia potencialmente ganhar 3.13% até 2026 se LIME atingir a meta de preço prevista.
Previsão de preço de iMe Lab 2027-2032
A previsão de preço de LIME para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.003041 na extremidade inferior e $0.018946 na extremidade superior. Considerando a volatilidade de preços no mercado, se iMe Lab atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de iMe Lab | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.001677 | $0.003041 | $0.0044063 |
| 2028 | $0.003027 | $0.00522 | $0.007414 |
| 2029 | $0.006649 | $0.014261 | $0.021874 |
| 2030 | $0.005655 | $0.0110029 | $0.01635 |
| 2031 | $0.006686 | $0.0108062 | $0.014926 |
| 2032 | $0.0102059 | $0.018946 | $0.027687 |
Previsão de preço de iMe Lab 2032-2037
A previsão de preço de iMe Lab para 2032-2037 é atualmente estimada entre $0.018946 na extremidade inferior e $0.17278 na extremidade superior. Comparado ao preço atual, iMe Lab poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de iMe Lab | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.0102059 | $0.018946 | $0.027687 |
| 2033 | $0.023716 | $0.048733 | $0.073749 |
| 2034 | $0.019066 | $0.030889 | $0.042712 |
| 2035 | $0.022542 | $0.036434 | $0.050325 |
| 2036 | $0.037315 | $0.070718 | $0.104121 |
| 2037 | $0.0969073 | $0.17278 | $0.248653 |
iMe Lab Histograma de preços potenciais
Previsão de preço de iMe Lab baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para iMe Lab é Baixista, com 1 indicadores técnicos mostrando sinais de alta e 31 indicando sinais de baixa. A previsão de preço de LIME foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de iMe Lab
De acordo com nossos indicadores técnicos, o SMA de 200 dias de iMe Lab está projetado para aumentar no próximo mês, alcançando $0.008211 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para iMe Lab é esperado para alcançar $0.004838 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 41.71, sugerindo que o mercado de LIME está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de LIME para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.005089 | SELL |
| SMA 5 | $0.005144 | SELL |
| SMA 10 | $0.005085 | SELL |
| SMA 21 | $0.005151 | SELL |
| SMA 50 | $0.005559 | SELL |
| SMA 100 | $0.007212 | SELL |
| SMA 200 | $0.008888 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.005087 | SELL |
| EMA 5 | $0.0051049 | SELL |
| EMA 10 | $0.005122 | SELL |
| EMA 21 | $0.00522 | SELL |
| EMA 50 | $0.005783 | SELL |
| EMA 100 | $0.00700036 | SELL |
| EMA 200 | $0.0099033 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.008063 | SELL |
| SMA 50 | $0.0127053 | SELL |
| SMA 100 | $0.032135 | SELL |
| SMA 200 | $0.0210057 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.007864 | SELL |
| EMA 50 | $0.014075 | SELL |
| EMA 100 | $0.020327 | SELL |
| EMA 200 | $0.021415 | SELL |
Osciladores de iMe Lab
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 41.71 | NEUTRAL |
| Stoch RSI (14) | 53.05 | NEUTRAL |
| Estocástico Rápido (14) | 30.88 | NEUTRAL |
| Índice de Canal de Commodities (20) | -53.69 | NEUTRAL |
| Índice Direcional Médio (14) | 17.54 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000187 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -69.12 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 50.55 | NEUTRAL |
| VWMA (10) | 0.005087 | SELL |
| Média Móvel de Hull (9) | 0.005118 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.001817 | SELL |
Previsão do preço de iMe Lab com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do iMe Lab
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de iMe Lab por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.007086 | $0.009957 | $0.013991 | $0.01966 | $0.027626 | $0.038819 |
| Amazon.com stock | $0.010522 | $0.021955 | $0.045811 | $0.095589 | $0.199452 | $0.41617 |
| Apple stock | $0.007153 | $0.010146 | $0.014391 | $0.020413 | $0.028954 | $0.041069 |
| Netflix stock | $0.007957 | $0.012554 | $0.0198097 | $0.031256 | $0.049318 | $0.077816 |
| Google stock | $0.00653 | $0.008457 | $0.010951 | $0.014182 | $0.018366 | $0.023784 |
| Tesla stock | $0.011432 | $0.025915 | $0.058748 | $0.133178 | $0.3019058 | $0.684397 |
| Kodak stock | $0.003781 | $0.002835 | $0.002126 | $0.001594 | $0.001195 | $0.000896 |
| Nokia stock | $0.00334 | $0.002213 | $0.001466 | $0.000971 | $0.000643 | $0.000426 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para iMe Lab
Você pode fazer perguntas como: 'Devo investir em iMe Lab agora?', 'Devo comprar LIME hoje?', 'iMe Lab será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para iMe Lab regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como iMe Lab, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre iMe Lab para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de iMe Lab é de $0.005042 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de iMe Lab com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se iMe Lab tiver 1% da média anterior do crescimento anual do Bitcoin | $0.005174 | $0.0053085 | $0.005446 | $0.005588 |
| Se iMe Lab tiver 2% da média anterior do crescimento anual do Bitcoin | $0.0053051 | $0.00558 | $0.005871 | $0.006176 |
| Se iMe Lab tiver 5% da média anterior do crescimento anual do Bitcoin | $0.005698 | $0.006438 | $0.007275 | $0.008221 |
| Se iMe Lab tiver 10% da média anterior do crescimento anual do Bitcoin | $0.006353 | $0.0080053 | $0.010086 | $0.0127079 |
| Se iMe Lab tiver 20% da média anterior do crescimento anual do Bitcoin | $0.007664 | $0.011649 | $0.0177051 | $0.0269094 |
| Se iMe Lab tiver 50% da média anterior do crescimento anual do Bitcoin | $0.011597 | $0.026669 | $0.06133 | $0.141039 |
| Se iMe Lab tiver 100% da média anterior do crescimento anual do Bitcoin | $0.018151 | $0.065332 | $0.235151 | $0.846386 |
Perguntas Frequentes sobre iMe Lab
LIME é um bom investimento?
A decisão de adquirir iMe Lab depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de iMe Lab experimentou uma queda de -1.2492% nas últimas 24 horas, e iMe Lab registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em iMe Lab dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
iMe Lab pode subir?
Parece que o valor médio de iMe Lab pode potencialmente subir para $0.00520094 até o final deste ano. Observando as perspectivas de iMe Lab em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.01635. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de iMe Lab na próxima semana?
Com base na nossa nova previsão experimental de iMe Lab, o preço de iMe Lab aumentará 0.86% na próxima semana e atingirá $0.0050861 até 13 de janeiro de 2026.
Qual será o preço de iMe Lab no próximo mês?
Com base na nossa nova previsão experimental de iMe Lab, o preço de iMe Lab diminuirá -11.62% no próximo mês e atingirá $0.004457 até 5 de fevereiro de 2026.
Até onde o preço de iMe Lab pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de iMe Lab em 2026, espera-se que LIME fluctue dentro do intervalo de $0.001742 e $0.00520094. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de iMe Lab não considera flutuações repentinas e extremas de preço.
Onde estará iMe Lab em 5 anos?
O futuro de iMe Lab parece seguir uma tendência de alta, com um preço máximo de $0.01635 projetada após um período de cinco anos. Com base na previsão de iMe Lab para 2030, o valor de iMe Lab pode potencialmente atingir seu pico mais alto de aproximadamente $0.01635, enquanto seu pico mais baixo está previsto para cerca de $0.005655.
Quanto será iMe Lab em 2026?
Com base na nossa nova simulação experimental de previsão de preços de iMe Lab, espera-se que o valor de LIME em 2026 aumente 3.13% para $0.00520094 se o melhor cenário ocorrer. O preço ficará entre $0.00520094 e $0.001742 durante 2026.
Quanto será iMe Lab em 2027?
De acordo com nossa última simulação experimental para previsão de preços de iMe Lab, o valor de LIME pode diminuir -12.62% para $0.0044063 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.0044063 e $0.001677 ao longo do ano.
Quanto será iMe Lab em 2028?
Nosso novo modelo experimental de previsão de preços de iMe Lab sugere que o valor de LIME em 2028 pode aumentar 47.02%, alcançando $0.007414 no melhor cenário. O preço é esperado para variar entre $0.007414 e $0.003027 durante o ano.
Quanto será iMe Lab em 2029?
Com base no nosso modelo de previsão experimental, o valor de iMe Lab pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.021874 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.021874 e $0.006649.
Quanto será iMe Lab em 2030?
Usando nossa nova simulação experimental para previsões de preços de iMe Lab, espera-se que o valor de LIME em 2030 aumente 224.23%, alcançando $0.01635 no melhor cenário. O preço está previsto para variar entre $0.01635 e $0.005655 ao longo de 2030.
Quanto será iMe Lab em 2031?
Nossa simulação experimental indica que o preço de iMe Lab poderia aumentar 195.98% em 2031, potencialmente atingindo $0.014926 sob condições ideais. O preço provavelmente oscilará entre $0.014926 e $0.006686 durante o ano.
Quanto será iMe Lab em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de iMe Lab, LIME poderia ver um 449.04% aumento em valor, atingindo $0.027687 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.027687 e $0.0102059 ao longo do ano.
Quanto será iMe Lab em 2033?
De acordo com nossa previsão experimental de preços de iMe Lab, espera-se que o valor de LIME seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.073749. Ao longo do ano, o preço de LIME poderia variar entre $0.073749 e $0.023716.
Quanto será iMe Lab em 2034?
Os resultados da nossa nova simulação de previsão de preços de iMe Lab sugerem que LIME pode aumentar 746.96% em 2034, atingindo potencialmente $0.042712 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.042712 e $0.019066.
Quanto será iMe Lab em 2035?
Com base em nossa previsão experimental para o preço de iMe Lab, LIME poderia aumentar 897.93%, com o valor potencialmente atingindo $0.050325 em 2035. A faixa de preço esperada para o ano está entre $0.050325 e $0.022542.
Quanto será iMe Lab em 2036?
Nossa recente simulação de previsão de preços de iMe Lab sugere que o valor de LIME pode aumentar 1964.7% em 2036, possivelmente atingindo $0.104121 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.104121 e $0.037315.
Quanto será iMe Lab em 2037?
De acordo com a simulação experimental, o valor de iMe Lab poderia aumentar 4830.69% em 2037, com um pico de $0.248653 sob condições favoráveis. O preço é esperado para cair entre $0.248653 e $0.0969073 ao longo do ano.
Previsões relacionadas
Previsão de Preço do The Big Five
Previsão de Preço do Metahero
Previsão de Preço do Catcoin
Previsão de Preço do Aurory
Previsão de Preço do Taraxa
Previsão de Preço do NFT Worlds
Previsão de Preço do WiFi Map
Previsão de Preço do Celo Dollar
Previsão de Preço do Morpheus Network
Previsão de Preço do Virtua
Previsão de Preço do nuco.cloud
Previsão de Preço do Tokemak
Previsão de Preço do PIVX
Previsão de Preço do Blocksquare
Previsão de Preço do ZB Token
Previsão de Preço do Raini Studios Token
Previsão de Preço do FEG BSC
Previsão de Preço do ETH 2x Flexible Leverage Index
Previsão de Preço do PIXL
Previsão de Preço do Railgun
Previsão de Preço do Kishu Inu
Previsão de Preço do STFX
Previsão de Preço do Dejitaru Tsuka
Previsão de Preço do Iron Fish
Previsão de Preço do Minswap
Como ler e prever os movimentos de preço de iMe Lab?
Traders de iMe Lab utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de iMe Lab
Médias móveis são ferramentas populares para a previsão de preço de iMe Lab. Uma média móvel simples (SMA) calcula o preço médio de fechamento de LIME em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de LIME acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de LIME.
Como ler gráficos de iMe Lab e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de iMe Lab em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de LIME dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de iMe Lab?
A ação de preço de iMe Lab é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de LIME. A capitalização de mercado de iMe Lab pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de LIME, grandes detentores de iMe Lab, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de iMe Lab.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


