Predicción del precio de Streamr - Pronóstico de DATA
Predicción de precio de Streamr hasta $0.005344 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.00179 | $0.005344 |
| 2027 | $0.001723 | $0.004528 |
| 2028 | $0.00311 | $0.007619 |
| 2029 | $0.006833 | $0.022479 |
| 2030 | $0.005811 | $0.0168035 |
| 2031 | $0.006871 | $0.015339 |
| 2032 | $0.010488 | $0.028454 |
| 2033 | $0.024373 | $0.075792 |
| 2034 | $0.019594 | $0.043894 |
| 2035 | $0.023167 | $0.051718 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Streamr hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.78, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Streamr para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Streamr'
'name_with_ticker' => 'Streamr <small>DATA</small>'
'name_lang' => 'Streamr'
'name_lang_with_ticker' => 'Streamr <small>DATA</small>'
'name_with_lang' => 'Streamr'
'name_with_lang_with_ticker' => 'Streamr <small>DATA</small>'
'image' => '/uploads/coins/streamr.png?1717226935'
'price_for_sd' => 0.005182
'ticker' => 'DATA'
'marketcap' => '$3.97M'
'low24h' => '$0.005067'
'high24h' => '$0.005458'
'volume24h' => '$2.83M'
'current_supply' => '767.12M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.005182'
'change_24h_pct' => '2.2737%'
'ath_price' => '$0.2099'
'ath_days' => 1496
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '2 dic. 2021'
'ath_pct' => '-97.54%'
'fdv' => '$5.18M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.255538'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.005226'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00458'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00179'
'current_year_max_price_prediction' => '$0.005344'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.005811'
'grand_prediction_max_price' => '$0.0168035'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0052808177334471
107 => 0.005300534389927
108 => 0.0053449570237335
109 => 0.0049653704816025
110 => 0.005135793694944
111 => 0.0052359013662865
112 => 0.0047836112652128
113 => 0.0052269610452118
114 => 0.0049587627244079
115 => 0.0048677321861234
116 => 0.004990292813562
117 => 0.004942530817855
118 => 0.0049014678586247
119 => 0.004878554021823
120 => 0.004968549020091
121 => 0.0049643506458546
122 => 0.0048171013614116
123 => 0.0046250206725045
124 => 0.0046894892565354
125 => 0.0046660672155607
126 => 0.0045811827175653
127 => 0.0046383846202208
128 => 0.0043864963901461
129 => 0.0039531357823134
130 => 0.0042394270740421
131 => 0.0042284051707355
201 => 0.0042228474272848
202 => 0.0044379874205088
203 => 0.0044173066742845
204 => 0.0043797709173808
205 => 0.0045804933439538
206 => 0.0045072269581571
207 => 0.0047330166954512
208 => 0.0048817364195976
209 => 0.004844016286975
210 => 0.0049838879063596
211 => 0.0046909744825032
212 => 0.0047882685722615
213 => 0.0048083207493169
214 => 0.0045780164603673
215 => 0.0044206903001299
216 => 0.0044101984388916
217 => 0.0041374165579204
218 => 0.0042831344369168
219 => 0.0044113601402181
220 => 0.0043499499790533
221 => 0.0043305093566049
222 => 0.0044298272805372
223 => 0.0044375451338272
224 => 0.0042615772609131
225 => 0.0042981665538697
226 => 0.0044507499879628
227 => 0.0042943218428194
228 => 0.003990407509198
301 => 0.0039150325525156
302 => 0.003904976143858
303 => 0.0037005532832719
304 => 0.0039200694675405
305 => 0.0038242447704393
306 => 0.0041269538404258
307 => 0.0039540480431108
308 => 0.003946594419771
309 => 0.003935327174884
310 => 0.0037593719741756
311 => 0.0037978949805944
312 => 0.00392595132115
313 => 0.0039716432661181
314 => 0.0039668772219149
315 => 0.0039253237752204
316 => 0.003944346730329
317 => 0.0038830671638871
318 => 0.0038614280735525
319 => 0.003793129152156
320 => 0.0036927486057617
321 => 0.0037067071364075
322 => 0.0035078270080016
323 => 0.0033994665586788
324 => 0.003369473814474
325 => 0.0033293662634403
326 => 0.0033740040690853
327 => 0.0035072636055858
328 => 0.0033465243319785
329 => 0.0030709481219278
330 => 0.0030875107217109
331 => 0.0031247219659434
401 => 0.0030553790584931
402 => 0.0029897518161005
403 => 0.0030468093788544
404 => 0.0029300441057989
405 => 0.0031388324913394
406 => 0.0031331853506333
407 => 0.0032110087493756
408 => 0.0032596733177061
409 => 0.0031475172430454
410 => 0.0031193102935705
411 => 0.0031353782539258
412 => 0.002869810661077
413 => 0.0031893062113258
414 => 0.0031920692221117
415 => 0.0031684106462904
416 => 0.0033385321634794
417 => 0.0036975416269801
418 => 0.0035624678256889
419 => 0.0035101631672017
420 => 0.0034107319731831
421 => 0.0035432181355728
422 => 0.0035330452654073
423 => 0.0034870396885728
424 => 0.0034592153721571
425 => 0.0035104825282931
426 => 0.0034528628041634
427 => 0.0034425127184255
428 => 0.0033798024598586
429 => 0.0033574177506852
430 => 0.0033408450031741
501 => 0.003322600036569
502 => 0.0033628438865375
503 => 0.0032716460279894
504 => 0.0031616703508168
505 => 0.0031525270632132
506 => 0.0031777724841728
507 => 0.0031666032646987
508 => 0.0031524735892875
509 => 0.0031254961909393
510 => 0.0031174925731303
511 => 0.0031435004482062
512 => 0.0031141390735988
513 => 0.0031574633812288
514 => 0.0031456815667967
515 => 0.0030798693091183
516 => 0.0029978428692325
517 => 0.0029971126618612
518 => 0.0029794401999381
519 => 0.0029569316626067
520 => 0.0029506703024466
521 => 0.0030420041500657
522 => 0.0032310624812453
523 => 0.0031939458070523
524 => 0.0032207664080265
525 => 0.0033526972194951
526 => 0.0033946340571631
527 => 0.0033648682831148
528 => 0.0033241230557245
529 => 0.0033259156389442
530 => 0.0034651544153559
531 => 0.0034738385670469
601 => 0.0034957806167567
602 => 0.0035239823514562
603 => 0.0033696711604819
604 => 0.0033186475957263
605 => 0.0032944698000655
606 => 0.0032200115474146
607 => 0.0033003083893304
608 => 0.0032535228581997
609 => 0.0032598358247705
610 => 0.0032557244970095
611 => 0.0032579695599738
612 => 0.0031387741307306
613 => 0.0031822026804195
614 => 0.0031099942934559
615 => 0.0030133153690836
616 => 0.0030129912674291
617 => 0.0030366532972043
618 => 0.0030225781959987
619 => 0.0029847024605583
620 => 0.0029900825300092
621 => 0.0029429474604445
622 => 0.0029958055808623
623 => 0.0029973213626205
624 => 0.0029769681070583
625 => 0.0030584033345771
626 => 0.0030917674137363
627 => 0.0030783704649163
628 => 0.0030908274480936
629 => 0.0031954881724367
630 => 0.0032125524371722
701 => 0.0032201312563657
702 => 0.0032099766426476
703 => 0.0030927404540062
704 => 0.0030979403774992
705 => 0.0030597867891109
706 => 0.0030275510274489
707 => 0.003028840288861
708 => 0.003045413660711
709 => 0.0031177905475952
710 => 0.0032701034391925
711 => 0.0032758836020893
712 => 0.0032828893281395
713 => 0.0032543935194975
714 => 0.0032457989109429
715 => 0.0032571374180831
716 => 0.0033143381319357
717 => 0.0034614738978068
718 => 0.0034094662912805
719 => 0.0033671832976281
720 => 0.0034042768824745
721 => 0.0033985666158365
722 => 0.0033503662188027
723 => 0.0033490133941944
724 => 0.0032565014216875
725 => 0.0032223018518474
726 => 0.0031937221314955
727 => 0.0031625138229638
728 => 0.0031440124915542
729 => 0.0031724389453041
730 => 0.0031789404116086
731 => 0.0031167854736751
801 => 0.0031083139853052
802 => 0.0031590710493292
803 => 0.0031367347578663
804 => 0.0031597081875492
805 => 0.0031650382202981
806 => 0.0031641799622645
807 => 0.0031408583086705
808 => 0.0031557228352096
809 => 0.003120563798616
810 => 0.0030823336270371
811 => 0.0030579451593936
812 => 0.0030366629867138
813 => 0.0030484715730437
814 => 0.0030063761189404
815 => 0.0029929089359586
816 => 0.0031506870680806
817 => 0.0032672394706798
818 => 0.0032655447525862
819 => 0.0032552285920375
820 => 0.0032399008700188
821 => 0.0033132168135995
822 => 0.0032876750048546
823 => 0.003306258804806
824 => 0.0033109891618533
825 => 0.0033253065279431
826 => 0.0033304237557009
827 => 0.0033149559392734
828 => 0.003263044058108
829 => 0.0031336845858774
830 => 0.0030734674023549
831 => 0.0030535947287959
901 => 0.0030543170627362
902 => 0.0030343918680223
903 => 0.0030402607308501
904 => 0.0030323509170375
905 => 0.0030173716432658
906 => 0.0030475466450988
907 => 0.0030510240329604
908 => 0.0030439808269682
909 => 0.0030456397569471
910 => 0.002987325019524
911 => 0.0029917585623574
912 => 0.002967072032474
913 => 0.0029624436057215
914 => 0.0029000382078784
915 => 0.0027894779997924
916 => 0.0028507390874112
917 => 0.0027767443081802
918 => 0.0027487213640816
919 => 0.0028813776229825
920 => 0.0028680626139008
921 => 0.0028452731062481
922 => 0.0028115626746802
923 => 0.0027990591476977
924 => 0.0027230916758875
925 => 0.0027186031123822
926 => 0.0027562546427057
927 => 0.0027388797569715
928 => 0.0027144788370168
929 => 0.0026261011784228
930 => 0.002526735429326
1001 => 0.0025297346567004
1002 => 0.0025613410527226
1003 => 0.0026532409118604
1004 => 0.0026173340470116
1005 => 0.0025912832045799
1006 => 0.0025864046648779
1007 => 0.0026474698031631
1008 => 0.0027338897673787
1009 => 0.0027744360810509
1010 => 0.0027342559156116
1011 => 0.0026880991050086
1012 => 0.0026909084562
1013 => 0.0027095978110644
1014 => 0.0027115617980074
1015 => 0.0026815184593017
1016 => 0.0026899754831675
1017 => 0.0026771284905889
1018 => 0.0025982865208476
1019 => 0.0025968605196256
1020 => 0.0025775114287526
1021 => 0.0025769255459708
1022 => 0.0025440079155388
1023 => 0.0025394025114926
1024 => 0.0024740425583127
1025 => 0.0025170626774239
1026 => 0.0024882070401817
1027 => 0.0024447147885011
1028 => 0.0024372167079181
1029 => 0.0024369913065616
1030 => 0.0024816481243481
1031 => 0.0025165408365076
1101 => 0.0024887089963457
1102 => 0.0024823722258384
1103 => 0.0025500323565128
1104 => 0.0025414219881487
1105 => 0.0025339654646763
1106 => 0.0027261518074456
1107 => 0.0025740213206564
1108 => 0.0025076837451117
1109 => 0.0024255783982112
1110 => 0.0024523123131731
1111 => 0.0024579455418585
1112 => 0.0022604969831639
1113 => 0.0021803921274922
1114 => 0.0021529031597134
1115 => 0.0021370828701198
1116 => 0.0021442923747463
1117 => 0.0020721886092793
1118 => 0.0021206435321594
1119 => 0.0020582077660445
1120 => 0.0020477402066718
1121 => 0.0021593830907924
1122 => 0.0021749175459095
1123 => 0.002108642734203
1124 => 0.002151201892236
1125 => 0.0021357693499167
1126 => 0.002059278048053
1127 => 0.0020563566429538
1128 => 0.0020179759964779
1129 => 0.0019579177167007
1130 => 0.0019304694712638
1201 => 0.0019161741867236
1202 => 0.0019220726997344
1203 => 0.0019190902310587
1204 => 0.0018996276055299
1205 => 0.0019202058059719
1206 => 0.0018676370073422
1207 => 0.0018467036881523
1208 => 0.0018372485935235
1209 => 0.0017905907589925
1210 => 0.0018648441225645
1211 => 0.0018794729706074
1212 => 0.001894130642
1213 => 0.0020217156642556
1214 => 0.0020153418770953
1215 => 0.0020729578088647
1216 => 0.002070718959705
1217 => 0.0020542859626482
1218 => 0.0019849578511621
1219 => 0.0020125908007457
1220 => 0.0019275408770413
1221 => 0.0019912660627133
1222 => 0.0019621845492
1223 => 0.0019814335737411
1224 => 0.0019468220920016
1225 => 0.0019659775150693
1226 => 0.0018829420131729
1227 => 0.001805404629843
1228 => 0.0018366079363523
1229 => 0.0018705294990588
1230 => 0.0019440800900599
1231 => 0.0019002739648388
]
'min_raw' => 0.0017905907589925
'max_raw' => 0.0053449570237335
'avg_raw' => 0.003567773891363
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00179'
'max' => '$0.005344'
'avg' => '$0.003567'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0033920192410075
'max_diff' => 0.00016234702373354
'year' => 2026
]
1 => [
'items' => [
101 => 0.0019160283039613
102 => 0.0018632539051455
103 => 0.0017543652461268
104 => 0.0017549815441115
105 => 0.0017382313961899
106 => 0.001723756822824
107 => 0.0019053056252821
108 => 0.0018827271618346
109 => 0.0018467513353272
110 => 0.0018949064087298
111 => 0.0019076393744613
112 => 0.0019080018640952
113 => 0.0019431345625874
114 => 0.0019618848900706
115 => 0.0019651897165581
116 => 0.0020204717767278
117 => 0.0020390015941087
118 => 0.0021153232894627
119 => 0.0019602940557849
120 => 0.0019571013307372
121 => 0.0018955840493663
122 => 0.0018565688169712
123 => 0.0018982554557074
124 => 0.001935184126834
125 => 0.0018967315261165
126 => 0.0019017526239915
127 => 0.0018501331492212
128 => 0.0018685846825295
129 => 0.0018844776287046
130 => 0.0018757024779709
131 => 0.0018625656526005
201 => 0.0019321563969307
202 => 0.0019282298144072
203 => 0.0019930343154118
204 => 0.0020435540581592
205 => 0.0021340944686467
206 => 0.0020396108303246
207 => 0.0020361674710057
208 => 0.0020698268606802
209 => 0.0020389964410315
210 => 0.0020584802020196
211 => 0.0021309553335337
212 => 0.0021324866188578
213 => 0.0021068356167298
214 => 0.0021052747509192
215 => 0.0021102013064691
216 => 0.002139056296203
217 => 0.0021289734761657
218 => 0.0021406415707786
219 => 0.0021552327017603
220 => 0.0022155878060119
221 => 0.0022301392173157
222 => 0.0021947868318892
223 => 0.0021979787564693
224 => 0.0021847559938751
225 => 0.0021719829708899
226 => 0.0022006948612105
227 => 0.0022531664051052
228 => 0.0022528399823539
301 => 0.0022650123606364
302 => 0.002272595651465
303 => 0.0022400426159206
304 => 0.0022188517867895
305 => 0.0022269776990859
306 => 0.0022399712098071
307 => 0.0022227640786811
308 => 0.0021165536942532
309 => 0.002148771140143
310 => 0.0021434085817944
311 => 0.0021357716465965
312 => 0.0021681665375688
313 => 0.0021650419713066
314 => 0.0020714490809474
315 => 0.0020774405941268
316 => 0.0020718134447083
317 => 0.0020899959156858
318 => 0.002038014527929
319 => 0.002054003652703
320 => 0.0020640318818725
321 => 0.0020699385858939
322 => 0.0020912776510838
323 => 0.0020887737580783
324 => 0.002091122005579
325 => 0.0021227622059513
326 => 0.0022827874818291
327 => 0.0022914973045192
328 => 0.0022486069521249
329 => 0.0022657408019317
330 => 0.0022328475570638
331 => 0.0022549290127092
401 => 0.0022700365838536
402 => 0.0022017683748708
403 => 0.0021977259745919
404 => 0.0021646969676016
405 => 0.0021824448850996
406 => 0.0021542066722399
407 => 0.0021611353419449
408 => 0.0021417621774191
409 => 0.002176630016407
410 => 0.0022156176783098
411 => 0.0022254675013759
412 => 0.0021995568575045
413 => 0.002180795843747
414 => 0.0021478576838508
415 => 0.0022026345778328
416 => 0.0022186530109288
417 => 0.002202550439823
418 => 0.0021988191222497
419 => 0.0021917482821906
420 => 0.0022003192343943
421 => 0.002218565771102
422 => 0.0022099610413513
423 => 0.0022156446169474
424 => 0.0021939846876525
425 => 0.0022400533923299
426 => 0.0023132215823952
427 => 0.0023134568300904
428 => 0.002304852053957
429 => 0.0023013311649557
430 => 0.0023101601874501
501 => 0.0023149495699678
502 => 0.0023435010097488
503 => 0.0023741378421734
504 => 0.0025171065712015
505 => 0.002476961524189
506 => 0.0026038118858306
507 => 0.0027041340524311
508 => 0.0027342162836379
509 => 0.002706542046406
510 => 0.0026118699757685
511 => 0.002607224912326
512 => 0.0027487049553757
513 => 0.0027087303630177
514 => 0.0027039755124548
515 => 0.0026533919359125
516 => 0.0026832930945468
517 => 0.0026767532725299
518 => 0.0026664298435373
519 => 0.0027234791712788
520 => 0.0028302704199824
521 => 0.00281362600239
522 => 0.0028012017167695
523 => 0.0027467621138359
524 => 0.0027795469143275
525 => 0.0027678728748239
526 => 0.0028180319570597
527 => 0.0027883188279029
528 => 0.0027084275161645
529 => 0.002721150470884
530 => 0.0027192274218732
531 => 0.0027588036342473
601 => 0.0027469238376346
602 => 0.0027169077009206
603 => 0.002829905419104
604 => 0.0028225679758115
605 => 0.0028329707928272
606 => 0.0028375504345954
607 => 0.0029063301544105
608 => 0.0029345070049132
609 => 0.0029409036432825
610 => 0.0029676694719842
611 => 0.0029402376850813
612 => 0.0030499843912256
613 => 0.0031229595469138
614 => 0.0032077239455128
615 => 0.0033315875143884
616 => 0.0033781613620877
617 => 0.0033697482133672
618 => 0.0034636601576533
619 => 0.0036324178339901
620 => 0.0034038589647215
621 => 0.0036445320090457
622 => 0.0035683377019165
623 => 0.0033876823703904
624 => 0.0033760502968266
625 => 0.0034983921847876
626 => 0.0037697347173148
627 => 0.0037017664904582
628 => 0.003769845888985
629 => 0.0036904276543534
630 => 0.0036864838696145
701 => 0.0037659887225937
702 => 0.0039517561451636
703 => 0.0038635050060884
704 => 0.0037369753581569
705 => 0.0038304028811701
706 => 0.003749467314427
707 => 0.003567096830116
708 => 0.0037017145164361
709 => 0.0036116995032848
710 => 0.0036379706695837
711 => 0.003827168838505
712 => 0.0038044040142641
713 => 0.0038338638047978
714 => 0.0037818680456028
715 => 0.0037332958075361
716 => 0.0036426321181628
717 => 0.0036157910694052
718 => 0.003623208969642
719 => 0.0036157873934622
720 => 0.0035650618925002
721 => 0.0035541077253971
722 => 0.0035358503003121
723 => 0.0035415090397742
724 => 0.0035071797392164
725 => 0.0035719662221644
726 => 0.0035839911642961
727 => 0.0036311373638414
728 => 0.0036360322386797
729 => 0.0037673337333292
730 => 0.0036950150765082
731 => 0.0037435326751962
801 => 0.0037391928045042
802 => 0.0033915977192195
803 => 0.0034394932551143
804 => 0.0035140036785195
805 => 0.003480436833772
806 => 0.0034329811687309
807 => 0.0033946581747985
808 => 0.0033365949202636
809 => 0.0034183178360155
810 => 0.003525774779966
811 => 0.0036387575241093
812 => 0.0037744988882748
813 => 0.0037442029959967
814 => 0.0036362199337259
815 => 0.0036410639750177
816 => 0.0036710079322236
817 => 0.0036322277869466
818 => 0.003620790765026
819 => 0.0036694366610391
820 => 0.0036697716585896
821 => 0.0036251504147113
822 => 0.0035755620677421
823 => 0.0035753542907576
824 => 0.0035665305233811
825 => 0.0036919973829676
826 => 0.0037609914696099
827 => 0.0037689015304539
828 => 0.003760459059491
829 => 0.0037637082314949
830 => 0.0037235620926587
831 => 0.0038153242610706
901 => 0.0038995343011432
902 => 0.0038769642115186
903 => 0.0038431284386441
904 => 0.0038161766157979
905 => 0.0038706152185973
906 => 0.003868191153309
907 => 0.0038987987999064
908 => 0.0038974102602584
909 => 0.0038871180599195
910 => 0.0038769645790855
911 => 0.0039172219828949
912 => 0.0039056284971119
913 => 0.0038940170034433
914 => 0.0038707283752602
915 => 0.0038738936866135
916 => 0.0038400637559622
917 => 0.0038244124820906
918 => 0.0035890548757189
919 => 0.0035261596327647
920 => 0.0035459477565488
921 => 0.003552462520697
922 => 0.0035250904303609
923 => 0.0035643349765897
924 => 0.0035582187556302
925 => 0.0035820133935141
926 => 0.0035671475368073
927 => 0.003567757636752
928 => 0.0036114749515918
929 => 0.0036241662740765
930 => 0.0036177113650292
1001 => 0.0036222321620646
1002 => 0.0037264120216356
1003 => 0.003711600977089
1004 => 0.0037037329048686
1005 => 0.003705912414645
1006 => 0.0037325326024068
1007 => 0.0037399848015717
1008 => 0.0037084093100532
1009 => 0.0037233004943891
1010 => 0.0037867052673186
1011 => 0.0038088933494446
1012 => 0.0038797070567071
1013 => 0.0038496241352487
1014 => 0.003904842639544
1015 => 0.0040745654963722
1016 => 0.004210151858335
1017 => 0.0040854610365307
1018 => 0.0043344481234563
1019 => 0.0045283202857042
1020 => 0.0045208791492061
1021 => 0.0044870730533743
1022 => 0.0042663547510132
1023 => 0.004063246478456
1024 => 0.0042331551728829
1025 => 0.004233588305087
1026 => 0.0042189929975512
1027 => 0.0041283427959529
1028 => 0.0042158385670312
1029 => 0.0042227836636015
1030 => 0.0042188962563724
1031 => 0.0041493949593476
1101 => 0.0040432793247776
1102 => 0.0040640140657677
1103 => 0.0040979779944866
1104 => 0.0040336771918039
1105 => 0.0040131291892237
1106 => 0.0040513318354377
1107 => 0.0041744287213765
1108 => 0.0041511579681415
1109 => 0.00415055027473
1110 => 0.0042501124254046
1111 => 0.0041788474123785
1112 => 0.0040642755972534
1113 => 0.0040353447029177
1114 => 0.0039326595182117
1115 => 0.0040035845410402
1116 => 0.0040061370063464
1117 => 0.0039672920961794
1118 => 0.0040674276476269
1119 => 0.0040665048808918
1120 => 0.0041615686837813
1121 => 0.0043432949705721
1122 => 0.0042895495653605
1123 => 0.004227049506583
1124 => 0.0042338449959108
1125 => 0.0043083747411396
1126 => 0.0042633123558257
1127 => 0.0042795171037707
1128 => 0.0043083502133128
1129 => 0.0043257459441853
1130 => 0.0042313420179433
1201 => 0.0042093319468745
1202 => 0.004164307065953
1203 => 0.0041525609149497
1204 => 0.0041892327409854
1205 => 0.0041795710104597
1206 => 0.0040059224815211
1207 => 0.0039877752440757
1208 => 0.0039883317939399
1209 => 0.0039426997025293
1210 => 0.0038730998101715
1211 => 0.0040560041716943
1212 => 0.0040413143917191
1213 => 0.0040250980115252
1214 => 0.0040270844255696
1215 => 0.0041064770097026
1216 => 0.0040604253014838
1217 => 0.00418286131551
1218 => 0.0041576921517897
1219 => 0.0041318774939919
1220 => 0.0041283091219505
1221 => 0.0041183726811015
1222 => 0.0040842969282433
1223 => 0.0040431484090318
1224 => 0.0040159785924247
1225 => 0.0037045279676866
1226 => 0.0037623313920131
1227 => 0.0038288289627527
1228 => 0.0038517836576998
1229 => 0.0038125180635763
1230 => 0.004085847373226
1231 => 0.0041357872719657
]
'min_raw' => 0.001723756822824
'max_raw' => 0.0045283202857042
'avg_raw' => 0.0031260385542641
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001723'
'max' => '$0.004528'
'avg' => '$0.003126'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -6.6833936168562E-5
'max_diff' => -0.00081663673802939
'year' => 2027
]
2 => [
'items' => [
101 => 0.003984516061184
102 => 0.0039562193940096
103 => 0.004087702498015
104 => 0.004008402113144
105 => 0.0040441110715958
106 => 0.003966927835179
107 => 0.0041237582127702
108 => 0.0041225634280557
109 => 0.004061552868998
110 => 0.0041131185757313
111 => 0.0041041577652167
112 => 0.0040352769943029
113 => 0.0041259418560686
114 => 0.0041259868247089
115 => 0.0040672654880998
116 => 0.0039986918226938
117 => 0.0039864324709569
118 => 0.0039771966962354
119 => 0.0040418396371776
120 => 0.0040997982958931
121 => 0.0042076449905928
122 => 0.0042347602120145
123 => 0.0043405927263861
124 => 0.0042775746169695
125 => 0.0043055097286527
126 => 0.0043358372440477
127 => 0.0043503773701856
128 => 0.0043266850149102
129 => 0.0044910864721301
130 => 0.00450496699225
131 => 0.0045096210105801
201 => 0.0044541857641999
202 => 0.0045034252377665
203 => 0.0044803877187247
204 => 0.0045403249432644
205 => 0.0045497238653891
206 => 0.0045417633127258
207 => 0.0045447466789601
208 => 0.0044044590376273
209 => 0.004397184383348
210 => 0.0042979939560628
211 => 0.0043384147883602
212 => 0.0042628499798013
213 => 0.0042868123589991
214 => 0.0042973747474275
215 => 0.0042918575551228
216 => 0.0043407001215713
217 => 0.0042991739622129
218 => 0.0041895796001335
219 => 0.0040799553791434
220 => 0.0040785791363469
221 => 0.0040497170139884
222 => 0.0040288549858846
223 => 0.0040328737526176
224 => 0.0040470364107607
225 => 0.004028031826447
226 => 0.0040320874180672
227 => 0.0040994372612281
228 => 0.0041129437919569
229 => 0.0040670433231982
301 => 0.0038827463177259
302 => 0.003837519370309
303 => 0.0038700276032229
304 => 0.0038544907616884
305 => 0.0031108748753521
306 => 0.0032855763976365
307 => 0.0031817746853982
308 => 0.0032296112900847
309 => 0.0031236566212126
310 => 0.0031742237427584
311 => 0.0031648858418245
312 => 0.0034458007198638
313 => 0.003441414620429
314 => 0.0034435140141213
315 => 0.0033433044832503
316 => 0.003502940986913
317 => 0.0035815836689603
318 => 0.0035670290015206
319 => 0.0035706920977472
320 => 0.003507747968156
321 => 0.0034441234508848
322 => 0.0033735540694879
323 => 0.0035046632574841
324 => 0.0034900861538874
325 => 0.0035235207848619
326 => 0.0036085544651557
327 => 0.0036210759975905
328 => 0.0036379050641638
329 => 0.0036318730417718
330 => 0.0037755802872354
331 => 0.0037581763915988
401 => 0.0038001147726405
402 => 0.0037138443409652
403 => 0.00361622115866
404 => 0.0036347761340739
405 => 0.0036329891407319
406 => 0.0036102386644721
407 => 0.0035897005517473
408 => 0.0035555103806379
409 => 0.0036636931412214
410 => 0.0036593011187066
411 => 0.003730402858053
412 => 0.0037178349349781
413 => 0.0036339032687912
414 => 0.0036369009046689
415 => 0.0036570614465608
416 => 0.0037268373122376
417 => 0.0037475515398737
418 => 0.0037379558843134
419 => 0.0037606680892759
420 => 0.0037786188900271
421 => 0.0037629224334749
422 => 0.0039851511573572
423 => 0.0038928662974687
424 => 0.0039378452960645
425 => 0.0039485725221979
426 => 0.0039210949580264
427 => 0.0039270538577974
428 => 0.0039360799672474
429 => 0.0039908847363348
430 => 0.0041347083083079
501 => 0.0041984067892946
502 => 0.0043900468121708
503 => 0.0041931175171743
504 => 0.0041814325477837
505 => 0.004215952702878
506 => 0.0043284656834629
507 => 0.0044196468864201
508 => 0.0044498969518108
509 => 0.0044538949973263
510 => 0.0045106461309856
511 => 0.0045431748224531
512 => 0.0045037550506564
513 => 0.0044703509214808
514 => 0.0043507014770469
515 => 0.0043645512260348
516 => 0.0044599622624257
517 => 0.00459473597101
518 => 0.0047103858337897
519 => 0.0046698892826489
520 => 0.0049788493817436
521 => 0.00500948151358
522 => 0.0050052491434156
523 => 0.0050750336984114
524 => 0.0049365255681223
525 => 0.0048773106589551
526 => 0.0044775732733615
527 => 0.0045898831736372
528 => 0.0047531322094172
529 => 0.0047315255873792
530 => 0.0046129697739366
531 => 0.0047102958985741
601 => 0.0046781168380996
602 => 0.004652735877993
603 => 0.0047690109765827
604 => 0.0046411617293655
605 => 0.0047518568153766
606 => 0.0046098892225733
607 => 0.0046700742674833
608 => 0.0046359103251693
609 => 0.0046580185828218
610 => 0.0045287741603315
611 => 0.0045985113134762
612 => 0.0045258728654862
613 => 0.004525838425404
614 => 0.0045242349276387
615 => 0.0046096937395708
616 => 0.0046124805483598
617 => 0.0045493263572209
618 => 0.0045402248516239
619 => 0.0045738778881082
620 => 0.0045344789961293
621 => 0.0045529134897125
622 => 0.0045350373581604
623 => 0.0045310130644191
624 => 0.0044989468072111
625 => 0.0044851317819258
626 => 0.0044905490093095
627 => 0.0044720572194767
628 => 0.0044609152472252
629 => 0.0045220185089185
630 => 0.0044893735010943
701 => 0.0045170151932741
702 => 0.0044855139963756
703 => 0.0043763171235071
704 => 0.0043135168471845
705 => 0.0041072540768914
706 => 0.0041657499426784
707 => 0.0042045327622135
708 => 0.0041917150405885
709 => 0.0042192524664387
710 => 0.0042209430407362
711 => 0.0042119903428815
712 => 0.0042016242656773
713 => 0.0041965786325743
714 => 0.0042341846479142
715 => 0.0042560162055793
716 => 0.004208425137001
717 => 0.0041972752155029
718 => 0.0042453924134105
719 => 0.0042747438763377
720 => 0.00449145858743
721 => 0.004475403661653
722 => 0.0045156983747332
723 => 0.0045111618084132
724 => 0.0045533970871724
725 => 0.0046224339179833
726 => 0.0044820627379434
727 => 0.0045064263211281
728 => 0.0045004529331685
729 => 0.0045656688166049
730 => 0.0045658724134744
731 => 0.0045267722335793
801 => 0.0045479690754284
802 => 0.0045361375798132
803 => 0.0045575186915125
804 => 0.004475189238331
805 => 0.0045754576253908
806 => 0.0046323033397015
807 => 0.0046330926424998
808 => 0.0046600370599276
809 => 0.0046874141485497
810 => 0.0047399620861179
811 => 0.0046859486150914
812 => 0.0045887836388201
813 => 0.004595798636266
814 => 0.0045388308462294
815 => 0.004539788485072
816 => 0.0045346765338788
817 => 0.0045500178842194
818 => 0.0044785558020118
819 => 0.0044953278098695
820 => 0.004471846900652
821 => 0.0045063752782172
822 => 0.0044692284517023
823 => 0.0045004500526199
824 => 0.0045139242605635
825 => 0.0045636443779544
826 => 0.0044618847499375
827 => 0.0042543899798898
828 => 0.0042980078961847
829 => 0.0042334935718712
830 => 0.0042394646182097
831 => 0.0042515270820986
901 => 0.0042124286900421
902 => 0.0042198874311146
903 => 0.0042196209523971
904 => 0.0042173245827735
905 => 0.004207153580948
906 => 0.0041924036160297
907 => 0.0042511629364644
908 => 0.0042611472900067
909 => 0.0042833412711317
910 => 0.0043493755046383
911 => 0.0043427771275165
912 => 0.0043535393543661
913 => 0.0043300454735807
914 => 0.0042405544319573
915 => 0.0042454142260718
916 => 0.0041848125155906
917 => 0.0042817915491435
918 => 0.0042588256339374
919 => 0.004244019359002
920 => 0.0042399793297067
921 => 0.0043061772493057
922 => 0.004325984704375
923 => 0.0043136420276047
924 => 0.0042883268374553
925 => 0.0043369394863061
926 => 0.0043499461803356
927 => 0.0043528578994604
928 => 0.0044389901926731
929 => 0.0043576717378406
930 => 0.0043772458981547
1001 => 0.004529957909235
1002 => 0.0043914691880022
1003 => 0.0044648297523062
1004 => 0.0044612391344335
1005 => 0.0044987679167453
1006 => 0.0044581606789009
1007 => 0.0044586640542813
1008 => 0.0044919870705543
1009 => 0.0044451909040365
1010 => 0.0044336035151108
1011 => 0.0044175956203003
1012 => 0.0044525482729819
1013 => 0.004473500807492
1014 => 0.0046423628477025
1015 => 0.0047514554267231
1016 => 0.0047467194301566
1017 => 0.0047899975733603
1018 => 0.0047705003734647
1019 => 0.0047075387719003
1020 => 0.0048150065484213
1021 => 0.0047809992472873
1022 => 0.0047838027678739
1023 => 0.0047836984206977
1024 => 0.0048063103029819
1025 => 0.004790287712035
1026 => 0.0047587055405933
1027 => 0.0047796712598745
1028 => 0.004841931950758
1029 => 0.0050351910456515
1030 => 0.0051433413954964
1031 => 0.0050286802587932
1101 => 0.0051077719755172
1102 => 0.005060345128743
1103 => 0.0050517262598577
1104 => 0.0051014017027923
1105 => 0.0051511640960139
1106 => 0.0051479944466944
1107 => 0.0051118695045427
1108 => 0.0050914634413577
1109 => 0.0052459849883273
1110 => 0.0053598338319286
1111 => 0.0053520701040473
1112 => 0.0053863366740157
1113 => 0.005486944383268
1114 => 0.0054961426913452
1115 => 0.0054949839159482
1116 => 0.0054721849496347
1117 => 0.0055712463049556
1118 => 0.0056538850303829
1119 => 0.0054669076476586
1120 => 0.0055381061872864
1121 => 0.0055700695055989
1122 => 0.005617001139971
1123 => 0.0056961826738119
1124 => 0.0057821948214277
1125 => 0.0057943578821758
1126 => 0.005785727608519
1127 => 0.0057290002850357
1128 => 0.0058231158032953
1129 => 0.0058782464666112
1130 => 0.0059110755149731
1201 => 0.005994324519386
1202 => 0.0055702669001712
1203 => 0.0052700978402599
1204 => 0.0052232221070609
1205 => 0.0053185457538181
1206 => 0.0053436818392761
1207 => 0.005333549514746
1208 => 0.0049956819476388
1209 => 0.0052214433042434
1210 => 0.005464343541396
1211 => 0.0054736743287474
1212 => 0.0055952752662704
1213 => 0.0056348735161187
1214 => 0.005732778209424
1215 => 0.0057266542442012
1216 => 0.0057504924790171
1217 => 0.0057450124816536
1218 => 0.0059263603097361
1219 => 0.0061264138945242
1220 => 0.0061194866750145
1221 => 0.0060907266052746
1222 => 0.0061334402131589
1223 => 0.0063399169517053
1224 => 0.0063209078823422
1225 => 0.0063393735740397
1226 => 0.006582821285305
1227 => 0.0068993379399828
1228 => 0.0067522841761324
1229 => 0.0070713485301072
1230 => 0.0072721826280597
1231 => 0.0076195044338352
]
'min_raw' => 0.0031108748753521
'max_raw' => 0.0076195044338352
'avg_raw' => 0.0053651896545936
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00311'
'max' => '$0.007619'
'avg' => '$0.005365'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0013871180525281
'max_diff' => 0.003091184148131
'year' => 2028
]
3 => [
'items' => [
101 => 0.0075760180331561
102 => 0.0077112278633794
103 => 0.0074981683000549
104 => 0.0070089404762199
105 => 0.0069315183004092
106 => 0.0070865194570241
107 => 0.0074675746757701
108 => 0.0070745186721254
109 => 0.0071540333897455
110 => 0.0071311331457216
111 => 0.0071299128890374
112 => 0.0071764851235329
113 => 0.0071089296683527
114 => 0.0068336965909544
115 => 0.0069598342883673
116 => 0.0069111264657664
117 => 0.0069651714263508
118 => 0.0072568297887877
119 => 0.0071278806744874
120 => 0.0069920432575474
121 => 0.0071624135231261
122 => 0.0073793534167826
123 => 0.0073657777081161
124 => 0.0073394351590969
125 => 0.0074879267286667
126 => 0.0077331912976484
127 => 0.0077994853250913
128 => 0.0078484222208279
129 => 0.0078551697919544
130 => 0.0079246739681489
131 => 0.0075509324954432
201 => 0.0081440698109889
202 => 0.0082464882402959
203 => 0.0082272378203952
204 => 0.0083410715941436
205 => 0.0083075788102227
206 => 0.0082590530211781
207 => 0.0084395037657075
208 => 0.0082326315487288
209 => 0.0079390024812154
210 => 0.0077779117674531
211 => 0.0079900490141525
212 => 0.0081195938281421
213 => 0.0082052147095917
214 => 0.0082311235365848
215 => 0.0075799449820638
216 => 0.0072289958571954
217 => 0.0074539502225962
218 => 0.0077284100739061
219 => 0.0075494078571114
220 => 0.0075564244051137
221 => 0.0073012142849195
222 => 0.0077509905066333
223 => 0.007685461894343
224 => 0.0080254244508229
225 => 0.007944289658349
226 => 0.0082215159258879
227 => 0.008148512958781
228 => 0.008451544193701
301 => 0.0085724315575538
302 => 0.0087754202560784
303 => 0.0089247395690257
304 => 0.0090124227256117
305 => 0.0090071585577816
306 => 0.0093546029077504
307 => 0.0091497271133548
308 => 0.0088923548300766
309 => 0.0088876997774712
310 => 0.0090209965299745
311 => 0.0093003499550431
312 => 0.0093727822337364
313 => 0.0094132619961327
314 => 0.009351265830912
315 => 0.0091288878396761
316 => 0.0090328661505424
317 => 0.0091146794117004
318 => 0.0090146288235978
319 => 0.0091873442078998
320 => 0.009424519320562
321 => 0.0093755435976893
322 => 0.009539262096402
323 => 0.0097086935188812
324 => 0.0099509880626679
325 => 0.010014332828555
326 => 0.01011903931778
327 => 0.010226816689483
328 => 0.010261431876592
329 => 0.010327523009245
330 => 0.010327174676353
331 => 0.01052634475305
401 => 0.010746035515431
402 => 0.010828963692377
403 => 0.011019652462578
404 => 0.01069310462614
405 => 0.010940794911189
406 => 0.011164217748393
407 => 0.010897843831236
408 => 0.011264978218875
409 => 0.011279233215202
410 => 0.011494466735438
411 => 0.011276286328926
412 => 0.011146731499996
413 => 0.011520751436761
414 => 0.011701727902644
415 => 0.011647216318285
416 => 0.011232380469742
417 => 0.010990928212743
418 => 0.010359001083515
419 => 0.011107546065306
420 => 0.01147214049058
421 => 0.01123143625826
422 => 0.011352833472113
423 => 0.012015137307717
424 => 0.012267299727318
425 => 0.012214851706789
426 => 0.01222371455889
427 => 0.012359776823435
428 => 0.012963151835284
429 => 0.012601595542061
430 => 0.012877991780974
501 => 0.013024591349473
502 => 0.013160761198778
503 => 0.012826371085809
504 => 0.012391334462003
505 => 0.012253540101648
506 => 0.011207502966117
507 => 0.011153052190504
508 => 0.011122487320125
509 => 0.010929780135871
510 => 0.010778365075987
511 => 0.010657954198688
512 => 0.010341960098921
513 => 0.010448598831488
514 => 0.0099449701895537
515 => 0.01026717394716
516 => 0.0094633704740942
517 => 0.010132801891613
518 => 0.0097684608063689
519 => 0.010013106046188
520 => 0.010012252501993
521 => 0.0095617830506425
522 => 0.0093019616721609
523 => 0.0094675299669287
524 => 0.0096450323217473
525 => 0.009673831481627
526 => 0.0099039679179349
527 => 0.0099681940505422
528 => 0.0097735858703105
529 => 0.0094467134337388
530 => 0.0095226384455879
531 => 0.0093004230542192
601 => 0.008910999128237
602 => 0.0091906901905668
603 => 0.0092861890163942
604 => 0.0093283667383276
605 => 0.0089454130327642
606 => 0.0088250806641468
607 => 0.0087610167207812
608 => 0.0093972789192773
609 => 0.0094321347987916
610 => 0.0092538071910717
611 => 0.010059864887683
612 => 0.0098774292057538
613 => 0.010081254560297
614 => 0.0095157490465709
615 => 0.0095373521187494
616 => 0.0092696327459238
617 => 0.0094195377056912
618 => 0.00931358971179
619 => 0.0094074268663317
620 => 0.0094636724698589
621 => 0.0097313479125697
622 => 0.010135858315195
623 => 0.0096913661276181
624 => 0.0094976945162453
625 => 0.0096178472946905
626 => 0.009937829977238
627 => 0.01042262012091
628 => 0.010135614598545
629 => 0.010262982775701
630 => 0.010290807056193
701 => 0.010079179809524
702 => 0.010430423119356
703 => 0.010618657262591
704 => 0.010811746543982
705 => 0.010979400556776
706 => 0.01073462243887
707 => 0.010996570112594
708 => 0.010785486527562
709 => 0.010596122730368
710 => 0.010596409917083
711 => 0.010477619240939
712 => 0.010247447337323
713 => 0.010205000106826
714 => 0.010425815960367
715 => 0.010602889363569
716 => 0.010617473977181
717 => 0.010715510911553
718 => 0.010773528159453
719 => 0.011342176059504
720 => 0.011570890949006
721 => 0.011850559186539
722 => 0.011959505726296
723 => 0.012287395751468
724 => 0.012022597926216
725 => 0.011965307251066
726 => 0.011169953302007
727 => 0.011300192466609
728 => 0.011508717935347
729 => 0.011173391810182
730 => 0.011386079055164
731 => 0.011428068022656
801 => 0.011161997556763
802 => 0.011304117288822
803 => 0.010926689416036
804 => 0.010144085211431
805 => 0.010431294381555
806 => 0.010642777004328
807 => 0.010340965226012
808 => 0.010881951156915
809 => 0.010565918344298
810 => 0.010465751114949
811 => 0.010074963041061
812 => 0.010259399969123
813 => 0.010508853555211
814 => 0.010354720241101
815 => 0.010674570011112
816 => 0.011127562586266
817 => 0.011450392071495
818 => 0.011475174910781
819 => 0.011267617179674
820 => 0.011600229768388
821 => 0.011602652487976
822 => 0.011227464129144
823 => 0.010997663348417
824 => 0.010945452127531
825 => 0.011075885993918
826 => 0.011234256787131
827 => 0.0114839633876
828 => 0.011634855856522
829 => 0.012028303388291
830 => 0.012134759009363
831 => 0.012251721461594
901 => 0.012408019367658
902 => 0.012595695077849
903 => 0.012185071308335
904 => 0.012201386156197
905 => 0.011819018987499
906 => 0.011410404830747
907 => 0.011720492041248
908 => 0.012125889819805
909 => 0.01203289112148
910 => 0.012022426868127
911 => 0.012040024839724
912 => 0.01196990685824
913 => 0.011652765826681
914 => 0.01149349958604
915 => 0.011698993669619
916 => 0.011808204629551
917 => 0.01197758130421
918 => 0.01195670205395
919 => 0.012392998178144
920 => 0.012562529659095
921 => 0.012519156251607
922 => 0.012527138002424
923 => 0.012834066650808
924 => 0.013175434432502
925 => 0.013495170407505
926 => 0.013820419574257
927 => 0.013428319009046
928 => 0.013229234523433
929 => 0.013434638894723
930 => 0.01332564844404
1001 => 0.013951939902328
1002 => 0.013995302964055
1003 => 0.014621549134342
1004 => 0.015215931321951
1005 => 0.014842610519376
1006 => 0.015194635221466
1007 => 0.01557537863777
1008 => 0.016309894461215
1009 => 0.016062535372457
1010 => 0.015873062187079
1011 => 0.015694010942425
1012 => 0.016066588158966
1013 => 0.016545902795978
1014 => 0.016649142577972
1015 => 0.016816430465434
1016 => 0.016640547706757
1017 => 0.016852379116734
1018 => 0.017600237077387
1019 => 0.017398159254894
1020 => 0.017111176261322
1021 => 0.017701538296216
1022 => 0.01791518802167
1023 => 0.019414693684135
1024 => 0.021307881524487
1025 => 0.02052408932724
1026 => 0.020037564217592
1027 => 0.020151909158889
1028 => 0.020843237269733
1029 => 0.021065269917279
1030 => 0.020461708642006
1031 => 0.020674896688019
1101 => 0.021849583781735
1102 => 0.022479765719039
1103 => 0.021623894003454
1104 => 0.019262577884519
1105 => 0.0170853365827
1106 => 0.017662839018396
1107 => 0.017597368164175
1108 => 0.018859422901173
1109 => 0.017393339765659
1110 => 0.017418024845681
1111 => 0.018706177538101
1112 => 0.018362520484292
1113 => 0.01780584006939
1114 => 0.017089400965788
1115 => 0.015764997020184
1116 => 0.014591935511827
1117 => 0.016892579269647
1118 => 0.016793371327361
1119 => 0.016649703525137
1120 => 0.016969420672506
1121 => 0.018521876386839
1122 => 0.018486087257814
1123 => 0.018258415078737
1124 => 0.018431102419957
1125 => 0.017775567143543
1126 => 0.017944513510536
1127 => 0.017084991696554
1128 => 0.017473531453275
1129 => 0.017804645683237
1130 => 0.017871121767132
1201 => 0.0180208957785
1202 => 0.01674109324982
1203 => 0.017315687012169
1204 => 0.017653207015395
1205 => 0.016128279361738
1206 => 0.017623064098698
1207 => 0.016718814735099
1208 => 0.016411898919724
1209 => 0.016825120632042
1210 => 0.01666408772888
1211 => 0.016525641094911
1212 => 0.016448385494341
1213 => 0.016751809914252
1214 => 0.016737654802393
1215 => 0.016241193559276
1216 => 0.01559358010598
1217 => 0.015810940438094
1218 => 0.015731971391673
1219 => 0.015445777380235
1220 => 0.015638637588747
1221 => 0.014789378834776
1222 => 0.013328273289196
1223 => 0.014293524367479
1224 => 0.014256363250956
1225 => 0.014237624930883
1226 => 0.014962984438633
1227 => 0.014893257858854
1228 => 0.01476670343379
1229 => 0.015443453108973
1230 => 0.015196430373964
1231 => 0.015957696237387
]
'min_raw' => 0.0068336965909544
'max_raw' => 0.022479765719039
'avg_raw' => 0.014656731154997
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.006833'
'max' => '$0.022479'
'avg' => '$0.014656'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0037228217156023
'max_diff' => 0.014860261285204
'year' => 2029
]
4 => [
'items' => [
101 => 0.016459115170626
102 => 0.016331939109953
103 => 0.016803526040233
104 => 0.015815947981139
105 => 0.016143981797616
106 => 0.016211589112556
107 => 0.015435102123031
108 => 0.014904665989629
109 => 0.014869291946945
110 => 0.013949588790228
111 => 0.014440886792962
112 => 0.014873208704075
113 => 0.014666160058187
114 => 0.014600614642302
115 => 0.014935471956995
116 => 0.014961493238206
117 => 0.014368205268991
118 => 0.014491568624778
119 => 0.015006014325858
120 => 0.014478605913042
121 => 0.013453937518617
122 => 0.01319980558965
123 => 0.013165899705745
124 => 0.012476673758931
125 => 0.013216787900323
126 => 0.01289370824378
127 => 0.013914313007712
128 => 0.013331349040167
129 => 0.013306218628681
130 => 0.013268230325891
131 => 0.012674985081902
201 => 0.012804868087634
202 => 0.013236618980425
203 => 0.013390672562995
204 => 0.013374603512209
205 => 0.01323450316551
206 => 0.013298640386799
207 => 0.013092032050137
208 => 0.013019074346281
209 => 0.012788799764314
210 => 0.0124503597438
211 => 0.012497421904426
212 => 0.011826883666138
213 => 0.011461538845761
214 => 0.011360416214648
215 => 0.011225190806118
216 => 0.011375690284363
217 => 0.011824984115558
218 => 0.011283040432133
219 => 0.010353915999831
220 => 0.010409757961363
221 => 0.010535218269299
222 => 0.010301423815463
223 => 0.010080156985789
224 => 0.010272530542245
225 => 0.0098788482718479
226 => 0.010582792890837
227 => 0.010563753161676
228 => 0.010826140183992
301 => 0.01099021617377
302 => 0.010612074137564
303 => 0.010516972438063
304 => 0.01057114668823
305 => 0.0096757670076032
306 => 0.010752968561734
307 => 0.010762284245506
308 => 0.010682517705335
309 => 0.011256094278043
310 => 0.012466519749476
311 => 0.012011108997871
312 => 0.011834760189987
313 => 0.011499520977289
314 => 0.011946207323674
315 => 0.011911908781664
316 => 0.01175679776736
317 => 0.011662986141932
318 => 0.011835836938204
319 => 0.011641568015419
320 => 0.011606671978734
321 => 0.011395239963686
322 => 0.011319768353857
323 => 0.011263892178551
324 => 0.011202377999819
325 => 0.011338062949724
326 => 0.011030583002398
327 => 0.010659792328554
328 => 0.010628965096034
329 => 0.010714081795378
330 => 0.010676423992112
331 => 0.01062878480496
401 => 0.010537828622927
402 => 0.01051084386669
403 => 0.01059853123332
404 => 0.010499537308885
405 => 0.010645608236866
406 => 0.010605885026929
407 => 0.010383994405301
408 => 0.010107436536323
409 => 0.010104974591189
410 => 0.010045390651963
411 => 0.0099695015468544
412 => 0.0099483909339206
413 => 0.010256329377894
414 => 0.010893752741097
415 => 0.010768611282652
416 => 0.010859038811391
417 => 0.011303852753373
418 => 0.011445245729507
419 => 0.011344888344123
420 => 0.011207512965236
421 => 0.011213556784715
422 => 0.011683010040728
423 => 0.011712289264462
424 => 0.011786268417004
425 => 0.011881352534525
426 => 0.011361081580492
427 => 0.011189052069567
428 => 0.011107534943457
429 => 0.010856493746136
430 => 0.011127220154801
501 => 0.010969479470132
502 => 0.010990764077683
503 => 0.010976902449093
504 => 0.010984471835623
505 => 0.01058259612397
506 => 0.010729018511331
507 => 0.010485562893254
508 => 0.010159603149826
509 => 0.01015851041847
510 => 0.010238288603887
511 => 0.01019083341748
512 => 0.010063132731044
513 => 0.010081272010822
514 => 0.0099223528329188
515 => 0.010100567676344
516 => 0.01010567824037
517 => 0.010037055818223
518 => 0.010311620373429
519 => 0.01042410969572
520 => 0.010378940947428
521 => 0.010420940535929
522 => 0.01077381147523
523 => 0.010831344835175
524 => 0.010856897353222
525 => 0.010822660364099
526 => 0.010427390368925
527 => 0.010444922274029
528 => 0.010316284786979
529 => 0.010207599665907
530 => 0.010211946500771
531 => 0.010267824781079
601 => 0.010511848508402
602 => 0.011025382056569
603 => 0.011044870279334
604 => 0.011068490573836
605 => 0.010972414965486
606 => 0.010943437642687
607 => 0.01098166621114
608 => 0.01117452241152
609 => 0.011670600918845
610 => 0.011495253642387
611 => 0.011352693577184
612 => 0.011477757188285
613 => 0.011458504625637
614 => 0.011295993621793
615 => 0.011291432479175
616 => 0.010979521904888
617 => 0.010864215667434
618 => 0.010767857144896
619 => 0.010662636153787
620 => 0.010600257623218
621 => 0.010696099396707
622 => 0.01071801954427
623 => 0.010508459831509
624 => 0.010479897617009
625 => 0.010651028602111
626 => 0.010575720235974
627 => 0.010653176758103
628 => 0.010671147335647
629 => 0.010668253658765
630 => 0.010589623075407
701 => 0.010639739864442
702 => 0.010521198717841
703 => 0.010392303025217
704 => 0.010310075603809
705 => 0.010238321272745
706 => 0.010278134746005
707 => 0.010136206983485
708 => 0.010090801435814
709 => 0.01062276142398
710 => 0.011015725986772
711 => 0.011010012126398
712 => 0.010975230470857
713 => 0.010923551985924
714 => 0.011170741808462
715 => 0.011084625817006
716 => 0.011147282396022
717 => 0.01116323112507
718 => 0.011211503124448
719 => 0.011228756215107
720 => 0.011176605392093
721 => 0.011001580860372
722 => 0.010565436368157
723 => 0.010362409929681
724 => 0.010295407823311
725 => 0.010297843222623
726 => 0.010230664037512
727 => 0.010250451318287
728 => 0.010223782828772
729 => 0.010173279161431
730 => 0.010275016286863
731 => 0.010286740542822
801 => 0.010262993882078
802 => 0.010268587080325
803 => 0.010071974871698
804 => 0.0100869228709
805 => 0.01000369051184
806 => 0.0099880854478975
807 => 0.009777681292064
808 => 0.0094049198314349
809 => 0.0096114658654539
810 => 0.0093619873011263
811 => 0.0092675059885983
812 => 0.0097147658272471
813 => 0.0096698733445036
814 => 0.00959303692834
815 => 0.0094793798547217
816 => 0.0094372233405318
817 => 0.0091810937054442
818 => 0.0091659602002048
819 => 0.0092929049634361
820 => 0.0092343243231074
821 => 0.0091520549178626
822 => 0.0088540834715818
823 => 0.0085190649110067
824 => 0.0085291770154989
825 => 0.0086357401863759
826 => 0.0089455869777024
827 => 0.0088245244759272
828 => 0.0087366922418572
829 => 0.0087202439046431
830 => 0.0089261292818035
831 => 0.0092175002248054
901 => 0.0093542049522044
902 => 0.0092187347191362
903 => 0.0090631138096228
904 => 0.0090725857333071
905 => 0.0091355981980816
906 => 0.0091422199171811
907 => 0.0090409267031759
908 => 0.00906944014959
909 => 0.0090261256171628
910 => 0.0087603044116096
911 => 0.0087554965489293
912 => 0.0086902597381406
913 => 0.0086882843934366
914 => 0.0085773003041999
915 => 0.0085617728629189
916 => 0.0083414072174867
917 => 0.0084864525526388
918 => 0.0083891637570406
919 => 0.0082425265939673
920 => 0.0082172462917826
921 => 0.0082164863353721
922 => 0.0083670499143787
923 => 0.0084846931295557
924 => 0.008390856137293
925 => 0.0083694912731085
926 => 0.0085976121275567
927 => 0.0085685816694604
928 => 0.0085434414799754
929 => 0.009191411152644
930 => 0.0086784925950227
1001 => 0.0084548308275321
1002 => 0.0081780069180448
1003 => 0.0082681421788412
1004 => 0.0082871350026534
1005 => 0.0076214234015966
1006 => 0.0073513442879569
1007 => 0.0072586633138725
1008 => 0.0072053241029703
1009 => 0.0072296314511701
1010 => 0.0069865285717739
1011 => 0.0071498977272786
1012 => 0.0069393911826965
1013 => 0.0069040990754497
1014 => 0.0072805108539195
1015 => 0.0073328863539278
1016 => 0.0071094361990998
1017 => 0.0072529273717935
1018 => 0.0072008954778982
1019 => 0.0069429997132129
1020 => 0.0069331499919548
1021 => 0.0068037469627101
1022 => 0.0066012562793062
1023 => 0.0065087126034402
1024 => 0.0064605150535482
1025 => 0.0064804023019852
1026 => 0.0064703467006156
1027 => 0.0064047270998083
1028 => 0.0064741079393223
1029 => 0.0062968685645061
1030 => 0.0062262904173396
1031 => 0.006194411905665
1101 => 0.0060371017589978
1102 => 0.0062874521584851
1103 => 0.0063367743410153
1104 => 0.0063861937034815
1105 => 0.0068163555137181
1106 => 0.0067948658453033
1107 => 0.0069891219818797
1108 => 0.0069815735456265
1109 => 0.0069261685487341
1110 => 0.0066924239805248
1111 => 0.0067855903993167
1112 => 0.0064988386435513
1113 => 0.0067136925561948
1114 => 0.0066156422029782
1115 => 0.0066805416331425
1116 => 0.0065638466059614
1117 => 0.006628430452223
1118 => 0.0063484704602256
1119 => 0.0060870477588418
1120 => 0.006192251885283
1121 => 0.0063066208022758
1122 => 0.0065546017549744
1123 => 0.0064069063453456
1124 => 0.0064600231996298
1125 => 0.0062820906294315
1126 => 0.0059149649131864
1127 => 0.0059170428048707
1128 => 0.0058605685116948
1129 => 0.0058117664770091
1130 => 0.0064238709398294
1201 => 0.0063477460739381
1202 => 0.0062264510631164
1203 => 0.0063888092551733
1204 => 0.0064317393381242
1205 => 0.0064329614972332
1206 => 0.0065514138430864
1207 => 0.006614631881302
1208 => 0.0066257743345402
1209 => 0.0068121616600726
1210 => 0.0068746362330828
1211 => 0.0071319601575792
1212 => 0.0066092682724393
1213 => 0.0065985037770318
1214 => 0.0063910939678906
1215 => 0.006259551387914
1216 => 0.0064001008008812
1217 => 0.0065246083938621
1218 => 0.0063949627658681
1219 => 0.0064118917479156
1220 => 0.0062378530847707
1221 => 0.0063000637175647
1222 => 0.0063536478952042
1223 => 0.0063240618618441
1224 => 0.0062797701379237
1225 => 0.0065144001911035
1226 => 0.0065011614439805
1227 => 0.0067196543436232
1228 => 0.0068899851834717
1229 => 0.00719524849876
1230 => 0.0068766903155202
1231 => 0.0068650807891688
]
'min_raw' => 0.0058117664770091
'max_raw' => 0.016803526040233
'avg_raw' => 0.011307646258621
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.005811'
'max' => '$0.0168035'
'avg' => '$0.0113076'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0010219301139452
'max_diff' => -0.005676239678806
'year' => 2030
]
5 => [
'items' => [
101 => 0.0069785657714799
102 => 0.0068746188591233
103 => 0.0069403097196072
104 => 0.0071846646855593
105 => 0.0071898275209404
106 => 0.00710334337637
107 => 0.0070980808083132
108 => 0.0071146910343108
109 => 0.0072119776467898
110 => 0.007177982715074
111 => 0.0072173225107019
112 => 0.0072665175275269
113 => 0.00747000897537
114 => 0.0075190700745279
115 => 0.0073998770388376
116 => 0.0074106388354126
117 => 0.0073660573681425
118 => 0.0073229922293636
119 => 0.00741979637218
120 => 0.0075967078458671
121 => 0.007595607288771
122 => 0.0076366473119987
123 => 0.0076622149064757
124 => 0.0075524600743575
125 => 0.0074810137144455
126 => 0.0075084107950857
127 => 0.0075522193236603
128 => 0.0074942042797056
129 => 0.0071361085532348
130 => 0.0072447319214025
131 => 0.007226651681528
201 => 0.0072009032213145
202 => 0.0073101248579668
203 => 0.0072995901646637
204 => 0.0069840352003706
205 => 0.007004236005369
206 => 0.0069852636782297
207 => 0.0070465671485899
208 => 0.006871308270543
209 => 0.0069252167210436
210 => 0.0069590275958373
211 => 0.0069789424608382
212 => 0.0070508886089721
213 => 0.0070424465588879
214 => 0.0070503638392857
215 => 0.0071570409838893
216 => 0.0076965773741191
217 => 0.0077259431494194
218 => 0.0075813353318132
219 => 0.0076391033026838
220 => 0.0075282014310787
221 => 0.0076026506004652
222 => 0.0076535868313555
223 => 0.0074234157984359
224 => 0.0074097865636641
225 => 0.0072984269605849
226 => 0.0073582653035493
227 => 0.0072630581973638
228 => 0.0072864186910185
301 => 0.0072211007142286
302 => 0.007338660067771
303 => 0.007470109691908
304 => 0.0075033190580679
305 => 0.0074159595132321
306 => 0.0073527054454965
307 => 0.0072416521397379
308 => 0.0074263362621987
309 => 0.0074803435277529
310 => 0.0074260525850244
311 => 0.0074134721873136
312 => 0.0073896323563841
313 => 0.0074185299201435
314 => 0.0074800493925861
315 => 0.0074510379454684
316 => 0.0074702005174056
317 => 0.0073971725535396
318 => 0.0075524964077738
319 => 0.0077991880690188
320 => 0.0077999812230478
321 => 0.0077709696195477
322 => 0.0077590986964591
323 => 0.0077888663622216
324 => 0.0078050140997642
325 => 0.0079012772723837
326 => 0.0080045714918984
327 => 0.0084866005435747
328 => 0.0083512487147344
329 => 0.0087789335654183
330 => 0.0091171767543819
331 => 0.00921860109717
401 => 0.009125295474189
402 => 0.0088061019782418
403 => 0.0087904408225376
404 => 0.0092674506655007
405 => 0.0091326735364288
406 => 0.0091166422257829
407 => 0.008946096165838
408 => 0.0090469100098059
409 => 0.0090248605432802
410 => 0.0089900543816727
411 => 0.0091824001732102
412 => 0.0095424543241412
413 => 0.0094863365081522
414 => 0.0094444471617469
415 => 0.0092609002396045
416 => 0.0093714364834235
417 => 0.0093320766441819
418 => 0.0095011914919351
419 => 0.0094010116024787
420 => 0.0091316524671191
421 => 0.0091745487972444
422 => 0.0091680651032414
423 => 0.0093014990663838
424 => 0.009261445502683
425 => 0.0091602440020921
426 => 0.0095412236981962
427 => 0.0095164849958517
428 => 0.0095515588197216
429 => 0.0095669994016832
430 => 0.0097988950290865
501 => 0.0098938952478012
502 => 0.0099154619606624
503 => 0.010005704820861
504 => 0.0099132166360913
505 => 0.010283235318127
506 => 0.010529276150493
507 => 0.010815065238431
508 => 0.011232679908773
509 => 0.011389706887973
510 => 0.011361341369675
511 => 0.011677972046558
512 => 0.012246950334612
513 => 0.011476348149402
514 => 0.012287794121597
515 => 0.012030899695394
516 => 0.011421807632201
517 => 0.011382589284056
518 => 0.011795073500954
519 => 0.0127099237939
520 => 0.012480764171663
521 => 0.012710298616948
522 => 0.012442534494083
523 => 0.01242923774849
524 => 0.012697293911161
525 => 0.013323621746223
526 => 0.013026076869333
527 => 0.012599473327314
528 => 0.012914470744054
529 => 0.012641590830039
530 => 0.012026716009484
531 => 0.012480588937619
601 => 0.012177097036132
602 => 0.012265672107502
603 => 0.012903566943415
604 => 0.012826813749098
605 => 0.012926139489699
606 => 0.012750832157345
607 => 0.012587067465498
608 => 0.012281388506839
609 => 0.012190892036971
610 => 0.01221590200552
611 => 0.012190879643272
612 => 0.012019855075237
613 => 0.011982922336054
614 => 0.011921366152687
615 => 0.011940444987864
616 => 0.011824701354238
617 => 0.012043133504745
618 => 0.012083676436697
619 => 0.012242633140106
620 => 0.012259136552373
621 => 0.012701828708761
622 => 0.012458001308162
623 => 0.012621581779529
624 => 0.012606949602491
625 => 0.01143500850414
626 => 0.011596491647368
627 => 0.011847708742031
628 => 0.011734535781402
629 => 0.011574535693468
630 => 0.011445327043798
701 => 0.011249562727287
702 => 0.011525097243456
703 => 0.01188739583239
704 => 0.012268325042472
705 => 0.012725986528915
706 => 0.012623841812908
707 => 0.012259769379326
708 => 0.012276101402741
709 => 0.012377059545081
710 => 0.012246309577736
711 => 0.012207748859824
712 => 0.01237176189458
713 => 0.01237289136221
714 => 0.012222447723119
715 => 0.012055257149164
716 => 0.012054556614554
717 => 0.012024806666789
718 => 0.012447826943701
719 => 0.012680445323829
720 => 0.012707114646227
721 => 0.012678650265941
722 => 0.012689605076202
723 => 0.012554249566202
724 => 0.012863632123633
725 => 0.013147552153095
726 => 0.013071455520132
727 => 0.012957375849548
728 => 0.012866505897106
729 => 0.013050049447226
730 => 0.013041876541863
731 => 0.013145072359324
801 => 0.013140390800956
802 => 0.013105689928935
803 => 0.01307145675941
804 => 0.013207187407035
805 => 0.013168099160287
806 => 0.013128950198694
807 => 0.013050430962815
808 => 0.013061103031037
809 => 0.012947043057916
810 => 0.012894273695321
811 => 0.012100749093296
812 => 0.01188869339047
813 => 0.011955410431371
814 => 0.011977375413543
815 => 0.011885088499916
816 => 0.012017404227494
817 => 0.011996782961508
818 => 0.012077008244422
819 => 0.012026886970634
820 => 0.012028943965193
821 => 0.012176339944421
822 => 0.012219129624258
823 => 0.012197366447738
824 => 0.012212608630574
825 => 0.012563858300724
826 => 0.01251392182996
827 => 0.012487394075138
828 => 0.012494742444518
829 => 0.012584494266119
830 => 0.012609619875899
831 => 0.012503160901714
901 => 0.012553367569372
902 => 0.012767141188084
903 => 0.012841949856094
904 => 0.013080703214185
905 => 0.012979276544165
906 => 0.01316544958663
907 => 0.013737682048098
908 => 0.014194820933793
909 => 0.013774417122444
910 => 0.014613894469737
911 => 0.015267548000478
912 => 0.015242459689251
913 => 0.015128480076888
914 => 0.014384312910418
915 => 0.013699519188924
916 => 0.014272378214831
917 => 0.014273838550297
918 => 0.014224629451928
919 => 0.013918995968245
920 => 0.014213994069195
921 => 0.014237409947173
922 => 0.01422430328229
923 => 0.013989974806945
924 => 0.013632198536235
925 => 0.013702107163137
926 => 0.013816618920099
927 => 0.013599824274515
928 => 0.0135305452492
929 => 0.013659348138134
930 => 0.014074377883427
1001 => 0.013995918914183
1002 => 0.013993870033419
1003 => 0.014329550775625
1004 => 0.014089275808643
1005 => 0.0137029889348
1006 => 0.013605446404657
1007 => 0.01325923613517
1008 => 0.013498364801464
1009 => 0.013506970616451
1010 => 0.013376002289758
1011 => 0.013713616292704
1012 => 0.013710505120231
1013 => 0.014031019368816
1014 => 0.014643722232455
1015 => 0.0144625158464
1016 => 0.014251792534617
1017 => 0.014274704001331
1018 => 0.014525986240871
1019 => 0.01437405526263
1020 => 0.014428690701706
1021 => 0.01452590354359
1022 => 0.014584554464758
1023 => 0.014266265036362
1024 => 0.014192056545059
1025 => 0.014040252015495
1026 => 0.014000649047298
1027 => 0.014124290669122
1028 => 0.014091715470094
1029 => 0.013506247331025
1030 => 0.013445062652978
1031 => 0.013446939099702
1101 => 0.01329308731758
1102 => 0.013058426421187
1103 => 0.013675101246036
1104 => 0.013625573627241
1105 => 0.013570898969226
1106 => 0.013577596302864
1107 => 0.013845273943282
1108 => 0.013690007393794
1109 => 0.014102808963293
1110 => 0.014017949370555
1111 => 0.013930913449468
1112 => 0.013918882433995
1113 => 0.013885381029932
1114 => 0.013770492250078
1115 => 0.013631757144658
1116 => 0.013540152211031
1117 => 0.012490074684939
1118 => 0.012684962965762
1119 => 0.012909164168222
1120 => 0.012986557524882
1121 => 0.012854170832859
1122 => 0.013775719683585
1123 => 0.013944095538879
1124 => 0.01343407409031
1125 => 0.013338669901321
1126 => 0.013781974366332
1127 => 0.013514607582164
1128 => 0.013635002828704
1129 => 0.013374774158363
1130 => 0.013903538725959
1201 => 0.013899510425877
1202 => 0.013693809066393
1203 => 0.013867666446847
1204 => 0.013837454448573
1205 => 0.013605218120335
1206 => 0.013910901031797
1207 => 0.013911052646707
1208 => 0.013713069560537
1209 => 0.01348186865996
1210 => 0.013440535399658
1211 => 0.013409396340363
1212 => 0.013627344528976
1213 => 0.01382275619338
1214 => 0.014186368854176
1215 => 0.014277789716323
1216 => 0.014634611427517
1217 => 0.014422141471835
1218 => 0.014516326651243
1219 => 0.014618577986796
1220 => 0.014667601037229
1221 => 0.014587720607271
1222 => 0.015142011598431
1223 => 0.015188810741122
1224 => 0.015204502088855
1225 => 0.015017598285319
1226 => 0.015183612608239
1227 => 0.015105940004362
1228 => 0.015308022541581
1229 => 0.015339711663736
1230 => 0.015312872104644
1231 => 0.015322930732194
]
'min_raw' => 0.006871308270543
'max_raw' => 0.015339711663736
'avg_raw' => 0.011105509967139
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.006871'
'max' => '$0.015339'
'avg' => '$0.0111055'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0010595417935339
'max_diff' => -0.0014638143764973
'year' => 2031
]
6 => [
'items' => [
101 => 0.014849941154871
102 => 0.014825414150068
103 => 0.014490986699221
104 => 0.014627268357404
105 => 0.014372496329581
106 => 0.014453287164047
107 => 0.014488898994076
108 => 0.014470297395022
109 => 0.014634973517882
110 => 0.014494965172342
111 => 0.014125460128957
112 => 0.01375585441417
113 => 0.013751214315495
114 => 0.013653903654875
115 => 0.013583565870583
116 => 0.013597115423204
117 => 0.013644865813939
118 => 0.013580790531068
119 => 0.013594464241367
120 => 0.0138215389398
121 => 0.013867077151148
122 => 0.01371232051606
123 => 0.013090950294904
124 => 0.012938464484043
125 => 0.013048068260965
126 => 0.012995684714984
127 => 0.010488531836598
128 => 0.01107755021625
129 => 0.010727575496235
130 => 0.01088885994878
131 => 0.010531626385159
201 => 0.010702116965934
202 => 0.010670633580984
203 => 0.011617757705145
204 => 0.011602969664673
205 => 0.011610047917081
206 => 0.011272184487343
207 => 0.011810410104907
208 => 0.012075559398086
209 => 0.012026487320639
210 => 0.012038837705316
211 => 0.01182661717778
212 => 0.011612102675678
213 => 0.011374173079302
214 => 0.011816216860382
215 => 0.011767069137865
216 => 0.011879796330527
217 => 0.0121664933205
218 => 0.012208710541329
219 => 0.012265450914249
220 => 0.012245113529612
221 => 0.012729632541012
222 => 0.012670954091772
223 => 0.012812352271498
224 => 0.012521485487896
225 => 0.012192342112921
226 => 0.012254901507996
227 => 0.012248876535179
228 => 0.012172171716082
229 => 0.012102926035105
301 => 0.011987651486128
302 => 0.012352397216515
303 => 0.012337589205965
304 => 0.012577313684336
305 => 0.012534940054225
306 => 0.012251958581754
307 => 0.012262065320404
308 => 0.012330037994956
309 => 0.012565292197681
310 => 0.012635131662377
311 => 0.012602779239708
312 => 0.012679355024455
313 => 0.012739877402473
314 => 0.012686955703315
315 => 0.013436215361399
316 => 0.013125070513161
317 => 0.01327672034726
318 => 0.01331288793912
319 => 0.013220245413094
320 => 0.013240336259709
321 => 0.013270768417902
322 => 0.013455546523227
323 => 0.013940457737576
324 => 0.014155221613508
325 => 0.014801349330515
326 => 0.01413738846327
327 => 0.01409799177315
328 => 0.014214378886171
329 => 0.014593724255619
330 => 0.014901148047457
331 => 0.015003138254914
401 => 0.015016617944504
402 => 0.015207958353874
403 => 0.015317631108238
404 => 0.015184724595424
405 => 0.015072100241707
406 => 0.014668693786141
407 => 0.014715389181812
408 => 0.01503707415239
409 => 0.015491473120481
410 => 0.015881394707259
411 => 0.015744857757709
412 => 0.016786538302712
413 => 0.016889816673865
414 => 0.016875546942362
415 => 0.017110830441732
416 => 0.016643840610133
417 => 0.016444193409623
418 => 0.015096450905321
419 => 0.015475111575328
420 => 0.016025517097143
421 => 0.015952668862416
422 => 0.015552949660092
423 => 0.0158810914844
424 => 0.01577259753534
425 => 0.015687023856299
426 => 0.016079053469262
427 => 0.01564800080612
428 => 0.016021217017091
429 => 0.015542563366093
430 => 0.015745481446993
501 => 0.015630295330231
502 => 0.015704834864456
503 => 0.015269078270472
504 => 0.015504201951192
505 => 0.015259296352339
506 => 0.015259180235198
507 => 0.015253773930529
508 => 0.015541904281502
509 => 0.015551300201903
510 => 0.015338371437193
511 => 0.015307685075626
512 => 0.015421148637713
513 => 0.015288312522664
514 => 0.015350465704835
515 => 0.015290195079235
516 => 0.015276626891919
517 => 0.015168513266948
518 => 0.015121934944664
519 => 0.015140199505007
520 => 0.01507785314453
521 => 0.015040287207177
522 => 0.015246301120069
523 => 0.015136236196988
524 => 0.015229432092053
525 => 0.015123223607367
526 => 0.014755058726609
527 => 0.014543323210412
528 => 0.013847893879562
529 => 0.014045116775113
530 => 0.014175875758906
531 => 0.014132659915543
601 => 0.014225504269398
602 => 0.014231204158675
603 => 0.0142010195128
604 => 0.01416606955977
605 => 0.014149057855488
606 => 0.014275849161775
607 => 0.014349455782673
608 => 0.014188999172259
609 => 0.014151406433466
610 => 0.014313636925646
611 => 0.014412597432159
612 => 0.015143266211145
613 => 0.015089135907969
614 => 0.015224992346406
615 => 0.015209696996325
616 => 0.015352096187434
617 => 0.015584858682511
618 => 0.015111587448603
619 => 0.015193730970322
620 => 0.015173591275767
621 => 0.015393471180001
622 => 0.015394157621061
623 => 0.015262328634657
624 => 0.015333795266868
625 => 0.015293904553352
626 => 0.015365992464228
627 => 0.015088412964768
628 => 0.015426474832255
629 => 0.015618134126895
630 => 0.015620795316387
701 => 0.015711640300944
702 => 0.01580394406664
703 => 0.015981113106931
704 => 0.015799002918265
705 => 0.015471404416925
706 => 0.015495055970585
707 => 0.015302985089113
708 => 0.015306213835331
709 => 0.015288978534978
710 => 0.01534070296875
711 => 0.015099763569264
712 => 0.01515631156474
713 => 0.015077144039928
714 => 0.015193558875584
715 => 0.01506831575648
716 => 0.015173581563797
717 => 0.015219010796618
718 => 0.015386645643749
719 => 0.015043555953259
720 => 0.014343972849222
721 => 0.014491033699316
722 => 0.014273519150646
723 => 0.014293650950262
724 => 0.014334320389437
725 => 0.014202497430856
726 => 0.014227645097135
727 => 0.014226746645534
728 => 0.01421900427502
729 => 0.014184712032249
730 => 0.014134981495718
731 => 0.014333092647008
801 => 0.014366755592061
802 => 0.014441584148958
803 => 0.014664223177589
804 => 0.014641976288439
805 => 0.014678261887657
806 => 0.014599050628298
807 => 0.0142973253334
808 => 0.014313710468557
809 => 0.014109387570593
810 => 0.014436359153077
811 => 0.014358927966531
812 => 0.014309007576845
813 => 0.01429538633601
814 => 0.014518577243729
815 => 0.014585359461407
816 => 0.014543745264938
817 => 0.014458393333899
818 => 0.014622294273527
819 => 0.014666147250545
820 => 0.014675964314864
821 => 0.014966365354996
822 => 0.014692194507055
823 => 0.014758190155178
824 => 0.015273069362547
825 => 0.014806144969937
826 => 0.015053485234359
827 => 0.015041379215512
828 => 0.015167910125253
829 => 0.015030999987753
830 => 0.015032697152993
831 => 0.015145048028896
901 => 0.014987271486277
902 => 0.014948203795508
903 => 0.014894232060519
904 => 0.015012077369352
905 => 0.015082720302312
906 => 0.015652050460453
907 => 0.016019863707221
908 => 0.016003895964141
909 => 0.016149811245535
910 => 0.016084075074836
911 => 0.015871795639323
912 => 0.016234130751024
913 => 0.016119472760937
914 => 0.016128925026331
915 => 0.01612857321254
916 => 0.016204810752373
917 => 0.016150789468334
918 => 0.016044307972321
919 => 0.016114995358658
920 => 0.016324911624874
921 => 0.016976498156227
922 => 0.017341134611545
923 => 0.016954546583765
924 => 0.017221209828708
925 => 0.017061306903572
926 => 0.017032247785375
927 => 0.017199732009457
928 => 0.017367509392503
929 => 0.017356822698525
930 => 0.017235024933897
1001 => 0.017166224467163
1002 => 0.017687204651121
1003 => 0.018071053975995
1004 => 0.018044878025397
1005 => 0.018160410158461
1006 => 0.018499616074412
1007 => 0.018530628812299
1008 => 0.018526721920145
1009 => 0.018449853613446
1010 => 0.018783845889153
1011 => 0.019062468121583
1012 => 0.018432060821384
1013 => 0.018672111668662
1014 => 0.018779878227961
1015 => 0.018938111509908
1016 => 0.019205077579531
1017 => 0.019495073540394
1018 => 0.019536082148904
1019 => 0.019506984578724
1020 => 0.019315724447025
1021 => 0.019633041487773
1022 => 0.019818918368242
1023 => 0.019929603796845
1024 => 0.020210283627483
1025 => 0.018780543757543
1026 => 0.017768502814917
1027 => 0.017610458007678
1028 => 0.017931848338004
1029 => 0.018016596405072
1030 => 0.017982434565502
1031 => 0.01684329047384
1101 => 0.017604460649787
1102 => 0.0184234157581
1103 => 0.01845487515911
1104 => 0.018864861209875
1105 => 0.0189983694739
1106 => 0.019328461982866
1107 => 0.019307814606556
1108 => 0.01938818687957
1109 => 0.019369710685858
1110 => 0.019981137549539
1111 => 0.020655632177947
1112 => 0.020632276573727
1113 => 0.020535309990635
1114 => 0.020679321901786
1115 => 0.021375472641541
1116 => 0.021311382237012
1117 => 0.021373640605804
1118 => 0.022194441561311
1119 => 0.023261599561045
1120 => 0.022765797529257
1121 => 0.023841545275045
1122 => 0.024518671458081
1123 => 0.025689691175487
1124 => 0.025543073739474
1125 => 0.02599894312212
1126 => 0.025280597929028
1127 => 0.023631132164173
1128 => 0.023370097892983
1129 => 0.023892695114345
1130 => 0.025177449388773
1201 => 0.023852233630191
1202 => 0.024120323052188
1203 => 0.024043113280618
1204 => 0.024038999100011
1205 => 0.024196020640182
1206 => 0.023968252706471
1207 => 0.023040285169863
1208 => 0.023465567223343
1209 => 0.023301345398773
1210 => 0.023483561756682
1211 => 0.024466908288574
1212 => 0.024032147346771
1213 => 0.023574162011692
1214 => 0.024148577256963
1215 => 0.024880005254686
1216 => 0.024834233805091
1217 => 0.024745418061894
1218 => 0.025246067756049
1219 => 0.026072994374196
1220 => 0.026296509316221
1221 => 0.026461503476862
1222 => 0.026484253384016
1223 => 0.026718591566682
1224 => 0.025458496097658
1225 => 0.027458299968546
1226 => 0.027803610853581
1227 => 0.027738706718864
1228 => 0.028122505234677
1229 => 0.028009581975296
1230 => 0.02784597388957
1231 => 0.028454376173419
]
'min_raw' => 0.010488531836598
'max_raw' => 0.028454376173419
'avg_raw' => 0.019471454005008
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.010488'
'max' => '$0.028454'
'avg' => '$0.019471'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0036172235660546
'max_diff' => 0.013114664509683
'year' => 2032
]
7 => [
'items' => [
101 => 0.027756892050519
102 => 0.026766901148871
103 => 0.026223772560427
104 => 0.026939008098623
105 => 0.027375777483519
106 => 0.027664454263185
107 => 0.027751807682289
108 => 0.025556313721887
109 => 0.024373064244908
110 => 0.025131513593669
111 => 0.026056874144535
112 => 0.025453355673076
113 => 0.025477012454545
114 => 0.024616553716109
115 => 0.02613300564999
116 => 0.025912071358592
117 => 0.027058278853191
118 => 0.026784727235715
119 => 0.027719414952043
120 => 0.027473280351537
121 => 0.028494971317035
122 => 0.028902551504351
123 => 0.029586942073645
124 => 0.030090382562389
125 => 0.030386012446661
126 => 0.030368263937289
127 => 0.031539696820999
128 => 0.030848943776223
129 => 0.029981195153991
130 => 0.029965500319127
131 => 0.030414919626674
201 => 0.031356779203126
202 => 0.031600989687801
203 => 0.031737470032927
204 => 0.031528445633451
205 => 0.030778682710063
206 => 0.030454938881129
207 => 0.030730778003143
208 => 0.030393450460046
209 => 0.030975772436823
210 => 0.031775424888201
211 => 0.03161029981916
212 => 0.03216228816803
213 => 0.032733538038243
214 => 0.033550451009085
215 => 0.033764022309863
216 => 0.034117047548659
217 => 0.03448042648213
218 => 0.034597134002225
219 => 0.034819964870301
220 => 0.034818790441634
221 => 0.035490306260829
222 => 0.036231009004516
223 => 0.03651060714295
224 => 0.037153527645147
225 => 0.036052548815756
226 => 0.036887653904982
227 => 0.0376409395995
228 => 0.036742841340172
301 => 0.0379806605606
302 => 0.03802872227597
303 => 0.038754397116569
304 => 0.038018786643144
305 => 0.037581983492177
306 => 0.03884301782222
307 => 0.039453192612318
308 => 0.039269402999773
309 => 0.037870754973495
310 => 0.037056681831365
311 => 0.034926095395429
312 => 0.03744986706328
313 => 0.038679122623261
314 => 0.037867571498561
315 => 0.03827687068075
316 => 0.040509874303067
317 => 0.041360057506168
318 => 0.041183225343152
319 => 0.041213107067796
320 => 0.041671850492273
321 => 0.04370617147102
322 => 0.042487159185363
323 => 0.043419048402229
324 => 0.043913319082678
325 => 0.044372425236683
326 => 0.043245005624436
327 => 0.041778249273987
328 => 0.041313665967556
329 => 0.037786878733134
330 => 0.037603294141522
331 => 0.037500242547067
401 => 0.036850516820969
402 => 0.03634001037511
403 => 0.035934036695475
404 => 0.034868640526107
405 => 0.035228180458236
406 => 0.033530161329726
407 => 0.034616493794044
408 => 0.031906414264836
409 => 0.034163449027208
410 => 0.032935047620827
411 => 0.033759886127462
412 => 0.033757008343617
413 => 0.032238219137615
414 => 0.031362213219915
415 => 0.031920438285334
416 => 0.032518899867424
417 => 0.032615998245651
418 => 0.033391919308276
419 => 0.033608462198487
420 => 0.032952327131726
421 => 0.03185025389032
422 => 0.032106240368685
423 => 0.031357025662102
424 => 0.030044055706943
425 => 0.030987053650994
426 => 0.031309034609786
427 => 0.031451239744039
428 => 0.030160084588758
429 => 0.029754375606627
430 => 0.029538379548768
501 => 0.031683581973406
502 => 0.031801101004748
503 => 0.031199857024884
504 => 0.033917536826162
505 => 0.033302442187284
506 => 0.033989653600756
507 => 0.032083012278896
508 => 0.032155848545025
509 => 0.031253213987973
510 => 0.031758629025859
511 => 0.031401417967369
512 => 0.031717796485407
513 => 0.031907432464641
514 => 0.032809918908243
515 => 0.03417375397271
516 => 0.03267511752884
517 => 0.032022140169377
518 => 0.032427243650704
519 => 0.03350608760539
520 => 0.035140591421746
521 => 0.034172932265008
522 => 0.03460236296685
523 => 0.034696174471161
524 => 0.033982658433672
525 => 0.035166899775797
526 => 0.035801544331801
527 => 0.036452558325075
528 => 0.037017815534437
529 => 0.036192529020057
530 => 0.037075703890618
531 => 0.036364020846297
601 => 0.035725567583101
602 => 0.035726535853159
603 => 0.035326024794842
604 => 0.034549984151711
605 => 0.034406870350518
606 => 0.035151366417604
607 => 0.035748381759367
608 => 0.035797554802425
609 => 0.036128093171381
610 => 0.036323702373313
611 => 0.038240938470062
612 => 0.039012066688383
613 => 0.039954987677036
614 => 0.040322308542232
615 => 0.041427812654652
616 => 0.040535028299218
617 => 0.040341868788044
618 => 0.037660277418952
619 => 0.038099387855416
620 => 0.038802446032048
621 => 0.037671870589333
622 => 0.038388960485141
623 => 0.038530529220614
624 => 0.037633454068409
625 => 0.038112620667531
626 => 0.036840096243259
627 => 0.034201491527751
628 => 0.03516983729713
629 => 0.035882865725055
630 => 0.034865286242635
701 => 0.036689258079108
702 => 0.035623731386662
703 => 0.035286010579458
704 => 0.033968441304394
705 => 0.034590283284332
706 => 0.035431333466117
707 => 0.034911662236352
708 => 0.035990058067143
709 => 0.037517354161206
710 => 0.03860579630989
711 => 0.038689353382826
712 => 0.037989558001182
713 => 0.0391109845663
714 => 0.039119152934538
715 => 0.037854179187923
716 => 0.037079389811524
717 => 0.036903356035036
718 => 0.037343122922159
719 => 0.037877081108572
720 => 0.038718984346011
721 => 0.03922772883996
722 => 0.040554264662949
723 => 0.040913187221887
724 => 0.041307534295639
725 => 0.041834503598306
726 => 0.042467265358314
727 => 0.041082818650564
728 => 0.041137825299195
729 => 0.039848647693908
730 => 0.038470976535889
731 => 0.039516457215691
801 => 0.040883284130066
802 => 0.040569732525699
803 => 0.040534451564929
804 => 0.040593784354821
805 => 0.040357376684766
806 => 0.039288113554785
807 => 0.038751136304851
808 => 0.039443973954773
809 => 0.039812186331051
810 => 0.040383251615165
811 => 0.040312855765172
812 => 0.041783858609113
813 => 0.042355445833452
814 => 0.04220920936187
815 => 0.042236120392018
816 => 0.043270951759119
817 => 0.044421897068638
818 => 0.045499909231612
819 => 0.046596509505489
820 => 0.045274515074293
821 => 0.044603287831413
822 => 0.045295823010092
823 => 0.044928354096146
824 => 0.047039939474037
825 => 0.04718614106416
826 => 0.049297573750394
827 => 0.051301574794356
828 => 0.050042897644051
829 => 0.051229773504725
830 => 0.052513476515452
831 => 0.054989947896453
901 => 0.054155959458645
902 => 0.05351713738555
903 => 0.052913453613241
904 => 0.054169623711316
905 => 0.055785666474683
906 => 0.056133746607648
907 => 0.056697769399894
908 => 0.056104768399273
909 => 0.056818972787604
910 => 0.059340428115723
911 => 0.058659108628564
912 => 0.057691525429224
913 => 0.05968197224763
914 => 0.060402307213545
915 => 0.065457995246689
916 => 0.071841010228589
917 => 0.069198400112946
918 => 0.067558046737671
919 => 0.067943568690563
920 => 0.07027442968326
921 => 0.071023028256284
922 => 0.068988079277402
923 => 0.069706857658847
924 => 0.073667397209344
925 => 0.075792099608863
926 => 0.072906468364713
927 => 0.064945126207897
928 => 0.05760440514868
929 => 0.059551494930562
930 => 0.059330755374527
1001 => 0.063585861034164
1002 => 0.058642859384122
1003 => 0.058726086854875
1004 => 0.063069183593318
1005 => 0.061910519843029
1006 => 0.060033632958002
1007 => 0.057618108500028
1008 => 0.053152788130494
1009 => 0.049197729354527
1010 => 0.056954510409837
1011 => 0.056620023905941
1012 => 0.056135637880177
1013 => 0.057213586564472
1014 => 0.06244779939434
1015 => 0.062327133847118
1016 => 0.061559521199795
1017 => 0.062141748627362
1018 => 0.059931565674922
1019 => 0.060501180146696
1020 => 0.05760324234096
1021 => 0.058913231257726
1022 => 0.0600296060017
1023 => 0.060253734759763
1024 => 0.060758708295978
1025 => 0.056443764717572
1026 => 0.058381047704189
1027 => 0.059519019959958
1028 => 0.054377619908607
1029 => 0.059417391011804
1030 => 0.056368651149755
1031 => 0.055333863050039
1101 => 0.056727068903341
1102 => 0.056184135227372
1103 => 0.055717352734909
1104 => 0.055456880083774
1105 => 0.056479896699919
1106 => 0.056432171752007
1107 => 0.054758318009024
1108 => 0.052574844036309
1109 => 0.053307689571642
1110 => 0.053041439918192
1111 => 0.052076516827201
1112 => 0.052726758485271
1113 => 0.049863423302902
1114 => 0.04493720394485
1115 => 0.048191615346959
1116 => 0.048066324048096
1117 => 0.048003146493702
1118 => 0.050448746717062
1119 => 0.050213658685183
1120 => 0.049786971605334
1121 => 0.052068680384367
1122 => 0.051235825986706
1123 => 0.053802486995122
1124 => 0.055493055936491
1125 => 0.055064272968784
1126 => 0.05665426122937
1127 => 0.053324572852636
1128 => 0.054430561767476
1129 => 0.054658504549991
1130 => 0.052040524452214
1201 => 0.050252121994581
1202 => 0.050132855939938
1203 => 0.047032012535442
1204 => 0.04868845805299
1205 => 0.05014606156006
1206 => 0.049447982594775
1207 => 0.049226991648882
1208 => 0.050355986464362
1209 => 0.050443719030712
1210 => 0.048443407220462
1211 => 0.048859335387449
1212 => 0.050593824986093
1213 => 0.048815630699806
1214 => 0.045360889667938
1215 => 0.044504066126503
1216 => 0.044389750071684
1217 => 0.04206597667178
1218 => 0.044561323172602
1219 => 0.043472037553865
1220 => 0.046913077771811
1221 => 0.044947574053989
1222 => 0.044862845117116
1223 => 0.044734764902
1224 => 0.042734597142833
1225 => 0.043172506764798
1226 => 0.044628185043729
1227 => 0.045147587453041
1228 => 0.045093409526412
1229 => 0.04462105142602
1230 => 0.044837294545515
1231 => 0.044140700113526
]
'min_raw' => 0.024373064244908
'max_raw' => 0.075792099608863
'avg_raw' => 0.050082581926885
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.024373'
'max' => '$0.075792'
'avg' => '$0.050082'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.01388453240831
'max_diff' => 0.047337723435444
'year' => 2033
]
8 => [
'items' => [
101 => 0.043894718121231
102 => 0.043118331290872
103 => 0.04197725713258
104 => 0.042135930492905
105 => 0.039875164007034
106 => 0.038643378437572
107 => 0.038302436426618
108 => 0.037846514520623
109 => 0.038353934019062
110 => 0.03986875953963
111 => 0.038041558573663
112 => 0.034908950680759
113 => 0.035097225752827
114 => 0.035520223940393
115 => 0.034731969616277
116 => 0.033985953051673
117 => 0.03463455392836
118 => 0.033307226667696
119 => 0.035680625098463
120 => 0.035616431322283
121 => 0.036501087487298
122 => 0.037054281142254
123 => 0.035779348866153
124 => 0.035458706846497
125 => 0.03564135911326
126 => 0.032622524006614
127 => 0.036254384254176
128 => 0.036285792732414
129 => 0.036016854273106
130 => 0.037950707733828
131 => 0.042031741719972
201 => 0.040496292575173
202 => 0.039901720257111
203 => 0.038771437845845
204 => 0.040277472049328
205 => 0.040161832120294
206 => 0.039638864506061
207 => 0.039322572061214
208 => 0.0399053505889
209 => 0.03925035935231
210 => 0.039132704928263
211 => 0.038419847127814
212 => 0.038165389326017
213 => 0.037976998899823
214 => 0.037769599551445
215 => 0.03822707083327
216 => 0.037190380723296
217 => 0.035940234078652
218 => 0.035836297911924
219 => 0.036123274806422
220 => 0.035996308893524
221 => 0.035835690047981
222 => 0.0355290249299
223 => 0.035438043940228
224 => 0.035733688018958
225 => 0.035399923091193
226 => 0.035892411423227
227 => 0.035758481847536
228 => 0.03501036212481
301 => 0.034077927960896
302 => 0.03406962734099
303 => 0.033868735929873
304 => 0.03361287051359
305 => 0.033541694608188
306 => 0.03457993057162
307 => 0.036729047944137
308 => 0.036307124779892
309 => 0.036612007506484
310 => 0.038111728767793
311 => 0.038588445058571
312 => 0.038250083127021
313 => 0.03778691244586
314 => 0.0378072896052
315 => 0.039390084034027
316 => 0.039488800981058
317 => 0.039738226858911
318 => 0.040058809599696
319 => 0.038304679754016
320 => 0.037724670247215
321 => 0.03744982956519
322 => 0.036603426641284
323 => 0.037516199629614
324 => 0.036984365898151
325 => 0.037056128438552
326 => 0.037009392989973
327 => 0.037034913705134
328 => 0.035679961685231
329 => 0.036173634987102
330 => 0.03535280737323
331 => 0.034253811340479
401 => 0.034250127120419
402 => 0.034519104842489
403 => 0.034359106368303
404 => 0.033928554588205
405 => 0.033989712436421
406 => 0.033453905332738
407 => 0.034054769119908
408 => 0.03407199974333
409 => 0.033840634455998
410 => 0.034766348023358
411 => 0.035145613627216
412 => 0.03499332403877
413 => 0.035134928583718
414 => 0.036324657592235
415 => 0.036518635332139
416 => 0.036604787430754
417 => 0.036489355031576
418 => 0.035156674645977
419 => 0.035215784688073
420 => 0.034782074419303
421 => 0.034415634945454
422 => 0.034430290602686
423 => 0.034618688126042
424 => 0.035441431159904
425 => 0.037172845371315
426 => 0.037238551274991
427 => 0.037318188747022
428 => 0.036994263125684
429 => 0.036896564058737
430 => 0.037025454346308
501 => 0.03767568249068
502 => 0.039348245813223
503 => 0.038757050228288
504 => 0.038276399015229
505 => 0.038698059711719
506 => 0.03863314835258
507 => 0.038085231156965
508 => 0.038069852946179
509 => 0.03701822466807
510 => 0.036629461638071
511 => 0.036304582151795
512 => 0.035949822233975
513 => 0.035739508663031
514 => 0.036062645893809
515 => 0.036136551201735
516 => 0.035430005999167
517 => 0.035333706498831
518 => 0.035910686563086
519 => 0.035656779148792
520 => 0.035917929220994
521 => 0.035978518277849
522 => 0.035968762044211
523 => 0.035703653542608
524 => 0.03587262579588
525 => 0.035472956043837
526 => 0.035038375216947
527 => 0.034761139724732
528 => 0.034519214987824
529 => 0.034653448892609
530 => 0.034174929532193
531 => 0.034021841558104
601 => 0.035815381798468
602 => 0.037140289257832
603 => 0.037121024578651
604 => 0.037003755798616
605 => 0.036829518178586
606 => 0.037662935923516
607 => 0.037372589845896
608 => 0.037583840876591
609 => 0.037637613130081
610 => 0.037800365546227
611 => 0.037858535545957
612 => 0.037682705405112
613 => 0.037092597976592
614 => 0.035622106370452
615 => 0.034937588558277
616 => 0.034711686278714
617 => 0.034719897397526
618 => 0.034493398084625
619 => 0.034560112283262
620 => 0.034470197608928
621 => 0.034299920968435
622 => 0.034642934789886
623 => 0.034682463937413
624 => 0.034602400412776
625 => 0.03462125827117
626 => 0.033958366482758
627 => 0.034008764705706
628 => 0.033728140996037
629 => 0.033675527433443
630 => 0.032966135132102
701 => 0.031709343842217
702 => 0.032405728216495
703 => 0.031564593818828
704 => 0.031246043477165
705 => 0.032754011249854
706 => 0.032602653109991
707 => 0.032343593768348
708 => 0.031960391009361
709 => 0.031818257378496
710 => 0.030954698431398
711 => 0.030903674761896
712 => 0.03133167789413
713 => 0.031134169175293
714 => 0.030856792131643
715 => 0.029852160596805
716 => 0.028722622129577
717 => 0.028756715795877
718 => 0.029116000966492
719 => 0.030160671056262
720 => 0.029752500379213
721 => 0.029456367869795
722 => 0.029400911152491
723 => 0.030095068076045
724 => 0.031077445553246
725 => 0.031538355086091
726 => 0.031081607737072
727 => 0.030556920975543
728 => 0.030588856227553
729 => 0.03080130715193
730 => 0.030823632740188
731 => 0.030482115597103
801 => 0.030578250672433
802 => 0.030432212702231
803 => 0.029535977948664
804 => 0.029519767903963
805 => 0.0292998174417
806 => 0.029293157429117
807 => 0.028918966823594
808 => 0.028866614971223
809 => 0.028123636812211
810 => 0.028612667286418
811 => 0.028284651319572
812 => 0.027790253886391
813 => 0.02770501958256
814 => 0.027702457336464
815 => 0.028210092955098
816 => 0.028606735268654
817 => 0.028290357297751
818 => 0.028218324166506
819 => 0.028987449554167
820 => 0.028889571337854
821 => 0.028804809433773
822 => 0.030989484424973
823 => 0.029260143697123
824 => 0.028506052432462
825 => 0.027572721294398
826 => 0.027876618619216
827 => 0.027940654250735
828 => 0.025696161109272
829 => 0.024785570521315
830 => 0.02447309014641
831 => 0.024293253272828
901 => 0.024375207194369
902 => 0.023555568863584
903 => 0.024106379377438
904 => 0.023396641865282
905 => 0.023277652061683
906 => 0.024546750653025
907 => 0.024723338308044
908 => 0.023969960510249
909 => 0.02445375101722
910 => 0.024278321854201
911 => 0.023408808277857
912 => 0.02337559925495
913 => 0.022939307907221
914 => 0.022256596430676
915 => 0.021944578966301
916 => 0.021782077561795
917 => 0.021849128808383
918 => 0.021815225646306
919 => 0.02159398458077
920 => 0.021827906925207
921 => 0.021230331998556
922 => 0.020992372847775
923 => 0.020884892219978
924 => 0.020354510077446
925 => 0.021198583928224
926 => 0.021364877110189
927 => 0.021531497941094
928 => 0.022981818517245
929 => 0.022909364599824
930 => 0.023564312726822
1001 => 0.023538862646979
1002 => 0.023352060831703
1003 => 0.022563974700461
1004 => 0.022878091786089
1005 => 0.021911288221158
1006 => 0.022635683188256
1007 => 0.02230509957673
1008 => 0.022523912536662
1009 => 0.022130467105134
1010 => 0.022348216051906
1011 => 0.021404311392704
1012 => 0.020522906503038
1013 => 0.020877609560452
1014 => 0.021263212349076
1015 => 0.022099297444577
1016 => 0.021601332059249
1017 => 0.021780419241969
1018 => 0.02118050715869
1019 => 0.019942717174471
1020 => 0.019949722931358
1021 => 0.019759315909006
1022 => 0.019594776441814
1023 => 0.021658529373981
1024 => 0.02140186907376
1025 => 0.020992914476228
1026 => 0.021540316456235
1027 => 0.021685058228186
1028 => 0.021689178822951
1029 => 0.022088549177074
1030 => 0.02230169320666
1031 => 0.022339260765694
1101 => 0.022967678646874
1102 => 0.023178316031613
1103 => 0.024045901608835
1104 => 0.022283609424904
1105 => 0.022247316177085
1106 => 0.021548019524675
1107 => 0.021104514532274
1108 => 0.02157838669094
1109 => 0.021998172733517
1110 => 0.021561063447167
1111 => 0.021618140692083
1112 => 0.021031357188299
1113 => 0.021241104680172
1114 => 0.021421767476211
1115 => 0.021322016099107
1116 => 0.02117268345956
1117 => 0.021963755065203
1118 => 0.021919119704978
1119 => 0.02265578377081
1120 => 0.023230066089479
1121 => 0.024259282669777
1122 => 0.023185241513962
1123 => 0.023146099185317
1124 => 0.023528721726448
1125 => 0.023178257454095
1126 => 0.023399738776607
1127 => 0.024223598604633
1128 => 0.024241005464578
1129 => 0.023949418133029
1130 => 0.023931675017405
1201 => 0.023987677554044
1202 => 0.024315686160352
1203 => 0.024201069874621
1204 => 0.024333706742198
1205 => 0.02449957117611
1206 => 0.025185656799832
1207 => 0.025351069720979
1208 => 0.024949202079357
1209 => 0.024985486227875
1210 => 0.024835176698395
1211 => 0.02468997957629
1212 => 0.025016361502445
1213 => 0.025612830887545
1214 => 0.025609120282457
1215 => 0.025747489586093
1216 => 0.025833692515944
1217 => 0.02546364643662
1218 => 0.025222760045951
1219 => 0.025315131216133
1220 => 0.025462834728836
1221 => 0.025267232957662
1222 => 0.02405988821442
1223 => 0.024426119484039
1224 => 0.02436516069298
1225 => 0.02427834796167
1226 => 0.024646596335254
1227 => 0.024611077881274
1228 => 0.023547162287816
1229 => 0.023615270712243
1230 => 0.023551304186687
1231 => 0.023757993117078
]
'min_raw' => 0.019594776441814
'max_raw' => 0.043894718121231
'avg_raw' => 0.031744747281523
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.019594'
'max' => '$0.043894'
'avg' => '$0.031744'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0047782878030936
'max_diff' => -0.031897381487632
'year' => 2034
]
9 => [
'items' => [
101 => 0.023167095573559
102 => 0.02334885167819
103 => 0.023462847403157
104 => 0.023529991760919
105 => 0.023772563222472
106 => 0.023744100261208
107 => 0.023770793924836
108 => 0.024130463365827
109 => 0.025949547974715
110 => 0.026048556736393
111 => 0.025561001383138
112 => 0.025755770130159
113 => 0.025381856727121
114 => 0.025632867299583
115 => 0.025804602358284
116 => 0.025028564650767
117 => 0.024982612734171
118 => 0.02460715605751
119 => 0.024808905208594
120 => 0.024487907802942
121 => 0.024566669338276
122 => 0.024346445219174
123 => 0.024742804787374
124 => 0.025185996372671
125 => 0.025297964069284
126 => 0.025003425264621
127 => 0.024790159758992
128 => 0.024415735785133
129 => 0.025038411198243
130 => 0.025220500464726
131 => 0.025037454760844
201 => 0.024995039071627
202 => 0.024914661417204
203 => 0.025012091570983
204 => 0.025219508767475
205 => 0.025121694648004
206 => 0.025186302597178
207 => 0.024940083718354
208 => 0.02546376893727
209 => 0.026295507096619
210 => 0.026298181270804
211 => 0.026200366624078
212 => 0.026160342978084
213 => 0.026260706741514
214 => 0.026315149966038
215 => 0.026639707973404
216 => 0.02698797164627
217 => 0.028613166248191
218 => 0.028156818107293
219 => 0.029598787441376
220 => 0.030739197968352
221 => 0.031081157221284
222 => 0.030766570799013
223 => 0.029690387642049
224 => 0.029637584962165
225 => 0.031245856951479
226 => 0.030791446450974
227 => 0.030737395767861
228 => 0.030162387819611
301 => 0.030502288733147
302 => 0.030427947417311
303 => 0.030310596013363
304 => 0.030959103278686
305 => 0.032173050986728
306 => 0.0319838458521
307 => 0.031842612996074
308 => 0.031223771733234
309 => 0.031596452396663
310 => 0.031463747950644
311 => 0.032033930467066
312 => 0.031696166975427
313 => 0.030788003844508
314 => 0.030932631816451
315 => 0.030910771589443
316 => 0.031360653512239
317 => 0.031225610125772
318 => 0.030884402200866
319 => 0.032168901845435
320 => 0.032085493583279
321 => 0.032203747429232
322 => 0.032255806429343
323 => 0.033037658727569
324 => 0.033357958597669
325 => 0.03343067227582
326 => 0.033734932379534
327 => 0.033423102007265
328 => 0.034670645827629
329 => 0.035500189671971
330 => 0.036463747535111
331 => 0.037871764553095
401 => 0.038401191976742
402 => 0.038305555651382
403 => 0.039373098084941
404 => 0.041291448107912
405 => 0.03869330903875
406 => 0.041429155787352
407 => 0.040563018293615
408 => 0.03850942187711
409 => 0.038377194478199
410 => 0.0397679138142
411 => 0.042852395449675
412 => 0.04207976778389
413 => 0.04285365919175
414 => 0.041950873756819
415 => 0.041906042850701
416 => 0.04280981291823
417 => 0.044921520942954
418 => 0.043918327616599
419 => 0.042480003990175
420 => 0.043542039773133
421 => 0.042622006091163
422 => 0.040548912704472
423 => 0.042079176970075
424 => 0.041055932835083
425 => 0.041354569872324
426 => 0.043505276847998
427 => 0.04324649809462
428 => 0.043581381763759
429 => 0.042990320853161
430 => 0.042438176760912
501 => 0.041407558809971
502 => 0.041102443643548
503 => 0.041186766498653
504 => 0.041102401857329
505 => 0.040525780585645
506 => 0.040401259276925
507 => 0.040193718306989
508 => 0.04025804393183
509 => 0.039867806190098
510 => 0.040604265435979
511 => 0.040740958761671
512 => 0.041276892385218
513 => 0.041332534791907
514 => 0.042825102304949
515 => 0.042003021200344
516 => 0.042554544180381
517 => 0.042505210773911
518 => 0.038553929538505
519 => 0.039098381230294
520 => 0.039945377204366
521 => 0.039563806666123
522 => 0.039024355198802
523 => 0.038588719215382
524 => 0.037928686154436
525 => 0.038857670012906
526 => 0.040079185000375
527 => 0.041363514427796
528 => 0.042906552082244
529 => 0.04256216404071
530 => 0.04133466841216
531 => 0.041389732969371
601 => 0.041730120394942
602 => 0.041289287751369
603 => 0.041159277598703
604 => 0.041712258996408
605 => 0.04171606707538
606 => 0.041208835842544
607 => 0.040645141149583
608 => 0.040642779248237
609 => 0.040542475222269
610 => 0.041968717620212
611 => 0.042753006729709
612 => 0.042842924212168
613 => 0.042746954566715
614 => 0.042783889474351
615 => 0.042327528922165
616 => 0.043370633814943
617 => 0.044327890016938
618 => 0.044071324906008
619 => 0.043686697331843
620 => 0.043380322942847
621 => 0.043999152836678
622 => 0.043971597315635
623 => 0.044319529219106
624 => 0.044303745018212
625 => 0.044186748605456
626 => 0.044071329084318
627 => 0.044528954439198
628 => 0.044397165686231
629 => 0.044265172228929
630 => 0.044000439143124
701 => 0.044036420766236
702 => 0.043651859603445
703 => 0.043473944013216
704 => 0.040798520415369
705 => 0.040083559808036
706 => 0.040308500969468
707 => 0.040382557440406
708 => 0.040071405667848
709 => 0.040517517381364
710 => 0.040447991343362
711 => 0.040718476485857
712 => 0.040549489111926
713 => 0.040556424412697
714 => 0.041053380247522
715 => 0.041197648640573
716 => 0.041124272571478
717 => 0.041175662655087
718 => 0.042359925441464
719 => 0.042191561143833
720 => 0.042102120966342
721 => 0.042126896506752
722 => 0.042429501039552
723 => 0.042514213787141
724 => 0.042155279922947
725 => 0.042324555208273
726 => 0.043045307888957
727 => 0.043297530536128
728 => 0.044102504152158
729 => 0.043760537052804
730 => 0.044388232463659
731 => 0.046317554159493
801 => 0.047858829829031
802 => 0.046441409027413
803 => 0.049271765514247
804 => 0.051475604029772
805 => 0.051391017036861
806 => 0.051006726815976
807 => 0.04849771525813
808 => 0.046188885415344
809 => 0.048120319616928
810 => 0.04812524323991
811 => 0.04795933132909
812 => 0.046928866700203
813 => 0.047923473393666
814 => 0.048002421661113
815 => 0.047958231625382
816 => 0.047168176810466
817 => 0.045961909134626
818 => 0.046197610951088
819 => 0.04658369533464
820 => 0.045852757050936
821 => 0.045619177980181
822 => 0.046053445912952
823 => 0.047452747675658
824 => 0.047188217783022
825 => 0.047181309838476
826 => 0.048313080897307
827 => 0.047502977070665
828 => 0.046200583905816
829 => 0.045871712455236
830 => 0.044704440360031
831 => 0.04551067935387
901 => 0.045539694459938
902 => 0.045098125602576
903 => 0.046236414784966
904 => 0.046225925249758
905 => 0.047306561416451
906 => 0.049372331898759
907 => 0.048761381916749
908 => 0.04805091355884
909 => 0.048128161168495
910 => 0.048975376783069
911 => 0.048463130882446
912 => 0.048647338079815
913 => 0.048975097963413
914 => 0.049172843639008
915 => 0.048099708608911
916 => 0.047849509499413
917 => 0.047337689929334
918 => 0.047204165757066
919 => 0.047621032117429
920 => 0.047511202559579
921 => 0.045537255852625
922 => 0.045330967438813
923 => 0.045337294009952
924 => 0.044818571984941
925 => 0.044027396389249
926 => 0.046106558616088
927 => 0.045939572791416
928 => 0.045755233364655
929 => 0.045777813892607
930 => 0.046680307745932
1001 => 0.046156815733971
1002 => 0.047548605046422
1003 => 0.047262495004798
1004 => 0.046969047320199
1005 => 0.046928483911552
1006 => 0.046815531588762
1007 => 0.046428176046204
1008 => 0.045960420952107
1009 => 0.045651568522731
1010 => 0.042111158829438
1011 => 0.042768238274897
1012 => 0.043524148282223
1013 => 0.043785085387632
1014 => 0.043338734412531
1015 => 0.046445800703242
1016 => 0.047013491654991
1017 => 0.04529391873258
1018 => 0.044972256848496
1019 => 0.046466888802812
1020 => 0.045565443023034
1021 => 0.045971364002472
1022 => 0.045093984871833
1023 => 0.046876751528646
1024 => 0.046863169833673
1025 => 0.046169633338561
1026 => 0.046755805635096
1027 => 0.046653943773582
1028 => 0.045870942778705
1029 => 0.046901574056798
1030 => 0.046902085237053
1031 => 0.046234571439292
1101 => 0.045455061461067
1102 => 0.045315703488164
1103 => 0.045210715975691
1104 => 0.045945543510255
1105 => 0.04660438758
1106 => 0.047830333052497
1107 => 0.048138564872029
1108 => 0.049341614183816
1109 => 0.048625256894055
1110 => 0.048942808802226
1111 => 0.049287556319006
1112 => 0.049452840956221
1113 => 0.049183518509542
1114 => 0.0510523492856
1115 => 0.051210135862595
1116 => 0.051263040337013
1117 => 0.050632881114184
1118 => 0.051192609994658
1119 => 0.050930731387756
1120 => 0.051612066770943
1121 => 0.051718908858753
1122 => 0.051628417411395
1123 => 0.051662330776454
1124 => 0.050067613393429
1125 => 0.049984918884315
1126 => 0.048857373384808
1127 => 0.049316856510252
1128 => 0.048457874830833
1129 => 0.048730266769868
1130 => 0.04885033454115
1201 => 0.048787617951218
1202 => 0.049342834996762
1203 => 0.048870787084701
1204 => 0.047624975032911
1205 => 0.046378823560461
1206 => 0.046363179143817
1207 => 0.046035089457521
1208 => 0.045797940706953
1209 => 0.045843623969616
1210 => 0.046004617745804
1211 => 0.04578858345601
1212 => 0.045834685324954
1213 => 0.046600283524569
1214 => 0.046753818783506
1215 => 0.046232045983542
1216 => 0.044137052900231
1217 => 0.043622936342695
1218 => 0.043992473128878
1219 => 0.043815858346299
1220 => 0.035362817372997
1221 => 0.037348733963945
1222 => 0.036168769760959
1223 => 0.036712551553237
1224 => 0.035508113652237
1225 => 0.036082934548594
1226 => 0.035976786118135
1227 => 0.039170081228836
1228 => 0.039120222317916
1229 => 0.039144087140098
1230 => 0.038004956997867
1231 => 0.039819622245196
]
'min_raw' => 0.023167095573559
'max_raw' => 0.051718908858753
'avg_raw' => 0.037443002216156
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.023167'
'max' => '$0.051718'
'avg' => '$0.037443'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0035723191317451
'max_diff' => 0.0078241907375223
'year' => 2035
]
10 => [
'items' => [
101 => 0.040713591599282
102 => 0.040548141664064
103 => 0.040589781848279
104 => 0.03987426552293
105 => 0.039151014902169
106 => 0.038348818656272
107 => 0.039839200126696
108 => 0.039673495148845
109 => 0.040053562749266
110 => 0.041020181667503
111 => 0.041162519975042
112 => 0.041353824103826
113 => 0.041285255191612
114 => 0.042918844866585
115 => 0.042721006378174
116 => 0.043197740213226
117 => 0.04221706254464
118 => 0.041107332675856
119 => 0.041318256044109
120 => 0.041297942427608
121 => 0.041039326774662
122 => 0.040805860126669
123 => 0.040417203936581
124 => 0.041646969632312
125 => 0.041597043390881
126 => 0.042405291206739
127 => 0.042262425554386
128 => 0.041308333762815
129 => 0.041342409337803
130 => 0.041571583955757
131 => 0.042364759925168
201 => 0.042600228556427
202 => 0.042491150104625
203 => 0.042749330709249
204 => 0.042953386132273
205 => 0.042774956928689
206 => 0.045301138177555
207 => 0.044252091598284
208 => 0.044763389601801
209 => 0.044885331162898
210 => 0.044572980418304
211 => 0.044640718110365
212 => 0.044743322256421
213 => 0.045366314539319
214 => 0.047001226553915
215 => 0.047725317955956
216 => 0.04990378266504
217 => 0.047665192244856
218 => 0.04753236355353
219 => 0.047924770830968
220 => 0.049203760229108
221 => 0.050240261006936
222 => 0.050584128112105
223 => 0.050629575826681
224 => 0.051274693375832
225 => 0.051644462724275
226 => 0.051196359137089
227 => 0.05081663826535
228 => 0.049456525235469
229 => 0.049613962022143
301 => 0.050698545359774
302 => 0.052230583205818
303 => 0.053545231059093
304 => 0.05308488720098
305 => 0.056596985886271
306 => 0.056945196125281
307 => 0.056897084729235
308 => 0.057690359474331
309 => 0.056115870652907
310 => 0.055442746177465
311 => 0.050898738227835
312 => 0.052175419114005
313 => 0.054031149758893
314 => 0.05378553684941
315 => 0.052437855651269
316 => 0.053544208722055
317 => 0.053178413797994
318 => 0.052889896164542
319 => 0.054211651375282
320 => 0.052758327226362
321 => 0.054016651738773
322 => 0.052402837535905
323 => 0.053086990012947
324 => 0.052698631978246
325 => 0.052949947222068
326 => 0.051480763441899
327 => 0.052273499347258
328 => 0.051447783021962
329 => 0.051447391524913
330 => 0.051429163791267
331 => 0.05240061538619
401 => 0.052432294387824
402 => 0.051714390191394
403 => 0.051610928980917
404 => 0.051993479302266
405 => 0.051545613066054
406 => 0.051755166859141
407 => 0.051551960236971
408 => 0.051506214146134
409 => 0.051141701511291
410 => 0.050984659445717
411 => 0.051046239686104
412 => 0.050836034578873
413 => 0.050709378398315
414 => 0.051403968689064
415 => 0.051032877116409
416 => 0.051347093583352
417 => 0.050989004261991
418 => 0.049747710662064
419 => 0.049033829586304
420 => 0.046689141044019
421 => 0.047354091806034
422 => 0.047794954849191
423 => 0.047649249616057
424 => 0.047962280837268
425 => 0.047981498411916
426 => 0.047879728770925
427 => 0.047761892564156
428 => 0.047704536415451
429 => 0.048132022156883
430 => 0.048380192018292
501 => 0.047839201353558
502 => 0.047712454810075
503 => 0.048259426241034
504 => 0.048593078497944
505 => 0.051056579299959
506 => 0.050874075203543
507 => 0.051332124670927
508 => 0.051280555330242
509 => 0.051760664145063
510 => 0.052545439148171
511 => 0.05094977214031
512 => 0.051226724758861
513 => 0.051158822372562
514 => 0.05190016282121
515 => 0.051902477205171
516 => 0.051458006573504
517 => 0.051698961313643
518 => 0.051564466987945
519 => 0.05180751641248
520 => 0.050871637750068
521 => 0.052011436939027
522 => 0.052657629632129
523 => 0.0526666020183
524 => 0.052972892226328
525 => 0.053284100816817
526 => 0.053881438605705
527 => 0.053267441390091
528 => 0.052162920170624
529 => 0.052242663035088
530 => 0.051595082648243
531 => 0.051605968591541
601 => 0.051547858573071
602 => 0.051722251112818
603 => 0.050909907105599
604 => 0.051100562620404
605 => 0.0508336437832
606 => 0.051226144529437
607 => 0.050803878609184
608 => 0.051158789627976
609 => 0.051311957458199
610 => 0.051877150049192
611 => 0.05072039920395
612 => 0.048361705925354
613 => 0.048857531848907
614 => 0.048124166361687
615 => 0.048192042129648
616 => 0.048329161983279
617 => 0.047884711674837
618 => 0.047969498787449
619 => 0.047966469595149
620 => 0.047940365652408
621 => 0.047824746961697
622 => 0.047657076985705
623 => 0.048325022563959
624 => 0.048438519533478
625 => 0.048690809237419
626 => 0.049441452266607
627 => 0.04936644532661
628 => 0.049488784757754
629 => 0.049221718466473
630 => 0.048204430568936
701 => 0.048259674196092
702 => 0.047570785280238
703 => 0.048673192799007
704 => 0.048412128147494
705 => 0.048243818068338
706 => 0.048197893103858
707 => 0.048950396831925
708 => 0.049175557741413
709 => 0.049035252572607
710 => 0.048747482578029
711 => 0.04930008603918
712 => 0.049447939412916
713 => 0.049481038330673
714 => 0.050460145712629
715 => 0.049535759556798
716 => 0.049758268492115
717 => 0.051494219687479
718 => 0.049919951498174
719 => 0.050753876468419
720 => 0.050713060180661
721 => 0.051139667976956
722 => 0.050678065889617
723 => 0.050683788000714
724 => 0.051062586822909
725 => 0.050530632193864
726 => 0.050398912746818
727 => 0.050216943274116
728 => 0.050614266960541
729 => 0.050852444541147
730 => 0.052771980918682
731 => 0.054012088960063
801 => 0.053958252599435
802 => 0.054450216158136
803 => 0.054228582069071
804 => 0.053512867131363
805 => 0.054734505257893
806 => 0.054347927839149
807 => 0.054379796811858
808 => 0.054378610647102
809 => 0.054635650835383
810 => 0.054453514304599
811 => 0.054094504506492
812 => 0.054332831964761
813 => 0.055040579312195
814 => 0.057237448794969
815 => 0.058466846062179
816 => 0.057163437535806
817 => 0.058062511283963
818 => 0.057523387407801
819 => 0.057425412561956
820 => 0.057990097316827
821 => 0.058555770477608
822 => 0.058519739542739
823 => 0.058109089875649
824 => 0.05787712429856
825 => 0.059633645362449
826 => 0.060927820160767
827 => 0.060839566115779
828 => 0.0612290907686
829 => 0.062372747196827
830 => 0.062477308807855
831 => 0.062464136448187
901 => 0.062204969585378
902 => 0.063331047861521
903 => 0.064270442170941
904 => 0.062144979944688
905 => 0.062954328136102
906 => 0.063317670614798
907 => 0.063851165172379
908 => 0.064751259915087
909 => 0.065729001544009
910 => 0.06586726493073
911 => 0.065769160441339
912 => 0.06512431355396
913 => 0.066194170111209
914 => 0.066820866991222
915 => 0.067194050641566
916 => 0.068140382287002
917 => 0.063319914494249
918 => 0.059907747797745
919 => 0.059374888695801
920 => 0.060458478633253
921 => 0.060744212658291
922 => 0.060629033631078
923 => 0.056788329793538
924 => 0.059354668184948
925 => 0.062115832510245
926 => 0.062221900077175
927 => 0.063604196671642
928 => 0.064054329105052
929 => 0.065167259045355
930 => 0.065097644974571
1001 => 0.065368625704451
1002 => 0.065306331927384
1003 => 0.067367800286746
1004 => 0.069641906018135
1005 => 0.069563160967871
1006 => 0.069236231362986
1007 => 0.069721777576021
1008 => 0.072068898398797
1009 => 0.07185281312528
1010 => 0.072062721562402
1011 => 0.074830109290386
1012 => 0.078428106993081
1013 => 0.076756475827116
1014 => 0.080383434458349
1015 => 0.082666412659894
1016 => 0.086614587395115
1017 => 0.086120256473095
1018 => 0.087657251924472
1019 => 0.085235300952702
1020 => 0.079674011964469
1021 => 0.078793916694322
1022 => 0.080555889712718
1023 => 0.084887528447632
1024 => 0.080419470993962
1025 => 0.081323353197629
1026 => 0.081063035062166
1027 => 0.081049163815008
1028 => 0.081578572900589
1029 => 0.080810637409832
1030 => 0.077681930071532
1031 => 0.079115798207087
1101 => 0.078562112859946
1102 => 0.079176468032576
1103 => 0.082491889519914
1104 => 0.081026062650585
1105 => 0.079481933117852
1106 => 0.081418614221674
1107 => 0.083884674782668
1108 => 0.083730353144698
1109 => 0.083430904665595
1110 => 0.085118880063684
1111 => 0.087906920890939
1112 => 0.088660517123291
1113 => 0.089216806455417
1114 => 0.089293509355731
1115 => 0.090083596899561
1116 => 0.085835097048692
1117 => 0.092577575421236
1118 => 0.093741815178968
1119 => 0.093522986357308
1120 => 0.094816989849329
1121 => 0.094436261196276
1122 => 0.093884645112498
1123 => 0.095935915889787
1124 => 0.093584299472641
1125 => 0.090246476028777
1126 => 0.088415280072811
1127 => 0.090826746625991
1128 => 0.092299345101433
1129 => 0.093272639018847
1130 => 0.093567157170176
1201 => 0.086164895998187
1202 => 0.08217548777471
1203 => 0.084732652707301
1204 => 0.087852570411157
1205 => 0.085817765748319
1206 => 0.085897526238707
1207 => 0.082996429526758
1208 => 0.088109253097131
1209 => 0.087364357708542
1210 => 0.091228876302237
1211 => 0.090306577925152
1212 => 0.093457942818562
1213 => 0.092628082828389
1214 => 0.096072785250751
1215 => 0.097446970308626
1216 => 0.099754440895625
1217 => 0.10145182565252
1218 => 0.10244856244756
1219 => 0.10238872210905
1220 => 0.10633828986331
1221 => 0.10400936774601
1222 => 0.10108369268188
1223 => 0.10103077645036
1224 => 0.10254602502321
1225 => 0.10572157034375
1226 => 0.10654494304306
1227 => 0.10700509605541
1228 => 0.10630035569896
1229 => 0.10377247765598
1230 => 0.10268095273366
1231 => 0.103610963592
]
'min_raw' => 0.038348818656272
'max_raw' => 0.10700509605541
'avg_raw' => 0.072676957355841
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.038348'
'max' => '$0.107005'
'avg' => '$0.072676'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.015181723082713
'max_diff' => 0.055286187196656
'year' => 2036
]
11 => [
'items' => [
101 => 0.10247364022899
102 => 0.10443697943012
103 => 0.10713306349989
104 => 0.10657633280095
105 => 0.10843740005777
106 => 0.11036340887858
107 => 0.11311768799482
108 => 0.11383775854646
109 => 0.1150280077865
110 => 0.116253165231
111 => 0.11664665278326
112 => 0.11739794261253
113 => 0.11739398294429
114 => 0.11965804541244
115 => 0.122155376427
116 => 0.12309806107164
117 => 0.12526571243208
118 => 0.1215536854409
119 => 0.1243693005544
120 => 0.1269090558662
121 => 0.12388105488165
122 => 0.1280544488051
123 => 0.12821649223404
124 => 0.13066315562411
125 => 0.12818299355428
126 => 0.12671028123417
127 => 0.13096194652051
128 => 0.13301919342638
129 => 0.1323995339159
130 => 0.12768389444481
131 => 0.12493919000935
201 => 0.1177557690878
202 => 0.12626484147007
203 => 0.13040936241443
204 => 0.12767316113681
205 => 0.12905314190592
206 => 0.13658186952189
207 => 0.13944832154904
208 => 0.13885211956541
209 => 0.13895286788632
210 => 0.14049955337039
211 => 0.14735840858199
212 => 0.14324842355218
213 => 0.14639035310927
214 => 0.14805682121728
215 => 0.14960472966928
216 => 0.14580355573266
217 => 0.14085828429146
218 => 0.13929190923766
219 => 0.12740109984439
220 => 0.1267821315763
221 => 0.12643468593076
222 => 0.12424409028282
223 => 0.12252288215819
224 => 0.12115411355312
225 => 0.11756205598451
226 => 0.11877426996796
227 => 0.11304927992428
228 => 0.11671192567304
301 => 0.1075747033286
302 => 0.11518445361107
303 => 0.11104281250521
304 => 0.11382381311872
305 => 0.11381411046956
306 => 0.10869340662305
307 => 0.10573989151075
308 => 0.10762198629284
309 => 0.10963974130011
310 => 0.10996711526149
311 => 0.11258318729721
312 => 0.1133132767701
313 => 0.11110107158263
314 => 0.10738535470493
315 => 0.10824843098914
316 => 0.1057224012974
317 => 0.10129563142494
318 => 0.10447501483133
319 => 0.10556059611388
320 => 0.10604005065246
321 => 0.10168683090086
322 => 0.10031895474191
323 => 0.099590708952475
324 => 0.10682340870039
325 => 0.10721963231948
326 => 0.10519249626385
327 => 0.11435534345621
328 => 0.11228150893669
329 => 0.11459849019678
330 => 0.10817011586269
331 => 0.1084156884192
401 => 0.10537239299017
402 => 0.10707643507736
403 => 0.10587207305397
404 => 0.10693876531638
405 => 0.10757813626033
406 => 0.11062093231453
407 => 0.1152191974543
408 => 0.11016644005234
409 => 0.10796488129548
410 => 0.1093307159662
411 => 0.11296811368191
412 => 0.11847895741616
413 => 0.11521642700942
414 => 0.11666428260257
415 => 0.11698057463906
416 => 0.11457490550257
417 => 0.11856765786863
418 => 0.12070740629867
419 => 0.12290234542934
420 => 0.1248081495757
421 => 0.12202563847281
422 => 0.1250033242102
423 => 0.12260383513815
424 => 0.1204512453859
425 => 0.120454509976
426 => 0.1191041589801
427 => 0.11648768377036
428 => 0.11600516559775
429 => 0.11851528606698
430 => 0.12052816497402
501 => 0.12069395532184
502 => 0.12180838851023
503 => 0.12246789859154
504 => 0.12893199394888
505 => 0.1315319065754
506 => 0.13471103052129
507 => 0.13594947846382
508 => 0.13967676276267
509 => 0.13666667797612
510 => 0.13601542719822
511 => 0.1269742546746
512 => 0.12845474616885
513 => 0.13082515589732
514 => 0.12701334185795
515 => 0.12943106050728
516 => 0.12990836938294
517 => 0.1268838178755
518 => 0.12849936151878
519 => 0.12420895657753
520 => 0.1153127165577
521 => 0.1185775619269
522 => 0.1209815870537
523 => 0.1175507467836
524 => 0.12370039517591
525 => 0.12010789753963
526 => 0.11896924825923
527 => 0.1145269714586
528 => 0.11662355510958
529 => 0.11945921451772
530 => 0.11770710668428
531 => 0.12134299351898
601 => 0.12649237893253
602 => 0.13016213762942
603 => 0.13044385613459
604 => 0.12808444714723
605 => 0.13186541510702
606 => 0.13189295533083
607 => 0.12762800802647
608 => 0.12501575154988
609 => 0.12442224138216
610 => 0.12590494614564
611 => 0.12770522345091
612 => 0.13054375899574
613 => 0.13225902657649
614 => 0.13673153471947
615 => 0.13794166718611
616 => 0.1392712358777
617 => 0.14104794967346
618 => 0.14318135012534
619 => 0.13851359139118
620 => 0.13869905014748
621 => 0.13435249784375
622 => 0.12970758334856
623 => 0.13323249445364
624 => 0.13784084682426
625 => 0.13678368569867
626 => 0.13666473347619
627 => 0.1368647781198
628 => 0.13606771315475
629 => 0.13246261785845
630 => 0.13065216156974
701 => 0.13298811207884
702 => 0.13422956581323
703 => 0.13615495228912
704 => 0.13591760776599
705 => 0.14087719655647
706 => 0.14280434279028
707 => 0.14231129631643
708 => 0.14240202873345
709 => 0.14589103493725
710 => 0.14977152740472
711 => 0.1534061206766
712 => 0.15710338506216
713 => 0.15264618853868
714 => 0.15038309902572
715 => 0.1527180297319
716 => 0.15147908263267
717 => 0.15859844016041
718 => 0.15909136902898
719 => 0.16621021174614
720 => 0.17296684118074
721 => 0.16872312329046
722 => 0.17272475811975
723 => 0.1770528524457
724 => 0.18540244860845
725 => 0.18259059836317
726 => 0.18043676514259
727 => 0.1784014031564
728 => 0.18263666834506
729 => 0.18808526935025
730 => 0.18925884582072
731 => 0.19116048804359
801 => 0.18916114376799
802 => 0.19156913372741
803 => 0.20007039640855
804 => 0.19777328018938
805 => 0.19451100587831
806 => 0.20122193629512
807 => 0.20365059592489
808 => 0.2206962011055
809 => 0.24221698176485
810 => 0.23330723725881
811 => 0.22777667132826
812 => 0.22907648550872
813 => 0.23693514608111
814 => 0.23945909843555
815 => 0.23259812587764
816 => 0.23502153737419
817 => 0.24837477298473
818 => 0.2555383554667
819 => 0.2458092482587
820 => 0.21896702733384
821 => 0.19421727376991
822 => 0.20078202291099
823 => 0.20003778408628
824 => 0.21438416989973
825 => 0.19771849472726
826 => 0.19799910195566
827 => 0.21264215583465
828 => 0.20873564010524
829 => 0.20240758493231
830 => 0.19426347557572
831 => 0.17920833619112
901 => 0.16587357939456
902 => 0.1920261082837
903 => 0.19089836368271
904 => 0.1892652223781
905 => 0.19289960162717
906 => 0.21054711562414
907 => 0.21014028330708
908 => 0.20755222367363
909 => 0.20951524409549
910 => 0.20206345796129
911 => 0.20398395292209
912 => 0.1942133532825
913 => 0.19863007237588
914 => 0.20239400776798
915 => 0.20314967352396
916 => 0.20485222705744
917 => 0.1903040935231
918 => 0.19683577836926
919 => 0.20067253128027
920 => 0.18333794204605
921 => 0.20032988218606
922 => 0.19005084288495
923 => 0.18656198256016
924 => 0.19125927336509
925 => 0.18942873457014
926 => 0.18785494480709
927 => 0.18697674307817
928 => 0.19042591502424
929 => 0.19026500703031
930 => 0.1846214922711
1001 => 0.17725975732681
1002 => 0.17973059721483
1003 => 0.17883291791926
1004 => 0.1755796123492
1005 => 0.17777194749781
1006 => 0.16811801301878
1007 => 0.15150892051545
1008 => 0.16248139577341
1009 => 0.16205896741174
1010 => 0.16184595987618
1011 => 0.17009147177559
1012 => 0.16929885606279
1013 => 0.16786025078274
1014 => 0.17555319123507
1015 => 0.17274516448532
1016 => 0.18139884127374
1017 => 0.18709871249132
1018 => 0.18565304077902
1019 => 0.19101379720903
1020 => 0.17978752037545
1021 => 0.18351643921951
1022 => 0.18428496422522
1023 => 0.17545826154403
1024 => 0.16942853779585
1025 => 0.16902642396573
1026 => 0.1585717139335
1027 => 0.16415653564524
1028 => 0.16907094763596
1029 => 0.16671732566618
1030 => 0.16597223926301
1031 => 0.1697787241073
1101 => 0.17007452058004
1102 => 0.16333032965447
1103 => 0.16473266050865
1104 => 0.17058061328867
1105 => 0.16458530710289
1106 => 0.15293740651163
1107 => 0.15004856612018
1108 => 0.14966314156006
1109 => 0.14182837730161
1110 => 0.15024161224866
1111 => 0.1465690097336
1112 => 0.15817071707416
1113 => 0.15154388406243
1114 => 0.15125821453618
1115 => 0.15082638314864
1116 => 0.14408267790136
1117 => 0.14555912076568
1118 => 0.15046704171531
1119 => 0.15221824320183
1120 => 0.15203557853961
1121 => 0.15044299022515
1122 => 0.15117206900014
1123 => 0.14882345223802
1124 => 0.14799410677708
1125 => 0.14537646437293
1126 => 0.141529253181
1127 => 0.14206423149355
1128 => 0.13444189944476
1129 => 0.1302888483968
1130 => 0.12913933860306
1201 => 0.12760216606554
1202 => 0.12931296633143
1203 => 0.13442030633576
1204 => 0.12825977070791
1205 => 0.11769796448529
1206 => 0.11833274703571
1207 => 0.11975891495787
1208 => 0.11710126046996
1209 => 0.11458601353719
1210 => 0.1167728166768
1211 => 0.11229764014644
1212 => 0.12029971866116
1213 => 0.1200832848629
1214 => 0.12306596488797
1215 => 0.12493109591841
1216 => 0.1206325727366
1217 => 0.11955150578082
1218 => 0.12016733065059
1219 => 0.10998911732019
1220 => 0.12223418771323
1221 => 0.12234008359048
1222 => 0.12143333879824
1223 => 0.1279534607584
1224 => 0.14171295177138
1225 => 0.13653607777805
1226 => 0.13453143569599
1227 => 0.13072060963261
1228 => 0.13579830909761
1229 => 0.13540842100315
1230 => 0.13364519917933
1231 => 0.13257879711869
]
'min_raw' => 0.099590708952475
'max_raw' => 0.2555383554667
'avg_raw' => 0.17756453220958
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.09959'
'max' => '$0.255538'
'avg' => '$0.177564'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.061241890296203
'max_diff' => 0.14853325941129
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0031260385542641
]
1 => [
'year' => 2028
'avg' => 0.0053651896545936
]
2 => [
'year' => 2029
'avg' => 0.014656731154997
]
3 => [
'year' => 2030
'avg' => 0.011307646258621
]
4 => [
'year' => 2031
'avg' => 0.011105509967139
]
5 => [
'year' => 2032
'avg' => 0.019471454005008
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0031260385542641
'min' => '$0.003126'
'max_raw' => 0.019471454005008
'max' => '$0.019471'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.019471454005008
]
1 => [
'year' => 2033
'avg' => 0.050082581926885
]
2 => [
'year' => 2034
'avg' => 0.031744747281523
]
3 => [
'year' => 2035
'avg' => 0.037443002216156
]
4 => [
'year' => 2036
'avg' => 0.072676957355841
]
5 => [
'year' => 2037
'avg' => 0.17756453220958
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.019471454005008
'min' => '$0.019471'
'max_raw' => 0.17756453220958
'max' => '$0.177564'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.17756453220958
]
]
]
]
'prediction_2025_max_price' => '$0.005344'
'last_price' => 0.00518261
'sma_50day_nextmonth' => '$0.00508'
'sma_200day_nextmonth' => '$0.010252'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.0051031'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.005255'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.005553'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.00556'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.006305'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.007969'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.011924'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.005178'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.005256'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.005417'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.00566'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.006424'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.008123'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.011533'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.009865'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.014629'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.031624'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.033518'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.005364'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.005678'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.0067033'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.009248'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.01597'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.025512'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.039339'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '38.88'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 23.52
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.005316'
'vwma_10_action' => 'SELL'
'hma_9' => '0.004884'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 23.73
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -94.78
'cci_20_action' => 'NEUTRAL'
'adx_14' => 19.69
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.0007022'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -76.27
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 37.11
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000718'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 27
'buy_signals' => 5
'sell_pct' => 84.38
'buy_pct' => 15.63
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767699671
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Streamr para 2026
La previsión del precio de Streamr para 2026 sugiere que el precio medio podría oscilar entre $0.00179 en el extremo inferior y $0.005344 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Streamr podría potencialmente ganar 3.13% para 2026 si DATA alcanza el objetivo de precio previsto.
Predicción de precio de Streamr 2027-2032
La predicción del precio de DATA para 2027-2032 está actualmente dentro de un rango de precios de $0.003126 en el extremo inferior y $0.019471 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Streamr alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Streamr | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.001723 | $0.003126 | $0.004528 |
| 2028 | $0.00311 | $0.005365 | $0.007619 |
| 2029 | $0.006833 | $0.014656 | $0.022479 |
| 2030 | $0.005811 | $0.0113076 | $0.0168035 |
| 2031 | $0.006871 | $0.0111055 | $0.015339 |
| 2032 | $0.010488 | $0.019471 | $0.028454 |
Predicción de precio de Streamr 2032-2037
La predicción de precio de Streamr para 2032-2037 se estima actualmente entre $0.019471 en el extremo inferior y $0.177564 en el extremo superior. Comparado con el precio actual, Streamr podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Streamr | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.010488 | $0.019471 | $0.028454 |
| 2033 | $0.024373 | $0.050082 | $0.075792 |
| 2034 | $0.019594 | $0.031744 | $0.043894 |
| 2035 | $0.023167 | $0.037443 | $0.051718 |
| 2036 | $0.038348 | $0.072676 | $0.107005 |
| 2037 | $0.09959 | $0.177564 | $0.255538 |
Streamr Histograma de precios potenciales
Pronóstico de precio de Streamr basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Streamr es Bajista, con 5 indicadores técnicos mostrando señales alcistas y 27 indicando señales bajistas. La predicción de precio de DATA se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Streamr
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Streamr aumentar durante el próximo mes, alcanzando $0.010252 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Streamr alcance $0.00508 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 38.88, lo que sugiere que el mercado de DATA está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de DATA para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.0051031 | BUY |
| SMA 5 | $0.005255 | SELL |
| SMA 10 | $0.005553 | SELL |
| SMA 21 | $0.00556 | SELL |
| SMA 50 | $0.006305 | SELL |
| SMA 100 | $0.007969 | SELL |
| SMA 200 | $0.011924 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.005178 | BUY |
| EMA 5 | $0.005256 | SELL |
| EMA 10 | $0.005417 | SELL |
| EMA 21 | $0.00566 | SELL |
| EMA 50 | $0.006424 | SELL |
| EMA 100 | $0.008123 | SELL |
| EMA 200 | $0.011533 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.009865 | SELL |
| SMA 50 | $0.014629 | SELL |
| SMA 100 | $0.031624 | SELL |
| SMA 200 | $0.033518 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.009248 | SELL |
| EMA 50 | $0.01597 | SELL |
| EMA 100 | $0.025512 | SELL |
| EMA 200 | $0.039339 | SELL |
Osciladores de Streamr
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 38.88 | NEUTRAL |
| Stoch RSI (14) | 23.52 | NEUTRAL |
| Estocástico Rápido (14) | 23.73 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | -94.78 | NEUTRAL |
| Índice Direccional Medio (14) | 19.69 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.0007022 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | -0 | NEUTRAL |
| Rango Percentil de Williams (14) | -76.27 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 37.11 | NEUTRAL |
| VWMA (10) | 0.005316 | SELL |
| Promedio Móvil de Hull (9) | 0.004884 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000718 | SELL |
Predicción de precios de Streamr basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Streamr
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Streamr por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.007282 | $0.010233 | $0.014379 | $0.020205 | $0.028391 | $0.039894 |
| Amazon.com acción | $0.010813 | $0.022563 | $0.04708 | $0.098236 | $0.204975 | $0.427693 |
| Apple acción | $0.007351 | $0.010427 | $0.014789 | $0.020978 | $0.029756 | $0.0422069 |
| Netflix acción | $0.008177 | $0.0129025 | $0.020358 | $0.032122 | $0.050683 | $0.07997 |
| Google acción | $0.006711 | $0.008691 | $0.011255 | $0.014575 | $0.018875 | $0.024443 |
| Tesla acción | $0.011748 | $0.026633 | $0.060375 | $0.136866 | $0.310265 | $0.703348 |
| Kodak acción | $0.003886 | $0.002914 | $0.002185 | $0.001638 | $0.001228 | $0.000921 |
| Nokia acción | $0.003433 | $0.002274 | $0.0015066 | $0.000998 | $0.000661 | $0.000438 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Streamr
Podría preguntarse cosas como: "¿Debo invertir en Streamr ahora?", "¿Debería comprar DATA hoy?", "¿Será Streamr una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Streamr regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Streamr, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Streamr a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Streamr es de $0.005182 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Streamr
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Streamr
basado en el historial de precios del último mes
Predicción de precios de Streamr basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Streamr ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.005317 | $0.005455 | $0.005597 | $0.005742 |
| Si Streamr ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.005452 | $0.005735 | $0.006033 | $0.006347 |
| Si Streamr ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.005856 | $0.006617 | $0.007477 | $0.008449 |
| Si Streamr ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.006529 | $0.008227 | $0.010365 | $0.013059 |
| Si Streamr ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.007876 | $0.011971 | $0.018195 | $0.027654 |
| Si Streamr ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.011918 | $0.0274079 | $0.063028 | $0.144945 |
| Si Streamr ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.018653 | $0.067141 | $0.241663 | $0.869823 |
Cuadro de preguntas
¿Es DATA una buena inversión?
La decisión de adquirir Streamr depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Streamr ha experimentado un aumento de 2.2737% durante las últimas 24 horas, y Streamr ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Streamr dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Streamr subir?
Parece que el valor medio de Streamr podría potencialmente aumentar hasta $0.005344 para el final de este año. Mirando las perspectivas de Streamr en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.0168035. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Streamr la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Streamr, el precio de Streamr aumentará en un 0.86% durante la próxima semana y alcanzará $0.005226 para el 13 de enero de 2026.
¿Cuál será el precio de Streamr el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Streamr, el precio de Streamr disminuirá en un -11.62% durante el próximo mes y alcanzará $0.00458 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Streamr este año en 2026?
Según nuestra predicción más reciente sobre el valor de Streamr en 2026, se anticipa que DATA fluctúe dentro del rango de $0.00179 y $0.005344. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Streamr no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Streamr en 5 años?
El futuro de Streamr parece estar en una tendencia alcista, con un precio máximo de $0.0168035 proyectada después de un período de cinco años. Basado en el pronóstico de Streamr para 2030, el valor de Streamr podría potencialmente alcanzar su punto más alto de aproximadamente $0.0168035, mientras que su punto más bajo se anticipa que esté alrededor de $0.005811.
¿Cuánto será Streamr en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Streamr, se espera que el valor de DATA en 2026 crezca en un 3.13% hasta $0.005344 si ocurre lo mejor. El precio estará entre $0.005344 y $0.00179 durante 2026.
¿Cuánto será Streamr en 2027?
Según nuestra última simulación experimental para la predicción de precios de Streamr, el valor de DATA podría disminuir en un -12.62% hasta $0.004528 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.004528 y $0.001723 a lo largo del año.
¿Cuánto será Streamr en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Streamr sugiere que el valor de DATA en 2028 podría aumentar en un 47.02% , alcanzando $0.007619 en el mejor escenario. Se espera que el precio oscile entre $0.007619 y $0.00311 durante el año.
¿Cuánto será Streamr en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Streamr podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.022479 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.022479 y $0.006833.
¿Cuánto será Streamr en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Streamr, se espera que el valor de DATA en 2030 aumente en un 224.23% , alcanzando $0.0168035 en el mejor escenario. Se pronostica que el precio oscile entre $0.0168035 y $0.005811 durante el transcurso de 2030.
¿Cuánto será Streamr en 2031?
Nuestra simulación experimental indica que el precio de Streamr podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.015339 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.015339 y $0.006871 durante el año.
¿Cuánto será Streamr en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Streamr, DATA podría experimentar un 449.04% aumento en valor, alcanzando $0.028454 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.028454 y $0.010488 a lo largo del año.
¿Cuánto será Streamr en 2033?
Según nuestra predicción experimental de precios de Streamr, se anticipa que el valor de DATA aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.075792. A lo largo del año, el precio de DATA podría oscilar entre $0.075792 y $0.024373.
¿Cuánto será Streamr en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Streamr sugieren que DATA podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.043894 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.043894 y $0.019594.
¿Cuánto será Streamr en 2035?
Basado en nuestra predicción experimental para el precio de Streamr, DATA podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.051718 en 2035. El rango de precios esperado para el año está entre $0.051718 y $0.023167.
¿Cuánto será Streamr en 2036?
Nuestra reciente simulación de predicción de precios de Streamr sugiere que el valor de DATA podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.107005 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.107005 y $0.038348.
¿Cuánto será Streamr en 2037?
Según la simulación experimental, el valor de Streamr podría aumentar en un 4830.69% en 2037, con un máximo de $0.255538 bajo condiciones favorables. Se espera que el precio caiga entre $0.255538 y $0.09959 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Impossible Finance Launchpad
Predicción de precios de SelfKey
Predicción de precios de Solchat
Predicción de precios de pSTAKE Finance
Predicción de precios de Groestlcoin
Predicción de precios de Games for a Living
Predicción de precios de Fideum
Predicción de precios de district0x
Predicción de precios de SOLO Coin
Predicción de precios de Voxies
Predicción de precios de Picasso
Predicción de precios de Acet Token
Predicción de precios de Dream Machine Token
Predicción de precios de KILT Protocol [OLD]
Predicción de precios de Fluence
Predicción de precios de Vyvo Smart Chain
Predicción de precios de HydraDX
Predicción de precios de Leash
Predicción de precios de BNB48 Club Token
Predicción de precios de Turbo
Predicción de precios de SafeMoon
Predicción de precios de ASD
Predicción de precios de UniLend Finance
Predicción de precios de ECOx
Predicción de precios de Botto
¿Cómo leer y predecir los movimientos de precio de Streamr?
Los traders de Streamr utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Streamr
Las medias móviles son herramientas populares para la predicción de precios de Streamr. Una media móvil simple (SMA) calcula el precio de cierre promedio de DATA durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de DATA por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de DATA.
¿Cómo leer gráficos de Streamr y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Streamr en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de DATA dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Streamr?
La acción del precio de Streamr está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de DATA. La capitalización de mercado de Streamr puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de DATA, grandes poseedores de Streamr, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Streamr.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


