Predicción del precio de KILT Protocol [OLD] - Pronóstico de KILT
Predicción de precio de KILT Protocol [OLD] hasta $0.0182098 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.00610041 | $0.0182098 |
| 2027 | $0.005872 | $0.015427 |
| 2028 | $0.010598 | $0.025959 |
| 2029 | $0.023281 | $0.076586 |
| 2030 | $0.01980027 | $0.057248 |
| 2031 | $0.02341 | $0.052261 |
| 2032 | $0.035733 | $0.096942 |
| 2033 | $0.083037 | $0.258218 |
| 2034 | $0.066757 | $0.149546 |
| 2035 | $0.078928 | $0.1762026 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en KILT Protocol [OLD] hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.73, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de KILT Protocol [OLD] para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'KILT Protocol [OLD]'
'name_with_ticker' => 'KILT Protocol [OLD] <small>KILT</small>'
'name_lang' => 'KILT Protocol [OLD]'
'name_lang_with_ticker' => 'KILT Protocol [OLD] <small>KILT</small>'
'name_with_lang' => 'KILT Protocol [OLD]'
'name_with_lang_with_ticker' => 'KILT Protocol [OLD] <small>KILT</small>'
'image' => '/uploads/coins/kilt-protocol.png?1736025624'
'price_for_sd' => 0.01765
'ticker' => 'KILT'
'marketcap' => '$0'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$8.82K'
'current_supply' => '0'
'max_supply' => '165.38M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01765'
'change_24h_pct' => '0%'
'ath_price' => '$9.8'
'ath_days' => 1497
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '1 dic. 2021'
'ath_pct' => '-99.82%'
'fdv' => '$2.92M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.87060082'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.017807'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.015605'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00610041'
'current_year_max_price_prediction' => '$0.0182098'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.01980027'
'grand_prediction_max_price' => '$0.057248'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.017991366693534
107 => 0.018058539925901
108 => 0.018209884648376
109 => 0.016916660565265
110 => 0.017497280211518
111 => 0.017838339856987
112 => 0.0162974199709
113 => 0.017807880825274
114 => 0.016894148411142
115 => 0.016584013905986
116 => 0.017001569160065
117 => 0.016838847471465
118 => 0.016698948918944
119 => 0.016620883122875
120 => 0.016927489617579
121 => 0.016913186058127
122 => 0.016411518323035
123 => 0.0157571132132
124 => 0.015976753048176
125 => 0.015896955836995
126 => 0.015607760449629
127 => 0.015802643223129
128 => 0.014944478116548
129 => 0.013468049654216
130 => 0.014443423520659
131 => 0.014405872687804
201 => 0.014386937855084
202 => 0.015119904358362
203 => 0.015049446541486
204 => 0.014921564913932
205 => 0.015605411803253
206 => 0.015355798489612
207 => 0.01612504790596
208 => 0.0166317253235
209 => 0.016503215541114
210 => 0.016979748101295
211 => 0.015981813106364
212 => 0.016313287081477
213 => 0.016381603408345
214 => 0.01559697323879
215 => 0.015060974311694
216 => 0.015025229294092
217 => 0.01409588101971
218 => 0.014592331366447
219 => 0.015029187127065
220 => 0.014819967119106
221 => 0.014753734314856
222 => 0.015092103347627
223 => 0.015118397519408
224 => 0.014518887616268
225 => 0.01464354470914
226 => 0.015163385508935
227 => 0.014630446054759
228 => 0.013595031750461
301 => 0.013338234687273
302 => 0.013303973225334
303 => 0.012607519223135
304 => 0.013355395094958
305 => 0.01302892723508
306 => 0.014060235292749
307 => 0.013471157661224
308 => 0.013445763701904
309 => 0.013407377007907
310 => 0.012807910278061
311 => 0.012939155393799
312 => 0.013375434147708
313 => 0.013531103322135
314 => 0.013514865751882
315 => 0.013373296143803
316 => 0.013438105985428
317 => 0.013229330904308
318 => 0.013155608077887
319 => 0.012922918558642
320 => 0.012580929247472
321 => 0.012628484958732
322 => 0.011950914646933
323 => 0.011581738379687
324 => 0.011479555254578
325 => 0.011342911709156
326 => 0.011494989506628
327 => 0.011948995175372
328 => 0.011401368016191
329 => 0.010462499663353
330 => 0.010518927251113
331 => 0.010645703287307
401 => 0.010409456982567
402 => 0.010185869681779
403 => 0.010380260699603
404 => 0.0099824498016228
405 => 0.010693776833764
406 => 0.010674537431015
407 => 0.010939676160429
408 => 0.011105472849126
409 => 0.010723365158995
410 => 0.010627266108256
411 => 0.010682008495015
412 => 0.0097772387820599
413 => 0.010865737172199
414 => 0.010875150551478
415 => 0.010794547483065
416 => 0.011374139272197
417 => 0.012597258726477
418 => 0.012137071987911
419 => 0.01195887377352
420 => 0.011620118837701
421 => 0.012071489676402
422 => 0.012036831438472
423 => 0.011880093742805
424 => 0.011785298295414
425 => 0.011959961813819
426 => 0.011763655552568
427 => 0.011728393553912
428 => 0.01151474420749
429 => 0.011438481111244
430 => 0.011382018950904
501 => 0.011319859660227
502 => 0.01145696756633
503 => 0.011146263013054
504 => 0.010771583780546
505 => 0.010740433256448
506 => 0.010826442592264
507 => 0.010788389863807
508 => 0.010740251074624
509 => 0.010648341016255
510 => 0.010621073265284
511 => 0.010709680227507
512 => 0.010609648133265
513 => 0.010757250937349
514 => 0.010717111141874
515 => 0.010492893507297
516 => 0.010213435318615
517 => 0.010210947554552
518 => 0.010150738746204
519 => 0.010074053776317
520 => 0.010052721772009
521 => 0.010363889630282
522 => 0.011007997784437
523 => 0.010881543941575
524 => 0.010972919802554
525 => 0.011422398600558
526 => 0.011565274394144
527 => 0.011463864540055
528 => 0.011325048477091
529 => 0.011331155679358
530 => 0.011805532188987
531 => 0.011835118470011
601 => 0.011909873457261
602 => 0.012005954741635
603 => 0.011480227598251
604 => 0.011306393978182
605 => 0.011224021965072
606 => 0.010970348046671
607 => 0.011243913619308
608 => 0.011084518675378
609 => 0.011106026499021
610 => 0.011092019500658
611 => 0.011099668268914
612 => 0.010693578003361
613 => 0.010841535952653
614 => 0.01059552716504
615 => 0.010266149014209
616 => 0.010265044823152
617 => 0.010345659658938
618 => 0.010297706800154
619 => 0.010168666890146
620 => 0.010186996400311
621 => 0.010026410604044
622 => 0.010206494423477
623 => 0.010211658583048
624 => 0.010142316503334
625 => 0.010419760473949
626 => 0.010533429495083
627 => 0.010487787052764
628 => 0.010530227099656
629 => 0.010886798669651
630 => 0.010944935393868
701 => 0.010970755886469
702 => 0.010936159846943
703 => 0.010536744573388
704 => 0.010554460339215
705 => 0.010424473804171
706 => 0.010314648879703
707 => 0.010319041300726
708 => 0.010375505588144
709 => 0.010622088442883
710 => 0.011141007523828
711 => 0.011160700123625
712 => 0.011184568129052
713 => 0.01108748495588
714 => 0.01105820374189
715 => 0.011096833221265
716 => 0.011291711944599
717 => 0.011792992930071
718 => 0.011615806750374
719 => 0.011471751628213
720 => 0.01159812680733
721 => 0.011578672339067
722 => 0.011414457048636
723 => 0.01140984807237
724 => 0.011094666427229
725 => 0.01097815094936
726 => 0.01088078189502
727 => 0.010774457429564
728 => 0.010711424722413
729 => 0.010808271608449
730 => 0.010830421637145
731 => 0.010618664228232
801 => 0.010589802475868
802 => 0.010762728147087
803 => 0.010686630006502
804 => 0.010764898831237
805 => 0.010783057869953
806 => 0.010780133846481
807 => 0.010700678647895
808 => 0.010751321022086
809 => 0.010631536709906
810 => 0.010501289261433
811 => 0.01041819950401
812 => 0.010345692670401
813 => 0.010385923675809
814 => 0.010242507487421
815 => 0.010196625762358
816 => 0.010734164525199
817 => 0.011131250188826
818 => 0.011125476406013
819 => 0.01109032998804
820 => 0.011038109540122
821 => 0.011287891693573
822 => 0.011200872585862
823 => 0.011264186257411
824 => 0.011280302244087
825 => 0.01132908048193
826 => 0.011346514509327
827 => 0.011293816769821
828 => 0.011116956719553
829 => 0.010676238289632
830 => 0.010471082670807
831 => 0.010403377899458
901 => 0.010405838839307
902 => 0.010337955132155
903 => 0.010357949926246
904 => 0.010331001758753
905 => 0.010279968448983
906 => 0.010382772512739
907 => 0.010394619723401
908 => 0.010370624026503
909 => 0.010376275881779
910 => 0.010177601760162
911 => 0.010192706522131
912 => 0.010108601288067
913 => 0.010092832570583
914 => 0.0098802218627494
915 => 0.0095035511754068
916 => 0.0097122633005029
917 => 0.0094601684027527
918 => 0.0093646962451137
919 => 0.0098166465904101
920 => 0.0097712833108936
921 => 0.009693641095305
922 => 0.0095787920763939
923 => 0.0095361934581003
924 => 0.0092773777384323
925 => 0.0092620855249862
926 => 0.0093903615842659
927 => 0.009331166596618
928 => 0.0092480344150654
929 => 0.0089469380804561
930 => 0.0086084061107847
1001 => 0.008618624263013
1002 => 0.0087263049839543
1003 => 0.0090394012028146
1004 => 0.0089170690934863
1005 => 0.0088283157445694
1006 => 0.0088116949102331
1007 => 0.0090197394500251
1008 => 0.0093141660605093
1009 => 0.0094523044387244
1010 => 0.0093154135012381
1011 => 0.0091581605629855
1012 => 0.009167731820697
1013 => 0.0092314051102525
1014 => 0.0092380962726929
1015 => 0.0091357407757537
1016 => 0.0091645532485913
1017 => 0.0091207844676832
1018 => 0.0088521755400409
1019 => 0.008847317256308
1020 => 0.0087813962935605
1021 => 0.0087794002330072
1022 => 0.0086672522306189
1023 => 0.0086515619498423
1024 => 0.0084288852842032
1025 => 0.0085754517398539
1026 => 0.0084771426564877
1027 => 0.0083289676790864
1028 => 0.0083034222571319
1029 => 0.008302654330901
1030 => 0.0084547969013734
1031 => 0.0085736738653362
1101 => 0.0084788527850826
1102 => 0.0084572638631383
1103 => 0.008687777068278
1104 => 0.0086584421617495
1105 => 0.0086330383218856
1106 => 0.0092878033868397
1107 => 0.0087695057459734
1108 => 0.0085434983911606
1109 => 0.0082637713719471
1110 => 0.0083548518999091
1111 => 0.008374043905402
1112 => 0.0077013508487787
1113 => 0.0074284393594851
1114 => 0.0073347864208121
1115 => 0.0072808878305476
1116 => 0.007305450094947
1117 => 0.0070597977452579
1118 => 0.0072248801869639
1119 => 0.0070121660166093
1120 => 0.0069765037937176
1121 => 0.0073568630805407
1122 => 0.0074097878532754
1123 => 0.0071839943303511
1124 => 0.0073289903247194
1125 => 0.0072764127615664
1126 => 0.0070158123905333
1127 => 0.0070058593732064
1128 => 0.006875099267568
1129 => 0.0066704850223897
1130 => 0.00657697082181
1201 => 0.0065282678142206
1202 => 0.0065483636243547
1203 => 0.006538202567809
1204 => 0.0064718948006446
1205 => 0.0065420032514057
1206 => 0.0063629051305229
1207 => 0.0062915868156958
1208 => 0.0062593739874607
1209 => 0.006100414096674
1210 => 0.0063533899726999
1211 => 0.0064032294071831
1212 => 0.0064531670407485
1213 => 0.0068878400470642
1214 => 0.0068661250120419
1215 => 0.0070624183529931
1216 => 0.007054790754724
1217 => 0.0069988047141435
1218 => 0.0067626088181906
1219 => 0.0068567522925304
1220 => 0.0065669933116568
1221 => 0.0067841004418228
1222 => 0.0066850218142255
1223 => 0.006750601858168
1224 => 0.0066326830260452
1225 => 0.0066979441764912
1226 => 0.0064150481860202
1227 => 0.0061508838905724
1228 => 0.0062571913144971
1229 => 0.0063727596420319
1230 => 0.0066233412223894
1231 => 0.0064740969003816
]
'min_raw' => 0.006100414096674
'max_raw' => 0.018209884648376
'avg_raw' => 0.012155149372525
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00610041'
'max' => '$0.0182098'
'avg' => '$0.012155'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.011556365903326
'max_diff' => 0.00055310464837562
'year' => 2026
]
1 => [
'items' => [
101 => 0.0065277708021282
102 => 0.0063479722161797
103 => 0.0059769963764409
104 => 0.0059790960594059
105 => 0.0059220295086101
106 => 0.0058727156768696
107 => 0.0064912394060846
108 => 0.0064143162029436
109 => 0.0062917491461982
110 => 0.0064558100222731
111 => 0.0064991903219035
112 => 0.0065004252980485
113 => 0.0066201198782086
114 => 0.0066840008970965
115 => 0.0066952602035517
116 => 0.0068836022116062
117 => 0.0069467319684149
118 => 0.0072067545022524
119 => 0.0066785810389557
120 => 0.0066677036540533
121 => 0.0064581186952463
122 => 0.0063251966009638
123 => 0.0064672199847617
124 => 0.0065930333146813
125 => 0.0064620280661102
126 => 0.0064791345859019
127 => 0.0063032707432172
128 => 0.0063661337918141
129 => 0.0064202799178328
130 => 0.0063903836096075
131 => 0.0063456273891964
201 => 0.0065827180563842
202 => 0.0065693404717756
203 => 0.0067901247517518
204 => 0.0069622418864285
205 => 0.0072707065613873
206 => 0.0069488075924406
207 => 0.0069370763145797
208 => 0.0070517514374265
209 => 0.0069467144122511
210 => 0.0070130941864071
211 => 0.0072600117535434
212 => 0.0072652287326494
213 => 0.0071778376109263
214 => 0.0071725198532273
215 => 0.0071893042741083
216 => 0.0072876111514605
217 => 0.0072532597078484
218 => 0.0072930120680685
219 => 0.0073427230032333
220 => 0.007548348508075
221 => 0.0075979241211505
222 => 0.0074774810833855
223 => 0.0074883557411521
224 => 0.0074433067387927
225 => 0.0073997899669758
226 => 0.007497609314906
227 => 0.0076763760958925
228 => 0.007675263997026
301 => 0.0077167344154852
302 => 0.0077425701426258
303 => 0.0076316642888302
304 => 0.0075594686561306
305 => 0.0075871530556351
306 => 0.0076314210133306
307 => 0.0075727975535831
308 => 0.0072109464029932
309 => 0.0073207089269412
310 => 0.007302439075843
311 => 0.0072764205861895
312 => 0.0073867876527876
313 => 0.007376142479972
314 => 0.0070572782253517
315 => 0.00707769088038
316 => 0.0070585195865128
317 => 0.0071204659590753
318 => 0.006943369104842
319 => 0.0069978429044387
320 => 0.0070320083608855
321 => 0.0070521320772041
322 => 0.0071248327395084
323 => 0.0071163021558949
324 => 0.0071243024664535
325 => 0.0072320983563874
326 => 0.0077772929765909
327 => 0.0078069667168645
328 => 0.0076608423670969
329 => 0.0077192161626537
330 => 0.0076071512401304
331 => 0.00768238117339
401 => 0.0077338515830931
402 => 0.0075012666988354
403 => 0.0074874945314531
404 => 0.0073749670771308
405 => 0.0074354329572028
406 => 0.0073392273943577
407 => 0.0073628328743521
408 => 0.0072968298943988
409 => 0.0074156221172526
410 => 0.0075484502808482
411 => 0.0075820079205156
412 => 0.0074937322180229
413 => 0.007429814791766
414 => 0.0073175968469678
415 => 0.0075042177901071
416 => 0.0075587914410513
417 => 0.0075039311379514
418 => 0.0074912188070019
419 => 0.0074671289628232
420 => 0.0074963295813244
421 => 0.0075584942212279
422 => 0.0075291785250501
423 => 0.0075485420588516
424 => 0.0074747482355895
425 => 0.0076317010032826
426 => 0.0078809797711198
427 => 0.0078817812431196
428 => 0.0078524653889193
429 => 0.0078404699729994
430 => 0.0078705498184437
501 => 0.0078868669006574
502 => 0.0079841396051241
503 => 0.0080885170925325
504 => 0.0085756012828014
505 => 0.0084388299912728
506 => 0.0088710000616476
507 => 0.0092127904770538
508 => 0.0093152784779506
509 => 0.0092209943395586
510 => 0.0088984533952485
511 => 0.0088826279977579
512 => 0.0093646403418313
513 => 0.0092284497770666
514 => 0.0092122503427426
515 => 0.0090399157309117
516 => 0.0091417868305607
517 => 0.0091195061267086
518 => 0.0090843349456687
519 => 0.0092786979073966
520 => 0.0096425280208499
521 => 0.009585821685691
522 => 0.0095434930370261
523 => 0.0093580212202608
524 => 0.0094697166805835
525 => 0.0094299440665482
526 => 0.0096008324567685
527 => 0.0094996019600433
528 => 0.0092274179995913
529 => 0.0092707641924234
530 => 0.0092642125025773
531 => 0.0093990458153528
601 => 0.0093585722016262
602 => 0.0092563093799188
603 => 0.0096412844890755
604 => 0.009616286346831
605 => 0.0096517279971629
606 => 0.0096673305077084
607 => 0.0099016580726297
608 => 0.0099976545783323
609 => 0.010019447465782
610 => 0.010110636721563
611 => 0.010017178594027
612 => 0.010391077738689
613 => 0.010639698852269
614 => 0.010928485069618
615 => 0.011350479351582
616 => 0.011509153105266
617 => 0.011480490111897
618 => 0.011800441360328
619 => 0.012375386641642
620 => 0.011596702991565
621 => 0.012416658765888
622 => 0.012157070234582
623 => 0.011541590496654
624 => 0.011501960857561
625 => 0.011918770881952
626 => 0.012843215399575
627 => 0.012611652532873
628 => 0.012843594153469
629 => 0.012573021932739
630 => 0.012559585741418
701 => 0.012830453064637
702 => 0.013463349329547
703 => 0.01316268403785
704 => 0.012731606616048
705 => 0.013049907475999
706 => 0.012774165813756
707 => 0.01215284267349
708 => 0.012611475461113
709 => 0.012304800777139
710 => 0.012394304753646
711 => 0.013038889324942
712 => 0.012961331203964
713 => 0.013061698594198
714 => 0.012884552777508
715 => 0.012719070651387
716 => 0.01241018597412
717 => 0.012318740449012
718 => 0.012344012702286
719 => 0.012318727925338
720 => 0.012145909787204
721 => 0.012108589726728
722 => 0.012046387990905
723 => 0.012065666909782
724 => 0.011948709448676
725 => 0.012169432342428
726 => 0.012210400456511
727 => 0.012371024171822
728 => 0.012387700658795
729 => 0.0128350354196
730 => 0.012588650950504
731 => 0.012753946924185
801 => 0.012739161296473
802 => 0.011554929808872
803 => 0.011718106459301
804 => 0.011971958119714
805 => 0.011857598290786
806 => 0.01169592024876
807 => 0.011565356561196
808 => 0.011367539223714
809 => 0.011645963327474
810 => 0.012012061416817
811 => 0.012396985510494
812 => 0.012859446587822
813 => 0.012756230659003
814 => 0.012388340122335
815 => 0.012404843423065
816 => 0.012506860334373
817 => 0.012374739165016
818 => 0.012335774052861
819 => 0.012501507126313
820 => 0.012502648438905
821 => 0.012350627066182
822 => 0.012181683130019
823 => 0.012180975248758
824 => 0.012150913307122
825 => 0.012578369885373
826 => 0.012813427782677
827 => 0.012840376791788
828 => 0.012811613899645
829 => 0.012822683595272
830 => 0.012685908583979
831 => 0.012998535700426
901 => 0.013285433258096
902 => 0.013208538583968
903 => 0.013093262536228
904 => 0.013001439611757
905 => 0.013186908021137
906 => 0.013178649404822
907 => 0.013282927458213
908 => 0.013278196803372
909 => 0.013243132016113
910 => 0.013208539836242
911 => 0.013345693919307
912 => 0.013306195746011
913 => 0.013266636221143
914 => 0.013187293537759
915 => 0.013198077526174
916 => 0.013082821382469
917 => 0.013029498616629
918 => 0.012227652157599
919 => 0.012013372582658
920 => 0.012080789298997
921 => 0.01210298463249
922 => 0.012009729886869
923 => 0.012143433236912
924 => 0.012122595711434
925 => 0.012203662333521
926 => 0.012153015427545
927 => 0.012155093994233
928 => 0.012304035745651
929 => 0.012347274169731
930 => 0.012325282758267
1001 => 0.012340684789035
1002 => 0.012695618087291
1003 => 0.012645157922407
1004 => 0.012618351965521
1005 => 0.012625777398773
1006 => 0.012716470466333
1007 => 0.012741859573592
1008 => 0.012634284142075
1009 => 0.012685017337465
1010 => 0.012901032844433
1011 => 0.012976626046453
1012 => 0.013217883260505
1013 => 0.013115392907971
1014 => 0.013303518385726
1015 => 0.013881751967645
1016 => 0.014343684963602
1017 => 0.013918872290331
1018 => 0.014767153410594
1019 => 0.015427661941419
1020 => 0.015402310523871
1021 => 0.015287135583684
1022 => 0.014535164181869
1023 => 0.013843188886656
1024 => 0.014422055603924
1025 => 0.014423531254232
1026 => 0.014373806089847
1027 => 0.01406496736446
1028 => 0.01436305917165
1029 => 0.014386720616794
1030 => 0.0143734764996
1031 => 0.014136690572956
1101 => 0.013775162228326
1102 => 0.013845804001491
1103 => 0.013961516666987
1104 => 0.013742448451012
1105 => 0.013672442882197
1106 => 0.013802596553728
1107 => 0.014221978801999
1108 => 0.014142697017279
1109 => 0.014140626649477
1110 => 0.014479827745216
1111 => 0.014237032964845
1112 => 0.013846695020476
1113 => 0.013748129541598
1114 => 0.013398288493244
1115 => 0.013639924951433
1116 => 0.013648621017387
1117 => 0.013516279198701
1118 => 0.013857433829685
1119 => 0.013854290029702
1120 => 0.014178165577656
1121 => 0.014797293983243
1122 => 0.014614187248253
1123 => 0.014401254037414
1124 => 0.01442440578143
1125 => 0.014678323269908
1126 => 0.014524798960002
1127 => 0.014580007372254
1128 => 0.014678239705364
1129 => 0.014737505710901
1130 => 0.014415878315285
1201 => 0.014340891584151
1202 => 0.014187495049015
1203 => 0.01414747675628
1204 => 0.014272415033424
1205 => 0.014239498211531
1206 => 0.013647890146716
1207 => 0.013586063812267
1208 => 0.013587959937676
1209 => 0.013432494680021
1210 => 0.01319537284616
1211 => 0.013818514867738
1212 => 0.013768467842538
1213 => 0.01371321980005
1214 => 0.013719987370014
1215 => 0.013990472201338
1216 => 0.013833577339359
1217 => 0.014250708044493
1218 => 0.014164958511614
1219 => 0.01407700982678
1220 => 0.014064852639553
1221 => 0.014030999899321
1222 => 0.013914906257015
1223 => 0.013774716207784
1224 => 0.013682150594228
1225 => 0.012621060687431
1226 => 0.012817992802057
1227 => 0.013044545249006
1228 => 0.013122750245841
1229 => 0.012988975187134
1230 => 0.013920188511701
1231 => 0.014090330159495
]
'min_raw' => 0.0058727156768696
'max_raw' => 0.015427661941419
'avg_raw' => 0.010650188809144
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.005872'
'max' => '$0.015427'
'avg' => '$0.01065'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00022769841980437
'max_diff' => -0.0027822227069571
'year' => 2027
]
2 => [
'items' => [
101 => 0.013574960010264
102 => 0.013478555297767
103 => 0.013926508788603
104 => 0.013656338073542
105 => 0.013777995929991
106 => 0.013515038187637
107 => 0.01404934801887
108 => 0.01404527747317
109 => 0.013837418880886
110 => 0.01401309953973
111 => 0.013982570701967
112 => 0.013747898863211
113 => 0.014056787534735
114 => 0.014056940739663
115 => 0.013856881363824
116 => 0.013623255811474
117 => 0.013581489080703
118 => 0.013550023459638
119 => 0.013770257316087
120 => 0.013967718303125
121 => 0.014335144245274
122 => 0.014427523856955
123 => 0.014788087631406
124 => 0.014573389459252
125 => 0.014668562378161
126 => 0.014771886044668
127 => 0.014821423209994
128 => 0.014740705057407
129 => 0.015300809013099
130 => 0.015348098948101
131 => 0.015363954854251
201 => 0.015175090951781
202 => 0.015342846301321
203 => 0.015264359128745
204 => 0.015468560947425
205 => 0.015500582399973
206 => 0.015473461368861
207 => 0.015483625483324
208 => 0.015005675566249
209 => 0.014980891341662
210 => 0.01464295668081
211 => 0.014780667552994
212 => 0.014523223678099
213 => 0.014604861782794
214 => 0.014640847081467
215 => 0.014622050403588
216 => 0.014788453519087
217 => 0.014646976877003
218 => 0.014273596757627
219 => 0.013900114911088
220 => 0.013895426150736
221 => 0.013797094973044
222 => 0.013726019541827
223 => 0.013739711191416
224 => 0.013787962350397
225 => 0.013723215096751
226 => 0.013737032206086
227 => 0.013966488283955
228 => 0.014012504063966
229 => 0.013856124463963
301 => 0.013228237804484
302 => 0.013074152843313
303 => 0.013184906057765
304 => 0.013131973154678
305 => 0.010598527244307
306 => 0.011193722781814
307 => 0.010840077804358
308 => 0.011003053680393
309 => 0.010642073734333
310 => 0.010814352285173
311 => 0.010782538727438
312 => 0.011739595538634
313 => 0.011724652412915
314 => 0.011731804896424
315 => 0.011390398222857
316 => 0.01193426832405
317 => 0.012202198292834
318 => 0.012152611586337
319 => 0.012165091492059
320 => 0.011950645363857
321 => 0.011733881203701
322 => 0.011493456390323
323 => 0.011940135976174
324 => 0.011890472831302
325 => 0.012004382217403
326 => 0.012294085858143
327 => 0.012336745819719
328 => 0.012394081240693
329 => 0.012373530573687
330 => 0.012863130836403
331 => 0.012803837014102
401 => 0.012946718065852
402 => 0.012652800901991
403 => 0.012320205732209
404 => 0.012383421200629
405 => 0.012377333042674
406 => 0.012299823804237
407 => 0.012229851929449
408 => 0.01211336847238
409 => 0.012481939366855
410 => 0.012466976061628
411 => 0.012709214580301
412 => 0.012666396569146
413 => 0.01238044741131
414 => 0.012390660141423
415 => 0.012459345659505
416 => 0.012697067021823
417 => 0.012767638907464
418 => 0.012734947198232
419 => 0.012812326049108
420 => 0.01287348313785
421 => 0.012820006437863
422 => 0.013577123737306
423 => 0.013262715848543
424 => 0.013415956065891
425 => 0.013452502954784
426 => 0.013358888867382
427 => 0.01337919041087
428 => 0.013409941717416
429 => 0.013596657629037
430 => 0.014086654207815
501 => 0.014303670357037
502 => 0.014956574149357
503 => 0.014285650186854
504 => 0.014245840335479
505 => 0.014363448024281
506 => 0.014746771667259
507 => 0.015057419476134
508 => 0.015160479276039
509 => 0.015174100329929
510 => 0.015367447365838
511 => 0.015478270281112
512 => 0.015343969950146
513 => 0.015230164481484
514 => 0.01482252741879
515 => 0.014869712518755
516 => 0.015194771066307
517 => 0.015653935410577
518 => 0.016047946185868
519 => 0.015909977345023
520 => 0.016962582209849
521 => 0.017066943682691
522 => 0.017052524301554
523 => 0.017290275267758
524 => 0.016818388016986
525 => 0.016616647074896
526 => 0.015254770515556
527 => 0.015637402278507
528 => 0.016193580017133
529 => 0.016119967807866
530 => 0.015716056667403
531 => 0.016047639783048
601 => 0.015938008035453
602 => 0.0158515369275
603 => 0.016247677836284
604 => 0.015812104634504
605 => 0.016189234841249
606 => 0.015705561450186
607 => 0.015910607575066
608 => 0.015794213477619
609 => 0.015869534723391
610 => 0.015429208259672
611 => 0.015666797731174
612 => 0.015419323756536
613 => 0.01541920642165
614 => 0.015413743419943
615 => 0.015704895453638
616 => 0.015714389911004
617 => 0.015499228118197
618 => 0.015468219942395
619 => 0.015582873420379
620 => 0.015448644225453
621 => 0.01551144922093
622 => 0.015450546524786
623 => 0.015436836045076
624 => 0.015327588610107
625 => 0.015280521811302
626 => 0.015298977915875
627 => 0.015235977716192
628 => 0.015198017817065
629 => 0.01540619224057
630 => 0.015294973043824
701 => 0.015389146303561
702 => 0.015281823988478
703 => 0.014909798086292
704 => 0.014695842055842
705 => 0.013993119613433
706 => 0.014192410826376
707 => 0.014324541106739
708 => 0.014280872049867
709 => 0.014374690081709
710 => 0.014380449746906
711 => 0.014349948548392
712 => 0.014314632067959
713 => 0.014297441958408
714 => 0.014425562951408
715 => 0.014499941500199
716 => 0.014337802148048
717 => 0.01429981516641
718 => 0.014463747003394
719 => 0.014563745329253
720 => 0.015302076783196
721 => 0.015247378804309
722 => 0.01538465999738
723 => 0.015369204241792
724 => 0.015513096802739
725 => 0.015748300326355
726 => 0.015270065798905
727 => 0.015353070776765
728 => 0.015332719873058
729 => 0.01555490570343
730 => 0.01555559934334
731 => 0.015422387839027
801 => 0.015494603956625
802 => 0.015454294900927
803 => 0.015527138812668
804 => 0.015246648279453
805 => 0.015588255471827
806 => 0.015781924737222
807 => 0.01578461383516
808 => 0.015876411529903
809 => 0.015969683304325
810 => 0.01614871035307
811 => 0.015964690337103
812 => 0.015633656242366
813 => 0.015657555834772
814 => 0.015463470666148
815 => 0.015466733272897
816 => 0.015449317222376
817 => 0.015501584101008
818 => 0.015258117920092
819 => 0.015315258946119
820 => 0.015235261175063
821 => 0.015352896877234
822 => 0.015226340307576
823 => 0.015332710059236
824 => 0.01537861571784
825 => 0.015548008586364
826 => 0.015201320843166
827 => 0.014494401066088
828 => 0.014643004173804
829 => 0.01442320850497
830 => 0.014443551430942
831 => 0.014484647378957
901 => 0.014351441965682
902 => 0.01437685336075
903 => 0.014375945486901
904 => 0.014368121920542
905 => 0.014333470047912
906 => 0.014283217976935
907 => 0.014483406760938
908 => 0.014517422736275
909 => 0.01459303603576
910 => 0.014818009926039
911 => 0.01479552972915
912 => 0.01483219586297
913 => 0.014752153898713
914 => 0.014447264348098
915 => 0.014463821317564
916 => 0.014257355643012
917 => 0.014587756244264
918 => 0.014509513020813
919 => 0.014459069105651
920 => 0.01444530501604
921 => 0.014670836573077
922 => 0.014738319149717
923 => 0.014696268536542
924 => 0.014610021502109
925 => 0.014775641304868
926 => 0.014819954177147
927 => 0.014829874195055
928 => 0.015123320731096
929 => 0.014846274596635
930 => 0.014912962354802
1001 => 0.015433241207157
1002 => 0.014961420081645
1003 => 0.015211354254695
1004 => 0.015199121277519
1005 => 0.01532697914314
1006 => 0.015188633200647
1007 => 0.01519034816441
1008 => 0.01530387728724
1009 => 0.01514444610931
1010 => 0.01510496870757
1011 => 0.015050430959807
1012 => 0.015169512136823
1013 => 0.015240895916866
1014 => 0.015816196758401
1015 => 0.016187867338938
1016 => 0.016171732138826
1017 => 0.016319177664026
1018 => 0.016252752104477
1019 => 0.016038246450517
1020 => 0.016404381445649
1021 => 0.01628852101345
1022 => 0.01629807240671
1023 => 0.016297716903376
1024 => 0.016374753962093
1025 => 0.016320166145649
1026 => 0.016212567956114
1027 => 0.016283996655725
1028 => 0.016496114357342
1029 => 0.017154534211727
1030 => 0.017522994685144
1031 => 0.017132352428575
1101 => 0.017401812226248
1102 => 0.017240232365987
1103 => 0.017210868498793
1104 => 0.017380109164654
1105 => 0.017549646063897
1106 => 0.017538847296344
1107 => 0.017415772213309
1108 => 0.017346250221818
1109 => 0.017872694032967
1110 => 0.018260568865286
1111 => 0.018234118402068
1112 => 0.018350862144562
1113 => 0.018693625383272
1114 => 0.018724963358171
1115 => 0.018721015493629
1116 => 0.018643341053062
1117 => 0.018980835975004
1118 => 0.019262380176545
1119 => 0.018625361664301
1120 => 0.018867929974579
1121 => 0.018976826704126
1122 => 0.019136719411304
1123 => 0.019406485209442
1124 => 0.019699522418065
1125 => 0.019740961092354
1126 => 0.019711558369923
1127 => 0.019518292453573
1128 => 0.019838937263909
1129 => 0.020026763473758
1130 => 0.020138609683396
1201 => 0.020422233061605
1202 => 0.018977499213254
1203 => 0.017954844787461
1204 => 0.017795142531564
1205 => 0.018119903348911
1206 => 0.018205540186526
1207 => 0.018171020084663
1208 => 0.01701992955276
1209 => 0.017789082278138
1210 => 0.018616625938446
1211 => 0.018648415260716
1212 => 0.019062700920188
1213 => 0.019197609313055
1214 => 0.019531163570593
1215 => 0.019510299660967
1216 => 0.01959151481467
1217 => 0.019572844857284
1218 => 0.020190683881238
1219 => 0.020872252074641
1220 => 0.020848651535358
1221 => 0.020750668043607
1222 => 0.020896190237525
1223 => 0.021599641654404
1224 => 0.021534879120517
1225 => 0.021597790405729
1226 => 0.022427199271013
1227 => 0.023505548777919
1228 => 0.023004547167441
1229 => 0.024091576502848
1230 => 0.024775803848538
1231 => 0.02595910429248
]
'min_raw' => 0.010598527244307
'max_raw' => 0.02595910429248
'avg_raw' => 0.018278815768394
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.010598'
'max' => '$0.025959'
'avg' => '$0.018278'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0047258115674376
'max_diff' => 0.010531442351062
'year' => 2028
]
3 => [
'items' => [
101 => 0.025810949249021
102 => 0.026271599428388
103 => 0.025545720800339
104 => 0.023878956746062
105 => 0.023615184954357
106 => 0.024143262761117
107 => 0.025441490519959
108 => 0.024102376948991
109 => 0.024373277880332
110 => 0.024295258393882
111 => 0.02429110106701
112 => 0.024449769324625
113 => 0.024219612741375
114 => 0.023281913416836
115 => 0.023711655491376
116 => 0.023545711438487
117 => 0.023729838737116
118 => 0.024723497827942
119 => 0.024284177458013
120 => 0.023821389135783
121 => 0.02440182839281
122 => 0.025140927027575
123 => 0.025094675563299
124 => 0.025004928390992
125 => 0.025510828502277
126 => 0.026346427271296
127 => 0.026572286260854
128 => 0.026739010749462
129 => 0.026761999239608
130 => 0.026998794975376
131 => 0.025725484623943
201 => 0.027746260852596
202 => 0.028095193084467
203 => 0.028029608286635
204 => 0.028417431777047
205 => 0.028303324268036
206 => 0.028138000390397
207 => 0.028752783115123
208 => 0.028047984331633
209 => 0.027047611190167
210 => 0.026498786699622
211 => 0.027221523061181
212 => 0.027662872937162
213 => 0.027954577130061
214 => 0.028042846642579
215 => 0.025824328081875
216 => 0.024628669622335
217 => 0.025395072986648
218 => 0.026330137985444
219 => 0.025720290290662
220 => 0.025744195165703
221 => 0.024874712618098
222 => 0.02640706789778
223 => 0.026183816622666
224 => 0.027342044632878
225 => 0.027065624222881
226 => 0.028010114203056
227 => 0.027761398337969
228 => 0.028793803988426
301 => 0.02920565855366
302 => 0.029897226468733
303 => 0.030405946642248
304 => 0.030704676858403
305 => 0.030686742216734
306 => 0.03187046015994
307 => 0.031172463044786
308 => 0.030295614162864
309 => 0.030279754733012
310 => 0.030733887194005
311 => 0.031685624247089
312 => 0.031932395817743
313 => 0.032070307460541
314 => 0.031859090978856
315 => 0.03110146513626
316 => 0.030774326138678
317 => 0.031053058042747
318 => 0.030712192875776
319 => 0.031300621783843
320 => 0.032108660356251
321 => 0.03194180358638
322 => 0.032499580751495
323 => 0.033076821437521
324 => 0.033902301544039
325 => 0.034118112611323
326 => 0.034474840098983
327 => 0.03484202986266
328 => 0.034959961318712
329 => 0.035185129060296
330 => 0.035183942315152
331 => 0.035862500459953
401 => 0.036610971106865
402 => 0.036893501448939
403 => 0.037543164391724
404 => 0.036430639369109
405 => 0.037274502378529
406 => 0.038035687936286
407 => 0.037128171134331
408 => 0.038378971621531
409 => 0.038427537370074
410 => 0.039160822513163
411 => 0.038417497540207
412 => 0.037976113544043
413 => 0.039250372602526
414 => 0.039866946422141
415 => 0.039681229369829
416 => 0.03826791343175
417 => 0.037445302935816
418 => 0.035292372598242
419 => 0.037842611582768
420 => 0.039084758600639
421 => 0.038264696571054
422 => 0.038678288158617
423 => 0.040934709752837
424 => 0.041793809003438
425 => 0.04161512236487
426 => 0.041645317465355
427 => 0.042108871827225
428 => 0.044164527151804
429 => 0.042932730831599
430 => 0.043874392963868
501 => 0.044373847163408
502 => 0.044837768058826
503 => 0.043698524963384
504 => 0.04221638643502
505 => 0.041746930947144
506 => 0.038183157563868
507 => 0.037997647682585
508 => 0.037893515364697
509 => 0.037236975830217
510 => 0.036721115597429
511 => 0.036310884387654
512 => 0.035234315187795
513 => 0.035597625689727
514 => 0.033881799082606
515 => 0.034979524140681
516 => 0.032241023445634
517 => 0.034521728199457
518 => 0.033280444292871
519 => 0.03411393305192
520 => 0.034111025088159
521 => 0.032576308024899
522 => 0.031691115251539
523 => 0.032255194538942
524 => 0.032859932311708
525 => 0.032958048980757
526 => 0.033742107288419
527 => 0.03396092110881
528 => 0.033297905017584
529 => 0.032184274105628
530 => 0.032442945167259
531 => 0.031685873290731
601 => 0.030359133947465
602 => 0.031312021306445
603 => 0.031637378946301
604 => 0.031781075415277
605 => 0.030476379648218
606 => 0.030066415911885
607 => 0.02984815465859
608 => 0.032015854265769
609 => 0.032134605743555
610 => 0.031527056393433
611 => 0.034273237066179
612 => 0.03365169180231
613 => 0.034346110144339
614 => 0.032419473479678
615 => 0.032493073594828
616 => 0.031580972922055
617 => 0.032091688352219
618 => 0.031730731147306
619 => 0.03205042759245
620 => 0.032242052323511
621 => 0.033154003329539
622 => 0.034532141215058
623 => 0.033017788260124
624 => 0.032357962991726
625 => 0.032767314877242
626 => 0.033857472892133
627 => 0.035509118088854
628 => 0.034531310889937
629 => 0.034965245120573
630 => 0.035060040445577
701 => 0.034339041617487
702 => 0.035535702344067
703 => 0.036177002549096
704 => 0.036834843861077
705 => 0.037406029039975
706 => 0.036572087574832
707 => 0.037464524483348
708 => 0.036745377871405
709 => 0.036100229016482
710 => 0.036101207440989
711 => 0.035696496140175
712 => 0.034912316997942
713 => 0.034767702332647
714 => 0.035520006084327
715 => 0.036123282449744
716 => 0.036172971180699
717 => 0.036506975974053
718 => 0.036704636570236
719 => 0.038641979119387
720 => 0.039421194319194
721 => 0.040374003915728
722 => 0.040745176950985
723 => 0.04186227471421
724 => 0.040960127544161
725 => 0.04076494232915
726 => 0.03805522855546
727 => 0.038498944034101
728 => 0.03920937532758
729 => 0.038066943305821
730 => 0.038791553472024
731 => 0.038934606868174
801 => 0.038028123902879
802 => 0.03851231562146
803 => 0.037226445969748
804 => 0.034560169659589
805 => 0.035538670671796
806 => 0.03625917677666
807 => 0.035230925727257
808 => 0.0370740259345
809 => 0.03599732484274
810 => 0.035656062287419
811 => 0.034324675390227
812 => 0.03495303875592
813 => 0.035802909205317
814 => 0.035277788075634
815 => 0.036367493267061
816 => 0.03791080643188
817 => 0.039010663299018
818 => 0.0390950966523
819 => 0.038387962371417
820 => 0.039521149569403
821 => 0.039529403601011
822 => 0.038251163812478
823 => 0.037468249059271
824 => 0.037290369180075
825 => 0.03773474799371
826 => 0.038274305910317
827 => 0.03912503836154
828 => 0.039639118164463
829 => 0.040979565643626
830 => 0.041342252297847
831 => 0.041740734971112
901 => 0.0422732307101
902 => 0.042912628373861
903 => 0.041513662686482
904 => 0.04156924620124
905 => 0.040266548723152
906 => 0.038874429642098
907 => 0.039930874494525
908 => 0.041312035606103
909 => 0.040995195721059
910 => 0.04095954476154
911 => 0.041019499786699
912 => 0.0407806128604
913 => 0.03970013614631
914 => 0.039157527504636
915 => 0.039857631086624
916 => 0.040229704982424
917 => 0.040806759146557
918 => 0.040735625040692
919 => 0.042222054596407
920 => 0.042799636174461
921 => 0.042651866090685
922 => 0.042679059342386
923 => 0.04372474320056
924 => 0.044887758712138
925 => 0.045977076212144
926 => 0.047085176760426
927 => 0.045749318299572
928 => 0.045071051757446
929 => 0.045770849696111
930 => 0.045399527059486
1001 => 0.047533257070979
1002 => 0.047680991907487
1003 => 0.049814567626014
1004 => 0.051839585044367
1005 => 0.050567707885855
1006 => 0.051767030759727
1007 => 0.053064196230047
1008 => 0.055566638879809
1009 => 0.054723904232363
1010 => 0.054078382699755
1011 => 0.053468367970578
1012 => 0.054737711784884
1013 => 0.056370702323727
1014 => 0.056722432845204
1015 => 0.057292370661399
1016 => 0.056693150736351
1017 => 0.057414845134162
1018 => 0.059962743487021
1019 => 0.059274278861157
1020 => 0.05829654841622
1021 => 0.060307869463043
1022 => 0.061035758731076
1023 => 0.0661444668127
1024 => 0.072594421795954
1025 => 0.069924098080199
1026 => 0.068266541979022
1027 => 0.068656106980555
1028 => 0.071011412195684
1029 => 0.071767861477133
1030 => 0.069711571566451
1031 => 0.07043788792579
1101 => 0.074439962475598
1102 => 0.076586947069646
1103 => 0.073671053612428
1104 => 0.065626219209976
1105 => 0.058208514487234
1106 => 0.060176023803302
1107 => 0.059952969305782
1108 => 0.064252699140583
1109 => 0.059257859207521
1110 => 0.059341959502013
1111 => 0.063730603196304
1112 => 0.062559788299067
1113 => 0.060663218112187
1114 => 0.058222361548468
1115 => 0.053710212438529
1116 => 0.04971367614127
1117 => 0.057551804167537
1118 => 0.057213809834333
1119 => 0.056724343951901
1120 => 0.057813597307514
1121 => 0.063102702412414
1122 => 0.062980771420584
1123 => 0.062205108660297
1124 => 0.062793442027596
1125 => 0.060560080428349
1126 => 0.061135668565173
1127 => 0.058207339484908
1128 => 0.059531066527013
1129 => 0.060659148924359
1130 => 0.060885628167171
1201 => 0.061395897465545
1202 => 0.057035702179316
1203 => 0.058993301854225
1204 => 0.060143208260949
1205 => 0.054947889281415
1206 => 0.060040513508948
1207 => 0.056959800879942
1208 => 0.055914160742907
1209 => 0.057321977434812
1210 => 0.05677334990083
1211 => 0.056301672163602
1212 => 0.056038467881776
1213 => 0.057072213085253
1214 => 0.057023987635918
1215 => 0.055332579841732
1216 => 0.053126207324817
1217 => 0.053866738363203
1218 => 0.053597696494442
1219 => 0.05262265405496
1220 => 0.053279714932098
1221 => 0.050386351360085
1222 => 0.045408469718388
1223 => 0.048697010807531
1224 => 0.048570405552843
1225 => 0.048506565442339
1226 => 0.05097781318223
1227 => 0.050740259733425
1228 => 0.050309097897714
1229 => 0.052614735429726
1230 => 0.051773146715341
1231 => 0.054366724829838
]
'min_raw' => 0.023281913416836
'max_raw' => 0.076586947069646
'avg_raw' => 0.049934430243241
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.023281'
'max' => '$0.076586'
'avg' => '$0.049934'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.012683386172529
'max_diff' => 0.050627842777165
'year' => 2029
]
4 => [
'items' => [
101 => 0.05607502311816
102 => 0.055641743414581
103 => 0.057248406211671
104 => 0.053883798702665
105 => 0.055001386352533
106 => 0.055231719618262
107 => 0.052586284220476
108 => 0.050779126415523
109 => 0.05065860959304
110 => 0.047525247000936
111 => 0.049199064006019
112 => 0.050671953703237
113 => 0.049966553839127
114 => 0.049743245315372
115 => 0.05088408013353
116 => 0.05097273276949
117 => 0.048951443274609
118 => 0.049371733366508
119 => 0.051124412917143
120 => 0.049327570338745
121 => 0.045836598721486
122 => 0.044970789493947
123 => 0.044855274582963
124 => 0.042507131289682
125 => 0.045028647006559
126 => 0.043927937823722
127 => 0.047405064943783
128 => 0.045418948581011
129 => 0.045333331074212
130 => 0.045203907655329
131 => 0.043182763722224
201 => 0.043625265793176
202 => 0.045096210071989
203 => 0.045621059562043
204 => 0.045566313460266
205 => 0.045089001642552
206 => 0.045307512548469
207 => 0.044603612786264
208 => 0.044355051129822
209 => 0.043570522169823
210 => 0.042417481330282
211 => 0.04257781873103
212 => 0.04029334311835
213 => 0.039048639558265
214 => 0.038704122017763
215 => 0.038243418764224
216 => 0.038756159676134
217 => 0.040286871485969
218 => 0.038440508284682
219 => 0.035275048083396
220 => 0.035465297635175
221 => 0.035892731892424
222 => 0.035096210981801
223 => 0.03434237078683
224 => 0.034997773675369
225 => 0.03365652645856
226 => 0.036054815210691
227 => 0.035989948221072
228 => 0.036883881958685
301 => 0.037442877070181
302 => 0.036154574314999
303 => 0.035830569656011
304 => 0.036015137434961
305 => 0.032964643178728
306 => 0.036634591497614
307 => 0.036666329363074
308 => 0.036394570490391
309 => 0.038348704673256
310 => 0.042472537308836
311 => 0.040920985590548
312 => 0.040320177869327
313 => 0.0391780419521
314 => 0.040699870248485
315 => 0.040583017579542
316 => 0.040054565495524
317 => 0.03973495602624
318 => 0.040323846273158
319 => 0.039661986007687
320 => 0.039543097717304
321 => 0.038822764029322
322 => 0.038565637675807
323 => 0.038375271560159
324 => 0.038165697171819
325 => 0.038627966049813
326 => 0.037580403955744
327 => 0.036317146764074
328 => 0.036212120597219
329 => 0.036502107077901
330 => 0.036373809647154
331 => 0.03621150635848
401 => 0.035901625179732
402 => 0.035809690053561
403 => 0.036108434613034
404 => 0.035771169423279
405 => 0.036268822582548
406 => 0.036133488459632
407 => 0.035377523050283
408 => 0.034435310255993
409 => 0.034426922585765
410 => 0.034223924384774
411 => 0.033965375654828
412 => 0.03389345331295
413 => 0.034942577472164
414 => 0.037114233084092
415 => 0.036687885124156
416 => 0.036995965219106
417 => 0.038511414368184
418 => 0.03899313008153
419 => 0.038651219678259
420 => 0.038183191630147
421 => 0.038203782488981
422 => 0.039803176011107
423 => 0.039902928223226
424 => 0.040154969881967
425 => 0.040478914640414
426 => 0.0387063888714
427 => 0.038120296684661
428 => 0.037842573691428
429 => 0.036987294364594
430 => 0.037909639792477
501 => 0.037372228610419
502 => 0.037444743739458
503 => 0.037397518166541
504 => 0.037423306522733
505 => 0.036054144840107
506 => 0.036552995396237
507 => 0.035723559593015
508 => 0.034613038161039
509 => 0.0346093153038
510 => 0.034881113851002
511 => 0.034719437439648
512 => 0.034284370373776
513 => 0.034346169597025
514 => 0.03380474337317
515 => 0.034411908543439
516 => 0.034429319867981
517 => 0.034195528204917
518 => 0.035130949922364
519 => 0.035514192963234
520 => 0.035360306282303
521 => 0.035503395863469
522 => 0.036705601806737
523 => 0.036901613831413
524 => 0.036988669424946
525 => 0.036872026462267
526 => 0.035525369981192
527 => 0.035585099922553
528 => 0.035146841244283
529 => 0.034776558843707
530 => 0.034791368197855
531 => 0.034981741485093
601 => 0.035813112795711
602 => 0.037562684706891
603 => 0.037629079682
604 => 0.03770955232871
605 => 0.037382229632229
606 => 0.037283505974914
607 => 0.03741374796165
608 => 0.038070795183368
609 => 0.039760899024208
610 => 0.039163503448615
611 => 0.038677811546642
612 => 0.039103894286269
613 => 0.03903830218825
614 => 0.038484638871418
615 => 0.038469099386148
616 => 0.037406442464277
617 => 0.037013602395789
618 => 0.036685315830991
619 => 0.036326835472369
620 => 0.036114316299408
621 => 0.036440842337313
622 => 0.036515522705525
623 => 0.035801567816946
624 => 0.035704258403786
625 => 0.036287289377587
626 => 0.036030719183603
627 => 0.03629460799075
628 => 0.036355832457604
629 => 0.036345973908322
630 => 0.036078085158903
701 => 0.036248829459225
702 => 0.035844968287638
703 => 0.035405829921525
704 => 0.035125687003231
705 => 0.034881225151454
706 => 0.035016866795026
707 => 0.034533329102877
708 => 0.034378635663467
709 => 0.036190985132144
710 => 0.037529787170696
711 => 0.037510320458832
712 => 0.03739182185679
713 => 0.037215756970718
714 => 0.038057914940312
715 => 0.037764523943186
716 => 0.037977990407233
717 => 0.038032326581492
718 => 0.038196785815967
719 => 0.038255565856542
720 => 0.038077891748559
721 => 0.037481595741104
722 => 0.035995682784648
723 => 0.035303986292272
724 => 0.035075714928672
725 => 0.035084012159189
726 => 0.03485513750104
727 => 0.034922551345307
728 => 0.034831693717144
729 => 0.034659631350222
730 => 0.035006242428728
731 => 0.03504618612662
801 => 0.034965282959203
802 => 0.034984338583867
803 => 0.034314494911848
804 => 0.034365421671408
805 => 0.03408185500272
806 => 0.034028689670789
807 => 0.033311857825321
808 => 0.032041886304638
809 => 0.032745573806215
810 => 0.031895618257747
811 => 0.031573727212613
812 => 0.033097509355946
813 => 0.032944563891893
814 => 0.03268278774123
815 => 0.032295566255468
816 => 0.032151942039751
817 => 0.031279326770954
818 => 0.031227768005652
819 => 0.031660259695462
820 => 0.031460679661745
821 => 0.031180393707537
822 => 0.030165226393527
823 => 0.029023842222232
824 => 0.029058293435879
825 => 0.02942134650456
826 => 0.030476972266127
827 => 0.030064521018572
828 => 0.029765282906138
829 => 0.029709244602743
830 => 0.030410681293858
831 => 0.031403361167315
901 => 0.031869104353981
902 => 0.031407567000826
903 => 0.030877377740457
904 => 0.030909647904075
905 => 0.031124326845339
906 => 0.031146886566669
907 => 0.030801787862506
908 => 0.030898931126301
909 => 0.03075136162563
910 => 0.029845727872408
911 => 0.029829347829608
912 => 0.02960709070125
913 => 0.029600360843734
914 => 0.029222246023758
915 => 0.029169345146659
916 => 0.028418575221669
917 => 0.028912734259838
918 => 0.028581278321548
919 => 0.028081696039993
920 => 0.027995567866349
921 => 0.027992978749447
922 => 0.02850593804805
923 => 0.028906740031775
924 => 0.028587044139503
925 => 0.028514255581878
926 => 0.029291446946924
927 => 0.029192542261466
928 => 0.029106891441725
929 => 0.031314477572455
930 => 0.029567000889888
1001 => 0.028805001313807
1002 => 0.027861882138612
1003 => 0.028168966497675
1004 => 0.028233673684138
1005 => 0.025965642077803
1006 => 0.025045501937578
1007 => 0.024729744516203
1008 => 0.024548021656046
1009 => 0.024630835045352
1010 => 0.023802600997475
1011 => 0.024359187975375
1012 => 0.023642007298795
1013 => 0.023521769624459
1014 => 0.024804177515821
1015 => 0.024982617082185
1016 => 0.024221338455246
1017 => 0.024710202573556
1018 => 0.024532933648537
1019 => 0.023654301303062
1020 => 0.023620744010247
1021 => 0.023179877184708
1022 => 0.022490005971379
1023 => 0.022174716315171
1024 => 0.022010510724748
1025 => 0.02207826515166
1026 => 0.022044006440094
1027 => 0.021820445173639
1028 => 0.022056820710196
1029 => 0.021452978891408
1030 => 0.021212524213682
1031 => 0.02110391641426
1101 => 0.020567972044247
1102 => 0.02142089787248
1103 => 0.021588935005519
1104 => 0.021757303223619
1105 => 0.023222833612312
1106 => 0.023149619855639
1107 => 0.02381143655942
1108 => 0.023785719579314
1109 => 0.023596958734676
1110 => 0.0228006077808
1111 => 0.023118019077424
1112 => 0.022141076443082
1113 => 0.022873068290373
1114 => 0.02253901777998
1115 => 0.022760125476784
1116 => 0.022362553901452
1117 => 0.022582586426569
1118 => 0.021628782843529
1119 => 0.020738134478064
1120 => 0.021096557379974
1121 => 0.02148620406498
1122 => 0.022331057358203
1123 => 0.021827869706648
1124 => 0.022008835013779
1125 => 0.021402631528117
1126 => 0.020151860583731
1127 => 0.020158939811443
1128 => 0.019966535951176
1129 => 0.019800270924481
1130 => 0.021885666861477
1201 => 0.02162631491148
1202 => 0.021213071522305
1203 => 0.021766214220356
1204 => 0.021912473929276
1205 => 0.021916637737572
1206 => 0.02232019637139
1207 => 0.022535575686601
1208 => 0.022573537224414
1209 => 0.023208545454189
1210 => 0.023421391836849
1211 => 0.024298075963876
1212 => 0.022517302256477
1213 => 0.022480628393844
1214 => 0.021773998072472
1215 => 0.021325841951274
1216 => 0.021804683705504
1217 => 0.022228872131335
1218 => 0.021787178789283
1219 => 0.021844854615099
1220 => 0.021251917391067
1221 => 0.021463864548369
1222 => 0.021646421992603
1223 => 0.021545624502127
1224 => 0.021394725780232
1225 => 0.022194093517797
1226 => 0.022148990057297
1227 => 0.022893379671902
1228 => 0.0234736846083
1229 => 0.024513694796239
1230 => 0.023428389948167
1231 => 0.023388837125807
]
'min_raw' => 0.019800270924481
'max_raw' => 0.057248406211671
'avg_raw' => 0.038524338568076
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.01980027'
'max' => '$0.057248'
'avg' => '$0.038524'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0034816424923554
'max_diff' => -0.019338540857975
'year' => 2030
]
5 => [
'items' => [
101 => 0.023775472308846
102 => 0.023421332645017
103 => 0.023645136688071
104 => 0.024477636504906
105 => 0.024495225914199
106 => 0.024200580645856
107 => 0.0241826514545
108 => 0.024239241301352
109 => 0.024570689801911
110 => 0.024454871511432
111 => 0.024588899369335
112 => 0.02475650325795
113 => 0.025449784003838
114 => 0.025616931644581
115 => 0.025210849533692
116 => 0.025247514201597
117 => 0.025095628344921
118 => 0.024948908510496
119 => 0.025278713271572
120 => 0.025881437954766
121 => 0.025877688435793
122 => 0.026017508847
123 => 0.026104615804848
124 => 0.025730688975576
125 => 0.025487276359392
126 => 0.025580616245184
127 => 0.025729868755245
128 => 0.025532215667747
129 => 0.024312209249892
130 => 0.024682281262758
131 => 0.02462068318422
201 => 0.0245329600298
202 => 0.024905070300418
203 => 0.024869179357048
204 => 0.023794106260204
205 => 0.023862928951798
206 => 0.023798291596028
207 => 0.02400714811608
208 => 0.023410053707525
209 => 0.023593715926104
210 => 0.023708907147871
211 => 0.023776755662432
212 => 0.024021871021189
213 => 0.02399310956295
214 => 0.024020083168562
215 => 0.024383524537543
216 => 0.026221686263832
217 => 0.026321733350919
218 => 0.025829064903601
219 => 0.026025876230849
220 => 0.025648041520439
221 => 0.02590168449281
222 => 0.026075220572673
223 => 0.02529104439684
224 => 0.025244610572968
225 => 0.024865216404305
226 => 0.025069081340561
227 => 0.02474471756857
228 => 0.024824305092454
301 => 0.02460177143736
302 => 0.02500228771052
303 => 0.025450127137849
304 => 0.025563269062907
305 => 0.02526564136874
306 => 0.025050139303542
307 => 0.024671788667849
308 => 0.025300994207101
309 => 0.02548499308147
310 => 0.025300027739345
311 => 0.025257167228002
312 => 0.025175946636454
313 => 0.025274398560453
314 => 0.025483990984084
315 => 0.025385151067664
316 => 0.025450436573795
317 => 0.025201635546546
318 => 0.025730812760916
319 => 0.026571273530767
320 => 0.026573975749571
321 => 0.026475135300367
322 => 0.0264346919181
323 => 0.026536108217123
324 => 0.026591122399029
325 => 0.026919084113502
326 => 0.027271000099703
327 => 0.028913238454327
328 => 0.028452104495871
329 => 0.029909196061291
330 => 0.031061566309877
331 => 0.031407111760385
401 => 0.031089226205088
402 => 0.030001756892257
403 => 0.029948400459723
404 => 0.031573538730794
405 => 0.031114362733168
406 => 0.031059745209336
407 => 0.03047870703353
408 => 0.03082217255841
409 => 0.030747051609783
410 => 0.030628469517334
411 => 0.031283777812788
412 => 0.032510456442103
413 => 0.032319267074005
414 => 0.03217655307974
415 => 0.031551221900286
416 => 0.031927810943093
417 => 0.031793714798037
418 => 0.032369876936711
419 => 0.032028571249315
420 => 0.031110884023374
421 => 0.031257028738842
422 => 0.031234939259101
423 => 0.031689539186885
424 => 0.031553079572428
425 => 0.03120829332928
426 => 0.032506263787905
427 => 0.032421980806013
428 => 0.032541474804564
429 => 0.032594079758201
430 => 0.033384131503561
501 => 0.0337077904248
502 => 0.033781266666368
503 => 0.034088717608864
504 => 0.033773617006837
505 => 0.035034244077869
506 => 0.035872487520476
507 => 0.036846150414678
508 => 0.038268933599021
509 => 0.038803913237814
510 => 0.038707273954483
511 => 0.039786011926851
512 => 0.0417244800842
513 => 0.039099093792009
514 => 0.041863631932622
515 => 0.040988411075431
516 => 0.038913278167584
517 => 0.038779664072528
518 => 0.040184968170511
519 => 0.04330179740433
520 => 0.042521067032043
521 => 0.04330307439953
522 => 0.042390821266589
523 => 0.042345520209466
524 => 0.04325876830105
525 => 0.0453926222456
526 => 0.044378908222863
527 => 0.042925500598395
528 => 0.043998674170775
529 => 0.043068991904854
530 => 0.040974157558051
531 => 0.042520470022241
601 => 0.041486494913881
602 => 0.04178826381964
603 => 0.043961525705224
604 => 0.043700033085413
605 => 0.044038428749013
606 => 0.043441169260115
607 => 0.042883234718308
608 => 0.041841808463261
609 => 0.041533493490836
610 => 0.041618700657203
611 => 0.041533451266396
612 => 0.040950782847898
613 => 0.0408249556584
614 => 0.040615238163288
615 => 0.040680238384292
616 => 0.040285908138463
617 => 0.041030090785128
618 => 0.041168217642064
619 => 0.041709771712624
620 => 0.041765997652767
621 => 0.043274218030737
622 => 0.042443515591165
623 => 0.043000822507028
624 => 0.042950971730897
625 => 0.03895825259005
626 => 0.0395084140596
627 => 0.040364292656039
628 => 0.039978720508459
629 => 0.039433611701768
630 => 0.038993407113481
701 => 0.038326452148995
702 => 0.039265178453773
703 => 0.040499503722143
704 => 0.041797302178519
705 => 0.043356521988732
706 => 0.043008522278412
707 => 0.041768153648738
708 => 0.041823795679375
709 => 0.042167752818443
710 => 0.041722297071549
711 => 0.041590923475461
712 => 0.042149704103719
713 => 0.042153552118806
714 => 0.041641001446879
715 => 0.041071395170815
716 => 0.04106900849972
717 => 0.040967652564638
718 => 0.042408852262277
719 => 0.043201366374254
720 => 0.043292226839992
721 => 0.043195250740971
722 => 0.043232572992641
723 => 0.042771426492738
724 => 0.043825470642769
725 => 0.044792765788999
726 => 0.044533510026563
727 => 0.044144848783292
728 => 0.043835261382565
729 => 0.044460581073781
730 => 0.044432736572275
731 => 0.044784317309747
801 => 0.044768367576666
802 => 0.044650144198275
803 => 0.044533514248692
804 => 0.044995938815537
805 => 0.044862767966597
806 => 0.044729390266546
807 => 0.044461880869989
808 => 0.044498239839841
809 => 0.044109645704414
810 => 0.043929864276508
811 => 0.041226382956757
812 => 0.040503924409319
813 => 0.040731224575343
814 => 0.040806057691844
815 => 0.040491642806144
816 => 0.040942432985681
817 => 0.040872177813705
818 => 0.041145499589963
819 => 0.040974740010409
820 => 0.040981748043117
821 => 0.041483915556804
822 => 0.041629696922401
823 => 0.041555551343258
824 => 0.041607480365328
825 => 0.042804162761051
826 => 0.042634032792128
827 => 0.042543654636953
828 => 0.042568690003592
829 => 0.042874468012859
830 => 0.042960069160593
831 => 0.042597371082557
901 => 0.042768421592891
902 => 0.043496732956355
903 => 0.043751600714714
904 => 0.044565016255932
905 => 0.044219462876714
906 => 0.044853741059468
907 => 0.046803295951886
908 => 0.048360735298888
909 => 0.046928449711482
910 => 0.049788488733546
911 => 0.052015439360453
912 => 0.051929965286211
913 => 0.051541644934114
914 => 0.049006320851926
915 => 0.046673277831944
916 => 0.048624967384398
917 => 0.048629942642436
918 => 0.048462290779013
919 => 0.04742101945394
920 => 0.048426056793986
921 => 0.04850583300828
922 => 0.048461179542483
923 => 0.04766283925894
924 => 0.046443921203917
925 => 0.046682094874191
926 => 0.047072228204711
927 => 0.046333624419698
928 => 0.046097595756804
929 => 0.046536417947413
930 => 0.047950394477789
1001 => 0.04768309040533
1002 => 0.047676110015738
1003 => 0.048819750192286
1004 => 0.048001150638874
1005 => 0.046685099006911
1006 => 0.046352778613251
1007 => 0.045173265093602
1008 => 0.045987959282907
1009 => 0.046017278676408
1010 => 0.045571078994898
1011 => 0.046721305651918
1012 => 0.04671070611078
1013 => 0.047802675132976
1014 => 0.04989010977858
1015 => 0.049272752637454
1016 => 0.048554833450591
1017 => 0.048632891171943
1018 => 0.0494889917123
1019 => 0.048971373782726
1020 => 0.049157512799161
1021 => 0.049488709968605
1022 => 0.049688529444093
1023 => 0.048604140224467
1024 => 0.04835131722504
1025 => 0.047834130097027
1026 => 0.047699205629084
1027 => 0.048120443753387
1028 => 0.048009462390196
1029 => 0.046014814494914
1030 => 0.045806362691741
1031 => 0.045812755610944
1101 => 0.045288593640522
1102 => 0.044489120822342
1103 => 0.046590087654478
1104 => 0.046421350614845
1105 => 0.046235077982301
1106 => 0.046257895316931
1107 => 0.047169853810388
1108 => 0.046640871829175
1109 => 0.048047257124671
1110 => 0.047758146587729
1111 => 0.047461621456428
1112 => 0.047420632650906
1113 => 0.04730649577369
1114 => 0.046915077953257
1115 => 0.046442417414519
1116 => 0.046130325985689
1117 => 0.042552787281993
1118 => 0.043216757655814
1119 => 0.043980595048091
1120 => 0.044244268655019
1121 => 0.04379323670471
1122 => 0.046932887443727
1123 => 0.047506531888173
1124 => 0.045768925448046
1125 => 0.045443890229101
1126 => 0.046954196698569
1127 => 0.046043297270023
1128 => 0.046453475226922
1129 => 0.045566894839453
1130 => 0.047368357739776
1201 => 0.047354633610751
1202 => 0.046653823854641
1203 => 0.047246143461567
1204 => 0.047143213353594
1205 => 0.046352000864964
1206 => 0.047393440586926
1207 => 0.047393957128035
1208 => 0.046719442974696
1209 => 0.045931758113732
1210 => 0.045790938664877
1211 => 0.045684850126597
1212 => 0.04642738394985
1213 => 0.047093137453937
1214 => 0.048331939670751
1215 => 0.048643403981273
1216 => 0.049859069920592
1217 => 0.049135200043428
1218 => 0.049456082184291
1219 => 0.049804445139747
1220 => 0.049971463151217
1221 => 0.049699316264208
1222 => 0.051587745856035
1223 => 0.051747187173573
1224 => 0.051800646468181
1225 => 0.051163878634946
1226 => 0.051729477508226
1227 => 0.051464852526084
1228 => 0.052153333214679
1229 => 0.052261295777614
1230 => 0.052169855327688
1231 => 0.052204124349236
]
'min_raw' => 0.023410053707525
'max_raw' => 0.052261295777614
'avg_raw' => 0.037835674742569
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.02341'
'max' => '$0.052261'
'avg' => '$0.037835'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0036097827830442
'max_diff' => -0.0049871104340572
'year' => 2031
]
6 => [
'items' => [
101 => 0.05059268283442
102 => 0.050509121090846
103 => 0.049369750787938
104 => 0.049834052608173
105 => 0.048966062609809
106 => 0.049241311179578
107 => 0.049362638126468
108 => 0.049299263814656
109 => 0.049860303536456
110 => 0.049383305160083
111 => 0.048124428019041
112 => 0.046865207897764
113 => 0.04684939941488
114 => 0.046517868984029
115 => 0.046278233205351
116 => 0.04632439555786
117 => 0.046487077709153
118 => 0.046268777822978
119 => 0.046315363171778
120 => 0.047088990358427
121 => 0.047244135773452
122 => 0.046716891033968
123 => 0.044599927323888
124 => 0.044080419119432
125 => 0.044453831314499
126 => 0.044275364336083
127 => 0.035733674569724
128 => 0.037740417879655
129 => 0.036548079147458
130 => 0.037097563692121
131 => 0.035880494601166
201 => 0.036461343763426
202 => 0.036354082132372
203 => 0.039580865990889
204 => 0.039530484199235
205 => 0.039554599296755
206 => 0.038403522860572
207 => 0.040237218878542
208 => 0.04114056347457
209 => 0.040973378431583
210 => 0.041015455305042
211 => 0.040292435211658
212 => 0.039561599711702
213 => 0.038750990667474
214 => 0.040257002077344
215 => 0.040089559317038
216 => 0.040473612765175
217 => 0.041450368816395
218 => 0.041594199855272
219 => 0.041787510230114
220 => 0.041718222221502
221 => 0.04336894369005
222 => 0.043169030428398
223 => 0.043650763870009
224 => 0.042659801631411
225 => 0.041538433795439
226 => 0.041751569160781
227 => 0.041731042511172
228 => 0.041469714702261
229 => 0.041233799641131
301 => 0.040841067533007
302 => 0.042083730036528
303 => 0.042033280208253
304 => 0.042850004286511
305 => 0.042705640372444
306 => 0.041741542822466
307 => 0.041775975755073
308 => 0.042007553774755
309 => 0.042809047944987
310 => 0.043046985984596
311 => 0.042936763604458
312 => 0.043197651802605
313 => 0.043403847197152
314 => 0.04322354676952
315 => 0.045776220604837
316 => 0.044716172456615
317 => 0.045232832548291
318 => 0.045356052935818
319 => 0.045040426504213
320 => 0.045108874575493
321 => 0.045212554752499
322 => 0.045842080484618
323 => 0.047494138160439
324 => 0.048225823259122
325 => 0.050427133979219
326 => 0.048165066997225
327 => 0.048030845303877
328 => 0.048427367837782
329 => 0.049719770262883
330 => 0.050767141039241
331 => 0.051114614350028
401 => 0.051160538684208
402 => 0.051812421714834
403 => 0.05218606891109
404 => 0.05173326596869
405 => 0.051349562885451
406 => 0.049975186068266
407 => 0.050134273927159
408 => 0.051230231515092
409 => 0.052778336159629
410 => 0.054106770997477
411 => 0.053641599417891
412 => 0.057190530210175
413 => 0.057542392202148
414 => 0.057493776251917
415 => 0.058295370233716
416 => 0.056704369421621
417 => 0.056024185750261
418 => 0.051432523847262
419 => 0.05272259355055
420 => 0.054597785627416
421 => 0.054349596924433
422 => 0.052987782314185
423 => 0.054105737938978
424 => 0.053736106847717
425 => 0.053444563470031
426 => 0.054780180201674
427 => 0.053311614741121
428 => 0.054583135563552
429 => 0.052952396956586
430 => 0.053643724282483
501 => 0.053251293456563
502 => 0.053505244295447
503 => 0.052020652880404
504 => 0.052821702371541
505 => 0.051987326587966
506 => 0.051986930985206
507 => 0.051968512093538
508 => 0.052950151502726
509 => 0.052982162728617
510 => 0.052256729722053
511 => 0.052152183492413
512 => 0.052538745698287
513 => 0.052086182596011
514 => 0.052297934023168
515 => 0.052092596331025
516 => 0.05204637049145
517 => 0.05167803513704
518 => 0.051519346138768
519 => 0.051581572183902
520 => 0.051369162612135
521 => 0.051241178161955
522 => 0.051943052765075
523 => 0.051568069478169
524 => 0.05188558119834
525 => 0.051523736520031
526 => 0.050269425216793
527 => 0.0495480575222
528 => 0.047178779745103
529 => 0.047850703983608
530 => 0.048296190448892
531 => 0.048148957174773
601 => 0.048465271219294
602 => 0.048484690332632
603 => 0.048381853412318
604 => 0.04826278143282
605 => 0.048204823778294
606 => 0.048636792651316
607 => 0.048887565121509
608 => 0.048340900975524
609 => 0.048212825214763
610 => 0.04876553284851
611 => 0.049102684185806
612 => 0.051592020231431
613 => 0.051407602176722
614 => 0.051870455303827
615 => 0.051818345144775
616 => 0.052303488960267
617 => 0.053096494061522
618 => 0.051484092962957
619 => 0.051763950041033
620 => 0.051695335548332
621 => 0.05244445058795
622 => 0.052446789243335
623 => 0.051997657356013
624 => 0.052241139038463
625 => 0.05210523424289
626 => 0.052350832577125
627 => 0.051405139161167
628 => 0.052556891660508
629 => 0.053209861110342
630 => 0.053218927591787
701 => 0.053528429928723
702 => 0.053842902228216
703 => 0.054446504422328
704 => 0.053826068090628
705 => 0.052709963528158
706 => 0.052790542672573
707 => 0.052136170975964
708 => 0.052147171082406
709 => 0.052088451652125
710 => 0.05226467308259
711 => 0.051443809855363
712 => 0.051636464814075
713 => 0.051366746743692
714 => 0.051763363726623
715 => 0.051336669416126
716 => 0.051695302460346
717 => 0.051850076593358
718 => 0.052421196476221
719 => 0.051252314545063
720 => 0.048868885161082
721 => 0.049369910913883
722 => 0.048628854470767
723 => 0.048697442065978
724 => 0.04883599992394
725 => 0.048386888572977
726 => 0.048472564865615
727 => 0.048469503905547
728 => 0.048443126205347
729 => 0.048326294997458
730 => 0.048156866631669
731 => 0.048831817093671
801 => 0.048946504329439
802 => 0.049201439847806
803 => 0.049959955026054
804 => 0.049884161472728
805 => 0.050007783902848
806 => 0.049737916832006
807 => 0.048709960425397
808 => 0.048765783403924
809 => 0.048069669967198
810 => 0.049183638662153
811 => 0.048919836171519
812 => 0.048749760989671
813 => 0.048703354400568
814 => 0.04946374979123
815 => 0.049691272009853
816 => 0.049549495431655
817 => 0.049258707533488
818 => 0.049817106261694
819 => 0.049966510204411
820 => 0.04999995623738
821 => 0.050989331721426
822 => 0.050055251336348
823 => 0.050280093768997
824 => 0.052034250244421
825 => 0.050443472378258
826 => 0.051286142892544
827 => 0.051244898555916
828 => 0.051675980276609
829 => 0.051209537272486
830 => 0.051215319392549
831 => 0.05159809075652
901 => 0.051060557409002
902 => 0.050927456592809
903 => 0.050743578768523
904 => 0.051145069270815
905 => 0.051385744669085
906 => 0.053325411622543
907 => 0.054578524934037
908 => 0.054524123980334
909 => 0.055021246862862
910 => 0.054797288451159
911 => 0.054074067662527
912 => 0.055308517361343
913 => 0.054917885825069
914 => 0.054950089014302
915 => 0.05494889040999
916 => 0.055208626232011
917 => 0.055024579597671
918 => 0.054661804789386
919 => 0.054902631637117
920 => 0.055617801277704
921 => 0.057837709786169
922 => 0.059079999997382
923 => 0.057762922355588
924 => 0.058671424876525
925 => 0.05812664709651
926 => 0.058027644768147
927 => 0.058598251489104
928 => 0.05916985698159
929 => 0.059133448182837
930 => 0.058718491947559
1001 => 0.058484093699375
1002 => 0.060259035763799
1003 => 0.061566782841517
1004 => 0.061477603258064
1005 => 0.06187121293667
1006 => 0.063026863126947
1007 => 0.063132521297266
1008 => 0.063119210796331
1009 => 0.062857325996905
1010 => 0.063995213689373
1011 => 0.064944459621659
1012 => 0.062796707232417
1013 => 0.063614543226097
1014 => 0.06398169615269
1015 => 0.064520785578294
1016 => 0.065430319801165
1017 => 0.06641831520924
1018 => 0.066558028592761
1019 => 0.066458895261252
1020 => 0.065807285730884
1021 => 0.066888362095637
1022 => 0.067521631275749
1023 => 0.067898728580398
1024 => 0.06885498460198
1025 => 0.063983963564171
1026 => 0.060536012768156
1027 => 0.059997565462345
1028 => 0.061092519232106
1029 => 0.0613812498091
1030 => 0.061264862875551
1031 => 0.057383880780664
1101 => 0.059977132894804
1102 => 0.062767254122787
1103 => 0.06287443404228
1104 => 0.064271227067692
1105 => 0.064726080133247
1106 => 0.06585068160055
1107 => 0.065780337472574
1108 => 0.066054160033545
1109 => 0.065991212968724
1110 => 0.068074300374126
1111 => 0.070372255123757
1112 => 0.070292684257826
1113 => 0.0699623260744
1114 => 0.070452964311229
1115 => 0.072824699876645
1116 => 0.07260634847207
1117 => 0.072818458262487
1118 => 0.075614868159272
1119 => 0.079250598809762
1120 => 0.07756143690122
1121 => 0.08122643219951
1122 => 0.083533352466731
1123 => 0.087522932528882
1124 => 0.087023417456005
1125 => 0.088576531697309
1126 => 0.086129181223613
1127 => 0.08050956984487
1128 => 0.079620244833175
1129 => 0.081400696027883
1130 => 0.085777761556186
1201 => 0.081262846657743
1202 => 0.082176208061461
1203 => 0.081913159915745
1204 => 0.081899143197942
1205 => 0.082434104306354
1206 => 0.081658115316908
1207 => 0.07849659657615
1208 => 0.079945501984093
1209 => 0.079386010023934
1210 => 0.080006808066619
1211 => 0.083356999066402
1212 => 0.08187579976682
1213 => 0.080315476627569
1214 => 0.082272468107612
1215 => 0.08476439075694
1216 => 0.084608450715961
1217 => 0.08430586185858
1218 => 0.086011539404597
1219 => 0.088828818993986
1220 => 0.089590318346252
1221 => 0.090152441599926
1222 => 0.090229948899457
1223 => 0.091028322255149
1224 => 0.086735267505603
1225 => 0.093548455646598
1226 => 0.094724905028023
1227 => 0.094503781303146
1228 => 0.095811355278043
1229 => 0.095426633844678
1230 => 0.094869232848677
1231 => 0.096942015727848
]
'min_raw' => 0.035733674569724
'max_raw' => 0.096942015727848
'avg_raw' => 0.066337845148786
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.035733'
'max' => '$0.096942'
'avg' => '$0.066337'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.012323620862199
'max_diff' => 0.044680719950235
'year' => 2032
]
7 => [
'items' => [
101 => 0.094565737421831
102 => 0.091192909531559
103 => 0.089342509443984
104 => 0.09177926554682
105 => 0.093267307467753
106 => 0.094250808520248
107 => 0.094548415344486
108 => 0.087068525125051
109 => 0.083037279150505
110 => 0.08562126160186
111 => 0.088773898529455
112 => 0.086717754448289
113 => 0.086798351403476
114 => 0.083866830288893
115 => 0.089033273099969
116 => 0.088280565839018
117 => 0.092185612440344
118 => 0.091253641728981
119 => 0.094438055639326
120 => 0.0935994927354
121 => 0.097080320466175
122 => 0.098468916887629
123 => 0.10080058639703
124 => 0.10251577197974
125 => 0.10352296176018
126 => 0.10346249386364
127 => 0.10745348155371
128 => 0.10510013554737
129 => 0.10214377832233
130 => 0.10209030714732
131 => 0.10362144644607
201 => 0.1068302943687
202 => 0.1076623019482
203 => 0.10812728068058
204 => 0.10741514956591
205 => 0.10486076114186
206 => 0.10375778917139
207 => 0.1046975532464
208 => 0.10354830253751
209 => 0.10553223168385
210 => 0.10825659014618
211 => 0.10769402089699
212 => 0.10957460555194
213 => 0.11152081282653
214 => 0.11430397663883
215 => 0.11503159871963
216 => 0.11623433035019
217 => 0.1174723362748
218 => 0.11786995041259
219 => 0.11862911917405
220 => 0.11862511797994
221 => 0.12091292414056
222 => 0.12343644518317
223 => 0.12438901595711
224 => 0.12657939992673
225 => 0.12282844413897
226 => 0.12567358719186
227 => 0.12823997744412
228 => 0.12518022118553
301 => 0.12939738235622
302 => 0.12956112516819
303 => 0.13203344722445
304 => 0.12952727518083
305 => 0.12803911822132
306 => 0.13233537160292
307 => 0.13441419328356
308 => 0.13378803527534
309 => 0.12902294191554
310 => 0.12624945319567
311 => 0.11899069824974
312 => 0.12758900703807
313 => 0.13177699243276
314 => 0.12901209604511
315 => 0.13040654895862
316 => 0.13801423190186
317 => 0.14091074500565
318 => 0.14030829052822
319 => 0.14041009541766
320 => 0.14197300131304
321 => 0.14890378676112
322 => 0.14475069946628
323 => 0.14792557908998
324 => 0.1496095237945
325 => 0.15117366548333
326 => 0.14733262784763
327 => 0.14233549431965
328 => 0.14075269236594
329 => 0.12873718158951
330 => 0.12811172207288
331 => 0.12776063269283
401 => 0.12554706381421
402 => 0.12380780502315
403 => 0.12242468185797
404 => 0.11879495363698
405 => 0.12001988035977
406 => 0.11423485115868
407 => 0.11793590783269
408 => 0.10870286154333
409 => 0.11639241685456
410 => 0.11220734149984
411 => 0.11501750704329
412 => 0.11500770264045
413 => 0.10983329691114
414 => 0.10684880767357
415 => 0.10875064037381
416 => 0.11078955599613
417 => 0.11112036319612
418 => 0.11376387052161
419 => 0.11450161659415
420 => 0.11226621155227
421 => 0.10851152718139
422 => 0.10938365472551
423 => 0.10683113403673
424 => 0.10235793971092
425 => 0.1055706659702
426 => 0.10666763196871
427 => 0.10715211464643
428 => 0.10275324177684
429 => 0.10137102041704
430 => 0.10063513736305
501 => 0.1079436879326
502 => 0.10834406683092
503 => 0.10629567177925
504 => 0.11555461164962
505 => 0.11345902839758
506 => 0.11580030832047
507 => 0.10930451829209
508 => 0.10955266621892
509 => 0.10647745511983
510 => 0.10819936784964
511 => 0.10698237543204
512 => 0.10806025431734
513 => 0.10870633047693
514 => 0.11178103696413
515 => 0.11642752506368
516 => 0.11132177834737
517 => 0.10909713138744
518 => 0.11047728984949
519 => 0.1141528337091
520 => 0.11972147080403
521 => 0.11642472556456
522 => 0.11788776511947
523 => 0.11820737417612
524 => 0.11577647628868
525 => 0.11981110147653
526 => 0.12197328989194
527 => 0.12419124780429
528 => 0.12611703851382
529 => 0.12330534664016
530 => 0.12631425998518
531 => 0.1238896069738
601 => 0.12171444256657
602 => 0.12171774139311
603 => 0.12035322898637
604 => 0.11770931425869
605 => 0.11722173581798
606 => 0.11975818044094
607 => 0.12179216882635
608 => 0.12195969785192
609 => 0.12308581833219
610 => 0.12375224483244
611 => 0.13028413049784
612 => 0.13291130894706
613 => 0.13612377302482
614 => 0.13737520882766
615 => 0.14114158192964
616 => 0.13809992975992
617 => 0.13744184918011
618 => 0.12830586000594
619 => 0.12980187772141
620 => 0.1321971464281
621 => 0.12834535710469
622 => 0.1307884308707
623 => 0.13127074538349
624 => 0.12821447477738
625 => 0.12984696096176
626 => 0.12551156165447
627 => 0.1165220249213
628 => 0.11982110940071
629 => 0.12225034603739
630 => 0.11878352583413
701 => 0.124997666864
702 => 0.12136749396026
703 => 0.1202169034288
704 => 0.11572803955046
705 => 0.11784661050882
706 => 0.12071200806502
707 => 0.11894152551351
708 => 0.12261554264719
709 => 0.12781893073306
710 => 0.13152717495018
711 => 0.13181184789571
712 => 0.12942769529718
713 => 0.13324831505179
714 => 0.13327614409564
715 => 0.12896646940475
716 => 0.12632681765294
717 => 0.12572708322106
718 => 0.12722533741677
719 => 0.12904449460334
720 => 0.13191279845888
721 => 0.13364605440634
722 => 0.13816546666939
723 => 0.13938829004607
724 => 0.14073180220016
725 => 0.14252714876182
726 => 0.14468292262651
727 => 0.13996621213885
728 => 0.14015361583957
729 => 0.13576148034076
730 => 0.13106785366434
731 => 0.13462973124292
801 => 0.13928641236019
802 => 0.13821816456671
803 => 0.13809796486763
804 => 0.13830010742088
805 => 0.13749468347031
806 => 0.13385178079228
807 => 0.13202233787315
808 => 0.13438278597949
809 => 0.13563725909655
810 => 0.13758283749956
811 => 0.13734300389521
812 => 0.1423546049215
813 => 0.14430196153737
814 => 0.14380374438294
815 => 0.14389542832962
816 => 0.14742102446477
817 => 0.15134221246121
818 => 0.1550149224662
819 => 0.15875096082984
820 => 0.15424702076241
821 => 0.15196019776057
822 => 0.15431961536911
823 => 0.15306767517482
824 => 0.16026169488084
825 => 0.16075979319664
826 => 0.16795329269315
827 => 0.17478078030133
828 => 0.17049255766178
829 => 0.17453615846509
830 => 0.17890964241348
831 => 0.18734680252211
901 => 0.18450546382039
902 => 0.18232904290433
903 => 0.18027233565504
904 => 0.18455201694773
905 => 0.1900577585612
906 => 0.1912436425714
907 => 0.19316522771049
908 => 0.19114491589699
909 => 0.1935781589463
910 => 0.20216857613155
911 => 0.19984736957839
912 => 0.19655088312032
913 => 0.20333219245564
914 => 0.20578632194242
915 => 0.22301068791822
916 => 0.24475716146574
917 => 0.23575397862202
918 => 0.23016541250003
919 => 0.23147885810126
920 => 0.23941993407623
921 => 0.24197035564223
922 => 0.23503743064279
923 => 0.23748625695809
924 => 0.25097953071869
925 => 0.2582182391752
926 => 0.24838710080301
927 => 0.22126337994274
928 => 0.19625407058241
929 => 0.20288766560865
930 => 0.20213562179709
1001 => 0.21663246113267
1002 => 0.19979200956977
1003 => 0.20007555958434
1004 => 0.21487217820496
1005 => 0.21092469403524
1006 => 0.20453027523587
1007 => 0.19630075691613
1008 => 0.18108773116378
1009 => 0.16761313000832
1010 => 0.1940399258895
1011 => 0.1929003543971
1012 => 0.19125008600106
1013 => 0.19492257973875
1014 => 0.21275516687345
1015 => 0.21234406802154
1016 => 0.20972886687019
1017 => 0.21171247389416
1018 => 0.20418253933397
1019 => 0.20612317492356
1020 => 0.19625010898003
1021 => 0.20071314712216
1022 => 0.20451655568501
1023 => 0.20528014626443
1024 => 0.20700055482976
1025 => 0.19229985200313
1026 => 0.19890003598233
1027 => 0.2027770257165
1028 => 0.18526064505141
1029 => 0.20243078319021
1030 => 0.19204394547303
1031 => 0.18851849674675
1101 => 0.19326504901413
1102 => 0.19141531297936
1103 => 0.18982501855681
1104 => 0.18893760694429
1105 => 0.1924229510716
1106 => 0.19226035560218
1107 => 0.18655765613376
1108 => 0.17911871714897
1109 => 0.18161546924711
1110 => 0.18070837580268
1111 => 0.17742095214268
1112 => 0.17963627876447
1113 => 0.16988110147324
1114 => 0.15309782597366
1115 => 0.16418537185431
1116 => 0.16375851339884
1117 => 0.1635432720091
1118 => 0.17187525630115
1119 => 0.17107432826305
1120 => 0.16962063603119
1121 => 0.17739425394484
1122 => 0.17455677883644
1123 => 0.18330120852731
1124 => 0.18906085547597
1125 => 0.18760002270473
1126 => 0.19301699849873
1127 => 0.18167298937272
1128 => 0.18544101416173
1129 => 0.18621759884849
1130 => 0.17729832870646
1201 => 0.17120536999533
1202 => 0.17079903911411
1203 => 0.16023468837044
1204 => 0.16587807926525
1205 => 0.1708440297133
1206 => 0.168465724822
1207 => 0.16771282454326
1208 => 0.17155922878322
1209 => 0.17185812733489
1210 => 0.16504320868097
1211 => 0.16646024606953
1212 => 0.17236952754267
1213 => 0.16631134733806
1214 => 0.15454129279862
1215 => 0.1516221565391
1216 => 0.15123268995172
1217 => 0.1433157608963
1218 => 0.15181722718235
1219 => 0.14810610932336
1220 => 0.15982948617391
1221 => 0.1531331561906
1222 => 0.15284449078881
1223 => 0.15240813069599
1224 => 0.14559370281376
1225 => 0.14708562944048
1226 => 0.15204502077455
1227 => 0.15381458747409
1228 => 0.1536300071697
1229 => 0.15202071705143
1230 => 0.15275744182668
1231 => 0.15038419463369
]
'min_raw' => 0.083037279150505
'max_raw' => 0.2582182391752
'avg_raw' => 0.17062775916285
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.083037'
'max' => '$0.258218'
'avg' => '$0.170627'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.047303604580781
'max_diff' => 0.16127622344735
'year' => 2033
]
8 => [
'items' => [
101 => 0.14954615165497
102 => 0.14690105749227
103 => 0.14301349979902
104 => 0.14355408854004
105 => 0.1358518195149
106 => 0.13165521455964
107 => 0.13049364961839
108 => 0.12894035643381
109 => 0.13066909821675
110 => 0.13582999995449
111 => 0.12960485751239
112 => 0.11893228743838
113 => 0.119573727085
114 => 0.12101485152582
115 => 0.11832932566435
116 => 0.11578770081556
117 => 0.11799743741304
118 => 0.11347532877867
119 => 0.12156132674966
120 => 0.12134262316529
121 => 0.12435658317411
122 => 0.12624127422031
123 => 0.12189767153479
124 => 0.12080526720573
125 => 0.12142755035857
126 => 0.11114259599497
127 => 0.12351608297971
128 => 0.12362308940897
129 => 0.12270683539612
130 => 0.12929533522694
131 => 0.1431991248746
201 => 0.13796795993051
202 => 0.13594229475136
203 => 0.13209150376504
204 => 0.13722245411697
205 => 0.13682847718523
206 => 0.13504676408862
207 => 0.13396917844851
208 => 0.135954663031
209 => 0.13372315493635
210 => 0.13332231476481
211 => 0.13089365944369
212 => 0.13002673999082
213 => 0.12938490734098
214 => 0.12867831265867
215 => 0.13023688445541
216 => 0.12670495571681
217 => 0.12244579589729
218 => 0.12209169284305
219 => 0.12306940250888
220 => 0.12263683876367
221 => 0.12208962189425
222 => 0.12104483586489
223 => 0.1207348701683
224 => 0.12174210830824
225 => 0.12060499517388
226 => 0.12228286754539
227 => 0.12182657910125
228 => 0.11927778894381
301 => 0.11610105272467
302 => 0.11607277310889
303 => 0.11538835050136
304 => 0.11451663540705
305 => 0.11427414420996
306 => 0.11781133956025
307 => 0.12513322807602
308 => 0.12369576616243
309 => 0.12473447971202
310 => 0.12984392232342
311 => 0.13146806048328
312 => 0.13031528568723
313 => 0.12873729644635
314 => 0.12880671996452
315 => 0.13419918689045
316 => 0.13453550843809
317 => 0.13538528448752
318 => 0.13647748685773
319 => 0.1305012924737
320 => 0.12852524174646
321 => 0.12758887928477
322 => 0.12470524532066
323 => 0.12781499732686
324 => 0.1260030780057
325 => 0.12624756782611
326 => 0.12608834350983
327 => 0.12617529075322
328 => 0.12155906654843
329 => 0.12324097602705
330 => 0.12044447530713
331 => 0.1167002747651
401 => 0.11668772289199
402 => 0.11760411067025
403 => 0.11705900736149
404 => 0.11559214837349
405 => 0.11580050876935
406 => 0.11397505245445
407 => 0.11602215221694
408 => 0.11608085571325
409 => 0.11529261079842
410 => 0.11844645042785
411 => 0.11973858109732
412 => 0.11921974140853
413 => 0.11970217792163
414 => 0.1237554991947
415 => 0.12441636742101
416 => 0.12470988143264
417 => 0.12431661154021
418 => 0.11977626519371
419 => 0.11997764886123
420 => 0.11850002912919
421 => 0.11725159616336
422 => 0.11730152693482
423 => 0.11794338376419
424 => 0.12074641018243
425 => 0.12664521403218
426 => 0.12686906932631
427 => 0.12714038847311
428 => 0.12603679714899
429 => 0.12570394344568
430 => 0.12614306339717
501 => 0.12835834397877
502 => 0.13405664707744
503 => 0.1320424861855
504 => 0.13040494202807
505 => 0.13184150973287
506 => 0.13162036139491
507 => 0.12975364686667
508 => 0.12970125440715
509 => 0.12611843240272
510 => 0.1247939446846
511 => 0.12368710361115
512 => 0.12247846205375
513 => 0.1217619388245
514 => 0.12286284415862
515 => 0.12311463423406
516 => 0.12070748548048
517 => 0.12037940000008
518 => 0.12234512963417
519 => 0.121480085312
520 => 0.12236980484942
521 => 0.12257622741398
522 => 0.12254298862677
523 => 0.12163978300471
524 => 0.12221545933423
525 => 0.12085381319754
526 => 0.11937322753653
527 => 0.11842870612854
528 => 0.1176044859275
529 => 0.118061811199
530 => 0.11643153011039
531 => 0.11590997037907
601 => 0.12202043314692
602 => 0.12653429769207
603 => 0.1264686643139
604 => 0.1260691380038
605 => 0.12547552294795
606 => 0.12831491734003
607 => 0.12732572910931
608 => 0.1280454461966
609 => 0.12822864440175
610 => 0.12878313019296
611 => 0.12898131120365
612 => 0.12838227054377
613 => 0.12637181692258
614 => 0.12136195764676
615 => 0.11902985463001
616 => 0.11826022179023
617 => 0.11828819648221
618 => 0.11751652959274
619 => 0.11774382007538
620 => 0.11743748723855
621 => 0.11685736695546
622 => 0.11802599040625
623 => 0.11816066337248
624 => 0.11788789269505
625 => 0.11795214006403
626 => 0.11569371535683
627 => 0.11586541848227
628 => 0.1149093536608
629 => 0.11473010303231
630 => 0.11231325441771
701 => 0.10803145676915
702 => 0.11040398831061
703 => 0.10753830383695
704 => 0.10645302570456
705 => 0.11159056358788
706 => 0.11107489727752
707 => 0.11019230070893
708 => 0.10888675643474
709 => 0.10840251736393
710 => 0.10546043406113
711 => 0.10528660008419
712 => 0.10674477601199
713 => 0.10607187799408
714 => 0.10512687433053
715 => 0.10170416685463
716 => 0.09785591043221
717 => 0.097972065104326
718 => 0.09919612387294
719 => 0.1027552398295
720 => 0.10136463165194
721 => 0.10035572946373
722 => 0.10016679241137
723 => 0.10253173518821
724 => 0.10587862468826
725 => 0.10744891035926
726 => 0.10589280494959
727 => 0.10410523484162
728 => 0.10421403595129
729 => 0.10493784099017
730 => 0.1050139026657
731 => 0.10385037829059
801 => 0.1041779035868
802 => 0.10368036271232
803 => 0.100626955284
804 => 0.10057172882608
805 => 0.099822373400326
806 => 0.099799683215847
807 => 0.098524842701166
808 => 0.098346483700606
809 => 0.095815210481418
810 => 0.097481302179688
811 => 0.096363775342229
812 => 0.094679398800245
813 => 0.094389011649528
814 => 0.094380282261124
815 => 0.096109760350038
816 => 0.097461092221268
817 => 0.096383215200021
818 => 0.096137803496051
819 => 0.098758158445075
820 => 0.098424694392746
821 => 0.098135916674041
822 => 0.10557894744254
823 => 0.099687207802339
824 => 0.097118073030471
825 => 0.093938280884823
826 => 0.09497363724135
827 => 0.095191802038219
828 => 0.08754497512855
829 => 0.084442658403649
830 => 0.083378060212003
831 => 0.082765368901501
901 => 0.08304458002539
902 => 0.080252131107521
903 => 0.082128702963171
904 => 0.079710678240127
905 => 0.079305288526376
906 => 0.083629016266961
907 => 0.084230637723213
908 => 0.081663933681709
909 => 0.083312173187993
910 => 0.082714498630772
911 => 0.079752128333852
912 => 0.079638987578231
913 => 0.078152574295588
914 => 0.075826625334578
915 => 0.074763604245854
916 => 0.074209973633274
917 => 0.07443841241407
918 => 0.074322906776158
919 => 0.073569154357755
920 => 0.07436611098247
921 => 0.072330216131537
922 => 0.071519506397576
923 => 0.071153327619069
924 => 0.069346353757131
925 => 0.072222052736398
926 => 0.072788601662415
927 => 0.073356266864832
928 => 0.078297404890377
929 => 0.078050559598132
930 => 0.080281920821495
1001 => 0.080195214227565
1002 => 0.079558793861007
1003 => 0.076873841020566
1004 => 0.077944015368083
1005 => 0.074650185068444
1006 => 0.077118146687623
1007 => 0.075991872069171
1008 => 0.076737352106194
1009 => 0.075396911782402
1010 => 0.076138766803013
1011 => 0.072922951430353
1012 => 0.069920068283107
1013 => 0.071128516121182
1014 => 0.072442237123944
1015 => 0.075290718987817
1016 => 0.07359418668916
1017 => 0.074204323856746
1018 => 0.072160466481061
1019 => 0.067943404916026
1020 => 0.067967273026513
1021 => 0.067318569978412
1022 => 0.066757995832658
1023 => 0.073789053831935
1024 => 0.072914630625146
1025 => 0.071521351686809
1026 => 0.073386310912478
1027 => 0.073879435732627
1028 => 0.073893474303005
1029 => 0.075254100412489
1030 => 0.075980266811026
1031 => 0.076108256786153
1101 => 0.078249231367698
1102 => 0.078966857807294
1103 => 0.081922659549696
1104 => 0.075918656665552
1105 => 0.075795008177197
1106 => 0.073412554713337
1107 => 0.071901565061458
1108 => 0.073516013467509
1109 => 0.074946194361086
1110 => 0.073456994420314
1111 => 0.073651452493852
1112 => 0.071652323245471
1113 => 0.072366917883994
1114 => 0.072982423052982
1115 => 0.072642577276388
1116 => 0.072133811700106
1117 => 0.074828935837381
1118 => 0.074676866371279
1119 => 0.077186627928545
1120 => 0.079143166537205
1121 => 0.082649633497035
1122 => 0.078990452428196
1123 => 0.07885709732612
1124 => 0.080160664839744
1125 => 0.0789666582379
1126 => 0.079721229194558
1127 => 0.082528060450296
1128 => 0.082587364371783
1129 => 0.081593947278089
1130 => 0.081533497757656
1201 => 0.081724294377292
1202 => 0.082841796137925
1203 => 0.082451306685399
1204 => 0.082903190965845
1205 => 0.083468279178041
1206 => 0.085805723616118
1207 => 0.086369273556758
1208 => 0.085000139368148
1209 => 0.085123756855834
1210 => 0.084611663085719
1211 => 0.084116986920305
1212 => 0.085228946698504
1213 => 0.087261075048786
1214 => 0.087248433283787
1215 => 0.087719847562122
1216 => 0.088013534752118
1217 => 0.086752814340492
1218 => 0.085932131710499
1219 => 0.086246833652231
1220 => 0.086750048910377
1221 => 0.08608364772618
1222 => 0.081970310910256
1223 => 0.083218034539234
1224 => 0.083010352316804
1225 => 0.082714587577042
1226 => 0.083969183334341
1227 => 0.083848174512943
1228 => 0.080223490507728
1229 => 0.080455531017484
1230 => 0.080237601659669
1231 => 0.08094177599892
]
'min_raw' => 0.066757995832658
'max_raw' => 0.14954615165497
'avg_raw' => 0.10815207374382
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.066757'
'max' => '$0.149546'
'avg' => '$0.108152'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.016279283317847
'max_diff' => -0.10867208752023
'year' => 2034
]
9 => [
'items' => [
101 => 0.078928630512677
102 => 0.079547860505504
103 => 0.079936235752084
104 => 0.080164991755959
105 => 0.080991415301416
106 => 0.080894444036901
107 => 0.08098538743146
108 => 0.082210755381645
109 => 0.088408245978182
110 => 0.088745561717359
111 => 0.087084495650215
112 => 0.08774805878096
113 => 0.086474162675234
114 => 0.08732933766537
115 => 0.087914426674531
116 => 0.085270521948278
117 => 0.085113967069189
118 => 0.083834813141085
119 => 0.084522158007067
120 => 0.083428542903446
121 => 0.083696877796842
122 => 0.082946590041891
123 => 0.084296958620001
124 => 0.085806880516391
125 => 0.086188346416042
126 => 0.085184873865456
127 => 0.084458293606769
128 => 0.08318265802293
129 => 0.085304068428247
130 => 0.085924433479573
131 => 0.08530080991473
201 => 0.085156302708312
202 => 0.084882461813269
203 => 0.085214399348725
204 => 0.085921054838273
205 => 0.08558780915928
206 => 0.085807923801288
207 => 0.084969073767186
208 => 0.086753231691407
209 => 0.089586903856057
210 => 0.089596014575418
211 => 0.089262767100107
212 => 0.089126409413126
213 => 0.089468341545944
214 => 0.089653825701207
215 => 0.090759571519108
216 => 0.091946080836572
217 => 0.097483002106608
218 => 0.09592825677033
219 => 0.10084094271403
220 => 0.10472623946306
221 => 0.10589127007466
222 => 0.10481949673091
223 => 0.10115301801802
224 => 0.1009731230805
225 => 0.10645239022495
226 => 0.10490424629031
227 => 0.10472009949544
228 => 0.10276108871892
301 => 0.10391910671605
302 => 0.10366583119298
303 => 0.10326602338914
304 => 0.10547544105943
305 => 0.10961127370214
306 => 0.10896666539918
307 => 0.10848549520354
308 => 0.10637714747278
309 => 0.10764684372321
310 => 0.10719472920786
311 => 0.10913730008476
312 => 0.1079865641305
313 => 0.10489251757736
314 => 0.10538525468906
315 => 0.10531077846588
316 => 0.10684349386156
317 => 0.10638341074411
318 => 0.10522093985313
319 => 0.10959713787579
320 => 0.10931297191789
321 => 0.10971585427681
322 => 0.10989321555075
323 => 0.11255693016989
324 => 0.11364816881999
325 => 0.11389589909838
326 => 0.11493249141655
327 => 0.11387010773719
328 => 0.11812039992135
329 => 0.12094659621239
330 => 0.12422936863916
331 => 0.12902638148072
401 => 0.130830102684
402 => 0.13050427659311
403 => 0.13414131698203
404 => 0.14067699771405
405 => 0.13182532453131
406 => 0.14114615788628
407 => 0.13819528966029
408 => 0.13119883418033
409 => 0.13074834493021
410 => 0.13548642581176
411 => 0.14599503318365
412 => 0.14336274622463
413 => 0.14599933866212
414 => 0.14292361353293
415 => 0.14277087785602
416 => 0.14584995755775
417 => 0.15304439511272
418 => 0.14962658750981
419 => 0.14472632223023
420 => 0.1483446018561
421 => 0.1452101131882
422 => 0.1381472329313
423 => 0.1433607333644
424 => 0.13987461409673
425 => 0.14089204903133
426 => 0.14821935321087
427 => 0.14733771258635
428 => 0.14847863719221
429 => 0.14646493512606
430 => 0.14458381986461
501 => 0.14107257853566
502 => 0.14003307308027
503 => 0.14032035499065
504 => 0.14003293071762
505 => 0.13806842346405
506 => 0.13764418830968
507 => 0.1369371111329
508 => 0.13715626391619
509 => 0.13582675196111
510 => 0.13833581571152
511 => 0.13880152005339
512 => 0.14062740741238
513 => 0.14081697709514
514 => 0.14590204740005
515 => 0.14310127612724
516 => 0.144980275304
517 => 0.1448121999318
518 => 0.13135046858569
519 => 0.13320537639132
520 => 0.13609103083475
521 => 0.1347910474194
522 => 0.13295317501936
523 => 0.13146899451585
524 => 0.12922030928777
525 => 0.13238529056411
526 => 0.13654690438426
527 => 0.14092252248933
528 => 0.14617954094071
529 => 0.1450062356208
530 => 0.14082424618608
531 => 0.14101184717718
601 => 0.14217152268587
602 => 0.14066963753449
603 => 0.14022670228306
604 => 0.14211067018406
605 => 0.14212364403558
606 => 0.14039554366003
607 => 0.13847507633164
608 => 0.13846702950341
609 => 0.13812530089184
610 => 0.14298440629378
611 => 0.14565642295388
612 => 0.14596276535779
613 => 0.14563580366929
614 => 0.14576163824654
615 => 0.1442068506259
616 => 0.14776063406874
617 => 0.15102193718865
618 => 0.15014783828494
619 => 0.14883743976779
620 => 0.14779364423154
621 => 0.14990195322889
622 => 0.14980807354803
623 => 0.150993452551
624 => 0.15093967691234
625 => 0.150541078538
626 => 0.15014785252014
627 => 0.15170694923271
628 => 0.15125795441782
629 => 0.15080826218996
630 => 0.14990633558256
701 => 0.15002892238792
702 => 0.14871875012955
703 => 0.14811260449343
704 => 0.13899762847285
705 => 0.13656180903972
706 => 0.13732816741906
707 => 0.13758047249602
708 => 0.13652040075714
709 => 0.13804027132061
710 => 0.13780340110324
711 => 0.13872492455461
712 => 0.13814919671009
713 => 0.13817282478165
714 => 0.13986591761426
715 => 0.1403574296665
716 => 0.14010744266974
717 => 0.14028252499322
718 => 0.14431722324009
719 => 0.14374361817177
720 => 0.1434389019116
721 => 0.14352331039814
722 => 0.14455426230512
723 => 0.14484287255119
724 => 0.14362001065832
725 => 0.14419671939627
726 => 0.14665227200727
727 => 0.14751157644887
728 => 0.15025406373695
729 => 0.14908900639315
730 => 0.15122751957019
731 => 0.15780058000356
801 => 0.16305159549892
802 => 0.15822254464199
803 => 0.16786536588643
804 => 0.17537368540577
805 => 0.17508550359686
806 => 0.1737762544181
807 => 0.16522823226433
808 => 0.1573622148346
809 => 0.16394247242331
810 => 0.16395924685315
811 => 0.16339399689053
812 => 0.15988327791881
813 => 0.16327183148024
814 => 0.16354080255653
815 => 0.16339025027899
816 => 0.16069859027469
817 => 0.15658892295003
818 => 0.15739194210812
819 => 0.15870730387021
820 => 0.15621704964136
821 => 0.15542126252542
822 => 0.15690078217865
823 => 0.1616681027715
824 => 0.16076686842863
825 => 0.16074333355776
826 => 0.1645991962594
827 => 0.16183923071228
828 => 0.15740207075132
829 => 0.15628162934223
830 => 0.15230481715973
831 => 0.1550516154991
901 => 0.15515046788131
902 => 0.15364607450243
903 => 0.15752414398284
904 => 0.15748840688985
905 => 0.16117005668703
906 => 0.16820798833471
907 => 0.16612652563091
908 => 0.16370601096888
909 => 0.16396918802624
910 => 0.16685559076908
911 => 0.16511040578059
912 => 0.16573798647032
913 => 0.16685464085054
914 => 0.1675283461631
915 => 0.1638722521995
916 => 0.16301984180539
917 => 0.16127610929444
918 => 0.16082120203064
919 => 0.16224143577664
920 => 0.16186725436217
921 => 0.15514215972136
922 => 0.15443934991332
923 => 0.15446090408675
924 => 0.15269365540766
925 => 0.14999817698375
926 => 0.15708173334312
927 => 0.15651282463315
928 => 0.15588479344739
929 => 0.15596172368415
930 => 0.15903645541575
1001 => 0.15725295573375
1002 => 0.1619946819482
1003 => 0.16101992558784
1004 => 0.16002017040494
1005 => 0.15988197378537
1006 => 0.15949715333506
1007 => 0.15817746082555
1008 => 0.15658385281909
1009 => 0.15553161477726
1010 => 0.14346969326197
1011 => 0.14570831573424
1012 => 0.14828364683173
1013 => 0.14917264080659
1014 => 0.14765195509608
1015 => 0.15823750676609
1016 => 0.16017158906111
1017 => 0.15431312763242
1018 => 0.15321724869851
1019 => 0.15830935240655
1020 => 0.15523819138624
1021 => 0.15662113500564
1022 => 0.15363196733022
1023 => 0.15970572527278
1024 => 0.15965945341359
1025 => 0.15729662439189
1026 => 0.15929367130107
1027 => 0.15894663525569
1028 => 0.15627900710958
1029 => 0.15979029384318
1030 => 0.15979203539759
1031 => 0.15751786383653
1101 => 0.15486212933339
1102 => 0.15438734672988
1103 => 0.1540296618162
1104 => 0.15653316644336
1105 => 0.15877780086381
1106 => 0.16295450902821
1107 => 0.16400463269687
1108 => 0.16810333528638
1109 => 0.16566275745653
1110 => 0.16674463399773
1111 => 0.16791916402398
1112 => 0.16848227691047
1113 => 0.16756471468023
1114 => 0.17393168689502
1115 => 0.17446925442894
1116 => 0.17464949617312
1117 => 0.17250258896565
1118 => 0.17440954505577
1119 => 0.17351734345295
1120 => 0.17583860416274
1121 => 0.17620260748138
1122 => 0.17589430962028
1123 => 0.17600985001902
1124 => 0.17057676244456
1125 => 0.17029502819201
1126 => 0.16645356166746
1127 => 0.1680189876709
1128 => 0.16509249879029
1129 => 0.16602051856051
1130 => 0.16642958083272
1201 => 0.1662159099158
1202 => 0.16810749450839
1203 => 0.16649926117948
1204 => 0.16225486900647
1205 => 0.15800932045164
1206 => 0.15795602104788
1207 => 0.15683824305355
1208 => 0.1560302942949
1209 => 0.15618593388934
1210 => 0.15673442812053
1211 => 0.15599841481308
1212 => 0.15615548056904
1213 => 0.15876381864175
1214 => 0.15928690224042
1215 => 0.1575092597902
1216 => 0.15037176883998
1217 => 0.14862021065775
1218 => 0.14987919594422
1219 => 0.14927748206633
1220 => 0.12047857865731
1221 => 0.12724445383309
1222 => 0.12322440055105
1223 => 0.12507702605717
1224 => 0.12097359264397
1225 => 0.12293196614812
1226 => 0.12257032607025
1227 => 0.1334496531361
1228 => 0.13327978740799
1229 => 0.13336109314294
1230 => 0.12948015857276
1231 => 0.13566259272191
]
'min_raw' => 0.078928630512677
'max_raw' => 0.17620260748138
'avg_raw' => 0.12756561899703
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.078928'
'max' => '$0.1762026'
'avg' => '$0.127565'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.012170634680019
'max_diff' => 0.026656455826402
'year' => 2035
]
10 => [
'items' => [
101 => 0.13870828209693
102 => 0.13814460605201
103 => 0.13828647116859
104 => 0.1358487584441
105 => 0.13338469553069
106 => 0.13065167054316
107 => 0.13572929315789
108 => 0.13516474820104
109 => 0.13645961121519
110 => 0.13975281243681
111 => 0.14023774882635
112 => 0.14088950825163
113 => 0.14065589889306
114 => 0.14622142157396
115 => 0.1455474000548
116 => 0.14717159798675
117 => 0.14383049961254
118 => 0.14004972966216
119 => 0.14076833042704
120 => 0.14069912339476
121 => 0.13981803844169
122 => 0.13902263434203
123 => 0.13769851061981
124 => 0.14188823401036
125 => 0.14171813889203
126 => 0.14447178114373
127 => 0.14398504812829
128 => 0.1407345259274
129 => 0.14085061896371
130 => 0.14163140042533
131 => 0.14433369397881
201 => 0.14513591869165
202 => 0.14476429624153
203 => 0.14564389901622
204 => 0.14633910118504
205 => 0.1457312057051
206 => 0.15433772376287
207 => 0.15076369742094
208 => 0.15250565299208
209 => 0.1529210991316
210 => 0.15185694258111
211 => 0.15208772003233
212 => 0.15243728498782
213 => 0.15455977494574
214 => 0.16012980274275
215 => 0.16259673013759
216 => 0.170018602921
217 => 0.16239188615873
218 => 0.16193934834855
219 => 0.16327625175593
220 => 0.16763367676482
221 => 0.1711649604624
222 => 0.17233649098953
223 => 0.17249132808855
224 => 0.17468919723933
225 => 0.17594897484872
226 => 0.17442231811473
227 => 0.17312863638029
228 => 0.16849482898523
229 => 0.16903120480864
301 => 0.17272630233368
302 => 0.17794584522795
303 => 0.18242475603211
304 => 0.18085639757429
305 => 0.19282186551892
306 => 0.19400819279107
307 => 0.19384428072061
308 => 0.19654691079575
309 => 0.19118274047764
310 => 0.18888945374075
311 => 0.17340834505519
312 => 0.17775790512961
313 => 0.1840802461385
314 => 0.18324346059841
315 => 0.1786520075611
316 => 0.18242127300326
317 => 0.18117503597225
318 => 0.18019207711947
319 => 0.18469520217999
320 => 0.17974383119777
321 => 0.18403085242535
322 => 0.17853270335742
323 => 0.18086356170362
324 => 0.17954045377539
325 => 0.18039666675896
326 => 0.17539126315228
327 => 0.17809205743914
328 => 0.17527890123056
329 => 0.17527756742823
330 => 0.17521546684901
331 => 0.17852513265296
401 => 0.17863306073601
402 => 0.17618721270626
403 => 0.17583472779385
404 => 0.17713804925986
405 => 0.17561220116359
406 => 0.17632613588426
407 => 0.17563382551898
408 => 0.17547797187347
409 => 0.17423610350972
410 => 0.17370107247274
411 => 0.17391087192839
412 => 0.17319471822722
413 => 0.17276320971785
414 => 0.17512962894559
415 => 0.17386534661328
416 => 0.1749358595458
417 => 0.17371587494969
418 => 0.16948687681761
419 => 0.167054735271
420 => 0.15906654982783
421 => 0.1613319893102
422 => 0.16283397803078
423 => 0.16233757076759
424 => 0.16340404565303
425 => 0.16346951854945
426 => 0.16312279669277
427 => 0.16272133720055
428 => 0.16252592892184
429 => 0.16398234213634
430 => 0.16482783902797
501 => 0.16298472269291
502 => 0.16255290632354
503 => 0.16441639869953
504 => 0.16555312797238
505 => 0.1739460982501
506 => 0.17332431990299
507 => 0.17488486153639
508 => 0.17470916849693
509 => 0.17634486474252
510 => 0.17901853680725
511 => 0.17358221392919
512 => 0.17452577160692
513 => 0.17429443305427
514 => 0.17682012671188
515 => 0.1768280116518
516 => 0.1753137321363
517 => 0.17613464762803
518 => 0.17567643512119
519 => 0.17650448705219
520 => 0.17331601567408
521 => 0.1771992296384
522 => 0.17940076172739
523 => 0.17943133000258
524 => 0.18047483874032
525 => 0.18153510405382
526 => 0.18357019099343
527 => 0.18147834658362
528 => 0.17771532212732
529 => 0.17798700033857
530 => 0.17578074047668
531 => 0.17581782810355
601 => 0.1756198514447
602 => 0.1762139943009
603 => 0.17344639661946
604 => 0.1740959462635
605 => 0.17318657295809
606 => 0.17452379480695
607 => 0.17308516514827
608 => 0.17429432149582
609 => 0.17481615329125
610 => 0.17674172385064
611 => 0.17280075681101
612 => 0.16476485823719
613 => 0.16645410154326
614 => 0.16395557800639
615 => 0.16418682587228
616 => 0.1646539833642
617 => 0.16313977308847
618 => 0.16342863669083
619 => 0.16341831645025
620 => 0.16332938219239
621 => 0.1629354776181
622 => 0.16236423805373
623 => 0.16463988065991
624 => 0.16502655668251
625 => 0.16588608958171
626 => 0.16844347646301
627 => 0.16818793320624
628 => 0.16860473486043
629 => 0.16769485918957
630 => 0.16422903239506
701 => 0.1644172434646
702 => 0.16207024841159
703 => 0.16582607164144
704 => 0.16493664312617
705 => 0.1643632227763
706 => 0.16420675972113
707 => 0.16677048586986
708 => 0.16753759291504
709 => 0.16705958328312
710 => 0.16607917158229
711 => 0.16796185188059
712 => 0.16846557770451
713 => 0.16857834333979
714 => 0.17191409186025
715 => 0.16876477462654
716 => 0.16952284658622
717 => 0.1754371076144
718 => 0.17007368897407
719 => 0.17291481144636
720 => 0.17277575328583
721 => 0.17422917540432
722 => 0.1726565302499
723 => 0.17267602507139
724 => 0.17396656544926
725 => 0.17215423423873
726 => 0.17170547554413
727 => 0.17108551862161
728 => 0.17243917188126
729 => 0.17325062578995
730 => 0.17979034834675
731 => 0.18401530736603
801 => 0.18383189075247
802 => 0.18550797525892
803 => 0.18475288383759
804 => 0.18231449445505
805 => 0.18647652780114
806 => 0.18515948630356
807 => 0.18526806160442
808 => 0.1852640204263
809 => 0.18613973788442
810 => 0.18551921180701
811 => 0.18429609121275
812 => 0.18510805574387
813 => 0.18751930011866
814 => 0.19500387664401
815 => 0.19919234482505
816 => 0.19475172560032
817 => 0.19781480527928
818 => 0.19597804895879
819 => 0.19564425569659
820 => 0.19756809609478
821 => 0.19949530392092
822 => 0.19937254911395
823 => 0.19797349519539
824 => 0.19718320513647
825 => 0.20316754622917
826 => 0.20757670680569
827 => 0.20727603161375
828 => 0.20860311412613
829 => 0.21249946942756
830 => 0.21285570332561
831 => 0.2128108260424
901 => 0.21192786315692
902 => 0.21576433095686
903 => 0.2189647798918
904 => 0.21172348276019
905 => 0.21448087391236
906 => 0.21571875563817
907 => 0.21753633327461
908 => 0.22060289140867
909 => 0.22393398690664
910 => 0.22440504033365
911 => 0.2240708053852
912 => 0.22187385835964
913 => 0.22551878280175
914 => 0.22765389405594
915 => 0.22892530394666
916 => 0.23214938788709
917 => 0.21572640037428
918 => 0.20410139353728
919 => 0.20228598085255
920 => 0.20597769393453
921 => 0.20695116923339
922 => 0.20655876256105
923 => 0.19347376046663
924 => 0.20221709102453
925 => 0.21162417954472
926 => 0.21198554412635
927 => 0.2166949293325
928 => 0.21822849819985
929 => 0.22202017056403
930 => 0.22178300042529
1001 => 0.22270621230728
1002 => 0.22249398188341
1003 => 0.22951725650724
1004 => 0.2372649713837
1005 => 0.23699669265375
1006 => 0.23588286697346
1007 => 0.2375370880442
1008 => 0.24553356009229
1009 => 0.24479737308695
1010 => 0.24551251605438
1011 => 0.25494080726049
1012 => 0.26719892698723
1013 => 0.26150379967906
1014 => 0.27386058720905
1015 => 0.28163852995401
1016 => 0.29508967767714
1017 => 0.2934055277339
1018 => 0.29864196083343
1019 => 0.29039054784281
1020 => 0.27144363573064
1021 => 0.26844521436303
1022 => 0.27444812987312
1023 => 0.28920571189875
1024 => 0.27398336109736
1025 => 0.27706282283885
1026 => 0.27617593765013
1027 => 0.27612867930744
1028 => 0.27793233803424
1029 => 0.27531603697851
1030 => 0.26465675581385
1031 => 0.26954184155607
1101 => 0.26765547534992
1102 => 0.26974853929356
1103 => 0.2810439421522
1104 => 0.27604997529963
1105 => 0.27078923689736
1106 => 0.27738737030511
1107 => 0.2857890614978
1108 => 0.28526329876225
1109 => 0.28424309930351
1110 => 0.28999391023651
1111 => 0.29949256506832
1112 => 0.30206001330067
1113 => 0.30395525109662
1114 => 0.30421657236838
1115 => 0.30690834387774
1116 => 0.29243401005814
1117 => 0.31540514955711
1118 => 0.31937163078366
1119 => 0.31862609670687
1120 => 0.32303467365513
1121 => 0.32173755848215
1122 => 0.31985824210763
1123 => 0.32684677430184
1124 => 0.31883498608665
1125 => 0.30746326137127
1126 => 0.30122450828521
1127 => 0.3094402016148
1128 => 0.31445723884299
1129 => 0.31777318130733
1130 => 0.31877658349349
1201 => 0.29355761138941
1202 => 0.27996598413362
1203 => 0.28867806137626
1204 => 0.29930739688773
1205 => 0.29237496356268
1206 => 0.29264670182419
1207 => 0.28276287371411
1208 => 0.30018189636117
1209 => 0.29764409127853
1210 => 0.31081022853655
1211 => 0.30766802421507
1212 => 0.31840449804248
1213 => 0.3155772246653
1214 => 0.32731307838324
1215 => 0.33199482816688
1216 => 0.33985621470978
1217 => 0.34563908265234
1218 => 0.34903489331684
1219 => 0.34883102158191
1220 => 0.36228691522084
1221 => 0.35435244485508
1222 => 0.3443848800646
1223 => 0.34420459826481
1224 => 0.34936694131128
1225 => 0.36018579611704
1226 => 0.36299096776024
1227 => 0.36455867602023
1228 => 0.36215767624774
1229 => 0.35354537733432
1230 => 0.34982663032885
1231 => 0.35299511051998
]
'min_raw' => 0.13065167054316
'max_raw' => 0.36455867602023
'avg_raw' => 0.2476051732817
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.130651'
'max' => '$0.364558'
'avg' => '$0.2476051'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.051723040030484
'max_diff' => 0.18835606853886
'year' => 2036
]
11 => [
'items' => [
101 => 0.34912033151683
102 => 0.35580928714723
103 => 0.3649946519116
104 => 0.36309791041063
105 => 0.36943843287301
106 => 0.37600020657915
107 => 0.38538383768663
108 => 0.38783706633298
109 => 0.39189215999747
110 => 0.3960661834071
111 => 0.39740676723319
112 => 0.39996635771592
113 => 0.39995286741063
114 => 0.40766636561067
115 => 0.41617459299246
116 => 0.41938625186317
117 => 0.42677128434446
118 => 0.41412467502265
119 => 0.42371727346702
120 => 0.43237003738215
121 => 0.42205385553095
122 => 0.43627230885074
123 => 0.43682437917344
124 => 0.44515998559813
125 => 0.43671025157774
126 => 0.43169282648894
127 => 0.44617794471984
128 => 0.45318683715482
129 => 0.45107570171315
130 => 0.43500985676239
131 => 0.42565884590454
201 => 0.40118544681426
202 => 0.43017524520886
203 => 0.44429533036285
204 => 0.434973289153
205 => 0.43967478450849
206 => 0.46532461870308
207 => 0.47509041486061
208 => 0.47305919752791
209 => 0.47340243982045
210 => 0.47867188616531
211 => 0.50203951319553
212 => 0.48803708942167
213 => 0.49874141773598
214 => 0.50441895487656
215 => 0.50969256778532
216 => 0.49674224122389
217 => 0.47989405664555
218 => 0.47455752935092
219 => 0.43404639587203
220 => 0.43193761544352
221 => 0.43075389308641
222 => 0.42329069106568
223 => 0.41742665862047
224 => 0.41276336230247
225 => 0.40052548018588
226 => 0.40465540615343
227 => 0.3851507763041
228 => 0.39762914728006
301 => 0.36649928708477
302 => 0.3924251596842
303 => 0.37831488593311
304 => 0.38778955526237
305 => 0.38775649903365
306 => 0.37031062885183
307 => 0.36024821501698
308 => 0.36666037674755
309 => 0.37353472312076
310 => 0.37465006269173
311 => 0.38356283220339
312 => 0.38605019459475
313 => 0.37851337042507
314 => 0.36585418992494
315 => 0.36879462882996
316 => 0.36018862711642
317 => 0.34510694013852
318 => 0.35593887102704
319 => 0.35963736847876
320 => 0.36127083565219
321 => 0.34643972865288
322 => 0.3417794728347
323 => 0.33929839174043
324 => 0.3639396802524
325 => 0.36528958566165
326 => 0.35838327873054
327 => 0.38960044094205
328 => 0.38253503569884
329 => 0.39042882442181
330 => 0.36852781481955
331 => 0.36936446287998
401 => 0.35899617395501
402 => 0.36480172294368
403 => 0.36069854804007
404 => 0.36433269195695
405 => 0.36651098283659
406 => 0.37687757042736
407 => 0.39254352946241
408 => 0.37532914793653
409 => 0.36782859539122
410 => 0.37248189600562
411 => 0.38487424874656
412 => 0.40364929750194
413 => 0.39253409075568
414 => 0.39746683076122
415 => 0.3985444150101
416 => 0.39034847306273
417 => 0.40395149357211
418 => 0.41124146277382
419 => 0.41871946272821
420 => 0.4252124005598
421 => 0.41573258510169
422 => 0.42587734652004
423 => 0.4177024596083
424 => 0.41036874094421
425 => 0.41037986316819
426 => 0.40577931432167
427 => 0.39686517122507
428 => 0.39522126647056
429 => 0.40377306660578
430 => 0.41063080045574
501 => 0.41119563626195
502 => 0.41499243008438
503 => 0.4172393335584
504 => 0.43926204212099
505 => 0.44811975768626
506 => 0.4589508046115
507 => 0.46317010779324
508 => 0.47586869766636
509 => 0.46561355501477
510 => 0.46339479039423
511 => 0.43259216503912
512 => 0.43763609321543
513 => 0.44571190889237
514 => 0.43272533226513
515 => 0.44096232603722
516 => 0.44258848309121
517 => 0.43228405336071
518 => 0.4377880945079
519 => 0.42317099305543
520 => 0.39286214233014
521 => 0.40398523598721
522 => 0.41217557691165
523 => 0.40048695055072
524 => 0.42143836089038
525 => 0.40919897949485
526 => 0.40531968318638
527 => 0.39018516521806
528 => 0.39732807511809
529 => 0.40698896303449
530 => 0.40101965750092
531 => 0.41340686277882
601 => 0.43095044899929
602 => 0.44345305327862
603 => 0.44441284798974
604 => 0.43637451104756
605 => 0.44925599729738
606 => 0.44934982486167
607 => 0.43481945574945
608 => 0.42591968557366
609 => 0.42389763906444
610 => 0.42894910769003
611 => 0.43508252315406
612 => 0.44475320986159
613 => 0.45059700330052
614 => 0.46583451728069
615 => 0.46995735166996
616 => 0.47448709669849
617 => 0.48054023297823
618 => 0.48780857507435
619 => 0.47190585635499
620 => 0.47253770101609
621 => 0.45772930953275
622 => 0.44190441949464
623 => 0.45391353843317
624 => 0.46961386393916
625 => 0.46601219192076
626 => 0.46560693024321
627 => 0.46628846797464
628 => 0.46357292489238
629 => 0.45129062417407
630 => 0.4451225296446
701 => 0.45308094523635
702 => 0.45731048893504
703 => 0.46387014235674
704 => 0.46306152661503
705 => 0.47995848937397
706 => 0.48652413816446
707 => 0.4848443642439
708 => 0.4851534830713
709 => 0.49704027659022
710 => 0.51026083568881
711 => 0.52264363389106
712 => 0.53523994807594
713 => 0.52005459968355
714 => 0.51234441627198
715 => 0.52029935746845
716 => 0.5160783536957
717 => 0.54033349340497
718 => 0.54201286665281
719 => 0.5662662524394
720 => 0.58928560359034
721 => 0.57482756156695
722 => 0.58846084399049
723 => 0.60320635046938
724 => 0.63165282483935
725 => 0.62207305303058
726 => 0.61473509795922
727 => 0.60780076587353
728 => 0.62223001014964
729 => 0.64079300239804
730 => 0.64479129313422
731 => 0.65127005159144
801 => 0.64445842925856
802 => 0.65266227808293
803 => 0.68162546938676
804 => 0.6737993594313
805 => 0.6626850251846
806 => 0.68554868306452
807 => 0.69382295197104
808 => 0.75189610442528
809 => 0.82521585828104
810 => 0.7948609987413
811 => 0.77601875787978
812 => 0.78044713142617
813 => 0.80722102350399
814 => 0.81581994787853
815 => 0.79244510720155
816 => 0.80070149609518
817 => 0.84619501064933
818 => 0.87060082160093
819 => 0.83745445219093
820 => 0.74600493359283
821 => 0.66168430099025
822 => 0.68404992976402
823 => 0.68151436154734
824 => 0.73039146750425
825 => 0.67361270929713
826 => 0.6745687179681
827 => 0.72445655071444
828 => 0.71114733223169
829 => 0.68958810280555
830 => 0.66184170722393
831 => 0.61054992876034
901 => 0.56511937019809
902 => 0.65421915757146
903 => 0.65037701272247
904 => 0.64481301760717
905 => 0.65719508664912
906 => 0.71731889920522
907 => 0.71593285072401
908 => 0.70711551745472
909 => 0.71380338702707
910 => 0.68841568693415
911 => 0.69495867531528
912 => 0.66167094417124
913 => 0.67671838886679
914 => 0.68954184638195
915 => 0.69211634533265
916 => 0.69791682292575
917 => 0.64835237697546
918 => 0.67060535807146
919 => 0.68367689964301
920 => 0.62461919927602
921 => 0.68250951879174
922 => 0.64748957024241
923 => 0.63560327372279
924 => 0.65160660608597
925 => 0.64537009190029
926 => 0.64000830322384
927 => 0.63701633301516
928 => 0.64876741407933
929 => 0.64821921210211
930 => 0.62899216269457
1001 => 0.60391126053723
1002 => 0.61232923455378
1003 => 0.60927090567464
1004 => 0.59818712728435
1005 => 0.6056562556589
1006 => 0.57276599433677
1007 => 0.51618000921906
1008 => 0.55356244426342
1009 => 0.55212326117847
1010 => 0.55139755980529
1011 => 0.57948942656651
1012 => 0.57678904176705
1013 => 0.57188781691379
1014 => 0.59809711244634
1015 => 0.58853036701219
1016 => 0.61801282223153
1017 => 0.63743187404464
1018 => 0.63250657436431
1019 => 0.65077028645497
1020 => 0.6125231676732
1021 => 0.62522732632444
1022 => 0.62784563581526
1023 => 0.59777369380783
1024 => 0.57723085811646
1025 => 0.57586088518132
1026 => 0.54024243906963
1027 => 0.55926952548045
1028 => 0.57601257412763
1029 => 0.56799395313869
1030 => 0.56545549728308
1031 => 0.57842391772549
1101 => 0.57943167506087
1102 => 0.55645470101676
1103 => 0.56123234150667
1104 => 0.58115589656623
1105 => 0.56073031903774
1106 => 0.52104675839904
1107 => 0.51120468669249
1108 => 0.50989157290147
1109 => 0.48319909384876
1110 => 0.51186238098562
1111 => 0.49935008802204
1112 => 0.5388762715737
1113 => 0.51629912751217
1114 => 0.51532587195604
1115 => 0.51385465343741
1116 => 0.49087933406432
1117 => 0.49590946884931
1118 => 0.51263040298577
1119 => 0.51859662066046
1120 => 0.51797429527721
1121 => 0.51254846128643
1122 => 0.51503238030264
1123 => 0.50703081169666
1124 => 0.50420529128363
1125 => 0.49528717163951
1126 => 0.48217999945609
1127 => 0.48400263213915
1128 => 0.45803389436563
1129 => 0.44388474776139
1130 => 0.43996845046409
1201 => 0.43473141404481
1202 => 0.44055998766287
1203 => 0.45796032819432
1204 => 0.43697182582521
1205 => 0.40098851068564
1206 => 0.40315116923811
1207 => 0.40801002090643
1208 => 0.39895558296704
1209 => 0.39038631733877
1210 => 0.39783659855605
1211 => 0.38258999357175
1212 => 0.40985250027727
1213 => 0.40911512587318
1214 => 0.41927690247089
1215 => 0.42563126991809
1216 => 0.41098651020319
1217 => 0.40730339273853
1218 => 0.40940146383476
1219 => 0.3747250221253
1220 => 0.4164430973836
1221 => 0.41680387703082
1222 => 0.41371466265569
1223 => 0.43592824982967
1224 => 0.48280584735835
1225 => 0.46516860952107
1226 => 0.45833893794214
1227 => 0.44535572727813
1228 => 0.46265508462115
1229 => 0.46132676388922
1230 => 0.45531959378876
1231 => 0.45168643856848
]
'min_raw' => 0.33929839174043
'max_raw' => 0.87060082160093
'avg_raw' => 0.60494960667068
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.339298'
'max' => '$0.87060082'
'avg' => '$0.604949'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.20864672119727
'max_diff' => 0.5060421455807
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.010650188809144
]
1 => [
'year' => 2028
'avg' => 0.018278815768394
]
2 => [
'year' => 2029
'avg' => 0.049934430243241
]
3 => [
'year' => 2030
'avg' => 0.038524338568076
]
4 => [
'year' => 2031
'avg' => 0.037835674742569
]
5 => [
'year' => 2032
'avg' => 0.066337845148786
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.010650188809144
'min' => '$0.01065'
'max_raw' => 0.066337845148786
'max' => '$0.066337'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.066337845148786
]
1 => [
'year' => 2033
'avg' => 0.17062775916285
]
2 => [
'year' => 2034
'avg' => 0.10815207374382
]
3 => [
'year' => 2035
'avg' => 0.12756561899703
]
4 => [
'year' => 2036
'avg' => 0.2476051732817
]
5 => [
'year' => 2037
'avg' => 0.60494960667068
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.066337845148786
'min' => '$0.066337'
'max_raw' => 0.60494960667068
'max' => '$0.604949'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.60494960667068
]
]
]
]
'prediction_2025_max_price' => '$0.0182098'
'last_price' => 0.017656775660568
'sma_50day_nextmonth' => '$0.018798'
'sma_200day_nextmonth' => '$0.045999'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.017598'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.01755'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.018857'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.022881'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.030239'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.0347083'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.067896'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.0176076'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.017791'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.019162'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.022459'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.028593'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.038984'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.066592'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.035959'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.100647'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.2036092'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.0187044'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.021098'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.02739'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.045719'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.10603'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.261618'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.529837'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '24.26'
'rsi_14_action' => 'BUY'
'stoch_rsi_14' => 44.6
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0.01
'momentum_10_action' => 'SELL'
'vwma_10' => '0.017396'
'vwma_10_action' => 'BUY'
'hma_9' => '0.017423'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 14.43
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -74.39
'cci_20_action' => 'NEUTRAL'
'adx_14' => 46.11
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.009126'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -85.57
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 47.83
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.004393'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 23
'buy_signals' => 9
'sell_pct' => 71.88
'buy_pct' => 28.13
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767703376
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de KILT Protocol [OLD] para 2026
La previsión del precio de KILT Protocol [OLD] para 2026 sugiere que el precio medio podría oscilar entre $0.00610041 en el extremo inferior y $0.0182098 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, KILT Protocol [OLD] podría potencialmente ganar 3.13% para 2026 si KILT alcanza el objetivo de precio previsto.
Predicción de precio de KILT Protocol [OLD] 2027-2032
La predicción del precio de KILT para 2027-2032 está actualmente dentro de un rango de precios de $0.01065 en el extremo inferior y $0.066337 en el extremo superior. Considerando la volatilidad de precios en el mercado, si KILT Protocol [OLD] alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de KILT Protocol [OLD] | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.005872 | $0.01065 | $0.015427 |
| 2028 | $0.010598 | $0.018278 | $0.025959 |
| 2029 | $0.023281 | $0.049934 | $0.076586 |
| 2030 | $0.01980027 | $0.038524 | $0.057248 |
| 2031 | $0.02341 | $0.037835 | $0.052261 |
| 2032 | $0.035733 | $0.066337 | $0.096942 |
Predicción de precio de KILT Protocol [OLD] 2032-2037
La predicción de precio de KILT Protocol [OLD] para 2032-2037 se estima actualmente entre $0.066337 en el extremo inferior y $0.604949 en el extremo superior. Comparado con el precio actual, KILT Protocol [OLD] podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de KILT Protocol [OLD] | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.035733 | $0.066337 | $0.096942 |
| 2033 | $0.083037 | $0.170627 | $0.258218 |
| 2034 | $0.066757 | $0.108152 | $0.149546 |
| 2035 | $0.078928 | $0.127565 | $0.1762026 |
| 2036 | $0.130651 | $0.2476051 | $0.364558 |
| 2037 | $0.339298 | $0.604949 | $0.87060082 |
KILT Protocol [OLD] Histograma de precios potenciales
Pronóstico de precio de KILT Protocol [OLD] basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para KILT Protocol [OLD] es Bajista, con 9 indicadores técnicos mostrando señales alcistas y 23 indicando señales bajistas. La predicción de precio de KILT se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de KILT Protocol [OLD]
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de KILT Protocol [OLD] aumentar durante el próximo mes, alcanzando $0.045999 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para KILT Protocol [OLD] alcance $0.018798 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 24.26, lo que sugiere que el mercado de KILT está en un estado BUY.
Promedios Móviles y Osciladores Populares de KILT para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.017598 | BUY |
| SMA 5 | $0.01755 | BUY |
| SMA 10 | $0.018857 | SELL |
| SMA 21 | $0.022881 | SELL |
| SMA 50 | $0.030239 | SELL |
| SMA 100 | $0.0347083 | SELL |
| SMA 200 | $0.067896 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.0176076 | BUY |
| EMA 5 | $0.017791 | SELL |
| EMA 10 | $0.019162 | SELL |
| EMA 21 | $0.022459 | SELL |
| EMA 50 | $0.028593 | SELL |
| EMA 100 | $0.038984 | SELL |
| EMA 200 | $0.066592 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.035959 | SELL |
| SMA 50 | $0.100647 | SELL |
| SMA 100 | $0.2036092 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.045719 | SELL |
| EMA 50 | $0.10603 | SELL |
| EMA 100 | $0.261618 | SELL |
| EMA 200 | $0.529837 | SELL |
Osciladores de KILT Protocol [OLD]
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 24.26 | BUY |
| Stoch RSI (14) | 44.6 | NEUTRAL |
| Estocástico Rápido (14) | 14.43 | BUY |
| Índice de Canal de Materias Primas (20) | -74.39 | NEUTRAL |
| Índice Direccional Medio (14) | 46.11 | SELL |
| Oscilador Asombroso (5, 34) | -0.009126 | NEUTRAL |
| Momentum (10) | -0.01 | SELL |
| MACD (12, 26) | -0 | NEUTRAL |
| Rango Percentil de Williams (14) | -85.57 | BUY |
| Oscilador Ultimate (7, 14, 28) | 47.83 | NEUTRAL |
| VWMA (10) | 0.017396 | BUY |
| Promedio Móvil de Hull (9) | 0.017423 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.004393 | SELL |
Predicción de precios de KILT Protocol [OLD] basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de KILT Protocol [OLD]
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de KILT Protocol [OLD] por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.02481 | $0.034863 | $0.048988 | $0.068837 | $0.096727 | $0.135918 |
| Amazon.com acción | $0.036841 | $0.076872 | $0.160399 | $0.334683 | $0.698337 | $1.45 |
| Apple acción | $0.025044 | $0.035524 | $0.050388 | $0.071471 | $0.101377 | $0.143796 |
| Netflix acción | $0.027859 | $0.043958 | $0.069359 | $0.109437 | $0.172675 | $0.272454 |
| Google acción | $0.022865 | $0.02961 | $0.038345 | $0.049657 | $0.0643062 | $0.083276 |
| Tesla acción | $0.040026 | $0.090737 | $0.205694 | $0.466293 | $1.05 | $2.39 |
| Kodak acción | $0.01324 | $0.009929 | $0.007445 | $0.005583 | $0.004187 | $0.003139 |
| Nokia acción | $0.011696 | $0.007748 | $0.005133 | $0.00340052 | $0.002252 | $0.001492 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de KILT Protocol [OLD]
Podría preguntarse cosas como: "¿Debo invertir en KILT Protocol [OLD] ahora?", "¿Debería comprar KILT hoy?", "¿Será KILT Protocol [OLD] una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de KILT Protocol [OLD] regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como KILT Protocol [OLD], con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de KILT Protocol [OLD] a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de KILT Protocol [OLD] es de $0.01765 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de KILT Protocol [OLD] basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si KILT Protocol [OLD] ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.018115 | $0.018586 | $0.019069 | $0.019565 |
| Si KILT Protocol [OLD] ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.018574 | $0.01954 | $0.020556 | $0.021624 |
| Si KILT Protocol [OLD] ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.019951 | $0.022544 | $0.025474 | $0.028785 |
| Si KILT Protocol [OLD] ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.022246 | $0.028028 | $0.035314 | $0.044493 |
| Si KILT Protocol [OLD] ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.026835 | $0.040786 | $0.06199 | $0.094217 |
| Si KILT Protocol [OLD] ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.0406046 | $0.093376 | $0.214734 | $0.493817 |
| Si KILT Protocol [OLD] ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.063552 | $0.228745 | $0.823328 | $2.96 |
Cuadro de preguntas
¿Es KILT una buena inversión?
La decisión de adquirir KILT Protocol [OLD] depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de KILT Protocol [OLD] ha experimentado una caída de 0% durante las últimas 24 horas, y KILT Protocol [OLD] ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en KILT Protocol [OLD] dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede KILT Protocol [OLD] subir?
Parece que el valor medio de KILT Protocol [OLD] podría potencialmente aumentar hasta $0.0182098 para el final de este año. Mirando las perspectivas de KILT Protocol [OLD] en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.057248. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de KILT Protocol [OLD] la próxima semana?
Basado en nuestro nuevo pronóstico experimental de KILT Protocol [OLD], el precio de KILT Protocol [OLD] aumentará en un 0.86% durante la próxima semana y alcanzará $0.017807 para el 13 de enero de 2026.
¿Cuál será el precio de KILT Protocol [OLD] el próximo mes?
Basado en nuestro nuevo pronóstico experimental de KILT Protocol [OLD], el precio de KILT Protocol [OLD] disminuirá en un -11.62% durante el próximo mes y alcanzará $0.015605 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de KILT Protocol [OLD] este año en 2026?
Según nuestra predicción más reciente sobre el valor de KILT Protocol [OLD] en 2026, se anticipa que KILT fluctúe dentro del rango de $0.00610041 y $0.0182098. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de KILT Protocol [OLD] no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará KILT Protocol [OLD] en 5 años?
El futuro de KILT Protocol [OLD] parece estar en una tendencia alcista, con un precio máximo de $0.057248 proyectada después de un período de cinco años. Basado en el pronóstico de KILT Protocol [OLD] para 2030, el valor de KILT Protocol [OLD] podría potencialmente alcanzar su punto más alto de aproximadamente $0.057248, mientras que su punto más bajo se anticipa que esté alrededor de $0.01980027.
¿Cuánto será KILT Protocol [OLD] en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de KILT Protocol [OLD], se espera que el valor de KILT en 2026 crezca en un 3.13% hasta $0.0182098 si ocurre lo mejor. El precio estará entre $0.0182098 y $0.00610041 durante 2026.
¿Cuánto será KILT Protocol [OLD] en 2027?
Según nuestra última simulación experimental para la predicción de precios de KILT Protocol [OLD], el valor de KILT podría disminuir en un -12.62% hasta $0.015427 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.015427 y $0.005872 a lo largo del año.
¿Cuánto será KILT Protocol [OLD] en 2028?
Nuestro nuevo modelo experimental de predicción de precios de KILT Protocol [OLD] sugiere que el valor de KILT en 2028 podría aumentar en un 47.02% , alcanzando $0.025959 en el mejor escenario. Se espera que el precio oscile entre $0.025959 y $0.010598 durante el año.
¿Cuánto será KILT Protocol [OLD] en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de KILT Protocol [OLD] podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.076586 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.076586 y $0.023281.
¿Cuánto será KILT Protocol [OLD] en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de KILT Protocol [OLD], se espera que el valor de KILT en 2030 aumente en un 224.23% , alcanzando $0.057248 en el mejor escenario. Se pronostica que el precio oscile entre $0.057248 y $0.01980027 durante el transcurso de 2030.
¿Cuánto será KILT Protocol [OLD] en 2031?
Nuestra simulación experimental indica que el precio de KILT Protocol [OLD] podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.052261 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.052261 y $0.02341 durante el año.
¿Cuánto será KILT Protocol [OLD] en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de KILT Protocol [OLD], KILT podría experimentar un 449.04% aumento en valor, alcanzando $0.096942 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.096942 y $0.035733 a lo largo del año.
¿Cuánto será KILT Protocol [OLD] en 2033?
Según nuestra predicción experimental de precios de KILT Protocol [OLD], se anticipa que el valor de KILT aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.258218. A lo largo del año, el precio de KILT podría oscilar entre $0.258218 y $0.083037.
¿Cuánto será KILT Protocol [OLD] en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de KILT Protocol [OLD] sugieren que KILT podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.149546 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.149546 y $0.066757.
¿Cuánto será KILT Protocol [OLD] en 2035?
Basado en nuestra predicción experimental para el precio de KILT Protocol [OLD], KILT podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.1762026 en 2035. El rango de precios esperado para el año está entre $0.1762026 y $0.078928.
¿Cuánto será KILT Protocol [OLD] en 2036?
Nuestra reciente simulación de predicción de precios de KILT Protocol [OLD] sugiere que el valor de KILT podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.364558 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.364558 y $0.130651.
¿Cuánto será KILT Protocol [OLD] en 2037?
Según la simulación experimental, el valor de KILT Protocol [OLD] podría aumentar en un 4830.69% en 2037, con un máximo de $0.87060082 bajo condiciones favorables. Se espera que el precio caiga entre $0.87060082 y $0.339298 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Fluence
Predicción de precios de Vyvo Smart Chain
Predicción de precios de HydraDX
Predicción de precios de Leash
Predicción de precios de BNB48 Club Token
Predicción de precios de Turbo
Predicción de precios de SafeMoon
Predicción de precios de ASD
Predicción de precios de UniLend Finance
Predicción de precios de ECOx
Predicción de precios de Botto
Predicción de precios de Coinweb
Predicción de precios de ThetaDrop
Predicción de precios de Syncus
Predicción de precios de Streamr XDATA
Predicción de precios de EURC
Predicción de precios de SUKU
Predicción de precios de Router Protocol
Predicción de precios de Keep3rV1
Predicción de precios de RAMP
Predicción de precios de CoW Protocol
Predicción de precios de Circuits of Value
Predicción de precios de Archway
Predicción de precios de XCAD Network
Predicción de precios de Concordium
¿Cómo leer y predecir los movimientos de precio de KILT Protocol [OLD]?
Los traders de KILT Protocol [OLD] utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de KILT Protocol [OLD]
Las medias móviles son herramientas populares para la predicción de precios de KILT Protocol [OLD]. Una media móvil simple (SMA) calcula el precio de cierre promedio de KILT durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de KILT por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de KILT.
¿Cómo leer gráficos de KILT Protocol [OLD] y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de KILT Protocol [OLD] en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de KILT dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de KILT Protocol [OLD]?
La acción del precio de KILT Protocol [OLD] está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de KILT. La capitalización de mercado de KILT Protocol [OLD] puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de KILT, grandes poseedores de KILT Protocol [OLD], ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de KILT Protocol [OLD].
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


