Predicción del precio de Impossible Finance Launchpad - Pronóstico de IDIA
Predicción de precio de Impossible Finance Launchpad hasta $0.021486 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.007198 | $0.021486 |
| 2027 | $0.006929 | $0.0182034 |
| 2028 | $0.0125054 | $0.030629 |
| 2029 | $0.02747 | $0.090366 |
| 2030 | $0.023362 | $0.067548 |
| 2031 | $0.027621 | $0.061664 |
| 2032 | $0.042162 | $0.114383 |
| 2033 | $0.097977 | $0.304676 |
| 2034 | $0.078769 | $0.176452 |
| 2035 | $0.093129 | $0.207905 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Impossible Finance Launchpad hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.47, equivalente a un ROI del 39.54% en los próximos 90 días.
Predicción del precio a largo plazo de Impossible Finance Launchpad para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Impossible Finance Launchpad'
'name_with_ticker' => 'Impossible Finance Launchpad <small>IDIA</small>'
'name_lang' => 'Impossible Finance Launchpad'
'name_lang_with_ticker' => 'Impossible Finance Launchpad <small>IDIA</small>'
'name_with_lang' => 'Impossible Finance Launchpad'
'name_with_lang_with_ticker' => 'Impossible Finance Launchpad <small>IDIA</small>'
'image' => '/uploads/coins/idia.png?1717089499'
'price_for_sd' => 0.02083
'ticker' => 'IDIA'
'marketcap' => '$15.59M'
'low24h' => '$0.01855'
'high24h' => '$0.022'
'volume24h' => '$34.29K'
'current_supply' => '748.39M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02083'
'change_24h_pct' => '-5.2012%'
'ath_price' => '$3.51'
'ath_days' => 1502
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '26 nov. 2021'
'ath_pct' => '-99.41%'
'fdv' => '$20.83M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.02'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.0210118'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.018413'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.007198'
'current_year_max_price_prediction' => '$0.021486'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.023362'
'grand_prediction_max_price' => '$0.067548'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.021228375572032
107 => 0.021307634620517
108 => 0.021486209303823
109 => 0.019960308186765
110 => 0.020645392990221
111 => 0.021047816128486
112 => 0.019229653749525
113 => 0.021011876904092
114 => 0.019933745643141
115 => 0.019567811700186
116 => 0.020060493546243
117 => 0.019868494951686
118 => 0.019703425834621
119 => 0.019611314431051
120 => 0.019973085603485
121 => 0.019956208545881
122 => 0.019364280691021
123 => 0.018592134934421
124 => 0.018851292395157
125 => 0.018757138060057
126 => 0.018415910603507
127 => 0.018645856709262
128 => 0.017633290432578
129 => 0.015891222782159
130 => 0.017042086033001
131 => 0.016997779049742
201 => 0.016975437459621
202 => 0.017840279385105
203 => 0.017757144789268
204 => 0.017606254683767
205 => 0.01841313938839
206 => 0.018118615617072
207 => 0.019026268481746
208 => 0.019624107361728
209 => 0.019472476083703
210 => 0.020034746439932
211 => 0.018857262859628
212 => 0.019248375672563
213 => 0.01932898348125
214 => 0.018403182556384
215 => 0.01777074663729
216 => 0.017728570371783
217 => 0.016632013643111
218 => 0.017217785396471
219 => 0.017733240298546
220 => 0.017486377401368
221 => 0.017408227982941
222 => 0.017807476413144
223 => 0.017838501435503
224 => 0.017131127637848
225 => 0.017278213049995
226 => 0.017891583669565
227 => 0.017262757684129
228 => 0.016041051512569
301 => 0.015738051490612
302 => 0.015697625702285
303 => 0.014875865611505
304 => 0.015758299400931
305 => 0.015373093404091
306 => 0.016589954532631
307 => 0.015894889982166
308 => 0.015864927138603
309 => 0.015819633905965
310 => 0.015112311049349
311 => 0.015267169802235
312 => 0.015781943882483
313 => 0.015965621073661
314 => 0.015946462037798
315 => 0.015779421208656
316 => 0.01585589164485
317 => 0.015609553725803
318 => 0.015522566679508
319 => 0.015248011633726
320 => 0.014844491564194
321 => 0.014900603504795
322 => 0.014101124660283
323 => 0.01366552615424
324 => 0.013544958228863
325 => 0.013383729760168
326 => 0.013563169413414
327 => 0.014098859837166
328 => 0.013452703533058
329 => 0.01234491387226
330 => 0.012411493918456
331 => 0.012561079514464
401 => 0.01228232774591
402 => 0.012018512590836
403 => 0.012247878464173
404 => 0.01177849338116
405 => 0.012617802459233
406 => 0.012595101500807
407 => 0.012907944022588
408 => 0.013103570871632
409 => 0.01265271431953
410 => 0.012539325115922
411 => 0.012603916759549
412 => 0.011536360770058
413 => 0.012820701922625
414 => 0.012831808958246
415 => 0.012736703775983
416 => 0.013420575790141
417 => 0.014863759045044
418 => 0.014320775452638
419 => 0.014110515793892
420 => 0.013710812028917
421 => 0.014243393563685
422 => 0.014202499611381
423 => 0.014017561650491
424 => 0.013905710594704
425 => 0.014111799594533
426 => 0.013880173886939
427 => 0.013838567545207
428 => 0.013586478382453
429 => 0.013496494020676
430 => 0.013429873181597
501 => 0.0133565301838
502 => 0.013518306561005
503 => 0.013151700006804
504 => 0.012709608441321
505 => 0.012672853311148
506 => 0.012774337457099
507 => 0.012729438277122
508 => 0.012672638351148
509 => 0.012564191823925
510 => 0.012532018055891
511 => 0.012636567193507
512 => 0.012518537312732
513 => 0.012692696831237
514 => 0.012645335078889
515 => 0.012380776180294
516 => 0.012051037840396
517 => 0.012048102477521
518 => 0.011977060893069
519 => 0.011886578754096
520 => 0.011861408692985
521 => 0.012228561910074
522 => 0.012988558081478
523 => 0.012839352647864
524 => 0.012947168864838
525 => 0.013477517942716
526 => 0.013646099966421
527 => 0.01352644443908
528 => 0.013362652573223
529 => 0.013369858584063
530 => 0.013929584972864
531 => 0.013964494421159
601 => 0.014052699334786
602 => 0.014166067575502
603 => 0.013545751540692
604 => 0.013340641754608
605 => 0.013243449358903
606 => 0.012944134398325
607 => 0.013266919921983
608 => 0.013078846620402
609 => 0.013104224134284
610 => 0.013087696995076
611 => 0.013096721930644
612 => 0.01261756785524
613 => 0.012792146416721
614 => 0.012501875698191
615 => 0.012113235790497
616 => 0.012111932933251
617 => 0.012207052000074
618 => 0.012150471457118
619 => 0.011998214670844
620 => 0.012019842028703
621 => 0.011830363616487
622 => 0.012042848138563
623 => 0.01204894143435
624 => 0.011967123319241
625 => 0.012294485042712
626 => 0.01242860540792
627 => 0.012374750971842
628 => 0.01242482683712
629 => 0.012845552807253
630 => 0.012914149497945
701 => 0.012944615616708
702 => 0.012903795053553
703 => 0.012432516935517
704 => 0.012453420124081
705 => 0.01230004639588
706 => 0.012170461757676
707 => 0.012175644463622
708 => 0.012242267812483
709 => 0.012533215884366
710 => 0.013145498949318
711 => 0.01316873464406
712 => 0.01319689698392
713 => 0.013082346594451
714 => 0.013047797100888
715 => 0.013093376800879
716 => 0.013323318127761
717 => 0.013914789648962
718 => 0.013705724110315
719 => 0.013535750573096
720 => 0.013684863189773
721 => 0.013661908471219
722 => 0.013468147545809
723 => 0.013462709321974
724 => 0.013090820156997
725 => 0.012953341200212
726 => 0.0128384534938
727 => 0.012712999117618
728 => 0.012638625558149
729 => 0.012752897147672
730 => 0.012779032412218
731 => 0.0125291755846
801 => 0.012495121022248
802 => 0.012699159501215
803 => 0.012609369773943
804 => 0.012701720735121
805 => 0.012723146950286
806 => 0.012719696836157
807 => 0.0126259460486
808 => 0.0126857000049
809 => 0.012544364084739
810 => 0.012390682499533
811 => 0.012292643222872
812 => 0.012207090950963
813 => 0.012254560323746
814 => 0.012085340677341
815 => 0.012031203906738
816 => 0.012665456709012
817 => 0.013133986073419
818 => 0.013127173470902
819 => 0.013085703505142
820 => 0.013024087547899
821 => 0.013318810536706
822 => 0.013216134940578
823 => 0.013290840015594
824 => 0.013309855592548
825 => 0.013367410016862
826 => 0.013387980776584
827 => 0.013325801653392
828 => 0.01311712092142
829 => 0.012597108378113
830 => 0.012355041135456
831 => 0.012275154913431
901 => 0.012278058625876
902 => 0.012197961273897
903 => 0.012221553533766
904 => 0.012189756848708
905 => 0.012129541619652
906 => 0.012250842203033
907 => 0.012264820965275
908 => 0.01223650795968
909 => 0.012243176697443
910 => 0.012008757103758
911 => 0.012026579516333
912 => 0.011927342058351
913 => 0.011908736231305
914 => 0.01165787257912
915 => 0.011213431256007
916 => 0.011459694891975
917 => 0.011162243049633
918 => 0.011049593529808
919 => 0.011582858836068
920 => 0.011529333789796
921 => 0.011437722177358
922 => 0.011302209509029
923 => 0.011251946542164
924 => 0.010946564666809
925 => 0.010928521076464
926 => 0.011079876579894
927 => 0.011010031222886
928 => 0.010911941889142
929 => 0.010556672265476
930 => 0.010157231582745
1001 => 0.010169288186162
1002 => 0.010296342835481
1003 => 0.010665771364028
1004 => 0.010521429246746
1005 => 0.010416707384523
1006 => 0.010397096127657
1007 => 0.010642572066291
1008 => 0.010989971948258
1009 => 0.011152964200243
1010 => 0.010991443828674
1011 => 0.010805897922691
1012 => 0.010817191242251
1013 => 0.010892320637789
1014 => 0.010900215674988
1015 => 0.01077944436462
1016 => 0.010813440781067
1017 => 0.010761797115787
1018 => 0.010444860037291
1019 => 0.01043912765056
1020 => 0.010361346180196
1021 => 0.010358990988186
1022 => 0.0102266653036
1023 => 0.010208152025602
1024 => 0.0099454113472628
1025 => 0.010118348057398
1026 => 0.010002351191824
1027 => 0.0098275165545099
1028 => 0.0097973749971377
1029 => 0.0097964689055261
1030 => 0.0099759849857383
1031 => 0.010116250307481
1101 => 0.010004369006963
1102 => 0.0099788958035632
1103 => 0.010250882972541
1104 => 0.010216270126071
1105 => 0.010186295624256
1106 => 0.010958866099143
1107 => 0.010347316283844
1108 => 0.010080645658331
1109 => 0.0097505901198794
1110 => 0.0098580578674836
1111 => 0.0098807029009335
1112 => 0.0090869788279407
1113 => 0.0087649650703795
1114 => 0.008654462083617
1115 => 0.0085908660524523
1116 => 0.0086198475624427
1117 => 0.0083299974121911
1118 => 0.0085247815068392
1119 => 0.0082737957771446
1120 => 0.0082317172027831
1121 => 0.0086805107786427
1122 => 0.0087429577829095
1123 => 0.0084765394619437
1124 => 0.008647623153212
1125 => 0.008585585828517
1126 => 0.0082780982071075
1127 => 0.0082663544416955
1128 => 0.0081120679619848
1129 => 0.0078706394969869
1130 => 0.0077603002100923
1201 => 0.007702834551468
1202 => 0.0077265460021997
1203 => 0.0077145567671274
1204 => 0.0076363188984493
1205 => 0.007719041270178
1206 => 0.007507719793655
1207 => 0.0074235698789707
1208 => 0.007385561314771
1209 => 0.0071980013411464
1210 => 0.0074964926674819
1211 => 0.0075552992190647
1212 => 0.0076142216377203
1213 => 0.0081271010640738
1214 => 0.0081014790573154
1215 => 0.008333089519988
1216 => 0.0083240895633129
1217 => 0.0082580305075179
1218 => 0.0079793382173062
1219 => 0.0080904199969722
1220 => 0.0077485275451016
1221 => 0.00800469661647
1222 => 0.0078877917501736
1223 => 0.0079651709635795
1224 => 0.0078260361608734
1225 => 0.0079030391054261
1226 => 0.0075692444340242
1227 => 0.0072575516664868
1228 => 0.007382985935023
1229 => 0.0075193473300703
1230 => 0.0078150135787703
1231 => 0.0076389172002382
]
'min_raw' => 0.0071980013411464
'max_raw' => 0.021486209303823
'avg_raw' => 0.014342105322485
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.007198'
'max' => '$0.021486'
'avg' => '$0.014342'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.013635588658854
'max_diff' => 0.00065261930382277
'year' => 2026
]
1 => [
'items' => [
101 => 0.0077022481168996
102 => 0.0074901001475512
103 => 0.0070523782897139
104 => 0.0070548557478928
105 => 0.0069875217763536
106 => 0.0069293353940229
107 => 0.0076591439876473
108 => 0.0075683807524635
109 => 0.0074237614159968
110 => 0.0076173401448015
111 => 0.007668525433205
112 => 0.0076699826064078
113 => 0.0078112126499536
114 => 0.0078865871495109
115 => 0.0078998722317496
116 => 0.0081221007567459
117 => 0.0081965888270596
118 => 0.0085033946467352
119 => 0.0078801921498358
120 => 0.0078673577045219
121 => 0.0076200641944962
122 => 0.0074632267408822
123 => 0.0076308029891255
124 => 0.0077792526686299
125 => 0.0076246769398403
126 => 0.0076448612667485
127 => 0.0074373559801495
128 => 0.0075115293560774
129 => 0.0075754174596593
130 => 0.0075401422040305
131 => 0.0074873334390126
201 => 0.0077670814878084
202 => 0.0077512970065539
203 => 0.0080118048209724
204 => 0.0082148892914041
205 => 0.0085788529681093
206 => 0.0081990378976119
207 => 0.0081851959268148
208 => 0.0083205034116784
209 => 0.0081965681121886
210 => 0.008274890943365
211 => 0.0085662339491405
212 => 0.0085723895677602
213 => 0.008469275024813
214 => 0.0084630004955036
215 => 0.0084828047714261
216 => 0.0085987990340796
217 => 0.0085582670745648
218 => 0.008605171684259
219 => 0.0086638266169105
220 => 0.008906448287533
221 => 0.0089649435509283
222 => 0.0088228303871945
223 => 0.0088356616147061
224 => 0.0087825073903761
225 => 0.0087311610756937
226 => 0.0088465800925725
227 => 0.0090575106144849
228 => 0.0090561984266554
301 => 0.0091051302078356
302 => 0.0091356143021382
303 => 0.0090047542536709
304 => 0.008919569173976
305 => 0.0089522345539985
306 => 0.0090044672080138
307 => 0.0089352962082754
308 => 0.0085083407547659
309 => 0.0086378517653407
310 => 0.0086162948004162
311 => 0.0085855950609472
312 => 0.0087158193835592
313 => 0.0087032589299589
314 => 0.0083270245799577
315 => 0.0083511098823554
316 => 0.0083284892869695
317 => 0.0084015810583998
318 => 0.0081926209166647
319 => 0.0082568956488943
320 => 0.0082972081584106
321 => 0.008320952536211
322 => 0.0084067335104982
323 => 0.0083966681032459
324 => 0.0084061078306509
325 => 0.0085332983701813
326 => 0.0091765844726035
327 => 0.0092115971158275
328 => 0.0090391820553196
329 => 0.0091080584712558
330 => 0.0089758308142747
331 => 0.0090645961262544
401 => 0.0091253270983165
402 => 0.0088508955134623
403 => 0.0088346454560535
404 => 0.008701872048496
405 => 0.0087732169570472
406 => 0.0086597020776617
407 => 0.008687554658481
408 => 0.008609676414366
409 => 0.0087498417483693
410 => 0.0089065683712759
411 => 0.008946163705544
412 => 0.0088420054279478
413 => 0.0087665879706032
414 => 0.0086341797595609
415 => 0.0088543775654337
416 => 0.0089187701142774
417 => 0.0088540393387873
418 => 0.0088390398037109
419 => 0.0088106157118447
420 => 0.0088450701091697
421 => 0.0089184194186274
422 => 0.0088838292388362
423 => 0.0089066766619888
424 => 0.0088196058450915
425 => 0.009004797573792
426 => 0.0092989266077849
427 => 0.0092998722807242
428 => 0.009265281914479
429 => 0.0092511282818713
430 => 0.0092866200967578
501 => 0.0093058729503832
502 => 0.0094206469716403
503 => 0.0095438040692478
504 => 0.010118524506131
505 => 0.009957145307235
506 => 0.010467071469109
507 => 0.010870356857527
508 => 0.010991284511981
509 => 0.010880036759969
510 => 0.010499464209823
511 => 0.010480791504895
512 => 0.0110495275684
513 => 0.010888833580698
514 => 0.010869719542185
515 => 0.010666378466083
516 => 0.010786578226341
517 => 0.010760288775549
518 => 0.010718789591349
519 => 0.010948122360734
520 => 0.011377412832345
521 => 0.011310503886484
522 => 0.011260559462215
523 => 0.011041717533673
524 => 0.01117350925477
525 => 0.011126580747192
526 => 0.011328215397315
527 => 0.011208771497336
528 => 0.010887616165694
529 => 0.0109387612108
530 => 0.010931030740122
531 => 0.011090123278892
601 => 0.011042367647673
602 => 0.010921705686676
603 => 0.011375945564183
604 => 0.011346449753153
605 => 0.011388268069513
606 => 0.011406677785649
607 => 0.011683165594483
608 => 0.01179643380314
609 => 0.011822147669544
610 => 0.011929743707289
611 => 0.011819470582107
612 => 0.012260641706244
613 => 0.012553994760746
614 => 0.01289473942936
615 => 0.013392658973739
616 => 0.013579881328438
617 => 0.013546061285824
618 => 0.013923578201694
619 => 0.014601967707784
620 => 0.013683183200903
621 => 0.014650665517632
622 => 0.014344371786276
623 => 0.01361815485922
624 => 0.013571395050653
625 => 0.014063197585207
626 => 0.015153968272608
627 => 0.014880742586833
628 => 0.01515441517195
629 => 0.014835161564436
630 => 0.014819307931942
701 => 0.01513890973682
702 => 0.015885676774505
703 => 0.015530915747045
704 => 0.015022278823208
705 => 0.015397848412502
706 => 0.015072495276931
707 => 0.014339383601879
708 => 0.0148805336563
709 => 0.014518682025975
710 => 0.014624289568795
711 => 0.01538484787437
712 => 0.015293335486856
713 => 0.015411760990118
714 => 0.015202743076595
715 => 0.015007487386264
716 => 0.014643028140384
717 => 0.014535129725302
718 => 0.014564948965453
719 => 0.014535114948368
720 => 0.014331203349851
721 => 0.014287168659566
722 => 0.014213775579887
723 => 0.014236523164187
724 => 0.014098522702488
725 => 0.014358958086065
726 => 0.014407297188206
727 => 0.014596820341865
728 => 0.014616497264397
729 => 0.015144316549644
730 => 0.014853602556972
731 => 0.015048638602295
801 => 0.015031192742651
802 => 0.013633894182112
803 => 0.013826429595284
804 => 0.01412595427724
805 => 0.013991018814015
806 => 0.013800251639051
807 => 0.013646196916978
808 => 0.013412788260134
809 => 0.013741306462426
810 => 0.014173272964424
811 => 0.014627452647741
812 => 0.015173119778214
813 => 0.015051333226958
814 => 0.014617251780295
815 => 0.014636724356895
816 => 0.014757096163264
817 => 0.014601203737085
818 => 0.014555228017223
819 => 0.01475077980536
820 => 0.014752126463052
821 => 0.014572753386503
822 => 0.014373413036846
823 => 0.014372577793503
824 => 0.014337107103681
825 => 0.014841471721356
826 => 0.015118821264064
827 => 0.015150618942164
828 => 0.015116681026977
829 => 0.015129742383585
830 => 0.014968358795664
831 => 0.015337233820835
901 => 0.015675750021891
902 => 0.015585020448664
903 => 0.015449003920428
904 => 0.015340660204245
905 => 0.015559498112344
906 => 0.01554975360478
907 => 0.01567279337819
908 => 0.015667211583356
909 => 0.015625837935318
910 => 0.015585021926248
911 => 0.015746852788579
912 => 0.015700248099152
913 => 0.015653571019769
914 => 0.015559952991164
915 => 0.015572677236082
916 => 0.015436684193018
917 => 0.015373767588678
918 => 0.014427652817447
919 => 0.014174820035382
920 => 0.014254366375505
921 => 0.014280555096094
922 => 0.014170521945325
923 => 0.01432828121833
924 => 0.014303694602741
925 => 0.01439934674131
926 => 0.014339587437865
927 => 0.014342039980523
928 => 0.014517779349928
929 => 0.014568797236515
930 => 0.014542849127632
1001 => 0.014561022293645
1002 => 0.01497981523399
1003 => 0.014920276270117
1004 => 0.014888647382215
1005 => 0.01489740880032
1006 => 0.0150044193756
1007 => 0.015034376494117
1008 => 0.014907446077909
1009 => 0.014967307195969
1010 => 0.015222188239161
1011 => 0.01531138217926
1012 => 0.015596046420538
1013 => 0.01547511599134
1014 => 0.015697089027879
1015 => 0.016379358466017
1016 => 0.016924402502656
1017 => 0.016423157481666
1018 => 0.017424061444013
1019 => 0.018203408749847
1020 => 0.018173496102178
1021 => 0.018037598872778
1022 => 0.017150332685107
1023 => 0.016333857110818
1024 => 0.017016873598094
1025 => 0.017018614747584
1026 => 0.01695994302559
1027 => 0.016595537999258
1028 => 0.016947262520567
1029 => 0.016975181135793
1030 => 0.016959554135425
1031 => 0.01668016565613
1101 => 0.016253591087868
1102 => 0.016336942737431
1103 => 0.016473474439743
1104 => 0.016214991443769
1105 => 0.016132390464519
1106 => 0.016285961400425
1107 => 0.01678079895369
1108 => 0.016687252780644
1109 => 0.016684809912016
1110 => 0.017085040110057
1111 => 0.016798561663342
1112 => 0.016337994068661
1113 => 0.016221694676863
1114 => 0.015808910184641
1115 => 0.016094021903707
1116 => 0.016104282566901
1117 => 0.01594812979214
1118 => 0.016350665005726
1119 => 0.016346955572867
1120 => 0.016729102848707
1121 => 0.01745962491215
1122 => 0.017243573591183
1123 => 0.016992329411214
1124 => 0.017019646619822
1125 => 0.017319248973636
1126 => 0.017138102551264
1127 => 0.017203244067747
1128 => 0.017319150374149
1129 => 0.017389079526594
1130 => 0.017009584890934
1201 => 0.016921106538035
1202 => 0.016740110879686
1203 => 0.016692892490866
1204 => 0.016840309677993
1205 => 0.016801470457511
1206 => 0.016103420197891
1207 => 0.016030470061846
1208 => 0.01603270733837
1209 => 0.015849270752694
1210 => 0.015569485929713
1211 => 0.016304743739422
1212 => 0.016245692247376
1213 => 0.01618050397038
1214 => 0.016188489162353
1215 => 0.016507639657348
1216 => 0.016322516252765
1217 => 0.01681469716498
1218 => 0.016713519565741
1219 => 0.016609747142859
1220 => 0.016595402633032
1221 => 0.01655545910367
1222 => 0.016418477879154
1223 => 0.016253064819255
1224 => 0.016143844789277
1225 => 0.014891843457701
1226 => 0.015124207622285
1227 => 0.015391521412978
1228 => 0.015483797062333
1229 => 0.015325953178831
1230 => 0.016424710517744
1231 => 0.016625464071453
]
'min_raw' => 0.0069293353940229
'max_raw' => 0.018203408749847
'avg_raw' => 0.012566372071935
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.006929'
'max' => '$0.0182034'
'avg' => '$0.012566'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00026866594712355
'max_diff' => -0.0032828005539761
'year' => 2027
]
2 => [
'items' => [
101 => 0.016017368462439
102 => 0.015903618602373
103 => 0.016432167939633
104 => 0.016113388076737
105 => 0.01625693462948
106 => 0.015946665498215
107 => 0.016577108419115
108 => 0.016572305500338
109 => 0.016327048964909
110 => 0.01653433810921
111 => 0.016498316519252
112 => 0.016221422494793
113 => 0.016585886453577
114 => 0.016586067223153
115 => 0.01635001314014
116 => 0.016074353650064
117 => 0.016025072244024
118 => 0.015987945324599
119 => 0.016247803683223
120 => 0.016480791875008
121 => 0.01691432513725
122 => 0.017023325699874
123 => 0.017448762152373
124 => 0.017195435459035
125 => 0.017307731901062
126 => 0.017429645574184
127 => 0.017488095472305
128 => 0.017392854499911
129 => 0.018053732427272
130 => 0.018109530773118
131 => 0.018128239475826
201 => 0.017905395157108
202 => 0.018103333069492
203 => 0.018010724475302
204 => 0.018251666309976
205 => 0.018289449066152
206 => 0.018257448415831
207 => 0.018269441259002
208 => 0.017705498534855
209 => 0.017676255129573
210 => 0.017277519223536
211 => 0.017440007052553
212 => 0.01713624384445
213 => 0.017232570286848
214 => 0.017275030064824
215 => 0.01725285148638
216 => 0.017449193870611
217 => 0.017282262733916
218 => 0.016841704018158
219 => 0.016401025272472
220 => 0.01639549290979
221 => 0.016279469974677
222 => 0.01619560664325
223 => 0.016211761696095
224 => 0.016268694209454
225 => 0.016192297622076
226 => 0.016208600707399
227 => 0.016479340550639
228 => 0.016533635495373
229 => 0.016349120058764
301 => 0.015608263955326
302 => 0.015426456009245
303 => 0.01555713595548
304 => 0.015494679358046
305 => 0.012505415552084
306 => 0.013207698742918
307 => 0.012790425918208
308 => 0.012982724433634
309 => 0.012556796931879
310 => 0.01276007186049
311 => 0.012722534403587
312 => 0.013851784992378
313 => 0.013834153297667
314 => 0.013842592656877
315 => 0.013439760053177
316 => 0.014081483328968
317 => 0.014397619290245
318 => 0.014339110937498
319 => 0.014353836229372
320 => 0.014100806927763
321 => 0.013845042533611
322 => 0.013561360458638
323 => 0.014088406689774
324 => 0.014029808145851
325 => 0.01416421212252
326 => 0.014506039277454
327 => 0.014556374624493
328 => 0.014624025841364
329 => 0.014599777695857
330 => 0.015177466897248
331 => 0.015107504923243
401 => 0.01527609315116
402 => 0.014929294375515
403 => 0.014536858642431
404 => 0.014611447845599
405 => 0.014604264305526
406 => 0.014512809595505
407 => 0.014430248372514
408 => 0.014292807197716
409 => 0.014727691412245
410 => 0.014710035907327
411 => 0.014995858009672
412 => 0.014945336176755
413 => 0.014607939011744
414 => 0.014619989217499
415 => 0.014701032642328
416 => 0.014981524860999
417 => 0.015064794048867
418 => 0.015026220443343
419 => 0.015117521306457
420 => 0.015189681786027
421 => 0.015126583551689
422 => 0.016019921487514
423 => 0.015648945293256
424 => 0.015829756509102
425 => 0.015872878918679
426 => 0.015762421773313
427 => 0.015786375972969
428 => 0.015822660058319
429 => 0.016042969919415
430 => 0.016621126742101
501 => 0.016877188463222
502 => 0.017647562785078
503 => 0.016855926101834
504 => 0.016808953657169
505 => 0.016947721335611
506 => 0.017400012614944
507 => 0.017766552215284
508 => 0.017888154546894
509 => 0.017904226302451
510 => 0.018132360360521
511 => 0.018263122548158
512 => 0.01810465888535
513 => 0.017970377522957
514 => 0.017489398350482
515 => 0.017545072999359
516 => 0.017928616120227
517 => 0.018470393369031
518 => 0.01893529461082
519 => 0.01877250239939
520 => 0.020014492059213
521 => 0.020137630260912
522 => 0.020120616542972
523 => 0.020401143691863
524 => 0.019844354429675
525 => 0.019606316232805
526 => 0.017999410677665
527 => 0.018450885593833
528 => 0.019107130898677
529 => 0.019020274371787
530 => 0.018543691489923
531 => 0.018934933079968
601 => 0.018805576375043
602 => 0.018703547374855
603 => 0.019170962004014
604 => 0.018657020418919
605 => 0.019102003938221
606 => 0.018531307971951
607 => 0.018773246020499
608 => 0.018635910282916
609 => 0.018724783336367
610 => 0.018205233281868
611 => 0.018485569879911
612 => 0.018193570357728
613 => 0.018193431911935
614 => 0.018186986006299
615 => 0.018530522149223
616 => 0.01854172485051
617 => 0.018287851121835
618 => 0.01825126395128
619 => 0.018386545896934
620 => 0.018228166168971
621 => 0.018302271046855
622 => 0.01823041073023
623 => 0.018214233459348
624 => 0.018085330212623
625 => 0.018029795149666
626 => 0.018051571878814
627 => 0.017977236675559
628 => 0.017932447026776
629 => 0.018178076217817
630 => 0.018046846449697
701 => 0.018157963373752
702 => 0.018031331614717
703 => 0.01759237076707
704 => 0.017339919741662
705 => 0.016510763392149
706 => 0.016745911104305
707 => 0.016901814280743
708 => 0.016850288281861
709 => 0.016960986065375
710 => 0.016967782010233
711 => 0.016931793032382
712 => 0.016890122406504
713 => 0.016869839450357
714 => 0.017021011987963
715 => 0.017108772734278
716 => 0.016917461250214
717 => 0.01687263964623
718 => 0.017066066119215
719 => 0.017184056155997
720 => 0.018055228294719
721 => 0.017990689048834
722 => 0.018152669890819
723 => 0.01813443333381
724 => 0.018304215061783
725 => 0.018581736431905
726 => 0.01801745789025
727 => 0.018115397133798
728 => 0.018091384693027
729 => 0.018353546224958
730 => 0.018354364664645
731 => 0.018197185730313
801 => 0.018282394980551
802 => 0.018234833514662
803 => 0.018320783511842
804 => 0.017989827087857
805 => 0.018392896287732
806 => 0.018621410550856
807 => 0.018624583471621
808 => 0.01873289741874
809 => 0.018842950662134
810 => 0.019054188279211
811 => 0.018837059359643
812 => 0.018446465570415
813 => 0.018474665180387
814 => 0.018245660184675
815 => 0.018249509800026
816 => 0.018228960251582
817 => 0.018290630993359
818 => 0.018003360347631
819 => 0.018070782193995
820 => 0.017976391214263
821 => 0.018115191946242
822 => 0.017965865303216
823 => 0.018091373113501
824 => 0.01814553812377
825 => 0.018345408177753
826 => 0.017936344333733
827 => 0.017102235464589
828 => 0.017277575261475
829 => 0.017018233929236
830 => 0.017042236956917
831 => 0.017090726892886
901 => 0.016933555145491
902 => 0.016963538561843
903 => 0.016962467343221
904 => 0.016953236159854
905 => 0.016912349718096
906 => 0.016853056288411
907 => 0.017089263062722
908 => 0.017129399196469
909 => 0.017218616849973
910 => 0.017484068069887
911 => 0.017457543233247
912 => 0.017500806342312
913 => 0.017406363218135
914 => 0.017046617902578
915 => 0.017066153804
916 => 0.016822540800231
917 => 0.017212387117749
918 => 0.017120066364041
919 => 0.017060546573543
920 => 0.017044306047259
921 => 0.017310415269403
922 => 0.01739003931942
923 => 0.017340422954821
924 => 0.017238658343487
925 => 0.017434076481254
926 => 0.017486362130891
927 => 0.017498066959624
928 => 0.017844310432036
929 => 0.017517418123447
930 => 0.017596104351154
1001 => 0.018209991837753
1002 => 0.017653280598091
1003 => 0.017948182957882
1004 => 0.017933749021968
1005 => 0.018084611090286
1006 => 0.017921373929032
1007 => 0.017923397449284
1008 => 0.018057352745668
1009 => 0.017869236690862
1010 => 0.017822656510209
1011 => 0.017758306324252
1012 => 0.017898812601086
1013 => 0.017983039759495
1014 => 0.018661848798244
1015 => 0.019100390394729
1016 => 0.019081352147454
1017 => 0.019255326089438
1018 => 0.019176949235156
1019 => 0.018923849697908
1020 => 0.019355859745789
1021 => 0.019219153690571
1022 => 0.019230423571666
1023 => 0.019230004106129
1024 => 0.019320901681798
1025 => 0.019256492418796
1026 => 0.019129535149943
1027 => 0.019213815309855
1028 => 0.019464097254085
1029 => 0.02024098008856
1030 => 0.020675734015062
1031 => 0.020214807356292
1101 => 0.020532748393457
1102 => 0.020342097065133
1103 => 0.020307450047391
1104 => 0.020507140514389
1105 => 0.020707180513115
1106 => 0.020694438829992
1107 => 0.020549220063085
1108 => 0.020467189666449
1109 => 0.021088351311977
1110 => 0.021546012631189
1111 => 0.02151480319742
1112 => 0.021652551488228
1113 => 0.022056984730437
1114 => 0.022093961037582
1115 => 0.022089302872772
1116 => 0.021997653237434
1117 => 0.022395870286682
1118 => 0.022728069955126
1119 => 0.021976438994866
1120 => 0.022262650224961
1121 => 0.022391139667301
1122 => 0.022579800289755
1123 => 0.022898102383027
1124 => 0.023243862881781
1125 => 0.023292757207376
1126 => 0.023258064343558
1127 => 0.023030026000088
1128 => 0.023408361263605
1129 => 0.02362998118792
1130 => 0.023761950781168
1201 => 0.024096603711997
1202 => 0.022391933174354
1203 => 0.021185282640187
1204 => 0.020996846735032
1205 => 0.021380038558041
1206 => 0.021481083185871
1207 => 0.021440352223092
1208 => 0.02008215734302
1209 => 0.020989696120073
1210 => 0.021966131536155
1211 => 0.022003640397145
1212 => 0.022492464382737
1213 => 0.022651645510018
1214 => 0.023045212890044
1215 => 0.023020595143267
1216 => 0.023116422537279
1217 => 0.023094393478894
1218 => 0.023823394175004
1219 => 0.024627590200463
1220 => 0.024599743449288
1221 => 0.024484130755813
1222 => 0.024655835320517
1223 => 0.025485851801675
1224 => 0.025409437184833
1225 => 0.025483667476113
1226 => 0.026462303685077
1227 => 0.027734669966107
1228 => 0.027143528085083
1229 => 0.028426135870412
1230 => 0.02923346948316
1231 => 0.030629669486553
]
'min_raw' => 0.012505415552084
'max_raw' => 0.030629669486553
'avg_raw' => 0.021567542519318
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0125054'
'max' => '$0.030629'
'avg' => '$0.021567'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0055760801580612
'max_diff' => 0.012426260736706
'year' => 2028
]
3 => [
'items' => [
101 => 0.030454858369698
102 => 0.03099838878523
103 => 0.030141909986347
104 => 0.028175261541187
105 => 0.027864031896712
106 => 0.02848712152654
107 => 0.030018926581274
108 => 0.028438879534135
109 => 0.028758520993914
110 => 0.028666464231994
111 => 0.028661558918367
112 => 0.028848774788144
113 => 0.02857720840451
114 => 0.027470798103724
115 => 0.027977859424457
116 => 0.027782058697438
117 => 0.027999314201977
118 => 0.029171752556991
119 => 0.0286533896128
120 => 0.028107336359481
121 => 0.028792208318061
122 => 0.029664285668871
123 => 0.029609712635531
124 => 0.029503818141093
125 => 0.030100739861785
126 => 0.031086679662713
127 => 0.031353175229077
128 => 0.031549896807905
129 => 0.031577021389987
130 => 0.031856421443266
131 => 0.030354016938905
201 => 0.03273837147181
202 => 0.033150083633178
203 => 0.033072698810562
204 => 0.033530299550426
205 => 0.033395661804548
206 => 0.033200592834785
207 => 0.033925987341939
208 => 0.033094381075805
209 => 0.031914020677347
210 => 0.031266451617871
211 => 0.032119222793295
212 => 0.032639980392513
213 => 0.032984168039193
214 => 0.033088319013114
215 => 0.030470644323782
216 => 0.029059862849126
217 => 0.029964157599738
218 => 0.031067459606574
219 => 0.03034788804055
220 => 0.030376093883609
221 => 0.02935017393054
222 => 0.031158230758072
223 => 0.030894812086452
224 => 0.032261428620795
225 => 0.031935274617091
226 => 0.0330496973491
227 => 0.032756232495389
228 => 0.033974388695743
301 => 0.034460344184327
302 => 0.035276339082592
303 => 0.035876588251452
304 => 0.036229066044344
305 => 0.03620790459977
306 => 0.037604597218946
307 => 0.036781016378141
308 => 0.03574640473899
309 => 0.035727691878595
310 => 0.036263531907072
311 => 0.037386505606227
312 => 0.037677676347815
313 => 0.037840401070119
314 => 0.037591182493421
315 => 0.036697244517298
316 => 0.036311246631577
317 => 0.036640128013647
318 => 0.036237934344475
319 => 0.036932233453079
320 => 0.037885654423479
321 => 0.037688776763326
322 => 0.038346909263668
323 => 0.039028007163963
324 => 0.040002007751406
325 => 0.040256647572101
326 => 0.040677557512625
327 => 0.041110812103137
328 => 0.04124996180107
329 => 0.041515641750041
330 => 0.041514241485567
331 => 0.042314885894114
401 => 0.043198021470634
402 => 0.043531384706135
403 => 0.044297935084414
404 => 0.042985244424741
405 => 0.043980935369206
406 => 0.044879073524875
407 => 0.043808276189797
408 => 0.045284120852421
409 => 0.045341424556335
410 => 0.046206642451342
411 => 0.04532957835906
412 => 0.044808780500751
413 => 0.046312304403648
414 => 0.047039812259702
415 => 0.046820680972803
416 => 0.045153081059659
417 => 0.044182466383485
418 => 0.041642180558348
419 => 0.044651258850404
420 => 0.046116893110447
421 => 0.045149285420997
422 => 0.045637290457178
423 => 0.048299687698415
424 => 0.049313356190422
425 => 0.049102520230162
426 => 0.049138148036791
427 => 0.049685105155694
428 => 0.052110614235696
429 => 0.050657192972098
430 => 0.051768279069463
501 => 0.052357595129186
502 => 0.052904984728397
503 => 0.051560768876993
504 => 0.049811963804769
505 => 0.049258043828552
506 => 0.045053075905745
507 => 0.044834189064112
508 => 0.044711321246954
509 => 0.043936657039769
510 => 0.043327983171306
511 => 0.042843943112492
512 => 0.041573677451568
513 => 0.04200235482309
514 => 0.039977816484625
515 => 0.041273044368342
516 => 0.038041832295964
517 => 0.040732881725825
518 => 0.039268265868155
519 => 0.040251716025863
520 => 0.04024828486091
521 => 0.038437441317412
522 => 0.037392984552863
523 => 0.038058553054099
524 => 0.038772095320318
525 => 0.038887865152367
526 => 0.039812991325878
527 => 0.040071174155384
528 => 0.039288868128576
529 => 0.037974872607818
530 => 0.038280083798244
531 => 0.037386799457831
601 => 0.035821353010944
602 => 0.036945683979171
603 => 0.037329580005067
604 => 0.037499130360176
605 => 0.035959693572402
606 => 0.035475969110884
607 => 0.035218438266414
608 => 0.037776150649936
609 => 0.037916267908015
610 => 0.037199408205101
611 => 0.040439682037698
612 => 0.039706308274537
613 => 0.040525666448922
614 => 0.038252389081785
615 => 0.038339231338583
616 => 0.037263025402095
617 => 0.037865628814422
618 => 0.037439728145404
619 => 0.037816944413749
620 => 0.038043046289674
621 => 0.039119075631358
622 => 0.040745168252458
623 => 0.038958352730127
624 => 0.038179811619377
625 => 0.038662814145805
626 => 0.03994911352301
627 => 0.041897922923929
628 => 0.04074418853514
629 => 0.041256196265204
630 => 0.041368047176585
701 => 0.040517326151861
702 => 0.041929290221566
703 => 0.042685973237296
704 => 0.043462173437948
705 => 0.044136126323539
706 => 0.0431521420088
707 => 0.044205146274181
708 => 0.043356610716559
709 => 0.042595386601378
710 => 0.042596541064141
711 => 0.042119014056979
712 => 0.041193745308326
713 => 0.041023111554905
714 => 0.041910769888869
715 => 0.042622587811151
716 => 0.042681216544608
717 => 0.043075315520908
718 => 0.043308539235541
719 => 0.045594448691204
720 => 0.046513860384306
721 => 0.047638099599059
722 => 0.048076054131856
723 => 0.049394140260184
724 => 0.048329678661838
725 => 0.048099375699258
726 => 0.044902129894621
727 => 0.045425678716017
728 => 0.04626393089402
729 => 0.044915952364289
730 => 0.045770934479516
731 => 0.045939726060059
801 => 0.044870148569659
802 => 0.045441456120997
803 => 0.043924232645527
804 => 0.04077823957813
805 => 0.04193279261118
806 => 0.042782932261853
807 => 0.041569678158879
808 => 0.043744389179043
809 => 0.042473967896211
810 => 0.042071305340529
811 => 0.040500375151249
812 => 0.041241793729941
813 => 0.042244572973713
814 => 0.041624971986662
815 => 0.04291073706835
816 => 0.044731723325043
817 => 0.046029466573169
818 => 0.046129091185618
819 => 0.045294729219118
820 => 0.046631799595261
821 => 0.046641538693238
822 => 0.045133317846856
823 => 0.044209540976256
824 => 0.043999656927612
825 => 0.044523988431316
826 => 0.045160623673746
827 => 0.046164420010817
828 => 0.046770993114258
829 => 0.048352614066517
830 => 0.048780555347572
831 => 0.049250733071761
901 => 0.049879035508719
902 => 0.050633473677725
903 => 0.048982805914129
904 => 0.049048390021606
905 => 0.047511311055196
906 => 0.045868721740166
907 => 0.047115242278625
908 => 0.048744902064982
909 => 0.048371056309378
910 => 0.048328991024897
911 => 0.048399733165457
912 => 0.048117865674393
913 => 0.046842989458803
914 => 0.046202754604482
915 => 0.047028820907888
916 => 0.047467838384167
917 => 0.048148716203528
918 => 0.048064783640705
919 => 0.04981865178244
920 => 0.050500151908099
921 => 0.050325795012921
922 => 0.050357880877767
923 => 0.051591704302583
924 => 0.052963969706119
925 => 0.0542492773429
926 => 0.055556747476281
927 => 0.053980541199062
928 => 0.053180240858379
929 => 0.054005946527079
930 => 0.053567815476618
1001 => 0.056085446450677
1002 => 0.056259761756895
1003 => 0.058777210677579
1004 => 0.061166569475549
1005 => 0.059665856024353
1006 => 0.061080961215212
1007 => 0.062611512854346
1008 => 0.065564195289288
1009 => 0.06456983572182
1010 => 0.06380817187674
1011 => 0.063088403223473
1012 => 0.064586127530866
1013 => 0.066512925925597
1014 => 0.066927939845177
1015 => 0.067600420942415
1016 => 0.066893389295745
1017 => 0.067744931037178
1018 => 0.070751247570835
1019 => 0.069938914305951
1020 => 0.068785270480726
1021 => 0.071158468654339
1022 => 0.072017319847796
1023 => 0.078045187307334
1024 => 0.085655618973786
1025 => 0.082504850291087
1026 => 0.080549066495065
1027 => 0.081008722078942
1028 => 0.08378779409416
1029 => 0.084680343822112
1030 => 0.082254085981198
1031 => 0.083111081268038
1101 => 0.087833209556442
1102 => 0.090366479879157
1103 => 0.086925958517314
1104 => 0.077433696533047
1105 => 0.068681397476555
1106 => 0.0710029013075
1107 => 0.070739714817722
1108 => 0.075813052566111
1109 => 0.06991954042624
1110 => 0.070018772055921
1111 => 0.075197021056188
1112 => 0.073815553000579
1113 => 0.071577751675553
1114 => 0.068697735902727
1115 => 0.063373760377443
1116 => 0.058658166784657
1117 => 0.067906531756456
1118 => 0.067507725441811
1119 => 0.066930194798422
1120 => 0.068215426749943
1121 => 0.074456148287074
1122 => 0.074312279456399
1123 => 0.073397059358166
1124 => 0.074091245736296
1125 => 0.071456057447125
1126 => 0.072135205471366
1127 => 0.068680011067668
1128 => 0.070241903239804
1129 => 0.071572950358957
1130 => 0.071840177774617
1201 => 0.072442254787067
1202 => 0.067297572635893
1203 => 0.069607383881838
1204 => 0.070964181588785
1205 => 0.064834120188075
1206 => 0.070843009984543
1207 => 0.067208015165526
1208 => 0.065974243328161
1209 => 0.067635354570093
1210 => 0.066988017903629
1211 => 0.066431475850687
1212 => 0.066120915822539
1213 => 0.067340652588456
1214 => 0.067283750410425
1215 => 0.065288024320681
1216 => 0.062684680992811
1217 => 0.063558448465476
1218 => 0.063241000551043
1219 => 0.062090528357542
1220 => 0.062865807707419
1221 => 0.059451869810461
1222 => 0.053578367099794
1223 => 0.057458582900714
1224 => 0.057309198813241
1225 => 0.057233872582308
1226 => 0.060149747515412
1227 => 0.059869453421274
1228 => 0.059360716895767
1229 => 0.062081185012295
1230 => 0.061088177554303
1231 => 0.064148392557854
]
'min_raw' => 0.027470798103724
'max_raw' => 0.090366479879157
'avg_raw' => 0.05891863899144
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.02747'
'max' => '$0.090366'
'avg' => '$0.058918'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.01496538255164
'max_diff' => 0.059736810392604
'year' => 2029
]
4 => [
'items' => [
101 => 0.066164048081489
102 => 0.06565281264107
103 => 0.067548546403557
104 => 0.063578578303284
105 => 0.06489724245872
106 => 0.065169017313566
107 => 0.062047614858025
108 => 0.059915313001531
109 => 0.059773112777724
110 => 0.05607599520786
111 => 0.058050965571591
112 => 0.059788857761847
113 => 0.058956542268596
114 => 0.058693056048151
115 => 0.060039150005217
116 => 0.060143753034196
117 => 0.057758792888141
118 => 0.058254701624371
119 => 0.060322723492419
120 => 0.058202592779294
121 => 0.054083525125077
122 => 0.053061939396266
123 => 0.052925641028482
124 => 0.050155019508959
125 => 0.053130206639567
126 => 0.051831457726999
127 => 0.055934189980401
128 => 0.053590731320652
129 => 0.053489709501642
130 => 0.053337000205529
131 => 0.050952211810742
201 => 0.051474328907992
202 => 0.053209925659928
203 => 0.053829206133915
204 => 0.053764610106863
205 => 0.053201420288992
206 => 0.053459245703615
207 => 0.052628700210785
208 => 0.052335417310957
209 => 0.051409735805283
210 => 0.050049239717986
211 => 0.050238425043332
212 => 0.04754292630123
213 => 0.046074275525587
214 => 0.045667772347395
215 => 0.04512417930858
216 => 0.045729172627575
217 => 0.047535290291965
218 => 0.045356729199473
219 => 0.041621739014688
220 => 0.041846218288907
221 => 0.042350556569583
222 => 0.041410725520075
223 => 0.040521254305757
224 => 0.041294577361526
225 => 0.039712012782727
226 => 0.042541801938139
227 => 0.042465264071878
228 => 0.043520034476028
301 => 0.044179604055811
302 => 0.042659509712598
303 => 0.042277210096053
304 => 0.042494985332186
305 => 0.038895645779237
306 => 0.043225891644953
307 => 0.043263339791017
308 => 0.042942686028988
309 => 0.04524840827114
310 => 0.050114201374883
311 => 0.048283494283181
312 => 0.047574589163859
313 => 0.046226960013821
314 => 0.048022595841945
315 => 0.047884719026628
316 => 0.047261187779533
317 => 0.046884074135754
318 => 0.047578917587352
319 => 0.046797975342609
320 => 0.046657696656596
321 => 0.045807760444069
322 => 0.045504371885831
323 => 0.045279755075558
324 => 0.045032474037839
325 => 0.045577914388452
326 => 0.04434187479531
327 => 0.042851332216437
328 => 0.042727409728898
329 => 0.04306957061237
330 => 0.042918189892316
331 => 0.042726684976251
401 => 0.042361049938223
402 => 0.042252573832996
403 => 0.042605068549858
404 => 0.04220712256624
405 => 0.042794313542307
406 => 0.042634630087576
407 => 0.041742651290051
408 => 0.040630915455488
409 => 0.040621018674615
410 => 0.040381497012671
411 => 0.040076430163861
412 => 0.039991567545507
413 => 0.041229450250742
414 => 0.043791830403868
415 => 0.043288773867249
416 => 0.043652283770264
417 => 0.045440392714122
418 => 0.046008778777063
419 => 0.045605351812549
420 => 0.045053116101232
421 => 0.045077411669886
422 => 0.046964568268577
423 => 0.047082267910803
424 => 0.047379656935367
425 => 0.04776188587406
426 => 0.045670447053613
427 => 0.044978905089523
428 => 0.04465121414165
429 => 0.043642052854556
430 => 0.044730346783736
501 => 0.044096244516595
502 => 0.044181806576451
503 => 0.044126084172724
504 => 0.044156512373091
505 => 0.042541010954399
506 => 0.043129614763115
507 => 0.042150946769538
508 => 0.040840620186775
509 => 0.04083622751261
510 => 0.041156928087403
511 => 0.040966162836501
512 => 0.040452818451348
513 => 0.040525736598342
514 => 0.039886896902597
515 => 0.040603303303972
516 => 0.040623847276138
517 => 0.040347991788688
518 => 0.041451714695039
519 => 0.041903910870323
520 => 0.041722336879086
521 => 0.041891171155059
522 => 0.04330967813751
523 => 0.043540956669448
524 => 0.043643675315933
525 => 0.043506045937256
526 => 0.041917098858708
527 => 0.041987575418366
528 => 0.041470465185526
529 => 0.041033561530509
530 => 0.041051035385452
531 => 0.04127566065763
601 => 0.042256612395329
602 => 0.044320967497054
603 => 0.044399308264141
604 => 0.044494259559211
605 => 0.044108044923463
606 => 0.043991558893745
607 => 0.044145234034538
608 => 0.044920497272111
609 => 0.046914684801065
610 => 0.046209805741026
611 => 0.045636728093118
612 => 0.046139471690958
613 => 0.046062078254705
614 => 0.04540879976673
615 => 0.045390464415384
616 => 0.044136614131192
617 => 0.043673094229916
618 => 0.043285742306546
619 => 0.042862764118305
620 => 0.042612008469958
621 => 0.042997283112222
622 => 0.043085399981344
623 => 0.042242990242584
624 => 0.042128172908002
625 => 0.04281610288535
626 => 0.042513370550934
627 => 0.042824738264282
628 => 0.042896978244642
629 => 0.042885345943976
630 => 0.042569258618258
701 => 0.042770723253811
702 => 0.042294199331229
703 => 0.041776051137001
704 => 0.041445504870857
705 => 0.041157059413046
706 => 0.041317105717588
707 => 0.040746569865197
708 => 0.040564043963399
709 => 0.042702471568383
710 => 0.044282151032156
711 => 0.044259181867131
712 => 0.044119362982231
713 => 0.043911620480495
714 => 0.044905299614161
715 => 0.044559121673233
716 => 0.044810995049393
717 => 0.044875107394718
718 => 0.045069156154614
719 => 0.045138511907222
720 => 0.044928870652173
721 => 0.044225288994704
722 => 0.042472030398828
723 => 0.041655883789616
724 => 0.041386541814579
725 => 0.041396331883819
726 => 0.041126278069404
727 => 0.041205821020712
728 => 0.041098616277065
729 => 0.04089559642821
730 => 0.041304569814016
731 => 0.041351700186879
801 => 0.041256240911764
802 => 0.04127872502673
803 => 0.040488362999966
804 => 0.040548452508285
805 => 0.04021386649016
806 => 0.040151135645256
807 => 0.039305331327175
808 => 0.037806866376398
809 => 0.038637161418641
810 => 0.037634281764762
811 => 0.037254476043731
812 => 0.039052417255181
813 => 0.038871953824678
814 => 0.038563078877225
815 => 0.038106188454761
816 => 0.037936723352726
817 => 0.036907107038887
818 => 0.036846271814276
819 => 0.037356577461393
820 => 0.037121088963794
821 => 0.036790373926696
822 => 0.035592557586373
823 => 0.034245815436488
824 => 0.034286465116674
825 => 0.034714838737524
826 => 0.035960392814198
827 => 0.035473733288137
828 => 0.035120656218205
829 => 0.035054535496465
830 => 0.035882174762154
831 => 0.037053457718891
901 => 0.037602997476213
902 => 0.037058420266477
903 => 0.036432839290053
904 => 0.036470915505425
905 => 0.036724219507848
906 => 0.036750838176977
907 => 0.036343649272088
908 => 0.036458270563692
909 => 0.036284150340555
910 => 0.035215574852568
911 => 0.035196247710479
912 => 0.03493400205262
913 => 0.034926061358323
914 => 0.034479916074058
915 => 0.034417497264733
916 => 0.033531648723743
917 => 0.034114716916019
918 => 0.033723625385094
919 => 0.033134158198825
920 => 0.033032533833728
921 => 0.033029478882599
922 => 0.033634729880446
923 => 0.034107644205715
924 => 0.033730428589715
925 => 0.03364454390597
926 => 0.034561567635717
927 => 0.03444486800725
928 => 0.034343806881629
929 => 0.036948582176859
930 => 0.034886699277534
1001 => 0.033987600645266
1002 => 0.032874795353636
1003 => 0.033237130367842
1004 => 0.033313479679144
1005 => 0.030637383551004
1006 => 0.029551691685104
1007 => 0.029179123150162
1008 => 0.028964704690957
1009 => 0.029062417875314
1010 => 0.028085167857049
1011 => 0.028741896031547
1012 => 0.027895680120617
1013 => 0.027753809269325
1014 => 0.029266948144103
1015 => 0.029477492578899
1016 => 0.02857924460903
1017 => 0.029156065218823
1018 => 0.028946902047305
1019 => 0.027910186063623
1020 => 0.027870591138613
1021 => 0.02735040350033
1022 => 0.026536410574593
1023 => 0.026164393965185
1024 => 0.025970644485009
1025 => 0.026050589296631
1026 => 0.026010166753523
1027 => 0.025746382316882
1028 => 0.026025286568657
1029 => 0.025312801456565
1030 => 0.025029084144047
1031 => 0.024900935616175
1101 => 0.02426856407008
1102 => 0.02527494841682
1103 => 0.025473218811223
1104 => 0.025671879859552
1105 => 0.027401088653601
1106 => 0.027314702268944
1107 => 0.028095593114371
1108 => 0.028065249132084
1109 => 0.027842526413375
1110 => 0.026902895899252
1111 => 0.027277415874878
1112 => 0.026124701603228
1113 => 0.026988393512499
1114 => 0.026594240593744
1115 => 0.026855130014186
1116 => 0.026386027312781
1117 => 0.026645648116514
1118 => 0.025520236077083
1119 => 0.024469342149637
1120 => 0.024892252543547
1121 => 0.025352004507398
1122 => 0.026348863907648
1123 => 0.025755142672771
1124 => 0.025968667279918
1125 => 0.025253395589562
1126 => 0.023777585785099
1127 => 0.02378593870832
1128 => 0.023558917522167
1129 => 0.023362738071696
1130 => 0.02582333869871
1201 => 0.025517324114401
1202 => 0.025029729924503
1203 => 0.025682394123904
1204 => 0.025854968897399
1205 => 0.025859881858589
1206 => 0.02633604881077
1207 => 0.026590179198507
1208 => 0.02663497078081
1209 => 0.027384229768335
1210 => 0.027635371497989
1211 => 0.028669788739523
1212 => 0.026568618010618
1213 => 0.02652534578217
1214 => 0.025691578447637
1215 => 0.025162790022736
1216 => 0.025727785043488
1217 => 0.026228293502363
1218 => 0.025707130640616
1219 => 0.025775183508012
1220 => 0.025075564946686
1221 => 0.025325645662247
1222 => 0.025541048863998
1223 => 0.025422115876806
1224 => 0.025244067438558
1225 => 0.026187257516458
1226 => 0.026134039035871
1227 => 0.027012359320258
1228 => 0.027697072791224
1229 => 0.028924201738368
1230 => 0.027643628710344
1231 => 0.027596959539386
]
'min_raw' => 0.023362738071696
'max_raw' => 0.067548546403557
'avg_raw' => 0.045455642237627
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.023362'
'max' => '$0.067548'
'avg' => '$0.045455'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0041080600320279
'max_diff' => -0.022817933475599
'year' => 2030
]
5 => [
'items' => [
101 => 0.028053158171471
102 => 0.027635301656355
103 => 0.027899372549991
104 => 0.028881655834883
105 => 0.028902409932831
106 => 0.028554752052056
107 => 0.028533597038416
108 => 0.028600368537379
109 => 0.028991451292376
110 => 0.028854794961021
111 => 0.02901293712738
112 => 0.029210696327971
113 => 0.03002871222978
114 => 0.030225933094326
115 => 0.029746788640773
116 => 0.029790050020176
117 => 0.029610836841738
118 => 0.029437719156901
119 => 0.029826862430606
120 => 0.030538029411933
121 => 0.030533605279052
122 => 0.030698582195609
123 => 0.030801361447881
124 => 0.030360157658117
125 => 0.030072950214493
126 => 0.030183083823863
127 => 0.030359189863643
128 => 0.03012597500866
129 => 0.028686464888075
130 => 0.029123120302398
131 => 0.029050439490096
201 => 0.028946933175089
202 => 0.029385993570747
203 => 0.029343645124491
204 => 0.028075144745618
205 => 0.028156350024234
206 => 0.028080083107571
207 => 0.028326517118052
208 => 0.027621993411061
209 => 0.027838700158292
210 => 0.027974616598656
211 => 0.028054672426189
212 => 0.028343888970035
213 => 0.02830995274674
214 => 0.028341779446746
215 => 0.028770611230933
216 => 0.030939495238051
217 => 0.031057542809185
218 => 0.030476233395048
219 => 0.030708455040175
220 => 0.030262640262822
221 => 0.030561918709558
222 => 0.030766677421967
223 => 0.029841412173429
224 => 0.029786623970333
225 => 0.029338969156809
226 => 0.029579513497132
227 => 0.029196790155928
228 => 0.029290697076766
301 => 0.029028125139446
302 => 0.02950070234907
303 => 0.030029117100503
304 => 0.030162615534446
305 => 0.029811438629431
306 => 0.029557163406515
307 => 0.02911073987854
308 => 0.02985315215476
309 => 0.030070256128931
310 => 0.029852011800008
311 => 0.029801439820263
312 => 0.02970560601003
313 => 0.02982177141614
314 => 0.030069073734062
315 => 0.029952450527887
316 => 0.030029482210202
317 => 0.029735916871942
318 => 0.03036030371493
319 => 0.03135198028847
320 => 0.03135516869081
321 => 0.031238544855992
322 => 0.03119082489548
323 => 0.031310488027329
324 => 0.031375400367518
325 => 0.031762368993453
326 => 0.032177601746591
327 => 0.034115311825241
328 => 0.033571210589028
329 => 0.035290462245695
330 => 0.036650167089231
331 => 0.037057883119121
401 => 0.036682803556144
402 => 0.0353996766326
403 => 0.03533672030425
404 => 0.03725425365024
405 => 0.036712462651407
406 => 0.03664801833606
407 => 0.035962439701162
408 => 0.036367701584953
409 => 0.036279064866134
410 => 0.036139147469223
411 => 0.036912358912708
412 => 0.03835974170985
413 => 0.038134153527445
414 => 0.037965762414015
415 => 0.03722792157288
416 => 0.037672266561961
417 => 0.037514043822217
418 => 0.03819386912279
419 => 0.037791155674705
420 => 0.036708358051724
421 => 0.036880797142132
422 => 0.036854733320516
423 => 0.037391124922466
424 => 0.037230113477619
425 => 0.036823293251768
426 => 0.0383547947128
427 => 0.038255347526579
428 => 0.038396340899848
429 => 0.038458410543126
430 => 0.039390608494373
501 => 0.039772500167992
502 => 0.039859196263858
503 => 0.040221963817234
504 => 0.039850170276657
505 => 0.041337609523268
506 => 0.042326669827778
507 => 0.043475514268045
508 => 0.045154284775549
509 => 0.045785518015866
510 => 0.045671491380952
511 => 0.046944316020199
512 => 0.049231553603623
513 => 0.046133807491188
514 => 0.049395741669497
515 => 0.048363050969486
516 => 0.04591455989707
517 => 0.04575690593782
518 => 0.047415052519626
519 => 0.051092662047377
520 => 0.050171462571777
521 => 0.051094168799708
522 => 0.050017782972399
523 => 0.049964331343582
524 => 0.051041891142614
525 => 0.053559668347779
526 => 0.052363566775072
527 => 0.050648661874459
528 => 0.051914920966196
529 => 0.050817970154187
530 => 0.048346232957529
531 => 0.050170758147899
601 => 0.048950750112584
602 => 0.049306813316484
603 => 0.051871088744216
604 => 0.05156254834052
605 => 0.051961828192975
606 => 0.051257109704365
607 => 0.050598791512098
608 => 0.049369991718881
609 => 0.049006204679208
610 => 0.049106742329287
611 => 0.049006154857741
612 => 0.048318652666689
613 => 0.048170186633989
614 => 0.04792273674171
615 => 0.047999431810364
616 => 0.047534153618859
617 => 0.048412229697608
618 => 0.048575208355404
619 => 0.049214198900049
620 => 0.049280541018164
621 => 0.051060120589541
622 => 0.050079958066246
623 => 0.050737535710033
624 => 0.050678715776212
625 => 0.045967626123084
626 => 0.046616772710989
627 => 0.047626641088348
628 => 0.047171696753192
629 => 0.046528511903861
630 => 0.046009105652636
701 => 0.045222152070014
702 => 0.046329774125449
703 => 0.047786179345872
704 => 0.049317477857989
705 => 0.051157232685644
706 => 0.050746620825218
707 => 0.049283084921193
708 => 0.049348738072734
709 => 0.049754580021997
710 => 0.049228977823072
711 => 0.049073967473635
712 => 0.04973328398033
713 => 0.049737824330758
714 => 0.049133055479747
715 => 0.048460965573379
716 => 0.048458149492131
717 => 0.048338557584912
718 => 0.050039058107019
719 => 0.050974161454183
720 => 0.051081369545941
721 => 0.050966945495418
722 => 0.051010982771136
723 => 0.050466866737018
724 => 0.051710554638415
725 => 0.052851885644723
726 => 0.052545984554052
727 => 0.052087395332734
728 => 0.051722106929304
729 => 0.052459934215237
730 => 0.052427079927642
731 => 0.052841917114058
801 => 0.052823097703067
802 => 0.052683603560091
803 => 0.052545989535827
804 => 0.053091613586848
805 => 0.052934482622608
806 => 0.05277710759058
807 => 0.052461467870936
808 => 0.052504368551056
809 => 0.052045858511633
810 => 0.051833730787404
811 => 0.048643838780574
812 => 0.047791395403621
813 => 0.048059591443096
814 => 0.048147888542998
815 => 0.047776904092912
816 => 0.048308800496249
817 => 0.048225905005207
818 => 0.048548402868612
819 => 0.048346920204786
820 => 0.048355189123589
821 => 0.04894770667727
822 => 0.049119717043853
823 => 0.049032231183115
824 => 0.049093503281136
825 => 0.050505492918697
826 => 0.050304753145123
827 => 0.050198114141304
828 => 0.050227653874146
829 => 0.050588447499942
830 => 0.050689450016563
831 => 0.050261495256318
901 => 0.050463321195226
902 => 0.051322670427574
903 => 0.051623394023942
904 => 0.052583159388032
905 => 0.052175434002898
906 => 0.052923831593253
907 => 0.055224150638467
908 => 0.057061804661754
909 => 0.055371822077675
910 => 0.058746439667613
911 => 0.061374063521522
912 => 0.061273210941472
913 => 0.060815023944508
914 => 0.057823544045827
915 => 0.055070739642608
916 => 0.05737357741615
917 => 0.057379447823218
918 => 0.057181632016185
919 => 0.055953015027962
920 => 0.057138878808176
921 => 0.057233008368625
922 => 0.057180320845844
923 => 0.056238343081619
924 => 0.054800117142237
925 => 0.055081143048166
926 => 0.05554146921485
927 => 0.054669975747218
928 => 0.054391480778659
929 => 0.054909255911047
930 => 0.056577635270334
1001 => 0.056262237816724
1002 => 0.056254001514589
1003 => 0.057603405570467
1004 => 0.05663752348608
1005 => 0.055084687684809
1006 => 0.0546925761656
1007 => 0.053300844430378
1008 => 0.054262118497074
1009 => 0.054296713039412
1010 => 0.053770233057065
1011 => 0.05512740863378
1012 => 0.055114902021914
1013 => 0.056403338243079
1014 => 0.058866344383399
1015 => 0.058137912270535
1016 => 0.057290824976463
1017 => 0.057382926852511
1018 => 0.058393057105964
1019 => 0.057782309295696
1020 => 0.058001938466553
1021 => 0.05839272467091
1022 => 0.058628495690674
1023 => 0.057349003031077
1024 => 0.057050692086917
1025 => 0.056440452588078
1026 => 0.056281252493491
1027 => 0.05677827983223
1028 => 0.056647330688707
1029 => 0.054293805502085
1030 => 0.054047849025192
1031 => 0.054055392159194
1101 => 0.053436922903454
1102 => 0.052493608838823
1103 => 0.054972581878318
1104 => 0.054773485650041
1105 => 0.054553698822848
1106 => 0.054580621455093
1107 => 0.055656659631346
1108 => 0.055032503147889
1109 => 0.056691925456396
1110 => 0.056350798116568
1111 => 0.056000922147664
1112 => 0.055952558631279
1113 => 0.055817886233265
1114 => 0.055356044471087
1115 => 0.054798342790868
1116 => 0.054430099834296
1117 => 0.050208889932947
1118 => 0.050992321936989
1119 => 0.051893589045565
1120 => 0.052204702839844
1121 => 0.051672521166311
1122 => 0.055377058247243
1123 => 0.056053912869737
1124 => 0.054003676068068
1125 => 0.053620160473093
1126 => 0.055402201465801
1127 => 0.054327412901547
1128 => 0.054811390126221
1129 => 0.053765296087864
1130 => 0.055890878411795
1201 => 0.055874685035811
1202 => 0.055047785503348
1203 => 0.055746675325822
1204 => 0.055625226020334
1205 => 0.054691658484746
1206 => 0.055920474167848
1207 => 0.055921083645096
1208 => 0.055125210823446
1209 => 0.054195805606722
1210 => 0.054029649905544
1211 => 0.053904473904583
1212 => 0.054780604503413
1213 => 0.055566140458734
1214 => 0.057027828120708
1215 => 0.057395331127771
1216 => 0.058829719830397
1217 => 0.057975611197102
1218 => 0.058354226491683
1219 => 0.058765266952354
1220 => 0.058962334864713
1221 => 0.058641223276772
1222 => 0.060869419349894
1223 => 0.06105754736863
1224 => 0.06112062506601
1225 => 0.060369289886957
1226 => 0.061036651378145
1227 => 0.060724415037108
1228 => 0.061536767254732
1229 => 0.061664154455089
1230 => 0.061556262028318
1231 => 0.061596696736382
]
'min_raw' => 0.027621993411061
'max_raw' => 0.061664154455089
'avg_raw' => 0.044643073933075
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.027621'
'max' => '$0.061664'
'avg' => '$0.044643'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0042592553393655
'max_diff' => -0.0058843919484679
'year' => 2031
]
6 => [
'items' => [
101 => 0.059695324468694
102 => 0.059596728286077
103 => 0.058252362340024
104 => 0.058800201400092
105 => 0.057776042535904
106 => 0.058100813861743
107 => 0.058243969967638
108 => 0.058169193341956
109 => 0.058831175398577
110 => 0.05826835541645
111 => 0.056782980947445
112 => 0.055297201789159
113 => 0.055278549042116
114 => 0.054887369615919
115 => 0.054604618538865
116 => 0.054659086427439
117 => 0.054851038371132
118 => 0.054593461942948
119 => 0.054648428933358
120 => 0.055561247217296
121 => 0.055744306414218
122 => 0.055122199737233
123 => 0.052624351659571
124 => 0.052011373475935
125 => 0.052451970038447
126 => 0.052241393259619
127 => 0.042162881634084
128 => 0.044530678443827
129 => 0.04312381398226
130 => 0.043772161852872
131 => 0.042336117543397
201 => 0.043021473157409
202 => 0.042894913000681
203 => 0.046702260202547
204 => 0.046642813712825
205 => 0.046671267601617
206 => 0.04531308935337
207 => 0.047476704181385
208 => 0.048542578646738
209 => 0.048345313650532
210 => 0.04839496100017
211 => 0.047541855043855
212 => 0.046679527532071
213 => 0.04572307361025
214 => 0.047500046775716
215 => 0.04730247769366
216 => 0.047755630084785
217 => 0.048908124203255
218 => 0.049077833340099
219 => 0.049305924141038
220 => 0.04922416982551
221 => 0.05117188930097
222 => 0.050936007621025
223 => 0.051504414601902
224 => 0.050335158317097
225 => 0.049012033844015
226 => 0.04926351655015
227 => 0.049239296743253
228 => 0.048930950803254
229 => 0.048652589875701
301 => 0.048189197359031
302 => 0.049655439850964
303 => 0.049595913083465
304 => 0.05055958225698
305 => 0.050389244369978
306 => 0.049251686271829
307 => 0.049292314381848
308 => 0.04956555794693
309 => 0.05051125704552
310 => 0.050792004926086
311 => 0.05066195132194
312 => 0.050969778556353
313 => 0.051213072651305
314 => 0.051000332548857
315 => 0.054012283770355
316 => 0.052761511630683
317 => 0.053371129268742
318 => 0.053516519483344
319 => 0.053144105505869
320 => 0.053224868762438
321 => 0.053347203089471
322 => 0.054089993167698
323 => 0.056039289261005
324 => 0.056902619231424
325 => 0.059499990043379
326 => 0.056830931695514
327 => 0.056672560818813
328 => 0.05714042573513
329 => 0.058665357361371
330 => 0.059901171214894
331 => 0.060311161965919
401 => 0.060365349011877
402 => 0.06113451891647
403 => 0.061575392761614
404 => 0.061041121458876
405 => 0.060588382470343
406 => 0.058966727609449
407 => 0.059154438575217
408 => 0.06044758098535
409 => 0.062274220805372
410 => 0.063841667800433
411 => 0.063292802493806
412 => 0.06748025734485
413 => 0.067895426389112
414 => 0.067838063451217
415 => 0.068783880319484
416 => 0.066906626448231
417 => 0.066104064048189
418 => 0.060686269778469
419 => 0.062208448979304
420 => 0.064421025842168
421 => 0.06412818299763
422 => 0.06252135053747
423 => 0.063840448873923
424 => 0.063404313711873
425 => 0.063060315814299
426 => 0.064636236870358
427 => 0.062903446933953
428 => 0.064403739937037
429 => 0.062479598642038
430 => 0.063295309664293
501 => 0.062832272636558
502 => 0.063131914341186
503 => 0.061380215058615
504 => 0.062325389471394
505 => 0.061340892695598
506 => 0.061340425915941
507 => 0.06131869309505
508 => 0.062476949185847
509 => 0.062514719875385
510 => 0.061658766874258
511 => 0.061535410674297
512 => 0.061991523199155
513 => 0.061457534888606
514 => 0.061707384658229
515 => 0.061465102583602
516 => 0.061410559785362
517 => 0.060975953489293
518 => 0.060788713147198
519 => 0.060862134909923
520 => 0.06061150858223
521 => 0.060460497154245
522 => 0.061288653121121
523 => 0.060846202795735
524 => 0.061220841263125
525 => 0.060793893446391
526 => 0.059313906301281
527 => 0.058462750043549
528 => 0.055667191521318
529 => 0.056460008450343
530 => 0.056985646894515
531 => 0.056811923391852
601 => 0.057185148697644
602 => 0.057208061700209
603 => 0.057086722348714
604 => 0.056946226924217
605 => 0.056877841521457
606 => 0.057387530286526
607 => 0.057683421769984
608 => 0.057038401744523
609 => 0.056887282577347
610 => 0.05753943343562
611 => 0.057937245082431
612 => 0.060874462771431
613 => 0.060656864197942
614 => 0.061202993915836
615 => 0.061141508090645
616 => 0.061713939040285
617 => 0.062649621715578
618 => 0.060747117215717
619 => 0.061077326213237
620 => 0.060996366592685
621 => 0.061880262501124
622 => 0.06188302192767
623 => 0.061353082176685
624 => 0.061640371112985
625 => 0.061480014310102
626 => 0.061769800726433
627 => 0.060653958036329
628 => 0.0620129339851
629 => 0.062783385777578
630 => 0.062794083501464
701 => 0.063159271536415
702 => 0.063530323730189
703 => 0.064242526104305
704 => 0.063510460792524
705 => 0.062193546561752
706 => 0.062288623515606
707 => 0.061516517183945
708 => 0.061529496430873
709 => 0.061460212193571
710 => 0.061668139405187
711 => 0.060699586366517
712 => 0.060926903828777
713 => 0.060608658050444
714 => 0.061076634409067
715 => 0.060573169206452
716 => 0.060996327551504
717 => 0.061178948665307
718 => 0.061852824506792
719 => 0.060473637196753
720 => 0.057661380908811
721 => 0.058252551275848
722 => 0.05737816386757
723 => 0.057459091751234
724 => 0.057622578955812
725 => 0.05709266343609
726 => 0.057193754617695
727 => 0.057190142929321
728 => 0.0571590193501
729 => 0.057021167857112
730 => 0.056821255919192
731 => 0.057617643550214
801 => 0.057752965327356
802 => 0.058053768875121
803 => 0.058948756196275
804 => 0.058859325857637
805 => 0.059005190450384
806 => 0.058686768863412
807 => 0.057473862415398
808 => 0.057539729070994
809 => 0.056718370820269
810 => 0.058032764897985
811 => 0.057721499031228
812 => 0.057520823902025
813 => 0.05746606783378
814 => 0.058363273655393
815 => 0.058631731699198
816 => 0.058464446661848
817 => 0.058121340169759
818 => 0.058780206064898
819 => 0.058956490783117
820 => 0.058995954430396
821 => 0.060163338471578
822 => 0.059061198230279
823 => 0.059326494340691
824 => 0.061396258862016
825 => 0.059519268049155
826 => 0.060513551944617
827 => 0.060464886921938
828 => 0.060973528918124
829 => 0.060423163432103
830 => 0.06042998587191
831 => 0.06088162550613
901 => 0.060247379093505
902 => 0.060090330762312
903 => 0.05987336961757
904 => 0.060347096339749
905 => 0.060631074084879
906 => 0.062919726151954
907 => 0.064398299762499
908 => 0.064334110982605
909 => 0.064920676274477
910 => 0.064656423238166
911 => 0.06380308047749
912 => 0.065259632515901
913 => 0.064798718506222
914 => 0.06483671569717
915 => 0.064835301439825
916 => 0.065141768962459
917 => 0.064924608635337
918 => 0.064496563339528
919 => 0.064780719782923
920 => 0.06562456283202
921 => 0.068243877548683
922 => 0.069709680765432
923 => 0.068155634354518
924 => 0.069227594759255
925 => 0.068584800494959
926 => 0.068467985655664
927 => 0.069141256007091
928 => 0.069815704829142
929 => 0.069772745354899
930 => 0.069283130143421
1001 => 0.069006558933983
1002 => 0.071100848790001
1003 => 0.072643885880619
1004 => 0.072538661095691
1005 => 0.073003089075431
1006 => 0.074366663988164
1007 => 0.074491332189307
1008 => 0.074475626861429
1009 => 0.074166623717114
1010 => 0.075509240301278
1011 => 0.076629274676878
1012 => 0.074095098417164
1013 => 0.07506007956206
1014 => 0.075493290687755
1015 => 0.076129373148223
1016 => 0.077202550878832
1017 => 0.078368306540608
1018 => 0.078533157173044
1019 => 0.078416187760502
1020 => 0.077647340564366
1021 => 0.078922924319839
1022 => 0.079670131367675
1023 => 0.080115076065132
1024 => 0.081243381786145
1025 => 0.075495966052184
1026 => 0.07142765953059
1027 => 0.070792334720185
1028 => 0.072084292705058
1029 => 0.072424971722498
1030 => 0.072287644437743
1031 => 0.067708395573442
1101 => 0.070768225922612
1102 => 0.074060346100475
1103 => 0.074186809844088
1104 => 0.075834914040114
1105 => 0.076371604324413
1106 => 0.077698544224168
1107 => 0.077615543772152
1108 => 0.077938632521517
1109 => 0.077864360013155
1110 => 0.08032223675729
1111 => 0.0830336398043
1112 => 0.082939752538515
1113 => 0.082549956270643
1114 => 0.083128870198574
1115 => 0.085927328714697
1116 => 0.085669691498916
1117 => 0.085919964108561
1118 => 0.089219504413281
1119 => 0.093509376163551
1120 => 0.091516300039469
1121 => 0.095840701736523
1122 => 0.098562683378134
1123 => 0.10327006916915
1124 => 0.10268068128375
1125 => 0.1045132320278
1126 => 0.10162555395992
1127 => 0.094994861420054
1128 => 0.093945528944349
1129 => 0.096046319134041
1130 => 0.10121090682329
1201 => 0.095883667888499
1202 => 0.096961361386797
1203 => 0.096650985586787
1204 => 0.096634446979417
1205 => 0.097265658355364
1206 => 0.096350053332781
1207 => 0.092619713756581
1208 => 0.094329306401324
1209 => 0.093669150579807
1210 => 0.094401642681657
1211 => 0.09835460045262
1212 => 0.096606903595334
1213 => 0.094765846927546
1214 => 0.097074940552132
1215 => 0.10001521022689
1216 => 0.099831213434813
1217 => 0.099474182753497
1218 => 0.10148674601055
1219 => 0.1048109108855
1220 => 0.10570941929362
1221 => 0.10637267983131
1222 => 0.10646413225357
1223 => 0.10740614904029
1224 => 0.10234068735931
1225 => 0.11037970513731
1226 => 0.11176782143419
1227 => 0.1115069131019
1228 => 0.11304974594502
1229 => 0.11259580538468
1230 => 0.11193811673385
1231 => 0.11438383496014
]
'min_raw' => 0.042162881634084
'max_raw' => 0.11438383496014
'avg_raw' => 0.078273358297113
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.042162'
'max' => '$0.114383'
'avg' => '$0.078273'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.014540888223022
'max_diff' => 0.052719680505053
'year' => 2032
]
7 => [
'items' => [
101 => 0.11158001637298
102 => 0.10760034887944
103 => 0.10541702458359
104 => 0.10829220214012
105 => 0.11004797274402
106 => 0.11120842542521
107 => 0.11155957770538
108 => 0.10273390473008
109 => 0.097977356490661
110 => 0.10102624937819
111 => 0.10474610912433
112 => 0.1023200233506
113 => 0.10241512131974
114 => 0.098956160570522
115 => 0.10505215039904
116 => 0.10416401595637
117 => 0.10877165901603
118 => 0.1076720080212
119 => 0.11142936206867
120 => 0.11043992482533
121 => 0.11454702350377
122 => 0.11618545636186
123 => 0.1189366401323
124 => 0.12096042211317
125 => 0.12214882560112
126 => 0.12207747831329
127 => 0.12678652499281
128 => 0.12400976468746
129 => 0.12052149931178
130 => 0.12045840759647
131 => 0.12226502966364
201 => 0.12605121389386
202 => 0.12703291637801
203 => 0.12758155414034
204 => 0.12674129630912
205 => 0.12372732200987
206 => 0.12242590318864
207 => 0.12353474973006
208 => 0.12217872569418
209 => 0.12451960361325
210 => 0.12773412898068
211 => 0.12707034220392
212 => 0.12928928187816
213 => 0.13158565100175
214 => 0.13486956198486
215 => 0.13572809791872
216 => 0.13714722517019
217 => 0.13860797327097
218 => 0.13907712619267
219 => 0.13997288468981
220 => 0.13996816360037
221 => 0.14266759212299
222 => 0.14564514537779
223 => 0.14676910280096
224 => 0.14935358092016
225 => 0.14492775271194
226 => 0.14828479424813
227 => 0.15131292974597
228 => 0.14770266177007
301 => 0.15267857509029
302 => 0.15287177852885
303 => 0.15578892106946
304 => 0.15283183824767
305 => 0.15107593190743
306 => 0.15614516771874
307 => 0.1585980112484
308 => 0.15785919481536
309 => 0.15223676528009
310 => 0.14896427013321
311 => 0.14039951911667
312 => 0.15054483666548
313 => 0.15548632490053
314 => 0.15222396801934
315 => 0.15386931107024
316 => 0.16284576925171
317 => 0.16626342334459
318 => 0.16555257518448
319 => 0.16567269682198
320 => 0.16751680093569
321 => 0.17569457414255
322 => 0.1707942628777
323 => 0.17454036722852
324 => 0.17652728746861
325 => 0.17837284971987
326 => 0.17384073212671
327 => 0.16794451372803
328 => 0.16607693385476
329 => 0.15189959092153
330 => 0.15116159865277
331 => 0.15074734122887
401 => 0.14813550676902
402 => 0.14608332032524
403 => 0.14445134547235
404 => 0.14016855610943
405 => 0.14161387179682
406 => 0.13478799943993
407 => 0.1391549506798
408 => 0.12826069358176
409 => 0.13733375461761
410 => 0.13239569999726
411 => 0.13571147086627
412 => 0.13569990245407
413 => 0.12959451701811
414 => 0.12607305811479
415 => 0.12831706878522
416 => 0.1307228263537
417 => 0.13111315242525
418 => 0.13423227990949
419 => 0.13510276134492
420 => 0.13246516195667
421 => 0.1280349343182
422 => 0.12906397515588
423 => 0.12605220463506
424 => 0.1207741926434
425 => 0.12456495300106
426 => 0.12585928525513
427 => 0.12643093611501
428 => 0.12124061750498
429 => 0.11960970671041
430 => 0.11874142348805
501 => 0.12736492936287
502 => 0.12783734448116
503 => 0.12542040194324
504 => 0.13634521139854
505 => 0.13387259055352
506 => 0.13663511384422
507 => 0.12897060048576
508 => 0.12926339521769
509 => 0.12563489176452
510 => 0.1276666112416
511 => 0.12623065740057
512 => 0.1275024683857
513 => 0.12826478664631
514 => 0.13189269469777
515 => 0.13737517949996
516 => 0.13135080621495
517 => 0.12872590050405
518 => 0.13035437724406
519 => 0.13469122540086
520 => 0.14126177235759
521 => 0.13737187631463
522 => 0.13909814612378
523 => 0.13947525928068
524 => 0.13660699395037
525 => 0.14136752939157
526 => 0.14391873900903
527 => 0.14653575217809
528 => 0.14880803138575
529 => 0.14549045956901
530 => 0.14904073696816
531 => 0.14617984009277
601 => 0.14361331984147
602 => 0.14361721219328
603 => 0.14200719654876
604 => 0.13888758836248
605 => 0.13831228474955
606 => 0.14130508679683
607 => 0.14370503061935
608 => 0.14390270148752
609 => 0.14523143370123
610 => 0.14601776373828
611 => 0.15372486706515
612 => 0.15682472777972
613 => 0.16061517878413
614 => 0.16209177306846
615 => 0.16653579247596
616 => 0.1629468858788
617 => 0.16217040336122
618 => 0.15139066590631
619 => 0.15315584731066
620 => 0.1559820730537
621 => 0.15143726932785
622 => 0.15431990122228
623 => 0.15488899382074
624 => 0.15128283863634
625 => 0.15320904193309
626 => 0.14809361705639
627 => 0.13748668178343
628 => 0.14137933794268
629 => 0.14424564312978
630 => 0.14015507221491
701 => 0.14748726225286
702 => 0.14320394819981
703 => 0.14184634328033
704 => 0.13654984246833
705 => 0.13904958697058
706 => 0.14243052720277
707 => 0.14034149921577
708 => 0.14467654595793
709 => 0.15081612825957
710 => 0.15519156022617
711 => 0.15552745156261
712 => 0.15271434193926
713 => 0.1572223680637
714 => 0.15725520411249
715 => 0.1521701322283
716 => 0.14905555401303
717 => 0.14834791528939
718 => 0.15011573556178
719 => 0.15226219573009
720 => 0.15564656516335
721 => 0.15769166873118
722 => 0.16302421419697
723 => 0.16446704810395
724 => 0.16605228512782
725 => 0.1681706506607
726 => 0.17071429162069
727 => 0.16514895000978
728 => 0.16537007140708
729 => 0.1601877023564
730 => 0.15464959779885
731 => 0.15885232882355
801 => 0.16434684057247
802 => 0.16308639350637
803 => 0.16294456746284
804 => 0.1631830795288
805 => 0.16223274360331
806 => 0.15793440943344
807 => 0.15577581292232
808 => 0.15856095313837
809 => 0.16004113121086
810 => 0.16233675831621
811 => 0.16205377382067
812 => 0.16796706271169
813 => 0.17026478796617
814 => 0.16967693152087
815 => 0.16978511125436
816 => 0.17394503307393
817 => 0.17857172169046
818 => 0.18290522612518
819 => 0.18731345296452
820 => 0.18199916345367
821 => 0.17930089497987
822 => 0.18208481929082
823 => 0.18060762986486
824 => 0.18909599846928
825 => 0.1896837146945
826 => 0.19817146949326
827 => 0.20622735950032
828 => 0.20116759932315
829 => 0.20593872527362
830 => 0.21109908698466
831 => 0.22105426196377
901 => 0.21770170925808
902 => 0.21513370642673
903 => 0.21270695615959
904 => 0.21775663822974
905 => 0.22425297354235
906 => 0.22565222194755
907 => 0.22791953891802
908 => 0.2255357323579
909 => 0.22840676479189
910 => 0.23854277087943
911 => 0.23580393256158
912 => 0.23191434185999
913 => 0.23991574519374
914 => 0.24281142195555
915 => 0.26313479794765
916 => 0.28879389965446
917 => 0.2781708630611
918 => 0.27157680144435
919 => 0.27312656233751
920 => 0.28249639766544
921 => 0.28550569138906
922 => 0.2773253936825
923 => 0.28021481312558
924 => 0.29613579833841
925 => 0.30467689609873
926 => 0.29307693811774
927 => 0.26107311410922
928 => 0.23156412677425
929 => 0.2393912390225
930 => 0.23850388739712
1001 => 0.25560899982494
1002 => 0.23573861217349
1003 => 0.23607317854109
1004 => 0.25353200657929
1005 => 0.24887429057879
1006 => 0.24132938717316
1007 => 0.2316192129188
1008 => 0.2136690577272
1009 => 0.1977701046969
1010 => 0.22895161289954
1011 => 0.22760700956595
1012 => 0.22565982467986
1013 => 0.22999307393644
1014 => 0.25103410231214
1015 => 0.25054903850492
1016 => 0.2474633100451
1017 => 0.24980380788551
1018 => 0.2409190865856
1019 => 0.24320888156593
1020 => 0.23155945239989
1021 => 0.23682548090608
1022 => 0.24131319919904
1023 => 0.24221417508816
1024 => 0.24424411977131
1025 => 0.22689846470839
1026 => 0.23468615458997
1027 => 0.23926069278753
1028 => 0.21859276278781
1029 => 0.2388521542639
1030 => 0.22659651544434
1031 => 0.22243676755547
1101 => 0.22803732008273
1102 => 0.22585477931614
1103 => 0.22397835892812
1104 => 0.22293128411061
1105 => 0.2270437117762
1106 => 0.22685186211019
1107 => 0.22012313226147
1108 => 0.21134577847193
1109 => 0.21429174651052
1110 => 0.2132214487035
1111 => 0.20934255137971
1112 => 0.2119564598361
1113 => 0.20044612986297
1114 => 0.18064320539909
1115 => 0.19372562387991
1116 => 0.19322196499933
1117 => 0.19296799735263
1118 => 0.20279907326948
1119 => 0.20185404216158
1120 => 0.20013880144698
1121 => 0.20931104963888
1122 => 0.20596305566469
1123 => 0.21628078420655
1124 => 0.22307670753306
1125 => 0.22135304155237
1126 => 0.2277446402885
1127 => 0.21435961566411
1128 => 0.21880558393035
1129 => 0.21972189182818
1130 => 0.20919786551996
1201 => 0.20200866093823
1202 => 0.20152922295556
1203 => 0.18906413294426
1204 => 0.19572288341361
1205 => 0.20158230826881
1206 => 0.19877609847291
1207 => 0.19788773628466
1208 => 0.20242618604218
1209 => 0.20277886245753
1210 => 0.19473780281251
1211 => 0.19640979373995
1212 => 0.20338227385275
1213 => 0.19623410513065
1214 => 0.18234638095034
1215 => 0.17890203334081
1216 => 0.17844249387778
1217 => 0.16910114998609
1218 => 0.17913220111787
1219 => 0.17475337848339
1220 => 0.18858602671936
1221 => 0.18068489223296
1222 => 0.18034429011705
1223 => 0.17982942006338
1224 => 0.17178893948975
1225 => 0.17354929373617
1226 => 0.17940097936082
1227 => 0.18148892671565
1228 => 0.18127113670049
1229 => 0.17937230290888
1230 => 0.18024157929508
1231 => 0.17744133717917
]
'min_raw' => 0.097977356490661
'max_raw' => 0.30467689609873
'avg_raw' => 0.20132712629469
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.097977'
'max' => '$0.304676'
'avg' => '$0.201327'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.055814474856577
'max_diff' => 0.19029306113858
'year' => 2033
]
8 => [
'items' => [
101 => 0.17645251340604
102 => 0.17333151358065
103 => 0.16874450603552
104 => 0.16938235756842
105 => 0.16029429536571
106 => 0.15534263673771
107 => 0.15397208289129
108 => 0.15213932100847
109 => 0.15417909822275
110 => 0.16026855002735
111 => 0.15292337920173
112 => 0.14033059902504
113 => 0.14108744657071
114 => 0.14278785829579
115 => 0.13961915229546
116 => 0.13662023799549
117 => 0.13922755066971
118 => 0.13389182370115
119 => 0.1434326554082
120 => 0.14317460264839
121 => 0.1467308347077
122 => 0.14895461959562
123 => 0.14382951538788
124 => 0.14254056553939
125 => 0.1432748099526
126 => 0.13113938535197
127 => 0.14573911161634
128 => 0.14586537065534
129 => 0.14478426410933
130 => 0.15255816762913
131 => 0.16896352879722
201 => 0.16279117202166
202 => 0.1604010489177
203 => 0.15585742314988
204 => 0.16191153471169
205 => 0.1614466734026
206 => 0.15934439426946
207 => 0.15807292929022
208 => 0.1604156424997
209 => 0.15778264119791
210 => 0.15730968181407
211 => 0.15444406253288
212 => 0.15342116682687
213 => 0.15266385556879
214 => 0.15183013028551
215 => 0.15366912050903
216 => 0.14950172672322
217 => 0.14447625835219
218 => 0.14405844503346
219 => 0.145212064341
220 => 0.14470167367427
221 => 0.14405600147931
222 => 0.14282323742078
223 => 0.14245750265845
224 => 0.14364596320674
225 => 0.14230426053927
226 => 0.14428401591145
227 => 0.14374563199508
228 => 0.14073826320325
301 => 0.1369899682181
302 => 0.13695660053042
303 => 0.13614903652431
304 => 0.13512048234446
305 => 0.13483436210176
306 => 0.13900797006867
307 => 0.1476472136546
308 => 0.14595112341911
309 => 0.14717672243657
310 => 0.15320545658257
311 => 0.15512180987722
312 => 0.15376162769999
313 => 0.15189972644342
314 => 0.1519816406494
315 => 0.15834432087895
316 => 0.15874115344025
317 => 0.1597438212996
318 => 0.16103253285278
319 => 0.15398110085005
320 => 0.1516495188362
321 => 0.15054468592679
322 => 0.14714222818996
323 => 0.15081148715445
324 => 0.14867356708918
325 => 0.14896204554773
326 => 0.14877417357315
327 => 0.14887676437512
328 => 0.14342998855129
329 => 0.14541450738739
330 => 0.14211485991862
331 => 0.13769700236076
401 => 0.13768219215312
402 => 0.13876345653164
403 => 0.13812027816942
404 => 0.13638950173431
405 => 0.13663535035789
406 => 0.13448145772132
407 => 0.13689687192145
408 => 0.13696613735794
409 => 0.13603607132239
410 => 0.13975735016063
411 => 0.14128196113692
412 => 0.14066977174838
413 => 0.14123900829745
414 => 0.14602160362578
415 => 0.14680137534356
416 => 0.14714769843177
417 => 0.14668367137259
418 => 0.14132642536052
419 => 0.14156404200192
420 => 0.13982056874842
421 => 0.13834751757189
422 => 0.13840643189382
423 => 0.1391637716818
424 => 0.14247111895332
425 => 0.14943123630745
426 => 0.14969536767326
427 => 0.15001550259388
428 => 0.14871335298481
429 => 0.14832061220282
430 => 0.14883873866926
501 => 0.15145259280189
502 => 0.15817613528549
503 => 0.15579958632148
504 => 0.15386741502055
505 => 0.15556245016111
506 => 0.15530151278734
507 => 0.15309893875469
508 => 0.15303711983749
509 => 0.14880967606331
510 => 0.14724688635423
511 => 0.14594090230054
512 => 0.14451480180749
513 => 0.14366936163189
514 => 0.1449683419873
515 => 0.14526543416367
516 => 0.14242519091427
517 => 0.14203807625443
518 => 0.1443574802028
519 => 0.14333679700122
520 => 0.14438659498577
521 => 0.14463015712319
522 => 0.14459093800935
523 => 0.14352522752218
524 => 0.14420447960676
525 => 0.14259784593194
526 => 0.14085087311915
527 => 0.13973641330484
528 => 0.13876389930521
529 => 0.13930350659505
530 => 0.13737990513517
531 => 0.13676450631371
601 => 0.14397436428416
602 => 0.14930036388597
603 => 0.14922292174243
604 => 0.14875151261015
605 => 0.14805109426143
606 => 0.15140135283705
607 => 0.15023418973983
608 => 0.1510833984128
609 => 0.15129955766124
610 => 0.15195380660328
611 => 0.15218764436546
612 => 0.15148082423738
613 => 0.14910864955672
614 => 0.14319741579212
615 => 0.14044572051762
616 => 0.13953761524393
617 => 0.13957062314589
618 => 0.13866011785604
619 => 0.13892830246988
620 => 0.13856685419188
621 => 0.13788235859707
622 => 0.13926124092093
623 => 0.13942014426357
624 => 0.13909829665277
625 => 0.13917410341617
626 => 0.13650934266162
627 => 0.13671193863423
628 => 0.13558385851407
629 => 0.13537235709075
630 => 0.13252066878017
701 => 0.12746848957914
702 => 0.13026788728341
703 => 0.12688660851154
704 => 0.1256060670059
705 => 0.13166795132855
706 => 0.13105950627305
707 => 0.13001811282275
708 => 0.12847767486435
709 => 0.12790631144116
710 => 0.12443488815353
711 => 0.12422977794638
712 => 0.12595030906404
713 => 0.1251563431531
714 => 0.12404131431574
715 => 0.12000279289547
716 => 0.1154621577106
717 => 0.11559921094542
718 => 0.1170435025162
719 => 0.12124297504752
720 => 0.11960216847792
721 => 0.11841174448559
722 => 0.11818881385584
723 => 0.12097925742404
724 => 0.12492831968905
725 => 0.1267811313485
726 => 0.12494505126471
727 => 0.12283586132602
728 => 0.12296423794455
729 => 0.12381827007384
730 => 0.12390801677526
731 => 0.12253515095341
801 => 0.12292160464065
802 => 0.12233454615166
803 => 0.11873176928835
804 => 0.11866660647942
805 => 0.11778242693454
806 => 0.11775565432932
807 => 0.11625144435455
808 => 0.11604099498097
809 => 0.11305429477705
810 => 0.11502014989583
811 => 0.11370155749418
812 => 0.11171412772039
813 => 0.11137149407828
814 => 0.11136119409726
815 => 0.11340184009377
816 => 0.11499630375924
817 => 0.11372449497355
818 => 0.11343492876602
819 => 0.11652673829542
820 => 0.11613327735033
821 => 0.11579254270944
822 => 0.12457472447691
823 => 0.11762294232577
824 => 0.11459156851402
825 => 0.1108396677797
826 => 0.11206130557752
827 => 0.11231872261111
828 => 0.10329607767602
829 => 0.099635591749554
830 => 0.098379450922092
831 => 0.097656524116664
901 => 0.097985970939841
902 => 0.094691104273845
903 => 0.096905309165459
904 => 0.094052233140852
905 => 0.093573905660615
906 => 0.098675559020909
907 => 0.099385424282568
908 => 0.096356918538483
909 => 0.098301709496729
910 => 0.097596501260652
911 => 0.094101140940469
912 => 0.093967643886369
913 => 0.092213794945557
914 => 0.089469360965262
915 => 0.088215080993272
916 => 0.087561841093702
917 => 0.087831380607656
918 => 0.087695093181356
919 => 0.086805725536377
920 => 0.087746070693709
921 => 0.08534387739417
922 => 0.084387304666507
923 => 0.08395524295774
924 => 0.081823158139311
925 => 0.085216253227854
926 => 0.085884735705382
927 => 0.086554535299896
928 => 0.092384683478534
929 => 0.092093425751357
930 => 0.094726253756772
1001 => 0.094623946901941
1002 => 0.093873021705811
1003 => 0.090704991824537
1004 => 0.09196771207051
1005 => 0.088081255423701
1006 => 0.090993252996854
1007 => 0.089664338912393
1008 => 0.090543945808131
1009 => 0.088962333298638
1010 => 0.089837662964571
1011 => 0.086043257699869
1012 => 0.082500095452413
1013 => 0.083925967372143
1014 => 0.085476053217123
1015 => 0.088837034283567
1016 => 0.086835261687885
1017 => 0.087555174808694
1018 => 0.085143586365983
1019 => 0.080167790572487
1020 => 0.080195953036308
1021 => 0.079430535257083
1022 => 0.078769102543006
1023 => 0.087065189350633
1024 => 0.08603343981438
1025 => 0.084389481960402
1026 => 0.08658998487624
1027 => 0.087171832773864
1028 => 0.087188397165528
1029 => 0.088793827289722
1030 => 0.089650645634794
1031 => 0.089801663581776
1101 => 0.09232784256981
1102 => 0.093174584445492
1103 => 0.096662194396031
1104 => 0.089577950584471
1105 => 0.089432055245088
1106 => 0.086620950464933
1107 => 0.084838103371551
1108 => 0.08674302353071
1109 => 0.088430522744191
1110 => 0.086673385769382
1111 => 0.086902830763106
1112 => 0.084544017937791
1113 => 0.085387182530382
1114 => 0.086113429464057
1115 => 0.085712438594103
1116 => 0.085112135853604
1117 => 0.088292167052673
1118 => 0.088112737229779
1119 => 0.091074055390953
1120 => 0.093382614663481
1121 => 0.097519965584184
1122 => 0.093202424213449
1123 => 0.093045075845227
1124 => 0.094583181384071
1125 => 0.093174348969548
1126 => 0.094064682424284
1127 => 0.097376519100124
1128 => 0.097446492990361
1129 => 0.096274340172632
1130 => 0.096203014567148
1201 => 0.09642813933774
1202 => 0.097746702150738
1203 => 0.097285955788534
1204 => 0.097819143143548
1205 => 0.098485902095447
1206 => 0.10124389982044
1207 => 0.10190884373478
1208 => 0.10029337475683
1209 => 0.1004392335179
1210 => 0.099835003774528
1211 => 0.099251325413411
1212 => 0.10056334912982
1213 => 0.10296109825946
1214 => 0.10294618198657
1215 => 0.10350241317906
1216 => 0.10384894060391
1217 => 0.10236139122286
1218 => 0.1013930512745
1219 => 0.10176437442777
1220 => 0.10235812823622
1221 => 0.1015718280701
1222 => 0.096718419195165
1223 => 0.098190633410863
1224 => 0.097945584977773
1225 => 0.097596606210147
1226 => 0.099076928988326
1227 => 0.098934148245099
1228 => 0.094657310653862
1229 => 0.094931099920288
1230 => 0.094673960685972
1231 => 0.095504830157784
]
'min_raw' => 0.078769102543006
'max_raw' => 0.17645251340604
'avg_raw' => 0.12761080797452
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.078769'
'max' => '$0.176452'
'avg' => '$0.12761'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.019208253947654
'max_diff' => -0.12822438269268
'year' => 2034
]
9 => [
'items' => [
101 => 0.093129479291389
102 => 0.09386012121966
103 => 0.094318372987728
104 => 0.094588286799577
105 => 0.095563400569607
106 => 0.095448982223415
107 => 0.095556288164557
108 => 0.097002124465021
109 => 0.10431466832166
110 => 0.10471267394956
111 => 0.10275274867407
112 => 0.10353570016381
113 => 0.10203260451618
114 => 0.1030416426943
115 => 0.10373200098898
116 => 0.10061240460358
117 => 0.10042768235165
118 => 0.098918382893596
119 => 0.099729394931264
120 => 0.098439016465505
121 => 0.09875563020548
122 => 0.097870350586621
123 => 0.099463677643153
124 => 0.10124526487035
125 => 0.10169536416095
126 => 0.10051134670731
127 => 0.099654040040316
128 => 0.098148891947453
129 => 0.1006519867703
130 => 0.10138396797693
131 => 0.10064814198463
201 => 0.1004776350241
202 => 0.100154524642
203 => 0.10054618441911
204 => 0.10137998145008
205 => 0.10098677816809
206 => 0.10124649586319
207 => 0.10025671982917
208 => 0.1023618836636
209 => 0.10570539046794
210 => 0.10571614038903
211 => 0.10532293498753
212 => 0.10516204380896
213 => 0.10556549641261
214 => 0.10578435289959
215 => 0.10708904463921
216 => 0.10848903085704
217 => 0.11502215567381
218 => 0.11318768036798
219 => 0.11898425736275
220 => 0.1235685971743
221 => 0.12494324023489
222 => 0.1236786333011
223 => 0.11935248129331
224 => 0.11914021963681
225 => 0.12560531719071
226 => 0.12377863101151
227 => 0.12356135250296
228 => 0.12124987626983
301 => 0.12261624500551
302 => 0.1223174001196
303 => 0.12184565884719
304 => 0.1244525952128
305 => 0.1293325473664
306 => 0.12857196105936
307 => 0.12800421866374
308 => 0.12551653675345
309 => 0.12701467690731
310 => 0.1264812178935
311 => 0.12877329635827
312 => 0.1274155198515
313 => 0.1237647920671
314 => 0.12434618249973
315 => 0.12425830650543
316 => 0.12606678824107
317 => 0.12552392691331
318 => 0.12415230411857
319 => 0.12931586822046
320 => 0.12898057508893
321 => 0.12945594409075
322 => 0.12966521622663
323 => 0.13280818670324
324 => 0.13409576114367
325 => 0.13438806308381
326 => 0.13561115921764
327 => 0.13435763133779
328 => 0.13937263660743
329 => 0.14270732247807
330 => 0.14658073171819
331 => 0.15224082369225
401 => 0.15436907063328
402 => 0.15398462187258
403 => 0.15827603900958
404 => 0.16598762021192
405 => 0.15554335291612
406 => 0.16654119173926
407 => 0.16305940294401
408 => 0.15480414434518
409 => 0.15427260301452
410 => 0.15986315998317
411 => 0.17226247726848
412 => 0.1691565889204
413 => 0.17226755738916
414 => 0.16863844742153
415 => 0.1684582315231
416 => 0.17209129961836
417 => 0.18058016125117
418 => 0.17654742128964
419 => 0.17076549968639
420 => 0.17503478062157
421 => 0.17133633437222
422 => 0.1630026998425
423 => 0.16915421390612
424 => 0.16504087163681
425 => 0.1662413635883
426 => 0.17488699722489
427 => 0.17384673171223
428 => 0.17519293161161
429 => 0.17281692402539
430 => 0.17059735827785
501 => 0.16645437398296
502 => 0.1652278405799
503 => 0.16556681028645
504 => 0.16522767260335
505 => 0.16290971096634
506 => 0.16240914737153
507 => 0.16157485278331
508 => 0.16183343556195
509 => 0.16026471765461
510 => 0.16322521245943
511 => 0.16377470638299
512 => 0.16592910761716
513 => 0.16615278470024
514 => 0.17215276147141
515 => 0.16884807509137
516 => 0.171065144028
517 => 0.17086682851444
518 => 0.15498306083115
519 => 0.15717170387424
520 => 0.16057654561526
521 => 0.15904266902608
522 => 0.15687412640083
523 => 0.15512291196104
524 => 0.15246964301389
525 => 0.15620406810549
526 => 0.16111443998911
527 => 0.16627731983456
528 => 0.17248018168358
529 => 0.17109577512815
530 => 0.16616136164691
531 => 0.16638271583109
601 => 0.16775104029801
602 => 0.16597893578796
603 => 0.16545630757236
604 => 0.16767923920669
605 => 0.16769454731515
606 => 0.16565552691035
607 => 0.16338952886722
608 => 0.16338003425268
609 => 0.16297682178785
610 => 0.16871017802329
611 => 0.17186294424508
612 => 0.17222440381147
613 => 0.1718386151363
614 => 0.17198708988597
615 => 0.17015256468797
616 => 0.17434574527905
617 => 0.178193822452
618 => 0.17716245556747
619 => 0.17561628999012
620 => 0.17438469463434
621 => 0.17687233084232
622 => 0.17676156031788
623 => 0.17816021285489
624 => 0.1780967618968
625 => 0.17762644765459
626 => 0.17716247236388
627 => 0.17900208194615
628 => 0.17847230392968
629 => 0.17794170302162
630 => 0.17687750166958
701 => 0.17702214430784
702 => 0.17547624569777
703 => 0.17476104226525
704 => 0.16400609865308
705 => 0.16113202629198
706 => 0.16203626796392
707 => 0.16233396780095
708 => 0.16108316782618
709 => 0.16287649368585
710 => 0.16259700575022
711 => 0.16368432981277
712 => 0.16300501694461
713 => 0.16303289618168
714 => 0.16503061048216
715 => 0.16561055544248
716 => 0.16531559075493
717 => 0.16552217391129
718 => 0.1702827955563
719 => 0.16960598739449
720 => 0.16924644654782
721 => 0.16934604181949
722 => 0.17056248271867
723 => 0.17090301975523
724 => 0.16946014040221
725 => 0.17014061064628
726 => 0.17303796658099
727 => 0.17405187718199
728 => 0.1772877931157
729 => 0.17591311851324
730 => 0.17843639324058
731 => 0.18619207950466
801 => 0.19238785834508
802 => 0.18668996407204
803 => 0.1980677228848
804 => 0.20692694016309
805 => 0.20658690864815
806 => 0.20504209919829
807 => 0.19495611586143
808 => 0.18567484362131
809 => 0.19343902195381
810 => 0.1934588144411
811 => 0.19279186463662
812 => 0.18864949668153
813 => 0.19264771921089
814 => 0.19296508359586
815 => 0.19278744393428
816 => 0.1896115001354
817 => 0.18476242096705
818 => 0.18570991942949
819 => 0.18726194123942
820 => 0.18432364016756
821 => 0.18338467493717
822 => 0.18513038994592
823 => 0.19075544743828
824 => 0.18969206290309
825 => 0.1896642936354
826 => 0.19421390362218
827 => 0.19095736473893
828 => 0.18572187041941
829 => 0.18439983905605
830 => 0.17970751834314
831 => 0.18294852097302
901 => 0.18306515888782
902 => 0.18129009486968
903 => 0.18586590708155
904 => 0.18582374016646
905 => 0.19016779284186
906 => 0.19847199000555
907 => 0.19601603027952
908 => 0.19316001632581
909 => 0.19347054423126
910 => 0.19687626890582
911 => 0.19481709002245
912 => 0.19555758510601
913 => 0.19687514807782
914 => 0.19767006653196
915 => 0.19335616769881
916 => 0.19235039152316
917 => 0.19029292644727
918 => 0.18975617221337
919 => 0.19143193458727
920 => 0.19099043040731
921 => 0.18305535592273
922 => 0.18222609648875
923 => 0.18225152869168
924 => 0.18016631641581
925 => 0.17698586718682
926 => 0.18534389786585
927 => 0.18467263103176
928 => 0.18393160439885
929 => 0.18402237593314
930 => 0.18765031377097
1001 => 0.18554592660978
1002 => 0.19114078478008
1003 => 0.1899906501371
1004 => 0.18881101888038
1005 => 0.18864795790825
1006 => 0.18819390051582
1007 => 0.18663676876987
1008 => 0.18475643861753
1009 => 0.18351488177954
1010 => 0.16928277788168
1011 => 0.17192417358079
1012 => 0.17496285856181
1013 => 0.17601180044049
1014 => 0.17421751277244
1015 => 0.18670761818332
1016 => 0.18898968079954
1017 => 0.18207716427975
1018 => 0.18078411467509
1019 => 0.18679239030013
1020 => 0.18316866561641
1021 => 0.18480042861961
1022 => 0.18127344953334
1023 => 0.18843999874189
1024 => 0.18838540164417
1025 => 0.18559745213819
1026 => 0.18795380796959
1027 => 0.18754433315682
1028 => 0.18439674503098
1029 => 0.18853978289973
1030 => 0.18854183779482
1031 => 0.18585849701056
1101 => 0.18272494243338
1102 => 0.18216473688624
1103 => 0.18174269725949
1104 => 0.18469663274293
1105 => 0.18734512206066
1106 => 0.19227330406478
1107 => 0.19351236611133
1108 => 0.19834850776806
1109 => 0.19546882087894
1110 => 0.1967453487787
1111 => 0.19813120038978
1112 => 0.19879562861514
1113 => 0.1977129784771
1114 => 0.20522549710532
1115 => 0.20585978385516
1116 => 0.20607245471582
1117 => 0.2035392757031
1118 => 0.20578933156433
1119 => 0.20473660494088
1120 => 0.20747550715922
1121 => 0.20790500199911
1122 => 0.20754123514945
1123 => 0.20767756359074
1124 => 0.20126695424066
1125 => 0.2009345303272
1126 => 0.19640190667945
1127 => 0.19824898431937
1128 => 0.19479596120427
1129 => 0.19589095040415
1130 => 0.19637361121002
1201 => 0.19612149659579
1202 => 0.1983534153178
1203 => 0.19645582845322
1204 => 0.19144778472544
1205 => 0.18643837655949
1206 => 0.18637548752054
1207 => 0.18505659877384
1208 => 0.18410328377651
1209 => 0.18428692606566
1210 => 0.18493410544548
1211 => 0.18406566853444
1212 => 0.18425099358028
1213 => 0.18732862415552
1214 => 0.18794582101873
1215 => 0.18584834492317
1216 => 0.17742667573515
1217 => 0.17535997699225
1218 => 0.17684547906423
1219 => 0.17613550475241
1220 => 0.14215509914771
1221 => 0.15013829140605
1222 => 0.14539494964973
1223 => 0.14758089976171
1224 => 0.1427391761109
1225 => 0.14504990041354
1226 => 0.14462319400899
1227 => 0.15745993092057
1228 => 0.15725950293005
1229 => 0.1573554372027
1230 => 0.15277624441376
1231 => 0.16007102286517
]
'min_raw' => 0.093129479291389
'max_raw' => 0.20790500199911
'avg_raw' => 0.15051724064525
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.093129'
'max' => '$0.207905'
'avg' => '$0.150517'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.014360376748382
'max_diff' => 0.031452488593072
'year' => 2035
]
10 => [
'items' => [
101 => 0.16366469304209
102 => 0.16299960033478
103 => 0.16316698984035
104 => 0.16029068354668
105 => 0.15738328613492
106 => 0.15415853496001
107 => 0.16014972405169
108 => 0.1594836060977
109 => 0.16101144102247
110 => 0.16489715540746
111 => 0.16546934161105
112 => 0.1662383656712
113 => 0.1659627252885
114 => 0.17252959748544
115 => 0.17173430593277
116 => 0.17365072975371
117 => 0.16970850055462
118 => 0.16524749401602
119 => 0.16609538551772
120 => 0.16601372674779
121 => 0.16497411688306
122 => 0.16403560358128
123 => 0.16247324335829
124 => 0.16741678228963
125 => 0.16721608363698
126 => 0.17046516153672
127 => 0.16989085545808
128 => 0.1660554989084
129 => 0.16619247941789
130 => 0.16711373917482
131 => 0.17030222971232
201 => 0.17124879079284
202 => 0.17081030598641
203 => 0.17184816699904
204 => 0.17266845002643
205 => 0.17195118191798
206 => 0.18210618574898
207 => 0.17788912015395
208 => 0.17994448858282
209 => 0.18043468184217
210 => 0.179179062116
211 => 0.17945136107423
212 => 0.17986381979893
213 => 0.18236818840762
214 => 0.18894037628171
215 => 0.19185115355275
216 => 0.2006083705879
217 => 0.19160945402037
218 => 0.19107549555247
219 => 0.19265293478312
220 => 0.19779434822831
221 => 0.20196098091724
222 => 0.20334329335896
223 => 0.20352598876762
224 => 0.20611929880269
225 => 0.20760573575242
226 => 0.20580440275361
227 => 0.20427796164454
228 => 0.19881043906071
229 => 0.19944331968736
301 => 0.20380323960744
302 => 0.20996188329257
303 => 0.21524664027207
304 => 0.21339610257022
305 => 0.22751439895928
306 => 0.22891417037819
307 => 0.22872076722812
308 => 0.23190965483431
309 => 0.2255803623417
310 => 0.22287446717684
311 => 0.20460799553816
312 => 0.20974012898893
313 => 0.21719998635926
314 => 0.21621264626327
315 => 0.21079509843838
316 => 0.21524253057624
317 => 0.2137720704274
318 => 0.21261225749856
319 => 0.21792558536636
320 => 0.21208336311624
321 => 0.21714170572325
322 => 0.21065432900791
323 => 0.21340455567057
324 => 0.21184339400334
325 => 0.21285365693081
326 => 0.20694768049989
327 => 0.21013440202254
328 => 0.20681510240758
329 => 0.20681352862737
330 => 0.2067402549044
331 => 0.21064539618138
401 => 0.21077274269822
402 => 0.20788683739419
403 => 0.20747093335357
404 => 0.20900874857589
405 => 0.207208369705
406 => 0.20805075564724
407 => 0.20723388471704
408 => 0.20704998986471
409 => 0.20558468439428
410 => 0.2049533905082
411 => 0.20520093710737
412 => 0.20435593294538
413 => 0.20384678737265
414 => 0.20663897303497
415 => 0.20514722087204
416 => 0.20641034062127
417 => 0.2049708562486
418 => 0.19998097625946
419 => 0.19711124351069
420 => 0.18768582277332
421 => 0.19035886040224
422 => 0.19213108711567
423 => 0.19154536619746
424 => 0.19280372137369
425 => 0.19288097416157
426 => 0.19247187006637
427 => 0.1919981799336
428 => 0.19176761377367
429 => 0.19348606503044
430 => 0.1944836838254
501 => 0.1923089537757
502 => 0.19179944495276
503 => 0.19399821710315
504 => 0.19533946684469
505 => 0.20524250135315
506 => 0.20450885257038
507 => 0.20635016704382
508 => 0.20614286329139
509 => 0.20807285420395
510 => 0.21122757367098
511 => 0.20481314692108
512 => 0.20592646961067
513 => 0.20565350859756
514 => 0.2086336253645
515 => 0.20864292896376
516 => 0.2068562000941
517 => 0.20782481480071
518 => 0.20728416064404
519 => 0.20826119577894
520 => 0.2044990542436
521 => 0.20908093653556
522 => 0.21167856854512
523 => 0.21171463666809
524 => 0.21294589362454
525 => 0.21419692200189
526 => 0.2165981620306
527 => 0.21412995272077
528 => 0.2096898844477
529 => 0.21001044303569
530 => 0.20740723263175
531 => 0.20745099306894
601 => 0.20721739642561
602 => 0.20791843753659
603 => 0.2046528933445
604 => 0.20541931003931
605 => 0.20434632217845
606 => 0.20592413714461
607 => 0.20422666906318
608 => 0.20565337696749
609 => 0.20626909680288
610 => 0.20854111625095
611 => 0.20389108994337
612 => 0.19440937152311
613 => 0.19640254368977
614 => 0.19345448549499
615 => 0.19372733950496
616 => 0.19427854802951
617 => 0.19249190085725
618 => 0.19283273683399
619 => 0.19282055977448
620 => 0.19271562445415
621 => 0.19225084852106
622 => 0.19157683146496
623 => 0.19426190796496
624 => 0.19471815478446
625 => 0.19573233494718
626 => 0.19874984718647
627 => 0.19844832655592
628 => 0.19894011921431
629 => 0.19786653860235
630 => 0.19377713983045
701 => 0.19399921385845
702 => 0.19122994717073
703 => 0.19566151857181
704 => 0.19461206397015
705 => 0.19393547376136
706 => 0.19375085985432
707 => 0.1967758519228
708 => 0.19768097696063
709 => 0.19711696377774
710 => 0.19596015628473
711 => 0.19818156865074
712 => 0.19877592488602
713 => 0.19890897932808
714 => 0.20284489612708
715 => 0.19912895335457
716 => 0.2000234177132
717 => 0.20700177330319
718 => 0.20067336773032
719 => 0.20402566530256
720 => 0.20386158778091
721 => 0.2055765097833
722 => 0.20372091412189
723 => 0.20374391645403
724 => 0.20526665101327
725 => 0.20312824495144
726 => 0.20259874553805
727 => 0.20186724589081
728 => 0.20346444860918
729 => 0.20442189940358
730 => 0.21213824963631
731 => 0.21712336379498
801 => 0.21690694684205
802 => 0.21888459267627
803 => 0.21799364511479
804 => 0.21511654041868
805 => 0.2200274073094
806 => 0.21847340354578
807 => 0.21860151372794
808 => 0.21859674546056
809 => 0.21963002211
810 => 0.21889785090546
811 => 0.21745466630547
812 => 0.21841271959355
813 => 0.22125779534882
814 => 0.23008899779076
815 => 0.23503105567514
816 => 0.22979147970069
817 => 0.23340566904715
818 => 0.23123844330661
819 => 0.23084459392018
820 => 0.23311457191625
821 => 0.2353885232083
822 => 0.23524368234156
823 => 0.23359291047222
824 => 0.23266043133001
825 => 0.23972147579823
826 => 0.24492393308066
827 => 0.24456916037171
828 => 0.24613501173073
829 => 0.25073239975077
830 => 0.25115272729498
831 => 0.25109977568553
901 => 0.25005795001056
902 => 0.25458467556256
903 => 0.2583609496582
904 => 0.24981679746804
905 => 0.25307029877089
906 => 0.254530900327
907 => 0.25667549675233
908 => 0.26029379039796
909 => 0.2642242170021
910 => 0.26478002241886
911 => 0.26438565187793
912 => 0.26179342987696
913 => 0.26609414956695
914 => 0.26861341029706
915 => 0.27011357240958
916 => 0.27391773392377
917 => 0.25453992050497
918 => 0.24082334102732
919 => 0.23868129907208
920 => 0.2430372256197
921 => 0.24418584871245
922 => 0.24372284018402
923 => 0.22828358292508
924 => 0.23860001457784
925 => 0.249699627606
926 => 0.250126008947
927 => 0.25568270731086
928 => 0.2574921960749
929 => 0.26196606659091
930 => 0.26168622477203
1001 => 0.26277554104785
1002 => 0.26252512610037
1003 => 0.27081202914669
1004 => 0.2799537138238
1005 => 0.27963716635221
1006 => 0.27832294102037
1007 => 0.28027478974687
1008 => 0.28970998801611
1009 => 0.28884134615545
1010 => 0.28968515773234
1011 => 0.30080978823625
1012 => 0.31527339035157
1013 => 0.3085535950471
1014 => 0.3231336172888
1015 => 0.33231096843618
1016 => 0.34818224828976
1017 => 0.34619508588439
1018 => 0.35237365866255
1019 => 0.34263765044547
1020 => 0.32028180760714
1021 => 0.31674390990325
1022 => 0.32382687070028
1023 => 0.34123963867458
1024 => 0.32327848066999
1025 => 0.32691199954166
1026 => 0.32586554586218
1027 => 0.32580978479274
1028 => 0.32793795801652
1029 => 0.32485093175738
1030 => 0.31227383143223
1031 => 0.31803784239393
1101 => 0.31581208095107
1102 => 0.31828172921343
1103 => 0.33160940232492
1104 => 0.32571692035029
1105 => 0.31950966925637
1106 => 0.32729493962743
1107 => 0.33720826411893
1108 => 0.33658790608821
1109 => 0.33538415221907
1110 => 0.34216964975292
1111 => 0.35337730371459
1112 => 0.35640668754443
1113 => 0.35864291675459
1114 => 0.35895125498127
1115 => 0.3621273303472
1116 => 0.34504877263052
1117 => 0.37215288233537
1118 => 0.37683301334547
1119 => 0.37595334268713
1120 => 0.38115511133484
1121 => 0.37962461904255
1122 => 0.3774071758379
1123 => 0.38565308559245
1124 => 0.37619981546947
1125 => 0.3627820886635
1126 => 0.35542085836521
1127 => 0.36511472023551
1128 => 0.37103442341055
1129 => 0.37494697064542
1130 => 0.37613090507466
1201 => 0.34637453244965
1202 => 0.33033749796885
1203 => 0.34061705320607
1204 => 0.35315882005248
1205 => 0.34497910248244
1206 => 0.34529973192493
1207 => 0.33363760426202
1208 => 0.35419065957729
1209 => 0.35119625229626
1210 => 0.36673124256726
1211 => 0.363023692463
1212 => 0.37569187396415
1213 => 0.3723559172179
1214 => 0.38620328716075
1215 => 0.39172737793353
1216 => 0.4010031860971
1217 => 0.40782650834155
1218 => 0.41183329367285
1219 => 0.41159274131063
1220 => 0.42746962096576
1221 => 0.41810757972906
1222 => 0.40634664947205
1223 => 0.40613393134896
1224 => 0.41222508378273
1225 => 0.42499046825786
1226 => 0.42830034672347
1227 => 0.43015011724382
1228 => 0.42731712930093
1229 => 0.41715530452203
1230 => 0.41276748010412
1231 => 0.41650603363569
]
'min_raw' => 0.15415853496001
'max_raw' => 0.43015011724382
'avg_raw' => 0.29215432610192
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.154158'
'max' => '$0.43015'
'avg' => '$0.292154'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.061029055668626
'max_diff' => 0.22224511524471
'year' => 2036
]
11 => [
'items' => [
101 => 0.41193410392414
102 => 0.41982653726318
103 => 0.43066453397047
104 => 0.4284265305085
105 => 0.43590784054164
106 => 0.44365020936917
107 => 0.45472214452408
108 => 0.45761675836614
109 => 0.46240144497477
110 => 0.46732645918273
111 => 0.46890824101346
112 => 0.47192835332642
113 => 0.47191243584377
114 => 0.48101374757587
115 => 0.49105277626055
116 => 0.49484227718496
117 => 0.50355602560636
118 => 0.48863403680088
119 => 0.49995253672129
120 => 0.51016210696993
121 => 0.49798983642833
122 => 0.51476647559463
123 => 0.51541787447677
124 => 0.5252532242208
125 => 0.51528321303021
126 => 0.50936305221064
127 => 0.5264543346712
128 => 0.53472426788352
129 => 0.53223329669702
130 => 0.51327688297336
131 => 0.50224343710735
201 => 0.47336678108326
202 => 0.5075724275225
203 => 0.52423300011068
204 => 0.51323373611525
205 => 0.51878112508557
206 => 0.54904588056069
207 => 0.56056873994782
208 => 0.55817206574616
209 => 0.55857706423362
210 => 0.56479459000423
211 => 0.59236652332505
212 => 0.5758447817668
213 => 0.58847503413024
214 => 0.59517407444204
215 => 0.60139651642522
216 => 0.58611616553752
217 => 0.56623665354557
218 => 0.55993997761257
219 => 0.51214007608271
220 => 0.50965188362363
221 => 0.5082551857964
222 => 0.49944920356254
223 => 0.49253011368827
224 => 0.48702779653092
225 => 0.47258807317902
226 => 0.47746105592776
227 => 0.45444715070932
228 => 0.46917063170535
301 => 0.43243988328655
302 => 0.46303034202981
303 => 0.44638134611334
304 => 0.45756069909794
305 => 0.45752169538854
306 => 0.4369369621268
307 => 0.42506411757385
308 => 0.43262995622101
309 => 0.44074113582779
310 => 0.4420571474297
311 => 0.45257350351334
312 => 0.45550839244796
313 => 0.44661554195919
314 => 0.43167872016746
315 => 0.43514820319704
316 => 0.42499380861099
317 => 0.40719862268207
318 => 0.41997943589036
319 => 0.42434336745236
320 => 0.42627072823783
321 => 0.40877120666766
322 => 0.40327247705721
323 => 0.40034499955142
324 => 0.42941975168233
325 => 0.4310125322366
326 => 0.42286364172447
327 => 0.45969739954883
328 => 0.45136078573698
329 => 0.46067482588479
330 => 0.43483338397751
331 => 0.43582056185848
401 => 0.4235868091321
402 => 0.43043689319922
403 => 0.4255954745691
404 => 0.42988347410045
405 => 0.43245368333946
406 => 0.4446854286274
407 => 0.46317000891288
408 => 0.44285841377414
409 => 0.43400836090479
410 => 0.43949888393035
411 => 0.45412087028007
412 => 0.47627392808561
413 => 0.46315887199289
414 => 0.46897911117875
415 => 0.47025057451644
416 => 0.46058001769943
417 => 0.47663049530939
418 => 0.48523207665441
419 => 0.49405551926794
420 => 0.50171666726202
421 => 0.49053124225644
422 => 0.5025012503801
423 => 0.4928555368233
424 => 0.48420233460732
425 => 0.48421545794319
426 => 0.47878717778999
427 => 0.46826920098585
428 => 0.46632952468845
429 => 0.47641996574163
430 => 0.48451154389796
501 => 0.48517800503097
502 => 0.48965791845861
503 => 0.49230908507831
504 => 0.51829412203762
505 => 0.52874551886216
506 => 0.54152528906438
507 => 0.54650372978653
508 => 0.56148705149042
509 => 0.54938680232864
510 => 0.54676883730835
511 => 0.51042419986189
512 => 0.51637563220768
513 => 0.52590444962111
514 => 0.51058132655136
515 => 0.52030032124237
516 => 0.52221905667083
517 => 0.51006065269291
518 => 0.51655498159114
519 => 0.49930796947177
520 => 0.46354594664644
521 => 0.47667030866391
522 => 0.48633425672126
523 => 0.47254261128722
524 => 0.49726360191735
525 => 0.48282210953606
526 => 0.47824484976507
527 => 0.46038732748753
528 => 0.46881539060347
529 => 0.480214466646
530 => 0.47317116293654
531 => 0.48778707569105
601 => 0.50848710607297
602 => 0.52323918043126
603 => 0.52437166152325
604 => 0.5148870660231
605 => 0.53008619084197
606 => 0.53019689987302
607 => 0.51305222498708
608 => 0.50255120708139
609 => 0.50016535371888
610 => 0.50612568319252
611 => 0.51336262351104
612 => 0.52477326134438
613 => 0.53166847080791
614 => 0.54964752015225
615 => 0.55451213540509
616 => 0.55985687270877
617 => 0.56699909000243
618 => 0.57557515309039
619 => 0.55681121528947
620 => 0.55755674151866
621 => 0.54008402244284
622 => 0.52141191626896
623 => 0.53558171734404
624 => 0.55410684732008
625 => 0.54985716203512
626 => 0.54937898562737
627 => 0.55018314571013
628 => 0.54697902178703
629 => 0.53248688803319
630 => 0.52520902918756
701 => 0.53459932387823
702 => 0.53958984759238
703 => 0.54732971465363
704 => 0.54637561266956
705 => 0.56631267901829
706 => 0.57405962013582
707 => 0.57207762108765
708 => 0.57244235661199
709 => 0.58646782346313
710 => 0.60206702715886
711 => 0.61667773991614
712 => 0.63154038447755
713 => 0.61362288635987
714 => 0.60452548581337
715 => 0.61391168099513
716 => 0.60893123371142
717 => 0.6375503611002
718 => 0.63953188738656
719 => 0.66814894528669
720 => 0.69530994088977
721 => 0.67825060619126
722 => 0.69433679044265
723 => 0.71173531023637
724 => 0.74529987772657
725 => 0.73399651221159
726 => 0.72533831137344
727 => 0.71715635341751
728 => 0.73418170907455
729 => 0.75608455714065
730 => 0.76080222083121
731 => 0.76844663829616
801 => 0.76040946804666
802 => 0.77008935434693
803 => 0.80426360654442
804 => 0.79502942193619
805 => 0.78191539532325
806 => 0.8088926853031
807 => 0.81865566167525
808 => 0.88717734276542
809 => 0.97368879563122
810 => 0.93787248607995
811 => 0.91564014695639
812 => 0.92086527400856
813 => 0.95245632799766
814 => 0.96260237188903
815 => 0.93502192704124
816 => 0.9447638064264
817 => 0.99844251963913
818 => 1.0272394270584
819 => 0.98812935884236
820 => 0.88022623176198
821 => 0.78073462071043
822 => 0.80712427612693
823 => 0.80413250816905
824 => 0.86180358896027
825 => 0.79480918968723
826 => 0.79593720355427
827 => 0.85480086122152
828 => 0.83909704653447
829 => 0.81365887793407
830 => 0.78092034749277
831 => 0.72040014602449
901 => 0.66679571585336
902 => 0.77192634778194
903 => 0.76739292376553
904 => 0.76082785397397
905 => 0.77543770638034
906 => 0.84637900258671
907 => 0.84474357609459
908 => 0.83433982715362
909 => 0.84223097903091
910 => 0.81227552085683
911 => 0.81999572450139
912 => 0.78071886073092
913 => 0.7984736435019
914 => 0.81360429904912
915 => 0.81664200216341
916 => 0.82348610238887
917 => 0.76500401530926
918 => 0.79126075546414
919 => 0.80668413038128
920 => 0.73700076139845
921 => 0.8053067142256
922 => 0.76398597228411
923 => 0.74996109185245
924 => 0.76884374571618
925 => 0.7614851571415
926 => 0.75515867479581
927 => 0.75162838894415
928 => 0.76549372593922
929 => 0.76484689139574
930 => 0.74216050892586
1001 => 0.71256704780916
1002 => 0.72249958473217
1003 => 0.71889100095001
1004 => 0.70581302780689
1005 => 0.71462600266485
1006 => 0.67581812153488
1007 => 0.60905117910888
1008 => 0.65315946640225
1009 => 0.65146134532204
1010 => 0.65060507566974
1011 => 0.68375123450718
1012 => 0.68056499614696
1013 => 0.67478194232341
1014 => 0.70570681748829
1015 => 0.69441882205484
1016 => 0.72920576419452
1017 => 0.75211869416607
1018 => 0.74630723396965
1019 => 0.7678569553557
1020 => 0.72272841032197
1021 => 0.73771830273921
1022 => 0.74080769879131
1023 => 0.7053252093291
1024 => 0.68108630414756
1025 => 0.6794698455157
1026 => 0.63744292425781
1027 => 0.65989336636432
1028 => 0.67964882635563
1029 => 0.67018749410542
1030 => 0.66719231896426
1031 => 0.6824940191862
1101 => 0.68368309234365
1102 => 0.65657209834159
1103 => 0.66220933248814
1104 => 0.68571753599146
1105 => 0.66161698607569
1106 => 0.61479355439184
1107 => 0.60318069594965
1108 => 0.60163132656602
1109 => 0.57013633344339
1110 => 0.6039567226798
1111 => 0.58919321644803
1112 => 0.63583095574024
1113 => 0.60919172917974
1114 => 0.60804336536587
1115 => 0.60630744503285
1116 => 0.57919840341042
1117 => 0.58513356065626
1118 => 0.6048629272914
1119 => 0.61190258757405
1120 => 0.61116829333233
1121 => 0.60476624263157
1122 => 0.60769706865858
1123 => 0.59825585685812
1124 => 0.59492196846955
1125 => 0.58439929965697
1126 => 0.56893388346394
1127 => 0.57108444444049
1128 => 0.54044340821582
1129 => 0.52374854543774
1130 => 0.51912762745552
1201 => 0.51294834280824
1202 => 0.51982559409888
1203 => 0.54035660601004
1204 => 0.51559184974802
1205 => 0.47313441218247
1206 => 0.47568617652411
1207 => 0.48141923337415
1208 => 0.47073571986207
1209 => 0.46062467092221
1210 => 0.46941540764009
1211 => 0.45142563163706
1212 => 0.48359321185695
1213 => 0.4827231689606
1214 => 0.49471325363676
1215 => 0.50221089964607
1216 => 0.48493125298633
1217 => 0.48058546858054
1218 => 0.48306102488297
1219 => 0.44214559357365
1220 => 0.49136958999433
1221 => 0.49179528115945
1222 => 0.48815025495912
1223 => 0.51436051343274
1224 => 0.56967233399671
1225 => 0.54886180218772
1226 => 0.54080333526962
1227 => 0.52548418376762
1228 => 0.54589604358283
1229 => 0.54432873122364
1230 => 0.53724075034981
1231 => 0.53295391740147
]
'min_raw' => 0.40034499955142
'max_raw' => 1.0272394270584
'avg_raw' => 0.71379221330493
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.400344'
'max' => '$1.02'
'avg' => '$0.713792'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.2461864645914
'max_diff' => 0.59708930981462
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.012566372071935
]
1 => [
'year' => 2028
'avg' => 0.021567542519318
]
2 => [
'year' => 2029
'avg' => 0.05891863899144
]
3 => [
'year' => 2030
'avg' => 0.045455642237627
]
4 => [
'year' => 2031
'avg' => 0.044643073933075
]
5 => [
'year' => 2032
'avg' => 0.078273358297113
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.012566372071935
'min' => '$0.012566'
'max_raw' => 0.078273358297113
'max' => '$0.078273'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.078273358297113
]
1 => [
'year' => 2033
'avg' => 0.20132712629469
]
2 => [
'year' => 2034
'avg' => 0.12761080797452
]
3 => [
'year' => 2035
'avg' => 0.15051724064525
]
4 => [
'year' => 2036
'avg' => 0.29215432610192
]
5 => [
'year' => 2037
'avg' => 0.71379221330493
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.078273358297113
'min' => '$0.078273'
'max_raw' => 0.71379221330493
'max' => '$0.713792'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.71379221330493
]
]
]
]
'prediction_2025_max_price' => '$0.021486'
'last_price' => 0.02083359
'sma_50day_nextmonth' => '$0.0201013'
'sma_200day_nextmonth' => '$0.026258'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.021586'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.021639'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.021552'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.021513'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.025353'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.03123'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.027333'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.02137'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.021491'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.021579'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.022276'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.02570062'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.027812'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.028318'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.028068'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.026542'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.037584'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.085977'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.021655'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.023116'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.0261083'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.027598'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.029985'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.067215'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.21002'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '31.52'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 76.03
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.021184'
'vwma_10_action' => 'SELL'
'hma_9' => '0.021747'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -243.3
'cci_20_action' => 'BUY'
'adx_14' => 32.49
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000991'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 35.21
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.013635'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 32
'buy_signals' => 0
'sell_pct' => 100
'buy_pct' => 0
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767691065
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Impossible Finance Launchpad para 2026
La previsión del precio de Impossible Finance Launchpad para 2026 sugiere que el precio medio podría oscilar entre $0.007198 en el extremo inferior y $0.021486 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Impossible Finance Launchpad podría potencialmente ganar 3.13% para 2026 si IDIA alcanza el objetivo de precio previsto.
Predicción de precio de Impossible Finance Launchpad 2027-2032
La predicción del precio de IDIA para 2027-2032 está actualmente dentro de un rango de precios de $0.012566 en el extremo inferior y $0.078273 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Impossible Finance Launchpad alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Impossible Finance Launchpad | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.006929 | $0.012566 | $0.0182034 |
| 2028 | $0.0125054 | $0.021567 | $0.030629 |
| 2029 | $0.02747 | $0.058918 | $0.090366 |
| 2030 | $0.023362 | $0.045455 | $0.067548 |
| 2031 | $0.027621 | $0.044643 | $0.061664 |
| 2032 | $0.042162 | $0.078273 | $0.114383 |
Predicción de precio de Impossible Finance Launchpad 2032-2037
La predicción de precio de Impossible Finance Launchpad para 2032-2037 se estima actualmente entre $0.078273 en el extremo inferior y $0.713792 en el extremo superior. Comparado con el precio actual, Impossible Finance Launchpad podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Impossible Finance Launchpad | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.042162 | $0.078273 | $0.114383 |
| 2033 | $0.097977 | $0.201327 | $0.304676 |
| 2034 | $0.078769 | $0.12761 | $0.176452 |
| 2035 | $0.093129 | $0.150517 | $0.207905 |
| 2036 | $0.154158 | $0.292154 | $0.43015 |
| 2037 | $0.400344 | $0.713792 | $1.02 |
Impossible Finance Launchpad Histograma de precios potenciales
Pronóstico de precio de Impossible Finance Launchpad basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Impossible Finance Launchpad es Bajista, con 0 indicadores técnicos mostrando señales alcistas y 32 indicando señales bajistas. La predicción de precio de IDIA se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Impossible Finance Launchpad
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Impossible Finance Launchpad aumentar durante el próximo mes, alcanzando $0.026258 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Impossible Finance Launchpad alcance $0.0201013 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 31.52, lo que sugiere que el mercado de IDIA está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de IDIA para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.021586 | SELL |
| SMA 5 | $0.021639 | SELL |
| SMA 10 | $0.021552 | SELL |
| SMA 21 | $0.021513 | SELL |
| SMA 50 | $0.025353 | SELL |
| SMA 100 | $0.03123 | SELL |
| SMA 200 | $0.027333 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.02137 | SELL |
| EMA 5 | $0.021491 | SELL |
| EMA 10 | $0.021579 | SELL |
| EMA 21 | $0.022276 | SELL |
| EMA 50 | $0.02570062 | SELL |
| EMA 100 | $0.027812 | SELL |
| EMA 200 | $0.028318 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.028068 | SELL |
| SMA 50 | $0.026542 | SELL |
| SMA 100 | $0.037584 | SELL |
| SMA 200 | $0.085977 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.027598 | SELL |
| EMA 50 | $0.029985 | SELL |
| EMA 100 | $0.067215 | SELL |
| EMA 200 | $0.21002 | SELL |
Osciladores de Impossible Finance Launchpad
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 31.52 | NEUTRAL |
| Stoch RSI (14) | 76.03 | NEUTRAL |
| Estocástico Rápido (14) | 0 | BUY |
| Índice de Canal de Materias Primas (20) | -243.3 | BUY |
| Índice Direccional Medio (14) | 32.49 | SELL |
| Oscilador Asombroso (5, 34) | -0.000991 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -100 | BUY |
| Oscilador Ultimate (7, 14, 28) | 35.21 | NEUTRAL |
| VWMA (10) | 0.021184 | SELL |
| Promedio Móvil de Hull (9) | 0.021747 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.013635 | SELL |
Predicción de precios de Impossible Finance Launchpad basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Impossible Finance Launchpad
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Impossible Finance Launchpad por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.029274 | $0.041135 | $0.0578026 | $0.081222 | $0.114131 | $0.160373 |
| Amazon.com acción | $0.04347 | $0.0907038 | $0.189258 | $0.394900023 | $0.823982 | $1.71 |
| Apple acción | $0.02955 | $0.041915 | $0.059454 | $0.084331 | $0.119617 | $0.169668 |
| Netflix acción | $0.032872 | $0.051867 | $0.081838 | $0.129127 | $0.203743 | $0.321475 |
| Google acción | $0.026979 | $0.034938 | $0.045244 | $0.058591 | $0.075876 | $0.098259 |
| Tesla acción | $0.047228 | $0.107062 | $0.242703 | $0.550189 | $1.24 | $2.82 |
| Kodak acción | $0.015622 | $0.011715 | $0.008785 | $0.006588 | $0.00494 | $0.0037047 |
| Nokia acción | $0.0138013 | $0.009142 | $0.006056 | $0.004012 | $0.002658 | $0.00176 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Impossible Finance Launchpad
Podría preguntarse cosas como: "¿Debo invertir en Impossible Finance Launchpad ahora?", "¿Debería comprar IDIA hoy?", "¿Será Impossible Finance Launchpad una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Impossible Finance Launchpad regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Impossible Finance Launchpad, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Impossible Finance Launchpad a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Impossible Finance Launchpad es de $0.02083 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Impossible Finance Launchpad basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Impossible Finance Launchpad ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.021375 | $0.02193 | $0.02250078 | $0.023085 |
| Si Impossible Finance Launchpad ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.021916 | $0.023056 | $0.024254 | $0.025515 |
| Si Impossible Finance Launchpad ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.023541 | $0.02660081 | $0.030058 | $0.033964 |
| Si Impossible Finance Launchpad ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.026248 | $0.033071 | $0.041668 | $0.052499 |
| Si Impossible Finance Launchpad ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.031664 | $0.048125 | $0.073143 | $0.111168 |
| Si Impossible Finance Launchpad ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.04791 | $0.110177 | $0.25337 | $0.582665 |
| Si Impossible Finance Launchpad ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.074986 | $0.2699015 | $0.971462 | $3.49 |
Cuadro de preguntas
¿Es IDIA una buena inversión?
La decisión de adquirir Impossible Finance Launchpad depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Impossible Finance Launchpad ha experimentado una caída de -5.2012% durante las últimas 24 horas, y Impossible Finance Launchpad ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Impossible Finance Launchpad dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Impossible Finance Launchpad subir?
Parece que el valor medio de Impossible Finance Launchpad podría potencialmente aumentar hasta $0.021486 para el final de este año. Mirando las perspectivas de Impossible Finance Launchpad en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.067548. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Impossible Finance Launchpad la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Impossible Finance Launchpad, el precio de Impossible Finance Launchpad aumentará en un 0.86% durante la próxima semana y alcanzará $0.0210118 para el 13 de enero de 2026.
¿Cuál será el precio de Impossible Finance Launchpad el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Impossible Finance Launchpad, el precio de Impossible Finance Launchpad disminuirá en un -11.62% durante el próximo mes y alcanzará $0.018413 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Impossible Finance Launchpad este año en 2026?
Según nuestra predicción más reciente sobre el valor de Impossible Finance Launchpad en 2026, se anticipa que IDIA fluctúe dentro del rango de $0.007198 y $0.021486. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Impossible Finance Launchpad no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Impossible Finance Launchpad en 5 años?
El futuro de Impossible Finance Launchpad parece estar en una tendencia alcista, con un precio máximo de $0.067548 proyectada después de un período de cinco años. Basado en el pronóstico de Impossible Finance Launchpad para 2030, el valor de Impossible Finance Launchpad podría potencialmente alcanzar su punto más alto de aproximadamente $0.067548, mientras que su punto más bajo se anticipa que esté alrededor de $0.023362.
¿Cuánto será Impossible Finance Launchpad en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Impossible Finance Launchpad, se espera que el valor de IDIA en 2026 crezca en un 3.13% hasta $0.021486 si ocurre lo mejor. El precio estará entre $0.021486 y $0.007198 durante 2026.
¿Cuánto será Impossible Finance Launchpad en 2027?
Según nuestra última simulación experimental para la predicción de precios de Impossible Finance Launchpad, el valor de IDIA podría disminuir en un -12.62% hasta $0.0182034 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.0182034 y $0.006929 a lo largo del año.
¿Cuánto será Impossible Finance Launchpad en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Impossible Finance Launchpad sugiere que el valor de IDIA en 2028 podría aumentar en un 47.02% , alcanzando $0.030629 en el mejor escenario. Se espera que el precio oscile entre $0.030629 y $0.0125054 durante el año.
¿Cuánto será Impossible Finance Launchpad en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Impossible Finance Launchpad podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.090366 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.090366 y $0.02747.
¿Cuánto será Impossible Finance Launchpad en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Impossible Finance Launchpad, se espera que el valor de IDIA en 2030 aumente en un 224.23% , alcanzando $0.067548 en el mejor escenario. Se pronostica que el precio oscile entre $0.067548 y $0.023362 durante el transcurso de 2030.
¿Cuánto será Impossible Finance Launchpad en 2031?
Nuestra simulación experimental indica que el precio de Impossible Finance Launchpad podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.061664 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.061664 y $0.027621 durante el año.
¿Cuánto será Impossible Finance Launchpad en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Impossible Finance Launchpad, IDIA podría experimentar un 449.04% aumento en valor, alcanzando $0.114383 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.114383 y $0.042162 a lo largo del año.
¿Cuánto será Impossible Finance Launchpad en 2033?
Según nuestra predicción experimental de precios de Impossible Finance Launchpad, se anticipa que el valor de IDIA aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.304676. A lo largo del año, el precio de IDIA podría oscilar entre $0.304676 y $0.097977.
¿Cuánto será Impossible Finance Launchpad en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Impossible Finance Launchpad sugieren que IDIA podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.176452 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.176452 y $0.078769.
¿Cuánto será Impossible Finance Launchpad en 2035?
Basado en nuestra predicción experimental para el precio de Impossible Finance Launchpad, IDIA podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.207905 en 2035. El rango de precios esperado para el año está entre $0.207905 y $0.093129.
¿Cuánto será Impossible Finance Launchpad en 2036?
Nuestra reciente simulación de predicción de precios de Impossible Finance Launchpad sugiere que el valor de IDIA podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.43015 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.43015 y $0.154158.
¿Cuánto será Impossible Finance Launchpad en 2037?
Según la simulación experimental, el valor de Impossible Finance Launchpad podría aumentar en un 4830.69% en 2037, con un máximo de $1.02 bajo condiciones favorables. Se espera que el precio caiga entre $1.02 y $0.400344 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de SelfKey
Predicción de precios de Solchat
Predicción de precios de pSTAKE Finance
Predicción de precios de Groestlcoin
Predicción de precios de Games for a Living
Predicción de precios de Fideum
Predicción de precios de district0x
Predicción de precios de SOLO Coin
Predicción de precios de Voxies
Predicción de precios de Picasso
Predicción de precios de Acet Token
Predicción de precios de Dream Machine Token
Predicción de precios de KILT Protocol [OLD]
Predicción de precios de Fluence
Predicción de precios de Vyvo Smart Chain
Predicción de precios de HydraDX
Predicción de precios de Leash
Predicción de precios de BNB48 Club Token
Predicción de precios de Turbo
Predicción de precios de SafeMoon
Predicción de precios de ASD
Predicción de precios de UniLend Finance
Predicción de precios de ECOx
Predicción de precios de Botto
Predicción de precios de Coinweb
¿Cómo leer y predecir los movimientos de precio de Impossible Finance Launchpad?
Los traders de Impossible Finance Launchpad utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Impossible Finance Launchpad
Las medias móviles son herramientas populares para la predicción de precios de Impossible Finance Launchpad. Una media móvil simple (SMA) calcula el precio de cierre promedio de IDIA durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de IDIA por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de IDIA.
¿Cómo leer gráficos de Impossible Finance Launchpad y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Impossible Finance Launchpad en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de IDIA dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Impossible Finance Launchpad?
La acción del precio de Impossible Finance Launchpad está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de IDIA. La capitalización de mercado de Impossible Finance Launchpad puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de IDIA, grandes poseedores de Impossible Finance Launchpad, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Impossible Finance Launchpad.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


