Predicción del precio de Impossible Finance Launchpad - Pronóstico de IDIA
Predicción de precio de Impossible Finance Launchpad hasta $0.02122 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.0071088 | $0.02122 |
| 2027 | $0.006843 | $0.017977 |
| 2028 | $0.01235 | $0.03025 |
| 2029 | $0.02713 | $0.089247 |
| 2030 | $0.023073 | $0.066712 |
| 2031 | $0.027279 | $0.06090048 |
| 2032 | $0.04164 | $0.112967 |
| 2033 | $0.096763 | $0.3009036 |
| 2034 | $0.077793 | $0.174267 |
| 2035 | $0.091976 | $0.20533 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Impossible Finance Launchpad hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.48, equivalente a un ROI del 39.54% en los próximos 90 días.
Predicción del precio a largo plazo de Impossible Finance Launchpad para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Impossible Finance Launchpad'
'name_with_ticker' => 'Impossible Finance Launchpad <small>IDIA</small>'
'name_lang' => 'Impossible Finance Launchpad'
'name_lang_with_ticker' => 'Impossible Finance Launchpad <small>IDIA</small>'
'name_with_lang' => 'Impossible Finance Launchpad'
'name_with_lang_with_ticker' => 'Impossible Finance Launchpad <small>IDIA</small>'
'image' => '/uploads/coins/idia.png?1717089499'
'price_for_sd' => 0.02057
'ticker' => 'IDIA'
'marketcap' => '$15.4M'
'low24h' => '$0.01855'
'high24h' => '$0.02128'
'volume24h' => '$37.22K'
'current_supply' => '748.39M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02057'
'change_24h_pct' => '-3.322%'
'ath_price' => '$3.51'
'ath_days' => 1502
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '26 nov. 2021'
'ath_pct' => '-99.41%'
'fdv' => '$20.58M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.01'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.020751'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.018185'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0071088'
'current_year_max_price_prediction' => '$0.02122'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.023073'
'grand_prediction_max_price' => '$0.066712'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.020965476418245
107 => 0.021043753896723
108 => 0.02122011705268
109 => 0.019713113194674
110 => 0.02038971368361
111 => 0.020787153081968
112 => 0.01899150742122
113 => 0.020751658940696
114 => 0.019686879610288
115 => 0.019325477513098
116 => 0.019812057825858
117 => 0.019622437004761
118 => 0.019459412157689
119 => 0.019368441491901
120 => 0.019725732371682
121 => 0.019709064325086
122 => 0.019124467098592
123 => 0.018361883847862
124 => 0.018617831817749
125 => 0.018524843520764
126 => 0.018187841936762
127 => 0.018414940314653
128 => 0.017414913990279
129 => 0.01569442067604
130 => 0.016831031259562
131 => 0.016787272988491
201 => 0.016765208083937
202 => 0.017619339523845
203 => 0.017537234494063
204 => 0.017388213061033
205 => 0.01818510504128
206 => 0.01789422874878
207 => 0.018790640943191
208 => 0.019381075990735
209 => 0.019231322564105
210 => 0.019786629580141
211 => 0.018623728342033
212 => 0.019009997485833
213 => 0.019089607021024
214 => 0.018175271517942
215 => 0.017550667892345
216 => 0.01750901395152
217 => 0.016426037340416
218 => 0.017004554704586
219 => 0.017513626044381
220 => 0.017269820378151
221 => 0.01719263878771
222 => 0.01758694279463
223 => 0.017617583592953
224 => 0.01691897014402
225 => 0.017064234002264
226 => 0.017670008439247
227 => 0.017048970040709
228 => 0.015842393878394
301 => 0.01554314630792
302 => 0.015503221165792
303 => 0.01469163802104
304 => 0.015563143461487
305 => 0.015182707981838
306 => 0.016384499103731
307 => 0.015698042460241
308 => 0.015668450686344
309 => 0.015623718379928
310 => 0.014925155241164
311 => 0.01507809617255
312 => 0.015586495122038
313 => 0.01576789759474
314 => 0.015748975830651
315 => 0.01558400368983
316 => 0.015659527091103
317 => 0.015416239901504
318 => 0.015330330131271
319 => 0.015059175265072
320 => 0.014660652520205
321 => 0.01471606955216
322 => 0.013926491715429
323 => 0.01349628780391
324 => 0.013377213031197
325 => 0.01321798126865
326 => 0.013395198682477
327 => 0.013924254940622
328 => 0.013286100847752
329 => 0.012192030416832
330 => 0.012257785913935
331 => 0.012405518992945
401 => 0.012130219377563
402 => 0.011869671395749
403 => 0.01209619672701
404 => 0.011632624662553
405 => 0.012461539462193
406 => 0.012439119639869
407 => 0.012748087817428
408 => 0.01294129195952
409 => 0.012496018962581
410 => 0.012384034007997
411 => 0.01244782572756
412 => 0.011393490700987
413 => 0.012661926152196
414 => 0.012672895634651
415 => 0.012578968266105
416 => 0.013254370985323
417 => 0.014679681386263
418 => 0.014143422280451
419 => 0.013935766546163
420 => 0.013541012843487
421 => 0.014066998714148
422 => 0.014026611205939
423 => 0.01384396357731
424 => 0.013733497721621
425 => 0.013937034447797
426 => 0.013708277268806
427 => 0.013667186193633
428 => 0.013418218985611
429 => 0.013329349019633
430 => 0.013263553234839
501 => 0.013191118540741
502 => 0.013350891426321
503 => 0.012988825047723
504 => 0.012552208488939
505 => 0.012515908546333
506 => 0.012616135879392
507 => 0.012571792745561
508 => 0.012515696248468
509 => 0.012408592758546
510 => 0.01237681744099
511 => 0.012480071807854
512 => 0.012363503647768
513 => 0.012535506317771
514 => 0.012488731108872
515 => 0.012227448594301
516 => 0.011901793841968
517 => 0.011898894831588
518 => 0.011828733049379
519 => 0.011739371470841
520 => 0.011714513124008
521 => 0.012077119395442
522 => 0.012827703525417
523 => 0.012680345900747
524 => 0.012786826886388
525 => 0.013310607947636
526 => 0.013477102196361
527 => 0.013358928522249
528 => 0.013197165108489
529 => 0.013204281877731
530 => 0.013757076431664
531 => 0.013791553549922
601 => 0.013878666105018
602 => 0.013990630356321
603 => 0.013377996518393
604 => 0.013175426879058
605 => 0.013079438145805
606 => 0.012783829999702
607 => 0.013102618041747
608 => 0.012916873901512
609 => 0.012941937131953
610 => 0.012925614670249
611 => 0.01293452783806
612 => 0.012461307763613
613 => 0.012633724287026
614 => 0.012347048376117
615 => 0.01196322151229
616 => 0.011961934790055
617 => 0.01205587587121
618 => 0.011999996040224
619 => 0.011849624851844
620 => 0.011870984369421
621 => 0.011683852519902
622 => 0.011893705564084
623 => 0.011899723398501
624 => 0.011818918545719
625 => 0.012142226114421
626 => 0.012274685489112
627 => 0.012221498004002
628 => 0.012270953713369
629 => 0.012686469275332
630 => 0.012754216442146
701 => 0.012784305258519
702 => 0.012743990230584
703 => 0.012278548575069
704 => 0.012299192891702
705 => 0.01214771859397
706 => 0.012019738774354
707 => 0.012024857295973
708 => 0.012090655559468
709 => 0.012378000435165
710 => 0.012982700786164
711 => 0.013005648722454
712 => 0.013033462290676
713 => 0.012920330530737
714 => 0.012886208909414
715 => 0.012931224135477
716 => 0.013158317793678
717 => 0.013742464337898
718 => 0.013535987935335
719 => 0.013368119406054
720 => 0.013515385363264
721 => 0.01349271492346
722 => 0.013301353596793
723 => 0.013295982721702
724 => 0.01292869915391
725 => 0.012792922781539
726 => 0.012679457882101
727 => 0.012555557173991
728 => 0.012482104681034
729 => 0.012594961093777
730 => 0.012620772690649
731 => 0.012374010171794
801 => 0.012340377352293
802 => 0.012541888951929
803 => 0.012453211210039
804 => 0.012544418466675
805 => 0.012565579332576
806 => 0.01256217194579
807 => 0.012469582198683
808 => 0.012528596142423
809 => 0.012389010572574
810 => 0.012237232230438
811 => 0.01214040710428
812 => 0.012055914339719
813 => 0.012102795836246
814 => 0.011935671861349
815 => 0.011882205538239
816 => 0.012508603546139
817 => 0.012971330489489
818 => 0.012964602256473
819 => 0.012923645868347
820 => 0.012862792983292
821 => 0.013153866026107
822 => 0.01305246199818
823 => 0.013126241901087
824 => 0.013145021982909
825 => 0.013201863634388
826 => 0.013222179639086
827 => 0.013160770562515
828 => 0.012954674201054
829 => 0.012441101663349
830 => 0.012202032260684
831 => 0.012123135375789
901 => 0.012126003127708
902 => 0.012046897727562
903 => 0.012070197813161
904 => 0.012038794908661
905 => 0.011979325404718
906 => 0.012099123761958
907 => 0.012112929406631
908 => 0.012084967038567
909 => 0.012091553188499
910 => 0.011860036723816
911 => 0.011877638417799
912 => 0.011779629948989
913 => 0.011761254542597
914 => 0.01151349766802
915 => 0.011074560451774
916 => 0.011317774278241
917 => 0.011024006176908
918 => 0.01091275174562
919 => 0.011439412919723
920 => 0.01138655074515
921 => 0.011296073680917
922 => 0.011162239245843
923 => 0.011112598752016
924 => 0.010810998825796
925 => 0.010793178693182
926 => 0.010942659760499
927 => 0.010873679391262
928 => 0.010776804827943
929 => 0.010425934979621
930 => 0.010031441101092
1001 => 0.010043348391585
1002 => 0.010168829554525
1003 => 0.010533682959215
1004 => 0.010391128421975
1005 => 0.010287703469582
1006 => 0.010268335084942
1007 => 0.010510770969177
1008 => 0.010853868537258
1009 => 0.011014842239827
1010 => 0.010855322189426
1011 => 0.010672074144694
1012 => 0.010683227604087
1013 => 0.010757426572592
1014 => 0.010765223835065
1015 => 0.010645948196148
1016 => 0.010679523589842
1017 => 0.010628519496622
1018 => 0.01031550747068
1019 => 0.010309846075703
1020 => 0.010233027876536
1021 => 0.010230701851994
1022 => 0.010100014932014
1023 => 0.010081730928512
1024 => 0.0098222441167611
1025 => 0.0099930391220541
1026 => 0.0098784787996438
1027 => 0.0097058093717234
1028 => 0.0096760410972668
1029 => 0.0096751462269904
1030 => 0.0098524391212871
1031 => 0.0099909673513593
1101 => 0.0098804716254997
1102 => 0.0098553138905911
1103 => 0.010123932681413
1104 => 0.010089748491766
1105 => 0.010060145203997
1106 => 0.010823147913164
1107 => 0.010219171731014
1108 => 0.0099558036418416
1109 => 0.009629835619247
1110 => 0.0097359724510772
1111 => 0.0097583370410184
1112 => 0.0089744427068307
1113 => 0.0086564168730785
1114 => 0.0085472823914855
1115 => 0.0084844739543937
1116 => 0.0085130965478751
1117 => 0.0082268359967884
1118 => 0.0084192078214312
1119 => 0.0081713303811922
1120 => 0.0081297729216731
1121 => 0.008573008490943
1122 => 0.0086346821310622
1123 => 0.0083715632218154
1124 => 0.0085405281566339
1125 => 0.0084792591224804
1126 => 0.0081755795284537
1127 => 0.0081639812016777
1128 => 0.008011605456249
1129 => 0.0077731669204114
1130 => 0.0076641941113735
1201 => 0.0076074401262813
1202 => 0.0076308579266435
1203 => 0.0076190171701839
1204 => 0.0075417482248885
1205 => 0.0076234461356804
1206 => 0.0074147417335146
1207 => 0.0073316339589265
1208 => 0.0072940961052308
1209 => 0.0071088589357314
1210 => 0.0074036536477481
1211 => 0.0074617319197413
1212 => 0.0075199246238716
1213 => 0.0080264523834796
1214 => 0.0080011476880421
1215 => 0.0082298898109099
1216 => 0.0082210013126451
1217 => 0.0081557603538265
1218 => 0.0078805194801876
1219 => 0.0079902255867232
1220 => 0.0076525672429208
1221 => 0.0079055638326331
1222 => 0.0077901067544786
1223 => 0.0078665276783697
1224 => 0.0077291159666166
1225 => 0.0078051652814913
1226 => 0.0074755044325927
1227 => 0.0071676717703446
1228 => 0.0072915526198288
1229 => 0.0074262252707118
1230 => 0.0077182298917793
1231 => 0.0075443143484573
]
'min_raw' => 0.0071088589357314
'max_raw' => 0.02122011705268
'avg_raw' => 0.014164487994206
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0071088'
'max' => '$0.02122'
'avg' => '$0.014164'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.013466721064269
'max_diff' => 0.0006445370526803
'year' => 2026
]
1 => [
'items' => [
101 => 0.0076068609543107
102 => 0.0073973402948773
103 => 0.0069650393278485
104 => 0.0069674861043742
105 => 0.0069009860187853
106 => 0.006843520235665
107 => 0.0075642906407084
108 => 0.0074746514471473
109 => 0.0073318231238953
110 => 0.00752300451034
111 => 0.0075735559033726
112 => 0.0075749950304654
113 => 0.0077144760349096
114 => 0.0077889170719848
115 => 0.0078020376274153
116 => 0.0080215140015949
117 => 0.0080950795872565
118 => 0.0083980858232053
119 => 0.0077826012700796
120 => 0.0077699257707388
121 => 0.0075256948245114
122 => 0.0073707996972755
123 => 0.0075363006263918
124 => 0.0076829118564591
125 => 0.0075302504441068
126 => 0.0075501848017017
127 => 0.0073452493285144
128 => 0.0074185041170686
129 => 0.0074816010094572
130 => 0.0074467626141441
131 => 0.0073946078501631
201 => 0.007670891407526
202 => 0.0076553024064556
203 => 0.0079125840068036
204 => 0.0081131534126586
205 => 0.0084726096440205
206 => 0.0080974983277172
207 => 0.0080838277804186
208 => 0.0082174595730866
209 => 0.0080950591289253
210 => 0.0081724119845155
211 => 0.0084601469031145
212 => 0.0084662262885377
213 => 0.0083643887498526
214 => 0.0083581919263686
215 => 0.0083777509396537
216 => 0.008492308691379
217 => 0.0084522786929221
218 => 0.0084986024205721
219 => 0.0085565309513325
220 => 0.0087961479157456
221 => 0.0088539187546462
222 => 0.0087135655668635
223 => 0.0087262378882523
224 => 0.0086737419432404
225 => 0.0086230315181312
226 => 0.0087370211481139
227 => 0.0089453394373789
228 => 0.0089440435001132
301 => 0.0089923692940938
302 => 0.0090224758633912
303 => 0.008893236428611
304 => 0.0088091063088348
305 => 0.0088413671500956
306 => 0.0088929529378213
307 => 0.008824638574392
308 => 0.0084029706770147
309 => 0.0085308777808294
310 => 0.0085095877844168
311 => 0.0084792682405732
312 => 0.0086078798225353
313 => 0.008595474921705
314 => 0.0082238999810828
315 => 0.0082476870032095
316 => 0.0082253465486834
317 => 0.0082975331276841
318 => 0.0080911608167631
319 => 0.0081546395496637
320 => 0.0081944528158628
321 => 0.008217903135514
322 => 0.0083026217701288
323 => 0.0082926810161755
324 => 0.0083020038389056
325 => 0.008427619209149
326 => 0.0090629386458508
327 => 0.0090975176810371
328 => 0.0089272378650916
329 => 0.008995261292941
330 => 0.0088646711865585
331 => 0.0089523371998507
401 => 0.00901231605967
402 => 0.0087412831254184
403 => 0.0087252343140412
404 => 0.0085941052158362
405 => 0.0086645665656798
406 => 0.0085524574917283
407 => 0.008579965137067
408 => 0.0085030513626264
409 => 0.0086414808432398
410 => 0.0087962665123321
411 => 0.0088353714850161
412 => 0.0087325031376337
413 => 0.0086580196747745
414 => 0.0085272512503715
415 => 0.008744722054518
416 => 0.0088083171449531
417 => 0.0087443880165812
418 => 0.0087295742406584
419 => 0.0087015021620526
420 => 0.0087355298648399
421 => 0.0088079707924329
422 => 0.0087738089887539
423 => 0.0087963734619374
424 => 0.0087103809585457
425 => 0.0088932792122415
426 => 0.0091837656559723
427 => 0.0091846996173882
428 => 0.0091505376295644
429 => 0.0091365592801772
430 => 0.0091716115528072
501 => 0.0091906259727894
502 => 0.0093039785949873
503 => 0.0094256104747734
504 => 0.0099932133855881
505 => 0.009833832759531
506 => 0.010337443828854
507 => 0.010735734798976
508 => 0.010855164845762
509 => 0.010745294822337
510 => 0.01036943540726
511 => 0.010350993951225
512 => 0.0109126866011
513 => 0.010753982700357
514 => 0.010735105376356
515 => 0.010534282542719
516 => 0.01065299370979
517 => 0.010627029836164
518 => 0.010586044591449
519 => 0.010812537228729
520 => 0.011236511226579
521 => 0.011170430903011
522 => 0.011121105006846
523 => 0.010904973288401
524 => 0.011035132857672
525 => 0.010988785528097
526 => 0.011187923068693
527 => 0.01106995840108
528 => 0.01075278036222
529 => 0.010803292010341
530 => 0.010795657276342
531 => 0.010952779561022
601 => 0.010905615351176
602 => 0.010786447707412
603 => 0.011235062129546
604 => 0.011205931604298
605 => 0.011247232028935
606 => 0.011265413753119
607 => 0.0115384774464
608 => 0.011650342904473
609 => 0.011675738321936
610 => 0.011782001855121
611 => 0.011673094388427
612 => 0.012108801904912
613 => 0.012398521979136
614 => 0.012735046754206
615 => 0.013226799899915
616 => 0.013411703631673
617 => 0.01337830242754
618 => 0.013751144050316
619 => 0.01442113215864
620 => 0.013513726179925
621 => 0.014469226878866
622 => 0.014166726389367
623 => 0.013449503170518
624 => 0.01340332245073
625 => 0.013889034341668
626 => 0.014966296567731
627 => 0.014696454598309
628 => 0.014966737932525
629 => 0.014651438066218
630 => 0.0146357807703
701 => 0.014951424521781
702 => 0.015688943351961
703 => 0.015338575801222
704 => 0.01483623800359
705 => 0.01520715641612
706 => 0.014885832560308
707 => 0.01416179998028
708 => 0.014696248255241
709 => 0.014338877913985
710 => 0.014443177578416
711 => 0.015194316880909
712 => 0.015103937812765
713 => 0.015220896695819
714 => 0.015014467328575
715 => 0.014821629748645
716 => 0.014461684085399
717 => 0.014355121919618
718 => 0.014384571868535
719 => 0.014355107325686
720 => 0.014153721035171
721 => 0.014110231684909
722 => 0.014037747529159
723 => 0.014060213399927
724 => 0.01392392198113
725 => 0.014181132047644
726 => 0.014228872502517
727 => 0.014416048539386
728 => 0.014435481776467
729 => 0.014956764374864
730 => 0.014669650679465
731 => 0.014862271334542
801 => 0.014845041530136
802 => 0.013465047572481
803 => 0.013655198564056
804 => 0.013951013834279
805 => 0.013817749456012
806 => 0.013629344804204
807 => 0.013477197946251
808 => 0.013246679898637
809 => 0.013571129623947
810 => 0.013997746511347
811 => 0.014446301484756
812 => 0.014985210894821
813 => 0.014864932588092
814 => 0.014436226948193
815 => 0.014455458370029
816 => 0.014574339452535
817 => 0.014420377649204
818 => 0.014374971307711
819 => 0.014568101318475
820 => 0.014569431298717
821 => 0.01439227963708
822 => 0.014195407983582
823 => 0.014194583084165
824 => 0.01415955167498
825 => 0.014657670076089
826 => 0.014931584831248
827 => 0.014962988716491
828 => 0.014929471099558
829 => 0.014942370700049
830 => 0.014782985739322
831 => 0.015147292495403
901 => 0.015481616400986
902 => 0.015392010452501
903 => 0.015257678397486
904 => 0.015150676445359
905 => 0.015366804193151
906 => 0.015357180364759
907 => 0.015478696373329
908 => 0.01547318370527
909 => 0.015432322442036
910 => 0.015392011911786
911 => 0.015551838607731
912 => 0.015505811086037
913 => 0.015459712070889
914 => 0.015367253438603
915 => 0.015379820102306
916 => 0.015245511241614
917 => 0.015183373817102
918 => 0.01424897604098
919 => 0.013999274422872
920 => 0.014077835635074
921 => 0.014103700025972
922 => 0.01399502956177
923 => 0.014150835092284
924 => 0.014126552965392
925 => 0.014221020516558
926 => 0.014162001291894
927 => 0.014164423461461
928 => 0.014337986416974
929 => 0.014388372481349
930 => 0.014362745722342
1001 => 0.014380693825916
1002 => 0.014794300297365
1003 => 0.014735498683515
1004 => 0.014704261498117
1005 => 0.014712914411951
1006 => 0.014818599733229
1007 => 0.014848185852982
1008 => 0.014722827384608
1009 => 0.014781947162982
1010 => 0.015033671675881
1011 => 0.015121761009022
1012 => 0.015402899875129
1013 => 0.015283467087962
1014 => 0.015502691137737
1015 => 0.016176511127761
1016 => 0.016714805160589
1017 => 0.016219767722059
1018 => 0.017208276162016
1019 => 0.017977971775636
1020 => 0.01794842957599
1021 => 0.017814215342375
1022 => 0.016937937349685
1023 => 0.016131573276243
1024 => 0.016806131063704
1025 => 0.016807850650229
1026 => 0.01674990553805
1027 => 0.01639001342288
1028 => 0.016737382072553
1029 => 0.016764954934507
1030 => 0.016749521464029
1031 => 0.01647359302314
1101 => 0.016052301294002
1102 => 0.016134620689446
1103 => 0.016269461538452
1104 => 0.016014179680535
1105 => 0.015932601658857
1106 => 0.01608427072201
1107 => 0.016572980044993
1108 => 0.016480592378383
1109 => 0.01647817976304
1110 => 0.016873453379264
1111 => 0.016590522775433
1112 => 0.016135659000645
1113 => 0.016020799898595
1114 => 0.01561312746468
1115 => 0.015894708266865
1116 => 0.015904841858647
1117 => 0.015750622930976
1118 => 0.016148173016677
1119 => 0.01614450952265
1120 => 0.016521924161501
1121 => 0.017243399200519
1122 => 0.017030023529851
1123 => 0.016781890840071
1124 => 0.016808869743423
1125 => 0.01710476172359
1126 => 0.016925858677824
1127 => 0.016990193460438
1128 => 0.017104664345192
1129 => 0.017173727472116
1130 => 0.01679893262228
1201 => 0.016711550014273
1202 => 0.016532795865419
1203 => 0.016486162244587
1204 => 0.016631753769001
1205 => 0.016593395546143
1206 => 0.015903990169497
1207 => 0.015831943471822
1208 => 0.015834153041181
1209 => 0.015652988194244
1210 => 0.015376668318119
1211 => 0.016102820454371
1212 => 0.016044500275338
1213 => 0.015980119311308
1214 => 0.015988005612049
1215 => 0.016303203642816
1216 => 0.016120372867089
1217 => 0.016606458449735
1218 => 0.016506533867013
1219 => 0.016404046595794
1220 => 0.016389879733073
1221 => 0.016350430877457
1222 => 0.016215146073277
1223 => 0.016051781542873
1224 => 0.015943914129507
1225 => 0.014707417992358
1226 => 0.014936904483045
1227 => 0.01520090777223
1228 => 0.015292040649729
1229 => 0.015136151556563
1230 => 0.01622130152483
1231 => 0.016419568880798
]
'min_raw' => 0.006843520235665
'max_raw' => 0.017977971775636
'avg_raw' => 0.01241074600565
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.006843'
'max' => '$0.017977'
'avg' => '$0.01241'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00026533870006641
'max_diff' => -0.0032421452770444
'year' => 2027
]
2 => [
'items' => [
101 => 0.015819004126912
102 => 0.015706662982357
103 => 0.016228666591565
104 => 0.015913834602867
105 => 0.0160556034281
106 => 0.015749176771347
107 => 0.016371812080691
108 => 0.016367068642833
109 => 0.016124849444642
110 => 0.016329571452308
111 => 0.016293995965515
112 => 0.016020531087317
113 => 0.016380481405101
114 => 0.016380659935967
115 => 0.016147529224008
116 => 0.015875283591315
117 => 0.015826612502344
118 => 0.015789945374845
119 => 0.016046585562471
120 => 0.016276688352203
121 => 0.016704852596576
122 => 0.016812503260543
123 => 0.017232670968716
124 => 0.016982481556093
125 => 0.017093387282214
126 => 0.01721379113649
127 => 0.017271517171935
128 => 0.017177455694927
129 => 0.017830149093648
130 => 0.017885256414509
131 => 0.017903733422517
201 => 0.017683648880807
202 => 0.017879135465274
203 => 0.017787673766237
204 => 0.01802563169834
205 => 0.018062946540493
206 => 0.018031342196703
207 => 0.018043186516577
208 => 0.017486227843774
209 => 0.017457346598399
210 => 0.017063548768379
211 => 0.017224024294918
212 => 0.016924022989845
213 => 0.017019156494039
214 => 0.017061090436223
215 => 0.017039186524557
216 => 0.017233097340413
217 => 0.017068233533573
218 => 0.016633130841201
219 => 0.016197909605391
220 => 0.016192445757299
221 => 0.016077859688203
222 => 0.015995034947732
223 => 0.016010989931113
224 => 0.016067217373586
225 => 0.01599176690656
226 => 0.016007868089136
227 => 0.016275255001511
228 => 0.016328877539871
229 => 0.016146647202844
301 => 0.015414966103966
302 => 0.015235409727018
303 => 0.01536447129001
304 => 0.015302788175529
305 => 0.0123505443913
306 => 0.013044130277154
307 => 0.012632025095731
308 => 0.012821942123378
309 => 0.012401289447265
310 => 0.012602046952602
311 => 0.012564974371856
312 => 0.01368023995161
313 => 0.01366282661358
314 => 0.013671161457002
315 => 0.013273317664164
316 => 0.013907093628791
317 => 0.014219314458813
318 => 0.014161530692664
319 => 0.014176073621701
320 => 0.013926177917812
321 => 0.013673580993661
322 => 0.013393412130389
323 => 0.01391393124843
324 => 0.013856058408061
325 => 0.013988797881876
326 => 0.0143263917374
327 => 0.014376103715021
328 => 0.014442917117072
329 => 0.014418969268538
330 => 0.014989504177709
331 => 0.014920408635698
401 => 0.0150869090118
402 => 0.014744405105743
403 => 0.014356829425271
404 => 0.014430494891325
405 => 0.014423400314564
406 => 0.014333078209616
407 => 0.014251539451844
408 => 0.014115800393556
409 => 0.014545298859581
410 => 0.014527862006216
411 => 0.01481014439406
412 => 0.014760248240064
413 => 0.014427029512017
414 => 0.014438930484078
415 => 0.014518970240598
416 => 0.014795988751793
417 => 0.014878226706774
418 => 0.014840130809411
419 => 0.014930300972742
420 => 0.015001567793306
421 => 0.014939250988162
422 => 0.015821525534489
423 => 0.015455143630887
424 => 0.015633715621434
425 => 0.015676303988972
426 => 0.01556721478106
427 => 0.015590872324064
428 => 0.015626707055421
429 => 0.015844288527062
430 => 0.016415285266353
501 => 0.016668175835279
502 => 0.017429009589293
503 => 0.016647176793936
504 => 0.016600786071406
505 => 0.016737835205482
506 => 0.01718452516152
507 => 0.017546525415435
508 => 0.017666621783954
509 => 0.017682494501629
510 => 0.017907803272827
511 => 0.018036946058717
512 => 0.017880444861794
513 => 0.01774782648376
514 => 0.017272803914842
515 => 0.017327789070637
516 => 0.017706582267916
517 => 0.018241649969879
518 => 0.018700793722469
519 => 0.018540017583087
520 => 0.019766626036305
521 => 0.019888239254196
522 => 0.019871436239709
523 => 0.020148489248537
524 => 0.019598595446878
525 => 0.019363505192979
526 => 0.017776500082374
527 => 0.018222383785357
528 => 0.018870501933474
529 => 0.018784721066252
530 => 0.018314040342842
531 => 0.018700436668934
601 => 0.018572681959797
602 => 0.018471916520154
603 => 0.018933542533502
604 => 0.018425965769274
605 => 0.018865438466974
606 => 0.018301810186411
607 => 0.018540751994949
608 => 0.018405117068108
609 => 0.018492889488566
610 => 0.017979773712055
611 => 0.018256638529879
612 => 0.017968255225386
613 => 0.017968118494151
614 => 0.017961752416721
615 => 0.018301034095569
616 => 0.018312098058936
617 => 0.018061368385641
618 => 0.018025234322586
619 => 0.01815884089233
620 => 0.018002422590775
621 => 0.018075609729588
622 => 0.018004639354653
623 => 0.01798866242839
624 => 0.01786135556168
625 => 0.017806508263125
626 => 0.017828015302129
627 => 0.01775460069037
628 => 0.017710365731263
629 => 0.017952952969977
630 => 0.017823348394273
701 => 0.017933089209959
702 => 0.01780802570009
703 => 0.017374501087307
704 => 0.017125176498056
705 => 0.016306288692262
706 => 0.016538524258158
707 => 0.016692496678612
708 => 0.016641608794571
709 => 0.016750935660489
710 => 0.01675764744214
711 => 0.016722104163575
712 => 0.016680949600372
713 => 0.016660917834995
714 => 0.016810218202398
715 => 0.016896892090895
716 => 0.01670794987089
717 => 0.016663683352326
718 => 0.016854714368536
719 => 0.01697124317807
720 => 0.017831626435783
721 => 0.01776788646505
722 => 0.017927861283252
723 => 0.017909850573736
724 => 0.018077529669198
725 => 0.018351614123806
726 => 0.01779432379237
727 => 0.017891050124257
728 => 0.017867335061415
729 => 0.018126249899097
730 => 0.018127058202959
731 => 0.017971825824013
801 => 0.018055979814997
802 => 0.018009007365874
803 => 0.018093892930147
804 => 0.017767035178881
805 => 0.018165112637809
806 => 0.018390796905477
807 => 0.018393930531753
808 => 0.018500903083486
809 => 0.01860959339148
810 => 0.018818214972742
811 => 0.018603775048808
812 => 0.018218018500955
813 => 0.018245868877724
814 => 0.018019699954861
815 => 0.018023501895315
816 => 0.018003206839207
817 => 0.018064113830326
818 => 0.017780400838334
819 => 0.017846987710477
820 => 0.017753765699544
821 => 0.017890847477811
822 => 0.017743370144826
823 => 0.017867323625294
824 => 0.017920817838341
825 => 0.018118212636133
826 => 0.017714214772695
827 => 0.016890435780894
828 => 0.017063604112326
829 => 0.01680747454806
830 => 0.016831180314387
831 => 0.016879069735112
901 => 0.016723844454099
902 => 0.016753456546005
903 => 0.016752398593705
904 => 0.016743281732336
905 => 0.01670290164166
906 => 0.016644342521222
907 => 0.0168776240335
908 => 0.016917263108225
909 => 0.017005375861095
910 => 0.017267539646187
911 => 0.017241343301808
912 => 0.017284070626366
913 => 0.017190797116761
914 => 0.016835507004982
915 => 0.016854800967404
916 => 0.016614204946839
917 => 0.016999223279916
918 => 0.016908045856649
919 => 0.016849263178725
920 => 0.016833223780436
921 => 0.017096037418843
922 => 0.017174675378553
923 => 0.017125673479259
924 => 0.017025169154192
925 => 0.017218167169756
926 => 0.017269805296789
927 => 0.01728136516909
928 => 0.017623320648971
929 => 0.017300476681764
930 => 0.017378188433464
1001 => 0.017984473336427
1002 => 0.017434656591037
1003 => 0.017725906783446
1004 => 0.017711651602121
1005 => 0.017860645345188
1006 => 0.017699429766388
1007 => 0.017701428226702
1008 => 0.017833724576836
1009 => 0.017647938212846
1010 => 0.017601934896402
1011 => 0.017538381644217
1012 => 0.017677147845313
1013 => 0.017760331907015
1014 => 0.018430734352369
1015 => 0.018863844906133
1016 => 0.018845042434746
1017 => 0.01901686182647
1018 => 0.018939455616813
1019 => 0.018689490547106
1020 => 0.019116150441103
1021 => 0.018981137398434
1022 => 0.018992267709631
1023 => 0.018991853438892
1024 => 0.019081625309222
1025 => 0.019018013711623
1026 => 0.018892628723157
1027 => 0.018975865129973
1028 => 0.019223047500656
1029 => 0.019990309163739
1030 => 0.020419678955265
1031 => 0.019964460563157
1101 => 0.020278464114416
1102 => 0.020090173874566
1103 => 0.020055955936835
1104 => 0.020253173371706
1105 => 0.02045073600959
1106 => 0.020438152123643
1107 => 0.020294731793494
1108 => 0.020213717288148
1109 => 0.020827186264474
1110 => 0.02127917975606
1111 => 0.021248356830136
1112 => 0.021384399201009
1113 => 0.021783823809525
1114 => 0.021820342189975
1115 => 0.021815741713404
1116 => 0.021725227097158
1117 => 0.022118512496082
1118 => 0.022446598095061
1119 => 0.021704275578716
1120 => 0.021986942275225
1121 => 0.02211384046224
1122 => 0.022300164649774
1123 => 0.022614524785703
1124 => 0.022956003273229
1125 => 0.023004292075487
1126 => 0.022970028859453
1127 => 0.022744814617495
1128 => 0.023118464453232
1129 => 0.02333733976384
1130 => 0.023467675002435
1201 => 0.023798183481795
1202 => 0.022114624142242
1203 => 0.020922917163378
1204 => 0.020736814910171
1205 => 0.021115261160177
1206 => 0.021215054418251
1207 => 0.021174827881052
1208 => 0.019833453331082
1209 => 0.020729752850769
1210 => 0.021694095770949
1211 => 0.021731140109923
1212 => 0.022213910339224
1213 => 0.022371120115305
1214 => 0.022759813428033
1215 => 0.022735500555492
1216 => 0.02283014119168
1217 => 0.022808384948368
1218 => 0.023528357461163
1219 => 0.024322594059729
1220 => 0.024295092171839
1221 => 0.024180911263814
1222 => 0.024350489382969
1223 => 0.025170226668255
1224 => 0.025094758395049
1225 => 0.025168069394097
1226 => 0.026134585851819
1227 => 0.02739119473222
1228 => 0.026807373745805
1229 => 0.028074097296363
1230 => 0.028871432625309
1231 => 0.030250341630709
]
'min_raw' => 0.0123505443913
'max_raw' => 0.030250341630709
'avg_raw' => 0.021300443011005
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.01235'
'max' => '$0.03025'
'avg' => '$0.02130044'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0055070241556353
'max_diff' => 0.012272369855073
'year' => 2028
]
3 => [
'items' => [
101 => 0.030077695431963
102 => 0.030614494588864
103 => 0.029768622703858
104 => 0.027826329876973
105 => 0.02751895460232
106 => 0.028134327686157
107 => 0.029647162365542
108 => 0.028086683138382
109 => 0.028402366053664
110 => 0.028311449352825
111 => 0.028306604788209
112 => 0.028491502115355
113 => 0.028223298898733
114 => 0.027130590745379
115 => 0.027631372452692
116 => 0.027437996585985
117 => 0.027652561527222
118 => 0.028810480021762
119 => 0.028298536653996
120 => 0.027759245902958
121 => 0.028435636182958
122 => 0.029296913442316
123 => 0.02924301625929
124 => 0.029138433196943
125 => 0.029727962443599
126 => 0.030701692043211
127 => 0.030964887241224
128 => 0.031159172555608
129 => 0.031185961217985
130 => 0.031461901089521
131 => 0.029978102854467
201 => 0.032332928760139
202 => 0.032739542143296
203 => 0.032663115679661
204 => 0.033115049342132
205 => 0.032982078994183
206 => 0.032789425822412
207 => 0.033505836806477
208 => 0.032684529424632
209 => 0.031518786995827
210 => 0.030879237643614
211 => 0.031721447821583
212 => 0.032235756188184
213 => 0.032575681302351
214 => 0.03267854243651
215 => 0.030093285887623
216 => 0.028699975992674
217 => 0.029593071661006
218 => 0.030682710014541
219 => 0.029972049858396
220 => 0.02999990639106
221 => 0.028986691766601
222 => 0.030772357026377
223 => 0.030512200617837
224 => 0.031861892525554
225 => 0.031539777719823
226 => 0.032640399075829
227 => 0.032350568586954
228 => 0.033553638742068
301 => 0.034033575998767
302 => 0.034839465349035
303 => 0.035432280835651
304 => 0.035780393428146
305 => 0.03575949405383
306 => 0.037138889574298
307 => 0.036325508228286
308 => 0.035303709558432
309 => 0.035285228444228
310 => 0.035814432454345
311 => 0.036923498879519
312 => 0.037211063667307
313 => 0.03737177315337
314 => 0.037125640981127
315 => 0.036242773825598
316 => 0.035861556264078
317 => 0.036186364671429
318 => 0.035789151900344
319 => 0.036474852581456
320 => 0.037416466074385
321 => 0.037222026611638
322 => 0.037872008583607
323 => 0.038544671544496
324 => 0.039506609789752
325 => 0.039758096067532
326 => 0.040173793321536
327 => 0.04060168234534
328 => 0.040739108767853
329 => 0.041001498449346
330 => 0.041000115526205
331 => 0.041790844492246
401 => 0.042663043028626
402 => 0.042992277784667
403 => 0.043749334952073
404 => 0.042452901083338
405 => 0.043436261065132
406 => 0.044323276383808
407 => 0.043265740153534
408 => 0.044723307472627
409 => 0.044779901508709
410 => 0.045634404262011
411 => 0.04476820201862
412 => 0.044253853891511
413 => 0.045738757662103
414 => 0.046457255822663
415 => 0.04624083832937
416 => 0.044593890519565
417 => 0.043635296253344
418 => 0.041126470159618
419 => 0.044098283040858
420 => 0.04554576640634
421 => 0.044590141887335
422 => 0.045072103309362
423 => 0.047701528551428
424 => 0.04870264344093
425 => 0.048494418542235
426 => 0.048529605122441
427 => 0.049069788545296
428 => 0.051465259326678
429 => 0.050029837707896
430 => 0.051127163751233
501 => 0.051709181527916
502 => 0.052249792075102
503 => 0.050922223432931
504 => 0.049195076135324
505 => 0.04864801608546
506 => 0.044495123862221
507 => 0.044278947786904
508 => 0.044157601605024
509 => 0.043392531093025
510 => 0.042791395241044
511 => 0.042313349692805
512 => 0.041058815417743
513 => 0.041482183908336
514 => 0.039482718115539
515 => 0.040761905473054
516 => 0.03757070978896
517 => 0.040228432381565
518 => 0.038781954806228
519 => 0.039753225595178
520 => 0.039749836922894
521 => 0.037961419458755
522 => 0.036929897588759
523 => 0.037587223471752
524 => 0.038291928996914
525 => 0.038406265097458
526 => 0.039319934205526
527 => 0.039574919614336
528 => 0.038802301921511
529 => 0.037504579351517
530 => 0.037806010706626
531 => 0.036923789091969
601 => 0.035377729646446
602 => 0.036488136531829
603 => 0.036867278263643
604 => 0.03703472885164
605 => 0.035514356953095
606 => 0.035036623093693
607 => 0.034782281595522
608 => 0.037308318431428
609 => 0.037446700431505
610 => 0.036738718553869
611 => 0.039938863774377
612 => 0.039214572352024
613 => 0.040023783326499
614 => 0.037778658970604
615 => 0.03786442574446
616 => 0.036801547894666
617 => 0.037396688469027
618 => 0.036976062293345
619 => 0.037348606991912
620 => 0.037571908748175
621 => 0.038634612190173
622 => 0.040240566747829
623 => 0.038475879733975
624 => 0.037706980331255
625 => 0.038184001196248
626 => 0.039454370620799
627 => 0.041379045328008
628 => 0.040239599163652
629 => 0.040745266022342
630 => 0.040855731735413
701 => 0.040015546318407
702 => 0.041410024162761
703 => 0.042157336168267
704 => 0.042923923651487
705 => 0.043589530083873
706 => 0.042617731753069
707 => 0.043657695268848
708 => 0.042819668253403
709 => 0.042067871386909
710 => 0.042069011552427
711 => 0.041597398396075
712 => 0.040683588478562
713 => 0.040515067909413
714 => 0.041391733191928
715 => 0.042094735727993
716 => 0.042152638384018
717 => 0.042541856709558
718 => 0.042772192105346
719 => 0.045029792109846
720 => 0.045937817507502
721 => 0.047048133775716
722 => 0.047480664536181
723 => 0.048782427054321
724 => 0.04773114809694
725 => 0.047503697281656
726 => 0.044346047215922
727 => 0.044863112237291
728 => 0.045690983225857
729 => 0.0443596985036
730 => 0.045204092240369
731 => 0.045370793450712
801 => 0.04431446195816
802 => 0.044878694249721
803 => 0.043380260566549
804 => 0.040273228507375
805 => 0.041413483177635
806 => 0.042253094420517
807 => 0.041054865653604
808 => 0.043202644340439
809 => 0.041947956370741
810 => 0.041550280519991
811 => 0.039998805244537
812 => 0.040731041852792
813 => 0.041721402350074
814 => 0.041109474704519
815 => 0.042379316450444
816 => 0.044177751017097
817 => 0.045459422587925
818 => 0.045557813416554
819 => 0.044733784461838
820 => 0.046054296120652
821 => 0.046063914606451
822 => 0.04457437206086
823 => 0.043662035545493
824 => 0.043454750769629
825 => 0.043972588780311
826 => 0.04460133972345
827 => 0.045592704718014
828 => 0.046191765821534
829 => 0.047753799462058
830 => 0.04817644097817
831 => 0.048640795867475
901 => 0.049261317201332
902 => 0.050006412161031
903 => 0.048376186807489
904 => 0.048440958699905
905 => 0.046922915422693
906 => 0.045300668471565
907 => 0.046531751691534
908 => 0.048141229237506
909 => 0.047772013310145
910 => 0.04773046897592
911 => 0.04780033502265
912 => 0.047521958270885
913 => 0.046262870539775
914 => 0.045630564563519
915 => 0.046446400591349
916 => 0.046879981131456
917 => 0.047552426736966
918 => 0.047469533622482
919 => 0.04920168128689
920 => 0.049874741491852
921 => 0.049702543889553
922 => 0.049734232392543
923 => 0.050952775744081
924 => 0.052308046563546
925 => 0.053577436529711
926 => 0.054868714524862
927 => 0.05331202850227
928 => 0.052521639343044
929 => 0.053337119202386
930 => 0.052904414110309
1001 => 0.05539086591805
1002 => 0.05556302244644
1003 => 0.058049294455414
1004 => 0.060409062651694
1005 => 0.058926934527249
1006 => 0.060324514592084
1007 => 0.061836111378577
1008 => 0.064752226827463
1009 => 0.063770181734457
1010 => 0.063017950583823
1011 => 0.062307095781228
1012 => 0.063786271780406
1013 => 0.065689208072934
1014 => 0.066099082324248
1015 => 0.06676323519539
1016 => 0.066064959660133
1017 => 0.066905955629823
1018 => 0.069875040955184
1019 => 0.069072767891431
1020 => 0.06793341116907
1021 => 0.070277218879456
1022 => 0.071125433778523
1023 => 0.077078650153768
1024 => 0.084594831742617
1025 => 0.081483083210924
1026 => 0.079551520481805
1027 => 0.080005483540428
1028 => 0.082750138617873
1029 => 0.08363163471775
1030 => 0.081235424448356
1031 => 0.082081806424962
1101 => 0.086745454330499
1102 => 0.089247351804081
1103 => 0.085849438985296
1104 => 0.076474732281447
1105 => 0.067830824562193
1106 => 0.070123578129577
1107 => 0.069863651027462
1108 => 0.074874158900037
1109 => 0.069053633944189
1110 => 0.069151636656878
1111 => 0.074265756526037
1112 => 0.072901397023156
1113 => 0.070691309362452
1114 => 0.067846960647946
1115 => 0.06258891897877
1116 => 0.057931724841041
1117 => 0.067065555032882
1118 => 0.066671687666217
1119 => 0.066101309351413
1120 => 0.06737062456963
1121 => 0.073534058967876
1122 => 0.073391971855906
1123 => 0.072488086143036
1124 => 0.073173675489765
1125 => 0.070571122235194
1126 => 0.071241859467933
1127 => 0.067829455323047
1128 => 0.069372004511121
1129 => 0.070686567506932
1130 => 0.070950485490779
1201 => 0.071545106184373
1202 => 0.066464137461457
1203 => 0.068745343248642
1204 => 0.070085337928536
1205 => 0.064031193215348
1206 => 0.069965666953116
1207 => 0.066375689100126
1208 => 0.065157196697163
1209 => 0.066797736193585
1210 => 0.066158416356352
1211 => 0.06560876670242
1212 => 0.065302052751346
1213 => 0.066506683897782
1214 => 0.066450486414955
1215 => 0.064479476050556
1216 => 0.061908373378859
1217 => 0.062771319829049
1218 => 0.062457803293529
1219 => 0.061321578924366
1220 => 0.062087256960928
1221 => 0.058715598388694
1222 => 0.052914835058729
1223 => 0.05674699699669
1224 => 0.056599462930669
1225 => 0.056525069564443
1226 => 0.059404833347645
1227 => 0.059128010507344
1228 => 0.058625574341542
1229 => 0.061312351290166
1230 => 0.060331641561668
1231 => 0.063353957860624
]
'min_raw' => 0.027130590745379
'max_raw' => 0.089247351804081
'avg_raw' => 0.05818897127473
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.02713'
'max' => '$0.089247'
'avg' => '$0.058188'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.014780046354079
'max_diff' => 0.058997010173372
'year' => 2029
]
4 => [
'items' => [
101 => 0.065344650846279
102 => 0.064839746712945
103 => 0.066712003087807
104 => 0.062791200372354
105 => 0.064093533759126
106 => 0.064361942865183
107 => 0.061279196879677
108 => 0.059173302147544
109 => 0.059032862977868
110 => 0.055381531722518
111 => 0.05733204340661
112 => 0.059048412970953
113 => 0.058226405145291
114 => 0.057966182024472
115 => 0.059295605513228
116 => 0.059398913104047
117 => 0.057043489085336
118 => 0.057533256325404
119 => 0.059575667133516
120 => 0.057481792813326
121 => 0.053413737041625
122 => 0.052404802964972
123 => 0.052270192560803
124 => 0.049533883325349
125 => 0.05247222476438
126 => 0.051189559983588
127 => 0.055241482657427
128 => 0.052927046157028
129 => 0.052827275425301
130 => 0.052676457331112
131 => 0.050321202936646
201 => 0.050836853964809
202 => 0.052550956518291
203 => 0.05316256762012
204 => 0.053098771571418
205 => 0.052542556480653
206 => 0.052797188900923
207 => 0.051976929155418
208 => 0.05168727836705
209 => 0.050773060804234
210 => 0.049429413545942
211 => 0.049616255938275
212 => 0.046954139135169
213 => 0.045503676611605
214 => 0.045102207701871
215 => 0.044565346697234
216 => 0.045162847580877
217 => 0.046946597692743
218 => 0.044795016614136
219 => 0.041106281770728
220 => 0.041327981020116
221 => 0.04182607341039
222 => 0.040897881536324
223 => 0.040019425824759
224 => 0.0407831717946
225 => 0.039220206213716
226 => 0.042014950333684
227 => 0.041939360337419
228 => 0.042981068119526
301 => 0.043632469373673
302 => 0.042131200376524
303 => 0.041753635283604
304 => 0.041968713519908
305 => 0.038413949366497
306 => 0.042690568049581
307 => 0.042727552425543
308 => 0.042410869744692
309 => 0.044688037167646
310 => 0.04949357069641
311 => 0.04768553568075
312 => 0.04698540987454
313 => 0.045654470205144
314 => 0.047427868291236
315 => 0.047291698987544
316 => 0.046675889755573
317 => 0.046303446410635
318 => 0.046989684693419
319 => 0.046218413893135
320 => 0.0460798724643
321 => 0.04524046214012
322 => 0.044940830845124
323 => 0.044718995762975
324 => 0.044474777134593
325 => 0.045013462573312
326 => 0.043792730499203
327 => 0.042320647287668
328 => 0.04219825949679
329 => 0.042536182947849
330 => 0.042386676976197
331 => 0.042197543719717
401 => 0.041836436825717
402 => 0.041729304124096
403 => 0.042077433430968
404 => 0.041684415740709
405 => 0.042264334751468
406 => 0.042106628868924
407 => 0.041225696628884
408 => 0.040127728894906
409 => 0.040117954679008
410 => 0.039881399331751
411 => 0.039580110530684
412 => 0.039496298878781
413 => 0.040718851239281
414 => 0.043249498037603
415 => 0.042752671517847
416 => 0.0431116795952
417 => 0.044877644012426
418 => 0.045438990996259
419 => 0.045040560203367
420 => 0.044495163559914
421 => 0.044519158244291
422 => 0.046382943677761
423 => 0.04649918568908
424 => 0.046792891750591
425 => 0.047170387040956
426 => 0.045104849283651
427 => 0.044421871601673
428 => 0.044098238885792
429 => 0.043101575382502
430 => 0.044176391523329
501 => 0.043550142186285
502 => 0.043634644617576
503 => 0.043579612298342
504 => 0.043609663665913
505 => 0.042014169145745
506 => 0.042595483492171
507 => 0.041628935643466
508 => 0.040334836574139
509 => 0.040330498300289
510 => 0.040647227214158
511 => 0.040458824462585
512 => 0.039951837502379
513 => 0.040023852607166
514 => 0.039392924511384
515 => 0.040100458701315
516 => 0.040120748250204
517 => 0.039848309047432
518 => 0.040938363087924
519 => 0.041384959117713
520 => 0.041205633798236
521 => 0.041372377175254
522 => 0.04277331690278
523 => 0.043001731205652
524 => 0.043103177750786
525 => 0.042967252819398
526 => 0.041397983781732
527 => 0.0414675875366
528 => 0.040956881366198
529 => 0.040525388469098
530 => 0.0405426459221
531 => 0.040764489361359
601 => 0.041733292671551
602 => 0.043772082123774
603 => 0.04384945269315
604 => 0.043943228080293
605 => 0.04356179645305
606 => 0.043446753024465
607 => 0.043598525001998
608 => 0.044364187125796
609 => 0.046333677983444
610 => 0.04563752837648
611 => 0.045071547909803
612 => 0.045568065366317
613 => 0.045491630395719
614 => 0.044846442322438
615 => 0.044828334042087
616 => 0.043590011850356
617 => 0.043132232331306
618 => 0.042749677500984
619 => 0.042331937613119
620 => 0.042084287404825
621 => 0.042464790679772
622 => 0.042551816280734
623 => 0.041719839220005
624 => 0.041606443820888
625 => 0.042285854248152
626 => 0.041986871050087
627 => 0.042294382683723
628 => 0.042365728020513
629 => 0.042354239778067
630 => 0.042042066981286
701 => 0.042241036612828
702 => 0.041770414118529
703 => 0.041258682841193
704 => 0.040932230168238
705 => 0.040647356913421
706 => 0.040805421152124
707 => 0.040241951002537
708 => 0.04006168556127
709 => 0.04217363017862
710 => 0.043733746374687
711 => 0.043711061667322
712 => 0.043572974345273
713 => 0.043367804594698
714 => 0.044349177680618
715 => 0.044007286920658
716 => 0.044256041014458
717 => 0.044319359371506
718 => 0.044511004968023
719 => 0.044579501796282
720 => 0.044372456807177
721 => 0.043677588535324
722 => 0.04194604286796
723 => 0.041140003685584
724 => 0.040873997329755
725 => 0.040883666155572
726 => 0.040616956776017
727 => 0.040695514641372
728 => 0.040589637556371
729 => 0.040389131971798
730 => 0.040793040497287
731 => 0.040839587192181
801 => 0.040745310115984
802 => 0.040767515780309
803 => 0.039986941855668
804 => 0.040046287195841
805 => 0.039715844800517
806 => 0.039653890834936
807 => 0.038818561234468
808 => 0.037338653764276
809 => 0.038158666160856
810 => 0.037168206496979
811 => 0.036793104414356
812 => 0.038568779333152
813 => 0.038390550820861
814 => 0.03808550108189
815 => 0.037634268940016
816 => 0.03746690254929
817 => 0.036450037341004
818 => 0.036389955519734
819 => 0.036893941374631
820 => 0.03666136924369
821 => 0.036334749889896
822 => 0.035151767699327
823 => 0.033821704045184
824 => 0.03386185030642
825 => 0.034284918808089
826 => 0.035515047535252
827 => 0.035034414960106
828 => 0.034685710512215
829 => 0.034620408651142
830 => 0.035437798161175
831 => 0.036594575566269
901 => 0.037137309643303
902 => 0.036599476656041
903 => 0.035981643079259
904 => 0.036019247746313
905 => 0.036269414749032
906 => 0.036295703763847
907 => 0.03589355761968
908 => 0.036006759403679
909 => 0.035834795542397
910 => 0.034779453643131
911 => 0.034760365854698
912 => 0.034501367932931
913 => 0.034493525578793
914 => 0.034052905503808
915 => 0.033991259709454
916 => 0.033116381806845
917 => 0.033692229091717
918 => 0.033305980966364
919 => 0.032723813934736
920 => 0.032623448119051
921 => 0.032620431001436
922 => 0.033218186372752
923 => 0.033685243972173
924 => 0.033312699917872
925 => 0.033227878858171
926 => 0.034133545865792
927 => 0.034018291483734
928 => 0.033918481932183
929 => 0.036490998837288
930 => 0.0344546509709
1001 => 0.033566687070482
1002 => 0.032467663123944
1003 => 0.032825510862696
1004 => 0.032900914639129
1005 => 0.03025796016166
1006 => 0.02918571385931
1007 => 0.028817759335093
1008 => 0.028605996304293
1009 => 0.028702499376581
1010 => 0.027737351942519
1011 => 0.028385946980274
1012 => 0.027550210884258
1013 => 0.02741009700804
1014 => 0.028904496675553
1015 => 0.029112433659131
1016 => 0.02822530988623
1017 => 0.028794986960725
1018 => 0.02858841413441
1019 => 0.027564537180916
1020 => 0.027525432612422
1021 => 0.027011687148174
1022 => 0.026207774977351
1023 => 0.025840365543441
1024 => 0.025649015520266
1025 => 0.025727970269165
1026 => 0.025688048332067
1027 => 0.025427530688258
1028 => 0.025702980898459
1029 => 0.024999319435281
1030 => 0.024719115770857
1031 => 0.024592554276313
1101 => 0.0239680142265
1102 => 0.024961935179973
1103 => 0.025157750128894
1104 => 0.025353950893754
1105 => 0.027061744599911
1106 => 0.026976428052527
1107 => 0.02774764809004
1108 => 0.027717679897565
1109 => 0.02749771544993
1110 => 0.026569721627752
1111 => 0.026939603425373
1112 => 0.02580116474469
1113 => 0.026654160410563
1114 => 0.02626488881061
1115 => 0.026522547291047
1116 => 0.026059254111092
1117 => 0.026315659685786
1118 => 0.025204185117539
1119 => 0.024166305804579
1120 => 0.0245839787377
1121 => 0.025038036982696
1122 => 0.026022550949737
1123 => 0.025436182553031
1124 => 0.02564706280153
1125 => 0.024940649269985
1126 => 0.023483116377358
1127 => 0.023491365855243
1128 => 0.023267156173792
1129 => 0.023073406273869
1130 => 0.025503534017056
1201 => 0.025201309217556
1202 => 0.024719753553757
1203 => 0.025364334946013
1204 => 0.025534772497008
1205 => 0.025539624614478
1206 => 0.026009894559215
1207 => 0.026260877713021
1208 => 0.026305114581703
1209 => 0.0270450945006
1210 => 0.027293126008843
1211 => 0.028314732688565
1212 => 0.026239583545942
1213 => 0.02619684721494
1214 => 0.025373405528074
1215 => 0.024851165792165
1216 => 0.025409163729587
1217 => 0.025903473727828
1218 => 0.025388765117603
1219 => 0.025455975196007
1220 => 0.024765020940018
1221 => 0.025012004574114
1222 => 0.025224740152087
1223 => 0.025107280069949
1224 => 0.024931436641858
1225 => 0.025862945945009
1226 => 0.025810386539511
1227 => 0.026677829417912
1228 => 0.027354063173061
1229 => 0.02856599495353
1230 => 0.027301280961178
1231 => 0.027255189756514
]
'min_raw' => 0.023073406273869
'max_raw' => 0.066712003087807
'avg_raw' => 0.044892704680838
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.023073'
'max' => '$0.066712'
'avg' => '$0.044892'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0040571844715094
'max_diff' => -0.022535348716274
'year' => 2030
]
5 => [
'items' => [
101 => 0.027705738675367
102 => 0.027293057032151
103 => 0.027553857585378
104 => 0.028523975952445
105 => 0.028544473024848
106 => 0.028201120653102
107 => 0.028180227630077
108 => 0.028246172208934
109 => 0.028632411667043
110 => 0.02849744773244
111 => 0.028653631414431
112 => 0.028848941500331
113 => 0.029656826825372
114 => 0.029851605242157
115 => 0.029378394670401
116 => 0.029421120286716
117 => 0.029244126542959
118 => 0.029073152804214
119 => 0.029457476800203
120 => 0.030159836456778
121 => 0.030155467113807
122 => 0.030318400902212
123 => 0.030419907302572
124 => 0.029984167525001
125 => 0.029700516952398
126 => 0.029809286631089
127 => 0.029983211716011
128 => 0.029752885070153
129 => 0.028331202314233
130 => 0.028762450044933
131 => 0.028690669335608
201 => 0.028588444876696
202 => 0.029022067804655
203 => 0.028980243815423
204 => 0.027727452960582
205 => 0.027807652566439
206 => 0.027732330164243
207 => 0.02797571225525
208 => 0.027279913600525
209 => 0.027493936580443
210 => 0.027628169787107
211 => 0.02770723417706
212 => 0.02799286896853
213 => 0.027959353022535
214 => 0.027990785570268
215 => 0.028414306561229
216 => 0.030556330398656
217 => 0.030672916030018
218 => 0.030098805742
219 => 0.030328151478238
220 => 0.02988785781706
221 => 0.03018342990152
222 => 0.030385652814991
223 => 0.029471846354247
224 => 0.029417736666196
225 => 0.028975625756457
226 => 0.029213191116909
227 => 0.028835207546876
228 => 0.028927951493658
301 => 0.028668631333183
302 => 0.029135355991909
303 => 0.029657226682044
304 => 0.02978907182767
305 => 0.029442244012432
306 => 0.029191117817132
307 => 0.028750222944298
308 => 0.029483440943804
309 => 0.029697856231274
310 => 0.029482314711579
311 => 0.02943236903179
312 => 0.029337722058841
313 => 0.029452448834526
314 => 0.02969668847957
315 => 0.029581509573366
316 => 0.029657587270105
317 => 0.029367657541115
318 => 0.029984311772999
319 => 0.030963707099153
320 => 0.030966856015274
321 => 0.030851676488212
322 => 0.030804547507316
323 => 0.030922728691759
324 => 0.030986837136274
325 => 0.031369013416041
326 => 0.031779103790807
327 => 0.033692816633388
328 => 0.033155453725037
329 => 0.034853413606262
330 => 0.036196279419814
331 => 0.036598946160893
401 => 0.036228511706035
402 => 0.034961275446439
403 => 0.034899098789874
404 => 0.036792884775058
405 => 0.03625780349335
406 => 0.036194157277506
407 => 0.035517069072898
408 => 0.035917312060827
409 => 0.035829773048156
410 => 0.035691588434101
411 => 0.036455224173901
412 => 0.037884682108573
413 => 0.037661887684083
414 => 0.037495581981337
415 => 0.036766878802766
416 => 0.037205720878013
417 => 0.037049457620484
418 => 0.037720863741943
419 => 0.037323137629057
420 => 0.036253749726374
421 => 0.036424053274625
422 => 0.03639831223591
423 => 0.036928060988634
424 => 0.036769043562239
425 => 0.036367261531268
426 => 0.037879796376754
427 => 0.037781580777049
428 => 0.037920828042219
429 => 0.037982128994712
430 => 0.038902782301306
501 => 0.039279944503397
502 => 0.039365566926426
503 => 0.039723841847641
504 => 0.039356652720005
505 => 0.040825671031962
506 => 0.041802482489818
507 => 0.042937099264376
508 => 0.044595079328243
509 => 0.04521849516943
510 => 0.045105880677699
511 => 0.046362942239858
512 => 0.04862185392415
513 => 0.045562471313851
514 => 0.048784008631257
515 => 0.047764107111003
516 => 0.045345938953726
517 => 0.045190237432727
518 => 0.046827848984345
519 => 0.050459913791562
520 => 0.049550122751892
521 => 0.05046140188378
522 => 0.049398346370992
523 => 0.049345556704647
524 => 0.050409771650308
525 => 0.052896367878181
526 => 0.051715079218984
527 => 0.050021412262163
528 => 0.051271989586703
529 => 0.050188623772719
530 => 0.047747497378813
531 => 0.049549427051831
601 => 0.048344527995486
602 => 0.048696181596084
603 => 0.051228700197312
604 => 0.050923980858999
605 => 0.051318315899027
606 => 0.050622324874923
607 => 0.049972159510699
608 => 0.048758577576461
609 => 0.048399295794599
610 => 0.048498588353502
611 => 0.048399246590138
612 => 0.047720258651326
613 => 0.047573631270587
614 => 0.047329245878794
615 => 0.047404991130606
616 => 0.046945475096569
617 => 0.047812676793655
618 => 0.047973637070389
619 => 0.048604714146908
620 => 0.04867023466251
621 => 0.050427775337795
622 => 0.049459751468119
623 => 0.050109185455058
624 => 0.050051093966556
625 => 0.045398347990221
626 => 0.046039455334235
627 => 0.047036817170953
628 => 0.046587507015403
629 => 0.045952287577841
630 => 0.045439313823698
701 => 0.044662106131912
702 => 0.045756011033149
703 => 0.047194379654459
704 => 0.048706714064416
705 => 0.050523684765903
706 => 0.050118158057202
707 => 0.04867274706101
708 => 0.048737587142426
709 => 0.049138403012107
710 => 0.048619310042908
711 => 0.048466219392393
712 => 0.049117370707593
713 => 0.049121854828834
714 => 0.04852457563329
715 => 0.047860809108383
716 => 0.047858027902407
717 => 0.047739917060524
718 => 0.049419358027379
719 => 0.050342880748515
720 => 0.050448761140162
721 => 0.050335754154546
722 => 0.050379246058223
723 => 0.049841868535228
724 => 0.05107015419844
725 => 0.052197350587866
726 => 0.051895237876461
727 => 0.051442327974213
728 => 0.051081563421976
729 => 0.051810253213216
730 => 0.051777805803877
731 => 0.052187505510749
801 => 0.052168919165505
802 => 0.052031152563669
803 => 0.05189524279654
804 => 0.052434109660662
805 => 0.052278924657732
806 => 0.052123498609629
807 => 0.051811767875622
808 => 0.051854137259672
809 => 0.051401305558705
810 => 0.051191804893668
811 => 0.048041417553902
812 => 0.047199531114841
813 => 0.047464405726748
814 => 0.047551609326455
815 => 0.047185219269268
816 => 0.04771052849339
817 => 0.047628659607251
818 => 0.047947163551522
819 => 0.047748176114975
820 => 0.047756342628781
821 => 0.048341522251071
822 => 0.048511402384954
823 => 0.04842499997776
824 => 0.048485513262058
825 => 0.049880016357627
826 => 0.049681762611135
827 => 0.049576444259656
828 => 0.049605618162774
829 => 0.049961943602175
830 => 0.05006169527056
831 => 0.049639040442189
901 => 0.049838366902587
902 => 0.050687073672669
903 => 0.050984073009555
904 => 0.051931952325125
905 => 0.05152927634466
906 => 0.052268405534212
907 => 0.054540236675187
908 => 0.056355132589356
909 => 0.054686079302941
910 => 0.058018904523711
911 => 0.060613987023463
912 => 0.060514383434786
913 => 0.060061870775615
914 => 0.057107438343485
915 => 0.054388725571333
916 => 0.05666304424788
917 => 0.056668841953904
918 => 0.056473475962595
919 => 0.055260074569435
920 => 0.056431252224313
921 => 0.056524216053465
922 => 0.056472181030218
923 => 0.055541869027051
924 => 0.054121454548614
925 => 0.054399000137709
926 => 0.054853625474423
927 => 0.053992924867243
928 => 0.05371787887156
929 => 0.054229241707176
930 => 0.055876959310209
1001 => 0.055565467841934
1002 => 0.055557333540861
1003 => 0.056890026135082
1004 => 0.055936105850682
1005 => 0.054402500876412
1006 => 0.054015245394644
1007 => 0.052640749320919
1008 => 0.053590118654828
1009 => 0.053624284767025
1010 => 0.053104324885163
1011 => 0.054444692755162
1012 => 0.054432341029273
1013 => 0.055704820834408
1014 => 0.058137324300237
1015 => 0.057417913329166
1016 => 0.056581316641501
1017 => 0.05667227789776
1018 => 0.057669898367412
1019 => 0.057066714258
1020 => 0.057283623469294
1021 => 0.057669570049342
1022 => 0.0579024212036
1023 => 0.056638774200038
1024 => 0.056344157636285
1025 => 0.055741475543207
1026 => 0.055584247034718
1027 => 0.056075119024155
1028 => 0.055945791597701
1029 => 0.053621413237593
1030 => 0.053378502766242
1031 => 0.053385952483603
1101 => 0.052775142553629
1102 => 0.051843510799238
1103 => 0.054291783424935
1104 => 0.054095152869538
1105 => 0.053878087954376
1106 => 0.053904677167928
1107 => 0.054967389335085
1108 => 0.054350962609883
1109 => 0.055989834089185
1110 => 0.055652931382027
1111 => 0.05530738839168
1112 => 0.055259623824917
1113 => 0.055126619253976
1114 => 0.054670497091399
1115 => 0.054119702171394
1116 => 0.053756019656168
1117 => 0.049587086600367
1118 => 0.050360816325956
1119 => 0.051250921847562
1120 => 0.051558182706746
1121 => 0.051032591745307
1122 => 0.054691250626071
1123 => 0.055359722859301
1124 => 0.053334876861483
1125 => 0.052956110849209
1126 => 0.054716082462778
1127 => 0.053654604432016
1128 => 0.054132587924273
1129 => 0.053099449057005
1130 => 0.055198707473468
1201 => 0.055182714641554
1202 => 0.054366055703649
1203 => 0.055056290245727
1204 => 0.054936345008203
1205 => 0.05401433907865
1206 => 0.055227936705987
1207 => 0.055228538635269
1208 => 0.054442522163231
1209 => 0.053524627005022
1210 => 0.05336052903045
1211 => 0.053236903250072
1212 => 0.054102183560698
1213 => 0.054877991181544
1214 => 0.05632157682492
1215 => 0.056684528554413
1216 => 0.058101153317691
1217 => 0.057257622245367
1218 => 0.057631548644172
1219 => 0.058037498645193
1220 => 0.058232126004
1221 => 0.057914991167105
1222 => 0.06011559253049
1223 => 0.060301390710244
1224 => 0.060363687232767
1225 => 0.059621656834577
1226 => 0.060280753502547
1227 => 0.059972383998591
1228 => 0.060774675780368
1229 => 0.060900485375926
1230 => 0.060793929124295
1231 => 0.060833863075694
]
'min_raw' => 0.027279913600525
'max_raw' => 0.060900485375926
'avg_raw' => 0.044090199488226
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.027279'
'max' => '$0.06090048'
'avg' => '$0.04409'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0042065073266557
'max_diff' => -0.0058115177118808
'year' => 2031
]
6 => [
'items' => [
101 => 0.058956038024727
102 => 0.058858662889518
103 => 0.05753094601152
104 => 0.058072000453292
105 => 0.057060525107813
106 => 0.057381274359215
107 => 0.057522657573022
108 => 0.057448807005556
109 => 0.058102590859638
110 => 0.057546741024451
111 => 0.056079761919219
112 => 0.05461238313651
113 => 0.054593961391194
114 => 0.054207626459094
115 => 0.053928377063958
116 => 0.053982170404366
117 => 0.054171745152338
118 => 0.053917358634978
119 => 0.05397164489618
120 => 0.054873158539611
121 => 0.0550539506715
122 => 0.054439548367296
123 => 0.051972634458086
124 => 0.05136724759698
125 => 0.0518023876674
126 => 0.051594418740349
127 => 0.041640722702742
128 => 0.043979195941518
129 => 0.042589754550085
130 => 0.043230073068382
131 => 0.041811813201833
201 => 0.042488681147518
202 => 0.04236368835321
203 => 0.046123884120707
204 => 0.046065173835778
205 => 0.046093275342294
206 => 0.044751917218175
207 => 0.046888737131739
208 => 0.047941411458719
209 => 0.047746589456815
210 => 0.047795621957419
211 => 0.046953081144596
212 => 0.046101432979065
213 => 0.045156824095779
214 => 0.046911790643739
215 => 0.046716668321884
216 => 0.047164208725424
217 => 0.048302429979375
218 => 0.048470037382701
219 => 0.048695303432479
220 => 0.048614561589163
221 => 0.050538159868907
222 => 0.05030519942492
223 => 0.050866567067635
224 => 0.049711791235504
225 => 0.048405052769121
226 => 0.048653421031081
227 => 0.048629501170203
228 => 0.048324973887285
229 => 0.048050060272602
301 => 0.047592406560584
302 => 0.049040490625413
303 => 0.048981701056893
304 => 0.049933435835834
305 => 0.049765207468998
306 => 0.048641737262801
307 => 0.048681862221003
308 => 0.048951721848308
309 => 0.049885709099616
310 => 0.050162980106505
311 => 0.050034537128775
312 => 0.050338552129926
313 => 0.050578833191147
314 => 0.050368727731784
315 => 0.053343377963166
316 => 0.052108095795206
317 => 0.052710163728832
318 => 0.052853753383411
319 => 0.052485951502571
320 => 0.052565714560527
321 => 0.052686533859199
322 => 0.053420124981888
323 => 0.055345280354128
324 => 0.056197918563517
325 => 0.058763122684892
326 => 0.056127118829524
327 => 0.055970709269615
328 => 0.056432779993617
329 => 0.057938826367298
330 => 0.059159335497422
331 => 0.059564248788746
401 => 0.059617764764584
402 => 0.060377409017233
403 => 0.060812822936325
404 => 0.060285168224334
405 => 0.059838036103673
406 => 0.058236464347547
407 => 0.058421850639254
408 => 0.059698978350373
409 => 0.061502996464776
410 => 0.063051031683028
411 => 0.062508963704071
412 => 0.066644559743162
413 => 0.067054587198043
414 => 0.066997934661553
415 => 0.067932038224039
416 => 0.066078032879388
417 => 0.065285409674888
418 => 0.059934711143325
419 => 0.061438039178537
420 => 0.063623214765078
421 => 0.063333998582212
422 => 0.061747065661355
423 => 0.063049827852104
424 => 0.062619093930702
425 => 0.062279356215726
426 => 0.06383576054943
427 => 0.062124430050956
428 => 0.063606142934256
429 => 0.061705830835066
430 => 0.062511439824938
501 => 0.062054137199365
502 => 0.062350068043013
503 => 0.060620062377907
504 => 0.061553531441284
505 => 0.060581226995909
506 => 0.060580765997004
507 => 0.060559302322482
508 => 0.061703214190609
509 => 0.06174051711556
510 => 0.06089516451666
511 => 0.060773336000269
512 => 0.061223799878277
513 => 0.060696424653806
514 => 0.060943180202076
515 => 0.06070389862799
516 => 0.060650031305622
517 => 0.060220807316225
518 => 0.060035885819833
519 => 0.060108398303408
520 => 0.059860875814219
521 => 0.059711734561203
522 => 0.060529634373426
523 => 0.06009266349774
524 => 0.060462662319683
525 => 0.060041001964505
526 => 0.058579343464785
527 => 0.057738728204838
528 => 0.054977790794683
529 => 0.055760789219271
530 => 0.056279917984843
531 => 0.056108345930918
601 => 0.05647694909232
602 => 0.056499578332759
603 => 0.056379741687523
604 => 0.056240986204364
605 => 0.056173447708823
606 => 0.056676824321341
607 => 0.056969051387785
608 => 0.056332019501515
609 => 0.056182771843585
610 => 0.056826846252099
611 => 0.057219731269223
612 => 0.060120573492643
613 => 0.059905669731135
614 => 0.060445035999787
615 => 0.060384311635186
616 => 0.060949653412518
617 => 0.061873748287194
618 => 0.059994805025987
619 => 0.060320924607163
620 => 0.06024096761706
621 => 0.06111391706916
622 => 0.061116642322064
623 => 0.060593265518471
624 => 0.060876996574517
625 => 0.060718625682786
626 => 0.061004823289254
627 => 0.059902799560379
628 => 0.061244945506038
629 => 0.062005855771253
630 => 0.062016421011023
701 => 0.062377086437778
702 => 0.062743543399693
703 => 0.063446925626414
704 => 0.062723926451151
705 => 0.061423321317403
706 => 0.061517220807131
707 => 0.060754676493088
708 => 0.060767495000772
709 => 0.06069906880215
710 => 0.060904420975097
711 => 0.059947862814387
712 => 0.060172365102764
713 => 0.059858060584352
714 => 0.060320241370523
715 => 0.059823011245824
716 => 0.060240929059378
717 => 0.060421288533513
718 => 0.061086818875933
719 => 0.059724711873122
720 => 0.056947283487853
721 => 0.057531132607501
722 => 0.056667573899183
723 => 0.056747499545438
724 => 0.056908962070945
725 => 0.056385609198527
726 => 0.05648544843384
727 => 0.056481881473796
728 => 0.056451143339171
729 => 0.056314999044208
730 => 0.056117562881184
731 => 0.056904087787026
801 => 0.057037733694972
802 => 0.057334811993111
803 => 0.058218715498238
804 => 0.058130392694196
805 => 0.058274450852067
806 => 0.057959972702287
807 => 0.056762087284861
808 => 0.056827138226228
809 => 0.056015951945013
810 => 0.057314068136105
811 => 0.057006657087758
812 => 0.056808467185061
813 => 0.056754389233894
814 => 0.057640483764844
815 => 0.057905617136335
816 => 0.057740403811661
817 => 0.057401546462711
818 => 0.058052252746876
819 => 0.058226354297424
820 => 0.058265329213974
821 => 0.05941825598896
822 => 0.058329765013277
823 => 0.058591775609794
824 => 0.060635907489593
825 => 0.058782161945532
826 => 0.05976413230368
827 => 0.059716069964576
828 => 0.060218412771739
829 => 0.059674863192101
830 => 0.059681601140578
831 => 0.06012764752169
901 => 0.059501255824308
902 => 0.059346152431069
903 => 0.059131878204182
904 => 0.059599738139524
905 => 0.059880199011277
906 => 0.062140507661792
907 => 0.063600770132621
908 => 0.063537376287594
909 => 0.064116677362836
910 => 0.06385569692265
911 => 0.063012922238128
912 => 0.064451435859183
913 => 0.063996229959515
914 => 0.064033756580808
915 => 0.06403235983809
916 => 0.064335031966579
917 => 0.064120561024051
918 => 0.063697816781338
919 => 0.063978454138299
920 => 0.06481184675878
921 => 0.067398723024362
922 => 0.068846373254134
923 => 0.067311572662807
924 => 0.068370257558905
925 => 0.067735423869245
926 => 0.067620055703168
927 => 0.068284988054117
928 => 0.068951084281124
929 => 0.068908656831077
930 => 0.06842510517469
1001 => 0.068151959113665
1002 => 0.070220312598384
1003 => 0.071744240212443
1004 => 0.071640318565704
1005 => 0.072098994917278
1006 => 0.073445682871823
1007 => 0.073568807141144
1008 => 0.073553296313188
1009 => 0.073248119964988
1010 => 0.074574109145767
1011 => 0.075680272648932
1012 => 0.073177480457772
1013 => 0.07413051096021
1014 => 0.07455835705748
1015 => 0.075186562064489
1016 => 0.076246449210697
1017 => 0.07739776777266
1018 => 0.077560576840887
1019 => 0.077445056015848
1020 => 0.07668573047513
1021 => 0.077945516983717
1022 => 0.078683470374818
1023 => 0.079122904731456
1024 => 0.080237237144984
1025 => 0.074560999289321
1026 => 0.070543076007756
1027 => 0.069915619267824
1028 => 0.071191577221993
1029 => 0.071528037158933
1030 => 0.071392410580238
1031 => 0.066869872633233
1101 => 0.069891809041494
1102 => 0.073143158525152
1103 => 0.073268056100356
1104 => 0.074895749634387
1105 => 0.07542579337048
1106 => 0.076736300012043
1107 => 0.076654327464801
1108 => 0.076973414977307
1109 => 0.076900062284007
1110 => 0.079327499877772
1111 => 0.082005324021666
1112 => 0.081912599486523
1113 => 0.081527630583261
1114 => 0.082099375051557
1115 => 0.084863176541131
1116 => 0.084608729988987
1117 => 0.084855903140689
1118 => 0.088114580857922
1119 => 0.092351325431826
1120 => 0.090382932215047
1121 => 0.094653779105567
1122 => 0.097342050835284
1123 => 0.10199113881934
1124 => 0.1014090501065
1125 => 0.10321890594211
1126 => 0.10036698982492
1127 => 0.093818413952527
1128 => 0.092782076753779
1129 => 0.094856850069911
1130 => 0.099957477814201
1201 => 0.09469621315065
1202 => 0.095760560139801
1203 => 0.095454028135323
1204 => 0.095437694347481
1205 => 0.096061088595074
1206 => 0.095156822724883
1207 => 0.091472680895401
1208 => 0.093161101385069
1209 => 0.092509121149397
1210 => 0.093232541829221
1211 => 0.097136544876851
1212 => 0.095410492069685
1213 => 0.09359223565048
1214 => 0.095872732703563
1215 => 0.098776589115947
1216 => 0.098594871000392
1217 => 0.098242261903935
1218 => 0.10022990091865
1219 => 0.10351289824737
1220 => 0.10440027923318
1221 => 0.10505532573519
1222 => 0.10514564558072
1223 => 0.10607599612311
1224 => 0.10107326677814
1225 => 0.10901272672781
1226 => 0.11038365213796
1227 => 0.11012597497989
1228 => 0.11164970087591
1229 => 0.11120138206411
1230 => 0.11055183844487
1231 => 0.11296726809586
]
'min_raw' => 0.041640722702742
'max_raw' => 0.11296726809586
'avg_raw' => 0.077303995399301
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.04164'
'max' => '$0.112967'
'avg' => '$0.0773039'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.014360809102217
'max_diff' => 0.052066782719933
'year' => 2032
]
7 => [
'items' => [
101 => 0.11019817291612
102 => 0.10626779092787
103 => 0.10411150563497
104 => 0.10695107605123
105 => 0.10868510261709
106 => 0.10983118387232
107 => 0.11017798736767
108 => 0.10146161441625
109 => 0.096763972827636
110 => 0.099775107227365
111 => 0.10344889901243
112 => 0.10105285867928
113 => 0.10114677892403
114 => 0.097730655077287
115 => 0.10375115017179
116 => 0.10287401467685
117 => 0.1074245951762
118 => 0.10633856261934
119 => 0.11004938436405
120 => 0.10907220063549
121 => 0.11312843565913
122 => 0.11474657762824
123 => 0.11746368983806
124 => 0.11946240864025
125 => 0.12063609455029
126 => 0.12056563085063
127 => 0.12521635915421
128 => 0.12247398715766
129 => 0.11902892160254
130 => 0.11896661123569
131 => 0.12075085950365
201 => 0.12449015438867
202 => 0.12545969914783
203 => 0.12600154240047
204 => 0.12517169059735
205 => 0.12219504234267
206 => 0.12090974071824
207 => 0.12200485494102
208 => 0.1206656243508
209 => 0.12297751207126
210 => 0.12615222770403
211 => 0.12549666148005
212 => 0.12768812107883
213 => 0.1299560512153
214 => 0.13319929316956
215 => 0.13404719671331
216 => 0.13544874902824
217 => 0.13689140674625
218 => 0.13735474952456
219 => 0.13823941465518
220 => 0.13823475203326
221 => 0.14090074994919
222 => 0.14384142820956
223 => 0.14495146617599
224 => 0.14750393727194
225 => 0.14313291996938
226 => 0.146448386804
227 => 0.14943902088034
228 => 0.14587346364515
301 => 0.15078775362558
302 => 0.1509785643695
303 => 0.15385958006173
304 => 0.15093911872183
305 => 0.14920495810064
306 => 0.15421141483586
307 => 0.15663388154813
308 => 0.15590421485971
309 => 0.15035141533273
310 => 0.14711944783725
311 => 0.13866076550161
312 => 0.14868044011606
313 => 0.15356073134284
314 => 0.15033877655744
315 => 0.15196374314128
316 => 0.16082903392551
317 => 0.16420436267108
318 => 0.16350231788733
319 => 0.16362095189914
320 => 0.1654422180237
321 => 0.17351871500956
322 => 0.1686790908039
323 => 0.17237880217186
324 => 0.17434111574113
325 => 0.17616382194519
326 => 0.17168783158023
327 => 0.16586463388078
328 => 0.16402018272815
329 => 0.15001841665182
330 => 0.14928956392096
331 => 0.14888043679663
401 => 0.14630094814991
402 => 0.14427417665499
403 => 0.14266241271303
404 => 0.13843266281587
405 => 0.13986007924055
406 => 0.13311874072189
407 => 0.13743161020776
408 => 0.12667227115667
409 => 0.1356329684339
410 => 0.13075606829882
411 => 0.13403077557572
412 => 0.13401935043053
413 => 0.12798957608686
414 => 0.12451172808361
415 => 0.12672794819115
416 => 0.1291039120702
417 => 0.12948940421588
418 => 0.13256990340407
419 => 0.13342960451239
420 => 0.13082467001858
421 => 0.12644930776975
422 => 0.12746560462877
423 => 0.1244911328602
424 => 0.1192784854972
425 => 0.1230222998374
426 => 0.12430060265704
427 => 0.1248651740055
428 => 0.11973913400058
429 => 0.11812842093929
430 => 0.11727089082066
501 => 0.12578760037517
502 => 0.12625416494995
503 => 0.12386715461979
504 => 0.13465666765773
505 => 0.13221466855886
506 => 0.13494297985661
507 => 0.12737338634113
508 => 0.12766255500723
509 => 0.12407898812889
510 => 0.12608554612674
511 => 0.12466737560824
512 => 0.1259234360697
513 => 0.12667631353137
514 => 0.13025929238165
515 => 0.13567388029696
516 => 0.12972411482323
517 => 0.12713171680412
518 => 0.12874002595498
519 => 0.13302316516421
520 => 0.13951234031607
521 => 0.13567061801935
522 => 0.13737550913796
523 => 0.13774795200205
524 => 0.13491520820874
525 => 0.13961678762031
526 => 0.14213640222253
527 => 0.14472100544364
528 => 0.14696514400158
529 => 0.14368865808048
530 => 0.14719496768187
531 => 0.14436950109012
601 => 0.14183476546595
602 => 0.1418386096136
603 => 0.14024853292998
604 => 0.13716755899291
605 => 0.1365993801283
606 => 0.13955511833511
607 => 0.14192534046752
608 => 0.14212056331495
609 => 0.14343284007386
610 => 0.14420943194226
611 => 0.15182108797803
612 => 0.15488255900254
613 => 0.15862606782063
614 => 0.16008437547787
615 => 0.16447335869394
616 => 0.16092889829118
617 => 0.16016203198734
618 => 0.14951579433063
619 => 0.1512591151505
620 => 0.15405033998855
621 => 0.14956182060013
622 => 0.15240875303734
623 => 0.15297079780672
624 => 0.14940930242887
625 => 0.15131165099331
626 => 0.14625957721319
627 => 0.13578400169964
628 => 0.13962844993046
629 => 0.14245925785562
630 => 0.13841934591031
701 => 0.14566073170609
702 => 0.14143046361674
703 => 0.1400896717211
704 => 0.13485876450936
705 => 0.13732755135722
706 => 0.14066662091857
707 => 0.13860346413815
708 => 0.14288482424206
709 => 0.14894837194622
710 => 0.15326961713072
711 => 0.15360134867887
712 => 0.15082307752618
713 => 0.15527527477905
714 => 0.15530770417547
715 => 0.15028560748647
716 => 0.1472096012276
717 => 0.14651072613362
718 => 0.14825665314093
719 => 0.15037653084371
720 => 0.15371898713777
721 => 0.15573876347341
722 => 0.16100526895014
723 => 0.1624302343296
724 => 0.16399583925911
725 => 0.16608797025963
726 => 0.16860010993712
727 => 0.16310369133895
728 => 0.16332207429646
729 => 0.15820388540095
730 => 0.15273436654355
731 => 0.15688504957117
801 => 0.16231151548754
802 => 0.16106667821061
803 => 0.16092660858724
804 => 0.16116216684168
805 => 0.16022360018746
806 => 0.15597849799533
807 => 0.15384663425019
808 => 0.15659728237787
809 => 0.15805912944046
810 => 0.16032632674809
811 => 0.1600468468252
812 => 0.16588690361044
813 => 0.16815617308303
814 => 0.16757559684443
815 => 0.16768243684468
816 => 0.17179084083037
817 => 0.17636023102018
818 => 0.18064006791709
819 => 0.18499370183189
820 => 0.17974522622237
821 => 0.17708037398883
822 => 0.17982982126959
823 => 0.17837092584115
824 => 0.18675417170947
825 => 0.18733460946452
826 => 0.19571724912874
827 => 0.20367337235626
828 => 0.19867627390581
829 => 0.20338831267032
830 => 0.2084847667723
831 => 0.2183166536049
901 => 0.21500562000963
902 => 0.21246942016616
903 => 0.21007272356892
904 => 0.21505986872292
905 => 0.22147575129195
906 => 0.22285767094676
907 => 0.22509690872149
908 => 0.22274262400233
909 => 0.2255781006306
910 => 0.23558857909997
911 => 0.23288365945261
912 => 0.22904223871582
913 => 0.23694455005082
914 => 0.2398043658035
915 => 0.25987605045293
916 => 0.28521738144277
917 => 0.27472590401283
918 => 0.2682135054142
919 => 0.26974407356104
920 => 0.27899786978034
921 => 0.28196989542517
922 => 0.27389090520385
923 => 0.27674454113048
924 => 0.29246835564949
925 => 0.30090367765858
926 => 0.28944737735535
927 => 0.2578398991822
928 => 0.22869636080837
929 => 0.23642653953575
930 => 0.23555017716344
1001 => 0.25244345427831
1002 => 0.2328191480136
1003 => 0.23314957100176
1004 => 0.25039218319708
1005 => 0.24579214987657
1006 => 0.23834068502511
1007 => 0.22875076474807
1008 => 0.2110229101557
1009 => 0.19532085496544
1010 => 0.22611620116089
1011 => 0.22478824983524
1012 => 0.22286517952433
1013 => 0.22714476440331
1014 => 0.24792521379424
1015 => 0.24744615717603
1016 => 0.2443986433878
1017 => 0.24671015573662
1018 => 0.23793546573437
1019 => 0.24019690314393
1020 => 0.22869174432299
1021 => 0.23389255660793
1022 => 0.23832469752817
1023 => 0.23921451543687
1024 => 0.24121932062041
1025 => 0.22408847982919
1026 => 0.23177972440939
1027 => 0.23629761002809
1028 => 0.21588563844069
1029 => 0.2358941309793
1030 => 0.2237902700037
1031 => 0.21968203779469
1101 => 0.22521323124568
1102 => 0.22305771977857
1103 => 0.22120453759502
1104 => 0.22017043009489
1105 => 0.22423192810976
1106 => 0.22404245437283
1107 => 0.21739705531771
1108 => 0.20872840315142
1109 => 0.21163788735724
1110 => 0.2105808444687
1111 => 0.20674998467942
1112 => 0.20933152163762
1113 => 0.19796373935965
1114 => 0.17840606079631
1115 => 0.19132646232315
1116 => 0.19082904091906
1117 => 0.19057821849085
1118 => 0.2002875431446
1119 => 0.19935421561138
1120 => 0.1976602169994
1121 => 0.20671887306646
1122 => 0.20341234174587
1123 => 0.21360229215918
1124 => 0.22031405254606
1125 => 0.21861173300924
1126 => 0.22492417609386
1127 => 0.21170491599701
1128 => 0.21609582393652
1129 => 0.21700078397732
1130 => 0.20660709065673
1201 => 0.19950691953847
1202 => 0.19903341907276
1203 => 0.18672270081754
1204 => 0.19329898714083
1205 => 0.19908584696011
1206 => 0.19631439018514
1207 => 0.1954370297651
1208 => 0.19991927387482
1209 => 0.20026758262997
1210 => 0.19232610610044
1211 => 0.19397739054478
1212 => 0.2008635211809
1213 => 0.19380387772074
1214 => 0.18008814366387
1215 => 0.17668645198291
1216 => 0.17623260360705
1217 => 0.16700694597671
1218 => 0.17691376928685
1219 => 0.17258917542562
1220 => 0.18625051561667
1221 => 0.17844723136678
1222 => 0.17811084737899
1223 => 0.17760235364465
1224 => 0.1696614490151
1225 => 0.17140000245815
1226 => 0.17717921889204
1227 => 0.17924130842318
1228 => 0.17902621559088
1229 => 0.17715089757867
1230 => 0.17800940856148
1231 => 0.1752438455608
]
'min_raw' => 0.096763972827636
'max_raw' => 0.30090367765858
'avg_raw' => 0.19883382524311
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.096763'
'max' => '$0.3009036'
'avg' => '$0.198833'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.055123250124894
'max_diff' => 0.18793640956272
'year' => 2033
]
8 => [
'items' => [
101 => 0.17426726770504
102 => 0.17118491936338
103 => 0.16665471882159
104 => 0.16728467099226
105 => 0.15830915832753
106 => 0.15341882266127
107 => 0.15206524220244
108 => 0.15025517784287
109 => 0.15226969378825
110 => 0.15828373182786
111 => 0.15102952600275
112 => 0.13859269893895
113 => 0.13934017343681
114 => 0.14101952670632
115 => 0.13789006299862
116 => 0.13492828823526
117 => 0.13750331109562
118 => 0.1322336635169
119 => 0.14165633844017
120 => 0.14140148149024
121 => 0.14491367200733
122 => 0.14710991681507
123 => 0.14204828357593
124 => 0.14077529650439
125 => 0.14150044779438
126 => 0.12951531226544
127 => 0.14393423073944
128 => 0.14405892614516
129 => 0.1429912083766
130 => 0.15066883732984
131 => 0.1668710291337
201 => 0.16077511284543
202 => 0.15841458980857
203 => 0.15392723378996
204 => 0.15990636925192
205 => 0.15944726493749
206 => 0.15737102111747
207 => 0.15611530237685
208 => 0.15842900265888
209 => 0.15582860930732
210 => 0.15536150720735
211 => 0.15253137669362
212 => 0.15152114886295
213 => 0.15077321639545
214 => 0.14994981623906
215 => 0.15176603180552
216 => 0.14765024838887
217 => 0.14268701706361
218 => 0.14227437808182
219 => 0.14341371059013
220 => 0.14290964076853
221 => 0.14227196478945
222 => 0.14105446768465
223 => 0.14069326230137
224 => 0.1418670045651
225 => 0.14054191798277
226 => 0.14249715541619
227 => 0.14196543902253
228 => 0.13899531447051
301 => 0.13529343959774
302 => 0.13526048514643
303 => 0.13446292227738
304 => 0.13344710604927
305 => 0.13316452921334
306 => 0.13728644985264
307 => 0.1458187022173
308 => 0.14414361691863
309 => 0.14535403771657
310 => 0.15130811004494
311 => 0.15320073059293
312 => 0.15185739335714
313 => 0.15001855049536
314 => 0.150099450249
315 => 0.15638333296328
316 => 0.15677525102021
317 => 0.15776550151249
318 => 0.15903825323984
319 => 0.15207414847984
320 => 0.14977144154107
321 => 0.14868029124417
322 => 0.145319970658
323 => 0.14894378831807
324 => 0.14683234495489
325 => 0.14711725080176
326 => 0.14693170549523
327 => 0.14703302577911
328 => 0.1416537046105
329 => 0.14361364651554
330 => 0.14035486296142
331 => 0.13599171759807
401 => 0.13597709080489
402 => 0.13704496445131
403 => 0.13640975142052
404 => 0.13470040948749
405 => 0.13494321344121
406 => 0.13281599531629
407 => 0.1352014962361
408 => 0.13526990386675
409 => 0.13435135607351
410 => 0.13802654937617
411 => 0.13953227907095
412 => 0.13892767123623
413 => 0.1394898581735
414 => 0.14421322427534
415 => 0.14498333904485
416 => 0.14532537315455
417 => 0.1448670927584
418 => 0.13957619263504
419 => 0.13981086655415
420 => 0.13808898504428
421 => 0.13663417661583
422 => 0.13669236132351
423 => 0.13744032196758
424 => 0.14070670996758
425 => 0.14758063094949
426 => 0.14784149122598
427 => 0.14815766149092
428 => 0.14687163812896
429 => 0.14648376117741
430 => 0.14699547099604
501 => 0.14957695430325
502 => 0.15621723023528
503 => 0.15387011323178
504 => 0.15196187057289
505 => 0.15363591384326
506 => 0.15337820800337
507 => 0.15120291136872
508 => 0.15114185803723
509 => 0.14696676831092
510 => 0.14542333270129
511 => 0.14413352238174
512 => 0.14272508318413
513 => 0.14189011321649
514 => 0.14317300657386
515 => 0.14346641946344
516 => 0.1406613507164
517 => 0.14027903021127
518 => 0.14256970990171
519 => 0.14156166717509
520 => 0.14259846411767
521 => 0.14283900990183
522 => 0.14280027649034
523 => 0.14174776411079
524 => 0.14241860411515
525 => 0.14083186751781
526 => 0.13910652978833
527 => 0.13800587180926
528 => 0.13704540174143
529 => 0.13757832635791
530 => 0.13567854740835
531 => 0.13507076988739
601 => 0.14219133861605
602 => 0.14745137929492
603 => 0.14737489622024
604 => 0.14690932517301
605 => 0.14621758103445
606 => 0.14952634891091
607 => 0.14837364034365
608 => 0.14921233213836
609 => 0.14942581439989
610 => 0.15007196090882
611 => 0.15030290274759
612 => 0.1496048361114
613 => 0.1472620392187
614 => 0.14142401210852
615 => 0.13870639472928
616 => 0.13780953572863
617 => 0.13784213484993
618 => 0.13694290555571
619 => 0.13720776888348
620 => 0.1368507968993
621 => 0.13617477832206
622 => 0.13753658411574
623 => 0.13769351954736
624 => 0.13737565780275
625 => 0.13745052575037
626 => 0.13481876626551
627 => 0.13501885322327
628 => 0.13390474361668
629 => 0.13369586149624
630 => 0.13087948942741
701 => 0.12588987806781
702 => 0.12865460711432
703 => 0.12531520320587
704 => 0.12405052034552
705 => 0.1300373323079
706 => 0.1294364224352
707 => 0.12840792594236
708 => 0.12688656527201
709 => 0.12632227780053
710 => 0.12289384575554
711 => 0.12269127570034
712 => 0.1243904991973
713 => 0.12360636602016
714 => 0.12250514606501
715 => 0.11851663901633
716 => 0.11403223654431
717 => 0.11416759246699
718 => 0.11559399745806
719 => 0.11974146234654
720 => 0.11812097606274
721 => 0.11694529467091
722 => 0.11672512488707
723 => 0.11948101068846
724 => 0.12338116647335
725 => 0.12521103230655
726 => 0.1233976908397
727 => 0.12131462179982
728 => 0.12144140856026
729 => 0.12228486407604
730 => 0.12237349932492
731 => 0.12101763552292
801 => 0.12139930324117
802 => 0.12081951507672
803 => 0.11726135618173
804 => 0.11719700037036
805 => 0.11632377079446
806 => 0.11629732974995
807 => 0.11481174840403
808 => 0.11460390530439
809 => 0.11165419337372
810 => 0.11359570269904
811 => 0.11229344017743
812 => 0.11033062338469
813 => 0.10999223302979
814 => 0.10998206060711
815 => 0.11199743457545
816 => 0.11357215188081
817 => 0.11231609359154
818 => 0.11203011346674
819 => 0.11508363301459
820 => 0.11469504481868
821 => 0.11435852994714
822 => 0.1230319503001
823 => 0.1161662612953
824 => 0.11317242900938
825 => 0.10946699304223
826 => 0.11067350167756
827 => 0.11092773077433
828 => 0.10201682522835
829 => 0.098401671958135
830 => 0.097161087589973
831 => 0.096447113746807
901 => 0.096772480592657
902 => 0.093518418634274
903 => 0.095705202087525
904 => 0.092887459490575
905 => 0.092415055774469
906 => 0.097453528589141
907 => 0.098154602646971
908 => 0.09516360290963
909 => 0.097084308939875
910 => 0.096387834233497
911 => 0.092935761599988
912 => 0.092803917817116
913 => 0.091071789115841
914 => 0.088361343104555
915 => 0.087122596546421
916 => 0.086477446583654
917 => 0.086743648032014
918 => 0.086609048433824
919 => 0.085730695008962
920 => 0.086659394623974
921 => 0.084286950872794
922 => 0.083342224654996
923 => 0.082915513739898
924 => 0.080809833357959
925 => 0.08416090724594
926 => 0.084821111017589
927 => 0.085482615594616
928 => 0.091240561309273
929 => 0.090952910613154
930 => 0.093553132814496
1001 => 0.093452092961254
1002 => 0.092710467468624
1003 => 0.089581671506692
1004 => 0.090828753811693
1005 => 0.086990428316521
1006 => 0.089866362758267
1007 => 0.088553906380948
1008 => 0.089422619936883
1009 => 0.087860594634568
1010 => 0.088725083931313
1011 => 0.084977669823793
1012 => 0.081478387257729
1013 => 0.082886600712739
1014 => 0.084417489787078
1015 => 0.087736847363526
1016 => 0.085759865375099
1017 => 0.086470862856103
1018 => 0.08408914031428
1019 => 0.079174966405091
1020 => 0.07920278009574
1021 => 0.078446841500909
1022 => 0.077793600186133
1023 => 0.085986945538387
1024 => 0.084967973526212
1025 => 0.08334437498457
1026 => 0.085517626151799
1027 => 0.086092268254548
1028 => 0.086108627507361
1029 => 0.08769417545924
1030 => 0.088540382685382
1031 => 0.088689530376662
1101 => 0.091184424336973
1102 => 0.092020679884022
1103 => 0.095465098131003
1104 => 0.088468587914365
1105 => 0.088324499390634
1106 => 0.085548208252503
1107 => 0.083787440521274
1108 => 0.085668769525463
1109 => 0.087335370196155
1110 => 0.085599994180973
1111 => 0.085826597652769
1112 => 0.083496997137816
1113 => 0.08432971970402
1114 => 0.085046972557877
1115 => 0.084650947690151
1116 => 0.084058079295345
1117 => 0.087198727946822
1118 => 0.087021520241604
1119 => 0.08994616446906
1120 => 0.092226133787678
1121 => 0.096312246399906
1122 => 0.092048174875178
1123 => 0.091892775160668
1124 => 0.093411832296904
1125 => 0.092020447324289
1126 => 0.092899754598005
1127 => 0.096170576404073
1128 => 0.096239683714741
1129 => 0.0950820472213
1130 => 0.095011604935468
1201 => 0.095233941687189
1202 => 0.096536174986581
1203 => 0.096081134658186
1204 => 0.096607718846416
1205 => 0.097266220437141
1206 => 0.09999006221527
1207 => 0.10064677124645
1208 => 0.099051308765271
1209 => 0.099195361163686
1210 => 0.0985986143993
1211 => 0.098022164502117
1212 => 0.099317939687236
1213 => 0.10168599430657
1214 => 0.10167126276168
1215 => 0.10222060540496
1216 => 0.10256284132073
1217 => 0.10109371423827
1218 => 0.10013736652889
1219 => 0.10050409109465
1220 => 0.10109049166152
1221 => 0.10031392929412
1222 => 0.095520626623815
1223 => 0.096974608456626
1224 => 0.096732594783567
1225 => 0.096387937883263
1226 => 0.097849927859462
1227 => 0.09770891535971
1228 => 0.093485043525547
1229 => 0.093755442096051
1230 => 0.093501487358207
1231 => 0.094322067070432
]
'min_raw' => 0.077793600186133
'max_raw' => 0.17426726770504
'avg_raw' => 0.12603043394559
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.077793'
'max' => '$0.174267'
'avg' => '$0.12603'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.018970372641502
'max_diff' => -0.12663640995354
'year' => 2034
]
9 => [
'items' => [
101 => 0.091976133326916
102 => 0.092697726746317
103 => 0.093150303374447
104 => 0.093416874485273
105 => 0.094379912127098
106 => 0.094266910775169
107 => 0.094372887804401
108 => 0.095800818394717
109 => 0.10302280131393
110 => 0.10341587790981
111 => 0.10148022499066
112 => 0.1022534801528
113 => 0.10076899933381
114 => 0.10176554125276
115 => 0.10244734992428
116 => 0.099366387641946
117 => 0.099183953050866
118 => 0.097693345251482
119 => 0.098494313450529
120 => 0.097219915454193
121 => 0.097532608145944
122 => 0.096658292119748
123 => 0.098231886892317
124 => 0.099991410359955
125 => 0.10043593547357
126 => 0.099266581279747
127 => 0.098419891779224
128 => 0.096933383933166
129 => 0.099405479610148
130 => 0.10012839572185
131 => 0.099401682439568
201 => 0.099233287093065
202 => 0.098914178215725
203 => 0.099300987549918
204 => 0.10012445856545
205 => 0.099736124841647
206 => 0.099992626107779
207 => 0.099015107784242
208 => 0.10109420058046
209 => 0.10439630030179
210 => 0.10440691709234
211 => 0.10401858127527
212 => 0.10385968262574
213 => 0.10425813874024
214 => 0.10447428483683
215 => 0.10576281884676
216 => 0.10714546717688
217 => 0.11359768363681
218 => 0.11178592707382
219 => 0.11751071736114
220 => 0.12203828320743
221 => 0.12339590223827
222 => 0.12214695661081
223 => 0.11787438108597
224 => 0.11766474814733
225 => 0.12404977981629
226 => 0.12224571591683
227 => 0.12203112825647
228 => 0.11974827810185
301 => 0.12109772527973
302 => 0.12080258138673
303 => 0.1203366823127
304 => 0.12291133352478
305 => 0.12773085075309
306 => 0.12697968379591
307 => 0.12641897250801
308 => 0.12396209886503
309 => 0.1254416855607
310 => 0.12491483307799
311 => 0.12717852569257
312 => 0.12583756433462
313 => 0.12223204835845
314 => 0.12280623866159
315 => 0.12271945095238
316 => 0.12450553585806
317 => 0.12396939750273
318 => 0.12261476133379
319 => 0.12771437816716
320 => 0.12738323741556
321 => 0.12785271929201
322 => 0.12805939973323
323 => 0.13116344663438
324 => 0.13243507533135
325 => 0.13272375730856
326 => 0.13393170621939
327 => 0.13269370243924
328 => 0.13764660024159
329 => 0.14093998827055
330 => 0.14476542794238
331 => 0.15035542348418
401 => 0.15245731351825
402 => 0.15207762589688
403 => 0.15631589671894
404 => 0.16393197517471
405 => 0.15361705310481
406 => 0.164478691091
407 => 0.16104002190821
408 => 0.15288699913484
409 => 0.15236204058606
410 => 0.15788336226673
411 => 0.17012912234693
412 => 0.1670616983371
413 => 0.17013413955374
414 => 0.16654997367221
415 => 0.16637198962647
416 => 0.16996006461688
417 => 0.17834379740776
418 => 0.17436100021834
419 => 0.16865068382536
420 => 0.17286709258757
421 => 0.16921444910754
422 => 0.16098402103648
423 => 0.16705935273577
424 => 0.16299695144394
425 => 0.16418257611003
426 => 0.17272113938887
427 => 0.17169375686492
428 => 0.17302328498397
429 => 0.17067670265366
430 => 0.16848462473508
501 => 0.16439294851421
502 => 0.16318160490242
503 => 0.16351637669714
504 => 0.16318143900614
505 => 0.16089218376501
506 => 0.16039781931365
507 => 0.15957385690278
508 => 0.15982923730763
509 => 0.15827994691649
510 => 0.1612037779843
511 => 0.1617464667952
512 => 0.16387418721907
513 => 0.16409509421192
514 => 0.17002076530622
515 => 0.16675700524434
516 => 0.16894661727333
517 => 0.16875075776403
518 => 0.15306369986047
519 => 0.1552252380315
520 => 0.15858791309757
521 => 0.1570730325383
522 => 0.15493134585496
523 => 0.15320181902818
524 => 0.15058140903241
525 => 0.15426958578094
526 => 0.15911914601137
527 => 0.16421808706236
528 => 0.17034413063927
529 => 0.16897686902791
530 => 0.16410356493888
531 => 0.16432217780036
601 => 0.16567355648906
602 => 0.16392339830149
603 => 0.16340724248483
604 => 0.16560264460596
605 => 0.1656177631338
606 => 0.16360399462532
607 => 0.1613660594439
608 => 0.16135668241377
609 => 0.16095846346413
610 => 0.1666208159387
611 => 0.16973453727131
612 => 0.17009152040408
613 => 0.16971050946218
614 => 0.16985714545194
615 => 0.16804533961466
616 => 0.17218659048434
617 => 0.17598701180963
618 => 0.17496841771029
619 => 0.17344140035371
620 => 0.17222505747806
621 => 0.17468188598472
622 => 0.17457248727873
623 => 0.17595381844477
624 => 0.17589115328412
625 => 0.17542666356748
626 => 0.17496843429868
627 => 0.17678526155355
628 => 0.1762620444815
629 => 0.17573801470883
630 => 0.17468699277477
701 => 0.17482984411124
702 => 0.17330309041573
703 => 0.17259674429669
704 => 0.16197499342764
705 => 0.15913651451971
706 => 0.16002955776672
707 => 0.16032357079149
708 => 0.15908826113315
709 => 0.16085937785819
710 => 0.16058335119267
711 => 0.16165720947802
712 => 0.16098630944284
713 => 0.1610138434143
714 => 0.16298681736679
715 => 0.16355958009883
716 => 0.16326826835055
717 => 0.16347229311346
718 => 0.16817395766127
719 => 0.16750553131334
720 => 0.16715044313823
721 => 0.16724880498945
722 => 0.16845018108624
723 => 0.16878650080064
724 => 0.16736149053797
725 => 0.16803353361573
726 => 0.17089500774588
727 => 0.17189636174602
728 => 0.17509220303728
729 => 0.17373455285521
730 => 0.17622657852214
731 => 0.18388621582812
801 => 0.19000526411472
802 => 0.18437793443
803 => 0.19561478735225
804 => 0.20436428918304
805 => 0.20402846872971
806 => 0.20250279070589
807 => 0.19254171548908
808 => 0.1833753855633
809 => 0.19104340976914
810 => 0.19106295713979
811 => 0.19040426706007
812 => 0.18631319954605
813 => 0.19026190677849
814 => 0.190575340819
815 => 0.19039990110515
816 => 0.18726328923417
817 => 0.18247426264994
818 => 0.18341002698119
819 => 0.18494282804485
820 => 0.18204091585554
821 => 0.181113579078
822 => 0.18283767458049
823 => 0.18839306951909
824 => 0.18734285428616
825 => 0.18731542892217
826 => 0.19180869504921
827 => 0.18859248620977
828 => 0.18342182996614
829 => 0.18211617107205
830 => 0.17748196159523
831 => 0.18068282658735
901 => 0.18079802002003
902 => 0.17904493897589
903 => 0.18356408283109
904 => 0.18352243812489
905 => 0.1878126926296
906 => 0.19601404789661
907 => 0.19358850357997
908 => 0.1907678594382
909 => 0.19107454166439
910 => 0.19443808872946
911 => 0.1924044113916
912 => 0.1931357359416
913 => 0.19443698178216
914 => 0.19522205570589
915 => 0.19096158160836
916 => 0.1899682612942
917 => 0.18793627653947
918 => 0.18740616964575
919 => 0.18906117882972
920 => 0.18862514238208
921 => 0.18078833845806
922 => 0.17996934884444
923 => 0.17999446608664
924 => 0.17793507776235
925 => 0.17479401625797
926 => 0.18304853834844
927 => 0.18238558470261
928 => 0.18165373518616
929 => 0.18174338257605
930 => 0.18532639084381
1001 => 0.18324806510225
1002 => 0.18877363471707
1003 => 0.18763774371809
1004 => 0.1864727214011
1005 => 0.18631167982944
1006 => 0.18586324563243
1007 => 0.18432539791587
1008 => 0.1824683543878
1009 => 0.18124217339621
1010 => 0.16718632453297
1011 => 0.16979500832287
1012 => 0.17279606123415
1013 => 0.17383201267316
1014 => 0.17205994605108
1015 => 0.18439536990698
1016 => 0.18664917071256
1017 => 0.17982226106068
1018 => 0.1785452250057
1019 => 0.18447909217814
1020 => 0.1809002448874
1021 => 0.18251179960328
1022 => 0.17902849978084
1023 => 0.18610629609748
1024 => 0.1860523751481
1025 => 0.18329895252165
1026 => 0.1856261264709
1027 => 0.18522172272828
1028 => 0.1821131153644
1029 => 0.18620484449564
1030 => 0.18620687394224
1031 => 0.18355676452885
1101 => 0.18046201691755
1102 => 0.17990874913933
1103 => 0.17949193618951
1104 => 0.18240928916873
1105 => 0.18502497872757
1106 => 0.18989212851214
1107 => 0.19111584560861
1108 => 0.19589209490358
1109 => 0.19304807099978
1110 => 0.19430878996006
1111 => 0.19567747873103
1112 => 0.19633367845969
1113 => 0.19526443621545
1114 => 0.20268391735319
1115 => 0.20331034888824
1116 => 0.20352038596333
1117 => 0.20101857866893
1118 => 0.20324076910165
1119 => 0.20220107978939
1120 => 0.20490606254587
1121 => 0.20533023838104
1122 => 0.20497097653915
1123 => 0.20510561664439
1124 => 0.1987743983795
1125 => 0.19844609131262
1126 => 0.19396960116022
1127 => 0.19579380398587
1128 => 0.19238354423964
1129 => 0.19346497273473
1130 => 0.19394165611115
1201 => 0.19369266376685
1202 => 0.19589694167662
1203 => 0.19402285514909
1204 => 0.18907683267459
1205 => 0.18412946265957
1206 => 0.18406735245908
1207 => 0.18276479726246
1208 => 0.18182328843018
1209 => 0.1820046564331
1210 => 0.18264382093158
1211 => 0.1817861390276
1212 => 0.18196916894739
1213 => 0.18500868513789
1214 => 0.18561823843305
1215 => 0.18354673816823
1216 => 0.1752293656889
1217 => 0.17318826161992
1218 => 0.17465536674785
1219 => 0.17395418499037
1220 => 0.14039460385471
1221 => 0.14827892964623
1222 => 0.14359433098732
1223 => 0.14575320957737
1224 => 0.14097144741756
1225 => 0.14325355495385
1226 => 0.14283213302112
1227 => 0.15550989557972
1228 => 0.15531194975506
1229 => 0.15540669594626
1230 => 0.15088421338016
1231 => 0.15808865090674
]
'min_raw' => 0.091976133326916
'max_raw' => 0.20533023838104
'avg_raw' => 0.14865318585398
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.091976'
'max' => '$0.20533'
'avg' => '$0.148653'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.014182533140783
'max_diff' => 0.031062970676001
'year' => 2035
]
10 => [
'items' => [
101 => 0.16163781589553
102 => 0.16098095991407
103 => 0.1611462764132
104 => 0.15830559123845
105 => 0.15543419998818
106 => 0.1522493851877
107 => 0.158166377432
108 => 0.15750850890086
109 => 0.15901742261766
110 => 0.16285501504343
111 => 0.16342011510572
112 => 0.16417961532012
113 => 0.16390738855816
114 => 0.17039293445966
115 => 0.16960749205798
116 => 0.17150018225883
117 => 0.16760677491693
118 => 0.16320101494395
119 => 0.16403840587967
120 => 0.16395775839869
121 => 0.16293102340292
122 => 0.16200413295715
123 => 0.16046112151473
124 => 0.1653434380413
125 => 0.16514522490647
126 => 0.16835406516168
127 => 0.16778687147756
128 => 0.16399901323918
129 => 0.16413429733719
130 => 0.16504414791165
131 => 0.16819315113834
201 => 0.16912798969651
202 => 0.16869493522949
203 => 0.16971994303152
204 => 0.17053006740532
205 => 0.16982168217998
206 => 0.17985092311853
207 => 0.17568608304461
208 => 0.17771599711787
209 => 0.17820011966339
210 => 0.17696004994303
211 => 0.17722897666181
212 => 0.17763632736261
213 => 0.18010968105046
214 => 0.18660047679802
215 => 0.18947520605027
216 => 0.19812397084232
217 => 0.18923649980404
218 => 0.18870915405264
219 => 0.19026705775936
220 => 0.19534479825702
221 => 0.19945983000247
222 => 0.20082502343431
223 => 0.20100545628321
224 => 0.20356664991769
225 => 0.20503467834553
226 => 0.20325565364438
227 => 0.2017481164818
228 => 0.19634830548785
229 => 0.1969733483136
301 => 0.20127927355785
302 => 0.20736164658308
303 => 0.21258095540179
304 => 0.21075333536475
305 => 0.22469678614865
306 => 0.22607922233998
307 => 0.22588821435785
308 => 0.2290376097358
309 => 0.22278670127379
310 => 0.22011431680063
311 => 0.20207406312763
312 => 0.20714263855736
313 => 0.21451011061146
314 => 0.2135349980585
315 => 0.20818454291971
316 => 0.21257689660178
317 => 0.21112464711289
318 => 0.20997919768711
319 => 0.21522672356288
320 => 0.20945685330599
321 => 0.21445255174193
322 => 0.20804551682396
323 => 0.21076168377914
324 => 0.20921985604916
325 => 0.21021760754975
326 => 0.20438477266471
327 => 0.20753202878462
328 => 0.20425383646291
329 => 0.20425228217291
330 => 0.20417991589572
331 => 0.20803669462448
401 => 0.20816246404036
402 => 0.20531229873254
403 => 0.20490154538373
404 => 0.20642031579882
405 => 0.20464223340935
406 => 0.20547418696826
407 => 0.20466743243513
408 => 0.20448581499687
409 => 0.20303865634915
410 => 0.20241518061326
411 => 0.2026596615143
412 => 0.20182512216053
413 => 0.20132228201327
414 => 0.20407988833413
415 => 0.20260661051841
416 => 0.20385408737909
417 => 0.20243243005222
418 => 0.19750434637068
419 => 0.19467015333188
420 => 0.18536146009105
421 => 0.18800139394675
422 => 0.18975167282429
423 => 0.18917320566571
424 => 0.19041597695942
425 => 0.19049227302349
426 => 0.19008823540735
427 => 0.18962041160828
428 => 0.18939270085517
429 => 0.19108987024891
430 => 0.19207513420607
501 => 0.18992733672536
502 => 0.18942413782652
503 => 0.19159567966266
504 => 0.19292031892825
505 => 0.20270071101484
506 => 0.20197614797882
507 => 0.20379465901093
508 => 0.20358992257604
509 => 0.20549601184922
510 => 0.20861166223743
511 => 0.20227667384864
512 => 0.20337620878552
513 => 0.20310662821097
514 => 0.20604983823611
515 => 0.20605902661654
516 => 0.20429442518223
517 => 0.20525104424716
518 => 0.20471708572858
519 => 0.20568202094047
520 => 0.20196647099773
521 => 0.20649160975915
522 => 0.20905707184338
523 => 0.20909269328691
524 => 0.21030870195407
525 => 0.21154423718637
526 => 0.21391573947234
527 => 0.21147809727475
528 => 0.20709301626097
529 => 0.20740960494644
530 => 0.2048386335525
531 => 0.20488185204612
601 => 0.2046511483401
602 => 0.20534350752842
603 => 0.20211840490483
604 => 0.20287533004434
605 => 0.20181563041648
606 => 0.20337390520548
607 => 0.20169745912456
608 => 0.20310649821105
609 => 0.20371459277039
610 => 0.20595847478571
611 => 0.20136603592646
612 => 0.19200174221166
613 => 0.1939702302816
614 => 0.19105868180476
615 => 0.19132815670134
616 => 0.19187253887904
617 => 0.19010801813035
618 => 0.19044463308276
619 => 0.19043260682794
620 => 0.19032897106098
621 => 0.18986995106522
622 => 0.18920428125704
623 => 0.1918561048905
624 => 0.1923067014
625 => 0.19330832162352
626 => 0.19628846400322
627 => 0.1959906775029
628 => 0.19647637963998
629 => 0.19541609460183
630 => 0.19137734028329
701 => 0.19159666407382
702 => 0.18886169289149
703 => 0.19323838226133
704 => 0.19220192444907
705 => 0.19153371335496
706 => 0.19135138576699
707 => 0.19433891534324
708 => 0.19523283101624
709 => 0.19467580275727
710 => 0.19353332154703
711 => 0.19572722321495
712 => 0.196314218748
713 => 0.19644562540029
714 => 0.20033279851693
715 => 0.19666287519641
716 => 0.19754626221556
717 => 0.20443819556503
718 => 0.19818816303885
719 => 0.20149894466033
720 => 0.20133689912843
721 => 0.20303058297524
722 => 0.20119796761807
723 => 0.20122068508179
724 => 0.20272456159767
725 => 0.20061263825667
726 => 0.2000896963374
727 => 0.1993672558213
728 => 0.20094467825824
729 => 0.20189027166851
730 => 0.20951106009343
731 => 0.2144344369661
801 => 0.21422070019158
802 => 0.21617385421226
803 => 0.2152939404371
804 => 0.21245246674759
805 => 0.21730251585479
806 => 0.2157677573826
807 => 0.21589428100631
808 => 0.21588957179072
809 => 0.21691005200381
810 => 0.2161869482472
811 => 0.21476163651783
812 => 0.2157078249603
813 => 0.21851766636587
814 => 0.22723950030521
815 => 0.2321203541266
816 => 0.22694566677658
817 => 0.2305150968188
818 => 0.22837471071144
819 => 0.22798573888476
820 => 0.23022760473008
821 => 0.23247339466478
822 => 0.23233034755476
823 => 0.23070001938475
824 => 0.22977908836956
825 => 0.23675268655112
826 => 0.24189071489914
827 => 0.24154033581159
828 => 0.24308679515468
829 => 0.24762724761618
830 => 0.24804236968645
831 => 0.24799007384707
901 => 0.24696115048238
902 => 0.25143181558299
903 => 0.25516132306378
904 => 0.24672298445191
905 => 0.24993619332935
906 => 0.25137870631755
907 => 0.25349674335855
908 => 0.25707022687095
909 => 0.26095197778511
910 => 0.2615008999256
911 => 0.26111141339858
912 => 0.25855129432363
913 => 0.26279875249281
914 => 0.26528681387317
915 => 0.2667683974869
916 => 0.27052544701932
917 => 0.25138761478668
918 => 0.23784090592044
919 => 0.23572539171412
920 => 0.24002737304115
921 => 0.24116177120942
922 => 0.2407044967302
923 => 0.22545644428836
924 => 0.23564511387368
925 => 0.2466072656598
926 => 0.24702836655467
927 => 0.25251624894659
928 => 0.2543033284093
929 => 0.25872179304798
930 => 0.25844541688182
1001 => 0.25952124270821
1002 => 0.25927392898143
1003 => 0.26745820430709
1004 => 0.27648667536794
1005 => 0.27617404812388
1006 => 0.27487609858886
1007 => 0.27680377498165
1008 => 0.2861221246662
1009 => 0.28526424035076
1010 => 0.2860976018888
1011 => 0.29708446132606
1012 => 0.31136894145704
1013 => 0.30473236629785
1014 => 0.31913182477024
1015 => 0.32819552059612
1016 => 0.34387024532333
1017 => 0.34190769258784
1018 => 0.3480097478977
1019 => 0.33839431359419
1020 => 0.31631533283343
1021 => 0.3128212496131
1022 => 0.31981649270449
1023 => 0.33701361525882
1024 => 0.31927489411589
1025 => 0.32286341430014
1026 => 0.32182992024566
1027 => 0.32177484973957
1028 => 0.32387666696932
1029 => 0.32082787145415
1030 => 0.30840653005748
1031 => 0.31409915762015
1101 => 0.31190096073578
1102 => 0.31434002406542
1103 => 0.32750264290929
1104 => 0.32168313536078
1105 => 0.31555275689682
1106 => 0.32324161193051
1107 => 0.33303216656564
1108 => 0.33241949125189
1109 => 0.33123064506481
1110 => 0.33793210877545
1111 => 0.34900096348079
1112 => 0.35199283042939
1113 => 0.35420136544481
1114 => 0.35450588510993
1115 => 0.35764262691861
1116 => 0.34077557565264
1117 => 0.36754401918833
1118 => 0.37216618992362
1119 => 0.37129741339473
1120 => 0.37643476163633
1121 => 0.3749232234617
1122 => 0.37273324179975
1123 => 0.38087703150798
1124 => 0.37154083377744
1125 => 0.35828927649354
1126 => 0.35101921008151
1127 => 0.3605930199924
1128 => 0.36643941162506
1129 => 0.3703035045939
1130 => 0.37147277679152
1201 => 0.34208491682808
1202 => 0.32624649023322
1203 => 0.33639874009259
1204 => 0.34878518559189
1205 => 0.34070676832248
1206 => 0.34102342698498
1207 => 0.32950572692951
1208 => 0.34980424647817
1209 => 0.34684692291736
1210 => 0.3621895227823
1211 => 0.35852788819247
1212 => 0.37103918278604
1213 => 0.36774453962041
1214 => 0.38142041919991
1215 => 0.38687609782383
1216 => 0.39603703134197
1217 => 0.40277585132962
1218 => 0.40673301531945
1219 => 0.40649544203645
1220 => 0.42217569721544
1221 => 0.41292959856278
1222 => 0.4013143195169
1223 => 0.4011042357647
1224 => 0.40711995337233
1225 => 0.41972724714641
1226 => 0.42299613499337
1227 => 0.42482299734993
1228 => 0.42202509405732
1229 => 0.41198911664371
1230 => 0.40765563248008
1231 => 0.41134788654062
]
'min_raw' => 0.1522493851877
'max_raw' => 0.42482299734993
'avg_raw' => 0.28853619126882
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.152249'
'max' => '$0.424822'
'avg' => '$0.288536'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.060273251860782
'max_diff' => 0.21949275896889
'year' => 2036
]
11 => [
'items' => [
101 => 0.40683257710359
102 => 0.41462726796397
103 => 0.4253310433714
104 => 0.42312075607708
105 => 0.4305094151172
106 => 0.43815589991413
107 => 0.44909071659885
108 => 0.45194948259533
109 => 0.45667491407837
110 => 0.4615389352978
111 => 0.46310112782443
112 => 0.46608383807765
113 => 0.46606811772231
114 => 0.47505671582992
115 => 0.48497141789634
116 => 0.48871398840053
117 => 0.49731982290837
118 => 0.4825826328981
119 => 0.49376096080953
120 => 0.50384409239734
121 => 0.49182256723963
122 => 0.5083914390134
123 => 0.50903477075851
124 => 0.51874831631096
125 => 0.50890177700339
126 => 0.50305493339382
127 => 0.51993455181628
128 => 0.52810206746791
129 => 0.52564194528419
130 => 0.50692029399488
131 => 0.49602348993511
201 => 0.46750445187416
202 => 0.50128648438812
203 => 0.51774072699027
204 => 0.5068776814816
205 => 0.51235636977055
206 => 0.54224631660443
207 => 0.55362647312803
208 => 0.55125948012442
209 => 0.55165946297801
210 => 0.55779998887369
211 => 0.58503046234453
212 => 0.56871333144337
213 => 0.58118716662608
214 => 0.58780324382923
215 => 0.5939486250535
216 => 0.57885751103437
217 => 0.55922419342797
218 => 0.55300549759142
219 => 0.50579756569299
220 => 0.50334018782402
221 => 0.50196078715999
222 => 0.49326386109343
223 => 0.48643045949364
224 => 0.48099628483356
225 => 0.46673538774358
226 => 0.47154802187842
227 => 0.44881912839754
228 => 0.46336026898408
301 => 0.42708440618026
302 => 0.45729602266637
303 => 0.44085321336662
304 => 0.45189411758346
305 => 0.45185559690876
306 => 0.43152579172369
307 => 0.41979998436516
308 => 0.42727212518927
309 => 0.43528285329199
310 => 0.43658256697533
311 => 0.44696868506191
312 => 0.44986722737101
313 => 0.44108450885443
314 => 0.42633266955446
315 => 0.42975918537021
316 => 0.41973054613151
317 => 0.40215574161173
318 => 0.41477827304449
319 => 0.41908816024916
320 => 0.4209916519676
321 => 0.40370885020234
322 => 0.39827821865981
323 => 0.39538699599398
324 => 0.4241016768747
325 => 0.42567473191307
326 => 0.41762675992919
327 => 0.45400435643636
328 => 0.44577098597957
329 => 0.45496967800454
330 => 0.42944826497497
331 => 0.43042321732184
401 => 0.41834097139486
402 => 0.42510622177801
403 => 0.4203247608614
404 => 0.42455965640255
405 => 0.4270980353288
406 => 0.43917829867811
407 => 0.45743395986902
408 => 0.43737391017501
409 => 0.42863345925812
410 => 0.43405598584879
411 => 0.44849688873196
412 => 0.47037559581616
413 => 0.4574229608723
414 => 0.46317112031038
415 => 0.46442683742979
416 => 0.45487604395479
417 => 0.4707277471947
418 => 0.47922280373997
419 => 0.48793697395116
420 => 0.49550324378002
421 => 0.4844563427401
422 => 0.49627811036388
423 => 0.48675185248202
424 => 0.47820581435555
425 => 0.47821877516773
426 => 0.47285772061331
427 => 0.46247000187775
428 => 0.46055434716672
429 => 0.47051982489404
430 => 0.4785111942971
501 => 0.47916940175721
502 => 0.48359383447013
503 => 0.48621216817435
504 => 0.51187539792781
505 => 0.52219736123202
506 => 0.53481886257564
507 => 0.53973564865782
508 => 0.55453341199981
509 => 0.54258301628558
510 => 0.53999747300129
511 => 0.50410293944511
512 => 0.50998066730409
513 => 0.51939147672269
514 => 0.50425812022621
515 => 0.51385675170472
516 => 0.51575172488539
517 => 0.50374389456331
518 => 0.51015779556605
519 => 0.49312437609187
520 => 0.45780524186659
521 => 0.4707670674876
522 => 0.48031133404799
523 => 0.46669048886673
524 => 0.49110532665463
525 => 0.47684268244349
526 => 0.47232210895622
527 => 0.45468574008157
528 => 0.46300942730431
529 => 0.4742673334568
530 => 0.46731125632663
531 => 0.48174616083196
601 => 0.50218983525993
602 => 0.51675921509916
603 => 0.51787767117451
604 => 0.50851053601052
605 => 0.52352142989107
606 => 0.52363076786522
607 => 0.50669841824667
608 => 0.49632744838502
609 => 0.49397114221174
610 => 0.49985765701362
611 => 0.50700497269367
612 => 0.51827429745196
613 => 0.52508411438382
614 => 0.5428405052943
615 => 0.54764487555905
616 => 0.55292342188596
617 => 0.55997718762211
618 => 0.56844704193677
619 => 0.54991548288536
620 => 0.55065177627362
621 => 0.53339544507185
622 => 0.51495458037454
623 => 0.52894889799356
624 => 0.54724460669438
625 => 0.54304755090345
626 => 0.5425752963889
627 => 0.54336949748989
628 => 0.54020505448656
629 => 0.52589239606222
630 => 0.51870466860349
701 => 0.52797867081009
702 => 0.53290739024454
703 => 0.54055140425788
704 => 0.53960911818517
705 => 0.55929927737635
706 => 0.56695027783853
707 => 0.56499282451554
708 => 0.56535304303572
709 => 0.57920481391309
710 => 0.59461083196267
711 => 0.60904060086925
712 => 0.62371918157401
713 => 0.60602357961966
714 => 0.59703884426025
715 => 0.6063087977276
716 => 0.60139002993378
717 => 0.62965472867835
718 => 0.63161171509438
719 => 0.65987436997953
720 => 0.68669899491987
721 => 0.66985092860792
722 => 0.68573789628652
723 => 0.70292094711441
724 => 0.73606984001092
725 => 0.72490645907549
726 => 0.71635548423143
727 => 0.7082748543218
728 => 0.72508936239986
729 => 0.74672095842396
730 => 0.7513801970227
731 => 0.7589299435188
801 => 0.75099230821723
802 => 0.76055231563612
803 => 0.79430334270489
804 => 0.78518351726235
805 => 0.77223189904885
806 => 0.79887509343655
807 => 0.80851716191266
808 => 0.87619024806849
809 => 0.96163031477598
810 => 0.92625756612935
811 => 0.90430055957293
812 => 0.90946097694085
813 => 0.94066079697364
814 => 0.95068118893538
815 => 0.92344230934712
816 => 0.93306354210824
817 => 0.98607748056078
818 => 1.0145177576498
819 => 0.97589204132411
820 => 0.86932522189968
821 => 0.77106574753545
822 => 0.79712858481864
823 => 0.79417386789473
824 => 0.85113073113847
825 => 0.78496601244168
826 => 0.78608005661565
827 => 0.84421472747291
828 => 0.82870539396876
829 => 0.80358225997741
830 => 0.77124917421651
831 => 0.71147847473904
901 => 0.65853789938258
902 => 0.76236655914296
903 => 0.75788927853392
904 => 0.75140551271623
905 => 0.76583443192677
906 => 0.83589716789296
907 => 0.83428199505799
908 => 0.82400708955036
909 => 0.83180051481904
910 => 0.80221603484715
911 => 0.80984062896199
912 => 0.77105018273268
913 => 0.78858508446046
914 => 0.80352835701524
915 => 0.80652844021954
916 => 0.81328778086687
917 => 0.75552995510217
918 => 0.78146152318985
919 => 0.79669388998202
920 => 0.72787350265675
921 => 0.79533353219901
922 => 0.75452451985517
923 => 0.74067332813487
924 => 0.7593221330305
925 => 0.75205467562612
926 => 0.74580654250924
927 => 0.74231997687348
928 => 0.75601360099534
929 => 0.75537477706263
930 => 0.73296935018135
1001 => 0.70374238417676
1002 => 0.71355191331036
1003 => 0.7099880194113
1004 => 0.69707200816963
1005 => 0.70577584026137
1006 => 0.66744856863798
1007 => 0.60150848988816
1008 => 0.64507052570953
1009 => 0.64339343471678
1010 => 0.64254776938822
1011 => 0.67528343534174
1012 => 0.67213665640062
1013 => 0.66642522180914
1014 => 0.6969671131944
1015 => 0.68581891199237
1016 => 0.72017504125048
1017 => 0.74280420999499
1018 => 0.73706472082446
1019 => 0.75834756340494
1020 => 0.71377790504913
1021 => 0.72858215773061
1022 => 0.73163329369045
1023 => 0.6965902309956
1024 => 0.67265150835226
1025 => 0.67105506847336
1026 => 0.62954862236899
1027 => 0.65172103084962
1028 => 0.67123183275597
1029 => 0.66188767274222
1030 => 0.65892959083071
1031 => 0.67404178978694
1101 => 0.67521613707307
1102 => 0.64844089449755
1103 => 0.65400831529066
1104 => 0.67722538550461
1105 => 0.65342330469013
1106 => 0.60717974971542
1107 => 0.59571070871452
1108 => 0.59418052722863
1109 => 0.56307557841309
1110 => 0.59647712487555
1111 => 0.58189645473889
1112 => 0.62795661699735
1113 => 0.60164729934092
1114 => 0.60051315724052
1115 => 0.59879873511329
1116 => 0.5720254207385
1117 => 0.57788707505369
1118 => 0.59737210675253
1119 => 0.60432458557727
1120 => 0.60359938507587
1121 => 0.59727661946718
1122 => 0.60017114918504
1123 => 0.59084686044281
1124 => 0.58755426001965
1125 => 0.57716190738303
1126 => 0.5618880199679
1127 => 0.56401194769317
1128 => 0.53375038009374
1129 => 0.51726227196262
1130 => 0.5126985809417
1201 => 0.50659582257875
1202 => 0.51338790373762
1203 => 0.5336646528749
1204 => 0.50920659146304
1205 => 0.46727496070593
1206 => 0.46979512316245
1207 => 0.47545717995931
1208 => 0.46490597457661
1209 => 0.45492014417744
1210 => 0.46360201353349
1211 => 0.44583502880678
1212 => 0.47760423518076
1213 => 0.47674496718052
1214 => 0.48858656272219
1215 => 0.49599135542841
1216 => 0.47892570557069
1217 => 0.4746337407819
1218 => 0.47707863898452
1219 => 0.43666991777328
1220 => 0.48528430810511
1221 => 0.48570472737146
1222 => 0.48210484236906
1223 => 0.50799050441985
1224 => 0.56261732528748
1225 => 0.5420645179183
1226 => 0.53410584969306
1227 => 0.51897641557913
1228 => 0.53913548823904
1229 => 0.53758758598928
1230 => 0.53058738499138
1231 => 0.52635364158589
]
'min_raw' => 0.39538699599398
'max_raw' => 1.0145177576498
'avg_raw' => 0.70495237682188
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.395386'
'max' => '$1.01'
'avg' => '$0.704952'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.24313761080628
'max_diff' => 0.58969476029986
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.01241074600565
]
1 => [
'year' => 2028
'avg' => 0.021300443011005
]
2 => [
'year' => 2029
'avg' => 0.05818897127473
]
3 => [
'year' => 2030
'avg' => 0.044892704680838
]
4 => [
'year' => 2031
'avg' => 0.044090199488226
]
5 => [
'year' => 2032
'avg' => 0.077303995399301
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.01241074600565
'min' => '$0.01241'
'max_raw' => 0.077303995399301
'max' => '$0.0773039'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.077303995399301
]
1 => [
'year' => 2033
'avg' => 0.19883382524311
]
2 => [
'year' => 2034
'avg' => 0.12603043394559
]
3 => [
'year' => 2035
'avg' => 0.14865318585398
]
4 => [
'year' => 2036
'avg' => 0.28853619126882
]
5 => [
'year' => 2037
'avg' => 0.70495237682188
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.077303995399301
'min' => '$0.0773039'
'max_raw' => 0.70495237682188
'max' => '$0.704952'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.70495237682188
]
]
]
]
'prediction_2025_max_price' => '$0.02122'
'last_price' => 0.02057558
'sma_50day_nextmonth' => '$0.019953'
'sma_200day_nextmonth' => '$0.026221'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.02150045'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.021588'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.021526'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.021501'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.025348'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.031228'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.027332'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.021241'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.0214056'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.021532'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.022252'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.02569'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.0278072'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.028315'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.028056'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.026537'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.037581'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.085976'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.021526'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.02303'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.026061'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.027575'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.029975'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.06721'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.210017'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '30.28'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 71.28
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.0210053'
'vwma_10_action' => 'SELL'
'hma_9' => '0.021669'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -310.84
'cci_20_action' => 'BUY'
'adx_14' => 32.67
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.001035'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 31.73
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.013635'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 32
'buy_signals' => 0
'sell_pct' => 100
'buy_pct' => 0
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767697433
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Impossible Finance Launchpad para 2026
La previsión del precio de Impossible Finance Launchpad para 2026 sugiere que el precio medio podría oscilar entre $0.0071088 en el extremo inferior y $0.02122 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Impossible Finance Launchpad podría potencialmente ganar 3.13% para 2026 si IDIA alcanza el objetivo de precio previsto.
Predicción de precio de Impossible Finance Launchpad 2027-2032
La predicción del precio de IDIA para 2027-2032 está actualmente dentro de un rango de precios de $0.01241 en el extremo inferior y $0.0773039 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Impossible Finance Launchpad alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Impossible Finance Launchpad | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.006843 | $0.01241 | $0.017977 |
| 2028 | $0.01235 | $0.02130044 | $0.03025 |
| 2029 | $0.02713 | $0.058188 | $0.089247 |
| 2030 | $0.023073 | $0.044892 | $0.066712 |
| 2031 | $0.027279 | $0.04409 | $0.06090048 |
| 2032 | $0.04164 | $0.0773039 | $0.112967 |
Predicción de precio de Impossible Finance Launchpad 2032-2037
La predicción de precio de Impossible Finance Launchpad para 2032-2037 se estima actualmente entre $0.0773039 en el extremo inferior y $0.704952 en el extremo superior. Comparado con el precio actual, Impossible Finance Launchpad podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Impossible Finance Launchpad | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.04164 | $0.0773039 | $0.112967 |
| 2033 | $0.096763 | $0.198833 | $0.3009036 |
| 2034 | $0.077793 | $0.12603 | $0.174267 |
| 2035 | $0.091976 | $0.148653 | $0.20533 |
| 2036 | $0.152249 | $0.288536 | $0.424822 |
| 2037 | $0.395386 | $0.704952 | $1.01 |
Impossible Finance Launchpad Histograma de precios potenciales
Pronóstico de precio de Impossible Finance Launchpad basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Impossible Finance Launchpad es Bajista, con 0 indicadores técnicos mostrando señales alcistas y 32 indicando señales bajistas. La predicción de precio de IDIA se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Impossible Finance Launchpad
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Impossible Finance Launchpad aumentar durante el próximo mes, alcanzando $0.026221 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Impossible Finance Launchpad alcance $0.019953 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 30.28, lo que sugiere que el mercado de IDIA está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de IDIA para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.02150045 | SELL |
| SMA 5 | $0.021588 | SELL |
| SMA 10 | $0.021526 | SELL |
| SMA 21 | $0.021501 | SELL |
| SMA 50 | $0.025348 | SELL |
| SMA 100 | $0.031228 | SELL |
| SMA 200 | $0.027332 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.021241 | SELL |
| EMA 5 | $0.0214056 | SELL |
| EMA 10 | $0.021532 | SELL |
| EMA 21 | $0.022252 | SELL |
| EMA 50 | $0.02569 | SELL |
| EMA 100 | $0.0278072 | SELL |
| EMA 200 | $0.028315 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.028056 | SELL |
| SMA 50 | $0.026537 | SELL |
| SMA 100 | $0.037581 | SELL |
| SMA 200 | $0.085976 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.027575 | SELL |
| EMA 50 | $0.029975 | SELL |
| EMA 100 | $0.06721 | SELL |
| EMA 200 | $0.210017 | SELL |
Osciladores de Impossible Finance Launchpad
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 30.28 | NEUTRAL |
| Stoch RSI (14) | 71.28 | NEUTRAL |
| Estocástico Rápido (14) | 0 | BUY |
| Índice de Canal de Materias Primas (20) | -310.84 | BUY |
| Índice Direccional Medio (14) | 32.67 | SELL |
| Oscilador Asombroso (5, 34) | -0.001035 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -100 | BUY |
| Oscilador Ultimate (7, 14, 28) | 31.73 | NEUTRAL |
| VWMA (10) | 0.0210053 | SELL |
| Promedio Móvil de Hull (9) | 0.021669 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.013635 | SELL |
Predicción de precios de Impossible Finance Launchpad basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Impossible Finance Launchpad
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Impossible Finance Launchpad por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.028912 | $0.040626 | $0.057086 | $0.080216 | $0.112717 | $0.158387 |
| Amazon.com acción | $0.042932 | $0.08958 | $0.186915 | $0.3900094 | $0.813777 | $1.69 |
| Apple acción | $0.029184 | $0.041396 | $0.058717 | $0.083286 | $0.118135 | $0.167566 |
| Netflix acción | $0.032465 | $0.051224 | $0.080824 | $0.127528 | $0.20122 | $0.317493 |
| Google acción | $0.026645 | $0.0345055 | $0.044684 | $0.057866 | $0.074936 | $0.097042 |
| Tesla acción | $0.046643 | $0.105736 | $0.239697 | $0.543375 | $1.23 | $2.79 |
| Kodak acción | $0.015429 | $0.01157 | $0.008676 | $0.0065065 | $0.004879 | $0.003658 |
| Nokia acción | $0.01363 | $0.009029 | $0.005981 | $0.003962 | $0.002625 | $0.001739 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Impossible Finance Launchpad
Podría preguntarse cosas como: "¿Debo invertir en Impossible Finance Launchpad ahora?", "¿Debería comprar IDIA hoy?", "¿Será Impossible Finance Launchpad una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Impossible Finance Launchpad regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Impossible Finance Launchpad, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Impossible Finance Launchpad a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Impossible Finance Launchpad es de $0.02057 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Impossible Finance Launchpad basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Impossible Finance Launchpad ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.02111 | $0.021659 | $0.022222 | $0.022799 |
| Si Impossible Finance Launchpad ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.021645 | $0.02277 | $0.023954 | $0.025199 |
| Si Impossible Finance Launchpad ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.023249 | $0.026271 | $0.029685 | $0.033543 |
| Si Impossible Finance Launchpad ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.025923 | $0.032662 | $0.041152 | $0.051849 |
| Si Impossible Finance Launchpad ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.031272 | $0.047529 | $0.072238 | $0.109792 |
| Si Impossible Finance Launchpad ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.047316 | $0.108812 | $0.250232 | $0.575449 |
| Si Impossible Finance Launchpad ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.074058 | $0.266558 | $0.959431 | $3.45 |
Cuadro de preguntas
¿Es IDIA una buena inversión?
La decisión de adquirir Impossible Finance Launchpad depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Impossible Finance Launchpad ha experimentado una caída de -3.322% durante las últimas 24 horas, y Impossible Finance Launchpad ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Impossible Finance Launchpad dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Impossible Finance Launchpad subir?
Parece que el valor medio de Impossible Finance Launchpad podría potencialmente aumentar hasta $0.02122 para el final de este año. Mirando las perspectivas de Impossible Finance Launchpad en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.066712. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Impossible Finance Launchpad la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Impossible Finance Launchpad, el precio de Impossible Finance Launchpad aumentará en un 0.86% durante la próxima semana y alcanzará $0.020751 para el 13 de enero de 2026.
¿Cuál será el precio de Impossible Finance Launchpad el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Impossible Finance Launchpad, el precio de Impossible Finance Launchpad disminuirá en un -11.62% durante el próximo mes y alcanzará $0.018185 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Impossible Finance Launchpad este año en 2026?
Según nuestra predicción más reciente sobre el valor de Impossible Finance Launchpad en 2026, se anticipa que IDIA fluctúe dentro del rango de $0.0071088 y $0.02122. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Impossible Finance Launchpad no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Impossible Finance Launchpad en 5 años?
El futuro de Impossible Finance Launchpad parece estar en una tendencia alcista, con un precio máximo de $0.066712 proyectada después de un período de cinco años. Basado en el pronóstico de Impossible Finance Launchpad para 2030, el valor de Impossible Finance Launchpad podría potencialmente alcanzar su punto más alto de aproximadamente $0.066712, mientras que su punto más bajo se anticipa que esté alrededor de $0.023073.
¿Cuánto será Impossible Finance Launchpad en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Impossible Finance Launchpad, se espera que el valor de IDIA en 2026 crezca en un 3.13% hasta $0.02122 si ocurre lo mejor. El precio estará entre $0.02122 y $0.0071088 durante 2026.
¿Cuánto será Impossible Finance Launchpad en 2027?
Según nuestra última simulación experimental para la predicción de precios de Impossible Finance Launchpad, el valor de IDIA podría disminuir en un -12.62% hasta $0.017977 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.017977 y $0.006843 a lo largo del año.
¿Cuánto será Impossible Finance Launchpad en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Impossible Finance Launchpad sugiere que el valor de IDIA en 2028 podría aumentar en un 47.02% , alcanzando $0.03025 en el mejor escenario. Se espera que el precio oscile entre $0.03025 y $0.01235 durante el año.
¿Cuánto será Impossible Finance Launchpad en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Impossible Finance Launchpad podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.089247 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.089247 y $0.02713.
¿Cuánto será Impossible Finance Launchpad en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Impossible Finance Launchpad, se espera que el valor de IDIA en 2030 aumente en un 224.23% , alcanzando $0.066712 en el mejor escenario. Se pronostica que el precio oscile entre $0.066712 y $0.023073 durante el transcurso de 2030.
¿Cuánto será Impossible Finance Launchpad en 2031?
Nuestra simulación experimental indica que el precio de Impossible Finance Launchpad podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.06090048 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.06090048 y $0.027279 durante el año.
¿Cuánto será Impossible Finance Launchpad en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Impossible Finance Launchpad, IDIA podría experimentar un 449.04% aumento en valor, alcanzando $0.112967 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.112967 y $0.04164 a lo largo del año.
¿Cuánto será Impossible Finance Launchpad en 2033?
Según nuestra predicción experimental de precios de Impossible Finance Launchpad, se anticipa que el valor de IDIA aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.3009036. A lo largo del año, el precio de IDIA podría oscilar entre $0.3009036 y $0.096763.
¿Cuánto será Impossible Finance Launchpad en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Impossible Finance Launchpad sugieren que IDIA podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.174267 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.174267 y $0.077793.
¿Cuánto será Impossible Finance Launchpad en 2035?
Basado en nuestra predicción experimental para el precio de Impossible Finance Launchpad, IDIA podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.20533 en 2035. El rango de precios esperado para el año está entre $0.20533 y $0.091976.
¿Cuánto será Impossible Finance Launchpad en 2036?
Nuestra reciente simulación de predicción de precios de Impossible Finance Launchpad sugiere que el valor de IDIA podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.424822 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.424822 y $0.152249.
¿Cuánto será Impossible Finance Launchpad en 2037?
Según la simulación experimental, el valor de Impossible Finance Launchpad podría aumentar en un 4830.69% en 2037, con un máximo de $1.01 bajo condiciones favorables. Se espera que el precio caiga entre $1.01 y $0.395386 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de SelfKey
Predicción de precios de Solchat
Predicción de precios de pSTAKE Finance
Predicción de precios de Groestlcoin
Predicción de precios de Games for a Living
Predicción de precios de Fideum
Predicción de precios de district0x
Predicción de precios de SOLO Coin
Predicción de precios de Voxies
Predicción de precios de Picasso
Predicción de precios de Acet Token
Predicción de precios de Dream Machine Token
Predicción de precios de KILT Protocol [OLD]
Predicción de precios de Fluence
Predicción de precios de Vyvo Smart Chain
Predicción de precios de HydraDX
Predicción de precios de Leash
Predicción de precios de BNB48 Club Token
Predicción de precios de Turbo
Predicción de precios de SafeMoon
Predicción de precios de ASD
Predicción de precios de UniLend Finance
Predicción de precios de ECOx
Predicción de precios de Botto
Predicción de precios de Coinweb
¿Cómo leer y predecir los movimientos de precio de Impossible Finance Launchpad?
Los traders de Impossible Finance Launchpad utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Impossible Finance Launchpad
Las medias móviles son herramientas populares para la predicción de precios de Impossible Finance Launchpad. Una media móvil simple (SMA) calcula el precio de cierre promedio de IDIA durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de IDIA por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de IDIA.
¿Cómo leer gráficos de Impossible Finance Launchpad y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Impossible Finance Launchpad en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de IDIA dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Impossible Finance Launchpad?
La acción del precio de Impossible Finance Launchpad está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de IDIA. La capitalización de mercado de Impossible Finance Launchpad puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de IDIA, grandes poseedores de Impossible Finance Launchpad, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Impossible Finance Launchpad.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


