Predicción del precio de Impossible Finance Launchpad - Pronóstico de IDIA
Predicción de precio de Impossible Finance Launchpad hasta $0.0212059 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.0071041 | $0.0212059 |
| 2027 | $0.006838 | $0.017965 |
| 2028 | $0.012342 | $0.03023 |
| 2029 | $0.027112 | $0.089187 |
| 2030 | $0.023057 | $0.066667 |
| 2031 | $0.027261 | $0.060859 |
| 2032 | $0.041612 | $0.112891 |
| 2033 | $0.096699 | $0.3007024 |
| 2034 | $0.077741 | $0.17415 |
| 2035 | $0.091914 | $0.205192 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Impossible Finance Launchpad hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.82, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Impossible Finance Launchpad para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Impossible Finance Launchpad'
'name_with_ticker' => 'Impossible Finance Launchpad <small>IDIA</small>'
'name_lang' => 'Impossible Finance Launchpad'
'name_lang_with_ticker' => 'Impossible Finance Launchpad <small>IDIA</small>'
'name_with_lang' => 'Impossible Finance Launchpad'
'name_with_lang_with_ticker' => 'Impossible Finance Launchpad <small>IDIA</small>'
'image' => '/uploads/coins/idia.png?1717089499'
'price_for_sd' => 0.02056
'ticker' => 'IDIA'
'marketcap' => '$15.39M'
'low24h' => '$0.01855'
'high24h' => '$0.022'
'volume24h' => '$35.42K'
'current_supply' => '748.39M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02056'
'change_24h_pct' => '-6.5414%'
'ath_price' => '$3.51'
'ath_days' => 1502
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '26 nov. 2021'
'ath_pct' => '-99.41%'
'fdv' => '$20.56M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.01'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.020737'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.018172'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0071041'
'current_year_max_price_prediction' => '$0.0212059'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.023057'
'grand_prediction_max_price' => '$0.066667'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.020951455673483
107 => 0.021029680803589
108 => 0.021205926015993
109 => 0.019699929972741
110 => 0.02037607798244
111 => 0.020773251591638
112 => 0.018978806775983
113 => 0.020737781187212
114 => 0.019673713932166
115 => 0.01931255352405
116 => 0.019798808434313
117 => 0.019609314422885
118 => 0.019446398599321
119 => 0.019355488770523
120 => 0.019712540710624
121 => 0.019695883810849
122 => 0.019111677536049
123 => 0.018349604265865
124 => 0.018605381069541
125 => 0.018512454958845
126 => 0.018175678745977
127 => 0.018402625250935
128 => 0.017403267698097
129 => 0.015683924970524
130 => 0.016819775441251
131 => 0.016776046433695
201 => 0.016753996285133
202 => 0.017607556521283
203 => 0.017525506399562
204 => 0.017376584625202
205 => 0.018172943680805
206 => 0.017882261912969
207 => 0.018778074628201
208 => 0.019368114819987
209 => 0.019218461541549
210 => 0.019773397193835
211 => 0.018611273650501
212 => 0.018997284475293
213 => 0.019076840771295
214 => 0.018163116733674
215 => 0.017538930814207
216 => 0.017497304729619
217 => 0.01641505236338
218 => 0.016993182841789
219 => 0.017501913738124
220 => 0.017258271117892
221 => 0.017181141142943
222 => 0.017575181457508
223 => 0.017605801764677
224 => 0.016907655516234
225 => 0.017052822228701
226 => 0.017658191551649
227 => 0.017037568474981
228 => 0.015831799215218
301 => 0.015532751767732
302 => 0.015492853325699
303 => 0.014681812930367
304 => 0.015552735548124
305 => 0.015172554486198
306 => 0.016373541905554
307 => 0.015687544332643
308 => 0.01565797234836
309 => 0.015613269956851
310 => 0.014915173984931
311 => 0.015068012636468
312 => 0.015576071592161
313 => 0.015757352751246
314 => 0.01573844364116
315 => 0.015573581826107
316 => 0.015649054720809
317 => 0.015405930230474
318 => 0.015320077912738
319 => 0.015049104382422
320 => 0.014650848151206
321 => 0.014706228122804
322 => 0.013917178319354
323 => 0.013487262108392
324 => 0.013368266967402
325 => 0.013209141691721
326 => 0.013386240590706
327 => 0.0139149430404
328 => 0.013277215715588
329 => 0.012183876948568
330 => 0.012249588471424
331 => 0.012397222753357
401 => 0.012122107245674
402 => 0.011861733506347
403 => 0.012088107347903
404 => 0.011624845299086
405 => 0.012453205758696
406 => 0.012430800929717
407 => 0.012739562483592
408 => 0.012932637419655
409 => 0.012487662200782
410 => 0.012375752136577
411 => 0.012439501195177
412 => 0.011385871259297
413 => 0.012653458439312
414 => 0.012664420585882
415 => 0.012570556031634
416 => 0.013245507072628
417 => 0.014669864291635
418 => 0.014133963811208
419 => 0.013926446947509
420 => 0.013531957237924
421 => 0.014057591353465
422 => 0.014017230854561
423 => 0.013834705372253
424 => 0.013724313391038
425 => 0.013927714001229
426 => 0.0136991098045
427 => 0.013658046209145
428 => 0.013409245498922
429 => 0.013320434965084
430 => 0.013254683181479
501 => 0.013182296928367
502 => 0.013341962965202
503 => 0.012980138719918
504 => 0.012543814150174
505 => 0.012507538483297
506 => 0.012607698788933
507 => 0.012563385309747
508 => 0.012507326327407
509 => 0.012400294463365
510 => 0.012368540395677
511 => 0.012471725710778
512 => 0.012355235506107
513 => 0.012527123148649
514 => 0.012480379220854
515 => 0.012219271439992
516 => 0.011893834470555
517 => 0.0118909373989
518 => 0.011820822537658
519 => 0.011731520720027
520 => 0.011706678997311
521 => 0.012069042774375
522 => 0.012819124948263
523 => 0.012671865869584
524 => 0.012778275645647
525 => 0.013301706426252
526 => 0.013468089331294
527 => 0.01334999468629
528 => 0.013188339452449
529 => 0.013195451462324
530 => 0.013747876332727
531 => 0.013782330394276
601 => 0.013869384692508
602 => 0.013981274067279
603 => 0.013369049930637
604 => 0.013166615760545
605 => 0.013070691220135
606 => 0.012775280763141
607 => 0.01309385561443
608 => 0.012908235691319
609 => 0.012933282160626
610 => 0.012916970614632
611 => 0.012925877821727
612 => 0.012452974215065
613 => 0.012625275434251
614 => 0.012338791238983
615 => 0.011955221060881
616 => 0.011953935199146
617 => 0.012047813456834
618 => 0.011991970995705
619 => 0.011841700368648
620 => 0.011863045601964
621 => 0.011676038897605
622 => 0.011885751601739
623 => 0.011891765411705
624 => 0.011811014597485
625 => 0.01213410595298
626 => 0.012266476744943
627 => 0.012213324829174
628 => 0.012262747464841
629 => 0.012677985149138
630 => 0.012745687009769
701 => 0.012775755704127
702 => 0.012735467637025
703 => 0.012270337247447
704 => 0.012290967758112
705 => 0.012139594759412
706 => 0.012011700526804
707 => 0.012016815625391
708 => 0.012082569886038
709 => 0.01236972259872
710 => 0.012974018553983
711 => 0.01299695114375
712 => 0.01302474611154
713 => 0.012911690008909
714 => 0.012877591206555
715 => 0.012922576328508
716 => 0.013149518116933
717 => 0.013733274010856
718 => 0.013526935690198
719 => 0.013359179423656
720 => 0.013506346896178
721 => 0.01348369161732
722 => 0.013292458264292
723 => 0.013287090980995
724 => 0.012920053035533
725 => 0.012784367464145
726 => 0.012670978444804
727 => 0.01254716059578
728 => 0.012473757224466
729 => 0.012586538164039
730 => 0.012612332499305
731 => 0.012365735003854
801 => 0.012332124676433
802 => 0.012533501514395
803 => 0.012444883076093
804 => 0.012536029337518
805 => 0.012557176052007
806 => 0.012553770943924
807 => 0.012461243116574
808 => 0.012520217594507
809 => 0.012380725373057
810 => 0.012229048533284
811 => 0.01213228815931
812 => 0.012047851899616
813 => 0.012094702043959
814 => 0.011927689833877
815 => 0.01187425926658
816 => 0.012500238368351
817 => 0.012962655861239
818 => 0.012955932127755
819 => 0.012915003129375
820 => 0.012854190939926
821 => 0.013145069326499
822 => 0.013043733112914
823 => 0.013117463675221
824 => 0.01313623119779
825 => 0.013193034836191
826 => 0.013213337254481
827 => 0.013151969245471
828 => 0.012946010711762
829 => 0.01243278162771
830 => 0.012193872103648
831 => 0.012115027981355
901 => 0.012117893815454
902 => 0.012038841317355
903 => 0.01206212582093
904 => 0.012030743917246
905 => 0.011971314183767
906 => 0.012091032425385
907 => 0.012104828837479
908 => 0.012076885169359
909 => 0.012083466914777
910 => 0.01185210527764
911 => 0.01186969520042
912 => 0.01177175227516
913 => 0.011753389157393
914 => 0.0115057979712
915 => 0.011067154295942
916 => 0.011310205472207
917 => 0.011016633829446
918 => 0.010905453799997
919 => 0.011431762767369
920 => 0.011378935944583
921 => 0.011288519387242
922 => 0.011154774454472
923 => 0.011105167157921
924 => 0.010803768927837
925 => 0.010785960712507
926 => 0.010935341813773
927 => 0.010866407575428
928 => 0.010769597797355
929 => 0.010418962594623
930 => 0.010024732535426
1001 => 0.010036631862871
1002 => 0.010162029109791
1003 => 0.010526638517332
1004 => 0.010384179313999
1005 => 0.01028082352745
1006 => 0.010261468095492
1007 => 0.010503741849778
1008 => 0.010846609970012
1009 => 0.011007476020784
1010 => 0.010848062650043
1011 => 0.010664937153162
1012 => 0.010676083153635
1013 => 0.010750232501288
1014 => 0.010758024549311
1015 => 0.010638828676447
1016 => 0.010672381616464
1017 => 0.010621411632432
1018 => 0.010308608934513
1019 => 0.010302951325615
1020 => 0.010226184498921
1021 => 0.010223860029918
1022 => 0.010093260507328
1023 => 0.010074988731326
1024 => 0.0098156754524004
1025 => 0.0099863562378623
1026 => 0.0098718725281179
1027 => 0.0096993185735561
1028 => 0.0096695702067501
1029 => 0.0096686759349217
1030 => 0.0098458502638985
1031 => 0.0099842858526723
1101 => 0.0098738640212636
1102 => 0.0098487231106892
1103 => 0.010117162261639
1104 => 0.010083000932803
1105 => 0.010053417442349
1106 => 0.010815909890455
1107 => 0.010212337619751
1108 => 0.0099491456590236
1109 => 0.0096233956288253
1110 => 0.0097294614812321
1111 => 0.0097518111147658
1112 => 0.0089684410129952
1113 => 0.0086506278602695
1114 => 0.00854156636279
1115 => 0.0084787999290873
1116 => 0.0085074033810969
1117 => 0.0082213342678789
1118 => 0.0084135774431078
1119 => 0.0081658657718813
1120 => 0.0081243361040766
1121 => 0.0085672752578173
1122 => 0.0086289076534473
1123 => 0.0083659647060053
1124 => 0.0085348166448595
1125 => 0.0084735885846134
1126 => 0.0081701120775088
1127 => 0.0081585215071595
1128 => 0.0080062476636095
1129 => 0.0077679685844799
1130 => 0.0076590686514364
1201 => 0.0076023526207948
1202 => 0.007625754760411
1203 => 0.0076139219225038
1204 => 0.0075367046511193
1205 => 0.0076183479261122
1206 => 0.0074097830958357
1207 => 0.0073267308998985
1208 => 0.00728921814979
1209 => 0.0071041048583759
1210 => 0.0073987024252701
1211 => 0.0074567418571907
1212 => 0.0075148956447214
1213 => 0.0080210846618991
1214 => 0.0079957968890762
1215 => 0.0082243860397502
1216 => 0.0082155034857035
1217 => 0.0081503061570326
1218 => 0.0078752493518098
1219 => 0.0079848820919555
1220 => 0.0076474495584977
1221 => 0.0079002769557462
1222 => 0.0077848970899665
1223 => 0.0078612669070644
1224 => 0.0077239470899336
1225 => 0.0077999455465301
1226 => 0.00747050515962
1227 => 0.0071628783616747
1228 => 0.0072866763653539
1229 => 0.0074212589533723
1230 => 0.0077130682952017
1231 => 0.0075392690585829
]
'min_raw' => 0.0071041048583759
'max_raw' => 0.021205926015993
'avg_raw' => 0.014155015437184
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0071041'
'max' => '$0.0212059'
'avg' => '$0.014155'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.013457715141624
'max_diff' => 0.00064410601599289
'year' => 2026
]
1 => [
'items' => [
101 => 0.0076017738361477
102 => 0.0073923932944788
103 => 0.006960381430421
104 => 0.0069628265706552
105 => 0.00689637095726
106 => 0.0068389436046081
107 => 0.00755923199161
108 => 0.0074696527446119
109 => 0.0073269199383626
110 => 0.0075179734715036
111 => 0.0075684910580934
112 => 0.0075699292227642
113 => 0.0077093169487385
114 => 0.0077837082030776
115 => 0.007796819984085
116 => 0.0080161495825767
117 => 0.0080896659709637
118 => 0.0083924695703013
119 => 0.0077773966248897
120 => 0.007764729602339
121 => 0.0075206619865168
122 => 0.007365870446006
123 => 0.0075312606957255
124 => 0.0076777738789565
125 => 0.0075252145595237
126 => 0.0075451355859386
127 => 0.0073403371641545
128 => 0.0074135429632809
129 => 0.0074765976593747
130 => 0.0074417825623754
131 => 0.0073896626770978
201 => 0.0076657614687458
202 => 0.0076501828928811
203 => 0.0079072924351476
204 => 0.008107727709424
205 => 0.0084669435530184
206 => 0.0080920830938822
207 => 0.008078421688816
208 => 0.0082119641146973
209 => 0.0080896455263141
210 => 0.0081669466518781
211 => 0.0084544891466193
212 => 0.0084605644664297
213 => 0.0083587950319988
214 => 0.0083526023526649
215 => 0.0083721482857829
216 => 0.0084866294265616
217 => 0.0084466261983234
218 => 0.0084929189467984
219 => 0.0085508087376262
220 => 0.0087902654572526
221 => 0.0088479976616776
222 => 0.0087077383356409
223 => 0.0087204021823649
224 => 0.0086679413442226
225 => 0.0086172648319095
226 => 0.0087311782308791
227 => 0.0089393572064694
228 => 0.0089380621358668
301 => 0.0089863556117827
302 => 0.0090164420471935
303 => 0.0088872890417933
304 => 0.0088032151843654
305 => 0.0088354544510618
306 => 0.0088870057405892
307 => 0.008818737062659
308 => 0.0083973511573455
309 => 0.0085251727227817
310 => 0.0085038969641379
311 => 0.0084735976966085
312 => 0.0086021232690696
313 => 0.0085897266640655
314 => 0.0082184002156453
315 => 0.0082421713301075
316 => 0.0082198458158482
317 => 0.0082919841197905
318 => 0.0080857498211635
319 => 0.008149186102412
320 => 0.0081889727433328
321 => 0.0082124073804905
322 => 0.0082970693591855
323 => 0.0082871352531505
324 => 0.0082964518412062
325 => 0.008421983205677
326 => 0.0090568777700083
327 => 0.009091433680329
328 => 0.0089212677396797
329 => 0.0089892456765943
330 => 0.0088587429028588
331 => 0.00894635028916
401 => 0.009006289037881
402 => 0.0087354373579695
403 => 0.008719399279298
404 => 0.0085883578741929
405 => 0.0086587721027318
406 => 0.0085467380021641
407 => 0.008574227251657
408 => 0.0084973649136053
409 => 0.0086357018189594
410 => 0.0087903839745271
411 => 0.0088294627956069
412 => 0.0087266632418362
413 => 0.0086522295900855
414 => 0.0085215486175803
415 => 0.0087388739872718
416 => 0.0088024265482402
417 => 0.0087385401727242
418 => 0.0087237363035722
419 => 0.0086956829982793
420 => 0.0087296879449067
421 => 0.0088020804273446
422 => 0.0087679414695061
423 => 0.0087904908526094
424 => 0.0087045558570424
425 => 0.0088873317968121
426 => 0.0091776239765918
427 => 0.0091785573134174
428 => 0.0091444181715572
429 => 0.0091304491702461
430 => 0.009165478001531
501 => 0.0091844797055452
502 => 0.0092977565227314
503 => 0.0094193070607198
504 => 0.0099865303848568
505 => 0.0098272563452199
506 => 0.010330530622661
507 => 0.010728555234131
508 => 0.010847905411604
509 => 0.010738108864188
510 => 0.010362500806573
511 => 0.010344071683334
512 => 0.010905388699042
513 => 0.010746790932157
514 => 0.010727926232439
515 => 0.010527237699862
516 => 0.010645869478374
517 => 0.01061992296819
518 => 0.010578965132519
519 => 0.010805306301957
520 => 0.01122899676553
521 => 0.011162960633438
522 => 0.011113667724159
523 => 0.010897680544651
524 => 0.011027753069198
525 => 0.010981436734582
526 => 0.011180441101165
527 => 0.011062555322888
528 => 0.010745589398087
529 => 0.010796067266345
530 => 0.010788437638105
531 => 0.010945454846639
601 => 0.010898322178044
602 => 0.01077923422811
603 => 0.011227548637586
604 => 0.011198437593491
605 => 0.011239710398307
606 => 0.011257879963391
607 => 0.011530761044254
608 => 0.011642551691863
609 => 0.01166793012604
610 => 0.01177412259507
611 => 0.011665287960672
612 => 0.012100704096043
613 => 0.012390230418828
614 => 0.012726530141632
615 => 0.013217954425492
616 => 0.013402734502153
617 => 0.013369355635206
618 => 0.013741947918681
619 => 0.014411487969825
620 => 0.013504688822425
621 => 0.014459550526518
622 => 0.01415725233541
623 => 0.013440508762408
624 => 0.013394358926158
625 => 0.013879745995359
626 => 0.014956287798074
627 => 0.01468662628653
628 => 0.014956728867703
629 => 0.014641639859421
630 => 0.014625993034382
701 => 0.014941425697863
702 => 0.015678451309427
703 => 0.015328318068365
704 => 0.014826316211109
705 => 0.015196986570493
706 => 0.014875877601273
707 => 0.014152329220878
708 => 0.014686420081454
709 => 0.014329288733019
710 => 0.014433518646639
711 => 0.015184155621771
712 => 0.015093836994984
713 => 0.015210717661326
714 => 0.015004426344532
715 => 0.014811717725492
716 => 0.014452012777323
717 => 0.01434552187541
718 => 0.014374952129557
719 => 0.014345507291237
720 => 0.014144255678596
721 => 0.014100795412007
722 => 0.014028359730322
723 => 0.014050810576951
724 => 0.013914610303576
725 => 0.014171648359847
726 => 0.014219356888102
727 => 0.014406407750261
728 => 0.014425827991288
729 => 0.014946761979899
730 => 0.014659840292912
731 => 0.014852332132169
801 => 0.014835113850263
802 => 0.013456042768991
803 => 0.013646066596343
804 => 0.013941684038941
805 => 0.013808508781751
806 => 0.013620230126294
807 => 0.013468185017151
808 => 0.013237821129387
809 => 0.013562053877668
810 => 0.013988385463348
811 => 0.014436640463855
812 => 0.014975189476134
813 => 0.014854991605995
814 => 0.014426572664677
815 => 0.014445791225425
816 => 0.014564592805739
817 => 0.01441073396497
818 => 0.014365357989146
819 => 0.014558358843457
820 => 0.014559687934269
821 => 0.014382654743502
822 => 0.014185914748696
823 => 0.014185090400934
824 => 0.014150082419141
825 => 0.014647867701612
826 => 0.014921599275202
827 => 0.014952982158973
828 => 0.014919486957078
829 => 0.014932377930911
830 => 0.014773099559502
831 => 0.015137162684008
901 => 0.015471263009166
902 => 0.015381716985011
903 => 0.015247474765086
904 => 0.015140544370934
905 => 0.015356527582446
906 => 0.015346910190026
907 => 0.015468344934288
908 => 0.015462835952847
909 => 0.015422002015744
910 => 0.01538171844332
911 => 0.015541438254533
912 => 0.015495441513925
913 => 0.015449373327675
914 => 0.015356976527463
915 => 0.01536953478716
916 => 0.015235315746046
917 => 0.015173219876182
918 => 0.014239446982245
919 => 0.013989912353076
920 => 0.014068421027158
921 => 0.014094268121143
922 => 0.013985670330741
923 => 0.014141371665694
924 => 0.01411710577757
925 => 0.01421151015319
926 => 0.014152530397864
927 => 0.014154950947596
928 => 0.0143283978322
929 => 0.014378750200696
930 => 0.014353140579686
1001 => 0.014371076680395
1002 => 0.01478440655089
1003 => 0.014725644260851
1004 => 0.014694427965443
1005 => 0.014703075092607
1006 => 0.014808689736411
1007 => 0.01483825607033
1008 => 0.014712981435925
1009 => 0.014772061677714
1010 => 0.015023617848856
1011 => 0.015111648271909
1012 => 0.015392599125294
1013 => 0.015273246209273
1014 => 0.015492323652104
1015 => 0.016165693022361
1016 => 0.016703627068938
1017 => 0.016208920688641
1018 => 0.017196768059693
1019 => 0.017965948936346
1020 => 0.017936426493162
1021 => 0.017802302015844
1022 => 0.016926610037506
1023 => 0.016120785223207
1024 => 0.016794891897497
1025 => 0.016796610334041
1026 => 0.016738703972884
1027 => 0.01637905253698
1028 => 0.016726188882504
1029 => 0.016753743304998
1030 => 0.016738320155714
1031 => 0.016462576243054
1101 => 0.016041566254416
1102 => 0.01612383059844
1103 => 0.016258581272099
1104 => 0.016003470134927
1105 => 0.015921946668872
1106 => 0.016073514302743
1107 => 0.016561896799445
1108 => 0.016469570917451
1109 => 0.016467159915554
1110 => 0.016862169190993
1111 => 0.016579427798116
1112 => 0.016124868215265
1113 => 0.016010085925691
1114 => 0.015602686124319
1115 => 0.015884078618235
1116 => 0.015894205433138
1117 => 0.015740089639981
1118 => 0.016137373862499
1119 => 0.016133712818448
1120 => 0.016510875059776
1121 => 0.017231867609526
1122 => 0.017018634634677
1123 => 0.016770667884608
1124 => 0.016797628745713
1125 => 0.017093322846955
1126 => 0.016914539443304
1127 => 0.016978831201779
1128 => 0.017093225533679
1129 => 0.017162242474365
1130 => 0.016787698270058
1201 => 0.016700374099514
1202 => 0.0165217394932
1203 => 0.016475137058785
1204 => 0.016620631218295
1205 => 0.016582298647649
1206 => 0.015893354313558
1207 => 0.015821355797396
1208 => 0.015823563889096
1209 => 0.015642520196863
1210 => 0.015366385110742
1211 => 0.016092051629898
1212 => 0.016033770452714
1213 => 0.015969432543706
1214 => 0.015977313570453
1215 => 0.016292300811298
1216 => 0.016109592304371
1217 => 0.016595352815373
1218 => 0.016495495057608
1219 => 0.016393076325155
1220 => 0.016378918936579
1221 => 0.01633949646254
1222 => 0.016204302130605
1223 => 0.016041046850872
1224 => 0.015933251574263
1225 => 0.014697582348766
1226 => 0.014926915369461
1227 => 0.015190742105408
1228 => 0.015281814037438
1229 => 0.015126029195715
1230 => 0.016210453465676
1231 => 0.01640858822957
]
'min_raw' => 0.0068389436046081
'max_raw' => 0.017965948936346
'avg_raw' => 0.012402446270477
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.006838'
'max' => '$0.017965'
'avg' => '$0.0124024'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00026516125376779
'max_diff' => -0.0032399770796467
'year' => 2027
]
2 => [
'items' => [
101 => 0.015808425105724
102 => 0.015696159089751
103 => 0.016217813606993
104 => 0.015903192163425
105 => 0.016044866180199
106 => 0.015738644447477
107 => 0.016360863367011
108 => 0.016356123101346
109 => 0.016114065888195
110 => 0.016318650987214
111 => 0.016283099291667
112 => 0.016009817294181
113 => 0.016369526893775
114 => 0.016369705305249
115 => 0.016136730500369
116 => 0.015864666933013
117 => 0.015816028393024
118 => 0.015779385786811
119 => 0.016035854345303
120 => 0.01626580325289
121 => 0.016693681160741
122 => 0.016801259832904
123 => 0.01722114655227
124 => 0.016971124454801
125 => 0.017081956012281
126 => 0.017202279346006
127 => 0.017259966776938
128 => 0.017165968203913
129 => 0.017818225111358
130 => 0.017873295578981
131 => 0.017891760230418
201 => 0.01767182287111
202 => 0.017867178723155
203 => 0.017775778189489
204 => 0.018013576986289
205 => 0.018050866873995
206 => 0.018019283665735
207 => 0.018031120064673
208 => 0.017474533860172
209 => 0.017445671929243
210 => 0.017052137453069
211 => 0.01721250566097
212 => 0.016912704982948
213 => 0.017007774866238
214 => 0.017049680764933
215 => 0.017027791501594
216 => 0.01722157263883
217 => 0.017056819085308
218 => 0.016622007369572
219 => 0.016187077189674
220 => 0.016181616995552
221 => 0.016067107556341
222 => 0.015984338205241
223 => 0.016000282518663
224 => 0.016056472358813
225 => 0.015981072349583
226 => 0.01599716276443
227 => 0.016264370860756
228 => 0.016317957538834
229 => 0.01613584906906
301 => 0.015404657284793
302 => 0.015225220986878
303 => 0.015354196239443
304 => 0.015292554375787
305 => 0.012342284916193
306 => 0.013035406963759
307 => 0.012623577379296
308 => 0.012813367399185
309 => 0.012392996036202
310 => 0.012593619284168
311 => 0.012556571495857
312 => 0.013671091237371
313 => 0.013653689544579
314 => 0.013662018814041
315 => 0.013264441080804
316 => 0.013897793205263
317 => 0.014209805236377
318 => 0.014152060113349
319 => 0.014166593316746
320 => 0.013916864731591
321 => 0.013664436732625
322 => 0.013384455233382
323 => 0.013904626252217
324 => 0.013846792114538
325 => 0.013979442818308
326 => 0.014316810906614
327 => 0.014366489639154
328 => 0.01443325835948
329 => 0.014409326526164
330 => 0.014979479887872
331 => 0.014910430553776
401 => 0.015076819582098
402 => 0.014734544726874
403 => 0.014347228239161
404 => 0.014420844441145
405 => 0.01441375460891
406 => 0.014323492907226
407 => 0.014242008678818
408 => 0.014106360396558
409 => 0.014535571633796
410 => 0.014518146441396
411 => 0.014800240051783
412 => 0.014750377266036
413 => 0.014417381379324
414 => 0.014429274392563
415 => 0.014509260622181
416 => 0.014786093876158
417 => 0.014868276834183
418 => 0.014830206413601
419 => 0.014920316275281
420 => 0.014991535435878
421 => 0.014929260305343
422 => 0.015810944827099
423 => 0.015444807942835
424 => 0.015623260512661
425 => 0.015665820399061
426 => 0.015556804144986
427 => 0.015580445866915
428 => 0.015616256633655
429 => 0.015833692596831
430 => 0.016404307479809
501 => 0.016657028927173
502 => 0.017417353870623
503 => 0.016636043929021
504 => 0.016589684230469
505 => 0.016726641712398
506 => 0.017173032942772
507 => 0.017534791107595
508 => 0.017654807161195
509 => 0.017670669263928
510 => 0.017895827358999
511 => 0.018024883780144
512 => 0.017868487244012
513 => 0.017735957555039
514 => 0.017261252659331
515 => 0.017316201043587
516 => 0.017694740921426
517 => 0.01822945079476
518 => 0.018688287493162
519 => 0.018527618873455
520 => 0.019753407027448
521 => 0.019874938916021
522 => 0.019858147138617
523 => 0.020135014867156
524 => 0.019585488809138
525 => 0.01935055577277
526 => 0.017764611978071
527 => 0.018210197494575
528 => 0.018857882211133
529 => 0.018772158710203
530 => 0.018301792756377
531 => 0.018687930678407
601 => 0.018560261405734
602 => 0.018459563353375
603 => 0.018920880652512
604 => 0.01841364333224
605 => 0.018852822130847
606 => 0.018289570778911
607 => 0.018528352794176
608 => 0.018392808573725
609 => 0.018480522296032
610 => 0.017967749667713
611 => 0.018244429331102
612 => 0.017956238884078
613 => 0.017956102244282
614 => 0.017949740424191
615 => 0.018288795207083
616 => 0.018299851771381
617 => 0.01804928977454
618 => 0.018013179876282
619 => 0.018146697096108
620 => 0.017990383399907
621 => 0.018063521594533
622 => 0.017992598681315
623 => 0.017976632439684
624 => 0.017849410709941
625 => 0.017794600090734
626 => 0.017816092746821
627 => 0.017742727231372
628 => 0.017698521854568
629 => 0.017940946862112
630 => 0.017811428959978
701 => 0.017921096386062
702 => 0.017796116512907
703 => 0.017362881821412
704 => 0.017113723968961
705 => 0.016295383797605
706 => 0.016527464055054
707 => 0.016681333505847
708 => 0.016630479653277
709 => 0.016739733406424
710 => 0.016746440699545
711 => 0.016710921190687
712 => 0.01666979414976
713 => 0.016649775780705
714 => 0.016798976302901
715 => 0.016885592227894
716 => 0.016696776363741
717 => 0.016652539448585
718 => 0.016843442712053
719 => 0.016959893592487
720 => 0.017819701465514
721 => 0.017756004121138
722 => 0.017915871955551
723 => 0.017897873290768
724 => 0.018065440250176
725 => 0.018339341409727
726 => 0.01778242376839
727 => 0.017879085414163
728 => 0.017855386210863
729 => 0.018114127898229
730 => 0.018114935661535
731 => 0.017959807094853
801 => 0.018043904807525
802 => 0.017996963771411
803 => 0.01808179256813
804 => 0.017755153404269
805 => 0.018152964647332
806 => 0.018378497987759
807 => 0.01838162951841
808 => 0.018488530531829
809 => 0.018597148152752
810 => 0.018805630217512
811 => 0.018591333701119
812 => 0.018205835129474
813 => 0.018233666881194
814 => 0.018007649209687
815 => 0.018011448607579
816 => 0.01799116712387
817 => 0.018052033383199
818 => 0.017768510125385
819 => 0.017835052467296
820 => 0.017741892798949
821 => 0.017878882903238
822 => 0.017731504196299
823 => 0.01785537478239
824 => 0.017908833220972
825 => 0.018106096010217
826 => 0.017702368321938
827 => 0.016879140235576
828 => 0.017052192760005
829 => 0.016796234483392
830 => 0.016819924396394
831 => 0.016867781790881
901 => 0.016712660317385
902 => 0.016742252606088
903 => 0.016741195361298
904 => 0.016732084596866
905 => 0.016691731510534
906 => 0.016633211551738
907 => 0.016866337056088
908 => 0.016905949622026
909 => 0.016994003449146
910 => 0.017255991911176
911 => 0.017229813085706
912 => 0.017272511836197
913 => 0.017179300703619
914 => 0.016824248193499
915 => 0.016843529253007
916 => 0.016603094131976
917 => 0.01698785498253
918 => 0.016896738534524
919 => 0.016837995167746
920 => 0.016821966495868
921 => 0.017084604376621
922 => 0.017163189746886
923 => 0.017114220617805
924 => 0.017013783505401
925 => 0.017206652452783
926 => 0.017258256046615
927 => 0.017269808188207
928 => 0.017611534984016
929 => 0.017288906919981
930 => 0.017366566701642
1001 => 0.017972446149192
1002 => 0.017422997095912
1003 => 0.017714052513611
1004 => 0.017699806865494
1005 => 0.01784870096841
1006 => 0.017687593203162
1007 => 0.017689590326998
1008 => 0.017821798203427
1009 => 0.017636136084798
1010 => 0.017590163533253
1011 => 0.017526652782556
1012 => 0.01766532618321
1013 => 0.017748454615243
1014 => 0.018418408726326
1015 => 0.018851229635705
1016 => 0.018832439738545
1017 => 0.019004144225375
1018 => 0.018926789781425
1019 => 0.018676991876841
1020 => 0.019103366440357
1021 => 0.018968443688191
1022 => 0.018979566555949
1023 => 0.018979152562255
1024 => 0.019068864397294
1025 => 0.0190052953402
1026 => 0.018879994203438
1027 => 0.01896317494558
1028 => 0.019210192012081
1029 => 0.019976940565911
1030 => 0.020406023214702
1031 => 0.019951109251682
1101 => 0.020264902811832
1102 => 0.02007673849182
1103 => 0.02004254343747
1104 => 0.020239628982406
1105 => 0.020437059499499
1106 => 0.020424484029076
1107 => 0.020281159611836
1108 => 0.020200199285259
1109 => 0.020813258001796
1110 => 0.021264949220957
1111 => 0.021234146907987
1112 => 0.02137009829999
1113 => 0.021769255791728
1114 => 0.021805749750368
1115 => 0.021801152350383
1116 => 0.021710698266143
1117 => 0.02210372065391
1118 => 0.022431586844356
1119 => 0.021689760759112
1120 => 0.021972238421156
1121 => 0.02209905174451
1122 => 0.022285251327011
1123 => 0.022599401233363
1124 => 0.022940651355809
1125 => 0.02298890786474
1126 => 0.022954667562367
1127 => 0.022729603933318
1128 => 0.023103003889259
1129 => 0.023321732826143
1130 => 0.023451980902534
1201 => 0.02378226835305
1202 => 0.022099834900422
1203 => 0.020908924880285
1204 => 0.020722947083691
1205 => 0.02110114024628
1206 => 0.02120086676722
1207 => 0.021160667131676
1208 => 0.019820189631208
1209 => 0.020715889747069
1210 => 0.02167958775913
1211 => 0.021716607324557
1212 => 0.02219905469937
1213 => 0.022356159340795
1214 => 0.022744592713343
1215 => 0.022720296100131
1216 => 0.022814873445021
1217 => 0.022793131751282
1218 => 0.02351262277963
1219 => 0.024306328229349
1220 => 0.024278844733454
1221 => 0.02416474018436
1222 => 0.024334204897481
1223 => 0.025153393980236
1224 => 0.025077976176734
1225 => 0.025151238148763
1226 => 0.026117108244805
1227 => 0.027372876763078
1228 => 0.026789446209242
1229 => 0.028055322633447
1230 => 0.028852124741258
1231 => 0.030230111595841
]
'min_raw' => 0.012342284916193
'max_raw' => 0.030230111595841
'avg_raw' => 0.021286198256017
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.012342'
'max' => '$0.03023'
'avg' => '$0.021286'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0055033413115851
'max_diff' => 0.012264162659494
'year' => 2028
]
3 => [
'items' => [
101 => 0.030057580854919
102 => 0.030594021025273
103 => 0.029748714820416
104 => 0.027807720909493
105 => 0.027500551193263
106 => 0.028115512743931
107 => 0.029627335709178
108 => 0.028067900058635
109 => 0.028383371859726
110 => 0.028292515959789
111 => 0.028287674634994
112 => 0.028472448311326
113 => 0.028204424456659
114 => 0.027112447056178
115 => 0.027612893863755
116 => 0.02741964731792
117 => 0.027634068768008
118 => 0.028791212900004
119 => 0.028279611896378
120 => 0.027740681798149
121 => 0.028416619739491
122 => 0.029277321016296
123 => 0.029223459877223
124 => 0.029118946755211
125 => 0.029708081751865
126 => 0.03068116016598
127 => 0.03094417935117
128 => 0.031138334736487
129 => 0.03116510548384
130 => 0.031440860819503
131 => 0.029958054880351
201 => 0.032311305986942
202 => 0.032717647445801
203 => 0.032641272092663
204 => 0.033092903522722
205 => 0.032960022099215
206 => 0.03276749776501
207 => 0.033483429646413
208 => 0.032662671517108
209 => 0.031497708683135
210 => 0.030858587032065
211 => 0.031700233978667
212 => 0.032214198399526
213 => 0.032553896187438
214 => 0.032656688532808
215 => 0.0300731608844
216 => 0.02868078277092
217 => 0.029573281178013
218 => 0.030662190831616
219 => 0.029952005932244
220 => 0.029979843835742
221 => 0.028967306802546
222 => 0.030751777891661
223 => 0.030491795463741
224 => 0.03184058475969
225 => 0.031518685369502
226 => 0.032618570680649
227 => 0.032328934017053
228 => 0.033531199614272
301 => 0.034010815911045
302 => 0.034816166319641
303 => 0.035408585358571
304 => 0.035756465149401
305 => 0.035735579751624
306 => 0.037114052795916
307 => 0.036301215401877
308 => 0.035280100063899
309 => 0.035261631309013
310 => 0.035790481411867
311 => 0.036898806144511
312 => 0.037186178622216
313 => 0.037346780633179
314 => 0.037100813062793
315 => 0.036218536328145
316 => 0.035837573707368
317 => 0.03616216489782
318 => 0.035765217764337
319 => 0.036450459880423
320 => 0.037391443665627
321 => 0.037197134235036
322 => 0.037846681529005
323 => 0.038518894643896
324 => 0.039480189589169
325 => 0.039731507684512
326 => 0.040146926939344
327 => 0.040574529810681
328 => 0.040711864328734
329 => 0.040974078536096
330 => 0.040972696537791
331 => 0.041762896700727
401 => 0.042634511950908
402 => 0.042963526529912
403 => 0.043720077412361
404 => 0.042424510538871
405 => 0.043407212894813
406 => 0.044293635018508
407 => 0.043236806019744
408 => 0.044693398584964
409 => 0.044749954773562
410 => 0.045603886074788
411 => 0.044738263107553
412 => 0.044224258952775
413 => 0.045708169688135
414 => 0.046426187350225
415 => 0.046209914586982
416 => 0.044564068179998
417 => 0.04360611497746
418 => 0.041098966671046
419 => 0.04406879214074
420 => 0.045515307496032
421 => 0.04456032205468
422 => 0.045041961163112
423 => 0.047669627966712
424 => 0.048670073356697
425 => 0.048461987709221
426 => 0.048497150758263
427 => 0.049036972931331
428 => 0.051430841732213
429 => 0.04999638005728
430 => 0.051092972259512
501 => 0.051674600809519
502 => 0.052214849821277
503 => 0.050888168995854
504 => 0.04916217673479
505 => 0.048615482533486
506 => 0.044465367573244
507 => 0.044249336066527
508 => 0.044128071035383
509 => 0.043363512167296
510 => 0.042762778327279
511 => 0.04228505247388
512 => 0.041031357173545
513 => 0.041454442534797
514 => 0.039456313892608
515 => 0.040734645788549
516 => 0.037545584229112
517 => 0.040201529459287
518 => 0.038756019221514
519 => 0.039726640469305
520 => 0.03972325406321
521 => 0.037936032610279
522 => 0.036905200574589
523 => 0.037562086868314
524 => 0.038266321118886
525 => 0.038380580756713
526 => 0.039293638844974
527 => 0.03954845373129
528 => 0.038776352729583
529 => 0.037479498016659
530 => 0.037780727788365
531 => 0.03689909616288
601 => 0.035354070650689
602 => 0.036463734947102
603 => 0.036842623126392
604 => 0.03700996173115
605 => 0.035490606587289
606 => 0.035013192214283
607 => 0.034759020807989
608 => 0.037283368346832
609 => 0.037421657803402
610 => 0.03671414939143
611 => 0.039912154502242
612 => 0.039188347452625
613 => 0.03999701726408
614 => 0.037753394343924
615 => 0.037839103760912
616 => 0.036776936714858
617 => 0.037371679286621
618 => 0.036951334406347
619 => 0.037323629964183
620 => 0.037546782386518
621 => 0.038608775141412
622 => 0.040213655710645
623 => 0.038450148838168
624 => 0.037681763639946
625 => 0.038158465495361
626 => 0.039427985355365
627 => 0.041351372928799
628 => 0.040212688773544
629 => 0.040718017465535
630 => 0.040828409304226
701 => 0.03998878576452
702 => 0.041382331046334
703 => 0.042129143284
704 => 0.042895218108827
705 => 0.043560379414295
706 => 0.042589230977445
707 => 0.043628499013535
708 => 0.04279103243195
709 => 0.042039738332565
710 => 0.042040877735593
711 => 0.041569579972394
712 => 0.040656381168855
713 => 0.040487973298499
714 => 0.04136405230766
715 => 0.042066584708016
716 => 0.042124448641412
717 => 0.042513406675667
718 => 0.042743588033753
719 => 0.044999678259377
720 => 0.045907096411479
721 => 0.047016670151324
722 => 0.047448911655143
723 => 0.048749803614483
724 => 0.047699227704037
725 => 0.04747192899738
726 => 0.044316390622538
727 => 0.044833109854642
728 => 0.04566042720123
729 => 0.044330032780864
730 => 0.045173861826003
731 => 0.045340451554256
801 => 0.044284826487541
802 => 0.04484868144654
803 => 0.043351249846784
804 => 0.040246295627512
805 => 0.041385787747978
806 => 0.042224837497542
807 => 0.041027410050827
808 => 0.043173752402223
809 => 0.041919903510037
810 => 0.041522493606575
811 => 0.039972055886309
812 => 0.040703802808454
813 => 0.041693500998261
814 => 0.041081982581724
815 => 0.04235097511599
816 => 0.044148206972458
817 => 0.045429021420385
818 => 0.04552734644976
819 => 0.044703868567647
820 => 0.046023497129099
821 => 0.046033109182498
822 => 0.044544562774339
823 => 0.043632836387603
824 => 0.043425690234248
825 => 0.043943181938724
826 => 0.044571512402198
827 => 0.045562214417525
828 => 0.046160874896578
829 => 0.047721863920965
830 => 0.048144222793902
831 => 0.04860826714405
901 => 0.049228373501825
902 => 0.049972970176341
903 => 0.048343835042412
904 => 0.048408563618371
905 => 0.046891535538568
906 => 0.045270373471465
907 => 0.046500633399691
908 => 0.048109034601228
909 => 0.04774006558847
910 => 0.047698549037182
911 => 0.047768368360718
912 => 0.0474901777745
913 => 0.04623193206326
914 => 0.04560004894411
915 => 0.046415339378389
916 => 0.046848629959806
917 => 0.047520625864674
918 => 0.047437788185287
919 => 0.049168777469136
920 => 0.04984138756244
921 => 0.049669305117964
922 => 0.049700972429143
923 => 0.050918700875026
924 => 0.052273065351803
925 => 0.053541606408439
926 => 0.054832020856354
927 => 0.053276375873659
928 => 0.05248651529029
929 => 0.053301449794271
930 => 0.052869034075425
1001 => 0.055353823058746
1002 => 0.055525864456781
1003 => 0.058010473761577
1004 => 0.0603686638536
1005 => 0.058887526908164
1006 => 0.060284172335837
1007 => 0.061794758236038
1008 => 0.064708923521255
1009 => 0.063727535174765
1010 => 0.062975807081669
1011 => 0.062265427666018
1012 => 0.063743614460432
1013 => 0.065645278156835
1014 => 0.066054878303132
1015 => 0.066718587019432
1016 => 0.066020778458683
1017 => 0.066861212009013
1018 => 0.069828311746892
1019 => 0.069026575206404
1020 => 0.067887980433329
1021 => 0.070230220713097
1022 => 0.071077868365116
1023 => 0.07702710350351
1024 => 0.084538258616377
1025 => 0.081428591078747
1026 => 0.079498320089795
1027 => 0.079951979558839
1028 => 0.082694799137411
1029 => 0.083575705733307
1030 => 0.081181097938949
1031 => 0.082026913894281
1101 => 0.086687442966951
1102 => 0.089187667286763
1103 => 0.085792026835532
1104 => 0.07642358950364
1105 => 0.067785462431649
1106 => 0.070076682711073
1107 => 0.069816929436229
1108 => 0.07482408651197
1109 => 0.069007454055065
1110 => 0.069105391228054
1111 => 0.074216091009449
1112 => 0.072852643927348
1113 => 0.070644034271454
1114 => 0.067801587726331
1115 => 0.062547062393188
1116 => 0.057892982772345
1117 => 0.067020704679344
1118 => 0.066627100713029
1119 => 0.066057103840965
1120 => 0.067325570199639
1121 => 0.073484882776906
1122 => 0.073342890686251
1123 => 0.072439609450504
1124 => 0.073124740306662
1125 => 0.07052392751981
1126 => 0.071194216194388
1127 => 0.067784094108187
1128 => 0.069325611710428
1129 => 0.070639295587069
1130 => 0.070903037074727
1201 => 0.071497260113394
1202 => 0.066419689308283
1203 => 0.068699369530131
1204 => 0.070038468083317
1205 => 0.063988372103202
1206 => 0.069918877138332
1207 => 0.066331300097142
1208 => 0.065113622565763
1209 => 0.066753064944948
1210 => 0.06611417265537
1211 => 0.065564890581804
1212 => 0.06525838174689
1213 => 0.066462207291512
1214 => 0.066406047390972
1215 => 0.064436355147502
1216 => 0.061866971910823
1217 => 0.062729341262182
1218 => 0.062416034392077
1219 => 0.061280569877428
1220 => 0.062045735863793
1221 => 0.058676332101482
1222 => 0.052879448054795
1223 => 0.056709047219397
1224 => 0.056561611817362
1225 => 0.056487268201993
1226 => 0.059365106131845
1227 => 0.059088468417907
1228 => 0.058586368258266
1229 => 0.061271348414244
1230 => 0.060291294539233
1231 => 0.063311589652284
]
'min_raw' => 0.027112447056178
'max_raw' => 0.089187667286763
'avg_raw' => 0.05815005717147
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.027112'
'max' => '$0.089187'
'avg' => '$0.05815'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.014770162139984
'max_diff' => 0.058957555690923
'year' => 2029
]
4 => [
'items' => [
101 => 0.065300951354179
102 => 0.064796384877469
103 => 0.066667389173522
104 => 0.062749208510296
105 => 0.064050670956496
106 => 0.064318900562909
107 => 0.061238216175898
108 => 0.059133729769144
109 => 0.058993384518715
110 => 0.055344495105494
111 => 0.05729370237723
112 => 0.059008924112681
113 => 0.058187466007984
114 => 0.057927416912399
115 => 0.059255951343972
116 => 0.059359189847433
117 => 0.057005341027793
118 => 0.057494780734094
119 => 0.05953582567195
120 => 0.057443351638442
121 => 0.053378016395029
122 => 0.052369757047006
123 => 0.052235236664073
124 => 0.049500757346175
125 => 0.05243713375782
126 => 0.051155326764142
127 => 0.055204539698766
128 => 0.052891650986873
129 => 0.052791946977216
130 => 0.05264122974322
131 => 0.050287550434388
201 => 0.050802856618899
202 => 0.05251581285956
203 => 0.053127014944062
204 => 0.053063261559217
205 => 0.052507418439481
206 => 0.052761880573319
207 => 0.051942169379743
208 => 0.051652712296478
209 => 0.05073910612025
210 => 0.049396357431344
211 => 0.049583074872093
212 => 0.046922738370063
213 => 0.045473245849012
214 => 0.04507204542319
215 => 0.04453554344646
216 => 0.045132644749039
217 => 0.046915201971006
218 => 0.044765059770702
219 => 0.04107879178322
220 => 0.041300342770363
221 => 0.041798102059394
222 => 0.040870530917292
223 => 0.039992662676437
224 => 0.040755897888159
225 => 0.03919397754665
226 => 0.041986852670503
227 => 0.041911313225345
228 => 0.042952324361278
301 => 0.043603289988276
302 => 0.04210302497067
303 => 0.04172571237589
304 => 0.041940646777778
305 => 0.038388259886867
306 => 0.042662018564397
307 => 0.042698978206912
308 => 0.042382507308849
309 => 0.044658151867138
310 => 0.049460471676465
311 => 0.04765364579133
312 => 0.046953988197004
313 => 0.045623938598743
314 => 0.047396150717894
315 => 0.047260072477959
316 => 0.046644675070833
317 => 0.046272480798846
318 => 0.046958260157081
319 => 0.046187505147177
320 => 0.046049056368467
321 => 0.04521020740324
322 => 0.044910776487851
323 => 0.044689089758784
324 => 0.04444503445257
325 => 0.044983359643285
326 => 0.043763443938549
327 => 0.042292345188447
328 => 0.042170039244886
329 => 0.042507736708308
330 => 0.042358330719363
331 => 0.042169323946491
401 => 0.041808458544147
402 => 0.04170139748794
403 => 0.04204929398197
404 => 0.041656539123836
405 => 0.042236070311477
406 => 0.042078469895362
407 => 0.04119812678222
408 => 0.04010089331848
409 => 0.040091125639128
410 => 0.039854728489188
411 => 0.039553641176191
412 => 0.03946988557366
413 => 0.040691620347464
414 => 0.043220574765792
415 => 0.042724080500724
416 => 0.043082848490015
417 => 0.044847631911595
418 => 0.045408603492427
419 => 0.045010439151693
420 => 0.044465407244389
421 => 0.044489385882227
422 => 0.046351924901862
423 => 0.04646808917588
424 => 0.046761598820308
425 => 0.047138841659213
426 => 0.045074685238402
427 => 0.044392164300433
428 => 0.044068748015203
429 => 0.043072751034549
430 => 0.044146848387857
501 => 0.043521017857519
502 => 0.043605463777476
503 => 0.043550468261322
504 => 0.043580499531923
505 => 0.041986072004987
506 => 0.042566997595159
507 => 0.041601096129127
508 => 0.040307862493638
509 => 0.040303527121026
510 => 0.040620044221189
511 => 0.040431767464697
512 => 0.039925119554014
513 => 0.039997086498416
514 => 0.039366580338278
515 => 0.040073641361939
516 => 0.040093917342111
517 => 0.039821660334128
518 => 0.040910985396696
519 => 0.041357282763634
520 => 0.041178077368669
521 => 0.041344709235399
522 => 0.042744712078975
523 => 0.042972973628884
524 => 0.043074352331243
525 => 0.042938518300187
526 => 0.041370298717358
527 => 0.041439855924441
528 => 0.040929491290797
529 => 0.040498286956269
530 => 0.040515532868281
531 => 0.040737227948869
601 => 0.041705383368038
602 => 0.043742809371802
603 => 0.043820128199306
604 => 0.04391384087379
605 => 0.043532664330447
606 => 0.043417697837607
607 => 0.043569368317033
608 => 0.044334518401276
609 => 0.046302692154172
610 => 0.045607008099994
611 => 0.045041406134979
612 => 0.045537591543492
613 => 0.045461207689081
614 => 0.04481645108786
615 => 0.044798354917492
616 => 0.043560860858595
617 => 0.043103387481397
618 => 0.042721088486122
619 => 0.042303627963449
620 => 0.042056143372205
621 => 0.042436392184091
622 => 0.042523359586341
623 => 0.041691938913541
624 => 0.041578619348043
625 => 0.042257575416913
626 => 0.041958792165037
627 => 0.04226609814906
628 => 0.042337395773375
629 => 0.042325915213737
630 => 0.04201395118374
701 => 0.042212787753559
702 => 0.041742479989904
703 => 0.04123109093487
704 => 0.040904856578423
705 => 0.040620173833715
706 => 0.040778132366337
707 => 0.040215039039627
708 => 0.040034894151583
709 => 0.042145426397669
710 => 0.043704499259897
711 => 0.04368182972302
712 => 0.04354383474741
713 => 0.043338802204913
714 => 0.044319518993724
715 => 0.043977856874553
716 => 0.044226444613075
717 => 0.044289720625723
718 => 0.044481238058494
719 => 0.04454968907923
720 => 0.044342782552275
721 => 0.043648378976311
722 => 0.041917991286918
723 => 0.041112491146413
724 => 0.04084666268338
725 => 0.040856325043132
726 => 0.040589794026523
727 => 0.040668299355996
728 => 0.040562493076713
729 => 0.040362121581037
730 => 0.040765759991112
731 => 0.040812275557721
801 => 0.04071806152969
802 => 0.040740252343888
803 => 0.039960200431128
804 => 0.040019506083872
805 => 0.039689284673198
806 => 0.039627372139576
807 => 0.038792601169061
808 => 0.037313683392807
809 => 0.038133147402874
810 => 0.03714335011279
811 => 0.036768498881158
812 => 0.038542986310373
813 => 0.0383648769891
814 => 0.038060031253341
815 => 0.037609100874736
816 => 0.037441846410942
817 => 0.036425661235261
818 => 0.036365619593945
819 => 0.03686926840632
820 => 0.036636851808906
821 => 0.036310450883089
822 => 0.035128259816509
823 => 0.033799085647663
824 => 0.033839205060929
825 => 0.034261990633875
826 => 0.035491296707616
827 => 0.035010985557395
828 => 0.034662514306973
829 => 0.034597256116777
830 => 0.035414098994362
831 => 0.036570102800019
901 => 0.037112473921506
902 => 0.036575000612168
903 => 0.035957580214019
904 => 0.035995159732804
905 => 0.036245159435357
906 => 0.03627143086929
907 => 0.035869553661938
908 => 0.035982679741798
909 => 0.035810830882024
910 => 0.034756194746802
911 => 0.034737119723403
912 => 0.034478295007514
913 => 0.03447045789798
914 => 0.034030132489403
915 => 0.033968527920917
916 => 0.033094235096343
917 => 0.03366969728108
918 => 0.033283707460679
919 => 0.032701929755542
920 => 0.032601631059891
921 => 0.032598615959985
922 => 0.033195971580047
923 => 0.033662716832862
924 => 0.033290421918862
925 => 0.033205657583578
926 => 0.034110718922828
927 => 0.033995541617591
928 => 0.03389579881407
929 => 0.036466595338383
930 => 0.034431609287635
1001 => 0.033544239216566
1002 => 0.032445950246611
1003 => 0.032803558673282
1004 => 0.032878912023142
1005 => 0.030237725031869
1006 => 0.029166195798449
1007 => 0.028798487345266
1008 => 0.028586865931825
1009 => 0.028683304467304
1010 => 0.027718802479382
1011 => 0.028366963766656
1012 => 0.027531786572439
1013 => 0.027391766397927
1014 => 0.028885166679788
1015 => 0.029092964604691
1016 => 0.0282064340993
1017 => 0.028775730200013
1018 => 0.028569295520087
1019 => 0.02754610328833
1020 => 0.02750702487117
1021 => 0.026993622976221
1022 => 0.026190248424821
1023 => 0.025823084697415
1024 => 0.02563186264032
1025 => 0.025710764587921
1026 => 0.025670869348774
1027 => 0.025410525927164
1028 => 0.025685791928954
1029 => 0.024982601042145
1030 => 0.024702584765024
1031 => 0.024576107908976
1101 => 0.023951985522776
1102 => 0.024945241787706
1103 => 0.025140925784609
1104 => 0.025336995339437
1105 => 0.02704364695184
1106 => 0.026958387460232
1107 => 0.027729091741314
1108 => 0.027699143590186
1109 => 0.027479326244639
1110 => 0.026551953021978
1111 => 0.026921587459693
1112 => 0.025783910114353
1113 => 0.026636335336021
1114 => 0.02624732406298
1115 => 0.026504810233296
1116 => 0.026041826882476
1117 => 0.026298060984934
1118 => 0.025187329719673
1119 => 0.024150144492583
1120 => 0.024567538105288
1121 => 0.025021292697048
1122 => 0.026005148266504
1123 => 0.025419172005968
1124 => 0.025629911227473
1125 => 0.024923970112753
1126 => 0.023467411950977
1127 => 0.023475655911991
1128 => 0.023251596171646
1129 => 0.023057975842731
1130 => 0.025486478428437
1201 => 0.02518445574296
1202 => 0.024703222121404
1203 => 0.02534737244732
1204 => 0.025517696017533
1205 => 0.02552254489013
1206 => 0.025992500339993
1207 => 0.026243315647829
1208 => 0.02628752293293
1209 => 0.027027007987349
1210 => 0.027274873623546
1211 => 0.028295797099785
1212 => 0.026222035721308
1213 => 0.026179327970395
1214 => 0.025356436963393
1215 => 0.024834546477361
1216 => 0.025392171251469
1217 => 0.025886150677956
1218 => 0.025371786281137
1219 => 0.025438951412536
1220 => 0.024748459234922
1221 => 0.024995277697742
1222 => 0.025207871007961
1223 => 0.025090489477715
1224 => 0.024914763645608
1225 => 0.025845649998251
1226 => 0.025793125742062
1227 => 0.026659988514628
1228 => 0.027335770035795
1229 => 0.028546891332123
1230 => 0.027283023122224
1231 => 0.027236962741234
]
'min_raw' => 0.023057975842731
'max_raw' => 0.066667389173522
'avg_raw' => 0.044862682508126
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.023057'
'max' => '$0.066667'
'avg' => '$0.044862'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0040544712134468
'max_diff' => -0.022520278113242
'year' => 2030
]
5 => [
'items' => [
101 => 0.027687210353727
102 => 0.027274804692982
103 => 0.027535430834814
104 => 0.028504900431409
105 => 0.028525383796315
106 => 0.028182261042817
107 => 0.028161381992083
108 => 0.028227282470244
109 => 0.028613263629197
110 => 0.028478389952256
111 => 0.028634469185796
112 => 0.028829648657308
113 => 0.029636993705863
114 => 0.029831641863815
115 => 0.029358747753489
116 => 0.029401444796881
117 => 0.029224569418385
118 => 0.029053710019001
119 => 0.029437776996806
120 => 0.030139666947601
121 => 0.030135300526645
122 => 0.030298125352438
123 => 0.030399563869994
124 => 0.029964115495112
125 => 0.029680654614945
126 => 0.029789351553485
127 => 0.029963160325323
128 => 0.029732987711314
129 => 0.028312255711326
130 => 0.028743215043411
131 => 0.028671482337717
201 => 0.028569326241814
202 => 0.029002659182736
203 => 0.028960863163461
204 => 0.027708910117428
205 => 0.027789056089483
206 => 0.02771378405944
207 => 0.027957003387717
208 => 0.027261670051078
209 => 0.027475549902286
210 => 0.027609693339966
211 => 0.027688704855297
212 => 0.027974148627378
213 => 0.027940655095304
214 => 0.027972066622397
215 => 0.02839530438203
216 => 0.030535895732596
217 => 0.030652403396859
218 => 0.030078677047353
219 => 0.030307869407729
220 => 0.029867870194667
221 => 0.030163244614134
222 => 0.030365332290236
223 => 0.029452136941154
224 => 0.02939806343917
225 => 0.02895624819284
226 => 0.029193654680523
227 => 0.028815923888488
228 => 0.028908605812391
301 => 0.028649459073293
302 => 0.029115871608069
303 => 0.029637393295128
304 => 0.029769150268795
305 => 0.029422554396022
306 => 0.029171596142352
307 => 0.028730996119697
308 => 0.029463723776785
309 => 0.029677995673188
310 => 0.029462598297731
311 => 0.029412686019312
312 => 0.029318102341898
313 => 0.029432752393602
314 => 0.029676828702423
315 => 0.029561726822564
316 => 0.029637753642045
317 => 0.029348017804701
318 => 0.029964259646643
319 => 0.030942999998323
320 => 0.030946146808594
321 => 0.030831044308294
322 => 0.030783946845089
323 => 0.030902048995401
324 => 0.030966114567141
325 => 0.031348035265019
326 => 0.031757851390235
327 => 0.033670284429831
328 => 0.033133280885036
329 => 0.034830105248917
330 => 0.036172073015678
331 => 0.036574470471791
401 => 0.03620428374643
402 => 0.034937894956065
403 => 0.034875759880383
404 => 0.036768279388745
405 => 0.036233555944748
406 => 0.03616995229256
407 => 0.035493316893351
408 => 0.035893292217208
409 => 0.035805811746597
410 => 0.035667719544045
411 => 0.036430844599442
412 => 0.037859346578502
413 => 0.037636701148659
414 => 0.037470506663505
415 => 0.036742290808049
416 => 0.037180839405934
417 => 0.037024680650072
418 => 0.037695637766048
419 => 0.037298177634064
420 => 0.036229504888745
421 => 0.036399694545828
422 => 0.036373970721534
423 => 0.036903365202697
424 => 0.036744454119831
425 => 0.036342940782173
426 => 0.037854464114036
427 => 0.037756314196399
428 => 0.037895468339413
429 => 0.037956728296653
430 => 0.038876765912729
501 => 0.039253675886116
502 => 0.039339241048812
503 => 0.039697276372266
504 => 0.039330332803802
505 => 0.040798368703988
506 => 0.041774526915342
507 => 0.042908384910473
508 => 0.044565256193656
509 => 0.045188255123049
510 => 0.045075715942701
511 => 0.04633193684
512 => 0.048589337868224
513 => 0.04553200123207
514 => 0.048751384133733
515 => 0.04773216467663
516 => 0.045315613678813
517 => 0.045160016283818
518 => 0.046796532676274
519 => 0.050426168525875
520 => 0.049516985912539
521 => 0.050427655622925
522 => 0.04936531103269
523 => 0.049312556669642
524 => 0.050376059917375
525 => 0.052860993224247
526 => 0.051680494556484
527 => 0.049987960246097
528 => 0.051237701242136
529 => 0.050155059933298
530 => 0.047715566052263
531 => 0.049516290677729
601 => 0.048312197402365
602 => 0.048663615833235
603 => 0.051194440802693
604 => 0.050889925246636
605 => 0.051283996573556
606 => 0.050588470996185
607 => 0.049938740432604
608 => 0.048725970086055
609 => 0.048366928575297
610 => 0.04846615473191
611 => 0.048366879403742
612 => 0.047688345540782
613 => 0.04754181621768
614 => 0.047297594259579
615 => 0.047373288856456
616 => 0.046914080125573
617 => 0.047780701878115
618 => 0.047941554512031
619 => 0.048572209553275
620 => 0.048637686251775
621 => 0.050394051564825
622 => 0.049426675064917
623 => 0.050075674740324
624 => 0.050017622100734
625 => 0.045367987666559
626 => 0.046008666267516
627 => 0.047005361114585
628 => 0.046556351436969
629 => 0.045921556804902
630 => 0.045408926103973
701 => 0.044632238172886
702 => 0.045725411520921
703 => 0.047162818227561
704 => 0.048674141257937
705 => 0.050489896853126
706 => 0.050084641342005
707 => 0.048640196970098
708 => 0.048704993689455
709 => 0.049105541511947
710 => 0.048586795688212
711 => 0.048433807417672
712 => 0.04908452327287
713 => 0.049089004395337
714 => 0.048492124632603
715 => 0.047828802004168
716 => 0.047826022658135
717 => 0.047707990803341
718 => 0.049386308637448
719 => 0.050309213749135
720 => 0.050415023332854
721 => 0.050302091921104
722 => 0.050345554739399
723 => 0.049808536589735
724 => 0.051036000832082
725 => 0.052162443404491
726 => 0.05186053273215
727 => 0.05140792571518
728 => 0.051047402425655
729 => 0.051775604902733
730 => 0.051743179192726
731 => 0.052152604911308
801 => 0.052134030995756
802 => 0.051996356525877
803 => 0.051860537648939
804 => 0.052399044143727
805 => 0.052243962921378
806 => 0.052088640815056
807 => 0.051777118552202
808 => 0.051819459601561
809 => 0.051366930733573
810 => 0.05115757017293
811 => 0.04800928966708
812 => 0.047167966242884
813 => 0.047432663718854
814 => 0.04751980900081
815 => 0.047153663968414
816 => 0.047678621889928
817 => 0.047596807753928
818 => 0.047915098697435
819 => 0.047716244334518
820 => 0.047724405386935
821 => 0.048309193668053
822 => 0.048478960193929
823 => 0.048392615568684
824 => 0.048453088384485
825 => 0.049846658900628
826 => 0.049648537737109
827 => 0.04954328981769
828 => 0.049572444210646
829 => 0.04992853135601
830 => 0.050028216315074
831 => 0.04960584413878
901 => 0.049805037298825
902 => 0.050653176492918
903 => 0.05094997721033
904 => 0.051897222627882
905 => 0.051494815938561
906 => 0.052233450832563
907 => 0.054503762677533
908 => 0.056317444872926
909 => 0.054649507772456
910 => 0.057980104153259
911 => 0.06057345118139
912 => 0.060473914203004
913 => 0.060021704163452
914 => 0.057069247519624
915 => 0.054352352897325
916 => 0.056625150614317
917 => 0.056630944443103
918 => 0.056435709103569
919 => 0.055223119177359
920 => 0.056393513602578
921 => 0.056486415261803
922 => 0.056434415037182
923 => 0.055504725183825
924 => 0.054085260613153
925 => 0.054362620592545
926 => 0.054816941896778
927 => 0.053956816886512
928 => 0.05368195482892
929 => 0.05419297568863
930 => 0.055839591374039
1001 => 0.055528308216907
1002 => 0.05552017935568
1003 => 0.056851980706491
1004 => 0.055898698360031
1005 => 0.054366118990114
1006 => 0.053979122486972
1007 => 0.052605545612899
1008 => 0.053554280052334
1009 => 0.05358842331581
1010 => 0.053068811159162
1011 => 0.05440828265288
1012 => 0.054395939187256
1013 => 0.05566756801652
1014 => 0.058098444736095
1015 => 0.057379514873938
1016 => 0.056543477663596
1017 => 0.056634378089158
1018 => 0.0576313313962
1019 => 0.057028550668532
1020 => 0.057245314820938
1021 => 0.057631003297694
1022 => 0.057863698731827
1023 => 0.056600896797166
1024 => 0.056306477259397
1025 => 0.055704198212339
1026 => 0.055547074851032
1027 => 0.056037618567896
1028 => 0.055908377629668
1029 => 0.053585553706724
1030 => 0.053342805682706
1031 => 0.053350250418039
1101 => 0.052739848969606
1102 => 0.051808840247613
1103 => 0.054255475581368
1104 => 0.054058976523428
1105 => 0.053842056771282
1106 => 0.053868628203193
1107 => 0.05493062967741
1108 => 0.054314615190004
1109 => 0.055952390667563
1110 => 0.055615713265414
1111 => 0.0552704013583
1112 => 0.055222668734279
1113 => 0.055089753110668
1114 => 0.054633935981579
1115 => 0.054083509407842
1116 => 0.053720070106728
1117 => 0.049553925041294
1118 => 0.050327137332088
1119 => 0.051216647592128
1120 => 0.051523702969405
1121 => 0.050998463498987
1122 => 0.054654675637244
1123 => 0.05532270082704
1124 => 0.053299208952942
1125 => 0.052920696241927
1126 => 0.054679490867563
1127 => 0.053618722704406
1128 => 0.054096386543324
1129 => 0.053063938591734
1130 => 0.055161793120879
1201 => 0.055145810984235
1202 => 0.054329698190204
1203 => 0.055019471135219
1204 => 0.054899606111544
1205 => 0.053978216777081
1206 => 0.055191002806234
1207 => 0.055191604332974
1208 => 0.054406113512541
1209 => 0.053488832200327
1210 => 0.053324843966921
1211 => 0.053201300861769
1212 => 0.054066002512786
1213 => 0.054841291309237
1214 => 0.056283911549039
1215 => 0.056646620553136
1216 => 0.058062297943036
1217 => 0.057219330985432
1218 => 0.057593007319488
1219 => 0.057998685839851
1220 => 0.058193183040846
1221 => 0.057876260289119
1222 => 0.060075389991693
1223 => 0.060261063918184
1224 => 0.060323318779663
1225 => 0.059581784617218
1226 => 0.060240440511701
1227 => 0.059932277231063
1228 => 0.060734032477057
1229 => 0.060859757936954
1230 => 0.060753272945234
1231 => 0.060793180190647
]
'min_raw' => 0.027261670051078
'max_raw' => 0.060859757936954
'avg_raw' => 0.044060713994016
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.027261'
'max' => '$0.060859'
'avg' => '$0.04406'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0042036942083468
'max_diff' => -0.0058076312365678
'year' => 2031
]
6 => [
'items' => [
101 => 0.058916610942564
102 => 0.058819300927359
103 => 0.057492471965242
104 => 0.058033164574729
105 => 0.057022365657364
106 => 0.057342900406443
107 => 0.05748418906967
108 => 0.057410387890061
109 => 0.058063734523621
110 => 0.057508256415196
111 => 0.056042258358006
112 => 0.054575860890627
113 => 0.054557451464925
114 => 0.054171374895829
115 => 0.053892312249824
116 => 0.053946069615724
117 => 0.054135517584838
118 => 0.053881301189461
119 => 0.053935551146513
120 => 0.054836461899152
121 => 0.055017133125592
122 => 0.054403141705343
123 => 0.051937877554506
124 => 0.051332895548244
125 => 0.051767744617031
126 => 0.051559914770018
127 => 0.04161287530576
128 => 0.043949784681366
129 => 0.042561272484325
130 => 0.043201162787096
131 => 0.041783851387407
201 => 0.042460266674994
202 => 0.042335357470108
203 => 0.046093038591905
204 => 0.04603436756971
205 => 0.046062450283234
206 => 0.044721989197632
207 => 0.04685738010448
208 => 0.047909350451366
209 => 0.047714658737442
210 => 0.047763658447368
211 => 0.046921681087025
212 => 0.046070602464553
213 => 0.04512662529217
214 => 0.046880418199353
215 => 0.046685426366317
216 => 0.047132667475453
217 => 0.048270127539467
218 => 0.048437622854684
219 => 0.048662738256905
220 => 0.048582050410014
221 => 0.050504362275848
222 => 0.050271557625073
223 => 0.05083254985097
224 => 0.049678546279717
225 => 0.048372681699819
226 => 0.048620883864528
227 => 0.048596980000151
228 => 0.04829265637105
229 => 0.048017926605927
301 => 0.047560578951628
302 => 0.049007694604547
303 => 0.048948944351782
304 => 0.049900042654349
305 => 0.049731926790894
306 => 0.048609207909813
307 => 0.048649306034292
308 => 0.048918985191911
309 => 0.049852347835573
310 => 0.050129433416387
311 => 0.050001076335403
312 => 0.050304888025327
313 => 0.050545008397643
314 => 0.050335043447132
315 => 0.05330770436948
316 => 0.052073248301325
317 => 0.052674913599654
318 => 0.052818407228087
319 => 0.0524508513162
320 => 0.052530561032298
321 => 0.052651299532589
322 => 0.053384400063332
323 => 0.055308267980349
324 => 0.056160335984584
325 => 0.05872382461562
326 => 0.056089583598192
327 => 0.05593327863779
328 => 0.05639504035018
329 => 0.057900079549428
330 => 0.059119772459275
331 => 0.059524414963243
401 => 0.059577895150062
402 => 0.060337031387632
403 => 0.060772154121954
404 => 0.060244852281126
405 => 0.059798019181828
406 => 0.058197518483109
407 => 0.058382780797004
408 => 0.059659054423947
409 => 0.061461866094145
410 => 0.06300886605776
411 => 0.062467160588894
412 => 0.066599990931879
413 => 0.067009744179288
414 => 0.066953129529404
415 => 0.067886608406461
416 => 0.066033842935171
417 => 0.065241749800555
418 => 0.059894629569667
419 => 0.061396952248347
420 => 0.063580666490125
421 => 0.063291643721717
422 => 0.061705772068489
423 => 0.063007663031902
424 => 0.062577217165503
425 => 0.062237706651459
426 => 0.063793070133648
427 => 0.062082884094171
428 => 0.063563606076157
429 => 0.061664564818153
430 => 0.062469635053846
501 => 0.062012638251201
502 => 0.062308371189934
503 => 0.060579522472916
504 => 0.061512367275189
505 => 0.060540713062233
506 => 0.060540252371623
507 => 0.060518803051018
508 => 0.061661949923586
509 => 0.06169922790206
510 => 0.060854440636033
511 => 0.060732693592941
512 => 0.06118285622146
513 => 0.060655833681244
514 => 0.060902424210771
515 => 0.060663302657177
516 => 0.060609471358793
517 => 0.060180534414626
518 => 0.059995736585212
519 => 0.060068200575779
520 => 0.059820843618227
521 => 0.05967180210401
522 => 0.06048915494252
523 => 0.060052476292823
524 => 0.0604222276766
525 => 0.060000849308442
526 => 0.058540168298589
527 => 0.057700115203402
528 => 0.054941024180992
529 => 0.055723498972305
530 => 0.056242280568475
531 => 0.056070823254036
601 => 0.056439179910624
602 => 0.05646179401767
603 => 0.056342037513661
604 => 0.056203374823778
605 => 0.05613588149487
606 => 0.0566389214723
607 => 0.056930953110746
608 => 0.056294347242053
609 => 0.056145199394081
610 => 0.056788843075302
611 => 0.057181465349027
612 => 0.060080367622808
613 => 0.059865607579035
614 => 0.060404613144375
615 => 0.060343929389432
616 => 0.060908893092228
617 => 0.061832369974824
618 => 0.059954683264309
619 => 0.060280584751733
620 => 0.060200681233181
621 => 0.061073046896904
622 => 0.061075770327284
623 => 0.060552743533985
624 => 0.060836284843773
625 => 0.060678019863199
626 => 0.060964026073892
627 => 0.059862739327718
628 => 0.061203987708
629 => 0.061964389111483
630 => 0.061974947285709
701 => 0.062335371516041
702 => 0.062701583408423
703 => 0.063404495245515
704 => 0.062681979578792
705 => 0.06138224422984
706 => 0.061476080923915
707 => 0.060714046564379
708 => 0.060726856499635
709 => 0.060658476061303
710 => 0.060863690904177
711 => 0.059907772445497
712 => 0.060132124597086
713 => 0.059818030271056
714 => 0.06027990197201
715 => 0.059783004371911
716 => 0.060200642701285
717 => 0.060380881559313
718 => 0.0610459668257
719 => 0.059684770737301
720 => 0.056909199768182
721 => 0.057492658436436
722 => 0.056629677236399
723 => 0.056709549432064
724 => 0.056870903978872
725 => 0.056347901100744
726 => 0.056447673568176
727 => 0.056444108993551
728 => 0.056413391415174
729 => 0.056277338167244
730 => 0.05608003404043
731 => 0.056866032954649
801 => 0.056999589486369
802 => 0.057296469112229
803 => 0.058179781503413
804 => 0.058091517765593
805 => 0.058235479584004
806 => 0.057921211742723
807 => 0.056724127415879
808 => 0.056789134854173
809 => 0.055978491056972
810 => 0.057275739127758
811 => 0.056968533661758
812 => 0.056770476299338
813 => 0.056716434513013
814 => 0.057601936464763
815 => 0.057866892527269
816 => 0.057701789689655
817 => 0.05736315895289
818 => 0.05801343007467
819 => 0.058187415194122
820 => 0.058226364046043
821 => 0.059378519796716
822 => 0.058290756753652
823 => 0.058552592129552
824 => 0.060595356988122
825 => 0.05874285114368
826 => 0.059724164805291
827 => 0.059676134608065
828 => 0.060178141471501
829 => 0.059634955392781
830 => 0.059641688835229
831 => 0.06008743692107
901 => 0.059461464125598
902 => 0.059306464458363
903 => 0.059092333528208
904 => 0.059559880580379
905 => 0.059840153892821
906 => 0.062098950953041
907 => 0.063558236867604
908 => 0.06349488541746
909 => 0.06407379908283
910 => 0.06381299317434
911 => 0.0629707820987
912 => 0.064408333708118
913 => 0.063953432229184
914 => 0.063990933754402
915 => 0.06398953794576
916 => 0.064292007661074
917 => 0.064077680146832
918 => 0.063655218615993
919 => 0.063935668295618
920 => 0.064768503581509
921 => 0.06735364986342
922 => 0.068800331971411
923 => 0.067266557784011
924 => 0.068324534680425
925 => 0.06769012553829
926 => 0.067574834525127
927 => 0.068239322199953
928 => 0.06890497297249
929 => 0.068862573895967
930 => 0.06837934561665
1001 => 0.068106382223128
1002 => 0.070173352488324
1003 => 0.071696260969801
1004 => 0.071592408821072
1005 => 0.072050778431032
1006 => 0.073396565782715
1007 => 0.073519607712196
1008 => 0.073504107257168
1009 => 0.07319913499685
1010 => 0.074524237417152
1011 => 0.075629661169127
1012 => 0.073128542730082
1013 => 0.074080935889626
1014 => 0.074508495863136
1015 => 0.075136280755578
1016 => 0.07619545909809
1017 => 0.07734600771124
1018 => 0.077508707900262
1019 => 0.07739326433023
1020 => 0.076634446591451
1021 => 0.077893390612859
1022 => 0.078630850494729
1023 => 0.079069990977913
1024 => 0.08018357817726
1025 => 0.074511136327974
1026 => 0.070495900048397
1027 => 0.069868862922626
1028 => 0.071143967574898
1029 => 0.071480202502933
1030 => 0.071344666625045
1031 => 0.066825153143069
1101 => 0.069845068619478
1102 => 0.073094243750389
1103 => 0.07321905779985
1104 => 0.074845662807432
1105 => 0.075375352074693
1106 => 0.076684982309788
1107 => 0.076603064582009
1108 => 0.076921938703486
1109 => 0.076848635065089
1110 => 0.079274449300422
1111 => 0.081950482638894
1112 => 0.081857820113648
1113 => 0.081473108659853
1114 => 0.082044470771789
1115 => 0.084806423958253
1116 => 0.084552147568241
1117 => 0.084799155421926
1118 => 0.088055653885628
1119 => 0.092289565119945
1120 => 0.090322488273867
1121 => 0.094590479018741
1122 => 0.097276952956172
1123 => 0.10192293184437
1124 => 0.10134123240564
1125 => 0.10314987789304
1126 => 0.10029986900597
1127 => 0.093755672519431
1128 => 0.092720028375257
1129 => 0.094793414178579
1130 => 0.099890630858017
1201 => 0.094632884685889
1202 => 0.095696519888808
1203 => 0.095390192878813
1204 => 0.095373870014256
1205 => 0.095996847364495
1206 => 0.095093186225659
1207 => 0.091411508180507
1208 => 0.093098799532336
1209 => 0.092447255311009
1210 => 0.09317019220041
1211 => 0.097071584430656
1212 => 0.09534668592809
1213 => 0.093529645475012
1214 => 0.095808617436728
1215 => 0.098710531883721
1216 => 0.09852893529287
1217 => 0.098176562005132
1218 => 0.10016287177845
1219 => 0.1034436735898
1220 => 0.10433046113608
1221 => 0.10498506957317
1222 => 0.10507532901695
1223 => 0.10600505738376
1224 => 0.1010056736337
1225 => 0.10893982403832
1226 => 0.11030983263672
1227 => 0.11005232780126
1228 => 0.1115750346996
1229 => 0.11112701570276
1230 => 0.11047790646837
1231 => 0.11289172079129
]
'min_raw' => 0.04161287530576
'max_raw' => 0.11289172079129
'avg_raw' => 0.077252298048524
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.041612'
'max' => '$0.112891'
'avg' => '$0.077252'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.014351205254683
'max_diff' => 0.052031962854333
'year' => 2032
]
7 => [
'items' => [
101 => 0.11012447745483
102 => 0.10619672392498
103 => 0.10404188065635
104 => 0.10687955209874
105 => 0.10861241902751
106 => 0.1097577338364
107 => 0.11010430540555
108 => 0.1013937615628
109 => 0.096699261540464
110 => 0.099708382232227
111 => 0.10337971715459
112 => 0.10098527918284
113 => 0.10107913661806
114 => 0.097665297317561
115 => 0.1036817661823
116 => 0.10280521727518
117 => 0.10735275455593
118 => 0.10626744828761
119 => 0.10997578840569
120 => 0.10899925817259
121 => 0.11305278057312
122 => 0.11466984040342
123 => 0.11738513553378
124 => 0.11938251768491
125 => 0.12055541868788
126 => 0.1204850021111
127 => 0.12513262022185
128 => 0.12239208219735
129 => 0.11894932054336
130 => 0.11888705184682
131 => 0.12067010689173
201 => 0.1244069011086
202 => 0.12537579748088
203 => 0.12591727837372
204 => 0.12508798153726
205 => 0.1221133239278
206 => 0.12082888185389
207 => 0.12192326371473
208 => 0.12058492874022
209 => 0.12289527037669
210 => 0.12606786290589
211 => 0.1254127350944
212 => 0.12760272914596
213 => 0.12986914259524
214 => 0.1331102156187
215 => 0.13395755212362
216 => 0.13535816714493
217 => 0.13679986007992
218 => 0.13726289299593
219 => 0.13814696650326
220 => 0.13814230699948
221 => 0.14080652201884
222 => 0.14374523368905
223 => 0.14485452931323
224 => 0.1474052934341
225 => 0.14303719926654
226 => 0.14635044886969
227 => 0.14933908294774
228 => 0.14577591019297
301 => 0.15068691372265
302 => 0.15087759686113
303 => 0.1537566858628
304 => 0.1508381775929
305 => 0.14910517669844
306 => 0.15410828534604
307 => 0.15652913202417
308 => 0.15579995330322
309 => 0.15025086723275
310 => 0.14702106112823
311 => 0.13856803556965
312 => 0.14858100948732
313 => 0.15345803700016
314 => 0.15023823690969
315 => 0.15186211679074
316 => 0.16072147887691
317 => 0.16409455035811
318 => 0.16339297506957
319 => 0.16351152974442
320 => 0.1653315778901
321 => 0.17340267368686
322 => 0.1685662859989
323 => 0.17226352317035
324 => 0.17422452443471
325 => 0.17604601169683
326 => 0.17157301466802
327 => 0.16575371125492
328 => 0.16391049358625
329 => 0.14991809124602
330 => 0.14918972593828
331 => 0.14878087241933
401 => 0.14620310881578
402 => 0.14417769273226
403 => 0.14256700666377
404 => 0.13834008542848
405 => 0.13976654726282
406 => 0.13302971704079
407 => 0.13733970227824
408 => 0.12658755857743
409 => 0.13554226335314
410 => 0.13066862466419
411 => 0.13394114196773
412 => 0.13392972446315
413 => 0.12790398255477
414 => 0.12442846037605
415 => 0.12664319837768
416 => 0.12901757332155
417 => 0.12940280766783
418 => 0.13248124676009
419 => 0.13334037293991
420 => 0.13073718050628
421 => 0.12636474429816
422 => 0.12738036150465
423 => 0.12440787892578
424 => 0.11919871754119
425 => 0.12294002819083
426 => 0.12421747614044
427 => 0.12478166992959
428 => 0.11965905798407
429 => 0.11804942209347
430 => 0.11719246545147
501 => 0.125703479423
502 => 0.12616973198088
503 => 0.12378431797326
504 => 0.13456661548195
505 => 0.13212624947957
506 => 0.13485273620842
507 => 0.12728820488836
508 => 0.12757718017178
509 => 0.12399600981787
510 => 0.12600122592217
511 => 0.12458400381078
512 => 0.12583922427687
513 => 0.12659159824878
514 => 0.13017218096787
515 => 0.13558314785622
516 => 0.12963736131155
517 => 0.1270466969688
518 => 0.12865393055659
519 => 0.13293420539965
520 => 0.13941904089011
521 => 0.13557988776028
522 => 0.13728363872625
523 => 0.13765583251771
524 => 0.13482498313294
525 => 0.1395234183448
526 => 0.14204134794486
527 => 0.1446242227024
528 => 0.14686686048387
529 => 0.14359256572561
530 => 0.14709653046866
531 => 0.1442729534188
601 => 0.14173991290904
602 => 0.1417437544859
603 => 0.14015474117232
604 => 0.13707582764868
605 => 0.13650802875591
606 => 0.13946179030118
607 => 0.14183042733823
608 => 0.14202551962961
609 => 0.14333691879828
610 => 0.14411299131782
611 => 0.15171955702869
612 => 0.15477898068242
613 => 0.15851998601427
614 => 0.15997731842254
615 => 0.16436336648883
616 => 0.16082127645789
617 => 0.16005492299891
618 => 0.14941580505548
619 => 0.1511579600227
620 => 0.15394731821817
621 => 0.14946180054473
622 => 0.15230682908468
623 => 0.15286849798441
624 => 0.1493093843706
625 => 0.15121046073196
626 => 0.14616176554604
627 => 0.13569319561479
628 => 0.13953507285574
629 => 0.14236398766697
630 => 0.13832677742866
701 => 0.14556332051923
702 => 0.14133588143829
703 => 0.13999598620249
704 => 0.13476857718051
705 => 0.13723571301746
706 => 0.14057254956292
707 => 0.13851077252671
708 => 0.14278926945422
709 => 0.14884876213702
710 => 0.15316711747182
711 => 0.15349862717319
712 => 0.15072221400026
713 => 0.15517143382871
714 => 0.15520384153784
715 => 0.15018510339574
716 => 0.14711115422816
717 => 0.14641274650964
718 => 0.1481575059214
719 => 0.15027596594763
720 => 0.15361618696091
721 => 0.15563461256318
722 => 0.16089759604367
723 => 0.16232160847193
724 => 0.163886166397
725 => 0.16597689827668
726 => 0.16848735795089
727 => 0.16299461510427
728 => 0.16321285201732
729 => 0.15809808593075
730 => 0.15263222483559
731 => 0.15678013207761
801 => 0.16220296902357
802 => 0.16095896423647
803 => 0.16081898828521
804 => 0.16105438900914
805 => 0.16011645002506
806 => 0.1558741867617
807 => 0.15374374870882
808 => 0.15649255732975
809 => 0.15795342677638
810 => 0.1602191078869
811 => 0.1599398148673
812 => 0.16577596609161
813 => 0.16804371798132
814 => 0.16746353000536
815 => 0.16757029855594
816 => 0.17167595503032
817 => 0.17624228942248
818 => 0.18051926416164
819 => 0.18486998656664
820 => 0.17962502089582
821 => 0.17696195079269
822 => 0.17970955936977
823 => 0.17825163958338
824 => 0.18662927912307
825 => 0.1872093287081
826 => 0.1955863624491
827 => 0.20353716498793
828 => 0.19854340836671
829 => 0.20325229593678
830 => 0.20834534176505
831 => 0.21817065348468
901 => 0.21486183415614
902 => 0.21232733040629
903 => 0.20993223660931
904 => 0.21491604659039
905 => 0.22132763851273
906 => 0.22270863400334
907 => 0.22494637427901
908 => 0.22259366399701
909 => 0.22542724438914
910 => 0.23543102831169
911 => 0.23272791758997
912 => 0.2288890658184
913 => 0.23678609245163
914 => 0.23964399569129
915 => 0.25970225732271
916 => 0.28502664119785
917 => 0.27454217998467
918 => 0.26803413657821
919 => 0.26956368115158
920 => 0.27881128885829
921 => 0.28178132694928
922 => 0.27370773958443
923 => 0.27655946713081
924 => 0.29227276628707
925 => 0.3007024471414
926 => 0.28925380828403
927 => 0.25766746773615
928 => 0.22854341921816
929 => 0.23626842835813
930 => 0.2353926520566
1001 => 0.252274631726
1002 => 0.23266344929324
1003 => 0.23299365130972
1004 => 0.25022473244036
1005 => 0.24562777541023
1006 => 0.23818129375517
1007 => 0.22859778677501
1008 => 0.21088178775508
1009 => 0.19519023337594
1010 => 0.22596498506258
1011 => 0.2246379218096
1012 => 0.22271613755952
1013 => 0.22699286044929
1014 => 0.24775941283302
1015 => 0.2472806765858
1016 => 0.2442352008344
1017 => 0.24654516735024
1018 => 0.23777634545642
1019 => 0.24003627052082
1020 => 0.22853880582008
1021 => 0.23373614004135
1022 => 0.23816531694993
1023 => 0.23905453978941
1024 => 0.2410580042516
1025 => 0.2239386197775
1026 => 0.23162472080765
1027 => 0.23613958507259
1028 => 0.21574126407142
1029 => 0.235736375852
1030 => 0.223640609381
1031 => 0.21953512456842
1101 => 0.22506261901206
1102 => 0.22290854905171
1103 => 0.22105660619103
1104 => 0.22002319025436
1105 => 0.22408197212646
1106 => 0.22389262510084
1107 => 0.21725167018246
1108 => 0.20858881521138
1109 => 0.2114963536882
1110 => 0.21044001770125
1111 => 0.20661171981451
1112 => 0.20919153035972
1113 => 0.19783135033083
1114 => 0.17828675104191
1115 => 0.19119851199944
1116 => 0.19070142324787
1117 => 0.19045076855814
1118 => 0.20015360006287
1119 => 0.1992208966961
1120 => 0.19752803095235
1121 => 0.20658062900756
1122 => 0.20327630894278
1123 => 0.21345944478671
1124 => 0.22016671665745
1125 => 0.21846553555351
1126 => 0.224773757167
1127 => 0.2115633375023
1128 => 0.21595130900487
1129 => 0.21685566385008
1130 => 0.20646892135276
1201 => 0.19937349850184
1202 => 0.19890031469142
1203 => 0.18659782927743
1204 => 0.19316971768339
1205 => 0.19895270751742
1206 => 0.19618310416506
1207 => 0.19530633048325
1208 => 0.19978557707461
1209 => 0.20013365289691
1210 => 0.19219748726102
1211 => 0.1938476674024
1212 => 0.20072919291159
1213 => 0.19367427061575
1214 => 0.17996770900994
1215 => 0.17656829222366
1216 => 0.17611474736068
1217 => 0.16689525942514
1218 => 0.17679545750826
1219 => 0.17247375573617
1220 => 0.18612595985227
1221 => 0.17832789407939
1222 => 0.17799173504972
1223 => 0.17748358137256
1224 => 0.16954798725419
1225 => 0.1712853780328
1226 => 0.17706072959298
1227 => 0.17912144009364
1228 => 0.17890649110552
1229 => 0.1770324272196
1230 => 0.17789036406981
1231 => 0.17512665055026
]
'min_raw' => 0.096699261540464
'max_raw' => 0.3007024471414
'avg_raw' => 0.19870085434093
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.096699'
'max' => '$0.3007024'
'avg' => '$0.19870085'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.055086386234703
'max_diff' => 0.18781072635012
'year' => 2033
]
8 => [
'items' => [
101 => 0.17415072578479
102 => 0.17107043877569
103 => 0.16654326782332
104 => 0.167172798711
105 => 0.15820328845564
106 => 0.15331622322059
107 => 0.15196354797401
108 => 0.15015469410209
109 => 0.15216786283201
110 => 0.15817787896005
111 => 0.15092852441359
112 => 0.13850001452678
113 => 0.13924698914813
114 => 0.14092521934354
115 => 0.137797848477
116 => 0.13483805441215
117 => 0.13741135521585
118 => 0.13214523173466
119 => 0.14156160520704
120 => 0.1413069186937
121 => 0.14481676041957
122 => 0.14701153647996
123 => 0.14195328822795
124 => 0.14068115247152
125 => 0.14140581881373
126 => 0.12942869839129
127 => 0.14383797415688
128 => 0.14396258617206
129 => 0.14289558244395
130 => 0.15056807695265
131 => 0.16675943347706
201 => 0.16066759385677
202 => 0.15830864942897
203 => 0.15382429434733
204 => 0.15979943123895
205 => 0.15934063395233
206 => 0.15726577862853
207 => 0.15601089965475
208 => 0.15832305264063
209 => 0.15572439831234
210 => 0.15525760858873
211 => 0.15242937073591
212 => 0.15141981849907
213 => 0.15067238621435
214 => 0.14984953671005
215 => 0.15166453767521
216 => 0.1475515067049
217 => 0.1425915945601
218 => 0.14217923153225
219 => 0.14331780210747
220 => 0.14281406938454
221 => 0.14217681985377
222 => 0.14096013695495
223 => 0.14059917312919
224 => 0.14177213044817
225 => 0.1404479300227
226 => 0.14240185988341
227 => 0.14187049907717
228 => 0.13890236080761
301 => 0.13520296157822
302 => 0.13517002916533
303 => 0.13437299966958
304 => 0.13335786277257
305 => 0.13307547491101
306 => 0.13719463899968
307 => 0.14572118538704
308 => 0.14404722030824
309 => 0.14525683163251
310 => 0.15120692215161
311 => 0.15309827700217
312 => 0.15175583812844
313 => 0.14991822500005
314 => 0.14999907065166
315 => 0.15627875099468
316 => 0.15667040695486
317 => 0.15765999521324
318 => 0.15893189578286
319 => 0.1519724482953
320 => 0.14967128130085
321 => 0.14858086071499
322 => 0.14522278735643
323 => 0.14884418157419
324 => 0.14673415024706
325 => 0.14701886556202
326 => 0.14683344433964
327 => 0.14693469686519
328 => 0.14155897313875
329 => 0.14351760432494
330 => 0.14026100009513
331 => 0.13590077260239
401 => 0.13588615559094
402 => 0.13695331509266
403 => 0.13631852686308
404 => 0.13461032805919
405 => 0.13485296963681
406 => 0.13272717409737
407 => 0.13511107970407
408 => 0.13517944158685
409 => 0.13426150807605
410 => 0.13793424357875
411 => 0.13943896631087
412 => 0.13883476281002
413 => 0.13939657378256
414 => 0.14411678111476
415 => 0.14488638086699
416 => 0.14522818624003
417 => 0.14477021232069
418 => 0.13948285050759
419 => 0.1397173674876
420 => 0.13799663749275
421 => 0.13654280197316
422 => 0.13660094776958
423 => 0.13734840821204
424 => 0.14061261180222
425 => 0.14748193582245
426 => 0.14774262164761
427 => 0.14805858047244
428 => 0.14677341714367
429 => 0.14638579958635
430 => 0.14689716719703
501 => 0.14947692412713
502 => 0.15611275934852
503 => 0.15376721198875
504 => 0.15186024547464
505 => 0.153533169222
506 => 0.1532756357239
507 => 0.15110179382741
508 => 0.15104078132559
509 => 0.14686848370694
510 => 0.14532608027594
511 => 0.14403713252211
512 => 0.14262963522375
513 => 0.14179522364555
514 => 0.14307725906295
515 => 0.14337047573151
516 => 0.14056728288522
517 => 0.14018521805843
518 => 0.14247436584782
519 => 0.14146699725374
520 => 0.14250310083429
521 => 0.14274348575251
522 => 0.14270477824415
523 => 0.14165296973638
524 => 0.14232336111385
525 => 0.14073768565285
526 => 0.13901350174976
527 => 0.13791357984004
528 => 0.13695375209034
529 => 0.13748632031139
530 => 0.13558781184647
531 => 0.13498044077911
601 => 0.14209624759945
602 => 0.14735277060544
603 => 0.14727633867912
604 => 0.14681107898435
605 => 0.14611979745241
606 => 0.14942635257734
607 => 0.14827441488847
608 => 0.14911254580474
609 => 0.14932588529917
610 => 0.14997159969508
611 => 0.15020238709059
612 => 0.14950478728921
613 => 0.14716355715114
614 => 0.14132943424454
615 => 0.1386136342826
616 => 0.13771737505994
617 => 0.13774995238044
618 => 0.13685132444934
619 => 0.13711601064873
620 => 0.13675927739097
621 => 0.13608371090381
622 => 0.13744460598451
623 => 0.13760143646494
624 => 0.13728378729162
625 => 0.13735860517101
626 => 0.13472860568565
627 => 0.13492855883446
628 => 0.13381519429306
629 => 0.13360645186335
630 => 0.13079196325441
701 => 0.12580568871703
702 => 0.12856856884012
703 => 0.12523139817116
704 => 0.12396756107244
705 => 0.12995036933079
706 => 0.12934986131893
707 => 0.12832205263716
708 => 0.12680170938274
709 => 0.12623779928073
710 => 0.12281166001314
711 => 0.12260922542747
712 => 0.12430731256203
713 => 0.12352370377704
714 => 0.12242322026706
715 => 0.11843738054814
716 => 0.1139559770379
717 => 0.11409124244077
718 => 0.11551669351791
719 => 0.11966138477293
720 => 0.11804198219571
721 => 0.11686708704543
722 => 0.116647064501
723 => 0.11940110729293
724 => 0.12329865483331
725 => 0.12512729693654
726 => 0.12331516814892
727 => 0.12123349216965
728 => 0.12136019414095
729 => 0.12220308559253
730 => 0.12229166156625
731 => 0.12093670450349
801 => 0.12131811697995
802 => 0.12073871655112
803 => 0.11718293718887
804 => 0.1171186244157
805 => 0.11624597881552
806 => 0.11621955545356
807 => 0.114734967596
808 => 0.11452726349226
809 => 0.11157952419303
810 => 0.11351973512636
811 => 0.11221834349793
812 => 0.11025683934663
813 => 0.10991867529162
814 => 0.10990850967178
815 => 0.11192253585085
816 => 0.11349620005783
817 => 0.11224098176248
818 => 0.11195519288801
819 => 0.11500667038266
820 => 0.11461834205663
821 => 0.11428205223074
822 => 0.12294967219974
823 => 0.11608857465145
824 => 0.11309674450264
825 => 0.10939378656036
826 => 0.1105994883383
827 => 0.11085354741836
828 => 0.10194860107549
829 => 0.098335865453232
830 => 0.097096110730743
831 => 0.096382614360391
901 => 0.096707763615884
902 => 0.093455877824226
903 => 0.095641198857447
904 => 0.092825340636935
905 => 0.092353252842671
906 => 0.097388356158843
907 => 0.098088961370641
908 => 0.095099961876131
909 => 0.097019383426669
910 => 0.096323374490489
911 => 0.092873610444122
912 => 0.092741854832298
913 => 0.091010884498901
914 => 0.088302251109038
915 => 0.087064332967534
916 => 0.08641961445134
917 => 0.086685637876435
918 => 0.086551128292256
919 => 0.085673362269699
920 => 0.086601440813193
921 => 0.084230583643097
922 => 0.083286489214671
923 => 0.082860063664175
924 => 0.080755791464268
925 => 0.084104624308414
926 => 0.084764386566196
927 => 0.085425448759436
928 => 0.091179543825265
929 => 0.09089208549668
930 => 0.093490568789204
1001 => 0.09338959650676
1002 => 0.092648466979094
1003 => 0.08952176341176
1004 => 0.090768011725567
1005 => 0.086932253125657
1006 => 0.089806264274941
1007 => 0.088494685607983
1008 => 0.089362818208313
1009 => 0.087801837516559
1010 => 0.088665748682689
1011 => 0.084920840673082
1012 => 0.081423898265989
1013 => 0.082831169972716
1014 => 0.084361035258969
1015 => 0.08767817300199
1016 => 0.085702513128039
1017 => 0.086413035126683
1018 => 0.084032905371172
1019 => 0.079122017835101
1020 => 0.079149812925234
1021 => 0.07839437986731
1022 => 0.077741575410231
1023 => 0.085929441430575
1024 => 0.084911150859939
1025 => 0.083288638106204
1026 => 0.085460435903172
1027 => 0.086034693711756
1028 => 0.086051042024255
1029 => 0.087635529634708
1030 => 0.088481170956442
1031 => 0.088630218904617
1101 => 0.091123444394785
1102 => 0.091959140692651
1103 => 0.09540125547139
1104 => 0.08840942419846
1105 => 0.088265432034496
1106 => 0.085490997551976
1107 => 0.083731407341088
1108 => 0.085611478199111
1109 => 0.087276964324054
1110 => 0.085542748848403
1111 => 0.085769200778236
1112 => 0.083441158192785
1113 => 0.084273323872499
1114 => 0.084990097060691
1115 => 0.084594337036152
1116 => 0.084001865124415
1117 => 0.087140413454762
1118 => 0.086963324257893
1119 => 0.089886012618027
1120 => 0.0921644571982
1121 => 0.096247837206558
1122 => 0.091986617296423
1123 => 0.091831321506082
1124 => 0.093349362766888
1125 => 0.091958908288443
1126 => 0.092837627521963
1127 => 0.096106261953091
1128 => 0.096175323047975
1129 => 0.095018460728488
1130 => 0.094948065551212
1201 => 0.095170253614356
1202 => 0.096471616040111
1203 => 0.096016880021724
1204 => 0.096543112054709
1205 => 0.097201173269907
1206 => 0.099923193468139
1207 => 0.10057946332258
1208 => 0.098985067813201
1209 => 0.099129023876008
1210 => 0.098532676188365
1211 => 0.097956611794317
1212 => 0.099251520424689
1213 => 0.10161799139818
1214 => 0.10160326970508
1215 => 0.10215224497331
1216 => 0.10249425201746
1217 => 0.10102610741951
1218 => 0.10007039927142
1219 => 0.10043687858868
1220 => 0.10102288699788
1221 => 0.10024684395961
1222 => 0.095456746829304
1223 => 0.096909756306049
1224 => 0.096667904480585
1225 => 0.096323478070938
1226 => 0.097784490335595
1227 => 0.097643572138505
1228 => 0.093422525035234
1229 => 0.093692742775631
1230 => 0.093438957871016
1231 => 0.094258988817334
]
'min_raw' => 0.077741575410231
'max_raw' => 0.17415072578479
'avg_raw' => 0.12594615059751
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.077741'
'max' => '$0.17415'
'avg' => '$0.125946'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.018957686130232
'max_diff' => -0.12655172135662
'year' => 2034
]
9 => [
'items' => [
101 => 0.09191462392623
102 => 0.092635734777195
103 => 0.093088008742926
104 => 0.093354401583274
105 => 0.094316795189891
106 => 0.09420386940806
107 => 0.094309775564737
108 => 0.095736751220858
109 => 0.10295390441061
110 => 0.10334671813497
111 => 0.10141235969132
112 => 0.10218509773603
113 => 0.10070160966942
114 => 0.10169748514704
115 => 0.10237883785633
116 => 0.099299935979638
117 => 0.099117623392408
118 => 0.097628012442848
119 => 0.098428444991265
120 => 0.097154899253597
121 => 0.097467382830882
122 => 0.096593651506965
123 => 0.098166193931844
124 => 0.099924540711248
125 => 0.10036876854694
126 => 0.099200196363336
127 => 0.098354073089744
128 => 0.096868559351651
129 => 0.099339001804933
130 => 0.10006143446364
131 => 0.099335207173726
201 => 0.099166924442272
202 => 0.098848028970248
203 => 0.099234579624178
204 => 0.10005749994023
205 => 0.099669425916133
206 => 0.099925755646035
207 => 0.098948891041719
208 => 0.10102659343646
209 => 0.10432648486562
210 => 0.10433709455615
211 => 0.10394901844019
212 => 0.10379022605475
213 => 0.10418841570016
214 => 0.1044044172482
215 => 0.10569208954594
216 => 0.10707381322455
217 => 0.11352171473936
218 => 0.1117111697957
219 => 0.11743213160702
220 => 0.12195666962585
221 => 0.12331338074363
222 => 0.12206527035346
223 => 0.1177955521303
224 => 0.11758605938451
225 => 0.12396682103844
226 => 0.12216396361381
227 => 0.12194951945979
228 => 0.11966819597018
301 => 0.12101674069995
302 => 0.1207217941856
303 => 0.1202562066834
304 => 0.12282913608737
305 => 0.12764543024459
306 => 0.12689476563327
307 => 0.12633442932324
308 => 0.12387919872416
309 => 0.12535779594042
310 => 0.12483129579237
311 => 0.12709347455362
312 => 0.12575340996885
313 => 0.12215030519566
314 => 0.12272411150678
315 => 0.12263738183719
316 => 0.12442227229157
317 => 0.12388649248087
318 => 0.12253276223019
319 => 0.12762896867476
320 => 0.12729804937484
321 => 0.12776721728344
322 => 0.12797375950631
323 => 0.13107573056388
324 => 0.13234650885417
325 => 0.13263499777417
326 => 0.13384213886442
327 => 0.13260496300417
328 => 0.13755454853664
329 => 0.14084573409941
330 => 0.14466861549343
331 => 0.15025487270374
401 => 0.15235535709058
402 => 0.1519759233868
403 => 0.15621135984859
404 => 0.16382234502195
405 => 0.15351432109674
406 => 0.16436869531983
407 => 0.16093232576057
408 => 0.15278475535323
409 => 0.15226014787254
410 => 0.15777777714763
411 => 0.17001534782765
412 => 0.16694997516968
413 => 0.17002036167917
414 => 0.16643859272267
415 => 0.16626072770446
416 => 0.16984640315562
417 => 0.17822452929224
418 => 0.17424439561409
419 => 0.16853789801765
420 => 0.17275148703993
421 => 0.16910128627958
422 => 0.16087636233964
423 => 0.16694763113698
424 => 0.16288794659198
425 => 0.16407277836691
426 => 0.172605631448
427 => 0.17157893599015
428 => 0.17290757498204
429 => 0.17056256193789
430 => 0.16837194998004
501 => 0.16428301008373
502 => 0.16307247656273
503 => 0.1634070244775
504 => 0.1630723107774
505 => 0.16078458648471
506 => 0.16029055264152
507 => 0.15946714125875
508 => 0.15972235087695
509 => 0.15817409657985
510 => 0.16109597232414
511 => 0.16163829820976
512 => 0.16376459571224
513 => 0.16398535497267
514 => 0.16990706325113
515 => 0.16664548584162
516 => 0.16883363355897
517 => 0.16863790503148
518 => 0.15296133790955
519 => 0.15512143054343
520 => 0.15848185680734
521 => 0.1569679893304
522 => 0.15482773490844
523 => 0.15309936470953
524 => 0.15048070712324
525 => 0.15416641738907
526 => 0.15901273445704
527 => 0.16410826557116
528 => 0.17023021233234
529 => 0.16886386508256
530 => 0.16399382003479
531 => 0.16421228669807
601 => 0.16556276164696
602 => 0.16381377388456
603 => 0.16329796324913
604 => 0.16549189718646
605 => 0.16550700560372
606 => 0.16349458381085
607 => 0.16125814525737
608 => 0.16124877449817
609 => 0.16085082185902
610 => 0.16650938761312
611 => 0.16962102663235
612 => 0.16997777103124
613 => 0.16959701489191
614 => 0.16974355281827
615 => 0.16793295863327
616 => 0.17207144002516
617 => 0.17586931980374
618 => 0.17485140689321
619 => 0.17332541073549
620 => 0.17210988129392
621 => 0.17456506678686
622 => 0.17445574124168
623 => 0.17583614863707
624 => 0.175773525384
625 => 0.17530934629668
626 => 0.17485142347051
627 => 0.17666703571501
628 => 0.17614416854644
629 => 0.17562048922073
630 => 0.17457017016173
701 => 0.1747129259658
702 => 0.17318719329282
703 => 0.17248131954552
704 => 0.16186667201413
705 => 0.15903009135012
706 => 0.15992253737094
707 => 0.16021635377335
708 => 0.1589818702332
709 => 0.16075180251697
710 => 0.16047596044537
711 => 0.16154910058376
712 => 0.16087864921562
713 => 0.16090616477363
714 => 0.16287781929203
715 => 0.16345019898675
716 => 0.16315908205434
717 => 0.16336297037489
718 => 0.16806149066605
719 => 0.16739351133087
720 => 0.16703866062238
721 => 0.16713695669372
722 => 0.16833752936553
723 => 0.16867362416479
724 => 0.16724956688334
725 => 0.16792116052965
726 => 0.17078072103772
727 => 0.17178140537844
728 => 0.17497510943828
729 => 0.1736183671901
730 => 0.17610872630507
731 => 0.18376324119849
801 => 0.18987819734751
802 => 0.18425463096162
803 => 0.19548396919432
804 => 0.20422761976137
805 => 0.20389202388929
806 => 0.20236736616864
807 => 0.19241295246004
808 => 0.18325275255343
809 => 0.19091564873794
810 => 0.1909351830362
811 => 0.19027693345807
812 => 0.18618860186153
813 => 0.19013466838048
814 => 0.19044789281074
815 => 0.19027257042289
816 => 0.18713805617343
817 => 0.18235223226956
818 => 0.18328737080473
819 => 0.18481914680165
820 => 0.18191917527753
821 => 0.1809924586601
822 => 0.18271540116695
823 => 0.18826708091334
824 => 0.18721756801598
825 => 0.18719016099281
826 => 0.19168042223047
827 => 0.18846636424333
828 => 0.18329916589639
829 => 0.18199438016681
830 => 0.1773632698358
831 => 0.18056199423688
901 => 0.18067711063349
902 => 0.17892520196919
903 => 0.18344132362917
904 => 0.18339970677303
905 => 0.18768709215318
906 => 0.19588296273162
907 => 0.19345904050728
908 => 0.19064028268236
909 => 0.19094675981361
910 => 0.19430805749335
911 => 0.19227574018522
912 => 0.19300657565904
913 => 0.19430695128633
914 => 0.19509150018879
915 => 0.19083387530006
916 => 0.18984121927276
917 => 0.18781059341582
918 => 0.18728084103318
919 => 0.18893474342325
920 => 0.1884989985767
921 => 0.18066743554611
922 => 0.17984899363501
923 => 0.17987409407995
924 => 0.1778160829797
925 => 0.17467712207254
926 => 0.18292612391892
927 => 0.18226361362595
928 => 0.18153225353674
929 => 0.18162184097458
930 => 0.18520245309148
1001 => 0.18312551723843
1002 => 0.18864739160686
1003 => 0.18751226023945
1004 => 0.1863480170357
1005 => 0.18618708316123
1006 => 0.18573894885635
1007 => 0.1842021295815
1008 => 0.18234632795859
1009 => 0.18112096698036
1010 => 0.16707451802129
1011 => 0.16968145724366
1012 => 0.172680503189
1013 => 0.17371576183142
1014 => 0.17194488028585
1015 => 0.18427205477857
1016 => 0.18652434834599
1017 => 0.17970200421678
1018 => 0.17842582218468
1019 => 0.18435572106013
1020 => 0.18077926713758
1021 => 0.18238974411991
1022 => 0.17890877376792
1023 => 0.18598183678045
1024 => 0.18592795189092
1025 => 0.18317637062667
1026 => 0.1855019882692
1027 => 0.18509785497317
1028 => 0.18199132650268
1029 => 0.18608031927398
1030 => 0.18608234736338
1031 => 0.18343401022108
1101 => 0.18034133223441
1102 => 0.17978843445619
1103 => 0.17937190025166
1104 => 0.18228730223961
1105 => 0.18490124254578
1106 => 0.1897651374048
1107 => 0.19098803613565
1108 => 0.19576109129513
1109 => 0.1929189693435
1110 => 0.19417884519302
1111 => 0.19554661864799
1112 => 0.19620237954051
1113 => 0.19513385235622
1114 => 0.20254837168678
1115 => 0.20317438429328
1116 => 0.20338428090526
1117 => 0.20088414670431
1118 => 0.20310485103845
1119 => 0.2020658570225
1120 => 0.20476903081114
1121 => 0.20519292297705
1122 => 0.20483390139292
1123 => 0.20496845145707
1124 => 0.19864146721927
1125 => 0.19831337970904
1126 => 0.19383988322702
1127 => 0.19566286610986
1128 => 0.19225488698824
1129 => 0.19333559227378
1130 => 0.19381195686631
1201 => 0.19356313103662
1202 => 0.19576593482688
1203 => 0.19389310160208
1204 => 0.18895038679955
1205 => 0.18400632535768
1206 => 0.18394425669362
1207 => 0.18264257258591
1208 => 0.18170169339137
1209 => 0.18188294010372
1210 => 0.18252167715842
1211 => 0.18166456883259
1212 => 0.1818474763504
1213 => 0.1848849598525
1214 => 0.1854941055065
1215 => 0.18342399056562
1216 => 0.17511218036183
1217 => 0.17307244128922
1218 => 0.17453856528483
1219 => 0.17383785244541
1220 => 0.14030071441155
1221 => 0.1481797675292
1222 => 0.14349830171405
1223 => 0.14565573654556
1224 => 0.14087717220799
1225 => 0.14315775357589
1226 => 0.14273661347074
1227 => 0.1554058977258
1228 => 0.15520808427819
1229 => 0.1553027671075
1230 => 0.15078330896939
1231 => 0.15798292850006
]
'min_raw' => 0.09191462392623
'max_raw' => 0.20519292297705
'avg_raw' => 0.14855377345164
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.091914'
'max' => '$0.205192'
'avg' => '$0.148553'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.014173048515999
'max_diff' => 0.031042197192264
'year' => 2035
]
10 => [
'items' => [
101 => 0.16152971997081
102 => 0.16087330326437
103 => 0.16103850920744
104 => 0.15819972375207
105 => 0.15533025275599
106 => 0.15214756781292
107 => 0.15806060304539
108 => 0.15740317446642
109 => 0.15891107909125
110 => 0.162746105112
111 => 0.1633108272614
112 => 0.16406981955704
113 => 0.16379777484781
114 => 0.17027898351499
115 => 0.169494066381
116 => 0.17138549083784
117 => 0.16749468722741
118 => 0.16309187362373
119 => 0.16392870455097
120 => 0.1638481110033
121 => 0.16282206264059
122 => 0.16189579205646
123 => 0.160353812509
124 => 0.1652328639672
125 => 0.16503478338819
126 => 0.16824147771886
127 => 0.16767466334775
128 => 0.16388933825446
129 => 0.1640245318807
130 => 0.16493377398901
131 => 0.16808067130741
201 => 0.16901488468862
202 => 0.16858211982848
203 => 0.16960644215252
204 => 0.17041602475245
205 => 0.16970811326251
206 => 0.17973064710677
207 => 0.17556859228601
208 => 0.17759714884626
209 => 0.17808094763293
210 => 0.17684170721407
211 => 0.17711045408705
212 => 0.17751753237047
213 => 0.17998923199331
214 => 0.1864756869957
215 => 0.18934849376147
216 => 0.19799147465807
217 => 0.18910994715098
218 => 0.18858295406412
219 => 0.19013981591661
220 => 0.19521416065536
221 => 0.19932644045715
222 => 0.20069072091051
223 => 0.20087103309424
224 => 0.20343051392041
225 => 0.20489756059847
226 => 0.20311972562708
227 => 0.20161319663591
228 => 0.19621699678679
229 => 0.19684162161269
301 => 0.2011446672525
302 => 0.20722297266687
303 => 0.21243879105228
304 => 0.21061239324333
305 => 0.22454651928971
306 => 0.22592803097141
307 => 0.22573715072662
308 => 0.22888443993403
309 => 0.22263771179162
310 => 0.21996711448608
311 => 0.20193892530363
312 => 0.20700411110362
313 => 0.21436665613183
314 => 0.21339219568922
315 => 0.20804531868834
316 => 0.21243473496661
317 => 0.21098345667528
318 => 0.20983877327331
319 => 0.21508278984552
320 => 0.20931677821205
321 => 0.21430913575502
322 => 0.20790638556683
323 => 0.21062073607468
324 => 0.20907993944807
325 => 0.21007702369842
326 => 0.20424808954463
327 => 0.20739324092464
328 => 0.20411724090693
329 => 0.20411568765637
330 => 0.20404336977441
331 => 0.20789756926724
401 => 0.20802325457433
402 => 0.20517499532575
403 => 0.20476451666986
404 => 0.20628227140126
405 => 0.20450537811139
406 => 0.20533677529809
407 => 0.20453056028521
408 => 0.20434906430433
409 => 0.20290287344965
410 => 0.20227981466561
411 => 0.20252413206908
412 => 0.20169015081678
413 => 0.20118764694585
414 => 0.20394340910664
415 => 0.20247111655126
416 => 0.20371775915688
417 => 0.20229705256894
418 => 0.19737226456273
419 => 0.19453996690167
420 => 0.18523749888603
421 => 0.18787566727559
422 => 0.18962477564725
423 => 0.18904669534085
424 => 0.19028863552638
425 => 0.19036488056715
426 => 0.18996111315275
427 => 0.18949360221269
428 => 0.18926604374204
429 => 0.19096207814708
430 => 0.19194668320509
501 => 0.1898003220724
502 => 0.18929745968979
503 => 0.19146754929879
504 => 0.19279130270667
505 => 0.20256515411761
506 => 0.20184107563597
507 => 0.20365837053167
508 => 0.20345377101508
509 => 0.20535858558356
510 => 0.20847215236833
511 => 0.20214140052793
512 => 0.2032402001465
513 => 0.20297079985501
514 => 0.20591204159688
515 => 0.20592122383255
516 => 0.20415780248238
517 => 0.20511378180455
518 => 0.20458018037284
519 => 0.2055444702805
520 => 0.20183140512639
521 => 0.20635351768349
522 => 0.20891726410486
523 => 0.20895286172641
524 => 0.21016805718299
525 => 0.21140276614625
526 => 0.21377268248075
527 => 0.21133667046596
528 => 0.20695452199234
529 => 0.20727089895788
530 => 0.20470164691117
531 => 0.20474483650225
601 => 0.20451428708024
602 => 0.20520618325063
603 => 0.2019832374271
604 => 0.20273965636995
605 => 0.20168066542037
606 => 0.20323789810699
607 => 0.20156257315598
608 => 0.20297066994204
609 => 0.20357835783575
610 => 0.20582073924615
611 => 0.20123137159843
612 => 0.19187334029187
613 => 0.19384051192767
614 => 0.19093091056033
615 => 0.19120020524451
616 => 0.19174422336449
617 => 0.18998088264598
618 => 0.19031727248582
619 => 0.1903052542736
620 => 0.19020168781347
621 => 0.18974297478914
622 => 0.18907775015025
623 => 0.19172780036624
624 => 0.19217809553755
625 => 0.19317904592361
626 => 0.19615719532139
627 => 0.19585960796695
628 => 0.19634498528882
629 => 0.19528540932046
630 => 0.19124935593474
701 => 0.19146853305163
702 => 0.18873539089202
703 => 0.19310915333364
704 => 0.19207338865662
705 => 0.1914056244313
706 => 0.19122341877563
707 => 0.19420895042973
708 => 0.19510226829311
709 => 0.19454561254898
710 => 0.19340389537753
711 => 0.19559632986509
712 => 0.19618293284258
713 => 0.19631425161615
714 => 0.20019882517049
715 => 0.19653135612561
716 => 0.19741415237622
717 => 0.20430147671818
718 => 0.19805562392582
719 => 0.20136419144907
720 => 0.20120225428576
721 => 0.20289480547483
722 => 0.20106341568639
723 => 0.20108611795772
724 => 0.20258898875027
725 => 0.20047847776631
726 => 0.19995588556649
727 => 0.19923392818533
728 => 0.20081029571482
729 => 0.20175525675578
730 => 0.20937094874848
731 => 0.21429103309352
801 => 0.2140774392563
802 => 0.21602928709756
803 => 0.2151499617682
804 => 0.21231038832538
805 => 0.21715719394318
806 => 0.21562346184674
807 => 0.21574990085729
808 => 0.215745194791
809 => 0.21676499255394
810 => 0.21604237237581
811 => 0.21461801382926
812 => 0.21556356950449
813 => 0.21837153181757
814 => 0.22708753299619
815 => 0.2319651227274
816 => 0.22679389596989
817 => 0.23036093894173
818 => 0.22822198422599
819 => 0.22783327252575
820 => 0.23007363911447
821 => 0.23231792716834
822 => 0.23217497572163
823 => 0.23054573783999
824 => 0.22962542270104
825 => 0.2365943572614
826 => 0.24172894953277
827 => 0.24137880476261
828 => 0.24292422990493
829 => 0.247461645921
830 => 0.24787649037676
831 => 0.24782422951043
901 => 0.24679599424228
902 => 0.25126366956803
903 => 0.25499068292604
904 => 0.24655798748628
905 => 0.24976904751765
906 => 0.25121059581963
907 => 0.25332721641503
908 => 0.25689831014628
909 => 0.26077746512426
910 => 0.26132602017091
911 => 0.26093679411453
912 => 0.25837838712928
913 => 0.26262300479412
914 => 0.26510940227365
915 => 0.26658999507252
916 => 0.27034453206329
917 => 0.25121949833118
918 => 0.23768184887974
919 => 0.23556774943187
920 => 0.23986685379197
921 => 0.24100049332701
922 => 0.2405435246519
923 => 0.22530566940506
924 => 0.23548752527754
925 => 0.24644234608157
926 => 0.24686316536356
927 => 0.25234737771256
928 => 0.25413326205886
929 => 0.25854877183194
930 => 0.25827258049342
1001 => 0.25934768685706
1002 => 0.25910053852231
1003 => 0.26727934058168
1004 => 0.27630177381702
1005 => 0.27598935564366
1006 => 0.27469227411749
1007 => 0.27661866136911
1008 => 0.28593077937069
1009 => 0.28507346876876
1010 => 0.28590627299299
1011 => 0.29688578492482
1012 => 0.31116071225357
1013 => 0.30452857533009
1014 => 0.31891840410804
1015 => 0.32797603855171
1016 => 0.34364028074515
1017 => 0.34167904047451
1018 => 0.3477770150109
1019 => 0.33816801106687
1020 => 0.31610379571128
1021 => 0.31261204917284
1022 => 0.31960261416791
1023 => 0.33678823607894
1024 => 0.3190613777755
1025 => 0.32264749812277
1026 => 0.32161469522151
1027 => 0.32155966154403
1028 => 0.32366007317525
1029 => 0.32061331655406
1030 => 0.30820028197828
1031 => 0.31388910257388
1101 => 0.31169237574232
1102 => 0.31412980793878
1103 => 0.32728362422956
1104 => 0.32146800849959
1105 => 0.31534172975032
1106 => 0.32302544283199
1107 => 0.33280944999522
1108 => 0.3321971844105
1109 => 0.33100913326897
1110 => 0.33770611534942
1111 => 0.34876756771467
1112 => 0.35175743384048
1113 => 0.35396449188944
1114 => 0.35426880790583
1115 => 0.3574034520061
1116 => 0.34054768064696
1117 => 0.36729822268082
1118 => 0.37191730232126
1119 => 0.37104910679009
1120 => 0.37618301940986
1121 => 0.37467249208233
1122 => 0.37248397497922
1123 => 0.38062231849607
1124 => 0.37129236438446
1125 => 0.35804966913158
1126 => 0.35078446460504
1127 => 0.36035187199292
1128 => 0.3661943538282
1129 => 0.37005586266968
1130 => 0.37122435291192
1201 => 0.34185614619534
1202 => 0.32602831161052
1203 => 0.3361737721129
1204 => 0.34855193412808
1205 => 0.34047891933197
1206 => 0.34079536622774
1207 => 0.32928536867947
1208 => 0.34957031351339
1209 => 0.34661496767433
1210 => 0.3619473071153
1211 => 0.358288121258
1212 => 0.37079104887413
1213 => 0.36749860901407
1214 => 0.38116534279535
1215 => 0.38661737291274
1216 => 0.39577218002058
1217 => 0.40250649339588
1218 => 0.40646101101674
1219 => 0.40622359661181
1220 => 0.42189336555851
1221 => 0.41265345027067
1222 => 0.40104593898831
1223 => 0.40083599573044
1224 => 0.40684769030328
1225 => 0.41944655290009
1226 => 0.42271325466545
1227 => 0.42453889530064
1228 => 0.42174286311684
1229 => 0.41171359730258
1230 => 0.40738301117352
1231 => 0.41107279602464
]
'min_raw' => 0.15214756781292
'max_raw' => 0.42453889530064
'avg_raw' => 0.28834323155678
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.152147'
'max' => '$0.424538'
'avg' => '$0.288343'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.060232943886688
'max_diff' => 0.21934597232359
'year' => 2036
]
11 => [
'items' => [
101 => 0.40656050621854
102 => 0.41434998434877
103 => 0.42504660156433
104 => 0.42283779240833
105 => 0.43022151025367
106 => 0.43786288143383
107 => 0.44879038541692
108 => 0.4516472396024
109 => 0.45636951093456
110 => 0.46123027932068
111 => 0.46279142712492
112 => 0.46577214267893
113 => 0.46575643283664
114 => 0.47473901978394
115 => 0.48464709135438
116 => 0.48838715899983
117 => 0.49698723832203
118 => 0.48225990386549
119 => 0.4934307562262
120 => 0.50350714468012
121 => 0.49149365896462
122 => 0.50805145024027
123 => 0.50869435175474
124 => 0.51840140133542
125 => 0.50856144693972
126 => 0.50271851342979
127 => 0.51958684354108
128 => 0.52774889713451
129 => 0.52529042016718
130 => 0.50658128905576
131 => 0.49569177227653
201 => 0.46719180643438
202 => 0.50095124708131
203 => 0.51739448584405
204 => 0.50653870503976
205 => 0.51201372943438
206 => 0.54188368724883
207 => 0.55325623324803
208 => 0.55089082318029
209 => 0.55129053854378
210 => 0.55742695793863
211 => 0.5846392209233
212 => 0.56833300216757
213 => 0.58079849542397
214 => 0.58741014809948
215 => 0.59355141957591
216 => 0.57847039779859
217 => 0.55885021005051
218 => 0.55263567299124
219 => 0.50545931158283
220 => 0.50300357709497
221 => 0.50162509891056
222 => 0.49293398894748
223 => 0.48610515721188
224 => 0.48067461667746
225 => 0.46642325661846
226 => 0.47123267228531
227 => 0.44851897884128
228 => 0.4630503949829
301 => 0.42679879180492
302 => 0.45699020415375
303 => 0.44055839104735
304 => 0.4515919116161
305 => 0.45155341670226
306 => 0.43123720715431
307 => 0.41951924147553
308 => 0.4269863852761
309 => 0.43499175617292
310 => 0.43629060066762
311 => 0.44666977299691
312 => 0.44956637689445
313 => 0.44078953185539
314 => 0.42604755790594
315 => 0.42947178222577
316 => 0.41944984967898
317 => 0.40188679837881
318 => 0.41450088844405
319 => 0.41880789339472
320 => 0.42071011214559
321 => 0.40343886832193
322 => 0.39801186853559
323 => 0.39512257938629
324 => 0.4238180572113
325 => 0.42539006026293
326 => 0.41734747039195
327 => 0.45370073923847
328 => 0.44547287488054
329 => 0.45466541524406
330 => 0.42916106975977
331 => 0.43013537010343
401 => 0.4180612042259
402 => 0.42482193032126
403 => 0.42004366702543
404 => 0.42427573046355
405 => 0.42681241183891
406 => 0.43888459646462
407 => 0.45712804911035
408 => 0.43708141465342
409 => 0.42834680894744
410 => 0.43376570920215
411 => 0.44819695467474
412 => 0.47006103028759
413 => 0.45711705746926
414 => 0.46286137280312
415 => 0.46411625015677
416 => 0.45457184381245
417 => 0.4704129461635
418 => 0.47890232160632
419 => 0.48761066418193
420 => 0.49517187403811
421 => 0.48413236065667
422 => 0.49594622242689
423 => 0.48642633526743
424 => 0.47788601233755
425 => 0.47789896448214
426 => 0.47254149515402
427 => 0.4621607232462
428 => 0.46024634963678
429 => 0.4702051629117
430 => 0.47819118805506
501 => 0.47884895533635
502 => 0.4832704291925
503 => 0.48588701187577
504 => 0.51153307924345
505 => 0.52184813969413
506 => 0.53446120035912
507 => 0.53937469832128
508 => 0.55416256560088
509 => 0.54222016176074
510 => 0.53963634756869
511 => 0.50376581862292
512 => 0.50963961572828
513 => 0.51904413163109
514 => 0.50392089562625
515 => 0.51351310798224
516 => 0.51540681389215
517 => 0.50340701385379
518 => 0.50981662553503
519 => 0.49279459722707
520 => 0.45749908281163
521 => 0.47045224016081
522 => 0.47999012395542
523 => 0.46637838776792
524 => 0.49077689803707
525 => 0.47652379202532
526 => 0.47200624168933
527 => 0.45438166720569
528 => 0.46269978792988
529 => 0.47395016531338
530 => 0.46699874008713
531 => 0.48142399119334
601 => 0.50185399383368
602 => 0.51641363034288
603 => 0.51753133844633
604 => 0.5081704675908
605 => 0.52317132287706
606 => 0.52328058773101
607 => 0.50635956168782
608 => 0.49599552745303
609 => 0.49364079706877
610 => 0.49952337524073
611 => 0.50666591112534
612 => 0.5179276994784
613 => 0.52473296231842
614 => 0.54247747857268
615 => 0.54727863589593
616 => 0.55255365217423
617 => 0.55960270067682
618 => 0.56806689074312
619 => 0.54954772474467
620 => 0.55028352573383
621 => 0.53303873477138
622 => 0.51461020247482
623 => 0.52859516133893
624 => 0.54687863471264
625 => 0.54268438571927
626 => 0.54221244702678
627 => 0.54300611700266
628 => 0.53984379023303
629 => 0.52554070345526
630 => 0.51835778281753
701 => 0.5276255829987
702 => 0.53255100633266
703 => 0.54018990838157
704 => 0.53924825246638
705 => 0.55892524378621
706 => 0.56657112761176
707 => 0.56461498334337
708 => 0.56497496096599
709 => 0.57881746841714
710 => 0.59421318363161
711 => 0.60863330257351
712 => 0.62330206691973
713 => 0.60561829896874
714 => 0.59663957218641
715 => 0.60590332633594
716 => 0.60098784798742
717 => 0.62923364460361
718 => 0.63118932227728
719 => 0.65943307640088
720 => 0.68623976226786
721 => 0.66940296316648
722 => 0.685279306373
723 => 0.7024508659681
724 => 0.7355775904122
725 => 0.72442167503165
726 => 0.71587641868562
727 => 0.70780119272901
728 => 0.7246044560387
729 => 0.74622158584793
730 => 0.75087770856255
731 => 0.758422406136
801 => 0.75049007915924
802 => 0.76004369328559
803 => 0.79377214922235
804 => 0.78465842269892
805 => 0.771715465931
806 => 0.79834084257773
807 => 0.80797646288265
808 => 0.87560429239612
809 => 0.96098722072316
810 => 0.92563812774123
811 => 0.90369580501924
812 => 0.90885277133776
813 => 0.94003172636828
814 => 0.95004541715351
815 => 0.92282475367303
816 => 0.93243955219693
817 => 0.98541803736975
818 => 1.0138392949117
819 => 0.97523940968561
820 => 0.86874385724054
821 => 0.77055009428601
822 => 0.79659550194433
823 => 0.79364276099897
824 => 0.85056153411654
825 => 0.78444106333544
826 => 0.785554362488
827 => 0.84365015555562
828 => 0.82815119397921
829 => 0.80304486118246
830 => 0.77073339829976
831 => 0.7110026707125
901 => 0.6580974995739
902 => 0.76185672350995
903 => 0.75738243709992
904 => 0.75090300732611
905 => 0.76532227714021
906 => 0.83533815837633
907 => 0.83372406569454
908 => 0.82345603157036
909 => 0.83124424495525
910 => 0.80167954972063
911 => 0.80929904485819
912 => 0.77053453989227
913 => 0.7880577150856
914 => 0.80299099426811
915 => 0.80598907115498
916 => 0.81274389146669
917 => 0.75502469147498
918 => 0.78093891772458
919 => 0.79616109781158
920 => 0.72738673439085
921 => 0.79480164977319
922 => 0.75401992861676
923 => 0.74017799993537
924 => 0.75881433336943
925 => 0.75155173610574
926 => 0.74530778145245
927 => 0.74182354747116
928 => 0.75550801392806
929 => 0.75486961721138
930 => 0.73247917404739
1001 => 0.70327175369119
1002 => 0.71307472266362
1003 => 0.70951321213262
1004 => 0.69660583852424
1005 => 0.70530384989405
1006 => 0.66700220978421
1007 => 0.60110622872124
1008 => 0.64463913225993
1009 => 0.64296316282837
1010 => 0.64211806304182
1011 => 0.67483183689006
1012 => 0.67168716236973
1013 => 0.66597954732258
1014 => 0.69650101369793
1015 => 0.68536026789927
1016 => 0.7196934213609
1017 => 0.74230745675987
1018 => 0.73657180589528
1019 => 0.75784041549113
1020 => 0.71330056326953
1021 => 0.72809491554884
1022 => 0.73114401104952
1023 => 0.69612438354058
1024 => 0.6722016700121
1025 => 0.67060629775865
1026 => 0.62912760925326
1027 => 0.65128518984857
1028 => 0.67078294382945
1029 => 0.66144503275944
1030 => 0.65848892907683
1031 => 0.67359102169061
1101 => 0.67476458362737
1102 => 0.64800724710057
1103 => 0.65357094465914
1104 => 0.67677248836614
1105 => 0.65298632528675
1106 => 0.6067736958712
1107 => 0.59531232483655
1108 => 0.59378316666555
1109 => 0.56269901940678
1110 => 0.59607822845376
1111 => 0.58150730919757
1112 => 0.62753666854147
1113 => 0.60124494534464
1114 => 0.60011156170622
1115 => 0.59839828610553
1116 => 0.57164287648996
1117 => 0.57750061080078
1118 => 0.59697261180809
1119 => 0.60392044113529
1120 => 0.60319572561458
1121 => 0.59687718838024
1122 => 0.59976978236997
1123 => 0.59045172928249
1124 => 0.5871613307988
1125 => 0.57677592808886
1126 => 0.56151225514597
1127 => 0.56363476248622
1128 => 0.53339343242908
1129 => 0.51691635078508
1130 => 0.51235571175047
1201 => 0.50625703463116
1202 => 0.51304457355906
1203 => 0.53330776254065
1204 => 0.50886605755349
1205 => 0.46696246873927
1206 => 0.46948094582725
1207 => 0.47513921610137
1208 => 0.46459506687874
1209 => 0.4546159145429
1210 => 0.4632919778647
1211 => 0.44553687487886
1212 => 0.4772848354712
1213 => 0.47642614210981
1214 => 0.48825981853792
1215 => 0.4956596592599
1216 => 0.47860542212261
1217 => 0.47431632760214
1218 => 0.47675959076948
1219 => 0.43637789304938
1220 => 0.48495977231659
1221 => 0.4853799104259
1222 => 0.48178243286075
1223 => 0.5076507837733
1224 => 0.56224107273976
1225 => 0.54170201014129
1226 => 0.53374866430671
1227 => 0.51862934806131
1228 => 0.53877493926213
1229 => 0.53722807217809
1230 => 0.53023255259212
1231 => 0.52600164051918
]
'min_raw' => 0.39512257938629
'max_raw' => 1.0138392949117
'avg_raw' => 0.70448093714898
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.395122'
'max' => '$1.01'
'avg' => '$0.70448'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.24297501157337
'max_diff' => 0.58930039961103
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.012402446270477
]
1 => [
'year' => 2028
'avg' => 0.021286198256017
]
2 => [
'year' => 2029
'avg' => 0.05815005717147
]
3 => [
'year' => 2030
'avg' => 0.044862682508126
]
4 => [
'year' => 2031
'avg' => 0.044060713994016
]
5 => [
'year' => 2032
'avg' => 0.077252298048524
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.012402446270477
'min' => '$0.0124024'
'max_raw' => 0.077252298048524
'max' => '$0.077252'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.077252298048524
]
1 => [
'year' => 2033
'avg' => 0.19870085434093
]
2 => [
'year' => 2034
'avg' => 0.12594615059751
]
3 => [
'year' => 2035
'avg' => 0.14855377345164
]
4 => [
'year' => 2036
'avg' => 0.28834323155678
]
5 => [
'year' => 2037
'avg' => 0.70448093714898
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.077252298048524
'min' => '$0.077252'
'max_raw' => 0.70448093714898
'max' => '$0.70448'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.70448093714898
]
]
]
]
'prediction_2025_max_price' => '$0.0212059'
'last_price' => 0.02056182
'sma_50day_nextmonth' => '$0.019945'
'sma_200day_nextmonth' => '$0.026219'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.021495'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.021585'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.021525'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.02150036'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.025348'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.031228'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.027332'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.021234'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.021401'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.021529'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.022251'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.025689'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.027807'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.028315'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.028055'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.026536'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.037581'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.085976'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.021519'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.023026'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.026058'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.027573'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.029974'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.06721'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.210017'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '30.22'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 71.04
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.021010'
'vwma_10_action' => 'SELL'
'hma_9' => '0.021665'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -314.17
'cci_20_action' => 'BUY'
'adx_14' => 32.68
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.001038'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 31.56
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.013635'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 32
'buy_signals' => 0
'sell_pct' => 100
'buy_pct' => 0
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767695542
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Impossible Finance Launchpad para 2026
La previsión del precio de Impossible Finance Launchpad para 2026 sugiere que el precio medio podría oscilar entre $0.0071041 en el extremo inferior y $0.0212059 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Impossible Finance Launchpad podría potencialmente ganar 3.13% para 2026 si IDIA alcanza el objetivo de precio previsto.
Predicción de precio de Impossible Finance Launchpad 2027-2032
La predicción del precio de IDIA para 2027-2032 está actualmente dentro de un rango de precios de $0.0124024 en el extremo inferior y $0.077252 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Impossible Finance Launchpad alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Impossible Finance Launchpad | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.006838 | $0.0124024 | $0.017965 |
| 2028 | $0.012342 | $0.021286 | $0.03023 |
| 2029 | $0.027112 | $0.05815 | $0.089187 |
| 2030 | $0.023057 | $0.044862 | $0.066667 |
| 2031 | $0.027261 | $0.04406 | $0.060859 |
| 2032 | $0.041612 | $0.077252 | $0.112891 |
Predicción de precio de Impossible Finance Launchpad 2032-2037
La predicción de precio de Impossible Finance Launchpad para 2032-2037 se estima actualmente entre $0.077252 en el extremo inferior y $0.70448 en el extremo superior. Comparado con el precio actual, Impossible Finance Launchpad podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Impossible Finance Launchpad | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.041612 | $0.077252 | $0.112891 |
| 2033 | $0.096699 | $0.19870085 | $0.3007024 |
| 2034 | $0.077741 | $0.125946 | $0.17415 |
| 2035 | $0.091914 | $0.148553 | $0.205192 |
| 2036 | $0.152147 | $0.288343 | $0.424538 |
| 2037 | $0.395122 | $0.70448 | $1.01 |
Impossible Finance Launchpad Histograma de precios potenciales
Pronóstico de precio de Impossible Finance Launchpad basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Impossible Finance Launchpad es Bajista, con 0 indicadores técnicos mostrando señales alcistas y 32 indicando señales bajistas. La predicción de precio de IDIA se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Impossible Finance Launchpad
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Impossible Finance Launchpad aumentar durante el próximo mes, alcanzando $0.026219 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Impossible Finance Launchpad alcance $0.019945 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 30.22, lo que sugiere que el mercado de IDIA está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de IDIA para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.021495 | SELL |
| SMA 5 | $0.021585 | SELL |
| SMA 10 | $0.021525 | SELL |
| SMA 21 | $0.02150036 | SELL |
| SMA 50 | $0.025348 | SELL |
| SMA 100 | $0.031228 | SELL |
| SMA 200 | $0.027332 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.021234 | SELL |
| EMA 5 | $0.021401 | SELL |
| EMA 10 | $0.021529 | SELL |
| EMA 21 | $0.022251 | SELL |
| EMA 50 | $0.025689 | SELL |
| EMA 100 | $0.027807 | SELL |
| EMA 200 | $0.028315 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.028055 | SELL |
| SMA 50 | $0.026536 | SELL |
| SMA 100 | $0.037581 | SELL |
| SMA 200 | $0.085976 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.027573 | SELL |
| EMA 50 | $0.029974 | SELL |
| EMA 100 | $0.06721 | SELL |
| EMA 200 | $0.210017 | SELL |
Osciladores de Impossible Finance Launchpad
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 30.22 | NEUTRAL |
| Stoch RSI (14) | 71.04 | NEUTRAL |
| Estocástico Rápido (14) | 0 | BUY |
| Índice de Canal de Materias Primas (20) | -314.17 | BUY |
| Índice Direccional Medio (14) | 32.68 | SELL |
| Oscilador Asombroso (5, 34) | -0.001038 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -100 | BUY |
| Oscilador Ultimate (7, 14, 28) | 31.56 | NEUTRAL |
| VWMA (10) | 0.021010 | SELL |
| Promedio Móvil de Hull (9) | 0.021665 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.013635 | SELL |
Predicción de precios de Impossible Finance Launchpad basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Impossible Finance Launchpad
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Impossible Finance Launchpad por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.028892 | $0.040599 | $0.057048 | $0.080162 | $0.112642 | $0.158281 |
| Amazon.com acción | $0.0429034 | $0.08952 | $0.18679 | $0.389748 | $0.813233 | $1.69 |
| Apple acción | $0.029165 | $0.041368 | $0.058678 | $0.083231 | $0.118056 | $0.167454 |
| Netflix acción | $0.032443 | $0.05119 | $0.08077 | $0.127443 | $0.201085 | $0.317281 |
| Google acción | $0.026627 | $0.034482 | $0.044654 | $0.057827 | $0.074886 | $0.096977 |
| Tesla acción | $0.046612 | $0.105666 | $0.239537 | $0.543012 | $1.23 | $2.79 |
| Kodak acción | $0.015419 | $0.011562 | $0.00867 | $0.0065021 | $0.004875 | $0.003656 |
| Nokia acción | $0.013621 | $0.009023 | $0.005977 | $0.00396 | $0.002623 | $0.001737 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Impossible Finance Launchpad
Podría preguntarse cosas como: "¿Debo invertir en Impossible Finance Launchpad ahora?", "¿Debería comprar IDIA hoy?", "¿Será Impossible Finance Launchpad una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Impossible Finance Launchpad regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Impossible Finance Launchpad, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Impossible Finance Launchpad a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Impossible Finance Launchpad es de $0.02056 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Impossible Finance Launchpad basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Impossible Finance Launchpad ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.021096 | $0.021644 | $0.0222072 | $0.022784 |
| Si Impossible Finance Launchpad ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.02163 | $0.022755 | $0.023938 | $0.025182 |
| Si Impossible Finance Launchpad ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.023234 | $0.026253 | $0.029665 | $0.033521 |
| Si Impossible Finance Launchpad ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.0259064 | $0.03264 | $0.041124 | $0.051814 |
| Si Impossible Finance Launchpad ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.031251 | $0.047497 | $0.072189 | $0.109718 |
| Si Impossible Finance Launchpad ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.047285 | $0.108739 | $0.250064 | $0.575064 |
| Si Impossible Finance Launchpad ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.0740085 | $0.26638 | $0.958789 | $3.45 |
Cuadro de preguntas
¿Es IDIA una buena inversión?
La decisión de adquirir Impossible Finance Launchpad depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Impossible Finance Launchpad ha experimentado una caída de -6.5414% durante las últimas 24 horas, y Impossible Finance Launchpad ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Impossible Finance Launchpad dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Impossible Finance Launchpad subir?
Parece que el valor medio de Impossible Finance Launchpad podría potencialmente aumentar hasta $0.0212059 para el final de este año. Mirando las perspectivas de Impossible Finance Launchpad en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.066667. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Impossible Finance Launchpad la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Impossible Finance Launchpad, el precio de Impossible Finance Launchpad aumentará en un 0.86% durante la próxima semana y alcanzará $0.020737 para el 13 de enero de 2026.
¿Cuál será el precio de Impossible Finance Launchpad el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Impossible Finance Launchpad, el precio de Impossible Finance Launchpad disminuirá en un -11.62% durante el próximo mes y alcanzará $0.018172 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Impossible Finance Launchpad este año en 2026?
Según nuestra predicción más reciente sobre el valor de Impossible Finance Launchpad en 2026, se anticipa que IDIA fluctúe dentro del rango de $0.0071041 y $0.0212059. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Impossible Finance Launchpad no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Impossible Finance Launchpad en 5 años?
El futuro de Impossible Finance Launchpad parece estar en una tendencia alcista, con un precio máximo de $0.066667 proyectada después de un período de cinco años. Basado en el pronóstico de Impossible Finance Launchpad para 2030, el valor de Impossible Finance Launchpad podría potencialmente alcanzar su punto más alto de aproximadamente $0.066667, mientras que su punto más bajo se anticipa que esté alrededor de $0.023057.
¿Cuánto será Impossible Finance Launchpad en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Impossible Finance Launchpad, se espera que el valor de IDIA en 2026 crezca en un 3.13% hasta $0.0212059 si ocurre lo mejor. El precio estará entre $0.0212059 y $0.0071041 durante 2026.
¿Cuánto será Impossible Finance Launchpad en 2027?
Según nuestra última simulación experimental para la predicción de precios de Impossible Finance Launchpad, el valor de IDIA podría disminuir en un -12.62% hasta $0.017965 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.017965 y $0.006838 a lo largo del año.
¿Cuánto será Impossible Finance Launchpad en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Impossible Finance Launchpad sugiere que el valor de IDIA en 2028 podría aumentar en un 47.02% , alcanzando $0.03023 en el mejor escenario. Se espera que el precio oscile entre $0.03023 y $0.012342 durante el año.
¿Cuánto será Impossible Finance Launchpad en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Impossible Finance Launchpad podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.089187 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.089187 y $0.027112.
¿Cuánto será Impossible Finance Launchpad en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Impossible Finance Launchpad, se espera que el valor de IDIA en 2030 aumente en un 224.23% , alcanzando $0.066667 en el mejor escenario. Se pronostica que el precio oscile entre $0.066667 y $0.023057 durante el transcurso de 2030.
¿Cuánto será Impossible Finance Launchpad en 2031?
Nuestra simulación experimental indica que el precio de Impossible Finance Launchpad podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.060859 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.060859 y $0.027261 durante el año.
¿Cuánto será Impossible Finance Launchpad en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Impossible Finance Launchpad, IDIA podría experimentar un 449.04% aumento en valor, alcanzando $0.112891 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.112891 y $0.041612 a lo largo del año.
¿Cuánto será Impossible Finance Launchpad en 2033?
Según nuestra predicción experimental de precios de Impossible Finance Launchpad, se anticipa que el valor de IDIA aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.3007024. A lo largo del año, el precio de IDIA podría oscilar entre $0.3007024 y $0.096699.
¿Cuánto será Impossible Finance Launchpad en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Impossible Finance Launchpad sugieren que IDIA podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.17415 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.17415 y $0.077741.
¿Cuánto será Impossible Finance Launchpad en 2035?
Basado en nuestra predicción experimental para el precio de Impossible Finance Launchpad, IDIA podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.205192 en 2035. El rango de precios esperado para el año está entre $0.205192 y $0.091914.
¿Cuánto será Impossible Finance Launchpad en 2036?
Nuestra reciente simulación de predicción de precios de Impossible Finance Launchpad sugiere que el valor de IDIA podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.424538 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.424538 y $0.152147.
¿Cuánto será Impossible Finance Launchpad en 2037?
Según la simulación experimental, el valor de Impossible Finance Launchpad podría aumentar en un 4830.69% en 2037, con un máximo de $1.01 bajo condiciones favorables. Se espera que el precio caiga entre $1.01 y $0.395122 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de SelfKey
Predicción de precios de Solchat
Predicción de precios de pSTAKE Finance
Predicción de precios de Groestlcoin
Predicción de precios de Games for a Living
Predicción de precios de Fideum
Predicción de precios de district0x
Predicción de precios de SOLO Coin
Predicción de precios de Voxies
Predicción de precios de Picasso
Predicción de precios de Acet Token
Predicción de precios de Dream Machine Token
Predicción de precios de KILT Protocol [OLD]
Predicción de precios de Fluence
Predicción de precios de Vyvo Smart Chain
Predicción de precios de HydraDX
Predicción de precios de Leash
Predicción de precios de BNB48 Club Token
Predicción de precios de Turbo
Predicción de precios de SafeMoon
Predicción de precios de ASD
Predicción de precios de UniLend Finance
Predicción de precios de ECOx
Predicción de precios de Botto
Predicción de precios de Coinweb
¿Cómo leer y predecir los movimientos de precio de Impossible Finance Launchpad?
Los traders de Impossible Finance Launchpad utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Impossible Finance Launchpad
Las medias móviles son herramientas populares para la predicción de precios de Impossible Finance Launchpad. Una media móvil simple (SMA) calcula el precio de cierre promedio de IDIA durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de IDIA por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de IDIA.
¿Cómo leer gráficos de Impossible Finance Launchpad y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Impossible Finance Launchpad en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de IDIA dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Impossible Finance Launchpad?
La acción del precio de Impossible Finance Launchpad está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de IDIA. La capitalización de mercado de Impossible Finance Launchpad puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de IDIA, grandes poseedores de Impossible Finance Launchpad, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Impossible Finance Launchpad.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


