Predicción del precio de Impossible Finance Launchpad - Pronóstico de IDIA
Predicción de precio de Impossible Finance Launchpad hasta $0.0212086 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.007105 | $0.0212086 |
| 2027 | $0.006839 | $0.017968 |
| 2028 | $0.012343 | $0.030233 |
| 2029 | $0.027115 | $0.089198 |
| 2030 | $0.02306 | $0.066675 |
| 2031 | $0.027265 | $0.060867 |
| 2032 | $0.041618 | $0.1129059 |
| 2033 | $0.096711 | $0.30074 |
| 2034 | $0.077751 | $0.174172 |
| 2035 | $0.091926 | $0.205218 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Impossible Finance Launchpad hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.61, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Impossible Finance Launchpad para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Impossible Finance Launchpad'
'name_with_ticker' => 'Impossible Finance Launchpad <small>IDIA</small>'
'name_lang' => 'Impossible Finance Launchpad'
'name_lang_with_ticker' => 'Impossible Finance Launchpad <small>IDIA</small>'
'name_with_lang' => 'Impossible Finance Launchpad'
'name_with_lang_with_ticker' => 'Impossible Finance Launchpad <small>IDIA</small>'
'image' => '/uploads/coins/idia.png?1717089499'
'price_for_sd' => 0.02056
'ticker' => 'IDIA'
'marketcap' => '$15.39M'
'low24h' => '$0.01855'
'high24h' => '$0.02199'
'volume24h' => '$37.56K'
'current_supply' => '748.39M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02056'
'change_24h_pct' => '-6.485%'
'ath_price' => '$3.51'
'ath_days' => 1502
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '26 nov. 2021'
'ath_pct' => '-99.41%'
'fdv' => '$20.56M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.01'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.02074'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.018175'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.007105'
'current_year_max_price_prediction' => '$0.0212086'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.02306'
'grand_prediction_max_price' => '$0.066675'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.020954104942115
107 => 0.021032339963629
108 => 0.021208607461879
109 => 0.019702420988513
110 => 0.020378654495743
111 => 0.020775878326729
112 => 0.018981206607205
113 => 0.020740403437144
114 => 0.019676201632974
115 => 0.019314995556864
116 => 0.019801311953064
117 => 0.019611793980507
118 => 0.019448857556571
119 => 0.019357936232411
120 => 0.019715033320999
121 => 0.019698374314993
122 => 0.019114094168506
123 => 0.018351924535719
124 => 0.018607733681848
125 => 0.018514795820836
126 => 0.018177977023306
127 => 0.018404952225184
128 => 0.017405468305631
129 => 0.015685908170694
130 => 0.016821902267385
131 => 0.016778167730386
201 => 0.016756114793628
202 => 0.017609782960721
203 => 0.01752772246393
204 => 0.017378781858717
205 => 0.01817524161229
206 => 0.01788452308834
207 => 0.018780449077254
208 => 0.019370563878413
209 => 0.019220891676625
210 => 0.019775897499387
211 => 0.018613627007913
212 => 0.018999686642982
213 => 0.019079252998714
214 => 0.018165413422562
215 => 0.017541148576064
216 => 0.017499517227943
217 => 0.016417128013111
218 => 0.016995331594934
219 => 0.017504126819248
220 => 0.017260453390906
221 => 0.01718331366303
222 => 0.017577403803185
223 => 0.017608027982229
224 => 0.016909793454623
225 => 0.017054978523124
226 => 0.017660424393783
227 => 0.017039722840598
228 => 0.015833801113783
301 => 0.015534715852361
302 => 0.015494812365252
303 => 0.014683669415523
304 => 0.015554702159661
305 => 0.015174473024618
306 => 0.016375612306373
307 => 0.015689527990474
308 => 0.015659952266875
309 => 0.015615244222839
310 => 0.014917059978114
311 => 0.015069917955786
312 => 0.015578041154492
313 => 0.015759345236208
314 => 0.015740433735105
315 => 0.015575551073613
316 => 0.015651033511708
317 => 0.015407878278779
318 => 0.015322015105193
319 => 0.01505100731083
320 => 0.01465270072093
321 => 0.014708087695212
322 => 0.013918938118031
323 => 0.013488967545045
324 => 0.013369957357363
325 => 0.013210811960618
326 => 0.013387933253395
327 => 0.01391670255643
328 => 0.013278894592305
329 => 0.012185417574839
330 => 0.012251137406783
331 => 0.012398790356767
401 => 0.012123640061293
402 => 0.01186323339824
403 => 0.012089635864304
404 => 0.011626315236951
405 => 0.012454780441042
406 => 0.012432372779019
407 => 0.012741173375159
408 => 0.012934272725152
409 => 0.012489241240076
410 => 0.012377317025072
411 => 0.01244107414461
412 => 0.011387310979384
413 => 0.0126550584432
414 => 0.012666021975911
415 => 0.012572145552682
416 => 0.013247181939852
417 => 0.014671719265911
418 => 0.014135751021966
419 => 0.013928207918185
420 => 0.013533668326184
421 => 0.014059368907083
422 => 0.014019003304676
423 => 0.013836454742394
424 => 0.01372604880234
425 => 0.013929475132121
426 => 0.013700842028861
427 => 0.013659773241097
428 => 0.013410941070535
429 => 0.013322119306787
430 => 0.013256359209003
501 => 0.013183963802798
502 => 0.013343650029076
503 => 0.012981780031858
504 => 0.012545400289766
505 => 0.012509120035905
506 => 0.012609293006607
507 => 0.012564973924072
508 => 0.012508907853189
509 => 0.012401862455187
510 => 0.012370104372263
511 => 0.012473302734935
512 => 0.012356797800316
513 => 0.012528707177698
514 => 0.01248195733923
515 => 0.012220816541823
516 => 0.011895338421549
517 => 0.011892440983565
518 => 0.011822317256443
519 => 0.01173300414678
520 => 0.011708159282879
521 => 0.0120705688801
522 => 0.012820745900342
523 => 0.012673468201054
524 => 0.012779891432415
525 => 0.01330338839977
526 => 0.013469792343589
527 => 0.013351682765759
528 => 0.013190007090945
529 => 0.013197120000119
530 => 0.013749614723514
531 => 0.013784073141709
601 => 0.013871138447779
602 => 0.013983041970731
603 => 0.013370740419603
604 => 0.013168280652124
605 => 0.013072343982253
606 => 0.012776896171212
607 => 0.013095511305638
608 => 0.012909867911268
609 => 0.01293491754765
610 => 0.012918603939095
611 => 0.012927512272487
612 => 0.012454548868134
613 => 0.012626871874456
614 => 0.012340351453849
615 => 0.011956732774083
616 => 0.011955446749754
617 => 0.012049336878155
618 => 0.011993487355861
619 => 0.011843197727391
620 => 0.011864545659768
621 => 0.011677515308795
622 => 0.01188725453067
623 => 0.011893269101071
624 => 0.011812508076076
625 => 0.01213564028581
626 => 0.012268027815789
627 => 0.012214869179069
628 => 0.012264298064127
629 => 0.012679588254378
630 => 0.01274729867577
701 => 0.012777371172253
702 => 0.012737078010808
703 => 0.012271888806446
704 => 0.012292521925796
705 => 0.012141129786291
706 => 0.012013219381719
707 => 0.0120183351271
708 => 0.012084097702239
709 => 0.012371286724793
710 => 0.01297565909204
711 => 0.012998594581587
712 => 0.013026393063993
713 => 0.01291332266565
714 => 0.012879219551572
715 => 0.012924210361802
716 => 0.01315118084655
717 => 0.01373501055521
718 => 0.013528646143494
719 => 0.013360868664516
720 => 0.013508054746064
721 => 0.013485396602492
722 => 0.013294139068398
723 => 0.013288771106419
724 => 0.012921686749761
725 => 0.012785984021211
726 => 0.012672580664061
727 => 0.012548747158523
728 => 0.012475334505504
729 => 0.012588129705996
730 => 0.012613927302902
731 => 0.012367298625703
801 => 0.012333684048325
802 => 0.012535086349975
803 => 0.012446456706054
804 => 0.012537614492737
805 => 0.012558763881184
806 => 0.012555358342532
807 => 0.012462818815228
808 => 0.012521800750363
809 => 0.012382290890408
810 => 0.012230594871409
811 => 0.012133822262284
812 => 0.012049375325799
813 => 0.012096231394245
814 => 0.011929198065812
815 => 0.01187576074233
816 => 0.012501818997875
817 => 0.012964294962507
818 => 0.012957570378821
819 => 0.012916636205053
820 => 0.012855816326027
821 => 0.013146731493576
822 => 0.013045382466234
823 => 0.01311912235162
824 => 0.013137892247304
825 => 0.013194703068408
826 => 0.013215008053898
827 => 0.013153632285029
828 => 0.012947647708286
829 => 0.012434353727467
830 => 0.012195413993786
831 => 0.012116559901815
901 => 0.012119426098293
902 => 0.012040363604168
903 => 0.01206365105202
904 => 0.012032265180159
905 => 0.011972827931912
906 => 0.012092561311656
907 => 0.012106359468278
908 => 0.012078412266738
909 => 0.012084994844404
910 => 0.011853603952063
911 => 0.011871196099053
912 => 0.01177324078911
913 => 0.011754875349365
914 => 0.011507252855773
915 => 0.011068553714922
916 => 0.01131163562451
917 => 0.011018026860217
918 => 0.01090683277228
919 => 0.011433208290343
920 => 0.011380374787714
921 => 0.011289946797384
922 => 0.011156184952842
923 => 0.011106571383549
924 => 0.010805135042277
925 => 0.010787324575134
926 => 0.010936724565335
927 => 0.010867781610397
928 => 0.010770959590925
929 => 0.01042028005109
930 => 0.01002600014231
1001 => 0.010037900974401
1002 => 0.010163314077546
1003 => 0.010527969589199
1004 => 0.010385492372192
1005 => 0.010282123516515
1006 => 0.010262765637103
1007 => 0.010505070026408
1008 => 0.010847981501613
1009 => 0.011008867893568
1010 => 0.010849434365333
1011 => 0.010666285712608
1012 => 0.010677433122471
1013 => 0.010751591846156
1014 => 0.010759384879468
1015 => 0.01064017393453
1016 => 0.010673731117248
1017 => 0.010622754688166
1018 => 0.010309912436986
1019 => 0.010304254112696
1020 => 0.010227477578994
1021 => 0.010225152816066
1022 => 0.010094536779435
1023 => 0.010076262693004
1024 => 0.0098169166244453
1025 => 0.0099876189921427
1026 => 0.0098731208061679
1027 => 0.0097005450325121
1028 => 0.0096707929040861
1029 => 0.0096698985191789
1030 => 0.0098470952514865
1031 => 0.0099855483451567
1101 => 0.0098751125511338
1102 => 0.0098499684615427
1103 => 0.010118441556073
1104 => 0.010084275907607
1105 => 0.010054688676381
1106 => 0.010817277540095
1107 => 0.010213628948914
1108 => 0.0099504037081026
1109 => 0.0096246124874806
1110 => 0.009730691751697
1111 => 0.0097530442112961
1112 => 0.0089695750539816
1113 => 0.008651721714434
1114 => 0.0085426464263516
1115 => 0.0084798720559621
1116 => 0.0085084791248195
1117 => 0.0082223738387484
1118 => 0.0084146413227329
1119 => 0.0081668983288731
1120 => 0.0081253634097271
1121 => 0.0085683585722161
1122 => 0.0086299987611362
1123 => 0.0083670225650973
1124 => 0.0085358958549331
1125 => 0.0084746600525243
1126 => 0.0081711451714374
1127 => 0.0081595531354842
1128 => 0.0080072600372187
1129 => 0.0077689508281879
1130 => 0.0076600371249711
1201 => 0.0076033139227036
1202 => 0.0076267190214723
1203 => 0.007614884687327
1204 => 0.0075376576519768
1205 => 0.0076193112505946
1206 => 0.0074107200477227
1207 => 0.0073276573500056
1208 => 0.0072901398564867
1209 => 0.0071050031578762
1210 => 0.007399637976029
1211 => 0.0074576847469168
1212 => 0.0075158458878747
1213 => 0.0080220989116163
1214 => 0.0079968079412064
1215 => 0.0082254259965101
1216 => 0.0082165423192826
1217 => 0.008151336746543
1218 => 0.0078762451609509
1219 => 0.0079858917639319
1220 => 0.0076484165628218
1221 => 0.0079012759295766
1222 => 0.0077858814742493
1223 => 0.007862260948154
1224 => 0.0077249237672138
1225 => 0.0078009318336594
1226 => 0.0074714497896875
1227 => 0.007163784092964
1228 => 0.0072875977506471
1229 => 0.0074221973563579
1230 => 0.0077140435968806
1231 => 0.0075402223837045
]
'min_raw' => 0.0071050031578762
'max_raw' => 0.021208607461879
'avg_raw' => 0.014156805309877
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.007105'
'max' => '$0.0212086'
'avg' => '$0.014156'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.013459416842124
'max_diff' => 0.00064418746187859
'year' => 2026
]
1 => [
'items' => [
101 => 0.0076027350648704
102 => 0.0073933280474611
103 => 0.0069612615563884
104 => 0.0069637070058056
105 => 0.0068972429892343
106 => 0.0068398083750113
107 => 0.0075601878410036
108 => 0.0074705972668933
109 => 0.0073278464123731
110 => 0.0075189241038419
111 => 0.007569448078277
112 => 0.0075708864248008
113 => 0.0077102917760674
114 => 0.0077846924370281
115 => 0.0077978058759934
116 => 0.0080171632082633
117 => 0.0080906888926469
118 => 0.0083935307808791
119 => 0.0077783800607541
120 => 0.0077657114364843
121 => 0.0075216129588123
122 => 0.0073668018452284
123 => 0.007532213008206
124 => 0.0076787447177288
125 => 0.0075261661074827
126 => 0.0075460896528706
127 => 0.0073412653347457
128 => 0.0074144803905954
129 => 0.0074775430598263
130 => 0.0074427235605294
131 => 0.0073905970847991
201 => 0.0076667307885735
202 => 0.0076511502428298
203 => 0.0079082922960709
204 => 0.0081087529149771
205 => 0.0084680141806787
206 => 0.0080931063212057
207 => 0.0080794431886827
208 => 0.0082130025007302
209 => 0.0080906684454122
210 => 0.0081679793455451
211 => 0.0084555581994454
212 => 0.0084616342874675
213 => 0.0083598519845002
214 => 0.0083536585221147
215 => 0.008373206926776
216 => 0.0084877025434602
217 => 0.0084476942568958
218 => 0.008493992858994
219 => 0.0085518899698672
220 => 0.008791376968305
221 => 0.008849116472849
222 => 0.0087088394113079
223 => 0.0087215048593494
224 => 0.0086690373876417
225 => 0.0086183544673874
226 => 0.0087322822704728
227 => 0.008940487569868
228 => 0.0089391923355063
301 => 0.0089874919180333
302 => 0.0090175821578123
303 => 0.0088884128212792
304 => 0.0088043283328843
305 => 0.0088365716761699
306 => 0.0088881294842523
307 => 0.0088198521738876
308 => 0.0083984129851899
309 => 0.0085262507134012
310 => 0.0085049722644813
311 => 0.0084746691656716
312 => 0.0086032109899279
313 => 0.0085908128173985
314 => 0.00821943941551
315 => 0.0082432135357808
316 => 0.008220885198506
317 => 0.008293032624189
318 => 0.0080867722476576
319 => 0.0081502165502938
320 => 0.0081900082221539
321 => 0.0082134458225735
322 => 0.0082981185066021
323 => 0.0082881831444198
324 => 0.0082975009105389
325 => 0.0084230481481935
326 => 0.0090580229936413
327 => 0.009092583273486
328 => 0.0089223958157022
329 => 0.0089903823482877
330 => 0.0088598630727439
331 => 0.0089474815368196
401 => 0.0090074278646725
402 => 0.0087365419361212
403 => 0.0087205018294675
404 => 0.0085894438544452
405 => 0.008659866986719
406 => 0.008547818719669
407 => 0.0085753114451211
408 => 0.0084984393879843
409 => 0.0086367937857566
410 => 0.0087914955005658
411 => 0.0088305792630825
412 => 0.0087277667105189
413 => 0.0086533236467854
414 => 0.0085226261499391
415 => 0.0087399789999782
416 => 0.0088035395970377
417 => 0.0087396451432204
418 => 0.0087248394021496
419 => 0.0086967825495737
420 => 0.0087307917960568
421 => 0.0088031934323758
422 => 0.008769050157736
423 => 0.0087916023921627
424 => 0.0087056565302916
425 => 0.0088884555817043
426 => 0.0091787844683352
427 => 0.0091797179231793
428 => 0.0091455744644946
429 => 0.0091316036968319
430 => 0.0091666369574407
501 => 0.0091856410641814
502 => 0.0092989322049891
503 => 0.0094204981127939
504 => 0.0099877931611578
505 => 0.009828498981645
506 => 0.010331836897087
507 => 0.010729911837953
508 => 0.010849277107011
509 => 0.010739466676048
510 => 0.010363811123564
511 => 0.010345379669999
512 => 0.010906767663094
513 => 0.010748149841846
514 => 0.010729282756726
515 => 0.010528568847495
516 => 0.010647215626752
517 => 0.010621265835685
518 => 0.010580302820979
519 => 0.010806672610795
520 => 0.011230416649158
521 => 0.011164372166933
522 => 0.011115073024667
523 => 0.010899058534022
524 => 0.011029147505974
525 => 0.010982825314752
526 => 0.011181854845029
527 => 0.011063954160337
528 => 0.010746948155845
529 => 0.010797432406926
530 => 0.010789801813935
531 => 0.010946838876973
601 => 0.010899700248548
602 => 0.010780597240187
603 => 0.011228968338102
604 => 0.011199853612975
605 => 0.011241131636653
606 => 0.011259303499241
607 => 0.011532219085357
608 => 0.011644023868664
609 => 0.011669405511893
610 => 0.011775611408742
611 => 0.011666763012428
612 => 0.012102234205277
613 => 0.012391797138072
614 => 0.012728139385287
615 => 0.013219625808741
616 => 0.013404429250463
617 => 0.013371046162828
618 => 0.013743685559833
619 => 0.014413310272944
620 => 0.013506396462651
621 => 0.014461378907049
622 => 0.014159042490955
623 => 0.013442208287196
624 => 0.013396052615394
625 => 0.013881501060796
626 => 0.014958178990015
627 => 0.014688483380326
628 => 0.014958620115417
629 => 0.014643491264775
630 => 0.014627842461227
701 => 0.014943315010522
702 => 0.015680433817464
703 => 0.015330256302771
704 => 0.01482819096841
705 => 0.0151989081983
706 => 0.014877758625509
707 => 0.014154118753905
708 => 0.014688277149176
709 => 0.014331100642213
710 => 0.014435343735492
711 => 0.015186075627132
712 => 0.015095745579739
713 => 0.015212641025402
714 => 0.015006323623494
715 => 0.014813590636843
716 => 0.014453840204721
717 => 0.014347335837251
718 => 0.014376769812794
719 => 0.014347321251235
720 => 0.01414604419074
721 => 0.014102578428689
722 => 0.01403013358766
723 => 0.014052587273153
724 => 0.013916369777532
725 => 0.014173440335739
726 => 0.01422115489664
727 => 0.014408229410997
728 => 0.014427652107673
729 => 0.014948651967319
730 => 0.014661693999673
731 => 0.014854210179129
801 => 0.014836989720006
802 => 0.013457744258023
803 => 0.013647792113498
804 => 0.013943446936316
805 => 0.013810254839387
806 => 0.013621952376481
807 => 0.013469888041545
808 => 0.01323949502474
809 => 0.013563768771587
810 => 0.013990154266022
811 => 0.014438465947456
812 => 0.014977083058153
813 => 0.01485686998924
814 => 0.014428396875225
815 => 0.01444761786612
816 => 0.014566434468651
817 => 0.014412556172747
818 => 0.014367174459224
819 => 0.014560199718097
820 => 0.01456152897697
821 => 0.014384473400719
822 => 0.014187708528544
823 => 0.014186884076545
824 => 0.014151871668064
825 => 0.014649719894464
826 => 0.01492348608085
827 => 0.014954872932923
828 => 0.014921373495628
829 => 0.014934266099498
830 => 0.014774967587666
831 => 0.015139076747208
901 => 0.015473219318667
902 => 0.015383661971601
903 => 0.015249402777022
904 => 0.015142458861741
905 => 0.015358469383887
906 => 0.015348850775368
907 => 0.015470300874805
908 => 0.015464791196764
909 => 0.015423952096293
910 => 0.015383663430094
911 => 0.01554340343755
912 => 0.015497400880749
913 => 0.01545132686927
914 => 0.015358918385672
915 => 0.015371478233336
916 => 0.0152372422205
917 => 0.01517513849874
918 => 0.014241247531134
919 => 0.013991681348822
920 => 0.014070199950166
921 => 0.014096050312462
922 => 0.013987438790092
923 => 0.01414315981316
924 => 0.014118890856664
925 => 0.014213307169524
926 => 0.014154319956329
927 => 0.014156740812134
928 => 0.014330209628742
929 => 0.014380568364192
930 => 0.014354955504897
1001 => 0.01437289387359
1002 => 0.014786276008799
1003 => 0.014727506288389
1004 => 0.014696286045745
1005 => 0.01470493426632
1006 => 0.014810562264879
1007 => 0.014840132337401
1008 => 0.014714841862275
1009 => 0.01477392957464
1010 => 0.015025517554543
1011 => 0.015113559108863
1012 => 0.015394545487908
1013 => 0.015275177479955
1014 => 0.01549428262468
1015 => 0.016167737141114
1016 => 0.016705739208349
1017 => 0.016210970273444
1018 => 0.017198942555771
1019 => 0.01796822069377
1020 => 0.017938694517534
1021 => 0.01780455308045
1022 => 0.016928750372656
1023 => 0.016122823663461
1024 => 0.016797015577158
1025 => 0.016798734230995
1026 => 0.016740820547697
1027 => 0.016381123634607
1028 => 0.01672830387481
1029 => 0.016755861781504
1030 => 0.016740436681994
1031 => 0.016464657902082
1101 => 0.016043594677594
1102 => 0.016125869423776
1103 => 0.016260637136381
1104 => 0.016005493740929
1105 => 0.015923959966398
1106 => 0.016075546765686
1107 => 0.016563991017354
1108 => 0.016471653460941
1109 => 0.016469242154178
1110 => 0.01686430137773
1111 => 0.016581524232783
1112 => 0.016126907171805
1113 => 0.016012110368246
1114 => 0.015604659052003
1115 => 0.015886087127424
1116 => 0.015896215222842
1117 => 0.015742079942059
1118 => 0.016139414400353
1119 => 0.01613575289337
1120 => 0.01651296282609
1121 => 0.017234046543871
1122 => 0.017020786606149
1123 => 0.016772788501193
1124 => 0.016799752771443
1125 => 0.017095484262598
1126 => 0.016916678252152
1127 => 0.016980978140189
1128 => 0.017095386937017
1129 => 0.017164412604754
1130 => 0.0167898210401
1201 => 0.016702485827594
1202 => 0.016523828633299
1203 => 0.016477220306103
1204 => 0.016622732863051
1205 => 0.016584395445329
1206 => 0.01589536399564
1207 => 0.015823356375412
1208 => 0.015825564746321
1209 => 0.015644498161484
1210 => 0.015368328158647
1211 => 0.016094086436848
1212 => 0.016035797890128
1213 => 0.015971451845724
1214 => 0.01597933386901
1215 => 0.016294360939347
1216 => 0.016111629329303
1217 => 0.016597451263726
1218 => 0.016497580879153
1219 => 0.016395149196061
1220 => 0.016380990017312
1221 => 0.016341562558382
1222 => 0.0162063511314
1223 => 0.016043075208372
1224 => 0.015935266301271
1225 => 0.014699440827933
1226 => 0.014928802847318
1227 => 0.015192662943616
1228 => 0.015283746391504
1229 => 0.015127941851108
1230 => 0.016212503244295
1231 => 0.016410663061924
]
'min_raw' => 0.0068398083750113
'max_raw' => 0.01796822069377
'avg_raw' => 0.012404014534391
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.006839'
'max' => '$0.017968'
'avg' => '$0.012404'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00026519478286491
'max_diff' => -0.0032403867681085
'year' => 2027
]
2 => [
'items' => [
101 => 0.015810424048681
102 => 0.0156981438369
103 => 0.016219864316287
104 => 0.015905203089482
105 => 0.016046895020645
106 => 0.015740634566813
107 => 0.016362932164654
108 => 0.016358191299592
109 => 0.016116103478803
110 => 0.016320714447188
111 => 0.016285158256202
112 => 0.016011841702768
113 => 0.016371596786904
114 => 0.016371775220937
115 => 0.016138770956871
116 => 0.015866672987634
117 => 0.015818028297401
118 => 0.015781381057806
119 => 0.016037882046221
120 => 0.016267860030377
121 => 0.016695792042513
122 => 0.016803384317777
123 => 0.017223324130959
124 => 0.016973270418708
125 => 0.017084115990611
126 => 0.017204454538976
127 => 0.017262149264365
128 => 0.017168138805413
129 => 0.017820478189407
130 => 0.017875555620578
131 => 0.017894022606832
201 => 0.017674057436895
202 => 0.017869437991288
203 => 0.017778025900212
204 => 0.018015854766183
205 => 0.018053149369118
206 => 0.018021562167226
207 => 0.018033400062853
208 => 0.017476743479167
209 => 0.017447877898705
210 => 0.017054293660904
211 => 0.017214682147036
212 => 0.016914843559833
213 => 0.017009925464514
214 => 0.017051836662125
215 => 0.017029944630933
216 => 0.017223750271397
217 => 0.017058975885126
218 => 0.016624109188339
219 => 0.016189124012412
220 => 0.016183663127859
221 => 0.016069139209163
222 => 0.015986359392049
223 => 0.016002305721597
224 => 0.016058502666837
225 => 0.015983093123431
226 => 0.015999185572877
227 => 0.01626642745712
228 => 0.016320020911123
229 => 0.016137889414107
301 => 0.015406605172137
302 => 0.01522714618487
303 => 0.015356137746091
304 => 0.015294488087948
305 => 0.012343845572827
306 => 0.013037055264255
307 => 0.012625173604785
308 => 0.012814987623233
309 => 0.012394563105153
310 => 0.012595211721518
311 => 0.012558159248589
312 => 0.013672819918841
313 => 0.01365541602564
314 => 0.013663746348322
315 => 0.013266118342195
316 => 0.013899550552732
317 => 0.014211602037128
318 => 0.014153849612348
319 => 0.014168384653438
320 => 0.013918624490615
321 => 0.013666164572646
322 => 0.013386147670316
323 => 0.013906384463711
324 => 0.013848543013023
325 => 0.013981210490203
326 => 0.014318621238013
327 => 0.014368306252327
328 => 0.01443508341542
329 => 0.014411148555973
330 => 0.014981374012405
331 => 0.014912315947162
401 => 0.015078726015036
402 => 0.014736407879858
403 => 0.014349042416769
404 => 0.014422667927371
405 => 0.014415577198641
406 => 0.014325304083549
407 => 0.014243809551628
408 => 0.014108144116921
409 => 0.01453740962704
410 => 0.01451998223126
411 => 0.014802111511806
412 => 0.014752242421012
413 => 0.014419204427652
414 => 0.014431098944738
415 => 0.014511095288452
416 => 0.014787963547426
417 => 0.014870156897318
418 => 0.014832081662809
419 => 0.014922202918697
420 => 0.014993431084811
421 => 0.014931148079713
422 => 0.01581294408867
423 => 0.015446760907147
424 => 0.015625236041935
425 => 0.015667801309945
426 => 0.015558771270988
427 => 0.015582415982365
428 => 0.015618231277303
429 => 0.015835694734811
430 => 0.016406381770871
501 => 0.016659135174344
502 => 0.017419556259325
503 => 0.016638147522683
504 => 0.016591781962041
505 => 0.016728756761963
506 => 0.017175204437594
507 => 0.017537008345995
508 => 0.017657039575379
509 => 0.017672903683842
510 => 0.017898090249693
511 => 0.018027162989758
512 => 0.017870746677604
513 => 0.017738200230524
514 => 0.017263435309354
515 => 0.017318390641722
516 => 0.017696978385152
517 => 0.018231755871454
518 => 0.018690650588816
519 => 0.018529961652891
520 => 0.019755904805285
521 => 0.019877452061316
522 => 0.019860658160625
523 => 0.020137560898521
524 => 0.01958796535406
525 => 0.019353002610891
526 => 0.017766858276849
527 => 0.018212500136728
528 => 0.018860266751691
529 => 0.018774532411201
530 => 0.018304106980563
531 => 0.018690293728942
601 => 0.018562608312752
602 => 0.01846189752733
603 => 0.018923273159095
604 => 0.018415971699703
605 => 0.018855206031568
606 => 0.018291883457654
607 => 0.018530695666415
608 => 0.018395134306675
609 => 0.018482859120202
610 => 0.017970021652836
611 => 0.018246736301801
612 => 0.017958509413686
613 => 0.017958372756612
614 => 0.017952010132082
615 => 0.018291107787756
616 => 0.018302165750134
617 => 0.018051572070243
618 => 0.018015457605961
619 => 0.018148991708766
620 => 0.017992658247019
621 => 0.018065805689819
622 => 0.017994873808544
623 => 0.017978905548016
624 => 0.017851667731345
625 => 0.017796850181447
626 => 0.017818345555236
627 => 0.017744970762869
628 => 0.017700759796385
629 => 0.017943215458075
630 => 0.017813681178667
701 => 0.017923362471972
702 => 0.017798366795369
703 => 0.017365077322236
704 => 0.017115887964284
705 => 0.016297444315491
706 => 0.016529553919013
707 => 0.016683442826282
708 => 0.016632582543347
709 => 0.016741850111408
710 => 0.016748558252652
711 => 0.016713034252425
712 => 0.016671902011068
713 => 0.016651881110731
714 => 0.016801100499027
715 => 0.016887727376426
716 => 0.016698887636894
717 => 0.016654645128071
718 => 0.016845572530865
719 => 0.016962038136274
720 => 0.017821954730245
721 => 0.01775824933147
722 => 0.017918137380843
723 => 0.017900136440166
724 => 0.018067724588072
725 => 0.018341660381864
726 => 0.017784672319433
727 => 0.017881346187873
728 => 0.017857643987857
729 => 0.018116418392579
730 => 0.018117226258025
731 => 0.017962078075654
801 => 0.018046186422309
802 => 0.017999239450598
803 => 0.018084078973743
804 => 0.01775739850703
805 => 0.01815526005251
806 => 0.018380821911165
807 => 0.018383953837791
808 => 0.018490868368624
809 => 0.018599499724023
810 => 0.018808008150913
811 => 0.018593684537165
812 => 0.018208137220016
813 => 0.018235972491004
814 => 0.018009926240025
815 => 0.018013726118343
816 => 0.017993442070082
817 => 0.018054316025825
818 => 0.017770756917076
819 => 0.017837307673129
820 => 0.017744136224934
821 => 0.017881143651341
822 => 0.017733746308666
823 => 0.017857632557939
824 => 0.01791109775623
825 => 0.018108385488951
826 => 0.017704606750133
827 => 0.016881274568267
828 => 0.017054348974833
829 => 0.01679835833282
830 => 0.016822051241364
831 => 0.01686991468732
901 => 0.016714773599031
902 => 0.016744369629619
903 => 0.016743312251143
904 => 0.016734200334673
905 => 0.016693842145776
906 => 0.016635314787251
907 => 0.016868469769843
908 => 0.016908087344709
909 => 0.016996152306055
910 => 0.017258173895989
911 => 0.01723199176026
912 => 0.017274695909921
913 => 0.017181472990986
914 => 0.016826375585203
915 => 0.016845659082763
916 => 0.016605193559203
917 => 0.016990003061978
918 => 0.016898875092483
919 => 0.016840124297728
920 => 0.016824093599057
921 => 0.017086764689831
922 => 0.017165359997056
923 => 0.017116384675928
924 => 0.017015934863457
925 => 0.017208828198723
926 => 0.017260438317723
927 => 0.01727199192006
928 => 0.017613761926522
929 => 0.01729109306683
930 => 0.01736876266841
1001 => 0.017974718728176
1002 => 0.017425200198189
1003 => 0.017716292419248
1004 => 0.017702044969798
1005 => 0.017850957900069
1006 => 0.017689829763073
1007 => 0.017691827139442
1008 => 0.017824051733286
1009 => 0.017638366138063
1010 => 0.017592387773383
1011 => 0.017528868991882
1012 => 0.017667559927502
1013 => 0.017750698870956
1014 => 0.018420737696363
1015 => 0.01885361333506
1016 => 0.018834821061955
1017 => 0.019006547260466
1018 => 0.018929183035205
1019 => 0.018679353544187
1020 => 0.019105782021894
1021 => 0.018970842209022
1022 => 0.018981966483243
1023 => 0.018981552437201
1024 => 0.019071275616118
1025 => 0.019007698520847
1026 => 0.018882381540013
1027 => 0.018965572800189
1028 => 0.019212621101492
1029 => 0.019979466609105
1030 => 0.020408603514517
1031 => 0.019953632028559
1101 => 0.020267465267262
1102 => 0.020079277154257
1103 => 0.020045077776013
1104 => 0.020242188242012
1105 => 0.02043964372379
1106 => 0.020427066663224
1107 => 0.020283724122905
1108 => 0.020202753559061
1109 => 0.020815889795616
1110 => 0.021267638130206
1111 => 0.021236831922346
1112 => 0.021372800505124
1113 => 0.021772008469509
1114 => 0.021808507042736
1115 => 0.021803909061419
1116 => 0.021713443539446
1117 => 0.022106515624088
1118 => 0.022434423272542
1119 => 0.021692503384909
1120 => 0.021975016765675
1121 => 0.022101846124314
1122 => 0.02228806925137
1123 => 0.022602258881334
1124 => 0.022943552154159
1125 => 0.022991814765026
1126 => 0.022957570133037
1127 => 0.022732478045154
1128 => 0.023105925216754
1129 => 0.023324681811464
1130 => 0.023454946357457
1201 => 0.023785275572144
1202 => 0.022102629379255
1203 => 0.020911568770985
1204 => 0.02072556745788
1205 => 0.02110380844222
1206 => 0.021203547573375
1207 => 0.021163342854668
1208 => 0.019822695853568
1209 => 0.020718509228873
1210 => 0.021682329098573
1211 => 0.021719353345048
1212 => 0.022201861724343
1213 => 0.022358986231328
1214 => 0.022747468720479
1215 => 0.02272316903501
1216 => 0.022817758339012
1217 => 0.022796013896081
1218 => 0.023515595902594
1219 => 0.024309401714741
1220 => 0.024281914743614
1221 => 0.024167795766234
1222 => 0.02433728190782
1223 => 0.025156574575356
1224 => 0.025081147235427
1225 => 0.025154418471283
1226 => 0.026120410699619
1227 => 0.027376338007248
1228 => 0.026792833679814
1229 => 0.028058870171498
1230 => 0.028855773033302
1231 => 0.030233934131499
]
'min_raw' => 0.012343845572827
'max_raw' => 0.030233934131499
'avg_raw' => 0.021288889852163
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.012343'
'max' => '$0.030233'
'avg' => '$0.021288'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0055040371978155
'max_diff' => 0.012265713437729
'year' => 2028
]
3 => [
'items' => [
101 => 0.030061381574418
102 => 0.030597889576533
103 => 0.029752476484438
104 => 0.027811237138813
105 => 0.027504028581603
106 => 0.028119067892898
107 => 0.029631082025061
108 => 0.028071449187075
109 => 0.02838696087893
110 => 0.02829609349045
111 => 0.028291251553479
112 => 0.028476048594064
113 => 0.02820799084833
114 => 0.027115875369544
115 => 0.027616385457595
116 => 0.02742311447613
117 => 0.027637563039372
118 => 0.028794853489871
119 => 0.028283187795347
120 => 0.027744189550511
121 => 0.028420212962821
122 => 0.029281023073539
123 => 0.029227155123834
124 => 0.029122628786352
125 => 0.02971183827792
126 => 0.030685039735806
127 => 0.030948092179233
128 => 0.0311422721151
129 => 0.031169046247559
130 => 0.031444836451919
131 => 0.029961843014995
201 => 0.032315391685366
202 => 0.032721784525269
203 => 0.032645399514625
204 => 0.033097088052552
205 => 0.032964189826462
206 => 0.03277164114795
207 => 0.033487663557472
208 => 0.032666801644984
209 => 0.031501691503848
210 => 0.030862489037155
211 => 0.031704242408288
212 => 0.032218271818895
213 => 0.032558012560895
214 => 0.032660817904147
215 => 0.030076963573962
216 => 0.028684409397123
217 => 0.029577020658811
218 => 0.030666068002808
219 => 0.029955793302012
220 => 0.029983634725555
221 => 0.028970969659126
222 => 0.030755666390953
223 => 0.030495651088788
224 => 0.03184461093638
225 => 0.031522670842673
226 => 0.032622695232064
227 => 0.032333021944506
228 => 0.033535439565745
301 => 0.034015116509016
302 => 0.034820568752521
303 => 0.035413062701624
304 => 0.035760986481141
305 => 0.035740098442448
306 => 0.037118745791831
307 => 0.036305805616169
308 => 0.03528456116025
309 => 0.035266090070027
310 => 0.035795007044894
311 => 0.036903471922928
312 => 0.037190880738294
313 => 0.037351503057053
314 => 0.037105504384571
315 => 0.036223116087838
316 => 0.035842105295119
317 => 0.036166737529461
318 => 0.035769740202826
319 => 0.036455068966374
320 => 0.03739617173705
321 => 0.037201837736429
322 => 0.037851467164323
323 => 0.038523765279184
324 => 0.039485181778233
325 => 0.039736531652234
326 => 0.040152003435979
327 => 0.040579660376823
328 => 0.040717012260545
329 => 0.040979259624356
330 => 0.0409778774513
331 => 0.041768177533427
401 => 0.04263990299757
402 => 0.042968959179793
403 => 0.043725605726551
404 => 0.042429875031285
405 => 0.043412701647926
406 => 0.044299235857882
407 => 0.043242273225257
408 => 0.044699049973622
409 => 0.044755613313634
410 => 0.045609652592723
411 => 0.044743920169237
412 => 0.044229851019687
413 => 0.045713949392518
414 => 0.046432057846471
415 => 0.04621575773598
416 => 0.044569703215091
417 => 0.043611628881334
418 => 0.041104163551154
419 => 0.044074364549193
420 => 0.045521062813387
421 => 0.044565956616083
422 => 0.045047656626793
423 => 0.047675655693476
424 => 0.04867622758773
425 => 0.04846811562825
426 => 0.048503283123588
427 => 0.049043173556063
428 => 0.051437345056748
429 => 0.050002701997077
430 => 0.051099432861146
501 => 0.051681134956891
502 => 0.052221452282029
503 => 0.050894603700534
504 => 0.049168393191287
505 => 0.04862162986162
506 => 0.044470990127847
507 => 0.044254931304389
508 => 0.04413365093953
509 => 0.043368995394541
510 => 0.042768185592961
511 => 0.042290399332107
512 => 0.041036545504571
513 => 0.041459684364099
514 => 0.039461303062638
515 => 0.040739796601028
516 => 0.037550331791293
517 => 0.040206612860299
518 => 0.038760919840719
519 => 0.039731663821578
520 => 0.039728276987278
521 => 0.037940829543858
522 => 0.036909867161569
523 => 0.03756683651722
524 => 0.038271159816769
525 => 0.038385433902493
526 => 0.039298607445078
527 => 0.039553454552214
528 => 0.038781255919919
529 => 0.037484237222374
530 => 0.037785505083967
531 => 0.03690376197797
601 => 0.035358541100468
602 => 0.036468345711658
603 => 0.036847281800582
604 => 0.037014641564964
605 => 0.035495094301759
606 => 0.035017619560683
607 => 0.034763416014936
608 => 0.037288082752351
609 => 0.03742638969534
610 => 0.036718791820379
611 => 0.039917201312384
612 => 0.039193302738849
613 => 0.040002074804944
614 => 0.037758168183267
615 => 0.037843888438036
616 => 0.036781587083136
617 => 0.037376404858878
618 => 0.036956006826855
619 => 0.037328349460702
620 => 0.037551530100203
621 => 0.038613657141905
622 => 0.040218740644997
623 => 0.03845501078069
624 => 0.037686528421734
625 => 0.038163290555122
626 => 0.039432970943311
627 => 0.041356601725161
628 => 0.040217773585628
629 => 0.040723166175397
630 => 0.04083357197291
701 => 0.039993842264528
702 => 0.041387563757287
703 => 0.04213447042783
704 => 0.042900642121248
705 => 0.043565887535
706 => 0.04259461629842
707 => 0.043634015747824
708 => 0.042796443270306
709 => 0.042045054171322
710 => 0.042046193718426
711 => 0.04157483636059
712 => 0.040661522084933
713 => 0.040493092919747
714 => 0.041369282707303
715 => 0.042071903941442
716 => 0.042129775191614
717 => 0.042518782408816
718 => 0.042748992872862
719 => 0.045005368376471
720 => 0.04591290126974
721 => 0.04702261531291
722 => 0.047454911472781
723 => 0.048755967927243
724 => 0.047705259173627
725 => 0.047477931725514
726 => 0.044321994339312
727 => 0.044838778909503
728 => 0.045666200868674
729 => 0.04433563822266
730 => 0.045179573968252
731 => 0.045346184761435
801 => 0.044290426213094
802 => 0.044854352470397
803 => 0.043356731523484
804 => 0.040251384689114
805 => 0.041391020896024
806 => 0.042230176741709
807 => 0.041032597882747
808 => 0.043179211634734
809 => 0.041925204195926
810 => 0.041527744040796
811 => 0.039977110270858
812 => 0.040708949720901
813 => 0.041698773056016
814 => 0.041087177314229
815 => 0.042356330310001
816 => 0.044153789422754
817 => 0.045434765827042
818 => 0.045533103289416
819 => 0.044709521280212
820 => 0.046029316705991
821 => 0.046038929974815
822 => 0.044550195343013
823 => 0.043638353670344
824 => 0.043431181323782
825 => 0.043948738464024
826 => 0.044577148378597
827 => 0.045567975666164
828 => 0.046166711844608
829 => 0.047727898252858
830 => 0.048150310532208
831 => 0.048614413559813
901 => 0.049234598328767
902 => 0.049979289156006
903 => 0.048349948021279
904 => 0.048414684782033
905 => 0.046897464877138
906 => 0.045276097817414
907 => 0.046506513309487
908 => 0.04811511789006
909 => 0.047746102221926
910 => 0.047704580420955
911 => 0.047774408573001
912 => 0.047496182810154
913 => 0.046237777996322
914 => 0.045605814976847
915 => 0.046421208502931
916 => 0.046854553873054
917 => 0.047526634750427
918 => 0.047443786596385
919 => 0.049174994760281
920 => 0.049847689903754
921 => 0.049675585699805
922 => 0.049707257015251
923 => 0.0509251394404
924 => 0.05227967517379
925 => 0.053548376634842
926 => 0.05483895425302
927 => 0.053283112562205
928 => 0.052493152102584
929 => 0.053308189653362
930 => 0.052875719256435
1001 => 0.055360822436231
1002 => 0.055532885588548
1003 => 0.058017809067098
1004 => 0.060376297347426
1005 => 0.058894973115259
1006 => 0.060291795145884
1007 => 0.061802572056576
1008 => 0.064717105832021
1009 => 0.063735593390986
1010 => 0.062983770243413
1011 => 0.062273301001741
1012 => 0.063751674709846
1013 => 0.065653578867726
1014 => 0.066063230807122
1015 => 0.066727023448029
1016 => 0.066029126650818
1017 => 0.066869666472248
1018 => 0.069837141393808
1019 => 0.069035303475377
1020 => 0.067896564729327
1021 => 0.070239101180578
1022 => 0.071086856015905
1023 => 0.07703684342289
1024 => 0.084548948305929
1025 => 0.081438887557211
1026 => 0.079508372489448
1027 => 0.079962089322802
1028 => 0.08270525572529
1029 => 0.083586273710019
1030 => 0.081191363122413
1031 => 0.082037286029439
1101 => 0.086698404416459
1102 => 0.089198944884513
1103 => 0.085802875061505
1104 => 0.076433253109912
1105 => 0.067794033764456
1106 => 0.070085543763988
1107 => 0.069825757643875
1108 => 0.074833547864366
1109 => 0.069016179906208
1110 => 0.069114129463151
1111 => 0.074225475482061
1112 => 0.072861855994871
1113 => 0.070652967064811
1114 => 0.067810161098148
1115 => 0.062554971341046
1116 => 0.057900303221372
1117 => 0.0670291793101
1118 => 0.06663552557337
1119 => 0.06606545662637
1120 => 0.067334083380016
1121 => 0.073494174789735
1122 => 0.073352164744471
1123 => 0.072448769290663
1124 => 0.073133986780214
1125 => 0.070532845125915
1126 => 0.071203218557122
1127 => 0.067792665267972
1128 => 0.069334377791955
1129 => 0.07064822778123
1130 => 0.070912002618458
1201 => 0.071506300795411
1202 => 0.066428087941877
1203 => 0.068708056424618
1204 => 0.070047324304071
1205 => 0.063996463301718
1206 => 0.069927718237056
1207 => 0.066339687554101
1208 => 0.065121856049894
1209 => 0.066761505733208
1210 => 0.066122532657009
1211 => 0.065573181127851
1212 => 0.065266633535523
1213 => 0.066470611301418
1214 => 0.066414444299574
1215 => 0.064444502992556
1216 => 0.061874794862632
1217 => 0.062737273258829
1218 => 0.062423926771712
1219 => 0.061288318679902
1220 => 0.062053581419938
1221 => 0.058683751603427
1222 => 0.052886134552631
1223 => 0.0567162179622
1224 => 0.05656876391726
1225 => 0.056494410901293
1226 => 0.059372612727854
1227 => 0.059095940033644
1228 => 0.058593776384466
1229 => 0.061279096050683
1230 => 0.060298918249867
1231 => 0.063319595273046
]
'min_raw' => 0.027115875369544
'max_raw' => 0.089198944884513
'avg_raw' => 0.058157410127028
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.027115'
'max' => '$0.089198'
'avg' => '$0.058157'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.014772029796717
'max_diff' => 0.058965010753014
'year' => 2029
]
4 => [
'items' => [
101 => 0.065309208525652
102 => 0.064804578247545
103 => 0.066675819128256
104 => 0.062757143019115
105 => 0.064058770032575
106 => 0.064327033556072
107 => 0.061245959622833
108 => 0.059141207108086
109 => 0.059000844111287
110 => 0.055351493303478
111 => 0.05730094704848
112 => 0.059016385670203
113 => 0.058194823693812
114 => 0.057934741715553
115 => 0.059263444137582
116 => 0.05936669569534
117 => 0.057012549236341
118 => 0.057502050831289
119 => 0.059543353855095
120 => 0.057450615232534
121 => 0.053384765935811
122 => 0.052376379095459
123 => 0.052241841702699
124 => 0.049507016615496
125 => 0.05244376432592
126 => 0.051161795250375
127 => 0.055211520199676
128 => 0.052898339027746
129 => 0.05279862241072
130 => 0.052647886118839
131 => 0.050293909192082
201 => 0.050809280536004
202 => 0.052522453376472
203 => 0.053133732746224
204 => 0.053069971299895
205 => 0.052514057894935
206 => 0.052768552204989
207 => 0.051948737360612
208 => 0.051659243676092
209 => 0.050745521976236
210 => 0.04940260349951
211 => 0.049589344550296
212 => 0.046928671654167
213 => 0.045478995847758
214 => 0.045077744690964
215 => 0.044541174874659
216 => 0.045138351679474
217 => 0.046921134302149
218 => 0.04477072022077
219 => 0.041083986112256
220 => 0.041305565114067
221 => 0.04180338734374
222 => 0.040875698912167
223 => 0.039997719666673
224 => 0.040761051387923
225 => 0.039198933544788
226 => 0.041992161821976
227 => 0.04191661282501
228 => 0.042957755594668
301 => 0.043608803534935
302 => 0.042108348811893
303 => 0.041730988506708
304 => 0.041945950086611
305 => 0.038393114003657
306 => 0.042667413089214
307 => 0.0427043774052
308 => 0.04238786649004
309 => 0.04466379879892
310 => 0.049466725851746
311 => 0.04765967149718
312 => 0.046959925432585
313 => 0.045629707652278
314 => 0.04740214386402
315 => 0.047266048417271
316 => 0.046650573194403
317 => 0.046278331859213
318 => 0.046964197932843
319 => 0.046193345462547
320 => 0.046054879177273
321 => 0.045215924141314
322 => 0.044916455363498
323 => 0.044694740602599
324 => 0.044450654436092
325 => 0.044989047696924
326 => 0.043768977736347
327 => 0.042297692968823
328 => 0.042175371559926
329 => 0.042513111724501
330 => 0.042363686843474
331 => 0.042174656171083
401 => 0.041813745138048
402 => 0.041706670544191
403 => 0.042054611029019
404 => 0.041661806507838
405 => 0.04224141097601
406 => 0.042083790631646
407 => 0.041203336200921
408 => 0.040105963994258
409 => 0.040096195079803
410 => 0.039859768037928
411 => 0.039558642653058
412 => 0.039474876459802
413 => 0.040696765719464
414 => 0.043226039918896
415 => 0.042729482873146
416 => 0.043088296227913
417 => 0.044853302802741
418 => 0.045414345317279
419 => 0.04501613062948
420 => 0.044471029804009
421 => 0.044495011473896
422 => 0.046357786007773
423 => 0.046473964970525
424 => 0.046767511728646
425 => 0.047144802269135
426 => 0.045080384839976
427 => 0.044397777598632
428 => 0.044074320418076
429 => 0.043078197495645
430 => 0.044152430666362
501 => 0.043526521001036
502 => 0.043610977599007
503 => 0.043555975128782
504 => 0.043586010196776
505 => 0.041991381057747
506 => 0.042572380104769
507 => 0.041606356502476
508 => 0.040312959340244
509 => 0.040308623419433
510 => 0.040625180542535
511 => 0.040436879978832
512 => 0.03993016800356
513 => 0.040002144048034
514 => 0.039371558161685
515 => 0.040078708591763
516 => 0.040098987135792
517 => 0.039826695701467
518 => 0.040916158506957
519 => 0.041362512307283
520 => 0.041183284252163
521 => 0.04134993718915
522 => 0.042750117060217
523 => 0.042978407473332
524 => 0.043079798994819
525 => 0.042943947787829
526 => 0.041375529906847
527 => 0.041445095909297
528 => 0.040934666741091
529 => 0.040503407881658
530 => 0.040520655974381
531 => 0.040742379087857
601 => 0.041710656928295
602 => 0.043748340560401
603 => 0.043825669164713
604 => 0.043919393688972
605 => 0.043538168946637
606 => 0.043423187916519
607 => 0.043574877574366
608 => 0.04434012441027
609 => 0.046308547034703
610 => 0.045612775012702
611 => 0.045047101528478
612 => 0.045543349678619
613 => 0.045466956165626
614 => 0.044822118036254
615 => 0.044804019577663
616 => 0.043566369040178
617 => 0.043108837816409
618 => 0.042726490480209
619 => 0.042308977170509
620 => 0.042061461285346
621 => 0.042441758178914
622 => 0.042528736578014
623 => 0.041697210773774
624 => 0.04158387687925
625 => 0.042262918800723
626 => 0.041964097768317
627 => 0.042271442610552
628 => 0.042342749250305
629 => 0.042331267238974
630 => 0.042019263761765
701 => 0.04221812547406
702 => 0.041747758240952
703 => 0.041236304521821
704 => 0.040910028913708
705 => 0.04062531017145
706 => 0.040783288677605
707 => 0.040220124148898
708 => 0.040039956481902
709 => 0.042150755600465
710 => 0.043710025604262
711 => 0.043687353200868
712 => 0.043549340776076
713 => 0.043344282307634
714 => 0.044325123106073
715 => 0.043983417784428
716 => 0.04423203695636
717 => 0.04429532097013
718 => 0.044486862619888
719 => 0.044555322296115
720 => 0.044348389606254
721 => 0.04365389822438
722 => 0.04192329173101
723 => 0.041117689736663
724 => 0.040851827660167
725 => 0.040861491241703
726 => 0.040594926522793
727 => 0.040673441779105
728 => 0.040567622120834
729 => 0.040367225288594
730 => 0.040770914737918
731 => 0.040817436186325
801 => 0.040723210245123
802 => 0.040745403865305
803 => 0.039965253316579
804 => 0.040024566468401
805 => 0.039694303301907
806 => 0.039632382939571
807 => 0.038797506413978
808 => 0.037318401631602
809 => 0.038137969261213
810 => 0.03714804681329
811 => 0.036773148182489
812 => 0.038547859992003
813 => 0.038369728149171
814 => 0.038064843866294
815 => 0.037613856468466
816 => 0.037446580855688
817 => 0.036430267185474
818 => 0.036370217952015
819 => 0.036873930449751
820 => 0.036641484463735
821 => 0.036315042265189
822 => 0.035132701712972
823 => 0.033803359472776
824 => 0.03384348395906
825 => 0.034266322992375
826 => 0.03549578450935
827 => 0.035015412624767
828 => 0.034666897310871
829 => 0.03460163086891
830 => 0.035418577034603
831 => 0.036574727014572
901 => 0.037117166717776
902 => 0.03657962544604
903 => 0.035962126976347
904 => 0.035999711246984
905 => 0.036249742561488
906 => 0.03627601731739
907 => 0.035874089293488
908 => 0.035987229677909
909 => 0.0358153590882
910 => 0.034760589596399
911 => 0.034741512161002
912 => 0.034482654717259
913 => 0.034474816616739
914 => 0.034034435529915
915 => 0.033972823171658
916 => 0.033098419794549
917 => 0.033673954745299
918 => 0.033287916117277
919 => 0.032706064847541
920 => 0.032605753469325
921 => 0.032602737988167
922 => 0.033200169142622
923 => 0.033666973414418
924 => 0.033294631424489
925 => 0.033209856370928
926 => 0.03411503215333
927 => 0.033999840284159
928 => 0.033900084868365
929 => 0.03647120646463
930 => 0.034435963094066
1001 => 0.03354848081687
1002 => 0.032450052970526
1003 => 0.032807706616049
1004 => 0.032883069494186
1005 => 0.030241548530231
1006 => 0.029169883804135
1007 => 0.028802128854972
1008 => 0.028590480682437
1009 => 0.028686931412371
1010 => 0.02772230746515
1011 => 0.02837055071109
1012 => 0.027535267910429
1013 => 0.027395230030652
1014 => 0.028888819149918
1015 => 0.029096643350443
1016 => 0.028210000745086
1017 => 0.028779368832124
1018 => 0.028572908048956
1019 => 0.027549586436639
1020 => 0.027510503078093
1021 => 0.026997036264526
1022 => 0.026193560128061
1023 => 0.025826349973553
1024 => 0.025635103736821
1025 => 0.025714015661412
1026 => 0.025674115377594
1027 => 0.025413739036092
1028 => 0.025689039844703
1029 => 0.024985760040848
1030 => 0.024705708356242
1031 => 0.024579215507456
1101 => 0.023955014202259
1102 => 0.024948396062407
1103 => 0.025144104803152
1104 => 0.025340199150573
1105 => 0.027047066565575
1106 => 0.026961796293078
1107 => 0.027732598028138
1108 => 0.027702646090127
1109 => 0.027482800949128
1110 => 0.026555310462023
1111 => 0.026924991639254
1112 => 0.025787170436946
1113 => 0.026639703446036
1114 => 0.026250642983317
1115 => 0.026508161712231
1116 => 0.026045119818116
1117 => 0.02630138632085
1118 => 0.025190514605898
1119 => 0.024153198228862
1120 => 0.024570644620134
1121 => 0.025024456588232
1122 => 0.026008436564208
1123 => 0.025422386208175
1124 => 0.025633152077222
1125 => 0.024927121697696
1126 => 0.023470379357125
1127 => 0.023478624360571
1128 => 0.023254536288331
1129 => 0.023060891476522
1130 => 0.025489701141403
1201 => 0.025187640265776
1202 => 0.024706345793215
1203 => 0.02535057757062
1204 => 0.025520922677899
1205 => 0.025525772163626
1206 => 0.025995787038392
1207 => 0.02624663406131
1208 => 0.026290846936332
1209 => 0.02703042549712
1210 => 0.027278322475419
1211 => 0.028299375045339
1212 => 0.026225351443986
1213 => 0.026182638292765
1214 => 0.025359643232882
1215 => 0.024837686754868
1216 => 0.025395382039485
1217 => 0.025889423928658
1218 => 0.025374994491516
1219 => 0.025442168115808
1220 => 0.024751588626873
1221 => 0.024998438299382
1222 => 0.025211058491589
1223 => 0.02509366211869
1224 => 0.024917914066411
1225 => 0.025848918127726
1226 => 0.025796387229952
1227 => 0.026663359615539
1228 => 0.027339226587895
1229 => 0.028550501028028
1230 => 0.027286473004584
1231 => 0.027240406799354
]
'min_raw' => 0.023060891476522
'max_raw' => 0.066675819128256
'avg_raw' => 0.044868355302389
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.02306'
'max' => '$0.066675'
'avg' => '$0.044868'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0040549838930226
'max_diff' => -0.022523125756256
'year' => 2030
]
5 => [
'items' => [
101 => 0.027690711344735
102 => 0.027278253536139
103 => 0.027538912633612
104 => 0.028508504817652
105 => 0.028528990772637
106 => 0.028185824631969
107 => 0.028164942941123
108 => 0.028230851752264
109 => 0.028616881717744
110 => 0.028481990986303
111 => 0.028638089955742
112 => 0.028833294107298
113 => 0.029640741242979
114 => 0.029835414013793
115 => 0.029362460106976
116 => 0.029405162549321
117 => 0.029228264805296
118 => 0.02905738380109
119 => 0.029441499343378
120 => 0.030143478046719
121 => 0.030139111073638
122 => 0.030301956488297
123 => 0.030403407832545
124 => 0.029967904396109
125 => 0.029684407672894
126 => 0.02979311835594
127 => 0.029966949105541
128 => 0.029736747386676
129 => 0.028315835738038
130 => 0.028746849564047
131 => 0.0286751077879
201 => 0.028572938774568
202 => 0.029006326509552
203 => 0.028964525205256
204 => 0.027712413852326
205 => 0.027792569958675
206 => 0.027717288410639
207 => 0.027960538493501
208 => 0.027265117233386
209 => 0.027479024129264
210 => 0.027613184529106
211 => 0.027692206035281
212 => 0.027977685901142
213 => 0.027944188133879
214 => 0.027975603632896
215 => 0.028398894910077
216 => 0.030539756934032
217 => 0.03065627933045
218 => 0.030082480434423
219 => 0.030311701775703
220 => 0.029871646925642
221 => 0.030167058694599
222 => 0.030369171924274
223 => 0.029455861103512
224 => 0.029401780764044
225 => 0.028959909651081
226 => 0.029197346158329
227 => 0.028819567603009
228 => 0.028912261246352
301 => 0.028653081738679
302 => 0.029119553250364
303 => 0.029641140882772
304 => 0.029772914516839
305 => 0.029426274817727
306 => 0.029175284830901
307 => 0.028734629095276
308 => 0.029467449404274
309 => 0.029681748394919
310 => 0.029466323782906
311 => 0.029416405193182
312 => 0.029321809555855
313 => 0.029436474104823
314 => 0.029680581276593
315 => 0.029565464842338
316 => 0.029641501275254
317 => 0.029351728801407
318 => 0.029968048565867
319 => 0.030946912677259
320 => 0.030950059885438
321 => 0.030834942830662
322 => 0.030787839412079
323 => 0.030905956496166
324 => 0.030970030168867
325 => 0.031351999159835
326 => 0.031761867105459
327 => 0.033674541968294
328 => 0.033137470520502
329 => 0.034834509444345
330 => 0.036176646900181
331 => 0.036579095238628
401 => 0.036208861703914
402 => 0.034942312781281
403 => 0.034880169848746
404 => 0.036772928662322
405 => 0.036238137603641
406 => 0.036174525908902
407 => 0.035497804950533
408 => 0.03589783085045
409 => 0.035810339318112
410 => 0.035672229654085
411 => 0.036435451205081
412 => 0.037864133815289
413 => 0.037641460232388
414 => 0.037475244732282
415 => 0.036746936795423
416 => 0.037185540846879
417 => 0.037029362345063
418 => 0.037700404302191
419 => 0.037302893912188
420 => 0.03623408603539
421 => 0.036404297212607
422 => 0.036378570135588
423 => 0.036908031557598
424 => 0.036749100380751
425 => 0.036347536272554
426 => 0.037859250733445
427 => 0.037761088404952
428 => 0.037900260143723
429 => 0.037961527847158
430 => 0.038881681800106
501 => 0.039258639432986
502 => 0.039344215415222
503 => 0.039702296011509
504 => 0.039335306043782
505 => 0.0408035275741
506 => 0.041779809218659
507 => 0.042913810587809
508 => 0.04457089137897
509 => 0.045193969085301
510 => 0.045081415674605
511 => 0.046337795418461
512 => 0.048595481890419
513 => 0.045537758660314
514 => 0.048757548646347
515 => 0.047738200311032
516 => 0.045321343745293
517 => 0.045165726675327
518 => 0.046802450001927
519 => 0.050432544811543
520 => 0.049523247233928
521 => 0.050434032096633
522 => 0.049371553175102
523 => 0.049318792141372
524 => 0.050382429866911
525 => 0.052867677388508
526 => 0.051687029449108
527 => 0.049994281121226
528 => 0.051244180144453
529 => 0.05016140193784
530 => 0.047721599587803
531 => 0.049522551911208
601 => 0.048318306380716
602 => 0.048669769247727
603 => 0.051200914234816
604 => 0.050896360173391
605 => 0.051290481329822
606 => 0.050594867804667
607 => 0.049945055083988
608 => 0.048732131385114
609 => 0.048373044474293
610 => 0.04847228317785
611 => 0.04837299529652
612 => 0.047694375634344
613 => 0.047547827782909
614 => 0.047303574943443
615 => 0.047379279111746
616 => 0.04692001231486
617 => 0.047786743649947
618 => 0.047947616623349
619 => 0.04857835140963
620 => 0.048643836387524
621 => 0.050400423789369
622 => 0.049432924966685
623 => 0.050082006706771
624 => 0.050023946726543
625 => 0.045373724355623
626 => 0.046014483969076
627 => 0.047011304846166
628 => 0.046562238392196
629 => 0.045927363491649
630 => 0.045414667969619
701 => 0.044637881827935
702 => 0.045731193405499
703 => 0.047168781869272
704 => 0.048680296003348
705 => 0.05049628119711
706 => 0.05009097444226
707 => 0.048646347423323
708 => 0.048711152336092
709 => 0.049111750807036
710 => 0.048592939388954
711 => 0.04843993177336
712 => 0.049090729910245
713 => 0.049095211599341
714 => 0.048498256362384
715 => 0.047834849858162
716 => 0.047832070160687
717 => 0.047714023381007
718 => 0.049392553434964
719 => 0.050315575246111
720 => 0.050421398209235
721 => 0.05030845251754
722 => 0.050351920831619
723 => 0.049814834777111
724 => 0.051042454229795
725 => 0.052169039238559
726 => 0.051867090390232
727 => 0.051414426142032
728 => 0.051053857265076
729 => 0.051782151821865
730 => 0.051749722011693
731 => 0.052159199501319
801 => 0.052140623237133
802 => 0.052002931358599
803 => 0.051867095307643
804 => 0.052405669895474
805 => 0.052250569063422
806 => 0.052095227316938
807 => 0.051783665662732
808 => 0.051826012066029
809 => 0.051373425976694
810 => 0.051164038942837
811 => 0.048015360343369
812 => 0.04717393053555
813 => 0.047438661481973
814 => 0.047525817783272
815 => 0.047159626452587
816 => 0.047684650753954
817 => 0.047602826272725
818 => 0.047921157463469
819 => 0.047722277955825
820 => 0.047730440040191
821 => 0.048315302266588
822 => 0.048485090259093
823 => 0.048398734715748
824 => 0.048459215178212
825 => 0.049852961908491
826 => 0.049654815692957
827 => 0.049549554465155
828 => 0.049578712544624
829 => 0.049934844716477
830 => 0.0500345422805
831 => 0.049612116696111
901 => 0.049811335043722
902 => 0.050659581483278
903 => 0.050956419730533
904 => 0.051903784925326
905 => 0.051501327352504
906 => 0.052240055645375
907 => 0.054510654566625
908 => 0.056324566098414
909 => 0.054656418090716
910 => 0.057987435618606
911 => 0.060581110570154
912 => 0.060481561005522
913 => 0.060029293784937
914 => 0.057076463809017
915 => 0.05435922564096
916 => 0.056632310748566
917 => 0.05663810530997
918 => 0.056442845283327
919 => 0.055230102027606
920 => 0.056400644446801
921 => 0.056493557853251
922 => 0.056441551053308
923 => 0.055511743642574
924 => 0.054092099583517
925 => 0.054369494634509
926 => 0.05482387338674
927 => 0.053963639615429
928 => 0.053688742802093
929 => 0.054199828279343
930 => 0.055846652175931
1001 => 0.055535329657683
1002 => 0.055527199768578
1003 => 0.05685916952294
1004 => 0.055905766635881
1005 => 0.054372993474444
1006 => 0.053985948036387
1007 => 0.052612197476333
1008 => 0.053561051881294
1009 => 0.053595199462115
1010 => 0.053075521601575
1011 => 0.054415162468719
1012 => 0.054402817442289
1013 => 0.055674607066412
1014 => 0.058105791165366
1015 => 0.057386770396002
1016 => 0.056550627470468
1017 => 0.056641539390202
1018 => 0.057638618759947
1019 => 0.057035761811891
1020 => 0.05725255337368
1021 => 0.057638290619953
1022 => 0.057871015477947
1023 => 0.056608053864569
1024 => 0.056313597098053
1025 => 0.055711241894044
1026 => 0.05555409866481
1027 => 0.056044704409922
1028 => 0.055915447129442
1029 => 0.053592329490173
1030 => 0.053349550771165
1031 => 0.053356996447869
1101 => 0.052746517815424
1102 => 0.051815391369287
1103 => 0.054262336075066
1104 => 0.054065812170222
1105 => 0.053848864989018
1106 => 0.053875439780832
1107 => 0.054937575542959
1108 => 0.054321483161784
1109 => 0.055959465732695
1110 => 0.055622745758379
1111 => 0.055277390187282
1112 => 0.055229651527568
1113 => 0.055096719097049
1114 => 0.054640844330819
1115 => 0.054090348156769
1116 => 0.0537268628995
1117 => 0.049560191033561
1118 => 0.050333501095464
1119 => 0.051223123832254
1120 => 0.051530218036054
1121 => 0.051004912150181
1122 => 0.05466158660897
1123 => 0.055329696269183
1124 => 0.053305948528684
1125 => 0.052927387955512
1126 => 0.054686404977124
1127 => 0.053625502682007
1128 => 0.054103226920538
1129 => 0.053070648418021
1130 => 0.055168768216572
1201 => 0.055152784059019
1202 => 0.054336568069198
1203 => 0.055026428234589
1204 => 0.054906548054227
1205 => 0.05398504221197
1206 => 0.055197981595432
1207 => 0.055198583198233
1208 => 0.054412993054096
1209 => 0.05349559575354
1210 => 0.053331586784158
1211 => 0.053208028057233
1212 => 0.054072839048002
1213 => 0.054848225878132
1214 => 0.056291028534307
1215 => 0.056653783402215
1216 => 0.058069639801619
1217 => 0.057226566252571
1218 => 0.057600289837234
1219 => 0.058006019654814
1220 => 0.058200541449582
1221 => 0.057883578623622
1222 => 0.06008298640164
1223 => 0.060268683806218
1224 => 0.060330946539697
1225 => 0.059589318611777
1226 => 0.060248057791948
1227 => 0.059939855544695
1228 => 0.060741712170997
1229 => 0.06086745352862
1230 => 0.060760955072092
1231 => 0.060800867363694
]
'min_raw' => 0.027265117233386
'max_raw' => 0.06086745352862
'avg_raw' => 0.044066285381003
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.027265'
'max' => '$0.060867'
'avg' => '$0.044066'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0042042257568645
'max_diff' => -0.0058083655996358
'year' => 2031
]
6 => [
'items' => [
101 => 0.058924060827275
102 => 0.058826738507418
103 => 0.057499741770498
104 => 0.058040502749457
105 => 0.05702957601864
106 => 0.057350151298682
107 => 0.057491457827571
108 => 0.057417647315954
109 => 0.058071076563857
110 => 0.057515528216363
111 => 0.056049344786724
112 => 0.05458276189639
113 => 0.054564350142854
114 => 0.054178224755167
115 => 0.053899126822262
116 => 0.053952890985671
117 => 0.054142362910093
118 => 0.053888114369573
119 => 0.053942371186421
120 => 0.054843395857378
121 => 0.055024089929324
122 => 0.054410020871119
123 => 0.051944444992683
124 => 0.051339386487686
125 => 0.051774290542246
126 => 0.051566434415575
127 => 0.041618137168562
128 => 0.043955342041569
129 => 0.042566654270006
130 => 0.043206625485595
131 => 0.041789134869784
201 => 0.042465635688698
202 => 0.042340710689299
203 => 0.046098866962173
204 => 0.046040188521147
205 => 0.046068274785672
206 => 0.044727644201514
207 => 0.046863305124165
208 => 0.047915408490546
209 => 0.047720692158253
210 => 0.047769698064093
211 => 0.046927614237439
212 => 0.046076427997819
213 => 0.045132331461457
214 => 0.046886346132158
215 => 0.046691329642805
216 => 0.047138627304663
217 => 0.048276231198171
218 => 0.048443747692827
219 => 0.048668891560429
220 => 0.048588193510725
221 => 0.050510748448955
222 => 0.050277914360509
223 => 0.050838977522724
224 => 0.049684828030084
225 => 0.048378798326286
226 => 0.04862703187565
227 => 0.048603124988678
228 => 0.048298762878479
229 => 0.04802399837434
301 => 0.047566592889367
302 => 0.049013891527094
303 => 0.04895513384548
304 => 0.049906352412479
305 => 0.049738215291117
306 => 0.048615354444535
307 => 0.048655457639339
308 => 0.048925170897335
309 => 0.049858651562791
310 => 0.050135772180508
311 => 0.050007398869034
312 => 0.050311248975324
313 => 0.05055139971037
314 => 0.05034140821022
315 => 0.05331444501945
316 => 0.052079832856855
317 => 0.052681574234528
318 => 0.052825086007436
319 => 0.052457483618858
320 => 0.052537203414086
321 => 0.052657957181512
322 => 0.053391150411315
323 => 0.055315261597487
324 => 0.056167437343976
325 => 0.058731250122895
326 => 0.056096676011089
327 => 0.055940351286246
328 => 0.056402171387458
329 => 0.057907400895828
330 => 0.059127248033344
331 => 0.059531941703527
401 => 0.059585428652806
402 => 0.060344660881597
403 => 0.060779838636297
404 => 0.060252470119232
405 => 0.059805580518804
406 => 0.058204877440052
407 => 0.058390163179987
408 => 0.059666598189115
409 => 0.061469637821154
410 => 0.063016833399744
411 => 0.062475059433332
412 => 0.066608412364244
413 => 0.067018217424111
414 => 0.066961595615421
415 => 0.067895192528969
416 => 0.066042192779282
417 => 0.065249999486112
418 => 0.059902203122829
419 => 0.061404715767133
420 => 0.063588706135101
421 => 0.063299646820357
422 => 0.061713574636908
423 => 0.063015630221766
424 => 0.06258512992637
425 => 0.062245576481917
426 => 0.06380113663663
427 => 0.062090734347633
428 => 0.063571643563879
429 => 0.061672362176
430 => 0.062477534211175
501 => 0.06202047962222
502 => 0.062316249955777
503 => 0.060587182629383
504 => 0.061520145387969
505 => 0.060548368311329
506 => 0.060547907562465
507 => 0.060526455529638
508 => 0.061669746950785
509 => 0.061707029642983
510 => 0.060862135555338
511 => 0.060740373117582
512 => 0.061190592668243
513 => 0.060663503487106
514 => 0.0609101251975
515 => 0.060670973407476
516 => 0.060617135302235
517 => 0.06018814411987
518 => 0.06000332292315
519 => 0.060075796076639
520 => 0.059828407841307
521 => 0.059679347481096
522 => 0.060496803672197
523 => 0.06006006980538
524 => 0.060429867943462
525 => 0.060008436292872
526 => 0.0585475705829
527 => 0.05770741126472
528 => 0.054947971360904
529 => 0.055730545094552
530 => 0.056249392289591
531 => 0.056077913294726
601 => 0.056446316529259
602 => 0.056468933495812
603 => 0.056349161848839
604 => 0.056210481625342
605 => 0.056142979762042
606 => 0.056646083347846
607 => 0.056938151913093
608 => 0.056301465546893
609 => 0.056152298839482
610 => 0.056796023908128
611 => 0.057188695828134
612 => 0.060087964662166
613 => 0.059873177462426
614 => 0.060412251183915
615 => 0.060351559755636
616 => 0.060916594896934
617 => 0.061840188551289
618 => 0.059962264411138
619 => 0.060288207108137
620 => 0.060208293485949
621 => 0.061080769458522
622 => 0.061083493233275
623 => 0.06056040030431
624 => 0.060843977467315
625 => 0.060685692474458
626 => 0.060971734850051
627 => 0.059870308848424
628 => 0.061211726826815
629 => 0.061972224381498
630 => 0.061982783890783
701 => 0.06234325369602
702 => 0.062709511895145
703 => 0.063412512613999
704 => 0.062689905586651
705 => 0.061390005888827
706 => 0.06148385444836
707 => 0.060721723731141
708 => 0.060734535286187
709 => 0.060666146201289
710 => 0.060871386993159
711 => 0.059915347660549
712 => 0.060139728181008
713 => 0.059825594138394
714 => 0.060287524242078
715 => 0.059790563810296
716 => 0.060208254949181
717 => 0.060388516598043
718 => 0.061053685963099
719 => 0.059692317754245
720 => 0.056916395819864
721 => 0.057499928265271
722 => 0.05663683794303
723 => 0.05671672023837
724 => 0.05687809518813
725 => 0.05635502617736
726 => 0.056454811260816
727 => 0.056451246235458
728 => 0.056420524772907
729 => 0.056284454321322
730 => 0.056087125245805
731 => 0.056873223547976
801 => 0.057006796967646
802 => 0.057303714133326
803 => 0.058187138217551
804 => 0.058098863318963
805 => 0.058242843341051
806 => 0.057928535761245
807 => 0.056731300065541
808 => 0.056796315723893
809 => 0.055985569422445
810 => 0.057282981527591
811 => 0.05697573721609
812 => 0.056777654809722
813 => 0.056723606189924
814 => 0.057609220111581
815 => 0.057874209677238
816 => 0.057709085962709
817 => 0.057370412406781
818 => 0.058020765754011
819 => 0.058194772873525
820 => 0.058233726650449
821 => 0.059386028088855
822 => 0.058298127500383
823 => 0.05855999598483
824 => 0.06060301914683
825 => 0.058750279056821
826 => 0.059731716803533
827 => 0.059683680532987
828 => 0.060185750874163
829 => 0.059642496110676
830 => 0.059649230404554
831 => 0.060095034854327
901 => 0.059468982905877
902 => 0.059313963639253
903 => 0.05909980563268
904 => 0.059567411805218
905 => 0.059847720557646
906 => 0.062106803238125
907 => 0.063566273676401
908 => 0.063502914215596
909 => 0.064081901083413
910 => 0.06382106219655
911 => 0.062978744625046
912 => 0.064416478009918
913 => 0.063961519009625
914 => 0.063999025276834
915 => 0.063997629291695
916 => 0.064300137253684
917 => 0.064085782638167
918 => 0.063663267687934
919 => 0.063943752829846
920 => 0.064776693426051
921 => 0.067362166594412
922 => 0.06880903163239
923 => 0.067275063502389
924 => 0.068333174177812
925 => 0.067698684815941
926 => 0.067583379224466
927 => 0.068247950922397
928 => 0.06891368586511
929 => 0.06887128142731
930 => 0.068387992044768
1001 => 0.068114994135584
1002 => 0.070182225764934
1003 => 0.071705326815067
1004 => 0.071601461534447
1005 => 0.072059889104305
1006 => 0.07340584662804
1007 => 0.073528904115922
1008 => 0.073513401700893
1009 => 0.073208390877458
1010 => 0.074533660854245
1011 => 0.075639224384788
1012 => 0.073137789684442
1013 => 0.074090303272149
1014 => 0.074517917309742
1015 => 0.075145781584296
1016 => 0.07620509385774
1017 => 0.077355787955403
1018 => 0.077518508717532
1019 => 0.077403050549896
1020 => 0.07664413686017
1021 => 0.077903240072469
1022 => 0.07864079320463
1023 => 0.079079989216228
1024 => 0.080193717226394
1025 => 0.074520558108461
1026 => 0.070504814110485
1027 => 0.069877697697155
1028 => 0.071152963583797
1029 => 0.071489241028049
1030 => 0.071353688011927
1031 => 0.066833603046734
1101 => 0.069853900385266
1102 => 0.073103486367714
1103 => 0.073228316199655
1104 => 0.074855126888107
1105 => 0.07538488313349
1106 => 0.076694678968645
1107 => 0.076612750882537
1108 => 0.076931665324993
1109 => 0.076858352417501
1110 => 0.079284473392073
1111 => 0.081960845109476
1112 => 0.081868170867244
1113 => 0.081483410767474
1114 => 0.082054845126978
1115 => 0.084817147556762
1116 => 0.084562839014022
1117 => 0.084809878101344
1118 => 0.088066788342602
1119 => 0.092301234946318
1120 => 0.090333909367404
1121 => 0.094602439790962
1122 => 0.097289253427516
1123 => 0.10193581979022
1124 => 0.10135404679679
1125 => 0.10316292098371
1126 => 0.10031255171886
1127 => 0.09376752773208
1128 => 0.092731752632827
1129 => 0.094805400611534
1130 => 0.099903261823575
1201 => 0.094644850820219
1202 => 0.095708620517629
1203 => 0.095402254773212
1204 => 0.095385929844662
1205 => 0.096008985969111
1206 => 0.095105210564176
1207 => 0.09142306697838
1208 => 0.093110571684742
1209 => 0.092458945076984
1210 => 0.093181973380273
1211 => 0.097083858933571
1212 => 0.095358742321124
1213 => 0.093541472107005
1214 => 0.095820732240054
1215 => 0.098723013628183
1216 => 0.098541394074815
1217 => 0.098188976230197
1218 => 0.10017553716831
1219 => 0.10345675383033
1220 => 0.10434365350908
1221 => 0.10499834472006
1222 => 0.10508861557696
1223 => 0.10601846150602
1224 => 0.10101844559413
1225 => 0.10895359925581
1226 => 0.11032378108899
1227 => 0.11006624369257
1228 => 0.11158914313408
1229 => 0.11114106748615
1230 => 0.11049187617323
1231 => 0.11290599571802
]
'min_raw' => 0.041618137168562
'max_raw' => 0.11290599571802
'avg_raw' => 0.077262066443293
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.041618'
'max' => '$0.1129059'
'avg' => '$0.077262'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.014353019935176
'max_diff' => 0.052038542189403
'year' => 2032
]
7 => [
'items' => [
101 => 0.11013840246932
102 => 0.10621015228309
103 => 0.10405503653894
104 => 0.10689306679906
105 => 0.10862615284531
106 => 0.10977161247691
107 => 0.11011822786932
108 => 0.10140658259615
109 => 0.096711488963912
110 => 0.09972099015282
111 => 0.10339278930797
112 => 0.10099804856443
113 => 0.10109191786773
114 => 0.097677646894253
115 => 0.10369487652916
116 => 0.10281821678422
117 => 0.10736632909174
118 => 0.10628088558867
119 => 0.10998969461875
120 => 0.1090130409054
121 => 0.11306707586553
122 => 0.11468434016974
123 => 0.1173999786436
124 => 0.11939761335961
125 => 0.12057066267351
126 => 0.1205002371927
127 => 0.12514844298523
128 => 0.12240755842532
129 => 0.11896436144117
130 => 0.11890208487088
131 => 0.12068536537944
201 => 0.12442263210628
202 => 0.12539165099353
203 => 0.12593320035552
204 => 0.12510379865617
205 => 0.12212876490735
206 => 0.12084416041837
207 => 0.12193868066156
208 => 0.12060017645734
209 => 0.12291081023177
210 => 0.1260838039288
211 => 0.12542859327774
212 => 0.12761886424956
213 => 0.12988556428217
214 => 0.13312704713267
215 => 0.13397449078155
216 => 0.13537528290776
217 => 0.13681715814187
218 => 0.13728024960744
219 => 0.13816443490406
220 => 0.1381597748111
221 => 0.14082432671498
222 => 0.14376340997927
223 => 0.1448728458716
224 => 0.14742393253137
225 => 0.14305528602725
226 => 0.14636895458402
227 => 0.14935796656873
228 => 0.14579434325806
301 => 0.15070596777408
302 => 0.15089667502405
303 => 0.15377612808062
304 => 0.15085725077133
305 => 0.14912403074246
306 => 0.1541277720229
307 => 0.15654892481213
308 => 0.15581965388802
309 => 0.15026986614699
310 => 0.14703965164011
311 => 0.13858555721377
312 => 0.14859979725147
313 => 0.15347744145445
314 => 0.15025723422685
315 => 0.15188131944418
316 => 0.16074180177854
317 => 0.16411529977771
318 => 0.16341363577642
319 => 0.16353220544226
320 => 0.1653524837293
321 => 0.17342460009958
322 => 0.16858760086031
323 => 0.17228530553983
324 => 0.17424655476877
325 => 0.17606827235423
326 => 0.17159470972411
327 => 0.16577467047201
328 => 0.16393121973225
329 => 0.14993704808142
330 => 0.14920859067338
331 => 0.14879968545574
401 => 0.14622159589926
402 => 0.14419592370603
403 => 0.14258503396959
404 => 0.13835757824877
405 => 0.13978422045629
406 => 0.13304653837588
407 => 0.13735706860213
408 => 0.12660356531479
409 => 0.13555940239457
410 => 0.13068514744399
411 => 0.13395807855063
412 => 0.13394665960233
413 => 0.12792015575124
414 => 0.12444419409986
415 => 0.12665921215057
416 => 0.12903388732929
417 => 0.12941917038767
418 => 0.13249799874223
419 => 0.1333572335568
420 => 0.13075371195483
421 => 0.1263807228611
422 => 0.12739646849031
423 => 0.12442361004711
424 => 0.11921378997474
425 => 0.12295557370544
426 => 0.12423318318573
427 => 0.12479744831602
428 => 0.11967418862672
429 => 0.11806434920097
430 => 0.11720728419856
501 => 0.12571937437035
502 => 0.12618568588492
503 => 0.12379997024659
504 => 0.1345836311547
505 => 0.13214295657304
506 => 0.13486978806055
507 => 0.127304300221
508 => 0.12759331204476
509 => 0.1240116888592
510 => 0.12601715851896
511 => 0.12459975720274
512 => 0.12585513638889
513 => 0.12660760549694
514 => 0.13018864097338
515 => 0.13560029206741
516 => 0.12965375369021
517 => 0.12706276176327
518 => 0.12867019858245
519 => 0.13295101465749
520 => 0.13943667014211
521 => 0.13559703155923
522 => 0.13730099796102
523 => 0.13767323881562
524 => 0.13484203147575
525 => 0.13954106079512
526 => 0.14205930878221
527 => 0.14464251013897
528 => 0.14688543149739
529 => 0.14361072271127
530 => 0.14711513052348
531 => 0.14429119643809
601 => 0.14175783563055
602 => 0.14176167769317
603 => 0.14017246345211
604 => 0.13709316060617
605 => 0.13652528991639
606 => 0.13947942495876
607 => 0.1418483615051
608 => 0.1420434784655
609 => 0.14335504345791
610 => 0.14413121411023
611 => 0.15173874165575
612 => 0.15479855216733
613 => 0.15854003054164
614 => 0.1599975472266
615 => 0.16438414989968
616 => 0.16084161197872
617 => 0.16007516161591
618 => 0.14943469837782
619 => 0.15117707363696
620 => 0.15396678454106
621 => 0.14948069968311
622 => 0.15232608797109
623 => 0.1528878278927
624 => 0.14932826423626
625 => 0.15122958098483
626 => 0.14618024740175
627 => 0.13571035374128
628 => 0.13955271677974
629 => 0.14238198930146
630 => 0.13834426856618
701 => 0.14558172670279
702 => 0.14135375307085
703 => 0.14001368840804
704 => 0.13478561839091
705 => 0.13725306619213
706 => 0.14059032467372
707 => 0.13852828693004
708 => 0.14280732486471
709 => 0.14886758375795
710 => 0.15318648513992
711 => 0.15351803676002
712 => 0.15074127251533
713 => 0.15519105493852
714 => 0.15522346674553
715 => 0.15020409399428
716 => 0.14712975613212
717 => 0.14643126010138
718 => 0.14817624013439
719 => 0.15029496803555
720 => 0.15363561141294
721 => 0.15565429224099
722 => 0.16091794121495
723 => 0.16234213370667
724 => 0.16390688946688
725 => 0.16599788571532
726 => 0.16850866283201
727 => 0.16301522543931
728 => 0.16323348994797
729 => 0.15811807710971
730 => 0.15265152486762
731 => 0.15679995660401
801 => 0.16222347925659
802 => 0.16097931716763
803 => 0.1608393235167
804 => 0.16107475400656
805 => 0.16013669642202
806 => 0.15589389673317
807 => 0.15376318929076
808 => 0.15651234549291
809 => 0.15797339966349
810 => 0.16023936726474
811 => 0.15996003892911
812 => 0.16579692812278
813 => 0.16806496676508
814 => 0.16748470542553
815 => 0.16759148747678
816 => 0.171697663103
817 => 0.17626457489879
818 => 0.18054209045264
819 => 0.18489336299758
820 => 0.17964773411159
821 => 0.1769843272687
822 => 0.17973228327526
823 => 0.1782741791379
824 => 0.18665287801294
825 => 0.18723300094405
826 => 0.1956110939438
827 => 0.20356290184532
828 => 0.19856851377381
829 => 0.20327799677306
830 => 0.20837168660653
831 => 0.2181982407167
901 => 0.21488900299474
902 => 0.21235417876208
903 => 0.2099587821104
904 => 0.21494322228404
905 => 0.22135562493904
906 => 0.2227367950537
907 => 0.22497481828703
908 => 0.22262181050964
909 => 0.22545574920221
910 => 0.23546079808273
911 => 0.2327573455582
912 => 0.2289180083717
913 => 0.23681603356776
914 => 0.23967429818342
915 => 0.25973509614092
916 => 0.2850626822325
917 => 0.27457689528069
918 => 0.26806802894547
919 => 0.26959776692662
920 => 0.27884654397437
921 => 0.2818169576206
922 => 0.27374234936717
923 => 0.27659443750866
924 => 0.29230972357939
925 => 0.30074047034959
926 => 0.2892903838353
927 => 0.25770004925939
928 => 0.22857231806515
929 => 0.23629830401669
930 => 0.23542241697504
1001 => 0.25230653133618
1002 => 0.23269286910958
1003 => 0.23302311287944
1004 => 0.25025637284498
1005 => 0.24565883453904
1006 => 0.23821141129165
1007 => 0.22862669249667
1008 => 0.21090845332496
1009 => 0.19521491478093
1010 => 0.22599355787185
1011 => 0.22466632681444
1012 => 0.22274429955869
1013 => 0.2270215632313
1014 => 0.24779074150302
1015 => 0.24731194472058
1016 => 0.24426608387501
1017 => 0.24657634248139
1018 => 0.23780641178801
1019 => 0.24006662261531
1020 => 0.22856770408371
1021 => 0.23376569549725
1022 => 0.23819543246617
1023 => 0.23908476774605
1024 => 0.24108848554222
1025 => 0.22396693635703
1026 => 0.23165400927891
1027 => 0.23616944443918
1028 => 0.21576854411213
1029 => 0.23576618423361
1030 => 0.22366888827773
1031 => 0.21956288433501
1101 => 0.22509107771899
1102 => 0.22293673538091
1103 => 0.22108455834586
1104 => 0.22005101173585
1105 => 0.22411030683261
1106 => 0.22392093586444
1107 => 0.21727914121092
1108 => 0.20861519083959
1109 => 0.21152309696868
1110 => 0.21046662741022
1111 => 0.20663784544305
1112 => 0.20921798220002
1113 => 0.19785636569965
1114 => 0.1783092950362
1115 => 0.19122268865944
1116 => 0.19072553705202
1117 => 0.19047485066752
1118 => 0.20017890907541
1119 => 0.19924608777021
1120 => 0.19755300796706
1121 => 0.20660675070474
1122 => 0.20330201281546
1123 => 0.21348643629604
1124 => 0.22019455628756
1125 => 0.21849316007276
1126 => 0.22480217934795
1127 => 0.21159008925275
1128 => 0.21597861560533
1129 => 0.21688308480436
1130 => 0.20649502892473
1201 => 0.19939870887213
1202 => 0.1989254652286
1203 => 0.18662142419053
1204 => 0.19319414359832
1205 => 0.19897786467956
1206 => 0.19620791111653
1207 => 0.19533102656848
1208 => 0.19981083955139
1209 => 0.20015895938717
1210 => 0.1922217902394
1211 => 0.19387217904268
1212 => 0.20075457470666
1213 => 0.19369876033035
1214 => 0.17999046555792
1215 => 0.17659061892235
1216 => 0.17613701670956
1217 => 0.16691636298867
1218 => 0.17681781293154
1219 => 0.17249556468911
1220 => 0.18614949509845
1221 => 0.17835044327614
1222 => 0.17801424173984
1223 => 0.17750602380769
1224 => 0.16956942624971
1225 => 0.17130703671782
1226 => 0.17708311855937
1227 => 0.17914408963265
1228 => 0.17892911346467
1229 => 0.17705481260721
1230 => 0.17791285794178
1231 => 0.17514879495632
]
'min_raw' => 0.096711488963912
'max_raw' => 0.30074047034959
'avg_raw' => 0.19872597965675
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.096711'
'max' => '$0.30074'
'avg' => '$0.198725'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.05509335179535
'max_diff' => 0.18783447463157
'year' => 2033
]
8 => [
'items' => [
101 => 0.17417274678716
102 => 0.17109207028208
103 => 0.16656432687823
104 => 0.1671939373688
105 => 0.15822329293725
106 => 0.15333560974281
107 => 0.15198276345322
108 => 0.15017368085543
109 => 0.15218710414642
110 => 0.15819788022868
111 => 0.15094760901619
112 => 0.13851752756978
113 => 0.13926459664454
114 => 0.14094303904872
115 => 0.13781527273254
116 => 0.1348551044078
117 => 0.13742873060011
118 => 0.1321619412284
119 => 0.14157950538191
120 => 0.14132478666397
121 => 0.14483507220214
122 => 0.14703012578747
123 => 0.14197123793033
124 => 0.14069894131494
125 => 0.14142369928972
126 => 0.12944506438495
127 => 0.14385616217394
128 => 0.14398078994605
129 => 0.1429136512975
130 => 0.15058711597741
131 => 0.16678051986567
201 => 0.16068790994475
202 => 0.15832866723325
203 => 0.15384374511411
204 => 0.15981963754954
205 => 0.15936078224895
206 => 0.15728566456394
207 => 0.15603062691329
208 => 0.15834307226617
209 => 0.15574408934337
210 => 0.15527724059516
211 => 0.15244864511745
212 => 0.1514389652248
213 => 0.1506914384288
214 => 0.14986848487687
215 => 0.15168371534518
216 => 0.14757016429053
217 => 0.14260962497501
218 => 0.1421972098047
219 => 0.14333592434983
220 => 0.14283212793094
221 => 0.14219479782127
222 => 0.14097796107539
223 => 0.14061695160649
224 => 0.14179005724352
225 => 0.14046568937562
226 => 0.14241986630675
227 => 0.14188843831103
228 => 0.13891992472647
301 => 0.13522005771563
302 => 0.1351871211385
303 => 0.13438999086001
304 => 0.13337472560102
305 => 0.13309230203209
306 => 0.13721198698062
307 => 0.14573961153229
308 => 0.14406543478404
309 => 0.14527519906118
310 => 0.15122604195704
311 => 0.15311763596554
312 => 0.15177502734317
313 => 0.14993718185237
314 => 0.15001803772674
315 => 0.15629851212247
316 => 0.15669021760674
317 => 0.15767993099653
318 => 0.15895199239537
319 => 0.15199166489994
320 => 0.14969020692763
321 => 0.14859964846033
322 => 0.14524115048027
323 => 0.14886300261591
324 => 0.14675270447964
325 => 0.14703745579627
326 => 0.14685201112776
327 => 0.14695327645648
328 => 0.1415768729808
329 => 0.14353575183189
330 => 0.14027873581115
331 => 0.13591795697658
401 => 0.13590333811684
402 => 0.13697063255869
403 => 0.13633576406144
404 => 0.1346273492593
405 => 0.13487002151846
406 => 0.13274395717653
407 => 0.1351281642232
408 => 0.1351965347502
409 => 0.1342784851686
410 => 0.13795168508117
411 => 0.13945659808239
412 => 0.13885231818125
413 => 0.13941420019364
414 => 0.14413500438638
415 => 0.14490470145293
416 => 0.14524655004655
417 => 0.14478851821735
418 => 0.13950048782818
419 => 0.13973503446239
420 => 0.13801408688475
421 => 0.13656006753064
422 => 0.13661822067948
423 => 0.13736577563678
424 => 0.14063039197882
425 => 0.14750058461099
426 => 0.14776130339934
427 => 0.14807730217652
428 => 0.14679197634147
429 => 0.14640430977071
430 => 0.14691574204278
501 => 0.14949582517785
502 => 0.15613249948701
503 => 0.15378665553758
504 => 0.15187944789146
505 => 0.1535525831766
506 => 0.15329501711392
507 => 0.15112090033958
508 => 0.15105988012284
509 => 0.14688705492571
510 => 0.14534445646097
511 => 0.14405534572233
512 => 0.14264767044883
513 => 0.14181315336099
514 => 0.14309535088914
515 => 0.14338860463434
516 => 0.14058505733007
517 => 0.14020294419196
518 => 0.1424923814394
519 => 0.14148488546563
520 => 0.14252112005935
521 => 0.14276153537375
522 => 0.1427228229709
523 => 0.1416708814641
524 => 0.14234135761119
525 => 0.14075548164477
526 => 0.13903107972216
527 => 0.13793101872957
528 => 0.13697106961162
529 => 0.13750370517483
530 => 0.13560495664741
531 => 0.13499750877922
601 => 0.14211421537875
602 => 0.1473714030613
603 => 0.14729496147032
604 => 0.14682964294442
605 => 0.14613827400134
606 => 0.14944524723339
607 => 0.14829316388436
608 => 0.14913140078057
609 => 0.14934476725134
610 => 0.14999056329651
611 => 0.15022137987462
612 => 0.14952369186317
613 => 0.14718216568134
614 => 0.14134730506186
615 => 0.13863116169258
616 => 0.13773478913978
617 => 0.13776737057962
618 => 0.13686862901886
619 => 0.13713334868727
620 => 0.13677657032132
621 => 0.13610091841016
622 => 0.13746198557326
623 => 0.13761883588458
624 => 0.13730114654518
625 => 0.13737597388513
626 => 0.13474564184173
627 => 0.13494562027421
628 => 0.13383211495014
629 => 0.13362334612538
630 => 0.13080850163012
701 => 0.12582159658854
702 => 0.12858482607216
703 => 0.12524723342481
704 => 0.12398323651648
705 => 0.12996680128868
706 => 0.1293662173438
707 => 0.12833827869774
708 => 0.12681774319903
709 => 0.12625376179174
710 => 0.12282718929586
711 => 0.12262472911275
712 => 0.12432303096695
713 => 0.12353932309623
714 => 0.12243870043237
715 => 0.11845235671219
716 => 0.11397038653766
717 => 0.11410566904457
718 => 0.11553130036706
719 => 0.11967651570981
720 => 0.11805690836244
721 => 0.11688186464908
722 => 0.11666181428325
723 => 0.11941620531824
724 => 0.12331424569552
725 => 0.12514311902681
726 => 0.12333076109921
727 => 0.12124882189628
728 => 0.12137553988878
729 => 0.12221853792226
730 => 0.12230712509623
731 => 0.12095199670193
801 => 0.12133345740721
802 => 0.12075398371438
803 => 0.11719775473112
804 => 0.11713343382574
805 => 0.11626067788131
806 => 0.11623425117817
807 => 0.11474947559752
808 => 0.11454174523001
809 => 0.1115936331952
810 => 0.11353408946422
811 => 0.11223253327749
812 => 0.11027078109801
813 => 0.10993257428284
814 => 0.10992240737758
815 => 0.11193668822614
816 => 0.11351055141973
817 => 0.1122551744046
818 => 0.11196934939271
819 => 0.11502121274044
820 => 0.11463283531109
821 => 0.11429650296203
822 => 0.12296521893382
823 => 0.11610325381381
824 => 0.11311104535421
825 => 0.10940761918048
826 => 0.11061347341694
827 => 0.11086756462225
828 => 0.10196149226717
829 => 0.098348299821892
830 => 0.097108388334958
831 => 0.096394801744452
901 => 0.096719992114402
902 => 0.093467695128451
903 => 0.095653292491037
904 => 0.092837078211024
905 => 0.092364930722226
906 => 0.097400670716893
907 => 0.098101364518785
908 => 0.095111987071414
909 => 0.097031651328874
910 => 0.09633555438379
911 => 0.09288535412183
912 => 0.092753581849778
913 => 0.09102239263873
914 => 0.088313416747726
915 => 0.08707534207401
916 => 0.086430542034481
917 => 0.086696599097693
918 => 0.086562072505052
919 => 0.085684195490781
920 => 0.086612391387904
921 => 0.084241234427778
922 => 0.083297020620546
923 => 0.082870541149413
924 => 0.080766002868599
925 => 0.084115259165796
926 => 0.084775104849163
927 => 0.085436250632363
928 => 0.09119107329172
929 => 0.090903578614618
930 => 0.093502390480029
1001 => 0.093401405429848
1002 => 0.092660182187872
1003 => 0.089533083255279
1004 => 0.090779489154632
1005 => 0.086943245530908
1006 => 0.089817620093012
1007 => 0.088505875579619
1008 => 0.089374117953537
1009 => 0.087812939878974
1010 => 0.0886769602849
1011 => 0.08493157873935
1012 => 0.081434194151056
1013 => 0.082841643804407
1014 => 0.08437170253899
1015 => 0.087689259727281
1016 => 0.085713350035187
1017 => 0.086423961877881
1018 => 0.084043531159841
1019 => 0.079132022652105
1020 => 0.07915982125687
1021 => 0.078404292675984
1022 => 0.07775140567312
1023 => 0.085940307032342
1024 => 0.08492188770095
1025 => 0.083299169783802
1026 => 0.085471242200151
1027 => 0.086045572622458
1028 => 0.086061923002168
1029 => 0.087646610967832
1030 => 0.088492359219178
1031 => 0.08864142601416
1101 => 0.091134966767583
1102 => 0.091970768737532
1103 => 0.095413318764631
1104 => 0.088420603388965
1105 => 0.088276593017488
1106 => 0.085501807713413
1107 => 0.083741995005949
1108 => 0.085622303595079
1109 => 0.087288000317329
1110 => 0.085553565553685
1111 => 0.085780046117901
1112 => 0.083451709156236
1113 => 0.084283980061594
1114 => 0.085000843884287
1115 => 0.084605033816704
1116 => 0.084012486988108
1117 => 0.087151432181459
1118 => 0.086974320592025
1119 => 0.089897378520112
1120 => 0.092176111204933
1121 => 0.096260007548325
1122 => 0.091998248815664
1123 => 0.09184293338849
1124 => 0.093361166602502
1125 => 0.091970536303937
1126 => 0.092849366649704
1127 => 0.096118414392957
1128 => 0.096187484220474
1129 => 0.095030475618119
1130 => 0.094960071539516
1201 => 0.095182287697886
1202 => 0.096483814678252
1203 => 0.096029021159428
1204 => 0.096555319733374
1205 => 0.097213464159064
1206 => 0.099935828551173
1207 => 0.10059218138959
1208 => 0.098997584272168
1209 => 0.099141558537924
1210 => 0.098545135443339
1211 => 0.097968998207129
1212 => 0.099264070576042
1213 => 0.10163084078494
1214 => 0.10161611723031
1215 => 0.10216516191534
1216 => 0.10250721220557
1217 => 0.10103888196375
1218 => 0.10008305296832
1219 => 0.10044957862615
1220 => 0.1010356611349
1221 => 0.10025951996758
1222 => 0.095468817139314
1223 => 0.096922010346129
1224 => 0.096680127938998
1225 => 0.096335657977337
1226 => 0.097796854984
1227 => 0.097655918968094
1228 => 0.093434338122066
1229 => 0.093704590030943
1230 => 0.093450773035747
1231 => 0.094270907673297
]
'min_raw' => 0.07775140567312
'max_raw' => 0.17417274678716
'avg_raw' => 0.12596207623014
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.077751'
'max' => '$0.174172'
'avg' => '$0.125962'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.018960083290792
'max_diff' => -0.12656772356243
'year' => 2034
]
9 => [
'items' => [
101 => 0.091926246342057
102 => 0.092647448376012
103 => 0.093099779530859
104 => 0.093366206056035
105 => 0.094328721355352
106 => 0.094215781294287
107 => 0.094321700842581
108 => 0.095748856936849
109 => 0.10296692272083
110 => 0.10335978611568
111 => 0.10142518307637
112 => 0.10219801883222
113 => 0.10071434318159
114 => 0.10171034458562
115 => 0.10239178345056
116 => 0.099312492253039
117 => 0.099130156612756
118 => 0.097640357304945
119 => 0.098440891066417
120 => 0.0971671842915
121 => 0.097479707381693
122 => 0.096605865576241
123 => 0.098178606845887
124 => 0.099937175964637
125 => 0.10038145997203
126 => 0.099212740024867
127 => 0.098366509760722
128 => 0.096880808182461
129 => 0.099351563018128
130 => 0.10007408702697
131 => 0.099347767907097
201 => 0.099179463896637
202 => 0.098860528100935
203 => 0.099247127633402
204 => 0.10007015200604
205 => 0.09968202891078
206 => 0.099938391053051
207 => 0.098961402926208
208 => 0.10103936804216
209 => 0.10433967673582
210 => 0.10435028776793
211 => 0.10396216258054
212 => 0.10380335011613
213 => 0.1042015901118
214 => 0.10441761897279
215 => 0.10570545409406
216 => 0.1070873524888
217 => 0.11353606932754
218 => 0.11172529544418
219 => 0.11744698065939
220 => 0.12197209079679
221 => 0.12332897346791
222 => 0.12208070525674
223 => 0.11781044713646
224 => 0.11760092790074
225 => 0.12398249638891
226 => 0.12217941099665
227 => 0.12196493972661
228 => 0.11968332776832
301 => 0.12103204301881
302 => 0.12073705920907
303 => 0.12027141283429
304 => 0.1228446675799
305 => 0.12766157074765
306 => 0.12691081121632
307 => 0.12635040405292
308 => 0.12389486299497
309 => 0.12537364717681
310 => 0.1248470804539
311 => 0.12710954526301
312 => 0.12576931122982
313 => 0.12216575085142
314 => 0.12273962971917
315 => 0.12265288908279
316 => 0.12443800523292
317 => 0.12390215767396
318 => 0.12254825624686
319 => 0.12764510709629
320 => 0.1273141459523
321 => 0.12778337318622
322 => 0.12798994152593
323 => 0.13109230482139
324 => 0.13236324379899
325 => 0.13265176919782
326 => 0.13385906292859
327 => 0.13262173062998
328 => 0.1375719420274
329 => 0.14086354375384
330 => 0.14468690854337
331 => 0.15027387212446
401 => 0.15237462211325
402 => 0.15199514043086
403 => 0.15623111245491
404 => 0.16384306002175
405 => 0.15353373266803
406 => 0.1643894794045
407 => 0.16095267532335
408 => 0.15280407467243
409 => 0.1522794008562
410 => 0.15779772782421
411 => 0.17003684591995
412 => 0.1669710856519
413 => 0.17004186040547
414 => 0.16645963854162
415 => 0.16628175103275
416 => 0.16986787988522
417 => 0.17824706541872
418 => 0.17426642846082
419 => 0.16855920928946
420 => 0.17277333111143
421 => 0.16912266879067
422 => 0.16089670482596
423 => 0.1669687413228
424 => 0.16290854343901
425 => 0.16409352503349
426 => 0.17262745707636
427 => 0.17160063179498
428 => 0.17292943879055
429 => 0.1705841292243
430 => 0.16839324026806
501 => 0.16430378333367
502 => 0.16309309674319
503 => 0.16342768696086
504 => 0.1630929309369
505 => 0.16080491736616
506 => 0.1603108210534
507 => 0.15948730555195
508 => 0.15974254744089
509 => 0.1581940973702
510 => 0.16111634257969
511 => 0.16165873704131
512 => 0.16378530340976
513 => 0.16400609058474
514 => 0.16992854765108
515 => 0.16666655782179
516 => 0.16885498222593
517 => 0.16865922894897
518 => 0.15298067955725
519 => 0.15514104533042
520 => 0.15850189651334
521 => 0.15698783761096
522 => 0.15484731255822
523 => 0.15311872381043
524 => 0.15049973510027
525 => 0.1541859114166
526 => 0.15903284129143
527 => 0.16412901672502
528 => 0.17025173759383
529 => 0.16888521757224
530 => 0.16401455671725
531 => 0.16423305100519
601 => 0.16558369671886
602 => 0.16383448780055
603 => 0.16331861194192
604 => 0.1655128232977
605 => 0.16552793362539
606 => 0.16351525736591
607 => 0.16127853601936
608 => 0.16126916407525
609 => 0.1608711611158
610 => 0.16653044238394
611 => 0.16964247486355
612 => 0.16999926437204
613 => 0.16961846008687
614 => 0.16976501654265
615 => 0.16795419341173
616 => 0.17209319810611
617 => 0.17589155811881
618 => 0.17487351649528
619 => 0.17334732737846
620 => 0.17213164423569
621 => 0.17458714018181
622 => 0.17447780081264
623 => 0.17585838275771
624 => 0.17579575158606
625 => 0.17533151380424
626 => 0.17487353307467
627 => 0.17668937489962
628 => 0.17616644161556
629 => 0.17564269607168
630 => 0.17459224420198
701 => 0.17473501805723
702 => 0.17320909245849
703 => 0.1725031294549
704 => 0.16188713972308
705 => 0.15905020037926
706 => 0.15994275924805
707 => 0.16023661280294
708 => 0.15900197316487
709 => 0.16077212925296
710 => 0.16049625230169
711 => 0.16156952813646
712 => 0.16089899199111
713 => 0.16092651102841
714 => 0.16289841485849
715 => 0.16347086692944
716 => 0.1631797131859
717 => 0.1633836272877
718 => 0.16808274169713
719 => 0.16741467789733
720 => 0.16705978231869
721 => 0.16715809081937
722 => 0.16835881530113
723 => 0.16869495259889
724 => 0.16727071524831
725 => 0.16794239381626
726 => 0.1708023159099
727 => 0.17180312678511
728 => 0.17499723468228
729 => 0.17364032087682
730 => 0.17613099489259
731 => 0.18378647768374
801 => 0.18990220705643
802 => 0.1842779295821
803 => 0.1955086877416
804 => 0.20425344392534
805 => 0.20391780561786
806 => 0.20239295510737
807 => 0.19243728268355
808 => 0.18327592448843
809 => 0.19093978963046
810 => 0.1909593263988
811 => 0.19030099358635
812 => 0.18621214502866
813 => 0.19015871051964
814 => 0.19047197455649
815 => 0.19029662999948
816 => 0.18716171939711
817 => 0.18237529033562
818 => 0.18331054711714
819 => 0.184842516804
820 => 0.18194217858442
821 => 0.18101534478558
822 => 0.18273850515498
823 => 0.18829088689989
824 => 0.18724124129377
825 => 0.18721383080505
826 => 0.19170465982704
827 => 0.18849019542885
828 => 0.18332234370026
829 => 0.18201739298321
830 => 0.17738569705778
831 => 0.18058482593101
901 => 0.18069995688386
902 => 0.17894782669429
903 => 0.18346451940861
904 => 0.1834228972901
905 => 0.18771082480134
906 => 0.19590773173082
907 => 0.19348350300648
908 => 0.19066438875541
909 => 0.19097090464006
910 => 0.19433262734901
911 => 0.19230005305852
912 => 0.19303098094499
913 => 0.19433152100212
914 => 0.19511616910917
915 => 0.1908580058525
916 => 0.18986522430588
917 => 0.18783434168047
918 => 0.18730452231171
919 => 0.18895863383436
920 => 0.18852283388877
921 => 0.18069028057308
922 => 0.17987173517167
923 => 0.17989683879052
924 => 0.17783856745898
925 => 0.17469920963665
926 => 0.18294925455241
927 => 0.18228666048637
928 => 0.18155520791817
929 => 0.18164480668416
930 => 0.18522587156213
1001 => 0.1831486730848
1002 => 0.18867124568291
1003 => 0.18753597078047
1004 => 0.18637158036056
1005 => 0.18621062613633
1006 => 0.18576243516579
1007 => 0.18422542156328
1008 => 0.18236938527806
1009 => 0.18114386935544
1010 => 0.16709564425169
1011 => 0.16970291311618
1012 => 0.17270233828474
1013 => 0.17373772783349
1014 => 0.17196662236358
1015 => 0.18429535560225
1016 => 0.18654793396758
1017 => 0.17972472716694
1018 => 0.17844838376423
1019 => 0.18437903246324
1020 => 0.18080212630542
1021 => 0.18241280692927
1022 => 0.17893139641571
1023 => 0.18600535380257
1024 => 0.1859514620994
1025 => 0.18319953290334
1026 => 0.18552544461545
1027 => 0.1851212602176
1028 => 0.18201433893294
1029 => 0.18610384874901
1030 => 0.18610587709485
1031 => 0.18345720507574
1101 => 0.18036413602628
1102 => 0.17981116833527
1103 => 0.17939458146085
1104 => 0.1823103520954
1105 => 0.18492462292897
1106 => 0.18978913281752
1107 => 0.19101218618141
1108 => 0.19578584488394
1109 => 0.19294336355181
1110 => 0.19420339871005
1111 => 0.19557134511717
1112 => 0.19622718892931
1113 => 0.19515852663195
1114 => 0.20257398351328
1115 => 0.2032000752778
1116 => 0.20340999843076
1117 => 0.20090954809298
1118 => 0.20313053323062
1119 => 0.20209140783601
1120 => 0.20479492343543
1121 => 0.20521886920164
1122 => 0.20485980221997
1123 => 0.20499436929769
1124 => 0.19866658502571
1125 => 0.19833845602949
1126 => 0.193864393883
1127 => 0.19568760727829
1128 => 0.19227919722469
1129 => 0.1933600391632
1130 => 0.19383646399106
1201 => 0.19358760669786
1202 => 0.19579068902814
1203 => 0.19391761898742
1204 => 0.18897427918873
1205 => 0.18402959258042
1206 => 0.18396751606791
1207 => 0.18266566736491
1208 => 0.18172466919812
1209 => 0.18190593882875
1210 => 0.18254475665044
1211 => 0.18168753994502
1212 => 0.18187047059111
1213 => 0.18490833817677
1214 => 0.185517560856
1215 => 0.18344718415333
1216 => 0.17513432293817
1217 => 0.17309432594473
1218 => 0.17456063532871
1219 => 0.17385983388559
1220 => 0.14031845514935
1221 => 0.14819850455713
1222 => 0.14351644678022
1223 => 0.14567415441494
1224 => 0.1408949858377
1225 => 0.14317585558045
1226 => 0.14275466222299
1227 => 0.15542554848308
1228 => 0.15522771002236
1229 => 0.15532240482413
1230 => 0.1508023752098
1231 => 0.1580029051176
]
'min_raw' => 0.091926246342057
'max_raw' => 0.20521886920164
'avg_raw' => 0.14857255777185
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.091926'
'max' => '$0.205218'
'avg' => '$0.148572'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.014174840668937
'max_diff' => 0.031046122414482
'year' => 2035
]
10 => [
'items' => [
101 => 0.16155014507287
102 => 0.16089364536388
103 => 0.1610588721969
104 => 0.15821972778292
105 => 0.15534989394812
106 => 0.15216680656106
107 => 0.15808058948472
108 => 0.15742307777525
109 => 0.15893117307153
110 => 0.16276668402346
111 => 0.16333147758082
112 => 0.16409056584949
113 => 0.16381848674075
114 => 0.17030051494349
115 => 0.16951549855834
116 => 0.17140716218193
117 => 0.16751586658735
118 => 0.16311249625691
119 => 0.1639494329997
120 => 0.16386882926115
121 => 0.16284265115673
122 => 0.16191626344758
123 => 0.16037408891996
124 => 0.16525375732423
125 => 0.16505565169833
126 => 0.16826275150893
127 => 0.1676958654653
128 => 0.16391006172541
129 => 0.1640452724466
130 => 0.16495462952672
131 => 0.16810192476384
201 => 0.16903625627442
202 => 0.16860343669204
203 => 0.16962788853954
204 => 0.17043757350953
205 => 0.16972957250564
206 => 0.17975337367876
207 => 0.1755907925747
208 => 0.17761960564177
209 => 0.1781034656038
210 => 0.17686406848553
211 => 0.177132849341
212 => 0.17753997909864
213 => 0.18001199126283
214 => 0.18649926646417
215 => 0.18937243649046
216 => 0.19801651027428
217 => 0.18913385971623
218 => 0.18860679999218
219 => 0.19016385870667
220 => 0.19523884508591
221 => 0.19935164487705
222 => 0.20071609784088
223 => 0.20089643282472
224 => 0.20345623729199
225 => 0.2049234694751
226 => 0.20314540970012
227 => 0.20163869021144
228 => 0.19624180802391
229 => 0.19686651183234
301 => 0.20117010158346
302 => 0.20724917558708
303 => 0.21246565350205
304 => 0.21063902474884
305 => 0.22457491273689
306 => 0.22595659910791
307 => 0.2257656947267
308 => 0.22891338190238
309 => 0.222665863874
310 => 0.21999492887691
311 => 0.20196446006689
312 => 0.20703028634924
313 => 0.21439376235618
314 => 0.21341917869505
315 => 0.20807162559252
316 => 0.21246159690349
317 => 0.21101013510099
318 => 0.20986530695615
319 => 0.21510998662351
320 => 0.20934324588968
321 => 0.21433623470604
322 => 0.20793267490321
323 => 0.21064736863512
324 => 0.20910637717792
325 => 0.21010358750754
326 => 0.20427391629697
327 => 0.20741946537492
328 => 0.20414305111372
329 => 0.20414149766676
330 => 0.20406917064035
331 => 0.20792385748881
401 => 0.20804955868855
402 => 0.20520093928343
403 => 0.20479040872335
404 => 0.20630835537173
405 => 0.20453123739734
406 => 0.20536273971251
407 => 0.2045564227554
408 => 0.20437490382472
409 => 0.20292853010217
410 => 0.20230539253362
411 => 0.20254974083053
412 => 0.20171565412301
413 => 0.2012130867115
414 => 0.20396919733276
415 => 0.20249671860901
416 => 0.20374351885003
417 => 0.20232263261665
418 => 0.19739722188109
419 => 0.1945645660818
420 => 0.18526092178814
421 => 0.18789942376869
422 => 0.18964875331152
423 => 0.18907059990805
424 => 0.19031269713437
425 => 0.19038895181617
426 => 0.18998513334621
427 => 0.18951756329034
428 => 0.1892899760454
429 => 0.19098622491051
430 => 0.19197095446981
501 => 0.18982432193415
502 => 0.18932139596562
503 => 0.19149175997801
504 => 0.19281568077179
505 => 0.20259076806622
506 => 0.20186659802633
507 => 0.20368412271525
508 => 0.20347949732747
509 => 0.20538455275585
510 => 0.20849851324476
511 => 0.20216696089376
512 => 0.20326589945329
513 => 0.20299646509669
514 => 0.20593807875255
515 => 0.20594726214929
516 => 0.20418361781811
517 => 0.2051397180219
518 => 0.20460604911738
519 => 0.20557046095753
520 => 0.20185692629394
521 => 0.2063796106629
522 => 0.20894368126476
523 => 0.20897928338755
524 => 0.21019463250311
525 => 0.21142949759279
526 => 0.21379971359835
527 => 0.21136339355483
528 => 0.20698069096752
529 => 0.20729710793828
530 => 0.20472753101491
531 => 0.20477072606722
601 => 0.20454014749271
602 => 0.20523213115196
603 => 0.20200877779353
604 => 0.20276529238401
605 => 0.2017061675272
606 => 0.20326359712269
607 => 0.20158806033027
608 => 0.20299633516729
609 => 0.20360409990189
610 => 0.20584676485682
611 => 0.20125681689297
612 => 0.19189760228253
613 => 0.19386502266315
614 => 0.19095505338268
615 => 0.19122438211862
616 => 0.19176846902857
617 => 0.19000490533925
618 => 0.19034133771489
619 => 0.190329317983
620 => 0.1902257384271
621 => 0.18976696739945
622 => 0.18910165864427
623 => 0.19175204395367
624 => 0.19220239606388
625 => 0.19320347301807
626 => 0.19618199899673
627 => 0.19588437401298
628 => 0.19636981270982
629 => 0.19531010276025
630 => 0.19127353902386
701 => 0.19149274385524
702 => 0.18875925609541
703 => 0.19313357159033
704 => 0.19209767594299
705 => 0.19142982728025
706 => 0.19124759858505
707 => 0.1942335077535
708 => 0.19512693857509
709 => 0.19457021244299
710 => 0.19342835090375
711 => 0.19562106262015
712 => 0.19620773977238
713 => 0.19633907515095
714 => 0.20022413990165
715 => 0.19655620711283
716 => 0.19743911499121
717 => 0.20432731022122
718 => 0.19808066765357
719 => 0.20138965353841
720 => 0.20122769589847
721 => 0.20292046110718
722 => 0.20108883974325
723 => 0.20111154488523
724 => 0.20261460571271
725 => 0.20050382785896
726 => 0.19998116957844
727 => 0.19925912090724
728 => 0.20083568776518
729 => 0.20178076829452
730 => 0.20939742327587
731 => 0.21431812975549
801 => 0.21410450890977
802 => 0.21605660355819
803 => 0.21517716703994
804 => 0.21233723453888
805 => 0.21718465302531
806 => 0.2156507269916
807 => 0.2157771819901
808 => 0.21577247532874
809 => 0.21679240204302
810 => 0.21606969049104
811 => 0.21464515183728
812 => 0.21559082707608
813 => 0.21839914445024
814 => 0.22711624774935
815 => 0.23199445424178
816 => 0.22682257359324
817 => 0.23039006761036
818 => 0.22825084242818
819 => 0.22786208157614
820 => 0.23010273145463
821 => 0.23234730329412
822 => 0.23220433377149
823 => 0.23057488987607
824 => 0.22965445836515
825 => 0.236624274133
826 => 0.24175951566305
827 => 0.24140932661779
828 => 0.24295494717596
829 => 0.24749293693899
830 => 0.24790783385098
831 => 0.24785556637636
901 => 0.24682720108998
902 => 0.25129544134411
903 => 0.25502292597532
904 => 0.24658916423851
905 => 0.24980063030184
906 => 0.25124236088464
907 => 0.25335924912238
908 => 0.25693079441112
909 => 0.26081043990029
910 => 0.26135906431061
911 => 0.26096978903739
912 => 0.25841105854682
913 => 0.26265621293486
914 => 0.26514292481426
915 => 0.26662370483105
916 => 0.27037871657533
917 => 0.2512512645219
918 => 0.23771190326243
919 => 0.23559753649101
920 => 0.23989718446405
921 => 0.24103096734549
922 => 0.24057394088762
923 => 0.22533415884522
924 => 0.23551730219251
925 => 0.24647350821118
926 => 0.24689438070491
927 => 0.25237928652132
928 => 0.25416539668903
929 => 0.25858146479428
930 => 0.25830523853193
1001 => 0.25938048084056
1002 => 0.25913330125441
1003 => 0.26731313750654
1004 => 0.27633671161007
1005 => 0.27602425393207
1006 => 0.27472700839261
1007 => 0.27665363923195
1008 => 0.28596693473176
1009 => 0.28510951572466
1010 => 0.28594242525528
1011 => 0.2969233255239
1012 => 0.31120005788794
1013 => 0.30456708234435
1014 => 0.31895873068665
1015 => 0.32801751044963
1016 => 0.3436837333544
1017 => 0.34172224508895
1018 => 0.34782099070172
1019 => 0.33821077171884
1020 => 0.31614376638843
1021 => 0.31265157832579
1022 => 0.31964302726348
1023 => 0.33683082226118
1024 => 0.31910172243284
1025 => 0.32268829623768
1026 => 0.32165536274061
1027 => 0.32160032210423
1028 => 0.3237009993282
1029 => 0.32065385745088
1030 => 0.30823925327231
1031 => 0.31392879320763
1101 => 0.31173178860445
1102 => 0.31416952900922
1103 => 0.32732500857311
1104 => 0.32150865747045
1105 => 0.31538160406579
1106 => 0.32306628873723
1107 => 0.33285153306812
1108 => 0.33223919006367
1109 => 0.33105098869551
1110 => 0.33774881759562
1111 => 0.34881166865885
1112 => 0.35180191284711
1113 => 0.35400924997403
1114 => 0.35431360447056
1115 => 0.35744864494015
1116 => 0.34059074220326
1117 => 0.36734466678835
1118 => 0.37196433050194
1119 => 0.37109602518923
1120 => 0.37623058698172
1121 => 0.37471986865111
1122 => 0.3725310748145
1123 => 0.38067044740821
1124 => 0.37133931354301
1125 => 0.35809494377846
1126 => 0.3508288205817
1127 => 0.36039743774864
1128 => 0.36624065835377
1129 => 0.37010265547513
1130 => 0.37127129347057
1201 => 0.34189937320443
1202 => 0.32606953722237
1203 => 0.33621628059743
1204 => 0.34859600780583
1205 => 0.34052197219355
1206 => 0.34083845910338
1207 => 0.3293270061395
1208 => 0.34961451596313
1209 => 0.34665879642665
1210 => 0.36199307461052
1211 => 0.35833342605667
1212 => 0.37083793464237
1213 => 0.36754507846004
1214 => 0.38121354037179
1215 => 0.38666625988722
1216 => 0.39582222460166
1217 => 0.40255738951708
1218 => 0.40651240717859
1219 => 0.40627496275309
1220 => 0.42194671310997
1221 => 0.41270562945377
1222 => 0.4010966504254
1223 => 0.40088668062063
1224 => 0.40689913535993
1225 => 0.4194995910571
1226 => 0.4227667058902
1227 => 0.4245925773739
1228 => 0.42179619163757
1229 => 0.4117656576432
1230 => 0.4074345239204
1231 => 0.41112477533725
]
'min_raw' => 0.15216680656106
'max_raw' => 0.4245925773739
'avg_raw' => 0.28837969196748
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.152166'
'max' => '$0.424592'
'avg' => '$0.288379'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.060240560219002
'max_diff' => 0.21937370817226
'year' => 2036
]
11 => [
'items' => [
101 => 0.40661191496136
102 => 0.41440237805513
103 => 0.42510034783602
104 => 0.42289125938062
105 => 0.43027591088196
106 => 0.43791824829784
107 => 0.44884713404141
108 => 0.45170434947025
109 => 0.45642721792394
110 => 0.46128860094426
111 => 0.46284994615244
112 => 0.46583103861183
113 => 0.46581532678306
114 => 0.47479904956007
115 => 0.48470837398585
116 => 0.4884489145552
117 => 0.4970500813398
118 => 0.482320884642
119 => 0.4934931495341
120 => 0.50357081212669
121 => 0.49155580733054
122 => 0.50811569230496
123 => 0.50875867511301
124 => 0.51846695213022
125 => 0.50862575349245
126 => 0.50278208115555
127 => 0.51965254423262
128 => 0.527815629901
129 => 0.52535684206429
130 => 0.50664534522158
131 => 0.49575445148528
201 => 0.46725088188085
202 => 0.50101459133987
203 => 0.51745990931644
204 => 0.50660275582092
205 => 0.51207847252116
206 => 0.54195220733056
207 => 0.55332619136489
208 => 0.5509604821959
209 => 0.55136024810257
210 => 0.55749744343508
211 => 0.58471314735464
212 => 0.56840486671096
213 => 0.58087193620344
214 => 0.58748442490888
215 => 0.5936264729365
216 => 0.57854354419489
217 => 0.55892087551428
218 => 0.55270555263953
219 => 0.5055232258769
220 => 0.50306718086645
221 => 0.5016885283763
222 => 0.49299631944018
223 => 0.48616662421279
224 => 0.48073539699765
225 => 0.46648223488338
226 => 0.47129225869099
227 => 0.44857569314697
228 => 0.46310894675638
301 => 0.42685275963747
302 => 0.45704798962852
303 => 0.44061409875303
304 => 0.45164901448784
305 => 0.45161051470639
306 => 0.43129173621539
307 => 0.41957228882386
308 => 0.42704037682946
309 => 0.43504675998902
310 => 0.43634576871995
311 => 0.44672625347431
312 => 0.44962322364147
313 => 0.44084526878835
314 => 0.42610143074651
315 => 0.42952608805248
316 => 0.41950288825286
317 => 0.40193761614084
318 => 0.41455330123193
319 => 0.41886085079454
320 => 0.42076331007707
321 => 0.40348988234003
322 => 0.39806219632069
323 => 0.39517254182669
324 => 0.42387164813607
325 => 0.42544384996427
326 => 0.41740024312427
327 => 0.45375810876714
328 => 0.44552920401262
329 => 0.45472290675403
330 => 0.42921533629753
331 => 0.43018975983946
401 => 0.4181140672084
402 => 0.42487564818372
403 => 0.4200967806863
404 => 0.42432937926016
405 => 0.42686638139368
406 => 0.43894009252241
407 => 0.45718585201534
408 => 0.43713668270256
409 => 0.42840097252359
410 => 0.43382055798712
411 => 0.44825362826114
412 => 0.47012046854154
413 => 0.45717485898437
414 => 0.46291990067513
415 => 0.46417493670545
416 => 0.45462932349051
417 => 0.47047242891649
418 => 0.47896287782344
419 => 0.48767232155111
420 => 0.49523448750678
421 => 0.48419357820151
422 => 0.49600893381033
423 => 0.48648784288065
424 => 0.47794644004444
425 => 0.4779593938268
426 => 0.47260124705766
427 => 0.46221916252251
428 => 0.46030454684448
429 => 0.47026461939092
430 => 0.47825165435079
501 => 0.47890950480541
502 => 0.48333153774787
503 => 0.48594845129265
504 => 0.511597761553
505 => 0.52191412632193
506 => 0.53452878188259
507 => 0.5394429011465
508 => 0.55423263832161
509 => 0.54228872438898
510 => 0.53970458347892
511 => 0.50382951877827
512 => 0.50970405861325
513 => 0.51910976369782
514 => 0.50398461539078
515 => 0.51357804066236
516 => 0.5154719860275
517 => 0.50347066863902
518 => 0.50988109080252
519 => 0.49285691009397
520 => 0.45755693263306
521 => 0.47051172788244
522 => 0.48005081772291
523 => 0.46643736035926
524 => 0.49083895577004
525 => 0.47658404748224
526 => 0.47206592591128
527 => 0.4544391228363
528 => 0.46275829536982
529 => 0.47401009534048
530 => 0.46705779112076
531 => 0.48148486627041
601 => 0.50191745224271
602 => 0.51647892978811
603 => 0.51759677922345
604 => 0.50823472470499
605 => 0.52323747681866
606 => 0.52334675548893
607 => 0.50642358981667
608 => 0.49605824507099
609 => 0.4937032169359
610 => 0.49958653894782
611 => 0.50672997799145
612 => 0.51799319037457
613 => 0.52479931372613
614 => 0.5425460737381
615 => 0.54734783815785
616 => 0.55262352145116
617 => 0.55967346129149
618 => 0.56813872163727
619 => 0.54961721392823
620 => 0.55035310795792
621 => 0.53310613642699
622 => 0.51467527388029
623 => 0.52866200111379
624 => 0.54694778639524
625 => 0.54275300704767
626 => 0.54228100867951
627 => 0.54307477901333
628 => 0.53991205237396
629 => 0.52560715700018
630 => 0.51842332809685
701 => 0.52769230017236
702 => 0.53261834631601
703 => 0.54025821428843
704 => 0.53931643930278
705 => 0.55899591873783
706 => 0.56664276936973
707 => 0.5646863777509
708 => 0.56504640089196
709 => 0.57889065869981
710 => 0.59428832067091
711 => 0.6087102630073
712 => 0.6233808821887
713 => 0.6056948781615
714 => 0.59671501603757
715 => 0.60597994156983
716 => 0.60106384166915
717 => 0.62931320990843
718 => 0.63126913487354
719 => 0.65951646036197
720 => 0.68632653587944
721 => 0.66948760779931
722 => 0.68536595853689
723 => 0.70253968944051
724 => 0.73567060269103
725 => 0.72451327666784
726 => 0.71596693979166
727 => 0.70789069273928
728 => 0.72469608078718
729 => 0.74631594403817
730 => 0.75097265550996
731 => 0.75851830709496
801 => 0.75058497709171
802 => 0.76013979925298
803 => 0.79387252008388
804 => 0.78475764114841
805 => 0.77181304777013
806 => 0.79844179114117
807 => 0.80807862985053
808 => 0.87571501076444
809 => 0.96110873558779
810 => 0.9257551727855
811 => 0.90381007550177
812 => 0.90896769390811
813 => 0.94015059145359
814 => 0.9501655484495
815 => 0.92294144297192
816 => 0.93255745726739
817 => 0.98554264146108
818 => 1.0139674928128
819 => 0.97536272671032
820 => 0.86885370812091
821 => 0.77064752876628
822 => 0.79669622981302
823 => 0.79374311549962
824 => 0.85066908587941
825 => 0.78454025430029
826 => 0.78565369422724
827 => 0.84375683338883
828 => 0.8282559120005
829 => 0.80314640455942
830 => 0.77083085595845
831 => 0.7110925755431
901 => 0.65818071465403
902 => 0.7619530587313
903 => 0.75747820655693
904 => 0.7509979574725
905 => 0.76541905057371
906 => 0.83544378517453
907 => 0.83382948839403
908 => 0.82356015589797
909 => 0.83134935408649
910 => 0.80178092045675
911 => 0.80940137906385
912 => 0.77063197240572
913 => 0.78815736336864
914 => 0.8030925308337
915 => 0.80609098682125
916 => 0.81284666126614
917 => 0.75512016279989
918 => 0.78103766585028
919 => 0.79626177075076
920 => 0.72747871095272
921 => 0.79490215081295
922 => 0.75411527289146
923 => 0.74027159392655
924 => 0.75891028388678
925 => 0.75164676828256
926 => 0.745402024094
927 => 0.74191734953846
928 => 0.7556035463681
929 => 0.75496506892746
930 => 0.73257179453782
1001 => 0.70336068096318
1002 => 0.71316488950094
1003 => 0.70960292862423
1004 => 0.69669392290491
1005 => 0.70539303412044
1006 => 0.6670865508467
1007 => 0.60118223737197
1008 => 0.64472064555709
1009 => 0.64304446420264
1010 => 0.64219925755495
1011 => 0.67491716799285
1012 => 0.67177209583487
1013 => 0.6660637590715
1014 => 0.69658908482372
1015 => 0.68544693030059
1016 => 0.71978442511911
1017 => 0.74240132001651
1018 => 0.73666494389062
1019 => 0.75793624285856
1020 => 0.71339075866394
1021 => 0.72818698165877
1022 => 0.73123646271132
1023 => 0.69621240704226
1024 => 0.67228666853568
1025 => 0.67069109455068
1026 => 0.62920716115013
1027 => 0.65136754352609
1028 => 0.67086776295801
1029 => 0.66152867112828
1030 => 0.65857219365242
1031 => 0.67367619589486
1101 => 0.67484990622613
1102 => 0.64808918628896
1103 => 0.65365358736568
1104 => 0.67685806486033
1105 => 0.65306889406937
1106 => 0.60685042116153
1107 => 0.59538760086
1108 => 0.59385824933009
1109 => 0.5627701715446
1110 => 0.59615360132416
1111 => 0.58158083960509
1112 => 0.62761601926714
1113 => 0.6013209715358
1114 => 0.60018744458335
1115 => 0.59847395234246
1116 => 0.57171515956018
1117 => 0.5775736345695
1118 => 0.59704809777143
1119 => 0.60399680563741
1120 => 0.6032719984779
1121 => 0.59695266227748
1122 => 0.5998456220298
1123 => 0.5905263906936
1124 => 0.58723557614576
1125 => 0.57684886022293
1126 => 0.56158325721988
1127 => 0.56370603294684
1128 => 0.53346087893548
1129 => 0.51698171379828
1130 => 0.51242049808021
1201 => 0.50632104979568
1202 => 0.51310944699396
1203 => 0.53337519821427
1204 => 0.50893040262361
1205 => 0.46702151518646
1206 => 0.4695403107307
1207 => 0.4751992964815
1208 => 0.46465381397282
1209 => 0.45467339979361
1210 => 0.46335056018584
1211 => 0.44559321210361
1212 => 0.47734518716051
1213 => 0.4764863852191
1214 => 0.48832155799134
1215 => 0.49572233440802
1216 => 0.4786659407974
1217 => 0.47437630392972
1218 => 0.47681987604267
1219 => 0.43643307213965
1220 => 0.48502109448594
1221 => 0.48544128572085
1222 => 0.48184335326203
1223 => 0.50771497517454
1224 => 0.56231216697116
1225 => 0.54177050725032
1226 => 0.53381615573146
1227 => 0.51869492767951
1228 => 0.53884306624905
1229 => 0.53729600356683
1230 => 0.53029959941175
1231 => 0.52606815234864
]
'min_raw' => 0.39517254182669
'max_raw' => 1.0139674928128
'avg_raw' => 0.70457001731973
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.395172'
'max' => '$1.01'
'avg' => '$0.70457'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.24300573526563
'max_diff' => 0.58937491543886
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.012404014534391
]
1 => [
'year' => 2028
'avg' => 0.021288889852163
]
2 => [
'year' => 2029
'avg' => 0.058157410127028
]
3 => [
'year' => 2030
'avg' => 0.044868355302389
]
4 => [
'year' => 2031
'avg' => 0.044066285381003
]
5 => [
'year' => 2032
'avg' => 0.077262066443293
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.012404014534391
'min' => '$0.012404'
'max_raw' => 0.077262066443293
'max' => '$0.077262'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.077262066443293
]
1 => [
'year' => 2033
'avg' => 0.19872597965675
]
2 => [
'year' => 2034
'avg' => 0.12596207623014
]
3 => [
'year' => 2035
'avg' => 0.14857255777185
]
4 => [
'year' => 2036
'avg' => 0.28837969196748
]
5 => [
'year' => 2037
'avg' => 0.70457001731973
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.077262066443293
'min' => '$0.077262'
'max_raw' => 0.70457001731973
'max' => '$0.70457'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.70457001731973
]
]
]
]
'prediction_2025_max_price' => '$0.0212086'
'last_price' => 0.02056442
'sma_50day_nextmonth' => '$0.019947'
'sma_200day_nextmonth' => '$0.026219'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.021496'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.021585'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.021525'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.02150048'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.025348'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.031228'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.027332'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.021236'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.0214018'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.02153'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.022251'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.02569'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.027807'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.028315'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.028055'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.026536'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.037581'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.085976'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.02152'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.023026'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.026059'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.027574'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.029975'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.06721'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.210017'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '30.23'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 71.08
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.020995'
'vwma_10_action' => 'SELL'
'hma_9' => '0.021666'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -313.55
'cci_20_action' => 'BUY'
'adx_14' => 32.68
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.001037'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 31.6
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.013635'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 32
'buy_signals' => 0
'sell_pct' => 100
'buy_pct' => 0
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767696042
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Impossible Finance Launchpad para 2026
La previsión del precio de Impossible Finance Launchpad para 2026 sugiere que el precio medio podría oscilar entre $0.007105 en el extremo inferior y $0.0212086 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Impossible Finance Launchpad podría potencialmente ganar 3.13% para 2026 si IDIA alcanza el objetivo de precio previsto.
Predicción de precio de Impossible Finance Launchpad 2027-2032
La predicción del precio de IDIA para 2027-2032 está actualmente dentro de un rango de precios de $0.012404 en el extremo inferior y $0.077262 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Impossible Finance Launchpad alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Impossible Finance Launchpad | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.006839 | $0.012404 | $0.017968 |
| 2028 | $0.012343 | $0.021288 | $0.030233 |
| 2029 | $0.027115 | $0.058157 | $0.089198 |
| 2030 | $0.02306 | $0.044868 | $0.066675 |
| 2031 | $0.027265 | $0.044066 | $0.060867 |
| 2032 | $0.041618 | $0.077262 | $0.1129059 |
Predicción de precio de Impossible Finance Launchpad 2032-2037
La predicción de precio de Impossible Finance Launchpad para 2032-2037 se estima actualmente entre $0.077262 en el extremo inferior y $0.70457 en el extremo superior. Comparado con el precio actual, Impossible Finance Launchpad podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Impossible Finance Launchpad | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.041618 | $0.077262 | $0.1129059 |
| 2033 | $0.096711 | $0.198725 | $0.30074 |
| 2034 | $0.077751 | $0.125962 | $0.174172 |
| 2035 | $0.091926 | $0.148572 | $0.205218 |
| 2036 | $0.152166 | $0.288379 | $0.424592 |
| 2037 | $0.395172 | $0.70457 | $1.01 |
Impossible Finance Launchpad Histograma de precios potenciales
Pronóstico de precio de Impossible Finance Launchpad basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Impossible Finance Launchpad es Bajista, con 0 indicadores técnicos mostrando señales alcistas y 32 indicando señales bajistas. La predicción de precio de IDIA se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Impossible Finance Launchpad
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Impossible Finance Launchpad aumentar durante el próximo mes, alcanzando $0.026219 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Impossible Finance Launchpad alcance $0.019947 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 30.23, lo que sugiere que el mercado de IDIA está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de IDIA para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.021496 | SELL |
| SMA 5 | $0.021585 | SELL |
| SMA 10 | $0.021525 | SELL |
| SMA 21 | $0.02150048 | SELL |
| SMA 50 | $0.025348 | SELL |
| SMA 100 | $0.031228 | SELL |
| SMA 200 | $0.027332 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.021236 | SELL |
| EMA 5 | $0.0214018 | SELL |
| EMA 10 | $0.02153 | SELL |
| EMA 21 | $0.022251 | SELL |
| EMA 50 | $0.02569 | SELL |
| EMA 100 | $0.027807 | SELL |
| EMA 200 | $0.028315 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.028055 | SELL |
| SMA 50 | $0.026536 | SELL |
| SMA 100 | $0.037581 | SELL |
| SMA 200 | $0.085976 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.027574 | SELL |
| EMA 50 | $0.029975 | SELL |
| EMA 100 | $0.06721 | SELL |
| EMA 200 | $0.210017 | SELL |
Osciladores de Impossible Finance Launchpad
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 30.23 | NEUTRAL |
| Stoch RSI (14) | 71.08 | NEUTRAL |
| Estocástico Rápido (14) | 0 | BUY |
| Índice de Canal de Materias Primas (20) | -313.55 | BUY |
| Índice Direccional Medio (14) | 32.68 | SELL |
| Oscilador Asombroso (5, 34) | -0.001037 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -100 | BUY |
| Oscilador Ultimate (7, 14, 28) | 31.6 | NEUTRAL |
| VWMA (10) | 0.020995 | SELL |
| Promedio Móvil de Hull (9) | 0.021666 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.013635 | SELL |
Predicción de precios de Impossible Finance Launchpad basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Impossible Finance Launchpad
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Impossible Finance Launchpad por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.028896 | $0.0406043 | $0.057055 | $0.080173 | $0.112656 | $0.1583011 |
| Amazon.com acción | $0.0429088 | $0.089531 | $0.186813 | $0.389797 | $0.813336 | $1.69 |
| Apple acción | $0.029169 | $0.041374 | $0.058685 | $0.083241 | $0.118071 | $0.167475 |
| Netflix acción | $0.032447 | $0.051196 | $0.08078 | $0.127459 | $0.20111 | $0.317321 |
| Google acción | $0.02663 | $0.034486 | $0.04466 | $0.057834 | $0.074895 | $0.096989 |
| Tesla acción | $0.046617 | $0.105679 | $0.239567 | $0.543081 | $1.23 | $2.79 |
| Kodak acción | $0.015421 | $0.011564 | $0.008671 | $0.006503 | $0.004876 | $0.003656 |
| Nokia acción | $0.013623 | $0.009024 | $0.005978 | $0.00396 | $0.002623 | $0.001738 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Impossible Finance Launchpad
Podría preguntarse cosas como: "¿Debo invertir en Impossible Finance Launchpad ahora?", "¿Debería comprar IDIA hoy?", "¿Será Impossible Finance Launchpad una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Impossible Finance Launchpad regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Impossible Finance Launchpad, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Impossible Finance Launchpad a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Impossible Finance Launchpad es de $0.02056 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Impossible Finance Launchpad basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Impossible Finance Launchpad ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.021098 | $0.021647 | $0.02221 | $0.022787 |
| Si Impossible Finance Launchpad ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.021633 | $0.022758 | $0.023941 | $0.025185 |
| Si Impossible Finance Launchpad ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.023237 | $0.026257 | $0.029669 | $0.033525 |
| Si Impossible Finance Launchpad ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.0259097 | $0.032644 | $0.041129 | $0.05182 |
| Si Impossible Finance Launchpad ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.031255 | $0.0475035 | $0.072198 | $0.109732 |
| Si Impossible Finance Launchpad ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.047291 | $0.108753 | $0.250096 | $0.575137 |
| Si Impossible Finance Launchpad ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.074017 | $0.266414 | $0.958911 | $3.45 |
Cuadro de preguntas
¿Es IDIA una buena inversión?
La decisión de adquirir Impossible Finance Launchpad depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Impossible Finance Launchpad ha experimentado una caída de -6.485% durante las últimas 24 horas, y Impossible Finance Launchpad ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Impossible Finance Launchpad dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Impossible Finance Launchpad subir?
Parece que el valor medio de Impossible Finance Launchpad podría potencialmente aumentar hasta $0.0212086 para el final de este año. Mirando las perspectivas de Impossible Finance Launchpad en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.066675. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Impossible Finance Launchpad la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Impossible Finance Launchpad, el precio de Impossible Finance Launchpad aumentará en un 0.86% durante la próxima semana y alcanzará $0.02074 para el 13 de enero de 2026.
¿Cuál será el precio de Impossible Finance Launchpad el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Impossible Finance Launchpad, el precio de Impossible Finance Launchpad disminuirá en un -11.62% durante el próximo mes y alcanzará $0.018175 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Impossible Finance Launchpad este año en 2026?
Según nuestra predicción más reciente sobre el valor de Impossible Finance Launchpad en 2026, se anticipa que IDIA fluctúe dentro del rango de $0.007105 y $0.0212086. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Impossible Finance Launchpad no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Impossible Finance Launchpad en 5 años?
El futuro de Impossible Finance Launchpad parece estar en una tendencia alcista, con un precio máximo de $0.066675 proyectada después de un período de cinco años. Basado en el pronóstico de Impossible Finance Launchpad para 2030, el valor de Impossible Finance Launchpad podría potencialmente alcanzar su punto más alto de aproximadamente $0.066675, mientras que su punto más bajo se anticipa que esté alrededor de $0.02306.
¿Cuánto será Impossible Finance Launchpad en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Impossible Finance Launchpad, se espera que el valor de IDIA en 2026 crezca en un 3.13% hasta $0.0212086 si ocurre lo mejor. El precio estará entre $0.0212086 y $0.007105 durante 2026.
¿Cuánto será Impossible Finance Launchpad en 2027?
Según nuestra última simulación experimental para la predicción de precios de Impossible Finance Launchpad, el valor de IDIA podría disminuir en un -12.62% hasta $0.017968 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.017968 y $0.006839 a lo largo del año.
¿Cuánto será Impossible Finance Launchpad en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Impossible Finance Launchpad sugiere que el valor de IDIA en 2028 podría aumentar en un 47.02% , alcanzando $0.030233 en el mejor escenario. Se espera que el precio oscile entre $0.030233 y $0.012343 durante el año.
¿Cuánto será Impossible Finance Launchpad en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Impossible Finance Launchpad podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.089198 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.089198 y $0.027115.
¿Cuánto será Impossible Finance Launchpad en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Impossible Finance Launchpad, se espera que el valor de IDIA en 2030 aumente en un 224.23% , alcanzando $0.066675 en el mejor escenario. Se pronostica que el precio oscile entre $0.066675 y $0.02306 durante el transcurso de 2030.
¿Cuánto será Impossible Finance Launchpad en 2031?
Nuestra simulación experimental indica que el precio de Impossible Finance Launchpad podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.060867 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.060867 y $0.027265 durante el año.
¿Cuánto será Impossible Finance Launchpad en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Impossible Finance Launchpad, IDIA podría experimentar un 449.04% aumento en valor, alcanzando $0.1129059 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.1129059 y $0.041618 a lo largo del año.
¿Cuánto será Impossible Finance Launchpad en 2033?
Según nuestra predicción experimental de precios de Impossible Finance Launchpad, se anticipa que el valor de IDIA aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.30074. A lo largo del año, el precio de IDIA podría oscilar entre $0.30074 y $0.096711.
¿Cuánto será Impossible Finance Launchpad en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Impossible Finance Launchpad sugieren que IDIA podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.174172 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.174172 y $0.077751.
¿Cuánto será Impossible Finance Launchpad en 2035?
Basado en nuestra predicción experimental para el precio de Impossible Finance Launchpad, IDIA podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.205218 en 2035. El rango de precios esperado para el año está entre $0.205218 y $0.091926.
¿Cuánto será Impossible Finance Launchpad en 2036?
Nuestra reciente simulación de predicción de precios de Impossible Finance Launchpad sugiere que el valor de IDIA podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.424592 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.424592 y $0.152166.
¿Cuánto será Impossible Finance Launchpad en 2037?
Según la simulación experimental, el valor de Impossible Finance Launchpad podría aumentar en un 4830.69% en 2037, con un máximo de $1.01 bajo condiciones favorables. Se espera que el precio caiga entre $1.01 y $0.395172 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de SelfKey
Predicción de precios de Solchat
Predicción de precios de pSTAKE Finance
Predicción de precios de Groestlcoin
Predicción de precios de Games for a Living
Predicción de precios de Fideum
Predicción de precios de district0x
Predicción de precios de SOLO Coin
Predicción de precios de Voxies
Predicción de precios de Picasso
Predicción de precios de Acet Token
Predicción de precios de Dream Machine Token
Predicción de precios de KILT Protocol [OLD]
Predicción de precios de Fluence
Predicción de precios de Vyvo Smart Chain
Predicción de precios de HydraDX
Predicción de precios de Leash
Predicción de precios de BNB48 Club Token
Predicción de precios de Turbo
Predicción de precios de SafeMoon
Predicción de precios de ASD
Predicción de precios de UniLend Finance
Predicción de precios de ECOx
Predicción de precios de Botto
Predicción de precios de Coinweb
¿Cómo leer y predecir los movimientos de precio de Impossible Finance Launchpad?
Los traders de Impossible Finance Launchpad utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Impossible Finance Launchpad
Las medias móviles son herramientas populares para la predicción de precios de Impossible Finance Launchpad. Una media móvil simple (SMA) calcula el precio de cierre promedio de IDIA durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de IDIA por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de IDIA.
¿Cómo leer gráficos de Impossible Finance Launchpad y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Impossible Finance Launchpad en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de IDIA dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Impossible Finance Launchpad?
La acción del precio de Impossible Finance Launchpad está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de IDIA. La capitalización de mercado de Impossible Finance Launchpad puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de IDIA, grandes poseedores de Impossible Finance Launchpad, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Impossible Finance Launchpad.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


