Predicción del precio de Impossible Finance Launchpad - Pronóstico de IDIA
Predicción de precio de Impossible Finance Launchpad hasta $0.021221 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.0071091 | $0.021221 |
| 2027 | $0.006843 | $0.017978 |
| 2028 | $0.012351 | $0.030251 |
| 2029 | $0.027131 | $0.089251 |
| 2030 | $0.023074 | $0.066715 |
| 2031 | $0.027281 | $0.0609033 |
| 2032 | $0.041642 | $0.112972 |
| 2033 | $0.096768 | $0.300917 |
| 2034 | $0.077797 | $0.174275 |
| 2035 | $0.09198 | $0.205339 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Impossible Finance Launchpad hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.77, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Impossible Finance Launchpad para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Impossible Finance Launchpad'
'name_with_ticker' => 'Impossible Finance Launchpad <small>IDIA</small>'
'name_lang' => 'Impossible Finance Launchpad'
'name_lang_with_ticker' => 'Impossible Finance Launchpad <small>IDIA</small>'
'name_with_lang' => 'Impossible Finance Launchpad'
'name_with_lang_with_ticker' => 'Impossible Finance Launchpad <small>IDIA</small>'
'image' => '/uploads/coins/idia.png?1717089499'
'price_for_sd' => 0.02057
'ticker' => 'IDIA'
'marketcap' => '$15.4M'
'low24h' => '$0.01855'
'high24h' => '$0.02129'
'volume24h' => '$37.59K'
'current_supply' => '748.39M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02057'
'change_24h_pct' => '-3.3686%'
'ath_price' => '$3.51'
'ath_days' => 1502
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '26 nov. 2021'
'ath_pct' => '-99.41%'
'fdv' => '$20.58M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.01'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.020752'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.018185'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0071091'
'current_year_max_price_prediction' => '$0.021221'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.023074'
'grand_prediction_max_price' => '$0.066715'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.020966464799235
107 => 0.021044745967968
108 => 0.021221117438261
109 => 0.019714042535174
110 => 0.020390674921266
111 => 0.020788133056213
112 => 0.018992402742868
113 => 0.020752637241632
114 => 0.01968780771405
115 => 0.019326388579187
116 => 0.01981299183093
117 => 0.019623362070489
118 => 0.019460329537894
119 => 0.019369354583452
120 => 0.019726662307091
121 => 0.019709993474708
122 => 0.019125368688393
123 => 0.018362749487
124 => 0.01861870952311
125 => 0.018525716842353
126 => 0.018188699370996
127 => 0.018415808455046
128 => 0.017415734986167
129 => 0.015695160562257
130 => 0.016831824729312
131 => 0.016788064395333
201 => 0.016765998450568
202 => 0.01762017015702
203 => 0.017538061256538
204 => 0.017389032798152
205 => 0.018185962346488
206 => 0.017895072341131
207 => 0.018791526795338
208 => 0.019381989677917
209 => 0.019232229191422
210 => 0.019787562386443
211 => 0.018624606325375
212 => 0.019010893679163
213 => 0.019090506967408
214 => 0.018176128359566
215 => 0.017551495288115
216 => 0.017509839383588
217 => 0.016426811717431
218 => 0.017005356354798
219 => 0.017514451693877
220 => 0.017270634533852
221 => 0.017193449304819
222 => 0.017587771900517
223 => 0.017618414143347
224 => 0.016919767759496
225 => 0.017065038465952
226 => 0.01767084146112
227 => 0.017049773784804
228 => 0.015843140740551
301 => 0.01554387906257
302 => 0.01550395203824
303 => 0.01469233063281
304 => 0.015563877158868
305 => 0.015183423744249
306 => 0.016385271522498
307 => 0.015698782517201
308 => 0.015669189348251
309 => 0.015624454933009
310 => 0.014925858861698
311 => 0.015078807003218
312 => 0.015587229920293
313 => 0.015768640944899
314 => 0.015749718288776
315 => 0.01558473837063
316 => 0.015660265332323
317 => 0.015416966673371
318 => 0.015331052853072
319 => 0.015059885203748
320 => 0.014661343671217
321 => 0.014716763315713
322 => 0.013927148255704
323 => 0.013496924062969
324 => 0.013377843676683
325 => 0.01321860440743
326 => 0.013395830175865
327 => 0.013924911375449
328 => 0.013286727197912
329 => 0.01219260518894
330 => 0.012258363785973
331 => 0.012406103829602
401 => 0.012130791235697
402 => 0.011870230970801
403 => 0.012096766981206
404 => 0.011633173062449
405 => 0.012462126939837
406 => 0.01243970606057
407 => 0.012748688803897
408 => 0.012941902054263
409 => 0.012496608065702
410 => 0.012384617831781
411 => 0.012448412558695
412 => 0.011394027827327
413 => 0.012662523076723
414 => 0.012673493076315
415 => 0.012579561279727
416 => 0.013254995839633
417 => 0.014680373434358
418 => 0.014144089047541
419 => 0.013936423523685
420 => 0.013541651211031
421 => 0.014067661878382
422 => 0.014027272466174
423 => 0.01384461622694
424 => 0.013734145163529
425 => 0.013937691485091
426 => 0.01370892352174
427 => 0.013667830509399
428 => 0.013418851564251
429 => 0.013329977408653
430 => 0.013264178522031
501 => 0.013191740413124
502 => 0.01335152083092
503 => 0.012989437383331
504 => 0.012552800241017
505 => 0.012516498587113
506 => 0.012616730645216
507 => 0.012572385420905
508 => 0.01251628627924
509 => 0.01240917774011
510 => 0.012377400924562
511 => 0.012480660159174
512 => 0.012364086503684
513 => 0.012536097282455
514 => 0.01248931986842
515 => 0.012228025036138
516 => 0.011902354931377
517 => 0.011899455784329
518 => 0.011829290694464
519 => 0.01173992490313
520 => 0.011715065384393
521 => 0.01207768875027
522 => 0.012828308265231
523 => 0.012680943693641
524 => 0.012787429699143
525 => 0.013311235453141
526 => 0.013477737550948
527 => 0.013359558305743
528 => 0.013197787265928
529 => 0.013204904370678
530 => 0.013757724985151
531 => 0.013792203728772
601 => 0.013879320390638
602 => 0.013991289920302
603 => 0.013378627200815
604 => 0.013176048011686
605 => 0.013080054753211
606 => 0.012784432671174
607 => 0.013103235741929
608 => 0.012917482845109
609 => 0.012942547257112
610 => 0.012926224025914
611 => 0.01293513761392
612 => 0.012461895230335
613 => 0.012634319882026
614 => 0.012347630456278
615 => 0.0119637854976
616 => 0.011962498714705
617 => 0.012056444224549
618 => 0.012000561759206
619 => 0.011850183481837
620 => 0.011871544006371
621 => 0.011684403334846
622 => 0.011894266272186
623 => 0.011900284390303
624 => 0.011819475728116
625 => 0.012142798538592
626 => 0.01227526415785
627 => 0.012222074165309
628 => 0.01227153220618
629 => 0.012687067356902
630 => 0.012754817717539
701 => 0.012784907952397
702 => 0.01274459102388
703 => 0.012279127425926
704 => 0.0122997727158
705 => 0.012148291277075
706 => 0.012020305424073
707 => 0.012025424186995
708 => 0.012091225552435
709 => 0.012378583974507
710 => 0.012983312833054
711 => 0.013006261851185
712 => 0.01303407673063
713 => 0.01292093963729
714 => 0.012886816407363
715 => 0.01293183375559
716 => 0.013158938119727
717 => 0.013743112202523
718 => 0.013536626065988
719 => 0.013368749622837
720 => 0.013516022522644
721 => 0.013493351014082
722 => 0.013301980666017
723 => 0.013296609537725
724 => 0.012929308654987
725 => 0.012793525881675
726 => 0.012680055633132
727 => 0.012556149083938
728 => 0.01248269312819
729 => 0.012595554861353
730 => 0.012621367675068
731 => 0.012374593523022
801 => 0.01234095911796
802 => 0.012542480217511
803 => 0.012453798295062
804 => 0.012545009851507
805 => 0.012566171715
806 => 0.012562764167578
807 => 0.012470170055488
808 => 0.012529186781338
809 => 0.01238959463097
810 => 0.012237809133508
811 => 0.012140979442698
812 => 0.012056482694871
813 => 0.012103366401545
814 => 0.011936234547879
815 => 0.011882765704191
816 => 0.012509193242539
817 => 0.012971942000347
818 => 0.01296521345014
819 => 0.012924255131196
820 => 0.012863399377338
821 => 0.013154486142286
822 => 0.013053077333841
823 => 0.013126860714974
824 => 0.013145641682151
825 => 0.01320248601333
826 => 0.013222802975792
827 => 0.013161391004196
828 => 0.01295528492668
829 => 0.012441688177489
830 => 0.012202607504312
831 => 0.012123706899961
901 => 0.012126574787075
902 => 0.012047465657643
903 => 0.012070766841683
904 => 0.012039362456748
905 => 0.011979890149218
906 => 0.012099694154144
907 => 0.01211350044966
908 => 0.012085536763359
909 => 0.012092123223783
910 => 0.011860595844659
911 => 0.011878198368443
912 => 0.011780185279194
913 => 0.011761809006525
914 => 0.011514040451881
915 => 0.011075082542701
916 => 0.011318307835062
917 => 0.011024525884542
918 => 0.010913266208357
919 => 0.011439952210987
920 => 0.011387087544318
921 => 0.0112966062147
922 => 0.011162765470234
923 => 0.011113122636193
924 => 0.010811508491568
925 => 0.010793687518854
926 => 0.010943175633197
927 => 0.010874192012
928 => 0.010777312881698
929 => 0.010426426492226
930 => 0.010031914015968
1001 => 0.010043821867809
1002 => 0.010169308946342
1003 => 0.010534179551412
1004 => 0.010391618293685
1005 => 0.010288188465503
1006 => 0.010268819167773
1007 => 0.010511266481228
1008 => 0.010854380224048
1009 => 0.011015361515442
1010 => 0.010855833944745
1011 => 0.010672577261103
1012 => 0.010683731246307
1013 => 0.010757933712793
1014 => 0.010765731342854
1015 => 0.010646450080894
1016 => 0.010680027057442
1017 => 0.010629020559723
1018 => 0.010315993777372
1019 => 0.010310332115498
1020 => 0.01023351029487
1021 => 0.010231184160673
1022 => 0.010100491079684
1023 => 0.010082206214215
1024 => 0.0098227071694087
1025 => 0.0099935102265357
1026 => 0.0098789445033779
1027 => 0.009706266935257
1028 => 0.0096764972574268
1029 => 0.0096756023449633
1030 => 0.0098529035974257
1031 => 0.0099914383581708
1101 => 0.009880937423182
1102 => 0.0098557785022557
1103 => 0.010124409956644
1104 => 0.010090224155443
1105 => 0.010060619472078
1106 => 0.010823658151683
1107 => 0.010219653496125
1108 => 0.0099562729909211
1109 => 0.0096302896011299
1110 => 0.0097364314365969
1111 => 0.0097587970808778
1112 => 0.0089748657913525
1113 => 0.0086568249648245
1114 => 0.0085476853382758
1115 => 0.0084848739401892
1116 => 0.0085134978830332
1117 => 0.0082272238366898
1118 => 0.0084196047303682
1119 => 0.0081717156043776
1120 => 0.0081301561857043
1121 => 0.0085734126505456
1122 => 0.0086350891981615
1123 => 0.0083719578846305
1124 => 0.0085409307850075
1125 => 0.0084796588624318
1126 => 0.0081759649519578
1127 => 0.0081643660783989
1128 => 0.0080119831494801
1129 => 0.0077735333728717
1130 => 0.0076645554264999
1201 => 0.0076077987658396
1202 => 0.0076312176701933
1203 => 0.0076193763555218
1204 => 0.0075421037675161
1205 => 0.0076238055298142
1206 => 0.0074150912886417
1207 => 0.0073319795960818
1208 => 0.0072944399727292
1209 => 0.007109194070545
1210 => 0.0074040026801466
1211 => 0.0074620836901391
1212 => 0.0075202791376635
1213 => 0.0080268307766433
1214 => 0.0080015248882599
1215 => 0.008230277794778
1216 => 0.0082213888774803
1217 => 0.00815614484299
1218 => 0.0078808909935979
1219 => 0.0079906022720375
1220 => 0.0076529280099186
1221 => 0.007905936526716
1222 => 0.0077904740055379
1223 => 0.0078668985321608
1224 => 0.0077294803423711
1225 => 0.0078055332424587
1226 => 0.0074758568522718
1227 => 0.0071680096777871
1228 => 0.007291896367419
1229 => 0.0074265753672103
1230 => 0.0077185937543287
1231 => 0.0075446700120604
]
'min_raw' => 0.007109194070545
'max_raw' => 0.021221117438261
'avg_raw' => 0.014165155754403
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0071091'
'max' => '$0.021221'
'avg' => '$0.014165'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.013467355929455
'max_diff' => 0.00064456743826074
'year' => 2026
]
1 => [
'items' => [
101 => 0.0076072195665649
102 => 0.0073976890296437
103 => 0.0069653676825364
104 => 0.006967814574411
105 => 0.0069013113537911
106 => 0.0068438428615462
107 => 0.0075646472460591
108 => 0.0074750038266138
109 => 0.0073321687699685
110 => 0.0075233591693278
111 => 0.007573912945518
112 => 0.0075753521404559
113 => 0.00771483972049
114 => 0.0077892842669587
115 => 0.0078024054409349
116 => 0.0080218921619472
117 => 0.0080954612157306
118 => 0.0083984817363824
119 => 0.0077829681673059
120 => 0.0077702920704007
121 => 0.0075260496103293
122 => 0.0073711471808315
123 => 0.0075366559122019
124 => 0.0076832740540011
125 => 0.0075306054446915
126 => 0.0075505407420571
127 => 0.0073455956075427
128 => 0.0074188538495667
129 => 0.0074819537165487
130 => 0.00744711367884
131 => 0.0073949564561132
201 => 0.0076712530383848
202 => 0.007655663302398
203 => 0.0079129570318404
204 => 0.0081135358931918
205 => 0.0084730090704938
206 => 0.0080978800702186
207 => 0.0080842088784459
208 => 0.0082178469709527
209 => 0.0080954407564349
210 => 0.0081727972586913
211 => 0.0084605457420534
212 => 0.0084666254140788
213 => 0.0083647830744397
214 => 0.0083585859588172
215 => 0.008378145894178
216 => 0.0084927090465297
217 => 0.0084526771609279
218 => 0.0084990030724296
219 => 0.0085569343341301
220 => 0.008796562594869
221 => 0.0088543361572755
222 => 0.0087139763527855
223 => 0.0087266492715888
224 => 0.0086741508517468
225 => 0.0086234380359826
226 => 0.0087374330398085
227 => 0.0089457611498777
228 => 0.0089444651515172
301 => 0.0089927932237334
302 => 0.0090229012123528
303 => 0.0088936556848038
304 => 0.0088095215988591
305 => 0.0088417839610013
306 => 0.0088933721806495
307 => 0.0088250545966581
308 => 0.0084033668204798
309 => 0.0085312799542528
310 => 0.0085099889541603
311 => 0.0084796679809545
312 => 0.0086082856260863
313 => 0.0085958801404485
314 => 0.0082242876825708
315 => 0.0082480758260953
316 => 0.0082257343183673
317 => 0.008297924300479
318 => 0.0080915422604936
319 => 0.0081550239859888
320 => 0.0081948391291152
321 => 0.008218290554291
322 => 0.0083030131828188
323 => 0.008293071960226
324 => 0.0083023952224643
325 => 0.0084280165146263
326 => 0.00906336590236
327 => 0.009097946567715
328 => 0.0089276587242231
329 => 0.0089956853589189
330 => 0.0088650890960926
331 => 0.0089527592422468
401 => 0.0090127409296653
402 => 0.0087416952180365
403 => 0.0087256456500659
404 => 0.0085945103700073
405 => 0.0086649750416289
406 => 0.0085528606824897
407 => 0.0085803696246287
408 => 0.0085034522242217
409 => 0.0086418882308526
410 => 0.0087966811970466
411 => 0.0088357880132666
412 => 0.0087329148163346
413 => 0.0086584278420817
414 => 0.0085276532528284
415 => 0.0087451343092585
416 => 0.0088087323977737
417 => 0.008744800255574
418 => 0.0087299857812815
419 => 0.0087019123792662
420 => 0.0087359416862305
421 => 0.0088083860289253
422 => 0.0087742226147474
423 => 0.0087967881516938
424 => 0.0087107915943348
425 => 0.0088936984704513
426 => 0.0091841986086612
427 => 0.0091851326141071
428 => 0.0091509690157756
429 => 0.0091369900074034
430 => 0.009172043932512
501 => 0.009191059248896
502 => 0.0093044172149065
503 => 0.0094260548288164
504 => 0.009993684498285
505 => 0.009834296358505
506 => 0.010337931169698
507 => 0.010736240916556
508 => 0.010855676593664
509 => 0.010745801390607
510 => 0.010369924256291
511 => 0.010351481930865
512 => 0.010913201060766
513 => 0.010754489678203
514 => 0.010735611464262
515 => 0.010534779163182
516 => 0.010653495926685
517 => 0.010627530829037
518 => 0.010586543652144
519 => 0.010813046967026
520 => 0.011237040952394
521 => 0.011170957513584
522 => 0.011121629292035
523 => 0.010905487384436
524 => 0.011035653089853
525 => 0.010989303575314
526 => 0.011188450503904
527 => 0.011070480275052
528 => 0.010753287283383
529 => 0.010803801312788
530 => 0.010796166218864
531 => 0.0109532959108
601 => 0.01090612947748
602 => 0.010786956215764
603 => 0.011235591787047
604 => 0.01120645988849
605 => 0.011247762260164
606 => 0.011265944841494
607 => 0.011539021407888
608 => 0.011650892139664
609 => 0.01167628875435
610 => 0.011782557297145
611 => 0.011673644696197
612 => 0.012109372753357
613 => 0.012399106485931
614 => 0.012735647125877
615 => 0.013227423454435
616 => 0.013412335903158
617 => 0.013378933124383
618 => 0.01375179232413
619 => 0.014421812017881
620 => 0.013514363261086
621 => 0.014469909005449
622 => 0.01416739425509
623 => 0.013450137223997
624 => 0.013403954327099
625 => 0.013889689116081
626 => 0.014967002127801
627 => 0.014697147437148
628 => 0.014967443513402
629 => 0.01465212878283
630 => 0.014636470748776
701 => 0.014952129380734
702 => 0.015689682979959
703 => 0.015339298911751
704 => 0.014836937432275
705 => 0.015207873331109
706 => 0.014886534327042
707 => 0.014162467613755
708 => 0.014696941084352
709 => 0.014339553895492
710 => 0.014443858476949
711 => 0.015195033190601
712 => 0.015104649861692
713 => 0.015221614258571
714 => 0.015015175159572
715 => 0.014822328488649
716 => 0.014462365856389
717 => 0.014355798666921
718 => 0.014385250004204
719 => 0.014355784072301
720 => 0.014154388287779
721 => 0.014110896887286
722 => 0.014038409314397
723 => 0.01406087624428
724 => 0.01392457840026
725 => 0.014181800592496
726 => 0.01422954329801
727 => 0.014416728158968
728 => 0.014436162312195
729 => 0.014957469485555
730 => 0.01467034225468
731 => 0.014862971990524
801 => 0.014845741373848
802 => 0.013465682358774
803 => 0.013655842314687
804 => 0.013951671530607
805 => 0.013818400869822
806 => 0.013629987336005
807 => 0.013477833305352
808 => 0.013247304390365
809 => 0.013571769411294
810 => 0.013998406410806
811 => 0.014446982530561
812 => 0.014985917346574
813 => 0.014865633369533
814 => 0.014436907519051
815 => 0.014456139847519
816 => 0.014575026534467
817 => 0.014421057472875
818 => 0.014375648990778
819 => 0.014568788106322
820 => 0.014570118149263
821 => 0.014392958136118
822 => 0.014196077201448
823 => 0.014195252263143
824 => 0.014160219202463
825 => 0.014658361086499
826 => 0.014932288754894
827 => 0.014963694120619
828 => 0.014930174923556
829 => 0.014943075132176
830 => 0.014783682657521
831 => 0.015148006588212
901 => 0.015482346254916
902 => 0.015392736082114
903 => 0.015258397694247
904 => 0.015151390697698
905 => 0.015367528634458
906 => 0.015357904352367
907 => 0.015479426089599
908 => 0.015473913161654
909 => 0.015433049972087
910 => 0.015392737541467
911 => 0.015552571772164
912 => 0.015506542080583
913 => 0.015460440892176
914 => 0.015367977901089
915 => 0.015380545157225
916 => 0.015246229964775
917 => 0.015184089610903
918 => 0.014249647784219
919 => 0.013999934394362
920 => 0.014078499310196
921 => 0.014104364920426
922 => 0.013995689333143
923 => 0.014151502208838
924 => 0.014127218937208
925 => 0.014221690941883
926 => 0.01416266893486
927 => 0.014165091218616
928 => 0.014338662356453
929 => 0.014389050796191
930 => 0.014363422829056
1001 => 0.014381371778762
1002 => 0.014794997748969
1003 => 0.01473619336302
1004 => 0.014704954704999
1005 => 0.01471360802676
1006 => 0.014819298330388
1007 => 0.014848885844928
1008 => 0.014723521466746
1009 => 0.01478264403222
1010 => 0.015034380412233
1011 => 0.015122473898193
1012 => 0.015403626018104
1013 => 0.015284187600486
1014 => 0.015503421985198
1015 => 0.016177273741296
1016 => 0.016715593151062
1017 => 0.016220532374851
1018 => 0.017209087416322
1019 => 0.017978819315906
1020 => 0.017949275723544
1021 => 0.017815055162632
1022 => 0.016938735859337
1023 => 0.016132333771261
1024 => 0.016806923359578
1025 => 0.016808643027169
1026 => 0.016750695183269
1027 => 0.01639078610161
1028 => 0.016738171127375
1029 => 0.016765745289203
1030 => 0.016750311091141
1031 => 0.016474369642085
1101 => 0.01605305805188
1102 => 0.016135381328128
1103 => 0.016270228533973
1104 => 0.016014934641235
1105 => 0.015933352773703
1106 => 0.016085028987031
1107 => 0.016573761349366
1108 => 0.016481369327301
1109 => 0.016478956598219
1110 => 0.016874248848931
1111 => 0.016591304906828
1112 => 0.016136419688278
1113 => 0.016021555171395
1114 => 0.01561386351847
1115 => 0.015895457595293
1116 => 0.015905591664806
1117 => 0.015751365466751
1118 => 0.016148934294261
1119 => 0.016145270627524
1120 => 0.016522703058933
1121 => 0.01724421211064
1122 => 0.017030826380746
1123 => 0.016782681993181
1124 => 0.016809662168407
1125 => 0.017105568097888
1126 => 0.016926656618049
1127 => 0.016990994433614
1128 => 0.017105470714899
1129 => 0.017174537097684
1130 => 0.016799724578796
1201 => 0.016712337851287
1202 => 0.016533575275379
1203 => 0.016486939456087
1204 => 0.01663253784416
1205 => 0.01659417781297
1206 => 0.015904739935504
1207 => 0.015832689841313
1208 => 0.015834899514838
1209 => 0.015653726127199
1210 => 0.015377393224453
1211 => 0.016103579593887
1212 => 0.01604525666545
1213 => 0.015980872666291
1214 => 0.015988759338818
1215 => 0.01630397222905
1216 => 0.016121132834083
1217 => 0.01660724133239
1218 => 0.016507312038897
1219 => 0.016404819936094
1220 => 0.016390652405501
1221 => 0.016351201690137
1222 => 0.016215910508189
1223 => 0.016052538276248
1224 => 0.01594466577766
1225 => 0.014708111348047
1226 => 0.014937608657477
1227 => 0.015201624392638
1228 => 0.015292761566439
1229 => 0.015136865124152
1230 => 0.016222066249931
1231 => 0.016420342952869
]
'min_raw' => 0.0068438428615462
'max_raw' => 0.017978819315906
'avg_raw' => 0.012411331088726
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.006843'
'max' => '$0.017978'
'avg' => '$0.012411'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00026535120899879
'max_diff' => -0.0032422981223551
'year' => 2027
]
2 => [
'items' => [
101 => 0.0158197498864
102 => 0.015707403445717
103 => 0.016229431663878
104 => 0.015914584832973
105 => 0.016056360341651
106 => 0.015749919238946
107 => 0.01637258390135
108 => 0.016367840239871
109 => 0.016125609622677
110 => 0.016330341281606
111 => 0.016294764117668
112 => 0.016021286347443
113 => 0.01638125363446
114 => 0.016381432173743
115 => 0.016148290471241
116 => 0.015876032004
117 => 0.015827358620515
118 => 0.015790689764409
119 => 0.016047342050891
120 => 0.01627745568842
121 => 0.016705640117852
122 => 0.016813295856823
123 => 0.017233483373073
124 => 0.016983282165705
125 => 0.017094193120283
126 => 0.01721460265079
127 => 0.017272331407629
128 => 0.017178265496256
129 => 0.017830989665074
130 => 0.017886099583874
131 => 0.017904577462949
201 => 0.017684482545734
202 => 0.017879978346077
203 => 0.017788512335237
204 => 0.018026481485454
205 => 0.01806379808675
206 => 0.018032192253029
207 => 0.018044037131283
208 => 0.01748705220163
209 => 0.017458169594698
210 => 0.017064353199763
211 => 0.017224836291643
212 => 0.016924820843529
213 => 0.017019958832627
214 => 0.017061894751714
215 => 0.017039989807425
216 => 0.017233909764871
217 => 0.017069038185812
218 => 0.016633914981279
219 => 0.01619867322772
220 => 0.016193209122044
221 => 0.016078617650987
222 => 0.015995789005888
223 => 0.016011744741438
224 => 0.016067974834656
225 => 0.015992520810649
226 => 0.016008622752287
227 => 0.016276022270154
228 => 0.016329647336456
229 => 0.016147408408496
301 => 0.015415692815783
302 => 0.015236127973961
303 => 0.015365195621337
304 => 0.015303509598912
305 => 0.012351126636275
306 => 0.013044745220031
307 => 0.012632620610625
308 => 0.012822546591581
309 => 0.012401874084527
310 => 0.012602641054228
311 => 0.01256556672576
312 => 0.013680884882774
313 => 0.013663470723822
314 => 0.013671805960176
315 => 0.013273943411683
316 => 0.013907749254577
317 => 0.014219984803708
318 => 0.014162198313444
319 => 0.014176741928082
320 => 0.013926834443294
321 => 0.013674225610899
322 => 0.013394043539553
323 => 0.013914587196564
324 => 0.013856711627881
325 => 0.013989457359468
326 => 0.014327067130268
327 => 0.014376781451474
328 => 0.014443598003326
329 => 0.014419649025813
330 => 0.014990210831862
331 => 0.014921112032461
401 => 0.015087620257935
402 => 0.014745100205126
403 => 0.014357506253071
404 => 0.014431175191955
405 => 0.014424080280732
406 => 0.014333753917706
407 => 0.014252211315931
408 => 0.01411646585846
409 => 0.014545984572445
410 => 0.01452854689705
411 => 0.014810842592607
412 => 0.014760944086343
413 => 0.014427709649278
414 => 0.01443961118239
415 => 0.014519654712245
416 => 0.014796686282997
417 => 0.014878928114944
418 => 0.014840830421615
419 => 0.014931004835863
420 => 0.015002275016177
421 => 0.014939955273215
422 => 0.015822271412844
423 => 0.015455872236803
424 => 0.015634452645817
425 => 0.015677043021109
426 => 0.015567948670376
427 => 0.015591607328674
428 => 0.015627443749398
429 => 0.015845035478539
430 => 0.01641605913648
501 => 0.016668961627493
502 => 0.017429831249693
503 => 0.016647961596187
504 => 0.016601568686646
505 => 0.016738624281666
506 => 0.017185335296127
507 => 0.017547352615915
508 => 0.017667454646169
509 => 0.017683328112136
510 => 0.017908647505124
511 => 0.018037796379227
512 => 0.017881287804327
513 => 0.01774866317423
514 => 0.017273618211197
515 => 0.017328605959172
516 => 0.017707417013998
517 => 0.018242509940799
518 => 0.018701675338925
519 => 0.018540891620031
520 => 0.019767557899575
521 => 0.019889176850709
522 => 0.019872373044074
523 => 0.020149439114085
524 => 0.019599519388638
525 => 0.019364418051816
526 => 0.01777733812461
527 => 0.018223242848006
528 => 0.018871391550528
529 => 0.018785606639316
530 => 0.018314903726481
531 => 0.018701318268557
601 => 0.018573557536646
602 => 0.018472787346591
603 => 0.018934435122497
604 => 0.018426834429443
605 => 0.018866327845321
606 => 0.01830267299348
607 => 0.018541626066516
608 => 0.018405984745401
609 => 0.018493761303737
610 => 0.017980621337274
611 => 0.018257499207409
612 => 0.017969102307586
613 => 0.017968965569905
614 => 0.017962599192357
615 => 0.018301896866051
616 => 0.018312961351009
617 => 0.018062219857499
618 => 0.018026084090966
619 => 0.018159696959361
620 => 0.018003271283736
621 => 0.018076461872829
622 => 0.018005488152119
623 => 0.017989510472652
624 => 0.01786219760428
625 => 0.017807347720045
626 => 0.017828855772961
627 => 0.017755437700198
628 => 0.017711200655711
629 => 0.017953799330779
630 => 0.017824188645092
701 => 0.017933934634318
702 => 0.017808865228547
703 => 0.017375320177999
704 => 0.017125983834773
705 => 0.016307057423935
706 => 0.016539303938174
707 => 0.01669328361739
708 => 0.016642393334328
709 => 0.016751725354271
710 => 0.016758437452338
711 => 0.016722892498146
712 => 0.016681735994783
713 => 0.016661703285043
714 => 0.016811010690953
715 => 0.01689768866554
716 => 0.016708737538182
717 => 0.016664468932749
718 => 0.016855508954786
719 => 0.016972043257868
720 => 0.017832467076856
721 => 0.017768724101213
722 => 0.017928706461149
723 => 0.01791069490255
724 => 0.018078381902952
725 => 0.018352479278796
726 => 0.017795162674874
727 => 0.017891893566756
728 => 0.017868177385909
729 => 0.018127104429682
730 => 0.018127912771649
731 => 0.017972673074543
801 => 0.018056831032821
802 => 0.018009856369263
803 => 0.018094745935318
804 => 0.017767872774911
805 => 0.01816596900051
806 => 0.018391663907671
807 => 0.018394797681676
808 => 0.018501775276444
809 => 0.018610470708454
810 => 0.018819102124819
811 => 0.018604652091486
812 => 0.018218877357811
813 => 0.018246729047537
814 => 0.018020549462333
815 => 0.018024351582023
816 => 0.01800405556914
817 => 0.018064965431613
818 => 0.017781239064465
819 => 0.01784782907573
820 => 0.017754602670008
821 => 0.017891690910757
822 => 0.017744206625209
823 => 0.017868165949249
824 => 0.017921662684188
825 => 0.018119066787815
826 => 0.017715049878599
827 => 0.016891232051168
828 => 0.017064408546319
829 => 0.01680826690727
830 => 0.016831973791164
831 => 0.016879865469552
901 => 0.016724632870713
902 => 0.01675424635863
903 => 0.016753188356455
904 => 0.016744071065287
905 => 0.016703689070962
906 => 0.016645127189855
907 => 0.016878419699786
908 => 0.016918060643226
909 => 0.017006177550019
910 => 0.017268353694367
911 => 0.017242156115008
912 => 0.01728488545387
913 => 0.017191607547048
914 => 0.016836300685734
915 => 0.016855595557736
916 => 0.016614988194689
917 => 0.017000024678787
918 => 0.016908842957119
919 => 0.016850057507988
920 => 0.016834017353549
921 => 0.017096843381848
922 => 0.017175485048809
923 => 0.017126480839405
924 => 0.017025971776237
925 => 0.017218978890357
926 => 0.017270619451779
927 => 0.017282179869051
928 => 0.017624151469829
929 => 0.017301292282704
930 => 0.017379007697989
1001 => 0.017985321183201
1002 => 0.017435478517655
1003 => 0.01772674244055
1004 => 0.017712486587188
1005 => 0.017861487354307
1006 => 0.017700264175278
1007 => 0.017702262729806
1008 => 0.017834565316822
1009 => 0.017648770194256
1010 => 0.017602764709066
1011 => 0.017539208460774
1012 => 0.017677981203761
1013 => 0.017761169187031
1014 => 0.018431603237344
1015 => 0.018864734209354
1016 => 0.018845930851557
1017 => 0.019017758343407
1018 => 0.018940348484569
1019 => 0.018690371630693
1020 => 0.01911705163883
1021 => 0.018982032231206
1022 => 0.018993163067122
1023 => 0.018992748776853
1024 => 0.019082524879322
1025 => 0.019018910282864
1026 => 0.01889351938334
1027 => 0.018976759714192
1028 => 0.01922395373786
1029 => 0.019991251572161
1030 => 0.020420641605581
1031 => 0.019965401752992
1101 => 0.020279420107403
1102 => 0.020091120990936
1103 => 0.020056901440061
1104 => 0.020254128172406
1105 => 0.020451700124037
1106 => 0.020439115644845
1107 => 0.020295688553393
1108 => 0.020214670228759
1109 => 0.020828168126015
1110 => 0.021280182926049
1111 => 0.021249358547032
1112 => 0.021385407331387
1113 => 0.021784850770082
1114 => 0.021821370872128
1115 => 0.021816770178675
1116 => 0.021726251295275
1117 => 0.022119555234956
1118 => 0.022447656300961
1119 => 0.02170529878911
1120 => 0.02198797881145
1121 => 0.022114882980859
1122 => 0.022301215952323
1123 => 0.022615590908215
1124 => 0.022957085494152
1125 => 0.023005376572901
1126 => 0.022971111741588
1127 => 0.022745886882295
1128 => 0.023119554333105
1129 => 0.02333843996221
1130 => 0.023468781345233
1201 => 0.023799305405842
1202 => 0.022115666697806
1203 => 0.020923903537985
1204 => 0.020737792511311
1205 => 0.021116256602508
1206 => 0.021216054565163
1207 => 0.021175826131553
1208 => 0.019834388344808
1209 => 0.02073073011898
1210 => 0.021695118501433
1211 => 0.021732164586798
1212 => 0.022214957575464
1213 => 0.022372174762927
1214 => 0.022760886399927
1215 => 0.022736572381197
1216 => 0.022831217479054
1217 => 0.022809460210081
1218 => 0.023529466664731
1219 => 0.024323740706203
1220 => 0.024296237521783
1221 => 0.024182051230898
1222 => 0.024351637344518
1223 => 0.025171413274896
1224 => 0.025095941443869
1225 => 0.025169255899037
1226 => 0.026135817921499
1227 => 0.027392486042545
1228 => 0.026808637532903
1229 => 0.028075420800943
1230 => 0.028872793718879
1231 => 0.030251767730551
]
'min_raw' => 0.012351126636275
'max_raw' => 0.030251767730551
'avg_raw' => 0.021301447183413
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.012351'
'max' => '$0.030251'
'avg' => '$0.0213014'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.005507283774729
'max_diff' => 0.012272948414645
'year' => 2028
]
3 => [
'items' => [
101 => 0.030079113392699
102 => 0.030615937856064
103 => 0.029770026093898
104 => 0.027827641700989
105 => 0.027520251935662
106 => 0.028135654030195
107 => 0.029648560029544
108 => 0.0280880072363
109 => 0.028403705033905
110 => 0.028312784046957
111 => 0.028307939253952
112 => 0.028492845297761
113 => 0.028224629437165
114 => 0.027131869769981
115 => 0.027632675085778
116 => 0.027439290102702
117 => 0.02765386515923
118 => 0.028811838241828
119 => 0.028299870739381
120 => 0.027760554564416
121 => 0.028436976731662
122 => 0.029298294594441
123 => 0.029244394870526
124 => 0.029139806877792
125 => 0.029729363916781
126 => 0.030703139421185
127 => 0.030966347027078
128 => 0.031160641500706
129 => 0.031187431425988
130 => 0.031463384306231
131 => 0.029979516120085
201 => 0.032334453039936
202 => 0.032741085592175
203 => 0.032664655525546
204 => 0.033116610493646
205 => 0.03298363387704
206 => 0.03279097162297
207 => 0.033507416380987
208 => 0.032686070280032
209 => 0.031520272894324
210 => 0.030880693391667
211 => 0.031722943274173
212 => 0.032237275886948
213 => 0.032577217026295
214 => 0.032680083009664
215 => 0.030094704583344
216 => 0.028701329003219
217 => 0.029594466774996
218 => 0.03068415649764
219 => 0.029973462838656
220 => 0.030001320684567
221 => 0.028988058293864
222 => 0.030773807735729
223 => 0.030513639062566
224 => 0.031863394599165
225 => 0.031541264607891
226 => 0.03264193785078
227 => 0.03235209369835
228 => 0.033555220570118
301 => 0.034035180452626
302 => 0.034841107795147
303 => 0.035433951229021
304 => 0.035782080232679
305 => 0.035761179873099
306 => 0.037140640422774
307 => 0.036327220731311
308 => 0.035305373890532
309 => 0.035286891905068
310 => 0.035816120863589
311 => 0.036925239573775
312 => 0.037212817918305
313 => 0.037373534980738
314 => 0.037127391205021
315 => 0.036244482428253
316 => 0.035863246894893
317 => 0.036188070614772
318 => 0.035790839117781
319 => 0.036476572125061
320 => 0.037418230008723
321 => 0.037223781379466
322 => 0.037873793993706
323 => 0.038546488666123
324 => 0.039508472260287
325 => 0.039759970393951
326 => 0.040175687245281
327 => 0.04060359644117
328 => 0.040741029342413
329 => 0.041003431393812
330 => 0.041002048405476
331 => 0.041792814649061
401 => 0.042665054303727
402 => 0.042994304580969
403 => 0.043751397438521
404 => 0.042454902451661
405 => 0.043438308792255
406 => 0.044325365927728
407 => 0.043267779841744
408 => 0.044725415875319
409 => 0.044782012579428
410 => 0.045636555616779
411 => 0.044770312537787
412 => 0.044255940162628
413 => 0.045740913936431
414 => 0.046459445969339
415 => 0.04624301827342
416 => 0.044595992821119
417 => 0.043637353363635
418 => 0.041128408995659
419 => 0.044100361977858
420 => 0.04554791358243
421 => 0.044592244012166
422 => 0.045074228155428
423 => 0.047703777357182
424 => 0.048704939442508
425 => 0.048496704727411
426 => 0.048531892966428
427 => 0.049072101855292
428 => 0.051467685566986
429 => 0.050032196277743
430 => 0.051129574052612
501 => 0.051711619267512
502 => 0.052252255300844
503 => 0.050924624072754
504 => 0.049197395351786
505 => 0.048650309511726
506 => 0.044497221507592
507 => 0.04428103524103
508 => 0.044159683338494
509 => 0.043394576758574
510 => 0.042793412567087
511 => 0.042315344482221
512 => 0.041060751064318
513 => 0.041484139513884
514 => 0.039484579459743
515 => 0.040763827122325
516 => 0.037572480994851
517 => 0.040230328881174
518 => 0.038783783114163
519 => 0.039755099691987
520 => 0.03975171085995
521 => 0.037963209083974
522 => 0.036931638584671
523 => 0.037588995456152
524 => 0.038293734203432
525 => 0.038408075694153
526 => 0.039321787875565
527 => 0.03957678530522
528 => 0.038804131188674
529 => 0.037506347439803
530 => 0.03780779300537
531 => 0.036925529799906
601 => 0.035379397468095
602 => 0.036489856701683
603 => 0.036869016307475
604 => 0.03703647478964
605 => 0.035516031215801
606 => 0.035038274834465
607 => 0.034783921345807
608 => 0.037310077267333
609 => 0.037448465791189
610 => 0.036740450536977
611 => 0.039940746622776
612 => 0.039216421054961
613 => 0.040025670178283
614 => 0.037780439979898
615 => 0.03786621079708
616 => 0.036803282839754
617 => 0.037398451470985
618 => 0.036977805465611
619 => 0.037350367727152
620 => 0.037573680010588
621 => 0.038636433551895
622 => 0.040242463819491
623 => 0.038477693612531
624 => 0.037708757961384
625 => 0.038185801314697
626 => 0.039456230628609
627 => 0.041380996071266
628 => 0.040241496189699
629 => 0.040747186887175
630 => 0.040857657807961
701 => 0.040017432781872
702 => 0.041411976366462
703 => 0.042159323602696
704 => 0.042925947225352
705 => 0.043591585036598
706 => 0.042619740892048
707 => 0.043659753435102
708 => 0.042821686912328
709 => 0.042069854603676
710 => 0.042070994822945
711 => 0.04159935943321
712 => 0.040685506435715
713 => 0.040516977921956
714 => 0.041393684533333
715 => 0.042096720211233
716 => 0.042154625596978
717 => 0.042543862271541
718 => 0.04277420852609
719 => 0.045031914961223
720 => 0.045939983166161
721 => 0.047050351778307
722 => 0.047482902929684
723 => 0.048784726817159
724 => 0.047733398299057
725 => 0.047505936760999
726 => 0.044348137833334
727 => 0.044865227230836
728 => 0.045693137247942
729 => 0.044361789764578
730 => 0.045206223308824
731 => 0.045372932378006
801 => 0.044316551086539
802 => 0.044880809977853
803 => 0.043382305653626
804 => 0.040275127118819
805 => 0.041415435544406
806 => 0.042255086369303
807 => 0.041056801113974
808 => 0.043204681054107
809 => 0.041949933934323
810 => 0.041552239335835
811 => 0.040000690918773
812 => 0.040732962047051
813 => 0.04172336923316
814 => 0.041111412739338
815 => 0.042381314349748
816 => 0.044179833700477
817 => 0.045461565693485
818 => 0.045559961160579
819 => 0.044735893358449
820 => 0.046056467270493
821 => 0.046066086209739
822 => 0.04457647344225
823 => 0.043664093916362
824 => 0.043456799368417
825 => 0.043974661791673
826 => 0.044603442376183
827 => 0.045594854106929
828 => 0.046193943452145
829 => 0.047756050732033
830 => 0.048178712172846
831 => 0.048643088953356
901 => 0.049263639540614
902 => 0.050008769626521
903 => 0.048378467418835
904 => 0.04844324236481
905 => 0.046925127522083
906 => 0.045302804092939
907 => 0.046533945350189
908 => 0.048143498772186
909 => 0.047774265438781
910 => 0.047732719146021
911 => 0.047802588486463
912 => 0.047524198611109
913 => 0.046265051522495
914 => 0.045632715737271
915 => 0.046448590226274
916 => 0.046882191206783
917 => 0.047554668513574
918 => 0.047471771491238
919 => 0.04920400081474
920 => 0.049877092749958
921 => 0.049704887029701
922 => 0.049736577026591
923 => 0.05095517782424
924 => 0.052310512535595
925 => 0.053579962344946
926 => 0.054871301215156
927 => 0.053314541805304
928 => 0.052524115384554
929 => 0.053339633688278
930 => 0.05290690819707
1001 => 0.055393477224265
1002 => 0.055565641868676
1003 => 0.058052031088628
1004 => 0.060411910532083
1005 => 0.058929712535281
1006 => 0.060327358486602
1007 => 0.061839026534701
1008 => 0.064755279458787
1009 => 0.06377318806897
1010 => 0.063020921455704
1011 => 0.062310033141094
1012 => 0.063789278873456
1013 => 0.065692304876613
1014 => 0.066102198450736
1015 => 0.066766382632213
1016 => 0.066068074177968
1017 => 0.066909109794953
1018 => 0.069878335092687
1019 => 0.069076024207163
1020 => 0.067936613771807
1021 => 0.07028053197694
1022 => 0.071128786863626
1023 => 0.077082283892921
1024 => 0.084598819819103
1025 => 0.081486924589428
1026 => 0.079555270800137
1027 => 0.080009255260061
1028 => 0.082754039729504
1029 => 0.083635577385985
1030 => 0.081239254151417
1031 => 0.082085676029232
1101 => 0.086749543794354
1102 => 0.089251559215549
1103 => 0.085853486208063
1104 => 0.076478337549941
1105 => 0.067834022328663
1106 => 0.070126883983934
1107 => 0.069866944628007
1108 => 0.074877688712277
1109 => 0.069056889357885
1110 => 0.069154896690741
1111 => 0.074269257656204
1112 => 0.072904833832963
1113 => 0.070694641981512
1114 => 0.067850159175124
1115 => 0.062591869624701
1116 => 0.057934455931639
1117 => 0.067068716722049
1118 => 0.066674830787191
1119 => 0.066104425582891
1120 => 0.06737380064077
1121 => 0.073537525603432
1122 => 0.073395431793012
1123 => 0.072491503468018
1124 => 0.073177125135667
1125 => 0.070574449188241
1126 => 0.071245218041722
1127 => 0.067832653024967
1128 => 0.069375274933844
1129 => 0.070689899902446
1130 => 0.070953830328248
1201 => 0.071548479054202
1202 => 0.066467270797836
1203 => 0.068748584128508
1204 => 0.070088641980125
1205 => 0.064034211854795
1206 => 0.069968965363024
1207 => 0.066378818266761
1208 => 0.065160268420089
1209 => 0.066800885256898
1210 => 0.066161535280041
1211 => 0.06561185971383
1212 => 0.065305131303259
1213 => 0.066509819239939
1214 => 0.066453619107779
1215 => 0.064482515823519
1216 => 0.061911291941649
1217 => 0.062774279073951
1218 => 0.062460747758239
1219 => 0.06132446982375
1220 => 0.062090183956874
1221 => 0.05871836643365
1222 => 0.052917329636768
1223 => 0.056749672235351
1224 => 0.056602131214092
1225 => 0.056527734340721
1226 => 0.059407633885387
1227 => 0.059130797994754
1228 => 0.058628338142471
1229 => 0.061315241754529
1230 => 0.060334485792175
1231 => 0.063356944572985
]
'min_raw' => 0.027131869769981
'max_raw' => 0.089251559215549
'avg_raw' => 0.058191714492765
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.027131'
'max' => '$0.089251'
'avg' => '$0.058191'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.014780743133706
'max_diff' => 0.058999791484998
'year' => 2029
]
4 => [
'items' => [
101 => 0.065347731406405
102 => 0.064842803470242
103 => 0.066715148109381
104 => 0.062794160554491
105 => 0.064096555337509
106 => 0.064364977097248
107 => 0.061282085781034
108 => 0.059176091770149
109 => 0.059035645979712
110 => 0.055384142588689
111 => 0.057334746226268
112 => 0.059051196705874
113 => 0.058229150128081
114 => 0.057968914739495
115 => 0.059298400901613
116 => 0.059401713362689
117 => 0.057046178301602
118 => 0.057535968630896
119 => 0.05957847572492
120 => 0.05748450269266
121 => 0.053416255139532
122 => 0.052407273498434
123 => 0.05227265674829
124 => 0.049536218514288
125 => 0.052474698476326
126 => 0.051191973226529
127 => 0.055244086921228
128 => 0.052929541310738
129 => 0.052829765875493
130 => 0.052678940671247
131 => 0.050323575242401
201 => 0.050839250580036
202 => 0.052553433941908
203 => 0.053165073877081
204 => 0.053101274820824
205 => 0.052545033508265
206 => 0.052799677932738
207 => 0.051979379517511
208 => 0.051689715074059
209 => 0.050775454412043
210 => 0.049431743809834
211 => 0.049618595010528
212 => 0.046956352706547
213 => 0.045505821803444
214 => 0.045104333967156
215 => 0.044567447653139
216 => 0.045164976704924
217 => 0.046948810908592
218 => 0.04479712839743
219 => 0.041108219655022
220 => 0.041329929356036
221 => 0.041828045228012
222 => 0.040899809595951
223 => 0.040021312471116
224 => 0.040785094446435
225 => 0.039222055182252
226 => 0.04201693105558
227 => 0.041941337495755
228 => 0.042983094387367
301 => 0.043634526350696
302 => 0.042133186578826
303 => 0.041755603686256
304 => 0.04197069206205
305 => 0.038415760325453
306 => 0.042692580622301
307 => 0.042729566741827
308 => 0.042412869131521
309 => 0.04469014390758
310 => 0.04949590398488
311 => 0.047687783732548
312 => 0.046987624920122
313 => 0.045656622505886
314 => 0.047430104195752
315 => 0.047293928472594
316 => 0.046678090209366
317 => 0.046305629306234
318 => 0.04699189994053
319 => 0.046220592780024
320 => 0.046082044819893
321 => 0.045242594923171
322 => 0.044942949502577
323 => 0.044721103962398
324 => 0.044476873820753
325 => 0.045015584654862
326 => 0.043794795031459
327 => 0.042322642421116
328 => 0.042200248860478
329 => 0.042538188242351
330 => 0.0423886752225
331 => 0.042199533049661
401 => 0.041838409131904
402 => 0.041731271379697
403 => 0.042079417098521
404 => 0.041686380880125
405 => 0.042266327230159
406 => 0.042108613912845
407 => 0.041227640142784
408 => 0.040129620647023
409 => 0.040119845970337
410 => 0.039883279471088
411 => 0.039581976466284
412 => 0.039498160863226
413 => 0.040720770858835
414 => 0.043251536960107
415 => 0.042754687018327
416 => 0.043113712020493
417 => 0.044879759691046
418 => 0.045441133138608
419 => 0.045042683562387
420 => 0.044497261207157
421 => 0.044521257022721
422 => 0.04638513032112
423 => 0.046501377812467
424 => 0.046795097720241
425 => 0.047172610806966
426 => 0.045106975673469
427 => 0.044423965793693
428 => 0.04410031782071
429 => 0.04310360733145
430 => 0.044178474142618
501 => 0.043552195282136
502 => 0.043636701697147
503 => 0.04358166678351
504 => 0.0436117195678
505 => 0.042016149830813
506 => 0.042597491582295
507 => 0.04163089816737
508 => 0.040336738089988
509 => 0.040332399611617
510 => 0.040649143457121
511 => 0.040460731823628
512 => 0.039953720962402
513 => 0.040025739462216
514 => 0.039394781622425
515 => 0.040102349167827
516 => 0.04012263967323
517 => 0.039850187626786
518 => 0.040940293055983
519 => 0.041386910139767
520 => 0.041207576366309
521 => 0.041374327604154
522 => 0.042775333376551
523 => 0.043003758447619
524 => 0.043105209775274
525 => 0.042969278435942
526 => 0.041399935417811
527 => 0.041469542454027
528 => 0.040958812207269
529 => 0.040527298968185
530 => 0.04054455723476
531 => 0.040766411132443
601 => 0.041735260115185
602 => 0.043774145682598
603 => 0.043851519899475
604 => 0.043945299707496
605 => 0.043563850098321
606 => 0.043448801246213
607 => 0.043600580378772
608 => 0.044366278598382
609 => 0.046335862304258
610 => 0.045639679878529
611 => 0.045073672729686
612 => 0.045570213593653
613 => 0.045493775019661
614 => 0.044848556530108
615 => 0.044830447396074
616 => 0.043592066825793
617 => 0.043134265725522
618 => 0.042751692860317
619 => 0.04233393327883
620 => 0.042086271395497
621 => 0.04246679260861
622 => 0.042553822312243
623 => 0.041721806029399
624 => 0.041608405284454
625 => 0.042287847741343
626 => 0.041988850448234
627 => 0.042296376578972
628 => 0.042367725279214
629 => 0.042356236495175
630 => 0.042044048981549
701 => 0.042243027993169
702 => 0.04177238331219
703 => 0.041260627910171
704 => 0.040934159847171
705 => 0.040649273162499
706 => 0.040807344852866
707 => 0.040243848139457
708 => 0.040063574199889
709 => 0.042175618381201
710 => 0.043735808126238
711 => 0.043713122349442
712 => 0.043575028517506
713 => 0.04336984909456
714 => 0.04435126844561
715 => 0.044009361567803
716 => 0.044258127388683
717 => 0.044321448730766
718 => 0.044513103362081
719 => 0.044581603419505
720 => 0.044374548669623
721 => 0.043679647639412
722 => 0.041948020341333
723 => 0.041141943159639
724 => 0.040875924263403
725 => 0.040885593545039
726 => 0.040618871591933
727 => 0.040697433160762
728 => 0.040591551084371
729 => 0.04039103604731
730 => 0.040794963614364
731 => 0.040841512503622
801 => 0.040747230982896
802 => 0.040769437694068
803 => 0.039988826970625
804 => 0.040048175108531
805 => 0.039717717135074
806 => 0.039655760248781
807 => 0.038820391268149
808 => 0.037340414030288
809 => 0.038160465084929
810 => 0.03716995872755
811 => 0.036794838961391
812 => 0.038570597591299
813 => 0.038392360676733
814 => 0.038087296556722
815 => 0.037636043142292
816 => 0.037468668861369
817 => 0.036451755714738
818 => 0.036391671061014
819 => 0.036895680675449
820 => 0.036663097580299
821 => 0.036336462828603
822 => 0.035153424868392
823 => 0.033823298510707
824 => 0.033863446664569
825 => 0.034286535111068
826 => 0.035516721830514
827 => 0.03503606659678
828 => 0.034687345709823
829 => 0.034622040770207
830 => 0.03543946881465
831 => 0.036596300754006
901 => 0.037139060417296
902 => 0.036601202074831
903 => 0.035983339371358
904 => 0.036020945811218
905 => 0.036271124607627
906 => 0.036297414861792
907 => 0.035895249759143
908 => 0.036008456879843
909 => 0.035836484911624
910 => 0.034781093260096
911 => 0.034762004571803
912 => 0.034502994440028
913 => 0.034495151716175
914 => 0.034054510868922
915 => 0.033992862168385
916 => 0.033117943021176
917 => 0.033693817453368
918 => 0.033307551119018
919 => 0.032725356642136
920 => 0.032624986094879
921 => 0.032621968835027
922 => 0.033219752386482
923 => 0.033686832004523
924 => 0.033314270387279
925 => 0.033229445328836
926 => 0.034135155032556
927 => 0.034019895217031
928 => 0.033920080960132
929 => 0.03649271914208
930 => 0.034456275275607
1001 => 0.033568269513673
1002 => 0.032469193755558
1003 => 0.032827058364421
1004 => 0.032902465695634
1005 => 0.030259386620665
1006 => 0.029187089769124
1007 => 0.02881911789833
1008 => 0.028607344884329
1009 => 0.028703852506087
1010 => 0.027738659571825
1011 => 0.028387285186467
1012 => 0.027551509691123
1013 => 0.02741138920948
1014 => 0.028905859327871
1015 => 0.029113806114277
1016 => 0.028226640519465
1017 => 0.028796344450398
1018 => 0.028589761885565
1019 => 0.02756583666317
1020 => 0.027526730251158
1021 => 0.027012960567273
1022 => 0.026209010497405
1023 => 0.025841583742616
1024 => 0.025650224698576
1025 => 0.02572918316966
1026 => 0.025689259350511
1027 => 0.02542872942505
1028 => 0.025704192620873
1029 => 0.025000497984797
1030 => 0.024720281110658
1031 => 0.024593713649592
1101 => 0.023969144156922
1102 => 0.024963111967074
1103 => 0.02515893614735
1104 => 0.025355146161755
1105 => 0.027063020378881
1106 => 0.026977699809396
1107 => 0.02774895620474
1108 => 0.027718986599466
1109 => 0.027499011781989
1110 => 0.026570974211154
1111 => 0.02694087344621
1112 => 0.025802381095812
1113 => 0.026655416974685
1114 => 0.026266127023197
1115 => 0.026523797650496
1116 => 0.026060482629388
1117 => 0.026316900291878
1118 => 0.025205373325092
1119 => 0.024167445083114
1120 => 0.0245851377067
1121 => 0.025039217357484
1122 => 0.026023777737726
1123 => 0.025437381697701
1124 => 0.025648271887783
1125 => 0.024941825053598
1126 => 0.023484223448113
1127 => 0.023492473314905
1128 => 0.023268253063478
1129 => 0.023074494029553
1130 => 0.025504736336893
1201 => 0.02520249728953
1202 => 0.024720918923625
1203 => 0.025365530703552
1204 => 0.025535976289529
1205 => 0.025540828635744
1206 => 0.026011120750541
1207 => 0.026262115736512
1208 => 0.026306354690664
1209 => 0.02704636949463
1210 => 0.027294412695889
1211 => 0.028316067537483
1212 => 0.026240820565557
1213 => 0.026198082219824
1214 => 0.025374601713229
1215 => 0.024852337357235
1216 => 0.025410361600501
1217 => 0.025904694902129
1218 => 0.02538996202686
1219 => 0.025457175273766
1220 => 0.024766188443938
1221 => 0.025013183721649
1222 => 0.025225929328671
1223 => 0.025108463709082
1224 => 0.024932611991158
1225 => 0.025864165208698
1226 => 0.025811603325378
1227 => 0.026679087097867
1228 => 0.027355352732883
1229 => 0.028567341647772
1230 => 0.027302568032674
1231 => 0.02725647465512
]
'min_raw' => 0.023074494029553
'max_raw' => 0.066715148109381
'avg_raw' => 0.044894821069467
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.023074'
'max' => '$0.066715'
'avg' => '$0.044894'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0040573757404281
'max_diff' => -0.022536411106168
'year' => 2030
]
5 => [
'items' => [
101 => 0.02770704481432
102 => 0.027294343715945
103 => 0.02755515656416
104 => 0.028525320665774
105 => 0.028545818704476
106 => 0.028202450145978
107 => 0.028181556137988
108 => 0.028247503825688
109 => 0.028633761492386
110 => 0.028498791195142
111 => 0.028654982240142
112 => 0.028850301533597
113 => 0.029658224944989
114 => 0.029853012544264
115 => 0.029379779663817
116 => 0.029422507294357
117 => 0.029245505206537
118 => 0.029074523407532
119 => 0.029458865521808
120 => 0.030161258289911
121 => 0.030156888740955
122 => 0.03031983021059
123 => 0.030421341396293
124 => 0.029985581076527
125 => 0.02970191713171
126 => 0.029810691938159
127 => 0.029984625222477
128 => 0.029754287718269
129 => 0.028332537939583
130 => 0.028763806000709
131 => 0.028692021907407
201 => 0.028589792629301
202 => 0.02902343599966
203 => 0.028981610038709
204 => 0.027728760123217
205 => 0.027808963509945
206 => 0.027733637556806
207 => 0.027977031121639
208 => 0.027281199664694
209 => 0.027495232734354
210 => 0.027629472269209
211 => 0.027708540386516
212 => 0.027994188643742
213 => 0.027960671117696
214 => 0.027992105147262
215 => 0.028415646104385
216 => 0.030557770923807
217 => 0.030674362051396
218 => 0.030100224697946
219 => 0.03032958124629
220 => 0.029889266828232
221 => 0.030184852846925
222 => 0.030387085293844
223 => 0.02947323575328
224 => 0.029419123514322
225 => 0.028976991762032
226 => 0.02921456832209
227 => 0.028836566932678
228 => 0.028929315251712
301 => 0.028669982866039
302 => 0.029136729527688
303 => 0.029658624820511
304 => 0.029790476181748
305 => 0.029443632015914
306 => 0.029192493981706
307 => 0.028751578323648
308 => 0.029484830889445
309 => 0.029699256285151
310 => 0.029483704604125
311 => 0.029433756569734
312 => 0.029339105134817
313 => 0.029453837319098
314 => 0.029698088478395
315 => 0.029582904142281
316 => 0.029658985425571
317 => 0.029369042028348
318 => 0.029985725331325
319 => 0.030965166829371
320 => 0.030968315893942
321 => 0.030853130936942
322 => 0.030805999734231
323 => 0.030924186490122
324 => 0.030988297956918
325 => 0.031370492253723
326 => 0.031780601961487
327 => 0.033694405022738
328 => 0.033157016781345
329 => 0.034855056709941
330 => 0.036197985830571
331 => 0.036600671554675
401 => 0.036230219636327
402 => 0.034962923635078
403 => 0.034900744047302
404 => 0.036794619311738
405 => 0.036259512804553
406 => 0.036195863588218
407 => 0.035518743463462
408 => 0.035919005320152
409 => 0.035831462180606
410 => 0.035693271052077
411 => 0.036456942792158
412 => 0.037886468116144
413 => 0.037663663188397
414 => 0.037497349645457
415 => 0.03676861211344
416 => 0.037207474877135
417 => 0.037051204252846
418 => 0.037722642026581
419 => 0.037324897163588
420 => 0.036255458846469
421 => 0.036425770423385
422 => 0.036400028171153
423 => 0.036929801897962
424 => 0.036770776974967
425 => 0.03636897600268
426 => 0.037881582153996
427 => 0.037783361924087
428 => 0.037922615753827
429 => 0.037983919596246
430 => 0.038904616305442
501 => 0.039281796288191
502 => 0.03936742274774
503 => 0.039725714559205
504 => 0.039358508121075
505 => 0.040827595687349
506 => 0.041804453195286
507 => 0.042939123459382
508 => 0.044597181685841
509 => 0.045220626916886
510 => 0.04510800711614
511 => 0.046365127940284
512 => 0.048624146117046
513 => 0.045564619277465
514 => 0.048786308468656
515 => 0.047766358866915
516 => 0.045348076709298
517 => 0.045192367848021
518 => 0.046830056601993
519 => 0.0504622926366
520 => 0.049552458706411
521 => 0.050463780798971
522 => 0.049400675170277
523 => 0.049347883015254
524 => 0.050412148131481
525 => 0.052898861585617
526 => 0.051717517236617
527 => 0.050023770434807
528 => 0.051274406715645
529 => 0.05019098982826
530 => 0.047749748351688
531 => 0.049551762973552
601 => 0.048346807114333
602 => 0.04869847729303
603 => 0.05123111528545
604 => 0.050926381581673
605 => 0.051320735211941
606 => 0.050624711376549
607 => 0.049974515361408
608 => 0.048760876214956
609 => 0.048401577495379
610 => 0.048500874735256
611 => 0.048401528288598
612 => 0.047722508340078
613 => 0.047575874046845
614 => 0.047331477133928
615 => 0.047407225956619
616 => 0.046947688259496
617 => 0.0478149308393
618 => 0.047975898704227
619 => 0.048607005531779
620 => 0.048672529136232
621 => 0.050430152667721
622 => 0.04946208316224
623 => 0.050111547765617
624 => 0.050053453538493
625 => 0.045400488216526
626 => 0.046041625784433
627 => 0.047039034640043
628 => 0.046589703302546
629 => 0.045954453918666
630 => 0.045441455981266
701 => 0.044664211649373
702 => 0.045758168120857
703 => 0.047196604551559
704 => 0.048709010257896
705 => 0.050526066617313
706 => 0.050120520790759
707 => 0.048675041653175
708 => 0.048739884791364
709 => 0.049140719556813
710 => 0.048621602115878
711 => 0.048468504248169
712 => 0.049119686260767
713 => 0.049124170593405
714 => 0.04852686324017
715 => 0.047863065423142
716 => 0.047860284086051
717 => 0.047742167676037
718 => 0.049421687817221
719 => 0.050345254076233
720 => 0.050451139459428
721 => 0.050338127146294
722 => 0.050381621100321
723 => 0.049844218243595
724 => 0.051072561812203
725 => 0.052199811341345
726 => 0.051897684387361
727 => 0.051444753133462
728 => 0.051083971573607
729 => 0.051812695717662
730 => 0.051780246778645
731 => 0.052189965800099
801 => 0.052171378578634
802 => 0.052033605482031
803 => 0.051897689307672
804 => 0.052436581575737
805 => 0.052281389256879
806 => 0.052125955881485
807 => 0.051814210451473
808 => 0.051856581832955
809 => 0.051403728784023
810 => 0.051194218242442
811 => 0.048043682383134
812 => 0.047201756254797
813 => 0.047466643353759
814 => 0.047553851064527
815 => 0.047187443734518
816 => 0.047712777723431
817 => 0.047630904977725
818 => 0.047949423937312
819 => 0.047750427119848
820 => 0.04775859401865
821 => 0.048343801228217
822 => 0.048513689370804
823 => 0.048427282890319
824 => 0.04848779902741
825 => 0.049882367864407
826 => 0.049684104771587
827 => 0.049578781455056
828 => 0.049607956733527
829 => 0.049964298971273
830 => 0.050064055342277
831 => 0.049641380588578
901 => 0.049840716445876
902 => 0.050689463226765
903 => 0.050986476565169
904 => 0.051934400566864
905 => 0.051531705602938
906 => 0.052270869637454
907 => 0.054542807879964
908 => 0.05635778935425
909 => 0.054688657383215
910 => 0.058021639724244
911 => 0.060616844564656
912 => 0.060517236280341
913 => 0.060064702288246
914 => 0.057110130574527
915 => 0.054391289633381
916 => 0.056665715528734
917 => 0.056671513508081
918 => 0.056476138306582
919 => 0.055262679709719
920 => 0.056433912577735
921 => 0.056526880789505
922 => 0.056474843313157
923 => 0.055544487452046
924 => 0.054124006010635
925 => 0.054401564684134
926 => 0.054856211453371
927 => 0.053995470269955
928 => 0.053720411307706
929 => 0.054231798250635
930 => 0.055879593532454
1001 => 0.055568087379454
1002 => 0.055559952694904
1003 => 0.056892708116604
1004 => 0.055938742861288
1005 => 0.054405065587873
1006 => 0.054017791849618
1007 => 0.052643230977661
1008 => 0.05359264506794
1009 => 0.053626812790839
1010 => 0.053106828396371
1011 => 0.054447259455687
1012 => 0.054434907147497
1013 => 0.055707446941483
1014 => 0.058140065083466
1015 => 0.057420620197013
1016 => 0.056583984069449
1017 => 0.056674949613919
1018 => 0.057672617114656
1019 => 0.057069404569177
1020 => 0.057286324006278
1021 => 0.057672288781108
1022 => 0.057905150912729
1023 => 0.056641444336723
1024 => 0.056346813883783
1025 => 0.055744103378305
1026 => 0.05558686745755
1027 => 0.056077762588295
1028 => 0.055948429064925
1029 => 0.053623941126034
1030 => 0.053381019203091
1031 => 0.053388469271655
1101 => 0.052777630546107
1102 => 0.051845954871555
1103 => 0.054294342916814
1104 => 0.054097703091611
1105 => 0.053880627943301
1106 => 0.053907218410355
1107 => 0.054969980677232
1108 => 0.054353524891663
1109 => 0.055992473632716
1110 => 0.055655555042864
1111 => 0.055309995762493
1112 => 0.055262228943952
1113 => 0.055129218102742
1114 => 0.054673074437077
1115 => 0.054122253550802
1116 => 0.053758553890395
1117 => 0.049589424297482
1118 => 0.050363190499215
1119 => 0.051253337983301
1120 => 0.051560613327766
1121 => 0.051034997588253
1122 => 0.054693828950138
1123 => 0.055362332697331
1124 => 0.053337391241664
1125 => 0.052958607373123
1126 => 0.054718661957499
1127 => 0.053657133885198
1128 => 0.054135139911157
1129 => 0.053101952338351
1130 => 0.055201309720707
1201 => 0.055185316134839
1202 => 0.054368618696966
1203 => 0.055058885778954
1204 => 0.05493893488682
1205 => 0.054016885490898
1206 => 0.055230540331188
1207 => 0.055231142288847
1208 => 0.054445088761427
1209 => 0.053527150330644
1210 => 0.053363044619958
1211 => 0.053239413011457
1212 => 0.054104734114221
1213 => 0.054880578309171
1214 => 0.056324232007885
1215 => 0.056687200848108
1216 => 0.058103892395701
1217 => 0.057260321556569
1218 => 0.057634265583485
1219 => 0.058040234722315
1220 => 0.05823487125649
1221 => 0.057917721468823
1222 => 0.06011842657574
1223 => 0.060304233514626
1224 => 0.060366532974011
1225 => 0.059624467594086
1226 => 0.060283595334024
1227 => 0.059975211292523
1228 => 0.060777540896954
1229 => 0.060903356423587
1230 => 0.060796795148546
1231 => 0.060836730982562
]
'min_raw' => 0.027281199664694
'max_raw' => 0.060903356423587
'avg_raw' => 0.04409227804414
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.027281'
'max' => '$0.0609033'
'avg' => '$0.044092'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0042067056351412
'max_diff' => -0.0058117916857943
'year' => 2031
]
6 => [
'items' => [
101 => 0.058958817404793
102 => 0.058861437679002
103 => 0.057533658208096
104 => 0.058074738156941
105 => 0.057063215127213
106 => 0.057383979499781
107 => 0.057525369378854
108 => 0.057451515329832
109 => 0.058105330005419
110 => 0.057549453965656
111 => 0.05608240570224
112 => 0.054614957742507
113 => 0.054596535128729
114 => 0.05421018198354
115 => 0.053930919423675
116 => 0.053984715300077
117 => 0.054174298985222
118 => 0.05391990047525
119 => 0.053974189295685
120 => 0.054875745439411
121 => 0.055056546094431
122 => 0.054442114825297
123 => 0.051975084617713
124 => 0.051369669216695
125 => 0.051804829801038
126 => 0.051596851069653
127 => 0.041642685782326
128 => 0.043981269264363
129 => 0.042591762370128
130 => 0.043232111075129
131 => 0.041813784347181
201 => 0.042490684202631
202 => 0.042365685515754
203 => 0.046126058551153
204 => 0.04606734549843
205 => 0.046095448329743
206 => 0.044754026969624
207 => 0.046890947619853
208 => 0.047943671573336
209 => 0.047748840386887
210 => 0.047797875199044
211 => 0.046955294666096
212 => 0.046103606351092
213 => 0.045158952935859
214 => 0.04691400221867
215 => 0.046718870698112
216 => 0.047166432200167
217 => 0.048304707113584
218 => 0.04847232241847
219 => 0.048697599088024
220 => 0.048616853438275
221 => 0.05054054240272
222 => 0.050307570976217
223 => 0.050868965083635
224 => 0.049714134811603
225 => 0.048407334741303
226 => 0.048655714712154
227 => 0.048631793723615
228 => 0.048327252084287
229 => 0.048052325509279
301 => 0.047594650221971
302 => 0.049042802554209
303 => 0.048984010214157
304 => 0.049935789860983
305 => 0.049767553563312
306 => 0.048644030393062
307 => 0.048684157242886
308 => 0.048954029592255
309 => 0.04988806087477
310 => 0.05016534495312
311 => 0.050036895920168
312 => 0.050340925253579
313 => 0.050581217642433
314 => 0.050371102278013
315 => 0.053345892744117
316 => 0.052110552340923
317 => 0.052712648657996
318 => 0.052856245081861
319 => 0.052488425861639
320 => 0.052568192679886
321 => 0.052689017674374
322 => 0.053422643380944
323 => 0.055347889511291
324 => 0.056200567916828
325 => 0.058765892970299
326 => 0.056129764845105
327 => 0.055973347911539
328 => 0.056435440419063
329 => 0.057941557792685
330 => 0.059162124461594
331 => 0.059567056841852
401 => 0.059620575340608
402 => 0.060380255405367
403 => 0.060815689851292
404 => 0.060288010263936
405 => 0.059840857064007
406 => 0.058239209804561
407 => 0.058424604835982
408 => 0.059701792755071
409 => 0.061505895916776
410 => 0.063054004114461
411 => 0.06251191058065
412 => 0.066647701585237
413 => 0.067057748370151
414 => 0.067001093162875
415 => 0.067935240762052
416 => 0.066081148013537
417 => 0.065288487442192
418 => 0.059937536661236
419 => 0.061440935568239
420 => 0.063626214171089
421 => 0.063336984353628
422 => 0.061749976619573
423 => 0.063052800226784
424 => 0.062622045999179
425 => 0.062282292267858
426 => 0.063838769975543
427 => 0.062127358799363
428 => 0.063609141535445
429 => 0.06170873984934
430 => 0.06251438681825
501 => 0.062057062633937
502 => 0.062353007428731
503 => 0.060622920205512
504 => 0.061556433275668
505 => 0.060584082992687
506 => 0.060583621972049
507 => 0.06056215728566
508 => 0.061706123081525
509 => 0.061743427765059
510 => 0.060898035313478
511 => 0.060776201053693
512 => 0.061226686168038
513 => 0.060699286081378
514 => 0.06094605326251
515 => 0.060706760407909
516 => 0.06065289054606
517 => 0.060223646321643
518 => 0.060038716107449
519 => 0.060111232009499
520 => 0.059863697851291
521 => 0.05971454956727
522 => 0.06053248793796
523 => 0.06009549646204
524 => 0.060465512726935
525 => 0.060043832493312
526 => 0.05858210508624
527 => 0.057741450196946
528 => 0.054980382627189
529 => 0.055763417964878
530 => 0.056282571203875
531 => 0.056110991061484
601 => 0.056479611600041
602 => 0.056502241907297
603 => 0.05638239961257
604 => 0.056243637588025
605 => 0.056176095908498
606 => 0.056679496251833
607 => 0.056971737094815
608 => 0.056334675176783
609 => 0.056185420482831
610 => 0.056829525255115
611 => 0.05722242879412
612 => 0.060123407772711
613 => 0.059908493879939
614 => 0.060447885576077
615 => 0.060387158348732
616 => 0.06095252677812
617 => 0.061876665217645
618 => 0.05999763337692
619 => 0.060323768332437
620 => 0.0602438075729
621 => 0.061116798178687
622 => 0.061119523560068
623 => 0.060596122082784
624 => 0.060879866514839
625 => 0.060721488156987
626 => 0.061007699255744
627 => 0.059905623573874
628 => 0.061247832792674
629 => 0.062008778929681
630 => 0.062019344667532
701 => 0.062380027097232
702 => 0.062746501335124
703 => 0.06344991672158
704 => 0.062726883461775
705 => 0.061426217013257
706 => 0.061520120929713
707 => 0.060757540666841
708 => 0.060770359778832
709 => 0.060701930354376
710 => 0.060907292208294
711 => 0.05995068895231
712 => 0.060175201824458
713 => 0.059860882488705
714 => 0.060323085063587
715 => 0.059825831497837
716 => 0.060243769013401
717 => 0.06042413699027
718 => 0.061089698707963
719 => 0.059727527490982
720 => 0.056949968168673
721 => 0.057533844812874
722 => 0.056670245393581
723 => 0.056750174807791
724 => 0.056911644945168
725 => 0.056388267400187
726 => 0.056488111342248
727 => 0.056484544214046
728 => 0.056453804630325
729 => 0.056317653917076
730 => 0.056120208446267
731 => 0.05690677043146
801 => 0.05704042263991
802 => 0.05733751494329
803 => 0.058221460118513
804 => 0.058133133150646
805 => 0.058277198099888
806 => 0.057962705124582
807 => 0.056764763234928
808 => 0.056829817243008
809 => 0.056018592719825
810 => 0.05731677010835
811 => 0.057009344567643
812 => 0.056811145321628
813 => 0.056757064821049
814 => 0.057643201125388
815 => 0.057908346996131
816 => 0.057743125882761
817 => 0.057404252558971
818 => 0.058054989519554
819 => 0.058229099277817
820 => 0.058268076031772
821 => 0.059421057159489
822 => 0.058332514868789
823 => 0.05859453781734
824 => 0.060638766064188
825 => 0.058784933128512
826 => 0.059766949779947
827 => 0.059718885175028
828 => 0.06022125166427
829 => 0.059677676459931
830 => 0.059684414726057
831 => 0.060130482135251
901 => 0.05950406090772
902 => 0.059348950202401
903 => 0.059134665873928
904 => 0.059602547865714
905 => 0.059883021959308
906 => 0.06214343716815
907 => 0.063603768480519
908 => 0.063540371646899
909 => 0.064119700032284
910 => 0.063858707288628
911 => 0.063015892872957
912 => 0.06445447431024
913 => 0.063999246950679
914 => 0.0640367753411
915 => 0.064035378532535
916 => 0.064338064929976
917 => 0.064123583876588
918 => 0.063700819704332
919 => 0.063981470291453
920 => 0.064814902200783
921 => 0.067401900420156
922 => 0.068849618896884
923 => 0.067314745950048
924 => 0.068373480756008
925 => 0.067738617138216
926 => 0.067623243533306
927 => 0.068288207231337
928 => 0.068954334860294
929 => 0.068911905410078
930 => 0.068428330957488
1001 => 0.068155172019467
1002 => 0.07022362301312
1003 => 0.0717476224701
1004 => 0.071643695924156
1005 => 0.07210239389923
1006 => 0.073449145341041
1007 => 0.073572275414841
1008 => 0.073556763855655
1009 => 0.073251573120446
1010 => 0.074577624812683
1011 => 0.075683840464006
1012 => 0.073180930283053
1013 => 0.07413400571446
1014 => 0.074561871981791
1015 => 0.075190106604434
1016 => 0.076250043717182
1017 => 0.077401416556059
1018 => 0.077564233299637
1019 => 0.07744870702857
1020 => 0.076689345690767
1021 => 0.077949191589802
1022 => 0.078687179770435
1023 => 0.079126634843442
1024 => 0.080241019790238
1025 => 0.074564514338195
1026 => 0.070546401638612
1027 => 0.069918915318321
1028 => 0.071194933425313
1029 => 0.071531409224073
1030 => 0.071395776251498
1031 => 0.066873025097293
1101 => 0.069895103969499
1102 => 0.073146606732384
1103 => 0.073271510195669
1104 => 0.074899280464485
1105 => 0.07542934918857
1106 => 0.076739917611694
1107 => 0.076657941199998
1108 => 0.076977043755331
1109 => 0.076903687603946
1110 => 0.079331239635042
1111 => 0.082009190020307
1112 => 0.081916461113826
1113 => 0.081531474061873
1114 => 0.08210324548407
1115 => 0.084867177268267
1116 => 0.084612718720682
1117 => 0.084859903524933
1118 => 0.088118734866871
1119 => 0.092355679174743
1120 => 0.090387193161483
1121 => 0.094658241393665
1122 => 0.097346639857285
1123 => 0.10199594701453
1124 => 0.10141383086012
1125 => 0.10322377201824
1126 => 0.10037172145242
1127 => 0.093822836858785
1128 => 0.092786450803718
1129 => 0.094861321931436
1130 => 0.099962190135967
1201 => 0.094700677439227
1202 => 0.095765074605169
1203 => 0.095458528149772
1204 => 0.095442193591902
1205 => 0.096065617228335
1206 => 0.095161308728099
1207 => 0.091476993216146
1208 => 0.093165493303467
1209 => 0.092513482331318
1210 => 0.093236937115555
1211 => 0.097141124210631
1212 => 0.095414990031702
1213 => 0.093596647893954
1214 => 0.095877252457112
1215 => 0.098781245766766
1216 => 0.098599519084425
1217 => 0.098246893364824
1218 => 0.10023462608333
1219 => 0.10351777818326
1220 => 0.1044052010031
1221 => 0.10506027838615
1222 => 0.10515060248965
1223 => 0.1060809968918
1224 => 0.10107803170184
1225 => 0.10901786594356
1226 => 0.11038885598362
1227 => 0.1101311666778
1228 => 0.11165496440724
1229 => 0.11120662446022
1230 => 0.11055705021937
1231 => 0.1129725937416
]
'min_raw' => 0.041642685782326
'max_raw' => 0.1129725937416
'avg_raw' => 0.077307639761965
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.041642'
'max' => '$0.112972'
'avg' => '$0.0773076'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.014361486117632
'max_diff' => 0.052069237318016
'year' => 2032
]
7 => [
'items' => [
101 => 0.11020336801768
102 => 0.10627280073839
103 => 0.10411641379117
104 => 0.10695611807404
105 => 0.10869022638757
106 => 0.10983636167281
107 => 0.11018318151761
108 => 0.10146639764792
109 => 0.096768534597153
110 => 0.099779810951586
111 => 0.10345377593119
112 => 0.10105762264088
113 => 0.10115154731334
114 => 0.097735262419361
115 => 0.10375604133965
116 => 0.10287886449369
117 => 0.10742965952226
118 => 0.10634357576628
119 => 0.11005457245123
120 => 0.10907734265504
121 => 0.11313376890284
122 => 0.11475198715644
123 => 0.11746922745981
124 => 0.11946804048812
125 => 0.12064178172954
126 => 0.120571314708
127 => 0.12522226226209
128 => 0.12247976098117
129 => 0.11903453301442
130 => 0.11897221971006
131 => 0.1207565520933
201 => 0.12449602326088
202 => 0.12546561372754
203 => 0.12600748252445
204 => 0.1251775915994
205 => 0.12220080301581
206 => 0.12091544079807
207 => 0.12201060664811
208 => 0.12067131292219
209 => 0.12298330963258
210 => 0.1261581749318
211 => 0.12550257780229
212 => 0.12769414071363
213 => 0.12996217776773
214 => 0.13320557261901
215 => 0.13405351613569
216 => 0.13545513452437
217 => 0.13689786025398
218 => 0.13736122487578
219 => 0.1382459317124
220 => 0.13824126887067
221 => 0.14090739247045
222 => 0.14384820936398
223 => 0.14495829966122
224 => 0.147510891089
225 => 0.14313966772241
226 => 0.14645529085896
227 => 0.14944606592356
228 => 0.14588034059636
301 => 0.15079486225246
302 => 0.15098568199182
303 => 0.15386683350453
304 => 0.15094623448455
305 => 0.14921199210937
306 => 0.15421868486531
307 => 0.15664126578056
308 => 0.15591156469327
309 => 0.15035850338919
310 => 0.14712638352822
311 => 0.13866730242268
312 => 0.1486874493973
313 => 0.15356797069694
314 => 0.15034586401807
315 => 0.15197090720814
316 => 0.16083661593112
317 => 0.1642121038007
318 => 0.16351002592027
319 => 0.16362866552487
320 => 0.16545001750986
321 => 0.17352689524815
322 => 0.16868704288681
323 => 0.17238692867124
324 => 0.17434933475038
325 => 0.17617212688276
326 => 0.171695925505
327 => 0.165872453281
328 => 0.16402791517493
329 => 0.15002548900964
330 => 0.14929660191828
331 => 0.14888745550637
401 => 0.14630784525413
402 => 0.14428097821059
403 => 0.14266913828482
404 => 0.13843918898344
405 => 0.13986667270119
406 => 0.13312501637383
407 => 0.13743808918244
408 => 0.12667824290099
409 => 0.13563936261474
410 => 0.13076223256667
411 => 0.13403709422396
412 => 0.13402566854015
413 => 0.12799560993324
414 => 0.12451759797288
415 => 0.12673392256027
416 => 0.12910999845002
417 => 0.12949550876905
418 => 0.13257615318203
419 => 0.13343589481946
420 => 0.13083083752054
421 => 0.12645526900285
422 => 0.12747161377342
423 => 0.12449700177855
424 => 0.11928410867433
425 => 0.12302809951016
426 => 0.12430646259317
427 => 0.12487106055736
428 => 0.11974477889419
429 => 0.11813398989863
430 => 0.11727641935322
501 => 0.12579353041322
502 => 0.12626011698338
503 => 0.12387299412176
504 => 0.13466301581257
505 => 0.13222090158988
506 => 0.13494934150913
507 => 0.12737939113831
508 => 0.12766857343677
509 => 0.12408483761738
510 => 0.12609149021092
511 => 0.12467325283524
512 => 0.12592937251149
513 => 0.12668228546626
514 => 0.13026543322986
515 => 0.13568027640651
516 => 0.12973023044143
517 => 0.12713771020821
518 => 0.12874609518001
519 => 0.13302943631041
520 => 0.13951891738316
521 => 0.13567701397511
522 => 0.13738198546785
523 => 0.13775444589011
524 => 0.13492156855202
525 => 0.13962336961139
526 => 0.14214310299647
527 => 0.1447278280642
528 => 0.14697207241817
529 => 0.14369543203283
530 => 0.14720190693309
531 => 0.14437630713962
601 => 0.14184145201974
602 => 0.14184529634862
603 => 0.14025514470359
604 => 0.13717402551936
605 => 0.13660581986894
606 => 0.1395616974189
607 => 0.14193203129132
608 => 0.14212726334218
609 => 0.14343960196611
610 => 0.14421623044558
611 => 0.15182824531967
612 => 0.15488986067191
613 => 0.15863354597122
614 => 0.16009192237785
615 => 0.16448111250491
616 => 0.16093648500471
617 => 0.16016958254829
618 => 0.14952284299319
619 => 0.1512662459989
620 => 0.1540576024244
621 => 0.14956887143253
622 => 0.15241593808342
623 => 0.15297800934942
624 => 0.14941634607106
625 => 0.15131878431842
626 => 0.14626647236706
627 => 0.13579040300068
628 => 0.13963503247133
629 => 0.14246597385002
630 => 0.13842587145008
701 => 0.14566759862843
702 => 0.14143713111043
703 => 0.14009627600548
704 => 0.1348651221917
705 => 0.13733402542623
706 => 0.14067325240221
707 => 0.13860999835786
708 => 0.14289156029905
709 => 0.14895539385865
710 => 0.15327684276074
711 => 0.1536085899478
712 => 0.15083018781834
713 => 0.15528259496233
714 => 0.15531502588757
715 => 0.15029269244054
716 => 0.1472165411687
717 => 0.14651763312746
718 => 0.14826364244347
719 => 0.1503836200842
720 => 0.15372623395257
721 => 0.15574610550705
722 => 0.16101285926404
723 => 0.16243789182102
724 => 0.16400357055826
725 => 0.16609580018866
726 => 0.16860805829661
727 => 0.16311138057933
728 => 0.16332977383213
729 => 0.15821134364848
730 => 0.15274156694012
731 => 0.15689244564448
801 => 0.16231916738217
802 => 0.16107427141955
803 => 0.16093419519284
804 => 0.16116976455226
805 => 0.16023115365094
806 => 0.15598585133084
807 => 0.15385388708268
808 => 0.15660466488489
809 => 0.15806658086373
810 => 0.16033388505444
811 => 0.16005439195595
812 => 0.16589472406053
813 => 0.16816410051389
814 => 0.16758349690503
815 => 0.16769034194207
816 => 0.17179893961133
817 => 0.17636854521712
818 => 0.1806485838795
819 => 0.18500242303881
820 => 0.17975369999902
821 => 0.17708872213565
822 => 0.17983829903433
823 => 0.17837933482879
824 => 0.18676297591069
825 => 0.18734344102947
826 => 0.19572647587869
827 => 0.20368297418382
828 => 0.19868564015384
829 => 0.20339790105924
830 => 0.2084945954247
831 => 0.21832694576454
901 => 0.21501575607634
902 => 0.21247943666813
903 => 0.21008262708279
904 => 0.21507000734709
905 => 0.22148619238176
906 => 0.22286817718477
907 => 0.22510752052448
908 => 0.22275312481666
909 => 0.22558873511855
910 => 0.23559968551455
911 => 0.23289463834845
912 => 0.22905303651455
913 => 0.2369557203903
914 => 0.23981567096403
915 => 0.25988830185819
916 => 0.28523082752109
917 => 0.27473885548865
918 => 0.2682261498743
919 => 0.26975679017711
920 => 0.27901102265057
921 => 0.28198318840639
922 => 0.2739038173151
923 => 0.27675758777144
924 => 0.2924821435624
925 => 0.3009178632401
926 => 0.28946102284948
927 => 0.25785205459664
928 => 0.22870714230129
929 => 0.23643768545452
930 => 0.23556128176763
1001 => 0.25245535528672
1002 => 0.23283012386816
1003 => 0.23316056243354
1004 => 0.25040398750187
1005 => 0.24580373732079
1006 => 0.23835192118295
1007 => 0.22876154880577
1008 => 0.21103285846446
1009 => 0.19533006302807
1010 => 0.22612686101665
1011 => 0.22479884708704
1012 => 0.22287568611633
1013 => 0.2271554727489
1014 => 0.24793690179805
1015 => 0.24745782259555
1016 => 0.24441016513757
1017 => 0.24672178645863
1018 => 0.23794668278885
1019 => 0.24020822680995
1020 => 0.22870252559827
1021 => 0.23390358306648
1022 => 0.2383359329323
1023 => 0.23922579278993
1024 => 0.24123069248653
1025 => 0.22409904409156
1026 => 0.23179065126213
1027 => 0.23630874986871
1028 => 0.21589581599434
1029 => 0.2359052517986
1030 => 0.22380082020748
1031 => 0.21969239432299
1101 => 0.2252238485325
1102 => 0.22306823544754
1103 => 0.22121496589894
1104 => 0.2201808096476
1105 => 0.22424249913475
1106 => 0.2240530164654
1107 => 0.21740730412448
1108 => 0.20873824328964
1109 => 0.21164786465803
1110 => 0.21059077193705
1111 => 0.20675973154853
1112 => 0.20934139020881
1113 => 0.19797307201648
1114 => 0.17841447144034
1115 => 0.19133548207708
1116 => 0.19083803722292
1117 => 0.19058720297012
1118 => 0.20029698535313
1119 => 0.19936361381979
1120 => 0.19766953534719
1121 => 0.20672861846887
1122 => 0.2034219312676
1123 => 0.21361236206843
1124 => 0.2203244388696
1125 => 0.21862203907989
1126 => 0.22493477975367
1127 => 0.21171489645775
1128 => 0.216106011399
1129 => 0.21701101410257
1130 => 0.20661683078935
1201 => 0.19951632494585
1202 => 0.19904280215778
1203 => 0.18673150353512
1204 => 0.19330809988601
1205 => 0.19909523251675
1206 => 0.19632364508626
1207 => 0.19544624330459
1208 => 0.19992869872193
1209 => 0.20027702389749
1210 => 0.19233517298083
1211 => 0.19398653527212
1212 => 0.20087299054291
1213 => 0.19381301426812
1214 => 0.18009663360677
1215 => 0.17669478155896
1216 => 0.17624091178721
1217 => 0.16701481922925
1218 => 0.17692210957938
1219 => 0.17259731184268
1220 => 0.1862592960739
1221 => 0.17845564395172
1222 => 0.17811924410569
1223 => 0.1776107263993
1224 => 0.16966944740958
1225 => 0.17140808281372
1226 => 0.17718757169873
1227 => 0.1792497584435
1228 => 0.17903465547102
1229 => 0.1771592490502
1230 => 0.17801780050602
1231 => 0.17525210712768
]
'min_raw' => 0.096768534597153
'max_raw' => 0.3009178632401
'avg_raw' => 0.19884319891862
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.096768'
'max' => '$0.300917'
'avg' => '$0.198843'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.055125848814827
'max_diff' => 0.18794526949849
'year' => 2033
]
8 => [
'items' => [
101 => 0.17427548323285
102 => 0.17119298957922
103 => 0.166662575469
104 => 0.16729255733767
105 => 0.15831662153798
106 => 0.15342605532533
107 => 0.1520724110543
108 => 0.15026226136239
109 => 0.15227687227863
110 => 0.15829119383962
111 => 0.15103664602756
112 => 0.13859923265115
113 => 0.13934674238739
114 => 0.1410261748271
115 => 0.13789656358626
116 => 0.13493464919518
117 => 0.13750979345052
118 => 0.13223989744341
119 => 0.14166301658233
120 => 0.14140814761761
121 => 0.14492050371083
122 => 0.14711685205671
123 => 0.14205498019566
124 => 0.14078193311136
125 => 0.14150711858734
126 => 0.12952141804
127 => 0.14394101626888
128 => 0.14406571755315
129 => 0.14299794944889
130 => 0.15067594035062
131 => 0.16687889597868
201 => 0.16078269230902
202 => 0.1584220579894
203 => 0.15393449042218
204 => 0.1599139077601
205 => 0.15945478180199
206 => 0.15737844010107
207 => 0.15612266216176
208 => 0.15843647151918
209 => 0.15583595557659
210 => 0.1553688314559
211 => 0.15253856752058
212 => 0.15152829206447
213 => 0.150780324337
214 => 0.14995688536284
215 => 0.15177318655162
216 => 0.14765720910351
217 => 0.14269374379533
218 => 0.14228108536039
219 => 0.14342047158055
220 => 0.14291637799546
221 => 0.14227867195424
222 => 0.14106111745266
223 => 0.14069989504097
224 => 0.14187369263875
225 => 0.14054854358751
226 => 0.14250387319721
227 => 0.1419721317367
228 => 0.13900186716331
301 => 0.13529981777208
302 => 0.13526686176719
303 => 0.13446926129842
304 => 0.13345339718142
305 => 0.13317080702389
306 => 0.13729292198399
307 => 0.14582557658688
308 => 0.14415041231921
309 => 0.14536089018034
310 => 0.15131524320312
311 => 0.15320795297542
312 => 0.15186455241033
313 => 0.1500256228595
314 => 0.15010652642701
315 => 0.15639070538404
316 => 0.15678264191726
317 => 0.15777293909318
318 => 0.1590457508222
319 => 0.15208131775157
320 => 0.14977850225568
321 => 0.14868730051839
322 => 0.14532682151574
323 => 0.1489508100144
324 => 0.14683926711089
325 => 0.14712418638915
326 => 0.14693863233541
327 => 0.14703995739586
328 => 0.14166038262849
329 => 0.1436204169316
330 => 0.14036147974778
331 => 0.13599812869151
401 => 0.13598350120879
402 => 0.13705142519825
403 => 0.13641618222145
404 => 0.13470675970446
405 => 0.13494957510475
406 => 0.13282225669582
407 => 0.13520787007594
408 => 0.13527628093154
409 => 0.13435768983496
410 => 0.13803305639823
411 => 0.13953885707802
412 => 0.13893422074012
413 => 0.13949643418071
414 => 0.14422002295745
415 => 0.14499017403268
416 => 0.14533222426698
417 => 0.144873922266
418 => 0.13958277271234
419 => 0.13981745769475
420 => 0.13809549500975
421 => 0.13664061799689
422 => 0.13669880544758
423 => 0.13744680135297
424 => 0.14071334334116
425 => 0.14758758838213
426 => 0.14784846095643
427 => 0.14816464612667
428 => 0.14687856213738
429 => 0.14649066690004
430 => 0.14700240084234
501 => 0.1495840058491
502 => 0.1562245948254
503 => 0.15387736717115
504 => 0.15196903455147
505 => 0.15364315674171
506 => 0.15338543875273
507 => 0.15121003956748
508 => 0.15114898335775
509 => 0.14697369680408
510 => 0.14543018843186
511 => 0.14414031730644
512 => 0.14273181171041
513 => 0.14189680237955
514 => 0.1431797562167
515 => 0.14347318293873
516 => 0.1406679819516
517 => 0.14028564342262
518 => 0.14257643110318
519 => 0.14156834085414
520 => 0.14260518667472
521 => 0.14284574379899
522 => 0.14280700856148
523 => 0.14175444656305
524 => 0.142425318193
525 => 0.14083850679172
526 => 0.13911308772419
527 => 0.13801237785651
528 => 0.13705186250899
529 => 0.13758481224927
530 => 0.13568494373793
531 => 0.13507713756435
601 => 0.14219804197986
602 => 0.14745833063422
603 => 0.14738184395389
604 => 0.14691625095811
605 => 0.14622447420848
606 => 0.14953339807105
607 => 0.14838063516135
608 => 0.14921936649472
609 => 0.14943285882051
610 => 0.15007903579089
611 => 0.15030998851701
612 => 0.14961188897169
613 => 0.14726898163189
614 => 0.14143067929806
615 => 0.13871293380147
616 => 0.13781603251996
617 => 0.13784863317808
618 => 0.13694936149126
619 => 0.13721423730556
620 => 0.13685724849255
621 => 0.13618119804559
622 => 0.13754306803923
623 => 0.13770001086931
624 => 0.13738213413965
625 => 0.13745700561679
626 => 0.1348251220622
627 => 0.13502521845271
628 => 0.13391105632336
629 => 0.13370216435553
630 => 0.13088565951373
701 => 0.12589581292757
702 => 0.12866067231243
703 => 0.12532111097358
704 => 0.12405636849195
705 => 0.13004346269219
706 => 0.12944252449063
707 => 0.12841397951112
708 => 0.12689254711886
709 => 0.12632823304503
710 => 0.12289963937255
711 => 0.12269705976755
712 => 0.12439636337144
713 => 0.12361219322771
714 => 0.12251092135746
715 => 0.11852222627753
716 => 0.11403761239614
717 => 0.11417297469994
718 => 0.1155994469364
719 => 0.11974710734991
720 => 0.1181265446711
721 => 0.11695080785381
722 => 0.11673062769045
723 => 0.11948664341329
724 => 0.12338698306426
725 => 0.12521693516331
726 => 0.12340350820962
727 => 0.12132034096706
728 => 0.12144713370465
729 => 0.12229062898367
730 => 0.12237926841111
731 => 0.12102334068926
801 => 0.12140502640057
802 => 0.12082521090302
803 => 0.1172668842648
804 => 0.11720252541949
805 => 0.1163292546767
806 => 0.11630281238567
807 => 0.11481716100459
808 => 0.11460930810656
809 => 0.11165945711684
810 => 0.11360105797124
811 => 0.11229873405673
812 => 0.1103358247304
813 => 0.10999741842267
814 => 0.10998724552043
815 => 0.11200271450007
816 => 0.11357750604275
817 => 0.11232138853879
818 => 0.11203539493196
819 => 0.11508905843268
820 => 0.11470045191745
821 => 0.11436392118151
822 => 0.12303775042781
823 => 0.11617173775203
824 => 0.11317776432708
825 => 0.10947215367358
826 => 0.11067871918767
827 => 0.11093296026963
828 => 0.10202163463448
829 => 0.098406310934135
830 => 0.097165668080776
831 => 0.096451660578553
901 => 0.096777042763258
902 => 0.093522827397773
903 => 0.095709713943133
904 => 0.092891838508601
905 => 0.092419412521842
906 => 0.097458122866567
907 => 0.098159229975317
908 => 0.095168089232486
909 => 0.097088885811083
910 => 0.096392378270614
911 => 0.092940142895133
912 => 0.092808292896714
913 => 0.091076082537239
914 => 0.088365508746681
915 => 0.087126703789991
916 => 0.086481523412749
917 => 0.086747737410714
918 => 0.08661313146706
919 => 0.08573473663375
920 => 0.086663480030693
921 => 0.084290924434771
922 => 0.083346153679496
923 => 0.082919422647853
924 => 0.080813642997268
925 => 0.08416487486581
926 => 0.084825109761619
927 => 0.085486645524131
928 => 0.091244862687143
929 => 0.090957198430232
930 => 0.093557543214535
1001 => 0.093456498597944
1002 => 0.092714838142668
1003 => 0.089585894679082
1004 => 0.090833035775613
1005 => 0.086994529329249
1006 => 0.089870599351932
1007 => 0.088558081101135
1008 => 0.089426835611063
1009 => 0.087864736669777
1010 => 0.088729266721369
1011 => 0.084981675948516
1012 => 0.08148222841485
1013 => 0.082890508257639
1014 => 0.084421469503086
1015 => 0.087740983564884
1016 => 0.085763908375073
1017 => 0.086474939374819
1018 => 0.084093104550823
1019 => 0.079178698971435
1020 => 0.079206513973312
1021 => 0.078450539741069
1022 => 0.077797267630365
1023 => 0.085990999243662
1024 => 0.08497197919382
1025 => 0.083348304110444
1026 => 0.085521657731826
1027 => 0.086096326925079
1028 => 0.086112686949121
1029 => 0.087698309648905
1030 => 0.088544556768018
1031 => 0.088693711490607
1101 => 0.091188723068363
1102 => 0.092025018039228
1103 => 0.095469598667328
1104 => 0.088472758612361
1105 => 0.088328663295828
1106 => 0.08555224127427
1107 => 0.083791390534703
1108 => 0.085672808230882
1109 => 0.08733948747057
1110 => 0.085604029644098
1111 => 0.085830643798721
1112 => 0.083500933458796
1113 => 0.084333695282259
1114 => 0.085050981949758
1115 => 0.084654938412126
1116 => 0.084062042067569
1117 => 0.087202838779475
1118 => 0.087025622720107
1119 => 0.089950404824838
1120 => 0.092230481628651
1121 => 0.096316786873565
1122 => 0.092052514326587
1123 => 0.091897107286027
1124 => 0.093416236035576
1125 => 0.092024785468532
1126 => 0.092904134195662
1127 => 0.096175110198946
1128 => 0.096244220767559
1129 => 0.095086529699354
1130 => 0.095016084092643
1201 => 0.095238431326044
1202 => 0.096540726016965
1203 => 0.096085664236483
1204 => 0.096612273249611
1205 => 0.09727080588425
1206 => 0.099994776073171
1207 => 0.10065151606376
1208 => 0.099055978367271
1209 => 0.099200037556786
1210 => 0.098603262659809
1211 => 0.098026785586897
1212 => 0.099322621859088
1213 => 0.10169078811624
1214 => 0.10167605587686
1215 => 0.10222542441795
1216 => 0.10256767646783
1217 => 0.10109848012593
1218 => 0.10014208733119
1219 => 0.10050882918555
1220 => 0.10109525739726
1221 => 0.10031865842017
1222 => 0.095525129777934
1223 => 0.096979180156194
1224 => 0.096737155073821
1225 => 0.096392481925265
1226 => 0.097854540824444
1227 => 0.097713521676902
1228 => 0.093489450715634
1229 => 0.09375986203361
1230 => 0.093505895323511
1231 => 0.094326513720542
]
'min_raw' => 0.077797267630365
'max_raw' => 0.17427548323285
'avg_raw' => 0.12603637543161
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.077797'
'max' => '$0.174275'
'avg' => '$0.126036'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.018971266966788
'max_diff' => -0.12664238000724
'year' => 2034
]
9 => [
'items' => [
101 => 0.091980469382052
102 => 0.092702096819722
103 => 0.093154694783791
104 => 0.093421278461649
105 => 0.094384361504213
106 => 0.094271354825031
107 => 0.094377336850366
108 => 0.095805334757991
109 => 0.10302765814505
110 => 0.10342075327185
111 => 0.1014850090997
112 => 0.10225830071561
113 => 0.10077374991335
114 => 0.10177033881253
115 => 0.10245217962674
116 => 0.099371072097792
117 => 0.09918862890615
118 => 0.097697950834648
119 => 0.098498956793952
120 => 0.097224498718334
121 => 0.097537206151439
122 => 0.096662848907132
123 => 0.098236517864094
124 => 0.099996124281412
125 => 0.10044067035139
126 => 0.099271261030395
127 => 0.098424531614165
128 => 0.096937953689275
129 => 0.099410165908917
130 => 0.10013311610124
131 => 0.099406368559326
201 => 0.099237965274117
202 => 0.098918841352943
203 => 0.09930566892259
204 => 0.10012917875923
205 => 0.099740826728111
206 => 0.09999734008655
207 => 0.099019775679609
208 => 0.10109896649105
209 => 0.10440122188413
210 => 0.1044118391752
211 => 0.10402348505071
212 => 0.10386457891018
213 => 0.1042630538092
214 => 0.10447921009562
215 => 0.10576780485125
216 => 0.10715051836392
217 => 0.1136030390024
218 => 0.11179119702729
219 => 0.11751625719991
220 => 0.12204403649044
221 => 0.12340171952387
222 => 0.12215271501703
223 => 0.11787993806904
224 => 0.11767029524761
225 => 0.12405562792781
226 => 0.12225147897889
227 => 0.12203688120217
228 => 0.11975392342654
301 => 0.12110343422176
302 => 0.12080827641472
303 => 0.12034235537668
304 => 0.12291712796622
305 => 0.12773687240231
306 => 0.12698567003267
307 => 0.12642493231101
308 => 0.12396794284298
309 => 0.1254475992912
310 => 0.12492072197094
311 => 0.12718452130338
312 => 0.12584349672814
313 => 0.12223781077617
314 => 0.12281202814852
315 => 0.12272523634785
316 => 0.12451140545541
317 => 0.12397524182477
318 => 0.12262054179385
319 => 0.1277203990398
320 => 0.12738924267715
321 => 0.12785874668651
322 => 0.12806543687132
323 => 0.13116963010737
324 => 0.13244131875307
325 => 0.13273001433969
326 => 0.13393802019718
327 => 0.13269995805349
328 => 0.1376530893516
329 => 0.14094663264162
330 => 0.14477225265717
331 => 0.15036251172961
401 => 0.15246450085363
402 => 0.15208479533255
403 => 0.15632326596053
404 => 0.16393970346309
405 => 0.1536242951141
406 => 0.16448644515336
407 => 0.16104761386048
408 => 0.15289420672701
409 => 0.15236922342997
410 => 0.15789080540376
411 => 0.17013714278906
412 => 0.16706957417085
413 => 0.17014216023239
414 => 0.16655782538159
415 => 0.1663798329451
416 => 0.16996807708908
417 => 0.17835220511648
418 => 0.174369220165
419 => 0.16865863456907
420 => 0.17287524210655
421 => 0.16922242642898
422 => 0.16099161034868
423 => 0.16706722845894
424 => 0.16300463565225
425 => 0.16419031621256
426 => 0.17272928202714
427 => 0.17170185106903
428 => 0.17303144186637
429 => 0.17068474891051
430 => 0.16849256765023
501 => 0.16440069853439
502 => 0.1631892978159
503 => 0.16352408539286
504 => 0.1631891319118
505 => 0.16089976874771
506 => 0.16040538099039
507 => 0.15958137973524
508 => 0.15983677217956
509 => 0.15828740874981
510 => 0.16121137765656
511 => 0.16175409205158
512 => 0.16388191278315
513 => 0.16410283019027
514 => 0.17002878064004
515 => 0.16676486671386
516 => 0.16895458196832
517 => 0.16875871322556
518 => 0.15307091578288
519 => 0.15523255585587
520 => 0.15859538944943
521 => 0.15708043747374
522 => 0.1549386498243
523 => 0.15320904146198
524 => 0.15058850793154
525 => 0.15427685855275
526 => 0.15912664740728
527 => 0.16422582883899
528 => 0.17035216121759
529 => 0.16898483514906
530 => 0.16411130131656
531 => 0.16432992448417
601 => 0.16568136688127
602 => 0.16393112618554
603 => 0.16341494603561
604 => 0.16561045165516
605 => 0.16562557089573
606 => 0.16361170745163
607 => 0.16137366676664
608 => 0.16136428929445
609 => 0.16096605157146
610 => 0.16662867098782
611 => 0.16974253911141
612 => 0.17009953907353
613 => 0.16971851016953
614 => 0.16986515307219
615 => 0.16805326182047
616 => 0.17219470792224
617 => 0.17599530841179
618 => 0.1749766662926
619 => 0.17344957694743
620 => 0.17223317672942
621 => 0.17469012105899
622 => 0.17458071719559
623 => 0.17596211348208
624 => 0.1758994453672
625 => 0.17543493375299
626 => 0.17497668288178
627 => 0.17679359578781
628 => 0.1762703540496
629 => 0.17574629957245
630 => 0.17469522808979
701 => 0.17483808616073
702 => 0.17331126048907
703 => 0.17260488107057
704 => 0.16198262945752
705 => 0.15914401673443
706 => 0.16003710208241
707 => 0.16033112896791
708 => 0.15909576107304
709 => 0.16086696129431
710 => 0.16059092161599
711 => 0.16166483052652
712 => 0.16099389886293
713 => 0.16102143413243
714 => 0.16299450109735
715 => 0.16356729083129
716 => 0.16327596534963
717 => 0.16347999973093
718 => 0.16818188593056
719 => 0.16751342807083
720 => 0.1671583231557
721 => 0.16725668964402
722 => 0.1684581223776
723 => 0.16879445794721
724 => 0.1673693805049
725 => 0.16804145526497
726 => 0.17090306429435
727 => 0.17190446550158
728 => 0.17510045745524
729 => 0.1737427432691
730 => 0.17623488641825
731 => 0.18389488482454
801 => 0.19001422158305
802 => 0.18438662660764
803 => 0.19562400927181
804 => 0.20437392358268
805 => 0.20403808729768
806 => 0.20251233734842
807 => 0.19255079253401
808 => 0.18338403047752
809 => 0.19105241617905
810 => 0.19107196447122
811 => 0.1904132433387
812 => 0.1863219829584
813 => 0.19027087634579
814 => 0.1905843251626
815 => 0.19040887717795
816 => 0.18727211743685
817 => 0.18248286508228
818 => 0.18341867352851
819 => 0.18495154685342
820 => 0.1820494978585
821 => 0.18112211736328
822 => 0.18284629414526
823 => 0.1884019509833
824 => 0.1873516862398
825 => 0.18732425958289
826 => 0.19181773753716
827 => 0.18860137707514
828 => 0.18343047706989
829 => 0.18212475662278
830 => 0.1774903286742
831 => 0.18069134456555
901 => 0.18080654342882
902 => 0.17905337973872
903 => 0.18357273664111
904 => 0.18353108997164
905 => 0.18782154673295
906 => 0.19602328863862
907 => 0.19359762997391
908 => 0.19077685285776
909 => 0.19108354954195
910 => 0.19444725517561
911 => 0.19241348196357
912 => 0.19314484099059
913 => 0.19444614817613
914 => 0.1952312591108
915 => 0.19097058416062
916 => 0.18997721701809
917 => 0.18794513646897
918 => 0.18741500458428
919 => 0.18907009179079
920 => 0.18863403478697
921 => 0.18079686141043
922 => 0.17997783318697
923 => 0.18000295161328
924 => 0.17794346620269
925 => 0.17480225661842
926 => 0.18305716785401
927 => 0.18239418295438
928 => 0.18166229893615
929 => 0.18175195055231
930 => 0.18533512773478
1001 => 0.18325670401416
1002 => 0.18878253412237
1003 => 0.18764658957378
1004 => 0.18648151233383
1005 => 0.18632046317015
1006 => 0.18587200783249
1007 => 0.18433408761676
1008 => 0.1824769565416
1009 => 0.18125071774384
1010 => 0.167194206242
1011 => 0.16980301301378
1012 => 0.17280420740449
1013 => 0.17384020768163
1014 => 0.17206805751854
1015 => 0.18440406290659
1016 => 0.18665796996369
1017 => 0.17983073846901
1018 => 0.17855364221038
1019 => 0.18448778912469
1020 => 0.1809087731154
1021 => 0.18252040380524
1022 => 0.17903693976867
1023 => 0.18611506975573
1024 => 0.18606114626434
1025 => 0.18330759383256
1026 => 0.18563487749239
1027 => 0.18523045468486
1028 => 0.18212170077107
1029 => 0.18621362279979
1030 => 0.18621565234206
1031 => 0.18356541799386
1101 => 0.18047052448606
1102 => 0.17991723062499
1103 => 0.17950039802524
1104 => 0.182417888538
1105 => 0.18503370140899
1106 => 0.18990108064689
1107 => 0.19112485543337
1108 => 0.19590132989633
1109 => 0.19305717191596
1110 => 0.19431795031064
1111 => 0.19568670360607
1112 => 0.19634293427013
1113 => 0.19527364161832
1114 => 0.20269347253461
1115 => 0.20331993360169
1116 => 0.20352998057862
1117 => 0.20102805534085
1118 => 0.20325035053488
1119 => 0.20221061220828
1120 => 0.20491572248648
1121 => 0.20533991831868
1122 => 0.20498063954001
1123 => 0.20511528599263
1124 => 0.19878376925344
1125 => 0.1984554467091
1126 => 0.19397874552034
1127 => 0.19580303434486
1128 => 0.19239261382785
1129 => 0.19347409330502
1130 => 0.19395079915384
1201 => 0.19370179507124
1202 => 0.19590617689786
1203 => 0.19403200201977
1204 => 0.18908574637363
1205 => 0.18413814312344
1206 => 0.18407602999487
1207 => 0.18277341339154
1208 => 0.18183186017347
1209 => 0.18201323672667
1210 => 0.18265243135745
1211 => 0.18179470901954
1212 => 0.18197774756796
1213 => 0.18501740705117
1214 => 0.18562698908267
1215 => 0.18355539116056
1216 => 0.17523762657315
1217 => 0.17319642627986
1218 => 0.17466360057191
1219 => 0.17396238575844
1220 => 0.14040122251459
1221 => 0.14828591999896
1222 => 0.14360110049277
1223 => 0.14576008085941
1224 => 0.14097809327172
1225 => 0.14326030839401
1226 => 0.14283886659407
1227 => 0.15551722682378
1228 => 0.15531927166731
1229 => 0.15541402232516
1230 => 0.15089132655447
1231 => 0.15809610372175
]
'min_raw' => 0.091980469382052
'max_raw' => 0.20533991831868
'avg_raw' => 0.14866019385037
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.09198'
'max' => '$0.205339'
'avg' => '$0.14866'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.014183201751687
'max_diff' => 0.031064435085828
'year' => 2035
]
10 => [
'items' => [
101 => 0.16164543602976
102 => 0.16098854908197
103 => 0.16115387337465
104 => 0.15831305428073
105 => 0.15544152766371
106 => 0.15225656272066
107 => 0.15817383391128
108 => 0.15751593436607
109 => 0.159024919218
110 => 0.1628626925604
111 => 0.16342781926335
112 => 0.16418735528307
113 => 0.16391511568746
114 => 0.17040096733876
115 => 0.16961548790876
116 => 0.1715082673372
117 => 0.16761467644737
118 => 0.16320870877249
119 => 0.16404613918555
120 => 0.16396548790258
121 => 0.16293870450317
122 => 0.16201177036076
123 => 0.16046868617574
124 => 0.16535123287065
125 => 0.16515301039141
126 => 0.16836200192182
127 => 0.16779478149834
128 => 0.16400674468796
129 => 0.1641420351637
130 => 0.16505192863149
131 => 0.16820108031247
201 => 0.16913596294198
202 => 0.16870288805936
203 => 0.16972794418361
204 => 0.17053810674931
205 => 0.16982968812838
206 => 0.17985940187808
207 => 0.17569436546
208 => 0.17772437523004
209 => 0.17820852059868
210 => 0.17696839241738
211 => 0.17723733181425
212 => 0.17764470171889
213 => 0.1801181720087
214 => 0.18660927375356
215 => 0.18948413852994
216 => 0.19813331105299
217 => 0.18924542103031
218 => 0.18871805041811
219 => 0.1902760275695
220 => 0.19535400744842
221 => 0.19946923318989
222 => 0.2008344909814
223 => 0.2010149323365
224 => 0.20357624671401
225 => 0.2050443443495
226 => 0.20326523577932
227 => 0.20175762754652
228 => 0.19635756198786
229 => 0.19698263428016
301 => 0.20128876251978
302 => 0.20737142228793
303 => 0.21259097716189
304 => 0.21076327096488
305 => 0.22470737908856
306 => 0.22608988045244
307 => 0.22589886346558
308 => 0.2290484073163
309 => 0.22279720416606
310 => 0.22012469370798
311 => 0.20208358955853
312 => 0.20715240393745
313 => 0.21452022331824
314 => 0.21354506479529
315 => 0.20819435741858
316 => 0.21258691817054
317 => 0.21113460021787
318 => 0.20998909679187
319 => 0.21523687005313
320 => 0.20946672778573
321 => 0.2144626617352
322 => 0.20805532476868
323 => 0.21077161977284
324 => 0.20922971935607
325 => 0.21022751789393
326 => 0.20439440803001
327 => 0.20754181252184
328 => 0.20426346565544
329 => 0.20426191129217
330 => 0.2041895416034
331 => 0.2080465021533
401 => 0.20817227749836
402 => 0.20532197782444
403 => 0.20491120511138
404 => 0.20643004712626
405 => 0.20465188091219
406 => 0.20548387369211
407 => 0.20467708112593
408 => 0.20449545512563
409 => 0.20304822825413
410 => 0.20242472312556
411 => 0.20266921555222
412 => 0.20183463685554
413 => 0.20133177300276
414 => 0.20408950932618
415 => 0.20261616205534
416 => 0.20386369772615
417 => 0.20244197337771
418 => 0.19751365737022
419 => 0.19467933071832
420 => 0.1853701986353
421 => 0.1880102569461
422 => 0.1897606183375
423 => 0.18918212390809
424 => 0.1904249537901
425 => 0.19050125345101
426 => 0.19009719678721
427 => 0.1896293509334
428 => 0.18940162944527
429 => 0.19109887884911
430 => 0.19208418925483
501 => 0.18993629051994
502 => 0.18943306789865
503 => 0.19160471210837
504 => 0.19292941382177
505 => 0.20271026698798
506 => 0.20198566979369
507 => 0.20380426655634
508 => 0.20359952046951
509 => 0.20550569960195
510 => 0.2086214968721
511 => 0.20228620983128
512 => 0.20338579660382
513 => 0.20311620332036
514 => 0.20605955209803
515 => 0.20606874091164
516 => 0.20430405628825
517 => 0.20526072045132
518 => 0.2047267367602
519 => 0.20569171746228
520 => 0.20197599235639
521 => 0.20650134444763
522 => 0.20906692747611
523 => 0.20910255059895
524 => 0.21031861659273
525 => 0.2115542100722
526 => 0.21392582415853
527 => 0.21148806704253
528 => 0.20710277930171
529 => 0.20741938291221
530 => 0.20484829031428
531 => 0.20489151084536
601 => 0.20466079626322
602 => 0.20535318809161
603 => 0.20212793342615
604 => 0.20288489424959
605 => 0.20182514466402
606 => 0.20338349291519
607 => 0.20170696780113
608 => 0.20311607331432
609 => 0.20372419654122
610 => 0.20596818434046
611 => 0.20137552897865
612 => 0.19201079380049
613 => 0.19397937467138
614 => 0.19106768893464
615 => 0.19133717653514
616 => 0.1918815843768
617 => 0.19011698044284
618 => 0.19045361126438
619 => 0.1904415844426
620 => 0.19033794378991
621 => 0.18987890215445
622 => 0.18921320096442
623 => 0.1918651496135
624 => 0.19231576736559
625 => 0.19331743480876
626 => 0.1962977176821
627 => 0.19599991714315
628 => 0.19648564217781
629 => 0.19542530715437
630 => 0.19138636243577
701 => 0.19160569656594
702 => 0.18887059644814
703 => 0.1932474921494
704 => 0.19221098547514
705 => 0.19154274287937
706 => 0.19136040669589
707 => 0.19434807711403
708 => 0.19524203492913
709 => 0.19468498041004
710 => 0.1935424453395
711 => 0.19573645043511
712 => 0.19632347364105
713 => 0.19645488648828
714 => 0.20034224285894
715 => 0.19667214652625
716 => 0.19755557519115
717 => 0.20444783344886
718 => 0.19819750627574
719 => 0.20150844397827
720 => 0.20134639080702
721 => 0.20304015449961
722 => 0.20120745274697
723 => 0.20123017128167
724 => 0.2027341186952
725 => 0.20062209579124
726 => 0.20009912921878
727 => 0.19937665464448
728 => 0.20095415144626
729 => 0.20189978943489
730 => 0.20952093712865
731 => 0.21444454610538
801 => 0.2142307992546
802 => 0.21618404535334
803 => 0.21530409009618
804 => 0.21246248245032
805 => 0.21731276020466
806 => 0.21577792937895
807 => 0.2159044589674
808 => 0.2158997495298
809 => 0.21692027785166
810 => 0.21619714000557
811 => 0.21477176108236
812 => 0.21571799413124
813 => 0.2185279680019
814 => 0.22725021311697
815 => 0.23213129703773
816 => 0.22695636573607
817 => 0.23052596405286
818 => 0.22838547704072
819 => 0.22799648687664
820 => 0.23023845841083
821 => 0.2324843542194
822 => 0.23234130036567
823 => 0.23071089533667
824 => 0.22978992090579
825 => 0.23676384784552
826 => 0.24190211841698
827 => 0.24155172281141
828 => 0.24309825505964
829 => 0.24763892157289
830 => 0.24805406321337
831 => 0.24800176490859
901 => 0.2469727930371
902 => 0.25144366889945
903 => 0.2551733522014
904 => 0.2467346157787
905 => 0.24994797613729
906 => 0.25139055713027
907 => 0.25350869402245
908 => 0.25708234600053
909 => 0.26096427991309
910 => 0.26151322793156
911 => 0.26112372304287
912 => 0.25856348327555
913 => 0.26281114168378
914 => 0.26529932035948
915 => 0.26678097381989
916 => 0.27053820047189
917 => 0.25139946601937
918 => 0.23785211851706
919 => 0.2357365045785
920 => 0.24003868871496
921 => 0.24117314036247
922 => 0.24071584432584
923 => 0.22546707304104
924 => 0.23565622295349
925 => 0.24661889153123
926 => 0.24704001227818
927 => 0.25252815338678
928 => 0.25431531709825
929 => 0.25873399003778
930 => 0.25845760084234
1001 => 0.25953347738667
1002 => 0.25928615200071
1003 => 0.26747081315982
1004 => 0.27649970985227
1005 => 0.27618706786994
1006 => 0.27488905714535
1007 => 0.27681682441509
1008 => 0.28613561339706
1009 => 0.28527768863815
1010 => 0.28611108946358
1011 => 0.29709846685726
1012 => 0.31138362040525
1013 => 0.30474673237624
1014 => 0.31914686968611
1015 => 0.32821099280419
1016 => 0.34388645648909
1017 => 0.34192381123246
1018 => 0.34802615421312
1019 => 0.33841026660665
1020 => 0.31633024497068
1021 => 0.31283599702786
1022 => 0.31983156989784
1023 => 0.33702950318066
1024 => 0.31928994577651
1025 => 0.32287863513532
1026 => 0.32184509235856
1027 => 0.32179001925626
1028 => 0.32389193557254
1029 => 0.32084299632719
1030 => 0.30842106934795
1031 => 0.31411396527966
1101 => 0.31191566476511
1102 => 0.31435484308017
1103 => 0.32751808245285
1104 => 0.32169830055375
1105 => 0.31556763308374
1106 => 0.32325685059516
1107 => 0.33304786678899
1108 => 0.33243516259173
1109 => 0.33124626035855
1110 => 0.33794803999807
1111 => 0.34901741652535
1112 => 0.35200942452032
1113 => 0.35421806365329
1114 => 0.35452259767447
1115 => 0.35765948735939
1116 => 0.34079164092557
1117 => 0.36756134641306
1118 => 0.37218373505257
1119 => 0.37131491756672
1120 => 0.37645250799968
1121 => 0.37494089856621
1122 => 0.37275081366137
1123 => 0.38089498729443
1124 => 0.37155834942505
1125 => 0.35830616741949
1126 => 0.3510357582728
1127 => 0.36061001952434
1128 => 0.36645668677498
1129 => 0.37032096190978
1130 => 0.37149028923071
1201 => 0.34210104382762
1202 => 0.32626187055764
1203 => 0.33641459902721
1204 => 0.34880162846397
1205 => 0.34072283035161
1206 => 0.34103950394243
1207 => 0.32952126090499
1208 => 0.34982073739212
1209 => 0.34686327441341
1210 => 0.36220659757859
1211 => 0.35854479036736
1212 => 0.37105667478419
1213 => 0.36776187629833
1214 => 0.38143840060343
1215 => 0.38689433642585
1216 => 0.39605570182029
1217 => 0.40279483949791
1218 => 0.40675219004137
1219 => 0.40651460555839
1220 => 0.42219559995579
1221 => 0.41294906541186
1222 => 0.40133323878382
1223 => 0.40112314512758
1224 => 0.40713914633578
1225 => 0.41974703445884
1226 => 0.42301607641184
1227 => 0.42484302489266
1228 => 0.42204498969774
1229 => 0.41200853915541
1230 => 0.40767485069719
1231 => 0.41136727882263
]
'min_raw' => 0.15225656272066
'max_raw' => 0.42484302489266
'avg_raw' => 0.28854979380666
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.152256'
'max' => '$0.424843'
'avg' => '$0.288549'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.060276093338607
'max_diff' => 0.21950310657398
'year' => 2036
]
11 => [
'items' => [
101 => 0.40685175651918
102 => 0.41464681484673
103 => 0.42535109486507
104 => 0.42314070337059
105 => 0.43052971073622
106 => 0.4381765560134
107 => 0.44911188820107
108 => 0.45197078896911
109 => 0.45669644322441
110 => 0.46156069374968
111 => 0.46312295992316
112 => 0.46610581079107
113 => 0.46609008969462
114 => 0.4750791115541
115 => 0.48499428103193
116 => 0.48873702797311
117 => 0.49734326818808
118 => 0.48260538341857
119 => 0.49378423831286
120 => 0.5038678452524
121 => 0.49184575336076
122 => 0.50841540624523
123 => 0.5090587683191
124 => 0.51877277179979
125 => 0.50892576829422
126 => 0.50307864904536
127 => 0.51995906322812
128 => 0.5281269639231
129 => 0.52566672576119
130 => 0.50694419187213
131 => 0.49604687410145
201 => 0.46752649155996
202 => 0.5013101166692
203 => 0.51776513497805
204 => 0.50690157734996
205 => 0.51238052392216
206 => 0.54227187986569
207 => 0.55365257288702
208 => 0.55128546829563
209 => 0.55168547000572
210 => 0.55782628538583
211 => 0.58505804259007
212 => 0.5687401424461
213 => 0.58121456568611
214 => 0.58783095479274
215 => 0.59397662573034
216 => 0.57888480026683
217 => 0.55925055708176
218 => 0.55303156807559
219 => 0.50582141064116
220 => 0.50336391692338
221 => 0.50198445122991
222 => 0.49328711516185
223 => 0.48645339141321
224 => 0.4810189605684
225 => 0.46675739117318
226 => 0.47157025219131
227 => 0.4488402871962
228 => 0.46338211329957
301 => 0.42710454033318
302 => 0.45731758109349
303 => 0.44087399662605
304 => 0.45191542134715
305 => 0.45187689885646
306 => 0.43154613525802
307 => 0.41981977510665
308 => 0.42729226819187
309 => 0.43530337394646
310 => 0.43660314890255
311 => 0.44698975662463
312 => 0.44988843558048
313 => 0.44110530301788
314 => 0.42635276826806
315 => 0.42977944562095
316 => 0.41975033359946
317 => 0.40217470054603
318 => 0.41479782704612
319 => 0.41910791743294
320 => 0.4210114988882
321 => 0.40372788235524
322 => 0.39829699479502
323 => 0.39540563582751
324 => 0.42412167041202
325 => 0.42569479960934
326 => 0.41764644821779
327 => 0.45402575968359
328 => 0.44579200107885
329 => 0.45499112676018
330 => 0.42946851056791
331 => 0.43044350887721
401 => 0.41836069335372
402 => 0.42512626267285
403 => 0.42034457634257
404 => 0.42457967153052
405 => 0.42711817012423
406 => 0.43919900297659
407 => 0.45745552479896
408 => 0.43739452940872
409 => 0.42865366643845
410 => 0.43407644866473
411 => 0.44851803233919
412 => 0.47039777085706
413 => 0.45744452528371
414 => 0.46319295570879
415 => 0.4644487320268
416 => 0.45489748829622
417 => 0.47074993883716
418 => 0.47924539586712
419 => 0.48795997689274
420 => 0.49552660342026
421 => 0.48447918159336
422 => 0.49630150653386
423 => 0.4867747995531
424 => 0.4782283585385
425 => 0.47824131996171
426 => 0.47288001266967
427 => 0.46249180422315
428 => 0.4605760592019
429 => 0.47054200673436
430 => 0.47853375287666
501 => 0.47919199136682
502 => 0.48361663266194
503 => 0.48623508980296
504 => 0.51189952940483
505 => 0.52222197932008
506 => 0.53484407568248
507 => 0.539761093558
508 => 0.55455955451486
509 => 0.54260859541996
510 => 0.54002293024472
511 => 0.50412670450307
512 => 0.51000470945732
513 => 0.5194159625322
514 => 0.5042818925999
515 => 0.51388097658923
516 => 0.51577603910512
517 => 0.50376764269472
518 => 0.5101818460697
519 => 0.49314762358452
520 => 0.45782682429997
521 => 0.47078926098375
522 => 0.48033397749201
523 => 0.46671249017966
524 => 0.4911284789627
525 => 0.47686516236396
526 => 0.4723443757621
527 => 0.45470717545145
528 => 0.46303125507998
529 => 0.47428969196691
530 => 0.46733328690456
531 => 0.48176887191841
601 => 0.50221351012792
602 => 0.51678357681527
603 => 0.51790208561829
604 => 0.50853450885697
605 => 0.52354611040005
606 => 0.52365545352875
607 => 0.50672230566397
608 => 0.49635084688095
609 => 0.49399442962371
610 => 0.49988122193511
611 => 0.50702887456295
612 => 0.518298730594
613 => 0.52510886856285
614 => 0.54286609656755
615 => 0.547670693326
616 => 0.55294948850081
617 => 0.5600035867745
618 => 0.56847384038574
619 => 0.54994140769615
620 => 0.55067773579569
621 => 0.53342059107414
622 => 0.51497885701427
623 => 0.52897383437111
624 => 0.54727040559135
625 => 0.54307315193751
626 => 0.54260087515934
627 => 0.54339511370157
628 => 0.54023052151606
629 => 0.52591718834628
630 => 0.51872912203463
701 => 0.52800356144796
702 => 0.53293251323833
703 => 0.54057688761544
704 => 0.53963455712029
705 => 0.55932564456984
706 => 0.56697700572516
707 => 0.56501946012143
708 => 0.56537969562348
709 => 0.57923211951854
710 => 0.59463886385811
711 => 0.60906931303109
712 => 0.62374858573206
713 => 0.60605214954927
714 => 0.5970669906201
715 => 0.60633738110332
716 => 0.60141838142273
717 => 0.62968441265746
718 => 0.63164149133222
719 => 0.65990547861117
720 => 0.68673136815188
721 => 0.66988250756709
722 => 0.6857702242092
723 => 0.70295408510219
724 => 0.73610454074572
725 => 0.72494063353207
726 => 0.71638925556715
727 => 0.70830824471025
728 => 0.7251235454791
729 => 0.74675616128725
730 => 0.7514156195377
731 => 0.75896572195349
801 => 0.75102771244589
802 => 0.76058817055472
803 => 0.79434078875708
804 => 0.7852205333762
805 => 0.77226830458114
806 => 0.79891275501599
807 => 0.80855527805068
808 => 0.87623155453668
809 => 0.96167564916779
810 => 0.92630123293433
811 => 0.90434319125295
812 => 0.90950385189979
813 => 0.94070514279393
814 => 0.95072600714966
815 => 0.9234858434317
816 => 0.93310752976915
817 => 0.98612396747178
818 => 1.0145655853283
819 => 0.97593804806026
820 => 0.86936620472813
821 => 0.77110209809155
822 => 0.79716616406196
823 => 0.79421130784305
824 => 0.85117085621923
825 => 0.78500301830164
826 => 0.78611711499529
827 => 0.84425452651068
828 => 0.82874446184594
829 => 0.80362014346804
830 => 0.77128553341994
831 => 0.71151201615661
901 => 0.65856894500863
902 => 0.76240249959092
903 => 0.75792500790827
904 => 0.75144093642469
905 => 0.76587053586158
906 => 0.83593657481382
907 => 0.83432132583434
908 => 0.82404593593413
909 => 0.83183972861031
910 => 0.80225385392947
911 => 0.80987880749257
912 => 0.77108653255501
913 => 0.78862226093529
914 => 0.80356623796471
915 => 0.80656646260272
916 => 0.81332612190744
917 => 0.75556557325031
918 => 0.78149836383675
919 => 0.7967314487324
920 => 0.72790781698945
921 => 0.79537102681769
922 => 0.75456009060381
923 => 0.74070824589312
924 => 0.75935792995429
925 => 0.75209012993824
926 => 0.74584170226398
927 => 0.74235497226012
928 => 0.75604924194412
929 => 0.75541038789517
930 => 0.73300390474894
1001 => 0.70377556088977
1002 => 0.71358555247659
1003 => 0.71002149056394
1004 => 0.69710487041935
1005 => 0.70580911283814
1006 => 0.66748003434206
1007 => 0.6015368469617
1008 => 0.64510093643962
1009 => 0.64342376638334
1010 => 0.64257806118735
1011 => 0.67531527040701
1012 => 0.67216834311646
1013 => 0.66645663926931
1014 => 0.69699997049902
1015 => 0.6858512437344
1016 => 0.72020899265258
1017 => 0.74283922820997
1018 => 0.73709946846118
1019 => 0.75838331438433
1020 => 0.71381155486935
1021 => 0.72861650547162
1022 => 0.73166778527197
1023 => 0.69662307053276
1024 => 0.6726832193399
1025 => 0.67108670419962
1026 => 0.6295783013459
1027 => 0.65175175510624
1028 => 0.67126347681547
1029 => 0.66191887628752
1030 => 0.65896065492237
1031 => 0.67407356631698
1101 => 0.67524796896568
1102 => 0.64847146411783
1103 => 0.65403914737733
1104 => 0.67725731211976
1105 => 0.65345410919749
1106 => 0.60720837415066
1107 => 0.59573879246173
1108 => 0.5942085388381
1109 => 0.56310212363374
1110 => 0.59650524475413
1111 => 0.58192388723709
1112 => 0.62798622092193
1113 => 0.6016756629584
1114 => 0.60054146739083
1115 => 0.59882696444015
1116 => 0.57205238788393
1117 => 0.57791431853663
1118 => 0.59740026882347
1119 => 0.60435307541075
1120 => 0.60362784072104
1121 => 0.59730477703654
1122 => 0.60019944321198
1123 => 0.59087471489234
1124 => 0.58758195924524
1125 => 0.5771891166792
1126 => 0.56191450920316
1127 => 0.56403853705732
1128 => 0.53377554282882
1129 => 0.51728665739447
1130 => 0.51272275122626
1201 => 0.50661970515936
1202 => 0.5134121065191
1203 => 0.53368981156852
1204 => 0.50923059712381
1205 => 0.46729698957276
1206 => 0.46981727083797
1207 => 0.47547959456267
1208 => 0.46492789176171
1209 => 0.4549415905979
1210 => 0.46362386924561
1211 => 0.44585604692525
1212 => 0.47762675100331
1213 => 0.47676744249437
1214 => 0.48860959628751
1215 => 0.49601473807982
1216 => 0.47894828369167
1217 => 0.47465611656565
1218 => 0.47710113002875
1219 => 0.4366905038185
1220 => 0.48530718599137
1221 => 0.48572762507765
1222 => 0.48212757036492
1223 => 0.50801445275031
1224 => 0.56264384890458
1225 => 0.54209007260898
1226 => 0.53413102918614
1227 => 0.51900088182131
1228 => 0.53916090484569
1229 => 0.53761292962277
1230 => 0.53061239861255
1231 => 0.52637845561458
]
'min_raw' => 0.39540563582751
'max_raw' => 1.0145655853283
'avg_raw' => 0.7049856105779
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.3954056'
'max' => '$1.01'
'avg' => '$0.704985'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.24314907310686
'max_diff' => 0.58972256043563
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.012411331088726
]
1 => [
'year' => 2028
'avg' => 0.021301447183413
]
2 => [
'year' => 2029
'avg' => 0.058191714492765
]
3 => [
'year' => 2030
'avg' => 0.044894821069467
]
4 => [
'year' => 2031
'avg' => 0.04409227804414
]
5 => [
'year' => 2032
'avg' => 0.077307639761965
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.012411331088726
'min' => '$0.012411'
'max_raw' => 0.077307639761965
'max' => '$0.0773076'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.077307639761965
]
1 => [
'year' => 2033
'avg' => 0.19884319891862
]
2 => [
'year' => 2034
'avg' => 0.12603637543161
]
3 => [
'year' => 2035
'avg' => 0.14866019385037
]
4 => [
'year' => 2036
'avg' => 0.28854979380666
]
5 => [
'year' => 2037
'avg' => 0.7049856105779
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.077307639761965
'min' => '$0.0773076'
'max_raw' => 0.7049856105779
'max' => '$0.704985'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.7049856105779
]
]
]
]
'prediction_2025_max_price' => '$0.021221'
'last_price' => 0.02057655
'sma_50day_nextmonth' => '$0.019954'
'sma_200day_nextmonth' => '$0.026221'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.02150077'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.021588'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.021526'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.021501'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.025348'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.031228'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.027332'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.021242'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.0214059'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.021532'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.022253'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.02569'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.0278072'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.028315'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.028056'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.026537'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.037581'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.085976'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.021527'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.023031'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.026061'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.027575'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.029975'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.06721'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.210017'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '30.29'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 71.3
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.0210033'
'vwma_10_action' => 'SELL'
'hma_9' => '0.021670'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -310.61
'cci_20_action' => 'BUY'
'adx_14' => 32.67
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.001035'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 31.74
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.013635'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 32
'buy_signals' => 0
'sell_pct' => 100
'buy_pct' => 0
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767696756
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Impossible Finance Launchpad para 2026
La previsión del precio de Impossible Finance Launchpad para 2026 sugiere que el precio medio podría oscilar entre $0.0071091 en el extremo inferior y $0.021221 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Impossible Finance Launchpad podría potencialmente ganar 3.13% para 2026 si IDIA alcanza el objetivo de precio previsto.
Predicción de precio de Impossible Finance Launchpad 2027-2032
La predicción del precio de IDIA para 2027-2032 está actualmente dentro de un rango de precios de $0.012411 en el extremo inferior y $0.0773076 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Impossible Finance Launchpad alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Impossible Finance Launchpad | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.006843 | $0.012411 | $0.017978 |
| 2028 | $0.012351 | $0.0213014 | $0.030251 |
| 2029 | $0.027131 | $0.058191 | $0.089251 |
| 2030 | $0.023074 | $0.044894 | $0.066715 |
| 2031 | $0.027281 | $0.044092 | $0.0609033 |
| 2032 | $0.041642 | $0.0773076 | $0.112972 |
Predicción de precio de Impossible Finance Launchpad 2032-2037
La predicción de precio de Impossible Finance Launchpad para 2032-2037 se estima actualmente entre $0.0773076 en el extremo inferior y $0.704985 en el extremo superior. Comparado con el precio actual, Impossible Finance Launchpad podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Impossible Finance Launchpad | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.041642 | $0.0773076 | $0.112972 |
| 2033 | $0.096768 | $0.198843 | $0.300917 |
| 2034 | $0.077797 | $0.126036 | $0.174275 |
| 2035 | $0.09198 | $0.14866 | $0.205339 |
| 2036 | $0.152256 | $0.288549 | $0.424843 |
| 2037 | $0.3954056 | $0.704985 | $1.01 |
Impossible Finance Launchpad Histograma de precios potenciales
Pronóstico de precio de Impossible Finance Launchpad basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Impossible Finance Launchpad es Bajista, con 0 indicadores técnicos mostrando señales alcistas y 32 indicando señales bajistas. La predicción de precio de IDIA se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Impossible Finance Launchpad
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Impossible Finance Launchpad aumentar durante el próximo mes, alcanzando $0.026221 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Impossible Finance Launchpad alcance $0.019954 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 30.29, lo que sugiere que el mercado de IDIA está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de IDIA para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.02150077 | SELL |
| SMA 5 | $0.021588 | SELL |
| SMA 10 | $0.021526 | SELL |
| SMA 21 | $0.021501 | SELL |
| SMA 50 | $0.025348 | SELL |
| SMA 100 | $0.031228 | SELL |
| SMA 200 | $0.027332 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.021242 | SELL |
| EMA 5 | $0.0214059 | SELL |
| EMA 10 | $0.021532 | SELL |
| EMA 21 | $0.022253 | SELL |
| EMA 50 | $0.02569 | SELL |
| EMA 100 | $0.0278072 | SELL |
| EMA 200 | $0.028315 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.028056 | SELL |
| SMA 50 | $0.026537 | SELL |
| SMA 100 | $0.037581 | SELL |
| SMA 200 | $0.085976 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.027575 | SELL |
| EMA 50 | $0.029975 | SELL |
| EMA 100 | $0.06721 | SELL |
| EMA 200 | $0.210017 | SELL |
Osciladores de Impossible Finance Launchpad
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 30.29 | NEUTRAL |
| Stoch RSI (14) | 71.3 | NEUTRAL |
| Estocástico Rápido (14) | 0 | BUY |
| Índice de Canal de Materias Primas (20) | -310.61 | BUY |
| Índice Direccional Medio (14) | 32.67 | SELL |
| Oscilador Asombroso (5, 34) | -0.001035 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -100 | BUY |
| Oscilador Ultimate (7, 14, 28) | 31.74 | NEUTRAL |
| VWMA (10) | 0.0210033 | SELL |
| Promedio Móvil de Hull (9) | 0.021670 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.013635 | SELL |
Predicción de precios de Impossible Finance Launchpad basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Impossible Finance Launchpad
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Impossible Finance Launchpad por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.028913 | $0.040628 | $0.057089 | $0.08022 | $0.112722 | $0.158394 |
| Amazon.com acción | $0.042934 | $0.089584 | $0.186923 | $0.390027 | $0.813816 | $1.69 |
| Apple acción | $0.029186 | $0.041398 | $0.05872 | $0.08329 | $0.118141 | $0.167574 |
| Netflix acción | $0.032466 | $0.051227 | $0.080828 | $0.127534 | $0.201229 | $0.3175087 |
| Google acción | $0.026646 | $0.0345071 | $0.044686 | $0.057868 | $0.07494 | $0.097047 |
| Tesla acción | $0.046645 | $0.105741 | $0.2397086 | $0.5434013 | $1.23 | $2.79 |
| Kodak acción | $0.01543 | $0.011571 | $0.008677 | $0.0065068 | $0.004879 | $0.003659 |
| Nokia acción | $0.013631 | $0.00903 | $0.005982 | $0.003962 | $0.002625 | $0.001739 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Impossible Finance Launchpad
Podría preguntarse cosas como: "¿Debo invertir en Impossible Finance Launchpad ahora?", "¿Debería comprar IDIA hoy?", "¿Será Impossible Finance Launchpad una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Impossible Finance Launchpad regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Impossible Finance Launchpad, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Impossible Finance Launchpad a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Impossible Finance Launchpad es de $0.02057 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Impossible Finance Launchpad basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Impossible Finance Launchpad ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.021111 | $0.02166 | $0.022223 | $0.02280082 |
| Si Impossible Finance Launchpad ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.021646 | $0.022771 | $0.023955 | $0.02520072 |
| Si Impossible Finance Launchpad ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.02325 | $0.026272 | $0.029687 | $0.033545 |
| Si Impossible Finance Launchpad ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.025925 | $0.032663 | $0.041154 | $0.051851 |
| Si Impossible Finance Launchpad ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.031273 | $0.047531 | $0.072241 | $0.109797 |
| Si Impossible Finance Launchpad ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.047319 | $0.108817 | $0.250244 | $0.575476 |
| Si Impossible Finance Launchpad ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.074061 | $0.266571 | $0.959476 | $3.45 |
Cuadro de preguntas
¿Es IDIA una buena inversión?
La decisión de adquirir Impossible Finance Launchpad depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Impossible Finance Launchpad ha experimentado una caída de -3.3686% durante las últimas 24 horas, y Impossible Finance Launchpad ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Impossible Finance Launchpad dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Impossible Finance Launchpad subir?
Parece que el valor medio de Impossible Finance Launchpad podría potencialmente aumentar hasta $0.021221 para el final de este año. Mirando las perspectivas de Impossible Finance Launchpad en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.066715. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Impossible Finance Launchpad la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Impossible Finance Launchpad, el precio de Impossible Finance Launchpad aumentará en un 0.86% durante la próxima semana y alcanzará $0.020752 para el 13 de enero de 2026.
¿Cuál será el precio de Impossible Finance Launchpad el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Impossible Finance Launchpad, el precio de Impossible Finance Launchpad disminuirá en un -11.62% durante el próximo mes y alcanzará $0.018185 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Impossible Finance Launchpad este año en 2026?
Según nuestra predicción más reciente sobre el valor de Impossible Finance Launchpad en 2026, se anticipa que IDIA fluctúe dentro del rango de $0.0071091 y $0.021221. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Impossible Finance Launchpad no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Impossible Finance Launchpad en 5 años?
El futuro de Impossible Finance Launchpad parece estar en una tendencia alcista, con un precio máximo de $0.066715 proyectada después de un período de cinco años. Basado en el pronóstico de Impossible Finance Launchpad para 2030, el valor de Impossible Finance Launchpad podría potencialmente alcanzar su punto más alto de aproximadamente $0.066715, mientras que su punto más bajo se anticipa que esté alrededor de $0.023074.
¿Cuánto será Impossible Finance Launchpad en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Impossible Finance Launchpad, se espera que el valor de IDIA en 2026 crezca en un 3.13% hasta $0.021221 si ocurre lo mejor. El precio estará entre $0.021221 y $0.0071091 durante 2026.
¿Cuánto será Impossible Finance Launchpad en 2027?
Según nuestra última simulación experimental para la predicción de precios de Impossible Finance Launchpad, el valor de IDIA podría disminuir en un -12.62% hasta $0.017978 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.017978 y $0.006843 a lo largo del año.
¿Cuánto será Impossible Finance Launchpad en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Impossible Finance Launchpad sugiere que el valor de IDIA en 2028 podría aumentar en un 47.02% , alcanzando $0.030251 en el mejor escenario. Se espera que el precio oscile entre $0.030251 y $0.012351 durante el año.
¿Cuánto será Impossible Finance Launchpad en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Impossible Finance Launchpad podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.089251 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.089251 y $0.027131.
¿Cuánto será Impossible Finance Launchpad en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Impossible Finance Launchpad, se espera que el valor de IDIA en 2030 aumente en un 224.23% , alcanzando $0.066715 en el mejor escenario. Se pronostica que el precio oscile entre $0.066715 y $0.023074 durante el transcurso de 2030.
¿Cuánto será Impossible Finance Launchpad en 2031?
Nuestra simulación experimental indica que el precio de Impossible Finance Launchpad podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.0609033 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.0609033 y $0.027281 durante el año.
¿Cuánto será Impossible Finance Launchpad en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Impossible Finance Launchpad, IDIA podría experimentar un 449.04% aumento en valor, alcanzando $0.112972 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.112972 y $0.041642 a lo largo del año.
¿Cuánto será Impossible Finance Launchpad en 2033?
Según nuestra predicción experimental de precios de Impossible Finance Launchpad, se anticipa que el valor de IDIA aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.300917. A lo largo del año, el precio de IDIA podría oscilar entre $0.300917 y $0.096768.
¿Cuánto será Impossible Finance Launchpad en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Impossible Finance Launchpad sugieren que IDIA podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.174275 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.174275 y $0.077797.
¿Cuánto será Impossible Finance Launchpad en 2035?
Basado en nuestra predicción experimental para el precio de Impossible Finance Launchpad, IDIA podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.205339 en 2035. El rango de precios esperado para el año está entre $0.205339 y $0.09198.
¿Cuánto será Impossible Finance Launchpad en 2036?
Nuestra reciente simulación de predicción de precios de Impossible Finance Launchpad sugiere que el valor de IDIA podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.424843 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.424843 y $0.152256.
¿Cuánto será Impossible Finance Launchpad en 2037?
Según la simulación experimental, el valor de Impossible Finance Launchpad podría aumentar en un 4830.69% en 2037, con un máximo de $1.01 bajo condiciones favorables. Se espera que el precio caiga entre $1.01 y $0.3954056 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de SelfKey
Predicción de precios de Solchat
Predicción de precios de pSTAKE Finance
Predicción de precios de Groestlcoin
Predicción de precios de Games for a Living
Predicción de precios de Fideum
Predicción de precios de district0x
Predicción de precios de SOLO Coin
Predicción de precios de Voxies
Predicción de precios de Picasso
Predicción de precios de Acet Token
Predicción de precios de Dream Machine Token
Predicción de precios de KILT Protocol [OLD]
Predicción de precios de Fluence
Predicción de precios de Vyvo Smart Chain
Predicción de precios de HydraDX
Predicción de precios de Leash
Predicción de precios de BNB48 Club Token
Predicción de precios de Turbo
Predicción de precios de SafeMoon
Predicción de precios de ASD
Predicción de precios de UniLend Finance
Predicción de precios de ECOx
Predicción de precios de Botto
Predicción de precios de Coinweb
¿Cómo leer y predecir los movimientos de precio de Impossible Finance Launchpad?
Los traders de Impossible Finance Launchpad utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Impossible Finance Launchpad
Las medias móviles son herramientas populares para la predicción de precios de Impossible Finance Launchpad. Una media móvil simple (SMA) calcula el precio de cierre promedio de IDIA durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de IDIA por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de IDIA.
¿Cómo leer gráficos de Impossible Finance Launchpad y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Impossible Finance Launchpad en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de IDIA dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Impossible Finance Launchpad?
La acción del precio de Impossible Finance Launchpad está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de IDIA. La capitalización de mercado de Impossible Finance Launchpad puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de IDIA, grandes poseedores de Impossible Finance Launchpad, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Impossible Finance Launchpad.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


