Predicción del precio de Stafi - Pronóstico de FIS
Predicción de precio de Stafi hasta $0.018624 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.006239 | $0.018624 |
| 2027 | $0.0060064 | $0.015778 |
| 2028 | $0.010839 | $0.02655 |
| 2029 | $0.023812 | $0.07833 |
| 2030 | $0.020251 | $0.058551 |
| 2031 | $0.023943 | $0.053451 |
| 2032 | $0.036547 | $0.099149 |
| 2033 | $0.084928 | $0.264097 |
| 2034 | $0.068278 | $0.152951 |
| 2035 | $0.080725 | $0.180214 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Stafi hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.75, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Stafi para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Stafi'
'name_with_ticker' => 'Stafi <small>FIS</small>'
'name_lang' => 'Stafi'
'name_lang_with_ticker' => 'Stafi <small>FIS</small>'
'name_with_lang' => 'Stafi'
'name_with_lang_with_ticker' => 'Stafi <small>FIS</small>'
'image' => '/uploads/coins/stafi.png?1717202875'
'price_for_sd' => 0.01805
'ticker' => 'FIS'
'marketcap' => '$2.81M'
'low24h' => '$0.01772'
'high24h' => '$0.01872'
'volume24h' => '$448.97K'
'current_supply' => '155.35M'
'max_supply' => '155.35M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01805'
'change_24h_pct' => '-0.7115%'
'ath_price' => '$4.7'
'ath_days' => 1754
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '19 mar. 2021'
'ath_pct' => '-99.62%'
'fdv' => '$2.81M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.890424'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.018213'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.01596'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.006239'
'current_year_max_price_prediction' => '$0.018624'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.020251'
'grand_prediction_max_price' => '$0.058551'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.018401025140061
107 => 0.018469727888362
108 => 0.018624518688333
109 => 0.017301848250317
110 => 0.017895688445422
111 => 0.018244513924745
112 => 0.016668507718785
113 => 0.018213361349299
114 => 0.017278823500667
115 => 0.016961627318554
116 => 0.01738869019035
117 => 0.017222263373879
118 => 0.017079179369987
119 => 0.016999336037321
120 => 0.017312923877159
121 => 0.017298294629612
122 => 0.01678520405886
123 => 0.016115898325561
124 => 0.016340539298868
125 => 0.016258925127245
126 => 0.015963144840847
127 => 0.016162465041231
128 => 0.015284759752383
129 => 0.01377471342207
130 => 0.014772296281845
131 => 0.014733890426905
201 => 0.014714524453277
202 => 0.015464180401233
203 => 0.015392118279342
204 => 0.015261324822477
205 => 0.015960742716442
206 => 0.015705445776647
207 => 0.016492210789573
208 => 0.017010425111856
209 => 0.016878989197248
210 => 0.017366372272103
211 => 0.016345714573182
212 => 0.016684736119084
213 => 0.016754607989831
214 => 0.015952112008198
215 => 0.015403908533691
216 => 0.015367349611918
217 => 0.014416840334214
218 => 0.014924594718121
219 => 0.015371397563655
220 => 0.015157413673946
221 => 0.015089672767051
222 => 0.015435746369167
223 => 0.015462639251972
224 => 0.014849478674051
225 => 0.014976974174471
226 => 0.015508651605585
227 => 0.01496357726735
228 => 0.013904586865548
301 => 0.013641942604213
302 => 0.013606901018257
303 => 0.012894588950937
304 => 0.013659493749638
305 => 0.013325592306831
306 => 0.014380382963904
307 => 0.01377789219754
308 => 0.013751920024785
309 => 0.013712659276376
310 => 0.013099542854793
311 => 0.013233776385539
312 => 0.01367998908608
313 => 0.013839202804579
314 => 0.01382259550934
315 => 0.013677802400417
316 => 0.013744087944221
317 => 0.013530559112213
318 => 0.013455157637413
319 => 0.013217169842133
320 => 0.012867393528878
321 => 0.012916032070539
322 => 0.012223033670031
323 => 0.011845451361225
324 => 0.011740941554603
325 => 0.011601186673421
326 => 0.011756727240306
327 => 0.012221070492633
328 => 0.01166097401441
329 => 0.010700727888696
330 => 0.010758440317031
331 => 0.010888103008526
401 => 0.010646477440729
402 => 0.010417799118906
403 => 0.010616616366472
404 => 0.010209747424306
405 => 0.010937271176348
406 => 0.010917593697717
407 => 0.011188769562711
408 => 0.01135834139618
409 => 0.010967533219566
410 => 0.010869246020005
411 => 0.010925234875779
412 => 0.0099998638065513
413 => 0.011113147004157
414 => 0.01112277472348
415 => 0.011040336345479
416 => 0.011633125279441
417 => 0.012884094825607
418 => 0.012413429762206
419 => 0.01223117402373
420 => 0.01188470573166
421 => 0.012346354159592
422 => 0.012310906763164
423 => 0.012150600193492
424 => 0.012053646279967
425 => 0.012232286838406
426 => 0.012031510737849
427 => 0.01199544583323
428 => 0.011776931750246
429 => 0.011698932164378
430 => 0.011641184376255
501 => 0.011577609735711
502 => 0.011717839550937
503 => 0.011400060340866
504 => 0.011016849765801
505 => 0.01098498995288
506 => 0.011072957697498
507 => 0.011034038518933
508 => 0.010984803622826
509 => 0.010890800797833
510 => 0.01086291216771
511 => 0.01095353668597
512 => 0.010851226888592
513 => 0.011002190567726
514 => 0.010961136800203
515 => 0.010731813792065
516 => 0.010445992417672
517 => 0.01044344800791
518 => 0.010381868261638
519 => 0.010303437196184
520 => 0.010281619468034
521 => 0.010599872532429
522 => 0.011258646851212
523 => 0.011129313689302
524 => 0.011222770153378
525 => 0.01168248345937
526 => 0.011828612495283
527 => 0.011724893566848
528 => 0.0115829167005
529 => 0.011589162962075
530 => 0.012074340893704
531 => 0.012104600846168
601 => 0.012181057983815
602 => 0.012279327012475
603 => 0.011741629207356
604 => 0.011563837443808
605 => 0.011479589842728
606 => 0.011220139839325
607 => 0.011499934424432
608 => 0.011336910101689
609 => 0.011358907652531
610 => 0.011344581718687
611 => 0.011352404647281
612 => 0.010937067818632
613 => 0.011088394729531
614 => 0.010836784389824
615 => 0.010499906389544
616 => 0.010498777056362
617 => 0.010581227469676
618 => 0.010532182737552
619 => 0.010400204624461
620 => 0.010418951492507
621 => 0.010254709202048
622 => 0.010438893480271
623 => 0.010444175226328
624 => 0.010373254246626
625 => 0.010657015539762
626 => 0.010773272773087
627 => 0.010726591064973
628 => 0.010769997460002
629 => 0.011134688066083
630 => 0.011194148547441
701 => 0.011220556965522
702 => 0.011185173183739
703 => 0.010776663334809
704 => 0.010794782483727
705 => 0.010661836191211
706 => 0.01054951058357
707 => 0.010554003018805
708 => 0.01061175298244
709 => 0.010863950460622
710 => 0.011394685185603
711 => 0.011414826180454
712 => 0.011439237653768
713 => 0.011339943923577
714 => 0.011309995984439
715 => 0.011349505046382
716 => 0.011548821104378
717 => 0.012061516119328
718 => 0.011880295459296
719 => 0.011732960241823
720 => 0.011862212948836
721 => 0.011842315507708
722 => 0.011674361080506
723 => 0.011669647159124
724 => 0.011347288915044
725 => 0.01122812041195
726 => 0.011128534291157
727 => 0.011019788847012
728 => 0.010955320902543
729 => 0.011054372965405
730 => 0.011077027344131
731 => 0.01086044827755
801 => 0.010830929351062
802 => 0.011007792492016
803 => 0.010929961617805
804 => 0.011010012602044
805 => 0.011028585117052
806 => 0.011025594514374
807 => 0.010944330142879
808 => 0.010996125629932
809 => 0.010873613862074
810 => 0.010740400715201
811 => 0.010655419026969
812 => 0.010581261232801
813 => 0.010622408287082
814 => 0.010475726551726
815 => 0.010428800112466
816 => 0.010978578484353
817 => 0.01138470567878
818 => 0.011378800428529
819 => 0.011342853736333
820 => 0.011289444243251
821 => 0.011544913867292
822 => 0.011455913358552
823 => 0.011520668664902
824 => 0.01153715160814
825 => 0.011587040512975
826 => 0.011604871508357
827 => 0.011550973855889
828 => 0.011370086751163
829 => 0.010919333284414
830 => 0.010709506328856
831 => 0.010640259938578
901 => 0.010642776913347
902 => 0.010573347512948
903 => 0.010593797582973
904 => 0.010566235813155
905 => 0.010514040489028
906 => 0.010619185372899
907 => 0.010631302341273
908 => 0.01060676026899
909 => 0.010612540815449
910 => 0.010409342938998
911 => 0.010424791632222
912 => 0.010338771345226
913 => 0.010322643578404
914 => 0.010105191783522
915 => 0.0097199444087461
916 => 0.0099334088512395
917 => 0.0096755738223503
918 => 0.0095779277900718
919 => 0.010040168919805
920 => 0.0099937727309528
921 => 0.0099143626235767
922 => 0.009796898524251
923 => 0.0097533299471937
924 => 0.0094886210651295
925 => 0.0094729806522101
926 => 0.0096041775219022
927 => 0.009543634680748
928 => 0.0094586096024004
929 => 0.0091506573874796
930 => 0.0088044171384342
1001 => 0.0088148679551642
1002 => 0.0089250005363567
1003 => 0.009245225869576
1004 => 0.0091201082919327
1005 => 0.0090293340537938
1006 => 0.0090123347676539
1007 => 0.0092251164241103
1008 => 0.0095262470471313
1009 => 0.0096675307980348
1010 => 0.0095275228917407
1011 => 0.0093666893475511
1012 => 0.009376478540155
1013 => 0.0094416016529135
1014 => 0.0094484451712732
1015 => 0.0093437590679612
1016 => 0.0093732275928412
1017 => 0.0093284622088901
1018 => 0.009053737130213
1019 => 0.0090487682247024
1020 => 0.0089813462598547
1021 => 0.0089793047495543
1022 => 0.008864603168151
1023 => 0.0088485556240181
1024 => 0.0086208086722536
1025 => 0.0087707124055863
1026 => 0.008670164851566
1027 => 0.0085186159708871
1028 => 0.0084924888867358
1029 => 0.0084917034750369
1030 => 0.0086473102897844
1031 => 0.0087688940493573
1101 => 0.0086719139193163
1102 => 0.0086498334235868
1103 => 0.0088855953506903
1104 => 0.0088555924964487
1105 => 0.0088296102181731
1106 => 0.0094992841026693
1107 => 0.0089691849677857
1108 => 0.0087380314879757
1109 => 0.0084519351618555
1110 => 0.0085450895682631
1111 => 0.0085647185704162
1112 => 0.007876708478836
1113 => 0.0075975828703681
1114 => 0.0075017974801685
1115 => 0.0074466716339021
1116 => 0.0074717931742725
1117 => 0.007220547388483
1118 => 0.0073893887117553
1119 => 0.0071718310985392
1120 => 0.0071353568566898
1121 => 0.0075243768193368
1122 => 0.0075785066745175
1123 => 0.0073475718954889
1124 => 0.0074958694085699
1125 => 0.0074420946688371
1126 => 0.0071755604993895
1127 => 0.0071653808546093
1128 => 0.0070316433775096
1129 => 0.006822370122527
1130 => 0.0067267266294488
1201 => 0.0066769146678388
1202 => 0.0066974680540149
1203 => 0.0066870756330203
1204 => 0.006619258056326
1205 => 0.006690962857132
1206 => 0.0065077867215421
1207 => 0.0064348445083998
1208 => 0.0064018982029699
1209 => 0.0062393188394089
1210 => 0.0064980549062056
1211 => 0.0065490291708356
1212 => 0.0066001038705137
1213 => 0.0070446742610331
1214 => 0.0070224647806657
1215 => 0.007223227666732
1216 => 0.0072154263901587
1217 => 0.0071581655629094
1218 => 0.0069165915516938
1219 => 0.0070128786469217
1220 => 0.0067165219341473
1221 => 0.0069385725336555
1222 => 0.0068372379130947
1223 => 0.0069043111965104
1224 => 0.0067837073851748
1225 => 0.0068504545139773
1226 => 0.00656111706
1227 => 0.0062909378165638
1228 => 0.0063996658311463
1229 => 0.0065178656175542
1230 => 0.0067741528712319
1231 => 0.0066215102972654
]
'min_raw' => 0.0062393188394089
'max_raw' => 0.018624518688333
'avg_raw' => 0.012431918763871
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.006239'
'max' => '$0.018624'
'avg' => '$0.012431'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.011819501160591
'max_diff' => 0.00056569868833268
'year' => 2026
]
1 => [
'items' => [
101 => 0.0066764063389185
102 => 0.006492513788867
103 => 0.0061130909318006
104 => 0.0061152384239664
105 => 0.006056872483583
106 => 0.0060064357895249
107 => 0.0066390431330848
108 => 0.006560368409871
109 => 0.0064350105351229
110 => 0.0066028070319971
111 => 0.0066471750890591
112 => 0.0066484381852696
113 => 0.0067708581779345
114 => 0.0068361937499648
115 => 0.0068477094277157
116 => 0.0070403399312331
117 => 0.0071049071351543
118 => 0.0073708503102132
119 => 0.0068306504831523
120 => 0.0068195254232023
121 => 0.0066051682728158
122 => 0.0064692195791881
123 => 0.0066144767961776
124 => 0.0067431548608429
125 => 0.0066091666589736
126 => 0.0066266626894924
127 => 0.0064467944757213
128 => 0.0065110888985584
129 => 0.0065664679168998
130 => 0.0065358908779999
131 => 0.0064901155708214
201 => 0.0067326047269656
202 => 0.0067189225384533
203 => 0.0069447340154564
204 => 0.007120770209714
205 => 0.0074362585400572
206 => 0.0071070300205654
207 => 0.0070950316247503
208 => 0.0072123178684463
209 => 0.0071048891792415
210 => 0.0071727804025067
211 => 0.007425320214395
212 => 0.0074306559826732
213 => 0.0073412749892646
214 => 0.0073358361476927
215 => 0.0073530027451978
216 => 0.0074535480429737
217 => 0.0074184144264859
218 => 0.00745907193696
219 => 0.0075099147763777
220 => 0.0077202223171267
221 => 0.0077709267532084
222 => 0.0076477412607657
223 => 0.0076588635314838
224 => 0.0076127887757929
225 => 0.0075682811391104
226 => 0.0076683278065542
227 => 0.00785116505773
228 => 0.0078500276366797
301 => 0.0078924423251041
302 => 0.0079188663246103
303 => 0.0078054351751799
304 => 0.0077315956678796
305 => 0.0077599104335085
306 => 0.0078051863603644
307 => 0.0077452280606428
308 => 0.0073751376593752
309 => 0.0074873994456534
310 => 0.0074687135950958
311 => 0.0074421026716247
312 => 0.0075549827658222
313 => 0.0075440952053641
314 => 0.007217970499805
315 => 0.0072388479453459
316 => 0.0072192401264166
317 => 0.0072825970007594
318 => 0.0071014677001075
319 => 0.0071571818530635
320 => 0.0071921252475098
321 => 0.0072127071752865
322 => 0.0072870632115759
323 => 0.0072783383889315
324 => 0.0072865208643501
325 => 0.0073967712369014
326 => 0.007954379787907
327 => 0.0079847291910443
328 => 0.0078352776302235
329 => 0.0078949805809697
330 => 0.007780363971137
331 => 0.0078573068691822
401 => 0.0079099492458871
402 => 0.0076720684681048
403 => 0.007657982712278
404 => 0.0075428930389251
405 => 0.0076047357103726
406 => 0.0075063395734542
407 => 0.0075304825437032
408 => 0.0074629766941406
409 => 0.0075844737830727
410 => 0.0077203264072378
411 => 0.0077546481450845
412 => 0.0076643624292468
413 => 0.0075989896208617
414 => 0.0074842165044793
415 => 0.007675086754909
416 => 0.0077309030328002
417 => 0.007674793575763
418 => 0.0076617917885516
419 => 0.0076371534252798
420 => 0.0076670189337928
421 => 0.0077305990453636
422 => 0.0077006158388871
423 => 0.0077204202750009
424 => 0.0076449461867808
425 => 0.0078054727256102
426 => 0.0080604275020867
427 => 0.0080612472233824
428 => 0.0080312638552852
429 => 0.0080189953070605
430 => 0.0080497600622711
501 => 0.0080664486799366
502 => 0.0081659362569963
503 => 0.0082726903909414
504 => 0.0087708653535854
505 => 0.0086309798175543
506 => 0.0090729902809732
507 => 0.0094225631696622
508 => 0.0095273847940102
509 => 0.0094309538318486
510 => 0.0091010687193918
511 => 0.0090848829819746
512 => 0.0095778706138871
513 => 0.0094385790276078
514 => 0.0094220107366421
515 => 0.0092457521133357
516 => 0.0093499427897649
517 => 0.0093271547604448
518 => 0.0092911827413345
519 => 0.0094899712939761
520 => 0.0098620857185447
521 => 0.0098040881958087
522 => 0.0097607957355139
523 => 0.009571100776748
524 => 0.009685339511828
525 => 0.0096446612863649
526 => 0.0098194407579943
527 => 0.0097159052708404
528 => 0.0094375237568447
529 => 0.009481856930506
530 => 0.009475156060493
531 => 0.0096130594905305
601 => 0.0095716643038068
602 => 0.0094670729859162
603 => 0.0098608138718955
604 => 0.0098352465288619
605 => 0.0098714951757752
606 => 0.0098874529511731
607 => 0.010127116089976
608 => 0.010225298409579
609 => 0.010247587515052
610 => 0.010340853124981
611 => 0.010245266981714
612 => 0.010627679706548
613 => 0.010881961854162
614 => 0.011177323653855
615 => 0.011608926628974
616 => 0.01177121334017
617 => 0.011741897698364
618 => 0.012069134148283
619 => 0.012657170774729
620 => 0.011860756713179
621 => 0.012699382653835
622 => 0.012433883363426
623 => 0.011804389321993
624 => 0.011763857326972
625 => 0.012190158000406
626 => 0.013135651864165
627 => 0.012898816374996
628 => 0.013136039242181
629 => 0.012859306166775
630 => 0.012845564037092
701 => 0.013122598934388
702 => 0.013769906072308
703 => 0.013462394715027
704 => 0.013021501779488
705 => 0.013347050262036
706 => 0.013065030038363
707 => 0.012429559541936
708 => 0.012898635271361
709 => 0.012584977689602
710 => 0.012676519646914
711 => 0.013335781230726
712 => 0.013256457132771
713 => 0.013359109860738
714 => 0.013177930482767
715 => 0.013008680374377
716 => 0.012692762478388
717 => 0.01259923476395
718 => 0.012625082459446
719 => 0.012599221955116
720 => 0.012422468795746
721 => 0.012384298967809
722 => 0.012320680915655
723 => 0.012340398810185
724 => 0.012220778260019
725 => 0.01244652695305
726 => 0.012488427899767
727 => 0.012652708972677
728 => 0.012669765178648
729 => 0.013127285628307
730 => 0.012875291052954
731 => 0.013044350770266
801 => 0.013029228477897
802 => 0.011818032366664
803 => 0.011984924504318
804 => 0.01224455629687
805 => 0.012127592526248
806 => 0.011962233119895
807 => 0.011828696533255
808 => 0.011626374949679
809 => 0.011911138693321
810 => 0.012285572734963
811 => 0.012679261443854
812 => 0.013152252632082
813 => 0.013046686505094
814 => 0.012670419202596
815 => 0.012687298278923
816 => 0.012791638087102
817 => 0.012656508555239
818 => 0.01261665621825
819 => 0.012786162987974
820 => 0.012787330287938
821 => 0.01263184743058
822 => 0.012459056687689
823 => 0.012458332688167
824 => 0.01242758624443
825 => 0.012864775890812
826 => 0.013105185991464
827 => 0.013132748622063
828 => 0.013103330806817
829 => 0.013114652556354
830 => 0.01297476321586
831 => 0.013294508765334
901 => 0.013587938901089
902 => 0.013509293356486
903 => 0.013391392505003
904 => 0.013297478797923
905 => 0.013487170271718
906 => 0.013478723608992
907 => 0.013585376044836
908 => 0.013580537674291
909 => 0.013544674471518
910 => 0.013509294637274
911 => 0.013649571680898
912 => 0.013609174145115
913 => 0.0135687138608
914 => 0.013487564566447
915 => 0.013498594103297
916 => 0.013380713609059
917 => 0.01332617669858
918 => 0.012506072417321
919 => 0.012286913755688
920 => 0.012355865532023
921 => 0.012378566247125
922 => 0.012283188116723
923 => 0.012419935855088
924 => 0.012398623864916
925 => 0.01248153635158
926 => 0.012429736229554
927 => 0.01243186212463
928 => 0.012584195238558
929 => 0.012628418189603
930 => 0.012605926039779
1001 => 0.01262167877053
1002 => 0.012984693801878
1003 => 0.012933084672988
1004 => 0.012905668351873
1005 => 0.012913262860188
1006 => 0.013006020983828
1007 => 0.013031988194041
1008 => 0.012921963299684
1009 => 0.012973851675909
1010 => 0.013194785796261
1011 => 0.013272100234596
1012 => 0.013518850808725
1013 => 0.013414026779193
1014 => 0.013606435822076
1015 => 0.014197835622823
1016 => 0.014670286705412
1017 => 0.014235801164996
1018 => 0.01510339741189
1019 => 0.015778945539386
1020 => 0.015753016877069
1021 => 0.01563521943533
1022 => 0.014866125852551
1023 => 0.014158394471139
1024 => 0.014750441823552
1025 => 0.014751951074009
1026 => 0.014701093681376
1027 => 0.01438522278358
1028 => 0.014690102058823
1029 => 0.014714302268533
1030 => 0.01470075658645
1031 => 0.014458579109708
1101 => 0.014088818864603
1102 => 0.014161069131416
1103 => 0.01427941654232
1104 => 0.014055360203622
1105 => 0.013983760627355
1106 => 0.014116877862011
1107 => 0.014545809328151
1108 => 0.014464722319108
1109 => 0.014462604809604
1110 => 0.014809529420532
1111 => 0.014561206270124
1112 => 0.014161980438658
1113 => 0.01406117065107
1114 => 0.013703363818746
1115 => 0.013950502272297
1116 => 0.013959396345268
1117 => 0.013824041139952
1118 => 0.014172963767584
1119 => 0.014169748384144
1120 => 0.014500998488801
1121 => 0.015134224277047
1122 => 0.014946948252314
1123 => 0.014729166611123
1124 => 0.01475284551395
1125 => 0.015012544633454
1126 => 0.014855524617448
1127 => 0.014911990109986
1128 => 0.015012459166169
1129 => 0.01507307464227
1130 => 0.014744123879758
1201 => 0.014667429721483
1202 => 0.014510540389644
1203 => 0.014469610891445
1204 => 0.014597393978625
1205 => 0.014563727649796
1206 => 0.013958648832874
1207 => 0.013895414729879
1208 => 0.013897354029541
1209 => 0.013738348870942
1210 => 0.013495827838468
1211 => 0.014133158631631
1212 => 0.014081972049501
1213 => 0.014025466024357
1214 => 0.014032387690018
1215 => 0.014309031386185
1216 => 0.014148564071567
1217 => 0.014575192727556
1218 => 0.014487490701516
1219 => 0.014397539449438
1220 => 0.014385105446418
1221 => 0.014350481888649
1222 => 0.014231744826197
1223 => 0.014088362688296
1224 => 0.013993689381306
1225 => 0.012908438750633
1226 => 0.013109854955073
1227 => 0.013341565938617
1228 => 0.013421551641613
1229 => 0.013284730561797
1230 => 0.014237147356363
1231 => 0.014411163082447
]
'min_raw' => 0.0060064357895249
'max_raw' => 0.015778945539386
'avg_raw' => 0.010892690664456
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0060064'
'max' => '$0.015778'
'avg' => '$0.010892'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00023288304988405
'max_diff' => -0.0028455731489462
'year' => 2027
]
2 => [
'items' => [
101 => 0.013884058097374
102 => 0.013785458276221
103 => 0.014243611544223
104 => 0.013967289116659
105 => 0.014091717088871
106 => 0.01382277187141
107 => 0.014369247789808
108 => 0.014365084558908
109 => 0.014152493083932
110 => 0.014332173942818
111 => 0.014300949971858
112 => 0.0140609347202
113 => 0.014376856701393
114 => 0.014377013394755
115 => 0.014172398722228
116 => 0.013933453580628
117 => 0.013890735832943
118 => 0.013858553748383
119 => 0.014083802268867
120 => 0.014285759388
121 => 0.014661551517289
122 => 0.014756034587193
123 => 0.015124808299123
124 => 0.014905221508935
125 => 0.0150025614889
126 => 0.015108237806733
127 => 0.01515890291962
128 => 0.015076346837011
129 => 0.015649204204953
130 => 0.015697570918704
131 => 0.015713787859454
201 => 0.015520623578129
202 => 0.015692198670609
203 => 0.015611924366807
204 => 0.015820775804454
205 => 0.015853526376626
206 => 0.015825787807132
207 => 0.015836183355672
208 => 0.015347350651098
209 => 0.015322002096567
210 => 0.014976372756898
211 => 0.015117219267576
212 => 0.014853913466812
213 => 0.014937410448585
214 => 0.014974215122562
215 => 0.014954990449523
216 => 0.015125182517966
217 => 0.014980484491847
218 => 0.014598602610361
219 => 0.014216616685412
220 => 0.014211821163283
221 => 0.014111251011856
222 => 0.014038557212716
223 => 0.014052560617381
224 => 0.014101910441915
225 => 0.014035688911201
226 => 0.014049820632295
227 => 0.014284501361633
228 => 0.014331564908235
229 => 0.014171624587966
301 => 0.013529441122808
302 => 0.013371847689663
303 => 0.013485122724194
304 => 0.013430984553534
305 => 0.010839852780068
306 => 0.011448600755443
307 => 0.011086903379603
308 => 0.011253590171286
309 => 0.010884390811635
310 => 0.011060592097457
311 => 0.011028054153806
312 => 0.012006902884047
313 => 0.011991619507487
314 => 0.011998934851068
315 => 0.011649754441914
316 => 0.012206008314977
317 => 0.01248003897509
318 => 0.012429323192993
319 => 0.012442087262719
320 => 0.012222758255453
321 => 0.012001058435288
322 => 0.011755159215366
323 => 0.012212009571918
324 => 0.012161215610965
325 => 0.012277718682301
326 => 0.012574018794863
327 => 0.012617650111972
328 => 0.012676291044632
329 => 0.012655272444619
330 => 0.013156020769985
331 => 0.01309537684374
401 => 0.013241511257543
402 => 0.012940901681104
403 => 0.012600733411241
404 => 0.012665388278404
405 => 0.012659161494774
406 => 0.012579887392403
407 => 0.012508322277367
408 => 0.012389186524178
409 => 0.012766149676042
410 => 0.012750845660492
411 => 0.012998599883276
412 => 0.012954806917843
413 => 0.012662346776723
414 => 0.012672792047878
415 => 0.012743041516221
416 => 0.012986175728249
417 => 0.013058354516219
418 => 0.013024918425804
419 => 0.013104059171726
420 => 0.013166608790474
421 => 0.01311191444081
422 => 0.013886271091883
423 => 0.0135647042224
424 => 0.013721433677138
425 => 0.01375881272859
426 => 0.013663067074294
427 => 0.013683830878316
428 => 0.013715282383611
429 => 0.013906249764929
430 => 0.014407403430364
501 => 0.014629360977316
502 => 0.015297131208516
503 => 0.01461093049284
504 => 0.014570214182153
505 => 0.014690499765521
506 => 0.015082551581893
507 => 0.015400272755508
508 => 0.01550567919857
509 => 0.015519610400091
510 => 0.015717359894564
511 => 0.015830706216986
512 => 0.015693347904607
513 => 0.01557695111688
514 => 0.015160032270945
515 => 0.015208291762595
516 => 0.015540751803423
517 => 0.016010371192892
518 => 0.016413353484626
519 => 0.016272243131412
520 => 0.017348815518053
521 => 0.017455553272785
522 => 0.017440805566326
523 => 0.017683970056312
524 => 0.017201338063277
525 => 0.016995003535699
526 => 0.015602117423546
527 => 0.015993461605975
528 => 0.016562303357973
529 => 0.016487015019049
530 => 0.016073906933565
531 => 0.016413040105099
601 => 0.016300912072915
602 => 0.016212472041735
603 => 0.016617632969514
604 => 0.016172141886328
605 => 0.016557859243636
606 => 0.016063172743153
607 => 0.016272887711619
608 => 0.016153843352746
609 => 0.016230879642465
610 => 0.015780527066879
611 => 0.016023526384974
612 => 0.015770417496339
613 => 0.01577029748977
614 => 0.015764710097024
615 => 0.016062491582048
616 => 0.016072202225583
617 => 0.015852141258228
618 => 0.015820427034834
619 => 0.01593769114082
620 => 0.015800405584229
621 => 0.015864640632093
622 => 0.015802351198391
623 => 0.015788328534849
624 => 0.015676593565983
625 => 0.015628455069179
626 => 0.015647331414152
627 => 0.015582896717336
628 => 0.015544072481799
629 => 0.015756986979384
630 => 0.015643235352271
701 => 0.015739552911101
702 => 0.015629786896569
703 => 0.015249290067424
704 => 0.015030462317302
705 => 0.014311739079122
706 => 0.014515568097896
707 => 0.01465070694822
708 => 0.014606043558994
709 => 0.014701997801489
710 => 0.01470788861267
711 => 0.014676692910297
712 => 0.014640572283367
713 => 0.014622990759773
714 => 0.014754029032369
715 => 0.014830101160157
716 => 0.014664269939775
717 => 0.014625418005065
718 => 0.014793082524663
719 => 0.014895357784762
720 => 0.015650500841825
721 => 0.015594557405078
722 => 0.015734964452969
723 => 0.015719156774098
724 => 0.015866325728884
725 => 0.016106884771718
726 => 0.01561776097627
727 => 0.015702655954531
728 => 0.015681841666373
729 => 0.015909086606687
730 => 0.015909796040586
731 => 0.015773551347141
801 => 0.015847411805775
802 => 0.015806184924021
803 => 0.015880687471498
804 => 0.015593810246373
805 => 0.015943195740092
806 => 0.016141274801127
807 => 0.016144025129081
808 => 0.016237913031959
809 => 0.016333308578904
810 => 0.016516412024063
811 => 0.016328201923198
812 => 0.015989630273626
813 => 0.016014074053145
814 => 0.01581556961888
815 => 0.015818906514283
816 => 0.015801093905106
817 => 0.015854550886117
818 => 0.015605541047558
819 => 0.015663983158954
820 => 0.015582163860763
821 => 0.015702478095356
822 => 0.01557303986759
823 => 0.015681831629093
824 => 0.015728782546854
825 => 0.015902032444172
826 => 0.015547450716891
827 => 0.014824434571892
828 => 0.014976421331294
829 => 0.014751620975836
830 => 0.014772427104609
831 => 0.014814458796001
901 => 0.014678220332285
902 => 0.014704210337795
903 => 0.014703281791909
904 => 0.014695280085108
905 => 0.014659839198916
906 => 0.014608442902173
907 => 0.014813189929453
908 => 0.014847980439145
909 => 0.01492531543256
910 => 0.015155411916133
911 => 0.015132419851376
912 => 0.015169920862927
913 => 0.015088056365269
914 => 0.014776224563862
915 => 0.014793158530947
916 => 0.014581991690055
917 => 0.01491991542167
918 => 0.014839890621649
919 => 0.014788298112482
920 => 0.014774220618355
921 => 0.015004887466606
922 => 0.015073906602862
923 => 0.015030898508849
924 => 0.014942687653282
925 => 0.01511207857317
926 => 0.015157400437302
927 => 0.015167546331276
928 => 0.01546767456383
929 => 0.015184320165467
930 => 0.015252526385453
1001 => 0.015784651843463
1002 => 0.015302087481342
1003 => 0.015557712586427
1004 => 0.015545201067742
1005 => 0.015675970221622
1006 => 0.015534474180258
1007 => 0.015536228193272
1008 => 0.015652342342848
1009 => 0.015489280961066
1010 => 0.0154489046698
1011 => 0.015393125112596
1012 => 0.015514917735097
1013 => 0.01558792690408
1014 => 0.016176327186755
1015 => 0.016556460603676
1016 => 0.016539958009517
1017 => 0.016690760828569
1018 => 0.01662282277739
1019 => 0.016403432888982
1020 => 0.016777904676748
1021 => 0.016659406134534
1022 => 0.016669175010378
1023 => 0.016668811412332
1024 => 0.016747602583582
1025 => 0.016691771817646
1026 => 0.016581723647077
1027 => 0.016654778758434
1028 => 0.016871726321484
1029 => 0.017545138213956
1030 => 0.017921988430505
1031 => 0.017522451357733
1101 => 0.017798046680516
1102 => 0.0176327876915
1103 => 0.017602755217167
1104 => 0.017775849446209
1105 => 0.017949246653786
1106 => 0.01793820200128
1107 => 0.017812324532625
1108 => 0.017741219544604
1109 => 0.018279650335816
1110 => 0.018676356970852
1111 => 0.018649304237898
1112 => 0.018768706203139
1113 => 0.019119274066049
1114 => 0.019151325597974
1115 => 0.019147287841648
1116 => 0.01906784477554
1117 => 0.019413024363565
1118 => 0.019700979248753
1119 => 0.019049456001067
1120 => 0.01929754752472
1121 => 0.019408923802698
1122 => 0.019572457222622
1123 => 0.019848365513417
1124 => 0.02014807509828
1125 => 0.020190457319728
1126 => 0.020160385105434
1127 => 0.019962718577591
1128 => 0.020290664381627
1129 => 0.020482767342356
1130 => 0.020597160259272
1201 => 0.020887241663405
1202 => 0.019409611624674
1203 => 0.018363671640282
1204 => 0.018200333008163
1205 => 0.018532488539552
1206 => 0.018620075304288
1207 => 0.018584769189247
1208 => 0.017407468644111
1209 => 0.01819413476444
1210 => 0.019040521365148
1211 => 0.0190730345215
1212 => 0.019496753350923
1213 => 0.019634733570605
1214 => 0.019975882766388
1215 => 0.019954543791307
1216 => 0.020037608191611
1217 => 0.020018513124456
1218 => 0.020650420172204
1219 => 0.021347507484976
1220 => 0.021323369567937
1221 => 0.021223155019163
1222 => 0.021371990713212
1223 => 0.022091459524408
1224 => 0.022025222365526
1225 => 0.022089566123312
1226 => 0.022937860399199
1227 => 0.024040763626304
1228 => 0.02352835434764
1229 => 0.024640135040543
1230 => 0.025339942053764
1231 => 0.026550185921733
]
'min_raw' => 0.010839852780068
'max_raw' => 0.026550185921733
'avg_raw' => 0.0186950193509
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.010839'
'max' => '$0.02655'
'avg' => '$0.018695'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0048334169905426
'max_diff' => 0.010771240382346
'year' => 2028
]
3 => [
'items' => [
101 => 0.026398657428886
102 => 0.026869796485507
103 => 0.02612738980174
104 => 0.024422673990667
105 => 0.024152896188174
106 => 0.024692998180626
107 => 0.026020786226687
108 => 0.024651181409859
109 => 0.024928250680526
110 => 0.024848454711935
111 => 0.02484420272388
112 => 0.025006483813862
113 => 0.02477108662883
114 => 0.023812036149866
115 => 0.024251563332655
116 => 0.024081840779552
117 => 0.024270160605875
118 => 0.025286445039537
119 => 0.02483712146622
120 => 0.024363795581813
121 => 0.024957451280281
122 => 0.025713378986662
123 => 0.025666074389329
124 => 0.025574283698716
125 => 0.026091703015697
126 => 0.026946328137714
127 => 0.027177329874033
128 => 0.027347850633162
129 => 0.027371362564874
130 => 0.027613550074091
131 => 0.026311246797918
201 => 0.028378035542725
202 => 0.028734912865066
203 => 0.028667834719516
204 => 0.029064488843604
205 => 0.028947783138154
206 => 0.028778694881519
207 => 0.029407476038952
208 => 0.028686629181978
209 => 0.0276634778206
210 => 0.027102156748109
211 => 0.027841349616845
212 => 0.028292748907506
213 => 0.028591095124246
214 => 0.028681374509166
215 => 0.026412340894066
216 => 0.0251894576219
217 => 0.025973311778973
218 => 0.026929667949326
219 => 0.026305934191104
220 => 0.026330383373543
221 => 0.025441102948667
222 => 0.027008349534501
223 => 0.026780014889563
224 => 0.027964615431416
225 => 0.027681901005089
226 => 0.028647896761042
227 => 0.028393517704456
228 => 0.029449430946201
301 => 0.029870663326043
302 => 0.030577978051382
303 => 0.03109828164263
304 => 0.031403813863233
305 => 0.031385470854731
306 => 0.032596141728307
307 => 0.031882251411778
308 => 0.030985436923188
309 => 0.030969216378503
310 => 0.031433689310103
311 => 0.032407097152811
312 => 0.032659487643917
313 => 0.032800539496702
314 => 0.032584513674112
315 => 0.0318096369005
316 => 0.031475049038368
317 => 0.031760127590848
318 => 0.031411501018244
319 => 0.032013328289897
320 => 0.032839765677246
321 => 0.032669109624846
322 => 0.033239587221833
323 => 0.033829971518722
324 => 0.03467424757909
325 => 0.034894972604722
326 => 0.035259822678671
327 => 0.035635373251771
328 => 0.035755989974479
329 => 0.035986284723299
330 => 0.035985070956296
331 => 0.036679079682491
401 => 0.037444592799144
402 => 0.037733556279011
403 => 0.038398011867427
404 => 0.037260154957566
405 => 0.038123232494454
406 => 0.038901750036958
407 => 0.037973569328274
408 => 0.039252850196827
409 => 0.03930252177404
410 => 0.040052503617146
411 => 0.039292253340022
412 => 0.038840819152271
413 => 0.040144092737291
414 => 0.040774705772349
415 => 0.04058475999409
416 => 0.039139263242763
417 => 0.038297922133219
418 => 0.036095970166961
419 => 0.038704277388239
420 => 0.039974707750359
421 => 0.039135973135039
422 => 0.039558982088727
423 => 0.041866781778939
424 => 0.042745442482007
425 => 0.042562687198071
426 => 0.042593569832648
427 => 0.043067679199204
428 => 0.045170141227309
429 => 0.04391029724538
430 => 0.044873400764112
501 => 0.045384227397719
502 => 0.045858711643691
503 => 0.04469352829787
504 => 0.0431776418849
505 => 0.04269749702533
506 => 0.039052577507198
507 => 0.038862843617196
508 => 0.038756340235212
509 => 0.03808485147701
510 => 0.037557245249313
511 => 0.037137673188286
512 => 0.036036590805326
513 => 0.036408173786962
514 => 0.034653278282278
515 => 0.035775998236497
516 => 0.032975142637586
517 => 0.035307778408233
518 => 0.034038230810204
519 => 0.034890697877907
520 => 0.034887723700615
521 => 0.033318061554044
522 => 0.032412713185915
523 => 0.032989636402772
524 => 0.033608143887465
525 => 0.033708494645948
526 => 0.034510405744549
527 => 0.034734201895148
528 => 0.034056089110792
529 => 0.032917101130795
530 => 0.033181662060998
531 => 0.032407351867108
601 => 0.031050403035727
602 => 0.032024987376479
603 => 0.03235775331986
604 => 0.032504721717714
605 => 0.031170318388677
606 => 0.030751019891388
607 => 0.030527788889686
608 => 0.032744846417736
609 => 0.032866301833847
610 => 0.032244918752958
611 => 0.035053629200537
612 => 0.034417931522814
613 => 0.035128161578543
614 => 0.033157655929579
615 => 0.033232931899007
616 => 0.032300062946034
617 => 0.032822407225373
618 => 0.032453231124678
619 => 0.032780206969509
620 => 0.032976194942729
621 => 0.033908910821087
622 => 0.035318428525321
623 => 0.033769594172193
624 => 0.033094744864819
625 => 0.033513417579618
626 => 0.034628398191171
627 => 0.036317650892482
628 => 0.035317579293927
629 => 0.035761394087048
630 => 0.0358583478754
701 => 0.035120932103288
702 => 0.036344840463838
703 => 0.037000742897271
704 => 0.037673563074088
705 => 0.038257753981625
706 => 0.037404823899835
707 => 0.038317581350075
708 => 0.037582059968561
709 => 0.03692222125254
710 => 0.036923221955503
711 => 0.036509295490237
712 => 0.035707260805694
713 => 0.035559353304445
714 => 0.036328786804603
715 => 0.036945799606105
716 => 0.036996619735729
717 => 0.037338229725904
718 => 0.037540390999226
719 => 0.03952184630271
720 => 0.04031880401723
721 => 0.041293308824907
722 => 0.041672933367578
723 => 0.042815467138089
724 => 0.041892778326346
725 => 0.04169314879794
726 => 0.038921735590629
727 => 0.039375554348069
728 => 0.040102161965727
729 => 0.038933717082618
730 => 0.039674826422012
731 => 0.03982113710445
801 => 0.038894013772601
802 => 0.039389230402776
803 => 0.038074081854529
804 => 0.035347095169787
805 => 0.036347876379569
806 => 0.037084788209281
807 => 0.036033124167708
808 => 0.037918191257209
809 => 0.036816973979206
810 => 0.036467940969831
811 => 0.035106238761005
812 => 0.035748909786846
813 => 0.036618131551459
814 => 0.036081053558804
815 => 0.037195571036229
816 => 0.038774025015216
817 => 0.039898925319202
818 => 0.039985281196599
819 => 0.039262045663603
820 => 0.040421035220857
821 => 0.040429477194484
822 => 0.039122132239291
823 => 0.038321390733562
824 => 0.038139460578686
825 => 0.038593957775074
826 => 0.039145801276301
827 => 0.040015904670282
828 => 0.040541689928218
829 => 0.041912659025962
830 => 0.042283603955047
831 => 0.042691159968636
901 => 0.043235780488412
902 => 0.043889737060237
903 => 0.042458917310852
904 => 0.042515766446876
905 => 0.041183406907297
906 => 0.039759589659571
907 => 0.04084008946927
908 => 0.042252699237584
909 => 0.041928644995938
910 => 0.041892182273925
911 => 0.041953502458435
912 => 0.041709176142855
913 => 0.040604097272646
914 => 0.040049133582186
915 => 0.040765178329216
916 => 0.041145724244778
917 => 0.041735917772722
918 => 0.041663163962929
919 => 0.043183439108755
920 => 0.043774172059689
921 => 0.043623037291952
922 => 0.043650849726477
923 => 0.044720343517059
924 => 0.045909840570361
925 => 0.047023961528738
926 => 0.048157293220209
927 => 0.046791017631452
928 => 0.046097307147645
929 => 0.046813039291939
930 => 0.046433261741517
1001 => 0.048615576195577
1002 => 0.048766674913476
1003 => 0.050948831561362
1004 => 0.053019958066585
1005 => 0.05171912061674
1006 => 0.052945751740938
1007 => 0.054272453310462
1008 => 0.056831875887646
1009 => 0.055969952405222
1010 => 0.055309732525749
1011 => 0.054685827929806
1012 => 0.055984074351898
1013 => 0.057654247633927
1014 => 0.058013986962155
1015 => 0.058596902104885
1016 => 0.057984038107777
1017 => 0.058722165287538
1018 => 0.061328078581615
1019 => 0.060623937806522
1020 => 0.059623944709613
1021 => 0.061681062980713
1022 => 0.06242552608618
1023 => 0.067650558038698
1024 => 0.074247376714056
1025 => 0.071516250465411
1026 => 0.069820952269984
1027 => 0.07021938755892
1028 => 0.072628322422756
1029 => 0.073401995845249
1030 => 0.071298884781691
1031 => 0.072041739163767
1101 => 0.07613493984484
1102 => 0.078330810684635
1103 => 0.075348523139394
1104 => 0.067120510081312
1105 => 0.059533906272398
1106 => 0.061546215231744
1107 => 0.061318081844971
1108 => 0.0657157153396
1109 => 0.060607144281911
1110 => 0.060693159516862
1111 => 0.065181731414985
1112 => 0.063984257386169
1113 => 0.062044502820374
1114 => 0.059548068627389
1115 => 0.054933179129443
1116 => 0.050845642805398
1117 => 0.058862242840246
1118 => 0.058516552469502
1119 => 0.058015941584222
1120 => 0.059129996937657
1121 => 0.064539533503807
1122 => 0.064414826176996
1123 => 0.063621501790063
1124 => 0.064223231345511
1125 => 0.061939016719984
1126 => 0.062527710839583
1127 => 0.059532704515593
1128 => 0.060886572456549
1129 => 0.062040340978264
1130 => 0.062271977090833
1201 => 0.062793865080084
1202 => 0.058334389352412
1203 => 0.060336563030808
1204 => 0.061512652488562
1205 => 0.056199037531928
1206 => 0.061407619405444
1207 => 0.058256759801431
1208 => 0.057187310727506
1209 => 0.058627183016345
1210 => 0.058066063385062
1211 => 0.057583645676136
1212 => 0.057314448305567
1213 => 0.058371731601585
1214 => 0.058322408072099
1215 => 0.056592487389969
1216 => 0.054335876380719
1217 => 0.055093269106155
1218 => 0.05481810122841
1219 => 0.053820857342098
1220 => 0.054492879313786
1221 => 0.051533634653007
1222 => 0.04644240802229
1223 => 0.049805828283031
1224 => 0.04967634026169
1225 => 0.049611046529515
1226 => 0.052138563897354
1227 => 0.051895601422183
1228 => 0.051454622150653
1229 => 0.053812758411956
1230 => 0.052952006955172
1231 => 0.055604640126431
]
'min_raw' => 0.023812036149866
'max_raw' => 0.078330810684635
'avg_raw' => 0.051071423417251
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.023812'
'max' => '$0.07833'
'avg' => '$0.051071'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.012972183369799
'max_diff' => 0.051780624762903
'year' => 2029
]
4 => [
'items' => [
101 => 0.05735183589458
102 => 0.056908690531915
103 => 0.058551936596789
104 => 0.055110717904831
105 => 0.056253752716569
106 => 0.05648933060709
107 => 0.053783659376535
108 => 0.051935353087889
109 => 0.05181209213067
110 => 0.048607383738453
111 => 0.050319313094073
112 => 0.051825740082569
113 => 0.051104278458536
114 => 0.05087588526142
115 => 0.052042696573044
116 => 0.05213336780502
117 => 0.050066054107055
118 => 0.050495914088173
119 => 0.052288501667709
120 => 0.050450745480475
121 => 0.046880285404448
122 => 0.04599476194012
123 => 0.045876616786544
124 => 0.043475006919536
125 => 0.046053936852302
126 => 0.044928164825625
127 => 0.048484465169079
128 => 0.046453125485719
129 => 0.046365558491957
130 => 0.046233188137599
131 => 0.044166023315812
201 => 0.044618601036606
202 => 0.046123038310057
203 => 0.046659838477923
204 => 0.04660384582254
205 => 0.046115665746674
206 => 0.046339152085519
207 => 0.045619224720297
208 => 0.045365003383644
209 => 0.044562610916081
210 => 0.043383315655341
211 => 0.043547303894385
212 => 0.041210811403468
213 => 0.039937766287374
214 => 0.039585404177705
215 => 0.039114210838428
216 => 0.039638626719174
217 => 0.041204192413806
218 => 0.039315788032789
219 => 0.0360782511777
220 => 0.036272832659185
221 => 0.036709999476322
222 => 0.035895342004736
223 => 0.035124337076898
224 => 0.035794663308046
225 => 0.03442287626285
226 => 0.036875773386944
227 => 0.036809429393902
228 => 0.037723717755624
301 => 0.038295441031294
302 => 0.036977803978482
303 => 0.03664642182297
304 => 0.036835192159229
305 => 0.033715238991983
306 => 0.037468751019662
307 => 0.037501211547545
308 => 0.03722326480045
309 => 0.039221894078506
310 => 0.043439625243309
311 => 0.041852745121267
312 => 0.041238257174307
313 => 0.040070115137948
314 => 0.041626595043986
315 => 0.041507081672071
316 => 0.040966596880172
317 => 0.040639709991617
318 => 0.041242009106679
319 => 0.040565078465911
320 => 0.040443483122019
321 => 0.039706747635072
322 => 0.039443766585561
323 => 0.039249065886081
324 => 0.039034719546848
325 => 0.039507514159415
326 => 0.038436099366026
327 => 0.037144078157286
328 => 0.037036660573642
329 => 0.037333249966332
330 => 0.03720203123855
331 => 0.037036032348857
401 => 0.036719095261324
402 => 0.036625066797743
403 => 0.036930613688257
404 => 0.036585669063357
405 => 0.037094653647503
406 => 0.036956238004017
407 => 0.036183059471258
408 => 0.035219392752083
409 => 0.035210814096923
410 => 0.035003193683007
411 => 0.034738757869947
412 => 0.034665197876225
413 => 0.03573821030255
414 => 0.037959313912484
415 => 0.037523258127349
416 => 0.037838353120903
417 => 0.039388308628213
418 => 0.039880992875198
419 => 0.039531297266554
420 => 0.039052612349156
421 => 0.039073672056154
422 => 0.040709483326682
423 => 0.040811506869098
424 => 0.041069287446741
425 => 0.041400608337794
426 => 0.039587722646972
427 => 0.038988285303147
428 => 0.038704238634124
429 => 0.037829484833431
430 => 0.038772831811756
501 => 0.038223183925631
502 => 0.038297350204115
503 => 0.038249049317956
504 => 0.03827542486789
505 => 0.036875087752208
506 => 0.03738529699761
507 => 0.036536975170418
508 => 0.035401167472401
509 => 0.035397359846732
510 => 0.035675347171724
511 => 0.035509989433173
512 => 0.035065016010471
513 => 0.03512822238495
514 => 0.034574468035636
515 => 0.035195458189003
516 => 0.035213265964592
517 => 0.034974150929984
518 => 0.035930871941373
519 => 0.036322841320349
520 => 0.036165450682229
521 => 0.036311798373607
522 => 0.037541378213895
523 => 0.037741853378192
524 => 0.037830891203526
525 => 0.037711592312829
526 => 0.036334272835916
527 => 0.036395362811532
528 => 0.035947125104299
529 => 0.035568411475813
530 => 0.035583558034861
531 => 0.035778266069229
601 => 0.036628567474786
602 => 0.038417976654775
603 => 0.038485883425114
604 => 0.038568188411746
605 => 0.038233412667943
606 => 0.03813244110024
607 => 0.038265648661013
608 => 0.038937656666352
609 => 0.040666243704478
610 => 0.040055245596758
611 => 0.039558494624429
612 => 0.039994279150262
613 => 0.039927193538302
614 => 0.039360923460787
615 => 0.039345030145732
616 => 0.038258176819485
617 => 0.037856391891224
618 => 0.037520630332089
619 => 0.03715398747479
620 => 0.036936629299004
621 => 0.037270590244536
622 => 0.037346971064089
623 => 0.036616759620045
624 => 0.036517234498446
625 => 0.037113540926361
626 => 0.03685112869998
627 => 0.037121026182323
628 => 0.037183644713364
629 => 0.037173561687639
630 => 0.036899573185445
701 => 0.037074205286289
702 => 0.036661148307459
703 => 0.036212010882133
704 => 0.035925489187025
705 => 0.035675461006456
706 => 0.035814191172759
707 => 0.035319643461017
708 => 0.035161427694752
709 => 0.03701504385987
710 => 0.038384330050775
711 => 0.038364420087262
712 => 0.038243223304806
713 => 0.038063149469946
714 => 0.038924483143722
715 => 0.038624411714689
716 => 0.038842738751117
717 => 0.038898312145045
718 => 0.039066516070829
719 => 0.039126634516681
720 => 0.038944914818371
721 => 0.038335041315651
722 => 0.036815294531905
723 => 0.036107848301593
724 => 0.035874379262141
725 => 0.035882865418305
726 => 0.035648779347453
727 => 0.035717728186321
728 => 0.035624801755078
729 => 0.035448821575623
730 => 0.035803324892577
731 => 0.035844178097429
801 => 0.035761432787253
802 => 0.035780922303223
803 => 0.035095826475948
804 => 0.035147912823746
805 => 0.034857889420394
806 => 0.03480351352855
807 => 0.034070359620105
808 => 0.032771471198935
809 => 0.033491181470413
810 => 0.032621872669046
811 => 0.032292652253791
812 => 0.033851130495331
813 => 0.033694702505338
814 => 0.033426965784082
815 => 0.033030927372124
816 => 0.032884032872715
817 => 0.031991548395451
818 => 0.031938815651315
819 => 0.032381155057355
820 => 0.032177030641437
821 => 0.031890362653527
822 => 0.030852080260384
823 => 0.029684707087005
824 => 0.029719942745264
825 => 0.030091262431965
826 => 0.031170924500333
827 => 0.030749081851878
828 => 0.030443030170338
829 => 0.030385715890265
830 => 0.031103124100949
831 => 0.032118407020733
901 => 0.03259475505102
902 => 0.03212270861991
903 => 0.031580447096635
904 => 0.031613452042959
905 => 0.031833019164375
906 => 0.031856092564323
907 => 0.031503136058057
908 => 0.031602491247116
909 => 0.031451561629706
910 => 0.030525306846254
911 => 0.030508553834407
912 => 0.030281235972671
913 => 0.03027435287816
914 => 0.02988762848825
915 => 0.029833523072802
916 => 0.029065658324144
917 => 0.02957106922702
918 => 0.029232066128634
919 => 0.02872110849662
920 => 0.028633019208269
921 => 0.028630371137891
922 => 0.029155010377933
923 => 0.02956493851204
924 => 0.02923796323267
925 => 0.029163517299707
926 => 0.029958405097309
927 => 0.029857248379501
928 => 0.02976964731427
929 => 0.032027499570986
930 => 0.030240233327387
1001 => 0.029460883231586
1002 => 0.028496289493465
1003 => 0.028810366078501
1004 => 0.028876546629713
1005 => 0.02655687257062
1006 => 0.025615781093743
1007 => 0.025292833963163
1008 => 0.025106973323712
1009 => 0.025191672351
1010 => 0.02434457964279
1011 => 0.024913839952328
1012 => 0.024180329269982
1013 => 0.024057353817037
1014 => 0.025368961781608
1015 => 0.025551464367575
1016 => 0.024772851636729
1017 => 0.025272847055883
1018 => 0.025091541766442
1019 => 0.024192903205328
1020 => 0.024158581822231
1021 => 0.023707676580937
1022 => 0.023002097190771
1023 => 0.022679628476242
1024 => 0.022511683969914
1025 => 0.022580981146398
1026 => 0.022545942373439
1027 => 0.022317290678743
1028 => 0.022559048420929
1029 => 0.021941457290839
1030 => 0.021695527526567
1031 => 0.021584446757572
1101 => 0.021036299082398
1102 => 0.021908645795978
1103 => 0.022080509088088
1104 => 0.022252711003974
1105 => 0.023751611114524
1106 => 0.023676730300848
1107 => 0.024353616388038
1108 => 0.024327313839403
1109 => 0.024134254962509
1110 => 0.023319771317537
1111 => 0.023644409981648
1112 => 0.022645222633564
1113 => 0.023393881732884
1114 => 0.023052224984706
1115 => 0.023278367242649
1116 => 0.022871743072442
1117 => 0.023096785677335
1118 => 0.022121264250355
1119 => 0.021210336067797
1120 => 0.02157692016011
1121 => 0.021975438992429
1122 => 0.022839529361608
1123 => 0.022324884266316
1124 => 0.022509970103469
1125 => 0.021889963532002
1126 => 0.020610712878945
1127 => 0.020617953298715
1128 => 0.020421168455733
1129 => 0.020251117620338
1130 => 0.022383997446385
1201 => 0.022118740124176
1202 => 0.021696087297255
1203 => 0.022261824901644
1204 => 0.022411414903707
1205 => 0.022415673520767
1206 => 0.022828421073128
1207 => 0.023048704515812
1208 => 0.023087530427349
1209 => 0.02373699761899
1210 => 0.023954690454948
1211 => 0.024851336437219
1212 => 0.023030015004735
1213 => 0.022992506088387
1214 => 0.022269785989921
1215 => 0.02181142547772
1216 => 0.022301170326335
1217 => 0.02273501740537
1218 => 0.02228326682801
1219 => 0.022342255916438
1220 => 0.021735817675711
1221 => 0.0219525908112
1222 => 0.022139305037977
1223 => 0.022036212416506
1224 => 0.021881877772423
1225 => 0.022699446892416
1226 => 0.022653316438587
1227 => 0.023414655598957
1228 => 0.02400817391835
1229 => 0.025071864850795
1230 => 0.023961847911327
1231 => 0.023921394482135
]
'min_raw' => 0.020251117620338
'max_raw' => 0.058551936596789
'avg_raw' => 0.039401527108563
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.020251'
'max' => '$0.058551'
'avg' => '$0.0394015'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0035609185295279
'max_diff' => -0.019778874087847
'year' => 2030
]
5 => [
'items' => [
101 => 0.02431683324142
102 => 0.023954629915334
103 => 0.024183529914587
104 => 0.025034985522135
105 => 0.025052975437416
106 => 0.024751621177758
107 => 0.02473328374367
108 => 0.024791162125692
109 => 0.025130157616992
110 => 0.025011702176053
111 => 0.025148781811233
112 => 0.025320201994063
113 => 0.026029268550902
114 => 0.026200222097222
115 => 0.025784893608915
116 => 0.025822393121174
117 => 0.025667048865525
118 => 0.025516988261026
119 => 0.025854302585348
120 => 0.026470751142976
121 => 0.026466916248493
122 => 0.026609920331815
123 => 0.026699010691015
124 => 0.0263165696512
125 => 0.026067614597028
126 => 0.026163079806219
127 => 0.026315730754678
128 => 0.026113577161012
129 => 0.024865791534251
130 => 0.025244289984556
131 => 0.025181289334797
201 => 0.025091568748399
202 => 0.025472151867022
203 => 0.025435443696792
204 => 0.0243358914827
205 => 0.024406281247958
206 => 0.024340172117463
207 => 0.024553784242746
208 => 0.023943094159554
209 => 0.024130938316083
210 => 0.024248752410129
211 => 0.024318145816612
212 => 0.024568842384335
213 => 0.024539426035641
214 => 0.024567013822797
215 => 0.024938730651289
216 => 0.02681874681199
217 => 0.026921071943595
218 => 0.026417185571913
219 => 0.026618478238681
220 => 0.026232040336354
221 => 0.026491458689095
222 => 0.026668946137529
223 => 0.02586691448693
224 => 0.025819423377724
225 => 0.025431390508711
226 => 0.025639897393213
227 => 0.025308147947794
228 => 0.025389547657597
301 => 0.025161946972689
302 => 0.025571582890679
303 => 0.026029619497979
304 => 0.026145337633397
305 => 0.025840933038902
306 => 0.025620524051248
307 => 0.025233558476162
308 => 0.025877090851621
309 => 0.026065279329499
310 => 0.025876102377661
311 => 0.025832265944322
312 => 0.025749195982355
313 => 0.02584988962945
314 => 0.026064254414633
315 => 0.025963163940637
316 => 0.026029935979696
317 => 0.025775469821829
318 => 0.026316696255098
319 => 0.027176294084362
320 => 0.027179057831942
321 => 0.02707796681303
322 => 0.027036602546128
323 => 0.027140328066247
324 => 0.027196594905868
325 => 0.027532024217926
326 => 0.027891953233858
327 => 0.029571584901877
328 => 0.029099951050652
329 => 0.030590220188254
330 => 0.031768829588868
331 => 0.03212224301377
401 => 0.031797119292247
402 => 0.030684888603756
403 => 0.030630317260002
404 => 0.032292459480292
405 => 0.031822828172124
406 => 0.031766967022371
407 => 0.03117269876791
408 => 0.031523984907852
409 => 0.03144715347599
410 => 0.031325871302073
411 => 0.031996100786278
412 => 0.03325071054891
413 => 0.033055167851748
414 => 0.032909204299281
415 => 0.032269634501723
416 => 0.032654798372939
417 => 0.032517648895727
418 => 0.033106930087039
419 => 0.032757852963482
420 => 0.031819270253069
421 => 0.031968742643311
422 => 0.031946150192223
423 => 0.032411101234704
424 => 0.032271534472546
425 => 0.031918897541945
426 => 0.033246422429135
427 => 0.033160220347042
428 => 0.03328243519091
429 => 0.033336237944801
430 => 0.034144278950021
501 => 0.034475307495431
502 => 0.03455045677071
503 => 0.034864908286183
504 => 0.034542632930546
505 => 0.035831964131529
506 => 0.036689294145622
507 => 0.037685127074789
508 => 0.039140306638961
509 => 0.039687467616253
510 => 0.039588627883153
511 => 0.040691928420973
512 => 0.042674534962442
513 => 0.039989369350074
514 => 0.042816855259989
515 => 0.041921705865805
516 => 0.039799322755243
517 => 0.039662666304176
518 => 0.041099968788023
519 => 0.044287767361957
520 => 0.043489259974899
521 => 0.044289073433985
522 => 0.043356048549368
523 => 0.043309715999695
524 => 0.04424375849789
525 => 0.046426199706927
526 => 0.045389403696099
527 => 0.043902902381765
528 => 0.045000511819747
529 => 0.044049660945609
530 => 0.041907127799773
531 => 0.043488649371349
601 => 0.042431130935578
602 => 0.042739771035908
603 => 0.044962517493904
604 => 0.04469507075942
605 => 0.045041171598743
606 => 0.044430312676374
607 => 0.043859674119271
608 => 0.042794534876263
609 => 0.042479199657139
610 => 0.042566346967132
611 => 0.04247915647126
612 => 0.041883220853932
613 => 0.041754528614109
614 => 0.041540035909602
615 => 0.041606516167671
616 => 0.041203207131144
617 => 0.04196433461097
618 => 0.042105606578258
619 => 0.042659491685312
620 => 0.042716997874569
621 => 0.044259560013651
622 => 0.043409942709148
623 => 0.043979939349438
624 => 0.043928953484914
625 => 0.039845321232878
626 => 0.040408009727016
627 => 0.041283376442518
628 => 0.040889024923716
629 => 0.040331504140173
630 => 0.03988127621509
701 => 0.039199134870419
702 => 0.040159235713679
703 => 0.041421666227224
704 => 0.04274901519572
705 => 0.044343738010019
706 => 0.043987814442488
707 => 0.042719202961973
708 => 0.042776111946268
709 => 0.043127900894317
710 => 0.042672302243197
711 => 0.042537937306639
712 => 0.043109441215348
713 => 0.043113376848674
714 => 0.042589155539624
715 => 0.042006579486102
716 => 0.042004138471166
717 => 0.041900474689458
718 => 0.043374490105843
719 => 0.044185049545087
720 => 0.044277978878514
721 => 0.044178794660525
722 => 0.044216966729548
723 => 0.043745320051311
724 => 0.044823364495284
725 => 0.045812684684619
726 => 0.045547525740134
727 => 0.045150014787786
728 => 0.04483337816752
729 => 0.045472936215256
730 => 0.045444457702148
731 => 0.045804043835829
801 => 0.045787730931736
802 => 0.045666815639697
803 => 0.0455475300584
804 => 0.046020483904811
805 => 0.045884280792451
806 => 0.045747866119038
807 => 0.045474265607464
808 => 0.045511452461011
809 => 0.045114010144533
810 => 0.044930135143208
811 => 0.042165096301089
812 => 0.041426187572225
813 => 0.0416586633002
814 => 0.041735200346079
815 => 0.041413626320339
816 => 0.04187468086766
817 => 0.041802826004838
818 => 0.04208237124239
819 => 0.041907723514411
820 => 0.041914891118087
821 => 0.042428492847253
822 => 0.042577593614248
823 => 0.042501759760764
824 => 0.042554871192312
825 => 0.043778801715404
826 => 0.043604797934115
827 => 0.04351236189333
828 => 0.043537967308347
829 => 0.043850707798363
830 => 0.04393825806057
831 => 0.043567301447551
901 => 0.043742246730726
902 => 0.044487141542619
903 => 0.044747812569386
904 => 0.045579749357637
905 => 0.045226327823491
906 => 0.045875048345142
907 => 0.047868994063575
908 => 0.049461895874008
909 => 0.047996997539682
910 => 0.05092215885972
911 => 0.053199816536839
912 => 0.053112396241554
913 => 0.052715233942377
914 => 0.050122181231639
915 => 0.04773601546698
916 => 0.049732144451068
917 => 0.049737232994356
918 => 0.049565763744343
919 => 0.048500782959022
920 => 0.049528704721494
921 => 0.049610297418135
922 => 0.049564627205265
923 => 0.048748108934139
924 => 0.04750143645193
925 => 0.047745033270842
926 => 0.048144049829459
927 => 0.047388628240422
928 => 0.047147225270117
929 => 0.047596039320709
930 => 0.049042211705837
1001 => 0.048768821193535
1002 => 0.048761681862401
1003 => 0.04993136240965
1004 => 0.04909412357068
1005 => 0.047748105806833
1006 => 0.047408218569669
1007 => 0.046201847853212
1008 => 0.047035092404014
1009 => 0.047065079392
1010 => 0.046608719867079
1011 => 0.04778513686714
1012 => 0.04777429597738
1013 => 0.048891128832375
1014 => 0.05102609378786
1015 => 0.050394679595278
1016 => 0.049660413586974
1017 => 0.049740248661065
1018 => 0.050615842374086
1019 => 0.050086438427333
1020 => 0.050276815777721
1021 => 0.050615554215165
1022 => 0.050819923524877
1023 => 0.049710843062462
1024 => 0.049452263353222
1025 => 0.048923300017262
1026 => 0.048785303356479
1027 => 0.049216132956436
1028 => 0.049102624578282
1029 => 0.047062559101775
1030 => 0.046849360908663
1031 => 0.046855899392869
1101 => 0.046319802399267
1102 => 0.045502125806004
1103 => 0.047650931072168
1104 => 0.047478351936785
1105 => 0.047287837927886
1106 => 0.047311174806918
1107 => 0.048243898343192
1108 => 0.047702871588485
1109 => 0.049141279888414
1110 => 0.04884558638446
1111 => 0.048542309457884
1112 => 0.04850038734859
1113 => 0.048383651606229
1114 => 0.047983321310218
1115 => 0.047499898421664
1116 => 0.047180700757267
1117 => 0.043521702486172
1118 => 0.044200791281874
1119 => 0.044982021040437
1120 => 0.045251698422511
1121 => 0.044790396599366
1122 => 0.048001536317864
1123 => 0.048588242487745
1124 => 0.046811071229277
1125 => 0.046478635048242
1126 => 0.048023330778548
1127 => 0.0470916904218
1128 => 0.047511208017398
1129 => 0.046604440439571
1130 => 0.048446922152183
1201 => 0.048432885528534
1202 => 0.047716118527991
1203 => 0.048321925088641
1204 => 0.048216651290561
1205 => 0.047407423112267
1206 => 0.048472576128829
1207 => 0.048473104431436
1208 => 0.047783231777272
1209 => 0.046977611549752
1210 => 0.046833585680971
1211 => 0.046725081535999
1212 => 0.04748452264916
1213 => 0.04816543517651
1214 => 0.049432444577378
1215 => 0.049751000844156
1216 => 0.050994347160886
1217 => 0.050253994966707
1218 => 0.050582183505221
1219 => 0.05093847858888
1220 => 0.051109299554305
1221 => 0.050830955957904
1222 => 0.052762384569546
1223 => 0.052925456321813
1224 => 0.052980132869782
1225 => 0.052328866008997
1226 => 0.052907343412281
1227 => 0.052636692992442
1228 => 0.05334085019601
1229 => 0.05345127103666
1230 => 0.053357748512965
1231 => 0.053392797830662
]
'min_raw' => 0.023943094159554
'max_raw' => 0.05345127103666
'avg_raw' => 0.038697182598107
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.023943'
'max' => '$0.053451'
'avg' => '$0.038697'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0036919765392158
'max_diff' => -0.0051006655601283
'year' => 2031
]
6 => [
'items' => [
101 => 0.05174466423798
102 => 0.051659199816602
103 => 0.050493886366836
104 => 0.050968760211178
105 => 0.050081006320477
106 => 0.050362522224097
107 => 0.05048661175203
108 => 0.050421794424657
109 => 0.050995608865842
110 => 0.050507749368289
111 => 0.049220207942718
112 => 0.047932315727347
113 => 0.047916147289677
114 => 0.047577068002555
115 => 0.047331975783436
116 => 0.047379189239952
117 => 0.047545575618862
118 => 0.047322305104619
119 => 0.047369951188936
120 => 0.048161193652782
121 => 0.048319871686023
122 => 0.047780621729559
123 => 0.045615455340961
124 => 0.04508411807829
125 => 0.045466032765822
126 => 0.045283502143638
127 => 0.036547320462351
128 => 0.038599756762755
129 => 0.037380268807206
130 => 0.037942264963066
131 => 0.036697483545325
201 => 0.037291558482455
202 => 0.03718185453371
203 => 0.040482111368754
204 => 0.04043058239763
205 => 0.040455246589254
206 => 0.039277960460795
207 => 0.041153409230233
208 => 0.042077322733014
209 => 0.041906330932811
210 => 0.041949365885048
211 => 0.041209882823991
212 => 0.040462406401715
213 => 0.039633340013615
214 => 0.041173642887003
215 => 0.041002387501329
216 => 0.041395185740322
217 => 0.042394182256837
218 => 0.042541288288713
219 => 0.042739000287356
220 => 0.042668134609941
221 => 0.044356442550043
222 => 0.044151977318682
223 => 0.0446446796976
224 => 0.043631153522746
225 => 0.042484252451112
226 => 0.042702240849809
227 => 0.042681246814063
228 => 0.042413968643177
229 => 0.042172681861316
301 => 0.041771007351647
302 => 0.043041964936882
303 => 0.042990366379963
304 => 0.043825687039728
305 => 0.043678035999242
306 => 0.042691986214542
307 => 0.042727203175506
308 => 0.042964054162685
309 => 0.043783798133628
310 => 0.04402715395663
311 => 0.043914421843363
312 => 0.044181250393669
313 => 0.044392140800354
314 => 0.044207734981822
315 => 0.046818532494772
316 => 0.045734347343228
317 => 0.046262771642379
318 => 0.04638879772407
319 => 0.046065984565862
320 => 0.046135991180804
321 => 0.046242032126782
322 => 0.046885891985812
323 => 0.048575566558256
324 => 0.049323911924388
325 => 0.051575345881107
326 => 0.049261772259202
327 => 0.049124494374997
328 => 0.049530045617394
329 => 0.050851875688475
330 => 0.051923094807902
331 => 0.052278479989929
401 => 0.052325450008504
402 => 0.052992176235547
403 => 0.05337433127518
404 => 0.052911218134943
405 => 0.052518778238559
406 => 0.051113107241146
407 => 0.051275817486611
408 => 0.052396729725883
409 => 0.053980084285256
410 => 0.055338767217163
411 => 0.05486300380929
412 => 0.058492742774737
413 => 0.058852616567006
414 => 0.058802893645028
415 => 0.059622739700219
416 => 0.057995512239409
417 => 0.057299840973866
418 => 0.05260362819854
419 => 0.053923072432376
420 => 0.055840962114501
421 => 0.055587122223355
422 => 0.054194299470858
423 => 0.055337710636207
424 => 0.05495966314717
425 => 0.054661481407361
426 => 0.056027509762799
427 => 0.054525505472643
428 => 0.055825978472733
429 => 0.054158108398447
430 => 0.054865177056462
501 => 0.05446381068911
502 => 0.054723543918398
503 => 0.053205148767198
504 => 0.054024437933827
505 => 0.053171063644294
506 => 0.053170659033768
507 => 0.053151820749028
508 => 0.054155811816223
509 => 0.05418855192888
510 => 0.053446601013276
511 => 0.053339674294886
512 => 0.053735038415336
513 => 0.053272170576317
514 => 0.053488743524939
515 => 0.053278730350304
516 => 0.05323145196114
517 => 0.052854729712523
518 => 0.052692427409625
519 => 0.052756070324606
520 => 0.052538824245603
521 => 0.052407925624869
522 => 0.053125781718694
523 => 0.052742260165995
524 => 0.053067001540269
525 => 0.052696917758655
526 => 0.051414046133753
527 => 0.050676253096151
528 => 0.048253027518973
529 => 0.048940251286659
530 => 0.049395881355619
531 => 0.049245295620546
601 => 0.049568812048426
602 => 0.049588673329607
603 => 0.049483494841043
604 => 0.049361711625485
605 => 0.049302434291186
606 => 0.049744238976044
607 => 0.050000721466066
608 => 0.049441609928583
609 => 0.049310617918152
610 => 0.049875910551942
611 => 0.050220738731995
612 => 0.052766756271289
613 => 0.05257813906845
614 => 0.05305153123332
615 => 0.05299823454035
616 => 0.05349442494642
617 => 0.054305486554631
618 => 0.052656371528744
619 => 0.052942600875131
620 => 0.052872424049398
621 => 0.053638596231401
622 => 0.053640988137323
623 => 0.053181629641073
624 => 0.05343065533413
625 => 0.053291656023928
626 => 0.053542846564347
627 => 0.052575619970711
628 => 0.053753597556101
629 => 0.054421434939818
630 => 0.054430707862538
701 => 0.054747257482135
702 => 0.055068890228963
703 => 0.05568623627819
704 => 0.055051672782715
705 => 0.053910154827866
706 => 0.053992568737126
707 => 0.053323297177863
708 => 0.053334547753688
709 => 0.053274491298211
710 => 0.053454725241937
711 => 0.052615171185925
712 => 0.052812212844795
713 => 0.052536353368503
714 => 0.052942001210504
715 => 0.052505591188502
716 => 0.052872390208008
717 => 0.053030688505247
718 => 0.053614812629976
719 => 0.052419315580342
720 => 0.049981616168104
721 => 0.050494050138805
722 => 0.049736120045318
723 => 0.049806269361114
724 => 0.049947982143202
725 => 0.049488644650918
726 => 0.049576271769058
727 => 0.049573141111775
728 => 0.049546162798633
729 => 0.049426671376434
730 => 0.049253385173589
731 => 0.049943704071044
801 => 0.050061002703469
802 => 0.050321743033121
803 => 0.051097529392313
804 => 0.051020010040728
805 => 0.051146447319411
806 => 0.050870435449961
807 => 0.049819072760117
808 => 0.049876166812434
809 => 0.04916420306517
810 => 0.050303536519391
811 => 0.050033727318965
812 => 0.049859779572237
813 => 0.049812316317928
814 => 0.05059002570145
815 => 0.050822728538101
816 => 0.050677723746407
817 => 0.050380314688176
818 => 0.050951428001074
819 => 0.051104233830269
820 => 0.051138441420164
821 => 0.052150344710504
822 => 0.051194995573251
823 => 0.051424957605941
824 => 0.053219055739435
825 => 0.051592056300975
826 => 0.052453914189945
827 => 0.052411730731172
828 => 0.052852628063488
829 => 0.052375564281093
830 => 0.052381478058431
831 => 0.052772965020556
901 => 0.052223192187298
902 => 0.05208706070231
903 => 0.051898996030793
904 => 0.052309628360844
905 => 0.052555783871406
906 => 0.054539616505241
907 => 0.055821262860458
908 => 0.055765623212076
909 => 0.056274065445228
910 => 0.056045007562396
911 => 0.055305319236315
912 => 0.056567877013554
913 => 0.056168350905174
914 => 0.056201287352125
915 => 0.056200061455924
916 => 0.056465711390818
917 => 0.056277474065487
918 => 0.055906438975094
919 => 0.05615274938358
920 => 0.056884203239199
921 => 0.059154658450785
922 => 0.06042523526672
923 => 0.059078168131083
924 => 0.060007357003298
925 => 0.059450174783817
926 => 0.059348918199802
927 => 0.059932517478071
928 => 0.060517138269621
929 => 0.060479900452584
930 => 0.060055495778529
1001 => 0.059815760347025
1002 => 0.061631117351635
1003 => 0.062968641468832
1004 => 0.062877431290914
1005 => 0.063280003353103
1006 => 0.064461967378773
1007 => 0.064570031356425
1008 => 0.064556417779063
1009 => 0.064288569935143
1010 => 0.065452367015839
1011 => 0.066423227015617
1012 => 0.064226570898143
1013 => 0.065063028791337
1014 => 0.065438541688582
1015 => 0.065989906031394
1016 => 0.066920150097111
1017 => 0.067930641887532
1018 => 0.068073536506176
1019 => 0.067972145936111
1020 => 0.067305699436851
1021 => 0.068411391611604
1022 => 0.069059080155902
1023 => 0.069444763861942
1024 => 0.070422793568812
1025 => 0.065440860728396
1026 => 0.061914401045821
1027 => 0.061363693443692
1028 => 0.062483579008129
1029 => 0.06277888390055
1030 => 0.062659846868696
1031 => 0.058690495884271
1101 => 0.061342795632235
1102 => 0.064196447149348
1103 => 0.064306067525982
1104 => 0.065734665142488
1105 => 0.066199875086617
1106 => 0.067350083418474
1107 => 0.067278137574149
1108 => 0.067558194999144
1109 => 0.067493814647056
1110 => 0.069624333376882
1111 => 0.071974611920974
1112 => 0.07189322924842
1113 => 0.071555348900473
1114 => 0.072057158834335
1115 => 0.074482898162992
1116 => 0.07425957495729
1117 => 0.074476514429004
1118 => 0.077336597806169
1119 => 0.081055113038601
1120 => 0.079327489380311
1121 => 0.083075935608483
1122 => 0.085435383812521
1123 => 0.089515805509907
1124 => 0.089004916616894
1125 => 0.090593394840169
1126 => 0.088090318872671
1127 => 0.082342750496179
1128 => 0.081433175799791
1129 => 0.083254167376059
1130 => 0.087730897476555
1201 => 0.083113179213865
1202 => 0.084047337604278
1203 => 0.083778299924995
1204 => 0.083763964050402
1205 => 0.084311106075381
1206 => 0.08351744803114
1207 => 0.080283942382547
1208 => 0.081765838966129
1209 => 0.081193607528689
1210 => 0.081828540971208
1211 => 0.085255014894014
1212 => 0.083740089095805
1213 => 0.082144237829971
1214 => 0.084145789465073
1215 => 0.08669445250432
1216 => 0.086534961751712
1217 => 0.086225483029689
1218 => 0.087969998381954
1219 => 0.090851426648855
1220 => 0.091630265130882
1221 => 0.092205187775663
1222 => 0.09228445989498
1223 => 0.093101011991299
1224 => 0.088710205571771
1225 => 0.095678528123468
1226 => 0.09688176493212
1227 => 0.09665560628115
1228 => 0.097992953354022
1229 => 0.097599471919962
1230 => 0.097029379057355
1231 => 0.099149358629738
]
'min_raw' => 0.036547320462351
'max_raw' => 0.099149358629738
'avg_raw' => 0.067848339546044
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.036547'
'max' => '$0.099149'
'avg' => '$0.067848'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.012604226302797
'max_diff' => 0.045698087593077
'year' => 2032
]
7 => [
'items' => [
101 => 0.096718973123531
102 => 0.093269346874498
103 => 0.091376813688408
104 => 0.093869054054149
105 => 0.095390978278304
106 => 0.096396873377911
107 => 0.096701256627273
108 => 0.089051051375096
109 => 0.084928015044007
110 => 0.087570834061527
111 => 0.090795255660527
112 => 0.088692293746983
113 => 0.08877472587256
114 => 0.085776454832515
115 => 0.091060536118317
116 => 0.090290689921094
117 => 0.094284653354118
118 => 0.093331461927268
119 => 0.096588384062132
120 => 0.095730727312675
121 => 0.099290812528726
122 => 0.10071102690687
123 => 0.10309578788649
124 => 0.10485002777082
125 => 0.10588015098416
126 => 0.10581830625032
127 => 0.10990016762693
128 => 0.10749323658252
129 => 0.10446956392065
130 => 0.10441487522176
131 => 0.10598087813912
201 => 0.10926279064197
202 => 0.11011374280408
203 => 0.11058930897367
204 => 0.10986096283036
205 => 0.10724841168796
206 => 0.10612032535061
207 => 0.10708148759384
208 => 0.10590606876398
209 => 0.10793517142859
210 => 0.11072156278005
211 => 0.11014618398456
212 => 0.11206958903228
213 => 0.11406011090856
214 => 0.11690664659156
215 => 0.11765083642601
216 => 0.11888095392335
217 => 0.12014714890065
218 => 0.12055381660246
219 => 0.12133027142677
220 => 0.12132617912658
221 => 0.12366607800108
222 => 0.1262470589203
223 => 0.12722131946746
224 => 0.12946157787461
225 => 0.12562521386038
226 => 0.12853514003415
227 => 0.13115996628306
228 => 0.12803054022022
301 => 0.13234372498509
302 => 0.13251119617562
303 => 0.13503981232171
304 => 0.13247657543341
305 => 0.13095453355128
306 => 0.13534861143483
307 => 0.13747476731052
308 => 0.13683435185753
309 => 0.13196075863907
310 => 0.12912411834768
311 => 0.12170008355807
312 => 0.1304941734608
313 => 0.13477751812531
314 => 0.13194966581117
315 => 0.13337587003207
316 => 0.14115677781305
317 => 0.14411924371958
318 => 0.14350307152022
319 => 0.14360719447885
320 => 0.14520568730946
321 => 0.15229428482642
322 => 0.14804663288185
323 => 0.151293803637
324 => 0.15301609129698
325 => 0.1546158480597
326 => 0.15068735105877
327 => 0.14557643418163
328 => 0.14395759226494
329 => 0.13166849162941
330 => 0.13102879057247
331 => 0.13066970698428
401 => 0.12840573575416
402 => 0.12662687452119
403 => 0.12521225802385
404 => 0.12149988189458
405 => 0.12275269986026
406 => 0.11683594714333
407 => 0.12062127585478
408 => 0.11117799565356
409 => 0.11904264001372
410 => 0.11476227164999
411 => 0.1176364238861
412 => 0.11762639623971
413 => 0.11233417072223
414 => 0.10928172548968
415 => 0.11122686239481
416 => 0.11331220356226
417 => 0.11365054315075
418 => 0.11635424240733
419 => 0.11710878675403
420 => 0.11482248215725
421 => 0.11098230466109
422 => 0.11187429030832
423 => 0.10926364942901
424 => 0.10468860170486
425 => 0.10797448085301
426 => 0.1090964244641
427 => 0.10959193867847
428 => 0.10509290468956
429 => 0.10367921053146
430 => 0.10292657162373
501 => 0.11040153586957
502 => 0.11081103128473
503 => 0.10871599484393
504 => 0.11818575821585
505 => 0.11604245911241
506 => 0.11843704933198
507 => 0.11179335196019
508 => 0.11204715014671
509 => 0.10890191734093
510 => 0.11066303754764
511 => 0.10941833454909
512 => 0.11052075643866
513 => 0.11118154357382
514 => 0.11432626027784
515 => 0.11907854762706
516 => 0.11385654446932
517 => 0.11158124291304
518 => 0.11299282720178
519 => 0.11675206217909
520 => 0.12244749560141
521 => 0.11907568438412
522 => 0.12057203694529
523 => 0.12089892341181
524 => 0.11841267465141
525 => 0.12253916713956
526 => 0.12475058798752
527 => 0.12701904818847
528 => 0.12898868862013
529 => 0.1261129752997
530 => 0.12919040076988
531 => 0.12671053907964
601 => 0.12448584678011
602 => 0.12448922072001
603 => 0.12309363874295
604 => 0.12038952280774
605 => 0.1198908423407
606 => 0.12248504110661
607 => 0.12456534284534
608 => 0.12473668646051
609 => 0.12588844839284
610 => 0.12657004924029
611 => 0.13325066413678
612 => 0.13593766271309
613 => 0.13922327370993
614 => 0.14050320436009
615 => 0.14435533673652
616 => 0.14124442698765
617 => 0.14057136209495
618 => 0.13122734897261
619 => 0.13275743059793
620 => 0.13520723891099
621 => 0.13126774540937
622 => 0.13376644728974
623 => 0.13425974397066
624 => 0.13113388292765
625 => 0.13280354037121
626 => 0.12836942522005
627 => 0.11917519922031
628 => 0.12254940294141
629 => 0.12503395262482
630 => 0.12148819388382
701 => 0.12784382918725
702 => 0.12413099824993
703 => 0.12295420909011
704 => 0.11836313502205
705 => 0.12052994525553
706 => 0.12346058712205
707 => 0.12164979117222
708 => 0.12540746466048
709 => 0.13072933245478
710 => 0.1345220123677
711 => 0.13481316723752
712 => 0.13237472814333
713 => 0.13628234235368
714 => 0.13631080505716
715 => 0.13190300026482
716 => 0.12920324437227
717 => 0.12858985415314
718 => 0.13012222318275
719 => 0.13198280207561
720 => 0.1349164164171
721 => 0.13668913812339
722 => 0.14131145615444
723 => 0.1425621228814
724 => 0.14393622643586
725 => 0.14577245254248
726 => 0.14797731278217
727 => 0.14315320410048
728 => 0.14334487493167
729 => 0.1388527317216
730 => 0.13405223246315
731 => 0.13769521300963
801 => 0.14245792546877
802 => 0.14136535396832
803 => 0.1412424173553
804 => 0.14144916263862
805 => 0.14062539940732
806 => 0.13689954884227
807 => 0.13502845001356
808 => 0.13744264487081
809 => 0.138725681994
810 => 0.14071556067946
811 => 0.14047026613023
812 => 0.14559597992661
813 => 0.14758767731434
814 => 0.14707811589302
815 => 0.14717188745782
816 => 0.15077776044244
817 => 0.15478823280568
818 => 0.15854456940229
819 => 0.16236567632678
820 => 0.15775918278897
821 => 0.15542028945949
822 => 0.1578334303548
823 => 0.15655298382833
824 => 0.16391080937453
825 => 0.1644202492513
826 => 0.17177754274296
827 => 0.17876049035675
828 => 0.17437462607303
829 => 0.17851029854891
830 => 0.18298336551791
831 => 0.19161263743006
901 => 0.18870660223149
902 => 0.18648062481277
903 => 0.18437708690792
904 => 0.18875421536067
905 => 0.19438532118881
906 => 0.19559820745013
907 => 0.19756354655168
908 => 0.19549723279663
909 => 0.19798588011759
910 => 0.20677189872763
911 => 0.20439783894286
912 => 0.20102629239934
913 => 0.20796201027377
914 => 0.2104720196106
915 => 0.2280885796386
916 => 0.25033021437774
917 => 0.24112203154929
918 => 0.23540621532147
919 => 0.23674956771598
920 => 0.24487145979586
921 => 0.24747995375595
922 => 0.24038916797064
923 => 0.24289375338425
924 => 0.25669426525863
925 => 0.26409779710581
926 => 0.25404280643036
927 => 0.22630148594351
928 => 0.20072272152199
929 => 0.20750736167335
930 => 0.20673819403208
1001 => 0.22156512239219
1002 => 0.20434121840215
1003 => 0.20463122477218
1004 => 0.21976475830878
1005 => 0.21572739101566
1006 => 0.20918737306774
1007 => 0.20077047089063
1008 => 0.18521104874701
1009 => 0.17142963464782
1010 => 0.19845816136645
1011 => 0.19729264214615
1012 => 0.1956047975949
1013 => 0.19936091299986
1014 => 0.21759954321442
1015 => 0.21717908375529
1016 => 0.2145043351966
1017 => 0.21653310840421
1018 => 0.20883171931548
1019 => 0.21081654264101
1020 => 0.20071866971502
1021 => 0.20528333000199
1022 => 0.2091733411265
1023 => 0.20995431845234
1024 => 0.21171390024516
1025 => 0.19667846647866
1026 => 0.20342893482268
1027 => 0.20739420254144
1028 => 0.1894789787304
1029 => 0.20704007616853
1030 => 0.19641673302761
1031 => 0.19281101080832
1101 => 0.19766564075881
1102 => 0.19577378674582
1103 => 0.19414728175885
1104 => 0.19323966402921
1105 => 0.1968043684789
1106 => 0.19663807075558
1107 => 0.19080552239657
1108 => 0.18319720082734
1109 => 0.18575080328062
1110 => 0.18482305556919
1111 => 0.18146077818114
1112 => 0.18372654717777
1113 => 0.17374924719609
1114 => 0.15658382115253
1115 => 0.16792382738812
1116 => 0.16748724948361
1117 => 0.16726710710692
1118 => 0.17578880837821
1119 => 0.17496964343008
1120 => 0.17348285102792
1121 => 0.18143347207272
1122 => 0.17853138844043
1123 => 0.18747492637826
1124 => 0.19336571889589
1125 => 0.19187162336624
1126 => 0.19741194220174
1127 => 0.18580963312359
1128 => 0.1896634547955
1129 => 0.19045772210092
1130 => 0.18133536264317
1201 => 0.17510366894638
1202 => 0.17468808602331
1203 => 0.16388318793335
1204 => 0.16965507727892
1205 => 0.174734101046
1206 => 0.17230164280974
1207 => 0.17153159919976
1208 => 0.17546558500106
1209 => 0.17577128939013
1210 => 0.16880119692221
1211 => 0.17025049986041
1212 => 0.17629433403929
1213 => 0.17009821074599
1214 => 0.1580601553181
1215 => 0.15507455113285
1216 => 0.15467621649893
1217 => 0.14657902115727
1218 => 0.15527406348073
1219 => 0.15147844449389
1220 => 0.16346875939481
1221 => 0.15661995582875
1222 => 0.15632471759555
1223 => 0.15587842170403
1224 => 0.14890883118254
1225 => 0.15043472856616
1226 => 0.15550704387006
1227 => 0.15731690311421
1228 => 0.1571281199673
1229 => 0.15548218675788
1230 => 0.15623568655261
1231 => 0.15380840117704
]
'min_raw' => 0.084928015044007
'max_raw' => 0.26409779710581
'avg_raw' => 0.17451290607491
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.084928'
'max' => '$0.264097'
'avg' => '$0.174512'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.048380694581656
'max_diff' => 0.16494843847607
'year' => 2033
]
8 => [
'items' => [
101 => 0.15295127619135
102 => 0.15024595396571
103 => 0.14626987765836
104 => 0.14682277545559
105 => 0.13894512789376
106 => 0.13465296740368
107 => 0.13346495394979
108 => 0.13187629270875
109 => 0.13364439746423
110 => 0.13892281150799
111 => 0.13255592429321
112 => 0.12164034274867
113 => 0.12229638779875
114 => 0.12377032624474
115 => 0.12102365170171
116 => 0.11842415475766
117 => 0.12068420644666
118 => 0.11605913064867
119 => 0.12432924455836
120 => 0.12410556115383
121 => 0.12718814819895
122 => 0.12911575313932
123 => 0.12467324782128
124 => 0.12355596974761
125 => 0.12419242211583
126 => 0.11367328218429
127 => 0.12632851004745
128 => 0.12643795298353
129 => 0.12550083612007
130 => 0.13223935427088
131 => 0.1464597293656
201 => 0.1411094522417
202 => 0.13903766322635
203 => 0.13509919079369
204 => 0.14034697146685
205 => 0.13994402378929
206 => 0.13812174157796
207 => 0.13701961961068
208 => 0.13905031312829
209 => 0.13676799421116
210 => 0.13635802701971
211 => 0.13387407188824
212 => 0.13298741291906
213 => 0.13233096591719
214 => 0.13160828226929
215 => 0.13320234231502
216 => 0.12958999253532
217 => 0.12523385282401
218 => 0.1248716869411
219 => 0.12587165878577
220 => 0.12542924568365
221 => 0.12486956883738
222 => 0.12380099331892
223 => 0.1234839697891
224 => 0.12451414246307
225 => 0.12335113757695
226 => 0.12506721463857
227 => 0.12460053663269
228 => 0.12199371122789
301 => 0.11874464160313
302 => 0.11871571806831
303 => 0.1180157113472
304 => 0.11712414754115
305 => 0.11687613488652
306 => 0.12049387119721
307 => 0.1279824770906
308 => 0.12651228456658
309 => 0.12757464933658
310 => 0.13280043254391
311 => 0.13446155188074
312 => 0.13328252872122
313 => 0.1316686091015
314 => 0.13173961337399
315 => 0.13725486528127
316 => 0.13759884477758
317 => 0.13846796999277
318 => 0.13958504150904
319 => 0.1334727708308
320 => 0.13145172597471
321 => 0.1304940427986
322 => 0.1275447492862
323 => 0.130725309486
324 => 0.12887213326275
325 => 0.12912219004878
326 => 0.12895934023883
327 => 0.12904826724692
328 => 0.12432693289298
329 => 0.12604713898553
330 => 0.12318696271721
331 => 0.11935750776378
401 => 0.119344670088
402 => 0.12028192376267
403 => 0.11972440860223
404 => 0.11822414964054
405 => 0.11843725434503
406 => 0.11657023289442
407 => 0.11866394455264
408 => 0.11872398471134
409 => 0.11791779167768
410 => 0.12114344336371
411 => 0.12246499549135
412 => 0.12193434196627
413 => 0.12242776342542
414 => 0.12657337770347
415 => 0.12724929371663
416 => 0.12754949096117
417 => 0.127147266422
418 => 0.12250353764421
419 => 0.12270950676217
420 => 0.12119824203727
421 => 0.11992138259789
422 => 0.11997245027922
423 => 0.12062892201117
424 => 0.12349577256616
425 => 0.12952889054905
426 => 0.12975784296635
427 => 0.13003533997513
428 => 0.1289066201816
429 => 0.12856618749148
430 => 0.12901530608288
501 => 0.13128102799098
502 => 0.13710907987611
503 => 0.13504905709741
504 => 0.13337422651216
505 => 0.13484350446651
506 => 0.13461732064202
507 => 0.13270810153996
508 => 0.13265451611862
509 => 0.1289901142475
510 => 0.12763546831014
511 => 0.12650342477139
512 => 0.12526726277982
513 => 0.1245344245147
514 => 0.12566039715897
515 => 0.12591792042483
516 => 0.1234559615595
517 => 0.1231204056634
518 => 0.12513089441791
519 => 0.12424615327563
520 => 0.12515613148099
521 => 0.12536725423028
522 => 0.12533325860507
523 => 0.12440948724066
524 => 0.12499827156108
525 => 0.12360562111823
526 => 0.12209132293097
527 => 0.12112529503161
528 => 0.12028230756441
529 => 0.12075004600593
530 => 0.11908264386758
531 => 0.11854920836534
601 => 0.12479880468139
602 => 0.12941544867453
603 => 0.12934832084248
604 => 0.12893969742874
605 => 0.12833256592215
606 => 0.13123661253969
607 => 0.13022490076638
608 => 0.13096100561281
609 => 0.13114837519045
610 => 0.13171548646985
611 => 0.13191818000738
612 => 0.13130549935726
613 => 0.12924926826283
614 => 0.1241253358761
615 => 0.12174013151829
616 => 0.12095297435149
617 => 0.12098158601947
618 => 0.12019234848823
619 => 0.12042481431233
620 => 0.12011150636148
621 => 0.1195181768999
622 => 0.12071340958364
623 => 0.12085114901608
624 => 0.12057216742573
625 => 0.12063787768954
626 => 0.11832802927601
627 => 0.11850364203417
628 => 0.11752580788098
629 => 0.11734247576522
630 => 0.11487059617573
701 => 0.11049130317826
702 => 0.11291785660712
703 => 0.10998692129011
704 => 0.10887693167464
705 => 0.11413144987546
706 => 0.11360404198575
707 => 0.11270134893726
708 => 0.11136607778082
709 => 0.11087081272022
710 => 0.10786173899385
711 => 0.10768394686531
712 => 0.10917532505592
713 => 0.10848710533614
714 => 0.10752058420038
715 => 0.10401994262134
716 => 0.1000840624639
717 => 0.1002028619458
718 => 0.10145479219422
719 => 0.10509494823732
720 => 0.10367267629595
721 => 0.10264080168379
722 => 0.10244756258696
723 => 0.10486635445713
724 => 0.10828945170597
725 => 0.10989549234764
726 => 0.10830395484792
727 => 0.10647568226271
728 => 0.10658696074357
729 => 0.10732724662311
730 => 0.10740504020197
731 => 0.10621502269846
801 => 0.10655000565513
802 => 0.10604113591246
803 => 0.10291820324101
804 => 0.10286171929191
805 => 0.10209530125024
806 => 0.10207209441654
807 => 0.10076822613572
808 => 0.10058580595002
809 => 0.097996896339312
810 => 0.099700924485019
811 => 0.098557951870372
812 => 0.096835222540114
813 => 0.096538223354242
814 => 0.096529295200078
815 => 0.098298153027022
816 => 0.099680254351432
817 => 0.098577834368352
818 => 0.098326834707719
819 => 0.10100685441463
820 => 0.100665797478
821 => 0.10037044437046
822 => 0.10798295089219
823 => 0.10195705796895
824 => 0.099329424708476
825 => 0.096077229574614
826 => 0.097136160709191
827 => 0.097359293058181
828 => 0.089538350013477
829 => 0.086365394394277
830 => 0.085276555596078
831 => 0.084649913473793
901 => 0.084935482157795
902 => 0.082079449949941
903 => 0.083998750828031
904 => 0.081525668350422
905 => 0.081111048024945
906 => 0.08553322585104
907 => 0.086148546061553
908 => 0.083523398878499
909 => 0.085209168342744
910 => 0.08459788490106
911 => 0.081568062251324
912 => 0.081452345311971
913 => 0.079932086809749
914 => 0.077553176633825
915 => 0.076465950848745
916 => 0.075899714220149
917 => 0.07613335448884
918 => 0.07601521881948
919 => 0.075244303666858
920 => 0.076059406773627
921 => 0.073977155159691
922 => 0.07314798578918
923 => 0.072773469221103
924 => 0.070925351063804
925 => 0.073866528913942
926 => 0.074445978002402
927 => 0.075026568784567
928 => 0.080080215157149
929 => 0.079827749265831
930 => 0.082109917967468
1001 => 0.082021237088361
1002 => 0.081370325605972
1003 => 0.078624237131516
1004 => 0.079718779053114
1005 => 0.076349949148017
1006 => 0.078874105571082
1007 => 0.077722185990887
1008 => 0.078484640402292
1009 => 0.077113678622845
1010 => 0.077872425477215
1011 => 0.07458338687742
1012 => 0.071512128910952
1013 => 0.072748092772268
1014 => 0.07409172683913
1015 => 0.077005067847681
1016 => 0.075269905977529
1017 => 0.07589393579977
1018 => 0.073803540356594
1019 => 0.069490457465383
1020 => 0.069514869046148
1021 => 0.068851395208954
1022 => 0.068278056944851
1023 => 0.075469210191282
1024 => 0.074574876609778
1025 => 0.073149873095138
1026 => 0.075057296926873
1027 => 0.07556165006287
1028 => 0.075576008287615
1029 => 0.076967615477514
1030 => 0.077710316484222
1031 => 0.077841220755705
1101 => 0.080030944736674
1102 => 0.080764911331937
1103 => 0.083788015862985
1104 => 0.077647303492766
1105 => 0.077520839562509
1106 => 0.075084138291823
1107 => 0.073538743823231
1108 => 0.07518995277323
1109 => 0.07665269849043
1110 => 0.075129589878644
1111 => 0.075328475708766
1112 => 0.073283826839989
1113 => 0.074014692600905
1114 => 0.074644212652457
1115 => 0.074296628681469
1116 => 0.073776278653644
1117 => 0.076532770022552
1118 => 0.076377237976742
1119 => 0.078944146110931
1120 => 0.080945234562894
1121 => 0.084531542806159
1122 => 0.080789043195835
1123 => 0.080652651634946
1124 => 0.081985901020529
1125 => 0.080764707218402
1126 => 0.081536459547169
1127 => 0.08440720157475
1128 => 0.084467855830137
1129 => 0.083451818903815
1130 => 0.08338999296451
1201 => 0.083585133970437
1202 => 0.084728080937265
1203 => 0.084328700147842
1204 => 0.084790873708446
1205 => 0.085368828823035
1206 => 0.087759496224862
1207 => 0.088335878041877
1208 => 0.086935569046241
1209 => 0.087062001269952
1210 => 0.086538247266242
1211 => 0.086032307461278
1212 => 0.087169586256264
1213 => 0.089247985607371
1214 => 0.089235055992877
1215 => 0.089717204244023
1216 => 0.090017578610156
1217 => 0.08872815194324
1218 => 0.087888782596611
1219 => 0.088210650214568
1220 => 0.088725323545046
1221 => 0.088043748590088
1222 => 0.083836752231854
1223 => 0.085112886182974
1224 => 0.084900475093745
1225 => 0.084597975872613
1226 => 0.085881138428516
1227 => 0.085757374269704
1228 => 0.082050157211608
1229 => 0.08228748121963
1230 => 0.082064589670577
1231 => 0.082784797864889
]
'min_raw' => 0.068278056944851
'max_raw' => 0.15295127619135
'avg_raw' => 0.1106146665681
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.068278'
'max' => '$0.152951'
'avg' => '$0.110614'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.016649958099155
'max_diff' => -0.11114652091446
'year' => 2034
]
9 => [
'items' => [
101 => 0.080725813612388
102 => 0.081359143300987
103 => 0.081756361744579
104 => 0.08199032645943
105 => 0.082835567440582
106 => 0.082736388167178
107 => 0.082829402317693
108 => 0.084082671557394
109 => 0.090421277301734
110 => 0.090766273627053
111 => 0.089067385544704
112 => 0.089746057824516
113 => 0.088443155456588
114 => 0.089317802544865
115 => 0.089916213869038
116 => 0.087212108162983
117 => 0.087051988572571
118 => 0.085743708663102
119 => 0.086446704181689
120 => 0.085328187764451
121 => 0.085602632569198
122 => 0.084835260969457
123 => 0.086216377066829
124 => 0.087760679467435
125 => 0.088150831240177
126 => 0.08712450989699
127 => 0.08638138560665
128 => 0.085076704153172
129 => 0.087246418487028
130 => 0.087880909079094
131 => 0.087243085778059
201 => 0.087095288182495
202 => 0.086815212005965
203 => 0.087154707667351
204 => 0.087877453507066
205 => 0.087536619916077
206 => 0.08776174650764
207 => 0.086903796090133
208 => 0.08872857879712
209 => 0.091626772893689
210 => 0.091636091061612
211 => 0.091295255633402
212 => 0.091155793119581
213 => 0.091505510952547
214 => 0.091695218530755
215 => 0.092826141875285
216 => 0.094039667681939
217 => 0.099702663118805
218 => 0.098112516660975
219 => 0.10313706310567
220 => 0.10711082698772
221 => 0.10830238502431
222 => 0.10720620769779
223 => 0.10345624427807
224 => 0.10327225318256
225 => 0.10887628172533
226 => 0.10729288698123
227 => 0.10710454721474
228 => 0.10510093030433
301 => 0.10628531605116
302 => 0.10602627351444
303 => 0.10561736219743
304 => 0.10787708769736
305 => 0.11210709210613
306 => 0.11144780625029
307 => 0.1109556799423
308 => 0.10879932571649
309 => 0.11009793259958
310 => 0.10963552356169
311 => 0.1116223262405
312 => 0.11044538834664
313 => 0.10728089120873
314 => 0.10778484780826
315 => 0.10770867578206
316 => 0.10927629068363
317 => 0.10880573160077
318 => 0.10761679156893
319 => 0.11209263441092
320 => 0.1118019980727
321 => 0.11221405395157
322 => 0.1123954536927
323 => 0.11511982035742
324 => 0.11623590620995
325 => 0.11648927723831
326 => 0.11754947247703
327 => 0.11646289861495
328 => 0.1208099687773
329 => 0.12370051677668
330 => 0.1270580370242
331 => 0.1319642765222
401 => 0.1338090679587
402 => 0.13347582289778
403 => 0.13719567769103
404 => 0.14388017406676
405 => 0.13482695073238
406 => 0.14436001688642
407 => 0.1413419582066
408 => 0.13418619536928
409 => 0.13372544860346
410 => 0.138571414277
411 => 0.14931929973401
412 => 0.14662707632854
413 => 0.14932370324704
414 => 0.14617794470684
415 => 0.14602173128078
416 => 0.14917092077621
417 => 0.15652917368566
418 => 0.15303354354837
419 => 0.14802170058288
420 => 0.15172236743568
421 => 0.14851650732724
422 => 0.14129280723916
423 => 0.14662501763604
424 => 0.14305952039626
425 => 0.14410012204309
426 => 0.15159426691342
427 => 0.15069255157557
428 => 0.15185945471934
429 => 0.14979990121377
430 => 0.14787595347778
501 => 0.14428476215433
502 => 0.14322158744705
503 => 0.14351541068713
504 => 0.14322144184285
505 => 0.14121220330213
506 => 0.14077830843056
507 => 0.14005513130191
508 => 0.1402792741335
509 => 0.13891948955871
510 => 0.14148568399717
511 => 0.14196199229817
512 => 0.14382945460763
513 => 0.14402334073966
514 => 0.14922419668983
515 => 0.14635965262931
516 => 0.14828143609794
517 => 0.14810953369598
518 => 0.13434128244814
519 => 0.13623842599178
520 => 0.13918978598925
521 => 0.13786020231086
522 => 0.13598048206429
523 => 0.13446250718096
524 => 0.13216262001182
525 => 0.13539966703697
526 => 0.13965603965347
527 => 0.1441312893733
528 => 0.1495080086817
529 => 0.14830798752398
530 => 0.1440307753458
531 => 0.14422264795961
601 => 0.14540872895907
602 => 0.14387264629794
603 => 0.14341962553328
604 => 0.14534649086262
605 => 0.14535976012515
606 => 0.14359231138173
607 => 0.14162811554311
608 => 0.14161988549083
609 => 0.14127037581323
610 => 0.14624012170204
611 => 0.14897297944291
612 => 0.14928629717868
613 => 0.1489518906629
614 => 0.14908059045871
615 => 0.14749040075371
616 => 0.15112510286322
617 => 0.1544606649537
618 => 0.15356666305956
619 => 0.15222642713039
620 => 0.1511588646583
621 => 0.15331517926876
622 => 0.15321916197351
623 => 0.15443153172872
624 => 0.15437653163363
625 => 0.15396885728449
626 => 0.15356667761889
627 => 0.15516127453265
628 => 0.15470205622993
629 => 0.15424212463435
630 => 0.1533196614074
701 => 0.15344503948044
702 => 0.1521050349619
703 => 0.15148508755719
704 => 0.14216256605214
705 => 0.13967128368381
706 => 0.14045509183161
707 => 0.14071314182544
708 => 0.13962893254608
709 => 0.14118341014217
710 => 0.14094114645542
711 => 0.14188365274105
712 => 0.14129481573266
713 => 0.14131898180887
714 => 0.14305062589729
715 => 0.14355332954309
716 => 0.14329765041152
717 => 0.14347671931111
718 => 0.14760328652181
719 => 0.14701662062464
720 => 0.14670496605945
721 => 0.1467912965039
722 => 0.14784572290083
723 => 0.14814090472243
724 => 0.14689019860227
725 => 0.14748003883878
726 => 0.14999150370397
727 => 0.15087037427019
728 => 0.15367530723575
729 => 0.15248372185827
730 => 0.15467092838924
731 => 0.16139365559178
801 => 0.16676423525851
802 => 0.16182522824839
803 => 0.17168761386714
804 => 0.17936689574653
805 => 0.17907215211749
806 => 0.17773309169683
807 => 0.16899043344141
808 => 0.16094530896909
809 => 0.16767539720422
810 => 0.16769255358319
811 => 0.16711443303517
812 => 0.16352377596287
813 => 0.16698948595225
814 => 0.1672645814256
815 => 0.16711060111432
816 => 0.16435765275573
817 => 0.16015440944207
818 => 0.16097571312442
819 => 0.16232102531024
820 => 0.15977406868095
821 => 0.15896016171235
822 => 0.16047336961912
823 => 0.16534924078411
824 => 0.16442748558437
825 => 0.16440341483099
826 => 0.16834707446053
827 => 0.1655242652608
828 => 0.16098607239403
829 => 0.15984011884376
830 => 0.15577275574711
831 => 0.15858209792542
901 => 0.15868320114904
902 => 0.15714455314876
903 => 0.16111092519928
904 => 0.16107437438257
905 => 0.16483985432796
906 => 0.17203803773387
907 => 0.16990918069965
908 => 0.16743355158784
909 => 0.16770272111404
910 => 0.17065484644949
911 => 0.16886992408121
912 => 0.16951179460977
913 => 0.17065387490157
914 => 0.17134292029788
915 => 0.16760357808532
916 => 0.16673175854216
917 => 0.16494832172393
918 => 0.16448305634748
919 => 0.1659356284233
920 => 0.16555292700145
921 => 0.15867470381458
922 => 0.15795589122148
923 => 0.15797793617749
924 => 0.15617044773446
925 => 0.15341359401192
926 => 0.16065844099158
927 => 0.16007657838755
928 => 0.15943424710528
929 => 0.15951292902227
930 => 0.16265767154549
1001 => 0.16083356206872
1002 => 0.16568325607839
1003 => 0.16468630478515
1004 => 0.16366378545307
1005 => 0.16352244213468
1006 => 0.16312885942908
1007 => 0.16177911788591
1008 => 0.16014922386564
1009 => 0.15907302665446
1010 => 0.14673645852036
1011 => 0.14902605380754
1012 => 0.15166002448225
1013 => 0.15256926060419
1014 => 0.15101394930039
1015 => 0.16184053105592
1016 => 0.16381865187019
1017 => 0.15782679489413
1018 => 0.15670596309982
1019 => 0.16191401260176
1020 => 0.15877292209393
1021 => 0.16018735495727
1022 => 0.15713012476014
1023 => 0.16334218049217
1024 => 0.16329485503554
1025 => 0.16087822505013
1026 => 0.16292074416543
1027 => 0.16256580620522
1028 => 0.15983743690359
1029 => 0.16342867466554
1030 => 0.16343045587466
1031 => 0.16110450205578
1101 => 0.15838829721209
1102 => 0.15790270393993
1103 => 0.15753687463964
1104 => 0.16009738337515
1105 => 0.1623931275009
1106 => 0.1666649381557
1107 => 0.16773897285003
1108 => 0.17193100176455
1109 => 0.16943485265214
1110 => 0.17054136322313
1111 => 0.17174263697341
1112 => 0.17231857178468
1113 => 0.17138011691609
1114 => 0.17789206332828
1115 => 0.17844187112635
1116 => 0.17862621692523
1117 => 0.17643042523409
1118 => 0.17838080218726
1119 => 0.17746828540057
1120 => 0.17984240057508
1121 => 0.18021469214867
1122 => 0.1798993744305
1123 => 0.18001754565218
1124 => 0.17446074817544
1125 => 0.17417259891183
1126 => 0.17024366325636
1127 => 0.17184473357719
1128 => 0.16885160935369
1129 => 0.16980075987756
1130 => 0.17021913638464
1201 => 0.17000060024
1202 => 0.1719352556909
1203 => 0.17029040333364
1204 => 0.16594936752405
1205 => 0.16160714900216
1206 => 0.16155263598572
1207 => 0.16040940649543
1208 => 0.15958306096687
1209 => 0.15974224443186
1210 => 0.16030322772508
1211 => 0.15955045559806
1212 => 0.15971109769787
1213 => 0.16237882690752
1214 => 0.16291382097513
1215 => 0.16109570209769
1216 => 0.15379569245144
1217 => 0.15200425177356
1218 => 0.15329190380701
1219 => 0.15267648907043
1220 => 0.12322184259125
1221 => 0.13014177487458
1222 => 0.12603018609052
1223 => 0.12792499536732
1224 => 0.12372812790955
1225 => 0.12573109303707
1226 => 0.12536121851459
1227 => 0.13648826485051
1228 => 0.13631453132673
1229 => 0.13639768837079
1230 => 0.1324283859932
1231 => 0.13875159245901
]
'min_raw' => 0.080725813612388
'max_raw' => 0.18021469214867
'avg_raw' => 0.13047025288053
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.080725'
'max' => '$0.180214'
'avg' => '$0.13047'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.012447756667536
'max_diff' => 0.027263415957323
'year' => 2035
]
10 => [
'items' => [
101 => 0.14186663133922
102 => 0.14129012054656
103 => 0.14143521589264
104 => 0.13894199712322
105 => 0.13642182817839
106 => 0.13362657296734
107 => 0.13881981164548
108 => 0.13824241215601
109 => 0.13956675884307
110 => 0.14293494534621
111 => 0.1434309236033
112 => 0.14409752341053
113 => 0.14385859483144
114 => 0.14955084292539
115 => 0.14886147412255
116 => 0.15052265459246
117 => 0.1471054803318
118 => 0.14323862329471
119 => 0.14397358640038
120 => 0.1439028035431
121 => 0.1430016565292
122 => 0.14218814129805
123 => 0.14083386764468
124 => 0.14511898987873
125 => 0.14494502174158
126 => 0.1477613636662
127 => 0.14726354787454
128 => 0.14393901218162
129 => 0.14405774862428
130 => 0.14485630826396
131 => 0.1476201322947
201 => 0.14844062344251
202 => 0.14806053925192
203 => 0.14896017033865
204 => 0.14967120206869
205 => 0.14904946497671
206 => 0.15785195107168
207 => 0.15419654513786
208 => 0.15597816455585
209 => 0.15640307028913
210 => 0.15531468318814
211 => 0.15555071537812
212 => 0.15590823983103
213 => 0.15807905829861
214 => 0.16377591408892
215 => 0.16629901273864
216 => 0.17388987951381
217 => 0.16608950451901
218 => 0.16562666254797
219 => 0.1669940068764
220 => 0.17145064924828
221 => 0.17506233929955
222 => 0.17626054525296
223 => 0.17641890794993
224 => 0.17866682197374
225 => 0.17995528437108
226 => 0.17839386608524
227 => 0.17707072757531
228 => 0.17233140966671
229 => 0.17287999861936
301 => 0.17665923249366
302 => 0.18199762293687
303 => 0.18657851730201
304 => 0.18497444775563
305 => 0.19721236609791
306 => 0.19842570571414
307 => 0.19825806141114
308 => 0.20102222962604
309 => 0.19553591863253
310 => 0.19319041439053
311 => 0.17735680513941
312 => 0.18180540349445
313 => 0.18827170246051
314 => 0.18741586354498
315 => 0.18271986439116
316 => 0.18657495496555
317 => 0.18530034146183
318 => 0.18429500090768
319 => 0.18890066088109
320 => 0.18383654855024
321 => 0.18822118406617
322 => 0.18259784366374
323 => 0.1849817750102
324 => 0.18362854028016
325 => 0.18450424899671
326 => 0.17938487373347
327 => 0.1821471643597
328 => 0.17926995336185
329 => 0.17926858918921
330 => 0.17920507459697
331 => 0.18259010057643
401 => 0.1827004861521
402 => 0.18019894683878
403 => 0.17983843594234
404 => 0.18117143367788
405 => 0.17961084244223
406 => 0.18034103325915
407 => 0.17963295917822
408 => 0.17947355678828
409 => 0.17820341142516
410 => 0.17765619787935
411 => 0.17787077441062
412 => 0.17713831408762
413 => 0.17669698024877
414 => 0.17911728218821
415 => 0.17782421249667
416 => 0.17891910071275
417 => 0.17767133740461
418 => 0.17334604615402
419 => 0.17085852541668
420 => 0.16268845119902
421 => 0.1650054741122
422 => 0.16654166270077
423 => 0.16603395238141
424 => 0.16712471060521
425 => 0.16719167430138
426 => 0.16683705768386
427 => 0.16642645706997
428 => 0.16622659939877
429 => 0.16771617473959
430 => 0.16858092336174
501 => 0.16669583977719
502 => 0.16625419106845
503 => 0.16816011465075
504 => 0.16932272693493
505 => 0.17790680282593
506 => 0.17727086675772
507 => 0.17886694149277
508 => 0.17868724797136
509 => 0.18036018856833
510 => 0.18309473940693
511 => 0.17753463295962
512 => 0.17849967518486
513 => 0.17826306911731
514 => 0.18084627212137
515 => 0.18085433659918
516 => 0.17930557735769
517 => 0.18014518486825
518 => 0.17967653898928
519 => 0.18052344543387
520 => 0.17726237344382
521 => 0.18123400711673
522 => 0.18348566748285
523 => 0.18351693178921
524 => 0.18458420093247
525 => 0.18566860819408
526 => 0.18775003350078
527 => 0.18561055837198
528 => 0.18176185088897
529 => 0.18203971513799
530 => 0.17978321934889
531 => 0.17982115145077
601 => 0.17961866691812
602 => 0.18022633824293
603 => 0.17739572312729
604 => 0.17806006283718
605 => 0.17712998335297
606 => 0.1784976533737
607 => 0.17702626651535
608 => 0.1782629550187
609 => 0.17879666877988
610 => 0.18076608404865
611 => 0.17673538227887
612 => 0.16851650851577
613 => 0.17024421542498
614 => 0.1676888011978
615 => 0.16792531451368
616 => 0.16840310905256
617 => 0.1668544206274
618 => 0.16714986157414
619 => 0.16713930634454
620 => 0.16704834707821
621 => 0.16664547340564
622 => 0.16606122687429
623 => 0.16838868523359
624 => 0.16878416576234
625 => 0.16966326998807
626 => 0.17227888786176
627 => 0.17201752595566
628 => 0.17244381806831
629 => 0.17151322477993
630 => 0.16796848206732
701 => 0.16816097865089
702 => 0.16576054316926
703 => 0.16960188545589
704 => 0.16869220489918
705 => 0.16810572792644
706 => 0.16794570225076
707 => 0.17056780373524
708 => 0.1713523775958
709 => 0.17086348381669
710 => 0.16986074841243
711 => 0.17178629682073
712 => 0.17230149234242
713 => 0.17241682562005
714 => 0.17582852821226
715 => 0.17260750189566
716 => 0.17338283494432
717 => 0.17943176206132
718 => 0.17394621986108
719 => 0.17685203390674
720 => 0.17670980943033
721 => 0.1781963255687
722 => 0.17658787171883
723 => 0.17660781043201
724 => 0.17792773605756
725 => 0.17607413856632
726 => 0.17561516176029
727 => 0.17498108859001
728 => 0.17636556416021
729 => 0.1771954946501
730 => 0.18388412488185
731 => 0.18820528505015
801 => 0.188017692091
802 => 0.18973194057837
803 => 0.18895965593409
804 => 0.18646574509932
805 => 0.19072254679425
806 => 0.18937551662582
807 => 0.18948656415627
808 => 0.18948243096164
809 => 0.19037808826422
810 => 0.18974343297955
811 => 0.18849246226745
812 => 0.1893229150065
813 => 0.1917890627492
814 => 0.19944406101319
815 => 0.20372789945695
816 => 0.19918616855993
817 => 0.20231899371649
818 => 0.20044041496229
819 => 0.20009902131978
820 => 0.20206666703206
821 => 0.2040377568477
822 => 0.20391220694769
823 => 0.20248129695813
824 => 0.20167301221302
825 => 0.20779361509824
826 => 0.21230317104232
827 => 0.21199564955938
828 => 0.21335294937373
829 => 0.21733802360837
830 => 0.21770236885381
831 => 0.21765646972727
901 => 0.21675340202095
902 => 0.22067722513224
903 => 0.22395054740477
904 => 0.21654436793907
905 => 0.2193645441256
906 => 0.22063061207614
907 => 0.22248957545296
908 => 0.22562595826809
909 => 0.22903290188977
910 => 0.22951468107312
911 => 0.22917283568728
912 => 0.22692586478522
913 => 0.23065378314936
914 => 0.23283751029663
915 => 0.23413786983912
916 => 0.23743536527969
917 => 0.22063843088078
918 => 0.20874872585143
919 => 0.20689197672167
920 => 0.21066774909008
921 => 0.21166339015241
922 => 0.21126204848861
923 => 0.19787910451339
924 => 0.2068215182913
925 => 0.21644280361684
926 => 0.21681239637011
927 => 0.22162901297566
928 => 0.22319750078221
929 => 0.22707550847805
930 => 0.22683293804081
1001 => 0.22777717120216
1002 => 0.22756010835021
1003 => 0.23474330099588
1004 => 0.2426674291985
1005 => 0.24239304183602
1006 => 0.24125385465287
1007 => 0.24294574188013
1008 => 0.25112429138641
1009 => 0.25037134160646
1010 => 0.25110276818158
1011 => 0.26074573897233
1012 => 0.27328297269692
1013 => 0.26745816891416
1014 => 0.2800963170806
1015 => 0.28805136143193
1016 => 0.30180878807061
1017 => 0.30008629049869
1018 => 0.30544195573247
1019 => 0.29700266034887
1020 => 0.27762433228512
1021 => 0.27455763769177
1022 => 0.28069723792873
1023 => 0.29579084601787
1024 => 0.28022188649641
1025 => 0.28337146673055
1026 => 0.28246438741123
1027 => 0.28241605300914
1028 => 0.2842607805466
1029 => 0.281584907039
1030 => 0.27068291698862
1031 => 0.27567923478288
1101 => 0.27374991653963
1102 => 0.27589063897072
1103 => 0.28744323503023
1104 => 0.28233555693282
1105 => 0.27695503297129
1106 => 0.28370340405291
1107 => 0.2922963994317
1108 => 0.29175866522399
1109 => 0.29071523610558
1110 => 0.29659699141391
1111 => 0.30631192799067
1112 => 0.30893783630959
1113 => 0.31087622814628
1114 => 0.31114349963116
1115 => 0.31389656203375
1116 => 0.29909265163399
1117 => 0.32258683762979
1118 => 0.32664363453747
1119 => 0.32588112485583
1120 => 0.33039008388261
1121 => 0.32906343375568
1122 => 0.32714132586679
1123 => 0.33428898500732
1124 => 0.32609477058905
1125 => 0.31446411484522
1126 => 0.30808330707587
1127 => 0.31648606947163
1128 => 0.32161734325073
1129 => 0.3250087888084
1130 => 0.32603503818499
1201 => 0.300241837057
1202 => 0.28634073220553
1203 => 0.29525118103883
1204 => 0.30612254358178
1205 => 0.29903226066616
1206 => 0.29931018633277
1207 => 0.28920130618866
1208 => 0.30701695516651
1209 => 0.30442136496363
1210 => 0.31788729152769
1211 => 0.31467354008237
1212 => 0.3256544804511
1213 => 0.32276283084063
1214 => 0.33476590670376
1215 => 0.33955425863586
1216 => 0.34759464677734
1217 => 0.35350918902448
1218 => 0.35698232135916
1219 => 0.35677380752118
1220 => 0.37053608813886
1221 => 0.36242095207608
1222 => 0.3522264285905
1223 => 0.35204204182396
1224 => 0.35732192999465
1225 => 0.36838712713385
1226 => 0.37125617175997
1227 => 0.3728595763037
1228 => 0.37040390643006
1229 => 0.36159550785095
1230 => 0.35779208600408
1231 => 0.36103271161335
]
'min_raw' => 0.13362657296734
'max_raw' => 0.3728595763037
'avg_raw' => 0.25324307463552
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.133626'
'max' => '$0.372859'
'avg' => '$0.253243'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.05290075935495
'max_diff' => 0.19264488415503
'year' => 2036
]
11 => [
'items' => [
101 => 0.35706970496335
102 => 0.36391096626453
103 => 0.37330547924561
104 => 0.37136554946495
105 => 0.37785044387117
106 => 0.38456162735083
107 => 0.39415892114486
108 => 0.39666800912938
109 => 0.40081543615571
110 => 0.40508450092462
111 => 0.40645560947387
112 => 0.40907348112439
113 => 0.40905968364857
114 => 0.41694881607049
115 => 0.42565077343797
116 => 0.42893556089341
117 => 0.43648874852297
118 => 0.42355417940261
119 => 0.43336519866202
120 => 0.44221498361975
121 => 0.43166390515934
122 => 0.44620610873103
123 => 0.44677074954238
124 => 0.45529615542127
125 => 0.44665402329287
126 => 0.44152235282169
127 => 0.4563372931908
128 => 0.46350577616917
129 => 0.46134657075703
130 => 0.44491491095759
131 => 0.43535098016727
201 => 0.41032032854452
202 => 0.43997021663534
203 => 0.45441181222529
204 => 0.44487751071384
205 => 0.44968605781902
206 => 0.47591993164822
207 => 0.48590809228483
208 => 0.48383062469493
209 => 0.4841816825196
210 => 0.48957111270118
211 => 0.51347081413971
212 => 0.499149559047
213 => 0.51009762195818
214 => 0.5159044350501
215 => 0.52129812666708
216 => 0.50805292474952
217 => 0.49082111166543
218 => 0.48536307311939
219 => 0.44392951232907
220 => 0.4417727155531
221 => 0.44056204016512
222 => 0.43292890309732
223 => 0.42693134825424
224 => 0.42216186996809
225 => 0.40964533465844
226 => 0.4138692978987
227 => 0.39392055301906
228 => 0.40668305305294
301 => 0.37484437454576
302 => 0.40136057209798
303 => 0.38692901131387
304 => 0.39661941624482
305 => 0.39658560733491
306 => 0.37874249951135
307 => 0.36845096729488
308 => 0.37500913217564
309 => 0.38204000551559
310 => 0.3831807410603
311 => 0.39229645187012
312 => 0.39484045081559
313 => 0.38713201524285
314 => 0.37418458870192
315 => 0.37719198058802
316 => 0.36839002259429
317 => 0.35296492977271
318 => 0.36404350073346
319 => 0.36782621194983
320 => 0.36949687271929
321 => 0.35432806551314
322 => 0.34956169695815
323 => 0.34702412233317
324 => 0.37222648617333
325 => 0.37360712855562
326 => 0.36654356692469
327 => 0.39847153529087
328 => 0.39124525272326
329 => 0.39931878083349
330 => 0.37691909129635
331 => 0.37777478960185
401 => 0.36717041760402
402 => 0.37310815733841
403 => 0.36891155427643
404 => 0.37262844664576
405 => 0.37485633660662
406 => 0.38545896853135
407 => 0.40148163712332
408 => 0.38387528888841
409 => 0.37620395083491
410 => 0.38096320581806
411 => 0.39363772900547
412 => 0.41284028043131
413 => 0.40147198349985
414 => 0.40651704063183
415 => 0.4076191611762
416 => 0.39923659989617
417 => 0.41314935742247
418 => 0.42060531720785
419 => 0.42825358915416
420 => 0.43489436938544
421 => 0.4251987011497
422 => 0.43557445598138
423 => 0.42721342915433
424 => 0.4197127237434
425 => 0.41972409921735
426 => 0.41501879714526
427 => 0.40590168147435
428 => 0.40422034546299
429 => 0.41296686772344
430 => 0.41998075027758
501 => 0.42055844723897
502 => 0.42444169300724
503 => 0.42673975785229
504 => 0.44926391740144
505 => 0.45832332070172
506 => 0.46940098757159
507 => 0.4737163631205
508 => 0.48670409637495
509 => 0.47621544695986
510 => 0.4739461616822
511 => 0.44244216906207
512 => 0.44760094608873
513 => 0.45586064585636
514 => 0.442578368469
515 => 0.45100291631246
516 => 0.45266610051308
517 => 0.44212704176591
518 => 0.44775640840862
519 => 0.43280647959647
520 => 0.40180750471798
521 => 0.41318386814303
522 => 0.42156070086639
523 => 0.40960592771413
524 => 0.43103439587594
525 => 0.41851632714918
526 => 0.41454870033607
527 => 0.39906957357702
528 => 0.40637512556106
529 => 0.41625598922491
530 => 0.41015076425434
531 => 0.42282002277241
601 => 0.44076307160181
602 => 0.45355035672467
603 => 0.45453200569606
604 => 0.44631063804362
605 => 0.45948543217471
606 => 0.45958139616671
607 => 0.44472017456622
608 => 0.43561775908355
609 => 0.43354967113424
610 => 0.43871616030414
611 => 0.44498923194291
612 => 0.45488011751365
613 => 0.46085697251387
614 => 0.47644144047549
615 => 0.4806581506642
616 => 0.48529103673493
617 => 0.49148200125459
618 => 0.49891584149116
619 => 0.4826510222623
620 => 0.48329725385168
621 => 0.46815167938753
622 => 0.45196646097749
623 => 0.46424902423475
624 => 0.4803068418127
625 => 0.47662316071801
626 => 0.47620867134408
627 => 0.47690572750126
628 => 0.47412835225364
629 => 0.46156638694298
630 => 0.45525784660603
701 => 0.46339747312098
702 => 0.46772332236058
703 => 0.4744323372775
704 => 0.47360530957887
705 => 0.49088701150925
706 => 0.49760215830786
707 => 0.49588413639945
708 => 0.4962002937771
709 => 0.50835774629876
710 => 0.52187933387366
711 => 0.53454408496818
712 => 0.54742721374525
713 => 0.53189609916742
714 => 0.52401035701078
715 => 0.53214643001942
716 => 0.52782931515752
717 => 0.55263673769348
718 => 0.55435434980597
719 => 0.57915997848293
720 => 0.60270347389667
721 => 0.58791622625283
722 => 0.60185993474871
723 => 0.61694119233424
724 => 0.64603538506259
725 => 0.63623748449772
726 => 0.62873244621771
727 => 0.62164022130718
728 => 0.63639801548699
729 => 0.6553836819378
730 => 0.65947301264886
731 => 0.66609929064532
801 => 0.65913256955476
802 => 0.66752321774919
803 => 0.69714589291315
804 => 0.68914158459726
805 => 0.67777418003193
806 => 0.70115843708191
807 => 0.7096211088043
808 => 0.76901657088764
809 => 0.844005795272
810 => 0.81295976397108
811 => 0.79368849049343
812 => 0.7982176968814
813 => 0.82560122308112
814 => 0.8343959425868
815 => 0.81048886324876
816 => 0.81893324783531
817 => 0.86546263714076
818 => 0.8904241616616
819 => 0.85652305858229
820 => 0.76299125972373
821 => 0.67675066962429
822 => 0.69962555758304
823 => 0.69703225517894
824 => 0.74702227932812
825 => 0.68895068449113
826 => 0.68992846121528
827 => 0.74095222612351
828 => 0.72733996041477
829 => 0.7052898332939
830 => 0.6769116599544
831 => 0.62445198187302
901 => 0.57798698204999
902 => 0.66911554695333
903 => 0.66518591752816
904 => 0.65949523178205
905 => 0.6721592371135
906 => 0.73365205226237
907 => 0.73223444384037
908 => 0.72321634232978
909 => 0.73005649284367
910 => 0.70409072183717
911 => 0.71078269225516
912 => 0.6767370086742
913 => 0.69212707952613
914 => 0.70524252362431
915 => 0.70787564320449
916 => 0.71380819606904
917 => 0.66311518138483
918 => 0.68587485670933
919 => 0.69924403366928
920 => 0.63884160578938
921 => 0.69805007187871
922 => 0.66223272878096
923 => 0.65007578457514
924 => 0.66644350839266
925 => 0.66006499050284
926 => 0.65458111538031
927 => 0.651521018837
928 => 0.66353966876883
929 => 0.66297898438412
930 => 0.64331414037622
1001 => 0.61766215300949
1002 => 0.62627180196754
1003 => 0.62314383578519
1004 => 0.61180768282469
1005 => 0.61944688118774
1006 => 0.58580771770667
1007 => 0.52793328534905
1008 => 0.5661669081063
1009 => 0.56469495522032
1010 => 0.56395272982746
1011 => 0.59268424062982
1012 => 0.58992236881491
1013 => 0.58490954442651
1014 => 0.61171561837369
1015 => 0.60193104079039
1016 => 0.63208480336569
1017 => 0.65194602162086
1018 => 0.64690857422824
1019 => 0.66558814599483
1020 => 0.62647015089049
1021 => 0.63946357972259
1022 => 0.64214150739678
1023 => 0.61138483558218
1024 => 0.59037424520047
1025 => 0.58897307836028
1026 => 0.5525436100761
1027 => 0.57200393798511
1028 => 0.58912822122196
1029 => 0.58092701844957
1030 => 0.5783307626558
1031 => 0.59159447044701
1101 => 0.59262517413836
1102 => 0.56912502074645
1103 => 0.5740114467897
1104 => 0.5943886556908
1105 => 0.57349799340792
1106 => 0.53291084906261
1107 => 0.52284467610381
1108 => 0.52150166307472
1109 => 0.49420140365219
1110 => 0.52351734591419
1111 => 0.51072015149842
1112 => 0.55114633532392
1113 => 0.52805511593276
1114 => 0.52705969961665
1115 => 0.52555498185901
1116 => 0.50205652081452
1117 => 0.50720119037816
1118 => 0.52430285556299
1119 => 0.53040492236498
1120 => 0.52976842680478
1121 => 0.5242190480738
1122 => 0.52675952523942
1123 => 0.51857576312803
1124 => 0.51568590639622
1125 => 0.50656472363291
1126 => 0.49315910476189
1127 => 0.49502323828734
1128 => 0.46846319953287
1129 => 0.45399188077148
1130 => 0.44998641046724
1201 => 0.44463012817629
1202 => 0.45059141680453
1203 => 0.46838795828017
1204 => 0.44692155351366
1205 => 0.41011890823468
1206 => 0.41233080992461
1207 => 0.41730029630236
1208 => 0.40803969131386
1209 => 0.39927530587592
1210 => 0.40689522793714
1211 => 0.39130146197174
1212 => 0.41918472841918
1213 => 0.41843056420372
1214 => 0.4288237216457
1215 => 0.43532277628322
1216 => 0.42034455943765
1217 => 0.41657757840639
1218 => 0.41872342200154
1219 => 0.38325740729945
1220 => 0.42592539159988
1221 => 0.42629438609994
1222 => 0.4231348311674
1223 => 0.44585421558116
1224 => 0.49379920304789
1225 => 0.47576037018025
1226 => 0.46877518886729
1227 => 0.45549635408522
1228 => 0.47318961301314
1229 => 0.47183104678531
1230 => 0.46568709508213
1231 => 0.46197121392175
]
'min_raw' => 0.34702412233317
'max_raw' => 0.8904241616616
'avg_raw' => 0.61872414199739
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.347024'
'max' => '$0.890424'
'avg' => '$0.618724'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.21339754936583
'max_diff' => 0.5175645853579
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.010892690664456
]
1 => [
'year' => 2028
'avg' => 0.0186950193509
]
2 => [
'year' => 2029
'avg' => 0.051071423417251
]
3 => [
'year' => 2030
'avg' => 0.039401527108563
]
4 => [
'year' => 2031
'avg' => 0.038697182598107
]
5 => [
'year' => 2032
'avg' => 0.067848339546044
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.010892690664456
'min' => '$0.010892'
'max_raw' => 0.067848339546044
'max' => '$0.067848'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.067848339546044
]
1 => [
'year' => 2033
'avg' => 0.17451290607491
]
2 => [
'year' => 2034
'avg' => 0.1106146665681
]
3 => [
'year' => 2035
'avg' => 0.13047025288053
]
4 => [
'year' => 2036
'avg' => 0.25324307463552
]
5 => [
'year' => 2037
'avg' => 0.61872414199739
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.067848339546044
'min' => '$0.067848'
'max_raw' => 0.61872414199739
'max' => '$0.618724'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.61872414199739
]
]
]
]
'prediction_2025_max_price' => '$0.018624'
'last_price' => 0.01805882
'sma_50day_nextmonth' => '$0.017075'
'sma_200day_nextmonth' => '$0.068435'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.018623'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.017727'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.017359'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.017855'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.031037'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.051228'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.080143'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.0181055'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.017896'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.017853'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.0201011'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.031031'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.049495'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.084046'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.066386'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.1209051'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.276031'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.33324'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.019434'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.022977'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.03515'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.061286'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.12883'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.235241'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.485698'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '38.77'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 184.59
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.017750'
'vwma_10_action' => 'BUY'
'hma_9' => '0.018784'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 60.5
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 25.74
'cci_20_action' => 'NEUTRAL'
'adx_14' => 33.91
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.005242'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -39.5
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 54.5
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.009432'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 23
'buy_signals' => 11
'sell_pct' => 67.65
'buy_pct' => 32.35
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767692705
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Stafi para 2026
La previsión del precio de Stafi para 2026 sugiere que el precio medio podría oscilar entre $0.006239 en el extremo inferior y $0.018624 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Stafi podría potencialmente ganar 3.13% para 2026 si FIS alcanza el objetivo de precio previsto.
Predicción de precio de Stafi 2027-2032
La predicción del precio de FIS para 2027-2032 está actualmente dentro de un rango de precios de $0.010892 en el extremo inferior y $0.067848 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Stafi alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Stafi | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.0060064 | $0.010892 | $0.015778 |
| 2028 | $0.010839 | $0.018695 | $0.02655 |
| 2029 | $0.023812 | $0.051071 | $0.07833 |
| 2030 | $0.020251 | $0.0394015 | $0.058551 |
| 2031 | $0.023943 | $0.038697 | $0.053451 |
| 2032 | $0.036547 | $0.067848 | $0.099149 |
Predicción de precio de Stafi 2032-2037
La predicción de precio de Stafi para 2032-2037 se estima actualmente entre $0.067848 en el extremo inferior y $0.618724 en el extremo superior. Comparado con el precio actual, Stafi podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Stafi | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.036547 | $0.067848 | $0.099149 |
| 2033 | $0.084928 | $0.174512 | $0.264097 |
| 2034 | $0.068278 | $0.110614 | $0.152951 |
| 2035 | $0.080725 | $0.13047 | $0.180214 |
| 2036 | $0.133626 | $0.253243 | $0.372859 |
| 2037 | $0.347024 | $0.618724 | $0.890424 |
Stafi Histograma de precios potenciales
Pronóstico de precio de Stafi basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Stafi es Bajista, con 11 indicadores técnicos mostrando señales alcistas y 23 indicando señales bajistas. La predicción de precio de FIS se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Stafi
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Stafi aumentar durante el próximo mes, alcanzando $0.068435 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Stafi alcance $0.017075 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 38.77, lo que sugiere que el mercado de FIS está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de FIS para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.018623 | SELL |
| SMA 5 | $0.017727 | BUY |
| SMA 10 | $0.017359 | BUY |
| SMA 21 | $0.017855 | BUY |
| SMA 50 | $0.031037 | SELL |
| SMA 100 | $0.051228 | SELL |
| SMA 200 | $0.080143 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.0181055 | SELL |
| EMA 5 | $0.017896 | BUY |
| EMA 10 | $0.017853 | BUY |
| EMA 21 | $0.0201011 | SELL |
| EMA 50 | $0.031031 | SELL |
| EMA 100 | $0.049495 | SELL |
| EMA 200 | $0.084046 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.066386 | SELL |
| SMA 50 | $0.1209051 | SELL |
| SMA 100 | $0.276031 | SELL |
| SMA 200 | $0.33324 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.061286 | SELL |
| EMA 50 | $0.12883 | SELL |
| EMA 100 | $0.235241 | SELL |
| EMA 200 | $0.485698 | SELL |
Osciladores de Stafi
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 38.77 | NEUTRAL |
| Stoch RSI (14) | 184.59 | SELL |
| Estocástico Rápido (14) | 60.5 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 25.74 | NEUTRAL |
| Índice Direccional Medio (14) | 33.91 | SELL |
| Oscilador Asombroso (5, 34) | -0.005242 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -39.5 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 54.5 | NEUTRAL |
| VWMA (10) | 0.017750 | BUY |
| Promedio Móvil de Hull (9) | 0.018784 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.009432 | SELL |
Predicción de precios de Stafi basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Stafi
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Stafi por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.025375 | $0.035657 | $0.050104 | $0.0704046 | $0.09893 | $0.139013 |
| Amazon.com acción | $0.03768 | $0.078623 | $0.164052 | $0.3423043 | $0.714238 | $1.49 |
| Apple acción | $0.025615 | $0.036333 | $0.051535 | $0.073099 | $0.103685 | $0.14707 |
| Netflix acción | $0.028493 | $0.044959 | $0.070938 | $0.111929 | $0.1766073 | $0.278658 |
| Google acción | $0.023386 | $0.030284 | $0.039218 | $0.050788 | $0.06577 | $0.085172 |
| Tesla acción | $0.040937 | $0.0928033 | $0.210378 | $0.476911 | $1.08 | $2.45 |
| Kodak acción | $0.013542 | $0.010155 | $0.007615 | $0.00571 | $0.004282 | $0.003211 |
| Nokia acción | $0.011963 | $0.007925 | $0.00525 | $0.003477 | $0.0023039 | $0.001526 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Stafi
Podría preguntarse cosas como: "¿Debo invertir en Stafi ahora?", "¿Debería comprar FIS hoy?", "¿Será Stafi una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Stafi regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Stafi, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Stafi a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Stafi es de $0.01805 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Stafi
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Stafi
basado en el historial de precios del último mes
Predicción de precios de Stafi basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Stafi ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.018528 | $0.0190098 | $0.0195039 | $0.02001 |
| Si Stafi ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.018997 | $0.019985 | $0.021024 | $0.022117 |
| Si Stafi ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.0204058 | $0.023057 | $0.026054 | $0.02944 |
| Si Stafi ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.022752 | $0.028667 | $0.036118 | $0.0455069 |
| Si Stafi ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.027446 | $0.041715 | $0.0634021 | $0.096362 |
| Si Stafi ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.041529 | $0.0955029 | $0.219624 | $0.505061 |
| Si Stafi ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.064999 | $0.233954 | $0.842075 | $3.03 |
Cuadro de preguntas
¿Es FIS una buena inversión?
La decisión de adquirir Stafi depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Stafi ha experimentado una caída de -0.7115% durante las últimas 24 horas, y Stafi ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Stafi dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Stafi subir?
Parece que el valor medio de Stafi podría potencialmente aumentar hasta $0.018624 para el final de este año. Mirando las perspectivas de Stafi en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.058551. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Stafi la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Stafi, el precio de Stafi aumentará en un 0.86% durante la próxima semana y alcanzará $0.018213 para el 13 de enero de 2026.
¿Cuál será el precio de Stafi el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Stafi, el precio de Stafi disminuirá en un -11.62% durante el próximo mes y alcanzará $0.01596 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Stafi este año en 2026?
Según nuestra predicción más reciente sobre el valor de Stafi en 2026, se anticipa que FIS fluctúe dentro del rango de $0.006239 y $0.018624. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Stafi no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Stafi en 5 años?
El futuro de Stafi parece estar en una tendencia alcista, con un precio máximo de $0.058551 proyectada después de un período de cinco años. Basado en el pronóstico de Stafi para 2030, el valor de Stafi podría potencialmente alcanzar su punto más alto de aproximadamente $0.058551, mientras que su punto más bajo se anticipa que esté alrededor de $0.020251.
¿Cuánto será Stafi en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Stafi, se espera que el valor de FIS en 2026 crezca en un 3.13% hasta $0.018624 si ocurre lo mejor. El precio estará entre $0.018624 y $0.006239 durante 2026.
¿Cuánto será Stafi en 2027?
Según nuestra última simulación experimental para la predicción de precios de Stafi, el valor de FIS podría disminuir en un -12.62% hasta $0.015778 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.015778 y $0.0060064 a lo largo del año.
¿Cuánto será Stafi en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Stafi sugiere que el valor de FIS en 2028 podría aumentar en un 47.02% , alcanzando $0.02655 en el mejor escenario. Se espera que el precio oscile entre $0.02655 y $0.010839 durante el año.
¿Cuánto será Stafi en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Stafi podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.07833 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.07833 y $0.023812.
¿Cuánto será Stafi en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Stafi, se espera que el valor de FIS en 2030 aumente en un 224.23% , alcanzando $0.058551 en el mejor escenario. Se pronostica que el precio oscile entre $0.058551 y $0.020251 durante el transcurso de 2030.
¿Cuánto será Stafi en 2031?
Nuestra simulación experimental indica que el precio de Stafi podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.053451 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.053451 y $0.023943 durante el año.
¿Cuánto será Stafi en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Stafi, FIS podría experimentar un 449.04% aumento en valor, alcanzando $0.099149 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.099149 y $0.036547 a lo largo del año.
¿Cuánto será Stafi en 2033?
Según nuestra predicción experimental de precios de Stafi, se anticipa que el valor de FIS aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.264097. A lo largo del año, el precio de FIS podría oscilar entre $0.264097 y $0.084928.
¿Cuánto será Stafi en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Stafi sugieren que FIS podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.152951 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.152951 y $0.068278.
¿Cuánto será Stafi en 2035?
Basado en nuestra predicción experimental para el precio de Stafi, FIS podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.180214 en 2035. El rango de precios esperado para el año está entre $0.180214 y $0.080725.
¿Cuánto será Stafi en 2036?
Nuestra reciente simulación de predicción de precios de Stafi sugiere que el valor de FIS podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.372859 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.372859 y $0.133626.
¿Cuánto será Stafi en 2037?
Según la simulación experimental, el valor de Stafi podría aumentar en un 4830.69% en 2037, con un máximo de $0.890424 bajo condiciones favorables. Se espera que el precio caiga entre $0.890424 y $0.347024 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Pangolin
Predicción de precios de StakeWise Staked ETH
Predicción de precios de BENQI
Predicción de precios de Velo
Predicción de precios de Dimitra
Predicción de precios de IX Swap
Predicción de precios de BitMart Token
Predicción de precios de LON
Predicción de precios de Moon Tropica
Predicción de precios de Kinesis Silver
Predicción de precios de Perpetual Protocol
Predicción de precios de USDX
Predicción de precios de Metadium
Predicción de precios de ARPA
Predicción de precios de Storj
Predicción de precios de Ozone Chain
Predicción de precios de Humanscape
Predicción de precios de Ordiswap
Predicción de precios de Guild of Guardians
Predicción de precios de Lyra Finance
Predicción de precios de Bazaars
Predicción de precios de PlatON Network
Predicción de precios de Saitama Inu
Predicción de precios de Nuls
Predicción de precios de Across Protocol
¿Cómo leer y predecir los movimientos de precio de Stafi?
Los traders de Stafi utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Stafi
Las medias móviles son herramientas populares para la predicción de precios de Stafi. Una media móvil simple (SMA) calcula el precio de cierre promedio de FIS durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de FIS por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de FIS.
¿Cómo leer gráficos de Stafi y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Stafi en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de FIS dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Stafi?
La acción del precio de Stafi está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de FIS. La capitalización de mercado de Stafi puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de FIS, grandes poseedores de Stafi, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Stafi.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


