Predicción del precio de Dimitra - Pronóstico de DMTR
Predicción de precio de Dimitra hasta $0.014986 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.00502 | $0.014986 |
| 2027 | $0.004833 | $0.012696 |
| 2028 | $0.008722 | $0.021363 |
| 2029 | $0.01916 | $0.063029 |
| 2030 | $0.016295 | $0.047114 |
| 2031 | $0.019266 | $0.04301 |
| 2032 | $0.0294083 | $0.079781 |
| 2033 | $0.068338 | $0.2125099 |
| 2034 | $0.05494 | $0.123074 |
| 2035 | $0.064957 | $0.145012 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Dimitra hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,955.11, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Dimitra para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Dimitra'
'name_with_ticker' => 'Dimitra <small>DMTR</small>'
'name_lang' => 'Dimitra'
'name_lang_with_ticker' => 'Dimitra <small>DMTR</small>'
'name_with_lang' => 'Dimitra'
'name_with_lang_with_ticker' => 'Dimitra <small>DMTR</small>'
'image' => '/uploads/coins/dimitra.jpg?1717210240'
'price_for_sd' => 0.01453
'ticker' => 'DMTR'
'marketcap' => '$10.02M'
'low24h' => '$0.01398'
'high24h' => '$0.01494'
'volume24h' => '$230.53K'
'current_supply' => '689.23M'
'max_supply' => '971.07M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01453'
'change_24h_pct' => '3.2434%'
'ath_price' => '$5.95'
'ath_days' => 1567
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '22 sept. 2021'
'ath_pct' => '-99.76%'
'fdv' => '$14.11M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.716492'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.014655'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.012843'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00502'
'current_year_max_price_prediction' => '$0.014986'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.016295'
'grand_prediction_max_price' => '$0.047114'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.014806640112547
107 => 0.014861922731917
108 => 0.014986477296157
109 => 0.013922172181951
110 => 0.014400013931873
111 => 0.014680701192235
112 => 0.013412545938429
113 => 0.014655633840298
114 => 0.013903644997778
115 => 0.013648408690133
116 => 0.01399205075355
117 => 0.013858133107234
118 => 0.013742998578839
119 => 0.013678751533732
120 => 0.013931084338715
121 => 0.01391931271176
122 => 0.013506447267121
123 => 0.012967881125138
124 => 0.013148641600218
125 => 0.013082969624983
126 => 0.012844965914877
127 => 0.013005351678811
128 => 0.012299093943824
129 => 0.011084014218862
130 => 0.01188673310407
131 => 0.01185582930018
201 => 0.011840246200883
202 => 0.012443467257596
203 => 0.012385481471671
204 => 0.012280236702418
205 => 0.012843033012156
206 => 0.012637604788423
207 => 0.013270686168991
208 => 0.01368767451137
209 => 0.013581912779583
210 => 0.01397409233107
211 => 0.013152805956479
212 => 0.013425604345828
213 => 0.013481827715791
214 => 0.012836088193054
215 => 0.012394968663371
216 => 0.012365551019872
217 => 0.011600710545416
218 => 0.012009282153293
219 => 0.012368808260384
220 => 0.012196623155441
221 => 0.012142114495099
222 => 0.012420587419297
223 => 0.012442227150467
224 => 0.011948838986526
225 => 0.012051430009381
226 => 0.012479251629022
227 => 0.012040650002243
228 => 0.011188518686581
301 => 0.010977178338659
302 => 0.010948981640471
303 => 0.010375809855294
304 => 0.01099130111127
305 => 0.010722622683896
306 => 0.011571374616709
307 => 0.011086572064634
308 => 0.011065673195577
309 => 0.011034081489799
310 => 0.010540728856869
311 => 0.010648741729285
312 => 0.011007792968022
313 => 0.011135906495005
314 => 0.011122543204537
315 => 0.011006033421072
316 => 0.011059371003316
317 => 0.010887552066864
318 => 0.010826879224301
319 => 0.010635379043791
320 => 0.010353926681717
321 => 0.010393064358911
322 => 0.0098354335836255
323 => 0.0095316067415448
324 => 0.0094475114760303
325 => 0.0093350557724012
326 => 0.0094602136469884
327 => 0.0098338538857017
328 => 0.0093831644856148
329 => 0.0086104891213514
330 => 0.0086569282273184
331 => 0.0087612631105319
401 => 0.0085668357459078
402 => 0.008382826562343
403 => 0.0085428076183157
404 => 0.0082154148804779
405 => 0.0088008269587623
406 => 0.0087849932026431
407 => 0.0090031986237874
408 => 0.009139646951655
409 => 0.008825177731591
410 => 0.0087460895731601
411 => 0.0087911417825587
412 => 0.0080465291162359
413 => 0.0089423478831157
414 => 0.0089500949610113
415 => 0.0088837597766813
416 => 0.0093607556147433
417 => 0.010367365611787
418 => 0.0099886384401058
419 => 0.0098419838321415
420 => 0.0095631933151975
421 => 0.0099346651260824
422 => 0.0099061418868694
423 => 0.009777148982031
424 => 0.0096991336707024
425 => 0.0098428792739054
426 => 0.0096813219997034
427 => 0.0096523018739597
428 => 0.0094764714861612
429 => 0.00941370803749
430 => 0.0093672404787788
501 => 0.0093160842624457
502 => 0.0094289221283416
503 => 0.009173216679164
504 => 0.0088648609745702
505 => 0.0088392245341881
506 => 0.0089100090000618
507 => 0.0088786921431964
508 => 0.0088390746011259
509 => 0.0087634339241178
510 => 0.0087409929510568
511 => 0.0088139152266926
512 => 0.0087315902291326
513 => 0.008853065247507
514 => 0.0088200307640285
515 => 0.0086355028246781
516 => 0.0084055126912541
517 => 0.008403465296646
518 => 0.0083539142996593
519 => 0.0082908036549543
520 => 0.0082732477173734
521 => 0.0085293344600051
522 => 0.0090594263532216
523 => 0.0089553566305593
524 => 0.009030557670677
525 => 0.0094004723588511
526 => 0.0095180571144989
527 => 0.0094345982400877
528 => 0.0093203545852744
529 => 0.0093253807262898
530 => 0.0097157858786929
531 => 0.0097401349691676
601 => 0.0098016572654828
602 => 0.0098807308024467
603 => 0.0094480648053563
604 => 0.0093050021967359
605 => 0.0092372111959602
606 => 0.0090284411519901
607 => 0.009253581745821
608 => 0.0091224019632772
609 => 0.0091401025976818
610 => 0.0091285750363049
611 => 0.009134869864307
612 => 0.0088006633241557
613 => 0.0089224306220082
614 => 0.0087199688721726
615 => 0.0084488953165406
616 => 0.0084479865829315
617 => 0.0085143314516428
618 => 0.0084748669276584
619 => 0.0083686689083419
620 => 0.0083837538357453
621 => 0.0082515939985851
622 => 0.0083998004328077
623 => 0.008404050463033
624 => 0.0083469829129983
625 => 0.0085753153734649
626 => 0.0086688633688196
627 => 0.0086313002848814
628 => 0.008666227842715
629 => 0.0089596811973825
630 => 0.0090075268984608
701 => 0.0090287767983702
702 => 0.0090003047475639
703 => 0.0086715916313384
704 => 0.0086861714558391
705 => 0.0085791943775185
706 => 0.0084888100193044
707 => 0.0084924249196294
708 => 0.0085388942288956
709 => 0.0087418284278499
710 => 0.0091688914859248
711 => 0.0091850982167997
712 => 0.0092047412474038
713 => 0.0091248431701408
714 => 0.0091007451455167
715 => 0.0091325366602238
716 => 0.0092929190909279
717 => 0.009705466246104
718 => 0.0095596445283667
719 => 0.0094410892019961
720 => 0.0095450941855096
721 => 0.0095290834335157
722 => 0.0093939365740358
723 => 0.0093901434518108
724 => 0.0091307534194043
725 => 0.0090348628304488
726 => 0.0089547294770315
727 => 0.0088672259470339
728 => 0.0088153509213065
729 => 0.0088950545376014
730 => 0.0089132836976735
731 => 0.0087390103476638
801 => 0.0087152575340197
802 => 0.0088575729135891
803 => 0.0087949452210927
804 => 0.0088593593559173
805 => 0.0088743039877308
806 => 0.0088718975578048
807 => 0.0088065070540939
808 => 0.0088481850111863
809 => 0.0087496042178657
810 => 0.008642412411486
811 => 0.0085740307173012
812 => 0.0085143586196095
813 => 0.0085474681675715
814 => 0.0084294386746515
815 => 0.008391678664402
816 => 0.0088340654571071
817 => 0.0091608613373378
818 => 0.0091561095958139
819 => 0.0091271845913357
820 => 0.009084207901904
821 => 0.0092897750784107
822 => 0.0092181595845612
823 => 0.0092702658400115
824 => 0.0092835290689162
825 => 0.0093236728681819
826 => 0.0093380208259433
827 => 0.0092946513322911
828 => 0.0091490980144568
829 => 0.008786392985208
830 => 0.0086175528149892
831 => 0.0085618327465615
901 => 0.0085638580652214
902 => 0.0085079907351615
903 => 0.0085244461676622
904 => 0.0085022682072794
905 => 0.0084602685157392
906 => 0.008544874804971
907 => 0.0085546248916428
908 => 0.0085348767727662
909 => 0.008539528169654
910 => 0.008376022179888
911 => 0.0083884531851735
912 => 0.0083192357680877
913 => 0.0083062583368125
914 => 0.0081312827338695
915 => 0.0078212880901368
916 => 0.0079930552146729
917 => 0.007785584682346
918 => 0.0077070124480622
919 => 0.0080789611846721
920 => 0.0080416278477685
921 => 0.0079777294034011
922 => 0.0078832102865789
923 => 0.0078481522267267
924 => 0.0076351505530978
925 => 0.0076225652779001
926 => 0.0077281346588796
927 => 0.0076794180219781
928 => 0.0076110014133354
929 => 0.0073632033921117
930 => 0.0070845963731509
1001 => 0.0070930057677921
1002 => 0.0071816254768556
1003 => 0.0074392992329539
1004 => 0.0073386216386451
1005 => 0.0072655788888317
1006 => 0.0072519001774487
1007 => 0.0074231178887294
1008 => 0.0076654268214112
1009 => 0.0077791127512687
1010 => 0.007666453447473
1011 => 0.0075370365052801
1012 => 0.007544913514891
1013 => 0.0075973157308699
1014 => 0.0076028224628419
1015 => 0.0075185853377509
1016 => 0.0075422975950423
1017 => 0.0075062765079225
1018 => 0.0072852151627582
1019 => 0.0072812168640173
1020 => 0.0072269648448183
1021 => 0.007225322115238
1022 => 0.0071330258967801
1023 => 0.0071201130178042
1024 => 0.0069368532740758
1025 => 0.0070574753923594
1026 => 0.0069765684083602
1027 => 0.0068546224994453
1028 => 0.0068335989787841
1029 => 0.0068329669863664
1030 => 0.0069581781682158
1031 => 0.007056012226798
1101 => 0.0069779758199862
1102 => 0.0069602084428273
1103 => 0.0071499175476348
1104 => 0.0071257753348112
1105 => 0.0071048683342065
1106 => 0.0076437307141572
1107 => 0.0072171790924703
1108 => 0.0070311782386995
1109 => 0.0068009668615539
1110 => 0.006875924846779
1111 => 0.0068917195956279
1112 => 0.0063381027323125
1113 => 0.006113500439814
1114 => 0.0060364253969874
1115 => 0.0059920676201595
1116 => 0.0060122820160699
1117 => 0.0058101136095999
1118 => 0.0059459741223045
1119 => 0.0057709133711715
1120 => 0.0057415638665471
1121 => 0.0060545941754385
1122 => 0.0060981505142242
1123 => 0.0059123256410707
1124 => 0.0060316552919495
1125 => 0.0059883847017346
1126 => 0.0057739142852949
1127 => 0.0057657230929245
1128 => 0.0056581093769547
1129 => 0.0054897147495835
1130 => 0.0054127538862438
1201 => 0.0053726720004116
1202 => 0.0053892105676863
1203 => 0.0053808481619837
1204 => 0.005326277808225
1205 => 0.0053839760707834
1206 => 0.0052365808525148
1207 => 0.0051778868889562
1208 => 0.0051513761873064
1209 => 0.0050205544473408
1210 => 0.0052287500123179
1211 => 0.0052697671613971
1212 => 0.0053108651269307
1213 => 0.0056685948581284
1214 => 0.0056507236916915
1215 => 0.0058122703326701
1216 => 0.0058059929272668
1217 => 0.0057599172083777
1218 => 0.0055655313294721
1219 => 0.0056430100762087
1220 => 0.005404542536624
1221 => 0.0055832186314974
1222 => 0.0055016783234893
1223 => 0.0055556497713377
1224 => 0.005458604241697
1225 => 0.0055123132447119
1226 => 0.0052794938490796
1227 => 0.0050620903732956
1228 => 0.0051495798783542
1229 => 0.0052446909759914
1230 => 0.0054509160695258
1231 => 0.0053280901051368
]
'min_raw' => 0.0050205544473408
'max_raw' => 0.014986477296157
'avg_raw' => 0.010003515871749
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00502'
'max' => '$0.014986'
'avg' => '$0.0100035'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0095107255526592
'max_diff' => 0.00045519729615749
'year' => 2026
]
1 => [
'items' => [
101 => 0.005372262966495
102 => 0.0052242912753927
103 => 0.0049189834106246
104 => 0.0049207114199828
105 => 0.0048737464564816
106 => 0.0048331618710197
107 => 0.0053421981446702
108 => 0.0052788914373691
109 => 0.0051780204846618
110 => 0.0053130402633128
111 => 0.0053487416358402
112 => 0.0053497580037258
113 => 0.0054482649488647
114 => 0.0055008381231436
115 => 0.0055101043729755
116 => 0.0056651071795349
117 => 0.0057170620757572
118 => 0.0059310569403646
119 => 0.0054963776566144
120 => 0.0054874257228142
121 => 0.0053149402684894
122 => 0.0052055472664695
123 => 0.0053224305009275
124 => 0.0054259730905047
125 => 0.0053181576253715
126 => 0.0053322360490092
127 => 0.0051875025959149
128 => 0.0052392379950542
129 => 0.0052837994903038
130 => 0.0052591952518306
131 => 0.0052223615159775
201 => 0.0054174837789435
202 => 0.0054064742161767
203 => 0.005588176553292
204 => 0.0057298265187323
205 => 0.0059836885797612
206 => 0.0057187702849489
207 => 0.0057091156093311
208 => 0.0058034916121539
209 => 0.0057170476272829
210 => 0.0057716772417764
211 => 0.0059748869042957
212 => 0.0059791804042512
213 => 0.0059072587481353
214 => 0.0059028823088244
215 => 0.0059166956496182
216 => 0.005997600818099
217 => 0.0059693300662671
218 => 0.0060020456960149
219 => 0.006042957091974
220 => 0.0062121839717333
221 => 0.0062529839995283
222 => 0.0061538610843754
223 => 0.0061628107737815
224 => 0.0061257360825294
225 => 0.0060899223953244
226 => 0.0061704263339922
227 => 0.0063175488642165
228 => 0.0063166336225917
301 => 0.0063507631899504
302 => 0.0063720256276702
303 => 0.0062807516799209
304 => 0.0062213356961721
305 => 0.0062441195650786
306 => 0.0062805514676283
307 => 0.0062323051900987
308 => 0.0059345068153359
309 => 0.0060248398188051
310 => 0.0060098039899697
311 => 0.0059883911412887
312 => 0.0060792216748014
313 => 0.0060704608482616
314 => 0.0058080400803821
315 => 0.0058248394065197
316 => 0.0058090617030456
317 => 0.0058600426907846
318 => 0.0057142944866396
319 => 0.0057591256526055
320 => 0.0057872433396332
321 => 0.0058038048733028
322 => 0.0058636364892672
323 => 0.0058566159397077
324 => 0.0058632000820493
325 => 0.0059519145735636
326 => 0.0064006020285056
327 => 0.006425023096705
328 => 0.006304764825305
329 => 0.0063528056327397
330 => 0.0062605777878346
331 => 0.0063224909579923
401 => 0.0063648503765902
402 => 0.0061734363091942
403 => 0.00616210201039
404 => 0.0060694935083617
405 => 0.006119256071738
406 => 0.0060400802553513
407 => 0.0060595072312401
408 => 0.0060051877130417
409 => 0.0061029520308907
410 => 0.006212267729285
411 => 0.0062398851917071
412 => 0.0061672355381396
413 => 0.0061146324011112
414 => 0.00602227862104
415 => 0.0061758650155367
416 => 0.0062207783577481
417 => 0.0061756291048702
418 => 0.0061651670364478
419 => 0.0061453414356918
420 => 0.0061693731313698
421 => 0.0062205337500408
422 => 0.0061964073470638
423 => 0.0062123432612826
424 => 0.006151611989324
425 => 0.0062807818953955
426 => 0.0064859347926676
427 => 0.0064865943927783
428 => 0.006462467859751
429 => 0.0064525958022497
430 => 0.0064773510892561
501 => 0.006490779816942
502 => 0.0065708338757774
503 => 0.0066567350704021
504 => 0.0070575984640884
505 => 0.0069450376272221
506 => 0.0073007074775705
507 => 0.0075819961512463
508 => 0.0076663423252187
509 => 0.0075887478139582
510 => 0.0073233011825093
511 => 0.0073102771043904
512 => 0.0077069664404521
513 => 0.0075948835334921
514 => 0.007581551628354
515 => 0.0074397226822944
516 => 0.0075235611552723
517 => 0.0075052244513959
518 => 0.0074762790672646
519 => 0.0076362370334678
520 => 0.0079356640666541
521 => 0.0078889955555231
522 => 0.0078541596768537
523 => 0.0077015189970963
524 => 0.0077934427798404
525 => 0.0077607104814893
526 => 0.0079013492076353
527 => 0.0078180379417956
528 => 0.0075940343952352
529 => 0.0076297076983503
530 => 0.0076243157503492
531 => 0.0077352816581347
601 => 0.0077019724469607
602 => 0.0076178115922737
603 => 0.0079346406576065
604 => 0.0079140675403997
605 => 0.0079432355169296
606 => 0.0079560761622478
607 => 0.0081489244311615
608 => 0.0082279281964791
609 => 0.0082458634343618
610 => 0.008320910901043
611 => 0.0082439961850241
612 => 0.0085517098883631
613 => 0.0087563215454911
614 => 0.008993988514465
615 => 0.0093412838349947
616 => 0.0094718700881752
617 => 0.0094482808503703
618 => 0.0097115961987693
619 => 0.010184768026671
620 => 0.0095439224052895
621 => 0.010218734400699
622 => 0.010005096714031
623 => 0.0094985656021207
624 => 0.0094659509701232
625 => 0.0098089797200562
626 => 0.010569784472114
627 => 0.010379211510699
628 => 0.010570096181208
629 => 0.010347419073624
630 => 0.010336361278362
701 => 0.010559281251117
702 => 0.011080145918194
703 => 0.010832702639186
704 => 0.010477932023146
705 => 0.010739889125188
706 => 0.010512957640414
707 => 0.010001617491096
708 => 0.010379065783147
709 => 0.010126676859361
710 => 0.010200337365055
711 => 0.010730821342835
712 => 0.010666992107142
713 => 0.010749593048557
714 => 0.010603804549003
715 => 0.010467615101683
716 => 0.010213407384699
717 => 0.010138149011989
718 => 0.010158947718694
719 => 0.010138138705183
720 => 0.0099959118238205
721 => 0.0099651979423317
722 => 0.0099140067942444
723 => 0.0099298730715778
724 => 0.0098336187366751
725 => 0.010015270553797
726 => 0.010048986731765
727 => 0.010181177775762
728 => 0.010194902288477
729 => 0.010563052464386
730 => 0.010360281534007
731 => 0.010496317780505
801 => 0.010484149418196
802 => 0.0095095436672525
803 => 0.0096438357407131
804 => 0.0098527520638437
805 => 0.0097586355434528
806 => 0.009625576803494
807 => 0.0095181247368191
808 => 0.0093553238682686
809 => 0.0095844629644397
810 => 0.0098857565096783
811 => 0.010202543589994
812 => 0.010583142510281
813 => 0.010498197261933
814 => 0.010195428557918
815 => 0.010209010540808
816 => 0.010292969014717
817 => 0.010184235162573
818 => 0.010152167426838
819 => 0.01028856340026
820 => 0.010289502684368
821 => 0.010164391246551
822 => 0.010025352778569
823 => 0.010024770202311
824 => 0.010000029649886
825 => 0.010351820362939
826 => 0.010545269685065
827 => 0.010567448338087
828 => 0.010543776885006
829 => 0.01055288708781
830 => 0.01044032318963
831 => 0.010697610881083
901 => 0.010933723509876
902 => 0.010870440281549
903 => 0.010775569726045
904 => 0.010700000759002
905 => 0.01085263863453
906 => 0.010845841910207
907 => 0.010931661272043
908 => 0.010927768010074
909 => 0.010898910186517
910 => 0.010870441312152
911 => 0.010983317181034
912 => 0.010950810743527
913 => 0.010918253814544
914 => 0.010852955909252
915 => 0.010861830979065
916 => 0.010766976804301
917 => 0.010723092922823
918 => 0.010063184637554
919 => 0.0098868355806054
920 => 0.0099423185838376
921 => 0.0099605850291172
922 => 0.0098838376935355
923 => 0.0099938736579868
924 => 0.009976724669484
925 => 0.010043441351926
926 => 0.010001759665238
927 => 0.010003470296199
928 => 0.010126047249275
929 => 0.010161631860233
930 => 0.010143533239897
1001 => 0.010156208893196
1002 => 0.010448313973414
1003 => 0.010406785972001
1004 => 0.010384725048935
1005 => 0.010390836075391
1006 => 0.01046547518619
1007 => 0.01048637006207
1008 => 0.010397837004712
1009 => 0.010439589706365
1010 => 0.010617367410799
1011 => 0.010679579546004
1012 => 0.01087813081806
1013 => 0.010793782708723
1014 => 0.010948607313912
1015 => 0.011424485366663
1016 => 0.011804649683458
1017 => 0.011455034866779
1018 => 0.012153158220938
1019 => 0.012696747391999
1020 => 0.012675883534218
1021 => 0.0125810961888
1022 => 0.011962234369613
1023 => 0.011392748496888
1024 => 0.01186914761107
1025 => 0.011870362050385
1026 => 0.011829438943979
1027 => 0.011575269044743
1028 => 0.011820594382431
1029 => 0.011840067416846
1030 => 0.011829167695871
1031 => 0.01163429623006
1101 => 0.011336763520032
1102 => 0.011394900699379
1103 => 0.011490130585115
1104 => 0.011309840544381
1105 => 0.011252226952208
1106 => 0.011359341581492
1107 => 0.011704487235266
1108 => 0.011639239448713
1109 => 0.011637535565319
1110 => 0.011916693265562
1111 => 0.01171687659819
1112 => 0.011395633995391
1113 => 0.011314516001515
1114 => 0.011026601770884
1115 => 0.011225465155496
1116 => 0.011232621894679
1117 => 0.011123706451261
1118 => 0.011404471883358
1119 => 0.011401884580473
1120 => 0.011668429571829
1121 => 0.012177963485575
1122 => 0.012027269234639
1123 => 0.011852028216289
1124 => 0.01187108177389
1125 => 0.012080052272586
1126 => 0.011953703938742
1127 => 0.011999139680524
1128 => 0.012079983500149
1129 => 0.012128758583768
1130 => 0.011864063789963
1201 => 0.011802350771711
1202 => 0.011676107594695
1203 => 0.011643173106252
1204 => 0.011745995539781
1205 => 0.011718905461316
1206 => 0.011232020398463
1207 => 0.011181138200392
1208 => 0.011182698684764
1209 => 0.011054752978397
1210 => 0.0108596050657
1211 => 0.011372442128591
1212 => 0.011331254135291
1213 => 0.011285785778385
1214 => 0.011291355392667
1215 => 0.011513960580007
1216 => 0.011384838329518
1217 => 0.011728130995163
1218 => 0.011657560343429
1219 => 0.011585179820765
1220 => 0.011575174627768
1221 => 0.011547314301758
1222 => 0.011451770877501
1223 => 0.01133639645144
1224 => 0.011260216261793
1225 => 0.010386954288724
1226 => 0.010549026631394
1227 => 0.010735476088278
1228 => 0.010799837693645
1229 => 0.010689742713977
1230 => 0.011456118098335
1231 => 0.011596142266034
]
'min_raw' => 0.0048331618710197
'max_raw' => 0.012696747391999
'avg_raw' => 0.0087649546315092
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004833'
'max' => '$0.012696'
'avg' => '$0.008764'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0001873925763211
'max_diff' => -0.0022897299041587
'year' => 2027
]
2 => [
'items' => [
101 => 0.011171999928523
102 => 0.011092660214792
103 => 0.011461319596758
104 => 0.011238972922656
105 => 0.01133909561639
106 => 0.011122685116723
107 => 0.011562414544421
108 => 0.011559064542931
109 => 0.011387999863816
110 => 0.011532582559203
111 => 0.011507457757874
112 => 0.011314326156468
113 => 0.011568537160669
114 => 0.011568663246155
115 => 0.011404017211774
116 => 0.011211746689269
117 => 0.011177373261072
118 => 0.011151477500346
119 => 0.01133272684669
120 => 0.01149523444387
121 => 0.011797620793172
122 => 0.011873647905909
123 => 0.012170386788333
124 => 0.011993693231803
125 => 0.012072019196848
126 => 0.012157053111788
127 => 0.01219782149763
128 => 0.012131391600654
129 => 0.012592349227655
130 => 0.01263126817475
131 => 0.012644317361064
201 => 0.012488885042788
202 => 0.012626945320804
203 => 0.012562351488796
204 => 0.012730406694997
205 => 0.012756759897166
206 => 0.012734439672471
207 => 0.012742804594797
208 => 0.012349458578649
209 => 0.012329061512646
210 => 0.012050946070389
211 => 0.012164280168834
212 => 0.011952407504035
213 => 0.012019594508573
214 => 0.012049209899992
215 => 0.012033740500173
216 => 0.012170687908715
217 => 0.012054254634948
218 => 0.011746968082072
219 => 0.011439597809181
220 => 0.011435739025783
221 => 0.011354813858467
222 => 0.011296319784681
223 => 0.011307587818481
224 => 0.011347297839305
225 => 0.011294011766082
226 => 0.011305383051476
227 => 0.011494222155504
228 => 0.011532092491078
229 => 0.011403394293903
301 => 0.010886652461181
302 => 0.010759842719283
303 => 0.010850991047013
304 => 0.010807428017062
305 => 0.0087224378949422
306 => 0.0092122753970386
307 => 0.0089212305866027
308 => 0.0090553574255795
309 => 0.0087582760398127
310 => 0.0089000588484701
311 => 0.0088738767407902
312 => 0.0096615209488159
313 => 0.0096492229678768
314 => 0.0096551093605577
315 => 0.009374136500984
316 => 0.0098217338955294
317 => 0.010042236467164
318 => 0.01000142730964
319 => 0.01001169809539
320 => 0.0098352119674654
321 => 0.0096568181320556
322 => 0.0094589519139715
323 => 0.0098265628901679
324 => 0.0097856908249435
325 => 0.0098794366372634
326 => 0.010117858632702
327 => 0.010152967177207
328 => 0.010200153417058
329 => 0.010183240509017
330 => 0.010586174594712
331 => 0.010537376618289
401 => 0.010654965701331
402 => 0.010413076036009
403 => 0.010139354919319
404 => 0.010191380354984
405 => 0.010186369887168
406 => 0.010122580881114
407 => 0.010064995018648
408 => 0.0099691307823578
409 => 0.010272459411217
410 => 0.010260144822828
411 => 0.010459503694696
412 => 0.010424265077625
413 => 0.01018893296847
414 => 0.010197337900787
415 => 0.010253865109892
416 => 0.010449506426023
417 => 0.010507586088927
418 => 0.010480681274996
419 => 0.010544362973933
420 => 0.010594694392261
421 => 0.010550683825159
422 => 0.011173780645251
423 => 0.01091502740339
424 => 0.011041141933079
425 => 0.0110712195053
426 => 0.010994176436519
427 => 0.011010884319432
428 => 0.01103619220942
429 => 0.011189856761633
430 => 0.011593117009836
501 => 0.01177171822868
502 => 0.012309048807601
503 => 0.011756887883704
504 => 0.011724124939549
505 => 0.011820914402642
506 => 0.012136384334687
507 => 0.012392043084025
508 => 0.012476859840488
509 => 0.012488069775026
510 => 0.012647191648661
511 => 0.012738397339182
512 => 0.012627870067881
513 => 0.012534209778142
514 => 0.012198730245838
515 => 0.012237562915183
516 => 0.012505081498462
517 => 0.012882967254109
518 => 0.013207232544766
519 => 0.013093686141764
520 => 0.013959965045401
521 => 0.014045853060264
522 => 0.014033986113702
523 => 0.014229651793411
524 => 0.013841295265811
525 => 0.013675265326208
526 => 0.012554460195873
527 => 0.01286936072045
528 => 0.013327087126382
529 => 0.013266505320171
530 => 0.012934092169121
531 => 0.013206980379583
601 => 0.013116755003201
602 => 0.013045590505394
603 => 0.013371608865764
604 => 0.013013138286441
605 => 0.013323511108138
606 => 0.012925454753916
607 => 0.013094204812169
608 => 0.012998414117583
609 => 0.013060402436646
610 => 0.012698019990032
611 => 0.012893552761888
612 => 0.012689885183871
613 => 0.012689788618921
614 => 0.012685292645848
615 => 0.012924906648185
616 => 0.012932720452199
617 => 0.012755645342435
618 => 0.012730126052685
619 => 0.012824484242092
620 => 0.012714015514745
621 => 0.012765703136989
622 => 0.012715581080168
623 => 0.012704297549445
624 => 0.012614388456915
625 => 0.01257565314775
626 => 0.01259084226056
627 => 0.012538993988017
628 => 0.012507753528376
629 => 0.012679078132114
630 => 0.012587546307552
701 => 0.012665049567249
702 => 0.012576724821133
703 => 0.012270552769835
704 => 0.012094469985423
705 => 0.011516139362686
706 => 0.011680153209877
707 => 0.01178889456025
708 => 0.011752955544601
709 => 0.011830166456768
710 => 0.011834906579694
711 => 0.011809804525077
712 => 0.011780739561601
713 => 0.011766592344775
714 => 0.011872034108402
715 => 0.011933246601193
716 => 0.011799808209531
717 => 0.011768545461367
718 => 0.011903459042672
719 => 0.011985756249332
720 => 0.012593392584499
721 => 0.01254837692215
722 => 0.012661357400768
723 => 0.012648637532702
724 => 0.012767059073495
725 => 0.012960628244014
726 => 0.012567047997557
727 => 0.012635359919361
728 => 0.012618611413688
729 => 0.012801467206939
730 => 0.012802038062766
731 => 0.012692406880388
801 => 0.012751839722918
802 => 0.012718665940672
803 => 0.012778615448896
804 => 0.012547775710535
805 => 0.012828913594248
806 => 0.012988300658189
807 => 0.012990513747726
808 => 0.01306606195106
809 => 0.013142823301104
810 => 0.01329016002801
811 => 0.013138714159758
812 => 0.012866277785732
813 => 0.012885946811973
814 => 0.012726217465562
815 => 0.012728902544733
816 => 0.012714569381686
817 => 0.012757584282938
818 => 0.012557215062422
819 => 0.012604241317985
820 => 0.012538404284811
821 => 0.012635216802509
822 => 0.012531062537149
823 => 0.012618603337051
824 => 0.012656383044266
825 => 0.012795790977226
826 => 0.012510471872101
827 => 0.011928686902347
828 => 0.01205098515645
829 => 0.011870096432311
830 => 0.011886838372422
831 => 0.011920659755906
901 => 0.011811033586366
902 => 0.011831946804796
903 => 0.01183119963747
904 => 0.011824760953104
905 => 0.011796242952443
906 => 0.011754886209369
907 => 0.011919638744838
908 => 0.011947633411028
909 => 0.012009862086163
910 => 0.012195012413251
911 => 0.01217651152943
912 => 0.012206687238537
913 => 0.012140813834985
914 => 0.011889894050683
915 => 0.011903520202182
916 => 0.011733601874644
917 => 0.0120055168925
918 => 0.011941123827169
919 => 0.011899609199048
920 => 0.011888281548135
921 => 0.012073890827072
922 => 0.012129428032399
923 => 0.012094820973002
924 => 0.012023840884531
925 => 0.012160143637775
926 => 0.012196612504392
927 => 0.012204776538707
928 => 0.012446278883996
929 => 0.012218273837053
930 => 0.012273156918027
1001 => 0.012701339048724
1002 => 0.012313036941277
1003 => 0.012518729227762
1004 => 0.01250866166071
1005 => 0.012613886874228
1006 => 0.012500030121907
1007 => 0.012501441512808
1008 => 0.012594874373839
1009 => 0.012463664771227
1010 => 0.012431175428415
1011 => 0.012386291634014
1012 => 0.012484293757048
1013 => 0.012543041597552
1014 => 0.013016506046483
1015 => 0.013322385673094
1016 => 0.013309106631802
1017 => 0.013430452211881
1018 => 0.013375784916658
1019 => 0.013199249799877
1020 => 0.013500573718058
1021 => 0.013405222222417
1022 => 0.013413082883866
1023 => 0.013412790309654
1024 => 0.013476190718483
1025 => 0.013431265718265
1026 => 0.01334271393138
1027 => 0.013401498740054
1028 => 0.013576068605859
1029 => 0.014117938825776
1030 => 0.014421176579667
1031 => 0.014099683532235
1101 => 0.01432144513139
1102 => 0.014188467193634
1103 => 0.014164301146593
1104 => 0.014303583818916
1105 => 0.014443110287119
1106 => 0.014434223054284
1107 => 0.014332934003132
1108 => 0.014275718388251
1109 => 0.014708974192768
1110 => 0.015028189689216
1111 => 0.015006421332406
1112 => 0.015102499779916
1113 => 0.0153845890734
1114 => 0.015410379783138
1115 => 0.015407130746504
1116 => 0.015343205781436
1117 => 0.015620959324795
1118 => 0.015852666217273
1119 => 0.015328408998992
1120 => 0.015528039284683
1121 => 0.015617659751615
1122 => 0.015749249186267
1123 => 0.015971262619473
1124 => 0.016212428094091
1125 => 0.016246531536447
1126 => 0.016222333512095
1127 => 0.016063278398709
1128 => 0.016327164538738
1129 => 0.016481742850675
1130 => 0.016573790697972
1201 => 0.016807208723416
1202 => 0.015618213217109
1203 => 0.014776583100833
1204 => 0.014645150404891
1205 => 0.014912423960426
1206 => 0.014982901865554
1207 => 0.014954492310368
1208 => 0.014007161096838
1209 => 0.014640162902106
1210 => 0.015321219620272
1211 => 0.015347381782507
1212 => 0.015688333015845
1213 => 0.015799360713483
1214 => 0.01607387114582
1215 => 0.016056700443536
1216 => 0.016123539365395
1217 => 0.016108174254749
1218 => 0.016616647025661
1219 => 0.017177568000915
1220 => 0.017158145091161
1221 => 0.017077506064453
1222 => 0.017197268770112
1223 => 0.017776199328519
1224 => 0.017722900679874
1225 => 0.017774675777064
1226 => 0.018457267532522
1227 => 0.019344733912163
1228 => 0.018932416678652
1229 => 0.019827026434282
1230 => 0.020390135854226
1231 => 0.021363975369418
]
'min_raw' => 0.0087224378949422
'max_raw' => 0.021363975369418
'avg_raw' => 0.01504320663218
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.008722'
'max' => '$0.021363'
'avg' => '$0.015043'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0038892760239225
'max_diff' => 0.0086672279774192
'year' => 2028
]
3 => [
'items' => [
101 => 0.021242045865855
102 => 0.021621154442755
103 => 0.021023766607023
104 => 0.01965204338418
105 => 0.019434962933419
106 => 0.019869563493194
107 => 0.020937986561698
108 => 0.019835915048572
109 => 0.020058862680337
110 => 0.01999465374739
111 => 0.019991232326224
112 => 0.020121814056217
113 => 0.019932398446177
114 => 0.019160685175655
115 => 0.0195143568198
116 => 0.019377787213289
117 => 0.019529321373652
118 => 0.020347088739692
119 => 0.019985534294026
120 => 0.019604666055816
121 => 0.02008235934796
122 => 0.020690627062083
123 => 0.020652562761696
124 => 0.0205787021093
125 => 0.020995050739635
126 => 0.021682736698245
127 => 0.021868615449511
128 => 0.022005827343572
129 => 0.022024746545549
130 => 0.022219626084132
131 => 0.021171709689207
201 => 0.022834779920354
202 => 0.023121946207885
203 => 0.023067970847652
204 => 0.023387144090438
205 => 0.023293235225767
206 => 0.023157176014708
207 => 0.023663133494619
208 => 0.023083094072564
209 => 0.022259801137889
210 => 0.021808126351038
211 => 0.022402928145929
212 => 0.022766152846347
213 => 0.023006221267893
214 => 0.0230788658272
215 => 0.02125305645591
216 => 0.020269046468815
217 => 0.020899785588846
218 => 0.021669330846571
219 => 0.021167434826446
220 => 0.02118710820022
221 => 0.020471536371474
222 => 0.021732643075445
223 => 0.021548910436253
224 => 0.022502115693396
225 => 0.022274625608829
226 => 0.023051927492815
227 => 0.022847237856538
228 => 0.023696893092678
301 => 0.024035843569871
302 => 0.024604994174508
303 => 0.025023663676138
304 => 0.025269514415367
305 => 0.025254754459147
306 => 0.026228937570324
307 => 0.025654495825028
308 => 0.024932861607413
309 => 0.024919809521143
310 => 0.025293554108082
311 => 0.026076820230486
312 => 0.026279909739967
313 => 0.026393409069786
314 => 0.026219580895227
315 => 0.02559606555132
316 => 0.025326834787115
317 => 0.025556227198584
318 => 0.025275699991273
319 => 0.025759968653125
320 => 0.026424972960052
321 => 0.026287652200383
322 => 0.026746694911676
323 => 0.027221755825163
324 => 0.027901114267769
325 => 0.028078723721237
326 => 0.028372305393936
327 => 0.028674497371699
328 => 0.028771553290655
329 => 0.028956863154624
330 => 0.028955886480169
331 => 0.029514330228032
401 => 0.030130310975487
402 => 0.030362829447665
403 => 0.030897492853293
404 => 0.029981900507995
405 => 0.03067638781947
406 => 0.031302832758566
407 => 0.030555959276883
408 => 0.031585350372181
409 => 0.031625319295761
410 => 0.032228802588528
411 => 0.031617056657899
412 => 0.031253803877054
413 => 0.03230250104445
414 => 0.032809932570102
415 => 0.032657090064961
416 => 0.031493951054072
417 => 0.030816954260356
418 => 0.029045123068271
419 => 0.031143933652707
420 => 0.032166203065241
421 => 0.031491303623256
422 => 0.031831683645237
423 => 0.033688686676575
424 => 0.034395713198866
425 => 0.034248656624718
426 => 0.034273506764992
427 => 0.034655005442981
428 => 0.036346780676344
429 => 0.03533302974147
430 => 0.036108004346658
501 => 0.036519048082872
502 => 0.036900848412783
503 => 0.035963267471754
504 => 0.034743488443276
505 => 0.034357133222117
506 => 0.031424198174565
507 => 0.031271526168248
508 => 0.031185826744668
509 => 0.030645504001416
510 => 0.030220958332075
511 => 0.029883343853445
512 => 0.028997342641303
513 => 0.029296342041562
514 => 0.027884241032232
515 => 0.028787653216215
516 => 0.026533905908952
517 => 0.028410893636903
518 => 0.027389334552739
519 => 0.028075284003012
520 => 0.02807289079
521 => 0.026809840371577
522 => 0.02608133924942
523 => 0.026545568518146
524 => 0.027043259144786
525 => 0.027124007774526
526 => 0.027769276663019
527 => 0.027949357339789
528 => 0.027403704482013
529 => 0.026487202005441
530 => 0.026700084627553
531 => 0.026077025189878
601 => 0.024985137490988
602 => 0.025769350298861
603 => 0.026037115030872
604 => 0.026155375190748
605 => 0.025081629043039
606 => 0.024744234691266
607 => 0.024564608769395
608 => 0.026348594861299
609 => 0.026446325646534
610 => 0.025946321131529
611 => 0.028206388951724
612 => 0.027694865997824
613 => 0.028266362463497
614 => 0.026680767760926
615 => 0.026741339613851
616 => 0.025990693671372
617 => 0.02641100524098
618 => 0.026113942570855
619 => 0.026377048219756
620 => 0.026534752660881
621 => 0.027285275429748
622 => 0.028419463401342
623 => 0.027173172355808
624 => 0.026630145500052
625 => 0.026967036307264
626 => 0.027864220921821
627 => 0.02922350153891
628 => 0.028418780055521
629 => 0.028775901784792
630 => 0.028853916995398
701 => 0.028260545165956
702 => 0.029245380004638
703 => 0.029773160995472
704 => 0.03031455508318
705 => 0.030784632400019
706 => 0.030098310379038
707 => 0.030832773321885
708 => 0.030240925840113
709 => 0.029709977464896
710 => 0.029710782694415
711 => 0.029377711022723
712 => 0.028732342689089
713 => 0.02861332686664
714 => 0.02923246220506
715 => 0.029728950114139
716 => 0.029769843236347
717 => 0.030044724453283
718 => 0.030207396325963
719 => 0.031801801819922
720 => 0.032443084899207
721 => 0.033227233709688
722 => 0.033532703863576
723 => 0.034452059509667
724 => 0.033709605159034
725 => 0.033548970490017
726 => 0.03131891441154
727 => 0.03168408596946
728 => 0.032268760867506
729 => 0.031328555485259
730 => 0.031924899394847
731 => 0.032042630314891
801 => 0.031296607666144
802 => 0.031695090596576
803 => 0.030636838075305
804 => 0.028442530414436
805 => 0.029247822896341
806 => 0.029840789221542
807 => 0.02899455316326
808 => 0.030511398543873
809 => 0.029625288786563
810 => 0.029344434534265
811 => 0.028248721964282
812 => 0.028765856119469
813 => 0.029465287469009
814 => 0.029033120212615
815 => 0.029929932159871
816 => 0.031200057048196
817 => 0.032105223680861
818 => 0.032174711135419
819 => 0.031592749632069
820 => 0.032525346655215
821 => 0.032532139606389
822 => 0.03148016635451
823 => 0.030835838595146
824 => 0.030689445972541
825 => 0.031055163445772
826 => 0.031499211973445
827 => 0.032199352738284
828 => 0.032622433139049
829 => 0.033725602439738
830 => 0.034024088422161
831 => 0.03435203402155
901 => 0.03479027047701
902 => 0.035316485703311
903 => 0.034165156745614
904 => 0.034210901191449
905 => 0.033138799607276
906 => 0.031993105309667
907 => 0.032862544468742
908 => 0.033999220512587
909 => 0.033738465772214
910 => 0.033709125537186
911 => 0.0337584676742
912 => 0.033561867115412
913 => 0.032672650074371
914 => 0.032226090843153
915 => 0.032802266180834
916 => 0.033108477730198
917 => 0.033583385138807
918 => 0.033524842776617
919 => 0.034748153259862
920 => 0.035223494722663
921 => 0.03510188203547
922 => 0.035124261696686
923 => 0.035984844709819
924 => 0.036941990012818
925 => 0.037838482895523
926 => 0.038750433961076
927 => 0.037651041357496
928 => 0.037092837594507
929 => 0.03766876139206
930 => 0.037363168118364
1001 => 0.039119197713874
1002 => 0.039240781393064
1003 => 0.040996684007647
1004 => 0.042663244677881
1005 => 0.041616507780443
1006 => 0.042603533528662
1007 => 0.04367108234875
1008 => 0.045730557226254
1009 => 0.045036998540711
1010 => 0.044505743457034
1011 => 0.044003709969966
1012 => 0.045048361960983
1013 => 0.046392290058704
1014 => 0.04668175929897
1015 => 0.047150810053961
1016 => 0.046657660537885
1017 => 0.047251604811361
1018 => 0.049348489089068
1019 => 0.048781892447522
1020 => 0.047977234131571
1021 => 0.049632522881915
1022 => 0.050231565445892
1023 => 0.054435959880909
1024 => 0.059744181529991
1025 => 0.057546542911609
1026 => 0.056182397703824
1027 => 0.05650300418561
1028 => 0.058441387037212
1029 => 0.05906393408795
1030 => 0.057371636599207
1031 => 0.057969384681594
1101 => 0.061263035384844
1102 => 0.063029973314171
1103 => 0.060630234274721
1104 => 0.054009449439906
1105 => 0.047904783454177
1106 => 0.049524015770285
1107 => 0.049340445076267
1108 => 0.052879061865616
1109 => 0.048768379305007
1110 => 0.048837592656895
1111 => 0.052449384293987
1112 => 0.051485820206995
1113 => 0.049924969790033
1114 => 0.047916179389562
1115 => 0.044202744543668
1116 => 0.040913651743869
1117 => 0.047364320157109
1118 => 0.047086155605351
1119 => 0.046683332112728
1120 => 0.047579772205506
1121 => 0.051932630837076
1122 => 0.05183228335679
1123 => 0.051193923884944
1124 => 0.051678113918097
1125 => 0.049840088936197
1126 => 0.050313789825083
1127 => 0.047903816443896
1128 => 0.048993225061571
1129 => 0.049921620906052
1130 => 0.050108010116966
1201 => 0.050527954526426
1202 => 0.046939575526469
1203 => 0.048550652348178
1204 => 0.049497009043448
1205 => 0.045221335065467
1206 => 0.049412492716243
1207 => 0.046877109831503
1208 => 0.046016562800249
1209 => 0.047175176009382
1210 => 0.046723663314995
1211 => 0.046335479214075
1212 => 0.046118865815913
1213 => 0.046969623485226
1214 => 0.046929934623078
1215 => 0.045537929951133
1216 => 0.04372211660195
1217 => 0.044331563163977
1218 => 0.0441101455144
1219 => 0.04330769938889
1220 => 0.043848451189769
1221 => 0.04146725392692
1222 => 0.037370527800053
1223 => 0.040076950565576
1224 => 0.039972756233125
1225 => 0.039920216725867
1226 => 0.041954018634127
1227 => 0.041758515508441
1228 => 0.041403675420949
1229 => 0.043301182472414
1230 => 0.042608566873558
1231 => 0.044743044948474
]
'min_raw' => 0.019160685175655
'max_raw' => 0.063029973314171
'avg_raw' => 0.041095329244913
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.01916'
'max' => '$0.063029'
'avg' => '$0.041095'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.010438247280713
'max_diff' => 0.041665997944753
'year' => 2029
]
4 => [
'items' => [
101 => 0.046148950258001
102 => 0.045792367195232
103 => 0.047114627934172
104 => 0.044345603581857
105 => 0.045265362397721
106 => 0.045454923414941
107 => 0.043277767529942
108 => 0.041790502237631
109 => 0.041691318598699
110 => 0.039112605539615
111 => 0.040490133241133
112 => 0.0417023006125
113 => 0.041121766509603
114 => 0.040937986755589
115 => 0.041876877661882
116 => 0.041949837526358
117 => 0.040286344884371
118 => 0.040632237680601
119 => 0.042074668140772
120 => 0.0405958921339
121 => 0.037722871909236
122 => 0.037010323170907
123 => 0.036915256034335
124 => 0.034982767343033
125 => 0.037057939084786
126 => 0.036152071008366
127 => 0.039013697407811
128 => 0.037379151755658
129 => 0.037308689759519
130 => 0.037202176117827
131 => 0.035538803271121
201 => 0.035902976211691
202 => 0.037113542531248
203 => 0.037545486232072
204 => 0.037500430965266
205 => 0.03710761009586
206 => 0.037287441478306
207 => 0.036708141938042
208 => 0.036503579213297
209 => 0.035857922984593
210 => 0.034908986695484
211 => 0.035040942106649
212 => 0.033160851015237
213 => 0.03213647760465
214 => 0.031852944545623
215 => 0.031473792289432
216 => 0.031895770801846
217 => 0.033155524953396
218 => 0.031635994174874
219 => 0.029030865237789
220 => 0.029187437925832
221 => 0.029539210269015
222 => 0.0288836848347
223 => 0.0282632850252
224 => 0.028802672324933
225 => 0.027698844851482
226 => 0.029672602545583
227 => 0.02961921793135
228 => 0.030354912743354
301 => 0.030814957807278
302 => 0.029754702876292
303 => 0.029488051628383
304 => 0.029639948297816
305 => 0.027129434706112
306 => 0.030149750222716
307 => 0.030175870036725
308 => 0.029952216331382
309 => 0.031560441102194
310 => 0.034954296986492
311 => 0.033677391885282
312 => 0.033182935635433
313 => 0.032242973943024
314 => 0.033495417088756
315 => 0.03339924899632
316 => 0.032964340411661
317 => 0.032701306342661
318 => 0.033185954679858
319 => 0.032641253050317
320 => 0.032543409670252
321 => 0.031950585241703
322 => 0.031738973892504
323 => 0.031582305274048
324 => 0.031409828519068
325 => 0.031790269262024
326 => 0.030928140487338
327 => 0.029888497700592
328 => 0.029802062651965
329 => 0.030040717420671
330 => 0.029935130451277
331 => 0.029801557142177
401 => 0.029546529318581
402 => 0.029470868011127
403 => 0.029716730554704
404 => 0.029439166077683
405 => 0.029848727583247
406 => 0.029737349515805
407 => 0.029115200684956
408 => 0.028339772892719
409 => 0.028332869958853
410 => 0.028165805312972
411 => 0.027953023368105
412 => 0.027893832298834
413 => 0.028757246631023
414 => 0.030544488458836
415 => 0.030193610122964
416 => 0.03044715568009
417 => 0.031694348877888
418 => 0.03209079409106
419 => 0.03180940666907
420 => 0.031424226210629
421 => 0.031441172195977
422 => 0.032757450424521
423 => 0.032839545083056
424 => 0.033046971800432
425 => 0.033313573751044
426 => 0.031854810134078
427 => 0.031372464560802
428 => 0.031143902468671
429 => 0.030440019689566
430 => 0.031199096920481
501 => 0.030756815124955
502 => 0.030816494049669
503 => 0.030777628071658
504 => 0.030798851523758
505 => 0.029672050840083
506 => 0.030082597786314
507 => 0.029399983861315
508 => 0.02848604044275
509 => 0.028482976583942
510 => 0.028706662940852
511 => 0.028573605542914
512 => 0.02821555150628
513 => 0.028266411392216
514 => 0.027820825274125
515 => 0.028320513614549
516 => 0.028334842888182
517 => 0.028142435658911
518 => 0.028912274491037
519 => 0.029227678088688
520 => 0.029101031528619
521 => 0.02921879222842
522 => 0.03020819070194
523 => 0.030369505823606
524 => 0.030441151344771
525 => 0.030345155837622
526 => 0.029236876616251
527 => 0.029286033512486
528 => 0.028925352824027
529 => 0.028620615649874
530 => 0.028632803538704
531 => 0.028789478059279
601 => 0.029473684879466
602 => 0.030913557796356
603 => 0.030968199921019
604 => 0.031034427770133
605 => 0.030765045824335
606 => 0.030683797651845
607 => 0.030790984963293
608 => 0.031331725525955
609 => 0.032722657062754
610 => 0.032231008960456
611 => 0.031831291400328
612 => 0.03218195146364
613 => 0.032127970095458
614 => 0.031672313023069
615 => 0.03165952424666
616 => 0.030784972642368
617 => 0.030461670826837
618 => 0.030191495631059
619 => 0.02989647137037
620 => 0.029721571099332
621 => 0.029990297406399
622 => 0.030051758292301
623 => 0.029464183525367
624 => 0.029384099255797
625 => 0.029863925494158
626 => 0.029652771856381
627 => 0.029869948609193
628 => 0.029920335478753
629 => 0.029912222032246
630 => 0.029691753383565
701 => 0.029832273525765
702 => 0.029499901498393
703 => 0.029138496839291
704 => 0.028907943183089
705 => 0.028706754539549
706 => 0.028818385692138
707 => 0.028420441016202
708 => 0.028293130505326
709 => 0.029784668463391
710 => 0.030886483589748
711 => 0.030870462761444
712 => 0.030772940089367
713 => 0.030628041180411
714 => 0.031321125268246
715 => 0.031079668630698
716 => 0.031255348508891
717 => 0.031300066411152
718 => 0.031435414033127
719 => 0.031483789174462
720 => 0.031337565898652
721 => 0.030846822725366
722 => 0.029623937395997
723 => 0.02905468097406
724 => 0.028866816873105
725 => 0.02887364537637
726 => 0.028685284772541
727 => 0.028740765412099
728 => 0.028665990870252
729 => 0.0285243859779
730 => 0.028809641989067
731 => 0.028842515087011
801 => 0.028775932925449
802 => 0.028791615434806
803 => 0.028240343574686
804 => 0.028282255576911
805 => 0.028048884222601
806 => 0.028005129907001
807 => 0.027415187445272
808 => 0.026370018860793
809 => 0.026949143713564
810 => 0.026249642328693
811 => 0.025984730555068
812 => 0.027238781689179
813 => 0.027112909737279
814 => 0.026897471670847
815 => 0.026578793869367
816 => 0.0264605931729
817 => 0.025742443158958
818 => 0.025700011024953
819 => 0.026055945563544
820 => 0.025891694020944
821 => 0.02566102264821
822 => 0.024825554318949
823 => 0.023886211302802
824 => 0.023914564163959
825 => 0.024213351700298
826 => 0.02508211675919
827 => 0.024742675220893
828 => 0.024496406490215
829 => 0.02445028775977
830 => 0.025027560227392
831 => 0.025844521711398
901 => 0.026227821761211
902 => 0.025847983052842
903 => 0.025411644796636
904 => 0.025438202684495
905 => 0.025614880414274
906 => 0.025633446745585
907 => 0.025349435397092
908 => 0.025429382928087
909 => 0.025307935317951
910 => 0.024562611558719
911 => 0.024549131015362
912 => 0.024366216544877
913 => 0.024360677967406
914 => 0.024049494822959
915 => 0.024005958149943
916 => 0.023388085129176
917 => 0.023794771022537
918 => 0.023521987477238
919 => 0.02311083833134
920 => 0.023039956063615
921 => 0.023037825257055
922 => 0.023459983498626
923 => 0.023789837857691
924 => 0.023526732663797
925 => 0.023466828711228
926 => 0.024106446203153
927 => 0.024025049047062
928 => 0.023954559634844
929 => 0.025771371771017
930 => 0.024333223197617
1001 => 0.023706108332963
1002 => 0.022929934602072
1003 => 0.023182660682658
1004 => 0.023235913781156
1005 => 0.021369355874193
1006 => 0.020612093563803
1007 => 0.020352229675706
1008 => 0.020202674334169
1009 => 0.020270828581305
1010 => 0.019589203683944
1011 => 0.020047266888006
1012 => 0.01945703734321
1013 => 0.019358083439252
1014 => 0.020413486980757
1015 => 0.02056034021798
1016 => 0.019933818684264
1017 => 0.020336146933532
1018 => 0.020190257117567
1019 => 0.019467155134694
1020 => 0.019439537957726
1021 => 0.019076710800984
1022 => 0.018508956557865
1023 => 0.018249477633879
1024 => 0.018114338757368
1025 => 0.018170099691621
1026 => 0.01814190525695
1027 => 0.017957917499272
1028 => 0.018152451219852
1029 => 0.017655497950653
1030 => 0.017457607154634
1031 => 0.017368224473104
1101 => 0.016927149843127
1102 => 0.017629095726198
1103 => 0.017767387908044
1104 => 0.017905952568209
1105 => 0.019112063332834
1106 => 0.019051809447467
1107 => 0.019596475226353
1108 => 0.019575310515761
1109 => 0.019419963012623
1110 => 0.018764577450304
1111 => 0.01902580245432
1112 => 0.018221792495338
1113 => 0.01882421142397
1114 => 0.018549292582558
1115 => 0.018731261087145
1116 => 0.018404065308459
1117 => 0.018585148961967
1118 => 0.017800182114662
1119 => 0.01706719111743
1120 => 0.017362168092057
1121 => 0.017682841798186
1122 => 0.018378144099213
1123 => 0.017964027784841
1124 => 0.01811295967096
1125 => 0.017614062783355
1126 => 0.016584696001375
1127 => 0.016590522105572
1128 => 0.016432176452139
1129 => 0.016295342688729
1130 => 0.018011594025119
1201 => 0.01779815104152
1202 => 0.017458057581883
1203 => 0.017913286192385
1204 => 0.018033655862451
1205 => 0.018037082617738
1206 => 0.018369205660809
1207 => 0.018546459788432
1208 => 0.018577701596689
1209 => 0.019100304380955
1210 => 0.019275473940943
1211 => 0.019996972567611
1212 => 0.018531421014109
1213 => 0.018501238944298
1214 => 0.017919692192492
1215 => 0.017550866048606
1216 => 0.017944946034108
1217 => 0.01829404710398
1218 => 0.017930539735848
1219 => 0.017978006124067
1220 => 0.017490027181992
1221 => 0.017664456692241
1222 => 0.017814698884659
1223 => 0.017731743976833
1224 => 0.017607556464756
1225 => 0.018265424797347
1226 => 0.018228305287815
1227 => 0.018840927403452
1228 => 0.019318510151618
1229 => 0.02017442381446
1230 => 0.019281233287496
1231 => 0.019248681874583
]
'min_raw' => 0.016295342688729
'max_raw' => 0.047114627934172
'avg_raw' => 0.03170498531145
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.016295'
'max' => '$0.047114'
'avg' => '$0.0317049'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0028653424869265
'max_diff' => -0.01591534538
'year' => 2030
]
5 => [
'items' => [
101 => 0.019566877157222
102 => 0.019275425226903
103 => 0.019459612786286
104 => 0.020144748351115
105 => 0.020159224185978
106 => 0.019916735300973
107 => 0.019901979830283
108 => 0.019948552473186
109 => 0.020221329897338
110 => 0.020126013083736
111 => 0.020236316113563
112 => 0.020374251741381
113 => 0.020944811981533
114 => 0.021082372123811
115 => 0.020748172294832
116 => 0.020778346797512
117 => 0.020653346887483
118 => 0.02053259854064
119 => 0.020804023190464
120 => 0.021300057072882
121 => 0.021296971271844
122 => 0.021412041491044
123 => 0.021483729284313
124 => 0.021175992796932
125 => 0.020975667659432
126 => 0.021052485064169
127 => 0.02117531776721
128 => 0.021012652074071
129 => 0.02000860406194
130 => 0.020313168089985
131 => 0.020262473743298
201 => 0.020190278828973
202 => 0.020496520314296
203 => 0.020466982575956
204 => 0.019582212635417
205 => 0.019638852736382
206 => 0.019585657107555
207 => 0.019757543067096
208 => 0.019266142821006
209 => 0.019417294227072
210 => 0.019512094972
211 => 0.019567933339057
212 => 0.019769659809591
213 => 0.019745989536592
214 => 0.019768188432187
215 => 0.020067295534175
216 => 0.02158007661487
217 => 0.021662413951329
218 => 0.021256954793139
219 => 0.021418927729507
220 => 0.021107975111267
221 => 0.021316719687093
222 => 0.021459537424336
223 => 0.020814171532007
224 => 0.020775957152253
225 => 0.020463721121946
226 => 0.02063149907868
227 => 0.020364552285854
228 => 0.020430051691411
301 => 0.020246909643337
302 => 0.020576528866652
303 => 0.020945094375967
304 => 0.021038208578712
305 => 0.020793265199473
306 => 0.020615910050348
307 => 0.020304532832903
308 => 0.020822360085008
309 => 0.020973788554023
310 => 0.020821564695725
311 => 0.020786291101601
312 => 0.020719447704473
313 => 0.02080047224429
314 => 0.02097296384206
315 => 0.020891619989971
316 => 0.02094534903737
317 => 0.02074058931384
318 => 0.021176094670514
319 => 0.021867781986985
320 => 0.02187000587481
321 => 0.021788661584248
322 => 0.021755377253137
323 => 0.021838841431638
324 => 0.021884117324595
325 => 0.022154025173155
326 => 0.022443647048262
327 => 0.023795185967463
328 => 0.023415679247222
329 => 0.024614844979748
330 => 0.025563229381994
331 => 0.025847608396403
401 => 0.025585993084213
402 => 0.024691021233391
403 => 0.024647109644701
404 => 0.025984575437198
405 => 0.025606680091004
406 => 0.025561730642027
407 => 0.025083544448206
408 => 0.025366211713266
409 => 0.025304388235919
410 => 0.025206796852418
411 => 0.025746106303381
412 => 0.026755645451096
413 => 0.026598299307527
414 => 0.02648084771043
415 => 0.025966209001596
416 => 0.026276136453031
417 => 0.026165777223844
418 => 0.026639950508127
419 => 0.026359060758742
420 => 0.025603817162086
421 => 0.025724092194169
422 => 0.025705912865029
423 => 0.02608004217052
424 => 0.025967737839472
425 => 0.025683983641972
426 => 0.02675219495604
427 => 0.026682831255008
428 => 0.026781173124322
429 => 0.026824466256517
430 => 0.027474667659396
501 => 0.027741034370031
502 => 0.027801504276751
503 => 0.028054532050314
504 => 0.027795208715242
505 => 0.028832686949934
506 => 0.029522549437471
507 => 0.030323860216744
508 => 0.031494790637295
509 => 0.031935071307134
510 => 0.031855538544927
511 => 0.032743324626145
512 => 0.034338656479716
513 => 0.032178000724817
514 => 0.034453176481208
515 => 0.033732882104902
516 => 0.032025077096223
517 => 0.031915114587362
518 => 0.033071659967264
519 => 0.035636766306518
520 => 0.03499423626173
521 => 0.035637817255491
522 => 0.034887045840451
523 => 0.034849763711696
524 => 0.035601353963615
525 => 0.037357485554276
526 => 0.036523213263162
527 => 0.03532707936189
528 => 0.036210286020684
529 => 0.035445170675919
530 => 0.033721151661863
531 => 0.034993744931114
601 => 0.034142798053336
602 => 0.034391149591095
603 => 0.03617971335939
604 => 0.035964508634836
605 => 0.036243003475829
606 => 0.035751467370955
607 => 0.035292295140872
608 => 0.034435216074846
609 => 0.034181477216883
610 => 0.034251601508656
611 => 0.034181442466766
612 => 0.033701914606288
613 => 0.033598360610474
614 => 0.033425766080646
615 => 0.033479260342423
616 => 0.033154732132036
617 => 0.033767183915987
618 => 0.033880860363995
619 => 0.034326551698114
620 => 0.034372824850946
621 => 0.03561406887245
622 => 0.034930412523664
623 => 0.035389068226479
624 => 0.035348041743384
625 => 0.032062090409279
626 => 0.032514865510924
627 => 0.033219241480431
628 => 0.032901921060927
629 => 0.032453304229292
630 => 0.032091022084434
701 => 0.031542127589722
702 => 0.032314686050443
703 => 0.033330518273859
704 => 0.034398588032511
705 => 0.035681803864828
706 => 0.035395405029334
707 => 0.034374599205112
708 => 0.034420391808687
709 => 0.034703463665266
710 => 0.034336859891207
711 => 0.034228741281281
712 => 0.034688609828536
713 => 0.034691776690482
714 => 0.034269954742881
715 => 0.033801176840724
716 => 0.033799212644197
717 => 0.033715798144366
718 => 0.034901885094665
719 => 0.035554112990413
720 => 0.035628889867543
721 => 0.035549079910791
722 => 0.035579795595601
723 => 0.035200278553926
724 => 0.036067741968912
725 => 0.036863812181744
726 => 0.036650448359145
727 => 0.036330585657616
728 => 0.036075799609173
729 => 0.036590428863349
730 => 0.036567513232762
731 => 0.036856859202911
801 => 0.036843732798362
802 => 0.036746436631453
803 => 0.036650451833898
804 => 0.037031020706575
805 => 0.036921422982993
806 => 0.036811655023875
807 => 0.036591498577229
808 => 0.03662142149474
809 => 0.036301614022015
810 => 0.036153656451739
811 => 0.03392872959463
812 => 0.033334156436828
813 => 0.033521221255925
814 => 0.033582807851508
815 => 0.033324048851266
816 => 0.033695042787879
817 => 0.033637223775838
818 => 0.0338621637287
819 => 0.033721631011909
820 => 0.033727398523626
821 => 0.034140675278974
822 => 0.034260651279256
823 => 0.034199630517187
824 => 0.034242367367271
825 => 0.03522722003935
826 => 0.035087205483196
827 => 0.035012825540833
828 => 0.035033429293189
829 => 0.035285080266385
830 => 0.035355528799246
831 => 0.035057033415183
901 => 0.035197805563888
902 => 0.03579719550643
903 => 0.036006948063787
904 => 0.036676377539931
905 => 0.036391992000305
906 => 0.036913993966206
907 => 0.038518450045803
908 => 0.039800200582101
909 => 0.03862144981834
910 => 0.040975221448305
911 => 0.042807970290719
912 => 0.042737626337544
913 => 0.042418044184625
914 => 0.040331508353685
915 => 0.038411446973558
916 => 0.040017659848147
917 => 0.040021754415085
918 => 0.039883779304678
919 => 0.039026827743827
920 => 0.03985395924791
921 => 0.039919613943004
922 => 0.039882864772744
923 => 0.039225842020269
924 => 0.038222689715342
925 => 0.038418703274517
926 => 0.038739777483015
927 => 0.038131917023232
928 => 0.037937668774767
929 => 0.038298813225905
930 => 0.039462495894903
1001 => 0.039242508427084
1002 => 0.03923676366526
1003 => 0.040177963341796
1004 => 0.039504267496999
1005 => 0.038421175633221
1006 => 0.03814768065339
1007 => 0.037176957723286
1008 => 0.037847439508705
1009 => 0.037871568954527
1010 => 0.03750435293281
1011 => 0.03845097318954
1012 => 0.038442249917225
1013 => 0.039340924965159
1014 => 0.041058854129874
1015 => 0.040550777941708
1016 => 0.039959940613402
1017 => 0.040024181013131
1018 => 0.04072873963934
1019 => 0.040302747410425
1020 => 0.040455937186066
1021 => 0.040728507768267
1022 => 0.040892956368056
1023 => 0.040000519390342
1024 => 0.039792449640642
1025 => 0.039366811955313
1026 => 0.039255771028115
1027 => 0.039602444041593
1028 => 0.03951110795068
1029 => 0.037869540968039
1030 => 0.037697988084761
1031 => 0.03770324936677
1101 => 0.037271871484872
1102 => 0.036613916672422
1103 => 0.038342982635099
1104 => 0.038204114440033
1105 => 0.038050814700226
1106 => 0.038069593043636
1107 => 0.038820121974551
1108 => 0.038384777292001
1109 => 0.039542212482151
1110 => 0.039304278602743
1111 => 0.039060242617134
1112 => 0.039026509410405
1113 => 0.038932576376118
1114 => 0.038610445050604
1115 => 0.038221452117954
1116 => 0.037964605289828
1117 => 0.035020341578424
1118 => 0.035566779797266
1119 => 0.036195407158634
1120 => 0.036412406804712
1121 => 0.036041213894177
1122 => 0.038625102009159
1123 => 0.039097203266732
1124 => 0.037667177763141
1125 => 0.037399678378976
1126 => 0.038642639224251
1127 => 0.037892981888767
1128 => 0.038230552541033
1129 => 0.037500909432108
1130 => 0.038983487898521
1201 => 0.038972193134605
1202 => 0.038395436625617
1203 => 0.038882907277556
1204 => 0.038798197255718
1205 => 0.038147040577559
1206 => 0.039004130726666
1207 => 0.039004555832687
1208 => 0.038449440232553
1209 => 0.037801186742028
1210 => 0.037685294328986
1211 => 0.037597984963714
1212 => 0.038209079789338
1213 => 0.038756985499148
1214 => 0.03977650218776
1215 => 0.040032832906396
1216 => 0.041033308766134
1217 => 0.040437574103945
1218 => 0.040701655563638
1219 => 0.040988353344738
1220 => 0.041125806803959
1221 => 0.040901833768318
1222 => 0.042455984590785
1223 => 0.042587202538152
1224 => 0.042631198780873
1225 => 0.042107147867868
1226 => 0.04257262773426
1227 => 0.042354845119848
1228 => 0.042921454980795
1229 => 0.04301030664183
1230 => 0.042935052445923
1231 => 0.042963255365563
]
'min_raw' => 0.019266142821006
'max_raw' => 0.04301030664183
'avg_raw' => 0.031138224731418
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.019266'
'max' => '$0.04301'
'avg' => '$0.031138'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0029708001322775
'max_diff' => -0.0041043212923423
'year' => 2031
]
6 => [
'items' => [
101 => 0.04163706180958
102 => 0.041568291677474
103 => 0.040630606046502
104 => 0.041012719872145
105 => 0.040298376390297
106 => 0.040524902066944
107 => 0.040624752426794
108 => 0.040572596265267
109 => 0.041034324014528
110 => 0.040641761102909
111 => 0.039605723035827
112 => 0.038569402700867
113 => 0.03855639254323
114 => 0.038283547691609
115 => 0.038086330837913
116 => 0.038124321800579
117 => 0.038258206908251
118 => 0.038078549192066
119 => 0.038116888274691
120 => 0.038753572498247
121 => 0.038881254978657
122 => 0.038447340021458
123 => 0.036705108854676
124 => 0.036277560956291
125 => 0.036584873907007
126 => 0.036437998110054
127 => 0.029408308343964
128 => 0.031059829681645
129 => 0.03007855178316
130 => 0.030530769785207
131 => 0.029529139151535
201 => 0.030007169789883
202 => 0.029918894985864
203 => 0.032574492424785
204 => 0.032533028923431
205 => 0.032552875307329
206 => 0.031605555694378
207 => 0.03311466156034
208 => 0.033858101375604
209 => 0.033720510451809
210 => 0.033755139123048
211 => 0.033160103820881
212 => 0.032558636549737
213 => 0.031891516780889
214 => 0.033130942852913
215 => 0.032993139831413
216 => 0.033309210382773
217 => 0.034113066786486
218 => 0.034231437695487
219 => 0.034390529397583
220 => 0.0343335063473
221 => 0.035692026749178
222 => 0.035527500964704
223 => 0.035923960767987
224 => 0.035108412873157
225 => 0.034185543017639
226 => 0.034360950406284
227 => 0.034344057264221
228 => 0.034128988176704
229 => 0.033934833420883
301 => 0.033611620455204
302 => 0.034634314105131
303 => 0.034592794610602
304 => 0.035264946965896
305 => 0.035146137508158
306 => 0.034352698871779
307 => 0.0343810366879
308 => 0.034571622120003
309 => 0.035231240476578
310 => 0.035427060115052
311 => 0.035336348656447
312 => 0.035551055950528
313 => 0.035720751841448
314 => 0.035572367141743
315 => 0.037673181573914
316 => 0.036800776953406
317 => 0.037225980895289
318 => 0.037327389529982
319 => 0.037067633444611
320 => 0.03712396523836
321 => 0.037209292556394
322 => 0.037727383322697
323 => 0.039087003404246
324 => 0.039689169883117
325 => 0.041500817445171
326 => 0.039639168339609
327 => 0.039528705785954
328 => 0.039855038218396
329 => 0.040918667119692
330 => 0.04178063844261
331 => 0.04206660405874
401 => 0.042104399135689
402 => 0.042640889642185
403 => 0.042948395995552
404 => 0.042575745583595
405 => 0.042259963377586
406 => 0.041128870711991
407 => 0.041259797767897
408 => 0.042161755348973
409 => 0.043435823557279
410 => 0.04452910662421
411 => 0.044146276998932
412 => 0.047066996804203
413 => 0.047356574242825
414 => 0.047316564003967
415 => 0.047976264504049
416 => 0.046666893357057
417 => 0.046107111823847
418 => 0.042328239074805
419 => 0.04338994817907
420 => 0.044933204714107
421 => 0.04472894892478
422 => 0.04360819477767
423 => 0.044528256431689
424 => 0.044224055275882
425 => 0.04398411920298
426 => 0.045083312866841
427 => 0.043874704281039
428 => 0.044921147918926
429 => 0.043579073129262
430 => 0.044148025732413
501 => 0.043825060717724
502 => 0.044034058663332
503 => 0.042812260943839
504 => 0.043471513335814
505 => 0.042784833876912
506 => 0.04278450830144
507 => 0.042769349814326
508 => 0.043577225152521
509 => 0.043603569938296
510 => 0.043006548842738
511 => 0.042920508775645
512 => 0.04323864399911
513 => 0.04286619097218
514 => 0.043040459399289
515 => 0.042871469385307
516 => 0.042833426173685
517 => 0.042530291390965
518 => 0.042399692591705
519 => 0.042450903746011
520 => 0.042276093675204
521 => 0.042170764284386
522 => 0.04274839714739
523 => 0.04243979121033
524 => 0.042701098861503
525 => 0.042403305813337
526 => 0.041371025366136
527 => 0.040777349964784
528 => 0.038827467892471
529 => 0.039380452029358
530 => 0.039747081084217
531 => 0.039625910183773
601 => 0.03988623216484
602 => 0.03990221382023
603 => 0.039817580490517
604 => 0.03971958593691
605 => 0.039671887607652
606 => 0.040027391875428
607 => 0.040233774068595
608 => 0.039783877214736
609 => 0.039678472676603
610 => 0.04013334323534
611 => 0.0404108140134
612 => 0.042459502341231
613 => 0.042307728892729
614 => 0.042688650464433
615 => 0.042645764541177
616 => 0.043045031033889
617 => 0.043697663006862
618 => 0.042370679727037
619 => 0.042600998140786
620 => 0.042544529384563
621 => 0.043161040458094
622 => 0.043162965138371
623 => 0.042793335952777
624 => 0.042993717930836
625 => 0.042881870207876
626 => 0.043083994160392
627 => 0.042305701865792
628 => 0.043253577869153
629 => 0.043790962483278
630 => 0.043798424069167
701 => 0.044053140111314
702 => 0.044311946362294
703 => 0.044808702423776
704 => 0.044298092105354
705 => 0.043379553849426
706 => 0.043445869344643
707 => 0.042907330701272
708 => 0.042916383633162
709 => 0.042868058373242
710 => 0.043013086116018
711 => 0.042337527299714
712 => 0.042496079603613
713 => 0.042274105449673
714 => 0.042600515612326
715 => 0.042249352234845
716 => 0.042544502153619
717 => 0.042671879074188
718 => 0.043141902653314
719 => 0.042179929370043
720 => 0.040218400725587
721 => 0.040630737827888
722 => 0.040020858865205
723 => 0.040077305485174
724 => 0.040191336640925
725 => 0.039821724356464
726 => 0.039892234732517
727 => 0.039889715605711
728 => 0.039868007131835
729 => 0.039771856701543
730 => 0.039632419554836
731 => 0.040187894230824
801 => 0.040282280202409
802 => 0.040492088525293
803 => 0.041116335779854
804 => 0.041053958758359
805 => 0.041155698268415
806 => 0.040933601489207
807 => 0.040087607917773
808 => 0.040133549438899
809 => 0.039560657934286
810 => 0.040477438401485
811 => 0.040260332685941
812 => 0.040120363218774
813 => 0.040082171252849
814 => 0.040707965895611
815 => 0.040895213460854
816 => 0.040778533343911
817 => 0.040539219019958
818 => 0.040998773268876
819 => 0.04112173059885
820 => 0.041149256210539
821 => 0.041963498228835
822 => 0.041194763294261
823 => 0.041379805433581
824 => 0.042823451381948
825 => 0.041514263716303
826 => 0.042207769621164
827 => 0.042173826115951
828 => 0.042528600269918
829 => 0.042144724280244
830 => 0.042149482883208
831 => 0.042464498297447
901 => 0.042022115961477
902 => 0.041912575873854
903 => 0.041761247027344
904 => 0.042091668027444
905 => 0.042289740473347
906 => 0.043886058919148
907 => 0.044917353436101
908 => 0.044872582221274
909 => 0.045281707316588
910 => 0.045097392713992
911 => 0.044502192242477
912 => 0.045518126870389
913 => 0.045196642645607
914 => 0.045223145414495
915 => 0.045222158980113
916 => 0.045435917884954
917 => 0.045284450110159
918 => 0.044985891578188
919 => 0.045184088664853
920 => 0.045772663155494
921 => 0.047599616434115
922 => 0.048622003692743
923 => 0.047538067437399
924 => 0.048285752151851
925 => 0.047837407750483
926 => 0.047755930235664
927 => 0.048225531489807
928 => 0.048695954718779
929 => 0.048665990792789
930 => 0.048324487685055
1001 => 0.048131581244817
1002 => 0.0495923334387
1003 => 0.050668590771889
1004 => 0.050595197237086
1005 => 0.05091913243085
1006 => 0.051870216178677
1007 => 0.051957171357209
1008 => 0.051946217003356
1009 => 0.05173068952053
1010 => 0.052667154984098
1011 => 0.053448370949348
1012 => 0.051680801135444
1013 => 0.052353868581391
1014 => 0.052656030242755
1015 => 0.053099693208963
1016 => 0.053848226999502
1017 => 0.05466133323481
1018 => 0.054776315371739
1019 => 0.054694730043186
1020 => 0.054158464623532
1021 => 0.055048175168581
1022 => 0.055569346739591
1023 => 0.055879692483328
1024 => 0.056666677652837
1025 => 0.052657896290307
1026 => 0.049820281592547
1027 => 0.049377147081839
1028 => 0.050278278534768
1029 => 0.050515899712517
1030 => 0.050420114913718
1031 => 0.047226121586748
1101 => 0.049360331367985
1102 => 0.05165656164314
1103 => 0.051744769199701
1104 => 0.052894310087355
1105 => 0.053268647721648
1106 => 0.054194178809978
1107 => 0.054136286588408
1108 => 0.05436163868
1109 => 0.054309834136697
1110 => 0.056024185584264
1111 => 0.057915369814584
1112 => 0.057849884118286
1113 => 0.057578004009701
1114 => 0.057981792333397
1115 => 0.059933697130706
1116 => 0.059753997015606
1117 => 0.059928560370606
1118 => 0.062229966131167
1119 => 0.065222120991048
1120 => 0.063831964651197
1121 => 0.066848203901963
1122 => 0.068746766626348
1123 => 0.072030134543121
1124 => 0.071619040709013
1125 => 0.072897231744546
1126 => 0.070883096948088
1127 => 0.066258236331616
1128 => 0.065526334435805
1129 => 0.066991620565928
1130 => 0.070593883536306
1201 => 0.066878172485625
1202 => 0.067629855991825
1203 => 0.067413371091471
1204 => 0.067401835531133
1205 => 0.067842100950731
1206 => 0.067203472996904
1207 => 0.064601587826041
1208 => 0.065794016466842
1209 => 0.065333562503502
1210 => 0.065844470504945
1211 => 0.068601630274242
1212 => 0.067382624217756
1213 => 0.066098500361259
1214 => 0.067709076647202
1215 => 0.069759893713265
1216 => 0.069631557266944
1217 => 0.069382530920607
1218 => 0.070786279396313
1219 => 0.073104860618467
1220 => 0.073731563806001
1221 => 0.074194183286656
1222 => 0.074257970697019
1223 => 0.074915020667404
1224 => 0.07138189737873
1225 => 0.076989054774896
1226 => 0.077957255962617
1227 => 0.077775274267153
1228 => 0.078851389139171
1229 => 0.078534768845424
1230 => 0.078076035715987
1231 => 0.079781906684332
]
'min_raw' => 0.029408308343964
'max_raw' => 0.079781906684332
'avg_raw' => 0.054595107514148
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0294083'
'max' => '$0.079781'
'avg' => '$0.054595'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.010142165522958
'max_diff' => 0.036771600042502
'year' => 2032
]
7 => [
'items' => [
101 => 0.077826263275813
102 => 0.075050473666079
103 => 0.073527620587286
104 => 0.075533036366495
105 => 0.076757673803491
106 => 0.077567081247777
107 => 0.07781200745136
108 => 0.071656163682118
109 => 0.068338505309244
110 => 0.070465086289226
111 => 0.073059661853582
112 => 0.071367484380467
113 => 0.071433814533697
114 => 0.069021214153452
115 => 0.073273123453547
116 => 0.072653656032709
117 => 0.075867454107834
118 => 0.075100455404865
119 => 0.077721182976207
120 => 0.077031057576527
121 => 0.079895729526206
122 => 0.081038524724829
123 => 0.082957455725188
124 => 0.084369029180507
125 => 0.085197932112568
126 => 0.085148167889663
127 => 0.088432694264289
128 => 0.086495923813783
129 => 0.084062883666201
130 => 0.084018877646075
131 => 0.085278983614953
201 => 0.087919820032532
202 => 0.088604550493003
203 => 0.088987221407759
204 => 0.08840114758094
205 => 0.086298922066505
206 => 0.085391191747897
207 => 0.08616460427883
208 => 0.085218787213596
209 => 0.086851532817588
210 => 0.089093641267512
211 => 0.08863065473886
212 => 0.090178349289323
213 => 0.091780050326836
214 => 0.094070554747375
215 => 0.094669377420038
216 => 0.095659208526761
217 => 0.09667806987816
218 => 0.097005300685146
219 => 0.097630085829438
220 => 0.097626792903326
221 => 0.099509624988541
222 => 0.10158644708499
223 => 0.10237039934786
224 => 0.10417305434894
225 => 0.10108607083215
226 => 0.10342758329035
227 => 0.1055396861395
228 => 0.10302155005096
301 => 0.10649221399855
302 => 0.10662697201494
303 => 0.10866165807036
304 => 0.10659911395451
305 => 0.10537438184239
306 => 0.10891013755997
307 => 0.11062097837644
308 => 0.11010565919923
309 => 0.10618405481625
310 => 0.10390151285983
311 => 0.097927660290411
312 => 0.10500394671011
313 => 0.10845059940704
314 => 0.10617512881841
315 => 0.1073227438271
316 => 0.11358375919906
317 => 0.11596754848199
318 => 0.11547173697508
319 => 0.115555520958
320 => 0.11684177038622
321 => 0.12254570870148
322 => 0.11912777664673
323 => 0.12174065763512
324 => 0.12312652028992
325 => 0.12441378675866
326 => 0.12125266715617
327 => 0.11714009699941
328 => 0.11583747339681
329 => 0.105948878113
330 => 0.10543413378448
331 => 0.10514519219454
401 => 0.10332345634154
402 => 0.10189207097652
403 => 0.10075378019033
404 => 0.097766565244965
405 => 0.098774662598412
406 => 0.09401366545571
407 => 0.097059582708232
408 => 0.089460916310185
409 => 0.09578931148207
410 => 0.092345053706833
411 => 0.094657780169888
412 => 0.094649711285131
413 => 0.090391248616053
414 => 0.087935056220377
415 => 0.08950023761134
416 => 0.091178236306705
417 => 0.091450485949563
418 => 0.093626055058351
419 => 0.094233209632913
420 => 0.092393502926655
421 => 0.089303450838734
422 => 0.090021199462174
423 => 0.087920511067432
424 => 0.084239135457459
425 => 0.086883163691193
426 => 0.087785951179905
427 => 0.088184673565589
428 => 0.084564463462026
429 => 0.083426914848901
430 => 0.082821293512231
501 => 0.088836127175016
502 => 0.089165633340783
503 => 0.087479833209244
504 => 0.095099809657928
505 => 0.093375174305462
506 => 0.095302014540086
507 => 0.089956071297682
508 => 0.090160293528809
509 => 0.087629438325314
510 => 0.089046548127466
511 => 0.088044980594886
512 => 0.088932059659604
513 => 0.089463771193431
514 => 0.091994211108491
515 => 0.095818205041198
516 => 0.091616247767916
517 => 0.089785394810811
518 => 0.090921245688291
519 => 0.093946166255699
520 => 0.098529075758158
521 => 0.095815901093053
522 => 0.097019961936733
523 => 0.097282995666139
524 => 0.095282401115276
525 => 0.098602840532866
526 => 0.10038229099195
527 => 0.10220763895759
528 => 0.10379253745106
529 => 0.10147855483985
530 => 0.10395484793022
531 => 0.10195939282396
601 => 0.10016926330728
602 => 0.10017197819483
603 => 0.099049003799396
604 => 0.096873099404369
605 => 0.096471829249563
606 => 0.098559287269696
607 => 0.10023323091883
608 => 0.10037110493543
609 => 0.10129788614992
610 => 0.10184634572605
611 => 0.10722199516677
612 => 0.10938412584153
613 => 0.11202793830359
614 => 0.11305785225467
615 => 0.11615752400283
616 => 0.11365428732316
617 => 0.11311269632141
618 => 0.10559390655528
619 => 0.10682510795828
620 => 0.10879638019773
621 => 0.10562641210845
622 => 0.10763702723502
623 => 0.10803396525166
624 => 0.10551869780578
625 => 0.10686221082691
626 => 0.10329423856662
627 => 0.095895977086329
628 => 0.098611076912799
629 => 0.1006103042778
630 => 0.097757160324987
701 => 0.10287131042849
702 => 0.099883729515509
703 => 0.09893680979527
704 => 0.095242538365362
705 => 0.096986092274731
706 => 0.099344273902439
707 => 0.097887191824555
708 => 0.10091085591814
709 => 0.10519317065641
710 => 0.10824500315516
711 => 0.10847928495966
712 => 0.10651716111986
713 => 0.10966147709524
714 => 0.1096843800044
715 => 0.10613757873926
716 => 0.10396518271304
717 => 0.10347160976512
718 => 0.10470465175969
719 => 0.10620179237322
720 => 0.10856236584414
721 => 0.10998881095385
722 => 0.11370822327194
723 => 0.11471458960131
724 => 0.11582028108608
725 => 0.11729782589236
726 => 0.11907199726701
727 => 0.11519021130291
728 => 0.11534444189582
729 => 0.11172977655304
730 => 0.10786698823883
731 => 0.11079836306595
801 => 0.11463074570796
802 => 0.11375159289548
803 => 0.11365267024461
804 => 0.11381903070451
805 => 0.11315617819435
806 => 0.11015812085733
807 => 0.1086525152315
808 => 0.11059513060977
809 => 0.11162754422746
810 => 0.11322872771256
811 => 0.11303134805114
812 => 0.11715582475421
813 => 0.11875847168333
814 => 0.11834844601773
815 => 0.11842390060802
816 => 0.12132541632078
817 => 0.12455249853559
818 => 0.12757508688077
819 => 0.13064979356867
820 => 0.12694311464856
821 => 0.1250610916891
822 => 0.12700285898227
823 => 0.12597252992416
824 => 0.13189310630749
825 => 0.13230303417058
826 => 0.13822318242886
827 => 0.1438421080841
828 => 0.14031296155355
829 => 0.14364078777561
830 => 0.14724010315641
831 => 0.15418376649386
901 => 0.15184538496283
902 => 0.15005422135717
903 => 0.14836158040466
904 => 0.15188369752765
905 => 0.15641484493918
906 => 0.15739081069283
907 => 0.15897224806136
908 => 0.15730956003731
909 => 0.1593120846232
910 => 0.16638187636528
911 => 0.16447155622979
912 => 0.16175859453811
913 => 0.16733951612846
914 => 0.16935922995673
915 => 0.18353463933584
916 => 0.20143167923392
917 => 0.19402218719781
918 => 0.18942287638819
919 => 0.19050382352556
920 => 0.19703921664331
921 => 0.19913817748972
922 => 0.19343247835398
923 => 0.19544782774719
924 => 0.20655260104854
925 => 0.21250995564094
926 => 0.204419067925
927 => 0.18209662960599
928 => 0.16151432202093
929 => 0.16697367682588
930 => 0.1663547554145
1001 => 0.17828544897813
1002 => 0.16442599572634
1003 => 0.16465935337455
1004 => 0.17683676104625
1005 => 0.17358803745306
1006 => 0.16832552129718
1007 => 0.16155274421272
1008 => 0.14903263936605
1009 => 0.1379432333544
1010 => 0.15969211228093
1011 => 0.15875426107384
1012 => 0.15739611354423
1013 => 0.16041852390448
1014 => 0.1750944906877
1015 => 0.17475616215188
1016 => 0.17260388862371
1017 => 0.17423636912556
1018 => 0.16803933957228
1019 => 0.1696364551919
1020 => 0.16151106167825
1021 => 0.16518407889283
1022 => 0.16831423030102
1023 => 0.1689426545389
1024 => 0.17035852643498
1025 => 0.158260056104
1026 => 0.16369191409018
1027 => 0.1668826217608
1028 => 0.15246688842601
1029 => 0.16659766906289
1030 => 0.15804944865221
1031 => 0.15514805425486
1101 => 0.15905439958124
1102 => 0.1575320930085
1103 => 0.15622330321011
1104 => 0.15549297601474
1105 => 0.15836136489483
1106 => 0.15822755112511
1107 => 0.15353431018698
1108 => 0.14741216870417
1109 => 0.14946696033825
1110 => 0.14872043527382
1111 => 0.14601493213666
1112 => 0.14783811458741
1113 => 0.13980974176583
1114 => 0.12599734360481
1115 => 0.13512223691518
1116 => 0.1347709384487
1117 => 0.13459379783179
1118 => 0.141450902961
1119 => 0.14079175052316
1120 => 0.13959538239404
1121 => 0.14599295989776
1122 => 0.14365775804934
1123 => 0.15085429990342
1124 => 0.15559440781166
1125 => 0.15439216311971
1126 => 0.15885025751834
1127 => 0.1495142985874
1128 => 0.1526153296506
1129 => 0.15325444785488
1130 => 0.14591401478444
1201 => 0.14089959601387
1202 => 0.14056519145043
1203 => 0.13187088033173
1204 => 0.13651531115331
1205 => 0.1406022180767
1206 => 0.13864490681718
1207 => 0.13802528054543
1208 => 0.14119081678727
1209 => 0.14143680606424
1210 => 0.13582822448044
1211 => 0.13699442619239
1212 => 0.14185768119614
1213 => 0.13687188464412
1214 => 0.1271852963688
1215 => 0.12478288854896
1216 => 0.12446236306063
1217 => 0.11794684251586
1218 => 0.12494342892704
1219 => 0.1218892314617
1220 => 0.13153740465981
1221 => 0.12602641987324
1222 => 0.12578885233376
1223 => 0.12542973415425
1224 => 0.1198215564686
1225 => 0.12104939096347
1226 => 0.1251308998289
1227 => 0.12658722817357
1228 => 0.12643532119588
1229 => 0.1251108982088
1230 => 0.12571721227014
1231 => 0.12376406342474
]
'min_raw' => 0.068338505309244
'max_raw' => 0.21250995564094
'avg_raw' => 0.14042423047509
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.068338'
'max' => '$0.2125099'
'avg' => '$0.140424'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.038930196965279
'max_diff' => 0.13272804895661
'year' => 2033
]
8 => [
'items' => [
101 => 0.12307436591615
102 => 0.12089749086279
103 => 0.11769808591145
104 => 0.11814298279302
105 => 0.11180412441456
106 => 0.10835037794129
107 => 0.10739442643714
108 => 0.10611608813382
109 => 0.10753881815003
110 => 0.11178616722521
111 => 0.10666296311517
112 => 0.097879589019491
113 => 0.098407484768783
114 => 0.099593509783786
115 => 0.097383360014668
116 => 0.095291638742008
117 => 0.097110220681875
118 => 0.093388589288362
119 => 0.10004325115739
120 => 0.099863261203305
121 => 0.10234370762655
122 => 0.10389478167889
123 => 0.10032005815443
124 => 0.099421024855114
125 => 0.099933155081192
126 => 0.091468783228302
127 => 0.10165198786423
128 => 0.10174005264079
129 => 0.10098598855822
130 => 0.10640823065568
131 => 0.11785085272104
201 => 0.11354567802165
202 => 0.11187858425345
203 => 0.10870943778146
204 => 0.11293213729008
205 => 0.11260789985219
206 => 0.11114157519467
207 => 0.11025473746658
208 => 0.11188876317251
209 => 0.11005226359866
210 => 0.10972237781156
211 => 0.10772362886103
212 => 0.10701016642297
213 => 0.10648194723759
214 => 0.10590042981624
215 => 0.10718311234264
216 => 0.10427638498687
217 => 0.10077115674582
218 => 0.10047973494467
219 => 0.10128437615971
220 => 0.10092838232055
221 => 0.10047803058313
222 => 0.099618186470398
223 => 0.099363089089814
224 => 0.10019203182106
225 => 0.099256203807847
226 => 0.10063706901853
227 => 0.10026155008798
228 => 0.098163931867727
301 => 0.09554952292756
302 => 0.095526249204084
303 => 0.094962979086415
304 => 0.094245569903334
305 => 0.0940460030807
306 => 0.096957064783337
307 => 0.10298287538705
308 => 0.10179986458011
309 => 0.10265471112795
310 => 0.10685971007057
311 => 0.1081963527857
312 => 0.10724763544662
313 => 0.10594897263855
314 => 0.10600610721128
315 => 0.11044403115843
316 => 0.11072081903134
317 => 0.11142017269105
318 => 0.11231903978109
319 => 0.10740071639887
320 => 0.10577445462227
321 => 0.10500384157096
322 => 0.10263065163768
323 => 0.10518993351879
324 => 0.10369874956604
325 => 0.10389996122737
326 => 0.10376892186897
327 => 0.1038404782195
328 => 0.10004139104377
329 => 0.10142557873646
330 => 0.099124098229747
331 => 0.096042674184566
401 => 0.09603234417068
402 => 0.096786518340288
403 => 0.096337906033367
404 => 0.09513070185032
405 => 0.095302179506679
406 => 0.093799854799706
407 => 0.095484588926572
408 => 0.095532901073062
409 => 0.094884186666131
410 => 0.097479752037075
411 => 0.098543157287331
412 => 0.09811615956788
413 => 0.098513197989046
414 => 0.10184902402012
415 => 0.10239290921547
416 => 0.10263446709221
417 => 0.10231081153767
418 => 0.098574170765231
419 => 0.098739906672913
420 => 0.097523846549851
421 => 0.096496403891124
422 => 0.096537496209246
423 => 0.097065735294028
424 => 0.099372586358086
425 => 0.1042272184261
426 => 0.10441144816439
427 => 0.10463473998156
428 => 0.10372649994365
429 => 0.10345256605754
430 => 0.10381395556166
501 => 0.10563710012198
502 => 0.11032672291003
503 => 0.10866909700736
504 => 0.107321421346
505 => 0.10850369623176
506 => 0.10832169428008
507 => 0.10678541464756
508 => 0.10674229639501
509 => 0.1037936846019
510 => 0.10270364995862
511 => 0.10179273542303
512 => 0.10079804053018
513 => 0.10020835205523
514 => 0.10111438156137
515 => 0.10132160122926
516 => 0.099340551879377
517 => 0.099070542173217
518 => 0.10068830983625
519 => 0.099976390604206
520 => 0.10070861718911
521 => 0.10087850003773
522 => 0.10085114498637
523 => 0.10010781954471
524 => 0.10058159301494
525 => 0.099460977519183
526 => 0.098242476478552
527 => 0.097465148729927
528 => 0.096786827171688
529 => 0.09716319939648
530 => 0.095821501137951
531 => 0.095392264861998
601 => 0.10042108922347
602 => 0.10413593584826
603 => 0.10408192050709
604 => 0.10375311600937
605 => 0.1032645792213
606 => 0.10560136061302
607 => 0.10478727270157
608 => 0.10537958967647
609 => 0.10553035920605
610 => 0.10598669316321
611 => 0.10614979332966
612 => 0.10565679134629
613 => 0.10400221647496
614 => 0.099879173207866
615 => 0.097959885437091
616 => 0.097326488504469
617 => 0.097349511279977
618 => 0.09671444035325
619 => 0.096901497203053
620 => 0.096649389614626
621 => 0.096171958833521
622 => 0.097133719391111
623 => 0.097244553335954
624 => 0.097020066929629
625 => 0.097072941604845
626 => 0.095214290039879
627 => 0.095355599281584
628 => 0.094568771467059
629 => 0.094421250737186
630 => 0.092432218539
701 => 0.088908359685086
702 => 0.09086091955941
703 => 0.088502501802693
704 => 0.087609333262363
705 => 0.091837454216076
706 => 0.091413068142143
707 => 0.090686703659763
708 => 0.0896122592027
709 => 0.089213737302052
710 => 0.086792444390414
711 => 0.086649381488099
712 => 0.087849439635515
713 => 0.087295654091962
714 => 0.086517929453828
715 => 0.083701089651188
716 => 0.080534029089413
717 => 0.08062962274034
718 => 0.081637005779784
719 => 0.08456610783108
720 => 0.083421656985659
721 => 0.082591344766245
722 => 0.082435852246643
723 => 0.084382166675107
724 => 0.087136609356863
725 => 0.088428932235961
726 => 0.087148279511204
727 => 0.085677134616243
728 => 0.08576667638937
729 => 0.086362357690564
730 => 0.08642495537284
731 => 0.085467391282359
801 => 0.085736939964865
802 => 0.085327470868089
803 => 0.082814559776997
804 => 0.082769109183887
805 => 0.082152400275967
806 => 0.082133726575331
807 => 0.081084550877714
808 => 0.080937763945008
809 => 0.078854561916976
810 => 0.080225731800343
811 => 0.07930602303223
812 => 0.077919804981318
813 => 0.077680820466843
814 => 0.077673636303756
815 => 0.079096972289359
816 => 0.080209099290645
817 => 0.079322021760013
818 => 0.079120051401564
819 => 0.081276566432257
820 => 0.08100213023753
821 => 0.080764470262821
822 => 0.086889979225703
823 => 0.082041160902157
824 => 0.079926799352216
825 => 0.077309875427797
826 => 0.078161959053263
827 => 0.078341505592862
828 => 0.072048275290625
829 => 0.06949511254078
830 => 0.068618963298941
831 => 0.068114727023331
901 => 0.068344513825927
902 => 0.066046367894944
903 => 0.06759075996839
904 => 0.065600759849599
905 => 0.065267129853663
906 => 0.068825496579771
907 => 0.069320622522032
908 => 0.067208261428774
909 => 0.068564739210843
910 => 0.068072861510613
911 => 0.065634872689989
912 => 0.065541759449673
913 => 0.064318462358934
914 => 0.062404239288922
915 => 0.061529387980464
916 => 0.061073757823212
917 => 0.061261759706149
918 => 0.061166700201183
919 => 0.060546372630557
920 => 0.061202256651402
921 => 0.059526744008131
922 => 0.058859541373057
923 => 0.058558181421778
924 => 0.057071067511966
925 => 0.059437727065035
926 => 0.059903988811381
927 => 0.060371169237403
928 => 0.064437655888301
929 => 0.064234505706994
930 => 0.066070884407858
1001 => 0.065999526108426
1002 => 0.065475761155577
1003 => 0.063266082974661
1004 => 0.064146821313848
1005 => 0.061436045602957
1006 => 0.063467143080387
1007 => 0.062540235012347
1008 => 0.063153754530197
1009 => 0.062050591118278
1010 => 0.062661127298935
1011 => 0.06001455676861
1012 => 0.057543226445645
1013 => 0.058537761910236
1014 => 0.059618935699172
1015 => 0.061963195951543
1016 => 0.060566973884958
1017 => 0.061069108137104
1018 => 0.059387042448675
1019 => 0.055916460475135
1020 => 0.055936103592201
1021 => 0.05540223016631
1022 => 0.054940885579544
1023 => 0.060727346785026
1024 => 0.06000770886371
1025 => 0.058861060019975
1026 => 0.060395895063328
1027 => 0.060801729809898
1028 => 0.060813283354597
1029 => 0.061933059382401
1030 => 0.062530684049171
1031 => 0.062636017986943
1101 => 0.064398009761055
1102 => 0.064988606162504
1103 => 0.067421189155741
1104 => 0.062479979771567
1105 => 0.062378218815953
1106 => 0.060417493339942
1107 => 0.059173970245212
1108 => 0.060502638430118
1109 => 0.061679657060651
1110 => 0.060454066589719
1111 => 0.060614102831596
1112 => 0.05896884775879
1113 => 0.059556949030872
1114 => 0.060063501072185
1115 => 0.059783812808725
1116 => 0.05936510594126
1117 => 0.061583154955491
1118 => 0.061458003937504
1119 => 0.063523502172283
1120 => 0.065133705751488
1121 => 0.068019478423744
1122 => 0.065008024201514
1123 => 0.064898274840209
1124 => 0.065971092451312
1125 => 0.064988441919718
1126 => 0.065609443135742
1127 => 0.067919425527201
1128 => 0.06796823181511
1129 => 0.067150663609285
1130 => 0.06710091450966
1201 => 0.067257937426805
1202 => 0.068177625557044
1203 => 0.067856258265177
1204 => 0.06822815263135
1205 => 0.068693212230898
1206 => 0.070616895915814
1207 => 0.071080689539647
1208 => 0.069953911483157
1209 => 0.070055646925659
1210 => 0.069634201001783
1211 => 0.06922708952002
1212 => 0.070142216677165
1213 => 0.071814629543718
1214 => 0.071804225550074
1215 => 0.072192192828053
1216 => 0.07243389322814
1217 => 0.071396338175461
1218 => 0.070720927988123
1219 => 0.070979923231415
1220 => 0.071394062265622
1221 => 0.070845623524249
1222 => 0.067460405550955
1223 => 0.068487264435491
1224 => 0.06831634490627
1225 => 0.068072934712135
1226 => 0.069105449261
1227 => 0.069005860713926
1228 => 0.066022797086736
1229 => 0.066213763141623
1230 => 0.066034410365033
1231 => 0.06661393587832
]
'min_raw' => 0.054940885579544
'max_raw' => 0.12307436591615
'avg_raw' => 0.089007625747845
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.05494'
'max' => '$0.123074'
'avg' => '$0.0890076'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.013397619729699
'max_diff' => -0.089435589724791
'year' => 2034
]
9 => [
'items' => [
101 => 0.06495714564016
102 => 0.065466763158765
103 => 0.065786390489067
104 => 0.065974653442108
105 => 0.066654788321606
106 => 0.066574982343584
107 => 0.066649827469959
108 => 0.067658287947304
109 => 0.072758734979868
110 => 0.073036341058349
111 => 0.071669307198258
112 => 0.072215410261814
113 => 0.071167011799398
114 => 0.071870808710877
115 => 0.072352328683207
116 => 0.070176432519212
117 => 0.07004759006983
118 => 0.068994864494024
119 => 0.069560539589038
120 => 0.068660509839392
121 => 0.068881345658251
122 => 0.068263869456601
123 => 0.069375203681286
124 => 0.070617848028362
125 => 0.070931789063946
126 => 0.070105945359439
127 => 0.069507980091623
128 => 0.068458150063344
129 => 0.070204040797361
130 => 0.070714592453043
131 => 0.070201359086862
201 => 0.070082431701547
202 => 0.069857064521273
203 => 0.070130244414222
204 => 0.07071181187908
205 => 0.070437555402518
206 => 0.070618706637064
207 => 0.069928344933314
208 => 0.071396681649356
209 => 0.073728753728904
210 => 0.073736251721972
211 => 0.073461993767065
212 => 0.073349773320887
213 => 0.073631178625986
214 => 0.073783829460153
215 => 0.074693842615935
216 => 0.075670322988612
217 => 0.080227130816135
218 => 0.078947597412528
219 => 0.082990668402816
220 => 0.086188212629072
221 => 0.087147016330863
222 => 0.086264962040416
223 => 0.083247501960431
224 => 0.083099450973353
225 => 0.087608810271636
226 => 0.086334709728131
227 => 0.086183159522635
228 => 0.084570921384275
301 => 0.085523953803624
302 => 0.08531551163337
303 => 0.084986475470285
304 => 0.086804794937589
305 => 0.090208526657883
306 => 0.089678023149282
307 => 0.08928202688946
308 => 0.087546886551699
309 => 0.088591828592656
310 => 0.088219744746418
311 => 0.089818453080101
312 => 0.088871413678953
313 => 0.086325057163401
314 => 0.086730572831404
315 => 0.086669279953969
316 => 0.087930683028307
317 => 0.08755204113534
318 => 0.086595344047383
319 => 0.090196893072897
320 => 0.089963028512048
321 => 0.09029459499045
322 => 0.090440560808276
323 => 0.092632760233694
324 => 0.09353083419573
325 => 0.09373471270811
326 => 0.094587813512512
327 => 0.09371348678294
328 => 0.097211417085621
329 => 0.099537336627013
330 => 0.10223901186506
331 => 0.1061868855297
401 => 0.10767132254748
402 => 0.1074031722869
403 => 0.11039640504297
404 => 0.1157751777698
405 => 0.10849037603999
406 => 0.11616128995036
407 => 0.1137327671713
408 => 0.1079747833494
409 => 0.10760403707344
410 => 0.11150341056919
411 => 0.12015184568199
412 => 0.11798551077598
413 => 0.12015538902983
414 => 0.11762411078684
415 => 0.11749841148679
416 => 0.12003245049549
417 => 0.12595337076259
418 => 0.12314056348607
419 => 0.11910771452653
420 => 0.12208550744017
421 => 0.11950586763665
422 => 0.1136932171636
423 => 0.1179838542205
424 => 0.11511482741086
425 => 0.11595216195977
426 => 0.1219824295781
427 => 0.12125685182416
428 => 0.12219581662446
429 => 0.12053856832892
430 => 0.11899043709681
501 => 0.11610073518635
502 => 0.11524523691125
503 => 0.11548166585689
504 => 0.11524511974881
505 => 0.11362835808764
506 => 0.11327921856084
507 => 0.11269730405336
508 => 0.11287766369179
509 => 0.11178349417264
510 => 0.11384841812224
511 => 0.11423168620334
512 => 0.1157343656535
513 => 0.11589037881896
514 => 0.12007531969835
515 => 0.11777032458706
516 => 0.11931671431141
517 => 0.11917839065928
518 => 0.10809957631855
519 => 0.1096261391855
520 => 0.11200099194465
521 => 0.11093112399569
522 => 0.1094185810264
523 => 0.10819712148128
524 => 0.10634648536977
525 => 0.1089512201584
526 => 0.11237616942279
527 => 0.11597724118433
528 => 0.12030369295426
529 => 0.11933807928466
530 => 0.11589636117791
531 => 0.116050754138
601 => 0.1170051506659
602 => 0.1157691204462
603 => 0.11540459100424
604 => 0.11695506991831
605 => 0.11696574721446
606 => 0.11554354506746
607 => 0.11396302764131
608 => 0.11395640521558
609 => 0.11367516740558
610 => 0.11767414236846
611 => 0.11987317425608
612 => 0.12012528971807
613 => 0.11985620487673
614 => 0.11995976495257
615 => 0.11868019674953
616 => 0.12160491021752
617 => 0.12428891651993
618 => 0.12356954549545
619 => 0.12249110606514
620 => 0.12163207711422
621 => 0.12336718557494
622 => 0.1232899239265
623 => 0.12426547406635
624 => 0.12422121747696
625 => 0.12389317665722
626 => 0.12356955721082
627 => 0.12485267173552
628 => 0.1244831553586
629 => 0.12411306502067
630 => 0.12337079218998
701 => 0.12347167939551
702 => 0.12239342617298
703 => 0.12189457689472
704 => 0.11439308065655
705 => 0.11238843574325
706 => 0.11301913784128
707 => 0.11322678134813
708 => 0.11235435731284
709 => 0.1136051892721
710 => 0.11341024843621
711 => 0.11416864919209
712 => 0.11369483332575
713 => 0.11371427889417
714 => 0.11510767032889
715 => 0.1155121777903
716 => 0.11530644203065
717 => 0.1154505323045
718 => 0.11877103184863
719 => 0.11829896299705
720 => 0.11804818582833
721 => 0.11811765281791
722 => 0.11896611164375
723 => 0.11920363379085
724 => 0.1181972357632
725 => 0.11867185889096
726 => 0.12069274393031
727 => 0.12139993932189
728 => 0.12365696753878
729 => 0.12269814183677
730 => 0.12445810790982
731 => 0.12986764360173
801 => 0.13418915502382
802 => 0.13021491452605
803 => 0.13815081991156
804 => 0.1443300605922
805 => 0.14409289104281
806 => 0.14301539750173
807 => 0.13598049627044
808 => 0.12950687527294
809 => 0.13492233412182
810 => 0.13493613924012
811 => 0.13447094652227
812 => 0.13158167450441
813 => 0.13437040611891
814 => 0.13459176550728
815 => 0.134467863114
816 => 0.13225266503217
817 => 0.12887046699825
818 => 0.12953134039824
819 => 0.13061386450888
820 => 0.12856442052926
821 => 0.12790949899758
822 => 0.12912712272889
823 => 0.13305056009315
824 => 0.13230885698636
825 => 0.13228948812078
826 => 0.13546280854269
827 => 0.13319139596601
828 => 0.12953967612822
829 => 0.12861756870892
830 => 0.12534470857636
831 => 0.12760528472744
901 => 0.1276866388387
902 => 0.12644854438327
903 => 0.12964014066975
904 => 0.1296107295481
905 => 0.1326406752157
906 => 0.13843279333652
907 => 0.13671977899537
908 => 0.13472772969205
909 => 0.13494432068485
910 => 0.13731978928383
911 => 0.13588352674222
912 => 0.13640001676616
913 => 0.13731900751432
914 => 0.13787345744994
915 => 0.13486454387162
916 => 0.13416302218354
917 => 0.13272795501038
918 => 0.1323535727717
919 => 0.13352240504058
920 => 0.13321445903318
921 => 0.12767980134066
922 => 0.12710139881725
923 => 0.12711913759687
924 => 0.12566471695021
925 => 0.1234463763631
926 => 0.1292760429758
927 => 0.12880783916066
928 => 0.12829097838486
929 => 0.12835429088073
930 => 0.13088475157156
1001 => 0.12941695657955
1002 => 0.13331933013269
1003 => 0.13251711944625
1004 => 0.13169433508272
1005 => 0.13158060122106
1006 => 0.13126389943776
1007 => 0.1301778111833
1008 => 0.12886629435225
1009 => 0.12800031733875
1010 => 0.11807352667382
1011 => 0.11991588127975
1012 => 0.12203534231796
1013 => 0.12276697177515
1014 => 0.12151546896142
1015 => 0.13022722814239
1016 => 0.13181895049335
1017 => 0.1269975196668
1018 => 0.12609562681688
1019 => 0.13028635608748
1020 => 0.12775883404149
1021 => 0.12889697706404
1022 => 0.12643693438024
1023 => 0.13143555119007
1024 => 0.13139747010496
1025 => 0.12945289526705
1026 => 0.13109643660417
1027 => 0.13081083085128
1028 => 0.12861541064856
1029 => 0.1315051499264
1030 => 0.13150658320103
1031 => 0.12963497219825
1101 => 0.12744934029533
1102 => 0.12705860093341
1103 => 0.12676423131265
1104 => 0.12882458018251
1105 => 0.13067188253669
1106 => 0.13410925423273
1107 => 0.13497349114705
1108 => 0.13834666535915
1109 => 0.13633810435272
1110 => 0.13722847343165
1111 => 0.13819509501723
1112 => 0.13865852895169
1113 => 0.13790338822472
1114 => 0.14314331623002
1115 => 0.14358572670091
1116 => 0.14373406310497
1117 => 0.1419671888637
1118 => 0.14353658673201
1119 => 0.14280231744242
1120 => 0.14471268214804
1121 => 0.14501225172664
1122 => 0.14475852695107
1123 => 0.1448536150637
1124 => 0.14038226089782
1125 => 0.14015039759605
1126 => 0.13698892502411
1127 => 0.1382772484656
1128 => 0.13586878954268
1129 => 0.13663253667701
1130 => 0.13696918913658
1201 => 0.13679334099656
1202 => 0.13835008834
1203 => 0.1370265350756
1204 => 0.13353346039857
1205 => 0.13003943403568
1206 => 0.12999556938086
1207 => 0.1290756539142
1208 => 0.12841072352273
1209 => 0.1285388127058
1210 => 0.12899021569388
1211 => 0.12838448716046
1212 => 0.12851375005428
1213 => 0.13066037536587
1214 => 0.13109086576308
1215 => 0.12962789118991
1216 => 0.1237538371724
1217 => 0.12231232958256
1218 => 0.1233484566518
1219 => 0.12285325464783
1220 => 0.099152164804197
1221 => 0.10472038429972
1222 => 0.10141193735435
1223 => 0.1029366219211
1224 => 0.099559554308058
1225 => 0.10117126798028
1226 => 0.10087364331538
1227 => 0.1098271754886
1228 => 0.10968737839889
1229 => 0.10975429186784
1230 => 0.10656033765303
1231 => 0.11164839344252
]
'min_raw' => 0.06495714564016
'max_raw' => 0.14501225172664
'avg_raw' => 0.1049846986834
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.064957'
'max' => '$0.145012'
'avg' => '$0.104984'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.010016260060615
'max_diff' => 0.021937885810497
'year' => 2035
]
10 => [
'items' => [
101 => 0.114154952685
102 => 0.11369105527913
103 => 0.11380780826191
104 => 0.11180160519662
105 => 0.10977371629885
106 => 0.10752447542136
107 => 0.11170328695716
108 => 0.11123867444907
109 => 0.11230432838032
110 => 0.11501458636891
111 => 0.11541368215299
112 => 0.11595007093404
113 => 0.11575781373879
114 => 0.12033816012258
115 => 0.11978344995341
116 => 0.12112014186011
117 => 0.11837046519296
118 => 0.11525894504236
119 => 0.11585034329974
120 => 0.11579338689183
121 => 0.11506826644762
122 => 0.11441366013292
123 => 0.11332392505312
124 => 0.11677200809604
125 => 0.11663202222144
126 => 0.11889823081549
127 => 0.11849765643371
128 => 0.11582252267505
129 => 0.11591806560058
130 => 0.11656063769117
131 => 0.11878458703344
201 => 0.11944480661625
202 => 0.11913896660029
203 => 0.11986286723267
204 => 0.12043500877669
205 => 0.11993471940175
206 => 0.127017761934
207 => 0.12407638884661
208 => 0.12550999362346
209 => 0.12585189991545
210 => 0.12497611413803
211 => 0.12516604071361
212 => 0.12545372772373
213 => 0.12720050691426
214 => 0.13178456094485
215 => 0.13381480727028
216 => 0.13992290351094
217 => 0.13364622357535
218 => 0.13327379136345
219 => 0.13437404394323
220 => 0.13796014304415
221 => 0.14086633954028
222 => 0.14183049258055
223 => 0.14195792132125
224 => 0.14376673652047
225 => 0.14480351566026
226 => 0.14354709877872
227 => 0.14248241702395
228 => 0.13866885913153
229 => 0.13911028884155
301 => 0.14215130179882
302 => 0.14644691171572
303 => 0.15013299190647
304 => 0.14884225509653
305 => 0.15868966583815
306 => 0.15966599639011
307 => 0.15953109907638
308 => 0.16175532537122
309 => 0.15734068913177
310 => 0.15545334660985
311 => 0.14271261330399
312 => 0.14629223967517
313 => 0.15149543682978
314 => 0.15080677417538
315 => 0.14702807331985
316 => 0.15013012542302
317 => 0.14910448998758
318 => 0.14829552876598
319 => 0.15200153694694
320 => 0.14792662871755
321 => 0.15145478650305
322 => 0.14692988764903
323 => 0.14884815107356
324 => 0.14775925197784
325 => 0.14846390314322
326 => 0.14434452682876
327 => 0.14656724229584
328 => 0.14425205455772
329 => 0.14425095685728
330 => 0.14419984895965
331 => 0.14692365706643
401 => 0.147012480351
402 => 0.14499958204464
403 => 0.14470949195132
404 => 0.14578210706872
405 => 0.14452635568459
406 => 0.14511391385362
407 => 0.14454415222297
408 => 0.1444158868789
409 => 0.14339384679476
410 => 0.14295352382494
411 => 0.14312618580713
412 => 0.14253680144855
413 => 0.14218167605355
414 => 0.1441292055802
415 => 0.14308871911723
416 => 0.14396973610708
417 => 0.14296570605394
418 => 0.13948530045468
419 => 0.13748368238993
420 => 0.13090951884671
421 => 0.13277394347234
422 => 0.13401005892802
423 => 0.13360152277729
424 => 0.13447921651156
425 => 0.13453309977851
426 => 0.13424775259847
427 => 0.13391735711922
428 => 0.13375653887194
429 => 0.13495514633126
430 => 0.13565097830467
501 => 0.13413411965109
502 => 0.13377874089166
503 => 0.13531236873849
504 => 0.13624788083911
505 => 0.14315517657125
506 => 0.14264346179314
507 => 0.14392776546724
508 => 0.14378317258278
509 => 0.14512932743885
510 => 0.14732972170104
511 => 0.1428557049261
512 => 0.14363223953837
513 => 0.14344185118424
514 => 0.14552046131208
515 => 0.14552695050601
516 => 0.14428071990009
517 => 0.14495632172934
518 => 0.14457921932242
519 => 0.14526069434018
520 => 0.1426366275303
521 => 0.14583245765422
522 => 0.14764428739974
523 => 0.14766944465751
524 => 0.14852823757732
525 => 0.14940082092177
526 => 0.15107566866546
527 => 0.14935411032723
528 => 0.14625719446707
529 => 0.1464807817892
530 => 0.1446650611535
531 => 0.14469558374543
601 => 0.14453265175764
602 => 0.14502162291793
603 => 0.14274392920275
604 => 0.14327849936511
605 => 0.14253009800736
606 => 0.14363061265998
607 => 0.14244664081535
608 => 0.14344175937321
609 => 0.14387121955408
610 => 0.1454559368671
611 => 0.14221257677973
612 => 0.13559914600539
613 => 0.13698936933425
614 => 0.13493311983118
615 => 0.13512343355138
616 => 0.13550789755439
617 => 0.13426172393183
618 => 0.13449945458757
619 => 0.13449096117566
620 => 0.13441776954035
621 => 0.13409359165161
622 => 0.1336234695763
623 => 0.1354962912284
624 => 0.13581452012141
625 => 0.13652190353037
626 => 0.13862659673267
627 => 0.13841628824968
628 => 0.13875931011105
629 => 0.13801049531365
630 => 0.13515816892218
701 => 0.13531306396819
702 => 0.13338152026238
703 => 0.13647250961511
704 => 0.13574052253732
705 => 0.13526860570641
706 => 0.13513983882681
707 => 0.13724974915647
708 => 0.1378810673959
709 => 0.13748767223528
710 => 0.13668080728368
711 => 0.13823022651896
712 => 0.13864478574157
713 => 0.13873759026316
714 => 0.1414828640764
715 => 0.13889102057313
716 => 0.13951490306508
717 => 0.14438225617213
718 => 0.13996823855285
719 => 0.14230644213012
720 => 0.14219199923244
721 => 0.14338814506208
722 => 0.14209388036153
723 => 0.14210992432365
724 => 0.14317202078644
725 => 0.14168049785457
726 => 0.1413111758013
727 => 0.14080096002985
728 => 0.14191499750094
729 => 0.14258281258128
730 => 0.14796491167269
731 => 0.15144199313928
801 => 0.15129104386267
802 => 0.15267043768572
803 => 0.15204900813464
804 => 0.15004224818935
805 => 0.15346754271765
806 => 0.15238363620849
807 => 0.15247299214415
808 => 0.15246966631177
809 => 0.15319036938361
810 => 0.15267968520574
811 => 0.15167307427051
812 => 0.15234130958588
813 => 0.15432572957404
814 => 0.16048543010671
815 => 0.16393248012998
816 => 0.16027791336707
817 => 0.16279878458352
818 => 0.16128716013191
819 => 0.16101245300212
820 => 0.16259574641697
821 => 0.16418181117735
822 => 0.16408078570886
823 => 0.16292938413815
824 => 0.16227898660659
825 => 0.16720401461473
826 => 0.17083269135546
827 => 0.1705852399287
828 => 0.17167741005091
829 => 0.17488405530926
830 => 0.17517723076469
831 => 0.17514029739587
901 => 0.17441363143987
902 => 0.17757099013222
903 => 0.18020491430182
904 => 0.17424542926646
905 => 0.17651472315254
906 => 0.17753348229008
907 => 0.17902932295621
908 => 0.18155305689197
909 => 0.18429450133358
910 => 0.18468217163603
911 => 0.18440710100471
912 => 0.18259904470149
913 => 0.18559876592173
914 => 0.18735593226042
915 => 0.18840228460308
916 => 0.19105566004763
917 => 0.17753977379969
918 => 0.16797255773026
919 => 0.16647849878874
920 => 0.16951672639728
921 => 0.17031788278824
922 => 0.16999493765161
923 => 0.15922616615224
924 => 0.16642180343544
925 => 0.17416370412581
926 => 0.17446110206121
927 => 0.17833685942232
928 => 0.17959896489176
929 => 0.18271945757458
930 => 0.18252426990765
1001 => 0.18328406021803
1002 => 0.18310939758341
1003 => 0.18888945318108
1004 => 0.19526571285187
1005 => 0.19504492325473
1006 => 0.19412826048657
1007 => 0.19548966101151
1008 => 0.20207064431328
1009 => 0.20146477282896
1010 => 0.20205332536797
1011 => 0.20981267556872
1012 => 0.21990093458439
1013 => 0.21521392542697
1014 => 0.22538338664802
1015 => 0.2317845234267
1016 => 0.24285462759553
1017 => 0.24146859603218
1018 => 0.24577810634893
1019 => 0.23898731026027
1020 => 0.22339426979438
1021 => 0.22092661145289
1022 => 0.22586692594361
1023 => 0.23801220705021
1024 => 0.22548442782018
1025 => 0.2280187812422
1026 => 0.22728888728616
1027 => 0.2272499943391
1028 => 0.22873437993962
1029 => 0.22658120120571
1030 => 0.21780876369433
1031 => 0.2218291201095
1101 => 0.22027666742423
1102 => 0.22199922942155
1103 => 0.23129518608248
1104 => 0.22718522205475
1105 => 0.22285570881791
1106 => 0.22828587921281
1107 => 0.23520035213452
1108 => 0.23476765684558
1109 => 0.23392804713244
1110 => 0.23866088312487
1111 => 0.24647814159354
1112 => 0.24859111514533
1113 => 0.25015086902342
1114 => 0.25036593273095
1115 => 0.25258122257987
1116 => 0.24066905073731
1117 => 0.25957397337772
1118 => 0.26283833127976
1119 => 0.26222476728795
1120 => 0.2658529637109
1121 => 0.26478545628481
1122 => 0.26323880551119
1123 => 0.26899026858107
1124 => 0.26239668029059
1125 => 0.25303791182193
1126 => 0.24790350634457
1127 => 0.25466490565783
1128 => 0.25879385627812
1129 => 0.26152282998755
1130 => 0.26234861578313
1201 => 0.24159375872785
1202 => 0.23040804189219
1203 => 0.23757795813934
1204 => 0.24632575080205
1205 => 0.24062045630739
1206 => 0.24084409305003
1207 => 0.23270984242565
1208 => 0.24704545148975
1209 => 0.24495687383056
1210 => 0.25579241842106
1211 => 0.25320642874386
1212 => 0.26204239472399
1213 => 0.25971558875596
1214 => 0.26937403023931
1215 => 0.27322704403888
1216 => 0.27969685388207
1217 => 0.28445607233959
1218 => 0.28725077644719
1219 => 0.28708299289524
1220 => 0.2981570028856
1221 => 0.29162704609072
1222 => 0.28342388136371
1223 => 0.28327551199445
1224 => 0.28752404724632
1225 => 0.29642781160549
1226 => 0.29873642815933
1227 => 0.30002662986566
1228 => 0.29805064104017
1229 => 0.29096284094555
1230 => 0.28790236480066
1231 => 0.29050997914664
]
'min_raw' => 0.10752447542136
'max_raw' => 0.30002662986566
'avg_raw' => 0.20377555264351
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.107524'
'max' => '$0.300026'
'avg' => '$0.203775'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.042567329781204
'max_diff' => 0.15501437813901
'year' => 2036
]
11 => [
'items' => [
101 => 0.28732109087636
102 => 0.29282600667488
103 => 0.30038543185281
104 => 0.29882444044677
105 => 0.30404260068024
106 => 0.30944284755541
107 => 0.31716544312717
108 => 0.31918441557652
109 => 0.32252170026064
110 => 0.32595686244151
111 => 0.32706014395378
112 => 0.32916665068887
113 => 0.32915554835858
114 => 0.33550364818902
115 => 0.34250579888629
116 => 0.34514894867434
117 => 0.35122672586785
118 => 0.34081874541469
119 => 0.34871331814667
120 => 0.3558344203649
121 => 0.34734434873175
122 => 0.35904593454506
123 => 0.35950028060583
124 => 0.36636036669893
125 => 0.3594063552101
126 => 0.35527708538602
127 => 0.36719813264641
128 => 0.37296635190624
129 => 0.37122891732186
130 => 0.35800695434695
131 => 0.35031120477888
201 => 0.33016994376003
202 => 0.35402813747459
203 => 0.3656487676799
204 => 0.35797685972206
205 => 0.36184612384776
206 => 0.38295557430447
207 => 0.39099268630269
208 => 0.38932102319072
209 => 0.38960350673872
210 => 0.39394018648906
211 => 0.41317141275521
212 => 0.4016476162002
213 => 0.41045712687809
214 => 0.41512965957659
215 => 0.41946976835003
216 => 0.40881183290792
217 => 0.3949460154939
218 => 0.39055412907146
219 => 0.35721403967243
220 => 0.35547854323054
221 => 0.35450435648678
222 => 0.34836224686885
223 => 0.34353623117457
224 => 0.339698404316
225 => 0.32962680056701
226 => 0.33302567117726
227 => 0.31697363690844
228 => 0.32724315958447
301 => 0.30162372530151
302 => 0.32296035145796
303 => 0.31134779589835
304 => 0.31914531463795
305 => 0.31911810982963
306 => 0.30476040562447
307 => 0.29647918147657
308 => 0.30175629981368
309 => 0.30741378956923
310 => 0.30833169824799
311 => 0.31566678139165
312 => 0.31771384542996
313 => 0.3115111458256
314 => 0.30109281947062
315 => 0.30351275906616
316 => 0.29643014147791
317 => 0.28401812658344
318 => 0.29293265237364
319 => 0.29597646342244
320 => 0.29732078378368
321 => 0.28511499266452
322 => 0.28127966809426
323 => 0.27923777347454
324 => 0.2995172051109
325 => 0.30062815815417
326 => 0.29494436531188
327 => 0.32063564791838
328 => 0.31482091941735
329 => 0.32131739579608
330 => 0.30329317491247
331 => 0.30398172442306
401 => 0.29544876940581
402 => 0.30022665404321
403 => 0.2968497991799
404 => 0.29984064818048
405 => 0.30163335073969
406 => 0.31016490558299
407 => 0.32305776810984
408 => 0.30889057579169
409 => 0.30271772722073
410 => 0.30654732775673
411 => 0.31674605864296
412 => 0.33219765799902
413 => 0.32305000018782
414 => 0.32710957538713
415 => 0.32799641197025
416 => 0.32125126776496
417 => 0.33244636108704
418 => 0.33844590254712
419 => 0.34460019065499
420 => 0.34994378657981
421 => 0.34214203264901
422 => 0.35049102769246
423 => 0.34376321148346
424 => 0.33772766483514
425 => 0.33773681826804
426 => 0.33395063169027
427 => 0.32661441810565
428 => 0.32526150776293
429 => 0.33229951821948
430 => 0.33794333610355
501 => 0.33840818797655
502 => 0.34153289554701
503 => 0.34338206530016
504 => 0.3615064427054
505 => 0.3687962172305
506 => 0.37771001553143
507 => 0.38118244232379
508 => 0.39163320203487
509 => 0.38319336479897
510 => 0.38136735292391
511 => 0.35601722828226
512 => 0.36016830977219
513 => 0.36681459175736
514 => 0.35612682302422
515 => 0.36290575230014
516 => 0.36424405653657
517 => 0.35576365673239
518 => 0.36029340468425
519 => 0.34826373710079
520 => 0.32331998198987
521 => 0.33247413061703
522 => 0.33921466525973
523 => 0.32959509122267
524 => 0.34683780535518
525 => 0.33676496772084
526 => 0.33357236177223
527 => 0.3211168677205
528 => 0.32699538145698
529 => 0.33494615545778
530 => 0.33003350150197
531 => 0.34022799609898
601 => 0.35466611922074
602 => 0.36495558556241
603 => 0.36574548302331
604 => 0.35913004550632
605 => 0.36973132634645
606 => 0.36980854510369
607 => 0.35785025700852
608 => 0.35052587213426
609 => 0.34886175648019
610 => 0.35301904365315
611 => 0.35806675775867
612 => 0.36602559602586
613 => 0.37083495530446
614 => 0.38337521361599
615 => 0.38676824795771
616 => 0.39049616399552
617 => 0.39547780946877
618 => 0.40145955212708
619 => 0.38837183973149
620 => 0.38889183894351
621 => 0.37670474237245
622 => 0.36368108187983
623 => 0.37356441677153
624 => 0.38648556241748
625 => 0.3835214373297
626 => 0.38318791270575
627 => 0.38374880861123
628 => 0.38151395509432
629 => 0.37140579546487
630 => 0.36632954097938
701 => 0.37287920435629
702 => 0.37636005894914
703 => 0.38175856086023
704 => 0.38109308155113
705 => 0.39499904271731
706 => 0.40040247873205
707 => 0.39902004857342
708 => 0.39927444899264
709 => 0.40905711179558
710 => 0.4199374447905
711 => 0.43012831242664
712 => 0.44049490069407
713 => 0.42799757392286
714 => 0.4216522021164
715 => 0.42819900611517
716 => 0.42472517976048
717 => 0.44468681639833
718 => 0.44606891680899
719 => 0.46602910999331
720 => 0.48497371014082
721 => 0.47307494621594
722 => 0.48429494466501
723 => 0.49643028776757
724 => 0.51984133350088
725 => 0.51195731690842
726 => 0.50591828375689
727 => 0.50021142660908
728 => 0.5120864903956
729 => 0.52736357024818
730 => 0.53065410692637
731 => 0.5359860334268
801 => 0.53038016466855
802 => 0.53713181612168
803 => 0.56096811257718
804 => 0.55452733486609
805 => 0.54538039510967
806 => 0.56419686189904
807 => 0.57100646808295
808 => 0.61879985050009
809 => 0.67914097004789
810 => 0.65415935033395
811 => 0.63865245282568
812 => 0.64229694156865
813 => 0.6643314757517
814 => 0.67140826879014
815 => 0.65217110579481
816 => 0.65896599698121
817 => 0.69640651547725
818 => 0.71649215241472
819 => 0.68921315959269
820 => 0.61395150029727
821 => 0.54455681326344
822 => 0.56296340914829
823 => 0.56087667239812
824 => 0.60110183872231
825 => 0.55437372444779
826 => 0.55516050605125
827 => 0.59621748621582
828 => 0.58526418780275
829 => 0.56752124716604
830 => 0.5446863563656
831 => 0.50247394874924
901 => 0.46508524214336
902 => 0.53841310590238
903 => 0.53525107507902
904 => 0.53067198586009
905 => 0.54086225340762
906 => 0.59034330006054
907 => 0.58920260178067
908 => 0.58194606131353
909 => 0.58745008330164
910 => 0.56655636549996
911 => 0.57194115231857
912 => 0.54454582079046
913 => 0.55692965477127
914 => 0.56748317878419
915 => 0.56960195497738
916 => 0.57437566592802
917 => 0.53358482851891
918 => 0.55189871695953
919 => 0.56265641063911
920 => 0.51405275922652
921 => 0.56169567272334
922 => 0.53287475079104
923 => 0.52309249701149
924 => 0.53626301301171
925 => 0.53113045011768
926 => 0.5267177739356
927 => 0.52425542480659
928 => 0.53392639818035
929 => 0.53347523571315
930 => 0.51765164621864
1001 => 0.49701041877508
1002 => 0.50393829223033
1003 => 0.50142133085488
1004 => 0.49229953813575
1005 => 0.49844652505899
1006 => 0.47137830556795
1007 => 0.42480884081722
1008 => 0.45557405569283
1009 => 0.45438962838624
1010 => 0.45379238642875
1011 => 0.47691159511969
1012 => 0.47468921665495
1013 => 0.47065557797985
1014 => 0.49222545719827
1015 => 0.48435216112773
1016 => 0.50861580443527
1017 => 0.52459740919167
1018 => 0.5205439572747
1019 => 0.53557473379389
1020 => 0.5040978964424
1021 => 0.51455323917905
1022 => 0.51670807082659
1023 => 0.49195928823692
1024 => 0.4750528252564
1025 => 0.47392535692338
1026 => 0.44461187996927
1027 => 0.46027090274804
1028 => 0.47405019477896
1029 => 0.46745098321241
1030 => 0.46536186997627
1031 => 0.4760346964263
1101 => 0.47686406644805
1102 => 0.45795434205958
1103 => 0.46188627255304
1104 => 0.47828307633979
1105 => 0.46147311516748
1106 => 0.42881410650123
1107 => 0.42071422080588
1108 => 0.41963354674361
1109 => 0.39766601432779
1110 => 0.42125549389916
1111 => 0.41095805390751
1112 => 0.44348754345886
1113 => 0.42490687348628
1114 => 0.42410589794048
1115 => 0.42289510592543
1116 => 0.40398674330779
1117 => 0.40812647303192
1118 => 0.42188756513357
1119 => 0.42679767782523
1120 => 0.42628551284412
1121 => 0.42182012827493
1122 => 0.42386435846424
1123 => 0.41727918076747
1124 => 0.41495381746412
1125 => 0.40761433123717
1126 => 0.39682731406838
1127 => 0.39832731496632
1128 => 0.37695541137837
1129 => 0.36531086401088
1130 => 0.36208780677223
1201 => 0.35777779993187
1202 => 0.36257463351334
1203 => 0.37689486746075
1204 => 0.35962162711306
1205 => 0.33000786811389
1206 => 0.33178770548913
1207 => 0.33578647163284
1208 => 0.32833479737853
1209 => 0.32128241306844
1210 => 0.32741388904804
1211 => 0.3148661489688
1212 => 0.33730280607388
1213 => 0.33669595737719
1214 => 0.34505895567239
1215 => 0.35028851013238
1216 => 0.33823608019046
1217 => 0.33520492665331
1218 => 0.33693160946632
1219 => 0.30839338880073
1220 => 0.3427267741994
1221 => 0.34302369074205
1222 => 0.3404813110406
1223 => 0.35876277884104
1224 => 0.39734237803277
1225 => 0.38282718095606
1226 => 0.3772064579238
1227 => 0.36652145933076
1228 => 0.38075858554355
1229 => 0.37966539638417
1230 => 0.3747215804258
1231 => 0.37173154510853
]
'min_raw' => 0.27923777347454
'max_raw' => 0.71649215241472
'avg_raw' => 0.49786496294463
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.279237'
'max' => '$0.716492'
'avg' => '$0.497864'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.17171329805318
'max_diff' => 0.41646552254907
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0087649546315092
]
1 => [
'year' => 2028
'avg' => 0.01504320663218
]
2 => [
'year' => 2029
'avg' => 0.041095329244913
]
3 => [
'year' => 2030
'avg' => 0.03170498531145
]
4 => [
'year' => 2031
'avg' => 0.031138224731418
]
5 => [
'year' => 2032
'avg' => 0.054595107514148
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0087649546315092
'min' => '$0.008764'
'max_raw' => 0.054595107514148
'max' => '$0.054595'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.054595107514148
]
1 => [
'year' => 2033
'avg' => 0.14042423047509
]
2 => [
'year' => 2034
'avg' => 0.089007625747845
]
3 => [
'year' => 2035
'avg' => 0.1049846986834
]
4 => [
'year' => 2036
'avg' => 0.20377555264351
]
5 => [
'year' => 2037
'avg' => 0.49786496294463
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.054595107514148
'min' => '$0.054595'
'max_raw' => 0.49786496294463
'max' => '$0.497864'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.49786496294463
]
]
]
]
'prediction_2025_max_price' => '$0.014986'
'last_price' => 0.01453128
'sma_50day_nextmonth' => '$0.013969'
'sma_200day_nextmonth' => '$0.017167'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.014364'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.014434'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.015216'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.014838'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.016562'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.020238'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.017479'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.014472'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.01457'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.014794'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.015133'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.016499'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.017738'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.020618'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.01833'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.019736'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.060981'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.052562'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.01491'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.015538'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.016941'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.018575'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.028451'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.068949'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.182623'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '42.91'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 13.11
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.015254'
'vwma_10_action' => 'SELL'
'hma_9' => '0.0140085'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 11.47
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -36.18
'cci_20_action' => 'NEUTRAL'
'adx_14' => 16.35
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000832'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -88.53
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 30.27
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.004220'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 25
'buy_signals' => 8
'sell_pct' => 75.76
'buy_pct' => 24.24
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767700368
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Dimitra para 2026
La previsión del precio de Dimitra para 2026 sugiere que el precio medio podría oscilar entre $0.00502 en el extremo inferior y $0.014986 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Dimitra podría potencialmente ganar 3.13% para 2026 si DMTR alcanza el objetivo de precio previsto.
Predicción de precio de Dimitra 2027-2032
La predicción del precio de DMTR para 2027-2032 está actualmente dentro de un rango de precios de $0.008764 en el extremo inferior y $0.054595 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Dimitra alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Dimitra | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.004833 | $0.008764 | $0.012696 |
| 2028 | $0.008722 | $0.015043 | $0.021363 |
| 2029 | $0.01916 | $0.041095 | $0.063029 |
| 2030 | $0.016295 | $0.0317049 | $0.047114 |
| 2031 | $0.019266 | $0.031138 | $0.04301 |
| 2032 | $0.0294083 | $0.054595 | $0.079781 |
Predicción de precio de Dimitra 2032-2037
La predicción de precio de Dimitra para 2032-2037 se estima actualmente entre $0.054595 en el extremo inferior y $0.497864 en el extremo superior. Comparado con el precio actual, Dimitra podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Dimitra | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.0294083 | $0.054595 | $0.079781 |
| 2033 | $0.068338 | $0.140424 | $0.2125099 |
| 2034 | $0.05494 | $0.0890076 | $0.123074 |
| 2035 | $0.064957 | $0.104984 | $0.145012 |
| 2036 | $0.107524 | $0.203775 | $0.300026 |
| 2037 | $0.279237 | $0.497864 | $0.716492 |
Dimitra Histograma de precios potenciales
Pronóstico de precio de Dimitra basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Dimitra es Bajista, con 8 indicadores técnicos mostrando señales alcistas y 25 indicando señales bajistas. La predicción de precio de DMTR se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Dimitra
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Dimitra aumentar durante el próximo mes, alcanzando $0.017167 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Dimitra alcance $0.013969 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 42.91, lo que sugiere que el mercado de DMTR está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de DMTR para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.014364 | BUY |
| SMA 5 | $0.014434 | BUY |
| SMA 10 | $0.015216 | SELL |
| SMA 21 | $0.014838 | SELL |
| SMA 50 | $0.016562 | SELL |
| SMA 100 | $0.020238 | SELL |
| SMA 200 | $0.017479 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.014472 | BUY |
| EMA 5 | $0.01457 | SELL |
| EMA 10 | $0.014794 | SELL |
| EMA 21 | $0.015133 | SELL |
| EMA 50 | $0.016499 | SELL |
| EMA 100 | $0.017738 | SELL |
| EMA 200 | $0.020618 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.01833 | SELL |
| SMA 50 | $0.019736 | SELL |
| SMA 100 | $0.060981 | SELL |
| SMA 200 | $0.052562 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.018575 | SELL |
| EMA 50 | $0.028451 | SELL |
| EMA 100 | $0.068949 | SELL |
| EMA 200 | $0.182623 | SELL |
Osciladores de Dimitra
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 42.91 | NEUTRAL |
| Stoch RSI (14) | 13.11 | BUY |
| Estocástico Rápido (14) | 11.47 | BUY |
| Índice de Canal de Materias Primas (20) | -36.18 | NEUTRAL |
| Índice Direccional Medio (14) | 16.35 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.000832 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -88.53 | BUY |
| Oscilador Ultimate (7, 14, 28) | 30.27 | NEUTRAL |
| VWMA (10) | 0.015254 | SELL |
| Promedio Móvil de Hull (9) | 0.0140085 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.004220 | SELL |
Predicción de precios de Dimitra basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Dimitra
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Dimitra por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.020418 | $0.028691 | $0.040316 | $0.056652 | $0.0796055 | $0.111859 |
| Amazon.com acción | $0.03032 | $0.063265 | $0.1320067 | $0.275439 | $0.574721 | $1.19 |
| Apple acción | $0.020611 | $0.029235 | $0.041468 | $0.05882 | $0.083432 | $0.118342 |
| Netflix acción | $0.022928 | $0.036176 | $0.057081 | $0.090065 | $0.1421095 | $0.224226 |
| Google acción | $0.018817 | $0.024369 | $0.031557 | $0.040867 | $0.052923 | $0.068535 |
| Tesla acción | $0.032941 | $0.074675 | $0.169283 | $0.383753 | $0.869939 | $1.97 |
| Kodak acción | $0.010896 | $0.008171 | $0.006127 | $0.004595 | $0.003445 | $0.002584 |
| Nokia acción | $0.009626 | $0.006377 | $0.004224 | $0.002798 | $0.001853 | $0.001228 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Dimitra
Podría preguntarse cosas como: "¿Debo invertir en Dimitra ahora?", "¿Debería comprar DMTR hoy?", "¿Será Dimitra una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Dimitra regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Dimitra, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Dimitra a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Dimitra es de $0.01453 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Dimitra
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Dimitra
basado en el historial de precios del último mes
Predicción de precios de Dimitra basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Dimitra ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.0149089 | $0.015296 | $0.015694 | $0.016102 |
| Si Dimitra ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.015286 | $0.016081 | $0.016917 | $0.017796 |
| Si Dimitra ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.016419 | $0.018553 | $0.020965 | $0.02369 |
| Si Dimitra ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.0183084 | $0.023067 | $0.029063 | $0.036617 |
| Si Dimitra ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.022085 | $0.033567 | $0.051017 | $0.077539 |
| Si Dimitra ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.033417 | $0.076847 | $0.176723 | $0.4064048 |
| Si Dimitra ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.0523027 | $0.188254 | $0.677588 | $2.43 |
Cuadro de preguntas
¿Es DMTR una buena inversión?
La decisión de adquirir Dimitra depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Dimitra ha experimentado un aumento de 3.2434% durante las últimas 24 horas, y Dimitra ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Dimitra dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Dimitra subir?
Parece que el valor medio de Dimitra podría potencialmente aumentar hasta $0.014986 para el final de este año. Mirando las perspectivas de Dimitra en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.047114. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Dimitra la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Dimitra, el precio de Dimitra aumentará en un 0.86% durante la próxima semana y alcanzará $0.014655 para el 13 de enero de 2026.
¿Cuál será el precio de Dimitra el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Dimitra, el precio de Dimitra disminuirá en un -11.62% durante el próximo mes y alcanzará $0.012843 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Dimitra este año en 2026?
Según nuestra predicción más reciente sobre el valor de Dimitra en 2026, se anticipa que DMTR fluctúe dentro del rango de $0.00502 y $0.014986. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Dimitra no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Dimitra en 5 años?
El futuro de Dimitra parece estar en una tendencia alcista, con un precio máximo de $0.047114 proyectada después de un período de cinco años. Basado en el pronóstico de Dimitra para 2030, el valor de Dimitra podría potencialmente alcanzar su punto más alto de aproximadamente $0.047114, mientras que su punto más bajo se anticipa que esté alrededor de $0.016295.
¿Cuánto será Dimitra en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Dimitra, se espera que el valor de DMTR en 2026 crezca en un 3.13% hasta $0.014986 si ocurre lo mejor. El precio estará entre $0.014986 y $0.00502 durante 2026.
¿Cuánto será Dimitra en 2027?
Según nuestra última simulación experimental para la predicción de precios de Dimitra, el valor de DMTR podría disminuir en un -12.62% hasta $0.012696 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.012696 y $0.004833 a lo largo del año.
¿Cuánto será Dimitra en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Dimitra sugiere que el valor de DMTR en 2028 podría aumentar en un 47.02% , alcanzando $0.021363 en el mejor escenario. Se espera que el precio oscile entre $0.021363 y $0.008722 durante el año.
¿Cuánto será Dimitra en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Dimitra podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.063029 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.063029 y $0.01916.
¿Cuánto será Dimitra en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Dimitra, se espera que el valor de DMTR en 2030 aumente en un 224.23% , alcanzando $0.047114 en el mejor escenario. Se pronostica que el precio oscile entre $0.047114 y $0.016295 durante el transcurso de 2030.
¿Cuánto será Dimitra en 2031?
Nuestra simulación experimental indica que el precio de Dimitra podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.04301 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.04301 y $0.019266 durante el año.
¿Cuánto será Dimitra en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Dimitra, DMTR podría experimentar un 449.04% aumento en valor, alcanzando $0.079781 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.079781 y $0.0294083 a lo largo del año.
¿Cuánto será Dimitra en 2033?
Según nuestra predicción experimental de precios de Dimitra, se anticipa que el valor de DMTR aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.2125099. A lo largo del año, el precio de DMTR podría oscilar entre $0.2125099 y $0.068338.
¿Cuánto será Dimitra en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Dimitra sugieren que DMTR podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.123074 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.123074 y $0.05494.
¿Cuánto será Dimitra en 2035?
Basado en nuestra predicción experimental para el precio de Dimitra, DMTR podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.145012 en 2035. El rango de precios esperado para el año está entre $0.145012 y $0.064957.
¿Cuánto será Dimitra en 2036?
Nuestra reciente simulación de predicción de precios de Dimitra sugiere que el valor de DMTR podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.300026 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.300026 y $0.107524.
¿Cuánto será Dimitra en 2037?
Según la simulación experimental, el valor de Dimitra podría aumentar en un 4830.69% en 2037, con un máximo de $0.716492 bajo condiciones favorables. Se espera que el precio caiga entre $0.716492 y $0.279237 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de IX Swap
Predicción de precios de BitMart Token
Predicción de precios de LON
Predicción de precios de Moon Tropica
Predicción de precios de Kinesis Silver
Predicción de precios de Perpetual Protocol
Predicción de precios de USDX
Predicción de precios de Metadium
Predicción de precios de ARPA
Predicción de precios de Storj
Predicción de precios de Ozone Chain
Predicción de precios de Humanscape
Predicción de precios de Ordiswap
Predicción de precios de Guild of Guardians
Predicción de precios de Lyra Finance
Predicción de precios de Bazaars
Predicción de precios de PlatON Network
Predicción de precios de Saitama Inu
Predicción de precios de Nuls
Predicción de precios de Across Protocol
Predicción de precios de Alien Worlds
Predicción de precios de MovieBloc
Predicción de precios de REN
Predicción de precios de Moonwell
Predicción de precios de Pandora
¿Cómo leer y predecir los movimientos de precio de Dimitra?
Los traders de Dimitra utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Dimitra
Las medias móviles son herramientas populares para la predicción de precios de Dimitra. Una media móvil simple (SMA) calcula el precio de cierre promedio de DMTR durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de DMTR por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de DMTR.
¿Cómo leer gráficos de Dimitra y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Dimitra en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de DMTR dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Dimitra?
La acción del precio de Dimitra está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de DMTR. La capitalización de mercado de Dimitra puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de DMTR, grandes poseedores de Dimitra, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Dimitra.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


