Predicción del precio de ARPA - Pronóstico de ARPA
Predicción de precio de ARPA hasta $0.01430081 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.00479 | $0.01430081 |
| 2027 | $0.004612 | $0.012115 |
| 2028 | $0.008323 | $0.020386 |
| 2029 | $0.018284 | $0.060146 |
| 2030 | $0.015549 | $0.044959 |
| 2031 | $0.018384 | $0.041042 |
| 2032 | $0.028062 | $0.076131 |
| 2033 | $0.065211 | $0.202787 |
| 2034 | $0.052427 | $0.117443 |
| 2035 | $0.061985 | $0.138377 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en ARPA hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.47, equivalente a un ROI del 39.54% en los próximos 90 días.
Predicción del precio a largo plazo de ARPA para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'ARPA'
'name_with_ticker' => 'ARPA <small>ARPA</small>'
'name_lang' => 'ARPA'
'name_lang_with_ticker' => 'ARPA <small>ARPA</small>'
'name_with_lang' => 'ARPA'
'name_with_lang_with_ticker' => 'ARPA <small>ARPA</small>'
'image' => '/uploads/coins/arpa.jpg?1717202143'
'price_for_sd' => 0.01386
'ticker' => 'ARPA'
'marketcap' => '$13.59M'
'low24h' => '$0.01316'
'high24h' => '$0.01383'
'volume24h' => '$3.66M'
'current_supply' => '982.17M'
'max_supply' => '2B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01386'
'change_24h_pct' => '5.2686%'
'ath_price' => '$0.2686'
'ath_days' => 1525
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '3 nov. 2021'
'ath_pct' => '-94.85%'
'fdv' => '$27.67M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.68371'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.013985'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.012255'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00479'
'current_year_max_price_prediction' => '$0.01430081'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.015549'
'grand_prediction_max_price' => '$0.044959'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.014129201744253
107 => 0.014181955054665
108 => 0.014300810956676
109 => 0.01328520028729
110 => 0.013741179661082
111 => 0.014009024823695
112 => 0.012798890634718
113 => 0.013985104361657
114 => 0.013267520765066
115 => 0.013023962114639
116 => 0.013351881751027
117 => 0.013224091149814
118 => 0.013114224295007
119 => 0.013052916702273
120 => 0.013293704692067
121 => 0.013282471644539
122 => 0.012888495758302
123 => 0.012374570275217
124 => 0.012547060536369
125 => 0.012484393207388
126 => 0.012257278722913
127 => 0.012410326463542
128 => 0.011736381669502
129 => 0.010576894679959
130 => 0.011342887301298
131 => 0.011313397418616
201 => 0.011298527282508
202 => 0.011874149566963
203 => 0.011818816766179
204 => 0.011718387190934
205 => 0.012255434255006
206 => 0.012059404852317
207 => 0.012663521281067
208 => 0.013061431432843
209 => 0.012960508547308
210 => 0.013334744968319
211 => 0.012551034363605
212 => 0.012811351589479
213 => 0.012865002608948
214 => 0.012248807177599
215 => 0.011827869896699
216 => 0.0117997981791
217 => 0.011069950942751
218 => 0.011459829445287
219 => 0.011802906393251
220 => 0.011638599159023
221 => 0.011586584397205
222 => 0.011852316534706
223 => 0.011872966197631
224 => 0.011402151694574
225 => 0.011500048938516
226 => 0.011908296719816
227 => 0.011489762141883
228 => 0.010676617824194
301 => 0.010474946790807
302 => 0.010448040157419
303 => 0.0099010923201424
304 => 0.010488423413585
305 => 0.010232037651803
306 => 0.011041957201301
307 => 0.010579335498313
308 => 0.010559392801328
309 => 0.010529246489877
310 => 0.010058465892202
311 => 0.010161536923425
312 => 0.010504160729371
313 => 0.010626412763266
314 => 0.01061366087455
315 => 0.010502481685804
316 => 0.010553378949082
317 => 0.010389421130282
318 => 0.010331524211976
319 => 0.010148785612003
320 => 0.0098802103528681
321 => 0.0099175573899186
322 => 0.0093854395250334
323 => 0.0090955134706114
324 => 0.0090152657599114
325 => 0.0089079551673806
326 => 0.0090273867768803
327 => 0.0093839321019793
328 => 0.0089538627945996
329 => 0.0082165391329513
330 => 0.0082608535413547
331 => 0.0083604148599713
401 => 0.0081748830013933
402 => 0.0079992926677578
403 => 0.0081519542167598
404 => 0.0078395404613534
405 => 0.0083981685697378
406 => 0.0083830592449432
407 => 0.0085912812584185
408 => 0.0087214867565904
409 => 0.0084214052378347
410 => 0.0083459355473744
411 => 0.0083889265129668
412 => 0.0076783816152836
413 => 0.0085332145812585
414 => 0.008540607212246
415 => 0.0084773070175349
416 => 0.0089324791819097
417 => 0.0098930344204988
418 => 0.0095316349014967
419 => 0.0093916900843807
420 => 0.0091256548847443
421 => 0.0094801309926527
422 => 0.0094529127582541
423 => 0.0093298215800944
424 => 0.0092553756514756
425 => 0.0093925445575925
426 => 0.0092383789060267
427 => 0.0092106865188167
428 => 0.0090429007819384
429 => 0.0089830089076374
430 => 0.0089386673482692
501 => 0.0088898516483164
502 => 0.0089975269182977
503 => 0.0087535205906587
504 => 0.0084592728797614
505 => 0.0084348093664046
506 => 0.0085023552776367
507 => 0.0084724712401182
508 => 0.0084346662931302
509 => 0.0083624863537654
510 => 0.0083410721076363
511 => 0.0084106580188407
512 => 0.0083320995822016
513 => 0.0084480168347621
514 => 0.0084164937560598
515 => 0.0082404084009275
516 => 0.0080209408532844
517 => 0.0080189871317616
518 => 0.0079717032086208
519 => 0.0079114800233156
520 => 0.0078947273108835
521 => 0.0081390974869105
522 => 0.0086449364379027
523 => 0.0085456281481227
524 => 0.0086173885650116
525 => 0.0089703787922101
526 => 0.0090825837706501
527 => 0.009002943334674
528 => 0.0088939265939017
529 => 0.0088987227772264
530 => 0.0092712659820568
531 => 0.0092945010447713
601 => 0.0093532085523354
602 => 0.009428664290295
603 => 0.0090157937731283
604 => 0.0088792766129967
605 => 0.0088145872088426
606 => 0.0086153688819981
607 => 0.0088302087678114
608 => 0.0087050307667091
609 => 0.0087219215557473
610 => 0.0087109214072277
611 => 0.0087169282321462
612 => 0.0083980124217967
613 => 0.0085142085813665
614 => 0.0083210099294659
615 => 0.0080623386221373
616 => 0.0080614714652133
617 => 0.0081247809012226
618 => 0.0080871219713858
619 => 0.0079857827594946
620 => 0.0080001775162362
621 => 0.0078740643003053
622 => 0.0080154899440037
623 => 0.0080195455254196
624 => 0.0079650889490889
625 => 0.0081829746661842
626 => 0.0082722426222559
627 => 0.0082363981371421
628 => 0.0082697276776263
629 => 0.0085497548559131
630 => 0.0085954115044162
701 => 0.0086156891717724
702 => 0.0085885197837912
703 => 0.0082748460603922
704 => 0.0082887588238686
705 => 0.0081866761967423
706 => 0.0081004271340228
707 => 0.0081038766442148
708 => 0.008148219874046
709 => 0.0083418693594147
710 => 0.0087493932851124
711 => 0.0087648585201965
712 => 0.0087836028362712
713 => 0.008707360282657
714 => 0.008684364798944
715 => 0.0087147017775994
716 => 0.0088677463375013
717 => 0.0092614184967619
718 => 0.0091222684631998
719 => 0.0090091373199144
720 => 0.0091083838325129
721 => 0.0090931056098183
722 => 0.0089641420348155
723 => 0.0089605224567917
724 => 0.0087130001242123
725 => 0.0086214967536686
726 => 0.0085450296883336
727 => 0.0084615296492111
728 => 0.0084120280270727
729 => 0.0084880850167623
730 => 0.0085054801501841
731 => 0.0083391802129792
801 => 0.0083165141460375
802 => 0.0084523182645925
803 => 0.0083925559353043
804 => 0.0084540229730117
805 => 0.0084682838530143
806 => 0.008465987522878
807 => 0.0084035887874413
808 => 0.0084433598806515
809 => 0.0083492893888757
810 => 0.0082470018580005
811 => 0.0081817487860405
812 => 0.0081248068261914
813 => 0.0081564015350018
814 => 0.0080437721670585
815 => 0.0080077397654722
816 => 0.0084298863291498
817 => 0.0087417305345789
818 => 0.0087371961963281
819 => 0.0087095945783634
820 => 0.0086685841728518
821 => 0.0088647461709001
822 => 0.008796407253163
823 => 0.0088461295257244
824 => 0.0088587859309285
825 => 0.0088970930576159
826 => 0.0089107845627978
827 => 0.0088693993247762
828 => 0.0087305054111947
829 => 0.0083843949841864
830 => 0.0082232796461068
831 => 0.0081701089009523
901 => 0.008172041556553
902 => 0.00811873028733
903 => 0.0081344328453597
904 => 0.0081132695784643
905 => 0.0080731914709087
906 => 0.0081539268247974
907 => 0.0081632308222312
908 => 0.0081443862259179
909 => 0.008148824810534
910 => 0.0079927996016927
911 => 0.008004661859452
912 => 0.0079386113008656
913 => 0.007926227617382
914 => 0.0077592575569556
915 => 0.007463445892213
916 => 0.0076273542696135
917 => 0.0074293759987193
918 => 0.0073543986276713
919 => 0.0077093298408388
920 => 0.0076737045912963
921 => 0.0076127296500031
922 => 0.0075225350035392
923 => 0.0074890809318087
924 => 0.0072858245822459
925 => 0.0072738151127833
926 => 0.0073745544480097
927 => 0.0073280667110316
928 => 0.0072627803220315
929 => 0.0070263196390485
930 => 0.006760459541934
1001 => 0.0067684841871289
1002 => 0.0068530493375181
1003 => 0.0070989339174389
1004 => 0.0070028625582174
1005 => 0.0069331616848104
1006 => 0.0069201088064218
1007 => 0.0070834929075067
1008 => 0.0073147156405691
1009 => 0.007423200173605
1010 => 0.0073156952960907
1011 => 0.007192199481276
1012 => 0.0071997160992993
1013 => 0.0072497207915039
1014 => 0.0072549755776263
1015 => 0.0071745924977568
1016 => 0.0071972198638935
1017 => 0.0071628468256421
1018 => 0.0069518995533413
1019 => 0.0069480841861064
1020 => 0.0068963143234995
1021 => 0.0068947467526344
1022 => 0.0068066733017426
1023 => 0.0067943512171399
1024 => 0.0066194760347179
1025 => 0.0067345794093589
1026 => 0.0066573741088481
1027 => 0.0065410075100891
1028 => 0.0065209458646019
1029 => 0.0065203427873134
1030 => 0.0066398252651435
1031 => 0.0067331831870393
1101 => 0.006658717128105
1102 => 0.0066417626499495
1103 => 0.0068227921201178
1104 => 0.0067997544699186
1105 => 0.0067798040134231
1106 => 0.0072940121808965
1107 => 0.0068869762921776
1108 => 0.0067094854118999
1109 => 0.0064898067429521
1110 => 0.0065613352252775
1111 => 0.0065764073274755
1112 => 0.0060481197287126
1113 => 0.0058337935156885
1114 => 0.0057602448360916
1115 => 0.0057179165311579
1116 => 0.0057372060712416
1117 => 0.0055442873415625
1118 => 0.0056739319184882
1119 => 0.0055068806056003
1120 => 0.0054788739093627
1121 => 0.0057775823504927
1122 => 0.0058191458850466
1123 => 0.0056418229338619
1124 => 0.0057556929745006
1125 => 0.005714402114853
1126 => 0.0055097442208935
1127 => 0.0055019277947058
1128 => 0.0053992376575897
1129 => 0.0052385474777318
1130 => 0.0051651077536436
1201 => 0.0051268597077056
1202 => 0.0051426415968992
1203 => 0.0051346617907891
1204 => 0.0050825881581721
1205 => 0.0051376465904555
1206 => 0.0049969950476864
1207 => 0.0049409864700493
1208 => 0.0049156886949197
1209 => 0.0047908523551114
1210 => 0.0049895224867187
1211 => 0.0050286630054257
1212 => 0.0050678806430457
1213 => 0.0054092434035092
1214 => 0.0053921898846776
1215 => 0.0055463453895149
1216 => 0.0055403551900707
1217 => 0.0054963875429375
1218 => 0.0053108952720094
1219 => 0.0053848291851195
1220 => 0.0051572720924478
1221 => 0.0053277733386557
1222 => 0.0052499636901887
1223 => 0.0053014658182395
1224 => 0.0052088603482444
1225 => 0.0052601120389258
1226 => 0.0050379446744287
1227 => 0.0048304879154404
1228 => 0.0049139745712976
1229 => 0.0050047341140716
1230 => 0.005201523927907
1231 => 0.0050843175382673
]
'min_raw' => 0.0047908523551114
'max_raw' => 0.014300810956676
'avg_raw' => 0.0095458316558938
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00479'
'max' => '$0.01430081'
'avg' => '$0.009545'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0090755876448886
'max_diff' => 0.00043437095667623
'year' => 2026
]
1 => [
'items' => [
101 => 0.005126469388046
102 => 0.0049852677474218
103 => 0.0046939284305595
104 => 0.0046955773794536
105 => 0.0046507611727264
106 => 0.0046120334268407
107 => 0.0050977801020406
108 => 0.0050373698244609
109 => 0.0049411139534393
110 => 0.005069956261858
111 => 0.0051040242132062
112 => 0.0051049940798872
113 => 0.0051989941022082
114 => 0.0052491619309713
115 => 0.0052580042282306
116 => 0.0054059152943574
117 => 0.005455493132729
118 => 0.0056596972324633
119 => 0.0052449055412038
120 => 0.0052363631792836
121 => 0.00507176933736
122 => 0.0049673813206864
123 => 0.0050789168741695
124 => 0.0051777221484342
125 => 0.00507483949265
126 => 0.0050882737955241
127 => 0.0049501622359557
128 => 0.0049995306197485
129 => 0.0050420533225103
130 => 0.0050185747854142
131 => 0.0049834262790072
201 => 0.005169621242705
202 => 0.0051591153931492
203 => 0.0053325044239483
204 => 0.0054676735726247
205 => 0.0057099208514283
206 => 0.0054571231873605
207 => 0.0054479102357021
208 => 0.0055379683159663
209 => 0.0054554793453062
210 => 0.0055076095273409
211 => 0.0057015218731731
212 => 0.0057056189354774
213 => 0.0056369878631128
214 => 0.0056328116561222
215 => 0.0056459930043115
216 => 0.0057231965723681
217 => 0.0056962192734631
218 => 0.0057274380867376
219 => 0.0057664776907769
220 => 0.0059279620455322
221 => 0.005966895376761
222 => 0.0058723075664929
223 => 0.0058808477867053
224 => 0.0058454693491715
225 => 0.0058112942218044
226 => 0.0058881149172491
227 => 0.0060285062480887
228 => 0.0060276328809059
301 => 0.0060602009408432
302 => 0.0060804905723757
303 => 0.00599339262092
304 => 0.0059366950572027
305 => 0.0059584365108916
306 => 0.0059932015688074
307 => 0.0059471626711613
308 => 0.005662989267597
309 => 0.0057491893251711
310 => 0.0057348414206233
311 => 0.0057144082597824
312 => 0.0058010830842385
313 => 0.0057927230859751
314 => 0.0055423086811495
315 => 0.0055583393988789
316 => 0.00554328356219
317 => 0.0055919320506661
318 => 0.0054528521672777
319 => 0.0054956322026907
320 => 0.0055224634398638
321 => 0.005538267244686
322 => 0.0055953614244743
323 => 0.0055886620814547
324 => 0.0055949449839059
325 => 0.0056796005802273
326 => 0.0061077595361283
327 => 0.0061310632834185
328 => 0.0060163071088164
329 => 0.0060621499371045
330 => 0.0059741417315158
331 => 0.0060332222295312
401 => 0.0060736436057914
402 => 0.0058909871790553
403 => 0.0058801714508944
404 => 0.005791800004135
405 => 0.0058392858140089
406 => 0.0057637324761489
407 => 0.0057822706225162
408 => 0.0057304363491468
409 => 0.0058237277211109
410 => 0.0059280419709803
411 => 0.0059543958699919
412 => 0.0058850701077593
413 => 0.0058348736871126
414 => 0.0057467453081858
415 => 0.00589330476641
416 => 0.0059361632183134
417 => 0.0058930796492076
418 => 0.0058830962448512
419 => 0.0058641777116355
420 => 0.0058871099011066
421 => 0.00593592980198
422 => 0.0059129072382901
423 => 0.0059281140472126
424 => 0.0058701613727932
425 => 0.005993421453966
426 => 0.0061891881270224
427 => 0.0061898175488874
428 => 0.0061667948610973
429 => 0.0061573744732843
430 => 0.0061809971480905
501 => 0.0061938114801199
502 => 0.0062702028787852
503 => 0.0063521738931207
504 => 0.0067346968502688
505 => 0.006627285934592
506 => 0.0069666830585663
507 => 0.0072351021184292
508 => 0.0073155892579391
509 => 0.0072415448768025
510 => 0.0069882430487331
511 => 0.0069758148526079
512 => 0.0073543547250168
513 => 0.0072473998728368
514 => 0.0072346779334975
515 => 0.0070993379929831
516 => 0.0071793406600048
517 => 0.0071618429031588
518 => 0.0071342218379579
519 => 0.0072868613536013
520 => 0.0075725889006622
521 => 0.0075280555829168
522 => 0.007494813527061
523 => 0.0073491565149179
524 => 0.0074368745698995
525 => 0.0074056398506493
526 => 0.0075398440265911
527 => 0.0074603444457496
528 => 0.0072465895846385
529 => 0.0072806307508157
530 => 0.0072754854970293
531 => 0.007381374455356
601 => 0.0073495892183919
602 => 0.0072692789193773
603 => 0.0075716123149689
604 => 0.0075519804659259
605 => 0.0075798139394034
606 => 0.0075920670952069
607 => 0.0077760921053916
608 => 0.0078514812639207
609 => 0.0078685959227798
610 => 0.0079402097925757
611 => 0.0078668141044605
612 => 0.0081604491871599
613 => 0.0083556993830729
614 => 0.0085824925331091
615 => 0.0089138982815639
616 => 0.0090385099086574
617 => 0.0090159999335784
618 => 0.0092672679897753
619 => 0.009718791101386
620 => 0.0091072656639748
621 => 0.0097512034344686
622 => 0.0095473401709493
623 => 0.0090639840404886
624 => 0.0090328616040814
625 => 0.0093601959875094
626 => 0.010086192145186
627 => 0.0099043383418682
628 => 0.010086489592861
629 => 0.0098740004830446
630 => 0.0098634486077434
701 => 0.010076169471082
702 => 0.010573203363082
703 => 0.010337081192029
704 => 0.009998542160294
705 => 0.010248514113077
706 => 0.010031965273764
707 => 0.0095440201305893
708 => 0.0099041992816921
709 => 0.0096633577406613
710 => 0.0097336481061746
711 => 0.010239861202946
712 => 0.010178952303869
713 => 0.010257774059287
714 => 0.010118655724098
715 => 0.0099886972620843
716 => 0.0097461201418932
717 => 0.0096743050155121
718 => 0.0096941521328062
719 => 0.0096742951802664
720 => 0.0095385755109183
721 => 0.0095092668612446
722 => 0.0094604178277469
723 => 0.0094755581858343
724 => 0.0093837077115699
725 => 0.0095570485337831
726 => 0.00958922211786
727 => 0.0097153651128418
728 => 0.0097284616970441
729 => 0.010079768142535
730 => 0.0098862744558238
731 => 0.010016086726311
801 => 0.010004475094998
802 => 0.0090744598334997
803 => 0.00920260773094
804 => 0.0094019656443317
805 => 0.009312155174572
806 => 0.0091851841827452
807 => 0.0090826482990912
808 => 0.0089272959505229
809 => 0.0091459513978552
810 => 0.0094334600596826
811 => 0.0097357533911696
812 => 0.010098939021908
813 => 0.010017880217074
814 => 0.0097289638884296
815 => 0.0097419244638791
816 => 0.0098220416415092
817 => 0.009718282617065
818 => 0.0096876820551397
819 => 0.0098178375942042
820 => 0.0098187339038696
821 => 0.0096993466065496
822 => 0.0095666694732232
823 => 0.0095661135511901
824 => 0.0095425049368237
825 => 0.0098782004030936
826 => 0.010062798966902
827 => 0.010083962894747
828 => 0.010061374465933
829 => 0.010070067855681
830 => 0.0099626540187524
831 => 0.010208170197387
901 => 0.010433480121936
902 => 0.010373092249112
903 => 0.010282562243108
904 => 0.010210450732809
905 => 0.010356105069023
906 => 0.010349619310712
907 => 0.010431512236301
908 => 0.01042779710016
909 => 0.010400259589433
910 => 0.010373093232563
911 => 0.010480804766805
912 => 0.010449785574738
913 => 0.010418718201297
914 => 0.010356407827686
915 => 0.010364876842325
916 => 0.010274362467603
917 => 0.0102324863762
918 => 0.0096027704362982
919 => 0.0094344897605944
920 => 0.0094874342868398
921 => 0.0095048649995838
922 => 0.00943162903386
923 => 0.009536630595932
924 => 0.0095202662137072
925 => 0.0095839304521003
926 => 0.0095441557999322
927 => 0.0095457881655311
928 => 0.0096627569367076
929 => 0.0096967134686008
930 => 0.0096794429024171
1001 => 0.0096915386149718
1002 => 0.0099702792055139
1003 => 0.0099306512071612
1004 => 0.0099095996228515
1005 => 0.0099154310555744
1006 => 0.0099866552527236
1007 => 0.010006594139228
1008 => 0.0099221116760269
1009 => 0.00996195409406
1010 => 0.010131598053289
1011 => 0.010190963838003
1012 => 0.010380430925616
1013 => 0.010299941939289
1014 => 0.010447682957174
1015 => 0.010901788477527
1016 => 0.011264559388897
1017 => 0.010930940266659
1018 => 0.011597122846793
1019 => 0.012115841543643
1020 => 0.012095932256087
1021 => 0.012005481653111
1022 => 0.011414934207598
1023 => 0.01087150364367
1024 => 0.011326106385676
1025 => 0.011327265261556
1026 => 0.01128821448285
1027 => 0.011045673450156
1028 => 0.01127977458065
1029 => 0.011298356678259
1030 => 0.011287955644977
1031 => 0.011102000003878
1101 => 0.010818080110267
1102 => 0.01087355737787
1103 => 0.01096443027391
1104 => 0.010792388923634
1105 => 0.010737411287868
1106 => 0.010839625172681
1107 => 0.011168979606654
1108 => 0.011106717058732
1109 => 0.011105091131983
1110 => 0.011371476715425
1111 => 0.011180802127287
1112 => 0.010874257123877
1113 => 0.010796850467684
1114 => 0.010522108985571
1115 => 0.010711873905862
1116 => 0.010718703207512
1117 => 0.010614770900019
1118 => 0.010882690657827
1119 => 0.010880221730092
1120 => 0.011134571665538
1121 => 0.011620793212636
1122 => 0.01147699357565
1123 => 0.011309770243191
1124 => 0.011327952056029
1125 => 0.011527361666328
1126 => 0.011406794063863
1127 => 0.011450151014336
1128 => 0.011527296040391
1129 => 0.011573839550012
1130 => 0.011321255161258
1201 => 0.011262365657732
1202 => 0.011141898400924
1203 => 0.011110470742251
1204 => 0.011208588809289
1205 => 0.011182738165187
1206 => 0.010718129231152
1207 => 0.010669575012486
1208 => 0.010671064101053
1209 => 0.01054897220959
1210 => 0.010362752769696
1211 => 0.010852126339151
1212 => 0.010812822792745
1213 => 0.010769434719366
1214 => 0.010774749510786
1215 => 0.010987169990877
1216 => 0.010863955384933
1217 => 0.011191541609313
1218 => 0.011124199729724
1219 => 0.011055130785027
1220 => 0.011045583352978
1221 => 0.011018997701956
1222 => 0.010927825612514
1223 => 0.01081772983592
1224 => 0.010745035067879
1225 => 0.0099117268697139
1226 => 0.010066384024163
1227 => 0.010244302982913
1228 => 0.010305719894508
1229 => 0.010200662017303
1230 => 0.010931973937841
1231 => 0.01106559167282
]
'min_raw' => 0.0046120334268407
'max_raw' => 0.012115841543643
'avg_raw' => 0.0083639374852418
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004612'
'max' => '$0.012115'
'avg' => '$0.008363'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00017881892827074
'max_diff' => -0.0021849694130333
'year' => 2027
]
2 => [
'items' => [
101 => 0.010660854837899
102 => 0.010585145101381
103 => 0.010936937455563
104 => 0.010724763661125
105 => 0.010820305507769
106 => 0.010613796293921
107 => 0.011033407073248
108 => 0.01103021034215
109 => 0.010866972271652
110 => 0.011004939971031
111 => 0.010980964688045
112 => 0.010796669308492
113 => 0.011039249565502
114 => 0.011039369882283
115 => 0.010882256788531
116 => 0.010698783091507
117 => 0.010665982327934
118 => 0.010641271358745
119 => 0.010814228124158
120 => 0.010969300619206
121 => 0.011257852086758
122 => 0.011330400781515
123 => 0.011613563166989
124 => 0.011444953753366
125 => 0.011519696122567
126 => 0.01160083953729
127 => 0.011639742674258
128 => 0.011576352100226
129 => 0.012016219839155
130 => 0.01205335815352
131 => 0.012065810309081
201 => 0.011917489382402
202 => 0.012049233080239
203 => 0.011987594566914
204 => 0.012147960854913
205 => 0.012173108336531
206 => 0.012151809314248
207 => 0.012159791521839
208 => 0.01178444200465
209 => 0.011764978152057
210 => 0.011499587140863
211 => 0.011607735939596
212 => 0.011405556944072
213 => 0.011469669986227
214 => 0.011497930404317
215 => 0.011483168765671
216 => 0.011613850510411
217 => 0.011502744330866
218 => 0.011209516855499
219 => 0.010916209490502
220 => 0.010912527255457
221 => 0.010835304603559
222 => 0.01077948677027
223 => 0.010790239265206
224 => 0.010828132459828
225 => 0.010777284348913
226 => 0.010788135371441
227 => 0.010968334645398
228 => 0.011004472324667
229 => 0.010881662370606
301 => 0.010388562683661
302 => 0.010267554783637
303 => 0.010354532862483
304 => 0.010312962942901
305 => 0.008323365988677
306 => 0.0087907922809631
307 => 0.0085130634503837
308 => 0.0086410536732038
309 => 0.0083575644547143
310 => 0.0084928603687204
311 => 0.0084678761536192
312 => 0.0092194837994657
313 => 0.0092077484798783
314 => 0.0092133655563455
315 => 0.0089452478613518
316 => 0.0093723666296654
317 => 0.0095827806936308
318 => 0.0095438386503798
319 => 0.0095536395236927
320 => 0.0093852280483304
321 => 0.0092149961475562
322 => 0.009026182771096
323 => 0.0093769746865204
324 => 0.0093379726137429
325 => 0.0094274293361917
326 => 0.0096549429684684
327 => 0.0096884452150614
328 => 0.0097334725742286
329 => 0.0097173334712328
330 => 0.010101832381393
331 => 0.010055267026367
401 => 0.010167476134213
402 => 0.0099366534860492
403 => 0.009675455749765
404 => 0.0097251009002353
405 => 0.0097203196730239
406 => 0.009659449162986
407 => 0.0096044979882281
408 => 0.0095130197646538
409 => 0.0098024704002727
410 => 0.0097907192330655
411 => 0.0099809569709125
412 => 0.0099473306028772
413 => 0.0097227654873698
414 => 0.0097307858744024
415 => 0.0097847268316636
416 => 0.0099714171006315
417 => 0.010026839483304
418 => 0.01000116562745
419 => 0.010061933739922
420 => 0.010109962378305
421 => 0.010067965397441
422 => 0.010662554082677
423 => 0.010415639405989
424 => 0.010535983901386
425 => 0.010564685354427
426 => 0.010491167185988
427 => 0.010507110644234
428 => 0.010531260639145
429 => 0.010677894679187
430 => 0.01106270482916
501 => 0.011233134625092
502 => 0.01174588107501
503 => 0.011218982803037
504 => 0.0111877188401
505 => 0.011280079959189
506 => 0.011581116405015
507 => 0.011825078169442
508 => 0.011906014361194
509 => 0.011916711415045
510 => 0.012068553091308
511 => 0.012155585908462
512 => 0.012050115517977
513 => 0.011960740405251
514 => 0.011640609845113
515 => 0.011677665829136
516 => 0.0119329448124
517 => 0.012293541412117
518 => 0.012602970808356
519 => 0.012494619418496
520 => 0.013321264038966
521 => 0.013403222476545
522 => 0.013391898470505
523 => 0.013578611988361
524 => 0.013208023678964
525 => 0.013049589996886
526 => 0.011980064319073
527 => 0.012280557409153
528 => 0.012717341762925
529 => 0.012659531715846
530 => 0.012342327242857
531 => 0.012602730180319
601 => 0.012516632825641
602 => 0.012448724269825
603 => 0.012759826528742
604 => 0.012417756815686
605 => 0.012713929355867
606 => 0.012334085009572
607 => 0.012495114358518
608 => 0.012403706311943
609 => 0.012462858520626
610 => 0.012117055917344
611 => 0.012303642608192
612 => 0.012109293297565
613 => 0.012109201150686
614 => 0.012104910878883
615 => 0.012333561980958
616 => 0.012341018285188
617 => 0.012172044775282
618 => 0.012147693052642
619 => 0.012237734134496
620 => 0.012132319609441
621 => 0.012181642402243
622 => 0.012133813546589
623 => 0.012123046263752
624 => 0.012037250722201
625 => 0.012000287643903
626 => 0.012014781819324
627 => 0.01196530572635
628 => 0.011935494590705
629 => 0.012098980693667
630 => 0.012011636663865
701 => 0.01208559396841
702 => 0.012001310285725
703 => 0.011709146320885
704 => 0.011541119735128
705 => 0.01098924908916
706 => 0.011145758919763
707 => 0.011249525099374
708 => 0.011215230377632
709 => 0.01128890871023
710 => 0.011293431961461
711 => 0.011269478384471
712 => 0.011241743210961
713 => 0.011228243262347
714 => 0.011328860819013
715 => 0.011387272697288
716 => 0.01125993942371
717 => 0.011230107019293
718 => 0.011358847989143
719 => 0.01143737990638
720 => 0.012017215459987
721 => 0.011974259369332
722 => 0.012082070727169
723 => 0.012069932822777
724 => 0.012182936301487
725 => 0.012367649230345
726 => 0.01199207619943
727 => 0.012057262691258
728 => 0.012041280468838
729 => 0.012215770182461
730 => 0.0122163149203
731 => 0.012111699620576
801 => 0.012168413271746
802 => 0.012136757267521
803 => 0.012193963945722
804 => 0.011973685664552
805 => 0.012241960833446
806 => 0.012394055566938
807 => 0.01239616740246
808 => 0.012468259099038
809 => 0.012541508438029
810 => 0.012682104165551
811 => 0.012537587299497
812 => 0.012277615525899
813 => 0.012296384648249
814 => 0.012143963292509
815 => 0.012146525523036
816 => 0.012132848135676
817 => 0.012173895004728
818 => 0.011982693144043
819 => 0.012027567838577
820 => 0.011964743003443
821 => 0.012057126122336
822 => 0.011957737157884
823 => 0.012041272761726
824 => 0.012077323959096
825 => 0.012210353653515
826 => 0.011938088563855
827 => 0.011382921615314
828 => 0.011499624438646
829 => 0.011327011796129
830 => 0.011342987753377
831 => 0.011375261729572
901 => 0.011270651213336
902 => 0.011290607603178
903 => 0.011289894620501
904 => 0.011283750520983
905 => 0.011256537285461
906 => 0.011217072709978
907 => 0.011374287432145
908 => 0.011401001276971
909 => 0.011460382844874
910 => 0.011637062112051
911 => 0.011619407686876
912 => 0.011648202786811
913 => 0.01158534324533
914 => 0.011345903627221
915 => 0.011358906350463
916 => 0.011196762183279
917 => 0.011456236453969
918 => 0.011394789521777
919 => 0.011355174284856
920 => 0.01134436490043
921 => 0.011521482121337
922 => 0.011574478369805
923 => 0.011541454664206
924 => 0.011473722080566
925 => 0.011603788664494
926 => 0.011638588995285
927 => 0.011646379505962
928 => 0.011876832554888
929 => 0.011659259271383
930 => 0.011711631323215
1001 => 0.012120223121349
1002 => 0.011749686742256
1003 => 0.011945968126208
1004 => 0.011936361173863
1005 => 0.012036772088093
1006 => 0.011928124548121
1007 => 0.011929471364592
1008 => 0.012018629454004
1009 => 0.011893422997171
1010 => 0.011862420117677
1011 => 0.011819589861702
1012 => 0.011913108158709
1013 => 0.011969168148296
1014 => 0.01242097049284
1015 => 0.012712855412105
1016 => 0.012700183917968
1017 => 0.012815977654337
1018 => 0.012763811515554
1019 => 0.01259535329269
1020 => 0.012882890937827
1021 => 0.01279190199582
1022 => 0.012799403013647
1023 => 0.012799123825389
1024 => 0.012859623517432
1025 => 0.012816753940904
1026 => 0.012732253605095
1027 => 0.012788348871471
1028 => 0.012954931758181
1029 => 0.013472010149917
1030 => 0.01376137406831
1031 => 0.013454590078694
1101 => 0.01366620556673
1102 => 0.013539311680217
1103 => 0.013516251286271
1104 => 0.013649161451019
1105 => 0.013782304257417
1106 => 0.013773823636241
1107 => 0.013677168795756
1108 => 0.013622570928891
1109 => 0.014036004268417
1110 => 0.014340614910327
1111 => 0.014319842506684
1112 => 0.014411525140815
1113 => 0.01468070819026
1114 => 0.014705318914789
1115 => 0.01470221852917
1116 => 0.01464121828056
1117 => 0.014906263950575
1118 => 0.015127369711536
1119 => 0.014627098485473
1120 => 0.014817595219327
1121 => 0.014903115340575
1122 => 0.015028684251244
1123 => 0.015240540051336
1124 => 0.015470671642211
1125 => 0.015503214772425
1126 => 0.015480123864206
1127 => 0.015328345893754
1128 => 0.015580158626531
1129 => 0.015727664619656
1130 => 0.015815501062948
1201 => 0.016038239668544
1202 => 0.014903643483729
1203 => 0.014100519911028
1204 => 0.013975100567906
1205 => 0.014230145734017
1206 => 0.014297399110373
1207 => 0.014270289358693
1208 => 0.013366300760817
1209 => 0.013970341255023
1210 => 0.014620238037621
1211 => 0.014645203219829
1212 => 0.014970555137898
1213 => 0.015076503059047
1214 => 0.015338453997944
1215 => 0.015322068895395
1216 => 0.015385849780466
1217 => 0.015371187659519
1218 => 0.015856396613547
1219 => 0.016391654144068
1220 => 0.0163731198778
1221 => 0.016296170274909
1222 => 0.01641045355706
1223 => 0.01696289669024
1224 => 0.016912036579257
1225 => 0.016961442844823
1226 => 0.017612804433172
1227 => 0.018459667153132
1228 => 0.018066214396084
1229 => 0.018919893665898
1230 => 0.019457239514652
1231 => 0.020386523597475
]
'min_raw' => 0.008323365988677
'max_raw' => 0.020386523597475
'avg_raw' => 0.014354944793076
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.008323'
'max' => '$0.020386'
'avg' => '$0.014354'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0037113325618363
'max_diff' => 0.0082706820538319
'year' => 2028
]
3 => [
'items' => [
101 => 0.020270172653485
102 => 0.020631936127526
103 => 0.020061880180568
104 => 0.018752916499037
105 => 0.018545767985923
106 => 0.018960484555013
107 => 0.01998002477267
108 => 0.018928375605324
109 => 0.019141122862207
110 => 0.019079851637912
111 => 0.019076586754755
112 => 0.019201194065608
113 => 0.019020444662136
114 => 0.018284039076194
115 => 0.018621529416566
116 => 0.018491208188531
117 => 0.018635809307127
118 => 0.019416161906151
119 => 0.01907114942084
120 => 0.018707706794103
121 => 0.019163544502406
122 => 0.019743982547908
123 => 0.019707659778168
124 => 0.019637178423132
125 => 0.020034478131184
126 => 0.020690700850993
127 => 0.020868075215241
128 => 0.020999009344669
129 => 0.021017062948967
130 => 0.021203026293489
131 => 0.020203054521199
201 => 0.021790035404919
202 => 0.022064063164075
203 => 0.022012557302641
204 => 0.022317127624092
205 => 0.022227515309318
206 => 0.022097681124952
207 => 0.022580489868417
208 => 0.02202698860469
209 => 0.021241363244702
210 => 0.020810353634304
211 => 0.021377941857829
212 => 0.021724548179837
213 => 0.021953632910381
214 => 0.022022953811427
215 => 0.020280679483328
216 => 0.019341690251446
217 => 0.019943571583549
218 => 0.020677908348345
219 => 0.020198975243393
220 => 0.020217748514367
221 => 0.019534915768113
222 => 0.020738323894871
223 => 0.020562997453058
224 => 0.021472591343332
225 => 0.021255509461471
226 => 0.021997247968759
227 => 0.021801923361426
228 => 0.022612704886014
301 => 0.022936147587205
302 => 0.023479258222343
303 => 0.023878772616408
304 => 0.024113375110095
305 => 0.024099290456346
306 => 0.025028902414835
307 => 0.024480742721082
308 => 0.023792124954408
309 => 0.023779670031571
310 => 0.02413631493072
311 => 0.024883744798587
312 => 0.025077542488663
313 => 0.025185848959048
314 => 0.025019973829478
315 => 0.024424985768869
316 => 0.024168072940956
317 => 0.024386970113819
318 => 0.024119277681456
319 => 0.024581389920945
320 => 0.025215968727613
321 => 0.025084930713432
322 => 0.02552297114852
323 => 0.025976296915638
324 => 0.026624573122751
325 => 0.026794056528889
326 => 0.027074206154358
327 => 0.027362572143323
328 => 0.027455187527298
329 => 0.027632019032171
330 => 0.027631087042854
331 => 0.028163980684922
401 => 0.028751778874465
402 => 0.028973659083458
403 => 0.029483860389492
404 => 0.028610158532495
405 => 0.029272871427391
406 => 0.029870655047367
407 => 0.029157952771906
408 => 0.030140246820296
409 => 0.030178387072269
410 => 0.030754259594865
411 => 0.030170502469387
412 => 0.029823869351697
413 => 0.030824586174295
414 => 0.031308801522465
415 => 0.031162951918921
416 => 0.030053029234467
417 => 0.029407006625292
418 => 0.027716240848624
419 => 0.029719025946733
420 => 0.030694524145979
421 => 0.030050502929794
422 => 0.030375309770761
423 => 0.032147350576104
424 => 0.032822028983633
425 => 0.032681700591225
426 => 0.03270541377954
427 => 0.033069458001963
428 => 0.034683830567004
429 => 0.033716461105168
430 => 0.034455978812099
501 => 0.034848216337326
502 => 0.035212548410391
503 => 0.034317863987277
504 => 0.03315389269833
505 => 0.032785214130929
506 => 0.029986467712116
507 => 0.029840780806677
508 => 0.029759002331889
509 => 0.029243400616146
510 => 0.028838278902768
511 => 0.028516111075085
512 => 0.027670646487788
513 => 0.027955965967128
514 => 0.02660847187715
515 => 0.027470550843659
516 => 0.025319917739671
517 => 0.02711102889508
518 => 0.026136208525022
519 => 0.026790774185806
520 => 0.02678849046788
521 => 0.025583227556145
522 => 0.024888057061851
523 => 0.025331046757255
524 => 0.025805966875294
525 => 0.025883021066623
526 => 0.026498767396344
527 => 0.026670608961546
528 => 0.026149920996468
529 => 0.02527535064883
530 => 0.025478493393761
531 => 0.024883940380609
601 => 0.023842009094211
602 => 0.024590342334477
603 => 0.024845856204593
604 => 0.024958705685941
605 => 0.023934085932386
606 => 0.023612128160242
607 => 0.02344072054384
608 => 0.02514308510527
609 => 0.025236344478816
610 => 0.024759216338209
611 => 0.0269158807769
612 => 0.02642776119288
613 => 0.026973110360432
614 => 0.0254600603189
615 => 0.025517860868078
616 => 0.024801558730714
617 => 0.025202640064312
618 => 0.02491916870518
619 => 0.02517023665612
620 => 0.025320725750722
621 => 0.026036910349954
622 => 0.02711920657278
623 => 0.02592993625348
624 => 0.025411754144696
625 => 0.025733231410619
626 => 0.02658936773355
627 => 0.027886458087602
628 => 0.027118554491627
629 => 0.027459337067672
630 => 0.027533782900176
701 => 0.02696755921784
702 => 0.027907335562423
703 => 0.028410969340213
704 => 0.028927593383901
705 => 0.029376163565558
706 => 0.028721242380046
707 => 0.029422101927808
708 => 0.028857332850676
709 => 0.028350676603736
710 => 0.028351444992124
711 => 0.028033612127351
712 => 0.027417770902335
713 => 0.027304200331743
714 => 0.027895008782346
715 => 0.028368781209962
716 => 0.028407803376317
717 => 0.028670108135551
718 => 0.028825337390112
719 => 0.030346795108748
720 => 0.030958737989341
721 => 0.031707010160245
722 => 0.031998504341121
723 => 0.03287579731911
724 => 0.032167311989132
725 => 0.032014026731409
726 => 0.029886000927155
727 => 0.030234465033387
728 => 0.030792389689251
729 => 0.029895200899234
730 => 0.030464260682107
731 => 0.03057660513758
801 => 0.029864714767463
802 => 0.03024496617311
803 => 0.029235131176396
804 => 0.027141218216148
805 => 0.027909666686124
806 => 0.028475503416985
807 => 0.027667984634881
808 => 0.029115430796509
809 => 0.02826986263024
810 => 0.028001858115962
811 => 0.026956276955258
812 => 0.027449751015001
813 => 0.028117181746671
814 => 0.027704787151649
815 => 0.028560567857679
816 => 0.029772581565794
817 => 0.030636334710861
818 => 0.030702642952074
819 => 0.030147307546762
820 => 0.031037236077878
821 => 0.03104371823567
822 => 0.030039875217107
823 => 0.029425026957658
824 => 0.02928533213946
825 => 0.029634317184102
826 => 0.030058049454491
827 => 0.030726157144054
828 => 0.031129880628316
829 => 0.032182577356879
830 => 0.032467406908448
831 => 0.032780348230698
901 => 0.033198534344754
902 => 0.033700673995397
903 => 0.032602021026617
904 => 0.032645672557212
905 => 0.03162262212457
906 => 0.030529346017019
907 => 0.031359006303859
908 => 0.03244367676382
909 => 0.032194852161851
910 => 0.032166854311104
911 => 0.032213938930104
912 => 0.032026333306071
913 => 0.031177800021558
914 => 0.030751671918175
915 => 0.031301485888412
916 => 0.031593687544189
917 => 0.032046866829637
918 => 0.031991002917251
919 => 0.033158344088662
920 => 0.033611937569307
921 => 0.033495888946599
922 => 0.033517244686043
923 => 0.034338454016303
924 => 0.035251807686132
925 => 0.036107283925559
926 => 0.036977511099863
927 => 0.035928418275695
928 => 0.035395753638632
929 => 0.03594532757729
930 => 0.035653715909625
1001 => 0.037329403049668
1002 => 0.037445423991558
1003 => 0.039120989960348
1004 => 0.040711301587414
1005 => 0.039712455347846
1006 => 0.040654322362736
1007 => 0.041673028330884
1008 => 0.043638277422527
1009 => 0.042976450666758
1010 => 0.042469501743987
1011 => 0.041990437461527
1012 => 0.042987294184013
1013 => 0.044269734432315
1014 => 0.04454595977874
1015 => 0.044993550366151
1016 => 0.044522963592261
1017 => 0.045089733527979
1018 => 0.047090680452391
1019 => 0.046550006930568
1020 => 0.045782163611973
1021 => 0.047361719035811
1022 => 0.047933354003332
1023 => 0.051945387572949
1024 => 0.057010745683431
1025 => 0.054913654164757
1026 => 0.053611921786395
1027 => 0.053917859772815
1028 => 0.05576755708157
1029 => 0.056361621150684
1030 => 0.054746750224667
1031 => 0.055317149936155
1101 => 0.058460108426912
1102 => 0.060146204819022
1103 => 0.057856259445579
1104 => 0.051538390980801
1105 => 0.045713027722289
1106 => 0.047258176377973
1107 => 0.047083004471963
1108 => 0.050459721278225
1109 => 0.046537112045885
1110 => 0.046603158725265
1111 => 0.050049702459076
1112 => 0.049130223679613
1113 => 0.047640785814829
1114 => 0.045723902267013
1115 => 0.042180365738607
1116 => 0.039041756616572
1117 => 0.045197291883396
1118 => 0.044931854009576
1119 => 0.044547460632595
1120 => 0.045402886497357
1121 => 0.049556591679774
1122 => 0.049460835331088
1123 => 0.048851682296064
1124 => 0.049313719504301
1125 => 0.047559788458308
1126 => 0.048011816425128
1127 => 0.045712104954986
1128 => 0.046751670583925
1129 => 0.047637590150112
1130 => 0.047815451619287
1201 => 0.04821618259117
1202 => 0.044791980311663
1203 => 0.046329346605865
1204 => 0.047232405271967
1205 => 0.043152353364961
1206 => 0.047151755764132
1207 => 0.044732372568139
1208 => 0.043911197573503
1209 => 0.045016801522202
1210 => 0.044585946588158
1211 => 0.044215522816519
1212 => 0.044008819987256
1213 => 0.044820653506125
1214 => 0.044782780502119
1215 => 0.043454463295153
1216 => 0.041721727647801
1217 => 0.042303290606161
1218 => 0.042092003331207
1219 => 0.041326270990173
1220 => 0.041842282133155
1221 => 0.039570030206727
1222 => 0.035660738868686
1223 => 0.038243336471428
1224 => 0.038143909273048
1225 => 0.03809377357096
1226 => 0.040034524291666
1227 => 0.039847965890607
1228 => 0.039509360565901
1229 => 0.041320052237847
1230 => 0.040659125420347
1231 => 0.04269594613794
]
'min_raw' => 0.018284039076194
'max_raw' => 0.060146204819022
'avg_raw' => 0.039215121947608
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.018284'
'max' => '$0.060146'
'avg' => '$0.039215'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0099606730875168
'max_diff' => 0.039759681221548
'year' => 2029
]
4 => [
'items' => [
101 => 0.044037527995851
102 => 0.043697259441058
103 => 0.044959023662851
104 => 0.04231668864213
105 => 0.043194366343933
106 => 0.043375254501866
107 => 0.041297708583682
108 => 0.039878489152227
109 => 0.039783843396435
110 => 0.037323112482778
111 => 0.038637615074528
112 => 0.039794322957454
113 => 0.03924034964569
114 => 0.039064978244668
115 => 0.039960912699076
116 => 0.040030534479343
117 => 0.038443150511066
118 => 0.038773217903983
119 => 0.040149653801587
120 => 0.038738535250934
121 => 0.035996962411921
122 => 0.035317014442636
123 => 0.035226296849606
124 => 0.033382224029551
125 => 0.035362451817241
126 => 0.034498029321109
127 => 0.037228729629019
128 => 0.035668968258181
129 => 0.035601730062939
130 => 0.035500089669133
131 => 0.033912820015223
201 => 0.034260331193181
202 => 0.035415511276158
203 => 0.035827692543799
204 => 0.035784698660683
205 => 0.035409850263545
206 => 0.03558145394022
207 => 0.035028658706965
208 => 0.034833455204665
209 => 0.034217339256451
210 => 0.033311819018953
211 => 0.033437737161856
212 => 0.031643664629113
213 => 0.030666158694638
214 => 0.030395597935297
215 => 0.030033792780393
216 => 0.03043646479027
217 => 0.031638582247041
218 => 0.03018857355073
219 => 0.027702635347188
220 => 0.027852044469054
221 => 0.028187722405919
222 => 0.027562188791302
223 => 0.026970173722125
224 => 0.027484882793074
225 => 0.026431558004689
226 => 0.028315011674276
227 => 0.028264069530832
228 => 0.028966104586861
301 => 0.029405101514605
302 => 0.028393355723097
303 => 0.028138904392585
304 => 0.028283851434613
305 => 0.025888199703414
306 => 0.02877032873073
307 => 0.028795253502241
308 => 0.028581832476294
309 => 0.03011647720759
310 => 0.033355056258318
311 => 0.032136572547893
312 => 0.031664738826352
313 => 0.030767782576793
314 => 0.031962923523338
315 => 0.031871155345747
316 => 0.03145614484463
317 => 0.031205145198643
318 => 0.031667619742443
319 => 0.031147839484687
320 => 0.031054472667787
321 => 0.030488771341476
322 => 0.030286841705753
323 => 0.030137341042515
324 => 0.029972755501921
325 => 0.03033579019231
326 => 0.029513105822697
327 => 0.028521029121688
328 => 0.028438548678417
329 => 0.028666284434041
330 => 0.028565528315111
331 => 0.028438066296883
401 => 0.028194706591873
402 => 0.028122506965953
403 => 0.028357120723912
404 => 0.028092255470008
405 => 0.0284830785801
406 => 0.028376796319384
407 => 0.027783112250669
408 => 0.027043162091055
409 => 0.027036574982537
410 => 0.02687715393441
411 => 0.026674107260505
412 => 0.026617624320903
413 => 0.027441535430759
414 => 0.029147006770577
415 => 0.0288121819381
416 => 0.029054127193793
417 => 0.030244258389784
418 => 0.030622565308495
419 => 0.030354052018284
420 => 0.029986494465465
421 => 0.030002665132403
422 => 0.031258720557625
423 => 0.031337059193787
424 => 0.031534995654367
425 => 0.031789399943049
426 => 0.030397378168722
427 => 0.029937101032015
428 => 0.029718996189439
429 => 0.029047317691504
430 => 0.029771665366165
501 => 0.0293496189958
502 => 0.029406567470319
503 => 0.029369479701579
504 => 0.029389732131175
505 => 0.028314485210591
506 => 0.028706248675137
507 => 0.028054865931555
508 => 0.027182737559043
509 => 0.027179813878931
510 => 0.02739326606256
511 => 0.027266296351353
512 => 0.026924624123184
513 => 0.026973157050548
514 => 0.026547957538093
515 => 0.027024783969845
516 => 0.027038457645741
517 => 0.026854853496605
518 => 0.027589470404087
519 => 0.027890443550472
520 => 0.027769591366329
521 => 0.027881964239066
522 => 0.028826095421533
523 => 0.028980029999607
524 => 0.029048397570839
525 => 0.028956794082355
526 => 0.027899221223915
527 => 0.027946129077334
528 => 0.027601950372796
529 => 0.02731115563612
530 => 0.02732278590057
531 => 0.027472292195891
601 => 0.028125194955987
602 => 0.029499190323888
603 => 0.029551332443723
604 => 0.029614530214055
605 => 0.029357473121459
606 => 0.029279942242628
607 => 0.029382225484224
608 => 0.029898225903164
609 => 0.031225519073424
610 => 0.030756365020124
611 => 0.030374935471973
612 => 0.030709552018369
613 => 0.030658040423862
614 => 0.030223230726791
615 => 0.030211027066773
616 => 0.029376488241024
617 => 0.029067978238675
618 => 0.028810164189138
619 => 0.02852863797745
620 => 0.028361739802317
621 => 0.028618171253185
622 => 0.028676820160006
623 => 0.028116128311029
624 => 0.028039708083841
625 => 0.02849758115109
626 => 0.028296088285422
627 => 0.028503328694544
628 => 0.028551410247136
629 => 0.028543668009757
630 => 0.028333286316691
701 => 0.028467377334179
702 => 0.028150212103364
703 => 0.027805342551531
704 => 0.027585337263594
705 => 0.027393353470402
706 => 0.027499877237029
707 => 0.027120139459477
708 => 0.026998653701826
709 => 0.028421950314597
710 => 0.029473354825468
711 => 0.029458066987478
712 => 0.029365006205427
713 => 0.02922673675999
714 => 0.029888110632003
715 => 0.029657701199582
716 => 0.02982534331302
717 => 0.029868015266808
718 => 0.029997170418953
719 => 0.030043332284584
720 => 0.029903799065169
721 => 0.029435508538265
722 => 0.028268573068949
723 => 0.0277253614579
724 => 0.027546092578348
725 => 0.02755260866164
726 => 0.027372865995381
727 => 0.027425808266095
728 => 0.027354454834186
729 => 0.027219328696398
730 => 0.027491533578796
731 => 0.027522902655728
801 => 0.02745936678357
802 => 0.027474331781495
803 => 0.026948281896555
804 => 0.026988276326787
805 => 0.02676558225701
806 => 0.026723829803544
807 => 0.026160878587339
808 => 0.025163528906748
809 => 0.025716157444871
810 => 0.02504865988215
811 => 0.024795868440909
812 => 0.025992543806609
813 => 0.025872430790501
814 => 0.025666849518797
815 => 0.025362751971055
816 => 0.025249959232526
817 => 0.02456466625907
818 => 0.024524175494303
819 => 0.024863825196414
820 => 0.024707088545522
821 => 0.024486970926859
822 => 0.023689727225024
823 => 0.022793361345843
824 => 0.02282041699738
825 => 0.023105534306068
826 => 0.023934551334384
827 => 0.023610640039281
828 => 0.023375638678229
829 => 0.023331629987419
830 => 0.023882490891341
831 => 0.024662074479316
901 => 0.025027837656595
902 => 0.024665377456305
903 => 0.024249002694454
904 => 0.024274345496913
905 => 0.024442939807897
906 => 0.024460656686186
907 => 0.024189639520239
908 => 0.024265929264961
909 => 0.024150038166648
910 => 0.023438814710217
911 => 0.023425950933204
912 => 0.023251405226969
913 => 0.023246120052353
914 => 0.022949174263579
915 => 0.022907629495041
916 => 0.02231802560811
917 => 0.022706104671973
918 => 0.022445801610999
919 => 0.022053463498826
920 => 0.021985824260407
921 => 0.021983790943223
922 => 0.022386634459227
923 => 0.022701397210941
924 => 0.02245032969419
925 => 0.022393166487365
926 => 0.023003519985111
927 => 0.022925846939027
928 => 0.022858582582056
929 => 0.024592271319561
930 => 0.023219921402407
1001 => 0.022621498507533
1002 => 0.021880836537701
1003 => 0.02212199980982
1004 => 0.022172816454681
1005 => 0.020391657931589
1006 => 0.0196690421406
1007 => 0.019421067632335
1008 => 0.019278354796983
1009 => 0.019343390828128
1010 => 0.018692951861859
1011 => 0.019130057604459
1012 => 0.018566832439908
1013 => 0.018472405908177
1014 => 0.019479522272605
1015 => 0.019619656631226
1016 => 0.019021799921014
1017 => 0.01940572071318
1018 => 0.019266505697042
1019 => 0.0185764873188
1020 => 0.018550133692182
1021 => 0.018203906725299
1022 => 0.017662128564878
1023 => 0.017414521407717
1024 => 0.017285565450443
1025 => 0.017338775191716
1026 => 0.017311870718284
1027 => 0.017136300830251
1028 => 0.017321934178751
1029 => 0.016847717682328
1030 => 0.01665888085243
1031 => 0.016573587637347
1101 => 0.016152693201888
1102 => 0.016822523421308
1103 => 0.016954488412832
1104 => 0.017086713416156
1105 => 0.018237641796246
1106 => 0.018180144666866
1107 => 0.018699890714219
1108 => 0.01867969433857
1109 => 0.018531454346537
1110 => 0.017906054204447
1111 => 0.018155327554398
1112 => 0.017388102928927
1113 => 0.017962959784534
1114 => 0.017700619122231
1115 => 0.017874262142718
1116 => 0.017562036335122
1117 => 0.017734834988533
1118 => 0.016985782207901
1119 => 0.016286327260804
1120 => 0.016567808349878
1121 => 0.01687381048497
1122 => 0.017537301081742
1123 => 0.017142131555983
1124 => 0.01728424946046
1125 => 0.016808178270712
1126 => 0.015825907423249
1127 => 0.015831466969571
1128 => 0.015680365999623
1129 => 0.015549792700485
1130 => 0.017187521529671
1201 => 0.0169838440611
1202 => 0.01665931067158
1203 => 0.017093711509897
1204 => 0.017208573986416
1205 => 0.017211843959645
1206 => 0.017528771597772
1207 => 0.017697915935052
1208 => 0.017727728357612
1209 => 0.018226420843879
1210 => 0.018393575987363
1211 => 0.019082064366692
1212 => 0.01768356521978
1213 => 0.017654764050157
1214 => 0.017099824420537
1215 => 0.016747872934183
1216 => 0.017123922839915
1217 => 0.017457051720462
1218 => 0.017110175663448
1219 => 0.017155470353541
1220 => 0.016689817587815
1221 => 0.016856266540563
1222 => 0.016999634801765
1223 => 0.016920475274726
1224 => 0.016801969631385
1225 => 0.017429738951209
1226 => 0.017394317745937
1227 => 0.017978910968911
1228 => 0.018434643190883
1229 => 0.019251396804534
1230 => 0.01839907183036
1231 => 0.018368009720616
]
'min_raw' => 0.015549792700485
'max_raw' => 0.044959023662851
'avg_raw' => 0.030254408181668
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.015549'
'max' => '$0.044959'
'avg' => '$0.030254'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0027342463757093
'max_diff' => -0.015187181156171
'year' => 2030
]
5 => [
'items' => [
101 => 0.018671646825881
102 => 0.018393529502104
103 => 0.018569290050448
104 => 0.019223079062948
105 => 0.019236892594555
106 => 0.019005498142409
107 => 0.018991417768967
108 => 0.01903585960468
109 => 0.019296156824564
110 => 0.019205200977811
111 => 0.019310457386394
112 => 0.01944208213707
113 => 0.019986537913605
114 => 0.020117804358081
115 => 0.019798894951852
116 => 0.019827688900558
117 => 0.019708408028369
118 => 0.01959318420042
119 => 0.019852190538561
120 => 0.020325529712296
121 => 0.020322585093863
122 => 0.020432390581771
123 => 0.02050079849106
124 => 0.020207141666742
125 => 0.020015981872172
126 => 0.020089284701224
127 => 0.020206497521206
128 => 0.020051274163458
129 => 0.019093163692988
130 => 0.019383793205395
131 => 0.019335418243473
201 => 0.019266526415101
202 => 0.019558756637197
203 => 0.019530570319376
204 => 0.018686280670131
205 => 0.018740329354184
206 => 0.018689567549623
207 => 0.018853589325049
208 => 0.018384671787958
209 => 0.018528907664159
210 => 0.018619371053585
211 => 0.01867265468493
212 => 0.018865151698275
213 => 0.018842564395551
214 => 0.018863747639823
215 => 0.019149169893286
216 => 0.02059273770621
217 => 0.020671307917214
218 => 0.020284399462523
219 => 0.020438961758741
220 => 0.020142235949062
221 => 0.020341429972989
222 => 0.020477713465181
223 => 0.019861874569775
224 => 0.019825408587151
225 => 0.019527458084504
226 => 0.019687559807847
227 => 0.019432826454287
228 => 0.019495329109056
301 => 0.019320566237438
302 => 0.01963510461141
303 => 0.019986807387834
304 => 0.020075661398322
305 => 0.019841924750784
306 => 0.019672684013972
307 => 0.019375553031493
308 => 0.019869688477351
309 => 0.020014188740224
310 => 0.019868929478986
311 => 0.019835269734179
312 => 0.019771484578592
313 => 0.019848802056469
314 => 0.02001340176076
315 => 0.019935779579895
316 => 0.019987050397883
317 => 0.019791658909952
318 => 0.02020723887937
319 => 0.020867279885572
320 => 0.020869402025335
321 => 0.020791779426058
322 => 0.020760017930836
323 => 0.020839663428227
324 => 0.020882867843333
325 => 0.02114042677741
326 => 0.021416797775275
327 => 0.0227065006322
328 => 0.022344357230805
329 => 0.023488658330235
330 => 0.024393651930983
331 => 0.024665019941273
401 => 0.024415374140658
402 => 0.023561349342353
403 => 0.023519446811407
404 => 0.024795720420044
405 => 0.02443511466857
406 => 0.02439222176187
407 => 0.023935913703293
408 => 0.024205648280764
409 => 0.024146653371904
410 => 0.024053527022138
411 => 0.02456816180608
412 => 0.025531512179856
413 => 0.025381364989861
414 => 0.025269287077657
415 => 0.024778194291768
416 => 0.025073941838418
417 => 0.024968631801727
418 => 0.025421110550751
419 => 0.025153072163461
420 => 0.024432382725337
421 => 0.024547154893782
422 => 0.024529807311411
423 => 0.02488681932734
424 => 0.024779653181741
425 => 0.024508881401527
426 => 0.025528219553008
427 => 0.025462029403308
428 => 0.025555871902408
429 => 0.025597184272688
430 => 0.026217637442741
501 => 0.026471817254225
502 => 0.026529520521476
503 => 0.026770971683414
504 => 0.02652351299661
505 => 0.027513524178878
506 => 0.028171823846332
507 => 0.028936472785871
508 => 0.030053830404797
509 => 0.030473967205649
510 => 0.030398073253073
511 => 0.031245241047517
512 => 0.032767582742649
513 => 0.030705782035074
514 => 0.032876863186594
515 => 0.03218952396036
516 => 0.030559855019664
517 => 0.030454923552418
518 => 0.031558554279903
519 => 0.034006301012942
520 => 0.03339316821843
521 => 0.034007303878545
522 => 0.033290882009284
523 => 0.033255305624998
524 => 0.033972508867439
525 => 0.035648293336116
526 => 0.034852190950889
527 => 0.033710782969353
528 => 0.034553580860644
529 => 0.033823471329945
530 => 0.032178330212489
531 => 0.033392699367337
601 => 0.032580685296732
602 => 0.032817674171577
603 => 0.034524406970011
604 => 0.034319048364248
605 => 0.0345848014158
606 => 0.03411575423578
607 => 0.03367759020769
608 => 0.032859724510772
609 => 0.032617594798206
610 => 0.032684510739845
611 => 0.032617561637988
612 => 0.032159973297137
613 => 0.032061157138497
614 => 0.031896459211529
615 => 0.031947505985887
616 => 0.031637825699109
617 => 0.03222225638347
618 => 0.032330731868474
619 => 0.032756031783077
620 => 0.03280018783109
621 => 0.033984642039496
622 => 0.03333226456545
623 => 0.033769935698602
624 => 0.033730786272932
625 => 0.030595174887198
626 => 0.031027234470418
627 => 0.031699383594144
628 => 0.031396581324982
629 => 0.030968489761206
630 => 0.03062278287064
701 => 0.030099001581087
702 => 0.030836213687804
703 => 0.031805569214369
704 => 0.032824772286924
705 => 0.034049277997768
706 => 0.033775982577925
707 => 0.032801881004408
708 => 0.032845578489414
709 => 0.033115699147397
710 => 0.03276586835226
711 => 0.032662696421265
712 => 0.033101524908391
713 => 0.033104546879006
714 => 0.032702024270737
715 => 0.032254694052505
716 => 0.032252819722557
717 => 0.03217322163092
718 => 0.033305042332958
719 => 0.033927429279099
720 => 0.033998784939447
721 => 0.033922626474625
722 => 0.033951936845114
723 => 0.033589783594515
724 => 0.034417558532174
725 => 0.035177206673426
726 => 0.034973604744055
727 => 0.034668376508208
728 => 0.034425247516572
729 => 0.034916331280376
730 => 0.034894464093411
731 => 0.035170571809614
801 => 0.035158045968732
802 => 0.035065201328709
803 => 0.034973608059829
804 => 0.035336765017705
805 => 0.035232181645959
806 => 0.03512743582735
807 => 0.034917352052347
808 => 0.034945905926492
809 => 0.034640730392604
810 => 0.034499542226745
811 => 0.032376410970001
812 => 0.031809040922884
813 => 0.03198754708959
814 => 0.03204631595458
815 => 0.03179939578297
816 => 0.03215341588047
817 => 0.032098242223275
818 => 0.032312890647912
819 => 0.03217878763115
820 => 0.032184291265735
821 => 0.032578659644255
822 => 0.032693146462303
823 => 0.032634917542622
824 => 0.032675699081996
825 => 0.033615492444055
826 => 0.03348188388087
827 => 0.033410906994596
828 => 0.033430568077158
829 => 0.033670705430562
830 => 0.033737930778501
831 => 0.03345309225544
901 => 0.033587423749548
902 => 0.034159390202252
903 => 0.034359546090201
904 => 0.034998347604257
905 => 0.034726973367295
906 => 0.035225092524042
907 => 0.036756140990547
908 => 0.037979248446088
909 => 0.03685442828292
910 => 0.039100509363224
911 => 0.040849405665436
912 => 0.040782280112418
913 => 0.040477319589427
914 => 0.038486247646172
915 => 0.036654033558779
916 => 0.038186758442803
917 => 0.03819066567374
918 => 0.038059003246896
919 => 0.037241259221494
920 => 0.038030547527375
921 => 0.038093198366822
922 => 0.038058130556935
923 => 0.037431168129961
924 => 0.036473912385998
925 => 0.036660957867022
926 => 0.036967342180564
927 => 0.036387292756566
928 => 0.036201931819164
929 => 0.036546553068155
930 => 0.03765699453709
1001 => 0.037447072009737
1002 => 0.037441590084184
1003 => 0.038339727677205
1004 => 0.037696854990826
1005 => 0.03666331710954
1006 => 0.036402335163826
1007 => 0.035476025075043
1008 => 0.036115830752769
1009 => 0.036138856220086
1010 => 0.035788441189051
1011 => 0.036691751358061
1012 => 0.036683427195829
1013 => 0.037540985761328
1014 => 0.039180315654275
1015 => 0.038695485138406
1016 => 0.03813167999786
1017 => 0.038192981249258
1018 => 0.038865304672715
1019 => 0.038458802583242
1020 => 0.03860498356885
1021 => 0.038865083410286
1022 => 0.039022008102539
1023 => 0.038170402200977
1024 => 0.037971852128304
1025 => 0.03756568836122
1026 => 0.037459727815794
1027 => 0.037790539729198
1028 => 0.037703382477774
1029 => 0.036136921018717
1030 => 0.035973217080536
1031 => 0.035978237646605
1101 => 0.035566596310351
1102 => 0.034938744467324
1103 => 0.036588701623714
1104 => 0.03645618697292
1105 => 0.036309901054263
1106 => 0.036327820244603
1107 => 0.037044010723955
1108 => 0.036628584077445
1109 => 0.037733063904281
1110 => 0.037506016055586
1111 => 0.037273145286302
1112 => 0.03724095545257
1113 => 0.037151320073996
1114 => 0.036843927009011
1115 => 0.036472731411581
1116 => 0.036227635925747
1117 => 0.033418079155912
1118 => 0.033939516549953
1119 => 0.034539382741284
1120 => 0.034746454146719
1121 => 0.034392244178818
1122 => 0.036857913377479
1123 => 0.037308414899853
1124 => 0.035943816403093
1125 => 0.035688555740538
1126 => 0.036874648224019
1127 => 0.036159289462571
1128 => 0.036481415469049
1129 => 0.035785155236549
1130 => 0.037199902275338
1201 => 0.037189124273252
1202 => 0.036638755721652
1203 => 0.037103923452703
1204 => 0.037023089112217
1205 => 0.036401724372959
1206 => 0.037219600645881
1207 => 0.037220006302308
1208 => 0.036690288537437
1209 => 0.036071694158197
1210 => 0.035961104093737
1211 => 0.03587778933585
1212 => 0.036460925145897
1213 => 0.036983762889766
1214 => 0.037956634308639
1215 => 0.038201237298198
1216 => 0.039155939050591
1217 => 0.038587460640626
1218 => 0.038839459756736
1219 => 0.039113040444724
1220 => 0.039244205087143
1221 => 0.039030479341005
1222 => 0.04051352413339
1223 => 0.040638738553186
1224 => 0.040680721865042
1225 => 0.040180647505308
1226 => 0.040624830580613
1227 => 0.040417012029475
1228 => 0.040957698165881
1229 => 0.041042484655896
1230 => 0.04097067351522
1231 => 0.040997586085415
]
'min_raw' => 0.018384671787958
'max_raw' => 0.041042484655896
'avg_raw' => 0.029713578221927
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.018384'
'max' => '$0.041042'
'avg' => '$0.029713'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0028348790874732
'max_diff' => -0.0039165390069553
'year' => 2031
]
6 => [
'items' => [
101 => 0.039732068982143
102 => 0.039666445244204
103 => 0.038771660920955
104 => 0.039136292146591
105 => 0.038454631547494
106 => 0.03867079314535
107 => 0.038766075118021
108 => 0.038716305222702
109 => 0.039156907849
110 => 0.038782305607477
111 => 0.037793668701788
112 => 0.036804762442635
113 => 0.036792347530097
114 => 0.036531985967707
115 => 0.036343792245699
116 => 0.036380045033088
117 => 0.036507804584376
118 => 0.036336366628324
119 => 0.036372951608372
120 => 0.036980506041628
121 => 0.037102346750338
122 => 0.036688284415905
123 => 0.035025764394247
124 => 0.034617777810816
125 => 0.034911030476261
126 => 0.034770874590069
127 => 0.02806280954968
128 => 0.029638769928784
129 => 0.028702387786078
130 => 0.029133915758308
131 => 0.028178112065586
201 => 0.028634271685717
202 => 0.028550035660161
203 => 0.031084133313702
204 => 0.031044566864379
205 => 0.03106350522986
206 => 0.03015952770181
207 => 0.031599588449659
208 => 0.032309014156959
209 => 0.032177718339292
210 => 0.032210762667941
211 => 0.031642951620643
212 => 0.031069002881971
213 => 0.030432405400707
214 => 0.03161512483507
215 => 0.031483626623663
216 => 0.031785236209068
217 => 0.032552314304783
218 => 0.032665269468223
219 => 0.032817082353366
220 => 0.032762668240819
221 => 0.034059033161282
222 => 0.033902034815723
223 => 0.034280355657013
224 => 0.033502120983207
225 => 0.032621474579081
226 => 0.032788856670005
227 => 0.032772736428648
228 => 0.032567507254212
229 => 0.032382235531947
301 => 0.03207381031436
302 => 0.033049713341148
303 => 0.033010093460468
304 => 0.033651493275594
305 => 0.033538119628045
306 => 0.032780982662476
307 => 0.032808023957322
308 => 0.032989889660766
309 => 0.033619328936889
310 => 0.033806189369537
311 => 0.033719628172034
312 => 0.033924512105928
313 => 0.034086444013488
314 => 0.033944848260371
315 => 0.0359495455255
316 => 0.035117055454013
317 => 0.035522805322427
318 => 0.035619574275227
319 => 0.035371702637462
320 => 0.035425457120075
321 => 0.035506880514015
322 => 0.036001267417679
323 => 0.037298681704899
324 => 0.037873297660911
325 => 0.039602058115625
326 => 0.037825583804805
327 => 0.037720175170982
328 => 0.03803157713244
329 => 0.039046542527236
330 => 0.039869076648866
331 => 0.040141958670143
401 => 0.040178024534046
402 => 0.040689969346814
403 => 0.040983406566288
404 => 0.040627805781059
405 => 0.040326471348532
406 => 0.039247128814226
407 => 0.039372065651524
408 => 0.040232756566607
409 => 0.041448533178605
410 => 0.042491795991696
411 => 0.042126481715931
412 => 0.044913571768328
413 => 0.045189900362781
414 => 0.045151720685801
415 => 0.045781238347174
416 => 0.044531773988391
417 => 0.04399760376778
418 => 0.040391623273135
419 => 0.041404756706097
420 => 0.042877405650148
421 => 0.042682495040253
422 => 0.041613018013064
423 => 0.042490984697468
424 => 0.042200701455048
425 => 0.041971743017888
426 => 0.043020646004294
427 => 0.04186733408418
428 => 0.042865900481507
429 => 0.041585228748089
430 => 0.042128150440771
501 => 0.041819961829837
502 => 0.042019397631287
503 => 0.040853500011154
504 => 0.041482590066413
505 => 0.040827327796599
506 => 0.040827017116966
507 => 0.040812552166042
508 => 0.0415834653206
509 => 0.041608604770893
510 => 0.04103889878489
511 => 0.040956795251826
512 => 0.041260375045765
513 => 0.040904962614737
514 => 0.041071257854276
515 => 0.040909999528135
516 => 0.040873696882301
517 => 0.040584431223907
518 => 0.040459807624746
519 => 0.040508675749132
520 => 0.040341863647359
521 => 0.040241353322183
522 => 0.040792558132556
523 => 0.040498071637913
524 => 0.040747423853721
525 => 0.040463255533049
526 => 0.039478204327355
527 => 0.038911690962233
528 => 0.037051020548972
529 => 0.037578704370019
530 => 0.037928559289301
531 => 0.037812932240565
601 => 0.038061343882977
602 => 0.038076594340306
603 => 0.0379958331831
604 => 0.037902322109202
605 => 0.037856806089915
606 => 0.038196045207106
607 => 0.038392984932898
608 => 0.037963671910906
609 => 0.03786308987658
610 => 0.038297149044837
611 => 0.038561924886725
612 => 0.040516880938536
613 => 0.040372051479793
614 => 0.040735544999892
615 => 0.040694621207792
616 => 0.041075620325915
617 => 0.041698392861804
618 => 0.040432122166401
619 => 0.040651902974777
620 => 0.040598017796043
621 => 0.041186322048005
622 => 0.041188158669664
623 => 0.040835440882636
624 => 0.041026654917176
625 => 0.040919924488778
626 => 0.041112800798376
627 => 0.040370117194073
628 => 0.041274625656373
629 => 0.041787423669259
630 => 0.041794543870165
701 => 0.042037606058457
702 => 0.042284571318973
703 => 0.042758599630394
704 => 0.042271350926647
705 => 0.041394837941312
706 => 0.041458119347733
707 => 0.040944220105135
708 => 0.040952858844247
709 => 0.040906744577839
710 => 0.041045136962648
711 => 0.04040048654006
712 => 0.040551784705733
713 => 0.04033996638779
714 => 0.040651442523121
715 => 0.040316345690355
716 => 0.040597991810978
717 => 0.040719540939923
718 => 0.041168059842493
719 => 0.040250099083765
720 => 0.03837831495624
721 => 0.038771786673035
722 => 0.038189811097359
723 => 0.038243675152625
724 => 0.038352489116663
725 => 0.037999787457502
726 => 0.038067071819163
727 => 0.038064667948292
728 => 0.038043952687799
729 => 0.037952201364267
730 => 0.037819143792699
731 => 0.038349204204865
801 => 0.038439271797797
802 => 0.03863948089987
803 => 0.039235167384511
804 => 0.039175644257441
805 => 0.039272728947283
806 => 0.039060793614464
807 => 0.038253506224869
808 => 0.038297345814101
809 => 0.037750665433898
810 => 0.038625501053444
811 => 0.038418328431469
812 => 0.038284762894345
813 => 0.038248318300065
814 => 0.038845481376282
815 => 0.03902416192807
816 => 0.038912820199001
817 => 0.038684455064324
818 => 0.039122983632996
819 => 0.039240315377937
820 => 0.039266581628602
821 => 0.040043570172775
822 => 0.039310006656955
823 => 0.039486582686207
824 => 0.040864178460583
825 => 0.039614889188446
826 => 0.040276665578372
827 => 0.040244275067803
828 => 0.040582817475597
829 => 0.040216504709052
830 => 0.040221045594815
831 => 0.040521648318087
901 => 0.040099506007238
902 => 0.039994977634472
903 => 0.039850572436141
904 => 0.040165875903738
905 => 0.040354886072613
906 => 0.041878169221075
907 => 0.042862279605133
908 => 0.042819556777955
909 => 0.043209963444585
910 => 0.043034081665553
911 => 0.04246611300579
912 => 0.043435566251606
913 => 0.043128790680983
914 => 0.043154080886293
915 => 0.043153139583588
916 => 0.043357118519266
917 => 0.043212580748943
918 => 0.042927681967139
919 => 0.04311681107417
920 => 0.04367845690716
921 => 0.045421822806159
922 => 0.046397433459764
923 => 0.045363089819799
924 => 0.046076566212234
925 => 0.045648734614405
926 => 0.045570984886192
927 => 0.046019100786133
928 => 0.046468001053635
929 => 0.046439408047244
930 => 0.046113529504321
1001 => 0.045929448984286
1002 => 0.047323368353492
1003 => 0.048350384399926
1004 => 0.048280348790762
1005 => 0.048589463192811
1006 => 0.049497032637776
1007 => 0.049580009413793
1008 => 0.049569556247214
1009 => 0.049363889650125
1010 => 0.050257509631477
1011 => 0.051002983141669
1012 => 0.049316283775178
1013 => 0.049958556813422
1014 => 0.050246893873034
1015 => 0.050670258222296
1016 => 0.051384544843605
1017 => 0.052160449569515
1018 => 0.052270171005121
1019 => 0.052192318395904
1020 => 0.051680588371728
1021 => 0.052529592581288
1022 => 0.053026919335649
1023 => 0.053323066036751
1024 => 0.054074044796633
1025 => 0.050248674544553
1026 => 0.047540887346893
1027 => 0.047118027275057
1028 => 0.047977929859286
1029 => 0.048204679313153
1030 => 0.048113276892619
1031 => 0.045065416220411
1101 => 0.047101980919387
1102 => 0.049293153296262
1103 => 0.049377325151088
1104 => 0.050474271858206
1105 => 0.050831482671408
1106 => 0.051714668550729
1107 => 0.051659425033512
1108 => 0.05187446674057
1109 => 0.05182503237612
1110 => 0.053460948240834
1111 => 0.05526560637547
1112 => 0.055203116802729
1113 => 0.054943675844129
1114 => 0.055328989908907
1115 => 0.057191590502771
1116 => 0.057020112087654
1117 => 0.057186688761443
1118 => 0.059382799833178
1119 => 0.06223805661959
1120 => 0.060911503179207
1121 => 0.063789742439368
1122 => 0.065601441484732
1123 => 0.068734587650511
1124 => 0.068342302319485
1125 => 0.069562013129735
1126 => 0.06764002970453
1127 => 0.063226767263323
1128 => 0.062528351588712
1129 => 0.063926597455985
1130 => 0.067364048481839
1201 => 0.063818339890331
1202 => 0.064535632120452
1203 => 0.064329051909923
1204 => 0.064318044128413
1205 => 0.064738166376757
1206 => 0.064128757143431
1207 => 0.06164591429623
1208 => 0.062783786541618
1209 => 0.06234439942256
1210 => 0.062831932189634
1211 => 0.065462945459723
1212 => 0.064299711777494
1213 => 0.063074339586697
1214 => 0.064611228245814
1215 => 0.066568215641111
1216 => 0.066445750886958
1217 => 0.066208118077605
1218 => 0.067547641781881
1219 => 0.069760142497724
1220 => 0.070358172550669
1221 => 0.070799626109567
1222 => 0.07086049509692
1223 => 0.07148748349652
1224 => 0.068116008850447
1225 => 0.073466625699375
1226 => 0.074390529421377
1227 => 0.074216873813527
1228 => 0.075243753916721
1229 => 0.074941619740927
1230 => 0.074503874723602
1231 => 0.076131698110826
]
'min_raw' => 0.02806280954968
'max_raw' => 0.076131698110826
'avg_raw' => 0.052097253830253
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.028062'
'max' => '$0.076131'
'avg' => '$0.052097'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0096781377617226
'max_diff' => 0.03508921345493
'year' => 2032
]
7 => [
'items' => [
101 => 0.074265529955948
102 => 0.071616739204135
103 => 0.07016356021055
104 => 0.072077223533909
105 => 0.073245830947837
106 => 0.074018206111053
107 => 0.07425192636876
108 => 0.068377726829864
109 => 0.065211859076441
110 => 0.067241144009638
111 => 0.069717011681902
112 => 0.068102255280518
113 => 0.068165550674314
114 => 0.065863332396457
115 => 0.069920706915096
116 => 0.069329581575621
117 => 0.072396340882499
118 => 0.071664434161631
119 => 0.074165257325479
120 => 0.073506706774727
121 => 0.076240313291834
122 => 0.077330822940949
123 => 0.079161958366089
124 => 0.080508949038884
125 => 0.081299927725775
126 => 0.0812524403323
127 => 0.084386691953779
128 => 0.082538533275004
129 => 0.080216810396907
130 => 0.080174817754984
131 => 0.081377270932618
201 => 0.08389728291602
202 => 0.084550685358633
203 => 0.084915848185253
204 => 0.084356588604875
205 => 0.082350544817791
206 => 0.081484345281401
207 => 0.082222372382622
208 => 0.08131982865722
209 => 0.082877872336306
210 => 0.085017399087862
211 => 0.084575595274272
212 => 0.086052479184176
213 => 0.087580898658209
214 => 0.089766607151689
215 => 0.090338032288436
216 => 0.091282576310127
217 => 0.092254822374995
218 => 0.092567081608264
219 => 0.093163281372925
220 => 0.093160139105873
221 => 0.094956827225551
222 => 0.096938629860356
223 => 0.097686714476158
224 => 0.099406893800569
225 => 0.096461146989789
226 => 0.098695529784066
227 => 0.10071099899473
228 => 0.098308073513733
301 => 0.10161994647946
302 => 0.10174853900185
303 => 0.10369013341792
304 => 0.10172195551276
305 => 0.10055325775531
306 => 0.10392724439052
307 => 0.10555981024371
308 => 0.10506806812247
309 => 0.1013258862995
310 => 0.099147775968809
311 => 0.093447241107278
312 => 0.10019977089554
313 => 0.10348873118141
314 => 0.10131736868692
315 => 0.10241247762853
316 => 0.10838703692368
317 => 0.1106617622792
318 => 0.11018863530678
319 => 0.11026858597679
320 => 0.11149598648945
321 => 0.11693895630437
322 => 0.11367740262422
323 => 0.11617073820461
324 => 0.11749319440606
325 => 0.11872156542726
326 => 0.11570507442985
327 => 0.11178066396329
328 => 0.11053763843298
329 => 0.10110146947972
330 => 0.10061027590649
331 => 0.10033455406916
401 => 0.098596166886368
402 => 0.09723027074502
403 => 0.096144059420947
404 => 0.093293516536423
405 => 0.094255491081386
406 => 0.089712320677991
407 => 0.09261888010201
408 => 0.085367870439507
409 => 0.091406726751355
410 => 0.08812005181392
411 => 0.090326965639569
412 => 0.090319265925135
413 => 0.08625563786945
414 => 0.083911822012685
415 => 0.085405392699293
416 => 0.087006619035127
417 => 0.087266412620943
418 => 0.089342444361634
419 => 0.089921820196308
420 => 0.088166284368775
421 => 0.08521760938116
422 => 0.085902519328667
423 => 0.083897942334459
424 => 0.080384998257051
425 => 0.082908056023565
426 => 0.083769538876072
427 => 0.084150018781334
428 => 0.080695441745557
429 => 0.079609938638399
430 => 0.079032025892402
501 => 0.084771666866562
502 => 0.085086097355633
503 => 0.083477426517553
504 => 0.090748771246104
505 => 0.089103041989159
506 => 0.090941724782623
507 => 0.085840370929817
508 => 0.086035249516878
509 => 0.083620186850138
510 => 0.084972460568967
511 => 0.084016717090315
512 => 0.084863210215915
513 => 0.085370594705177
514 => 0.087785261083898
515 => 0.091434298362668
516 => 0.087424590448945
517 => 0.085677503290861
518 => 0.086761386337745
519 => 0.089647909724035
520 => 0.094021140412679
521 => 0.091432099825532
522 => 0.092581072073348
523 => 0.092832071395278
524 => 0.090923008717808
525 => 0.094091530276656
526 => 0.095789566721065
527 => 0.097531400753897
528 => 0.099043786439523
529 => 0.096835673937433
530 => 0.099198670835163
531 => 0.097294512460696
601 => 0.095586285550525
602 => 0.095588876225623
603 => 0.094517280531659
604 => 0.092440928844859
605 => 0.092058017736863
606 => 0.094049969677001
607 => 0.095647326494441
608 => 0.095778892452749
609 => 0.09666327126204
610 => 0.097186637531553
611 => 0.10231633845472
612 => 0.10437954660113
613 => 0.10690239846802
614 => 0.10788519145032
615 => 0.11084304597625
616 => 0.10845433822136
617 => 0.10793752627292
618 => 0.10076273869986
619 => 0.10193760976301
620 => 0.1038186916933
621 => 0.10079375704804
622 => 0.10271238183648
623 => 0.10309115901175
624 => 0.1006909709263
625 => 0.10197301508874
626 => 0.098568285892896
627 => 0.091508512155086
628 => 0.094099389822969
629 => 0.096007147866524
630 => 0.093284541913501
701 => 0.098164707704894
702 => 0.095313815596632
703 => 0.094410219665268
704 => 0.090884969781808
705 => 0.09254875202749
706 => 0.094799041337841
707 => 0.093408624168255
708 => 0.096293948567334
709 => 0.10038033740434
710 => 0.10329254143825
711 => 0.103516104303
712 => 0.10164375221171
713 => 0.10464420838719
714 => 0.10466606343475
715 => 0.10128153661159
716 => 0.099208532777522
717 => 0.098737541944785
718 => 0.099914169388154
719 => 0.10134281232181
720 => 0.10359538404296
721 => 0.10495656595723
722 => 0.10850580647452
723 => 0.1094661291938
724 => 0.11052123271063
725 => 0.11193117639099
726 => 0.1136241752814
727 => 0.10991999009166
728 => 0.11006716427471
729 => 0.10661787831396
730 => 0.10293182158725
731 => 0.10572907916937
801 => 0.1093861213544
802 => 0.10854719183648
803 => 0.10845279512794
804 => 0.10861154420824
805 => 0.1079790187486
806 => 0.10511812953717
807 => 0.1036814088853
808 => 0.10553514507274
809 => 0.10652032335606
810 => 0.10804824895691
811 => 0.10785989987601
812 => 0.11179567213658
813 => 0.11332499422546
814 => 0.11293372819174
815 => 0.11300573055829
816 => 0.11577449515027
817 => 0.11885393081641
818 => 0.12173822868508
819 => 0.12467226036057
820 => 0.12113517065856
821 => 0.11933925464525
822 => 0.12119218154946
823 => 0.12020899245225
824 => 0.12585868863765
825 => 0.12624986134355
826 => 0.13189914899161
827 => 0.13726099567427
828 => 0.13389331584035
829 => 0.13706888624011
830 => 0.1405035245355
831 => 0.14712949905729
901 => 0.14489810394294
902 => 0.14318889025578
903 => 0.14157369158026
904 => 0.14493466361844
905 => 0.14925850045271
906 => 0.15018981349362
907 => 0.15169889640885
908 => 0.15011228024536
909 => 0.15202318465425
910 => 0.15876951691155
911 => 0.15694659838411
912 => 0.15435776102636
913 => 0.15968334241886
914 => 0.16161064962214
915 => 0.17513750091334
916 => 0.19221570943484
917 => 0.18514521896538
918 => 0.18075633736768
919 => 0.1817878286488
920 => 0.18802421226701
921 => 0.19002714075226
922 => 0.18458249067851
923 => 0.18650563312982
924 => 0.19710233711576
925 => 0.20278712882126
926 => 0.19506641811581
927 => 0.17376528348732
928 => 0.15412466454737
929 => 0.15933424111885
930 => 0.15874363680762
1001 => 0.17012847327477
1002 => 0.15690312238011
1003 => 0.15712580337087
1004 => 0.16874606619941
1005 => 0.16564597929849
1006 => 0.16062423554814
1007 => 0.15416132883415
1008 => 0.14221404802681
1009 => 0.13163200824117
1010 => 0.15238582515902
1011 => 0.15149088283515
1012 => 0.15019487372718
1013 => 0.15307900175415
1014 => 0.1670835087791
1015 => 0.16676065956401
1016 => 0.16470685757672
1017 => 0.1662646482827
1018 => 0.16035114730558
1019 => 0.1618751911553
1020 => 0.15412155337299
1021 => 0.15762652147111
1022 => 0.16061346114143
1023 => 0.16121313350265
1024 => 0.1625642259525
1025 => 0.15101928889697
1026 => 0.15620262669336
1027 => 0.15924735203566
1028 => 0.14549117217107
1029 => 0.15897543658923
1030 => 0.150818317228
1031 => 0.14804966840098
1101 => 0.15177728930482
1102 => 0.15032463181336
1103 => 0.14907572220512
1104 => 0.14837880918472
1105 => 0.151115962574
1106 => 0.15098827109678
1107 => 0.14650975689335
1108 => 0.14066771768257
1109 => 0.1426284978001
1110 => 0.14191612800099
1111 => 0.13933440795147
1112 => 0.14107417554678
1113 => 0.13341311953327
1114 => 0.12023267084906
1115 => 0.12894007897791
1116 => 0.12860485323678
1117 => 0.12843581721683
1118 => 0.13497919377058
1119 => 0.13435019909632
1120 => 0.1332085676034
1121 => 0.13931344099382
1122 => 0.13708508008419
1123 => 0.14395236333983
1124 => 0.14847560024003
1125 => 0.14732836105076
1126 => 0.1515824872181
1127 => 0.14267367021379
1128 => 0.14563282186292
1129 => 0.1462426989166
1130 => 0.13923810780382
1201 => 0.13445311040394
1202 => 0.13413400563033
1203 => 0.12583747955218
1204 => 0.13026941681591
1205 => 0.13416933820196
1206 => 0.13230157850417
1207 => 0.13171030158158
1208 => 0.13473100714676
1209 => 0.13496574183977
1210 => 0.12961376596311
1211 => 0.13072661122291
1212 => 0.13536736095136
1213 => 0.13060967623669
1214 => 0.12136627199945
1215 => 0.11907377994855
1216 => 0.11876791924995
1217 => 0.11255049898809
1218 => 0.11922697522937
1219 => 0.11631251443161
1220 => 0.12551926117114
1221 => 0.12026041681029
1222 => 0.12003371854062
1223 => 0.11969103085659
1224 => 0.11433944039881
1225 => 0.11551109859775
1226 => 0.1194058688996
1227 => 0.12079556682103
1228 => 0.12065060994237
1229 => 0.11938678240034
1230 => 0.11996535617724
1231 => 0.11810156845338
]
'min_raw' => 0.065211859076441
'max_raw' => 0.20278712882126
'avg_raw' => 0.13399949394885
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.065211'
'max' => '$0.202787'
'avg' => '$0.133999'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.037149049526761
'max_diff' => 0.12665543071043
'year' => 2033
]
8 => [
'items' => [
101 => 0.11744342621671
102 => 0.11536614828146
103 => 0.11231312357933
104 => 0.11273766538945
105 => 0.10668882458717
106 => 0.1033930950818
107 => 0.10248088059173
108 => 0.10126102925154
109 => 0.10261866604651
110 => 0.10667168898117
111 => 0.10178288342518
112 => 0.093401369209281
113 => 0.093905112495062
114 => 0.095036874095488
115 => 0.092927843840446
116 => 0.090931823701541
117 => 0.092667201270086
118 => 0.089115843205259
119 => 0.095466038750808
120 => 0.095294283757519
121 => 0.097661243963441
122 => 0.099141352755118
123 => 0.095730181181215
124 => 0.094872280755167
125 => 0.095360979827245
126 => 0.087283872756443
127 => 0.097001171995863
128 => 0.097085207603205
129 => 0.096365643713645
130 => 0.10153980557068
131 => 0.11245890095058
201 => 0.10835069804907
202 => 0.10675987771451
203 => 0.10373572709564
204 => 0.10776522823899
205 => 0.10745582542119
206 => 0.10605658854157
207 => 0.10521032571089
208 => 0.10676959092425
209 => 0.10501711549533
210 => 0.10470232275349
211 => 0.10279502123583
212 => 0.10211420137071
213 => 0.1016101494468
214 => 0.10105523780569
215 => 0.10227923461061
216 => 0.099505496820471
217 => 0.096160640958434
218 => 0.095882552385347
219 => 0.096650379385436
220 => 0.096310673095894
221 => 0.095880926002327
222 => 0.095060421766051
223 => 0.094816995686447
224 => 0.095608012351615
225 => 0.094715000655777
226 => 0.096032688057851
227 => 0.095674349995456
228 => 0.093672702708084
301 => 0.091177909083277
302 => 0.091155700187009
303 => 0.090618200992826
304 => 0.089933614955489
305 => 0.089743178781108
306 => 0.092521052611625
307 => 0.098271168306027
308 => 0.097142283006609
309 => 0.097958018328257
310 => 0.10197062874785
311 => 0.10324611693683
312 => 0.10234080563188
313 => 0.1011015596805
314 => 0.10115608021308
315 => 0.10539095877421
316 => 0.10565508295546
317 => 0.10632243955178
318 => 0.10718018137302
319 => 0.10248688277302
320 => 0.10093502627108
321 => 0.10019967056675
322 => 0.097935059615863
323 => 0.10037724837332
324 => 0.0989542895693
325 => 0.099146295327157
326 => 0.099021251325467
327 => 0.099089533805828
328 => 0.095464263741736
329 => 0.096785121614506
330 => 0.094588939216428
331 => 0.091648497518445
401 => 0.091638640126822
402 => 0.092358309066682
403 => 0.091930221820605
404 => 0.09077825004854
405 => 0.090941882201609
406 => 0.089508292358887
407 => 0.091115945964497
408 => 0.091162047717445
409 => 0.090543013509801
410 => 0.09301982570269
411 => 0.094034577679003
412 => 0.093627116102534
413 => 0.094005989088588
414 => 0.097189193287411
415 => 0.097708194464756
416 => 0.097938700504439
417 => 0.097629852947462
418 => 0.094064172217853
419 => 0.094222325320656
420 => 0.093061902788517
421 => 0.092081468031174
422 => 0.092120680279764
423 => 0.092624751192636
424 => 0.094826058432514
425 => 0.099458579744688
426 => 0.099634380542156
427 => 0.099847456237158
428 => 0.09898077030232
429 => 0.098719369531305
430 => 0.099064224621537
501 => 0.10080395605999
502 => 0.10527901765217
503 => 0.10369723200618
504 => 0.10241121565403
505 => 0.10353939870238
506 => 0.10336572376508
507 => 0.10189973251396
508 => 0.10185858702218
509 => 0.099044881105527
510 => 0.098004718093124
511 => 0.097135480025109
512 => 0.09618629474687
513 => 0.095623585896952
514 => 0.096488162437025
515 => 0.096685901321109
516 => 0.094795489606027
517 => 0.094537833474572
518 => 0.096081584488479
519 => 0.095402237224098
520 => 0.096100962732516
521 => 0.096263073044025
522 => 0.096236969550155
523 => 0.095527652983604
524 => 0.095979750210999
525 => 0.09491040549154
526 => 0.093747653719511
527 => 0.093005890530952
528 => 0.092358603768325
529 => 0.092717756084758
530 => 0.091437443655297
531 => 0.091027845941514
601 => 0.095826589842867
602 => 0.099371473557988
603 => 0.099319929544842
604 => 0.099006168620861
605 => 0.098539983531903
606 => 0.10076985171705
607 => 0.099993010228964
608 => 0.10055822731882
609 => 0.10070209879028
610 => 0.10113755440306
611 => 0.10129319235595
612 => 0.1008227463648
613 => 0.09924387215834
614 => 0.095309467750706
615 => 0.09347799187823
616 => 0.09287357433467
617 => 0.092895543764426
618 => 0.0922895288159
619 => 0.092468027377926
620 => 0.092227454300505
621 => 0.091771867092747
622 => 0.09268962485849
623 => 0.092795387891487
624 => 0.092581172262574
625 => 0.092631627797902
626 => 0.090858013883194
627 => 0.090992857897042
628 => 0.090242029292786
629 => 0.090101257980862
630 => 0.088203228651429
701 => 0.084840594570586
702 => 0.086703820270161
703 => 0.084453305634255
704 => 0.083601001640776
705 => 0.08763567618544
706 => 0.087230706765608
707 => 0.08653757515483
708 => 0.085512289041206
709 => 0.08513200044832
710 => 0.082821487342685
711 => 0.082684969902296
712 => 0.083830122586551
713 => 0.083301674025065
714 => 0.082559532105619
715 => 0.079871569303105
716 => 0.07684940915918
717 => 0.076940629177304
718 => 0.077901922089798
719 => 0.080697010880886
720 => 0.079604921334681
721 => 0.078812597838625
722 => 0.078664219464971
723 => 0.080521485462421
724 => 0.08314990595807
725 => 0.084383102047034
726 => 0.083161042175593
727 => 0.081757205595657
728 => 0.081842650623525
729 => 0.082411078113886
730 => 0.082470811805991
731 => 0.081557058509185
801 => 0.081814274709896
802 => 0.081423539780674
803 => 0.079025600241283
804 => 0.078982229118964
805 => 0.078393736083999
806 => 0.078375916748782
807 => 0.077374743289839
808 => 0.077234672202147
809 => 0.075246781532531
810 => 0.07655521719116
811 => 0.075677587247307
812 => 0.074354791909945
813 => 0.074126741495192
814 => 0.074119886024346
815 => 0.075478101064191
816 => 0.076539345657628
817 => 0.075692853995926
818 => 0.075500124253108
819 => 0.07755797368428
820 => 0.07729609358645
821 => 0.077069307110674
822 => 0.082914559731453
823 => 0.078287586171356
824 => 0.076269961600736
825 => 0.07377276805808
826 => 0.074585866867512
827 => 0.074757198733566
828 => 0.068751898416446
829 => 0.066315548825704
830 => 0.065479485458058
831 => 0.064998319169777
901 => 0.065217592689453
902 => 0.063024592302479
903 => 0.064498324831404
904 => 0.062599371865994
905 => 0.062281006221615
906 => 0.065676569358901
907 => 0.066149042132862
908 => 0.064133326493358
909 => 0.065427742248639
910 => 0.064958369102049
911 => 0.06263192396426
912 => 0.062543070872168
913 => 0.061375742480527
914 => 0.059549099586924
915 => 0.058714274769176
916 => 0.058279490755811
917 => 0.058458891113497
918 => 0.058368180802909
919 => 0.057776234667508
920 => 0.058402110462483
921 => 0.056803256436054
922 => 0.056166579879888
923 => 0.055879007850252
924 => 0.054459932875192
925 => 0.056718312226018
926 => 0.057163241408444
927 => 0.057609047238805
928 => 0.06148948262753
929 => 0.061295627041506
930 => 0.063047987127665
1001 => 0.0629798936371
1002 => 0.062480092154177
1003 => 0.060371511911074
1004 => 0.061211954414146
1005 => 0.058625203023455
1006 => 0.060563373047358
1007 => 0.059678873188364
1008 => 0.060264322755305
1009 => 0.059211631646086
1010 => 0.059794234370478
1011 => 0.057268750623382
1012 => 0.054910489434858
1013 => 0.055859522579055
1014 => 0.056891230141903
1015 => 0.059128235012354
1016 => 0.057795893366403
1017 => 0.058275053803702
1018 => 0.056669946549237
1019 => 0.053358151807056
1020 => 0.053376896205637
1021 => 0.052867448735922
1022 => 0.052427211741541
1023 => 0.057948928831718
1024 => 0.057262216026125
1025 => 0.056168029045162
1026 => 0.057632641800443
1027 => 0.058019908659469
1028 => 0.058030933602512
1029 => 0.059099477261639
1030 => 0.059669759204061
1031 => 0.059770273868157
1101 => 0.061451650403205
1102 => 0.062015225639861
1103 => 0.064336512279492
1104 => 0.059621374765585
1105 => 0.059524269611368
1106 => 0.057653251905455
1107 => 0.056466622896746
1108 => 0.057734501408887
1109 => 0.058857668687968
1110 => 0.057688151843633
1111 => 0.057840866053655
1112 => 0.056270885243172
1113 => 0.056832079508457
1114 => 0.057315455610751
1115 => 0.057048563738598
1116 => 0.056649013688273
1117 => 0.058765581779514
1118 => 0.058646156712909
1119 => 0.060617153579164
1120 => 0.062153686583747
1121 => 0.064907428416089
1122 => 0.062033755258232
1123 => 0.061929027186543
1124 => 0.06295276088621
1125 => 0.062015068911565
1126 => 0.062607657871514
1127 => 0.064811953173252
1128 => 0.064858526459494
1129 => 0.06407836390864
1130 => 0.064030890946519
1201 => 0.064180729698454
1202 => 0.065058339948664
1203 => 0.064751675961001
1204 => 0.065106555291307
1205 => 0.065550337327959
1206 => 0.067386007991236
1207 => 0.067828581973518
1208 => 0.066753356644873
1209 => 0.066850437453262
1210 => 0.066448273664754
1211 => 0.066059788484152
1212 => 0.06693304643644
1213 => 0.068528942508175
1214 => 0.06851901452154
1215 => 0.068889231390396
1216 => 0.069119873432651
1217 => 0.068129788946998
1218 => 0.067485280353254
1219 => 0.067732425959243
1220 => 0.06812761716535
1221 => 0.067604270777357
1222 => 0.064373934433029
1223 => 0.065353812125213
1224 => 0.065190712563663
1225 => 0.06495843895443
1226 => 0.065943713551092
1227 => 0.06584868141265
1228 => 0.0630020999138
1229 => 0.063184328825645
1230 => 0.06301318185749
1231 => 0.063566192724975
]
'min_raw' => 0.052427211741541
'max_raw' => 0.11744342621671
'avg_raw' => 0.084935318979123
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.052427'
'max' => '$0.117443'
'avg' => '$0.084935'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0127846473349
'max_diff' => -0.085343702604549
'year' => 2034
]
9 => [
'items' => [
101 => 0.061985204509894
102 => 0.062471505836735
103 => 0.062776509470137
104 => 0.06295615895336
105 => 0.063605176073563
106 => 0.063529021405435
107 => 0.063600442192466
108 => 0.064562763247561
109 => 0.069429852915521
110 => 0.06969475786752
111 => 0.068390268999442
112 => 0.068911386572334
113 => 0.067910954788267
114 => 0.068582551347222
115 => 0.069042040656155
116 => 0.066965696823797
117 => 0.066842749217405
118 => 0.065838188295492
119 => 0.066377982433689
120 => 0.065519131147245
121 => 0.065729863211596
122 => 0.065140637988381
123 => 0.066201126076597
124 => 0.067386916542411
125 => 0.06768649404236
126 => 0.066898434616217
127 => 0.066327827656042
128 => 0.065326029803593
129 => 0.066992041958737
130 => 0.067479234683702
131 => 0.066989482942757
201 => 0.066875996763093
202 => 0.066660940657696
203 => 0.066921621932489
204 => 0.067476581327492
205 => 0.067214872725299
206 => 0.067387735867759
207 => 0.0667289598244
208 => 0.068130116706161
209 => 0.070355491041163
210 => 0.070362645983535
211 => 0.070100935970636
212 => 0.069993849871979
213 => 0.070262380227105
214 => 0.070408046929069
215 => 0.071276424857501
216 => 0.072208228972411
217 => 0.076556552198711
218 => 0.075335560436863
219 => 0.079193651486142
220 => 0.082244900595699
221 => 0.083159836788703
222 => 0.082318138542214
223 => 0.079438734308622
224 => 0.079297456999999
225 => 0.083600502578096
226 => 0.08238469511031
227 => 0.082240078680684
228 => 0.08070160420278
301 => 0.081611033162992
302 => 0.081412127708876
303 => 0.081098145718765
304 => 0.08283327282348
305 => 0.086081275867642
306 => 0.08557504413363
307 => 0.085197165627604
308 => 0.083541412012978
309 => 0.084538545514941
310 => 0.084183485373726
311 => 0.085709049067119
312 => 0.084805338930527
313 => 0.082375484172962
314 => 0.08276244655201
315 => 0.082703957966877
316 => 0.083907648904366
317 => 0.083546330762378
318 => 0.082633404800705
319 => 0.08607017454634
320 => 0.085847009835376
321 => 0.086163406372967
322 => 0.086302693913703
323 => 0.088394595095195
324 => 0.089251580075881
325 => 0.08944613067013
326 => 0.090260200120185
327 => 0.089425875880613
328 => 0.092763767702002
329 => 0.094983270991838
330 => 0.097561338277578
331 => 0.1013285875012
401 => 0.10274510805829
402 => 0.10248922629844
403 => 0.10534551166477
404 => 0.11047819297641
405 => 0.1035266879405
406 => 0.11084663962289
407 => 0.10852922743315
408 => 0.10303468481974
409 => 0.10268090105184
410 => 0.10640186910259
411 => 0.11465461810925
412 => 0.11258739808499
413 => 0.11465799934065
414 => 0.11224253298946
415 => 0.11212258472597
416 => 0.1145406855314
417 => 0.12019070986708
418 => 0.11750659509319
419 => 0.11365825839288
420 => 0.11649981032564
421 => 0.11403819506827
422 => 0.10849148693068
423 => 0.1125858173208
424 => 0.10984805518874
425 => 0.11064707972631
426 => 0.11640144851651
427 => 0.1157090676395
428 => 0.1166050726071
429 => 0.11502364729183
430 => 0.11354634667949
501 => 0.11078885538077
502 => 0.1099724981499
503 => 0.11019810991905
504 => 0.10997238634791
505 => 0.10842959530893
506 => 0.10809642973095
507 => 0.10754113917134
508 => 0.10771324693506
509 => 0.106669138227
510 => 0.10863958708297
511 => 0.10900531975417
512 => 0.11043924810975
513 => 0.1105881233085
514 => 0.1145815933681
515 => 0.11238205716681
516 => 0.11385769594945
517 => 0.11372570092748
518 => 0.10315376821908
519 => 0.10461048726935
520 => 0.10687668496794
521 => 0.10585576597648
522 => 0.10441242538082
523 => 0.10324685046279
524 => 0.10148088527582
525 => 0.10396644736412
526 => 0.10723469720017
527 => 0.11067101151778
528 => 0.11479951801415
529 => 0.11387808342527
530 => 0.11059383196056
531 => 0.11074116108212
601 => 0.11165189173973
602 => 0.11047241278952
603 => 0.11012456142094
604 => 0.11160410230331
605 => 0.11161429108822
606 => 0.11025715801121
607 => 0.10874895294885
608 => 0.10874263351457
609 => 0.10847426299125
610 => 0.11229027550937
611 => 0.11438869655195
612 => 0.11462927714271
613 => 0.11437250356135
614 => 0.11447132552183
615 => 0.11325030055271
616 => 0.11604120154842
617 => 0.1186024082936
618 => 0.11791595017369
619 => 0.11688685186618
620 => 0.11606712549615
621 => 0.11772284869219
622 => 0.11764912194462
623 => 0.11858003838702
624 => 0.11853780663996
625 => 0.11822477445392
626 => 0.11791596135305
627 => 0.11914037039134
628 => 0.11878776025172
629 => 0.11843460241116
630 => 0.11772629029616
701 => 0.11782256167641
702 => 0.11679364105723
703 => 0.11631761529859
704 => 0.10915933003419
705 => 0.10724640230782
706 => 0.10784824831177
707 => 0.1080463916432
708 => 0.1072138830452
709 => 0.10840748652082
710 => 0.10822146468348
711 => 0.10894516683342
712 => 0.10849302914963
713 => 0.10851158503789
714 => 0.10984122555999
715 => 0.11022722586025
716 => 0.11003090299213
717 => 0.11016840079941
718 => 0.11333697973387
719 => 0.11288650913484
720 => 0.11264720560731
721 => 0.11271349431987
722 => 0.11352313417272
723 => 0.11374978912682
724 => 0.11278943615953
725 => 0.11324234417064
726 => 0.11517076899936
727 => 0.11584560855001
728 => 0.11799937245435
729 => 0.11708441526769
730 => 0.11876385878223
731 => 0.12392589558145
801 => 0.12804968776243
802 => 0.12425727804988
803 => 0.1318300972285
804 => 0.13772662321544
805 => 0.13750030472689
806 => 0.13647210903196
807 => 0.12975907096307
808 => 0.12358163324633
809 => 0.12874932220425
810 => 0.12876249570614
811 => 0.12831858664166
812 => 0.12556150556696
813 => 0.12822264619658
814 => 0.12843387787592
815 => 0.12831564430653
816 => 0.12620179671087
817 => 0.12297434213663
818 => 0.12360497903501
819 => 0.12463797513918
820 => 0.12268229800841
821 => 0.12205734066648
822 => 0.12321925526814
823 => 0.1269631862092
824 => 0.12625541775191
825 => 0.12623693505717
826 => 0.129265068658
827 => 0.12709757851194
828 => 0.12361293338587
829 => 0.12273301453472
830 => 0.11960989539748
831 => 0.12176704490974
901 => 0.12184467688039
902 => 0.12066322813806
903 => 0.12370880143998
904 => 0.12368073594584
905 => 0.12657205452225
906 => 0.13209916971067
907 => 0.13046452977663
908 => 0.12856362138167
909 => 0.12877030283067
910 => 0.13103708819298
911 => 0.12966653801725
912 => 0.13015939741626
913 => 0.13103634219125
914 => 0.13156542474732
915 => 0.12869417599297
916 => 0.12802475056063
917 => 0.12665534106246
918 => 0.12629808768563
919 => 0.12741344314822
920 => 0.12711958638992
921 => 0.12183815221386
922 => 0.12128621295684
923 => 0.12130314014587
924 => 0.11991526264081
925 => 0.11779841631682
926 => 0.12336136206592
927 => 0.12291457966889
928 => 0.12242136648079
929 => 0.12248178228209
930 => 0.12489646848605
1001 => 0.12349582854318
1002 => 0.12721965939168
1003 => 0.12645415171783
1004 => 0.12566901166067
1005 => 0.12556048138882
1006 => 0.12525826945181
1007 => 0.12422187227172
1008 => 0.12297036039894
1009 => 0.12214400385642
1010 => 0.11267138704994
1011 => 0.11442944962954
1012 => 0.11645194037493
1013 => 0.11715009607562
1014 => 0.11595585243869
1015 => 0.1242690282895
1016 => 0.1257879256252
1017 => 0.12118708652015
1018 => 0.12032645737462
1019 => 0.12432545099301
1020 => 0.12191356898403
1021 => 0.12299963930499
1022 => 0.12065214931978
1023 => 0.12542206773554
1024 => 0.12538572894901
1025 => 0.12353012295179
1026 => 0.125098468434
1027 => 0.12482592981138
1028 => 0.12273095521067
1029 => 0.12548848216712
1030 => 0.12548984986609
1031 => 0.12370386943811
1101 => 0.12161823529963
1102 => 0.12124537317614
1103 => 0.12096447165308
1104 => 0.12293055474989
1105 => 0.12469333870672
1106 => 0.12797344261916
1107 => 0.12879813867609
1108 => 0.13201698228943
1109 => 0.13010031764034
1110 => 0.13094995025432
1111 => 0.13187234664467
1112 => 0.1323145773942
1113 => 0.13159398611924
1114 => 0.13659417517965
1115 => 0.13701634433818
1116 => 0.13715789400529
1117 => 0.13547185838737
1118 => 0.13696945263763
1119 => 0.13626877788304
1120 => 0.13809173894144
1121 => 0.13837760251213
1122 => 0.13813548623764
1123 => 0.13822622384703
1124 => 0.13395944457777
1125 => 0.1337381895636
1126 => 0.13072136174592
1127 => 0.13195074138089
1128 => 0.12965247507901
1129 => 0.13038127899811
1130 => 0.13070252882134
1201 => 0.13053472614445
1202 => 0.13202024866091
1203 => 0.13075725104972
1204 => 0.12742399269776
1205 => 0.1240898262018
1206 => 0.1240479684574
1207 => 0.12317014127194
1208 => 0.12253563299892
1209 => 0.12265786180269
1210 => 0.12308861204974
1211 => 0.1225105970115
1212 => 0.12263394582601
1213 => 0.12468235801583
1214 => 0.12509315247189
1215 => 0.12369711240244
1216 => 0.11809181007598
1217 => 0.11671625482523
1218 => 0.11770497666102
1219 => 0.11723243130536
1220 => 0.094615721679543
1221 => 0.099929182127732
1222 => 0.096772104357485
1223 => 0.098227031044179
1224 => 0.095004472162083
1225 => 0.096542446169401
1226 => 0.096258438528067
1227 => 0.10480232569203
1228 => 0.1046689246457
1229 => 0.10473277666715
1230 => 0.10168495331763
1231 => 0.10654021867084
]
'min_raw' => 0.061985204509894
'max_raw' => 0.13837760251213
'avg_raw' => 0.10018140351101
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.061985'
'max' => '$0.138377'
'avg' => '$0.100181'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0095579927683534
'max_diff' => 0.020934176295421
'year' => 2035
]
10 => [
'items' => [
101 => 0.10893209697352
102 => 0.10848942395747
103 => 0.1086008352186
104 => 0.10668642062933
105 => 0.10475131238508
106 => 0.10260497953118
107 => 0.10659260067897
108 => 0.1061492452783
109 => 0.1071661430532
110 => 0.10975240040858
111 => 0.1101332366284
112 => 0.11064508436989
113 => 0.11046162339037
114 => 0.11483240822902
115 => 0.11430307734569
116 => 0.11557861247562
117 => 0.11295473993827
118 => 0.109985579102
119 => 0.11054991950779
120 => 0.11049556898857
121 => 0.10980362449832
122 => 0.10917896795145
123 => 0.10813909079679
124 => 0.11142941598698
125 => 0.1112958347931
126 => 0.1134583590509
127 => 0.11307611188269
128 => 0.11052337174166
129 => 0.1106145433552
130 => 0.11122771627181
131 => 0.11334991473731
201 => 0.11397992773216
202 => 0.11368808061127
203 => 0.11437886109894
204 => 0.114924825831
205 => 0.11444742586346
206 => 0.12120640265634
207 => 0.11839960425772
208 => 0.11976761826763
209 => 0.12009388154819
210 => 0.11925816501562
211 => 0.11943940200677
212 => 0.11971392666423
213 => 0.12138078662693
214 => 0.12575510947887
215 => 0.12769246729296
216 => 0.13352110386423
217 => 0.12753159669583
218 => 0.1271762041275
219 => 0.12822611758195
220 => 0.13164814427312
221 => 0.13442137549169
222 => 0.13534141627844
223 => 0.13546301485663
224 => 0.13718907253572
225 => 0.13817841660831
226 => 0.13697948373366
227 => 0.13596351365589
228 => 0.13232443494419
229 => 0.13274566821395
301 => 0.13564754772568
302 => 0.13974662345584
303 => 0.14326405686846
304 => 0.14203237428229
305 => 0.15142924298236
306 => 0.15236090413121
307 => 0.15223217868465
308 => 0.15435464143149
309 => 0.15014198511103
310 => 0.14834099291767
311 => 0.13618317791846
312 => 0.13959902802241
313 => 0.14456416675434
314 => 0.14390701202485
315 => 0.14030119555918
316 => 0.14326132153333
317 => 0.14228261131458
318 => 0.14151066195833
319 => 0.14504711160907
320 => 0.14115863994873
321 => 0.144525376275
322 => 0.14020750211214
323 => 0.1420380005046
324 => 0.14099892108579
325 => 0.14167133281454
326 => 0.13774042758789
327 => 0.13986144863086
328 => 0.13765218613923
329 => 0.13765113866116
330 => 0.13760236906921
331 => 0.14020155659324
401 => 0.14028631600508
402 => 0.13836551249767
403 => 0.13808869470366
404 => 0.13911223517419
405 => 0.13791393734888
406 => 0.13847461335934
407 => 0.13793091965406
408 => 0.13780852274906
409 => 0.13683324338591
410 => 0.13641306622039
411 => 0.13657782851362
412 => 0.13601540986605
413 => 0.13567653228731
414 => 0.13753495778937
415 => 0.13654207601229
416 => 0.13738278441711
417 => 0.13642469108396
418 => 0.13310352216989
419 => 0.13119348280668
420 => 0.12492010260051
421 => 0.12669922544487
422 => 0.12787878573132
423 => 0.12748894106369
424 => 0.12832647825963
425 => 0.12837789624126
426 => 0.12810560436118
427 => 0.1277903252468
428 => 0.12763686480995
429 => 0.12878063317847
430 => 0.12944462921388
501 => 0.12799717038655
502 => 0.12765805103541
503 => 0.12912151182623
504 => 0.13001422206321
505 => 0.13660549288257
506 => 0.13611719025075
507 => 0.13734273403207
508 => 0.13720475660979
509 => 0.13848932173705
510 => 0.14058904282239
511 => 0.13631972276465
512 => 0.13706072910469
513 => 0.13687905146245
514 => 0.13886256032203
515 => 0.13886875262018
516 => 0.13767953997524
517 => 0.13832423144284
518 => 0.13796438235181
519 => 0.13861467829581
520 => 0.13611066867139
521 => 0.1391602821028
522 => 0.14088921640566
523 => 0.14091322266013
524 => 0.14173272379802
525 => 0.14256538441641
526 => 0.14416360396397
527 => 0.14252081094067
528 => 0.13956558621443
529 => 0.13977894389434
530 => 0.13804629671862
531 => 0.13807542283068
601 => 0.13791994536189
602 => 0.13838654494952
603 => 0.13621306104171
604 => 0.13672317337057
605 => 0.13600901312295
606 => 0.13705917665978
607 => 0.1359293742924
608 => 0.13687896385199
609 => 0.13728877522651
610 => 0.13880098802112
611 => 0.13570601923309
612 => 0.12939516836335
613 => 0.13072178572784
614 => 0.12875961444221
615 => 0.12894122086521
616 => 0.12930809474211
617 => 0.1281189364734
618 => 0.12834579039639
619 => 0.12833768557791
620 => 0.12826784263087
621 => 0.12795849663771
622 => 0.12750988374538
623 => 0.12929701943264
624 => 0.12960068861053
625 => 0.13027570757632
626 => 0.13228410614879
627 => 0.1320834197701
628 => 0.13241074758014
629 => 0.13169619280869
630 => 0.12897436701166
701 => 0.12912217524754
702 => 0.12727900417768
703 => 0.13022857354805
704 => 0.12953007658873
705 => 0.12907975105507
706 => 0.12895687556097
707 => 0.13097025256504
708 => 0.13157268652047
709 => 0.13119729010728
710 => 0.13042734111177
711 => 0.13190587079814
712 => 0.13230146296805
713 => 0.13239002146601
714 => 0.1350096925903
715 => 0.13253643198094
716 => 0.13313177039171
717 => 0.13777643072569
718 => 0.13356436472209
719 => 0.13579559002447
720 => 0.13568638315666
721 => 0.13682780252081
722 => 0.13559275345326
723 => 0.13560806336665
724 => 0.13662156643557
725 => 0.13519828416151
726 => 0.13484585945479
727 => 0.13435898724657
728 => 0.13542205490136
729 => 0.13605931588199
730 => 0.14119517136926
731 => 0.14451316823751
801 => 0.14436912524286
802 => 0.14568540857673
803 => 0.14509241087905
804 => 0.14317746488835
805 => 0.14644604419168
806 => 0.14541172893694
807 => 0.14549699662985
808 => 0.14549382296206
809 => 0.14618155218506
810 => 0.14569423300111
811 => 0.14473367686725
812 => 0.14537133885618
813 => 0.14726496699497
814 => 0.15314284684136
815 => 0.15643218627495
816 => 0.15294482447724
817 => 0.15535035994767
818 => 0.15390789584534
819 => 0.15364575720836
820 => 0.15515661125146
821 => 0.15667010984456
822 => 0.15657370652722
823 => 0.15547498426764
824 => 0.15485434394225
825 => 0.15955404041587
826 => 0.16301669672039
827 => 0.16278056677436
828 => 0.16382276756255
829 => 0.16688270131072
830 => 0.16716246330432
831 => 0.16712721972338
901 => 0.16643380043211
902 => 0.1694467025898
903 => 0.17196011857671
904 => 0.16627329390099
905 => 0.1684387622915
906 => 0.16941091081904
907 => 0.17083831328093
908 => 0.17324658049457
909 => 0.17586259744991
910 => 0.17623253093057
911 => 0.1759700454231
912 => 0.17424471191874
913 => 0.17710718888685
914 => 0.17878396076142
915 => 0.17978244004049
916 => 0.18231441736109
917 => 0.16941691447738
918 => 0.16028742088881
919 => 0.15886171863347
920 => 0.16176094023268
921 => 0.16252544184753
922 => 0.16221727220519
923 => 0.151941197154
924 => 0.15880761722501
925 => 0.16619530787641
926 => 0.16647909916165
927 => 0.17017753157107
928 => 0.17138189276744
929 => 0.17435961562164
930 => 0.17417335824636
1001 => 0.17489838637544
1002 => 0.1747317149643
1003 => 0.18024731951818
1004 => 0.18633185041632
1005 => 0.18612116245894
1006 => 0.18524643915343
1007 => 0.1865455524246
1008 => 0.19282544036943
1009 => 0.19224728892062
1010 => 0.19280891380632
1011 => 0.20021325561225
1012 => 0.2098399532153
1013 => 0.20536738567404
1014 => 0.21507157029192
1015 => 0.22117984011216
1016 => 0.23174346115936
1017 => 0.23042084377732
1018 => 0.23453318393157
1019 => 0.22805308262489
1020 => 0.21317346018022
1021 => 0.21081870297144
1022 => 0.21553298653536
1023 => 0.22712259266419
1024 => 0.21516798859446
1025 => 0.21758638942806
1026 => 0.21688988982528
1027 => 0.21685277632139
1028 => 0.21826924781368
1029 => 0.21621458203592
1030 => 0.20784350403003
1031 => 0.21167991974906
1101 => 0.21019849540013
1102 => 0.21184224616277
1103 => 0.22071289109435
1104 => 0.21679096752034
1105 => 0.21265953962631
1106 => 0.21784126704266
1107 => 0.22443938667841
1108 => 0.22402648820956
1109 => 0.22322529260183
1110 => 0.22774159029336
1111 => 0.23520119092869
1112 => 0.23721749100532
1113 => 0.23870588250045
1114 => 0.23891110654105
1115 => 0.24102504170523
1116 => 0.22965787954715
1117 => 0.24769785782145
1118 => 0.25081286372508
1119 => 0.25022737171897
1120 => 0.25368956968136
1121 => 0.25267090321334
1122 => 0.25119501532505
1123 => 0.25668333552607
1124 => 0.2503914193002
1125 => 0.2414608363478
1126 => 0.23656134191321
1127 => 0.24301339141562
1128 => 0.24695343290124
1129 => 0.24955754968954
1130 => 0.25034555385623
1201 => 0.23054027998732
1202 => 0.21986633582283
1203 => 0.22670821165525
1204 => 0.23505577237185
1205 => 0.22961150842589
1206 => 0.22982491326522
1207 => 0.22206282360568
1208 => 0.23574254507211
1209 => 0.23374952471902
1210 => 0.24408931783645
1211 => 0.24162164322695
1212 => 0.25005334312577
1213 => 0.24783299396537
1214 => 0.25704953919211
1215 => 0.26072626861106
1216 => 0.26690006954271
1217 => 0.27144154263992
1218 => 0.27410838250714
1219 => 0.27394827544458
1220 => 0.28451562361285
1221 => 0.27828442759305
1222 => 0.27045657681203
1223 => 0.27031499568795
1224 => 0.27436915052894
1225 => 0.2828655468726
1226 => 0.28506853882697
1227 => 0.28629971079178
1228 => 0.28441412807028
1229 => 0.27765061138462
1230 => 0.27473015917156
1231 => 0.27721846907073
]
'min_raw' => 0.10260497953118
'max_raw' => 0.28629971079178
'avg_raw' => 0.19445234516148
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.1026049'
'max' => '$0.286299'
'avg' => '$0.194452'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.040619775021284
'max_diff' => 0.14792210827965
'year' => 2036
]
11 => [
'items' => [
101 => 0.27417547988695
102 => 0.27942853293012
103 => 0.28664209674998
104 => 0.2851525243467
105 => 0.29013194156169
106 => 0.29528511452923
107 => 0.30265438331629
108 => 0.30458098306046
109 => 0.30776557917555
110 => 0.31104357466331
111 => 0.31209637846952
112 => 0.31410650760141
113 => 0.31409591322866
114 => 0.32015357266491
115 => 0.3268353586132
116 => 0.32935757812498
117 => 0.33515728281631
118 => 0.32522549177829
119 => 0.33275886936882
120 => 0.33955416452815
121 => 0.33145253350206
122 => 0.3426187444336
123 => 0.34305230310089
124 => 0.34959852423247
125 => 0.34296267501139
126 => 0.3390223289263
127 => 0.35039796043112
128 => 0.35590227018727
129 => 0.35424432729316
130 => 0.34162730000624
131 => 0.3342836489555
201 => 0.31506389767122
202 => 0.33783052329892
203 => 0.3489194825306
204 => 0.34159858228073
205 => 0.34529081853543
206 => 0.36543446232944
207 => 0.37310385768185
208 => 0.37150867706167
209 => 0.37177823632757
210 => 0.37591650285036
211 => 0.3942678555974
212 => 0.38327129965035
213 => 0.39167775463878
214 => 0.39613650805292
215 => 0.40027804671299
216 => 0.39010773671058
217 => 0.37687631282896
218 => 0.37268536546827
219 => 0.34087066303005
220 => 0.3392145696039
221 => 0.33828495417903
222 => 0.33242386042194
223 => 0.32781864621756
224 => 0.32415640890159
225 => 0.31454560454787
226 => 0.31778896888913
227 => 0.30247135268006
228 => 0.31227102070764
301 => 0.28782373538118
302 => 0.30818416105606
303 => 0.29710290703618
304 => 0.30454367108116
305 => 0.30451771095637
306 => 0.29081690525318
307 => 0.28291456645209
308 => 0.28795024429977
309 => 0.29334889068508
310 => 0.29422480289787
311 => 0.30122428885552
312 => 0.30317769493285
313 => 0.29725878332273
314 => 0.28731711973207
315 => 0.28962634143898
316 => 0.28286777014791
317 => 0.271023633925
318 => 0.27953029933907
319 => 0.28243484892311
320 => 0.28371766348796
321 => 0.27207031582097
322 => 0.26841046630778
323 => 0.26646199313607
324 => 0.28581359340939
325 => 0.28687371775613
326 => 0.28144997171173
327 => 0.30596581813312
328 => 0.30041712704218
329 => 0.30661637445308
330 => 0.28941680377319
331 => 0.29007385053546
401 => 0.28193129814025
402 => 0.28649058339602
403 => 0.28326822752986
404 => 0.28612223820309
405 => 0.28783292043309
406 => 0.29597413671557
407 => 0.30827712066859
408 => 0.29475811048861
409 => 0.28886768415739
410 => 0.29252207152426
411 => 0.30225418665177
412 => 0.31699883924775
413 => 0.30826970814714
414 => 0.31214354829933
415 => 0.31298981003743
416 => 0.30655327193384
417 => 0.31723616358861
418 => 0.32296121201405
419 => 0.32883392706671
420 => 0.3339330409972
421 => 0.32648823553091
422 => 0.33445524455078
423 => 0.32803524164717
424 => 0.32227583535494
425 => 0.32228456999691
426 => 0.31867161029829
427 => 0.31167104561999
428 => 0.31038003408538
429 => 0.3170960391252
430 => 0.32248163915909
501 => 0.32292522297317
502 => 0.32590696787405
503 => 0.32767153379198
504 => 0.34496667859871
505 => 0.35192292891292
506 => 0.36042890012206
507 => 0.36374245527829
508 => 0.37371506832326
509 => 0.36566137335341
510 => 0.36391890578657
511 => 0.33972860855632
512 => 0.34368976837261
513 => 0.35003196743356
514 => 0.33983318908286
515 => 0.3463019665112
516 => 0.34757904020299
517 => 0.33948663849711
518 => 0.34380913990026
519 => 0.33232985770586
520 => 0.30852733765117
521 => 0.31726266259774
522 => 0.323694802037
523 => 0.3145153459801
524 => 0.33096916566808
525 => 0.32135718388214
526 => 0.3183106471125
527 => 0.30642502100532
528 => 0.31203457900821
529 => 0.31962158652824
530 => 0.31493369796515
531 => 0.32466177062356
601 => 0.33843931589009
602 => 0.34825801511402
603 => 0.34901177292116
604 => 0.34269900712193
605 => 0.35281525460273
606 => 0.35288894042146
607 => 0.34147777193704
608 => 0.33448849477798
609 => 0.33290051630188
610 => 0.3368675978767
611 => 0.3416843672722
612 => 0.3492790700996
613 => 0.35386838995822
614 => 0.36583490216232
615 => 0.36907269725796
616 => 0.37263005242994
617 => 0.3773837759874
618 => 0.38309183994783
619 => 0.37060292096266
620 => 0.3710991289962
621 => 0.35946962055807
622 => 0.34704182295171
623 => 0.35647297218809
624 => 0.36880294524146
625 => 0.36597443579961
626 => 0.36565617070619
627 => 0.36619140431394
628 => 0.36405880056527
629 => 0.354413112848
630 => 0.34956910886159
701 => 0.35581910984127
702 => 0.35914070720643
703 => 0.36429221504607
704 => 0.3636571829697
705 => 0.37692691393305
706 => 0.38208313012957
707 => 0.38076394937957
708 => 0.38100671038543
709 => 0.39034179351625
710 => 0.40072432586399
711 => 0.41044893750346
712 => 0.42034123014492
713 => 0.40841568526289
714 => 0.40236062903714
715 => 0.40860790146192
716 => 0.40529301077661
717 => 0.42434135591486
718 => 0.42566022200363
719 => 0.44470718972972
720 => 0.4627850301725
721 => 0.45143066248854
722 => 0.46213731980257
723 => 0.47371744261426
724 => 0.49605737832523
725 => 0.48853407390619
726 => 0.48277134062642
727 => 0.47732558552235
728 => 0.48865733740463
729 => 0.50323545517203
730 => 0.50637544211165
731 => 0.51146342052116
801 => 0.50611403335196
802 => 0.5125567809816
803 => 0.53530251120099
804 => 0.5291564141136
805 => 0.52042796821509
806 => 0.53838353770015
807 => 0.54488158849628
808 => 0.59048831203917
809 => 0.64806868443185
810 => 0.62423003216817
811 => 0.6094326114396
812 => 0.61291035631033
813 => 0.63393675908952
814 => 0.64068977231753
815 => 0.62233275446055
816 => 0.62881676350467
817 => 0.66454429083153
818 => 0.68371096296607
819 => 0.65768004777986
820 => 0.58586178518218
821 => 0.51964206716192
822 => 0.53720651829366
823 => 0.5352152546237
824 => 0.57360002563659
825 => 0.52900983173071
826 => 0.52976061623816
827 => 0.56893914366543
828 => 0.55848698423783
829 => 0.54155582457657
830 => 0.51976568336459
831 => 0.47948459199014
901 => 0.44380650603845
902 => 0.51377944876219
903 => 0.5107620882344
904 => 0.50639250304239
905 => 0.51611654204871
906 => 0.56333371524679
907 => 0.5622452065775
908 => 0.55532066978548
909 => 0.56057286991216
910 => 0.54063508850035
911 => 0.54577350874502
912 => 0.51963157762026
913 => 0.53144882227213
914 => 0.54151949791211
915 => 0.54354133514573
916 => 0.54809663767066
917 => 0.50917207634618
918 => 0.52664806161579
919 => 0.53691356568331
920 => 0.49053364484402
921 => 0.53599678377113
922 => 0.50849448633285
923 => 0.49915979351165
924 => 0.51172772764313
925 => 0.50682999148938
926 => 0.5026192055491
927 => 0.50026951464394
928 => 0.50949801839782
929 => 0.50906749766726
930 => 0.49396787435051
1001 => 0.47427103127319
1002 => 0.48088193833677
1003 => 0.47848013382299
1004 => 0.46977568442609
1005 => 0.47564143234037
1006 => 0.44981164711296
1007 => 0.4053728441446
1008 => 0.43473047858285
1009 => 0.43360024159194
1010 => 0.43303032484895
1011 => 0.45509177574387
1012 => 0.4529710762846
1013 => 0.44912198600006
1014 => 0.46970499286452
1015 => 0.46219191847848
1016 => 0.4853454434333
1017 => 0.50059585244464
1018 => 0.49672785542032
1019 => 0.51107093880711
1020 => 0.48103424028336
1021 => 0.49101122666977
1022 => 0.49306746973651
1023 => 0.46945100175483
1024 => 0.45331804894327
1025 => 0.45224216491986
1026 => 0.42426984800245
1027 => 0.43921243391508
1028 => 0.45236129115197
1029 => 0.44606400892804
1030 => 0.4440704775019
1031 => 0.45425499721384
1101 => 0.45504642161997
1102 => 0.4370018612888
1103 => 0.44075389677856
1104 => 0.45640050849486
1105 => 0.44035964230838
1106 => 0.40919485956867
1107 => 0.40146556256239
1108 => 0.40043433186254
1109 => 0.37947186536323
1110 => 0.40198207114742
1111 => 0.39215576308661
1112 => 0.42319695251345
1113 => 0.40546639159008
1114 => 0.4047020625463
1115 => 0.40354666709392
1116 => 0.38550340622938
1117 => 0.38945373364967
1118 => 0.40258522364655
1119 => 0.40727068721427
1120 => 0.40678195497728
1121 => 0.40252087218171
1122 => 0.40447157406525
1123 => 0.39818768362878
1124 => 0.3959687111278
1125 => 0.38896502353821
1126 => 0.3786715375996
1127 => 0.38010290995299
1128 => 0.35970882087149
1129 => 0.34859703874367
1130 => 0.34552144390162
1201 => 0.34140862994088
1202 => 0.34598599718227
1203 => 0.35965104697951
1204 => 0.34316809772199
1205 => 0.31490923736444
1206 => 0.31660764302269
1207 => 0.3204234562756
1208 => 0.31331271352293
1209 => 0.30658299226694
1210 => 0.31243393889948
1211 => 0.30046028723601
1212 => 0.32187041487433
1213 => 0.3212913309229
1214 => 0.32927170251305
1215 => 0.33426199264209
1216 => 0.32276098952028
1217 => 0.31986851833717
1218 => 0.32151620137855
1219 => 0.29428367096374
1220 => 0.32704622378961
1221 => 0.32732955570694
1222 => 0.32490349581495
1223 => 0.34234854376439
1224 => 0.37916303618461
1225 => 0.3653119432766
1226 => 0.35994838145111
1227 => 0.34975224650013
1228 => 0.36333799093573
1229 => 0.3622948177337
1230 => 0.35757719290245
1231 => 0.35472395868463
]
'min_raw' => 0.26646199313607
'max_raw' => 0.68371096296607
'avg_raw' => 0.47508647805107
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.266461'
'max' => '$0.68371'
'avg' => '$0.475086'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.1638570136049
'max_diff' => 0.39741125217429
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0083639374852418
]
1 => [
'year' => 2028
'avg' => 0.014354944793076
]
2 => [
'year' => 2029
'avg' => 0.039215121947608
]
3 => [
'year' => 2030
'avg' => 0.030254408181668
]
4 => [
'year' => 2031
'avg' => 0.029713578221927
]
5 => [
'year' => 2032
'avg' => 0.052097253830253
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0083639374852418
'min' => '$0.008363'
'max_raw' => 0.052097253830253
'max' => '$0.052097'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.052097253830253
]
1 => [
'year' => 2033
'avg' => 0.13399949394885
]
2 => [
'year' => 2034
'avg' => 0.084935318979123
]
3 => [
'year' => 2035
'avg' => 0.10018140351101
]
4 => [
'year' => 2036
'avg' => 0.19445234516148
]
5 => [
'year' => 2037
'avg' => 0.47508647805107
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.052097253830253
'min' => '$0.052097'
'max_raw' => 0.47508647805107
'max' => '$0.475086'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.47508647805107
]
]
]
]
'prediction_2025_max_price' => '$0.01430081'
'last_price' => 0.01386644
'sma_50day_nextmonth' => '$0.012649'
'sma_200day_nextmonth' => '$0.01799'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.013379'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.013186'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0128073'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.012494'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.013654'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.016341'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.019163'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.013476'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.013252'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.012963'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.012927'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.013926'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.015864'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.01924'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0179017'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.022811'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.039066'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.042145'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.013449'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.013592'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.01467'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.017173'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.023822'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.0322059'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.038159'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '60.93'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 118.14
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.012658'
'vwma_10_action' => 'BUY'
'hma_9' => '0.013551'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 239.68
'cci_20_action' => 'SELL'
'adx_14' => 20.32
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000126'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 83.86
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.002242'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 20
'sell_pct' => 42.86
'buy_pct' => 57.14
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767702681
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de ARPA para 2026
La previsión del precio de ARPA para 2026 sugiere que el precio medio podría oscilar entre $0.00479 en el extremo inferior y $0.01430081 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, ARPA podría potencialmente ganar 3.13% para 2026 si ARPA alcanza el objetivo de precio previsto.
Predicción de precio de ARPA 2027-2032
La predicción del precio de ARPA para 2027-2032 está actualmente dentro de un rango de precios de $0.008363 en el extremo inferior y $0.052097 en el extremo superior. Considerando la volatilidad de precios en el mercado, si ARPA alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de ARPA | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.004612 | $0.008363 | $0.012115 |
| 2028 | $0.008323 | $0.014354 | $0.020386 |
| 2029 | $0.018284 | $0.039215 | $0.060146 |
| 2030 | $0.015549 | $0.030254 | $0.044959 |
| 2031 | $0.018384 | $0.029713 | $0.041042 |
| 2032 | $0.028062 | $0.052097 | $0.076131 |
Predicción de precio de ARPA 2032-2037
La predicción de precio de ARPA para 2032-2037 se estima actualmente entre $0.052097 en el extremo inferior y $0.475086 en el extremo superior. Comparado con el precio actual, ARPA podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de ARPA | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.028062 | $0.052097 | $0.076131 |
| 2033 | $0.065211 | $0.133999 | $0.202787 |
| 2034 | $0.052427 | $0.084935 | $0.117443 |
| 2035 | $0.061985 | $0.100181 | $0.138377 |
| 2036 | $0.1026049 | $0.194452 | $0.286299 |
| 2037 | $0.266461 | $0.475086 | $0.68371 |
ARPA Histograma de precios potenciales
Pronóstico de precio de ARPA basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para ARPA es Alcista, con 20 indicadores técnicos mostrando señales alcistas y 15 indicando señales bajistas. La predicción de precio de ARPA se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de ARPA
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de ARPA aumentar durante el próximo mes, alcanzando $0.01799 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para ARPA alcance $0.012649 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 60.93, lo que sugiere que el mercado de ARPA está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de ARPA para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.013379 | BUY |
| SMA 5 | $0.013186 | BUY |
| SMA 10 | $0.0128073 | BUY |
| SMA 21 | $0.012494 | BUY |
| SMA 50 | $0.013654 | BUY |
| SMA 100 | $0.016341 | SELL |
| SMA 200 | $0.019163 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.013476 | BUY |
| EMA 5 | $0.013252 | BUY |
| EMA 10 | $0.012963 | BUY |
| EMA 21 | $0.012927 | BUY |
| EMA 50 | $0.013926 | SELL |
| EMA 100 | $0.015864 | SELL |
| EMA 200 | $0.01924 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.0179017 | SELL |
| SMA 50 | $0.022811 | SELL |
| SMA 100 | $0.039066 | SELL |
| SMA 200 | $0.042145 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.017173 | SELL |
| EMA 50 | $0.023822 | SELL |
| EMA 100 | $0.0322059 | SELL |
| EMA 200 | $0.038159 | SELL |
Osciladores de ARPA
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 60.93 | NEUTRAL |
| Stoch RSI (14) | 118.14 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 239.68 | SELL |
| Índice Direccional Medio (14) | 20.32 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.000126 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 83.86 | SELL |
| VWMA (10) | 0.012658 | BUY |
| Promedio Móvil de Hull (9) | 0.013551 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.002242 | SELL |
Predicción de precios de ARPA basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de ARPA
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de ARPA por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.019484 | $0.027379 | $0.038472 | $0.05406 | $0.075963 | $0.106741 |
| Amazon.com acción | $0.028933 | $0.06037 | $0.125967 | $0.262837 | $0.548426 | $1.14 |
| Apple acción | $0.019668 | $0.027898 | $0.039571 | $0.056129 | $0.079614 | $0.112927 |
| Netflix acción | $0.021879 | $0.034521 | $0.054469 | $0.085944 | $0.1356076 | $0.213967 |
| Google acción | $0.017956 | $0.023254 | $0.030114 | $0.038997 | $0.0505017 | $0.065399 |
| Tesla acción | $0.031434 | $0.071258 | $0.161538 | $0.366195 | $0.830137 | $1.88 |
| Kodak acción | $0.010398 | $0.007797 | $0.005847 | $0.004384 | $0.003288 | $0.002465 |
| Nokia acción | $0.009185 | $0.006085 | $0.004031 | $0.00267 | $0.001769 | $0.001171 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de ARPA
Podría preguntarse cosas como: "¿Debo invertir en ARPA ahora?", "¿Debería comprar ARPA hoy?", "¿Será ARPA una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de ARPA regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como ARPA, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de ARPA a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de ARPA es de $0.01386 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de ARPA
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de ARPA
basado en el historial de precios del último mes
Predicción de precios de ARPA basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si ARPA ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.014226 | $0.014596 | $0.014976 | $0.015365 |
| Si ARPA ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.014587 | $0.015345 | $0.016143 | $0.016982 |
| Si ARPA ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.015668 | $0.0177049 | $0.020006 | $0.0226061 |
| Si ARPA ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.01747 | $0.022011 | $0.027733 | $0.034942 |
| Si ARPA ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.021075 | $0.032031 | $0.048683 | $0.073991 |
| Si ARPA ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.031888 | $0.073331 | $0.168638 | $0.38781 |
| Si ARPA ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.0499097 | $0.179641 | $0.646586 | $2.32 |
Cuadro de preguntas
¿Es ARPA una buena inversión?
La decisión de adquirir ARPA depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de ARPA ha experimentado un aumento de 5.2686% durante las últimas 24 horas, y ARPA ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en ARPA dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede ARPA subir?
Parece que el valor medio de ARPA podría potencialmente aumentar hasta $0.01430081 para el final de este año. Mirando las perspectivas de ARPA en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.044959. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de ARPA la próxima semana?
Basado en nuestro nuevo pronóstico experimental de ARPA, el precio de ARPA aumentará en un 0.86% durante la próxima semana y alcanzará $0.013985 para el 13 de enero de 2026.
¿Cuál será el precio de ARPA el próximo mes?
Basado en nuestro nuevo pronóstico experimental de ARPA, el precio de ARPA disminuirá en un -11.62% durante el próximo mes y alcanzará $0.012255 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de ARPA este año en 2026?
Según nuestra predicción más reciente sobre el valor de ARPA en 2026, se anticipa que ARPA fluctúe dentro del rango de $0.00479 y $0.01430081. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de ARPA no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará ARPA en 5 años?
El futuro de ARPA parece estar en una tendencia alcista, con un precio máximo de $0.044959 proyectada después de un período de cinco años. Basado en el pronóstico de ARPA para 2030, el valor de ARPA podría potencialmente alcanzar su punto más alto de aproximadamente $0.044959, mientras que su punto más bajo se anticipa que esté alrededor de $0.015549.
¿Cuánto será ARPA en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de ARPA, se espera que el valor de ARPA en 2026 crezca en un 3.13% hasta $0.01430081 si ocurre lo mejor. El precio estará entre $0.01430081 y $0.00479 durante 2026.
¿Cuánto será ARPA en 2027?
Según nuestra última simulación experimental para la predicción de precios de ARPA, el valor de ARPA podría disminuir en un -12.62% hasta $0.012115 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.012115 y $0.004612 a lo largo del año.
¿Cuánto será ARPA en 2028?
Nuestro nuevo modelo experimental de predicción de precios de ARPA sugiere que el valor de ARPA en 2028 podría aumentar en un 47.02% , alcanzando $0.020386 en el mejor escenario. Se espera que el precio oscile entre $0.020386 y $0.008323 durante el año.
¿Cuánto será ARPA en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de ARPA podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.060146 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.060146 y $0.018284.
¿Cuánto será ARPA en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de ARPA, se espera que el valor de ARPA en 2030 aumente en un 224.23% , alcanzando $0.044959 en el mejor escenario. Se pronostica que el precio oscile entre $0.044959 y $0.015549 durante el transcurso de 2030.
¿Cuánto será ARPA en 2031?
Nuestra simulación experimental indica que el precio de ARPA podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.041042 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.041042 y $0.018384 durante el año.
¿Cuánto será ARPA en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de ARPA, ARPA podría experimentar un 449.04% aumento en valor, alcanzando $0.076131 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.076131 y $0.028062 a lo largo del año.
¿Cuánto será ARPA en 2033?
Según nuestra predicción experimental de precios de ARPA, se anticipa que el valor de ARPA aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.202787. A lo largo del año, el precio de ARPA podría oscilar entre $0.202787 y $0.065211.
¿Cuánto será ARPA en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de ARPA sugieren que ARPA podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.117443 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.117443 y $0.052427.
¿Cuánto será ARPA en 2035?
Basado en nuestra predicción experimental para el precio de ARPA, ARPA podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.138377 en 2035. El rango de precios esperado para el año está entre $0.138377 y $0.061985.
¿Cuánto será ARPA en 2036?
Nuestra reciente simulación de predicción de precios de ARPA sugiere que el valor de ARPA podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.286299 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.286299 y $0.1026049.
¿Cuánto será ARPA en 2037?
Según la simulación experimental, el valor de ARPA podría aumentar en un 4830.69% en 2037, con un máximo de $0.68371 bajo condiciones favorables. Se espera que el precio caiga entre $0.68371 y $0.266461 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Storj
Predicción de precios de Ozone Chain
Predicción de precios de Humanscape
Predicción de precios de Ordiswap
Predicción de precios de Guild of Guardians
Predicción de precios de Lyra Finance
Predicción de precios de Bazaars
Predicción de precios de PlatON Network
Predicción de precios de Saitama Inu
Predicción de precios de Nuls
Predicción de precios de Across Protocol
Predicción de precios de Alien Worlds
Predicción de precios de MovieBloc
Predicción de precios de REN
Predicción de precios de Moonwell
Predicción de precios de Pandora
Predicción de precios de TomoChain
Predicción de precios de NORMIE
Predicción de precios de QuarkChain
Predicción de precios de PepeFork
Predicción de precios de Star Atlas DAO
Predicción de precios de Uquid Coin
Predicción de precios de Artrade
Predicción de precios de Vaiot
Predicción de precios de HarryPotterObamaSonic10Inu (ETH)
¿Cómo leer y predecir los movimientos de precio de ARPA?
Los traders de ARPA utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de ARPA
Las medias móviles son herramientas populares para la predicción de precios de ARPA. Una media móvil simple (SMA) calcula el precio de cierre promedio de ARPA durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de ARPA por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de ARPA.
¿Cómo leer gráficos de ARPA y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de ARPA en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de ARPA dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de ARPA?
La acción del precio de ARPA está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de ARPA. La capitalización de mercado de ARPA puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de ARPA, grandes poseedores de ARPA, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de ARPA.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


