Predicción del precio de Flo - Pronóstico de FLO
Predicción de precio de Flo hasta $0.009397 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.003148 | $0.009397 |
| 2027 | $0.00303 | $0.007961 |
| 2028 | $0.005469 | $0.013396 |
| 2029 | $0.012014 | $0.039522 |
| 2030 | $0.010217 | $0.029542 |
| 2031 | $0.01208 | $0.026969 |
| 2032 | $0.01844 | $0.050026 |
| 2033 | $0.042851 | $0.133253 |
| 2034 | $0.03445 | $0.077173 |
| 2035 | $0.04073 | $0.090929 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Flo hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,955.06, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de FLO para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Flo'
'name_with_ticker' => 'Flo <small>FLO</small>'
'name_lang' => 'FLO'
'name_lang_with_ticker' => 'FLO <small>FLO</small>'
'name_with_lang' => 'FLO/Flo'
'name_with_lang_with_ticker' => 'FLO/Flo <small>FLO</small>'
'image' => '/uploads/coins/flo.png?1754101345'
'price_for_sd' => 0.009111
'ticker' => 'FLO'
'marketcap' => '$82.01K'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$15.58'
'current_supply' => '9M'
'max_supply' => '10M'
'algo' => 'Scrypt'
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.009111'
'change_24h_pct' => '0%'
'ath_price' => '$0.2326'
'ath_days' => 134
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '25 ago. 2025'
'ath_pct' => '-96.08%'
'fdv' => '$91.12K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.449272'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.009189'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.0080531'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.003148'
'current_year_max_price_prediction' => '$0.009397'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.010217'
'grand_prediction_max_price' => '$0.029542'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0092844128697195
107 => 0.0093190774971332
108 => 0.0093971786727159
109 => 0.0087298126785041
110 => 0.009029440417069
111 => 0.0092054436421535
112 => 0.0084102546681697
113 => 0.0091897253128653
114 => 0.0087181953213002
115 => 0.0085581509600202
116 => 0.0087736296082424
117 => 0.0086896573694704
118 => 0.0086174629695894
119 => 0.0085771772539986
120 => 0.0087354009917425
121 => 0.0087280196652585
122 => 0.0084691349204054
123 => 0.0081314303242367
124 => 0.0082447750714864
125 => 0.0082035958621979
126 => 0.0080543570955127
127 => 0.0081549260051012
128 => 0.0077120714240342
129 => 0.0069501631348865
130 => 0.0074535030885795
131 => 0.0074341250478908
201 => 0.0074243537610514
202 => 0.0078025998249572
203 => 0.0077662401935341
204 => 0.0077002471064666
205 => 0.0080531450807163
206 => 0.0079243325729676
207 => 0.0083213023698054
208 => 0.0085827723523994
209 => 0.0085164551071457
210 => 0.0087623688895695
211 => 0.0082473863055388
212 => 0.0084184428624387
213 => 0.0084536973817417
214 => 0.008048790374493
215 => 0.007772189078902
216 => 0.0077537429259718
217 => 0.0072741543974235
218 => 0.0075303467182706
219 => 0.0077557853586575
220 => 0.0076478177446574
221 => 0.0076136384235057
222 => 0.0077882531626795
223 => 0.0078018222233874
224 => 0.0074924462012625
225 => 0.0075567752729267
226 => 0.0078250381955849
227 => 0.0075500157355675
228 => 0.0070156920204174
301 => 0.0068831723514568
302 => 0.0068654917847954
303 => 0.0065060879323069
304 => 0.0068920279494042
305 => 0.0067235547893918
306 => 0.0072557594832526
307 => 0.0069517670163904
308 => 0.006938662508726
309 => 0.0069188531233779
310 => 0.0066094993807549
311 => 0.0066772281899334
312 => 0.0069023690670315
313 => 0.0069827018683737
314 => 0.0069743224990464
315 => 0.0069012657539086
316 => 0.0069347107577216
317 => 0.006826972747428
318 => 0.0067889282136206
319 => 0.0066688491999508
320 => 0.0064923662225305
321 => 0.0065169072629738
322 => 0.0061672483054211
323 => 0.0059767355475409
324 => 0.0059240041270775
325 => 0.005853489467836
326 => 0.0059319689454712
327 => 0.0061662577655267
328 => 0.0058836557413938
329 => 0.005399154393245
330 => 0.0054282737498189
331 => 0.0054936962984258
401 => 0.0053717818119103
402 => 0.0052563999819306
403 => 0.0053567151218742
404 => 0.0051514255135952
405 => 0.0055185045668036
406 => 0.0055085761071415
407 => 0.0056454004781613
408 => 0.0057309595652787
409 => 0.0055337735695564
410 => 0.0054841818248799
411 => 0.0055124315364668
412 => 0.0050455267309461
413 => 0.0056072443944359
414 => 0.0056121021521156
415 => 0.0055705070816319
416 => 0.005869604396353
417 => 0.0065007930212066
418 => 0.0062633144710331
419 => 0.0061713555985787
420 => 0.0059965417148215
421 => 0.0062294708355067
422 => 0.0062115855132984
423 => 0.0061307013034654
424 => 0.0060817822809844
425 => 0.0061719170798449
426 => 0.0060706135819279
427 => 0.0060524166900681
428 => 0.0059421633238111
429 => 0.0059028078882659
430 => 0.0058736706905732
501 => 0.0058415934988755
502 => 0.0059123477906225
503 => 0.0057520092570216
504 => 0.0055586567036792
505 => 0.0055425815309724
506 => 0.0055869664961595
507 => 0.0055673294531363
508 => 0.0055424875163653
509 => 0.0054950574937707
510 => 0.005480986019249
511 => 0.0055267114849357
512 => 0.0054750901001356
513 => 0.0055512602653704
514 => 0.0055305461951141
515 => 0.0054148390825007
516 => 0.0052706251799246
517 => 0.0052693413736928
518 => 0.005238270724941
519 => 0.0051986975822522
520 => 0.0051876892392671
521 => 0.0053482668605898
522 => 0.0056806577310441
523 => 0.0056154014497345
524 => 0.0056625558007134
525 => 0.0058945085371531
526 => 0.0059682393370051
527 => 0.0059159069616798
528 => 0.0058442711786143
529 => 0.0058474227895114
530 => 0.0060922239458726
531 => 0.0061074918937157
601 => 0.0061460690722884
602 => 0.0061956516486637
603 => 0.0059243510888377
604 => 0.0058346445575413
605 => 0.0057921366262841
606 => 0.005661228650652
607 => 0.0058024016791696
608 => 0.0057201462010842
609 => 0.0057312452753252
610 => 0.0057240169886652
611 => 0.0057279641219562
612 => 0.0055184019607272
613 => 0.0055947553980161
614 => 0.0054678029995306
615 => 0.0052978279890339
616 => 0.0052972581731978
617 => 0.0053388593162135
618 => 0.0053141133284949
619 => 0.0052475225118217
620 => 0.0052569814230303
621 => 0.0051741114077086
622 => 0.0052670433433005
623 => 0.0052697082986868
624 => 0.0052339244414472
625 => 0.0053770989103622
626 => 0.005435757607096
627 => 0.0054122039056964
628 => 0.0054341050166164
629 => 0.0056181131428374
630 => 0.0056481144962488
701 => 0.005661439115656
702 => 0.0056435858908242
703 => 0.0054374683473753
704 => 0.0054466105369067
705 => 0.0053795312160632
706 => 0.005322856258595
707 => 0.0053251229596727
708 => 0.0053542612550401
709 => 0.0054815098998479
710 => 0.0057492971711285
711 => 0.0057594595023236
712 => 0.0057717765441883
713 => 0.0057216769448755
714 => 0.0057065664263342
715 => 0.0057265011006459
716 => 0.0058270679201531
717 => 0.0060857530835507
718 => 0.0059943164698048
719 => 0.0059199770795338
720 => 0.0059851927665572
721 => 0.0059751533227174
722 => 0.0058904103133703
723 => 0.0058880318593433
724 => 0.0057253829304271
725 => 0.0056652553247437
726 => 0.0056150081969614
727 => 0.0055601396451576
728 => 0.0055276117284378
729 => 0.0055775893921932
730 => 0.0055890198752124
731 => 0.0054797428399512
801 => 0.0054648487838376
802 => 0.0055540867697405
803 => 0.0055148164592721
804 => 0.0055552069474457
805 => 0.0055645778871652
806 => 0.0055630689500393
807 => 0.0055220662357438
808 => 0.0055482001431172
809 => 0.0054863856612864
810 => 0.0054191716965303
811 => 0.0053762933745939
812 => 0.0053388763517203
813 => 0.0053596374907007
814 => 0.0052856278210698
815 => 0.0052619506382346
816 => 0.0055393465633307
817 => 0.0057442619157079
818 => 0.005741282365329
819 => 0.0057231451186752
820 => 0.0056961968491539
821 => 0.0058250964863872
822 => 0.0057801904302048
823 => 0.0058128633381041
824 => 0.0058211799644421
825 => 0.0058463518875596
826 => 0.0058553486864742
827 => 0.0058281541114756
828 => 0.0057368857962428
829 => 0.0055094538322136
830 => 0.0054035836390172
831 => 0.0053686447118548
901 => 0.0053699146754987
902 => 0.0053348834088331
903 => 0.0053452016868573
904 => 0.0053312951328223
905 => 0.0053049594838367
906 => 0.0053580113385878
907 => 0.0053641250706356
908 => 0.0053517421338143
909 => 0.0053546587637046
910 => 0.0052521333356452
911 => 0.005259928121267
912 => 0.0052165257644112
913 => 0.005208388345724
914 => 0.005098670967068
915 => 0.0049042907269906
916 => 0.0050119962489399
917 => 0.0048819031241134
918 => 0.004832634886509
919 => 0.005065863060545
920 => 0.0050424534206144
921 => 0.005002386292979
922 => 0.0049431186604852
923 => 0.0049211357190748
924 => 0.0047875743260187
925 => 0.0047796828063946
926 => 0.0048458794392542
927 => 0.0048153319708766
928 => 0.0047724317560434
929 => 0.0046170515266428
930 => 0.0044423527041705
1001 => 0.0044476257635033
1002 => 0.0045031942085446
1003 => 0.0046647669569279
1004 => 0.0046016376888976
1005 => 0.0045558366806167
1006 => 0.004547259528539
1007 => 0.0046546205442762
1008 => 0.0048065588743727
1009 => 0.0048778449394254
1010 => 0.0048072026139481
1011 => 0.0047260525140928
1012 => 0.0047309917446576
1013 => 0.0047638502327912
1014 => 0.0047673031953
1015 => 0.0047144828226593
1016 => 0.0047293514481605
1017 => 0.0047067646464085
1018 => 0.0045681494857481
1019 => 0.0045656423770452
1020 => 0.0045316239811478
1021 => 0.0045305939176398
1022 => 0.0044727201399316
1023 => 0.0044646231983677
1024 => 0.004349711300041
1025 => 0.0044253466595049
1026 => 0.0043746144314112
1027 => 0.004298148997151
1028 => 0.004284966327463
1029 => 0.0042845700404936
1030 => 0.0043630829441206
1031 => 0.0044244291905136
1101 => 0.0043754969402392
1102 => 0.0043643560153635
1103 => 0.0044833119459994
1104 => 0.0044681737195186
1105 => 0.0044550641130173
1106 => 0.0047929544633867
1107 => 0.0045254878851565
1108 => 0.0044088571905895
1109 => 0.0042645045584948
1110 => 0.004311506503394
1111 => 0.0043214105037865
1112 => 0.0039742684451162
1113 => 0.0038334329551475
1114 => 0.0037851035222637
1115 => 0.0037572892503612
1116 => 0.0037699645633368
1117 => 0.0036431961040096
1118 => 0.0037283866052343
1119 => 0.003618615834928
1120 => 0.0036002124080612
1121 => 0.0037964961433578
1122 => 0.0038238078784514
1123 => 0.0037072875314512
1124 => 0.003782112457156
1125 => 0.0037549798989511
1126 => 0.0036204975397237
1127 => 0.0036153613027865
1128 => 0.0035478827822096
1129 => 0.0034422919639232
1130 => 0.0033940341265864
1201 => 0.0033689010259076
1202 => 0.003379271433082
1203 => 0.0033740278378749
1204 => 0.0033398098322442
1205 => 0.0033759891739035
1206 => 0.0032835659063002
1207 => 0.0032467622164356
1208 => 0.0032301388435629
1209 => 0.0031481078738802
1210 => 0.0032786556259833
1211 => 0.0033043751777448
1212 => 0.0033301454049685
1213 => 0.0035544576388695
1214 => 0.0035432516335636
1215 => 0.003644548463983
1216 => 0.0036406122554258
1217 => 0.0036117207584903
1218 => 0.0034898322853401
1219 => 0.0035384148582847
1220 => 0.0033888852501695
1221 => 0.0035009229995944
1222 => 0.0034497936495652
1223 => 0.003483636114918
1224 => 0.0034227843107615
1225 => 0.0034564622116911
1226 => 0.0033104742375999
1227 => 0.0031741527214998
1228 => 0.0032290124790516
1229 => 0.0032886513094847
1230 => 0.0034179634895551
1231 => 0.0033409462219075
]
'min_raw' => 0.0031481078738802
'max_raw' => 0.0093971786727159
'avg_raw' => 0.006272643273298
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.003148'
'max' => '$0.009397'
'avg' => '$0.006272'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0059636421261198
'max_diff' => 0.0002854286727159
'year' => 2026
]
1 => [
'items' => [
101 => 0.0033686445436989
102 => 0.0032758598023408
103 => 0.003084418378268
104 => 0.0030855019159378
105 => 0.0030560528236223
106 => 0.0030306045082239
107 => 0.0033497925815688
108 => 0.0033100964990316
109 => 0.0032468459868035
110 => 0.0033315093108963
111 => 0.003353895637574
112 => 0.0033545329448231
113 => 0.0034163011206045
114 => 0.0034492668070916
115 => 0.0034550771522164
116 => 0.0035522707113983
117 => 0.003584848710422
118 => 0.0037190328777896
119 => 0.0034464698989116
120 => 0.0034408566437267
121 => 0.003332700697489
122 => 0.0032641064865073
123 => 0.0033373974017999
124 => 0.0034023231475415
125 => 0.0033347181213891
126 => 0.0033435459105846
127 => 0.0032527916865085
128 => 0.0032852320512326
129 => 0.003313174063522
130 => 0.0032977461266913
131 => 0.0032746497585353
201 => 0.0033969999767941
202 => 0.0033900964979856
203 => 0.0035040318340476
204 => 0.0035928525761019
205 => 0.0037520352244702
206 => 0.0035859198325188
207 => 0.0035798659273872
208 => 0.0036390438211254
209 => 0.0035848396505948
210 => 0.0036190948153058
211 => 0.0037465161878525
212 => 0.0037492084006664
213 => 0.0037041103673126
214 => 0.0037013661478845
215 => 0.0037100277185085
216 => 0.0037607588081927
217 => 0.0037430318066481
218 => 0.0037635459416282
219 => 0.0037891991815445
220 => 0.0038953118585865
221 => 0.0039208952657785
222 => 0.0038587408497777
223 => 0.0038643526976291
224 => 0.0038411052398679
225 => 0.0038186484869604
226 => 0.0038691279879511
227 => 0.0039613802681887
228 => 0.0039608063715412
301 => 0.0039822071074283
302 => 0.0039955395885926
303 => 0.0039383068194625
304 => 0.003901050391266
305 => 0.0039153368765247
306 => 0.0039381812775724
307 => 0.003907928745154
308 => 0.0037211961007315
309 => 0.0037778388565218
310 => 0.003768410732269
311 => 0.003754983936834
312 => 0.0038119386657866
313 => 0.0038064452432372
314 => 0.003641895910231
315 => 0.0036524298246511
316 => 0.0036425365124563
317 => 0.0036745038281388
318 => 0.0035831133106401
319 => 0.0036112244182982
320 => 0.0036288554414961
321 => 0.0036392402496075
322 => 0.0036767572974356
323 => 0.0036723551048931
324 => 0.0036764836509662
325 => 0.0037321115287619
326 => 0.0040134582454702
327 => 0.004028771326504
328 => 0.0039533641149969
329 => 0.0039834878086525
330 => 0.0039256569041614
331 => 0.0039644791777797
401 => 0.0039910403914105
402 => 0.0038710153744405
403 => 0.0038639082718915
404 => 0.0038058386786859
405 => 0.0038370419888447
406 => 0.0037873952787846
407 => 0.0037995768448652
408 => 0.0037655161241341
409 => 0.0038268186400281
410 => 0.0038953643782456
411 => 0.0039126817386725
412 => 0.0038671272189816
413 => 0.0038341427445363
414 => 0.0037762328731716
415 => 0.0038725382798567
416 => 0.0039007009156255
417 => 0.0038723903535202
418 => 0.0038658301776824
419 => 0.0038533986563238
420 => 0.0038684675837063
421 => 0.0039005475358629
422 => 0.0038854192228495
423 => 0.0038954117401214
424 => 0.00385733056852
425 => 0.0039383257658905
426 => 0.0040669656318707
427 => 0.0040673792300745
428 => 0.0040522508355139
429 => 0.0040460606224055
430 => 0.0040615832732924
501 => 0.0040700036746261
502 => 0.0041202010812272
503 => 0.0041740648984629
504 => 0.0044254238308778
505 => 0.0043548432484847
506 => 0.0045778638467329
507 => 0.004754244184347
508 => 0.0048071329354201
509 => 0.0047584777730409
510 => 0.0045920310908419
511 => 0.0045838644225374
512 => 0.0048326060377193
513 => 0.0047623251383427
514 => 0.0047539654489938
515 => 0.0046650324782398
516 => 0.0047176028785181
517 => 0.004706104960816
518 => 0.0046879549352258
519 => 0.0047882555968711
520 => 0.0049760094815691
521 => 0.0049467462778941
522 => 0.0049249026538317
523 => 0.0048291902517736
524 => 0.0048868304959515
525 => 0.0048663059090259
526 => 0.004954492559683
527 => 0.0049022527414072
528 => 0.0047617926914067
529 => 0.0047841614173317
530 => 0.0047807804294078
531 => 0.0048503609213028
601 => 0.0048294745847299
602 => 0.0047767020369782
603 => 0.0049753677592026
604 => 0.0049624675122382
605 => 0.0049807571130268
606 => 0.0049888087609186
607 => 0.0051097330851539
608 => 0.0051592719116464
609 => 0.0051705180925594
610 => 0.0052175761462568
611 => 0.0051693472453145
612 => 0.0053622972357075
613 => 0.0054905977203749
614 => 0.0056396253355985
615 => 0.005857394736287
616 => 0.0059392780454255
617 => 0.0059244865585387
618 => 0.0060895968327729
619 => 0.0063862963253765
620 => 0.005984458008957
621 => 0.0064075947318864
622 => 0.0062736345307553
623 => 0.0059560173037147
624 => 0.0059355664987544
625 => 0.0061506605725182
626 => 0.0066277185260887
627 => 0.0065082209194658
628 => 0.0066279139813643
629 => 0.0064882856667884
630 => 0.0064813519440899
701 => 0.0066211325457816
702 => 0.0069477375406783
703 => 0.006792579750208
704 => 0.0065701230113179
705 => 0.0067343816055042
706 => 0.0065920856098048
707 => 0.0062714529053526
708 => 0.0065081295418981
709 => 0.0063498706152027
710 => 0.0063960589835197
711 => 0.0067286957081949
712 => 0.0066886719774343
713 => 0.0067404663911361
714 => 0.0066490506066483
715 => 0.0065636538489905
716 => 0.0064042544591759
717 => 0.0063570641581467
718 => 0.006370105859622
719 => 0.0063570576953272
720 => 0.0062678752016819
721 => 0.0062486162506703
722 => 0.0062165171552304
723 => 0.0062264660071205
724 => 0.0061661103167718
725 => 0.0062800139745817
726 => 0.0063011554971868
727 => 0.006384045080564
728 => 0.0063926509520859
729 => 0.0066234972619321
730 => 0.0064963509936835
731 => 0.0065816516877053
801 => 0.0065740215907507
802 => 0.0059629010321244
803 => 0.0060471080531407
804 => 0.0061781077522233
805 => 0.0061190925653525
806 => 0.0060356588985442
807 => 0.0059682817391662
808 => 0.0058661984530404
809 => 0.0060098787179266
810 => 0.0061988029875593
811 => 0.0063974423833363
812 => 0.0066360946019935
813 => 0.0065828302050073
814 => 0.0063929809461115
815 => 0.0064014974451806
816 => 0.0064541430913069
817 => 0.006385962196212
818 => 0.0063658543191994
819 => 0.0064513805777828
820 => 0.0064519695501213
821 => 0.0063735191903782
822 => 0.0062863359717881
823 => 0.0062859706709189
824 => 0.0062704572592607
825 => 0.0064910454682592
826 => 0.0066123466792249
827 => 0.0066262536675754
828 => 0.0066114106281038
829 => 0.0066171231248972
830 => 0.0065465406229261
831 => 0.0067078712918413
901 => 0.0068559242675875
902 => 0.006816242907397
903 => 0.0067567549074338
904 => 0.0067093698501328
905 => 0.0068050804938157
906 => 0.006800818649515
907 => 0.0068546311540029
908 => 0.0068521899079633
909 => 0.0068340947866947
910 => 0.0068162435536308
911 => 0.0068870216749171
912 => 0.0068666387126485
913 => 0.0068462240900096
914 => 0.0068052794389848
915 => 0.0068108444970777
916 => 0.0067513667685564
917 => 0.0067238496498268
918 => 0.0063100582069327
919 => 0.0061994796123659
920 => 0.0062342698892515
921 => 0.0062457237517314
922 => 0.0061975998056656
923 => 0.0062665971822965
924 => 0.0062558440142348
925 => 0.0062976783007697
926 => 0.0062715420547763
927 => 0.0062726146954286
928 => 0.00634947582206
929 => 0.0063717889341117
930 => 0.0063604403052333
1001 => 0.0063683884958915
1002 => 0.0065515511948879
1003 => 0.006525511316304
1004 => 0.0065116781498003
1005 => 0.0065155100314594
1006 => 0.0065623120281056
1007 => 0.0065754140318722
1008 => 0.0065198999212515
1009 => 0.0065460806967435
1010 => 0.0066575551159532
1011 => 0.006696564853771
1012 => 0.0068210652111487
1013 => 0.0067681752465172
1014 => 0.0068652570656223
1015 => 0.0071636534799203
1016 => 0.0074020331831228
1017 => 0.0071828093565999
1018 => 0.0076205633240592
1019 => 0.0079614175798034
1020 => 0.0079483350257454
1021 => 0.0078888992021555
1022 => 0.00750084569407
1023 => 0.0071437530703779
1024 => 0.00744247621305
1025 => 0.0074432377197737
1026 => 0.0074175771368937
1027 => 0.0072582014604656
1028 => 0.0074120312088208
1029 => 0.0074242416556177
1030 => 0.0074174070524313
1031 => 0.0072952140949899
1101 => 0.0071086480340103
1102 => 0.0071451025957497
1103 => 0.0072048159115317
1104 => 0.0070917661472537
1105 => 0.0070556398976402
1106 => 0.007122805468972
1107 => 0.0073392269343057
1108 => 0.0072983137099286
1109 => 0.0072972453002968
1110 => 0.0074722894240894
1111 => 0.0073469956083401
1112 => 0.0071455624045169
1113 => 0.007094697863974
1114 => 0.0069141630115068
1115 => 0.007038859077149
1116 => 0.0070433466665593
1117 => 0.00697505190577
1118 => 0.007151104147961
1119 => 0.0071494817955559
1120 => 0.0073166171975981
1121 => 0.0076361173131125
1122 => 0.007541625407309
1123 => 0.0074317416015497
1124 => 0.0074436890179832
1125 => 0.007574722687522
1126 => 0.0074954967397111
1127 => 0.0075239869429269
1128 => 0.0075746795641872
1129 => 0.0076052636812206
1130 => 0.007439288434205
1201 => 0.0074005916646118
1202 => 0.0073214316547448
1203 => 0.007300780285762
1204 => 0.0073652544620709
1205 => 0.0073482677945198
1206 => 0.0070429695020462
1207 => 0.007011064131819
1208 => 0.0070120426239735
1209 => 0.0069318150535197
1210 => 0.0068094487517544
1211 => 0.0071310200866813
1212 => 0.0071051934080987
1213 => 0.0070766827537697
1214 => 0.0070801751462455
1215 => 0.0072197583636735
1216 => 0.0071387930484438
1217 => 0.0073540526089361
1218 => 0.0073098017145935
1219 => 0.007264415951785
1220 => 0.0072581422568808
1221 => 0.0072406726103308
1222 => 0.0071807626921418
1223 => 0.0071084178659007
1224 => 0.0070606495452148
1225 => 0.0065130759809378
1226 => 0.0066147024493788
1227 => 0.006731614437776
1228 => 0.0067719719876753
1229 => 0.0067029376059151
1230 => 0.0071834885903033
1231 => 0.0072712898858555
]
'min_raw' => 0.0030306045082239
'max_raw' => 0.0079614175798034
'avg_raw' => 0.0054960110440136
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00303'
'max' => '$0.007961'
'avg' => '$0.005496'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00011750336565628
'max_diff' => -0.0014357610929125
'year' => 2027
]
2 => [
'items' => [
101 => 0.007005334034491
102 => 0.0069555845536065
103 => 0.0071867501579877
104 => 0.0070473290397
105 => 0.0071101103607281
106 => 0.006974411484212
107 => 0.007250141124879
108 => 0.0072480405269906
109 => 0.0071407754691348
110 => 0.0072314351615151
111 => 0.0072156808089386
112 => 0.0070945788228015
113 => 0.0072539802738453
114 => 0.0072540593349763
115 => 0.0071508190489335
116 => 0.0070302569970402
117 => 0.0070087033497102
118 => 0.0069924655717722
119 => 0.0071061168627492
120 => 0.0072080162548608
121 => 0.0073976257605789
122 => 0.0074452980953271
123 => 0.0076313663915766
124 => 0.007520571780661
125 => 0.0075696855966495
126 => 0.0076230055914784
127 => 0.0076485691577773
128 => 0.0076069146983099
129 => 0.0078959553511515
130 => 0.0079203592382281
131 => 0.0079285416504721
201 => 0.0078310787686028
202 => 0.0079176486191743
203 => 0.007877145452984
204 => 0.0079825234393075
205 => 0.0079990480530967
206 => 0.0079850522930974
207 => 0.0079902974663374
208 => 0.0077436522594023
209 => 0.0077308624042656
210 => 0.0075564718219499
211 => 0.0076275372732736
212 => 0.0074946838182796
213 => 0.0075368130174004
214 => 0.0075553831669511
215 => 0.0075456831746726
216 => 0.0076315552072657
217 => 0.0075585464370643
218 => 0.0073658642887496
219 => 0.0071731296443124
220 => 0.0071707100178498
221 => 0.0071199663880185
222 => 0.0070832880378099
223 => 0.0070903535892945
224 => 0.0071152535143004
225 => 0.007081840808903
226 => 0.0070889711036667
227 => 0.0072073815056497
228 => 0.007231127867303
229 => 0.0071504284521025
301 => 0.0068264086552025
302 => 0.0067468933843011
303 => 0.0068040473841686
304 => 0.006776731453421
305 => 0.0054693511851151
306 => 0.0057765007865079
307 => 0.0055940029231752
308 => 0.0056781063349219
309 => 0.0054918232740518
310 => 0.0055807273146308
311 => 0.0055643099845916
312 => 0.0060581974544138
313 => 0.0060504860808925
314 => 0.0060541771073203
315 => 0.005877994799002
316 => 0.0061586580000241
317 => 0.0062969227851699
318 => 0.0062713336532375
319 => 0.0062777738864487
320 => 0.0061671093423672
321 => 0.0060552485820077
322 => 0.0059311777835215
323 => 0.0061616859914948
324 => 0.0061360574136745
325 => 0.006194840150323
326 => 0.0063443412002606
327 => 0.0063663557977632
328 => 0.0063959436400567
329 => 0.0063853385048005
330 => 0.0066379958519389
331 => 0.0066073973801136
401 => 0.0066811308934315
402 => 0.0065294554623615
403 => 0.0063578203149418
404 => 0.0063904425452906
405 => 0.0063873007621766
406 => 0.0063473022571646
407 => 0.0063111933952938
408 => 0.0062510823138876
409 => 0.0064412826702228
410 => 0.0064335608831023
411 => 0.0065585676409887
412 => 0.0065364714822814
413 => 0.0063889079265869
414 => 0.0063941781878468
415 => 0.0064296232276208
416 => 0.0065522989149831
417 => 0.00658871741139
418 => 0.0065718469128282
419 => 0.0066117781315708
420 => 0.006643338138738
421 => 0.0066157415825645
422 => 0.0070064506219935
423 => 0.0068442009886834
424 => 0.0069232803310331
425 => 0.0069421402882209
426 => 0.0068938309044664
427 => 0.0069043074799734
428 => 0.0069201766371706
429 => 0.0070165310521723
430 => 0.0072693929175116
501 => 0.0073813837163814
502 => 0.0077183135603099
503 => 0.0073720844395224
504 => 0.0073515406363334
505 => 0.0074122318755315
506 => 0.0076100453615636
507 => 0.0077703546123166
508 => 0.007823538439254
509 => 0.007830567559953
510 => 0.0079303439548814
511 => 0.0079875339237348
512 => 0.0079182284761574
513 => 0.0078594993659184
514 => 0.0076491389827678
515 => 0.0076734887699098
516 => 0.007841234656796
517 => 0.0080781856022063
518 => 0.0082815141639123
519 => 0.0082103155883186
520 => 0.0087535104617369
521 => 0.0088073660146843
522 => 0.0087999249186254
523 => 0.0089226158830203
524 => 0.0086790993042769
525 => 0.0085749912489525
526 => 0.0078721972661558
527 => 0.0080696537087276
528 => 0.0083566682442161
529 => 0.0083186807941949
530 => 0.0081102431666027
531 => 0.0082813560452807
601 => 0.0082247807763953
602 => 0.0081801575145153
603 => 0.0083845853278324
604 => 0.0081598085496586
605 => 0.0083544259239085
606 => 0.008104827128374
607 => 0.0082106408174146
608 => 0.0081505758498829
609 => 0.0081894452451615
610 => 0.0079622155545951
611 => 0.0080848231799358
612 => 0.0079571146742845
613 => 0.0079570541238247
614 => 0.0079542349514842
615 => 0.0081044834420367
616 => 0.0081093830399195
617 => 0.0079983491783883
618 => 0.0079823474642668
619 => 0.008041514188212
620 => 0.0079722454502617
621 => 0.0080046558567764
622 => 0.007973227128458
623 => 0.0079661518597233
624 => 0.0079097749146869
625 => 0.0078854861766488
626 => 0.0078950104166772
627 => 0.007862499275378
628 => 0.0078429101367659
629 => 0.0079503381787628
630 => 0.0078929437095587
701 => 0.0079415416532047
702 => 0.0078861581628706
703 => 0.0076941748559347
704 => 0.0075837632259292
705 => 0.0072211245559892
706 => 0.0073239684329324
707 => 0.0073921540297453
708 => 0.0073696186904054
709 => 0.0074180333193262
710 => 0.0074210055843346
711 => 0.0074052654949437
712 => 0.0073870404878594
713 => 0.0073781695623169
714 => 0.007444286173498
715 => 0.0074826690916714
716 => 0.0073989973665911
717 => 0.0073793942520966
718 => 0.0074639909857954
719 => 0.0075155949444817
720 => 0.0078966095816616
721 => 0.0078683827866782
722 => 0.0079392265028577
723 => 0.0079312505876013
724 => 0.0080055060884464
725 => 0.0081268824496121
726 => 0.007880090369998
727 => 0.0079229249415909
728 => 0.0079124228938311
729 => 0.0080270814974887
730 => 0.0080274394491339
731 => 0.0079586958886191
801 => 0.0079959628880111
802 => 0.0079751614713171
803 => 0.0080127524427632
804 => 0.0078680058006222
805 => 0.0080442915863154
806 => 0.0081442342671984
807 => 0.0081456219714194
808 => 0.0081929940089637
809 => 0.0082411267427122
810 => 0.0083335133336648
811 => 0.0082385501308335
812 => 0.0080677205734214
813 => 0.0080800539156904
814 => 0.0079798966086838
815 => 0.0079815802711095
816 => 0.0079725927491302
817 => 0.0079995649791391
818 => 0.007873924688329
819 => 0.0079034122134559
820 => 0.0078621295055996
821 => 0.0079228352010464
822 => 0.0078575259077566
823 => 0.0079124178294257
824 => 0.007936107363122
825 => 0.0080235222524608
826 => 0.0078446146575263
827 => 0.0074798099604757
828 => 0.0075564963306252
829 => 0.0074430711655897
830 => 0.0074535690964538
831 => 0.0074747765875326
901 => 0.007406036170287
902 => 0.007419149675638
903 => 0.0074186811689485
904 => 0.0074146438314066
905 => 0.0073967617940002
906 => 0.0073708293019075
907 => 0.0074741363688044
908 => 0.0074916902525405
909 => 0.0075307103616197
910 => 0.0076468077386467
911 => 0.007635206872917
912 => 0.0076541283662374
913 => 0.0076128228525586
914 => 0.0074554851407663
915 => 0.0074640293354912
916 => 0.0073574830903604
917 => 0.0075279857345831
918 => 0.0074876084579062
919 => 0.0074615769649629
920 => 0.0074544740309332
921 => 0.0075708591909021
922 => 0.0076056834548786
923 => 0.0075839833105379
924 => 0.0075394756814006
925 => 0.0076249434868435
926 => 0.0076478110659828
927 => 0.0076529302736282
928 => 0.0078043628380467
929 => 0.0076613936717732
930 => 0.0076958077710866
1001 => 0.0079642967499912
1002 => 0.0077208142950712
1003 => 0.007849792381749
1004 => 0.0078434795755757
1005 => 0.0079094604003396
1006 => 0.0078380672221091
1007 => 0.0078389522261172
1008 => 0.0078975387285794
1009 => 0.0078152645520027
1010 => 0.007794892308858
1011 => 0.0077667482008623
1012 => 0.0078281998310393
1013 => 0.0078650373041122
1014 => 0.0081619202829372
1015 => 0.0083537202267669
1016 => 0.0083453936853688
1017 => 0.0084214826871143
1018 => 0.0083872038949326
1019 => 0.0082765086326894
1020 => 0.0084654519474894
1021 => 0.0084056623769626
1022 => 0.0084105913565125
1023 => 0.0084104078996475
1024 => 0.0084501627371528
1025 => 0.008421992791303
1026 => 0.0083664669364472
1027 => 0.0084033275901836
1028 => 0.0085127905538558
1029 => 0.0088525669518283
1030 => 0.0090427103255722
1031 => 0.0088411200819778
1101 => 0.0089801743326083
1102 => 0.0088967913323256
1103 => 0.0088816381607449
1104 => 0.0089689745061692
1105 => 0.0090564637223048
1106 => 0.0090508910374633
1107 => 0.0089873783591698
1108 => 0.0089515016587764
1109 => 0.0092231720537318
1110 => 0.0094233341729505
1111 => 0.0094096844583237
1112 => 0.0094699298595616
1113 => 0.0096468122209162
1114 => 0.0096629841272765
1115 => 0.0096609468387821
1116 => 0.0096208630815041
1117 => 0.0097950267373348
1118 => 0.0099403171231468
1119 => 0.0096115848498253
1120 => 0.0097367617960847
1121 => 0.0097929577602098
1122 => 0.0098754701081368
1123 => 0.010014682269765
1124 => 0.010165903601495
1125 => 0.010187287955859
1126 => 0.010172114733102
1127 => 0.010072380199779
1128 => 0.010237848385403
1129 => 0.010334775767836
1130 => 0.010392493805931
1201 => 0.010538857147174
1202 => 0.0097933048073529
1203 => 0.009265565804872
1204 => 0.009183151738991
1205 => 0.009350743982733
1206 => 0.0093949367208847
1207 => 0.0093771226835488
1208 => 0.0087831044563255
1209 => 0.0091800243559596
1210 => 0.0096070767939927
1211 => 0.0096234816173634
1212 => 0.0098372729970882
1213 => 0.0099068922339313
1214 => 0.010079022316886
1215 => 0.010068255533332
1216 => 0.010110166469343
1217 => 0.010100531870951
1218 => 0.01041936660336
1219 => 0.010771088660623
1220 => 0.010758909644188
1221 => 0.010708345437069
1222 => 0.010783441907118
1223 => 0.01114645676304
1224 => 0.011113036172302
1225 => 0.011145501429445
1226 => 0.011573516403198
1227 => 0.012129996753497
1228 => 0.011871455761069
1229 => 0.01243241532147
1230 => 0.012785509629554
1231 => 0.013396149724752
]
'min_raw' => 0.0054693511851151
'max_raw' => 0.013396149724752
'avg_raw' => 0.0094327504549336
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.005469'
'max' => '$0.013396'
'avg' => '$0.009432'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0024387466768912
'max_diff' => 0.0054347321449487
'year' => 2028
]
3 => [
'items' => [
101 => 0.013319694577367
102 => 0.013557412285344
103 => 0.013182823906878
104 => 0.012322693273119
105 => 0.012186574307878
106 => 0.01245908792337
107 => 0.013129036055568
108 => 0.012437988872545
109 => 0.012577786817648
110 => 0.012537525000054
111 => 0.012535379618896
112 => 0.012617260091798
113 => 0.012498488195255
114 => 0.012014590122087
115 => 0.012236357757391
116 => 0.012150722623243
117 => 0.012245741189102
118 => 0.012758517200404
119 => 0.012531806702754
120 => 0.012292985609945
121 => 0.012592520258971
122 => 0.012973930798453
123 => 0.012950062812353
124 => 0.012903748943274
125 => 0.013164817798354
126 => 0.01359602706095
127 => 0.01371258119189
128 => 0.013798619068506
129 => 0.013810482238069
130 => 0.013932680257492
131 => 0.01327559070919
201 => 0.014318408697602
202 => 0.014498474556935
203 => 0.014464629638345
204 => 0.014664765262665
205 => 0.014605880285039
206 => 0.01452056519123
207 => 0.014837822725844
208 => 0.014474112563772
209 => 0.013957871778547
210 => 0.013674651873687
211 => 0.014047618691104
212 => 0.014275376511753
213 => 0.014425909943083
214 => 0.014471461268449
215 => 0.013326598700331
216 => 0.012709581273104
217 => 0.013105082369837
218 => 0.013587621003879
219 => 0.013272910182714
220 => 0.013285246251077
221 => 0.012836551324644
222 => 0.013627320548684
223 => 0.013512112124158
224 => 0.014109813634401
225 => 0.013967167372127
226 => 0.014454569751092
227 => 0.014326220370078
228 => 0.01485899147475
301 => 0.015071528292606
302 => 0.015428410688499
303 => 0.015690934831691
304 => 0.01584509402986
305 => 0.015835838889838
306 => 0.016446694434791
307 => 0.0160864942616
308 => 0.015633997951409
309 => 0.015625813720765
310 => 0.015860167971735
311 => 0.01635131018982
312 => 0.016478656221141
313 => 0.016549825279784
314 => 0.016440827389059
315 => 0.016049855916839
316 => 0.015881036417404
317 => 0.016024875522094
318 => 0.015848972657294
319 => 0.016152630351566
320 => 0.016569617223586
321 => 0.016483511083459
322 => 0.016771351000151
323 => 0.017069235032284
324 => 0.017495222577044
325 => 0.017606591495517
326 => 0.017790680082773
327 => 0.01798016770901
328 => 0.018041026027723
329 => 0.018157223441372
330 => 0.018156611023646
331 => 0.018506779750667
401 => 0.018893026700394
402 => 0.019038825982278
403 => 0.019374083391552
404 => 0.018799966826991
405 => 0.019235440836186
406 => 0.019628249293102
407 => 0.019159926857175
408 => 0.019805400229967
409 => 0.019830462498359
410 => 0.020208872995773
411 => 0.019825281461964
412 => 0.019597506033656
413 => 0.020255085160548
414 => 0.020573266986503
415 => 0.020477428031076
416 => 0.019748088848122
417 => 0.019323582160814
418 => 0.018212566278905
419 => 0.019528612583341
420 => 0.020169620348635
421 => 0.019746428792866
422 => 0.019959861998013
423 => 0.021124284359346
424 => 0.021567621003777
425 => 0.021475410080893
426 => 0.021490992208939
427 => 0.021730208615145
428 => 0.022791025899142
429 => 0.022155359593019
430 => 0.022641302666088
501 => 0.022899045119845
502 => 0.023138450675039
503 => 0.022550546296387
504 => 0.021785691337792
505 => 0.021543429665977
506 => 0.019704350732839
507 => 0.019608618687654
508 => 0.019554881389714
509 => 0.019216075327493
510 => 0.018949866569379
511 => 0.018738167481229
512 => 0.018182605855223
513 => 0.018370091595318
514 => 0.017484642318188
515 => 0.0180511213873
516 => 0.016637922961081
517 => 0.017814876603854
518 => 0.017174314245608
519 => 0.017604434641301
520 => 0.01760293399176
521 => 0.016810945973494
522 => 0.016354143812927
523 => 0.016645235928646
524 => 0.016957309783619
525 => 0.017007942716646
526 => 0.017412554615578
527 => 0.017525473099467
528 => 0.017183324821625
529 => 0.016608637564831
530 => 0.016742124307364
531 => 0.01635143870835
601 => 0.015666777223583
602 => 0.016158513054985
603 => 0.016326413287924
604 => 0.016400567595855
605 => 0.01572728165949
606 => 0.015515720600535
607 => 0.015403087267917
608 => 0.016521724805209
609 => 0.016583006294683
610 => 0.016269481530203
611 => 0.017686643195292
612 => 0.017365895864348
613 => 0.017724249218016
614 => 0.016730011784621
615 => 0.016767992993495
616 => 0.016297305059163
617 => 0.01656085885101
618 => 0.016374587525668
619 => 0.016539566309118
620 => 0.016638453911685
621 => 0.017109064610757
622 => 0.017820250222085
623 => 0.0170387710658
624 => 0.016698269406418
625 => 0.016909514720844
626 => 0.017472088830743
627 => 0.018324417404879
628 => 0.017819821734279
629 => 0.018043752724301
630 => 0.018092671683625
701 => 0.017720601517272
702 => 0.018338136162627
703 => 0.018669077995916
704 => 0.019008555838107
705 => 0.019303314936528
706 => 0.018872960922658
707 => 0.019333501406324
708 => 0.018962387072828
709 => 0.018629459150589
710 => 0.01862996406482
711 => 0.018421113515898
712 => 0.018016439260499
713 => 0.017941811118987
714 => 0.01833003613563
715 => 0.018641355833932
716 => 0.018666997615405
717 => 0.018839360196569
718 => 0.018941362596626
719 => 0.019941124782722
720 => 0.020343237404437
721 => 0.020834933106667
722 => 0.021026476293137
723 => 0.021602952612379
724 => 0.021137401165474
725 => 0.02103667618148
726 => 0.019638333194966
727 => 0.019867311780671
728 => 0.020233928589532
729 => 0.019644378571111
730 => 0.020018312362091
731 => 0.020092134813431
801 => 0.019624345887079
802 => 0.01987421216461
803 => 0.019210641411676
804 => 0.01783471425117
805 => 0.018339667962887
806 => 0.018711483860292
807 => 0.018180856730125
808 => 0.019131985322844
809 => 0.018576355634257
810 => 0.018400247697904
811 => 0.017713187851177
812 => 0.018037453651473
813 => 0.018476027789413
814 => 0.018205039961882
815 => 0.018767380393036
816 => 0.019563804414264
817 => 0.020131383599661
818 => 0.020174955281858
819 => 0.019810039890499
820 => 0.02039481913401
821 => 0.020399078612381
822 => 0.019739445236807
823 => 0.019335423467122
824 => 0.019243628870981
825 => 0.019472949769533
826 => 0.019751387675348
827 => 0.020190406647801
828 => 0.020455696618242
829 => 0.021147432162224
830 => 0.021334595966813
831 => 0.021540232243537
901 => 0.021815025725118
902 => 0.02214498575536
903 => 0.021423051993826
904 => 0.021451735768025
905 => 0.020779481045138
906 => 0.020061080462655
907 => 0.020606256954863
908 => 0.021319002696636
909 => 0.021155498035959
910 => 0.021137100421536
911 => 0.021168040105923
912 => 0.021044762931336
913 => 0.020487184839543
914 => 0.020207172612468
915 => 0.020568459824132
916 => 0.020760467898088
917 => 0.02105825567593
918 => 0.021021547046774
919 => 0.021788616382421
920 => 0.022086676331281
921 => 0.022010419841659
922 => 0.022024452870964
923 => 0.022564076171176
924 => 0.023164248263009
925 => 0.023726388626692
926 => 0.024298221949122
927 => 0.023608854559899
928 => 0.023258836313921
929 => 0.023619965798891
930 => 0.0234283454109
1001 => 0.024529452998593
1002 => 0.024605691298926
1003 => 0.025706719264007
1004 => 0.026751725910841
1005 => 0.026095375959203
1006 => 0.026714284400946
1007 => 0.027383684341037
1008 => 0.028675065431698
1009 => 0.028240173711698
1010 => 0.0279070534698
1011 => 0.027592256450832
1012 => 0.028247299074685
1013 => 0.029090000945711
1014 => 0.029271510857432
1015 => 0.029565626256543
1016 => 0.029256399877098
1017 => 0.029628828990971
1018 => 0.030943667416588
1019 => 0.030588386467587
1020 => 0.030083830405742
1021 => 0.031121769064342
1022 => 0.031497395030005
1023 => 0.034133734773873
1024 => 0.037462222602269
1025 => 0.036084206785283
1026 => 0.035228827899388
1027 => 0.035429862227432
1028 => 0.036645313305938
1029 => 0.037035677615866
1030 => 0.035974532854836
1031 => 0.036349347123758
1101 => 0.038414610596441
1102 => 0.039522558187951
1103 => 0.038017816541467
1104 => 0.033866294017737
1105 => 0.03003840065284
1106 => 0.031053730345496
1107 => 0.030938623467697
1108 => 0.03315749142223
1109 => 0.030579913134452
1110 => 0.03062331294225
1111 => 0.032888064736261
1112 => 0.032283867785294
1113 => 0.031305146104427
1114 => 0.030045546404229
1115 => 0.027717059859542
1116 => 0.025654654392263
1117 => 0.029699506457211
1118 => 0.029525085081084
1119 => 0.029272497080653
1120 => 0.029834604342737
1121 => 0.032564037650484
1122 => 0.032501115378427
1123 => 0.032100835986825
1124 => 0.032404444377455
1125 => 0.031251922085624
1126 => 0.031548953322674
1127 => 0.030037794294974
1128 => 0.03072090128707
1129 => 0.031303046207266
1130 => 0.031419920418798
1201 => 0.031683243985125
1202 => 0.029433172941634
1203 => 0.030443388781546
1204 => 0.031036795943071
1205 => 0.028355760798964
1206 => 0.030983800498458
1207 => 0.029394004210723
1208 => 0.028854403472727
1209 => 0.029580904779447
1210 => 0.029297786513673
1211 => 0.029054378054022
1212 => 0.028918551951249
1213 => 0.029452014329881
1214 => 0.029427127672292
1215 => 0.028554279680265
1216 => 0.0274156850565
1217 => 0.02779783478533
1218 => 0.027658996206173
1219 => 0.027155827284776
1220 => 0.02749490238495
1221 => 0.026001787245763
1222 => 0.023432960254164
1223 => 0.025130006050113
1224 => 0.025064671633
1225 => 0.025031727057211
1226 => 0.026307010069967
1227 => 0.026184421034075
1228 => 0.025961920733537
1229 => 0.02715174089227
1230 => 0.026717440528993
1231 => 0.028055851914577
]
'min_raw' => 0.012014590122087
'max_raw' => 0.039522558187951
'avg_raw' => 0.025768574155019
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.012014'
'max' => '$0.039522'
'avg' => '$0.025768'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0065452389369717
'max_diff' => 0.026126408463199
'year' => 2029
]
4 => [
'items' => [
101 => 0.028937416216145
102 => 0.028713822993649
103 => 0.029542938480243
104 => 0.027806638743248
105 => 0.028383367867623
106 => 0.028502230940845
107 => 0.027137058696202
108 => 0.026204478116431
109 => 0.026142285623957
110 => 0.024525319416155
111 => 0.025389089712668
112 => 0.026149171828356
113 => 0.025785151479696
114 => 0.025669913512109
115 => 0.026258639296445
116 => 0.026304388331984
117 => 0.025261305473445
118 => 0.025478195429874
119 => 0.026382662603135
120 => 0.025455405177731
121 => 0.023653895466812
122 => 0.023207096150684
123 => 0.023147484885767
124 => 0.021935729704327
125 => 0.023236953417442
126 => 0.022668934396039
127 => 0.024463299678736
128 => 0.023438367852634
129 => 0.023394185090116
130 => 0.023327396364368
131 => 0.022284388622726
201 => 0.022512741031545
202 => 0.023271819217516
203 => 0.023542666865898
204 => 0.023514415237182
205 => 0.023268099320291
206 => 0.023380861485702
207 => 0.02301761526197
208 => 0.022889345460053
209 => 0.022484490681817
210 => 0.021889466001796
211 => 0.021972207833051
212 => 0.020793308245254
213 => 0.020150981180885
214 => 0.019973193515202
215 => 0.019735448418393
216 => 0.020000047456502
217 => 0.020789968570842
218 => 0.019837156115835
219 => 0.018203625993748
220 => 0.018301803937485
221 => 0.01852238062777
222 => 0.018111337424685
223 => 0.017722319529206
224 => 0.018060539027306
225 => 0.01736839078013
226 => 0.018606023436664
227 => 0.01857254894173
228 => 0.019033861861395
301 => 0.019322330297156
302 => 0.018657503945492
303 => 0.01849030191593
304 => 0.018585547790877
305 => 0.017011345640812
306 => 0.018905215961143
307 => 0.018921594230318
308 => 0.018781353546107
309 => 0.019789781024997
310 => 0.021917877541873
311 => 0.02111720202974
312 => 0.020807156270897
313 => 0.020217759056693
314 => 0.021003095849676
315 => 0.020942794237137
316 => 0.02067008747653
317 => 0.020505153576818
318 => 0.020809049344187
319 => 0.020467497528176
320 => 0.020406145436804
321 => 0.020034418514824
322 => 0.019901728916174
323 => 0.019803490819859
324 => 0.019695340328493
325 => 0.019933893363025
326 => 0.01939330080251
327 => 0.018741399169472
328 => 0.018687200602358
329 => 0.018836847611346
330 => 0.018770639949779
331 => 0.018686883625547
401 => 0.018526969992911
402 => 0.018479527034122
403 => 0.018633693634134
404 => 0.018459648531191
405 => 0.018716461561311
406 => 0.018646622627232
407 => 0.018256508018643
408 => 0.017770280777415
409 => 0.017765952335072
410 => 0.017661195473521
411 => 0.017527771860038
412 => 0.017490656463085
413 => 0.018032055124547
414 => 0.019152734151073
415 => 0.018932718042589
416 => 0.019091702229126
417 => 0.019873747074455
418 => 0.020122335613877
419 => 0.019945893356738
420 => 0.019704368312682
421 => 0.01971499418886
422 => 0.020540358379003
423 => 0.020591835331129
424 => 0.02072190098206
425 => 0.020889072100054
426 => 0.019974363321
427 => 0.019671911487625
428 => 0.019528593029582
429 => 0.019087227650035
430 => 0.019563202372069
501 => 0.01928587228481
502 => 0.019323293588526
503 => 0.019298922915389
504 => 0.019312230950859
505 => 0.018605677493113
506 => 0.018863108437759
507 => 0.018435079562732
508 => 0.017861996947566
509 => 0.017860075773692
510 => 0.018000336931868
511 => 0.017916904106565
512 => 0.017692388518929
513 => 0.017724279898469
514 => 0.017444877856012
515 => 0.017758204365161
516 => 0.017767189448307
517 => 0.017646541675274
518 => 0.018129264393344
519 => 0.018327036284801
520 => 0.018247623336065
521 => 0.018321464460619
522 => 0.01894186070521
523 => 0.019043012362864
524 => 0.019087937247491
525 => 0.019027743853498
526 => 0.018332804165093
527 => 0.018363627695385
528 => 0.018137465081832
529 => 0.017946381505809
530 => 0.017954023846749
531 => 0.018052265643951
601 => 0.018481293334137
602 => 0.01938415681557
603 => 0.019418419824705
604 => 0.019459947591301
605 => 0.019291033294375
606 => 0.019240087126131
607 => 0.019307298272367
608 => 0.019646366325687
609 => 0.020518541414903
610 => 0.020210256487758
611 => 0.019959616043249
612 => 0.020179495285262
613 => 0.020145646599425
614 => 0.019859929626843
615 => 0.019851910503032
616 => 0.019303528283406
617 => 0.019100803862869
618 => 0.018931392163409
619 => 0.018746399010202
620 => 0.018636728867955
621 => 0.018805232050635
622 => 0.018843770722185
623 => 0.018475335568323
624 => 0.018425119218266
625 => 0.018725991318135
626 => 0.018593588724626
627 => 0.018729768075477
628 => 0.018761362852999
629 => 0.018756275366129
630 => 0.018618031852163
701 => 0.018706144145484
702 => 0.018497732304242
703 => 0.018271115729338
704 => 0.01812654847326
705 => 0.018000394368269
706 => 0.018070391997838
707 => 0.017820863229487
708 => 0.01774103395447
709 => 0.018676293683096
710 => 0.019367180100369
711 => 0.019357134338241
712 => 0.019295983344846
713 => 0.019205125372687
714 => 0.019639719499104
715 => 0.019488315595444
716 => 0.019598474585576
717 => 0.019626514671923
718 => 0.019711383568161
719 => 0.019741716903838
720 => 0.019650028495566
721 => 0.019342310998608
722 => 0.018575508253091
723 => 0.018218559505108
724 => 0.018100760472823
725 => 0.018105042243914
726 => 0.017986931882546
727 => 0.018021720677304
728 => 0.01797483375945
729 => 0.017886041280199
730 => 0.018064909312454
731 => 0.018085522186901
801 => 0.018043772250859
802 => 0.018053605872166
803 => 0.017707934233367
804 => 0.017734214897306
805 => 0.017587880820911
806 => 0.01756044494567
807 => 0.017190525143309
808 => 0.016535158592693
809 => 0.016898295279705
810 => 0.01645967722654
811 => 0.016293565923658
812 => 0.017079910995892
813 => 0.017000983760457
814 => 0.016865894642237
815 => 0.01666606968135
816 => 0.016591952659585
817 => 0.016141641097937
818 => 0.016115034288557
819 => 0.016338220857944
820 => 0.016235227935553
821 => 0.016090586866045
822 => 0.01556671157432
823 => 0.014977702297272
824 => 0.014995480784966
825 => 0.015182833677087
826 => 0.015727587478911
827 => 0.015514742744202
828 => 0.015360321447059
829 => 0.015331402979991
830 => 0.015693378140256
831 => 0.016205648828171
901 => 0.016445994773531
902 => 0.016207819241095
903 => 0.015934216013713
904 => 0.015950868974409
905 => 0.016061653661258
906 => 0.016073295565434
907 => 0.015895207991275
908 => 0.015945338600247
909 => 0.01586918562118
910 => 0.015401834929212
911 => 0.015393382037179
912 => 0.015278686640323
913 => 0.015275213709289
914 => 0.015080088227127
915 => 0.015052788823334
916 => 0.014665355335233
917 => 0.014920365230358
918 => 0.014749317981329
919 => 0.014491509431075
920 => 0.014447063139837
921 => 0.014445727030652
922 => 0.014710438766826
923 => 0.014917271919598
924 => 0.014752293421457
925 => 0.014714731015405
926 => 0.015115799240781
927 => 0.015064759653284
928 => 0.015020559699681
929 => 0.016159780606703
930 => 0.015257998364279
1001 => 0.014864769834652
1002 => 0.014378074857165
1003 => 0.014536545195964
1004 => 0.014569937224763
1005 => 0.013399523537271
1006 => 0.012924686850022
1007 => 0.012761740792801
1008 => 0.012667963033151
1009 => 0.01271069873581
1010 => 0.012283290024497
1011 => 0.012570515747187
1012 => 0.012200415931149
1013 => 0.012138367492582
1014 => 0.012800151810227
1015 => 0.012892235231939
1016 => 0.012499378746837
1017 => 0.012751656207961
1018 => 0.012660176893638
1019 => 0.012206760230244
1020 => 0.01218944304881
1021 => 0.011961934505485
1022 => 0.011605927689517
1023 => 0.011443223021681
1024 => 0.011358485018006
1025 => 0.011393449569833
1026 => 0.011375770422496
1027 => 0.011260402027488
1028 => 0.011382383203853
1029 => 0.011070771704342
1030 => 0.010946685494412
1031 => 0.010890638632165
1101 => 0.01061406549066
1102 => 0.011054216351428
1103 => 0.011140931615874
1104 => 0.011227817736179
1105 => 0.011984102093756
1106 => 0.011946320264489
1107 => 0.012287849600567
1108 => 0.012274578398599
1109 => 0.012177168699541
1110 => 0.011766213202334
1111 => 0.011930012738943
1112 => 0.011425863225359
1113 => 0.011803606319771
1114 => 0.01163122014641
1115 => 0.011745322381153
1116 => 0.011540156274902
1117 => 0.011653703669202
1118 => 0.011161495021999
1119 => 0.010701877512803
1120 => 0.010886841015575
1121 => 0.01108791749623
1122 => 0.011523902539625
1123 => 0.011264233444578
1124 => 0.011357620270332
1125 => 0.01104479003682
1126 => 0.010399331909545
1127 => 0.010402985132449
1128 => 0.010303695461637
1129 => 0.010217894689527
1130 => 0.011294059563809
1201 => 0.011160221450043
1202 => 0.010946967932056
1203 => 0.011232416240239
1204 => 0.011307893303597
1205 => 0.011310042029482
1206 => 0.011518297746645
1207 => 0.011629443860227
1208 => 0.011649033844481
1209 => 0.0119767287151
1210 => 0.012086567713332
1211 => 0.012538979002052
1212 => 0.011620013889025
1213 => 0.011601088407264
1214 => 0.011236433083317
1215 => 0.011005162911897
1216 => 0.011252268349814
1217 => 0.011471170034553
1218 => 0.011243234968847
1219 => 0.011272998476457
1220 => 0.010967014273727
1221 => 0.011076389228308
1222 => 0.011170597673591
1223 => 0.011118581307422
1224 => 0.011040710289647
1225 => 0.011453222592726
1226 => 0.011429947031937
1227 => 0.011814087972182
1228 => 0.012113553305284
1229 => 0.012650248718035
1230 => 0.012090179076265
1231 => 0.012069767912443
]
'min_raw' => 0.010217894689527
'max_raw' => 0.029542938480243
'avg_raw' => 0.019880416584885
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.010217'
'max' => '$0.029542'
'avg' => '$0.01988'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0017966954325601
'max_diff' => -0.0099796197077073
'year' => 2030
]
5 => [
'items' => [
101 => 0.01226929031285
102 => 0.012086537167492
103 => 0.012202030846934
104 => 0.012631640900752
105 => 0.012640717884218
106 => 0.012488666716122
107 => 0.012479414388725
108 => 0.012508617478815
109 => 0.012679660889617
110 => 0.01261989306625
111 => 0.012689057904586
112 => 0.012775549594016
113 => 0.013133315893214
114 => 0.013219572136738
115 => 0.013010014183708
116 => 0.013028934920546
117 => 0.012950554493618
118 => 0.01287483998331
119 => 0.013045035145267
120 => 0.013356070148936
121 => 0.013354135216321
122 => 0.013426289291516
123 => 0.013471240682606
124 => 0.013278276405619
125 => 0.013152663756794
126 => 0.013200831639294
127 => 0.013277853132372
128 => 0.013175854607159
129 => 0.012546272459231
130 => 0.012737247465049
131 => 0.01270545988588
201 => 0.012660190507642
202 => 0.012852217352758
203 => 0.012833695895094
204 => 0.012278906330397
205 => 0.012314422158318
206 => 0.012281066165525
207 => 0.012388846202235
208 => 0.012080716691806
209 => 0.01217549525393
210 => 0.0122349394796
211 => 0.012269952585192
212 => 0.012396443931301
213 => 0.012381601631793
214 => 0.012395521313124
215 => 0.012583074586927
216 => 0.013531654685309
217 => 0.01358328380714
218 => 0.01332904312878
219 => 0.013430607265109
220 => 0.013235626332993
221 => 0.013366518338981
222 => 0.013456071325182
223 => 0.013051398600589
224 => 0.013027436508143
225 => 0.012831650820361
226 => 0.012936854959107
227 => 0.012769467609916
228 => 0.012810538610447
301 => 0.012695700512459
302 => 0.0129023862248
303 => 0.013133492966911
304 => 0.01319187965665
305 => 0.013038289412997
306 => 0.012927079954502
307 => 0.012731832780058
308 => 0.013056533182526
309 => 0.013151485475273
310 => 0.013056034438554
311 => 0.0130339163477
312 => 0.012992002605498
313 => 0.013042808546247
314 => 0.013150968344694
315 => 0.013099962181145
316 => 0.013133652650782
317 => 0.013005259321985
318 => 0.013278340284824
319 => 0.013712058574325
320 => 0.013713453049546
321 => 0.013662446611054
322 => 0.013641575875372
323 => 0.013693911576594
324 => 0.013722301547584
325 => 0.013891545608611
326 => 0.014073151229073
327 => 0.01492062541903
328 => 0.014682658057712
329 => 0.015434587575507
330 => 0.016029266198255
331 => 0.016207584315073
401 => 0.016043540038116
402 => 0.015482353428146
403 => 0.015454818935779
404 => 0.01629346865795
405 => 0.016056511698846
406 => 0.016028326422551
407 => 0.015728482702552
408 => 0.015905727477439
409 => 0.015866961445147
410 => 0.015805767366675
411 => 0.016143938050181
412 => 0.016776963380998
413 => 0.016678300446716
414 => 0.016604653143117
415 => 0.016281952097151
416 => 0.01647629020471
417 => 0.01640709012691
418 => 0.016704417576596
419 => 0.016528287382011
420 => 0.016054716516827
421 => 0.016130134238017
422 => 0.016118735001179
423 => 0.016353330487558
424 => 0.016282910745565
425 => 0.016104984416358
426 => 0.016774799769236
427 => 0.016731305685929
428 => 0.016792970351926
429 => 0.016820117044942
430 => 0.017227821846768
501 => 0.017394845458978
502 => 0.017432762743109
503 => 0.017591422256639
504 => 0.017428815149877
505 => 0.018079359513825
506 => 0.018511933555535
507 => 0.019014390565038
508 => 0.019748615303633
509 => 0.020024690597303
510 => 0.019974820066556
511 => 0.020531500883768
512 => 0.021531843937978
513 => 0.020177017998714
514 => 0.021603653002533
515 => 0.021151996831617
516 => 0.020081128175323
517 => 0.02001217685857
518 => 0.020737381545653
519 => 0.022345815743239
520 => 0.021942921219453
521 => 0.022346474734347
522 => 0.021875708123216
523 => 0.021852330593041
524 => 0.022323610650815
525 => 0.023424782193942
526 => 0.0229016568706
527 => 0.022151628443998
528 => 0.022705437762466
529 => 0.022225676878177
530 => 0.021144641329256
531 => 0.021942613133604
601 => 0.021409032112965
602 => 0.021564759421514
603 => 0.022686267362711
604 => 0.022551324560085
605 => 0.022725953042051
606 => 0.022417738342204
607 => 0.022129817211549
608 => 0.021592391039879
609 => 0.021433285645238
610 => 0.021477256652304
611 => 0.02143326385539
612 => 0.021132578851543
613 => 0.02106764595359
614 => 0.020959421612227
615 => 0.020992964860981
616 => 0.020789471437071
617 => 0.021173505571876
618 => 0.021244785691393
619 => 0.021524253708916
620 => 0.021553269005594
621 => 0.022331583456416
622 => 0.021902900935946
623 => 0.022190498181345
624 => 0.022164772776746
625 => 0.020104337146263
626 => 0.020388246996766
627 => 0.02082992162833
628 => 0.020630947805486
629 => 0.020349645372689
630 => 0.020122478575723
701 => 0.019778297649323
702 => 0.020262725693822
703 => 0.02089969705916
704 => 0.021569423650582
705 => 0.022374056267951
706 => 0.02219447163471
707 => 0.021554381603491
708 => 0.021583095574706
709 => 0.021760594046222
710 => 0.021530717398172
711 => 0.021462922286936
712 => 0.021751280039003
713 => 0.021753265800363
714 => 0.02148876493526
715 => 0.021194820626845
716 => 0.02119358898946
717 => 0.021141284438943
718 => 0.021885012986558
719 => 0.022293988488309
720 => 0.022340876870488
721 => 0.022290832526601
722 => 0.022310092608374
723 => 0.022072118775066
724 => 0.022616056389061
725 => 0.023115227333518
726 => 0.022981438857172
727 => 0.022780870911976
728 => 0.022621108882967
729 => 0.022943804000447
730 => 0.022929434894835
731 => 0.023110867510785
801 => 0.02310263667932
802 => 0.023041627714602
803 => 0.022981441035994
804 => 0.023220074413481
805 => 0.0231513518331
806 => 0.023082522507569
807 => 0.022944474757975
808 => 0.022963237739875
809 => 0.022762704425563
810 => 0.022669928538582
811 => 0.021274801798869
812 => 0.020901978346936
813 => 0.021019276194435
814 => 0.021057893691469
815 => 0.020895640447402
816 => 0.021128269919956
817 => 0.021092014863074
818 => 0.021233062080903
819 => 0.021144941902762
820 => 0.02114855838561
821 => 0.021407701040321
822 => 0.021482931255455
823 => 0.021444668560855
824 => 0.021471466440584
825 => 0.022089012268262
826 => 0.02200121699957
827 => 0.021954577512902
828 => 0.021967496969449
829 => 0.022125293168753
830 => 0.022169467489205
831 => 0.021982297789375
901 => 0.02207056810183
902 => 0.022446411889091
903 => 0.022577935943717
904 => 0.022997697590953
905 => 0.022819375382539
906 => 0.023146693513688
907 => 0.024152757857866
908 => 0.024956471670352
909 => 0.024217343233511
910 => 0.025693261297807
911 => 0.026842475218732
912 => 0.026798366474331
913 => 0.026597974445421
914 => 0.02528962494988
915 => 0.024085662237691
916 => 0.025092828169394
917 => 0.025095395642479
918 => 0.025008879195735
919 => 0.024471532975403
920 => 0.024990180712033
921 => 0.025031349085915
922 => 0.025008305744095
923 => 0.024596323656842
924 => 0.023967303156622
925 => 0.024090212256703
926 => 0.024291539869913
927 => 0.023910384696767
928 => 0.023788582523941
929 => 0.024015035937036
930 => 0.024744716017473
1001 => 0.024606774225015
1002 => 0.024603172007348
1003 => 0.025193345491905
1004 => 0.024770908644372
1005 => 0.024091762534064
1006 => 0.023920269184375
1007 => 0.023311583324741
1008 => 0.023732004816055
1009 => 0.023747135037066
1010 => 0.023516874482877
1011 => 0.024110446908999
1012 => 0.024104977034595
1013 => 0.024668485711602
1014 => 0.025745702657844
1015 => 0.025427116600214
1016 => 0.025056635677254
1017 => 0.025096917225902
1018 => 0.02553870639123
1019 => 0.025271590576807
1020 => 0.025367647286071
1021 => 0.025538560997896
1022 => 0.025641677483789
1023 => 0.025082080350454
1024 => 0.024951611490049
1025 => 0.024684717990007
1026 => 0.024615090457649
1027 => 0.024832469644518
1028 => 0.024775197908898
1029 => 0.023745863400577
1030 => 0.023638292217294
1031 => 0.023641591271909
1101 => 0.023371098416814
1102 => 0.02295853188707
1103 => 0.024042732094169
1104 => 0.023955655644167
1105 => 0.023859529982547
1106 => 0.02387130482761
1107 => 0.024341919390557
1108 => 0.024068939177443
1109 => 0.024794701814585
1110 => 0.02464550683481
1111 => 0.024492485566769
1112 => 0.024471333366383
1113 => 0.024412433233349
1114 => 0.024210442761398
1115 => 0.023966527128771
1116 => 0.023805472900501
1117 => 0.021959290398176
1118 => 0.022301931131858
1119 => 0.022696108063273
1120 => 0.022832176360433
1121 => 0.022599422122502
1122 => 0.024219633317365
1123 => 0.02451566151541
1124 => 0.02361897279409
1125 => 0.02345123894589
1126 => 0.024230629920528
1127 => 0.02376056188615
1128 => 0.023972233493248
1129 => 0.023514715256881
1130 => 0.024444356991218
1201 => 0.024437274678779
1202 => 0.02407562304721
1203 => 0.024381288529728
1204 => 0.024328171630083
1205 => 0.023919867828751
1206 => 0.024457300949999
1207 => 0.024457567510122
1208 => 0.024109485677722
1209 => 0.02370300230239
1210 => 0.02363033267559
1211 => 0.023575585873586
1212 => 0.023958769135995
1213 => 0.024302330050887
1214 => 0.024941611737529
1215 => 0.025102342342509
1216 => 0.025729684594188
1217 => 0.025356132828053
1218 => 0.025521723487675
1219 => 0.025701495572924
1220 => 0.025787684921492
1221 => 0.025647244003176
1222 => 0.026621764744406
1223 => 0.026704044153509
1224 => 0.026731631727668
1225 => 0.026403028816804
1226 => 0.02669490511212
1227 => 0.026558345859469
1228 => 0.026913635097614
1229 => 0.026969348986716
1230 => 0.026922161304726
1231 => 0.026939845772511
]
'min_raw' => 0.012080716691806
'max_raw' => 0.026969348986716
'avg_raw' => 0.019525032839261
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.01208'
'max' => '$0.026969'
'avg' => '$0.019525'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0018628220022792
'max_diff' => -0.0025735894935272
'year' => 2031
]
6 => [
'items' => [
101 => 0.026108264237111
102 => 0.026065142347558
103 => 0.025477172323719
104 => 0.025716774454488
105 => 0.025268849755444
106 => 0.025410891291647
107 => 0.025473501847383
108 => 0.025440797646184
109 => 0.025730321199466
110 => 0.025484167033422
111 => 0.024834525717741
112 => 0.024184707407718
113 => 0.024176549468166
114 => 0.024005463777383
115 => 0.023881800158854
116 => 0.023905622158986
117 => 0.0239895739946
118 => 0.023876920725552
119 => 0.023900961012169
120 => 0.024300189949605
121 => 0.024380252465838
122 => 0.024108168753236
123 => 0.023015713385648
124 => 0.022747622098225
125 => 0.022940320799143
126 => 0.02284822323149
127 => 0.018440299378521
128 => 0.019475875704117
129 => 0.018860571416297
130 => 0.019144131940914
131 => 0.018516065595322
201 => 0.018815811775216
202 => 0.018760459600768
203 => 0.020425635687395
204 => 0.020399636253177
205 => 0.020412080806478
206 => 0.019818069853327
207 => 0.020764345430852
208 => 0.02123051480731
209 => 0.021144239262424
210 => 0.021165952958338
211 => 0.020792839721615
212 => 0.020415693358195
213 => 0.019997379998752
214 => 0.020774554515503
215 => 0.020688145976051
216 => 0.020886336076741
217 => 0.021390389304436
218 => 0.021464613056926
219 => 0.021564370532976
220 => 0.021528614579033
221 => 0.022380466464883
222 => 0.022277301580807
223 => 0.022525899268867
224 => 0.022014514963374
225 => 0.021435835080665
226 => 0.021545823207898
227 => 0.021535230466777
228 => 0.021400372714522
229 => 0.021278629165685
301 => 0.021075960457902
302 => 0.021717234238651
303 => 0.021691199694256
304 => 0.022112668706163
305 => 0.022038169964377
306 => 0.021540649133795
307 => 0.02155841818759
308 => 0.021677923613882
309 => 0.022091533258767
310 => 0.022214320762061
311 => 0.022157440698299
312 => 0.022292071590199
313 => 0.022398478357812
314 => 0.022305434641944
315 => 0.023622737446812
316 => 0.0230757014802
317 => 0.023342323004075
318 => 0.023405910666494
319 => 0.023243032206312
320 => 0.023278354712085
321 => 0.023331858683525
322 => 0.023656724320953
323 => 0.024509265754196
324 => 0.024886850551534
325 => 0.026022833044029
326 => 0.024855497390349
327 => 0.024786232523575
328 => 0.024990857273858
329 => 0.025657799252912
330 => 0.02619829308426
331 => 0.026377606069956
401 => 0.02640130524115
402 => 0.026737708322817
403 => 0.026930528295682
404 => 0.026696860140423
405 => 0.026498850844916
406 => 0.025789606126231
407 => 0.025871703133628
408 => 0.026437270102909
409 => 0.027236166758746
410 => 0.027921703200485
411 => 0.027681652231945
412 => 0.02951307167233
413 => 0.029694649429167
414 => 0.029669561254284
415 => 0.030083222406751
416 => 0.029262189259732
417 => 0.028911181682614
418 => 0.026541662702106
419 => 0.027207400884205
420 => 0.02817509042932
421 => 0.028047013089374
422 => 0.027344251075297
423 => 0.027921170092479
424 => 0.027730422623473
425 => 0.027579972180548
426 => 0.028269214825841
427 => 0.027511364224814
428 => 0.028167530289849
429 => 0.027325990524273
430 => 0.027682748764549
501 => 0.027480235532914
502 => 0.02761128641287
503 => 0.026845165646455
504 => 0.027258545815482
505 => 0.026827967672356
506 => 0.026827763522253
507 => 0.026818258485879
508 => 0.027324831761791
509 => 0.027341351098132
510 => 0.026966992681843
511 => 0.026913041785478
512 => 0.027112526526149
513 => 0.02687898213996
514 => 0.026988256088347
515 => 0.026882291936538
516 => 0.026858437174019
517 => 0.026668358367716
518 => 0.026586467191635
519 => 0.026618578831852
520 => 0.026508965249107
521 => 0.026442919100606
522 => 0.026805120244585
523 => 0.026611610784509
524 => 0.026775462144512
525 => 0.026588732840099
526 => 0.025941447716918
527 => 0.02556918719766
528 => 0.024346525603334
529 => 0.024693270914778
530 => 0.024923163415
531 => 0.024847183945048
601 => 0.025010417246656
602 => 0.025020438445649
603 => 0.024967369635329
604 => 0.024905922751515
605 => 0.0248760138067
606 => 0.025098930577412
607 => 0.025228341265843
608 => 0.024946236202962
609 => 0.024880142933798
610 => 0.025165366727818
611 => 0.025339353077403
612 => 0.026623970528247
613 => 0.026528801918229
614 => 0.026767656453478
615 => 0.026740765098331
616 => 0.026991122703784
617 => 0.02740035157968
618 => 0.026568274852789
619 => 0.026712694601529
620 => 0.026677286214277
621 => 0.027063865701716
622 => 0.02706507256068
623 => 0.026833298846882
624 => 0.026958947137231
625 => 0.026888813708539
626 => 0.027015554293287
627 => 0.02652753088342
628 => 0.027121890717766
629 => 0.027458854444138
630 => 0.027463533185805
701 => 0.027623251317796
702 => 0.027785534190149
703 => 0.028097022031772
704 => 0.027776846963307
705 => 0.027200883183553
706 => 0.0272424659081
707 => 0.026904778554767
708 => 0.026910455140185
709 => 0.026880153082343
710 => 0.026971091838959
711 => 0.026547486826568
712 => 0.026646906076286
713 => 0.026507718544482
714 => 0.026712392035017
715 => 0.026492197192941
716 => 0.02667726913928
717 => 0.026757140056088
718 => 0.027051865458606
719 => 0.026448666011355
720 => 0.025218701505399
721 => 0.025477254956429
722 => 0.02509483409342
723 => 0.02513022860027
724 => 0.025201731137102
725 => 0.024969968021056
726 => 0.025014181119902
727 => 0.025012601516889
728 => 0.024998989351488
729 => 0.024938698813888
730 => 0.024851265606249
731 => 0.025199572594961
801 => 0.025258756739551
802 => 0.025390315761608
803 => 0.025781746173915
804 => 0.02574263304516
805 => 0.025806428180947
806 => 0.02566716375772
807 => 0.025136688677444
808 => 0.025165496026495
809 => 0.024806267922215
810 => 0.025381129491327
811 => 0.025244994683959
812 => 0.02515722768804
813 => 0.025133279650048
814 => 0.025525680342635
815 => 0.025643092779985
816 => 0.025569929228284
817 => 0.025419868649225
818 => 0.025708029322447
819 => 0.025785128962078
820 => 0.025802388728066
821 => 0.026312954191688
822 => 0.025830923665808
823 => 0.025946953204359
824 => 0.026852182542038
825 => 0.026031264445873
826 => 0.026466123070069
827 => 0.02644483900331
828 => 0.026667297960636
829 => 0.026426590875719
830 => 0.026429574728521
831 => 0.026627103211951
901 => 0.026349710081424
902 => 0.026281023641316
903 => 0.02618613381625
904 => 0.026393322277808
905 => 0.026517522390183
906 => 0.027518484081
907 => 0.028165150982666
908 => 0.028137077467002
909 => 0.028393616848751
910 => 0.028278043507641
911 => 0.027904826702492
912 => 0.028541862279941
913 => 0.028340277568536
914 => 0.028356895967219
915 => 0.02835627742959
916 => 0.028490313639833
917 => 0.028395336700637
918 => 0.0282081274043
919 => 0.028332405671901
920 => 0.028701467696382
921 => 0.029847047544576
922 => 0.03048812920454
923 => 0.029808453623681
924 => 0.030277284738139
925 => 0.029996153131071
926 => 0.029945063155126
927 => 0.030239523741353
928 => 0.030534499741856
929 => 0.03051571104584
930 => 0.03030157361666
1001 => 0.030180612816452
1002 => 0.031096568520466
1003 => 0.031771429080285
1004 => 0.031725408114428
1005 => 0.031928529690901
1006 => 0.03252490092174
1007 => 0.03257942563312
1008 => 0.032572556772723
1009 => 0.032437411586501
1010 => 0.033024616511853
1011 => 0.033514473191468
1012 => 0.032406129380611
1013 => 0.032828172194499
1014 => 0.033017640811024
1015 => 0.033295836952888
1016 => 0.0337652004753
1017 => 0.034275053753164
1018 => 0.034347152596911
1019 => 0.034295995017025
1020 => 0.033959733074682
1021 => 0.034517620615136
1022 => 0.034844418052261
1023 => 0.035039018447443
1024 => 0.035532492671206
1025 => 0.033018810904697
1026 => 0.031239502012272
1027 => 0.030961637235188
1028 => 0.031526686185881
1029 => 0.031675685087998
1030 => 0.031615623817384
1031 => 0.029612849891272
1101 => 0.030951093044951
1102 => 0.032390930155629
1103 => 0.032446240162971
1104 => 0.033167052726151
1105 => 0.033401778843827
1106 => 0.033982127436249
1107 => 0.033945826473781
1108 => 0.034087132120673
1109 => 0.034054648399525
1110 => 0.035129621960173
1111 => 0.036315477432686
1112 => 0.036274415028462
1113 => 0.036103934273883
1114 => 0.036357127265721
1115 => 0.03758105719735
1116 => 0.037468377342323
1117 => 0.037577836223434
1118 => 0.039020918590493
1119 => 0.040897130943742
1120 => 0.040025441937018
1121 => 0.041916756259855
1122 => 0.043107238371817
1123 => 0.045166054086308
1124 => 0.044908280218973
1125 => 0.045709762068336
1126 => 0.044446811197413
1127 => 0.041546820713289
1128 => 0.041087886118459
1129 => 0.042006684799384
1130 => 0.044265461701374
1201 => 0.041935547876436
1202 => 0.042406886408735
1203 => 0.042271140879724
1204 => 0.042263907577364
1205 => 0.042539973308464
1206 => 0.042139525566883
1207 => 0.040508029428511
1208 => 0.04125573449426
1209 => 0.040967009660628
1210 => 0.041287371389405
1211 => 0.043016231512387
1212 => 0.042251861241139
1213 => 0.041446659252777
1214 => 0.042456561234808
1215 => 0.043742513497905
1216 => 0.043662040916359
1217 => 0.04350589047323
1218 => 0.044386102345379
1219 => 0.045839954480288
1220 => 0.046232924870303
1221 => 0.046523007578286
1222 => 0.046563005082729
1223 => 0.046975004236806
1224 => 0.044759580948178
1225 => 0.048275514603336
1226 => 0.048882619219874
1227 => 0.048768508713873
1228 => 0.049443279944288
1229 => 0.049244745131006
1230 => 0.048957099335719
1231 => 0.050026755263883
]
'min_raw' => 0.018440299378521
'max_raw' => 0.050026755263883
'avg_raw' => 0.034233527321202
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.01844'
'max' => '$0.050026'
'avg' => '$0.034233'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0063595826867153
'max_diff' => 0.023057406277167
'year' => 2032
]
7 => [
'items' => [
101 => 0.048800481059025
102 => 0.047059939208858
103 => 0.046105043525842
104 => 0.047362527190475
105 => 0.048130428584334
106 => 0.048637962557973
107 => 0.048791542031736
108 => 0.044931557951573
109 => 0.042851240616897
110 => 0.044184700177538
111 => 0.045811612871982
112 => 0.044750543366016
113 => 0.04479213528178
114 => 0.043279329010432
115 => 0.045945462659026
116 => 0.04555702941214
117 => 0.047572221784114
118 => 0.047091279951613
119 => 0.048734591101641
120 => 0.048301852202485
121 => 0.050098127178776
122 => 0.050814709899022
123 => 0.05201796381351
124 => 0.052903082291132
125 => 0.05342284079081
126 => 0.053391636440055
127 => 0.055451178558436
128 => 0.054236738526148
129 => 0.052711115624054
130 => 0.052683521919034
131 => 0.053473663638272
201 => 0.055129583917
202 => 0.055558939952614
203 => 0.055798891402694
204 => 0.055431397404126
205 => 0.054113209788778
206 => 0.053544023059834
207 => 0.054028986643821
208 => 0.053435917854
209 => 0.054459720970944
210 => 0.055865621323053
211 => 0.055575308459875
212 => 0.056545780835342
213 => 0.057550117647279
214 => 0.058986364395937
215 => 0.0593618524801
216 => 0.059982520004688
217 => 0.060621390766149
218 => 0.060826578836681
219 => 0.061218346529444
220 => 0.061216281720322
221 => 0.062396900031473
222 => 0.063699158589378
223 => 0.064190731047633
224 => 0.065321074809925
225 => 0.063385400728969
226 => 0.064853631754795
227 => 0.066178012892297
228 => 0.064599031102342
301 => 0.066775289644222
302 => 0.066859788831895
303 => 0.068135626243706
304 => 0.066842320605963
305 => 0.066074359846649
306 => 0.068291433783674
307 => 0.069364206024626
308 => 0.069041078295141
309 => 0.066582060318978
310 => 0.065150806384609
311 => 0.061404938770098
312 => 0.065842080768925
313 => 0.068003283203346
314 => 0.066576463326781
315 => 0.067296068279365
316 => 0.071221999567972
317 => 0.072716740017447
318 => 0.072405844452981
319 => 0.072458380685599
320 => 0.073264915500677
321 => 0.076841535037571
322 => 0.074698341705672
323 => 0.076336732703986
324 => 0.077205729381834
325 => 0.07801290192593
326 => 0.076030741267133
327 => 0.073451979373761
328 => 0.07263517723307
329 => 0.066434594209603
330 => 0.066111826935464
331 => 0.065930647883641
401 => 0.06478833959018
402 => 0.063890798176095
403 => 0.063177039920038
404 => 0.061303925109888
405 => 0.061936046372451
406 => 0.058950692314515
407 => 0.060860616046331
408 => 0.05609591888597
409 => 0.060064100264859
410 => 0.057904399551398
411 => 0.059354580495523
412 => 0.059349520950824
413 => 0.056679278052403
414 => 0.055139137675141
415 => 0.056120575066692
416 => 0.057172753857033
417 => 0.057343466325811
418 => 0.058707643592164
419 => 0.05908835614431
420 => 0.057934779337536
421 => 0.055997181127873
422 => 0.056447241000068
423 => 0.055130017226196
424 => 0.052821633228766
425 => 0.054479554916238
426 => 0.055045642274012
427 => 0.05529565870049
428 => 0.053025628158711
429 => 0.052312335277723
430 => 0.051932584132992
501 => 0.055704148690752
502 => 0.055910763511052
503 => 0.054853692878007
504 => 0.05963175237492
505 => 0.058550330354779
506 => 0.059758543706104
507 => 0.056406402783971
508 => 0.056534459081452
509 => 0.054947501848473
510 => 0.055836091858421
511 => 0.055208065079983
512 => 0.055764302566835
513 => 0.056097709023001
514 => 0.057684405851914
515 => 0.060082217793899
516 => 0.05744740625735
517 => 0.05629938113968
518 => 0.057011609465944
519 => 0.058908367355138
520 => 0.061782052650516
521 => 0.060080773117346
522 => 0.060835772084567
523 => 0.061000705771339
524 => 0.059746245228371
525 => 0.061828306400079
526 => 0.062944099896633
527 => 0.064088673143166
528 => 0.065082474022916
529 => 0.063631505418795
530 => 0.065184249813384
531 => 0.063933011927629
601 => 0.062810522193512
602 => 0.062812224547095
603 => 0.062108070339925
604 => 0.060743682834393
605 => 0.060492068844913
606 => 0.061800996593532
607 => 0.062850632692005
608 => 0.062937085748493
609 => 0.063518218224858
610 => 0.06386212643823
611 => 0.067232894449821
612 => 0.068588645228538
613 => 0.070246431617705
614 => 0.070892232844007
615 => 0.072835863002622
616 => 0.071266223795617
617 => 0.070926622479688
618 => 0.066212011471467
619 => 0.066984028759946
620 => 0.068220102927389
621 => 0.066232393879214
622 => 0.067493137762725
623 => 0.067742035311537
624 => 0.066164852286363
625 => 0.067007293886164
626 => 0.064770018763618
627 => 0.060130984277804
628 => 0.0618334709716
629 => 0.06308707422906
630 => 0.061298027812498
701 => 0.064504824268527
702 => 0.062631479980631
703 => 0.062037719777752
704 => 0.059721249535525
705 => 0.06081453432074
706 => 0.062293217647072
707 => 0.061379563266786
708 => 0.063275533291775
709 => 0.065960732483896
710 => 0.067874365334578
711 => 0.068021270303179
712 => 0.066790932583635
713 => 0.068762556631115
714 => 0.06877691775983
715 => 0.066552917779951
716 => 0.065190730175559
717 => 0.064881238285774
718 => 0.065654409705917
719 => 0.066593182545287
720 => 0.068073365662238
721 => 0.068967809319534
722 => 0.071300044001502
723 => 0.071931079836034
724 => 0.072624396900074
725 => 0.073550882308695
726 => 0.074663365587728
727 => 0.072229315506912
728 => 0.07232602485426
729 => 0.070059471120721
730 => 0.067637333399751
731 => 0.069475434006238
801 => 0.071878506036944
802 => 0.071327238657941
803 => 0.071265209816433
804 => 0.071369525122484
805 => 0.070953887521426
806 => 0.069073974056087
807 => 0.068129893282674
808 => 0.069347998341069
809 => 0.069995366967986
810 => 0.070999379251858
811 => 0.070875613545743
812 => 0.07346184136595
813 => 0.074466771293413
814 => 0.074209667214592
815 => 0.07425698055265
816 => 0.076076358184612
817 => 0.078099880294901
818 => 0.079995175778448
819 => 0.081923151749146
820 => 0.079598901466286
821 => 0.078418790512478
822 => 0.07963636378431
823 => 0.078990302267691
824 => 0.082702763376475
825 => 0.082959806128835
826 => 0.086671998784425
827 => 0.090195311654258
828 => 0.087982381967422
829 => 0.090069074989566
830 => 0.092326003623593
831 => 0.096679985132105
901 => 0.095213717334955
902 => 0.094090579181683
903 => 0.093029219053806
904 => 0.095237740993744
905 => 0.098078969187474
906 => 0.098690942527458
907 => 0.099682573130042
908 => 0.098639994802246
909 => 0.09989566556184
910 => 0.10432873511289
911 => 0.10313088058841
912 => 0.10142973459892
913 => 0.10492921725296
914 => 0.10619566642156
915 => 0.11508426993137
916 => 0.12630649903241
917 => 0.12166042249545
918 => 0.11877645286101
919 => 0.11945425413377
920 => 0.12355223230504
921 => 0.12486837283033
922 => 0.12129064918176
923 => 0.12255436165812
924 => 0.12951754164837
925 => 0.13325306430757
926 => 0.12817972278874
927 => 0.11418257474994
928 => 0.10127656501521
929 => 0.10469981996205
930 => 0.10431172908705
1001 => 0.11179279731217
1002 => 0.10310231215416
1003 => 0.10324863763623
1004 => 0.11088440642966
1005 => 0.10884731422579
1006 => 0.10554748574658
1007 => 0.10130065741492
1008 => 0.09345000245977
1009 => 0.086496458434285
1010 => 0.10013395957381
1011 => 0.099545885726488
1012 => 0.098694267647903
1013 => 0.10058945152709
1014 => 0.10979192648711
1015 => 0.10957977965378
1016 => 0.10823020973838
1017 => 0.10925384662465
1018 => 0.1053680372512
1019 => 0.10636949880498
1020 => 0.10127452063733
1021 => 0.10357766355419
1022 => 0.10554040579669
1023 => 0.10593445536077
1024 => 0.1068222691493
1025 => 0.099235997531231
1026 => 0.10264201076651
1027 => 0.10464272444196
1028 => 0.095603427269706
1029 => 0.10446404660042
1030 => 0.099103937420292
1031 => 0.097284635858418
1101 => 0.099734085736726
1102 => 0.098779532736981
1103 => 0.097958864121033
1104 => 0.097500916932458
1105 => 0.099299522587169
1106 => 0.099215615483578
1107 => 0.096272747538156
1108 => 0.092433896269995
1109 => 0.093722340761587
1110 => 0.09325423679856
1111 => 0.091557767649938
1112 => 0.092700983023643
1113 => 0.087666841085905
1114 => 0.079005861533954
1115 => 0.084727569918951
1116 => 0.08450729037015
1117 => 0.084396215432762
1118 => 0.088695921147683
1119 => 0.088282603654281
1120 => 0.087532428356542
1121 => 0.0915439900923
1122 => 0.090079716095629
1123 => 0.094592263527027
1124 => 0.097564519118614
1125 => 0.096810658958192
1126 => 0.099606079708238
1127 => 0.093752023920381
1128 => 0.095696506429155
1129 => 0.096097261579277
1130 => 0.09149448804318
1201 => 0.088350227507786
1202 => 0.088140541177269
1203 => 0.082688826714688
1204 => 0.085601088575897
1205 => 0.088163758496177
1206 => 0.086936438475583
1207 => 0.086547905622205
1208 => 0.088532835707617
1209 => 0.08868708177503
1210 => 0.085170255091748
1211 => 0.085901514722619
1212 => 0.088950988945151
1213 => 0.085824675796356
1214 => 0.079750760028601
1215 => 0.078244344939742
1216 => 0.07804336139815
1217 => 0.073957844201878
1218 => 0.078345010799184
1219 => 0.076429895010705
1220 => 0.082479722839901
1221 => 0.079024093629741
1222 => 0.07887512836117
1223 => 0.078649945509271
1224 => 0.075133372087849
1225 => 0.075903278177241
1226 => 0.078462563278387
1227 => 0.079375745034886
1228 => 0.079280492696205
1229 => 0.078450021385178
1230 => 0.078830206898665
1231 => 0.077605496894309
]
'min_raw' => 0.042851240616897
'max_raw' => 0.13325306430757
'avg_raw' => 0.088052152462234
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.042851'
'max' => '$0.133253'
'avg' => '$0.088052'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.024410941238376
'max_diff' => 0.083226309043688
'year' => 2033
]
8 => [
'items' => [
101 => 0.077173026301637
102 => 0.075808030150754
103 => 0.073801862898768
104 => 0.074080832759696
105 => 0.070106090491295
106 => 0.067940439947931
107 => 0.067341016420344
108 => 0.06653944222762
109 => 0.067431556358319
110 => 0.070094830545848
111 => 0.06688235683055
112 => 0.061374795974501
113 => 0.061705809766377
114 => 0.062449499477844
115 => 0.061063638620524
116 => 0.059752037625556
117 => 0.060892368277129
118 => 0.058558742137529
119 => 0.062731507047784
120 => 0.062618645451
121 => 0.064173994167493
122 => 0.065146585638884
123 => 0.062905077177555
124 => 0.062341343861214
125 => 0.062662471978453
126 => 0.057354939522222
127 => 0.063740255533021
128 => 0.063795476011039
129 => 0.063322644752929
130 => 0.066722628404165
131 => 0.073897654389768
201 => 0.071198120999232
202 => 0.070152780076588
203 => 0.068165586218503
204 => 0.070813404046506
205 => 0.070610092949708
206 => 0.069690643066544
207 => 0.069134556908347
208 => 0.070159162705356
209 => 0.069007596911288
210 => 0.068800744051761
211 => 0.067547440781162
212 => 0.067100068535223
213 => 0.066768851934732
214 => 0.066404215002263
215 => 0.067208513213428
216 => 0.065385867652687
217 => 0.063187935782581
218 => 0.063005201529534
219 => 0.063509746868356
220 => 0.06328652311491
221 => 0.063004132820083
222 => 0.062464972842836
223 => 0.062305015594917
224 => 0.062824799050429
225 => 0.062237993834415
226 => 0.063103856895578
227 => 0.06286839005333
228 => 0.061553091413541
301 => 0.059913742322438
302 => 0.059899148676876
303 => 0.059545953604269
304 => 0.05909610657607
305 => 0.05897096942393
306 => 0.060796332810294
307 => 0.064574780391538
308 => 0.063832980720752
309 => 0.064369007005583
310 => 0.067005725802238
311 => 0.067843859418794
312 => 0.067248972030045
313 => 0.06643465348127
314 => 0.066470479364679
315 => 0.069253252356833
316 => 0.069426810494935
317 => 0.069865335917941
318 => 0.070428965013773
319 => 0.067344960502266
320 => 0.066325223029527
321 => 0.065842014842062
322 => 0.064353920649773
323 => 0.065958702656603
324 => 0.06502366490484
325 => 0.065149833442991
326 => 0.065067666017004
327 => 0.06511253498773
328 => 0.062730340674951
329 => 0.06359828707808
330 => 0.062155157841904
331 => 0.060222969793523
401 => 0.060216492421672
402 => 0.060689392709184
403 => 0.060408093113582
404 => 0.05965112313469
405 => 0.059758647147394
406 => 0.058816623654023
407 => 0.059873025855375
408 => 0.059903319690521
409 => 0.059496547300383
410 => 0.061124080646978
411 => 0.061790882387019
412 => 0.061523136085921
413 => 0.061772096592777
414 => 0.063863805846098
415 => 0.064204845722063
416 => 0.064356313107136
417 => 0.064153366876721
418 => 0.061810329198123
419 => 0.061914252882534
420 => 0.061151729840772
421 => 0.060507478223181
422 => 0.06053324490923
423 => 0.06086447398752
424 => 0.062310970798738
425 => 0.065355038062304
426 => 0.065470558189772
427 => 0.065610571954224
428 => 0.065041065608921
429 => 0.064869297045735
430 => 0.065095904117804
501 => 0.066239095732547
502 => 0.06917969493916
503 => 0.068140290783525
504 => 0.067295239025705
505 => 0.068036577241631
506 => 0.06792245403409
507 => 0.066959139312909
508 => 0.066932102277105
509 => 0.06508319333681
510 => 0.064399693799203
511 => 0.063828510426525
512 => 0.06320479309468
513 => 0.062835032553168
514 => 0.063403152798091
515 => 0.063533088619906
516 => 0.062290883775339
517 => 0.062121575845129
518 => 0.063135987136057
519 => 0.062689582547984
520 => 0.063148720737118
521 => 0.063255244735411
522 => 0.06323809191823
523 => 0.062771994259042
524 => 0.063069071007776
525 => 0.062366395934179
526 => 0.061602342330025
527 => 0.061114923732797
528 => 0.06068958636002
529 => 0.06092558825519
530 => 0.060084284591153
531 => 0.05981513461693
601 => 0.062968428089744
602 => 0.065297799881729
603 => 0.065263929893341
604 => 0.065057755049683
605 => 0.064751421053047
606 => 0.066216685492656
607 => 0.065706216660784
608 => 0.066077625387069
609 => 0.066172164495884
610 => 0.066458305904908
611 => 0.06656057686395
612 => 0.066251442993979
613 => 0.065213951968837
614 => 0.062628622975868
615 => 0.061425145350679
616 => 0.061027977688861
617 => 0.061042413979039
618 => 0.060644196649485
619 => 0.060761489499887
620 => 0.060603406982803
621 => 0.060304036939715
622 => 0.060907102998632
623 => 0.060976600743973
624 => 0.060835837919719
625 => 0.060868992660519
626 => 0.059703536596285
627 => 0.059792143689611
628 => 0.059298768134326
629 => 0.059206266165441
630 => 0.057959055724804
701 => 0.055749441643171
702 => 0.056973782336825
703 => 0.055494950947245
704 => 0.054934895092059
705 => 0.057586112403954
706 => 0.057320003719161
707 => 0.056864541325461
708 => 0.056190817518498
709 => 0.055940926804932
710 => 0.054422669935089
711 => 0.054332963219633
712 => 0.055085452320711
713 => 0.054738204492133
714 => 0.054250537027772
715 => 0.052484254905914
716 => 0.050498369005034
717 => 0.050558310417547
718 => 0.051189983773897
719 => 0.053026659250241
720 => 0.052309038366825
721 => 0.051788396182156
722 => 0.051690895551414
723 => 0.052911320076546
724 => 0.05463847646645
725 => 0.055448819601647
726 => 0.054645794165154
727 => 0.05372332178167
728 => 0.053779468401328
729 => 0.054152986707778
730 => 0.054192238200522
731 => 0.053591803510567
801 => 0.053760822358723
802 => 0.053504067272967
803 => 0.051928361785614
804 => 0.051899862269964
805 => 0.051513158731684
806 => 0.051501449502231
807 => 0.050843570315899
808 => 0.050751528470027
809 => 0.049445269415152
810 => 0.050305053080787
811 => 0.049728355338547
812 => 0.048859135811747
813 => 0.048709282037698
814 => 0.048704777252296
815 => 0.049597271352391
816 => 0.050294623767592
817 => 0.049738387242679
818 => 0.049611742968149
819 => 0.050963972491695
820 => 0.050791888958978
821 => 0.050642865729465
822 => 0.054483828555351
823 => 0.051443406764595
824 => 0.050117609322617
825 => 0.048476683226063
826 => 0.049010977037369
827 => 0.04912356059382
828 => 0.045177429130769
829 => 0.043576484087668
830 => 0.043027100079217
831 => 0.042710921815204
901 => 0.042855008220432
902 => 0.041413969909517
903 => 0.042382371487025
904 => 0.041134554117709
905 => 0.040925353474994
906 => 0.043156605506241
907 => 0.043467071191604
908 => 0.042142528123719
909 => 0.042993099197345
910 => 0.042684670302226
911 => 0.041155944365053
912 => 0.0410975582788
913 => 0.040330497340841
914 => 0.039130195505202
915 => 0.038581625357917
916 => 0.038295925262307
917 => 0.038413810689939
918 => 0.038354204210375
919 => 0.037965231611838
920 => 0.038376499664408
921 => 0.037325879737786
922 => 0.036907514417585
923 => 0.036718548508451
924 => 0.035786062852148
925 => 0.037270062209581
926 => 0.037562428777926
927 => 0.037855371398728
928 => 0.040405236912387
929 => 0.04027785283717
930 => 0.041429342838573
1001 => 0.041384598054573
1002 => 0.041056174453271
1003 => 0.03967060930244
1004 => 0.040222870876238
1005 => 0.038523095592594
1006 => 0.039796682808584
1007 => 0.03921547078948
1008 => 0.039600174440278
1009 => 0.038908442588813
1010 => 0.039291275556322
1011 => 0.037631759737366
1012 => 0.036082127215642
1013 => 0.036705744578977
1014 => 0.037383687972218
1015 => 0.038853641985529
1016 => 0.037978149502058
1017 => 0.03829300970515
1018 => 0.037238280731753
1019 => 0.035062073591199
1020 => 0.035074390687279
1021 => 0.034739628629954
1022 => 0.034450345336365
1023 => 0.038078710345439
1024 => 0.037627465800598
1025 => 0.03690846667582
1026 => 0.037870875576225
1027 => 0.038125351764975
1028 => 0.038132596344317
1029 => 0.038834745034683
1030 => 0.039209481916599
1031 => 0.039275530916239
1101 => 0.040380377051457
1102 => 0.040750706902709
1103 => 0.042276043148974
1104 => 0.039177688110309
1105 => 0.039113879527217
1106 => 0.037884418643108
1107 => 0.037104675113398
1108 => 0.037937808349686
1109 => 0.03867585066301
1110 => 0.037907351675068
1111 => 0.038007701418994
1112 => 0.036976054316355
1113 => 0.03734481961204
1114 => 0.037662449962735
1115 => 0.03748707315253
1116 => 0.037224525579321
1117 => 0.038615339609841
1118 => 0.038536864431595
1119 => 0.039832022431492
1120 => 0.040841690710049
1121 => 0.042651196765017
1122 => 0.040762882864974
1123 => 0.040694065201089
1124 => 0.04136676890427
1125 => 0.040750603915277
1126 => 0.041139998919028
1127 => 0.042588459209889
1128 => 0.042619062893381
1129 => 0.04210641176427
1130 => 0.042075216896474
1201 => 0.042173677153609
1202 => 0.042750361954996
1203 => 0.042548850565657
1204 => 0.042782044647045
1205 => 0.043073657416614
1206 => 0.044279891472804
1207 => 0.044570710420065
1208 => 0.043864171150556
1209 => 0.043927963735808
1210 => 0.043663698654075
1211 => 0.043408421896353
1212 => 0.043982246767536
1213 => 0.045030922998179
1214 => 0.045024399237774
1215 => 0.04526767173993
1216 => 0.045419228493395
1217 => 0.044768635961199
1218 => 0.04434512414569
1219 => 0.044507525524513
1220 => 0.044767208865894
1221 => 0.044423313716828
1222 => 0.042300633549069
1223 => 0.042944519114633
1224 => 0.042837345072128
1225 => 0.042684716202791
1226 => 0.043332148117986
1227 => 0.043269701730344
1228 => 0.041399189978795
1229 => 0.041518934072269
1230 => 0.041406472013724
1231 => 0.041769859932455
]
'min_raw' => 0.034450345336365
'max_raw' => 0.077173026301637
'avg_raw' => 0.055811685819001
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.03445'
'max' => '$0.077173'
'avg' => '$0.055811'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0084008952805319
'max_diff' => -0.056080038005934
'year' => 2034
]
9 => [
'items' => [
101 => 0.040730979775128
102 => 0.041050532314557
103 => 0.041250952671668
104 => 0.041369001801708
105 => 0.041795476206459
106 => 0.041745434357411
107 => 0.04179236553486
108 => 0.042424714492037
109 => 0.04562291852148
110 => 0.045796989710363
111 => 0.044939799512757
112 => 0.045282230089371
113 => 0.044624838263606
114 => 0.045066149800385
115 => 0.045368083945751
116 => 0.044003701601437
117 => 0.043922911733775
118 => 0.043262806618097
119 => 0.043617509716998
120 => 0.043053151582592
121 => 0.043191625328366
122 => 0.042804440663258
123 => 0.043501295972754
124 => 0.044280488489137
125 => 0.044477343290021
126 => 0.043959503060217
127 => 0.043584552606505
128 => 0.042926263126144
129 => 0.044021013202922
130 => 0.044341151487276
131 => 0.044019331652801
201 => 0.043944758965251
202 => 0.043803443857094
203 => 0.043974739633486
204 => 0.044339407945426
205 => 0.044167437103881
206 => 0.044281026874458
207 => 0.043848139802284
208 => 0.044768851334399
209 => 0.046231162828694
210 => 0.04623586439926
211 => 0.046063892630729
212 => 0.045993525488229
213 => 0.046169978958862
214 => 0.04626569772818
215 => 0.046836315896173
216 => 0.047448611924861
217 => 0.050305930325059
218 => 0.049503606752027
219 => 0.052038789619315
220 => 0.054043790115045
221 => 0.054645002095669
222 => 0.054091915362704
223 => 0.052199835526392
224 => 0.052107001062979
225 => 0.054934567153932
226 => 0.054135650222506
227 => 0.054040621595646
228 => 0.053029677559249
301 => 0.053627270692614
302 => 0.053496568308185
303 => 0.053290248200184
304 => 0.054430414269946
305 => 0.056564703369213
306 => 0.056232054397856
307 => 0.055983747371879
308 => 0.054895738265139
309 => 0.055550962763028
310 => 0.055317649869328
311 => 0.056320110124684
312 => 0.055726274876625
313 => 0.054129597640994
314 => 0.054383873753485
315 => 0.054345440430615
316 => 0.055136395491875
317 => 0.054898970415196
318 => 0.054299079373857
319 => 0.056557408601098
320 => 0.056410765262568
321 => 0.056618671989269
322 => 0.056710198960092
323 => 0.058084804164489
324 => 0.058647935934271
325 => 0.05877577670502
326 => 0.059310708332138
327 => 0.058762467118826
328 => 0.060955822861435
329 => 0.062414276444414
330 => 0.06410834533238
331 => 0.066583835300488
401 => 0.067514642428059
402 => 0.067346500451795
403 => 0.069223388693238
404 => 0.072596115142229
405 => 0.068028224897076
406 => 0.072838224416927
407 => 0.071315434103057
408 => 0.067704925662699
409 => 0.067472451484238
410 => 0.069917529718913
411 => 0.075340477913364
412 => 0.073982090897223
413 => 0.075342699747893
414 => 0.073755477250592
415 => 0.07367665827544
416 => 0.075265611893947
417 => 0.07897828863294
418 => 0.077214535081851
419 => 0.074685761876251
420 => 0.076552968659197
421 => 0.074935421341979
422 => 0.0712906345133
423 => 0.073981052164273
424 => 0.07218204649975
425 => 0.072707091993059
426 => 0.076488334317988
427 => 0.076033365237527
428 => 0.076622137356647
429 => 0.075582969977249
430 => 0.074612223783237
501 => 0.072800253923554
502 => 0.072263818977136
503 => 0.072412070297419
504 => 0.072263745511145
505 => 0.071249965027515
506 => 0.071031039228598
507 => 0.07066615330571
508 => 0.070779246710799
509 => 0.070093154424629
510 => 0.071387952322532
511 => 0.071628278222103
512 => 0.072570524155013
513 => 0.072668351253549
514 => 0.075292492764673
515 => 0.073847159717252
516 => 0.074816813909514
517 => 0.074730078911819
518 => 0.067783176328621
519 => 0.068740398211545
520 => 0.070229535068601
521 => 0.069558680932974
522 => 0.068610250140891
523 => 0.067844341424641
524 => 0.066683911401336
525 => 0.068317194375053
526 => 0.070464787805211
527 => 0.072722817767007
528 => 0.07543569281412
529 => 0.074830210684951
530 => 0.072672102455037
531 => 0.072768913613732
601 => 0.073367362102997
602 => 0.07259231693462
603 => 0.072363740983787
604 => 0.073335959277375
605 => 0.073342654410441
606 => 0.072450871276886
607 => 0.07145981751853
608 => 0.071455664967096
609 => 0.07127931652324
610 => 0.073786849246994
611 => 0.075165738704905
612 => 0.075323826159063
613 => 0.075155098159665
614 => 0.075220034870059
615 => 0.074417689476256
616 => 0.076251613118353
617 => 0.077934602808592
618 => 0.077483525619777
619 => 0.076807296789344
620 => 0.07626864795431
621 => 0.07735663707275
622 => 0.077308190629959
623 => 0.077919903361855
624 => 0.077892152538913
625 => 0.077686456554855
626 => 0.077483532965829
627 => 0.078288102058878
628 => 0.078056399081064
629 => 0.077824336204527
630 => 0.077358898578585
701 => 0.077422159282051
702 => 0.076746047212059
703 => 0.076433246831697
704 => 0.071729479624115
705 => 0.070472479326222
706 => 0.070867957208539
707 => 0.070998158795977
708 => 0.070451110655444
709 => 0.071235437163831
710 => 0.071113200708306
711 => 0.071588751250819
712 => 0.071291647917861
713 => 0.07130384114228
714 => 0.072177558695398
715 => 0.072431202618128
716 => 0.07230219727187
717 => 0.072392548194345
718 => 0.074474647068033
719 => 0.074178639189969
720 => 0.074021390904403
721 => 0.074064949754158
722 => 0.074596970657089
723 => 0.074745907462646
724 => 0.0741148517519
725 => 0.074412461273177
726 => 0.075679644842503
727 => 0.076123087375389
728 => 0.077538343075869
729 => 0.076937117300141
730 => 0.078040693231932
731 => 0.081432709409497
801 => 0.084142486641803
802 => 0.081650463512694
803 => 0.086626624311774
804 => 0.090501279281728
805 => 0.090352563570406
806 => 0.08967692785401
807 => 0.085265736183749
808 => 0.081206491841613
809 => 0.084602222098429
810 => 0.084610878513192
811 => 0.084319182272607
812 => 0.082507481974444
813 => 0.084256139029319
814 => 0.084394941076146
815 => 0.084317248840366
816 => 0.08292822246952
817 => 0.080807435936223
818 => 0.081221832548383
819 => 0.081900622652565
820 => 0.0806155313749
821 => 0.08020486684526
822 => 0.080968370337984
823 => 0.083428537673813
824 => 0.082963457289754
825 => 0.082951312161389
826 => 0.084941123269171
827 => 0.083516847944112
828 => 0.081227059416745
829 => 0.080648857614984
830 => 0.078596630742139
831 => 0.080014111152994
901 => 0.080065123749489
902 => 0.079288784214762
903 => 0.081290055091336
904 => 0.081271613027892
905 => 0.083171521875338
906 => 0.08680343401848
907 => 0.085729298882211
908 => 0.0844801965843
909 => 0.084616008637933
910 => 0.086105531653573
911 => 0.085204932035814
912 => 0.085528793937564
913 => 0.086105041449797
914 => 0.086452705881348
915 => 0.084565985076485
916 => 0.084126100204583
917 => 0.083226250135282
918 => 0.082991496048698
919 => 0.083724405154156
920 => 0.083531309498929
921 => 0.080060836338285
922 => 0.079698152583467
923 => 0.079709275576434
924 => 0.078797290030272
925 => 0.077406293170765
926 => 0.081061749865443
927 => 0.080768165534776
928 => 0.080444071155343
929 => 0.080483770867567
930 => 0.082070480723804
1001 => 0.081150108876418
1002 => 0.083597068278673
1003 => 0.083094046987902
1004 => 0.082578125099095
1005 => 0.082506808978697
1006 => 0.082308223067894
1007 => 0.081627198089187
1008 => 0.080804819504141
1009 => 0.080261813929081
1010 => 0.074037280726146
1011 => 0.075192517882167
1012 => 0.076521512926989
1013 => 0.076980276690848
1014 => 0.07619552952728
1015 => 0.081658184690295
1016 => 0.082656264428032
1017 => 0.079633015799295
1018 => 0.079067489419286
1019 => 0.081695260505618
1020 => 0.080110393308609
1021 => 0.08082405891038
1022 => 0.079281504233566
1023 => 0.082415856246398
1024 => 0.082391977735536
1025 => 0.081172644009993
1026 => 0.082203216525185
1027 => 0.082024129189526
1028 => 0.080647504416475
1029 => 0.082459497707145
1030 => 0.08246039643321
1031 => 0.081286814232977
1101 => 0.079916327153282
1102 => 0.079671316432893
1103 => 0.079486733767639
1104 => 0.08077866288985
1105 => 0.081937002501068
1106 => 0.084092385340802
1107 => 0.084634299797344
1108 => 0.086749427998516
1109 => 0.085489972138441
1110 => 0.086048272608528
1111 => 0.086654386745231
1112 => 0.086944980151476
1113 => 0.086471473790102
1114 => 0.089757138508023
1115 => 0.090034549280382
1116 => 0.090127562712759
1117 => 0.08901965505646
1118 => 0.09000373636427
1119 => 0.089543317309693
1120 => 0.090741199781604
1121 => 0.090929043048531
1122 => 0.090769946484162
1123 => 0.090829570901988
1124 => 0.088025835696218
1125 => 0.087880447234917
1126 => 0.085898065248788
1127 => 0.086705900561163
1128 => 0.085195691165231
1129 => 0.085674594121562
1130 => 0.085885689981557
1201 => 0.08577542548388
1202 => 0.086751574357659
1203 => 0.085921648400907
1204 => 0.08373133734858
1205 => 0.081540429547472
1206 => 0.081512924484704
1207 => 0.080936097133407
1208 => 0.080519156609619
1209 => 0.08059947414626
1210 => 0.080882523621365
1211 => 0.08050270525957
1212 => 0.080583758764339
1213 => 0.081929787000178
1214 => 0.082199723363442
1215 => 0.081282374130127
1216 => 0.077599084585505
1217 => 0.076695196092422
1218 => 0.077344893216362
1219 => 0.077034379836972
1220 => 0.062172756815273
1221 => 0.065664274698651
1222 => 0.063589733333092
1223 => 0.0645457774394
1224 => 0.062428207905047
1225 => 0.063438823078169
1226 => 0.06325219935745
1227 => 0.068866456792397
1228 => 0.068778797884709
1229 => 0.068820755565013
1230 => 0.066818006163943
1231 => 0.070008440340419
]
'min_raw' => 0.040730979775128
'max_raw' => 0.090929043048531
'avg_raw' => 0.065830011411829
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.04073'
'max' => '$0.090929'
'avg' => '$0.06583'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0062806344387632
'max_diff' => 0.013756016746894
'year' => 2035
]
10 => [
'items' => [
101 => 0.071580162940054
102 => 0.071289278916904
103 => 0.071362488158681
104 => 0.070104510831137
105 => 0.068832935535345
106 => 0.067422562838278
107 => 0.070042860982096
108 => 0.069751528558484
109 => 0.070419740320152
110 => 0.072119190969197
111 => 0.072369441532854
112 => 0.0727057808282
113 => 0.07258522713308
114 => 0.075457305240622
115 => 0.075109477631217
116 => 0.07594764209305
117 => 0.074223474203369
118 => 0.072272414576677
119 => 0.072643247226766
120 => 0.072607533060515
121 => 0.072152850733322
122 => 0.071742383858553
123 => 0.071059072160386
124 => 0.073221171484487
125 => 0.073133394200386
126 => 0.074554406400058
127 => 0.07430322869079
128 => 0.072625802474686
129 => 0.072685712080153
130 => 0.073088632968499
131 => 0.074483146763532
201 => 0.074897133403637
202 => 0.074705358297425
203 => 0.075159275749092
204 => 0.075518033595184
205 => 0.075204330211028
206 => 0.079645708588788
207 => 0.077801338634522
208 => 0.078700271717188
209 => 0.078914661960582
210 => 0.078365505860268
211 => 0.078484598154621
212 => 0.078664990529857
213 => 0.079760297707842
214 => 0.082634700672563
215 => 0.083907754178915
216 => 0.087737798464128
217 => 0.083802044806973
218 => 0.083568513472725
219 => 0.084258420104748
220 => 0.08650706155153
221 => 0.088329374239996
222 => 0.088933940490501
223 => 0.089013843900806
224 => 0.090148050377558
225 => 0.090798156378334
226 => 0.090010327878688
227 => 0.089342725714321
228 => 0.086951457627389
229 => 0.087228253419659
301 => 0.089135101943213
302 => 0.091828637795552
303 => 0.0941399717715
304 => 0.093330623171245
305 => 0.099505381680124
306 => 0.10011758376465
307 => 0.10003299723143
308 => 0.10142768468788
309 => 0.09865951411
310 => 0.097476067557179
311 => 0.089487068879864
312 => 0.091731651641168
313 => 0.094994284504447
314 => 0.094562462810747
315 => 0.092193051615007
316 => 0.094138174360638
317 => 0.09349505595132
318 => 0.092987801778884
319 => 0.095311631478873
320 => 0.092756485266073
321 => 0.09496879496639
322 => 0.09213148489232
323 => 0.093334320207476
324 => 0.092651532707995
325 => 0.093093379899448
326 => 0.090510350246637
327 => 0.091904090347793
328 => 0.090452366076237
329 => 0.090451677769912
330 => 0.090419630876155
331 => 0.092127578043711
401 => 0.092183274139528
402 => 0.090921098602139
403 => 0.090739199388314
404 => 0.091411776119063
405 => 0.090624364915481
406 => 0.09099278966173
407 => 0.090635524125724
408 => 0.090555096128406
409 => 0.089914232162078
410 => 0.089638130344462
411 => 0.089746396981416
412 => 0.089376827134213
413 => 0.089154147933348
414 => 0.090375334378349
415 => 0.089722903723306
416 => 0.090275340023291
417 => 0.089645769136438
418 => 0.08746340215163
419 => 0.086208299820554
420 => 0.082086010891777
421 => 0.083255086918295
422 => 0.084030185533373
423 => 0.083774015445713
424 => 0.08432436791867
425 => 0.084358155090732
426 => 0.084179229891594
427 => 0.083972057432731
428 => 0.083871217337111
429 => 0.084622796793117
430 => 0.085059113964329
501 => 0.084107977048878
502 => 0.083885138977407
503 => 0.084846790912637
504 => 0.085433398037599
505 => 0.089764575462248
506 => 0.089443707849111
507 => 0.090249022590995
508 => 0.090158356509621
509 => 0.091002454655815
510 => 0.092382198382349
511 => 0.089576793603892
512 => 0.090063714869834
513 => 0.089944333020079
514 => 0.0912477127521
515 => 0.091251781761354
516 => 0.090470340503362
517 => 0.090893972486756
518 => 0.090657512735361
519 => 0.091084827465584
520 => 0.089439422466514
521 => 0.091443348144887
522 => 0.092579444874407
523 => 0.092595219578599
524 => 0.093133720411769
525 => 0.093680868446136
526 => 0.094731071451553
527 => 0.093651578854314
528 => 0.091709676758368
529 => 0.091849875817389
530 => 0.09071133932905
531 => 0.090730478333113
601 => 0.090628312829477
602 => 0.090934919196548
603 => 0.089506705322114
604 => 0.089841904263771
605 => 0.089372623782529
606 => 0.090062694745716
607 => 0.089320292462144
608 => 0.089944275450536
609 => 0.090213565822963
610 => 0.091207253094624
611 => 0.089173524044177
612 => 0.085026612838964
613 => 0.085898343850738
614 => 0.084608985211331
615 => 0.084728320262343
616 => 0.084969396057419
617 => 0.084187990530485
618 => 0.084337058080106
619 => 0.084331732338261
620 => 0.084285837972243
621 => 0.084082564215374
622 => 0.083787777051427
623 => 0.084962118381887
624 => 0.085161661857475
625 => 0.085605222285499
626 => 0.086924957249389
627 => 0.086793084605003
628 => 0.08700817435934
629 => 0.0865386346333
630 => 0.084750100863561
701 => 0.084847226852154
702 => 0.083636064218069
703 => 0.085574250133881
704 => 0.085115262126213
705 => 0.084819349571775
706 => 0.084738607089686
707 => 0.086061613421286
708 => 0.086457477651284
709 => 0.086210801628609
710 => 0.085704861909415
711 => 0.086676415737919
712 => 0.086936362555862
713 => 0.086994555061929
714 => 0.08871596216907
715 => 0.087090762596771
716 => 0.087481964286918
717 => 0.090534008199997
718 => 0.087766225524105
719 => 0.089232381736444
720 => 0.089160621019359
721 => 0.08991065692557
722 => 0.089099096183142
723 => 0.089109156451191
724 => 0.089775137524074
725 => 0.088839887217529
726 => 0.088608306089174
727 => 0.088288378418967
728 => 0.088986928782545
729 => 0.089405678132794
730 => 0.092780490358294
731 => 0.094960772966103
801 => 0.094866121148012
802 => 0.095731061584587
803 => 0.095341397995963
804 => 0.094083071480237
805 => 0.096230881406011
806 => 0.095551224477312
807 => 0.095607254568731
808 => 0.09560516912593
809 => 0.096057081566874
810 => 0.095736860185298
811 => 0.09510567097216
812 => 0.095524683828208
813 => 0.096769002210834
814 => 0.10063140465085
815 => 0.10279285622631
816 => 0.10050128255201
817 => 0.10208197938715
818 => 0.10113412454594
819 => 0.10096187112505
820 => 0.1019546655501
821 => 0.10294919773036
822 => 0.10288585032996
823 => 0.10216387103688
824 => 0.10175604325377
825 => 0.10484425185983
826 => 0.10711959135452
827 => 0.10696442845505
828 => 0.10764926703163
829 => 0.10965997427371
830 => 0.10984380814493
831 => 0.10982064930253
901 => 0.10936499787164
902 => 0.11134480027481
903 => 0.11299638627083
904 => 0.10925952773043
905 => 0.11068247454355
906 => 0.11132128121244
907 => 0.11225923892776
908 => 0.11384173081349
909 => 0.11556073673663
910 => 0.1158038230221
911 => 0.11563134166981
912 => 0.11449761105414
913 => 0.11637856784724
914 => 0.11748038822278
915 => 0.1181364970417
916 => 0.11980027984039
917 => 0.11132522626495
918 => 0.10532616210676
919 => 0.10438932161092
920 => 0.10629442359864
921 => 0.1067967837999
922 => 0.10659428303267
923 => 0.09984179091158
924 => 0.10435377113736
925 => 0.10920828248223
926 => 0.1093947640336
927 => 0.11182503391589
928 => 0.11261642940969
929 => 0.11457311520769
930 => 0.11445072397827
1001 => 0.11492714583241
1002 => 0.11481762469862
1003 => 0.1184419731106
1004 => 0.12244016762997
1005 => 0.12230172286724
1006 => 0.12172693510059
1007 => 0.12258059294994
1008 => 0.12670715816649
1009 => 0.12632725016821
1010 => 0.12669629842805
1011 => 0.13156175138138
1012 => 0.13788753232333
1013 => 0.13494857197777
1014 => 0.14132527026457
1015 => 0.14533906382186
1016 => 0.15228050474518
1017 => 0.15141140215427
1018 => 0.15411365416707
1019 => 0.14985552712934
1020 => 0.14007800674125
1021 => 0.13853067671299
1022 => 0.1416284706142
1023 => 0.14924409464202
1024 => 0.14138862751186
1025 => 0.14297777828131
1026 => 0.1425201027528
1027 => 0.14249571516888
1028 => 0.14342649005558
1029 => 0.14207635253647
1030 => 0.13657564939852
1031 => 0.1390965892308
1101 => 0.13812313329608
1102 => 0.1392032552316
1103 => 0.14503222784139
1104 => 0.14245510010525
1105 => 0.13974030538408
1106 => 0.1431452604256
1107 => 0.14748093826295
1108 => 0.14720961933586
1109 => 0.14668314721477
1110 => 0.14965084299615
1111 => 0.15455260697371
1112 => 0.15587753407996
1113 => 0.15685556818285
1114 => 0.15699042256162
1115 => 0.15837950647445
1116 => 0.15091005218093
1117 => 0.16276426797394
1118 => 0.16481116357529
1119 => 0.16442643203737
1120 => 0.16670147035174
1121 => 0.1660320963675
1122 => 0.1650622784859
1123 => 0.1686686981287
1124 => 0.16453422903129
1125 => 0.1586658706627
1126 => 0.15544637319872
1127 => 0.15968606716874
1128 => 0.1622751003313
1129 => 0.16398628655831
1130 => 0.16450409047668
1201 => 0.15148988465493
1202 => 0.14447594951795
1203 => 0.14897180152582
1204 => 0.15445705126256
1205 => 0.15087958134169
1206 => 0.15101981138954
1207 => 0.14591927942493
1208 => 0.15490833516467
1209 => 0.15359870535325
1210 => 0.1603930671316
1211 => 0.15877153816504
1212 => 0.16431207643968
1213 => 0.16285306702831
1214 => 0.16890933352279
1215 => 0.1713253421943
1216 => 0.17538219677551
1217 => 0.17836643551981
1218 => 0.18011883758985
1219 => 0.18001362994266
1220 => 0.18695751998742
1221 => 0.18286295062907
1222 => 0.17771920649907
1223 => 0.17762617239606
1224 => 0.18029019036841
1225 => 0.1858732412008
1226 => 0.18732084505155
1227 => 0.18812985811838
1228 => 0.18689082644459
1229 => 0.18244646486652
1230 => 0.18052741207054
1231 => 0.18216250065303
]
'min_raw' => 0.067422562838278
'max_raw' => 0.18812985811838
'avg_raw' => 0.12777621047833
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.067422'
'max' => '$0.188129'
'avg' => '$0.127776'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.02669158306315
'max_diff' => 0.097200815069845
'year' => 2036
]
11 => [
'items' => [
101 => 0.18016292782141
102 => 0.18361475150983
103 => 0.1883548427038
104 => 0.1873760326166
105 => 0.1906480479867
106 => 0.1940342396687
107 => 0.19887664585735
108 => 0.20014263014885
109 => 0.20223525404162
110 => 0.20438925141842
111 => 0.20508105732399
112 => 0.20640192945249
113 => 0.20639496780437
114 => 0.21037550486855
115 => 0.21476616051732
116 => 0.21642353138082
117 => 0.22023456429347
118 => 0.21370830398508
119 => 0.21865854739727
120 => 0.22312379086769
121 => 0.21780014352187
122 => 0.22513755113734
123 => 0.22542244604812
124 => 0.22972402095817
125 => 0.2253635507048
126 => 0.22277431738746
127 => 0.2302493369573
128 => 0.23386626346624
129 => 0.23277681576623
130 => 0.22448606497644
131 => 0.21966049240975
201 => 0.20703103821931
202 => 0.22199117225971
203 => 0.2292778171577
204 => 0.22446719432648
205 => 0.22689339266533
206 => 0.24012994410463
207 => 0.24516956588948
208 => 0.24412135978785
209 => 0.24429848936409
210 => 0.24701777780359
211 => 0.25907660028382
212 => 0.25185067433235
213 => 0.25737462397197
214 => 0.26030450694274
215 => 0.26302594553015
216 => 0.25634295247898
217 => 0.24764847671207
218 => 0.24489457126743
219 => 0.22398887269293
220 => 0.22290064029328
221 => 0.22228978247054
222 => 0.21843841030571
223 => 0.21541228676379
224 => 0.21300580097048
225 => 0.20669046361136
226 => 0.20882170458139
227 => 0.19875637494429
228 => 0.20519581615273
301 => 0.18913130701604
302 => 0.20251030758454
303 => 0.19522872584361
304 => 0.20011811214513
305 => 0.20010105353693
306 => 0.1910981431745
307 => 0.18590545236339
308 => 0.18921443705078
309 => 0.19276193130319
310 => 0.19333750031044
311 => 0.19793691920776
312 => 0.19922051815783
313 => 0.19533115341363
314 => 0.18879840577096
315 => 0.19031581405224
316 => 0.18587470213301
317 => 0.17809182431945
318 => 0.18368162304116
319 => 0.18559022609085
320 => 0.18643317392831
321 => 0.17877960746823
322 => 0.17637469071946
323 => 0.17509433322162
324 => 0.18781042645034
325 => 0.18850704274236
326 => 0.18494305530074
327 => 0.20105261648804
328 => 0.19740652664466
329 => 0.20148010231342
330 => 0.19017812515544
331 => 0.190609875903
401 => 0.1852593387942
402 => 0.18825528205211
403 => 0.18613784592118
404 => 0.18801323944336
405 => 0.18913734258802
406 => 0.19448700172633
407 => 0.20257139209862
408 => 0.19368794104648
409 => 0.1898172942097
410 => 0.19221862173789
411 => 0.19861367338872
412 => 0.20830250399639
413 => 0.20256652127076
414 => 0.20511205300109
415 => 0.20566813844134
416 => 0.20143863713709
417 => 0.20845845174237
418 => 0.21222042741822
419 => 0.21607943603045
420 => 0.21943010508149
421 => 0.21453806312931
422 => 0.21977324926481
423 => 0.21555461337435
424 => 0.21177006086605
425 => 0.21177580047001
426 => 0.20940169539805
427 => 0.20480156766466
428 => 0.203953233532
429 => 0.20836637482289
430 => 0.21190529621214
501 => 0.21219677872805
502 => 0.21415610744549
503 => 0.21531561799778
504 => 0.22668039768836
505 => 0.23125140609431
506 => 0.23684074864833
507 => 0.23901811257121
508 => 0.24557119735091
509 => 0.24027904917578
510 => 0.23913405962892
511 => 0.22323841945107
512 => 0.2258413296397
513 => 0.23000883999518
514 => 0.22330714016184
515 => 0.22755782618743
516 => 0.22839700165072
517 => 0.22307941896594
518 => 0.22591976963707
519 => 0.21837664035984
520 => 0.20273581170387
521 => 0.20847586445583
522 => 0.21270247536214
523 => 0.20667058046147
524 => 0.21748251860435
525 => 0.21116640754499
526 => 0.20916450356597
527 => 0.20135436241351
528 => 0.20504044839757
529 => 0.21002593247067
530 => 0.20694548293823
531 => 0.21333787824988
601 => 0.22239121480073
602 => 0.22884316156239
603 => 0.2293384619206
604 => 0.22519029239972
605 => 0.2318377605302
606 => 0.23188618007832
607 => 0.22438780887144
608 => 0.21979509825833
609 => 0.21875162474389
610 => 0.221358426168
611 => 0.22452356433897
612 => 0.22951410506085
613 => 0.23252978429949
614 => 0.24039307636117
615 => 0.24252065773481
616 => 0.24485822462207
617 => 0.24798193486238
618 => 0.25173274990875
619 => 0.24352618012132
620 => 0.24385224243794
621 => 0.23621039827958
622 => 0.22804399184508
623 => 0.23424127637194
624 => 0.24234340150059
625 => 0.24048476504402
626 => 0.24027563047416
627 => 0.24062733681158
628 => 0.23922598562072
629 => 0.23288772612096
630 => 0.22970469187979
701 => 0.23381161812954
702 => 0.23599426665303
703 => 0.239379364166
704 => 0.23896207944679
705 => 0.24768172710728
706 => 0.25106991851969
707 => 0.25020307416751
708 => 0.25036259439008
709 => 0.25649675310113
710 => 0.26331919917377
711 => 0.26970932022186
712 => 0.27620962581405
713 => 0.26837325371141
714 => 0.26439442723794
715 => 0.26849956053217
716 => 0.26632131902231
717 => 0.27883814084633
718 => 0.27970477843207
719 => 0.2922206951474
720 => 0.3040997904779
721 => 0.29663874353691
722 => 0.30367417474932
723 => 0.31128356721267
724 => 0.3259633198539
725 => 0.32101969560426
726 => 0.3172329569055
727 => 0.31365450713257
728 => 0.32110069304715
729 => 0.33068009227053
730 => 0.3327434031129
731 => 0.33608675492294
801 => 0.33257162930029
802 => 0.33680521093439
803 => 0.3517516144328
804 => 0.34771296427198
805 => 0.3419774317982
806 => 0.35377618189235
807 => 0.35804610368494
808 => 0.38801465100075
809 => 0.42585117992592
810 => 0.41018660850285
811 => 0.400463103528
812 => 0.40274835784171
813 => 0.41656497735785
814 => 0.42100243702885
815 => 0.40893989195899
816 => 0.41320058680265
817 => 0.43667743429346
818 => 0.44927200974483
819 => 0.43216688460471
820 => 0.38497452274223
821 => 0.34146100985275
822 => 0.35300275291006
823 => 0.35169427742935
824 => 0.37691722126186
825 => 0.34761664380132
826 => 0.34810999038023
827 => 0.37385451797963
828 => 0.36698631938905
829 => 0.35586071728472
830 => 0.34154223906044
831 => 0.31507320776393
901 => 0.29162884860107
902 => 0.33760863583291
903 => 0.33562590379865
904 => 0.33275461398863
905 => 0.33914435875483
906 => 0.37017114557882
907 => 0.36945587771862
908 => 0.36490570852489
909 => 0.36835697175498
910 => 0.35525569415387
911 => 0.35863219170223
912 => 0.34145411709
913 => 0.34921932423449
914 => 0.35583684673937
915 => 0.35716541235632
916 => 0.36015873852955
917 => 0.33458109411264
918 => 0.34606470553565
919 => 0.35281025137778
920 => 0.32233362985795
921 => 0.35220782656014
922 => 0.33413584422847
923 => 0.32800194199303
924 => 0.33626043327288
925 => 0.33304209118947
926 => 0.33027514965355
927 => 0.32873114873442
928 => 0.33479527327392
929 => 0.33451237461595
930 => 0.32459028987348
1001 => 0.31164733480284
1002 => 0.31599141536256
1003 => 0.31441317016924
1004 => 0.30869340599097
1005 => 0.31254783644017
1006 => 0.29557487542451
1007 => 0.26637377817483
1008 => 0.28566491747177
1009 => 0.28492222959356
1010 => 0.28454773268715
1011 => 0.29904449070087
1012 => 0.29765096191497
1013 => 0.29512169352307
1014 => 0.30864695399348
1015 => 0.30371005198135
1016 => 0.31892442070231
1017 => 0.32894558794561
1018 => 0.32640389578191
1019 => 0.33582885201073
1020 => 0.31609149420485
1021 => 0.32264745274261
1022 => 0.32399862671108
1023 => 0.30848005437874
1024 => 0.2978789604584
1025 => 0.29717198835523
1026 => 0.27879115241809
1027 => 0.28861004661079
1028 => 0.29725026716691
1029 => 0.29311227202873
1030 => 0.29180230638707
1031 => 0.29849463675343
1101 => 0.29901468813883
1102 => 0.28715746143915
1103 => 0.28962295433955
1104 => 0.2999044695883
1105 => 0.28936388653493
1106 => 0.26888525545669
1107 => 0.26380627181006
1108 => 0.26312864176735
1109 => 0.24935403529842
1110 => 0.26414567378343
1111 => 0.25768872719346
1112 => 0.27808614410508
1113 => 0.2664352489587
1114 => 0.26593300215529
1115 => 0.26517378244835
1116 => 0.25331740963871
1117 => 0.25591320177222
1118 => 0.26454201017431
1119 => 0.26762086622266
1120 => 0.2672997163125
1121 => 0.26449972430571
1122 => 0.26578154630814
1123 => 0.26165235102193
1124 => 0.2601942462246
1125 => 0.25559206640092
1126 => 0.24882813344472
1127 => 0.24976869980789
1128 => 0.23636757874233
1129 => 0.22906593673449
1130 => 0.22704493846081
1201 => 0.22434237510592
1202 => 0.227350200183
1203 => 0.23632961505012
1204 => 0.22549853563124
1205 => 0.20692940967945
1206 => 0.2080454457894
1207 => 0.21055284757437
1208 => 0.2058803209362
1209 => 0.20145816660861
1210 => 0.20530287101573
1211 => 0.19743488755749
1212 => 0.21150365578556
1213 => 0.21112313503226
1214 => 0.21636710182089
1215 => 0.21964626187086
1216 => 0.21208885959637
1217 => 0.21018819336172
1218 => 0.21127089922944
1219 => 0.19337618299317
1220 => 0.21490472173211
1221 => 0.21509090142912
1222 => 0.21349671783038
1223 => 0.2249600000898
1224 => 0.24915110114457
1225 => 0.24004943584298
1226 => 0.23652499593891
1227 => 0.22982503310493
1228 => 0.23875233577678
1229 => 0.2380668582192
1230 => 0.23496686874417
1231 => 0.23309198543712
]
'min_raw' => 0.17509433322162
'max_raw' => 0.44927200974483
'avg_raw' => 0.31218317148323
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.175094'
'max' => '$0.449272'
'avg' => '$0.312183'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.10767177038334
'max_diff' => 0.26114215162645
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0054960110440136
]
1 => [
'year' => 2028
'avg' => 0.0094327504549336
]
2 => [
'year' => 2029
'avg' => 0.025768574155019
]
3 => [
'year' => 2030
'avg' => 0.019880416584885
]
4 => [
'year' => 2031
'avg' => 0.019525032839261
]
5 => [
'year' => 2032
'avg' => 0.034233527321202
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0054960110440136
'min' => '$0.005496'
'max_raw' => 0.034233527321202
'max' => '$0.034233'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.034233527321202
]
1 => [
'year' => 2033
'avg' => 0.088052152462234
]
2 => [
'year' => 2034
'avg' => 0.055811685819001
]
3 => [
'year' => 2035
'avg' => 0.065830011411829
]
4 => [
'year' => 2036
'avg' => 0.12777621047833
]
5 => [
'year' => 2037
'avg' => 0.31218317148323
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.034233527321202
'min' => '$0.034233'
'max_raw' => 0.31218317148323
'max' => '$0.312183'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.31218317148323
]
]
]
]
'prediction_2025_max_price' => '$0.009397'
'last_price' => 0.00911175
'sma_50day_nextmonth' => '$0.009766'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'disminuir'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.008752'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.009099'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0099017'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.012023'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.015025'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.046314'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.008984'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.009174'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.009911'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.011724'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.021786'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.046343'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.023593'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.009399'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.010614'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.019067'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.034049'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.01430065'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.00715'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.003575'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '27.95'
'rsi_14_action' => 'BUY'
'stoch_rsi_14' => 19.26
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.010188'
'vwma_10_action' => 'SELL'
'hma_9' => '0.008463'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 14.89
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -90.87
'cci_20_action' => 'NEUTRAL'
'adx_14' => 41.95
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.003984'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -85.11
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 28.07
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.074948'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 18
'buy_signals' => 12
'sell_pct' => 60
'buy_pct' => 40
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767689384
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de FLO para 2026
La previsión del precio de FLO para 2026 sugiere que el precio medio podría oscilar entre $0.003148 en el extremo inferior y $0.009397 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, FLO podría potencialmente ganar 3.13% para 2026 si FLO alcanza el objetivo de precio previsto.
Predicción de precio de FLO 2027-2032
La predicción del precio de FLO para 2027-2032 está actualmente dentro de un rango de precios de $0.005496 en el extremo inferior y $0.034233 en el extremo superior. Considerando la volatilidad de precios en el mercado, si FLO alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de FLO | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.00303 | $0.005496 | $0.007961 |
| 2028 | $0.005469 | $0.009432 | $0.013396 |
| 2029 | $0.012014 | $0.025768 | $0.039522 |
| 2030 | $0.010217 | $0.01988 | $0.029542 |
| 2031 | $0.01208 | $0.019525 | $0.026969 |
| 2032 | $0.01844 | $0.034233 | $0.050026 |
Predicción de precio de FLO 2032-2037
La predicción de precio de FLO para 2032-2037 se estima actualmente entre $0.034233 en el extremo inferior y $0.312183 en el extremo superior. Comparado con el precio actual, FLO podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de FLO | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.01844 | $0.034233 | $0.050026 |
| 2033 | $0.042851 | $0.088052 | $0.133253 |
| 2034 | $0.03445 | $0.055811 | $0.077173 |
| 2035 | $0.04073 | $0.06583 | $0.090929 |
| 2036 | $0.067422 | $0.127776 | $0.188129 |
| 2037 | $0.175094 | $0.312183 | $0.449272 |
FLO Histograma de precios potenciales
Pronóstico de precio de FLO basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para FLO es Bajista, con 12 indicadores técnicos mostrando señales alcistas y 18 indicando señales bajistas. La predicción de precio de FLO se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de FLO
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de FLO disminuir durante el próximo mes, alcanzando — para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para FLO alcance $0.009766 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 27.95, lo que sugiere que el mercado de FLO está en un estado BUY.
Promedios Móviles y Osciladores Populares de FLO para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.008752 | BUY |
| SMA 5 | $0.009099 | BUY |
| SMA 10 | $0.0099017 | SELL |
| SMA 21 | $0.012023 | SELL |
| SMA 50 | $0.015025 | SELL |
| SMA 100 | $0.046314 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.008984 | BUY |
| EMA 5 | $0.009174 | SELL |
| EMA 10 | $0.009911 | SELL |
| EMA 21 | $0.011724 | SELL |
| EMA 50 | $0.021786 | SELL |
| EMA 100 | $0.046343 | SELL |
| EMA 200 | $0.023593 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.034049 | SELL |
| EMA 50 | $0.01430065 | SELL |
| EMA 100 | $0.00715 | BUY |
| EMA 200 | $0.003575 | BUY |
Osciladores de FLO
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 27.95 | BUY |
| Stoch RSI (14) | 19.26 | BUY |
| Estocástico Rápido (14) | 14.89 | BUY |
| Índice de Canal de Materias Primas (20) | -90.87 | NEUTRAL |
| Índice Direccional Medio (14) | 41.95 | SELL |
| Oscilador Asombroso (5, 34) | -0.003984 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -85.11 | BUY |
| Oscilador Ultimate (7, 14, 28) | 28.07 | BUY |
| VWMA (10) | 0.010188 | SELL |
| Promedio Móvil de Hull (9) | 0.008463 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.074948 | SELL |
Predicción de precios de FLO basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de FLO
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de FLO por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.0128035 | $0.017991 | $0.02528 | $0.035523 | $0.049916 | $0.07014 |
| Amazon.com acción | $0.019012 | $0.03967 | $0.082774 | $0.172712 | $0.360375 | $0.751945 |
| Apple acción | $0.012924 | $0.018332 | $0.0260027 | $0.036882 | $0.052315 | $0.0742057 |
| Netflix acción | $0.014376 | $0.022684 | $0.035792 | $0.056475 | $0.0891089 | $0.140599 |
| Google acción | $0.011799 | $0.01528 | $0.019788 | $0.025625 | $0.033185 | $0.042974 |
| Tesla acción | $0.020655 | $0.046824 | $0.106148 | $0.24063 | $0.54549 | $1.23 |
| Kodak acción | $0.006832 | $0.005123 | $0.003842 | $0.002881 | $0.00216 | $0.00162 |
| Nokia acción | $0.006036 | $0.003998 | $0.002648 | $0.001754 | $0.001162 | $0.00077 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de FLO
Podría preguntarse cosas como: "¿Debo invertir en FLO ahora?", "¿Debería comprar FLO hoy?", "¿Será FLO una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de FLO/Flo regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como FLO, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de FLO a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de FLO es de $0.009111 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de FLO basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si FLO ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.009348 | $0.009591 | $0.00984 | $0.010096 |
| Si FLO ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.009585 | $0.010083 | $0.0106079 | $0.011159 |
| Si FLO ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.010295 | $0.011634 | $0.013146 | $0.014854 |
| Si FLO ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.01148 | $0.014464 | $0.018223 | $0.02296 |
| Si FLO ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.013848 | $0.021048 | $0.03199 | $0.04862 |
| Si FLO ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.020953 | $0.048186 | $0.110813 | $0.254833 |
| Si FLO ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.032796 | $0.118043 | $0.424877 | $1.52 |
Cuadro de preguntas
¿Es FLO una buena inversión?
La decisión de adquirir FLO depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de FLO ha experimentado una caída de 0% durante las últimas 24 horas, y FLO ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en FLO dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede FLO subir?
Parece que el valor medio de FLO podría potencialmente aumentar hasta $0.009397 para el final de este año. Mirando las perspectivas de FLO en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.029542. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de FLO la próxima semana?
Basado en nuestro nuevo pronóstico experimental de FLO, el precio de FLO aumentará en un 0.86% durante la próxima semana y alcanzará $0.009189 para el 13 de enero de 2026.
¿Cuál será el precio de FLO el próximo mes?
Basado en nuestro nuevo pronóstico experimental de FLO, el precio de FLO disminuirá en un -11.62% durante el próximo mes y alcanzará $0.0080531 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de FLO este año en 2026?
Según nuestra predicción más reciente sobre el valor de FLO en 2026, se anticipa que FLO fluctúe dentro del rango de $0.003148 y $0.009397. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de FLO no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará FLO en 5 años?
El futuro de FLO parece estar en una tendencia alcista, con un precio máximo de $0.029542 proyectada después de un período de cinco años. Basado en el pronóstico de FLO para 2030, el valor de FLO podría potencialmente alcanzar su punto más alto de aproximadamente $0.029542, mientras que su punto más bajo se anticipa que esté alrededor de $0.010217.
¿Cuánto será FLO en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de FLO, se espera que el valor de FLO en 2026 crezca en un 3.13% hasta $0.009397 si ocurre lo mejor. El precio estará entre $0.009397 y $0.003148 durante 2026.
¿Cuánto será FLO en 2027?
Según nuestra última simulación experimental para la predicción de precios de FLO, el valor de FLO podría disminuir en un -12.62% hasta $0.007961 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.007961 y $0.00303 a lo largo del año.
¿Cuánto será FLO en 2028?
Nuestro nuevo modelo experimental de predicción de precios de FLO sugiere que el valor de FLO en 2028 podría aumentar en un 47.02% , alcanzando $0.013396 en el mejor escenario. Se espera que el precio oscile entre $0.013396 y $0.005469 durante el año.
¿Cuánto será FLO en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de FLO podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.039522 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.039522 y $0.012014.
¿Cuánto será FLO en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de FLO, se espera que el valor de FLO en 2030 aumente en un 224.23% , alcanzando $0.029542 en el mejor escenario. Se pronostica que el precio oscile entre $0.029542 y $0.010217 durante el transcurso de 2030.
¿Cuánto será FLO en 2031?
Nuestra simulación experimental indica que el precio de FLO podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.026969 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.026969 y $0.01208 durante el año.
¿Cuánto será FLO en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de FLO, FLO podría experimentar un 449.04% aumento en valor, alcanzando $0.050026 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.050026 y $0.01844 a lo largo del año.
¿Cuánto será FLO en 2033?
Según nuestra predicción experimental de precios de FLO, se anticipa que el valor de FLO aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.133253. A lo largo del año, el precio de FLO podría oscilar entre $0.133253 y $0.042851.
¿Cuánto será FLO en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de FLO sugieren que FLO podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.077173 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.077173 y $0.03445.
¿Cuánto será FLO en 2035?
Basado en nuestra predicción experimental para el precio de FLO, FLO podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.090929 en 2035. El rango de precios esperado para el año está entre $0.090929 y $0.04073.
¿Cuánto será FLO en 2036?
Nuestra reciente simulación de predicción de precios de FLO sugiere que el valor de FLO podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.188129 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.188129 y $0.067422.
¿Cuánto será FLO en 2037?
Según la simulación experimental, el valor de FLO podría aumentar en un 4830.69% en 2037, con un máximo de $0.449272 bajo condiciones favorables. Se espera que el precio caiga entre $0.449272 y $0.175094 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Veloce
Predicción de precios de Orbofi AI
Predicción de precios de Rain Coin
Predicción de precios de Lynex
Predicción de precios de COS
Predicción de precios de ALVA
Predicción de precios de Panther Protocol
Predicción de precios de GemHUBPredicción de precios de DUST Protocol
Predicción de precios de RedFOX Labs
Predicción de precios de Matr1x Fire
Predicción de precios de Shyft Network
Predicción de precios de Celo Euro
Predicción de precios de Blockchain BrawlersPredicción de precios de Wicrypt
Predicción de precios de AI Network
Predicción de precios de Permission Coin
Predicción de precios de BlueMove
Predicción de precios de Efinity
Predicción de precios de AshSwap
Predicción de precios de ScPrime
Predicción de precios de analoSPredicción de precios de Cypherium
Predicción de precios de Fuel Token
Predicción de precios de Etherisc
¿Cómo leer y predecir los movimientos de precio de FLO?
Los traders de FLO utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de FLO
Las medias móviles son herramientas populares para la predicción de precios de FLO. Una media móvil simple (SMA) calcula el precio de cierre promedio de FLO durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de FLO por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de FLO.
¿Cómo leer gráficos de FLO y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de FLO en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de FLO dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de FLO?
La acción del precio de FLO está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de FLO. La capitalización de mercado de FLO puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de FLO, grandes poseedores de FLO, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de FLO.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


