Predicción del precio de XPR Network - Pronóstico de XPR
Predicción de precio de XPR Network hasta $0.003843 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.001287 | $0.003843 |
| 2027 | $0.001239 | $0.003256 |
| 2028 | $0.002237 | $0.005479 |
| 2029 | $0.004914 | $0.016165 |
| 2030 | $0.004179 | $0.012083 |
| 2031 | $0.004941 | $0.011031 |
| 2032 | $0.007542 | $0.020462 |
| 2033 | $0.017527 | $0.0545036 |
| 2034 | $0.014091 | $0.031565 |
| 2035 | $0.016659 | $0.037192 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en XPR Network hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.79, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Proton para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'XPR Network'
'name_with_ticker' => 'XPR Network <small>XPR</small>'
'name_lang' => 'Proton'
'name_lang_with_ticker' => 'Proton <small>XPR</small>'
'name_with_lang' => 'Proton/XPR Network'
'name_with_lang_with_ticker' => 'Proton/XPR Network <small>XPR</small>'
'image' => '/uploads/coins/proton.jpg?1717083242'
'price_for_sd' => 0.003726
'ticker' => 'XPR'
'marketcap' => '$105.56M'
'low24h' => '$0.003041'
'high24h' => '$0.00376'
'volume24h' => '$12.95M'
'current_supply' => '28.33B'
'max_supply' => '31.28B'
'algo' => 'Delegated Proof-of-Stake'
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.003726'
'change_24h_pct' => '21.9789%'
'ath_price' => '$0.1'
'ath_days' => 2080
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '27 abr. 2020'
'ath_pct' => '-96.29%'
'fdv' => '$116.54M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.183762'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.003758'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003293'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001287'
'current_year_max_price_prediction' => '$0.003843'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.004179'
'grand_prediction_max_price' => '$0.012083'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0037975431736401
107 => 0.0038117218213423
108 => 0.003843667038595
109 => 0.0035706986547886
110 => 0.003693253445187
111 => 0.0037652429027151
112 => 0.0034399919146042
113 => 0.0037588137364418
114 => 0.0035659468825264
115 => 0.0035004849755446
116 => 0.0035886208093452
117 => 0.0035542741891982
118 => 0.003524744982097
119 => 0.0035082671771584
120 => 0.0035729844063045
121 => 0.003569965270211
122 => 0.003464075322255
123 => 0.0033259462017729
124 => 0.0033723068685405
125 => 0.0033554636036703
126 => 0.0032944214389561
127 => 0.0033355564877144
128 => 0.0031544185509547
129 => 0.0028427801454903
130 => 0.0030486580218826
131 => 0.0030407319475935
201 => 0.0030367352615181
202 => 0.0031914467955804
203 => 0.0031765748513827
204 => 0.0031495821270373
205 => 0.0032939256964056
206 => 0.0032412383518912
207 => 0.0034036083329849
208 => 0.0035105557039652
209 => 0.0034834303912995
210 => 0.003584014910628
211 => 0.0033733749246675
212 => 0.0034433410785941
213 => 0.0034577610059495
214 => 0.0032921445191654
215 => 0.0031790080853779
216 => 0.003171463175094
217 => 0.0029753001900673
218 => 0.0030800888732963
219 => 0.0031722985780874
220 => 0.0031281372852546
221 => 0.0031141571392248
222 => 0.0031855786733672
223 => 0.0031911287382541
224 => 0.0030645866706625
225 => 0.0030908987735809
226 => 0.0032006246167739
227 => 0.00308813396386
228 => 0.0028695830004921
301 => 0.0028153793398734
302 => 0.0028081475723752
303 => 0.0026611429458307
304 => 0.0028190014876608
305 => 0.0027500920038061
306 => 0.0029677762376408
307 => 0.0028434361707384
308 => 0.0028380761189696
309 => 0.0028299736145724
310 => 0.0027034406598209
311 => 0.0027311433353227
312 => 0.0028232312479273
313 => 0.0028560892525892
314 => 0.0028526618935052
315 => 0.0028227799669171
316 => 0.0028364597598889
317 => 0.0027923923803709
318 => 0.0027768312714799
319 => 0.0027277161313996
320 => 0.0026555304438855
321 => 0.0026655683064749
322 => 0.0025225495710967
323 => 0.0024446253734838
324 => 0.002423056982609
325 => 0.0023942148289261
326 => 0.0024263147806135
327 => 0.0025221444169887
328 => 0.0024065535441288
329 => 0.0022083811003674
330 => 0.0022202916019069
331 => 0.0022470509626064
401 => 0.0021971850709737
402 => 0.0021499911894704
403 => 0.0021910224404769
404 => 0.002107054163594
405 => 0.0022571981277045
406 => 0.0022531371542489
407 => 0.0023091015392289
408 => 0.0023440972176616
409 => 0.0022634435088596
410 => 0.0022431593192067
411 => 0.002254714115498
412 => 0.0020637390714295
413 => 0.0022934948037985
414 => 0.0022954817409129
415 => 0.0022784683790354
416 => 0.0024008062136095
417 => 0.0026589772026883
418 => 0.0025618428916929
419 => 0.0025242295505754
420 => 0.0024527265616158
421 => 0.002548000048977
422 => 0.0025406845316456
423 => 0.0025076009879454
424 => 0.0024875919574886
425 => 0.0025244592096156
426 => 0.0024830236969582
427 => 0.0024755807403132
428 => 0.002430484521061
429 => 0.0024143872225353
430 => 0.0024024694235587
501 => 0.0023893490979043
502 => 0.0024182892669165
503 => 0.0023527070365384
504 => 0.0022736212958077
505 => 0.0022670461721856
506 => 0.0022852006665972
507 => 0.0022771686542632
508 => 0.0022670077180006
509 => 0.0022476077235091
510 => 0.0022418521595587
511 => 0.0022605549501947
512 => 0.0022394405900071
513 => 0.0022705959786226
514 => 0.0022621234368255
515 => 0.0022147965070764
516 => 0.0021558096299355
517 => 0.0021552845229998
518 => 0.0021425758970776
519 => 0.0021263895512111
520 => 0.0021218868800844
521 => 0.0021875669029626
522 => 0.0023235225846827
523 => 0.0022968312312173
524 => 0.002316118469536
525 => 0.0024109925927826
526 => 0.0024411502235982
527 => 0.0024197450515679
528 => 0.0023904443318793
529 => 0.0023917334148419
530 => 0.0024918628439489
531 => 0.0024981077936211
601 => 0.0025138867667455
602 => 0.0025341672063476
603 => 0.0024231988981272
604 => 0.002386506817504
605 => 0.0023691200741055
606 => 0.0023155756339548
607 => 0.002373318722104
608 => 0.002339674297445
609 => 0.0023442140797887
610 => 0.0023412575405818
611 => 0.0023428720109091
612 => 0.0022571561594066
613 => 0.0022883865106016
614 => 0.0022364599945137
615 => 0.002166936218497
616 => 0.0021667031504217
617 => 0.0021837189961075
618 => 0.0021735973052634
619 => 0.0021463600954546
620 => 0.002150229012552
621 => 0.0021163332277134
622 => 0.0021543445745344
623 => 0.00215543460395
624 => 0.0021407981649319
625 => 0.0021993598892647
626 => 0.0022233526755056
627 => 0.002213718657801
628 => 0.0022226767271411
629 => 0.0022979403774581
630 => 0.002310211636443
701 => 0.0023156617190903
702 => 0.0023083593303405
703 => 0.0022240524085055
704 => 0.0022277917789896
705 => 0.0022003547594886
706 => 0.0021771733692521
707 => 0.0021781005032912
708 => 0.0021900187512425
709 => 0.002242066439042
710 => 0.0023515977296372
711 => 0.002355754362049
712 => 0.0023607923217896
713 => 0.002340300407649
714 => 0.002334119850263
715 => 0.0023422736007923
716 => 0.0023834077946582
717 => 0.002489216109106
718 => 0.0024518163840805
719 => 0.0024214098254733
720 => 0.0024480845749211
721 => 0.0024439782063272
722 => 0.0024093163228914
723 => 0.0024083434792684
724 => 0.0023418162428806
725 => 0.0023172226383399
726 => 0.0022966703815864
727 => 0.0022742278537417
728 => 0.002260923170955
729 => 0.0022813652105855
730 => 0.0022860405469121
731 => 0.0022413436699943
801 => 0.0022352516508311
802 => 0.0022717520853712
803 => 0.0022556896050035
804 => 0.0022722102643921
805 => 0.0022760431990818
806 => 0.0022754260083168
807 => 0.0022586549340487
808 => 0.0022693443166666
809 => 0.0022440607401171
810 => 0.0022165686480899
811 => 0.0021990304061944
812 => 0.0021837259640304
813 => 0.0021922177580424
814 => 0.0021619460629299
815 => 0.0021522615384146
816 => 0.0022657229943544
817 => 0.0023495381917733
818 => 0.0023483194856083
819 => 0.0023409009252551
820 => 0.0023298784493702
821 => 0.0023826014318925
822 => 0.002364233799011
823 => 0.0023775977865994
824 => 0.0023809994823254
825 => 0.0023912953907629
826 => 0.002394975293066
827 => 0.0023838520724494
828 => 0.002346521185473
829 => 0.0022534961644419
830 => 0.0022101927660357
831 => 0.0021959019232865
901 => 0.0021964213682783
902 => 0.002182092756501
903 => 0.0021863131748328
904 => 0.0021806250672393
905 => 0.0021698531675584
906 => 0.0021915526235915
907 => 0.0021940532837549
908 => 0.0021889883714276
909 => 0.0021901813416331
910 => 0.0021482460308155
911 => 0.0021514342814182
912 => 0.0021336816969187
913 => 0.0021303533013357
914 => 0.0020854763136154
915 => 0.0020059702248455
916 => 0.0020500243158668
917 => 0.0019968131688557
918 => 0.0019766613012021
919 => 0.0020720571084157
920 => 0.0020624820152392
921 => 0.0020460936179142
922 => 0.0020218517626291
923 => 0.0020128602226942
924 => 0.0019582304724258
925 => 0.0019550026553415
926 => 0.0019820786347019
927 => 0.0019695840018547
928 => 0.0019520368052496
929 => 0.001888482637877
930 => 0.0018170267116884
1001 => 0.0018191835169441
1002 => 0.0018419123175799
1003 => 0.0019079993708249
1004 => 0.0018821780158045
1005 => 0.0018634443264712
1006 => 0.0018599360695917
1007 => 0.0019038492494717
1008 => 0.0019659955990975
1009 => 0.0019951532758958
1010 => 0.0019662589037205
1011 => 0.0019330666047491
1012 => 0.0019350868661892
1013 => 0.001948526760457
1014 => 0.0019499391033147
1015 => 0.0019283343289078
1016 => 0.0019344159463526
1017 => 0.0019251774133391
1018 => 0.0018684805532883
1019 => 0.0018674550868776
1020 => 0.0018535407630608
1021 => 0.0018531194428655
1022 => 0.0018294477069623
1023 => 0.0018261358674745
1024 => 0.001779134199067
1025 => 0.001810070839547
1026 => 0.0017893201653595
1027 => 0.0017580440047699
1028 => 0.0017526519828955
1029 => 0.0017524898922069
1030 => 0.001784603515911
1031 => 0.0018096955731565
1101 => 0.0017896811322212
1102 => 0.0017851242319838
1103 => 0.0018337800046955
1104 => 0.0018275881141107
1105 => 0.0018222259767977
1106 => 0.0019604310751157
1107 => 0.0018510309555187
1108 => 0.0018033262590339
1109 => 0.0017442826382578
1110 => 0.0017635075389063
1111 => 0.0017675585079454
1112 => 0.0016255692433915
1113 => 0.0015679642164456
1114 => 0.0015481963419974
1115 => 0.0015368196507758
1116 => 0.001542004151825
1117 => 0.0014901528711779
1118 => 0.0015249977893138
1119 => 0.0014800989631531
1120 => 0.0014725715288338
1121 => 0.0015528561919064
1122 => 0.0015640273337567
1123 => 0.0015163677720214
1124 => 0.0015469729260377
1125 => 0.0015358750717479
1126 => 0.0014808686246601
1127 => 0.0014787677829814
1128 => 0.0014511674814029
1129 => 0.001407978353904
1130 => 0.001388239763718
1201 => 0.0013779597345708
1202 => 0.0013822014749507
1203 => 0.0013800567212152
1204 => 0.0013660607523239
1205 => 0.001380858953769
1206 => 0.0013430556641159
1207 => 0.0013280020895743
1208 => 0.0013212027391941
1209 => 0.0012876501437508
1210 => 0.001341047244008
1211 => 0.0013515671454376
1212 => 0.0013621077743227
1213 => 0.0014538567523753
1214 => 0.0014492732327117
1215 => 0.0014907060182059
1216 => 0.0014890960163516
1217 => 0.001477278714762
1218 => 0.0014274234632074
1219 => 0.0014472948778926
1220 => 0.0013861337521949
1221 => 0.0014319598261199
1222 => 0.0014110467197232
1223 => 0.0014248890838105
1224 => 0.0013999992650658
1225 => 0.0014137743184345
1226 => 0.0013540618043291
1227 => 0.0012983030988352
1228 => 0.0013207420296241
1229 => 0.0013451357135945
1230 => 0.0013980274358375
1231 => 0.0013665255624168
]
'min_raw' => 0.0012876501437508
'max_raw' => 0.003843667038595
'avg_raw' => 0.0025656585911729
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001287'
'max' => '$0.003843'
'avg' => '$0.002565'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0024392698562492
'max_diff' => 0.00011674703859504
'year' => 2026
]
1 => [
'items' => [
101 => 0.0013778548273166
102 => 0.0013399036863983
103 => 0.0012615996424764
104 => 0.0012620428348612
105 => 0.0012499974636502
106 => 0.0012395885042708
107 => 0.001370143931528
108 => 0.0013539073003727
109 => 0.0013280363536244
110 => 0.0013626656439175
111 => 0.0013718221779118
112 => 0.001372082851562
113 => 0.0013973474878485
114 => 0.0014108312287635
115 => 0.0014132077965417
116 => 0.001452962247617
117 => 0.0014662874152436
118 => 0.0015211718948492
119 => 0.0014096872275525
120 => 0.0014073912741941
121 => 0.0013631529490478
122 => 0.0013350963038597
123 => 0.0013650740115473
124 => 0.0013916301681933
125 => 0.0013639781228597
126 => 0.0013675888962138
127 => 0.0013304682846086
128 => 0.0013437371565703
129 => 0.0013551660966139
130 => 0.0013488557076839
131 => 0.0013394087500294
201 => 0.0013894528661907
202 => 0.0013866291810324
203 => 0.0014332314125112
204 => 0.0014695611845064
205 => 0.0015346706306453
206 => 0.0014667255293671
207 => 0.0014642493398192
208 => 0.0014884544898432
209 => 0.0014662837095612
210 => 0.0014802948773901
211 => 0.0015324132148963
212 => 0.0015335143932408
213 => 0.0015150682371822
214 => 0.0015139457869096
215 => 0.0015174885729595
216 => 0.0015382387815106
217 => 0.0015309880210534
218 => 0.0015393787846213
219 => 0.0015498715629469
220 => 0.0015932741429476
221 => 0.0016037383580471
222 => 0.0015783157404289
223 => 0.0015806111181549
224 => 0.0015711023612992
225 => 0.0015619170213211
226 => 0.0015825643241808
227 => 0.0016202976759808
228 => 0.0016200629387576
301 => 0.0016288163429436
302 => 0.0016342696412344
303 => 0.001610860092912
304 => 0.0015956213377471
305 => 0.0016014648461445
306 => 0.001610808743327
307 => 0.0015984347462221
308 => 0.0015220567038975
309 => 0.0015452249228906
310 => 0.0015413685983821
311 => 0.0015358767233369
312 => 0.001559172546689
313 => 0.0015569256076962
314 => 0.0014896210613503
315 => 0.0014939296800383
316 => 0.0014898830827233
317 => 0.0015029584665039
318 => 0.0014655775959273
319 => 0.0014770756999527
320 => 0.0014842872030094
321 => 0.0014885348337111
322 => 0.0015038801884335
323 => 0.0015020795881722
324 => 0.0015037682605931
325 => 0.0015265213706229
326 => 0.0016415987932294
327 => 0.0016478622034378
328 => 0.0016170188808368
329 => 0.0016293401798582
330 => 0.0016056859801089
331 => 0.00162156520287
401 => 0.0016324293637946
402 => 0.0015833363096342
403 => 0.0015804293375782
404 => 0.0015566775085322
405 => 0.0015694403960891
406 => 0.0015491337243019
407 => 0.0015541162712613
408 => 0.0015401846355923
409 => 0.0015652588060355
410 => 0.0015932956247231
411 => 0.0016003788323312
412 => 0.0015817459626271
413 => 0.0015682545369953
414 => 0.0015445680379379
415 => 0.0015839592137585
416 => 0.0015954783939927
417 => 0.0015838987084086
418 => 0.0015812154422376
419 => 0.0015761306576921
420 => 0.0015822942033162
421 => 0.0015954156580633
422 => 0.0015892278223198
423 => 0.001593314996844
424 => 0.0015777389022338
425 => 0.0016108678424466
426 => 0.0016634845724182
427 => 0.0016636537438087
428 => 0.0016574658747105
429 => 0.001654933931995
430 => 0.0016612830612011
501 => 0.0016647272033405
502 => 0.0016852591229618
503 => 0.0017072906907432
504 => 0.001810102404453
505 => 0.001781233286651
506 => 0.0018724539553506
507 => 0.0019445976607706
508 => 0.0019662304035642
509 => 0.0019463292980933
510 => 0.001878248691314
511 => 0.0018749083319498
512 => 0.0019766495013688
513 => 0.0019479029609671
514 => 0.0019444836514571
515 => 0.0019081079752848
516 => 0.0019296105051178
517 => 0.0019249075864202
518 => 0.0019174837991815
519 => 0.0019585091282235
520 => 0.0020353048818338
521 => 0.0020233355434477
522 => 0.002014400987584
523 => 0.0019752523645996
524 => 0.0019988285797977
525 => 0.0019904335411383
526 => 0.0020265039548422
527 => 0.0020051366408215
528 => 0.0019476851776506
529 => 0.001956834512523
530 => 0.001955451608963
531 => 0.0019839116662356
601 => 0.0019753686634644
602 => 0.0019537834505616
603 => 0.0020350424022968
604 => 0.0020297658979571
605 => 0.0020372467747339
606 => 0.0020405400880449
607 => 0.0020900009800227
608 => 0.002110263524894
609 => 0.0021148634773256
610 => 0.0021341113277919
611 => 0.0021143845732716
612 => 0.0021933056562903
613 => 0.0022457835713249
614 => 0.0023067393701264
615 => 0.0023958121755495
616 => 0.0024293043743581
617 => 0.0024232543084203
618 => 0.0024907882929183
619 => 0.0026121453618649
620 => 0.0024477840417858
621 => 0.0026208569109295
622 => 0.002566064038781
623 => 0.0024361511245985
624 => 0.0024277862644978
625 => 0.0025157647983021
626 => 0.00271089271866
627 => 0.0026620153877329
628 => 0.0027109726644636
629 => 0.0026538614006384
630 => 0.002651025345018
701 => 0.0027081988978544
702 => 0.0028417880204247
703 => 0.0027783248358049
704 => 0.0026873347988412
705 => 0.0027545204261734
706 => 0.0026963180180419
707 => 0.0025651717026934
708 => 0.0026619780121591
709 => 0.0025972463899044
710 => 0.0026161385186006
711 => 0.002752194760478
712 => 0.0027358241134952
713 => 0.0027570092465721
714 => 0.0027196180412028
715 => 0.002684688759336
716 => 0.0026194906608491
717 => 0.0026001887181145
718 => 0.0026055230806752
719 => 0.0026001860746694
720 => 0.0025637083377674
721 => 0.0025558309739565
722 => 0.0025427016891565
723 => 0.0025467710035128
724 => 0.0025220841069809
725 => 0.0025686733813096
726 => 0.0025773207611683
727 => 0.0026112245498017
728 => 0.0026147445536091
729 => 0.0027091661223629
730 => 0.0026571603089833
731 => 0.0026920502985642
801 => 0.0026889294094988
802 => 0.0024389667313793
803 => 0.0024734093829848
804 => 0.0025269913401834
805 => 0.002502852741094
806 => 0.002468726409544
807 => 0.0024411675670791
808 => 0.0023994131027086
809 => 0.0024581817094867
810 => 0.0025354561780552
811 => 0.0026167043616543
812 => 0.0027143187306567
813 => 0.0026925323398519
814 => 0.002614879528925
815 => 0.0026183629772977
816 => 0.0026398962844518
817 => 0.00261200869518
818 => 0.0026037841006734
819 => 0.0026387663514638
820 => 0.0026390072549991
821 => 0.0026069192132142
822 => 0.0025712592268199
823 => 0.0025711098101749
824 => 0.0025647644600306
825 => 0.0026549902243328
826 => 0.0027046052718453
827 => 0.002710293557084
828 => 0.0027042224049269
829 => 0.0027065589504368
830 => 0.0026776890474822
831 => 0.0027436770845325
901 => 0.0028042342328704
902 => 0.0027880036235011
903 => 0.0027636716327394
904 => 0.0027442900301103
905 => 0.0027834379338779
906 => 0.0027816947393476
907 => 0.0028037053190086
908 => 0.0028027067919759
909 => 0.0027953054618957
910 => 0.0027880038878259
911 => 0.0028169538036801
912 => 0.0028086166928355
913 => 0.002800266632155
914 => 0.00278351930713
915 => 0.0027857955467445
916 => 0.002761467757244
917 => 0.0027502126086572
918 => 0.0025809621787891
919 => 0.002535732933511
920 => 0.0025499629748017
921 => 0.0025546478738774
922 => 0.0025349640483695
923 => 0.002563185597788
924 => 0.0025587872992051
925 => 0.0025758985060723
926 => 0.0025652081669039
927 => 0.0025656469021523
928 => 0.002597084910226
929 => 0.0026062114977166
930 => 0.0026015696416583
1001 => 0.002604820638528
1002 => 0.0026797384892311
1003 => 0.0026690875665992
1004 => 0.0026634294762317
1005 => 0.0026649968059315
1006 => 0.002684139923043
1007 => 0.0026894989506588
1008 => 0.0026667923740786
1009 => 0.002677500926859
1010 => 0.0027230965854801
1011 => 0.0027390524855067
1012 => 0.0027899760591252
1013 => 0.0027683428199578
1014 => 0.0028080515667143
1015 => 0.0029301027165347
1016 => 0.0030276056203083
1017 => 0.0029379379205201
1018 => 0.0031169895863805
1019 => 0.0032564069916888
1020 => 0.0032510559194613
1021 => 0.0032267452700631
1022 => 0.0030680222607231
1023 => 0.0029219629811016
1024 => 0.0030441477705096
1025 => 0.0030444592446653
1026 => 0.0030339634628948
1027 => 0.0029687750637406
1028 => 0.0030316950479083
1029 => 0.0030366894077597
1030 => 0.0030338938943504
1031 => 0.0029839141015612
1101 => 0.0029076041957817
1102 => 0.0029225149687109
1103 => 0.0029469391189405
1104 => 0.0029006991071444
1105 => 0.0028859226215944
1106 => 0.0029133949195732
1107 => 0.0030019163877414
1108 => 0.0029851819169542
1109 => 0.0029847449122926
1110 => 0.0030563420748404
1111 => 0.0030050939580909
1112 => 0.0029227030413084
1113 => 0.0029018982482182
1114 => 0.0028280552485357
1115 => 0.0028790588714361
1116 => 0.0028808944010243
1117 => 0.0028529602380061
1118 => 0.0029249697446834
1119 => 0.0029243061644024
1120 => 0.0029926684737918
1121 => 0.0031233515336335
1122 => 0.0030847021223155
1123 => 0.0030397570619966
1124 => 0.0030446438362446
1125 => 0.0030982396881587
1126 => 0.0030658344126171
1127 => 0.0030774875756395
1128 => 0.0030982220497007
1129 => 0.0031107316727099
1130 => 0.0030428438940058
1201 => 0.003027016005342
1202 => 0.00299463769997
1203 => 0.0029861908044681
1204 => 0.0030125622585981
1205 => 0.0030056143121521
1206 => 0.00288074013187
1207 => 0.0028676900852371
1208 => 0.0028680903115362
1209 => 0.0028352753487819
1210 => 0.0027852246540883
1211 => 0.0029167548913715
1212 => 0.0029061911725532
1213 => 0.0028945296445446
1214 => 0.0028959581151859
1215 => 0.0029530509332172
1216 => 0.0029199342155026
1217 => 0.0030079804372701
1218 => 0.0029898807809864
1219 => 0.0029713169368153
1220 => 0.0029687508480823
1221 => 0.0029616053518692
1222 => 0.0029371007866324
1223 => 0.0029075100516128
1224 => 0.0028879716852473
1225 => 0.0026640012220349
1226 => 0.0027055688372309
1227 => 0.0027533885895065
1228 => 0.0027698957763664
1229 => 0.00274165909098
1230 => 0.002938215743076
1231 => 0.002974128537481
]
'min_raw' => 0.0012395885042708
'max_raw' => 0.0032564069916888
'avg_raw' => 0.0022479977479798
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001239'
'max' => '$0.003256'
'avg' => '$0.002247'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -4.806163947998E-5
'max_diff' => -0.00058726004690619
'year' => 2027
]
2 => [
'items' => [
101 => 0.0028653463406947
102 => 0.0028449976332238
103 => 0.0029395498009501
104 => 0.0028825232852788
105 => 0.0029082023217938
106 => 0.0028526982905303
107 => 0.0029654781969582
108 => 0.0029646190030293
109 => 0.0029207450721791
110 => 0.0029578270180979
111 => 0.0029513831174527
112 => 0.0029018495575795
113 => 0.0029670484991576
114 => 0.0029670808370192
115 => 0.0029248531324774
116 => 0.0028755404184058
117 => 0.0028667244698441
118 => 0.0028600828368589
119 => 0.002906568887219
120 => 0.0029482481346136
121 => 0.0030258028808535
122 => 0.0030453019867135
123 => 0.0031214082950141
124 => 0.00307609069397
125 => 0.0030961793995517
126 => 0.0031179885311815
127 => 0.0031284446308891
128 => 0.0031114069775208
129 => 0.0032296314009179
130 => 0.0032396131645554
131 => 0.0032429599635611
201 => 0.0032030953531738
202 => 0.0032385044576259
203 => 0.0032219377102791
204 => 0.0032650397845007
205 => 0.0032717987400935
206 => 0.0032660741451632
207 => 0.0032682195443512
208 => 0.0031673358551992
209 => 0.0031621045037128
210 => 0.0030907746549962
211 => 0.0031198420955918
212 => 0.0030655019086369
213 => 0.0030827337416863
214 => 0.0030903293695035
215 => 0.0030863618445799
216 => 0.0031214855250707
217 => 0.0030916232213596
218 => 0.0030128116920489
219 => 0.0029339786905897
220 => 0.0029329890064724
221 => 0.0029122336687062
222 => 0.002897231361031
223 => 0.0029001213377247
224 => 0.0029103059925389
225 => 0.0028966394103785
226 => 0.0028995558685958
227 => 0.0029479885072611
228 => 0.0029577013275396
229 => 0.0029246933691892
301 => 0.0027921616533868
302 => 0.0027596380378983
303 => 0.0027830153677401
304 => 0.0027718425097686
305 => 0.0022370932388212
306 => 0.0023627246479822
307 => 0.0022880787306983
308 => 0.0023224790036763
309 => 0.0022462848515959
310 => 0.0022826486946463
311 => 0.0022759336206298
312 => 0.0024779452088571
313 => 0.0024747910757648
314 => 0.0024763007923631
315 => 0.0024042380855814
316 => 0.0025190359342003
317 => 0.0025755894824271
318 => 0.0025651229257743
319 => 0.0025677571325907
320 => 0.0025224927319401
321 => 0.0024767390507045
322 => 0.0024259911767731
323 => 0.0025202744539108
324 => 0.0025097917629623
325 => 0.002533835284445
326 => 0.0025949847291767
327 => 0.0026039892171975
328 => 0.0026160913404121
329 => 0.0026117535907275
330 => 0.0027150963865897
331 => 0.002702580892133
401 => 0.00273273963282
402 => 0.0026707008150777
403 => 0.0026004980040237
404 => 0.0026138412633023
405 => 0.002612556200134
406 => 0.0025961958710755
407 => 0.0025814264975212
408 => 0.0025568396517984
409 => 0.0026346360698337
410 => 0.0026314776773344
411 => 0.0026826083806682
412 => 0.0026735705321968
413 => 0.0026132135681681
414 => 0.0026153692289461
415 => 0.002629867083654
416 => 0.0026800443243317
417 => 0.0026949403456918
418 => 0.002688039915094
419 => 0.0027043727224862
420 => 0.0027172815075068
421 => 0.0027059938671377
422 => 0.0028658030512382
423 => 0.0027994391361422
424 => 0.0028317844466029
425 => 0.0028394986125581
426 => 0.0028197389386752
427 => 0.0028240241043995
428 => 0.0028305149628341
429 => 0.0028699261842085
430 => 0.0029733526328238
501 => 0.0030191595028678
502 => 0.0031569717314665
503 => 0.0030153558799731
504 => 0.0030069529814101
505 => 0.0030317771253114
506 => 0.0031126874924047
507 => 0.0031782577454095
508 => 0.0032000111811699
509 => 0.0032028862568157
510 => 0.0032436971484431
511 => 0.0032670891904459
512 => 0.0032387416327666
513 => 0.0032147200457463
514 => 0.0031286777027088
515 => 0.0031386373382009
516 => 0.0032072493502463
517 => 0.0033041678584876
518 => 0.0033873340212109
519 => 0.0033582121296586
520 => 0.003580391605351
521 => 0.0036024197928441
522 => 0.0035993762095891
523 => 0.0036495596989323
524 => 0.003549955692276
525 => 0.0035073730496936
526 => 0.0032199137855167
527 => 0.0033006781134394
528 => 0.0034180738071977
529 => 0.0034025360469176
530 => 0.0033172801561144
531 => 0.0033872693469726
601 => 0.0033641287317105
602 => 0.0033458767683483
603 => 0.0034294925508278
604 => 0.0033375535632445
605 => 0.0034171566454669
606 => 0.0033150648691283
607 => 0.0033583451560061
608 => 0.0033337771719423
609 => 0.0033496756685705
610 => 0.0032567333821419
611 => 0.0033068827838523
612 => 0.0032546470021548
613 => 0.003254622235593
614 => 0.0032534691278169
615 => 0.003314924293335
616 => 0.0033169283440763
617 => 0.0032715128839048
618 => 0.0032649678065712
619 => 0.0032891683878872
620 => 0.0032608358453085
621 => 0.0032740924636582
622 => 0.0032612373747735
623 => 0.003258343423496
624 => 0.0032352839273515
625 => 0.0032253492623784
626 => 0.0032292449004991
627 => 0.0032159470792539
628 => 0.0032079346609505
629 => 0.0032518752561467
630 => 0.0032283995686919
701 => 0.0032482772703555
702 => 0.0032256241205439
703 => 0.0031470984337894
704 => 0.0031019374809428
705 => 0.0029536097379985
706 => 0.0029956753018975
707 => 0.0030235648142825
708 => 0.0030143473306056
709 => 0.0030341500522362
710 => 0.0030353657785133
711 => 0.0030289277118463
712 => 0.0030214732554134
713 => 0.0030178448382792
714 => 0.0030448880868914
715 => 0.0030605876029448
716 => 0.0030263638999639
717 => 0.0030183457651959
718 => 0.0030529478184521
719 => 0.0030740550509493
720 => 0.0032298989965798
721 => 0.0032183535737182
722 => 0.0032473303194261
723 => 0.0032440679825438
724 => 0.0032744402284032
725 => 0.0033240860141146
726 => 0.0032231422505834
727 => 0.0032406625975597
728 => 0.003236367013085
729 => 0.0032832650780169
730 => 0.0032834114886565
731 => 0.0032552937559977
801 => 0.0032705368350302
802 => 0.0032620285664863
803 => 0.0032774041577066
804 => 0.003218199377557
805 => 0.0032903044090181
806 => 0.003331183315511
807 => 0.0033317509191673
808 => 0.0033511271964098
809 => 0.0033708146162866
810 => 0.003408602904327
811 => 0.0033697607214427
812 => 0.0032998874156442
813 => 0.0033049320426334
814 => 0.0032639653490093
815 => 0.0032646540065304
816 => 0.0032609778987119
817 => 0.0032720101749996
818 => 0.0032206203418034
819 => 0.003232681432938
820 => 0.0032157958347199
821 => 0.0032406258915668
822 => 0.003213912854955
823 => 0.0032363649416241
824 => 0.003246054517932
825 => 0.0032818092631098
826 => 0.0032086318500209
827 => 0.0030594181510573
828 => 0.0030907846796207
829 => 0.0030443911200878
830 => 0.0030486850206553
831 => 0.0030573593831708
901 => 0.0030292429361831
902 => 0.0030346066682173
903 => 0.003034415037965
904 => 0.003032763671978
905 => 0.0030254494982078
906 => 0.0030148424991758
907 => 0.0030570975186572
908 => 0.0030642774698602
909 => 0.0030802376119766
910 => 0.0031277241690473
911 => 0.0031229791421858
912 => 0.0031307184778662
913 => 0.0031138235515305
914 => 0.0030494687278322
915 => 0.0030529635043794
916 => 0.0030093835848356
917 => 0.0030791231754529
918 => 0.0030626079198771
919 => 0.0030519604271693
920 => 0.0030490551601356
921 => 0.0030966594271964
922 => 0.0031109033700065
923 => 0.0031020275007227
924 => 0.0030838228338712
925 => 0.0031187811759527
926 => 0.0031281345535196
927 => 0.0031302284298176
928 => 0.0031921679093888
929 => 0.0031336901586638
930 => 0.0031477663344822
1001 => 0.0032575846399953
1002 => 0.0031579945907852
1003 => 0.0032107496609749
1004 => 0.0032081675748133
1005 => 0.0032351552835881
1006 => 0.0032059537949815
1007 => 0.0032063157824305
1008 => 0.0032302790395168
1009 => 0.0031966269667352
1010 => 0.0031882942402644
1011 => 0.003176782638325
1012 => 0.0032019178000161
1013 => 0.0032169851926844
1014 => 0.00333841731181
1015 => 0.0034168679987425
1016 => 0.0034134622475238
1017 => 0.0034445844383637
1018 => 0.0034305636063437
1019 => 0.0033852866412427
1020 => 0.0034625688997325
1021 => 0.0034381135595192
1022 => 0.0034401296280532
1023 => 0.0034400545898817
1024 => 0.0034563152532005
1025 => 0.0034447930829712
1026 => 0.0034220817027227
1027 => 0.0034371585768274
1028 => 0.0034819315028371
1029 => 0.0036209080389725
1030 => 0.0036986811497881
1031 => 0.0036162260000466
1101 => 0.0036731024582198
1102 => 0.0036389968504701
1103 => 0.0036327988469881
1104 => 0.0036685214658581
1105 => 0.0037043066124435
1106 => 0.0037020272533095
1107 => 0.003676049074476
1108 => 0.0036613746604249
1109 => 0.0037724942399094
1110 => 0.0038543652532009
1111 => 0.0038487821989646
1112 => 0.0038734239846569
1113 => 0.0039457730295911
1114 => 0.0039523877195522
1115 => 0.003951554420654
1116 => 0.003935159221414
1117 => 0.0040063962518625
1118 => 0.0040658234359589
1119 => 0.0039313642064928
1120 => 0.0039825645208729
1121 => 0.0040055499915693
1122 => 0.0040392994820333
1123 => 0.0040962405295176
1124 => 0.0041580936099524
1125 => 0.0041668403137104
1126 => 0.0041606341088258
1127 => 0.004119840339579
1128 => 0.0041875207182515
1129 => 0.0042271662967776
1130 => 0.004250774331517
1201 => 0.0043106403796137
1202 => 0.0040056919420111
1203 => 0.0037898342809552
1204 => 0.0037561249901589
1205 => 0.0038246741585456
1206 => 0.0038427500275797
1207 => 0.0038354636674373
1208 => 0.0035924962449989
1209 => 0.003754845816963
1210 => 0.0039295203056567
1211 => 0.0039362302641517
1212 => 0.004023675965463
1213 => 0.0040521518703304
1214 => 0.0041225571216562
1215 => 0.0041181532540164
1216 => 0.004135295812322
1217 => 0.0041313550350353
1218 => 0.0042617659375415
1219 => 0.0044056285292122
1220 => 0.0044006470251176
1221 => 0.00437996507546
1222 => 0.004410681297498
1223 => 0.0045591629093544
1224 => 0.004545493101904
1225 => 0.0045587721554507
1226 => 0.0047338403438863
1227 => 0.0049614538920121
1228 => 0.0048557045468811
1229 => 0.005085150197261
1230 => 0.0052295740717839
1231 => 0.0054793402290639
]
'min_raw' => 0.0022370932388212
'max_raw' => 0.0054793402290639
'avg_raw' => 0.0038582167339426
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002237'
'max' => '$0.005479'
'avg' => '$0.003858'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00099750473455039
'max_diff' => 0.0022229332373751
'year' => 2028
]
3 => [
'items' => [
101 => 0.0054480682760482
102 => 0.0055453004082086
103 => 0.0053920849534965
104 => 0.0050402712995254
105 => 0.0049845954420959
106 => 0.005096059918607
107 => 0.005370084457565
108 => 0.0050874299107047
109 => 0.0051446105574045
110 => 0.0051281425273082
111 => 0.005127265015969
112 => 0.0051607560546901
113 => 0.0051121755562501
114 => 0.0049142498661407
115 => 0.0050049580435344
116 => 0.0049699312600783
117 => 0.0050087960877426
118 => 0.0052185335335726
119 => 0.0051258036092549
120 => 0.0050281201667536
121 => 0.0051506368813414
122 => 0.0053066427603226
123 => 0.0052968801927855
124 => 0.0052779367313268
125 => 0.005384720031722
126 => 0.0055610947594034
127 => 0.0056087681395647
128 => 0.0056439596541603
129 => 0.0056488119694576
130 => 0.0056987938327162
131 => 0.0054300287569231
201 => 0.0058565658345835
202 => 0.0059302170050464
203 => 0.0059163736375276
204 => 0.0059982338137822
205 => 0.0059741484733359
206 => 0.0059392525939033
207 => 0.0060690183854256
208 => 0.0059202523770047
209 => 0.0057090977571709
210 => 0.0055932541565652
211 => 0.0057458063546794
212 => 0.0058389646587298
213 => 0.0059005363717261
214 => 0.0059191679348761
215 => 0.0054508922246809
216 => 0.0051985175886471
217 => 0.0053602868368637
218 => 0.005557656484405
219 => 0.0054289323585656
220 => 0.0054339781005915
221 => 0.0052504513252497
222 => 0.0055738945317092
223 => 0.0055267715771136
224 => 0.0057712455489147
225 => 0.0057128998735182
226 => 0.005912258907097
227 => 0.0058597609923069
228 => 0.0060776769014817
301 => 0.0061646094574892
302 => 0.0063105827489978
303 => 0.0064179612964497
304 => 0.0064810160333378
305 => 0.0064772304634474
306 => 0.0067270847447431
307 => 0.0065797544043067
308 => 0.0063946727736235
309 => 0.0063913252308495
310 => 0.0064871816300073
311 => 0.0066880703457233
312 => 0.0067401578668965
313 => 0.006769267685322
314 => 0.0067246849850833
315 => 0.0065647684598002
316 => 0.0064957173149782
317 => 0.0065545508909708
318 => 0.0064826024831587
319 => 0.0066068056202002
320 => 0.0067773630557168
321 => 0.0067421436197399
322 => 0.006859876913818
323 => 0.0069817184872851
324 => 0.0071559574095905
325 => 0.0072015099159298
326 => 0.0072768064767019
327 => 0.0073543113713681
328 => 0.0073792038547194
329 => 0.0074267313291211
330 => 0.0074264808358708
331 => 0.007569708078948
401 => 0.0077276921634407
402 => 0.0077873274979968
403 => 0.0079244556614968
404 => 0.0076896284870469
405 => 0.0078677475963673
406 => 0.0080284154915848
407 => 0.0078368606033467
408 => 0.0081008743902182
409 => 0.0081111254472943
410 => 0.008265904238528
411 => 0.0081090062815841
412 => 0.0080158407755868
413 => 0.008284806100535
414 => 0.0084149499489491
415 => 0.008375749562661
416 => 0.0080774326874469
417 => 0.0079037994706595
418 => 0.0074493678509809
419 => 0.0079876617344753
420 => 0.0082498489828776
421 => 0.0080767536858133
422 => 0.0081640528853004
423 => 0.0086403290108415
424 => 0.0088216641228521
425 => 0.008783947687182
426 => 0.0087903211439448
427 => 0.0088881662789206
428 => 0.0093220654917035
429 => 0.009062063025699
430 => 0.0092608251688529
501 => 0.0093662478928915
502 => 0.0094641703942508
503 => 0.0092237036796367
504 => 0.0089108600170815
505 => 0.0088117692968667
506 => 0.0080595427698557
507 => 0.0080203861123705
508 => 0.007998406293956
509 => 0.0078598266479592
510 => 0.0077509410063654
511 => 0.0076643511015053
512 => 0.007437113333218
513 => 0.0075137994093803
514 => 0.0071516298349386
515 => 0.0073833330941648
516 => 0.0068053017084656
517 => 0.0072867034227713
518 => 0.0070246983563248
519 => 0.0072006277118399
520 => 0.0072000139108921
521 => 0.0068760721889357
522 => 0.0066892293642026
523 => 0.0068082928841541
524 => 0.0069359384288161
525 => 0.0069566484889863
526 => 0.0071221442695302
527 => 0.00716833058456
528 => 0.0070283838937866
529 => 0.0067933232927945
530 => 0.0068479225092435
531 => 0.0066881229128239
601 => 0.0064080802667013
602 => 0.0066092117842221
603 => 0.0066778869274322
604 => 0.0067082177830104
605 => 0.0064328280036641
606 => 0.0063462945559905
607 => 0.006300224874535
608 => 0.0067577739304777
609 => 0.0067828395006208
610 => 0.0066546004998541
611 => 0.0072342529434407
612 => 0.0071030597431618
613 => 0.0072496346909878
614 => 0.0068429682026326
615 => 0.0068585034101369
616 => 0.00666598097743
617 => 0.0067737806753922
618 => 0.006697591323419
619 => 0.0067650715250942
620 => 0.0068055188797471
621 => 0.0069980097214172
622 => 0.0072889013589808
623 => 0.0069692580086756
624 => 0.0068299848235705
625 => 0.0069163891243076
626 => 0.007146495163396
627 => 0.0074951175915264
628 => 0.007288726097393
629 => 0.0073803191377345
630 => 0.0074003281423584
701 => 0.0072481426956129
702 => 0.0075007288860229
703 => 0.0076360918774702
704 => 0.0077749462972708
705 => 0.0078955096993712
706 => 0.0077194847885284
707 => 0.00790785667531
708 => 0.0077560621866783
709 => 0.0076198868381498
710 => 0.0076200933599428
711 => 0.0075346685746065
712 => 0.0073691472888017
713 => 0.0073386226241472
714 => 0.0074974157845202
715 => 0.0076247528613712
716 => 0.0076352409529241
717 => 0.007705741301484
718 => 0.0077474626815504
719 => 0.0081563889236671
720 => 0.0083208624410617
721 => 0.0085219775448075
722 => 0.0086003232119427
723 => 0.0088361155815434
724 => 0.0086456940929709
725 => 0.0086044952061109
726 => 0.008032540044556
727 => 0.0081261976702191
728 => 0.0082761525655224
729 => 0.0080350127455477
730 => 0.0081879604585862
731 => 0.0082181555770155
801 => 0.0080268189067382
802 => 0.0081290200895028
803 => 0.007857604048619
804 => 0.0072948174869777
805 => 0.0075013554283471
806 => 0.0076534368731144
807 => 0.0074363978999246
808 => 0.0078254318587991
809 => 0.0075981662513156
810 => 0.0075261339644164
811 => 0.007245110331858
812 => 0.0073777426688339
813 => 0.0075571298037061
814 => 0.0074462894103479
815 => 0.0076762998693349
816 => 0.0080020560208092
817 => 0.008234209253464
818 => 0.0082520310960091
819 => 0.0081027721204706
820 => 0.008341960581329
821 => 0.0083437028081384
822 => 0.0080738972471766
823 => 0.0079086428433711
824 => 0.0078710966951283
825 => 0.0079648943347949
826 => 0.0080787819853496
827 => 0.0082583510679971
828 => 0.0083668609038284
829 => 0.0086497970065064
830 => 0.0087263514034773
831 => 0.0088104614759054
901 => 0.0089228584712551
902 => 0.0090578198821704
903 => 0.0087625319984451
904 => 0.0087742643365509
905 => 0.0084992963477649
906 => 0.0082054536173487
907 => 0.0084284436217212
908 => 0.008719973389321
909 => 0.0086530961385218
910 => 0.0086455710816287
911 => 0.0086582261400463
912 => 0.0086078028769505
913 => 0.0083797403267417
914 => 0.008265208741774
915 => 0.0084129837065059
916 => 0.008491519523554
917 => 0.0086133217267525
918 => 0.0085983070342757
919 => 0.0089120564291134
920 => 0.0090339699566581
921 => 0.0090027792593382
922 => 0.0090085190982911
923 => 0.0092292377165617
924 => 0.0094747222143246
925 => 0.0097046508410121
926 => 0.0099385441157429
927 => 0.009656576644045
928 => 0.0095134109512528
929 => 0.009661121402058
930 => 0.0095827441576856
1001 => 0.01003312305205
1002 => 0.010064306309523
1003 => 0.010514652636367
1004 => 0.010942084926785
1005 => 0.010673622363418
1006 => 0.010926770468853
1007 => 0.01120057078435
1008 => 0.011728776015442
1009 => 0.011550895076094
1010 => 0.011414641064303
1011 => 0.011285881681536
1012 => 0.011553809517099
1013 => 0.011898494397299
1014 => 0.011972736219144
1015 => 0.01209303633309
1016 => 0.011966555472873
1017 => 0.012118887737595
1018 => 0.012656687570251
1019 => 0.012511369308177
1020 => 0.012304994014955
1021 => 0.012729535331992
1022 => 0.012883175184265
1023 => 0.013961500129332
1024 => 0.015322929915861
1025 => 0.014759289044608
1026 => 0.014409418967244
1027 => 0.014491646734454
1028 => 0.014988794805188
1029 => 0.015148462986816
1030 => 0.014714429828227
1031 => 0.014867737677447
1101 => 0.015712478999543
1102 => 0.016165655616302
1103 => 0.015550180901004
1104 => 0.013852110571579
1105 => 0.012286412177801
1106 => 0.012701705896149
1107 => 0.012654624476553
1108 => 0.013562193643519
1109 => 0.012507903515686
1110 => 0.012525655057561
1111 => 0.013451991793768
1112 => 0.01320486103398
1113 => 0.01280454085324
1114 => 0.012289334958142
1115 => 0.011336929210275
1116 => 0.010493356879591
1117 => 0.012147796483168
1118 => 0.012076454039059
1119 => 0.011973139607631
1120 => 0.012203054694985
1121 => 0.013319457096644
1122 => 0.013293720407843
1123 => 0.013129996724671
1124 => 0.013254179695363
1125 => 0.012782770978062
1126 => 0.012904263738287
1127 => 0.012286164163177
1128 => 0.012565570985245
1129 => 0.012803681945925
1130 => 0.012851486246575
1201 => 0.012959191776886
1202 => 0.012038859812839
1203 => 0.012452061845169
1204 => 0.012694779327369
1205 => 0.011598172912654
1206 => 0.012673102944408
1207 => 0.012022838880899
1208 => 0.011802129491105
1209 => 0.012099285608211
1210 => 0.011983483580381
1211 => 0.011883923796976
1212 => 0.011828367727182
1213 => 0.012046566383661
1214 => 0.012036387155532
1215 => 0.011679371802998
1216 => 0.011213659829426
1217 => 0.011369968054231
1218 => 0.011313179810762
1219 => 0.0111073718906
1220 => 0.011246061579446
1221 => 0.010635342379014
1222 => 0.0095846317370921
1223 => 0.010278763371283
1224 => 0.010252040058437
1225 => 0.010238564952294
1226 => 0.010760185690999
1227 => 0.01071004389281
1228 => 0.010619036038108
1229 => 0.011105700459979
1230 => 0.010928061399436
1231 => 0.011475503127004
]
'min_raw' => 0.0049142498661407
'max_raw' => 0.016165655616302
'avg_raw' => 0.010539952741221
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.004914'
'max' => '$0.016165'
'avg' => '$0.010539'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0026771566273195
'max_diff' => 0.010686315387238
'year' => 2029
]
4 => [
'items' => [
101 => 0.011836083655091
102 => 0.01174462876961
103 => 0.012083756499113
104 => 0.011373569080032
105 => 0.011609464852877
106 => 0.011658082644723
107 => 0.011099695096557
108 => 0.010718247711108
109 => 0.010692809519317
110 => 0.010031432319637
111 => 0.010384734681256
112 => 0.010695626138836
113 => 0.010546733256807
114 => 0.010499598218405
115 => 0.010740400907258
116 => 0.010759113338518
117 => 0.010332467922747
118 => 0.010421181014789
119 => 0.010791129355928
120 => 0.010411859265782
121 => 0.0096749994340463
122 => 0.0094922480078917
123 => 0.0094678655988656
124 => 0.0089722292369357
125 => 0.0095044603320473
126 => 0.0092721271961245
127 => 0.010006064788726
128 => 0.0095868435720183
129 => 0.0095687717832529
130 => 0.0095414536239789
131 => 0.0091148389327856
201 => 0.0092082404373789
202 => 0.0095187212640979
203 => 0.0096295043208881
204 => 0.0096179487404461
205 => 0.0095171997386648
206 => 0.0095633221157619
207 => 0.0094147458690306
208 => 0.0093622805039627
209 => 0.0091966853800726
210 => 0.0089533062947748
211 => 0.0089871496493161
212 => 0.0085049519977393
213 => 0.0082422251249939
214 => 0.0081695057893025
215 => 0.0080722624544657
216 => 0.0081804896827269
217 => 0.0085035859923773
218 => 0.0081138632942331
219 => 0.0074457110641335
220 => 0.0074858681516384
221 => 0.0075760892045159
222 => 0.0074079628693508
223 => 0.0072488454028908
224 => 0.0073871851303696
225 => 0.0071040802223812
226 => 0.0076103010800966
227 => 0.0075966092245629
228 => 0.0077852970558314
301 => 0.0079032874289876
302 => 0.0076313578186994
303 => 0.0075629682570878
304 => 0.007601926059514
305 => 0.0069580403649853
306 => 0.0077326778577005
307 => 0.007739376954905
308 => 0.0076820152175
309 => 0.0080944857681214
310 => 0.0089649272827236
311 => 0.0086374321715015
312 => 0.0085106161658441
313 => 0.0082695388463876
314 => 0.0085907600608086
315 => 0.0085660952833726
316 => 0.008454551805968
317 => 0.0083870899627969
318 => 0.0085113904773327
319 => 0.008371687753473
320 => 0.0083465933054937
321 => 0.0081945482537677
322 => 0.0081402750879105
323 => 0.0081000933965869
324 => 0.008055857302611
325 => 0.008153431102974
326 => 0.0079323160344491
327 => 0.0076656729379855
328 => 0.0076435044496328
329 => 0.007704713595048
330 => 0.0076776331046867
331 => 0.0076433747986636
401 => 0.007577966362771
402 => 0.0075585610770717
403 => 0.007621618841488
404 => 0.0075504303019581
405 => 0.0076554728698749
406 => 0.0076269071036719
407 => 0.0074673410557622
408 => 0.0072684626811493
409 => 0.0072666922464538
410 => 0.0072238442268693
411 => 0.0071692708316857
412 => 0.0071540897616157
413 => 0.0073755345443823
414 => 0.0078339186174243
415 => 0.0077439268556849
416 => 0.0078089551262683
417 => 0.0081288298566938
418 => 0.0082305084145273
419 => 0.0081583393825657
420 => 0.0080595499604246
421 => 0.008063896193634
422 => 0.0084014895546818
423 => 0.0084225448385099
424 => 0.0084757447480515
425 => 0.0085441216661052
426 => 0.0081699842673804
427 => 0.0080462743557997
428 => 0.0079876537365282
429 => 0.0078071249182067
430 => 0.0080018097713953
501 => 0.0078883752446789
502 => 0.0079036814378082
503 => 0.007893713259453
504 => 0.0078991565588802
505 => 0.00761015958105
506 => 0.0077154548905374
507 => 0.0075403810161535
508 => 0.0073059767513182
509 => 0.0073051909460298
510 => 0.0073625610577679
511 => 0.0073284350704134
512 => 0.0072366029159017
513 => 0.0072496472400145
514 => 0.0071353652349032
515 => 0.0072635231445775
516 => 0.0072671982548559
517 => 0.0072178504788228
518 => 0.0074152954210597
519 => 0.0074961887749939
520 => 0.0074637070116771
521 => 0.0074939097678898
522 => 0.0077476664196736
523 => 0.0077890398260933
524 => 0.0078074151602512
525 => 0.007782794646745
526 => 0.0074985479736568
527 => 0.0075111555223184
528 => 0.0074186496954793
529 => 0.007340492019824
530 => 0.0073436179169672
531 => 0.0073838011220406
601 => 0.0075592835353101
602 => 0.0079285759287824
603 => 0.0079425903051655
604 => 0.0079595761381699
605 => 0.0078904862189451
606 => 0.0078696480382054
607 => 0.0078971389773919
608 => 0.0080358257839085
609 => 0.0083925659033698
610 => 0.0082664701192807
611 => 0.0081639522840185
612 => 0.0082538880641534
613 => 0.0082400431557416
614 => 0.0081231781957224
615 => 0.0081198981855255
616 => 0.0078955969632609
617 => 0.0078126779084813
618 => 0.0077433845399239
619 => 0.0076677179904084
620 => 0.0076228603234898
621 => 0.0076917820873217
622 => 0.0077075453101684
623 => 0.0075568466690038
624 => 0.0075363070010636
625 => 0.0076593707644948
626 => 0.0076052149904883
627 => 0.0076609155470525
628 => 0.007673838553966
629 => 0.0076717576522108
630 => 0.007615212804397
701 => 0.0076512528042019
702 => 0.0075660074606223
703 => 0.007473315952916
704 => 0.0074141845458844
705 => 0.0073625845506064
706 => 0.007391215226996
707 => 0.0072891520934221
708 => 0.0072565000428668
709 => 0.0076390432631936
710 => 0.0079216320530817
711 => 0.0079175231001593
712 => 0.007892510905981
713 => 0.0078553478589703
714 => 0.0080331070755453
715 => 0.0079711793188983
716 => 0.0080162369360962
717 => 0.0080277059907353
718 => 0.0080624193648696
719 => 0.0080748264124073
720 => 0.0080373236974999
721 => 0.0079114600056995
722 => 0.0075978196524938
723 => 0.0074518192214206
724 => 0.0074036366473369
725 => 0.0074053879923931
726 => 0.0073570780773943
727 => 0.00737130751246
728 => 0.0073521296605778
729 => 0.0073158114487336
730 => 0.0073889726797567
731 => 0.007397403830088
801 => 0.0073803271245557
802 => 0.0073843493068943
803 => 0.0072429614786426
804 => 0.0072537108881463
805 => 0.0071938568100605
806 => 0.007182634891971
807 => 0.0070313289946608
808 => 0.0067632686654352
809 => 0.006911800109072
810 => 0.0067323950118403
811 => 0.0066644515830878
812 => 0.0069860852074309
813 => 0.006953802112275
814 => 0.0068985474864921
815 => 0.0068168143788862
816 => 0.0067864987742266
817 => 0.0066023107570691
818 => 0.0065914279464106
819 => 0.0066827165012087
820 => 0.0066405899742167
821 => 0.0065814283757567
822 => 0.0063671510632495
823 => 0.0061262324192114
824 => 0.0061335042387143
825 => 0.0062101359769321
826 => 0.0064329530909982
827 => 0.0063458945897574
828 => 0.0062827326482259
829 => 0.0062709043152181
830 => 0.0064189606671038
831 => 0.0066284914237868
901 => 0.006726798566836
902 => 0.0066293791737065
903 => 0.0065174690203121
904 => 0.0065242804728075
905 => 0.0065695940146749
906 => 0.0065743558272262
907 => 0.006501513821916
908 => 0.0065220184197363
909 => 0.0064908700606675
910 => 0.0062997126385578
911 => 0.0062962552069586
912 => 0.006249342092743
913 => 0.006247921582289
914 => 0.0061681106719835
915 => 0.006156944573925
916 => 0.0059984751673376
917 => 0.006102780210643
918 => 0.0060328178638543
919 => 0.0059273681047944
920 => 0.0059091885265861
921 => 0.0059086420265127
922 => 0.0060169153509325
923 => 0.0061015149738073
924 => 0.0060340348888301
925 => 0.0060186709815273
926 => 0.0061827173162622
927 => 0.0061618409248516
928 => 0.0061437621045284
929 => 0.0066097302426793
930 => 0.0062408801013856
1001 => 0.0060800403865515
1002 => 0.0058809706968109
1003 => 0.005945788791587
1004 => 0.0059594469165322
1005 => 0.0054807201977147
1006 => 0.0052865008275121
1007 => 0.0052198520586611
1008 => 0.0051814947499121
1009 => 0.0051989746571698
1010 => 0.0050241544443274
1011 => 0.0051416365186169
1012 => 0.0049902569914802
1013 => 0.0049648777211241
1014 => 0.0052355630679695
1015 => 0.0052732273526622
1016 => 0.0051125398127872
1017 => 0.0052157272263366
1018 => 0.0051783100357712
1019 => 0.0049928519589873
1020 => 0.0049857688245915
1021 => 0.0048927124808279
1022 => 0.0047470973220968
1023 => 0.0046805472871803
1024 => 0.0046458874511819
1025 => 0.0046601887750216
1026 => 0.0046529575880605
1027 => 0.0046057692017762
1028 => 0.0046556623711256
1029 => 0.0045282059407189
1030 => 0.0044774517631447
1031 => 0.0044545272786224
1101 => 0.004341402360518
1102 => 0.0045214344121015
1103 => 0.0045569029942474
1104 => 0.004592441460457
1105 => 0.0049017795456702
1106 => 0.0048863258891133
1107 => 0.0050260194181517
1108 => 0.0050205911844932
1109 => 0.0049807483271263
1110 => 0.0048126578657274
1111 => 0.0048796557277166
1112 => 0.0046734467222932
1113 => 0.0048279525300058
1114 => 0.0047574425316826
1115 => 0.0048041130286461
1116 => 0.0047201952669967
1117 => 0.0047666388211729
1118 => 0.0045653139108719
1119 => 0.0043773195423508
1120 => 0.0044529739641414
1121 => 0.0045352189727604
1122 => 0.0047135471070848
1123 => 0.0046073363414564
1124 => 0.0046455337490501
1125 => 0.00451757882778
1126 => 0.0042535712766835
1127 => 0.0042550655307516
1128 => 0.0042144537207325
1129 => 0.0041793591874547
1130 => 0.0046195359255411
1201 => 0.0045647929899956
1202 => 0.0044775672867821
1203 => 0.0045943223567451
1204 => 0.0046251942503954
1205 => 0.0046260731298068
1206 => 0.0047112546149673
1207 => 0.004756715988867
1208 => 0.0047647287530577
1209 => 0.0048987636604255
1210 => 0.004943690393412
1211 => 0.0051287372483141
1212 => 0.0047528589089126
1213 => 0.0047451179418662
1214 => 0.0045959653400142
1215 => 0.0045013704019103
1216 => 0.0046024423363557
1217 => 0.0046919782725793
1218 => 0.0045987474711331
1219 => 0.0046109214455924
1220 => 0.0044857667118871
1221 => 0.0045305036401092
1222 => 0.0045690371094091
1223 => 0.0045477611925543
1224 => 0.0045159101152567
1225 => 0.0046846373468634
1226 => 0.0046751170952088
1227 => 0.0048322397723031
1228 => 0.0049547281350486
1229 => 0.0051742491785025
1230 => 0.0049451675257676
1231 => 0.0049368188798248
]
'min_raw' => 0.0041793591874547
'max_raw' => 0.012083756499113
'avg_raw' => 0.0081315578432836
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.004179'
'max' => '$0.012083'
'avg' => '$0.008131'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00073489067868598
'max_diff' => -0.0040818991171892
'year' => 2030
]
5 => [
'items' => [
101 => 0.0050184282330802
102 => 0.0049436778994452
103 => 0.0049909175300087
104 => 0.0051666381436968
105 => 0.0051703508433671
106 => 0.0051081583403461
107 => 0.0051043739208852
108 => 0.0051163186714018
109 => 0.0051862794482652
110 => 0.0051618330031516
111 => 0.0051901230483453
112 => 0.0052255001830526
113 => 0.0053718350117963
114 => 0.0054071158435922
115 => 0.0053214017133422
116 => 0.0053291407396034
117 => 0.0052970813019844
118 => 0.0052661122869481
119 => 0.0053357261100884
120 => 0.0054629467401404
121 => 0.0054621553072036
122 => 0.00549166802056
123 => 0.0055100541964845
124 => 0.0054311272699131
125 => 0.0053797487429386
126 => 0.0053994505394812
127 => 0.0054309541412022
128 => 0.0053892343460381
129 => 0.005131720443796
130 => 0.0052098337116845
131 => 0.0051968318443642
201 => 0.005178315604219
202 => 0.0052568590991129
203 => 0.0052492833874223
204 => 0.0050223614103637
205 => 0.0050368882190884
206 => 0.0050232448337165
207 => 0.0050673294030271
208 => 0.0049412971880292
209 => 0.0049800638485226
210 => 0.0050043779345693
211 => 0.0050186991180403
212 => 0.0050704370528653
213 => 0.0050643662033706
214 => 0.0050700596803368
215 => 0.0051467733793738
216 => 0.0055347649441405
217 => 0.0055558824689556
218 => 0.0054518920533942
219 => 0.0054934341732907
220 => 0.0054136823873523
221 => 0.0054672202955433
222 => 0.0055038495726121
223 => 0.0053383289129429
224 => 0.0053285278536974
225 => 0.0052484469037691
226 => 0.0052914778702438
227 => 0.0052230125085466
228 => 0.0052398115134904
301 => 0.0051928400311567
302 => 0.0052773793474286
303 => 0.0053719074391022
304 => 0.0053957889680864
305 => 0.0053329669469736
306 => 0.005287479663515
307 => 0.0052076189782044
308 => 0.0053404290776874
309 => 0.0053792667980907
310 => 0.0053402250796759
311 => 0.0053311782604408
312 => 0.0053140345543375
313 => 0.0053348153787341
314 => 0.0053790552795246
315 => 0.0053581925592945
316 => 0.0053719727535603
317 => 0.0053194568630937
318 => 0.0054311533980099
319 => 0.0056085543766919
320 => 0.0056091247498464
321 => 0.0055882619171584
322 => 0.0055797252955185
323 => 0.0056011318279189
324 => 0.0056127439936042
325 => 0.0056819687941003
326 => 0.0057562497630703
327 => 0.0061028866339276
328 => 0.0060055523876807
329 => 0.006313109241025
330 => 0.0065563467807612
331 => 0.0066292830834396
401 => 0.0065621851168937
402 => 0.0063326465979012
403 => 0.0063213843430881
404 => 0.0066644117991259
405 => 0.0065674908311424
406 => 0.0065559623904007
407 => 0.0064333192585174
408 => 0.0065058165391078
409 => 0.0064899603203718
410 => 0.0064649305033841
411 => 0.0066032502645463
412 => 0.0068621725095518
413 => 0.0068218170495103
414 => 0.0067916935706252
415 => 0.0066597012549636
416 => 0.0067391901105429
417 => 0.0067108856515798
418 => 0.0068324995697386
419 => 0.0067604581786995
420 => 0.0065667565594855
421 => 0.0065976041807942
422 => 0.0065929416248902
423 => 0.0066888966950025
424 => 0.006660093364706
425 => 0.0065873173123729
426 => 0.0068612875414668
427 => 0.006843497438692
428 => 0.006868719737043
429 => 0.0068798233728027
430 => 0.0070465842233552
501 => 0.0071149008080745
502 => 0.007130409868856
503 => 0.0071953053405451
504 => 0.0071287952104019
505 => 0.0073948831518936
506 => 0.0075718161063237
507 => 0.0077773328377809
508 => 0.0080776480201295
509 => 0.0081905693067634
510 => 0.0081701710870522
511 => 0.0083978666308591
512 => 0.0088070304616927
513 => 0.0082528747957053
514 => 0.0088364020575851
515 => 0.0086516640636201
516 => 0.0082136536032239
517 => 0.0081854508933785
518 => 0.0084820766625648
519 => 0.0091399640694479
520 => 0.0089751707357209
521 => 0.0091402336123063
522 => 0.0089476789989385
523 => 0.0089381170394071
524 => 0.0091308816645249
525 => 0.0095812867181655
526 => 0.0093673161603619
527 => 0.009060536898017
528 => 0.0092870579313185
529 => 0.0090908244487408
530 => 0.0086486554901999
531 => 0.0089750447213643
601 => 0.0087567975375148
602 => 0.0088204936684205
603 => 0.0092792167870536
604 => 0.0092240220077889
605 => 0.0092954491630564
606 => 0.0091693821035833
607 => 0.0090516155910849
608 => 0.0088317956500504
609 => 0.0087667178025022
610 => 0.0087847029783089
611 => 0.0087667088899423
612 => 0.0086437216531831
613 => 0.0086171625711146
614 => 0.0085728962707538
615 => 0.0085866162482166
616 => 0.0085033826529753
617 => 0.0086604616441339
618 => 0.0086896168890682
619 => 0.0088039258795326
620 => 0.0088157938181282
621 => 0.009134142729485
622 => 0.0089588014987458
623 => 0.0090764355345591
624 => 0.0090659132391815
625 => 0.0082231466180645
626 => 0.0083392724226616
627 => 0.0085199277323297
628 => 0.0084385427601967
629 => 0.0083234834507512
630 => 0.0082305668892842
701 => 0.0080897887974553
702 => 0.0082879312583006
703 => 0.0085484675242106
704 => 0.008822401447782
705 => 0.0091515151080913
706 => 0.0090780607704156
707 => 0.0088162488968292
708 => 0.0088279935862246
709 => 0.0089005946347019
710 => 0.0088065696804229
711 => 0.0087788398858209
712 => 0.0088967849867436
713 => 0.0088975972098322
714 => 0.0087894101366388
715 => 0.0086691800028098
716 => 0.0086686762341591
717 => 0.0086472824431296
718 => 0.0089514849068361
719 => 0.0091187655035366
720 => 0.0091379439543621
721 => 0.0091174746409901
722 => 0.009125352467309
723 => 0.0090280155738654
724 => 0.0092504988479183
725 => 0.0094546715015046
726 => 0.009399948868831
727 => 0.0093179118631725
728 => 0.0092525654367281
729 => 0.0093845553275
730 => 0.0093786780254352
731 => 0.0094528882314919
801 => 0.0094495216278862
802 => 0.0094245675267764
803 => 0.0093999497600205
804 => 0.0094975564225415
805 => 0.0094694472712505
806 => 0.0094412944586836
807 => 0.0093848296831007
808 => 0.009392504183883
809 => 0.0093104813430702
810 => 0.0092725338238004
811 => 0.0087018941828124
812 => 0.0085494006245522
813 => 0.0085973782022735
814 => 0.0086131736665966
815 => 0.0085468082746159
816 => 0.0086419591988458
817 => 0.0086271300280943
818 => 0.0086848216567135
819 => 0.0086487784318316
820 => 0.0086502576583531
821 => 0.008756253097505
822 => 0.0087870240244277
823 => 0.008771373682643
824 => 0.0087823346455667
825 => 0.0090349254098094
826 => 0.008999015080532
827 => 0.0089799384338228
828 => 0.0089852227953334
829 => 0.0090497651512045
830 => 0.0090678334869664
831 => 0.0089912766787037
901 => 0.0090273813120501
902 => 0.0091811102584785
903 => 0.0092349066894236
904 => 0.0094065990732487
905 => 0.0093336610970111
906 => 0.009467541909077
907 => 0.0098790458820354
908 => 0.010207783729544
909 => 0.0099054628193089
910 => 0.010509148011745
911 => 0.010979203527555
912 => 0.01096116201394
913 => 0.010879196962178
914 => 0.010344051254502
915 => 0.0098516021957248
916 => 0.010263556743883
917 => 0.010264606900746
918 => 0.010229219639714
919 => 0.010009432400657
920 => 0.010221571520212
921 => 0.010238410353146
922 => 0.01022898508451
923 => 0.010060474723643
924 => 0.0098031905485203
925 => 0.009853463260488
926 => 0.0099358109882267
927 => 0.0097799095600817
928 => 0.0097300896073888
929 => 0.0098227143780788
930 => 0.010121170688379
1001 => 0.010064749251757
1002 => 0.01006327586003
1003 => 0.010304670692314
1004 => 0.010131884088664
1005 => 0.0098540973603814
1006 => 0.0097839525479334
1007 => 0.0095349857189503
1008 => 0.0097069479945183
1009 => 0.0097131366106775
1010 => 0.0096189546297607
1011 => 0.0098617397090663
1012 => 0.009859502401819
1013 => 0.01008999070083
1014 => 0.010530597761086
1015 => 0.010400288572411
1016 => 0.010248753163582
1017 => 0.010265229264143
1018 => 0.010445931420814
1019 => 0.010336674771862
1020 => 0.01037596422459
1021 => 0.010445871951522
1022 => 0.010488049018891
1023 => 0.010259160633217
1024 => 0.010205795801519
1025 => 0.010096630084376
1026 => 0.010068150786448
1027 => 0.010157063985244
1028 => 0.010133638498711
1029 => 0.0097126164814528
1030 => 0.0096686173381049
1031 => 0.0096699667290151
1101 => 0.0095593287910217
1102 => 0.0093905793794341
1103 => 0.0098340427575825
1104 => 0.0097984264420512
1105 => 0.0097591087861885
1106 => 0.0097639249746882
1107 => 0.009956417396774
1108 => 0.0098447620708639
1109 => 0.010141616054744
1110 => 0.010080591799906
1111 => 0.010018002503197
1112 => 0.010009350755875
1113 => 0.0099852592165096
1114 => 0.0099026403639595
1115 => 0.0098028731348819
1116 => 0.0097369981685554
1117 => 0.0089818661147166
1118 => 0.009122014231508
1119 => 0.0092832418649737
1120 => 0.0093388969979669
1121 => 0.0092436950417641
1122 => 0.0099063995174531
1123 => 0.010027482011141
1124 => 0.0096607152397453
1125 => 0.0095921081518058
1126 => 0.0099108973867166
1127 => 0.0097186285076664
1128 => 0.0098052071721299
1129 => 0.0096180714555573
1130 => 0.0099983167841207
1201 => 0.0099954199518022
1202 => 0.0098474959307608
1203 => 0.009972520300405
1204 => 0.0099507942394807
1205 => 0.0097837883840457
1206 => 0.010003611167621
1207 => 0.010003720196979
1208 => 0.0098613465428722
1209 => 0.009695085284476
1210 => 0.0096653616983904
1211 => 0.0096429689690768
1212 => 0.009799699933418
1213 => 0.0099402244259614
1214 => 0.010201705667608
1215 => 0.0102674482644
1216 => 0.010524045996408
1217 => 0.010371254540514
1218 => 0.010438985013931
1219 => 0.010512516023886
1220 => 0.010547769494072
1221 => 0.010490325856209
1222 => 0.010888927753858
1223 => 0.010922581966867
1224 => 0.01093386593338
1225 => 0.010799459616201
1226 => 0.010918843884047
1227 => 0.010862987938713
1228 => 0.011008309591242
1229 => 0.011031097881919
1230 => 0.011011797010433
1231 => 0.011019030373582
]
'min_raw' => 0.0049412971880292
'max_raw' => 0.011031097881919
'avg_raw' => 0.0079861975349739
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.004941'
'max' => '$0.011031'
'avg' => '$0.007986'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00076193800057446
'max_diff' => -0.0010526586171939
'year' => 2031
]
6 => [
'items' => [
101 => 0.010678893972132
102 => 0.010661256105354
103 => 0.010420762540315
104 => 0.010518765445707
105 => 0.010335553711478
106 => 0.010393652039692
107 => 0.010419261229188
108 => 0.010405884441904
109 => 0.010524306382936
110 => 0.010423623541054
111 => 0.010157904967538
112 => 0.009892113999174
113 => 0.0098887772100748
114 => 0.0098187991397048
115 => 0.0097682178119502
116 => 0.0097779615701448
117 => 0.0098122998449207
118 => 0.0097662220089967
119 => 0.0097760550514966
120 => 0.0099393490742155
121 => 0.0099720965259121
122 => 0.0098608078897918
123 => 0.009413967956895
124 => 0.009304312316549
125 => 0.0093831306162638
126 => 0.0093454605455487
127 => 0.0075425160435479
128 => 0.0079660911108392
129 => 0.0077144171891049
130 => 0.0078304001112004
131 => 0.0075735062077558
201 => 0.0076961094434426
202 => 0.0076734691025646
203 => 0.0083545652762715
204 => 0.0083439308963362
205 => 0.0083490210112524
206 => 0.0081060565640805
207 => 0.008493105525629
208 => 0.0086837797619182
209 => 0.0086484910354116
210 => 0.0086573724476075
211 => 0.0085047603605545
212 => 0.0083504986298486
213 => 0.0081793986297855
214 => 0.0084972812813035
215 => 0.0084619381568925
216 => 0.0085430025682365
217 => 0.0087491721904672
218 => 0.0087795314505029
219 => 0.0088203346038641
220 => 0.0088057095779503
221 => 0.0091541370293633
222 => 0.0091119401659988
223 => 0.009213622465841
224 => 0.009004454260411
225 => 0.0087677605815385
226 => 0.0088127483117928
227 => 0.0088084156316009
228 => 0.0087532556399383
229 => 0.0087034596658352
301 => 0.0086205633988822
302 => 0.0088828594538605
303 => 0.0088722107130373
304 => 0.009044601449159
305 => 0.0090141297120352
306 => 0.0088106319938236
307 => 0.0088178999546404
308 => 0.0088667804839959
309 => 0.0090359565542036
310 => 0.0090861795302264
311 => 0.0090629142466931
312 => 0.0091179814471362
313 => 0.0091615043170958
314 => 0.0091234472495132
315 => 0.0096622550712293
316 => 0.0094385044981025
317 => 0.009547558970598
318 => 0.009573567819702
319 => 0.0095069466996294
320 => 0.0095213944350497
321 => 0.0095432788174392
322 => 0.0096761565019066
323 => 0.010024865994417
324 => 0.010179307054904
325 => 0.010643950605367
326 => 0.010166482874754
327 => 0.010138151915577
328 => 0.010221848249907
329 => 0.010494643201543
330 => 0.010715717887518
331 => 0.01078906111496
401 => 0.010798754633231
402 => 0.010936351403679
403 => 0.011015219306472
404 => 0.010919643536592
405 => 0.01083865307882
406 => 0.010548555311984
407 => 0.010582134918406
408 => 0.010813465107354
409 => 0.011140232624524
410 => 0.011420633148621
411 => 0.011322446658027
412 => 0.0120715402724
413 => 0.012145809844492
414 => 0.012135548191052
415 => 0.012304745329071
416 => 0.0119689234665
417 => 0.011825353114009
418 => 0.010856164135071
419 => 0.011128466705448
420 => 0.01152427448326
421 => 0.011471887839663
422 => 0.011184441651444
423 => 0.011420415094912
424 => 0.011342394894929
425 => 0.011280857126142
426 => 0.01156277357464
427 => 0.011252794859028
428 => 0.01152118220845
429 => 0.011176972656704
430 => 0.011322895165646
501 => 0.011240062492093
502 => 0.011293665383472
503 => 0.010980303975755
504 => 0.011149386184941
505 => 0.010973269599962
506 => 0.01097318609777
507 => 0.010969298314395
508 => 0.011176498695602
509 => 0.011183255492595
510 => 0.01103013409782
511 => 0.011008066912628
512 => 0.011089660862165
513 => 0.010994135716746
514 => 0.01103883133106
515 => 0.010995489501371
516 => 0.01098573234259
517 => 0.010907985641376
518 => 0.010874490224803
519 => 0.010887624640712
520 => 0.01084279010796
521 => 0.01081577568024
522 => 0.010963924464779
523 => 0.010884774545505
524 => 0.01095179360448
525 => 0.010875416928298
526 => 0.010610662092917
527 => 0.010458398787357
528 => 0.0099583014461085
529 => 0.010100128431718
530 => 0.010194159869908
531 => 0.010163082480147
601 => 0.010229848738706
602 => 0.010233947644729
603 => 0.01021224125347
604 => 0.010187108033152
605 => 0.010174874571456
606 => 0.010266052772252
607 => 0.010318984786731
608 => 0.010203597182708
609 => 0.01017656348153
610 => 0.010293226719921
611 => 0.010364391227946
612 => 0.010889829971316
613 => 0.010850903772062
614 => 0.010948600893308
615 => 0.01093760169674
616 => 0.011040003844178
617 => 0.011207388076861
618 => 0.010867049130448
619 => 0.01092612020351
620 => 0.010911637340545
621 => 0.011069757440781
622 => 0.011070251074475
623 => 0.010975450175699
624 => 0.011026843280894
625 => 0.01099815705947
626 => 0.011049996938759
627 => 0.010850383888939
628 => 0.011093491036722
629 => 0.011231317124037
630 => 0.011233230839393
701 => 0.011298559310925
702 => 0.011364936821571
703 => 0.011492342672994
704 => 0.011361383541525
705 => 0.011125800812626
706 => 0.011142809124725
707 => 0.011004687056968
708 => 0.011007008913881
709 => 0.010994614659714
710 => 0.011031810749467
711 => 0.010858546338922
712 => 0.010899211149761
713 => 0.010842280176454
714 => 0.010925996446692
715 => 0.010835931578711
716 => 0.01091163035647
717 => 0.010944299439497
718 => 0.011064849059181
719 => 0.010818126301867
720 => 0.010315041898044
721 => 0.010420796339036
722 => 0.010264377213976
723 => 0.01027885439953
724 => 0.010308100618376
725 => 0.010213304054329
726 => 0.010231388251366
727 => 0.010230742156592
728 => 0.010225174460872
729 => 0.010200514213346
730 => 0.010164751975553
731 => 0.010307217723885
801 => 0.010331425430654
802 => 0.010385236164102
803 => 0.010545340406671
804 => 0.01052934221732
805 => 0.01055543592791
806 => 0.010498473504203
807 => 0.010281496722994
808 => 0.01029327960612
809 => 0.010146346864726
810 => 0.010381478763554
811 => 0.010325796426322
812 => 0.010289897661274
813 => 0.01028010235063
814 => 0.01044060346065
815 => 0.010488627908314
816 => 0.01045870229533
817 => 0.010397323990031
818 => 0.010515188481073
819 => 0.010546724046572
820 => 0.0105537836967
821 => 0.010762616976551
822 => 0.010565455157195
823 => 0.010612913966734
824 => 0.010983174051041
825 => 0.010647399246974
826 => 0.01082526664936
827 => 0.01081656096559
828 => 0.010907551909946
829 => 0.010809097052326
830 => 0.010810317518284
831 => 0.010891111312611
901 => 0.010777650999716
902 => 0.010749556630647
903 => 0.010710744460994
904 => 0.010795489413516
905 => 0.010846290179869
906 => 0.011255707047621
907 => 0.011520209015866
908 => 0.01150872628785
909 => 0.011613656927149
910 => 0.01156638471309
911 => 0.011413730264115
912 => 0.011674292794289
913 => 0.011591839907342
914 => 0.011598637223162
915 => 0.011598384226728
916 => 0.01165320818839
917 => 0.01161436038701
918 => 0.011537787382844
919 => 0.011588620116522
920 => 0.01173957516251
921 => 0.012208144257122
922 => 0.012470361730182
923 => 0.012192358435994
924 => 0.012384121385712
925 => 0.012269131948007
926 => 0.012248234946536
927 => 0.01236867625013
928 => 0.012489328370282
929 => 0.012481643351822
930 => 0.012394056108146
1001 => 0.012344580296638
1002 => 0.012719227716991
1003 => 0.012995261554355
1004 => 0.012976437897201
1005 => 0.013059519398097
1006 => 0.013303449254342
1007 => 0.013325751143369
1008 => 0.013322941617954
1009 => 0.013267664059041
1010 => 0.013507844680808
1011 => 0.013708207581063
1012 => 0.013254868901274
1013 => 0.013427494335899
1014 => 0.013504991455146
1015 => 0.013618780218559
1016 => 0.013810760935649
1017 => 0.01401930291478
1018 => 0.014048793037175
1019 => 0.014027868384103
1020 => 0.013890329342958
1021 => 0.014118518464945
1022 => 0.014252186300912
1023 => 0.014331782438296
1024 => 0.014533624999168
1025 => 0.013505470050971
1026 => 0.01277769087602
1027 => 0.012664037648593
1028 => 0.012895155955759
1029 => 0.012956100010224
1030 => 0.012931533538287
1031 => 0.012112351910092
1101 => 0.012659724826854
1102 => 0.013248652060868
1103 => 0.013271275154408
1104 => 0.013566104441644
1105 => 0.013662112943028
1106 => 0.013899489163411
1107 => 0.013884641216195
1108 => 0.013942438548377
1109 => 0.013929151942619
1110 => 0.014368841405417
1111 => 0.0148538841774
1112 => 0.014837088688548
1113 => 0.01476735805131
1114 => 0.014870919938449
1115 => 0.015371536059478
1116 => 0.015325447349263
1117 => 0.01537021860541
1118 => 0.015960473225591
1119 => 0.016727888194568
1120 => 0.016371346894275
1121 => 0.017144938923915
1122 => 0.017631874100222
1123 => 0.018473978137607
1124 => 0.018368542564677
1125 => 0.018696367486786
1126 => 0.018179790884063
1127 => 0.016993626586855
1128 => 0.016805911546367
1129 => 0.017181721811125
1130 => 0.018105614676004
1201 => 0.017152625136955
1202 => 0.017345413679528
1203 => 0.017289890566297
1204 => 0.017286931975551
1205 => 0.017399849350869
1206 => 0.017236056808597
1207 => 0.016568736525662
1208 => 0.016874565478788
1209 => 0.016756470232874
1210 => 0.016887505712799
1211 => 0.017594650154816
1212 => 0.017282004740783
1213 => 0.016952658194349
1214 => 0.017365731851426
1215 => 0.017891716564394
1216 => 0.017858801386342
1217 => 0.017794932183443
1218 => 0.018154959536098
1219 => 0.018749619244566
1220 => 0.018910353374229
1221 => 0.019029004022681
1222 => 0.019045363942484
1223 => 0.019213881284082
1224 => 0.018307721066467
1225 => 0.019745820603667
1226 => 0.019994140667044
1227 => 0.019947466786941
1228 => 0.020223464086478
1229 => 0.020142258679579
1230 => 0.020024604785719
1231 => 0.020462119211795
]
'min_raw' => 0.0075425160435479
'max_raw' => 0.020462119211795
'avg_raw' => 0.014002317627671
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.007542'
'max' => '$0.020462'
'avg' => '$0.0140023'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0026012188555187
'max_diff' => 0.0094310213298761
'year' => 2032
]
7 => [
'items' => [
101 => 0.019960544227893
102 => 0.019248621684778
103 => 0.018858046897394
104 => 0.019372387284191
105 => 0.019686477010402
106 => 0.019894070339568
107 => 0.019956887955543
108 => 0.018378063704654
109 => 0.017527164999032
110 => 0.018072581313762
111 => 0.018738026860356
112 => 0.018304024482857
113 => 0.01832103655438
114 => 0.017702263217885
115 => 0.018792774570547
116 => 0.018633896239108
117 => 0.019458157303663
118 => 0.019261440785498
119 => 0.019933593686013
120 => 0.019756593301011
121 => 0.020491312003196
122 => 0.020784411185213
123 => 0.021276570329064
124 => 0.021638604598729
125 => 0.021851198046488
126 => 0.021838434733303
127 => 0.02268083588696
128 => 0.022184101357903
129 => 0.021560085718067
130 => 0.021548799243887
131 => 0.021871985786128
201 => 0.022549296116766
202 => 0.022724912831036
203 => 0.022823058616241
204 => 0.022672744929721
205 => 0.022133575199714
206 => 0.021900764443949
207 => 0.022099125953038
208 => 0.021856546872822
209 => 0.022275306420943
210 => 0.022850352722727
211 => 0.022731607935389
212 => 0.023128553956249
213 => 0.0235393513279
214 => 0.024126810019426
215 => 0.024280393474924
216 => 0.024534261086605
217 => 0.024795574250191
218 => 0.024879500995747
219 => 0.025039743193955
220 => 0.025038898638472
221 => 0.025521799288314
222 => 0.026054453659278
223 => 0.02625551835334
224 => 0.026717855530563
225 => 0.025926119316795
226 => 0.026526660329748
227 => 0.027068363355948
228 => 0.026422522676318
301 => 0.027312663591609
302 => 0.027347225746247
303 => 0.027869073247202
304 => 0.0273400808311
305 => 0.027025966823022
306 => 0.027932802194644
307 => 0.028371591265926
308 => 0.028239424426672
309 => 0.027233628254068
310 => 0.026648211740986
311 => 0.025116063807837
312 => 0.026930959218517
313 => 0.027814941831834
314 => 0.027231338952654
315 => 0.02752567429876
316 => 0.029131472508559
317 => 0.029742856499116
318 => 0.029615692902977
319 => 0.029637181457434
320 => 0.029967073161334
321 => 0.031429994651107
322 => 0.03055337818418
323 => 0.031223518626953
324 => 0.031578958701429
325 => 0.031909111251493
326 => 0.031098360934321
327 => 0.030043586683969
328 => 0.029709495402472
329 => 0.027173311147875
330 => 0.027041291743334
331 => 0.026967185250967
401 => 0.026499954299167
402 => 0.026132838756381
403 => 0.025840894846631
404 => 0.025074746845616
405 => 0.025333299305448
406 => 0.024112219299346
407 => 0.024893423014832
408 => 0.022944549841084
409 => 0.02456762933126
410 => 0.023684260957126
411 => 0.024277419062241
412 => 0.024275349589491
413 => 0.023183157457026
414 => 0.022553203828489
415 => 0.022954634798755
416 => 0.02338500066451
417 => 0.023454826078305
418 => 0.024012806656955
419 => 0.024168527042703
420 => 0.023696687003995
421 => 0.022904163776343
422 => 0.023088248846596
423 => 0.022549473350416
424 => 0.021605290017061
425 => 0.022283418970936
426 => 0.022514962011014
427 => 0.022617224608229
428 => 0.021688728740062
429 => 0.021396975179658
430 => 0.021241648032149
501 => 0.022784306619314
502 => 0.022868816939074
503 => 0.022436450194628
504 => 0.024390788878222
505 => 0.023948461843865
506 => 0.024442649513996
507 => 0.023071545055959
508 => 0.023123923092693
509 => 0.022474820269335
510 => 0.022838274477349
511 => 0.022581396757801
512 => 0.022808910969066
513 => 0.022945282049222
514 => 0.023594278361194
515 => 0.024575039826646
516 => 0.023497339954306
517 => 0.023027770686981
518 => 0.023319088819471
519 => 0.024094907395748
520 => 0.025270312252231
521 => 0.024574448919966
522 => 0.024883261250299
523 => 0.024950723006373
524 => 0.024437619147422
525 => 0.025289231123394
526 => 0.025745616899801
527 => 0.026213774270664
528 => 0.026620262198314
529 => 0.02602678192174
530 => 0.02666189088973
531 => 0.026150105173355
601 => 0.025690980478332
602 => 0.025691676780976
603 => 0.025403661153047
604 => 0.024845594581629
605 => 0.024742678543582
606 => 0.025278060770364
607 => 0.025707386615358
608 => 0.025742747948284
609 => 0.025980444795631
610 => 0.026121111341418
611 => 0.027499834717033
612 => 0.028054368664103
613 => 0.028732442277791
614 => 0.028996590164457
615 => 0.029791580601063
616 => 0.029149561257537
617 => 0.029010656334074
618 => 0.027082269574257
619 => 0.027398042798147
620 => 0.027903626197179
621 => 0.027090606458289
622 => 0.027606280351267
623 => 0.027708085301207
624 => 0.027062980358668
625 => 0.027407558781817
626 => 0.026492460650315
627 => 0.024594986465238
628 => 0.025291343554584
629 => 0.025804096763604
630 => 0.025072334712317
701 => 0.026383989866146
702 => 0.025617748003338
703 => 0.025374886118923
704 => 0.024427395321309
705 => 0.024874574505518
706 => 0.025479390755149
707 => 0.025105684630313
708 => 0.025881180951605
709 => 0.026979490559868
710 => 0.027762211392185
711 => 0.027822298978607
712 => 0.027319061921651
713 => 0.02812550251704
714 => 0.028131376556366
715 => 0.02722170827036
716 => 0.026664541510236
717 => 0.026537952050047
718 => 0.026854197340925
719 => 0.027238177506152
720 => 0.027843607205411
721 => 0.028209455692831
722 => 0.029163394516978
723 => 0.029421503011223
724 => 0.029705085992792
725 => 0.030084040309921
726 => 0.030539072129527
727 => 0.029543488413205
728 => 0.029583044810255
729 => 0.028655971038411
730 => 0.027665259757368
731 => 0.028417086125775
801 => 0.029399999091196
802 => 0.029174517770906
803 => 0.029149146516208
804 => 0.029191813929211
805 => 0.029021808377244
806 => 0.028252879566396
807 => 0.027866728331338
808 => 0.02836496194225
809 => 0.028629750932623
810 => 0.029040415564665
811 => 0.028989792480687
812 => 0.030047620470666
813 => 0.030458660440513
814 => 0.030353498826834
815 => 0.030372851094607
816 => 0.031117019326188
817 => 0.031944687449576
818 => 0.032719907867557
819 => 0.033508495373219
820 => 0.032557822356049
821 => 0.032075129227291
822 => 0.032573145324995
823 => 0.032308890973469
824 => 0.033827374860269
825 => 0.033932511389983
826 => 0.035450885473114
827 => 0.036892003282628
828 => 0.03598686300678
829 => 0.036840369518491
830 => 0.037763506398315
831 => 0.039544387213054
901 => 0.038944649206792
902 => 0.038485259293089
903 => 0.038051138044394
904 => 0.038954475448119
905 => 0.040116604586845
906 => 0.040366916072591
907 => 0.040772516305848
908 => 0.040346077255016
909 => 0.040859676121023
910 => 0.042672905804807
911 => 0.042182955138427
912 => 0.041487146428669
913 => 0.042918517119586
914 => 0.043436524608316
915 => 0.047072172446854
916 => 0.051662328024129
917 => 0.049761973474551
918 => 0.048582362081569
919 => 0.048859598739676
920 => 0.050535768169925
921 => 0.051074100591962
922 => 0.049610727494551
923 => 0.050127615611808
924 => 0.052975719957212
925 => 0.054503636560394
926 => 0.052428520586696
927 => 0.046703357915555
928 => 0.041424496467363
929 => 0.042824688233652
930 => 0.042665949940364
1001 => 0.045725882751248
1002 => 0.042171269977072
1003 => 0.042231120539876
1004 => 0.045354329520764
1005 => 0.044521110910021
1006 => 0.043171403471193
1007 => 0.041434350825342
1008 => 0.038223248351564
1009 => 0.035379085342322
1010 => 0.040957143975068
1011 => 0.040716607943783
1012 => 0.040368276125039
1013 => 0.041143450894214
1014 => 0.044907479536132
1015 => 0.044820706492964
1016 => 0.044268700664325
1017 => 0.044687392220191
1018 => 0.043098004817105
1019 => 0.043507626140559
1020 => 0.041423660268739
1021 => 0.042365699876904
1022 => 0.043168507605213
1023 => 0.043329683142443
1024 => 0.043692819857648
1025 => 0.040589856385337
1026 => 0.041982995886184
1027 => 0.042801334823412
1028 => 0.039104049733587
1029 => 0.042728251384865
1030 => 0.040535840694755
1031 => 0.039791703577628
1101 => 0.040793586173229
1102 => 0.040403151551361
1103 => 0.040067478790568
1104 => 0.039880167622456
1105 => 0.040615839626918
1106 => 0.040581519648592
1107 => 0.039377817461509
1108 => 0.037807637027637
1109 => 0.03833464112066
1110 => 0.038143175592975
1111 => 0.0374492798211
1112 => 0.037916881790049
1113 => 0.035857799366739
1114 => 0.032315255079225
1115 => 0.034655568346622
1116 => 0.034565468831599
1117 => 0.034520036570436
1118 => 0.036278717309378
1119 => 0.036109660735996
1120 => 0.035802821399903
1121 => 0.037443644476066
1122 => 0.036844721981082
1123 => 0.038690459986736
1124 => 0.03990618241211
1125 => 0.039597835880535
1126 => 0.040741228697695
1127 => 0.038346782230565
1128 => 0.039142121298427
1129 => 0.039306039578022
1130 => 0.037423396974005
1201 => 0.036137320482159
1202 => 0.036051553842499
1203 => 0.033821674437897
1204 => 0.035012858016877
1205 => 0.036061050271855
1206 => 0.035559047524726
1207 => 0.03540012845189
1208 => 0.036212011529666
1209 => 0.036275101798117
1210 => 0.034836636991416
1211 => 0.035135739374985
1212 => 0.036383046036103
1213 => 0.035104310447384
1214 => 0.032619936078777
1215 => 0.032003776886199
1216 => 0.031921569891842
1217 => 0.03025049729337
1218 => 0.032044951589727
1219 => 0.031261624200982
1220 => 0.033736146036325
1221 => 0.032322712435104
1222 => 0.032261782137549
1223 => 0.032169677056264
1224 => 0.030731315839619
1225 => 0.03104622553344
1226 => 0.032093033317802
1227 => 0.032466546128396
1228 => 0.032427585682151
1229 => 0.032087903388575
1230 => 0.032243408203119
1231 => 0.031742473014003
]
'min_raw' => 0.017527164999032
'max_raw' => 0.054503636560394
'avg_raw' => 0.036015400779713
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.017527'
'max' => '$0.0545036'
'avg' => '$0.036015'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0099846489554836
'max_diff' => 0.034041517348599
'year' => 2033
]
8 => [
'items' => [
101 => 0.031565582372661
102 => 0.031007266850984
103 => 0.030186697272717
104 => 0.03030080250542
105 => 0.028675039457164
106 => 0.027789237462699
107 => 0.027544059145313
108 => 0.027216196452598
109 => 0.027581092108865
110 => 0.028670433874715
111 => 0.027356456588352
112 => 0.025103734695672
113 => 0.025239127119873
114 => 0.025543313698682
115 => 0.024976464021467
116 => 0.024439988374071
117 => 0.024906410423837
118 => 0.0239519024608
119 => 0.025658661425799
120 => 0.025612498378933
121 => 0.026248672575818
122 => 0.026646485356739
123 => 0.025729655690133
124 => 0.025499075508353
125 => 0.02563042445918
126 => 0.023459518885413
127 => 0.026071263275565
128 => 0.026093849749506
129 => 0.025900450646976
130 => 0.027291123906171
131 => 0.030225878244938
201 => 0.029121705612474
202 => 0.028694136595389
203 => 0.027881327581361
204 => 0.02896434733273
205 => 0.028881188313565
206 => 0.028505111691778
207 => 0.028277659377491
208 => 0.028696747240634
209 => 0.028225729753408
210 => 0.028141122070007
211 => 0.027628491562667
212 => 0.027445505794748
213 => 0.027310030417054
214 => 0.027160885337749
215 => 0.027489862218058
216 => 0.026744357326765
217 => 0.025845351510612
218 => 0.025770608904376
219 => 0.025976979811629
220 => 0.025885676047677
221 => 0.025770171777081
222 => 0.025549642668798
223 => 0.02548421639323
224 => 0.025696820048511
225 => 0.025456802917261
226 => 0.025810961268831
227 => 0.025714649793679
228 => 0.025176661722606
301 => 0.024506129397354
302 => 0.02450016025317
303 => 0.024355695163588
304 => 0.024171697151533
305 => 0.024120513113884
306 => 0.024867129659762
307 => 0.026412603565378
308 => 0.026109190057649
309 => 0.02632843741205
310 => 0.02740691739862
311 => 0.027749733755326
312 => 0.027506410825386
313 => 0.027173335391381
314 => 0.027187989020091
315 => 0.028326208606879
316 => 0.028397197966338
317 => 0.028576565175657
318 => 0.028807102728799
319 => 0.027545672367559
320 => 0.027128575763515
321 => 0.02693093225288
322 => 0.026322266737789
323 => 0.026978660312777
324 => 0.026596207886207
325 => 0.026647813784987
326 => 0.026614205375706
327 => 0.026632557839764
328 => 0.025658184351885
329 => 0.026013194839305
330 => 0.025422921048552
331 => 0.024632610704077
401 => 0.024629961306684
402 => 0.024823388643862
403 => 0.024708330494896
404 => 0.024398711974444
405 => 0.024442691823916
406 => 0.024057382064768
407 => 0.024489475404935
408 => 0.024501866295826
409 => 0.024335486823579
410 => 0.025001186231496
411 => 0.025273923822079
412 => 0.025164409289252
413 => 0.025266239990512
414 => 0.026121798258725
415 => 0.026261291587068
416 => 0.026323245309106
417 => 0.026240235528871
418 => 0.025281878025085
419 => 0.025324385255629
420 => 0.02501249540189
421 => 0.024748981341623
422 => 0.024759520522085
423 => 0.024895001003492
424 => 0.025486652211621
425 => 0.026731747299384
426 => 0.026778997747812
427 => 0.0268362666697
428 => 0.026603325183329
429 => 0.02653306780209
430 => 0.026625755422913
501 => 0.027093347673887
502 => 0.028296121893451
503 => 0.027870981153668
504 => 0.027525335114515
505 => 0.027828559876355
506 => 0.027781880801024
507 => 0.027387862429069
508 => 0.027376803645687
509 => 0.02662055641461
510 => 0.026340989032198
511 => 0.026107361602198
512 => 0.025852246547636
513 => 0.025701005791758
514 => 0.025933380330481
515 => 0.025986527136862
516 => 0.025478436146732
517 => 0.025409185222238
518 => 0.025824103292684
519 => 0.025641513319586
520 => 0.025829311634931
521 => 0.025872882454995
522 => 0.025865866549443
523 => 0.025675221647204
524 => 0.025796733022778
525 => 0.02550932239526
526 => 0.025196806505514
527 => 0.024997440838284
528 => 0.024823467851608
529 => 0.024919998175985
530 => 0.02457588519532
531 => 0.02446579652718
601 => 0.025755567702826
602 => 0.026708335537653
603 => 0.026694481915997
604 => 0.02661015155703
605 => 0.026484853749392
606 => 0.027084181358827
607 => 0.026875387603634
608 => 0.027027302505839
609 => 0.027065971224298
610 => 0.027183009788802
611 => 0.027224841015808
612 => 0.027098397994142
613 => 0.026674039769715
614 => 0.025616579421211
615 => 0.025124328774423
616 => 0.0249618778619
617 => 0.024967782644032
618 => 0.024804902392723
619 => 0.024852877926515
620 => 0.024788218459939
621 => 0.02466576907305
622 => 0.024912437271398
623 => 0.024940863483384
624 => 0.024883288178424
625 => 0.024896849246999
626 => 0.024420150312665
627 => 0.024456392697307
628 => 0.024254590494162
629 => 0.024216755013834
630 => 0.023706616617213
701 => 0.022802832501854
702 => 0.023303616634209
703 => 0.022698739823229
704 => 0.022469663809531
705 => 0.023554074029747
706 => 0.023445229320495
707 => 0.023258934491913
708 => 0.022983365613196
709 => 0.022881154435519
710 => 0.022260151676075
711 => 0.022223459520127
712 => 0.022531245256192
713 => 0.022389212729258
714 => 0.022189745269519
715 => 0.021467294350037
716 => 0.02065502032126
717 => 0.020679537768416
718 => 0.020937907024075
719 => 0.021689150480743
720 => 0.021395626665579
721 => 0.02118267176988
722 => 0.021142791719316
723 => 0.021641974046663
724 => 0.02234842162179
725 => 0.022679871018166
726 => 0.022351414732625
727 => 0.021974101837138
728 => 0.021997067124787
729 => 0.022149844894883
730 => 0.022165899678359
731 => 0.021920307771789
801 => 0.021989440454926
802 => 0.021884421587616
803 => 0.021239920992788
804 => 0.021228264020761
805 => 0.021070093180815
806 => 0.021065303830642
807 => 0.020796215774327
808 => 0.020758568495131
809 => 0.020224277826841
810 => 0.020575949562691
811 => 0.020340066625877
812 => 0.01998453540094
813 => 0.019923241683753
814 => 0.0199213991206
815 => 0.020286450193283
816 => 0.020571683728363
817 => 0.020344169910553
818 => 0.020292369424408
819 => 0.020845463095316
820 => 0.020775076884132
821 => 0.02071412287919
822 => 0.022285166989822
823 => 0.021041562986156
824 => 0.020499280658122
825 => 0.01982810330056
826 => 0.020046642032552
827 => 0.020092691354385
828 => 0.01847863079826
829 => 0.017823806631658
830 => 0.017599095654209
831 => 0.01746977130974
901 => 0.017528706037467
902 => 0.016939287484311
903 => 0.017335386500115
904 => 0.016824999855392
905 => 0.016739431873463
906 => 0.017652066419
907 => 0.017779054184477
908 => 0.017237284924943
909 => 0.01758518849404
910 => 0.017459033823664
911 => 0.016833748969518
912 => 0.016809867687373
913 => 0.016496121727388
914 => 0.0160051700532
915 => 0.015780791964104
916 => 0.015663933907163
917 => 0.015712151818975
918 => 0.015687771367271
919 => 0.015528672428325
920 => 0.015696890732217
921 => 0.015267162478377
922 => 0.015096041225142
923 => 0.015018749725038
924 => 0.01463734116552
925 => 0.01524433179687
926 => 0.015363916597912
927 => 0.015483737017955
928 => 0.016526691969546
929 => 0.016474588887525
930 => 0.016945575373768
1001 => 0.016927273705002
1002 => 0.01679294072965
1003 => 0.016226212003342
1004 => 0.01645209997268
1005 => 0.015756851913842
1006 => 0.016277779031796
1007 => 0.016040049649598
1008 => 0.016197402488541
1009 => 0.015914467896189
1010 => 0.016071055581679
1011 => 0.015392274590543
1012 => 0.014758438451727
1013 => 0.015013512616817
1014 => 0.015290807405539
1015 => 0.015892053160886
1016 => 0.015533956149171
1017 => 0.015662741375731
1018 => 0.015231332425142
1019 => 0.014341212534201
1020 => 0.014346250516117
1021 => 0.014209324963212
1022 => 0.014091001294044
1023 => 0.015575087898661
1024 => 0.015390518269439
1025 => 0.015096430721151
1026 => 0.01549007859111
1027 => 0.015594165335958
1028 => 0.015597128539256
1029 => 0.015884323863655
1030 => 0.01603760005977
1031 => 0.016064615653672
1101 => 0.016516523701881
1102 => 0.016667997318829
1103 => 0.017291895709691
1104 => 0.016024595645411
1105 => 0.015998496434557
1106 => 0.015495618023911
1107 => 0.015176684585686
1108 => 0.015517455669286
1109 => 0.015819332329463
1110 => 0.015504998173221
1111 => 0.01554604357807
1112 => 0.015124075655358
1113 => 0.015274909332291
1114 => 0.015404827614357
1115 => 0.015333094375244
1116 => 0.015225706244364
1117 => 0.015794581885885
1118 => 0.015762483692748
1119 => 0.016292233768527
1120 => 0.016705211835388
1121 => 0.017445342359862
1122 => 0.016672977573697
1123 => 0.016644829531017
1124 => 0.0169199811633
1125 => 0.016667955194548
1126 => 0.016827226907159
1127 => 0.01741968122463
1128 => 0.017432198850781
1129 => 0.017222512484703
1130 => 0.017209753050271
1201 => 0.017250025610594
1202 => 0.017485903254294
1203 => 0.017403480357797
1204 => 0.017498862220316
1205 => 0.017618138699934
1206 => 0.018111516791815
1207 => 0.018230468579444
1208 => 0.017941477404937
1209 => 0.017967570072298
1210 => 0.017859479440047
1211 => 0.017755065243664
1212 => 0.017989773108664
1213 => 0.018418706345145
1214 => 0.018416037973742
1215 => 0.018515542147335
1216 => 0.018577532423146
1217 => 0.018311424779709
1218 => 0.01813819848888
1219 => 0.018204624471459
1220 => 0.018310841064173
1221 => 0.018170179861994
1222 => 0.017301953761538
1223 => 0.017565318097918
1224 => 0.017521481394487
1225 => 0.017459052598075
1226 => 0.017723867474841
1227 => 0.017698325433957
1228 => 0.016933242145117
1229 => 0.016982220294962
1230 => 0.01693622066863
1231 => 0.017084854871947
]
'min_raw' => 0.014091001294044
'max_raw' => 0.031565582372661
'avg_raw' => 0.022828291833353
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.014091'
'max' => '$0.031565'
'avg' => '$0.022828'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0034361637049875
'max_diff' => -0.022938054187733
'year' => 2034
]
9 => [
'items' => [
101 => 0.016659928459793
102 => 0.016790632962249
103 => 0.01687260960091
104 => 0.016920894470856
105 => 0.017095332530345
106 => 0.017074864237421
107 => 0.017094060192519
108 => 0.017352705784801
109 => 0.018660846434118
110 => 0.018732045643411
111 => 0.018381434696966
112 => 0.018521496854576
113 => 0.018252608140192
114 => 0.018433114935556
115 => 0.018556613100568
116 => 0.017998548640209
117 => 0.017965503684675
118 => 0.017695505170919
119 => 0.017840587078714
120 => 0.017609751331653
121 => 0.01766639034969
122 => 0.017508022717558
123 => 0.017793052924715
124 => 0.018111760985534
125 => 0.018192279227859
126 => 0.017980470397584
127 => 0.017827106845582
128 => 0.017557850969362
129 => 0.018005629492275
130 => 0.018136573578177
131 => 0.018004941698736
201 => 0.017974439716056
202 => 0.017916638513993
203 => 0.017986702514317
204 => 0.018135860428564
205 => 0.018065520310719
206 => 0.018111981197789
207 => 0.017934920206538
208 => 0.018311512872412
209 => 0.018909632657779
210 => 0.018911555710691
211 => 0.018841215213687
212 => 0.018812433397821
213 => 0.018884607016365
214 => 0.018923758243708
215 => 0.019157154491702
216 => 0.019407597964716
217 => 0.020576308376225
218 => 0.020248139169343
219 => 0.021285088573328
220 => 0.022105180920851
221 => 0.022351090757581
222 => 0.022124865278741
223 => 0.02135096013609
224 => 0.021312988657683
225 => 0.022469529675126
226 => 0.022142753864764
227 => 0.022103884921913
228 => 0.021690385040099
301 => 0.021934814683208
302 => 0.021881354334693
303 => 0.021796964559193
304 => 0.022263319291129
305 => 0.023136293717539
306 => 0.023000232466481
307 => 0.022898669054265
308 => 0.022453647746603
309 => 0.022721649972923
310 => 0.022626219513375
311 => 0.02303624932926
312 => 0.022793356749602
313 => 0.022140278216607
314 => 0.022244283125562
315 => 0.022228562992802
316 => 0.022552082211055
317 => 0.022454969771976
318 => 0.022209600230473
319 => 0.023133309985854
320 => 0.023073329412283
321 => 0.023158368152138
322 => 0.023195804835333
323 => 0.023758050685842
324 => 0.023988384820935
325 => 0.024040674702167
326 => 0.024259474315824
327 => 0.024035230768458
328 => 0.024932364840864
329 => 0.025528906649789
330 => 0.026221820658617
331 => 0.027234354263242
401 => 0.02761507626504
402 => 0.027546302243126
403 => 0.028313993666266
404 => 0.029693518088828
405 => 0.027825143571038
406 => 0.029792546475038
407 => 0.029169689430391
408 => 0.027692906582251
409 => 0.027597819176957
410 => 0.028597913667519
411 => 0.030816026992057
412 => 0.030260414761893
413 => 0.030816935774623
414 => 0.03016772445192
415 => 0.030135485637765
416 => 0.030785405029746
417 => 0.032303977114372
418 => 0.031582560439789
419 => 0.03054823273815
420 => 0.031311964217119
421 => 0.030650349330024
422 => 0.029159545815053
423 => 0.030259989895692
424 => 0.029524154277811
425 => 0.029738910230282
426 => 0.031285527251779
427 => 0.031099434199911
428 => 0.031340255840781
429 => 0.030915211948046
430 => 0.030518153928962
501 => 0.029777015650426
502 => 0.029557601143827
503 => 0.029618239419744
504 => 0.029557571094509
505 => 0.029142911039081
506 => 0.029053365239591
507 => 0.02890411831735
508 => 0.028950376179264
509 => 0.028669748301724
510 => 0.02919935108732
511 => 0.029297650031171
512 => 0.02968305077332
513 => 0.029723064356888
514 => 0.030796399937939
515 => 0.030205224736568
516 => 0.030601836101259
517 => 0.03056635944775
518 => 0.027724912944568
519 => 0.028116439202411
520 => 0.028725531191908
521 => 0.028451136076244
522 => 0.028063205581265
523 => 0.027749930907051
524 => 0.027275287741638
525 => 0.027943338882243
526 => 0.028821755092819
527 => 0.029745342441596
528 => 0.030854972125311
529 => 0.030607315697419
530 => 0.029724598686501
531 => 0.029764196726786
601 => 0.030008976230571
602 => 0.029691964532606
603 => 0.029598471594073
604 => 0.029996131736498
605 => 0.029998870203349
606 => 0.029634109932697
607 => 0.029228745642293
608 => 0.029227047151115
609 => 0.029154916490992
610 => 0.030180556336116
611 => 0.03074455454705
612 => 0.030809216033005
613 => 0.03074020231385
614 => 0.030766762955296
615 => 0.030438584823206
616 => 0.031188702714962
617 => 0.031877085071407
618 => 0.031692583894736
619 => 0.031415990402518
620 => 0.031195670363418
621 => 0.031640683495396
622 => 0.031620867761144
623 => 0.031871072652055
624 => 0.03185972191295
625 => 0.031775587418819
626 => 0.031692586899444
627 => 0.032021674576813
628 => 0.031926902610717
629 => 0.031831983437581
630 => 0.031641608504458
701 => 0.031667483619662
702 => 0.03139093788521
703 => 0.031262995174581
704 => 0.029339043784202
705 => 0.028824901105768
706 => 0.028986660858743
707 => 0.029039916369512
708 => 0.028816160816966
709 => 0.029136968801232
710 => 0.029086971216704
711 => 0.029281482570494
712 => 0.029159960321347
713 => 0.029164947636841
714 => 0.029522318660307
715 => 0.029626064988784
716 => 0.029573298768785
717 => 0.029610254420552
718 => 0.030461881817521
719 => 0.030340807635183
720 => 0.030276489388914
721 => 0.030294305982689
722 => 0.030511915041712
723 => 0.030572833697224
724 => 0.030314717073141
725 => 0.030436446365213
726 => 0.030954754241109
727 => 0.031136132663987
728 => 0.031715005523233
729 => 0.031469090043981
730 => 0.031920478549121
731 => 0.03330789292424
801 => 0.034416255528858
802 => 0.033396959472629
803 => 0.035432326246883
804 => 0.037017151236662
805 => 0.03695632301389
806 => 0.03667997211926
807 => 0.034875691003149
808 => 0.033215364619787
809 => 0.034604298140651
810 => 0.034607838817832
811 => 0.034488528196606
812 => 0.03374750017507
813 => 0.034462742027728
814 => 0.034519515328615
815 => 0.034487737377357
816 => 0.033919592930678
817 => 0.033052141371243
818 => 0.033221639329571
819 => 0.033499280442977
820 => 0.032973647893296
821 => 0.032805676444474
822 => 0.03311796732571
823 => 0.034124233613443
824 => 0.033934004800651
825 => 0.033929037157574
826 => 0.034742916688269
827 => 0.034160354590487
828 => 0.033223777241633
829 => 0.03298727910911
830 => 0.032147870062885
831 => 0.032727652880985
901 => 0.032748518232441
902 => 0.032430977108204
903 => 0.033249543953796
904 => 0.033242000716208
905 => 0.034019108108501
906 => 0.035504645574358
907 => 0.035065299046845
908 => 0.034554386836114
909 => 0.034609937159479
910 => 0.035219187096917
911 => 0.034850820676919
912 => 0.034983287809892
913 => 0.035218986592046
914 => 0.035361189519391
915 => 0.034589476346613
916 => 0.03440955309073
917 => 0.034041493253676
918 => 0.033945473312351
919 => 0.034245250369811
920 => 0.03416626970645
921 => 0.032746764580446
922 => 0.032598418396727
923 => 0.032602967962392
924 => 0.032229944429953
925 => 0.031660994007078
926 => 0.033156161748129
927 => 0.033036078853663
928 => 0.032903516631851
929 => 0.032919754747634
930 => 0.033568756388088
1001 => 0.033192302661256
1002 => 0.034193166593591
1003 => 0.033987419057826
1004 => 0.033776394874126
1005 => 0.033747224903985
1006 => 0.033665998596998
1007 => 0.033387443367361
1008 => 0.033051071189
1009 => 0.032828969140788
1010 => 0.030282988699634
1011 => 0.030755507860225
1012 => 0.031299098083008
1013 => 0.031486743249612
1014 => 0.031165763207486
1015 => 0.033400117615821
1016 => 0.033808355696998
1017 => 0.0325717759204
1018 => 0.032340462333418
1019 => 0.033415282496074
1020 => 0.032767034546571
1021 => 0.033058940558539
1022 => 0.032427999424716
1023 => 0.033710023097849
1024 => 0.033700256225437
1025 => 0.03320152006077
1026 => 0.033623048451948
1027 => 0.033549797520677
1028 => 0.032986725619102
1029 => 0.033727873481462
1030 => 0.033728241081555
1031 => 0.033248218366523
1101 => 0.03268765692585
1102 => 0.032587441780127
1103 => 0.032511943129836
1104 => 0.033040372518719
1105 => 0.033514160656436
1106 => 0.034395762918686
1107 => 0.034617418673769
1108 => 0.035482555842317
1109 => 0.034967408781211
1110 => 0.035195766801128
1111 => 0.035443681734962
1112 => 0.035562541271012
1113 => 0.035368866035373
1114 => 0.036712780162792
1115 => 0.036826247691611
1116 => 0.036864292372534
1117 => 0.036411132090216
1118 => 0.036813644484399
1119 => 0.03662532226497
1120 => 0.037115284362505
1121 => 0.037192116675548
1122 => 0.037127042439789
1123 => 0.037151430228665
1124 => 0.03600463660361
1125 => 0.035945169304333
1126 => 0.035134328459079
1127 => 0.035464752096953
1128 => 0.034847040943564
1129 => 0.035042923513434
1130 => 0.035129266683795
1201 => 0.03508416591153
1202 => 0.035483433753675
1203 => 0.03514397452282
1204 => 0.034248085800332
1205 => 0.033351952993559
1206 => 0.033340702776144
1207 => 0.033104766826179
1208 => 0.032934228348179
1209 => 0.032967080109219
1210 => 0.033082854000048
1211 => 0.032927499359179
1212 => 0.032960652148488
1213 => 0.03351120934691
1214 => 0.033621619666659
1215 => 0.033246402260055
1216 => 0.031739850228925
1217 => 0.031370138581586
1218 => 0.031635879981993
1219 => 0.031508872708537
1220 => 0.025430119442476
1221 => 0.026858232354915
1222 => 0.026009696156476
1223 => 0.02640074067599
1224 => 0.025534604944766
1225 => 0.025947970313769
1226 => 0.025871636823801
1227 => 0.02816800012607
1228 => 0.02813214557165
1229 => 0.02814930724947
1230 => 0.027330135652594
1231 => 0.02863509824935
]
'min_raw' => 0.016659928459793
'max_raw' => 0.037192116675548
'avg_raw' => 0.026926022567671
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.016659'
'max' => '$0.037192'
'avg' => '$0.026926'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0025689271657492
'max_diff' => 0.0056265343028872
'year' => 2035
]
10 => [
'items' => [
101 => 0.029277969749449
102 => 0.029158991344252
103 => 0.029188935645551
104 => 0.028674393339016
105 => 0.028154289143731
106 => 0.027577413547698
107 => 0.028649177101149
108 => 0.028530015289619
109 => 0.028803329612202
110 => 0.029498444887856
111 => 0.029600803252682
112 => 0.029738373933024
113 => 0.029689064637069
114 => 0.030863812115936
115 => 0.030721542445012
116 => 0.031064371418161
117 => 0.030359146209896
118 => 0.029561116946153
119 => 0.029712796219648
120 => 0.029698188285883
121 => 0.029512212522845
122 => 0.029344321919512
123 => 0.029064831367848
124 => 0.029949180830133
125 => 0.029913277856976
126 => 0.030494505259747
127 => 0.030391767670566
128 => 0.029705660905858
129 => 0.029730165343185
130 => 0.029894969460637
131 => 0.030465358392838
201 => 0.030634688662955
202 => 0.030556248135192
203 => 0.030741911046155
204 => 0.030888651440894
205 => 0.03076033938048
206 => 0.032576967569756
207 => 0.031822576890693
208 => 0.032190261658652
209 => 0.032277952309286
210 => 0.032053334551623
211 => 0.032102046100301
212 => 0.032175830823446
213 => 0.032623837213852
214 => 0.03379953561397
215 => 0.034320244432132
216 => 0.035886822602895
217 => 0.0342770068134
218 => 0.034181487006532
219 => 0.034463675041215
220 => 0.035383422266593
221 => 0.036128791005298
222 => 0.036376072817281
223 => 0.036408755190912
224 => 0.036872672309175
225 => 0.037138580949822
226 => 0.036816340568787
227 => 0.036543275585833
228 => 0.035565190710969
229 => 0.035678406698471
301 => 0.036458352581469
302 => 0.037560072079787
303 => 0.038505462023721
304 => 0.038174419415521
305 => 0.040700040836424
306 => 0.040950445884068
307 => 0.040915848003048
308 => 0.041486307966849
309 => 0.040354061110856
310 => 0.039870003643669
311 => 0.036602315334567
312 => 0.037520402462151
313 => 0.03885489601946
314 => 0.038678270793056
315 => 0.037709125900623
316 => 0.038504726840414
317 => 0.038241676288978
318 => 0.038034197405082
319 => 0.038984698393968
320 => 0.03793958351226
321 => 0.038844470199044
322 => 0.037683943663389
323 => 0.03817593159027
324 => 0.037896655448194
325 => 0.038077381338914
326 => 0.037020861474601
327 => 0.037590933947814
328 => 0.036997144585491
329 => 0.036996863052019
330 => 0.036983755118935
331 => 0.037682345670444
401 => 0.037705126683248
402 => 0.037188867210172
403 => 0.037114466154613
404 => 0.037389565852186
405 => 0.037067496155053
406 => 0.037218190539259
407 => 0.037072060534436
408 => 0.037039163592381
409 => 0.036777035161137
410 => 0.036664103025586
411 => 0.036708386625838
412 => 0.036557223868416
413 => 0.036466142839274
414 => 0.036965636809763
415 => 0.03669877733086
416 => 0.036924736767317
417 => 0.03666722747112
418 => 0.035774588059039
419 => 0.035261221693661
420 => 0.033575108591959
421 => 0.034053288175985
422 => 0.034370321734907
423 => 0.034265542145574
424 => 0.034490649247779
425 => 0.03450446899561
426 => 0.034431284381988
427 => 0.034346545974944
428 => 0.034305300004722
429 => 0.034612713674563
430 => 0.034791177656974
501 => 0.034402140293906
502 => 0.034310994282951
503 => 0.034704332536354
504 => 0.034944268643706
505 => 0.03671582205194
506 => 0.036584579653415
507 => 0.036913972318691
508 => 0.036876887759523
509 => 0.037222143749099
510 => 0.037786491375986
511 => 0.036639014856445
512 => 0.036838177103485
513 => 0.036789347119839
514 => 0.037322460077379
515 => 0.037324124397841
516 => 0.037004496548828
517 => 0.037177771991148
518 => 0.037081054392808
519 => 0.037255836165175
520 => 0.036582826831168
521 => 0.03740247955312
522 => 0.037867169829212
523 => 0.037873622054147
524 => 0.038093881557004
525 => 0.038317677968477
526 => 0.038747235691741
527 => 0.038305697836718
528 => 0.037511414218377
529 => 0.037568758930101
530 => 0.037103070735284
531 => 0.037110899037972
601 => 0.037069110944707
602 => 0.037194520158257
603 => 0.036610347101171
604 => 0.03674745135004
605 => 0.036555504598742
606 => 0.036837759848734
607 => 0.036534099858206
608 => 0.036789323572542
609 => 0.036899469666849
610 => 0.037305911126119
611 => 0.036474068124205
612 => 0.034777883932482
613 => 0.035134442413828
614 => 0.034607064412853
615 => 0.034655875254713
616 => 0.034754480923458
617 => 0.034434867689289
618 => 0.034495839822198
619 => 0.034493661468556
620 => 0.034474889593712
621 => 0.034391745847456
622 => 0.034271170965896
623 => 0.034751504183041
624 => 0.034833122156541
625 => 0.035014548801303
626 => 0.035554351433248
627 => 0.035500412420894
628 => 0.035588389187951
629 => 0.035396336399433
630 => 0.034664784032751
701 => 0.034704510845867
702 => 0.034209116849738
703 => 0.035001880463024
704 => 0.03481414357543
705 => 0.034693108382697
706 => 0.034660082808977
707 => 0.035201223507236
708 => 0.035363141285496
709 => 0.035262244991982
710 => 0.03505530375037
711 => 0.035452692110952
712 => 0.035559016471775
713 => 0.035582818575071
714 => 0.036286914558362
715 => 0.035622169719006
716 => 0.035782180408835
717 => 0.037030538133809
718 => 0.035898449938848
719 => 0.036498142304298
720 => 0.036468790483658
721 => 0.036775572805339
722 => 0.036443625378975
723 => 0.03644774026516
724 => 0.036720142183578
725 => 0.036337602817105
726 => 0.036242880690303
727 => 0.036112022750538
728 => 0.036397746274672
729 => 0.036569024605226
730 => 0.037949402159424
731 => 0.0388411890123
801 => 0.038802474193096
802 => 0.039156255169515
803 => 0.038996873599376
804 => 0.038482188466664
805 => 0.039360693229038
806 => 0.039082697564023
807 => 0.039105615188882
808 => 0.03910476219374
809 => 0.039289605008172
810 => 0.039158626933552
811 => 0.038900455703851
812 => 0.039071841814473
813 => 0.039580797291366
814 => 0.0411606107083
815 => 0.042044695226161
816 => 0.041107387710236
817 => 0.041753929883673
818 => 0.041366234966143
819 => 0.041295779266702
820 => 0.041701855530713
821 => 0.042108642577467
822 => 0.042082732001178
823 => 0.04178742549398
824 => 0.041620614341189
825 => 0.042883764275957
826 => 0.043814431630696
827 => 0.043750966356376
828 => 0.044031081437212
829 => 0.04485350797818
830 => 0.044928700354101
831 => 0.044919227843012
901 => 0.044732855693779
902 => 0.045542641428944
903 => 0.046218178936043
904 => 0.04468971592604
905 => 0.045271734631199
906 => 0.045533021579417
907 => 0.045916668339744
908 => 0.046563944731079
909 => 0.047267058573652
910 => 0.047366486580243
911 => 0.047295937651499
912 => 0.046832215171607
913 => 0.047601570728043
914 => 0.048052241169396
915 => 0.048320605103812
916 => 0.049001131389989
917 => 0.045534635198656
918 => 0.043080876898391
919 => 0.042697687107105
920 => 0.043476918615879
921 => 0.043682395750488
922 => 0.043599568175173
923 => 0.04083764012228
924 => 0.042683146127501
925 => 0.044668755414565
926 => 0.04474503075393
927 => 0.045739068280167
928 => 0.046062767645684
929 => 0.046863098145782
930 => 0.046813037255094
1001 => 0.047007904995829
1002 => 0.046963108276873
1003 => 0.048445551998834
1004 => 0.05008090756918
1005 => 0.050024280405891
1006 => 0.049789178694005
1007 => 0.050138344826955
1008 => 0.051826207030906
1009 => 0.051670815726606
1010 => 0.051821765142533
1011 => 0.053811849804736
1012 => 0.056399242951843
1013 => 0.055197139064987
1014 => 0.057805358603389
1015 => 0.059447094547035
1016 => 0.062286307102907
1017 => 0.061930823707496
1018 => 0.063036108320393
1019 => 0.061294434238085
1020 => 0.0572951984947
1021 => 0.05666230412985
1022 => 0.057929374675718
1023 => 0.061044343973798
1024 => 0.057831273207287
1025 => 0.05848127323864
1026 => 0.058294073185882
1027 => 0.05828409809062
1028 => 0.058664806905143
1029 => 0.058112568913241
1030 => 0.055862651988514
1031 => 0.056893775656273
1101 => 0.056495609289526
1102 => 0.0569374045587
1103 => 0.059321591416208
1104 => 0.058267485574588
1105 => 0.057157070699046
1106 => 0.058549777373763
1107 => 0.060323171556613
1108 => 0.060212195735746
1109 => 0.059996856258969
1110 => 0.061210713614751
1111 => 0.063215650339666
1112 => 0.063757576679923
1113 => 0.064157615625104
1114 => 0.064212774236931
1115 => 0.064780942219636
1116 => 0.061725759779862
1117 => 0.066574412774434
1118 => 0.067411641205261
1119 => 0.067254276959828
1120 => 0.068184821124734
1121 => 0.067911031425792
1122 => 0.067514353108312
1123 => 0.068989463542108
1124 => 0.067298368465035
1125 => 0.06489807190608
1126 => 0.063581221741354
1127 => 0.065315356265537
1128 => 0.066374331706501
1129 => 0.067074247109491
1130 => 0.067286041087535
1201 => 0.061962924895672
1202 => 0.059094060501817
1203 => 0.060932969686681
1204 => 0.063176565806948
1205 => 0.061713296490132
1206 => 0.061770653877016
1207 => 0.059684416371648
1208 => 0.063361151534219
1209 => 0.062825482147242
1210 => 0.065604535874459
1211 => 0.064941292399159
1212 => 0.06720750283146
1213 => 0.066610733675653
1214 => 0.069087889076494
1215 => 0.070076093432194
1216 => 0.071735442347142
1217 => 0.072956066163743
1218 => 0.073672839815663
1219 => 0.073629807414152
1220 => 0.076470021718279
1221 => 0.074795246572665
1222 => 0.07269133427558
1223 => 0.072653281139884
1224 => 0.073742927131212
1225 => 0.076026526199257
1226 => 0.076618630212586
1227 => 0.076949535579722
1228 => 0.076442742491055
1229 => 0.074624894102708
1230 => 0.07383995638532
1231 => 0.074508746062369
]
'min_raw' => 0.027577413547698
'max_raw' => 0.076949535579722
'avg_raw' => 0.05226347456371
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.027577'
'max' => '$0.076949'
'avg' => '$0.052263'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.010917485087904
'max_diff' => 0.039757418904174
'year' => 2036
]
11 => [
'items' => [
101 => 0.07369087375709
102 => 0.07510275081044
103 => 0.077041559565356
104 => 0.076641203224347
105 => 0.077979534447564
106 => 0.079364566467043
107 => 0.081345224460579
108 => 0.081863041803642
109 => 0.082718974180896
110 => 0.083600009756229
111 => 0.083882974638452
112 => 0.084423242397461
113 => 0.084420394919687
114 => 0.086048528175675
115 => 0.08784440957612
116 => 0.088522313230038
117 => 0.090081115302396
118 => 0.087411721380422
119 => 0.089436487334027
120 => 0.091262876907358
121 => 0.089085379964829
122 => 0.092086552208387
123 => 0.092203080925802
124 => 0.0939625262095
125 => 0.092178991345541
126 => 0.091119934036567
127 => 0.094177392805215
128 => 0.095656800794315
129 => 0.095211191068176
130 => 0.091820079049797
131 => 0.089846306403463
201 => 0.084680562675698
202 => 0.090799609264758
203 => 0.093780018363253
204 => 0.091812360510246
205 => 0.09280473267948
206 => 0.098218793457068
207 => 0.1002801172667
208 => 0.099851376324036
209 => 0.099923826485669
210 => 0.10103607939767
211 => 0.10596842133836
212 => 0.10301284771671
213 => 0.10527227300723
214 => 0.10647066403436
215 => 0.10758379640741
216 => 0.10485029510829
217 => 0.10129405008124
218 => 0.10016763800016
219 => 0.091616715715062
220 => 0.091171603075349
221 => 0.090921747862385
222 => 0.089346446087367
223 => 0.088108690403675
224 => 0.08712438112908
225 => 0.084541259652914
226 => 0.085412987322794
227 => 0.081296030829136
228 => 0.083929913697798
301 => 0.07735915172653
302 => 0.082831477547449
303 => 0.079853139399246
304 => 0.081853013363616
305 => 0.081846035991754
306 => 0.07816363396273
307 => 0.076039701322159
308 => 0.077393153865426
309 => 0.078844162429005
310 => 0.079079583686667
311 => 0.080960854164545
312 => 0.081485876317147
313 => 0.079895034683822
314 => 0.077222987289589
315 => 0.077843642956357
316 => 0.076027123754882
317 => 0.072843743725698
318 => 0.075130102839141
319 => 0.075910766364584
320 => 0.07625555185084
321 => 0.073125063205805
322 => 0.072141395707319
323 => 0.071617699384896
324 => 0.076818880516508
325 => 0.0771038129599
326 => 0.075646058294118
327 => 0.082235247613423
328 => 0.080743911134801
329 => 0.08241009936773
330 => 0.077787324960002
331 => 0.077963921167769
401 => 0.075775425679904
402 => 0.077000836917787
403 => 0.0761347557517
404 => 0.076901835799516
405 => 0.077361620417388
406 => 0.079549756794677
407 => 0.082856462550025
408 => 0.079222922187828
409 => 0.077639736618762
410 => 0.078621936041637
411 => 0.081237662537479
412 => 0.085200622075255
413 => 0.082854470266898
414 => 0.083895652599206
415 => 0.084123104619837
416 => 0.082393139135616
417 => 0.085264408370255
418 => 0.086803144879249
419 => 0.08838157014082
420 => 0.08975207256897
421 => 0.087751112381033
422 => 0.089892426608502
423 => 0.088166905334007
424 => 0.086618934369674
425 => 0.086621282002652
426 => 0.085650217204479
427 => 0.08376865679598
428 => 0.083421668188337
429 => 0.085226746745127
430 => 0.086674248806096
501 => 0.086793472008905
502 => 0.087594883525199
503 => 0.088069150605346
504 => 0.092717612725624
505 => 0.094587262644496
506 => 0.09687343517463
507 => 0.097764028216741
508 => 0.10044439397822
509 => 0.098279780937162
510 => 0.097811453289675
511 => 0.091309762693289
512 => 0.092374414164215
513 => 0.094079023892756
514 => 0.091337871079865
515 => 0.093076501613241
516 => 0.093419744109759
517 => 0.091244727756198
518 => 0.092406497967544
519 => 0.089321180727072
520 => 0.082923714034668
521 => 0.085271530579497
522 => 0.087000313822994
523 => 0.084533126977087
524 => 0.08895546390506
525 => 0.086372025967302
526 => 0.085553200167923
527 => 0.082358668792073
528 => 0.083866364632685
529 => 0.085905544845239
530 => 0.084645568554025
531 => 0.087260208544685
601 => 0.090963236070475
602 => 0.093602234004454
603 => 0.093804823497258
604 => 0.092108124624839
605 => 0.094827095396077
606 => 0.094846900129778
607 => 0.091779889992499
608 => 0.0899013633606
609 => 0.089474558157378
610 => 0.090540801235114
611 => 0.091835417170816
612 => 0.09387666567162
613 => 0.095110149389682
614 => 0.098326420737176
615 => 0.099196651546081
616 => 0.10015277136757
617 => 0.10143044230552
618 => 0.10296461385463
619 => 0.099607933845613
620 => 0.099741301000005
621 => 0.096615607052009
622 => 0.093275354798721
623 => 0.095810189890645
624 => 0.099124149578355
625 => 0.098363923564395
626 => 0.098278382607816
627 => 0.098422238769699
628 => 0.097849053181833
629 => 0.095256556011164
630 => 0.093954620161946
701 => 0.095634449566697
702 => 0.096527204134717
703 => 0.097911788613335
704 => 0.097741109351313
705 => 0.10130765027472
706 => 0.10269350023095
707 => 0.10233894050828
708 => 0.10240418803021
709 => 0.10491320317915
710 => 0.1077037440431
711 => 0.11031745380648
712 => 0.11297623163924
713 => 0.10977097118799
714 => 0.10814353760382
715 => 0.1098226336476
716 => 0.10893168165178
717 => 0.11405135609329
718 => 0.11440583124362
719 => 0.11952513547439
720 => 0.1243839647848
721 => 0.1213322211499
722 => 0.12420987794406
723 => 0.12732229838574
724 => 0.13332666238976
725 => 0.13130460382928
726 => 0.12975573866165
727 => 0.1282920685623
728 => 0.13133773368796
729 => 0.13525593321644
730 => 0.13609987586682
731 => 0.13746738537135
801 => 0.13602961633844
802 => 0.13776125077352
803 => 0.14387468124805
804 => 0.14222277836909
805 => 0.13987681072432
806 => 0.14470277694386
807 => 0.14644927535824
808 => 0.1587071158787
809 => 0.17418314588191
810 => 0.16777596783949
811 => 0.16379882567021
812 => 0.16473354841907
813 => 0.17038487067956
814 => 0.17219989602563
815 => 0.16726603145826
816 => 0.16900875583357
817 => 0.17861133848239
818 => 0.18376281598575
819 => 0.17676641760046
820 => 0.15746363193661
821 => 0.1396655820057
822 => 0.14438642630401
823 => 0.14385122906544
824 => 0.15416800617502
825 => 0.14218338103174
826 => 0.14238517138287
827 => 0.15291528851742
828 => 0.15010603379784
829 => 0.14555540093426
830 => 0.13969880666163
831 => 0.12887235047928
901 => 0.1192830563205
902 => 0.13808987044842
903 => 0.13727888642525
904 => 0.1361044613786
905 => 0.13871801723385
906 => 0.15140870259617
907 => 0.15111614122282
908 => 0.14925501503175
909 => 0.15066666284447
910 => 0.14530793224748
911 => 0.14668899913835
912 => 0.13966276270366
913 => 0.14283891501369
914 => 0.14554563731993
915 => 0.14608905189662
916 => 0.14731339268533
917 => 0.13685153469644
918 => 0.14154860178944
919 => 0.1443076886509
920 => 0.13184203383436
921 => 0.14406128273532
922 => 0.13666941702439
923 => 0.13416050678
924 => 0.13753842390028
925 => 0.13622204631337
926 => 0.13509030216444
927 => 0.1344587694835
928 => 0.13693913900952
929 => 0.13682342680645
930 => 0.1327650608429
1001 => 0.1274710878836
1002 => 0.12924791897748
1003 => 0.12860237958319
1004 => 0.12626286154206
1005 => 0.1278394142273
1006 => 0.12089707407656
1007 => 0.10895313867867
1008 => 0.11684366825515
1009 => 0.1165398914497
1010 => 0.11638671340921
1011 => 0.12231622830772
1012 => 0.12174624226742
1013 => 0.12071171202294
1014 => 0.12624386158283
1015 => 0.12422455257556
1016 => 0.13044758712694
1017 => 0.13454648016311
1018 => 0.13350686830384
1019 => 0.13736189701603
1020 => 0.12928885357719
1021 => 0.13197039477329
1022 => 0.13252305669735
1023 => 0.126175595716
1024 => 0.12183949903275
1025 => 0.12155033081909
1026 => 0.11403213672127
1027 => 0.11804829532359
1028 => 0.12158234869369
1029 => 0.11988981138303
1030 => 0.11935400463359
1031 => 0.12209132511418
1101 => 0.12230403835908
1102 => 0.11745415383288
1103 => 0.11846259840175
1104 => 0.12266797989388
1105 => 0.11835663357804
1106 => 0.1099803919408
1107 => 0.10790296820417
1108 => 0.10762580158318
1109 => 0.10199166364687
1110 => 0.10804179159184
1111 => 0.10540074861051
1112 => 0.11374377174397
1113 => 0.10897828167467
1114 => 0.10877285092245
1115 => 0.10846231221032
1116 => 0.10361277694523
1117 => 0.10467451696424
1118 => 0.108203902495
1119 => 0.10946322701375
1120 => 0.10933186914911
1121 => 0.10818660658045
1122 => 0.10871090191969
1123 => 0.1070219639554
1124 => 0.10642556480801
1125 => 0.10454316504633
1126 => 0.10177655742286
1127 => 0.1021612711815
1128 => 0.096679897557151
1129 => 0.09369335428809
1130 => 0.092866718473221
1201 => 0.09176130651409
1202 => 0.092991577695394
1203 => 0.096664369514372
1204 => 0.092234203354433
1205 => 0.084638994213243
1206 => 0.085095479224236
1207 => 0.086121065512319
1208 => 0.084209892249408
1209 => 0.082401127148677
1210 => 0.083973701654011
1211 => 0.080755511415016
1212 => 0.086509968427616
1213 => 0.086354326492104
1214 => 0.088499232213167
1215 => 0.089840485778444
1216 => 0.086749330546479
1217 => 0.085971913365013
1218 => 0.086414765523217
1219 => 0.079095405813473
1220 => 0.087901084371041
1221 => 0.08797723624487
1222 => 0.087325177667998
1223 => 0.092013929655078
1224 => 0.10190865880624
1225 => 0.098185863685013
1226 => 0.096744284891997
1227 => 0.094003842552685
1228 => 0.097655319258452
1229 => 0.09737494281936
1230 => 0.096106974232175
1231 => 0.095340102874343
]
'min_raw' => 0.071617699384896
'max_raw' => 0.18376281598575
'avg_raw' => 0.12769025768532
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.071617'
'max' => '$0.183762'
'avg' => '$0.12769'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.044040285837198
'max_diff' => 0.10681328040603
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0022479977479798
]
1 => [
'year' => 2028
'avg' => 0.0038582167339426
]
2 => [
'year' => 2029
'avg' => 0.010539952741221
]
3 => [
'year' => 2030
'avg' => 0.0081315578432836
]
4 => [
'year' => 2031
'avg' => 0.0079861975349739
]
5 => [
'year' => 2032
'avg' => 0.014002317627671
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0022479977479798
'min' => '$0.002247'
'max_raw' => 0.014002317627671
'max' => '$0.0140023'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.014002317627671
]
1 => [
'year' => 2033
'avg' => 0.036015400779713
]
2 => [
'year' => 2034
'avg' => 0.022828291833353
]
3 => [
'year' => 2035
'avg' => 0.026926022567671
]
4 => [
'year' => 2036
'avg' => 0.05226347456371
]
5 => [
'year' => 2037
'avg' => 0.12769025768532
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.014002317627671
'min' => '$0.0140023'
'max_raw' => 0.12769025768532
'max' => '$0.12769'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.12769025768532
]
]
]
]
'prediction_2025_max_price' => '$0.003843'
'last_price' => 0.00372692
'sma_50day_nextmonth' => '$0.003187'
'sma_200day_nextmonth' => '$0.004663'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.003334'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.003134'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.002938'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.002821'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.003254'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.004123'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.004683'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.003388'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.003231'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.003051'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.00300035'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.003322'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.003859'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.004152'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.004663'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.004389'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.002824'
'weekly_sma100_action' => 'BUY'
'weekly_sma200' => '$0.0027081'
'weekly_sma200_action' => 'BUY'
'weekly_ema3' => '$0.003389'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.003355'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.003624'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.004082'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.003954'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.003518'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.004981'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '68.96'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 131.93
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.003189'
'vwma_10_action' => 'BUY'
'hma_9' => '0.003369'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 370.91
'cci_20_action' => 'SELL'
'adx_14' => 24.05
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.0001041'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 82.6
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000570'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 10
'buy_signals' => 25
'sell_pct' => 28.57
'buy_pct' => 71.43
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767709768
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Proton para 2026
La previsión del precio de Proton para 2026 sugiere que el precio medio podría oscilar entre $0.001287 en el extremo inferior y $0.003843 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Proton podría potencialmente ganar 3.13% para 2026 si XPR alcanza el objetivo de precio previsto.
Predicción de precio de Proton 2027-2032
La predicción del precio de XPR para 2027-2032 está actualmente dentro de un rango de precios de $0.002247 en el extremo inferior y $0.0140023 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Proton alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Proton | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.001239 | $0.002247 | $0.003256 |
| 2028 | $0.002237 | $0.003858 | $0.005479 |
| 2029 | $0.004914 | $0.010539 | $0.016165 |
| 2030 | $0.004179 | $0.008131 | $0.012083 |
| 2031 | $0.004941 | $0.007986 | $0.011031 |
| 2032 | $0.007542 | $0.0140023 | $0.020462 |
Predicción de precio de Proton 2032-2037
La predicción de precio de Proton para 2032-2037 se estima actualmente entre $0.0140023 en el extremo inferior y $0.12769 en el extremo superior. Comparado con el precio actual, Proton podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Proton | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.007542 | $0.0140023 | $0.020462 |
| 2033 | $0.017527 | $0.036015 | $0.0545036 |
| 2034 | $0.014091 | $0.022828 | $0.031565 |
| 2035 | $0.016659 | $0.026926 | $0.037192 |
| 2036 | $0.027577 | $0.052263 | $0.076949 |
| 2037 | $0.071617 | $0.12769 | $0.183762 |
Proton Histograma de precios potenciales
Pronóstico de precio de Proton basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Proton es Alcista, con 25 indicadores técnicos mostrando señales alcistas y 10 indicando señales bajistas. La predicción de precio de XPR se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Proton
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Proton aumentar durante el próximo mes, alcanzando $0.004663 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Proton alcance $0.003187 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 68.96, lo que sugiere que el mercado de XPR está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de XPR para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.003334 | BUY |
| SMA 5 | $0.003134 | BUY |
| SMA 10 | $0.002938 | BUY |
| SMA 21 | $0.002821 | BUY |
| SMA 50 | $0.003254 | BUY |
| SMA 100 | $0.004123 | SELL |
| SMA 200 | $0.004683 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.003388 | BUY |
| EMA 5 | $0.003231 | BUY |
| EMA 10 | $0.003051 | BUY |
| EMA 21 | $0.00300035 | BUY |
| EMA 50 | $0.003322 | BUY |
| EMA 100 | $0.003859 | SELL |
| EMA 200 | $0.004152 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.004663 | SELL |
| SMA 50 | $0.004389 | SELL |
| SMA 100 | $0.002824 | BUY |
| SMA 200 | $0.0027081 | BUY |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.004082 | SELL |
| EMA 50 | $0.003954 | SELL |
| EMA 100 | $0.003518 | BUY |
| EMA 200 | $0.004981 | SELL |
Osciladores de Proton
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 68.96 | NEUTRAL |
| Stoch RSI (14) | 131.93 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 370.91 | SELL |
| Índice Direccional Medio (14) | 24.05 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.0001041 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 82.6 | SELL |
| VWMA (10) | 0.003189 | BUY |
| Promedio Móvil de Hull (9) | 0.003369 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000570 | NEUTRAL |
Predicción de precios de Proton basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Proton
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Proton por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.005236 | $0.007358 | $0.01034 | $0.014529 | $0.020416 | $0.028689 |
| Amazon.com acción | $0.007776 | $0.016226 | $0.033856 | $0.070643 | $0.1474021 | $0.307563 |
| Apple acción | $0.005286 | $0.007498 | $0.010635 | $0.015085 | $0.021398 | $0.030351 |
| Netflix acción | $0.00588 | $0.009278 | $0.01464 | $0.023099 | $0.036447 | $0.0575086 |
| Google acción | $0.004826 | $0.00625 | $0.008093 | $0.010481 | $0.013573 | $0.017577 |
| Tesla acción | $0.008448 | $0.019152 | $0.043417 | $0.098423 | $0.223118 | $0.505792 |
| Kodak acción | $0.002794 | $0.002095 | $0.001571 | $0.001178 | $0.000883 | $0.000662 |
| Nokia acción | $0.002468 | $0.001635 | $0.001083 | $0.000717 | $0.000475 | $0.000314 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Proton
Podría preguntarse cosas como: "¿Debo invertir en Proton ahora?", "¿Debería comprar XPR hoy?", "¿Será Proton una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Proton/XPR Network regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Proton, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Proton a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Proton es de $0.003726 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Proton
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Proton
basado en el historial de precios del último mes
Predicción de precios de Proton basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Proton ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.003823 | $0.003923 | $0.004025 | $0.004129 |
| Si Proton ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.00392 | $0.004124 | $0.004338 | $0.004564 |
| Si Proton ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.004211 | $0.004758 | $0.005377 | $0.006075 |
| Si Proton ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.004695 | $0.005916 | $0.007454 | $0.009391 |
| Si Proton ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.005664 | $0.0086091 | $0.013084 | $0.019886 |
| Si Proton ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.00857 | $0.0197095 | $0.045325 | $0.104232 |
| Si Proton ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.013414 | $0.048282 | $0.173784 | $0.6255074 |
Cuadro de preguntas
¿Es XPR una buena inversión?
La decisión de adquirir Proton depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Proton ha experimentado un aumento de 21.9789% durante las últimas 24 horas, y Proton ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Proton dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Proton subir?
Parece que el valor medio de Proton podría potencialmente aumentar hasta $0.003843 para el final de este año. Mirando las perspectivas de Proton en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.012083. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Proton la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Proton, el precio de Proton aumentará en un 0.86% durante la próxima semana y alcanzará $0.003758 para el 13 de enero de 2026.
¿Cuál será el precio de Proton el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Proton, el precio de Proton disminuirá en un -11.62% durante el próximo mes y alcanzará $0.003293 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Proton este año en 2026?
Según nuestra predicción más reciente sobre el valor de Proton en 2026, se anticipa que XPR fluctúe dentro del rango de $0.001287 y $0.003843. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Proton no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Proton en 5 años?
El futuro de Proton parece estar en una tendencia alcista, con un precio máximo de $0.012083 proyectada después de un período de cinco años. Basado en el pronóstico de Proton para 2030, el valor de Proton podría potencialmente alcanzar su punto más alto de aproximadamente $0.012083, mientras que su punto más bajo se anticipa que esté alrededor de $0.004179.
¿Cuánto será Proton en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Proton, se espera que el valor de XPR en 2026 crezca en un 3.13% hasta $0.003843 si ocurre lo mejor. El precio estará entre $0.003843 y $0.001287 durante 2026.
¿Cuánto será Proton en 2027?
Según nuestra última simulación experimental para la predicción de precios de Proton, el valor de XPR podría disminuir en un -12.62% hasta $0.003256 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.003256 y $0.001239 a lo largo del año.
¿Cuánto será Proton en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Proton sugiere que el valor de XPR en 2028 podría aumentar en un 47.02% , alcanzando $0.005479 en el mejor escenario. Se espera que el precio oscile entre $0.005479 y $0.002237 durante el año.
¿Cuánto será Proton en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Proton podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.016165 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.016165 y $0.004914.
¿Cuánto será Proton en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Proton, se espera que el valor de XPR en 2030 aumente en un 224.23% , alcanzando $0.012083 en el mejor escenario. Se pronostica que el precio oscile entre $0.012083 y $0.004179 durante el transcurso de 2030.
¿Cuánto será Proton en 2031?
Nuestra simulación experimental indica que el precio de Proton podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.011031 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.011031 y $0.004941 durante el año.
¿Cuánto será Proton en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Proton, XPR podría experimentar un 449.04% aumento en valor, alcanzando $0.020462 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.020462 y $0.007542 a lo largo del año.
¿Cuánto será Proton en 2033?
Según nuestra predicción experimental de precios de Proton, se anticipa que el valor de XPR aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.0545036. A lo largo del año, el precio de XPR podría oscilar entre $0.0545036 y $0.017527.
¿Cuánto será Proton en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Proton sugieren que XPR podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.031565 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.031565 y $0.014091.
¿Cuánto será Proton en 2035?
Basado en nuestra predicción experimental para el precio de Proton, XPR podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.037192 en 2035. El rango de precios esperado para el año está entre $0.037192 y $0.016659.
¿Cuánto será Proton en 2036?
Nuestra reciente simulación de predicción de precios de Proton sugiere que el valor de XPR podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.076949 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.076949 y $0.027577.
¿Cuánto será Proton en 2037?
Según la simulación experimental, el valor de Proton podría aumentar en un 4830.69% en 2037, con un máximo de $0.183762 bajo condiciones favorables. Se espera que el precio caiga entre $0.183762 y $0.071617 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Unifi Protocol DAO
Predicción de precios de Pirate Chain
Predicción de precios de Abelian
Predicción de precios de FAR Labs
Predicción de precios de Gamium
Predicción de precios de Arkadiko
Predicción de precios de League of Kingdoms
Predicción de precios de Crust Network
Predicción de precios de Tranchess
Predicción de precios de Stronghold Token
Predicción de precios de Floor Protocol
Predicción de precios de Index Cooperative
Predicción de precios de PARSIQ
Predicción de precios de OctaSpace
Predicción de precios de Blockasset
Predicción de precios de FC Barcelona Fan Token
Predicción de precios de Cosplay Token
Predicción de precios de Velas
Predicción de precios de Santos FC Fan Token
Predicción de precios de Red Pulse Phoenix
Predicción de precios de BarnBridge
Predicción de precios de AdEx
Predicción de precios de AIT Protocol
Predicción de precios de iMe Lab
Predicción de precios de The Big Five
¿Cómo leer y predecir los movimientos de precio de Proton?
Los traders de Proton utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Proton
Las medias móviles son herramientas populares para la predicción de precios de Proton. Una media móvil simple (SMA) calcula el precio de cierre promedio de XPR durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de XPR por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de XPR.
¿Cómo leer gráficos de Proton y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Proton en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de XPR dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Proton?
La acción del precio de Proton está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de XPR. La capitalización de mercado de Proton puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de XPR, grandes poseedores de Proton, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Proton.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


