Previsão de Preço XPR Network - Projeção XPR
Previsão de Preço XPR Network até $0.003843 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.001287 | $0.003843 |
| 2027 | $0.001239 | $0.003256 |
| 2028 | $0.002236 | $0.005478 |
| 2029 | $0.004913 | $0.016163 |
| 2030 | $0.004178 | $0.012082 |
| 2031 | $0.00494 | $0.011029 |
| 2032 | $0.007541 | $0.020459 |
| 2033 | $0.017525 | $0.054497 |
| 2034 | $0.014089 | $0.031561 |
| 2035 | $0.016658 | $0.037187 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em XPR Network hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,956.78, com um retorno de 39.57% nos próximos 90 dias.
Previsão de preço de longo prazo de Proton para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'XPR Network'
'name_with_ticker' => 'XPR Network <small>XPR</small>'
'name_lang' => 'Proton'
'name_lang_with_ticker' => 'Proton <small>XPR</small>'
'name_with_lang' => 'Proton/XPR Network'
'name_with_lang_with_ticker' => 'Proton/XPR Network <small>XPR</small>'
'image' => '/uploads/coins/proton.jpg?1717083242'
'price_for_sd' => 0.003726
'ticker' => 'XPR'
'marketcap' => '$105.56M'
'low24h' => '$0.003043'
'high24h' => '$0.00376'
'volume24h' => '$12.79M'
'current_supply' => '28.33B'
'max_supply' => '31.28B'
'algo' => 'Delegated Proof-of-Stake'
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.003726'
'change_24h_pct' => '22.4234%'
'ath_price' => '$0.1'
'ath_days' => 2080
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '27 de abr. de 2020'
'ath_pct' => '-96.28%'
'fdv' => '$116.54M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.183741'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.003758'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003293'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001287'
'current_year_max_price_prediction' => '$0.003843'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.004178'
'grand_prediction_max_price' => '$0.012082'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0037971050253663
107 => 0.0038112820371819
108 => 0.0038432235686986
109 => 0.0035702866791032
110 => 0.0036928273295254
111 => 0.0037648084811423
112 => 0.0034395950194406
113 => 0.0037583800566455
114 => 0.0035655354550851
115 => 0.0035000811008868
116 => 0.0035882067658594
117 => 0.0035538641085146
118 => 0.003524338308398
119 => 0.0035078624046153
120 => 0.0035725721668964
121 => 0.0035695533791411
122 => 0.0034636756484255
123 => 0.0033255624648355
124 => 0.003371917782659
125 => 0.0033550764611103
126 => 0.0032940413392441
127 => 0.0033351716419732
128 => 0.003154054604324
129 => 0.0028424521546929
130 => 0.0030483062775604
131 => 0.0030403811177562
201 => 0.0030363848928055
202 => 0.0031910785767503
203 => 0.0031762083484295
204 => 0.0031492187384176
205 => 0.0032935456538907
206 => 0.0032408643882721
207 => 0.0034032156356415
208 => 0.0035101506673793
209 => 0.0034830284843447
210 => 0.0035836013985559
211 => 0.0033729857155571
212 => 0.0034429437970148
213 => 0.0034573620606455
214 => 0.0032917646821571
215 => 0.003178641301686
216 => 0.0031710972619096
217 => 0.0029749569095349
218 => 0.0030797335025838
219 => 0.0031719325685169
220 => 0.0031277763708715
221 => 0.0031137978378259
222 => 0.0031852111315821
223 => 0.0031907605561205
224 => 0.0030642330885442
225 => 0.0030905421556571
226 => 0.0032002553390364
227 => 0.003087777664931
228 => 0.0028692519172678
301 => 0.0028150545104925
302 => 0.0028078235773723
303 => 0.0026608359117472
304 => 0.0028186762403682
305 => 0.0027497747070673
306 => 0.0029674338251978
307 => 0.0028431081042509
308 => 0.0028377486709076
309 => 0.0028296471013512
310 => 0.0027031287455636
311 => 0.0027308282248201
312 => 0.0028229055126186
313 => 0.00285575972623
314 => 0.0028523327625836
315 => 0.0028224542836758
316 => 0.0028361324983172
317 => 0.0027920702031512
318 => 0.0027765108896507
319 => 0.0027274014163168
320 => 0.0026552240573543
321 => 0.0026652607618075
322 => 0.0025222585274693
323 => 0.0024443433204989
324 => 0.0024227774181154
325 => 0.0023939385921471
326 => 0.0024260348402457
327 => 0.0025218534201067
328 => 0.0024062758837486
329 => 0.0022081263044842
330 => 0.0022200354318284
331 => 0.0022467917051193
401 => 0.0021969315668522
402 => 0.0021497431304266
403 => 0.0021907696473798
404 => 0.0021068110584857
405 => 0.0022569376994703
406 => 0.0022528771945567
407 => 0.0023088351225465
408 => 0.0023438267632908
409 => 0.0022631823600534
410 => 0.0022429005107248
411 => 0.002254453973861
412 => 0.0020635009638767
413 => 0.0022932301877709
414 => 0.0022952168956389
415 => 0.0022782054967081
416 => 0.0024005292163378
417 => 0.0026586704184812
418 => 0.0025615473145291
419 => 0.0025239383131174
420 => 0.0024524435739419
421 => 0.0025477060689557
422 => 0.0025403913956651
423 => 0.0025073116690373
424 => 0.0024873049471578
425 => 0.0025241679456604
426 => 0.0024827372136986
427 => 0.0024752951157979
428 => 0.002430204099602
429 => 0.0024141086583306
430 => 0.0024021922343912
501 => 0.0023890734225176
502 => 0.0024180102525066
503 => 0.0023524355887945
504 => 0.0022733589727213
505 => 0.0022667846077157
506 => 0.0022849370075203
507 => 0.002276905921894
508 => 0.0022667461579675
509 => 0.0022473484017847
510 => 0.0022415935018927
511 => 0.0022602941346611
512 => 0.0022391822105802
513 => 0.0022703340045875
514 => 0.0022618624403249
515 => 0.0022145409710043
516 => 0.0021555608995788
517 => 0.0021550358532282
518 => 0.0021423286935863
519 => 0.0021261442152481
520 => 0.0021216420636251
521 => 0.0021873145085543
522 => 0.0023232545041467
523 => 0.0022965662302435
524 => 0.0023158512432629
525 => 0.0024107144202393
526 => 0.0024408685715649
527 => 0.0024194658691942
528 => 0.0023901685301281
529 => 0.0023914574643605
530 => 0.0024915753408571
531 => 0.0024978195700071
601 => 0.0025135967226045
602 => 0.002533874822315
603 => 0.0024229193172599
604 => 0.0023862314700504
605 => 0.0023688467326783
606 => 0.0023153084703123
607 => 0.0023730448962503
608 => 0.0023394043533765
609 => 0.0023439436119348
610 => 0.0023409874138438
611 => 0.0023426016978987
612 => 0.0022568957360145
613 => 0.0022881224839524
614 => 0.0022362019589783
615 => 0.0021666862043905
616 => 0.0021664531632058
617 => 0.0021834670456582
618 => 0.0021733465226222
619 => 0.0021461124553547
620 => 0.0021499809260689
621 => 0.0021160890520166
622 => 0.002154096013211
623 => 0.0021551859168627
624 => 0.0021405511665496
625 => 0.0021991061342196
626 => 0.0022230961522504
627 => 0.0022134632460876
628 => 0.0022224202818746
629 => 0.0022976752485145
630 => 0.0023099450916812
701 => 0.0023153945455155
702 => 0.0023080929992918
703 => 0.0022237958045173
704 => 0.0022275347435649
705 => 0.0022001008896586
706 => 0.0021769221740162
707 => 0.0021778492010855
708 => 0.0021897660739479
709 => 0.0022418077566531
710 => 0.0023513264098816
711 => 0.0023554825627145
712 => 0.0023605199411915
713 => 0.0023400303913419
714 => 0.0023338505470486
715 => 0.0023420033568246
716 => 0.0023831328047599
717 => 0.0024889289113859
718 => 0.0024515335014199
719 => 0.0024211304510233
720 => 0.0024478021228247
721 => 0.0024436962280103
722 => 0.0024090383437508
723 => 0.0024080656123713
724 => 0.0023415460516813
725 => 0.0023169552846714
726 => 0.0022964053991708
727 => 0.0022739654606726
728 => 0.0022606623129373
729 => 0.0022811019940312
730 => 0.0022857767909326
731 => 0.0022410850709962
801 => 0.0022349937547105
802 => 0.0022714899779483
803 => 0.0022554293508177
804 => 0.0022719481041059
805 => 0.002275780596564
806 => 0.0022751634770085
807 => 0.0022583943377328
808 => 0.0022690824870442
809 => 0.0022438018276321
810 => 0.0022163129075538
811 => 0.0021987766891641
812 => 0.0021834740127772
813 => 0.0021919648270334
814 => 0.0021616966245714
815 => 0.0021520132174253
816 => 0.0022654615825485
817 => 0.0023492671096405
818 => 0.0023480485440859
819 => 0.0023406308396622
820 => 0.002329609635515
821 => 0.0023823265350297
822 => 0.0023639610213465
823 => 0.0023773234670411
824 => 0.0023807247702904
825 => 0.0023910194908192
826 => 0.0023946989685471
827 => 0.0023835770312918
828 => 0.0023462504514326
829 => 0.0022532361633282
830 => 0.0022099377611283
831 => 0.0021956485672105
901 => 0.0021961679522703
902 => 0.002181840993682
903 => 0.0021860609250755
904 => 0.0021803734737576
905 => 0.0021696028169037
906 => 0.0021912997693236
907 => 0.0021938001409689
908 => 0.0021887358130148
909 => 0.0021899286455793
910 => 0.0021479981731224
911 => 0.0021511860558751
912 => 0.0021334355196116
913 => 0.0021301075080481
914 => 0.0020852356980897
915 => 0.0020057387824757
916 => 0.0020497877906782
917 => 0.0019965827829975
918 => 0.0019764332404013
919 => 0.0020718180411546
920 => 0.0020622440527215
921 => 0.0020458575462368
922 => 0.0020216184878988
923 => 0.0020126279853788
924 => 0.0019580045381146
925 => 0.0019547770934454
926 => 0.0019818499488667
927 => 0.0019693567576099
928 => 0.0019518115855437
929 => 0.0018882647508458
930 => 0.0018168170690114
1001 => 0.0018189736254218
1002 => 0.001841699803682
1003 => 0.0019077792320161
1004 => 0.0018819608561802
1005 => 0.0018632293282796
1006 => 0.0018597214761715
1007 => 0.0019036295894905
1008 => 0.0019657687688711
1009 => 0.0019949230815507
1010 => 0.0019660320431148
1011 => 0.0019328435737637
1012 => 0.0019348636021126
1013 => 0.0019483019457288
1014 => 0.0019497141256349
1015 => 0.0019281118439171
1016 => 0.0019341927596846
1017 => 0.0019249552925832
1018 => 0.001868264974033
1019 => 0.0018672396259374
1020 => 0.0018533269075103
1021 => 0.0018529056359256
1022 => 0.0018292366311909
1023 => 0.0018259251738124
1024 => 0.0017789289283057
1025 => 0.001809861999416
1026 => 0.0017891137193744
1027 => 0.0017578411673272
1028 => 0.0017524497675669
1029 => 0.0017522876955798
1030 => 0.0017843976141176
1031 => 0.0018094867763226
1101 => 0.0017894746445888
1102 => 0.0017849182701119
1103 => 0.0018335684290775
1104 => 0.0018273772528931
1105 => 0.0018220157342462
1106 => 0.001960204886906
1107 => 0.0018508173895417
1108 => 0.0018031181970708
1109 => 0.0017440813885571
1110 => 0.0017633040710986
1111 => 0.0017673545727501
1112 => 0.0016253816904591
1113 => 0.0015677833097953
1114 => 0.0015480177161007
1115 => 0.0015366423374849
1116 => 0.0015418262403631
1117 => 0.0014899809421495
1118 => 0.0015248218399912
1119 => 0.0014799281941121
1120 => 0.0014724016282839
1121 => 0.0015526770283712
1122 => 0.0015638468813313
1123 => 0.0015161928184023
1124 => 0.0015467944412947
1125 => 0.0015356978674396
1126 => 0.0014806977668181
1127 => 0.0014785971675277
1128 => 0.0014510000503829
1129 => 0.0014078159059061
1130 => 0.0013880795930949
1201 => 0.0013778007500244
1202 => 0.0013820420010059
1203 => 0.0013798974947252
1204 => 0.0013659031406437
1205 => 0.00138069963472
1206 => 0.0013429007066884
1207 => 0.0013278488689796
1208 => 0.0013210503030865
1209 => 0.0012875015788334
1210 => 0.0013408925183055
1211 => 0.0013514112059829
1212 => 0.0013619506187243
1213 => 0.0014536890110759
1214 => 0.001449106020244
1215 => 0.0014905340253571
1216 => 0.0014889242092597
1217 => 0.0014771082711122
1218 => 0.0014272587716956
1219 => 0.0014471278936812
1220 => 0.0013859738245567
1221 => 0.0014317946112172
1222 => 0.0014108839177072
1223 => 0.0014247246847072
1224 => 0.0013998377376695
1225 => 0.001413611201717
1226 => 0.0013539055770487
1227 => 0.0012981533048143
1228 => 0.0013205896466717
1229 => 0.0013449805161777
1230 => 0.0013978661359445
1231 => 0.0013663678971083
]
'min_raw' => 0.0012875015788334
'max_raw' => 0.0038432235686986
'avg_raw' => 0.002565362573766
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001287'
'max' => '$0.003843'
'avg' => '$0.002565'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0024389884211666
'max_diff' => 0.00011673356869856
'year' => 2026
]
1 => [
'items' => [
101 => 0.001377695854874
102 => 0.0013397490926359
103 => 0.0012614540831818
104 => 0.0012618972244325
105 => 0.0012498532429775
106 => 0.0012394454845503
107 => 0.0013699858487437
108 => 0.0013537510909185
109 => 0.0013278831290765
110 => 0.0013625084239539
111 => 0.0013716639014968
112 => 0.0013719245450713
113 => 0.0013971862664056
114 => 0.0014106684516102
115 => 0.0014130447451876
116 => 0.0014527946095227
117 => 0.0014661182397345
118 => 0.0015209963869459
119 => 0.0014095245823903
120 => 0.0014072288939316
121 => 0.0013629956728604
122 => 0.0013349422647575
123 => 0.001364916513714
124 => 0.0013914696063963
125 => 0.0013638207514665
126 => 0.0013674311082212
127 => 0.0013303147794723
128 => 0.0013435821205145
129 => 0.0013550097419238
130 => 0.0013487000810661
131 => 0.0013392542133711
201 => 0.0013892925556039
202 => 0.0013864691962332
203 => 0.0014330660508969
204 => 0.0014693916312803
205 => 0.0015344935653015
206 => 0.0014665563033098
207 => 0.0014640803994566
208 => 0.0014882827567685
209 => 0.0014661145344796
210 => 0.0014801240857452
211 => 0.0015322364100058
212 => 0.0015333374612999
213 => 0.0015148934334992
214 => 0.0015137711127314
215 => 0.001517313490026
216 => 0.0015380613044851
217 => 0.0015308113805971
218 => 0.0015392011760659
219 => 0.0015496927437686
220 => 0.0015930903161197
221 => 0.0016035533238918
222 => 0.0015781336394532
223 => 0.0015804287523459
224 => 0.0015709210925799
225 => 0.0015617368123766
226 => 0.0015823817330172
227 => 0.0016201107312648
228 => 0.0016198760211249
301 => 0.0016286284153714
302 => 0.0016340810844782
303 => 0.001610674237074
304 => 0.0015954372401074
305 => 0.0016012800742997
306 => 0.0016106228934135
307 => 0.0015982503239805
308 => 0.0015218810939079
309 => 0.0015450466398266
310 => 0.0015411907602484
311 => 0.001535699518838
312 => 0.0015589926543932
313 => 0.0015567459746449
314 => 0.0014894491936803
315 => 0.0014937573152538
316 => 0.0014897111848222
317 => 0.0015027850600072
318 => 0.0014654085023149
319 => 0.0014769052797261
320 => 0.0014841159507428
321 => 0.0014883630913666
322 => 0.0015037066755915
323 => 0.0015019062830777
324 => 0.001503594760665
325 => 0.0015263452455144
326 => 0.0016414093908593
327 => 0.0016476720784157
328 => 0.0016168323144176
329 => 0.0016291521918474
330 => 0.0016055007212433
331 => 0.0016213781119109
401 => 0.0016322410193637
402 => 0.0015831536294015
403 => 0.0015802469927424
404 => 0.0015564979041058
405 => 0.001569259319122
406 => 0.001548954990253
407 => 0.0015539369623422
408 => 0.0015400069340604
409 => 0.0015650782115267
410 => 0.0015931117954167
411 => 0.0016001941857871
412 => 0.0015815634658834
413 => 0.0015680735968488
414 => 0.0015443898306632
415 => 0.001583776461657
416 => 0.0015952943128454
417 => 0.001583715963288
418 => 0.0015810330067036
419 => 0.0015759488088242
420 => 0.0015821116433183
421 => 0.0015952315841543
422 => 0.0015890444623433
423 => 0.0015931311653025
424 => 0.0015775568678118
425 => 0.0016106819857144
426 => 0.0016632926449375
427 => 0.0016634617968097
428 => 0.0016572746416478
429 => 0.0016547429910597
430 => 0.0016610913877237
501 => 0.0016645351324891
502 => 0.0016850646832038
503 => 0.001707093709054
504 => 0.0018098935606802
505 => 0.0017810277737038
506 => 0.0018722379176571
507 => 0.0019443732993692
508 => 0.0019660035462467
509 => 0.0019461047369012
510 => 0.0018780319850426
511 => 0.0018746920110782
512 => 0.0019764214419294
513 => 0.0019476782182108
514 => 0.0019442593032097
515 => 0.0019078878239455
516 => 0.001929387872886
517 => 0.001924685496796
518 => 0.0019172625660899
519 => 0.0019582831617619
520 => 0.002035070054926
521 => 0.0020231020975235
522 => 0.0020141685725001
523 => 0.0019750244663574
524 => 0.0019985979614079
525 => 0.001990203891341
526 => 0.002026270143357
527 => 0.002004905294628
528 => 0.0019474604600214
529 => 0.0019566087392732
530 => 0.0019552259952681
531 => 0.0019836827689111
601 => 0.001975140751804
602 => 0.0019535580293334
603 => 0.002034807605673
604 => 0.0020295317101194
605 => 0.0020370117237768
606 => 0.0020403046571159
607 => 0.0020897598424556
608 => 0.0021100200494999
609 => 0.0021146194712038
610 => 0.0021338651009153
611 => 0.0021141406224043
612 => 0.0021930525997631
613 => 0.0022455244600653
614 => 0.0023064732259834
615 => 0.0023955357544738
616 => 0.0024290240890606
617 => 0.0024229747211599
618 => 0.0024905009138047
619 => 0.0026118439809644
620 => 0.002447501624364
621 => 0.0026205545249186
622 => 0.0025657679745948
623 => 0.0024358700493451
624 => 0.0024275061543549
625 => 0.00251547453748
626 => 0.0027105799446083
627 => 0.0026617082529899
628 => 0.002710659881188
629 => 0.002653555206676
630 => 0.0026507194782705
701 => 0.0027078864346069
702 => 0.0028414601440955
703 => 0.0027780042816531
704 => 0.0026870247428261
705 => 0.0027542026184976
706 => 0.0026960069255721
707 => 0.0025648757414621
708 => 0.0026616708817283
709 => 0.0025969467279992
710 => 0.0026158366769826
711 => 0.00275187722113
712 => 0.0027355084629395
713 => 0.0027566911517442
714 => 0.0027193042604515
715 => 0.0026843790086125
716 => 0.0026191884324717
717 => 0.002599888716733
718 => 0.0026052224638322
719 => 0.0025998860735929
720 => 0.0025634125453744
721 => 0.0025555360904284
722 => 0.0025424083204428
723 => 0.0025464771652947
724 => 0.0025217931170573
725 => 0.0025683770160659
726 => 0.0025770233982179
727 => 0.0026109232751416
728 => 0.0026144428728223
729 => 0.0027088535475202
730 => 0.0026568537344035
731 => 0.0026917396984901
801 => 0.0026886191695028
802 => 0.0024386853312702
803 => 0.0024731240089937
804 => 0.0025266997840791
805 => 0.0025025639700234
806 => 0.0024684415758593
807 => 0.0024408859130448
808 => 0.0023991362661696
809 => 0.0024578980924154
810 => 0.0025351636453052
811 => 0.0026164024547512
812 => 0.0027140055613228
813 => 0.0026922216841614
814 => 0.0026145778325651
815 => 0.0026180608790288
816 => 0.0026395917017394
817 => 0.0026117073300477
818 => 0.0026034836844682
819 => 0.0026384618991195
820 => 0.0026387027748601
821 => 0.0026066184352899
822 => 0.0025709625632297
823 => 0.0025708131638239
824 => 0.0025644685457857
825 => 0.0026546839001304
826 => 0.0027042932232189
827 => 0.0027099808521616
828 => 0.0027039104004744
829 => 0.0027062466764012
830 => 0.0026773801043628
831 => 0.0027433605279265
901 => 0.002803910689376
902 => 0.002787681952642
903 => 0.0027633527692269
904 => 0.0027439734027845
905 => 0.0027831167897933
906 => 0.0027813737963872
907 => 0.0028033818365386
908 => 0.0028023834247127
909 => 0.0027949829485741
910 => 0.0027876822169363
911 => 0.0028166287926427
912 => 0.002808292643707
913 => 0.0027999435464296
914 => 0.0027831981536568
915 => 0.0027854741306462
916 => 0.0027611491480076
917 => 0.0027498952980035
918 => 0.0025806643957036
919 => 0.0025354403688299
920 => 0.0025496687683043
921 => 0.0025543531268515
922 => 0.0025346715723999
923 => 0.002562889865707
924 => 0.0025584920745857
925 => 0.0025756013072171
926 => 0.0025649122014655
927 => 0.0025653508860941
928 => 0.0025967852669518
929 => 0.0026059108014462
930 => 0.0026012694809503
1001 => 0.0026045201027305
1002 => 0.0026794293096538
1003 => 0.0026687796158909
1004 => 0.0026631221783356
1005 => 0.002664689327202
1006 => 0.0026838302356425
1007 => 0.0026891886449509
1008 => 0.0026664846881822
1009 => 0.0026771920054444
1010 => 0.0027227824033856
1011 => 0.002738736462472
1012 => 0.0027896541606929
1013 => 0.0027680234174987
1014 => 0.0028077275827883
1015 => 0.0029297646507409
1016 => 0.0030272563049442
1017 => 0.0029375989507258
1018 => 0.003116629958183
1019 => 0.003256031277961
1020 => 0.0032506808231229
1021 => 0.003226372978609
1022 => 0.0030676682822175
1023 => 0.0029216258544443
1024 => 0.0030437965465656
1025 => 0.0030441079847844
1026 => 0.0030336134139834
1027 => 0.0029684325360563
1028 => 0.0030313452607193
1029 => 0.0030363390443376
1030 => 0.0030335438534656
1031 => 0.0029835698271835
1101 => 0.0029072687257946
1102 => 0.002922177778367
1103 => 0.0029465991106169
1104 => 0.0029003644338442
1105 => 0.0028855896531574
1106 => 0.0029130587814711
1107 => 0.003001570036318
1108 => 0.0029848374963
1109 => 0.0029844005420587
1110 => 0.003055989443957
1111 => 0.0030047472400498
1112 => 0.0029223658292653
1113 => 0.0029015634365649
1114 => 0.0028277289566494
1115 => 0.0028787266949165
1116 => 0.0028805620127272
1117 => 0.0028526310726626
1118 => 0.0029246322711154
1119 => 0.0029239687673961
1120 => 0.0029923231893629
1121 => 0.003122991171415
1122 => 0.0030843462193413
1123 => 0.0030394063446384
1124 => 0.0030442925550662
1125 => 0.0030978822232638
1126 => 0.0030654806865384
1127 => 0.0030771325050564
1128 => 0.003097864586841
1129 => 0.0031103727665302
1130 => 0.0030424928204989
1201 => 0.0030266667580058
1202 => 0.0029942921883381
1203 => 0.0029858462674118
1204 => 0.0030122146788886
1205 => 0.0030052675340742
1206 => 0.0028804077613719
1207 => 0.0028673592204113
1208 => 0.0028677594005335
1209 => 0.0028349482238638
1210 => 0.0027849033038577
1211 => 0.0029164183656067
1212 => 0.0029058558655962
1213 => 0.0028941956830571
1214 => 0.002895623988886
1215 => 0.0029527102197323
1216 => 0.0029195973229177
1217 => 0.0030076333861963
1218 => 0.0029895358181925
1219 => 0.0029709741158578
1220 => 0.0029684083231919
1221 => 0.002961263651403
1222 => 0.0029367619134238
1223 => 0.0029071745924878
1224 => 0.0028876384803959
1225 => 0.0026636938581727
1226 => 0.0027052566774314
1227 => 0.0027530709124183
1228 => 0.0027695761947323
1229 => 0.0027413427672035
1230 => 0.0029378767412275
1231 => 0.0029737853921301
]
'min_raw' => 0.0012394454845503
'max_raw' => 0.003256031277961
'avg_raw' => 0.0022477383812557
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001239'
'max' => '$0.003256'
'avg' => '$0.002247'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -4.8056094283148E-5
'max_diff' => -0.00058719229073752
'year' => 2027
]
2 => [
'items' => [
101 => 0.0028650157462826
102 => 0.0028446693865799
103 => 0.0029392106451823
104 => 0.0028821907090462
105 => 0.0029078667827969
106 => 0.0028523691554094
107 => 0.0029651360496557
108 => 0.0029642769548578
109 => 0.0029204080860401
110 => 0.0029574857535638
111 => 0.0029510425963949
112 => 0.0029015147515441
113 => 0.0029667061706787
114 => 0.0029667385048093
115 => 0.0029245156723637
116 => 0.0028752086478339
117 => 0.0028663937164279
118 => 0.0028597528497329
119 => 0.0029062335366825
120 => 0.0029479079752601
121 => 0.0030254537734836
122 => 0.0030449506295998
123 => 0.0031210481570002
124 => 0.0030757357845546
125 => 0.0030958221723663
126 => 0.0031176287877289
127 => 0.0031280836810454
128 => 0.0031110479934266
129 => 0.0032292587764713
130 => 0.0032392393884451
131 => 0.003242585801308
201 => 0.0032027257903708
202 => 0.0032381308094347
203 => 0.0032215659735057
204 => 0.0032646630747491
205 => 0.0032714212505155
206 => 0.0032656973160704
207 => 0.0032678424677292
208 => 0.0031669704182116
209 => 0.0031617396703017
210 => 0.0030904180513928
211 => 0.0031194821382809
212 => 0.0030651482209214
213 => 0.0030823780658175
214 => 0.0030899728172757
215 => 0.0030860057501123
216 => 0.0031211253781462
217 => 0.0030912665198514
218 => 0.0030124640835605
219 => 0.0029336401775986
220 => 0.0029326506076678
221 => 0.0029118976645855
222 => 0.0028968970878282
223 => 0.0028997867310857
224 => 0.0029099702108273
225 => 0.002896305205473
226 => 0.0028992213271987
227 => 0.0029476483778625
228 => 0.0029573600775072
229 => 0.0029243559275085
301 => 0.0027918395027877
302 => 0.0027593196397689
303 => 0.0027826942724099
304 => 0.0027715227035266
305 => 0.0022368351302241
306 => 0.0023624520444387
307 => 0.0022878147395597
308 => 0.0023222110435452
309 => 0.0022460256825002
310 => 0.0022823853300078
311 => 0.0022756710307549
312 => 0.0024776593115371
313 => 0.0024745055423585
314 => 0.0024760150847706
315 => 0.0024039606923514
316 => 0.0025187452959651
317 => 0.002575292319226
318 => 0.0025648269701707
319 => 0.0025674608730608
320 => 0.0025222016948707
321 => 0.0024764532925471
322 => 0.0024257112737416
323 => 0.0025199836727791
324 => 0.0025095021912897
325 => 0.0025335429387085
326 => 0.0025946853282146
327 => 0.0026036887773267
328 => 0.0026157895042374
329 => 0.0026114522550283
330 => 0.0027147831275322
331 => 0.002702269077073
401 => 0.0027324243381418
402 => 0.0026703926782381
403 => 0.0026001979669578
404 => 0.0026135396867341
405 => 0.0026122547718323
406 => 0.0025958963303758
407 => 0.0025811286608641
408 => 0.0025565446518922
409 => 0.0026343320940279
410 => 0.0026311740659337
411 => 0.0026822988699721
412 => 0.0026732620642584
413 => 0.0026129120640214
414 => 0.0026150674760863
415 => 0.0026295636580785
416 => 0.0026797351094681
417 => 0.0026946294121734
418 => 0.0026877297777249
419 => 0.0027040607006905
420 => 0.0027169679963372
421 => 0.0027056816582996
422 => 0.0028654724041323
423 => 0.0027991161458906
424 => 0.0028314577244537
425 => 0.0028391710003734
426 => 0.0028194136062979
427 => 0.0028236982776136
428 => 0.0028301883871539
429 => 0.0028695950613888
430 => 0.0029730095769943
501 => 0.0030188111619895
502 => 0.0031566074902581
503 => 0.0030150079779445
504 => 0.0030066060488809
505 => 0.0030314273286525
506 => 0.0031123283605688
507 => 0.0031778910482895
508 => 0.0031996419742086
509 => 0.0032025167181375
510 => 0.003243322901136
511 => 0.0032667122442405
512 => 0.0032383679572108
513 => 0.0032143491417237
514 => 0.0031283167259741
515 => 0.0031382752123556
516 => 0.0032068793081685
517 => 0.0033037866342652
518 => 0.003386943201545
519 => 0.0033578246699825
520 => 0.0035799785113242
521 => 0.0036020041572761
522 => 0.00359896092518
523 => 0.0036491386245141
524 => 0.0035495461098466
525 => 0.0035069683803121
526 => 0.0032195422822572
527 => 0.0033002972918524
528 => 0.0034176794408746
529 => 0.003402143473291
530 => 0.0033168974190373
531 => 0.0033868785347686
601 => 0.003363740589396
602 => 0.0033454907318864
603 => 0.0034290968670468
604 => 0.0033371684870872
605 => 0.0034167623849629
606 => 0.0033146823876439
607 => 0.003357957680982
608 => 0.0033333925314929
609 => 0.0033492891938038
610 => 0.0032563576307562
611 => 0.0033065012463905
612 => 0.003254271491489
613 => 0.0032542467277846
614 => 0.0032530937530503
615 => 0.0033145418280699
616 => 0.0033165456475902
617 => 0.0032711354273079
618 => 0.0032645911051242
619 => 0.0032887888942553
620 => 0.0032604596205938
621 => 0.0032737147094377
622 => 0.0032608611037317
623 => 0.003257967486349
624 => 0.0032349106507347
625 => 0.0032249771319911
626 => 0.0032288723206457
627 => 0.0032155760336602
628 => 0.0032075645398037
629 => 0.0032515000652759
630 => 0.0032280270863702
701 => 0.0032479024946087
702 => 0.0032252519584444
703 => 0.0031467353317301
704 => 0.0031015795894085
705 => 0.0029532689600404
706 => 0.0029953296705505
707 => 0.0030232159651336
708 => 0.0030139995449402
709 => 0.0030337999817967
710 => 0.0030350155678072
711 => 0.0030285782439436
712 => 0.0030211246475818
713 => 0.0030174966490826
714 => 0.0030445367775321
715 => 0.003060234482226
716 => 0.0030260147278655
717 => 0.003017997518204
718 => 0.0030525955791869
719 => 0.0030737003763999
720 => 0.0032295263412589
721 => 0.0032179822504709
722 => 0.0032469556529354
723 => 0.003243693692451
724 => 0.0032740624340587
725 => 0.0033237024917996
726 => 0.003222770374834
727 => 0.0032402887003692
728 => 0.0032359936115052
729 => 0.0032828862654898
730 => 0.003283032659237
731 => 0.0032549181707115
801 => 0.0032701594910467
802 => 0.0032616522041593
803 => 0.0032770260213935
804 => 0.0032178280721004
805 => 0.0032899247843157
806 => 0.0033307989743323
807 => 0.0033313665125003
808 => 0.0033507405541705
809 => 0.0033704257025763
810 => 0.0034082096307261
811 => 0.0033693719293275
812 => 0.0032995066852854
813 => 0.0033045507302419
814 => 0.0032635887632227
815 => 0.0032642773412886
816 => 0.0032606016576076
817 => 0.0032716326610269
818 => 0.0032202487570238
819 => 0.0032323084565886
820 => 0.0032154248065763
821 => 0.0032402519986114
822 => 0.0032135420440635
823 => 0.0032359915402833
824 => 0.0032456799986392
825 => 0.0032814306185499
826 => 0.0032082616484348
827 => 0.0030590651652661
828 => 0.0030904280748606
829 => 0.0030440398680669
830 => 0.003048333273218
831 => 0.0030570066349136
901 => 0.0030288934319108
902 => 0.0030342565450949
903 => 0.0030340649369523
904 => 0.0030324137614946
905 => 0.0030251004316101
906 => 0.0030144946563794
907 => 0.003056744800613
908 => 0.0030639239234164
909 => 0.0030798822241032
910 => 0.0031273633023283
911 => 0.0031226188229326
912 => 0.0031303572656734
913 => 0.0031134642886198
914 => 0.0030491168899733
915 => 0.0030526112633045
916 => 0.0030090363718712
917 => 0.0030787679161595
918 => 0.0030622545660606
919 => 0.0030516083018262
920 => 0.0030487033699929
921 => 0.003096302144627
922 => 0.0031105444440169
923 => 0.0031016695988022
924 => 0.0030834670323464
925 => 0.0031184213410473
926 => 0.0031277736394517
927 => 0.003129867274165
928 => 0.0031917996073589
929 => 0.0031333286036081
930 => 0.0031474031553627
1001 => 0.0032572087903943
1002 => 0.0031576302315625
1003 => 0.0032103792150425
1004 => 0.0032077974267937
1005 => 0.0032347820218138
1006 => 0.0032055839023807
1007 => 0.0032059458480647
1008 => 0.0032299063403478
1009 => 0.0031962581502338
1010 => 0.003187926385166
1011 => 0.0031764161113981
1012 => 0.0032015483730754
1013 => 0.0032166140273165
1014 => 0.0033380321359961
1015 => 0.0034164737715416
1016 => 0.0034130684132675
1017 => 0.0034441870133294
1018 => 0.0034301677989878
1019 => 0.0033848960577969
1020 => 0.0034621693997091
1021 => 0.0034377168810742
1022 => 0.0034397327170006
1023 => 0.0034396576874867
1024 => 0.0034559164747027
1025 => 0.0034443956338642
1026 => 0.0034216868739815
1027 => 0.0034367620085651
1028 => 0.0034815297688192
1029 => 0.0036204902702904
1030 => 0.0036982544078955
1031 => 0.003615808771563
1101 => 0.0036726786675141
1102 => 0.0036385769947593
1103 => 0.0036323797063829
1104 => 0.0036680982036924
1105 => 0.0037038792215032
1106 => 0.0037016001253542
1107 => 0.0036756249437992
1108 => 0.0036609522228346
1109 => 0.0037720589817007
1110 => 0.0038539205489789
1111 => 0.0038483381388974
1112 => 0.0038729770815
1113 => 0.003945317779035
1114 => 0.0039519317058144
1115 => 0.0039510985030596
1116 => 0.0039347051954448
1117 => 0.0040059340067946
1118 => 0.0040653543343743
1119 => 0.0039309106183802
1120 => 0.0039821050254333
1121 => 0.0040050878441402
1122 => 0.004038833440697
1123 => 0.004095767918507
1124 => 0.004157613862533
1125 => 0.0041663595571246
1126 => 0.0041601540682918
1127 => 0.0041193650056984
1128 => 0.0041870375756273
1129 => 0.0042266785799746
1130 => 0.0042502838908951
1201 => 0.0043101430318404
1202 => 0.0040052297782042
1203 => 0.0037893970221085
1204 => 0.0037556916205814
1205 => 0.0038242328799863
1206 => 0.003842306663485
1207 => 0.0038350211440193
1208 => 0.0035920817543779
1209 => 0.0037544125949724
1210 => 0.0039290669302874
1211 => 0.003935776114609
1212 => 0.0040232117267176
1213 => 0.004051684346127
1214 => 0.0041220814743221
1215 => 0.0041176781147864
1216 => 0.0041348186952389
1217 => 0.0041308783726264
1218 => 0.0042612742287435
1219 => 0.0044051202220128
1220 => 0.0044001392926681
1221 => 0.0043794597292271
1222 => 0.0044101724073265
1223 => 0.0045586368878538
1224 => 0.0045449686575817
1225 => 0.004558246179034
1226 => 0.0047332941686671
1227 => 0.0049608814554764
1228 => 0.0048551443113635
1229 => 0.0050845634890449
1230 => 0.0052289707004073
1231 => 0.0054787080404743
]
'min_raw' => 0.0022368351302241
'max_raw' => 0.0054787080404743
'avg_raw' => 0.0038577715853492
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002236'
'max' => '$0.005478'
'avg' => '$0.003857'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00099738964567382
'max_diff' => 0.0022226767625132
'year' => 2028
]
3 => [
'items' => [
101 => 0.0054474396955156
102 => 0.0055446606093464
103 => 0.0053914628321389
104 => 0.0050396897692917
105 => 0.0049840203355629
106 => 0.0050954719516625
107 => 0.0053694648745537
108 => 0.0050868429394626
109 => 0.0051440169888439
110 => 0.0051275508587758
111 => 0.005126673448681
112 => 0.0051601606233141
113 => 0.0051115857299353
114 => 0.0049136828758532
115 => 0.0050043805876302
116 => 0.0049693578454512
117 => 0.0050082181890171
118 => 0.0052179314360176
119 => 0.0051252122105793
120 => 0.0050275400384783
121 => 0.0051500426174831
122 => 0.0053060304970095
123 => 0.0052962690558459
124 => 0.0052773277800226
125 => 0.0053840987601053
126 => 0.00556045313824
127 => 0.0056081210180005
128 => 0.0056433084723128
129 => 0.0056481602277655
130 => 0.0056981363242781
131 => 0.005429402257732
201 => 0.0058558901229211
202 => 0.0059295327957497
203 => 0.005915691025434
204 => 0.0059975417569256
205 => 0.0059734591953681
206 => 0.0059385673421095
207 => 0.0060683181616736
208 => 0.0059195693173946
209 => 0.0057084390598992
210 => 0.0055926088249543
211 => 0.0057451434220883
212 => 0.0058382909778342
213 => 0.005899855586885
214 => 0.0059184850003855
215 => 0.0054502633183302
216 => 0.0051979178004673
217 => 0.0053596683842702
218 => 0.0055570152599386
219 => 0.0054283059858733
220 => 0.0054333511457378
221 => 0.005249845545123
222 => 0.0055732514337494
223 => 0.0055261339160482
224 => 0.0057705796812315
225 => 0.0057122407375706
226 => 0.0059115767697477
227 => 0.0058590849119975
228 => 0.0060769756787381
301 => 0.0061638982047479
302 => 0.0063098546543293
303 => 0.006417220812791
304 => 0.006480268274627
305 => 0.0064764831415035
306 => 0.0067263085954187
307 => 0.0065789952534814
308 => 0.0063939349769194
309 => 0.006390587820374
310 => 0.0064864331599299
311 => 0.0066872986977543
312 => 0.0067393802092375
313 => 0.0067684866690661
314 => 0.0067239091126354
315 => 0.0065640110380049
316 => 0.006494967860081
317 => 0.0065537946480456
318 => 0.0064818545414084
319 => 0.006606043348293
320 => 0.0067765811054432
321 => 0.006741365732971
322 => 0.0068590854433617
323 => 0.0069809129591414
324 => 0.0071551317783223
325 => 0.0072006790289604
326 => 0.0072759669022584
327 => 0.0073534628546601
328 => 0.007378352465997
329 => 0.007425874456832
330 => 0.0074256239924828
331 => 0.0075688347104631
401 => 0.007726800567262
402 => 0.0077864290212857
403 => 0.0079235413633808
404 => 0.0076887412825324
405 => 0.0078668398410449
406 => 0.0080274891989192
407 => 0.0078359564116658
408 => 0.0080999397374787
409 => 0.0081101896118209
410 => 0.0082649505451774
411 => 0.0081080706906133
412 => 0.0080149159337513
413 => 0.0082838502263485
414 => 0.0084139790591855
415 => 0.0083747831957114
416 => 0.0080765007393354
417 => 0.0079028875557882
418 => 0.007448508366963
419 => 0.0079867401438466
420 => 0.0082488971419305
421 => 0.0080758218160428
422 => 0.0081631109432301
423 => 0.0086393321175691
424 => 0.0088206463077198
425 => 0.0087829342236503
426 => 0.0087893069450643
427 => 0.0088871407909843
428 => 0.0093209899418764
429 => 0.0090610174741173
430 => 0.0092597566847366
501 => 0.0093651672454416
502 => 0.0094630784488188
503 => 0.0092226394784781
504 => 0.0089098319108148
505 => 0.0088107526233675
506 => 0.0080586128858252
507 => 0.0080194607461088
508 => 0.0079974834636547
509 => 0.0078589198065302
510 => 0.0077500467278102
511 => 0.0076634668134139
512 => 0.0074362552630869
513 => 0.0075129324914572
514 => 0.007150804702972
515 => 0.007382481229024
516 => 0.0068045165347204
517 => 0.0072858627064501
518 => 0.0070238878693025
519 => 0.0071997969266564
520 => 0.007199183196527
521 => 0.0068752788499209
522 => 0.0066884575825098
523 => 0.0068075073652966
524 => 0.0069351381826277
525 => 0.006955845853338
526 => 0.0071213225395129
527 => 0.0071675035257149
528 => 0.0070275729815389
529 => 0.0067925395010802
530 => 0.0068471324180478
531 => 0.0066873512587899
601 => 0.0064073409230839
602 => 0.0066084492346994
603 => 0.0066771164543932
604 => 0.0067074438104952
605 => 0.0064320858047327
606 => 0.0063455623410089
607 => 0.0062994979749246
608 => 0.006756994240334
609 => 0.0067820569184926
610 => 0.0066538327135278
611 => 0.0072334182786865
612 => 0.0071022402150556
613 => 0.0072487982515372
614 => 0.0068421786830489
615 => 0.006857712098151
616 => 0.006665211878061
617 => 0.006772999138442
618 => 0.0066968185769503
619 => 0.0067642909929777
620 => 0.0068047336809454
621 => 0.0069972023136435
622 => 0.0072880603890689
623 => 0.0069684539181817
624 => 0.0068291968019671
625 => 0.0069155911336549
626 => 0.0071456706238512
627 => 0.0074942528290511
628 => 0.0072878851477021
629 => 0.0073794676203343
630 => 0.0073994743163838
701 => 0.0072473064283039
702 => 0.0074998634761346
703 => 0.0076352108498369
704 => 0.0077740492490627
705 => 0.0078945987409469
706 => 0.0077185941392901
707 => 0.0079069442923315
708 => 0.0077551673172579
709 => 0.0076190076802016
710 => 0.0076192141781667
711 => 0.0075337992488664
712 => 0.0073682970603734
713 => 0.0073377759175561
714 => 0.0074965507568869
715 => 0.0076238731419969
716 => 0.0076343600234676
717 => 0.0077048522379249
718 => 0.0077465688043131
719 => 0.0081554478658399
720 => 0.008319902406811
721 => 0.0085209943065453
722 => 0.0085993309344103
723 => 0.0088350960990484
724 => 0.0086446965806927
725 => 0.0086035024472273
726 => 0.0080316132760127
727 => 0.0081252600957613
728 => 0.0082751976897528
729 => 0.0080340856917122
730 => 0.0081870157581372
731 => 0.0082172073927512
801 => 0.0080258927982814
802 => 0.0081280821894034
803 => 0.0078566974636263
804 => 0.0072939758344819
805 => 0.0075004899461704
806 => 0.0076525538442714
807 => 0.0074355399123378
808 => 0.0078245289857298
809 => 0.0075972895994186
810 => 0.0075252656233721
811 => 0.0072442744144134
812 => 0.0073768914486984
813 => 0.0075562578864619
814 => 0.0074454302815106
815 => 0.0076754142026332
816 => 0.0080011327694142
817 => 0.0082332592169784
818 => 0.0082510790032968
819 => 0.0081018372487772
820 => 0.008340998112843
821 => 0.0083427401386398
822 => 0.0080729657069728
823 => 0.0079077303696871
824 => 0.0078701885533976
825 => 0.0079639753709953
826 => 0.0080778498815605
827 => 0.0082573982461068
828 => 0.0083658955624235
829 => 0.0086487990208473
830 => 0.008725344585219
831 => 0.0088094449532984
901 => 0.0089218289806455
902 => 0.0090567748201489
903 => 0.0087615210057864
904 => 0.008773251990253
905 => 0.008498315726386
906 => 0.0082045068985955
907 => 0.0084274711751011
908 => 0.0087189673069374
909 => 0.0086520977722195
910 => 0.0086445735835431
911 => 0.0086572271818609
912 => 0.0086068097364385
913 => 0.0083787734993506
914 => 0.0082642551286674
915 => 0.0084120130436009
916 => 0.0084905397994399
917 => 0.0086123279494934
918 => 0.0085973149893633
919 => 0.0089110281848085
920 => 0.009032927646364
921 => 0.009001740547726
922 => 0.0090074797244349
923 => 0.0092281728769037
924 => 0.0094736290514576
925 => 0.0097035311497223
926 => 0.0099373974386021
927 => 0.0096554624994009
928 => 0.0095123133246042
929 => 0.0096600067330544
930 => 0.0095816385315955
1001 => 0.010031965462697
1002 => 0.010063145122346
1003 => 0.010513439489684
1004 => 0.010940822464344
1005 => 0.010672390875322
1006 => 0.010925509773346
1007 => 0.011199278498645
1008 => 0.011727422787123
1009 => 0.011549562371104
1010 => 0.011413324079861
1011 => 0.011284579552935
1012 => 0.01155247647585
1013 => 0.011897121587421
1014 => 0.011971354843484
1015 => 0.012091641077592
1016 => 0.011965174810328
1017 => 0.012117489499445
1018 => 0.012655227282491
1019 => 0.012509925786769
1020 => 0.012303574304463
1021 => 0.012728066639293
1022 => 0.012881688765096
1023 => 0.013959889296511
1024 => 0.015321162005666
1025 => 0.014757586165478
1026 => 0.014407756454994
1027 => 0.014489974735029
1028 => 0.014987065446423
1029 => 0.015146715206052
1030 => 0.014712732124808
1031 => 0.014866022285863
1101 => 0.015710666144432
1102 => 0.016163790475136
1103 => 0.015548386771324
1104 => 0.013850512359773
1105 => 0.012284994611222
1106 => 0.012700240414321
1107 => 0.012653164426827
1108 => 0.013560628881392
1109 => 0.012506460394151
1110 => 0.01252420988791
1111 => 0.013450439746375
1112 => 0.013203337499736
1113 => 0.012803063506646
1114 => 0.012287917054341
1115 => 0.011335621191976
1116 => 0.010492146189944
1117 => 0.01214639490962
1118 => 0.012075060696772
1119 => 0.011971758185429
1120 => 0.012201646745923
1121 => 0.013317920340676
1122 => 0.013292186621292
1123 => 0.013128481828029
1124 => 0.013252650470891
1125 => 0.012781296143206
1126 => 0.012902774885989
1127 => 0.012284746625212
1128 => 0.012564121210223
1129 => 0.012802204698429
1130 => 0.012850003483573
1201 => 0.012957696587168
1202 => 0.012037470808052
1203 => 0.012450625166466
1204 => 0.012693314644706
1205 => 0.011596834752899
1206 => 0.012671640762696
1207 => 0.012021451724555
1208 => 0.011800767799499
1209 => 0.012097889631691
1210 => 0.011982100964725
1211 => 0.011882552668207
1212 => 0.011827003008293
1213 => 0.012045176489715
1214 => 0.012034998436033
1215 => 0.011678024274778
1216 => 0.01121236603355
1217 => 0.011368656224017
1218 => 0.011311874532592
1219 => 0.011106090357883
1220 => 0.011244764045161
1221 => 0.010634115307539
1222 => 0.0095835258932192
1223 => 0.010277577440743
1224 => 0.010250857211146
1225 => 0.010237383659717
1226 => 0.010758944215505
1227 => 0.010708808202516
1228 => 0.010617810848006
1229 => 0.011104419120107
1230 => 0.010926800554985
1231 => 0.011474179120493
]
'min_raw' => 0.0049136828758532
'max_raw' => 0.016163790475136
'avg_raw' => 0.010538736675494
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.004913'
'max' => '$0.016163'
'avg' => '$0.010538'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0026768477456291
'max_diff' => 0.010685082434661
'year' => 2029
]
4 => [
'items' => [
101 => 0.011834718045963
102 => 0.011743273712251
103 => 0.012082362314291
104 => 0.011372256834343
105 => 0.011608125390295
106 => 0.011656737572777
107 => 0.011098414449563
108 => 0.010717011074283
109 => 0.010691575817469
110 => 0.010030274925356
111 => 0.010383536524088
112 => 0.010694392112015
113 => 0.010545516408766
114 => 0.010498386808653
115 => 0.010739161714469
116 => 0.010757871986748
117 => 0.010331275795949
118 => 0.010419978652561
119 => 0.010789884310254
120 => 0.010410657979067
121 => 0.0096738831638402
122 => 0.0094911528229552
123 => 0.0094667732270928
124 => 0.0089711940500865
125 => 0.0095033637380923
126 => 0.0092710574080168
127 => 0.010004910321268
128 => 0.009585737472951
129 => 0.0095676677692502
130 => 0.0095403527618573
131 => 0.00911378729209
201 => 0.0092071780203192
202 => 0.0095176230247626
203 => 0.0096283932997613
204 => 0.0096168390525648
205 => 0.0095161016748782
206 => 0.0095622187305243
207 => 0.0094136596260408
208 => 0.0093612003142573
209 => 0.0091956242961982
210 => 0.0089522732911936
211 => 0.0089861127409979
212 => 0.0085039707238297
213 => 0.0082412741636629
214 => 0.0081685632180937
215 => 0.008071331102879
216 => 0.008179545844232
217 => 0.008502604876073
218 => 0.0081129271428758
219 => 0.0074448520020239
220 => 0.0074850044563337
221 => 0.0075752150997973
222 => 0.007407108162506
223 => 0.0072480090545057
224 => 0.0073863328207934
225 => 0.0071032605765354
226 => 0.0076094230281222
227 => 0.0075957327523106
228 => 0.0077843988133861
301 => 0.007902375573194
302 => 0.0076304773372665
303 => 0.0075620956662217
304 => 0.0076010489738225
305 => 0.0069572375687469
306 => 0.0077317856862885
307 => 0.0077384840105728
308 => 0.0076811288913799
309 => 0.0080935518524806
310 => 0.0089638929383504
311 => 0.0086364356124571
312 => 0.0085096342384212
313 => 0.0082685847336876
314 => 0.0085897688866417
315 => 0.0085651069549481
316 => 0.0084535763470699
317 => 0.0083861222874285
318 => 0.0085104084605722
319 => 0.0083707218551618
320 => 0.0083456303024989
321 => 0.0081936027932402
322 => 0.0081393358892458
323 => 0.008099158833956
324 => 0.0080549278437978
325 => 0.0081524903864107
326 => 0.0079314008294287
327 => 0.0076647884973849
328 => 0.0076426225667608
329 => 0.0077038246500623
330 => 0.0076767472841607
331 => 0.0076424929307503
401 => 0.0075770920414719
402 => 0.0075576889946919
403 => 0.0076207394837068
404 => 0.0075495591576809
405 => 0.0076545896061252
406 => 0.0076260271357481
407 => 0.007466479498054
408 => 0.007267624069386
409 => 0.0072658538389575
410 => 0.0072230107630393
411 => 0.0071684436643578
412 => 0.0071532643458307
413 => 0.007374683579013
414 => 0.0078330147651803
415 => 0.0077430333863999
416 => 0.0078080541542313
417 => 0.0081278919785428
418 => 0.0082295588050325
419 => 0.0081573980997009
420 => 0.0080586200755645
421 => 0.0080629658073196
422 => 0.008400520217935
423 => 0.0084215730724724
424 => 0.0084747668439802
425 => 0.0085431358729257
426 => 0.0081690416409664
427 => 0.008045346002636
428 => 0.0079867321468223
429 => 0.0078062241573332
430 => 0.0080008865484118
501 => 0.007887465109405
502 => 0.0079027695365551
503 => 0.0078928025082962
504 => 0.007898245179693
505 => 0.0076092815454013
506 => 0.0077145647062557
507 => 0.0075395110313304
508 => 0.0073051338113026
509 => 0.0073043480966778
510 => 0.0073617115892377
511 => 0.0073275895392294
512 => 0.0072357679800153
513 => 0.0072488107991161
514 => 0.0071345419794936
515 => 0.007262685102722
516 => 0.0072663597889781
517 => 0.007217017706532
518 => 0.0074144398682088
519 => 0.0074953238889289
520 => 0.0074628458732531
521 => 0.0074930451447694
522 => 0.0077467725189298
523 => 0.0077881411518194
524 => 0.0078065143658904
525 => 0.0077818966930196
526 => 0.0074976828153951
527 => 0.0075102889094385
528 => 0.007417793755623
529 => 0.0073396450975481
530 => 0.0073427706340354
531 => 0.0073829492029003
601 => 0.0075584113695754
602 => 0.0079276611552833
603 => 0.0079416739147328
604 => 0.0079586577879667
605 => 0.0078895758401138
606 => 0.0078687400636161
607 => 0.0078962278309867
608 => 0.0080348986362672
609 => 0.0083915975962051
610 => 0.0082655163606405
611 => 0.0081630103535552
612 => 0.0082529357571901
613 => 0.0082390924461591
614 => 0.0081222409696418
615 => 0.0081189613378819
616 => 0.0078946859947683
617 => 0.0078117765069217
618 => 0.0077424911332095
619 => 0.0076668333138562
620 => 0.0076219808224705
621 => 0.0076908946343317
622 => 0.0077066560384686
623 => 0.0075559747844268
624 => 0.0075354374862872
625 => 0.0076584870510186
626 => 0.0076043375253305
627 => 0.0076600316553443
628 => 0.0076729531712429
629 => 0.0076708725095755
630 => 0.0076143341857237
701 => 0.0076503700273497
702 => 0.0075651345191027
703 => 0.0074724537058435
704 => 0.0074133291212027
705 => 0.0073617350793656
706 => 0.0073903624524402
707 => 0.0072883110945812
708 => 0.0072556628113141
709 => 0.0076381618950389
710 => 0.0079207180807446
711 => 0.0079166096018999
712 => 0.0078916002935478
713 => 0.0078544415342895
714 => 0.0080321802415799
715 => 0.0079702596299576
716 => 0.008015312048553
717 => 0.0080267797799296
718 => 0.0080614891489469
719 => 0.0080738947649995
720 => 0.0080363963770342
721 => 0.0079105472069804
722 => 0.0075969430405862
723 => 0.0074509594545715
724 => 0.0074027824396377
725 => 0.0074045335826294
726 => 0.0073562292414727
727 => 0.007370457034792
728 => 0.0073512813955885
729 => 0.0073149673740224
730 => 0.0073881201639387
731 => 0.0073965503415112
801 => 0.007379475606234
802 => 0.0073834973245062
803 => 0.0072421258091257
804 => 0.0072528739783973
805 => 0.0071930268060818
806 => 0.007181806182741
807 => 0.0070305177426169
808 => 0.0067624883413268
809 => 0.006911002647885
810 => 0.0067316182498344
811 => 0.0066636826601754
812 => 0.0069852791754691
813 => 0.0069529998050324
814 => 0.0068977515543499
815 => 0.0068160278768462
816 => 0.0067857157699032
817 => 0.0066015490037647
818 => 0.0065906674487297
819 => 0.006681945470949
820 => 0.0066398238043798
821 => 0.006580669031794
822 => 0.0063664164419115
823 => 0.0061255255942888
824 => 0.0061327965747927
825 => 0.0062094194714879
826 => 0.0064322108776346
827 => 0.0063451624209227
828 => 0.0062820077668121
829 => 0.0062701807985192
830 => 0.0064182200681409
831 => 0.0066277266498415
901 => 0.0067260224505298
902 => 0.0066286142973355
903 => 0.0065167170557733
904 => 0.0065235277223853
905 => 0.0065688360361226
906 => 0.0065735972992713
907 => 0.0065007636982366
908 => 0.0065212659303026
909 => 0.0064901211650309
910 => 0.0062989857980475
911 => 0.0062955287653556
912 => 0.0062486210638237
913 => 0.0062472007172636
914 => 0.0061673990152834
915 => 0.0061562342055332
916 => 0.0059977830826344
917 => 0.0061020760915606
918 => 0.0060321218168016
919 => 0.0059266842241946
920 => 0.0059085067434873
921 => 0.0059079603064673
922 => 0.0060162211386604
923 => 0.0061008110007039
924 => 0.0060333387013611
925 => 0.0060179765666963
926 => 0.0061820039742946
927 => 0.0061611299915347
928 => 0.0061430532570874
929 => 0.0066089676333385
930 => 0.0062401600487836
1001 => 0.0060793388911166
1002 => 0.0058802921693943
1003 => 0.0059451027856678
1004 => 0.0059587593347827
1005 => 0.0054800878499088
1006 => 0.0052858908881102
1007 => 0.005219249808979
1008 => 0.0051808969257725
1009 => 0.0051983748162549
1010 => 0.0050235747736044
1011 => 0.0051410432931914
1012 => 0.0049896812317358
1013 => 0.0049643048895581
1014 => 0.0052349590056019
1015 => 0.005272618944711
1016 => 0.0051119499444456
1017 => 0.0052151254525644
1018 => 0.0051777125790737
1019 => 0.004992275899844
1020 => 0.0049851935826773
1021 => 0.0048921479754544
1022 => 0.0047465496173302
1023 => 0.004680007260742
1024 => 0.0046453514236836
1025 => 0.0046596510974827
1026 => 0.0046524207448326
1027 => 0.004605237802992
1028 => 0.0046551252158286
1029 => 0.0045276834909334
1030 => 0.0044769351692124
1031 => 0.0044540133296431
1101 => 0.0043409014635266
1102 => 0.0045209127435931
1103 => 0.0045563772334886
1104 => 0.0045919115993846
1105 => 0.004901213994168
1106 => 0.0048857621206041
1107 => 0.005025439532254
1108 => 0.0050200119248876
1109 => 0.004980173664461
1110 => 0.0048121025967969
1111 => 0.0048790927287891
1112 => 0.0046729075150952
1113 => 0.0048273954964264
1114 => 0.0047568936333192
1115 => 0.0048035587455913
1116 => 0.0047196506661024
1117 => 0.0047660888617713
1118 => 0.0045647871796886
1119 => 0.0043768145013509
1120 => 0.0044524601943786
1121 => 0.0045346957138339
1122 => 0.0047130032732338
1123 => 0.0046068047618607
1124 => 0.0046449977623608
1125 => 0.0045170576041165
1126 => 0.0042530805133591
1127 => 0.004254574595025
1128 => 0.0042139674706655
1129 => 0.0041788769864817
1130 => 0.0046190029383968
1201 => 0.0045642663189145
1202 => 0.0044770506795211
1203 => 0.0045937922786609
1204 => 0.0046246606104118
1205 => 0.004625539388421
1206 => 0.0047107110456166
1207 => 0.0047561671743298
1208 => 0.0047641790140336
1209 => 0.0048981984568864
1210 => 0.0049431200063714
1211 => 0.0051281455111647
1212 => 0.0047523105393928
1213 => 0.0047445704654742
1214 => 0.0045954350723679
1215 => 0.0045008510483227
1216 => 0.0046019113214145
1217 => 0.0046914369272708
1218 => 0.0045982168824935
1219 => 0.0046103894523589
1220 => 0.0044852491586029
1221 => 0.0045299809252226
1222 => 0.0045685099486551
1223 => 0.004547236486547
1224 => 0.0045153890841239
1225 => 0.0046840968485272
1226 => 0.0046745776952885
1227 => 0.0048316822440755
1228 => 0.0049541564745091
1229 => 0.0051736521903335
1230 => 0.0049445969683003
1231 => 0.0049362492855973
]
'min_raw' => 0.0041788769864817
'max_raw' => 0.012082362314291
'avg_raw' => 0.0081306196503864
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.004178'
'max' => '$0.012082'
'avg' => '$0.00813'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00073480588937152
'max_diff' => -0.0040814281608444
'year' => 2030
]
5 => [
'items' => [
101 => 0.005017849223029
102 => 0.0049431075138462
103 => 0.0049903416940536
104 => 0.0051660420336645
105 => 0.0051697543049755
106 => 0.0051075689775247
107 => 0.0051037849946979
108 => 0.0051157283670677
109 => 0.0051856810720825
110 => 0.0051612374475209
111 => 0.0051895242287005
112 => 0.0052248972817082
113 => 0.0053712152268117
114 => 0.0054064919880191
115 => 0.0053207877471888
116 => 0.005328525880546
117 => 0.0052964701418415
118 => 0.0052655046999101
119 => 0.0053351104912322
120 => 0.0054623164429786
121 => 0.0054615251013547
122 => 0.0054910344096295
123 => 0.0055094184642164
124 => 0.005430500643979
125 => 0.0053791280448932
126 => 0.0053988275683061
127 => 0.0054303275352432
128 => 0.0053886125535744
129 => 0.0051311283624552
130 => 0.0052092326178869
131 => 0.0051962322506801
201 => 0.005177718146879
202 => 0.0052562525796779
203 => 0.0052486777420485
204 => 0.0050217819465151
205 => 0.0050363070791836
206 => 0.0050226652679415
207 => 0.0050667447509167
208 => 0.004940727077109
209 => 0.0049794892648302
210 => 0.0050038005455961
211 => 0.0050181200767352
212 => 0.0050698520422043
213 => 0.0050637818931446
214 => 0.0050694747132158
215 => 0.0051461795612739
216 => 0.0055341263608261
217 => 0.0055552414491694
218 => 0.0054512630316864
219 => 0.0054928003585873
220 => 0.0054130577741525
221 => 0.0054665895053124
222 => 0.0055032145562136
223 => 0.0053377129937837
224 => 0.0053279130653529
225 => 0.0052478413549061
226 => 0.0052908673566067
227 => 0.005222409894222
228 => 0.0052392069609509
301 => 0.0051922408980351
302 => 0.0052767704604336
303 => 0.0053712876457611
304 => 0.0053951664193716
305 => 0.0053323516464608
306 => 0.0052868696111782
307 => 0.0052070181399356
308 => 0.0053398129162181
309 => 0.0053786461556505
310 => 0.0053396089417431
311 => 0.0053305631663008
312 => 0.005313421438183
313 => 0.0053341998649552
314 => 0.0053784346614887
315 => 0.0053575743483319
316 => 0.0053713529526834
317 => 0.0053188431213307
318 => 0.0054305267690613
319 => 0.005607907279791
320 => 0.0056084775871376
321 => 0.005587617161536
322 => 0.0055790815248239
323 => 0.0056004855874077
324 => 0.0056120964133188
325 => 0.0056813132268808
326 => 0.0057555856255524
327 => 0.0061021825025664
328 => 0.0060048594864307
329 => 0.006312380854858
330 => 0.0065555903306319
331 => 0.0066285182181551
401 => 0.0065614279931561
402 => 0.006331915957577
403 => 0.0063206550021665
404 => 0.0066636428808036
405 => 0.0065667330952486
406 => 0.0065552059846212
407 => 0.0064325770029065
408 => 0.0065050659189948
409 => 0.006489211529698
410 => 0.0064641846005699
411 => 0.0066024884028445
412 => 0.0068613807742371
413 => 0.0068210299702783
414 => 0.006790909966943
415 => 0.0066589328801287
416 => 0.0067384125645404
417 => 0.0067101113712545
418 => 0.0068317112579919
419 => 0.0067596781788559
420 => 0.0065659989083096
421 => 0.0065968429705193
422 => 0.006592180952566
423 => 0.006688124951692
424 => 0.0066593249446308
425 => 0.0065865572889637
426 => 0.0068604959082569
427 => 0.0068427078580466
428 => 0.0068679272463304
429 => 0.0068790296009883
430 => 0.0070457712112122
501 => 0.0071140799137845
502 => 0.0071295871851806
503 => 0.0071944751694396
504 => 0.0071279727130206
505 => 0.0073940299541444
506 => 0.0075709424946214
507 => 0.0077764355142214
508 => 0.0080767160471737
509 => 0.0081896243053139
510 => 0.0081692284390835
511 => 0.0083968977121136
512 => 0.008806014334945
513 => 0.0082519226056497
514 => 0.0088353825420374
515 => 0.008650665862546
516 => 0.0082127059383828
517 => 0.0081845064824751
518 => 0.0084810980279376
519 => 0.0091389095298952
520 => 0.0089741352094911
521 => 0.0091391790416545
522 => 0.0089466466446166
523 => 0.0089370857883132
524 => 0.0091298281728708
525 => 0.0095801812602301
526 => 0.0093662353896587
527 => 0.009059491522515
528 => 0.0092859864205507
529 => 0.0090897755787589
530 => 0.0086476576362452
531 => 0.0089740092096736
601 => 0.0087557872064798
602 => 0.0088194759883315
603 => 0.0092781461809718
604 => 0.0092229577699025
605 => 0.0092943766841355
606 => 0.0091683241698728
607 => 0.0090505712448944
608 => 0.0088307766659752
609 => 0.008765706326899
610 => 0.0087836894276342
611 => 0.0087656974153674
612 => 0.0086427243684786
613 => 0.0086161683507113
614 => 0.0085719071576534
615 => 0.0085856255521494
616 => 0.0085024015601317
617 => 0.0086594624280233
618 => 0.0086886143091196
619 => 0.0088029101109816
620 => 0.0088147766802927
621 => 0.0091330888615796
622 => 0.0089577678611457
623 => 0.0090753883247237
624 => 0.0090648672433746
625 => 0.0082221978579501
626 => 0.0083383102643266
627 => 0.0085189447305682
628 => 0.0084375691483706
629 => 0.0083225231140969
630 => 0.0082296172730428
701 => 0.0080888554237358
702 => 0.0082869750235435
703 => 0.0085474812296201
704 => 0.0088213835475795
705 => 0.009150459235817
706 => 0.0090770133730657
707 => 0.0088152317064882
708 => 0.0088269750408192
709 => 0.008899567712822
710 => 0.0088055536068387
711 => 0.0087778270116108
712 => 0.0088957585044085
713 => 0.0088965706337854
714 => 0.0087883960428674
715 => 0.0086681797808031
716 => 0.0086676760702756
717 => 0.0086462847475926
718 => 0.0089504521134008
719 => 0.0091177134098059
720 => 0.0091368896478837
721 => 0.009116422696195
722 => 0.0091242996135958
723 => 0.0090269739505688
724 => 0.0092494315552196
725 => 0.0094535806520242
726 => 0.0093988643330713
727 => 0.0093168367925777
728 => 0.009251497905593
729 => 0.0093834725677974
730 => 0.0093775959438368
731 => 0.0094517975877594
801 => 0.0094484313725816
802 => 0.0094234801505954
803 => 0.009398865224158
804 => 0.0094964606251373
805 => 0.0094683547169894
806 => 0.0094402051526031
807 => 0.0093837468917438
808 => 0.009391420507067
809 => 0.0093094071297849
810 => 0.0092714639887773
811 => 0.0087008901863492
812 => 0.0085484142223036
813 => 0.0085963862645268
814 => 0.0086121799064202
815 => 0.0085458221714642
816 => 0.0086409621174876
817 => 0.008626134657678
818 => 0.0086838196300232
819 => 0.0086477805636923
820 => 0.0086492596195454
821 => 0.0087552428292857
822 => 0.0087860102059581
823 => 0.0087703616698594
824 => 0.0087813213681425
825 => 0.0090338829892782
826 => 0.0089979768032187
827 => 0.0089789023575114
828 => 0.0089841861093294
829 => 0.0090487210185118
830 => 0.0090667872696075
831 => 0.0089902392942222
901 => 0.0090263397619325
902 => 0.0091800509716113
903 => 0.0092338411956979
904 => 0.0094055137702099
905 => 0.0093325842093205
906 => 0.0094664495746505
907 => 0.0098779060696087
908 => 0.010206605988405
909 => 0.0099043199589813
910 => 0.010507935500169
911 => 0.01097793678249
912 => 0.010959897350446
913 => 0.010877941755548
914 => 0.010342857791256
915 => 0.0098504655496621
916 => 0.010262372567834
917 => 0.010263422603533
918 => 0.01022803942537
919 => 0.010008277544655
920 => 0.010220392188283
921 => 0.010237229078406
922 => 0.010227804897228
923 => 0.010059313978542
924 => 0.0098020594880371
925 => 0.0098523263997016
926 => 0.0099346646264253
927 => 0.0097787811856839
928 => 0.0097289669810563
929 => 0.0098215810649992
930 => 0.010120002940374
1001 => 0.010063588013475
1002 => 0.010062114791743
1003 => 0.01030348177267
1004 => 0.010130715104581
1005 => 0.0098529604264346
1006 => 0.0097828237070686
1007 => 0.0095338856030746
1008 => 0.0097058280381904
1009 => 0.009712015940327
1010 => 0.0096178448258232
1011 => 0.00986060189337
1012 => 0.009858364844256
1013 => 0.010088826550271
1014 => 0.010529382774706
1015 => 0.010399088620685
1016 => 0.010247570695523
1017 => 0.010264044895124
1018 => 0.010444726202964
1019 => 0.010335482159691
1020 => 0.010374767079328
1021 => 0.010444666740533
1022 => 0.010486838941648
1023 => 0.010257976964377
1024 => 0.010204618289741
1025 => 0.010095465167787
1026 => 0.010066989155708
1027 => 0.010155892095986
1028 => 0.01013246931221
1029 => 0.0097114958711132
1030 => 0.0096675018042444
1031 => 0.0096688510394662
1101 => 0.009558225866521
1102 => 0.0093894959246958
1103 => 0.009832908137471
1104 => 0.0097972959312352
1105 => 0.0097579828117168
1106 => 0.0097627984445402
1107 => 0.0099552686574717
1108 => 0.0098436262139927
1109 => 0.010140445947818
1110 => 0.010079428733762
1111 => 0.010016846658403
1112 => 0.010008195909292
1113 => 0.0099841071495312
1114 => 0.0099014978292776
1115 => 0.0098017421110209
1116 => 0.0097358747451354
1117 => 0.0089808298159956
1118 => 0.0091209617629496
1119 => 0.0092821707944914
1120 => 0.009337819506175
1121 => 0.0092426285340666
1122 => 0.0099052565490523
1123 => 0.010026325072633
1124 => 0.0096596006176034
1125 => 0.0095910014453283
1126 => 0.0099097538993661
1127 => 0.0097175072036786
1128 => 0.0098040758789752
1129 => 0.0096169617535176
1130 => 0.0099971632106023
1201 => 0.0099942667125109
1202 => 0.0098463597584656
1203 => 0.0099713697032016
1204 => 0.0099496461489601
1205 => 0.0097826595621217
1206 => 0.010002456983254
1207 => 0.010002566000032
1208 => 0.0098602087725382
1209 => 0.0096939666968293
1210 => 0.0096642465401551
1211 => 0.0096418563944424
1212 => 0.0097985692756708
1213 => 0.0099390775549518
1214 => 0.010200528627737
1215 => 0.01026626363936
1216 => 0.01052283176595
1217 => 0.010370057938641
1218 => 0.010437780597535
1219 => 0.010511303123719
1220 => 0.010546552526473
1221 => 0.010489115516272
1222 => 0.010887671424521
1223 => 0.010921321754615
1224 => 0.010932604419221
1225 => 0.010798213609409
1226 => 0.010917584103083
1227 => 0.010861734602228
1228 => 0.011007039488014
1229 => 0.011029825149451
1230 => 0.011010526504837
1231 => 0.011017759033424
]
'min_raw' => 0.004940727077109
'max_raw' => 0.011029825149451
'avg_raw' => 0.0079852761132799
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.00494'
'max' => '$0.011029'
'avg' => '$0.007985'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0007618500906273
'max_diff' => -0.0010525371648403
'year' => 2031
]
6 => [
'items' => [
101 => 0.010677661875814
102 => 0.010660026044037
103 => 0.010419560226369
104 => 0.010517551824502
105 => 0.010334361228651
106 => 0.010392452853668
107 => 0.010418059088458
108 => 0.010404683844545
109 => 0.010523092122435
110 => 0.010422420897015
111 => 0.01015673298125
112 => 0.0098909726789901
113 => 0.0098876362748789
114 => 0.0098176662783528
115 => 0.0097670907865085
116 => 0.0097768334204997
117 => 0.0098111677334363
118 => 0.0097650952138243
119 => 0.0097749271218196
120 => 0.0099382023042012
121 => 0.0099709459776025
122 => 0.0098596701816058
123 => 0.0094128818036581
124 => 0.009303238815026
125 => 0.0093820480209398
126 => 0.0093443822964759
127 => 0.0075416458123923
128 => 0.0079651720089595
129 => 0.0077135271245499
130 => 0.0078294966649103
131 => 0.007572632401055
201 => 0.0076952214911763
202 => 0.0076725837624676
203 => 0.0083536013534965
204 => 0.0083429682005216
205 => 0.0083480577281567
206 => 0.0081051213134385
207 => 0.0084921256185271
208 => 0.0086827778554385
209 => 0.0086474932004312
210 => 0.0086563735879185
211 => 0.0085037791087555
212 => 0.0083495351762701
213 => 0.0081784549171727
214 => 0.0084963008924165
215 => 0.0084609618457811
216 => 0.008542016904175
217 => 0.0087481627392201
218 => 0.0087785184965024
219 => 0.0088193169421274
220 => 0.008804693603602
221 => 0.0091530808545802
222 => 0.0091108888597536
223 => 0.0092125594278203
224 => 0.0090034153555426
225 => 0.0087667489856229
226 => 0.0088117315253381
227 => 0.0088073993450368
228 => 0.008752245717556
229 => 0.0087024554887516
301 => 0.0086195687861024
302 => 0.0088818345782085
303 => 0.0088711870660026
304 => 0.0090435579122376
305 => 0.0090130896908445
306 => 0.0088096154515428
307 => 0.0088168825738057
308 => 0.0088657574634835
309 => 0.0090349140147023
310 => 0.0090851311961603
311 => 0.0090618685969002
312 => 0.0091169294438675
313 => 0.0091604472922988
314 => 0.0091223946156179
315 => 0.0096611402714266
316 => 0.0094374155139188
317 => 0.0095464574040613
318 => 0.0095724632523481
319 => 0.0095058498188054
320 => 0.0095202958872926
321 => 0.0095421777447327
322 => 0.0096750400982017
323 => 0.010023709357736
324 => 0.010178132599312
325 => 0.010642722540702
326 => 0.010165309898775
327 => 0.010136982208333
328 => 0.010220668886049
329 => 0.010493432363485
330 => 0.010714481542576
331 => 0.010787816307913
401 => 0.010797508707778
402 => 0.010935089602754
403 => 0.011013948406022
404 => 0.010918383663367
405 => 0.010837402550012
406 => 0.010547338253721
407 => 0.010580913985835
408 => 0.010812217484653
409 => 0.011138947300442
410 => 0.011419315472832
411 => 0.011321140310678
412 => 0.012070147497047
413 => 0.012144408500156
414 => 0.012134148030672
415 => 0.012303325647272
416 => 0.011967542530743
417 => 0.011823988742936
418 => 0.010854911585894
419 => 0.011127182738879
420 => 0.011522944849667
421 => 0.011470564250273
422 => 0.011183151226667
423 => 0.011419097444281
424 => 0.011341086246017
425 => 0.011279555577259
426 => 0.011561439499146
427 => 0.011251496547878
428 => 0.011519852931634
429 => 0.011175683093676
430 => 0.011321588766549
501 => 0.011238765649963
502 => 0.011292362356814
503 => 0.010979037103724
504 => 0.011148099804751
505 => 0.010972003539535
506 => 0.010971920046977
507 => 0.010968032712162
508 => 0.011175209187258
509 => 0.011181965204673
510 => 0.011028861476551
511 => 0.011006796837399
512 => 0.01108838137289
513 => 0.010992867248853
514 => 0.011037557706331
515 => 0.010994220877284
516 => 0.010984464844252
517 => 0.010906727113201
518 => 0.010873235561221
519 => 0.010886368461724
520 => 0.010841539101835
521 => 0.010814527790953
522 => 0.010962659482563
523 => 0.010883518695351
524 => 0.010950530021884
525 => 0.010874162157796
526 => 0.010609437868973
527 => 0.010457192131063
528 => 0.0099571524894306
529 => 0.0100989631115
530 => 0.010192983700646
531 => 0.010161909896494
601 => 0.010228668451778
602 => 0.010232766884882
603 => 0.010211062998036
604 => 0.010185932677509
605 => 0.01017370062727
606 => 0.010264868308219
607 => 0.010317794215574
608 => 0.0102024199246
609 => 0.010175389342483
610 => 0.010292039120646
611 => 0.010363195417939
612 => 0.010888573537883
613 => 0.010849651829809
614 => 0.010947337679076
615 => 0.01093633975156
616 => 0.011038730084169
617 => 0.0112060950046
618 => 0.010865795325395
619 => 0.010924859583028
620 => 0.010910378391049
621 => 0.011068480247899
622 => 0.011068973824638
623 => 0.010974183863683
624 => 0.011025571039308
625 => 0.010996888127608
626 => 0.011048722025779
627 => 0.010849132006668
628 => 0.011092211105534
629 => 0.011230021290919
630 => 0.011231934785477
701 => 0.011297255719621
702 => 0.011363625571844
703 => 0.011491016723591
704 => 0.011360072701763
705 => 0.01112451715364
706 => 0.011141523503375
707 => 0.011003417371696
708 => 0.011005738960721
709 => 0.010993346136562
710 => 0.01103053793475
711 => 0.010857293514894
712 => 0.010897953633958
713 => 0.010841029229163
714 => 0.010924735840489
715 => 0.010834681363901
716 => 0.01091037140778
717 => 0.010943036721553
718 => 0.011063572432611
719 => 0.010816878141373
720 => 0.010313851781804
721 => 0.010419594021191
722 => 0.010263192943264
723 => 0.010277668458487
724 => 0.010306911302999
725 => 0.010212125676273
726 => 0.010230207786814
727 => 0.010229561766584
728 => 0.010223994713247
729 => 0.010199337310941
730 => 0.010163579199279
731 => 0.010306028510374
801 => 0.010330233424136
802 => 0.010384037949074
803 => 0.010544123719333
804 => 0.010528127375802
805 => 0.010554218075783
806 => 0.010497262224217
807 => 0.010280310477088
808 => 0.010292092000744
809 => 0.010145176211974
810 => 0.010380280982044
811 => 0.01032460506926
812 => 0.010288710446095
813 => 0.010278916265603
814 => 0.010439398857522
815 => 0.010487417764281
816 => 0.010457495604018
817 => 0.010396124380349
818 => 0.010513975272566
819 => 0.010545507199593
820 => 0.010552566035202
821 => 0.010761375220543
822 => 0.010564236149082
823 => 0.010611689482976
824 => 0.01098190684787
825 => 0.010646170784416
826 => 0.010824017665035
827 => 0.010815312985699
828 => 0.010906293431814
829 => 0.010807849933598
830 => 0.010809070258741
831 => 0.010889854731342
901 => 0.010776407509131
902 => 0.0107483163815
903 => 0.01070950868987
904 => 0.010794243864793
905 => 0.010845038769917
906 => 0.011254408400472
907 => 0.011518879851334
908 => 0.011507398448158
909 => 0.011612316980899
910 => 0.011565050220955
911 => 0.011412413384758
912 => 0.011672945852068
913 => 0.01159050247827
914 => 0.011597299009837
915 => 0.011597046042592
916 => 0.011651863678843
917 => 0.011613020359597
918 => 0.011536456190177
919 => 0.011587283058938
920 => 0.01173822068822
921 => 0.012206735720843
922 => 0.012468922940097
923 => 0.012190951721032
924 => 0.01238269254576
925 => 0.012267716375164
926 => 0.012246821784722
927 => 0.012367249192187
928 => 0.012487887391887
929 => 0.0124802032601
930 => 0.012392626121958
1001 => 0.012343156018809
1002 => 0.012717760213552
1003 => 0.012993762203023
1004 => 0.012974940717681
1005 => 0.013058012632902
1006 => 0.013301914345307
1007 => 0.013324213661214
1008 => 0.013321404459954
1009 => 0.013266133278786
1010 => 0.013506286189289
1011 => 0.013706625972319
1012 => 0.013253339597284
1013 => 0.013425945114943
1014 => 0.013503433292822
1015 => 0.013617208927656
1016 => 0.013809167494631
1017 => 0.01401768541286
1018 => 0.014047172132781
1019 => 0.014026249893928
1020 => 0.013888726721593
1021 => 0.014116889515856
1022 => 0.014250541929659
1023 => 0.014330128883498
1024 => 0.014531948156427
1025 => 0.013503911833429
1026 => 0.01277621662729
1027 => 0.012662576512806
1028 => 0.012893668154287
1029 => 0.012954605177224
1030 => 0.012930041539687
1031 => 0.012110954426024
1101 => 0.012658264188666
1102 => 0.013247123474157
1103 => 0.013269743957518
1104 => 0.013564539228301
1105 => 0.013660536652535
1106 => 0.013897885485215
1107 => 0.013883039251108
1108 => 0.013940829914821
1109 => 0.013927544842028
1110 => 0.014367183574875
1111 => 0.014852170384188
1112 => 0.014835376833146
1113 => 0.014765654241203
1114 => 0.014869204179706
1115 => 0.015369762541263
1116 => 0.015323679148615
1117 => 0.015368445239198
1118 => 0.015958631757707
1119 => 0.016725958184821
1120 => 0.016369458021113
1121 => 0.017142960796201
1122 => 0.017629839791499
1123 => 0.018471846669639
1124 => 0.018366423261525
1125 => 0.018694210360253
1126 => 0.018177693358471
1127 => 0.01699166591707
1128 => 0.016803972534538
1129 => 0.017179739439521
1130 => 0.018103525708624
1201 => 0.017150646122431
1202 => 0.017343412421685
1203 => 0.017287895714532
1204 => 0.017284937465138
1205 => 0.017397841812414
1206 => 0.017234068167996
1207 => 0.016566824878322
1208 => 0.01687261854589
1209 => 0.016754536925424
1210 => 0.016885557286899
1211 => 0.017592620140873
1212 => 0.017280010798858
1213 => 0.016950702251366
1214 => 0.017363728249338
1215 => 0.017889652275887
1216 => 0.017856740895482
1217 => 0.017792879061606
1218 => 0.018152864875466
1219 => 0.018747455974017
1220 => 0.018908171558694
1221 => 0.019026808517618
1222 => 0.019043166549866
1223 => 0.019211664448478
1224 => 0.018305608780704
1225 => 0.019743542394621
1226 => 0.01999183380763
1227 => 0.019945165312609
1228 => 0.020221130768468
1229 => 0.020139934730787
1230 => 0.020022294411454
1231 => 0.020459758358527
]
'min_raw' => 0.0075416458123923
'max_raw' => 0.020459758358527
'avg_raw' => 0.01400070208546
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.007541'
'max' => '$0.020459'
'avg' => '$0.0140007'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0026009187352833
'max_diff' => 0.0094299332090762
'year' => 2032
]
7 => [
'items' => [
101 => 0.019958241244728
102 => 0.019246400840938
103 => 0.018855871116813
104 => 0.019370152160675
105 => 0.019684205648227
106 => 0.019891775025946
107 => 0.019954585394227
108 => 0.018375943302983
109 => 0.017525142771307
110 => 0.018070496157664
111 => 0.018735864927299
112 => 0.018301912623593
113 => 0.018318922732318
114 => 0.017700220787893
115 => 0.018790606320875
116 => 0.018631746320306
117 => 0.019455912284279
118 => 0.019259218462632
119 => 0.019931293812314
120 => 0.019754313849045
121 => 0.020488947781758
122 => 0.020782013146937
123 => 0.021274115507055
124 => 0.021636108006374
125 => 0.021848676925788
126 => 0.021835915085192
127 => 0.022678219045324
128 => 0.022181541827893
129 => 0.021557598184968
130 => 0.021546313012985
131 => 0.021869462267005
201 => 0.022546694451764
202 => 0.022722290903945
203 => 0.022820425365405
204 => 0.022670129021593
205 => 0.022131021499249
206 => 0.021898237604438
207 => 0.022096576227216
208 => 0.021854025134991
209 => 0.022272736367988
210 => 0.022847716322786
211 => 0.022728985235837
212 => 0.023125885458347
213 => 0.023536635433524
214 => 0.024124026345962
215 => 0.024277592081496
216 => 0.024531430402751
217 => 0.024792713416868
218 => 0.024876630479228
219 => 0.025036854189207
220 => 0.025036009731167
221 => 0.025518854665491
222 => 0.026051447580512
223 => 0.026252489076379
224 => 0.026714772910631
225 => 0.025923128044832
226 => 0.026523599769301
227 => 0.027065240295554
228 => 0.026419474130937
301 => 0.027309512344643
302 => 0.027344070511611
303 => 0.027865857803485
304 => 0.027336926420821
305 => 0.027022848654203
306 => 0.027929579398088
307 => 0.028368317843302
308 => 0.028236166253032
309 => 0.027230486125944
310 => 0.026645137156329
311 => 0.025113165997463
312 => 0.026927852011369
313 => 0.027811732633626
314 => 0.027228197088662
315 => 0.027522498475306
316 => 0.029128111413291
317 => 0.029739424864336
318 => 0.029612275939922
319 => 0.029633762015099
320 => 0.029963615657159
321 => 0.031426368359773
322 => 0.030549853034024
323 => 0.031219916158156
324 => 0.031575315223103
325 => 0.031905429681231
326 => 0.031094772905815
327 => 0.030040120351911
328 => 0.029706067616788
329 => 0.027170175978944
330 => 0.027038171806375
331 => 0.026964073864177
401 => 0.026496896819975
402 => 0.026129823633796
403 => 0.025837913407592
404 => 0.02507185380226
405 => 0.025330376431144
406 => 0.024109437309311
407 => 0.024890550892034
408 => 0.022941902572983
409 => 0.024564794797486
410 => 0.023681528343544
411 => 0.024274618011991
412 => 0.02427254877801
413 => 0.023180482659149
414 => 0.022550601712628
415 => 0.022951986367084
416 => 0.023382302578615
417 => 0.023452119936178
418 => 0.02401003613683
419 => 0.024165738556063
420 => 0.023693952956736
421 => 0.022901521167856
422 => 0.023085584998968
423 => 0.022546871664965
424 => 0.021602797268435
425 => 0.022280847981981
426 => 0.02251236430737
427 => 0.022614615105857
428 => 0.021686226364546
429 => 0.021394506465727
430 => 0.021239197239362
501 => 0.022781677839559
502 => 0.022866178408791
503 => 0.022433861549424
504 => 0.024387974747729
505 => 0.023945698747637
506 => 0.02443982939999
507 => 0.02306888313556
508 => 0.023121255129085
509 => 0.022472227197115
510 => 0.022835639470956
511 => 0.02257879138913
512 => 0.02280627935054
513 => 0.022942634696641
514 => 0.023591556129514
515 => 0.024572204437873
516 => 0.023494628907065
517 => 0.023025113817127
518 => 0.023316398338272
519 => 0.024092127403106
520 => 0.025267396645169
521 => 0.02457161359937
522 => 0.024880390299933
523 => 0.024947844272487
524 => 0.024434799613803
525 => 0.025286313333534
526 => 0.025742646453624
527 => 0.026210749810001
528 => 0.026617190838385
529 => 0.02602377903565
530 => 0.026658814726817
531 => 0.026147088058627
601 => 0.025688016335929
602 => 0.025688712558236
603 => 0.02540073016062
604 => 0.024842727977122
605 => 0.024739823813195
606 => 0.025275144269304
607 => 0.025704420580067
608 => 0.025739777833117
609 => 0.025977447255769
610 => 0.026118097571904
611 => 0.027496661874866
612 => 0.0280511318416
613 => 0.028729127221342
614 => 0.028993244631477
615 => 0.029788143344653
616 => 0.029146198075247
617 => 0.029007309178186
618 => 0.027079144909409
619 => 0.027394881700403
620 => 0.027900406766854
621 => 0.027087480831558
622 => 0.027603095227747
623 => 0.02770488843176
624 => 0.027059857919347
625 => 0.02740439658615
626 => 0.026489404035716
627 => 0.024592148775086
628 => 0.025288425520999
629 => 0.025801119570209
630 => 0.025069441947266
701 => 0.026380945766557
702 => 0.025614792310261
703 => 0.025371958446467
704 => 0.024424576967283
705 => 0.0248717045574
706 => 0.025476451025285
707 => 0.025102788017455
708 => 0.025878194864485
709 => 0.026976377753331
710 => 0.027759008277845
711 => 0.027819088931555
712 => 0.027315909936465
713 => 0.028122257487342
714 => 0.02812813084894
715 => 0.027218567517525
716 => 0.026661465041504
717 => 0.026534890186798
718 => 0.026851098990315
719 => 0.02723503485315
720 => 0.027840394699884
721 => 0.028206200976887
722 => 0.029160029738651
723 => 0.029418108453171
724 => 0.029701658715851
725 => 0.030080569310454
726 => 0.030535548629957
727 => 0.029540079780871
728 => 0.029579631614032
729 => 0.028652664804967
730 => 0.027662067828994
731 => 0.028413807454101
801 => 0.029396607014197
802 => 0.029171151709214
803 => 0.02914578338177
804 => 0.029188445871944
805 => 0.029018459934669
806 => 0.028249619840345
807 => 0.02786351315817
808 => 0.028361689284496
809 => 0.02862644772437
810 => 0.029037064975253
811 => 0.028986447732003
812 => 0.030044153673202
813 => 0.030455146218585
814 => 0.030349996738114
815 => 0.030369346773084
816 => 0.031113429144937
817 => 0.031941001774648
818 => 0.032716132750199
819 => 0.03350462927118
820 => 0.032554065939595
821 => 0.032071428502411
822 => 0.032569387140625
823 => 0.032305163277914
824 => 0.033823471966944
825 => 0.033928596366345
826 => 0.035446795264375
827 => 0.036887746802368
828 => 0.035982710958683
829 => 0.036836118995568
830 => 0.037759149366838
831 => 0.039539824709297
901 => 0.038940155898871
902 => 0.038480818988093
903 => 0.038046747826907
904 => 0.038949981006478
905 => 0.040111976062494
906 => 0.04036225866811
907 => 0.040767812104521
908 => 0.040341422254849
909 => 0.040854961863478
910 => 0.042667982342673
911 => 0.04217808820522
912 => 0.041482359775624
913 => 0.042913565319612
914 => 0.04343151304231
915 => 0.047066741411535
916 => 0.051656367391475
917 => 0.049756232098671
918 => 0.048576756805445
919 => 0.048853961476881
920 => 0.050529937516111
921 => 0.051068207827091
922 => 0.049605003568944
923 => 0.050121832049318
924 => 0.052969607789636
925 => 0.054497348106733
926 => 0.052422471553217
927 => 0.046697969432866
928 => 0.041419717042669
929 => 0.042819747259352
930 => 0.042661027280776
1001 => 0.045720607046489
1002 => 0.042166404392061
1003 => 0.0422262480495
1004 => 0.045349096684617
1005 => 0.044515974207947
1006 => 0.043166422494007
1007 => 0.041429570263684
1008 => 0.038218838276545
1009 => 0.035375003417651
1010 => 0.040952418471996
1011 => 0.040711910192982
1012 => 0.040363618563639
1013 => 0.041138703895651
1014 => 0.044902298256094
1015 => 0.044815535224519
1016 => 0.044263593084531
1017 => 0.044682236333117
1018 => 0.04309303230842
1019 => 0.043502606371087
1020 => 0.041418880940523
1021 => 0.042360811859199
1022 => 0.043163526962144
1023 => 0.04332468390346
1024 => 0.043687778721123
1025 => 0.040585173258722
1026 => 0.041978152023629
1027 => 0.042796396543553
1028 => 0.039099538034547
1029 => 0.042723321537136
1030 => 0.040531163800296
1031 => 0.039787112539308
1101 => 0.040788879540928
1102 => 0.040398489966146
1103 => 0.040062855934194
1104 => 0.03987556637744
1105 => 0.04061115350244
1106 => 0.040576837483842
1107 => 0.039373274176032
1108 => 0.037803274904511
1109 => 0.038330218193503
1110 => 0.038138774756492
1111 => 0.037444959044071
1112 => 0.037912507062614
1113 => 0.035853662209588
1114 => 0.032311526649399
1115 => 0.034651569899006
1116 => 0.034561480779374
1117 => 0.034516053760039
1118 => 0.036274531588073
1119 => 0.036105494519894
1120 => 0.035798690585933
1121 => 0.037439324349226
1122 => 0.036840470955986
1123 => 0.038685996006347
1124 => 0.039901578165591
1125 => 0.039593267210043
1126 => 0.040736528106231
1127 => 0.038342357902605
1128 => 0.039137605206813
1129 => 0.039301504574046
1130 => 0.037419079183256
1201 => 0.036133151074765
1202 => 0.036047394330582
1203 => 0.033817772202268
1204 => 0.035008818346333
1205 => 0.036056889664271
1206 => 0.035554944836598
1207 => 0.035396044099332
1208 => 0.036207833504659
1209 => 0.036270916493959
1210 => 0.034832617652684
1211 => 0.035131685526786
1212 => 0.036378848277687
1213 => 0.035100260225353
1214 => 0.032616172495841
1215 => 0.032000084393723
1216 => 0.031917886884143
1217 => 0.030247007088634
1218 => 0.032041254346646
1219 => 0.031258017335687
1220 => 0.033732253668687
1221 => 0.032318983144873
1222 => 0.032258059877259
1223 => 0.032165965422761
1224 => 0.030727770159591
1225 => 0.031042643520148
1226 => 0.032089330527207
1227 => 0.032462800243098
1228 => 0.032423844291984
1229 => 0.032084201189854
1230 => 0.032239688062755
1231 => 0.031738810669923
]
'min_raw' => 0.017525142771307
'max_raw' => 0.054497348106733
'avg_raw' => 0.03601124543902
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.017525'
'max' => '$0.054497'
'avg' => '$0.036011'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0099834969589152
'max_diff' => 0.034037589748206
'year' => 2033
]
8 => [
'items' => [
101 => 0.031561940437653
102 => 0.031003689332618
103 => 0.030183214429021
104 => 0.030297306496631
105 => 0.028671731023668
106 => 0.027786031230177
107 => 0.027540881200675
108 => 0.027213056335699
109 => 0.027577909891482
110 => 0.028667125972596
111 => 0.027353300288691
112 => 0.025100838307792
113 => 0.025236215110852
114 => 0.025540366593595
115 => 0.024973582317667
116 => 0.024437168567098
117 => 0.024903536802594
118 => 0.023949138967606
119 => 0.025655701012264
120 => 0.025609543291541
121 => 0.026245644088701
122 => 0.026643410971267
123 => 0.025726687085509
124 => 0.025496133507326
125 => 0.025627467303535
126 => 0.023456812201846
127 => 0.02606825525736
128 => 0.026090839125346
129 => 0.025897462336581
130 => 0.027287975144384
131 => 0.030222390880668
201 => 0.029118345644078
202 => 0.028690825958527
203 => 0.027878110723778
204 => 0.028961005519825
205 => 0.028877856095279
206 => 0.028501822863999
207 => 0.028274396792426
208 => 0.028693436302564
209 => 0.028222473159815
210 => 0.028137875238176
211 => 0.027625303876488
212 => 0.027442339220877
213 => 0.027306879473895
214 => 0.027157751602468
215 => 0.027486690526486
216 => 0.026741271649141
217 => 0.025842369557377
218 => 0.025767635574702
219 => 0.025973982671546
220 => 0.025882689441927
221 => 0.025767198497842
222 => 0.025546694833495
223 => 0.025481276106599
224 => 0.025693855232358
225 => 0.025453865793509
226 => 0.025807983283431
227 => 0.025711682920387
228 => 0.025173756920641
301 => 0.024503301959244
302 => 0.024497333503761
303 => 0.024352885082094
304 => 0.024168908299137
305 => 0.024117730166936
306 => 0.024864260570608
307 => 0.026409556164432
308 => 0.026106177663575
309 => 0.026325399721923
310 => 0.027403755276954
311 => 0.027746532080615
312 => 0.02750323722449
313 => 0.027170200219652
314 => 0.027184852157674
315 => 0.02832294042036
316 => 0.028393921589296
317 => 0.028573268103805
318 => 0.028803779058268
319 => 0.027542494236792
320 => 0.027125445756008
321 => 0.026927825048843
322 => 0.026319229759615
323 => 0.026975547602031
324 => 0.026593139301587
325 => 0.026644739246245
326 => 0.026611134714594
327 => 0.026629485061204
328 => 0.025655223993393
329 => 0.026010193520849
330 => 0.025419987833981
331 => 0.024629768672962
401 => 0.024627119581248
402 => 0.024820524601405
403 => 0.024705479727476
404 => 0.024395896929809
405 => 0.024439871705028
406 => 0.024054606401677
407 => 0.024486649888309
408 => 0.024499039349579
409 => 0.024332679073658
410 => 0.024998301675327
411 => 0.025271007798327
412 => 0.025161505900933
413 => 0.025263324853296
414 => 0.026118784409957
415 => 0.02625826164401
416 => 0.026320208218028
417 => 0.026237208015193
418 => 0.025278961083602
419 => 0.025321463409799
420 => 0.025009609540905
421 => 0.02474612588404
422 => 0.024756663848525
423 => 0.024892128698631
424 => 0.025483711643953
425 => 0.026728663076664
426 => 0.026775908073488
427 => 0.026833170387872
428 => 0.026600255777539
429 => 0.026530006502369
430 => 0.026622683429194
501 => 0.027090221730884
502 => 0.02829285717824
503 => 0.027867765489824
504 => 0.027522159330194
505 => 0.027825349106941
506 => 0.027778675417291
507 => 0.027384702505903
508 => 0.027373644998448
509 => 0.026617485020736
510 => 0.026337949893905
511 => 0.026104349419084
512 => 0.025849263798874
513 => 0.025698040492667
514 => 0.025930388220765
515 => 0.025983528895239
516 => 0.025475496527008
517 => 0.025406253592462
518 => 0.025821123791
519 => 0.025638554884543
520 => 0.025826331532325
521 => 0.025869897325329
522 => 0.02586288222925
523 => 0.025672259323004
524 => 0.025793756678988
525 => 0.02550637921198
526 => 0.025193899379309
527 => 0.024994556714246
528 => 0.024820603800011
529 => 0.024917122987031
530 => 0.024573049709012
531 => 0.024462973742546
601 => 0.025752596108558
602 => 0.026705254016107
603 => 0.026691401992837
604 => 0.026607081363634
605 => 0.026481798012453
606 => 0.027081056473403
607 => 0.026872286808159
608 => 0.027024184182913
609 => 0.027062848439901
610 => 0.027179873500873
611 => 0.027221699901527
612 => 0.027095271468448
613 => 0.026670962205103
614 => 0.025613623862962
615 => 0.025121430010465
616 => 0.024958997841004
617 => 0.024964901941861
618 => 0.02480204048315
619 => 0.024850010481679
620 => 0.024785358475304
621 => 0.024662923216229
622 => 0.024909562954797
623 => 0.024937985887059
624 => 0.024880417224952
625 => 0.024893976728894
626 => 0.024417332794545
627 => 0.024453570997657
628 => 0.024251792077799
629 => 0.024213960962807
630 => 0.023703881424307
701 => 0.022800201584642
702 => 0.023300927938141
703 => 0.022696120915894
704 => 0.022467071332248
705 => 0.023551356436712
706 => 0.023442524285611
707 => 0.023256250951125
708 => 0.022980713866657
709 => 0.022878514481775
710 => 0.022257583371626
711 => 0.022220895449099
712 => 0.022528645673839
713 => 0.022386629534161
714 => 0.022187185088333
715 => 0.021464817522906
716 => 0.020652637211685
717 => 0.020677151830097
718 => 0.020935491275945
719 => 0.021686648056568
720 => 0.021393158107234
721 => 0.021180227781583
722 => 0.021140352332251
723 => 0.021639477065552
724 => 0.022345843133038
725 => 0.022677254287853
726 => 0.022348835898538
727 => 0.021971566536195
728 => 0.021994529174183
729 => 0.022147289317274
730 => 0.0221633422484
731 => 0.021917778677432
801 => 0.021986903384263
802 => 0.021881896633691
803 => 0.021237470399262
804 => 0.021225814772179
805 => 0.021067662181473
806 => 0.02106287338388
807 => 0.020793816374077
808 => 0.020756173438502
809 => 0.020221944414944
810 => 0.020573575576044
811 => 0.020337719854643
812 => 0.019982229649751
813 => 0.019920943004435
814 => 0.019919100653871
815 => 0.02028410960814
816 => 0.020569310233895
817 => 0.020341822665895
818 => 0.020290028156323
819 => 0.020843058013069
820 => 0.020772679922819
821 => 0.020711732950552
822 => 0.022282595799186
823 => 0.021039135278536
824 => 0.020496915517287
825 => 0.019825815598002
826 => 0.020044329115701
827 => 0.020090373124511
828 => 0.018476498793483
829 => 0.01782175017838
830 => 0.017597065127358
831 => 0.017467755703914
901 => 0.017526683631943
902 => 0.016937333083998
903 => 0.017333386399175
904 => 0.016823058641216
905 => 0.016737500531844
906 => 0.017650029780553
907 => 0.017777002894592
908 => 0.017235296142646
909 => 0.017583159571752
910 => 0.017457019456695
911 => 0.016831806745897
912 => 0.016807928219098
913 => 0.016494218458109
914 => 0.01600332342834
915 => 0.015778971227264
916 => 0.015662126653029
917 => 0.015710339001614
918 => 0.015685961362847
919 => 0.015526880780223
920 => 0.01569507967563
921 => 0.015265401002449
922 => 0.015094299492631
923 => 0.015017016910172
924 => 0.014635652356342
925 => 0.015242572955072
926 => 0.015362143958806
927 => 0.015481950554355
928 => 0.016524785173171
929 => 0.016472688102635
930 => 0.016943620247978
1001 => 0.016925320690799
1002 => 0.016791003214352
1003 => 0.016224339875375
1004 => 0.016450201782489
1005 => 0.015755033939128
1006 => 0.016275900954192
1007 => 0.016038199000443
1008 => 0.016195533684523
1009 => 0.015912631736251
1010 => 0.01606920135516
1011 => 0.015390498679584
1012 => 0.014756735670735
1013 => 0.015011780406191
1014 => 0.015289043201535
1015 => 0.015890219587089
1016 => 0.015532163891451
1017 => 0.015660934259187
1018 => 0.01522957508317
1019 => 0.014339557891389
1020 => 0.014344595292039
1021 => 0.014207685537162
1022 => 0.014089375519797
1023 => 0.015573290895292
1024 => 0.015388742561118
1025 => 0.015094688943702
1026 => 0.01548829139584
1027 => 0.015592366131496
1028 => 0.015595328992909
1029 => 0.015882491181639
1030 => 0.016035749693241
1031 => 0.016062762170171
1101 => 0.016514618078688
1102 => 0.016666074219099
1103 => 0.017289900626578
1104 => 0.016022746779289
1105 => 0.015996650579678
1106 => 0.015493830189519
1107 => 0.015174933548805
1108 => 0.015515665315337
1109 => 0.01581750714596
1110 => 0.015503209256578
1111 => 0.015544249925741
1112 => 0.015122330688326
1113 => 0.015273146962556
1114 => 0.01540305025507
1115 => 0.015331325292306
1116 => 0.015223949551522
1117 => 0.015792759558008
1118 => 0.015760665068258
1119 => 0.016290354023182
1120 => 0.016703284441967
1121 => 0.01744332957257
1122 => 0.01667105389936
1123 => 0.016642909104311
1124 => 0.016918028990487
1125 => 0.016666032099678
1126 => 0.016825285436033
1127 => 0.017417671398037
1128 => 0.017430187579944
1129 => 0.017220525406803
1130 => 0.017207767444513
1201 => 0.017248035358318
1202 => 0.017483885787217
1203 => 0.017401472400408
1204 => 0.017496843258075
1205 => 0.017616105975958
1206 => 0.018109427143467
1207 => 0.018228365206823
1208 => 0.017939407375184
1209 => 0.017965497032058
1210 => 0.017857418870955
1211 => 0.017753016721545
1212 => 0.017987697506709
1213 => 0.018416581254258
1214 => 0.018413913190723
1215 => 0.018513405883846
1216 => 0.018575389007419
1217 => 0.018309312066623
1218 => 0.018136105762084
1219 => 0.018202524080648
1220 => 0.018308728418434
1221 => 0.01816808344529
1222 => 0.01729995751796
1223 => 0.017563291468213
1224 => 0.017519459822519
1225 => 0.017457038228939
1226 => 0.01772182255222
1227 => 0.017696283458294
1228 => 0.016931288442295
1229 => 0.016980260941199
1230 => 0.016934266622155
1231 => 0.017082883676538
]
'min_raw' => 0.014089375519797
'max_raw' => 0.031561940437653
'avg_raw' => 0.022825657978725
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.014089'
'max' => '$0.031561'
'avg' => '$0.022825'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0034357672515104
'max_diff' => -0.022935407669079
'year' => 2034
]
9 => [
'items' => [
101 => 0.016658006291022
102 => 0.016788695713214
103 => 0.016870662893675
104 => 0.016918942192668
105 => 0.017093360126058
106 => 0.017072894194699
107 => 0.017092087935029
108 => 0.017350703685618
109 => 0.018658693405889
110 => 0.018729884400447
111 => 0.018379313906362
112 => 0.018519359904052
113 => 0.01825050221318
114 => 0.018430988182252
115 => 0.018554472098445
116 => 0.017996472025762
117 => 0.017963430882849
118 => 0.017693463520649
119 => 0.017838528689362
120 => 0.017607719575385
121 => 0.017664352058595
122 => 0.017506002698409
123 => 0.017791000019701
124 => 0.018109671309011
125 => 0.018190180261402
126 => 0.017978395868946
127 => 0.017825050011536
128 => 0.01755582520119
129 => 0.018003552060862
130 => 0.018134481038858
131 => 0.018002864346678
201 => 0.017972365883219
202 => 0.017914571350072
203 => 0.017984627266638
204 => 0.018133767971526
205 => 0.018063435969297
206 => 0.01810989149586
207 => 0.017932850933335
208 => 0.018309400149162
209 => 0.018907450925399
210 => 0.018909373756435
211 => 0.018839041375091
212 => 0.018810262879977
213 => 0.018882428171362
214 => 0.018921574881563
215 => 0.019154944201051
216 => 0.019405358778706
217 => 0.02057393434818
218 => 0.020245803004402
219 => 0.021282632768511
220 => 0.022102630496426
221 => 0.022348511960873
222 => 0.022122312583199
223 => 0.021348496731226
224 => 0.021310529633844
225 => 0.022466937213318
226 => 0.022140199105294
227 => 0.022101334647017
228 => 0.021687882473484
301 => 0.02193228391509
302 => 0.021878829734658
303 => 0.021794449695778
304 => 0.02226075062121
305 => 0.023133624326648
306 => 0.022997578773898
307 => 0.022896027079741
308 => 0.022451057117201
309 => 0.02271902842229
310 => 0.0226236089732
311 => 0.023033591481168
312 => 0.022790726925672
313 => 0.02213772374277
314 => 0.022241716651974
315 => 0.022225998332953
316 => 0.022549480224602
317 => 0.022452378990043
318 => 0.022207037758486
319 => 0.023130640939217
320 => 0.023070667286011
321 => 0.023155696214371
322 => 0.023193128578242
323 => 0.023755309558639
324 => 0.023985617118523
325 => 0.024037900966718
326 => 0.024256675335981
327 => 0.024032457661112
328 => 0.024929488225084
329 => 0.025525961206941
330 => 0.026218795269587
331 => 0.027231212051353
401 => 0.027611890126676
402 => 0.027543124039686
403 => 0.028310726889068
404 => 0.029690092146554
405 => 0.027821933195786
406 => 0.029789109107189
407 => 0.029166323925777
408 => 0.027689711464076
409 => 0.027594635029659
410 => 0.028594614132547
411 => 0.030812471538329
412 => 0.030256923412911
413 => 0.030813380216043
414 => 0.030164243797246
415 => 0.030132008702702
416 => 0.030781853109081
417 => 0.032300249985762
418 => 0.031578916545907
419 => 0.030544708181659
420 => 0.031308351543755
421 => 0.03064681299165
422 => 0.029156181480777
423 => 0.03025649859573
424 => 0.029520747876188
425 => 0.02973547905081
426 => 0.031281917628627
427 => 0.031095846047575
428 => 0.031336639903221
429 => 0.030911645050678
430 => 0.030514632842867
501 => 0.029773580074474
502 => 0.029554190883212
503 => 0.029614822162881
504 => 0.029554160837361
505 => 0.029139548624072
506 => 0.029050013156087
507 => 0.028900783453475
508 => 0.028947035978306
509 => 0.028666440478704
510 => 0.02919598216044
511 => 0.029294269762876
512 => 0.029679626038732
513 => 0.029719635005662
514 => 0.030792846748717
515 => 0.030201739755233
516 => 0.030598305360185
517 => 0.030562832799858
518 => 0.027721714133601
519 => 0.028113195218409
520 => 0.028722216932838
521 => 0.028447853475997
522 => 0.028059967739186
523 => 0.027746729209593
524 => 0.027272140806976
525 => 0.027940114869997
526 => 0.028818429731746
527 => 0.029741910519996
528 => 0.030851412178219
529 => 0.030603784324127
530 => 0.029721169158249
531 => 0.029760762629839
601 => 0.030005513891755
602 => 0.029688538769577
603 => 0.029595056617957
604 => 0.029992670879638
605 => 0.029995409030534
606 => 0.029630690844745
607 => 0.029225373323964
608 => 0.029223675028752
609 => 0.029151552690832
610 => 0.030177074200942
611 => 0.030741007339583
612 => 0.030805661365104
613 => 0.030736655608529
614 => 0.030763213185494
615 => 0.030435072917538
616 => 0.031185104263112
617 => 0.031873407196223
618 => 0.031688927306702
619 => 0.031412365726948
620 => 0.031192071107664
621 => 0.031637032895463
622 => 0.031617219447487
623 => 0.031867395470565
624 => 0.031856046041071
625 => 0.031771921254106
626 => 0.031688930311063
627 => 0.032017980019358
628 => 0.031923218987746
629 => 0.031828310766078
630 => 0.031637957797801
701 => 0.031663829927618
702 => 0.03138731610012
703 => 0.031259388151107
704 => 0.02933565874003
705 => 0.028821575381718
706 => 0.028983316471375
707 => 0.029036565837695
708 => 0.028812836101342
709 => 0.029133607071819
710 => 0.029083615255851
711 => 0.029278104167549
712 => 0.029156595939247
713 => 0.02916158267932
714 => 0.029518912470471
715 => 0.029622646829032
716 => 0.029569886697029
717 => 0.029606838084972
718 => 0.03045836722392
719 => 0.030337307010731
720 => 0.030272996185293
721 => 0.030290810723448
722 => 0.03050839467544
723 => 0.030569306302354
724 => 0.030311219458934
725 => 0.030432934706273
726 => 0.030951182781479
727 => 0.0311325402775
728 => 0.031711346348264
729 => 0.031465459241946
730 => 0.031916795667337
731 => 0.033304049967064
801 => 0.034412284692382
802 => 0.033393106239243
803 => 0.035428238179448
804 => 0.037012880317235
805 => 0.036952059112627
806 => 0.036675740102471
807 => 0.034871667158491
808 => 0.033211532338228
809 => 0.034600305608426
810 => 0.034603845877095
811 => 0.034484549021543
812 => 0.033743606497429
813 => 0.03445876582779
814 => 0.034515532578357
815 => 0.034483758293537
816 => 0.03391567939753
817 => 0.033048327921856
818 => 0.033217806324057
819 => 0.033495415404127
820 => 0.032969843500233
821 => 0.032801891431415
822 => 0.033114146281537
823 => 0.034120296469513
824 => 0.033930089604708
825 => 0.033925122534781
826 => 0.034738908162684
827 => 0.034156413279036
828 => 0.033219943989454
829 => 0.032983473143322
830 => 0.032144160945403
831 => 0.032723876870033
901 => 0.032744739814112
902 => 0.032427235326745
903 => 0.033245707728736
904 => 0.033238165361463
905 => 0.034015183093613
906 => 0.035500549162952
907 => 0.035061253325823
908 => 0.034550400062494
909 => 0.034605943976642
910 => 0.035215123620789
911 => 0.034846799701719
912 => 0.034979251551062
913 => 0.035214923139052
914 => 0.035357109659482
915 => 0.034585485524479
916 => 0.034405583027561
917 => 0.034037565656062
918 => 0.033941556793208
919 => 0.034241299263359
920 => 0.034162327712532
921 => 0.032742986364447
922 => 0.032594657296432
923 => 0.032599206337183
924 => 0.032226225842995
925 => 0.031657341063783
926 => 0.033152336297207
927 => 0.033032267257518
928 => 0.032899720330307
929 => 0.032915956572588
930 => 0.033564883333328
1001 => 0.033188473040512
1002 => 0.034189221496396
1003 => 0.033983497699119
1004 => 0.033772497862708
1005 => 0.033743331258104
1006 => 0.033662114322746
1007 => 0.033383591231912
1008 => 0.033047257863088
1009 => 0.032825181440292
1010 => 0.030279494746144
1011 => 0.030751959388999
1012 => 0.031295486894098
1013 => 0.031483110410808
1014 => 0.031162167402323
1015 => 0.033396264018058
1016 => 0.033804454998043
1017 => 0.032568017894029
1018 => 0.032336730995262
1019 => 0.033411427148636
1020 => 0.03276325399189
1021 => 0.033055126324684
1022 => 0.032424257986813
1023 => 0.033706133744192
1024 => 0.03369636799865
1025 => 0.033197689376552
1026 => 0.033619169133145
1027 => 0.03354592665333
1028 => 0.032982919717173
1029 => 0.033723982068285
1030 => 0.033724349625966
1031 => 0.033244382294405
1101 => 0.032683885529501
1102 => 0.032583681946279
1103 => 0.032508192006779
1104 => 0.033036560427185
1105 => 0.033510293900755
1106 => 0.034391794446582
1107 => 0.034613424627739
1108 => 0.035478461979553
1109 => 0.034963374354452
1110 => 0.035191706027158
1111 => 0.035439592357367
1112 => 0.035558438179787
1113 => 0.035364785289772
1114 => 0.036708544360717
1115 => 0.036821998798019
1116 => 0.036860039089469
1117 => 0.036406931091322
1118 => 0.036809397044924
1119 => 0.036621096553505
1120 => 0.037111002120794
1121 => 0.037187825569174
1122 => 0.03712275884147
1123 => 0.037147143816561
1124 => 0.036000482504853
1125 => 0.035941022066721
1126 => 0.035130274773666
1127 => 0.035460660288328
1128 => 0.034843020404458
1129 => 0.035038880374029
1130 => 0.035125213582393
1201 => 0.03508011801371
1202 => 0.03547933978962
1203 => 0.035139919724476
1204 => 0.034244134366737
1205 => 0.033348104952875
1206 => 0.033336856033474
1207 => 0.033100947305037
1208 => 0.032930428503216
1209 => 0.032963276473926
1210 => 0.033079037007137
1211 => 0.032923700290585
1212 => 0.032956849254833
1213 => 0.033507342931741
1214 => 0.033617740512704
1215 => 0.033242566397473
1216 => 0.031736188187454
1217 => 0.031366519196252
1218 => 0.031632229936274
1219 => 0.031505237316507
1220 => 0.025427185397377
1221 => 0.026855133538758
1222 => 0.026006695241686
1223 => 0.026397694643746
1224 => 0.025531658844468
1225 => 0.025944976520708
1226 => 0.025868651837852
1227 => 0.028164750193135
1228 => 0.028128899775497
1229 => 0.028146059473259
1230 => 0.027326982389757
1231 => 0.028631794424141
]
'min_raw' => 0.016658006291022
'max_raw' => 0.037187825569174
'avg_raw' => 0.026922915930098
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.016658'
'max' => '$0.037187'
'avg' => '$0.026922'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0025686307712247
'max_diff' => 0.0056258851315204
'year' => 2035
]
10 => [
'items' => [
101 => 0.029274591751802
102 => 0.029155627073949
103 => 0.029185567920371
104 => 0.028671084980067
105 => 0.028151040792725
106 => 0.027574231754736
107 => 0.028645871651567
108 => 0.028526723588543
109 => 0.028800006377001
110 => 0.029495041452498
111 => 0.029597388007547
112 => 0.029734942815428
113 => 0.029685639208621
114 => 0.030860251148915
115 => 0.030717997892606
116 => 0.031060787311255
117 => 0.030355643469598
118 => 0.029557706279896
119 => 0.029709368053126
120 => 0.029694761804777
121 => 0.029508807499022
122 => 0.029340936266366
123 => 0.029061477961419
124 => 0.029945725390318
125 => 0.02990982655953
126 => 0.030490986902159
127 => 0.030388261166509
128 => 0.029702233562586
129 => 0.029726735172669
130 => 0.029891520275554
131 => 0.030461843398121
201 => 0.030631154131459
202 => 0.030552722653911
203 => 0.030738364143686
204 => 0.030885087607992
205 => 0.030756790351809
206 => 0.032573208944389
207 => 0.031818905304487
208 => 0.032186547650164
209 => 0.032274228183334
210 => 0.032049636341343
211 => 0.03209834226984
212 => 0.032172118479941
213 => 0.032620073180816
214 => 0.033795635932647
215 => 0.034316284673107
216 => 0.035882682097137
217 => 0.034273052042992
218 => 0.034177543256891
219 => 0.034459698733629
220 => 0.035379339841541
221 => 0.036124622582007
222 => 0.036371875863412
223 => 0.036404554466257
224 => 0.03686841805926
225 => 0.037134296020226
226 => 0.036812092818246
227 => 0.036539059340649
228 => 0.035561087314061
229 => 0.035674290239068
301 => 0.036454146134427
302 => 0.037555738519905
303 => 0.038501019387799
304 => 0.038170014974227
305 => 0.040695344997082
306 => 0.0409457211538
307 => 0.040911127264572
308 => 0.041481521410544
309 => 0.040349405189538
310 => 0.039865403571339
311 => 0.036598092277567
312 => 0.037516073479222
313 => 0.038850413066972
314 => 0.038673808219016
315 => 0.037704775143393
316 => 0.038500284289316
317 => 0.038237264087803
318 => 0.038029809142151
319 => 0.038980200465301
320 => 0.037935206165574
321 => 0.038839988449453
322 => 0.037679595811604
323 => 0.038171526974506
324 => 0.03789228305441
325 => 0.03807298809356
326 => 0.037016590127099
327 => 0.03758659682719
328 => 0.036992875974367
329 => 0.036992594473378
330 => 0.036979488052645
331 => 0.03767799800303
401 => 0.037700776387435
402 => 0.03718457647871
403 => 0.037110184007305
404 => 0.037385251964763
405 => 0.037063219426991
406 => 0.037213896424566
407 => 0.037067783279751
408 => 0.037034890133239
409 => 0.036772791945528
410 => 0.036659872839722
411 => 0.036704151330675
412 => 0.036553006013924
413 => 0.036461935493417
414 => 0.036961371833904
415 => 0.036694543144386
416 => 0.036920476510373
417 => 0.036662996924767
418 => 0.035770460502541
419 => 0.035257153367717
420 => 0.033571234804302
421 => 0.034049359217511
422 => 0.034366356198124
423 => 0.034261588697923
424 => 0.034486669827996
425 => 0.03450048798135
426 => 0.034427311811532
427 => 0.034342583181331
428 => 0.034301341969937
429 => 0.034608720171381
430 => 0.034787163563194
501 => 0.034398171086001
502 => 0.034307035591178
503 => 0.034700328462483
504 => 0.034940236886782
505 => 0.036711585898901
506 => 0.036580358642701
507 => 0.036909713303714
508 => 0.036872633023243
509 => 0.037217849178297
510 => 0.037782131692577
511 => 0.036634787565173
512 => 0.036833926833516
513 => 0.036785102483715
514 => 0.037318153932403
515 => 0.037319818060841
516 => 0.037000227089458
517 => 0.037173482539816
518 => 0.037076776100441
519 => 0.037251537707051
520 => 0.036578606022689
521 => 0.037398164175756
522 => 0.037862800837384
523 => 0.037869252317881
524 => 0.038089486407908
525 => 0.038313256998474
526 => 0.038742765160754
527 => 0.038301278248944
528 => 0.037507086272482
529 => 0.037564424367958
530 => 0.037098789902742
531 => 0.037106617302226
601 => 0.037064834030336
602 => 0.037190228774576
603 => 0.036606123117492
604 => 0.036743211547716
605 => 0.036551286942613
606 => 0.036833509626906
607 => 0.036529884671688
608 => 0.036785078939136
609 => 0.036895212325142
610 => 0.037301606890508
611 => 0.036469859863954
612 => 0.034773871372488
613 => 0.035130388715267
614 => 0.034603071561464
615 => 0.034651876771687
616 => 0.034750471063628
617 => 0.034430894705402
618 => 0.034491859803543
619 => 0.034489681701233
620 => 0.034470911992228
621 => 0.034387777838829
622 => 0.034267216868809
623 => 0.034747494666658
624 => 0.034829103223339
625 => 0.035010508935681
626 => 0.03555024928694
627 => 0.035496316497895
628 => 0.035584283114477
629 => 0.03539225248439
630 => 0.034660784521859
701 => 0.034700506751423
702 => 0.034205169912255
703 => 0.034997842059034
704 => 0.034810126831916
705 => 0.034689105603833
706 => 0.034656083840497
707 => 0.035197162103689
708 => 0.035359061200399
709 => 0.035258176547974
710 => 0.035051259182574
711 => 0.035448601693769
712 => 0.03555491378723
713 => 0.035578713144317
714 => 0.036282727891285
715 => 0.035618059748044
716 => 0.035778051976356
717 => 0.037026265669845
718 => 0.035894308091566
719 => 0.036493931266446
720 => 0.036464582832324
721 => 0.036771329758451
722 => 0.03643942063111
723 => 0.036443535042533
724 => 0.036715905532097
725 => 0.036333410301781
726 => 0.036238699103712
727 => 0.036107856261914
728 => 0.03639354682019
729 => 0.036564805389204
730 => 0.037945023679895
731 => 0.038836707641282
801 => 0.038797997288869
802 => 0.039151737447181
803 => 0.038992374265973
804 => 0.03847774851597
805 => 0.0393561519193
806 => 0.039078188328527
807 => 0.039101103309225
808 => 0.039100250412499
809 => 0.039285071900364
810 => 0.039154108937571
811 => 0.038895967494833
812 => 0.039067333831479
813 => 0.039576230586731
814 => 0.041155861729894
815 => 0.042039844244936
816 => 0.041102644872527
817 => 0.041749112450015
818 => 0.041361462263473
819 => 0.041291014692984
820 => 0.041697044105225
821 => 0.042103784218203
822 => 0.042077876631392
823 => 0.041782604195706
824 => 0.041615812289048
825 => 0.042878816485653
826 => 0.043809376462997
827 => 0.043745918511096
828 => 0.044026001273158
829 => 0.044848332925206
830 => 0.044923516625674
831 => 0.044914045207492
901 => 0.044727694561276
902 => 0.045537386865976
903 => 0.046212846431738
904 => 0.044684559770865
905 => 0.045266511324584
906 => 0.045527768126357
907 => 0.045911370622759
908 => 0.046558572333433
909 => 0.047261605053001
910 => 0.047361021587909
911 => 0.047290480798872
912 => 0.046826811821784
913 => 0.047596078612459
914 => 0.048046697056911
915 => 0.048315030028362
916 => 0.048995477797614
917 => 0.045529381559422
918 => 0.043075906365869
919 => 0.042692760785784
920 => 0.043471902389342
921 => 0.043677355816663
922 => 0.043594537797726
923 => 0.040832928407177
924 => 0.042678221483871
925 => 0.044663601677746
926 => 0.044739868216708
927 => 0.045733791054104
928 => 0.046057453072233
929 => 0.046857691232781
930 => 0.046807636117957
1001 => 0.047002481375481
1002 => 0.046957689825025
1003 => 0.048439962507415
1004 => 0.050075129395714
1005 => 0.050018508765884
1006 => 0.049783434179275
1007 => 0.050132560026563
1008 => 0.051820227490421
1009 => 0.051664854114669
1010 => 0.051815786114539
1011 => 0.053805641167198
1012 => 0.056392735789234
1013 => 0.055190770597245
1014 => 0.057798689207695
1015 => 0.059440235733148
1016 => 0.062279120709839
1017 => 0.061923678328954
1018 => 0.06302883541768
1019 => 0.061287362284107
1020 => 0.057288587959633
1021 => 0.056655766616092
1022 => 0.05792269097145
1023 => 0.061037300874427
1024 => 0.05782460082165
1025 => 0.058474525858097
1026 => 0.058287347403877
1027 => 0.058277373459509
1028 => 0.058658038349078
1029 => 0.058105864072613
1030 => 0.055856206736039
1031 => 0.056887211436077
1101 => 0.05648909100848
1102 => 0.056930835304743
1103 => 0.059314747082467
1104 => 0.058260762860176
1105 => 0.057150476100719
1106 => 0.058543022089434
1107 => 0.060316211663788
1108 => 0.060205248646953
1109 => 0.05998993401535
1110 => 0.061203651320187
1111 => 0.063208356721975
1112 => 0.06375022053652
1113 => 0.064150213326499
1114 => 0.064205365574303
1115 => 0.064773468003621
1116 => 0.061718638060935
1117 => 0.066566731633574
1118 => 0.067403863467687
1119 => 0.067246517378434
1120 => 0.068176954180157
1121 => 0.067903196070187
1122 => 0.067506563520171
1123 => 0.068981503760486
1124 => 0.067290603796505
1125 => 0.064890584176019
1126 => 0.063573885945215
1127 => 0.065307820390554
1128 => 0.06636667365035
1129 => 0.067066508299359
1130 => 0.067278277841298
1201 => 0.0619557758134
1202 => 0.059087242419858
1203 => 0.060925939437316
1204 => 0.063169276698704
1205 => 0.061706176209179
1206 => 0.061763526978352
1207 => 0.059677530176334
1208 => 0.06335384112907
1209 => 0.062818233545898
1210 => 0.065596966634866
1211 => 0.064933799682457
1212 => 0.067199748646713
1213 => 0.066603048344205
1214 => 0.069079917938851
1215 => 0.070068008278723
1216 => 0.071727165743349
1217 => 0.072947648728313
1218 => 0.073664339681204
1219 => 0.073621312244633
1220 => 0.076461198854
1221 => 0.074786616938537
1222 => 0.072682947384061
1223 => 0.072644898638813
1224 => 0.073734418910304
1225 => 0.07601775450406
1226 => 0.076609790202339
1227 => 0.076940657390682
1228 => 0.076433922774165
1229 => 0.074616284123298
1230 => 0.07383143696949
1231 => 0.074500149483745
]
'min_raw' => 0.027574231754736
'max_raw' => 0.076940657390682
'avg_raw' => 0.052257444572709
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.027574'
'max' => '$0.07694'
'avg' => '$0.052257'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.010916225463714
'max_diff' => 0.039752831821508
'year' => 2036
]
11 => [
'items' => [
101 => 0.073682371541932
102 => 0.075094085697466
103 => 0.077032670758886
104 => 0.076632360609699
105 => 0.077970537420579
106 => 0.079355409639535
107 => 0.081335839111144
108 => 0.081853596710114
109 => 0.082709430332652
110 => 0.083590364256945
111 => 0.083873296491592
112 => 0.084413501916251
113 => 0.08441065476701
114 => 0.086038600174239
115 => 0.087834274371684
116 => 0.088512099811266
117 => 0.090070722034073
118 => 0.087401636098154
119 => 0.089426168440798
120 => 0.091252347291195
121 => 0.089075101581235
122 => 0.092075927559227
123 => 0.092192442831934
124 => 0.093951685116514
125 => 0.092168356031051
126 => 0.091109420912691
127 => 0.094166526921615
128 => 0.095645764221397
129 => 0.09520020590827
130 => 0.091809485145449
131 => 0.089835940226633
201 => 0.084670792505706
202 => 0.090789133098921
203 => 0.093769198327434
204 => 0.091801767496439
205 => 0.092794025168976
206 => 0.098207461289706
207 => 0.10026854727045
208 => 0.099839855794533
209 => 0.0999122975971
210 => 0.10102442218095
211 => 0.10595619504395
212 => 0.10300096242684
213 => 0.10526012703216
214 => 0.1064583797928
215 => 0.10757138373624
216 => 0.10483819781967
217 => 0.1012823631007
218 => 0.10015608098141
219 => 0.09160614527412
220 => 0.091161083990067
221 => 0.09091125760459
222 => 0.089336137582807
223 => 0.08809852470737
224 => 0.087114328999203
225 => 0.084531505555254
226 => 0.085403132648009
227 => 0.081286651155503
228 => 0.083920230135262
301 => 0.077350226277301
302 => 0.08282192071893
303 => 0.079843926201769
304 => 0.081843569427137
305 => 0.081836592860301
306 => 0.078154615694937
307 => 0.076030928106858
308 => 0.07738422449314
309 => 0.078835065644034
310 => 0.079070459739551
311 => 0.080951513162514
312 => 0.081476474739755
313 => 0.079885816652602
314 => 0.077214077550573
315 => 0.077834661608093
316 => 0.07601835199074
317 => 0.07283533924967
318 => 0.075121434570377
319 => 0.075902008025383
320 => 0.076246753731402
321 => 0.073116626272042
322 => 0.072133072265938
323 => 0.071609436365906
324 => 0.076810017402027
325 => 0.077094916970833
326 => 0.075637330496079
327 => 0.082225759575989
328 => 0.080734595162956
329 => 0.082400591156465
330 => 0.077778350109528
331 => 0.077954925942194
401 => 0.075766682955875
402 => 0.076991952809764
403 => 0.076125971569326
404 => 0.076892963113923
405 => 0.077352694683329
406 => 0.079540578600506
407 => 0.082846902838817
408 => 0.079213781702779
409 => 0.077630778796554
410 => 0.07861286489643
411 => 0.081228289598191
412 => 0.085190791902488
413 => 0.082844910785554
414 => 0.083885972989604
415 => 0.084113398767556
416 => 0.082383632881168
417 => 0.085254570838031
418 => 0.086793129812572
419 => 0.088371372960532
420 => 0.089741717264535
421 => 0.087740987940926
422 => 0.089882055110471
423 => 0.088156732921051
424 => 0.086608940556612
425 => 0.086611287918728
426 => 0.085640335158877
427 => 0.083758991838745
428 => 0.083412043265527
429 => 0.085216913558179
430 => 0.086664248611033
501 => 0.086783458058253
502 => 0.087584777110273
503 => 0.088058989471016
504 => 0.092706915266739
505 => 0.094576349471437
506 => 0.096862258230364
507 => 0.097752748518724
508 => 0.10043280502825
509 => 0.098268441733261
510 => 0.097800168119906
511 => 0.091299227667595
512 => 0.092363756302472
513 => 0.094068169358644
514 => 0.091327332811117
515 => 0.093065762746914
516 => 0.09340896564122
517 => 0.091234200234026
518 => 0.092395836404075
519 => 0.089310875137547
520 => 0.082914146564201
521 => 0.085261692225535
522 => 0.086990276007602
523 => 0.084523373817749
524 => 0.088945200510761
525 => 0.086362060641734
526 => 0.085543329315834
527 => 0.082349166514702
528 => 0.083856688402235
529 => 0.085895633340757
530 => 0.084635802421541
531 => 0.087250140743479
601 => 0.090952741025905
602 => 0.093591434480821
603 => 0.093794000599502
604 => 0.092097497486723
605 => 0.09481615455189
606 => 0.094835957000584
607 => 0.091769300725035
608 => 0.089890990831475
609 => 0.089464234871661
610 => 0.090530354929712
611 => 0.091824821496806
612 => 0.093865834484947
613 => 0.095099175887639
614 => 0.098315076152126
615 => 0.099185206556609
616 => 0.10014121606408
617 => 0.10141873958848
618 => 0.10295273412983
619 => 0.099596441403717
620 => 0.099729793170637
621 => 0.09660445985512
622 => 0.093264592989355
623 => 0.095799135620189
624 => 0.099112712953926
625 => 0.098352574652389
626 => 0.09826704356525
627 => 0.098410883129473
628 => 0.09783776367391
629 => 0.095245565617198
630 => 0.093943779981135
701 => 0.095623415572591
702 => 0.096516067137471
703 => 0.097900491867201
704 => 0.097729832297601
705 => 0.10129596172503
706 => 0.10268165178637
707 => 0.10232713297165
708 => 0.10239237296553
709 => 0.10490109863241
710 => 0.10769131753275
711 => 0.11030472573474
712 => 0.1129631968063
713 => 0.10975830616765
714 => 0.10813106035151
715 => 0.10980996266661
716 => 0.10891911346596
717 => 0.11403819721595
718 => 0.11439263146808
719 => 0.11951134505006
720 => 0.12436961376442
721 => 0.12131822222985
722 => 0.12419554700926
723 => 0.12730760834992
724 => 0.1333112795898
725 => 0.13128945432791
726 => 0.12974076786334
727 => 0.12827726663752
728 => 0.13132258036417
729 => 0.13524032782344
730 => 0.13608417310244
731 => 0.13745152482814
801 => 0.13601392168038
802 => 0.13774535632506
803 => 0.14385808145172
804 => 0.14220636916398
805 => 0.13986067218939
806 => 0.14468608160452
807 => 0.14643237851356
808 => 0.15868880476394
809 => 0.17416304919276
810 => 0.16775661038986
811 => 0.16377992709041
812 => 0.16471454199397
813 => 0.17036521222315
814 => 0.17218002815745
815 => 0.16724673284345
816 => 0.16898925614884
817 => 0.17859073088268
818 => 0.18374161402519
819 => 0.17674602286176
820 => 0.15744546429102
821 => 0.13964946784165
822 => 0.14436976746419
823 => 0.14383463197495
824 => 0.15415021876808
825 => 0.14216697637217
826 => 0.14236874344138
827 => 0.15289764564501
828 => 0.15008871504816
829 => 0.14553860722192
830 => 0.13968268866424
831 => 0.12885748160345
901 => 0.11926929382648
902 => 0.13807393808489
903 => 0.13726304763044
904 => 0.13608875808516
905 => 0.13870201239677
906 => 0.15139123354877
907 => 0.15109870593022
908 => 0.14923779446988
909 => 0.15064927941122
910 => 0.14529116708727
911 => 0.14667207463511
912 => 0.13964664886489
913 => 0.14282243472073
914 => 0.14552884473408
915 => 0.14607219661335
916 => 0.14729639614157
917 => 0.13683574520809
918 => 0.14153227036865
919 => 0.14429103889558
920 => 0.13182682232605
921 => 0.14404466140951
922 => 0.13665364854819
923 => 0.13414502777377
924 => 0.13752255516087
925 => 0.13620632945336
926 => 0.13507471588141
927 => 0.13444325606468
928 => 0.13692333941367
929 => 0.1368076405611
930 => 0.13274974283871
1001 => 0.12745638068093
1002 => 0.12923300676977
1003 => 0.12858754185573
1004 => 0.12624829374064
1005 => 0.12782466452832
1006 => 0.12088312536238
1007 => 0.1089405680172
1008 => 0.11683018720985
1009 => 0.11652644545319
1010 => 0.11637328508589
1011 => 0.12230211585611
1012 => 0.12173219557895
1013 => 0.12069778469523
1014 => 0.12622929597357
1015 => 0.12421021994765
1016 => 0.13043253650539
1017 => 0.13453095662452
1018 => 0.1334914647123
1019 => 0.13734604864373
1020 => 0.12927393664658
1021 => 0.13195516845511
1022 => 0.13250776661482
1023 => 0.12616103798303
1024 => 0.12182544158462
1025 => 0.12153630673426
1026 => 0.1140189800614
1027 => 0.1180346752923
1028 => 0.12156832091473
1029 => 0.11987597888357
1030 => 0.11934023395378
1031 => 0.12207723861117
1101 => 0.1222899273139
1102 => 0.11744060235173
1103 => 0.11844893056951
1104 => 0.1226538268583
1105 => 0.11834297797169
1106 => 0.10996770275817
1107 => 0.10789051870798
1108 => 0.10761338406559
1109 => 0.10197989617793
1110 => 0.10802932607866
1111 => 0.10538858781235
1112 => 0.11373064835472
1113 => 0.10896570811229
1114 => 0.108760301062
1115 => 0.10844979817883
1116 => 0.10360082243746
1117 => 0.10466243995634
1118 => 0.10819141827799
1119 => 0.10945059749994
1120 => 0.10931925479094
1121 => 0.10817412435899
1122 => 0.10869835920672
1123 => 0.10700961610664
1124 => 0.10641328576986
1125 => 0.10453110319339
1126 => 0.10176481477218
1127 => 0.10214948414378
1128 => 0.096668742942631
1129 => 0.093682544251292
1130 => 0.092856003810996
1201 => 0.091750719390729
1202 => 0.092980848627315
1203 => 0.096653216691427
1204 => 0.092223561669761
1205 => 0.084629228839286
1206 => 0.085085661182511
1207 => 0.086111129141759
1208 => 0.08420017638385
1209 => 0.082391619972598
1210 => 0.083964013039362
1211 => 0.080746194104769
1212 => 0.086499987186693
1213 => 0.086344363208645
1214 => 0.088489021457409
1215 => 0.089830120273179
1216 => 0.086739321688727
1217 => 0.085961994203146
1218 => 0.086404795266497
1219 => 0.079086280040852
1220 => 0.08789094262765
1221 => 0.087967085715322
1222 => 0.087315102370864
1223 => 0.092003313384874
1224 => 0.10189690091412
1225 => 0.098174535316982
1226 => 0.096733122848674
1227 => 0.093992996692754
1228 => 0.097644052102925
1229 => 0.097363708012761
1230 => 0.096095885719699
1231 => 0.095329102841009
]
'min_raw' => 0.071609436365906
'max_raw' => 0.18374161402519
'avg_raw' => 0.12767552519555
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.0716094'
'max' => '$0.183741'
'avg' => '$0.127675'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.04403520461117
'max_diff' => 0.10680095663451
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0022477383812557
]
1 => [
'year' => 2028
'avg' => 0.0038577715853492
]
2 => [
'year' => 2029
'avg' => 0.010538736675494
]
3 => [
'year' => 2030
'avg' => 0.0081306196503864
]
4 => [
'year' => 2031
'avg' => 0.0079852761132799
]
5 => [
'year' => 2032
'avg' => 0.01400070208546
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0022477383812557
'min' => '$0.002247'
'max_raw' => 0.01400070208546
'max' => '$0.0140007'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.01400070208546
]
1 => [
'year' => 2033
'avg' => 0.03601124543902
]
2 => [
'year' => 2034
'avg' => 0.022825657978725
]
3 => [
'year' => 2035
'avg' => 0.026922915930098
]
4 => [
'year' => 2036
'avg' => 0.052257444572709
]
5 => [
'year' => 2037
'avg' => 0.12767552519555
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.01400070208546
'min' => '$0.0140007'
'max_raw' => 0.12767552519555
'max' => '$0.127675'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.12767552519555
]
]
]
]
'prediction_2025_max_price' => '$0.003843'
'last_price' => 0.00372649
'sma_50day_nextmonth' => '$0.003187'
'sma_200day_nextmonth' => '$0.004663'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.003334'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.003134'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.002938'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.002821'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.003254'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.004123'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.004683'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.003387'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.003231'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.003051'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.00300032'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.003322'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.003859'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.004152'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.004663'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.004389'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.002824'
'weekly_sma100_action' => 'BUY'
'weekly_sma200' => '$0.0027081'
'weekly_sma200_action' => 'BUY'
'weekly_ema3' => '$0.003388'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.003355'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.003624'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.004082'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.003954'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.003518'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.004981'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '68.96'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 131.92
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.003186'
'vwma_10_action' => 'BUY'
'hma_9' => '0.003369'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 370.81
'cci_20_action' => 'SELL'
'adx_14' => 24.05
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.0001040'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 82.59
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000570'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 10
'buy_signals' => 25
'sell_pct' => 28.57
'buy_pct' => 71.43
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767710787
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Proton para 2026
A previsão de preço para Proton em 2026 sugere que o preço médio poderia variar entre $0.001287 na extremidade inferior e $0.003843 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Proton poderia potencialmente ganhar 3.13% até 2026 se XPR atingir a meta de preço prevista.
Previsão de preço de Proton 2027-2032
A previsão de preço de XPR para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.002247 na extremidade inferior e $0.0140007 na extremidade superior. Considerando a volatilidade de preços no mercado, se Proton atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Proton | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.001239 | $0.002247 | $0.003256 |
| 2028 | $0.002236 | $0.003857 | $0.005478 |
| 2029 | $0.004913 | $0.010538 | $0.016163 |
| 2030 | $0.004178 | $0.00813 | $0.012082 |
| 2031 | $0.00494 | $0.007985 | $0.011029 |
| 2032 | $0.007541 | $0.0140007 | $0.020459 |
Previsão de preço de Proton 2032-2037
A previsão de preço de Proton para 2032-2037 é atualmente estimada entre $0.0140007 na extremidade inferior e $0.127675 na extremidade superior. Comparado ao preço atual, Proton poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Proton | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.007541 | $0.0140007 | $0.020459 |
| 2033 | $0.017525 | $0.036011 | $0.054497 |
| 2034 | $0.014089 | $0.022825 | $0.031561 |
| 2035 | $0.016658 | $0.026922 | $0.037187 |
| 2036 | $0.027574 | $0.052257 | $0.07694 |
| 2037 | $0.0716094 | $0.127675 | $0.183741 |
Proton Histograma de preços potenciais
Previsão de preço de Proton baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Proton é Altista, com 25 indicadores técnicos mostrando sinais de alta e 10 indicando sinais de baixa. A previsão de preço de XPR foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Proton
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Proton está projetado para aumentar no próximo mês, alcançando $0.004663 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Proton é esperado para alcançar $0.003187 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 68.96, sugerindo que o mercado de XPR está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de XPR para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.003334 | BUY |
| SMA 5 | $0.003134 | BUY |
| SMA 10 | $0.002938 | BUY |
| SMA 21 | $0.002821 | BUY |
| SMA 50 | $0.003254 | BUY |
| SMA 100 | $0.004123 | SELL |
| SMA 200 | $0.004683 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.003387 | BUY |
| EMA 5 | $0.003231 | BUY |
| EMA 10 | $0.003051 | BUY |
| EMA 21 | $0.00300032 | BUY |
| EMA 50 | $0.003322 | BUY |
| EMA 100 | $0.003859 | SELL |
| EMA 200 | $0.004152 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.004663 | SELL |
| SMA 50 | $0.004389 | SELL |
| SMA 100 | $0.002824 | BUY |
| SMA 200 | $0.0027081 | BUY |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.004082 | SELL |
| EMA 50 | $0.003954 | SELL |
| EMA 100 | $0.003518 | BUY |
| EMA 200 | $0.004981 | SELL |
Osciladores de Proton
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 68.96 | NEUTRAL |
| Stoch RSI (14) | 131.92 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 370.81 | SELL |
| Índice Direcional Médio (14) | 24.05 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.0001040 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 82.59 | SELL |
| VWMA (10) | 0.003186 | BUY |
| Média Móvel de Hull (9) | 0.003369 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.000570 | NEUTRAL |
Previsão do preço de Proton com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Proton
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Proton por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.005236 | $0.007357 | $0.010339 | $0.014528 | $0.020414 | $0.028685 |
| Amazon.com stock | $0.007775 | $0.016224 | $0.033852 | $0.070635 | $0.147385 | $0.307527 |
| Apple stock | $0.005285 | $0.007497 | $0.010634 | $0.015084 | $0.021395 | $0.030348 |
| Netflix stock | $0.005879 | $0.009277 | $0.014638 | $0.023096 | $0.036443 | $0.057502 |
| Google stock | $0.004825 | $0.006249 | $0.008092 | $0.01048 | $0.013571 | $0.017575 |
| Tesla stock | $0.008447 | $0.01915 | $0.043412 | $0.098412 | $0.223092 | $0.505734 |
| Kodak stock | $0.002794 | $0.002095 | $0.001571 | $0.001178 | $0.000883 | $0.000662 |
| Nokia stock | $0.002468 | $0.001635 | $0.001083 | $0.000717 | $0.000475 | $0.000314 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Proton
Você pode fazer perguntas como: 'Devo investir em Proton agora?', 'Devo comprar XPR hoje?', 'Proton será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Proton/XPR Network regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Proton, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Proton para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Proton é de $0.003726 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Proton
com base no histórico de preços de 4 horas
Previsão de longo prazo para Proton
com base no histórico de preços de 1 mês
Previsão do preço de Proton com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Proton tiver 1% da média anterior do crescimento anual do Bitcoin | $0.003823 | $0.003922 | $0.004024 | $0.004129 |
| Se Proton tiver 2% da média anterior do crescimento anual do Bitcoin | $0.00392 | $0.004124 | $0.004338 | $0.004563 |
| Se Proton tiver 5% da média anterior do crescimento anual do Bitcoin | $0.00421 | $0.004758 | $0.005376 | $0.006075 |
| Se Proton tiver 10% da média anterior do crescimento anual do Bitcoin | $0.004695 | $0.005915 | $0.007453 | $0.00939 |
| Se Proton tiver 20% da média anterior do crescimento anual do Bitcoin | $0.005663 | $0.0086081 | $0.013083 | $0.019884 |
| Se Proton tiver 50% da média anterior do crescimento anual do Bitcoin | $0.008569 | $0.0197073 | $0.04532 | $0.10422 |
| Se Proton tiver 100% da média anterior do crescimento anual do Bitcoin | $0.013412 | $0.048277 | $0.173764 | $0.625435 |
Perguntas Frequentes sobre Proton
XPR é um bom investimento?
A decisão de adquirir Proton depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Proton experimentou uma escalada de 22.4234% nas últimas 24 horas, e Proton registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Proton dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Proton pode subir?
Parece que o valor médio de Proton pode potencialmente subir para $0.003843 até o final deste ano. Observando as perspectivas de Proton em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.012082. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Proton na próxima semana?
Com base na nossa nova previsão experimental de Proton, o preço de Proton aumentará 0.86% na próxima semana e atingirá $0.003758 até 13 de janeiro de 2026.
Qual será o preço de Proton no próximo mês?
Com base na nossa nova previsão experimental de Proton, o preço de Proton diminuirá -11.62% no próximo mês e atingirá $0.003293 até 5 de fevereiro de 2026.
Até onde o preço de Proton pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Proton em 2026, espera-se que XPR fluctue dentro do intervalo de $0.001287 e $0.003843. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Proton não considera flutuações repentinas e extremas de preço.
Onde estará Proton em 5 anos?
O futuro de Proton parece seguir uma tendência de alta, com um preço máximo de $0.012082 projetada após um período de cinco anos. Com base na previsão de Proton para 2030, o valor de Proton pode potencialmente atingir seu pico mais alto de aproximadamente $0.012082, enquanto seu pico mais baixo está previsto para cerca de $0.004178.
Quanto será Proton em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Proton, espera-se que o valor de XPR em 2026 aumente 3.13% para $0.003843 se o melhor cenário ocorrer. O preço ficará entre $0.003843 e $0.001287 durante 2026.
Quanto será Proton em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Proton, o valor de XPR pode diminuir -12.62% para $0.003256 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.003256 e $0.001239 ao longo do ano.
Quanto será Proton em 2028?
Nosso novo modelo experimental de previsão de preços de Proton sugere que o valor de XPR em 2028 pode aumentar 47.02%, alcançando $0.005478 no melhor cenário. O preço é esperado para variar entre $0.005478 e $0.002236 durante o ano.
Quanto será Proton em 2029?
Com base no nosso modelo de previsão experimental, o valor de Proton pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.016163 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.016163 e $0.004913.
Quanto será Proton em 2030?
Usando nossa nova simulação experimental para previsões de preços de Proton, espera-se que o valor de XPR em 2030 aumente 224.23%, alcançando $0.012082 no melhor cenário. O preço está previsto para variar entre $0.012082 e $0.004178 ao longo de 2030.
Quanto será Proton em 2031?
Nossa simulação experimental indica que o preço de Proton poderia aumentar 195.98% em 2031, potencialmente atingindo $0.011029 sob condições ideais. O preço provavelmente oscilará entre $0.011029 e $0.00494 durante o ano.
Quanto será Proton em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Proton, XPR poderia ver um 449.04% aumento em valor, atingindo $0.020459 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.020459 e $0.007541 ao longo do ano.
Quanto será Proton em 2033?
De acordo com nossa previsão experimental de preços de Proton, espera-se que o valor de XPR seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.054497. Ao longo do ano, o preço de XPR poderia variar entre $0.054497 e $0.017525.
Quanto será Proton em 2034?
Os resultados da nossa nova simulação de previsão de preços de Proton sugerem que XPR pode aumentar 746.96% em 2034, atingindo potencialmente $0.031561 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.031561 e $0.014089.
Quanto será Proton em 2035?
Com base em nossa previsão experimental para o preço de Proton, XPR poderia aumentar 897.93%, com o valor potencialmente atingindo $0.037187 em 2035. A faixa de preço esperada para o ano está entre $0.037187 e $0.016658.
Quanto será Proton em 2036?
Nossa recente simulação de previsão de preços de Proton sugere que o valor de XPR pode aumentar 1964.7% em 2036, possivelmente atingindo $0.07694 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.07694 e $0.027574.
Quanto será Proton em 2037?
De acordo com a simulação experimental, o valor de Proton poderia aumentar 4830.69% em 2037, com um pico de $0.183741 sob condições favoráveis. O preço é esperado para cair entre $0.183741 e $0.0716094 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Unifi Protocol DAO
Previsão de Preço do Pirate Chain
Previsão de Preço do Abelian
Previsão de Preço do FAR Labs
Previsão de Preço do Gamium
Previsão de Preço do Arkadiko
Previsão de Preço do League of Kingdoms
Previsão de Preço do Crust Network
Previsão de Preço do Tranchess
Previsão de Preço do Stronghold Token
Previsão de Preço do Floor Protocol
Previsão de Preço do Index Cooperative
Previsão de Preço do PARSIQ
Previsão de Preço do OctaSpace
Previsão de Preço do Blockasset
Previsão de Preço do FC Barcelona Fan Token
Previsão de Preço do Cosplay Token
Previsão de Preço do Velas
Previsão de Preço do Santos FC Fan Token
Previsão de Preço do Red Pulse Phoenix
Previsão de Preço do BarnBridge
Previsão de Preço do AdEx
Previsão de Preço do AIT Protocol
Previsão de Preço do iMe Lab
Previsão de Preço do The Big Five
Como ler e prever os movimentos de preço de Proton?
Traders de Proton utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Proton
Médias móveis são ferramentas populares para a previsão de preço de Proton. Uma média móvel simples (SMA) calcula o preço médio de fechamento de XPR em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de XPR acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de XPR.
Como ler gráficos de Proton e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Proton em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de XPR dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Proton?
A ação de preço de Proton é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de XPR. A capitalização de mercado de Proton pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de XPR, grandes detentores de Proton, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Proton.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


