Predicción del precio de Crust Network - Pronóstico de CRU
Predicción de precio de Crust Network hasta $0.044262 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.014828 | $0.044262 |
| 2027 | $0.014274 | $0.037499 |
| 2028 | $0.025761 | $0.063097 |
| 2029 | $0.05659 | $0.186157 |
| 2030 | $0.048127 | $0.139151 |
| 2031 | $0.056902 | $0.127029 |
| 2032 | $0.086856 | $0.235633 |
| 2033 | $0.201835 | $0.627642 |
| 2034 | $0.162266 | $0.363496 |
| 2035 | $0.191849 | $0.428289 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Crust Network hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.48, equivalente a un ROI del 39.54% en los próximos 90 días.
Predicción del precio a largo plazo de Crust Network para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Crust Network'
'name_with_ticker' => 'Crust Network <small>CRU</small>'
'name_lang' => 'Crust Network'
'name_lang_with_ticker' => 'Crust Network <small>CRU</small>'
'name_with_lang' => 'Crust Network'
'name_with_lang_with_ticker' => 'Crust Network <small>CRU</small>'
'image' => '/uploads/coins/crust-network.jpg?1717085218'
'price_for_sd' => 0.04291
'ticker' => 'CRU'
'marketcap' => '$1.15M'
'low24h' => '$0.03966'
'high24h' => '$0.04587'
'volume24h' => '$14.65K'
'current_supply' => '26.72M'
'max_supply' => '35.03M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.04291'
'change_24h_pct' => '8.2083%'
'ath_price' => '$179.24'
'ath_days' => 1730
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '12 abr. 2021'
'ath_pct' => '-99.98%'
'fdv' => '$1.5M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$2.11'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.043284'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.037931'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.014828'
'current_year_max_price_prediction' => '$0.044262'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.048127'
'grand_prediction_max_price' => '$0.139151'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.043730988219279
107 => 0.043894263854941
108 => 0.044262132199149
109 => 0.041118737475072
110 => 0.042530029420962
111 => 0.043359031219
112 => 0.039613570936121
113 => 0.04328499551178
114 => 0.041064017966348
115 => 0.040310184829465
116 => 0.041325121838314
117 => 0.040929599898907
118 => 0.040589553361232
119 => 0.040399801550469
120 => 0.041145059275257
121 => 0.04111029211162
122 => 0.039890905825575
123 => 0.038300266123972
124 => 0.038834137018798
125 => 0.038640176717641
126 => 0.037937239564873
127 => 0.038410934332883
128 => 0.036325022306
129 => 0.032736319080021
130 => 0.035107126356056
131 => 0.03501585285487
201 => 0.034969828616649
202 => 0.036751424760289
203 => 0.036580165399494
204 => 0.036269327982675
205 => 0.037931530791951
206 => 0.037324804406783
207 => 0.039194592163157
208 => 0.040426155309795
209 => 0.040113791058913
210 => 0.041272082150987
211 => 0.038846436325947
212 => 0.039652138569006
213 => 0.039818192684646
214 => 0.037911019467302
215 => 0.03660818554892
216 => 0.036521301379958
217 => 0.034262366907058
218 => 0.035469071469
219 => 0.03653092154668
220 => 0.036022377762366
221 => 0.035861387992566
222 => 0.036683849812055
223 => 0.036747762139339
224 => 0.035290554304151
225 => 0.035593553956857
226 => 0.036857112878143
227 => 0.035561715513999
228 => 0.033044970037425
301 => 0.032420782362506
302 => 0.032337504220611
303 => 0.030644657741282
304 => 0.032462493567614
305 => 0.031668959514449
306 => 0.0341757240804
307 => 0.032743873604376
308 => 0.032682149392158
309 => 0.032588844192417
310 => 0.031131741297052
311 => 0.031450754227417
312 => 0.032511201794992
313 => 0.0328895814339
314 => 0.032850113337589
315 => 0.032506005023386
316 => 0.032663536047508
317 => 0.032156073731363
318 => 0.031976878225617
319 => 0.031411287917877
320 => 0.030580026413809
321 => 0.030695618424372
322 => 0.029048671873409
323 => 0.028151327982375
324 => 0.02790295502014
325 => 0.027570820314817
326 => 0.027940470518882
327 => 0.029044006280758
328 => 0.027712908023764
329 => 0.025430833427833
330 => 0.025567989999515
331 => 0.025876140093931
401 => 0.025301904431603
402 => 0.024758438569156
403 => 0.025230938043775
404 => 0.024263992953421
405 => 0.025992990788465
406 => 0.025946226242488
407 => 0.026590689714884
408 => 0.026993685949894
409 => 0.026064910099775
410 => 0.025831325485147
411 => 0.025964385897468
412 => 0.023765193677533
413 => 0.026410968792161
414 => 0.02643384956522
415 => 0.026237930494965
416 => 0.027646724064362
417 => 0.030619717909523
418 => 0.029501158036573
419 => 0.029068017845116
420 => 0.028244618024532
421 => 0.029341749396816
422 => 0.029257506825341
423 => 0.02887652996908
424 => 0.028646113977694
425 => 0.029070662506763
426 => 0.028593507716671
427 => 0.028507797605034
428 => 0.027988487582033
429 => 0.027803117530923
430 => 0.027665876924875
501 => 0.027514788502599
502 => 0.02784805191325
503 => 0.027092833180263
504 => 0.026182113423286
505 => 0.026106396929618
506 => 0.026315456825698
507 => 0.026222963384361
508 => 0.026105954106605
509 => 0.025882551529789
510 => 0.025816272757488
511 => 0.026031646613576
512 => 0.025788502087129
513 => 0.02614727508067
514 => 0.026049708678242
515 => 0.025504710685414
516 => 0.02482544140225
517 => 0.024819394480815
518 => 0.024673047027982
519 => 0.024486651543313
520 => 0.024434800583629
521 => 0.02519114545593
522 => 0.026756756706098
523 => 0.026449389755788
524 => 0.026671493877619
525 => 0.027764026332499
526 => 0.028111309546308
527 => 0.027864816147
528 => 0.027527400778976
529 => 0.027542245342757
530 => 0.028695295797872
531 => 0.028767210140397
601 => 0.028948914483511
602 => 0.029182455914054
603 => 0.027904589262483
604 => 0.027482057938385
605 => 0.027281839155882
606 => 0.026665242800193
607 => 0.027330189106827
608 => 0.026942753369791
609 => 0.026995031687407
610 => 0.026960985364477
611 => 0.026979576958999
612 => 0.025992507498333
613 => 0.026352143730956
614 => 0.025754178741626
615 => 0.024953570745633
616 => 0.024950886826901
617 => 0.0251468344997
618 => 0.025030277156486
619 => 0.024716624342861
620 => 0.024761177244637
621 => 0.024370846944313
622 => 0.024808570410254
623 => 0.024821122753007
624 => 0.024652575375662
625 => 0.025326948769142
626 => 0.025603240098688
627 => 0.025492298604284
628 => 0.025595456147693
629 => 0.026462162240252
630 => 0.026603473150377
701 => 0.02666623412218
702 => 0.026582142734199
703 => 0.02561129794403
704 => 0.025654359038825
705 => 0.025338405296706
706 => 0.025071457679
707 => 0.025082134183752
708 => 0.025219379960014
709 => 0.025818740314308
710 => 0.027080058845697
711 => 0.027127924961952
712 => 0.027185940091205
713 => 0.026949963404464
714 => 0.02687879057775
715 => 0.026972685907451
716 => 0.027446370830863
717 => 0.028664817058081
718 => 0.028234136784094
719 => 0.027883987017406
720 => 0.028191162762491
721 => 0.028143875464258
722 => 0.027744723078919
723 => 0.027733520200881
724 => 0.026967419156677
725 => 0.026684209043912
726 => 0.026447537475775
727 => 0.026189098301838
728 => 0.026035886896569
729 => 0.026271289248401
730 => 0.026325128551464
731 => 0.025810417195054
801 => 0.025740263939099
802 => 0.02616058834356
803 => 0.02597561924443
804 => 0.026165864549898
805 => 0.02621000309266
806 => 0.026202895770679
807 => 0.026009766787621
808 => 0.026132861442233
809 => 0.025841705887794
810 => 0.025525117952491
811 => 0.025323154573894
812 => 0.025146914739513
813 => 0.025244702842747
814 => 0.02489610611012
815 => 0.024784582999487
816 => 0.026091159742968
817 => 0.027056342031445
818 => 0.027042307898716
819 => 0.026956878725017
820 => 0.026829948301574
821 => 0.027437085079787
822 => 0.027225570766341
823 => 0.027379465101985
824 => 0.027418637669332
825 => 0.027537201232667
826 => 0.027579577515677
827 => 0.0274514869562
828 => 0.027021599393654
829 => 0.025950360460271
830 => 0.025451695845026
831 => 0.02528712821608
901 => 0.025293109936834
902 => 0.025128107374867
903 => 0.025176708024262
904 => 0.025111206052386
905 => 0.024987161164282
906 => 0.025237043420456
907 => 0.025265840022665
908 => 0.025207514518204
909 => 0.025221252285919
910 => 0.024738342020126
911 => 0.024775056638809
912 => 0.024570624976518
913 => 0.024532296504299
914 => 0.024015511063929
915 => 0.023099950747066
916 => 0.023607260038198
917 => 0.022994501752992
918 => 0.022762440905581
919 => 0.023860980864358
920 => 0.023750717921252
921 => 0.023561995692804
922 => 0.023282836183771
923 => 0.023179293206382
924 => 0.022550198853487
925 => 0.02251302860303
926 => 0.022824824751301
927 => 0.022680941557124
928 => 0.022478875059673
929 => 0.021747010689058
930 => 0.020924152824521
1001 => 0.020948989731151
1002 => 0.021210725508046
1003 => 0.021971757579245
1004 => 0.021674409183039
1005 => 0.021458679509912
1006 => 0.021418279826945
1007 => 0.021923966441737
1008 => 0.022639618946288
1009 => 0.022975387089601
1010 => 0.022642651057008
1011 => 0.022260421818545
1012 => 0.022283686341211
1013 => 0.022438454787814
1014 => 0.022454718763244
1015 => 0.022205926822806
1016 => 0.022275960296732
1017 => 0.022169573045843
1018 => 0.021516674683511
1019 => 0.0215048658225
1020 => 0.021344634034975
1021 => 0.021339782280129
1022 => 0.021067188037857
1023 => 0.021029050219008
1024 => 0.02048779780569
1025 => 0.0208440517832
1026 => 0.02060509531926
1027 => 0.02024493156397
1028 => 0.020182839196805
1029 => 0.020180972625269
1030 => 0.020550780270809
1031 => 0.020839730365549
1101 => 0.020609252069256
1102 => 0.020556776628824
1103 => 0.021117077045689
1104 => 0.021045773710391
1105 => 0.02098402548188
1106 => 0.022575540113851
1107 => 0.021315732095211
1108 => 0.020766383891756
1109 => 0.020086461171586
1110 => 0.020307847437742
1111 => 0.020354496776861
1112 => 0.018719405200135
1113 => 0.018056048751095
1114 => 0.017828409815845
1115 => 0.017697400390266
1116 => 0.017757103030615
1117 => 0.017160004422528
1118 => 0.017561264562262
1119 => 0.017044227639148
1120 => 0.016957544716404
1121 => 0.017882070783517
1122 => 0.018010713184753
1123 => 0.017461884735019
1124 => 0.017814321447003
1125 => 0.017686522996001
1126 => 0.017053090753209
1127 => 0.017028898300746
1128 => 0.016711064267533
1129 => 0.01621371555035
1130 => 0.01598641384095
1201 => 0.015868033137171
1202 => 0.015916879322744
1203 => 0.0158921811966
1204 => 0.015731009217055
1205 => 0.015901419385807
1206 => 0.015466091822991
1207 => 0.015292740879805
1208 => 0.015214442280479
1209 => 0.014828064011961
1210 => 0.01544296366037
1211 => 0.015564106637408
1212 => 0.015685488303534
1213 => 0.016742032836377
1214 => 0.01668925085728
1215 => 0.017166374242451
1216 => 0.017147834105077
1217 => 0.01701175078674
1218 => 0.016437637651295
1219 => 0.016666468914501
1220 => 0.015962161854628
1221 => 0.016489876592109
1222 => 0.016249049623817
1223 => 0.01640845275188
1224 => 0.016121831554823
1225 => 0.016280459559573
1226 => 0.015592834131372
1227 => 0.014950739181668
1228 => 0.015209136933349
1229 => 0.015490044840793
1230 => 0.016099124758136
1231 => 0.015736361784167
]
'min_raw' => 0.014828064011961
'max_raw' => 0.044262132199149
'avg_raw' => 0.029545098105555
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.014828'
'max' => '$0.044262'
'avg' => '$0.029545'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.028089655988039
'max_diff' => 0.0013444121991486
'year' => 2026
]
1 => [
'items' => [
101 => 0.015866825067193
102 => 0.015429794908346
103 => 0.01452807685915
104 => 0.014533180485382
105 => 0.014394470808509
106 => 0.014274605395746
107 => 0.01577802947555
108 => 0.015591054925609
109 => 0.015293135450902
110 => 0.015691912506647
111 => 0.015797355489629
112 => 0.015800357303119
113 => 0.016091294749065
114 => 0.016246568116119
115 => 0.016273935720056
116 => 0.016731732077372
117 => 0.016885179377864
118 => 0.017517207091916
119 => 0.01623339425576
120 => 0.016206954975235
121 => 0.015697524117611
122 => 0.015374435013922
123 => 0.015719646304955
124 => 0.01602545638277
125 => 0.015707026489171
126 => 0.015748606710853
127 => 0.015321140595374
128 => 0.015473939617508
129 => 0.01560555071962
130 => 0.015532882804777
131 => 0.015424095419089
201 => 0.016000383443801
202 => 0.015967867014956
203 => 0.016504519672372
204 => 0.016922878795228
205 => 0.017672653134025
206 => 0.01689022452487
207 => 0.016861709716481
208 => 0.017140446542409
209 => 0.016885136704708
210 => 0.017046483709139
211 => 0.017646657637196
212 => 0.017659338366554
213 => 0.017446919811608
214 => 0.017433994123235
215 => 0.017474791430317
216 => 0.017713742532175
217 => 0.01763024567496
218 => 0.017726870352011
219 => 0.017847700990233
220 => 0.018347507741048
221 => 0.018468009456582
222 => 0.018175252760811
223 => 0.018201685412581
224 => 0.018092186372012
225 => 0.017986411670841
226 => 0.018224177751919
227 => 0.018658699938392
228 => 0.018655996798422
301 => 0.01875679749978
302 => 0.018819595501647
303 => 0.018550020506684
304 => 0.018374537097511
305 => 0.018441828602887
306 => 0.018549429185403
307 => 0.018406935184182
308 => 0.017527396199005
309 => 0.01779419214194
310 => 0.017749784251381
311 => 0.01768654201504
312 => 0.017954807398733
313 => 0.017928932548038
314 => 0.01715388031327
315 => 0.017203496642689
316 => 0.017156897646597
317 => 0.017307468536229
318 => 0.016877005382536
319 => 0.017009412949399
320 => 0.017092457734091
321 => 0.017141371750255
322 => 0.017318082717294
323 => 0.017297347724902
324 => 0.017316793801053
325 => 0.017578809515206
326 => 0.018903995084455
327 => 0.018976122011132
328 => 0.01862094264499
329 => 0.01876282979616
330 => 0.018490437493222
331 => 0.018673296271054
401 => 0.018798403602738
402 => 0.018233067627616
403 => 0.01819959210017
404 => 0.017926075537302
405 => 0.018073047845417
406 => 0.017839204335523
407 => 0.017896581353352
408 => 0.017736150209463
409 => 0.018024894326941
410 => 0.018347755116582
411 => 0.018429322502204
412 => 0.0182147538276
413 => 0.018059391966421
414 => 0.017786627717571
415 => 0.018240240742357
416 => 0.018372891014411
417 => 0.018239543986949
418 => 0.018208644566996
419 => 0.018150090222019
420 => 0.018221067148087
421 => 0.018372168572541
422 => 0.018300911931174
423 => 0.018347978198178
424 => 0.018168610122883
425 => 0.018550109747225
426 => 0.019156022963563
427 => 0.019157971073631
428 => 0.019086714048163
429 => 0.019057557208596
430 => 0.019130671240963
501 => 0.019170332604228
502 => 0.019406769978084
503 => 0.019660476700311
504 => 0.020844415272032
505 => 0.0205119700587
506 => 0.021562430792351
507 => 0.022393208847415
508 => 0.022642322860607
509 => 0.02241314969019
510 => 0.021629160653886
511 => 0.021590694411548
512 => 0.02276230502342
513 => 0.0224312713624
514 => 0.022391895961763
515 => 0.021973008224765
516 => 0.022220622757586
517 => 0.022166465826972
518 => 0.02208097646255
519 => 0.022553407742195
520 => 0.023437756923459
521 => 0.023299922810185
522 => 0.023197036038566
523 => 0.022746216155222
524 => 0.023017710419262
525 => 0.022921036511967
526 => 0.023336408968481
527 => 0.023090351526869
528 => 0.022428763456838
529 => 0.022534123537613
530 => 0.022518198573359
531 => 0.022845933209254
601 => 0.022747555406432
602 => 0.022498988728451
603 => 0.023434734314098
604 => 0.023373972200657
605 => 0.023460118985364
606 => 0.02349804346417
607 => 0.024067615312467
608 => 0.024300950674448
609 => 0.024353921886728
610 => 0.024575572433806
611 => 0.024348407019198
612 => 0.025257230643825
613 => 0.025861545322873
614 => 0.026563487920336
615 => 0.027589214719614
616 => 0.027974897484645
617 => 0.027905227345255
618 => 0.028682921698009
619 => 0.030080421162734
620 => 0.028187701943115
621 => 0.030180739877255
622 => 0.029549767078035
623 => 0.028053741921802
624 => 0.027957415538719
625 => 0.028970541143729
626 => 0.031217556225916
627 => 0.030654704433262
628 => 0.031218476849813
629 => 0.030560806379372
630 => 0.030528147497232
701 => 0.031186535263011
702 => 0.032724894164603
703 => 0.031994077514978
704 => 0.030946272644146
705 => 0.031719955455119
706 => 0.03104971980329
707 => 0.029539491292574
708 => 0.030654274031104
709 => 0.029908850561033
710 => 0.030126404758491
711 => 0.031693174019207
712 => 0.0315046561966
713 => 0.031748615715334
714 => 0.031318033550302
715 => 0.030915801911587
716 => 0.030165006687811
717 => 0.029942733235808
718 => 0.030004161621381
719 => 0.029942702794951
720 => 0.029522639767413
721 => 0.029431927196611
722 => 0.029280735604398
723 => 0.029327596200852
724 => 0.029043311774832
725 => 0.029579815222892
726 => 0.029679394990504
727 => 0.030069817459327
728 => 0.030110352415217
729 => 0.031197673433574
730 => 0.030598795288351
731 => 0.031000574452818
801 => 0.030964635542656
802 => 0.028086165323283
803 => 0.028482793122555
804 => 0.029099821509562
805 => 0.028821851057577
806 => 0.02842886587354
807 => 0.028111509266897
808 => 0.027630681556454
809 => 0.028307437325424
810 => 0.029197299196668
811 => 0.030132920780768
812 => 0.031257008809709
813 => 0.031006125447477
814 => 0.030111906736966
815 => 0.030152020735092
816 => 0.030399989687233
817 => 0.030078847363856
818 => 0.029984136223249
819 => 0.030386977830902
820 => 0.030389751979656
821 => 0.030020238925264
822 => 0.029609592785483
823 => 0.029607872163164
824 => 0.029534801648961
825 => 0.030573805461521
826 => 0.031145152503295
827 => 0.031210656520863
828 => 0.031140743561004
829 => 0.031167650284508
830 => 0.030835196029672
831 => 0.031595087869979
901 => 0.032292439768159
902 => 0.032105534562697
903 => 0.031825337089568
904 => 0.031602146306082
905 => 0.032052957907213
906 => 0.032032883976258
907 => 0.032286349007685
908 => 0.032274850369775
909 => 0.032189619613008
910 => 0.032105537606556
911 => 0.032438913257939
912 => 0.03234290642419
913 => 0.03224675046531
914 => 0.032053894969035
915 => 0.03208010723397
916 => 0.031799958140885
917 => 0.031670348351674
918 => 0.029721328099305
919 => 0.029200486201798
920 => 0.029364353665468
921 => 0.029418303089325
922 => 0.029191632028053
923 => 0.029516620102899
924 => 0.029465971055682
925 => 0.029663016869702
926 => 0.029539911199837
927 => 0.029544963499469
928 => 0.029906991025647
929 => 0.030012089156672
930 => 0.029958635398987
1001 => 0.029996072578582
1002 => 0.030858796581103
1003 => 0.030736144816305
1004 => 0.030670988510796
1005 => 0.030689037252708
1006 => 0.030909481732364
1007 => 0.030971194150845
1008 => 0.030709714297286
1009 => 0.030833029707821
1010 => 0.031358091074826
1011 => 0.031541832837378
1012 => 0.032128248342395
1013 => 0.03187912861316
1014 => 0.032336398657821
1015 => 0.033741890880264
1016 => 0.034864695320216
1017 => 0.03383211795538
1018 => 0.035894005321068
1019 => 0.037499480395432
1020 => 0.037437859588019
1021 => 0.037157907873497
1022 => 0.035330117185096
1023 => 0.033648156942807
1024 => 0.035055188105286
1025 => 0.035058774917078
1026 => 0.034937909692387
1027 => 0.034187226162247
1028 => 0.034911787532739
1029 => 0.034969300583108
1030 => 0.034937108568856
1031 => 0.034361561266368
1101 => 0.033482806914391
1102 => 0.033654513411327
1103 => 0.033935772156025
1104 => 0.033403290675591
1105 => 0.033233130578402
1106 => 0.03354949057336
1107 => 0.034568868393337
1108 => 0.034376160921324
1109 => 0.034371128550438
1110 => 0.035195612836396
1111 => 0.034605460022495
1112 => 0.033656679180134
1113 => 0.033417099504556
1114 => 0.032566753056461
1115 => 0.03315409037699
1116 => 0.033175227601539
1117 => 0.032853548953528
1118 => 0.033682781629548
1119 => 0.033675140104455
1120 => 0.03446237311534
1121 => 0.035967266960937
1122 => 0.035522195799465
1123 => 0.035004626462278
1124 => 0.035060900599871
1125 => 0.035678088992863
1126 => 0.03530492280142
1127 => 0.03543911596567
1128 => 0.035677885875437
1129 => 0.035821941690322
1130 => 0.035040173185003
1201 => 0.034857905550102
1202 => 0.034485049936343
1203 => 0.034387778866393
1204 => 0.034691461983912
1205 => 0.034611452211729
1206 => 0.033173451099663
1207 => 0.03302317198249
1208 => 0.033027780828465
1209 => 0.032649896842949
1210 => 0.03207353306249
1211 => 0.033588182664643
1212 => 0.033466535104083
1213 => 0.033332245611997
1214 => 0.033348695308533
1215 => 0.034006153364589
1216 => 0.033624794489649
1217 => 0.034638699562168
1218 => 0.034430271160035
1219 => 0.034216497355859
1220 => 0.034186947304412
1221 => 0.034104662628128
1222 => 0.033822477856371
1223 => 0.033481722787799
1224 => 0.033256726775829
1225 => 0.030677572506776
1226 => 0.031156248536862
1227 => 0.031706921676783
1228 => 0.031897011837999
1229 => 0.0315718494634
1230 => 0.033835317248808
1231 => 0.034248874624521
]
'min_raw' => 0.014274605395746
'max_raw' => 0.037499480395432
'avg_raw' => 0.025887042895589
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.014274'
'max' => '$0.037499'
'avg' => '$0.025887'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00055345861621465
'max_diff' => -0.0067626518037165
'year' => 2027
]
2 => [
'items' => [
101 => 0.032996182357808
102 => 0.032761854781794
103 => 0.033850679725681
104 => 0.033193985181081
105 => 0.033489694694304
106 => 0.032850532471171
107 => 0.034149260763085
108 => 0.034139366629466
109 => 0.033634131990803
110 => 0.034061152847703
111 => 0.03398694746535
112 => 0.033416538802637
113 => 0.034167343735113
114 => 0.034167716124992
115 => 0.033681438770027
116 => 0.033113573279229
117 => 0.033012052341858
118 => 0.032935569952968
119 => 0.033470884715093
120 => 0.033950846256928
121 => 0.034843935693726
122 => 0.035068479597419
123 => 0.035944889402266
124 => 0.035423030035099
125 => 0.035654363533354
126 => 0.035905508769831
127 => 0.036025917031758
128 => 0.035829718230411
129 => 0.037191143402005
130 => 0.037306089399477
131 => 0.037344629798151
201 => 0.036885564890261
202 => 0.037293321973947
203 => 0.037102545937986
204 => 0.037598892184447
205 => 0.037676725613559
206 => 0.037610803468106
207 => 0.037635509027023
208 => 0.036473772814925
209 => 0.036413530663681
210 => 0.035592124656881
211 => 0.035926853676179
212 => 0.035301093818581
213 => 0.035499528715466
214 => 0.035586996927256
215 => 0.035541308497194
216 => 0.035945778752706
217 => 0.035601896407707
218 => 0.034694334359761
219 => 0.033786525047143
220 => 0.033775128240708
221 => 0.033536118072861
222 => 0.033363357498403
223 => 0.033396637314054
224 => 0.033513919725164
225 => 0.033356540831462
226 => 0.033390125597745
227 => 0.033947856492183
228 => 0.034059705445508
229 => 0.033679598999903
301 => 0.032153416771702
302 => 0.031778887824763
303 => 0.032048091804591
304 => 0.03191942964119
305 => 0.025761470929782
306 => 0.027208191986734
307 => 0.026348599460698
308 => 0.026744739244646
309 => 0.025867317865969
310 => 0.026286069337468
311 => 0.026208741231037
312 => 0.028535025879029
313 => 0.028498704143951
314 => 0.028516089436429
315 => 0.027686244129286
316 => 0.029008210236321
317 => 0.029659458277009
318 => 0.029538929597083
319 => 0.029569264069132
320 => 0.029048017336417
321 => 0.028521136244191
322 => 0.027936744026493
323 => 0.029022472533914
324 => 0.028901758057893
325 => 0.029178633634189
326 => 0.029882806180728
327 => 0.029986498263097
328 => 0.030125861473343
329 => 0.030075909683019
330 => 0.03126596398438
331 => 0.031121840556254
401 => 0.031469136550898
402 => 0.030754722340506
403 => 0.029946294848628
404 => 0.030099950485348
405 => 0.030085152211911
406 => 0.029896753206394
407 => 0.029726675008101
408 => 0.02944354272718
409 => 0.030339415159709
410 => 0.030303044375003
411 => 0.030891845102973
412 => 0.030787768854999
413 => 0.030092722199252
414 => 0.030117545926536
415 => 0.030284497422397
416 => 0.030862318455791
417 => 0.031033855079558
418 => 0.030954392480876
419 => 0.031142474557892
420 => 0.031291126962842
421 => 0.031161143011262
422 => 0.033001441653749
423 => 0.032237221352214
424 => 0.032609697009771
425 => 0.032698530259345
426 => 0.032470985758525
427 => 0.032520332012995
428 => 0.032595078142468
429 => 0.033048922003834
430 => 0.03423993961684
501 => 0.03476743321011
502 => 0.036354423711535
503 => 0.034723632210254
504 => 0.034626867791454
505 => 0.034912732703283
506 => 0.035844464127625
507 => 0.036599544933971
508 => 0.036850048799093
509 => 0.036883157020237
510 => 0.037353118924388
511 => 0.037622492323577
512 => 0.037296053187999
513 => 0.037019430200199
514 => 0.036028600993609
515 => 0.03614329217221
516 => 0.036933400659003
517 => 0.038049475433755
518 => 0.039007183698282
519 => 0.038671827643548
520 => 0.041230357616692
521 => 0.041484025412872
522 => 0.041448976725502
523 => 0.042026869716028
524 => 0.040879869815694
525 => 0.040389505136225
526 => 0.037079239229966
527 => 0.038009288925633
528 => 0.039361170778188
529 => 0.039182244145706
530 => 0.038200471408475
531 => 0.039006438935623
601 => 0.038739960866213
602 => 0.038529778556684
603 => 0.039492664462482
604 => 0.038433931855884
605 => 0.039350609110549
606 => 0.038174961049629
607 => 0.038673359521757
608 => 0.038390444444156
609 => 0.038573525172132
610 => 0.037503238977338
611 => 0.03808073942832
612 => 0.037479213059932
613 => 0.037478927858112
614 => 0.03746564913019
615 => 0.038173342235023
616 => 0.038196420081764
617 => 0.037673433808028
618 => 0.037598063315402
619 => 0.037876747529916
620 => 0.037550481302231
621 => 0.03770313921667
622 => 0.037555105154945
623 => 0.037521779569576
624 => 0.037256235635477
625 => 0.037141832007385
626 => 0.037186692617778
627 => 0.037033560227276
628 => 0.036941292422957
629 => 0.037447294741565
630 => 0.037176958114808
701 => 0.037405861776341
702 => 0.037144997164079
703 => 0.036240726764677
704 => 0.035720671295495
705 => 0.034012588336935
706 => 0.034496998545113
707 => 0.034818163014293
708 => 0.034712018159145
709 => 0.034940058380609
710 => 0.034954058198141
711 => 0.034879919997548
712 => 0.034794077458953
713 => 0.034752294058555
714 => 0.035063713292623
715 => 0.035244502639889
716 => 0.034850396165401
717 => 0.034758062532564
718 => 0.035156525937486
719 => 0.035399588384304
720 => 0.037194224926613
721 => 0.037061272454959
722 => 0.037394957068206
723 => 0.037357389301562
724 => 0.037707143936372
725 => 0.038278844946949
726 => 0.037116416942329
727 => 0.037318174250195
728 => 0.037268708017563
729 => 0.037808767374697
730 => 0.037810453381061
731 => 0.037486660818493
801 => 0.037662194019596
802 => 0.037564216202242
803 => 0.037741275360696
804 => 0.037059496793643
805 => 0.037889829494866
806 => 0.038360574631001
807 => 0.038367110927673
808 => 0.038590240386137
809 => 0.038816952838723
810 => 0.039252107648969
811 => 0.038804816607246
812 => 0.038000183566092
813 => 0.038058275472714
814 => 0.037586519415089
815 => 0.037594449719648
816 => 0.037552117132406
817 => 0.037679160413367
818 => 0.037087375649551
819 => 0.037226266350776
820 => 0.037031818555718
821 => 0.037317751558664
822 => 0.037010134913912
823 => 0.037268684163448
824 => 0.037380265448504
825 => 0.037792002792535
826 => 0.036949320973426
827 => 0.035231035699718
828 => 0.035592240096447
829 => 0.035057990421692
830 => 0.035107437263123
831 => 0.035207327752219
901 => 0.034883549994924
902 => 0.034945316587606
903 => 0.034943109850271
904 => 0.03492409338009
905 => 0.034839866280527
906 => 0.034717720322338
907 => 0.035204312225222
908 => 0.035286993671387
909 => 0.035470784284149
910 => 0.036017620481364
911 => 0.035962978649977
912 => 0.036052101744038
913 => 0.035857546530108
914 => 0.035116462121499
915 => 0.035156706570351
916 => 0.034654857648292
917 => 0.035457950878902
918 => 0.035267767801581
919 => 0.035145155534417
920 => 0.035111699641327
921 => 0.035659891339706
922 => 0.035823918887712
923 => 0.035721707927274
924 => 0.035512070265444
925 => 0.035914636549968
926 => 0.036022346304799
927 => 0.036046458546722
928 => 0.03675972881847
929 => 0.036086322431469
930 => 0.036248418041904
1001 => 0.037513041722285
1002 => 0.036366202550318
1003 => 0.036973708837275
1004 => 0.036943974565838
1005 => 0.037254754225353
1006 => 0.03691848156278
1007 => 0.036922650065451
1008 => 0.037198601349063
1009 => 0.036811077539307
1010 => 0.036715121194251
1011 => 0.03658255819081
1012 => 0.036872004659104
1013 => 0.037045514726309
1014 => 0.038443878438875
1015 => 0.039347285170326
1016 => 0.039308065901548
1017 => 0.039666456602784
1018 => 0.039504998309395
1019 => 0.038983606889494
1020 => 0.039873558466354
1021 => 0.03959194055028
1022 => 0.039615156789116
1023 => 0.039614292679547
1024 => 0.039801543974271
1025 => 0.03966885927063
1026 => 0.039407324099948
1027 => 0.039580943351582
1028 => 0.040096530458916
1029 => 0.041696928660227
1030 => 0.042592532696136
1031 => 0.041643012172711
1101 => 0.042297978715183
1102 => 0.041905232178141
1103 => 0.041833858449163
1104 => 0.042245225839483
1105 => 0.042657313273963
1106 => 0.04263106508589
1107 => 0.042331910769381
1108 => 0.042162926086745
1109 => 0.043442534717687
1110 => 0.044385328559401
1111 => 0.044321036339966
1112 => 0.044604801287602
1113 => 0.045437943950378
1114 => 0.045514116074179
1115 => 0.045504520137376
1116 => 0.045315719580797
1117 => 0.046136056729547
1118 => 0.046820396411493
1119 => 0.045272017706922
1120 => 0.045861620047857
1121 => 0.046126311534504
1122 => 0.046514957167326
1123 => 0.047170667494469
1124 => 0.047882942828321
1125 => 0.047983666370229
1126 => 0.04791219819718
1127 => 0.047442433467516
1128 => 0.048221813637029
1129 => 0.048678356261615
1130 => 0.048950216946764
1201 => 0.049639610410998
1202 => 0.046127946179013
1203 => 0.043642215694578
1204 => 0.04325403298505
1205 => 0.044043417789406
1206 => 0.044251572267089
1207 => 0.044167665458139
1208 => 0.041369749805178
1209 => 0.043239302538179
1210 => 0.04525078408243
1211 => 0.045328053280561
1212 => 0.046335042999708
1213 => 0.046662960130166
1214 => 0.047473718843239
1215 => 0.047423005664991
1216 => 0.047620412509635
1217 => 0.047575032094661
1218 => 0.049076791885241
1219 => 0.050733455947737
1220 => 0.050676090939122
1221 => 0.050437925879378
1222 => 0.050791641606274
1223 => 0.052501496457681
1224 => 0.052344080422829
1225 => 0.052496996692021
1226 => 0.054513011925026
1227 => 0.057134118502755
1228 => 0.055916351342602
1229 => 0.058558555677072
1230 => 0.060221683248388
1231 => 0.063097890412378
]
'min_raw' => 0.025761470929782
'max_raw' => 0.063097890412378
'avg_raw' => 0.04442968067108
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.025761'
'max' => '$0.063097'
'avg' => '$0.044429'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.011486865534036
'max_diff' => 0.025598410016946
'year' => 2028
]
3 => [
'items' => [
101 => 0.062737775109828
102 => 0.063857461452186
103 => 0.062093093559931
104 => 0.05804174824173
105 => 0.057400607337198
106 => 0.058684187664345
107 => 0.061839744648699
108 => 0.058584807945234
109 => 0.059243277401106
110 => 0.059053638153517
111 => 0.059043533083928
112 => 0.059429202489856
113 => 0.058869768901394
114 => 0.056590535821822
115 => 0.057635094910585
116 => 0.057231740482566
117 => 0.057679292292518
118 => 0.060094544826419
119 => 0.059026704108752
120 => 0.057901820657026
121 => 0.059312674137112
122 => 0.061109175439116
123 => 0.06099675361626
124 => 0.060778608291243
125 => 0.062008282066649
126 => 0.064039342883009
127 => 0.064588330460208
128 => 0.064993581866139
129 => 0.065049459188238
130 => 0.065625030333423
131 => 0.062530039223159
201 => 0.067441869600158
202 => 0.06829000701969
203 => 0.068130592336512
204 => 0.069073261383243
205 => 0.068795904236489
206 => 0.068394057246846
207 => 0.069888388197371
208 => 0.068175258348884
209 => 0.065743686206006
210 => 0.064409677637379
211 => 0.066166407731948
212 => 0.06723918149927
213 => 0.067948216718244
214 => 0.068162770347094
215 => 0.062770294572739
216 => 0.059864049210778
217 => 0.061726919167624
218 => 0.063999749083392
219 => 0.062517413538218
220 => 0.062575518285157
221 => 0.060462097348667
222 => 0.064186739941139
223 => 0.063644090844591
224 => 0.066459355317412
225 => 0.065787469857064
226 => 0.068083208746712
227 => 0.067478663758479
228 => 0.069988096204979
301 => 0.070989176748059
302 => 0.072670146785635
303 => 0.073906675188055
304 => 0.074632788316976
305 => 0.074589195208297
306 => 0.077466417173204
307 => 0.075769819902977
308 => 0.073638493874298
309 => 0.073599944910686
310 => 0.074703788862063
311 => 0.077017142959349
312 => 0.077616962018842
313 => 0.077952179044278
314 => 0.077438782500835
315 => 0.075597247760225
316 => 0.074802082396023
317 => 0.075479586324482
318 => 0.074651057238553
319 => 0.076081330885069
320 => 0.078045402091701
321 => 0.07763982915431
322 => 0.078995598677113
323 => 0.0803986775021
324 => 0.082405143238045
325 => 0.082929707680632
326 => 0.083796792756829
327 => 0.084689308122845
328 => 0.084975960004446
329 => 0.085523267389278
330 => 0.085520382809201
331 => 0.087169730451426
401 => 0.088989011976845
402 => 0.089675748636227
403 => 0.091254861717594
404 => 0.088550685904475
405 => 0.090601834322059
406 => 0.092452021538294
407 => 0.090246152064832
408 => 0.09328642923233
409 => 0.093404476305327
410 => 0.095186846955653
411 => 0.093380072840648
412 => 0.092307216138586
413 => 0.095404513238024
414 => 0.096903197740497
415 => 0.096451781771653
416 => 0.093016483959595
417 => 0.091016993286122
418 => 0.085783940520698
419 => 0.091982717572399
420 => 0.095001961053477
421 => 0.093008664848374
422 => 0.094013967511112
423 => 0.099498572868527
424 => 0.10158675548673
425 => 0.10115242809964
426 => 0.10122582227842
427 => 0.10235256771601
428 => 0.10734917749632
429 => 0.10435509309545
430 => 0.10664395843372
501 => 0.10785796435601
502 => 0.10898560071393
503 => 0.10621648221202
504 => 0.10261389972747
505 => 0.10147281062849
506 => 0.092810470824351
507 => 0.092359558418911
508 => 0.092106447621693
509 => 0.090510619848467
510 => 0.089256736352728
511 => 0.088259601643206
512 => 0.08564282239579
513 => 0.086525908575432
514 => 0.082355308619327
515 => 0.085023510674256
516 => 0.078367132441654
517 => 0.083910762029112
518 => 0.080893616482567
519 => 0.082919548571203
520 => 0.082912480285
521 => 0.079182096987467
522 => 0.077030489752564
523 => 0.078401577624451
524 => 0.079871492660204
525 => 0.080109981429367
526 => 0.08201576464193
527 => 0.082547627771883
528 => 0.08093605765781
529 => 0.078229193797998
530 => 0.078857936535641
531 => 0.077017748301053
601 => 0.073792889201757
602 => 0.07610903930751
603 => 0.076899874787545
604 => 0.077249152788432
605 => 0.074077874241845
606 => 0.0730813896707
607 => 0.072550869646338
608 => 0.077819821560844
609 => 0.078108466640707
610 => 0.076631717601826
611 => 0.083306763288658
612 => 0.081795994869836
613 => 0.083483893340909
614 => 0.078800884722369
615 => 0.078979781958105
616 => 0.076762770629546
617 => 0.078004148832788
618 => 0.077126782730224
619 => 0.077903857741505
620 => 0.078369633299266
621 => 0.080586280838082
622 => 0.083936072583356
623 => 0.080255187614464
624 => 0.078651373322274
625 => 0.079646370688955
626 => 0.082296179795645
627 => 0.086310776233513
628 => 0.083934054341012
629 => 0.084988803157549
630 => 0.085219218851453
701 => 0.08346671211895
702 => 0.08637539365649
703 => 0.087934179722544
704 => 0.089533171680988
705 => 0.090921531595768
706 => 0.088894499130199
707 => 0.091063714432048
708 => 0.089315709816805
709 => 0.087747568971537
710 => 0.087749947193899
711 => 0.086766229534779
712 => 0.084860152613835
713 => 0.084508642785146
714 => 0.086337241304783
715 => 0.087803604148607
716 => 0.087924380815829
717 => 0.088736234630613
718 => 0.089216681355444
719 => 0.093925712394429
720 => 0.095819723633457
721 => 0.098135684724743
722 => 0.099037882090213
723 => 0.10175317270462
724 => 0.099560355008366
725 => 0.099085925106311
726 => 0.092499518240542
727 => 0.093578041995834
728 => 0.095304862590121
729 => 0.092527992876114
730 => 0.09428927756235
731 => 0.094636992468523
801 => 0.092433635905815
802 => 0.093610543847375
803 => 0.090485025283478
804 => 0.084004200346992
805 => 0.086382608667286
806 => 0.088133917754607
807 => 0.085634583752147
808 => 0.090114543213973
809 => 0.087497443381509
810 => 0.086667948377564
811 => 0.083431792630856
812 => 0.084959133572244
813 => 0.087024884064888
814 => 0.085748490429705
815 => 0.088397198874178
816 => 0.092148476416291
817 => 0.094821860185241
818 => 0.095027089395482
819 => 0.09330828273485
820 => 0.096062681377791
821 => 0.096082744164859
822 => 0.092975771243573
823 => 0.091072767628982
824 => 0.090640401203793
825 => 0.091720537304346
826 => 0.093032021934541
827 => 0.095099867664989
828 => 0.096349423531885
829 => 0.099607602519529
830 => 0.10048917233427
831 => 0.10145775028541
901 => 0.10275206912651
902 => 0.10430623075178
903 => 0.10090581359415
904 => 0.10104091850699
905 => 0.097874497131787
906 => 0.094490721781621
907 => 0.097058585478845
908 => 0.10041572567437
909 => 0.099645594004208
910 => 0.099558938458952
911 => 0.099704669049829
912 => 0.099124014920674
913 => 0.096497737814552
914 => 0.095178837893222
915 => 0.096880555278993
916 => 0.097784942334803
917 => 0.099187567787524
918 => 0.099014664594645
919 => 0.10262767712988
920 => 0.10403158454924
921 => 0.10367240495478
922 => 0.1037385026443
923 => 0.1062802099677
924 => 0.1091071112533
925 => 0.11175487734975
926 => 0.11444829874725
927 => 0.11120127412653
928 => 0.10955263527277
929 => 0.11125360974197
930 => 0.11035104874566
1001 => 0.11553743194741
1002 => 0.11589652586756
1003 => 0.12108253403476
1004 => 0.12600467332381
1005 => 0.12291316582565
1006 => 0.12582831815186
1007 => 0.12898129306851
1008 => 0.13506389323448
1009 => 0.13301548748704
1010 => 0.13144644078711
1011 => 0.12996369923725
1012 => 0.13304904902391
1013 => 0.13701830223478
1014 => 0.13787324135937
1015 => 0.13925856935308
1016 => 0.13780206635754
1017 => 0.13955626378713
1018 => 0.14574935154699
1019 => 0.14407592456638
1020 => 0.1416993892371
1021 => 0.14658823723303
1022 => 0.14835749231785
1023 => 0.16077505106915
1024 => 0.17645273193644
1025 => 0.16996206911218
1026 => 0.16593310524478
1027 => 0.16688000732192
1028 => 0.17260496565166
1029 => 0.17444364056608
1030 => 0.16944548831944
1031 => 0.17121092018989
1101 => 0.18093862336951
1102 => 0.18615722402329
1103 => 0.17906966338388
1104 => 0.15951536467648
1105 => 0.14148540823293
1106 => 0.14626776458128
1107 => 0.14572559378517
1108 => 0.15617679729598
1109 => 0.14403601388633
1110 => 0.14424043354217
1111 => 0.15490775687357
1112 => 0.15206189789297
1113 => 0.14745197081448
1114 => 0.14151906580225
1115 => 0.13055154215986
1116 => 0.12083730061776
1117 => 0.13988916533803
1118 => 0.13906761428772
1119 => 0.13787788661984
1120 => 0.14052549680274
1121 => 0.15338154031365
1122 => 0.15308516689978
1123 => 0.15119979045172
1124 => 0.15262983187063
1125 => 0.1472012776396
1126 => 0.14860033967082
1127 => 0.14148255219571
1128 => 0.14470008939952
1129 => 0.1474420799814
1130 => 0.14799257518657
1201 => 0.14923286899282
1202 => 0.13863469421578
1203 => 0.1433929635446
1204 => 0.14618800098575
1205 => 0.13355992014233
1206 => 0.14593838442985
1207 => 0.13845020357172
1208 => 0.13590860251977
1209 => 0.13933053350575
1210 => 0.13799700367258
1211 => 0.13685051302951
1212 => 0.13621075155148
1213 => 0.13872344000283
1214 => 0.13860622008327
1215 => 0.13449497408503
1216 => 0.12913202127616
1217 => 0.13093200427174
1218 => 0.13027805357452
1219 => 0.12790805188645
1220 => 0.12950514686911
1221 => 0.12247234883675
1222 => 0.1103727853551
1223 => 0.11836612761073
1224 => 0.11805839262897
1225 => 0.1179032186965
1226 => 0.12390999448185
1227 => 0.12333258158999
1228 => 0.12228457153721
1229 => 0.12788880435997
1230 => 0.12584318399209
1231 => 0.13214730395712
]
'min_raw' => 0.056590535821822
'max_raw' => 0.18615722402329
'avg_raw' => 0.12137387992255
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.05659'
'max' => '$0.186157'
'avg' => '$0.121373'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.03082906489204
'max_diff' => 0.12305933361091
'year' => 2029
]
4 => [
'items' => [
101 => 0.136299605091
102 => 0.13524644721058
103 => 0.13915170649681
104 => 0.13097347224451
105 => 0.13368995360931
106 => 0.13424981665372
107 => 0.12781964899686
108 => 0.12342705348008
109 => 0.12313411743837
110 => 0.11551796214922
111 => 0.11958645082922
112 => 0.12316655250213
113 => 0.12145196162792
114 => 0.12090917337909
115 => 0.12368216082595
116 => 0.1238976456996
117 => 0.11898456774426
118 => 0.12000615222812
119 => 0.1242663293501
120 => 0.11989880669514
121 => 0.11141342360731
122 => 0.10930893128193
123 => 0.10902815321224
124 => 0.10332060311641
125 => 0.10944956352213
126 => 0.10677410805911
127 => 0.11522583980993
128 => 0.11039825596141
129 => 0.11019014847047
130 => 0.10987556347518
131 => 0.10496283933178
201 => 0.10603841369928
202 => 0.10961378671144
203 => 0.11088952008164
204 => 0.11075645063935
205 => 0.10959626543314
206 => 0.11012739227944
207 => 0.10841644765066
208 => 0.10781227749201
209 => 0.10590535028121
210 => 0.10310269408342
211 => 0.10349242061741
212 => 0.097939625334704
213 => 0.094914167755534
214 => 0.094076760972509
215 => 0.09295694562461
216 => 0.094203247095769
217 => 0.09792389496334
218 => 0.093436004255571
219 => 0.085741830426031
220 => 0.08620426338342
221 => 0.087243212941098
222 => 0.085307137313705
223 => 0.083474804214889
224 => 0.085067869182426
225 => 0.081807746300349
226 => 0.087637183215975
227 => 0.087479513284216
228 => 0.089652366876401
301 => 0.091011096819039
302 => 0.087879664195301
303 => 0.087092117358726
304 => 0.087540739828847
305 => 0.080126009716639
306 => 0.089046425237727
307 => 0.089123569361582
308 => 0.088463014537582
309 => 0.093212860415631
310 => 0.10323651673239
311 => 0.099465214025387
312 => 0.098004851629005
313 => 0.095228701645967
314 => 0.098927756666891
315 => 0.098643726955531
316 => 0.097359236885694
317 => 0.096582373283604
318 => 0.098013768290394
319 => 0.096405007601715
320 => 0.096116029976241
321 => 0.094365139976627
322 => 0.093740151907184
323 => 0.09327743562206
324 => 0.092768030457701
325 => 0.093891651314418
326 => 0.091345378628465
327 => 0.088274823383394
328 => 0.088019539938635
329 => 0.088724399974366
330 => 0.088412551879213
331 => 0.088018046929932
401 => 0.087264829544724
402 => 0.087041366036476
403 => 0.0877675140292
404 => 0.086947735282473
405 => 0.088157363478928
406 => 0.087828411541274
407 => 0.08599091275791
408 => 0.083700708944656
409 => 0.083680321326853
410 => 0.083186900671975
411 => 0.082558455281695
412 => 0.082383636151002
413 => 0.08493370569428
414 => 0.090212273331707
415 => 0.089175964199062
416 => 0.08992480375263
417 => 0.093608353202437
418 => 0.094779242804334
419 => 0.093948173098947
420 => 0.092810553628067
421 => 0.09286060311127
422 => 0.096748193224099
423 => 0.096990657450821
424 => 0.097603286329824
425 => 0.098390687568243
426 => 0.094082270934669
427 => 0.092657677075278
428 => 0.09198262547124
429 => 0.089903727808652
430 => 0.092145640706537
501 => 0.090839374069221
502 => 0.091015634067018
503 => 0.090900844512223
504 => 0.090963527371177
505 => 0.087635553769553
506 => 0.088848092436842
507 => 0.086832011726732
508 => 0.084132705971576
509 => 0.084123656952186
510 => 0.084784308211657
511 => 0.084391326991238
512 => 0.08333382463156
513 => 0.083484037850482
514 => 0.082168011990949
515 => 0.083643827217246
516 => 0.083686148317216
517 => 0.083117879066893
518 => 0.085391576046259
519 => 0.086323111553865
520 => 0.085949064559796
521 => 0.086296867419628
522 => 0.089219027522178
523 => 0.089695467121678
524 => 0.089907070119942
525 => 0.089623550134293
526 => 0.086350279142018
527 => 0.086495462629549
528 => 0.085430202528808
529 => 0.084530169998026
530 => 0.084566166579208
531 => 0.085028900296069
601 => 0.087049685576575
602 => 0.091302309067601
603 => 0.091463693020458
604 => 0.091659295079223
605 => 0.090863683204508
606 => 0.090623719050114
607 => 0.090940293709764
608 => 0.092537355500672
609 => 0.096645432024936
610 => 0.095193363412055
611 => 0.094012809026989
612 => 0.095048473497869
613 => 0.094889041070384
614 => 0.093543270935282
615 => 0.093505499649816
616 => 0.090922536491816
617 => 0.08996767382353
618 => 0.089169719107677
619 => 0.088298373389101
620 => 0.087781810439357
621 => 0.088575485903826
622 => 0.088757008873043
623 => 0.087021623598907
624 => 0.086785096998511
625 => 0.088202250074263
626 => 0.087578613842416
627 => 0.088220039172305
628 => 0.088368855350884
629 => 0.088344892518606
630 => 0.087693744668392
701 => 0.08810876689061
702 => 0.087127115610986
703 => 0.086059717283651
704 => 0.085378783652076
705 => 0.084784578745788
706 => 0.085114278163189
707 => 0.083938959940891
708 => 0.083562951987096
709 => 0.087968166700018
710 => 0.091222346172493
711 => 0.091175029114167
712 => 0.090886998690565
713 => 0.09045904390593
714 => 0.09250604794261
715 => 0.091792912667369
716 => 0.092311778164553
717 => 0.092443851210303
718 => 0.092843596541931
719 => 0.092986471138716
720 => 0.092554604874445
721 => 0.091105208943528
722 => 0.087493452088112
723 => 0.085812169522165
724 => 0.085257318271427
725 => 0.085277486060578
726 => 0.084721168402796
727 => 0.084885028885422
728 => 0.08466418441404
729 => 0.08424595841326
730 => 0.085088453886171
731 => 0.085185543641035
801 => 0.084988895130587
802 => 0.085035212973577
803 => 0.08340704729674
804 => 0.08353083319696
805 => 0.082841577574584
806 => 0.082712350454489
807 => 0.080969972261475
808 => 0.077883096730792
809 => 0.079593525425048
810 => 0.077527568085057
811 => 0.07674515873604
812 => 0.080448962904667
813 => 0.080077203693674
814 => 0.079440913524297
815 => 0.078499707749298
816 => 0.078150605371889
817 => 0.076029569839139
818 => 0.075904247744579
819 => 0.076955490227387
820 => 0.076470377992617
821 => 0.075789096688628
822 => 0.073321564865961
823 => 0.070547242125572
824 => 0.070630981490333
825 => 0.071513441935941
826 => 0.074079314697551
827 => 0.073076783819541
828 => 0.072349436164828
829 => 0.07221322581309
830 => 0.073918183540772
831 => 0.076331055925129
901 => 0.077463121662893
902 => 0.076341278898117
903 => 0.075052566334246
904 => 0.07513100429669
905 => 0.075652816920002
906 => 0.075707652048679
907 => 0.074868832651391
908 => 0.075104955398315
909 => 0.074746263354221
910 => 0.072544970941712
911 => 0.072505156542343
912 => 0.071964923883678
913 => 0.071948565853476
914 => 0.071029495333735
915 => 0.070900911014788
916 => 0.069076040714248
917 => 0.07027717587228
918 => 0.069471517470699
919 => 0.068257200223911
920 => 0.068047851472861
921 => 0.068041558196609
922 => 0.069288390492691
923 => 0.070262605910959
924 => 0.069485532243526
925 => 0.069308607632392
926 => 0.071197699606778
927 => 0.070957295433582
928 => 0.070749106970034
929 => 0.076115009667726
930 => 0.071867478975894
1001 => 0.070015313153679
1002 => 0.067722906231939
1003 => 0.068469325484977
1004 => 0.068626606988772
1005 => 0.063113781579391
1006 => 0.060877228997384
1007 => 0.060109728433946
1008 => 0.059668021008822
1009 => 0.059869312629063
1010 => 0.057856152983804
1011 => 0.059209029560006
1012 => 0.05746580347536
1013 => 0.057173545949321
1014 => 0.06029065013294
1015 => 0.060724376970232
1016 => 0.058873963533978
1017 => 0.060062228514777
1018 => 0.05963134711462
1019 => 0.057495686083219
1020 => 0.057414119540679
1021 => 0.056342519907236
1022 => 0.054665673983477
1023 => 0.053899310400536
1024 => 0.053500181592666
1025 => 0.053664869917658
1026 => 0.053581598460996
1027 => 0.053038195879293
1028 => 0.053612745660895
1029 => 0.052145008389262
1030 => 0.051560543581335
1031 => 0.051296554387075
1101 => 0.049993853078695
1102 => 0.052067030174229
1103 => 0.052475472179246
1104 => 0.052884718941187
1105 => 0.056446932599252
1106 => 0.056268974471606
1107 => 0.057877629276399
1108 => 0.057815119908811
1109 => 0.057356305500004
1110 => 0.055420642980554
1111 => 0.05619216356094
1112 => 0.053817543135431
1113 => 0.055596770216716
1114 => 0.054784805279116
1115 => 0.05532224405455
1116 => 0.05435588067742
1117 => 0.05489070607049
1118 => 0.052572328930835
1119 => 0.050407460978271
1120 => 0.051278667038818
1121 => 0.05222576766113
1122 => 0.054279323127053
1123 => 0.053056242433014
1124 => 0.053496108500392
1125 => 0.052022630807367
1126 => 0.04898242544856
1127 => 0.048999632680725
1128 => 0.048531963320747
1129 => 0.048127828712881
1130 => 0.053196727963658
1201 => 0.052566330214385
1202 => 0.051561873905336
1203 => 0.052906378590505
1204 => 0.053261886969422
1205 => 0.053272007793184
1206 => 0.054252923704795
1207 => 0.05477643870266
1208 => 0.054868710490078
1209 => 0.056412202871088
1210 => 0.056929561158046
1211 => 0.05906048672274
1212 => 0.054732022112687
1213 => 0.054642880232468
1214 => 0.05292529852866
1215 => 0.051835981058213
1216 => 0.052999885027813
1217 => 0.054030945056144
1218 => 0.052957336437809
1219 => 0.053097527058249
1220 => 0.051656295205181
1221 => 0.052171467776391
1222 => 0.052615203795957
1223 => 0.05237019884755
1224 => 0.052003414581412
1225 => 0.053946409891874
1226 => 0.053836778481798
1227 => 0.05564614038417
1228 => 0.057056667375779
1229 => 0.059584583906604
1230 => 0.056946571223419
1231 => 0.056850431556094
]
'min_raw' => 0.048127828712881
'max_raw' => 0.13915170649681
'avg_raw' => 0.093639767604846
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.048127'
'max' => '$0.139151'
'avg' => '$0.093639'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0084627071089411
'max_diff' => -0.047005517526475
'year' => 2030
]
5 => [
'items' => [
101 => 0.057790212225492
102 => 0.056929417282522
103 => 0.057473409972848
104 => 0.059496938274098
105 => 0.059539692238469
106 => 0.058823508249879
107 => 0.058779928389086
108 => 0.058917479358289
109 => 0.059723119681238
110 => 0.059441604197573
111 => 0.059767381042371
112 => 0.060174769975262
113 => 0.061859903331027
114 => 0.06226618327811
115 => 0.0612791336387
116 => 0.061368253169612
117 => 0.060999069509354
118 => 0.060642442719403
119 => 0.061444087662054
120 => 0.062909109551119
121 => 0.062899995725982
122 => 0.063239852328289
123 => 0.063451580176002
124 => 0.06254268925936
125 => 0.061951034693471
126 => 0.062177912701991
127 => 0.062540695578375
128 => 0.062060267104646
129 => 0.05909484000867
130 => 0.059994361157373
131 => 0.059844636853892
201 => 0.059631411238638
202 => 0.060535886709449
203 => 0.060448647843807
204 => 0.057835505121869
205 => 0.058002790040606
206 => 0.057845678271842
207 => 0.058353338538763
208 => 0.056902001962109
209 => 0.057348423318187
210 => 0.057628414607779
211 => 0.057793331628343
212 => 0.058389124991279
213 => 0.05831921551676
214 => 0.058384779320186
215 => 0.059268183593804
216 => 0.063736139262028
217 => 0.063979320231061
218 => 0.062781808200282
219 => 0.063260190636698
220 => 0.062341800969518
221 => 0.062958322105772
222 => 0.063380130209258
223 => 0.061474060498639
224 => 0.061361195420666
225 => 0.06043901523264
226 => 0.06093454263073
227 => 0.060146122910689
228 => 0.060339573532236
301 => 0.059798668729668
302 => 0.060772189681218
303 => 0.061860737374912
304 => 0.06213574751039
305 => 0.061412314243254
306 => 0.060888500881273
307 => 0.059968857172481
308 => 0.061498245155798
309 => 0.061945484809375
310 => 0.061495895996294
311 => 0.061391716444593
312 => 0.061194296382369
313 => 0.061433600044059
314 => 0.061943049046172
315 => 0.061702802304821
316 => 0.061861489510086
317 => 0.061256737521152
318 => 0.062542990140072
319 => 0.064585868852468
320 => 0.064592437041572
321 => 0.064352189005203
322 => 0.064253884684936
323 => 0.064500393749722
324 => 0.064634114805036
325 => 0.065431279918521
326 => 0.066286669845749
327 => 0.070278401400257
328 => 0.069157539152923
329 => 0.072699240857256
330 => 0.075500267072975
331 => 0.076340172361037
401 => 0.075567499016617
402 => 0.072924225244351
403 => 0.07279453362268
404 => 0.076744700599847
405 => 0.075628597499688
406 => 0.075495840587335
407 => 0.074083531336239
408 => 0.07491838102154
409 => 0.074735787148859
410 => 0.074447553788034
411 => 0.076040388831455
412 => 0.079022033839375
413 => 0.078557316503201
414 => 0.078210426569364
415 => 0.076690455857431
416 => 0.077605817723764
417 => 0.077279874895764
418 => 0.078680332133279
419 => 0.077850732289701
420 => 0.075620141920987
421 => 0.075975370789327
422 => 0.075921678660498
423 => 0.077026658867119
424 => 0.076694971236386
425 => 0.075856911327201
426 => 0.079011842900884
427 => 0.078806979193141
428 => 0.079097429092357
429 => 0.079225294120454
430 => 0.081145645373224
501 => 0.081932351837098
502 => 0.082110947977633
503 => 0.082858258272251
504 => 0.082092354216718
505 => 0.085156516519187
506 => 0.087194005651501
507 => 0.089560654126916
508 => 0.093018963644638
509 => 0.094319320014453
510 => 0.094084422275284
511 => 0.09670647308248
512 => 0.1014182400981
513 => 0.095036805103715
514 => 0.10175647164813
515 => 0.099629102802451
516 => 0.094585149539071
517 => 0.094260378413212
518 => 0.097676202124675
519 => 0.10525217035585
520 => 0.10335447623986
521 => 0.10525527430359
522 => 0.10303789239542
523 => 0.10292778069411
524 => 0.1051475810136
525 => 0.11033426545511
526 => 0.10787026609691
527 => 0.1043375188195
528 => 0.1069460444335
529 => 0.104686298139
530 => 0.099594457274335
531 => 0.10335302510894
601 => 0.10083977783579
602 => 0.10157327700167
603 => 0.1068557489525
604 => 0.10622014795169
605 => 0.10704267450181
606 => 0.10559093667012
607 => 0.10423478461728
608 => 0.10170342610147
609 => 0.1009540156394
610 => 0.10116112573015
611 => 0.10095391300593
612 => 0.09953764118072
613 => 0.099231797414911
614 => 0.098722044405906
615 => 0.098880038178552
616 => 0.09792155338812
617 => 0.099730412220729
618 => 0.10006615235967
619 => 0.10138248897173
620 => 0.10151915540558
621 => 0.1051851341333
622 => 0.10316597465434
623 => 0.10452060115867
624 => 0.10439943061388
625 => 0.094694467300892
626 => 0.096031725617806
627 => 0.098112079904146
628 => 0.097174883118004
629 => 0.095849906132671
630 => 0.094779916176245
701 => 0.093158771980167
702 => 0.095440501304829
703 => 0.098440732731898
704 => 0.1015952462257
705 => 0.1053851874966
706 => 0.10453931672472
707 => 0.10152439590987
708 => 0.10165964305523
709 => 0.10249568769001
710 => 0.1014129339253
711 => 0.10109360870222
712 => 0.10245181730793
713 => 0.10246117054414
714 => 0.10121533148268
715 => 0.09983080935201
716 => 0.099825008153729
717 => 0.099578645813474
718 => 0.10308171970845
719 => 0.10500805614997
720 => 0.10522890751854
721 => 0.10499319109321
722 => 0.10508390899007
723 => 0.10396301625868
724 => 0.10652504465223
725 => 0.1088762152645
726 => 0.10824605131497
727 => 0.10730134597156
728 => 0.10654884266235
729 => 0.10806878545022
730 => 0.10800110479049
731 => 0.10885567984031
801 => 0.10881691137979
802 => 0.10852954993273
803 => 0.10824606157756
804 => 0.10937006086174
805 => 0.10904636711877
806 => 0.10872217059001
807 => 0.10807194481958
808 => 0.10816032130089
809 => 0.10721577907417
810 => 0.10677879062078
811 => 0.10020753276367
812 => 0.098451477942204
813 => 0.099003968536829
814 => 0.099185862785991
815 => 0.098421625477244
816 => 0.099517345461531
817 => 0.099346578662634
818 => 0.1000109323819
819 => 0.09959587302099
820 => 0.09961290720194
821 => 0.1008335082824
822 => 0.10118785396887
823 => 0.10100763089281
824 => 0.1011338529576
825 => 0.10404258716556
826 => 0.10362905817728
827 => 0.10340937914419
828 => 0.10347023173766
829 => 0.10421347569177
830 => 0.1044215434193
831 => 0.10353994583708
901 => 0.10395571235331
902 => 0.10572599341078
903 => 0.10634549159167
904 => 0.10832263240905
905 => 0.10748270784895
906 => 0.1090244257301
907 => 0.1137631408864
908 => 0.1175487544474
909 => 0.11406734776961
910 => 0.12101914497941
911 => 0.12643211628331
912 => 0.12622435742889
913 => 0.12528048067778
914 => 0.11911795675956
915 => 0.11344711037197
916 => 0.11819101417205
917 => 0.11820310735843
918 => 0.11779560181484
919 => 0.11526461988192
920 => 0.1177075291298
921 => 0.11790143839455
922 => 0.11779290077092
923 => 0.11585240285716
924 => 0.1128896212068
925 => 0.11346854164938
926 => 0.11441682514399
927 => 0.11262152665604
928 => 0.11204782000816
929 => 0.11311444981871
930 => 0.11655135330945
1001 => 0.11590162661316
1002 => 0.11588465962336
1003 => 0.11866446595713
1004 => 0.11667472454191
1005 => 0.11347584369012
1006 => 0.11266808408699
1007 => 0.10980108166795
1008 => 0.11178133045069
1009 => 0.11185259607902
1010 => 0.11076803405836
1011 => 0.11356384992074
1012 => 0.11353808598537
1013 => 0.11619229704442
1014 => 0.12126615171319
1015 => 0.11976556321841
1016 => 0.11802054206255
1017 => 0.11821027424638
1018 => 0.12029116800406
1019 => 0.11903301213598
1020 => 0.11948545375832
1021 => 0.12029048317948
1022 => 0.12077617741702
1023 => 0.11814039032
1024 => 0.11752586226342
1025 => 0.11626875352968
1026 => 0.11594079732609
1027 => 0.11696468615929
1028 => 0.11669492762627
1029 => 0.11184660647891
1030 => 0.11133992994321
1031 => 0.11135546898919
1101 => 0.11008140674901
1102 => 0.10813815602276
1103 => 0.11324490290587
1104 => 0.11283475966228
1105 => 0.11238199326392
1106 => 0.11243745456427
1107 => 0.11465412030252
1108 => 0.11336834223003
1109 => 0.11678679397063
1110 => 0.11608406306083
1111 => 0.11536330975484
1112 => 0.11526367969326
1113 => 0.11498625116224
1114 => 0.11403484550275
1115 => 0.1128859659983
1116 => 0.11212737623522
1117 => 0.10343157754631
1118 => 0.10504546720184
1119 => 0.10690210013985
1120 => 0.10754300239007
1121 => 0.10644669474199
1122 => 0.11407813441077
1123 => 0.11547247197664
1124 => 0.11124893253923
1125 => 0.11045888075647
1126 => 0.11412993007412
1127 => 0.11191583856805
1128 => 0.11291284383766
1129 => 0.11075786377749
1130 => 0.11513661688799
1201 => 0.11510325812571
1202 => 0.1133998242671
1203 => 0.11483955489978
1204 => 0.11458936627232
1205 => 0.11266619364133
1206 => 0.11519758489069
1207 => 0.11519884042917
1208 => 0.11355932237611
1209 => 0.11164472422678
1210 => 0.11130243929847
1211 => 0.1110445735845
1212 => 0.11284942467948
1213 => 0.11446764852762
1214 => 0.1174787619173
1215 => 0.11823582736576
1216 => 0.12119070421178
1217 => 0.11943121892031
1218 => 0.12021117596087
1219 => 0.12105792966005
1220 => 0.12146389452178
1221 => 0.12080239656487
1222 => 0.12539253658257
1223 => 0.12578008503832
1224 => 0.12591002668326
1225 => 0.12436225729542
1226 => 0.12573703877175
1227 => 0.12509382404695
1228 => 0.12676729007069
1229 => 0.1270297109111
1230 => 0.12680744979516
1231 => 0.12689074631194
]
'min_raw' => 0.056902001962109
'max_raw' => 0.1270297109111
'avg_raw' => 0.091965856436602
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.056902'
'max' => '$0.127029'
'avg' => '$0.091965'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0087741732492285
'max_diff' => -0.012121995585715
'year' => 2031
]
6 => [
'items' => [
101 => 0.12297387156302
102 => 0.12277076094413
103 => 0.12000133324346
104 => 0.12112989550206
105 => 0.11902010245301
106 => 0.11968913956214
107 => 0.11998404474503
108 => 0.11983000301321
109 => 0.12119370271888
110 => 0.12003427938361
111 => 0.11697437057501
112 => 0.11391362809629
113 => 0.1138752029677
114 => 0.11306936349964
115 => 0.1124868891611
116 => 0.11259909438309
117 => 0.11299452022054
118 => 0.11246390629258
119 => 0.11257713967692
120 => 0.11445756832705
121 => 0.11483467488223
122 => 0.11355311946269
123 => 0.10840748952566
124 => 0.10714473903228
125 => 0.1080523790455
126 => 0.10761858557868
127 => 0.086856597848223
128 => 0.091734318898578
129 => 0.088836142682213
130 => 0.09017175562139
131 => 0.087213468183574
201 => 0.088625318006029
202 => 0.088364600896322
203 => 0.096207832003033
204 => 0.096085370737314
205 => 0.096143986464707
206 => 0.093346105073725
207 => 0.097803206100318
208 => 0.099998934338187
209 => 0.099592563478772
210 => 0.09969483826917
211 => 0.097937418517537
212 => 0.096161002129433
213 => 0.094190682966502
214 => 0.097851292432418
215 => 0.097444295148495
216 => 0.098377800484813
217 => 0.10075196738923
218 => 0.10110157248449
219 => 0.10157144527786
220 => 0.10140302932926
221 => 0.10541538049323
222 => 0.10492945829293
223 => 0.1061003909863
224 => 0.10369169359716
225 => 0.10096602386569
226 => 0.10148408457278
227 => 0.10143419116071
228 => 0.10079899076001
229 => 0.10022556023999
301 => 0.099270959987195
302 => 0.10229145644128
303 => 0.10216882980132
304 => 0.10415401256442
305 => 0.10380311222801
306 => 0.10145971390155
307 => 0.10154340883123
308 => 0.1021062974557
309 => 0.10405446141196
310 => 0.1046328091153
311 => 0.10436489541594
312 => 0.10499902727007
313 => 0.10550021923194
314 => 0.105061969264
315 => 0.11126666462269
316 => 0.10869004251991
317 => 0.10994587020478
318 => 0.11024537770786
319 => 0.1094781955367
320 => 0.10964456987889
321 => 0.10989658167301
322 => 0.11142674793798
323 => 0.11544234697442
324 => 0.11722082845256
325 => 0.12257147772825
326 => 0.11707315032345
327 => 0.11674690232959
328 => 0.11771071583827
329 => 0.12085211338685
330 => 0.12339792104351
331 => 0.12424251231439
401 => 0.12435413899352
402 => 0.12593864836506
403 => 0.12684685958747
404 => 0.12574624725062
405 => 0.12481359353405
406 => 0.12147294368655
407 => 0.12185963300268
408 => 0.12452353892952
409 => 0.12828646295445
410 => 0.13151544323336
411 => 0.13038476688101
412 => 0.13901102931632
413 => 0.13986628800166
414 => 0.13974811890517
415 => 0.14169652546993
416 => 0.13782933522498
417 => 0.13617603647198
418 => 0.12501524385364
419 => 0.12815097133658
420 => 0.13270893538785
421 => 0.13210567175417
422 => 0.12879555642542
423 => 0.13151293221405
424 => 0.13061448279813
425 => 0.12990583846709
426 => 0.13315227552504
427 => 0.12958268462355
428 => 0.13267332598801
429 => 0.12870954646949
430 => 0.13038993171534
501 => 0.12943606377871
502 => 0.13005333323537
503 => 0.12644478860462
504 => 0.1283918716949
505 => 0.12636378354665
506 => 0.12636282196881
507 => 0.12631805181053
508 => 0.12870408852302
509 => 0.12878189709456
510 => 0.12701861235892
511 => 0.12676449548083
512 => 0.12770409876718
513 => 0.12660406940136
514 => 0.12711876621812
515 => 0.12661965904361
516 => 0.12650729950582
517 => 0.12561199959232
518 => 0.1252262797728
519 => 0.12537753045281
520 => 0.12486123390687
521 => 0.12455014656267
522 => 0.12625616870781
523 => 0.1253447098964
524 => 0.1261164745728
525 => 0.12523695131958
526 => 0.12218814053385
527 => 0.12043473721039
528 => 0.11467581626106
529 => 0.11630903909837
530 => 0.1173918675292
531 => 0.11703399273927
601 => 0.1178028462672
602 => 0.11785004762944
603 => 0.11760008550998
604 => 0.11731066139777
605 => 0.11716978574611
606 => 0.11821975743636
607 => 0.11882930134298
608 => 0.11750054384861
609 => 0.11718923455897
610 => 0.11853268174849
611 => 0.11935218375802
612 => 0.12540292615793
613 => 0.12495466761731
614 => 0.12607970858799
615 => 0.12595304623985
616 => 0.1271322684102
617 => 0.12905979828225
618 => 0.12514059110654
619 => 0.12582082995626
620 => 0.12565405109932
621 => 0.12747489892763
622 => 0.1274805834158
623 => 0.12638889418463
624 => 0.12698071662748
625 => 0.12665037757568
626 => 0.12724734489029
627 => 0.12494868085121
628 => 0.12774820552536
629 => 0.12933535561821
630 => 0.12935739319879
701 => 0.13010968974641
702 => 0.13087406660886
703 => 0.13234122143314
704 => 0.13083314845711
705 => 0.12812027198117
706 => 0.1283161329002
707 => 0.12672557441496
708 => 0.12675231199045
709 => 0.126609584717
710 => 0.12703792000864
711 => 0.12504267636034
712 => 0.12551095605656
713 => 0.12485536173961
714 => 0.12581940482225
715 => 0.12478225382736
716 => 0.1256539706735
717 => 0.12603017476642
718 => 0.12741837596841
719 => 0.12457721538111
720 => 0.11878389661396
721 => 0.12000172245602
722 => 0.11820046237746
723 => 0.11836717585561
724 => 0.11870396361373
725 => 0.11761232429957
726 => 0.11782057467921
727 => 0.11781313451021
728 => 0.11774901915331
729 => 0.11746504160658
730 => 0.11705321798059
731 => 0.11869379655392
801 => 0.11897256282231
802 => 0.11959222570508
803 => 0.12143592212288
804 => 0.12125169337339
805 => 0.12155217810739
806 => 0.12089622162021
807 => 0.11839760379573
808 => 0.11853329076481
809 => 0.11684127208611
810 => 0.11954895698329
811 => 0.11890774145995
812 => 0.11849434564069
813 => 0.11838154676132
814 => 0.12022981334593
815 => 0.12078284367607
816 => 0.12043823228681
817 => 0.11973142427352
818 => 0.12108870460807
819 => 0.12145185556653
820 => 0.12153315167364
821 => 0.12393799219378
822 => 0.12166755554427
823 => 0.12221407221201
824 => 0.12647783924362
825 => 0.12261119090558
826 => 0.12465944076679
827 => 0.12455918959466
828 => 0.12560700491466
829 => 0.12447323815498
830 => 0.12448729255278
831 => 0.12541768157178
901 => 0.12411111799113
902 => 0.12378759447432
903 => 0.12334064905297
904 => 0.12431653802933
905 => 0.12490153933499
906 => 0.12961622022255
907 => 0.13266211909148
908 => 0.13252988858859
909 => 0.13373822785985
910 => 0.13319385995103
911 => 0.13143595237645
912 => 0.13443648625227
913 => 0.13348699178629
914 => 0.13356526695643
915 => 0.13356235355068
916 => 0.13419368436431
917 => 0.13374632862224
918 => 0.13286454453448
919 => 0.13344991396307
920 => 0.1351882518926
921 => 0.14058410616455
922 => 0.14360369770069
923 => 0.14040232296256
924 => 0.14261058838881
925 => 0.14128641601848
926 => 0.14104577450808
927 => 0.1424327283853
928 => 0.14382210994167
929 => 0.14373361234299
930 => 0.1427249926786
1001 => 0.14215524902296
1002 => 0.1464695388616
1003 => 0.1496482341227
1004 => 0.14943146841614
1005 => 0.15038820174893
1006 => 0.15319720040464
1007 => 0.1534540200382
1008 => 0.1534216666673
1009 => 0.15278511240917
1010 => 0.15555093638029
1011 => 0.15785823539704
1012 => 0.15263776849023
1013 => 0.15462565394741
1014 => 0.15551807977481
1015 => 0.15682842566024
1016 => 0.15903919880844
1017 => 0.16144068482599
1018 => 0.16178028127983
1019 => 0.16153932134465
1020 => 0.15995547676066
1021 => 0.16258321141676
1022 => 0.16412247675034
1023 => 0.16503907403103
1024 => 0.1673634122276
1025 => 0.1555235910929
1026 => 0.14714277721647
1027 => 0.14583399210924
1028 => 0.14849545809022
1029 => 0.14919726544461
1030 => 0.14891436778004
1031 => 0.13948099981185
1101 => 0.14578432737917
1102 => 0.15256617784277
1103 => 0.15282669633903
1104 => 0.15622183248291
1105 => 0.15732742798269
1106 => 0.16006095758919
1107 => 0.15988997456804
1108 => 0.16055554552726
1109 => 0.16040254228982
1110 => 0.16546583027328
1111 => 0.17105138882458
1112 => 0.17085797869293
1113 => 0.17005498856585
1114 => 0.17124756583473
1115 => 0.1770124608445
1116 => 0.17648172169256
1117 => 0.17699728957041
1118 => 0.18379442568218
1119 => 0.19263166950881
1120 => 0.18852588250656
1121 => 0.19743425889305
1122 => 0.2030416096156
1123 => 0.21273894287936
1124 => 0.21152478899437
1125 => 0.21529988967163
1126 => 0.20935120013866
1127 => 0.19569180654245
1128 => 0.19353015521979
1129 => 0.19785783590948
1130 => 0.20849701659618
1201 => 0.19752277024803
1202 => 0.19974284599137
1203 => 0.19910346402794
1204 => 0.1990693940803
1205 => 0.20036970540897
1206 => 0.19848353600706
1207 => 0.19079894254831
1208 => 0.19432074644486
1209 => 0.19296080882949
1210 => 0.19446976100381
1211 => 0.20261295354941
1212 => 0.19901265401554
1213 => 0.19522003092119
1214 => 0.19997682193194
1215 => 0.20603385149936
1216 => 0.20565481347456
1217 => 0.20491932128085
1218 => 0.20906525226771
1219 => 0.21591311561421
1220 => 0.21776406555982
1221 => 0.21913039896867
1222 => 0.21931879326135
1223 => 0.22125937156244
1224 => 0.2108243929488
1225 => 0.2273849719979
1226 => 0.23024452652292
1227 => 0.22970704878861
1228 => 0.23288532329471
1229 => 0.23195019430997
1230 => 0.23059533912833
1231 => 0.23563358025888
]
'min_raw' => 0.086856597848223
'max_raw' => 0.23563358025888
'avg_raw' => 0.16124508905355
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.086856'
'max' => '$0.235633'
'avg' => '$0.161245'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.029954595886114
'max_diff' => 0.10860386934779
'year' => 2032
]
7 => [
'items' => [
101 => 0.2298576433678
102 => 0.22165942812114
103 => 0.21716172509451
104 => 0.22308466325933
105 => 0.22670159491453
106 => 0.22909215665856
107 => 0.22981553919788
108 => 0.21163443063401
109 => 0.20183582148858
110 => 0.20811661760952
111 => 0.21577962235445
112 => 0.21078182457053
113 => 0.21097772878158
114 => 0.20385218253986
115 => 0.21641007508662
116 => 0.21458049577106
117 => 0.22407235649667
118 => 0.22180704775756
119 => 0.22954729170738
120 => 0.22750902607157
121 => 0.23596975276792
122 => 0.23934496571213
123 => 0.24501247355539
124 => 0.24918151539581
125 => 0.25162965650557
126 => 0.25148267929608
127 => 0.26118343403199
128 => 0.25546323788278
129 => 0.24827732337266
130 => 0.24814735285044
131 => 0.25186903980043
201 => 0.25966867465265
202 => 0.26169100648976
203 => 0.26282121409512
204 => 0.2610902618047
205 => 0.25488139885489
206 => 0.25220044331281
207 => 0.25448469510942
208 => 0.25169125145016
209 => 0.2565135189079
210 => 0.26313552210814
211 => 0.26176810463353
212 => 0.26633917623646
213 => 0.27106975445474
214 => 0.27783469377044
215 => 0.27960329941254
216 => 0.28252673728489
217 => 0.28553591515485
218 => 0.28650238198706
219 => 0.2883476670468
220 => 0.28833794148368
221 => 0.29389883221321
222 => 0.30003266689434
223 => 0.30234804748787
224 => 0.30767213749186
225 => 0.2985548199384
226 => 0.30547041003489
227 => 0.31170844541038
228 => 0.30427120247171
301 => 0.3145217092073
302 => 0.3149197131557
303 => 0.32092910024441
304 => 0.31483743517074
305 => 0.31122022389527
306 => 0.3216629773124
307 => 0.3267158967473
308 => 0.32519391629149
309 => 0.3136115698733
310 => 0.3068701474677
311 => 0.289226544709
312 => 0.3101261543236
313 => 0.32030574451691
314 => 0.31358520719391
315 => 0.31697465530932
316 => 0.33546638519476
317 => 0.34250683868429
318 => 0.34104247357495
319 => 0.34128992717293
320 => 0.34508882808261
321 => 0.36193524680908
322 => 0.35184048221125
323 => 0.35955755150268
324 => 0.36365065722889
325 => 0.36745256193865
326 => 0.3581162855758
327 => 0.34596992720486
328 => 0.34212266563934
329 => 0.31291698220445
330 => 0.31139669954781
331 => 0.31054331882336
401 => 0.30516287406879
402 => 0.30093531831955
403 => 0.29757340902867
404 => 0.28875075509832
405 => 0.29172814180809
406 => 0.27766667287409
407 => 0.28666270239021
408 => 0.2642202584455
409 => 0.28291099264347
410 => 0.27273847578292
411 => 0.27956904726582
412 => 0.27954521604539
413 => 0.26696796831072
414 => 0.25971367429782
415 => 0.26433639278418
416 => 0.26929231395342
417 => 0.27009639548941
418 => 0.27652187664809
419 => 0.27831509032423
420 => 0.2728815691684
421 => 0.26375518867784
422 => 0.26587503871522
423 => 0.25967071560447
424 => 0.24879787799872
425 => 0.2566069397887
426 => 0.25927329682401
427 => 0.26045091198982
428 => 0.2497587249584
429 => 0.24639900765445
430 => 0.24461032235259
501 => 0.26237496159882
502 => 0.26334814863814
503 => 0.25836918615022
504 => 0.28087456872019
505 => 0.27578090751765
506 => 0.28147177505818
507 => 0.26568268454355
508 => 0.26628584906404
509 => 0.25881104058301
510 => 0.2629964338655
511 => 0.26003833279496
512 => 0.26265829544914
513 => 0.26422869026154
514 => 0.27170227220005
515 => 0.28299632894423
516 => 0.27058596828043
517 => 0.26517859641957
518 => 0.26853329950984
519 => 0.27746731591681
520 => 0.29100280809725
521 => 0.28298952429926
522 => 0.28654568357443
523 => 0.28732254617353
524 => 0.28141384736879
525 => 0.29122067025026
526 => 0.29647622630293
527 => 0.30186733932888
528 => 0.30654829171375
529 => 0.2997140102332
530 => 0.30702767107316
531 => 0.30113415147108
601 => 0.29584705512716
602 => 0.2958550734699
603 => 0.2925384007012
604 => 0.2861119292842
605 => 0.28492678935514
606 => 0.29109203693277
607 => 0.29603598163891
608 => 0.2964431886048
609 => 0.29918041042317
610 => 0.30080027009966
611 => 0.31667709702164
612 => 0.32306288814967
613 => 0.33087131266418
614 => 0.33391313407127
615 => 0.34306792595329
616 => 0.33567468799272
617 => 0.3340751144543
618 => 0.31186858385812
619 => 0.31550490199921
620 => 0.32132699819561
621 => 0.31196458807999
622 => 0.3179028823686
623 => 0.31907522745144
624 => 0.31164645696683
625 => 0.31561448426088
626 => 0.30507658020597
627 => 0.28322602645586
628 => 0.2912449961629
629 => 0.29714965702329
630 => 0.28872297793607
701 => 0.3038274740424
702 => 0.29500373923717
703 => 0.29220703891788
704 => 0.28129611387668
705 => 0.28644565049611
706 => 0.29341047250815
707 => 0.28910702225217
708 => 0.29803732769963
709 => 0.3106850218387
710 => 0.31969852186541
711 => 0.32039046647638
712 => 0.31459538981681
713 => 0.32388203714746
714 => 0.3239496802348
715 => 0.31347430410876
716 => 0.3070581945587
717 => 0.30560044096931
718 => 0.30924219524502
719 => 0.31366395724065
720 => 0.32063584349324
721 => 0.32484880833969
722 => 0.33583398627532
723 => 0.33880626045497
724 => 0.34207188864118
725 => 0.34643577498039
726 => 0.3516757394081
727 => 0.3402109955516
728 => 0.34066651119798
729 => 0.32999070045899
730 => 0.31858206561826
731 => 0.32723979735596
801 => 0.33855862991323
802 => 0.33596207721839
803 => 0.33566991199747
804 => 0.33616125285919
805 => 0.33420353692277
806 => 0.32534886029867
807 => 0.32090209713125
808 => 0.32663955610749
809 => 0.32968876020844
810 => 0.33441780985048
811 => 0.33383485466397
812 => 0.34601637867899
813 => 0.35074975056106
814 => 0.34953875148122
815 => 0.34976160445623
816 => 0.35833114815342
817 => 0.36786224320576
818 => 0.37678937146105
819 => 0.3858704297514
820 => 0.37492285954264
821 => 0.36936435854289
822 => 0.37509931272403
823 => 0.37205626531019
824 => 0.38954251837658
825 => 0.39075322859951
826 => 0.40823821721078
827 => 0.42483355347658
828 => 0.41441032010436
829 => 0.42423895970162
830 => 0.4348694347668
831 => 0.45537734589995
901 => 0.44847100290732
902 => 0.44318085241115
903 => 0.4381816857541
904 => 0.44858415797207
905 => 0.46196677229694
906 => 0.46484925924543
907 => 0.46951998929675
908 => 0.46460928775749
909 => 0.4705236868655
910 => 0.49140411463543
911 => 0.48576203873536
912 => 0.4777493839483
913 => 0.49423247629506
914 => 0.50019764333896
915 => 0.54206430963525
916 => 0.59492270526003
917 => 0.57303898238443
918 => 0.55945504941222
919 => 0.56264759587589
920 => 0.58194969258845
921 => 0.5881489134346
922 => 0.5712972941752
923 => 0.57724957098494
924 => 0.61004720142156
925 => 0.62764207787684
926 => 0.60374587234339
927 => 0.53781718901387
928 => 0.47702793205308
929 => 0.493151980375
930 => 0.49132401368277
1001 => 0.52656097599919
1002 => 0.4856274770911
1003 => 0.48631669223291
1004 => 0.52228231761344
1005 => 0.51268730536883
1006 => 0.49714461436888
1007 => 0.47714141089795
1008 => 0.44016363920956
1009 => 0.40741139562371
1010 => 0.4716460876868
1011 => 0.46887617096183
1012 => 0.46486492106541
1013 => 0.47379152364731
1014 => 0.51713657192466
1015 => 0.51613732826763
1016 => 0.50978064994025
1017 => 0.51460213442638
1018 => 0.49629938482693
1019 => 0.50101642014457
1020 => 0.4770183027242
1021 => 0.48786645404812
1022 => 0.49711126673457
1023 => 0.49896729975317
1024 => 0.50314903691547
1025 => 0.46741655071376
1026 => 0.48345938796765
1027 => 0.49288305184374
1028 => 0.45030659561573
1029 => 0.49204145219786
1030 => 0.46679452762659
1031 => 0.45822534223102
1101 => 0.46976262146183
1102 => 0.46526653252521
1103 => 0.46140105927671
1104 => 0.45924405878678
1105 => 0.46771576333084
1106 => 0.46732054818799
1107 => 0.45345919526691
1108 => 0.43537762544239
1109 => 0.4414463937828
1110 => 0.43924155334972
1111 => 0.43125092719018
1112 => 0.43663564442983
1113 => 0.41292407484944
1114 => 0.37212955180652
1115 => 0.3990796632987
1116 => 0.39804211332234
1117 => 0.3975189335751
1118 => 0.41777119751511
1119 => 0.41582440963651
1120 => 0.41229097057383
1121 => 0.43118603281083
1122 => 0.42428908091988
1123 => 0.44554386152157
1124 => 0.45954363469886
1125 => 0.45599283937588
1126 => 0.4691596937159
1127 => 0.44158620594817
1128 => 0.45074501252829
1129 => 0.4526326298709
1130 => 0.43095287067583
1201 => 0.41614292820978
1202 => 0.415155273893
1203 => 0.38947687459264
1204 => 0.4031940682301
1205 => 0.41526463097501
1206 => 0.4094837681337
1207 => 0.40765371965651
1208 => 0.4170030404374
1209 => 0.41772956273359
1210 => 0.40116477738702
1211 => 0.4046091207991
1212 => 0.41897260540193
1213 => 0.40424719784002
1214 => 0.37563813632888
1215 => 0.3685426935229
1216 => 0.36759603065763
1217 => 0.34835262702113
1218 => 0.36901684493938
1219 => 0.35999636005145
1220 => 0.3884919637304
1221 => 0.37221542773397
1222 => 0.37151377879867
1223 => 0.37045313352343
1224 => 0.35388954107851
1225 => 0.35751591515274
1226 => 0.36957053488782
1227 => 0.37387175901431
1228 => 0.37342310609903
1229 => 0.36951146067474
1230 => 0.37130219191911
1231 => 0.36553362264887
]
'min_raw' => 0.20183582148858
'max_raw' => 0.62764207787684
'avg_raw' => 0.41473894968271
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.201835'
'max' => '$0.627642'
'avg' => '$0.414738'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.11497922364036
'max_diff' => 0.39200849761796
'year' => 2033
]
8 => [
'items' => [
101 => 0.36349662077716
102 => 0.35706728254854
103 => 0.34761793150248
104 => 0.34893192172167
105 => 0.33021028474223
106 => 0.32000974328336
107 => 0.31718636784852
108 => 0.31341083222006
109 => 0.31761282464407
110 => 0.33015724869692
111 => 0.31502601184115
112 => 0.2890845675848
113 => 0.29064369258667
114 => 0.29414658355752
115 => 0.28761896940729
116 => 0.28144113043522
117 => 0.28681226019751
118 => 0.27582052828608
119 => 0.2954748818454
120 => 0.29494328666231
121 => 0.30226921425216
122 => 0.30685026711725
123 => 0.29629242339668
124 => 0.2936371542524
125 => 0.29514971623224
126 => 0.270150435979
127 => 0.30022623971187
128 => 0.30048633651148
129 => 0.2982592298039
130 => 0.31427366680539
131 => 0.34806912390669
201 => 0.33535391352607
202 => 0.33043019974743
203 => 0.32107021625501
204 => 0.33354183851783
205 => 0.33258421251566
206 => 0.32825346456497
207 => 0.32563421469164
208 => 0.33046026289384
209 => 0.32503621391187
210 => 0.32406190567182
211 => 0.31815865779488
212 => 0.31605146688348
213 => 0.31449138662236
214 => 0.3127738915452
215 => 0.31656225771232
216 => 0.30797732157654
217 => 0.29762473018847
218 => 0.29676402423114
219 => 0.29914050905336
220 => 0.29808909142802
221 => 0.29675899044806
222 => 0.29421946544587
223 => 0.29346604262609
224 => 0.2959143012816
225 => 0.29315036000188
226 => 0.29722870591977
227 => 0.29611962149528
228 => 0.2899243660571
301 => 0.28220278400379
302 => 0.28213404572695
303 => 0.2804704435395
304 => 0.27835159602951
305 => 0.2777621811249
306 => 0.28635991863023
307 => 0.30415697795764
308 => 0.30066298936413
309 => 0.3031877542013
310 => 0.31560709834853
311 => 0.31955483439023
312 => 0.31675282485508
313 => 0.31291726138296
314 => 0.31308600670992
315 => 0.3261932881982
316 => 0.3270107732669
317 => 0.32907629430484
318 => 0.33173107255477
319 => 0.31720494507063
320 => 0.31240182741173
321 => 0.31012584379811
322 => 0.3031166951847
323 => 0.31067546104528
324 => 0.30627129187695
325 => 0.3068655647656
326 => 0.30647854376726
327 => 0.30668988340259
328 => 0.29546938805302
329 => 0.29955754682653
330 => 0.29276018995414
331 => 0.28365929214112
401 => 0.28362878274047
402 => 0.28585621458697
403 => 0.28453125096525
404 => 0.28096580792714
405 => 0.28147226228229
406 => 0.27703518921488
407 => 0.28201100328847
408 => 0.28215369183178
409 => 0.28023773237903
410 => 0.28790366048942
411 => 0.29104439749104
412 => 0.28978327193541
413 => 0.29095591356016
414 => 0.30080818036461
415 => 0.30241452973827
416 => 0.30312796402057
417 => 0.30217205659422
418 => 0.29113599491128
419 => 0.29162549117588
420 => 0.28803389237214
421 => 0.28499936985635
422 => 0.28512073484301
423 => 0.28668087387644
424 => 0.29349409253639
425 => 0.30783210954507
426 => 0.3083762268096
427 => 0.30903571280722
428 => 0.30635325182378
429 => 0.30554419592347
430 => 0.30661154949102
501 => 0.31199615482236
502 => 0.32584682164066
503 => 0.32095107093214
504 => 0.31697074939921
505 => 0.32046256447057
506 => 0.31992502691009
507 => 0.31538766894092
508 => 0.31526032041486
509 => 0.30655167979094
510 => 0.30333229363843
511 => 0.30064193360251
512 => 0.29770413067692
513 => 0.29596250262658
514 => 0.29863843486769
515 => 0.29925045223193
516 => 0.29339947961945
517 => 0.29260201367246
518 => 0.29738004420983
519 => 0.29527741111326
520 => 0.29744002139587
521 => 0.29794176553196
522 => 0.2978609731699
523 => 0.29566558273122
524 => 0.29706485912935
525 => 0.2937551533034
526 => 0.29015634531941
527 => 0.28786053003929
528 => 0.28585712671168
529 => 0.28696873131632
530 => 0.28300606387175
531 => 0.28173832680349
601 => 0.29659081577038
602 => 0.30756250906138
603 => 0.30740297629567
604 => 0.30643186161285
605 => 0.30498898217761
606 => 0.31189059920453
607 => 0.30948621383454
608 => 0.31123560508433
609 => 0.31168089857912
610 => 0.31302866787403
611 => 0.31351037955228
612 => 0.31205431229035
613 => 0.30716757271567
614 => 0.29499028231282
615 => 0.28932172075833
616 => 0.28745100102799
617 => 0.28751899813719
618 => 0.28564333431311
619 => 0.28619580137066
620 => 0.28545120881653
621 => 0.28404113065529
622 => 0.28688166296336
623 => 0.28720900785048
624 => 0.28654599366794
625 => 0.28670215750939
626 => 0.28121268325504
627 => 0.28163003606009
628 => 0.27930616260696
629 => 0.27887046434921
630 => 0.2729959146225
701 => 0.26258829825203
702 => 0.26835512801304
703 => 0.26138960860072
704 => 0.25875166085443
705 => 0.27123929520031
706 => 0.26998588306505
707 => 0.26784058633463
708 => 0.26466724535133
709 => 0.26349022231235
710 => 0.25633900292771
711 => 0.25591647073619
712 => 0.25946080816239
713 => 0.2578252183934
714 => 0.25552823091146
715 => 0.24720877509377
716 => 0.23785495227752
717 => 0.23813728539231
718 => 0.2411125623961
719 => 0.24976358155538
720 => 0.2463834787057
721 => 0.24393117530604
722 => 0.24347193259526
723 => 0.24922031661048
724 => 0.25735548431571
725 => 0.26117232298889
726 => 0.25738995178289
727 => 0.25304496739876
728 => 0.2533094264655
729 => 0.25506875415679
730 => 0.25525363462159
731 => 0.25242549645914
801 => 0.25322160078595
802 => 0.25201224551621
803 => 0.24459043445811
804 => 0.24445619743089
805 => 0.24263476530436
806 => 0.24257961306345
807 => 0.23948090263869
808 => 0.23904737162989
809 => 0.23289469400324
810 => 0.23694440504912
811 => 0.23422807149892
812 => 0.23013391612045
813 => 0.22942808219002
814 => 0.22940686396976
815 => 0.23361064610705
816 => 0.23689528140729
817 => 0.23427532328399
818 => 0.23367880960507
819 => 0.2400480150889
820 => 0.23923747563448
821 => 0.23853555369438
822 => 0.25662706927501
823 => 0.24230622299438
824 => 0.23606151661069
825 => 0.2283325066233
826 => 0.23084911124825
827 => 0.23137939681934
828 => 0.21279252105843
829 => 0.20525182787708
830 => 0.20266414614227
831 => 0.20117489871944
901 => 0.20185356747081
902 => 0.1950660591725
903 => 0.19962737700399
904 => 0.19374996855145
905 => 0.19276460189764
906 => 0.20327413628198
907 => 0.20473647659575
908 => 0.19849767850368
909 => 0.20250399684845
910 => 0.20105125012465
911 => 0.19385071985019
912 => 0.19357571255722
913 => 0.18996273957637
914 => 0.18430913647077
915 => 0.18172528814509
916 => 0.18037959750307
917 => 0.18093485568895
918 => 0.18065410015899
919 => 0.17882198041562
920 => 0.18075911511808
921 => 0.17581053643262
922 => 0.17383997252667
923 => 0.17294991452708
924 => 0.16855776611418
925 => 0.17554762743637
926 => 0.1769247181728
927 => 0.17830452220338
928 => 0.19031477425736
929 => 0.18971477600536
930 => 0.19513846799241
1001 => 0.19492771329533
1002 => 0.19338078848264
1003 => 0.18685456715467
1004 => 0.18945580265729
1005 => 0.18144960410198
1006 => 0.1874483924282
1007 => 0.1847107959515
1008 => 0.18652280830565
1009 => 0.18326464671032
1010 => 0.18506784786337
1011 => 0.1772512774731
1012 => 0.16995227402478
1013 => 0.17288960608358
1014 => 0.17608282195616
1015 => 0.18300652758418
1016 => 0.17888282563146
1017 => 0.1803658647881
1018 => 0.17539793187113
1019 => 0.16514766724355
1020 => 0.16520568262817
1021 => 0.16362890272937
1022 => 0.16226633468318
1023 => 0.17935648240641
1024 => 0.17723105238177
1025 => 0.17384445780692
1026 => 0.17837754922328
1027 => 0.1795761705436
1028 => 0.17961029360753
1029 => 0.18291752008889
1030 => 0.18468258745484
1031 => 0.18499368822833
1101 => 0.1901976805541
1102 => 0.19194199013938
1103 => 0.19912655445722
1104 => 0.18453283382068
1105 => 0.18423228574784
1106 => 0.17844133911572
1107 => 0.17476862921039
1108 => 0.17869281270508
1109 => 0.18216910357691
1110 => 0.17854935716323
1111 => 0.17902201962784
1112 => 0.17416280581163
1113 => 0.17589974610366
1114 => 0.17739583307429
1115 => 0.17656978178504
1116 => 0.17533314302369
1117 => 0.18188408736852
1118 => 0.18151445741522
1119 => 0.18761484739468
1120 => 0.19237053762675
1121 => 0.20089358470392
1122 => 0.1919993407624
1123 => 0.19167519916175
1124 => 0.19484373530202
1125 => 0.19194150505301
1126 => 0.1937756143888
1127 => 0.2005980813347
1128 => 0.20074222931056
1129 => 0.19832756499066
1130 => 0.19818063244735
1201 => 0.19864439514352
1202 => 0.20136066774036
1203 => 0.2004115186324
1204 => 0.20150989800964
1205 => 0.20288343823987
1206 => 0.20856498300109
1207 => 0.20993478420824
1208 => 0.20660687743536
1209 => 0.20690735015596
1210 => 0.20566262166982
1211 => 0.20446022954861
1212 => 0.20716303144182
1213 => 0.21210245502537
1214 => 0.21207172712761
1215 => 0.21321757739032
1216 => 0.21393143261125
1217 => 0.21086704342905
1218 => 0.20887223875216
1219 => 0.209637173798
1220 => 0.21086032159442
1221 => 0.20924052345279
1222 => 0.19924237895921
1223 => 0.20227517731462
1224 => 0.20177037137201
1225 => 0.20105146632325
1226 => 0.20410096852155
1227 => 0.20380683659521
1228 => 0.1949964434644
1229 => 0.19556045624738
1230 => 0.1950307429498
1231 => 0.19674235498343
]
'min_raw' => 0.16226633468318
'max_raw' => 0.36349662077716
'avg_raw' => 0.26288147773017
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.162266'
'max' => '$0.363496'
'avg' => '$0.262881'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.039569486805409
'max_diff' => -0.26414545709968
'year' => 2034
]
9 => [
'items' => [
101 => 0.19184907238616
102 => 0.19335421315632
103 => 0.19429822333755
104 => 0.19485425258652
105 => 0.19686301150662
106 => 0.19662730683236
107 => 0.19684835977313
108 => 0.19982681895895
109 => 0.21489084343707
110 => 0.21571074505252
111 => 0.21167324963312
112 => 0.2132861494171
113 => 0.21018973453428
114 => 0.21226837858929
115 => 0.2136905340599
116 => 0.207264086953
117 => 0.20688355446263
118 => 0.20377435957414
119 => 0.20544506479341
120 => 0.20278685266159
121 => 0.20343908493843
122 => 0.2016153866318
123 => 0.20489768048901
124 => 0.20856779503828
125 => 0.20949501091064
126 => 0.20705590514199
127 => 0.20528983182059
128 => 0.20218918884892
129 => 0.20734562721314
130 => 0.20885352693044
131 => 0.20733770685785
201 => 0.20698645822571
202 => 0.2063208427025
203 => 0.20712767170553
204 => 0.20884531458475
205 => 0.20803530592279
206 => 0.20857033091453
207 => 0.2065313673614
208 => 0.21086805786938
209 => 0.21775576607746
210 => 0.2177779111856
211 => 0.2169678981574
212 => 0.21663645827823
213 => 0.21746758080087
214 => 0.21791843067497
215 => 0.22060612851137
216 => 0.22349013537244
217 => 0.23694853700226
218 => 0.23316947167927
219 => 0.24511056624915
220 => 0.25455442169685
221 => 0.25738622101587
222 => 0.25478109888882
223 => 0.24586911681815
224 => 0.24543185246091
225 => 0.25875011621627
226 => 0.25498709669026
227 => 0.25453949749147
228 => 0.24977779824712
301 => 0.25259255224845
302 => 0.25197692425841
303 => 0.25100512535858
304 => 0.25637547991566
305 => 0.26642830423167
306 => 0.26486147728723
307 => 0.26369191365622
308 => 0.25856722627997
309 => 0.26165343272084
310 => 0.26055449371963
311 => 0.26527623307272
312 => 0.26247917927928
313 => 0.25495858811632
314 => 0.25615626704721
315 => 0.2559752402862
316 => 0.25970075820008
317 => 0.25858245019537
318 => 0.25575687270008
319 => 0.26639394477104
320 => 0.26570323247726
321 => 0.26668250459103
322 => 0.26711361046051
323 => 0.27358820878387
324 => 0.27624064455291
325 => 0.2768427939099
326 => 0.27936240274375
327 => 0.27678010374681
328 => 0.28711114088256
329 => 0.29398067774511
330 => 0.30195999831409
331 => 0.31361993030455
401 => 0.31800417259336
402 => 0.31721219846572
403 => 0.32605262582792
404 => 0.34193867728614
405 => 0.32042322366502
406 => 0.34307904857166
407 => 0.33590647598029
408 => 0.31890043539524
409 => 0.31780544686961
410 => 0.329322134998
411 => 0.35486504082662
412 => 0.34846683262179
413 => 0.35487550600315
414 => 0.34739944808706
415 => 0.34702819879837
416 => 0.35451241055704
417 => 0.37199967927431
418 => 0.3636921334072
419 => 0.35178122931288
420 => 0.36057605554193
421 => 0.35295716313958
422 => 0.33578966616338
423 => 0.34846194003256
424 => 0.33998835138182
425 => 0.34246139503085
426 => 0.36027161802352
427 => 0.35812864487304
428 => 0.36090185056373
429 => 0.35600721510708
430 => 0.35143485377741
501 => 0.34290020180756
502 => 0.34037351211254
503 => 0.34107179824347
504 => 0.34037316607661
505 => 0.33559810673698
506 => 0.33456693312722
507 => 0.33284826526754
508 => 0.3333809523028
509 => 0.33014935391258
510 => 0.33624804775721
511 => 0.33738001907628
512 => 0.34181813986755
513 => 0.34227892029099
514 => 0.35463902352196
515 => 0.34783128636544
516 => 0.35239850420179
517 => 0.35198996925018
518 => 0.31926900786154
519 => 0.32377766764141
520 => 0.3307917273635
521 => 0.32763190296603
522 => 0.32316465055305
523 => 0.31955710471064
524 => 0.31409130386889
525 => 0.32178431359224
526 => 0.33189980331807
527 => 0.34253546580354
528 => 0.35531351740362
529 => 0.3524616050394
530 => 0.34229658901711
531 => 0.34275258421032
601 => 0.34557136706725
602 => 0.34192078715409
603 => 0.34084415986991
604 => 0.34542345501114
605 => 0.34545499010005
606 => 0.34125455672263
607 => 0.33658654369483
608 => 0.3365669845498
609 => 0.33573635671916
610 => 0.34754721493288
611 => 0.35404199273798
612 => 0.35478660854648
613 => 0.35399187416128
614 => 0.35429773588426
615 => 0.35051856778214
616 => 0.3591566253861
617 => 0.36708376125885
618 => 0.3649591195064
619 => 0.36177397948385
620 => 0.35923686203876
621 => 0.36436145526709
622 => 0.36413326519749
623 => 0.36701452464249
624 => 0.3668838140711
625 => 0.3659149548894
626 => 0.36495915410741
627 => 0.36874879616916
628 => 0.36765744011517
629 => 0.36656438888378
630 => 0.36437210730146
701 => 0.36467007477844
702 => 0.36148548471522
703 => 0.36001214763505
704 => 0.33785669297923
705 => 0.33193603154483
706 => 0.33379879215827
707 => 0.33441206131877
708 => 0.33183538187498
709 => 0.33552967830273
710 => 0.33495392611769
711 => 0.33719384106591
712 => 0.33579443945207
713 => 0.33585187138243
714 => 0.33996721314486
715 => 0.34116191436641
716 => 0.34055427968271
717 => 0.34097984618667
718 => 0.35078684665017
719 => 0.34939260479448
720 => 0.34865194159692
721 => 0.34885711036443
722 => 0.35136300924731
723 => 0.35206452411751
724 => 0.34909215631789
725 => 0.35049394215525
726 => 0.35646256833759
727 => 0.35855124970642
728 => 0.36521731801181
729 => 0.36238545371576
730 => 0.36758346319137
731 => 0.38356037218736
801 => 0.39632383261137
802 => 0.38458602693314
803 => 0.40802449658495
804 => 0.42627470725766
805 => 0.42557423377473
806 => 0.42239188740896
807 => 0.40161450776503
808 => 0.38249485324341
809 => 0.39848925611416
810 => 0.39853002913636
811 => 0.39715609574502
812 => 0.38862271345068
813 => 0.39685915253836
814 => 0.39751293116279
815 => 0.39714698898688
816 => 0.39060446478938
817 => 0.38061523960038
818 => 0.38256711029148
819 => 0.38576431430059
820 => 0.37971134010472
821 => 0.3777770480865
822 => 0.38137326496249
823 => 0.39296102503846
824 => 0.39077042611942
825 => 0.39071322072874
826 => 0.4000855318629
827 => 0.39337697976217
828 => 0.38259172963165
829 => 0.37986831173372
830 => 0.3702020129102
831 => 0.37687855993778
901 => 0.37711883697928
902 => 0.37346216040493
903 => 0.38288844878257
904 => 0.3828015838757
905 => 0.3917504417724
906 => 0.40885729703335
907 => 0.40379795815546
908 => 0.39791449749499
909 => 0.39855419279945
910 => 0.40557007138686
911 => 0.40132811103598
912 => 0.40285354955416
913 => 0.40556776245296
914 => 0.40720531448493
915 => 0.39831857426255
916 => 0.39624665001479
917 => 0.39200822015046
918 => 0.3909024929129
919 => 0.39435460559965
920 => 0.39344509587164
921 => 0.37709864262434
922 => 0.37539034730919
923 => 0.37544273828762
924 => 0.37114714849266
925 => 0.36459534299567
926 => 0.38181309665378
927 => 0.38043027007273
928 => 0.37890373654952
929 => 0.37909072819584
930 => 0.38656437149501
1001 => 0.38222928095345
1002 => 0.39375482966554
1003 => 0.39138552334004
1004 => 0.38895545324751
1005 => 0.38861954353897
1006 => 0.38768417387718
1007 => 0.38447644327119
1008 => 0.38060291580973
1009 => 0.37804527746047
1010 => 0.34872678505952
1011 => 0.35416812671131
1012 => 0.3604278942878
1013 => 0.36258874097076
1014 => 0.35889246319352
1015 => 0.38462239484691
1016 => 0.38932350129978
1017 => 0.37508354320846
1018 => 0.37241982846324
1019 => 0.38479702754215
1020 => 0.37733206344651
1021 => 0.38069353632169
1022 => 0.37342787059291
1023 => 0.38819114241975
1024 => 0.38807867102367
1025 => 0.38233542483942
1026 => 0.3871895771863
1027 => 0.38634604876121
1028 => 0.37986193796417
1029 => 0.38839670029752
1030 => 0.38840093343315
1031 => 0.38287318384975
1101 => 0.37641798251631
1102 => 0.37526394498294
1103 => 0.37439453272468
1104 => 0.3804797142021
1105 => 0.38593566888689
1106 => 0.39608784790942
1107 => 0.3986403469255
1108 => 0.40860292051477
1109 => 0.40267069301127
1110 => 0.40530037262836
1111 => 0.40815526184362
1112 => 0.40952400071848
1113 => 0.40729371417246
1114 => 0.42276969171548
1115 => 0.42407633839182
1116 => 0.42451444571994
1117 => 0.41929603316704
1118 => 0.42393120489868
1119 => 0.4217625615462
1120 => 0.42740476908288
1121 => 0.42828953926795
1122 => 0.42754017039781
1123 => 0.4278210104197
1124 => 0.41461499373625
1125 => 0.41393019210393
1126 => 0.40459287325587
1127 => 0.40839789970443
1128 => 0.40128458513852
1129 => 0.40354029046263
1130 => 0.40453458387635
1201 => 0.40401522142267
1202 => 0.40861303019082
1203 => 0.40470395346762
1204 => 0.39438725728339
1205 => 0.38406775032218
1206 => 0.38393819731837
1207 => 0.38122125328991
1208 => 0.37925740039046
1209 => 0.37963570813032
1210 => 0.38096891394904
1211 => 0.37917991204464
1212 => 0.37956168630564
1213 => 0.38590168278687
1214 => 0.3871731238664
1215 => 0.38285227029408
1216 => 0.365503419705
1217 => 0.36124596825414
1218 => 0.36430613992809
1219 => 0.36284357496824
1220 => 0.29284308377929
1221 => 0.30928866085217
1222 => 0.2995172573945
1223 => 0.30402036966845
1224 => 0.29404629703082
1225 => 0.29880644727943
1226 => 0.29792742134137
1227 => 0.32437142261456
1228 => 0.32395853590721
1229 => 0.32415616292454
1230 => 0.314722910473
1231 => 0.32975033776902
]
'min_raw' => 0.19184907238616
'max_raw' => 0.42828953926795
'avg_raw' => 0.31006930582706
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.191849'
'max' => '$0.428289'
'avg' => '$0.310069'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.029582737702988
'max_diff' => 0.064792918490795
'year' => 2035
]
10 => [
'items' => [
101 => 0.33715338882384
102 => 0.33578328109942
103 => 0.33612810769584
104 => 0.33020284430408
105 => 0.32421353242615
106 => 0.31757046380505
107 => 0.32991246419497
108 => 0.32854024443658
109 => 0.33168762285324
110 => 0.33969229233051
111 => 0.34087101031782
112 => 0.34245521924615
113 => 0.34188739311701
114 => 0.35541531519978
115 => 0.35377699457545
116 => 0.35772487590307
117 => 0.34960378448568
118 => 0.34041399868584
119 => 0.34216067652966
120 => 0.3419924574074
121 => 0.33985083490817
122 => 0.33791747387427
123 => 0.33469897247392
124 => 0.34488278715321
125 => 0.34446934287506
126 => 0.3511625251619
127 => 0.34997944017859
128 => 0.34207850911009
129 => 0.34236069240888
130 => 0.34425851070593
131 => 0.35082688150094
201 => 0.35277682116168
202 => 0.35187353141916
203 => 0.35401155123904
204 => 0.35570135493058
205 => 0.35422376456602
206 => 0.37514332816585
207 => 0.36645606685232
208 => 0.37069017757096
209 => 0.37169998802853
210 => 0.36911337977549
211 => 0.36967432248608
212 => 0.37052399784488
213 => 0.37568306024
214 => 0.38922193275154
215 => 0.39521820722468
216 => 0.41325829482809
217 => 0.39472030010186
218 => 0.39362033221265
219 => 0.39686989674848
220 => 0.40746133790889
221 => 0.41604470616592
222 => 0.41889230460318
223 => 0.41926866174538
224 => 0.42461094571843
225 => 0.42767304326409
226 => 0.42396225192809
227 => 0.42081774480688
228 => 0.40955451060929
229 => 0.41085826063643
301 => 0.41983980545672
302 => 0.43252676652574
303 => 0.44341349897628
304 => 0.43960134471303
305 => 0.46868539078011
306 => 0.47156895514999
307 => 0.47117053979087
308 => 0.47773972855736
309 => 0.4647012266479
310 => 0.45912701447253
311 => 0.42149762293815
312 => 0.43206994707638
313 => 0.44743744110212
314 => 0.44540349564267
315 => 0.43424321070688
316 => 0.44340503289939
317 => 0.44037584796588
318 => 0.43798660412782
319 => 0.44893219332768
320 => 0.43689706838241
321 => 0.4473173815244
322 => 0.43395322213546
323 => 0.4396187583126
324 => 0.43640272596731
325 => 0.43848389303681
326 => 0.42631743287372
327 => 0.4328821594536
328 => 0.42604431866518
329 => 0.42604107663833
330 => 0.42589013092394
331 => 0.43393482028789
401 => 0.43419715731923
402 => 0.42825211972442
403 => 0.42739534692807
404 => 0.43056328500899
405 => 0.42685445920053
406 => 0.42858979545324
407 => 0.42690702076781
408 => 0.42652819274146
409 => 0.42350962657525
410 => 0.42220914527364
411 => 0.42271909750128
412 => 0.42097836764997
413 => 0.4199295149496
414 => 0.4256814877226
415 => 0.4226084407039
416 => 0.42521049919328
417 => 0.42224512513867
418 => 0.41196584671343
419 => 0.40605412498967
420 => 0.38663752093399
421 => 0.39214404575796
422 => 0.39579487741316
423 => 0.39458827757289
424 => 0.39718052092194
425 => 0.39733966361024
426 => 0.39649689887267
427 => 0.39552108527142
428 => 0.39504611317621
429 => 0.39858616603659
430 => 0.40064128587474
501 => 0.39616128721159
502 => 0.39511168620665
503 => 0.39964121220261
504 => 0.40240422044352
505 => 0.42280472089419
506 => 0.42129338592806
507 => 0.42508654010854
508 => 0.42465948915852
509 => 0.42863531903652
510 => 0.43513412057597
511 => 0.42192023995277
512 => 0.42421371272734
513 => 0.42365140616704
514 => 0.42979052174775
515 => 0.42980968739649
516 => 0.42612898093428
517 => 0.42812435162008
518 => 0.4270105904434
519 => 0.42902330742352
520 => 0.42127320112817
521 => 0.43071199402363
522 => 0.43606318137298
523 => 0.43613748261452
524 => 0.43867390294846
525 => 0.4412510529073
526 => 0.44619766783085
527 => 0.44111309450187
528 => 0.43196644205626
529 => 0.43262680081933
530 => 0.4272641218371
531 => 0.42735426943964
601 => 0.42687305447229
602 => 0.42831721681346
603 => 0.42159011354976
604 => 0.42316895123981
605 => 0.42095856922808
606 => 0.42420890778853
607 => 0.4207120807977
608 => 0.42365113500579
609 => 0.42491953337081
610 => 0.42959995064441
611 => 0.42002077936086
612 => 0.4004882006608
613 => 0.40459418551318
614 => 0.39852111139837
615 => 0.39908319752952
616 => 0.40021870096978
617 => 0.39653816280627
618 => 0.39724029350078
619 => 0.39721520845156
620 => 0.39699903904937
621 => 0.39604158892391
622 => 0.39465309681626
623 => 0.4001844220178
624 => 0.40112430195449
625 => 0.40321353862725
626 => 0.40942968982262
627 => 0.40880854973126
628 => 0.40982165499112
629 => 0.40761005189719
630 => 0.39918578745401
701 => 0.39964326554364
702 => 0.39393850643544
703 => 0.40306765511081
704 => 0.4009057522056
705 => 0.39951195933861
706 => 0.39913165004145
707 => 0.4053632098733
708 => 0.40722779024272
709 => 0.40606590888383
710 => 0.40368285631925
711 => 0.40825902172948
712 => 0.40948341054034
713 => 0.40975750604137
714 => 0.41786559375562
715 => 0.41021065807498
716 => 0.41205327717683
717 => 0.42642886541062
718 => 0.41339219057814
719 => 0.42029800798945
720 => 0.4199600041633
721 => 0.4234927866708
722 => 0.41967021288349
723 => 0.4197175982669
724 => 0.42285446980215
725 => 0.41844929946865
726 => 0.41735851734403
727 => 0.4158516096512
728 => 0.41914188746939
729 => 0.42111426021493
730 => 0.43701013599583
731 => 0.44727959669029
801 => 0.44683377231777
802 => 0.45090777253437
803 => 0.44907239812323
804 => 0.44314549000234
805 => 0.45326199945525
806 => 0.45006071257162
807 => 0.45032462277274
808 => 0.45031480002187
809 => 0.45244337593813
810 => 0.45093508482035
811 => 0.44796208820428
812 => 0.44993570210197
813 => 0.45579662979822
814 => 0.47398912920263
815 => 0.48416989288789
816 => 0.47337623444543
817 => 0.48082155550619
818 => 0.47635701590888
819 => 0.4755456762555
820 => 0.48022188808657
821 => 0.48490628500741
822 => 0.48460790917476
823 => 0.48120727755667
824 => 0.47928634704344
825 => 0.49383227644852
826 => 0.50454946945075
827 => 0.50381862873697
828 => 0.50704432196545
829 => 0.51651505705122
830 => 0.51738094237634
831 => 0.51727186072752
901 => 0.51512567360341
902 => 0.5244508422257
903 => 0.53223006195115
904 => 0.51462889329348
905 => 0.52133118790211
906 => 0.52434006388636
907 => 0.52875798652453
908 => 0.53621176254492
909 => 0.54430854031952
910 => 0.54545351347349
911 => 0.54464110022874
912 => 0.53930105763332
913 => 0.54816064848893
914 => 0.55335038902918
915 => 0.55644076075579
916 => 0.56427742926566
917 => 0.5243586456801
918 => 0.49610214656596
919 => 0.49168948620049
920 => 0.50066280457297
921 => 0.50302899706692
922 => 0.50207518783956
923 => 0.47026992911809
924 => 0.49152203809558
925 => 0.51438752042727
926 => 0.51526587672624
927 => 0.52671281527618
928 => 0.5304404076939
929 => 0.53965669361113
930 => 0.53908021241769
1001 => 0.54132423137539
1002 => 0.54080837027801
1003 => 0.55787959922172
1004 => 0.57671169984866
1005 => 0.57605960408636
1006 => 0.57335226680994
1007 => 0.57737312433503
1008 => 0.59680987035258
1009 => 0.59502044624679
1010 => 0.59675871934279
1011 => 0.61967573830448
1012 => 0.64947112286263
1013 => 0.63562817532767
1014 => 0.66566338827768
1015 => 0.68456896273148
1016 => 0.71726419887645
1017 => 0.71317059428367
1018 => 0.72589860978618
1019 => 0.70584218770152
1020 => 0.65978858852349
1021 => 0.65250043016747
1022 => 0.66709150776179
1023 => 0.70296224825088
1024 => 0.66596181049066
1025 => 0.67344695086008
1026 => 0.67129122993013
1027 => 0.671176360723
1028 => 0.67556045115243
1029 => 0.66920109932577
1030 => 0.64329195595841
1031 => 0.65516596368013
1101 => 0.65058083906209
1102 => 0.65566837666949
1103 => 0.68312371887651
1104 => 0.67098505763317
1105 => 0.65819796407808
1106 => 0.67423581707939
1107 => 0.69465751515426
1108 => 0.69337956199005
1109 => 0.69089979870851
1110 => 0.70487809449038
1111 => 0.72796614386564
1112 => 0.73420675083647
1113 => 0.73881343931875
1114 => 0.73944862382982
1115 => 0.74599141905878
1116 => 0.71080916011596
1117 => 0.76664430860271
1118 => 0.77628549633152
1119 => 0.77447335262479
1120 => 0.78518912702216
1121 => 0.7820362743615
1122 => 0.77746828552362
1123 => 0.79445506725404
1124 => 0.77498109276271
1125 => 0.7473402376775
1126 => 0.73217591790362
1127 => 0.75214551745264
1128 => 0.76434025505425
1129 => 0.77240020087793
1130 => 0.77483913561422
1201 => 0.71354025872665
1202 => 0.68050356387582
1203 => 0.70167970650872
1204 => 0.72751606202016
1205 => 0.71066563785659
1206 => 0.71132614258173
1207 => 0.68730186593804
1208 => 0.7296416774235
1209 => 0.72347312302393
1210 => 0.75547559416086
1211 => 0.74783794758816
1212 => 0.77393472047155
1213 => 0.76706256557325
1214 => 0.79558849633908
1215 => 0.80696826243031
1216 => 0.82607666081665
1217 => 0.84013287645482
1218 => 0.84838695513011
1219 => 0.84789141120672
1220 => 0.88059818308389
1221 => 0.86131214239549
1222 => 0.83708432992008
1223 => 0.83664612523017
1224 => 0.84919405262194
1225 => 0.87549106607934
1226 => 0.88230949906286
1227 => 0.88612007291291
1228 => 0.88028404641452
1229 => 0.85935043149026
1230 => 0.8503114027018
1231 => 0.85801291711544
]
'min_raw' => 0.31757046380505
'max_raw' => 0.88612007291291
'avg_raw' => 0.60184526835898
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.31757'
'max' => '$0.88612'
'avg' => '$0.601845'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.12572139141888
'max_diff' => 0.45783053364495
'year' => 2036
]
11 => [
'items' => [
101 => 0.84859462678623
102 => 0.86485323819998
103 => 0.88717978432306
104 => 0.88256944083738
105 => 0.89798112788869
106 => 0.91393060263005
107 => 0.93673906784592
108 => 0.94270204524837
109 => 0.95255862014289
110 => 0.96270427342555
111 => 0.96596278382691
112 => 0.97218429123951
113 => 0.97215150082443
114 => 0.99090043216805
115 => 1.0115810840461
116 => 1.0193875513719
117 => 1.0373380925365
118 => 1.0065984198542
119 => 1.0299148146956
120 => 1.0509467864898
121 => 1.0258716026703
122 => 1.0604319017969
123 => 1.0617737998967
124 => 1.0820348680283
125 => 1.0614963939259
126 => 1.0493007135651
127 => 1.0845091858007
128 => 1.101545456459
129 => 1.096413993091
130 => 1.0573633034884
131 => 1.0346341271769
201 => 0.9751474886389
202 => 1.0456119816187
203 => 1.0799331806717
204 => 1.0572744198743
205 => 1.0687021808391
206 => 1.1310483391992
207 => 1.1547857196879
208 => 1.1498485104831
209 => 1.1506828175653
210 => 1.1634910772131
211 => 1.2202899541288
212 => 1.1862547504933
213 => 1.2122733883979
214 => 1.2260735801253
215 => 1.2388919672948
216 => 1.2074140596994
217 => 1.1664617644201
218 => 1.1534904534448
219 => 1.0550214526683
220 => 1.0498957135487
221 => 1.0470184808551
222 => 1.0288779357144
223 => 1.0146244363473
224 => 1.0032895244521
225 => 0.97354333074793
226 => 0.98358179791442
227 => 0.93617257366303
228 => 0.96650331525933
301 => 0.89083704861836
302 => 0.95385416391221
303 => 0.91955681309441
304 => 0.94258656174427
305 => 0.94250621312076
306 => 0.90010114426791
307 => 0.87564278552479
308 => 0.89122860364947
309 => 0.90793783788291
310 => 0.91064885492067
311 => 0.93231281325996
312 => 0.93835875836723
313 => 0.92003926243401
314 => 0.88926903342657
315 => 0.8964162558308
316 => 0.87549794729089
317 => 0.83883941618583
318 => 0.86516821322203
319 => 0.87415802212568
320 => 0.87812843387565
321 => 0.84207897879456
322 => 0.83075145733634
323 => 0.82472077995909
324 => 0.88461550146527
325 => 0.88789666951407
326 => 0.87110974986601
327 => 0.94698821847627
328 => 0.92981458410384
329 => 0.94900174134042
330 => 0.89576772031125
331 => 0.89780133160368
401 => 0.87259949293544
402 => 0.88671083860219
403 => 0.87673739431484
404 => 0.88557078132335
405 => 0.89086547707484
406 => 0.91606318036934
407 => 0.95414188120821
408 => 0.91229948376649
409 => 0.89406815200697
410 => 0.90537876769368
411 => 0.93550042776288
412 => 0.98113628466714
413 => 0.9541189388726
414 => 0.96610877815193
415 => 0.96872802464364
416 => 0.94880643409126
417 => 0.98187082212666
418 => 0.99959029628944
419 => 1.0177668102519
420 => 1.0335489680312
421 => 1.0105067108652
422 => 1.0351652290106
423 => 1.0152948161998
424 => 0.99746900174301
425 => 0.99749603614537
426 => 0.98631364234302
427 => 0.96464634527868
428 => 0.96065056326403
429 => 0.98143712591584
430 => 0.99810598066779
501 => 0.99947890738359
502 => 1.0087076418509
503 => 1.0141691118452
504 => 1.0676989422973
505 => 1.0892290829272
506 => 1.1155557313446
507 => 1.1258114445918
508 => 1.1566774645892
509 => 1.1317506466258
510 => 1.1263575727623
511 => 1.0514867044468
512 => 1.0637468049392
513 => 1.0833764087511
514 => 1.0518103893837
515 => 1.0718317631762
516 => 1.0757844064735
517 => 1.0507377881245
518 => 1.0641162691852
519 => 1.0285869899311
520 => 0.95491632240563
521 => 0.9819528386395
522 => 1.0018608149806
523 => 0.97344967810607
524 => 1.0243755412908
525 => 0.99462570334148
526 => 0.98519643295561
527 => 0.94840948740272
528 => 0.9657715096443
529 => 0.98925389332624
530 => 0.97474451033091
531 => 1.004853658641
601 => 1.0474962424647
602 => 1.0778858871072
603 => 1.0802188266732
604 => 1.0606803211161
605 => 1.0919909009644
606 => 1.092218964356
607 => 1.0569005023797
608 => 1.0352681410732
609 => 1.0303532230695
610 => 1.0426316518692
611 => 1.057539931155
612 => 1.0810461324172
613 => 1.0952504375368
614 => 1.1322877319074
615 => 1.1423089618216
616 => 1.1533192552503
617 => 1.1680324027198
618 => 1.1856993086305
619 => 1.1470451242754
620 => 1.1485809270803
621 => 1.1125866858125
622 => 1.0741216769215
623 => 1.1033118239387
624 => 1.1414740581612
625 => 1.132719599465
626 => 1.1317345440243
627 => 1.133391134044
628 => 1.1267905580809
629 => 1.096936397629
630 => 1.081943825147
701 => 1.101288068662
702 => 1.1115686731769
703 => 1.1275129942168
704 => 1.1255475201048
705 => 1.1666183788083
706 => 1.1825772725822
707 => 1.1784943046353
708 => 1.1792456689996
709 => 1.2081384838811
710 => 1.2402732362899
711 => 1.2703716724748
712 => 1.3009890945199
713 => 1.2640785972262
714 => 1.2453377230234
715 => 1.2646735214468
716 => 1.2544136746322
717 => 1.3133697976968
718 => 1.3174517917425
719 => 1.3764036516083
720 => 1.4323559864778
721 => 1.3972133274364
722 => 1.4303512720523
723 => 1.4661926609306
724 => 1.5353365151327
725 => 1.5120512975476
726 => 1.4942151858032
727 => 1.4773601463883
728 => 1.5124328077486
729 => 1.5575532262892
730 => 1.5672717322848
731 => 1.5830194247528
801 => 1.566462651659
802 => 1.5864034611818
803 => 1.656803281233
804 => 1.6377806284188
805 => 1.6107654033785
806 => 1.6663393000384
807 => 1.6864512772015
808 => 1.8276076656568
809 => 2.0058234369611
810 => 1.9320409374133
811 => 1.8862417589975
812 => 1.8970056522963
813 => 1.962084018992
814 => 1.9829851248906
815 => 1.926168714015
816 => 1.9462372308538
817 => 2.0568167317283
818 => 2.1161390861323
819 => 2.0355713607965
820 => 1.8132882019573
821 => 1.6083329779436
822 => 1.6626963326061
823 => 1.6565332152787
824 => 1.7753370938946
825 => 1.6373269444404
826 => 1.6396506814104
827 => 1.7609112984207
828 => 1.7285610447356
829 => 1.6761577768733
830 => 1.6087155797919
831 => 1.484042440839
901 => 1.3736159649006
902 => 1.5901877139143
903 => 1.5808487462867
904 => 1.5673245372044
905 => 1.5974212010447
906 => 1.7435620575665
907 => 1.7401930378118
908 => 1.718761053022
909 => 1.7350170245922
910 => 1.6733080264605
911 => 1.6892118403668
912 => 1.608300511989
913 => 1.6448758115713
914 => 1.6760453429959
915 => 1.6823030879022
916 => 1.6964021067045
917 => 1.5759275347129
918 => 1.6300170805895
919 => 1.6617896212869
920 => 1.5182401265209
921 => 1.6589521093222
922 => 1.5738303404462
923 => 1.5449387336037
924 => 1.5838374760374
925 => 1.5686785982807
926 => 1.5556458853447
927 => 1.5483734075959
928 => 1.5769363509417
929 => 1.5756038554946
930 => 1.5288693363524
1001 => 1.4679060612741
1002 => 1.4883673374417
1003 => 1.4809335639845
1004 => 1.4539926099999
1005 => 1.4721475601224
1006 => 1.3922023477931
1007 => 1.2546607651713
1008 => 1.3455249476639
1009 => 1.3420267754792
1010 => 1.3402628384341
1011 => 1.4085447602758
1012 => 1.4019810290227
1013 => 1.390067792526
1014 => 1.4537738140692
1015 => 1.430520259239
1016 => 1.502182235999
1017 => 1.5493834486992
1018 => 1.5374116943592
1019 => 1.581804663047
1020 => 1.4888387239186
1021 => 1.519718279751
1022 => 1.5260825134108
1023 => 1.4529876916522
1024 => 1.4030549366307
1025 => 1.3997249911459
1026 => 1.3131484750961
1027 => 1.3593969511487
1028 => 1.4000936961829
1029 => 1.3806031135065
1030 => 1.3744329772958
1031 => 1.4059548650573
1101 => 1.408404385703
1102 => 1.3525550553907
1103 => 1.3641678996809
1104 => 1.4125953908458
1105 => 1.3629476511557
1106 => 1.26649020285
1107 => 1.2425674220416
1108 => 1.2393756820975
1109 => 1.1744952032055
1110 => 1.2441660566465
1111 => 1.2137528620567
1112 => 1.3098277793598
1113 => 1.2549503018564
1114 => 1.2525846434834
1115 => 1.2490086038861
1116 => 1.1931632955249
1117 => 1.2053898689015
1118 => 1.2460328609651
1119 => 1.2605347384094
1120 => 1.2590220737816
1121 => 1.2458336881312
1122 => 1.2518712635465
1123 => 1.2324221295032
1124 => 1.2255542354738
1125 => 1.203877272754
1126 => 1.1720181259696
1127 => 1.1764483357334
1128 => 1.1133270295543
1129 => 1.0789351918466
1130 => 1.0694159844463
1201 => 1.0566865024755
1202 => 1.0708538133068
1203 => 1.1131482148247
1204 => 1.0621321933362
1205 => 0.97466880285212
1206 => 0.97992550165058
1207 => 0.99173574312284
1208 => 0.96972743627185
1209 => 0.94889842085457
1210 => 0.96700755984846
1211 => 0.92994816829084
1212 => 0.99621419353925
1213 => 0.99442188326467
1214 => 1.0191217596138
1215 => 1.0345670991873
1216 => 0.99897059195831
1217 => 0.9900181666534
1218 => 0.99511787497212
1219 => 0.91083105620433
1220 => 1.0122337283153
1221 => 1.0131106628345
1222 => 1.0056018170783
1223 => 1.0595956095211
1224 => 1.1735393526616
1225 => 1.1306691331157
1226 => 1.1140684883483
1227 => 1.0825106505104
1228 => 1.1245595957104
1229 => 1.1213308927847
1230 => 1.1067294737058
1231 => 1.0978984898877
]
'min_raw' => 0.82472077995909
'max_raw' => 2.1161390861323
'avg_raw' => 1.4704299330457
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.82472'
'max' => '$2.11'
'avg' => '$1.47'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.50715031615405
'max_diff' => 1.2300190132194
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.025887042895589
]
1 => [
'year' => 2028
'avg' => 0.04442968067108
]
2 => [
'year' => 2029
'avg' => 0.12137387992255
]
3 => [
'year' => 2030
'avg' => 0.093639767604846
]
4 => [
'year' => 2031
'avg' => 0.091965856436602
]
5 => [
'year' => 2032
'avg' => 0.16124508905355
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.025887042895589
'min' => '$0.025887'
'max_raw' => 0.16124508905355
'max' => '$0.161245'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.16124508905355
]
1 => [
'year' => 2033
'avg' => 0.41473894968271
]
2 => [
'year' => 2034
'avg' => 0.26288147773017
]
3 => [
'year' => 2035
'avg' => 0.31006930582706
]
4 => [
'year' => 2036
'avg' => 0.60184526835898
]
5 => [
'year' => 2037
'avg' => 1.4704299330457
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.16124508905355
'min' => '$0.161245'
'max_raw' => 1.4704299330457
'max' => '$1.47'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.4704299330457
]
]
]
]
'prediction_2025_max_price' => '$0.044262'
'last_price' => 0.04291772
'sma_50day_nextmonth' => '$0.03437'
'sma_200day_nextmonth' => '$0.056346'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.041834'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.037677'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.030419'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.0266021'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.031573'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.048097'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.061012'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.040864'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.038051'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.033322'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.030135'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.033989'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.044451'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.073477'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.054124'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.088554'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.436248'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.782036'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.03792'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.036285'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.039698'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.054353'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.151383'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.92270026'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$5.30'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '79.84'
'rsi_14_action' => 'SELL'
'stoch_rsi_14' => 104.04
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.02
'momentum_10_action' => 'BUY'
'vwma_10' => '0.034954'
'vwma_10_action' => 'BUY'
'hma_9' => '0.045664'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 195.39
'cci_20_action' => 'SELL'
'adx_14' => 47.45
'adx_14_action' => 'SELL'
'ao_5_34' => '0.0101087'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 93.54
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.013727'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 14
'buy_signals' => 22
'sell_pct' => 38.89
'buy_pct' => 61.11
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767705746
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Crust Network para 2026
La previsión del precio de Crust Network para 2026 sugiere que el precio medio podría oscilar entre $0.014828 en el extremo inferior y $0.044262 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Crust Network podría potencialmente ganar 3.13% para 2026 si CRU alcanza el objetivo de precio previsto.
Predicción de precio de Crust Network 2027-2032
La predicción del precio de CRU para 2027-2032 está actualmente dentro de un rango de precios de $0.025887 en el extremo inferior y $0.161245 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Crust Network alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Crust Network | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.014274 | $0.025887 | $0.037499 |
| 2028 | $0.025761 | $0.044429 | $0.063097 |
| 2029 | $0.05659 | $0.121373 | $0.186157 |
| 2030 | $0.048127 | $0.093639 | $0.139151 |
| 2031 | $0.056902 | $0.091965 | $0.127029 |
| 2032 | $0.086856 | $0.161245 | $0.235633 |
Predicción de precio de Crust Network 2032-2037
La predicción de precio de Crust Network para 2032-2037 se estima actualmente entre $0.161245 en el extremo inferior y $1.47 en el extremo superior. Comparado con el precio actual, Crust Network podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Crust Network | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.086856 | $0.161245 | $0.235633 |
| 2033 | $0.201835 | $0.414738 | $0.627642 |
| 2034 | $0.162266 | $0.262881 | $0.363496 |
| 2035 | $0.191849 | $0.310069 | $0.428289 |
| 2036 | $0.31757 | $0.601845 | $0.88612 |
| 2037 | $0.82472 | $1.47 | $2.11 |
Crust Network Histograma de precios potenciales
Pronóstico de precio de Crust Network basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Crust Network es Alcista, con 22 indicadores técnicos mostrando señales alcistas y 14 indicando señales bajistas. La predicción de precio de CRU se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Crust Network
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Crust Network aumentar durante el próximo mes, alcanzando $0.056346 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Crust Network alcance $0.03437 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 79.84, lo que sugiere que el mercado de CRU está en un estado SELL.
Promedios Móviles y Osciladores Populares de CRU para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.041834 | BUY |
| SMA 5 | $0.037677 | BUY |
| SMA 10 | $0.030419 | BUY |
| SMA 21 | $0.0266021 | BUY |
| SMA 50 | $0.031573 | BUY |
| SMA 100 | $0.048097 | SELL |
| SMA 200 | $0.061012 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.040864 | BUY |
| EMA 5 | $0.038051 | BUY |
| EMA 10 | $0.033322 | BUY |
| EMA 21 | $0.030135 | BUY |
| EMA 50 | $0.033989 | BUY |
| EMA 100 | $0.044451 | SELL |
| EMA 200 | $0.073477 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.054124 | SELL |
| SMA 50 | $0.088554 | SELL |
| SMA 100 | $0.436248 | SELL |
| SMA 200 | $0.782036 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.054353 | SELL |
| EMA 50 | $0.151383 | SELL |
| EMA 100 | $0.92270026 | SELL |
| EMA 200 | $5.30 | SELL |
Osciladores de Crust Network
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 79.84 | SELL |
| Stoch RSI (14) | 104.04 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 195.39 | SELL |
| Índice Direccional Medio (14) | 47.45 | SELL |
| Oscilador Asombroso (5, 34) | 0.0101087 | BUY |
| Momentum (10) | 0.02 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 93.54 | SELL |
| VWMA (10) | 0.034954 | BUY |
| Promedio Móvil de Hull (9) | 0.045664 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.013727 | NEUTRAL |
Predicción de precios de Crust Network basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Crust Network
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Crust Network por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.0603065 | $0.08474 | $0.119074 | $0.16732 | $0.235112 | $0.330372 |
| Amazon.com acción | $0.08955 | $0.186852 | $0.389878 | $0.8135039 | $1.69 | $3.54 |
| Apple acción | $0.060875 | $0.086347 | $0.122477 | $0.173724 | $0.246414 | $0.34952 |
| Netflix acción | $0.067717 | $0.106847 | $0.168588 | $0.2660063 | $0.419716 | $0.662246 |
| Google acción | $0.055578 | $0.071973 | $0.0932054 | $0.12070068 | $0.1563068 | $0.202416 |
| Tesla acción | $0.097291 | $0.220551 | $0.499974 | $1.13 | $2.56 | $5.82 |
| Kodak acción | $0.032183 | $0.024134 | $0.018098 | $0.013571 | $0.010177 | $0.007631 |
| Nokia acción | $0.028431 | $0.018834 | $0.012477 | $0.008265 | $0.005475 | $0.003627 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Crust Network
Podría preguntarse cosas como: "¿Debo invertir en Crust Network ahora?", "¿Debería comprar CRU hoy?", "¿Será Crust Network una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Crust Network regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Crust Network, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Crust Network a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Crust Network es de $0.04291 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Crust Network
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Crust Network
basado en el historial de precios del último mes
Predicción de precios de Crust Network basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Crust Network ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.044033 | $0.045177 | $0.046352 | $0.047557 |
| Si Crust Network ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.045148 | $0.047495 | $0.049965 | $0.052562 |
| Si Crust Network ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.048495 | $0.054798 | $0.06192 | $0.069967 |
| Si Crust Network ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.054073 | $0.068128 | $0.085837 | $0.108149 |
| Si Crust Network ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.065229 | $0.099139 | $0.150678 | $0.22901 |
| Si Crust Network ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.098696 | $0.226967 | $0.521948 | $1.20 |
| Si Crust Network ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.154474 | $0.5560039 | $2.00 | $7.20 |
Cuadro de preguntas
¿Es CRU una buena inversión?
La decisión de adquirir Crust Network depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Crust Network ha experimentado un aumento de 8.2083% durante las últimas 24 horas, y Crust Network ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Crust Network dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Crust Network subir?
Parece que el valor medio de Crust Network podría potencialmente aumentar hasta $0.044262 para el final de este año. Mirando las perspectivas de Crust Network en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.139151. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Crust Network la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Crust Network, el precio de Crust Network aumentará en un 0.86% durante la próxima semana y alcanzará $0.043284 para el 13 de enero de 2026.
¿Cuál será el precio de Crust Network el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Crust Network, el precio de Crust Network disminuirá en un -11.62% durante el próximo mes y alcanzará $0.037931 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Crust Network este año en 2026?
Según nuestra predicción más reciente sobre el valor de Crust Network en 2026, se anticipa que CRU fluctúe dentro del rango de $0.014828 y $0.044262. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Crust Network no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Crust Network en 5 años?
El futuro de Crust Network parece estar en una tendencia alcista, con un precio máximo de $0.139151 proyectada después de un período de cinco años. Basado en el pronóstico de Crust Network para 2030, el valor de Crust Network podría potencialmente alcanzar su punto más alto de aproximadamente $0.139151, mientras que su punto más bajo se anticipa que esté alrededor de $0.048127.
¿Cuánto será Crust Network en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Crust Network, se espera que el valor de CRU en 2026 crezca en un 3.13% hasta $0.044262 si ocurre lo mejor. El precio estará entre $0.044262 y $0.014828 durante 2026.
¿Cuánto será Crust Network en 2027?
Según nuestra última simulación experimental para la predicción de precios de Crust Network, el valor de CRU podría disminuir en un -12.62% hasta $0.037499 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.037499 y $0.014274 a lo largo del año.
¿Cuánto será Crust Network en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Crust Network sugiere que el valor de CRU en 2028 podría aumentar en un 47.02% , alcanzando $0.063097 en el mejor escenario. Se espera que el precio oscile entre $0.063097 y $0.025761 durante el año.
¿Cuánto será Crust Network en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Crust Network podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.186157 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.186157 y $0.05659.
¿Cuánto será Crust Network en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Crust Network, se espera que el valor de CRU en 2030 aumente en un 224.23% , alcanzando $0.139151 en el mejor escenario. Se pronostica que el precio oscile entre $0.139151 y $0.048127 durante el transcurso de 2030.
¿Cuánto será Crust Network en 2031?
Nuestra simulación experimental indica que el precio de Crust Network podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.127029 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.127029 y $0.056902 durante el año.
¿Cuánto será Crust Network en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Crust Network, CRU podría experimentar un 449.04% aumento en valor, alcanzando $0.235633 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.235633 y $0.086856 a lo largo del año.
¿Cuánto será Crust Network en 2033?
Según nuestra predicción experimental de precios de Crust Network, se anticipa que el valor de CRU aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.627642. A lo largo del año, el precio de CRU podría oscilar entre $0.627642 y $0.201835.
¿Cuánto será Crust Network en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Crust Network sugieren que CRU podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.363496 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.363496 y $0.162266.
¿Cuánto será Crust Network en 2035?
Basado en nuestra predicción experimental para el precio de Crust Network, CRU podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.428289 en 2035. El rango de precios esperado para el año está entre $0.428289 y $0.191849.
¿Cuánto será Crust Network en 2036?
Nuestra reciente simulación de predicción de precios de Crust Network sugiere que el valor de CRU podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.88612 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.88612 y $0.31757.
¿Cuánto será Crust Network en 2037?
Según la simulación experimental, el valor de Crust Network podría aumentar en un 4830.69% en 2037, con un máximo de $2.11 bajo condiciones favorables. Se espera que el precio caiga entre $2.11 y $0.82472 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Tranchess
Predicción de precios de Stronghold Token
Predicción de precios de Floor Protocol
Predicción de precios de Index Cooperative
Predicción de precios de PARSIQ
Predicción de precios de OctaSpace
Predicción de precios de Blockasset
Predicción de precios de FC Barcelona Fan Token
Predicción de precios de Cosplay Token
Predicción de precios de Velas
Predicción de precios de Santos FC Fan Token
Predicción de precios de Red Pulse Phoenix
Predicción de precios de BarnBridge
Predicción de precios de AdEx
Predicción de precios de AIT Protocol
Predicción de precios de iMe Lab
Predicción de precios de The Big Five
Predicción de precios de Metahero
Predicción de precios de Catcoin
Predicción de precios de Aurory
Predicción de precios de Taraxa
Predicción de precios de NFT Worlds
Predicción de precios de WiFi Map
Predicción de precios de Celo Dollar
Predicción de precios de Morpheus Network
¿Cómo leer y predecir los movimientos de precio de Crust Network?
Los traders de Crust Network utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Crust Network
Las medias móviles son herramientas populares para la predicción de precios de Crust Network. Una media móvil simple (SMA) calcula el precio de cierre promedio de CRU durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de CRU por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de CRU.
¿Cómo leer gráficos de Crust Network y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Crust Network en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de CRU dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Crust Network?
La acción del precio de Crust Network está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de CRU. La capitalización de mercado de Crust Network puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de CRU, grandes poseedores de Crust Network, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Crust Network.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


