Previsão de Preço NKN - Projeção NKN
Previsão de Preço NKN até $0.013767 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.004612 | $0.013767 |
| 2027 | $0.00444 | $0.011664 |
| 2028 | $0.008013 | $0.019626 |
| 2029 | $0.0176026 | $0.0579047 |
| 2030 | $0.01497 | $0.043283 |
| 2031 | $0.017699 | $0.039512 |
| 2032 | $0.027016 | $0.073294 |
| 2033 | $0.062781 | $0.195229 |
| 2034 | $0.050473 | $0.113066 |
| 2035 | $0.059675 | $0.13322 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em NKN hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.46, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de NKN para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'NKN'
'name_with_ticker' => 'NKN <small>NKN</small>'
'name_lang' => 'NKN'
'name_lang_with_ticker' => 'NKN <small>NKN</small>'
'name_with_lang' => 'NKN'
'name_with_lang_with_ticker' => 'NKN <small>NKN</small>'
'image' => '/uploads/coins/nkn.png?1717200595'
'price_for_sd' => 0.01334
'ticker' => 'NKN'
'marketcap' => '$10.62M'
'low24h' => '$0.01275'
'high24h' => '$0.01363'
'volume24h' => '$1.32M'
'current_supply' => '795.75M'
'max_supply' => '795.75M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.18 USD 0.07x'
'price' => '$0.01334'
'change_24h_pct' => '3.7794%'
'ath_price' => '$1.44'
'ath_days' => 1733
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '9 de abr. de 2021'
'ath_pct' => '-99.07%'
'fdv' => '$10.62M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.658231'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.013463'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.011798'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004612'
'current_year_max_price_prediction' => '$0.013767'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.01497'
'grand_prediction_max_price' => '$0.043283'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.013602649414068
107 => 0.013653436769219
108 => 0.013767863273639
109 => 0.012790101321697
110 => 0.013229087732536
111 => 0.01348695112144
112 => 0.012321914949222
113 => 0.013463922102192
114 => 0.012773080661438
115 => 0.012538598700355
116 => 0.012854297770303
117 => 0.012731269535717
118 => 0.01262549708408
119 => 0.012566474238666
120 => 0.012798288793201
121 => 0.012787474367153
122 => 0.012408180762668
123 => 0.011913407717602
124 => 0.012079469791897
125 => 0.012019137883465
126 => 0.011800487264337
127 => 0.011947831381653
128 => 0.011299002458145
129 => 0.010182726018441
130 => 0.010920172426981
131 => 0.01089178154244
201 => 0.01087746557103
202 => 0.011431636165526
203 => 0.011378365449756
204 => 0.011281678579006
205 => 0.011798711534133
206 => 0.011609987550437
207 => 0.012191590399226
208 => 0.012574671651152
209 => 0.012477509854283
210 => 0.012837799623312
211 => 0.012083295526691
212 => 0.012333911522138
213 => 0.012385563131461
214 => 0.011792331427724
215 => 0.011387081197666
216 => 0.011360055627512
217 => 0.010657407575515
218 => 0.011032756493315
219 => 0.011363048007986
220 => 0.011204864004115
221 => 0.011154787674103
222 => 0.011410616783906
223 => 0.011430496896766
224 => 0.010977228216761
225 => 0.011071477128486
226 => 0.011464510757959
227 => 0.011061573689444
228 => 0.010278732784715
301 => 0.01008457741672
302 => 0.010058673511636
303 => 0.0095321087549767
304 => 0.010097551806799
305 => 0.009850720761747
306 => 0.010630457075577
307 => 0.010185075874927
308 => 0.010165876381539
309 => 0.01013685353133
310 => 0.0096836174931573
311 => 0.0097828473808643
312 => 0.010112702640741
313 => 0.01023039871355
314 => 0.010218122048901
315 => 0.010111086170015
316 => 0.010160086647257
317 => 0.010002239037165
318 => 0.0099464997607272
319 => 0.0097705712719949
320 => 0.0095120049950438
321 => 0.009547960221733
322 => 0.0090356727695463
323 => 0.0087565513764421
324 => 0.0086792942535917
325 => 0.0085759828001187
326 => 0.0086909635571627
327 => 0.0090342215235598
328 => 0.008620179589845
329 => 0.0079103337361556
330 => 0.0079529966814808
331 => 0.0080488476528844
401 => 0.0078702300017914
402 => 0.007701183385275
403 => 0.0078481557031505
404 => 0.0075473846572097
405 => 0.0080851943968357
406 => 0.0080706481505731
407 => 0.0082711103635745
408 => 0.0083964634992629
409 => 0.0081075651050606
410 => 0.0080349079401831
411 => 0.0080762967633814
412 => 0.0073922317106567
413 => 0.0082152076546782
414 => 0.0082223247848169
415 => 0.0081613835956342
416 => 0.0085995928792939
417 => 0.0095243511487191
418 => 0.0091764198894462
419 => 0.0090416903895777
420 => 0.0087855695118411
421 => 0.0091268353744722
422 => 0.0091006314807989
423 => 0.0089821275360767
424 => 0.0089104559805538
425 => 0.0090425130191745
426 => 0.0088940926520582
427 => 0.0088674322758052
428 => 0.0087058994024873
429 => 0.0086482395159903
430 => 0.0086055504315341
501 => 0.0085585539440907
502 => 0.0086622164845959
503 => 0.0084273035298682
504 => 0.0081440215352674
505 => 0.00812046970257
506 => 0.0081854983833458
507 => 0.0081567280329184
508 => 0.0081203319612009
509 => 0.0080508419484118
510 => 0.0080302257460364
511 => 0.0080972184021967
512 => 0.0080215875993063
513 => 0.0081331849687942
514 => 0.0081028366592576
515 => 0.0079333134691884
516 => 0.0077220248088387
517 => 0.0077201438965686
518 => 0.0076746221012791
519 => 0.0076166432507302
520 => 0.0076005148608839
521 => 0.0078357781044781
522 => 0.0083227659778819
523 => 0.0082271586057006
524 => 0.0082962447303392
525 => 0.0086360800865104
526 => 0.0087441035270316
527 => 0.0086674310476251
528 => 0.0085624770288609
529 => 0.0085670944730359
530 => 0.0089257541268951
531 => 0.0089481232895655
601 => 0.009004642947068
602 => 0.009077286679412
603 => 0.0086798025893636
604 => 0.0085483730081397
605 => 0.0084860943811203
606 => 0.0082943003147623
607 => 0.0085011337721489
608 => 0.0083806207740214
609 => 0.008396882094779
610 => 0.0083862918883029
611 => 0.0083920748571455
612 => 0.0080850440680528
613 => 0.008196909950535
614 => 0.0080109112241636
615 => 0.0077618798088893
616 => 0.0077610449682636
617 => 0.0078219950543494
618 => 0.0077857395581685
619 => 0.0076881769501595
620 => 0.0077020352581447
621 => 0.0075806218977979
622 => 0.0077167770383506
623 => 0.0077206814805952
624 => 0.0076682543350617
625 => 0.007878020114872
626 => 0.0079639613260128
627 => 0.0079294526557244
628 => 0.0079615401057123
629 => 0.0082311315236561
630 => 0.0082750866878792
701 => 0.0082946086683119
702 => 0.0082684518006988
703 => 0.0079664677419364
704 => 0.0079798620190779
705 => 0.0078815837006562
706 => 0.0077985488779039
707 => 0.0078018698353537
708 => 0.0078445605280198
709 => 0.0080309932866684
710 => 0.0084233300364332
711 => 0.0084382189292923
712 => 0.0084562647017773
713 => 0.0083828634760025
714 => 0.0083607249639537
715 => 0.0083899313757809
716 => 0.0085372724309062
717 => 0.0089162736273948
718 => 0.008782309291917
719 => 0.0086733942018943
720 => 0.0087689420991416
721 => 0.0087542332492895
722 => 0.008630075754075
723 => 0.0086265910667037
724 => 0.0083882931378346
725 => 0.008300199819313
726 => 0.0082265824486857
727 => 0.0081461942017909
728 => 0.0080985373543932
729 => 0.0081717599316458
730 => 0.0081885068014076
731 => 0.008028404356533
801 => 0.0080065829848955
802 => 0.0081373260974313
803 => 0.0080797909281988
804 => 0.008138967276558
805 => 0.0081526966969826
806 => 0.0081504859440789
807 => 0.0080904126195281
808 => 0.0081287015651845
809 => 0.0080381367942231
810 => 0.0079396612081913
811 => 0.0078768399195488
812 => 0.0078220200131735
813 => 0.0078524372833822
814 => 0.0077440052690624
815 => 0.0077093156853763
816 => 0.0081157301319246
817 => 0.0084159528532815
818 => 0.0084115874960117
819 => 0.0083850145063107
820 => 0.0083455324337491
821 => 0.0085343840713797
822 => 0.0084685919370369
823 => 0.008516461211888
824 => 0.0085286459514048
825 => 0.0085655254881133
826 => 0.0085787067525833
827 => 0.0085388638163782
828 => 0.008405146056069
829 => 0.0080719341108816
830 => 0.0079168230509084
831 => 0.0078656338175382
901 => 0.007867494448949
902 => 0.0078161699284145
903 => 0.0078312872999156
904 => 0.0078109127235422
905 => 0.0077723282050303
906 => 0.0078500547980924
907 => 0.0078590120638695
908 => 0.0078408697482852
909 => 0.0078451429203667
910 => 0.0076949322960129
911 => 0.0077063524835422
912 => 0.0076427634281718
913 => 0.0076308412468674
914 => 0.0074700936522236
915 => 0.0071853059875756
916 => 0.0073431059987981
917 => 0.0071525057752807
918 => 0.0070803225825699
919 => 0.0074220265900728
920 => 0.0073877289851134
921 => 0.0073290263942333
922 => 0.0072421930276298
923 => 0.0072099856872959
924 => 0.0070143040830319
925 => 0.0070027421699312
926 => 0.0070997272568522
927 => 0.0070549719762912
928 => 0.0069921186122334
929 => 0.0067644700989593
930 => 0.0065085177982067
1001 => 0.0065162433893077
1002 => 0.0065976570540152
1003 => 0.0068343782642809
1004 => 0.0067418871921116
1005 => 0.00667478385804
1006 => 0.0066622174206872
1007 => 0.006819512693776
1008 => 0.0070421184595753
1009 => 0.007146560104365
1010 => 0.0070430616063183
1011 => 0.0069241681045171
1012 => 0.0069314046010723
1013 => 0.0069795457706465
1014 => 0.0069846047268892
1015 => 0.0069072172796661
1016 => 0.0069290013927599
1017 => 0.0068959093329894
1018 => 0.0066928234232614
1019 => 0.0066891502431468
1020 => 0.0066393096856969
1021 => 0.0066378005334252
1022 => 0.0065530093118932
1023 => 0.0065411464338668
1024 => 0.0063727883170556
1025 => 0.0064836021393761
1026 => 0.0064092740453503
1027 => 0.0062972440754286
1028 => 0.0062779300663875
1029 => 0.0062773494639534
1030 => 0.00639237919362
1031 => 0.0064822579500113
1101 => 0.0064105670143685
1102 => 0.006394244377993
1103 => 0.006568527430984
1104 => 0.0065463483238656
1105 => 0.006527141360141
1106 => 0.0070221865548094
1107 => 0.0066303196543711
1108 => 0.0064594433187993
1109 => 0.0062479514049932
1110 => 0.0063168142385632
1111 => 0.006331324649402
1112 => 0.005822724720981
1113 => 0.0056163857933628
1114 => 0.0055455780491226
1115 => 0.0055048271912379
1116 => 0.005523397868893
1117 => 0.0053376686328943
1118 => 0.0054624817511634
1119 => 0.00530165593209
1120 => 0.0052746929601499
1121 => 0.0055622694471491
1122 => 0.0056022840353175
1123 => 0.0054315693706328
1124 => 0.0055411958215541
1125 => 0.0055014437465284
1126 => 0.00530441282916
1127 => 0.0052968876973778
1128 => 0.005198024509014
1129 => 0.0050433227629101
1130 => 0.0049726199137386
1201 => 0.0049357972560198
1202 => 0.0049509910022538
1203 => 0.0049433085792216
1204 => 0.004893175572345
1205 => 0.0049461821444922
1206 => 0.0048107722564839
1207 => 0.0047568509480074
1208 => 0.0047324959439334
1209 => 0.0046123118744237
1210 => 0.0048035781751119
1211 => 0.0048412600458569
1212 => 0.0048790161615277
1213 => 0.0052076573712473
1214 => 0.0051912393851402
1215 => 0.0053396499836655
1216 => 0.0053338830207164
1217 => 0.0052915539139247
1218 => 0.0051129743751705
1219 => 0.0051841529964437
1220 => 0.0049650762637785
1221 => 0.005129223447661
1222 => 0.0050543135278873
1223 => 0.0051038963284329
1224 => 0.005014741982351
1225 => 0.0050640836785655
1226 => 0.0048501958153157
1227 => 0.0046504703380966
1228 => 0.0047308457004797
1229 => 0.0048182229114278
1230 => 0.0050076789680625
1231 => 0.0048948405037094
]
'min_raw' => 0.0046123118744237
'max_raw' => 0.013767863273639
'avg_raw' => 0.0091900875740315
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004612'
'max' => '$0.013767'
'avg' => '$0.00919'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0087373681255763
'max_diff' => 0.0004181832736392
'year' => 2026
]
1 => [
'items' => [
101 => 0.0049354214823855
102 => 0.0047994819969943
103 => 0.004519000009438
104 => 0.0045205875070273
105 => 0.004477441463874
106 => 0.0044401569831642
107 => 0.00490780135872
108 => 0.0048496423882561
109 => 0.0047569736804796
110 => 0.0048810144283464
111 => 0.0049138127708738
112 => 0.0049147464935765
113 => 0.005005243421265
114 => 0.0050535416477948
115 => 0.0050620544195572
116 => 0.0052044532905906
117 => 0.0052521835138745
118 => 0.0054487775485467
119 => 0.0050494438807147
120 => 0.0050412198666145
121 => 0.0048827599360447
122 => 0.004782262142925
123 => 0.0048896411059193
124 => 0.004984764208442
125 => 0.0048857156759947
126 => 0.0048986493233037
127 => 0.0047656847610557
128 => 0.0048132133354952
129 => 0.0048541513465929
130 => 0.0048315477830898
131 => 0.0047977091545009
201 => 0.0049769651988047
202 => 0.004966850870275
203 => 0.0051337782198094
204 => 0.0052639100258607
205 => 0.0054971294861476
206 => 0.0052537528213328
207 => 0.0052448832083324
208 => 0.0053315850981427
209 => 0.0052521702402669
210 => 0.0053023576891367
211 => 0.0054890435122397
212 => 0.0054929878895062
213 => 0.0054269144882493
214 => 0.005422893915778
215 => 0.0054355840352532
216 => 0.0055099104613882
217 => 0.0054839385242762
218 => 0.0055139939074312
219 => 0.0055515786242907
220 => 0.0057070449488117
221 => 0.0057445273533249
222 => 0.0056534645427563
223 => 0.0056616864949636
224 => 0.0056276265040809
225 => 0.0055947249796587
226 => 0.0056686828016781
227 => 0.0058038421750633
228 => 0.0058030013556163
301 => 0.0058343557031188
302 => 0.0058538892018595
303 => 0.0057700371258696
304 => 0.0057154525077264
305 => 0.005736383723632
306 => 0.0057698531936876
307 => 0.0057255300255832
308 => 0.0054519468995542
309 => 0.0055349345434337
310 => 0.0055211213416037
311 => 0.005501449662455
312 => 0.0055848943801002
313 => 0.0055768459335186
314 => 0.0053357637111304
315 => 0.0053511970128184
316 => 0.0053367022613228
317 => 0.0053835377687522
318 => 0.0052496409691647
319 => 0.0052908267229091
320 => 0.0053166580415651
321 => 0.0053318728866991
322 => 0.0053868393402399
323 => 0.0053803896613373
324 => 0.0053864384191435
325 => 0.0054679391591388
326 => 0.0058801419343582
327 => 0.0059025772219392
328 => 0.0057920976605693
329 => 0.0058362320662236
330 => 0.0057515036585008
331 => 0.0058083824062361
401 => 0.005847297400873
402 => 0.0056714480230319
403 => 0.0056610353641292
404 => 0.0055759572521282
405 => 0.005621673410447
406 => 0.0055489357154537
407 => 0.0055667830015485
408 => 0.0055168804337291
409 => 0.0056066951203019
410 => 0.0057071218956817
411 => 0.0057324936651161
412 => 0.0056657514629676
413 => 0.0056174257100866
414 => 0.0055325816075201
415 => 0.0056736792409623
416 => 0.0057149404888532
417 => 0.0056734625131925
418 => 0.0056638511599203
419 => 0.0056456376628367
420 => 0.0056677152394273
421 => 0.0057147157712359
422 => 0.0056925511883985
423 => 0.0057071912858523
424 => 0.0056513983311614
425 => 0.0057700648843958
426 => 0.0059585359295932
427 => 0.0059591418948217
428 => 0.0059369771925089
429 => 0.0059279078738677
430 => 0.0059506502035072
501 => 0.0059629869843974
502 => 0.0060365315082214
503 => 0.0061154477124277
504 => 0.0064837152036209
505 => 0.00638030716574
506 => 0.0067070559922577
507 => 0.0069654718910082
508 => 0.0070429595198857
509 => 0.006971674547393
510 => 0.0067278125072341
511 => 0.0067158474721386
512 => 0.0070802803160337
513 => 0.0069773113455517
514 => 0.0069650635141574
515 => 0.0068347672811599
516 => 0.0069117884923638
517 => 0.0068949428236405
518 => 0.0068683511114424
519 => 0.0070153022170755
520 => 0.0072903815684049
521 => 0.0072475078718224
522 => 0.0072155046461771
523 => 0.0070752758273984
524 => 0.0071597248975437
525 => 0.0071296542011804
526 => 0.0072588569960929
527 => 0.007182320122579
528 => 0.0069765312543275
529 => 0.0070093038098856
530 => 0.0070043503040422
531 => 0.0071062931032895
601 => 0.0070756924053313
602 => 0.0069983750266422
603 => 0.007289441377087
604 => 0.0072705411472852
605 => 0.0072973373519501
606 => 0.0073091338699437
607 => 0.0074863008282951
608 => 0.0075588804624213
609 => 0.0075753573100533
610 => 0.0076443023489628
611 => 0.0075736418946777
612 => 0.0078563340918682
613 => 0.0080443079074529
614 => 0.0082626491672986
615 => 0.0085817044325312
616 => 0.0087016721636849
617 => 0.0086800010668415
618 => 0.0089219051276134
619 => 0.0093566013475954
620 => 0.0087678656013404
621 => 0.009387805771709
622 => 0.0091915398713237
623 => 0.0087261969521831
624 => 0.0086962343542231
625 => 0.0090113699818075
626 => 0.0097103104731096
627 => 0.0095352338073559
628 => 0.0097105968358153
629 => 0.0095060265481617
630 => 0.0094958679091259
701 => 0.0097006613135534
702 => 0.010179172265705
703 => 0.0099518496490528
704 => 0.0096259269362889
705 => 0.0098665831954747
706 => 0.0096581044720826
707 => 0.0091883435587595
708 => 0.0095350999295291
709 => 0.0093032338194484
710 => 0.0093709046770503
711 => 0.0098582527529591
712 => 0.0097996137431026
713 => 0.009875498051683
714 => 0.0097415642332768
715 => 0.0096164489274609
716 => 0.0093829119179709
717 => 0.0093137731226963
718 => 0.009332880598357
719 => 0.0093137636539803
720 => 0.0091831018434866
721 => 0.0091548854379509
722 => 0.0091078568592023
723 => 0.0091224329822412
724 => 0.0090340054954978
725 => 0.0092008864330336
726 => 0.00923186100559
727 => 0.0093533030352132
728 => 0.0093659115495972
729 => 0.0097041258734788
730 => 0.0095178431073456
731 => 0.009642817669748
801 => 0.0096316387685805
802 => 0.008736282344284
803 => 0.0088596545597555
804 => 0.0090515830106951
805 => 0.0089651195036996
806 => 0.0088428803341528
807 => 0.0087441656506942
808 => 0.0085946028111597
809 => 0.0088051096357045
810 => 0.009081903725076
811 => 0.0093729315044834
812 => 0.009722582312546
813 => 0.0096445443225705
814 => 0.0093663950258387
815 => 0.0093788726001019
816 => 0.0094560040544525
817 => 0.0093561118129369
818 => 0.0093266516407857
819 => 0.0094519566791906
820 => 0.0094528195861237
821 => 0.0093378814898793
822 => 0.0092101488293533
823 => 0.0092096136248418
824 => 0.0091868848316523
825 => 0.0095100699499778
826 => 0.0096877890873558
827 => 0.0097081643000475
828 => 0.0096864176732005
829 => 0.0096947870867812
830 => 0.0095913762365148
831 => 0.0098277427746886
901 => 0.010044656084345
902 => 0.0099865186836799
903 => 0.0098993624553649
904 => 0.0098299383214993
905 => 0.0099701645640719
906 => 0.0099639205102267
907 => 0.010042761535816
908 => 0.010039184851487
909 => 0.010012673579943
910 => 0.0099865196304809
911 => 0.010090217083788
912 => 0.010060353882566
913 => 0.010030444295544
914 => 0.0099704560398416
915 => 0.009978609440091
916 => 0.0098914682605276
917 => 0.0098511527635525
918 => 0.0092449044194502
919 => 0.0090828950521699
920 => 0.0091338664971211
921 => 0.009150647620272
922 => 0.0090801409360109
923 => 0.0091812294095601
924 => 0.0091654748780367
925 => 0.0092267665441018
926 => 0.0091884741721191
927 => 0.0091900457044222
928 => 0.0093026554056287
929 => 0.0093353464809649
930 => 0.0093187195361996
1001 => 0.0093303644783749
1002 => 0.009598717255782
1003 => 0.0095605660722734
1004 => 0.0095402990164158
1005 => 0.0095459131293959
1006 => 0.0096144830175718
1007 => 0.009633678842484
1008 => 0.0095523447834645
1009 => 0.0095907023958847
1010 => 0.0097540242412641
1011 => 0.0098111776439311
1012 => 0.0099935838700543
1013 => 0.009916094463185
1014 => 0.010058329623157
1015 => 0.01049551201337
1016 => 0.010844763557393
1017 => 0.010523577404079
1018 => 0.011164933387761
1019 => 0.011664321018108
1020 => 0.011645153689082
1021 => 0.011558073904687
1022 => 0.010989534364443
1023 => 0.010466355803063
1024 => 0.010904016884992
1025 => 0.010905132573096
1026 => 0.010867537098016
1027 => 0.010634034831152
1028 => 0.010859411725275
1029 => 0.010877301324681
1030 => 0.010867287906242
1031 => 0.010688262265712
1101 => 0.010414923202093
1102 => 0.010468333000843
1103 => 0.010555819340726
1104 => 0.010390189447765
1105 => 0.010337260661095
1106 => 0.010435665345628
1107 => 0.010752745742625
1108 => 0.010692803530294
1109 => 0.010691238196885
1110 => 0.010947696400689
1111 => 0.01076412767391
1112 => 0.010469006669447
1113 => 0.010394484723652
1114 => 0.010129982020079
1115 => 0.010312674979563
1116 => 0.010319249773933
1117 => 0.0102191907071
1118 => 0.010477125911263
1119 => 0.010474748992948
1120 => 0.010719620080712
1121 => 0.011187721631137
1122 => 0.011049280968798
1123 => 0.010888289540799
1124 => 0.010905793772831
1125 => 0.011097771994091
1126 => 0.010981697579081
1127 => 0.011023438748018
1128 => 0.011097708813833
1129 => 0.011142517788561
1130 => 0.010899346450938
1201 => 0.010842651579909
1202 => 0.010726673770979
1203 => 0.010696417325457
1204 => 0.010790878830874
1205 => 0.010765991561571
1206 => 0.010318697187925
1207 => 0.010271952437157
1208 => 0.010273386031927
1209 => 0.010155844133528
1210 => 0.0099765645251814
1211 => 0.010447700631686
1212 => 0.010409861808788
1213 => 0.010368090676801
1214 => 0.010373207402127
1215 => 0.010577711617677
1216 => 0.010459088844947
1217 => 0.010774466928138
1218 => 0.010709634675367
1219 => 0.010643139719947
1220 => 0.010633948091622
1221 => 0.010608353206868
1222 => 0.01052057882361
1223 => 0.010414585981404
1224 => 0.010344600326037
1225 => 0.0095423469872644
1226 => 0.0096912405404475
1227 => 0.0098625290013103
1228 => 0.0099216570916047
1229 => 0.0098205144016168
1230 => 0.010524572553483
1231 => 0.010653210762302
]
'min_raw' => 0.0044401569831642
'max_raw' => 0.011664321018108
'avg_raw' => 0.0080522390006363
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00444'
'max' => '$0.011664'
'avg' => '$0.008052'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00017215489125956
'max_diff' => -0.0021035422555308
'year' => 2027
]
2 => [
'items' => [
101 => 0.010263557236926
102 => 0.010190668971777
103 => 0.010529351096012
104 => 0.010325084372892
105 => 0.010417065665806
106 => 0.010218252421605
107 => 0.010622225584764
108 => 0.010619147986101
109 => 0.010461993301484
110 => 0.010594819364774
111 => 0.010571737567588
112 => 0.010394310315711
113 => 0.01062785034512
114 => 0.010627966178061
115 => 0.010476708210955
116 => 0.010300072020001
117 => 0.01026849364102
118 => 0.010244703574415
119 => 0.010411214767779
120 => 0.010560508183081
121 => 0.010838306215983
122 => 0.010908151241773
123 => 0.011180761027278
124 => 0.01101843517314
125 => 0.011090392121808
126 => 0.011168511568518
127 => 0.011205964904019
128 => 0.011144936703678
129 => 0.011568411911231
130 => 0.011604166193694
131 => 0.01161615429533
201 => 0.011473360837999
202 => 0.011600194849334
203 => 0.011540853415732
204 => 0.01169524334044
205 => 0.011719453651984
206 => 0.011698948379413
207 => 0.011706633114431
208 => 0.01134527173093
209 => 0.011326533236862
210 => 0.011071032540626
211 => 0.011175150962908
212 => 0.010980506562978
213 => 0.011042230307255
214 => 0.011069437545607
215 => 0.011055226028289
216 => 0.011181037662286
217 => 0.01107407207177
218 => 0.010791772291627
219 => 0.010509395599098
220 => 0.010505850589743
221 => 0.010431505790963
222 => 0.010377768118374
223 => 0.010388119900561
224 => 0.010424600931192
225 => 0.010375647774554
226 => 0.010386094412511
227 => 0.010559578208175
228 => 0.010594369146166
229 => 0.010476135945177
301 => 0.010001412582235
302 => 0.0098849142782162
303 => 0.0099686509488834
304 => 0.0099286302136368
305 => 0.0080131794802214
306 => 0.008463186217755
307 => 0.0081958074950974
308 => 0.0083190279120016
309 => 0.0080461034735527
310 => 0.0081763573207759
311 => 0.0081523041913027
312 => 0.0088759017085893
313 => 0.0088646037286327
314 => 0.0088700114737621
315 => 0.0086118857089297
316 => 0.009023087061186
317 => 0.0092256596336298
318 => 0.0091881688417649
319 => 0.0091976044663699
320 => 0.0090354691739361
321 => 0.0088715812978031
322 => 0.0086898044210082
323 => 0.009027523389792
324 => 0.0089899748055183
325 => 0.009076097748288
326 => 0.0092951326401948
327 => 0.0093273863600607
328 => 0.0093707356866455
329 => 0.00935519803888
330 => 0.0097253678453329
331 => 0.0096805378393125
401 => 0.0097885652553488
402 => 0.0095663446645022
403 => 0.0093148809725872
404 => 0.0093626759994528
405 => 0.0093580729540223
406 => 0.0092994709025626
407 => 0.0092465675907795
408 => 0.0091584984820764
409 => 0.0094371621737888
410 => 0.009425848936805
411 => 0.0096089970933744
412 => 0.0095766238776945
413 => 0.0093604276203143
414 => 0.0093681491119417
415 => 0.0094200798539584
416 => 0.009599812745013
417 => 0.0096531697042264
418 => 0.0096284526348115
419 => 0.0096869561047513
420 => 0.009733194862013
421 => 0.0096927629807589
422 => 0.010265193156025
423 => 0.010027480237562
424 => 0.010143339860025
425 => 0.010170971697298
426 => 0.010100193327159
427 => 0.010115542621258
428 => 0.010138792619387
429 => 0.01027996205521
430 => 0.010650431502516
501 => 0.010814509898856
502 => 0.011308147849732
503 => 0.010800885472122
504 => 0.010770786621895
505 => 0.010859705723285
506 => 0.011149523457333
507 => 0.011384393509584
508 => 0.011462313455894
509 => 0.011472611863117
510 => 0.011618794862414
511 => 0.01170258423146
512 => 0.011601044401305
513 => 0.011515000026912
514 => 0.011206799758057
515 => 0.011242474778378
516 => 0.011488240291178
517 => 0.011835398553523
518 => 0.012133296458276
519 => 0.012028982994822
520 => 0.01282482108715
521 => 0.012903725183297
522 => 0.012892823188485
523 => 0.013072578462012
524 => 0.012715800850585
525 => 0.012563271509459
526 => 0.011533603797301
527 => 0.011822898424817
528 => 0.01224340515559
529 => 0.012187749512953
530 => 0.011882366284888
531 => 0.012133064797713
601 => 0.012050176029306
602 => 0.011984798218605
603 => 0.012284306643538
604 => 0.011954984827196
605 => 0.012240119918554
606 => 0.011874431214543
607 => 0.012029459489936
608 => 0.011941457942949
609 => 0.011998405728913
610 => 0.011665490135799
611 => 0.011845123308774
612 => 0.011658016805224
613 => 0.01165792809238
614 => 0.011653797705943
615 => 0.011873927677613
616 => 0.011881106108086
617 => 0.011718429726424
618 => 0.011694985518344
619 => 0.011781671043223
620 => 0.011680184996565
621 => 0.011727669679051
622 => 0.011681623259224
623 => 0.011671257240235
624 => 0.011588659037298
625 => 0.011553073460387
626 => 0.011567027482021
627 => 0.011519395212394
628 => 0.011490695047009
629 => 0.011648088520676
630 => 0.01156399953693
701 => 0.011635200677911
702 => 0.011554057991463
703 => 0.011272782088048
704 => 0.011111017341556
705 => 0.010579713234296
706 => 0.010730390420034
707 => 0.010830289550066
708 => 0.010797272888186
709 => 0.010868205453655
710 => 0.010872560137085
711 => 0.010849499236979
712 => 0.01082279766894
713 => 0.010809800822309
714 => 0.010906668668985
715 => 0.010962903714402
716 => 0.010840315764242
717 => 0.010811595122707
718 => 0.010935538308585
719 => 0.011011143580371
720 => 0.011569370428306
721 => 0.011528015180362
722 => 0.011631808737144
723 => 0.011620123175492
724 => 0.01172891535861
725 => 0.011906744599
726 => 0.011545168031449
727 => 0.011607925221199
728 => 0.011592538607547
729 => 0.011760525620808
730 => 0.011761050057927
731 => 0.011660333451903
801 => 0.011714933557969
802 => 0.011684457276639
803 => 0.011739532036119
804 => 0.011527462855813
805 => 0.011785740225972
806 => 0.011932166851827
807 => 0.011934199985669
808 => 0.01200360504421
809 => 0.012074124603358
810 => 0.012209480756184
811 => 0.012070349593721
812 => 0.011820066176595
813 => 0.011838135830901
814 => 0.011691394755016
815 => 0.011693861499012
816 => 0.011680693826236
817 => 0.011720211003453
818 => 0.011536134653968
819 => 0.011579337005266
820 => 0.011518853460456
821 => 0.011607793741785
822 => 0.011512108701431
823 => 0.011592531187656
824 => 0.011627238866664
825 => 0.011755310949404
826 => 0.011493192350678
827 => 0.010958714784006
828 => 0.011071068448434
829 => 0.010904888553554
830 => 0.010920269135517
831 => 0.010951340358883
901 => 0.010850628358082
902 => 0.010869841034035
903 => 0.010869154622053
904 => 0.010863239494417
905 => 0.010837040413326
906 => 0.010799046562415
907 => 0.010950402370555
908 => 0.010976120671719
909 => 0.011033289269384
910 => 0.011203384238204
911 => 0.011186387739703
912 => 0.011214109733936
913 => 0.011153592776179
914 => 0.010923076343621
915 => 0.010935594494957
916 => 0.010779492947208
917 => 0.011029297401844
918 => 0.010970140409728
919 => 0.010932001512072
920 => 0.010921594960493
921 => 0.011092111561841
922 => 0.011143132801484
923 => 0.011111339788846
924 => 0.011046131392376
925 => 0.011171350790731
926 => 0.011204854219149
927 => 0.011212354401213
928 => 0.01143421916666
929 => 0.011224754176991
930 => 0.011275174481907
1001 => 0.011668539307754
1002 => 0.011311811691346
1003 => 0.011500778265732
1004 => 0.011491529335251
1005 => 0.011588198240426
1006 => 0.011483599663472
1007 => 0.011484896288194
1008 => 0.011570731727071
1009 => 0.011450191333671
1010 => 0.011420343837102
1011 => 0.011379109734364
1012 => 0.011469142889174
1013 => 0.011523113693633
1014 => 0.011958078740387
1015 => 0.012239085997406
1016 => 0.012226886731275
1017 => 0.012338365187644
1018 => 0.012288143122024
1019 => 0.012125962824226
1020 => 0.012402784816787
1021 => 0.012315186755617
1022 => 0.012322408233348
1023 => 0.012322139449586
1024 => 0.012380384502309
1025 => 0.012339112544374
1026 => 0.012257761278805
1027 => 0.012311766045394
1028 => 0.012472140895108
1029 => 0.012969949349519
1030 => 0.013248529555693
1031 => 0.012953178471312
1101 => 0.013156907694409
1102 => 0.013034742756696
1103 => 0.013012541753421
1104 => 0.013140498760997
1105 => 0.013268679740377
1106 => 0.013260515166132
1107 => 0.013167462357269
1108 => 0.013114899186669
1109 => 0.013512925124401
1110 => 0.013806183855127
1111 => 0.013786185575723
1112 => 0.013874451477224
1113 => 0.014133602893991
1114 => 0.014157296451749
1115 => 0.014154311608061
1116 => 0.014095584652991
1117 => 0.014350752877862
1118 => 0.014563618700308
1119 => 0.014081991059677
1120 => 0.014265388560261
1121 => 0.014347721606971
1122 => 0.014468610946656
1123 => 0.01467257152611
1124 => 0.014894126813269
1125 => 0.014925457160104
1126 => 0.014903226779729
1127 => 0.014757105112122
1128 => 0.014999533551036
1129 => 0.015141542444905
1130 => 0.015226105491389
1201 => 0.015440543307321
1202 => 0.014348230067838
1203 => 0.013575036465441
1204 => 0.013454291119376
1205 => 0.013699831528676
1206 => 0.01376457857646
1207 => 0.013738479122684
1208 => 0.0128681794275
1209 => 0.013449709171593
1210 => 0.014075386279829
1211 => 0.014099421085706
1212 => 0.01441264812838
1213 => 0.014514647693085
1214 => 0.014766836518045
1215 => 0.01475106203838
1216 => 0.014812466004057
1217 => 0.014798350295716
1218 => 0.015265476989331
1219 => 0.015780787101374
1220 => 0.01576294355078
1221 => 0.015688861625301
1222 => 0.015798885917482
1223 => 0.016330741177098
1224 => 0.0162817764676
1225 => 0.016329341512073
1226 => 0.016956428837209
1227 => 0.017771731562018
1228 => 0.017392941591289
1229 => 0.018214806833893
1230 => 0.018732127438907
1231 => 0.019626779933331
]
'min_raw' => 0.0080131794802214
'max_raw' => 0.019626779933331
'avg_raw' => 0.013819979706776
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.008013'
'max' => '$0.019626'
'avg' => '$0.013819'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0035730224970573
'max_diff' => 0.0079624589152225
'year' => 2028
]
3 => [
'items' => [
101 => 0.019514765034773
102 => 0.019863046685589
103 => 0.019314234988139
104 => 0.01805405239765
105 => 0.01785462367892
106 => 0.018253885024157
107 => 0.01923543008207
108 => 0.018222972677261
109 => 0.018427791491626
110 => 0.01836880365931
111 => 0.018365660448408
112 => 0.018485624024174
113 => 0.018311610600646
114 => 0.017602648608776
115 => 0.017927561711711
116 => 0.017802097159059
117 => 0.017941309434228
118 => 0.018692580667807
119 => 0.018360425747373
120 => 0.01801052752077
121 => 0.018449377545562
122 => 0.019008184432352
123 => 0.01897321530165
124 => 0.018905360572123
125 => 0.019287854129704
126 => 0.019919621426731
127 => 0.020090385588471
128 => 0.020216440201547
129 => 0.020233821002981
130 => 0.02041285405985
131 => 0.019450148190925
201 => 0.020977987128949
202 => 0.021241802707847
203 => 0.021192216313049
204 => 0.021485436225938
205 => 0.021399163489295
206 => 0.021274167829677
207 => 0.021738983761269
208 => 0.02120610980441
209 => 0.020449762309614
210 => 0.020034815115113
211 => 0.020581251053668
212 => 0.020914940413358
213 => 0.021135487853483
214 => 0.021202225375607
215 => 0.019524880307057
216 => 0.018620884344931
217 => 0.019200335392319
218 => 0.019907305661708
219 => 0.019446220935382
220 => 0.019464294583706
221 => 0.0188069089349
222 => 0.019965469704761
223 => 0.019796677145622
224 => 0.020672373241024
225 => 0.020463381339956
226 => 0.021177477511429
227 => 0.020989432057511
228 => 0.021769998223244
301 => 0.02208138719974
302 => 0.022604257755101
303 => 0.022988883464091
304 => 0.023214743037127
305 => 0.02320118327554
306 => 0.024096151426701
307 => 0.023568419975767
308 => 0.02290546489664
309 => 0.022893474130855
310 => 0.023236827960481
311 => 0.023956403392854
312 => 0.024142978833072
313 => 0.024247249051064
314 => 0.024087555582536
315 => 0.023514740915401
316 => 0.023267402446368
317 => 0.023478141988069
318 => 0.023220425637624
319 => 0.023665316360929
320 => 0.024276246347558
321 => 0.024150091721198
322 => 0.024571807722961
323 => 0.025008239418968
324 => 0.025632356345632
325 => 0.025795523621245
326 => 0.026065232923137
327 => 0.026342852389675
328 => 0.026432016280272
329 => 0.026602257813353
330 => 0.02660136055644
331 => 0.027114394874956
401 => 0.027680287615629
402 => 0.027893899024786
403 => 0.028385086681541
404 => 0.027543945032617
405 => 0.028181960635665
406 => 0.028757466680181
407 => 0.02807132464858
408 => 0.029017011588552
409 => 0.029053730469459
410 => 0.029608141976483
411 => 0.029046139701721
412 => 0.028712424544942
413 => 0.029675847698419
414 => 0.030142017814841
415 => 0.030001603581956
416 => 0.028933044336598
417 => 0.028311097023138
418 => 0.026683340939135
419 => 0.028611488334467
420 => 0.029550632685902
421 => 0.028930612179609
422 => 0.029243314458544
423 => 0.030949316698359
424 => 0.031598851895816
425 => 0.031463753115339
426 => 0.031486582585324
427 => 0.031837059987974
428 => 0.033391269802755
429 => 0.032459951255437
430 => 0.033171909389021
501 => 0.033549529415919
502 => 0.033900283941893
503 => 0.033038941683206
504 => 0.031918348060283
505 => 0.031563409020584
506 => 0.028868963359527
507 => 0.028728705761484
508 => 0.028649974921463
509 => 0.028153588111826
510 => 0.027763564051242
511 => 0.027453402437601
512 => 0.026639445741308
513 => 0.026914132232357
514 => 0.025616855144431
515 => 0.026446807052609
516 => 0.024376321496429
517 => 0.026100683392426
518 => 0.025162191609549
519 => 0.025792363601096
520 => 0.025790164990383
521 => 0.024629818557734
522 => 0.023960554951195
523 => 0.024387035769411
524 => 0.024844257060628
525 => 0.024918439676851
526 => 0.025511239015611
527 => 0.02567667656888
528 => 0.025175393058935
529 => 0.02433341528537
530 => 0.024528987518701
531 => 0.023956591686129
601 => 0.022953490006434
602 => 0.023673935145266
603 => 0.0239199267914
604 => 0.024028570716167
605 => 0.023042135421193
606 => 0.02273217603496
607 => 0.022567156258541
608 => 0.024206078875913
609 => 0.024295862756552
610 => 0.023836515729045
611 => 0.025912807850448
612 => 0.025442878997159
613 => 0.025967904661647
614 => 0.024511241388417
615 => 0.024566887887112
616 => 0.023877280149501
617 => 0.024263414402957
618 => 0.023990507158302
619 => 0.024232218571131
620 => 0.024377099395367
621 => 0.025066593975135
622 => 0.026108556312977
623 => 0.024963606477535
624 => 0.02446473543825
625 => 0.024774232225265
626 => 0.025598462954097
627 => 0.026847214699872
628 => 0.026107928532902
629 => 0.02643601117991
630 => 0.026507682642901
701 => 0.025962560393239
702 => 0.026867314134771
703 => 0.027352179015065
704 => 0.027849550053597
705 => 0.028281403390333
706 => 0.027650889123384
707 => 0.02832562976969
708 => 0.027781907916525
709 => 0.027294133205304
710 => 0.027294872958196
711 => 0.026988884756596
712 => 0.026395994059001
713 => 0.026286655917789
714 => 0.026855446736258
715 => 0.027311563107979
716 => 0.027349131037004
717 => 0.027601660496494
718 => 0.02775110482936
719 => 0.029215862451166
720 => 0.029805000083767
721 => 0.030525386429107
722 => 0.030806017509366
723 => 0.031650616449137
724 => 0.0309685342103
725 => 0.030820961427429
726 => 0.028772240665753
727 => 0.029107718575706
728 => 0.029644851078344
729 => 0.028781097782883
730 => 0.02932895044025
731 => 0.029437108159921
801 => 0.028751747776423
802 => 0.029117828369923
803 => 0.028145626848918
804 => 0.026129747649414
805 => 0.02686955838459
806 => 0.02741430810328
807 => 0.026636883087554
808 => 0.028030387337741
809 => 0.027216330922548
810 => 0.026958314120531
811 => 0.025951698586231
812 => 0.026426782370236
813 => 0.027069339990646
814 => 0.026672314086574
815 => 0.027496202451263
816 => 0.028663048098665
817 => 0.029494611793863
818 => 0.029558448928813
819 => 0.029023809183241
820 => 0.029880572787545
821 => 0.029886813375052
822 => 0.028920380529415
823 => 0.028328445792583
824 => 0.028193956974934
825 => 0.028529936409508
826 => 0.028937877468307
827 => 0.02958108681845
828 => 0.02996976475766
829 => 0.03098323068427
830 => 0.031257445505665
831 => 0.031558724457639
901 => 0.031961326048465
902 => 0.03244475248318
903 => 0.031387042965505
904 => 0.03142906773646
905 => 0.030444143278587
906 => 0.029391610242894
907 => 0.03019035161689
908 => 0.031234599711277
909 => 0.030995048044633
910 => 0.030968093588539
911 => 0.031013423507146
912 => 0.030832809373522
913 => 0.030015898341015
914 => 0.029605650734624
915 => 0.030134974812195
916 => 0.03041628700192
917 => 0.030852577675183
918 => 0.030798795640724
919 => 0.031922633560851
920 => 0.032359322993517
921 => 0.032247599149647
922 => 0.032268159025703
923 => 0.03305876438454
924 => 0.033938080143959
925 => 0.03476167538859
926 => 0.035599471845666
927 => 0.034589475516908
928 => 0.034076661669078
929 => 0.034605754660316
930 => 0.034325010471642
1001 => 0.035938249853898
1002 => 0.03604994704853
1003 => 0.037663069775217
1004 => 0.039194115329924
1005 => 0.038232493048542
1006 => 0.039139259547466
1007 => 0.040120001445809
1008 => 0.042012011687352
1009 => 0.041374849199723
1010 => 0.040886792719809
1011 => 0.040425581704561
1012 => 0.041385288612104
1013 => 0.042619936216966
1014 => 0.042885867485746
1015 => 0.043316777734732
1016 => 0.042863728297121
1017 => 0.043409376442965
1018 => 0.045335754167737
1019 => 0.044815229901897
1020 => 0.044076001765953
1021 => 0.045596691968377
1022 => 0.046147023841101
1023 => 0.050009541134916
1024 => 0.054886128770988
1025 => 0.052867189468254
1026 => 0.051613968692282
1027 => 0.051908505301429
1028 => 0.053689270023214
1029 => 0.054261195133204
1030 => 0.052706505529843
1031 => 0.053255648180765
1101 => 0.056281478177858
1102 => 0.05790473889105
1103 => 0.055700132809536
1104 => 0.049617712066585
1105 => 0.044009442360381
1106 => 0.045497008030143
1107 => 0.045328364247729
1108 => 0.048579241099626
1109 => 0.044802815570306
1110 => 0.044866400891036
1111 => 0.048184502433492
1112 => 0.047299289828626
1113 => 0.045865358778209
1114 => 0.044019911643933
1115 => 0.040608431933024
1116 => 0.037586789216923
1117 => 0.043512926425956
1118 => 0.043257380613521
1119 => 0.042887312407348
1120 => 0.043710859154624
1121 => 0.047709768391573
1122 => 0.047617580590455
1123 => 0.047031128834374
1124 => 0.047475947322613
1125 => 0.045787379946554
1126 => 0.046222562207329
1127 => 0.044008553981806
1128 => 0.045009378164894
1129 => 0.045862282206185
1130 => 0.046033515319935
1201 => 0.046419312268592
1202 => 0.043122719582459
1203 => 0.044602792915657
1204 => 0.045472197334793
1205 => 0.041544196539931
1206 => 0.045394553388564
1207 => 0.04306533323805
1208 => 0.042274760935253
1209 => 0.043339162390989
1210 => 0.042924364108524
1211 => 0.042567744903034
1212 => 0.042368745258874
1213 => 0.043150324214265
1214 => 0.043113862621807
1215 => 0.04183504775285
1216 => 0.040166885887459
1217 => 0.040726775765031
1218 => 0.040523362523513
1219 => 0.039786166695424
1220 => 0.040282947674192
1221 => 0.038095375658795
1222 => 0.034331771706402
1223 => 0.036818123759659
1224 => 0.03672240191024
1225 => 0.036674134613122
1226 => 0.038542559463422
1227 => 0.038362953525961
1228 => 0.038036966990763
1229 => 0.039780179697063
1230 => 0.039143883609744
1231 => 0.041104798220649
]
'min_raw' => 0.017602648608776
'max_raw' => 0.05790473889105
'avg_raw' => 0.037753693749913
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0176026'
'max' => '$0.0579047'
'avg' => '$0.037753'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0095894691285551
'max_diff' => 0.038277958957719
'year' => 2029
]
4 => [
'items' => [
101 => 0.042396383407396
102 => 0.042068795625633
103 => 0.043283537736542
104 => 0.040739674496992
105 => 0.041584643823092
106 => 0.041758790830124
107 => 0.039758668722859
108 => 0.038392339278553
109 => 0.038301220681914
110 => 0.035932193717283
111 => 0.037197708799672
112 => 0.038311309701601
113 => 0.037777981288498
114 => 0.037609145445642
115 => 0.038471691150764
116 => 0.038538718339256
117 => 0.037010491338408
118 => 0.03732825812454
119 => 0.03865339844704
120 => 0.037294867988373
121 => 0.034655465221872
122 => 0.034000856843182
123 => 0.033913520018638
124 => 0.032138170177985
125 => 0.034044600905178
126 => 0.033212392803591
127 => 0.035841328225119
128 => 0.034339694411606
129 => 0.034274961979183
130 => 0.034177109413392
131 => 0.032648992466763
201 => 0.032983552961177
202 => 0.034095682999609
203 => 0.034492503526363
204 => 0.034451111894368
205 => 0.0340902329557
206 => 0.034255441485823
207 => 0.033723247247829
208 => 0.033535318385729
209 => 0.032942163203033
210 => 0.032070388947771
211 => 0.032191614504868
212 => 0.030464401593053
213 => 0.029523324328568
214 => 0.029262846544958
215 => 0.028914524766599
216 => 0.029302190416673
217 => 0.030459508615886
218 => 0.029063537328882
219 => 0.026670242473313
220 => 0.026814083572109
221 => 0.027137251814297
222 => 0.026535029932951
223 => 0.025965077462908
224 => 0.026460604893905
225 => 0.025446534313352
226 => 0.027259797399178
227 => 0.027210753714317
228 => 0.027886626061276
301 => 0.028309262910126
302 => 0.027335221803831
303 => 0.027090253099685
304 => 0.027229798406774
305 => 0.024923425321616
306 => 0.02769814617523
307 => 0.027722142076394
308 => 0.027516674602287
309 => 0.028994127796941
310 => 0.032112014866869
311 => 0.030938940334445
312 => 0.030484690419125
313 => 0.029621160998047
314 => 0.03077176268033
315 => 0.030683414423313
316 => 0.030283870100001
317 => 0.030042224446607
318 => 0.030487463972245
319 => 0.029987054342133
320 => 0.029897167022228
321 => 0.029352547661972
322 => 0.029158143328963
323 => 0.029014214100262
324 => 0.028855762161656
325 => 0.029205267654457
326 => 0.028413242226494
327 => 0.02745813720358
328 => 0.027378730555304
329 => 0.027597979292697
330 => 0.02750097804755
331 => 0.027378266150661
401 => 0.027143975720905
402 => 0.02707446675522
403 => 0.027300337172742
404 => 0.027045342640423
405 => 0.027421600963131
406 => 0.027319279518677
407 => 0.026747720247627
408 => 0.026035345777555
409 => 0.026029004150515
410 => 0.025875524239467
411 => 0.025680044496887
412 => 0.025625666504472
413 => 0.026418872955805
414 => 0.028060786571393
415 => 0.02773843964099
416 => 0.027971368333649
417 => 0.029117146963527
418 => 0.0294813555352
419 => 0.029222848917779
420 => 0.02886898911586
421 => 0.028884557151276
422 => 0.03009380321508
423 => 0.030169222408788
424 => 0.030359782380134
425 => 0.030604705795555
426 => 0.029264560434504
427 => 0.028821436425287
428 => 0.028611459686137
429 => 0.027964812600776
430 => 0.028662166043006
501 => 0.028255848055871
502 => 0.028310674234134
503 => 0.028274968613615
504 => 0.028294466296822
505 => 0.027259290555191
506 => 0.027636454188206
507 => 0.027009346496229
508 => 0.026169719692813
509 => 0.026166904969357
510 => 0.026372402439994
511 => 0.026250164503342
512 => 0.025921225358836
513 => 0.025967949611764
514 => 0.025558595990545
515 => 0.026017652552967
516 => 0.026030816652594
517 => 0.025854054871081
518 => 0.026561294843091
519 => 0.026851051636676
520 => 0.02673470324548
521 => 0.026842888323389
522 => 0.027751834611258
523 => 0.027900032516287
524 => 0.027965852236297
525 => 0.027877662530926
526 => 0.026859502192955
527 => 0.026904661933496
528 => 0.026573309721364
529 => 0.026293352019148
530 => 0.026304548859052
531 => 0.026448483509945
601 => 0.027077054572048
602 => 0.028399845315957
603 => 0.028450044257741
604 => 0.02851088683959
605 => 0.02826340948218
606 => 0.028188767943146
607 => 0.028287239399748
608 => 0.028784010054127
609 => 0.030061839049107
610 => 0.029610168938952
611 => 0.029242954108732
612 => 0.029565100515242
613 => 0.029515508601027
614 => 0.029096902937512
615 => 0.029085154070746
616 => 0.028281715966134
617 => 0.027984703192259
618 => 0.027736497087389
619 => 0.027465462500455
620 => 0.027304784112158
621 => 0.027551659143603
622 => 0.027608122384234
623 => 0.027068325813343
624 => 0.026994753535348
625 => 0.027435563067455
626 => 0.027241579227411
627 => 0.027441096417464
628 => 0.027487386116983
629 => 0.027479932409219
630 => 0.02727739100131
701 => 0.027406484854839
702 => 0.027101139406512
703 => 0.026769122092861
704 => 0.02655731573216
705 => 0.026372486590412
706 => 0.026475040540587
707 => 0.026109454433826
708 => 0.025992496080479
709 => 0.027362750761967
710 => 0.028374972627903
711 => 0.028360254521088
712 => 0.028270661831044
713 => 0.028137545266853
714 => 0.028774271748325
715 => 0.028552448973928
716 => 0.028713843576214
717 => 0.028754925276206
718 => 0.028879267209066
719 => 0.028923708762513
720 => 0.028789375521353
721 => 0.028338536756594
722 => 0.02721508941928
723 => 0.026692121651072
724 => 0.026519533576846
725 => 0.026525806825553
726 => 0.026352762621207
727 => 0.026403731894684
728 => 0.026335037587934
729 => 0.026204947189886
730 => 0.026467007825092
731 => 0.026497207872036
801 => 0.026436039788388
802 => 0.026450447086404
803 => 0.025944001479024
804 => 0.025982505438611
805 => 0.025768110498784
806 => 0.025727914032136
807 => 0.025185942293756
808 => 0.024225760799155
809 => 0.024757794554237
810 => 0.024115172593365
811 => 0.023871801919471
812 => 0.025023880837779
813 => 0.024908244068076
814 => 0.02471032418444
815 => 0.024417559426424
816 => 0.024308970129844
817 => 0.023649215939014
818 => 0.023610234141768
819 => 0.023937226133605
820 => 0.02378633058048
821 => 0.023574416075277
822 => 0.022806883218862
823 => 0.021943922166856
824 => 0.021969969536636
825 => 0.022244461391318
826 => 0.023042583479076
827 => 0.022730743371737
828 => 0.022504499795909
829 => 0.022462131175013
830 => 0.022992463170238
831 => 0.023742994051468
901 => 0.024095126348759
902 => 0.023746173936561
903 => 0.023345316194359
904 => 0.023369714547731
905 => 0.023532025862059
906 => 0.023549082486236
907 => 0.023288165304905
908 => 0.023361611963119
909 => 0.023250039773189
910 => 0.022565321449535
911 => 0.022552937066326
912 => 0.022384896147127
913 => 0.022379807934877
914 => 0.022093928411548
915 => 0.022053931890042
916 => 0.021486300744825
917 => 0.021859917283552
918 => 0.021609314925123
919 => 0.021231598059849
920 => 0.021166479529906
921 => 0.021164521988263
922 => 0.021552352752953
923 => 0.021855385255261
924 => 0.02161367426044
925 => 0.02155864135229
926 => 0.022146248833503
927 => 0.022071470425357
928 => 0.022006712806172
929 => 0.023675792242949
930 => 0.022354585628848
1001 => 0.021778464133263
1002 => 0.021065404379971
1003 => 0.021297580231202
1004 => 0.02134650309443
1005 => 0.019631722926445
1006 => 0.018936036825857
1007 => 0.018697303572512
1008 => 0.01855990921002
1009 => 0.018622521546297
1010 => 0.017996322459926
1011 => 0.018417138602344
1012 => 0.017874903124838
1013 => 0.017783995582448
1014 => 0.018753579786314
1015 => 0.018888491764054
1016 => 0.018312915353152
1017 => 0.018682528586308
1018 => 0.018548501689957
1019 => 0.01788419819579
1020 => 0.017858826688599
1021 => 0.017525502546623
1022 => 0.017003914808702
1023 => 0.016765535216405
1024 => 0.01664138505503
1025 => 0.016692611831252
1026 => 0.016666710005629
1027 => 0.01649768307277
1028 => 0.016676398431565
1029 => 0.016219854540128
1030 => 0.016038055083934
1031 => 0.015955940487287
1101 => 0.015550731505951
1102 => 0.016195599192508
1103 => 0.016322646250589
1104 => 0.016449943630621
1105 => 0.017557980414187
1106 => 0.01750262602776
1107 => 0.018003002722385
1108 => 0.017983559004166
1109 => 0.017840843465293
1110 => 0.017238750082358
1111 => 0.017478733773514
1112 => 0.016740101273884
1113 => 0.017293534964734
1114 => 0.017040970940174
1115 => 0.017208142813974
1116 => 0.016907552711601
1117 => 0.017073911685315
1118 => 0.016352773821195
1119 => 0.015679385430363
1120 => 0.015950376576266
1121 => 0.01624497494346
1122 => 0.016883739265803
1123 => 0.016503296505107
1124 => 0.016640118107987
1125 => 0.016181788641999
1126 => 0.015236124038326
1127 => 0.015241476397283
1128 => 0.015096006500432
1129 => 0.014970299270599
1130 => 0.016546994932673
1201 => 0.016350907903224
1202 => 0.016038468885034
1203 => 0.016456680926715
1204 => 0.016567262828453
1205 => 0.016570410939736
1206 => 0.016875527649731
1207 => 0.017038368492551
1208 => 0.017067069896891
1209 => 0.017547177632551
1210 => 0.017708103412771
1211 => 0.018370933926425
1212 => 0.017024552584743
1213 => 0.016996824747022
1214 => 0.016462566027787
1215 => 0.016123730701752
1216 => 0.016485766372447
1217 => 0.016806480553885
1218 => 0.016472531511392
1219 => 0.016516138206292
1220 => 0.016067838901384
1221 => 0.016228084808446
1222 => 0.016366110171062
1223 => 0.016289900678581
1224 => 0.016175811379756
1225 => 0.016780185648384
1226 => 0.016746084483586
1227 => 0.017308891697037
1228 => 0.017747640166651
1229 => 0.018533955859871
1230 => 0.017713394442432
1231 => 0.017683489922944
]
'min_raw' => 0.014970299270599
'max_raw' => 0.043283537736542
'avg_raw' => 0.02912691850357
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.01497'
'max' => '$0.043283'
'avg' => '$0.029126'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0026323493381776
'max_diff' => -0.014621201154508
'year' => 2030
]
5 => [
'items' => [
101 => 0.017975811397772
102 => 0.017708058659876
103 => 0.017877269147716
104 => 0.018506693434296
105 => 0.018519992177638
106 => 0.018297221092202
107 => 0.018283665451408
108 => 0.018326451075215
109 => 0.018577047810234
110 => 0.018489481610958
111 => 0.018590815433665
112 => 0.018717534930638
113 => 0.019241700498073
114 => 0.019368075041827
115 => 0.019061050418193
116 => 0.019088771304098
117 => 0.018973935666844
118 => 0.018863005880144
119 => 0.019112359840652
120 => 0.019568059104547
121 => 0.019565224223077
122 => 0.019670937594772
123 => 0.019736796149562
124 => 0.019454083020997
125 => 0.019270047169951
126 => 0.019340618225747
127 => 0.019453462880803
128 => 0.019304024224995
129 => 0.018381619614624
130 => 0.018661418249976
131 => 0.018614846075599
201 => 0.018548521635917
202 => 0.018829861327382
203 => 0.018802725427807
204 => 0.017989899883202
205 => 0.018041934337362
206 => 0.017993064270703
207 => 0.018150973453952
208 => 0.017699531045767
209 => 0.017838391690014
210 => 0.017925483784347
211 => 0.017976781696983
212 => 0.018162104932731
213 => 0.018140359390009
214 => 0.018160753199263
215 => 0.018435538634357
216 => 0.019825309070088
217 => 0.019900951208549
218 => 0.019528461653954
219 => 0.019677263883983
220 => 0.019391596141798
221 => 0.019583366810934
222 => 0.019714571432311
223 => 0.019121682977508
224 => 0.019086575971029
225 => 0.018799729176454
226 => 0.018953864396026
227 => 0.018708624178972
228 => 0.018768797550098
301 => 0.018600547558609
302 => 0.018903364045051
303 => 0.019241959929817
304 => 0.019327502621866
305 => 0.01910247662753
306 => 0.018939542977696
307 => 0.018653485162267
308 => 0.019129205684539
309 => 0.019268320862572
310 => 0.019128474971732
311 => 0.019096069623131
312 => 0.019034661546088
313 => 0.019109097636971
314 => 0.019267563211436
315 => 0.019192833772918
316 => 0.019242193883622
317 => 0.019054084041542
318 => 0.019454176610806
319 => 0.020089619898317
320 => 0.020091662952392
321 => 0.020016933111055
322 => 0.019986355270056
323 => 0.020063032622254
324 => 0.020104626940352
325 => 0.02035258743714
326 => 0.020618658929374
327 => 0.021860298487547
328 => 0.021511651068113
329 => 0.022613307549592
330 => 0.023484574794252
331 => 0.023745829745026
401 => 0.023505487483309
402 => 0.022683289589009
403 => 0.022642948637813
404 => 0.023871659414893
405 => 0.023524492341849
406 => 0.023483197923187
407 => 0.023043895076643
408 => 0.023303577467667
409 => 0.023246781119439
410 => 0.023157125305189
411 => 0.02365258121763
412 => 0.024580030456064
413 => 0.02443547879469
414 => 0.024327577685033
415 => 0.023854786432057
416 => 0.024139512368098
417 => 0.02403812691584
418 => 0.024473743159539
419 => 0.024215693746853
420 => 0.023521862209823
421 => 0.023632357168993
422 => 0.0236156560782
423 => 0.023959363343281
424 => 0.023856190953642
425 => 0.023595510013265
426 => 0.024576860535393
427 => 0.024513137091045
428 => 0.024603482365924
429 => 0.024643255149946
430 => 0.025240585919429
501 => 0.025485293223234
502 => 0.025540846065402
503 => 0.025773299077675
504 => 0.025535062422697
505 => 0.026488178902464
506 => 0.02712194574562
507 => 0.02785809854729
508 => 0.028933815649749
509 => 0.029338295231213
510 => 0.029265229615178
511 => 0.030080826045273
512 => 0.031546434700463
513 => 0.029561471027747
514 => 0.031651642594985
515 => 0.030989918408989
516 => 0.029420982267901
517 => 0.029319961276957
518 => 0.030382463047425
519 => 0.032738989712317
520 => 0.032148706510265
521 => 0.032739955204172
522 => 0.032050232196706
523 => 0.032015981635944
524 => 0.03270645689719
525 => 0.034319789980939
526 => 0.033553355907736
527 => 0.032454484726455
528 => 0.033265874106384
529 => 0.032562973534947
530 => 0.030979141818019
531 => 0.032148255131825
601 => 0.031366502353313
602 => 0.031594659374347
603 => 0.033237787437829
604 => 0.033040081922053
605 => 0.033295931166505
606 => 0.032844363946788
607 => 0.032422528957958
608 => 0.031635142625429
609 => 0.031402036350044
610 => 0.031466458538276
611 => 0.031402004425607
612 => 0.030961469009011
613 => 0.030866335427741
614 => 0.03070777529106
615 => 0.030756919707558
616 => 0.030458780262193
617 => 0.031021430994349
618 => 0.031125863928299
619 => 0.031535314209985
620 => 0.031577824696529
621 => 0.032718137902866
622 => 0.032090072551001
623 => 0.032511433013586
624 => 0.032473742567814
625 => 0.029454985871509
626 => 0.029870943909544
627 => 0.030518044081903
628 => 0.030226526331379
629 => 0.029814388436785
630 => 0.029481564989465
701 => 0.028977303433831
702 => 0.029687041889901
703 => 0.030620272487363
704 => 0.031601492964546
705 => 0.032780365075769
706 => 0.032517254544128
707 => 0.031579454770433
708 => 0.031621523783218
709 => 0.031881577866707
710 => 0.031544784200184
711 => 0.031445457172932
712 => 0.031867931858433
713 => 0.031870841209404
714 => 0.031483319393194
715 => 0.031052659810221
716 => 0.031050855330844
717 => 0.030974223617732
718 => 0.032063864808231
719 => 0.032663057287855
720 => 0.032731753739997
721 => 0.032658433469281
722 => 0.032686651531502
723 => 0.032337994629914
724 => 0.033134920915952
725 => 0.033866259283861
726 => 0.033670244978496
727 => 0.033376391669678
728 => 0.033142323355312
729 => 0.033615105922429
730 => 0.033594053658944
731 => 0.033859871681223
801 => 0.033847812640293
802 => 0.033758428037322
803 => 0.033670248170701
804 => 0.034019871374452
805 => 0.033919185506549
806 => 0.033818343245682
807 => 0.033616088653337
808 => 0.03364357841153
809 => 0.033349775840629
810 => 0.03321384932784
811 => 0.031169840708791
812 => 0.030623614815873
813 => 0.030795468601238
814 => 0.030852047329562
815 => 0.030614329120956
816 => 0.030955155967299
817 => 0.030902038464322
818 => 0.031108687595708
819 => 0.03097958219008
820 => 0.030984880720961
821 => 0.031364552190737
822 => 0.031474772433651
823 => 0.031418713528518
824 => 0.031457975264086
825 => 0.032362745388907
826 => 0.032234116010077
827 => 0.032165784216253
828 => 0.03218471259013
829 => 0.032415900755512
830 => 0.032480620819413
831 => 0.032206397360866
901 => 0.032335722729183
902 => 0.032886373733647
903 => 0.033079070421062
904 => 0.033694065747633
905 => 0.033432804802235
906 => 0.033912360574621
907 => 0.035386351526325
908 => 0.036563877490961
909 => 0.035480975950563
910 => 0.037643352427591
911 => 0.03932707268944
912 => 0.039262448701407
913 => 0.038968853128602
914 => 0.037051982374507
915 => 0.035288049327655
916 => 0.0367636542219
917 => 0.036767415842236
918 => 0.036640660073171
919 => 0.035853390877831
920 => 0.036613264811678
921 => 0.03667358084509
922 => 0.036639819905707
923 => 0.036036222459491
924 => 0.035114640722572
925 => 0.035294715588011
926 => 0.035589681891028
927 => 0.035031249143001
928 => 0.034852796043372
929 => 0.035184574307672
930 => 0.036253633003994
1001 => 0.036051533650089
1002 => 0.036046256019211
1003 => 0.036910922758677
1004 => 0.036292007979981
1005 => 0.035296986908744
1006 => 0.035045730965541
1007 => 0.034153941633455
1008 => 0.034769903701571
1009 => 0.034792071079827
1010 => 0.034454714950099
1011 => 0.035324361499396
1012 => 0.035316347553346
1013 => 0.036141947522096
1014 => 0.037720184581158
1015 => 0.037253422222465
1016 => 0.036710628382904
1017 => 0.036769645123305
1018 => 0.037416913099775
1019 => 0.037025560105511
1020 => 0.037166293370858
1021 => 0.037416700083123
1022 => 0.037567776669881
1023 => 0.036747907527407
1024 => 0.036556756811422
1025 => 0.036165729531301
1026 => 0.036063717812787
1027 => 0.036382201373394
1028 => 0.036298292207364
1029 => 0.034790207997521
1030 => 0.034632604806691
1031 => 0.034637438271548
1101 => 0.034241137554583
1102 => 0.033636683838141
1103 => 0.035225152114895
1104 => 0.035097575881672
1105 => 0.03495674159381
1106 => 0.034973992990484
1107 => 0.035663493231238
1108 => 0.035263548271004
1109 => 0.036326867497476
1110 => 0.036108281030815
1111 => 0.035884088646087
1112 => 0.03585309842945
1113 => 0.035766803488525
1114 => 0.03547086602716
1115 => 0.035113503759477
1116 => 0.034877542236163
1117 => 0.032172689092953
1118 => 0.032674694102926
1119 => 0.033252205107703
1120 => 0.033451559592322
1121 => 0.033110549951471
1122 => 0.035484331166259
1123 => 0.035918043868525
1124 => 0.03460429980298
1125 => 0.034358551928133
1126 => 0.035500442356021
1127 => 0.034811742837577
1128 => 0.035121864188563
1129 => 0.034451551455042
1130 => 0.03581357517914
1201 => 0.035803198840376
1202 => 0.035273340849001
1203 => 0.035721173195
1204 => 0.03564335130427
1205 => 0.03504514293699
1206 => 0.035832539451388
1207 => 0.035832929990235
1208 => 0.035322953193643
1209 => 0.034727411943498
1210 => 0.034620943234029
1211 => 0.034540733363503
1212 => 0.035102137477368
1213 => 0.035605490650394
1214 => 0.036542106113563
1215 => 0.036777593494438
1216 => 0.037696716419275
1217 => 0.037149423468817
1218 => 0.037392031345125
1219 => 0.037655416513837
1220 => 0.037781693049386
1221 => 0.037575932211081
1222 => 0.039003708439443
1223 => 0.03912425649905
1224 => 0.0391646752207
1225 => 0.038683237109788
1226 => 0.039110866834271
1227 => 0.038910793047793
1228 => 0.039431329458108
1229 => 0.039512956213788
1230 => 0.039443821255683
1231 => 0.039469730876327
]
'min_raw' => 0.017699531045767
'max_raw' => 0.039512956213788
'avg_raw' => 0.028606243629778
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.017699'
'max' => '$0.039512'
'avg' => '$0.0286062'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0027292317751679
'max_diff' => -0.0037705815227535
'year' => 2031
]
6 => [
'items' => [
101 => 0.038251375742406
102 => 0.038188197601377
103 => 0.037326759165529
104 => 0.037677801695568
105 => 0.037021544511565
106 => 0.037229650424811
107 => 0.037321381528463
108 => 0.03727346640561
109 => 0.037697649113517
110 => 0.037337007156994
111 => 0.036385213738702
112 => 0.03543316100493
113 => 0.035421208758382
114 => 0.035170550078707
115 => 0.034989369763729
116 => 0.03502427152011
117 => 0.035147269861907
118 => 0.034982220876504
119 => 0.035017442445736
120 => 0.03560235517507
121 => 0.035719655251532
122 => 0.035321023759618
123 => 0.033720460797334
124 => 0.033327678631682
125 => 0.033610002663144
126 => 0.033475069960101
127 => 0.027016994079892
128 => 0.028534223213954
129 => 0.027632737182727
130 => 0.028048183421294
131 => 0.027127999622088
201 => 0.027567159562034
202 => 0.02748606275668
203 => 0.029925722306177
204 => 0.029887630377953
205 => 0.029905862968214
206 => 0.029035573930316
207 => 0.03042196799861
208 => 0.031104955569769
209 => 0.030978552747473
210 => 0.031010365614603
211 => 0.030463715156238
212 => 0.02991115573957
213 => 0.029298282308199
214 => 0.03043692539024
215 => 0.030310327716802
216 => 0.030600697231262
217 => 0.031339188661854
218 => 0.031447934330264
219 => 0.031594089611398
220 => 0.031541703347153
221 => 0.03278975669404
222 => 0.032638609198811
223 => 0.03300283117421
224 => 0.032253598937225
225 => 0.031405771543299
226 => 0.031566915813319
227 => 0.031551396324276
228 => 0.031353815416315
229 => 0.031175448207047
301 => 0.030878517058265
302 => 0.031818051150551
303 => 0.031779907782195
304 => 0.032397404579065
305 => 0.032288256022174
306 => 0.031559335246076
307 => 0.031585368794196
308 => 0.031760456916593
309 => 0.032366438907334
310 => 0.032546335620586
311 => 0.032463000295363
312 => 0.032660248828847
313 => 0.032816146027241
314 => 0.032679827116729
315 => 0.034609815418439
316 => 0.033808349717254
317 => 0.034198978523449
318 => 0.034292141192008
319 => 0.034053506975494
320 => 0.034105258192205
321 => 0.03418364718416
322 => 0.034659609793173
323 => 0.035908673400113
324 => 0.036461875168963
325 => 0.038126209985043
326 => 0.036415939463
327 => 0.036314459088025
328 => 0.036614256046498
329 => 0.037591396771269
330 => 0.038383277550535
331 => 0.038645990089715
401 => 0.038680711888679
402 => 0.039173578076982
403 => 0.039456079784706
404 => 0.039113731158054
405 => 0.038823626542362
406 => 0.037784507818062
407 => 0.037904788639826
408 => 0.038733404225028
409 => 0.039903872544341
410 => 0.040908256128784
411 => 0.040556556003814
412 => 0.043239779695741
413 => 0.04350581036481
414 => 0.043469053528146
415 => 0.044075110982956
416 => 0.042872210356612
417 => 0.042357947033748
418 => 0.038886350453102
419 => 0.039861727487679
420 => 0.041279495289322
421 => 0.041091848404418
422 => 0.040062227529823
423 => 0.040907475069023
424 => 0.040628009799229
425 => 0.040407583945918
426 => 0.04141739751159
427 => 0.040307066015279
428 => 0.041268418883287
429 => 0.040035473886144
430 => 0.04055816254036
501 => 0.040261459180622
502 => 0.040453462616969
503 => 0.039331014451359
504 => 0.039936660235633
505 => 0.039305817595555
506 => 0.039305518494005
507 => 0.039291592607761
508 => 0.040033776176229
509 => 0.040057978755751
510 => 0.039509503977276
511 => 0.039430460192912
512 => 0.039722726492232
513 => 0.039380559200393
514 => 0.039540657122669
515 => 0.039385408403365
516 => 0.039350458646611
517 => 0.039071973038586
518 => 0.038951993781527
519 => 0.038999040739704
520 => 0.038838445217076
521 => 0.038741680605699
522 => 0.039272343691028
523 => 0.038988831811424
524 => 0.039228891429346
525 => 0.038955313196785
526 => 0.038006971850367
527 => 0.037461570713514
528 => 0.03567024182142
529 => 0.036178260473081
530 => 0.036515077364716
531 => 0.03640375938404
601 => 0.036642913480872
602 => 0.036657595600088
603 => 0.036579844165321
604 => 0.036489817964436
605 => 0.036445998188606
606 => 0.036772594896772
607 => 0.036962195278602
608 => 0.03654888144582
609 => 0.036452047797674
610 => 0.036869930902299
611 => 0.037124839354716
612 => 0.039006940146682
613 => 0.038867508040908
614 => 0.039217455264232
615 => 0.039178056577264
616 => 0.039544857018272
617 => 0.040144420717889
618 => 0.038925340075921
619 => 0.03913693032273
620 => 0.039085053280545
621 => 0.039651433224231
622 => 0.039653201400593
623 => 0.039313628331576
624 => 0.039497716401234
625 => 0.039394963490943
626 => 0.039580651887728
627 => 0.038865645840127
628 => 0.039736446025971
629 => 0.04023013361822
630 => 0.040236988470917
701 => 0.040470992471496
702 => 0.040708754088682
703 => 0.041165116808198
704 => 0.040696026380126
705 => 0.039852178365058
706 => 0.039913101466133
707 => 0.03941835368365
708 => 0.039426670483257
709 => 0.039382274755156
710 => 0.039515509677143
711 => 0.038894883413054
712 => 0.039040543156746
713 => 0.038836618662595
714 => 0.039136487030705
715 => 0.038813878236636
716 => 0.039085028263864
717 => 0.039202047626851
718 => 0.039633851595516
719 => 0.038750100439375
720 => 0.036948072007308
721 => 0.037326880231211
722 => 0.036766593113315
723 => 0.036818449819239
724 => 0.036923208618141
725 => 0.036583651075955
726 => 0.036648427954316
727 => 0.036646113668393
728 => 0.036626170402587
729 => 0.03653783837153
730 => 0.036409739450537
731 => 0.036920046125004
801 => 0.037006757172974
802 => 0.037199505091385
803 => 0.037772992154414
804 => 0.037715687273061
805 => 0.037809153912105
806 => 0.037605116763866
807 => 0.036827914517353
808 => 0.036870120338572
809 => 0.036343813071676
810 => 0.03718604623127
811 => 0.036986594302144
812 => 0.036858006345924
813 => 0.036822919930711
814 => 0.037397828557244
815 => 0.037569850228892
816 => 0.037462657867066
817 => 0.037242803205661
818 => 0.037664989149755
819 => 0.0377779482978
820 => 0.037803235685274
821 => 0.038551268232084
822 => 0.037845042395035
823 => 0.038015037973294
824 => 0.03934129494749
825 => 0.038138562882846
826 => 0.038775676881614
827 => 0.038744493466755
828 => 0.039070419429762
829 => 0.038717758024723
830 => 0.038722129685499
831 => 0.039011529860512
901 => 0.038605119508303
902 => 0.038504486589734
903 => 0.038365462933478
904 => 0.038669016000834
905 => 0.03885098233619
906 => 0.040317497359611
907 => 0.041264932945951
908 => 0.041223802268465
909 => 0.04159965966729
910 => 0.04143033246666
911 => 0.040883530269567
912 => 0.041816854944581
913 => 0.041521511965443
914 => 0.041545859681802
915 => 0.041544953458583
916 => 0.041741330720378
917 => 0.041602179432684
918 => 0.041327897961054
919 => 0.041509978802102
920 => 0.042050693804926
921 => 0.043729089764851
922 => 0.044668342379814
923 => 0.04367254557807
924 => 0.044359432877662
925 => 0.043947545260877
926 => 0.043872693028311
927 => 0.044304109013028
928 => 0.044736280134316
929 => 0.044708752702217
930 => 0.044395018660395
1001 => 0.044217798260876
1002 => 0.045559770499223
1003 => 0.046548512784536
1004 => 0.04648108718929
1005 => 0.046778681838727
1006 => 0.047652428933732
1007 => 0.047732313417944
1008 => 0.047722249809057
1009 => 0.047524247779854
1010 => 0.048384565265283
1011 => 0.049102257247475
1012 => 0.047478416030922
1013 => 0.048096753508543
1014 => 0.048374345123836
1015 => 0.048781931972808
1016 => 0.049469599306511
1017 => 0.050216588425664
1018 => 0.050322220877431
1019 => 0.050247269597924
1020 => 0.049754610193697
1021 => 0.050571974601308
1022 => 0.051050767501733
1023 => 0.051335877716955
1024 => 0.052058869784942
1025 => 0.048376059435149
1026 => 0.045769183222014
1027 => 0.045362081857585
1028 => 0.046189938490623
1029 => 0.046408237682722
1030 => 0.046320241552111
1031 => 0.043385965367412
1101 => 0.045346633500735
1102 => 0.04745614755453
1103 => 0.047537182580603
1104 => 0.048593249423792
1105 => 0.048937148077577
1106 => 0.049787420308189
1107 => 0.04973423554866
1108 => 0.049941263306028
1109 => 0.04989367120983
1110 => 0.051468621471098
1111 => 0.053206025491654
1112 => 0.053145864715028
1113 => 0.052896092331042
1114 => 0.053267046913782
1115 => 0.055060234054525
1116 => 0.054895146117844
1117 => 0.055055514986172
1118 => 0.057169783684707
1119 => 0.059918633744018
1120 => 0.058641516911434
1121 => 0.061412492957672
1122 => 0.063156675495649
1123 => 0.066173058843241
1124 => 0.065795392792121
1125 => 0.066969648694095
1126 => 0.065119291739334
1127 => 0.060870498152362
1128 => 0.060198110303495
1129 => 0.061544247804498
1130 => 0.064853595496539
1201 => 0.061440024668708
1202 => 0.062130585601334
1203 => 0.061931704006281
1204 => 0.061921106451273
1205 => 0.062325572022557
1206 => 0.061738873615904
1207 => 0.05934855876217
1208 => 0.060444025973422
1209 => 0.060021013474501
1210 => 0.060490377379725
1211 => 0.063023340795817
1212 => 0.061903457291257
1213 => 0.06072375099115
1214 => 0.062203364489269
1215 => 0.064087420922733
1216 => 0.063969520057102
1217 => 0.063740743099039
1218 => 0.06503034683327
1219 => 0.06716039438378
1220 => 0.067736137677458
1221 => 0.068161139606298
1222 => 0.068219740191819
1223 => 0.068823362642742
1224 => 0.065577532591684
1225 => 0.070728748241541
1226 => 0.07161822088481
1227 => 0.07145103689274
1228 => 0.072439648301003
1229 => 0.072148773746041
1230 => 0.071727342152721
1231 => 0.073294501518496
]
'min_raw' => 0.027016994079892
'max_raw' => 0.073294501518496
'avg_raw' => 0.050155747799194
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.027016'
'max' => '$0.073294'
'avg' => '$0.050155'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0093174630341251
'max_diff' => 0.033781545304707
'year' => 2032
]
7 => [
'items' => [
101 => 0.071497879768874
102 => 0.068947801383676
103 => 0.067548777946724
104 => 0.069391124864503
105 => 0.070516181838144
106 => 0.071259772930658
107 => 0.071484783145963
108 => 0.065829497138854
109 => 0.062781611637564
110 => 0.064735271299813
111 => 0.067118870922144
112 => 0.065564291575431
113 => 0.065625228142614
114 => 0.063408806530467
115 => 0.067314975054182
116 => 0.066745879156326
117 => 0.06969834968112
118 => 0.068993718895322
119 => 0.071401343994046
120 => 0.070767335617248
121 => 0.073399068942405
122 => 0.074448938617145
123 => 0.076211833200202
124 => 0.07750862563177
125 => 0.078270126951273
126 => 0.07822440926837
127 => 0.081241856874693
128 => 0.079462573442834
129 => 0.077227374107512
130 => 0.0771869464035
131 => 0.078344587812282
201 => 0.08077068662168
202 => 0.081399738744655
203 => 0.081751293064529
204 => 0.081212875385948
205 => 0.079281590743057
206 => 0.078447671826093
207 => 0.079158194904304
208 => 0.078289286235596
209 => 0.079789266370498
210 => 0.081849059474187
211 => 0.08142372034358
212 => 0.082845565286794
213 => 0.084317025220569
214 => 0.086421279013269
215 => 0.086971408874973
216 => 0.087880752616805
217 => 0.088816766031008
218 => 0.089117388313382
219 => 0.089691369528048
220 => 0.089688344363722
221 => 0.091418075387511
222 => 0.093326022272061
223 => 0.094046228051906
224 => 0.095702301530283
225 => 0.092866333734299
226 => 0.095017447884803
227 => 0.096957806694437
228 => 0.094644430929987
301 => 0.097832880473858
302 => 0.097956680744465
303 => 0.099825917848171
304 => 0.097931087941066
305 => 0.096805943990738
306 => 0.10005419241674
307 => 0.10162591751122
308 => 0.10115250112164
309 => 0.097549779021489
310 => 0.095452840231183
311 => 0.089964746947667
312 => 0.096465630509978
313 => 0.099632021259807
314 => 0.097541578834391
315 => 0.098595876399997
316 => 0.10434778206081
317 => 0.10653773532813
318 => 0.10608224035746
319 => 0.10615921150942
320 => 0.107340870542
321 => 0.112580997444
322 => 0.10944099193913
323 => 0.11184140849384
324 => 0.11311458077911
325 => 0.11429717415234
326 => 0.11139309859017
327 => 0.10761493895314
328 => 0.10641823719974
329 => 0.097333725533301
330 => 0.096860837249028
331 => 0.096595390725084
401 => 0.094921787939774
402 => 0.093606794588904
403 => 0.09256106305372
404 => 0.089816751223526
405 => 0.090742875906098
406 => 0.086369015631161
407 => 0.089167256434975
408 => 0.082186469825627
409 => 0.088000276349086
410 => 0.084836085779713
411 => 0.086960754646415
412 => 0.086953341876895
413 => 0.08304115286642
414 => 0.080784683890479
415 => 0.082222593745035
416 => 0.083764147250545
417 => 0.084014259120405
418 => 0.086012923478962
419 => 0.086570707740288
420 => 0.084880595388012
421 => 0.082041808539429
422 => 0.08270119397852
423 => 0.080771321465602
424 => 0.077389294118187
425 => 0.079818325203633
426 => 0.080647703213162
427 => 0.081014003790793
428 => 0.077688168323075
429 => 0.076643118611717
430 => 0.076086742914207
501 => 0.0816124849446
502 => 0.081915197566682
503 => 0.080366476992858
504 => 0.087366840842255
505 => 0.085782442904007
506 => 0.08755260358795
507 => 0.082641361661274
508 => 0.082828977716737
509 => 0.080503917082506
510 => 0.081805795677068
511 => 0.080885669847937
512 => 0.081700616752042
513 => 0.082189092566211
514 => 0.084513771680871
515 => 0.088026820450392
516 => 0.084166542142357
517 => 0.082484563603343
518 => 0.083528053629141
519 => 0.086307005077349
520 => 0.090517258773292
521 => 0.088024703846042
522 => 0.089130857396428
523 => 0.089372502737841
524 => 0.087534585013886
525 => 0.090585025421353
526 => 0.092219781217448
527 => 0.093896702399194
528 => 0.095352726075039
529 => 0.093226903202917
530 => 0.095501838400826
531 => 0.093668642211433
601 => 0.092024075717209
602 => 0.092026569845733
603 => 0.090994909260623
604 => 0.088995936879374
605 => 0.088627295702533
606 => 0.090545013658708
607 => 0.092082841850995
608 => 0.092209504746612
609 => 0.093060925450327
610 => 0.093564787452455
611 => 0.098503320040484
612 => 0.10048963870107
613 => 0.10291847156016
614 => 0.10386463884029
615 => 0.10671226313374
616 => 0.10441257524404
617 => 0.10391502330339
618 => 0.09700761821828
619 => 0.098138705414006
620 => 0.099949685148045
621 => 0.097037480607069
622 => 0.098884604091234
623 => 0.099249265394433
624 => 0.096938525011135
625 => 0.098172791291052
626 => 0.09489494598604
627 => 0.088098268520724
628 => 0.090592592066305
629 => 0.092429253776079
630 => 0.089808111057475
701 => 0.094506407928341
702 => 0.091761759888915
703 => 0.090891838226757
704 => 0.087497963673214
705 => 0.089099741820275
706 => 0.091266169699429
707 => 0.089927569144385
708 => 0.092705366287985
709 => 0.096639467854761
710 => 0.099443142911044
711 => 0.099658374268493
712 => 0.097855799038944
713 => 0.10074443734818
714 => 0.10076547792466
715 => 0.097507082111412
716 => 0.09551133281862
717 => 0.095057894380205
718 => 0.096190672501208
719 => 0.097566074262482
720 => 0.099734699493934
721 => 0.10104515430261
722 => 0.1044621254321
723 => 0.1053866598475
724 => 0.10640244286871
725 => 0.10775984224092
726 => 0.10938974821732
727 => 0.10582360673156
728 => 0.10596529618091
729 => 0.10264455460596
730 => 0.099095865990614
731 => 0.10178887829938
801 => 0.10530963365668
802 => 0.10450196848763
803 => 0.10441108965701
804 => 0.10456392264243
805 => 0.10395496948084
806 => 0.10120069689983
807 => 0.099817518452312
808 => 0.10160217153607
809 => 0.10255063522432
810 => 0.10402161969006
811 => 0.10384028980595
812 => 0.10762938781751
813 => 0.10910171672843
814 => 0.10872503198851
815 => 0.10879435104608
816 => 0.1114599322117
817 => 0.11442460668645
818 => 0.1172014155553
819 => 0.12002610480342
820 => 0.11662083166532
821 => 0.11489184397384
822 => 0.11667571793389
823 => 0.11572916930084
824 => 0.1211683185109
825 => 0.12154491340105
826 => 0.1269836692987
827 => 0.13214569628058
828 => 0.12890351962058
829 => 0.13196074618012
830 => 0.1352673859636
831 => 0.14164643058889
901 => 0.13949819277659
902 => 0.13785267627954
903 => 0.13629767114091
904 => 0.13953338998429
905 => 0.14369609058443
906 => 0.14459269642384
907 => 0.14604554041349
908 => 0.14451805260369
909 => 0.14635774342334
910 => 0.1528526604178
911 => 0.15109767651368
912 => 0.14860531724208
913 => 0.15373243043076
914 => 0.15558791276259
915 => 0.16861065949103
916 => 0.18505241517853
917 => 0.17824542036151
918 => 0.17402009901825
919 => 0.17501314975988
920 => 0.1810171223484
921 => 0.18294540778726
922 => 0.17770366324457
923 => 0.17955513603207
924 => 0.18975693312397
925 => 0.19522986995094
926 => 0.18779688662644
927 => 0.16728958043052
928 => 0.14838090755917
929 => 0.15339633907329
930 => 0.15282774478655
1001 => 0.16378830306169
1002 => 0.15105582072798
1003 => 0.15127020307621
1004 => 0.16245741408905
1005 => 0.15947285798817
1006 => 0.15463825933782
1007 => 0.1484162054796
1008 => 0.13691416345237
1009 => 0.12672648407068
1010 => 0.14670686942062
1011 => 0.14584527887235
1012 => 0.14459756807791
1013 => 0.14737421343454
1014 => 0.16085681512185
1015 => 0.16054599751403
1016 => 0.15856873447365
1017 => 0.16006847106298
1018 => 0.15437534826259
1019 => 0.15584259563825
1020 => 0.14837791232878
1021 => 0.15175226093737
1022 => 0.15462788646045
1023 => 0.15520521085857
1024 => 0.15650595220645
1025 => 0.1453912598044
1026 => 0.15038143038269
1027 => 0.15331268808169
1028 => 0.14006915915755
1029 => 0.15305090609605
1030 => 0.14519777773764
1031 => 0.14253230802276
1101 => 0.14612101184491
1102 => 0.14472249047529
1103 => 0.14352012392562
1104 => 0.14284918273163
1105 => 0.14548433074782
1106 => 0.14536139794318
1107 => 0.14104978432849
1108 => 0.13542546013199
1109 => 0.13731316794448
1110 => 0.13662734599885
1111 => 0.13414183879507
1112 => 0.13581677054913
1113 => 0.12844121876782
1114 => 0.11575196527589
1115 => 0.124134874815
1116 => 0.1238121419166
1117 => 0.12364940535445
1118 => 0.12994893018649
1119 => 0.12934337622866
1120 => 0.12824428986559
1121 => 0.1341216532121
1122 => 0.13197633652893
1123 => 0.13858769704628
1124 => 0.142942366679
1125 => 0.14183788160134
1126 => 0.14593346943885
1127 => 0.13735665691985
1128 => 0.14020552999667
1129 => 0.14079267878944
1130 => 0.13404912746073
1201 => 0.12944245234517
1202 => 0.12913523963491
1203 => 0.12114789982347
1204 => 0.12541467227919
1205 => 0.12916925546917
1206 => 0.1273711014886
1207 => 0.12680185965667
1208 => 0.1297099927225
1209 => 0.12993597956819
1210 => 0.12478345553743
1211 => 0.12585482844264
1212 => 0.1303226315583
1213 => 0.12574225126733
1214 => 0.11684332056286
1215 => 0.11463626271081
1216 => 0.11434180050919
1217 => 0.10835608457046
1218 => 0.11478374886994
1219 => 0.11197790115252
1220 => 0.12084154047262
1221 => 0.11577867722963
1222 => 0.11556042731424
1223 => 0.11523051055683
1224 => 0.11007835758155
1225 => 0.11120635164674
1226 => 0.11495597571775
1227 => 0.11629388382883
1228 => 0.11615432905168
1229 => 0.1149376005142
1230 => 0.115494612608
1231 => 0.11370028257799
]
'min_raw' => 0.062781611637564
'max_raw' => 0.19522986995094
'avg_raw' => 0.12900574079425
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.062781'
'max' => '$0.195229'
'avg' => '$0.1290057'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.035764617557672
'max_diff' => 0.12193536843245
'year' => 2033
]
8 => [
'items' => [
101 => 0.11306666729865
102 => 0.11106680318741
103 => 0.10812755542047
104 => 0.10853627584991
105 => 0.10271285692757
106 => 0.099539949226449
107 => 0.098661730193029
108 => 0.09748733899824
109 => 0.098794380803416
110 => 0.10269635991344
111 => 0.097989745255703
112 => 0.089920584555643
113 => 0.090405554862897
114 => 0.091495139154321
115 => 0.089464706035574
116 => 0.087543071490014
117 => 0.089213776820239
118 => 0.085794767057758
119 => 0.091908310149605
120 => 0.091742955941977
121 => 0.094021706747649
122 => 0.095446656391109
123 => 0.092162608795858
124 => 0.091336679706661
125 => 0.091807166452252
126 => 0.084031068569815
127 => 0.093386233652598
128 => 0.093467137508715
129 => 0.092774389574481
130 => 0.097755726172745
131 => 0.10826790011293
201 => 0.10431279742542
202 => 0.1027812621212
203 => 0.099869812388336
204 => 0.1037491462926
205 => 0.10345127397578
206 => 0.10210418239444
207 => 0.10128945720287
208 => 0.10279061334918
209 => 0.10110344734378
210 => 0.10080038596899
211 => 0.098964163771773
212 => 0.098308715990155
213 => 0.097823448546773
214 => 0.097289216773003
215 => 0.098467598943675
216 => 0.095797229915847
217 => 0.09257702664779
218 => 0.092309301589133
219 => 0.093048514014712
220 => 0.092721467544286
221 => 0.092307735816456
222 => 0.091517809274898
223 => 0.091283454944128
224 => 0.092044992826573
225 => 0.091185260957709
226 => 0.092453842162236
227 => 0.092108858268405
228 => 0.090181806281068
301 => 0.087779986018822
302 => 0.087758604780499
303 => 0.087241136544773
304 => 0.086582062944706
305 => 0.086398723746728
306 => 0.089073074677304
307 => 0.094608901067008
308 => 0.09352208588561
309 => 0.09430742123547
310 => 0.098170493881813
311 => 0.099398448509439
312 => 0.09852687540045
313 => 0.097333812372577
314 => 0.097386301090906
315 => 0.10146335862189
316 => 0.10171763969907
317 => 0.10236012594694
318 => 0.10318590234204
319 => 0.098667508691293
320 => 0.097173485156289
321 => 0.096465533920134
322 => 0.094285318124384
323 => 0.096636493942524
324 => 0.095266564480681
325 => 0.095451414768538
326 => 0.095331030776072
327 => 0.095396768576288
328 => 0.091906601289716
329 => 0.093178234811151
330 => 0.091063897444388
331 => 0.0882330370558
401 => 0.08822354701915
402 => 0.08891639608878
403 => 0.088504262350977
404 => 0.087395221059478
405 => 0.087552755140408
406 => 0.08617259082631
407 => 0.087720332076821
408 => 0.087764715757802
409 => 0.087168751070319
410 => 0.089553260013866
411 => 0.090530195273612
412 => 0.09013791854951
413 => 0.090502672092919
414 => 0.093567247963074
415 => 0.094066907546728
416 => 0.094288823328128
417 => 0.093991485579259
418 => 0.090558686914105
419 => 0.090710946132291
420 => 0.089593769014816
421 => 0.088649872075774
422 => 0.088687623003248
423 => 0.089172908727929
424 => 0.091292179949241
425 => 0.095752061296631
426 => 0.095921310533634
427 => 0.096126445546229
428 => 0.095292058357406
429 => 0.095040399197246
430 => 0.095372402588237
501 => 0.097047299532896
502 => 0.10135558920464
503 => 0.099832751893655
504 => 0.098594661455447
505 => 0.09968080055654
506 => 0.099513597955367
507 => 0.09810223973471
508 => 0.098062627610131
509 => 0.095353779946174
510 => 0.094352380642285
511 => 0.093515536430518
512 => 0.092601724397639
513 => 0.092059985993291
514 => 0.09289234239807
515 => 0.093082712155995
516 => 0.091262750329845
517 => 0.091014696257931
518 => 0.092500916371769
519 => 0.09184688631154
520 => 0.092519572447651
521 => 0.092675641401424
522 => 0.092650510705293
523 => 0.091967628207539
524 => 0.092402877147759
525 => 0.091373383650187
526 => 0.0902539640965
527 => 0.089539844163551
528 => 0.08891667980779
529 => 0.089262447610891
530 => 0.088029848527541
531 => 0.087635515273459
601 => 0.092255424600224
602 => 0.0956682012923
603 => 0.095618578167589
604 => 0.095316510157944
605 => 0.09486769836787
606 => 0.097014466154976
607 => 0.096266575183925
608 => 0.096810728353746
609 => 0.096949238173502
610 => 0.097368465681415
611 => 0.097518303481672
612 => 0.097065389580252
613 => 0.095545355208312
614 => 0.091757574073968
615 => 0.089994351731012
616 => 0.089412458989045
617 => 0.089433609685044
618 => 0.088850179068531
619 => 0.08902202553262
620 => 0.088790417881328
621 => 0.088351809021688
622 => 0.089235364749776
623 => 0.089337186316547
624 => 0.089130953851906
625 => 0.089179529063053
626 => 0.087472012338869
627 => 0.087601831126878
628 => 0.086878983618673
629 => 0.086743458424942
630 => 0.084916162869734
701 => 0.081678843922958
702 => 0.083472632873626
703 => 0.081305988066114
704 => 0.080485446847484
705 => 0.08436976135614
706 => 0.083979883913585
707 => 0.083312583207581
708 => 0.082325506385748
709 => 0.081959389990864
710 => 0.079734982673916
711 => 0.079603552822879
712 => 0.080706029153208
713 => 0.080197274260656
714 => 0.079482789710966
715 => 0.07689499909813
716 => 0.073985465661274
717 => 0.074073286187057
718 => 0.074998754639527
719 => 0.077689678981508
720 => 0.076638288287632
721 => 0.075875492275907
722 => 0.075732643512475
723 => 0.077520694860972
724 => 0.080051162127433
725 => 0.081238400752842
726 => 0.080061883332035
727 => 0.078710363467207
728 => 0.078792624219039
729 => 0.079339868147511
730 => 0.079397375746781
731 => 0.078517675253266
801 => 0.078765305789315
802 => 0.078389132361245
803 => 0.076080556727541
804 => 0.0760388019149
805 => 0.075472240223578
806 => 0.07545508496073
807 => 0.074491222188355
808 => 0.074356371123631
809 => 0.07244256308679
810 => 0.073702237332183
811 => 0.07285731398424
812 => 0.07158381520162
813 => 0.071364263531485
814 => 0.071357663543165
815 => 0.072665262043798
816 => 0.073686957282382
817 => 0.07287201178762
818 => 0.072686464495517
819 => 0.074667624143872
820 => 0.074415503519948
821 => 0.074197168685633
822 => 0.079824586538129
823 => 0.075370046194988
824 => 0.073427612349104
825 => 0.071023481606641
826 => 0.071806278699066
827 => 0.071971225548122
828 => 0.066189724489636
829 => 0.063844170230247
830 => 0.063039264398773
831 => 0.062576029713062
901 => 0.062787131576275
902 => 0.060675857636752
903 => 0.06209466864136
904 => 0.060266483871276
905 => 0.059959982745143
906 => 0.063229003582688
907 => 0.063683868734889
908 => 0.061743272680071
909 => 0.062989449501228
910 => 0.062537568462723
911 => 0.06029782285195
912 => 0.060212281044072
913 => 0.059088455427452
914 => 0.05732988595296
915 => 0.056526172514399
916 => 0.056107591577436
917 => 0.056280306230007
918 => 0.056192976416512
919 => 0.055623090311293
920 => 0.056225641620978
921 => 0.054686372016124
922 => 0.054073422456733
923 => 0.053796567361078
924 => 0.052430376989717
925 => 0.054604593418168
926 => 0.05503294144463
927 => 0.055462133449027
928 => 0.059197956825478
929 => 0.059011325646918
930 => 0.060698380608032
1001 => 0.060632824754538
1002 => 0.06015164935115
1003 => 0.058121649473767
1004 => 0.058930771243624
1005 => 0.056440420201447
1006 => 0.058306360529656
1007 => 0.057454823287393
1008 => 0.058018454931478
1009 => 0.057004994414797
1010 => 0.057565885309487
1011 => 0.055134518652368
1012 => 0.052864142678202
1013 => 0.053777808246613
1014 => 0.054771067209807
1015 => 0.056924705719689
1016 => 0.055642016390335
1017 => 0.056103319977024
1018 => 0.054558030182903
1019 => 0.051369655947425
1020 => 0.051387701799342
1021 => 0.050897239885722
1022 => 0.050473409183742
1023 => 0.055789348689801
1024 => 0.055128227579655
1025 => 0.054074817616029
1026 => 0.05548484871319
1027 => 0.055857683315482
1028 => 0.055868297392466
1029 => 0.056897019682784
1030 => 0.057446048953536
1031 => 0.057542817742135
1101 => 0.059161534492967
1102 => 0.059704106996456
1103 => 0.061938886350591
1104 => 0.057399467655767
1105 => 0.057305981314994
1106 => 0.05550469074234
1107 => 0.054362283783886
1108 => 0.055582912324157
1109 => 0.056664222578426
1110 => 0.055538290066081
1111 => 0.055685313082461
1112 => 0.054173840676703
1113 => 0.054714120940375
1114 => 0.05517948308706
1115 => 0.054922537462383
1116 => 0.054537877425933
1117 => 0.056575567468676
1118 => 0.056460593010692
1119 => 0.058358136824786
1120 => 0.059837407922532
1121 => 0.062488526181031
1122 => 0.059721946072367
1123 => 0.059621120897047
1124 => 0.060606703158664
1125 => 0.059703956108946
1126 => 0.060274461082599
1127 => 0.062396609009803
1128 => 0.062441446651468
1129 => 0.061690358383542
1130 => 0.06164465459418
1201 => 0.06178890931204
1202 => 0.062633813700263
1203 => 0.062338578145729
1204 => 0.062680232203886
1205 => 0.063107475835204
1206 => 0.06487473664188
1207 => 0.065300817239337
1208 => 0.064265662284979
1209 => 0.064359125187219
1210 => 0.06397194881865
1211 => 0.063597941297918
1212 => 0.064438655585111
1213 => 0.065975077469237
1214 => 0.065965519468437
1215 => 0.06632193948178
1216 => 0.06654398619735
1217 => 0.065590799145993
1218 => 0.064970309425218
1219 => 0.06520824466695
1220 => 0.065588708300034
1221 => 0.065084865438502
1222 => 0.061974913894404
1223 => 0.062918274528409
1224 => 0.062761253190932
1225 => 0.062537635711918
1226 => 0.063486192124203
1227 => 0.063394701544219
1228 => 0.060654203470916
1229 => 0.060829641266045
1230 => 0.060664872424306
1231 => 0.061197274260498
]
'min_raw' => 0.050473409183742
'max_raw' => 0.11306666729865
'avg_raw' => 0.081770038241194
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.050473'
'max' => '$0.113066'
'avg' => '$0.08177'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.012308202453822
'max_diff' => -0.082163202652296
'year' => 2034
]
9 => [
'items' => [
101 => 0.059675204662598
102 => 0.060143383019617
103 => 0.06043702009624
104 => 0.060609974590197
105 => 0.061234804818376
106 => 0.061161488202863
107 => 0.061230247354614
108 => 0.06215670563394
109 => 0.06684241368868
110 => 0.067097446439668
111 => 0.065841571899959
112 => 0.066343269007543
113 => 0.065380120270079
114 => 0.066026688470074
115 => 0.066469054011459
116 => 0.064470089191942
117 => 0.064351723468504
118 => 0.063384599473589
119 => 0.063904277127754
120 => 0.063077432613833
121 => 0.063280311335756
122 => 0.06271304474261
123 => 0.06373401166862
124 => 0.06487561133412
125 => 0.065164024492762
126 => 0.064405333642046
127 => 0.063855991465964
128 => 0.062891527569327
129 => 0.064495452523915
130 => 0.064964489059363
131 => 0.064492988874669
201 => 0.064383731979393
202 => 0.064176690360267
203 => 0.064427656837639
204 => 0.06496193458566
205 => 0.064709979066254
206 => 0.064876400125707
207 => 0.064242174659725
208 => 0.065591114690569
209 => 0.067733556099647
210 => 0.067740444399102
211 => 0.067488487521561
212 => 0.067385392195759
213 => 0.067643915242137
214 => 0.067784153389626
215 => 0.068620169516594
216 => 0.069517248129182
217 => 0.073703522588068
218 => 0.07252803347166
219 => 0.076242345214166
220 => 0.079179883559471
221 => 0.080060722866244
222 => 0.079250392150705
223 => 0.076478294546049
224 => 0.076342282212575
225 => 0.08048496638335
226 => 0.079314468358151
227 => 0.079175241342547
228 => 0.07769410112428
301 => 0.078569638436061
302 => 0.078378145582617
303 => 0.078075864745305
304 => 0.079746328945725
305 => 0.082873288805543
306 => 0.082385922786947
307 => 0.082022126662323
308 => 0.080428077943683
309 => 0.081388051315975
310 => 0.081046223185181
311 => 0.082514933764566
312 => 0.081644902153261
313 => 0.079305600684393
314 => 0.079678142153749
315 => 0.079621833260105
316 => 0.080780666301202
317 => 0.080432813386269
318 => 0.079553909395625
319 => 0.082862601196686
320 => 0.082647753155036
321 => 0.082952358556996
322 => 0.083086455275173
323 => 0.08510039766879
324 => 0.085925445428486
325 => 0.086112745714431
326 => 0.086896477274659
327 => 0.08609324575925
328 => 0.089306744515251
329 => 0.091443533675141
330 => 0.093925524242518
331 => 0.097552379557628
401 => 0.098916110706396
402 => 0.098669764880655
403 => 0.10141960518784
404 => 0.10636100709435
405 => 0.099668563486047
406 => 0.10671572285611
407 => 0.10448467356291
408 => 0.099194895823614
409 => 0.098854296499586
410 => 0.10243659540022
411 => 0.11038178957834
412 => 0.10839160855037
413 => 0.11038504480154
414 => 0.10805959552695
415 => 0.10794411737004
416 => 0.11027210292078
417 => 0.11571156805195
418 => 0.11312748206343
419 => 0.10942256115501
420 => 0.11215821709883
421 => 0.10978833874729
422 => 0.10444833953406
423 => 0.10839008669645
424 => 0.10575435262346
425 => 0.10652359994928
426 => 0.11206352093485
427 => 0.11139694298506
428 => 0.11225955657555
429 => 0.11073706616686
430 => 0.10931482005044
501 => 0.10666009205676
502 => 0.10587415797434
503 => 0.10609136187978
504 => 0.10587405033887
505 => 0.10438875442462
506 => 0.10406800491335
507 => 0.10353340834221
508 => 0.10369910217359
509 => 0.10269390421811
510 => 0.1045909204446
511 => 0.10494302337268
512 => 0.10632351358429
513 => 0.10646684065766
514 => 0.11031148624696
515 => 0.10819392006302
516 => 0.10961456628107
517 => 0.10948749031169
518 => 0.099309541347234
519 => 0.10071197291373
520 => 0.10289371632393
521 => 0.10191084387492
522 => 0.10052129218875
523 => 0.09939915469912
524 => 0.09769900165788
525 => 0.10009193441488
526 => 0.1032383865303
527 => 0.10654663987575
528 => 0.11052128950496
529 => 0.10963419397774
530 => 0.10647233656564
531 => 0.10661417517941
601 => 0.10749096567829
602 => 0.10635544231742
603 => 0.10602055431025
604 => 0.10744495720866
605 => 0.10745476628858
606 => 0.10614820942932
607 => 0.10469621057764
608 => 0.10469012664943
609 => 0.10443175747842
610 => 0.1081055588285
611 => 0.11012577810784
612 => 0.11035739299247
613 => 0.11011018858069
614 => 0.11020532774759
615 => 0.10902980666144
616 => 0.11171669927443
617 => 0.11418245764225
618 => 0.11352158172643
619 => 0.11253083477957
620 => 0.11174165711556
621 => 0.11333567654922
622 => 0.11326469737306
623 => 0.11416092139399
624 => 0.11412026349556
625 => 0.11381889706601
626 => 0.11352159248918
627 => 0.11470037153054
628 => 0.11436090209724
629 => 0.11402090537414
630 => 0.11333898989509
701 => 0.11343167353411
702 => 0.11244109765368
703 => 0.11198281192572
704 => 0.10509129415847
705 => 0.10324965542422
706 => 0.10382907246003
707 => 0.10401983159278
708 => 0.10321834805551
709 => 0.10436746956372
710 => 0.10418838019389
711 => 0.10488511216814
712 => 0.10444982427921
713 => 0.10446768864601
714 => 0.10574777751417
715 => 0.10611939275849
716 => 0.10593038624593
717 => 0.10606275992856
718 => 0.10911325557343
719 => 0.10867957264209
720 => 0.10844918722843
721 => 0.1085130055625
722 => 0.10929247260313
723 => 0.10951068081718
724 => 0.10858611728102
725 => 0.10902214678951
726 => 0.11087870509628
727 => 0.11152839543156
728 => 0.11360189511269
729 => 0.11272103559463
730 => 0.11433789136274
731 => 0.11930755476717
801 => 0.12327766576918
802 => 0.11962658761996
803 => 0.12691719088456
804 => 0.13259397130098
805 => 0.13237608701342
806 => 0.13138620904153
807 => 0.12492334546245
808 => 0.11897612204112
809 => 0.12395122696551
810 => 0.1239639095311
811 => 0.12353654360589
812 => 0.12088221054842
813 => 0.12344417856909
814 => 0.12364753828687
815 => 0.12353371092263
816 => 0.12149863999088
817 => 0.11839146282208
818 => 0.11899859780333
819 => 0.11999309728784
820 => 0.11811030228934
821 => 0.11750863520474
822 => 0.11862724878685
823 => 0.12223165482079
824 => 0.12155026273898
825 => 0.121532468838
826 => 0.12444775311921
827 => 0.12236103873159
828 => 0.11900625571976
829 => 0.11815912876512
830 => 0.11515239876925
831 => 0.117229157887
901 => 0.11730389675047
902 => 0.11616647700564
903 => 0.11909855106337
904 => 0.11907153148475
905 => 0.12185509942094
906 => 0.12717623585456
907 => 0.12560251397392
908 => 0.12377244664719
909 => 0.12397142570786
910 => 0.12615373488134
911 => 0.12483426093778
912 => 0.12530875296759
913 => 0.12615301668083
914 => 0.12666238194091
915 => 0.12389813588562
916 => 0.12325365790096
917 => 0.12193528212538
918 => 0.12159134249418
919 => 0.12266513205458
920 => 0.12238222644296
921 => 0.1172976152384
922 => 0.11676624507701
923 => 0.11678254144124
924 => 0.11544638590516
925 => 0.11340842799856
926 => 0.11876405969695
927 => 0.11833392751955
928 => 0.11785909488529
929 => 0.11791725917363
930 => 0.1202419573747
1001 => 0.11889351501801
1002 => 0.12247857002864
1003 => 0.12174159049507
1004 => 0.12098571021734
1005 => 0.12088122453829
1006 => 0.12059027512004
1007 => 0.11959250130735
1008 => 0.11838762947162
1009 => 0.11759206872146
1010 => 0.10847246750231
1011 => 0.11016501244231
1012 => 0.11211213111544
1013 => 0.11278426867882
1014 => 0.11163453086616
1015 => 0.11963789996393
1016 => 0.12110019262047
1017 => 0.11667081278081
1018 => 0.11584225666319
1019 => 0.11969221996506
1020 => 0.11737022145516
1021 => 0.11841581724199
1022 => 0.11615581106118
1023 => 0.12074796914044
1024 => 0.12071298458985
1025 => 0.11892653137842
1026 => 0.12043642939961
1027 => 0.12017404746167
1028 => 0.11815714618581
1029 => 0.12081190850837
1030 => 0.12081322523736
1031 => 0.1190938028622
1101 => 0.11708589395798
1102 => 0.1167269272706
1103 => 0.11645649409204
1104 => 0.11834930725792
1105 => 0.12004639762378
1106 => 0.12320426205025
1107 => 0.12399822419608
1108 => 0.12709711130828
1109 => 0.12525187491504
1110 => 0.12606984430835
1111 => 0.12695786579363
1112 => 0.12738361594958
1113 => 0.12668987891747
1114 => 0.13150372615554
1115 => 0.13191016235491
1116 => 0.13204643689689
1117 => 0.13042323469302
1118 => 0.13186501816527
1119 => 0.13119045542545
1120 => 0.13294548027552
1121 => 0.13322069058129
1122 => 0.13298759724319
1123 => 0.13307495333815
1124 => 0.12896718394129
1125 => 0.12875417442786
1126 => 0.12584977459768
1127 => 0.12703333899672
1128 => 0.12482072208244
1129 => 0.12552236569844
1130 => 0.12583164351886
1201 => 0.12567009433683
1202 => 0.12710025595203
1203 => 0.1258843264164
1204 => 0.12267528845453
1205 => 0.11946537619242
1206 => 0.11942507835871
1207 => 0.11857996511975
1208 => 0.1179691030382
1209 => 0.1180867767466
1210 => 0.11850147424344
1211 => 0.1179450000658
1212 => 0.11806375204556
1213 => 0.12003582614981
1214 => 0.12043131154723
1215 => 0.11908729764068
1216 => 0.1136908878656
1217 => 0.11236659537093
1218 => 0.11331847055424
1219 => 0.11286353552523
1220 => 0.091089681806646
1221 => 0.09620512576169
1222 => 0.093165702667666
1223 => 0.094566408666525
1224 => 0.09146394474232
1225 => 0.092944603141017
1226 => 0.092671179599765
1227 => 0.10089666210248
1228 => 0.10076823250699
1229 => 0.10082970495801
1230 => 0.097895464705096
1231 => 0.10256978910129
]
'min_raw' => 0.059675204662598
'max_raw' => 0.13322069058129
'avg_raw' => 0.096447947621946
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.059675'
'max' => '$0.13322'
'avg' => '$0.096447'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0092017954788562
'max_diff' => 0.020154023282648
'year' => 2035
]
10 => [
'items' => [
101 => 0.10487252938212
102 => 0.10444635344159
103 => 0.10455361274422
104 => 0.10271054255793
105 => 0.10084754990616
106 => 0.098781204342843
107 => 0.10262021899146
108 => 0.1021933860967
109 => 0.10317238718766
110 => 0.10566226260572
111 => 0.10602890621915
112 => 0.10652167895372
113 => 0.10634505500633
114 => 0.11055295400166
115 => 0.11004334966871
116 => 0.11127134948794
117 => 0.10874526069122
118 => 0.10588675143918
119 => 0.10643006059629
120 => 0.10637773555544
121 => 0.10571157772959
122 => 0.10511020023034
123 => 0.10410907613116
124 => 0.10727678091947
125 => 0.10714817788998
126 => 0.10923011145287
127 => 0.10886210947281
128 => 0.10640450218457
129 => 0.10649227610966
130 => 0.10708259793858
131 => 0.10912570852868
201 => 0.10973224285739
202 => 0.10945127199012
203 => 0.11011630919221
204 => 0.11064192748099
205 => 0.11018231875672
206 => 0.11668940906341
207 => 0.11398721149532
208 => 0.11530424378824
209 => 0.1156183482297
210 => 0.11481377630781
211 => 0.11498825914811
212 => 0.11525255310743
213 => 0.11685729427436
214 => 0.121068599432
215 => 0.12293375781899
216 => 0.12854517885155
217 => 0.12277888237921
218 => 0.12243673420985
219 => 0.12344752058649
220 => 0.12674201876184
221 => 0.12941190009649
222 => 0.13029765376434
223 => 0.13041472073375
224 => 0.13207645349842
225 => 0.13302892772966
226 => 0.13187467543288
227 => 0.13089656746662
228 => 0.12739310613869
229 => 0.12779864132701
301 => 0.13059237662461
302 => 0.13453869228266
303 => 0.13792504166143
304 => 0.13673926013518
305 => 0.1457859361492
306 => 0.14668287712364
307 => 0.14655894888254
308 => 0.14860231390502
309 => 0.14454665045946
310 => 0.14281277576171
311 => 0.13110804551092
312 => 0.13439659728165
313 => 0.13917670041028
314 => 0.13854403583673
315 => 0.1350725971722
316 => 0.13792240826391
317 => 0.13698017159516
318 => 0.13623699044108
319 => 0.13964164738068
320 => 0.13589808721999
321 => 0.139139355534
322 => 0.13498239539466
323 => 0.13674467668531
324 => 0.13574432059278
325 => 0.13639167358368
326 => 0.1326072612265
327 => 0.13464923827301
328 => 0.13252230826796
329 => 0.13252129982621
330 => 0.13247434772846
331 => 0.13497667144715
401 => 0.13505827213378
402 => 0.13320905112487
403 => 0.13294254948722
404 => 0.13392794572076
405 => 0.13277430480697
406 => 0.1333140861296
407 => 0.13279065423335
408 => 0.13267281868834
409 => 0.13173388501764
410 => 0.13132936657578
411 => 0.13148798867999
412 => 0.13094652966302
413 => 0.13062028101988
414 => 0.13240944866178
415 => 0.13145356856553
416 => 0.13226294632778
417 => 0.13134055821608
418 => 0.12814315915555
419 => 0.12630430114396
420 => 0.12026471071767
421 => 0.12197753107048
422 => 0.12311313273643
423 => 0.12273781639261
424 => 0.12354414112728
425 => 0.12359364291729
426 => 0.12333149852654
427 => 0.12302796890483
428 => 0.12288022747122
429 => 0.12398137107505
430 => 0.12462062199987
501 => 0.123227105556
502 => 0.12290062415056
503 => 0.12430954621347
504 => 0.12516898785794
505 => 0.13151462208213
506 => 0.13104451700267
507 => 0.13222438849865
508 => 0.13209155307481
509 => 0.13332824637085
510 => 0.13534971724431
511 => 0.13123950174643
512 => 0.1319528930363
513 => 0.13177798596663
514 => 0.13368757549016
515 => 0.13369353702021
516 => 0.13254864270979
517 => 0.13316930848926
518 => 0.13282286987823
519 => 0.13344893127234
520 => 0.13103823846273
521 => 0.13397420208663
522 => 0.13563870427206
523 => 0.13566181588652
524 => 0.13645077671211
525 => 0.13725240660444
526 => 0.13879106537552
527 => 0.13720949424642
528 => 0.13436440174803
529 => 0.13456980823682
530 => 0.132901731546
531 => 0.13292977221653
601 => 0.13278008891963
602 => 0.13322929976127
603 => 0.13113681498115
604 => 0.13162791697665
605 => 0.13094037130707
606 => 0.13195139844629
607 => 0.13086370037326
608 => 0.13177790162115
609 => 0.13217244057349
610 => 0.13362829780144
611 => 0.13064866907697
612 => 0.12457300440465
613 => 0.12585018277908
614 => 0.1239611356431
615 => 0.12413597414764
616 => 0.12448917575217
617 => 0.12334433379153
618 => 0.12356273355951
619 => 0.12355493078294
620 => 0.12348769066988
621 => 0.12318987306003
622 => 0.12275797860432
623 => 0.12447851318576
624 => 0.12477086553796
625 => 0.12542072860211
626 => 0.1273542802747
627 => 0.12716107286632
628 => 0.12747620216549
629 => 0.12678827667478
630 => 0.12416788503814
701 => 0.12431018491109
702 => 0.12253570321515
703 => 0.12537535111557
704 => 0.12470288501123
705 => 0.12426934173911
706 => 0.12415104544056
707 => 0.12608939001376
708 => 0.12666937308989
709 => 0.12630796655806
710 => 0.12556671121737
711 => 0.12699014060397
712 => 0.12737099025815
713 => 0.12745624845053
714 => 0.12997829240807
715 => 0.12759720269134
716 => 0.12817035465216
717 => 0.13264192263696
718 => 0.12858682750894
719 => 0.13073490183767
720 => 0.13062976477732
721 => 0.13172864691702
722 => 0.13053962436789
723 => 0.13055436372742
724 => 0.13153009662275
725 => 0.13015985574561
726 => 0.12982056483469
727 => 0.12935183687131
728 => 0.1303752872313
729 => 0.13098879943543
730 => 0.1359332572257
731 => 0.13912760245289
801 => 0.13898892750209
802 => 0.14025615696376
803 => 0.13968525848479
804 => 0.13784167670078
805 => 0.14098844600523
806 => 0.13999267653088
807 => 0.14007476655649
808 => 0.14007171116164
809 => 0.1407338108104
810 => 0.14026465252871
811 => 0.13933989339739
812 => 0.13995379166546
813 => 0.14177685004899
814 => 0.14743567920975
815 => 0.15060243497762
816 => 0.14724503653622
817 => 0.14956092502374
818 => 0.14817221716667
819 => 0.14791984763856
820 => 0.14937439675154
821 => 0.15083149186018
822 => 0.15073868120096
823 => 0.14968090497474
824 => 0.14908339402463
825 => 0.15360794711973
826 => 0.15694156076644
827 => 0.15671423066457
828 => 0.15771759180254
829 => 0.16066349113642
830 => 0.1609328272523
831 => 0.16089889709232
901 => 0.1602313194268
902 => 0.16313193989437
903 => 0.16555168851999
904 => 0.1600767944854
905 => 0.16216156246215
906 => 0.16309748197394
907 => 0.16447168949205
908 => 0.16679020791903
909 => 0.16930873388737
910 => 0.16966488107352
911 => 0.16941217760173
912 => 0.167751142024
913 => 0.17050694319082
914 => 0.17212122688286
915 => 0.17308249587924
916 => 0.17552011411415
917 => 0.16310326189422
918 => 0.15431399673535
919 => 0.15294142606226
920 => 0.15573260249966
921 => 0.15646861346698
922 => 0.15617192836893
923 => 0.1462788113476
924 => 0.15288934084858
925 => 0.16000171476252
926 => 0.1602749300106
927 => 0.16383553310465
928 => 0.16499501142612
929 => 0.16786176361574
930 => 0.16768244748575
1001 => 0.16838045602393
1002 => 0.16821999594883
1003 => 0.17353005071421
1004 => 0.17938782967118
1005 => 0.1791849934125
1006 => 0.17834286838134
1007 => 0.17959356765627
1008 => 0.18563942329761
1009 => 0.18508281779302
1010 => 0.18562351262919
1011 => 0.19275191715982
1012 => 0.20201985705337
1013 => 0.19771396848687
1014 => 0.20705650769013
1015 => 0.21293714089185
1016 => 0.22310708794542
1017 => 0.22183376048627
1018 => 0.2257928462437
1019 => 0.21955423858293
1020 => 0.20522913436315
1021 => 0.20296213178608
1022 => 0.20750072835503
1023 => 0.21865842515003
1024 => 0.20714933277609
1025 => 0.20947760717386
1026 => 0.20880706399067
1027 => 0.20877133359406
1028 => 0.21013501750653
1029 => 0.20815692286653
1030 => 0.20009780945071
1031 => 0.20379125363652
1101 => 0.20236503746262
1102 => 0.20394753063902
1103 => 0.21248759364224
1104 => 0.20871182821884
1105 => 0.20473436606357
1106 => 0.20972298627579
1107 => 0.21607521408184
1108 => 0.21567770308179
1109 => 0.21490636559498
1110 => 0.2192543546222
1111 => 0.22643595865391
1112 => 0.22837711736566
1113 => 0.22981004104143
1114 => 0.23000761700688
1115 => 0.23204277224374
1116 => 0.22109922960998
1117 => 0.23846691281986
1118 => 0.24146583193764
1119 => 0.24090215943596
1120 => 0.24423533182157
1121 => 0.2432546279513
1122 => 0.24183374191101
1123 => 0.24711752912829
1124 => 0.24106009346332
1125 => 0.23246232614683
1126 => 0.22774542095245
1127 => 0.2339570222143
1128 => 0.2377502303499
1129 => 0.24025729963418
1130 => 0.24101593728479
1201 => 0.22194874567237
1202 => 0.2116725869082
1203 => 0.21825948685963
1204 => 0.22629595940393
1205 => 0.22105458659922
1206 => 0.22126003848994
1207 => 0.21378721827897
1208 => 0.22695713817665
1209 => 0.22503839162402
1210 => 0.23499285213328
1211 => 0.2326171402432
1212 => 0.24073461635857
1213 => 0.23859701285115
1214 => 0.24747008549867
1215 => 0.25100979440661
1216 => 0.25695351657476
1217 => 0.26132574279694
1218 => 0.26389319766197
1219 => 0.26373905730216
1220 => 0.27391259257834
1221 => 0.26791361426223
1222 => 0.26037748364655
1223 => 0.26024117881991
1224 => 0.26414424765356
1225 => 0.27232400917425
1226 => 0.27444490232588
1227 => 0.27563019226007
1228 => 0.27381487946561
1229 => 0.26730341845412
1230 => 0.26449180260322
1231 => 0.26688738076854
]
'min_raw' => 0.098781204342843
'max_raw' => 0.27563019226007
'avg_raw' => 0.18720569830146
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.098781'
'max' => '$0.27563'
'avg' => '$0.1872056'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.039105999680244
'max_diff' => 0.14240950167878
'year' => 2036
]
11 => [
'items' => [
101 => 0.26395779452673
102 => 0.26901508227682
103 => 0.27595981853607
104 => 0.274525757961
105 => 0.27931960745708
106 => 0.28428073735786
107 => 0.29137537593426
108 => 0.29323017717183
109 => 0.29629609308577
110 => 0.29945192766213
111 => 0.30046549667593
112 => 0.30240071441526
113 => 0.30239051486253
114 => 0.30822242377519
115 => 0.31465519990505
116 => 0.31708342397496
117 => 0.32266699133067
118 => 0.31310532790556
119 => 0.32035795944998
120 => 0.32690001464818
121 => 0.3191003067436
122 => 0.3298503869912
123 => 0.33026778824701
124 => 0.33657005164813
125 => 0.33018150032352
126 => 0.32638799893995
127 => 0.33733969529368
128 => 0.34263887618405
129 => 0.3410427197737
130 => 0.32889589067903
131 => 0.32182591514392
201 => 0.30332242547211
202 => 0.32524060827964
203 => 0.33591631576303
204 => 0.32886824317571
205 => 0.33242288102685
206 => 0.35181583254751
207 => 0.35919941288595
208 => 0.35766367979067
209 => 0.35792319340346
210 => 0.36190723933262
211 => 0.37957469303668
212 => 0.36898794524883
213 => 0.37708111725477
214 => 0.38137370650461
215 => 0.38536090262847
216 => 0.37556960911456
217 => 0.36283128011563
218 => 0.35879651660299
219 => 0.32816745125923
220 => 0.3265730753928
221 => 0.32567810390444
222 => 0.32003543526655
223 => 0.31560184337419
224 => 0.31207608649267
225 => 0.30282344755544
226 => 0.30594594158269
227 => 0.29119916629257
228 => 0.30063363052956
301 => 0.27709742109319
302 => 0.29669907569404
303 => 0.28603078627267
304 => 0.29319425569639
305 => 0.29316926302641
306 => 0.27997904463728
307 => 0.27237120194327
308 => 0.27721921540956
309 => 0.28241667068122
310 => 0.2832599403127
311 => 0.28999857673987
312 => 0.29187918532018
313 => 0.28618085352461
314 => 0.27660968546684
315 => 0.27883284951156
316 => 0.27232614959486
317 => 0.26092340826744
318 => 0.26911305616155
319 => 0.27190936202601
320 => 0.27314436999778
321 => 0.26193108351595
322 => 0.25840762545107
323 => 0.256531765942
324 => 0.27516219099246
325 => 0.27618280773253
326 => 0.27096118818966
327 => 0.2945634036577
328 => 0.28922149538977
329 => 0.29518971572435
330 => 0.2786311206766
331 => 0.27926368130653
401 => 0.27142457704767
402 => 0.2758139516235
403 => 0.27271168314945
404 => 0.27545933353442
405 => 0.27710626384618
406 => 0.28494408178517
407 => 0.29678857098484
408 => 0.28377337315328
409 => 0.278102465077
410 => 0.28162066455312
411 => 0.29099009338095
412 => 0.30518525766735
413 => 0.2967814347055
414 => 0.3005109086298
415 => 0.30132563276951
416 => 0.29512896484388
417 => 0.3054137376526
418 => 0.31092543095414
419 => 0.3165792877973
420 => 0.32148837327673
421 => 0.31432101304316
422 => 0.32199111589382
423 => 0.31581036695161
424 => 0.31026559619636
425 => 0.31027400532482
426 => 0.30679568963388
427 => 0.3000560146867
428 => 0.29881311522128
429 => 0.30527883520131
430 => 0.31046373031934
501 => 0.31089078311524
502 => 0.31376140746211
503 => 0.3154602133808
504 => 0.33211082079868
505 => 0.3388078328432
506 => 0.34699681240329
507 => 0.35018688144754
508 => 0.35978784556769
509 => 0.35203428728849
510 => 0.35035675618261
511 => 0.32706795767855
512 => 0.33088149712893
513 => 0.33698734174081
514 => 0.32716864080728
515 => 0.33339634659618
516 => 0.33462582763976
517 => 0.32683500510673
518 => 0.33099642004319
519 => 0.31994493574549
520 => 0.29702946314231
521 => 0.30543924912434
522 => 0.31163168231047
523 => 0.30279431663236
524 => 0.3186349525571
525 => 0.30938118006696
526 => 0.30644817844701
527 => 0.29500549343698
528 => 0.30040600029238
529 => 0.30771026314211
530 => 0.30319707791267
531 => 0.31256261492192
601 => 0.32582671302451
602 => 0.33527949922311
603 => 0.33600516677172
604 => 0.32992765853351
605 => 0.33966690427138
606 => 0.33973784404401
607 => 0.3287519350657
608 => 0.32202312698629
609 => 0.32049432763311
610 => 0.32431356815611
611 => 0.32895083122173
612 => 0.33626250259815
613 => 0.34068079247863
614 => 0.35220134920703
615 => 0.35531848153749
616 => 0.35874326491319
617 => 0.3633198316672
618 => 0.36881517346303
619 => 0.35679167846375
620 => 0.35726939433467
621 => 0.34607328226795
622 => 0.33410863083978
623 => 0.34318830985891
624 => 0.35505878235733
625 => 0.35233568285048
626 => 0.35202927852809
627 => 0.35254456560889
628 => 0.35049143750884
629 => 0.34120521520481
630 => 0.33654173249856
701 => 0.34255881497095
702 => 0.3457566265155
703 => 0.35071615334262
704 => 0.35010478697826
705 => 0.36287999547063
706 => 0.36784405518851
707 => 0.36657403628858
708 => 0.36680775033088
709 => 0.3757949433357
710 => 0.38579055031428
711 => 0.39515275528623
712 => 0.40467639229975
713 => 0.39319527616607
714 => 0.38736587345018
715 => 0.3933803290526
716 => 0.39018897425037
717 => 0.40852744556133
718 => 0.40979716152649
719 => 0.42813430675725
720 => 0.44553844112788
721 => 0.43460721615714
722 => 0.44491486895136
723 => 0.45606343584357
724 => 0.47757083016843
725 => 0.47032789639908
726 => 0.46477992264299
727 => 0.4595371142511
728 => 0.47044656624223
729 => 0.48448140194606
730 => 0.48750437113268
731 => 0.49240273607811
801 => 0.48725270428155
802 => 0.49345535032311
803 => 0.51535341643058
804 => 0.50943636566876
805 => 0.50103320237361
806 => 0.51831962245283
807 => 0.52457551068024
808 => 0.56848261049433
809 => 0.62391713772144
810 => 0.60096687944669
811 => 0.58672091353534
812 => 0.59006905344334
813 => 0.61031186620951
814 => 0.61681321519524
815 => 0.59914030750263
816 => 0.60538267727139
817 => 0.63977874843347
818 => 0.65823113705384
819 => 0.63317031482095
820 => 0.56402850020703
821 => 0.50027658945988
822 => 0.51718646697598
823 => 0.51526941164025
824 => 0.55222369910664
825 => 0.50929524596499
826 => 0.51001805101974
827 => 0.54773651401567
828 => 0.53767387474652
829 => 0.52137368785595
830 => 0.50039559886305
831 => 0.4616156611213
901 => 0.42726718880487
902 => 0.49463245299814
903 => 0.49172754031035
904 => 0.48752079625447
905 => 0.49688244993357
906 => 0.54233998284749
907 => 0.54129203958215
908 => 0.53462555919341
909 => 0.53968202581261
910 => 0.52048726480995
911 => 0.52543419177692
912 => 0.5002664908315
913 => 0.51164334275487
914 => 0.52133871497567
915 => 0.52328520449144
916 => 0.52767074476068
917 => 0.49019678332413
918 => 0.50702149183144
919 => 0.51690443181748
920 => 0.47225294941609
921 => 0.51602181557587
922 => 0.48954444502756
923 => 0.4805576277867
924 => 0.49265719327837
925 => 0.48794198083906
926 => 0.4838881180703
927 => 0.48162599299112
928 => 0.49051057850789
929 => 0.49009610197416
930 => 0.47555919564498
1001 => 0.45659639393868
1002 => 0.46296093262406
1003 => 0.4606486360518
1004 => 0.4522685749817
1005 => 0.45791572433051
1006 => 0.43304853655523
1007 => 0.3902658324718
1008 => 0.41852939725898
1009 => 0.41744128075952
1010 => 0.41689260307833
1011 => 0.43813189086834
1012 => 0.43609022342107
1013 => 0.43238457701222
1014 => 0.4522005178794
1015 => 0.44496743290086
1016 => 0.46725809647556
1017 => 0.48194016917559
1018 => 0.47821632062357
1019 => 0.49202488096256
1020 => 0.46310755874081
1021 => 0.47271273322128
1022 => 0.47469234636951
1023 => 0.45195599224505
1024 => 0.43642426546518
1025 => 0.43538847636361
1026 => 0.4084586025311
1027 => 0.42284432376208
1028 => 0.43550316312375
1029 => 0.42944056143513
1030 => 0.42752132285558
1031 => 0.43732629652641
1101 => 0.43808822695455
1102 => 0.42071613244711
1103 => 0.42432834099789
1104 => 0.43939185113437
1105 => 0.42394877919144
1106 => 0.39394541301781
1107 => 0.38650416337775
1108 => 0.38551136350633
1109 => 0.36533010430956
1110 => 0.38700142326042
1111 => 0.37754131178313
1112 => 0.40742569059036
1113 => 0.39035589368881
1114 => 0.38962004886135
1115 => 0.38850771147969
1116 => 0.37113686801171
1117 => 0.3749399787565
1118 => 0.38758209810232
1119 => 0.39209294870858
1120 => 0.39162243003403
1121 => 0.38752014482064
1122 => 0.38939814998423
1123 => 0.38334844101193
1124 => 0.38121216286001
1125 => 0.37446948138294
1126 => 0.36455960232494
1127 => 0.36593763178878
1128 => 0.34630356831398
1129 => 0.3356058884743
1130 => 0.33264491168783
1201 => 0.32868536978122
1202 => 0.33309215248212
1203 => 0.34624794747905
1204 => 0.33037926755514
1205 => 0.30317352888408
1206 => 0.30480864013453
1207 => 0.30848224964542
1208 => 0.30163650262525
1209 => 0.29515757759065
1210 => 0.30079047725643
1211 => 0.28926304713458
1212 => 0.30987528450269
1213 => 0.30931778124701
1214 => 0.31700074868564
1215 => 0.32180506589537
1216 => 0.3107326701431
1217 => 0.30794799255435
1218 => 0.30953427146544
1219 => 0.28331661454499
1220 => 0.31485820677836
1221 => 0.31513097977779
1222 => 0.3127953317514
1223 => 0.32959025587826
1224 => 0.36503278425414
1225 => 0.35169787940673
1226 => 0.34653420120019
1227 => 0.33671804515491
1228 => 0.34979749025957
1229 => 0.34879319294666
1230 => 0.34425137962924
1231 => 0.34150447676354
]
'min_raw' => 0.256531765942
'max_raw' => 0.65823113705384
'avg_raw' => 0.45738145149792
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.256531'
'max' => '$0.658231'
'avg' => '$0.457381'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.15775056159916
'max_diff' => 0.38260094479377
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0080522390006363
]
1 => [
'year' => 2028
'avg' => 0.013819979706776
]
2 => [
'year' => 2029
'avg' => 0.037753693749913
]
3 => [
'year' => 2030
'avg' => 0.02912691850357
]
4 => [
'year' => 2031
'avg' => 0.028606243629778
]
5 => [
'year' => 2032
'avg' => 0.050155747799194
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0080522390006363
'min' => '$0.008052'
'max_raw' => 0.050155747799194
'max' => '$0.050155'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.050155747799194
]
1 => [
'year' => 2033
'avg' => 0.12900574079425
]
2 => [
'year' => 2034
'avg' => 0.081770038241194
]
3 => [
'year' => 2035
'avg' => 0.096447947621946
]
4 => [
'year' => 2036
'avg' => 0.18720569830146
]
5 => [
'year' => 2037
'avg' => 0.45738145149792
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.050155747799194
'min' => '$0.050155'
'max_raw' => 0.45738145149792
'max' => '$0.457381'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.45738145149792
]
]
]
]
'prediction_2025_max_price' => '$0.013767'
'last_price' => 0.01334968
'sma_50day_nextmonth' => '$0.012164'
'sma_200day_nextmonth' => '$0.019864'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.013100052'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.012987'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.012387'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.011979'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.013121'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.016662'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.02185'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.013116'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.012913'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.012572'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.012461'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.0136065'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.016483'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.022968'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.019343'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.029934'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.064016'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.086771'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.013047'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.013197'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.014598'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.0188078'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.032725'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.055031'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.0764026'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '58.96'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 104.35
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.012438'
'vwma_10_action' => 'BUY'
'hma_9' => '0.013437'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 171.8
'cci_20_action' => 'SELL'
'adx_14' => 19.69
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.0005015'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 82.57
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.002869'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 20
'sell_pct' => 42.86
'buy_pct' => 57.14
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767702017
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de NKN para 2026
A previsão de preço para NKN em 2026 sugere que o preço médio poderia variar entre $0.004612 na extremidade inferior e $0.013767 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, NKN poderia potencialmente ganhar 3.13% até 2026 se NKN atingir a meta de preço prevista.
Previsão de preço de NKN 2027-2032
A previsão de preço de NKN para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.008052 na extremidade inferior e $0.050155 na extremidade superior. Considerando a volatilidade de preços no mercado, se NKN atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de NKN | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.00444 | $0.008052 | $0.011664 |
| 2028 | $0.008013 | $0.013819 | $0.019626 |
| 2029 | $0.0176026 | $0.037753 | $0.0579047 |
| 2030 | $0.01497 | $0.029126 | $0.043283 |
| 2031 | $0.017699 | $0.0286062 | $0.039512 |
| 2032 | $0.027016 | $0.050155 | $0.073294 |
Previsão de preço de NKN 2032-2037
A previsão de preço de NKN para 2032-2037 é atualmente estimada entre $0.050155 na extremidade inferior e $0.457381 na extremidade superior. Comparado ao preço atual, NKN poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de NKN | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.027016 | $0.050155 | $0.073294 |
| 2033 | $0.062781 | $0.1290057 | $0.195229 |
| 2034 | $0.050473 | $0.08177 | $0.113066 |
| 2035 | $0.059675 | $0.096447 | $0.13322 |
| 2036 | $0.098781 | $0.1872056 | $0.27563 |
| 2037 | $0.256531 | $0.457381 | $0.658231 |
NKN Histograma de preços potenciais
Previsão de preço de NKN baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para NKN é Altista, com 20 indicadores técnicos mostrando sinais de alta e 15 indicando sinais de baixa. A previsão de preço de NKN foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de NKN
De acordo com nossos indicadores técnicos, o SMA de 200 dias de NKN está projetado para aumentar no próximo mês, alcançando $0.019864 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para NKN é esperado para alcançar $0.012164 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 58.96, sugerindo que o mercado de NKN está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de NKN para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.013100052 | BUY |
| SMA 5 | $0.012987 | BUY |
| SMA 10 | $0.012387 | BUY |
| SMA 21 | $0.011979 | BUY |
| SMA 50 | $0.013121 | BUY |
| SMA 100 | $0.016662 | SELL |
| SMA 200 | $0.02185 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.013116 | BUY |
| EMA 5 | $0.012913 | BUY |
| EMA 10 | $0.012572 | BUY |
| EMA 21 | $0.012461 | BUY |
| EMA 50 | $0.0136065 | SELL |
| EMA 100 | $0.016483 | SELL |
| EMA 200 | $0.022968 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.019343 | SELL |
| SMA 50 | $0.029934 | SELL |
| SMA 100 | $0.064016 | SELL |
| SMA 200 | $0.086771 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.0188078 | SELL |
| EMA 50 | $0.032725 | SELL |
| EMA 100 | $0.055031 | SELL |
| EMA 200 | $0.0764026 | SELL |
Osciladores de NKN
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 58.96 | NEUTRAL |
| Stoch RSI (14) | 104.35 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 171.8 | SELL |
| Índice Direcional Médio (14) | 19.69 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.0005015 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 82.57 | SELL |
| VWMA (10) | 0.012438 | BUY |
| Média Móvel de Hull (9) | 0.013437 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.002869 | SELL |
Previsão do preço de NKN com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do NKN
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de NKN por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.018758 | $0.026358 | $0.037038 | $0.052045 | $0.073132 | $0.102763 |
| Amazon.com stock | $0.027854 | $0.05812 | $0.121272 | $0.253042 | $0.527988 | $1.10 |
| Apple stock | $0.018935 | $0.026858 | $0.038096 | $0.054037 | $0.076647 | $0.108719 |
| Netflix stock | $0.021063 | $0.033235 | $0.052439 | $0.082742 | $0.130553 | $0.205993 |
| Google stock | $0.017287 | $0.022387 | $0.028991 | $0.037544 | $0.048619 | $0.062962 |
| Tesla stock | $0.030262 | $0.0686032 | $0.155518 | $0.352548 | $0.799201 | $1.81 |
| Kodak stock | $0.01001 | $0.007507 | $0.005629 | $0.004221 | $0.003165 | $0.002373 |
| Nokia stock | $0.008843 | $0.005858 | $0.003881 | $0.002571 | $0.0017031 | $0.001128 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para NKN
Você pode fazer perguntas como: 'Devo investir em NKN agora?', 'Devo comprar NKN hoje?', 'NKN será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para NKN regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como NKN, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre NKN para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de NKN é de $0.01334 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para NKN
com base no histórico de preços de 4 horas
Previsão de longo prazo para NKN
com base no histórico de preços de 1 mês
Previsão do preço de NKN com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se NKN tiver 1% da média anterior do crescimento anual do Bitcoin | $0.013696 | $0.014052 | $0.014417 | $0.014792 |
| Se NKN tiver 2% da média anterior do crescimento anual do Bitcoin | $0.014043 | $0.014773 | $0.015541 | $0.016349 |
| Se NKN tiver 5% da média anterior do crescimento anual do Bitcoin | $0.015084 | $0.017045 | $0.01926 | $0.021763 |
| Se NKN tiver 10% da média anterior do crescimento anual do Bitcoin | $0.016819 | $0.021191 | $0.026700064 | $0.03364 |
| Se NKN tiver 20% da média anterior do crescimento anual do Bitcoin | $0.020289 | $0.030837 | $0.046868 | $0.071234 |
| Se NKN tiver 50% da média anterior do crescimento anual do Bitcoin | $0.030699 | $0.070598 | $0.162353 | $0.373358 |
| Se NKN tiver 100% da média anterior do crescimento anual do Bitcoin | $0.048049 | $0.172946 | $0.62249 | $2.24 |
Perguntas Frequentes sobre NKN
NKN é um bom investimento?
A decisão de adquirir NKN depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de NKN experimentou uma escalada de 3.7794% nas últimas 24 horas, e NKN registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em NKN dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
NKN pode subir?
Parece que o valor médio de NKN pode potencialmente subir para $0.013767 até o final deste ano. Observando as perspectivas de NKN em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.043283. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de NKN na próxima semana?
Com base na nossa nova previsão experimental de NKN, o preço de NKN aumentará 0.86% na próxima semana e atingirá $0.013463 até 13 de janeiro de 2026.
Qual será o preço de NKN no próximo mês?
Com base na nossa nova previsão experimental de NKN, o preço de NKN diminuirá -11.62% no próximo mês e atingirá $0.011798 até 5 de fevereiro de 2026.
Até onde o preço de NKN pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de NKN em 2026, espera-se que NKN fluctue dentro do intervalo de $0.004612 e $0.013767. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de NKN não considera flutuações repentinas e extremas de preço.
Onde estará NKN em 5 anos?
O futuro de NKN parece seguir uma tendência de alta, com um preço máximo de $0.043283 projetada após um período de cinco anos. Com base na previsão de NKN para 2030, o valor de NKN pode potencialmente atingir seu pico mais alto de aproximadamente $0.043283, enquanto seu pico mais baixo está previsto para cerca de $0.01497.
Quanto será NKN em 2026?
Com base na nossa nova simulação experimental de previsão de preços de NKN, espera-se que o valor de NKN em 2026 aumente 3.13% para $0.013767 se o melhor cenário ocorrer. O preço ficará entre $0.013767 e $0.004612 durante 2026.
Quanto será NKN em 2027?
De acordo com nossa última simulação experimental para previsão de preços de NKN, o valor de NKN pode diminuir -12.62% para $0.011664 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.011664 e $0.00444 ao longo do ano.
Quanto será NKN em 2028?
Nosso novo modelo experimental de previsão de preços de NKN sugere que o valor de NKN em 2028 pode aumentar 47.02%, alcançando $0.019626 no melhor cenário. O preço é esperado para variar entre $0.019626 e $0.008013 durante o ano.
Quanto será NKN em 2029?
Com base no nosso modelo de previsão experimental, o valor de NKN pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.0579047 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.0579047 e $0.0176026.
Quanto será NKN em 2030?
Usando nossa nova simulação experimental para previsões de preços de NKN, espera-se que o valor de NKN em 2030 aumente 224.23%, alcançando $0.043283 no melhor cenário. O preço está previsto para variar entre $0.043283 e $0.01497 ao longo de 2030.
Quanto será NKN em 2031?
Nossa simulação experimental indica que o preço de NKN poderia aumentar 195.98% em 2031, potencialmente atingindo $0.039512 sob condições ideais. O preço provavelmente oscilará entre $0.039512 e $0.017699 durante o ano.
Quanto será NKN em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de NKN, NKN poderia ver um 449.04% aumento em valor, atingindo $0.073294 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.073294 e $0.027016 ao longo do ano.
Quanto será NKN em 2033?
De acordo com nossa previsão experimental de preços de NKN, espera-se que o valor de NKN seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.195229. Ao longo do ano, o preço de NKN poderia variar entre $0.195229 e $0.062781.
Quanto será NKN em 2034?
Os resultados da nossa nova simulação de previsão de preços de NKN sugerem que NKN pode aumentar 746.96% em 2034, atingindo potencialmente $0.113066 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.113066 e $0.050473.
Quanto será NKN em 2035?
Com base em nossa previsão experimental para o preço de NKN, NKN poderia aumentar 897.93%, com o valor potencialmente atingindo $0.13322 em 2035. A faixa de preço esperada para o ano está entre $0.13322 e $0.059675.
Quanto será NKN em 2036?
Nossa recente simulação de previsão de preços de NKN sugere que o valor de NKN pode aumentar 1964.7% em 2036, possivelmente atingindo $0.27563 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.27563 e $0.098781.
Quanto será NKN em 2037?
De acordo com a simulação experimental, o valor de NKN poderia aumentar 4830.69% em 2037, com um pico de $0.658231 sob condições favoráveis. O preço é esperado para cair entre $0.658231 e $0.256531 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Mil.k Alliance
Previsão de Preço do Dogelon Mars
Previsão de Preço do Medibloc
Previsão de Preço do ChainGPT
Previsão de Preço do Hifi Finance
Previsão de Preço do The Truth
Previsão de Preço do Metal
Previsão de Preço do Telos
Previsão de Preço do Stader MaticX
Previsão de Preço do OmiseGO
Previsão de Preço do WazirX
Previsão de Preço do STP Network
Previsão de Preço do Ultima
Previsão de Preço do LUKSO
Previsão de Preço do Bella Protocol
Previsão de Preço do Aavegotchi
Previsão de Preço do Tokamak Network
Previsão de Preço do Chainflip
Previsão de Preço do Kyber Network Crystal
Previsão de Preço do Radicle
Previsão de Preço do Ergo
Previsão de Preço do CANTO
Previsão de Preço do Mines of Dalarnia
Previsão de Preço do Ethernity Chain
Previsão de Preço do Huobi Token
Como ler e prever os movimentos de preço de NKN?
Traders de NKN utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de NKN
Médias móveis são ferramentas populares para a previsão de preço de NKN. Uma média móvel simples (SMA) calcula o preço médio de fechamento de NKN em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de NKN acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de NKN.
Como ler gráficos de NKN e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de NKN em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de NKN dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de NKN?
A ação de preço de NKN é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de NKN. A capitalização de mercado de NKN pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de NKN, grandes detentores de NKN, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de NKN.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


