Previsão de Preço NKN - Projeção NKN
Previsão de Preço NKN até $0.013812 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.004627 | $0.013812 |
| 2027 | $0.004454 | $0.0117021 |
| 2028 | $0.008039 | $0.01969 |
| 2029 | $0.017659 | $0.058092 |
| 2030 | $0.015018 | $0.043423 |
| 2031 | $0.017756 | $0.03964 |
| 2032 | $0.0271045 | $0.073532 |
| 2033 | $0.062985 | $0.195862 |
| 2034 | $0.050636 | $0.113433 |
| 2035 | $0.059868 | $0.133652 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em NKN hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.43, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de NKN para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'NKN'
'name_with_ticker' => 'NKN <small>NKN</small>'
'name_lang' => 'NKN'
'name_lang_with_ticker' => 'NKN <small>NKN</small>'
'name_with_lang' => 'NKN'
'name_with_lang_with_ticker' => 'NKN <small>NKN</small>'
'image' => '/uploads/coins/nkn.png?1717200595'
'price_for_sd' => 0.01339
'ticker' => 'NKN'
'marketcap' => '$10.66M'
'low24h' => '$0.01275'
'high24h' => '$0.01363'
'volume24h' => '$1.32M'
'current_supply' => '795.75M'
'max_supply' => '795.75M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.18 USD 0.07x'
'price' => '$0.01339'
'change_24h_pct' => '4.7019%'
'ath_price' => '$1.44'
'ath_days' => 1733
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '9 de abr. de 2021'
'ath_pct' => '-99.07%'
'fdv' => '$10.66M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.660364'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.013507'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.011836'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004627'
'current_year_max_price_prediction' => '$0.013812'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.015018'
'grand_prediction_max_price' => '$0.043423'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.013646729168314
107 => 0.013697681101265
108 => 0.013812478407876
109 => 0.012831547991818
110 => 0.013271956950024
111 => 0.013530655952231
112 => 0.012361844448708
113 => 0.013507552306822
114 => 0.012814472175647
115 => 0.012579230369412
116 => 0.012895952470756
117 => 0.01277252555984
118 => 0.012666410349706
119 => 0.01260719623916
120 => 0.012839761995045
121 => 0.012828912524556
122 => 0.012448389808862
123 => 0.011952013438328
124 => 0.012118613641278
125 => 0.012058086225661
126 => 0.011838727063273
127 => 0.011986548653196
128 => 0.011335617181969
129 => 0.010215723418196
130 => 0.010955559541818
131 => 0.010927076655845
201 => 0.010912714293142
202 => 0.011468680692475
203 => 0.011415237351507
204 => 0.01131823716433
205 => 0.011836945578767
206 => 0.011647610029885
207 => 0.012231097578474
208 => 0.012615420215584
209 => 0.012517943563278
210 => 0.012879400861072
211 => 0.012122451773469
212 => 0.012373879896844
213 => 0.012425698884608
214 => 0.01183054479745
215 => 0.011423981343034
216 => 0.011396868195787
217 => 0.010691943193726
218 => 0.011068508439871
219 => 0.01139987027315
220 => 0.011241173669727
221 => 0.011190935066009
222 => 0.011447593196979
223 => 0.011467537731884
224 => 0.011012800222431
225 => 0.01110735455031
226 => 0.011501661815916
227 => 0.011097419018905
228 => 0.010312041296999
301 => 0.010117256763269
302 => 0.010091268915879
303 => 0.0095629978118485
304 => 0.010130273197212
305 => 0.0098826422894655
306 => 0.010664905359962
307 => 0.010218080889455
308 => 0.010198819179589
309 => 0.010169702280046
310 => 0.0097149975182032
311 => 0.0098145489630517
312 => 0.010145473127841
313 => 0.010263550597966
314 => 0.010251234150452
315 => 0.010143851418899
316 => 0.010193010683515
317 => 0.010034651563963
318 => 0.0099787316628888
319 => 0.0098022330731187
320 => 0.0095428289051365
321 => 0.0095789006457126
322 => 0.0090649531121471
323 => 0.0087849272186005
324 => 0.0087074197419487
325 => 0.0086037735049096
326 => 0.0087191268602144
327 => 0.0090634971633586
328 => 0.0086481135155313
329 => 0.0079359673871064
330 => 0.0079787685828627
331 => 0.0080749301619381
401 => 0.0078957336955037
402 => 0.007726139278843
403 => 0.0078735878644995
404 => 0.0075718421618294
405 => 0.0081113946884986
406 => 0.0080968013047307
407 => 0.0082979131209685
408 => 0.008423672466892
409 => 0.0081338378896102
410 => 0.0080609452772198
411 => 0.0081024682220219
412 => 0.0074161864379463
413 => 0.0082418292578283
414 => 0.0082489694512202
415 => 0.0081878307804616
416 => 0.0086274600931866
417 => 0.0095552150668575
418 => 0.0092061563269051
419 => 0.0090709902324393
420 => 0.008814039388054
421 => 0.009156411131966
422 => 0.0091301223238647
423 => 0.0090112343638966
424 => 0.0089393305547548
425 => 0.0090718155277897
426 => 0.0089229142004495
427 => 0.0088961674305244
428 => 0.0087341111055508
429 => 0.0086762643706282
430 => 0.0086334369510364
501 => 0.0085862881702011
502 => 0.0086902866319795
503 => 0.0084546124354526
504 => 0.0081704124578674
505 => 0.0081467843048176
506 => 0.0082120237127967
507 => 0.0081831601312686
508 => 0.0081466461170939
509 => 0.0080769309200342
510 => 0.0080562479102961
511 => 0.0081234576579751
512 => 0.0080475817714172
513 => 0.0081595407752068
514 => 0.0081290941211503
515 => 0.0079590215865873
516 => 0.0077470482396049
517 => 0.0077451612321876
518 => 0.0076994919222862
519 => 0.0076413251897
520 => 0.0076251445353691
521 => 0.0078611701558831
522 => 0.0083497361266947
523 => 0.0082538189362315
524 => 0.0083231289363302
525 => 0.0086640655381874
526 => 0.0087724390315964
527 => 0.0086955180929415
528 => 0.0085902239678339
529 => 0.0085948563749619
530 => 0.0089546782751541
531 => 0.0089771199257026
601 => 0.0090338227366877
602 => 0.009106701873016
603 => 0.0087079297249966
604 => 0.0085760742426511
605 => 0.0085135938000522
606 => 0.0083211782198219
607 => 0.0085286819266352
608 => 0.0084077784028698
609 => 0.0084240924188782
610 => 0.0084134678945509
611 => 0.0084192696032608
612 => 0.0081112438725713
613 => 0.0082234722594788
614 => 0.0080368707991915
615 => 0.0077870323908637
616 => 0.0077861948449144
617 => 0.0078473424414067
618 => 0.0078109694583074
619 => 0.0077130906960219
620 => 0.0077269939122298
621 => 0.0076051871085968
622 => 0.0077417834635742
623 => 0.0077457005582697
624 => 0.0076931035211497
625 => 0.007903549052657
626 => 0.0079897687586227
627 => 0.0079551482620526
628 => 0.0079873396922922
629 => 0.0082578047285354
630 => 0.0083019023306599
701 => 0.0083214875725996
702 => 0.0082952459429478
703 => 0.007992283296655
704 => 0.0080057209783148
705 => 0.0079071241863375
706 => 0.0078238202869907
707 => 0.0078271520060932
708 => 0.0078699810391063
709 => 0.0080570179381643
710 => 0.0084506260658044
711 => 0.0084655632065245
712 => 0.0084836674568245
713 => 0.0084100283723874
714 => 0.0083878181198901
715 => 0.0084171191758867
716 => 0.0085649376936961
717 => 0.0089451670538381
718 => 0.0088107686032988
719 => 0.0087015005709739
720 => 0.0087973580937728
721 => 0.008782601579494
722 => 0.0086580417485499
723 => 0.0086545457689547
724 => 0.0084154756291859
725 => 0.0083270968418771
726 => 0.0082532409121643
727 => 0.0081725921649757
728 => 0.0081247808842719
729 => 0.0081982407412714
730 => 0.0082150418797187
731 => 0.0080544206185306
801 => 0.0080325285341466
802 => 0.0081636953232836
803 => 0.0081059737097752
804 => 0.0081653418206957
805 => 0.0081791157316795
806 => 0.008176897814771
807 => 0.0081166298209831
808 => 0.0081550428430061
809 => 0.0080641845944488
810 => 0.0079653898956105
811 => 0.0079023650328789
812 => 0.0078473674811106
813 => 0.0078778833193081
814 => 0.0077690999281059
815 => 0.0077342979318832
816 => 0.0081420293754651
817 => 0.0084432249766907
818 => 0.0084388454733623
819 => 0.0084121863731677
820 => 0.0083725763578794
821 => 0.0085620399743622
822 => 0.0084960346388242
823 => 0.0085440590353584
824 => 0.008556283259854
825 => 0.0085932823057011
826 => 0.008606506284416
827 => 0.0085665342360958
828 => 0.0084323831597588
829 => 0.0080980914322284
830 => 0.0079424777306597
831 => 0.0078911226171909
901 => 0.0078929892780282
902 => 0.0078414984389932
903 => 0.0078566647987466
904 => 0.007836224198006
905 => 0.0077975146453158
906 => 0.0078754931135101
907 => 0.0078844794055499
908 => 0.0078662782993
909 => 0.0078705653187115
910 => 0.0077198679327567
911 => 0.0077313251277133
912 => 0.0076675300102849
913 => 0.0076555691948287
914 => 0.0074943006932459
915 => 0.007208590166449
916 => 0.0073669015328864
917 => 0.0071756836641768
918 => 0.0071032665598729
919 => 0.007446077868477
920 => 0.0074116691211988
921 => 0.0073527763029813
922 => 0.007265661550499
923 => 0.0072333498414054
924 => 0.0070370341255971
925 => 0.0070254347458035
926 => 0.0071227341155283
927 => 0.0070778338042672
928 => 0.007014776762179
929 => 0.0067863905477252
930 => 0.0065296088266022
1001 => 0.0065373594526906
1002 => 0.006619036940586
1003 => 0.006856525252352
1004 => 0.0067637344603555
1005 => 0.0066964136761104
1006 => 0.0066838065168767
1007 => 0.0068416115095628
1008 => 0.0070649386353818
1009 => 0.0071697187261533
1010 => 0.0070658848384174
1011 => 0.006946606059
1012 => 0.0069538660056185
1013 => 0.007002163177958
1014 => 0.0070072385278856
1015 => 0.0069296003045415
1016 => 0.0069514550096444
1017 => 0.006918255714157
1018 => 0.0067145116990321
1019 => 0.0067108266158778
1020 => 0.00666082454875
1021 => 0.0066593105060295
1022 => 0.0065742445162451
1023 => 0.0065623431962408
1024 => 0.0063934395103873
1025 => 0.0065046124279035
1026 => 0.0064300434716738
1027 => 0.006317650465597
1028 => 0.0062982738689859
1029 => 0.0062976913850938
1030 => 0.0064130938717184
1031 => 0.0065032638826567
1101 => 0.0064313406305931
1102 => 0.0064149651002719
1103 => 0.0065898129222216
1104 => 0.0065675619431052
1105 => 0.0065482927386939
1106 => 0.0070449421407381
1107 => 0.006651805384984
1108 => 0.0064803753200136
1109 => 0.0062681980609265
1110 => 0.0063372840463759
1111 => 0.0063518414785944
1112 => 0.0058415934183153
1113 => 0.0056345858438075
1114 => 0.0055635486451523
1115 => 0.0055226657330076
1116 => 0.0055412965894472
1117 => 0.0053549654928234
1118 => 0.0054801830713865
1119 => 0.0053188360918858
1120 => 0.005291785745704
1121 => 0.0055802941321066
1122 => 0.005620438388633
1123 => 0.0054491705184486
1124 => 0.0055591522168565
1125 => 0.0055192713241538
1126 => 0.0053216019227554
1127 => 0.0053140524055797
1128 => 0.0052148688483734
1129 => 0.0050596657870667
1130 => 0.0049887338233955
1201 => 0.0049517918408559
1202 => 0.0049670348228366
1203 => 0.0049593275047042
1204 => 0.0049090320404595
1205 => 0.004962210381841
1206 => 0.0048263616944191
1207 => 0.0047722656524805
1208 => 0.0047478317253555
1209 => 0.0046272581961099
1210 => 0.0048191443004314
1211 => 0.0048569482803002
1212 => 0.0048948267456876
1213 => 0.005224532926158
1214 => 0.0052080617371217
1215 => 0.0053569532642156
1216 => 0.0053511676132666
1217 => 0.0053087013378567
1218 => 0.0051295431072652
1219 => 0.0052009523847905
1220 => 0.0049811657280331
1221 => 0.0051458448353157
1222 => 0.0050706921679159
1223 => 0.005120435642871
1224 => 0.0050309923897133
1225 => 0.0050804939790322
1226 => 0.0048659130063623
1227 => 0.0046655403133189
1228 => 0.0047461761342431
1229 => 0.0048338364934124
1230 => 0.0050239064875355
1231 => 0.0049107023670792
]
'min_raw' => 0.0046272581961099
'max_raw' => 0.013812478407876
'avg_raw' => 0.0092198683019929
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004627'
'max' => '$0.013812'
'avg' => '$0.009219'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0087656818038901
'max_diff' => 0.00041953840787594
'year' => 2026
]
1 => [
'items' => [
101 => 0.004951414849517
102 => 0.0048150348485376
103 => 0.0045336439514957
104 => 0.004535236593414
105 => 0.004491950734338
106 => 0.0044545454322574
107 => 0.0049237052220919
108 => 0.0048653577859072
109 => 0.0047723887826707
110 => 0.0048968314879441
111 => 0.0049297361143897
112 => 0.0049306728628462
113 => 0.0050214630482826
114 => 0.005069917786525
115 => 0.0050784581441551
116 => 0.0052213184625911
117 => 0.0052692033569577
118 => 0.0054664344599296
119 => 0.0050658067405196
120 => 0.0050575560762787
121 => 0.0048985826520075
122 => 0.0047977591930642
123 => 0.0049054861204995
124 => 0.0050009174720152
125 => 0.0049015479701129
126 => 0.0049145235292567
127 => 0.0047811280917395
128 => 0.0048288106838132
129 => 0.0048698813556458
130 => 0.0048472045446823
131 => 0.0048132562610999
201 => 0.0049930931894757
202 => 0.0049829460851901
203 => 0.0051504143673267
204 => 0.0052809678690239
205 => 0.0055149430832953
206 => 0.0052707777497993
207 => 0.0052618793945775
208 => 0.0053488622442125
209 => 0.0052691900403366
210 => 0.0053195401229952
211 => 0.0055068309065697
212 => 0.0055107880656977
213 => 0.0054445005517925
214 => 0.0054404669505472
215 => 0.0054531981926986
216 => 0.0055277654756327
217 => 0.0055017093757543
218 => 0.0055318621541933
219 => 0.0055695686653469
220 => 0.0057255387827078
221 => 0.0057631426499691
222 => 0.0056717847478938
223 => 0.0056800333435602
224 => 0.0056458629803535
225 => 0.0056128548376493
226 => 0.0056870523219963
227 => 0.0058226496829956
228 => 0.0058218061388503
301 => 0.0058532620909661
302 => 0.0058728588885391
303 => 0.0057887350876233
304 => 0.0057339735865451
305 => 0.0057549726306233
306 => 0.0057885505594041
307 => 0.0057440837608717
308 => 0.005469614081305
309 => 0.0055528706488945
310 => 0.0055390126850095
311 => 0.0055192772592512
312 => 0.0056029923817664
313 => 0.0055949178539754
314 => 0.005353054398109
315 => 0.0053685377118295
316 => 0.0053539959896986
317 => 0.0054009832688598
318 => 0.0052666525730628
319 => 0.0053079717903589
320 => 0.0053338868161034
321 => 0.0053491509653555
322 => 0.0054042955391794
323 => 0.0053978249599174
324 => 0.0054038933188873
325 => 0.0054856581642403
326 => 0.0058991966937292
327 => 0.005921704683468
328 => 0.0058108671100839
329 => 0.0058551445344764
330 => 0.0057701415620511
331 => 0.0058272046269106
401 => 0.0058662457266428
402 => 0.0056898265041248
403 => 0.0056793801027186
404 => 0.0055940262927889
405 => 0.0056398905955582
406 => 0.0055669171920921
407 => 0.0055848223128014
408 => 0.0055347580343579
409 => 0.0056248637678578
410 => 0.0057256159789261
411 => 0.0057510699662674
412 => 0.0056841114842031
413 => 0.0056356291304096
414 => 0.0055505100882284
415 => 0.0056920649523774
416 => 0.0057334599084608
417 => 0.0056918475222954
418 => 0.0056822050231723
419 => 0.0056639325047576
420 => 0.0056860816243337
421 => 0.00573323446264
422 => 0.005710998054871
423 => 0.0057256855939575
424 => 0.0056697118406842
425 => 0.0057887629361018
426 => 0.0059778447268314
427 => 0.0059784526557066
428 => 0.005956216128075
429 => 0.0059471174200609
430 => 0.0059699334468362
501 => 0.0059823102053993
502 => 0.0060560930522469
503 => 0.0061352649865526
504 => 0.0065047258585361
505 => 0.0064009827241047
506 => 0.0067287903890541
507 => 0.0069880436915311
508 => 0.007065782421171
509 => 0.0069942664477922
510 => 0.0067496141660801
511 => 0.006737610357964
512 => 0.0071032241563709
513 => 0.0069999215121481
514 => 0.0069876339913241
515 => 0.0068569155298507
516 => 0.0069341863303779
517 => 0.0069172860728083
518 => 0.0068906081894459
519 => 0.0070380354941211
520 => 0.0073140062475469
521 => 0.0072709936175882
522 => 0.0072388866846225
523 => 0.0070982034505544
524 => 0.0071829261802013
525 => 0.007152758038931
526 => 0.0072823795190036
527 => 0.0072055946256759
528 => 0.0069991388930171
529 => 0.0070320176489301
530 => 0.0070270480911167
531 => 0.007129321238769
601 => 0.0070986213784193
602 => 0.0070210534506683
603 => 0.0073130630095136
604 => 0.0072941015330047
605 => 0.0073209845714973
606 => 0.0073328193164274
607 => 0.0075105603891109
608 => 0.0075833752195094
609 => 0.0075999054608129
610 => 0.0076690739179904
611 => 0.0075981844865873
612 => 0.0078817927555077
613 => 0.0080703757053384
614 => 0.0082894245059567
615 => 0.0086095136784271
616 => 0.0087298701682663
617 => 0.008708128845646
618 => 0.0089508168030858
619 => 0.0093869216679549
620 => 0.0087962781075513
621 => 0.0094182272108509
622 => 0.009221325305494
623 => 0.0087544744300067
624 => 0.0087244147374355
625 => 0.0090405715705657
626 => 0.0097417769974807
627 => 0.0095661329910446
628 => 0.0097420642881525
629 => 0.0095368310849351
630 => 0.0095266395265541
701 => 0.0097320965695613
702 => 0.010212158149428
703 => 0.0099840988876726
704 => 0.009657120013521
705 => 0.0098985561258398
706 => 0.0096894018214919
707 => 0.0092181186351922
708 => 0.0095659986793831
709 => 0.0093333812008859
710 => 0.0094012713477367
711 => 0.0098901986882993
712 => 0.0098313696571415
713 => 0.0099074998708813
714 => 0.0097731320363052
715 => 0.0096476112909484
716 => 0.0094133174984471
717 => 0.0093439546570318
718 => 0.0093631240509854
719 => 0.0093439451576322
720 => 0.0092128599339988
721 => 0.0091845520924359
722 => 0.0091373711163027
723 => 0.0091519944736636
724 => 0.0090632804352518
725 => 0.0092307021549904
726 => 0.009261777101489
727 => 0.009383612667302
728 => 0.0093962620399187
729 => 0.0097355723564871
730 => 0.0095486859359995
731 => 0.0096740654818598
801 => 0.00966285035516
802 => 0.0087645925040941
803 => 0.0088883645105749
804 => 0.0090809149108637
805 => 0.0089941712165295
806 => 0.0088715359276394
807 => 0.0087725013565724
808 => 0.0086224538546012
809 => 0.0088336428322187
810 => 0.0091113338803417
811 => 0.0094033047431591
812 => 0.0097540886041455
813 => 0.0096757977299476
814 => 0.0093967470828781
815 => 0.009409265091059
816 => 0.0094866464919788
817 => 0.0093864305469461
818 => 0.0093568749083083
819 => 0.0094825860010876
820 => 0.009483451704294
821 => 0.0093681411480324
822 => 0.0092399945663566
823 => 0.0092394576275003
824 => 0.0092166551810402
825 => 0.0095408875895044
826 => 0.0097191826305658
827 => 0.0097396238696866
828 => 0.0097178067723057
829 => 0.009726203307198
830 => 0.0096224573512675
831 => 0.009859589841617
901 => 0.010077206064734
902 => 0.010018880268246
903 => 0.0099314416078104
904 => 0.0098617925031567
905 => 0.01000247315267
906 => 0.0099962088647994
907 => 0.01007530537687
908 => 0.010071717102199
909 => 0.01004511992016
910 => 0.010018881218116
911 => 0.010122914705832
912 => 0.010092954732096
913 => 0.010062948222246
914 => 0.010002765572975
915 => 0.010010945394539
916 => 0.0099235218316207
917 => 0.0098830756911846
918 => 0.0092748627828855
919 => 0.0091123284198579
920 => 0.0091634650391584
921 => 0.0091803005419939
922 => 0.0091095653789108
923 => 0.0092109814323995
924 => 0.0091951758478894
925 => 0.0092566661312602
926 => 0.0092182496718079
927 => 0.009219826296704
928 => 0.0093328009127006
929 => 0.0093655979243528
930 => 0.0093489170995221
1001 => 0.0093605997774483
1002 => 0.0096298221593066
1003 => 0.0095915473458535
1004 => 0.0095712146140519
1005 => 0.0095768469197173
1006 => 0.0096456390104751
1007 => 0.0096648970399783
1008 => 0.0095832994157353
1009 => 0.0096217813270385
1010 => 0.0097856324212862
1011 => 0.0098429710311041
1012 => 0.010025968349549
1013 => 0.0099482278361556
1014 => 0.01009092391302
1015 => 0.010529523004622
1016 => 0.010879906307743
1017 => 0.01055767934199
1018 => 0.011201113657127
1019 => 0.011702119566631
1020 => 0.011682890125355
1021 => 0.011595528156558
1022 => 0.011025146248518
1023 => 0.010500272312825
1024 => 0.010939351647357
1025 => 0.010940470950878
1026 => 0.010902753646642
1027 => 0.010668494709351
1028 => 0.01089460194341
1029 => 0.010912549514549
1030 => 0.010902503647355
1031 => 0.010722897869383
1101 => 0.010448673043117
1102 => 0.010502255917768
1103 => 0.010590025759507
1104 => 0.010423859138387
1105 => 0.010370758834549
1106 => 0.010469482402131
1107 => 0.010787590306751
1108 => 0.010727453850056
1109 => 0.010725883444142
1110 => 0.010983172707709
1111 => 0.010799009121493
1112 => 0.010502931769413
1113 => 0.010428168333233
1114 => 0.010162808501477
1115 => 0.01034609348245
1116 => 0.010352689582619
1117 => 0.010252306271667
1118 => 0.010511077321853
1119 => 0.01050869270107
1120 => 0.010754357300233
1121 => 0.011223975746424
1122 => 0.011085086463365
1123 => 0.010923573338279
1124 => 0.010941134293249
1125 => 0.01113373462514
1126 => 0.011017284067841
1127 => 0.011059160500168
1128 => 0.011133671240144
1129 => 0.01117862541957
1130 => 0.010934666078635
1201 => 0.010877787486339
1202 => 0.010761433848174
1203 => 0.01073107935582
1204 => 0.010825846966307
1205 => 0.010800879049133
1206 => 0.010352135205941
1207 => 0.010305238977541
1208 => 0.010306677217913
1209 => 0.010188754421805
1210 => 0.010008893853027
1211 => 0.01048155668886
1212 => 0.01044359524823
1213 => 0.010401688755757
1214 => 0.01040682206197
1215 => 0.010611988978975
1216 => 0.010492981805935
1217 => 0.010809381880355
1218 => 0.010744339536911
1219 => 0.010677629102785
1220 => 0.010668407688739
1221 => 0.010642729863067
1222 => 0.010554671044541
1223 => 0.010448334729655
1224 => 0.010378122283874
1225 => 0.0095732692214055
1226 => 0.0097226452681848
1227 => 0.0098944887939493
1228 => 0.0099538084904235
1229 => 0.0098523380448063
1230 => 0.010558677716203
1231 => 0.010687732780626
]
'min_raw' => 0.0044545454322574
'max_raw' => 0.011702119566631
'avg_raw' => 0.0080783324994443
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004454'
'max' => '$0.0117021'
'avg' => '$0.008078'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00017271276385246
'max_diff' => -0.0021103588412447
'year' => 2027
]
2 => [
'items' => [
101 => 0.010296816572436
102 => 0.010223692110888
103 => 0.010563471743729
104 => 0.010358543088755
105 => 0.010450822449541
106 => 0.010251364945632
107 => 0.01065664719478
108 => 0.010653559623075
109 => 0.010495895674442
110 => 0.01062915216419
111 => 0.010605995569815
112 => 0.010427993360118
113 => 0.010662290182324
114 => 0.010662406390625
115 => 0.010510658267975
116 => 0.010333449682656
117 => 0.010301768973081
118 => 0.01027790181412
119 => 0.010444952591521
120 => 0.010594729796184
121 => 0.010873428041143
122 => 0.010943499401633
123 => 0.01121699258654
124 => 0.011054140711069
125 => 0.01112633083818
126 => 0.011204703433077
127 => 0.011242278137126
128 => 0.011181052173247
129 => 0.011605899663693
130 => 0.011641769808877
131 => 0.011653796758282
201 => 0.011510540574881
202 => 0.011637785595268
203 => 0.011578251864141
204 => 0.011733142093587
205 => 0.011757430859302
206 => 0.011736859138839
207 => 0.011744568776449
208 => 0.011382036391587
209 => 0.011363237174921
210 => 0.011106908521751
211 => 0.011211364342603
212 => 0.011016089192218
213 => 0.011078012953962
214 => 0.011105308358108
215 => 0.011091050787982
216 => 0.01121727011799
217 => 0.011109957902578
218 => 0.010826743322344
219 => 0.010543451580487
220 => 0.010539895083432
221 => 0.010465309368315
222 => 0.010411397557341
223 => 0.010421782884759
224 => 0.010458382133159
225 => 0.010409270342491
226 => 0.010419750833061
227 => 0.010593796807669
228 => 0.010628700486637
229 => 0.010510084147755
301 => 0.010033822430884
302 => 0.0099169466109519
303 => 0.010000954632571
304 => 0.0099608042090465
305 => 0.0080391464055945
306 => 0.0084906114021624
307 => 0.0082223662315044
308 => 0.0083459859475105
309 => 0.0080721770900189
310 => 0.0082028530283657
311 => 0.0081787219540742
312 => 0.008904664308735
313 => 0.0088933297173681
314 => 0.0088987549864422
315 => 0.0086397927580701
316 => 0.0090523266194576
317 => 0.0092555556338149
318 => 0.0092179433520224
319 => 0.0092274095530248
320 => 0.0090647488567798
321 => 0.0089003298975405
322 => 0.0087179639678477
323 => 0.0090567773241068
324 => 0.0090191070626276
325 => 0.0091055090891285
326 => 0.0093252537695414
327 => 0.009357612008461
328 => 0.0094011018097139
329 => 0.0093855138117796
330 => 0.009756883163527
331 => 0.0097119078846565
401 => 0.0098202853664636
402 => 0.0095973446637671
403 => 0.0093450660969404
404 => 0.0093930160048864
405 => 0.0093883980431624
406 => 0.009329606090166
407 => 0.0092765313437667
408 => 0.0091881768447289
409 => 0.00946774355369
410 => 0.0094563936558549
411 => 0.0096401353089915
412 => 0.0096076571870284
413 => 0.0093907603398143
414 => 0.0093985068531447
415 => 0.0094506058781389
416 => 0.0096309211985002
417 => 0.0096844510623866
418 => 0.0096596538966382
419 => 0.0097183469486585
420 => 0.0097647355438669
421 => 0.0097241726420053
422 => 0.010298457792775
423 => 0.010059974559155
424 => 0.010176209627866
425 => 0.010203931006857
426 => 0.010132923277489
427 => 0.010148322311393
428 => 0.010171647651771
429 => 0.010313274550979
430 => 0.010684944514573
501 => 0.010849554611405
502 => 0.011344792209446
503 => 0.010835886034347
504 => 0.010805689647979
505 => 0.010894896894129
506 => 0.011185653790402
507 => 0.011421284945425
508 => 0.011499457393434
509 => 0.011509789172925
510 => 0.011656445882195
511 => 0.011740506772963
512 => 0.011638637900235
513 => 0.011552314696714
514 => 0.011243115696531
515 => 0.011278906322724
516 => 0.01152546824533
517 => 0.011873751483438
518 => 0.012172614734428
519 => 0.012067963240367
520 => 0.012866380267612
521 => 0.012945540054622
522 => 0.0129346027316
523 => 0.013114940506965
524 => 0.012757006748015
525 => 0.012603983131423
526 => 0.011570978753125
527 => 0.011861210847726
528 => 0.012283080241961
529 => 0.012227244245705
530 => 0.01192087141501
531 => 0.012172382323163
601 => 0.012089224951455
602 => 0.012023635282185
603 => 0.01232411427229
604 => 0.011993725279673
605 => 0.012279784359026
606 => 0.011912910630854
607 => 0.012068441279577
608 => 0.011980154561191
609 => 0.012037286888
610 => 0.011703292472879
611 => 0.011883507752022
612 => 0.011695794924774
613 => 0.011695705924453
614 => 0.011691562153388
615 => 0.011912405462199
616 => 0.011919607154571
617 => 0.011756403615684
618 => 0.011732883436011
619 => 0.011819849867684
620 => 0.01171803495274
621 => 0.011765673510627
622 => 0.011719477876128
623 => 0.011709078265774
624 => 0.01162621240112
625 => 0.011590511508183
626 => 0.011604510748202
627 => 0.011556724124914
628 => 0.011527930955864
629 => 0.01168583446735
630 => 0.011601472990973
701 => 0.011672904861182
702 => 0.011591499229658
703 => 0.011309311844052
704 => 0.011147022894513
705 => 0.010613997081888
706 => 0.010765162541132
707 => 0.010865385397002
708 => 0.010832261743735
709 => 0.010903424168106
710 => 0.010907792963005
711 => 0.010884657333427
712 => 0.010857869238233
713 => 0.010844830274968
714 => 0.010942012024527
715 => 0.010998429301134
716 => 0.010875444101398
717 => 0.010846630389846
718 => 0.010970975216978
719 => 0.011046825489697
720 => 0.011606861286868
721 => 0.011565372026122
722 => 0.011669501928739
723 => 0.011657778499707
724 => 0.011766923226844
725 => 0.01194532872771
726 => 0.011582580461488
727 => 0.011645541017613
728 => 0.011630104543222
729 => 0.011798635922954
730 => 0.011799162059526
731 => 0.01169811907861
801 => 0.011752896117799
802 => 0.011722321077253
803 => 0.011777574307985
804 => 0.01156481791175
805 => 0.01182393223673
806 => 0.011970833362036
807 => 0.011972873084303
808 => 0.012042503051819
809 => 0.01211325113151
810 => 0.012249045909619
811 => 0.012109463888852
812 => 0.011858369421527
813 => 0.011876497631038
814 => 0.011729281036717
815 => 0.011731755774264
816 => 0.011718545431288
817 => 0.011758190664989
818 => 0.011573517811102
819 => 0.01161686016079
820 => 0.011556180617414
821 => 0.011645409112136
822 => 0.011549414001814
823 => 0.011630097099287
824 => 0.011664917249469
825 => 0.011793404353266
826 => 0.011530436352114
827 => 0.010994226796395
828 => 0.01110694454592
829 => 0.010940226140585
830 => 0.01095565656374
831 => 0.010986828474248
901 => 0.010885790113478
902 => 0.010905065048628
903 => 0.010904376412309
904 => 0.010898442116542
905 => 0.010872158136619
906 => 0.010834041165604
907 => 0.010985887446343
908 => 0.01101168908836
909 => 0.011069042942415
910 => 0.011239689108594
911 => 0.011222637532479
912 => 0.011250449360586
913 => 0.011189736295986
914 => 0.010958472868678
915 => 0.010971031585423
916 => 0.010814424186376
917 => 0.01106503813912
918 => 0.011005689447168
919 => 0.01096742695938
920 => 0.010956986685088
921 => 0.011128055850106
922 => 0.01117924242546
923 => 0.011147346386702
924 => 0.011081926680655
925 => 0.011207551855866
926 => 0.011241163853052
927 => 0.011248688339659
928 => 0.011471272063894
929 => 0.011261128297247
930 => 0.011311711990528
1001 => 0.011706351525758
1002 => 0.011348467923838
1003 => 0.011538046849532
1004 => 0.01152876794764
1005 => 0.011625750111024
1006 => 0.011520812579546
1007 => 0.011522113406015
1008 => 0.011608226996959
1009 => 0.011487295989146
1010 => 0.011457351770955
1011 => 0.011415984047988
1012 => 0.011506308957678
1013 => 0.011560454655992
1014 => 0.011996829218774
1015 => 0.012278747087428
1016 => 0.012266508289245
1017 => 0.012378347994574
1018 => 0.012327963182989
1019 => 0.012165257335538
1020 => 0.012442976377272
1021 => 0.012355094452209
1022 => 0.012362339331335
1023 => 0.012362069676572
1024 => 0.012420503473968
1025 => 0.012379097773134
1026 => 0.012297482886583
1027 => 0.012351662657083
1028 => 0.012512557205845
1029 => 0.013011978822051
1030 => 0.013291461774936
1031 => 0.012995153597358
1101 => 0.013199543010526
1102 => 0.01307698219402
1103 => 0.013054709247792
1104 => 0.013183080903521
1105 => 0.013311677256839
1106 => 0.01330348622507
1107 => 0.013210131876057
1108 => 0.013157398373078
1109 => 0.013556714124653
1110 => 0.013850923168247
1111 => 0.013830860083877
1112 => 0.013919412013424
1113 => 0.014179403217384
1114 => 0.014203173554758
1115 => 0.014200179038604
1116 => 0.014141261777244
1117 => 0.014397256881666
1118 => 0.014610812501581
1119 => 0.014127624133522
1120 => 0.014311615938679
1121 => 0.014394215787859
1122 => 0.014515496872727
1123 => 0.014720118391969
1124 => 0.014942391635043
1125 => 0.014973823508716
1126 => 0.014951521090192
1127 => 0.014804925911359
1128 => 0.015048139946202
1129 => 0.015190609023742
1130 => 0.01527544609907
1201 => 0.01549057880656
1202 => 0.014394725896407
1203 => 0.013619026739178
1204 => 0.013497890114545
1205 => 0.013744226204198
1206 => 0.013809183066547
1207 => 0.013782999036783
1208 => 0.012909879111839
1209 => 0.013493293318836
1210 => 0.014120997950705
1211 => 0.014145110642023
1212 => 0.014459352705421
1213 => 0.014561682802481
1214 => 0.014814688852166
1215 => 0.014798863254872
1216 => 0.014860466201765
1217 => 0.014846304751088
1218 => 0.01531494518142
1219 => 0.015831925169852
1220 => 0.015814023796749
1221 => 0.015739701806782
1222 => 0.015850082635665
1223 => 0.01638366138667
1224 => 0.016334538005703
1225 => 0.016382257185993
1226 => 0.017011376604609
1227 => 0.017829321340003
1228 => 0.017449303890104
1229 => 0.01827383240931
1230 => 0.018792829405771
1231 => 0.019690381045861
]
'min_raw' => 0.0080391464055945
'max_raw' => 0.019690381045861
'avg_raw' => 0.013864763725728
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.008039'
'max' => '$0.01969'
'avg' => '$0.013864'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.003584600973337
'max_diff' => 0.0079882614792295
'year' => 2028
]
3 => [
'items' => [
101 => 0.019578003159986
102 => 0.019927413426935
103 => 0.019376823290299
104 => 0.018112557043958
105 => 0.017912482071057
106 => 0.018313037233509
107 => 0.019297763014795
108 => 0.018282024714315
109 => 0.018487507249602
110 => 0.018428328265615
111 => 0.018425174869053
112 => 0.018545527190039
113 => 0.018370949871294
114 => 0.017659690468867
115 => 0.017985656461522
116 => 0.017859785337585
117 => 0.017999448733906
118 => 0.018753154482287
119 => 0.018419923204827
120 => 0.018068891123534
121 => 0.01850916325373
122 => 0.019069780969389
123 => 0.01903469852027
124 => 0.018966623905653
125 => 0.019350356943978
126 => 0.01998417150006
127 => 0.020155489027696
128 => 0.020281952124164
129 => 0.020299389248556
130 => 0.0204790024669
131 => 0.019513176923504
201 => 0.021045966865032
202 => 0.021310637345467
203 => 0.021260890264612
204 => 0.021555060364579
205 => 0.021468508058794
206 => 0.021343107347351
207 => 0.021809429527573
208 => 0.021274828778209
209 => 0.020516030318849
210 => 0.020099738476712
211 => 0.020647945155743
212 => 0.02098271584485
213 => 0.021203977974935
214 => 0.021270931761809
215 => 0.019588151211085
216 => 0.018681225825533
217 => 0.019262554599751
218 => 0.019971815825466
219 => 0.019509236941584
220 => 0.019527369158054
221 => 0.01886785323323
222 => 0.020030168350678
223 => 0.019860828814675
224 => 0.020739362627017
225 => 0.020529693482027
226 => 0.021246103701506
227 => 0.021057448881196
228 => 0.021840544492753
301 => 0.02215294253367
302 => 0.022677507465243
303 => 0.023063379564271
304 => 0.023289971041378
305 => 0.023276367339015
306 => 0.024174235658737
307 => 0.023644794079727
308 => 0.022979690676691
309 => 0.022967661054504
310 => 0.023312127531525
311 => 0.024034034767597
312 => 0.024221214810587
313 => 0.024325822919048
314 => 0.024165611959506
315 => 0.02359094107091
316 => 0.023342801094862
317 => 0.023554223543762
318 => 0.023295672056496
319 => 0.023742004460253
320 => 0.024354914182068
321 => 0.024228350748221
322 => 0.024651433332121
323 => 0.025089279296873
324 => 0.02571541869136
325 => 0.025879114714953
326 => 0.026149698017151
327 => 0.026428217117097
328 => 0.026517669945699
329 => 0.026688463151084
330 => 0.026687562986586
331 => 0.027202259806721
401 => 0.027769986338164
402 => 0.027984289960885
403 => 0.028477069324559
404 => 0.027633201933315
405 => 0.028273285043224
406 => 0.028850656030681
407 => 0.028162290537223
408 => 0.029111042001365
409 => 0.029147879870801
410 => 0.029704087963346
411 => 0.029140264504974
412 => 0.028805467935182
413 => 0.029772013087509
414 => 0.030239693840833
415 => 0.03009882459182
416 => 0.029026802651255
417 => 0.028402839900662
418 => 0.026769809028934
419 => 0.028704204638179
420 => 0.029646392312349
421 => 0.029024362612795
422 => 0.029338078211943
423 => 0.031049608798273
424 => 0.031701248832148
425 => 0.03156571226041
426 => 0.031588615709912
427 => 0.031940228844088
428 => 0.033499475117914
429 => 0.032565138607592
430 => 0.033279403860812
501 => 0.033658247575645
502 => 0.034010138731171
503 => 0.03314600526954
504 => 0.032021780332599
505 => 0.031665691103318
506 => 0.028962514018039
507 => 0.028821801911447
508 => 0.028742815942004
509 => 0.028244820577452
510 => 0.027853532633325
511 => 0.027542365932565
512 => 0.026725771587528
513 => 0.027001348207599
514 => 0.025699867258096
515 => 0.026532508647935
516 => 0.024455313627171
517 => 0.026185263364647
518 => 0.025243730373702
519 => 0.025875944454673
520 => 0.025873738719303
521 => 0.024709632152578
522 => 0.024038199779175
523 => 0.024466062620046
524 => 0.024924765549255
525 => 0.024999188556257
526 => 0.025593908877347
527 => 0.025759882535492
528 => 0.025256974602742
529 => 0.024412268377373
530 => 0.024608474367829
531 => 0.024034223671041
601 => 0.023027871413155
602 => 0.023750651173993
603 => 0.023997439962726
604 => 0.024106435951078
605 => 0.023116804085785
606 => 0.022805840267757
607 => 0.022640285740277
608 => 0.024284519330829
609 => 0.024374594158566
610 => 0.023913758604562
611 => 0.025996779006881
612 => 0.025525327336401
613 => 0.026052054360791
614 => 0.024590670730729
615 => 0.024646497553411
616 => 0.023954655123228
617 => 0.024342040655203
618 => 0.024068249047221
619 => 0.024310743732437
620 => 0.024456094046913
621 => 0.025147822952561
622 => 0.02619316179761
623 => 0.025044501721183
624 => 0.024544014076769
625 => 0.024854513796514
626 => 0.025681415467371
627 => 0.026934213827036
628 => 0.026192531983197
629 => 0.026521677790919
630 => 0.026593581507228
701 => 0.026046692774136
702 => 0.026954378394699
703 => 0.027440814492784
704 => 0.027939797275651
705 => 0.028373050044835
706 => 0.027740492579308
707 => 0.028417419740973
708 => 0.0278719359424
709 => 0.027382580584002
710 => 0.027383322734084
711 => 0.02707634296942
712 => 0.026481530993443
713 => 0.02637183853902
714 => 0.026942472539559
715 => 0.02740006696875
716 => 0.027437756637667
717 => 0.027691104425718
718 => 0.027841033036997
719 => 0.029310537245591
720 => 0.029901583994664
721 => 0.030624304771488
722 => 0.030905845244372
723 => 0.031753181129908
724 => 0.031068888585082
725 => 0.030920837588607
726 => 0.028865477891754
727 => 0.02920204292697
728 => 0.029740916022047
729 => 0.028874363710612
730 => 0.02942399169937
731 => 0.029532499907064
801 => 0.02884491859466
802 => 0.02921218548225
803 => 0.028236833515855
804 => 0.026214421805148
805 => 0.02695662991707
806 => 0.027503144911994
807 => 0.026723200629425
808 => 0.028121220567918
809 => 0.02730452618084
810 => 0.02704567326838
811 => 0.026035795769148
812 => 0.026512419075036
813 => 0.027157058920837
814 => 0.026758746443558
815 => 0.027585304640832
816 => 0.028755931483192
817 => 0.029590189883091
818 => 0.029654233884007
819 => 0.029117861623844
820 => 0.029977401593837
821 => 0.029983662404138
822 => 0.029014097806661
823 => 0.028420244889265
824 => 0.028285320256955
825 => 0.028622388441997
826 => 0.029031651444857
827 => 0.02967694513234
828 => 0.030066882592951
829 => 0.031083632683374
830 => 0.031358736105333
831 => 0.03166099135992
901 => 0.032064897592117
902 => 0.032549890583301
903 => 0.031488753529256
904 => 0.03153091448262
905 => 0.030542798350336
906 => 0.029486854552803
907 => 0.030288184269878
908 => 0.031335816278528
909 => 0.031095488338214
910 => 0.031068446535474
911 => 0.031113923346911
912 => 0.030932723928291
913 => 0.030113165673433
914 => 0.02970158864855
915 => 0.030232628015147
916 => 0.03051485180465
917 => 0.030952556289669
918 => 0.030898599973069
919 => 0.032026079720447
920 => 0.032464184257061
921 => 0.032352098369045
922 => 0.032372724869937
923 => 0.033165892206875
924 => 0.034048057412855
925 => 0.034874321540206
926 => 0.035714832899418
927 => 0.034701563650171
928 => 0.034187088015163
929 => 0.034717895546585
930 => 0.034436241598756
1001 => 0.036054708726971
1002 => 0.03616676787939
1003 => 0.037785117974011
1004 => 0.03932112492335
1005 => 0.038356386478893
1006 => 0.039266091379242
1007 => 0.040250011398299
1008 => 0.042148152750328
1009 => 0.041508925520383
1010 => 0.041019287480212
1011 => 0.040556581898165
1012 => 0.041519398761963
1013 => 0.042758047275864
1014 => 0.043024840302131
1015 => 0.043457146927462
1016 => 0.043002629370865
1017 => 0.04355004570432
1018 => 0.04548266590834
1019 => 0.044960454869503
1020 => 0.044218831244742
1021 => 0.045744449284998
1022 => 0.046296564523077
1023 => 0.05017159840891
1024 => 0.05506398875944
1025 => 0.053038507029154
1026 => 0.051781225157278
1027 => 0.052076716220294
1028 => 0.053863251558442
1029 => 0.054437030007258
1030 => 0.052877302390084
1031 => 0.053428224552655
1101 => 0.056463859833896
1102 => 0.058092380767441
1103 => 0.055880630600145
1104 => 0.04977849960786
1105 => 0.044152056151612
1106 => 0.04564444231826
1107 => 0.045475252041096
1108 => 0.048736663447575
1109 => 0.044948000308934
1110 => 0.04501179167962
1111 => 0.048340645620091
1112 => 0.047452564459778
1113 => 0.046013986716912
1114 => 0.04416255936116
1115 => 0.040740024657751
1116 => 0.0377085902265
1117 => 0.043653931243838
1118 => 0.043397557328269
1119 => 0.04302628990604
1120 => 0.04385250537888
1121 => 0.047864373189637
1122 => 0.04777188665145
1123 => 0.047183534482552
1124 => 0.047629794417163
1125 => 0.045935755192739
1126 => 0.046372347673429
1127 => 0.044151164894222
1128 => 0.045155232275211
1129 => 0.046010900175174
1130 => 0.046182688174471
1201 => 0.046569735308601
1202 => 0.043262459924485
1203 => 0.044747329475449
1204 => 0.045619551223179
1205 => 0.041678821635238
1206 => 0.045541655669637
1207 => 0.043204887618071
1208 => 0.042411753444292
1209 => 0.043479604121804
1210 => 0.043063461674259
1211 => 0.042705686834564
1212 => 0.042506042326662
1213 => 0.043290154009848
1214 => 0.043253574262612
1215 => 0.041970615359399
1216 => 0.040297047770253
1217 => 0.040858751986154
1218 => 0.040654679578512
1219 => 0.039915094847353
1220 => 0.040413485658353
1221 => 0.038218824756526
1222 => 0.03444302474348
1223 => 0.03693743388798
1224 => 0.036841401849312
1225 => 0.036792978140709
1226 => 0.038667457672397
1227 => 0.038487269717026
1228 => 0.038160226813622
1229 => 0.039909088447962
1230 => 0.039270730425919
1231 => 0.041237999433788
]
'min_raw' => 0.017659690468867
'max_raw' => 0.058092380767441
'avg_raw' => 0.037876035618154
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.017659'
'max' => '$0.058092'
'avg' => '$0.037876'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0096205440632727
'max_diff' => 0.038401999721581
'year' => 2029
]
4 => [
'items' => [
101 => 0.042533770037353
102 => 0.042205120698501
103 => 0.043423799214157
104 => 0.040871692516805
105 => 0.041719399988916
106 => 0.041894111324047
107 => 0.039887507766863
108 => 0.038516750694946
109 => 0.038425336826024
110 => 0.036048632965281
111 => 0.037318248983607
112 => 0.038435458539453
113 => 0.037900401861166
114 => 0.037731018901184
115 => 0.03859635970905
116 => 0.038663604100964
117 => 0.037130424839084
118 => 0.037449221357102
119 => 0.038778655832747
120 => 0.037415723019293
121 => 0.034767767196564
122 => 0.034111037541673
123 => 0.034023417699782
124 => 0.032242314789833
125 => 0.034154923357488
126 => 0.033320018462984
127 => 0.035957473021026
128 => 0.034450973122425
129 => 0.034386030922799
130 => 0.034287861263116
131 => 0.032754792412089
201 => 0.033090437058855
202 => 0.034206170984831
203 => 0.034604277419262
204 => 0.034562751656561
205 => 0.034200703279908
206 => 0.034366447172752
207 => 0.0338325283449
208 => 0.033643990494226
209 => 0.033048913176078
210 => 0.032174313912706
211 => 0.032295932304507
212 => 0.03056312231242
213 => 0.029618995461544
214 => 0.029357673592613
215 => 0.029008223068086
216 => 0.029397144959211
217 => 0.030558213479428
218 => 0.029157718509618
219 => 0.026756668117179
220 => 0.026900975336955
221 => 0.027225190814595
222 => 0.026621017416913
223 => 0.026049218000438
224 => 0.02654635120151
225 => 0.025528994497746
226 => 0.027348133511765
227 => 0.027298930899514
228 => 0.027976993429139
301 => 0.028400999844157
302 => 0.027423802331247
303 => 0.027178039799374
304 => 0.027318037306813
305 => 0.025004190357138
306 => 0.027787902768911
307 => 0.027811976429445
308 => 0.027605843132416
309 => 0.029088084054207
310 => 0.032216074721722
311 => 0.03103919880947
312 => 0.030583476884983
313 => 0.029717149173403
314 => 0.030871479411634
315 => 0.030782844859695
316 => 0.03038200580217
317 => 0.030139577089484
318 => 0.030586259425877
319 => 0.030084228204791
320 => 0.029994049602588
321 => 0.029447665388529
322 => 0.029252631083007
323 => 0.029108235447738
324 => 0.028949270041329
325 => 0.029299908116156
326 => 0.028505316108319
327 => 0.027547116041682
328 => 0.027467452074009
329 => 0.02768741129288
330 => 0.027590095712568
331 => 0.02746698616445
401 => 0.027231936510204
402 => 0.027162202298831
403 => 0.027388804655565
404 => 0.02713298380655
405 => 0.027510461404555
406 => 0.027407808384685
407 => 0.026834396960321
408 => 0.026119714021463
409 => 0.026113351844209
410 => 0.025959374577347
411 => 0.025763261377362
412 => 0.025708707171588
413 => 0.026504484029933
414 => 0.028151718311111
415 => 0.02782832680674
416 => 0.028062010311143
417 => 0.029211501867738
418 => 0.029576890667162
419 => 0.029317546352039
420 => 0.028962539857837
421 => 0.028978158341893
422 => 0.030191323000354
423 => 0.030266986592004
424 => 0.030458164078105
425 => 0.030703881174494
426 => 0.029359393036065
427 => 0.028914833071481
428 => 0.028704175897014
429 => 0.028055433334241
430 => 0.028755046569208
501 => 0.028347411897618
502 => 0.028402415741599
503 => 0.028366594416048
504 => 0.028386155282026
505 => 0.027347625025337
506 => 0.027726010867331
507 => 0.027096871015875
508 => 0.026254523379037
509 => 0.026251699534393
510 => 0.026457862925156
511 => 0.026335228873156
512 => 0.026005223792433
513 => 0.02605209945657
514 => 0.025641419313842
515 => 0.026101963461501
516 => 0.02611517021975
517 => 0.025937835636892
518 => 0.026647367439206
519 => 0.026938063197538
520 => 0.026821337776226
521 => 0.026929873430812
522 => 0.027841765183772
523 => 0.027990443328131
524 => 0.028056476338729
525 => 0.027968000852226
526 => 0.026946541138073
527 => 0.026991847219978
528 => 0.026659421252018
529 => 0.026378556339278
530 => 0.026389789462845
531 => 0.026534190537877
601 => 0.02716479850155
602 => 0.02849187578473
603 => 0.028542237397546
604 => 0.028603277141431
605 => 0.028354997826935
606 => 0.028280114409969
607 => 0.028378904965996
608 => 0.02887728541915
609 => 0.030159255253635
610 => 0.029706121494242
611 => 0.029337716694408
612 => 0.029660907025083
613 => 0.029611154406925
614 => 0.029191192240407
615 => 0.02917940530112
616 => 0.028373363633546
617 => 0.028075388381724
618 => 0.027826377958241
619 => 0.027554465076379
620 => 0.027393266005409
621 => 0.027640941042087
622 => 0.02769758725338
623 => 0.027156041457066
624 => 0.027082230766109
625 => 0.027524468753457
626 => 0.027329856303519
627 => 0.027530020034436
628 => 0.027576459736982
629 => 0.027568981875275
630 => 0.027365784126442
701 => 0.027495296312104
702 => 0.027188961383573
703 => 0.026855868158814
704 => 0.026643375433859
705 => 0.026457947348266
706 => 0.026560833627296
707 => 0.026194062828844
708 => 0.026076725468782
709 => 0.027451420497718
710 => 0.028466922496056
711 => 0.028452156694817
712 => 0.028362273677232
713 => 0.028228725745205
714 => 0.028867515556104
715 => 0.028644973958992
716 => 0.028806891564863
717 => 0.028848106391218
718 => 0.028972851257483
719 => 0.029017436824989
720 => 0.028882668273318
721 => 0.028430368553318
722 => 0.027303280654447
723 => 0.026778618195006
724 => 0.026605470844446
725 => 0.026611764421786
726 => 0.026438159463004
727 => 0.026489293903794
728 => 0.026420376991279
729 => 0.02628986503177
730 => 0.02655277488157
731 => 0.026583072792585
801 => 0.026521706492102
802 => 0.026536160477358
803 => 0.026028073719256
804 => 0.026066702451968
805 => 0.025851612759526
806 => 0.025811286035138
807 => 0.025267558022644
808 => 0.024304265033876
809 => 0.024838022858767
810 => 0.024193318464007
811 => 0.023949159140846
812 => 0.025104971402126
813 => 0.024988959908335
814 => 0.02479039865995
815 => 0.024496685189798
816 => 0.024387744006657
817 => 0.023725851864484
818 => 0.023686743745667
819 => 0.024014795363919
820 => 0.023863410829663
821 => 0.02365080960976
822 => 0.022880789542313
823 => 0.02201503204162
824 => 0.022041163818608
825 => 0.022316545171588
826 => 0.023117253595611
827 => 0.022804402961949
828 => 0.022577426237679
829 => 0.022534920320119
830 => 0.023066970870553
831 => 0.023819933867454
901 => 0.024173207259002
902 => 0.02382312405705
903 => 0.023420967324466
904 => 0.023445444741363
905 => 0.023608282029907
906 => 0.023625393926537
907 => 0.023363631236005
908 => 0.023437315900106
909 => 0.02332538215747
910 => 0.022638444985523
911 => 0.022626020470384
912 => 0.02245743501003
913 => 0.022452330309291
914 => 0.022165524385615
915 => 0.022125398254297
916 => 0.021555927684963
917 => 0.021930754938214
918 => 0.021679340496047
919 => 0.02130039962903
920 => 0.021235070080725
921 => 0.021233106195615
922 => 0.021622193736414
923 => 0.021926208223762
924 => 0.021683713957909
925 => 0.021628502714128
926 => 0.022218014353316
927 => 0.022142993623711
928 => 0.022078026155706
929 => 0.023752514289652
930 => 0.022427026269695
1001 => 0.021849037836783
1002 => 0.021133667394027
1003 => 0.021366595617399
1004 => 0.021415677016491
1005 => 0.019695340056878
1006 => 0.018997399566618
1007 => 0.018757892691693
1008 => 0.018620053099044
1009 => 0.018682868332295
1010 => 0.018054640030806
1011 => 0.018476819839343
1012 => 0.01793282723307
1013 => 0.017841625102324
1014 => 0.018814351270092
1015 => 0.018949700433753
1016 => 0.018372258851886
1017 => 0.018743069826745
1018 => 0.018608608612603
1019 => 0.017942152424951
1020 => 0.017916698700703
1021 => 0.017582294412807
1022 => 0.01705901645568
1023 => 0.016819864387851
1024 => 0.016695311914512
1025 => 0.016746704692491
1026 => 0.0167207189313
1027 => 0.016551144262081
1028 => 0.016730438752842
1029 => 0.016272415418547
1030 => 0.016090026836286
1031 => 0.016007646145062
1101 => 0.015601124073035
1102 => 0.016248081470815
1103 => 0.016375540228332
1104 => 0.016503250118976
1105 => 0.017614877525782
1106 => 0.017559343761965
1107 => 0.018061341940836
1108 => 0.018041835214721
1109 => 0.017898657202275
1110 => 0.017294612719408
1111 => 0.017535374084221
1112 => 0.016794348025949
1113 => 0.01734957513368
1114 => 0.01709619266855
1115 => 0.01726390626734
1116 => 0.01696234209459
1117 => 0.01712924015907
1118 => 0.016405765428148
1119 => 0.015730194903977
1120 => 0.016002064204037
1121 => 0.016297617225227
1122 => 0.016938451480676
1123 => 0.016556775884898
1124 => 0.016694040861892
1125 => 0.016234226166842
1126 => 0.01528549711138
1127 => 0.015290866814803
1128 => 0.015144925518806
1129 => 0.015018810931286
1130 => 0.016600615918404
1201 => 0.016403893463619
1202 => 0.016090441978319
1203 => 0.01651000924746
1204 => 0.016620949492849
1205 => 0.016624107805672
1206 => 0.016930213254639
1207 => 0.017093581787625
1208 => 0.017122376199644
1209 => 0.01760403973744
1210 => 0.017765487002013
1211 => 0.018430465435919
1212 => 0.017079721108994
1213 => 0.017051903418463
1214 => 0.016515913419362
1215 => 0.016175980088266
1216 => 0.016539188945368
1217 => 0.016860942409807
1218 => 0.016525911196387
1219 => 0.016569659199965
1220 => 0.016119907169003
1221 => 0.016280672357272
1222 => 0.016419144994819
1223 => 0.016342688543411
1224 => 0.016228229535119
1225 => 0.016834562294951
1226 => 0.016800350624404
1227 => 0.01736498162989
1228 => 0.017805151875817
1229 => 0.01859401564636
1230 => 0.0177707951774
1231 => 0.017740793751506
]
'min_raw' => 0.015018810931286
'max_raw' => 0.043423799214157
'avg_raw' => 0.029221305072722
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.015018'
'max' => '$0.043423'
'avg' => '$0.029221'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0026408795375808
'max_diff' => -0.014668581553285
'year' => 2030
]
5 => [
'items' => [
101 => 0.018034062501999
102 => 0.017765442104095
103 => 0.017935200923109
104 => 0.018566664876156
105 => 0.018580006714436
106 => 0.018356513733258
107 => 0.018342914165042
108 => 0.018385838436823
109 => 0.018637247237357
110 => 0.018549397277438
111 => 0.018651059475145
112 => 0.018778189610084
113 => 0.019304053750252
114 => 0.019430837814141
115 => 0.01912281826889
116 => 0.019150628985077
117 => 0.019035421219827
118 => 0.018924131962145
119 => 0.019174293960924
120 => 0.019631469930639
121 => 0.019628625862658
122 => 0.019734681801401
123 => 0.019800753772623
124 => 0.0195171245045
125 => 0.019332492280288
126 => 0.019403292023505
127 => 0.019516502354725
128 => 0.019366579438901
129 => 0.01844118575138
130 => 0.018721891081796
131 => 0.018675167989026
201 => 0.018608628623198
202 => 0.018890880003561
203 => 0.018863656169369
204 => 0.018048196641548
205 => 0.018100399714767
206 => 0.018051371283332
207 => 0.018209792175571
208 => 0.017756886856022
209 => 0.017896197481951
210 => 0.017983571800578
211 => 0.01803503594549
212 => 0.018220959726209
213 => 0.018199143716466
214 => 0.018219603612412
215 => 0.018495279497159
216 => 0.019889553521669
217 => 0.01996544078053
218 => 0.019591744163434
219 => 0.019741028591124
220 => 0.019454435134874
221 => 0.019646827242064
222 => 0.019778457035574
223 => 0.019183647309658
224 => 0.019148426537972
225 => 0.018860650208581
226 => 0.019015284907511
227 => 0.018769249982885
228 => 0.018829618347452
301 => 0.018660823137304
302 => 0.01896462090878
303 => 0.019304314022692
304 => 0.019390133918153
305 => 0.019164378720982
306 => 0.019000917080237
307 => 0.018713932286701
308 => 0.019191194394225
309 => 0.019330760378764
310 => 0.019190461313523
311 => 0.019157950954511
312 => 0.01909634388293
313 => 0.019171021185983
314 => 0.019330000272438
315 => 0.019255028671149
316 => 0.01930454873463
317 => 0.019115829317507
318 => 0.019517218397589
319 => 0.020154720856303
320 => 0.02015677053095
321 => 0.020081798525535
322 => 0.020051121596214
323 => 0.020128047423451
324 => 0.020169776529065
325 => 0.020418540548565
326 => 0.020685474252685
327 => 0.021931137377511
328 => 0.021581360156661
329 => 0.022686586585839
330 => 0.023560677195628
331 => 0.023822778750153
401 => 0.023581657652821
402 => 0.022756795403952
403 => 0.022716323726809
404 => 0.023949016174478
405 => 0.023600724097121
406 => 0.023559295862775
407 => 0.023118569443446
408 => 0.023379093342298
409 => 0.023322112943964
410 => 0.023232166597618
411 => 0.023729228048376
412 => 0.024659682711214
413 => 0.024514662626262
414 => 0.024406411860134
415 => 0.023932088514283
416 => 0.02421773711244
417 => 0.024116023117875
418 => 0.024553050987822
419 => 0.024294165359018
420 => 0.02359808544208
421 => 0.023708938463162
422 => 0.02369218325203
423 => 0.024037004309823
424 => 0.023933497587259
425 => 0.023671971903226
426 => 0.02465650251833
427 => 0.024592572576432
428 => 0.024683210617624
429 => 0.024723112286431
430 => 0.025322378722469
501 => 0.025567879006926
502 => 0.025623611869586
503 => 0.025856818152147
504 => 0.02561780948483
505 => 0.026574014564392
506 => 0.027209835146187
507 => 0.02794837347097
508 => 0.029027576463867
509 => 0.029433366772381
510 => 0.029360064385236
511 => 0.030178303777677
512 => 0.031648661777452
513 => 0.029657265776135
514 => 0.031754210601009
515 => 0.031090342079846
516 => 0.029516321758654
517 => 0.029414973406449
518 => 0.030480918242713
519 => 0.032845081296157
520 => 0.032252885265384
521 => 0.032846049916714
522 => 0.032154091843142
523 => 0.032119730292509
524 => 0.03281244305756
525 => 0.03443100419091
526 => 0.033662086467313
527 => 0.032559654364174
528 => 0.033373673073388
529 => 0.032668494733592
530 => 0.031079530567042
531 => 0.03225243242424
601 => 0.031468146354653
602 => 0.031697042724699
603 => 0.033345495389223
604 => 0.033147149203363
605 => 0.033403827534228
606 => 0.032950796998692
607 => 0.032527595042143
608 => 0.031737657162855
609 => 0.031503795500264
610 => 0.031568426450343
611 => 0.031503763472375
612 => 0.031061800488817
613 => 0.030966358624597
614 => 0.030807284669494
615 => 0.030856588339806
616 => 0.030557482765484
617 => 0.031121956782594
618 => 0.031226728134298
619 => 0.031637505250724
620 => 0.031680153493652
621 => 0.032824161915852
622 => 0.032194061301185
623 => 0.032616787193774
624 => 0.03257897461109
625 => 0.029550435551861
626 => 0.029967741513196
627 => 0.03061693863121
628 => 0.030324476209511
629 => 0.029911002770895
630 => 0.02957710080017
701 => 0.029071205171292
702 => 0.029783243554073
703 => 0.030719498310589
704 => 0.031703898459333
705 => 0.032886590737596
706 => 0.032622627589143
707 => 0.031681788849854
708 => 0.031723994188416
709 => 0.031984890984214
710 => 0.031647005928682
711 => 0.031547357029506
712 => 0.03197120075568
713 => 0.031974119534482
714 => 0.031585341943319
715 => 0.031153286796291
716 => 0.031151476469449
717 => 0.031074596429193
718 => 0.032167768631514
719 => 0.032768902810614
720 => 0.032837821875472
721 => 0.032764264008431
722 => 0.032792573512048
723 => 0.032442786778317
724 => 0.033242295525592
725 => 0.033976003815312
726 => 0.033779354320276
727 => 0.033484548771843
728 => 0.033249721952758
729 => 0.033724036584603
730 => 0.033702916100687
731 => 0.033969595513474
801 => 0.033957497394895
802 => 0.033867823138695
803 => 0.033779357522826
804 => 0.034130113690048
805 => 0.03402910154686
806 => 0.033927932503913
807 => 0.033725022500077
808 => 0.033752601339576
809 => 0.033457846693479
810 => 0.033321479707139
811 => 0.031270847422739
812 => 0.030722851470005
813 => 0.030895262152221
814 => 0.030952024225448
815 => 0.030713535684542
816 => 0.031055466989522
817 => 0.031002177357836
818 => 0.031209496141335
819 => 0.03107997236614
820 => 0.031085288067054
821 => 0.031466189872522
822 => 0.031576767287121
823 => 0.031520526721587
824 => 0.031559915685874
825 => 0.032467617742815
826 => 0.032338571536996
827 => 0.032270018312141
828 => 0.032289008023927
829 => 0.032520945360827
830 => 0.03258587515185
831 => 0.03231076306475
901 => 0.032440507515431
902 => 0.032992942919405
903 => 0.03318626404566
904 => 0.033803252281261
905 => 0.033541144712686
906 => 0.034022254498555
907 => 0.035501021957903
908 => 0.036682363727355
909 => 0.035595953015154
910 => 0.037765336731785
911 => 0.039454513134795
912 => 0.039389679730977
913 => 0.039095132753758
914 => 0.03717205032801
915 => 0.035402401208293
916 => 0.036882787840207
917 => 0.036886561650176
918 => 0.036759395125605
919 => 0.035969574763091
920 => 0.036731911089024
921 => 0.036792422578178
922 => 0.036758552235555
923 => 0.036152998815448
924 => 0.035228430667924
925 => 0.035409089070847
926 => 0.035705011220166
927 => 0.035144768855677
928 => 0.034965737473942
929 => 0.035298590874703
930 => 0.036371113884716
1001 => 0.036168359622375
1002 => 0.036163064889191
1003 => 0.037030533604671
1004 => 0.036409613215853
1005 => 0.035411367751856
1006 => 0.035159297606957
1007 => 0.03426461840736
1008 => 0.034882576517259
1009 => 0.034904815729505
1010 => 0.034566366388092
1011 => 0.035438831050611
1012 => 0.035430791135151
1013 => 0.036259066482985
1014 => 0.03784241786203
1015 => 0.037374142947257
1016 => 0.036829590169542
1017 => 0.03688879815529
1018 => 0.037538163621189
1019 => 0.037145542436935
1020 => 0.037286731752245
1021 => 0.03753794991425
1022 => 0.037689516068784
1023 => 0.036866990118124
1024 => 0.036675219973061
1025 => 0.036282925558436
1026 => 0.036180583268183
1027 => 0.036500098883403
1028 => 0.036415917807446
1029 => 0.03490294660983
1030 => 0.034744832701587
1031 => 0.034749681829418
1101 => 0.034352096889235
1102 => 0.033745684424135
1103 => 0.035339300175409
1104 => 0.035211310527944
1105 => 0.035070019862754
1106 => 0.035087327163046
1107 => 0.035779061748025
1108 => 0.035377820755304
1109 => 0.03644458569656
1110 => 0.036225290894527
1111 => 0.036000372008297
1112 => 0.035969281367023
1113 => 0.035882706785002
1114 => 0.035585810330269
1115 => 0.035227290020469
1116 => 0.034990563857441
1117 => 0.032276945564282
1118 => 0.032780577335101
1119 => 0.033359959779947
1120 => 0.033559960278179
1121 => 0.033217845586341
1122 => 0.035599319103517
1123 => 0.036034437263555
1124 => 0.034716435974745
1125 => 0.034469891747246
1126 => 0.035615482502027
1127 => 0.03492455123412
1128 => 0.035235677541752
1129 => 0.034563192641643
1130 => 0.035929630040549
1201 => 0.035919220076978
1202 => 0.035387645066415
1203 => 0.035836928625274
1204 => 0.035758854550597
1205 => 0.035158707672883
1206 => 0.035948655767035
1207 => 0.035949047571434
1208 => 0.035437418181205
1209 => 0.034839947063492
1210 => 0.034733133339283
1211 => 0.034652663546496
1212 => 0.035215886905614
1213 => 0.035720871208246
1214 => 0.036660521799218
1215 => 0.036896772283335
1216 => 0.037818873650932
1217 => 0.037269807182829
1218 => 0.037513201236538
1219 => 0.03777743991203
1220 => 0.037904125650116
1221 => 0.037697698038236
1222 => 0.039130101014178
1223 => 0.039251039713041
1224 => 0.039291589412654
1225 => 0.038808591188491
1226 => 0.03923760665869
1227 => 0.039036884527683
1228 => 0.039559107750349
1229 => 0.039640999019744
1230 => 0.039571640027933
1231 => 0.039597633609405
]
'min_raw' => 0.017756886856022
'max_raw' => 0.039640999019744
'avg_raw' => 0.028698942937883
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.017756'
'max' => '$0.03964'
'avg' => '$0.028698'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0027380759247351
'max_diff' => -0.0037828001944126
'year' => 2031
]
6 => [
'items' => [
101 => 0.038375330362638
102 => 0.03831194749113
103 => 0.037447717540673
104 => 0.03779989763355
105 => 0.037141513830349
106 => 0.037350294116448
107 => 0.037442322477229
108 => 0.037394252084121
109 => 0.037819809367594
110 => 0.037457998741033
111 => 0.036503121010362
112 => 0.035547983123893
113 => 0.035535992145766
114 => 0.035284521199843
115 => 0.035102753765141
116 => 0.035137768621611
117 => 0.03526116554287
118 => 0.035095581711755
119 => 0.035130917417436
120 => 0.035717725572329
121 => 0.035835405762869
122 => 0.035435482494797
123 => 0.033829732864837
124 => 0.033435677877927
125 => 0.033718916788068
126 => 0.033583546831942
127 => 0.02710454338174
128 => 0.028626689137949
129 => 0.027722281816795
130 => 0.028139074320163
131 => 0.027215908640406
201 => 0.027656491690045
202 => 0.027575132088293
203 => 0.030022697420709
204 => 0.029984482054559
205 => 0.030002773728023
206 => 0.029129664494901
207 => 0.030520551210763
208 => 0.031205752021666
209 => 0.031078939587597
210 => 0.031110855545185
211 => 0.030562433651188
212 => 0.030008083650748
213 => 0.029393224186406
214 => 0.030535557072226
215 => 0.030408549155596
216 => 0.03069985962034
217 => 0.031440744152436
218 => 0.031549842214134
219 => 0.031696471115419
220 => 0.031643915092064
221 => 0.03289601278966
222 => 0.032744375496875
223 => 0.033109777743462
224 => 0.032358117599098
225 => 0.031507542797514
226 => 0.03166920925991
227 => 0.031653639479542
228 => 0.031455418305291
229 => 0.031276473092245
301 => 0.030978579730025
302 => 0.031921158408012
303 => 0.031882891435036
304 => 0.032502389247019
305 => 0.03239288699127
306 => 0.031661604127634
307 => 0.031687722038171
308 => 0.031863377538377
309 => 0.032471323230189
310 => 0.032651802903618
311 => 0.032568197528014
312 => 0.032766085250719
313 => 0.032922487638212
314 => 0.032785726982574
315 => 0.034721969463705
316 => 0.033917906591185
317 => 0.034309801240617
318 => 0.03440326580533
319 => 0.034163858288167
320 => 0.034215777206099
321 => 0.034294420219708
322 => 0.03477192519846
323 => 0.036025036429885
324 => 0.036580030864067
325 => 0.038249759002244
326 => 0.036533946302203
327 => 0.036432137077322
328 => 0.036732905535967
329 => 0.037713212711751
330 => 0.038507659602152
331 => 0.038771223468439
401 => 0.038806057784334
402 => 0.039300521118883
403 => 0.039583938281051
404 => 0.039240480264392
405 => 0.038949435556827
406 => 0.037906949540127
407 => 0.038027620135155
408 => 0.038858920871628
409 => 0.040033182125265
410 => 0.041040820441947
411 => 0.040687980623186
412 => 0.043379899374239
413 => 0.043646792122903
414 => 0.043609916174714
415 => 0.044217937575139
416 => 0.0430111389167
417 => 0.042495209109595
418 => 0.0390123627261
419 => 0.039990900496404
420 => 0.04141326261305
421 => 0.041225007653327
422 => 0.040192050264371
423 => 0.041040036851139
424 => 0.040759665966562
425 => 0.040538525817296
426 => 0.041551611711208
427 => 0.040437682155577
428 => 0.041402150313621
429 => 0.040165209924785
430 => 0.040689592365757
501 => 0.040391927530736
502 => 0.040584553159425
503 => 0.039458467670101
504 => 0.04006607606596
505 => 0.039433189163202
506 => 0.039432889092406
507 => 0.03941891807895
508 => 0.040163506713394
509 => 0.040187787722032
510 => 0.039637535596166
511 => 0.039558235668275
512 => 0.039851449064463
513 => 0.039508172970237
514 => 0.039668789694171
515 => 0.039513037887182
516 => 0.039477974874794
517 => 0.039198586826605
518 => 0.039078218773511
519 => 0.039125418188632
520 => 0.038964302251858
521 => 0.038867224072134
522 => 0.03939960678558
523 => 0.039115176178043
524 => 0.039356013715666
525 => 0.039081548945425
526 => 0.03813013447316
527 => 0.037582965949136
528 => 0.035785832207196
529 => 0.036295497107073
530 => 0.036633405462977
531 => 0.036521726753367
601 => 0.036761655835534
602 => 0.036776385532556
603 => 0.036698382142156
604 => 0.036608064208926
605 => 0.036564102433924
606 => 0.036891757487578
607 => 0.037081972274586
608 => 0.036667319087123
609 => 0.036570171646915
610 => 0.03698940891307
611 => 0.03724514340324
612 => 0.039133343193852
613 => 0.038993459254559
614 => 0.039344540491349
615 => 0.039305014131867
616 => 0.03967300319965
617 => 0.040274509801692
618 => 0.03905147869585
619 => 0.03926375460659
620 => 0.039211709455443
621 => 0.039779924768694
622 => 0.039781698674879
623 => 0.039441025210125
624 => 0.039625709822164
625 => 0.039522623938281
626 => 0.03970891406335
627 => 0.038991591019266
628 => 0.039865213056723
629 => 0.040360500457
630 => 0.040367377523034
701 => 0.040602139819921
702 => 0.040840671910074
703 => 0.041298513485357
704 => 0.040827902957034
705 => 0.039981320429592
706 => 0.040042440953629
707 => 0.039546089927542
708 => 0.039554433677964
709 => 0.039509894084302
710 => 0.039643560757666
711 => 0.039020923337341
712 => 0.039167055095381
713 => 0.038962469778378
714 => 0.039263309878066
715 => 0.038939655661452
716 => 0.039211684357696
717 => 0.0393290829251
718 => 0.039762286166235
719 => 0.038875671190509
720 => 0.037067803236449
721 => 0.037447838998673
722 => 0.036885736255179
723 => 0.036937761004165
724 => 0.037042859276795
725 => 0.036702201389187
726 => 0.036767188178779
727 => 0.036764866393349
728 => 0.03674485850085
729 => 0.036656240227451
730 => 0.036527726198432
731 => 0.037039686535513
801 => 0.037126678572985
802 => 0.037320051096252
803 => 0.037895396559659
804 => 0.037837905980284
805 => 0.037931675500505
806 => 0.037726977164356
807 => 0.03694725637289
808 => 0.036989598963217
809 => 0.036461586183352
810 => 0.037306548622336
811 => 0.037106450363826
812 => 0.036977445714848
813 => 0.036942245601154
814 => 0.03751901723468
815 => 0.037691596347219
816 => 0.037584056625638
817 => 0.037363489519241
818 => 0.037787043568335
819 => 0.037900368763561
820 => 0.0379257380955
821 => 0.03867619466206
822 => 0.037967680281038
823 => 0.038138226734577
824 => 0.039468781480458
825 => 0.038262151929948
826 => 0.038901330513903
827 => 0.038870046048343
828 => 0.039197028183271
829 => 0.038843223969386
830 => 0.038847609796648
831 => 0.039137947780775
901 => 0.0387302204448
902 => 0.03862926142253
903 => 0.038489787256346
904 => 0.038794323995648
905 => 0.038976879997847
906 => 0.040448147302964
907 => 0.04139865308001
908 => 0.041357389117448
909 => 0.041734464492366
910 => 0.041564588582351
911 => 0.041016014457912
912 => 0.041952363596841
913 => 0.041656063550772
914 => 0.041680490166565
915 => 0.041679581006706
916 => 0.041876594634342
917 => 0.041736992423128
918 => 0.041461822134951
919 => 0.041644493013903
920 => 0.042186960218353
921 => 0.043870795065894
922 => 0.044813091354423
923 => 0.043814067646143
924 => 0.044503180822654
925 => 0.044089958472878
926 => 0.044014863679624
927 => 0.044447677679536
928 => 0.044881249263061
929 => 0.044853632627572
930 => 0.04453888192208
1001 => 0.044361087235051
1002 => 0.045707408170822
1003 => 0.04669935450232
1004 => 0.046631710412604
1005 => 0.046930269425572
1006 => 0.047806847921729
1007 => 0.047886991273778
1008 => 0.047876895053493
1009 => 0.047678251393346
1010 => 0.048541356760913
1011 => 0.049261374443433
1012 => 0.047632271125389
1013 => 0.048252612342371
1014 => 0.048531103500821
1015 => 0.048940011146028
1016 => 0.049629906884371
1017 => 0.050379316642018
1018 => 0.050485291398609
1019 => 0.050410097237449
1020 => 0.049915841357065
1021 => 0.0507358544562
1022 => 0.051216198898001
1023 => 0.051502233020605
1024 => 0.052227567963992
1025 => 0.048532823367405
1026 => 0.04591749950122
1027 => 0.045509078913781
1028 => 0.046339618238685
1029 => 0.046558624835235
1030 => 0.046470343550777
1031 => 0.043526558764542
1101 => 0.045493580496112
1102 => 0.047609930487396
1103 => 0.047691228109668
1104 => 0.048750717166096
1105 => 0.049095730232793
1106 => 0.049948757793623
1107 => 0.049895400687438
1108 => 0.050103099323867
1109 => 0.050055353004191
1110 => 0.051635406934484
1111 => 0.053378441059875
1112 => 0.053318085330622
1113 => 0.053067503552453
1114 => 0.053439660223576
1115 => 0.055238658235869
1116 => 0.055073035327253
1117 => 0.055233923875248
1118 => 0.057355043918826
1119 => 0.060112801701285
1120 => 0.058831546336978
1121 => 0.061611501806225
1122 => 0.063361336415008
1123 => 0.066387494434623
1124 => 0.066008604546425
1125 => 0.067186665656488
1126 => 0.065330312569844
1127 => 0.061067750652053
1128 => 0.060393183912131
1129 => 0.061743683608205
1130 => 0.065063755331171
1201 => 0.061639122734517
1202 => 0.062331921448569
1203 => 0.062132395372315
1204 => 0.062121763475643
1205 => 0.062527539728577
1206 => 0.06193894010983
1207 => 0.059540879376001
1208 => 0.060639896478454
1209 => 0.060215513196061
1210 => 0.060686398087746
1211 => 0.063227569640466
1212 => 0.062104057123045
1213 => 0.060920527952687
1214 => 0.062404936178464
1215 => 0.064295097947885
1216 => 0.064176815021302
1217 => 0.063947296705303
1218 => 0.065241079435401
1219 => 0.067378029462752
1220 => 0.067955638468184
1221 => 0.068382017627298
1222 => 0.068440808109604
1223 => 0.069046386615446
1224 => 0.065790038364101
1225 => 0.07095794666794
1226 => 0.071850301671427
1227 => 0.071682575915097
1228 => 0.072674390945434
1229 => 0.07238257380359
1230 => 0.071959776549765
1231 => 0.073532014337956
]
'min_raw' => 0.02710454338174
'max_raw' => 0.073532014337956
'avg_raw' => 0.050318278859848
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0271045'
'max' => '$0.073532'
'avg' => '$0.050318'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0093476565257187
'max_diff' => 0.033891015318212
'year' => 2032
]
7 => [
'items' => [
101 => 0.071729570586842
102 => 0.069171228603494
103 => 0.067767671593163
104 => 0.069615988686082
105 => 0.07074469143735
106 => 0.071490692156961
107 => 0.071716431523969
108 => 0.066042819409219
109 => 0.062985057152322
110 => 0.064945047701677
111 => 0.067336371443212
112 => 0.065776754439976
113 => 0.065837888473757
114 => 0.063614284487281
115 => 0.067533111056008
116 => 0.066962170987464
117 => 0.069924209073047
118 => 0.069217294912081
119 => 0.071632721985218
120 => 0.070996659087085
121 => 0.073636920615438
122 => 0.074690192421325
123 => 0.076458799712077
124 => 0.077759794434681
125 => 0.078523763419857
126 => 0.078477897587562
127 => 0.081505123314668
128 => 0.079720074066605
129 => 0.077477631507233
130 => 0.077437072796149
131 => 0.078598465573305
201 => 0.081032426221675
202 => 0.08166351680511
203 => 0.08201621034629
204 => 0.081476047910623
205 => 0.079538504887483
206 => 0.078701883633657
207 => 0.079414709181168
208 => 0.07854298479036
209 => 0.080047825651559
210 => 0.08211429357065
211 => 0.081687576117057
212 => 0.083114028587361
213 => 0.084590256826949
214 => 0.086701329511118
215 => 0.087253242083555
216 => 0.088165532578438
217 => 0.089104579169489
218 => 0.089406175626519
219 => 0.089982016842875
220 => 0.089978981875421
221 => 0.091714318139492
222 => 0.093628447777653
223 => 0.094350987403856
224 => 0.096012427433242
225 => 0.093167269606721
226 => 0.095325354500955
227 => 0.097272001095922
228 => 0.094951128774583
301 => 0.098149910575651
302 => 0.098274112024392
303 => 0.10014940644161
304 => 0.09824843628682
305 => 0.097119646277014
306 => 0.10037842074011
307 => 0.10195523905237
308 => 0.10148028854415
309 => 0.09786589172535
310 => 0.095762157748038
311 => 0.090256280149434
312 => 0.096778230001193
313 => 0.099954881526099
314 => 0.097857664965323
315 => 0.098915379010776
316 => 0.10468592387784
317 => 0.1068829737481
318 => 0.10642600273362
319 => 0.10650322331269
320 => 0.10768871154341
321 => 0.11294581921871
322 => 0.10979563844087
323 => 0.11220383361051
324 => 0.11348113164509
325 => 0.1146675572442
326 => 0.11175407094644
327 => 0.10796366808067
328 => 0.10676308838279
329 => 0.097649138109975
330 => 0.097174717418395
331 => 0.096908410707793
401 => 0.09522938456728
402 => 0.093910129944803
403 => 0.092861009688225
404 => 0.090107804841136
405 => 0.091036930655853
406 => 0.086648896768103
407 => 0.089456205347113
408 => 0.082452797309482
409 => 0.088285443630614
410 => 0.085110999415908
411 => 0.08724255332968
412 => 0.087235116538879
413 => 0.083310249973842
414 => 0.081046468849003
415 => 0.08248903828943
416 => 0.084035587240872
417 => 0.084286509605028
418 => 0.08629165068963
419 => 0.086851242465979
420 => 0.085155653258799
421 => 0.082307667244463
422 => 0.082969189439949
423 => 0.081033063122826
424 => 0.077640076224092
425 => 0.080076978650631
426 => 0.080909044282087
427 => 0.081276531866672
428 => 0.077939918938945
429 => 0.076891482715662
430 => 0.076333304067618
501 => 0.081876952414885
502 => 0.082180645985427
503 => 0.080626906740591
504 => 0.087649955458849
505 => 0.086060423236122
506 => 0.087836320173757
507 => 0.082909163234456
508 => 0.083097387264834
509 => 0.080764792208576
510 => 0.082070889576023
511 => 0.081147782054195
512 => 0.081965369815838
513 => 0.082455428549127
514 => 0.084787640849489
515 => 0.0883120737488
516 => 0.084439286104241
517 => 0.082751857068166
518 => 0.083798728551686
519 => 0.08658668526741
520 => 0.09081058240461
521 => 0.088309950285536
522 => 0.089419688356494
523 => 0.089662116756188
524 => 0.087818243210015
525 => 0.090878568652332
526 => 0.092518621918908
527 => 0.094200977209212
528 => 0.095661719169257
529 => 0.093529007510479
530 => 0.095811314697579
531 => 0.093972177986229
601 => 0.09232228222969
602 => 0.092324784440505
603 => 0.091289780731297
604 => 0.089284330625847
605 => 0.088914494857277
606 => 0.090838427230486
607 => 0.092381238796725
608 => 0.09250831214689
609 => 0.093362491902481
610 => 0.093867986683088
611 => 0.098822522719871
612 => 0.10081527809994
613 => 0.10325198165775
614 => 0.10420121501861
615 => 0.1070580671158
616 => 0.10475092702514
617 => 0.10425176275393
618 => 0.097321974035358
619 => 0.09845672654981
620 => 0.10027357481278
621 => 0.097351933194027
622 => 0.099205042331925
623 => 0.099570885329965
624 => 0.097252656929802
625 => 0.098490922883065
626 => 0.095202455631467
627 => 0.088383753348541
628 => 0.090886159817202
629 => 0.092728773279046
630 => 0.090099136676393
701 => 0.094812658505658
702 => 0.092059116359842
703 => 0.091186375692951
704 => 0.087781503196896
705 => 0.089388471949473
706 => 0.091561920196909
707 => 0.090218981870473
708 => 0.093005780541033
709 => 0.096952630670604
710 => 0.099765391111925
711 => 0.099981319932424
712 => 0.098172903408968
713 => 0.10107090242897
714 => 0.10109201118801
715 => 0.097823056454778
716 => 0.09582083988229
717 => 0.095365932064321
718 => 0.096502380983539
719 => 0.097882239771513
720 => 0.10005789249183
721 => 0.10137259386484
722 => 0.10480063778193
723 => 0.10572816817617
724 => 0.1067472428698
725 => 0.10810904093148
726 => 0.10974422866239
727 => 0.10616653099845
728 => 0.1063086795963
729 => 0.10297717706824
730 => 0.099416988831219
731 => 0.10211872791939
801 => 0.10565089237989
802 => 0.10484060994995
803 => 0.10474943662402
804 => 0.10490276486887
805 => 0.10429183837805
806 => 0.10152864050207
807 => 0.10014097982729
808 => 0.10193141612775
809 => 0.1028829533383
810 => 0.10435870456909
811 => 0.10417678708056
812 => 0.10797816376697
813 => 0.10945526379964
814 => 0.10907735840261
815 => 0.10914690209047
816 => 0.11182112114413
817 => 0.1147954027269
818 => 0.11758120992018
819 => 0.12041505265039
820 => 0.11699874463236
821 => 0.11526415410939
822 => 0.11705380876137
823 => 0.11610419281182
824 => 0.12156096773236
825 => 0.12193878298846
826 => 0.12739516332207
827 => 0.13257391799235
828 => 0.12932123497097
829 => 0.13238836855607
830 => 0.13570572359542
831 => 0.14210543968779
901 => 0.1399502404526
902 => 0.13829939161473
903 => 0.13673934743979
904 => 0.13998555171781
905 => 0.14416174166211
906 => 0.14506125297706
907 => 0.14651880494705
908 => 0.14498636727158
909 => 0.14683201965921
910 => 0.1533479836083
911 => 0.15158731263125
912 => 0.14908687680186
913 => 0.15423060453983
914 => 0.15609209961247
915 => 0.16915704690478
916 => 0.18565208254738
917 => 0.1788230294791
918 => 0.17458401586745
919 => 0.17558028461694
920 => 0.18160371324142
921 => 0.18353824734154
922 => 0.17827951678353
923 => 0.1801369893188
924 => 0.19037184561078
925 => 0.19586251763793
926 => 0.18840544752943
927 => 0.16783168685176
928 => 0.14886173991328
929 => 0.15389342406921
930 => 0.15332298723726
1001 => 0.16431906349868
1002 => 0.15154532121074
1003 => 0.15176039827078
1004 => 0.16298386174424
1005 => 0.15998963410839
1006 => 0.15513936881003
1007 => 0.14889715221758
1008 => 0.1373578375113
1009 => 0.12713714467834
1010 => 0.14718227700875
1011 => 0.14631789445296
1012 => 0.14506614041785
1013 => 0.14785178356905
1014 => 0.16137807599268
1015 => 0.16106625117198
1016 => 0.1590825807571
1017 => 0.16058717728352
1018 => 0.15487560576433
1019 => 0.15634760779489
1020 => 0.14885873497677
1021 => 0.15224401825351
1022 => 0.15512896231906
1023 => 0.15570815755255
1024 => 0.15701311398804
1025 => 0.1458624041239
1026 => 0.15086874548526
1027 => 0.1538095020043
1028 => 0.14052305706561
1029 => 0.15354687170704
1030 => 0.14566829507325
1031 => 0.1429941878315
1101 => 0.14659452094568
1102 => 0.14519146762965
1103 => 0.14398520477857
1104 => 0.14331208938145
1105 => 0.14595577666624
1106 => 0.14583244549451
1107 => 0.141506859979
1108 => 0.13586431000744
1109 => 0.13775813498828
1110 => 0.13707009061804
1111 => 0.13457652906078
1112 => 0.1362568884766
1113 => 0.12885743601976
1114 => 0.11612706265784
1115 => 0.12453713724261
1116 => 0.12421335851949
1117 => 0.1240500946051
1118 => 0.13037003321817
1119 => 0.12976251694631
1120 => 0.12865986896408
1121 => 0.13455627806588
1122 => 0.13240400942583
1123 => 0.1390367942362
1124 => 0.14340557529393
1125 => 0.14229751110243
1126 => 0.14640637080337
1127 => 0.13780176489085
1128 => 0.14065986981812
1129 => 0.14124892128247
1130 => 0.13448351729284
1201 => 0.12986191412167
1202 => 0.12955370588029
1203 => 0.12154048287763
1204 => 0.12582108192517
1205 => 0.12958783194379
1206 => 0.12778385099648
1207 => 0.12721276452096
1208 => 0.13013032147084
1209 => 0.13035704063304
1210 => 0.12518781970845
1211 => 0.12626266442661
1212 => 0.1307449455794
1213 => 0.12614972244191
1214 => 0.1172219545112
1215 => 0.11500774462834
1216 => 0.11471232821398
1217 => 0.10870721540046
1218 => 0.11515570872037
1219 => 0.11234076857735
1220 => 0.12123313076099
1221 => 0.11615386117239
1222 => 0.11593490401223
1223 => 0.11560391815062
1224 => 0.11043506948393
1225 => 0.11156671884447
1226 => 0.11532849367395
1227 => 0.11667073731254
1228 => 0.11653073030436
1229 => 0.11531005892506
1230 => 0.11586887603165
1231 => 0.11406873142653
]
'min_raw' => 0.062985057152322
'max_raw' => 0.19586251763793
'avg_raw' => 0.12942378739513
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.062985'
'max' => '$0.195862'
'avg' => '$0.129423'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.035880513770581
'max_diff' => 0.12233050329998
'year' => 2033
]
8 => [
'items' => [
101 => 0.11343306289969
102 => 0.11142671817458
103 => 0.10847794569555
104 => 0.10888799059463
105 => 0.10304570072538
106 => 0.09986251113082
107 => 0.09898144620481
108 => 0.097803249363512
109 => 0.099114526673097
110 => 0.10302915025223
111 => 0.098307283682075
112 => 0.090211974647981
113 => 0.090698516514665
114 => 0.091791631633529
115 => 0.089754618841207
116 => 0.087826757186799
117 => 0.089502876482947
118 => 0.086072787326628
119 => 0.092206141520625
120 => 0.092040251478204
121 => 0.094326386637647
122 => 0.095755953869063
123 => 0.092461264228536
124 => 0.091632658693732
125 => 0.092104670064379
126 => 0.084303373525915
127 => 0.093688854274801
128 => 0.093770020302058
129 => 0.09307502749936
130 => 0.098072506253934
131 => 0.1086187451788
201 => 0.10465082587379
202 => 0.10311432758789
203 => 0.10019344322323
204 => 0.10408534821419
205 => 0.10378651063406
206 => 0.10243505376592
207 => 0.10161768843527
208 => 0.10312370911878
209 => 0.10143107580619
210 => 0.1011270323528
211 => 0.099284859827767
212 => 0.098627288049841
213 => 0.09814044808415
214 => 0.097604485117833
215 => 0.09878668586788
216 => 0.096107663436813
217 => 0.092877025012754
218 => 0.092608432383785
219 => 0.093350040247272
220 => 0.093021933973891
221 => 0.09260686153718
222 => 0.091814375217246
223 => 0.091579261454912
224 => 0.092343267121514
225 => 0.091480749268218
226 => 0.092753441344535
227 => 0.092407339521041
228 => 0.09047404286949
301 => 0.088064439443562
302 => 0.088042988918757
303 => 0.087523843813182
304 => 0.086862634467244
305 => 0.086678701153624
306 => 0.089361718390902
307 => 0.094915483776119
308 => 0.093825146740659
309 => 0.094613026991013
310 => 0.098488618029009
311 => 0.0997205518769
312 => 0.098846154411619
313 => 0.097649225230657
314 => 0.097701884040101
315 => 0.10179215338655
316 => 0.10204725846847
317 => 0.10269182671044
318 => 0.10352027905634
319 => 0.098987243428455
320 => 0.097488378469677
321 => 0.096778133098346
322 => 0.094590852254196
323 => 0.096949647121324
324 => 0.095575278365916
325 => 0.095760727666142
326 => 0.095639953566085
327 => 0.095705904391425
328 => 0.09220442712313
329 => 0.093480181407469
330 => 0.091358992473142
331 => 0.08851895860471
401 => 0.088509437815339
402 => 0.089204532081164
403 => 0.08879106281281
404 => 0.087678427642935
405 => 0.087836472217326
406 => 0.086451835443346
407 => 0.088004592191345
408 => 0.088049119698847
409 => 0.087451223771636
410 => 0.089843459781068
411 => 0.090823560826011
412 => 0.090430012918548
413 => 0.090795948455705
414 => 0.093870455167058
415 => 0.094371733911142
416 => 0.094594368816648
417 => 0.094296067536742
418 => 0.090852144794437
419 => 0.091004897412748
420 => 0.089884100052533
421 => 0.088937144389867
422 => 0.088975017650246
423 => 0.089461875956475
424 => 0.091588014733642
425 => 0.096062348447462
426 => 0.096232146141206
427 => 0.096437945899372
428 => 0.095600854856239
429 => 0.095348380187748
430 => 0.095681459444729
501 => 0.09736178393835
502 => 0.10168403473959
503 => 0.10015626263301
504 => 0.098914160129166
505 => 0.10000381889347
506 => 0.099836074467729
507 => 0.098420142702492
508 => 0.098380402213749
509 => 0.095662776455489
510 => 0.094658132090005
511 => 0.093818576061879
512 => 0.092901802796331
513 => 0.092358308873996
514 => 0.093193362552273
515 => 0.093384349208559
516 => 0.091558489746766
517 => 0.091309631848906
518 => 0.09280066809932
519 => 0.092144518636947
520 => 0.092819384630722
521 => 0.092975959330171
522 => 0.092950747197338
523 => 0.092265651800335
524 => 0.092702311176546
525 => 0.091669481577382
526 => 0.09054643451428
527 => 0.089830000456326
528 => 0.089204816719573
529 => 0.089551704992615
530 => 0.088315111638515
531 => 0.087919500536831
601 => 0.092554380805033
602 => 0.095978216692513
603 => 0.095928432762721
604 => 0.095625385893501
605 => 0.095175119716652
606 => 0.097328844162978
607 => 0.096578529630958
608 => 0.09712444614388
609 => 0.097263404808462
610 => 0.097683990834481
611 => 0.097834314188193
612 => 0.097379932606995
613 => 0.095854972522459
614 => 0.092054916980648
615 => 0.090285980867882
616 => 0.089702202486708
617 => 0.08972342172211
618 => 0.089138100482866
619 => 0.089310503820081
620 => 0.089078145637915
621 => 0.088638115454373
622 => 0.089524534368754
623 => 0.089626685891073
624 => 0.089419785124539
625 => 0.089468517744975
626 => 0.087755467766549
627 => 0.08788570723586
628 => 0.087160517320706
629 => 0.08702455295391
630 => 0.085191335997911
701 => 0.081943526431311
702 => 0.08374312820371
703 => 0.081569462324954
704 => 0.080746262120257
705 => 0.084643163855397
706 => 0.084252023004418
707 => 0.083582559892383
708 => 0.082592284421346
709 => 0.082224981616358
710 => 0.079993366047186
711 => 0.079861510294154
712 => 0.080967559228924
713 => 0.080457155702347
714 => 0.079740355846103
715 => 0.07714417942762
716 => 0.074225217568774
717 => 0.074313322679352
718 => 0.075241790137435
719 => 0.077941434492707
720 => 0.076886636738781
721 => 0.076121368865898
722 => 0.075978057197175
723 => 0.077771902774547
724 => 0.080310570088795
725 => 0.081501655993161
726 => 0.080321326035751
727 => 0.078965426534157
728 => 0.079047953854186
729 => 0.079596971141446
730 => 0.079654665095651
731 => 0.078772113908834
801 => 0.07902054689835
802 => 0.078643154470086
803 => 0.076327097834447
804 => 0.076285207714203
805 => 0.075716810064359
806 => 0.075699599209417
807 => 0.074732613013594
808 => 0.074597324960338
809 => 0.072677315176663
810 => 0.073941071430603
811 => 0.073093410085642
812 => 0.071815784495688
813 => 0.071595521362413
814 => 0.071588899986652
815 => 0.07290073579568
816 => 0.073925741865386
817 => 0.073108155517653
818 => 0.072922006954519
819 => 0.074909586604431
820 => 0.074656648976789
821 => 0.074437606622524
822 => 0.080083260275151
823 => 0.075614284873248
824 => 0.073665556517821
825 => 0.071253635124501
826 => 0.072038968892129
827 => 0.072204450255922
828 => 0.066404214086497
829 => 0.064051058994934
830 => 0.063243544844289
831 => 0.062778809034019
901 => 0.062990594978544
902 => 0.060872479398575
903 => 0.062295888098712
904 => 0.060461779046312
905 => 0.06015428469497
906 => 0.063433898883174
907 => 0.063890238038234
908 => 0.061943353429284
909 => 0.063193568520218
910 => 0.062740223148955
911 => 0.060493219581803
912 => 0.060407400573377
913 => 0.059279933169375
914 => 0.05751566500282
915 => 0.056709347109069
916 => 0.056289409749231
917 => 0.056462684088317
918 => 0.056375071280193
919 => 0.055803338443598
920 => 0.05640784233714
921 => 0.054863584687396
922 => 0.054248648848338
923 => 0.053970896596239
924 => 0.052600279047937
925 => 0.054781541083676
926 => 0.055211277183531
927 => 0.055641859996256
928 => 0.059389789409651
929 => 0.059202553447696
930 => 0.060895075356154
1001 => 0.06082930706714
1002 => 0.06034657240181
1003 => 0.058309994254784
1004 => 0.059121738005674
1005 => 0.056623316913422
1006 => 0.058495303871858
1007 => 0.057641007200072
1008 => 0.058206465307782
1009 => 0.057189720644818
1010 => 0.05775242912166
1011 => 0.055313183554965
1012 => 0.053035450365897
1013 => 0.053952076692355
1014 => 0.05494855433815
1015 => 0.057109171772016
1016 => 0.055822325853112
1017 => 0.056285124306582
1018 => 0.054734826958985
1019 => 0.051536120710348
1020 => 0.051554225040336
1021 => 0.051062173771587
1022 => 0.050636969634726
1023 => 0.05597013558689
1024 => 0.055306872095861
1025 => 0.054250048528686
1026 => 0.055664648869849
1027 => 0.056038691652778
1028 => 0.056049340124966
1029 => 0.057081396017759
1030 => 0.057632204432748
1031 => 0.057729286803231
1101 => 0.059353249049583
1102 => 0.059897579773981
1103 => 0.062139600991206
1104 => 0.057585472187021
1105 => 0.057491682901226
1106 => 0.055684555197632
1107 => 0.054538446238454
1108 => 0.055763030258606
1109 => 0.056847844528072
1110 => 0.055718263400892
1111 => 0.055865762849343
1112 => 0.054349392476273
1113 => 0.054891423532788
1114 => 0.055358293698127
1115 => 0.055100515434187
1116 => 0.054714608896459
1117 => 0.056758902129035
1118 => 0.056643555093203
1119 => 0.058547247949475
1120 => 0.060031312665322
1121 => 0.06269102194442
1122 => 0.059915476657901
1123 => 0.059814324755867
1124 => 0.060803100823525
1125 => 0.059897428397517
1126 => 0.060469782108005
1127 => 0.062598806913106
1128 => 0.062643789852365
1129 => 0.061890267662542
1130 => 0.061844415768811
1201 => 0.061989137947996
1202 => 0.062836780271797
1203 => 0.062540587998443
1204 => 0.06288334919584
1205 => 0.063311977321729
1206 => 0.065084964984967
1207 => 0.065512426308152
1208 => 0.064473916906098
1209 => 0.064567682677406
1210 => 0.064179251653317
1211 => 0.063804032151074
1212 => 0.06464747079571
1213 => 0.066188871496609
1214 => 0.066179282522848
1215 => 0.066536857524908
1216 => 0.066759623788881
1217 => 0.065803347909039
1218 => 0.065180847474501
1219 => 0.065419553751835
1220 => 0.065801250287638
1221 => 0.065295774709651
1222 => 0.062175745283252
1223 => 0.06312216290297
1224 => 0.062964632733592
1225 => 0.062740290616074
1226 => 0.063691920851131
1227 => 0.063600133793443
1228 => 0.060850755061828
1229 => 0.061026761367888
1230 => 0.06086145858825
1231 => 0.061395585687027
]
'min_raw' => 0.050636969634726
'max_raw' => 0.11343306289969
'avg_raw' => 0.082035016267208
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.050636'
'max' => '$0.113433'
'avg' => '$0.082035'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.012348087517595
'max_diff' => -0.082429454738244
'year' => 2034
]
9 => [
'items' => [
101 => 0.059868583781327
102 => 0.060338279283006
103 => 0.060632867898537
104 => 0.060806382856221
105 => 0.061433237863696
106 => 0.061359683663702
107 => 0.06142866563135
108 => 0.062358126123849
109 => 0.067059018342588
110 => 0.06731487753412
111 => 0.066054933298914
112 => 0.066558256169578
113 => 0.065591986322515
114 => 0.066240649744294
115 => 0.06668444878321
116 => 0.064679006263995
117 => 0.064560256973221
118 => 0.063589998986779
119 => 0.064111360670472
120 => 0.063281836744485
121 => 0.063485372900407
122 => 0.062916268064486
123 => 0.063940543461501
124 => 0.06508584251167
125 => 0.065375190280973
126 => 0.064614040871984
127 => 0.064062918537686
128 => 0.063095329269642
129 => 0.064704451786533
130 => 0.065175008247592
131 => 0.064701980153765
201 => 0.064592369208557
202 => 0.064384656665451
203 => 0.064636436406498
204 => 0.065172445496048
205 => 0.06491967350795
206 => 0.065086633859358
207 => 0.064450353168557
208 => 0.065803664476146
209 => 0.0679530485247
210 => 0.067959959145875
211 => 0.067707185795242
212 => 0.067603756386241
213 => 0.06786311718356
214 => 0.068003809776569
215 => 0.068842535036463
216 => 0.069742520656619
217 => 0.073942360851394
218 => 0.072763062530633
219 => 0.076489410601049
220 => 0.07943646811901
221 => 0.08032016180944
222 => 0.079507205195246
223 => 0.07672612453314
224 => 0.076589671448012
225 => 0.080745780099166
226 => 0.07957148904338
227 => 0.079431810858857
228 => 0.077945870965553
301 => 0.078824245479732
302 => 0.078632132088504
303 => 0.078328871701943
304 => 0.080004749086897
305 => 0.083141841944924
306 => 0.08265289660353
307 => 0.082287921587701
308 => 0.080688707310968
309 => 0.081651791503001
310 => 0.081308855668881
311 => 0.082782325644721
312 => 0.08190947467239
313 => 0.079562592633685
314 => 0.079936341333773
315 => 0.079879849969632
316 => 0.081042438240619
317 => 0.080693458098884
318 => 0.079811705996028
319 => 0.083131119702581
320 => 0.082915575440027
321 => 0.083221167924051
322 => 0.083355699186279
323 => 0.085376167814828
324 => 0.08620388916416
325 => 0.08639179640176
326 => 0.087178067665358
327 => 0.086372233256445
328 => 0.089596145442295
329 => 0.091739858925394
330 => 0.0942298924505
331 => 0.097868500688596
401 => 0.099236651045129
402 => 0.09898950692906
403 => 0.10174825816832
404 => 0.10670567282168
405 => 0.099991542168414
406 => 0.10706153804949
407 => 0.10482325898057
408 => 0.099516339573078
409 => 0.099174636527705
410 => 0.10276854396506
411 => 0.11073948476034
412 => 0.10874285449678
413 => 0.11074275053218
414 => 0.10840976557616
415 => 0.10829391320915
416 => 0.11062944266018
417 => 0.1160865345256
418 => 0.11349407473637
419 => 0.10977714793129
420 => 0.11252166884237
421 => 0.11014411083577
422 => 0.10478680721031
423 => 0.10874132771125
424 => 0.10609705247053
425 => 0.10686879256318
426 => 0.11242666581291
427 => 0.11175792779919
428 => 0.11262333671241
429 => 0.11109591263227
430 => 0.10966905768875
501 => 0.10700572697703
502 => 0.1062172460539
503 => 0.10643515381448
504 => 0.10621713806964
505 => 0.1047270290137
506 => 0.10440524010495
507 => 0.10386891115913
508 => 0.10403514192586
509 => 0.10302668659915
510 => 0.10492985015815
511 => 0.10528309408532
512 => 0.1066680578129
513 => 0.10681184934153
514 => 0.1106689536091
515 => 0.10854452539453
516 => 0.10996977525517
517 => 0.10984228749266
518 => 0.099631356608625
519 => 0.10103833279264
520 => 0.10322714620152
521 => 0.10224108872768
522 => 0.1008470341616
523 => 0.099721260355008
524 => 0.09801559792174
525 => 0.10041628504222
526 => 0.10357293332103
527 => 0.10689190715115
528 => 0.11087943674025
529 => 0.10998946655592
530 => 0.10681736305915
531 => 0.10695966130479
601 => 0.10783929306705
602 => 0.10670009001195
603 => 0.10636411679111
604 => 0.10779313550573
605 => 0.10780297637224
606 => 0.10649218558005
607 => 0.10503548148672
608 => 0.10502937784338
609 => 0.10477017142006
610 => 0.10845587782304
611 => 0.11048264367772
612 => 0.11071500911666
613 => 0.11046700363229
614 => 0.11056245110024
615 => 0.10938312070614
616 => 0.11207872026749
617 => 0.11455246899216
618 => 0.11388945149001
619 => 0.11289549400081
620 => 0.11210375898518
621 => 0.11370294388203
622 => 0.11363173469593
623 => 0.1145308629551
624 => 0.11449007330365
625 => 0.11418773028801
626 => 0.11388946228764
627 => 0.11507206119444
628 => 0.11473149170124
629 => 0.11439039320954
630 => 0.11370626796489
701 => 0.11379925194775
702 => 0.11280546607932
703 => 0.11234569526404
704 => 0.10543184534661
705 => 0.10358423873211
706 => 0.10416553338454
707 => 0.10435691067742
708 => 0.10355282991102
709 => 0.10470567517864
710 => 0.10452600546485
711 => 0.10522499521795
712 => 0.10478829676682
713 => 0.10480621902358
714 => 0.10609045605443
715 => 0.10646327552802
716 => 0.10627365653473
717 => 0.10640645917787
718 => 0.10946684003658
719 => 0.10903175174395
720 => 0.10880061976011
721 => 0.10886464489922
722 => 0.10964663782393
723 => 0.10986555314761
724 => 0.10893799353824
725 => 0.10937543601218
726 => 0.11123801054649
727 => 0.11188980622091
728 => 0.11397002513398
729 => 0.11308631116676
730 => 0.11470840639983
731 => 0.11969417413327
801 => 0.12367715038763
802 => 0.12001424082067
803 => 0.12732846948283
804 => 0.1330236456601
805 => 0.13280505531261
806 => 0.1318119696143
807 => 0.12532816295056
808 => 0.11936166739048
809 => 0.12435289427727
810 => 0.12436561794106
811 => 0.12393686712499
812 => 0.12127393262928
813 => 0.12384420277678
814 => 0.12404822148724
815 => 0.12393402526234
816 => 0.12189235962806
817 => 0.11877511356739
818 => 0.11938421598601
819 => 0.12038193817307
820 => 0.11849304192632
821 => 0.11788942512323
822 => 0.11901166360298
823 => 0.1226277498124
824 => 0.12194414966107
825 => 0.12192629809847
826 => 0.12485102943744
827 => 0.12275755299527
828 => 0.11939189871813
829 => 0.11854202662562
830 => 0.11552555323968
831 => 0.11760904215166
901 => 0.11768402320844
902 => 0.11654291762409
903 => 0.11948449314731
904 => 0.11945738601101
905 => 0.12224997417457
906 => 0.12758835389508
907 => 0.12600953232601
908 => 0.12417353461648
909 => 0.1243731584742
910 => 0.12656253947973
911 => 0.12523878974508
912 => 0.12571481937917
913 => 0.12656181895186
914 => 0.12707283482389
915 => 0.12429963115431
916 => 0.12365306472126
917 => 0.12233041671324
918 => 0.12198536253634
919 => 0.12306263174092
920 => 0.12277880936599
921 => 0.11767772134096
922 => 0.11714462926016
923 => 0.11716097843319
924 => 0.11582049304887
925 => 0.11377593108442
926 => 0.11914891785254
927 => 0.11871739182016
928 => 0.11824102047787
929 => 0.11829937324916
930 => 0.12063160469779
1001 => 0.11927879267708
1002 => 0.12287546515567
1003 => 0.12213609741994
1004 => 0.12137776769168
1005 => 0.12127294342395
1006 => 0.12098105117622
1007 => 0.11998004405044
1008 => 0.11877126779486
1009 => 0.11797312900852
1010 => 0.10882397547435
1011 => 0.11052200515212
1012 => 0.11247543351611
1013 => 0.11314974915948
1014 => 0.11199628559027
1015 => 0.1200255898226
1016 => 0.12149262107814
1017 => 0.11704888771301
1018 => 0.11621764663683
1019 => 0.12008008584916
1020 => 0.11775056284014
1021 => 0.11879954690846
1022 => 0.11653221711635
1023 => 0.12113925620837
1024 => 0.12110415828939
1025 => 0.1193119160279
1026 => 0.12082670691457
1027 => 0.12056347472084
1028 => 0.11854003762171
1029 => 0.12120340277355
1030 => 0.12120472376944
1031 => 0.11947972955946
1101 => 0.11746531397199
1102 => 0.11710518404332
1103 => 0.11683387451872
1104 => 0.11873282139699
1105 => 0.12043541123019
1106 => 0.12360350880196
1107 => 0.12440004380364
1108 => 0.12750897294356
1109 => 0.12565775701175
1110 => 0.12647837705706
1111 => 0.12736927620004
1112 => 0.12779640601091
1113 => 0.12710042090514
1114 => 0.13192986754571
1115 => 0.1323376208126
1116 => 0.13247433695593
1117 => 0.13084587472131
1118 => 0.13229233033199
1119 => 0.13161558165333
1120 => 0.13337629370901
1121 => 0.13365239584124
1122 => 0.13341854715786
1123 => 0.1335061863326
1124 => 0.12938510559764
1125 => 0.1291714058211
1126 => 0.12625759420453
1127 => 0.12744499397609
1128 => 0.12522520701671
1129 => 0.12592912432787
1130 => 0.12623940437145
1201 => 0.12607733168492
1202 => 0.12751212777761
1203 => 0.12629225798935
1204 => 0.12307282105296
1205 => 0.11985250698313
1206 => 0.11981207856319
1207 => 0.11896422671187
1208 => 0.11835138511518
1209 => 0.11846944014843
1210 => 0.11888548148375
1211 => 0.11832720403645
1212 => 0.11844634083521
1213 => 0.12042480549907
1214 => 0.12082157247764
1215 => 0.11947320325759
1216 => 0.11405930627032
1217 => 0.11273072236991
1218 => 0.11368568213056
1219 => 0.11322927287226
1220 => 0.091384860390325
1221 => 0.096516881080205
1222 => 0.093467608653234
1223 => 0.09487285367786
1224 => 0.09176033613519
1225 => 0.093245792647574
1226 => 0.092971483069923
1227 => 0.10122362047172
1228 => 0.10109477469663
1229 => 0.1011564463508
1230 => 0.098212697612787
1231 => 0.10290216928393
]
'min_raw' => 0.059868583781327
'max_raw' => 0.13365239584124
'avg_raw' => 0.096760489811282
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.059868'
'max' => '$0.133652'
'avg' => '$0.09676'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0092316141466008
'max_diff' => 0.020219332941547
'year' => 2035
]
10 => [
'items' => [
101 => 0.10521237165708
102 => 0.10478481468185
103 => 0.10489242156116
104 => 0.10304337885596
105 => 0.10117434912599
106 => 0.099101307513846
107 => 0.10295276259352
108 => 0.1025245465352
109 => 0.10350672010573
110 => 0.1060046640326
111 => 0.10637249576459
112 => 0.10686686534258
113 => 0.10668966904049
114 => 0.11091120384661
115 => 0.11039994812701
116 => 0.11163192731294
117 => 0.10909765265698
118 => 0.10622988032821
119 => 0.10677495009337
120 => 0.10672245549181
121 => 0.10605413896346
122 => 0.10545081268412
123 => 0.10444644441515
124 => 0.10762441423672
125 => 0.10749539446562
126 => 0.10958407459068
127 => 0.10921488009022
128 => 0.10674930885893
129 => 0.1068373672178
130 => 0.10742960200062
131 => 0.10947933334597
201 => 0.11008783316563
202 => 0.10980595180464
203 => 0.11047314407782
204 => 0.11100046564692
205 => 0.11053936754811
206 => 0.11706754425737
207 => 0.1143565901448
208 => 0.11567789031657
209 => 0.11599301262198
210 => 0.11518583346297
211 => 0.11536088171964
212 => 0.1156260321307
213 => 0.1172359735049
214 => 0.12146092551108
215 => 0.1233321279944
216 => 0.12896173298896
217 => 0.12317675067655
218 => 0.12283349376677
219 => 0.12384755562408
220 => 0.12715272971009
221 => 0.1298312628676
222 => 0.13071988684422
223 => 0.13083733317232
224 => 0.13250445082708
225 => 0.13346001157688
226 => 0.13230201889424
227 => 0.13132074134259
228 => 0.12780592695324
229 => 0.12821277628933
301 => 0.13101556476191
302 => 0.13497466856285
303 => 0.1383719914986
304 => 0.13718236741516
305 => 0.1462583594281
306 => 0.14715820696408
307 => 0.14703387713016
308 => 0.14908386373239
309 => 0.14501505779948
310 => 0.14327556443375
311 => 0.13153290468723
312 => 0.13483211309914
313 => 0.13962770628156
314 => 0.13899299154131
315 => 0.13551030358567
316 => 0.13836934956749
317 => 0.13742405955526
318 => 0.1366784701025
319 => 0.14009415992522
320 => 0.13633846865634
321 => 0.1395902403882
322 => 0.13541980950682
323 => 0.13718780151777
324 => 0.1361842037442
325 => 0.13683365450002
326 => 0.13303697865198
327 => 0.13508557278048
328 => 0.13295175040108
329 => 0.13295073869144
330 => 0.13290363444415
331 => 0.1354140670107
401 => 0.13549593212657
402 => 0.13364071866684
403 => 0.13337335342341
404 => 0.13436194286016
405 => 0.13320456354171
406 => 0.13374609404035
407 => 0.13322096594884
408 => 0.13310274855456
409 => 0.13216077224384
410 => 0.131754942949
411 => 0.13191407907244
412 => 0.13137086544285
413 => 0.13104355958213
414 => 0.13283852507029
415 => 0.13187954741866
416 => 0.1326915479915
417 => 0.13176617085611
418 => 0.12855841053724
419 => 0.1267135936564
420 => 0.12065443177358
421 => 0.12237280256718
422 => 0.12351208418112
423 => 0.12313555161451
424 => 0.12394448926635
425 => 0.12399415146825
426 => 0.1237311575915
427 => 0.12342664437382
428 => 0.12327842418009
429 => 0.12438313606963
430 => 0.1250244585044
501 => 0.1236264263327
502 => 0.12329888695542
503 => 0.12471237466848
504 => 0.12557460135689
505 => 0.13194079878084
506 => 0.13146917031313
507 => 0.13265286521468
508 => 0.13251959933404
509 => 0.13376030016825
510 => 0.13578832167288
511 => 0.13166478691023
512 => 0.13238048996393
513 => 0.13220501610316
514 => 0.13412079370331
515 => 0.13412677455186
516 => 0.13297817018038
517 => 0.13360084724414
518 => 0.1332532859894
519 => 0.13388137615243
520 => 0.13146287142741
521 => 0.13440834912104
522 => 0.13607824517093
523 => 0.13610143167921
524 => 0.13689294915374
525 => 0.13769717674947
526 => 0.13924082158601
527 => 0.1376541253328
528 => 0.13479981323502
529 => 0.13500588534911
530 => 0.13333240321054
531 => 0.13336053474763
601 => 0.13321036639794
602 => 0.1336610329195
603 => 0.13156176738571
604 => 0.13205446081054
605 => 0.13136468713057
606 => 0.13237899053066
607 => 0.13128776774252
608 => 0.13220493148435
609 => 0.13260074895086
610 => 0.13406132392363
611 => 0.13107203963149
612 => 0.12497668660307
613 => 0.12625800370865
614 => 0.1243628350642
615 => 0.12453824013766
616 => 0.12489258630156
617 => 0.12374403444951
618 => 0.12396314194786
619 => 0.12395531388618
620 => 0.12388785587971
621 => 0.12358907318382
622 => 0.12315577916242
623 => 0.12488188918281
624 => 0.12517518891074
625 => 0.12582715787377
626 => 0.12776697527299
627 => 0.12757314177076
628 => 0.12788929225497
629 => 0.12719913752306
630 => 0.12457025443626
701 => 0.12471301543582
702 => 0.12293278348383
703 => 0.12578163334025
704 => 0.12510698809127
705 => 0.12467203991042
706 => 0.12455336026951
707 => 0.12649798610086
708 => 0.12707984862787
709 => 0.12671727094838
710 => 0.12597361354966
711 => 0.12740165559777
712 => 0.12778373940559
713 => 0.12786927387945
714 => 0.13039949058881
715 => 0.12801068488631
716 => 0.12858569416159
717 => 0.13307175238369
718 => 0.12900351660996
719 => 0.13115855183179
720 => 0.13105307407194
721 => 0.13215551716901
722 => 0.13096264156008
723 => 0.1309774286829
724 => 0.13195632346714
725 => 0.13058164228728
726 => 0.13024125189497
727 => 0.1297710050059
728 => 0.13079777188453
729 => 0.1314132721916
730 => 0.13637375263141
731 => 0.13957844922091
801 => 0.13943932489018
802 => 0.14071066084327
803 => 0.1401379123523
804 => 0.13828835639153
805 => 0.14144532288724
806 => 0.14044632659491
807 => 0.14052868263547
808 => 0.14052561733953
809 => 0.14118986254016
810 => 0.14071918393833
811 => 0.13979142809997
812 => 0.14040731572203
813 => 0.14223628177568
814 => 0.14791344852576
815 => 0.15109046625156
816 => 0.14772218806949
817 => 0.15004558125644
818 => 0.14865237325391
819 => 0.1483991859155
820 => 0.14985844853431
821 => 0.15132026539917
822 => 0.15122715398448
823 => 0.15016595000573
824 => 0.14956650280518
825 => 0.15410571783726
826 => 0.15745013414938
827 => 0.15722206737815
828 => 0.15822867993509
829 => 0.16118412553564
830 => 0.16145433444251
831 => 0.16142029433092
901 => 0.16075055336188
902 => 0.16366057336872
903 => 0.16608816325537
904 => 0.16059552767822
905 => 0.16268705140212
906 => 0.16362600378646
907 => 0.1650046644613
908 => 0.1673306961101
909 => 0.16985738343013
910 => 0.1702146847209
911 => 0.16996116235666
912 => 0.1682947441481
913 => 0.17105947556332
914 => 0.17267899038543
915 => 0.17364337440005
916 => 0.17608889180295
917 => 0.16363180243673
918 => 0.1548140554258
919 => 0.15343703690024
920 => 0.15623725822056
921 => 0.15697565425138
922 => 0.15667800773722
923 => 0.14675283180194
924 => 0.153384782903
925 => 0.16052020465745
926 => 0.16079430526696
927 => 0.16436644659187
928 => 0.16552968223428
929 => 0.1684057242121
930 => 0.16822582700333
1001 => 0.16892609745711
1002 => 0.16876511740678
1003 => 0.1740923795486
1004 => 0.17996914079711
1005 => 0.17976564724203
1006 => 0.17892079328188
1007 => 0.18017554548172
1008 => 0.18624099288219
1009 => 0.18568258368237
1010 => 0.18622503065482
1011 => 0.19337653497361
1012 => 0.20267450787767
1013 => 0.19835466596252
1014 => 0.20772747991738
1015 => 0.21362716947044
1016 => 0.22383007251318
1017 => 0.22255261880187
1018 => 0.22652453408405
1019 => 0.220265710046
1020 => 0.20589418493759
1021 => 0.2036198360772
1022 => 0.20817314009139
1023 => 0.21936699370538
1024 => 0.20782060580555
1025 => 0.21015642503963
1026 => 0.20948370894308
1027 => 0.20944786276115
1028 => 0.21081596572831
1029 => 0.20883146101899
1030 => 0.20074623182764
1031 => 0.20445164471948
1101 => 0.2030208068534
1102 => 0.20460842814185
1103 => 0.21317616545077
1104 => 0.20938816455715
1105 => 0.20539781332792
1106 => 0.2104025992992
1107 => 0.21677541167168
1108 => 0.21637661252646
1109 => 0.21560277549961
1110 => 0.21996485430316
1111 => 0.22716973051746
1112 => 0.22911717960665
1113 => 0.23055474671044
1114 => 0.23075296292616
1115 => 0.23279471313875
1116 => 0.22181570765836
1117 => 0.23923967131659
1118 => 0.24224830851309
1119 => 0.24168280941538
1120 => 0.24502678303648
1121 => 0.24404290116873
1122 => 0.24261741070869
1123 => 0.24791832018172
1124 => 0.24184125523223
1125 => 0.23321562661764
1126 => 0.22848343616409
1127 => 0.23471516628824
1128 => 0.23852066641765
1129 => 0.24103585992793
1130 => 0.24179695596442
1201 => 0.22266797660059
1202 => 0.21235851766531
1203 => 0.21896676264464
1204 => 0.22702927759611
1205 => 0.22177091998072
1206 => 0.22197703764386
1207 => 0.21448000155638
1208 => 0.22769259893658
1209 => 0.22576763463372
1210 => 0.23575435284215
1211 => 0.23337094239329
1212 => 0.2415147234101
1213 => 0.23937019294055
1214 => 0.24827201902057
1215 => 0.25182319845121
1216 => 0.25778618141219
1217 => 0.262172575952
1218 => 0.26474835072414
1219 => 0.26459371086831
1220 => 0.27480021376139
1221 => 0.26878179559339
1222 => 0.26122124394213
1223 => 0.26108449741599
1224 => 0.26500021425002
1225 => 0.27320648250971
1226 => 0.2753342484731
1227 => 0.27652337937146
1228 => 0.27470218400668
1229 => 0.26816962242922
1230 => 0.26534889546092
1231 => 0.26775223656224
]
'min_raw' => 0.099101307513846
'max_raw' => 0.27652337937146
'avg_raw' => 0.18781234344265
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.0991013'
'max' => '$0.276523'
'avg' => '$0.187812'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.039232723732519
'max_diff' => 0.14287098353023
'year' => 2036
]
11 => [
'items' => [
101 => 0.26481315691678
102 => 0.26988683294495
103 => 0.27685407381034
104 => 0.2754153661231
105 => 0.28022475021846
106 => 0.28520195679519
107 => 0.29231958574026
108 => 0.29418039751153
109 => 0.29725624860912
110 => 0.30042230975299
111 => 0.30143916326466
112 => 0.30338065212955
113 => 0.30337041952488
114 => 0.30922122689651
115 => 0.31567484861183
116 => 0.31811094140768
117 => 0.32371260246479
118 => 0.3141199542101
119 => 0.32139608810369
120 => 0.32795934300914
121 => 0.32013435993962
122 => 0.33091927611373
123 => 0.33133802996963
124 => 0.33766071602617
125 => 0.33125146242778
126 => 0.32744566810012
127 => 0.33843285372283
128 => 0.34374920675255
129 => 0.34214787795408
130 => 0.32996168673038
131 => 0.32286880074786
201 => 0.30430535001607
202 => 0.32629455928927
203 => 0.33700486169221
204 => 0.32993394963458
205 => 0.33350010638606
206 => 0.35295590129193
207 => 0.36036340832265
208 => 0.35882269864264
209 => 0.35908305321633
210 => 0.36308000955434
211 => 0.38080471512116
212 => 0.37018366069006
213 => 0.37830305883932
214 => 0.38260955834102
215 => 0.38660967508202
216 => 0.376786652616
217 => 0.36400704471657
218 => 0.35995920644337
219 => 0.32923088678289
220 => 0.32763134429823
221 => 0.3267334726305
222 => 0.3210725187719
223 => 0.3166245597048
224 => 0.31308737751251
225 => 0.30380475514792
226 => 0.30693736770173
227 => 0.29214280508644
228 => 0.3016078419606
301 => 0.27799536279939
302 => 0.29766053709345
303 => 0.28695767679095
304 => 0.29414435963158
305 => 0.29411928597217
306 => 0.28088632432272
307 => 0.27325382820817
308 => 0.27811755179355
309 => 0.28333184955994
310 => 0.28417785182953
311 => 0.29093832499075
312 => 0.29282502773416
313 => 0.28710823033989
314 => 0.27750604665253
315 => 0.27973641492061
316 => 0.27320862986641
317 => 0.26176893764654
318 => 0.26998512431671
319 => 0.27279049168614
320 => 0.27402950173473
321 => 0.26277987829402
322 => 0.25924500236774
323 => 0.25736306408508
324 => 0.27605386153305
325 => 0.27707778560934
326 => 0.27183924526677
327 => 0.29551794435398
328 => 0.29015872548746
329 => 0.29614628600186
330 => 0.27953403237789
331 => 0.2801686428377
401 => 0.27230413574894
402 => 0.27670773421209
403 => 0.27359541275294
404 => 0.27635196697347
405 => 0.27800423420756
406 => 0.2858674508081
407 => 0.29775032239617
408 => 0.28469294846314
409 => 0.27900366365548
410 => 0.2825332639524
411 => 0.29193305466839
412 => 0.30617421876954
413 => 0.29774316299152
414 => 0.30148472237719
415 => 0.30230208665257
416 => 0.29608533825651
417 => 0.30640343915038
418 => 0.31193299324351
419 => 0.31760517156306
420 => 0.3225301650671
421 => 0.31533957880836
422 => 0.32303453683526
423 => 0.31683375900852
424 => 0.31127102027331
425 => 0.31127945665177
426 => 0.30778986938452
427 => 0.30102835433794
428 => 0.2997814272231
429 => 0.30626809954404
430 => 0.31146979645528
501 => 0.31189823312734
502 => 0.31477815981024
503 => 0.31648247075558
504 => 0.33318703491825
505 => 0.33990574881188
506 => 0.34812126498227
507 => 0.35132167153175
508 => 0.36095374783646
509 => 0.35317506394142
510 => 0.35149209675051
511 => 0.32812783026345
512 => 0.33195372759182
513 => 0.33807935835871
514 => 0.32822883965859
515 => 0.33447672649696
516 => 0.33571019170719
517 => 0.3278941228025
518 => 0.3320690229169
519 => 0.32098172598468
520 => 0.29799199517121
521 => 0.30642903329274
522 => 0.31264153322651
523 => 0.3037755298253
524 => 0.31966749776025
525 => 0.31038373816946
526 => 0.30744123207823
527 => 0.29596146673717
528 => 0.30137947408146
529 => 0.308707406593
530 => 0.30417959626446
531 => 0.31357548255033
601 => 0.32688256332245
602 => 0.33636598153103
603 => 0.33709400062501
604 => 0.33099679805657
605 => 0.34076760408432
606 => 0.3408387737392
607 => 0.32981726462499
608 => 0.32306665166054
609 => 0.32153289819161
610 => 0.32536451506708
611 => 0.3300168053094
612 => 0.33735217035517
613 => 0.3417847778238
614 => 0.35334266722864
615 => 0.35646990071093
616 => 0.35990578219002
617 => 0.36449717943269
618 => 0.37001032903261
619 => 0.35794787157177
620 => 0.35842713549393
621 => 0.34719474212249
622 => 0.33519131891696
623 => 0.34430042088213
624 => 0.35620935996854
625 => 0.35347743618391
626 => 0.35317003895
627 => 0.35368699583255
628 => 0.35162721451523
629 => 0.34231089995604
630 => 0.33763230510763
701 => 0.34366888609892
702 => 0.34687706023849
703 => 0.35185265854676
704 => 0.35123931103313
705 => 0.36405591793499
706 => 0.36903606382298
707 => 0.36776192939238
708 => 0.36799640079137
709 => 0.3770127170388
710 => 0.38704071505281
711 => 0.39643325850381
712 => 0.4059877571213
713 => 0.39446943611949
714 => 0.38862114306605
715 => 0.39465508867492
716 => 0.39145339220092
717 => 0.40985128982539
718 => 0.41112512033956
719 => 0.42952168758663
720 => 0.44698222052658
721 => 0.43601557262494
722 => 0.44635662764751
723 => 0.45754132177302
724 => 0.47911841139234
725 => 0.47185200669972
726 => 0.46628605458425
727 => 0.46102625672961
728 => 0.47197106109571
729 => 0.48605137706518
730 => 0.48908414226541
731 => 0.49399838049526
801 => 0.48883165988103
802 => 0.49505440576526
803 => 0.51702343314969
804 => 0.51108720802445
805 => 0.5026568140508
806 => 0.51999925124299
807 => 0.52627541184582
808 => 0.57032479380734
809 => 0.62593895812297
810 => 0.60291432891401
811 => 0.58862219856387
812 => 0.59198118821002
813 => 0.61228959835982
814 => 0.61881201514321
815 => 0.60108183791405
816 => 0.60734443625129
817 => 0.64185196881458
818 => 0.66036415290059
819 => 0.63522212039376
820 => 0.56585624985489
821 => 0.50189774931241
822 => 0.51886242374509
823 => 0.51693915613956
824 => 0.55401319497646
825 => 0.51094563101845
826 => 0.51167077834258
827 => 0.54951146904054
828 => 0.539416221516
829 => 0.52306321342786
830 => 0.50201714436878
831 => 0.46311153918731
901 => 0.42865175971501
902 => 0.49623532287343
903 => 0.49332099673731
904 => 0.48910062061326
905 => 0.49849261098493
906 => 0.54409745026679
907 => 0.54304611111288
908 => 0.53635802781368
909 => 0.54143088005007
910 => 0.52217391790394
911 => 0.52713687552187
912 => 0.50188761795915
913 => 0.51330133687964
914 => 0.52302812721701
915 => 0.52498092438483
916 => 0.52938067611622
917 => 0.49178527929157
918 => 0.50866450872298
919 => 0.51857947464401
920 => 0.47378329790323
921 => 0.51769399826054
922 => 0.49113082707506
923 => 0.48211488780927
924 => 0.49425366227098
925 => 0.48952317005791
926 => 0.48545617063693
927 => 0.48318671508011
928 => 0.49210009133714
929 => 0.49168427168096
930 => 0.47710025811267
1001 => 0.45807600693329
1002 => 0.46446117007885
1003 => 0.46214138044684
1004 => 0.45373416356163
1005 => 0.45939961265103
1006 => 0.43445184207951
1007 => 0.39153049948351
1008 => 0.41988565311871
1009 => 0.41879401054822
1010 => 0.41824355486214
1011 => 0.43955166914011
1012 => 0.43750338561412
1013 => 0.4337857309576
1014 => 0.45366588591845
1015 => 0.44640936193192
1016 => 0.46877225900632
1017 => 0.48350190936102
1018 => 0.47976599357679
1019 => 0.49361930092997
1020 => 0.4646082713415
1021 => 0.47424457165031
1022 => 0.47623059978862
1023 => 0.45342056789215
1024 => 0.43783851013052
1025 => 0.43679936452628
1026 => 0.40978222370745
1027 => 0.42421456225813
1028 => 0.43691442293198
1029 => 0.43083217521821
1030 => 0.42890671729401
1031 => 0.43874346424787
1101 => 0.43950786373222
1102 => 0.4220794744815
1103 => 0.42570338849203
1104 => 0.44081571234153
1105 => 0.42532259670525
1106 => 0.39522200381003
1107 => 0.38775664059876
1108 => 0.38676062353244
1109 => 0.36651396641805
1110 => 0.38825551186556
1111 => 0.37876474464053
1112 => 0.40874596458756
1113 => 0.39162085254632
1114 => 0.39088262319375
1115 => 0.38976668125264
1116 => 0.37233954709542
1117 => 0.3761549819237
1118 => 0.38883806840003
1119 => 0.39336353653998
1120 => 0.39289149313692
1121 => 0.38877591435706
1122 => 0.39066000524731
1123 => 0.38459069202905
1124 => 0.38244749120985
1125 => 0.37568295989063
1126 => 0.36574096760086
1127 => 0.36712346260653
1128 => 0.3474257744167
1129 => 0.33669342845544
1130 => 0.33372285654341
1201 => 0.32975048363389
1202 => 0.33417154663362
1203 => 0.34736997334094
1204 => 0.33144987052948
1205 => 0.3041559709246
1206 => 0.3057963807974
1207 => 0.30948189473951
1208 => 0.3026139638905
1209 => 0.29611404372367
1210 => 0.30176519695354
1211 => 0.29020041188183
1212 => 0.31087944376401
1213 => 0.31032013390391
1214 => 0.31802799820684
1215 => 0.32284788393675
1216 => 0.31173960778583
1217 => 0.30894590637385
1218 => 0.31053732566476
1219 => 0.2842347097162
1220 => 0.31587851333441
1221 => 0.31615217026214
1222 => 0.313808953505
1223 => 0.33065830203887
1224 => 0.36621568288893
1225 => 0.3528375659208
1226 => 0.34765715467502
1227 => 0.33780918910993
1228 => 0.35093101851108
1229 => 0.3499234667455
1230 => 0.34536693555887
1231 => 0.34261113127996
]
'min_raw' => 0.25736306408508
'max_raw' => 0.66036415290059
'avg_raw' => 0.45886360849283
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.257363'
'max' => '$0.660364'
'avg' => '$0.458863'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.15826175657123
'max_diff' => 0.38384077352913
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0080783324994443
]
1 => [
'year' => 2028
'avg' => 0.013864763725728
]
2 => [
'year' => 2029
'avg' => 0.037876035618154
]
3 => [
'year' => 2030
'avg' => 0.029221305072722
]
4 => [
'year' => 2031
'avg' => 0.028698942937883
]
5 => [
'year' => 2032
'avg' => 0.050318278859848
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0080783324994443
'min' => '$0.008078'
'max_raw' => 0.050318278859848
'max' => '$0.050318'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.050318278859848
]
1 => [
'year' => 2033
'avg' => 0.12942378739513
]
2 => [
'year' => 2034
'avg' => 0.082035016267208
]
3 => [
'year' => 2035
'avg' => 0.096760489811282
]
4 => [
'year' => 2036
'avg' => 0.18781234344265
]
5 => [
'year' => 2037
'avg' => 0.45886360849283
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.050318278859848
'min' => '$0.050318'
'max_raw' => 0.45886360849283
'max' => '$0.458863'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.45886360849283
]
]
]
]
'prediction_2025_max_price' => '$0.013812'
'last_price' => 0.01339294
'sma_50day_nextmonth' => '$0.012189'
'sma_200day_nextmonth' => '$0.01987'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.013114'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.012996'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.012391'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.011981'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.013122'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.016662'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.02185'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.013138'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.012928'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.01258'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.012465'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.0136082'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.016483'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.022969'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.019345'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.029935'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.064016'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.086771'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.013069'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.013211'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.0146064'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.018811'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.032727'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.055031'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.0764031'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '59.35'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 105.01
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.012442'
'vwma_10_action' => 'BUY'
'hma_9' => '0.013450'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 176.06
'cci_20_action' => 'SELL'
'adx_14' => 19.74
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.0005089'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 82.74
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.002869'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 20
'sell_pct' => 42.86
'buy_pct' => 57.14
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767702904
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de NKN para 2026
A previsão de preço para NKN em 2026 sugere que o preço médio poderia variar entre $0.004627 na extremidade inferior e $0.013812 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, NKN poderia potencialmente ganhar 3.13% até 2026 se NKN atingir a meta de preço prevista.
Previsão de preço de NKN 2027-2032
A previsão de preço de NKN para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.008078 na extremidade inferior e $0.050318 na extremidade superior. Considerando a volatilidade de preços no mercado, se NKN atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de NKN | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.004454 | $0.008078 | $0.0117021 |
| 2028 | $0.008039 | $0.013864 | $0.01969 |
| 2029 | $0.017659 | $0.037876 | $0.058092 |
| 2030 | $0.015018 | $0.029221 | $0.043423 |
| 2031 | $0.017756 | $0.028698 | $0.03964 |
| 2032 | $0.0271045 | $0.050318 | $0.073532 |
Previsão de preço de NKN 2032-2037
A previsão de preço de NKN para 2032-2037 é atualmente estimada entre $0.050318 na extremidade inferior e $0.458863 na extremidade superior. Comparado ao preço atual, NKN poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de NKN | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.0271045 | $0.050318 | $0.073532 |
| 2033 | $0.062985 | $0.129423 | $0.195862 |
| 2034 | $0.050636 | $0.082035 | $0.113433 |
| 2035 | $0.059868 | $0.09676 | $0.133652 |
| 2036 | $0.0991013 | $0.187812 | $0.276523 |
| 2037 | $0.257363 | $0.458863 | $0.660364 |
NKN Histograma de preços potenciais
Previsão de preço de NKN baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para NKN é Altista, com 20 indicadores técnicos mostrando sinais de alta e 15 indicando sinais de baixa. A previsão de preço de NKN foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de NKN
De acordo com nossos indicadores técnicos, o SMA de 200 dias de NKN está projetado para aumentar no próximo mês, alcançando $0.01987 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para NKN é esperado para alcançar $0.012189 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 59.35, sugerindo que o mercado de NKN está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de NKN para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.013114 | BUY |
| SMA 5 | $0.012996 | BUY |
| SMA 10 | $0.012391 | BUY |
| SMA 21 | $0.011981 | BUY |
| SMA 50 | $0.013122 | BUY |
| SMA 100 | $0.016662 | SELL |
| SMA 200 | $0.02185 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.013138 | BUY |
| EMA 5 | $0.012928 | BUY |
| EMA 10 | $0.01258 | BUY |
| EMA 21 | $0.012465 | BUY |
| EMA 50 | $0.0136082 | SELL |
| EMA 100 | $0.016483 | SELL |
| EMA 200 | $0.022969 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.019345 | SELL |
| SMA 50 | $0.029935 | SELL |
| SMA 100 | $0.064016 | SELL |
| SMA 200 | $0.086771 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.018811 | SELL |
| EMA 50 | $0.032727 | SELL |
| EMA 100 | $0.055031 | SELL |
| EMA 200 | $0.0764031 | SELL |
Osciladores de NKN
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 59.35 | NEUTRAL |
| Stoch RSI (14) | 105.01 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 176.06 | SELL |
| Índice Direcional Médio (14) | 19.74 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.0005089 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 82.74 | SELL |
| VWMA (10) | 0.012442 | BUY |
| Média Móvel de Hull (9) | 0.013450 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.002869 | SELL |
Previsão do preço de NKN com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do NKN
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de NKN por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.018819 | $0.026444 | $0.037158 | $0.052214 | $0.073369 | $0.103096 |
| Amazon.com stock | $0.027945 | $0.0583092 | $0.121665 | $0.253862 | $0.529699 | $1.10 |
| Apple stock | $0.018996 | $0.026945 | $0.03822 | $0.054212 | $0.076896 | $0.109071 |
| Netflix stock | $0.021131 | $0.033342 | $0.0526099 | $0.08301 | $0.130977 | $0.206661 |
| Google stock | $0.017343 | $0.02246 | $0.029085 | $0.037665 | $0.048777 | $0.063166 |
| Tesla stock | $0.03036 | $0.068825 | $0.156022 | $0.353691 | $0.80179 | $1.81 |
| Kodak stock | $0.010043 | $0.007531 | $0.005647 | $0.004235 | $0.003175 | $0.002381 |
| Nokia stock | $0.008872 | $0.005877 | $0.003893 | $0.002579 | $0.0017087 | $0.001131 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para NKN
Você pode fazer perguntas como: 'Devo investir em NKN agora?', 'Devo comprar NKN hoje?', 'NKN será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para NKN regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como NKN, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre NKN para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de NKN é de $0.01339 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para NKN
com base no histórico de preços de 4 horas
Previsão de longo prazo para NKN
com base no histórico de preços de 1 mês
Previsão do preço de NKN com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se NKN tiver 1% da média anterior do crescimento anual do Bitcoin | $0.013741 | $0.014098 | $0.014464 | $0.01484 |
| Se NKN tiver 2% da média anterior do crescimento anual do Bitcoin | $0.014089 | $0.014821 | $0.015592 | $0.0164027 |
| Se NKN tiver 5% da média anterior do crescimento anual do Bitcoin | $0.015133 | $0.01710041 | $0.019322 | $0.021834 |
| Se NKN tiver 10% da média anterior do crescimento anual do Bitcoin | $0.016874 | $0.02126 | $0.026786 | $0.033749 |
| Se NKN tiver 20% da média anterior do crescimento anual do Bitcoin | $0.020355 | $0.030937 | $0.04702 | $0.071465 |
| Se NKN tiver 50% da média anterior do crescimento anual do Bitcoin | $0.030799 | $0.070827 | $0.162879 | $0.374568 |
| Se NKN tiver 100% da média anterior do crescimento anual do Bitcoin | $0.0482054 | $0.173507 | $0.6245076 | $2.24 |
Perguntas Frequentes sobre NKN
NKN é um bom investimento?
A decisão de adquirir NKN depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de NKN experimentou uma escalada de 4.7019% nas últimas 24 horas, e NKN registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em NKN dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
NKN pode subir?
Parece que o valor médio de NKN pode potencialmente subir para $0.013812 até o final deste ano. Observando as perspectivas de NKN em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.043423. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de NKN na próxima semana?
Com base na nossa nova previsão experimental de NKN, o preço de NKN aumentará 0.86% na próxima semana e atingirá $0.013507 até 13 de janeiro de 2026.
Qual será o preço de NKN no próximo mês?
Com base na nossa nova previsão experimental de NKN, o preço de NKN diminuirá -11.62% no próximo mês e atingirá $0.011836 até 5 de fevereiro de 2026.
Até onde o preço de NKN pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de NKN em 2026, espera-se que NKN fluctue dentro do intervalo de $0.004627 e $0.013812. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de NKN não considera flutuações repentinas e extremas de preço.
Onde estará NKN em 5 anos?
O futuro de NKN parece seguir uma tendência de alta, com um preço máximo de $0.043423 projetada após um período de cinco anos. Com base na previsão de NKN para 2030, o valor de NKN pode potencialmente atingir seu pico mais alto de aproximadamente $0.043423, enquanto seu pico mais baixo está previsto para cerca de $0.015018.
Quanto será NKN em 2026?
Com base na nossa nova simulação experimental de previsão de preços de NKN, espera-se que o valor de NKN em 2026 aumente 3.13% para $0.013812 se o melhor cenário ocorrer. O preço ficará entre $0.013812 e $0.004627 durante 2026.
Quanto será NKN em 2027?
De acordo com nossa última simulação experimental para previsão de preços de NKN, o valor de NKN pode diminuir -12.62% para $0.0117021 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.0117021 e $0.004454 ao longo do ano.
Quanto será NKN em 2028?
Nosso novo modelo experimental de previsão de preços de NKN sugere que o valor de NKN em 2028 pode aumentar 47.02%, alcançando $0.01969 no melhor cenário. O preço é esperado para variar entre $0.01969 e $0.008039 durante o ano.
Quanto será NKN em 2029?
Com base no nosso modelo de previsão experimental, o valor de NKN pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.058092 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.058092 e $0.017659.
Quanto será NKN em 2030?
Usando nossa nova simulação experimental para previsões de preços de NKN, espera-se que o valor de NKN em 2030 aumente 224.23%, alcançando $0.043423 no melhor cenário. O preço está previsto para variar entre $0.043423 e $0.015018 ao longo de 2030.
Quanto será NKN em 2031?
Nossa simulação experimental indica que o preço de NKN poderia aumentar 195.98% em 2031, potencialmente atingindo $0.03964 sob condições ideais. O preço provavelmente oscilará entre $0.03964 e $0.017756 durante o ano.
Quanto será NKN em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de NKN, NKN poderia ver um 449.04% aumento em valor, atingindo $0.073532 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.073532 e $0.0271045 ao longo do ano.
Quanto será NKN em 2033?
De acordo com nossa previsão experimental de preços de NKN, espera-se que o valor de NKN seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.195862. Ao longo do ano, o preço de NKN poderia variar entre $0.195862 e $0.062985.
Quanto será NKN em 2034?
Os resultados da nossa nova simulação de previsão de preços de NKN sugerem que NKN pode aumentar 746.96% em 2034, atingindo potencialmente $0.113433 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.113433 e $0.050636.
Quanto será NKN em 2035?
Com base em nossa previsão experimental para o preço de NKN, NKN poderia aumentar 897.93%, com o valor potencialmente atingindo $0.133652 em 2035. A faixa de preço esperada para o ano está entre $0.133652 e $0.059868.
Quanto será NKN em 2036?
Nossa recente simulação de previsão de preços de NKN sugere que o valor de NKN pode aumentar 1964.7% em 2036, possivelmente atingindo $0.276523 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.276523 e $0.0991013.
Quanto será NKN em 2037?
De acordo com a simulação experimental, o valor de NKN poderia aumentar 4830.69% em 2037, com um pico de $0.660364 sob condições favoráveis. O preço é esperado para cair entre $0.660364 e $0.257363 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Mil.k Alliance
Previsão de Preço do Dogelon Mars
Previsão de Preço do Medibloc
Previsão de Preço do ChainGPT
Previsão de Preço do Hifi Finance
Previsão de Preço do The Truth
Previsão de Preço do Metal
Previsão de Preço do Telos
Previsão de Preço do Stader MaticX
Previsão de Preço do OmiseGO
Previsão de Preço do WazirX
Previsão de Preço do STP Network
Previsão de Preço do Ultima
Previsão de Preço do LUKSO
Previsão de Preço do Bella Protocol
Previsão de Preço do Aavegotchi
Previsão de Preço do Tokamak Network
Previsão de Preço do Chainflip
Previsão de Preço do Kyber Network Crystal
Previsão de Preço do Radicle
Previsão de Preço do Ergo
Previsão de Preço do CANTO
Previsão de Preço do Mines of Dalarnia
Previsão de Preço do Ethernity Chain
Previsão de Preço do Huobi Token
Como ler e prever os movimentos de preço de NKN?
Traders de NKN utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de NKN
Médias móveis são ferramentas populares para a previsão de preço de NKN. Uma média móvel simples (SMA) calcula o preço médio de fechamento de NKN em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de NKN acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de NKN.
Como ler gráficos de NKN e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de NKN em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de NKN dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de NKN?
A ação de preço de NKN é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de NKN. A capitalização de mercado de NKN pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de NKN, grandes detentores de NKN, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de NKN.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


