Previsão de Preço NKN - Projeção NKN
Previsão de Preço NKN até $0.013712 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.004593 | $0.013712 |
| 2027 | $0.004422 | $0.011617 |
| 2028 | $0.00798 | $0.019547 |
| 2029 | $0.017531 | $0.057671 |
| 2030 | $0.0149099 | $0.0431089 |
| 2031 | $0.017628 | $0.039353 |
| 2032 | $0.026908 | $0.072998 |
| 2033 | $0.062528 | $0.194442 |
| 2034 | $0.050269 | $0.11261 |
| 2035 | $0.059434 | $0.132683 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em NKN hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.50, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de NKN para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'NKN'
'name_with_ticker' => 'NKN <small>NKN</small>'
'name_lang' => 'NKN'
'name_lang_with_ticker' => 'NKN <small>NKN</small>'
'name_with_lang' => 'NKN'
'name_with_lang_with_ticker' => 'NKN <small>NKN</small>'
'image' => '/uploads/coins/nkn.png?1717200595'
'price_for_sd' => 0.01329
'ticker' => 'NKN'
'marketcap' => '$10.58M'
'low24h' => '$0.01272'
'high24h' => '$0.01363'
'volume24h' => '$1.32M'
'current_supply' => '795.75M'
'max_supply' => '795.75M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.18 USD 0.07x'
'price' => '$0.01329'
'change_24h_pct' => '3.7367%'
'ath_price' => '$1.44'
'ath_days' => 1733
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '9 de abr. de 2021'
'ath_pct' => '-99.07%'
'fdv' => '$10.58M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.655575'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.013409'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.011751'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004593'
'current_year_max_price_prediction' => '$0.013712'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0149099'
'grand_prediction_max_price' => '$0.0431089'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.013547778984893
107 => 0.013598361473779
108 => 0.013712326404045
109 => 0.012738508552719
110 => 0.013175724178174
111 => 0.013432547396565
112 => 0.012272210752566
113 => 0.01340961127188
114 => 0.012721556550476
115 => 0.012488020443797
116 => 0.012802446045398
117 => 0.012679914082665
118 => 0.012574568296426
119 => 0.012515783537634
120 => 0.012746662997562
121 => 0.012735892194796
122 => 0.01235812858658
123 => 0.011865351359277
124 => 0.012030743571621
125 => 0.011970655030317
126 => 0.011752886405052
127 => 0.011899636164996
128 => 0.011253424490555
129 => 0.010141650891839
130 => 0.010876122585697
131 => 0.010847846224435
201 => 0.010833588000856
202 => 0.011385523179484
203 => 0.01133246734737
204 => 0.011236170492559
205 => 0.011751117837796
206 => 0.011563155129765
207 => 0.012142411906333
208 => 0.01252394788336
209 => 0.01242717801819
210 => 0.012786014448707
211 => 0.012034553874148
212 => 0.012284158933651
213 => 0.012335602190477
214 => 0.011744763467489
215 => 0.011341147937656
216 => 0.01131423138337
217 => 0.010614417676286
218 => 0.010988252509911
219 => 0.011317211693165
220 => 0.011159665772651
221 => 0.011109791440766
222 => 0.011364588585941
223 => 0.011384388506311
224 => 0.010932948223572
225 => 0.011026816953608
226 => 0.011418265162236
227 => 0.011016953463103
228 => 0.010237270385582
301 => 0.010043898202395
302 => 0.010018098788601
303 => 0.0094936580912563
304 => 0.01005682025632
305 => 0.0098109848794622
306 => 0.010587575889397
307 => 0.010143991269463
308 => 0.010124869223079
309 => 0.010095963445376
310 => 0.0096445556727986
311 => 0.0097433852865324
312 => 0.010071909974759
313 => 0.010189131284614
314 => 0.01017690414163
315 => 0.010070300024561
316 => 0.010119102843454
317 => 0.0099618919597702
318 => 0.00990637752468
319 => 0.009731158697087
320 => 0.0094736354259618
321 => 0.0095094456162938
322 => 0.0089992246315655
323 => 0.0087212291596083
324 => 0.008644283676892
325 => 0.0085413889616307
326 => 0.0086559059087732
327 => 0.0089977792396217
328 => 0.0085854074701452
329 => 0.0078784249958942
330 => 0.0079209158472362
331 => 0.0080163801745547
401 => 0.0078384830321564
402 => 0.0076701183166519
403 => 0.0078164977769219
404 => 0.0075169399825965
405 => 0.0080525803028447
406 => 0.0080380927332966
407 => 0.0082377463209099
408 => 0.0083625938065486
409 => 0.0080748607720049
410 => 0.00800249669193
411 => 0.0080437185607048
412 => 0.0073624128927061
413 => 0.0081820691126154
414 => 0.0081891575336421
415 => 0.008128462169306
416 => 0.008564903802361
417 => 0.0094859317776661
418 => 0.0091394040050919
419 => 0.0090052179776937
420 => 0.0087501302415205
421 => 0.0090900195043603
422 => 0.0090639213120727
423 => 0.0089458953891025
424 => 0.0088745129426269
425 => 0.0090060372889635
426 => 0.0088582156206003
427 => 0.0088316627870944
428 => 0.0086707815058169
429 => 0.0086133542080327
430 => 0.0085708373229998
501 => 0.0085240304102015
502 => 0.0086272747962787
503 => 0.0083933094344978
504 => 0.0081111701440974
505 => 0.00808771331489
506 => 0.0081524796826771
507 => 0.0081238253862203
508 => 0.0080875761291427
509 => 0.0080183664254837
510 => 0.0079978333848395
511 => 0.0080645558057182
512 => 0.0079892300827049
513 => 0.0081003772902154
514 => 0.0080701513998281
515 => 0.0079013120331753
516 => 0.0076908756699862
517 => 0.0076890023449486
518 => 0.0076436641756843
519 => 0.0075859192004869
520 => 0.007569855869413
521 => 0.0078041701070635
522 => 0.008289193566565
523 => 0.0081939718558371
524 => 0.0082627793005514
525 => 0.0086012438273148
526 => 0.0087088315223895
527 => 0.0086324683247797
528 => 0.0085279376700145
529 => 0.0085325364883221
530 => 0.0088897493792358
531 => 0.0089120283090758
601 => 0.0089683199773264
602 => 0.009040670679052
603 => 0.0086447899621368
604 => 0.0085138905421564
605 => 0.0084518631349464
606 => 0.008260842728367
607 => 0.0084668418600109
608 => 0.0083468149877643
609 => 0.0083630107135322
610 => 0.0083524632258792
611 => 0.0083582228673557
612 => 0.0080524305804588
613 => 0.0081638452178346
614 => 0.007978596773973
615 => 0.007730569902756
616 => 0.0077297384297143
617 => 0.0077904426550652
618 => 0.0077543334064699
619 => 0.0076571643469536
620 => 0.0076709667532329
621 => 0.0075500431506521
622 => 0.0076856490679787
623 => 0.0076895377604663
624 => 0.0076373220957913
625 => 0.0078462417214434
626 => 0.0079318362625352
627 => 0.0078974667934782
628 => 0.0079294248089642
629 => 0.0081979287478181
630 => 0.0082417066054995
701 => 0.0082611498380786
702 => 0.0082350984821573
703 => 0.0079343325680668
704 => 0.0079476728153121
705 => 0.007849790932419
706 => 0.007767091055913
707 => 0.0077703986172695
708 => 0.007812917104025
709 => 0.0079985978293626
710 => 0.0083893519693588
711 => 0.0084041808033341
712 => 0.0084221537826997
713 => 0.0083490486431239
714 => 0.0083269994335059
715 => 0.0083560880323759
716 => 0.0085028347424819
717 => 0.0088803071222175
718 => 0.0087468831726864
719 => 0.0086384074248501
720 => 0.0087335699005541
721 => 0.0087189203833276
722 => 0.0085952637151829
723 => 0.0085917930843594
724 => 0.0083544564027613
725 => 0.0082667184354693
726 => 0.0081933980229271
727 => 0.0081133340465087
728 => 0.0080658694375192
729 => 0.0081387966492061
730 => 0.0081554759653684
731 => 0.0079960193424653
801 => 0.0079742859939761
802 => 0.008104501714349
803 => 0.0080471986307442
804 => 0.0081061362732798
805 => 0.0081198103119058
806 => 0.0081176084767472
807 => 0.0080577774762466
808 => 0.0080959119717796
809 => 0.0080057125214038
810 => 0.0079076341666396
811 => 0.0078450662867975
812 => 0.0077904675132103
813 => 0.0078207620860958
814 => 0.0077127674653294
815 => 0.0076782178126439
816 => 0.0080829928627463
817 => 0.0083820045443221
818 => 0.0083776567960503
819 => 0.0083511909965962
820 => 0.0083118681869988
821 => 0.0084999580340332
822 => 0.0084344312923016
823 => 0.0084821074718538
824 => 0.0084942430605128
825 => 0.0085309738323781
826 => 0.0085441019262034
827 => 0.0085044197086159
828 => 0.0083712413396174
829 => 0.0080393735062925
830 => 0.0078848881340197
831 => 0.0078339053880122
901 => 0.0078357585139996
902 => 0.0077846410265498
903 => 0.0077996974175288
904 => 0.0077794050282144
905 => 0.0077409761521091
906 => 0.0078183892112861
907 => 0.0078273103452036
908 => 0.0078092412121746
909 => 0.0078134971471151
910 => 0.0076638924430621
911 => 0.0076752665637869
912 => 0.0076119340142378
913 => 0.0076000599246826
914 => 0.0074399607544184
915 => 0.0071563218675494
916 => 0.0073134853443677
917 => 0.0071236539649003
918 => 0.0070517619450811
919 => 0.0073920875854019
920 => 0.0073579283302776
921 => 0.0072994625341761
922 => 0.0072129794364023
923 => 0.0071809020141846
924 => 0.0069860097512672
925 => 0.0069744944766643
926 => 0.0070710883446999
927 => 0.0070265135981935
928 => 0.006963913772322
929 => 0.0067371835486578
930 => 0.006482263709462
1001 => 0.0064899581370384
1002 => 0.0065710433949343
1003 => 0.0068068097181036
1004 => 0.0067146917368426
1005 => 0.0066478590845056
1006 => 0.0066353433377051
1007 => 0.0067920041124048
1008 => 0.0070137119300519
1009 => 0.007117732277659
1010 => 0.0070146512723252
1011 => 0.0068962373636733
1012 => 0.0069034446696157
1013 => 0.0069513916471207
1014 => 0.0069564301965227
1015 => 0.0068793549151368
1016 => 0.0069010511553759
1017 => 0.0068680925825069
1018 => 0.0066658258816467
1019 => 0.0066621675184228
1020 => 0.0066125280080406
1021 => 0.0066110249433942
1022 => 0.0065265757530778
1023 => 0.0065147607275829
1024 => 0.0063470817345103
1025 => 0.0064574485555294
1026 => 0.006383420286508
1027 => 0.0062718422235893
1028 => 0.0062526061234858
1029 => 0.0062520278630885
1030 => 0.0063665935853076
1031 => 0.0064561097883619
1101 => 0.0063847080399419
1102 => 0.0063684512458914
1103 => 0.0065420312751092
1104 => 0.0065199416341742
1105 => 0.0065008121475873
1106 => 0.0069938604266942
1107 => 0.0066035742407441
1108 => 0.0064333871869132
1109 => 0.0062227483901524
1110 => 0.0062913334445107
1111 => 0.0063057853231881
1112 => 0.0057992369874754
1113 => 0.0055937303907634
1114 => 0.0055232082711245
1115 => 0.005482621794236
1116 => 0.005501117561407
1117 => 0.0053161375208465
1118 => 0.0054404471673906
1119 => 0.0052802700882389
1120 => 0.0052534158796578
1121 => 0.0055398323393136
1122 => 0.005579685516454
1123 => 0.0054096594813614
1124 => 0.0055188437206056
1125 => 0.0054792519976812
1126 => 0.0052830158645248
1127 => 0.0052755210876535
1128 => 0.0051770566940693
1129 => 0.0050229789845736
1130 => 0.0049525613368772
1201 => 0.0049158872145628
1202 => 0.0049310196721941
1203 => 0.0049233682385549
1204 => 0.0048734374584298
1205 => 0.0049262302124248
1206 => 0.0047913665414397
1207 => 0.0047376627409829
1208 => 0.0047134059802353
1209 => 0.0045937067097727
1210 => 0.0047842014795859
1211 => 0.004821731349029
1212 => 0.0048593351639084
1213 => 0.0051866506992191
1214 => 0.0051702989400591
1215 => 0.005318110879236
1216 => 0.0053123671790883
1217 => 0.0052702088196404
1218 => 0.0050923496358432
1219 => 0.0051632411364696
1220 => 0.0049450481165266
1221 => 0.0051085331627511
1222 => 0.005033925414953
1223 => 0.0050833082081719
1224 => 0.0049945134932974
1225 => 0.0050436561547529
1226 => 0.0048306310733403
1227 => 0.004631711249661
1228 => 0.0047117623935412
1229 => 0.0047987871418977
1230 => 0.0049874789698281
1231 => 0.0048750956737865
]
'min_raw' => 0.0045937067097727
'max_raw' => 0.013712326404045
'avg_raw' => 0.0091530165569088
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004593'
'max' => '$0.013712'
'avg' => '$0.009153'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0087021232902273
'max_diff' => 0.00041649640404491
'year' => 2026
]
1 => [
'items' => [
101 => 0.004915512956726
102 => 0.0047801218246503
103 => 0.0045007712466131
104 => 0.0045023523405474
105 => 0.0044593803400996
106 => 0.0044222462576978
107 => 0.0048880042472411
108 => 0.0048300798786972
109 => 0.0047377849783764
110 => 0.0048613253701093
111 => 0.0048939914105332
112 => 0.004894921366781
113 => 0.0049850532475503
114 => 0.005033156648474
115 => 0.0050416350813788
116 => 0.0051834595431976
117 => 0.0052309972320893
118 => 0.0054267982448489
119 => 0.0050290754109854
120 => 0.0050208845709507
121 => 0.0048630638367707
122 => 0.0047629714321067
123 => 0.0048699172493509
124 => 0.0049646566438693
125 => 0.0048660076538435
126 => 0.004878889129347
127 => 0.0047464609201559
128 => 0.0047937977736153
129 => 0.0048345706487774
130 => 0.0048120582636317
131 => 0.0047783561334569
201 => 0.0049568890939126
202 => 0.0049468155646074
203 => 0.0051130695618388
204 => 0.0052426764416181
205 => 0.0054749551401835
206 => 0.005232560209268
207 => 0.0052237263745529
208 => 0.0053100785258851
209 => 0.0052309840120248
210 => 0.0052809690145347
211 => 0.005466901783514
212 => 0.0054708302499336
213 => 0.0054050233758636
214 => 0.0054010190215959
215 => 0.0054136579516094
216 => 0.005487684559468
217 => 0.0054618173880743
218 => 0.0054917515336877
219 => 0.0055291846411452
220 => 0.0056840238448981
221 => 0.0057213550527172
222 => 0.0056306595717288
223 => 0.0056388483581878
224 => 0.0056049257586515
225 => 0.0055721569525483
226 => 0.0056458164431684
227 => 0.0057804306100574
228 => 0.0057795931823117
301 => 0.0058108210525045
302 => 0.005830275756929
303 => 0.0057467619238251
304 => 0.0056923974893633
305 => 0.0057132442728348
306 => 0.0057465787335896
307 => 0.0057024343564827
308 => 0.0054299548113138
309 => 0.0055126076992573
310 => 0.0054988502171838
311 => 0.0054792578897441
312 => 0.0055623660077071
313 => 0.005554350026986
314 => 0.0053142402831648
315 => 0.0053296113299301
316 => 0.0053151750474291
317 => 0.0053618216295753
318 => 0.0052284649435079
319 => 0.0052694845619712
320 => 0.0052952116821364
321 => 0.0053103651535587
322 => 0.0053651098831688
323 => 0.0053586862210104
324 => 0.0053647105793098
325 => 0.0054458825612488
326 => 0.0058564225910357
327 => 0.0058787673790515
328 => 0.0057687334706395
329 => 0.0058126898467272
330 => 0.0057283032168415
331 => 0.0057849525268251
401 => 0.0058237105459793
402 => 0.0056485705101597
403 => 0.0056381998538878
404 => 0.0055534649303626
405 => 0.0055989966786337
406 => 0.0055265523932859
407 => 0.0055443276869167
408 => 0.0054946264163027
409 => 0.0055840788079837
410 => 0.0056841004813794
411 => 0.0057093699060547
412 => 0.0056428969289053
413 => 0.0055947661126664
414 => 0.0055102642546274
415 => 0.0056507927277929
416 => 0.0056918875358742
417 => 0.0056505768742607
418 => 0.0056410042913091
419 => 0.005622864263913
420 => 0.0056448527838746
421 => 0.0056916637247238
422 => 0.0056695885494816
423 => 0.0056841695916436
424 => 0.0056286016948276
425 => 0.0057467895703789
426 => 0.0059345003602156
427 => 0.0059351038810988
428 => 0.0059130285868632
429 => 0.0059039958520808
430 => 0.0059266464436074
501 => 0.0059389334603347
502 => 0.0060121813199234
503 => 0.0060907791915856
504 => 0.0064575611636952
505 => 0.0063545702536286
506 => 0.0066800010392413
507 => 0.0069373745387622
508 => 0.0070145495976894
509 => 0.0069435521748435
510 => 0.0067006738264931
511 => 0.0066887570560107
512 => 0.0070517198490399
513 => 0.00694916623526
514 => 0.0069369678092238
515 => 0.0068071971657645
516 => 0.0068839076884558
517 => 0.0068671299718678
518 => 0.0068406455254395
519 => 0.0069870038590332
520 => 0.0072609735940221
521 => 0.0072182728415522
522 => 0.0071863987106643
523 => 0.0070467355475335
524 => 0.0071308439666351
525 => 0.0071008945695837
526 => 0.0072295761856735
527 => 0.0071533480469487
528 => 0.0069483892907714
529 => 0.0069810296482455
530 => 0.0069760961238766
531 => 0.0070776277057959
601 => 0.0070471504450725
602 => 0.0069701449495778
603 => 0.0072600371952522
604 => 0.0072412132052835
605 => 0.0072679013192959
606 => 0.0072796502524415
607 => 0.0074561025539092
608 => 0.0075283894159766
609 => 0.0075447997992255
610 => 0.0076134667273231
611 => 0.0075430913035003
612 => 0.007824643175618
613 => 0.008011858741569
614 => 0.0082293192554461
615 => 0.0085470875140963
616 => 0.0086665713188695
617 => 0.0086449876389953
618 => 0.0088859159060648
619 => 0.0093188586464544
620 => 0.0087324977451347
621 => 0.0093499371980198
622 => 0.0091544629959176
623 => 0.0086909971791642
624 => 0.0086611554444683
625 => 0.0089750198765225
626 => 0.0096711409784867
627 => 0.0094967705377849
628 => 0.0096714261860612
629 => 0.0094676810949659
630 => 0.0094575634338945
701 => 0.0096615307417543
702 => 0.010138111474248
703 => 0.0099117058326017
704 => 0.0095870978283612
705 => 0.0098267833272324
706 => 0.0096191455662644
707 => 0.0091512795766536
708 => 0.0094966371999951
709 => 0.0092657063924855
710 => 0.0093331042790737
711 => 0.0098184864880937
712 => 0.0097600840165424
713 => 0.0098356622226531
714 => 0.0097022686670938
715 => 0.0095776580519685
716 => 0.0093450630851312
717 => 0.009276203182244
718 => 0.0092952335820823
719 => 0.009276193751723
720 => 0.0091460590054356
721 => 0.0091179564193651
722 => 0.0090711175447117
723 => 0.0090856348705191
724 => 0.0089975640829746
725 => 0.0091637718554243
726 => 0.0091946214826088
727 => 0.0093155736388197
728 => 0.0093281312929209
729 => 0.0096649813263221
730 => 0.0094794499884595
731 => 0.0096039204279028
801 => 0.0095927866202377
802 => 0.0087010418887645
803 => 0.0088239164448311
804 => 0.009015070693911
805 => 0.008928955963804
806 => 0.0088072098831761
807 => 0.0087088933954573
808 => 0.0085599338631863
809 => 0.0087695915443433
810 => 0.0090452691004561
811 => 0.0093351229306811
812 => 0.0096833633157212
813 => 0.0096056401157452
814 => 0.0093286128189138
815 => 0.0093410400610811
816 => 0.0094178603822197
817 => 0.009318371086483
818 => 0.0092890297509085
819 => 0.0094138293332786
820 => 0.0094146887594138
821 => 0.0093002143009856
822 => 0.0091729968890475
823 => 0.0091724638434464
824 => 0.0091498267337664
825 => 0.0094717081864893
826 => 0.0096487104396014
827 => 0.0096690034626673
828 => 0.0096473445574627
829 => 0.0096556802104648
830 => 0.0095526864993573
831 => 0.0097880995811126
901 => 0.010004137904872
902 => 0.0099462350191189
903 => 0.0098594303619947
904 => 0.0097902862715166
905 => 0.009929946868833
906 => 0.0099237280022807
907 => 0.010002250998582
908 => 0.0099986887418987
909 => 0.0099722844116419
910 => 0.0099462359621007
911 => 0.010049515120148
912 => 0.010019772381243
913 => 0.0099899834436493
914 => 0.0099302371688465
915 => 0.0099383576798728
916 => 0.0098515680107965
917 => 0.0098114151386568
918 => 0.0092076122818868
919 => 0.0090462564287303
920 => 0.0090970222648346
921 => 0.0091137356962145
922 => 0.0090435134221376
923 => 0.0091441941245417
924 => 0.0091285031437193
925 => 0.0091895475711825
926 => 0.0091514096631444
927 => 0.0091529748561933
928 => 0.0092651303118741
929 => 0.0092976895178017
930 => 0.0092811296428819
1001 => 0.0092927276116364
1002 => 0.0095599979063875
1003 => 0.0095220006172968
1004 => 0.0095018153147814
1005 => 0.009507406781527
1006 => 0.0095757000721757
1007 => 0.0095948184648819
1008 => 0.0095138124915601
1009 => 0.0095520153768686
1010 => 0.0097146784138441
1011 => 0.009771601270855
1012 => 0.0099532717059123
1013 => 0.0098760948761655
1014 => 0.010017756287301
1015 => 0.010453175169197
1016 => 0.01080101790075
1017 => 0.010481127349605
1018 => 0.011119896228598
1019 => 0.011617269426847
1020 => 0.01159817941508
1021 => 0.011511450893516
1022 => 0.010945204730659
1023 => 0.010424136569344
1024 => 0.010860032212007
1025 => 0.010861143399643
1026 => 0.010823699577362
1027 => 0.010591139213005
1028 => 0.010815606980786
1029 => 0.010833424417045
1030 => 0.010823451390779
1031 => 0.010645147904693
1101 => 0.010372911437434
1102 => 0.010426105791494
1103 => 0.010513239228581
1104 => 0.010348277454237
1105 => 0.010295562171947
1106 => 0.010393569911216
1107 => 0.010709371267863
1108 => 0.010649670850701
1109 => 0.010648111831541
1110 => 0.010903535533074
1111 => 0.010720707286661
1112 => 0.010426776742651
1113 => 0.01035255540382
1114 => 0.010089119652458
1115 => 0.01027107566425
1116 => 0.010277623937184
1117 => 0.010177968489071
1118 => 0.010434863233033
1119 => 0.010432495902742
1120 => 0.010676379228396
1121 => 0.011142592548654
1122 => 0.01100471032889
1123 => 0.010844368308847
1124 => 0.010861801932227
1125 => 0.011053005750864
1126 => 0.010937399557358
1127 => 0.010978972350578
1128 => 0.011052942825462
1129 => 0.011097571049544
1130 => 0.010855380617571
1201 => 0.010798914442571
1202 => 0.010683404465455
1203 => 0.010653270068521
1204 => 0.010747350534687
1205 => 0.010722563655764
1206 => 0.0102770735802
1207 => 0.010230517388621
1208 => 0.010231945200549
1209 => 0.010114877443196
1210 => 0.0099363210137503
1211 => 0.010405556649282
1212 => 0.010367870460801
1213 => 0.010326267825396
1214 => 0.010331363910852
1215 => 0.010535043196365
1216 => 0.010416898924717
1217 => 0.010731004834359
1218 => 0.010666434102225
1219 => 0.010600207374458
1220 => 0.010591052823366
1221 => 0.010565561183375
1222 => 0.010478140864824
1223 => 0.010372575577027
1224 => 0.010302872230115
1225 => 0.0095038550245159
1226 => 0.0096521479702059
1227 => 0.0098227454868949
1228 => 0.0098816350660293
1229 => 0.0097809003658851
1230 => 0.010482118484771
1231 => 0.010610237792197
]
'min_raw' => 0.0044222462576978
'max_raw' => 0.011617269426847
'avg_raw' => 0.0080197578422726
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004422'
'max' => '$0.011617'
'avg' => '$0.008019'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00017146045207493
'max_diff' => -0.0020950569771975
'year' => 2027
]
2 => [
'items' => [
101 => 0.010222156052987
102 => 0.010149561804854
103 => 0.010486877751593
104 => 0.010283435000512
105 => 0.010375045258867
106 => 0.010177033988436
107 => 0.01057937760281
108 => 0.010576312418578
109 => 0.010419791665244
110 => 0.010552081934154
111 => 0.010529093244427
112 => 0.010352381699407
113 => 0.010584979673981
114 => 0.010585095039675
115 => 0.010434447217645
116 => 0.010258523542564
117 => 0.010227072544591
118 => 0.010203378442466
119 => 0.010369217962219
120 => 0.010517909157063
121 => 0.010794586606994
122 => 0.010864149891601
123 => 0.011135660022511
124 => 0.010973988959142
125 => 0.011045655647543
126 => 0.011123459975674
127 => 0.011160762231739
128 => 0.01109998020723
129 => 0.011521747198562
130 => 0.011557357255238
131 => 0.011569296999215
201 => 0.011427079542783
202 => 0.011553401930505
203 => 0.011494299868647
204 => 0.011648067014574
205 => 0.011672179666453
206 => 0.011651757108144
207 => 0.011659410844443
208 => 0.011299507122137
209 => 0.011280844215492
210 => 0.011026374159128
211 => 0.011130072588044
212 => 0.010936213345581
213 => 0.010997688108337
214 => 0.011024785598007
215 => 0.011010631407173
216 => 0.011135935541627
217 => 0.011029401429397
218 => 0.010748240391394
219 => 0.010467002751254
220 => 0.010463472041773
221 => 0.010389427135381
222 => 0.01033590623006
223 => 0.010346216255181
224 => 0.010382550128465
225 => 0.010333794439294
226 => 0.010344198937555
227 => 0.010516982933494
228 => 0.01055163353164
229 => 0.010433877260276
301 => 0.0099610688385986
302 => 0.0098450404659688
303 => 0.0099284393592724
304 => 0.0098885800598499
305 => 0.0079808558803291
306 => 0.0084290473786348
307 => 0.0081627472094867
308 => 0.0082854705793118
309 => 0.0080136470647061
310 => 0.008143375493367
311 => 0.008119419389517
312 => 0.008840098055842
313 => 0.0088288456497284
314 => 0.0088342315810709
315 => 0.0085771470451246
316 => 0.0089866896914928
317 => 0.0091884451257711
318 => 0.0091511055644332
319 => 0.0091605031275727
320 => 0.0089990218572201
321 => 0.0088357950727485
322 => 0.0086547514483473
323 => 0.0089911081248164
324 => 0.0089537110041929
325 => 0.0090394865438438
326 => 0.0092576378918057
327 => 0.0092897615064695
328 => 0.0093329359703432
329 => 0.0093174609984121
330 => 0.0096861376122134
331 => 0.0096414884416754
401 => 0.0097490800962288
402 => 0.009527755899814
403 => 0.009277306563285
404 => 0.0093249087943535
405 => 0.0093203243167086
406 => 0.009261958654471
407 => 0.009209268744308
408 => 0.0091215548891768
409 => 0.0093990945060201
410 => 0.0093878269044231
411 => 0.0095702362771242
412 => 0.0095379936486692
413 => 0.0093226694847369
414 => 0.0093303598293762
415 => 0.0093820810929292
416 => 0.0095610889766291
417 => 0.0096142307042973
418 => 0.0095896133387097
419 => 0.0096478808170859
420 => 0.0096939330562379
421 => 0.0096536642692906
422 => 0.010223785373108
423 => 0.0099870313420985
424 => 0.010102423609489
425 => 0.010129943985331
426 => 0.010059451121303
427 => 0.01007473849935
428 => 0.010097894711531
429 => 0.010238494697441
430 => 0.010607469743401
501 => 0.010770886279559
502 => 0.01126253299142
503 => 0.010757316811099
504 => 0.010727339373752
505 => 0.010815899792866
506 => 0.011104548458818
507 => 0.011338471091182
508 => 0.011416076723657
509 => 0.011426333589118
510 => 0.011571926914767
511 => 0.011655378293874
512 => 0.011554248055549
513 => 0.011468550767345
514 => 0.011161593718139
515 => 0.011197124832401
516 => 0.011441898975155
517 => 0.01178765686892
518 => 0.012084353111748
519 => 0.011980460428418
520 => 0.012773088265424
521 => 0.012851674077869
522 => 0.012840816059572
523 => 0.013019846235458
524 => 0.012664507795186
525 => 0.012512593727611
526 => 0.01148707949376
527 => 0.01177520716329
528 => 0.012194017652097
529 => 0.012138586513445
530 => 0.011834435141637
531 => 0.012084122385658
601 => 0.012001567974343
602 => 0.011936453884953
603 => 0.012234754151437
604 => 0.011906760754938
605 => 0.012190745667065
606 => 0.011826532079814
607 => 0.011980935001444
608 => 0.011893288435498
609 => 0.011950006505224
610 => 0.011618433828546
611 => 0.01179734239641
612 => 0.011610990643926
613 => 0.011610902288931
614 => 0.011606788563667
615 => 0.011826030574054
616 => 0.011833180048141
617 => 0.011671159871209
618 => 0.011647810232482
619 => 0.011734146084896
620 => 0.011633069413115
621 => 0.011680362551673
622 => 0.011634501874104
623 => 0.011624177669609
624 => 0.01154191265168
625 => 0.011506470620032
626 => 0.011520368353869
627 => 0.011472928223508
628 => 0.011444343828981
629 => 0.011601102408137
630 => 0.011517352622917
701 => 0.011588266552411
702 => 0.011507451179701
703 => 0.011227309888307
704 => 0.011066197669186
705 => 0.010537036738855
706 => 0.010687106122274
707 => 0.01078660227874
708 => 0.010753718799622
709 => 0.010824365236985
710 => 0.010828702354472
711 => 0.01080573447753
712 => 0.010779140618399
713 => 0.010766196198506
714 => 0.010862673299221
715 => 0.010918681503456
716 => 0.010796588049128
717 => 0.010767983261048
718 => 0.010891426484338
719 => 0.010966726779234
720 => 0.011522701849167
721 => 0.01148151342021
722 => 0.01158488829407
723 => 0.01157324986969
724 => 0.011681603206404
725 => 0.011858715118394
726 => 0.011498597080048
727 => 0.01156110111956
728 => 0.011545776572501
729 => 0.011713085958982
730 => 0.011713608280624
731 => 0.011613297945705
801 => 0.011667677805614
802 => 0.011637324459646
803 => 0.011692177058311
804 => 0.01148096332363
805 => 0.011738198853357
806 => 0.011884034822821
807 => 0.011886059755399
808 => 0.011955184847499
809 => 0.012025419944528
810 => 0.012160230097088
811 => 0.012021660162542
812 => 0.011772386339804
813 => 0.011790383104656
814 => 0.011644233953591
815 => 0.011646690747225
816 => 0.011633576190267
817 => 0.011672933962915
818 => 0.011489600141447
819 => 0.011532628222903
820 => 0.011472388656892
821 => 0.011560970170508
822 => 0.011465671104906
823 => 0.01154576918254
824 => 0.011580336857554
825 => 0.011707892322543
826 => 0.011446831059015
827 => 0.010914509470386
828 => 0.011026409922091
829 => 0.010860900364429
830 => 0.01087621890413
831 => 0.010907164792253
901 => 0.01080685904398
902 => 0.010825994219753
903 => 0.010825310576623
904 => 0.010819419309455
905 => 0.010793325910338
906 => 0.010755485319196
907 => 0.010906230587586
908 => 0.01093184514615
909 => 0.010988783136865
910 => 0.011158191975826
911 => 0.011141264037878
912 => 0.011168874207004
913 => 0.011108601362826
914 => 0.010879014788504
915 => 0.010891482444064
916 => 0.01073601057945
917 => 0.010984807371739
918 => 0.010925889007368
919 => 0.010887903954571
920 => 0.010877539380986
921 => 0.011047368151691
922 => 0.011098183581626
923 => 0.011066518815787
924 => 0.011001573457243
925 => 0.011126287745019
926 => 0.011159656027155
927 => 0.01116712595495
928 => 0.011388095761296
929 => 0.011179475712456
930 => 0.011229692631717
1001 => 0.011621470700736
1002 => 0.011266182053814
1003 => 0.011454386373971
1004 => 0.011445174751867
1005 => 0.011541453713573
1006 => 0.011437277066835
1007 => 0.011438568461226
1008 => 0.011524057656719
1009 => 0.011404003499707
1010 => 0.011374276402105
1011 => 0.011333208629678
1012 => 0.011422878608338
1013 => 0.011476631705121
1014 => 0.011909842187888
1015 => 0.012189715916553
1016 => 0.012177565859877
1017 => 0.012288594633941
1018 => 0.012238575154318
1019 => 0.012077049060144
1020 => 0.012352754406891
1021 => 0.012265509699179
1022 => 0.01227270204688
1023 => 0.012272434347339
1024 => 0.012330444450903
1025 => 0.01228933897598
1026 => 0.012208315865517
1027 => 0.012262102787433
1028 => 0.012421830716347
1029 => 0.012917631108747
1030 => 0.013195087576816
1031 => 0.012900927880985
1101 => 0.013103835300214
1102 => 0.012982163151982
1103 => 0.012960051703216
1104 => 0.013087492557232
1105 => 0.013215156479593
1106 => 0.013207024839645
1107 => 0.013114347387626
1108 => 0.013061996246584
1109 => 0.013458416625475
1110 => 0.013750492407797
1111 => 0.013730574797543
1112 => 0.013818484651648
1113 => 0.01407659070225
1114 => 0.014100188684826
1115 => 0.014097215881415
1116 => 0.014038725819404
1117 => 0.014292864745527
1118 => 0.014504871908848
1119 => 0.014025187059989
1120 => 0.014207844770899
1121 => 0.01428984570219
1122 => 0.014410247397906
1123 => 0.014613385240245
1124 => 0.014834046816678
1125 => 0.014865250783016
1126 => 0.014843110075652
1127 => 0.014697577834293
1128 => 0.014939028364266
1129 => 0.015080464422012
1130 => 0.015164686357693
1201 => 0.015378259173387
1202 => 0.014290352112025
1203 => 0.013520277421504
1204 => 0.013400019138566
1205 => 0.013644569085844
1206 => 0.013709054956692
1207 => 0.013683060783012
1208 => 0.012816271706702
1209 => 0.013395455673465
1210 => 0.014018608922531
1211 => 0.014042546776699
1212 => 0.014354510322701
1213 => 0.014456098441098
1214 => 0.014707269985626
1215 => 0.014691559137129
1216 => 0.01475271541121
1217 => 0.014738656642878
1218 => 0.015203899038708
1219 => 0.015717130490473
1220 => 0.015699358917275
1221 => 0.015625575823805
1222 => 0.015735156299495
1223 => 0.016264866158941
1224 => 0.016216098963511
1225 => 0.016263472139892
1226 => 0.016888029917319
1227 => 0.017700043870282
1228 => 0.017322781864263
1229 => 0.018141331863107
1230 => 0.018656565697908
1231 => 0.019547609339024
]
'min_raw' => 0.0079808558803291
'max_raw' => 0.019547609339024
'avg_raw' => 0.013764232609676
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00798'
'max' => '$0.019547'
'avg' => '$0.013764'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0035586096226313
'max_diff' => 0.0079303399121764
'year' => 2028
]
3 => [
'items' => [
101 => 0.019436046286674
102 => 0.01978292303738
103 => 0.019236325139055
104 => 0.017981225878841
105 => 0.017782601616585
106 => 0.018180252419589
107 => 0.019157838116575
108 => 0.018149464767058
109 => 0.018353457382357
110 => 0.018294707495428
111 => 0.018291576963624
112 => 0.018411056629772
113 => 0.018237745142385
114 => 0.017531642964627
115 => 0.017855245431607
116 => 0.01773028697844
117 => 0.017868937698499
118 => 0.018617178450753
119 => 0.01828636337835
120 => 0.017937876572807
121 => 0.01837495636237
122 => 0.018931509131395
123 => 0.018896681059331
124 => 0.018829100042522
125 => 0.019210050695848
126 => 0.019839269567074
127 => 0.02000934489956
128 => 0.020134891032964
129 => 0.020152201723641
130 => 0.02033051259615
131 => 0.019371690094545
201 => 0.0208933660289
202 => 0.021156117427314
203 => 0.021106731054342
204 => 0.02139876817541
205 => 0.021312843446125
206 => 0.021188351994568
207 => 0.021651292949538
208 => 0.021120568502074
209 => 0.020367271965249
210 => 0.01995399858663
211 => 0.020498230309408
212 => 0.020830573631438
213 => 0.021050231426295
214 => 0.021116699742298
215 => 0.019446120755927
216 => 0.018545771336831
217 => 0.019122884991944
218 => 0.019827003481439
219 => 0.019367778680784
220 => 0.019385779423542
221 => 0.018731045539962
222 => 0.019884932902111
223 => 0.019716821219166
224 => 0.020588984927668
225 => 0.020380836059083
226 => 0.021092051706167
227 => 0.020904764790858
228 => 0.021682182305235
301 => 0.021992315199459
302 => 0.022513076597192
303 => 0.022896150801245
304 => 0.023121099300906
305 => 0.023107594236747
306 => 0.023998952261304
307 => 0.0234733495759
308 => 0.022813068727992
309 => 0.022801126330612
310 => 0.023143095137996
311 => 0.023859767943712
312 => 0.024045590775069
313 => 0.02414944038738
314 => 0.023990391091094
315 => 0.023419887046372
316 => 0.023173546292383
317 => 0.02338343575196
318 => 0.023126758978904
319 => 0.023569855099982
320 => 0.024178320714448
321 => 0.024052674971195
322 => 0.024472689853028
323 => 0.024907361068872
324 => 0.025528960429834
325 => 0.025691469520547
326 => 0.025960090867829
327 => 0.026236590471697
328 => 0.026325394692586
329 => 0.026494949504596
330 => 0.026494055867042
331 => 0.027005020705387
401 => 0.027568630745345
402 => 0.027781380487826
403 => 0.028270586789574
404 => 0.027432838141665
405 => 0.028068280114467
406 => 0.028641464680078
407 => 0.02795809041133
408 => 0.028899962635016
409 => 0.028936533399133
410 => 0.029488708518495
411 => 0.028928973251069
412 => 0.02859660423601
413 => 0.029556141128781
414 => 0.030020430806064
415 => 0.029880582976752
416 => 0.028816334090546
417 => 0.028196895590992
418 => 0.026575705556896
419 => 0.02849607518248
420 => 0.029431431209152
421 => 0.028813911744402
422 => 0.02912535264346
423 => 0.030824473203668
424 => 0.031471388303087
425 => 0.031336834484686
426 => 0.031359571865051
427 => 0.031708635510357
428 => 0.033256575946507
429 => 0.032329014156188
430 => 0.033038100389809
501 => 0.033414197171322
502 => 0.033763536822092
503 => 0.032905669049731
504 => 0.03178959568247
505 => 0.031436088397486
506 => 0.028752511603611
507 => 0.028612819777307
508 => 0.028534406522106
509 => 0.028040022039844
510 => 0.027651571260092
511 => 0.027342660777781
512 => 0.026531987423717
513 => 0.026805565883148
514 => 0.025513521757449
515 => 0.026340125801839
516 => 0.024277992179727
517 => 0.025995398336853
518 => 0.025060692246405
519 => 0.025688322247301
520 => 0.025686132505355
521 => 0.024530466683432
522 => 0.023863902755478
523 => 0.024288663233427
524 => 0.024744040183316
525 => 0.024817923561364
526 => 0.02540833166345
527 => 0.025573101873963
528 => 0.025073840443724
529 => 0.024235259043939
530 => 0.024430042377103
531 => 0.023859955477448
601 => 0.022860900113878
602 => 0.023578439117827
603 => 0.023823438481739
604 => 0.023931644158148
605 => 0.02294918795036
606 => 0.022640478879712
607 => 0.022476124760818
608 => 0.02410843628467
609 => 0.024197857994682
610 => 0.023740363883307
611 => 0.025808280648092
612 => 0.025340247395952
613 => 0.025863155209523
614 => 0.024412367831241
615 => 0.024467789862836
616 => 0.023780963868058
617 => 0.024165540531404
618 => 0.023893734141235
619 => 0.024134470537466
620 => 0.024278766940774
621 => 0.024965480234164
622 => 0.026003239499581
623 => 0.024862908168002
624 => 0.024366049476987
625 => 0.024674297814453
626 => 0.025495203757616
627 => 0.02673891828291
628 => 0.026002614251849
629 => 0.026329373477581
630 => 0.026400755831897
701 => 0.025857832498849
702 => 0.026758936640617
703 => 0.027241845670748
704 => 0.027737210411719
705 => 0.028167321736498
706 => 0.027539350840871
707 => 0.028211369715284
708 => 0.027669841129808
709 => 0.027184034006439
710 => 0.027184770775313
711 => 0.026880016870314
712 => 0.026289517777915
713 => 0.026180620685396
714 => 0.02674711711287
715 => 0.027201393600293
716 => 0.027238809987635
717 => 0.027490320792641
718 => 0.027639162296276
719 => 0.029098011372114
720 => 0.029684772538649
721 => 0.030402252986267
722 => 0.030681752055596
723 => 0.031522944048316
724 => 0.030843613195922
725 => 0.030696635692815
726 => 0.02865617907028
727 => 0.028990303727912
728 => 0.029525269543014
729 => 0.028665000459531
730 => 0.029210643186353
731 => 0.029318364618921
801 => 0.02863576884526
802 => 0.029000372741195
803 => 0.028032092891114
804 => 0.026024345354309
805 => 0.026761171837571
806 => 0.027303724142364
807 => 0.026529435107208
808 => 0.027917318233602
809 => 0.027106545562885
810 => 0.02684956955022
811 => 0.025847014506248
812 => 0.02632018189512
813 => 0.026960147563674
814 => 0.026564723184502
815 => 0.027385288144553
816 => 0.028547426964667
817 => 0.029375636294442
818 => 0.029439215922867
819 => 0.028906732809536
820 => 0.02976004039691
821 => 0.029766255811107
822 => 0.028803721366685
823 => 0.028214174378892
824 => 0.028080228062847
825 => 0.028414852222048
826 => 0.028821147726345
827 => 0.029461762495682
828 => 0.02984887258405
829 => 0.030858250387188
830 => 0.031131359079587
831 => 0.031431422731153
901 => 0.031832400305847
902 => 0.032313876692807
903 => 0.031260433768604
904 => 0.031302289019846
905 => 0.030321337554738
906 => 0.029273050231599
907 => 0.030068569639002
908 => 0.031108605440668
909 => 0.030870020078629
910 => 0.030843174351542
911 => 0.030888321418118
912 => 0.030708435846609
913 => 0.029894820073546
914 => 0.029486227325819
915 => 0.030013416213515
916 => 0.030293593644847
917 => 0.030728124406804
918 => 0.030674559318561
919 => 0.031793863896166
920 => 0.032228791809009
921 => 0.032117518637289
922 => 0.032137995578824
923 => 0.032925411790162
924 => 0.033801180561666
925 => 0.034621453584046
926 => 0.035455870533958
927 => 0.034449948332991
928 => 0.033939203075997
929 => 0.034466161809517
930 => 0.03418655008803
1001 => 0.035793281977917
1002 => 0.035904528607896
1003 => 0.037511144312779
1004 => 0.039036013928952
1005 => 0.038078270643911
1006 => 0.038981379424
1007 => 0.039958165201206
1008 => 0.041842543443217
1009 => 0.041207951144533
1010 => 0.040721863389071
1011 => 0.040262512808918
1012 => 0.041218348446365
1013 => 0.042448015724094
1014 => 0.04271287427811
1015 => 0.043142046319371
1016 => 0.042690824394646
1017 => 0.043234271502513
1018 => 0.045152878596043
1019 => 0.044634454023358
1020 => 0.043898207789236
1021 => 0.045412763824594
1022 => 0.045960875766102
1023 => 0.049807812420062
1024 => 0.054664728854712
1025 => 0.052653933558534
1026 => 0.051405768030237
1027 => 0.051699116536269
1028 => 0.053472698001207
1029 => 0.054042316077083
1030 => 0.052493897787726
1031 => 0.053040825304521
1101 => 0.056054449694787
1102 => 0.057671162491519
1103 => 0.05547544936006
1104 => 0.049417563913612
1105 => 0.043831916871298
1106 => 0.045313481991884
1107 => 0.045145518485528
1108 => 0.04838328193557
1109 => 0.044622089768754
1110 => 0.044685418598728
1111 => 0.047990135568066
1112 => 0.047108493737838
1113 => 0.045680346885024
1114 => 0.043842343923805
1115 => 0.040444625455297
1116 => 0.037435171455349
1117 => 0.04333740378511
1118 => 0.043082888794538
1119 => 0.042714313371181
1120 => 0.043534538091836
1121 => 0.047517316510487
1122 => 0.047425500576942
1123 => 0.046841414452626
1124 => 0.047284438630021
1125 => 0.045602682604736
1126 => 0.046036109425325
1127 => 0.043831032076269
1128 => 0.044827819130207
1129 => 0.045677282723291
1130 => 0.045847825116126
1201 => 0.046232065835294
1202 => 0.042948770959757
1203 => 0.0444228739664
1204 => 0.04528877137803
1205 => 0.041376615370669
1206 => 0.045211440632305
1207 => 0.042891616100646
1208 => 0.042104232812005
1209 => 0.043164340680299
1210 => 0.042751215613036
1211 => 0.042396034939722
1212 => 0.042197838021233
1213 => 0.042976264239873
1214 => 0.042939949726353
1215 => 0.04166629334664
1216 => 0.040004860520181
1217 => 0.040562491911414
1218 => 0.040359899199157
1219 => 0.039625677074957
1220 => 0.040120454136351
1221 => 0.037941706358914
1222 => 0.03419328404929
1223 => 0.036669606644308
1224 => 0.036574270918121
1225 => 0.036526198321846
1226 => 0.038387086311473
1227 => 0.038208204869261
1228 => 0.037883533300034
1229 => 0.039619714226978
1230 => 0.038985984833714
1231 => 0.040938989498329
]
'min_raw' => 0.017531642964627
'max_raw' => 0.057671162491519
'avg_raw' => 0.037601402728073
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.017531'
'max' => '$0.057671'
'avg' => '$0.0376014'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0095507870842984
'max_diff' => 0.038123553152495
'year' => 2029
]
4 => [
'items' => [
101 => 0.042225364682866
102 => 0.041899098326189
103 => 0.043108940404837
104 => 0.040575338612411
105 => 0.041416899497394
106 => 0.041590344029436
107 => 0.03959829002384
108 => 0.038237472085471
109 => 0.038146721043442
110 => 0.035787250270573
111 => 0.037047660512457
112 => 0.038156769365995
113 => 0.037625592295474
114 => 0.037457437503411
115 => 0.038316503867738
116 => 0.038383260681652
117 => 0.036861198249842
118 => 0.037177683226864
119 => 0.038497478192294
120 => 0.03714442777998
121 => 0.034515671848383
122 => 0.033863704031953
123 => 0.03377671950709
124 => 0.032008531080712
125 => 0.033907271638952
126 => 0.033078420502197
127 => 0.035696751312045
128 => 0.03420117479585
129 => 0.034136703481407
130 => 0.034039245633742
131 => 0.032517292812214
201 => 0.032850503754981
202 => 0.033958147678198
203 => 0.034353367508504
204 => 0.034312142842262
205 => 0.033952719618701
206 => 0.034117261729903
207 => 0.033587214259451
208 => 0.03340004346565
209 => 0.032809280955033
210 => 0.031941023266734
211 => 0.032061759823625
212 => 0.030341514151123
213 => 0.029404233008395
214 => 0.029144805941255
215 => 0.028797889224872
216 => 0.02918399110748
217 => 0.03033664091127
218 => 0.028946300699602
219 => 0.026562659927725
220 => 0.026705920799641
221 => 0.027027785444302
222 => 0.026427992808324
223 => 0.025860339415152
224 => 0.02635386798534
225 => 0.025343887967314
226 => 0.027149836704244
227 => 0.027100990852023
228 => 0.027774136862029
301 => 0.028195068876433
302 => 0.02722495686159
303 => 0.026980976313319
304 => 0.027119958721912
305 => 0.024822889095012
306 => 0.027586417267006
307 => 0.027610316373395
308 => 0.027405677714921
309 => 0.028877171152148
310 => 0.031982481275009
311 => 0.030814138695978
312 => 0.030361721136036
313 => 0.029501675023871
314 => 0.030647635403846
315 => 0.03055964352643
316 => 0.03016171088683
317 => 0.029921039984774
318 => 0.030364483501185
319 => 0.029866092425719
320 => 0.029776567693694
321 => 0.029234145221494
322 => 0.029040525077569
323 => 0.028897176431247
324 => 0.028739363656793
325 => 0.029087459312745
326 => 0.028298628760561
327 => 0.027347376444639
328 => 0.027268290107263
329 => 0.027486654438101
330 => 0.027390044477018
331 => 0.027267827575938
401 => 0.027034482227985
402 => 0.026965253647881
403 => 0.027190212948285
404 => 0.026936247014071
405 => 0.027310987584243
406 => 0.027209078884498
407 => 0.02663982517184
408 => 0.025930324281151
409 => 0.025924008234995
410 => 0.02577114743191
411 => 0.025576456216407
412 => 0.025522297574185
413 => 0.026312304385722
414 => 0.027947594842687
415 => 0.027626548196801
416 => 0.027858537300638
417 => 0.028999694083459
418 => 0.029362433508936
419 => 0.029104969656687
420 => 0.028752537256049
421 => 0.028768042493052
422 => 0.029972410694575
423 => 0.030047525661996
424 => 0.030237316951661
425 => 0.030481252393894
426 => 0.029146512917305
427 => 0.028705176383736
428 => 0.028496046649712
429 => 0.02785200801231
430 => 0.028546548467048
501 => 0.02814186948726
502 => 0.028196474507436
503 => 0.028160912916412
504 => 0.028180331949775
505 => 0.027149331904766
506 => 0.027524974133401
507 => 0.026900396071288
508 => 0.026064156158297
509 => 0.026061352788885
510 => 0.026266021322889
511 => 0.026144276470183
512 => 0.025816664201897
513 => 0.02586319997832
514 => 0.025455497609603
515 => 0.025912702427572
516 => 0.025925813425794
517 => 0.025749764666761
518 => 0.02645415177095
519 => 0.026742739742261
520 => 0.026626860677735
521 => 0.026734609358184
522 => 0.027639889134376
523 => 0.027787489238021
524 => 0.027853043454145
525 => 0.027765209488809
526 => 0.026751156210647
527 => 0.026796133785621
528 => 0.026466118183552
529 => 0.026187289775991
530 => 0.026198441450031
531 => 0.026341795496673
601 => 0.026967831025963
602 => 0.028285285890543
603 => 0.028335282339607
604 => 0.028395879494372
605 => 0.028149400412254
606 => 0.0280750599626
607 => 0.028173134204591
608 => 0.028667900983242
609 => 0.029940575465801
610 => 0.029490727304594
611 => 0.029124993747229
612 => 0.029445840678097
613 => 0.029396448807971
614 => 0.028979531717888
615 => 0.028967830243755
616 => 0.028167633051429
617 => 0.027871818369035
618 => 0.027624613479081
619 => 0.027354672192698
620 => 0.027194641949617
621 => 0.027440521135435
622 => 0.027496756614388
623 => 0.026959137477365
624 => 0.026885861975559
625 => 0.027324893368168
626 => 0.027131692021021
627 => 0.027330404397724
628 => 0.027376507373643
629 => 0.027369083732678
630 => 0.027167359337223
701 => 0.027295932451378
702 => 0.026991818706912
703 => 0.026661140686213
704 => 0.026450188710975
705 => 0.026266105133861
706 => 0.026368245401444
707 => 0.026004133997586
708 => 0.025887647431378
709 => 0.027252374773289
710 => 0.028260513534051
711 => 0.028245854797203
712 => 0.02815662350656
713 => 0.028024043908571
714 => 0.028658201959862
715 => 0.028437273975183
716 => 0.028598017543187
717 => 0.028638933527631
718 => 0.028762773889435
719 => 0.028807036174342
720 => 0.028673244807221
721 => 0.028224224637926
722 => 0.027105309067599
723 => 0.026584450849157
724 => 0.026412558961491
725 => 0.026418806905139
726 => 0.026246460727293
727 => 0.026297224400682
728 => 0.026228807193339
729 => 0.026099241554532
730 => 0.026360245088354
731 => 0.026390323314211
801 => 0.026329401970657
802 => 0.026343751152449
803 => 0.025839348447667
804 => 0.025877697089807
805 => 0.025664166977264
806 => 0.025624132655307
807 => 0.025084347124993
808 => 0.02412803881488
809 => 0.024657926449777
810 => 0.024017896700298
811 => 0.023775507736138
812 => 0.024922939393257
813 => 0.024807769079682
814 => 0.024610647566174
815 => 0.024319063763973
816 => 0.024210912495392
817 => 0.023553819624023
818 => 0.023514995071728
819 => 0.023840668041778
820 => 0.023690381171823
821 => 0.023479321488317
822 => 0.022714884709434
823 => 0.021855404673651
824 => 0.021881346973432
825 => 0.02215473158162
826 => 0.022949634200865
827 => 0.022639051995571
828 => 0.02241372104211
829 => 0.022371523327951
830 => 0.022899716067557
831 => 0.023647219453899
901 => 0.023997931318326
902 => 0.023650386511957
903 => 0.023251145751542
904 => 0.023275445686725
905 => 0.023437102268934
906 => 0.023454090090023
907 => 0.023194225397606
908 => 0.023267375786355
909 => 0.023156253656833
910 => 0.022474297353073
911 => 0.022461962926045
912 => 0.022294599851071
913 => 0.022289532163675
914 => 0.02200480582247
915 => 0.021964970639115
916 => 0.021399629206997
917 => 0.021771738649628
918 => 0.021522147172134
919 => 0.021145953942872
920 => 0.021081098088351
921 => 0.021079148443049
922 => 0.021465414774234
923 => 0.021767224902653
924 => 0.021526488922744
925 => 0.02147167800659
926 => 0.022056915194069
927 => 0.021982438427406
928 => 0.021917942027801
929 => 0.023580288724341
930 => 0.022264411599499
1001 => 0.021690614065428
1002 => 0.020980430655818
1003 => 0.021211669955042
1004 => 0.021260395473001
1005 => 0.01955253239307
1006 => 0.018859652554243
1007 => 0.018621882304184
1008 => 0.018485042163696
1009 => 0.018547401934047
1010 => 0.017923728812403
1011 => 0.018342847464749
1012 => 0.017802799259182
1013 => 0.01771225842005
1014 => 0.018677931510738
1015 => 0.018812299279927
1016 => 0.018239044631774
1017 => 0.018607166917386
1018 => 0.01847368065934
1019 => 0.017812056835634
1020 => 0.017786787672144
1021 => 0.01745480809461
1022 => 0.016935324339684
1023 => 0.016697906324072
1024 => 0.016574256960184
1025 => 0.016625277097602
1026 => 0.016599479754881
1027 => 0.016431134643634
1028 => 0.0166091290996
1029 => 0.016154426816993
1030 => 0.015973360704274
1031 => 0.01589157734186
1101 => 0.015488002894359
1102 => 0.016130269310704
1103 => 0.016256803885784
1104 => 0.016383587773064
1105 => 0.017487154952805
1106 => 0.017432023855154
1107 => 0.017930382127989
1108 => 0.017911016841928
1109 => 0.017768876989647
1110 => 0.017169212333743
1111 => 0.017408227977592
1112 => 0.016672574977104
1113 => 0.017223776224611
1114 => 0.016972230993963
1115 => 0.017138728529097
1116 => 0.016839350948449
1117 => 0.017005038862577
1118 => 0.016286809927658
1119 => 0.015616137853985
1120 => 0.015886035874569
1121 => 0.016179445889527
1122 => 0.016815633561437
1123 => 0.016436725432482
1124 => 0.016572995123757
1125 => 0.016116514469257
1126 => 0.01517466449177
1127 => 0.015179995260358
1128 => 0.015035112160639
1129 => 0.014909912009202
1130 => 0.016480247589132
1201 => 0.016284951536436
1202 => 0.01597377283618
1203 => 0.016390297892222
1204 => 0.016500433728181
1205 => 0.016503569140599
1206 => 0.016807455069419
1207 => 0.016969639044105
1208 => 0.016998224672589
1209 => 0.017476395747479
1210 => 0.017636672384553
1211 => 0.018296829169462
1212 => 0.01695587886697
1213 => 0.016928262877927
1214 => 0.016396159253947
1215 => 0.016058690723394
1216 => 0.016419266012951
1217 => 0.016738686496063
1218 => 0.016406084538739
1219 => 0.016449515332755
1220 => 0.016003024379624
1221 => 0.016162623886017
1222 => 0.016300092481297
1223 => 0.016224190403013
1224 => 0.016110561318122
1225 => 0.016712497659071
1226 => 0.016678534051707
1227 => 0.017239071010856
1228 => 0.017676049654896
1229 => 0.01845919350429
1230 => 0.017641942071235
1231 => 0.017612158180734
]
'min_raw' => 0.014909912009202
'max_raw' => 0.043108940404837
'avg_raw' => 0.02900942620702
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0149099'
'max' => '$0.0431089'
'avg' => '$0.0290094'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0026217309554252
'max_diff' => -0.014562222086682
'year' => 2030
]
5 => [
'items' => [
101 => 0.017903300487865
102 => 0.017636627812183
103 => 0.017805155737986
104 => 0.018432041050011
105 => 0.018445286148822
106 => 0.018223413678406
107 => 0.018209912718417
108 => 0.018252525753379
109 => 0.018502111630147
110 => 0.018414898655805
111 => 0.018515823717676
112 => 0.018642032052965
113 => 0.019164083238946
114 => 0.01928994801249
115 => 0.018984161866181
116 => 0.01901177093145
117 => 0.018897398518713
118 => 0.018786916201092
119 => 0.019035264316459
120 => 0.019489125378586
121 => 0.019486301932474
122 => 0.019591588877089
123 => 0.01965718177134
124 => 0.019375609052281
125 => 0.01919231556589
126 => 0.01926260195184
127 => 0.019374991413612
128 => 0.019226155564134
129 => 0.018307471753683
130 => 0.018586141736025
131 => 0.018539757424697
201 => 0.018473700524842
202 => 0.018753905346978
203 => 0.018726878908318
204 => 0.017917332143098
205 => 0.01796915670044
206 => 0.017920483766078
207 => 0.018077755974545
208 => 0.017628134596802
209 => 0.01776643510435
210 => 0.017853175886197
211 => 0.017904266873079
212 => 0.018088842551114
213 => 0.018067184725661
214 => 0.018087496270275
215 => 0.018361173274629
216 => 0.019745337648045
217 => 0.019820674660903
218 => 0.01944968765637
219 => 0.019597889647286
220 => 0.01931337423294
221 => 0.019504371336678
222 => 0.019635046704255
223 => 0.019044549845602
224 => 0.019009584453926
225 => 0.018723894743257
226 => 0.018877408211478
227 => 0.01863315724553
228 => 0.018693087889037
301 => 0.01852551658513
302 => 0.018827111569049
303 => 0.019164341624193
304 => 0.019249539253741
305 => 0.019025420970287
306 => 0.018863144562951
307 => 0.018578240648841
308 => 0.019052042207503
309 => 0.019190596222097
310 => 0.019051314442249
311 => 0.019019039810491
312 => 0.018957879441629
313 => 0.019032015271869
314 => 0.019189841627178
315 => 0.019115413632609
316 => 0.019164574634274
317 => 0.018977223590532
318 => 0.019375702264568
319 => 0.020008582298051
320 => 0.020010617110845
321 => 0.019936188715082
322 => 0.019905734219118
323 => 0.019982102269863
324 => 0.020023528804611
325 => 0.020270489077217
326 => 0.020535487289054
327 => 0.021772118315921
328 => 0.021424877272036
329 => 0.022522089886581
330 => 0.02338984260946
331 => 0.023650043708823
401 => 0.023410670940817
402 => 0.022591789632129
403 => 0.022551611408445
404 => 0.023775365806396
405 => 0.023429599137472
406 => 0.023388471292424
407 => 0.022950940507704
408 => 0.023209575390716
409 => 0.023153008147856
410 => 0.023063713987638
411 => 0.023557171327762
412 => 0.024480879417233
413 => 0.024336910849009
414 => 0.02422944499134
415 => 0.023758560885874
416 => 0.024042138293137
417 => 0.023941161809978
418 => 0.024375020862889
419 => 0.024118012371099
420 => 0.023426979614884
421 => 0.023537028858985
422 => 0.023520395137128
423 => 0.023862715954277
424 => 0.023759959741894
425 => 0.023500330337482
426 => 0.024477722283403
427 => 0.024414255886975
428 => 0.024504236726672
429 => 0.024543849075057
430 => 0.025138770328961
501 => 0.025382490531329
502 => 0.025437819284189
503 => 0.025669334626442
504 => 0.025432058971568
505 => 0.026381330765737
506 => 0.027012541117314
507 => 0.027745724422459
508 => 0.02881710229237
509 => 0.029219950282255
510 => 0.029147179398635
511 => 0.029959485872135
512 => 0.031419182548455
513 => 0.029442225831245
514 => 0.031523966054893
515 => 0.030864911134932
516 => 0.029302303775598
517 => 0.029201690283587
518 => 0.030259906129573
519 => 0.032606927026469
520 => 0.032019024911487
521 => 0.032607888623719
522 => 0.031920947824063
523 => 0.031886835423368
524 => 0.03257452544236
525 => 0.034181350655766
526 => 0.033418008227819
527 => 0.032323569678115
528 => 0.033131686071867
529 => 0.032431620863958
530 => 0.030854178014624
531 => 0.032018575353819
601 => 0.031239976013227
602 => 0.031467212693429
603 => 0.033103712699444
604 => 0.032906804689078
605 => 0.033161621887682
606 => 0.032711876201873
607 => 0.032291742812943
608 => 0.031507532642989
609 => 0.03127536667276
610 => 0.031339528994475
611 => 0.0312753348771
612 => 0.030836576494274
613 => 0.030741826663278
614 => 0.030583906127198
615 => 0.030632852304725
616 => 0.030335915495613
617 => 0.030896296604683
618 => 0.031000308276588
619 => 0.031408106915862
620 => 0.031450445923412
621 => 0.032586159329142
622 => 0.031960627470155
623 => 0.032380288246986
624 => 0.032342749837106
625 => 0.029336170215315
626 => 0.029750450359921
627 => 0.030394940256657
628 => 0.030104598431763
629 => 0.029694123020886
630 => 0.029362642118304
701 => 0.02886041465523
702 => 0.029567290165083
703 => 0.030496756292709
704 => 0.031474018718261
705 => 0.032648135489791
706 => 0.032386086294612
707 => 0.031452069421916
708 => 0.031493968736526
709 => 0.031752973812668
710 => 0.031417538705971
711 => 0.031318612344535
712 => 0.031739382849724
713 => 0.031742280464942
714 => 0.031356321836
715 => 0.030927399449615
716 => 0.030925602249155
717 => 0.030849279653396
718 => 0.031934525444297
719 => 0.032531300898567
720 => 0.032599720242647
721 => 0.032526695731573
722 => 0.032554799967646
723 => 0.032207549479856
724 => 0.033001261121011
725 => 0.03372964941288
726 => 0.033534425790913
727 => 0.033241757828911
728 => 0.033008633700378
729 => 0.033479509155022
730 => 0.033458541812253
731 => 0.033723287576582
801 => 0.033711277179467
802 => 0.033622253136515
803 => 0.033534428970242
804 => 0.03388264186232
805 => 0.03378236214153
806 => 0.033681926658635
807 => 0.033480487921785
808 => 0.033507866791666
809 => 0.033215249362914
810 => 0.033079871151111
811 => 0.031044107663342
812 => 0.030500085138919
813 => 0.030671245699702
814 => 0.030727596200494
815 => 0.030490836900681
816 => 0.030830288918139
817 => 0.030777385680786
818 => 0.030983201229965
819 => 0.030854616610311
820 => 0.030859893767953
821 => 0.031238033717225
822 => 0.031347809353221
823 => 0.031291976578755
824 => 0.031331079940155
825 => 0.032232200399125
826 => 0.032104089886069
827 => 0.032036033729346
828 => 0.032054885749863
829 => 0.03228514134737
830 => 0.032349600343182
831 => 0.032076483048471
901 => 0.032205286743529
902 => 0.032753716529463
903 => 0.032945635916102
904 => 0.033558150471723
905 => 0.033297943401917
906 => 0.033775564740043
907 => 0.035243609900331
908 => 0.036416385955367
909 => 0.035337852628136
910 => 0.03749150650108
911 => 0.039168434964466
912 => 0.039104071656971
913 => 0.038811660391325
914 => 0.03690252191921
915 => 0.035145704233518
916 => 0.036615356826018
917 => 0.036619103272713
918 => 0.036492858811647
919 => 0.035708765306374
920 => 0.036465574057285
921 => 0.036525646787607
922 => 0.036492022033255
923 => 0.035890859381166
924 => 0.034972995124857
925 => 0.035152343603483
926 => 0.035446120070083
927 => 0.034889939930619
928 => 0.034712206675917
929 => 0.035042646611543
930 => 0.036107392934024
1001 => 0.035906108809415
1002 => 0.035900852467468
1003 => 0.036762031310301
1004 => 0.036145613112859
1005 => 0.035154605762152
1006 => 0.034904363336317
1007 => 0.034016171308102
1008 => 0.034629648705622
1009 => 0.034651726665006
1010 => 0.034315731363971
1011 => 0.035181869929055
1012 => 0.035173888309697
1013 => 0.035996157969532
1014 => 0.037568028728756
1015 => 0.037103149198191
1016 => 0.036562544882893
1017 => 0.036621323561298
1018 => 0.037265980585256
1019 => 0.036876206232483
1020 => 0.037016371807343
1021 => 0.037265768427872
1022 => 0.037416235601206
1023 => 0.036599673650614
1024 => 0.036409293999257
1025 => 0.03601984404676
1026 => 0.035918243823582
1027 => 0.036235442683751
1028 => 0.036151871990897
1029 => 0.03464987109801
1030 => 0.034492903647649
1031 => 0.034497717615253
1101 => 0.034103015497926
1102 => 0.033501000029639
1103 => 0.035083060735821
1104 => 0.034955999120189
1105 => 0.03481573293032
1106 => 0.034832914738231
1107 => 0.035519633669773
1108 => 0.035121302009341
1109 => 0.036180332013873
1110 => 0.035962627282297
1111 => 0.035739339245832
1112 => 0.035708474037672
1113 => 0.035622527193673
1114 => 0.035327783486188
1115 => 0.034971862748048
1116 => 0.034736853047402
1117 => 0.032042910753124
1118 => 0.032542890773
1119 => 0.033118072211256
1120 => 0.033316622538846
1121 => 0.032976988464238
1122 => 0.035341194309547
1123 => 0.03577315749954
1124 => 0.034464712820791
1125 => 0.034219956244841
1126 => 0.035357240509919
1127 => 0.03467131907073
1128 => 0.034980189452797
1129 => 0.034312580629834
1130 => 0.035669110216429
1201 => 0.035658775733788
1202 => 0.035131055085992
1203 => 0.035577080963834
1204 => 0.035499572991401
1205 => 0.034903777679759
1206 => 0.035687997990509
1207 => 0.035688386953999
1208 => 0.035180467304132
1209 => 0.034587328350996
1210 => 0.034481289115492
1211 => 0.034401402795907
1212 => 0.0349605423153
1213 => 0.035461865060004
1214 => 0.03639470239945
1215 => 0.036629239870255
1216 => 0.037544655232852
1217 => 0.03699956995519
1218 => 0.037241199198741
1219 => 0.03750352192316
1220 => 0.037629289083844
1221 => 0.037424358244546
1222 => 0.038846375102654
1223 => 0.038966436894949
1224 => 0.039006692575375
1225 => 0.038527196491709
1226 => 0.03895310124146
1227 => 0.038753834513534
1228 => 0.039272271181706
1229 => 0.039353568671007
1230 => 0.039284712589811
1231 => 0.039310517696109
]
'min_raw' => 0.017628134596802
'max_raw' => 0.039353568671007
'avg_raw' => 0.028490851633905
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.017628'
'max' => '$0.039353'
'avg' => '$0.02849'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0027182225875999
'max_diff' => -0.0037553717338298
'year' => 2031
]
6 => [
'items' => [
101 => 0.038097077168678
102 => 0.038034153875922
103 => 0.03717619031436
104 => 0.037525816807443
105 => 0.036872206836659
106 => 0.037079473291323
107 => 0.037170834369632
108 => 0.037123112527019
109 => 0.037545584164787
110 => 0.037186396967431
111 => 0.036238442897765
112 => 0.035290230558648
113 => 0.035278326525127
114 => 0.035028678953576
115 => 0.034848229484577
116 => 0.034882990454095
117 => 0.035005492644621
118 => 0.034841109434567
119 => 0.034876188926873
120 => 0.035458742232575
121 => 0.035575569143453
122 => 0.035178545653067
123 => 0.033584439048953
124 => 0.033193241289789
125 => 0.033474426481287
126 => 0.033340038070397
127 => 0.026908012806093
128 => 0.028419121734362
129 => 0.027521272121595
130 => 0.027935042531233
131 => 0.027018570573628
201 => 0.027455959028208
202 => 0.027375189351516
203 => 0.029805007791208
204 => 0.029767069518378
205 => 0.029785228561933
206 => 0.028918450099921
207 => 0.030299251725506
208 => 0.03097948425829
209 => 0.030853591320274
210 => 0.030885275860516
211 => 0.03034083048326
212 => 0.029790499983283
213 => 0.029180098763553
214 => 0.030314148781941
215 => 0.030188061778776
216 => 0.030477259999366
217 => 0.03121277249986
218 => 0.031321079509498
219 => 0.031466645228793
220 => 0.031414470280499
221 => 0.03265748922411
222 => 0.032506951428335
223 => 0.032869704203472
224 => 0.032123494222897
225 => 0.031279086798975
226 => 0.031439581044504
227 => 0.031424124158047
228 => 0.031227340252852
229 => 0.031049692542046
301 => 0.030753959155485
302 => 0.031689703350869
303 => 0.031651713845406
304 => 0.032266719780884
305 => 0.032158011507939
306 => 0.031432031055789
307 => 0.031457959589663
308 => 0.031632341440795
309 => 0.03223587901862
310 => 0.032415050063691
311 => 0.032332050896882
312 => 0.032528503768333
313 => 0.032683772107899
314 => 0.032548003081229
315 => 0.034470206187335
316 => 0.033671973442147
317 => 0.034061026528084
318 => 0.034153813396646
319 => 0.033916141783922
320 => 0.033967684246339
321 => 0.034045757032421
322 => 0.034519799701293
323 => 0.035763824829765
324 => 0.0363147950908
325 => 0.037972416305517
326 => 0.036269044680497
327 => 0.036167973657521
328 => 0.036466561293657
329 => 0.037439760423721
330 => 0.038228446910692
331 => 0.038490099718835
401 => 0.038524681456848
402 => 0.039015559519275
403 => 0.039296921670324
404 => 0.038955954011122
405 => 0.03866701962075
406 => 0.037632092498294
407 => 0.037751888130731
408 => 0.038577161242611
409 => 0.039742908121485
410 => 0.04074324021885
411 => 0.040392958783446
412 => 0.043065358875421
413 => 0.043330316428765
414 => 0.043293707861996
415 => 0.043897320599484
416 => 0.042699272239167
417 => 0.042187083354037
418 => 0.038729490515493
419 => 0.039700933069744
420 => 0.04111298187317
421 => 0.040926091919126
422 => 0.039900624333905
423 => 0.04074246230973
424 => 0.040464124348215
425 => 0.040244587649715
426 => 0.041250327824826
427 => 0.040144475188763
428 => 0.041101950147193
429 => 0.039873978609196
430 => 0.040394558839537
501 => 0.040099052323163
502 => 0.040290281255174
503 => 0.039172360826088
504 => 0.039775563553638
505 => 0.039147265609476
506 => 0.039146967714443
507 => 0.039133098002502
508 => 0.03987228774751
509 => 0.039896392698557
510 => 0.039350130360143
511 => 0.039271405422956
512 => 0.039562492777146
513 => 0.039221705721288
514 => 0.039381157839836
515 => 0.039226535363522
516 => 0.039191726587256
517 => 0.038914364335746
518 => 0.038794869051561
519 => 0.038841726231504
520 => 0.038681778519826
521 => 0.038585404237979
522 => 0.039113926732138
523 => 0.038831558484045
524 => 0.039070649748387
525 => 0.038798175076947
526 => 0.037853659154172
527 => 0.037310458058909
528 => 0.03552635503746
529 => 0.03603232444117
530 => 0.036367782679293
531 => 0.036256913733595
601 => 0.036495103129542
602 => 0.036509726023959
603 => 0.036432288223283
604 => 0.036342625170497
605 => 0.036298982155079
606 => 0.036624261435955
607 => 0.036813097006901
608 => 0.036401450401341
609 => 0.036305007361207
610 => 0.03672120480706
611 => 0.036975085008601
612 => 0.038849593773818
613 => 0.038710724109907
614 => 0.039059259714528
615 => 0.039020019954162
616 => 0.039385340793881
617 => 0.039982485970715
618 => 0.038768322861794
619 => 0.038979059594901
620 => 0.038927391814565
621 => 0.039491487092255
622 => 0.039493248136138
623 => 0.039155044838515
624 => 0.039338390332878
625 => 0.039236051907745
626 => 0.039420991273829
627 => 0.03870886942088
628 => 0.039576156968968
629 => 0.040067853121958
630 => 0.040074680323519
701 => 0.040307740397695
702 => 0.040544542930986
703 => 0.040999064772485
704 => 0.040531866563519
705 => 0.039691422466418
706 => 0.03975209981561
707 => 0.039259347748986
708 => 0.039267631000249
709 => 0.039223414355838
710 => 0.03935611183419
711 => 0.038737989055152
712 => 0.038883061235906
713 => 0.038679959333309
714 => 0.03897861809103
715 => 0.038657310637783
716 => 0.038927366898797
717 => 0.039043914228544
718 => 0.039473976384394
719 => 0.038593790107692
720 => 0.036799030706124
721 => 0.037176310891688
722 => 0.03661828386252
723 => 0.036669931388628
724 => 0.036774267611009
725 => 0.036436079777583
726 => 0.036500595358678
727 => 0.036498290408132
728 => 0.036478427589563
729 => 0.036390451872655
730 => 0.036262869677673
731 => 0.036771117874751
801 => 0.036857479147301
802 => 0.03704944955828
803 => 0.037620623286582
804 => 0.037563549561921
805 => 0.03765663917481
806 => 0.037453425072549
807 => 0.036679357908
808 => 0.036721393479184
809 => 0.036197209232939
810 => 0.037036044988577
811 => 0.036837397609551
812 => 0.036709328352015
813 => 0.036674383468543
814 => 0.03724697302604
815 => 0.037418300795885
816 => 0.037311540827097
817 => 0.037092573016426
818 => 0.037513055944936
819 => 0.037625559437854
820 => 0.03765074482095
821 => 0.038395759950664
822 => 0.037692382890615
823 => 0.037861692739935
824 => 0.039182599852707
825 => 0.037984719374145
826 => 0.038619263379561
827 => 0.038588205752504
828 => 0.038912816993877
829 => 0.038561578156019
830 => 0.03856593218237
831 => 0.038854164973639
901 => 0.03844939400136
902 => 0.038349167016317
903 => 0.038210704154319
904 => 0.038513032747929
905 => 0.038694265066652
906 => 0.040154864455091
907 => 0.041098478271447
908 => 0.041057513507074
909 => 0.041431854770612
910 => 0.041263210602815
911 => 0.040718614098916
912 => 0.041648173924604
913 => 0.041354022301321
914 => 0.04137827180375
915 => 0.041377369236059
916 => 0.041572954350361
917 => 0.041434364371765
918 => 0.041161189297984
919 => 0.041342535660507
920 => 0.041881069524689
921 => 0.043552695163344
922 => 0.04448815901683
923 => 0.043496379064761
924 => 0.044180495595236
925 => 0.043770269452595
926 => 0.043695719159307
927 => 0.044125394896259
928 => 0.044555822723709
929 => 0.044528406331891
930 => 0.044215937831876
1001 => 0.044039432304812
1002 => 0.04537599128943
1003 => 0.046360745181609
1004 => 0.046293591568036
1005 => 0.046589985778821
1006 => 0.047460208348813
1007 => 0.047539770594629
1008 => 0.047529747580373
1009 => 0.047332544252657
1010 => 0.048189391385495
1011 => 0.048904188338499
1012 => 0.047286897380043
1013 => 0.04790274060513
1014 => 0.048179212470101
1015 => 0.048585155193384
1016 => 0.049270048611464
1017 => 0.050014024522505
1018 => 0.050119230873607
1019 => 0.050044581932913
1020 => 0.049553909820435
1021 => 0.050367977139775
1022 => 0.050844838683216
1023 => 0.051128798819554
1024 => 0.051848874478843
1025 => 0.048180919866216
1026 => 0.045584559282227
1027 => 0.045179100085135
1028 => 0.046003617306316
1029 => 0.04622103592214
1030 => 0.046133394750721
1031 => 0.043210954862663
1101 => 0.045163714043938
1102 => 0.047264718730333
1103 => 0.047345426876948
1104 => 0.048397233752894
1105 => 0.048739745186723
1106 => 0.049586587585338
1107 => 0.049533617362734
1108 => 0.049739810010591
1109 => 0.049692409891608
1110 => 0.051261007111337
1111 => 0.052991402783639
1112 => 0.052931484683829
1113 => 0.052682719832823
1114 => 0.053052178057277
1115 => 0.054838131831563
1116 => 0.054673709827352
1117 => 0.05483343179901
1118 => 0.056939171950836
1119 => 0.059676933686255
1120 => 0.058404968493369
1121 => 0.061164766963807
1122 => 0.062901913810317
1123 => 0.06590612965702
1124 => 0.065529987036938
1125 => 0.066699506220105
1126 => 0.064856613243657
1127 => 0.060624958459612
1128 => 0.059955282891913
1129 => 0.061295990337333
1130 => 0.064591988767577
1201 => 0.061192187617302
1202 => 0.061879962962092
1203 => 0.061681883616523
1204 => 0.061671328809981
1205 => 0.062074162846201
1206 => 0.061489831066253
1207 => 0.059109158275466
1208 => 0.060200206586091
1209 => 0.059778900436915
1210 => 0.06024637101988
1211 => 0.062769116956605
1212 => 0.061653750843227
1213 => 0.060478803247768
1214 => 0.061952448274217
1215 => 0.063828904792258
1216 => 0.063711479515675
1217 => 0.063483625399148
1218 => 0.064768027123961
1219 => 0.066889482478958
1220 => 0.067462903336715
1221 => 0.067886190890838
1222 => 0.06794455509305
1223 => 0.068545742648981
1224 => 0.06531300564197
1225 => 0.070443442294671
1226 => 0.07132932697914
1227 => 0.071162817374618
1228 => 0.072147440917679
1229 => 0.071857739693822
1230 => 0.071438008073183
1231 => 0.072998845824369
]
'min_raw' => 0.026908012806093
'max_raw' => 0.072998845824369
'avg_raw' => 0.049953429315231
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.026908'
'max' => '$0.072998'
'avg' => '$0.049953'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0092798782092912
'max_diff' => 0.033645277153362
'year' => 2032
]
7 => [
'items' => [
101 => 0.071209471295746
102 => 0.068669679428355
103 => 0.067276299378517
104 => 0.069111214628906
105 => 0.070231733342601
106 => 0.070972324933978
107 => 0.071196427502052
108 => 0.065563953813402
109 => 0.062528362886532
110 => 0.064474141867535
111 => 0.06684812651485
112 => 0.065299818037388
113 => 0.065360508798369
114 => 0.063153027797819
115 => 0.067043439601148
116 => 0.066476639324916
117 => 0.069417200160658
118 => 0.068715411717733
119 => 0.071113324927366
120 => 0.070481874016447
121 => 0.073102991443727
122 => 0.074148626149391
123 => 0.075904409560247
124 => 0.077195970984597
125 => 0.077954400556609
126 => 0.077908867289903
127 => 0.080914143102325
128 => 0.079142036952079
129 => 0.076915853974019
130 => 0.076875589347463
131 => 0.078028561057057
201 => 0.080444873458025
202 => 0.081071388107681
203 => 0.081421524326138
204 => 0.080885278519241
205 => 0.078961784301142
206 => 0.078131229250103
207 => 0.078838886217084
208 => 0.077973482556123
209 => 0.079467412064324
210 => 0.081518896365208
211 => 0.081095272969523
212 => 0.082511382468127
213 => 0.083976906820119
214 => 0.086072672464284
215 => 0.086620583209645
216 => 0.087526258836549
217 => 0.088458496555578
218 => 0.088757906186419
219 => 0.089329572073047
220 => 0.089326559111642
221 => 0.091049312738547
222 => 0.092949563338262
223 => 0.093666863948752
224 => 0.095316257150387
225 => 0.092491729094219
226 => 0.094634166070662
227 => 0.09656669785209
228 => 0.094262653793338
301 => 0.097438241754914
302 => 0.097561542639425
303 => 0.099423239605987
304 => 0.097536053072393
305 => 0.096415447732858
306 => 0.099650593359562
307 => 0.10121597842219
308 => 0.1007444717018
309 => 0.097156282278473
310 => 0.095067802129412
311 => 0.089601846741585
312 => 0.096076507010167
313 => 0.099230125158564
314 => 0.097148115169327
315 => 0.09819815990461
316 => 0.10392686350216
317 => 0.10610798292602
318 => 0.10565432533303
319 => 0.10573098599841
320 => 0.10690787844941
321 => 0.11212686770363
322 => 0.10899952836728
323 => 0.11139026211075
324 => 0.11265829866786
325 => 0.11383612169055
326 => 0.11094376060162
327 => 0.10718084132214
328 => 0.10598896682973
329 => 0.096941100307829
330 => 0.096470119562472
331 => 0.096205743797926
401 => 0.094538891999155
402 => 0.093229203074455
403 => 0.092187689815901
404 => 0.08945444800327
405 => 0.090376836879878
406 => 0.086020619902444
407 => 0.088807573149756
408 => 0.081854945669235
409 => 0.087645300433454
410 => 0.084493873590415
411 => 0.086609971958162
412 => 0.086602589090306
413 => 0.082706181085684
414 => 0.080458814264578
415 => 0.081890923871812
416 => 0.083426259051768
417 => 0.083675362019229
418 => 0.085665964156391
419 => 0.086221498425023
420 => 0.084538203655652
421 => 0.081710867918392
422 => 0.082367593525495
423 => 0.080445505741111
424 => 0.077077120831017
425 => 0.079496353679805
426 => 0.080322386140541
427 => 0.080687209133233
428 => 0.077374789435776
429 => 0.076333955250705
430 => 0.075779823864018
501 => 0.081283276131035
502 => 0.081584767669564
503 => 0.080042294331845
504 => 0.087014420081656
505 => 0.085436413295029
506 => 0.08719943349674
507 => 0.082308002560123
508 => 0.082494861809087
509 => 0.080179180015034
510 => 0.08147580708579
511 => 0.080559392864421
512 => 0.081371052431991
513 => 0.081857557830195
514 => 0.084172859643652
515 => 0.087671737461043
516 => 0.083827030761233
517 => 0.082151836994912
518 => 0.08319111778589
519 => 0.085958859487087
520 => 0.09015212984249
521 => 0.087669629394661
522 => 0.088771320937816
523 => 0.08901199152915
524 => 0.087181487606083
525 => 0.090219623133138
526 => 0.091847784643855
527 => 0.093517941453299
528 => 0.094968091814207
529 => 0.092850844096072
530 => 0.095116602650015
531 => 0.093290801215762
601 => 0.091652868581355
602 => 0.091655352649052
603 => 0.09062785358111
604 => 0.088636944663759
605 => 0.088269790513377
606 => 0.090179772770124
607 => 0.091711397664042
608 => 0.091837549626294
609 => 0.092685535865296
610 => 0.093187365386584
611 => 0.098105976899362
612 => 0.10008428313869
613 => 0.10250331856072
614 => 0.10344566918697
615 => 0.10628180672057
616 => 0.10399139532236
617 => 0.10349585040899
618 => 0.096616308445981
619 => 0.097742833057025
620 => 0.099546507652763
621 => 0.09664605037573
622 => 0.09848572292477
623 => 0.098848913255543
624 => 0.096547493947331
625 => 0.097776781438305
626 => 0.094512158320617
627 => 0.087742897323823
628 => 0.090227159255723
629 => 0.092056412231125
630 => 0.089445842689961
701 => 0.094125187549505
702 => 0.091391610883844
703 => 0.09052519831565
704 => 0.087145013988742
705 => 0.088740330875816
706 => 0.090898019808322
707 => 0.089564818906295
708 => 0.092331410959122
709 => 0.096249643129076
710 => 0.099042008708144
711 => 0.099256371864364
712 => 0.097461067870987
713 => 0.10033805397785
714 => 0.10035900968076
715 => 0.097113757599386
716 => 0.095126058769183
717 => 0.094674449412807
718 => 0.095802658128265
719 => 0.097172511787648
720 => 0.099332389208763
721 => 0.10063755789886
722 => 0.10404074563465
723 => 0.10496155065891
724 => 0.10597323620994
725 => 0.10732516009838
726 => 0.10894849135263
727 => 0.10539673498464
728 => 0.10553785288644
729 => 0.10223050653398
730 => 0.098696132634939
731 => 0.10137828185839
801 => 0.10488483517669
802 => 0.10408042797107
803 => 0.10398991572789
804 => 0.10414213221492
805 => 0.10353563545137
806 => 0.10079247306765
807 => 0.099414874091648
808 => 0.10119232823367
809 => 0.10213696600477
810 => 0.10360201680668
811 => 0.10342141837187
812 => 0.10719523190261
813 => 0.10866162172646
814 => 0.10828645645916
815 => 0.1083554958972
816 => 0.11101032462937
817 => 0.11396304018672
818 => 0.11672864795131
819 => 0.11954194295507
820 => 0.11615040602327
821 => 0.11442839273021
822 => 0.11620507089136
823 => 0.1152623404505
824 => 0.12067954919569
825 => 0.12105462497566
826 => 0.126471441995
827 => 0.13161264636892
828 => 0.1283835480159
829 => 0.13142844232102
830 => 0.13472174376587
831 => 0.1410750565719
901 => 0.13893548433107
902 => 0.13729660552596
903 => 0.13574787297414
904 => 0.13897053956011
905 => 0.1431164486396
906 => 0.1440094377463
907 => 0.14545642124725
908 => 0.14393509502473
909 => 0.14576736489117
910 => 0.15223608265987
911 => 0.15048817801782
912 => 0.1480058724364
913 => 0.15311230385254
914 => 0.15496030153129
915 => 0.16793051704465
916 => 0.18430594990315
917 => 0.17752641317284
918 => 0.17331813595006
919 => 0.17430718091908
920 => 0.18028693465562
921 => 0.1822074417679
922 => 0.17698684139822
923 => 0.17883084570636
924 => 0.18899149074268
925 => 0.19444235081214
926 => 0.18703935068963
927 => 0.16661476695888
928 => 0.14778236797829
929 => 0.15277756822192
930 => 0.1522112675334
1001 => 0.16312761305865
1002 => 0.15044649107017
1003 => 0.15066000864191
1004 => 0.161802092632
1005 => 0.15882957564712
1006 => 0.15401447882283
1007 => 0.14781752351381
1008 => 0.13636187847611
1009 => 0.12621529420192
1010 => 0.14611508258241
1011 => 0.14525696752202
1012 => 0.14401428974906
1013 => 0.14677973466101
1014 => 0.16020795016821
1015 => 0.15989838633787
1016 => 0.15792909919015
1017 => 0.1594227861352
1018 => 0.15375262827949
1019 => 0.155213957066
1020 => 0.14777938483008
1021 => 0.15114012197588
1022 => 0.15400414778762
1023 => 0.15457914337195
1024 => 0.15587463778345
1025 => 0.14480477987825
1026 => 0.14977482108374
1027 => 0.15269425466207
1028 => 0.13950414754524
1029 => 0.1524335286538
1030 => 0.14461207828033
1031 => 0.14195736054934
1101 => 0.14553158824166
1102 => 0.14413870823391
1103 => 0.14294119179591
1104 => 0.14227295704756
1105 => 0.14489747539168
1106 => 0.14477503847395
1107 => 0.1404808170659
1108 => 0.13487918029396
1109 => 0.13675927346208
1110 => 0.13607621798814
1111 => 0.13360073683464
1112 => 0.13526891224136
1113 => 0.12792311199442
1114 => 0.11528504447104
1115 => 0.12363413899147
1116 => 0.1233127079345
1117 => 0.12315062781983
1118 => 0.12942474159991
1119 => 0.12882163032839
1120 => 0.1277269774649
1121 => 0.13358063267637
1122 => 0.13144396978141
1123 => 0.13802866136259
1124 => 0.1423657651091
1125 => 0.14126573530838
1126 => 0.14534480234501
1127 => 0.13680258701142
1128 => 0.13963996829105
1129 => 0.14022474864034
1130 => 0.1335083994797
1201 => 0.12892030679121
1202 => 0.12861433331698
1203 => 0.12065921287326
1204 => 0.12490877400281
1205 => 0.12864821193802
1206 => 0.12685731135916
1207 => 0.12629036573752
1208 => 0.12918676796295
1209 => 0.12941184322187
1210 => 0.12428010346602
1211 => 0.12534715466232
1212 => 0.12979693553342
1213 => 0.12523503160133
1214 => 0.11637199744408
1215 => 0.11417384243204
1216 => 0.1138805680334
1217 => 0.10791899730289
1218 => 0.11432073366084
1219 => 0.11152620418473
1220 => 0.12035408931615
1221 => 0.11531164867398
1222 => 0.11509427913609
1223 => 0.1147656931984
1224 => 0.10963432300127
1225 => 0.11075776695885
1226 => 0.1144922657792
1227 => 0.11582477703045
1228 => 0.11568578519
1229 => 0.11447396469764
1230 => 0.11502872991352
1231 => 0.11324163786015
]
'min_raw' => 0.062528362886532
'max_raw' => 0.19444235081214
'avg_raw' => 0.12848535684934
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.062528'
'max' => '$0.194442'
'avg' => '$0.128485'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.035620350080438
'max_diff' => 0.12144350498777
'year' => 2033
]
8 => [
'items' => [
101 => 0.11261057846101
102 => 0.11061878141074
103 => 0.10769138999482
104 => 0.10809846172594
105 => 0.10229853333738
106 => 0.099138424525794
107 => 0.098263748056311
108 => 0.097094094126074
109 => 0.098395863580062
110 => 0.10228210286898
111 => 0.097594473774887
112 => 0.089557862492019
113 => 0.090040876523838
114 => 0.091126065645184
115 => 0.089103822896801
116 => 0.087189939849425
117 => 0.088853905880878
118 => 0.085448687735552
119 => 0.091537569989425
120 => 0.091372882788353
121 => 0.093642441558644
122 => 0.095061643233741
123 => 0.09179084284464
124 => 0.090968245391966
125 => 0.091436834285979
126 => 0.083692103662605
127 => 0.093009531837858
128 => 0.093090109343633
129 => 0.092400155819171
130 => 0.097361398679172
131 => 0.10783116856423
201 => 0.10389201998795
202 => 0.10236666259782
203 => 0.099466957084155
204 => 0.10333064251364
205 => 0.10303397175554
206 => 0.10169231407835
207 => 0.10088087532897
208 => 0.10237597610478
209 => 0.1006956157973
210 => 0.10039377691286
211 => 0.098564961677108
212 => 0.097912157843737
213 => 0.097428847874379
214 => 0.096896771087172
215 => 0.098070399894476
216 => 0.095410802613397
217 => 0.092203589015953
218 => 0.091936943907857
219 => 0.092673174494986
220 => 0.092347447266103
221 => 0.091935384451201
222 => 0.091148644318925
223 => 0.090915235327722
224 => 0.091673701315188
225 => 0.090817437436653
226 => 0.092080901432538
227 => 0.091737309136309
228 => 0.089818030500058
301 => 0.087425898711327
302 => 0.087404603720741
303 => 0.086889222850742
304 => 0.086232807824765
305 => 0.086050208181279
306 => 0.088713771302888
307 => 0.094227267250882
308 => 0.093144836069514
309 => 0.093927003530062
310 => 0.097774493296366
311 => 0.098997494595021
312 => 0.098129437241609
313 => 0.096941186796814
314 => 0.096993463785912
315 => 0.10105407526365
316 => 0.10130733062067
317 => 0.10194722520458
318 => 0.1027696705791
319 => 0.098269503245243
320 => 0.09678150630918
321 => 0.096076410809947
322 => 0.093904989578607
323 => 0.09624668121302
324 => 0.094882277778881
325 => 0.095066382416805
326 => 0.094946484029836
327 => 0.095011956656614
328 => 0.091535868022743
329 => 0.092802372023086
330 => 0.090696563480025
331 => 0.087877122228969
401 => 0.087867670473272
402 => 0.088557724725168
403 => 0.088147253454315
404 => 0.087042685818629
405 => 0.087199584437866
406 => 0.085824987436866
407 => 0.08736648540167
408 => 0.087410690047556
409 => 0.086817129365144
410 => 0.089192019665652
411 => 0.090165014159497
412 => 0.089774319803032
413 => 0.090137602001936
414 => 0.093189815971984
415 => 0.093687460026534
416 => 0.093908480643044
417 => 0.093612342296541
418 => 0.09019339087028
419 => 0.090345035904539
420 => 0.08923236526121
421 => 0.08829227581794
422 => 0.088329874465551
423 => 0.088813202642465
424 => 0.09092392513787
425 => 0.095365816195563
426 => 0.095534382714223
427 => 0.09573869025227
428 => 0.09490766881829
429 => 0.094657024801997
430 => 0.094987688956197
501 => 0.09665582969393
502 => 0.10094674056717
503 => 0.099430046084266
504 => 0.098196949860909
505 => 0.099278707689148
506 => 0.099112179550589
507 => 0.097706514473153
508 => 0.097667062136142
509 => 0.094969141434232
510 => 0.093971781579418
511 => 0.093138313033644
512 => 0.092228187139906
513 => 0.091688634002402
514 => 0.092517632844123
515 => 0.092707234687651
516 => 0.090894614231807
517 => 0.090647560761538
518 => 0.09212778575391
519 => 0.091476393923117
520 => 0.092146366574828
521 => 0.092301805976944
522 => 0.09227677665313
523 => 0.091596648769907
524 => 0.092030142000968
525 => 0.091004801278957
526 => 0.089889897244966
527 => 0.089178657932255
528 => 0.088558007299711
529 => 0.088902380343073
530 => 0.08767475332352
531 => 0.087282010732715
601 => 0.091883284248191
602 => 0.095282294466099
603 => 0.095232871511375
604 => 0.094932021985044
605 => 0.094485020614013
606 => 0.096623128759439
607 => 0.095878254634395
608 => 0.09642021279668
609 => 0.096558163894895
610 => 0.096975700320976
611 => 0.097124933704832
612 => 0.096673846769571
613 => 0.095159943919205
614 => 0.091387441953657
615 => 0.08963133210502
616 => 0.089051786604646
617 => 0.089072851982871
618 => 0.088491774811437
619 => 0.088662928080477
620 => 0.088432254689183
621 => 0.08799541509196
622 => 0.088875406728926
623 => 0.088976817567397
624 => 0.088771417004212
625 => 0.088819796272451
626 => 0.087119167337008
627 => 0.087248462461398
628 => 0.086528530778765
629 => 0.086393552267178
630 => 0.084573627665105
701 => 0.081349367430244
702 => 0.083135920586871
703 => 0.080978015601055
704 => 0.08016078428533
705 => 0.084029430228426
706 => 0.083641125475275
707 => 0.082976516529898
708 => 0.081993421383046
709 => 0.081628781830144
710 => 0.079413347337564
711 => 0.079282447648859
712 => 0.080380476805145
713 => 0.079873774130395
714 => 0.079162171671737
715 => 0.076584819700464
716 => 0.07368702275284
717 => 0.073774489027787
718 => 0.074696224321397
719 => 0.077376294000508
720 => 0.076329144411203
721 => 0.075569425369505
722 => 0.075427152830066
723 => 0.077207991528887
724 => 0.079728251384961
725 => 0.080910700921795
726 => 0.079738929342319
727 => 0.078392861244479
728 => 0.078474790172516
729 => 0.079019826625936
730 => 0.07907710225079
731 => 0.078200950297133
801 => 0.078447581939998
802 => 0.078072925922016
803 => 0.07577366263122
804 => 0.075732076249332
805 => 0.075167799957142
806 => 0.075150713895272
807 => 0.074190739156938
808 => 0.074056432055053
809 => 0.07215034394579
810 => 0.073404936911474
811 => 0.07256342181918
812 => 0.071295060081751
813 => 0.071076394040144
814 => 0.071069820674887
815 => 0.072372144578731
816 => 0.073389718498407
817 => 0.072578060334494
818 => 0.072393261503904
819 => 0.074366429541444
820 => 0.074115325922841
821 => 0.073897871808576
822 => 0.079502589757302
823 => 0.075066018159289
824 => 0.073131419711903
825 => 0.07073698676298
826 => 0.071516626204928
827 => 0.071680907690633
828 => 0.065922728077454
829 => 0.063586635325523
830 => 0.062784976326859
831 => 0.062323610239333
901 => 0.062533860558889
902 => 0.060431103085801
903 => 0.061844190884115
904 => 0.060023380654085
905 => 0.059718115893591
906 => 0.062973950139989
907 => 0.063426980455067
908 => 0.061494212385456
909 => 0.062735362372874
910 => 0.062285304134161
911 => 0.060054593219437
912 => 0.059969396470493
913 => 0.058850104146764
914 => 0.05709862839783
915 => 0.056298156982199
916 => 0.055881264518927
917 => 0.056053282474345
918 => 0.055966304932249
919 => 0.055398717636198
920 => 0.055998838371665
921 => 0.054465777879555
922 => 0.053855300838889
923 => 0.05357956252258
924 => 0.052218883096163
925 => 0.05438432916048
926 => 0.054810949314721
927 => 0.055238410042456
928 => 0.058959163837553
929 => 0.058773285492691
930 => 0.060453535203817
1001 => 0.060388243789824
1002 => 0.05990900935397
1003 => 0.05788719809934
1004 => 0.058693056030115
1005 => 0.056212750577318
1006 => 0.05807116406693
1007 => 0.057223061759474
1008 => 0.057784419823665
1009 => 0.056775047408634
1010 => 0.057333675779078
1011 => 0.054912116779856
1012 => 0.052650899058638
1013 => 0.053560879078717
1014 => 0.05455013142938
1015 => 0.05669508258243
1016 => 0.055417567371136
1017 => 0.055877010149316
1018 => 0.054337953752206
1019 => 0.051162440795244
1020 => 0.051180413853721
1021 => 0.050691930367602
1022 => 0.050269809315839
1023 => 0.055564305360901
1024 => 0.054905851084101
1025 => 0.053856690370386
1026 => 0.055261033677683
1027 => 0.055632364338058
1028 => 0.05564293559993
1029 => 0.056667508225587
1030 => 0.057214322819565
1031 => 0.057310701261784
1101 => 0.058922888425612
1102 => 0.059463272297664
1103 => 0.06168903698866
1104 => 0.057167929421647
1105 => 0.057074820186502
1106 => 0.055280795667966
1107 => 0.054142996955905
1108 => 0.05535870171921
1109 => 0.056435650179249
1110 => 0.055314259458601
1111 => 0.055460689412868
1112 => 0.053955313991387
1113 => 0.054493414870069
1114 => 0.054956899836807
1115 => 0.054700990680561
1116 => 0.054317882287519
1117 => 0.056347352686884
1118 => 0.056232842013393
1119 => 0.058122731506605
1120 => 0.059596035513858
1121 => 0.062236459679448
1122 => 0.05948103941423
1123 => 0.059380620947962
1124 => 0.060362227563361
1125 => 0.059463122018806
1126 => 0.060031325686897
1127 => 0.062144913284124
1128 => 0.062189570059506
1129 => 0.061441511534857
1130 => 0.061395992105649
1201 => 0.061539664928171
1202 => 0.062381161137224
1203 => 0.062087116505214
1204 => 0.062427392397675
1205 => 0.062852912611686
1206 => 0.06461304463367
1207 => 0.065037406505272
1208 => 0.064006427163684
1209 => 0.064099513054843
1210 => 0.063713898480074
1211 => 0.063341399632583
1212 => 0.064178722642655
1213 => 0.065708946901185
1214 => 0.065699427455491
1215 => 0.066054409740161
1216 => 0.066275560762679
1217 => 0.065326218681591
1218 => 0.064708231895079
1219 => 0.064945207352549
1220 => 0.065324136269697
1221 => 0.064822325811794
1222 => 0.061724919204403
1223 => 0.062664474505985
1224 => 0.062508086561895
1225 => 0.062285371112086
1226 => 0.063230101233194
1227 => 0.063138979708329
1228 => 0.060409536268638
1229 => 0.06058426638199
1230 => 0.060420162185555
1231 => 0.060950416416794
]
'min_raw' => 0.050269809315839
'max_raw' => 0.11261057846101
'avg_raw' => 0.081440193888424
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.050269'
'max' => '$0.11261'
'avg' => '$0.08144'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.012258553570692
'max_diff' => -0.081831772351133
'year' => 2034
]
9 => [
'items' => [
101 => 0.059434486550173
102 => 0.059900776367202
103 => 0.060193228969248
104 => 0.060365485798579
105 => 0.060987795583738
106 => 0.060914774713122
107 => 0.060983256503894
108 => 0.061905977631592
109 => 0.066572784455835
110 => 0.066826788454549
111 => 0.06557597986728
112 => 0.066075653226786
113 => 0.065116389643087
114 => 0.065760349713331
115 => 0.06620093083858
116 => 0.064210029452458
117 => 0.064092141193215
118 => 0.063128918387477
119 => 0.063646499763552
120 => 0.062822990578799
121 => 0.063025050927609
122 => 0.062460072577031
123 => 0.063476921122004
124 => 0.064613915797572
125 => 0.064901165553901
126 => 0.064145535113795
127 => 0.063598408876686
128 => 0.062637835438909
129 => 0.064235290473707
130 => 0.064702435007442
131 => 0.064232836762341
201 => 0.064124020588027
202 => 0.063917814134328
203 => 0.06416776826198
204 => 0.064699890837987
205 => 0.064448951657903
206 => 0.064614701407328
207 => 0.06398303428292
208 => 0.065326532953322
209 => 0.067460332172484
210 => 0.067467192685885
211 => 0.067216252153145
212 => 0.067113572693737
213 => 0.067371052908673
214 => 0.067510725362885
215 => 0.068343369164191
216 => 0.069236829136985
217 => 0.073406216982887
218 => 0.072235469559833
219 => 0.07593479849471
220 => 0.078860487384456
221 => 0.079737773557621
222 => 0.078930711557813
223 => 0.076169796053104
224 => 0.0760343323668
225 => 0.080160305759295
226 => 0.078994529294362
227 => 0.078855863893328
228 => 0.077380698305221
301 => 0.078252703870604
302 => 0.078061983461905
303 => 0.077760921966412
304 => 0.07942464784073
305 => 0.08253899415562
306 => 0.08205359407629
307 => 0.081691265434131
308 => 0.080103646796475
309 => 0.081059747823805
310 => 0.080719298560881
311 => 0.08218208464884
312 => 0.081315562575013
313 => 0.078985697391067
314 => 0.079356736100947
315 => 0.079300654346374
316 => 0.08045481288147
317 => 0.08010836313721
318 => 0.079233004473488
319 => 0.082528349658489
320 => 0.082314368271848
321 => 0.08261774495515
322 => 0.082751300753375
323 => 0.084757119296989
324 => 0.085578838975274
325 => 0.085765383728472
326 => 0.086545953868761
327 => 0.085745962432298
328 => 0.088946498562378
329 => 0.09107466833242
330 => 0.09354664703494
331 => 0.097158872324557
401 => 0.098517102448405
402 => 0.098271750333578
403 => 0.10101049832241
404 => 0.10593196757939
405 => 0.099266519980605
406 => 0.1062852524871
407 => 0.1040632028107
408 => 0.098794763000947
409 => 0.098455537588024
410 => 0.10202338619504
411 => 0.10993653101269
412 => 0.10795437798601
413 => 0.10993977310495
414 => 0.10762370423824
415 => 0.10750869189764
416 => 0.10982728680966
417 => 0.11524481020161
418 => 0.11267114791092
419 => 0.10898117192933
420 => 0.11170579277175
421 => 0.10934547404629
422 => 0.10402701534622
423 => 0.10795286227095
424 => 0.10532776023407
425 => 0.10609390456653
426 => 0.11161147859359
427 => 0.11094758948896
428 => 0.11180672346482
429 => 0.11029037448488
430 => 0.10887386543132
501 => 0.10622984609152
502 => 0.10544708231358
503 => 0.10566341006091
504 => 0.10544697511229
505 => 0.10396767059146
506 => 0.10364821492104
507 => 0.10311577480799
508 => 0.10328080026283
509 => 0.10227965707944
510 => 0.10416902111323
511 => 0.10451970372692
512 => 0.10589462531083
513 => 0.1060373742308
514 => 0.1098665112712
515 => 0.10775748693538
516 => 0.10917240254424
517 => 0.10904583917449
518 => 0.098908946066931
519 => 0.10030572049859
520 => 0.10247866318228
521 => 0.10149975544863
522 => 0.10011580894238
523 => 0.09899819793607
524 => 0.097304902979913
525 => 0.099688183113854
526 => 0.1028219430564
527 => 0.10611685155443
528 => 0.11007546822386
529 => 0.10919195106662
530 => 0.10604284796935
531 => 0.10618411443388
601 => 0.10705736813125
602 => 0.10592642524969
603 => 0.10559288811529
604 => 0.10701154525079
605 => 0.1070213147628
606 => 0.10572002829855
607 => 0.10427388652645
608 => 0.10426782713962
609 => 0.10401050017935
610 => 0.10766948213281
611 => 0.10968155224242
612 => 0.10991223283787
613 => 0.10966602560038
614 => 0.10976078099447
615 => 0.10859000173063
616 => 0.11126605594396
617 => 0.11372186792444
618 => 0.1130636578529
619 => 0.11207690738559
620 => 0.11129091311003
621 => 0.11287850258084
622 => 0.1128078097208
623 => 0.1137004185492
624 => 0.11365992465678
625 => 0.11335977388051
626 => 0.11306366857223
627 => 0.11423769264932
628 => 0.11389959256937
629 => 0.11356096732661
630 => 0.11288180256132
701 => 0.11297411233265
702 => 0.11198753224172
703 => 0.11153109514882
704 => 0.10466737641734
705 => 0.10283316649381
706 => 0.10341024627454
707 => 0.10360023592222
708 => 0.1028019854129
709 => 0.10394647158954
710 => 0.10376810463122
711 => 0.10446202612486
712 => 0.1040284941022
713 => 0.10404628640763
714 => 0.10532121164749
715 => 0.10569132786854
716 => 0.10550308377131
717 => 0.10563492348438
718 => 0.10867311402602
719 => 0.10824118048686
720 => 0.10801172440294
721 => 0.10807528530632
722 => 0.10885160812924
723 => 0.10906893613401
724 => 0.10814810210645
725 => 0.10858237275713
726 => 0.11043144207055
727 => 0.11107851168198
728 => 0.11314364727066
729 => 0.11226634096773
730 => 0.11387667465568
731 => 0.11882629140923
801 => 0.1227803877594
802 => 0.11914403734584
803 => 0.12640523174179
804 => 0.1320591131355
805 => 0.13184210775058
806 => 0.13085622275295
807 => 0.12441942910242
808 => 0.11849619561802
809 => 0.1234512319415
810 => 0.1234638633481
811 => 0.12303822133351
812 => 0.12039459533682
813 => 0.12294622887921
814 => 0.12314876828364
815 => 0.12303540007674
816 => 0.12100853822338
817 => 0.1179138948
818 => 0.1185185807174
819 => 0.11950906858536
820 => 0.1176338684139
821 => 0.11703462833673
822 => 0.11814872965027
823 => 0.12173859621473
824 => 0.1210599527354
825 => 0.12104223061155
826 => 0.12394575520574
827 => 0.12186745821612
828 => 0.11852620774329
829 => 0.11768249793322
830 => 0.1146878964985
831 => 0.11675627837587
901 => 0.11683071575736
902 => 0.11569788414148
903 => 0.11861813078553
904 => 0.1185912201986
905 => 0.12136355976577
906 => 0.12666323177501
907 => 0.12509585798086
908 => 0.12327317278804
909 => 0.12347134920608
910 => 0.12564485537087
911 => 0.12433070392732
912 => 0.12480328194901
913 => 0.12564414006743
914 => 0.12615145064761
915 => 0.12339835502066
916 => 0.12275647673423
917 => 0.12144341902886
918 => 0.12110086678291
919 => 0.12217032488608
920 => 0.12188856046041
921 => 0.11682445958369
922 => 0.11629523286568
923 => 0.11631146349356
924 => 0.11498069774776
925 => 0.11295096056506
926 => 0.1182849886919
927 => 0.11785659158364
928 => 0.11738367433142
929 => 0.11744160399639
930 => 0.11975692481927
1001 => 0.1184139218155
1002 => 0.12198451541489
1003 => 0.12125050871272
1004 => 0.12049767750831
1005 => 0.12039361330406
1006 => 0.1201038375189
1007 => 0.11911008853076
1008 => 0.11791007691253
1009 => 0.11711772529895
1010 => 0.10803491076874
1011 => 0.10972062831325
1012 => 0.11165989269021
1013 => 0.11232931898203
1014 => 0.11118421898699
1015 => 0.11915530405803
1016 => 0.1206116981118
1017 => 0.11620018552471
1018 => 0.11537497164053
1019 => 0.11920940494289
1020 => 0.11689677292116
1021 => 0.11793815097894
1022 => 0.11568726122136
1023 => 0.12026089543244
1024 => 0.12022605200268
1025 => 0.11844680499436
1026 => 0.11995061238204
1027 => 0.11968928884155
1028 => 0.11768052335124
1029 => 0.12032457688145
1030 => 0.12032588829902
1031 => 0.11861340173767
1101 => 0.11661359234553
1102 => 0.11625607365961
1103 => 0.11598673135564
1104 => 0.11787190928315
1105 => 0.11956215391816
1106 => 0.12270728013672
1107 => 0.12349803959443
1108 => 0.12658442640168
1109 => 0.12474663333141
1110 => 0.12556130319605
1111 => 0.12644574257622
1112 => 0.12686977533925
1113 => 0.12617883670674
1114 => 0.1309732658259
1115 => 0.13137806254107
1116 => 0.13151378737819
1117 => 0.12989713285476
1118 => 0.13133310045426
1119 => 0.1306612587687
1120 => 0.13240920419154
1121 => 0.13268330435272
1122 => 0.13245115126759
1123 => 0.13253815498513
1124 => 0.12844695552719
1125 => 0.12823480525249
1126 => 0.12534212120359
1127 => 0.12652091133516
1128 => 0.12431721968507
1129 => 0.12501603300785
1130 => 0.125324063262
1201 => 0.12516316573779
1202 => 0.12658755836055
1203 => 0.12537653364702
1204 => 0.1221804403171
1205 => 0.1189834762137
1206 => 0.11894334093357
1207 => 0.11810163671625
1208 => 0.11749323873294
1209 => 0.1176104377686
1210 => 0.11802346245679
1211 => 0.11746923298722
1212 => 0.1175875059447
1213 => 0.11955162508745
1214 => 0.11994551517407
1215 => 0.11860692275694
1216 => 0.1132322810442
1217 => 0.11191333048662
1218 => 0.11286136599148
1219 => 0.11240826608147
1220 => 0.090722243833205
1221 => 0.09581705308712
1222 => 0.092789890431818
1223 => 0.094184946256438
1224 => 0.091094997065344
1225 => 0.092569682777447
1226 => 0.092297362173321
1227 => 0.10048966468725
1228 => 0.10036175315164
1229 => 0.10042297763481
1230 => 0.097500573533594
1231 => 0.10215604261875
]
'min_raw' => 0.059434486550173
'max_raw' => 0.13268330435272
'avg_raw' => 0.096058895451449
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.059434'
'max' => '$0.132683'
'avg' => '$0.096058'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0091646772343338
'max_diff' => 0.020072725891717
'year' => 2035
]
10 => [
'items' => [
101 => 0.10444949409534
102 => 0.10402503726526
103 => 0.10413186390483
104 => 0.10229622830345
105 => 0.10044075059993
106 => 0.098382740270755
107 => 0.1022062690846
108 => 0.10178115795031
109 => 0.1027562099422
110 => 0.10523604168946
111 => 0.10560120633421
112 => 0.10609199131989
113 => 0.10591607983898
114 => 0.11010700499217
115 => 0.10959945630351
116 => 0.11082250261147
117 => 0.10830660356324
118 => 0.10545962497885
119 => 0.106000742533
120 => 0.10594862856114
121 => 0.10528515788577
122 => 0.10468620622581
123 => 0.10368912046558
124 => 0.10684404735189
125 => 0.10671596308188
126 => 0.10878949853168
127 => 0.10842298099968
128 => 0.10597528721892
129 => 0.10606270708115
130 => 0.10665064766719
131 => 0.10868551674848
201 => 0.10928960443626
202 => 0.10900976695055
203 => 0.10967212152254
204 => 0.11019561956988
205 => 0.10973786481737
206 => 0.11621870679354
207 => 0.11352740936231
208 => 0.11483912900437
209 => 0.1151519664099
210 => 0.11435063997389
211 => 0.11452441898451
212 => 0.11478764683366
213 => 0.11638591478836
214 => 0.12058023236407
215 => 0.12243786706666
216 => 0.12802665272349
217 => 0.12228361636413
218 => 0.12194284835362
219 => 0.12294955741557
220 => 0.12623076622917
221 => 0.12888987778433
222 => 0.129772058495
223 => 0.12988865323913
224 => 0.13154368289861
225 => 0.13249231503495
226 => 0.13134271876635
227 => 0.13036855629646
228 => 0.12687922724679
229 => 0.12728312658542
301 => 0.13006559250085
302 => 0.13399598949282
303 => 0.13736867900004
304 => 0.13618768068471
305 => 0.14519786417582
306 => 0.14609118706567
307 => 0.14596775872688
308 => 0.14800288121421
309 => 0.14396357752234
310 => 0.14223669693624
311 => 0.13057918127966
312 => 0.13385446767528
313 => 0.13861528880213
314 => 0.13798517627382
315 => 0.13452774071439
316 => 0.13736605622514
317 => 0.13642762035495
318 => 0.1356874370484
319 => 0.13907836026732
320 => 0.13534990089667
321 => 0.13857809456778
322 => 0.13443790279319
323 => 0.13619307538554
324 => 0.13519675453397
325 => 0.13584149622943
326 => 0.13207234945205
327 => 0.13410608956226
328 => 0.13198773917715
329 => 0.13198673480325
330 => 0.13193997210109
331 => 0.13443220193496
401 => 0.13451347346037
402 => 0.13267171184759
403 => 0.13240628522546
404 => 0.13338770656319
405 => 0.13223871921137
406 => 0.13277632316164
407 => 0.13225500268736
408 => 0.13213764246791
409 => 0.13120249627212
410 => 0.1307996095786
411 => 0.13095759183224
412 => 0.13041831695513
413 => 0.13009338433524
414 => 0.13187533482456
415 => 0.13092331056179
416 => 0.13172942345234
417 => 0.13081075607401
418 => 0.12762625469638
419 => 0.12579481427861
420 => 0.1197795863797
421 => 0.12148549754996
422 => 0.12261651842074
423 => 0.1222427160297
424 => 0.12304578820798
425 => 0.12309509031745
426 => 0.12283400336593
427 => 0.12253169812339
428 => 0.12238455264985
429 => 0.1234812544556
430 => 0.12411792676712
501 => 0.12273003149623
502 => 0.12240486705298
503 => 0.12380810579965
504 => 0.1246640806245
505 => 0.13098411780045
506 => 0.130515909033
507 => 0.13169102115796
508 => 0.13155872156625
509 => 0.13279042628325
510 => 0.13480374293829
511 => 0.13071010724641
512 => 0.13142062085524
513 => 0.13124641932651
514 => 0.13314830593912
515 => 0.13315424342152
516 => 0.13201396739098
517 => 0.13263212952601
518 => 0.13228708838063
519 => 0.13291062436543
520 => 0.13050965581946
521 => 0.13343377633992
522 => 0.13509156424885
523 => 0.13511458263558
524 => 0.13590036094739
525 => 0.13669875722141
526 => 0.13823120934373
527 => 0.13665601796346
528 => 0.13382240201215
529 => 0.13402697993131
530 => 0.13236563193584
531 => 0.13239355949579
601 => 0.13224447999205
602 => 0.13269187880495
603 => 0.13060783469947
604 => 0.1310969556855
605 => 0.13041218344077
606 => 0.13141913229412
607 => 0.13033582178253
608 => 0.13124633532126
609 => 0.13163928278058
610 => 0.13308926736501
611 => 0.13012165788046
612 => 0.12407050125197
613 => 0.12534252773846
614 => 0.12346110064942
615 => 0.12363523388961
616 => 0.12398701074789
617 => 0.12284678685598
618 => 0.12306430564197
619 => 0.12305653434028
620 => 0.12298956546069
621 => 0.12269294918887
622 => 0.12226279691099
623 => 0.12397639119219
624 => 0.12426756425214
625 => 0.12491480589571
626 => 0.12684055799875
627 => 0.1266481299513
628 => 0.12696198808046
629 => 0.12627683754673
630 => 0.12366701605781
701 => 0.12380874192089
702 => 0.1220414181373
703 => 0.12486961145307
704 => 0.12419985794557
705 => 0.12376806350228
706 => 0.12365024438788
707 => 0.12558077005791
708 => 0.12615841359566
709 => 0.12579846490715
710 => 0.12506019964563
711 => 0.12647788719628
712 => 0.1268572005774
713 => 0.12694211485489
714 => 0.12945398538002
715 => 0.12708250051384
716 => 0.12765334049166
717 => 0.13210687104516
718 => 0.12806813337835
719 => 0.13020754279506
720 => 0.13010282983706
721 => 0.13119727930098
722 => 0.13001305303643
723 => 0.13002773294026
724 => 0.1309995299198
725 => 0.12963481632655
726 => 0.12929689404885
727 => 0.12883005684246
728 => 0.12984937880372
729 => 0.13046041621953
730 => 0.13538492903345
731 => 0.1385663888963
801 => 0.13842827333315
802 => 0.13969039103884
803 => 0.13912179545276
804 => 0.13728565031735
805 => 0.14041972616945
806 => 0.13942797343454
807 => 0.13950973232503
808 => 0.13950668925504
809 => 0.14016611812322
810 => 0.13969885233435
811 => 0.13877782350062
812 => 0.13938924542306
813 => 0.14120494994539
814 => 0.14684095249529
815 => 0.14999493418932
816 => 0.14665107883705
817 => 0.14895762548304
818 => 0.14757451940205
819 => 0.14732316788329
820 => 0.14877184962943
821 => 0.15022306710119
822 => 0.15013063082202
823 => 0.14907712145837
824 => 0.14848202075065
825 => 0.15298832268286
826 => 0.15630848918366
827 => 0.15608207608698
828 => 0.15708138986223
829 => 0.16001540601395
830 => 0.16028365568058
831 => 0.16024986238823
901 => 0.15958497760054
902 => 0.16247389753206
903 => 0.16488388536464
904 => 0.15943107598256
905 => 0.16150743441274
906 => 0.16243957860814
907 => 0.16380824284171
908 => 0.16611740881849
909 => 0.16862577554531
910 => 0.16898048610332
911 => 0.16872880198795
912 => 0.1670744667031
913 => 0.16981915150662
914 => 0.17142692349374
915 => 0.17238431491886
916 => 0.17481210027824
917 => 0.16244533521335
918 => 0.15369152423232
919 => 0.15232449024107
920 => 0.15510440761824
921 => 0.15583744966117
922 => 0.15554196133282
923 => 0.145688751212
924 => 0.15227261512896
925 => 0.1593562991166
926 => 0.15962841226778
927 => 0.16317465258484
928 => 0.16432945379738
929 => 0.16718464206896
930 => 0.16700604926518
1001 => 0.16770124217335
1002 => 0.16754142936282
1003 => 0.1728300644051
1004 => 0.17866421422663
1005 => 0.17846219616978
1006 => 0.1776234681064
1007 => 0.1788691223049
1008 => 0.18489059014621
1009 => 0.18433622987944
1010 => 0.18487474365831
1011 => 0.19197439359828
1012 => 0.20120494843367
1013 => 0.19691642898008
1014 => 0.20622128220614
1015 => 0.21207819408286
1016 => 0.22220711755767
1017 => 0.22093892645263
1018 => 0.2248820420319
1019 => 0.21866859969513
1020 => 0.20440128014602
1021 => 0.20214342221426
1022 => 0.2066637109717
1023 => 0.21777639979853
1024 => 0.20631373285384
1025 => 0.20863261544774
1026 => 0.2079647771047
1027 => 0.20792919083753
1028 => 0.20928737391562
1029 => 0.20731725852278
1030 => 0.19929065399538
1031 => 0.20296919954921
1101 => 0.20154873645261
1102 => 0.20312484616083
1103 => 0.21163046021899
1104 => 0.20786992549536
1105 => 0.20390850764505
1106 => 0.20887700473834
1107 => 0.21520360889892
1108 => 0.21480770138055
1109 => 0.21403947531841
1110 => 0.21836992540768
1111 => 0.22552256025234
1112 => 0.22745588870923
1113 => 0.22888303225095
1114 => 0.22907981123357
1115 => 0.23110675705196
1116 => 0.22020735853034
1117 => 0.23750498390057
1118 => 0.24049180596475
1119 => 0.23993040720777
1120 => 0.24325013422742
1121 => 0.2422733863249
1122 => 0.24085823186119
1123 => 0.24612070531352
1124 => 0.24008770416013
1125 => 0.23152461855661
1126 => 0.2268267404359
1127 => 0.23301328531227
1128 => 0.23679119238762
1129 => 0.2392881486444
1130 => 0.240043726099
1201 => 0.22105344781096
1202 => 0.21081874106283
1203 => 0.21737907074723
1204 => 0.22538312573197
1205 => 0.22016289560076
1206 => 0.2203675187387
1207 => 0.21292484242394
1208 => 0.22604163743875
1209 => 0.2241306307347
1210 => 0.2340449368958
1211 => 0.23167880816318
1212 => 0.23976353996641
1213 => 0.23763455913375
1214 => 0.2464718395404
1215 => 0.24999726995443
1216 => 0.25591701630902
1217 => 0.26027160582515
1218 => 0.26282870407905
1219 => 0.26267518549132
1220 => 0.27280768271456
1221 => 0.2668329031045
1222 => 0.25932717176684
1223 => 0.25919141676722
1224 => 0.26307874138403
1225 => 0.27122550734544
1226 => 0.27333784522861
1227 => 0.27451835393487
1228 => 0.27271036375743
1229 => 0.26622516870703
1230 => 0.26342489436495
1231 => 0.26581080923616
]
'min_raw' => 0.098382740270755
'max_raw' => 0.27451835393487
'avg_raw' => 0.18645054710281
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.098382'
'max' => '$0.274518'
'avg' => '$0.18645'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.038948253720582
'max_diff' => 0.14183504958214
'year' => 2036
]
11 => [
'items' => [
101 => 0.26289304037267
102 => 0.2679299280124
103 => 0.27484665056289
104 => 0.2734183747079
105 => 0.27819288675205
106 => 0.28313400442443
107 => 0.29020002461542
108 => 0.29204734394731
109 => 0.29510089255567
110 => 0.29824399711214
111 => 0.29925347758663
112 => 0.30118088903583
113 => 0.3011707306261
114 => 0.30697911475803
115 => 0.31338594232623
116 => 0.31580437141482
117 => 0.32136541575109
118 => 0.31184232220747
119 => 0.31906569805372
120 => 0.32558136387987
121 => 0.31781311847256
122 => 0.32851983499749
123 => 0.32893555253821
124 => 0.3352123938405
125 => 0.32884961268334
126 => 0.32507141354293
127 => 0.33597893289401
128 => 0.34125673792437
129 => 0.33966702009702
130 => 0.32756918893689
131 => 0.3205277323013
201 => 0.30209888209042
202 => 0.32392865123229
203 => 0.3345612949982
204 => 0.32754165295819
205 => 0.33108195209498
206 => 0.35039667623944
207 => 0.35775047265787
208 => 0.35622093440976
209 => 0.35647940119535
210 => 0.36044737626189
211 => 0.37804356291071
212 => 0.36749951999432
213 => 0.37556004572615
214 => 0.37983531950992
215 => 0.38380643206389
216 => 0.37405463471436
217 => 0.36136768964498
218 => 0.35734920157978
219 => 0.32684368789933
220 => 0.32525574343354
221 => 0.32436438208524
222 => 0.31874447486981
223 => 0.31432876722062
224 => 0.31081723255328
225 => 0.30160191695314
226 => 0.30471181544976
227 => 0.29002452576899
228 => 0.29942093322116
301 => 0.27597966425363
302 => 0.29550224961086
303 => 0.28487699398395
304 => 0.29201156737208
305 => 0.29198667551765
306 => 0.27884966389155
307 => 0.27127250974805
308 => 0.27610096727554
309 => 0.28127745702844
310 => 0.28211732507505
311 => 0.28882877915989
312 => 0.29070180173275
313 => 0.28502645589393
314 => 0.27549389605748
315 => 0.27770809229294
316 => 0.27122763913201
317 => 0.2598708942345
318 => 0.26802750668963
319 => 0.27081253280275
320 => 0.27204255899374
321 => 0.26087450471801
322 => 0.25736525959432
323 => 0.25549696693588
324 => 0.2740522404929
325 => 0.27506874026452
326 => 0.26986818371435
327 => 0.29337519245811
328 => 0.28805483240408
329 => 0.29399897810429
330 => 0.27750717719268
331 => 0.27813718619666
401 => 0.27032970335227
402 => 0.27470137204894
403 => 0.27161161751959
404 => 0.27434818441992
405 => 0.27598847133669
406 => 0.28379467304997
407 => 0.29559138389515
408 => 0.28262868682789
409 => 0.27698065408644
410 => 0.28048466183349
411 => 0.28981629621663
412 => 0.30395419998466
413 => 0.29558427640216
414 => 0.29929870635756
415 => 0.30011014405932
416 => 0.293938472281
417 => 0.30418175832631
418 => 0.3096712185343
419 => 0.31530226882397
420 => 0.32019155201203
421 => 0.31305310350882
422 => 0.32069226666366
423 => 0.31453644965469
424 => 0.30901404542098
425 => 0.30902242062865
426 => 0.30555813578339
427 => 0.29884564736772
428 => 0.29760776151582
429 => 0.30404740004515
430 => 0.30921138030963
501 => 0.30963671045801
502 => 0.31249575526731
503 => 0.31418770853495
504 => 0.33077115065677
505 => 0.3374411482636
506 => 0.34559709508063
507 => 0.34877429600984
508 => 0.35833653171719
509 => 0.35061424977669
510 => 0.34894348550343
511 => 0.32574862946087
512 => 0.32954678583844
513 => 0.33562800066651
514 => 0.32584890645354
515 => 0.33205149089446
516 => 0.3332760124518
517 => 0.32551661657419
518 => 0.32966124517613
519 => 0.31865434040613
520 => 0.29583130434073
521 => 0.30420716688976
522 => 0.3103746210107
523 => 0.30157290353851
524 => 0.31734964143389
525 => 0.30813319685339
526 => 0.30521202638873
527 => 0.29381549893363
528 => 0.29919422119986
529 => 0.30646902008084
530 => 0.30197404015854
531 => 0.31130179842194
601 => 0.32451239174517
602 => 0.33392704725174
603 => 0.33464978759929
604 => 0.3285967948415
605 => 0.33829675436554
606 => 0.33836740798099
607 => 0.32742581401237
608 => 0.32072414862964
609 => 0.31920151615425
610 => 0.32300535060744
611 => 0.32762390786018
612 => 0.33490608538329
613 => 0.33930655274592
614 => 0.3507806378001
615 => 0.35388519622797
616 => 0.35729616469689
617 => 0.36185427047508
618 => 0.36732744513614
619 => 0.35535245056575
620 => 0.35582823942422
621 => 0.34467729028536
622 => 0.33276090192263
623 => 0.34180395529116
624 => 0.35362654462355
625 => 0.3509144295679
626 => 0.35060926122065
627 => 0.35112246973408
628 => 0.34907762355151
629 => 0.33982886005332
630 => 0.33518418892485
701 => 0.34117699966256
702 => 0.34436191186033
703 => 0.34930143292554
704 => 0.34869253269361
705 => 0.36141620849176
706 => 0.36636024416293
707 => 0.36509534827103
708 => 0.36532811955656
709 => 0.3742790599813
710 => 0.38423434663491
711 => 0.39355878630179
712 => 0.40304400682494
713 => 0.39160920326982
714 => 0.38580331522517
715 => 0.39179350968918
716 => 0.38861502818849
717 => 0.40687952569033
718 => 0.40814411986945
719 => 0.42640729664024
720 => 0.44374122613436
721 => 0.4328540955887
722 => 0.44312016932612
723 => 0.45422376507842
724 => 0.47564440277807
725 => 0.46843068558795
726 => 0.46290509127367
727 => 0.45768343134616
728 => 0.46854887674014
729 => 0.48252709865978
730 => 0.48553787377952
731 => 0.49041647967812
801 => 0.48528722210329
802 => 0.49146484788298
803 => 0.51327458147163
804 => 0.50738139893613
805 => 0.49901213235936
806 => 0.51622882239852
807 => 0.5224594755955
808 => 0.56618946275033
809 => 0.62140037792898
810 => 0.5985426965106
811 => 0.58435419604145
812 => 0.58768883020743
813 => 0.60784998742325
814 => 0.61432511123782
815 => 0.59672349260078
816 => 0.60294068186992
817 => 0.63719800600345
818 => 0.65557596129455
819 => 0.63061622952055
820 => 0.5617533194734
821 => 0.49825857147425
822 => 0.51510023784939
823 => 0.51319091554021
824 => 0.54999613663347
825 => 0.50724084848167
826 => 0.50796073788209
827 => 0.54552705197016
828 => 0.53550500342113
829 => 0.5192705682987
830 => 0.49837710081675
831 => 0.45975359376453
901 => 0.4255436764722
902 => 0.49263720235589
903 => 0.48974400751812
904 => 0.48555423264559
905 => 0.49487812324342
906 => 0.54015228935399
907 => 0.53910857328697
908 => 0.53246898417718
909 => 0.5375050539983
910 => 0.51838772091002
911 => 0.52331469294045
912 => 0.49824851358177
913 => 0.50957947350801
914 => 0.51923573649219
915 => 0.52117437424968
916 => 0.5255422241066
917 => 0.48821942530641
918 => 0.50497626622789
919 => 0.5148193403656
920 => 0.47034797331734
921 => 0.5139402844254
922 => 0.48756971841503
923 => 0.4786191522385
924 => 0.49066991044777
925 => 0.48597371825387
926 => 0.48193620797522
927 => 0.47968320786649
928 => 0.48853195470173
929 => 0.48811915008533
930 => 0.47364088279513
1001 => 0.45475457332473
1002 => 0.46109343870497
1003 => 0.45879046948515
1004 => 0.45044421194358
1005 => 0.45606858179562
1006 => 0.43130170339567
1007 => 0.38869157637888
1008 => 0.41684113146966
1009 => 0.41575740421949
1010 => 0.41521093979683
1011 => 0.436364552451
1012 => 0.43433112069118
1013 => 0.43064042213569
1014 => 0.45037642937033
1015 => 0.44317252124292
1016 => 0.46537326863735
1017 => 0.47999611672564
1018 => 0.47628728945087
1019 => 0.49004014875626
1020 => 0.46123947336062
1021 => 0.47080590244452
1022 => 0.47277753022021
1023 => 0.45013289010459
1024 => 0.43466381527496
1025 => 0.43363220434419
1026 => 0.40681096035943
1027 => 0.42113865240257
1028 => 0.43374642848035
1029 => 0.42770828214204
1030 => 0.42579678539582
1031 => 0.43556220771919
1101 => 0.4363210646689
1102 => 0.41901904579542
1103 => 0.4226166834029
1104 => 0.43761943028356
1105 => 0.42223865267459
1106 => 0.39235631421611
1107 => 0.38494508112276
1108 => 0.38395628601198
1109 => 0.36385643407049
1110 => 0.38544033515624
1111 => 0.37601838391973
1112 => 0.40578221498358
1113 => 0.38878127430653
1114 => 0.3880483977333
1115 => 0.38694054730323
1116 => 0.36963977442276
1117 => 0.37342754416211
1118 => 0.38601866766932
1119 => 0.39051132238585
1120 => 0.39004270169168
1121 => 0.38595696429507
1122 => 0.38782739395288
1123 => 0.38180208832419
1124 => 0.3796744275008
1125 => 0.37295894468299
1126 => 0.36308904014029
1127 => 0.3644615109026
1128 => 0.34490664740249
1129 => 0.33425211991248
1130 => 0.33130308712766
1201 => 0.32735951723923
1202 => 0.33174852384
1203 => 0.34485125093114
1204 => 0.3290465821606
1205 => 0.30195058612213
1206 => 0.30357910165337
1207 => 0.30723789254147
1208 => 0.30041975992682
1209 => 0.29396696960954
1210 => 0.29957714725899
1211 => 0.28809621653728
1212 => 0.30862530816839
1213 => 0.30807005377189
1214 => 0.31572202962146
1215 => 0.32050696715454
1216 => 0.3094792352827
1217 => 0.30670579053909
1218 => 0.30828567071108
1219 => 0.28217377069456
1220 => 0.31358813030948
1221 => 0.31385980299594
1222 => 0.3115335765172
1223 => 0.32826075320261
1224 => 0.36356031334607
1225 => 0.35027919889858
1226 => 0.34513634996071
1227 => 0.33535979037041
1228 => 0.34838647554981
1229 => 0.34738622937598
1230 => 0.34286273684581
1231 => 0.34012691444941
]
'min_raw' => 0.25549696693588
'max_raw' => 0.65557596129455
'avg_raw' => 0.45553646411521
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.255496'
'max' => '$0.655575'
'avg' => '$0.455536'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.15711422666513
'max_diff' => 0.38105760735968
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0080197578422726
]
1 => [
'year' => 2028
'avg' => 0.013764232609676
]
2 => [
'year' => 2029
'avg' => 0.037601402728073
]
3 => [
'year' => 2030
'avg' => 0.02900942620702
]
4 => [
'year' => 2031
'avg' => 0.028490851633905
]
5 => [
'year' => 2032
'avg' => 0.049953429315231
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0080197578422726
'min' => '$0.008019'
'max_raw' => 0.049953429315231
'max' => '$0.049953'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.049953429315231
]
1 => [
'year' => 2033
'avg' => 0.12848535684934
]
2 => [
'year' => 2034
'avg' => 0.081440193888424
]
3 => [
'year' => 2035
'avg' => 0.096058895451449
]
4 => [
'year' => 2036
'avg' => 0.18645054710281
]
5 => [
'year' => 2037
'avg' => 0.45553646411521
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.049953429315231
'min' => '$0.049953'
'max_raw' => 0.45553646411521
'max' => '$0.455536'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.45553646411521
]
]
]
]
'prediction_2025_max_price' => '$0.013712'
'last_price' => 0.01329583
'sma_50day_nextmonth' => '$0.012133'
'sma_200day_nextmonth' => '$0.019856'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.013082'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.012976'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.012382'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.011977'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.01312'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.016661'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.02185'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.013089'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.012895'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.012562'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.012456'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.0136044'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.016482'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.022968'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.019341'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.029933'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.064015'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.08677'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.01302'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.013179'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.014588'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.0188029'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.032723'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.055029'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.0764021'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '58.47'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 103.51
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.012433'
'vwma_10_action' => 'BUY'
'hma_9' => '0.013420'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 166.44
'cci_20_action' => 'SELL'
'adx_14' => 19.62
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000492'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 82.35
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.002869'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 20
'sell_pct' => 42.86
'buy_pct' => 57.14
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767681209
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de NKN para 2026
A previsão de preço para NKN em 2026 sugere que o preço médio poderia variar entre $0.004593 na extremidade inferior e $0.013712 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, NKN poderia potencialmente ganhar 3.13% até 2026 se NKN atingir a meta de preço prevista.
Previsão de preço de NKN 2027-2032
A previsão de preço de NKN para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.008019 na extremidade inferior e $0.049953 na extremidade superior. Considerando a volatilidade de preços no mercado, se NKN atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de NKN | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.004422 | $0.008019 | $0.011617 |
| 2028 | $0.00798 | $0.013764 | $0.019547 |
| 2029 | $0.017531 | $0.0376014 | $0.057671 |
| 2030 | $0.0149099 | $0.0290094 | $0.0431089 |
| 2031 | $0.017628 | $0.02849 | $0.039353 |
| 2032 | $0.026908 | $0.049953 | $0.072998 |
Previsão de preço de NKN 2032-2037
A previsão de preço de NKN para 2032-2037 é atualmente estimada entre $0.049953 na extremidade inferior e $0.455536 na extremidade superior. Comparado ao preço atual, NKN poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de NKN | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.026908 | $0.049953 | $0.072998 |
| 2033 | $0.062528 | $0.128485 | $0.194442 |
| 2034 | $0.050269 | $0.08144 | $0.11261 |
| 2035 | $0.059434 | $0.096058 | $0.132683 |
| 2036 | $0.098382 | $0.18645 | $0.274518 |
| 2037 | $0.255496 | $0.455536 | $0.655575 |
NKN Histograma de preços potenciais
Previsão de preço de NKN baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para NKN é Altista, com 20 indicadores técnicos mostrando sinais de alta e 15 indicando sinais de baixa. A previsão de preço de NKN foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de NKN
De acordo com nossos indicadores técnicos, o SMA de 200 dias de NKN está projetado para aumentar no próximo mês, alcançando $0.019856 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para NKN é esperado para alcançar $0.012133 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 58.47, sugerindo que o mercado de NKN está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de NKN para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.013082 | BUY |
| SMA 5 | $0.012976 | BUY |
| SMA 10 | $0.012382 | BUY |
| SMA 21 | $0.011977 | BUY |
| SMA 50 | $0.01312 | BUY |
| SMA 100 | $0.016661 | SELL |
| SMA 200 | $0.02185 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.013089 | BUY |
| EMA 5 | $0.012895 | BUY |
| EMA 10 | $0.012562 | BUY |
| EMA 21 | $0.012456 | BUY |
| EMA 50 | $0.0136044 | SELL |
| EMA 100 | $0.016482 | SELL |
| EMA 200 | $0.022968 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.019341 | SELL |
| SMA 50 | $0.029933 | SELL |
| SMA 100 | $0.064015 | SELL |
| SMA 200 | $0.08677 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.0188029 | SELL |
| EMA 50 | $0.032723 | SELL |
| EMA 100 | $0.055029 | SELL |
| EMA 200 | $0.0764021 | SELL |
Osciladores de NKN
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 58.47 | NEUTRAL |
| Stoch RSI (14) | 103.51 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 166.44 | SELL |
| Índice Direcional Médio (14) | 19.62 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000492 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 82.35 | SELL |
| VWMA (10) | 0.012433 | BUY |
| Média Móvel de Hull (9) | 0.013420 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.002869 | SELL |
Previsão do preço de NKN com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do NKN
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de NKN por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.018682 | $0.026252 | $0.036889 | $0.051835 | $0.072837 | $0.102348 |
| Amazon.com stock | $0.027742 | $0.057886 | $0.120783 | $0.252022 | $0.525858 | $1.09 |
| Apple stock | $0.018859 | $0.02675 | $0.037943 | $0.053819 | $0.076338 | $0.10828 |
| Netflix stock | $0.020978 | $0.0331011 | $0.052228 | $0.0824082 | $0.130027 | $0.205162 |
| Google stock | $0.017218 | $0.022297 | $0.028874 | $0.037392 | $0.048423 | $0.0627083 |
| Tesla stock | $0.03014 | $0.068326 | $0.154891 | $0.351126 | $0.795977 | $1.80 |
| Kodak stock | $0.00997 | $0.007476 | $0.0056067 | $0.0042044 | $0.003152 | $0.002364 |
| Nokia stock | $0.0088079 | $0.005834 | $0.003865 | $0.00256 | $0.001696 | $0.001123 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para NKN
Você pode fazer perguntas como: 'Devo investir em NKN agora?', 'Devo comprar NKN hoje?', 'NKN será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para NKN regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como NKN, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre NKN para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de NKN é de $0.01329 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para NKN
com base no histórico de preços de 4 horas
Previsão de longo prazo para NKN
com base no histórico de preços de 1 mês
Previsão do preço de NKN com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se NKN tiver 1% da média anterior do crescimento anual do Bitcoin | $0.013641 | $0.013996 | $0.014359 | $0.014733 |
| Se NKN tiver 2% da média anterior do crescimento anual do Bitcoin | $0.013987 | $0.014714 | $0.015479 | $0.016283 |
| Se NKN tiver 5% da média anterior do crescimento anual do Bitcoin | $0.015023 | $0.016976 | $0.019182 | $0.021675 |
| Se NKN tiver 10% da média anterior do crescimento anual do Bitcoin | $0.016751 | $0.0211061 | $0.026592 | $0.0335045 |
| Se NKN tiver 20% da média anterior do crescimento anual do Bitcoin | $0.0202078 | $0.030713 | $0.046679 | $0.070947 |
| Se NKN tiver 50% da média anterior do crescimento anual do Bitcoin | $0.030575 | $0.070314 | $0.161698 | $0.371852 |
| Se NKN tiver 100% da média anterior do crescimento anual do Bitcoin | $0.047855 | $0.172248 | $0.619979 | $2.23 |
Perguntas Frequentes sobre NKN
NKN é um bom investimento?
A decisão de adquirir NKN depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de NKN experimentou uma escalada de 3.7367% nas últimas 24 horas, e NKN registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em NKN dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
NKN pode subir?
Parece que o valor médio de NKN pode potencialmente subir para $0.013712 até o final deste ano. Observando as perspectivas de NKN em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.0431089. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de NKN na próxima semana?
Com base na nossa nova previsão experimental de NKN, o preço de NKN aumentará 0.86% na próxima semana e atingirá $0.013409 até 13 de janeiro de 2026.
Qual será o preço de NKN no próximo mês?
Com base na nossa nova previsão experimental de NKN, o preço de NKN diminuirá -11.62% no próximo mês e atingirá $0.011751 até 5 de fevereiro de 2026.
Até onde o preço de NKN pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de NKN em 2026, espera-se que NKN fluctue dentro do intervalo de $0.004593 e $0.013712. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de NKN não considera flutuações repentinas e extremas de preço.
Onde estará NKN em 5 anos?
O futuro de NKN parece seguir uma tendência de alta, com um preço máximo de $0.0431089 projetada após um período de cinco anos. Com base na previsão de NKN para 2030, o valor de NKN pode potencialmente atingir seu pico mais alto de aproximadamente $0.0431089, enquanto seu pico mais baixo está previsto para cerca de $0.0149099.
Quanto será NKN em 2026?
Com base na nossa nova simulação experimental de previsão de preços de NKN, espera-se que o valor de NKN em 2026 aumente 3.13% para $0.013712 se o melhor cenário ocorrer. O preço ficará entre $0.013712 e $0.004593 durante 2026.
Quanto será NKN em 2027?
De acordo com nossa última simulação experimental para previsão de preços de NKN, o valor de NKN pode diminuir -12.62% para $0.011617 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.011617 e $0.004422 ao longo do ano.
Quanto será NKN em 2028?
Nosso novo modelo experimental de previsão de preços de NKN sugere que o valor de NKN em 2028 pode aumentar 47.02%, alcançando $0.019547 no melhor cenário. O preço é esperado para variar entre $0.019547 e $0.00798 durante o ano.
Quanto será NKN em 2029?
Com base no nosso modelo de previsão experimental, o valor de NKN pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.057671 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.057671 e $0.017531.
Quanto será NKN em 2030?
Usando nossa nova simulação experimental para previsões de preços de NKN, espera-se que o valor de NKN em 2030 aumente 224.23%, alcançando $0.0431089 no melhor cenário. O preço está previsto para variar entre $0.0431089 e $0.0149099 ao longo de 2030.
Quanto será NKN em 2031?
Nossa simulação experimental indica que o preço de NKN poderia aumentar 195.98% em 2031, potencialmente atingindo $0.039353 sob condições ideais. O preço provavelmente oscilará entre $0.039353 e $0.017628 durante o ano.
Quanto será NKN em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de NKN, NKN poderia ver um 449.04% aumento em valor, atingindo $0.072998 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.072998 e $0.026908 ao longo do ano.
Quanto será NKN em 2033?
De acordo com nossa previsão experimental de preços de NKN, espera-se que o valor de NKN seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.194442. Ao longo do ano, o preço de NKN poderia variar entre $0.194442 e $0.062528.
Quanto será NKN em 2034?
Os resultados da nossa nova simulação de previsão de preços de NKN sugerem que NKN pode aumentar 746.96% em 2034, atingindo potencialmente $0.11261 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.11261 e $0.050269.
Quanto será NKN em 2035?
Com base em nossa previsão experimental para o preço de NKN, NKN poderia aumentar 897.93%, com o valor potencialmente atingindo $0.132683 em 2035. A faixa de preço esperada para o ano está entre $0.132683 e $0.059434.
Quanto será NKN em 2036?
Nossa recente simulação de previsão de preços de NKN sugere que o valor de NKN pode aumentar 1964.7% em 2036, possivelmente atingindo $0.274518 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.274518 e $0.098382.
Quanto será NKN em 2037?
De acordo com a simulação experimental, o valor de NKN poderia aumentar 4830.69% em 2037, com um pico de $0.655575 sob condições favoráveis. O preço é esperado para cair entre $0.655575 e $0.255496 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Mil.k Alliance
Previsão de Preço do Dogelon Mars
Previsão de Preço do Medibloc
Previsão de Preço do ChainGPT
Previsão de Preço do Hifi Finance
Previsão de Preço do The Truth
Previsão de Preço do Metal
Previsão de Preço do Telos
Previsão de Preço do Stader MaticX
Previsão de Preço do OmiseGO
Previsão de Preço do WazirX
Previsão de Preço do STP Network
Previsão de Preço do Ultima
Previsão de Preço do LUKSO
Previsão de Preço do Bella Protocol
Previsão de Preço do Aavegotchi
Previsão de Preço do Tokamak Network
Previsão de Preço do Chainflip
Previsão de Preço do Kyber Network Crystal
Previsão de Preço do Radicle
Previsão de Preço do Ergo
Previsão de Preço do CANTO
Previsão de Preço do Mines of Dalarnia
Previsão de Preço do Ethernity Chain
Previsão de Preço do Huobi Token
Como ler e prever os movimentos de preço de NKN?
Traders de NKN utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de NKN
Médias móveis são ferramentas populares para a previsão de preço de NKN. Uma média móvel simples (SMA) calcula o preço médio de fechamento de NKN em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de NKN acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de NKN.
Como ler gráficos de NKN e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de NKN em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de NKN dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de NKN?
A ação de preço de NKN é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de NKN. A capitalização de mercado de NKN pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de NKN, grandes detentores de NKN, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de NKN.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


