Previsão de Preço NKN - Projeção NKN
Previsão de Preço NKN até $0.013895 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.004654 | $0.013895 |
| 2027 | $0.004481 | $0.011772 |
| 2028 | $0.008087 | $0.0198081 |
| 2029 | $0.017765 | $0.058439 |
| 2030 | $0.0151086 | $0.043683 |
| 2031 | $0.017863 | $0.039878 |
| 2032 | $0.027266 | $0.073971 |
| 2033 | $0.063361 | $0.197034 |
| 2034 | $0.050939 | $0.114111 |
| 2035 | $0.060226 | $0.134451 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em NKN hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.60, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de NKN para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'NKN'
'name_with_ticker' => 'NKN <small>NKN</small>'
'name_lang' => 'NKN'
'name_lang_with_ticker' => 'NKN <small>NKN</small>'
'name_with_lang' => 'NKN'
'name_with_lang_with_ticker' => 'NKN <small>NKN</small>'
'image' => '/uploads/coins/nkn.png?1717200595'
'price_for_sd' => 0.01347
'ticker' => 'NKN'
'marketcap' => '$10.74M'
'low24h' => '$0.01275'
'high24h' => '$0.01363'
'volume24h' => '$1.39M'
'current_supply' => '795.75M'
'max_supply' => '795.75M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.18 USD 0.07x'
'price' => '$0.01347'
'change_24h_pct' => '5.4351%'
'ath_price' => '$1.44'
'ath_days' => 1733
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '9 de abr. de 2021'
'ath_pct' => '-99.06%'
'fdv' => '$10.74M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.664314'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.013588'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.011907'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004654'
'current_year_max_price_prediction' => '$0.013895'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0151086'
'grand_prediction_max_price' => '$0.043683'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.01372836740017
107 => 0.013779624140645
108 => 0.013895108194169
109 => 0.012908309600927
110 => 0.013351353198408
111 => 0.013611599804357
112 => 0.012435796170827
113 => 0.013588357947019
114 => 0.012891131632847
115 => 0.01265448254983
116 => 0.012973099363967
117 => 0.012848934081633
118 => 0.012742184063112
119 => 0.012682615718579
120 => 0.012916572742427
121 => 0.012905658367625
122 => 0.012522859267508
123 => 0.012023513446293
124 => 0.012191110294361
125 => 0.012130220788229
126 => 0.011909549363105
127 => 0.012058255259669
128 => 0.011403429749532
129 => 0.01027683649421
130 => 0.01102109850716
131 => 0.010992445229263
201 => 0.010977996947224
202 => 0.011537289280066
203 => 0.011483526227332
204 => 0.011385945760172
205 => 0.011907757221302
206 => 0.011717289018635
207 => 0.012304267139301
208 => 0.012690888892937
209 => 0.012592829110312
210 => 0.012956448738311
211 => 0.012194971387242
212 => 0.012447903618098
213 => 0.012500032600329
214 => 0.01190131814887
215 => 0.011492322527658
216 => 0.011465047182615
217 => 0.010755905138503
218 => 0.011134723094473
219 => 0.011468067219175
220 => 0.011308421251992
221 => 0.011257882108069
222 => 0.011516075633766
223 => 0.011536139481991
224 => 0.011078681616197
225 => 0.011173801592302
226 => 0.011570467705041
227 => 0.011163806624001
228 => 0.010373730571252
301 => 0.010177780786514
302 => 0.010151637473159
303 => 0.0096202061159763
304 => 0.010190875088101
305 => 0.0099417627887907
306 => 0.010728705557487
307 => 0.010279208068466
308 => 0.010259831130114
309 => 0.010230540045815
310 => 0.0097731151235354
311 => 0.0098732621106444
312 => 0.010206165948611
313 => 0.010324949788428
314 => 0.010312559660768
315 => 0.01020453453819
316 => 0.010253987886128
317 => 0.010094681421732
318 => 0.010038426993476
319 => 0.0098608725439009
320 => 0.0095999165536946
321 => 0.0096362040846689
322 => 0.0091191819852209
323 => 0.008837480905002
324 => 0.008759509758758
325 => 0.0086552434833619
326 => 0.0087712869120059
327 => 0.0091177173265736
328 => 0.0086998487472926
329 => 0.0079834423781879
330 => 0.0080264996216682
331 => 0.008123236463958
401 => 0.0079429679983292
402 => 0.0077723590243971
403 => 0.0079206896852875
404 => 0.0076171388624796
405 => 0.0081599191306631
406 => 0.0081452384455329
407 => 0.0083475533642051
408 => 0.0084740650347708
409 => 0.0081824965927564
410 => 0.0081091679180747
411 => 0.0081509392637758
412 => 0.0074605519661581
413 => 0.0082911339930199
414 => 0.0082983169008789
415 => 0.0082368124829206
416 => 0.0086790717708814
417 => 0.0096123768126099
418 => 0.0092612299138033
419 => 0.0091252552211142
420 => 0.0088667672309153
421 => 0.0092111871303571
422 => 0.0091847410558674
423 => 0.009065141877649
424 => 0.0089928079214903
425 => 0.0091260854535928
426 => 0.0089762933603457
427 => 0.008949386584387
428 => 0.0087863607969387
429 => 0.0087281680080203
430 => 0.0086850843838268
501 => 0.0086376535468993
502 => 0.0087422741541333
503 => 0.008505190094154
504 => 0.0082192899594559
505 => 0.0081955204567381
506 => 0.008261150143578
507 => 0.0082321138927069
508 => 0.00819538144234
509 => 0.0081252491911019
510 => 0.008104442450298
511 => 0.008172054263915
512 => 0.008095724468355
513 => 0.0082083532396029
514 => 0.0081777244458577
515 => 0.0080066344937994
516 => 0.0077933930679216
517 => 0.0077914947719423
518 => 0.007745552256523
519 => 0.007687037555633
520 => 0.0076707601044804
521 => 0.0079081976907552
522 => 0.0083996863884349
523 => 0.0083031953967526
524 => 0.0083729200270376
525 => 0.008715896199037
526 => 0.0088249180104623
527 => 0.0087475369110357
528 => 0.0086416128894823
529 => 0.0086462730088572
530 => 0.009008247455887
531 => 0.0090308233581414
601 => 0.009087865379876
602 => 0.0091611804978785
603 => 0.0087600227926551
604 => 0.0086273785170167
605 => 0.008564524300395
606 => 0.0083709576408432
607 => 0.0085797026880186
608 => 0.0084580758883836
609 => 0.0084744874990175
610 => 0.0084637994160623
611 => 0.0084696358320808
612 => 0.0081597674125162
613 => 0.0082726671784009
614 => 0.0080849494203479
615 => 0.0078336164146222
616 => 0.0078327738582583
617 => 0.0078942872553464
618 => 0.0078576966797389
619 => 0.0077592323816089
620 => 0.0077732187704199
621 => 0.0076506832872656
622 => 0.0077880967966513
623 => 0.0077920373244113
624 => 0.0077391256383334
625 => 0.0079508301089522
626 => 0.0080375656032991
627 => 0.0080027379980445
628 => 0.0080351220056712
629 => 0.0083072050330877
630 => 0.0083515664383713
701 => 0.0083712688442484
702 => 0.0083448702304417
703 => 0.0080400951839425
704 => 0.0080536132532583
705 => 0.0079544266299988
706 => 0.0078706243853734
707 => 0.0078739760356736
708 => 0.0079170612829403
709 => 0.0081052170846703
710 => 0.0085011798770208
711 => 0.0085162063755454
712 => 0.0085344189301112
713 => 0.0084603393177956
714 => 0.0084379961978749
715 => 0.0084674725402989
716 => 0.0086161753463712
717 => 0.0089986793360072
718 => 0.0088634768794873
719 => 0.0087535551777851
720 => 0.008849986144856
721 => 0.0088351413533263
722 => 0.0087098363735458
723 => 0.0087063194801046
724 => 0.0084658191614805
725 => 0.0083769116696125
726 => 0.0083026139147972
727 => 0.0082214827061308
728 => 0.0081733854060907
729 => 0.0082472847187843
730 => 0.0082641863659483
731 => 0.0081026042272048
801 => 0.0080805811787605
802 => 0.0082125326412512
803 => 0.0081544657222554
804 => 0.0082141889884329
805 => 0.0082280452984827
806 => 0.0082258141134268
807 => 0.008165185581052
808 => 0.0082038283996189
809 => 0.0081124266137297
810 => 0.0080130408996795
811 => 0.0079496390060643
812 => 0.0078943124448442
813 => 0.0079250108366077
814 => 0.0078155766752757
815 => 0.007780566484591
816 => 0.0081907370821794
817 => 0.0084937345126949
818 => 0.008489328810055
819 => 0.0084625102282897
820 => 0.008422663255737
821 => 0.0086132602921375
822 => 0.0085468600957636
823 => 0.0085951717865477
824 => 0.0086074691394875
825 => 0.0086446895231106
826 => 0.0086579926110558
827 => 0.0086177814396968
828 => 0.0084828278372351
829 => 0.0081465362909039
830 => 0.0079899916682851
831 => 0.007938329335364
901 => 0.0079402071630449
902 => 0.0078884082926125
903 => 0.0079036653814174
904 => 0.0078831024997638
905 => 0.0078441613766072
906 => 0.007922606331986
907 => 0.0079316463823281
908 => 0.0079133363923953
909 => 0.0079176490578558
910 => 0.007766050161511
911 => 0.0077775758963446
912 => 0.0077133991401715
913 => 0.0077013667720514
914 => 0.0075391335209554
915 => 0.0072517138005529
916 => 0.0074109722261632
917 => 0.0072186104431494
918 => 0.0071457601211654
919 => 0.007490622214888
920 => 0.0074560076256638
921 => 0.0073967624955122
922 => 0.007309126600251
923 => 0.0072766215942314
924 => 0.0070791314674908
925 => 0.0070674626972342
926 => 0.0071653441367288
927 => 0.0071201752202967
928 => 0.0070567409548197
929 => 0.0068269884754904
930 => 0.0065686706202926
1001 => 0.0065764676126128
1002 => 0.0066586337161767
1003 => 0.0068975427438974
1004 => 0.0068041968535988
1005 => 0.0067364733391665
1006 => 0.0067237907606747
1007 => 0.0068825397832762
1008 => 0.0071072029092057
1009 => 0.0072126098213377
1010 => 0.0071081547726704
1011 => 0.0069881624370206
1012 => 0.0069954658145007
1013 => 0.0070440519129047
1014 => 0.0070491576248766
1015 => 0.00697105494978
1016 => 0.0069930403953306
1017 => 0.0069596424931479
1018 => 0.0067546796291002
1019 => 0.0067509725008339
1020 => 0.0067006713085239
1021 => 0.0066991482084117
1022 => 0.006613573332072
1023 => 0.0066016008153209
1024 => 0.0064316867043247
1025 => 0.0065435246867297
1026 => 0.0064685096398901
1027 => 0.006355444270042
1028 => 0.0063359517576633
1029 => 0.0063353657892033
1030 => 0.0064514586430832
1031 => 0.0065421680741396
1101 => 0.0064698145587466
1102 => 0.0064533410658055
1103 => 0.0066292348722437
1104 => 0.0066068507820668
1105 => 0.0065874663043355
1106 => 0.0070870867904055
1107 => 0.0066915981898084
1108 => 0.0065191425862479
1109 => 0.006305696028411
1110 => 0.0063751953039336
1111 => 0.0063898398224431
1112 => 0.0058765393274791
1113 => 0.0056682933805997
1114 => 0.0055968312192136
1115 => 0.0055557037350093
1116 => 0.0055744460460077
1117 => 0.0053870002690029
1118 => 0.0055129669312171
1119 => 0.0053506547327281
1120 => 0.0053234425644418
1121 => 0.0056136768819632
1122 => 0.005654061291722
1123 => 0.0054817688532382
1124 => 0.0055924084903569
1125 => 0.0055522890199317
1126 => 0.0053534371095069
1127 => 0.0053458424291843
1128 => 0.0052460655305158
1129 => 0.0050899340047142
1130 => 0.0050185777078548
1201 => 0.0049814147289066
1202 => 0.0049967488983126
1203 => 0.0049889954730276
1204 => 0.0049383991284239
1205 => 0.0049918955962743
1206 => 0.0048552342271832
1207 => 0.0048008145688556
1208 => 0.0047762344717155
1209 => 0.0046549396407122
1210 => 0.0048479736568947
1211 => 0.0048860037898611
1212 => 0.0049241088539375
1213 => 0.0052557874212908
1214 => 0.0052392176973798
1215 => 0.005388999931753
1216 => 0.0053831796695571
1217 => 0.0053404593500025
1218 => 0.0051602293489533
1219 => 0.0052320658150806
1220 => 0.0050109643382061
1221 => 0.0051766285981195
1222 => 0.0051010263481999
1223 => 0.0051510674013727
1224 => 0.0050610890757482
1225 => 0.0051108867962628
1226 => 0.0048950221452123
1227 => 0.004693450771359
1228 => 0.0047745689764328
1229 => 0.00486275374234
1230 => 0.0050539607838873
1231 => 0.0049400794473656
]
'min_raw' => 0.0046549396407122
'max_raw' => 0.013895108194169
'avg_raw' => 0.0092750239174407
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004654'
'max' => '$0.013895'
'avg' => '$0.009275'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0088181203592878
'max_diff' => 0.00042204819416925
'year' => 2026
]
1 => [
'items' => [
101 => 0.0049810354823089
102 => 0.0048438396212062
103 => 0.0045607653716912
104 => 0.0045623675412017
105 => 0.0045188227350216
106 => 0.0044811936648361
107 => 0.0049531600887898
108 => 0.0048944636032862
109 => 0.0048009384356421
110 => 0.0049261255890761
111 => 0.0049592270594313
112 => 0.0049601694117571
113 => 0.0050515027273544
114 => 0.0051002473342611
115 => 0.0051088387824996
116 => 0.0052525537279789
117 => 0.0053007250820575
118 => 0.0054991360720424
119 => 0.0050961116949247
120 => 0.0050878116730955
121 => 0.0049278872290517
122 => 0.0048264606183337
123 => 0.0049348319958618
124 => 0.0050308342421835
125 => 0.0049308702864501
126 => 0.0049439234687146
127 => 0.0048097300254979
128 => 0.0048576978670595
129 => 0.0048990142341784
130 => 0.0048762017647192
131 => 0.0048420503938026
201 => 0.0050229631527803
202 => 0.0050127553459159
203 => 0.0051812254662423
204 => 0.0053125599724505
205 => 0.0055479348864269
206 => 0.0053023088933208
207 => 0.0052933573058571
208 => 0.0053808605091944
209 => 0.005300711685773
210 => 0.005351362975532
211 => 0.0055397741805808
212 => 0.005543755012449
213 => 0.0054770709496446
214 => 0.0054730132183627
215 => 0.005485820622068
216 => 0.0055608339856019
217 => 0.0055346220114553
218 => 0.0055649551715438
219 => 0.0056028872527122
220 => 0.0057597904232938
221 => 0.0057976192465279
222 => 0.0057057148180652
223 => 0.0057140127589451
224 => 0.0056796379798671
225 => 0.0056464323739925
226 => 0.0057210737267094
227 => 0.0058574822658789
228 => 0.0058566336754364
301 => 0.0058882778051206
302 => 0.0059079918357597
303 => 0.0058233647847041
304 => 0.0057682756862897
305 => 0.0057894003520322
306 => 0.0058231791525898
307 => 0.0057784463422707
308 => 0.0055023347147278
309 => 0.0055860893444453
310 => 0.0055721484786681
311 => 0.0055522949905343
312 => 0.0056365109183706
313 => 0.0056283880866846
314 => 0.00538507774163
315 => 0.0054006536805019
316 => 0.0053860249660619
317 => 0.0054332933351709
318 => 0.0052981590387196
319 => 0.0053397254381646
320 => 0.0053657954942358
321 => 0.0053811509575413
322 => 0.0054366254203406
323 => 0.0054301161324149
324 => 0.0054362207938637
325 => 0.0055184747774798
326 => 0.0059344872004515
327 => 0.0059571298387542
328 => 0.0058456292065959
329 => 0.0058901715098904
330 => 0.0058046600278959
331 => 0.005862064458636
401 => 0.0059013391122339
402 => 0.0057238645047065
403 => 0.0057133556102494
404 => 0.0056274911919505
405 => 0.0056736298667351
406 => 0.0056002199176647
407 => 0.0056182321513956
408 => 0.0055678683756058
409 => 0.0056585131446997
410 => 0.0057598680813198
411 => 0.0057854743409377
412 => 0.0057181152960708
413 => 0.0056693429084097
414 => 0.0055837146623002
415 => 0.0057261163439303
416 => 0.0057677589352515
417 => 0.0057258976131258
418 => 0.0057161974301014
419 => 0.0056978156007978
420 => 0.0057200972220846
421 => 0.005767532140756
422 => 0.005745162709096
423 => 0.0057599381128061
424 => 0.0057036295101933
425 => 0.0058233927997793
426 => 0.006013605726247
427 => 0.0060142172919086
428 => 0.005991847739669
429 => 0.0059826946008513
430 => 0.006005647118947
501 => 0.0060180979184524
502 => 0.006092322153202
503 => 0.0061719677143123
504 => 0.0065436387959334
505 => 0.00643927504348
506 => 0.0067690437379059
507 => 0.0070298479600909
508 => 0.0071080517427378
509 => 0.007036107942475
510 => 0.0067899920881037
511 => 0.0067779164701305
512 => 0.0071457174639948
513 => 0.0070417968368754
514 => 0.0070294358089522
515 => 0.0068979353561361
516 => 0.0069756684103984
517 => 0.0069586670511561
518 => 0.0069318295738573
519 => 0.0070801388264581
520 => 0.0073577605076686
521 => 0.0073144905651323
522 => 0.0072821915602638
523 => 0.0071406667230291
524 => 0.0072258962857612
525 => 0.0071955476709371
526 => 0.0073259445799284
527 => 0.0072487003396871
528 => 0.0070410095359162
529 => 0.0070740849809746
530 => 0.0070690856939925
531 => 0.0071719706658291
601 => 0.0071410871510457
602 => 0.0070630551920684
603 => 0.0073568116269435
604 => 0.0073377367180219
605 => 0.0073647805777415
606 => 0.0073766861211493
607 => 0.0075554904864888
608 => 0.0076287409138668
609 => 0.0076453700433109
610 => 0.0077149522839287
611 => 0.0076436387737763
612 => 0.0079289436600567
613 => 0.0081186547614315
614 => 0.0083390139681224
615 => 0.0086610179960687
616 => 0.0087820944892803
617 => 0.0087602231044953
618 => 0.009004362883503
619 => 0.0094430766394575
620 => 0.00884889969788
621 => 0.0094745694601355
622 => 0.0092764896371102
623 => 0.008806845940021
624 => 0.008776606422664
625 => 0.0090946545870082
626 => 0.0098000548045222
627 => 0.009623360050618
628 => 0.0098003438138404
629 => 0.0095938828529954
630 => 0.0095836303260998
701 => 0.0097903164658017
702 => 0.01027324989709
703 => 0.010043826326374
704 => 0.0097148913807849
705 => 0.0099577718258133
706 => 0.0097473663068056
707 => 0.0092732637836848
708 => 0.0096232249354697
709 => 0.0093892158795909
710 => 0.009457512162702
711 => 0.0099493643919392
712 => 0.0098901834304378
713 => 0.0099667690746301
714 => 0.0098315974172259
715 => 0.0097053257745966
716 => 0.0094696303765736
717 => 0.0093998525888617
718 => 0.0094191366590435
719 => 0.0093998430326342
720 => 0.0092679736235929
721 => 0.0092394964372658
722 => 0.0091920332124398
723 => 0.0092067440504727
724 => 0.0091174993019437
725 => 0.0092859225813238
726 => 0.0093171834261176
727 => 0.0094397478435146
728 => 0.0094524728879206
729 => 0.0097938130457758
730 => 0.0096058086228175
731 => 0.0097319382212588
801 => 0.0097206560027964
802 => 0.0088170245430212
803 => 0.0089415369853704
804 => 0.0091352392715088
805 => 0.0090479766541607
806 => 0.0089246077295382
807 => 0.0088249807082823
808 => 0.0086740355836936
809 => 0.0088864879479078
810 => 0.0091658402150593
811 => 0.009459557722417
812 => 0.0098124400623738
813 => 0.0097336808320987
814 => 0.0094529608325313
815 => 0.0094655537266458
816 => 0.0095433980429405
817 => 0.009442582580437
818 => 0.009412850132393
819 => 0.0095393132611521
820 => 0.0095401841432169
821 => 0.0094241837696509
822 => 0.0092952705822766
823 => 0.0092947304313145
824 => 0.0092717915747749
825 => 0.0095979636246148
826 => 0.0097773252723129
827 => 0.0097978887961658
828 => 0.009775941183316
829 => 0.0097843879484323
830 => 0.009680021357601
831 => 0.0099185724352903
901 => 0.010137490494434
902 => 0.010078815778082
903 => 0.0099908540371663
904 => 0.0099207882737159
905 => 0.010062310510935
906 => 0.010056008748488
907 => 0.010135578436168
908 => 0.010131968695518
909 => 0.010105212402318
910 => 0.010078816733633
911 => 0.010183472576339
912 => 0.010153333374361
913 => 0.010123147357878
914 => 0.010062604680573
915 => 0.010070833435926
916 => 0.0099828868828454
917 => 0.0099421987832299
918 => 0.0093303473894144
919 => 0.0091668407041658
920 => 0.0092182832358305
921 => 0.0092352194529593
922 => 0.0091640611339996
923 => 0.0092660838843155
924 => 0.0092501837467476
925 => 0.0093120418807549
926 => 0.0092733956041951
927 => 0.0092749816608654
928 => 0.0093886321199729
929 => 0.0094216253317554
930 => 0.009404844717955
1001 => 0.009416597284655
1002 => 0.0096874302238096
1003 => 0.0096489264406116
1004 => 0.0096284720731966
1005 => 0.0096341380727582
1006 => 0.0097033416954359
1007 => 0.0097227149314079
1008 => 0.0096406291692613
1009 => 0.0096793412892218
1010 => 0.0098441725827141
1011 => 0.0099018542067931
1012 => 0.010085946262103
1013 => 0.010007740685032
1014 => 0.010151290406404
1015 => 0.010592513310196
1016 => 0.010944992696047
1017 => 0.010620838085991
1018 => 0.011268121590128
1019 => 0.011772124645402
1020 => 0.01175278016868
1021 => 0.011664895578192
1022 => 0.011091101499377
1023 => 0.010563087633263
1024 => 0.01100479365292
1025 => 0.011005919652402
1026 => 0.010967976713584
1027 => 0.010732316379284
1028 => 0.010959776244774
1029 => 0.010977831182883
1030 => 0.010967725218737
1031 => 0.010787044992965
1101 => 0.010511179683497
1102 => 0.010565083104639
1103 => 0.010653378008069
1104 => 0.010486217335629
1105 => 0.010432799372162
1106 => 0.01053211352943
1107 => 0.010852124437075
1108 => 0.010791628228682
1109 => 0.010790048428196
1110 => 0.011048876862087
1111 => 0.010863611562093
1112 => 0.010565762999402
1113 => 0.010490552309183
1114 => 0.010223605026895
1115 => 0.010407986465605
1116 => 0.010414622025336
1117 => 0.010313638195687
1118 => 0.010573957280624
1119 => 0.010571558394428
1120 => 0.010818692622193
1121 => 0.011291120446303
1122 => 0.011151400291953
1123 => 0.010988920953952
1124 => 0.011006586963056
1125 => 0.011200339479501
1126 => 0.011083192285119
1127 => 0.011125319232998
1128 => 0.01120027571532
1129 => 0.01124549882217
1130 => 0.011000080053925
1201 => 0.01094286119931
1202 => 0.010825811503858
1203 => 0.01079527542315
1204 => 0.010890609957774
1205 => 0.01086549267612
1206 => 0.010414064332235
1207 => 0.010366887558575
1208 => 0.01036833440287
1209 => 0.01024970616237
1210 => 0.010068769621567
1211 => 0.010544260047638
1212 => 0.01050607151194
1213 => 0.010463914324088
1214 => 0.010469078339054
1215 => 0.010675472617145
1216 => 0.010555753512691
1217 => 0.010874046373458
1218 => 0.010808614930043
1219 => 0.010741505417001
1220 => 0.010732228838093
1221 => 0.010706397401086
1222 => 0.010617811792135
1223 => 0.010510839346158
1224 => 0.010440206871529
1225 => 0.0096305389717381
1226 => 0.0097808086243177
1227 => 0.0099536801621008
1228 => 0.010013354724204
1229 => 0.0099112772563723
1230 => 0.010621842432735
1231 => 0.010751669537633
]
'min_raw' => 0.0044811936648361
'max_raw' => 0.011772124645402
'avg_raw' => 0.0081266591551193
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004481'
'max' => '$0.011772'
'avg' => '$0.008126'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00017374597587609
'max_diff' => -0.0021229835487668
'year' => 2027
]
2 => [
'items' => [
101 => 0.010358414768485
102 => 0.010284852857663
103 => 0.010626665139362
104 => 0.010420510548646
105 => 0.010513341948222
106 => 0.010312691238398
107 => 0.010720397989844
108 => 0.010717291947494
109 => 0.010558684812707
110 => 0.010692738476934
111 => 0.010669443353876
112 => 0.010490376289333
113 => 0.010726074735186
114 => 0.010726191638675
115 => 0.010573535719859
116 => 0.010395267027359
117 => 0.010363396795659
118 => 0.010339386857236
119 => 0.010507436975206
120 => 0.010658110185498
121 => 0.010938475674796
122 => 0.011008966220125
123 => 0.011284095511367
124 => 0.011120269414235
125 => 0.01119289140119
126 => 0.011271732841038
127 => 0.011309532326598
128 => 0.011247940093309
129 => 0.011675329130341
130 => 0.011711413859928
131 => 0.011723512757627
201 => 0.011579399579017
202 => 0.011707405811732
203 => 0.011647515934566
204 => 0.011803332757066
205 => 0.011827766824403
206 => 0.011807072038636
207 => 0.011814827797274
208 => 0.01145012665076
209 => 0.011431214972361
210 => 0.011173352895485
211 => 0.011278433597833
212 => 0.011081990261444
213 => 0.011144284467003
214 => 0.011171743159253
215 => 0.011157400296689
216 => 0.011284374703082
217 => 0.01117642051849
218 => 0.010891511676043
219 => 0.010606525210371
220 => 0.01060294743744
221 => 0.010527915531457
222 => 0.010473681206211
223 => 0.01048412866132
224 => 0.010520946855805
225 => 0.010471541265816
226 => 0.010482084453367
227 => 0.010657171615607
228 => 0.01069228409733
229 => 0.010572958165104
301 => 0.010093847328566
302 => 0.0099762723275212
303 => 0.010060782906659
304 => 0.010020392293009
305 => 0.0080872386400117
306 => 0.0085414044159101
307 => 0.0082715545338837
308 => 0.0083959137747176
309 => 0.0081204669224569
310 => 0.0082519245977621
311 => 0.0082276491651989
312 => 0.0089579342931011
313 => 0.0089465318953033
314 => 0.0089519896197276
315 => 0.0086914782129274
316 => 0.0091064799576157
317 => 0.0093109247400291
318 => 0.0092730874519261
319 => 0.0092826102821693
320 => 0.0091189765079456
321 => 0.0089535739523478
322 => 0.008770117062919
323 => 0.0091109572875209
324 => 0.0090730616728818
325 => 0.0091599805784521
326 => 0.0093810398278688
327 => 0.0094135916420678
328 => 0.0094573416104593
329 => 0.0094416603611257
330 => 0.0098152513395258
331 => 0.0097700070070089
401 => 0.0098790328306918
402 => 0.009654758439567
403 => 0.0094009706776886
404 => 0.0094492074342747
405 => 0.00944456184672
406 => 0.009385418185191
407 => 0.0093320259320544
408 => 0.0092431428737561
409 => 0.0095243820224296
410 => 0.0095129642265964
411 => 0.0096978050693993
412 => 0.0096651326549858
413 => 0.0094469382752359
414 => 0.0094547311301947
415 => 0.0095071418249106
416 => 0.0096885358377373
417 => 0.0097423859309904
418 => 0.0097174404222404
419 => 0.0097764845911423
420 => 0.0098231506948177
421 => 0.00978234513528
422 => 0.010360065807025
423 => 0.010120155905571
424 => 0.010237086322257
425 => 0.010264973537643
426 => 0.010193541021838
427 => 0.010209032176709
428 => 0.010232497055253
429 => 0.010374971202873
430 => 0.010748864591457
501 => 0.010914459428082
502 => 0.011412659664375
503 => 0.010900709082092
504 => 0.010870332053201
505 => 0.010960072959964
506 => 0.011252569238518
507 => 0.011489609999508
508 => 0.011568250095138
509 => 0.011578643681982
510 => 0.011726177729279
511 => 0.011810741493842
512 => 0.011708263215406
513 => 0.011621423604355
514 => 0.011310374896498
515 => 0.01134637963139
516 => 0.011594416550618
517 => 0.011944783308328
518 => 0.012245434435892
519 => 0.012140156889769
520 => 0.012943350252324
521 => 0.01302298359347
522 => 0.013011980840578
523 => 0.01319339744274
524 => 0.012833322432297
525 => 0.012679383389208
526 => 0.011640199313936
527 => 0.011932167651319
528 => 0.012356560776406
529 => 0.012300390754908
530 => 0.01199218512341
531 => 0.012245200634283
601 => 0.012161545793862
602 => 0.012095563750379
603 => 0.012397840282822
604 => 0.012065474818565
605 => 0.012353245176654
606 => 0.011984176715802
607 => 0.012140637788732
608 => 0.012051822916566
609 => 0.012109297023599
610 => 0.011773304568277
611 => 0.011954597941413
612 => 0.011765762167917
613 => 0.011765672635173
614 => 0.011761504075007
615 => 0.011983668525099
616 => 0.01199091329984
617 => 0.01182673343555
618 => 0.011803072552135
619 => 0.011890559239293
620 => 0.01178813524143
621 => 0.011836058785382
622 => 0.011789586796756
623 => 0.011779124973267
624 => 0.011695763383771
625 => 0.011659848918941
626 => 0.011673931906002
627 => 0.011625859410884
628 => 0.011596893993717
629 => 0.011755742124483
630 => 0.01167087597613
701 => 0.011742735170096
702 => 0.011660842549219
703 => 0.011376967046341
704 => 0.011213707242707
705 => 0.010677492733044
706 => 0.010829562502813
707 => 0.010930384917497
708 => 0.010897063110045
709 => 0.010968651246279
710 => 0.010973046176429
711 => 0.010949772143585
712 => 0.010922823795139
713 => 0.010909706829453
714 => 0.011007469945149
715 => 0.011064224724365
716 => 0.01094050379564
717 => 0.01091151771308
718 => 0.01103660640284
719 => 0.011112910431333
720 => 0.011676296506193
721 => 0.011634559046054
722 => 0.011739311880439
723 => 0.011727518318851
724 => 0.011837315977722
725 => 0.012016788746022
726 => 0.011651870426691
727 => 0.011715207629001
728 => 0.011699678809664
729 => 0.011869218387308
730 => 0.011869747671364
731 => 0.011768100225436
801 => 0.011823204954915
802 => 0.011792447006639
803 => 0.01184803077636
804 => 0.011634001616828
805 => 0.011894666030117
806 => 0.012042445955609
807 => 0.012044497880018
808 => 0.012114544391847
809 => 0.012185715704685
810 => 0.012322322841964
811 => 0.01218190580577
812 => 0.011929309226981
813 => 0.011947545884087
814 => 0.011799448602364
815 => 0.011801938144426
816 => 0.011788648773792
817 => 0.011828531175443
818 => 0.011642753561208
819 => 0.011686355195942
820 => 0.011625312651984
821 => 0.011715074934432
822 => 0.011618505556755
823 => 0.011699671321198
824 => 0.011734699774443
825 => 0.011863955521029
826 => 0.011599414377889
827 => 0.011059997079166
828 => 0.01117338913516
829 => 0.011005673377591
830 => 0.011021196109492
831 => 0.011052554498359
901 => 0.010950911700216
902 => 0.010970301942969
903 => 0.010969609187051
904 => 0.010963639390805
905 => 0.010937198173377
906 => 0.010898853176871
907 => 0.011051607840984
908 => 0.011077563835036
909 => 0.011135260794548
910 => 0.011306927809834
911 => 0.01128977422682
912 => 0.011317752432411
913 => 0.011256676166696
914 => 0.011024029262288
915 => 0.011036663108495
916 => 0.010879118843846
917 => 0.011131232033493
918 => 0.011071528302453
919 => 0.011033036918656
920 => 0.011022534187967
921 => 0.011194626732579
922 => 0.011246119519147
923 => 0.01121403267011
924 => 0.011148221606613
925 => 0.011274598303822
926 => 0.011308411376591
927 => 0.011315980876605
928 => 0.011539896153733
929 => 0.011328495253208
930 => 0.011379381551109
1001 => 0.011776381921194
1002 => 0.011416357367833
1003 => 0.011607070403254
1004 => 0.011597735992593
1005 => 0.011695298328137
1006 => 0.011589733033447
1007 => 0.011591041641793
1008 => 0.011677670386311
1009 => 0.011556015938212
1010 => 0.011525892586033
1011 => 0.011484277390744
1012 => 0.011575142647195
1013 => 0.011629612258956
1014 => 0.012068597326225
1015 => 0.012352201699832
1016 => 0.01233988968602
1017 => 0.012452398445134
1018 => 0.012401712218691
1019 => 0.012238033023156
1020 => 0.012517413451383
1021 => 0.012429005794119
1022 => 0.012436294013968
1023 => 0.012436022746061
1024 => 0.012494806109411
1025 => 0.012453152709062
1026 => 0.012371049581339
1027 => 0.012425553469114
1028 => 0.012587410530308
1029 => 0.013089819814635
1030 => 0.013370974706182
1031 => 0.013072893937135
1101 => 0.013278506060163
1102 => 0.013155212053437
1103 => 0.013132805864736
1104 => 0.013261945472614
1105 => 0.01339131112228
1106 => 0.013383071089659
1107 => 0.013289158271001
1108 => 0.013236109302691
1109 => 0.013637813863446
1110 => 0.013933782940951
1111 => 0.013913599834067
1112 => 0.014002681503955
1113 => 0.014264228041939
1114 => 0.014288140579564
1115 => 0.014285128149447
1116 => 0.014225858429927
1117 => 0.014483384962682
1118 => 0.014698218127054
1119 => 0.014212139202325
1120 => 0.014397231693622
1121 => 0.014480325676272
1122 => 0.014602332295677
1123 => 0.014808177913296
1124 => 0.015031780851884
1125 => 0.015063400759082
1126 => 0.015040964921774
1127 => 0.014893492773005
1128 => 0.015138161776546
1129 => 0.015281483140626
1130 => 0.015366827733085
1201 => 0.015583247419574
1202 => 0.01448083883642
1203 => 0.013700499248003
1204 => 0.013578637953031
1205 => 0.013826447688315
1206 => 0.013891793139263
1207 => 0.013865452469922
1208 => 0.012987109317787
1209 => 0.013574013658112
1210 => 0.014205473379984
1211 => 0.014229730319602
1212 => 0.014545852259571
1213 => 0.014648794521501
1214 => 0.014903314118227
1215 => 0.014887393848153
1216 => 0.014949365319664
1217 => 0.01493511915156
1218 => 0.015406563109069
1219 => 0.015926635804307
1220 => 0.015908627340601
1221 => 0.015833860737439
1222 => 0.015944901892734
1223 => 0.016481672648596
1224 => 0.016432255398973
1225 => 0.016480260047631
1226 => 0.017113143019867
1227 => 0.017935980910326
1228 => 0.017553690098634
1229 => 0.018383151158788
1230 => 0.018905252928313
1231 => 0.019808173952377
]
'min_raw' => 0.0080872386400117
'max_raw' => 0.019808173952377
'avg_raw' => 0.013947706296194
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.008087'
'max' => '$0.0198081'
'avg' => '$0.013947'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0036060449751756
'max_diff' => 0.0080360493069742
'year' => 2028
]
3 => [
'items' => [
101 => 0.019695123793184
102 => 0.020046624321911
103 => 0.019492740413949
104 => 0.018220911002861
105 => 0.018019639130189
106 => 0.018422590516294
107 => 0.019413207179612
108 => 0.018391392472261
109 => 0.018598104256744
110 => 0.018538571248907
111 => 0.018535398987918
112 => 0.018656471287337
113 => 0.018480849602323
114 => 0.017765335263839
115 => 0.018093251268614
116 => 0.01796662715135
117 => 0.018107126049907
118 => 0.018865340659267
119 => 0.01853011590689
120 => 0.018176983861709
121 => 0.018619889812641
122 => 0.019183861287173
123 => 0.019148568965851
124 => 0.01908008711144
125 => 0.01946611573916
126 => 0.020103721936379
127 => 0.020276064329377
128 => 0.020403283960504
129 => 0.020420825398243
130 => 0.020601513108898
131 => 0.019629909749539
201 => 0.021171869233387
202 => 0.021438123040476
203 => 0.021388078359833
204 => 0.02168400826074
205 => 0.021596938176876
206 => 0.021470787286235
207 => 0.021939899125267
208 => 0.02140210025719
209 => 0.020638762470949
210 => 0.020219980264307
211 => 0.02077146645621
212 => 0.021108239829389
213 => 0.021330825606251
214 => 0.021398179927839
215 => 0.019705332552526
216 => 0.018792981706851
217 => 0.019377788138805
218 => 0.020091292346972
219 => 0.019625946197636
220 => 0.019644186885674
221 => 0.018980725567538
222 => 0.020149993951947
223 => 0.019979641383434
224 => 0.02086343081023
225 => 0.020652507370671
226 => 0.021373203339716
227 => 0.021183419937914
228 => 0.021971200228145
301 => 0.022285467114218
302 => 0.022813170127669
303 => 0.023201350612502
304 => 0.023429297617905
305 => 0.023415612534708
306 => 0.024318852132863
307 => 0.023786243298619
308 => 0.023117161076545
309 => 0.023105059490075
310 => 0.023451586653855
311 => 0.024177812524055
312 => 0.024366112326041
313 => 0.02447134622702
314 => 0.024310176844452
315 => 0.0237320681273
316 => 0.023482443714311
317 => 0.023695130946493
318 => 0.023435032737957
319 => 0.023884035216558
320 => 0.024500611521432
321 => 0.024373290952683
322 => 0.024798904525046
323 => 0.025239369796588
324 => 0.025869254917427
325 => 0.026033930212593
326 => 0.026306132213461
327 => 0.026586317486054
328 => 0.026676305444406
329 => 0.026848120378524
330 => 0.026847214829011
331 => 0.027364990697453
401 => 0.027936113514529
402 => 0.028151699156451
403 => 0.02864742645259
404 => 0.027798510830308
405 => 0.028442423081449
406 => 0.029023248050146
407 => 0.028330764577862
408 => 0.02928519171645
409 => 0.029322249959463
410 => 0.029881785431386
411 => 0.029314589036566
412 => 0.028977789627877
413 => 0.029950116901054
414 => 0.030420595440522
415 => 0.030278883475552
416 => 0.029200448424955
417 => 0.028572752969252
418 => 0.026929952888266
419 => 0.028875920547876
420 => 0.029823744630217
421 => 0.029197993789559
422 => 0.029513586115834
423 => 0.031235355516836
424 => 0.031890893828425
425 => 0.031754546442173
426 => 0.031777586905981
427 => 0.032131303480052
428 => 0.033699877564759
429 => 0.03275995161394
430 => 0.033478489784987
501 => 0.033859599840029
502 => 0.034213596098646
503 => 0.033344293169149
504 => 0.032213342830471
505 => 0.031855123384146
506 => 0.029135775200657
507 => 0.028994221318176
508 => 0.028914762834417
509 => 0.028413788333947
510 => 0.028020159605041
511 => 0.027707131425318
512 => 0.026885652003597
513 => 0.027162877193647
514 => 0.025853610451504
515 => 0.026691232915562
516 => 0.024601611581751
517 => 0.026341910321982
518 => 0.025394744839349
519 => 0.026030740987003
520 => 0.026028522056358
521 => 0.024857451505764
522 => 0.0241820024518
523 => 0.024612424877856
524 => 0.025073871885564
525 => 0.02514874011007
526 => 0.025747018200561
527 => 0.025913984755673
528 => 0.025408068298762
529 => 0.024558308824235
530 => 0.024755688569217
531 => 0.024178002557568
601 => 0.023165630042524
602 => 0.023892733657157
603 => 0.024140998799682
604 => 0.024250646829974
605 => 0.023255094733197
606 => 0.022942270649902
607 => 0.022775725732804
608 => 0.024429795550149
609 => 0.024520409228595
610 => 0.024056816838184
611 => 0.026152298402475
612 => 0.025678026387259
613 => 0.02620790442772
614 => 0.024737778426197
615 => 0.024793939219242
616 => 0.024097958010307
617 => 0.024487660981829
618 => 0.02421223148227
619 => 0.02445617683285
620 => 0.024602396670164
621 => 0.025298263675431
622 => 0.026349856005396
623 => 0.025194324349964
624 => 0.024690842660174
625 => 0.025003199868831
626 => 0.025835048277437
627 => 0.027095341198011
628 => 0.026349222423272
629 => 0.026680337265583
630 => 0.026752671128353
701 => 0.02620251076668
702 => 0.027115626395286
703 => 0.027604972478795
704 => 0.02810694030457
705 => 0.028542784902872
706 => 0.027906443316446
707 => 0.028587420029905
708 => 0.028038673007429
709 => 0.027546390199844
710 => 0.027547136789658
711 => 0.027238320593355
712 => 0.026639950299675
713 => 0.026529601636872
714 => 0.027103649316269
715 => 0.027563981192627
716 => 0.027601896330805
717 => 0.027856759710263
718 => 0.028007585232924
719 => 0.029485880392362
720 => 0.030080462934587
721 => 0.030807507212348
722 => 0.031090731932506
723 => 0.031943136798501
724 => 0.031254750640272
725 => 0.031105813964787
726 => 0.029038158579391
727 => 0.029376737032918
728 => 0.029918833804975
729 => 0.029047097555496
730 => 0.029600013559765
731 => 0.02970917089137
801 => 0.029017476291313
802 => 0.029386940263563
803 => 0.0284057534917
804 => 0.026371243195749
805 => 0.027117891386841
806 => 0.027667675774549
807 => 0.026883065665364
808 => 0.028289448917474
809 => 0.027467868855234
810 => 0.027207467418302
811 => 0.026191548573015
812 => 0.026671023161688
813 => 0.027319519408283
814 => 0.026918824123668
815 => 0.027750327003944
816 => 0.028927956836134
817 => 0.029767205983621
818 => 0.029831633112167
819 => 0.029292052135658
820 => 0.030156734094072
821 => 0.030163032358145
822 => 0.029187667576724
823 => 0.028590262078958
824 => 0.028454530292913
825 => 0.028793614906237
826 => 0.029205326225284
827 => 0.029854480225009
828 => 0.030246750391458
829 => 0.031269582941539
830 => 0.031546332102684
831 => 0.031850395525679
901 => 0.032256718028487
902 => 0.032744612372059
903 => 0.031677127324163
904 => 0.031719540495157
905 => 0.030725513198893
906 => 0.0296632524749
907 => 0.030469375951742
908 => 0.0315232751636
909 => 0.031281509519945
910 => 0.03125430594621
911 => 0.03130005481159
912 => 0.031117771411602
913 => 0.030293310349192
914 => 0.029879271165049
915 => 0.030413487345255
916 => 0.030697399469807
917 => 0.031137722415249
918 => 0.031083443318133
919 => 0.032217667938359
920 => 0.032658393328607
921 => 0.032545636914079
922 => 0.032566386807987
923 => 0.033364299075241
924 => 0.034251741619602
925 => 0.035082948670754
926 => 0.035928488184359
927 => 0.034909157298739
928 => 0.03439160393861
929 => 0.034925586896743
930 => 0.034642248022804
1001 => 0.036270397236231
1002 => 0.036383126755223
1003 => 0.03801115823493
1004 => 0.039556353971554
1005 => 0.038585844214438
1006 => 0.039500991202679
1007 => 0.040490797283491
1008 => 0.042400293803626
1009 => 0.041757242552542
1010 => 0.04126467537211
1011 => 0.040799201766668
1012 => 0.041767778447738
1013 => 0.043013836874544
1014 => 0.043282225925079
1015 => 0.043717118719453
1016 => 0.043259882122329
1017 => 0.043810573240606
1018 => 0.045754754874062
1019 => 0.045229419834936
1020 => 0.044483359627556
1021 => 0.046018104305981
1022 => 0.046573522438934
1023 => 0.050471737770732
1024 => 0.055393395654372
1025 => 0.053355796973197
1026 => 0.052090993718893
1027 => 0.052388252485189
1028 => 0.054185475335661
1029 => 0.05476268627423
1030 => 0.053193627966656
1031 => 0.053747845886818
1101 => 0.056801641116414
1102 => 0.058439904279612
1103 => 0.056214922855892
1104 => 0.050076287351893
1105 => 0.044416185068703
1106 => 0.045917499071933
1107 => 0.045747296655164
1108 => 0.049028218660652
1109 => 0.045216890767993
1110 => 0.04528106375501
1111 => 0.048629831753015
1112 => 0.047736437863565
1113 => 0.0462892541799
1114 => 0.044426751111143
1115 => 0.040983741927863
1116 => 0.037934172678818
1117 => 0.04391508025005
1118 => 0.043657172640004
1119 => 0.04328368420089
1120 => 0.044114842306467
1121 => 0.048150710138802
1122 => 0.048057670322438
1123 => 0.047465798480057
1124 => 0.047914728055984
1125 => 0.046210554654698
1126 => 0.046649758943516
1127 => 0.044415288479583
1128 => 0.04542536244901
1129 => 0.046286149173678
1130 => 0.046458964852821
1201 => 0.046848327402116
1202 => 0.043521267048922
1203 => 0.045015019470146
1204 => 0.045892459071941
1205 => 0.041928155029505
1206 => 0.045814097527231
1207 => 0.043463350330214
1208 => 0.042665471424508
1209 => 0.043739710258488
1210 => 0.043321078340155
1211 => 0.042961163199662
1212 => 0.042760324367141
1213 => 0.043549126807402
1214 => 0.043512328230741
1215 => 0.042221694338517
1216 => 0.040538115039079
1217 => 0.041103179513577
1218 => 0.040897886292484
1219 => 0.040153877175891
1220 => 0.040655249488471
1221 => 0.038447459562587
1222 => 0.034649071746039
1223 => 0.037158403085416
1224 => 0.037061796558477
1225 => 0.037013083166838
1226 => 0.038898776315556
1227 => 0.038717510429649
1228 => 0.038388511071769
1229 => 0.040147834844679
1230 => 0.039505658001323
1231 => 0.041484695716653
]
'min_raw' => 0.017765335263839
'max_raw' => 0.058439904279612
'avg_raw' => 0.038102619771725
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.017765'
'max' => '$0.058439'
'avg' => '$0.0381026'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.009678096623827
'max_diff' => 0.038631730327235
'year' => 2029
]
4 => [
'items' => [
101 => 0.042788217952105
102 => 0.042457602548667
103 => 0.043683571511579
104 => 0.0411161974578
105 => 0.041968976133296
106 => 0.042144732636416
107 => 0.040126125062414
108 => 0.038747167770337
109 => 0.038655207040219
110 => 0.036264285127777
111 => 0.037541496314556
112 => 0.038665389304332
113 => 0.038127131779849
114 => 0.037956735527583
115 => 0.038827253025968
116 => 0.038894899691071
117 => 0.037352548557857
118 => 0.037673252198361
119 => 0.039010639691804
120 => 0.037639553464909
121 => 0.034975756891715
122 => 0.034315098511695
123 => 0.03422695450545
124 => 0.032435196581356
125 => 0.034359246863709
126 => 0.03351934735412
127 => 0.036172579841369
128 => 0.034657067674224
129 => 0.034591736973714
130 => 0.034492980037963
131 => 0.032950739976108
201 => 0.033288392535185
202 => 0.034410801067495
203 => 0.03481128907666
204 => 0.034769514896202
205 => 0.034405300653358
206 => 0.034572036068654
207 => 0.034034923201518
208 => 0.033845257469095
209 => 0.033246620245898
210 => 0.032366788905551
211 => 0.032489134849746
212 => 0.030745958744127
213 => 0.029796183884427
214 => 0.029533298721094
215 => 0.029181757693957
216 => 0.029573006215524
217 => 0.030741020545238
218 => 0.02933214745554
219 => 0.026916733364208
220 => 0.027061903866762
221 => 0.027388058884493
222 => 0.026780271166683
223 => 0.026205051099533
224 => 0.026705158278841
225 => 0.025681715486502
226 => 0.027511737056391
227 => 0.027462240101502
228 => 0.028144358974982
301 => 0.028570901905057
302 => 0.027587858546147
303 => 0.027340625799813
304 => 0.027481460808227
305 => 0.025153771833006
306 => 0.027954137125956
307 => 0.027978354801298
308 => 0.02777098836205
309 => 0.029262096428967
310 => 0.032408799538432
311 => 0.031224883252812
312 => 0.030766435082961
313 => 0.02989492477695
314 => 0.031056160514548
315 => 0.030966995728
316 => 0.030563758748488
317 => 0.030319879765104
318 => 0.030769234269727
319 => 0.030264199769195
320 => 0.030173481695479
321 => 0.029623828871
322 => 0.029427627820271
323 => 0.0292823683733
324 => 0.029122451995083
325 => 0.02947518767675
326 => 0.02867584221585
327 => 0.027711909950805
328 => 0.027631769412858
329 => 0.027853044484158
330 => 0.027755146737099
331 => 0.027631300716109
401 => 0.027394844934583
402 => 0.027324693555282
403 => 0.027552651505398
404 => 0.027295300270491
405 => 0.027675036036243
406 => 0.027571768919697
407 => 0.026994927201214
408 => 0.026275968845826
409 => 0.026269568608397
410 => 0.026114670210057
411 => 0.02591738381064
412 => 0.025862503247624
413 => 0.026663040647112
414 => 0.028320129105984
415 => 0.027994802990741
416 => 0.028229884449766
417 => 0.029386252559493
418 => 0.029753827208373
419 => 0.029492931429081
420 => 0.029135801195035
421 => 0.029151513112866
422 => 0.030371935233276
423 => 0.030448051463926
424 => 0.030640372622751
425 => 0.030887559661794
426 => 0.029535028450697
427 => 0.029087809014455
428 => 0.028875891634773
429 => 0.028223268127702
430 => 0.028927066628367
501 => 0.028516993381686
502 => 0.02857232627276
503 => 0.028536290654859
504 => 0.028555968538951
505 => 0.027511225528067
506 => 0.027891874971157
507 => 0.027258971443846
508 => 0.026411584667531
509 => 0.026408743929925
510 => 0.026616140642936
511 => 0.026492772962603
512 => 0.0261607937069
513 => 0.026207949793274
514 => 0.025794812856666
515 => 0.026258112097464
516 => 0.026271397861926
517 => 0.026093002418138
518 => 0.026806778821564
519 => 0.027099213596433
520 => 0.026981789893731
521 => 0.027090974836424
522 => 0.028008321759589
523 => 0.028157889334717
524 => 0.02822431737171
525 => 0.028135312602168
526 => 0.027107742254182
527 => 0.027153319368682
528 => 0.026818904743374
529 => 0.026536359624733
530 => 0.026547659947725
531 => 0.026692924867
601 => 0.027327305289152
602 => 0.028662321488801
603 => 0.028712984377693
604 => 0.028774389276972
605 => 0.028524624691976
606 => 0.028449293303217
607 => 0.028548674849672
608 => 0.029050036742443
609 => 0.030339675649076
610 => 0.029883831127386
611 => 0.029513222435608
612 => 0.029838346173683
613 => 0.02978829592261
614 => 0.029365821434766
615 => 0.029353963982988
616 => 0.02854310036755
617 => 0.028243342551395
618 => 0.027992842483731
619 => 0.027719302949312
620 => 0.027557139544181
621 => 0.027806296236412
622 => 0.027863281319861
623 => 0.027318495857783
624 => 0.027244243612353
625 => 0.027689127180697
626 => 0.0274933505092
627 => 0.027694711670863
628 => 0.027741429187612
629 => 0.02773390659142
630 => 0.027529493261569
701 => 0.027659780222323
702 => 0.027351612719729
703 => 0.02701652684592
704 => 0.026802762935017
705 => 0.026616225571086
706 => 0.02671972734221
707 => 0.02635076242683
708 => 0.026232723124603
709 => 0.027615641931569
710 => 0.028637218923157
711 => 0.028622364789111
712 => 0.028531944068275
713 => 0.028397597218287
714 => 0.029040208433572
715 => 0.028816335535583
716 => 0.028979221774076
717 => 0.029020683158087
718 => 0.029146174280116
719 => 0.029191026569915
720 => 0.029055451798224
721 => 0.028600446305365
722 => 0.027466615877783
723 => 0.026938814753027
724 => 0.026764631590635
725 => 0.026770962817767
726 => 0.026596319309623
727 => 0.026647759649744
728 => 0.026578430458594
729 => 0.02644713774309
730 => 0.026711620387001
731 => 0.026742099547886
801 => 0.026680366138464
802 => 0.026694906591165
803 => 0.026183780327842
804 => 0.026222640147534
805 => 0.026006263733419
806 => 0.025965695764229
807 => 0.025418715031394
808 => 0.024449659377054
809 => 0.024986610278067
810 => 0.024338049096365
811 => 0.024092429149549
812 => 0.025255155776037
813 => 0.025138450271754
814 => 0.024938701179085
815 => 0.024643230639669
816 => 0.024533637742447
817 => 0.023867785991821
818 => 0.023828443918213
819 => 0.024158458025333
820 => 0.024006167869989
821 => 0.023792294815095
822 => 0.02301766829023
823 => 0.022146731606254
824 => 0.02217301971023
825 => 0.02245004846505
826 => 0.023255546932106
827 => 0.022940824745762
828 => 0.022712490188549
829 => 0.022669729989694
830 => 0.023204963402898
831 => 0.023962430817448
901 => 0.024317817580977
902 => 0.023965640091576
903 => 0.023561077554336
904 => 0.023585701401415
905 => 0.023749512824358
906 => 0.02376672708874
907 => 0.023503398466697
908 => 0.023577523931346
909 => 0.02346492057237
910 => 0.022773873966183
911 => 0.02276137512441
912 => 0.02259178114262
913 => 0.022586645904252
914 => 0.022298124234026
915 => 0.022257758057905
916 => 0.021684880769657
917 => 0.022061950335614
918 => 0.02180903186781
919 => 0.021427824079396
920 => 0.021362103712987
921 => 0.021360128079413
922 => 0.021751543241613
923 => 0.02205737642155
924 => 0.021813431492842
925 => 0.021757889961249
926 => 0.022350928210168
927 => 0.022275458687329
928 => 0.022210102567277
929 => 0.023894607918451
930 => 0.022561190489405
1001 => 0.021979744381535
1002 => 0.021260094409425
1003 => 0.021494416069134
1004 => 0.021543791085737
1005 => 0.019813162629469
1006 => 0.019111046880298
1007 => 0.018870107213856
1008 => 0.018731443029432
1009 => 0.018794634039509
1010 => 0.018162647515291
1011 => 0.018587352911658
1012 => 0.018040106002176
1013 => 0.017948358276906
1014 => 0.018926903541943
1015 => 0.019063062398994
1016 => 0.018482166413572
1017 => 0.018855195674731
1018 => 0.01871993007914
1019 => 0.018049486979746
1020 => 0.018023880984794
1021 => 0.017687476204733
1022 => 0.017161067864738
1023 => 0.016920485127939
1024 => 0.016795187549779
1025 => 0.016846887772529
1026 => 0.016820746557853
1027 => 0.016650157449498
1028 => 0.01683052452586
1029 => 0.016369761178577
1030 => 0.016186281501066
1031 => 0.016103407987431
1101 => 0.015694453996169
1102 => 0.016345281658932
1103 => 0.016473502907408
1104 => 0.016601976791352
1105 => 0.017720254238242
1106 => 0.017664388257214
1107 => 0.018169389517865
1108 => 0.018149766097514
1109 => 0.018005731557498
1110 => 0.017398073525704
1111 => 0.017640275186714
1112 => 0.01689481612062
1113 => 0.017453364739227
1114 => 0.017198466475243
1115 => 0.017367183379769
1116 => 0.01706381517284
1117 => 0.017231711664321
1118 => 0.016503908922116
1119 => 0.015824296961905
1120 => 0.016097792653804
1121 => 0.016395113748924
1122 => 0.01703978163915
1123 => 0.016655822762126
1124 => 0.016793908893396
1125 => 0.01633134346898
1126 => 0.015376938873127
1127 => 0.015382340699491
1128 => 0.015235526345254
1129 => 0.015108657307946
1130 => 0.016699925057949
1201 => 0.016502025759016
1202 => 0.016186699126585
1203 => 0.016608776354676
1204 => 0.016720380273049
1205 => 0.016723557479709
1206 => 0.017031494129933
1207 => 0.017195839975359
1208 => 0.017224806642931
1209 => 0.017709351615471
1210 => 0.017871764698964
1211 => 0.018540721204311
1212 => 0.017181896378595
1213 => 0.017153912275509
1214 => 0.016614715846847
1215 => 0.016272748947432
1216 => 0.016638130613016
1217 => 0.016961808889152
1218 => 0.016624773433136
1219 => 0.016668783148485
1220 => 0.016216340585593
1221 => 0.016378067512426
1222 => 0.016517368528784
1223 => 0.016440454695286
1224 => 0.016325310963868
1225 => 0.016935270961687
1226 => 0.016900854628158
1227 => 0.017468863401046
1228 => 0.01791166685821
1229 => 0.018705249814033
1230 => 0.017877104629216
1231 => 0.017846923727102
]
'min_raw' => 0.015108657307946
'max_raw' => 0.043683571511579
'avg_raw' => 0.029396114409762
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0151086'
'max' => '$0.043683'
'avg' => '$0.029396'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0026566779558931
'max_diff' => -0.014756332768033
'year' => 2030
]
5 => [
'items' => [
101 => 0.018141946886433
102 => 0.017871719532455
103 => 0.018042493892238
104 => 0.01867773542451
105 => 0.018691157077087
106 => 0.018466327103609
107 => 0.01845264617929
108 => 0.018495827235067
109 => 0.018748740027488
110 => 0.018660364526591
111 => 0.018762634893622
112 => 0.018890525553615
113 => 0.019419535547861
114 => 0.019547078066518
115 => 0.019237215869394
116 => 0.019265192956415
117 => 0.019149295988783
118 => 0.019037340970235
119 => 0.019288999502213
120 => 0.019748910415763
121 => 0.019746049333839
122 => 0.019852739726392
123 => 0.019919206957082
124 => 0.019633880945975
125 => 0.019448144204474
126 => 0.019519367489901
127 => 0.019633255074342
128 => 0.019482435281206
129 => 0.018551505651447
130 => 0.018833890233101
131 => 0.018786887630813
201 => 0.018719950209443
202 => 0.019003890089912
203 => 0.018976503395765
204 => 0.018156165580027
205 => 0.018208680945411
206 => 0.018159359213332
207 => 0.018318727819956
208 => 0.017863113104695
209 => 0.018003257122497
210 => 0.018091154136694
211 => 0.018142926153313
212 => 0.018329962177744
213 => 0.018308015659039
214 => 0.018328597951327
215 => 0.018605922999878
216 => 0.020008537928987
217 => 0.020084879164883
218 => 0.019708946998836
219 => 0.019859124484238
220 => 0.019570816552472
221 => 0.019764359598562
222 => 0.019896776835236
223 => 0.019298408805076
224 => 0.019262977333706
225 => 0.018973479452549
226 => 0.019129039215885
227 => 0.018881532447275
228 => 0.018942261950873
301 => 0.018772456964511
302 => 0.019078072132127
303 => 0.019419797377317
304 => 0.019506130669391
305 => 0.019279024946764
306 => 0.019114585436585
307 => 0.018825883826454
308 => 0.019306001038237
309 => 0.01944640194227
310 => 0.019305263572059
311 => 0.019272558727747
312 => 0.019210583106872
313 => 0.019285707148693
314 => 0.019445637288794
315 => 0.019370217188168
316 => 0.019420033493363
317 => 0.019230185108313
318 => 0.019633975400758
319 => 0.020275291562586
320 => 0.020277353498912
321 => 0.020201932991744
322 => 0.020171072545168
323 => 0.020248458562422
324 => 0.020290437302241
325 => 0.02054068949187
326 => 0.020809220061829
327 => 0.022062335062761
328 => 0.02171046538492
329 => 0.022822303561891
330 => 0.023701623205758
331 => 0.023965292718965
401 => 0.023722729173424
402 => 0.02289293238715
403 => 0.022852218598061
404 => 0.02409228532792
405 => 0.02374190967808
406 => 0.023700233609418
407 => 0.02325687065168
408 => 0.023518953071274
409 => 0.023461631801592
410 => 0.023371147373146
411 => 0.023871182372911
412 => 0.024807203254039
413 => 0.024661315621767
414 => 0.024552417271808
415 => 0.024075256402123
416 => 0.024362613823412
417 => 0.02426029134966
418 => 0.024699933632346
419 => 0.024439499283352
420 => 0.023739255237929
421 => 0.023850771410197
422 => 0.023833915965098
423 => 0.024180799830844
424 => 0.024076673904534
425 => 0.023813583706825
426 => 0.024804004036426
427 => 0.024739691649229
428 => 0.024830871910415
429 => 0.024871012281233
430 => 0.025473863682697
501 => 0.025720832612784
502 => 0.025776898883713
503 => 0.026011500266033
504 => 0.025771061787604
505 => 0.02673298713105
506 => 0.027372611354541
507 => 0.028115567804888
508 => 0.029201226866712
509 => 0.029609444716866
510 => 0.029535703816052
511 => 0.030358838126271
512 => 0.031837992184488
513 => 0.02983468314185
514 => 0.031944172428162
515 => 0.031276332475341
516 => 0.029692895961129
517 => 0.029590941317104
518 => 0.030663262908604
519 => 0.033041568991423
520 => 0.032445830292201
521 => 0.033042543406518
522 => 0.032346445862385
523 => 0.032311878752148
524 => 0.033008735502518
525 => 0.034636979283442
526 => 0.033863461696931
527 => 0.032754434562372
528 => 0.033573322940157
529 => 0.032863926042778
530 => 0.031265456285295
531 => 0.032445374742046
601 => 0.03165639687216
602 => 0.031886662558963
603 => 0.033544976689862
604 => 0.033345443946277
605 => 0.033603657792711
606 => 0.033147917112389
607 => 0.032722183453259
608 => 0.031927519963098
609 => 0.031692259280097
610 => 0.031757276869086
611 => 0.031692227060609
612 => 0.031247620141198
613 => 0.031151607319283
614 => 0.030991581743006
615 => 0.031041180360511
616 => 0.030740285459976
617 => 0.031308136305344
618 => 0.031413534426129
619 => 0.031826768916557
620 => 0.031869672292206
621 => 0.033020524466024
622 => 0.03238665442797
623 => 0.032811909175203
624 => 0.032773870387958
625 => 0.029727213831792
626 => 0.030147016224353
627 => 0.03080009700593
628 => 0.03050588499906
629 => 0.030089938056352
630 => 0.029754038598451
701 => 0.029245116572248
702 => 0.029961414551147
703 => 0.0309032702236
704 => 0.031893559306358
705 => 0.033083326752981
706 => 0.032817784509315
707 => 0.031871317431529
708 => 0.031913775253244
709 => 0.032176232800548
710 => 0.031836326430006
711 => 0.031736081405573
712 => 0.032162460673558
713 => 0.032165396913242
714 => 0.031774293554877
715 => 0.031339653743213
716 => 0.031337832586532
717 => 0.031260492630169
718 => 0.03236020446881
719 => 0.032964934786654
720 => 0.033034266143024
721 => 0.032960268233967
722 => 0.032988747092291
723 => 0.032636867844661
724 => 0.033441159458195
725 => 0.03417925697897
726 => 0.033981431076248
727 => 0.03368486192546
728 => 0.033448630312151
729 => 0.033925782415702
730 => 0.033904535583638
731 => 0.034172810341028
801 => 0.034160639848403
802 => 0.034070429137816
803 => 0.033981434297957
804 => 0.034334288778478
805 => 0.034232672354758
806 => 0.034130898092664
807 => 0.033926774229175
808 => 0.033954518052361
809 => 0.033658000108418
810 => 0.033520817339812
811 => 0.031457917647463
812 => 0.030906643442475
813 => 0.031080085529585
814 => 0.031137187168084
815 => 0.030897271927596
816 => 0.031241248753287
817 => 0.031187640329365
818 => 0.031396199346967
819 => 0.031265900727349
820 => 0.031271248228148
821 => 0.031654428685851
822 => 0.031765667602888
823 => 0.031709090591875
824 => 0.031748715191042
825 => 0.032661847354353
826 => 0.032532029161053
827 => 0.032463065833235
828 => 0.032482169146345
829 => 0.032715493991845
830 => 0.032780812209521
831 => 0.032504054331399
901 => 0.032634574946639
902 => 0.033190315160802
903 => 0.033384792783587
904 => 0.034005472000962
905 => 0.033741796437728
906 => 0.034225784345655
907 => 0.035713398170987
908 => 0.03690180702971
909 => 0.035808897130155
910 => 0.037991258656243
911 => 0.03969054014547
912 => 0.039625318891612
913 => 0.039329009858877
914 => 0.037394423061127
915 => 0.035614187446774
916 => 0.037103430130978
917 => 0.037107226516845
918 => 0.036979299249528
919 => 0.036184753979157
920 => 0.036951650796396
921 => 0.037012524280788
922 => 0.036978451317095
923 => 0.036369275321211
924 => 0.03543917617004
925 => 0.035620915317836
926 => 0.035918607749304
927 => 0.035355013871388
928 => 0.035174911478037
929 => 0.03550975609316
930 => 0.036588695210731
1001 => 0.036384728020423
1002 => 0.036379401612788
1003 => 0.037252059748475
1004 => 0.036627424854735
1005 => 0.035623207630499
1006 => 0.035369629537382
1007 => 0.034469598137486
1008 => 0.035091253031196
1009 => 0.03511362528411
1010 => 0.034773151251984
1011 => 0.035650835221747
1012 => 0.035642747209452
1013 => 0.036475977512723
1014 => 0.038068800905567
1015 => 0.037597724650224
1016 => 0.037049914218211
1017 => 0.037109476401307
1018 => 0.037762726537869
1019 => 0.037367756593053
1020 => 0.037509790539037
1021 => 0.037762511552481
1022 => 0.037914984414601
1023 => 0.037087537902872
1024 => 0.036894620539646
1025 => 0.036499979319279
1026 => 0.036397024791212
1027 => 0.036718451830742
1028 => 0.036633767162011
1029 => 0.035111744982882
1030 => 0.034952685196711
1031 => 0.034957563333268
1101 => 0.034557599938062
1102 => 0.033947559758159
1103 => 0.035550708927338
1104 => 0.035421953612995
1105 => 0.035279817710829
1106 => 0.035297228547828
1107 => 0.035993101266402
1108 => 0.035589459947215
1109 => 0.036662606549786
1110 => 0.036441999870037
1111 => 0.036215735461378
1112 => 0.036184458827918
1113 => 0.036097366334557
1114 => 0.03579869376913
1115 => 0.035438028698939
1116 => 0.035199886379326
1117 => 0.032470034525974
1118 => 0.032976679151139
1119 => 0.033559527610279
1120 => 0.033760724562756
1121 => 0.033416563253139
1122 => 0.035812283355322
1123 => 0.036250004503724
1124 => 0.03492411859337
1125 => 0.034676099475108
1126 => 0.035828543447425
1127 => 0.035133478851572
1128 => 0.035446466396525
1129 => 0.03476995851937
1130 => 0.036144570297045
1201 => 0.036134098058404
1202 => 0.035599343029873
1203 => 0.036051314318143
1204 => 0.035972773184339
1205 => 0.035369036074171
1206 => 0.036163709840304
1207 => 0.036164103988578
1208 => 0.035649413900194
1209 => 0.035048368557109
1210 => 0.034940915845823
1211 => 0.03485996466211
1212 => 0.035426557367729
1213 => 0.035934562615898
1214 => 0.036879834437559
1215 => 0.037117498232629
1216 => 0.038045115846963
1217 => 0.037492764722509
1218 => 0.037737614821835
1219 => 0.038003434240814
1220 => 0.038130877845458
1221 => 0.037923215330692
1222 => 0.039364187308394
1223 => 0.039485849493553
1224 => 0.039526641771863
1225 => 0.039040754128519
1226 => 0.039472336079227
1227 => 0.039270413176983
1228 => 0.039795760472825
1229 => 0.039878141636784
1230 => 0.039808367721706
1231 => 0.039834516803444
]
'min_raw' => 0.017863113104695
'max_raw' => 0.039878141636784
'avg_raw' => 0.028870627370739
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.017863'
'max' => '$0.039878'
'avg' => '$0.02887'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.002754455796749
'max_diff' => -0.0038054298747947
'year' => 2031
]
6 => [
'items' => [
101 => 0.038604901425351
102 => 0.038541139381259
103 => 0.037671739385717
104 => 0.038026026310181
105 => 0.03736370388631
106 => 0.037573733149596
107 => 0.037666312047621
108 => 0.037617954085099
109 => 0.038046057161322
110 => 0.037682082090852
111 => 0.036721492036839
112 => 0.035760640270709
113 => 0.035748577559478
114 => 0.035495602249898
115 => 0.035312747435811
116 => 0.035347971760127
117 => 0.035472106873399
118 => 0.035305532477363
119 => 0.035341079570293
120 => 0.035931398161981
121 => 0.036049782345584
122 => 0.035647466634014
123 => 0.034032110998176
124 => 0.033635698673329
125 => 0.033920631991231
126 => 0.03378445221733
127 => 0.02726668970777
128 => 0.028797941330054
129 => 0.027888123612485
130 => 0.028307409475441
131 => 0.027378721181959
201 => 0.027821939912332
202 => 0.027740093596589
203 => 0.03020230089219
204 => 0.030163856911925
205 => 0.030182258010868
206 => 0.029303925614515
207 => 0.030703132971228
208 => 0.031392432829014
209 => 0.03126486177046
210 => 0.031296968657487
211 => 0.030745265963147
212 => 0.030187599698912
213 => 0.029569061987651
214 => 0.030718228601601
215 => 0.030590460891058
216 => 0.030883514049672
217 => 0.031628830742945
218 => 0.031738581457212
219 => 0.031886087530169
220 => 0.031833217103211
221 => 0.033092805170176
222 => 0.032940260744237
223 => 0.033307848920724
224 => 0.032551692152709
225 => 0.03169602899464
226 => 0.031858662587253
227 => 0.031842999664467
228 => 0.031643592680344
229 => 0.031463576971166
301 => 0.031163901534496
302 => 0.032112118959739
303 => 0.032073623063922
304 => 0.032696826870608
305 => 0.032586669544298
306 => 0.031851011959126
307 => 0.031877286113699
308 => 0.032053992430132
309 => 0.032665575008902
310 => 0.032847134357999
311 => 0.032763028833608
312 => 0.032962100371393
313 => 0.033119438398058
314 => 0.032981859605123
315 => 0.03492968518508
316 => 0.034120812202356
317 => 0.034515051266033
318 => 0.034609074959729
319 => 0.034368235245433
320 => 0.03442046475564
321 => 0.034499578231915
322 => 0.034979939767845
323 => 0.036240547431858
324 => 0.036798861985002
325 => 0.038478578864893
326 => 0.036752501733478
327 => 0.036650083459717
328 => 0.036952651192375
329 => 0.03793882281696
330 => 0.038738022292295
331 => 0.039003162865188
401 => 0.039038205568889
402 => 0.039535626909848
403 => 0.039820739546126
404 => 0.039475226875575
405 => 0.039182441063968
406 => 0.038133718628703
407 => 0.038255111106161
408 => 0.039091384896721
409 => 0.040272670882168
410 => 0.041286337149541
411 => 0.040931386552543
412 => 0.043639409051566
413 => 0.043907898421064
414 => 0.0438708018715
415 => 0.044482460611792
416 => 0.043268442574448
417 => 0.042749426342992
418 => 0.039245744679698
419 => 0.040230136313766
420 => 0.041661007365177
421 => 0.041471626216031
422 => 0.040432489411204
423 => 0.041285548871092
424 => 0.041003500736018
425 => 0.040781037669696
426 => 0.041800184103102
427 => 0.040679590735344
428 => 0.041649828589124
429 => 0.040405488505826
430 => 0.040933007936971
501 => 0.040633562394609
502 => 0.040827340359183
503 => 0.03969451833782
504 => 0.040305761602847
505 => 0.039669088608413
506 => 0.039668786742517
507 => 0.039654732150877
508 => 0.040403775105388
509 => 0.040428201369243
510 => 0.039874657494118
511 => 0.039794883173733
512 => 0.040089850647613
513 => 0.039744520987803
514 => 0.039906098562149
515 => 0.039749415007928
516 => 0.039714142239612
517 => 0.039433082820506
518 => 0.039311994694865
519 => 0.039359476468985
520 => 0.03919739669538
521 => 0.039099737769101
522 => 0.039635305332401
523 => 0.039349173188064
524 => 0.039591451477568
525 => 0.03931534478872
526 => 0.038358238711213
527 => 0.037807796884826
528 => 0.035999912228195
529 => 0.036512626074142
530 => 0.036852555884445
531 => 0.036740209084168
601 => 0.036981573483604
602 => 0.036996391297449
603 => 0.036917921270773
604 => 0.036827063032516
605 => 0.036782838266908
606 => 0.037112453437079
607 => 0.037303806137699
608 => 0.036886672388583
609 => 0.036788943787487
610 => 0.037210689038428
611 => 0.037467953397868
612 => 0.039367448883618
613 => 0.039226728122744
614 => 0.039579909617483
615 => 0.039540146801187
616 => 0.039910337273898
617 => 0.040515442242613
618 => 0.039285094651205
619 => 0.039498640450854
620 => 0.039446283952273
621 => 0.040017898475174
622 => 0.040019682993321
623 => 0.039676971532578
624 => 0.039862760975305
625 => 0.039759058405242
626 => 0.039946462965589
627 => 0.039224848711189
628 => 0.040103696979603
629 => 0.040601947316063
630 => 0.040608865522468
701 => 0.04084503222759
702 => 0.041084991277848
703 => 0.041545571778789
704 => 0.041072145937657
705 => 0.040220498936538
706 => 0.040281985099216
707 => 0.039782664774065
708 => 0.039791058438941
709 => 0.039746252398013
710 => 0.039880718699679
711 => 0.039254356502709
712 => 0.039401362458383
713 => 0.039195553259573
714 => 0.03949819306185
715 => 0.039172602662752
716 => 0.039446258704384
717 => 0.039564359580111
718 => 0.040000154354073
719 => 0.039108235420304
720 => 0.037289552336744
721 => 0.037671861570309
722 => 0.037106396184124
723 => 0.037158732158494
724 => 0.03726445915593
725 => 0.036921763365519
726 => 0.036987138922744
727 => 0.036984803247799
728 => 0.036964675662958
729 => 0.036875527252333
730 => 0.036746244419451
731 => 0.037261267434496
801 => 0.037348779880634
802 => 0.037543309207901
803 => 0.038122096535344
804 => 0.038064262032587
805 => 0.038158592506114
806 => 0.037952669612049
807 => 0.037168284330948
808 => 0.037210880225504
809 => 0.036679708737848
810 => 0.037529725958725
811 => 0.037328430661142
812 => 0.037198654273287
813 => 0.037163243583491
814 => 0.037743465612769
815 => 0.037917077137795
816 => 0.037808894086035
817 => 0.037587007490671
818 => 0.038013095348653
819 => 0.038127098484245
820 => 0.03815261958203
821 => 0.03890756557213
822 => 0.038194812676473
823 => 0.038366379382612
824 => 0.039704893848034
825 => 0.038491045930267
826 => 0.039134048244347
827 => 0.039102576627095
828 => 0.039431514852967
829 => 0.039075594091586
830 => 0.039080006155991
831 => 0.039372081016359
901 => 0.038961914550951
902 => 0.038860351565931
903 => 0.038720043029535
904 => 0.039026401585671
905 => 0.039210049684669
906 => 0.040690118487925
907 => 0.041646310434166
908 => 0.041604799620003
909 => 0.041984130756466
910 => 0.041813238605214
911 => 0.041261382769751
912 => 0.042203333389238
913 => 0.041905260800344
914 => 0.041929833542414
915 => 0.041928918943727
916 => 0.042127111157383
917 => 0.041986673809958
918 => 0.041709857382586
919 => 0.041893621045557
920 => 0.042439333427872
921 => 0.044133241407076
922 => 0.045081174753535
923 => 0.044076174629359
924 => 0.044769410257528
925 => 0.044353715905738
926 => 0.044278171876182
927 => 0.044713575080382
928 => 0.045149740400253
929 => 0.045121958554972
930 => 0.044805324930082
1001 => 0.044626466629663
1002 => 0.045980841602365
1003 => 0.046978722011076
1004 => 0.046910673257077
1005 => 0.047211018326588
1006 => 0.048092840739996
1007 => 0.04817346353012
1008 => 0.048163306911658
1009 => 0.047963474914218
1010 => 0.048831743599328
1011 => 0.049556068612181
1012 => 0.047917219580512
1013 => 0.048541271837663
1014 => 0.048821429001605
1015 => 0.049232782837159
1016 => 0.049926805708644
1017 => 0.050680698627553
1018 => 0.050787307352302
1019 => 0.050711663360396
1020 => 0.050214450714646
1021 => 0.051039369342329
1022 => 0.051522587327703
1023 => 0.051810332579747
1024 => 0.052540006662685
1025 => 0.048823159156873
1026 => 0.046192189752952
1027 => 0.045781325888871
1028 => 0.046616833712904
1029 => 0.046837150463051
1030 => 0.04674834105732
1031 => 0.043786945795934
1101 => 0.045765734755695
1102 => 0.047894745295096
1103 => 0.047976529260583
1104 => 0.049042356452118
1105 => 0.049389433475415
1106 => 0.050247564065765
1107 => 0.050193887763694
1108 => 0.050402828906604
1109 => 0.050354796956206
1110 => 0.051944303174113
1111 => 0.053697764576423
1112 => 0.053637047783727
1113 => 0.053384966961131
1114 => 0.053759349968853
1115 => 0.05556911004838
1116 => 0.055402496341072
1117 => 0.0555643473656
1118 => 0.057698156492971
1119 => 0.060472411889362
1120 => 0.059183491727051
1121 => 0.061980077602481
1122 => 0.063740380170417
1123 => 0.06678464144298
1124 => 0.066403484938352
1125 => 0.06758859351194
1126 => 0.065721135245305
1127 => 0.061433073589529
1128 => 0.060754471418461
1129 => 0.062113050149882
1130 => 0.065452983392906
1201 => 0.062007863766246
1202 => 0.062704806979786
1203 => 0.0625040872874
1204 => 0.062493391787997
1205 => 0.062901595498487
1206 => 0.062309474725948
1207 => 0.059897068178131
1208 => 0.061002659882595
1209 => 0.060575737830627
1210 => 0.061049439676432
1211 => 0.063605813168742
1212 => 0.062475579511459
1213 => 0.061284970166239
1214 => 0.06277825850251
1215 => 0.064679727704128
1216 => 0.06456073717876
1217 => 0.064329845825363
1218 => 0.06563136829538
1219 => 0.067781102105543
1220 => 0.0683621665161
1221 => 0.068791096384635
1222 => 0.068850238566676
1223 => 0.069459439798364
1224 => 0.066183611237102
1225 => 0.071382435293069
1226 => 0.072280128592918
1227 => 0.072111399458121
1228 => 0.073109147780195
1229 => 0.072815584913409
1230 => 0.072390258378039
1231 => 0.07397190169568
]
'min_raw' => 0.02726668970777
'max_raw' => 0.07397190169568
'avg_raw' => 0.050619295701725
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.027266'
'max' => '$0.073971'
'avg' => '$0.050619'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0094035766030758
'max_diff' => 0.034093760058896
'year' => 2032
]
7 => [
'items' => [
101 => 0.072158675264039
102 => 0.069585028623184
103 => 0.068173075175053
104 => 0.070032449374588
105 => 0.071167904315027
106 => 0.07191836780216
107 => 0.072145457599924
108 => 0.066437904483225
109 => 0.063361849908732
110 => 0.065333565623944
111 => 0.067739194877053
112 => 0.066170247845138
113 => 0.066231747598379
114 => 0.063994841442895
115 => 0.067937111436642
116 => 0.067362755858262
117 => 0.070342513614912
118 => 0.069631370512237
119 => 0.072061247289255
120 => 0.071421379299828
121 => 0.074077435549404
122 => 0.075137008297212
123 => 0.076916195850111
124 => 0.078224973456621
125 => 0.078993512700089
126 => 0.078947372486629
127 => 0.081992707853982
128 => 0.080196979983768
129 => 0.077941122558216
130 => 0.077900321214526
131 => 0.079068661740967
201 => 0.081517182965816
202 => 0.082152048894884
203 => 0.082506852339231
204 => 0.081963458513418
205 => 0.080014324611276
206 => 0.079172698474665
207 => 0.079889788327314
208 => 0.079012849057757
209 => 0.080526692262714
210 => 0.08260552232258
211 => 0.082176252135803
212 => 0.083611238010416
213 => 0.085096297425725
214 => 0.087219999087807
215 => 0.087775213342721
216 => 0.088692961393185
217 => 0.089637625601643
218 => 0.089941026285985
219 => 0.090520312332098
220 => 0.090517259208692
221 => 0.092262976699101
222 => 0.094188557151393
223 => 0.094915419194844
224 => 0.096586798384351
225 => 0.093724620094432
226 => 0.09589561520567
227 => 0.097853907139538
228 => 0.09551915076508
301 => 0.098737068498805
302 => 0.098862012952447
303 => 0.10074852586155
304 => 0.098836183616031
305 => 0.097700640895052
306 => 0.10097891018229
307 => 0.10256516142587
308 => 0.10208736964196
309 => 0.09845135057494
310 => 0.09633503152174
311 => 0.090796216352058
312 => 0.097357182179556
313 => 0.10055283724813
314 => 0.098443074600326
315 => 0.099507116162316
316 => 0.10531218190789
317 => 0.10752237509364
318 => 0.10706267036142
319 => 0.10714035289378
320 => 0.10833293301896
321 => 0.1136214900599
322 => 0.11045246409318
323 => 0.1128750657036
324 => 0.11416000486243
325 => 0.11535352796358
326 => 0.11242261244399
327 => 0.10860953441671
328 => 0.10740177254334
329 => 0.098233300283879
330 => 0.097756041486117
331 => 0.097488141660512
401 => 0.095799071155253
402 => 0.094471924413468
403 => 0.093416528050602
404 => 0.090646852826408
405 => 0.091581536909904
406 => 0.087167252678684
407 => 0.089991355297191
408 => 0.082946051077544
409 => 0.088813589784012
410 => 0.08562015523033
411 => 0.08776446064598
412 => 0.087756979366391
413 => 0.083808633243527
414 => 0.08153130959974
415 => 0.082982508860323
416 => 0.084538309664009
417 => 0.084790733110065
418 => 0.086807869462599
419 => 0.08737080886039
420 => 0.085665076203955
421 => 0.082800052807276
422 => 0.083465532398098
423 => 0.081517823677073
424 => 0.07810453906101
425 => 0.080556019662498
426 => 0.08139306292384
427 => 0.081762748913351
428 => 0.078406175511839
429 => 0.077351467274331
430 => 0.07678994945854
501 => 0.082366761331185
502 => 0.082672271674509
503 => 0.081109237563252
504 => 0.088174299959112
505 => 0.086575258747196
506 => 0.088361779555514
507 => 0.083405147100458
508 => 0.083594497135232
509 => 0.08124794789745
510 => 0.082561858674131
511 => 0.081633228886494
512 => 0.082455707667695
513 => 0.082948698057939
514 => 0.085294862250082
515 => 0.08884037921039
516 => 0.084944423557457
517 => 0.083246899888361
518 => 0.084300034025432
519 => 0.087104669012848
520 => 0.091353834585405
521 => 0.088838243044024
522 => 0.089954619852574
523 => 0.090198498521095
524 => 0.088343594450742
525 => 0.091422227544287
526 => 0.093072092029887
527 => 0.094764511600764
528 => 0.096233992093636
529 => 0.094088522007052
530 => 0.096384482540753
531 => 0.094534343642183
601 => 0.092874577786321
602 => 0.092877094966003
603 => 0.091835899599311
604 => 0.089818452377287
605 => 0.089446404156352
606 => 0.091381845986166
607 => 0.092933887046653
608 => 0.09306172058217
609 => 0.093921010260005
610 => 0.09442952903996
611 => 0.099413704381277
612 => 0.10141838093482
613 => 0.1038696614779
614 => 0.10482457339603
615 => 0.10769851591474
616 => 0.10537757392068
617 => 0.10487542352086
618 => 0.097904179029908
619 => 0.099045719924764
620 => 0.10087343703974
621 => 0.097934317411943
622 => 0.099798512323699
623 => 0.10016654388833
624 => 0.097834447251659
625 => 0.09908012082925
626 => 0.095771981123643
627 => 0.08891248761587
628 => 0.091429864121451
629 => 0.093283500569328
630 => 0.090638132806482
701 => 0.095379852131513
702 => 0.092609837590785
703 => 0.091731875965521
704 => 0.088306634649447
705 => 0.089923216701005
706 => 0.092109667072962
707 => 0.090758694945231
708 => 0.093562164959759
709 => 0.097532626158474
710 => 0.10036221325373
711 => 0.10057943381578
712 => 0.098760198881144
713 => 0.1016755344741
714 => 0.10169676951115
715 => 0.0984082590528
716 => 0.096394064707561
717 => 0.095936435514422
718 => 0.097079682962372
719 => 0.098467796419306
720 => 0.10065646445186
721 => 0.10197903070548
722 => 0.10542758205996
723 => 0.10636066117877
724 => 0.10738583223843
725 => 0.10875577692518
726 => 0.11040074676823
727 => 0.10680164639982
728 => 0.10694464536702
729 => 0.10359321293689
730 => 0.10001172674128
731 => 0.10272962832519
801 => 0.10628292309887
802 => 0.10546779335174
803 => 0.1053760746036
804 => 0.10553032009732
805 => 0.10491573888764
806 => 0.10213601085369
807 => 0.10074004883706
808 => 0.1025411959864
809 => 0.10349842553644
810 => 0.10498300508937
811 => 0.1047999993238
812 => 0.10862411681992
813 => 0.11011005324361
814 => 0.10972988711962
815 => 0.10979984683565
816 => 0.11249006375315
817 => 0.11548213825072
818 => 0.1182846108567
819 => 0.12113540636051
820 => 0.11769866111223
821 => 0.11595369382413
822 => 0.11775405464898
823 => 0.1167987578534
824 => 0.12228817660022
825 => 0.12266825204403
826 => 0.12815727384339
827 => 0.13336700915154
828 => 0.13009486774659
829 => 0.13318034971097
830 => 0.13651755001848
831 => 0.14295555085291
901 => 0.14078745866347
902 => 0.1391267340247
903 => 0.13755735726563
904 => 0.14082298116972
905 => 0.14502415415271
906 => 0.14592904657492
907 => 0.1473953179944
908 => 0.14585371288395
909 => 0.14771040643725
910 => 0.15426535055287
911 => 0.15249414679074
912 => 0.1499787527133
913 => 0.15515325154906
914 => 0.15702588256236
915 => 0.17016898771823
916 => 0.1867627008921
917 => 0.17989279467792
918 => 0.17562842220029
919 => 0.1766306508848
920 => 0.18269011320326
921 => 0.18463622018223
922 => 0.17934603055009
923 => 0.18121461496217
924 => 0.19151069878793
925 => 0.19703421742253
926 => 0.18953253720922
927 => 0.16883569902164
928 => 0.14975226899814
929 => 0.15481405397843
930 => 0.15424020464714
1001 => 0.1653020622553
1002 => 0.15245190416679
1003 => 0.15266826787293
1004 => 0.16395887298172
1005 => 0.16094673310867
1006 => 0.15606745228006
1007 => 0.14978789314793
1008 => 0.13817954730328
1009 => 0.127897711666
1010 => 0.14806275911603
1011 => 0.14719320560223
1012 => 0.14593396325363
1013 => 0.14873627083619
1014 => 0.1623434810082
1015 => 0.16202979077149
1016 => 0.16003425353173
1017 => 0.16154785094023
1018 => 0.15580211133621
1019 => 0.15728291926023
1020 => 0.14974924608533
1021 => 0.15315478099437
1022 => 0.15605698353479
1023 => 0.15663964366263
1024 => 0.157952406682
1025 => 0.14673499041327
1026 => 0.15177128099189
1027 => 0.15472962987022
1028 => 0.14136370201228
1029 => 0.1544654284512
1030 => 0.14653972015253
1031 => 0.14384961571582
1101 => 0.14747148694554
1102 => 0.14606004020493
1103 => 0.14484656118029
1104 => 0.14416941903433
1105 => 0.14682892153409
1106 => 0.14670485256369
1107 => 0.14235339028687
1108 => 0.13667708513506
1109 => 0.13858223946238
1110 => 0.13789007903435
1111 => 0.1353816003527
1112 => 0.13707201210926
1113 => 0.12962829423117
1114 => 0.11682176451271
1115 => 0.12528215031934
1116 => 0.12495643466891
1117 => 0.12479219406794
1118 => 0.13114994017373
1119 => 0.13053878958382
1120 => 0.12942954527872
1121 => 0.13536122821115
1122 => 0.13319608414842
1123 => 0.13986854797766
1124 => 0.1442634642035
1125 => 0.14314877128798
1126 => 0.14728221124086
1127 => 0.13862613037021
1128 => 0.14150133321375
1129 => 0.14209390853495
1130 => 0.13528803216452
1201 => 0.13063878137855
1202 => 0.13032872935647
1203 => 0.12226756919983
1204 => 0.1265737758881
1205 => 0.13036305957083
1206 => 0.12854828674709
1207 => 0.12797378388589
1208 => 0.13090879440929
1209 => 0.13113686986362
1210 => 0.12593672533448
1211 => 0.12701800004925
1212 => 0.1315270953568
1213 => 0.12690438241664
1214 => 0.11792320628978
1215 => 0.11569575043585
1216 => 0.11539856676478
1217 => 0.10935752982715
1218 => 0.115844599687
1219 => 0.11301281985051
1220 => 0.12195837842405
1221 => 0.11684872334284
1222 => 0.11662845632483
1223 => 0.11629549042095
1224 => 0.11109572037665
1225 => 0.11223413955373
1226 => 0.11601841828447
1227 => 0.11736869156855
1228 => 0.11722784700256
1229 => 0.11599987325418
1230 => 0.11656203334794
1231 => 0.11475111981637
]
'min_raw' => 0.063361849908732
'max_raw' => 0.19703421742253
'avg_raw' => 0.13019803366563
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.063361'
'max' => '$0.197034'
'avg' => '$0.130198'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.036095160200961
'max_diff' => 0.12306231572685
'year' => 2033
]
8 => [
'items' => [
101 => 0.11411164855747
102 => 0.11209330136394
103 => 0.1091268885721
104 => 0.10953938646488
105 => 0.10366214652011
106 => 0.10045991426947
107 => 0.099573578587239
108 => 0.098388333470437
109 => 0.099707455176999
110 => 0.10364549703779
111 => 0.098895383051489
112 => 0.090751645803738
113 => 0.091241098288581
114 => 0.092340752702276
115 => 0.090291553977297
116 => 0.088352159360318
117 => 0.090038305631723
118 => 0.086587696802859
119 => 0.092757742293766
120 => 0.092590859854589
121 => 0.094890671260546
122 => 0.096328790529571
123 => 0.09301439121111
124 => 0.092180828745605
125 => 0.092655663809258
126 => 0.084807697915249
127 => 0.094249325015691
128 => 0.094330976598928
129 => 0.093631826171141
130 => 0.098659201124594
131 => 0.10926853035395
201 => 0.10527687393859
202 => 0.1037311839261
203 => 0.10079282608248
204 => 0.10470801344668
205 => 0.10440738814355
206 => 0.10304784651402
207 => 0.10222559149445
208 => 0.10374062157972
209 => 0.10203786250079
210 => 0.10173200018153
211 => 0.09987880730826
212 => 0.099217301767407
213 => 0.098727549400254
214 => 0.098188380166092
215 => 0.099377653144051
216 => 0.096682604114106
217 => 0.093432639182907
218 => 0.093162439763986
219 => 0.093908484115803
220 => 0.093578415026594
221 => 0.093160859520173
222 => 0.092363632343941
223 => 0.092127112070816
224 => 0.092895688215148
225 => 0.09202801055897
226 => 0.093308316205508
227 => 0.092960143912192
228 => 0.091015281784523
301 => 0.088591263493263
302 => 0.088569684645921
303 => 0.088047433881256
304 => 0.087382269011527
305 => 0.087197235361679
306 => 0.089896303095789
307 => 0.095483292529099
308 => 0.094386432818014
309 => 0.095179026369977
310 => 0.099077802186967
311 => 0.10031710577891
312 => 0.099437477443863
313 => 0.098233387925739
314 => 0.098286361753679
315 => 0.10240110013979
316 => 0.10265773132569
317 => 0.10330615554011
318 => 0.10413956390029
319 => 0.099579410491361
320 => 0.098071578938206
321 => 0.097357084697011
322 => 0.095156718978202
323 => 0.097529624760838
324 => 0.096147034179252
325 => 0.096333592884728
326 => 0.096212096283047
327 => 0.096278441643129
328 => 0.092756017640305
329 => 0.094039403813779
330 => 0.091905525383537
331 => 0.089048501704537
401 => 0.089038923959363
402 => 0.089738176457256
403 => 0.089322233709757
404 => 0.088202942471101
405 => 0.088361932508647
406 => 0.086969012482571
407 => 0.088531058219444
408 => 0.088575852101909
409 => 0.087974379408006
410 => 0.090380926386432
411 => 0.091366890647049
412 => 0.090970988435129
413 => 0.091339113092466
414 => 0.094432012291034
415 => 0.094936289813054
416 => 0.095160256577631
417 => 0.094860170783007
418 => 0.091395645612101
419 => 0.091549312035729
420 => 0.090421809778419
421 => 0.089469189184252
422 => 0.089507289012182
423 => 0.089997059829592
424 => 0.092135917713902
425 => 0.096637018038874
426 => 0.096807831505945
427 => 0.097014862411015
428 => 0.096172763674697
429 => 0.095918778638024
430 => 0.096253850460496
501 => 0.097944227085943
502 => 0.10229233469937
503 => 0.10075542306844
504 => 0.099505889989043
505 => 0.10060206737138
506 => 0.10043331945549
507 => 0.099008917223494
508 => 0.098968938996961
509 => 0.096235055704826
510 => 0.095224401299234
511 => 0.09437982283175
512 => 0.093457565193537
513 => 0.092910819951248
514 => 0.093750869134672
515 => 0.093942998322091
516 => 0.092106216100987
517 => 0.091855869471394
518 => 0.093355825482845
519 => 0.092695750766202
520 => 0.093374653981335
521 => 0.09353216535077
522 => 0.093506802392496
523 => 0.092817608579222
524 => 0.093256880163748
525 => 0.092217871913183
526 => 0.091088106494687
527 => 0.09036738654456
528 => 0.089738462798445
529 => 0.090087426246052
530 => 0.08884343527354
531 => 0.088445457524842
601 => 0.093108064834834
602 => 0.096552382986201
603 => 0.096502301236181
604 => 0.096197441462911
605 => 0.095744481678379
606 => 0.097911090256392
607 => 0.097156287150518
608 => 0.097705469475952
609 => 0.097845259426884
610 => 0.098268361506317
611 => 0.098419584132861
612 => 0.097962484324576
613 => 0.096428401537932
614 => 0.092605613089828
615 => 0.090826094747816
616 => 0.09023882405473
617 => 0.090260170229038
618 => 0.089671347448108
619 => 0.089844782146278
620 => 0.089611033937907
621 => 0.089168371381018
622 => 0.090060093080554
623 => 0.090162855699464
624 => 0.089954717199511
625 => 0.090003741350973
626 => 0.088280443468482
627 => 0.088411462063682
628 => 0.087681933876573
629 => 0.087545156136083
630 => 0.085700972406357
701 => 0.082433733610442
702 => 0.084244101061923
703 => 0.08205743175672
704 => 0.081229306957392
705 => 0.085149520957578
706 => 0.08475604020177
707 => 0.0840825721898
708 => 0.083086372637065
709 => 0.082716872532549
710 => 0.080471906867028
711 => 0.080339262319083
712 => 0.081451927922087
713 => 0.080938471030786
714 => 0.080217383094069
715 => 0.077605675682792
716 => 0.074669251845908
717 => 0.074757884023842
718 => 0.075691905812246
719 => 0.078407700132033
720 => 0.077346592307574
721 => 0.076576746406119
722 => 0.076432577410259
723 => 0.078237154231679
724 => 0.080791008504521
725 => 0.081989219790069
726 => 0.080801828796308
727 => 0.079437817956347
728 => 0.079520838975958
729 => 0.080073140625357
730 => 0.080131179719584
731 => 0.079243348885349
801 => 0.079493268064687
802 => 0.079113617978184
803 => 0.076783706098091
804 => 0.076741565380411
805 => 0.076169767430132
806 => 0.076152453615444
807 => 0.075179682660336
808 => 0.075043585279268
809 => 0.073112089504925
810 => 0.074383405872706
811 => 0.073530673600304
812 => 0.072245404926585
813 => 0.072023824122789
814 => 0.072017163136261
815 => 0.073336846683352
816 => 0.074367984602101
817 => 0.073545507243268
818 => 0.073358245091716
819 => 0.075357714952556
820 => 0.075103264187192
821 => 0.074882911465418
822 => 0.080562338865307
823 => 0.076066628907048
824 => 0.074106242759094
825 => 0.071679892633769
826 => 0.072469924469294
827 => 0.072636395785022
828 => 0.066801461116096
829 => 0.064434228847608
830 => 0.063621883940329
831 => 0.063154367961319
901 => 0.06336742086365
902 => 0.06123663417336
903 => 0.062668558069194
904 => 0.060823476906318
905 => 0.060514143044948
906 => 0.063813376725867
907 => 0.064272445818723
908 => 0.06231391444701
909 => 0.063571608645077
910 => 0.063115551245601
911 => 0.060855105527151
912 => 0.060768773127419
913 => 0.05963456092441
914 => 0.05785973845346
915 => 0.057048596959392
916 => 0.056626147426627
917 => 0.056800458337223
918 => 0.056712321406824
919 => 0.056137168317853
920 => 0.056745288508634
921 => 0.0551917927138
922 => 0.054573178170931
923 => 0.054293764333665
924 => 0.052914947399869
925 => 0.055109258304213
926 => 0.055541565195569
927 => 0.055974723865047
928 => 0.059745074352874
929 => 0.059556718297402
930 => 0.061259365305749
1001 => 0.061193203573972
1002 => 0.060707581066139
1003 => 0.058658819586615
1004 => 0.059475419396691
1005 => 0.056962052109063
1006 => 0.058845237773317
1007 => 0.057985830479865
1008 => 0.058554671302915
1009 => 0.057531844212762
1010 => 0.058097918955948
1011 => 0.055644081197038
1012 => 0.053352722024197
1013 => 0.054274831844292
1014 => 0.055277270674785
1015 => 0.057450813475957
1016 => 0.056156269314917
1017 => 0.056621836347361
1018 => 0.055062264723654
1019 => 0.051844422994335
1020 => 0.051862635629067
1021 => 0.051367640783504
1022 => 0.050939892966506
1023 => 0.056304963284409
1024 => 0.055637731981167
1025 => 0.054574586224525
1026 => 0.055997649067523
1027 => 0.056373929470256
1028 => 0.056384641644334
1029 => 0.057422871560017
1030 => 0.05797697505213
1031 => 0.058074638194237
1101 => 0.059708315399007
1102 => 0.060255902449322
1103 => 0.062511336012151
1104 => 0.05792996324213
1105 => 0.057835612884788
1106 => 0.056017674480062
1107 => 0.054864709203316
1108 => 0.056096618998966
1109 => 0.057187922905455
1110 => 0.056051584334434
1111 => 0.056199966162393
1112 => 0.054674524473071
1113 => 0.055219798098301
1114 => 0.055689461200639
1115 => 0.055430140841049
1116 => 0.055041925711496
1117 => 0.057098448430188
1118 => 0.056982411358822
1119 => 0.058897492593721
1120 => 0.060390435365098
1121 => 0.063066055706848
1122 => 0.060273906396989
1123 => 0.06017214937835
1124 => 0.061166840557891
1125 => 0.060255750167285
1126 => 0.060831527844377
1127 => 0.062973289021581
1128 => 0.063018541060312
1129 => 0.062260511107605
1130 => 0.062214384916093
1201 => 0.062359972860449
1202 => 0.063212685997902
1203 => 0.062914721826448
1204 => 0.063259533509184
1205 => 0.06369072579839
1206 => 0.065474319928287
1207 => 0.065904338434676
1208 => 0.064859616403184
1209 => 0.064953943105371
1210 => 0.064563188387332
1211 => 0.064185724225849
1212 => 0.06503420853665
1213 => 0.066584830291639
1214 => 0.066575183954178
1215 => 0.066934898061556
1216 => 0.06715899697042
1217 => 0.066197000403149
1218 => 0.06557077601145
1219 => 0.065810910290921
1220 => 0.066194890233239
1221 => 0.06568639077078
1222 => 0.062547696528616
1223 => 0.063499775861124
1224 => 0.063341303305894
1225 => 0.063115619116325
1226 => 0.064072942247373
1227 => 0.063980606095978
1228 => 0.061214779876062
1229 => 0.06139183909696
1230 => 0.061225547433723
1231 => 0.061762869817714
]
'min_raw' => 0.050939892966506
'max_raw' => 0.11411164855747
'avg_raw' => 0.082525770761988
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.050939'
'max' => '$0.114111'
'avg' => '$0.082525'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.012421956942226
'max_diff' => -0.082922568865062
'year' => 2034
]
9 => [
'items' => [
101 => 0.060226732995208
102 => 0.060699238335771
103 => 0.06099558925591
104 => 0.061170142224547
105 => 0.061800747239355
106 => 0.061726753019283
107 => 0.061796147654742
108 => 0.06273116841815
109 => 0.067460182579089
110 => 0.067717572385887
111 => 0.066450090841313
112 => 0.066956424718403
113 => 0.065984374397438
114 => 0.066636918290073
115 => 0.067083372248596
116 => 0.06506593265819
117 => 0.06494647297872
118 => 0.063970410660303
119 => 0.064494891263225
120 => 0.063660404912487
121 => 0.063865158673865
122 => 0.06329264930694
123 => 0.064323052181926
124 => 0.06547520270458
125 => 0.065766281426405
126 => 0.065000578626552
127 => 0.064446159337185
128 => 0.063472781702123
129 => 0.065091530402366
130 => 0.065564901852789
131 => 0.065089043983657
201 => 0.064978777317679
202 => 0.064769822184899
203 => 0.065023108136893
204 => 0.065562323770208
205 => 0.065308039635286
206 => 0.065475998786312
207 => 0.064835911701325
208 => 0.066197318864041
209 => 0.06835956107891
210 => 0.068366513041193
211 => 0.068112227535585
212 => 0.068008179385348
213 => 0.068269091745437
214 => 0.0684106259976
215 => 0.069254368726984
216 => 0.070159738291806
217 => 0.074384703007143
218 => 0.073198349821545
219 => 0.076946989861268
220 => 0.0799116774327
221 => 0.080800657605297
222 => 0.079982837676257
223 => 0.077185119876776
224 => 0.077047850494316
225 => 0.081228822052728
226 => 0.080047506086848
227 => 0.079906992311623
228 => 0.078412163144996
301 => 0.079295792320666
302 => 0.079102529657889
303 => 0.078797455089963
304 => 0.080483358003
305 => 0.083639217754614
306 => 0.083147347416859
307 => 0.082780189026934
308 => 0.081171407840482
309 => 0.082140253449013
310 => 0.08179526608483
311 => 0.08327755073575
312 => 0.08239947814517
313 => 0.08003855645655
314 => 0.080414541017162
315 => 0.080357711707202
316 => 0.081527254879223
317 => 0.081176187048828
318 => 0.08028916007888
319 => 0.083628431369068
320 => 0.083411597665486
321 => 0.08371901828208
322 => 0.083854354344803
323 => 0.08588690993458
324 => 0.086719582925188
325 => 0.086908614272048
326 => 0.087699589211885
327 => 0.086888934094983
328 => 0.090132132549892
329 => 0.09228867027653
330 => 0.094793599820437
331 => 0.098453975145673
401 => 0.099830310128327
402 => 0.099581687532807
403 => 0.10235694232911
404 => 0.10734401350763
405 => 0.10058971720381
406 => 0.10770200761245
407 => 0.10545033858441
408 => 0.10011167182474
409 => 0.099767924624164
410 => 0.10338333173701
411 => 0.11140195674326
412 => 0.10939338212569
413 => 0.11140524205178
414 => 0.10905830058176
415 => 0.1089417551562
416 => 0.11129125634306
417 => 0.11678099393079
418 => 0.1141730253826
419 => 0.11043386296863
420 => 0.11319480230729
421 => 0.11080302113927
422 => 0.10541366875032
423 => 0.10939184620653
424 => 0.10673175223354
425 => 0.10750810907323
426 => 0.11309923094535
427 => 0.11242649236942
428 => 0.11329707838059
429 => 0.11176051685809
430 => 0.11032512610256
501 => 0.10764586266384
502 => 0.10685266484573
503 => 0.10707187618639
504 => 0.10685255621548
505 => 0.10535353294522
506 => 0.10502981901273
507 => 0.10449028160968
508 => 0.10465750681147
509 => 0.1036430186465
510 => 0.10555756741774
511 => 0.10591292454063
512 => 0.10730617347622
513 => 0.10745082520264
514 => 0.1113310036566
515 => 0.10919386656791
516 => 0.11062764263854
517 => 0.11049939221156
518 => 0.10022737692168
519 => 0.10164276999786
520 => 0.1038446774496
521 => 0.10285272112721
522 => 0.10145032696938
523 => 0.10031781849531
524 => 0.09860195235217
525 => 0.10101700099835
526 => 0.1041925331563
527 => 0.10753136193859
528 => 0.11154274595179
529 => 0.1106474517377
530 => 0.10745637190472
531 => 0.10759952141495
601 => 0.10848441535988
602 => 0.1073383973001
603 => 0.10700041420134
604 => 0.1084379816722
605 => 0.10844788140929
606 => 0.1071292491306
607 => 0.10566383065999
608 => 0.1056576905031
609 => 0.10539693344051
610 => 0.10910468868392
611 => 0.11114357917145
612 => 0.11137733468001
613 => 0.11112784556326
614 => 0.11122386402243
615 => 0.11003747857162
616 => 0.1127492039005
617 => 0.11523775122411
618 => 0.11457076738133
619 => 0.11357086378365
620 => 0.11277439240621
621 => 0.11438314403703
622 => 0.11431150885932
623 => 0.1152160159342
624 => 0.1151749822686
625 => 0.11487083055955
626 => 0.11457077824354
627 => 0.11576045176013
628 => 0.11541784489293
629 => 0.11507470586262
630 => 0.1143864880054
701 => 0.11448002824228
702 => 0.11348029729206
703 => 0.11301777600991
704 => 0.10606256567009
705 => 0.10420390619924
706 => 0.10478867830527
707 => 0.10498120046618
708 => 0.10417230948253
709 => 0.10533205136604
710 => 0.10515130682197
711 => 0.10585447811094
712 => 0.10541516721774
713 => 0.10543319669003
714 => 0.10672511635598
715 => 0.10710016613123
716 => 0.10690941278851
717 => 0.10704300989111
718 => 0.11012169873256
719 => 0.10968400763024
720 => 0.10945149295563
721 => 0.10951590110953
722 => 0.11030257211636
723 => 0.11052279704762
724 => 0.10958968853891
725 => 0.11002974790586
726 => 0.11190346483845
727 => 0.11255915972166
728 => 0.11465182303748
729 => 0.1137628224668
730 => 0.11539462148933
731 => 0.12041021536332
801 => 0.12441701880256
802 => 0.12073219677168
803 => 0.1280901810245
804 => 0.13381942720547
805 => 0.13359952919449
806 => 0.13260050260298
807 => 0.12607790814584
808 => 0.12007571947996
809 => 0.12509680516536
810 => 0.12510960494537
811 => 0.12467828923201
812 => 0.12199942437958
813 => 0.12458507054192
814 => 0.1247903097446
815 => 0.12467543036861
816 => 0.12262155096718
817 => 0.11948565674156
818 => 0.12009840296697
819 => 0.12110209378389
820 => 0.11920189767563
821 => 0.1185946698821
822 => 0.11972362188009
823 => 0.1233613404441
824 => 0.12267365082144
825 => 0.12265569246622
826 => 0.12559792029774
827 => 0.12349192014288
828 => 0.12010613165916
829 => 0.11925117541396
830 => 0.11621665671102
831 => 0.11831260958773
901 => 0.11838803920041
902 => 0.11724010722996
903 => 0.12019928001195
904 => 0.12017201071381
905 => 0.12298130485557
906 => 0.12835162013192
907 => 0.12676335364754
908 => 0.1249163725291
909 => 0.12511719058791
910 => 0.1273196690318
911 => 0.12598800028693
912 => 0.12646687765231
913 => 0.12731894419355
914 => 0.12783301709351
915 => 0.12504322340874
916 => 0.12439278904956
917 => 0.12306222862213
918 => 0.12271511024269
919 => 0.12379882394779
920 => 0.12351330367467
921 => 0.11838169963354
922 => 0.11784541845926
923 => 0.11786186543725
924 => 0.11651336092576
925 => 0.11445656786757
926 => 0.11986169721975
927 => 0.11942758968804
928 => 0.11894836857028
929 => 0.1190070704228
930 => 0.12135325387776
1001 => 0.11999234898878
1002 => 0.12361053768405
1003 => 0.12286674686101
1004 => 0.12210388060994
1005 => 0.12199842925657
1006 => 0.12170479083459
1007 => 0.12069779542761
1008 => 0.11948178796263
1009 => 0.11867887450548
1010 => 0.10947498838974
1011 => 0.11118317611628
1012 => 0.11314829038945
1013 => 0.11382663996185
1014 => 0.1126662760779
1015 => 0.12074361366625
1016 => 0.1222194210788
1017 => 0.11774910416164
1018 => 0.11691289038828
1019 => 0.12079843570201
1020 => 0.11845497688924
1021 => 0.11951023624914
1022 => 0.11722934270904
1023 => 0.1218639422898
1024 => 0.12182863440607
1025 => 0.12002567049198
1026 => 0.12154952324601
1027 => 0.12128471632982
1028 => 0.11924917451131
1029 => 0.12192847259618
1030 => 0.1219298014946
1031 => 0.1201944879271
1101 => 0.11816802158924
1102 => 0.11780573727103
1103 => 0.11753280470331
1104 => 0.11944311156855
1105 => 0.12115588673054
1106 => 0.12434293667405
1107 => 0.12514423675228
1108 => 0.1282717643032
1109 => 0.12640947392318
1110 => 0.12723500312794
1111 => 0.12813123185795
1112 => 0.12856091686884
1113 => 0.12786076820177
1114 => 0.13271910583004
1115 => 0.13312929838149
1116 => 0.13326683239584
1117 => 0.13162862828271
1118 => 0.13308373696161
1119 => 0.13240293979889
1120 => 0.1341741848854
1121 => 0.13445193873136
1122 => 0.13421669110521
1123 => 0.13430485455996
1124 => 0.13015912046372
1125 => 0.12994414228034
1126 => 0.1270128994958
1127 => 0.12820740259715
1128 => 0.12597433630319
1129 => 0.12668246462814
1130 => 0.12699460084648
1201 => 0.12683155859959
1202 => 0.12827493801028
1203 => 0.12704777064826
1204 => 0.12380907421491
1205 => 0.12056949540087
1206 => 0.12052882512776
1207 => 0.11967590120934
1208 => 0.11905939343713
1209 => 0.11917815470585
1210 => 0.11959668490708
1211 => 0.11903506770099
1212 => 0.11915491720662
1213 => 0.12114521755323
1214 => 0.12154435809357
1215 => 0.12018792258322
1216 => 0.11474163827646
1217 => 0.11340510644662
1218 => 0.11436577902133
1219 => 0.11390663940586
1220 => 0.091931548049231
1221 => 0.097094269802333
1222 => 0.094026755846104
1223 => 0.095440407406665
1224 => 0.092309269986245
1225 => 0.093803612880242
1226 => 0.093527662312386
1227 => 0.10182916611533
1228 => 0.10169954955179
1229 => 0.1017615901416
1230 => 0.09880023114409
1231 => 0.10351775643679
]
'min_raw' => 0.060226732995208
'max_raw' => 0.13445193873136
'avg_raw' => 0.097339335863282
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.060226'
'max' => '$0.134451'
'avg' => '$0.097339'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0092868400287017
'max_diff' => 0.020340290173885
'year' => 2035
]
10 => [
'items' => [
101 => 0.10584177903269
102 => 0.10541166430205
103 => 0.10551991491329
104 => 0.10365981076067
105 => 0.10177960001579
106 => 0.099694156937348
107 => 0.10356865240853
108 => 0.10313787465198
109 => 0.10412592383656
110 => 0.10663881110428
111 => 0.10700884329998
112 => 0.1075061703235
113 => 0.10732791398772
114 => 0.11157470309712
115 => 0.11106038891476
116 => 0.11229973811597
117 => 0.10975030277943
118 => 0.1068653747015
119 => 0.10741370521371
120 => 0.10736089657599
121 => 0.10668858200687
122 => 0.10608164647508
123 => 0.10507126981768
124 => 0.10826825106931
125 => 0.10813845946887
126 => 0.11023963461381
127 => 0.10986823149721
128 => 0.10738791058683
129 => 0.10747649573338
130 => 0.10807227341647
131 => 0.11013426678013
201 => 0.11074640680168
202 => 0.11046283915414
203 => 0.11113402274251
204 => 0.1116644988844
205 => 0.11120064237858
206 => 0.11776787231424
207 => 0.11504070057928
208 => 0.11636990510736
209 => 0.11668691255518
210 => 0.11587490464354
211 => 0.11605100008375
212 => 0.11631773669253
213 => 0.11793730914869
214 => 0.12218753590073
215 => 0.12406993239693
216 => 0.12973321513157
217 => 0.12391362557215
218 => 0.12356831521155
219 => 0.12458844344681
220 => 0.1279133899314
221 => 0.13060794676082
222 => 0.13150188671385
223 => 0.13162003563599
224 => 0.13329712641588
225 => 0.13425840357502
226 => 0.13309348348333
227 => 0.13210633567784
228 => 0.12857049476788
229 => 0.12897977798099
301 => 0.13179933345263
302 => 0.13578212162732
303 => 0.13919976821969
304 => 0.13800302750005
305 => 0.1471333144236
306 => 0.14803854507819
307 => 0.14791347147134
308 => 0.14997572161888
309 => 0.14588257504594
310 => 0.14413267558503
311 => 0.13231976823799
312 => 0.13563871336028
313 => 0.14046299501034
314 => 0.13982448324383
315 => 0.13632096095614
316 => 0.13919711048386
317 => 0.13824616550448
318 => 0.13749611574451
319 => 0.14093223909927
320 => 0.13715408032254
321 => 0.1404253049864
322 => 0.13622992551851
323 => 0.13800849411085
324 => 0.13699889255816
325 => 0.13765222849486
326 => 0.13383283995873
327 => 0.13589368930241
328 => 0.13374710185059
329 => 0.13374608408864
330 => 0.13369869805167
331 => 0.13622414866931
401 => 0.13630650352329
402 => 0.1344401917011
403 => 0.13417122701026
404 => 0.13516573044242
405 => 0.13400142738422
406 => 0.13454619745711
407 => 0.13401792791476
408 => 0.13389900331372
409 => 0.13295139185926
410 => 0.13254313478956
411 => 0.13270322290608
412 => 0.13215675963332
413 => 0.13182749574504
414 => 0.13363319917684
415 => 0.1326684846751
416 => 0.13348534284349
417 => 0.13255442986489
418 => 0.12932747990156
419 => 0.12747162685327
420 => 0.12137621751097
421 => 0.12310486803911
422 => 0.12425096512769
423 => 0.12387218004675
424 => 0.12468595697098
425 => 0.1247359162649
426 => 0.12447134909136
427 => 0.12416501419756
428 => 0.12401590731264
429 => 0.12512722787186
430 => 0.12577238686183
501 => 0.12436599130333
502 => 0.12403649250154
503 => 0.12545843606041
504 => 0.12632582080988
505 => 0.13273010245863
506 => 0.13225565258853
507 => 0.13344642865639
508 => 0.13331236554509
509 => 0.13456048856971
510 => 0.13660064221882
511 => 0.13245243941426
512 => 0.13317242398707
513 => 0.13299590039669
514 => 0.1349231386695
515 => 0.13492915529702
516 => 0.13377367967978
517 => 0.13440008175734
518 => 0.13405044130209
519 => 0.13468228886147
520 => 0.13224931602126
521 => 0.13521241431744
522 => 0.13689230011354
523 => 0.13691562532945
524 => 0.1377118778644
525 => 0.13852091655575
526 => 0.14007379587138
527 => 0.13847760759447
528 => 0.1356062202701
529 => 0.13581352516039
530 => 0.13413003182272
531 => 0.13415833164987
601 => 0.13400726495462
602 => 0.13446062747883
603 => 0.13234880360053
604 => 0.13284444444372
605 => 0.13215054436079
606 => 0.1331709155838
607 => 0.13207316482125
608 => 0.13299581527167
609 => 0.13339400061972
610 => 0.13486331312635
611 => 0.13185614616936
612 => 0.12572432917674
613 => 0.12701331144968
614 => 0.12510680542062
615 => 0.12528325981219
616 => 0.12563972576567
617 => 0.12448430298205
618 => 0.12470472123761
619 => 0.12469684634646
620 => 0.1246289847889
621 => 0.12432841469834
622 => 0.12389252860104
623 => 0.12562896465402
624 => 0.1259240189761
625 => 0.12657988818458
626 => 0.1285313100687
627 => 0.12833631700478
628 => 0.12865435878222
629 => 0.1279600753678
630 => 0.12531546562854
701 => 0.12545908066098
702 => 0.12366819890514
703 => 0.12653409131163
704 => 0.12585541016184
705 => 0.12541786000949
706 => 0.12529847039655
707 => 0.12725472947807
708 => 0.12784007285586
709 => 0.12747532614375
710 => 0.12672721999586
711 => 0.12816380495755
712 => 0.12854817448864
713 => 0.12863422065165
714 => 0.13117957376592
715 => 0.12877647761539
716 => 0.12935492674355
717 => 0.13386782171581
718 => 0.1297752487129
719 => 0.13194317590781
720 => 0.13183706715297
721 => 0.13294610534723
722 => 0.13174609365064
723 => 0.13176096923382
724 => 0.13274572001757
725 => 0.13136281514254
726 => 0.13102038844764
727 => 0.13054732842115
728 => 0.13158023768244
729 => 0.13219942007011
730 => 0.13718957537539
731 => 0.14041344328133
801 => 0.14027348667319
802 => 0.14155242808383
803 => 0.14097625326457
804 => 0.13911563278596
805 => 0.14229148506446
806 => 0.14128651252024
807 => 0.14136936123574
808 => 0.14136627760241
809 => 0.14203449648809
810 => 0.14156100216623
811 => 0.14062769625463
812 => 0.14124726827431
813 => 0.14308717567171
814 => 0.14879830468848
815 => 0.15199432814865
816 => 0.14860590006313
817 => 0.15094319238366
818 => 0.14954164985375
819 => 0.14928694788379
820 => 0.15075494018563
821 => 0.15222550201366
822 => 0.15213183358263
823 => 0.15106428120966
824 => 0.15046124796231
825 => 0.15502761774222
826 => 0.15839204120997
827 => 0.15816261008485
828 => 0.15917524445613
829 => 0.16214837028981
830 => 0.16242019565562
831 => 0.16238595190736
901 => 0.16171220437617
902 => 0.1646396328686
903 => 0.16708174522019
904 => 0.16155625128913
905 => 0.16366028704405
906 => 0.16460485648224
907 => 0.16599176465861
908 => 0.16833171122495
909 => 0.17087351383618
910 => 0.17123295259485
911 => 0.17097791359484
912 => 0.16930152644542
913 => 0.17208279719263
914 => 0.17371200036753
915 => 0.17468215357452
916 => 0.17714230068936
917 => 0.16461068982152
918 => 0.15574019278778
919 => 0.15435493658443
920 => 0.15717190954645
921 => 0.15791472285159
922 => 0.1576152957397
923 => 0.14763074485792
924 => 0.15430236999039
925 => 0.16148047766675
926 => 0.16175621801636
927 => 0.1653497288063
928 => 0.16651992322249
929 => 0.16941317042062
930 => 0.16923219702063
1001 => 0.16993665667175
1002 => 0.1697747135975
1003 => 0.17513384478696
1004 => 0.18104576232761
1005 => 0.18084105142192
1006 => 0.17999114332882
1007 => 0.18125340177794
1008 => 0.18735513423948
1009 => 0.18679338449269
1010 => 0.18733907652197
1011 => 0.1945333629727
1012 => 0.20388695873396
1013 => 0.19954127441719
1014 => 0.20897015894759
1015 => 0.21490514195579
1016 => 0.22516908137977
1017 => 0.22388398561292
1018 => 0.22787966191041
1019 => 0.22158339598268
1020 => 0.20712589672733
1021 => 0.20483794212908
1022 => 0.209418485175
1023 => 0.22067930329055
1024 => 0.2090638419387
1025 => 0.21141363464217
1026 => 0.21073689418549
1027 => 0.21070083356251
1028 => 0.2120771208723
1029 => 0.21008074434713
1030 => 0.20194714724233
1031 => 0.20567472686387
1101 => 0.20423532935892
1102 => 0.20583244820486
1103 => 0.21445143991448
1104 => 0.21064077822855
1105 => 0.20662655569545
1106 => 0.21166128157925
1107 => 0.21807221774885
1108 => 0.21767103288492
1109 => 0.21689256656662
1110 => 0.22128074044368
1111 => 0.22852871807427
1112 => 0.23048781730308
1113 => 0.23193398430177
1114 => 0.2321333862977
1115 => 0.23418735078341
1116 => 0.22314266607806
1117 => 0.24067086435306
1118 => 0.24369749998845
1119 => 0.24312861793019
1120 => 0.24649259605862
1121 => 0.24550282835735
1122 => 0.244068810248
1123 => 0.24940143112024
1124 => 0.24328801161053
1125 => 0.23461078227462
1126 => 0.2298502826448
1127 => 0.2361192925759
1128 => 0.23994755818252
1129 => 0.24247779822507
1130 => 0.24324344733314
1201 => 0.22400003351156
1202 => 0.21362890075038
1203 => 0.22027667794502
1204 => 0.22838742492754
1205 => 0.22309761046906
1206 => 0.22330496118088
1207 => 0.21576307590187
1208 => 0.22905471442629
1209 => 0.22711823449356
1210 => 0.23716469581014
1211 => 0.23476702718905
1212 => 0.24295952639134
1213 => 0.24080216679083
1214 => 0.2497572458762
1215 => 0.25332966937245
1216 => 0.25932832442595
1217 => 0.26374095950223
1218 => 0.26633214321929
1219 => 0.2661765782682
1220 => 0.27644413907775
1221 => 0.27038971718961
1222 => 0.26278393638043
1223 => 0.26264637180152
1224 => 0.26658551345734
1225 => 0.27484087371721
1226 => 0.27698136852199
1227 => 0.27817761310619
1228 => 0.27634552288392
1229 => 0.26977388184866
1230 => 0.26693628056862
1231 => 0.26935399907244
]
'min_raw' => 0.099694156937348
'max_raw' => 0.27817761310619
'avg_raw' => 0.18893588502177
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.099694'
'max' => '$0.278177'
'avg' => '$0.188935'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.03946742394214
'max_diff' => 0.14372567437484
'year' => 2036
]
11 => [
'items' => [
101 => 0.26639733709918
102 => 0.27150136515785
103 => 0.27851028584397
104 => 0.27706297143856
105 => 0.28190112650234
106 => 0.28690810800459
107 => 0.29406831643042
108 => 0.29594026005468
109 => 0.29903451168194
110 => 0.30221951301511
111 => 0.30324244960512
112 => 0.30519555295405
113 => 0.30518525913533
114 => 0.31107106753635
115 => 0.31756329647098
116 => 0.32001396259836
117 => 0.32564913422775
118 => 0.31599910029239
119 => 0.32331876188396
120 => 0.32992127986258
121 => 0.32204948573861
122 => 0.3328989200457
123 => 0.3333201789945
124 => 0.33968068897968
125 => 0.33323309358343
126 => 0.32940453201858
127 => 0.34045744580196
128 => 0.34580560261821
129 => 0.34419469426041
130 => 0.3319356021172
131 => 0.32480028467266
201 => 0.30612578262035
202 => 0.32824653697977
203 => 0.33902091115699
204 => 0.33190769909098
205 => 0.33549518950624
206 => 0.35506737396421
207 => 0.3625191946007
208 => 0.36096926800047
209 => 0.36123118008195
210 => 0.36525204723729
211 => 0.38308278653606
212 => 0.37239819423493
213 => 0.38056616470511
214 => 0.38489842679068
215 => 0.38892247325535
216 => 0.37904068695107
217 => 0.36618462816147
218 => 0.36211257468217
219 => 0.33120043033711
220 => 0.32959131897931
221 => 0.32868807601311
222 => 0.32299325687749
223 => 0.31851868897914
224 => 0.31496034645631
225 => 0.30562219306539
226 => 0.30877354571046
227 => 0.29389047822942
228 => 0.30341213738026
301 => 0.27965840231629
302 => 0.29944121872362
303 => 0.2886743311674
304 => 0.29590400658689
305 => 0.29587878293042
306 => 0.28256665831247
307 => 0.27488850264978
308 => 0.27978132227633
309 => 0.2850268133085
310 => 0.28587787658052
311 => 0.29267879262505
312 => 0.29457678210788
313 => 0.28882578536626
314 => 0.27916615895481
315 => 0.28140986985757
316 => 0.27484303391995
317 => 0.26333490652897
318 => 0.2716002445338
319 => 0.27442239432991
320 => 0.2756688164542
321 => 0.26435189488253
322 => 0.26079587242239
323 => 0.25890267590253
324 => 0.27770528649172
325 => 0.27873533594429
326 => 0.27346545731063
327 => 0.29728580844518
328 => 0.29189452935771
329 => 0.29791790899386
330 => 0.28120627661061
331 => 0.28184468347285
401 => 0.27393312888683
402 => 0.27836307080473
403 => 0.27523213064085
404 => 0.2780051752753
405 => 0.2796673267955
406 => 0.28757758317326
407 => 0.29953154114503
408 => 0.28639605465423
409 => 0.28067273508655
410 => 0.28422345035717
411 => 0.2936794730306
412 => 0.30800583142574
413 => 0.29952433891099
414 => 0.30328828126395
415 => 0.30411053522194
416 => 0.29785659664347
417 => 0.30823642306166
418 => 0.31379905636472
419 => 0.31950516710889
420 => 0.32445962318646
421 => 0.3172260209976
422 => 0.32496701223582
423 => 0.31872913976672
424 => 0.31313312330253
425 => 0.31314161014957
426 => 0.30963114727683
427 => 0.30282918311411
428 => 0.30157479656165
429 => 0.3081002738191
430 => 0.31333308861458
501 => 0.31376408830463
502 => 0.31666124344714
503 => 0.3183757500174
504 => 0.33518024516467
505 => 0.34193915212697
506 => 0.35020381562091
507 => 0.35342336782272
508 => 0.3631130656768
509 => 0.35528784770084
510 => 0.35359481256882
511 => 0.33009077505083
512 => 0.33393955987768
513 => 0.34010183573796
514 => 0.33019238871006
515 => 0.33647765200897
516 => 0.33771849612426
517 => 0.32985566949195
518 => 0.33405554492895
519 => 0.32290192094455
520 => 0.29977465966855
521 => 0.30826217031474
522 => 0.31451183501552
523 => 0.3055927929094
524 => 0.32157983067002
525 => 0.31224053324971
526 => 0.30928042433281
527 => 0.29773198409296
528 => 0.30318240334594
529 => 0.31055417342808
530 => 0.30599927657757
531 => 0.31545137146358
601 => 0.3288380586038
602 => 0.33837820905092
603 => 0.33911058334173
604 => 0.33297690574467
605 => 0.34280616323856
606 => 0.34287775864856
607 => 0.33179031604175
608 => 0.32499931918022
609 => 0.3234563904049
610 => 0.32731092899466
611 => 0.33199105042969
612 => 0.33937029750938
613 => 0.34382942197207
614 => 0.35545645363389
615 => 0.35860239502845
616 => 0.36205883083125
617 => 0.3666776949891
618 => 0.37222382566307
619 => 0.36008920748982
620 => 0.3605713384916
621 => 0.3492717500639
622 => 0.337196519304
623 => 0.346360114252
624 => 0.35834029566456
625 => 0.35559202881159
626 => 0.35528279264864
627 => 0.35580284209977
628 => 0.35373073864264
629 => 0.34435869150177
630 => 0.33965210809975
701 => 0.34572480146584
702 => 0.34895216772544
703 => 0.35395753133815
704 => 0.35334051462248
705 => 0.36623379375202
706 => 0.37124373214924
707 => 0.36996197551988
708 => 0.37019784958688
709 => 0.37926810374919
710 => 0.38935609181773
711 => 0.39880482387118
712 => 0.40841647994844
713 => 0.39682925339798
714 => 0.39094597435644
715 => 0.39701601657459
716 => 0.39379516673161
717 => 0.41230312529548
718 => 0.41358457619029
719 => 0.4320911964181
720 => 0.44965618274163
721 => 0.43862392954124
722 => 0.44902684740561
723 => 0.46027845123827
724 => 0.4819846205384
725 => 0.47467474635036
726 => 0.46907549728266
727 => 0.46378423396905
728 => 0.47479451296027
729 => 0.48895906098898
730 => 0.492009968968
731 => 0.49695360543058
801 => 0.49175597616929
802 => 0.49801594811443
803 => 0.52011639985184
804 => 0.51414466270631
805 => 0.505663835955
806 => 0.52311002005174
807 => 0.52942372625603
808 => 0.57373662291132
809 => 0.62968348541308
810 => 0.60652111697044
811 => 0.59214348743314
812 => 0.59552257141634
813 => 0.61595247168117
814 => 0.62251390723361
815 => 0.60467766353961
816 => 0.61097772634535
817 => 0.64569169181351
818 => 0.66431462052983
819 => 0.63902218194006
820 => 0.56924134698355
821 => 0.50490023029678
822 => 0.52196639176036
823 => 0.52003161867504
824 => 0.55732744391519
825 => 0.51400223875037
826 => 0.51473172409167
827 => 0.55279878750082
828 => 0.54264314761794
829 => 0.52619231164376
830 => 0.50502033960498
831 => 0.46588199112091
901 => 0.43121606441497
902 => 0.49920392977144
903 => 0.49627216938936
904 => 0.49202654589356
905 => 0.50147472155901
906 => 0.54735238067903
907 => 0.54629475214482
908 => 0.53956665901702
909 => 0.54466985835577
910 => 0.52529769612607
911 => 0.5302903434286
912 => 0.50489003833517
913 => 0.51637203704784
914 => 0.52615701553821
915 => 0.52812149483923
916 => 0.53254756701324
917 => 0.49472726488822
918 => 0.51170747019662
919 => 0.52168174998523
920 => 0.47661759103289
921 => 0.52079097645506
922 => 0.4940688975708
923 => 0.48499902264533
924 => 0.49721041436732
925 => 0.49245162313729
926 => 0.48836029388331
927 => 0.48607726186163
928 => 0.49504396022014
929 => 0.49462565302419
930 => 0.47995439414852
1001 => 0.46081633502222
1002 => 0.46723969585038
1003 => 0.46490602864218
1004 => 0.45644851763061
1005 => 0.46214785888863
1006 => 0.43705084435888
1007 => 0.39387273528973
1008 => 0.42239751672205
1009 => 0.4212993436659
1010 => 0.42074559501281
1011 => 0.44218117989215
1012 => 0.44012064300909
1013 => 0.43638074838949
1014 => 0.45637983153306
1015 => 0.44907989716003
1016 => 0.47157657481685
1017 => 0.48639434171552
1018 => 0.48263607672548
1019 => 0.49657225811416
1020 => 0.4673876771105
1021 => 0.47708162423776
1022 => 0.47907953330545
1023 => 0.45613304595144
1024 => 0.44045777232624
1025 => 0.43941241028665
1026 => 0.41223364600632
1027 => 0.42675232250555
1028 => 0.43952815700122
1029 => 0.4334095237226
1030 => 0.43147254721556
1031 => 0.44136814011108
1101 => 0.44213711242908
1102 => 0.42460446208657
1103 => 0.4282500552796
1104 => 0.44345278492401
1105 => 0.42786698549875
1106 => 0.39758632314135
1107 => 0.39007630021381
1108 => 0.38907432471809
1109 => 0.36870654691116
1110 => 0.3905781558564
1111 => 0.38103061242912
1112 => 0.41119118771876
1113 => 0.39396362886773
1114 => 0.39322098323794
1115 => 0.3920983654461
1116 => 0.37456697770537
1117 => 0.37840523744277
1118 => 0.39116419739338
1119 => 0.39571673804372
1120 => 0.39524187075603
1121 => 0.39110167152899
1122 => 0.39299703353388
1123 => 0.38689141212824
1124 => 0.38473539013239
1125 => 0.37793039165292
1126 => 0.3679289238169
1127 => 0.36931968926207
1128 => 0.34950416445251
1129 => 0.33870761484676
1130 => 0.33571927221213
1201 => 0.33172313554966
1202 => 0.33617064648147
1203 => 0.34944802956041
1204 => 0.33343268861325
1205 => 0.30597550990488
1206 => 0.30762573313001
1207 => 0.3113332947612
1208 => 0.30442427818945
1209 => 0.29788547383409
1210 => 0.30357043371111
1211 => 0.29193646513078
1212 => 0.31273920428219
1213 => 0.31217654848714
1214 => 0.31993052321003
1215 => 0.32477924273183
1216 => 0.31360451402567
1217 => 0.31079409997575
1218 => 0.31239503954478
1219 => 0.28593507460565
1220 => 0.31776817956814
1221 => 0.31804347358175
1222 => 0.31568623910135
1223 => 0.33263638475702
1224 => 0.36840647897351
1225 => 0.35494833068056
1226 => 0.34973692888685
1227 => 0.33983005026748
1228 => 0.35303037781554
1229 => 0.35201679861703
1230 => 0.34743300909291
1231 => 0.34466071888643
]
'min_raw' => 0.25890267590253
'max_raw' => 0.66431462052983
'avg_raw' => 0.46160864821618
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.2589026'
'max' => '$0.664314'
'avg' => '$0.4616086'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.15920851896518
'max_diff' => 0.38613700742363
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0081266591551193
]
1 => [
'year' => 2028
'avg' => 0.013947706296194
]
2 => [
'year' => 2029
'avg' => 0.038102619771725
]
3 => [
'year' => 2030
'avg' => 0.029396114409762
]
4 => [
'year' => 2031
'avg' => 0.028870627370739
]
5 => [
'year' => 2032
'avg' => 0.050619295701725
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0081266591551193
'min' => '$0.008126'
'max_raw' => 0.050619295701725
'max' => '$0.050619'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.050619295701725
]
1 => [
'year' => 2033
'avg' => 0.13019803366563
]
2 => [
'year' => 2034
'avg' => 0.082525770761988
]
3 => [
'year' => 2035
'avg' => 0.097339335863282
]
4 => [
'year' => 2036
'avg' => 0.18893588502177
]
5 => [
'year' => 2037
'avg' => 0.46160864821618
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.050619295701725
'min' => '$0.050619'
'max_raw' => 0.46160864821618
'max' => '$0.4616086'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.46160864821618
]
]
]
]
'prediction_2025_max_price' => '$0.013895'
'last_price' => 0.01347306
'sma_50day_nextmonth' => '$0.012235'
'sma_200day_nextmonth' => '$0.019882'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.013141'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.013012'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.012399'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.011985'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.013124'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.016663'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.021851'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.013178'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.012954'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.012594'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.012472'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.013611'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.016485'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.02297'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.019349'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.029936'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.064017'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.086771'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.0131095'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.013238'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.01462'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.018819'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.03273'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.055033'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.0764039'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '60.05'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 106.19
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.012454'
'vwma_10_action' => 'BUY'
'hma_9' => '0.013474'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 183.83
'cci_20_action' => 'SELL'
'adx_14' => 19.84
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000522'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 83.04
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.002869'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 20
'sell_pct' => 42.86
'buy_pct' => 57.14
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767707173
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de NKN para 2026
A previsão de preço para NKN em 2026 sugere que o preço médio poderia variar entre $0.004654 na extremidade inferior e $0.013895 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, NKN poderia potencialmente ganhar 3.13% até 2026 se NKN atingir a meta de preço prevista.
Previsão de preço de NKN 2027-2032
A previsão de preço de NKN para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.008126 na extremidade inferior e $0.050619 na extremidade superior. Considerando a volatilidade de preços no mercado, se NKN atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de NKN | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.004481 | $0.008126 | $0.011772 |
| 2028 | $0.008087 | $0.013947 | $0.0198081 |
| 2029 | $0.017765 | $0.0381026 | $0.058439 |
| 2030 | $0.0151086 | $0.029396 | $0.043683 |
| 2031 | $0.017863 | $0.02887 | $0.039878 |
| 2032 | $0.027266 | $0.050619 | $0.073971 |
Previsão de preço de NKN 2032-2037
A previsão de preço de NKN para 2032-2037 é atualmente estimada entre $0.050619 na extremidade inferior e $0.4616086 na extremidade superior. Comparado ao preço atual, NKN poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de NKN | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.027266 | $0.050619 | $0.073971 |
| 2033 | $0.063361 | $0.130198 | $0.197034 |
| 2034 | $0.050939 | $0.082525 | $0.114111 |
| 2035 | $0.060226 | $0.097339 | $0.134451 |
| 2036 | $0.099694 | $0.188935 | $0.278177 |
| 2037 | $0.2589026 | $0.4616086 | $0.664314 |
NKN Histograma de preços potenciais
Previsão de preço de NKN baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para NKN é Altista, com 20 indicadores técnicos mostrando sinais de alta e 15 indicando sinais de baixa. A previsão de preço de NKN foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de NKN
De acordo com nossos indicadores técnicos, o SMA de 200 dias de NKN está projetado para aumentar no próximo mês, alcançando $0.019882 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para NKN é esperado para alcançar $0.012235 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 60.05, sugerindo que o mercado de NKN está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de NKN para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.013141 | BUY |
| SMA 5 | $0.013012 | BUY |
| SMA 10 | $0.012399 | BUY |
| SMA 21 | $0.011985 | BUY |
| SMA 50 | $0.013124 | BUY |
| SMA 100 | $0.016663 | SELL |
| SMA 200 | $0.021851 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.013178 | BUY |
| EMA 5 | $0.012954 | BUY |
| EMA 10 | $0.012594 | BUY |
| EMA 21 | $0.012472 | BUY |
| EMA 50 | $0.013611 | SELL |
| EMA 100 | $0.016485 | SELL |
| EMA 200 | $0.02297 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.019349 | SELL |
| SMA 50 | $0.029936 | SELL |
| SMA 100 | $0.064017 | SELL |
| SMA 200 | $0.086771 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.018819 | SELL |
| EMA 50 | $0.03273 | SELL |
| EMA 100 | $0.055033 | SELL |
| EMA 200 | $0.0764039 | SELL |
Osciladores de NKN
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 60.05 | NEUTRAL |
| Stoch RSI (14) | 106.19 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 183.83 | SELL |
| Índice Direcional Médio (14) | 19.84 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000522 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 83.04 | SELL |
| VWMA (10) | 0.012454 | BUY |
| Média Móvel de Hull (9) | 0.013474 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.002869 | SELL |
Previsão do preço de NKN com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do NKN
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de NKN por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.018931 | $0.0266024 | $0.03738 | $0.052526 | $0.0738084 | $0.103713 |
| Amazon.com stock | $0.028112 | $0.058658 | $0.122393 | $0.255381 | $0.532868 | $1.11 |
| Apple stock | $0.01911 | $0.0271067 | $0.038448 | $0.054536 | $0.077356 | $0.109724 |
| Netflix stock | $0.021258 | $0.033542 | $0.052924 | $0.0835067 | $0.13176 | $0.207897 |
| Google stock | $0.017447 | $0.022594 | $0.029259 | $0.037891 | $0.049069 | $0.063544 |
| Tesla stock | $0.030542 | $0.069237 | $0.156955 | $0.3558069 | $0.806587 | $1.82 |
| Kodak stock | $0.0101033 | $0.007576 | $0.005681 | $0.00426 | $0.003194 | $0.002395 |
| Nokia stock | $0.008925 | $0.005912 | $0.003916 | $0.002594 | $0.001718 | $0.001138 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para NKN
Você pode fazer perguntas como: 'Devo investir em NKN agora?', 'Devo comprar NKN hoje?', 'NKN será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para NKN regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como NKN, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre NKN para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de NKN é de $0.01347 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para NKN
com base no histórico de preços de 4 horas
Previsão de longo prazo para NKN
com base no histórico de preços de 1 mês
Previsão do preço de NKN com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se NKN tiver 1% da média anterior do crescimento anual do Bitcoin | $0.013823 | $0.014182 | $0.014551 | $0.014929 |
| Se NKN tiver 2% da média anterior do crescimento anual do Bitcoin | $0.014173 | $0.01491 | $0.015685 | $0.01650086 |
| Se NKN tiver 5% da média anterior do crescimento anual do Bitcoin | $0.015224 | $0.0172027 | $0.019438 | $0.021964 |
| Se NKN tiver 10% da média anterior do crescimento anual do Bitcoin | $0.016975 | $0.021387 | $0.026946 | $0.033951 |
| Se NKN tiver 20% da média anterior do crescimento anual do Bitcoin | $0.020477 | $0.031122 | $0.0473021 | $0.071892 |
| Se NKN tiver 50% da média anterior do crescimento anual do Bitcoin | $0.030983 | $0.071251 | $0.163854 | $0.3768089 |
| Se NKN tiver 100% da média anterior do crescimento anual do Bitcoin | $0.048493 | $0.174545 | $0.628243 | $2.26 |
Perguntas Frequentes sobre NKN
NKN é um bom investimento?
A decisão de adquirir NKN depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de NKN experimentou uma escalada de 5.4351% nas últimas 24 horas, e NKN registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em NKN dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
NKN pode subir?
Parece que o valor médio de NKN pode potencialmente subir para $0.013895 até o final deste ano. Observando as perspectivas de NKN em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.043683. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de NKN na próxima semana?
Com base na nossa nova previsão experimental de NKN, o preço de NKN aumentará 0.86% na próxima semana e atingirá $0.013588 até 13 de janeiro de 2026.
Qual será o preço de NKN no próximo mês?
Com base na nossa nova previsão experimental de NKN, o preço de NKN diminuirá -11.62% no próximo mês e atingirá $0.011907 até 5 de fevereiro de 2026.
Até onde o preço de NKN pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de NKN em 2026, espera-se que NKN fluctue dentro do intervalo de $0.004654 e $0.013895. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de NKN não considera flutuações repentinas e extremas de preço.
Onde estará NKN em 5 anos?
O futuro de NKN parece seguir uma tendência de alta, com um preço máximo de $0.043683 projetada após um período de cinco anos. Com base na previsão de NKN para 2030, o valor de NKN pode potencialmente atingir seu pico mais alto de aproximadamente $0.043683, enquanto seu pico mais baixo está previsto para cerca de $0.0151086.
Quanto será NKN em 2026?
Com base na nossa nova simulação experimental de previsão de preços de NKN, espera-se que o valor de NKN em 2026 aumente 3.13% para $0.013895 se o melhor cenário ocorrer. O preço ficará entre $0.013895 e $0.004654 durante 2026.
Quanto será NKN em 2027?
De acordo com nossa última simulação experimental para previsão de preços de NKN, o valor de NKN pode diminuir -12.62% para $0.011772 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.011772 e $0.004481 ao longo do ano.
Quanto será NKN em 2028?
Nosso novo modelo experimental de previsão de preços de NKN sugere que o valor de NKN em 2028 pode aumentar 47.02%, alcançando $0.0198081 no melhor cenário. O preço é esperado para variar entre $0.0198081 e $0.008087 durante o ano.
Quanto será NKN em 2029?
Com base no nosso modelo de previsão experimental, o valor de NKN pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.058439 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.058439 e $0.017765.
Quanto será NKN em 2030?
Usando nossa nova simulação experimental para previsões de preços de NKN, espera-se que o valor de NKN em 2030 aumente 224.23%, alcançando $0.043683 no melhor cenário. O preço está previsto para variar entre $0.043683 e $0.0151086 ao longo de 2030.
Quanto será NKN em 2031?
Nossa simulação experimental indica que o preço de NKN poderia aumentar 195.98% em 2031, potencialmente atingindo $0.039878 sob condições ideais. O preço provavelmente oscilará entre $0.039878 e $0.017863 durante o ano.
Quanto será NKN em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de NKN, NKN poderia ver um 449.04% aumento em valor, atingindo $0.073971 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.073971 e $0.027266 ao longo do ano.
Quanto será NKN em 2033?
De acordo com nossa previsão experimental de preços de NKN, espera-se que o valor de NKN seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.197034. Ao longo do ano, o preço de NKN poderia variar entre $0.197034 e $0.063361.
Quanto será NKN em 2034?
Os resultados da nossa nova simulação de previsão de preços de NKN sugerem que NKN pode aumentar 746.96% em 2034, atingindo potencialmente $0.114111 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.114111 e $0.050939.
Quanto será NKN em 2035?
Com base em nossa previsão experimental para o preço de NKN, NKN poderia aumentar 897.93%, com o valor potencialmente atingindo $0.134451 em 2035. A faixa de preço esperada para o ano está entre $0.134451 e $0.060226.
Quanto será NKN em 2036?
Nossa recente simulação de previsão de preços de NKN sugere que o valor de NKN pode aumentar 1964.7% em 2036, possivelmente atingindo $0.278177 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.278177 e $0.099694.
Quanto será NKN em 2037?
De acordo com a simulação experimental, o valor de NKN poderia aumentar 4830.69% em 2037, com um pico de $0.664314 sob condições favoráveis. O preço é esperado para cair entre $0.664314 e $0.2589026 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Mil.k Alliance
Previsão de Preço do Dogelon Mars
Previsão de Preço do Medibloc
Previsão de Preço do ChainGPT
Previsão de Preço do Hifi Finance
Previsão de Preço do The Truth
Previsão de Preço do Metal
Previsão de Preço do Telos
Previsão de Preço do Stader MaticX
Previsão de Preço do OmiseGO
Previsão de Preço do WazirX
Previsão de Preço do STP Network
Previsão de Preço do Ultima
Previsão de Preço do LUKSO
Previsão de Preço do Bella Protocol
Previsão de Preço do Aavegotchi
Previsão de Preço do Tokamak Network
Previsão de Preço do Chainflip
Previsão de Preço do Kyber Network Crystal
Previsão de Preço do Radicle
Previsão de Preço do Ergo
Previsão de Preço do CANTO
Previsão de Preço do Mines of Dalarnia
Previsão de Preço do Ethernity Chain
Previsão de Preço do Huobi Token
Como ler e prever os movimentos de preço de NKN?
Traders de NKN utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de NKN
Médias móveis são ferramentas populares para a previsão de preço de NKN. Uma média móvel simples (SMA) calcula o preço médio de fechamento de NKN em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de NKN acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de NKN.
Como ler gráficos de NKN e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de NKN em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de NKN dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de NKN?
A ação de preço de NKN é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de NKN. A capitalização de mercado de NKN pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de NKN, grandes detentores de NKN, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de NKN.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


