Previsão de Preço NKN - Projeção NKN
Previsão de Preço NKN até $0.013643 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.00457 | $0.013643 |
| 2027 | $0.004400058 | $0.011558 |
| 2028 | $0.00794 | $0.019449 |
| 2029 | $0.017443 | $0.057381 |
| 2030 | $0.014835 | $0.042892 |
| 2031 | $0.017539 | $0.039156 |
| 2032 | $0.026773 | $0.072632 |
| 2033 | $0.062214 | $0.193466 |
| 2034 | $0.050017 | $0.112045 |
| 2035 | $0.059136 | $0.132017 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em NKN hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,955.00, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de NKN para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'NKN'
'name_with_ticker' => 'NKN <small>NKN</small>'
'name_lang' => 'NKN'
'name_lang_with_ticker' => 'NKN <small>NKN</small>'
'name_with_lang' => 'NKN'
'name_with_lang_with_ticker' => 'NKN <small>NKN</small>'
'image' => '/uploads/coins/nkn.png?1717200595'
'price_for_sd' => 0.01322
'ticker' => 'NKN'
'marketcap' => '$10.52M'
'low24h' => '$0.01272'
'high24h' => '$0.01363'
'volume24h' => '$1.37M'
'current_supply' => '795.75M'
'max_supply' => '795.75M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.18 USD 0.07x'
'price' => '$0.01322'
'change_24h_pct' => '3.5976%'
'ath_price' => '$1.44'
'ath_days' => 1733
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '9 de abr. de 2021'
'ath_pct' => '-99.08%'
'fdv' => '$10.52M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.652286'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.013342'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.011692'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00457'
'current_year_max_price_prediction' => '$0.013643'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.014835'
'grand_prediction_max_price' => '$0.042892'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.013479804865483
107 => 0.013530133563681
108 => 0.01364352669057
109 => 0.012674594836497
110 => 0.013109616792631
111 => 0.013365151435815
112 => 0.012210636621481
113 => 0.013342330389984
114 => 0.012657727888596
115 => 0.012425363517241
116 => 0.012738211531593
117 => 0.012616294356145
118 => 0.012511477127912
119 => 0.01245298731357
120 => 0.012682708367534
121 => 0.012671991605791
122 => 0.012296123374569
123 => 0.01180581858929
124 => 0.011970380968936
125 => 0.01191059391363
126 => 0.011693917912518
127 => 0.011839931375708
128 => 0.011196961979545
129 => 0.010090766552088
130 => 0.010821553135148
131 => 0.010793418646643
201 => 0.010779231961742
202 => 0.011328397881454
203 => 0.011275608249687
204 => 0.011179794551112
205 => 0.011692158218806
206 => 0.011505138587834
207 => 0.012081489023123
208 => 0.012461110695813
209 => 0.012364826360144
210 => 0.01272186237818
211 => 0.011974172153794
212 => 0.01222252485421
213 => 0.012273710001564
214 => 0.011685835730679
215 => 0.011284245286304
216 => 0.011257463782131
217 => 0.010561161294158
218 => 0.010933120462876
219 => 0.011260429138631
220 => 0.011103673683124
221 => 0.011054049588846
222 => 0.011307568324358
223 => 0.011327268901348
224 => 0.010878093658194
225 => 0.010971491414775
226 => 0.011360975585807
227 => 0.010961677412979
228 => 0.01018590628816
301 => 0.0099935043233303
302 => 0.0099678343545502
303 => 0.0094460249663391
304 => 0.010006361542626
305 => 0.0097617596109901
306 => 0.010534454182247
307 => 0.010093095187189
308 => 0.010074069083045
309 => 0.010045308336109
310 => 0.0095961654400014
311 => 0.0096944991897288
312 => 0.010021375550476
313 => 0.010138008718516
314 => 0.010125842923542
315 => 0.010019773677981
316 => 0.010068331635437
317 => 0.0099119095357593
318 => 0.0098566736367188
319 => 0.0096823339455158
320 => 0.0094261027620164
321 => 0.0094617332796391
322 => 0.0089540722585905
323 => 0.0086774715907136
324 => 0.0086009121713835
325 => 0.0084985337162169
326 => 0.0086124760903132
327 => 0.0089526341187022
328 => 0.0085423313679137
329 => 0.0078388960810784
330 => 0.0078811737404126
331 => 0.0079761590885868
401 => 0.0077991545206551
402 => 0.007631634551975
403 => 0.0077772795734177
404 => 0.007479224769162
405 => 0.0080121775877075
406 => 0.0079977627075488
407 => 0.0081964145607214
408 => 0.0083206356412565
409 => 0.0080343462676753
410 => 0.0079623452644284
411 => 0.008003360308141
412 => 0.0073254729977111
413 => 0.0081410167051687
414 => 0.008148069561017
415 => 0.008087678727331
416 => 0.0085219305744651
417 => 0.0094383374184657
418 => 0.0090935483013728
419 => 0.0089600355339282
420 => 0.0087062276654187
421 => 0.0090444115805875
422 => 0.0090184443323935
423 => 0.0089010105882735
424 => 0.0088299862934141
425 => 0.0089608507344162
426 => 0.0088137707409613
427 => 0.0087873511326489
428 => 0.0086272770510929
429 => 0.008570137886884
430 => 0.0085278343244795
501 => 0.0084812622589342
502 => 0.0085839886304914
503 => 0.0083511971577633
504 => 0.0080704734624827
505 => 0.0080471343246926
506 => 0.0081115757361291
507 => 0.0080830652086673
508 => 0.0080469978272559
509 => 0.0079781353737747
510 => 0.0079577053548404
511 => 0.0080240930051409
512 => 0.0079491452185921
513 => 0.008059734760262
514 => 0.0080296605241263
515 => 0.0078616682857949
516 => 0.0076522877581413
517 => 0.0076504238322547
518 => 0.0076053131410246
519 => 0.0075478578933053
520 => 0.0075318751577878
521 => 0.0077650137559488
522 => 0.0082476036768909
523 => 0.0081528597280119
524 => 0.0082213219408274
525 => 0.0085580882683373
526 => 0.0086651361569359
527 => 0.0085891561011768
528 => 0.008485149914608
529 => 0.0084897256589767
530 => 0.008845146283296
531 => 0.008867313431667
601 => 0.0089233226642074
602 => 0.008995310356229
603 => 0.0086014159164117
604 => 0.0084711732662837
605 => 0.0084094570730659
606 => 0.0082193950851278
607 => 0.0084243606444357
608 => 0.0083049359905273
609 => 0.0083210504564666
610 => 0.0083105558893836
611 => 0.0083162866326505
612 => 0.0080120286165331
613 => 0.0081228842462757
614 => 0.0079385652610256
615 => 0.0076917828305527
616 => 0.0076909555293127
617 => 0.0077513551795545
618 => 0.0077154271041521
619 => 0.0076187455770396
620 => 0.007632478731642
621 => 0.0075121618466207
622 => 0.0076470873798911
623 => 0.0076509565613986
624 => 0.007599002881646
625 => 0.0078068742817847
626 => 0.0078920393640284
627 => 0.0078578423390596
628 => 0.0078896400095943
629 => 0.0081567967668311
630 => 0.0082003549751272
701 => 0.0082197006539586
702 => 0.0081937800071358
703 => 0.00789452314469
704 => 0.007907796459078
705 => 0.0078104056850819
706 => 0.0077281207438422
707 => 0.0077314117099642
708 => 0.007773716866055
709 => 0.0079584659638681
710 => 0.0083472595486618
711 => 0.0083620139810003
712 => 0.0083798967834117
713 => 0.0083071584388281
714 => 0.0082852198580894
715 => 0.0083141625089118
716 => 0.0084601729375648
717 => 0.0088357514015049
718 => 0.0087029968883063
719 => 0.0085950654026287
720 => 0.0086897504136875
721 => 0.0086751743984007
722 => 0.0085521381605963
723 => 0.008548684943186
724 => 0.0083125390657746
725 => 0.0082252413116771
726 => 0.0081522887742296
727 => 0.0080726265078111
728 => 0.0080254000459749
729 => 0.0080979613553984
730 => 0.0081145569853837
731 => 0.0079559004141746
801 => 0.007934276109775
802 => 0.0080638384906643
803 => 0.0080068229174073
804 => 0.0080654648484203
805 => 0.0080790702794364
806 => 0.0080768794916832
807 => 0.008017348685006
808 => 0.0080552918459478
809 => 0.0079655449589198
810 => 0.0078679586988233
811 => 0.0078057047447206
812 => 0.0077513799129773
813 => 0.0077815224870062
814 => 0.0076740697144096
815 => 0.0076396934098589
816 => 0.0080424375567689
817 => 0.0083399489883206
818 => 0.0083356230542783
819 => 0.0083092900433362
820 => 0.0082701645305325
821 => 0.0084573106626054
822 => 0.0083921126922962
823 => 0.0084395496631689
824 => 0.0084516243631794
825 => 0.0084881708434441
826 => 0.0085012330688627
827 => 0.008461749951349
828 => 0.0083292397865165
829 => 0.0079990370544422
830 => 0.0078453267912964
831 => 0.0077945998442114
901 => 0.0077964436723937
902 => 0.0077455826599129
903 => 0.0077605635075192
904 => 0.0077403729324797
905 => 0.0077021368679797
906 => 0.0077791615177698
907 => 0.0077880378911238
908 => 0.0077700594174868
909 => 0.0077742939988585
910 => 0.0076254399158505
911 => 0.0076367569684875
912 => 0.007573742181303
913 => 0.0075619276683605
914 => 0.0074026317736833
915 => 0.0071204160059534
916 => 0.0072767909366232
917 => 0.0070879120100168
918 => 0.0070163806985282
919 => 0.0073549988017139
920 => 0.0073210109359583
921 => 0.0072628384839547
922 => 0.0071767893032401
923 => 0.0071448728250805
924 => 0.0069509584073115
925 => 0.0069395009090165
926 => 0.0070356101305925
927 => 0.0069912590317516
928 => 0.0069289732919043
929 => 0.0067033806559816
930 => 0.0064497398420496
1001 => 0.0064573956638929
1002 => 0.0065380740876496
1003 => 0.0067726574856898
1004 => 0.0066810016937415
1005 => 0.006614504365054
1006 => 0.0066020514142932
1007 => 0.0067579261650831
1008 => 0.0069785215942207
1009 => 0.0070820200340276
1010 => 0.0069794562234733
1011 => 0.0068616364403364
1012 => 0.0068688075846116
1013 => 0.0069165139947456
1014 => 0.0069215272639183
1015 => 0.0068448386971655
1016 => 0.0068664260795006
1017 => 0.006833632871742
1018 => 0.0066323810162593
1019 => 0.0066287410083701
1020 => 0.0065793505574101
1021 => 0.0065778550341841
1022 => 0.0064938295560757
1023 => 0.0064820738108476
1024 => 0.0063152361240814
1025 => 0.006425049194742
1026 => 0.0063513923523878
1027 => 0.0062403741170676
1028 => 0.006221234531453
1029 => 0.0062206591723977
1030 => 0.0063346500768485
1031 => 0.0064237171446547
1101 => 0.0063526736446958
1102 => 0.0063364984168756
1103 => 0.006509207532149
1104 => 0.006487228722952
1105 => 0.0064681952159354
1106 => 0.0069587696930533
1107 => 0.0065704417144107
1108 => 0.0064011085507364
1109 => 0.0061915266051938
1110 => 0.0062597675434663
1111 => 0.0062741469118283
1112 => 0.0057701401127836
1113 => 0.0055656646171812
1114 => 0.0054954963325869
1115 => 0.005455113492769
1116 => 0.0054735164599698
1117 => 0.0052894645313441
1118 => 0.0054131504713185
1119 => 0.0052537770586509
1120 => 0.0052270575873713
1121 => 0.0055120369917982
1122 => 0.0055516902110987
1123 => 0.0053825172582733
1124 => 0.0054911536806004
1125 => 0.0054517606037054
1126 => 0.0052565090583817
1127 => 0.0052490518855235
1128 => 0.0051510815235037
1129 => 0.0049977768777431
1130 => 0.0049277125409176
1201 => 0.0048912224259725
1202 => 0.004906278958577
1203 => 0.0048986659149547
1204 => 0.0048489856556577
1205 => 0.0049015135292639
1206 => 0.0047673265182159
1207 => 0.0047138921691983
1208 => 0.0046897571134146
1209 => 0.0045706584175933
1210 => 0.0047601974060754
1211 => 0.0047975389745557
1212 => 0.0048349541174612
1213 => 0.005160627392051
1214 => 0.0051443576755956
1215 => 0.0052914279886791
1216 => 0.0052857131067576
1217 => 0.0052437662710851
1218 => 0.0050667994713023
1219 => 0.0051373352835658
1220 => 0.0049202370171178
1221 => 0.0050829017995878
1222 => 0.0050086683859122
1223 => 0.005057803407752
1224 => 0.0049694542081578
1225 => 0.0050183503030623
1226 => 0.0048063940457232
1227 => 0.004608472274925
1228 => 0.0046881217731908
1229 => 0.0047747098868308
1230 => 0.0049624549794434
1231 => 0.0048506355511467
]
'min_raw' => 0.0045706584175933
'max_raw' => 0.01364352669057
'avg_raw' => 0.0091070925540815
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00457'
'max' => '$0.013643'
'avg' => '$0.009107'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0086584615824067
'max_diff' => 0.00041440669056979
'year' => 2026
]
1 => [
'items' => [
101 => 0.0048908500459229
102 => 0.0047561382202478
103 => 0.0044781892453495
104 => 0.0044797624063622
105 => 0.0044370060120217
106 => 0.0044000582447757
107 => 0.0048634793576078
108 => 0.0048058456166235
109 => 0.0047140137932825
110 => 0.004836934338076
111 => 0.0048694364811308
112 => 0.0048703617714509
113 => 0.0049600414278938
114 => 0.0050079034766134
115 => 0.0050163393701462
116 => 0.0051574522472163
117 => 0.0052047514222863
118 => 0.0053995700303701
119 => 0.005003842716173
120 => 0.0049956929725527
121 => 0.0048386640822198
122 => 0.0047390738774421
123 => 0.0048454831087441
124 => 0.004939747161369
125 => 0.0048415931290949
126 => 0.0048544099735652
127 => 0.0047226462047163
128 => 0.0047697455520182
129 => 0.0048103138548818
130 => 0.0047879144225352
131 => 0.0047543813881674
201 => 0.0049320185840268
202 => 0.0049219955972707
203 => 0.0050874154379165
204 => 0.0052163720329862
205 => 0.0054474853050998
206 => 0.0052063065574419
207 => 0.0051975170452785
208 => 0.0052834359365574
209 => 0.0052047382685517
210 => 0.0052544724781801
211 => 0.0054394723550408
212 => 0.0054433811109198
213 => 0.0053779044137978
214 => 0.0053739201508274
215 => 0.0053864956667463
216 => 0.0054601508562722
217 => 0.0054344134698565
218 => 0.0054641974250076
219 => 0.0055014427169922
220 => 0.0056555050363173
221 => 0.005692648939931
222 => 0.0056024085110556
223 => 0.0056105562114038
224 => 0.0055768038138493
225 => 0.0055441994207279
226 => 0.0056174893349755
227 => 0.00575142809378
228 => 0.005750594867713
301 => 0.0057816660563582
302 => 0.0058010231494765
303 => 0.0057179283355544
304 => 0.0056638366671721
305 => 0.0056845788547721
306 => 0.0057177460644507
307 => 0.0056738231756899
308 => 0.0054027107591965
309 => 0.0054849489476324
310 => 0.0054712604918347
311 => 0.0054517664662057
312 => 0.005534457600607
313 => 0.0055264818389677
314 => 0.0052875768127918
315 => 0.0053028707374421
316 => 0.0052885068870048
317 => 0.0053349194263349
318 => 0.005202231839115
319 => 0.0052430456472793
320 => 0.0052686436851543
321 => 0.005283721126116
322 => 0.005338191181568
323 => 0.0053317997492517
324 => 0.0053377938811612
325 => 0.0054185585938349
326 => 0.005827038795436
327 => 0.0058492714715484
328 => 0.0057397896431518
329 => 0.0057835254741626
330 => 0.0056995622425966
331 => 0.0057559273224516
401 => 0.0057944908785707
402 => 0.0056202295838141
403 => 0.0056099109608851
404 => 0.005525601183195
405 => 0.0055709044821758
406 => 0.0054988236760749
407 => 0.0055165097846125
408 => 0.0054670578832941
409 => 0.0055560614598918
410 => 0.0056555812882856
411 => 0.005680723927095
412 => 0.0056145844689741
413 => 0.0055666951424918
414 => 0.0054826172609139
415 => 0.0056224406517758
416 => 0.0056633292723045
417 => 0.005622225881259
418 => 0.0056127013274269
419 => 0.0055946523151256
420 => 0.0056165305107098
421 => 0.0056631065840958
422 => 0.005641142168012
423 => 0.0056556500517985
424 => 0.005600360959269
425 => 0.0057179558433954
426 => 0.005904724820138
427 => 0.0059053253129381
428 => 0.0058833607784579
429 => 0.0058743733641811
430 => 0.0058969103094772
501 => 0.0059091356777864
502 => 0.0059820160263049
503 => 0.0060602195439465
504 => 0.0064251612379117
505 => 0.006322687070584
506 => 0.0066464850519485
507 => 0.0069025672153021
508 => 0.006979355058976
509 => 0.0069087138559432
510 => 0.006667054116331
511 => 0.0066551971366069
512 => 0.007016338813698
513 => 0.0069142997485831
514 => 0.0069021625264733
515 => 0.0067730429893853
516 => 0.0068493686275701
517 => 0.0068326750908695
518 => 0.0068063235265119
519 => 0.0069519475272784
520 => 0.007224542656769
521 => 0.007182056149457
522 => 0.0071503419426409
523 => 0.0070113795202396
524 => 0.0070950659369059
525 => 0.0070652668068388
526 => 0.0071933027806024
527 => 0.0071174571060889
528 => 0.0069135267023067
529 => 0.0069460032912724
530 => 0.006941094520184
531 => 0.0070421166813428
601 => 0.0070117923360871
602 => 0.0069351732050845
603 => 0.0072236109562513
604 => 0.0072048814130656
605 => 0.0072314356231333
606 => 0.0072431256076213
607 => 0.0074186925839132
608 => 0.0074906167565834
609 => 0.0075069448029894
610 => 0.007575267204211
611 => 0.0075052448794068
612 => 0.0077853841036951
613 => 0.0079716603412699
614 => 0.0081880297769005
615 => 0.0085042036769786
616 => 0.00862308798818
617 => 0.0086016126014536
618 => 0.00884133204405
619 => 0.0092721025537317
620 => 0.0086886836376606
621 => 0.0093030251729353
622 => 0.0091085317357814
623 => 0.0086473912950771
624 => 0.0086176992871844
625 => 0.00892998894758
626 => 0.0096226173575714
627 => 0.0094491217965949
628 => 0.0096229011341561
629 => 0.009420178306058
630 => 0.0094101114089608
701 => 0.0096130553388812
702 => 0.010087244893038
703 => 0.0098619752105877
704 => 0.009538995882403
705 => 0.0097774787922196
706 => 0.0095708828251851
707 => 0.0091053642888861
708 => 0.0094489891278092
709 => 0.0092192169838933
710 => 0.009286276710847
711 => 0.0097692235813312
712 => 0.0097111141361556
713 => 0.0097863131390026
714 => 0.0096535888672783
715 => 0.0095296034687912
716 => 0.0092981755152384
717 => 0.0092296611074516
718 => 0.0092485960248737
719 => 0.0092296517242469
720 => 0.0091001699111668
721 => 0.0090722083259602
722 => 0.0090256044589241
723 => 0.0090400489460441
724 => 0.008952420041574
725 => 0.0091177938893646
726 => 0.0091484887327839
727 => 0.0092688340281715
728 => 0.0092813286759688
729 => 0.0096164886106151
730 => 0.0094318881507458
731 => 0.009555734076863
801 => 0.009544656131548
802 => 0.0086573856067273
803 => 0.0087796436565934
804 => 0.0089698388154957
805 => 0.0088841561542137
806 => 0.0087630209178159
807 => 0.0086651977195642
808 => 0.0085169855712773
809 => 0.0087255913238289
810 => 0.0089998857056857
811 => 0.0092882852341473
812 => 0.0096347783709084
813 => 0.0095574451364081
814 => 0.0092818077859712
815 => 0.0092941726761586
816 => 0.009370607561892
817 => 0.0092716174400255
818 => 0.0092424233205703
819 => 0.0093665967381851
820 => 0.0093674518522677
821 => 0.0092535517537044
822 => 0.0091269726376493
823 => 0.0091264422665313
824 => 0.0091039187354385
825 => 0.0094241851922031
826 => 0.0096002993608327
827 => 0.0096204905664439
828 => 0.0095989403318199
829 => 0.0096072341618285
830 => 0.0095047572075138
831 => 0.0097389891364803
901 => 0.0099539435176368
902 => 0.0098963311516563
903 => 0.0098099620249712
904 => 0.0097411648554657
905 => 0.0098801247249263
906 => 0.0098739370606824
907 => 0.0099520660786395
908 => 0.0099485216950899
909 => 0.0099222498449319
910 => 0.0098963320899068
911 => 0.0099990930589711
912 => 0.0099694995501713
913 => 0.0099398600744783
914 => 0.0098804135683994
915 => 0.0098884933358774
916 => 0.0098021391220397
917 => 0.0097621877114184
918 => 0.0091614143525116
919 => 0.0090008680801759
920 => 0.0090513792056734
921 => 0.009068008779708
922 => 0.0089981388362419
923 => 0.0090983143870565
924 => 0.0090827021335742
925 => 0.009143440279011
926 => 0.0091054937226858
927 => 0.0091070510625937
928 => 0.0092186437936873
929 => 0.0092510396382732
930 => 0.0092345628502502
1001 => 0.0092461026277902
1002 => 0.0095120319305639
1003 => 0.0094742252876499
1004 => 0.0094541412621162
1005 => 0.0094597046744457
1006 => 0.0095276553128929
1007 => 0.0095466777816908
1008 => 0.0094660782447089
1009 => 0.00950408945229
1010 => 0.0096659363498296
1011 => 0.0097225736042274
1012 => 0.0099033325328407
1013 => 0.009826542927232
1014 => 0.0099674935717031
1015 => 0.010400727799192
1016 => 0.010746825277638
1017 => 0.010428539733375
1018 => 0.011064103677293
1019 => 0.011558981373867
1020 => 0.01153998714361
1021 => 0.011453693770485
1022 => 0.010890288669941
1023 => 0.010371834896523
1024 => 0.010805543492697
1025 => 0.010806649105102
1026 => 0.010769393152053
1027 => 0.010537999627369
1028 => 0.010761341158969
1029 => 0.01077906919869
1030 => 0.010769146210713
1031 => 0.010591737337867
1101 => 0.010320866779673
1102 => 0.010373794238372
1103 => 0.010460490495411
1104 => 0.010296356394102
1105 => 0.010243905603498
1106 => 0.010341421602402
1107 => 0.010655638469137
1108 => 0.010596237590615
1109 => 0.010594686393619
1110 => 0.010848828541829
1111 => 0.010666917611019
1112 => 0.010374461823123
1113 => 0.010300612879662
1114 => 0.010038498880982
1115 => 0.010219541953488
1116 => 0.010226057371363
1117 => 0.010126901930766
1118 => 0.010382507740651
1119 => 0.010380152288114
1120 => 0.010622811962695
1121 => 0.011086686121683
1122 => 0.010949495707009
1123 => 0.010789958181018
1124 => 0.010807304333589
1125 => 0.01099754881334
1126 => 0.010882522658024
1127 => 0.010923886865466
1128 => 0.010997486203658
1129 => 0.011041890511758
1130 => 0.010800915236997
1201 => 0.010744732373271
1202 => 0.010629801951592
1203 => 0.010599818749854
1204 => 0.010693427180209
1205 => 0.010668764666045
1206 => 0.010225509775719
1207 => 0.010179187173433
1208 => 0.010180607821512
1209 => 0.010064127435544
1210 => 0.0098864668884473
1211 => 0.010353348198658
1212 => 0.010315851095448
1213 => 0.01027445719555
1214 => 0.010279527712097
1215 => 0.010482185064783
1216 => 0.010364633565784
1217 => 0.010677163492186
1218 => 0.010612916734827
1219 => 0.010547022290568
1220 => 0.010537913671177
1221 => 0.010512549931987
1222 => 0.010425568232872
1223 => 0.0103205326044
1224 => 0.010251178984453
1225 => 0.0094561707378873
1226 => 0.0096037196440997
1227 => 0.0097734612111912
1228 => 0.0098320553199545
1229 => 0.0097318260423259
1230 => 0.010429525895657
1231 => 0.010557002382064
]
'min_raw' => 0.0044000582447757
'max_raw' => 0.011558981373867
'avg_raw' => 0.0079795198093211
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004400058'
'max' => '$0.011558'
'avg' => '$0.007979'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0001706001728176
'max_diff' => -0.0020845453167032
'year' => 2027
]
2 => [
'items' => [
101 => 0.010170867789652
102 => 0.010098637773184
103 => 0.010434261283512
104 => 0.010231839278479
105 => 0.01032298989495
106 => 0.01012597211886
107 => 0.010526297029436
108 => 0.010523247224345
109 => 0.010367511792382
110 => 0.010499138313047
111 => 0.010476264965912
112 => 0.010300440046786
113 => 0.010531870992985
114 => 0.010531985779847
115 => 0.010382093812564
116 => 0.010207052810348
117 => 0.010175759613435
118 => 0.010152184393211
119 => 0.010317191835963
120 => 0.010465136993169
121 => 0.010740426252014
122 => 0.010809640512399
123 => 0.011079788378537
124 => 0.010918928477513
125 => 0.010990235588152
126 => 0.011067649543758
127 => 0.01110476464088
128 => 0.011044287581826
129 => 0.011463938415236
130 => 0.011499369803345
131 => 0.011511249641298
201 => 0.011369745741411
202 => 0.01149543432391
203 => 0.011436628798527
204 => 0.011589624438929
205 => 0.01161361610889
206 => 0.011593296017962
207 => 0.01160091135269
208 => 0.011242813397855
209 => 0.011224244129779
210 => 0.010971050841956
211 => 0.011074228978254
212 => 0.010881342397902
213 => 0.010942508719483
214 => 0.010969470251223
215 => 0.010955387077095
216 => 0.011080062515273
217 => 0.010974062923313
218 => 0.010694312572182
219 => 0.010414486003256
220 => 0.010410973008625
221 => 0.010337299612376
222 => 0.010284047240843
223 => 0.01029430553683
224 => 0.010330457109897
225 => 0.010281946045696
226 => 0.010292298340817
227 => 0.010464215416799
228 => 0.010498692160331
229 => 0.010381526714877
301 => 0.0099110905444851
302 => 0.0097956443282712
303 => 0.0098786247790878
304 => 0.0098389654682229
305 => 0.007940813032626
306 => 0.0083867557916765
307 => 0.0081217917470339
308 => 0.0082438993692147
309 => 0.0079734396917414
310 => 0.0081025172258379
311 => 0.008078681318447
312 => 0.0087957440785946
313 => 0.0087845481298825
314 => 0.0087899070380545
315 => 0.0085341123884405
316 => 0.0089416002108573
317 => 0.0091423433649679
318 => 0.0091051911497481
319 => 0.0091145415619059
320 => 0.0089538705016376
321 => 0.0087914626851275
322 => 0.008611327422234
323 => 0.0089459964752987
324 => 0.0089087869895892
325 => 0.0089941321622565
326 => 0.009211188965807
327 => 0.0092431514046484
328 => 0.0092861092465824
329 => 0.0092707119181964
330 => 0.0096375387477491
331 => 0.0095931135982889
401 => 0.0097001654265001
402 => 0.0094799516938279
403 => 0.0092307589524298
404 => 0.0092781223458451
405 => 0.0092735608701869
406 => 0.0092154880496394
407 => 0.0091630625038603
408 => 0.0090757887409441
409 => 0.0093519358408976
410 => 0.0093407247729433
411 => 0.0095222189316824
412 => 0.009490138076185
413 => 0.0092758942716569
414 => 0.0092835460310487
415 => 0.009335007790269
416 => 0.0095131175265105
417 => 0.0095659926228625
418 => 0.009541498771524
419 => 0.0095994739008341
420 => 0.0096452950792045
421 => 0.0096052283353622
422 => 0.010172488934884
423 => 0.0099369227846914
424 => 0.010051736087236
425 => 0.010079118383374
426 => 0.010008979207605
427 => 0.010024189883334
428 => 0.010047229912402
429 => 0.010187124457202
430 => 0.010554248221572
501 => 0.010716844837716
502 => 0.011206024779759
503 => 0.010703343452199
504 => 0.010673516422524
505 => 0.010761632501905
506 => 0.01104883291284
507 => 0.01128158187054
508 => 0.011358798127418
509 => 0.011369003530466
510 => 0.01151386636161
511 => 0.01159689903489
512 => 0.011496276203639
513 => 0.011411008889803
514 => 0.011105591955411
515 => 0.011140944797189
516 => 0.011384490819317
517 => 0.011728513920362
518 => 0.012023721530562
519 => 0.011920350114494
520 => 0.012709001050245
521 => 0.012787192569175
522 => 0.012776389029493
523 => 0.012954520946073
524 => 0.012600965367596
525 => 0.012449813507981
526 => 0.011429444650879
527 => 0.01171612667942
528 => 0.012132835844149
529 => 0.012077682823618
530 => 0.011775057489524
531 => 0.012023491962109
601 => 0.011941351756208
602 => 0.011876564367814
603 => 0.012173367953701
604 => 0.011847020218998
605 => 0.012129580275852
606 => 0.011767194080228
607 => 0.011920822306415
608 => 0.01183361549507
609 => 0.011890048989675
610 => 0.011560139933339
611 => 0.011738150852048
612 => 0.011552734093876
613 => 0.01155264618219
614 => 0.011548553096977
615 => 0.011766695090703
616 => 0.011773808693287
617 => 0.011612601430329
618 => 0.011589368945206
619 => 0.011675271619344
620 => 0.011574702085874
621 => 0.011621757937608
622 => 0.011576127359687
623 => 0.01156585495547
624 => 0.011484002690963
625 => 0.011448738484839
626 => 0.011462566488707
627 => 0.011415364382681
628 => 0.011386923406425
629 => 0.011542895470951
630 => 0.01145956588877
701 => 0.011530124017367
702 => 0.011449714124685
703 => 0.011170978403725
704 => 0.011010674543025
705 => 0.010484168604947
706 => 0.010633485035857
707 => 0.01073248198403
708 => 0.010699763493249
709 => 0.010770055471821
710 => 0.010774370828417
711 => 0.010751518189642
712 => 0.010725057761544
713 => 0.0107121782885
714 => 0.010808171328619
715 => 0.010863898519386
716 => 0.010742417652187
717 => 0.010713956384701
718 => 0.010836780248581
719 => 0.010911702734594
720 => 0.011464888276012
721 => 0.011423906504338
722 => 0.011526762708973
723 => 0.011515182678788
724 => 0.011622992367524
725 => 0.011799215644834
726 => 0.01144090444926
727 => 0.011503094883343
728 => 0.011487847225093
729 => 0.011654317159718
730 => 0.011654836860683
731 => 0.011555029819085
801 => 0.01160913683552
802 => 0.011578935783294
803 => 0.011633513166582
804 => 0.011423359167792
805 => 0.011679304053596
806 => 0.011824408311123
807 => 0.01182642308388
808 => 0.011895201350329
809 => 0.01196508405241
810 => 0.012099217813554
811 => 0.011961343134613
812 => 0.011713320009028
813 => 0.011731226477585
814 => 0.011585810609803
815 => 0.011588255076812
816 => 0.011575206320342
817 => 0.011614366620773
818 => 0.011431952651562
819 => 0.011474764845532
820 => 0.011414827523266
821 => 0.01150296459131
822 => 0.011408143675674
823 => 0.01148783987221
824 => 0.011522234108665
825 => 0.011649149581636
826 => 0.011389398157124
827 => 0.010859747418918
828 => 0.010971086425484
829 => 0.010806407289283
830 => 0.010821648970316
831 => 0.010852439591699
901 => 0.010752637113734
902 => 0.010771676281392
903 => 0.010770996068347
904 => 0.010765134359803
905 => 0.01073917188073
906 => 0.010701521149554
907 => 0.010851510074275
908 => 0.010876996115311
909 => 0.010933648427482
910 => 0.011102207280872
911 => 0.011085364276527
912 => 0.011112835915423
913 => 0.011052865481959
914 => 0.010824430826725
915 => 0.010836835927537
916 => 0.010682144121639
917 => 0.010929692610211
918 => 0.010871069860637
919 => 0.010833275392623
920 => 0.010822962821862
921 => 0.010991939500046
922 => 0.011042499970544
923 => 0.011010994078317
924 => 0.010946374574185
925 => 0.011070463125159
926 => 0.011103663986524
927 => 0.011111096434983
928 => 0.01133095755569
929 => 0.011123384229279
930 => 0.011173349192047
1001 => 0.011563161568441
1002 => 0.011209655533483
1003 => 0.011396915564326
1004 => 0.01138775016027
1005 => 0.011483546055515
1006 => 0.011379892100787
1007 => 0.011381177015784
1008 => 0.011466237280986
1009 => 0.01134678547921
1010 => 0.011317207533236
1011 => 0.011276345812713
1012 => 0.011365565884577
1013 => 0.011419049282583
1014 => 0.011850086191282
1015 => 0.012128555691972
1016 => 0.012116466596536
1017 => 0.012226938298983
1018 => 0.012177169785226
1019 => 0.012016454126033
1020 => 0.012290776159088
1021 => 0.012203969189708
1022 => 0.012211125450793
1023 => 0.012210859094398
1024 => 0.012268578140239
1025 => 0.012227678906388
1026 => 0.012147062318248
1027 => 0.012200579371674
1028 => 0.012359505887653
1029 => 0.012852818669714
1030 => 0.013128883038081
1031 => 0.012836199248102
1101 => 0.013038088607237
1102 => 0.01291702693229
1103 => 0.01289502642468
1104 => 0.013021827861723
1105 => 0.013148851247896
1106 => 0.013140760407334
1107 => 0.013048547951695
1108 => 0.01299645947531
1109 => 0.013390890869423
1110 => 0.013681501201642
1111 => 0.013661683525261
1112 => 0.013749152303753
1113 => 0.014005963342713
1114 => 0.014029442925655
1115 => 0.014026485037876
1116 => 0.013968288441714
1117 => 0.014221152260698
1118 => 0.014432095707209
1119 => 0.013954817611164
1120 => 0.014136558862109
1121 => 0.014218148364995
1122 => 0.014337945961748
1123 => 0.014540064587877
1124 => 0.014759619025172
1125 => 0.014790666429897
1126 => 0.014768636810489
1127 => 0.014623834757154
1128 => 0.014864073842271
1129 => 0.015004800264032
1130 => 0.015088599627724
1201 => 0.015301100871163
1202 => 0.014218652233989
1203 => 0.013452441287409
1204 => 0.01333278638388
1205 => 0.013576109335402
1206 => 0.013640271657255
1207 => 0.013614407905769
1208 => 0.012751967824541
1209 => 0.013328245815339
1210 => 0.013948272478607
1211 => 0.013972090227881
1212 => 0.014282488539659
1213 => 0.014383566953631
1214 => 0.014633478279449
1215 => 0.014617846257976
1216 => 0.014678695688854
1217 => 0.014664707458461
1218 => 0.015127615564501
1219 => 0.015638271947981
1220 => 0.015620589541209
1221 => 0.015547176644272
1222 => 0.015656207314983
1223 => 0.016183259427999
1224 => 0.016134736915271
1225 => 0.016181872403249
1226 => 0.01680329654785
1227 => 0.017611236332386
1228 => 0.017235867186641
1229 => 0.018050310223345
1230 => 0.01856295894318
1231 => 0.019449531895268
]
'min_raw' => 0.007940813032626
'max_raw' => 0.019449531895268
'avg_raw' => 0.013695172463947
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00794'
'max' => '$0.019449'
'avg' => '$0.013695'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0035407547878504
'max_diff' => 0.0078905505214019
'year' => 2028
]
3 => [
'items' => [
101 => 0.019338528595203
102 => 0.019683664939478
103 => 0.019139809520999
104 => 0.017891007548855
105 => 0.017693379856541
106 => 0.018089035501283
107 => 0.019061716296369
108 => 0.018058402321569
109 => 0.018261371431952
110 => 0.018202916314507
111 => 0.018199801489717
112 => 0.018318681683058
113 => 0.018146239762243
114 => 0.017443680355135
115 => 0.017765659191204
116 => 0.017641327699904
117 => 0.017779282759028
118 => 0.018523769316126
119 => 0.01819461406289
120 => 0.017847875742008
121 => 0.018282762543787
122 => 0.018836522885771
123 => 0.018801869558773
124 => 0.018734627620429
125 => 0.0191136669062
126 => 0.019739728758202
127 => 0.019908950761078
128 => 0.02003386698401
129 => 0.020051090820675
130 => 0.020228507042883
131 => 0.019274495301425
201 => 0.020788536435879
202 => 0.021049969515257
203 => 0.021000830931624
204 => 0.021291402796567
205 => 0.021205909182804
206 => 0.021082042349999
207 => 0.021542660562341
208 => 0.021014598951864
209 => 0.020265081976899
210 => 0.019853882140668
211 => 0.020395383255561
212 => 0.020726059090642
213 => 0.020944614782697
214 => 0.021010749603058
215 => 0.019348552517191
216 => 0.018452720477586
217 => 0.019026938544238
218 => 0.019727524215967
219 => 0.019270603512645
220 => 0.01928851393915
221 => 0.018637065092861
222 => 0.019785162983731
223 => 0.019617894778054
224 => 0.020485682524996
225 => 0.020278578014757
226 => 0.020986225235061
227 => 0.020799878006114
228 => 0.021573394934941
301 => 0.021881971779985
302 => 0.022400120328964
303 => 0.022781272510837
304 => 0.023005092362313
305 => 0.022991655057957
306 => 0.02387854081611
307 => 0.023355575269955
308 => 0.02269860729047
309 => 0.022686724812428
310 => 0.023026977838312
311 => 0.023740054836706
312 => 0.023924945327541
313 => 0.024028273888693
314 => 0.023870022600395
315 => 0.023302380981323
316 => 0.023057276208216
317 => 0.023266112576272
318 => 0.023010723643653
319 => 0.023451596590832
320 => 0.024057009312688
321 => 0.023931993979686
322 => 0.024349901494566
323 => 0.024782391807314
324 => 0.025400872378898
325 => 0.025562566102579
326 => 0.025829839679163
327 => 0.026104951984264
328 => 0.026193310642178
329 => 0.026362014736217
330 => 0.026361125582367
331 => 0.026869526724849
401 => 0.027430308928879
402 => 0.027641991228762
403 => 0.028128743005114
404 => 0.027295197645928
405 => 0.02792745137595
406 => 0.028497760066767
407 => 0.027817814534507
408 => 0.028754961043737
409 => 0.02879134831907
410 => 0.029340752975646
411 => 0.02878382610301
412 => 0.028453124703812
413 => 0.029407847252077
414 => 0.029869807419704
415 => 0.029730661257658
416 => 0.028671752093996
417 => 0.028055421541995
418 => 0.026442365606122
419 => 0.028353100040994
420 => 0.029283763047333
421 => 0.028669341901642
422 => 0.028979220188785
423 => 0.030669815645064
424 => 0.031313484936866
425 => 0.031179606223759
426 => 0.031202229522443
427 => 0.031549541788875
428 => 0.033089715646594
429 => 0.032166807770098
430 => 0.032872336260981
501 => 0.033246546028573
502 => 0.033594132915649
503 => 0.032740569376954
504 => 0.031630095754449
505 => 0.031278362143691
506 => 0.02860824982762
507 => 0.028469258885858
508 => 0.028391239058391
509 => 0.027899335082333
510 => 0.027512833300991
511 => 0.027205472734576
512 => 0.026398866822669
513 => 0.026671072639773
514 => 0.02538551116793
515 => 0.026207967840114
516 => 0.024156180690086
517 => 0.025864969997814
518 => 0.024934953666734
519 => 0.025559434620345
520 => 0.025557255865127
521 => 0.024407388437663
522 => 0.023744168902622
523 => 0.02416679820324
524 => 0.024619890361859
525 => 0.02469340304021
526 => 0.025280848850774
527 => 0.025444792349397
528 => 0.024948035894779
529 => 0.024113661961935
530 => 0.024307467996491
531 => 0.023740241429517
601 => 0.022746198688951
602 => 0.023460137539547
603 => 0.023703907652816
604 => 0.023811570422112
605 => 0.022834043553345
606 => 0.022526883388038
607 => 0.022363353893351
608 => 0.023987475518434
609 => 0.024076448567303
610 => 0.023621249869766
611 => 0.025678791146343
612 => 0.025213106186732
613 => 0.025733390382203
614 => 0.024289882130234
615 => 0.024345026089401
616 => 0.023661646149673
617 => 0.024044293252456
618 => 0.023773850613501
619 => 0.024013379147944
620 => 0.024156951563876
621 => 0.02484021936768
622 => 0.025872771818585
623 => 0.024738161942765
624 => 0.024243796171958
625 => 0.024550497915748
626 => 0.025367285076145
627 => 0.026604759434711
628 => 0.025872149707947
629 => 0.026197269464165
630 => 0.026268293667328
701 => 0.025728094377498
702 => 0.026624677353059
703 => 0.02710516345349
704 => 0.027598042769942
705 => 0.028025996070253
706 => 0.027401175932302
707 => 0.028069823044358
708 => 0.027531011504145
709 => 0.027047641851262
710 => 0.027048374923499
711 => 0.026745150079341
712 => 0.026157613734996
713 => 0.026049263018674
714 => 0.026612917128168
715 => 0.027064914345739
716 => 0.027102143001499
717 => 0.027352391885602
718 => 0.027500486597446
719 => 0.028952016098511
720 => 0.029535833271521
721 => 0.030249713859585
722 => 0.030527810580741
723 => 0.031364782008229
724 => 0.030688859605037
725 => 0.030542619541355
726 => 0.028512400629538
727 => 0.028844848862613
728 => 0.029377130560249
729 => 0.02852117775868
730 => 0.029064082798099
731 => 0.029171263753181
801 => 0.028492092810017
802 => 0.028854867356005
803 => 0.027891445717018
804 => 0.025893771777587
805 => 0.026626901335219
806 => 0.027166731458377
807 => 0.026396327312057
808 => 0.027777246925578
809 => 0.026970542195326
810 => 0.026714855524492
811 => 0.025717330662689
812 => 0.026188123999207
813 => 0.026824878727959
814 => 0.026431438336273
815 => 0.027247886224393
816 => 0.02840419417267
817 => 0.029228248075941
818 => 0.029291508702316
819 => 0.028761697249836
820 => 0.029610723483646
821 => 0.029616907712857
822 => 0.028659202652745
823 => 0.028072613635951
824 => 0.027939339377141
825 => 0.028272284605605
826 => 0.02867654157804
827 => 0.029313942150801
828 => 0.029699109967494
829 => 0.030703423356207
830 => 0.030975161763271
831 => 0.031273719886697
901 => 0.03167268561151
902 => 0.032151746256861
903 => 0.031103588837772
904 => 0.031145234086042
905 => 0.030169204410114
906 => 0.029126176724571
907 => 0.029917704722662
908 => 0.030952522287609
909 => 0.030715133994838
910 => 0.030688422962499
911 => 0.030733343509871
912 => 0.030554360489499
913 => 0.029744826921776
914 => 0.029338284232014
915 => 0.029862828021909
916 => 0.03014159970148
917 => 0.030573950265049
918 => 0.030520653932276
919 => 0.031634342552969
920 => 0.032067088274775
921 => 0.031956373400904
922 => 0.031976747602198
923 => 0.032760213060898
924 => 0.033631587782932
925 => 0.03444774519814
926 => 0.035277975575665
927 => 0.034277100451115
928 => 0.033768917788264
929 => 0.03429323257875
930 => 0.034015023770653
1001 => 0.035613694104069
1002 => 0.035724382569369
1003 => 0.037322937300723
1004 => 0.038840156093135
1005 => 0.037887218153419
1006 => 0.038785795709304
1007 => 0.039757680598096
1008 => 0.041632604231216
1009 => 0.04100119591219
1010 => 0.040517547035246
1011 => 0.040060501183508
1012 => 0.041011541046989
1013 => 0.042235038638124
1014 => 0.042498568300741
1015 => 0.042925587030258
1016 => 0.042476629049537
1017 => 0.043017349486217
1018 => 0.044926330232297
1019 => 0.044410506783667
1020 => 0.043677954563855
1021 => 0.045184911522426
1022 => 0.045730273387586
1023 => 0.049557908565504
1024 => 0.054390456089349
1025 => 0.052389749682259
1026 => 0.051147846652987
1027 => 0.051439723323199
1028 => 0.05320440608685
1029 => 0.053771166182304
1030 => 0.052230516868941
1031 => 0.052774700252075
1101 => 0.055773204196076
1102 => 0.057381805358508
1103 => 0.055197108915966
1104 => 0.04916961807731
1105 => 0.043611996251488
1106 => 0.045086127822669
1107 => 0.044919007050125
1108 => 0.048140525466969
1109 => 0.044398204565011
1110 => 0.044461215651283
1111 => 0.04774935165734
1112 => 0.046872133343846
1113 => 0.04545115202162
1114 => 0.043622370987693
1115 => 0.040241700104708
1116 => 0.037247345626666
1117 => 0.043119964316758
1118 => 0.042866726320177
1119 => 0.04250000017336
1120 => 0.043316109529188
1121 => 0.047278904904412
1122 => 0.047187549644696
1123 => 0.046606394092247
1124 => 0.047047195456709
1125 => 0.045373877411186
1126 => 0.045805129572261
1127 => 0.043611115895796
1128 => 0.044602901707663
1129 => 0.045448103233897
1130 => 0.045617789953711
1201 => 0.046000102797871
1202 => 0.042733281403203
1203 => 0.044199988300571
1204 => 0.045061541190924
1205 => 0.041169013888747
1206 => 0.04498459844159
1207 => 0.042676413310743
1208 => 0.041892980609556
1209 => 0.042947769532294
1210 => 0.042536717263287
1211 => 0.042183318660194
1212 => 0.04198611616751
1213 => 0.042760636739563
1214 => 0.042724504429125
1215 => 0.04145723844528
1216 => 0.039804141629725
1217 => 0.040358975182078
1218 => 0.040157398950916
1219 => 0.039426860685332
1220 => 0.039919155270809
1221 => 0.037751339060957
1222 => 0.034021723945188
1223 => 0.036485621931866
1224 => 0.036390764539584
1225 => 0.036342933140955
1226 => 0.038194484380805
1227 => 0.038016500451648
1228 => 0.037693457877405
1229 => 0.039420927755123
1230 => 0.038790378012007
1231 => 0.040733583744086
]
'min_raw' => 0.017443680355135
'max_raw' => 0.057381805358508
'avg_raw' => 0.037412742856821
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.017443'
'max' => '$0.057381'
'avg' => '$0.037412'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0095028673225089
'max_diff' => 0.037932273463239
'year' => 2029
]
4 => [
'items' => [
101 => 0.0420135047179
102 => 0.041688875357835
103 => 0.042892647220101
104 => 0.040371757426518
105 => 0.041209095895403
106 => 0.041381670193339
107 => 0.03939961104498
108 => 0.038045620823623
109 => 0.037955325112477
110 => 0.035607692659988
111 => 0.03686177896668
112 => 0.037965323018952
113 => 0.037436811056392
114 => 0.037269499957891
115 => 0.038124256074782
116 => 0.038190677945555
117 => 0.036676252252846
118 => 0.036991149309984
119 => 0.038304322385533
120 => 0.036958060717736
121 => 0.034342494207799
122 => 0.033693797550299
123 => 0.033607249458337
124 => 0.031847932674415
125 => 0.033737146562817
126 => 0.032912454072745
127 => 0.035517647767549
128 => 0.034029575101011
129 => 0.03396542726253
130 => 0.033868458396223
131 => 0.03235414176384
201 => 0.03268568086649
202 => 0.033787767338527
203 => 0.034181004207643
204 => 0.034139986380499
205 => 0.033782366513573
206 => 0.033946083057342
207 => 0.033418695027237
208 => 0.033232463337175
209 => 0.032644664896275
210 => 0.031780763571617
211 => 0.031900894349425
212 => 0.0301892797732
213 => 0.029256701309811
214 => 0.028998575882331
215 => 0.028653399772901
216 => 0.02903756444237
217 => 0.030184430984158
218 => 0.028801066613451
219 => 0.026429385431603
220 => 0.02657192751178
221 => 0.026892177244815
222 => 0.026295393985969
223 => 0.025730588715693
224 => 0.026221641074098
225 => 0.025216728492028
226 => 0.027013616129331
227 => 0.026965015354462
228 => 0.027634783946862
301 => 0.028053603992726
302 => 0.027088359381611
303 => 0.026845602972214
304 => 0.02698388805567
305 => 0.024698343659975
306 => 0.027448006209112
307 => 0.027471785405019
308 => 0.027268173492893
309 => 0.028732283914002
310 => 0.031822013570032
311 => 0.030659532989346
312 => 0.030209385372343
313 => 0.029353654423364
314 => 0.030493865104602
315 => 0.030406314714341
316 => 0.030010378647078
317 => 0.029770915278202
318 => 0.030212133877704
319 => 0.029716243410973
320 => 0.02962716785699
321 => 0.029087466915008
322 => 0.028894818233549
323 => 0.028752188819362
324 => 0.028595167848818
325 => 0.028941516982649
326 => 0.028156644279365
327 => 0.027210164741224
328 => 0.027131475208678
329 => 0.027348743926492
330 => 0.027252618692613
331 => 0.02713101499804
401 => 0.026898840428306
402 => 0.02682995919309
403 => 0.027053789791116
404 => 0.026801098096079
405 => 0.027173958456935
406 => 0.027072561070087
407 => 0.026506163509709
408 => 0.025800222442244
409 => 0.025793938085982
410 => 0.025641844240972
411 => 0.025448129861889
412 => 0.025394242953212
413 => 0.026180286014129
414 => 0.027807371625938
415 => 0.027487935787481
416 => 0.027718760917868
417 => 0.028854192103341
418 => 0.029215111533596
419 => 0.028958939470847
420 => 0.02860827535135
421 => 0.028623702792957
422 => 0.029822028242525
423 => 0.029896766330919
424 => 0.030085605368869
425 => 0.03032831689854
426 => 0.029000274293864
427 => 0.028561152105706
428 => 0.028353071651385
429 => 0.027712264389347
430 => 0.028403320082793
501 => 0.028000671524177
502 => 0.028055002571168
503 => 0.02801961940554
504 => 0.028038941006572
505 => 0.027013113862616
506 => 0.027386871357986
507 => 0.026765427030475
508 => 0.025933382836337
509 => 0.025930593532445
510 => 0.026134235170205
511 => 0.026013101155567
512 => 0.025687132636819
513 => 0.025733434926379
514 => 0.025327778148273
515 => 0.025782689003894
516 => 0.025795734219484
517 => 0.025620568760908
518 => 0.026321421699594
519 => 0.026608561720414
520 => 0.026493264063172
521 => 0.026600472129422
522 => 0.027501209788735
523 => 0.027648069329143
524 => 0.027713294635995
525 => 0.02762590136551
526 => 0.026616935960327
527 => 0.026661687866499
528 => 0.026333328072365
529 => 0.026055898648024
530 => 0.026066994370072
531 => 0.026209629157484
601 => 0.026832523639531
602 => 0.028143368355364
603 => 0.028193113954115
604 => 0.028253407070983
605 => 0.02800816466379
606 => 0.027934197207127
607 => 0.028031779375086
608 => 0.028524063729412
609 => 0.029790352742637
610 => 0.029342761632764
611 => 0.028978863093266
612 => 0.029298100218747
613 => 0.029248956165543
614 => 0.028834130899669
615 => 0.028822488136075
616 => 0.028026305823203
617 => 0.027731975350329
618 => 0.027486010776941
619 => 0.02721742388387
620 => 0.027058196570542
621 => 0.027302842091333
622 => 0.027358795416498
623 => 0.026823873709618
624 => 0.026750965857574
625 => 0.027187794470499
626 => 0.026995562484563
627 => 0.027193277849222
628 => 0.027239149509794
629 => 0.027231763115928
630 => 0.027031050844908
701 => 0.02715897886113
702 => 0.026856390965587
703 => 0.026527372076417
704 => 0.026317478523728
705 => 0.026134318560666
706 => 0.026235946353492
707 => 0.02587366182857
708 => 0.0257577597177
709 => 0.027115639727706
710 => 0.028118720290767
711 => 0.028104135102116
712 => 0.028015351517213
713 => 0.027883437119139
714 => 0.028514413369549
715 => 0.028294593860674
716 => 0.028454530919915
717 => 0.028495241614029
718 => 0.028618460623835
719 => 0.028662500828809
720 => 0.028529380741489
721 => 0.028082613469192
722 => 0.026969311903985
723 => 0.026451067020081
724 => 0.026280037576341
725 => 0.02628625417179
726 => 0.026114772717209
727 => 0.026165281690843
728 => 0.026097207757436
729 => 0.025968292196417
730 => 0.026227986180874
731 => 0.026257913493366
801 => 0.026197297814281
802 => 0.026211575001025
803 => 0.025709703067503
804 => 0.025747859300601
805 => 0.025535400546056
806 => 0.025495567090807
807 => 0.024958489860219
808 => 0.024006979695642
809 => 0.024534208692144
810 => 0.023897390203985
811 => 0.023656217393145
812 => 0.024797891969596
813 => 0.024683299507244
814 => 0.024487167023843
815 => 0.024197046203302
816 => 0.02408943756885
817 => 0.023435641570669
818 => 0.023397011815231
819 => 0.023721050765906
820 => 0.023571517939669
821 => 0.023361517219122
822 => 0.022600915896734
823 => 0.021745748183926
824 => 0.021771560321783
825 => 0.022043573260266
826 => 0.022834487564849
827 => 0.022525463663092
828 => 0.022301263276727
829 => 0.022259277283799
830 => 0.022784819888915
831 => 0.023528572779734
901 => 0.023877524995573
902 => 0.023531723947513
903 => 0.023134486322752
904 => 0.023158664336349
905 => 0.023319509828871
906 => 0.023336412415902
907 => 0.023077851558871
908 => 0.023150634925596
909 => 0.023040070336089
910 => 0.022361535654373
911 => 0.022349263113638
912 => 0.022182739759895
913 => 0.022177697498924
914 => 0.02189439973301
915 => 0.021854764417214
916 => 0.021292259508046
917 => 0.021662501942682
918 => 0.021414162756129
919 => 0.021039857024701
920 => 0.020975326575518
921 => 0.020973386712293
922 => 0.02135771500524
923 => 0.021658010842812
924 => 0.021418482722602
925 => 0.021363946812688
926 => 0.021946247652998
927 => 0.021872144563278
928 => 0.021807971765495
929 => 0.023461977865914
930 => 0.022152702973727
1001 => 0.021581784389935
1002 => 0.020875164227994
1003 => 0.02110524331581
1004 => 0.021153724360178
1005 => 0.019454430248568
1006 => 0.018765026839121
1007 => 0.018528449568618
1008 => 0.018392296004732
1009 => 0.018454342893504
1010 => 0.017833798966047
1011 => 0.018250814748147
1012 => 0.017713476160242
1013 => 0.017623389597329
1014 => 0.018584217555981
1015 => 0.018717911153352
1016 => 0.018147532731623
1017 => 0.018513808014252
1018 => 0.018380991505163
1019 => 0.017722687288077
1020 => 0.017697544909142
1021 => 0.01736723099352
1022 => 0.01685035367695
1023 => 0.016614126873607
1024 => 0.016491097903411
1025 => 0.0165418620543
1026 => 0.016516194146202
1027 => 0.016348693683417
1028 => 0.01652579507666
1029 => 0.016073374200273
1030 => 0.015893216561894
1031 => 0.015811843536263
1101 => 0.015410293968096
1102 => 0.016049337900953
1103 => 0.016175237606189
1104 => 0.016301385372737
1105 => 0.017399415555799
1106 => 0.017344561070854
1107 => 0.017840418899536
1108 => 0.017821150776138
1109 => 0.017679724091033
1110 => 0.017083068170138
1111 => 0.017320884585838
1112 => 0.016588922623191
1113 => 0.017137358294181
1114 => 0.016887075157163
1115 => 0.017052737313793
1116 => 0.016754861819017
1117 => 0.016919718416804
1118 => 0.016205093096872
1119 => 0.015537786028169
1120 => 0.015806329872523
1121 => 0.016098267743049
1122 => 0.016731263430736
1123 => 0.016354256421251
1124 => 0.016489842398075
1125 => 0.016035652072532
1126 => 0.015098527697884
1127 => 0.015103831720074
1128 => 0.014959675551398
1129 => 0.014835103574518
1130 => 0.01639756021146
1201 => 0.016203244029872
1202 => 0.015893626625985
1203 => 0.016308061824794
1204 => 0.016417645069331
1205 => 0.016420764750247
1206 => 0.016723125973178
1207 => 0.016884496212057
1208 => 0.016912938416078
1209 => 0.017388710333307
1210 => 0.017548182804378
1211 => 0.018205027343334
1212 => 0.016870805074719
1213 => 0.016843327645107
1214 => 0.016313893777942
1215 => 0.015978118449368
1216 => 0.016336884601958
1217 => 0.016654702436689
1218 => 0.016323769263981
1219 => 0.016366982149956
1220 => 0.01592273140383
1221 => 0.016081530141629
1222 => 0.016218309007123
1223 => 0.016142787757087
1224 => 0.016029728790515
1225 => 0.016628644998588
1226 => 0.016594851798957
1227 => 0.017152576340939
1228 => 0.017587362504678
1229 => 0.018366577037422
1230 => 0.017553426051131
1231 => 0.017523791597208
]
'min_raw' => 0.014835103574518
'max_raw' => 0.042892647220101
'avg_raw' => 0.028863875397309
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.014835'
'max' => '$0.042892'
'avg' => '$0.028863'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0026085767806173
'max_diff' => -0.014489158138406
'year' => 2030
]
5 => [
'items' => [
101 => 0.017813473137821
102 => 0.017548138455644
103 => 0.017715820815738
104 => 0.018339560816852
105 => 0.018352739460199
106 => 0.018131980204415
107 => 0.018118546983638
108 => 0.018160946213553
109 => 0.018409279827481
110 => 0.018322504432253
111 => 0.018422923116495
112 => 0.018548498218804
113 => 0.019067930084696
114 => 0.019193163349034
115 => 0.018888911442695
116 => 0.018916381983274
117 => 0.018802583418401
118 => 0.018692655430626
119 => 0.018939757493451
120 => 0.019391341370066
121 => 0.019388532090207
122 => 0.019493290772045
123 => 0.019558554562963
124 => 0.01927839459633
125 => 0.019096020759819
126 => 0.019165954493486
127 => 0.019277780056578
128 => 0.019129690970522
129 => 0.018215616529851
130 => 0.018492888323849
131 => 0.01844673673943
201 => 0.018381011270992
202 => 0.018659810203937
203 => 0.01863291936672
204 => 0.017827434391152
205 => 0.017878998925898
206 => 0.017830570201297
207 => 0.017987053318068
208 => 0.017539687853804
209 => 0.01767729445756
210 => 0.017763600029453
211 => 0.017814434674329
212 => 0.017998084269263
213 => 0.017976535108973
214 => 0.017996744743203
215 => 0.018269048610794
216 => 0.01964626812967
217 => 0.019721227149418
218 => 0.019352101521202
219 => 0.019499559928993
220 => 0.019216472031643
221 => 0.019406510833658
222 => 0.019536530555535
223 => 0.018948996433728
224 => 0.0189142064761
225 => 0.018629950174297
226 => 0.018782693409786
227 => 0.018539667939495
228 => 0.018599297889235
301 => 0.018432567351318
302 => 0.018732649123849
303 => 0.019068187173531
304 => 0.01915295733568
305 => 0.018929963534916
306 => 0.018768501327155
307 => 0.018485026879285
308 => 0.018956451203733
309 => 0.019094310042598
310 => 0.018955727089941
311 => 0.018923614391713
312 => 0.018862760886597
313 => 0.018936524750496
314 => 0.019093559233754
315 => 0.019019504671421
316 => 0.019068419014516
317 => 0.018882007978891
318 => 0.019278487340936
319 => 0.019908191985817
320 => 0.019910216589218
321 => 0.019836161627703
322 => 0.019805859932988
323 => 0.019881844817533
324 => 0.019923063500335
325 => 0.020168784683709
326 => 0.020432453303432
327 => 0.021662879704052
328 => 0.021317380894389
329 => 0.022409088395412
330 => 0.023272487288244
331 => 0.023531382864347
401 => 0.023293211116311
402 => 0.022478438432064
403 => 0.022438461797096
404 => 0.023656076175516
405 => 0.023312044343341
406 => 0.023271122851604
407 => 0.022835787317473
408 => 0.023093124535499
409 => 0.023036841111008
410 => 0.022947994971968
411 => 0.023438976457696
412 => 0.024358049968758
413 => 0.024214803743042
414 => 0.024107877080546
415 => 0.023639355571374
416 => 0.023921510167963
417 => 0.023821040320433
418 => 0.024252722545163
419 => 0.023997003558165
420 => 0.023309437963847
421 => 0.023418935050988
422 => 0.023402384786544
423 => 0.023742988056033
424 => 0.023640747408826
425 => 0.023382420659273
426 => 0.024354908675413
427 => 0.024291760712907
428 => 0.024381290086106
429 => 0.024420703684976
430 => 0.025012640003239
501 => 0.025255137372982
502 => 0.025310188521428
503 => 0.025540542267264
504 => 0.025304457110384
505 => 0.026248966063768
506 => 0.026877009404143
507 => 0.027606514062803
508 => 0.028672516441473
509 => 0.029073343196926
510 => 0.029000937431215
511 => 0.029809168268606
512 => 0.031261541117434
513 => 0.029294503508892
514 => 0.031365798887027
515 => 0.030710050684565
516 => 0.029155283492933
517 => 0.029055174815293
518 => 0.030108081208684
519 => 0.032443326250742
520 => 0.031858373853836
521 => 0.03244428302331
522 => 0.031760788854721
523 => 0.03172684760831
524 => 0.032411087237129
525 => 0.034009850425825
526 => 0.033250337963618
527 => 0.032161390608947
528 => 0.032965452389738
529 => 0.032268899662812
530 => 0.030699371416213
531 => 0.031857926551763
601 => 0.031083233726371
602 => 0.031309330277756
603 => 0.032937619369868
604 => 0.032741699318386
605 => 0.032995238006711
606 => 0.03254774885808
607 => 0.032129723430697
608 => 0.03134944792751
609 => 0.031118446818134
610 => 0.031182287214216
611 => 0.031118415182004
612 => 0.030681858209073
613 => 0.030587583772333
614 => 0.030430455580843
615 => 0.03047915617765
616 => 0.030183709208174
617 => 0.030741278682033
618 => 0.030844768489667
619 => 0.031250521055306
620 => 0.031292647632704
621 => 0.032422662752483
622 => 0.031800269413641
623 => 0.032217824600192
624 => 0.032180474534125
625 => 0.029188980012442
626 => 0.02960118156335
627 => 0.030242437820591
628 => 0.029953552745906
629 => 0.029545136838999
630 => 0.029215319096296
701 => 0.028715611490505
702 => 0.029418940349621
703 => 0.030343743008673
704 => 0.031316102154294
705 => 0.032484327956262
706 => 0.03222359355691
707 => 0.031294262985527
708 => 0.031335952076083
709 => 0.031593657629847
710 => 0.031259905522704
711 => 0.031161475510693
712 => 0.031580134857692
713 => 0.031583017934524
714 => 0.031198995799967
715 => 0.030772225472715
716 => 0.030770437289461
717 => 0.030694497631839
718 => 0.031774298351111
719 => 0.032368079566544
720 => 0.032436155625967
721 => 0.032363497505343
722 => 0.032391460732274
723 => 0.03204595252609
724 => 0.032835681828151
725 => 0.033560415531856
726 => 0.033366171417586
727 => 0.033074971876867
728 => 0.032843017416614
729 => 0.033311530318369
730 => 0.033290668176362
731 => 0.033554085615198
801 => 0.0335421354786
802 => 0.03345355810155
803 => 0.033366174580963
804 => 0.033712640362705
805 => 0.033612863781633
806 => 0.033512932219972
807 => 0.033312504174305
808 => 0.033339745674468
809 => 0.033048596413456
810 => 0.032913897443228
811 => 0.030888348119017
812 => 0.030347055152854
813 => 0.030517356939043
814 => 0.030573424708941
815 => 0.030337853316381
816 => 0.030675602179986
817 => 0.030622964377358
818 => 0.0308277472753
819 => 0.030699807811306
820 => 0.030705058491535
821 => 0.031081301175573
822 => 0.0311905260274
823 => 0.031134973386208
824 => 0.031173880551866
825 => 0.032070479762758
826 => 0.031943012026598
827 => 0.031875297332289
828 => 0.031894054765383
829 => 0.03212315508707
830 => 0.032187290668728
831 => 0.031915543702514
901 => 0.032043701142731
902 => 0.032589379257575
903 => 0.032780335715064
904 => 0.03338977706307
905 => 0.033130875546481
906 => 0.033606100485175
907 => 0.0350667799306
908 => 0.036233671742935
909 => 0.035160549808468
910 => 0.037303398019046
911 => 0.038971912724299
912 => 0.038907872350855
913 => 0.038616928218553
914 => 0.036717368586381
915 => 0.034969365492017
916 => 0.036431644304584
917 => 0.036435371953998
918 => 0.036309760907167
919 => 0.035529601483312
920 => 0.036282613050311
921 => 0.036342384373963
922 => 0.036308928327195
923 => 0.035710781926106
924 => 0.034797522927576
925 => 0.034975971549855
926 => 0.035268274033403
927 => 0.034714884451361
928 => 0.034538042948842
929 => 0.034866824947498
930 => 0.035926229051617
1001 => 0.035725954842444
1002 => 0.03572072487347
1003 => 0.036577582869797
1004 => 0.035964257465956
1005 => 0.034978222358454
1006 => 0.034729235489604
1007 => 0.03384549984284
1008 => 0.034455899201819
1009 => 0.034477866388075
1010 => 0.034143556897293
1011 => 0.035005349731146
1012 => 0.034997408158466
1013 => 0.035815552193274
1014 => 0.03737953630696
1015 => 0.036916989245559
1016 => 0.036379097338127
1017 => 0.036437581102589
1018 => 0.037079003648515
1019 => 0.036691184934996
1020 => 0.036830647248345
1021 => 0.0370787925556
1022 => 0.037228504780568
1023 => 0.036416039817357
1024 => 0.036226615369741
1025 => 0.035839119428865
1026 => 0.035738028970844
1027 => 0.03605363632932
1028 => 0.035970484940934
1029 => 0.034476020131132
1030 => 0.034319840243383
1031 => 0.034324630057567
1101 => 0.033931908303876
1102 => 0.033332913365476
1103 => 0.034907036299462
1104 => 0.034780612198026
1105 => 0.03464104977449
1106 => 0.034658145375041
1107 => 0.035341418788708
1108 => 0.034945085702646
1109 => 0.035998802169656
1110 => 0.035782189741655
1111 => 0.03556002202223
1112 => 0.035529311676011
1113 => 0.035443796058491
1114 => 0.035150531187056
1115 => 0.034796396232312
1116 => 0.034562565660545
1117 => 0.031882139851545
1118 => 0.032379611290376
1119 => 0.032951906834802
1120 => 0.033149460963408
1121 => 0.032811530956098
1122 => 0.035163874723452
1123 => 0.035593670597496
1124 => 0.034291790860126
1125 => 0.034048262316663
1126 => 0.035179840414219
1127 => 0.034497360491596
1128 => 0.034804681158964
1129 => 0.034140421971532
1130 => 0.035490145357332
1201 => 0.035479862726537
1202 => 0.034954789844576
1203 => 0.035398577848865
1204 => 0.035321458762034
1205 => 0.034728652771497
1206 => 0.0355089383646
1207 => 0.03550932537652
1208 => 0.035003954143701
1209 => 0.034413791183757
1210 => 0.034308283985546
1211 => 0.034228798484591
1212 => 0.034785132598279
1213 => 0.035283940025
1214 => 0.03621209698128
1215 => 0.036445457692554
1216 => 0.037356280084359
1217 => 0.036813929697176
1218 => 0.037054346599201
1219 => 0.037315353155396
1220 => 0.037440489296634
1221 => 0.037236586669662
1222 => 0.038651468753589
1223 => 0.038770928152339
1224 => 0.03881098185542
1225 => 0.038333891577464
1226 => 0.038757659408659
1227 => 0.038559392474158
1228 => 0.039075227957588
1229 => 0.039156117547908
1230 => 0.039087606942637
1231 => 0.03911328257536
]
'min_raw' => 0.017539687853804
'max_raw' => 0.039156117547908
'avg_raw' => 0.028347902700856
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.017539'
'max' => '$0.039156'
'avg' => '$0.028347'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0027045842792868
'max_diff' => -0.0037365296721937
'year' => 2031
]
6 => [
'items' => [
101 => 0.037905930319032
102 => 0.037843322735251
103 => 0.036989663887964
104 => 0.037337536178161
105 => 0.036687205605591
106 => 0.0368934321293
107 => 0.036984334815953
108 => 0.036936852411127
109 => 0.037357204355506
110 => 0.036999819330555
111 => 0.036056621490173
112 => 0.03511316667617
113 => 0.035101322369502
114 => 0.034852927370336
115 => 0.034673383281752
116 => 0.034707969842882
117 => 0.0348298573955
118 => 0.034666298955614
119 => 0.034701202441387
120 => 0.035280832865928
121 => 0.035397073613835
122 => 0.035002042134256
123 => 0.033415933740976
124 => 0.033026698762813
125 => 0.033306473146252
126 => 0.033172759010746
127 => 0.02677300554936
128 => 0.028276532696228
129 => 0.027383187920516
130 => 0.027794882293981
131 => 0.026883008608488
201 => 0.0273182025266
202 => 0.027237838100662
203 => 0.029655465260223
204 => 0.029617717337464
205 => 0.029635785270513
206 => 0.028773355750327
207 => 0.030147229393496
208 => 0.03082404895302
209 => 0.030698787665521
210 => 0.030730313232936
211 => 0.030188599535546
212 => 0.029641030243231
213 => 0.029033691627743
214 => 0.030162051705998
215 => 0.030036597327045
216 => 0.030324344535302
217 => 0.031056166702895
218 => 0.031163930296995
219 => 0.031308765660296
220 => 0.031256852492636
221 => 0.032493634759504
222 => 0.032343852266434
223 => 0.032704784979368
224 => 0.031962319004832
225 => 0.031122148279127
226 => 0.031281837266833
227 => 0.031266457933179
228 => 0.031070661364188
229 => 0.030893904976359
301 => 0.030599655391428
302 => 0.031530704618896
303 => 0.031492905720556
304 => 0.032104825948262
305 => 0.031996663104139
306 => 0.031274325159148
307 => 0.031300123600166
308 => 0.031473630514323
309 => 0.032074139925286
310 => 0.032252412004258
311 => 0.032169829274364
312 => 0.032365296470527
313 => 0.032519785772535
314 => 0.032384697948301
315 => 0.034297256664458
316 => 0.033503028942381
317 => 0.03389013000792
318 => 0.033982451331119
319 => 0.033745972203053
320 => 0.033797256058248
321 => 0.033874937124854
322 => 0.034346601349775
323 => 0.03558438475311
324 => 0.036132590596571
325 => 0.037781894924622
326 => 0.036087069732665
327 => 0.035986505819658
328 => 0.03628359533336
329 => 0.037251911570519
330 => 0.038036640931418
331 => 0.038296980932551
401 => 0.038331389161446
402 => 0.038819804310647
403 => 0.039099754765766
404 => 0.03876049786494
405 => 0.038473013163169
406 => 0.037443278645337
407 => 0.03756247321965
408 => 0.038383605637095
409 => 0.039543503541193
410 => 0.040538816609718
411 => 0.040190292663283
412 => 0.04284928435502
413 => 0.043112912520249
414 => 0.043076487631933
415 => 0.043677071825455
416 => 0.042485034508158
417 => 0.041975415460378
418 => 0.038535170618782
419 => 0.039501739093507
420 => 0.040906703136096
421 => 0.040720750876714
422 => 0.03970042843419
423 => 0.040538042603651
424 => 0.04026110116461
425 => 0.040042665961328
426 => 0.041043359973312
427 => 0.039943055800891
428 => 0.040895726760287
429 => 0.039673916400743
430 => 0.040191884691313
501 => 0.039897860838278
502 => 0.0400881303054
503 => 0.03897581888845
504 => 0.039575995129203
505 => 0.038950849583638
506 => 0.038950553183253
507 => 0.038936753060686
508 => 0.039672234022723
509 => 0.039696218030491
510 => 0.039152696488295
511 => 0.039074366542663
512 => 0.039363993406053
513 => 0.039024916202419
514 => 0.039183568291873
515 => 0.039029721612587
516 => 0.038995087484573
517 => 0.038719116860046
518 => 0.038600221127029
519 => 0.03864684320751
520 => 0.038487698011497
521 => 0.038391807274366
522 => 0.038917677979536
523 => 0.038636726475328
524 => 0.038874618132104
525 => 0.038603510564887
526 => 0.037663733620965
527 => 0.037123257962555
528 => 0.035348106432857
529 => 0.035851537204611
530 => 0.03618531232712
531 => 0.036074999651122
601 => 0.036311993964505
602 => 0.036326543490559
603 => 0.036249494223407
604 => 0.036160281042667
605 => 0.036116857000082
606 => 0.036440504236864
607 => 0.036628392351282
608 => 0.036218811125999
609 => 0.036122851975566
610 => 0.036536961207926
611 => 0.036789567600442
612 => 0.038654671275512
613 => 0.038516498371057
614 => 0.038863285246175
615 => 0.038824242365915
616 => 0.039187730258521
617 => 0.039781879341486
618 => 0.038573808129122
619 => 0.038783487519629
620 => 0.03873207897528
621 => 0.039293343982428
622 => 0.039295096190516
623 => 0.038958589781465
624 => 0.039141015365005
625 => 0.039039190408857
626 => 0.039223201867084
627 => 0.038514652987678
628 => 0.03937758903967
629 => 0.039866818174778
630 => 0.039873611121793
701 => 0.040105501849072
702 => 0.040341116258193
703 => 0.040793357598809
704 => 0.040328503492657
705 => 0.039492276208325
706 => 0.039552649117256
707 => 0.039062369366416
708 => 0.039070611057604
709 => 0.03902661626413
710 => 0.039158647951119
711 => 0.038543626518186
712 => 0.038687970819208
713 => 0.038485887952498
714 => 0.038783048230942
715 => 0.03846335289369
716 => 0.038732054184524
717 => 0.038848016754059
718 => 0.039275921132138
719 => 0.03840015106913
720 => 0.036614396626235
721 => 0.036989783860311
722 => 0.036434556655082
723 => 0.036485945046825
724 => 0.036589757776548
725 => 0.036253266754104
726 => 0.036317458637136
727 => 0.036315165251363
728 => 0.036295402091756
729 => 0.036207867780919
730 => 0.036080925712069
731 => 0.036586623843658
801 => 0.03667255181039
802 => 0.036863559036212
803 => 0.037431866978819
804 => 0.037375079613729
805 => 0.037467702162277
806 => 0.03726550765885
807 => 0.036495324269931
808 => 0.036537148933413
809 => 0.036015594709593
810 => 0.036850221722095
811 => 0.036652571028997
812 => 0.036525144341362
813 => 0.036490374789041
814 => 0.037060091457115
815 => 0.037230559613417
816 => 0.037124335298102
817 => 0.036906466128332
818 => 0.037324839341528
819 => 0.03743677836363
820 => 0.037461837382527
821 => 0.038203114501203
822 => 0.037503266538899
823 => 0.037671726899316
824 => 0.03898600654216
825 => 0.037794136264294
826 => 0.038425496532358
827 => 0.038394594732677
828 => 0.038717577281752
829 => 0.038368100736498
830 => 0.038372432917121
831 => 0.038659219539966
901 => 0.03825647945042
902 => 0.038156755340501
903 => 0.038018987196887
904 => 0.038319798898323
905 => 0.03850012190879
906 => 0.039953392940503
907 => 0.040892272304201
908 => 0.040851513074904
909 => 0.041223976132592
910 => 0.041056178113733
911 => 0.040514314047957
912 => 0.041439209934954
913 => 0.041146534177021
914 => 0.041170662010904
915 => 0.041169763971721
916 => 0.041364367764588
917 => 0.041226473142166
918 => 0.04095466868678
919 => 0.041135105168848
920 => 0.041670937013368
921 => 0.043334175500086
922 => 0.044264945792232
923 => 0.043278141959789
924 => 0.043958826029578
925 => 0.043550658140238
926 => 0.043476481892802
927 => 0.043904001790787
928 => 0.04433227000576
929 => 0.04430499117192
930 => 0.043994090439666
1001 => 0.04381847050483
1002 => 0.045148323488404
1003 => 0.046128136513247
1004 => 0.046061319833702
1005 => 0.046356226927263
1006 => 0.047222083275091
1007 => 0.047301246328271
1008 => 0.047291273603112
1009 => 0.047095059715995
1010 => 0.047947607736086
1011 => 0.048658818293601
1012 => 0.047049641870291
1013 => 0.047662395186621
1014 => 0.047937479892001
1015 => 0.048341385853452
1016 => 0.04902284291292
1017 => 0.04976308602706
1018 => 0.049867764519752
1019 => 0.04979349011986
1020 => 0.049305279887281
1021 => 0.05011526273571
1022 => 0.050589731691885
1023 => 0.050872267097258
1024 => 0.051588729875875
1025 => 0.047939178721491
1026 => 0.045355845019957
1027 => 0.044952420158671
1028 => 0.045772800477994
1029 => 0.04598912822579
1030 => 0.045901926781905
1031 => 0.042994149834404
1101 => 0.044937111314821
1102 => 0.047027574498909
1103 => 0.047107877703489
1104 => 0.048154407282967
1105 => 0.048495200212742
1106 => 0.049337793695989
1107 => 0.049285089244199
1108 => 0.049490247348779
1109 => 0.049443085053379
1110 => 0.051003812052104
1111 => 0.0527255257019
1112 => 0.052665908232922
1113 => 0.052418391525373
1114 => 0.052785996043954
1115 => 0.054562989040591
1116 => 0.054399392001193
1117 => 0.054558312589806
1118 => 0.056653487479778
1119 => 0.059377512871894
1120 => 0.058111929589578
1121 => 0.060857881150424
1122 => 0.062586312101339
1123 => 0.065575454707851
1124 => 0.065201199331678
1125 => 0.066364850613051
1126 => 0.064531204098874
1127 => 0.060320781061222
1128 => 0.059654465498662
1129 => 0.060988446128705
1130 => 0.06426790733974
1201 => 0.060885164224558
1202 => 0.061569488751065
1203 => 0.061372403241394
1204 => 0.061361901392143
1205 => 0.061762714263941
1206 => 0.061181314288404
1207 => 0.058812586196208
1208 => 0.059898160321859
1209 => 0.059478968018394
1210 => 0.059944093131945
1211 => 0.062454181537592
1212 => 0.061344411620422
1213 => 0.06017535916307
1214 => 0.061641610378097
1215 => 0.063508652033409
1216 => 0.063391815922016
1217 => 0.063165105032207
1218 => 0.064443062447861
1219 => 0.06655387369213
1220 => 0.067124417489529
1221 => 0.067545581256515
1222 => 0.067603652624362
1223 => 0.068201823804342
1224 => 0.064985306611042
1225 => 0.070090002002829
1226 => 0.070971441882627
1227 => 0.070805767717165
1228 => 0.071785451046899
1229 => 0.071497203359124
1230 => 0.071079577684214
1231 => 0.072632584146464
]
'min_raw' => 0.02677300554936
'max_raw' => 0.072632584146464
'avg_raw' => 0.049702794847912
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.026773'
'max' => '$0.072632'
'avg' => '$0.0497027'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0092333176955556
'max_diff' => 0.033476466598556
'year' => 2032
]
7 => [
'items' => [
101 => 0.070852187558654
102 => 0.068325138747956
103 => 0.066938749791049
104 => 0.068764458606311
105 => 0.069879355271335
106 => 0.07061623104617
107 => 0.070839209210402
108 => 0.065234995684508
109 => 0.062214635417982
110 => 0.064150651720325
111 => 0.066512725225889
112 => 0.064972185173455
113 => 0.065032571426882
114 => 0.062836166158915
115 => 0.066707058355615
116 => 0.066143101921884
117 => 0.069068908897704
118 => 0.068370641581857
119 => 0.070756523591466
120 => 0.070128240898722
121 => 0.072736207229488
122 => 0.0737765956067
123 => 0.075523569615561
124 => 0.076808650807942
125 => 0.077563275063794
126 => 0.077517970253997
127 => 0.080508167507995
128 => 0.078744952656847
129 => 0.076529939245972
130 => 0.076489876641648
131 => 0.077637063474122
201 => 0.080041252359652
202 => 0.080664623558144
203 => 0.081013003016239
204 => 0.080479447748991
205 => 0.078565604398817
206 => 0.077739216543618
207 => 0.078443322939008
208 => 0.077582261321998
209 => 0.079068695244177
210 => 0.081109886504483
211 => 0.080688388580975
212 => 0.082097392944762
213 => 0.0835555642297
214 => 0.085640814657731
215 => 0.086185976336219
216 => 0.087087107860116
217 => 0.088014668204492
218 => 0.088312575588653
219 => 0.088881373220249
220 => 0.088878375375964
221 => 0.090592485323276
222 => 0.092483201676727
223 => 0.09319690332997
224 => 0.094838020927865
225 => 0.09202766455309
226 => 0.094159352146404
227 => 0.096082187715175
228 => 0.093789703880881
301 => 0.096949358766227
302 => 0.097072041005493
303 => 0.098924397163348
304 => 0.097046679328861
305 => 0.095931696472631
306 => 0.099150610200705
307 => 0.10070814115889
308 => 0.10023900015868
309 => 0.096668813982715
310 => 0.094590812495816
311 => 0.089152281788052
312 => 0.095594456338442
313 => 0.098732251641128
314 => 0.096660687850916
315 => 0.09770546413103
316 => 0.10340542474548
317 => 0.10557560070235
318 => 0.10512421927399
319 => 0.10520049530501
320 => 0.10637148285986
321 => 0.11156428655266
322 => 0.10845263821169
323 => 0.11083137677712
324 => 0.11209305113505
325 => 0.11326496459257
326 => 0.11038711552796
327 => 0.10664307617889
328 => 0.10545718175296
329 => 0.09645471165804
330 => 0.095986093993853
331 => 0.095723044698377
401 => 0.094064556099459
402 => 0.09276143835897
403 => 0.091725150750073
404 => 0.089005622602652
405 => 0.08992338351982
406 => 0.085589023262468
407 => 0.088361993354826
408 => 0.081444249727305
409 => 0.087205552182167
410 => 0.084069937190264
411 => 0.086175418325232
412 => 0.0861680724999
413 => 0.082291214187022
414 => 0.080055123220123
415 => 0.081480047414194
416 => 0.083007679260861
417 => 0.083255532388412
418 => 0.085236146952886
419 => 0.085788893904663
420 => 0.084114044835491
421 => 0.081300894866778
422 => 0.081954325443391
423 => 0.080041881470344
424 => 0.076690396968675
425 => 0.07909749164908
426 => 0.079919379605452
427 => 0.08028237214891
428 => 0.076986572062114
429 => 0.075950960119542
430 => 0.075399609010942
501 => 0.080875448462458
502 => 0.081175427308621
503 => 0.079640693118918
504 => 0.086577837185842
505 => 0.085007747831428
506 => 0.08676192232154
507 => 0.081895033467498
508 => 0.082080955175858
509 => 0.079776891997001
510 => 0.081067013419604
511 => 0.080155197180662
512 => 0.080962784357885
513 => 0.081446848782106
514 => 0.083750533886868
515 => 0.087231856565603
516 => 0.083406440153345
517 => 0.081739651441552
518 => 0.082773717783973
519 => 0.085527572721508
520 => 0.089699803919115
521 => 0.087229759076154
522 => 0.088325923033379
523 => 0.088565386093092
524 => 0.086744066471923
525 => 0.089766958571451
526 => 0.09138695100552
527 => 0.093048728032674
528 => 0.094491602463417
529 => 0.092384977744768
530 => 0.094639368166513
531 => 0.092822727440067
601 => 0.091193012907579
602 => 0.091195484511808
603 => 0.090173140779247
604 => 0.088192220973811
605 => 0.087826908968927
606 => 0.089727308152158
607 => 0.091251248328637
608 => 0.091376767340753
609 => 0.092220498925325
610 => 0.092719810585948
611 => 0.097613743641344
612 => 0.099582124000961
613 => 0.10198902224517
614 => 0.10292664475664
615 => 0.10574855235989
616 => 0.10346963278614
617 => 0.10297657420128
618 => 0.096131549394728
619 => 0.097252421823335
620 => 0.099047046729637
621 => 0.096161142098431
622 => 0.097991584343252
623 => 0.098352952416447
624 => 0.096063080163368
625 => 0.097286199873277
626 => 0.094037956553479
627 => 0.08730265939355
628 => 0.089774456882577
629 => 0.091594531832539
630 => 0.08899706046532
701 => 0.093652927355036
702 => 0.090933066034665
703 => 0.090071000572475
704 => 0.086707775855945
705 => 0.088295088459756
706 => 0.090441951484538
707 => 0.089115439734838
708 => 0.091868150792207
709 => 0.095766723770665
710 => 0.098545079039149
711 => 0.098758366657689
712 => 0.0969720703554
713 => 0.099834621579808
714 => 0.09985547214036
715 => 0.096626502665362
716 => 0.094648776840903
717 => 0.094199433372415
718 => 0.095321981455674
719 => 0.096684962062558
720 => 0.098834002595508
721 => 0.10013262278105
722 => 0.10351873549002
723 => 0.1044349205016
724 => 0.1054415300594
725 => 0.1067866708555
726 => 0.10840185726824
727 => 0.10486792134977
728 => 0.1050083312119
729 => 0.10171757901529
730 => 0.098200938351613
731 => 0.1008696302599
801 => 0.10435858992877
802 => 0.10355821872577
803 => 0.10346816061533
804 => 0.10361961337705
805 => 0.10301615962767
806 => 0.10028676068427
807 => 0.098916073621828
808 => 0.10068460963194
809 => 0.10162450781283
810 => 0.10308220792365
811 => 0.10290251561668
812 => 0.1066573945566
813 => 0.10811642697101
814 => 0.10774314404389
815 => 0.10781183708603
816 => 0.11045334557985
817 => 0.11339124629263
818 => 0.11614297800029
819 => 0.11894215768295
820 => 0.11556763732166
821 => 0.11385426399368
822 => 0.11562202791629
823 => 0.11468402749588
824 => 0.12007405614059
825 => 0.12044725002937
826 => 0.12583688891366
827 => 0.13095229800111
828 => 0.12773940120535
829 => 0.1307690181717
830 => 0.1340457959291
831 => 0.14036723186115
901 => 0.13823839463003
902 => 0.13660773867413
903 => 0.13506677667507
904 => 0.13827327397428
905 => 0.14239838152467
906 => 0.14328689018123
907 => 0.1447266136413
908 => 0.14321292046405
909 => 0.14503599716821
910 => 0.1514722590344
911 => 0.1497331242637
912 => 0.14726327330944
913 => 0.15234408390764
914 => 0.15418280951197
915 => 0.16708794875128
916 => 0.18338122012562
917 => 0.17663569878925
918 => 0.17244853601916
919 => 0.17343261859096
920 => 0.17938236973483
921 => 0.18129324096657
922 => 0.17609883424187
923 => 0.17793358651178
924 => 0.18804325190784
925 => 0.19346676303592
926 => 0.18610090644926
927 => 0.16577880026076
928 => 0.14704089025424
929 => 0.15201102776705
930 => 0.15144756841442
1001 => 0.16230914267604
1002 => 0.14969164647459
1003 => 0.14990409275125
1004 => 0.16099027286599
1005 => 0.15803267007662
1006 => 0.15324173233899
1007 => 0.14707586940169
1008 => 0.1356777014888
1009 => 0.12558202630693
1010 => 0.14538197023372
1011 => 0.14452816064773
1012 => 0.14329171783974
1013 => 0.14604328751185
1014 => 0.15940412879295
1015 => 0.1590961181566
1016 => 0.15713671163653
1017 => 0.15862290421259
1018 => 0.15298119559477
1019 => 0.1544351923649
1020 => 0.14703792207356
1021 => 0.15038179718254
1022 => 0.15323145313832
1023 => 0.15380356376132
1024 => 0.15509255820764
1025 => 0.14407824179333
1026 => 0.14902334650001
1027 => 0.15192813222154
1028 => 0.13880420465467
1029 => 0.15166871437019
1030 => 0.1438865070492
1031 => 0.14124510899962
1101 => 0.14480140349564
1102 => 0.14341551207193
1103 => 0.1422240040081
1104 => 0.14155912203578
1105 => 0.14417047221976
1106 => 0.14404864961244
1107 => 0.13977597387022
1108 => 0.13420244254104
1109 => 0.13607310260004
1110 => 0.13539347426307
1111 => 0.13293041349611
1112 => 0.13459021906195
1113 => 0.12728127535834
1114 => 0.11470661760211
1115 => 0.12301382168806
1116 => 0.12269400336725
1117 => 0.12253273646729
1118 => 0.12877537074363
1119 => 0.12817528550003
1120 => 0.12708612490686
1121 => 0.13291041020768
1122 => 0.13078446772519
1123 => 0.13733612152118
1124 => 0.14165146444563
1125 => 0.14055695389327
1126 => 0.14461555477157
1127 => 0.1361161988296
1128 => 0.13893934393855
1129 => 0.13952119023279
1130 => 0.13283853943115
1201 => 0.12827346686726
1202 => 0.12796902857289
1203 => 0.12005382185286
1204 => 0.12428206139338
1205 => 0.1280027372126
1206 => 0.12622082223131
1207 => 0.12565672118142
1208 => 0.12853859110669
1209 => 0.12876253708143
1210 => 0.12365654512463
1211 => 0.12471824253818
1212 => 0.12914569724521
1213 => 0.12460668203924
1214 => 0.11578811693797
1215 => 0.11360099086666
1216 => 0.11330918793201
1217 => 0.10737752856344
1218 => 0.11374714508889
1219 => 0.11096663678042
1220 => 0.11975022921127
1221 => 0.11473308832212
1222 => 0.11451680940602
1223 => 0.11418987210312
1224 => 0.10908424785083
1225 => 0.11020205508273
1226 => 0.11391781656843
1227 => 0.11524364212757
1228 => 0.11510534765959
1229 => 0.11389960731002
1230 => 0.11445158906766
1231 => 0.11267346350311
]
'min_raw' => 0.062214635417982
'max_raw' => 0.19346676303592
'avg_raw' => 0.12784069922695
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.062214'
'max' => '$0.193466'
'avg' => '$0.12784'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.035441629868622
'max_diff' => 0.12083417888946
'year' => 2033
]
8 => [
'items' => [
101 => 0.11204557035778
102 => 0.11006376687551
103 => 0.10715106324376
104 => 0.10755609254841
105 => 0.10178526450355
106 => 0.098641011103682
107 => 0.097770723203193
108 => 0.096606937850824
109 => 0.097902175855458
110 => 0.10176891647276
111 => 0.097104806913509
112 => 0.089108518223414
113 => 0.089589108798702
114 => 0.09066885313275
115 => 0.088656756709474
116 => 0.086752476307295
117 => 0.088408093617837
118 => 0.085019960686633
119 => 0.09107829281049
120 => 0.090914431904819
121 => 0.093172603475848
122 => 0.094584684501558
123 => 0.091330294903958
124 => 0.090511824720966
125 => 0.090978062534594
126 => 0.083272190032894
127 => 0.092542869292616
128 => 0.092623042511828
129 => 0.091936550734367
130 => 0.096872901240059
131 => 0.1072901404934
201 => 0.10337075605382
202 => 0.10185305193479
203 => 0.098967895295077
204 => 0.10281219521384
205 => 0.1025170129605
206 => 0.10118208686635
207 => 0.10037471939939
208 => 0.10186231871251
209 => 0.10019038938196
210 => 0.099890064932646
211 => 0.098070425526038
212 => 0.097420897046197
213 => 0.096940012018197
214 => 0.096410604853155
215 => 0.097578345139191
216 => 0.094932092022006
217 => 0.091740970178072
218 => 0.091475662925166
219 => 0.092208199576492
220 => 0.09188410663922
221 => 0.09147411129287
222 => 0.090691318521099
223 => 0.090459080627435
224 => 0.091213741116033
225 => 0.090361773423846
226 => 0.091618898162749
227 => 0.091277029793652
228 => 0.089367380874224
301 => 0.086987251278032
302 => 0.086966063132135
303 => 0.08645326811483
304 => 0.085800146561046
305 => 0.08561846308618
306 => 0.088268662145835
307 => 0.093754494885538
308 => 0.092677494653883
309 => 0.093455737696677
310 => 0.097283923211776
311 => 0.098500788269471
312 => 0.097637086274547
313 => 0.096454797713077
314 => 0.096506812409566
315 => 0.1005470503272
316 => 0.10079903501026
317 => 0.10143571901103
318 => 0.10225403787889
319 => 0.097776449516255
320 => 0.096295918400349
321 => 0.095594360620893
322 => 0.093433834197199
323 => 0.095763776715616
324 => 0.09440621898822
325 => 0.094589399906422
326 => 0.094470103093134
327 => 0.094535247220004
328 => 0.091076599383192
329 => 0.092336748873748
330 => 0.090241505935686
331 => 0.087436210843678
401 => 0.087426806510867
402 => 0.088113398510377
403 => 0.08770498672272
404 => 0.086605961103365
405 => 0.08676207250534
406 => 0.085394372355903
407 => 0.086928136066492
408 => 0.086972118921641
409 => 0.08638153634839
410 => 0.088744510963157
411 => 0.089712623590831
412 => 0.089323889489613
413 => 0.089685348970004
414 => 0.092722248875873
415 => 0.093217396069762
416 => 0.0934373077457
417 => 0.093142655232657
418 => 0.089740857925368
419 => 0.089891742101505
420 => 0.088784654130233
421 => 0.087849281456564
422 => 0.087886691458127
423 => 0.088367594602329
424 => 0.090467726837655
425 => 0.094887331317342
426 => 0.095055052076657
427 => 0.095258334529707
428 => 0.094431482631578
429 => 0.094182096187195
430 => 0.094511101279439
501 => 0.096170872350245
502 => 0.10044025416781
503 => 0.098931169491058
504 => 0.097704260158557
505 => 0.098780590415541
506 => 0.098614897809034
507 => 0.097216285462967
508 => 0.097177031072636
509 => 0.094492646817117
510 => 0.093500291078324
511 => 0.092671004346448
512 => 0.091765444884319
513 => 0.09122859888054
514 => 0.092053438334489
515 => 0.092242088876821
516 => 0.090438562995035
517 => 0.090192749081605
518 => 0.091665547248481
519 => 0.091017423686689
520 => 0.091684034842683
521 => 0.091838694348958
522 => 0.091813790606338
523 => 0.09113707517131
524 => 0.091568393409652
525 => 0.090548197193817
526 => 0.089438887037614
527 => 0.088731216270422
528 => 0.08811367966714
529 => 0.088456324866079
530 => 0.087234857296404
531 => 0.08684408523758
601 => 0.091422272495469
602 => 0.094804228646679
603 => 0.094755053664838
604 => 0.094455713609665
605 => 0.094010955006589
606 => 0.0961383354882
607 => 0.095397198666722
608 => 0.095936437628401
609 => 0.096073696575936
610 => 0.096489138070375
611 => 0.096637622696234
612 => 0.096188799027685
613 => 0.09468249197684
614 => 0.090928918021512
615 => 0.089181619212727
616 => 0.088604981502265
617 => 0.088625941187849
618 => 0.088047779491275
619 => 0.088218074022306
620 => 0.087988558003056
621 => 0.087553910188484
622 => 0.088429486588335
623 => 0.088530388611859
624 => 0.088326018617775
625 => 0.088374155149683
626 => 0.086682058886235
627 => 0.086810705290105
628 => 0.086094385765761
629 => 0.085960084490308
630 => 0.084149291109844
701 => 0.080941208157655
702 => 0.082718797529315
703 => 0.08057171953524
704 => 0.079758588565343
705 => 0.083607824109023
706 => 0.083221467621613
707 => 0.082560193260294
708 => 0.081582030658251
709 => 0.081219220634199
710 => 0.079014901779755
711 => 0.07888465886225
712 => 0.079977178808128
713 => 0.079473018444422
714 => 0.078764986353317
715 => 0.076200565891396
716 => 0.073317308241761
717 => 0.073404335666692
718 => 0.074321446280126
719 => 0.076988069077899
720 => 0.075946173417766
721 => 0.075190266161965
722 => 0.075048707455442
723 => 0.076820611040803
724 => 0.079328225839366
725 => 0.080504742598133
726 => 0.07933885022154
727 => 0.077999535835414
728 => 0.078081053696312
729 => 0.078623355504223
730 => 0.078680343756499
731 => 0.077808587774874
801 => 0.078053981977362
802 => 0.077681205744467
803 => 0.075393478691283
804 => 0.075352100963352
805 => 0.074790655849919
806 => 0.074773655515016
807 => 0.073818497318019
808 => 0.073684864083562
809 => 0.071788339509465
810 => 0.073036637727341
811 => 0.072199344821388
812 => 0.070937346914687
813 => 0.070719777999896
814 => 0.070713237615595
815 => 0.072009027288209
816 => 0.073021495670571
817 => 0.072213909889963
818 => 0.072030038262111
819 => 0.073993306200163
820 => 0.073743462459461
821 => 0.073527099391333
822 => 0.079103696437915
823 => 0.074689384728251
824 => 0.072764492862734
825 => 0.070382073652106
826 => 0.071157801360287
827 => 0.071321258586212
828 => 0.065591969847991
829 => 0.063267598120432
830 => 0.062469961335635
831 => 0.062010910089055
901 => 0.062220105506524
902 => 0.06012789833011
903 => 0.061533896154573
904 => 0.059722221589669
905 => 0.059418488453164
906 => 0.062657986998625
907 => 0.06310874429635
908 => 0.06118567362494
909 => 0.062420596312847
910 => 0.061972796179503
911 => 0.059753277550263
912 => 0.0596685082643
913 => 0.058554831836
914 => 0.05681214387596
915 => 0.056015688715661
916 => 0.055600887953037
917 => 0.055772042832002
918 => 0.055685501687771
919 => 0.055120762182984
920 => 0.055717871895125
921 => 0.054192503323372
922 => 0.05358508926737
923 => 0.053310734430173
924 => 0.051956882025802
925 => 0.054111463262052
926 => 0.054535942908293
927 => 0.054961258910565
928 => 0.058663344334776
929 => 0.058478398608967
930 => 0.060150217898057
1001 => 0.060085254074762
1002 => 0.059608424131836
1003 => 0.057596757037353
1004 => 0.058398571686696
1005 => 0.055930710825681
1006 => 0.05777979998098
1007 => 0.056935952910311
1008 => 0.057494494437553
1009 => 0.056490186409912
1010 => 0.057046011939271
1011 => 0.054636602779573
1012 => 0.05238673040755
1013 => 0.053292144727921
1014 => 0.054276433640851
1015 => 0.056410622796236
1016 => 0.055139517341967
1017 => 0.055596654929141
1018 => 0.054065320536017
1019 => 0.050905740278958
1020 => 0.050923623160084
1021 => 0.050437590572733
1022 => 0.050017587455342
1023 => 0.055285519094032
1024 => 0.054630368521086
1025 => 0.053586471827083
1026 => 0.054983769034811
1027 => 0.055353236594624
1028 => 0.055363754816641
1029 => 0.056383186789939
1030 => 0.056927257816832
1031 => 0.05702315269346
1101 => 0.05862725092973
1102 => 0.059164923499961
1103 => 0.061379520722469
1104 => 0.056881097191413
1105 => 0.05678845511906
1106 => 0.055003431872023
1107 => 0.053871341908651
1108 => 0.05508094704036
1109 => 0.056152492059488
1110 => 0.055036727762688
1111 => 0.05518242302478
1112 => 0.053684600617617
1113 => 0.054220001649083
1114 => 0.054681161143689
1115 => 0.05442653597647
1116 => 0.054045349777145
1117 => 0.056064637587658
1118 => 0.055950701455736
1119 => 0.057831108688112
1120 => 0.05929702059496
1121 => 0.061924196795129
1122 => 0.05918260147246
1123 => 0.059082686842047
1124 => 0.06005936838114
1125 => 0.059164773975106
1126 => 0.05973012675937
1127 => 0.061833109721264
1128 => 0.061877542437412
1129 => 0.061133237193617
1130 => 0.06108794615189
1201 => 0.061230898115768
1202 => 0.062068172233224
1203 => 0.06177560292975
1204 => 0.062114171534679
1205 => 0.062537556759489
1206 => 0.064288857560918
1207 => 0.064711090255142
1208 => 0.06368528371073
1209 => 0.063777902556222
1210 => 0.063394222749593
1211 => 0.063023592863883
1212 => 0.063856714720811
1213 => 0.065379261289397
1214 => 0.065369789606214
1215 => 0.06572299081605
1216 => 0.065943032243701
1217 => 0.064998453356053
1218 => 0.064383567233323
1219 => 0.064619353698998
1220 => 0.064996381392375
1221 => 0.064497088699489
1222 => 0.061415222904125
1223 => 0.062350064116089
1224 => 0.062194460827018
1225 => 0.061972862821375
1226 => 0.062912852888918
1227 => 0.062822188553783
1228 => 0.060106439721489
1229 => 0.060280293150507
1230 => 0.060117012324328
1231 => 0.060644606077826
]
'min_raw' => 0.050017587455342
'max_raw' => 0.11204557035778
'avg_raw' => 0.081031578906561
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.050017'
'max' => '$0.112045'
'avg' => '$0.081031'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.012197047962641
'max_diff' => -0.081421192678142
'year' => 2034
]
9 => [
'items' => [
101 => 0.059136282181002
102 => 0.059600232452948
103 => 0.05989121771425
104 => 0.06006261026861
105 => 0.060681797699936
106 => 0.060609143201504
107 => 0.060677281394302
108 => 0.061595372895535
109 => 0.066238764657819
110 => 0.066491494226374
111 => 0.065246961399314
112 => 0.0657441277164
113 => 0.064789677105916
114 => 0.065430406194997
115 => 0.065868776764992
116 => 0.063887864452998
117 => 0.063770567681896
118 => 0.062812177714226
119 => 0.06332716219687
120 => 0.062507784856289
121 => 0.062708831395065
122 => 0.062146687745726
123 => 0.063158434392853
124 => 0.064289724353874
125 => 0.064575532874023
126 => 0.063823693705817
127 => 0.06327931259942
128 => 0.062323558706871
129 => 0.063912998730544
130 => 0.064377799430773
131 => 0.063910557330337
201 => 0.063802287126225
202 => 0.063597115285072
203 => 0.063845815302235
204 => 0.064375268026339
205 => 0.064125587899108
206 => 0.064290506021942
207 => 0.063662008200531
208 => 0.064998766050969
209 => 0.067121859225761
210 => 0.067128685317479
211 => 0.06687900384438
212 => 0.06677683956505
213 => 0.067033027908389
214 => 0.067171999575254
215 => 0.068000465700703
216 => 0.068889442860857
217 => 0.073037911376172
218 => 0.071873038017437
219 => 0.075553806077721
220 => 0.078464815725491
221 => 0.079337700235833
222 => 0.078534687558708
223 => 0.075787624568157
224 => 0.075652840552285
225 => 0.079758112440247
226 => 0.078598185098533
227 => 0.078460215432094
228 => 0.076992451284618
301 => 0.077860081681903
302 => 0.077670318186646
303 => 0.077370767225837
304 => 0.079026145584199
305 => 0.082124866094407
306 => 0.081641901443274
307 => 0.081281390735289
308 => 0.079701737755987
309 => 0.080653041677793
310 => 0.080314300572264
311 => 0.081769747332033
312 => 0.080907572913639
313 => 0.078589397508099
314 => 0.078958574582238
315 => 0.078902774210163
316 => 0.080051141913406
317 => 0.079706430433131
318 => 0.078835463761218
319 => 0.082114275004577
320 => 0.08190136724014
321 => 0.082203221772621
322 => 0.082336107472981
323 => 0.084331862097679
324 => 0.085149458910393
325 => 0.085335067700926
326 => 0.086111721437797
327 => 0.085315743848437
328 => 0.088500221728281
329 => 0.090617713698941
330 => 0.093077289588003
331 => 0.096671391033598
401 => 0.098022806424439
402 => 0.097778685330134
403 => 0.10050369202727
404 => 0.10540046848853
405 => 0.098768463857151
406 => 0.10575198083776
407 => 0.10354107999028
408 => 0.098299073853313
409 => 0.097961550457285
410 => 0.10151149787418
411 => 0.10938493957508
412 => 0.10741273172884
413 => 0.10938816540059
414 => 0.10708371709116
415 => 0.10696928180918
416 => 0.10927624348983
417 => 0.1146665852026
418 => 0.1121058359088
419 => 0.10843437387465
420 => 0.11114532430639
421 => 0.1087968481558
422 => 0.10350507409143
423 => 0.10741122361867
424 => 0.10479929267054
425 => 0.10556159297909
426 => 0.11105148333666
427 => 0.11039092520439
428 => 0.11124574859358
429 => 0.10973700768628
430 => 0.10832760577225
501 => 0.10569685243616
502 => 0.10491801606791
503 => 0.1051332584205
504 => 0.10491790940449
505 => 0.10344602709082
506 => 0.10312817424532
507 => 0.10259840557737
508 => 0.10276260303968
509 => 0.10176648295464
510 => 0.10364636736401
511 => 0.10399529047588
512 => 0.10536331357967
513 => 0.10550534627655
514 => 0.10931527114802
515 => 0.107216828552
516 => 0.10862464501623
517 => 0.10849871666079
518 => 0.098412684021454
519 => 0.099802450329334
520 => 0.1019644905717
521 => 0.10099049437309
522 => 0.099613491628267
523 => 0.098501488081603
524 => 0.096816689000208
525 => 0.099188011353571
526 => 0.10230604808623
527 => 0.10558442483363
528 => 0.10952317968789
529 => 0.10864409545658
530 => 0.10551079255137
531 => 0.10565135023082
601 => 0.10652022249776
602 => 0.1053949539667
603 => 0.10506309030904
604 => 0.10647462952731
605 => 0.10648435002214
606 => 0.10518959258391
607 => 0.10375070662943
608 => 0.10374467764475
609 => 0.10348864178714
610 => 0.10712926530144
611 => 0.10913124012575
612 => 0.10936076331302
613 => 0.10911579138651
614 => 0.10921007135843
615 => 0.10804516631867
616 => 0.11070779379771
617 => 0.11315128407904
618 => 0.11249637648609
619 => 0.11151457690365
620 => 0.11073252624637
621 => 0.11231215020516
622 => 0.11224181203683
623 => 0.11312994232309
624 => 0.11308965160321
625 => 0.11279100679222
626 => 0.11249638715163
627 => 0.11366452072425
628 => 0.11332811701498
629 => 0.11299119077785
630 => 0.11231543362844
701 => 0.11240728024818
702 => 0.11142565018728
703 => 0.11097150320478
704 => 0.10414222223886
705 => 0.10231721521158
706 => 0.10289139957381
707 => 0.10308043597454
708 => 0.10228619057746
709 => 0.10342493445197
710 => 0.10324746242536
711 => 0.10393790226326
712 => 0.10350654542795
713 => 0.10352424846294
714 => 0.10479277694059
715 => 0.10516103615436
716 => 0.10497373654602
717 => 0.10510491477145
718 => 0.10812786160953
719 => 0.10769809523756
720 => 0.107469790418
721 => 0.10753303241328
722 => 0.10830546014312
723 => 0.10852169773449
724 => 0.10760548386513
725 => 0.10803757562249
726 => 0.10987736748472
727 => 0.11052119051329
728 => 0.11257596456793
729 => 0.11170306002882
730 => 0.11330531408878
731 => 0.11823009682041
801 => 0.12216435403548
802 => 0.11854624851045
803 => 0.12577101086129
804 => 0.13139652468203
805 => 0.13118060809181
806 => 0.13019966963668
807 => 0.12379517171379
808 => 0.11790165723947
809 => 0.12283183234908
810 => 0.12284440037934
811 => 0.12242089396507
812 => 0.11979053199855
813 => 0.12232936307027
814 => 0.12253088626106
815 => 0.12241808686356
816 => 0.12040139451104
817 => 0.11732227803579
818 => 0.11792393002469
819 => 0.11890944825588
820 => 0.1170436566436
821 => 0.11644742317118
822 => 0.11755593463447
823 => 0.12112778953674
824 => 0.12045255105781
825 => 0.12043491785228
826 => 0.12332387441081
827 => 0.12125600499074
828 => 0.11793151878303
829 => 0.11709204217099
830 => 0.11411246573748
831 => 0.11617046979299
901 => 0.11624453369516
902 => 0.11511738590624
903 => 0.11802298061403
904 => 0.11799620504728
905 => 0.12075463478163
906 => 0.1260277164148
907 => 0.12446820670328
908 => 0.12265466658296
909 => 0.12285184867805
910 => 0.12501444957433
911 => 0.12370689170507
912 => 0.12417709863147
913 => 0.12501373785983
914 => 0.12551850307889
915 => 0.12277922073093
916 => 0.1221405629806
917 => 0.12083409336183
918 => 0.1204932598247
919 => 0.12155735206881
920 => 0.12127700135742
921 => 0.11623830891097
922 => 0.1157117375153
923 => 0.11572788670823
924 => 0.1144037978967
925 => 0.1123842446414
926 => 0.11769151001508
927 => 0.11726526233044
928 => 0.11679471787555
929 => 0.11685235688639
930 => 0.11915606090519
1001 => 0.11781979623444
1002 => 0.1213724748711
1003 => 0.1206421509467
1004 => 0.1198930969694
1005 => 0.119789554893
1006 => 0.11950123301802
1007 => 0.11851247002888
1008 => 0.11731847930404
1009 => 0.1165301032058
1010 => 0.10749286044941
1011 => 0.10917012013777
1012 => 0.1110996545222
1013 => 0.11176572205959
1014 => 0.11062636744642
1015 => 0.11855745869345
1016 => 0.12000654549018
1017 => 0.1156171670613
1018 => 0.11479609357439
1019 => 0.11861128813456
1020 => 0.11631025942621
1021 => 0.11734641251269
1022 => 0.11510681628516
1023 => 0.11965750291507
1024 => 0.11962283430743
1025 => 0.11785251442648
1026 => 0.11934877666723
1027 => 0.1190887642817
1028 => 0.11709007749621
1029 => 0.11972086485116
1030 => 0.11972216968886
1031 => 0.11801827529352
1101 => 0.11602849967021
1102 => 0.11567277478516
1103 => 0.1154047838692
1104 => 0.1172805031755
1105 => 0.11896226724031
1106 => 0.12209161322026
1107 => 0.12287840515104
1108 => 0.1259493064366
1109 => 0.12412073424052
1110 => 0.12493131661107
1111 => 0.12581131843818
1112 => 0.12623322367509
1113 => 0.12554575173223
1114 => 0.1303161254621
1115 => 0.13071889116537
1116 => 0.13085393502177
1117 => 0.12924539184026
1118 => 0.13067415466966
1119 => 0.13000568385744
1120 => 0.1317448592043
1121 => 0.1320175841056
1122 => 0.13178659581667
1123 => 0.13187316300501
1124 => 0.12780249057816
1125 => 0.12759140473832
1126 => 0.12471323433413
1127 => 0.1258861100482
1128 => 0.12369347511815
1129 => 0.12438878224111
1130 => 0.12469526699578
1201 => 0.1245351767528
1202 => 0.12595242268131
1203 => 0.12474747411786
1204 => 0.12156741674704
1205 => 0.11838649297172
1206 => 0.11834655906484
1207 => 0.11750907798277
1208 => 0.11690373255274
1209 => 0.11702034355835
1210 => 0.11743129595192
1211 => 0.11687984725256
1212 => 0.11699752679172
1213 => 0.11895179123657
1214 => 0.11934370503381
1215 => 0.11801182882019
1216 => 0.11266415363369
1217 => 0.1113518207293
1218 => 0.11229509959628
1219 => 0.1118442730528
1220 => 0.090267057441223
1221 => 0.095336304189801
1222 => 0.09232432990715
1223 => 0.093712386230869
1224 => 0.090637940435241
1225 => 0.092105227114425
1226 => 0.09183427284151
1227 => 0.099985471603307
1228 => 0.099858201846249
1229 => 0.099919119143986
1230 => 0.097011377803774
1231 => 0.10164348871251
]
'min_raw' => 0.059136282181002
'max_raw' => 0.1320175841056
'avg_raw' => 0.095576933143299
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.059136'
'max' => '$0.132017'
'avg' => '$0.095576'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0091186947256598
'max_diff' => 0.019972013747817
'year' => 2035
]
10 => [
'items' => [
101 => 0.10392543311148
102 => 0.10350310593521
103 => 0.1036093965868
104 => 0.10178297103481
105 => 0.099936802935698
106 => 0.097889118390552
107 => 0.10169346317397
108 => 0.10127048497639
109 => 0.1022406447789
110 => 0.10470803431113
111 => 0.10507136679245
112 => 0.1055596893319
113 => 0.10538466046267
114 => 0.1095545582248
115 => 0.10904955609194
116 => 0.11026646593311
117 => 0.10776319006264
118 => 0.10493049580208
119 => 0.10546889837326
120 => 0.1054170458761
121 => 0.10475690407366
122 => 0.10416095757136
123 => 0.10316887455191
124 => 0.1063079720261
125 => 0.10618053040132
126 => 0.10824366217194
127 => 0.10787898359129
128 => 0.10544357077772
129 => 0.10553055202281
130 => 0.10611554269775
131 => 0.10814020210304
201 => 0.10874125886385
202 => 0.10846282542427
203 => 0.10912185672322
204 => 0.10964272819104
205 => 0.1091872701601
206 => 0.11563559540221
207 => 0.11295780118602
208 => 0.11426293945502
209 => 0.11457420724186
210 => 0.11377690135113
211 => 0.11394980844945
212 => 0.11421171558903
213 => 0.11580196445389
214 => 0.11997523761752
215 => 0.12182355189325
216 => 0.12738429658603
217 => 0.12167007512243
218 => 0.12133101686858
219 => 0.12233267490615
220 => 0.12559742070542
221 => 0.12824319053374
222 => 0.12912094502392
223 => 0.12923695476994
224 => 0.13088368054553
225 => 0.13182755305048
226 => 0.13068372472319
227 => 0.12971444997962
228 => 0.12624262815899
229 => 0.12664450098818
301 => 0.12941300626323
302 => 0.13332368302839
303 => 0.13667945052946
304 => 0.13550437771089
305 => 0.14446935384445
306 => 0.14535819460945
307 => 0.14523538555539
308 => 0.1472602970953
309 => 0.14324126005464
310 => 0.14152304385459
311 => 0.12992401818092
312 => 0.13318287127711
313 => 0.13791980563816
314 => 0.13729285461288
315 => 0.13385276626127
316 => 0.13667684091396
317 => 0.1357431135168
318 => 0.13500664397828
319 => 0.13838055370591
320 => 0.13467080136781
321 => 0.13788279802077
322 => 0.13376337908949
323 => 0.13550974534454
324 => 0.13451842339594
325 => 0.13515993018854
326 => 0.13140969458719
327 => 0.13343323068585
328 => 0.13132550883271
329 => 0.13132450949812
330 => 0.13127798142139
331 => 0.13375770683454
401 => 0.13383857059124
402 => 0.13200604976426
403 => 0.13174195488374
404 => 0.13271845207476
405 => 0.1315752296091
406 => 0.13211013620543
407 => 0.13159143138498
408 => 0.1314746600043
409 => 0.13054420577606
410 => 0.13014334051116
411 => 0.13030053011055
412 => 0.12976396097103
413 => 0.12944065865591
414 => 0.13121366845351
415 => 0.13026642084167
416 => 0.13106848917156
417 => 0.13015443108055
418 => 0.12698590750099
419 => 0.12516365608386
420 => 0.11917860876436
421 => 0.12087596075974
422 => 0.12200130688872
423 => 0.1216293799998
424 => 0.12242842287379
425 => 0.12247747761669
426 => 0.12221770063308
427 => 0.12191691216555
428 => 0.12177050497421
429 => 0.12286170422935
430 => 0.12349518212504
501 => 0.12211425042795
502 => 0.12179071745261
503 => 0.12318691564169
504 => 0.12403859573048
505 => 0.13032692298835
506 => 0.12986106339406
507 => 0.13103027955541
508 => 0.13089864375872
509 => 0.13212416856656
510 => 0.13412738368194
511 => 0.13005428724461
512 => 0.13076123594906
513 => 0.13058790845256
514 => 0.13248025261043
515 => 0.13248616030233
516 => 0.13135160545009
517 => 0.13196666604154
518 => 0.1316233560927
519 => 0.13224376357138
520 => 0.12985484155516
521 => 0.13276429070272
522 => 0.13441376088862
523 => 0.13443666378375
524 => 0.13521849956087
525 => 0.13601288999129
526 => 0.13753765324566
527 => 0.13597036517169
528 => 0.13315096649904
529 => 0.13335451797661
530 => 0.13170150556641
531 => 0.13172929300367
601 => 0.13158096148585
602 => 0.13202611553669
603 => 0.12995252783613
604 => 0.13043919472483
605 => 0.12975785823074
606 => 0.13075975485658
607 => 0.12968187970662
608 => 0.13058782486879
609 => 0.13097880076822
610 => 0.13242151025425
611 => 0.1294687903425
612 => 0.12344799456089
613 => 0.12471363882928
614 => 0.12284165154212
615 => 0.12301491109271
616 => 0.12336492295894
617 => 0.12223041998372
618 => 0.12244684739909
619 => 0.12243911508884
620 => 0.12237248221641
621 => 0.12207735417597
622 => 0.12164936012803
623 => 0.1233543566854
624 => 0.12364406882453
625 => 0.12428806302209
626 => 0.12620415292859
627 => 0.12601269036242
628 => 0.12632497375154
629 => 0.12564326086647
630 => 0.12304653379824
701 => 0.12318754857128
702 => 0.12142909209192
703 => 0.12424309533637
704 => 0.12357670222505
705 => 0.12314707425105
706 => 0.12302984627786
707 => 0.12495068580062
708 => 0.1255254310913
709 => 0.12516728839587
710 => 0.12443272727885
711 => 0.12584330177703
712 => 0.12622071200538
713 => 0.12630520023715
714 => 0.12880446779709
715 => 0.12644488153035
716 => 0.12701285739703
717 => 0.13144404297295
718 => 0.1274255691174
719 => 0.12955424434134
720 => 0.12945005676622
721 => 0.13053901498035
722 => 0.12936073040835
723 => 0.12937533665779
724 => 0.13034225777951
725 => 0.12898439144919
726 => 0.12864816465009
727 => 0.12818366973522
728 => 0.12919787738862
729 => 0.12980584900816
730 => 0.13470565375572
731 => 0.13787115108089
801 => 0.1377337284936
802 => 0.13898951369714
803 => 0.13842377096127
804 => 0.13659683843176
805 => 0.13971518948894
806 => 0.1387284127371
807 => 0.13880976141359
808 => 0.13880673361179
809 => 0.13946285388624
810 => 0.13899793253925
811 => 0.13808152484114
812 => 0.1386898790381
813 => 0.14049647351248
814 => 0.14610419819406
815 => 0.14924235521833
816 => 0.14591527720081
817 => 0.14821025106595
818 => 0.14683408452966
819 => 0.14658399413261
820 => 0.14802540731716
821 => 0.14946934350467
822 => 0.14937737101183
823 => 0.14832914748664
824 => 0.14773703261495
825 => 0.15222072479644
826 => 0.15552423281806
827 => 0.15529895571798
828 => 0.15629325557368
829 => 0.15921255070254
830 => 0.15947945446332
831 => 0.15944583072418
901 => 0.15878428190454
902 => 0.16165870707728
903 => 0.16405660312708
904 => 0.15863115246678
905 => 0.16069709305386
906 => 0.16162456034385
907 => 0.16298635749269
908 => 0.1652839375465
909 => 0.16777971888795
910 => 0.16813264973448
911 => 0.16788222840957
912 => 0.16623619352468
913 => 0.16896710724936
914 => 0.17056681246146
915 => 0.17151940030667
916 => 0.17393500458661
917 => 0.16163028806608
918 => 0.15292039812876
919 => 0.15156022304271
920 => 0.15432619256643
921 => 0.15505555667165
922 => 0.15476155091538
923 => 0.14495777792238
924 => 0.15150860820684
925 => 0.15855675078347
926 => 0.1588274986443
927 => 0.16235594618788
928 => 0.16350495334402
929 => 0.16634581610078
930 => 0.16616811936186
1001 => 0.16685982423514
1002 => 0.16670081326343
1003 => 0.17196291330611
1004 => 0.17776779108261
1005 => 0.17756678662359
1006 => 0.17673226676302
1007 => 0.17797167106274
1008 => 0.1839629270166
1009 => 0.18341134817629
1010 => 0.18394716003627
1011 => 0.19101118845825
1012 => 0.20019543025315
1013 => 0.19592842785662
1014 => 0.20518659526023
1015 => 0.21101412088644
1016 => 0.22109222387956
1017 => 0.21983039574912
1018 => 0.22375372728781
1019 => 0.21757146004415
1020 => 0.20337572481036
1021 => 0.20112919537052
1022 => 0.20562680420026
1023 => 0.21668373663793
1024 => 0.20527858204952
1025 => 0.20758582996865
1026 => 0.20692134241272
1027 => 0.20688593469476
1028 => 0.20823730327589
1029 => 0.20627707266631
1030 => 0.19829074052416
1031 => 0.20195082948116
1101 => 0.20053749336295
1102 => 0.20210569515729
1103 => 0.2105686334657
1104 => 0.2068269667083
1105 => 0.2028854247277
1106 => 0.20782899306956
1107 => 0.21412385436313
1108 => 0.21372993325633
1109 => 0.21296556166289
1110 => 0.2172742843139
1111 => 0.22439103179609
1112 => 0.22631466004312
1113 => 0.22773464308823
1114 => 0.22793043475934
1115 => 0.22994721065562
1116 => 0.21910249836835
1117 => 0.23631333528021
1118 => 0.23928517137511
1119 => 0.23872658935926
1120 => 0.24202966010476
1121 => 0.24105781290062
1122 => 0.23964975877997
1123 => 0.24488582849489
1124 => 0.23888309709577
1125 => 0.23036297559759
1126 => 0.22568866843479
1127 => 0.23184417317236
1128 => 0.23560312511809
1129 => 0.23808755323997
1130 => 0.23883933968852
1201 => 0.21994434251227
1202 => 0.20976098699886
1203 => 0.21628840113055
1204 => 0.22425229686927
1205 => 0.21905825852541
1206 => 0.21926185499488
1207 => 0.21185652128581
1208 => 0.22490750458404
1209 => 0.22300608609354
1210 => 0.23287064858584
1211 => 0.23051639157899
1212 => 0.23856055935135
1213 => 0.23644226038747
1214 => 0.24523520095404
1215 => 0.24874294300541
1216 => 0.25463298784611
1217 => 0.25896572880773
1218 => 0.26150999717252
1219 => 0.2613572488432
1220 => 0.27143890765396
1221 => 0.26549410567959
1222 => 0.25802603331753
1223 => 0.25789095944996
1224 => 0.26175877994968
1225 => 0.26986467063235
1226 => 0.27196641015045
1227 => 0.2731409958165
1228 => 0.27134207698133
1229 => 0.26488942050594
1230 => 0.26210319615558
1231 => 0.26447714002678
]
'min_raw' => 0.097889118390552
'max_raw' => 0.2731409958165
'avg_raw' => 0.18551505710352
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.097889'
'max' => '$0.27314'
'avg' => '$0.185515'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.038752836209551
'max_diff' => 0.1411234117109
'year' => 2036
]
11 => [
'items' => [
101 => 0.26157401066763
102 => 0.26658562641576
103 => 0.2734676452613
104 => 0.27204653558415
105 => 0.2767970921702
106 => 0.28171341846364
107 => 0.28874398586928
108 => 0.29058203653027
109 => 0.29362026437809
110 => 0.29674759883934
111 => 0.29775201438427
112 => 0.29966975531138
113 => 0.29965964787007
114 => 0.30543888923277
115 => 0.31181357142403
116 => 0.314219866377
117 => 0.31975300893747
118 => 0.3102776962071
119 => 0.31746482975763
120 => 0.32394780412584
121 => 0.31621853482241
122 => 0.32687153186841
123 => 0.3272851636035
124 => 0.33353051171708
125 => 0.32719965494004
126 => 0.32344041239464
127 => 0.33429320476622
128 => 0.33954452913507
129 => 0.33796278749848
130 => 0.32592565554379
131 => 0.31891952844928
201 => 0.30058314246196
202 => 0.32230338373686
203 => 0.33288267967375
204 => 0.32589825772308
205 => 0.32942079389543
206 => 0.3486386090656
207 => 0.35595550882102
208 => 0.35443364482088
209 => 0.35469081478489
210 => 0.35863888108179
211 => 0.37614678128205
212 => 0.3656556416521
213 => 0.3736757248037
214 => 0.37792954798874
215 => 0.38188073603115
216 => 0.3721778669848
217 => 0.35955457691894
218 => 0.35555625106542
219 => 0.325203794608
220 => 0.32362381743535
221 => 0.32273692837014
222 => 0.31714521826691
223 => 0.31275166582408
224 => 0.30925774979939
225 => 0.30008867077897
226 => 0.30318296578722
227 => 0.28856936756419
228 => 0.29791862983317
301 => 0.27459497421154
302 => 0.2940196076794
303 => 0.28344766281255
304 => 0.29054643945909
305 => 0.29052167249612
306 => 0.27745057402065
307 => 0.26991143720686
308 => 0.2747156686122
309 => 0.27986618603909
310 => 0.28070184016318
311 => 0.2873796204494
312 => 0.28924324538887
313 => 0.28359637481793
314 => 0.27411164329056
315 => 0.27631473010067
316 => 0.26986679172297
317 => 0.25856702773242
318 => 0.26668271550539
319 => 0.26945376813268
320 => 0.27067762283628
321 => 0.25956560273823
322 => 0.25607396476973
323 => 0.25421504601298
324 => 0.27267722103467
325 => 0.27368862065836
326 => 0.26851415718606
327 => 0.29190322274363
328 => 0.28660955686508
329 => 0.29252387863105
330 => 0.27611482306432
331 => 0.27674167108469
401 => 0.26897336121262
402 => 0.27332309566233
403 => 0.27024884355176
404 => 0.2729716801037
405 => 0.27460373710626
406 => 0.28237077227512
407 => 0.29410829474467
408 => 0.28121063622869
409 => 0.27559094171541
410 => 0.27907736858509
411 => 0.288362182775
412 => 0.30242915155362
413 => 0.29410122291255
414 => 0.29779701622605
415 => 0.29860438265066
416 => 0.29246367638741
417 => 0.30265556815255
418 => 0.30811748574828
419 => 0.31372028301689
420 => 0.31858503489842
421 => 0.31148240257966
422 => 0.31908323728308
423 => 0.31295830624006
424 => 0.30746360991074
425 => 0.30747194309696
426 => 0.30402503982488
427 => 0.29734623039744
428 => 0.29611455546771
429 => 0.3025218839956
430 => 0.30765995469871
501 => 0.30808315081151
502 => 0.31092785075636
503 => 0.31261131488098
504 => 0.32911155186074
505 => 0.33574808367112
506 => 0.34386310914573
507 => 0.34702436890587
508 => 0.35653862740953
509 => 0.34885509095753
510 => 0.34719270951443
511 => 0.32411423047477
512 => 0.32789333012464
513 => 0.33394403329294
514 => 0.32421400434141
515 => 0.33038546816722
516 => 0.33160384585591
517 => 0.32388338168087
518 => 0.32800721517832
519 => 0.31705553604052
520 => 0.29434701142239
521 => 0.30268084923203
522 => 0.3088173589994
523 => 0.30005980293516
524 => 0.31575738321609
525 => 0.3065871808798
526 => 0.30368066698654
527 => 0.29234132004191
528 => 0.29769305530829
529 => 0.30493135388553
530 => 0.30045892690732
531 => 0.30973988442539
601 => 0.32288419541193
602 => 0.3322516141782
603 => 0.33297072827537
604 => 0.32694810557698
605 => 0.33659939688702
606 => 0.33666969600766
607 => 0.32578299998325
608 => 0.31911495928568
609 => 0.31759996640951
610 => 0.32138471564602
611 => 0.3259800999224
612 => 0.33322574012046
613 => 0.33760412874278
614 => 0.3490206441519
615 => 0.35210962588446
616 => 0.3555034802878
617 => 0.36003871639659
618 => 0.36548443015587
619 => 0.35356951847522
620 => 0.35404292012847
621 => 0.34294791934463
622 => 0.33109131982303
623 => 0.34008900091393
624 => 0.35185227202892
625 => 0.34915376463788
626 => 0.34885012743088
627 => 0.34936076099111
628 => 0.34732617454328
629 => 0.33812381544504
630 => 0.33350244831571
701 => 0.33946519094904
702 => 0.3426341232875
703 => 0.34754886098453
704 => 0.34694301582584
705 => 0.35960285232907
706 => 0.36452208198065
707 => 0.36326353253007
708 => 0.36349513591766
709 => 0.3724011662288
710 => 0.38230650359961
711 => 0.39158415917177
712 => 0.40102178890434
713 => 0.38964435790476
714 => 0.38386760010557
715 => 0.38982773959199
716 => 0.38666520568546
717 => 0.40483806358088
718 => 0.40609631283247
719 => 0.42426785662342
720 => 0.44151481550821
721 => 0.43068230964403
722 => 0.44089687476717
723 => 0.45194475975356
724 => 0.47325792234704
725 => 0.46608039899166
726 => 0.46058252858756
727 => 0.45538706762121
728 => 0.46619799713599
729 => 0.48010608524793
730 => 0.48310175421723
731 => 0.48795588238112
801 => 0.48285236015135
802 => 0.48899899054258
803 => 0.51069929678989
804 => 0.50483568248797
805 => 0.4965084075562
806 => 0.51363871521888
807 => 0.51983810696962
808 => 0.56334868492299
809 => 0.61828258692145
810 => 0.59553959077864
811 => 0.5814222791609
812 => 0.58474018225818
813 => 0.60480018363808
814 => 0.61124281940868
815 => 0.59372951447445
816 => 0.59991550985076
817 => 0.63400095256786
818 => 0.65228669899366
819 => 0.62745219924404
820 => 0.55893479938537
821 => 0.49575862755928
822 => 0.51251579318765
823 => 0.51061605064079
824 => 0.54723660659474
825 => 0.50469583722609
826 => 0.50541211468038
827 => 0.54278994494962
828 => 0.53281818065202
829 => 0.51666519957699
830 => 0.49587656219709
831 => 0.45744684328411
901 => 0.4234085695509
902 => 0.49016546288801
903 => 0.48728678425778
904 => 0.48311803100494
905 => 0.49239514026293
906 => 0.53744214946631
907 => 0.53640367010124
908 => 0.52979739421744
909 => 0.53480819625025
910 => 0.51578678175377
911 => 0.52068903337907
912 => 0.49574862013088
913 => 0.50702272852273
914 => 0.51663054253428
915 => 0.51855945344321
916 => 0.52290538821368
917 => 0.48576985142782
918 => 0.50244261720259
919 => 0.51223630506838
920 => 0.46798806699332
921 => 0.51136165967057
922 => 0.48512340435149
923 => 0.47621774641082
924 => 0.48820804159671
925 => 0.48353541190183
926 => 0.47951815927619
927 => 0.47727646328592
928 => 0.48608081274985
929 => 0.48567007932388
930 => 0.4712644547503
1001 => 0.45247290474244
1002 => 0.45877996573668
1003 => 0.45648855134846
1004 => 0.44818417000722
1005 => 0.45378032035639
1006 => 0.42913770636551
1007 => 0.38674136980582
1008 => 0.41474968837206
1009 => 0.41367139857445
1010 => 0.41312767596194
1011 => 0.43417515327141
1012 => 0.43215192397602
1013 => 0.42847974299338
1014 => 0.44811672752371
1015 => 0.44094896401543
1016 => 0.46303832221048
1017 => 0.47758780216786
1018 => 0.4738975834243
1019 => 0.48758143964795
1020 => 0.45892526768352
1021 => 0.46844369852403
1022 => 0.47040543392829
1023 => 0.44787441018278
1024 => 0.43248294931045
1025 => 0.43145651434576
1026 => 0.4047698422671
1027 => 0.41902564708423
1028 => 0.43157016537802
1029 => 0.42556231460924
1030 => 0.42366040853528
1031 => 0.43337683419404
1101 => 0.43413188368328
1102 => 0.41691667531197
1103 => 0.42049626226711
1104 => 0.43542373492688
1105 => 0.42012012825604
1106 => 0.39038772032454
1107 => 0.38301367207483
1108 => 0.38202983810764
1109 => 0.36203083441129
1110 => 0.38350644123926
1111 => 0.37413176334837
1112 => 0.40374625847981
1113 => 0.38683061768645
1114 => 0.38610141822071
1115 => 0.38499912627795
1116 => 0.36778515764805
1117 => 0.37155392277322
1118 => 0.38408187204842
1119 => 0.38855198548726
1120 => 0.38808571603303
1121 => 0.38402047826237
1122 => 0.38588152329639
1123 => 0.37988644881074
1124 => 0.37776946323317
1125 => 0.3710876744276
1126 => 0.36126729077468
1127 => 0.36263287535353
1128 => 0.34317612569394
1129 => 0.33257505583153
1130 => 0.32964081941347
1201 => 0.32571703584506
1202 => 0.33008402120832
1203 => 0.34312100716677
1204 => 0.32739563615001
1205 => 0.30043559054831
1206 => 0.30205593522665
1207 => 0.30569636863424
1208 => 0.29891244506308
1209 => 0.29249203073452
1210 => 0.29807406008852
1211 => 0.28665073335908
1212 => 0.30707682309391
1213 => 0.30652435461004
1214 => 0.31413793772226
1215 => 0.31889886748879
1216 => 0.30792646574626
1217 => 0.30516693638054
1218 => 0.30673888972087
1219 => 0.28075800257455
1220 => 0.31201474495686
1221 => 0.31228505456295
1222 => 0.30997049960591
1223 => 0.32661374998084
1224 => 0.36173619943191
1225 => 0.34852172115116
1226 => 0.34340467575113
1227 => 0.33367716870515
1228 => 0.34663849428171
1229 => 0.3456432667056
1230 => 0.34114247017762
1231 => 0.33842037439415
]
'min_raw' => 0.25421504601298
'max_raw' => 0.65228669899366
'avg_raw' => 0.45325087250332
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.254215'
'max' => '$0.652286'
'avg' => '$0.45325'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.15632592762243
'max_diff' => 0.37914570317717
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0079795198093211
]
1 => [
'year' => 2028
'avg' => 0.013695172463947
]
2 => [
'year' => 2029
'avg' => 0.037412742856821
]
3 => [
'year' => 2030
'avg' => 0.028863875397309
]
4 => [
'year' => 2031
'avg' => 0.028347902700856
]
5 => [
'year' => 2032
'avg' => 0.049702794847912
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0079795198093211
'min' => '$0.007979'
'max_raw' => 0.049702794847912
'max' => '$0.0497027'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.049702794847912
]
1 => [
'year' => 2033
'avg' => 0.12784069922695
]
2 => [
'year' => 2034
'avg' => 0.081031578906561
]
3 => [
'year' => 2035
'avg' => 0.095576933143299
]
4 => [
'year' => 2036
'avg' => 0.18551505710352
]
5 => [
'year' => 2037
'avg' => 0.45325087250332
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.049702794847912
'min' => '$0.0497027'
'max_raw' => 0.45325087250332
'max' => '$0.45325'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.45325087250332
]
]
]
]
'prediction_2025_max_price' => '$0.013643'
'last_price' => 0.01322912
'sma_50day_nextmonth' => '$0.012095'
'sma_200day_nextmonth' => '$0.019847'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.013059'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.012963'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.012375'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.011974'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.013119'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.016661'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.021849'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.013056'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.012873'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.01255'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.01245'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.0136018'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.01648'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.022967'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.019337'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.029932'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.064014'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.08677'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.012987'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.013157'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.014576'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.018796'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.03272'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.055028'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.0764014'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '57.84'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 102.45
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.012429'
'vwma_10_action' => 'BUY'
'hma_9' => '0.01340090'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 159.69
'cci_20_action' => 'SELL'
'adx_14' => 19.53
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000480'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 82.07
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.002869'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 19
'sell_pct' => 45.71
'buy_pct' => 54.29
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767694567
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de NKN para 2026
A previsão de preço para NKN em 2026 sugere que o preço médio poderia variar entre $0.00457 na extremidade inferior e $0.013643 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, NKN poderia potencialmente ganhar 3.13% até 2026 se NKN atingir a meta de preço prevista.
Previsão de preço de NKN 2027-2032
A previsão de preço de NKN para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.007979 na extremidade inferior e $0.0497027 na extremidade superior. Considerando a volatilidade de preços no mercado, se NKN atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de NKN | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.004400058 | $0.007979 | $0.011558 |
| 2028 | $0.00794 | $0.013695 | $0.019449 |
| 2029 | $0.017443 | $0.037412 | $0.057381 |
| 2030 | $0.014835 | $0.028863 | $0.042892 |
| 2031 | $0.017539 | $0.028347 | $0.039156 |
| 2032 | $0.026773 | $0.0497027 | $0.072632 |
Previsão de preço de NKN 2032-2037
A previsão de preço de NKN para 2032-2037 é atualmente estimada entre $0.0497027 na extremidade inferior e $0.45325 na extremidade superior. Comparado ao preço atual, NKN poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de NKN | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.026773 | $0.0497027 | $0.072632 |
| 2033 | $0.062214 | $0.12784 | $0.193466 |
| 2034 | $0.050017 | $0.081031 | $0.112045 |
| 2035 | $0.059136 | $0.095576 | $0.132017 |
| 2036 | $0.097889 | $0.185515 | $0.27314 |
| 2037 | $0.254215 | $0.45325 | $0.652286 |
NKN Histograma de preços potenciais
Previsão de preço de NKN baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para NKN é Altista, com 19 indicadores técnicos mostrando sinais de alta e 16 indicando sinais de baixa. A previsão de preço de NKN foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de NKN
De acordo com nossos indicadores técnicos, o SMA de 200 dias de NKN está projetado para aumentar no próximo mês, alcançando $0.019847 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para NKN é esperado para alcançar $0.012095 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 57.84, sugerindo que o mercado de NKN está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de NKN para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.013059 | BUY |
| SMA 5 | $0.012963 | BUY |
| SMA 10 | $0.012375 | BUY |
| SMA 21 | $0.011974 | BUY |
| SMA 50 | $0.013119 | BUY |
| SMA 100 | $0.016661 | SELL |
| SMA 200 | $0.021849 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.013056 | BUY |
| EMA 5 | $0.012873 | BUY |
| EMA 10 | $0.01255 | BUY |
| EMA 21 | $0.01245 | BUY |
| EMA 50 | $0.0136018 | SELL |
| EMA 100 | $0.01648 | SELL |
| EMA 200 | $0.022967 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.019337 | SELL |
| SMA 50 | $0.029932 | SELL |
| SMA 100 | $0.064014 | SELL |
| SMA 200 | $0.08677 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.018796 | SELL |
| EMA 50 | $0.03272 | SELL |
| EMA 100 | $0.055028 | SELL |
| EMA 200 | $0.0764014 | SELL |
Osciladores de NKN
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 57.84 | NEUTRAL |
| Stoch RSI (14) | 102.45 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 159.69 | SELL |
| Índice Direcional Médio (14) | 19.53 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000480 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 82.07 | SELL |
| VWMA (10) | 0.012429 | BUY |
| Média Móvel de Hull (9) | 0.01340090 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.002869 | SELL |
Previsão do preço de NKN com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do NKN
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de NKN por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.018589 | $0.02612 | $0.0367041 | $0.051575 | $0.072472 | $0.101835 |
| Amazon.com stock | $0.0276033 | $0.057596 | $0.120177 | $0.250757 | $0.52322 | $1.09 |
| Apple stock | $0.018764 | $0.026616 | $0.037752 | $0.053549 | $0.075955 | $0.107737 |
| Netflix stock | $0.020873 | $0.032935 | $0.051966 | $0.081994 | $0.129374 | $0.204133 |
| Google stock | $0.017131 | $0.022185 | $0.02873 | $0.0372052 | $0.04818 | $0.062393 |
| Tesla stock | $0.029989 | $0.067983 | $0.154113 | $0.349364 | $0.791983 | $1.79 |
| Kodak stock | $0.00992 | $0.007439 | $0.005578 | $0.004183 | $0.003137 | $0.002352 |
| Nokia stock | $0.008763 | $0.0058056 | $0.003845 | $0.002547 | $0.001687 | $0.001118 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para NKN
Você pode fazer perguntas como: 'Devo investir em NKN agora?', 'Devo comprar NKN hoje?', 'NKN será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para NKN regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como NKN, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre NKN para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de NKN é de $0.01322 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para NKN
com base no histórico de preços de 4 horas
Previsão de longo prazo para NKN
com base no histórico de preços de 1 mês
Previsão do preço de NKN com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se NKN tiver 1% da média anterior do crescimento anual do Bitcoin | $0.013572 | $0.013925 | $0.014287 | $0.014659 |
| Se NKN tiver 2% da média anterior do crescimento anual do Bitcoin | $0.013916 | $0.01464 | $0.0154014 | $0.0162021 |
| Se NKN tiver 5% da média anterior do crescimento anual do Bitcoin | $0.014948 | $0.016891 | $0.019086 | $0.021567 |
| Se NKN tiver 10% da média anterior do crescimento anual do Bitcoin | $0.016667 | $0.02100028 | $0.026458 | $0.033336 |
| Se NKN tiver 20% da média anterior do crescimento anual do Bitcoin | $0.0201064 | $0.030559 | $0.046445 | $0.070591 |
| Se NKN tiver 50% da média anterior do crescimento anual do Bitcoin | $0.030422 | $0.069961 | $0.160887 | $0.369986 |
| Se NKN tiver 100% da média anterior do crescimento anual do Bitcoin | $0.047615 | $0.171384 | $0.616868 | $2.22 |
Perguntas Frequentes sobre NKN
NKN é um bom investimento?
A decisão de adquirir NKN depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de NKN experimentou uma escalada de 3.5976% nas últimas 24 horas, e NKN registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em NKN dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
NKN pode subir?
Parece que o valor médio de NKN pode potencialmente subir para $0.013643 até o final deste ano. Observando as perspectivas de NKN em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.042892. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de NKN na próxima semana?
Com base na nossa nova previsão experimental de NKN, o preço de NKN aumentará 0.86% na próxima semana e atingirá $0.013342 até 13 de janeiro de 2026.
Qual será o preço de NKN no próximo mês?
Com base na nossa nova previsão experimental de NKN, o preço de NKN diminuirá -11.62% no próximo mês e atingirá $0.011692 até 5 de fevereiro de 2026.
Até onde o preço de NKN pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de NKN em 2026, espera-se que NKN fluctue dentro do intervalo de $0.00457 e $0.013643. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de NKN não considera flutuações repentinas e extremas de preço.
Onde estará NKN em 5 anos?
O futuro de NKN parece seguir uma tendência de alta, com um preço máximo de $0.042892 projetada após um período de cinco anos. Com base na previsão de NKN para 2030, o valor de NKN pode potencialmente atingir seu pico mais alto de aproximadamente $0.042892, enquanto seu pico mais baixo está previsto para cerca de $0.014835.
Quanto será NKN em 2026?
Com base na nossa nova simulação experimental de previsão de preços de NKN, espera-se que o valor de NKN em 2026 aumente 3.13% para $0.013643 se o melhor cenário ocorrer. O preço ficará entre $0.013643 e $0.00457 durante 2026.
Quanto será NKN em 2027?
De acordo com nossa última simulação experimental para previsão de preços de NKN, o valor de NKN pode diminuir -12.62% para $0.011558 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.011558 e $0.004400058 ao longo do ano.
Quanto será NKN em 2028?
Nosso novo modelo experimental de previsão de preços de NKN sugere que o valor de NKN em 2028 pode aumentar 47.02%, alcançando $0.019449 no melhor cenário. O preço é esperado para variar entre $0.019449 e $0.00794 durante o ano.
Quanto será NKN em 2029?
Com base no nosso modelo de previsão experimental, o valor de NKN pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.057381 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.057381 e $0.017443.
Quanto será NKN em 2030?
Usando nossa nova simulação experimental para previsões de preços de NKN, espera-se que o valor de NKN em 2030 aumente 224.23%, alcançando $0.042892 no melhor cenário. O preço está previsto para variar entre $0.042892 e $0.014835 ao longo de 2030.
Quanto será NKN em 2031?
Nossa simulação experimental indica que o preço de NKN poderia aumentar 195.98% em 2031, potencialmente atingindo $0.039156 sob condições ideais. O preço provavelmente oscilará entre $0.039156 e $0.017539 durante o ano.
Quanto será NKN em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de NKN, NKN poderia ver um 449.04% aumento em valor, atingindo $0.072632 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.072632 e $0.026773 ao longo do ano.
Quanto será NKN em 2033?
De acordo com nossa previsão experimental de preços de NKN, espera-se que o valor de NKN seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.193466. Ao longo do ano, o preço de NKN poderia variar entre $0.193466 e $0.062214.
Quanto será NKN em 2034?
Os resultados da nossa nova simulação de previsão de preços de NKN sugerem que NKN pode aumentar 746.96% em 2034, atingindo potencialmente $0.112045 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.112045 e $0.050017.
Quanto será NKN em 2035?
Com base em nossa previsão experimental para o preço de NKN, NKN poderia aumentar 897.93%, com o valor potencialmente atingindo $0.132017 em 2035. A faixa de preço esperada para o ano está entre $0.132017 e $0.059136.
Quanto será NKN em 2036?
Nossa recente simulação de previsão de preços de NKN sugere que o valor de NKN pode aumentar 1964.7% em 2036, possivelmente atingindo $0.27314 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.27314 e $0.097889.
Quanto será NKN em 2037?
De acordo com a simulação experimental, o valor de NKN poderia aumentar 4830.69% em 2037, com um pico de $0.652286 sob condições favoráveis. O preço é esperado para cair entre $0.652286 e $0.254215 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Mil.k Alliance
Previsão de Preço do Dogelon Mars
Previsão de Preço do Medibloc
Previsão de Preço do ChainGPT
Previsão de Preço do Hifi Finance
Previsão de Preço do The Truth
Previsão de Preço do Metal
Previsão de Preço do Telos
Previsão de Preço do Stader MaticX
Previsão de Preço do OmiseGO
Previsão de Preço do WazirX
Previsão de Preço do STP Network
Previsão de Preço do Ultima
Previsão de Preço do LUKSO
Previsão de Preço do Bella Protocol
Previsão de Preço do Aavegotchi
Previsão de Preço do Tokamak Network
Previsão de Preço do Chainflip
Previsão de Preço do Kyber Network Crystal
Previsão de Preço do Radicle
Previsão de Preço do Ergo
Previsão de Preço do CANTO
Previsão de Preço do Mines of Dalarnia
Previsão de Preço do Ethernity Chain
Previsão de Preço do Huobi Token
Como ler e prever os movimentos de preço de NKN?
Traders de NKN utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de NKN
Médias móveis são ferramentas populares para a previsão de preço de NKN. Uma média móvel simples (SMA) calcula o preço médio de fechamento de NKN em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de NKN acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de NKN.
Como ler gráficos de NKN e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de NKN em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de NKN dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de NKN?
A ação de preço de NKN é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de NKN. A capitalização de mercado de NKN pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de NKN, grandes detentores de NKN, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de NKN.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


