Predicción del precio de Dypius - Pronóstico de DYP
Predicción de precio de Dypius hasta $0.0008033 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000269 | $0.0008033 |
| 2027 | $0.000259 | $0.00068 |
| 2028 | $0.000467 | $0.001145 |
| 2029 | $0.001027 | $0.003378 |
| 2030 | $0.000873 | $0.002525 |
| 2031 | $0.001032 | $0.0023056 |
| 2032 | $0.001576 | $0.004276 |
| 2033 | $0.003663 | $0.011392 |
| 2034 | $0.002945 | $0.006597 |
| 2035 | $0.003482 | $0.007773 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Dypius hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,966.47, equivalente a un ROI del 39.66% en los próximos 90 días.
Predicción del precio a largo plazo de Dypius para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Dypius'
'name_with_ticker' => 'Dypius <small>DYP</small>'
'name_lang' => 'Dypius'
'name_lang_with_ticker' => 'Dypius <small>DYP</small>'
'name_with_lang' => 'Dypius'
'name_with_lang_with_ticker' => 'Dypius <small>DYP</small>'
'image' => '/uploads/coins/dypius.jpg?1717210176'
'price_for_sd' => 0.0007789
'ticker' => 'DYP'
'marketcap' => '$169.7K'
'low24h' => '$0.0007316'
'high24h' => '$0.0008005'
'volume24h' => '$88.99K'
'current_supply' => '217.85M'
'max_supply' => '229.93M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0007789'
'change_24h_pct' => '3.1313%'
'ath_price' => '$0.2112'
'ath_days' => 782
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '16 nov. 2023'
'ath_pct' => '-99.63%'
'fdv' => '$179.11K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.038409'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000785'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000688'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000269'
'current_year_max_price_prediction' => '$0.0008033'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000873'
'grand_prediction_max_price' => '$0.002525'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00079374126125652
107 => 0.00079670480299797
108 => 0.00080338181386366
109 => 0.00074632748706902
110 => 0.00077194320477278
111 => 0.00078699003905558
112 => 0.00071900789435738
113 => 0.00078564625063416
114 => 0.00074533429817394
115 => 0.00073165181604374
116 => 0.00075007347570211
117 => 0.00074289453701759
118 => 0.00073672250709806
119 => 0.00073327840835403
120 => 0.00074680524208276
121 => 0.00074617419912125
122 => 0.00072404167369577
123 => 0.00069517069651537
124 => 0.00070486074411463
125 => 0.00070134025897714
126 => 0.00068858156668725
127 => 0.00069717938480025
128 => 0.00065931894508674
129 => 0.00059418202637406
130 => 0.00063721347007344
131 => 0.00063555680630022
201 => 0.00063472144130204
202 => 0.00066705838194037
203 => 0.00066394993123815
204 => 0.00065830806277557
205 => 0.00068847794934852
206 => 0.00067746553490716
207 => 0.00071140320136428
208 => 0.00073375674344359
209 => 0.00072808716211094
210 => 0.00074911077648058
211 => 0.00070508398324017
212 => 0.00071970791790628
213 => 0.00072272189057306
214 => 0.00068810565763136
215 => 0.00066445851221589
216 => 0.00066288151721387
217 => 0.0006218806258408
218 => 0.00064378297106466
219 => 0.00066305612848103
220 => 0.00065382578173603
221 => 0.00065090372970532
222 => 0.00066583185981443
223 => 0.00066699190337469
224 => 0.00064054278726473
225 => 0.00064604239603857
226 => 0.00066897667885935
227 => 0.00064546451095479
228 => 0.00059978420940705
301 => 0.00058845486304364
302 => 0.00058694331939747
303 => 0.00055621723351809
304 => 0.00058921194414102
305 => 0.00057480886875084
306 => 0.00062030801133307
307 => 0.0005943191451069
308 => 0.00059319881702718
309 => 0.00059150527681828
310 => 0.00056505806542327
311 => 0.00057084832391081
312 => 0.00059009602500466
313 => 0.00059696382159582
314 => 0.00059624745414516
315 => 0.00059000170076876
316 => 0.00059286097468104
317 => 0.00058365025717249
318 => 0.00058039776111572
319 => 0.00057013198889101
320 => 0.00055504413971266
321 => 0.00055714219768006
322 => 0.00052724922050725
323 => 0.00051096194000312
324 => 0.00050645383542249
325 => 0.0005004254095706
326 => 0.00050713476216349
327 => 0.00052716453745877
328 => 0.00050300437889878
329 => 0.00046158348168574
330 => 0.00046407294818602
331 => 0.0004696660402829
401 => 0.00045924335016236
402 => 0.00044937914867334
403 => 0.00045795527156008
404 => 0.00044040469136888
405 => 0.00047178694405012
406 => 0.00047093814206284
407 => 0.00048263550519692
408 => 0.00048995010641872
409 => 0.00047309231873274
410 => 0.00046885263071803
411 => 0.00047126774969429
412 => 0.00043135121276071
413 => 0.00047937347253576
414 => 0.00047978877103246
415 => 0.00047623273316867
416 => 0.00050180310397795
417 => 0.0005557645619842
418 => 0.00053546209088763
419 => 0.0005276003604336
420 => 0.0005126552050936
421 => 0.00053256873722863
422 => 0.00053103968866016
423 => 0.00052412475115905
424 => 0.00051994257538247
425 => 0.00052764836248334
426 => 0.0005189877430845
427 => 0.00051743205786257
428 => 0.00050800629801985
429 => 0.00050464173060074
430 => 0.00050215073883093
501 => 0.00049940840165216
502 => 0.00050545731412068
503 => 0.0004917496826663
504 => 0.00047521962290801
505 => 0.00047384532729683
506 => 0.0004776398783086
507 => 0.00047596107195699
508 => 0.0004738372898179
509 => 0.00046978241133674
510 => 0.00046857941551014
511 => 0.00047248856833596
512 => 0.00046807536271338
513 => 0.00047458728800925
514 => 0.00047281640465003
515 => 0.00046292439415989
516 => 0.00045059528659782
517 => 0.00045048553167934
518 => 0.00044782924567888
519 => 0.00044444606608202
520 => 0.00044350494291484
521 => 0.00045723301441131
522 => 0.00048564971156241
523 => 0.00048007083395772
524 => 0.00048410214477348
525 => 0.00050393220405207
526 => 0.00051023558358605
527 => 0.00050576159409656
528 => 0.00049963732133969
529 => 0.00049990675825978
530 => 0.00052083525221345
531 => 0.00052214053670992
601 => 0.00052543856953178
602 => 0.00052967747373183
603 => 0.00050648349781137
604 => 0.00049881432407973
605 => 0.00049518024409612
606 => 0.00048398868431255
607 => 0.00049605782204731
608 => 0.00048902565234127
609 => 0.00048997453228774
610 => 0.0004893565729778
611 => 0.00048969402054725
612 => 0.00047177817207093
613 => 0.00047830576562642
614 => 0.00046745237529282
615 => 0.00045292090398635
616 => 0.00045287218939915
617 => 0.00045642874641468
618 => 0.00045431316713375
619 => 0.00044862019768528
620 => 0.00044942885712538
621 => 0.00044234414951868
622 => 0.0004502890689016
623 => 0.00045051690076122
624 => 0.00044745767403611
625 => 0.0004596979185331
626 => 0.00046471275669061
627 => 0.00046269910812515
628 => 0.00046457147373928
629 => 0.00048030266150931
630 => 0.00048286753151567
701 => 0.00048400667734669
702 => 0.00048248037284103
703 => 0.00046485901097357
704 => 0.00046564059330421
705 => 0.00045990586075001
706 => 0.00045506061605294
707 => 0.00045525440043086
708 => 0.00045774548604287
709 => 0.00046862420301078
710 => 0.00049151782153435
711 => 0.00049238661762231
712 => 0.00049343962382547
713 => 0.00048915651839867
714 => 0.00048786469281815
715 => 0.00048956894420733
716 => 0.00049816658363551
717 => 0.00052028204648112
718 => 0.00051246496486938
719 => 0.00050610955583891
720 => 0.0005116849629646
721 => 0.00051082667273909
722 => 0.00050358183948299
723 => 0.00050337850114316
724 => 0.00048947334981141
725 => 0.00048433293196904
726 => 0.00048003721406634
727 => 0.00047534640225916
728 => 0.00047256553178242
729 => 0.00047683821271772
730 => 0.00047781542540049
731 => 0.00046847313386179
801 => 0.00046719981404602
802 => 0.00047482893098389
803 => 0.00047147164106168
804 => 0.00047492469700346
805 => 0.00047572583560172
806 => 0.00047559683383561
807 => 0.00047209143757453
808 => 0.00047432567261892
809 => 0.00046904104068142
810 => 0.00046329479717543
811 => 0.00045962905182223
812 => 0.000456430202811
813 => 0.00045820511016062
814 => 0.00045187788954449
815 => 0.00044985368432759
816 => 0.00047356876405776
817 => 0.00049108734843451
818 => 0.00049083262127955
819 => 0.00048928203523425
820 => 0.00048697817889581
821 => 0.00049799804219452
822 => 0.00049415894217037
823 => 0.00049695220820548
824 => 0.00049766321164442
825 => 0.00049981520491356
826 => 0.00050058435753721
827 => 0.00049825944409771
828 => 0.00049045675063047
829 => 0.00047101318036796
830 => 0.00046196214592385
831 => 0.00045897515380039
901 => 0.00045908372529097
902 => 0.00045608883889624
903 => 0.00045697096716088
904 => 0.0004557820706852
905 => 0.00045353058838523
906 => 0.00045806608747311
907 => 0.00045858876149189
908 => 0.0004575301218096
909 => 0.0004577794697781
910 => 0.00044901438535966
911 => 0.00044968077569123
912 => 0.00044597022964425
913 => 0.00044527454699175
914 => 0.00043589460969919
915 => 0.00041927669114178
916 => 0.00042848463116297
917 => 0.00041736273444967
918 => 0.00041315070364011
919 => 0.00043308980238739
920 => 0.00043108846989768
921 => 0.00042766305863361
922 => 0.00042259616145579
923 => 0.00042071680000493
924 => 0.00040929839476303
925 => 0.00040862373446652
926 => 0.00041428300442728
927 => 0.00041167144606398
928 => 0.00040800382904741
929 => 0.00039472009199377
930 => 0.00037978477345128
1001 => 0.00038023557683801
1002 => 0.0003849862237849
1003 => 0.00039879937049499
1004 => 0.00039340233510549
1005 => 0.00038948672400657
1006 => 0.00038875344775057
1007 => 0.00039793193531213
1008 => 0.00041092141816433
1009 => 0.00041701579289528
1010 => 0.00041097645262582
1011 => 0.00040403878370543
1012 => 0.00040446104746656
1013 => 0.0004072701790918
1014 => 0.00040756537910663
1015 => 0.00040304966984335
1016 => 0.00040432081555004
1017 => 0.00040238982898557
1018 => 0.00039053936800374
1019 => 0.0003903250307428
1020 => 0.00038741673650336
1021 => 0.00038732867450962
1022 => 0.00038238094050034
1023 => 0.00038168871831037
1024 => 0.00037186469212895
1025 => 0.00037833089591145
1026 => 0.00037399370590508
1027 => 0.0003674565375258
1028 => 0.0003663295272332
1029 => 0.0003662956479429
1030 => 0.00037300785818433
1031 => 0.00037825245982674
1101 => 0.00037406915318216
1102 => 0.00037311669534918
1103 => 0.00038328645317251
1104 => 0.00038199225879009
1105 => 0.00038087149480157
1106 => 0.00040975835244481
1107 => 0.00038689215055057
1108 => 0.00037692118136751
1109 => 0.00036458021356778
1110 => 0.00036859849491194
1111 => 0.00036944520583199
1112 => 0.00033976740290028
1113 => 0.00032772712194702
1114 => 0.00032359535125228
1115 => 0.00032121745880279
1116 => 0.00032230109425172
1117 => 0.00031146342920969
1118 => 0.00031874651935637
1119 => 0.00030936201751499
1120 => 0.00030778867524147
1121 => 0.00032456932705055
1122 => 0.00032690425671864
1123 => 0.00031694272134879
1124 => 0.00032333963968232
1125 => 0.00032102002817076
1126 => 0.00030952288786391
1127 => 0.00030908378167142
1128 => 0.00030331492080947
1129 => 0.00029428777063208
1130 => 0.00029016212077024
1201 => 0.00028801344650166
1202 => 0.0002889000313817
1203 => 0.00028845174693641
1204 => 0.00028552638769958
1205 => 0.00028861942510356
1206 => 0.00028071799266768
1207 => 0.00027757157860554
1208 => 0.00027615041636992
1209 => 0.00026913744029359
1210 => 0.00028029820391565
1211 => 0.00028249701494879
1212 => 0.00028470015831892
1213 => 0.00030387701720597
1214 => 0.00030291899552922
1215 => 0.00031157904491162
1216 => 0.00031124253131743
1217 => 0.00030877254495007
1218 => 0.00029835207875921
1219 => 0.00030250549085594
1220 => 0.00028972193400577
1221 => 0.00029930024399529
1222 => 0.00029492910331586
1223 => 0.0002978223569346
1224 => 0.00029262002605394
1225 => 0.00029549921076228
1226 => 0.00028301843461526
1227 => 0.00027136406145844
1228 => 0.00027605412142911
1229 => 0.00028115275299064
1230 => 0.0002922078853232
1231 => 0.00028562353970878
]
'min_raw' => 0.00026913744029359
'max_raw' => 0.00080338181386366
'avg_raw' => 0.00053625962707863
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000269'
'max' => '$0.0008033'
'avg' => '$0.000536'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00050984255970641
'max_diff' => 2.4401813863663E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.0002879915193734
102 => 0.00028005918389195
103 => 0.0002636925100341
104 => 0.00026378514363072
105 => 0.00026126748742506
106 => 0.00025909186487955
107 => 0.00028637983100836
108 => 0.00028298614106134
109 => 0.00027757874028591
110 => 0.00028481676110538
111 => 0.00028673060869289
112 => 0.00028678509324315
113 => 0.00029206576639268
114 => 0.0002948840625992
115 => 0.00029538079952079
116 => 0.00030369005281807
117 => 0.00030647520492161
118 => 0.00031794685226664
119 => 0.00029464494985641
120 => 0.00029416506251052
121 => 0.00028491861490164
122 => 0.00027905437164754
123 => 0.00028532014465433
124 => 0.00029087076417503
125 => 0.00028509108812244
126 => 0.00028584579179929
127 => 0.00027808704891557
128 => 0.00028086043441371
129 => 0.00028324924762009
130 => 0.00028193028537548
131 => 0.0002799557350568
201 => 0.00029041567667277
202 => 0.00028982548577395
203 => 0.00029956602387976
204 => 0.00030715946988579
205 => 0.00032076828261945
206 => 0.00030656677708843
207 => 0.00030604921778101
208 => 0.00031110844303018
209 => 0.00030647443038059
210 => 0.00030940296641445
211 => 0.0003202964501894
212 => 0.00032052661233584
213 => 0.00031667109983583
214 => 0.00031643649154982
215 => 0.00031717698490013
216 => 0.0003215140775818
217 => 0.00031999856413343
218 => 0.00032175235466399
219 => 0.00032394549657745
220 => 0.00033301726140442
221 => 0.00033520443319189
222 => 0.00032989073966689
223 => 0.0003303705066973
224 => 0.0003283830394548
225 => 0.00032646317100144
226 => 0.00033077875491032
227 => 0.00033866556932682
228 => 0.00033861650586366
301 => 0.00034044609351052
302 => 0.00034158591145739
303 => 0.00033669297843168
304 => 0.00033350785895008
305 => 0.00033472923643375
306 => 0.00033668224562827
307 => 0.00033409590187396
308 => 0.00031813179011143
309 => 0.00032297428182877
310 => 0.00032216825442126
311 => 0.00032102037337668
312 => 0.00032588953624435
313 => 0.00032541989360736
314 => 0.00031135227329018
315 => 0.0003122528367006
316 => 0.00031140703953392
317 => 0.00031413998321327
318 => 0.00030632684245315
319 => 0.00030873011192866
320 => 0.00031023742001444
321 => 0.00031112523605666
322 => 0.0003143326363823
323 => 0.00031395628497376
324 => 0.00031430924185032
325 => 0.00031906496981096
326 => 0.00034311780986708
327 => 0.00034442695288173
328 => 0.00033798025388101
329 => 0.00034055558297628
330 => 0.00033561151427592
331 => 0.00033893050071686
401 => 0.00034120126694663
402 => 0.00033094011099752
403 => 0.00033033251193657
404 => 0.00032536803730598
405 => 0.00032803566477024
406 => 0.00032379127766539
407 => 0.00032483270179856
408 => 0.00032192078913249
409 => 0.00032716165217539
410 => 0.00033302175140513
411 => 0.0003345022438929
412 => 0.00033060770554968
413 => 0.00032778780312661
414 => 0.0003228369834053
415 => 0.00033107030693805
416 => 0.00033347798164502
417 => 0.00033105766044779
418 => 0.00033049681914134
419 => 0.00032943402587901
420 => 0.00033072229575608
421 => 0.00033346486893149
422 => 0.00033217152206934
423 => 0.00033302580045763
424 => 0.00032977017216953
425 => 0.00033669459819611
426 => 0.00034769225318019
427 => 0.00034772761243926
428 => 0.0003464342586055
429 => 0.00034590504608241
430 => 0.00034723210560313
501 => 0.00034795198095429
502 => 0.0003522434481032
503 => 0.00035684836333357
504 => 0.0003783374934318
505 => 0.00037230343169036
506 => 0.00039136986630757
507 => 0.00040644894062311
508 => 0.00041097049568234
509 => 0.00040681087778346
510 => 0.00039258104964952
511 => 0.00039188286639429
512 => 0.00041314823730486
513 => 0.00040713979600693
514 => 0.00040642511103325
515 => 0.00039882207039254
516 => 0.0004033164090661
517 => 0.00040233343127022
518 => 0.00040078175273051
519 => 0.00040935663784132
520 => 0.00042540805728347
521 => 0.00042290629303416
522 => 0.00042103884207554
523 => 0.0004128562155817
524 => 0.00041778398438679
525 => 0.00041602930030049
526 => 0.00042356853668526
527 => 0.00041910246006546
528 => 0.00040709427615464
529 => 0.00040900661902193
530 => 0.00040871757224464
531 => 0.00041466613443921
601 => 0.00041288052372079
602 => 0.00040836890309384
603 => 0.00042535319527683
604 => 0.00042425032981407
605 => 0.00042581394089012
606 => 0.00042650229084208
607 => 0.00043684033019708
608 => 0.00044107549414045
609 => 0.00044203695050258
610 => 0.00044606002868946
611 => 0.00044193685265235
612 => 0.00045843249657546
613 => 0.00046940113723682
614 => 0.00048214177780608
615 => 0.00050075927803911
616 => 0.00050775963034824
617 => 0.00050649507936132
618 => 0.00052061065555941
619 => 0.00054597603221574
620 => 0.00051162214720744
621 => 0.00054779687153893
622 => 0.00053634437147286
623 => 0.00050919069983787
624 => 0.00050744232350534
625 => 0.00052583110519716
626 => 0.00056661565313498
627 => 0.00055639958645107
628 => 0.00056663236296026
629 => 0.00055469528561636
630 => 0.00055410250911265
701 => 0.00056605260575773
702 => 0.00059397465793482
703 => 0.00058070993758796
704 => 0.00056169170832786
705 => 0.0005757344728571
706 => 0.00056356933062537
707 => 0.00053615786036838
708 => 0.00055639177441741
709 => 0.00054286193232152
710 => 0.00054681065953106
711 => 0.0005752483752045
712 => 0.00057182667401781
713 => 0.00057625467219439
714 => 0.00056843937131362
715 => 0.00056113864793115
716 => 0.00054751130557893
717 => 0.0005434769213283
718 => 0.00054459187999324
719 => 0.00054347636881016
720 => 0.00053585199600584
721 => 0.00053420551342466
722 => 0.00053146130365532
723 => 0.00053231184901108
724 => 0.00052715193179783
725 => 0.00053688976167253
726 => 0.00053869718870673
727 => 0.00054578356922191
728 => 0.00054651930075516
729 => 0.00056625476962163
730 => 0.00055538480501106
731 => 0.00056267731573943
801 => 0.00056202500494011
802 => 0.00050977920223933
803 => 0.00051697821288288
804 => 0.00052817761427025
805 => 0.00052313229912567
806 => 0.00051599940393316
807 => 0.00051023920862356
808 => 0.00050151192371931
809 => 0.00051379540962938
810 => 0.00052994688739803
811 => 0.00054692892888537
812 => 0.00056733173902498
813 => 0.00056277806931672
814 => 0.00054654751254171
815 => 0.00054727560346221
816 => 0.00055177637503951
817 => 0.00054594746690869
818 => 0.00054422840810711
819 => 0.00055154020275811
820 => 0.00055159055506938
821 => 0.0005448836918178
822 => 0.00053743024065668
823 => 0.00053739901042416
824 => 0.00053607274078184
825 => 0.0005549312260394
826 => 0.00056530148612315
827 => 0.00056649041972924
828 => 0.00056522146141853
829 => 0.00056570983310917
830 => 0.00055967560725953
831 => 0.00057346805815772
901 => 0.00058612537503392
902 => 0.00058273294372696
903 => 0.00057764720693531
904 => 0.00057359617261848
905 => 0.00058177864878564
906 => 0.00058141429600233
907 => 0.00058601482441301
908 => 0.00058580611787036
909 => 0.00058425913320047
910 => 0.00058273299897466
911 => 0.00058878394867363
912 => 0.0005870413723356
913 => 0.00058529608929521
914 => 0.00058179565696825
915 => 0.0005822714238575
916 => 0.00057718656519001
917 => 0.00057483407690313
918 => 0.00053945829747704
919 => 0.00053000473327745
920 => 0.00053297901701969
921 => 0.00053395822845487
922 => 0.00052984402520014
923 => 0.00053574273581533
924 => 0.00053482342801423
925 => 0.00053839991689122
926 => 0.00053616548191397
927 => 0.00053625718390484
928 => 0.00054282818074116
929 => 0.00054473576907776
930 => 0.00054376555425364
1001 => 0.00054444505945944
1002 => 0.0005601039701258
1003 => 0.00055787777377282
1004 => 0.00055669515133004
1005 => 0.00055702274582888
1006 => 0.00056102393323496
1007 => 0.00056214404725194
1008 => 0.00055739804545301
1009 => 0.00055963628733769
1010 => 0.00056916643720748
1011 => 0.00057250145030214
1012 => 0.00058314521120318
1013 => 0.00057862355239466
1014 => 0.00058692325283052
1015 => 0.00061243370239398
1016 => 0.00063281321469411
1017 => 0.00061407137296394
1018 => 0.00065149575198789
1019 => 0.00068063599926636
1020 => 0.00067951754804019
1021 => 0.00067443627190112
1022 => 0.00064126087510815
1023 => 0.00061073238036195
1024 => 0.0006362707625255
1025 => 0.00063633586511365
1026 => 0.00063414209543693
1027 => 0.00062051678038505
1028 => 0.00063366796400771
1029 => 0.00063471185720559
1030 => 0.00063412755460838
1031 => 0.00062368105750435
1101 => 0.00060773118726187
1102 => 0.00061084775372866
1103 => 0.00061595275317749
1104 => 0.00060628792420641
1105 => 0.00060319942573751
1106 => 0.00060894153200207
1107 => 0.00062744379480182
1108 => 0.00062394604919584
1109 => 0.00062385470892256
1110 => 0.00063881954789993
1111 => 0.00062810795280652
1112 => 0.00061088706361243
1113 => 0.0006065385619753
1114 => 0.0005911043106652
1115 => 0.00060176480302001
1116 => 0.00060214845516135
1117 => 0.00059630981244621
1118 => 0.00061136083729017
1119 => 0.00061122213944655
1120 => 0.00062551084748648
1121 => 0.00065282549066517
1122 => 0.00064474720660527
1123 => 0.00063535304115842
1124 => 0.00063637444741445
1125 => 0.0006475767529976
1126 => 0.00064080358331826
1127 => 0.00064323926235917
1128 => 0.00064757306630566
1129 => 0.00065018775782887
1130 => 0.00063599823354207
1201 => 0.00063268997666742
1202 => 0.00062592244414225
1203 => 0.00062415692122841
1204 => 0.00062966893526096
1205 => 0.00062821671430571
1206 => 0.00060211621068444
1207 => 0.00059938856283419
1208 => 0.00059947221589957
1209 => 0.00059261341568752
1210 => 0.00058215209906348
1211 => 0.0006096438145387
1212 => 0.00060743584503973
1213 => 0.00060499841759613
1214 => 0.0006052969885502
1215 => 0.00061723021045731
1216 => 0.00061030833910904
1217 => 0.00062871126856082
1218 => 0.00062492817950823
1219 => 0.00062104806849634
1220 => 0.00062051171896342
1221 => 0.00061901820725936
1222 => 0.00061389639991491
1223 => 0.00060771150977357
1224 => 0.00060362770957626
1225 => 0.00055681465444409
1226 => 0.00056550288517761
1227 => 0.00057549790267937
1228 => 0.00057894814266846
1229 => 0.00057304626841778
1230 => 0.00061412944188267
1231 => 0.00062163573356202
]
'min_raw' => 0.00025909186487955
'max_raw' => 0.00068063599926636
'avg_raw' => 0.00046986393207295
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000259'
'max' => '$0.00068'
'avg' => '$0.000469'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.0045575414046E-5
'max_diff' => -0.00012274581459731
'year' => 2027
]
2 => [
'items' => [
101 => 0.00059889868644199
102 => 0.00059464551327335
103 => 0.00061440827920753
104 => 0.00060248891544934
105 => 0.00060785620421982
106 => 0.00059625506164803
107 => 0.00061982768770634
108 => 0.00061964810379073
109 => 0.00061047781984214
110 => 0.00061822848104009
111 => 0.00061688161292254
112 => 0.00060652838493
113 => 0.00062015590350042
114 => 0.00062016266257962
115 => 0.00061133646365827
116 => 0.00060102939562152
117 => 0.00059918673529863
118 => 0.00059779853827192
119 => 0.00060751479284928
120 => 0.0006162263563214
121 => 0.00063243641616328
122 => 0.00063651201034905
123 => 0.00065241932578378
124 => 0.00064294729395553
125 => 0.00064714612298165
126 => 0.00065170454585012
127 => 0.00065389002140372
128 => 0.00065032890626822
129 => 0.00067503951485061
130 => 0.00067712584732845
131 => 0.00067782537656156
201 => 0.00066949309838025
202 => 0.00067689411159924
203 => 0.00067343142260987
204 => 0.00068244037739751
205 => 0.00068385309654032
206 => 0.0006826565736853
207 => 0.00068310499303948
208 => 0.00066201884786448
209 => 0.00066092541999888
210 => 0.00064601645346531
211 => 0.00065209196752925
212 => 0.00064073408519367
213 => 0.00064433578668144
214 => 0.00064592338237897
215 => 0.00064509411248184
216 => 0.0006524354679788
217 => 0.00064619381606655
218 => 0.00062972107044752
219 => 0.00061324383683996
220 => 0.00061303697859408
221 => 0.00060869881383254
222 => 0.00060556311528446
223 => 0.0006061671620697
224 => 0.00060829590172796
225 => 0.00060543938906568
226 => 0.00060604897087105
227 => 0.00061617209046243
228 => 0.00061820220990169
229 => 0.0006113030708282
301 => 0.00058360203190711
302 => 0.00057680412747308
303 => 0.00058169032637196
304 => 0.00057935503800981
305 => 0.0004675847324807
306 => 0.00049384350785238
307 => 0.00047824143519028
308 => 0.00048543158808983
309 => 0.00046950591203895
310 => 0.00047710647938662
311 => 0.00047570293212579
312 => 0.00051792626586981
313 => 0.00051726700658969
314 => 0.00051758255911986
315 => 0.00050252041468725
316 => 0.00052651481975019
317 => 0.00053833532649509
318 => 0.00053614766528921
319 => 0.00053669825248342
320 => 0.00052723734030424
321 => 0.00051767416143028
322 => 0.00050706712429639
323 => 0.00052677368822176
324 => 0.00052458265471552
325 => 0.00052960809726985
326 => 0.00054238921262974
327 => 0.00054427128041722
328 => 0.00054680079860964
329 => 0.00054589414640102
330 => 0.00056749428032413
331 => 0.00056487836158377
401 => 0.00057118197309686
402 => 0.00055821496595828
403 => 0.00054354156654137
404 => 0.00054633050006096
405 => 0.00054606190333584
406 => 0.00054264235874405
407 => 0.00053955534678475
408 => 0.00053441634163275
409 => 0.00055067691436334
410 => 0.00055001676480577
411 => 0.00056070381880291
412 => 0.00055881477820041
413 => 0.00054619930273028
414 => 0.0005466498669047
415 => 0.00054968012751141
416 => 0.00056016789407014
417 => 0.00056328137724637
418 => 0.00056183908778828
419 => 0.00056525287995511
420 => 0.00056795100209225
421 => 0.00056559172255452
422 => 0.00059899414552863
423 => 0.00058512313070097
424 => 0.00059188376681407
425 => 0.00059349613869107
426 => 0.00058936608203268
427 => 0.00059026174343564
428 => 0.00059161842640801
429 => 0.00059985593975046
430 => 0.00062147355830473
501 => 0.00063104785440632
502 => 0.00065985259661538
503 => 0.00063025284239572
504 => 0.00062849651547628
505 => 0.00063368511936801
506 => 0.00065059655233636
507 => 0.00066430168034707
508 => 0.00066884846197603
509 => 0.00066944939422748
510 => 0.00067797945882773
511 => 0.0006828687327803
512 => 0.00067694368462229
513 => 0.00067192282668677
514 => 0.00065393873677356
515 => 0.00065602044415007
516 => 0.0006703613436443
517 => 0.00069061870885468
518 => 0.00070800163562481
519 => 0.00070191474052607
520 => 0.00074835345345119
521 => 0.00075295766215258
522 => 0.00075232150938194
523 => 0.00076281058200183
524 => 0.00074199190891383
525 => 0.00073309152282592
526 => 0.00067300839316158
527 => 0.00068988930183825
528 => 0.00071442669398079
529 => 0.00071117907812023
530 => 0.00069335936805994
531 => 0.0007079881177768
601 => 0.00070315139563711
602 => 0.00069933647220975
603 => 0.00071681337598978
604 => 0.000697596802372
605 => 0.00071423499395904
606 => 0.0006928963411486
607 => 0.00070194254495016
608 => 0.00069680748215675
609 => 0.00070013049711372
610 => 0.00068070421957566
611 => 0.00069118616738897
612 => 0.00068026813608518
613 => 0.00068026295951677
614 => 0.00068002194337061
615 => 0.00069286695878155
616 => 0.00069328583427295
617 => 0.00068379334847652
618 => 0.00068242533297276
619 => 0.00068748360329612
620 => 0.00068156169351056
621 => 0.00068433251782717
622 => 0.00068164561895643
623 => 0.00068104074142588
624 => 0.00067622097435101
625 => 0.0006741444861729
626 => 0.00067495873069205
627 => 0.00067217929437638
628 => 0.00067050458345959
629 => 0.0006796888012174
630 => 0.00067478204415969
701 => 0.0006789367703255
702 => 0.00067420193549131
703 => 0.00065778893508668
704 => 0.00064834964498964
705 => 0.00061734700871123
706 => 0.00062613931790113
707 => 0.00063196862799035
708 => 0.00063004204104063
709 => 0.00063418109529879
710 => 0.00063443519961423
711 => 0.00063308955088224
712 => 0.00063153146203888
713 => 0.00063077307055765
714 => 0.00063642549932027
715 => 0.00063970692446898
716 => 0.0006325536772439
717 => 0.00063087777150364
718 => 0.00063811009938979
719 => 0.00064252181522236
720 => 0.00067509544620109
721 => 0.00067268228640674
722 => 0.00067873884393186
723 => 0.00067805696849998
724 => 0.00068440520567158
725 => 0.00069478189048194
726 => 0.00067368318889577
727 => 0.00067734519395292
728 => 0.00067644735488095
729 => 0.00068624972644264
730 => 0.00068628032837669
731 => 0.00068040331696069
801 => 0.00068358934019292
802 => 0.00068181098942866
803 => 0.0006850247096182
804 => 0.00067265005718645
805 => 0.00068772104808714
806 => 0.00069626532877463
807 => 0.00069638396612026
808 => 0.00070043388735452
809 => 0.00070454884188416
810 => 0.00071244713876678
811 => 0.00070432856267091
812 => 0.00068972403460189
813 => 0.00069077843435614
814 => 0.00068221580489286
815 => 0.0006823597442411
816 => 0.00068159138471945
817 => 0.00068389728948333
818 => 0.00067315607360985
819 => 0.00067567701550612
820 => 0.00067214768208873
821 => 0.00067733752187134
822 => 0.0006717541121765
823 => 0.00067644692191577
824 => 0.00067847218303013
825 => 0.00068594544014288
826 => 0.00067065030602463
827 => 0.00063946249216796
828 => 0.00064601854875632
829 => 0.000636321626095
830 => 0.00063721911320609
831 => 0.00063903218000451
901 => 0.00063315543731228
902 => 0.00063427653462051
903 => 0.00063423648113562
904 => 0.00063389132184148
905 => 0.00063236255409666
906 => 0.00063014553840919
907 => 0.00063897744654663
908 => 0.00064047815984021
909 => 0.00064381405959278
910 => 0.00065373943449403
911 => 0.00065274765548494
912 => 0.00065436528819729
913 => 0.00065083400506885
914 => 0.00063738291930245
915 => 0.0006381133779747
916 => 0.00062900454662704
917 => 0.00064358112629578
918 => 0.00064012919982877
919 => 0.00063790372037938
920 => 0.00063729647769269
921 => 0.00064724645567854
922 => 0.0006502236450387
923 => 0.00064836846042119
924 => 0.0006445634226463
925 => 0.00065187022003252
926 => 0.00065382521076404
927 => 0.00065426286109155
928 => 0.00066720910512049
929 => 0.00065498641231793
930 => 0.00065792853595863
1001 => 0.00068088214473709
1002 => 0.00066006638895652
1003 => 0.00067109295904024
1004 => 0.00067055326581414
1005 => 0.00067619408595018
1006 => 0.00067009055391978
1007 => 0.00067016621451431
1008 => 0.00067517488065287
1009 => 0.00066814111237897
1010 => 0.00066639945243825
1011 => 0.00066399336170414
1012 => 0.00066924697279699
1013 => 0.00067239627504676
1014 => 0.00069777733827228
1015 => 0.00071417466263307
1016 => 0.0007134628115377
1017 => 0.00071996779801995
1018 => 0.00071703724203085
1019 => 0.00070757370370043
1020 => 0.0007237268096749
1021 => 0.00071861529106992
1022 => 0.00071903667845322
1023 => 0.00071902099439377
1024 => 0.00072241970740937
1025 => 0.00072001140775034
1026 => 0.00071526440191551
1027 => 0.00071841568592216
1028 => 0.00072777387281725
1029 => 0.00075682197208387
1030 => 0.0007730776732696
1031 => 0.00075584335846123
1101 => 0.00076773135803937
1102 => 0.00076060279441985
1103 => 0.00075930732235378
1104 => 0.00076677386460512
1105 => 0.00077425347605027
1106 => 0.00077377705713646
1107 => 0.00076834724330958
1108 => 0.00076528007925521
1109 => 0.00078850567305029
1110 => 0.00080561789492085
1111 => 0.00080445095611106
1112 => 0.00080960144450861
1113 => 0.0008247234377424
1114 => 0.0008261060032887
1115 => 0.00082593183180778
1116 => 0.00082250499884545
1117 => 0.00083739456502308
1118 => 0.00084981570308545
1119 => 0.0008217117860254
1120 => 0.00083241338973458
1121 => 0.00083721768442377
1122 => 0.0008442718143975
1123 => 0.00085617331407264
1124 => 0.00086910149943672
1125 => 0.00087092968659754
1126 => 0.00086963250032013
1127 => 0.00086110601454424
1128 => 0.00087525218923495
1129 => 0.00088353868660015
1130 => 0.00088847310614801
1201 => 0.00090098597311225
1202 => 0.00083724735411219
1203 => 0.00079212999156904
1204 => 0.00078508426390531
1205 => 0.00079941202816906
1206 => 0.00080319014534363
1207 => 0.00080166719104791
1208 => 0.00075088349761445
1209 => 0.00078481689826931
1210 => 0.00082132638417258
1211 => 0.00082272886221568
1212 => 0.00084100627423621
1213 => 0.00084695814880652
1214 => 0.0008616738611582
1215 => 0.00086075338934394
1216 => 0.00086433643112345
1217 => 0.00086351275186798
1218 => 0.00089077051024064
1219 => 0.00092083986554197
1220 => 0.00091979865938258
1221 => 0.00091547583379355
1222 => 0.00092189596694455
1223 => 0.00095293076404348
1224 => 0.0009500735772491
1225 => 0.00095284909084525
1226 => 0.00098944086566939
1227 => 0.0010370153780601
1228 => 0.0010149122406516
1229 => 0.0010628696888214
1230 => 0.0010930563603292
1231 => 0.0011452610873419
]
'min_raw' => 0.0004675847324807
'max_raw' => 0.0011452610873419
'avg_raw' => 0.00080642290991129
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000467'
'max' => '$0.001145'
'avg' => '$0.0008064'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00020849286760115
'max_diff' => 0.00046462508807552
'year' => 2028
]
3 => [
'items' => [
101 => 0.0011387247984062
102 => 0.0011590477155362
103 => 0.0011270234770467
104 => 0.0010534893523082
105 => 0.001041852295591
106 => 0.001065149977836
107 => 0.0011224250562808
108 => 0.0010633461817911
109 => 0.0010752977611558
110 => 0.0010718557054948
111 => 0.0010716722929764
112 => 0.0010786724028105
113 => 0.0010685183783949
114 => 0.0010271490562519
115 => 0.0010461083727991
116 => 0.0010387872701791
117 => 0.0010469105793604
118 => 0.0010907487287042
119 => 0.0010713668379083
120 => 0.0010509495904118
121 => 0.0010765573497224
122 => 0.0011091648271055
123 => 0.0011071243097722
124 => 0.0011031648532753
125 => 0.0011254841022374
126 => 0.0011623489625965
127 => 0.0011723133862165
128 => 0.0011796689200192
129 => 0.0011806831238578
130 => 0.0011911300537198
131 => 0.0011349542788866
201 => 0.0012241066762431
202 => 0.0012395008324813
203 => 0.0012366073691309
204 => 0.0012537173259045
205 => 0.001248683142584
206 => 0.0012413894007917
207 => 0.0012685123216701
208 => 0.0012374180815899
209 => 0.001193283722452
210 => 0.0011690707401504
211 => 0.0012009563484508
212 => 0.0012204277767855
213 => 0.0012332971522993
214 => 0.0012371914175539
215 => 0.001139315044375
216 => 0.001086565107704
217 => 0.0011203772123308
218 => 0.0011616303135623
219 => 0.0011347251158263
220 => 0.0011357797486393
221 => 0.0010974200072293
222 => 0.0011650242995049
223 => 0.001155174922762
224 => 0.0012062735067277
225 => 0.0011940784195725
226 => 0.001235747331161
227 => 0.0012247745102624
228 => 0.0012703220763301
301 => 0.0012884922335856
302 => 0.0013190027555768
303 => 0.0013414464197537
304 => 0.0013546257686372
305 => 0.0013538345299648
306 => 0.0014060576761669
307 => 0.0013752635113893
308 => 0.0013365787828011
309 => 0.0013358790981097
310 => 0.0013559144672124
311 => 0.0013979031044164
312 => 0.0014087901471336
313 => 0.0014148745187748
314 => 0.0014055560918078
315 => 0.0013721312329793
316 => 0.001357698548405
317 => 0.0013699956138174
318 => 0.001354957359517
319 => 0.0013809176054285
320 => 0.0014165665678744
321 => 0.0014092051981006
322 => 0.0014338131535761
323 => 0.0014592797986609
324 => 0.0014956982449108
325 => 0.0015052193753316
326 => 0.0015209574418612
327 => 0.0015371570820056
328 => 0.0015423599698275
329 => 0.0015522938970406
330 => 0.0015522415403407
331 => 0.0015821780986281
401 => 0.0016151990494771
402 => 0.0016276636939858
403 => 0.0016563254567291
404 => 0.0016072431924591
405 => 0.0016444726537243
406 => 0.0016780545596994
407 => 0.0016380168269764
408 => 0.0016931995139397
409 => 0.0016953421326278
410 => 0.0017276931309845
411 => 0.0016948991964486
412 => 0.0016754262628032
413 => 0.0017316438925962
414 => 0.0017588458328143
415 => 0.0017506523870439
416 => 0.0016882998601707
417 => 0.0016520080151048
418 => 0.0015570252563932
419 => 0.0016695364370369
420 => 0.0017243373511323
421 => 0.0016881579390421
422 => 0.0017064047300697
423 => 0.0018059533053742
424 => 0.0018438549575573
425 => 0.0018359716788557
426 => 0.0018373038231865
427 => 0.0018577548667408
428 => 0.001948446056456
429 => 0.0018941017933734
430 => 0.0019356459462594
501 => 0.0019576808151515
502 => 0.0019781480293952
503 => 0.0019278870199423
504 => 0.001862498185125
505 => 0.0018417867963018
506 => 0.001684560609528
507 => 0.0016763763037077
508 => 0.0016717822048409
509 => 0.0016428170613341
510 => 0.0016200583927582
511 => 0.0016019598545315
512 => 0.0015544638855436
513 => 0.0015704923808182
514 => 0.0014947937194307
515 => 0.0015432230403906
516 => 0.0014224061490079
517 => 0.0015230260462447
518 => 0.0014682632108041
519 => 0.0015050349819607
520 => 0.0015049066887153
521 => 0.0014371981995152
522 => 0.0013981453559847
523 => 0.0014230313478417
524 => 0.001449711106565
525 => 0.0014540398076563
526 => 0.001488630811254
527 => 0.0014982844168269
528 => 0.0014690335412571
529 => 0.0014199024874752
530 => 0.0014313145107087
531 => 0.0013979140916981
601 => 0.0013393811421106
602 => 0.0013814205283916
603 => 0.0013957746232093
604 => 0.0014021142092155
605 => 0.0013445537758509
606 => 0.0013264670379899
607 => 0.0013168378105152
608 => 0.0014124721583408
609 => 0.001417711223797
610 => 0.0013909074241938
611 => 0.001512063140041
612 => 0.0014846418701577
613 => 0.0015152781469915
614 => 0.0014302789892154
615 => 0.001433526071509
616 => 0.0013932861080459
617 => 0.0014158177987499
618 => 0.0013998931259906
619 => 0.0014139974608035
620 => 0.0014224515409361
621 => 0.0014626849014171
622 => 0.0015234854465937
623 => 0.0014566753790256
624 => 0.0014275652758484
625 => 0.0014456250201381
626 => 0.0014937204990668
627 => 0.0015665876116062
628 => 0.0015234488143956
629 => 0.0015425930800534
630 => 0.0015467752504305
701 => 0.0015149662984525
702 => 0.0015677604530374
703 => 0.0015960532693784
704 => 0.0016250758445709
705 => 0.0016502753334164
706 => 0.0016134835898189
707 => 0.0016528560293575
708 => 0.0016211287932606
709 => 0.0015926661825802
710 => 0.0015927093486118
711 => 0.0015748543371596
712 => 0.0015402580025948
713 => 0.0015338779076981
714 => 0.0015670679670681
715 => 0.0015936832515726
716 => 0.001595875413883
717 => 0.0016106110029273
718 => 0.0016193313727352
719 => 0.0017048028516196
720 => 0.0017391801874841
721 => 0.0017812161430495
722 => 0.0017975915167589
723 => 0.0018468755207277
724 => 0.0018070746848718
725 => 0.0017984635236754
726 => 0.0016789166507218
727 => 0.0016984924444708
728 => 0.0017298351790461
729 => 0.0016794334808707
730 => 0.0017114017574913
731 => 0.0017177129724769
801 => 0.0016777208504532
802 => 0.0016990823707836
803 => 0.0016423525060353
804 => 0.0015247220026204
805 => 0.0015678914094142
806 => 0.0015996786234796
807 => 0.001554314349673
808 => 0.0016356280546315
809 => 0.0015881262668503
810 => 0.0015730704806116
811 => 0.0015143324907191
812 => 0.0015420545609158
813 => 0.0015795490577986
814 => 0.0015563818179282
815 => 0.001604457319238
816 => 0.0016725450503606
817 => 0.0017210684222531
818 => 0.0017247934442299
819 => 0.0016935961669164
820 => 0.0017435900029096
821 => 0.0017439541534252
822 => 0.0016875609021942
823 => 0.0016530203498141
824 => 0.0016451726636394
825 => 0.0016647777223333
826 => 0.0016885818828812
827 => 0.0017261144094717
828 => 0.0017487945292263
829 => 0.0018079322529403
830 => 0.0018239332253659
831 => 0.0018415134428699
901 => 0.0018650060349936
902 => 0.001893214915215
903 => 0.001831495491223
904 => 0.0018339477189976
905 => 0.0017764754459398
906 => 0.0017150580798199
907 => 0.0017616662049221
908 => 0.0018226001284743
909 => 0.0018086218190854
910 => 0.0018070489737282
911 => 0.0018096940633481
912 => 0.0017991548745578
913 => 0.0017514865142598
914 => 0.0017275477621379
915 => 0.0017584348598022
916 => 0.0017748499775842
917 => 0.0018003083937154
918 => 0.0017971701065652
919 => 0.0018627482524848
920 => 0.001888229937009
921 => 0.0018817106316849
922 => 0.0018829103407604
923 => 0.0019290437134275
924 => 0.001980353511885
925 => 0.0020284119090648
926 => 0.0020772989748321
927 => 0.0020183637089549
928 => 0.0019884400155643
929 => 0.002019313628888
930 => 0.0020029316550809
1001 => 0.0020970673357856
1002 => 0.0021035850860743
1003 => 0.0021977139596978
1004 => 0.0022870534694243
1005 => 0.0022309409240486
1006 => 0.0022838525269733
1007 => 0.0023410807394826
1008 => 0.002451483246356
1009 => 0.0024143035660481
1010 => 0.0023858245136121
1011 => 0.0023589119466698
1012 => 0.0024149127262269
1013 => 0.0024869568344928
1014 => 0.0025024744453834
1015 => 0.0025276189032098
1016 => 0.0025011825803234
1017 => 0.0025330222193746
1018 => 0.0026454301362717
1019 => 0.002615056524874
1020 => 0.0025719211138875
1021 => 0.0026606563685067
1022 => 0.0026927693122038
1023 => 0.0029181547687493
1024 => 0.0032027132178468
1025 => 0.0030849041514089
1026 => 0.0030117762621961
1027 => 0.0030289630507778
1028 => 0.0031328741634768
1029 => 0.0031662471149019
1030 => 0.0030755279285823
1031 => 0.0031075714788558
1101 => 0.0032841345913151
1102 => 0.0033788550363267
1103 => 0.003250211949348
1104 => 0.0028952907744327
1105 => 0.002568037242083
1106 => 0.0026548396152807
1107 => 0.0026449989199513
1108 => 0.002834693957592
1109 => 0.0026143321242874
1110 => 0.0026180424524108
1111 => 0.0028116601825393
1112 => 0.0027600062915893
1113 => 0.0026763336035807
1114 => 0.0025686481453032
1115 => 0.0023695816159779
1116 => 0.0021932628395736
1117 => 0.0025390645638915
1118 => 0.0025241529647393
1119 => 0.0025025587593917
1120 => 0.0025506143266557
1121 => 0.002783958520479
1122 => 0.0027785791815499
1123 => 0.0027443585718459
1124 => 0.0027703146026998
1125 => 0.0026717833858764
1126 => 0.0026971771239659
1127 => 0.0025679854034514
1128 => 0.0026263854566468
1129 => 0.0026761540795715
1130 => 0.0026861458674607
1201 => 0.0027086578757684
1202 => 0.0025162952295744
1203 => 0.0026026604102449
1204 => 0.0026533918625658
1205 => 0.002424185315354
1206 => 0.0026488611860826
1207 => 0.0025129466238724
1208 => 0.00246681518009
1209 => 0.0025289250917874
1210 => 0.0025047207987951
1211 => 0.002483911369004
1212 => 0.0024722993496292
1213 => 0.002517906013959
1214 => 0.0025157784085562
1215 => 0.0024411570538406
1216 => 0.0023438165385697
1217 => 0.0023764872105881
1218 => 0.0023646176491546
1219 => 0.0023216008273158
1220 => 0.0023505889713643
1221 => 0.0022229398555387
1222 => 0.0020033261863845
1223 => 0.0021484097031764
1224 => 0.0021428241456004
1225 => 0.0021400076541857
1226 => 0.0022490339072409
1227 => 0.0022385535486733
1228 => 0.0022195315952491
1229 => 0.002321251474224
1230 => 0.0022841223500727
1231 => 0.0023985455619851
]
'min_raw' => 0.0010271490562519
'max_raw' => 0.0033788550363267
'avg_raw' => 0.0022030020462893
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001027'
'max' => '$0.003378'
'avg' => '$0.002203'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0005595643237712
'max_diff' => 0.0022335939489848
'year' => 2029
]
4 => [
'items' => [
101 => 0.0024739120897799
102 => 0.0024547967004794
103 => 0.0025256792841485
104 => 0.0023772398768859
105 => 0.0024265454936232
106 => 0.0024367073128981
107 => 0.002319996266707
108 => 0.0022402682649477
109 => 0.0022349513161962
110 => 0.002096713948341
111 => 0.0021705592344362
112 => 0.0022355400302744
113 => 0.0022044192717813
114 => 0.0021945673693487
115 => 0.0022448986022603
116 => 0.0022488097701154
117 => 0.0021596347285323
118 => 0.0021781770434837
119 => 0.0022555015792345
120 => 0.0021762286635771
121 => 0.0020222143376121
122 => 0.0019840166553582
123 => 0.0019789203804225
124 => 0.0018753252366534
125 => 0.0019865692071357
126 => 0.0019380082328671
127 => 0.0020914117687318
128 => 0.0020037884917655
129 => 0.002000011227426
130 => 0.0019943013383725
131 => 0.0019051327186688
201 => 0.0019246549794225
202 => 0.001989549947492
203 => 0.0020127052031934
204 => 0.0020102899203183
205 => 0.0019892319267452
206 => 0.0019988721683686
207 => 0.0019678175912167
208 => 0.0019568515736793
209 => 0.0019222398058904
210 => 0.0018713700689856
211 => 0.0018784438179044
212 => 0.0017776575583052
213 => 0.001722743854944
214 => 0.0017075444656045
215 => 0.0016872192069536
216 => 0.0017098402576526
217 => 0.0017773720434949
218 => 0.0016959143821015
219 => 0.001556260935233
220 => 0.0015646543453477
221 => 0.0015835118458496
222 => 0.0015483710184192
223 => 0.0015151131744024
224 => 0.0015440281714808
225 => 0.0014848551650238
226 => 0.0015906626209775
227 => 0.001587800825816
228 => 0.0016272393023063
301 => 0.0016519009910148
302 => 0.0015950637828584
303 => 0.0015807693787112
304 => 0.0015889121209579
305 => 0.0014543307298027
306 => 0.0016162411314414
307 => 0.0016176413393182
308 => 0.0016056519093858
309 => 0.0016918641998356
310 => 0.0018737990229723
311 => 0.001805347824197
312 => 0.0017788414510827
313 => 0.0017284528164165
314 => 0.0017955926803282
315 => 0.0017904373863248
316 => 0.0017671231917543
317 => 0.0017530226941334
318 => 0.0017790032933448
319 => 0.0017498034103765
320 => 0.0017445583090363
321 => 0.001712778701641
322 => 0.0017014348276809
323 => 0.0016930362750135
324 => 0.0016837902937514
325 => 0.0017041846244606
326 => 0.0016579683879759
327 => 0.0016022361374089
328 => 0.0015976026038055
329 => 0.0016103961974688
330 => 0.0016047359846438
331 => 0.0015975755048842
401 => 0.0015839041989824
402 => 0.0015798482145625
403 => 0.0015930281962431
404 => 0.0015781487653664
405 => 0.0016001041761495
406 => 0.0015941335192648
407 => 0.0015607819152592
408 => 0.0015192134683228
409 => 0.0015188434219523
410 => 0.0015098875682458
411 => 0.0014984809420289
412 => 0.0014953078795637
413 => 0.0015415930310774
414 => 0.0016374019095127
415 => 0.0016185923341637
416 => 0.0016321841800362
417 => 0.0016990426093845
418 => 0.0017202948935712
419 => 0.0017052105256434
420 => 0.0016845621124606
421 => 0.0016854705378482
422 => 0.0017560324163937
423 => 0.0017604332742056
424 => 0.0017715528221258
425 => 0.0017858445835871
426 => 0.0017076444744196
427 => 0.0016817873197388
428 => 0.0016695347653507
429 => 0.0016318016401706
430 => 0.0016724935806836
501 => 0.0016487841295493
502 => 0.0016519833445375
503 => 0.0016498998515795
504 => 0.0016510375796198
505 => 0.0015906330456372
506 => 0.0016126412830516
507 => 0.0015760483197824
508 => 0.0015270544497177
509 => 0.0015268902050858
510 => 0.0015388813853745
511 => 0.0015317485621238
512 => 0.0015125543181579
513 => 0.001515280769919
514 => 0.0014913941835845
515 => 0.0015181810339806
516 => 0.001518949185002
517 => 0.0015086347885099
518 => 0.0015499036274181
519 => 0.001566811504391
520 => 0.0015600223476641
521 => 0.0015663351590565
522 => 0.0016193739569396
523 => 0.0016280215952396
524 => 0.0016318623049415
525 => 0.0016267162627374
526 => 0.0015673046109171
527 => 0.0015699397703132
528 => 0.0015506047191205
529 => 0.0015342686383401
530 => 0.0015349219958999
531 => 0.0015433208649628
601 => 0.0015799992187479
602 => 0.0016571866519815
603 => 0.0016601158586494
604 => 0.001663666142582
605 => 0.0016492253535986
606 => 0.0016448698734615
607 => 0.0016506158760072
608 => 0.0016796034176073
609 => 0.0017541672446436
610 => 0.0017278114082184
611 => 0.0017063837029517
612 => 0.0017251815773384
613 => 0.0017222877919192
614 => 0.0016978613307782
615 => 0.0016971757613688
616 => 0.0016502935728271
617 => 0.0016329622951791
618 => 0.0016184789823527
619 => 0.0016026635828427
620 => 0.0015932876838763
621 => 0.0016076933259587
622 => 0.0016109880667455
623 => 0.0015794898785648
624 => 0.0015751967919055
625 => 0.0016009188923095
626 => 0.0015895995549383
627 => 0.0016012417741306
628 => 0.0016039428688484
629 => 0.0016035079303873
630 => 0.0015916892421542
701 => 0.0015992221215956
702 => 0.0015814046160571
703 => 0.0015620307548867
704 => 0.0015496714384943
705 => 0.0015388862957164
706 => 0.0015448705197657
707 => 0.001523537853706
708 => 0.0015167131044917
709 => 0.001596670151536
710 => 0.0016557352818707
711 => 0.0016548764514833
712 => 0.0016496485423731
713 => 0.0016418809298779
714 => 0.0016790351683718
715 => 0.001666091374603
716 => 0.00167550906606
717 => 0.001677906263795
718 => 0.0016851618593493
719 => 0.0016877551111205
720 => 0.0016799165031389
721 => 0.0016536091773475
722 => 0.0015880538227007
723 => 0.0015575376281493
724 => 0.0015474667756599
725 => 0.0015478328320206
726 => 0.0015377353634445
727 => 0.001540709520477
728 => 0.0015367010730032
729 => 0.0015291100432353
730 => 0.0015444017950685
731 => 0.0015461640270148
801 => 0.0015425947494141
802 => 0.0015434354434988
803 => 0.0015138833494234
804 => 0.0015161301309522
805 => 0.0015036197658927
806 => 0.0015012742232588
807 => 0.0014696491097906
808 => 0.0014136206371483
809 => 0.0014446658498076
810 => 0.0014071675985327
811 => 0.0013929664425836
812 => 0.0014601925061135
813 => 0.0014534448738959
814 => 0.0014418958606645
815 => 0.00142481246307
816 => 0.0014184760647256
817 => 0.0013799781142449
818 => 0.001377703449952
819 => 0.0013967840737423
820 => 0.0013879790223872
821 => 0.001375613395551
822 => 0.0013308263486338
823 => 0.0012804708794171
824 => 0.0012819907945096
825 => 0.0012980079323706
826 => 0.0013445799209068
827 => 0.0013263834392821
828 => 0.0013131816830828
829 => 0.00131070939099
830 => 0.0013416553026254
831 => 0.0013854502509583
901 => 0.0014059978608593
902 => 0.0013856358034876
903 => 0.0013622449683499
904 => 0.0013636686601021
905 => 0.0013731398435039
906 => 0.0013741351309641
907 => 0.0013589101019062
908 => 0.0013631958584049
909 => 0.0013566854023856
910 => 0.0013167307458126
911 => 0.0013160080927727
912 => 0.0013062025756939
913 => 0.0013059056685337
914 => 0.0012892240378816
915 => 0.0012868901624387
916 => 0.0012537677722765
917 => 0.0012755690297851
918 => 0.0012609458908657
919 => 0.0012389053712644
920 => 0.0012351055773776
921 => 0.001234991350985
922 => 0.0012576220364455
923 => 0.0012753045770493
924 => 0.0012612002666279
925 => 0.0012579889885455
926 => 0.0012922770370767
927 => 0.0012879135703586
928 => 0.0012841348363221
929 => 0.0013815288936823
930 => 0.0013044338975286
1001 => 0.0012708160787771
1002 => 0.0012292076442214
1003 => 0.0012427555603207
1004 => 0.0012456103053031
1005 => 0.0011455495206808
1006 => 0.0011049548728214
1007 => 0.001091024319453
1008 => 0.0010830070890404
1009 => 0.0010866606416135
1010 => 0.0010501206972627
1011 => 0.0010746761441813
1012 => 0.0010430356410181
1013 => 0.0010377310076957
1014 => 0.0010943081468577
1015 => 0.0011021805252532
1016 => 0.0010685945132616
1017 => 0.0010901621700417
1018 => 0.0010823414378804
1019 => 0.0010435780266311
1020 => 0.0010420975494457
1021 => 0.0010226474322806
1022 => 0.00099221176520208
1023 => 0.00097830184864921
1024 => 0.00097105744333704
1025 => 0.00097404662615948
1026 => 0.00097253520385395
1027 => 0.00096267215094491
1028 => 0.00097310054250142
1029 => 0.00094646031138344
1030 => 0.00093585195669733
1031 => 0.00093106040899758
1101 => 0.00090741567052588
1102 => 0.00094504496429727
1103 => 0.00095245840921159
1104 => 0.00095988646090252
1105 => 0.0010245425795258
1106 => 0.0010213125425556
1107 => 0.0010505105036738
1108 => 0.0010493759245963
1109 => 0.0010410481931098
1110 => 0.0010059148638136
1111 => 0.0010199183826797
1112 => 0.00097681772823993
1113 => 0.0010091116691058
1114 => 0.00099437406312185
1115 => 0.001004128869698
1116 => 0.00098658884791867
1117 => 0.00099629622018108
1118 => 0.00095421641202145
1119 => 0.00091492287924087
1120 => 0.00093073574388151
1121 => 0.0009479261361663
1122 => 0.00098519928667021
1123 => 0.0009629997057269
1124 => 0.00097098351449321
1125 => 0.00094423909159951
1126 => 0.0008890577080031
1127 => 0.00088937002864158
1128 => 0.00088088157496706
1129 => 0.00087354631165775
1130 => 0.00096554959464599
1201 => 0.00095410753204973
1202 => 0.00093587610280272
1203 => 0.00096027959533804
1204 => 0.00096673226609989
1205 => 0.00096691596456509
1206 => 0.00098472012277355
1207 => 0.00099422220520098
1208 => 0.00099589698841319
1209 => 0.0010239122160385
1210 => 0.0010333025508087
1211 => 0.0010719800107573
1212 => 0.00099341601989437
1213 => 0.00099179804620301
1214 => 0.00096062300252333
1215 => 0.00094085129696373
1216 => 0.00096197678811843
1217 => 0.00098069108936437
1218 => 0.00096120450802895
1219 => 0.00096374904416717
1220 => 0.00093758990083657
1221 => 0.00094694056367517
1222 => 0.00095499461418208
1223 => 0.00095054764088737
1224 => 0.00094389030662925
1225 => 0.00097915673007728
1226 => 0.00097716686025611
1227 => 0.0010100077645425
1228 => 0.0010356095979093
1229 => 0.0010814926601778
1230 => 0.0010336112927625
1231 => 0.0010318663054227
]
'min_raw' => 0.00087354631165775
'max_raw' => 0.0025256792841485
'avg_raw' => 0.0016996127979031
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000873'
'max' => '$0.002525'
'avg' => '$0.001699'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00015360274459415
'max_diff' => -0.00085317575217821
'year' => 2030
]
5 => [
'items' => [
101 => 0.0010489238365741
102 => 0.0010332999393896
103 => 0.0010431737030916
104 => 0.0010799018441976
105 => 0.0010806778519437
106 => 0.0010676787223667
107 => 0.0010668877241505
108 => 0.0010693843491807
109 => 0.0010840071599631
110 => 0.0010788975005621
111 => 0.0010848105277817
112 => 0.0010922048588632
113 => 0.0011227909473477
114 => 0.0011301651497326
115 => 0.0011122496610229
116 => 0.0011138672290621
117 => 0.0011071663444935
118 => 0.0011006933739621
119 => 0.0011152436664153
120 => 0.0011418346118603
121 => 0.0011416691909688
122 => 0.0011478377734579
123 => 0.0011516807492453
124 => 0.0011351838839355
125 => 0.0011244450312253
126 => 0.0011285629906854
127 => 0.0011351476975394
128 => 0.001126427658999
129 => 0.001072603541613
130 => 0.00108893034053
131 => 0.0010862127628505
201 => 0.0010823426017662
202 => 0.0010987593243287
203 => 0.0010971758913887
204 => 0.0010497459273194
205 => 0.0010527822397329
206 => 0.0010499305755338
207 => 0.0010591448859568
208 => 0.001032802336388
209 => 0.0010409051272155
210 => 0.0010459871216637
211 => 0.0010489804554353
212 => 0.0010597944295668
213 => 0.0010585255345169
214 => 0.0010597155532689
215 => 0.0010757498221225
216 => 0.0011568456516873
217 => 0.0011612595187627
218 => 0.0011395240229876
219 => 0.0011482069248361
220 => 0.0011315376520289
221 => 0.0011427278465388
222 => 0.0011503838934223
223 => 0.0011157876897288
224 => 0.0011137391270736
225 => 0.001097001054248
226 => 0.0011059951464916
227 => 0.001091684899034
228 => 0.0010951961332089
301 => 0.001085378416352
302 => 0.0011030483520065
303 => 0.0011228060856986
304 => 0.0011277976694858
305 => 0.0011146669615536
306 => 0.001105159463655
307 => 0.0010884674293094
308 => 0.0011162266544323
309 => 0.0011243442978053
310 => 0.0011161840159075
311 => 0.0011142931002861
312 => 0.0011107098186003
313 => 0.001115053310435
314 => 0.0011243000873762
315 => 0.0011199394781319
316 => 0.0011228197373618
317 => 0.0011118431592877
318 => 0.0011351893450843
319 => 0.0011722687066949
320 => 0.0011723879229056
321 => 0.001168027290156
322 => 0.001166243013186
323 => 0.0011707172870124
324 => 0.0011731443970189
325 => 0.0011876133781321
326 => 0.0012031391713363
327 => 0.0012755912737856
328 => 0.0012552470133396
329 => 0.0013195308288275
330 => 0.0013703709806697
331 => 0.0013856157192367
401 => 0.0013715912770754
402 => 0.001323614418027
403 => 0.0013212604444364
404 => 0.0013929581271621
405 => 0.0013727002478302
406 => 0.0013702906375437
407 => 0.0013446564551962
408 => 0.0013598094318188
409 => 0.0013564952535507
410 => 0.0013512636610193
411 => 0.0013801744848498
412 => 0.0014342929661733
413 => 0.0014258580933391
414 => 0.0014195618520509
415 => 0.0013919735555342
416 => 0.0014085878721064
417 => 0.0014026718322013
418 => 0.0014280908940452
419 => 0.00141303320491
420 => 0.0013725467744701
421 => 0.0013789943719627
422 => 0.0013780198305724
423 => 0.0013980758233268
424 => 0.0013920555121223
425 => 0.0013768442681872
426 => 0.0014341079950876
427 => 0.0014303896071803
428 => 0.001435661431091
429 => 0.0014379822510131
430 => 0.0014728376724773
501 => 0.0014871168234021
502 => 0.0014903584406538
503 => 0.0015039225296432
504 => 0.0014900209537631
505 => 0.001545637168939
506 => 0.0015826187067348
507 => 0.0016255746659372
508 => 0.0016883448678052
509 => 0.0017119470443644
510 => 0.0017076835224239
511 => 0.0017552751730938
512 => 0.0018407963114447
513 => 0.0017249697896275
514 => 0.0018469353983497
515 => 0.0018083224947889
516 => 0.0017167719950628
517 => 0.0017108772221899
518 => 0.0017728762835276
519 => 0.0019103842343862
520 => 0.0018759400522984
521 => 0.0019104405727288
522 => 0.0018701938830437
523 => 0.0018681952956751
524 => 0.0019084858808431
525 => 0.0020026270292136
526 => 0.0019579040984509
527 => 0.0018937828106901
528 => 0.001941128971735
529 => 0.0019001133453576
530 => 0.0018076936595784
531 => 0.0018759137134815
601 => 0.0018302969062318
602 => 0.0018436103157101
603 => 0.001939490059561
604 => 0.0019279535551145
605 => 0.0019428828601198
606 => 0.0019165330275534
607 => 0.0018919181289492
608 => 0.001845972592778
609 => 0.0018323703846053
610 => 0.0018361295455881
611 => 0.0018323685217518
612 => 0.0018066624165253
613 => 0.0018011111855492
614 => 0.0017918588907172
615 => 0.0017947265637673
616 => 0.001777329542629
617 => 0.0018101613159251
618 => 0.0018162551823614
619 => 0.0018401474090236
620 => 0.0018426279792551
621 => 0.0019091674904249
622 => 0.0018725186458236
623 => 0.0018971058548911
624 => 0.0018949065434884
625 => 0.0017187561719972
626 => 0.0017430281390008
627 => 0.0017807877026956
628 => 0.001763777070433
629 => 0.0017397280162886
630 => 0.0017203071156383
701 => 0.001690882465264
702 => 0.0017322970956154
703 => 0.0017867529305726
704 => 0.0018440090690954
705 => 0.0019127985679599
706 => 0.0018974455526114
707 => 0.0018427230972632
708 => 0.0018451779066353
709 => 0.001860352572242
710 => 0.0018407000015176
711 => 0.0018349040747472
712 => 0.0018595563009062
713 => 0.0018597260672392
714 => 0.0018371134095282
715 => 0.0018119835785552
716 => 0.0018118782836458
717 => 0.0018074066729495
718 => 0.0018709893726528
719 => 0.0019059534285536
720 => 0.0019099620012152
721 => 0.0019056836196748
722 => 0.0019073301989268
723 => 0.0018869853851786
724 => 0.00193348759634
725 => 0.0019761626238937
726 => 0.0019647248048904
727 => 0.0019475778882225
728 => 0.0019339195431891
729 => 0.0019615073328689
730 => 0.0019602788920217
731 => 0.0019757898947569
801 => 0.001975086226077
802 => 0.0019698704592554
803 => 0.0019647249911618
804 => 0.0019851261905357
805 => 0.0019792509727493
806 => 0.0019733666291268
807 => 0.0019615646771441
808 => 0.0019631687584282
809 => 0.0019460248024172
810 => 0.0019380932239125
811 => 0.0018188213137194
812 => 0.0017869479619937
813 => 0.0017969759672885
814 => 0.0018002774470086
815 => 0.0017864061234908
816 => 0.0018062940381647
817 => 0.0018031945277293
818 => 0.0018152529096806
819 => 0.0018077193561515
820 => 0.0018080285358161
821 => 0.0018301831104221
822 => 0.0018366146776826
823 => 0.0018333435306648
824 => 0.0018356345299077
825 => 0.0018884296404896
826 => 0.0018809238640574
827 => 0.0018769365699235
828 => 0.0018780410776483
829 => 0.0018915313603419
830 => 0.0018953079029539
831 => 0.0018793064265336
901 => 0.0018868528153169
902 => 0.0019189843809767
903 => 0.0019302286104685
904 => 0.00196611479347
905 => 0.0019508697051049
906 => 0.001978852724591
907 => 0.0020648629863769
908 => 0.0021335739349489
909 => 0.0020703845070421
910 => 0.002196563413808
911 => 0.0022948117920145
912 => 0.0022910408556177
913 => 0.0022739089783515
914 => 0.0021620558118317
915 => 0.0020591268603634
916 => 0.0021452312988608
917 => 0.002145450796782
918 => 0.0021380543491529
919 => 0.0020921156481663
920 => 0.0021364557819364
921 => 0.0021399753407354
922 => 0.0021380053237342
923 => 0.0021027842293968
924 => 0.0020490081282899
925 => 0.0020595158497244
926 => 0.0020767277117858
927 => 0.002044142066133
928 => 0.0020337289779131
929 => 0.0020530888900851
930 => 0.0021154705609012
1001 => 0.0021036776673858
1002 => 0.0021033697072773
1003 => 0.0021538247067012
1004 => 0.002117709815984
1005 => 0.0020596483857421
1006 => 0.0020449871088698
1007 => 0.0019929494529928
1008 => 0.0020288920472588
1009 => 0.0020301855572391
1010 => 0.002010500165684
1011 => 0.0020612457467744
1012 => 0.0020607781173111
1013 => 0.0021089534940734
1014 => 0.0022010467205979
1015 => 0.0021738102218821
1016 => 0.0021421371371984
1017 => 0.0021455808797029
1018 => 0.0021833502350965
1019 => 0.002160514020635
1020 => 0.0021687260825751
1021 => 0.0021833378051572
1022 => 0.0021921534201797
1023 => 0.0021443124483658
1024 => 0.0021331584293377
1025 => 0.0021103412209351
1026 => 0.0021043886371662
1027 => 0.0021229727773135
1028 => 0.002118076512972
1029 => 0.002030076842734
1030 => 0.0020208803875686
1031 => 0.002021162429719
1101 => 0.0019980375059379
1102 => 0.0019627664465541
1103 => 0.0020554566846891
1104 => 0.0020480123613678
1105 => 0.002039794404566
1106 => 0.0020408010573832
1107 => 0.002081034748194
1108 => 0.0020576971756736
1109 => 0.0021197439371718
1110 => 0.0021069889883042
1111 => 0.0020939069231269
1112 => 0.0020920985832299
1113 => 0.002087063104246
1114 => 0.002069794573191
1115 => 0.0020489417842643
1116 => 0.0020351729667772
1117 => 0.001877339483016
1118 => 0.0019066324595269
1119 => 0.0019403313588639
1120 => 0.0019519640838752
1121 => 0.0019320655027834
1122 => 0.0020705802904558
1123 => 0.0020958882769253
1124 => 0.0020192287351102
1125 => 0.002004888864825
1126 => 0.0020715204099644
1127 => 0.0020313334428702
1128 => 0.0020494296316921
1129 => 0.0020103155695454
1130 => 0.0020897923240891
1201 => 0.0020891868443795
1202 => 0.0020582685917981
1203 => 0.0020844004871608
1204 => 0.0020798594272672
1205 => 0.002044952796251
1206 => 0.0020908989265542
1207 => 0.0020909217152616
1208 => 0.0020611635693727
1209 => 0.0020264125698703
1210 => 0.0020201999119413
1211 => 0.0020155195087449
1212 => 0.0020482785394197
1213 => 0.0020776501838879
1214 => 0.002132303532395
1215 => 0.0021460446827412
1216 => 0.0021996773073427
1217 => 0.0021677416907176
1218 => 0.0021818983359321
1219 => 0.0021972673768921
1220 => 0.0022046358603061
1221 => 0.0021926293119976
1222 => 0.0022759428540727
1223 => 0.0022829770696848
1224 => 0.0022853355813338
1225 => 0.0022572427237045
1226 => 0.0022821957564945
1227 => 0.0022705210588097
1228 => 0.0023008953788613
1229 => 0.0023056584600842
1230 => 0.0023016242997399
1231 => 0.0023031361769002
]
'min_raw' => 0.001032802336388
'max_raw' => 0.0023056584600842
'avg_raw' => 0.0016692303982361
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001032'
'max' => '$0.0023056'
'avg' => '$0.001669'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0001592560247302
'max_diff' => -0.00022002082406429
'year' => 2031
]
6 => [
'items' => [
101 => 0.002232042766255
102 => 0.0022283561978655
103 => 0.0021780895762867
104 => 0.0021985735961322
105 => 0.0021602797028557
106 => 0.0021724230908845
107 => 0.0021777757806211
108 => 0.0021749798392652
109 => 0.0021997317318803
110 => 0.0021786875666799
111 => 0.0021231485547349
112 => 0.0020675944112234
113 => 0.002066896974205
114 => 0.0020522705488305
115 => 0.0020416983222481
116 => 0.0020437349081578
117 => 0.0020509121025394
118 => 0.0020412811706632
119 => 0.0020433364182797
120 => 0.0020774672227556
121 => 0.0020843119121835
122 => 0.0020610509831147
123 => 0.0019676549963675
124 => 0.0019447353869537
125 => 0.0019612095476847
126 => 0.0019533359599271
127 => 0.0015764945712822
128 => 0.001665027865777
129 => 0.0016124243884948
130 => 0.001636666490996
131 => 0.0015829719622953
201 => 0.0016085978057627
202 => 0.0016038656481802
203 => 0.0017462245658372
204 => 0.0017440018271463
205 => 0.0017450657345329
206 => 0.001694282662973
207 => 0.0017751814748786
208 => 0.0018150351386504
209 => 0.0018076592861572
210 => 0.0018095156293232
211 => 0.0017776175033714
212 => 0.001745374578118
213 => 0.0017096122118613
214 => 0.0017760542680041
215 => 0.0017686670455647
216 => 0.0017856106760019
217 => 0.0018287030987867
218 => 0.001835048621734
219 => 0.001843577068925
220 => 0.0018405202277032
221 => 0.0019133465872982
222 => 0.0019045268346275
223 => 0.0019257799009479
224 => 0.0018820607310527
225 => 0.0018325883404546
226 => 0.001841991424533
227 => 0.0018410858319214
228 => 0.0018295565985852
229 => 0.0018191485222361
301 => 0.0018018220075723
302 => 0.0018566456638104
303 => 0.0018544199234869
304 => 0.0018904520721845
305 => 0.0018840830399046
306 => 0.0018415490835727
307 => 0.0018430681921441
308 => 0.0018532849273457
309 => 0.0018886451645309
310 => 0.001899142490436
311 => 0.0018942797108307
312 => 0.0019057895494645
313 => 0.0019148864566267
314 => 0.0019069319809456
315 => 0.0020195505820855
316 => 0.0019727834871508
317 => 0.0019955774438186
318 => 0.0020010136681741
319 => 0.001987088893799
320 => 0.0019901086787522
321 => 0.0019946828301141
322 => 0.002022456181473
323 => 0.0020953414917226
324 => 0.0021276218994851
325 => 0.0022247390989259
326 => 0.0021249414609854
327 => 0.0021190198821537
328 => 0.0021365136224315
329 => 0.0021935316994028
330 => 0.0022397394953524
331 => 0.0022550692870606
401 => 0.0022570953721021
402 => 0.0022858550804519
403 => 0.0023023396089412
404 => 0.0022823628954028
405 => 0.0022654347223281
406 => 0.0022048001075767
407 => 0.0022118187293367
408 => 0.0022601700732312
409 => 0.002328469194362
410 => 0.0023870769456047
411 => 0.0023665545538059
412 => 0.0025231259166803
413 => 0.0025386493277726
414 => 0.0025365044942916
415 => 0.0025718691349533
416 => 0.0025016775251237
417 => 0.0024716692520232
418 => 0.0022690947854898
419 => 0.0023260099476806
420 => 0.0024087394784352
421 => 0.00239778991482
422 => 0.0023377095182193
423 => 0.0023870313692364
424 => 0.0023707240228532
425 => 0.0023578617421684
426 => 0.0024167863434613
427 => 0.0023519963238506
428 => 0.0024080931484278
429 => 0.0023361483906602
430 => 0.0023666482983629
501 => 0.0023493350756363
502 => 0.0023605388525692
503 => 0.0022950418015503
504 => 0.0023303824204291
505 => 0.0022935715156158
506 => 0.0022935540624539
507 => 0.00229274145969
508 => 0.0023360493259583
509 => 0.0023374615939225
510 => 0.0023054570153156
511 => 0.0023008446555329
512 => 0.0023178989670853
513 => 0.0022979328347887
514 => 0.0023072748624249
515 => 0.002298215795289
516 => 0.0022961764084635
517 => 0.0022799262272652
518 => 0.0022729252023969
519 => 0.0022756704846419
520 => 0.0022662994210496
521 => 0.0022606530162691
522 => 0.0022916182476612
523 => 0.0022750747736622
524 => 0.002289082723004
525 => 0.0022731188967849
526 => 0.0022177813200016
527 => 0.0021859560944093
528 => 0.0020814285416616
529 => 0.0021110724259548
530 => 0.00213072635191
531 => 0.0021242307294991
601 => 0.00213818583991
602 => 0.0021390425703505
603 => 0.0021345056217004
604 => 0.0021292524163827
605 => 0.0021266954465545
606 => 0.0021457530047677
607 => 0.0021568165587584
608 => 0.0021326988863153
609 => 0.0021270484531039
610 => 0.0021514327515171
611 => 0.0021663071594628
612 => 0.0022761314305259
613 => 0.0022679952937978
614 => 0.0022884154003491
615 => 0.0022861164097235
616 => 0.0023075199345673
617 => 0.0023425056518824
618 => 0.0022713699064203
619 => 0.0022837166121435
620 => 0.0022806894850273
621 => 0.0023137388651272
622 => 0.0023138420416844
623 => 0.0022940272873755
624 => 0.0023047691871441
625 => 0.0022987733533819
626 => 0.0023096086353757
627 => 0.0022678866307314
628 => 0.002318699528776
629 => 0.0023475071676565
630 => 0.0023479071617503
701 => 0.0023615617539481
702 => 0.0023754356104417
703 => 0.002402065269823
704 => 0.0023746929236949
705 => 0.0023254527376546
706 => 0.0023290077200419
707 => 0.0023001382169827
708 => 0.0023006235185449
709 => 0.0022980329407725
710 => 0.002305807459677
711 => 0.0022695927004318
712 => 0.0022780922320416
713 => 0.0022661928380147
714 => 0.0022836907451848
715 => 0.0022648658895775
716 => 0.0022806880252549
717 => 0.0022875163345012
718 => 0.002312712942623
719 => 0.0022611443300711
720 => 0.0021559924381897
721 => 0.0021780966407067
722 => 0.0021454027889365
723 => 0.0021484287293921
724 => 0.0021545416106873
725 => 0.0021347277623993
726 => 0.0021385076202466
727 => 0.0021383725771258
728 => 0.0021372088484673
729 => 0.0021320545012805
730 => 0.0021245796781031
731 => 0.0021543570730126
801 => 0.0021594168326584
802 => 0.0021706640515793
803 => 0.0022041281460264
804 => 0.0022007842938534
805 => 0.0022062382554826
806 => 0.0021943322878688
807 => 0.0021489810130826
808 => 0.002151443805495
809 => 0.0021207327446481
810 => 0.0021698787007056
811 => 0.0021582402896162
812 => 0.0021507369302746
813 => 0.0021486895691601
814 => 0.0021822366146246
815 => 0.0021922744164132
816 => 0.0021860195319504
817 => 0.0021731905814331
818 => 0.002197825958965
819 => 0.0022044173467094
820 => 0.0022058929153444
821 => 0.0022495420809659
822 => 0.0022083324188209
823 => 0.002218251994088
824 => 0.0022956416886544
825 => 0.0022254599147305
826 => 0.0022626367656183
827 => 0.0022608171522263
828 => 0.0022798355711445
829 => 0.002259257086769
830 => 0.0022595121817459
831 => 0.002276399249326
901 => 0.0022526844085085
902 => 0.0022468122804195
903 => 0.0022386999775216
904 => 0.0022564128941166
905 => 0.0022670309865289
906 => 0.002352605013243
907 => 0.00240788973715
908 => 0.0024054896814821
909 => 0.0024274216975707
910 => 0.0024175411234486
911 => 0.0023856341432444
912 => 0.0024400954678112
913 => 0.0024228616259597
914 => 0.0024242823629428
915 => 0.0024242294830413
916 => 0.002435688481264
917 => 0.0024275687308215
918 => 0.002411563869224
919 => 0.002422188643268
920 => 0.0024537404237526
921 => 0.0025516781185035
922 => 0.002606485349988
923 => 0.0025483786543501
924 => 0.0025884598749215
925 => 0.0025644254249778
926 => 0.0025600576504601
927 => 0.0025852316189578
928 => 0.0026104496511549
929 => 0.0026088433715245
930 => 0.0025905363751097
1001 => 0.0025801952173578
1002 => 0.0026585019283971
1003 => 0.0027161969791709
1004 => 0.0027122625635006
1005 => 0.0027296277947286
1006 => 0.0027806126507001
1007 => 0.0027852740669672
1008 => 0.0027846868356589
1009 => 0.0027731330290726
1010 => 0.0028233342409968
1011 => 0.0028652129751903
1012 => 0.0027704586566695
1013 => 0.0028065398607371
1014 => 0.0028227378757068
1015 => 0.0028465213674169
1016 => 0.0028866481045078
1017 => 0.0029302363840799
1018 => 0.0029364002447325
1019 => 0.0029320266906316
1020 => 0.002903279048538
1021 => 0.0029509738641621
1022 => 0.0029789123685736
1023 => 0.0029955491085894
1024 => 0.0030377371131798
1025 => 0.0028228379091328
1026 => 0.0026707215713249
1027 => 0.0026469664085897
1028 => 0.0026952734661374
1029 => 0.0027080116519712
1030 => 0.0027028769052339
1031 => 0.0025316561372188
1101 => 0.002646064966681
1102 => 0.0027691592474148
1103 => 0.002773887800055
1104 => 0.0028355113707704
1105 => 0.0028555785314308
1106 => 0.0029051935830427
1107 => 0.0029020901480557
1108 => 0.0029141706235753
1109 => 0.002911393531458
1110 => 0.0030032949668873
1111 => 0.0031046758976611
1112 => 0.0031011653984
1113 => 0.0030865906901166
1114 => 0.0031082366172746
1115 => 0.0032128726024739
1116 => 0.0032032393977143
1117 => 0.0032125972355838
1118 => 0.0033359689591596
1119 => 0.0034963697492311
1120 => 0.0034218474782668
1121 => 0.0035835393630534
1122 => 0.0036853158336081
1123 => 0.0038613277155488
1124 => 0.0038392901610531
1125 => 0.0039078102950578
1126 => 0.0037998383391292
1127 => 0.0035519129035847
1128 => 0.0035126777543894
1129 => 0.0035912275166707
1130 => 0.0037843344424656
1201 => 0.0035851458923682
1202 => 0.0036254414766292
1203 => 0.0036138363456512
1204 => 0.00361321795754
1205 => 0.0036368193165778
1206 => 0.0036025843143294
1207 => 0.0034631047564103
1208 => 0.0035270274158464
1209 => 0.0035023438072199
1210 => 0.0035297321112759
1211 => 0.0036775354924707
1212 => 0.0036121880944519
1213 => 0.0035433499190308
1214 => 0.0036296882674229
1215 => 0.0037396266540015
1216 => 0.0037327469073477
1217 => 0.0037193973233283
1218 => 0.0037946482294842
1219 => 0.0039189406800071
1220 => 0.0039525364299359
1221 => 0.0039773361256985
1222 => 0.0039807555847498
1223 => 0.0040159781381609
1224 => 0.0038265775912434
1225 => 0.0041271611233524
1226 => 0.0041790635958952
1227 => 0.0041693080821942
1228 => 0.0042269954960355
1229 => 0.004210022395495
1230 => 0.0041854310358096
1231 => 0.0042768778572129
]
'min_raw' => 0.0015764945712822
'max_raw' => 0.0042768778572129
'avg_raw' => 0.0029266862142475
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.001576'
'max' => '$0.004276'
'avg' => '$0.002926'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00054369223489423
'max_diff' => 0.0019712193971287
'year' => 2032
]
7 => [
'items' => [
101 => 0.004172041455852
102 => 0.0040232393826561
103 => 0.0039416036223295
104 => 0.0040491081768965
105 => 0.0041147574569786
106 => 0.0041581474550345
107 => 0.0041712772422292
108 => 0.0038412802165464
109 => 0.0036634301221774
110 => 0.0037774299936125
111 => 0.003916517704614
112 => 0.0038258049519861
113 => 0.0038293607201471
114 => 0.0037000281737917
115 => 0.0039279607651799
116 => 0.0038947529038295
117 => 0.0040670353472592
118 => 0.0040259187594817
119 => 0.0041664084041327
120 => 0.0041294127723754
121 => 0.0042829795714021
122 => 0.0043442415251889
123 => 0.0044471098802588
124 => 0.0045227802609978
125 => 0.0045672153559114
126 => 0.0045645476394846
127 => 0.0047406216230088
128 => 0.004636796946481
129 => 0.0045063686831647
130 => 0.0045040096473772
131 => 0.0045715602931315
201 => 0.0047131279150179
202 => 0.0047498343396479
203 => 0.0047703482234336
204 => 0.0047389304963224
205 => 0.0046262362511331
206 => 0.0045775754474332
207 => 0.0046190358620247
208 => 0.0045683333377133
209 => 0.0046558601192906
210 => 0.0047760530851079
211 => 0.0047512337129611
212 => 0.0048342011529195
213 => 0.0049200637248473
214 => 0.0050428510590334
215 => 0.0050749522149914
216 => 0.0051280142050925
217 => 0.0051826324228622
218 => 0.0052001743224076
219 => 0.0052336672515715
220 => 0.0052334907273022
221 => 0.0053344239236718
222 => 0.0054457563649084
223 => 0.0054877817841232
224 => 0.0055844169183127
225 => 0.0054189326375123
226 => 0.0055444543654458
227 => 0.0056576781060544
228 => 0.0055226880948339
301 => 0.0057087403766627
302 => 0.0057159643651626
303 => 0.0058250380147965
304 => 0.0057144709749096
305 => 0.0056488166195673
306 => 0.005838358283404
307 => 0.0059300715240281
308 => 0.005902446749565
309 => 0.0056922208518976
310 => 0.0055698603624422
311 => 0.0052496193599617
312 => 0.0056289586607816
313 => 0.0058137237687319
314 => 0.005691742354904
315 => 0.0057532626848037
316 => 0.0060888976567025
317 => 0.0062166857232465
318 => 0.0061901066987113
319 => 0.0061945981163298
320 => 0.0062635502375194
321 => 0.0065693219155011
322 => 0.0063860964383225
323 => 0.0065261654502978
324 => 0.0066004575491932
325 => 0.0066694641909909
326 => 0.0065000056885089
327 => 0.0062795426666197
328 => 0.0062097127731793
329 => 0.0056796137072897
330 => 0.0056520197488066
331 => 0.0056365304237275
401 => 0.0055388724201123
402 => 0.0054621399800493
403 => 0.0054011194948184
404 => 0.005240983519313
405 => 0.0052950247102052
406 => 0.0050398013882252
407 => 0.0052030842250688
408 => 0.0047957416406062
409 => 0.0051349886491969
410 => 0.0049503519260897
411 => 0.0050743305198675
412 => 0.0050738979702333
413 => 0.0048456140716395
414 => 0.004713944683094
415 => 0.0047978495421244
416 => 0.0048878022113811
417 => 0.0049023967293308
418 => 0.005019022713027
419 => 0.0050515705182094
420 => 0.0049529491489949
421 => 0.0047873003709486
422 => 0.0048257768040423
423 => 0.0047131649594054
424 => 0.0045158170332312
425 => 0.0046575557591737
426 => 0.0047059515920224
427 => 0.0047273259488581
428 => 0.0045332569290282
429 => 0.0044722762295542
430 => 0.0044398106168319
501 => 0.0047622484975029
502 => 0.0047799123724684
503 => 0.0046895414907246
504 => 0.0050980264455253
505 => 0.005005573719622
506 => 0.0051088660659238
507 => 0.00482228547103
508 => 0.0048332332356869
509 => 0.0046975613894064
510 => 0.0047735285577274
511 => 0.0047198374116942
512 => 0.0047673911612493
513 => 0.0047958946826611
514 => 0.0049315442665266
515 => 0.0051365375495478
516 => 0.0049112827422121
517 => 0.0048131359969476
518 => 0.0048740256857114
519 => 0.0050361829508388
520 => 0.0052818595081844
521 => 0.0051364140415343
522 => 0.0052009602698094
523 => 0.0052150607492257
524 => 0.0051078146468018
525 => 0.005285813824955
526 => 0.0053812050305901
527 => 0.0054790566691429
528 => 0.0055640185051577
529 => 0.0054399725729013
530 => 0.0055727195017016
531 => 0.0054657489100759
601 => 0.0053697852309712
602 => 0.0053699307682603
603 => 0.0053097313505523
604 => 0.0051930873931282
605 => 0.0051715764577398
606 => 0.0052834790601618
607 => 0.0053732143500884
608 => 0.0053806053783698
609 => 0.0054302874456388
610 => 0.0054596887812827
611 => 0.0057478618397697
612 => 0.0058637674277858
613 => 0.0060054945868313
614 => 0.0060607053025845
615 => 0.0062268697628647
616 => 0.0060926784659708
617 => 0.006063645334785
618 => 0.005660584706126
619 => 0.005726585861489
620 => 0.0058322600793895
621 => 0.0056623272350569
622 => 0.0057701105116369
623 => 0.0057913892135958
624 => 0.0056565529820321
625 => 0.0057285748392399
626 => 0.0055373061394884
627 => 0.0051407066845253
628 => 0.0052862553535224
629 => 0.0053934281650564
630 => 0.0052404793486849
701 => 0.0055146341820942
702 => 0.005354478588121
703 => 0.0053037169536558
704 => 0.0051056777197776
705 => 0.0051991446149389
706 => 0.0053255599289617
707 => 0.0052474499622533
708 => 0.0054095398714437
709 => 0.0056391024106572
710 => 0.0058027023467862
711 => 0.0058152615184537
712 => 0.0057100777198672
713 => 0.0058786354283761
714 => 0.005879863187264
715 => 0.0056897294034874
716 => 0.0055732735195936
717 => 0.0055468144977477
718 => 0.0056129143219156
719 => 0.0056931717111563
720 => 0.0058197152449935
721 => 0.0058961828522216
722 => 0.0060955698165874
723 => 0.0061495182122725
724 => 0.0062087911429988
725 => 0.0062879980575441
726 => 0.0063831062666918
727 => 0.00617501491959
728 => 0.0061832827767412
729 => 0.0059895109955409
730 => 0.005782438057644
731 => 0.0059395806055016
801 => 0.0061450235830284
802 => 0.0060978947369894
803 => 0.0060925917790551
804 => 0.0061015098833828
805 => 0.0060659762725536
806 => 0.0059052590677104
807 => 0.0058245478935811
808 => 0.0059286858998245
809 => 0.0059840306154934
810 => 0.0060698654429295
811 => 0.0060592844886946
812 => 0.0062803857861825
813 => 0.0063662990646301
814 => 0.0063443187715667
815 => 0.0063483636744757
816 => 0.006503905561352
817 => 0.0066769001291873
818 => 0.0068389323706089
819 => 0.0070037585260295
820 => 0.0068050541623955
821 => 0.0067041643409236
822 => 0.0068082568837712
823 => 0.0067530239153276
824 => 0.0070704089351669
825 => 0.00709238398532
826 => 0.0074097460546098
827 => 0.0077109604491381
828 => 0.0075217730847513
829 => 0.007700168248182
830 => 0.0078931171622034
831 => 0.0082653469221837
901 => 0.0081399930342232
902 => 0.0080439739205913
903 => 0.0079532363221701
904 => 0.0081420468602965
905 => 0.008384948601274
906 => 0.0084372673097966
907 => 0.0085220436048882
908 => 0.0084329116965516
909 => 0.0085402612625854
910 => 0.0089192524024741
911 => 0.0088168456510288
912 => 0.0086714116012697
913 => 0.0089705887075159
914 => 0.0090788597392448
915 => 0.009838762541898
916 => 0.010798171220267
917 => 0.010400969727605
918 => 0.010154413943498
919 => 0.010212360401144
920 => 0.010562703972451
921 => 0.010675223208206
922 => 0.010369357137718
923 => 0.010477394204675
924 => 0.011072689065574
925 => 0.011392045659101
926 => 0.010958316509779
927 => 0.0097616749887465
928 => 0.0086583168563173
929 => 0.0089509771179018
930 => 0.0089177985265434
1001 => 0.0095573685900335
1002 => 0.008814403283875
1003 => 0.00882691291419
1004 => 0.0094797086092766
1005 => 0.0093055539095789
1006 => 0.0090234456001174
1007 => 0.0086603765591762
1008 => 0.0079892098571747
1009 => 0.0073947387923439
1010 => 0.008560633448987
1011 => 0.0085103579513507
1012 => 0.008437551580362
1013 => 0.0085995742805252
1014 => 0.0093863105215717
1015 => 0.0093681737047989
1016 => 0.0092527965299754
1017 => 0.0093403091001913
1018 => 0.0090081042234415
1019 => 0.0090937209843444
1020 => 0.0086581420787519
1021 => 0.0088550419354617
1022 => 0.0090228403223866
1023 => 0.0090565283328594
1024 => 0.0091324291406069
1025 => 0.0084838650486327
1026 => 0.0087750512850878
1027 => 0.0089460959185445
1028 => 0.00817331004193
1029 => 0.0089308204264599
1030 => 0.0084725749907162
1031 => 0.0083170396072094
1101 => 0.0085264475108728
1102 => 0.0084448410471593
1103 => 0.0083746806017508
1104 => 0.0083355298677033
1105 => 0.0084892959206468
1106 => 0.0084821225504868
1107 => 0.0082305314431665
1108 => 0.0079023410998327
1109 => 0.0080124925515363
1110 => 0.0079724734964571
1111 => 0.0078274392782889
1112 => 0.0079251748298359
1113 => 0.0074947969236533
1114 => 0.0067543541051631
1115 => 0.0072435133114346
1116 => 0.007224681214096
1117 => 0.0072151852166502
1118 => 0.0075827748407959
1119 => 0.0075474395801698
1120 => 0.0074833057361296
1121 => 0.0078262614099487
1122 => 0.0077010779756
1123 => 0.0080868638233362
1124 => 0.0083409673337194
1125 => 0.0082765184640988
1126 => 0.0085155040438031
1127 => 0.0080150302185089
1128 => 0.0081812675477469
1129 => 0.0082155288309079
1130 => 0.0078220293901694
1201 => 0.0075532208658068
1202 => 0.0075352944018733
1203 => 0.007069217464725
1204 => 0.007318192002508
1205 => 0.0075372792924907
1206 => 0.0074323534824495
1207 => 0.0073991371055599
1208 => 0.0075688323713358
1209 => 0.0075820191468283
1210 => 0.0072813592681285
1211 => 0.0073438759775702
1212 => 0.0076045810484806
1213 => 0.0073373068786836
1214 => 0.0068180368257557
1215 => 0.0066892506731594
1216 => 0.0066720682264034
1217 => 0.0063227899664037
1218 => 0.0066978567796909
1219 => 0.0065341300645254
1220 => 0.007051340795986
1221 => 0.0067559128000325
1222 => 0.0067431774895914
1223 => 0.0067239261999958
1224 => 0.0064232879731108
1225 => 0.0064891086382426
1226 => 0.0067079065539109
1227 => 0.0067859761151563
1228 => 0.0067778328203133
1229 => 0.0067068343247593
1230 => 0.0067393370724528
1231 => 0.0066346343974241
]
'min_raw' => 0.0036634301221774
'max_raw' => 0.011392045659101
'avg_raw' => 0.0075277378906391
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.003663'
'max' => '$0.011392'
'avg' => '$0.007527'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0020869355508953
'max_diff' => 0.0071151678018879
'year' => 2033
]
8 => [
'items' => [
101 => 0.0065976617036737
102 => 0.0064809657120569
103 => 0.0063094548424707
104 => 0.006333304480824
105 => 0.0059934965699134
106 => 0.0058083511850786
107 => 0.0057571053827332
108 => 0.0056885773541275
109 => 0.0057648458059103
110 => 0.0059925339367964
111 => 0.0057178937442162
112 => 0.0052470423978069
113 => 0.0052753413660177
114 => 0.0053389207455485
115 => 0.0052204409924127
116 => 0.0051083098493216
117 => 0.0052057987807521
118 => 0.0050062928581548
119 => 0.0053630300831435
120 => 0.0053533813409521
121 => 0.0054863509179459
122 => 0.0055694995232505
123 => 0.005377868907704
124 => 0.0053296743261183
125 => 0.0053571281501111
126 => 0.0049033775936588
127 => 0.0054492698170069
128 => 0.0054539907156231
129 => 0.0054135675155307
130 => 0.005704238271932
131 => 0.0063176442304213
201 => 0.0060868562346401
202 => 0.0059974881470695
203 => 0.0058275993472702
204 => 0.006053966086004
205 => 0.0060365846523405
206 => 0.005957979217601
207 => 0.0059104384054067
208 => 0.0059980338095556
209 => 0.0058995843654572
210 => 0.0058819001400874
211 => 0.0057747529749729
212 => 0.0057365063119124
213 => 0.005708190005226
214 => 0.005677016533867
215 => 0.0057457774437398
216 => 0.0055899561757171
217 => 0.0054020510018289
218 => 0.0053864287197823
219 => 0.0054295632140381
220 => 0.0054104794113153
221 => 0.0053863373538769
222 => 0.0053402435915288
223 => 0.0053265685568775
224 => 0.0053710057853105
225 => 0.005320838745261
226 => 0.0053948629455941
227 => 0.0053747324590494
228 => 0.0052622851976097
301 => 0.0051221342765476
302 => 0.0051208866393736
303 => 0.0050906913533244
304 => 0.005052233116649
305 => 0.0050415349150112
306 => 0.0051975885348657
307 => 0.0055206148576728
308 => 0.005457197061141
309 => 0.0055030229184525
310 => 0.0057284407809068
311 => 0.0058000943408294
312 => 0.0057492363412039
313 => 0.0056796187745317
314 => 0.0056826815941502
315 => 0.0059205858941395
316 => 0.0059354236935105
317 => 0.0059729140256655
318 => 0.0060210996972512
319 => 0.0057574425694357
320 => 0.0056702633671403
321 => 0.0056289530245748
322 => 0.0055017331585876
323 => 0.0056389288770478
324 => 0.0055589908072074
325 => 0.0055697771839022
326 => 0.0055627525419294
327 => 0.0055665884714508
328 => 0.0053629303678188
329 => 0.0054371326768275
330 => 0.005313756946326
331 => 0.0051485706927603
401 => 0.0051480169305165
402 => 0.0051884460320576
403 => 0.0051643972204701
404 => 0.0050996824868396
405 => 0.0051088749093069
406 => 0.005028339615772
407 => 0.0051186533520805
408 => 0.0051212432268798
409 => 0.0050864675189785
410 => 0.0052256082906558
411 => 0.0052826143783401
412 => 0.0052597242624316
413 => 0.0052810083467875
414 => 0.0054598323569011
415 => 0.0054889884731882
416 => 0.005501937694098
417 => 0.0054845874535219
418 => 0.0052842769214206
419 => 0.0052931615453054
420 => 0.005227972070279
421 => 0.0051728938333793
422 => 0.005175096674008
423 => 0.005203414047444
424 => 0.0053270776780313
425 => 0.0055873204982329
426 => 0.0055971965230245
427 => 0.005609166553176
428 => 0.005560478424895
429 => 0.0055457936195228
430 => 0.0055651666682786
501 => 0.0056629001886289
502 => 0.0059142973373618
503 => 0.0058254367947486
504 => 0.0057531917904073
505 => 0.0058165701363279
506 => 0.0058068135367493
507 => 0.0057244580176113
508 => 0.0057221465724827
509 => 0.0055640800006046
510 => 0.0055056463879829
511 => 0.0054568148875962
512 => 0.0054034921639525
513 => 0.0053718806659826
514 => 0.0054204502940332
515 => 0.0054315587426273
516 => 0.0053253604020428
517 => 0.0053108859606375
518 => 0.0053976098180092
519 => 0.0053594458817712
520 => 0.0053986984366121
521 => 0.0054078053660373
522 => 0.0054063389406495
523 => 0.0053664914081169
524 => 0.0053918890370826
525 => 0.005331816073181
526 => 0.0052664957476054
527 => 0.0052248254494882
528 => 0.005188462587618
529 => 0.0052086388168055
530 => 0.0051367142437859
531 => 0.0051137041253213
601 => 0.0053832848918538
602 => 0.0055824271025729
603 => 0.0055795314959601
604 => 0.0055619052353941
605 => 0.0055357161875494
606 => 0.0056609842966575
607 => 0.0056173433922591
608 => 0.0056490957965286
609 => 0.0056571781160593
610 => 0.0056816408630401
611 => 0.0056903841924416
612 => 0.0056639557783576
613 => 0.0055752587927329
614 => 0.0053542343376126
615 => 0.00525134685711
616 => 0.0052173922748176
617 => 0.005218626459395
618 => 0.0051845821391078
619 => 0.0051946097171918
620 => 0.0051810949566729
621 => 0.0051555012698218
622 => 0.0052070584787636
623 => 0.0052129999668055
624 => 0.0052009658981757
625 => 0.0052038003569777
626 => 0.0051041634085411
627 => 0.0051117385893306
628 => 0.005069559020087
629 => 0.0050616508593361
630 => 0.0049550245812833
701 => 0.0047661206739866
702 => 0.0048707917759749
703 => 0.0047443638037572
704 => 0.004696483614982
705 => 0.0049231409817469
706 => 0.0049003908686204
707 => 0.0048614525641844
708 => 0.0048038546964699
709 => 0.0047824910870586
710 => 0.004652692559172
711 => 0.0046450233696962
712 => 0.0047093550249719
713 => 0.0046796681795793
714 => 0.0046379766053605
715 => 0.0044869739497472
716 => 0.0043171969695768
717 => 0.0043223214694281
718 => 0.0043763243680073
719 => 0.0045333450789094
720 => 0.0044719943706741
721 => 0.0044274837279311
722 => 0.0044191482225303
723 => 0.0045234845241833
724 => 0.0046711422501534
725 => 0.0047404199515231
726 => 0.0046717678534608
727 => 0.0045929040196982
728 => 0.0045977040958396
729 => 0.0046296368519357
730 => 0.0046329925330965
731 => 0.0045816602846502
801 => 0.0045961100119075
802 => 0.0045741595548929
803 => 0.004439449640712
804 => 0.0044370131655342
805 => 0.0044039531801034
806 => 0.0044029521368834
807 => 0.0043467088544658
808 => 0.0043388400304641
809 => 0.0042271655795006
810 => 0.0043006700413062
811 => 0.0042513671074845
812 => 0.0041770559568288
813 => 0.0041642446864462
814 => 0.0041638595641884
815 => 0.0042401605002426
816 => 0.0042997784204438
817 => 0.0042522247531267
818 => 0.0042413977048677
819 => 0.0043570022544056
820 => 0.0043422905217181
821 => 0.0043295502560911
822 => 0.0046579211203169
823 => 0.0043979899581841
824 => 0.0042846451351422
825 => 0.0041443593930297
826 => 0.0041900371380437
827 => 0.0041996621100638
828 => 0.0038623001886889
829 => 0.0037254324992029
830 => 0.0036784646659213
831 => 0.0036514340138401
901 => 0.0036637522214231
902 => 0.0035405552479068
903 => 0.0036233456515996
904 => 0.0035166674861155
905 => 0.0034987825445113
906 => 0.0036895363192857
907 => 0.0037160785926782
908 => 0.0036028410083479
909 => 0.0036755578689876
910 => 0.0036491897244797
911 => 0.0035184961770778
912 => 0.0035135046448837
913 => 0.0034479272168978
914 => 0.0033453112403921
915 => 0.0032984129855747
916 => 0.0032739879672765
917 => 0.0032840662058605
918 => 0.0032789703400332
919 => 0.003245716368534
920 => 0.0032808764187538
921 => 0.003191057019578
922 => 0.0031552902111021
923 => 0.0031391351734972
924 => 0.003059415286917
925 => 0.0031862850780606
926 => 0.0032112800251795
927 => 0.0032363242200654
928 => 0.0034543168381498
929 => 0.003443426542991
930 => 0.0035418695074373
1001 => 0.0035380441948639
1002 => 0.0035099666667335
1003 => 0.0033915121940807
1004 => 0.0034387260356322
1005 => 0.0032934091699969
1006 => 0.0034022904463172
1007 => 0.0033526015787954
1008 => 0.0033854905902256
1009 => 0.0033263531821915
1010 => 0.0033590822655213
1011 => 0.0032172072543927
1012 => 0.0030847263652362
1013 => 0.003138040542391
1014 => 0.003195999150174
1015 => 0.0033216681794263
1016 => 0.0032468207423506
1017 => 0.003273738711018
1018 => 0.0031835680219959
1019 => 0.0029975201345594
1020 => 0.0029985731453976
1021 => 0.002969953731189
1022 => 0.00294522237881
1023 => 0.0032554178708689
1024 => 0.0032168401579663
1025 => 0.0031553716213823
1026 => 0.0032376497002626
1027 => 0.0032594053302472
1028 => 0.0032600246824481
1029 => 0.0033200526448945
1030 => 0.0033520895792128
1031 => 0.0033577362277424
1101 => 0.0034521915236419
1102 => 0.0034838516929319
1103 => 0.0036142554495226
1104 => 0.0033493714691655
1105 => 0.0033439163579018
1106 => 0.0032388075215637
1107 => 0.0031721458358531
1108 => 0.0032433719042159
1109 => 0.0033064684774573
1110 => 0.0032407681079753
1111 => 0.0032493471892192
1112 => 0.003161149811107
1113 => 0.0031926762237097
1114 => 0.0032198310173096
1115 => 0.0032048377363688
1116 => 0.0031823920691173
1117 => 0.0033012952779954
1118 => 0.003294586292965
1119 => 0.0034053116946453
1120 => 0.0034916300633044
1121 => 0.0036463280111957
1122 => 0.0034848926379848
1123 => 0.0034790092913375
1124 => 0.0035365199485333
1125 => 0.0034838428883499
1126 => 0.0035171329720355
1127 => 0.0036409644640513
1128 => 0.0036435808283465
1129 => 0.0035997533554072
1130 => 0.0035970864496958
1201 => 0.0036055039952938
1202 => 0.0036548058227786
1203 => 0.0036375782493633
1204 => 0.0036575144334683
1205 => 0.0036824449369653
1206 => 0.0037855680697434
1207 => 0.0038104307079345
1208 => 0.0037500273869301
1209 => 0.0037554811305095
1210 => 0.0037328886303456
1211 => 0.0037110645582705
1212 => 0.0037601218851456
1213 => 0.0038497751142339
1214 => 0.0038492173861488
1215 => 0.0038700151926876
1216 => 0.0038829720538629
1217 => 0.0038273517206964
1218 => 0.0037911449290213
1219 => 0.0038050289168475
1220 => 0.0038272297157356
1221 => 0.003797829496983
1222 => 0.003616357727336
1223 => 0.0036714046697854
1224 => 0.0036622421669038
1225 => 0.0036491936486021
1226 => 0.0037045437749004
1227 => 0.0036992051201914
1228 => 0.0035392916848774
1229 => 0.0035495288241684
1230 => 0.0035399142392242
1231 => 0.0035709809301378
]
'min_raw' => 0.00294522237881
'max_raw' => 0.0065976617036737
'avg_raw' => 0.0047714420412418
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.002945'
'max' => '$0.006597'
'avg' => '$0.004771'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00071820774336749
'max_diff' => -0.004794383955427
'year' => 2034
]
9 => [
'items' => [
101 => 0.0034821651850884
102 => 0.0035094843100824
103 => 0.0035266186091778
104 => 0.0035367108429769
105 => 0.0035731709117686
106 => 0.0035688927435164
107 => 0.0035729049748232
108 => 0.00362696563174
109 => 0.003900385883048
110 => 0.0039152675440589
111 => 0.0038419848025294
112 => 0.0038712598123323
113 => 0.0038150581952516
114 => 0.003852786717316
115 => 0.0038785996139118
116 => 0.0037619560977296
117 => 0.0037550492257114
118 => 0.003698615644565
119 => 0.0037289398545117
120 => 0.0036806918560987
121 => 0.0036925302272659
122 => 0.0036594291094317
123 => 0.0037190045311664
124 => 0.0037856191097504
125 => 0.0038024485829901
126 => 0.0037581774844402
127 => 0.0037261222914824
128 => 0.0036698439322856
129 => 0.0037634360978749
130 => 0.0037908052992628
131 => 0.0037632923391115
201 => 0.0037569169850744
202 => 0.003744835700694
203 => 0.0037594800866676
204 => 0.0037906562407142
205 => 0.003775954142199
206 => 0.0037856651372859
207 => 0.0037486568379491
208 => 0.003827370133341
209 => 0.0039523857898094
210 => 0.0039527877355871
211 => 0.0039380855578221
212 => 0.0039320697434435
213 => 0.0039471550700331
214 => 0.0039553382408755
215 => 0.0040041214208907
216 => 0.0040564677166547
217 => 0.0043007450385068
218 => 0.0042321529440222
219 => 0.0044488903160923
220 => 0.0046203014375743
221 => 0.0046717001380068
222 => 0.0046244157521046
223 => 0.0044626584221855
224 => 0.0044547218358756
225 => 0.0046964555789579
226 => 0.0046281547244303
227 => 0.0046200305551158
228 => 0.0045336031196097
301 => 0.0045846924382399
302 => 0.0045735184548204
303 => 0.0045558797753428
304 => 0.0046533546363764
305 => 0.0048358188745904
306 => 0.004807380111926
307 => 0.0047861518948332
308 => 0.0046931360269737
309 => 0.0047491523552714
310 => 0.0047292060136867
311 => 0.0048149081553956
312 => 0.0047641401051821
313 => 0.0046276372782815
314 => 0.0046493758033846
315 => 0.0046460900690471
316 => 0.0047137102488831
317 => 0.0046934123493324
318 => 0.0046421265783902
319 => 0.0048351952316606
320 => 0.0048226584272215
321 => 0.0048404327496036
322 => 0.0048482575560055
323 => 0.0049657750429999
324 => 0.0050139181972813
325 => 0.0050248475361678
326 => 0.00507057980921
327 => 0.0050237096755533
328 => 0.0052112236280188
329 => 0.0053359094646659
330 => 0.005480738480206
331 => 0.0056923725982796
401 => 0.0057719489844003
402 => 0.0057575742225082
403 => 0.0059180327954848
404 => 0.00620637328433
405 => 0.0058158560792739
406 => 0.0062270716444478
407 => 0.0060968855442258
408 => 0.0057882166425472
409 => 0.0057683420042464
410 => 0.0059773761681828
411 => 0.0064409938250009
412 => 0.0063248628602759
413 => 0.0064411837736564
414 => 0.006305489249449
415 => 0.0062987508725988
416 => 0.0064345933934915
417 => 0.0067519968479477
418 => 0.0066012103644262
419 => 0.0063850209659354
420 => 0.0065446518535014
421 => 0.0064063648055505
422 => 0.0060947653824095
423 => 0.0063247740571158
424 => 0.0061709738066096
425 => 0.0062158608961784
426 => 0.0065391261466816
427 => 0.0065002300164873
428 => 0.0065505652106435
429 => 0.0064617249104593
430 => 0.0063787340612578
501 => 0.0062238254782418
502 => 0.0061779646837117
503 => 0.0061906389574213
504 => 0.0061779584029711
505 => 0.006091288474457
506 => 0.0060725721116463
507 => 0.0060413773536458
508 => 0.0060510459135488
509 => 0.0059923906421595
510 => 0.0061030852580685
511 => 0.0061236311542189
512 => 0.0062041854645126
513 => 0.0062125488802359
514 => 0.006436891487785
515 => 0.0063133273494713
516 => 0.0063962248414666
517 => 0.006388809709521
518 => 0.0057949064336125
519 => 0.0058767410649798
520 => 0.0060040500702651
521 => 0.0059466975359474
522 => 0.0058656144708482
523 => 0.0058001355483817
524 => 0.0057009282852814
525 => 0.0058405606029883
526 => 0.0060241622525314
527 => 0.0062172053210572
528 => 0.006449133919208
529 => 0.0063973701560472
530 => 0.0062128695772409
531 => 0.0062211461384284
601 => 0.0062723085829827
602 => 0.0062060485686866
603 => 0.0061865071969216
604 => 0.0062696238985804
605 => 0.0062701962776246
606 => 0.0061939561233867
607 => 0.0061092291437523
608 => 0.0061088741346139
609 => 0.0060937977869535
610 => 0.0063081712982054
611 => 0.0064260550537873
612 => 0.0064395702363856
613 => 0.0064251453743151
614 => 0.0064306969312238
615 => 0.006362102971242
616 => 0.0065188884228534
617 => 0.0066627702577262
618 => 0.0066242068523932
619 => 0.006566394825688
620 => 0.0065203447618129
621 => 0.0066133589208363
622 => 0.0066092171467529
623 => 0.0066615135754183
624 => 0.0066591411073353
625 => 0.0066415557853432
626 => 0.0066242074804205
627 => 0.0066929915484758
628 => 0.0066731828415142
629 => 0.0066533433661594
630 => 0.0066135522610636
701 => 0.0066189605331063
702 => 0.0065611584884627
703 => 0.0065344166177689
704 => 0.006132283045254
705 => 0.0060248198145845
706 => 0.0060586299345689
707 => 0.0060697611039471
708 => 0.0060229929682419
709 => 0.0060900464610949
710 => 0.006079596245261
711 => 0.0061202519218989
712 => 0.0060948520201998
713 => 0.0060958944410254
714 => 0.0061705901360925
715 => 0.0061922746141487
716 => 0.0061812457135941
717 => 0.006188969977494
718 => 0.0063669723788577
719 => 0.0063416661295801
720 => 0.0063282226890237
721 => 0.0063319466139319
722 => 0.0063774300438949
723 => 0.0063901629209813
724 => 0.0063362128260428
725 => 0.0063616560026976
726 => 0.0064699898196739
727 => 0.0065079005244526
728 => 0.0066288932959355
729 => 0.0065774934161345
730 => 0.0066718401200439
731 => 0.0069618297226998
801 => 0.0071934934830556
802 => 0.0069804459151226
803 => 0.007405866908814
804 => 0.0077371181754197
805 => 0.0077244042000795
806 => 0.007666642879767
807 => 0.0072895221195069
808 => 0.0069424899733618
809 => 0.0072327970993754
810 => 0.0072335371519418
811 => 0.0072085995123566
812 => 0.0070537139746429
813 => 0.0072032098313781
814 => 0.0072150762695965
815 => 0.0072084342197348
816 => 0.007089683841118
817 => 0.0069083739617087
818 => 0.0069438014781507
819 => 0.0070018324727846
820 => 0.006891967693409
821 => 0.0068568592394568
822 => 0.0069221325350106
823 => 0.0071324566935163
824 => 0.0070926961296757
825 => 0.0070916578206687
826 => 0.0072617703738819
827 => 0.007140006498368
828 => 0.0069442483325877
829 => 0.0068948168139951
830 => 0.0067193682240526
831 => 0.0068405511900524
901 => 0.0068449123492608
902 => 0.0067785416772426
903 => 0.0069496339468323
904 => 0.0069480573014478
905 => 0.0071104839476995
906 => 0.0074209826906704
907 => 0.0073291529336587
908 => 0.0072223649173033
909 => 0.0072339757355916
910 => 0.0073613177542734
911 => 0.0072843238628429
912 => 0.0073120114030218
913 => 0.0073612758458653
914 => 0.0073909983074
915 => 0.0072296991307795
916 => 0.0071920925768777
917 => 0.0071151627657016
918 => 0.0070950932139287
919 => 0.0071577509399385
920 => 0.007141242842865
921 => 0.0068445458107166
922 => 0.0068135393200504
923 => 0.006814490244852
924 => 0.0067365229497936
925 => 0.0066176041105345
926 => 0.0069301157198324
927 => 0.0069050166640086
928 => 0.0068773092488917
929 => 0.0068807032491472
930 => 0.0070163539467422
1001 => 0.0069376696916127
1002 => 0.0071468646799704
1003 => 0.007103860479341
1004 => 0.0070597533832352
1005 => 0.0070536564390184
1006 => 0.0070366789700582
1007 => 0.006978456911956
1008 => 0.0069081502781942
1009 => 0.0068617277487284
1010 => 0.0063295811386455
1011 => 0.0064283444541224
1012 => 0.0065419626460192
1013 => 0.0065811831905657
1014 => 0.0065140937351399
1015 => 0.0069811060125712
1016 => 0.0070664336559002
1017 => 0.0068079706584723
1018 => 0.0067596227846281
1019 => 0.0069842756911314
1020 => 0.006848782525809
1021 => 0.0069097950898573
1022 => 0.0067779192984732
1023 => 0.0070458807253073
1024 => 0.007043839308193
1025 => 0.0069395962609712
1026 => 0.0070277017706575
1027 => 0.0070123912701794
1028 => 0.0068947011266053
1029 => 0.0070496117127787
1030 => 0.0070496885464968
1031 => 0.0069493568799851
1101 => 0.0068321914589254
1102 => 0.0068112450489637
1103 => 0.0067954647428118
1104 => 0.0069059141018943
1105 => 0.0070049426518816
1106 => 0.0071892102321483
1107 => 0.0072355394799171
1108 => 0.0074163656182713
1109 => 0.0073086924571463
1110 => 0.0073564225748722
1111 => 0.007408240369501
1112 => 0.0074330837257823
1113 => 0.0073926028098898
1114 => 0.0076735002337619
1115 => 0.0076972165828114
1116 => 0.007705168469502
1117 => 0.0076104514386239
1118 => 0.0076945823308408
1119 => 0.0076552202724948
1120 => 0.0077576294132163
1121 => 0.007773688474107
1122 => 0.0077600870208502
1123 => 0.007765184420252
1124 => 0.0075254880226784
1125 => 0.0075130584999649
1126 => 0.0073435810758088
1127 => 0.0074126443788663
1128 => 0.0072835338440905
1129 => 0.0073244761246538
1130 => 0.0073425230918137
1201 => 0.0073330963803257
1202 => 0.0074165491143994
1203 => 0.0073455972421696
1204 => 0.0071583435857873
1205 => 0.0069710389122715
1206 => 0.0069686874546706
1207 => 0.006919373440336
1208 => 0.0068837284402843
1209 => 0.0068905949318686
1210 => 0.0069147933438221
1211 => 0.0068823219845913
1212 => 0.0068892513954229
1213 => 0.0070043257856503
1214 => 0.0070274031339374
1215 => 0.0069489772875558
1216 => 0.006634086197538
1217 => 0.0065568111342031
1218 => 0.0066123549172971
1219 => 0.0065858085664559
1220 => 0.005315261514414
1221 => 0.0056137576980004
1222 => 0.0054364014016859
1223 => 0.0055181353427985
1224 => 0.0053371004904517
1225 => 0.0054234998108411
1226 => 0.0054075450111632
1227 => 0.005887518041226
1228 => 0.0058800239225429
1229 => 0.0058836109605766
1230 => 0.0057123922892516
1231 => 0.0059851482817658
]
'min_raw' => 0.0034821651850884
'max_raw' => 0.007773688474107
'avg_raw' => 0.0056279268295977
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.003482'
'max' => '$0.007773'
'avg' => '$0.005627'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00053694280627846
'max_diff' => 0.0011760267704333
'year' => 2035
]
10 => [
'items' => [
101 => 0.0061195176916666
102 => 0.00609464949002
103 => 0.0061009082806101
104 => 0.0059933615219073
105 => 0.0058846522482864
106 => 0.0057640769336035
107 => 0.005988090964725
108 => 0.0059631844285113
109 => 0.0060203110614966
110 => 0.0061656001735325
111 => 0.0061869945471795
112 => 0.0062157488023213
113 => 0.0062054424487202
114 => 0.0064509816046687
115 => 0.0064212451927638
116 => 0.006492901389705
117 => 0.0063454991560283
118 => 0.0061786995370746
119 => 0.0062104026915473
120 => 0.0062073494228309
121 => 0.0061684778076926
122 => 0.0061333862516131
123 => 0.0060749686977252
124 => 0.0062598104823975
125 => 0.0062523062435006
126 => 0.0063737911485189
127 => 0.0063523175115155
128 => 0.0062089113081165
129 => 0.0062140330887259
130 => 0.0062484795247676
131 => 0.0063676990332105
201 => 0.0064030915003995
202 => 0.0063866962994516
203 => 0.0064255025239968
204 => 0.0064561733816201
205 => 0.0064293543114974
206 => 0.0068090557880203
207 => 0.0066513772622734
208 => 0.0067282286786023
209 => 0.0067465572885619
210 => 0.0066996089395596
211 => 0.0067097903553638
212 => 0.0067252124260376
213 => 0.0068188522192175
214 => 0.0070645901314142
215 => 0.0071734257799315
216 => 0.0075008631983523
217 => 0.0071643884943875
218 => 0.007144423477925
219 => 0.0072034048446453
220 => 0.0073956452720291
221 => 0.0075514380821985
222 => 0.0076031235452345
223 => 0.0076099546324087
224 => 0.0077069199970489
225 => 0.0077624987357636
226 => 0.0076951458513393
227 => 0.0076380713339306
228 => 0.0074336374969225
229 => 0.0074573012702111
301 => 0.0076203212019343
302 => 0.0078505964573193
303 => 0.0080481965824966
304 => 0.0079790039057191
305 => 0.0085068951871137
306 => 0.0085592334514214
307 => 0.0085520019955928
308 => 0.0086712363506639
309 => 0.0084345804375019
310 => 0.0083334054496328
311 => 0.0076504114924176
312 => 0.0078423049354336
313 => 0.0081212333243641
314 => 0.0080843161061614
315 => 0.0078817508543428
316 => 0.0080480429185886
317 => 0.0079930615617153
318 => 0.0079496954843708
319 => 0.0081483638916138
320 => 0.0079299198170017
321 => 0.0081190541776188
322 => 0.0078764874037829
323 => 0.0079793199720383
324 => 0.0079209472328449
325 => 0.0079587215489968
326 => 0.0077378936686284
327 => 0.0078570470325815
328 => 0.0077329364969481
329 => 0.0077328776523945
330 => 0.0077301379054416
331 => 0.0078761534002239
401 => 0.0078809149602666
402 => 0.0077730092890053
403 => 0.0077574583959732
404 => 0.007814958198066
405 => 0.0077476409890373
406 => 0.0077791382874524
407 => 0.0077485950101195
408 => 0.0077417190750521
409 => 0.0076869304545905
410 => 0.0076633260104512
411 => 0.0076725819212098
412 => 0.0076409867260416
413 => 0.0076219494781046
414 => 0.0077263509176664
415 => 0.0076705734400506
416 => 0.0077178022192601
417 => 0.0076639790646037
418 => 0.0074774045609325
419 => 0.0073701035908816
420 => 0.0070176816489123
421 => 0.0071176280744768
422 => 0.007183892658028
423 => 0.0071619922135596
424 => 0.0072090428426247
425 => 0.0072119313691199
426 => 0.0071966347299865
427 => 0.0071789231814908
428 => 0.0071703021791931
429 => 0.007234556067265
430 => 0.0072718576119772
501 => 0.0071905431954932
502 => 0.0071714923654205
503 => 0.0072537057299779
504 => 0.0073038558348648
505 => 0.0076741360324396
506 => 0.007646704479414
507 => 0.0077155522943379
508 => 0.0077078010869333
509 => 0.0077799645652906
510 => 0.0078979213538434
511 => 0.0076580822214788
512 => 0.0076997100018441
513 => 0.0076895038314244
514 => 0.0078009321238654
515 => 0.0078012799908316
516 => 0.0077344731632572
517 => 0.0077706902283023
518 => 0.0077504748561573
519 => 0.0077870067658947
520 => 0.0076463381142991
521 => 0.0078176573476999
522 => 0.0079147843134706
523 => 0.0079161329214845
524 => 0.0079621703324126
525 => 0.0080089470082225
526 => 0.0080987307640498
527 => 0.0080064429880027
528 => 0.0078404262629279
529 => 0.0078524121342475
530 => 0.0077550765890793
531 => 0.0077567128171787
601 => 0.0077479785033507
602 => 0.007774190836637
603 => 0.0076520902474081
604 => 0.0076807470116489
605 => 0.007640627373898
606 => 0.0076996227895869
607 => 0.0076361534745972
608 => 0.0076894989097
609 => 0.0077125210310612
610 => 0.0077974731545148
611 => 0.0076236059768906
612 => 0.0072690790319419
613 => 0.0073436048939938
614 => 0.0072333752901388
615 => 0.0072435774596493
616 => 0.0072641874657237
617 => 0.0071973836928622
618 => 0.0072101277474954
619 => 0.0072096724401853
620 => 0.0072057488477644
621 => 0.007188370606359
622 => 0.0071631687181409
623 => 0.0072635652840697
624 => 0.0072806246169765
625 => 0.007318545400824
626 => 0.0074313719316409
627 => 0.0074200979005795
628 => 0.0074384863129957
629 => 0.0073983445119376
630 => 0.0072454395226709
701 => 0.0072537429992362
702 => 0.007150198513413
703 => 0.0073158975355218
704 => 0.0072766578199662
705 => 0.0072513597200781
706 => 0.0072444568991383
707 => 0.007357563105102
708 => 0.0073914062546489
709 => 0.0073703174749806
710 => 0.0073270637726228
711 => 0.0074101236679589
712 => 0.0074323469919352
713 => 0.0074373219746088
714 => 0.0075844881839891
715 => 0.0074455469309005
716 => 0.0074789914714762
717 => 0.0077399162298827
718 => 0.0075032934791634
719 => 0.0076286378275364
720 => 0.0076225028739441
721 => 0.0076866248011502
722 => 0.0076172430043344
723 => 0.0076181030748592
724 => 0.0076750390022227
725 => 0.0075950827606893
726 => 0.0075752844708585
727 => 0.0075479332752553
728 => 0.0076076536102315
729 => 0.0076434532501313
730 => 0.0079319720557856
731 => 0.0081183683622943
801 => 0.0081102764070434
802 => 0.0081842217305305
803 => 0.0081509086850381
804 => 0.0080433320736055
805 => 0.0082269522317507
806 => 0.0081688471307198
807 => 0.0081736372446511
808 => 0.0081734589563713
809 => 0.0082120937689208
810 => 0.0081847174634009
811 => 0.0081307559551012
812 => 0.0081665781225887
813 => 0.0082729571533674
814 => 0.0086031609290116
815 => 0.0087879473364803
816 => 0.0085920365552573
817 => 0.008727173188795
818 => 0.0086461393627783
819 => 0.0086314131060436
820 => 0.008716288898424
821 => 0.0088013132546433
822 => 0.0087958975707226
823 => 0.0087341742541563
824 => 0.0086993083187993
825 => 0.0089633248622683
826 => 0.0091578477540918
827 => 0.0091445825969674
828 => 0.0092031306864541
829 => 0.0093750296880113
830 => 0.0093907459784052
831 => 0.0093887660870504
901 => 0.0093498116214837
902 => 0.0095190685124228
903 => 0.0096602655886358
904 => 0.0093407947882077
905 => 0.0094624450868308
906 => 0.0095170578252106
907 => 0.0095972455280215
908 => 0.0097325356236828
909 => 0.0098794965514966
910 => 0.009900278438034
911 => 0.0098855326950309
912 => 0.0097886080126159
913 => 0.0099494144134383
914 => 0.010043611031666
915 => 0.010099702962169
916 => 0.010241942765118
917 => 0.0095173950948904
918 => 0.0090045242415476
919 => 0.0089244320518532
920 => 0.0090873026690665
921 => 0.0091302503519569
922 => 0.0091129381948356
923 => 0.0085356554212202
924 => 0.0089213927775215
925 => 0.0093364137391836
926 => 0.0093523563845471
927 => 0.0095601245556342
928 => 0.0096277823888453
929 => 0.0097950629993672
930 => 0.0097845995516334
1001 => 0.0098253297182796
1002 => 0.0098159665583158
1003 => 0.010125818664219
1004 => 0.010467631550514
1005 => 0.01045579565716
1006 => 0.010406656010608
1007 => 0.010479636765292
1008 => 0.010832424294843
1009 => 0.010799945272427
1010 => 0.010831495876147
1011 => 0.011247452255722
1012 => 0.011788254718273
1013 => 0.011536997678738
1014 => 0.012082153157263
1015 => 0.012425299633545
1016 => 0.013018735982265
1017 => 0.01294443482867
1018 => 0.013175455244389
1019 => 0.012811420256615
1020 => 0.011975522341076
1021 => 0.011843238296253
1022 => 0.012108074303954
1023 => 0.012759147786566
1024 => 0.012087569683012
1025 => 0.012223429058696
1026 => 0.012184301549359
1027 => 0.012182216610668
1028 => 0.012261790240458
1029 => 0.012146364540166
1030 => 0.01167609947249
1031 => 0.011891619181717
1101 => 0.011808396671878
1102 => 0.011900738251193
1103 => 0.012399067670194
1104 => 0.012178744355364
1105 => 0.011946651640803
1106 => 0.012237747410359
1107 => 0.012608412356361
1108 => 0.01258521681019
1109 => 0.01254020775563
1110 => 0.012793921439585
1111 => 0.013212982114345
1112 => 0.01332625253081
1113 => 0.013409866436533
1114 => 0.013421395381464
1115 => 0.013540150679449
1116 => 0.012901573511993
1117 => 0.013915011876571
1118 => 0.014090004686463
1119 => 0.014057113290912
1120 => 0.014251610434285
1121 => 0.014194384440788
1122 => 0.014111472954695
1123 => 0.01441979229767
1124 => 0.014066329051038
1125 => 0.013564632472229
1126 => 0.013289391806661
1127 => 0.013651850918112
1128 => 0.013873192049395
1129 => 0.014019484457233
1130 => 0.014063752451453
1201 => 0.012951144439707
1202 => 0.012351510429445
1203 => 0.012735868955205
1204 => 0.01320481288364
1205 => 0.012898968504793
1206 => 0.012910957025404
1207 => 0.012474903315656
1208 => 0.013243393961267
1209 => 0.013131431338225
1210 => 0.013712293624625
1211 => 0.013573666178264
1212 => 0.014047336823879
1213 => 0.013922603468457
1214 => 0.014440364653067
1215 => 0.014646913607432
1216 => 0.014993741448589
1217 => 0.015248869420388
1218 => 0.015398685445249
1219 => 0.015389691053062
1220 => 0.015983336781606
1221 => 0.015633284635886
1222 => 0.015193536639904
1223 => 0.015185582986044
1224 => 0.01541333470444
1225 => 0.015890639825566
1226 => 0.016014398098967
1227 => 0.016083562090384
1228 => 0.015977635029913
1229 => 0.015597678514196
1230 => 0.015433615217133
1231 => 0.015573401899602
]
'min_raw' => 0.0057640769336035
'max_raw' => 0.016083562090384
'avg_raw' => 0.010923819511994
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.005764'
'max' => '$0.016083'
'avg' => '$0.010923'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0022819117485151
'max_diff' => 0.0083098736162765
'year' => 2036
]
11 => [
'items' => [
101 => 0.015402454798949
102 => 0.015697557453961
103 => 0.016102796429819
104 => 0.016019116183793
105 => 0.016298846700215
106 => 0.016588338356202
107 => 0.017002324426149
108 => 0.017110555714692
109 => 0.017289457918988
110 => 0.017473607053521
111 => 0.017532750792574
112 => 0.017645674541652
113 => 0.017645079377754
114 => 0.017985382696245
115 => 0.018360747794856
116 => 0.01850243942986
117 => 0.01882825153163
118 => 0.018270309725168
119 => 0.018693514994543
120 => 0.019075256741034
121 => 0.018620128493502
122 => 0.019247416751443
123 => 0.019271772933033
124 => 0.019639522358053
125 => 0.019266737863531
126 => 0.019045379620653
127 => 0.019684432573655
128 => 0.019993650167633
129 => 0.019900511311831
130 => 0.019191720020341
131 => 0.018779173087206
201 => 0.01769945818883
202 => 0.018978427126169
203 => 0.019601375587511
204 => 0.01919010673432
205 => 0.019397526821789
206 => 0.020529143562831
207 => 0.020959989951062
208 => 0.020870376914154
209 => 0.020885520042235
210 => 0.021117996932909
211 => 0.022148927493521
212 => 0.021531170004819
213 => 0.022003422458
214 => 0.022253903456335
215 => 0.022486564167046
216 => 0.021915222994713
217 => 0.021171916524177
218 => 0.020936480163075
219 => 0.019149214152093
220 => 0.019056179194519
221 => 0.019003955853584
222 => 0.018674695076132
223 => 0.018415986297172
224 => 0.018210251470901
225 => 0.017670341849148
226 => 0.017852545497277
227 => 0.016992042248098
228 => 0.01754256173256
301 => 0.016169177769293
302 => 0.017312972744226
303 => 0.016690457141346
304 => 0.017108459626177
305 => 0.017107001254885
306 => 0.016337326152503
307 => 0.015893393616159
308 => 0.01617628470643
309 => 0.016479566411124
310 => 0.016528772847348
311 => 0.016921985493946
312 => 0.017031722691534
313 => 0.016699213859703
314 => 0.016140717439291
315 => 0.016270443419806
316 => 0.015890764723304
317 => 0.015225392411816
318 => 0.015703274422213
319 => 0.015866444351551
320 => 0.015938509487933
321 => 0.01528419223811
322 => 0.015078591552297
323 => 0.014969131472327
324 => 0.016056253298903
325 => 0.016115808286602
326 => 0.015811116549309
327 => 0.017188352093929
328 => 0.016876641273703
329 => 0.0172248986309
330 => 0.016258672146798
331 => 0.016295583299687
401 => 0.015838156197646
402 => 0.016094284809499
403 => 0.015913261362052
404 => 0.016073592148774
405 => 0.016169693761266
406 => 0.01662704580402
407 => 0.0173181949699
408 => 0.016558732660179
409 => 0.016227824056133
410 => 0.016433117892983
411 => 0.016979842433818
412 => 0.017808158099498
413 => 0.017317778554009
414 => 0.017535400669113
415 => 0.017582941419929
416 => 0.017221353697923
417 => 0.017821490354572
418 => 0.018143108464372
419 => 0.018473022095536
420 => 0.018759476857506
421 => 0.018341247336293
422 => 0.018788812874838
423 => 0.018428154056724
424 => 0.018104605812652
425 => 0.018105096501783
426 => 0.017902129961992
427 => 0.017508856715715
428 => 0.017436331095208
429 => 0.017813618532064
430 => 0.018116167327169
501 => 0.018141086695045
502 => 0.018308593253534
503 => 0.018407721909392
504 => 0.019379317495682
505 => 0.019770101277948
506 => 0.020247944289744
507 => 0.020434091072595
508 => 0.020994326151662
509 => 0.020541890825247
510 => 0.020444003596426
511 => 0.019085056546107
512 => 0.019307584049467
513 => 0.019663872053057
514 => 0.019090931604057
515 => 0.019454330446235
516 => 0.019526073075521
517 => 0.019071463306839
518 => 0.01931429002682
519 => 0.018669414251654
520 => 0.017332251499556
521 => 0.017822978998963
522 => 0.018184319615617
523 => 0.017668642002675
524 => 0.018592974164394
525 => 0.018052998397607
526 => 0.017881852002943
527 => 0.017214148899265
528 => 0.017529279061952
529 => 0.017955497119215
530 => 0.017692143912994
531 => 0.018238641358585
601 => 0.019012627487088
602 => 0.01956421609393
603 => 0.01960656021806
604 => 0.019251925697428
605 => 0.019820229779989
606 => 0.019824369254799
607 => 0.019183319928079
608 => 0.018790680784841
609 => 0.018701472345378
610 => 0.018924332517502
611 => 0.019194925908719
612 => 0.019621576268039
613 => 0.019879392144606
614 => 0.020551639215718
615 => 0.020733529998327
616 => 0.020933372822575
617 => 0.021200424465015
618 => 0.021521088432399
619 => 0.020819493927172
620 => 0.0208473695848
621 => 0.02019405449577
622 => 0.01949589362828
623 => 0.020025710699724
624 => 0.020718376042026
625 => 0.020559477847175
626 => 0.020541598554258
627 => 0.020571666565641
628 => 0.020451862515853
629 => 0.019909993238808
630 => 0.019637869880156
701 => 0.019988978438889
702 => 0.020175577011812
703 => 0.020464975125309
704 => 0.020429300699367
705 => 0.021174759160647
706 => 0.021464421777207
707 => 0.021390313684529
708 => 0.021403951357092
709 => 0.021928371688284
710 => 0.022511634951835
711 => 0.023057937966518
712 => 0.023613660857314
713 => 0.022943715222226
714 => 0.022603558145231
715 => 0.022954513420951
716 => 0.022768291611601
717 => 0.023838377365103
718 => 0.023912467780943
719 => 0.024982476155066
720 => 0.025998041516336
721 => 0.025360183108666
722 => 0.025961654857325
723 => 0.026612195592211
724 => 0.027867194216236
725 => 0.027444554831049
726 => 0.027120819685598
727 => 0.026814891537424
728 => 0.027451479449048
729 => 0.028270439627612
730 => 0.028446835806172
731 => 0.028732665003965
801 => 0.028432150552017
802 => 0.028794087108807
803 => 0.030071882197258
804 => 0.029726610684949
805 => 0.029236269632306
806 => 0.030244966133893
807 => 0.030610009476609
808 => 0.033172074830474
809 => 0.036406788173368
810 => 0.035067595609137
811 => 0.034236315569044
812 => 0.034431686096692
813 => 0.035612893907561
814 => 0.03599226036675
815 => 0.034961011555213
816 => 0.035325266069364
817 => 0.037332344255046
818 => 0.038409077306887
819 => 0.036946729197945
820 => 0.032912168762942
821 => 0.029192119785453
822 => 0.030178844290272
823 => 0.030066980353051
824 => 0.032223335475464
825 => 0.02971837607357
826 => 0.029760553165571
827 => 0.031961499428295
828 => 0.031374324699172
829 => 0.030423176837649
830 => 0.029199064217445
831 => 0.026936178822284
901 => 0.024931878122563
902 => 0.028862773357601
903 => 0.028693266007197
904 => 0.02844779424423
905 => 0.028994065089894
906 => 0.031646601254752
907 => 0.031585451710731
908 => 0.031196449510436
909 => 0.031491504250851
910 => 0.030371452315086
911 => 0.030660115202041
912 => 0.029191530510688
913 => 0.029855392124694
914 => 0.030421136101521
915 => 0.030534717580851
916 => 0.030790622453398
917 => 0.028603943336007
918 => 0.02958569806219
919 => 0.030162386985844
920 => 0.027556885448651
921 => 0.03011088459778
922 => 0.028565878117496
923 => 0.028041479712868
924 => 0.028747513080462
925 => 0.028472371190471
926 => 0.02823582035033
927 => 0.028103820917073
928 => 0.028622253900174
929 => 0.028598068381851
930 => 0.027749811397991
1001 => 0.026643294741923
1002 => 0.02701467805187
1003 => 0.026879751013629
1004 => 0.02639075802111
1005 => 0.026720280256829
1006 => 0.025269231098108
1007 => 0.022772776439502
1008 => 0.024422010855451
1009 => 0.024358517124459
1010 => 0.024326500706081
1011 => 0.025565854788176
1012 => 0.025446719489946
1013 => 0.025230487757083
1014 => 0.026386786755765
1015 => 0.02596472206683
1016 => 0.02726542598718
1017 => 0.028122153713378
1018 => 0.027904859849775
1019 => 0.028710616417189
1020 => 0.027023233973243
1021 => 0.027583714735088
1022 => 0.027699229043312
1023 => 0.026372518205608
1024 => 0.025466211498108
1025 => 0.025405771173371
1026 => 0.023834360239322
1027 => 0.024673795276305
1028 => 0.025412463370668
1029 => 0.025058698676428
1030 => 0.024946707342651
1031 => 0.02551884677896
1101 => 0.025563306913204
1102 => 0.024549611140765
1103 => 0.024760390591425
1104 => 0.025639375939846
1105 => 0.024738242415889
1106 => 0.022987487178165
1107 => 0.022553275673125
1108 => 0.022495343854247
1109 => 0.021317727814828
1110 => 0.022582291762155
1111 => 0.02203027571094
1112 => 0.02377408780256
1113 => 0.022778031688078
1114 => 0.022735093699775
1115 => 0.022670186632822
1116 => 0.021656563860988
1117 => 0.021878482828932
1118 => 0.02261617527759
1119 => 0.022879392253972
1120 => 0.022851936566862
1121 => 0.022612560182145
1122 => 0.022722145465263
1123 => 0.022369133086297
1124 => 0.022244477067966
1125 => 0.021851028384776
1126 => 0.02127276751346
1127 => 0.021353178234296
1128 => 0.020207492138031
1129 => 0.019583261546622
1130 => 0.019410482746147
1201 => 0.019179435713229
1202 => 0.019436580123308
1203 => 0.020204246553268
1204 => 0.019278277969218
1205 => 0.017690769781008
1206 => 0.017786181728101
1207 => 0.01800054404516
1208 => 0.01760108128547
1209 => 0.017223023307792
1210 => 0.01755171404657
1211 => 0.016879065899475
1212 => 0.018081830360122
1213 => 0.01804929895217
1214 => 0.018497615164643
1215 => 0.018777956492678
1216 => 0.018131860493141
1217 => 0.017969369096487
1218 => 0.018061931580843
1219 => 0.016532079899912
1220 => 0.018372593643908
1221 => 0.018388510483195
1222 => 0.018252220841826
1223 => 0.019232237591017
1224 => 0.0213003786067
1225 => 0.02052226076582
1226 => 0.020220950019096
1227 => 0.019648158069315
1228 => 0.020411369333377
1229 => 0.020352766616247
1230 => 0.020087742904967
1231 => 0.01992745573746
]
'min_raw' => 0.014969131472327
'max_raw' => 0.038409077306887
'avg_raw' => 0.026689104389607
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.014969'
'max' => '$0.038409'
'avg' => '$0.026689'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0092050545387239
'max_diff' => 0.022325515216503
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00046986393207295
]
1 => [
'year' => 2028
'avg' => 0.00080642290991129
]
2 => [
'year' => 2029
'avg' => 0.0022030020462893
]
3 => [
'year' => 2030
'avg' => 0.0016996127979031
]
4 => [
'year' => 2031
'avg' => 0.0016692303982361
]
5 => [
'year' => 2032
'avg' => 0.0029266862142475
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00046986393207295
'min' => '$0.000469'
'max_raw' => 0.0029266862142475
'max' => '$0.002926'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0029266862142475
]
1 => [
'year' => 2033
'avg' => 0.0075277378906391
]
2 => [
'year' => 2034
'avg' => 0.0047714420412418
]
3 => [
'year' => 2035
'avg' => 0.0056279268295977
]
4 => [
'year' => 2036
'avg' => 0.010923819511994
]
5 => [
'year' => 2037
'avg' => 0.026689104389607
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0029266862142475
'min' => '$0.002926'
'max_raw' => 0.026689104389607
'max' => '$0.026689'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.026689104389607
]
]
]
]
'prediction_2025_max_price' => '$0.0008033'
'last_price' => 0.00077898
'sma_50day_nextmonth' => '$0.00086'
'sma_200day_nextmonth' => '$0.003497'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.000784'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.000821'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.000891'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.001091'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.0016084'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.002493'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.004413'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000794'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.00082'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.0009014'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.001095'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.001612'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.002524'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.00461'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0032072'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.006215'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.021279'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.000922'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.001138'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.001736'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.003134'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.008342'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.019782'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.012673'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '17.32'
'rsi_14_action' => 'BUY'
'stoch_rsi_14' => -2.96
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000893'
'vwma_10_action' => 'SELL'
'hma_9' => '0.000757'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -106.52
'cci_20_action' => 'BUY'
'adx_14' => 51.22
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.0005084'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 10.55
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.000495'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 30
'buy_signals' => 4
'sell_pct' => 88.24
'buy_pct' => 11.76
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767708682
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Dypius para 2026
La previsión del precio de Dypius para 2026 sugiere que el precio medio podría oscilar entre $0.000269 en el extremo inferior y $0.0008033 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Dypius podría potencialmente ganar 3.13% para 2026 si DYP alcanza el objetivo de precio previsto.
Predicción de precio de Dypius 2027-2032
La predicción del precio de DYP para 2027-2032 está actualmente dentro de un rango de precios de $0.000469 en el extremo inferior y $0.002926 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Dypius alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Dypius | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000259 | $0.000469 | $0.00068 |
| 2028 | $0.000467 | $0.0008064 | $0.001145 |
| 2029 | $0.001027 | $0.002203 | $0.003378 |
| 2030 | $0.000873 | $0.001699 | $0.002525 |
| 2031 | $0.001032 | $0.001669 | $0.0023056 |
| 2032 | $0.001576 | $0.002926 | $0.004276 |
Predicción de precio de Dypius 2032-2037
La predicción de precio de Dypius para 2032-2037 se estima actualmente entre $0.002926 en el extremo inferior y $0.026689 en el extremo superior. Comparado con el precio actual, Dypius podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Dypius | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.001576 | $0.002926 | $0.004276 |
| 2033 | $0.003663 | $0.007527 | $0.011392 |
| 2034 | $0.002945 | $0.004771 | $0.006597 |
| 2035 | $0.003482 | $0.005627 | $0.007773 |
| 2036 | $0.005764 | $0.010923 | $0.016083 |
| 2037 | $0.014969 | $0.026689 | $0.038409 |
Dypius Histograma de precios potenciales
Pronóstico de precio de Dypius basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Dypius es Bajista, con 4 indicadores técnicos mostrando señales alcistas y 30 indicando señales bajistas. La predicción de precio de DYP se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Dypius
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Dypius aumentar durante el próximo mes, alcanzando $0.003497 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Dypius alcance $0.00086 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 17.32, lo que sugiere que el mercado de DYP está en un estado BUY.
Promedios Móviles y Osciladores Populares de DYP para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.000784 | SELL |
| SMA 5 | $0.000821 | SELL |
| SMA 10 | $0.000891 | SELL |
| SMA 21 | $0.001091 | SELL |
| SMA 50 | $0.0016084 | SELL |
| SMA 100 | $0.002493 | SELL |
| SMA 200 | $0.004413 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.000794 | SELL |
| EMA 5 | $0.00082 | SELL |
| EMA 10 | $0.0009014 | SELL |
| EMA 21 | $0.001095 | SELL |
| EMA 50 | $0.001612 | SELL |
| EMA 100 | $0.002524 | SELL |
| EMA 200 | $0.00461 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.0032072 | SELL |
| SMA 50 | $0.006215 | SELL |
| SMA 100 | $0.021279 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.003134 | SELL |
| EMA 50 | $0.008342 | SELL |
| EMA 100 | $0.019782 | SELL |
| EMA 200 | $0.012673 | SELL |
Osciladores de Dypius
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 17.32 | BUY |
| Stoch RSI (14) | -2.96 | BUY |
| Estocástico Rápido (14) | 0 | BUY |
| Índice de Canal de Materias Primas (20) | -106.52 | BUY |
| Índice Direccional Medio (14) | 51.22 | SELL |
| Oscilador Asombroso (5, 34) | -0.0005084 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -100 | BUY |
| Oscilador Ultimate (7, 14, 28) | 10.55 | BUY |
| VWMA (10) | 0.000893 | SELL |
| Promedio Móvil de Hull (9) | 0.000757 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000495 | SELL |
Predicción de precios de Dypius basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Dypius
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Dypius por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.001094 | $0.001538 | $0.002161 | $0.003036 | $0.004267 | $0.005996 |
| Amazon.com acción | $0.001625 | $0.003391 | $0.007076 | $0.014765 | $0.0308091 | $0.064285 |
| Apple acción | $0.0011049 | $0.001567 | $0.002223 | $0.003153 | $0.004472 | $0.006343 |
| Netflix acción | $0.001229 | $0.001939 | $0.003059 | $0.004828 | $0.007618 | $0.01202 |
| Google acción | $0.0010087 | $0.0013063 | $0.001691 | $0.00219 | $0.002837 | $0.003673 |
| Tesla acción | $0.001765 | $0.0040031 | $0.009074 | $0.020571 | $0.046634 | $0.105717 |
| Kodak acción | $0.000584 | $0.000438 | $0.000328 | $0.000246 | $0.000184 | $0.000138 |
| Nokia acción | $0.000516 | $0.000341 | $0.000226 | $0.00015 | $0.000099 | $0.000065 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Dypius
Podría preguntarse cosas como: "¿Debo invertir en Dypius ahora?", "¿Debería comprar DYP hoy?", "¿Será Dypius una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Dypius regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Dypius, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Dypius a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Dypius es de $0.0007789 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Dypius
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Dypius
basado en el historial de precios del último mes
Predicción de precios de Dypius basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Dypius ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.000799 | $0.00082 | $0.000841 | $0.000863 |
| Si Dypius ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.000819 | $0.000862 | $0.0009068 | $0.000954 |
| Si Dypius ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.00088 | $0.000994 | $0.001123 | $0.001269 |
| Si Dypius ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.000981 | $0.001236 | $0.001558 | $0.001962 |
| Si Dypius ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.001183 | $0.001799 | $0.002734 | $0.004156 |
| Si Dypius ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.001791 | $0.004119 | $0.009473 | $0.021786 |
| Si Dypius ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.0028037 | $0.010091 | $0.036323 | $0.13074 |
Cuadro de preguntas
¿Es DYP una buena inversión?
La decisión de adquirir Dypius depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Dypius ha experimentado un aumento de 3.1313% durante las últimas 24 horas, y Dypius ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Dypius dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Dypius subir?
Parece que el valor medio de Dypius podría potencialmente aumentar hasta $0.0008033 para el final de este año. Mirando las perspectivas de Dypius en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.002525. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Dypius la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Dypius, el precio de Dypius aumentará en un 0.86% durante la próxima semana y alcanzará $0.000785 para el 13 de enero de 2026.
¿Cuál será el precio de Dypius el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Dypius, el precio de Dypius disminuirá en un -11.62% durante el próximo mes y alcanzará $0.000688 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Dypius este año en 2026?
Según nuestra predicción más reciente sobre el valor de Dypius en 2026, se anticipa que DYP fluctúe dentro del rango de $0.000269 y $0.0008033. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Dypius no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Dypius en 5 años?
El futuro de Dypius parece estar en una tendencia alcista, con un precio máximo de $0.002525 proyectada después de un período de cinco años. Basado en el pronóstico de Dypius para 2030, el valor de Dypius podría potencialmente alcanzar su punto más alto de aproximadamente $0.002525, mientras que su punto más bajo se anticipa que esté alrededor de $0.000873.
¿Cuánto será Dypius en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Dypius, se espera que el valor de DYP en 2026 crezca en un 3.13% hasta $0.0008033 si ocurre lo mejor. El precio estará entre $0.0008033 y $0.000269 durante 2026.
¿Cuánto será Dypius en 2027?
Según nuestra última simulación experimental para la predicción de precios de Dypius, el valor de DYP podría disminuir en un -12.62% hasta $0.00068 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.00068 y $0.000259 a lo largo del año.
¿Cuánto será Dypius en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Dypius sugiere que el valor de DYP en 2028 podría aumentar en un 47.02% , alcanzando $0.001145 en el mejor escenario. Se espera que el precio oscile entre $0.001145 y $0.000467 durante el año.
¿Cuánto será Dypius en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Dypius podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.003378 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.003378 y $0.001027.
¿Cuánto será Dypius en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Dypius, se espera que el valor de DYP en 2030 aumente en un 224.23% , alcanzando $0.002525 en el mejor escenario. Se pronostica que el precio oscile entre $0.002525 y $0.000873 durante el transcurso de 2030.
¿Cuánto será Dypius en 2031?
Nuestra simulación experimental indica que el precio de Dypius podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.0023056 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.0023056 y $0.001032 durante el año.
¿Cuánto será Dypius en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Dypius, DYP podría experimentar un 449.04% aumento en valor, alcanzando $0.004276 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.004276 y $0.001576 a lo largo del año.
¿Cuánto será Dypius en 2033?
Según nuestra predicción experimental de precios de Dypius, se anticipa que el valor de DYP aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.011392. A lo largo del año, el precio de DYP podría oscilar entre $0.011392 y $0.003663.
¿Cuánto será Dypius en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Dypius sugieren que DYP podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.006597 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.006597 y $0.002945.
¿Cuánto será Dypius en 2035?
Basado en nuestra predicción experimental para el precio de Dypius, DYP podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.007773 en 2035. El rango de precios esperado para el año está entre $0.007773 y $0.003482.
¿Cuánto será Dypius en 2036?
Nuestra reciente simulación de predicción de precios de Dypius sugiere que el valor de DYP podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.016083 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.016083 y $0.005764.
¿Cuánto será Dypius en 2037?
Según la simulación experimental, el valor de Dypius podría aumentar en un 4830.69% en 2037, con un máximo de $0.038409 bajo condiciones favorables. Se espera que el precio caiga entre $0.038409 y $0.014969 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de COMDEX
Predicción de precios de Effect Network
Predicción de precios de Sin City
Predicción de precios de Parex
Predicción de precios de Grai
Predicción de precios de MIMO Parallel Governance Token
Predicción de precios de Good Person Coin
Predicción de precios de LilAI
Predicción de precios de SavePlanetEarth
Predicción de precios de MBD Financials
Predicción de precios de RepubliK
Predicción de precios de Dogebonk
Predicción de precios de Raptoreum
Predicción de precios de Litecoin Cash
Predicción de precios de Uno Re
Predicción de precios de Don't Buy Inu
Predicción de precios de Quick Intel
Predicción de precios de MultiVAC
Predicción de precios de Molecules of Korolchuk IP-NFT
Predicción de precios de Media Network
Predicción de precios de Credo
Predicción de precios de sudoswap
Predicción de precios de MMFinance (Cronos)
Predicción de precios de 0xGasless
Predicción de precios de Aimbot AI
¿Cómo leer y predecir los movimientos de precio de Dypius?
Los traders de Dypius utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Dypius
Las medias móviles son herramientas populares para la predicción de precios de Dypius. Una media móvil simple (SMA) calcula el precio de cierre promedio de DYP durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de DYP por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de DYP.
¿Cómo leer gráficos de Dypius y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Dypius en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de DYP dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Dypius?
La acción del precio de Dypius está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de DYP. La capitalización de mercado de Dypius puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de DYP, grandes poseedores de Dypius, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Dypius.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


