Predicción del precio de Dypius - Pronóstico de DYP
Predicción de precio de Dypius hasta $0.000815 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000273 | $0.000815 |
| 2027 | $0.000263 | $0.00069 |
| 2028 | $0.000474 | $0.001162 |
| 2029 | $0.001042 | $0.003429 |
| 2030 | $0.000886 | $0.002563 |
| 2031 | $0.001048 | $0.00234 |
| 2032 | $0.00160033 | $0.004341 |
| 2033 | $0.003718 | $0.011564 |
| 2034 | $0.002989 | $0.006697 |
| 2035 | $0.003534 | $0.007891 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Dypius hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,955.18, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Dypius para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Dypius'
'name_with_ticker' => 'Dypius <small>DYP</small>'
'name_lang' => 'Dypius'
'name_lang_with_ticker' => 'Dypius <small>DYP</small>'
'name_with_lang' => 'Dypius'
'name_with_lang_with_ticker' => 'Dypius <small>DYP</small>'
'image' => '/uploads/coins/dypius.jpg?1717210176'
'price_for_sd' => 0.0007907
'ticker' => 'DYP'
'marketcap' => '$172.22K'
'low24h' => '$0.0007316'
'high24h' => '$0.0008034'
'volume24h' => '$93.77K'
'current_supply' => '217.79M'
'max_supply' => '229.93M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0007907'
'change_24h_pct' => '4.7966%'
'ath_price' => '$0.2112'
'ath_days' => 782
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '16 nov. 2023'
'ath_pct' => '-99.63%'
'fdv' => '$181.82K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.038989'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000797'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000698'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000273'
'current_year_max_price_prediction' => '$0.000815'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000886'
'grand_prediction_max_price' => '$0.002563'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00080574448606024
107 => 0.00080875284348594
108 => 0.00081553082637658
109 => 0.00075761370468394
110 => 0.00078361679196658
111 => 0.00079889116958534
112 => 0.00072988097581715
113 => 0.00079752705993924
114 => 0.00075660549644924
115 => 0.00074271610317947
116 => 0.00076141634142879
117 => 0.00075412884039645
118 => 0.00074786347494527
119 => 0.00074436729337086
120 => 0.00075809868447118
121 => 0.00075745809866379
122 => 0.0007349908776755
123 => 0.00070568330377737
124 => 0.0007155198875659
125 => 0.00071194616445706
126 => 0.00069899453089117
127 => 0.00070772236812838
128 => 0.00066928938999306
129 => 0.0006031674486836
130 => 0.00064684962848247
131 => 0.00064516791207728
201 => 0.00064431991440602
202 => 0.00067714586523809
203 => 0.00067399040748912
204 => 0.00066826322077642
205 => 0.00069888934661588
206 => 0.00068771039870495
207 => 0.00072216128207505
208 => 0.00074485286200602
209 => 0.00073909754333981
210 => 0.00076043908394282
211 => 0.00071574650258928
212 => 0.00073059158535979
213 => 0.00073365113634439
214 => 0.00069851142497699
215 => 0.00067450667940106
216 => 0.00067290583654528
217 => 0.00063128491577431
218 => 0.00065351847569783
219 => 0.0006730830883433
220 => 0.00066371315716139
221 => 0.00066074691686793
222 => 0.00067590079522819
223 => 0.00067707838136097
224 => 0.00065022929273853
225 => 0.00065581206846319
226 => 0.00067909317129429
227 => 0.00065522544440501
228 => 0.00060885434983019
301 => 0.0005973536772451
302 => 0.00059581927552279
303 => 0.00056462853934217
304 => 0.00059812220717984
305 => 0.0005835013235942
306 => 0.00062968851965614
307 => 0.00060330664097246
308 => 0.0006021693709112
309 => 0.00060045022041236
310 => 0.00057360306530861
311 => 0.00057948088605062
312 => 0.00059901965741442
313 => 0.00060599131115704
314 => 0.00060526411055461
315 => 0.0005989239067754
316 => 0.00060182641959843
317 => 0.00059247641449295
318 => 0.00058917473308668
319 => 0.00057875371836948
320 => 0.00056343770561398
321 => 0.0005655674911262
322 => 0.00053522246220482
323 => 0.00051868887991588
324 => 0.00051411260224741
325 => 0.00050799301249332
326 => 0.00051480382619374
327 => 0.00053513649855054
328 => 0.00051061098187116
329 => 0.00046856370378933
330 => 0.00047109081684713
331 => 0.00047676848958139
401 => 0.00046618818400265
402 => 0.00045617481271012
403 => 0.00046488062663849
404 => 0.00044706464061574
405 => 0.00047892146637536
406 => 0.00047805982851628
407 => 0.00048993408314657
408 => 0.00049735929825113
409 => 0.00048024658137706
410 => 0.00047594277936094
411 => 0.00047839442058622
412 => 0.00043787425223068
413 => 0.00048662272092015
414 => 0.0004870442997017
415 => 0.00048343448622616
416 => 0.00050939154086319
417 => 0.00056416902235568
418 => 0.00054355953039911
419 => 0.00053557891218834
420 => 0.00052040775113586
421 => 0.00054062242246388
422 => 0.00053907025110389
423 => 0.00053205074357048
424 => 0.00052780532351208
425 => 0.00053562764014137
426 => 0.00052683605191597
427 => 0.000525256841094
428 => 0.00051568854171118
429 => 0.0005122730941614
430 => 0.00050974443276842
501 => 0.00050696062503589
502 => 0.00051310101121219
503 => 0.00049918608830163
504 => 0.00048240605536822
505 => 0.00048101097719228
506 => 0.00048486291069258
507 => 0.00048315871686142
508 => 0.00048100281816787
509 => 0.0004768866204378
510 => 0.00047566543249994
511 => 0.00047963370086183
512 => 0.00047515375724567
513 => 0.00048176415808646
514 => 0.00047996649482793
515 => 0.00046992489399712
516 => 0.00045740934148514
517 => 0.00045729792681552
518 => 0.00045460147155643
519 => 0.00045116713036922
520 => 0.00045021177521802
521 => 0.00046414744727193
522 => 0.00049299387136395
523 => 0.00048733062807826
524 => 0.00049142290174469
525 => 0.00051155283791139
526 => 0.00051795153929049
527 => 0.00051340989261316
528 => 0.00050719300652465
529 => 0.00050746651796132
530 => 0.00052871149970513
531 => 0.00053003652315687
601 => 0.00053338442995064
602 => 0.00053768743629899
603 => 0.00051414271320101
604 => 0.00050635756362074
605 => 0.00050266852784596
606 => 0.00049130772549615
607 => 0.00050355937682884
608 => 0.0004964208642653
609 => 0.00049738409349643
610 => 0.00049675678919603
611 => 0.00049709933976218
612 => 0.00047891256174331
613 => 0.00048553886778448
614 => 0.00047452134879785
615 => 0.0004597701276493
616 => 0.00045972067638356
617 => 0.00046333101686163
618 => 0.00046118344507264
619 => 0.00045540438460758
620 => 0.00045622527287025
621 => 0.00044903342791008
622 => 0.00045709849306097
623 => 0.00045732977027131
624 => 0.00045422428088115
625 => 0.00046664962651061
626 => 0.00047174030075312
627 => 0.00046969620111049
628 => 0.00047159688127304
629 => 0.00048756596140479
630 => 0.00049016961824608
701 => 0.00049132599062706
702 => 0.00048977660482653
703 => 0.000471888766743
704 => 0.00047268216842696
705 => 0.00046686071330031
706 => 0.00046194219716812
707 => 0.00046213891201919
708 => 0.00046466766867347
709 => 0.00047571089729237
710 => 0.00049895072088694
711 => 0.00049983265520426
712 => 0.0005009015853247
713 => 0.00049655370932365
714 => 0.00049524234831816
715 => 0.00049697237197539
716 => 0.00050570002782564
717 => 0.00052814992820792
718 => 0.00052021463403439
719 => 0.0005137631163511
720 => 0.00051942283667603
721 => 0.00051855156709436
722 => 0.00051119717501036
723 => 0.00051099076171913
724 => 0.00049687533196856
725 => 0.00049165717898256
726 => 0.00048729649977548
727 => 0.00048253475191976
728 => 0.00047971182817565
729 => 0.00048404912204249
730 => 0.00048504111246719
731 => 0.00047555754362442
801 => 0.00047426496823414
802 => 0.0004820094552682
803 => 0.00047860139526809
804 => 0.00048210666949403
805 => 0.00048291992318213
806 => 0.00048278897060752
807 => 0.00047923056455421
808 => 0.0004814985864594
809 => 0.00047613403852376
810 => 0.0004703008983728
811 => 0.00046657971837396
812 => 0.00046333249528207
813 => 0.00046513424338316
814 => 0.00045871134038897
815 => 0.00045665652445363
816 => 0.00048073023167003
817 => 0.00049851373802674
818 => 0.00049825515880128
819 => 0.00049668112426742
820 => 0.00049434242823135
821 => 0.00050552893764376
822 => 0.00050163178144579
823 => 0.00050446728819811
824 => 0.00050518904367242
825 => 0.00050737358011431
826 => 0.00050815436412504
827 => 0.00050579429255527
828 => 0.00049787360410865
829 => 0.00047813600157612
830 => 0.00046894809431659
831 => 0.00046591593188425
901 => 0.00046602614522977
902 => 0.0004629859691463
903 => 0.00046388143725402
904 => 0.00046267456188225
905 => 0.00046038903190262
906 => 0.00046499311834737
907 => 0.0004655236964201
908 => 0.00046444904762916
909 => 0.00046470216632228
910 => 0.00045580453332179
911 => 0.00045648100103417
912 => 0.00045271434285025
913 => 0.00045200813984851
914 => 0.00044248635596002
915 => 0.0004256171355969
916 => 0.00043496432121291
917 => 0.00042367423540197
918 => 0.00041939850883265
919 => 0.0004396391333999
920 => 0.00043760753608089
921 => 0.00043413032458486
922 => 0.00042898680406786
923 => 0.00042707902227515
924 => 0.00041548794403299
925 => 0.00041480308129444
926 => 0.0004205479326567
927 => 0.00041789688142128
928 => 0.00041417380145514
929 => 0.00040068918322035
930 => 0.00038552800772078
1001 => 0.00038598562830936
1002 => 0.00039080811615208
1003 => 0.00040483014995586
1004 => 0.00039935149876508
1005 => 0.00039537667446588
1006 => 0.00039463230935742
1007 => 0.0004039495971237
1008 => 0.00041713551134512
1009 => 0.00042332204727961
1010 => 0.00041719137805642
1011 => 0.0004101487953515
1012 => 0.00041057744472856
1013 => 0.00041342905699585
1014 => 0.00041372872112552
1015 => 0.00040914472377381
1016 => 0.0004104350921774
1017 => 0.00040847490457859
1018 => 0.00039644523690292
1019 => 0.00039622765836116
1020 => 0.00039327538390895
1021 => 0.00039318599021185
1022 => 0.00038816343488927
1023 => 0.00038746074468036
1024 => 0.00037748815624007
1025 => 0.00038405214415125
1026 => 0.00037964936568526
1027 => 0.00037301334002657
1028 => 0.00037186928670175
1029 => 0.00037183489507732
1030 => 0.0003786486096406
1031 => 0.00038397252192944
1101 => 0.00037972595390167
1102 => 0.00037875909267801
1103 => 0.00038908264103147
1104 => 0.00038776887540226
1105 => 0.00038663116284024
1106 => 0.00041595485735097
1107 => 0.00039274286498931
1108 => 0.00038262111142542
1109 => 0.00037009351932124
1110 => 0.00037417256647997
1111 => 0.00037503208164998
1112 => 0.00034490548090763
1113 => 0.00033268312273849
1114 => 0.00032848887000469
1115 => 0.00032607501825836
1116 => 0.0003271750408104
1117 => 0.00031617348491855
1118 => 0.00032356671242682
1119 => 0.00031404029496284
1120 => 0.00031244316007336
1121 => 0.00032947757459562
1122 => 0.00033184781386278
1123 => 0.00032173563677343
1124 => 0.00032822929147756
1125 => 0.00032587460201329
1126 => 0.00031420359804778
1127 => 0.0003137578515424
1128 => 0.00030790175200813
1129 => 0.00029873809020132
1130 => 0.00029455005086174
1201 => 0.00029236888361146
1202 => 0.00029326887572902
1203 => 0.00029281381217417
1204 => 0.00028984421466189
1205 => 0.00029298402602749
1206 => 0.00028496310544801
1207 => 0.00028176911024431
1208 => 0.00028032645671093
1209 => 0.00027320742802968
1210 => 0.00028453696850797
1211 => 0.00028676903070799
1212 => 0.00028900549076005
1213 => 0.00030847234861716
1214 => 0.00030749983941139
1215 => 0.00031629084900038
1216 => 0.00031594924653338
1217 => 0.00031344190819368
1218 => 0.00030286386017566
1219 => 0.00030708008158007
1220 => 0.00029410320744358
1221 => 0.00030382636388831
1222 => 0.00029938912133566
1223 => 0.00030232612771779
1224 => 0.00029704512542352
1225 => 0.00029996785014041
1226 => 0.00028729833545966
1227 => 0.00027546772091565
1228 => 0.00028022870556533
1229 => 0.00028540444036416
1230 => 0.00029662675216074
1231 => 0.00028994283583676
]
'min_raw' => 0.00027320742802968
'max_raw' => 0.00081553082637658
'avg_raw' => 0.00054436912720313
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000273'
'max' => '$0.000815'
'avg' => '$0.000544'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00051755257197032
'max_diff' => 2.4770826376582E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00029234662489372
102 => 0.00028429433394233
103 => 0.00026768015768642
104 => 0.00026777419211973
105 => 0.00026521846306226
106 => 0.00026300994001406
107 => 0.00029071056403011
108 => 0.00028726555355165
109 => 0.00028177638022605
110 => 0.00028912385685344
111 => 0.00029106664629386
112 => 0.00029112195477798
113 => 0.00029648248405951
114 => 0.00029934339949798
115 => 0.00029984764824393
116 => 0.00030828255689031
117 => 0.00031110982700944
118 => 0.0003227549524999
119 => 0.00029910067081113
120 => 0.00029861352644589
121 => 0.00028922725091738
122 => 0.00028327432658606
123 => 0.0002896348527393
124 => 0.00029526941061266
125 => 0.00028940233233678
126 => 0.00029016844889882
127 => 0.00028229237567136
128 => 0.00028510770124649
129 => 0.0002875326388971
130 => 0.00028619373085768
131 => 0.00028418932071878
201 => 0.00029480744112269
202 => 0.00029420832515676
203 => 0.00030409616298641
204 => 0.0003118044396607
205 => 0.00032561904948029
206 => 0.00031120278396165
207 => 0.00031067739794668
208 => 0.00031581313051753
209 => 0.00031110904075554
210 => 0.00031408186310546
211 => 0.00032514008184006
212 => 0.00032537372457661
213 => 0.00032145990770775
214 => 0.00032122175159559
215 => 0.00032197344293772
216 => 0.00032637612260723
217 => 0.00032483769105002
218 => 0.00032661800299635
219 => 0.00032884431034633
220 => 0.0003380532614806
221 => 0.00034027350842232
222 => 0.00033487945942
223 => 0.0003353664816503
224 => 0.00033334895925348
225 => 0.00033140005789763
226 => 0.0003357809035314
227 => 0.00034378698503283
228 => 0.00034373717961533
301 => 0.00034559443490767
302 => 0.00034675148956847
303 => 0.00034178456394855
304 => 0.00033855127800889
305 => 0.00033979112557748
306 => 0.00034177366884003
307 => 0.00033914821351749
308 => 0.00032294268703755
309 => 0.00032785840855853
310 => 0.00032704019213093
311 => 0.00032587495243953
312 => 0.00033081774844102
313 => 0.00033034100370864
314 => 0.00031606064806149
315 => 0.00031697483009752
316 => 0.00031611624249897
317 => 0.00031889051468039
318 => 0.00031095922095336
319 => 0.00031339883348572
320 => 0.00031492893559606
321 => 0.00031583017749386
322 => 0.00031908608121604
323 => 0.00031870403849374
324 => 0.000319062332904
325 => 0.00032388997859728
326 => 0.00034830655386594
327 => 0.00034963549418568
328 => 0.00034309130601421
329 => 0.00034570558011031
330 => 0.0003406867455247
331 => 0.00034405592280529
401 => 0.00034636102833284
402 => 0.00033594469970012
403 => 0.00033532791231991
404 => 0.00033028836321866
405 => 0.00033299633145102
406 => 0.00032868775928353
407 => 0.00032974493218598
408 => 0.00032678898458806
409 => 0.00033210910174101
410 => 0.00033805781938063
411 => 0.00033956070037838
412 => 0.00033560726750426
413 => 0.00033274472155947
414 => 0.00032771903386168
415 => 0.00033607686450786
416 => 0.00033852094888908
417 => 0.00033606402677309
418 => 0.000335494704234
419 => 0.00033441583905118
420 => 0.00033572359058266
421 => 0.00033850763788064
422 => 0.0003371947325882
423 => 0.00033806192966427
424 => 0.00033475706866001
425 => 0.0003417862082076
426 => 0.00035295017346372
427 => 0.00035298606743751
428 => 0.00035167315506801
429 => 0.00035113593961351
430 => 0.0003524830673788
501 => 0.00035321382892939
502 => 0.00035757019310135
503 => 0.00036224474542306
504 => 0.00038405884144154
505 => 0.00037793353057006
506 => 0.00039728829428403
507 => 0.00041259539948026
508 => 0.00041718533103002
509 => 0.00041296280997721
510 => 0.00039851779355164
511 => 0.00039780905213221
512 => 0.00041939600520064
513 => 0.00041329670221372
514 => 0.00041257120953125
515 => 0.00040485319312897
516 => 0.00040941549671764
517 => 0.00040841765399785
518 => 0.00040684251044851
519 => 0.00041554706788287
520 => 0.0004318412223388
521 => 0.00042930162556123
522 => 0.00042740593437528
523 => 0.00041909956742585
524 => 0.00042410185562363
525 => 0.00042232063660892
526 => 0.00042997388388564
527 => 0.0004254402697391
528 => 0.00041325049399476
529 => 0.00041519175596008
530 => 0.00041489833811929
531 => 0.00042093685649073
601 => 0.00041912424316087
602 => 0.00041454439627523
603 => 0.00043178553069027
604 => 0.00043066598732159
605 => 0.00043225324385514
606 => 0.00043295200326874
607 => 0.00044344637796431
608 => 0.00044774558749455
609 => 0.00044872158332617
610 => 0.0004528054998671
611 => 0.00044861997176227
612 => 0.00046536506841256
613 => 0.00047649958058152
614 => 0.00048943288944252
615 => 0.00050833192983415
616 => 0.0005154381438473
617 => 0.00051415446989108
618 => 0.00052848350662425
619 => 0.00055423246711715
620 => 0.00051935907099765
621 => 0.00055608084179071
622 => 0.00054445515313086
623 => 0.00051689085445556
624 => 0.00051511603858261
625 => 0.00053378290167361
626 => 0.00057518420739045
627 => 0.0005648136498781
628 => 0.00057520116990739
629 => 0.00056308357602762
630 => 0.00056248183535638
701 => 0.00057461264541963
702 => 0.00060295694434842
703 => 0.00058949163039751
704 => 0.00057018580101844
705 => 0.00058444092499997
706 => 0.00057209181735772
707 => 0.00054426582154214
708 => 0.00056480571970822
709 => 0.00055107127474718
710 => 0.00055507971595007
711 => 0.00058394747641366
712 => 0.00058047403110006
713 => 0.00058496899096823
714 => 0.00057703550445449
715 => 0.00056962437705466
716 => 0.00055579095740532
717 => 0.0005516955638265
718 => 0.00055282738327486
719 => 0.00055169500295299
720 => 0.00054395533179488
721 => 0.00054228395054518
722 => 0.00053949824190413
723 => 0.0005403616494955
724 => 0.00053512370226251
725 => 0.00054500879090627
726 => 0.00054684355046565
727 => 0.0005540370936326
728 => 0.00055478395114785
729 => 0.00057481786647411
730 => 0.00056378352256868
731 => 0.00057118631311986
801 => 0.00057052413785519
802 => 0.00051748825639012
803 => 0.00052479613291646
804 => 0.00053616489545347
805 => 0.00053104328334054
806 => 0.00052380252208553
807 => 0.00051795521914705
808 => 0.00050909595727782
809 => 0.0005215651982317
810 => 0.0005379609241301
811 => 0.0005551997738137
812 => 0.00057591112217438
813 => 0.00057128859032695
814 => 0.00055481258956261
815 => 0.00055555169092118
816 => 0.00056012052469414
817 => 0.00055420346983583
818 => 0.00055245841484348
819 => 0.00055988078093533
820 => 0.00055993189469135
821 => 0.0005531236079769
822 => 0.0005455574431971
823 => 0.0005455257406904
824 => 0.00054417941474832
825 => 0.00056332308442183
826 => 0.00057385016709895
827 => 0.00057505708016264
828 => 0.00057376893223358
829 => 0.00057426468924671
830 => 0.00056813921178534
831 => 0.00058214023680813
901 => 0.00059498896192691
902 => 0.0005915452291221
903 => 0.00058638258409223
904 => 0.00058227028865926
905 => 0.00059057650300872
906 => 0.00059020664035893
907 => 0.00059487673952198
908 => 0.00059466487684814
909 => 0.00059309449815092
910 => 0.00059154528520527
911 => 0.0005976877394197
912 => 0.00059591881125074
913 => 0.00059414713544774
914 => 0.00059059376839484
915 => 0.0005910767299925
916 => 0.00058591497636609
917 => 0.00058352691295273
918 => 0.00054761616898116
919 => 0.00053801964477455
920 => 0.00054103890664521
921 => 0.00054203292604814
922 => 0.00053785650641514
923 => 0.00054384441933468
924 => 0.00054291120944894
925 => 0.00054654178320483
926 => 0.00054427355834334
927 => 0.00054436664708284
928 => 0.00055103701276397
929 => 0.00055297344829897
930 => 0.00055198856155692
1001 => 0.00055267834247111
1002 => 0.0005685740525003
1003 => 0.00056631419085034
1004 => 0.00056511368438951
1005 => 0.00056544623288357
1006 => 0.00056950792760389
1007 => 0.00057064498036527
1008 => 0.00056582720791602
1009 => 0.0005680992972543
1010 => 0.00057777356528561
1011 => 0.00058115901158042
1012 => 0.00059196373104705
1013 => 0.00058737369417905
1014 => 0.0005957989055024
1015 => 0.00062169513274418
1016 => 0.00064238283094754
1017 => 0.00062335756872444
1018 => 0.00066134789191243
1019 => 0.00069092880790247
1020 => 0.00068979344307718
1021 => 0.0006846353261554
1022 => 0.00065095823975008
1023 => 0.00061996808274283
1024 => 0.00064589266499097
1025 => 0.00064595875208256
1026 => 0.00064373180747607
1027 => 0.0006299004457846
1028 => 0.00064325050607042
1029 => 0.00064431018537561
1030 => 0.00064371704675618
1031 => 0.00063311257417667
1101 => 0.00061692150458189
1102 => 0.00062008520082476
1103 => 0.00062526739980825
1104 => 0.00061545641601255
1105 => 0.00061232121222136
1106 => 0.00061815015256612
1107 => 0.00063693221286488
1108 => 0.00063338157316247
1109 => 0.00063328885161058
1110 => 0.00064847999396307
1111 => 0.00063760641449239
1112 => 0.00062012510516595
1113 => 0.00061571084401088
1114 => 0.000600043190713
1115 => 0.00061086489465211
1116 => 0.00061125434851137
1117 => 0.00060532741185905
1118 => 0.00062060604341007
1119 => 0.00062046524813058
1120 => 0.00063497003486407
1121 => 0.00066269773934939
1122 => 0.00065449729273561
1123 => 0.00064496106552984
1124 => 0.000645997917838
1125 => 0.00065736962848903
1126 => 0.00065049403263852
1127 => 0.00065296654484472
1128 => 0.00065736588604568
1129 => 0.00066002011782172
1130 => 0.00064561601473174
1201 => 0.00064225772927357
1202 => 0.00063538785582418
1203 => 0.0006335956340735
1204 => 0.00063919100265341
1205 => 0.00063771682071989
1206 => 0.00061122161642254
1207 => 0.00060845272015554
1208 => 0.00060853763825098
1209 => 0.00060157511693377
1210 => 0.00059095560072844
1211 => 0.00061886305525767
1212 => 0.0006166216960944
1213 => 0.00061414740904557
1214 => 0.00061445049509096
1215 => 0.00062656417523071
1216 => 0.00061953762899415
1217 => 0.00063821885379233
1218 => 0.00063437855558285
1219 => 0.00063043976821506
1220 => 0.00062989530782243
1221 => 0.00062837921072738
1222 => 0.00062317994967356
1223 => 0.00061690152952393
1224 => 0.0006127559727137
1225 => 0.00056523499467022
1226 => 0.00057405461177828
1227 => 0.00058420077732771
1228 => 0.00058770319301716
1229 => 0.00058171206862056
1230 => 0.00062341651578108
1231 => 0.00063103632015135
]
'min_raw' => 0.00026300994001406
'max_raw' => 0.00069092880790247
'avg_raw' => 0.00047696937395826
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000263'
'max' => '$0.00069'
'avg' => '$0.000476'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.0197488015624E-5
'max_diff' => -0.00012460201847411
'year' => 2027
]
2 => [
'items' => [
101 => 0.00060795543568624
102 => 0.00060363794458912
103 => 0.00062369956977862
104 => 0.00061159995735541
105 => 0.00061704841208871
106 => 0.00060527183310072
107 => 0.00062920093241247
108 => 0.00062901863276792
109 => 0.00061970967267243
110 => 0.00062757754200013
111 => 0.00062621030608569
112 => 0.00061570051306484
113 => 0.00062953411159721
114 => 0.00062954097288949
115 => 0.00062058130119183
116 => 0.00061011836617329
117 => 0.00060824784051547
118 => 0.00060683865070207
119 => 0.00061670183777952
120 => 0.00062554514047178
121 => 0.00064200033434141
122 => 0.000646137561046
123 => 0.00066228543230479
124 => 0.00065267016119576
125 => 0.00065693248633979
126 => 0.00066155984322633
127 => 0.00066377836828315
128 => 0.00066016340075568
129 => 0.00068524769154955
130 => 0.00068736557425536
131 => 0.00068807568200701
201 => 0.00067961740028648
202 => 0.0006871303341398
203 => 0.00068361528119205
204 => 0.00069276047245225
205 => 0.00069419455521351
206 => 0.0006929799381337
207 => 0.00069343513863758
208 => 0.00067203012161714
209 => 0.00067092015856417
210 => 0.00065578573357753
211 => 0.00066195312362761
212 => 0.00065042348353969
213 => 0.00065407965118002
214 => 0.00065569125503864
215 => 0.00065484944464061
216 => 0.00066230181860756
217 => 0.00065596577831624
218 => 0.00063924392624596
219 => 0.00062251751831827
220 => 0.00062230753189178
221 => 0.00061790376393004
222 => 0.00061472064628404
223 => 0.00061533382766982
224 => 0.00061749475885183
225 => 0.00061459504903538
226 => 0.00061521384914374
227 => 0.00062549005398607
228 => 0.00062755087358066
229 => 0.00062054740338405
301 => 0.00059242745994874
302 => 0.00058552675529617
303 => 0.00059048684495352
304 => 0.00058811624156799
305 => 0.00047465570753605
306 => 0.00050131157702297
307 => 0.00048547356452164
308 => 0.00049277244935417
309 => 0.00047660593982377
310 => 0.00048432144553104
311 => 0.00048289667335206
312 => 0.0005257585226825
313 => 0.00052508929385975
314 => 0.0005254096182824
315 => 0.00051011969898854
316 => 0.0005344769555902
317 => 0.0005464762160508
318 => 0.00054425547228952
319 => 0.00054481438565019
320 => 0.00053521040234535
321 => 0.00052550260583405
322 => 0.00051473516548385
323 => 0.00053473973875868
324 => 0.00053251557169997
325 => 0.0005376170107026
326 => 0.00055059140642776
327 => 0.00055250193548322
328 => 0.00055506970590844
329 => 0.00055414934299734
330 => 0.00057607612147823
331 => 0.00057342064392665
401 => 0.00057981958079292
402 => 0.00056665648217049
403 => 0.00055176118662643
404 => 0.00055459229534546
405 => 0.00055431963680948
406 => 0.00055084838070354
407 => 0.00054771468590145
408 => 0.000542497966969
409 => 0.0005590044376004
410 => 0.00055833430503712
411 => 0.00056918297229273
412 => 0.00056726536497697
413 => 0.00055445911400421
414 => 0.00055491649176303
415 => 0.00055799257699931
416 => 0.00056863894312422
417 => 0.00057179950944997
418 => 0.00057033540920109
419 => 0.00057380082589194
420 => 0.00057653974994797
421 => 0.00057414479258416
422 => 0.0006080523383376
423 => 0.00059397156131493
424 => 0.00060083443406236
425 => 0.00060247118877423
426 => 0.00059827867599702
427 => 0.00059918788189577
428 => 0.0006005650810886
429 => 0.0006089271649042
430 => 0.00063087169242478
501 => 0.00064059077428219
502 => 0.00066983111158127
503 => 0.00063978373983008
504 => 0.00063800085313875
505 => 0.00064326792085991
506 => 0.00066043509425851
507 => 0.00067434747586748
508 => 0.00067896301547172
509 => 0.00067957303522468
510 => 0.00068823209435751
511 => 0.00069319530557056
512 => 0.00068718065682292
513 => 0.00068208387176927
514 => 0.00066382782034335
515 => 0.00066594100800548
516 => 0.00068049877545017
517 => 0.00070106247941401
518 => 0.00071870827670374
519 => 0.000712529333511
520 => 0.00075967030841749
521 => 0.00076434414352586
522 => 0.00076369837063706
523 => 0.00077434606257384
524 => 0.00075321256244409
525 => 0.00074417758169635
526 => 0.00068318585454884
527 => 0.00070032204205707
528 => 0.00072523049697328
529 => 0.00072193376956321
530 => 0.00070384458379815
531 => 0.00071869455443424
601 => 0.00071378468974043
602 => 0.00070991207574595
603 => 0.00072765327119782
604 => 0.00070814609803035
605 => 0.00072503589799873
606 => 0.00070337455483667
607 => 0.00071255755840303
608 => 0.00070734484144686
609 => 0.00071071810816406
610 => 0.00069099805986245
611 => 0.00070163851924889
612 => 0.00069055538176939
613 => 0.00069055012691916
614 => 0.00069030546604501
615 => 0.00070334472813949
616 => 0.00070376993800826
617 => 0.00069413390361921
618 => 0.00069274520052061
619 => 0.00069787996372492
620 => 0.00069186850080928
621 => 0.00069468122647181
622 => 0.00069195369540423
623 => 0.00069133967071032
624 => 0.00068644701748158
625 => 0.00068433912794434
626 => 0.00068516568574552
627 => 0.00068234421785035
628 => 0.00068064418138656
629 => 0.00068996728600307
630 => 0.00068498632729944
701 => 0.00068920388264473
702 => 0.00068439744603085
703 => 0.00066773624266238
704 => 0.00065815420841614
705 => 0.00062668273974748
706 => 0.00063560800922167
707 => 0.00064152547211693
708 => 0.00063956975066535
709 => 0.00064377139710708
710 => 0.00064402934407424
711 => 0.00064266334598532
712 => 0.00064108169519354
713 => 0.00064031183505888
714 => 0.00064604974176808
715 => 0.00064938078974183
716 => 0.00064211936868391
717 => 0.00064041811932811
718 => 0.00064775981693171
719 => 0.00065223824822875
720 => 0.0006853044687129
721 => 0.00068285481629695
722 => 0.00068900296314097
723 => 0.00068831077615734
724 => 0.00069475501352648
725 => 0.00070528861808711
726 => 0.00068387085477319
727 => 0.00068758823791395
728 => 0.00068667682141475
729 => 0.0006966274277668
730 => 0.00069665849247369
731 => 0.00069069260689598
801 => 0.00069392681025309
802 => 0.00069212156666488
803 => 0.00069538388582209
804 => 0.00068282209969545
805 => 0.00069812099923668
806 => 0.00070679448943724
807 => 0.00070691492085709
808 => 0.00071102608637508
809 => 0.00071520326864402
810 => 0.00072322100625333
811 => 0.00071497965829373
812 => 0.00070015427559346
813 => 0.00070122462033872
814 => 0.00069253250388595
815 => 0.00069267861993388
816 => 0.00069189864101871
817 => 0.00069423941645721
818 => 0.00068333576827098
819 => 0.00068589483270639
820 => 0.00068231212751095
821 => 0.00068758044981255
822 => 0.00068191260590091
823 => 0.00068667638190212
824 => 0.00068873226970257
825 => 0.00069631853994632
826 => 0.0006807921076177
827 => 0.00064913266105257
828 => 0.00065578786055425
829 => 0.00064594429773663
830 => 0.00064685535695249
831 => 0.00064869584156252
901 => 0.00064273022877232
902 => 0.00064386827969462
903 => 0.00064382762050734
904 => 0.00064347724159718
905 => 0.00064192535530755
906 => 0.00063967481315624
907 => 0.0006486402804067
908 => 0.00065016368799615
909 => 0.00065355003435722
910 => 0.00066362550414709
911 => 0.00066261872711914
912 => 0.0006642608222225
913 => 0.00066067613783184
914 => 0.00064702164018025
915 => 0.0006477631450965
916 => 0.00063851656690903
917 => 0.00065331357856383
918 => 0.00064980945089296
919 => 0.00064755031698785
920 => 0.00064693389137112
921 => 0.00065703433630178
922 => 0.00066005654773011
923 => 0.00065817330838104
924 => 0.00065431072953323
925 => 0.00066172802278995
926 => 0.00066371257755497
927 => 0.0006641568461793
928 => 0.00067729886770531
929 => 0.00066489133919295
930 => 0.00066787795462611
1001 => 0.00069117867566857
1002 => 0.00067004813696277
1003 => 0.00068124145458248
1004 => 0.0006806935999322
1005 => 0.00068641972246523
1006 => 0.0006802238907515
1007 => 0.00068030069551123
1008 => 0.00068538510439942
1009 => 0.00067824496909393
1010 => 0.00067647697118035
1011 => 0.00067403449472537
1012 => 0.0006793675527086
1013 => 0.00068256447977609
1014 => 0.0007083293640558
1015 => 0.00072497465432196
1016 => 0.00072425203837268
1017 => 0.00073085539546876
1018 => 0.00072788052261716
1019 => 0.00071827387344752
1020 => 0.00073467125217403
1021 => 0.0007294824354495
1022 => 0.00072991019519586
1023 => 0.00072989427395673
1024 => 0.00073334438346432
1025 => 0.0007308996646803
1026 => 0.00072608087301177
1027 => 0.00072927981180493
1028 => 0.00073877951637907
1029 => 0.00076826689086375
1030 => 0.00078476841628112
1031 => 0.00076727347831369
1101 => 0.00077934125225707
1102 => 0.00077210488807856
1103 => 0.00077078982544414
1104 => 0.00077836927928207
1105 => 0.00078596199995059
1106 => 0.00078547837646824
1107 => 0.00077996645115341
1108 => 0.000776852904403
1109 => 0.00080042972351183
1110 => 0.00081780072221059
1111 => 0.00081661613655599
1112 => 0.00082184451238751
1113 => 0.00083719518553644
1114 => 0.00083859865870828
1115 => 0.00083842185334709
1116 => 0.00083494319865341
1117 => 0.00085005792990533
1118 => 0.00086266690463408
1119 => 0.00083413799059982
1120 => 0.00084500142759316
1121 => 0.00084987837445754
1122 => 0.0008570391793794
1123 => 0.00086912065757283
1124 => 0.00088224434734471
1125 => 0.00088410018097239
1126 => 0.00088278337820374
1127 => 0.00087412795201546
1128 => 0.00088848804996204
1129 => 0.00089689985855341
1130 => 0.00090190889806876
1201 => 0.00091461098885497
1202 => 0.00084990849282107
1203 => 0.00080410885020557
1204 => 0.0007969565746563
1205 => 0.00081150100823508
1206 => 0.00081533625938012
1207 => 0.00081379027445255
1208 => 0.00076223861276747
1209 => 0.00079668516582639
1210 => 0.00083374676056934
1211 => 0.00083517044736151
1212 => 0.00085372425661124
1213 => 0.00085976613744929
1214 => 0.00087470438579868
1215 => 0.00087376999429718
1216 => 0.00087740722005081
1217 => 0.00087657108483802
1218 => 0.00090424104428597
1219 => 0.0009347651185858
1220 => 0.00093370816695341
1221 => 0.00092931997012836
1222 => 0.00093583719071231
1223 => 0.00096734130654833
1224 => 0.00096444091240532
1225 => 0.00096725839826027
1226 => 0.0010044035263251
1227 => 0.0010526974766422
1228 => 0.0010302600880866
1229 => 0.0010789427650677
1230 => 0.0011095859296695
1231 => 0.0011625801142859
]
'min_raw' => 0.00047465570753605
'max_raw' => 0.0011625801142859
'avg_raw' => 0.000818617910911
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000474'
'max' => '$0.001162'
'avg' => '$0.000818'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00021164576752199
'max_diff' => 0.00047165130638348
'year' => 2028
]
3 => [
'items' => [
101 => 0.0011559449813701
102 => 0.001176575228552
103 => 0.0011440667086567
104 => 0.0010694205759213
105 => 0.001057607539682
106 => 0.0010812575373868
107 => 0.001139398749011
108 => 0.0010794264637258
109 => 0.0010915587789309
110 => 0.0010880646713356
111 => 0.0010878784851909
112 => 0.0010949844530622
113 => 0.0010846768760425
114 => 0.0010426819529664
115 => 0.0010619279787345
116 => 0.0010544961639154
117 => 0.0010627423165357
118 => 0.0011072434012557
119 => 0.0010875684109276
120 => 0.0010668424068834
121 => 0.0010928374154233
122 => 0.0011259379941487
123 => 0.0011238666194195
124 => 0.0011198472866775
125 => 0.0011425040548991
126 => 0.001179926398191
127 => 0.0011900415072076
128 => 0.0011975082738894
129 => 0.0011985378148627
130 => 0.0012091427267445
131 => 0.0011521174427743
201 => 0.0012426180329482
202 => 0.0012582449848429
203 => 0.0012553077655574
204 => 0.0012726764649057
205 => 0.0012675661529561
206 => 0.0012601621127244
207 => 0.0012876951956197
208 => 0.0012561307378855
209 => 0.0012113289639865
210 => 0.0011867498247468
211 => 0.0012191176180402
212 => 0.0012388834999241
213 => 0.0012519474905032
214 => 0.0012559006461589
215 => 0.0011565441532388
216 => 0.0011029965141185
217 => 0.0011373199368697
218 => 0.0011791968815022
219 => 0.0011518848142325
220 => 0.0011529553955609
221 => 0.0011140155651193
222 => 0.0011826421924523
223 => 0.0011726438700907
224 => 0.0012245151841896
225 => 0.0012121356787866
226 => 0.0012544347218014
227 => 0.0012432959661803
228 => 0.0012895323180041
301 => 0.0013079772505458
302 => 0.0013389491630079
303 => 0.0013617322278934
304 => 0.0013751108793648
305 => 0.0013743076753125
306 => 0.0014273205576597
307 => 0.0013960607130686
308 => 0.0013567909808825
309 => 0.0013560807153217
310 => 0.0013764190660772
311 => 0.0014190426697069
312 => 0.0014300943499799
313 => 0.0014362707315545
314 => 0.0014268113881716
315 => 0.0013928810672812
316 => 0.0013782301267514
317 => 0.0013907131525614
318 => 0.0013754474846744
319 => 0.0014018003102373
320 => 0.001437988368395
321 => 0.0014305156774885
322 => 0.0014554957628204
323 => 0.0014813475231573
324 => 0.0015183167015143
325 => 0.0015279818137016
326 => 0.0015439578766158
327 => 0.0015604024932177
328 => 0.0015656840608755
329 => 0.0015757682123082
330 => 0.0015757150638525
331 => 0.0016061043329368
401 => 0.0016396246378142
402 => 0.0016522777769085
403 => 0.0016813729725578
404 => 0.0016315484696257
405 => 0.0016693409274423
406 => 0.0017034306703996
407 => 0.0016627874734908
408 => 0.0017188046517792
409 => 0.0017209796718745
410 => 0.0017538198930104
411 => 0.001720530037464
412 => 0.0017007626275056
413 => 0.0017578303993805
414 => 0.0017854436965728
415 => 0.001777126346734
416 => 0.0017138309037826
417 => 0.0016769902411157
418 => 0.0015805711208831
419 => 0.0016947837337946
420 => 0.0017504133659162
421 => 0.0017136868364745
422 => 0.0017322095616703
423 => 0.0018332635443243
424 => 0.0018717383581581
425 => 0.0018637358658399
426 => 0.0018650881553094
427 => 0.0018858484664869
428 => 0.0019779111191599
429 => 0.0019227450436827
430 => 0.0019649174413516
501 => 0.0019872855290113
502 => 0.0020080622554167
503 => 0.0019570411819169
504 => 0.0018906635149419
505 => 0.0018696389214661
506 => 0.0017100351069224
507 => 0.0017017270352511
508 => 0.0016970634628617
509 => 0.001667660298622
510 => 0.001644557465734
511 => 0.0016261852352684
512 => 0.001577971016114
513 => 0.0015942418997353
514 => 0.0015173984974929
515 => 0.0015665601830846
516 => 0.0014439162576568
517 => 0.001546057763137
518 => 0.0014904667855085
519 => 0.0015277946318715
520 => 0.001527664398532
521 => 0.0014589319985733
522 => 0.0014192885846857
523 => 0.0014445509109596
524 => 0.0014716341300512
525 => 0.00147602829123
526 => 0.0015111423917266
527 => 0.0015209419824001
528 => 0.0014912487651602
529 => 0.0014413747349045
530 => 0.0014529593346274
531 => 0.0014190538231421
601 => 0.0013596357184208
602 => 0.0014023108385722
603 => 0.0014168820008845
604 => 0.0014233174562624
605 => 0.0013648865744844
606 => 0.0013465263228336
607 => 0.0013367514789122
608 => 0.0014338320418105
609 => 0.0014391503341931
610 => 0.0014119411984332
611 => 0.0015349290721441
612 => 0.001507093128509
613 => 0.0015381926975211
614 => 0.0014519081536265
615 => 0.0014552043394009
616 => 0.00141435585355
617 => 0.0014372282761297
618 => 0.0014210627850629
619 => 0.0014353804104149
620 => 0.0014439623360171
621 => 0.0014848041190334
622 => 0.001546524110694
623 => 0.0014787037186042
624 => 0.0014491534025648
625 => 0.0014674862524383
626 => 0.0015163090475264
627 => 0.0015902780812777
628 => 0.0015464869245314
629 => 0.0015659206962733
630 => 0.0015701661108506
701 => 0.0015378761331026
702 => 0.0015914686588152
703 => 0.0016201893287295
704 => 0.0016496507931563
705 => 0.0016752313572266
706 => 0.0016378832363927
707 => 0.0016778510793277
708 => 0.0016456440531961
709 => 0.0016167510212549
710 => 0.0016167948400578
711 => 0.0015986698190613
712 => 0.0015635503069808
713 => 0.0015570737301232
714 => 0.001590765700838
715 => 0.0016177834707098
716 => 0.0016200087836429
717 => 0.001634967209267
718 => 0.0016438194514674
719 => 0.0017305834590705
720 => 0.001765480660678
721 => 0.0018081522982334
722 => 0.0018247753059029
723 => 0.0018748045993102
724 => 0.0018344018817033
725 => 0.001825660499604
726 => 0.0017043057982551
727 => 0.0017241776238026
728 => 0.0017559943338501
729 => 0.001704830444085
730 => 0.0017372821558369
731 => 0.0017436888111579
801 => 0.0017030919146889
802 => 0.0017247764711814
803 => 0.0016671887181603
804 => 0.0015477793663407
805 => 0.0015916015955587
806 => 0.0016238695066661
807 => 0.0015778192189112
808 => 0.0016603625773196
809 => 0.0016121424513782
810 => 0.001596858986429
811 => 0.0015372327407135
812 => 0.0015653740334665
813 => 0.0016034355348595
814 => 0.0015799179521231
815 => 0.0016287204674839
816 => 0.0016978378443903
817 => 0.0017470950031847
818 => 0.0017508763562084
819 => 0.0017192073030769
820 => 0.0017699571628293
821 => 0.0017703268201527
822 => 0.0017130807710327
823 => 0.0016780178846941
824 => 0.001670051523145
825 => 0.0016899530561918
826 => 0.0017141171913363
827 => 0.0017522172975351
828 => 0.0017752403937598
829 => 0.0018352724182073
830 => 0.0018515153627697
831 => 0.0018693614342908
901 => 0.0018932092893675
902 => 0.0019218447538517
903 => 0.0018591919877782
904 => 0.0018616812989737
905 => 0.0018033399106926
906 => 0.0017409937703129
907 => 0.001788306719305
908 => 0.0018501621063343
909 => 0.0018359724122057
910 => 0.001834375781747
911 => 0.0018370608713101
912 => 0.0018263623053292
913 => 0.0017779730879048
914 => 0.0017536723258469
915 => 0.0017850265086872
916 => 0.0018016898614528
917 => 0.001827533268395
918 => 0.0018243475230012
919 => 0.0018909173639052
920 => 0.001916784391113
921 => 0.0019101664986408
922 => 0.0019113843501241
923 => 0.0019582153673136
924 => 0.0020103010899615
925 => 0.0020590862425377
926 => 0.0021087125951093
927 => 0.0020488860901348
928 => 0.0020185098804945
929 => 0.0020498503750795
930 => 0.0020332206675033
1001 => 0.0021287798999278
1002 => 0.002135396213849
1003 => 0.0022309485362533
1004 => 0.002321639068374
1005 => 0.0022646779700386
1006 => 0.0023183897201846
1007 => 0.0023764833571508
1008 => 0.0024885554082113
1009 => 0.0024508134841564
1010 => 0.0024219037618217
1011 => 0.0023945842139062
1012 => 0.0024514318562623
1013 => 0.0025245654399902
1014 => 0.0025403177134604
1015 => 0.0025658424143138
1016 => 0.0025390063123784
1017 => 0.0025713274412599
1018 => 0.0026854352288354
1019 => 0.0026546022973752
1020 => 0.0026108145780607
1021 => 0.0027008917173231
1022 => 0.0027334902838562
1023 => 0.002962284095787
1024 => 0.0032511457343507
1025 => 0.0031315551192176
1026 => 0.0030573213652394
1027 => 0.0030747680582724
1028 => 0.0031802505500923
1029 => 0.003214128178618
1030 => 0.0031220371059665
1031 => 0.003154565229685
1101 => 0.0033337983894687
1102 => 0.0034299512292045
1103 => 0.0032993627577941
1104 => 0.0029390743443867
1105 => 0.0026068719730282
1106 => 0.0026949870011802
1107 => 0.0026849974915155
1108 => 0.002877561161911
1109 => 0.002653866942157
1110 => 0.0026576333791219
1111 => 0.0028541790622927
1112 => 0.0028017440436688
1113 => 0.0027168060288678
1114 => 0.0026074921145343
1115 => 0.0024054152335755
1116 => 0.0022264301047796
1117 => 0.0025774611601618
1118 => 0.0025623240627452
1119 => 0.0025404033024937
1120 => 0.0025891855823593
1121 => 0.0028260584862948
1122 => 0.0028205977991763
1123 => 0.0027858596937956
1124 => 0.0028122082405593
1125 => 0.0027121870012268
1126 => 0.0027379647520441
1127 => 0.0026068193504753
1128 => 0.0026661025491002
1129 => 0.0027166237900357
1130 => 0.0027267666771332
1201 => 0.0027496191196727
1202 => 0.0025543475002416
1203 => 0.0026420187244926
1204 => 0.0026935173550573
1205 => 0.0024608446686299
1206 => 0.0026889181641463
1207 => 0.0025509482557875
1208 => 0.002504119196652
1209 => 0.0025671683555185
1210 => 0.0025425980369909
1211 => 0.0025214739199384
1212 => 0.0025096862996647
1213 => 0.0025559826434545
1214 => 0.0025538228636806
1215 => 0.0024780730595073
1216 => 0.0023792605279203
1217 => 0.0024124252569317
1218 => 0.0024003761999609
1219 => 0.0023567088631393
1220 => 0.0023861353757427
1221 => 0.0022565559066546
1222 => 0.0020336211650432
1223 => 0.0021808986840275
1224 => 0.0021752286597537
1225 => 0.0021723695763998
1226 => 0.0022830445614648
1227 => 0.0022724057153571
1228 => 0.0022530961054958
1229 => 0.0023563542270114
1230 => 0.0023186636236405
1231 => 0.0024348171822066
]
'min_raw' => 0.0010426819529664
'max_raw' => 0.0034299512292045
'avg_raw' => 0.0022363165910854
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001042'
'max' => '$0.003429'
'avg' => '$0.002236'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00056802624543032
'max_diff' => 0.0022673711149185
'year' => 2029
]
4 => [
'items' => [
101 => 0.0025113234282194
102 => 0.0024919189695128
103 => 0.0025638734636746
104 => 0.0024131893053048
105 => 0.0024632405383161
106 => 0.0024735560280718
107 => 0.0023550800378203
108 => 0.0022741463621532
109 => 0.0022687490086976
110 => 0.0021284211684384
111 => 0.0022033831680181
112 => 0.00226934662551
113 => 0.0022377552483425
114 => 0.0022277543620968
115 => 0.0022788467209984
116 => 0.0022828170348615
117 => 0.0021922934580274
118 => 0.0022111161761601
119 => 0.0022896100397898
120 => 0.0022091383321911
121 => 0.0020527949493057
122 => 0.0020140196287338
123 => 0.0020088462861985
124 => 0.0019036845414979
125 => 0.0020166107810658
126 => 0.0019673154512593
127 => 0.0021230388074692
128 => 0.0020340904615632
129 => 0.00203025607615
130 => 0.0020244598402159
131 => 0.0019339427823751
201 => 0.0019537602653831
202 => 0.0020196365971897
203 => 0.0020431420145282
204 => 0.0020406902069256
205 => 0.0020193137672251
206 => 0.0020290997918549
207 => 0.0019975755968453
208 => 0.001986443747468
209 => 0.001951308568777
210 => 0.0018996695624419
211 => 0.0019068502829933
212 => 0.0018045398993626
213 => 0.0017487957723375
214 => 0.0017333665326728
215 => 0.0017127339085608
216 => 0.0017356970424675
217 => 0.0018042500669004
218 => 0.0017215605750989
219 => 0.0015797952413988
220 => 0.0015883155795106
221 => 0.0016074582495366
222 => 0.0015717860105846
223 => 0.0015380252301605
224 => 0.0015673774896405
225 => 0.0015073096488924
226 => 0.0016147171611135
227 => 0.001611812088914
228 => 0.001651846967434
301 => 0.001676881598571
302 => 0.0016191848788583
303 => 0.0016046743098791
304 => 0.0016129401894383
305 => 0.0014763236127998
306 => 0.0016406824784957
307 => 0.0016421038607914
308 => 0.0016299331226295
309 => 0.0017174491446019
310 => 0.0019021352478955
311 => 0.0018326489068551
312 => 0.0018057416953685
313 => 0.0017545910666635
314 => 0.0018227462423892
315 => 0.0018175129882798
316 => 0.0017938462285446
317 => 0.0017795324984119
318 => 0.0018059059850642
319 => 0.0017762645315532
320 => 0.00177094011201
321 => 0.0017386799226035
322 => 0.0017271645027304
323 => 0.0017186389442985
324 => 0.0017092531421691
325 => 0.0017299558828705
326 => 0.0016830407487687
327 => 0.0016264656961892
328 => 0.0016217620927178
329 => 0.0016347491554474
330 => 0.0016290033469627
331 => 0.0016217345839973
401 => 0.0016078565359666
402 => 0.0016037392155735
403 => 0.0016171185094113
404 => 0.0016020140667297
405 => 0.0016243014946879
406 => 0.0016182405475029
407 => 0.0015843845892197
408 => 0.0015421875301175
409 => 0.0015418118877802
410 => 0.0015327206006137
411 => 0.001521141479523
412 => 0.0015179204329299
413 => 0.0015649055242172
414 => 0.0016621632570365
415 => 0.0016430692369038
416 => 0.0016568666232836
417 => 0.0017247361084969
418 => 0.0017463097769396
419 => 0.0017309972980793
420 => 0.0017100366325828
421 => 0.0017109587954874
422 => 0.001782587734714
423 => 0.0017870551437917
424 => 0.0017983428452903
425 => 0.00181285073162
426 => 0.0017334680538551
427 => 0.0017072198785035
428 => 0.0016947820368286
429 => 0.0016564782985203
430 => 0.0016977855963714
501 => 0.0016737176028684
502 => 0.0016769651974717
503 => 0.0016748501972259
504 => 0.0016760051303758
505 => 0.0016146871385249
506 => 0.0016370281919766
507 => 0.0015998818574945
508 => 0.0015501470854948
509 => 0.0015499803570998
510 => 0.0015621528720876
511 => 0.0015549121838623
512 => 0.0015354276780232
513 => 0.0015381953601134
514 => 0.0015139475527116
515 => 0.0015411394829527
516 => 0.0015419192502146
517 => 0.0015314488759174
518 => 0.001573341796217
519 => 0.0015905053598452
520 => 0.0015836135351856
521 => 0.0015900218110549
522 => 0.0016438626796446
523 => 0.0016526410904665
524 => 0.0016565398806844
525 => 0.0016513160182832
526 => 0.0015910059232956
527 => 0.0015936809324666
528 => 0.0015740534900661
529 => 0.0015574703695266
530 => 0.0015581336073812
531 => 0.0015666594869932
601 => 0.0016038925032954
602 => 0.0016822471910972
603 => 0.0016852206942227
604 => 0.0016888246667541
605 => 0.0016741654992576
606 => 0.0016697441540713
607 => 0.001675577049618
608 => 0.0017050029506626
609 => 0.0017806943572035
610 => 0.0017539399588729
611 => 0.0017321882165731
612 => 0.0017512703587976
613 => 0.0017483328125729
614 => 0.0017235369661945
615 => 0.0017228410293717
616 => 0.0016752498724599
617 => 0.0016576565053478
618 => 0.0016429541709482
619 => 0.001626899605598
620 => 0.0016173819211045
621 => 0.0016320054101968
622 => 0.0016353499751722
623 => 0.0016033754606971
624 => 0.0015990174525241
625 => 0.0016251285312622
626 => 0.0016136380190287
627 => 0.0016254562958119
628 => 0.0016281982374009
629 => 0.0016277567216528
630 => 0.0016157593072041
701 => 0.0016234061014056
702 => 0.0016053191534998
703 => 0.001585652314224
704 => 0.0015731060960535
705 => 0.0015621578566853
706 => 0.0015682325762022
707 => 0.0015465773103245
708 => 0.0015396493549358
709 => 0.0016208155395885
710 => 0.0016807738728749
711 => 0.0016799020549628
712 => 0.0016745950876363
713 => 0.0016667100106682
714 => 0.0017044261081693
715 => 0.0016912865739571
716 => 0.0017008466829413
717 => 0.0017032801319143
718 => 0.0017106454490476
719 => 0.0017132779168523
720 => 0.0017053207707799
721 => 0.0016786156166773
722 => 0.0016120689117035
723 => 0.0015810912408988
724 => 0.0015708680935593
725 => 0.0015712396855486
726 => 0.0015609895196249
727 => 0.0015640086528696
728 => 0.0015599395882923
729 => 0.0015522337643954
730 => 0.001567756763291
731 => 0.0015695456443069
801 => 0.0015659223908787
802 => 0.0015667757982247
803 => 0.0015367768073507
804 => 0.0015390575654724
805 => 0.0015263580144257
806 => 0.0015239770016998
807 => 0.00149187364253
808 => 0.0014349978883044
809 => 0.0014665125772085
810 => 0.0014284472646482
811 => 0.0014140313539981
812 => 0.0014822740328819
813 => 0.0014754243606792
814 => 0.0014637006993492
815 => 0.001446358960817
816 => 0.0014399267413058
817 => 0.0014008466117491
818 => 0.0013985375492105
819 => 0.0014179067166711
820 => 0.0014089685123404
821 => 0.0013964158882974
822 => 0.0013509515564528
823 => 0.0012998345947366
824 => 0.001301377494501
825 => 0.0013176368489581
826 => 0.0013649131149147
827 => 0.0013464414599177
828 => 0.0013330400622796
829 => 0.0013305303833465
830 => 0.0013619442695628
831 => 0.0014064014999715
901 => 0.0014272598378047
902 => 0.0014065898584891
903 => 0.001382845299202
904 => 0.0013842905205041
905 => 0.0013939049303565
906 => 0.0013949152688916
907 => 0.0013794600017758
908 => 0.0013838105689392
909 => 0.0013772016595938
910 => 0.0013366427951407
911 => 0.0013359092138963
912 => 0.0013259554144595
913 => 0.0013256540173685
914 => 0.0013087201214348
915 => 0.0013063509523352
916 => 0.0012727276741448
917 => 0.0012948586176704
918 => 0.0012800143426801
919 => 0.0012576405188593
920 => 0.0012537832631994
921 => 0.0012536673094365
922 => 0.001276640223805
923 => 0.0012945901657905
924 => 0.001280272565199
925 => 0.0012770127250793
926 => 0.0013118192891201
927 => 0.001307389836577
928 => 0.0013035539592416
929 => 0.0014024208425995
930 => 0.0013241599897426
1001 => 0.0012900337909237
1002 => 0.0012477961394959
1003 => 0.0012615489317816
1004 => 0.0012644468471867
1005 => 0.0011628729094118
1006 => 0.0011216643755067
1007 => 0.0011075231595813
1008 => 0.0010993846898888
1009 => 0.0011030934927242
1010 => 0.0010660009789307
1011 => 0.0010909277616535
1012 => 0.0010588087800604
1013 => 0.0010534239282722
1014 => 0.0011108566461388
1015 => 0.0011188480733129
1016 => 0.0010847541622465
1017 => 0.0011066479724539
1018 => 0.001098708972526
1019 => 0.0010593593678128
1020 => 0.0010578565023488
1021 => 0.0010381122539093
1022 => 0.0010072163283412
1023 => 0.00099309606130818
1024 => 0.00098574210363963
1025 => 0.00098877648989945
1026 => 0.00098724221135273
1027 => 0.0009772300060094
1028 => 0.00098781609924315
1029 => 0.00096077300550665
1030 => 0.00095000422767977
1031 => 0.00094514022056911
1101 => 0.00092113791833557
1102 => 0.00095933625506138
1103 => 0.00096686180860633
1104 => 0.00097440218981653
1105 => 0.0010400360602144
1106 => 0.0010367571775287
1107 => 0.0010663966801267
1108 => 0.0010652449435592
1109 => 0.0010567912772902
1110 => 0.0010211266498617
1111 => 0.0010353419346938
1112 => 0.00099158949752626
1113 => 0.0010243717983288
1114 => 0.0010094113252641
1115 => 0.0010193136473367
1116 => 0.0010015083793938
1117 => 0.0010113625498349
1118 => 0.00096864639653147
1119 => 0.00092875865360922
1120 => 0.00094481064575694
1121 => 0.00096226099698948
1122 => 0.0010000978047284
1123 => 0.00097756251418599
1124 => 0.00098566705681872
1125 => 0.00095851819568311
1126 => 0.00090250234047156
1127 => 0.00090281938412875
1128 => 0.0008942025651762
1129 => 0.00088675637552502
1130 => 0.00098015096339093
1201 => 0.00096853587003986
1202 => 0.00095002873893076
1203 => 0.00097480126936444
1204 => 0.00098135151960403
1205 => 0.00098153799601979
1206 => 0.00099961139475264
1207 => 0.0010092571708962
1208 => 0.0010109572807487
1209 => 0.0010393961641565
1210 => 0.0010489285027568
1211 => 0.0010881908563846
1212 => 0.0010084387941817
1213 => 0.0010067963529429
1214 => 0.00097514986966976
1215 => 0.0009550791696668
1216 => 0.0009765241276702
1217 => 0.00099552143293251
1218 => 0.00097574016889904
1219 => 0.00097832318437654
1220 => 0.00095176845360026
1221 => 0.00096126052033656
1222 => 0.00096943636692934
1223 => 0.00096492214499486
1224 => 0.00095816413626813
1225 => 0.00099396387054342
1226 => 0.00099194390923531
1227 => 0.0010252814448248
1228 => 0.0010512704378068
1229 => 0.0010978473593189
1230 => 0.0010492419136112
1231 => 0.0010474705379805
]
'min_raw' => 0.00088675637552502
'max_raw' => 0.0025638734636746
'avg_raw' => 0.0017253149195998
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000886'
'max' => '$0.002563'
'avg' => '$0.001725'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00015592557744135
'max_diff' => -0.00086607776552985
'year' => 2030
]
5 => [
'items' => [
101 => 0.0010647860189085
102 => 0.0010489258518469
103 => 0.0010589489299555
104 => 0.0010962324864794
105 => 0.0010970202292781
106 => 0.0010838245224507
107 => 0.0010830215624911
108 => 0.0010855559423325
109 => 0.0011003998842235
110 => 0.0010952129548185
111 => 0.0011012154008429
112 => 0.0011087215515092
113 => 0.0011397701732069
114 => 0.0011472558907835
115 => 0.0011290694779718
116 => 0.001130711507424
117 => 0.0011239092898042
118 => 0.001117338432815
119 => 0.0011321087597301
120 => 0.001159101822479
121 => 0.0011589339000366
122 => 0.0011651957659241
123 => 0.001169096856496
124 => 0.0011523505199887
125 => 0.0011414492707024
126 => 0.0011456295033433
127 => 0.0011523137863697
128 => 0.0011434618804463
129 => 0.0010888238164855
130 => 0.0011053975147982
131 => 0.0011026388409865
201 => 0.0010987101540125
202 => 0.0011153751358265
203 => 0.0011137677576761
204 => 0.0010656205415891
205 => 0.0010687027701497
206 => 0.0010658079821165
207 => 0.0010751616344697
208 => 0.0010484207239238
209 => 0.0010566460479049
210 => 0.0010618048939983
211 => 0.0010648434939794
212 => 0.0010758210006986
213 => 0.001074532916987
214 => 0.0010757409316066
215 => 0.0010920176761169
216 => 0.001174339864346
217 => 0.0011788204794177
218 => 0.001156756292097
219 => 0.0011655704997347
220 => 0.0011486491485255
221 => 0.0011600085649555
222 => 0.0011677803891789
223 => 0.0011326610099489
224 => 0.0011305814682338
225 => 0.0011135902765888
226 => 0.0011227203805485
227 => 0.001108193728671
228 => 0.001111758060921
301 => 0.001101791877217
302 => 0.0011197290236368
303 => 0.001139785540485
304 => 0.0011448526086967
305 => 0.0011315233337418
306 => 0.0011218720602323
307 => 0.0011049276032769
308 => 0.0011331066128256
309 => 0.0011413470139574
310 => 0.0011330633295065
311 => 0.0011311438188172
312 => 0.0011275063495293
313 => 0.001131915525122
314 => 0.0011413021349631
315 => 0.0011368755831055
316 => 0.0011397993985933
317 => 0.0011286568289794
318 => 0.0011523560637229
319 => 0.0011899961520271
320 => 0.0011901171710658
321 => 0.0011856905953474
322 => 0.0011838793359354
323 => 0.0011884212712495
324 => 0.0011908850848375
325 => 0.0012055728707948
326 => 0.0012213334503143
327 => 0.0012948811980522
328 => 0.0012742292847934
329 => 0.0013394852219615
330 => 0.0013910941958386
331 => 0.0014065694705174
401 => 0.0013923329459808
402 => 0.0013436305645832
403 => 0.0013412409934048
404 => 0.001414022912828
405 => 0.0013934586869678
406 => 0.0013910126377366
407 => 0.0013649908065816
408 => 0.0013803729316607
409 => 0.0013770086352638
410 => 0.0013716979288141
411 => 0.0014010459519369
412 => 0.0014559828313066
413 => 0.001447420403462
414 => 0.0014410289482757
415 => 0.0014130234521736
416 => 0.0014298890160811
417 => 0.0014238835118122
418 => 0.0014496869693383
419 => 0.0014344015727165
420 => 0.0013933028927315
421 => 0.0013998479929821
422 => 0.0013988587142461
423 => 0.0014192180005313
424 => 0.0014131066481371
425 => 0.0013976653746075
426 => 0.0014557950630253
427 => 0.0014520204443938
428 => 0.0014573719906153
429 => 0.0014597279067642
430 => 0.0014951104237441
501 => 0.0015096055088365
502 => 0.0015128961469247
503 => 0.0015266653566724
504 => 0.0015125535564427
505 => 0.0015690108189045
506 => 0.0016065516040689
507 => 0.0016501571578686
508 => 0.0017138765920378
509 => 0.0017378356887232
510 => 0.0017335076923565
511 => 0.0017818190401238
512 => 0.0018686334581606
513 => 0.001751055368361
514 => 0.0018748653824219
515 => 0.0018356685614256
516 => 0.0017427336039639
517 => 0.0017367496883346
518 => 0.0017996863205247
519 => 0.0019392737132959
520 => 0.0019043086545938
521 => 0.001939330903606
522 => 0.001898475589817
523 => 0.0018964467791317
524 => 0.001937346652206
525 => 0.0020329114349802
526 => 0.0019875121888765
527 => 0.001922421237235
528 => 0.0019704833829997
529 => 0.0019288475043967
530 => 0.0018350302167555
531 => 0.0019042819174723
601 => 0.0018579752773779
602 => 0.0018714900167538
603 => 0.0019688196866395
604 => 0.0019571087232565
605 => 0.0019722637942801
606 => 0.0019455154906007
607 => 0.0019205283571438
608 => 0.0018738880169775
609 => 0.0018600801115953
610 => 0.0018638961198865
611 => 0.0018600782205711
612 => 0.0018339833788949
613 => 0.0018283482003195
614 => 0.0018189559891442
615 => 0.0018218670281197
616 => 0.0018042069233219
617 => 0.0018375351898391
618 => 0.0018437212097924
619 => 0.0018679747428169
620 => 0.0018704928250735
621 => 0.0019380385693193
622 => 0.0019008355084489
623 => 0.0019257945336385
624 => 0.0019235619635021
625 => 0.0017447477862956
626 => 0.0017693868022238
627 => 0.001807717378859
628 => 0.0017904495060407
629 => 0.0017660367739356
630 => 0.0017463221838329
701 => 0.0017164525639069
702 => 0.0017584934803575
703 => 0.0018137728149369
704 => 0.0018718948002233
705 => 0.0019417245572414
706 => 0.001926139368383
707 => 0.0018705893814884
708 => 0.0018730813133212
709 => 0.0018884854553725
710 => 0.0018685356918021
711 => 0.0018626521170596
712 => 0.0018876771425513
713 => 0.0018878494761484
714 => 0.0018648948621512
715 => 0.0018393850093433
716 => 0.0018392781221286
717 => 0.0018347388902174
718 => 0.00189928310909
719 => 0.0019347759033133
720 => 0.0019388450949716
721 => 0.0019345020142931
722 => 0.0019361734936755
723 => 0.0019155210187473
724 => 0.001962726452132
725 => 0.0020060468259393
726 => 0.0019944360403542
727 => 0.0019770298221916
728 => 0.0019631649310281
729 => 0.0019911699126286
730 => 0.0019899228948819
731 => 0.002005668460266
801 => 0.0020049541504694
802 => 0.0019996595090514
803 => 0.0019944362294425
804 => 0.0020151459426789
805 => 0.0020091818778546
806 => 0.0020032085491904
807 => 0.0019912281240833
808 => 0.0019928564628292
809 => 0.0019754532500956
810 => 0.0019674017275682
811 => 0.00184632614706
812 => 0.0018139707956894
813 => 0.0018241504478845
814 => 0.0018275018537017
815 => 0.0018134207633207
816 => 0.0018336094297917
817 => 0.0018304630475073
818 => 0.0018427037804039
819 => 0.0018350563019209
820 => 0.0018353701571054
821 => 0.0018578597607094
822 => 0.0018643885883133
823 => 0.0018610679738998
824 => 0.001863393618411
825 => 0.0019169871145774
826 => 0.0019093678332461
827 => 0.0019053202418967
828 => 0.0019064414523622
829 => 0.0019201357396903
830 => 0.0019239693924618
831 => 0.001907725936283
901 => 0.0019153864441192
902 => 0.0019480039142226
903 => 0.0019594181827699
904 => 0.001995847048813
905 => 0.0019803714190464
906 => 0.0020087776072526
907 => 0.0020960885454151
908 => 0.0021658385642767
909 => 0.0021016935643901
910 => 0.0022297805914181
911 => 0.0023295147149521
912 => 0.002325686753175
913 => 0.002308295801845
914 => 0.0021947511537704
915 => 0.0020902656757568
916 => 0.0021776722148029
917 => 0.0021778950320462
918 => 0.0021703867328251
919 => 0.0021237533312075
920 => 0.0021687639915326
921 => 0.0021723367742945
922 => 0.0021703369660275
923 => 0.002134583246345
924 => 0.0020799939247818
925 => 0.0020906605475469
926 => 0.0021081326932293
927 => 0.0020750542763811
928 => 0.0020644837179061
929 => 0.0020841363972421
930 => 0.002147461424861
1001 => 0.0021354901952065
1002 => 0.0021351775780207
1003 => 0.0021863955750738
1004 => 0.0021497345427194
1005 => 0.0020907950878192
1006 => 0.002075912098141
1007 => 0.0020230875111666
1008 => 0.0020595736415446
1009 => 0.0020608867124219
1010 => 0.0020409036316931
1011 => 0.0020924166046873
1012 => 0.0020919419035725
1013 => 0.0021408458047363
1014 => 0.0022343316962951
1015 => 0.0022066833179999
1016 => 0.0021745312621775
1017 => 0.0021780270821252
1018 => 0.0022163675985326
1019 => 0.0021931860470838
1020 => 0.0022015222946123
1021 => 0.0022163549806235
1022 => 0.002225303908369
1023 => 0.0021767394691388
1024 => 0.0021654167752486
1025 => 0.0021422545172747
1026 => 0.0021362119165133
1027 => 0.0021550770923367
1028 => 0.0021501067850237
1029 => 0.0020607763538991
1030 => 0.0020514408268167
1031 => 0.0020517271341043
1101 => 0.0020282525073756
1102 => 0.0019924480670584
1103 => 0.00208653999844
1104 => 0.0020789830995343
1105 => 0.002070640868
1106 => 0.0020716627437628
1107 => 0.0021125048621041
1108 => 0.0020888143708897
1109 => 0.0021517994245783
1110 => 0.0021388515910439
1111 => 0.0021255716944361
1112 => 0.0021237360082093
1113 => 0.0021186243810028
1114 => 0.0021010947093591
1115 => 0.0020799265774793
1116 => 0.0020659495432601
1117 => 0.0019057292479778
1118 => 0.0019354652028236
1119 => 0.0019696737083561
1120 => 0.001981482347384
1121 => 0.0019612828531939
1122 => 0.0021018923085071
1123 => 0.0021275830109392
1124 => 0.0020497641975092
1125 => 0.0020352074748377
1126 => 0.002102846644822
1127 => 0.0020620519567692
1128 => 0.0020804218023015
1129 => 0.002040716244029
1130 => 0.0021213948730349
1201 => 0.0021207802370556
1202 => 0.0020893944281628
1203 => 0.0021159214989182
1204 => 0.0021113117675753
1205 => 0.0020758772666352
1206 => 0.0021225182099181
1207 => 0.0021225413432441
1208 => 0.0020923331845711
1209 => 0.0020570566686573
1210 => 0.002050750060806
1211 => 0.0020459988789637
1212 => 0.002079253302821
1213 => 0.0021090691152676
1214 => 0.002164548950264
1215 => 0.0021784978989505
1216 => 0.0022329415743079
1217 => 0.002200523016447
1218 => 0.0022148937432561
1219 => 0.0022304952000708
1220 => 0.0022379751121924
1221 => 0.0022257869967845
1222 => 0.0023103604345253
1223 => 0.0023175010239338
1224 => 0.0023198952017966
1225 => 0.0022913775144375
1226 => 0.0023167078954603
1227 => 0.0023048566490338
1228 => 0.0023356902998644
1229 => 0.0023405254100185
1230 => 0.002336430243732
1231 => 0.0023379649840119
]
'min_raw' => 0.0010484207239238
'max_raw' => 0.0023405254100185
'avg_raw' => 0.0016944730669711
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001048'
'max' => '$0.00234'
'avg' => '$0.001694'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00016166434839875
'max_diff' => -0.00022334805365616
'year' => 2031
]
6 => [
'items' => [
101 => 0.0022657964746769
102 => 0.0022620541567487
103 => 0.0022110273862545
104 => 0.0022318211724017
105 => 0.0021929481858715
106 => 0.0022052752103364
107 => 0.0022107088452643
108 => 0.002207870622734
109 => 0.0022329968218717
110 => 0.0022116344196613
111 => 0.002155255527924
112 => 0.0020988612757952
113 => 0.0020981532918975
114 => 0.0020833056807533
115 => 0.0020725735773716
116 => 0.0020746409612247
117 => 0.0020819266915763
118 => 0.0020721501174788
119 => 0.0020742364452474
120 => 0.002108883387335
121 => 0.00211583158448
122 => 0.0020922188957455
123 => 0.0019974105431816
124 => 0.0019741443356536
125 => 0.0019908676242358
126 => 0.0019828749694112
127 => 0.001600334857361
128 => 0.0016902069823895
129 => 0.0016368080174666
130 => 0.0016614167172713
131 => 0.0016069102016799
201 => 0.0016329235678514
202 => 0.0016281198489756
203 => 0.0017726315665119
204 => 0.0017703752148119
205 => 0.0017714552109672
206 => 0.0017199041805599
207 => 0.0018020263717618
208 => 0.0018424827161663
209 => 0.0018349953235278
210 => 0.0018368797389453
211 => 0.0018044992387044
212 => 0.0017717687249898
213 => 0.0017354655480904
214 => 0.0018029123635612
215 => 0.0017954134290364
216 => 0.0018126132868049
217 => 0.0018563573678356
218 => 0.001862798849935
219 => 0.0018714562671996
220 => 0.0018683531993872
221 => 0.0019422808639143
222 => 0.0019333277359496
223 => 0.0019549021983537
224 => 0.00191052189233
225 => 0.0018603013634469
226 => 0.0018698466441548
227 => 0.0018689273568643
228 => 0.0018572237745478
229 => 0.0018466583037349
301 => 0.0018290697716345
302 => 0.0018847224898132
303 => 0.001882463091089
304 => 0.001919040130171
305 => 0.0019125747832229
306 => 0.0018693976139643
307 => 0.0018709396950113
308 => 0.0018813109311508
309 => 0.0019172058978465
310 => 0.0019278619678775
311 => 0.0019229256516682
312 => 0.001934609545989
313 => 0.0019438440196695
314 => 0.0019357692537068
315 => 0.0020500909115638
316 => 0.0020026165887434
317 => 0.0020257552433618
318 => 0.0020312736761475
319 => 0.0020171383266072
320 => 0.0020202037777736
321 => 0.0020248471010052
322 => 0.0020530404504115
323 => 0.0021270279570651
324 => 0.002159796520112
325 => 0.002258382358811
326 => 0.0021570755471114
327 => 0.0021510644201544
328 => 0.0021688227067112
329 => 0.0022267030303984
330 => 0.0022736095963245
331 => 0.0022891712103469
401 => 0.0022912279345342
402 => 0.0023204225569567
403 => 0.0023371563700819
404 => 0.0023168775618998
405 => 0.0022996933952453
406 => 0.002238141843266
407 => 0.0022452666030069
408 => 0.0022943491323375
409 => 0.0023636810959636
410 => 0.0024231751335161
411 => 0.0024023423951418
412 => 0.0025612814833168
413 => 0.0025770396447014
414 => 0.0025748623763204
415 => 0.0026107618130833
416 => 0.0025395087419021
417 => 0.0025090466735088
418 => 0.0023034088071246
419 => 0.002361184659719
420 => 0.0024451652545218
421 => 0.0024340501078886
422 => 0.002373061155135
423 => 0.0024231288679265
424 => 0.0024065749163155
425 => 0.0023935181278558
426 => 0.0024533338069725
427 => 0.002387564010691
428 => 0.0024445091504926
429 => 0.002371476419675
430 => 0.0024024375573359
501 => 0.0023848625181779
502 => 0.0023962357224289
503 => 0.0023297482027702
504 => 0.0023656232544847
505 => 0.0023282556826726
506 => 0.0023282379655782
507 => 0.0023274130743593
508 => 0.0023713758568831
509 => 0.0023728094816428
510 => 0.0023403209189337
511 => 0.0023356388094806
512 => 0.0023529510221217
513 => 0.0023326829551947
514 => 0.0023421662561441
515 => 0.0023329701947196
516 => 0.0023308999675943
517 => 0.0023144040456395
518 => 0.0023072971488965
519 => 0.0023100839462316
520 => 0.0023005711702344
521 => 0.002294839378604
522 => 0.0023262728767369
523 => 0.0023094792267082
524 => 0.0023236990090152
525 => 0.0023074937723968
526 => 0.0022513193619919
527 => 0.0022190128645345
528 => 0.0021129046106503
529 => 0.002142996779825
530 => 0.0021629479191204
531 => 0.0021563540677023
601 => 0.0021705202120301
602 => 0.0021713898982392
603 => 0.0021667843403115
604 => 0.0021614516942397
605 => 0.0021588560570457
606 => 0.0021782018101236
607 => 0.0021894326709335
608 => 0.0021649502828605
609 => 0.00215921440188
610 => 0.0021839674479315
611 => 0.0021990667917235
612 => 0.0023105518626956
613 => 0.002302292688546
614 => 0.0023230215948805
615 => 0.0023206878381382
616 => 0.0023424150343506
617 => 0.0023779298175595
618 => 0.0023057183332062
619 => 0.0023182517500047
620 => 0.0023151788456445
621 => 0.0023487280096896
622 => 0.0023488327465177
623 => 0.0023287183467677
624 => 0.0023396226891911
625 => 0.0023335361843953
626 => 0.0023445353212017
627 => 0.0023021823822398
628 => 0.0023537636901781
629 => 0.0023830069679531
630 => 0.0023834130108934
701 => 0.0023972740924697
702 => 0.0024113577541309
703 => 0.0024383901162613
704 => 0.002410603836223
705 => 0.0023606190233738
706 => 0.0023642277654116
707 => 0.0023349216879269
708 => 0.002335414328384
709 => 0.0023327845750151
710 => 0.0023406766628337
711 => 0.0023039142517054
712 => 0.0023125423161176
713 => 0.0023004629754147
714 => 0.002318225491877
715 => 0.0022991159604127
716 => 0.002315177363797
717 => 0.0023221089330537
718 => 0.002347686572837
719 => 0.0022953381222202
720 => 0.0021885960877339
721 => 0.002211034557505
722 => 0.0021778462982098
723 => 0.0021809179979641
724 => 0.0021871233203254
725 => 0.0021670098402974
726 => 0.0021708468584382
727 => 0.0021707097731495
728 => 0.0021695284461912
729 => 0.0021642961532165
730 => 0.0021567082932255
731 => 0.0021869359920094
801 => 0.0021920722670581
802 => 0.0022034895702417
803 => 0.002237459720085
804 => 0.0022340653010444
805 => 0.0022396017393328
806 => 0.002227515725635
807 => 0.0021814786334761
808 => 0.0021839786690714
809 => 0.0021528031851369
810 => 0.0022026923430254
811 => 0.0021908779319327
812 => 0.0021832611042439
813 => 0.0021811827822396
814 => 0.0022152371375139
815 => 0.0022254267343486
816 => 0.0022190772613996
817 => 0.0022060543071376
818 => 0.0022310622292115
819 => 0.002237753294159
820 => 0.0022392511768437
821 => 0.0022835604199653
822 => 0.0022417275713199
823 => 0.0022517971537716
824 => 0.0023303571615707
825 => 0.002259114075037
826 => 0.0022968531268843
827 => 0.0022950059966809
828 => 0.0023143120185861
829 => 0.0022934223393841
830 => 0.0022936812919939
831 => 0.0023108237315425
901 => 0.0022867502668518
902 => 0.0022807893384484
903 => 0.0022725543585522
904 => 0.0022905351358849
905 => 0.0023013137986952
906 => 0.0023881819048911
907 => 0.0024443026631605
908 => 0.0024418663130361
909 => 0.0024641299925172
910 => 0.002454100000999
911 => 0.0024217105126087
912 => 0.0024769954198136
913 => 0.0024595009619552
914 => 0.0024609431838053
915 => 0.002460889504236
916 => 0.0024725217893198
917 => 0.0024642792492546
918 => 0.0024480323567069
919 => 0.0024588178021908
920 => 0.0024908467194107
921 => 0.0025902654612286
922 => 0.0026459015062729
923 => 0.0025869161014582
924 => 0.0026276034438534
925 => 0.0026032055367987
926 => 0.002598771711312
927 => 0.0026243263691072
928 => 0.0026499257569479
929 => 0.0026482951866116
930 => 0.0026297113455824
1001 => 0.0026192138053325
1002 => 0.0026987046970388
1003 => 0.0027572722319561
1004 => 0.0027532783187165
1005 => 0.002770906152866
1006 => 0.0028226620191374
1007 => 0.0028273939269236
1008 => 0.0028267978153042
1009 => 0.0028150692881325
1010 => 0.0028660296598252
1011 => 0.0029085416984537
1012 => 0.002812354472962
1013 => 0.002848981309246
1014 => 0.0028654242760969
1015 => 0.0028895674298423
1016 => 0.0029303009770733
1017 => 0.002974548413406
1018 => 0.0029808054860519
1019 => 0.0029763657935812
1020 => 0.0029471834198848
1021 => 0.0029955994927017
1022 => 0.0030239604926613
1023 => 0.0030408488191072
1024 => 0.0030836748050246
1025 => 0.0028655258222623
1026 => 0.0027111091295552
1027 => 0.0026869947331849
1028 => 0.0027360323064557
1029 => 0.0027489631234599
1030 => 0.0027437507273393
1031 => 0.002569940700746
1101 => 0.0026860796593657
1102 => 0.0028110354135995
1103 => 0.0028158354730179
1104 => 0.002878390936289
1105 => 0.0028987615593651
1106 => 0.0029491269066303
1107 => 0.0029459765404458
1108 => 0.0029582397010172
1109 => 0.0029554206127702
1110 => 0.0030487118129038
1111 => 0.0031516258605285
1112 => 0.0031480622743059
1113 => 0.0031332671623361
1114 => 0.0031552404265527
1115 => 0.003261458752641
1116 => 0.0032516798712888
1117 => 0.0032611792215593
1118 => 0.0033864166142199
1119 => 0.0035492430394901
1120 => 0.0034735938174463
1121 => 0.0036377308618041
1122 => 0.0037410464306965
1123 => 0.0039197200240666
1124 => 0.0038973492101907
1125 => 0.0039669055289223
1126 => 0.003857300784423
1127 => 0.0036056261362791
1128 => 0.0035657976598384
1129 => 0.0036455352782902
1130 => 0.0038415624325709
1201 => 0.0036393616856005
1202 => 0.0036802666333658
1203 => 0.0036684860056576
1204 => 0.0036678582660715
1205 => 0.0036918165328725
1206 => 0.0036570638172984
1207 => 0.0035154750021554
1208 => 0.0035803643217473
1209 => 0.0035553074392118
1210 => 0.0035831099184993
1211 => 0.0037331484325992
1212 => 0.0036668128290442
1213 => 0.0035969336593658
1214 => 0.0036845776455716
1215 => 0.0037961785577528
1216 => 0.0037891947732346
1217 => 0.0037756433122739
1218 => 0.0038520321881781
1219 => 0.0039782042313312
1220 => 0.0040123080275952
1221 => 0.0040374827527758
1222 => 0.0040409539220478
1223 => 0.0040767091228685
1224 => 0.0038844443965848
1225 => 0.0041895734549054
1226 => 0.0042422608142572
1227 => 0.0042323577743663
1228 => 0.0042909175568629
1229 => 0.0042736877833341
1230 => 0.0042487245447596
1231 => 0.0043415542560395
]
'min_raw' => 0.001600334857361
'max_raw' => 0.0043415542560395
'avg_raw' => 0.0029709445567003
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.00160033'
'max' => '$0.004341'
'avg' => '$0.00297'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00055191413343727
'max_diff' => 0.0020010288460211
'year' => 2032
]
7 => [
'items' => [
101 => 0.0042351324830285
102 => 0.0040840801743679
103 => 0.0040012098903608
104 => 0.0041103401652965
105 => 0.0041769822160779
106 => 0.004221028372414
107 => 0.0042343567127079
108 => 0.0038993693599787
109 => 0.003718829756108
110 => 0.0038345535722984
111 => 0.0039757446148818
112 => 0.0038836600732143
113 => 0.0038872696129086
114 => 0.0037559812558827
115 => 0.0039873607212941
116 => 0.0039536506793913
117 => 0.0041285384364152
118 => 0.0040868000696395
119 => 0.0042294142463888
120 => 0.0041918591541292
121 => 0.004347748242422
122 => 0.0044099366202706
123 => 0.0045143605855265
124 => 0.0045911752794508
125 => 0.0046362823369541
126 => 0.0046335742784139
127 => 0.0048123109124887
128 => 0.0047069161639572
129 => 0.0045745155201665
130 => 0.004572120810239
131 => 0.0046406929797898
201 => 0.0047844014353123
202 => 0.0048216629469563
203 => 0.0048424870486564
204 => 0.0048105942120105
205 => 0.0046961957661892
206 => 0.0046467990972968
207 => 0.0046888864903524
208 => 0.0046374172252563
209 => 0.0047262676165373
210 => 0.0048482781811855
211 => 0.0048230834820677
212 => 0.0049073055838181
213 => 0.0049944665987063
214 => 0.0051191107646425
215 => 0.0051516973651784
216 => 0.0052055617767067
217 => 0.0052610059497067
218 => 0.005278813123812
219 => 0.0053128125444205
220 => 0.0053126333506913
221 => 0.0054150928931202
222 => 0.0055281089413271
223 => 0.0055707698831976
224 => 0.005668866366691
225 => 0.0055008795764194
226 => 0.0056282994865335
227 => 0.0057432354349837
228 => 0.0056062040589885
301 => 0.0057950698865822
302 => 0.0058024031186885
303 => 0.0059131262170794
304 => 0.0058008871448812
305 => 0.0057342399420897
306 => 0.0059266479193106
307 => 0.0060197480786933
308 => 0.005991705553013
309 => 0.0057783005479557
310 => 0.0056540896816411
311 => 0.0053290058860091
312 => 0.0057140816845101
313 => 0.0059016408731449
314 => 0.0057778148149681
315 => 0.0058402654761808
316 => 0.0061809760340626
317 => 0.006310696555129
318 => 0.0062837155935621
319 => 0.0062882749319224
320 => 0.0063582697704959
321 => 0.0066686654315921
322 => 0.0064826691565481
323 => 0.0066248563396718
324 => 0.0067002719089065
325 => 0.0067703220925671
326 => 0.0065983009810847
327 => 0.006374504042538
328 => 0.0063036181577439
329 => 0.0057655027538273
330 => 0.0057374915101367
331 => 0.0057217679502256
401 => 0.0056226331291279
402 => 0.0055447403150579
403 => 0.0054827970573347
404 => 0.0053202394512464
405 => 0.0053750978713727
406 => 0.0051160149756771
407 => 0.0052817670310091
408 => 0.0048682644737037
409 => 0.0052126416907225
410 => 0.0050252128284098
411 => 0.0051510662685697
412 => 0.0051506271777731
413 => 0.0049188910925693
414 => 0.0047852305548324
415 => 0.0048704042516243
416 => 0.0049617172156817
417 => 0.0049765324368863
418 => 0.0050949220782988
419 => 0.0051279620824402
420 => 0.0050278493274014
421 => 0.0048596955523008
422 => 0.0048987538390774
423 => 0.0047844390398976
424 => 0.0045841067513901
425 => 0.0047279888984624
426 => 0.0047771165895243
427 => 0.00479881417664
428 => 0.0046018103792117
429 => 0.0045399075088992
430 => 0.0045069509401602
501 => 0.0048342648359206
502 => 0.0048521958299997
503 => 0.004760458329104
504 => 0.0051751205320593
505 => 0.0050812697046501
506 => 0.0051861240728772
507 => 0.004895209708942
508 => 0.0049063230294125
509 => 0.0047685995074161
510 => 0.004845715477045
511 => 0.004791212395275
512 => 0.0048394852687739
513 => 0.0048684198301126
514 => 0.0050061207530342
515 => 0.0052142140140702
516 => 0.0049855528270708
517 => 0.0048859218734067
518 => 0.0049477323567141
519 => 0.0051123418190522
520 => 0.0053617335806977
521 => 0.0052140886383266
522 => 0.0052796109565772
523 => 0.0052939246682299
524 => 0.0051850567538383
525 => 0.0053657476959889
526 => 0.005462581439818
527 => 0.0055619128240667
528 => 0.0056481594818077
529 => 0.0055222376848538
530 => 0.005656992057775
531 => 0.0055484038205495
601 => 0.0054509889461126
602 => 0.005451136684266
603 => 0.0053900269105275
604 => 0.0052716190235822
605 => 0.0052497827925265
606 => 0.0053633776240899
607 => 0.0054544699215332
608 => 0.0054619727194533
609 => 0.0055124060958091
610 => 0.0055422520484314
611 => 0.0058347829577348
612 => 0.0059524413093993
613 => 0.006096311714656
614 => 0.0061523573455952
615 => 0.0063210346012515
616 => 0.0061848140180122
617 => 0.0061553418379607
618 => 0.0057461859896482
619 => 0.005813185236888
620 => 0.0059204574961848
621 => 0.0057479548696932
622 => 0.0058573680815708
623 => 0.0058789685672842
624 => 0.005742093296454
625 => 0.0058152042926357
626 => 0.0056210431626767
627 => 0.0052184461961221
628 => 0.0053661959015011
629 => 0.0054749894166731
630 => 0.005319727656379
701 => 0.0055980283522463
702 => 0.0054354508310131
703 => 0.0053839215618794
704 => 0.0051828875114782
705 => 0.0052777678447574
706 => 0.0054060948540729
707 => 0.005326803681932
708 => 0.0054913447697538
709 => 0.0057243788316147
710 => 0.0058904527815151
711 => 0.0059032018772401
712 => 0.0057964274535446
713 => 0.0059675341489418
714 => 0.0059687804744164
715 => 0.0057757714230169
716 => 0.0056575544537136
717 => 0.0056306953095573
718 => 0.0056977947177052
719 => 0.0057792657864309
720 => 0.0059077229545445
721 => 0.0059853469308875
722 => 0.0061877490926142
723 => 0.0062425133142527
724 => 0.0063026825903589
725 => 0.0063830872987542
726 => 0.006479633766527
727 => 0.0062683955914337
728 => 0.0062767884779274
729 => 0.0060800864140721
730 => 0.0058698820489134
731 => 0.0060294009597249
801 => 0.0062379507156994
802 => 0.0061901091712518
803 => 0.0061847260201874
804 => 0.0061937789871162
805 => 0.0061577080249615
806 => 0.0059945603999881
807 => 0.0059126286840846
808 => 0.00601834150061
809 => 0.0060745231578571
810 => 0.006161656008692
811 => 0.0061509150456753
812 => 0.0063753599120409
813 => 0.0064625724002502
814 => 0.0064402597137335
815 => 0.0064443657850373
816 => 0.0066022598291287
817 => 0.0067778704795452
818 => 0.0069423530275266
819 => 0.007109671740023
820 => 0.0069079625015481
821 => 0.0068055469899468
822 => 0.0069112136555635
823 => 0.0068551454354213
824 => 0.0071773300592731
825 => 0.0071996374235945
826 => 0.0075217987498309
827 => 0.0078275682106863
828 => 0.0076355198907519
829 => 0.0078166128064038
830 => 0.0080124795594033
831 => 0.0083903383041747
901 => 0.0082630887721666
902 => 0.0081656176249028
903 => 0.0080735078617156
904 => 0.008265173656895
905 => 0.0085117486404573
906 => 0.0085648585302508
907 => 0.0086509168412557
908 => 0.0085604370499437
909 => 0.0086694099925569
910 => 0.009054132365119
911 => 0.0089501769840144
912 => 0.0088025436311845
913 => 0.0091062449951928
914 => 0.0092161533382182
915 => 0.009987547649017
916 => 0.01096146483111
917 => 0.010558256722638
918 => 0.010307972438266
919 => 0.010366795181916
920 => 0.010722436767639
921 => 0.010836657557474
922 => 0.010526166076436
923 => 0.010635836916594
924 => 0.011240134028465
925 => 0.01156432004081
926 => 0.011124031892054
927 => 0.0099092943517178
928 => 0.0087892508630536
929 => 0.009086336832463
930 => 0.0090526565031829
1001 => 0.0097018983622877
1002 => 0.0089476976825554
1003 => 0.0089603964877466
1004 => 0.0096230639809386
1005 => 0.0094462756547519
1006 => 0.0091599012076675
1007 => 0.0087913417134383
1008 => 0.0081100254007285
1009 => 0.0075065645426505
1010 => 0.0086900902540771
1011 => 0.0086390544732985
1012 => 0.0085651470996522
1013 => 0.008729619962089
1014 => 0.0095282534956456
1015 => 0.0095098424077727
1016 => 0.0093927204601445
1017 => 0.009481556425155
1018 => 0.0091443278334856
1019 => 0.0092312393201111
1020 => 0.0087890734424425
1021 => 0.0089889508856269
1022 => 0.0091592867767214
1023 => 0.0091934842287246
1024 => 0.0092705328342529
1025 => 0.008612160935912
1026 => 0.0089077505894837
1027 => 0.009081381817952
1028 => 0.008296909610974
1029 => 0.0090658753246905
1030 => 0.0086007001459072
1031 => 0.0084428127035314
1101 => 0.0086553873446016
1102 => 0.0085725468002409
1103 => 0.0085013253647596
1104 => 0.0084615825800214
1105 => 0.0086176739354164
1106 => 0.0086103920871177
1107 => 0.008354996333665
1108 => 0.0080218429845487
1109 => 0.008133660183898
1110 => 0.0080930359470826
1111 => 0.0079458084722325
1112 => 0.0080450220139684
1113 => 0.0076081357869882
1114 => 0.006856495740839
1115 => 0.0073530521786824
1116 => 0.0073339352959749
1117 => 0.0073242956968322
1118 => 0.0076974441360596
1119 => 0.0076615745236271
1120 => 0.0075964708258259
1121 => 0.0079446127917675
1122 => 0.0078175362910286
1123 => 0.0082091561233168
1124 => 0.0084671022732445
1125 => 0.008401678785939
1126 => 0.0086442783867079
1127 => 0.008136236226332
1128 => 0.0083049874528953
1129 => 0.0083397668468109
1130 => 0.0079403167739484
1201 => 0.0076674432358281
1202 => 0.0076492456818215
1203 => 0.0071761205710107
1204 => 0.0074288601862734
1205 => 0.0076512605886286
1206 => 0.0075447480548689
1207 => 0.007511029368652
1208 => 0.0076832908238434
1209 => 0.0076966770142313
1210 => 0.0073914704547809
1211 => 0.0074549325631254
1212 => 0.0077195801046196
1213 => 0.0074482641240954
1214 => 0.0069211414931508
1215 => 0.006790407792636
1216 => 0.0067729655070871
1217 => 0.0064184053426704
1218 => 0.0067991440436319
1219 => 0.0066329413974994
1220 => 0.0071579735652185
1221 => 0.0068580780068213
1222 => 0.0068451501086925
1223 => 0.0068256076945604
1224 => 0.006520423114351
1225 => 0.006587239141925
1226 => 0.0068093457939492
1227 => 0.006888595949602
1228 => 0.0068803295090901
1229 => 0.0068082573501845
1230 => 0.0068412516154623
1231 => 0.0067349655910384
]
'min_raw' => 0.003718829756108
'max_raw' => 0.01156432004081
'avg_raw' => 0.0076415748984592
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.003718'
'max' => '$0.011564'
'avg' => '$0.007641'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.002118494898747
'max_diff' => 0.0072227657847709
'year' => 2033
]
8 => [
'items' => [
101 => 0.006697433783662
102 => 0.0065789730756452
103 => 0.0064048685604664
104 => 0.0064290788611471
105 => 0.0060841322596533
106 => 0.0058961870434577
107 => 0.0058441662846929
108 => 0.0057746019519755
109 => 0.005852023761177
110 => 0.0060831550692716
111 => 0.0058043616744671
112 => 0.0053263899541577
113 => 0.0053551168689725
114 => 0.0054196577174637
115 => 0.0052993862732807
116 => 0.0051855594449787
117 => 0.0052845226371248
118 => 0.0050819997182399
119 => 0.0054441316446463
120 => 0.0054343369909
121 => 0.0055693173789762
122 => 0.0056537233857167
123 => 0.0054591948669491
124 => 0.0054102714705401
125 => 0.0054381404605791
126 => 0.0049775281341776
127 => 0.0055316755250409
128 => 0.0055364678146886
129 => 0.0054954333212419
130 => 0.0057904996994954
131 => 0.0064131817911216
201 => 0.0061789037409228
202 => 0.0060881841987942
203 => 0.0059157262828922
204 => 0.0061455162162938
205 => 0.0061278719346899
206 => 0.0060480778018822
207 => 0.0059998180613872
208 => 0.0060887381129736
209 => 0.005988799882961
210 => 0.0059708482307318
211 => 0.0058620807498133
212 => 0.0058232557077305
213 => 0.0057945111922418
214 => 0.0057628663050665
215 => 0.0058326670407606
216 => 0.0056744893906262
217 => 0.0054837426509105
218 => 0.0054678841234114
219 => 0.0055116709121323
220 => 0.0054922985176663
221 => 0.0054677913758398
222 => 0.00542100056797
223 => 0.0054071187348025
224 => 0.005452227958089
225 => 0.0054013022750297
226 => 0.0054764458944492
227 => 0.0054560109878532
228 => 0.0053418632607536
301 => 0.0051995929298862
302 => 0.0051983264255194
303 => 0.0051676745161041
304 => 0.0051286347009183
305 => 0.0051177747174436
306 => 0.0052761882331131
307 => 0.0056040994696313
308 => 0.0055397226476519
309 => 0.0055862414991341
310 => 0.0058150682070269
311 => 0.0058878053364069
312 => 0.0058361782448463
313 => 0.0057655078976979
314 => 0.0057686170343143
315 => 0.0060101190038894
316 => 0.0060251811854995
317 => 0.0060632384591841
318 => 0.0061121528108532
319 => 0.0058445085704472
320 => 0.0057560110146601
321 => 0.0057140759630707
322 => 0.0055849322350827
323 => 0.0057242026737713
324 => 0.0056430557533022
325 => 0.005654005245247
326 => 0.0056468743742537
327 => 0.0056507683120034
328 => 0.0054440304213926
329 => 0.0055193548429075
330 => 0.0053941133827271
331 => 0.0052264291265592
401 => 0.0052258669901349
402 => 0.0052669074742738
403 => 0.0052424949883937
404 => 0.0051768016165925
405 => 0.0051861330499929
406 => 0.00510437987441
407 => 0.0051960593656977
408 => 0.0051986884054629
409 => 0.0051633868075014
410 => 0.0053046317131621
411 => 0.0053624998662561
412 => 0.0053392635982444
413 => 0.0053608695477492
414 => 0.0055423977952491
415 => 0.0055719948202242
416 => 0.0055851398636485
417 => 0.0055675272468445
418 => 0.0053641875508774
419 => 0.0053732065310607
420 => 0.0053070312386631
421 => 0.0052511200899676
422 => 0.0052533562427001
423 => 0.0052821018410701
424 => 0.0054076355550592
425 => 0.0056718138555324
426 => 0.0056818392289236
427 => 0.0056939902739344
428 => 0.0056445658672494
429 => 0.0056296589932654
430 => 0.005649325007841
501 => 0.0057485364876636
502 => 0.0060037353494213
503 => 0.0059135310275173
504 => 0.0058401935096953
505 => 0.005904530284478
506 => 0.0058946261422885
507 => 0.0058110252150329
508 => 0.0058086788154463
509 => 0.0056482219072095
510 => 0.0055889046416614
511 => 0.005539334694749
512 => 0.0054852056067769
513 => 0.0054531160690036
514 => 0.0055024201834575
515 => 0.0055136966177822
516 => 0.0054058923098403
517 => 0.0053911989810184
518 => 0.0054792343060014
519 => 0.0054404932417641
520 => 0.0054803393870643
521 => 0.0054895840345679
522 => 0.0054880954333975
523 => 0.0054476453129509
524 => 0.0054734270134836
525 => 0.0054124456058289
526 => 0.0053461374841156
527 => 0.0053038370336046
528 => 0.0052669242801931
529 => 0.0052874056211676
530 => 0.0052143933803386
531 => 0.0051910352950513
601 => 0.0054646927534497
602 => 0.0056668464602821
603 => 0.0056639070653231
604 => 0.0056460142544612
605 => 0.0056194291669446
606 => 0.0057465916229235
607 => 0.005702290765954
608 => 0.0057345233408597
609 => 0.0057427278839702
610 => 0.0057675605649151
611 => 0.0057764361139119
612 => 0.0057496080403785
613 => 0.0056595697488273
614 => 0.0054352028868656
615 => 0.0053307595069556
616 => 0.0052962914519432
617 => 0.0052975443002788
618 => 0.0052629851502232
619 => 0.005273164368747
620 => 0.0052594452334317
621 => 0.0052334645101598
622 => 0.0052858013847173
623 => 0.0052918327219583
624 => 0.0052796166700575
625 => 0.0052824939925077
626 => 0.0051813503003132
627 => 0.0051890400355582
628 => 0.0051462226125497
629 => 0.0051381948619073
630 => 0.0050299561450815
701 => 0.0048381955687716
702 => 0.0049444495426968
703 => 0.0048161096837648
704 => 0.004767505434521
705 => 0.0049975903909294
706 => 0.0049744962428693
707 => 0.0049349691001752
708 => 0.0048765002179524
709 => 0.0048548135407872
710 => 0.0047230521554993
711 => 0.0047152669899368
712 => 0.0047805714903422
713 => 0.0047504357103958
714 => 0.0047081136620386
715 => 0.0045548274930064
716 => 0.0043824830877077
717 => 0.0043876850819853
718 => 0.0044425046307292
719 => 0.0046018998621253
720 => 0.0045396213876534
721 => 0.0044944376398608
722 => 0.0044859760821177
723 => 0.0045918901927434
724 => 0.0047417808489708
725 => 0.0048121061912584
726 => 0.0047424159128638
727 => 0.0046623594734352
728 => 0.0046672321379574
729 => 0.0046996477920314
730 => 0.004703054218942
731 => 0.0046509457068089
801 => 0.004665613947747
802 => 0.0046433315484699
803 => 0.0045065845052369
804 => 0.0045041111848543
805 => 0.004470551255101
806 => 0.0044695350737656
807 => 0.0044124412613384
808 => 0.0044044534423089
809 => 0.0042910902123879
810 => 0.0043657062336174
811 => 0.0043156577240936
812 => 0.0042402228149913
813 => 0.0042272178082289
814 => 0.0042268268620217
815 => 0.0043042816467327
816 => 0.0043648011293616
817 => 0.0043165283393444
818 => 0.0043055375607861
819 => 0.0044228903215664
820 => 0.004407956113063
821 => 0.0043950231848143
822 => 0.0047283597847208
823 => 0.0044644978553155
824 => 0.0043494389933824
825 => 0.004207031802655
826 => 0.0042534003020352
827 => 0.0042631708261496
828 => 0.0039207072032756
829 => 0.0037817697541267
830 => 0.0037340916573262
831 => 0.0037066522385481
901 => 0.0037191567262478
902 => 0.0035940967262764
903 => 0.0036781391145587
904 => 0.0035698477256421
905 => 0.0035516923218796
906 => 0.0037453307399912
907 => 0.0037722743946522
908 => 0.003657324393131
909 => 0.0037311409028225
910 => 0.0037043740102821
911 => 0.00357170407069
912 => 0.0035666370548516
913 => 0.0035000679427381
914 => 0.0033959001726006
915 => 0.0033482927064534
916 => 0.0033234983247369
917 => 0.003333728969866
918 => 0.0033285560426258
919 => 0.0032947991932809
920 => 0.0033304909457159
921 => 0.0032393132670948
922 => 0.0032030055807994
923 => 0.0031866062412317
924 => 0.0031056808034641
925 => 0.0032344691626579
926 => 0.003259842091852
927 => 0.0032852650135548
928 => 0.0035065541900117
929 => 0.0034954992081126
930 => 0.0035954308604856
1001 => 0.0035915477002369
1002 => 0.0035630455741947
1003 => 0.0034427997927948
1004 => 0.0034907276180858
1005 => 0.0033432132214777
1006 => 0.0034537410374205
1007 => 0.0034033007579761
1008 => 0.003436687128202
1009 => 0.0033766554242083
1010 => 0.0034098794478467
1011 => 0.0032658589546376
1012 => 0.003131374644502
1013 => 0.0031854950567423
1014 => 0.0032443301342674
1015 => 0.0033718995732408
1016 => 0.0032959202678133
1017 => 0.0033232452991406
1018 => 0.003231711018349
1019 => 0.0030428496516011
1020 => 0.0030439185864266
1021 => 0.003014866379721
1022 => 0.0029897610314357
1023 => 0.0033046474050275
1024 => 0.0032654863068544
1025 => 0.0032030882221934
1026 => 0.0032866105381135
1027 => 0.0033086951641201
1028 => 0.0033093238823752
1029 => 0.0033702596080474
1030 => 0.003402781015762
1031 => 0.0034085130548276
1101 => 0.0035043967357763
1102 => 0.003536535680894
1103 => 0.00366891144736
1104 => 0.0034000218015319
1105 => 0.0033944841962238
1106 => 0.0032877858683813
1107 => 0.0032201161020298
1108 => 0.0032924192751774
1109 => 0.0033564700162188
1110 => 0.0032897761034462
1111 => 0.003298484920469
1112 => 0.0032089537916647
1113 => 0.0032409569573811
1114 => 0.003268522394988
1115 => 0.003253302380563
1116 => 0.0032305172823117
1117 => 0.0033512185858785
1118 => 0.003344408145299
1119 => 0.0034568079740913
1120 => 0.0035444316784238
1121 => 0.0037014690211984
1122 => 0.0035375923674713
1123 => 0.0035316200508588
1124 => 0.0035900004037359
1125 => 0.0035365267431662
1126 => 0.0035703202507982
1127 => 0.0036960243646733
1128 => 0.0036986802945175
1129 => 0.0036541900476543
1130 => 0.0036514828120894
1201 => 0.0036600276506695
1202 => 0.003710075037126
1203 => 0.0036925869424972
1204 => 0.003712824608346
1205 => 0.0037381321193801
1206 => 0.0038428147151792
1207 => 0.0038680533346251
1208 => 0.0038067365740954
1209 => 0.0038122727910366
1210 => 0.0037893386394158
1211 => 0.0037671845363141
1212 => 0.0038169837247397
1213 => 0.0039079927203929
1214 => 0.0039074265581543
1215 => 0.0039285388761837
1216 => 0.0039416916754122
1217 => 0.0038852302326861
1218 => 0.0038484759096163
1219 => 0.0038625698558196
1220 => 0.0038851063827249
1221 => 0.0038552615638839
1222 => 0.0036710455165321
1223 => 0.003726924897532
1224 => 0.0037176238361715
1225 => 0.0037043779937464
1226 => 0.0037605651434442
1227 => 0.0037551457557864
1228 => 0.003592814055218
1229 => 0.0036032060040044
1230 => 0.0035934460240429
1231 => 0.0036249825160027
]
'min_raw' => 0.0029897610314357
'max_raw' => 0.006697433783662
'avg_raw' => 0.0048435974075488
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.002989'
'max' => '$0.006697'
'avg' => '$0.004843'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00072906872467237
'max_diff' => -0.0048668862571485
'year' => 2034
]
9 => [
'items' => [
101 => 0.0035348236691064
102 => 0.0035625559231826
103 => 0.0035799493329655
104 => 0.00359019418495
105 => 0.0036272056152791
106 => 0.0036228627511143
107 => 0.003626935656745
108 => 0.0036818138372676
109 => 0.0039593688424337
110 => 0.0039744755489743
111 => 0.0039000846009501
112 => 0.0039298023173892
113 => 0.0038727508003763
114 => 0.003911049865959
115 => 0.0039372531139399
116 => 0.003818845674909
117 => 0.0038118343548276
118 => 0.0037545473659096
119 => 0.0037853301488532
120 => 0.0037363525278295
121 => 0.0037483699228642
122 => 0.0037147682386894
123 => 0.0037752445801756
124 => 0.0038428665270305
125 => 0.0038599505012777
126 => 0.0038150099201467
127 => 0.0037824699776793
128 => 0.00372534055803
129 => 0.003820348056119
130 => 0.0038481311438613
131 => 0.0038202021233867
201 => 0.0038137303590816
202 => 0.0038014663774177
203 => 0.0038163322207672
204 => 0.0038479798311987
205 => 0.0038330554025588
206 => 0.0038429132506101
207 => 0.0038053452992075
208 => 0.003885248923773
209 => 0.0040121551094376
210 => 0.0040125631335758
211 => 0.0039976386244876
212 => 0.0039915318369218
213 => 0.0040068452889412
214 => 0.004015152208471
215 => 0.0040646731042948
216 => 0.0041178109985132
217 => 0.0043657823649511
218 => 0.0042961529975288
219 => 0.0045161679457151
220 => 0.004690171204365
221 => 0.0047423471733938
222 => 0.0046943477369563
223 => 0.0045301442577825
224 => 0.0045220876517202
225 => 0.0047674769745266
226 => 0.0046981432512908
227 => 0.00468989622553
228 => 0.0046021618050047
301 => 0.0046540237136545
302 => 0.0046426807534645
303 => 0.004624775335888
304 => 0.0047237242448599
305 => 0.0049089477692253
306 => 0.0048800789459377
307 => 0.0048585297085397
308 => 0.0047641072231505
309 => 0.0048209706493804
310 => 0.0048007226724471
311 => 0.0048877208310363
312 => 0.0048361850491332
313 => 0.0046976179801457
314 => 0.004719685242605
315 => 0.0047163498202774
316 => 0.0047849925754279
317 => 0.0047643877241497
318 => 0.0047123263923693
319 => 0.0049083146953554
320 => 0.0048955883051037
321 => 0.0049136314168227
322 => 0.0049215745526032
323 => 0.0050408691789296
324 => 0.0050897403703332
325 => 0.0051008349863925
326 => 0.0051472588383923
327 => 0.0050996799186636
328 => 0.0052900295207735
329 => 0.0054166008989694
330 => 0.0055636200680476
331 => 0.005778454589098
401 => 0.0058592343563434
402 => 0.0058446422144222
403 => 0.0060075272964101
404 => 0.0063002281680104
405 => 0.0059038054292108
406 => 0.0063212395357564
407 => 0.0061890847171326
408 => 0.0058757480195391
409 => 0.0058555728302111
410 => 0.0060677680797353
411 => 0.0065383967201439
412 => 0.0064205095835474
413 => 0.0065385895412675
414 => 0.0064008429984008
415 => 0.0063940027215284
416 => 0.0065318994991365
417 => 0.0068541028363798
418 => 0.006701036108467
419 => 0.0064815774205025
420 => 0.0066436223005401
421 => 0.0065032440289059
422 => 0.0061869324935097
423 => 0.0064204194374758
424 => 0.006264293367371
425 => 0.0063098592547459
426 => 0.006638013032106
427 => 0.0065985287014269
428 => 0.0066496250814763
429 => 0.0065594413081142
430 => 0.0064751954431182
501 => 0.0063179442799231
502 => 0.0062713899628897
503 => 0.0062842559012689
504 => 0.0062713835871696
505 => 0.0061834030065748
506 => 0.006164403608572
507 => 0.0061327371128514
508 => 0.0061425518839994
509 => 0.0060830096076845
510 => 0.0061953781851527
511 => 0.0062162347833194
512 => 0.006298007263239
513 => 0.0063064971533741
514 => 0.006534232345992
515 => 0.0064087996288325
516 => 0.0064929507248429
517 => 0.0064854234587549
518 => 0.005882538975896
519 => 0.0059656111383391
520 => 0.0060948453536199
521 => 0.0060366255148088
522 => 0.0059543162840739
523 => 0.0058878471671138
524 => 0.0057871396581031
525 => 0.0059288835431193
526 => 0.0061152616791339
527 => 0.0063112240104742
528 => 0.0065466599116189
529 => 0.0064941133592594
530 => 0.0063068227000681
531 => 0.0063152244222235
601 => 0.0063671605626324
602 => 0.0062998985419069
603 => 0.0062800616588843
604 => 0.0063644352795212
605 => 0.0063650163142756
606 => 0.0062876232305441
607 => 0.0062016149807614
608 => 0.0062012546030544
609 => 0.0061859502657467
610 => 0.0064035656060091
611 => 0.0065232320397608
612 => 0.0065369516035384
613 => 0.0065223086038068
614 => 0.0065279441132436
615 => 0.0064583128521134
616 => 0.006617469266548
617 => 0.0067635269313712
618 => 0.0067243803571317
619 => 0.0066656940773333
620 => 0.0066189476287596
621 => 0.0067133683794713
622 => 0.0067091639720741
623 => 0.0067622512450869
624 => 0.0067598428997361
625 => 0.0067419916465352
626 => 0.0067243809946562
627 => 0.0067942052387388
628 => 0.0067740969777861
629 => 0.00675395748315
630 => 0.006713564643455
701 => 0.0067190547012236
702 => 0.0066603785544388
703 => 0.0066332322840983
704 => 0.0062250175111878
705 => 0.0061159291850636
706 => 0.0061502505931599
707 => 0.0061615500918602
708 => 0.0061140747125304
709 => 0.006182142211065
710 => 0.0061715339635197
711 => 0.0062128044491011
712 => 0.006187020441466
713 => 0.0061880786261332
714 => 0.006263903894858
715 => 0.0062859162929526
716 => 0.0062747206096199
717 => 0.0062825616824606
718 => 0.0064632558965641
719 => 0.0064375669575943
720 => 0.0064239202207661
721 => 0.006427700460131
722 => 0.0064738717059621
723 => 0.0064867971339382
724 => 0.0064320311873496
725 => 0.0064578591243589
726 => 0.0065678312020916
727 => 0.0066063152054175
728 => 0.0067291376706641
729 => 0.0066769605044321
730 => 0.0067727339512259
731 => 0.0070671088750958
801 => 0.0073022759334784
802 => 0.0070860065879
803 => 0.0075178609422755
804 => 0.0078541215029845
805 => 0.0078412152625933
806 => 0.0077825804559867
807 => 0.007399756747569
808 => 0.007047476663503
809 => 0.0073421739124267
810 => 0.0073429251563192
811 => 0.0073176104012826
812 => 0.0071603826318886
813 => 0.0073121392157186
814 => 0.0073241851022441
815 => 0.0073174426090496
816 => 0.0071968964468953
817 => 0.0070128447379403
818 => 0.0070488080013126
819 => 0.007107716560347
820 => 0.006996190368482
821 => 0.0069605509925709
822 => 0.0070268113730584
823 => 0.0072403161248876
824 => 0.0071999542883031
825 => 0.0071989002776349
826 => 0.0073715853306258
827 => 0.0072479801004512
828 => 0.007049261613234
829 => 0.0069990825744368
830 => 0.0068209807913577
831 => 0.0069439963273072
901 => 0.0069484234374457
902 => 0.0068810490855945
903 => 0.0070547286705655
904 => 0.0070531281826143
905 => 0.0072180110997495
906 => 0.0075332053101164
907 => 0.0074399868723458
908 => 0.0073315839713558
909 => 0.0073433703723798
910 => 0.0074726381002968
911 => 0.007394479881103
912 => 0.0074225861216636
913 => 0.0074725955581355
914 => 0.0075027674928235
915 => 0.0073390290952979
916 => 0.0073008538423218
917 => 0.0072227606724257
918 => 0.0072023876220779
919 => 0.0072659928794908
920 => 0.0072492351413694
921 => 0.0069480513559812
922 => 0.0069165759746374
923 => 0.0069175412796467
924 => 0.0068383949366848
925 => 0.0067176777663692
926 => 0.007034915282311
927 => 0.0070094366700447
928 => 0.0069813102539906
929 => 0.0069847555794702
930 => 0.0071224576329635
1001 => 0.007042583487817
1002 => 0.0072549419938039
1003 => 0.007211287469054
1004 => 0.0071665133704679
1005 => 0.0071603242261909
1006 => 0.0071430900181818
1007 => 0.0070839875063523
1008 => 0.0070126176718078
1009 => 0.0069654931250924
1010 => 0.0064252992133242
1011 => 0.0065255560611849
1012 => 0.0066408924259495
1013 => 0.0066807060768848
1014 => 0.0066126020719392
1015 => 0.0070866766675663
1016 => 0.0071732946644839
1017 => 0.0069109231018685
1018 => 0.0068618440950635
1019 => 0.0070898942790817
1020 => 0.0069523521401175
1021 => 0.0070142873568713
1022 => 0.006880417295002
1023 => 0.0071524309254975
1024 => 0.0071503586373806
1025 => 0.0070445391914113
1026 => 0.0071339770625242
1027 => 0.0071184350314604
1028 => 0.006998965137583
1029 => 0.007156218334228
1030 => 0.0071562963298516
1031 => 0.0070544474138194
1101 => 0.0069355101774884
1102 => 0.0069142470088045
1103 => 0.006898228067506
1104 => 0.0070103476792908
1105 => 0.0071108737726281
1106 => 0.0072979279097969
1107 => 0.0073449577641778
1108 => 0.0075285184167812
1109 => 0.0074192169855619
1110 => 0.0074676688943309
1111 => 0.0075202702952407
1112 => 0.0075454893411893
1113 => 0.0075043962591446
1114 => 0.0077895415092166
1115 => 0.0078136165049474
1116 => 0.007821688642768
1117 => 0.0077255392687954
1118 => 0.0078109424169243
1119 => 0.0077709851121698
1120 => 0.007874942918682
1121 => 0.0078912448301431
1122 => 0.0078774376910929
1123 => 0.0078826121750988
1124 => 0.0076392910072314
1125 => 0.0076266735210561
1126 => 0.0074546332017594
1127 => 0.0075247409035306
1128 => 0.0073936779154189
1129 => 0.0074352393390475
1130 => 0.0074535592185712
1201 => 0.0074439899531521
1202 => 0.0075287046878001
1203 => 0.0074566798572724
1204 => 0.0072665944875313
1205 => 0.0070764573291584
1206 => 0.0070740703120174
1207 => 0.0070240105544174
1208 => 0.0069878265185746
1209 => 0.0069947968475756
1210 => 0.0070193611961293
1211 => 0.0069863987939811
1212 => 0.0069934329937156
1213 => 0.0071102475779363
1214 => 0.0071336739097183
1215 => 0.0070540620810645
1216 => 0.0067344091010875
1217 => 0.0066559654580123
1218 => 0.0067123491930497
1219 => 0.0066854013992794
1220 => 0.0053956407034044
1221 => 0.0056986508476094
1222 => 0.005518612509175
1223 => 0.0056015824586913
1224 => 0.0054178099358515
1225 => 0.0055055158160938
1226 => 0.005489319742519
1227 => 0.0059765510876786
1228 => 0.0059689436403887
1229 => 0.0059725849228292
1230 => 0.0057987770246329
1231 => 0.0060756577258584
]
'min_raw' => 0.0035348236691064
'max_raw' => 0.0078912448301431
'avg_raw' => 0.0057130342496247
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.003534'
'max' => '$0.007891'
'avg' => '$0.005713'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00054506263767074
'max_diff' => 0.001193811046481
'year' => 2035
]
10 => [
'items' => [
101 => 0.00621205911559
102 => 0.0061868148485561
103 => 0.0061931682867021
104 => 0.0060839951694054
105 => 0.0059736419572453
106 => 0.0058512432617221
107 => 0.0060786449090682
108 => 0.0060533617277589
109 => 0.0061113522490809
110 => 0.0062588384723903
111 => 0.0062805563790183
112 => 0.0063097454657676
113 => 0.0062992832559886
114 => 0.0065485355384064
115 => 0.0065183494423861
116 => 0.0065910892486625
117 => 0.0064414579483696
118 => 0.0062721359289547
119 => 0.0063043185092916
120 => 0.0063012190680092
121 => 0.006261759623111
122 => 0.0062261374006079
123 => 0.0061668364366392
124 => 0.0063544734615275
125 => 0.0063468557409825
126 => 0.0064701777819749
127 => 0.0064483794133431
128 => 0.0063028045726542
129 => 0.0063080038065687
130 => 0.0063429711533097
131 => 0.0064639935396307
201 => 0.0064999212237232
202 => 0.0064832780889809
203 => 0.0065226711544272
204 => 0.0065538058271713
205 => 0.006526581189966
206 => 0.0069120246411139
207 => 0.0067519616471736
208 => 0.006829975236709
209 => 0.0068485810181304
210 => 0.0068009227002569
211 => 0.0068112580828872
212 => 0.006826913371349
213 => 0.0069219692172693
214 => 0.0071714232615947
215 => 0.0072819047597354
216 => 0.0076142937979525
217 => 0.0072727308092915
218 => 0.0072524638750725
219 => 0.0073123371780427
220 => 0.0075074847304292
221 => 0.0076656334923609
222 => 0.0077181005605145
223 => 0.0077250349497079
224 => 0.007823466657509
225 => 0.0078798858767779
226 => 0.007811514459171
227 => 0.007753576841535
228 => 0.0075460514866447
229 => 0.007570073111546
301 => 0.007735558286017
302 => 0.0079693158419854
303 => 0.0081699041433348
304 => 0.0080996651114104
305 => 0.0086355393439652
306 => 0.0086886690852731
307 => 0.0086813282729145
308 => 0.0088023657303794
309 => 0.0085621310261611
310 => 0.0084594260357796
311 => 0.0077661036120878
312 => 0.0079608989328911
313 => 0.0082440453716066
314 => 0.008206569878698
315 => 0.0080009413663767
316 => 0.0081697481556691
317 => 0.0081139353520527
318 => 0.0080699134781651
319 => 0.0082715862165044
320 => 0.0080498387564408
321 => 0.0082418332710645
322 => 0.0079955983201307
323 => 0.0080999859573917
324 => 0.0080407304858204
325 => 0.0080790760380045
326 => 0.0078549087234648
327 => 0.0079758639650365
328 => 0.0078498765877515
329 => 0.0078498168533306
330 => 0.0078470356749942
331 => 0.0079952592656564
401 => 0.0080000928316265
402 => 0.0078905553741737
403 => 0.0078747693152581
404 => 0.0079331386488776
405 => 0.0078648034461619
406 => 0.0078967770574159
407 => 0.0078657718942747
408 => 0.007858791978983
409 => 0.0078031748264038
410 => 0.0077792134278472
411 => 0.0077886093096304
412 => 0.0077565363211952
413 => 0.0077372111855324
414 => 0.0078431914191043
415 => 0.0077865704555372
416 => 0.0078345134443787
417 => 0.0077798763577063
418 => 0.0075904804110542
419 => 0.0074815567993088
420 => 0.0071238054130965
421 => 0.0072252632624371
422 => 0.0072925299215156
423 => 0.0072702982910914
424 => 0.0073180604357415
425 => 0.0073209926435149
426 => 0.0073054646834118
427 => 0.0072874852948672
428 => 0.0072787339228462
429 => 0.0073439594800258
430 => 0.0073818251113598
501 => 0.007299281030666
502 => 0.0072799421074738
503 => 0.0073633987304389
504 => 0.0074143072222363
505 => 0.0077901869226578
506 => 0.0077623405403751
507 => 0.0078322294953281
508 => 0.0078243610715338
509 => 0.0078976158305081
510 => 0.0080173564016601
511 => 0.0077738903405179
512 => 0.0078161476303092
513 => 0.0078057871187157
514 => 0.0079189004676215
515 => 0.0079192535951501
516 => 0.0078514364920502
517 => 0.0078882012438475
518 => 0.0078676801679824
519 => 0.0079047645256603
520 => 0.0077619686349626
521 => 0.0079358786159685
522 => 0.0080344743686872
523 => 0.0080358433708094
524 => 0.0080825769750938
525 => 0.0081300610236746
526 => 0.0082212025199363
527 => 0.008127519136811
528 => 0.007958991850462
529 => 0.0079711589761965
530 => 0.0078723514898718
531 => 0.007874012461568
601 => 0.0078651460644812
602 => 0.0078917547895698
603 => 0.0077678077537811
604 => 0.0077968978753389
605 => 0.0077561715348065
606 => 0.0078160590991986
607 => 0.0077516299796817
608 => 0.0078057821225633
609 => 0.007829152392259
610 => 0.0079153891905621
611 => 0.0077388927344553
612 => 0.007379004512694
613 => 0.0074546573801311
614 => 0.0073427608467871
615 => 0.0073531172969682
616 => 0.0073740389745509
617 => 0.0073062249723584
618 => 0.0073191617469119
619 => 0.0073186995542902
620 => 0.0073147166279727
621 => 0.0072970755869014
622 => 0.0072714925871744
623 => 0.0073734073840547
624 => 0.0073907246939849
625 => 0.0074292189287987
626 => 0.0075437516607158
627 => 0.0075323071399295
628 => 0.0075509736281606
629 => 0.0075102247891599
630 => 0.0073550075187389
701 => 0.0073634365632956
702 => 0.0072583262426076
703 => 0.0074265310215785
704 => 0.0073866979097236
705 => 0.007361017243381
706 => 0.0073540100356397
707 => 0.0074688266720461
708 => 0.0075031816091892
709 => 0.0074817739178357
710 => 0.0074378661183076
711 => 0.0075221820735772
712 => 0.0075447414662028
713 => 0.0075497916822533
714 => 0.0076991833890102
715 => 0.0075581410191261
716 => 0.0075920913193978
717 => 0.0078569618705769
718 => 0.0076167608302951
719 => 0.0077440006784548
720 => 0.0077377729500116
721 => 0.0078028645507684
722 => 0.0077324335388681
723 => 0.0077333066156714
724 => 0.0077911035474565
725 => 0.0077099381804959
726 => 0.0076898404942053
727 => 0.0076620756845373
728 => 0.0077226991306922
729 => 0.0077590401448995
730 => 0.0080519220298762
731 => 0.0082411370846078
801 => 0.0082329227600627
802 => 0.0083079863098338
803 => 0.0082741694931586
804 => 0.008164966071689
805 => 0.0083513629961991
806 => 0.0082923792101055
807 => 0.0082972417617658
808 => 0.0082970607773501
809 => 0.0083362798386503
810 => 0.0083084895393449
811 => 0.0082537120067984
812 => 0.0082900758892632
813 => 0.0083980636198577
814 => 0.0087332608490914
815 => 0.0089208416593432
816 => 0.0087219682487808
817 => 0.0088591484643657
818 => 0.0087768892173234
819 => 0.0087619402651352
820 => 0.0088480995780608
821 => 0.008934409701458
822 => 0.0089289121197265
823 => 0.008866255402214
824 => 0.0088308622123465
825 => 0.0090988713036115
826 => 0.0092963358366398
827 => 0.0092828700793062
828 => 0.0093423035528774
829 => 0.0095168020694906
830 => 0.0095327560269631
831 => 0.0095307461950191
901 => 0.0094912026468002
902 => 0.0096630190979016
903 => 0.0098063514042333
904 => 0.0094820494579105
905 => 0.009605539393646
906 => 0.0096609780043949
907 => 0.0097423783328689
908 => 0.0098797143312837
909 => 0.010028897652137
910 => 0.010049993809417
911 => 0.010035025076283
912 => 0.0099366346659171
913 => 0.010099872835722
914 => 0.010195493927187
915 => 0.010252434098905
916 => 0.01039682490044
917 => 0.0096613203743813
918 => 0.0091406937138901
919 => 0.0090593903429143
920 => 0.0092247239448908
921 => 0.0092683210972212
922 => 0.009250747139783
923 => 0.0086647345000951
924 => 0.0090563051076445
925 => 0.0094776021571758
926 => 0.0094937858926346
927 => 0.0097046960045358
928 => 0.0097733769824685
929 => 0.0099431872671693
930 => 0.0099325655876269
1001 => 0.0099739116896798
1002 => 0.0099644069368325
1003 => 0.010278944731467
1004 => 0.010625926628263
1005 => 0.010613911748512
1006 => 0.010564028995544
1007 => 0.010638113389974
1008 => 0.010996235892308
1009 => 0.010963265711089
1010 => 0.010995293433749
1011 => 0.0114175400469
1012 => 0.011966520707877
1013 => 0.011711464074096
1014 => 0.012264863578831
1015 => 0.012613199232614
1016 => 0.013215609727253
1017 => 0.01314018496639
1018 => 0.013374698951261
1019 => 0.013005158902823
1020 => 0.012156620255243
1021 => 0.012022335766188
1022 => 0.012291176713901
1023 => 0.012952095950737
1024 => 0.012270362015121
1025 => 0.012408275902404
1026 => 0.012368556693588
1027 => 0.012366440225746
1028 => 0.012447217194979
1029 => 0.012330045988064
1030 => 0.011852669412393
1031 => 0.012071448283825
1101 => 0.011986967254941
1102 => 0.012080705254966
1103 => 0.012586570580608
1104 => 0.012362915461819
1105 => 0.01212731296244
1106 => 0.012422810781041
1107 => 0.012799081048187
1108 => 0.012775534731091
1109 => 0.012729845034329
1110 => 0.012987395462741
1111 => 0.013412793315283
1112 => 0.013527776645438
1113 => 0.013612654989028
1114 => 0.013624358278577
1115 => 0.013744909434493
1116 => 0.013096675486333
1117 => 0.014125439409891
1118 => 0.01430307852046
1119 => 0.01426968973006
1120 => 0.01446712812526
1121 => 0.014409036740864
1122 => 0.014324871439132
1123 => 0.014637853291876
1124 => 0.014279044854038
1125 => 0.013769761449253
1126 => 0.013490358500905
1127 => 0.013858298842083
1128 => 0.014082987169092
1129 => 0.014231491860384
1130 => 0.014276429290239
1201 => 0.013146996042443
1202 => 0.01253829416312
1203 => 0.012928465088985
1204 => 0.013404500546699
1205 => 0.01309403108533
1206 => 0.013106200900419
1207 => 0.012663553038446
1208 => 0.013443665060479
1209 => 0.013330009300643
1210 => 0.013919655583723
1211 => 0.013778931766059
1212 => 0.014259765419973
1213 => 0.014133145804407
1214 => 0.014658736749415
1215 => 0.014868409207185
1216 => 0.015220481896694
1217 => 0.01547946800029
1218 => 0.015631549593937
1219 => 0.015622419185498
1220 => 0.016225042226274
1221 => 0.015869696473174
1222 => 0.015423298458716
1223 => 0.015415224527002
1224 => 0.015646420384199
1225 => 0.016130943475397
1226 => 0.01625657326342
1227 => 0.016326783176194
1228 => 0.016219254250756
1229 => 0.015833551903625
1230 => 0.015667007585689
1231 => 0.015808908169824
]
'min_raw' => 0.0058512432617221
'max_raw' => 0.016326783176194
'avg_raw' => 0.011089013218958
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.005851'
'max' => '$0.016326'
'avg' => '$0.011089'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0023164195926157
'max_diff' => 0.008435538346051
'year' => 2036
]
11 => [
'items' => [
101 => 0.015635375949083
102 => 0.015934941246623
103 => 0.01634630838384
104 => 0.016261362696727
105 => 0.016545323392978
106 => 0.016839192840061
107 => 0.017259439347893
108 => 0.017369307346723
109 => 0.017550914970884
110 => 0.017737848871142
111 => 0.017797887001895
112 => 0.01791251842224
113 => 0.017911914258071
114 => 0.018257363758867
115 => 0.018638405255925
116 => 0.018782239599934
117 => 0.019112978742909
118 => 0.018546599551046
119 => 0.018976204674169
120 => 0.019363719248941
121 => 0.018901708397548
122 => 0.019538482721471
123 => 0.019563207225507
124 => 0.019936517882172
125 => 0.019558096013974
126 => 0.019333390316603
127 => 0.0199821072453
128 => 0.020296000932704
129 => 0.020201453599506
130 => 0.019481943725494
131 => 0.019063158117588
201 => 0.017967115403989
202 => 0.019265425343769
203 => 0.019897794243216
204 => 0.019480306042813
205 => 0.019690862807258
206 => 0.020839592240808
207 => 0.021276954034381
208 => 0.021185985838707
209 => 0.021201357966312
210 => 0.021437350451446
211 => 0.022483871093965
212 => 0.021856771666809
213 => 0.022336165681903
214 => 0.022590434538924
215 => 0.022826613623884
216 => 0.02224663243639
217 => 0.021492085433077
218 => 0.021253088723399
219 => 0.019438795069076
220 => 0.019344353205291
221 => 0.019291340125267
222 => 0.018957100154564
223 => 0.018694479093624
224 => 0.01848563307547
225 => 0.017937558757134
226 => 0.018122517750682
227 => 0.017249001679255
228 => 0.017807846306245
301 => 0.016413693564464
302 => 0.017574785395292
303 => 0.016942855900139
304 => 0.017367179560445
305 => 0.017365699135168
306 => 0.016584384744606
307 => 0.016133738909746
308 => 0.016420907975117
309 => 0.016728776008704
310 => 0.016778726561361
311 => 0.017177885503085
312 => 0.017289282183827
313 => 0.016951745040564
314 => 0.016384802847691
315 => 0.01651649058852
316 => 0.016131070261881
317 => 0.015455635964425
318 => 0.015940744668809
319 => 0.01610638210921
320 => 0.016179537039048
321 => 0.015515324981653
322 => 0.015306615132474
323 => 0.015195499760016
324 => 0.016299061411899
325 => 0.016359517010338
326 => 0.016050217621161
327 => 0.017448280189215
328 => 0.017131855572149
329 => 0.017485379395325
330 => 0.016504541306326
331 => 0.016542010642199
401 => 0.016077666172239
402 => 0.016337668047908
403 => 0.016153907102437
404 => 0.016316662465743
405 => 0.016414217359443
406 => 0.016878485635044
407 => 0.017580086593235
408 => 0.016809139436652
409 => 0.016473226720362
410 => 0.016681625080304
411 => 0.017236617375242
412 => 0.018077459111607
413 => 0.017579663880162
414 => 0.017800576950766
415 => 0.017848836628954
416 => 0.017481780854668
417 => 0.018090992981567
418 => 0.018417474709603
419 => 0.018752377406694
420 => 0.019043164034817
421 => 0.018618609904808
422 => 0.019072943681361
423 => 0.018706830858167
424 => 0.018378389807713
425 => 0.018378887917212
426 => 0.018172852048505
427 => 0.017773631590694
428 => 0.017700009213133
429 => 0.018083002118687
430 => 0.018390126159378
501 => 0.018415422366394
502 => 0.018585462015924
503 => 0.018686089728968
504 => 0.01967237811354
505 => 0.020069071460821
506 => 0.020554140576854
507 => 0.020743102334547
508 => 0.021311809478662
509 => 0.020852532271653
510 => 0.020753164758928
511 => 0.019373667249993
512 => 0.0195995598898
513 => 0.019961235801529
514 => 0.019379631152564
515 => 0.019748525435396
516 => 0.019821352981076
517 => 0.019359868449146
518 => 0.01960636727722
519 => 0.018951739471665
520 => 0.017594355690504
521 => 0.018092504137745
522 => 0.018459309069868
523 => 0.017935833205006
524 => 0.018874143431457
525 => 0.018326001967819
526 => 0.018152267439276
527 => 0.017474467102599
528 => 0.017794362770583
529 => 0.018227026241996
530 => 0.01795969051919
531 => 0.018514452284674
601 => 0.019300142894156
602 => 0.019860072811158
603 => 0.019903057277508
604 => 0.019543059853267
605 => 0.020119958023087
606 => 0.02012416009644
607 => 0.019473416604185
608 => 0.019074839838534
609 => 0.018984282358765
610 => 0.019210512698067
611 => 0.019485198094404
612 => 0.019918300405292
613 => 0.020180015061065
614 => 0.020862428080594
615 => 0.021047069477365
616 => 0.021249934392641
617 => 0.021521024480674
618 => 0.021846537637429
619 => 0.021134333381923
620 => 0.021162630584709
621 => 0.020499435843122
622 => 0.019790717149989
623 => 0.020328546295044
624 => 0.021031686357792
625 => 0.020870385250497
626 => 0.020852235580843
627 => 0.020882758290902
628 => 0.020761142523603
629 => 0.020211078915402
630 => 0.019934840414943
701 => 0.020291258556492
702 => 0.020480678936379
703 => 0.02077445342639
704 => 0.020738239519669
705 => 0.021494971056861
706 => 0.02178901404984
707 => 0.021713785269427
708 => 0.021727629175504
709 => 0.022259979968969
710 => 0.022852063537592
711 => 0.023406627931916
712 => 0.023970754652917
713 => 0.023290677872509
714 => 0.022945376824723
715 => 0.023301639365261
716 => 0.023112601446493
717 => 0.024198869400022
718 => 0.024274080236282
719 => 0.025360269640273
720 => 0.026391192725689
721 => 0.025743688406645
722 => 0.026354255815269
723 => 0.027014634247987
724 => 0.028288611387239
725 => 0.027859580705795
726 => 0.027530949927577
727 => 0.027220395430093
728 => 0.027866610040218
729 => 0.028697954812614
730 => 0.028877018514067
731 => 0.02916717011802
801 => 0.028862111184514
802 => 0.029229521068782
803 => 0.030526639408334
804 => 0.030176146583007
805 => 0.029678390426509
806 => 0.030702340779015
807 => 0.031072904431081
808 => 0.03367371420697
809 => 0.036957343983122
810 => 0.03559789969432
811 => 0.034754048755267
812 => 0.034952373742356
813 => 0.036151444178724
814 => 0.036536547546293
815 => 0.035489703840151
816 => 0.035859466734717
817 => 0.037896896638065
818 => 0.038989912412634
819 => 0.037505450179166
820 => 0.033409877751655
821 => 0.029633572930684
822 => 0.030635219018428
823 => 0.030521663436775
824 => 0.032710627693366
825 => 0.030167787445038
826 => 0.030210602353343
827 => 0.032444832072606
828 => 0.031848777887901
829 => 0.030883246445531
830 => 0.029640622378735
831 => 0.027343516862448
901 => 0.025308906447146
902 => 0.029299246014347
903 => 0.029127175316248
904 => 0.028877991445951
905 => 0.029432523184786
906 => 0.032125171901985
907 => 0.0320630976338
908 => 0.031668212810178
909 => 0.03196772946854
910 => 0.030830739727178
911 => 0.031123767872302
912 => 0.029632974744707
913 => 0.030306875499401
914 => 0.030881174848698
915 => 0.030996473945716
916 => 0.031256248698617
917 => 0.029036501877303
918 => 0.03003310303173
919 => 0.030618512841056
920 => 0.027973610025129
921 => 0.030566231616396
922 => 0.028997861023634
923 => 0.028465532488315
924 => 0.029182242732171
925 => 0.028902940053117
926 => 0.02866281201087
927 => 0.028528816437372
928 => 0.029055089340037
929 => 0.029030538080095
930 => 0.028169453466168
1001 => 0.027046203689598
1002 => 0.027423203184032
1003 => 0.027286235733315
1004 => 0.026789848022764
1005 => 0.027124353405594
1006 => 0.025651360988909
1007 => 0.023117154095484
1008 => 0.024791328794137
1009 => 0.02472687488939
1010 => 0.024694374307865
1011 => 0.025952470323113
1012 => 0.02583153342046
1013 => 0.025612031757928
1014 => 0.026785816702596
1015 => 0.026357369408157
1016 => 0.02767774301474
1017 => 0.028547426468447
1018 => 0.028326846613274
1019 => 0.02914478810503
1020 => 0.027431888490952
1021 => 0.028000845033144
1022 => 0.02811810618795
1023 => 0.026771332378581
1024 => 0.025851320193386
1025 => 0.02578996586954
1026 => 0.024194791525901
1027 => 0.025046920784476
1028 => 0.025796759268517
1029 => 0.025437644824478
1030 => 0.025323959919734
1031 => 0.025904751442823
1101 => 0.02594988391831
1102 => 0.024920858694281
1103 => 0.025134825623348
1104 => 0.026027103286597
1105 => 0.025112342515582
1106 => 0.023335111762826
1107 => 0.022894333964005
1108 => 0.022835526080495
1109 => 0.021640101731564
1110 => 0.022923788844183
1111 => 0.022363425018849
1112 => 0.024133607628889
1113 => 0.023122488815714
1114 => 0.023078901504576
1115 => 0.023013012890922
1116 => 0.021984061771438
1117 => 0.02220933667335
1118 => 0.022958184757641
1119 => 0.023225382190494
1120 => 0.023197511309163
1121 => 0.022954514993496
1122 => 0.023065757462466
1123 => 0.022707406710467
1124 => 0.022580865601511
1125 => 0.02218146705377
1126 => 0.021594461525255
1127 => 0.021676088244309
1128 => 0.020513076693971
1129 => 0.019879406275651
1130 => 0.019704014655502
1201 => 0.019469473650919
1202 => 0.01973050668606
1203 => 0.020509782028373
1204 => 0.019569810633057
1205 => 0.017958295607114
1206 => 0.018055150406061
1207 => 0.018272754382847
1208 => 0.0178672508117
1209 => 0.017483475712945
1210 => 0.017817137024655
1211 => 0.017134316863935
1212 => 0.018355269937058
1213 => 0.018322246578112
1214 => 0.018777342380541
1215 => 0.019061923125305
1216 => 0.018406056642733
1217 => 0.018241107996017
1218 => 0.018335070241685
1219 => 0.016782083624296
1220 => 0.018650430241927
1221 => 0.018666587781062
1222 => 0.018528237121469
1223 => 0.019523074016628
1224 => 0.021622490162821
1225 => 0.020832605359804
1226 => 0.020526738089681
1227 => 0.019945284185591
1228 => 0.020720036989475
1229 => 0.020660548062163
1230 => 0.020391516572353
1231 => 0.020228805487887
]
'min_raw' => 0.015195499760016
'max_raw' => 0.038989912412634
'avg_raw' => 0.027092706086325
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.015195'
'max' => '$0.038989'
'avg' => '$0.027092'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0093442564982942
'max_diff' => 0.02266312923644
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00047696937395826
]
1 => [
'year' => 2028
'avg' => 0.000818617910911
]
2 => [
'year' => 2029
'avg' => 0.0022363165910854
]
3 => [
'year' => 2030
'avg' => 0.0017253149195998
]
4 => [
'year' => 2031
'avg' => 0.0016944730669711
]
5 => [
'year' => 2032
'avg' => 0.0029709445567003
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00047696937395826
'min' => '$0.000476'
'max_raw' => 0.0029709445567003
'max' => '$0.00297'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0029709445567003
]
1 => [
'year' => 2033
'avg' => 0.0076415748984592
]
2 => [
'year' => 2034
'avg' => 0.0048435974075488
]
3 => [
'year' => 2035
'avg' => 0.0057130342496247
]
4 => [
'year' => 2036
'avg' => 0.011089013218958
]
5 => [
'year' => 2037
'avg' => 0.027092706086325
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0029709445567003
'min' => '$0.00297'
'max_raw' => 0.027092706086325
'max' => '$0.027092'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.027092706086325
]
]
]
]
'prediction_2025_max_price' => '$0.000815'
'last_price' => 0.00079076
'sma_50day_nextmonth' => '$0.000867'
'sma_200day_nextmonth' => '$0.003499'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.000788'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.000823'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.000892'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.001092'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.0016087'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.002493'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.004413'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.0008001'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.000824'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.0009035'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.001096'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.001613'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.002525'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.00461'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0032078'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.006215'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.021279'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.000927'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.001142'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.001739'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.003135'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.008342'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.019782'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.012673'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '18.19'
'rsi_14_action' => 'BUY'
'stoch_rsi_14' => -0.05
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000893'
'vwma_10_action' => 'SELL'
'hma_9' => '0.000760'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 1.37
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -102.82
'cci_20_action' => 'BUY'
'adx_14' => 51.1
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.0005064'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -98.63
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 12.85
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.000495'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 28
'buy_signals' => 6
'sell_pct' => 82.35
'buy_pct' => 17.65
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767710752
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Dypius para 2026
La previsión del precio de Dypius para 2026 sugiere que el precio medio podría oscilar entre $0.000273 en el extremo inferior y $0.000815 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Dypius podría potencialmente ganar 3.13% para 2026 si DYP alcanza el objetivo de precio previsto.
Predicción de precio de Dypius 2027-2032
La predicción del precio de DYP para 2027-2032 está actualmente dentro de un rango de precios de $0.000476 en el extremo inferior y $0.00297 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Dypius alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Dypius | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000263 | $0.000476 | $0.00069 |
| 2028 | $0.000474 | $0.000818 | $0.001162 |
| 2029 | $0.001042 | $0.002236 | $0.003429 |
| 2030 | $0.000886 | $0.001725 | $0.002563 |
| 2031 | $0.001048 | $0.001694 | $0.00234 |
| 2032 | $0.00160033 | $0.00297 | $0.004341 |
Predicción de precio de Dypius 2032-2037
La predicción de precio de Dypius para 2032-2037 se estima actualmente entre $0.00297 en el extremo inferior y $0.027092 en el extremo superior. Comparado con el precio actual, Dypius podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Dypius | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.00160033 | $0.00297 | $0.004341 |
| 2033 | $0.003718 | $0.007641 | $0.011564 |
| 2034 | $0.002989 | $0.004843 | $0.006697 |
| 2035 | $0.003534 | $0.005713 | $0.007891 |
| 2036 | $0.005851 | $0.011089 | $0.016326 |
| 2037 | $0.015195 | $0.027092 | $0.038989 |
Dypius Histograma de precios potenciales
Pronóstico de precio de Dypius basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Dypius es Bajista, con 6 indicadores técnicos mostrando señales alcistas y 28 indicando señales bajistas. La predicción de precio de DYP se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Dypius
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Dypius aumentar durante el próximo mes, alcanzando $0.003499 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Dypius alcance $0.000867 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 18.19, lo que sugiere que el mercado de DYP está en un estado BUY.
Promedios Móviles y Osciladores Populares de DYP para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.000788 | BUY |
| SMA 5 | $0.000823 | SELL |
| SMA 10 | $0.000892 | SELL |
| SMA 21 | $0.001092 | SELL |
| SMA 50 | $0.0016087 | SELL |
| SMA 100 | $0.002493 | SELL |
| SMA 200 | $0.004413 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.0008001 | SELL |
| EMA 5 | $0.000824 | SELL |
| EMA 10 | $0.0009035 | SELL |
| EMA 21 | $0.001096 | SELL |
| EMA 50 | $0.001613 | SELL |
| EMA 100 | $0.002525 | SELL |
| EMA 200 | $0.00461 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.0032078 | SELL |
| SMA 50 | $0.006215 | SELL |
| SMA 100 | $0.021279 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.003135 | SELL |
| EMA 50 | $0.008342 | SELL |
| EMA 100 | $0.019782 | SELL |
| EMA 200 | $0.012673 | SELL |
Osciladores de Dypius
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 18.19 | BUY |
| Stoch RSI (14) | -0.05 | BUY |
| Estocástico Rápido (14) | 1.37 | BUY |
| Índice de Canal de Materias Primas (20) | -102.82 | BUY |
| Índice Direccional Medio (14) | 51.1 | SELL |
| Oscilador Asombroso (5, 34) | -0.0005064 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -98.63 | BUY |
| Oscilador Ultimate (7, 14, 28) | 12.85 | BUY |
| VWMA (10) | 0.000893 | SELL |
| Promedio Móvil de Hull (9) | 0.000760 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000495 | SELL |
Predicción de precios de Dypius basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Dypius
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Dypius por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.001111 | $0.001561 | $0.002193 | $0.003082 | $0.004331 | $0.006087 |
| Amazon.com acción | $0.001649 | $0.003442 | $0.007183 | $0.014988 | $0.031275 | $0.065257 |
| Apple acción | $0.001121 | $0.00159 | $0.002256 | $0.00320087 | $0.00454 | $0.006439 |
| Netflix acción | $0.001247 | $0.001968 | $0.0031062 | $0.0049011 | $0.007733 | $0.0122019 |
| Google acción | $0.001024 | $0.001326 | $0.001717 | $0.002223 | $0.002879 | $0.003729 |
| Tesla acción | $0.001792 | $0.004063 | $0.009212 | $0.020882 | $0.04734 | $0.107316 |
| Kodak acción | $0.000592 | $0.000444 | $0.000333 | $0.00025 | $0.000187 | $0.00014 |
| Nokia acción | $0.000523 | $0.000347 | $0.000229 | $0.000152 | $0.00010088 | $0.000066 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Dypius
Podría preguntarse cosas como: "¿Debo invertir en Dypius ahora?", "¿Debería comprar DYP hoy?", "¿Será Dypius una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Dypius regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Dypius, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Dypius a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Dypius es de $0.0007907 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Dypius
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Dypius
basado en el historial de precios del último mes
Predicción de precios de Dypius basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Dypius ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.000811 | $0.000832 | $0.000854 | $0.000876 |
| Si Dypius ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.000831 | $0.000875 | $0.00092 | $0.000968 |
| Si Dypius ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.000893 | $0.0010096 | $0.00114 | $0.001289 |
| Si Dypius ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.000996 | $0.001255 | $0.001581 | $0.001992 |
| Si Dypius ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.0012018 | $0.001826 | $0.002776 | $0.004219 |
| Si Dypius ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.001818 | $0.004181 | $0.009616 | $0.022115 |
| Si Dypius ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.002846 | $0.010244 | $0.036872 | $0.132717 |
Cuadro de preguntas
¿Es DYP una buena inversión?
La decisión de adquirir Dypius depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Dypius ha experimentado un aumento de 4.7966% durante las últimas 24 horas, y Dypius ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Dypius dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Dypius subir?
Parece que el valor medio de Dypius podría potencialmente aumentar hasta $0.000815 para el final de este año. Mirando las perspectivas de Dypius en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.002563. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Dypius la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Dypius, el precio de Dypius aumentará en un 0.86% durante la próxima semana y alcanzará $0.000797 para el 13 de enero de 2026.
¿Cuál será el precio de Dypius el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Dypius, el precio de Dypius disminuirá en un -11.62% durante el próximo mes y alcanzará $0.000698 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Dypius este año en 2026?
Según nuestra predicción más reciente sobre el valor de Dypius en 2026, se anticipa que DYP fluctúe dentro del rango de $0.000273 y $0.000815. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Dypius no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Dypius en 5 años?
El futuro de Dypius parece estar en una tendencia alcista, con un precio máximo de $0.002563 proyectada después de un período de cinco años. Basado en el pronóstico de Dypius para 2030, el valor de Dypius podría potencialmente alcanzar su punto más alto de aproximadamente $0.002563, mientras que su punto más bajo se anticipa que esté alrededor de $0.000886.
¿Cuánto será Dypius en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Dypius, se espera que el valor de DYP en 2026 crezca en un 3.13% hasta $0.000815 si ocurre lo mejor. El precio estará entre $0.000815 y $0.000273 durante 2026.
¿Cuánto será Dypius en 2027?
Según nuestra última simulación experimental para la predicción de precios de Dypius, el valor de DYP podría disminuir en un -12.62% hasta $0.00069 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.00069 y $0.000263 a lo largo del año.
¿Cuánto será Dypius en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Dypius sugiere que el valor de DYP en 2028 podría aumentar en un 47.02% , alcanzando $0.001162 en el mejor escenario. Se espera que el precio oscile entre $0.001162 y $0.000474 durante el año.
¿Cuánto será Dypius en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Dypius podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.003429 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.003429 y $0.001042.
¿Cuánto será Dypius en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Dypius, se espera que el valor de DYP en 2030 aumente en un 224.23% , alcanzando $0.002563 en el mejor escenario. Se pronostica que el precio oscile entre $0.002563 y $0.000886 durante el transcurso de 2030.
¿Cuánto será Dypius en 2031?
Nuestra simulación experimental indica que el precio de Dypius podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.00234 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.00234 y $0.001048 durante el año.
¿Cuánto será Dypius en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Dypius, DYP podría experimentar un 449.04% aumento en valor, alcanzando $0.004341 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.004341 y $0.00160033 a lo largo del año.
¿Cuánto será Dypius en 2033?
Según nuestra predicción experimental de precios de Dypius, se anticipa que el valor de DYP aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.011564. A lo largo del año, el precio de DYP podría oscilar entre $0.011564 y $0.003718.
¿Cuánto será Dypius en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Dypius sugieren que DYP podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.006697 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.006697 y $0.002989.
¿Cuánto será Dypius en 2035?
Basado en nuestra predicción experimental para el precio de Dypius, DYP podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.007891 en 2035. El rango de precios esperado para el año está entre $0.007891 y $0.003534.
¿Cuánto será Dypius en 2036?
Nuestra reciente simulación de predicción de precios de Dypius sugiere que el valor de DYP podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.016326 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.016326 y $0.005851.
¿Cuánto será Dypius en 2037?
Según la simulación experimental, el valor de Dypius podría aumentar en un 4830.69% en 2037, con un máximo de $0.038989 bajo condiciones favorables. Se espera que el precio caiga entre $0.038989 y $0.015195 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de COMDEX
Predicción de precios de Effect Network
Predicción de precios de Sin City
Predicción de precios de Parex
Predicción de precios de Grai
Predicción de precios de MIMO Parallel Governance Token
Predicción de precios de Good Person Coin
Predicción de precios de LilAI
Predicción de precios de SavePlanetEarth
Predicción de precios de MBD Financials
Predicción de precios de RepubliK
Predicción de precios de Dogebonk
Predicción de precios de Raptoreum
Predicción de precios de Litecoin Cash
Predicción de precios de Uno Re
Predicción de precios de Don't Buy Inu
Predicción de precios de Quick Intel
Predicción de precios de MultiVAC
Predicción de precios de Molecules of Korolchuk IP-NFT
Predicción de precios de Media Network
Predicción de precios de Credo
Predicción de precios de sudoswap
Predicción de precios de MMFinance (Cronos)
Predicción de precios de 0xGasless
Predicción de precios de Aimbot AI
¿Cómo leer y predecir los movimientos de precio de Dypius?
Los traders de Dypius utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Dypius
Las medias móviles son herramientas populares para la predicción de precios de Dypius. Una media móvil simple (SMA) calcula el precio de cierre promedio de DYP durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de DYP por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de DYP.
¿Cómo leer gráficos de Dypius y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Dypius en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de DYP dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Dypius?
La acción del precio de Dypius está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de DYP. La capitalización de mercado de Dypius puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de DYP, grandes poseedores de Dypius, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Dypius.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


