Predicción del precio de LORDS - Pronóstico de LORDS
Predicción de precio de LORDS hasta $0.016284 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.005455 | $0.016284 |
| 2027 | $0.005251 | $0.013796 |
| 2028 | $0.009478 | $0.023214 |
| 2029 | $0.02082 | $0.068489 |
| 2030 | $0.0177069 | $0.051195 |
| 2031 | $0.020935 | $0.046736 |
| 2032 | $0.031955 | $0.086693 |
| 2033 | $0.074258 | $0.230918 |
| 2034 | $0.05970013 | $0.133735 |
| 2035 | $0.070584 | $0.157573 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en LORDS hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,955.05, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de LORDS para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'LORDS'
'name_with_ticker' => 'LORDS <small>LORDS</small>'
'name_lang' => 'LORDS'
'name_lang_with_ticker' => 'LORDS <small>LORDS</small>'
'name_with_lang' => 'LORDS'
'name_with_lang_with_ticker' => 'LORDS <small>LORDS</small>'
'image' => '/uploads/coins/lords.png?1717253286'
'price_for_sd' => 0.01579
'ticker' => 'LORDS'
'marketcap' => '$3.26M'
'low24h' => '$0.01508'
'high24h' => '$0.01575'
'volume24h' => '$2.34K'
'current_supply' => '207.09M'
'max_supply' => '300M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01579'
'change_24h_pct' => '3.9994%'
'ath_price' => '$1.09'
'ath_days' => 1462
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '5 ene. 2022'
'ath_pct' => '-98.56%'
'fdv' => '$4.73M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.778558'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.015925'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.013955'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.005455'
'current_year_max_price_prediction' => '$0.016284'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0177069'
'grand_prediction_max_price' => '$0.051195'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.016089263141934
107 => 0.016149334610103
108 => 0.016284678695214
109 => 0.015128178306496
110 => 0.015647413027963
111 => 0.015952414781111
112 => 0.01457440576433
113 => 0.015925175973486
114 => 0.015108046207709
115 => 0.014830700092328
116 => 0.015204110099117
117 => 0.015058591856318
118 => 0.014933483816277
119 => 0.014863671380306
120 => 0.015137862477533
121 => 0.015125071135118
122 => 0.014676441281856
123 => 0.014091221926766
124 => 0.014287640751505
125 => 0.014216279951041
126 => 0.013957659204434
127 => 0.014131938361659
128 => 0.013364501153902
129 => 0.012044165325872
130 => 0.012916419616849
131 => 0.012882838775477
201 => 0.012865905792487
202 => 0.013521380784818
203 => 0.013458371988686
204 => 0.013344010406723
205 => 0.013955558864298
206 => 0.013732335450796
207 => 0.014420257413158
208 => 0.014873367309573
209 => 0.014758443983273
210 => 0.015184596030921
211 => 0.014292165844517
212 => 0.014588595354356
213 => 0.0146496890655
214 => 0.013948012451259
215 => 0.013468681006976
216 => 0.013436715064421
217 => 0.012605620395976
218 => 0.013049584459498
219 => 0.013440254462916
220 => 0.013253153848495
221 => 0.013193923383442
222 => 0.01349651898388
223 => 0.01352003325359
224 => 0.012983905412269
225 => 0.013095383367441
226 => 0.013560264972173
227 => 0.013083669543765
228 => 0.012157722477789
301 => 0.011928074803207
302 => 0.011897435570171
303 => 0.011274612863119
304 => 0.011943420958926
305 => 0.011651468302163
306 => 0.012573743246745
307 => 0.01204694474466
308 => 0.012024235514134
309 => 0.011989907181474
310 => 0.011453817949032
311 => 0.011571187420688
312 => 0.011961341420351
313 => 0.01210055276283
314 => 0.012086031879284
315 => 0.011959429452905
316 => 0.012017387395392
317 => 0.011830684668755
318 => 0.011764756050098
319 => 0.011556667194522
320 => 0.011250834062838
321 => 0.011293362035583
322 => 0.010687426576126
323 => 0.010357280778385
324 => 0.010265900772822
325 => 0.01014370361035
326 => 0.010279703267477
327 => 0.010685710037101
328 => 0.010195979733794
329 => 0.00935637147936
330 => 0.0094068333660744
331 => 0.0095202062432528
401 => 0.0093089366366674
402 => 0.0091089876845484
403 => 0.0092828270760446
404 => 0.008927073990281
405 => 0.0095631973040369
406 => 0.0095459919511147
407 => 0.0097830993848811
408 => 0.0099313675291495
409 => 0.0095896574589925
410 => 0.0095037183004303
411 => 0.0095526731508643
412 => 0.0087435585214669
413 => 0.0097169774577182
414 => 0.009725395625101
415 => 0.0096533141651518
416 => 0.010171629697768
417 => 0.011265437138256
418 => 0.010853902780842
419 => 0.010694544238959
420 => 0.01039160353435
421 => 0.010795254036403
422 => 0.010764259975774
423 => 0.010624093079462
424 => 0.010539319703225
425 => 0.010695517248235
426 => 0.010519965098836
427 => 0.010488431108954
428 => 0.010297369439585
429 => 0.010229169116373
430 => 0.0101786763122
501 => 0.010123088696125
502 => 0.010245701125615
503 => 0.0099678452293834
504 => 0.009632778257078
505 => 0.0096049210638056
506 => 0.00968183722366
507 => 0.0096478075486591
508 => 0.0096047581428139
509 => 0.0095225651032474
510 => 0.0094981801841844
511 => 0.0095774193412581
512 => 0.0094879629528517
513 => 0.009619960726887
514 => 0.0095840646361194
515 => 0.0093835519910709
516 => 0.0091336389960511
517 => 0.0091314142461852
518 => 0.0090775709013476
519 => 0.0090089933062959
520 => 0.0089899165881954
521 => 0.0092681868073703
522 => 0.0098441978331356
523 => 0.0097311130860022
524 => 0.0098128284051971
525 => 0.010214786899012
526 => 0.010342557416882
527 => 0.010251868929709
528 => 0.010127728935043
529 => 0.010133190464787
530 => 0.010557414406291
531 => 0.010583872733159
601 => 0.010650724389375
602 => 0.010736647659888
603 => 0.01026650203422
604 => 0.010111046648098
605 => 0.010037383261817
606 => 0.0098105285433892
607 => 0.01005517190816
608 => 0.0099126286961812
609 => 0.0099318626454466
610 => 0.0099193365107552
611 => 0.0099261766273102
612 => 0.0095630194946064
613 => 0.0096953348667867
614 => 0.0094753348975485
615 => 0.009180779634894
616 => 0.0091797921823692
617 => 0.0092518841656077
618 => 0.0092090010330179
619 => 0.0090936036258447
620 => 0.0091099952828733
621 => 0.0089663871191911
622 => 0.009127431914054
623 => 0.0091320501025247
624 => 0.0090700390843332
625 => 0.0093181508107186
626 => 0.0094198023874586
627 => 0.0093789854068803
628 => 0.0094169385592915
629 => 0.0097358122677926
630 => 0.0097878025957136
701 => 0.0098108932650879
702 => 0.0097799548270539
703 => 0.0094227669853182
704 => 0.0094386097849792
705 => 0.0093223658329298
706 => 0.0092241519429339
707 => 0.0092280799834698
708 => 0.0092785746898396
709 => 0.0094990880340322
710 => 0.0099631453669138
711 => 0.0099807560034752
712 => 0.010002100608726
713 => 0.0099152813722316
714 => 0.0098890958597567
715 => 0.0099236413097654
716 => 0.01009791684502
717 => 0.010546200837042
718 => 0.010387747334381
719 => 0.010258922170241
720 => 0.010371936570206
721 => 0.010354538889168
722 => 0.010207684952795
723 => 0.010203563251914
724 => 0.0099217035959712
725 => 0.0098175064988032
726 => 0.009730431605392
727 => 0.0096353480949347
728 => 0.0095789794027075
729 => 0.0096655873330809
730 => 0.0096853955914723
731 => 0.0094960258380631
801 => 0.0094702154404187
802 => 0.0096248588688827
803 => 0.0095568060617038
804 => 0.0096268000615157
805 => 0.0096430392698695
806 => 0.0096404243833038
807 => 0.0095693694367939
808 => 0.0096146577408103
809 => 0.0095075374007183
810 => 0.0093910601198232
811 => 0.0093167548714031
812 => 0.0092519136869956
813 => 0.0092878913446966
814 => 0.0091596375642532
815 => 0.0091186065986507
816 => 0.0095993150824287
817 => 0.0099544196078825
818 => 0.0099492562474456
819 => 0.0099178256186943
820 => 0.0098711260798401
821 => 0.01009450048288
822 => 0.010016681307373
823 => 0.010073301259564
824 => 0.010087713413728
825 => 0.010131334663721
826 => 0.01014692551122
827 => 0.010099799141538
828 => 0.0099416372888812
829 => 0.0095475129896392
830 => 0.0093640470644238
831 => 0.009303500253236
901 => 0.0093057010148279
902 => 0.0092449941854907
903 => 0.0092628750674197
904 => 0.0092387759444696
905 => 0.009193138035806
906 => 0.0092850733324409
907 => 0.0092956680189415
908 => 0.0092742092221619
909 => 0.0092792635456233
910 => 0.0091015938734605
911 => 0.0091151017127568
912 => 0.0090398883470619
913 => 0.0090257867477047
914 => 0.0088356539088048
915 => 0.0084988060244978
916 => 0.0086854524510192
917 => 0.0084600098142405
918 => 0.0083746312716791
919 => 0.0087788000130774
920 => 0.0087382326813369
921 => 0.0086687990435924
922 => 0.0085660922221302
923 => 0.0085279972629821
924 => 0.008296544350597
925 => 0.00828286887778
926 => 0.0083975831909124
927 => 0.0083446464824803
928 => 0.0082703032951424
929 => 0.0080010398066525
930 => 0.0076982984955126
1001 => 0.0077074363527319
1002 => 0.0078037327311031
1003 => 0.0080837274385535
1004 => 0.007974328662395
1005 => 0.0078949585950857
1006 => 0.0078800949673341
1007 => 0.0080661443877575
1008 => 0.0083294432962151
1009 => 0.0084529772530824
1010 => 0.0083305588536089
1011 => 0.0081899311877686
1012 => 0.0081984905421824
1013 => 0.0082554320924394
1014 => 0.0082614158442612
1015 => 0.0081698816905568
1016 => 0.0081956480186602
1017 => 0.0081565066101487
1018 => 0.0079162958583628
1019 => 0.0079119512075795
1020 => 0.0078529996151697
1021 => 0.0078512145843804
1022 => 0.0077509232195272
1023 => 0.0077368917643028
1024 => 0.0075377571721363
1025 => 0.0076688281637354
1026 => 0.0075809126241066
1027 => 0.0074484031687068
1028 => 0.00742555848865
1029 => 0.0074248717499818
1030 => 0.0075609293321053
1031 => 0.0076672382516717
1101 => 0.0075824419525584
1102 => 0.0075631354789575
1103 => 0.0077692781071613
1104 => 0.0077430445786906
1105 => 0.0077203265122231
1106 => 0.0083058677668504
1107 => 0.007842366173459
1108 => 0.0076402530229943
1109 => 0.007390099619048
1110 => 0.0074715508287558
1111 => 0.0074887137954085
1112 => 0.0068871399524578
1113 => 0.0066430815192939
1114 => 0.0065593298621801
1115 => 0.0065111295994365
1116 => 0.0065330950644296
1117 => 0.0063134138493831
1118 => 0.0064610432590862
1119 => 0.0062708178960468
1120 => 0.0062389259948864
1121 => 0.0065790725084014
1122 => 0.0066264019086499
1123 => 0.0064244799830977
1124 => 0.0065541465474926
1125 => 0.0065071276487429
1126 => 0.0062740787639162
1127 => 0.0062651780107074
1128 => 0.0061482422723658
1129 => 0.0059652604850819
1130 => 0.0058816328982363
1201 => 0.0058380789249192
1202 => 0.0058560501431598
1203 => 0.005846963345289
1204 => 0.0057876658426348
1205 => 0.00585036220873
1206 => 0.005690198901284
1207 => 0.0056264205817356
1208 => 0.0055976133944414
1209 => 0.0054554592404271
1210 => 0.005681689715703
1211 => 0.0057262599693088
1212 => 0.0057709180400827
1213 => 0.0061596360568092
1214 => 0.0061402168031992
1215 => 0.006315757398273
1216 => 0.0063089362135469
1217 => 0.0062588691922627
1218 => 0.0060476446650901
1219 => 0.006131834996906
1220 => 0.0058727102416593
1221 => 0.0060668641270607
1222 => 0.0059782604018236
1223 => 0.0060369071184308
1224 => 0.0059314550340099
1225 => 0.0059898165715383
1226 => 0.0057368292298861
1227 => 0.0055005932098793
1228 => 0.0055956614804894
1229 => 0.005699011563018
1230 => 0.0059231008750514
1231 => 0.005789635129501
]
'min_raw' => 0.0054554592404271
'max_raw' => 0.016284678695214
'avg_raw' => 0.010870068967821
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.005455'
'max' => '$0.016284'
'avg' => '$0.01087'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.010334590759573
'max_diff' => 0.00049462869521416
'year' => 2026
]
1 => [
'items' => [
101 => 0.0058376344584995
102 => 0.0056768447413452
103 => 0.0053450896275436
104 => 0.0053469673254593
105 => 0.0052959340288789
106 => 0.0052518338096502
107 => 0.005804965275891
108 => 0.0057361746343495
109 => 0.0056265657501496
110 => 0.005773281597335
111 => 0.0058120755960245
112 => 0.0058131800066292
113 => 0.0059202201014516
114 => 0.0059773474192462
115 => 0.0059874163566115
116 => 0.0061558462585688
117 => 0.0062123017400607
118 => 0.0064448338784473
119 => 0.0059725005654577
120 => 0.0059627731717043
121 => 0.0057753461901816
122 => 0.0056564770353965
123 => 0.0057834852629067
124 => 0.0058959972141287
125 => 0.0057788422501319
126 => 0.0057941402151536
127 => 0.0056368692479001
128 => 0.0056930862184064
129 => 0.0057415078466502
130 => 0.0057147722696257
131 => 0.0056747478168036
201 => 0.0058867725171979
202 => 0.0058748092526701
203 => 0.0060722515281041
204 => 0.0062261719010375
205 => 0.0065020247258919
206 => 0.0062141579226233
207 => 0.0062036669121453
208 => 0.006306218222379
209 => 0.0062122860399895
210 => 0.0062716479368309
211 => 0.0064924606065794
212 => 0.0064971260303391
213 => 0.0064189741713045
214 => 0.0064142186235798
215 => 0.0064292285429951
216 => 0.0065171421098365
217 => 0.0064864224082711
218 => 0.0065219720246503
219 => 0.0065664273642875
220 => 0.0067503134977006
221 => 0.0067946478219229
222 => 0.0066869383987743
223 => 0.0066966633537134
224 => 0.006656377072766
225 => 0.0066174610301565
226 => 0.0067049386107111
227 => 0.0068648056085508
228 => 0.0068638110842543
301 => 0.0069008971203828
302 => 0.0069240014136535
303 => 0.0068248208735593
304 => 0.0067602579889275
305 => 0.0067850155071384
306 => 0.0068246033179062
307 => 0.0067721777136576
308 => 0.0064485825983324
309 => 0.006546740684986
310 => 0.0065304023796817
311 => 0.0065071346461224
312 => 0.0066058333612867
313 => 0.006596313629432
314 => 0.0063111607010007
315 => 0.0063294152663025
316 => 0.0063122708215777
317 => 0.0063676680299068
318 => 0.0062092944089416
319 => 0.0062580090680878
320 => 0.0062885624456328
321 => 0.0063065586197289
322 => 0.0063715731406561
323 => 0.0063639444370201
324 => 0.0063710989297269
325 => 0.0064674983010648
326 => 0.0069550532410224
327 => 0.006981589780675
328 => 0.0068509141541424
329 => 0.0069031164894794
330 => 0.0068028994210282
331 => 0.0068701758104755
401 => 0.0069162046075003
402 => 0.0067082093245737
403 => 0.006695893193797
404 => 0.0065952624938551
405 => 0.0066493357319897
406 => 0.0065633013221141
407 => 0.0065844111569416
408 => 0.0065253862184414
409 => 0.0066316193559938
410 => 0.0067504045107379
411 => 0.0067804143317942
412 => 0.0067014714126354
413 => 0.0066443115365726
414 => 0.0065439576238399
415 => 0.0067108484172472
416 => 0.0067596523711442
417 => 0.0067105920708538
418 => 0.0066992237272878
419 => 0.0066776807367723
420 => 0.0067037941745659
421 => 0.0067593865743301
422 => 0.0067331702252317
423 => 0.0067504865856838
424 => 0.0066844944761938
425 => 0.0068248537064449
426 => 0.0070477779433719
427 => 0.0070484946812454
428 => 0.0070222781908312
429 => 0.0070115509677959
430 => 0.0070384506779105
501 => 0.0070530426671639
502 => 0.0071400313971115
503 => 0.0072333737701292
504 => 0.0076689618965349
505 => 0.0075466504936742
506 => 0.0079331301926749
507 => 0.0082387854564764
508 => 0.0083304381054057
509 => 0.0082461219809811
510 => 0.0079576810739922
511 => 0.0079435287870153
512 => 0.0083745812786665
513 => 0.0082527892063202
514 => 0.0082383024268538
515 => 0.0080841875691311
516 => 0.0081752885375416
517 => 0.0081553634193797
518 => 0.0081239106455909
519 => 0.0082977249471697
520 => 0.0086230898032156
521 => 0.0085723786391486
522 => 0.0085345251075957
523 => 0.0083686619513285
524 => 0.0084685486182785
525 => 0.0084329808893807
526 => 0.0085858024245642
527 => 0.008495274332533
528 => 0.0082518665115863
529 => 0.0082906300093548
530 => 0.0082847709846484
531 => 0.0084053492979304
601 => 0.0083691546812209
602 => 0.008277703404833
603 => 0.0086219777415093
604 => 0.0085996224810401
605 => 0.0086313171292615
606 => 0.0086452700935981
607 => 0.0088548238155387
608 => 0.0089406712704466
609 => 0.0089601601456819
610 => 0.0090417085881639
611 => 0.008958131146144
612 => 0.00929250050393
613 => 0.0095148366158647
614 => 0.0097730914511886
615 => 0.010150471177953
616 => 0.010292369446173
617 => 0.010266736794101
618 => 0.010552861795959
619 => 0.011067022064094
620 => 0.010370663284696
621 => 0.011103930770294
622 => 0.010871786750334
623 => 0.010321377455101
624 => 0.010285937585388
625 => 0.010658681150502
626 => 0.011485390502688
627 => 0.011278309186425
628 => 0.011485729213537
629 => 0.011243762734148
630 => 0.011231747058993
701 => 0.011473977441712
702 => 0.012039961934226
703 => 0.011771083917444
704 => 0.011385581348792
705 => 0.011670230446401
706 => 0.011423641055022
707 => 0.010868006140221
708 => 0.011278150835246
709 => 0.011003898757931
710 => 0.011083940094134
711 => 0.011660377168731
712 => 0.011591018734852
713 => 0.011680774970709
714 => 0.011522357563751
715 => 0.01137437072552
716 => 0.011098142302314
717 => 0.0110163646841
718 => 0.011038965075724
719 => 0.011016353484468
720 => 0.010861806220355
721 => 0.010828431753384
722 => 0.010772806179597
723 => 0.010790046870879
724 => 0.010685454518324
725 => 0.010882841897478
726 => 0.01091947873442
727 => 0.011063120808227
728 => 0.011078034204844
729 => 0.011478075335778
730 => 0.011257739403277
731 => 0.011405559769688
801 => 0.011392337324777
802 => 0.010333306493516
803 => 0.010479231598156
804 => 0.010706245267154
805 => 0.01060397591698
806 => 0.010459390983176
807 => 0.010342630896976
808 => 0.010165727427051
809 => 0.01041471566384
810 => 0.010742108718272
811 => 0.011086337432985
812 => 0.011499905678954
813 => 0.011407602060919
814 => 0.011078606062298
815 => 0.011093364582465
816 => 0.01118459594687
817 => 0.011066443040722
818 => 0.01103159744208
819 => 0.011179808696707
820 => 0.011180829346162
821 => 0.011044880148383
822 => 0.010893797493493
823 => 0.010893164451652
824 => 0.0108662807525
825 => 0.011248545284505
826 => 0.011458752125804
827 => 0.011482852001394
828 => 0.011457130012159
829 => 0.011467029384946
830 => 0.011344714655586
831 => 0.011624289855597
901 => 0.01188085570625
902 => 0.011812090577545
903 => 0.011709001874077
904 => 0.011626886756341
905 => 0.011792746865462
906 => 0.011785361375891
907 => 0.011878614827367
908 => 0.01187438431215
909 => 0.011843026683859
910 => 0.011812091697425
911 => 0.011934745421903
912 => 0.011899423119012
913 => 0.011864045950828
914 => 0.011793091624062
915 => 0.011802735495496
916 => 0.011699664591746
917 => 0.011651979275468
918 => 0.010934906531718
919 => 0.01074328126356
920 => 0.010803570473814
921 => 0.010823419247239
922 => 0.010740023684962
923 => 0.010859591498704
924 => 0.010840956981586
925 => 0.010913452986865
926 => 0.010868160630178
927 => 0.010870019444295
928 => 0.011003214607964
929 => 0.01104188173063
930 => 0.01102221531996
1001 => 0.011035988999868
1002 => 0.011353397639843
1003 => 0.011308272281396
1004 => 0.011284300334102
1005 => 0.01129094072733
1006 => 0.011372045440161
1007 => 0.011394750331601
1008 => 0.011298548111127
1009 => 0.011343917634441
1010 => 0.011537095306462
1011 => 0.011604696558761
1012 => 0.011820447305655
1013 => 0.01172879255371
1014 => 0.011897028817629
1015 => 0.012414129736946
1016 => 0.012827225731958
1017 => 0.012447325583031
1018 => 0.013205923770413
1019 => 0.013796601273737
1020 => 0.013773930087335
1021 => 0.013670931802013
1022 => 0.012998461168453
1023 => 0.012379643665478
1024 => 0.012897310783096
1025 => 0.012898630423038
1026 => 0.012854162358538
1027 => 0.012577975029037
1028 => 0.012844551638142
1029 => 0.012865711521309
1030 => 0.012853867613603
1031 => 0.012642115435629
1101 => 0.012318808998208
1102 => 0.012381982302194
1103 => 0.012485461462823
1104 => 0.012289553823738
1105 => 0.012226949462588
1106 => 0.012343342880933
1107 => 0.012718386726374
1108 => 0.012647486859874
1109 => 0.012645635377831
1110 => 0.012948975072938
1111 => 0.012731849316045
1112 => 0.012382779119866
1113 => 0.012294634291661
1114 => 0.011981779533003
1115 => 0.012197869429159
1116 => 0.012205646119824
1117 => 0.012087295892085
1118 => 0.012392382588582
1119 => 0.012389571160964
1120 => 0.012679205573126
1121 => 0.013232877787463
1122 => 0.013069129669128
1123 => 0.01287870842325
1124 => 0.012899412492486
1125 => 0.013126485030001
1126 => 0.012989191790257
1127 => 0.013038563396511
1128 => 0.013126410300161
1129 => 0.013179410518249
1130 => 0.01289178657673
1201 => 0.012824727677318
1202 => 0.012687548703597
1203 => 0.01265176126992
1204 => 0.012763490681683
1205 => 0.012734053929142
1206 => 0.012204992519086
1207 => 0.012149702658066
1208 => 0.012151398319167
1209 => 0.012012369334741
1210 => 0.011800316762712
1211 => 0.012357578261004
1212 => 0.012312822363821
1213 => 0.012263415317163
1214 => 0.012269467398466
1215 => 0.01251135572753
1216 => 0.01237104828102
1217 => 0.012744078623506
1218 => 0.012667394799409
1219 => 0.012588744324579
1220 => 0.012577872433205
1221 => 0.012547598710539
1222 => 0.01244377885116
1223 => 0.012318410132353
1224 => 0.012235630844944
1225 => 0.011286722681462
1226 => 0.011462834517059
1227 => 0.011665435130815
1228 => 0.011735372050813
1229 => 0.011615740109669
1230 => 0.012448502649361
1231 => 0.012600656390063
]
'min_raw' => 0.0052518338096502
'max_raw' => 0.013796601273737
'avg_raw' => 0.0095242175416937
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.005251'
'max' => '$0.013796'
'avg' => '$0.009524'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00020362543077685
'max_diff' => -0.002488077421477
'year' => 2027
]
2 => [
'items' => [
101 => 0.012139772784736
102 => 0.012053560279933
103 => 0.012454154726823
104 => 0.012212547304669
105 => 0.012321343112071
106 => 0.012086186084592
107 => 0.012564007009509
108 => 0.01256036681463
109 => 0.012374483682763
110 => 0.012531590832944
111 => 0.012504289599383
112 => 0.012294428001314
113 => 0.012570659996491
114 => 0.012570797004115
115 => 0.01239188853114
116 => 0.012182962602806
117 => 0.01214561158143
118 => 0.012117472604227
119 => 0.01231442264863
120 => 0.012491007442595
121 => 0.012819587965081
122 => 0.012902200915315
123 => 0.013224644759932
124 => 0.013032645149969
125 => 0.013117756090254
126 => 0.013210156055612
127 => 0.013254455996901
128 => 0.013182271619837
129 => 0.013683159633709
130 => 0.013725449928892
131 => 0.013739629499058
201 => 0.013570732878994
202 => 0.013720752608357
203 => 0.013650563345119
204 => 0.013833176308924
205 => 0.013861812353368
206 => 0.013837558642481
207 => 0.013846648174976
208 => 0.013419228617837
209 => 0.013397064658981
210 => 0.013094857507304
211 => 0.013218009155415
212 => 0.012987783052084
213 => 0.013060790121042
214 => 0.013092970941402
215 => 0.013076161507091
216 => 0.013224971964824
217 => 0.013098452675783
218 => 0.012764547470307
219 => 0.012430551292581
220 => 0.012426358242637
221 => 0.012338422944564
222 => 0.01227486183021
223 => 0.012287105955787
224 => 0.012330255851343
225 => 0.012272353879838
226 => 0.012284710201164
227 => 0.012489907464898
228 => 0.01253105831274
229 => 0.012391211653099
301 => 0.011829707134862
302 => 0.011691912517659
303 => 0.011790956555919
304 => 0.011743619884884
305 => 0.0094780177990536
306 => 0.010010287402969
307 => 0.0096940308784902
308 => 0.0098397764352329
309 => 0.0095169604179704
310 => 0.0096710251416452
311 => 0.0096425750127253
312 => 0.010498448784818
313 => 0.010485085493083
314 => 0.010491481793667
315 => 0.010186169701318
316 => 0.010672540154556
317 => 0.010912143729138
318 => 0.010867799484325
319 => 0.010878959975385
320 => 0.010687185762498
321 => 0.010493338587245
322 => 0.010278332237023
323 => 0.010677787460148
324 => 0.010633374858264
325 => 0.010735241387835
326 => 0.010994316653681
327 => 0.011032466470708
328 => 0.011083740211669
329 => 0.011065362225448
330 => 0.011503200417253
331 => 0.011450175323276
401 => 0.0115779505434
402 => 0.011315107221276
403 => 0.011017675052975
404 => 0.011074207184379
405 => 0.011068762685522
406 => 0.010999447966169
407 => 0.010936873736808
408 => 0.010832705275101
409 => 0.011162309701973
410 => 0.01114892836417
411 => 0.011365556669091
412 => 0.011327265511982
413 => 0.011071547793366
414 => 0.011080680801713
415 => 0.011142104672022
416 => 0.011354693388485
417 => 0.011417804193675
418 => 0.01138856875418
419 => 0.011457766870953
420 => 0.011512458241016
421 => 0.01146463526499
422 => 0.012141707755789
423 => 0.01186054005228
424 => 0.011997579234618
425 => 0.012030262272124
426 => 0.011946545358803
427 => 0.011964700559624
428 => 0.011992200741872
429 => 0.012159176463397
430 => 0.01259736907149
501 => 0.012791441594737
502 => 0.013375318356295
503 => 0.012775326573302
504 => 0.012739725543912
505 => 0.012844899380057
506 => 0.013187696848724
507 => 0.013465501999749
508 => 0.013557665995307
509 => 0.013569846988782
510 => 0.013742752771397
511 => 0.01384185914149
512 => 0.013721757461514
513 => 0.013619983862905
514 => 0.01325544346529
515 => 0.013297640008924
516 => 0.013588332350267
517 => 0.013998952404106
518 => 0.014351307128036
519 => 0.014227924784518
520 => 0.015169244971202
521 => 0.015262573022763
522 => 0.015249678103695
523 => 0.015462293294228
524 => 0.01504029543935
525 => 0.014859883180566
526 => 0.013641988470103
527 => 0.013984167206464
528 => 0.014481544095216
529 => 0.014415714398922
530 => 0.014054506007388
531 => 0.014351033119081
601 => 0.014252991982695
602 => 0.014175662870697
603 => 0.014529922523746
604 => 0.014140399483034
605 => 0.014477658304915
606 => 0.014045120377357
607 => 0.01422848838467
608 => 0.014124399835207
609 => 0.014191757883322
610 => 0.013797984110389
611 => 0.014010454879946
612 => 0.013789144627836
613 => 0.013789039697961
614 => 0.01378415426188
615 => 0.014044524792047
616 => 0.014053015465688
617 => 0.013860601250496
618 => 0.013832871356012
619 => 0.013935403309746
620 => 0.013815365245085
621 => 0.013871530300029
622 => 0.013817066427383
623 => 0.013804805462466
624 => 0.013707108007973
625 => 0.013665017258331
626 => 0.013681522125811
627 => 0.013625182504259
628 => 0.013591235844381
629 => 0.013777401416805
630 => 0.013677940661357
701 => 0.013762157629565
702 => 0.013666181765263
703 => 0.0133334876049
704 => 0.013142151675099
705 => 0.012513723246939
706 => 0.012691944769602
707 => 0.012810105823511
708 => 0.012771053595899
709 => 0.012854952892016
710 => 0.012860103627396
711 => 0.012832827110976
712 => 0.0128012443993
713 => 0.01278587168189
714 => 0.012900447322835
715 => 0.012966962338842
716 => 0.012821964866062
717 => 0.01278799398692
718 => 0.012934594437431
719 => 0.013024020627554
720 => 0.013684293371187
721 => 0.013635378233686
722 => 0.013758145629703
723 => 0.013744323904931
724 => 0.013873003694337
725 => 0.014083340765879
726 => 0.013655666688264
727 => 0.013729896120281
728 => 0.013711696777758
729 => 0.013910392427297
730 => 0.013911012733426
731 => 0.013791884765944
801 => 0.013856465969747
802 => 0.013820418513477
803 => 0.013885561139062
804 => 0.013634724942203
805 => 0.013940216353884
806 => 0.014113410298875
807 => 0.014115815096969
808 => 0.014197907652343
809 => 0.014281318443083
810 => 0.01444141819236
811 => 0.01427685334797
812 => 0.013980817212978
813 => 0.014002190065734
814 => 0.013828624188103
815 => 0.013831541861863
816 => 0.013815967090669
817 => 0.013862708151437
818 => 0.013644981976563
819 => 0.013696081874621
820 => 0.013624541718099
821 => 0.013729740605952
822 => 0.013616563992622
823 => 0.013711688001484
824 => 0.013752740370298
825 => 0.013904224495017
826 => 0.013594189664233
827 => 0.012962007656752
828 => 0.01309489997919
829 => 0.012898341795837
830 => 0.012916534004056
831 => 0.012953285159927
901 => 0.012834162639519
902 => 0.012856887462431
903 => 0.012856075571845
904 => 0.012849079137389
905 => 0.012818090769101
906 => 0.012773151504221
907 => 0.012952175703925
908 => 0.01298259540397
909 => 0.013050214628967
910 => 0.013251403576
911 => 0.013231300055829
912 => 0.013264089731315
913 => 0.013192510053836
914 => 0.012919854379999
915 => 0.012934660894875
916 => 0.01275002341712
917 => 0.01304549303354
918 => 0.012975521928363
919 => 0.012930411101667
920 => 0.012918102194654
921 => 0.013119789850172
922 => 0.013180137957769
923 => 0.013142533066925
924 => 0.013065404338695
925 => 0.01321351429796
926 => 0.013253142274801
927 => 0.013262013517393
928 => 0.013524435967942
929 => 0.013276680017229
930 => 0.013336317337048
1001 => 0.013801590682053
1002 => 0.013379651961466
1003 => 0.013603162312117
1004 => 0.013592222643545
1005 => 0.01370656297576
1006 => 0.013582843398959
1007 => 0.01358437705139
1008 => 0.013685903520312
1009 => 0.013543327905106
1010 => 0.013508024177736
1011 => 0.013459252331223
1012 => 0.0135657438738
1013 => 0.013629580737377
1014 => 0.014144058974795
1015 => 0.014476435379226
1016 => 0.014462006042929
1017 => 0.014593863166095
1018 => 0.014534460324436
1019 => 0.01434263287904
1020 => 0.014670058937466
1021 => 0.014566447632492
1022 => 0.014574989222586
1023 => 0.014574671304176
1024 => 0.014643563764127
1025 => 0.014594747142351
1026 => 0.014498524569907
1027 => 0.014562401604014
1028 => 0.014752093558857
1029 => 0.015340903207146
1030 => 0.01567040888702
1031 => 0.015321066551478
1101 => 0.015562038216655
1102 => 0.015417541084532
1103 => 0.015391281657209
1104 => 0.015542629670605
1105 => 0.015694242598664
1106 => 0.015684585510588
1107 => 0.015574522310227
1108 => 0.015512350401093
1109 => 0.01598313692617
1110 => 0.016330004418207
1111 => 0.016306350380679
1112 => 0.016410751609622
1113 => 0.016717276846805
1114 => 0.016745301672994
1115 => 0.016741771189037
1116 => 0.01667230873324
1117 => 0.01697412263658
1118 => 0.017225901104655
1119 => 0.016656230181687
1120 => 0.016873153411613
1121 => 0.016970537238357
1122 => 0.017113525588497
1123 => 0.017354770902812
1124 => 0.017616827301318
1125 => 0.017653884949369
1126 => 0.017627590774705
1127 => 0.017454757535436
1128 => 0.017741502773665
1129 => 0.017909471409216
1130 => 0.018009492887792
1201 => 0.018263130715475
1202 => 0.016971138647718
1203 => 0.016056602445987
1204 => 0.015913784412023
1205 => 0.016204210500129
1206 => 0.016280793543458
1207 => 0.016249923014719
1208 => 0.015220529373677
1209 => 0.015908364867541
1210 => 0.016648418024088
1211 => 0.016676846479792
1212 => 0.017047332563742
1213 => 0.017167978019413
1214 => 0.017466267877713
1215 => 0.017447609765861
1216 => 0.017520238599529
1217 => 0.017503542488425
1218 => 0.018056061638585
1219 => 0.0186655723111
1220 => 0.018644466894636
1221 => 0.018556842524059
1222 => 0.018686979656542
1223 => 0.019316059989711
1224 => 0.019258144353439
1225 => 0.019314404460835
1226 => 0.020056125627055
1227 => 0.021020468651746
1228 => 0.02057243449832
1229 => 0.0215445396929
1230 => 0.022156428383805
1231 => 0.023214626604255
]
'min_raw' => 0.0094780177990536
'max_raw' => 0.023214626604255
'avg_raw' => 0.016346322201654
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.009478'
'max' => '$0.023214'
'avg' => '$0.016346'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0042261839894034
'max_diff' => 0.009418025330518
'year' => 2028
]
3 => [
'items' => [
101 => 0.023082134975319
102 => 0.023494083777123
103 => 0.022844947307685
104 => 0.021354398761731
105 => 0.021118513748743
106 => 0.021590761518305
107 => 0.022751736578508
108 => 0.0215541982821
109 => 0.021796458719786
110 => 0.021726687697435
111 => 0.021722969896161
112 => 0.021864863249374
113 => 0.021659039539879
114 => 0.020820476720417
115 => 0.021204785118895
116 => 0.021056385190237
117 => 0.02122104597503
118 => 0.022109652319284
119 => 0.02171677827276
120 => 0.021302917379243
121 => 0.021821990782798
122 => 0.022482949598497
123 => 0.022441587983668
124 => 0.022361329163085
125 => 0.022813743932494
126 => 0.023561000586468
127 => 0.023762981057316
128 => 0.023912078911588
129 => 0.023932636986663
130 => 0.024144397936709
131 => 0.023005705937679
201 => 0.024812839383825
202 => 0.02512488140892
203 => 0.025066230441019
204 => 0.025413052019177
205 => 0.025311008312869
206 => 0.025163162992595
207 => 0.025712948965041
208 => 0.025082663713072
209 => 0.024188053148609
210 => 0.023697252099555
211 => 0.024343578512741
212 => 0.024738267499591
213 => 0.024999131812964
214 => 0.025078069196573
215 => 0.023094099356123
216 => 0.022024849648132
217 => 0.022710226451982
218 => 0.023546433454858
219 => 0.023001060765557
220 => 0.02302243834245
221 => 0.022244880208928
222 => 0.023615230096277
223 => 0.023415581644147
224 => 0.024451358166969
225 => 0.024204161787172
226 => 0.02504879733292
227 => 0.024826376486905
228 => 0.025749632983332
301 => 0.026117944995929
302 => 0.026736398188266
303 => 0.027191334874107
304 => 0.027458482397584
305 => 0.02744244386232
306 => 0.028501015442706
307 => 0.027876812765427
308 => 0.027092667089488
309 => 0.027078484368158
310 => 0.027484604525157
311 => 0.028335720960602
312 => 0.028556403069073
313 => 0.028679734261701
314 => 0.028490848247001
315 => 0.027813320977823
316 => 0.027520768138133
317 => 0.027770031633621
318 => 0.027465203798096
319 => 0.027991422161797
320 => 0.028714032369335
321 => 0.028564816218989
322 => 0.029063623437861
323 => 0.029579836433343
324 => 0.03031804420146
325 => 0.0305110390478
326 => 0.030830052189864
327 => 0.031158421503405
328 => 0.031263884877114
329 => 0.031465247180886
330 => 0.03146418590215
331 => 0.032071004757814
401 => 0.032740344747228
402 => 0.032993005097975
403 => 0.033573983642745
404 => 0.032579078244742
405 => 0.033333725417777
406 => 0.034014436057897
407 => 0.03320286477034
408 => 0.03432142671838
409 => 0.034364857944106
410 => 0.035020617888651
411 => 0.034355879556451
412 => 0.03396116005671
413 => 0.035100700462514
414 => 0.035652088169696
415 => 0.035486005704951
416 => 0.034222109947737
417 => 0.033486468406
418 => 0.031561152596616
419 => 0.033841772340284
420 => 0.034952595690835
421 => 0.034219233183614
422 => 0.034589098575107
423 => 0.036606964221834
424 => 0.037375236812982
425 => 0.037215441484654
426 => 0.037242444264687
427 => 0.037656990209737
428 => 0.039495315224709
429 => 0.038393748263697
430 => 0.039235854930464
501 => 0.039682505270076
502 => 0.040097378997601
503 => 0.039078580244987
504 => 0.037753138036963
505 => 0.037333314851403
506 => 0.034146314735267
507 => 0.033980417538782
508 => 0.033887294415195
509 => 0.03330016629351
510 => 0.032838844417793
511 => 0.032471984134439
512 => 0.031509233197165
513 => 0.031834133376645
514 => 0.030299709324368
515 => 0.031281379456365
516 => 0.028832401618966
517 => 0.030871983133722
518 => 0.029761931643632
519 => 0.030507301364488
520 => 0.03050470083975
521 => 0.029132238863969
522 => 0.02834063143889
523 => 0.028845074499972
524 => 0.029385877504193
525 => 0.029473620972148
526 => 0.030174786183523
527 => 0.030370466322522
528 => 0.029777546365923
529 => 0.028781651996659
530 => 0.029012975544707
531 => 0.028335943674572
601 => 0.027149471363814
602 => 0.02800161649122
603 => 0.028292576303892
604 => 0.028421080732783
605 => 0.027254321482419
606 => 0.026887700394379
607 => 0.026692514403355
608 => 0.028631038028973
609 => 0.028737234729154
610 => 0.028193917396327
611 => 0.030649763260166
612 => 0.030093929705363
613 => 0.030714931968605
614 => 0.028991985357341
615 => 0.029057804238146
616 => 0.02824213370093
617 => 0.028698854698646
618 => 0.028376059018265
619 => 0.028661956155435
620 => 0.028833321720657
621 => 0.029648858414365
622 => 0.030881295252749
623 => 0.029527044428077
624 => 0.028936977950538
625 => 0.029303051874543
626 => 0.030277954974827
627 => 0.031754983076127
628 => 0.030880552712197
629 => 0.031268610058919
630 => 0.031353383325708
701 => 0.030708610748517
702 => 0.031778756760743
703 => 0.032352256702545
704 => 0.032940548973743
705 => 0.033451346669249
706 => 0.032705572103802
707 => 0.033503657791415
708 => 0.032860541608288
709 => 0.032283599907894
710 => 0.032284474890302
711 => 0.031922550933872
712 => 0.031221277662934
713 => 0.031091952112311
714 => 0.031764719958669
715 => 0.032304216060096
716 => 0.032348651543022
717 => 0.032647344305082
718 => 0.03282410760489
719 => 0.034556628241054
720 => 0.035253462373082
721 => 0.036105537959331
722 => 0.036437469420523
723 => 0.037436464114698
724 => 0.03662969476477
725 => 0.036455145141095
726 => 0.034031910781702
727 => 0.034428715272301
728 => 0.035064037547687
729 => 0.034042387012019
730 => 0.034690389125363
731 => 0.034818318469099
801 => 0.034007671717757
802 => 0.034440673173627
803 => 0.03329074968282
804 => 0.03090636044247
805 => 0.031781411267581
806 => 0.032425743213785
807 => 0.031506202080996
808 => 0.033154443970364
809 => 0.032191575085214
810 => 0.031886391874479
811 => 0.03069576336373
812 => 0.03125769418931
813 => 0.03201771367698
814 => 0.031548109995348
815 => 0.032522608146081
816 => 0.033902757416681
817 => 0.034886333976221
818 => 0.034961840771344
819 => 0.034329466938071
820 => 0.035342850041647
821 => 0.035350231431221
822 => 0.034207131150596
823 => 0.033506988593523
824 => 0.033347914731443
825 => 0.033745312427186
826 => 0.034227826593479
827 => 0.034988616949446
828 => 0.035448346627911
829 => 0.03664707780757
830 => 0.036971420094469
831 => 0.037327773933334
901 => 0.037803972557512
902 => 0.038375771100658
903 => 0.037124708440763
904 => 0.037174415492513
905 => 0.03600944326576
906 => 0.034764503367557
907 => 0.035709257566344
908 => 0.036944398005873
909 => 0.036661055424336
910 => 0.03662917359575
911 => 0.03668278998815
912 => 0.036469158934775
913 => 0.035502913597895
914 => 0.03501767123873
915 => 0.035643757680582
916 => 0.035976494760524
917 => 0.036492540953792
918 => 0.036428927368058
919 => 0.037758206942602
920 => 0.038274724789942
921 => 0.038142577421547
922 => 0.038166895717636
923 => 0.039102026608136
924 => 0.040142084482709
925 => 0.04111623592997
926 => 0.042107184622902
927 => 0.040912557296186
928 => 0.040305999214051
929 => 0.040931812326147
930 => 0.040599747079912
1001 => 0.042507892481733
1002 => 0.042640008329311
1003 => 0.044548015750502
1004 => 0.046358941994509
1005 => 0.045221531666762
1006 => 0.046294058375741
1007 => 0.047454083455888
1008 => 0.049691960042778
1009 => 0.048938321937761
1010 => 0.048361046960333
1011 => 0.047815524896036
1012 => 0.048950669712649
1013 => 0.050411015384842
1014 => 0.050725559855615
1015 => 0.051235242063503
1016 => 0.050699373542884
1017 => 0.051344768151989
1018 => 0.05362329472289
1019 => 0.053007616730322
1020 => 0.0521332550057
1021 => 0.053931932901408
1022 => 0.054582867439682
1023 => 0.059151466926352
1024 => 0.064919512497704
1025 => 0.062531503756135
1026 => 0.061049189669683
1027 => 0.061397568640959
1028 => 0.063503863622952
1029 => 0.064180338720707
1030 => 0.062341446210059
1031 => 0.062990974132465
1101 => 0.0665699368451
1102 => 0.068489935513557
1103 => 0.065882319431568
1104 => 0.058688010080915
1105 => 0.052054528298996
1106 => 0.053814026377139
1107 => 0.053614553898659
1108 => 0.057459702848694
1109 => 0.052992933013818
1110 => 0.053068141962167
1111 => 0.056992804520405
1112 => 0.055945771835617
1113 => 0.054249712980075
1114 => 0.052066911405613
1115 => 0.04803180081051
1116 => 0.044457790829045
1117 => 0.051467247448041
1118 => 0.05116498693276
1119 => 0.050727268914135
1120 => 0.051701362998549
1121 => 0.056431287371035
1122 => 0.056322247304978
1123 => 0.055628590037454
1124 => 0.056154722961256
1125 => 0.054157479334718
1126 => 0.054672214493669
1127 => 0.05205347752159
1128 => 0.053237256001086
1129 => 0.05424607399951
1130 => 0.0544486091485
1201 => 0.054904931180874
1202 => 0.051005709376031
1203 => 0.052756345491268
1204 => 0.053784680196548
1205 => 0.049138626586955
1206 => 0.053692842654888
1207 => 0.050937832599394
1208 => 0.050002740807697
1209 => 0.051261718716241
1210 => 0.050771093800886
1211 => 0.050349283309124
1212 => 0.050113905807097
1213 => 0.051038360234811
1214 => 0.050995233330796
1215 => 0.049482646458184
1216 => 0.047509538543791
1217 => 0.048171778324921
1218 => 0.047931180403905
1219 => 0.047059222500395
1220 => 0.047646816846762
1221 => 0.045059348720056
1222 => 0.040607744292947
1223 => 0.043548610533826
1224 => 0.0434353903826
1225 => 0.043378299648226
1226 => 0.045588279348674
1227 => 0.045375840793382
1228 => 0.044990262735324
1229 => 0.047052141056985
1230 => 0.046299527733402
1231 => 0.048618904658685
]
'min_raw' => 0.020820476720417
'max_raw' => 0.068489935513557
'avg_raw' => 0.044655206116987
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.02082'
'max' => '$0.068489'
'avg' => '$0.044655'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.011342458921363
'max_diff' => 0.045275308909302
'year' => 2029
]
4 => [
'items' => [
101 => 0.050146596309571
102 => 0.049759124291259
103 => 0.051195925672891
104 => 0.048187034991942
105 => 0.049186467780412
106 => 0.049392449492962
107 => 0.047026697798553
108 => 0.0454105983683
109 => 0.045302822961184
110 => 0.042500729261345
111 => 0.043997585098089
112 => 0.045314756290321
113 => 0.044683933505855
114 => 0.044484233857588
115 => 0.045504456051015
116 => 0.045583736053057
117 => 0.043776143604793
118 => 0.044151999313796
119 => 0.045719380101148
120 => 0.044112505339439
121 => 0.040990610158942
122 => 0.040216336990601
123 => 0.040113034677258
124 => 0.038013144436338
125 => 0.040268077626041
126 => 0.039283738860283
127 => 0.042393253227122
128 => 0.040617115297444
129 => 0.040540549541217
130 => 0.040424809170926
131 => 0.038617346895193
201 => 0.039013066263358
202 => 0.040328497712902
203 => 0.040797858473495
204 => 0.040748900300806
205 => 0.040322051381168
206 => 0.040517460630758
207 => 0.039887979352733
208 => 0.039665696411942
209 => 0.038964110307067
210 => 0.03793297255101
211 => 0.038076358580325
212 => 0.036033404873704
213 => 0.034920295266577
214 => 0.034612201197873
215 => 0.034200204933064
216 => 0.034658737272263
217 => 0.036027617442536
218 => 0.034376457533058
219 => 0.031545659683659
220 => 0.031715795457852
221 => 0.032098040028701
222 => 0.031385729799725
223 => 0.030711587947666
224 => 0.031297699593174
225 => 0.030098253226635
226 => 0.032242987391674
227 => 0.032184978343058
228 => 0.032984402610314
301 => 0.033484299010466
302 => 0.032332199651496
303 => 0.032042449778323
304 => 0.03220750447448
305 => 0.029479518010887
306 => 0.032761467916398
307 => 0.032789850355467
308 => 0.032546822680682
309 => 0.034294359686531
310 => 0.037982207839334
311 => 0.036594691020901
312 => 0.036057402570886
313 => 0.035036016834652
314 => 0.0363969526843
315 => 0.036292454044954
316 => 0.035819871567897
317 => 0.035534052211226
318 => 0.036060683139592
319 => 0.035468796811235
320 => 0.035362477762713
321 => 0.034718300004938
322 => 0.034488357853633
323 => 0.034318117839067
324 => 0.034130700310469
325 => 0.034544096677019
326 => 0.033607286123596
327 => 0.032477584432839
328 => 0.032383661960795
329 => 0.032642990163858
330 => 0.032528256738717
331 => 0.032383112661296
401 => 0.032105993089863
402 => 0.032023777632741
403 => 0.032290937983117
404 => 0.031989329523959
405 => 0.032434369234909
406 => 0.032313343058701
407 => 0.031637300676574
408 => 0.030794701565497
409 => 0.030787200665997
410 => 0.030605664069655
411 => 0.030374449920003
412 => 0.030310131433033
413 => 0.031248338905188
414 => 0.033190400294361
415 => 0.032809127174076
416 => 0.033084636077923
417 => 0.034439867203666
418 => 0.034870654425318
419 => 0.034564891859144
420 => 0.034146345199952
421 => 0.034164759128796
422 => 0.035595059765947
423 => 0.035684265862244
424 => 0.035909660888608
425 => 0.036199357194113
426 => 0.034614228392654
427 => 0.034090099704795
428 => 0.033841738454935
429 => 0.033076881933267
430 => 0.033901714118044
501 => 0.03342111972681
502 => 0.03348596832963
503 => 0.033443735591971
504 => 0.033466797522498
505 => 0.032242387894765
506 => 0.032688498410036
507 => 0.031946753153842
508 => 0.03095363952061
509 => 0.030950310255481
510 => 0.031193373410271
511 => 0.03104878993474
512 => 0.030659719519666
513 => 0.030714985135767
514 => 0.03023080018551
515 => 0.030773773955179
516 => 0.03078934450004
517 => 0.030580270022736
518 => 0.031416796030852
519 => 0.031759521418918
520 => 0.031621904119147
521 => 0.031749865822306
522 => 0.032824970793569
523 => 0.033000259814003
524 => 0.033078111617938
525 => 0.032973800514053
526 => 0.031769516767583
527 => 0.031822931872749
528 => 0.031431007272521
529 => 0.031099872285325
530 => 0.031113115948238
531 => 0.031283362376192
601 => 0.032026838511887
602 => 0.033591440209146
603 => 0.033650815699848
604 => 0.033722780526684
605 => 0.033430063409318
606 => 0.033341777125795
607 => 0.033458249522385
608 => 0.034045831657026
609 => 0.035557252434317
610 => 0.035023015387223
611 => 0.03458867235204
612 => 0.034969708291937
613 => 0.034911050795648
614 => 0.034415922496154
615 => 0.034402025893863
616 => 0.033451716385041
617 => 0.03310040859713
618 => 0.032806829514619
619 => 0.032486248820594
620 => 0.032296197839213
621 => 0.03258820252324
622 => 0.032654987449375
623 => 0.032016514104382
624 => 0.031929492546699
625 => 0.032450883662625
626 => 0.032221438871926
627 => 0.032457428529117
628 => 0.032512180153867
629 => 0.032503363881245
630 => 0.032263797168189
701 => 0.032416489847109
702 => 0.032055326141586
703 => 0.031662614856864
704 => 0.031412089523988
705 => 0.031193472943692
706 => 0.03131477412851
707 => 0.030882357553352
708 => 0.030744018788133
709 => 0.032364761003185
710 => 0.033562020703359
711 => 0.033544612073152
712 => 0.0334386415139
713 => 0.033281190758196
714 => 0.034034313153546
715 => 0.033771940370164
716 => 0.033962838492054
717 => 0.034011430076044
718 => 0.034158502165933
719 => 0.034211067796795
720 => 0.034052177951152
721 => 0.033518924222413
722 => 0.032190106630639
723 => 0.031571538454593
724 => 0.03136740065343
725 => 0.03137482067479
726 => 0.031170143361264
727 => 0.031230430003091
728 => 0.031149178127517
729 => 0.030995306732121
730 => 0.031305273003443
731 => 0.031340993728677
801 => 0.03126864389713
802 => 0.031285684901561
803 => 0.030686659197364
804 => 0.030732201820639
805 => 0.030478614706969
806 => 0.030431070180194
807 => 0.029790024039192
808 => 0.028654317879283
809 => 0.029283609337537
810 => 0.028523513747735
811 => 0.02823565403055
812 => 0.029598337160335
813 => 0.029461561569051
814 => 0.029227461211693
815 => 0.028881177992372
816 => 0.0287527381779
817 => 0.027972378524267
818 => 0.027926270712873
819 => 0.028313038028697
820 => 0.028134558220295
821 => 0.02788390497371
822 => 0.026976064322889
823 => 0.025955350855658
824 => 0.025986159779258
825 => 0.026310829742135
826 => 0.02725485144691
827 => 0.026886005835113
828 => 0.026618404111738
829 => 0.026568290353029
830 => 0.027195568963542
831 => 0.028083299616349
901 => 0.028499802976793
902 => 0.028087060795988
903 => 0.027612924802298
904 => 0.027641783263299
905 => 0.027833765675522
906 => 0.027853940312562
907 => 0.027545326522637
908 => 0.027632199496785
909 => 0.027500231505222
910 => 0.026690344184597
911 => 0.026675695891148
912 => 0.026476936481469
913 => 0.026470918125536
914 => 0.026132778786814
915 => 0.02608547075588
916 => 0.025414074575257
917 => 0.025855989574518
918 => 0.025559576194593
919 => 0.025112811314198
920 => 0.025035788880422
921 => 0.025033473493055
922 => 0.025492201130422
923 => 0.025850629074991
924 => 0.025564732432242
925 => 0.025499639308562
926 => 0.02619466357197
927 => 0.026106215399164
928 => 0.026029619851944
929 => 0.028003813073105
930 => 0.026441085090338
1001 => 0.025759646492457
1002 => 0.024916236825899
1003 => 0.025190855266171
1004 => 0.025248721406521
1005 => 0.023220473194468
1006 => 0.02239761314744
1007 => 0.022115238588127
1008 => 0.021952728037052
1009 => 0.022026786135856
1010 => 0.021286115581674
1011 => 0.021783858443644
1012 => 0.021142500351046
1013 => 0.021034974579662
1014 => 0.02218180229825
1015 => 0.022341376675621
1016 => 0.021660582805883
1017 => 0.02209776268077
1018 => 0.021939235180881
1019 => 0.021153494594735
1020 => 0.02112348508386
1021 => 0.020729228077849
1022 => 0.020112292206641
1023 => 0.019830335958899
1024 => 0.019683490697019
1025 => 0.019744081914028
1026 => 0.019713445140587
1027 => 0.019513519470369
1028 => 0.019724904645979
1029 => 0.01918490287268
1030 => 0.018969869815462
1031 => 0.018872744372246
1101 => 0.018393461717101
1102 => 0.019156213559401
1103 => 0.019306485281229
1104 => 0.01945705308477
1105 => 0.020767643017588
1106 => 0.020702169648233
1107 => 0.021294017020378
1108 => 0.021271018919834
1109 => 0.021102214462006
1110 => 0.020390056221418
1111 => 0.020673909803117
1112 => 0.01980025259929
1113 => 0.020454855979312
1114 => 0.020156122333561
1115 => 0.020353853833185
1116 => 0.01999831476813
1117 => 0.02019508476658
1118 => 0.019342120281187
1119 => 0.018545634046262
1120 => 0.018866163358079
1121 => 0.019214615376996
1122 => 0.019970148137933
1123 => 0.019520159058529
1124 => 0.019681992147454
1125 => 0.019139878390088
1126 => 0.018021342861504
1127 => 0.018027673651123
1128 => 0.017855611328672
1129 => 0.017706924360563
1130 => 0.0195718457174
1201 => 0.019339913266633
1202 => 0.018970359260905
1203 => 0.019465021983064
1204 => 0.019595818658156
1205 => 0.019599542255618
1206 => 0.019960435408612
1207 => 0.020153044149059
1208 => 0.020186992274377
1209 => 0.020754865448226
1210 => 0.020945209045672
1211 => 0.021729207385117
1212 => 0.020136702643114
1213 => 0.020103906055929
1214 => 0.019471982901992
1215 => 0.019071207247455
1216 => 0.019499424353936
1217 => 0.019878766252815
1218 => 0.019483770112201
1219 => 0.019535348269342
1220 => 0.019005098222938
1221 => 0.019194637663944
1222 => 0.019357894564258
1223 => 0.019267753699702
1224 => 0.019132808462594
1225 => 0.019847664543065
1226 => 0.019807329561461
1227 => 0.020473019978066
1228 => 0.020991973261789
1229 => 0.021922030320214
1230 => 0.020951467294776
1231 => 0.02091609612049
]
'min_raw' => 0.017706924360563
'max_raw' => 0.051195925672891
'avg_raw' => 0.034451425016727
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0177069'
'max' => '$0.051195'
'avg' => '$0.034451'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0031135523598536
'max_diff' => -0.017294009840665
'year' => 2030
]
5 => [
'items' => [
101 => 0.021261855022847
102 => 0.020945156111785
103 => 0.021145298891501
104 => 0.021889784224207
105 => 0.021905514026142
106 => 0.021642019577018
107 => 0.021625985915843
108 => 0.02167659290711
109 => 0.021972999635646
110 => 0.021869426017037
111 => 0.021989284030654
112 => 0.022139168312014
113 => 0.022759153249336
114 => 0.022908629518775
115 => 0.022545479678598
116 => 0.02257826804315
117 => 0.022442440034237
118 => 0.022311231879548
119 => 0.022606168649877
120 => 0.023145171394651
121 => 0.02314181828655
122 => 0.023266856446622
123 => 0.023344754184474
124 => 0.023010360068982
125 => 0.022792681795809
126 => 0.022876153496972
127 => 0.023009626564909
128 => 0.022832869979946
129 => 0.021741846455937
130 => 0.022072793298269
131 => 0.022017707561231
201 => 0.021939258773035
202 => 0.022272028382135
203 => 0.022239931941541
204 => 0.021278518934593
205 => 0.021340065476001
206 => 0.021282261783625
207 => 0.021469037339215
208 => 0.020935069618838
209 => 0.021099314493299
210 => 0.02120232733886
211 => 0.021263002696278
212 => 0.021482203692753
213 => 0.021456482985825
214 => 0.021480604857497
215 => 0.021805622068352
216 => 0.023449447588418
217 => 0.023538917384578
218 => 0.023098335386243
219 => 0.023274339204482
220 => 0.022936450361267
221 => 0.023163277405376
222 => 0.023318466708173
223 => 0.022617196090019
224 => 0.022575671395221
225 => 0.022236387964555
226 => 0.022418699662199
227 => 0.022128628642573
228 => 0.022199801924535
301 => 0.022000795223392
302 => 0.022358967663611
303 => 0.022759460106146
304 => 0.022860640313056
305 => 0.022594478749493
306 => 0.022401760236572
307 => 0.022063410013308
308 => 0.022626093975223
309 => 0.02279063991317
310 => 0.02262522968546
311 => 0.022586900521415
312 => 0.022514266824809
313 => 0.022602310103512
314 => 0.022789743760654
315 => 0.022701353509302
316 => 0.022759736827556
317 => 0.022537239822988
318 => 0.023010470767349
319 => 0.023762075396221
320 => 0.023764491928003
321 => 0.023676101200194
322 => 0.02363993361878
323 => 0.023730627869509
324 => 0.023779825780057
325 => 0.024073114356435
326 => 0.02438782468402
327 => 0.025856440463989
328 => 0.025444059029734
329 => 0.026747102318066
330 => 0.027777640380142
331 => 0.028086653684991
401 => 0.027802375984729
402 => 0.026829877328515
403 => 0.026782161904892
404 => 0.028235485475617
405 => 0.027824855000451
406 => 0.027776011812045
407 => 0.027256402809278
408 => 0.02756355608474
409 => 0.02749637715773
410 => 0.027390331934938
411 => 0.027976358988038
412 => 0.029073349316446
413 => 0.028902373086254
414 => 0.028774747261774
415 => 0.028215528050223
416 => 0.02855230292171
417 => 0.028432383840471
418 => 0.028947632316001
419 => 0.028642410533248
420 => 0.027821744070735
421 => 0.027952437909843
422 => 0.027932683798981
423 => 0.02833922200072
424 => 0.028217189323457
425 => 0.027908854960191
426 => 0.029069599922762
427 => 0.028994227601295
428 => 0.029101088320623
429 => 0.029148131714049
430 => 0.029854656718145
501 => 0.030144097406045
502 => 0.030209805509571
503 => 0.030484751776929
504 => 0.030202964595969
505 => 0.031330314230667
506 => 0.032079935955067
507 => 0.032950660163138
508 => 0.034223022259734
509 => 0.034701442178061
510 => 0.034615019901986
511 => 0.035579710322357
512 => 0.0373132375639
513 => 0.034965415320942
514 => 0.037437677843735
515 => 0.036654988072662
516 => 0.034799244705436
517 => 0.034679756710364
518 => 0.035936487664273
519 => 0.03872379596417
520 => 0.038025606848435
521 => 0.038724937951444
522 => 0.037909131072625
523 => 0.037868619384932
524 => 0.038685316032255
525 => 0.040593572264543
526 => 0.039687031258498
527 => 0.038387282433359
528 => 0.03934699673951
529 => 0.038515603390156
530 => 0.036642241481714
531 => 0.038025072956377
601 => 0.037100412930043
602 => 0.037370277883358
603 => 0.039313775725912
604 => 0.039079928923639
605 => 0.039382548339411
606 => 0.038848432991501
607 => 0.038349485034294
608 => 0.037418161619804
609 => 0.037142442670463
610 => 0.037218641468732
611 => 0.037142404910122
612 => 0.036621338019019
613 => 0.036508813673497
614 => 0.036321268167821
615 => 0.036379396362184
616 => 0.036026755943142
617 => 0.036692261273104
618 => 0.036815784926758
619 => 0.037300084207366
620 => 0.037350365765279
621 => 0.038699132368203
622 => 0.037956254388415
623 => 0.038454641074256
624 => 0.038410060678077
625 => 0.03483946429131
626 => 0.035331460969768
627 => 0.036096853404385
628 => 0.035752045150055
629 => 0.035264566951138
630 => 0.034870902168585
701 => 0.034274459768726
702 => 0.035113940992865
703 => 0.036217769533733
704 => 0.03737836067867
705 => 0.038772734894368
706 => 0.038461526801729
707 => 0.037352293822614
708 => 0.037402053203762
709 => 0.037709646118424
710 => 0.037311285346174
711 => 0.037193800977511
712 => 0.037693505570265
713 => 0.037696946761162
714 => 0.037238584549181
715 => 0.036729198829963
716 => 0.036727064485201
717 => 0.036636424216548
718 => 0.03792525577506
719 => 0.038633982816674
720 => 0.038715237229824
721 => 0.038628513747267
722 => 0.038661890173772
723 => 0.038249497523991
724 => 0.039192104830147
725 => 0.040057134508477
726 => 0.039825288076021
727 => 0.039477717314857
728 => 0.039200860462314
729 => 0.039760069400199
730 => 0.039735168706472
731 => 0.040049579228872
801 => 0.040035315751453
802 => 0.039929591318348
803 => 0.039825291851774
804 => 0.040238827447262
805 => 0.04011973583694
806 => 0.040000459244453
807 => 0.039761231777887
808 => 0.039793746763741
809 => 0.03944623601557
810 => 0.039285461642455
811 => 0.03686780082248
812 => 0.036221722852036
813 => 0.036424992133668
814 => 0.036491913659065
815 => 0.036210739698357
816 => 0.036613870930349
817 => 0.036551043354864
818 => 0.036795468698171
819 => 0.036642762355388
820 => 0.036649029476962
821 => 0.037098106270663
822 => 0.037228475174384
823 => 0.037162168497745
824 => 0.037208607421203
825 => 0.038278772811641
826 => 0.038126629515084
827 => 0.038045806421116
828 => 0.0380681949705
829 => 0.038341645172361
830 => 0.038418196299055
831 => 0.038093843796101
901 => 0.038246810311554
902 => 0.038898122320009
903 => 0.039126044661902
904 => 0.039853463368291
905 => 0.03954444297298
906 => 0.040111663282663
907 => 0.041855105134973
908 => 0.043247887123598
909 => 0.041967027247708
910 => 0.044524694000102
911 => 0.046516204442345
912 => 0.046439766954538
913 => 0.046092501044466
914 => 0.043825219353017
915 => 0.041738832937279
916 => 0.04348418376669
917 => 0.043488633024889
918 => 0.043338705840768
919 => 0.042407520976571
920 => 0.043306302625954
921 => 0.043377644649386
922 => 0.043337712087639
923 => 0.042623774835538
924 => 0.041533724609238
925 => 0.041746717814246
926 => 0.042095605028992
927 => 0.04143508874598
928 => 0.041224013771465
929 => 0.041616442307746
930 => 0.042880928817373
1001 => 0.0426418849674
1002 => 0.042635642566425
1003 => 0.04365837352698
1004 => 0.042926318878378
1005 => 0.04174940434066
1006 => 0.04145221789829
1007 => 0.040397406236654
1008 => 0.041125968408456
1009 => 0.041152188063985
1010 => 0.040753162008214
1011 => 0.041781783105927
1012 => 0.041772304181427
1013 => 0.04274882682366
1014 => 0.044615571350454
1015 => 0.044063483136961
1016 => 0.043421464611697
1017 => 0.043491269826636
1018 => 0.044256860740565
1019 => 0.043793966997263
1020 => 0.043960426814764
1021 => 0.044256608783695
1022 => 0.044435302719336
1023 => 0.043465558519241
1024 => 0.043239464757971
1025 => 0.042776956270541
1026 => 0.042656296439301
1027 => 0.043032999951756
1028 => 0.042933751885356
1029 => 0.041149984403466
1030 => 0.040963570776819
1031 => 0.040969287816611
1101 => 0.040500541888925
1102 => 0.03978559183729
1103 => 0.041664437885537
1104 => 0.041513540253429
1105 => 0.041346960946131
1106 => 0.041367365960787
1107 => 0.04218290935033
1108 => 0.041709852998467
1109 => 0.042967550842307
1110 => 0.042709005975471
1111 => 0.04244383040838
1112 => 0.042407175067563
1113 => 0.042305105097949
1114 => 0.04195506919358
1115 => 0.041532379805159
1116 => 0.041253283658195
1117 => 0.038053973534361
1118 => 0.038647746883814
1119 => 0.039330828998215
1120 => 0.039566626206827
1121 => 0.039163278764827
1122 => 0.041970995809022
1123 => 0.042483992768831
1124 => 0.040930091515606
1125 => 0.040639420036497
1126 => 0.041990052182801
1127 => 0.041175455890515
1128 => 0.041542268551053
1129 => 0.040749420214768
1130 => 0.042360426823518
1201 => 0.042348153652333
1202 => 0.041721435695295
1203 => 0.042251133421004
1204 => 0.042159085405942
1205 => 0.041451522375984
1206 => 0.042382857833625
1207 => 0.042383319764392
1208 => 0.041780117356766
1209 => 0.041075709002646
1210 => 0.040949777426312
1211 => 0.040854904900071
1212 => 0.041518935725389
1213 => 0.042114303686999
1214 => 0.043222135859321
1215 => 0.043500671188886
1216 => 0.044587813123324
1217 => 0.043940473033346
1218 => 0.044227430510776
1219 => 0.044538963445139
1220 => 0.044688323790118
1221 => 0.044444949123094
1222 => 0.046133728032749
1223 => 0.046276312715573
1224 => 0.046324120126371
1225 => 0.045754673379842
1226 => 0.04626047537143
1227 => 0.046023827369968
1228 => 0.046639519727065
1229 => 0.046736068150213
1230 => 0.046654295070616
1231 => 0.046684941064037
]
'min_raw' => 0.020935069618838
'max_raw' => 0.046736068150213
'avg_raw' => 0.033835568884525
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.020935'
'max' => '$0.046736'
'avg' => '$0.033835'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0032281452582751
'max_diff' => -0.0044598575226788
'year' => 2031
]
6 => [
'items' => [
101 => 0.04524386618566
102 => 0.045169138850941
103 => 0.044150226339632
104 => 0.044565440719411
105 => 0.043789217338157
106 => 0.044035365768339
107 => 0.044143865650975
108 => 0.044087191469601
109 => 0.044588916317461
110 => 0.044162347701165
111 => 0.043036562988385
112 => 0.041910471556314
113 => 0.041896334395678
114 => 0.041599854398779
115 => 0.04138555366404
116 => 0.041426835588278
117 => 0.041572318473777
118 => 0.041377097934261
119 => 0.0414187581343
120 => 0.042110595035396
121 => 0.042249337991956
122 => 0.041777835215193
123 => 0.039884683528965
124 => 0.039420099356553
125 => 0.039754033246578
126 => 0.039594434355243
127 => 0.03195579874358
128 => 0.033750382875057
129 => 0.032684101922452
130 => 0.03317549324264
131 => 0.032087096502145
201 => 0.03260653647447
202 => 0.032510614878492
203 => 0.035396253056302
204 => 0.035351197785221
205 => 0.035372763359215
206 => 0.03434338232365
207 => 0.035983214264046
208 => 0.036791054444334
209 => 0.036641544726933
210 => 0.036679173101742
211 => 0.036032592953746
212 => 0.035379023668402
213 => 0.034654114747364
214 => 0.036000905921202
215 => 0.035851165733163
216 => 0.036194615849705
217 => 0.037068106196561
218 => 0.037196730968203
219 => 0.037369603965673
220 => 0.037307641302017
221 => 0.038783843334576
222 => 0.038605065528139
223 => 0.039035868603768
224 => 0.038149673992091
225 => 0.037146860670613
226 => 0.037337462698589
227 => 0.03731910619057
228 => 0.037085406774873
229 => 0.036874433391788
301 => 0.036523222150333
302 => 0.037634506487778
303 => 0.037589390373122
304 => 0.038319767827668
305 => 0.038190666518069
306 => 0.037328496376116
307 => 0.037359288951405
308 => 0.037566383818628
309 => 0.038283141518654
310 => 0.038495924004608
311 => 0.038397354679198
312 => 0.038630660961156
313 => 0.038815056733753
314 => 0.038653818231187
315 => 0.040936615405607
316 => 0.039988638862724
317 => 0.040450676033747
318 => 0.040560869176555
319 => 0.040278611758365
320 => 0.04033982328549
321 => 0.040432542069941
322 => 0.040995512372933
323 => 0.042472909344752
324 => 0.04312723840659
325 => 0.045095819673155
326 => 0.043072905486705
327 => 0.042952874130532
328 => 0.043307475062099
329 => 0.044463240661063
330 => 0.04539988012348
331 => 0.045710617469191
401 => 0.045751686539141
402 => 0.046334650457123
403 => 0.046668794503277
404 => 0.046263863304007
405 => 0.045920726510689
406 => 0.044691653108733
407 => 0.044833921701665
408 => 0.045814011225993
409 => 0.04719844540609
410 => 0.04838643395844
411 => 0.047970441772988
412 => 0.051144168503271
413 => 0.051458830545067
414 => 0.051415354425133
415 => 0.052132201384335
416 => 0.050709406153663
417 => 0.050101133627191
418 => 0.045994916580173
419 => 0.047148596079968
420 => 0.048825536986142
421 => 0.048603587569004
422 => 0.047385748258182
423 => 0.048385510118117
424 => 0.048054957581778
425 => 0.047794237081731
426 => 0.048988648235604
427 => 0.047675344108215
428 => 0.048812435772846
429 => 0.047354103951249
430 => 0.047972341990251
501 => 0.047621400178504
502 => 0.047848502540515
503 => 0.046520866772663
504 => 0.04723722680646
505 => 0.046491063840084
506 => 0.046490710061685
507 => 0.046474238472846
508 => 0.047352095893794
509 => 0.047380722792775
510 => 0.046731984832325
511 => 0.046638491557033
512 => 0.046984185197598
513 => 0.046579468481804
514 => 0.046768832885867
515 => 0.046585204136695
516 => 0.046543865437443
517 => 0.046214471648603
518 => 0.0460725597475
519 => 0.046128207060542
520 => 0.045938254092974
521 => 0.045823800559116
522 => 0.046451470784208
523 => 0.046116131903086
524 => 0.046400075291239
525 => 0.046076485963926
526 => 0.044954784374299
527 => 0.044309681928325
528 => 0.042190891607313
529 => 0.042791777914001
530 => 0.043190166156997
531 => 0.043058498845063
601 => 0.043341371179582
602 => 0.043358737243528
603 => 0.043266772564033
604 => 0.043160289246584
605 => 0.043108459056547
606 => 0.043494758829408
607 => 0.043719018849807
608 => 0.043230149746928
609 => 0.04311561455613
610 => 0.043609888210343
611 => 0.04391139485388
612 => 0.046137550507811
613 => 0.04597262970658
614 => 0.046386548553598
615 => 0.046339947643526
616 => 0.046773800537644
617 => 0.047482966659614
618 => 0.046041033647683
619 => 0.046291303360262
620 => 0.04622994300631
621 => 0.046899859261216
622 => 0.04690195066664
623 => 0.046500302407025
624 => 0.046718042444561
625 => 0.046596505928994
626 => 0.046816138839269
627 => 0.045970427088732
628 => 0.047000412711944
629 => 0.047584348189498
630 => 0.04759245613417
701 => 0.047869236916132
702 => 0.048150462220668
703 => 0.048690249703161
704 => 0.048135407840751
705 => 0.047137301343042
706 => 0.047209361408312
707 => 0.046624171933899
708 => 0.046634009074687
709 => 0.04658149764621
710 => 0.046739088395945
711 => 0.046005009396202
712 => 0.046177296270186
713 => 0.045936093637698
714 => 0.046290779032845
715 => 0.045909196179263
716 => 0.046229913416489
717 => 0.046368324344131
718 => 0.046879063646903
719 => 0.045833759568975
720 => 0.043702313793214
721 => 0.044150369536561
722 => 0.043487659898132
723 => 0.043548996198282
724 => 0.043672905286185
725 => 0.043271275391761
726 => 0.043347893718804
727 => 0.043345156373007
728 => 0.043321567405764
729 => 0.043217087958542
730 => 0.04306557208944
731 => 0.043669164677814
801 => 0.043771726820352
802 => 0.043999709758453
803 => 0.044678032339937
804 => 0.044610251918099
805 => 0.0447208045983
806 => 0.044479468718148
807 => 0.043560191077594
808 => 0.043610112276255
809 => 0.042987594129029
810 => 0.043983790569817
811 => 0.043747878103488
812 => 0.043595783801744
813 => 0.043554283462369
814 => 0.044234287474331
815 => 0.044437755332466
816 => 0.044310967817496
817 => 0.04405092292531
818 => 0.044550285993679
819 => 0.044683894484338
820 => 0.044713804498105
821 => 0.045598580111884
822 => 0.044763253626284
823 => 0.044964325013799
824 => 0.046533026580833
825 => 0.045110430725552
826 => 0.045864011477768
827 => 0.045827127621392
828 => 0.046212634034443
829 => 0.045795504843433
830 => 0.04580067565968
831 => 0.046142979238003
901 => 0.045662275597024
902 => 0.045543246615367
903 => 0.04537880892971
904 => 0.04573785260051
905 => 0.045953083043006
906 => 0.047687682340186
907 => 0.048808312593502
908 => 0.048759663078753
909 => 0.049204228575479
910 => 0.049003947747451
911 => 0.048357188122335
912 => 0.049461127938474
913 => 0.049111795189844
914 => 0.049140593757201
915 => 0.049139521873086
916 => 0.049371797611726
917 => 0.049207208963141
918 => 0.048882787842101
919 => 0.049098153722347
920 => 0.049737713391967
921 => 0.051722926230553
922 => 0.052833877635597
923 => 0.051656045561017
924 => 0.052468498354263
925 => 0.051981316184845
926 => 0.051892780692248
927 => 0.052403061086196
928 => 0.052914234658424
929 => 0.052881675111737
930 => 0.052510589347353
1001 => 0.052300972415005
1002 => 0.053888262053567
1003 => 0.055057750020485
1004 => 0.054977998781488
1005 => 0.055329994813928
1006 => 0.056363466052001
1007 => 0.056457953710127
1008 => 0.056446050436977
1009 => 0.056211852917544
1010 => 0.057229439564626
1011 => 0.058078328248355
1012 => 0.056157642958412
1013 => 0.056889014773206
1014 => 0.057217351144195
1015 => 0.057699446349818
1016 => 0.058512821770243
1017 => 0.059396363213999
1018 => 0.059521305661685
1019 => 0.059432653016005
1020 => 0.058849933682979
1021 => 0.059816715273579
1022 => 0.060383033255534
1023 => 0.060720262653832
1024 => 0.061575420298293
1025 => 0.057219378837843
1026 => 0.054135956182828
1027 => 0.053654435210084
1028 => 0.054633627043035
1029 => 0.054891832120476
1030 => 0.054787749977521
1031 => 0.051317077446779
1101 => 0.053636162837482
1102 => 0.056131303723641
1103 => 0.05622715224686
1104 => 0.057476271945406
1105 => 0.0578830365224
1106 => 0.058888741605591
1107 => 0.058825834478814
1108 => 0.059070707662308
1109 => 0.059014415558035
1110 => 0.060877272448457
1111 => 0.062932280235518
1112 => 0.062861121850377
1113 => 0.062565690167238
1114 => 0.063004456595286
1115 => 0.065125444859551
1116 => 0.064930178248322
1117 => 0.065119863128361
1118 => 0.06762062782559
1119 => 0.070871977661617
1120 => 0.069361399232596
1121 => 0.072638919766338
1122 => 0.074701945208431
1123 => 0.078269734389717
1124 => 0.077823029612488
1125 => 0.079211943759117
1126 => 0.077023334831147
1127 => 0.071997846341688
1128 => 0.071202543551434
1129 => 0.072794759877797
1130 => 0.076709068349963
1201 => 0.072671484374167
1202 => 0.07348828235391
1203 => 0.073253044480795
1204 => 0.073240509654233
1205 => 0.073718913001269
1206 => 0.073024963994553
1207 => 0.070197690902149
1208 => 0.071493413499173
1209 => 0.070993072778752
1210 => 0.071548238110931
1211 => 0.074544236441098
1212 => 0.073219634163651
1213 => 0.071824273266312
1214 => 0.073574365486947
1215 => 0.075802834280748
1216 => 0.075663380708575
1217 => 0.075392782491489
1218 => 0.076918130473141
1219 => 0.079437558453806
1220 => 0.080118549713098
1221 => 0.080621243538454
1222 => 0.080690556523889
1223 => 0.081404523351648
1224 => 0.07756534377598
1225 => 0.08365822035969
1226 => 0.084710291833378
1227 => 0.084512546000219
1228 => 0.085681879165288
1229 => 0.085337831685005
1230 => 0.084839360865472
1231 => 0.086693002656403
]
'min_raw' => 0.03195579874358
'max_raw' => 0.086693002656403
'avg_raw' => 0.059324400699992
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.031955'
'max' => '$0.086693'
'avg' => '$0.059324'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.011020729124742
'max_diff' => 0.03995693450619
'year' => 2032
]
7 => [
'items' => [
101 => 0.08456795192428
102 => 0.081551709946479
103 => 0.079896939942956
104 => 0.082076074570084
105 => 0.083406796045553
106 => 0.084286318291056
107 => 0.084552461191124
108 => 0.077863368357697
109 => 0.074258318314576
110 => 0.076569114060233
111 => 0.079388444352539
112 => 0.077549682253855
113 => 0.077621758246886
114 => 0.075000166712342
115 => 0.079620397032311
116 => 0.078947268336945
117 => 0.082439461199248
118 => 0.081606021346061
119 => 0.084453769059123
120 => 0.083703861647855
121 => 0.08681668538527
122 => 0.088058475050463
123 => 0.090143633167451
124 => 0.091677483966428
125 => 0.092578190493477
126 => 0.092524115452058
127 => 0.096093163442438
128 => 0.09398862053555
129 => 0.09134481864182
130 => 0.09129700060665
131 => 0.092666263070376
201 => 0.095535861555533
202 => 0.096279906691774
203 => 0.096695726418429
204 => 0.096058884032268
205 => 0.093774553540791
206 => 0.092788191216389
207 => 0.093628600494447
208 => 0.092600852164575
209 => 0.094375034117184
210 => 0.096811364882934
211 => 0.096308272214102
212 => 0.097990035578137
213 => 0.099730483733247
214 => 0.10221940276347
215 => 0.10287009836238
216 => 0.10394567344363
217 => 0.10505279351025
218 => 0.10540837063793
219 => 0.10608727770376
220 => 0.10608369952841
221 => 0.10812963166702
222 => 0.11038635817315
223 => 0.11123822018588
224 => 0.1131970299122
225 => 0.10984263690076
226 => 0.11238698253242
227 => 0.11468204598129
228 => 0.11194577672319
301 => 0.11571708642651
302 => 0.11586351783632
303 => 0.11807445827305
304 => 0.11583324657549
305 => 0.11450242222368
306 => 0.11834446226201
307 => 0.12020350441344
308 => 0.11964354578804
309 => 0.11538223300021
310 => 0.11290196618139
311 => 0.1064106295088
312 => 0.11409989820236
313 => 0.11784511668395
314 => 0.11537253378912
315 => 0.11661956077972
316 => 0.12342293569054
317 => 0.12601322037067
318 => 0.12547445926466
319 => 0.12556550102282
320 => 0.12696317161922
321 => 0.13316121275496
322 => 0.12944720283696
323 => 0.13228642425797
324 => 0.1337923370621
325 => 0.13519111280001
326 => 0.13175616167532
327 => 0.12728734073155
328 => 0.12587187755031
329 => 0.11512668414952
330 => 0.11456735016899
331 => 0.11425337905617
401 => 0.11227383560193
402 => 0.11071845668949
403 => 0.1094815616308
404 => 0.10623557962865
405 => 0.10733100326758
406 => 0.10215758544526
407 => 0.10546735483331
408 => 0.097210455072343
409 => 0.10408704654837
410 => 0.10034443044822
411 => 0.10285749650214
412 => 0.10284872865142
413 => 0.098221377277839
414 => 0.095552417575917
415 => 0.097253182575447
416 => 0.099076537661837
417 => 0.099372370890101
418 => 0.10173639835404
419 => 0.10239614760463
420 => 0.10039707657461
421 => 0.09703934917751
422 => 0.097819272670247
423 => 0.09553661245123
424 => 0.09153633821866
425 => 0.094409405010579
426 => 0.09539039633317
427 => 0.095823657987069
428 => 0.091889847713936
429 => 0.090653759118942
430 => 0.089995675922754
501 => 0.096531543669922
502 => 0.096889593258999
503 => 0.095057760938171
504 => 0.10333781672978
505 => 0.10146378509271
506 => 0.10355753758022
507 => 0.097748502788052
508 => 0.097970415740016
509 => 0.095220325575492
510 => 0.096760192306534
511 => 0.095671864133255
512 => 0.096635786291925
513 => 0.097213557259433
514 => 0.099963196161222
515 => 0.10411844300783
516 => 0.099552491801671
517 => 0.097563041475524
518 => 0.098797285268772
519 => 0.10208423913694
520 => 0.10706414250328
521 => 0.10411593948051
522 => 0.10542430191828
523 => 0.10571012090594
524 => 0.10353622514536
525 => 0.10714429714079
526 => 0.10907789223506
527 => 0.11106136070066
528 => 0.11278355079382
529 => 0.11026911977809
530 => 0.11295992139444
531 => 0.11079161028209
601 => 0.10884641105843
602 => 0.10884936112271
603 => 0.10762910923488
604 => 0.10526471744058
605 => 0.10482868731743
606 => 0.10709697108258
607 => 0.10891591985496
608 => 0.10906573718803
609 => 0.11007280068938
610 => 0.11066877049589
611 => 0.11651008478145
612 => 0.11885950970899
613 => 0.12173234203804
614 => 0.12285147213417
615 => 0.12621965249316
616 => 0.12349957330304
617 => 0.12291106706016
618 => 0.11474096323264
619 => 0.1160788172767
620 => 0.11822085068495
621 => 0.11477628457459
622 => 0.11696106894179
623 => 0.11739239165593
624 => 0.11465923953623
625 => 0.1161191341759
626 => 0.11224208684155
627 => 0.10420295204497
628 => 0.10715324699593
629 => 0.10932565713837
630 => 0.10622536000886
701 => 0.11178252261544
702 => 0.1085361429438
703 => 0.10750719644159
704 => 0.10349290929058
705 => 0.10538749830177
706 => 0.10794995706732
707 => 0.10636665546802
708 => 0.1096522440205
709 => 0.11430551364528
710 => 0.11762171068689
711 => 0.11787628711836
712 => 0.11574419458855
713 => 0.1191608864744
714 => 0.1191857733447
715 => 0.11533173093987
716 => 0.1129711514263
717 => 0.11243482279412
718 => 0.11377467687073
719 => 0.11540150707045
720 => 0.11796656487228
721 => 0.11951657558053
722 => 0.12355818144549
723 => 0.12465172411062
724 => 0.12585319595819
725 => 0.12745873286673
726 => 0.12938659157665
727 => 0.1251685464724
728 => 0.12533613726781
729 => 0.12140835206955
730 => 0.11721095028384
731 => 0.12039625502568
801 => 0.1245606172523
802 => 0.1236053079563
803 => 0.1234978161453
804 => 0.12367858755566
805 => 0.12295831554396
806 => 0.11970055192958
807 => 0.11806452343711
808 => 0.12017541758777
809 => 0.12129726388376
810 => 0.12303714965356
811 => 0.1228226720079
812 => 0.12730443090081
813 => 0.12904590688524
814 => 0.12860036280646
815 => 0.12868235363957
816 => 0.13183521272565
817 => 0.13534184046429
818 => 0.13862626008182
819 => 0.14196731278586
820 => 0.13793954334763
821 => 0.13589449042517
822 => 0.13800446302548
823 => 0.13688488186374
824 => 0.14331832730844
825 => 0.14376376511259
826 => 0.15019674534596
827 => 0.15630240961246
828 => 0.15246755128101
829 => 0.15608364996175
830 => 0.15999475550983
831 => 0.16753991266609
901 => 0.16499896917769
902 => 0.16305264628724
903 => 0.16121338056033
904 => 0.16504060056282
905 => 0.16996425795469
906 => 0.1710247665987
907 => 0.17274319574747
908 => 0.17093647761706
909 => 0.17311247060167
910 => 0.18079468201711
911 => 0.1787188806799
912 => 0.17577090907935
913 => 0.18183527718441
914 => 0.184029948427
915 => 0.19943330056573
916 => 0.21888066892163
917 => 0.21082933072398
918 => 0.20583160528965
919 => 0.20700618931435
920 => 0.21410770990296
921 => 0.21638849292502
922 => 0.21018853843799
923 => 0.21237846717698
924 => 0.22444518983782
925 => 0.23091859939855
926 => 0.22212683972019
927 => 0.19787072345382
928 => 0.17550547649117
929 => 0.18143774710586
930 => 0.18076521171795
1001 => 0.19372939986272
1002 => 0.17866937350452
1003 => 0.1789229457248
1004 => 0.19215521955109
1005 => 0.18862507575284
1006 => 0.18290669490633
1007 => 0.17554722699969
1008 => 0.16194256990588
1009 => 0.14989254572396
1010 => 0.17352541809954
1011 => 0.17250632566911
1012 => 0.17103052880882
1013 => 0.1743147550235
1014 => 0.19026202527811
1015 => 0.18989438908247
1016 => 0.18755567517541
1017 => 0.18932956906143
1018 => 0.18259572273146
1019 => 0.18433118825753
1020 => 0.17550193372179
1021 => 0.17949312551418
1022 => 0.18289442582929
1023 => 0.18357728722466
1024 => 0.1851158088162
1025 => 0.1719693102662
1026 => 0.17787170215423
1027 => 0.18133880440912
1028 => 0.16567431028727
1029 => 0.18102916772552
1030 => 0.17174045897476
1031 => 0.16858773171303
1101 => 0.17283246363072
1102 => 0.17117828747426
1103 => 0.16975612395142
1104 => 0.1689625322698
1105 => 0.17207939491618
1106 => 0.17193398954827
1107 => 0.16683419730182
1108 => 0.16018172621045
1109 => 0.16241451386863
1110 => 0.16160332117992
1111 => 0.15866345423008
1112 => 0.16064456959338
1113 => 0.15192074015293
1114 => 0.13691184502584
1115 => 0.14682718088169
1116 => 0.14644545123705
1117 => 0.14625296584016
1118 => 0.15370406669608
1119 => 0.15298781527492
1120 => 0.15168781193198
1121 => 0.15863957864921
1122 => 0.15610209028296
1123 => 0.16392203152028
1124 => 0.16907275058127
1125 => 0.1677663616191
1126 => 0.17261063779154
1127 => 0.16246595278668
1128 => 0.16583561021118
1129 => 0.16653009193622
1130 => 0.15855379492701
1201 => 0.15310500286546
1202 => 0.15274163055573
1203 => 0.14329417601078
1204 => 0.1483409299715
1205 => 0.15278186460807
1206 => 0.1506550015476
1207 => 0.14998170024089
1208 => 0.15342145059567
1209 => 0.1536887486577
1210 => 0.14759432451631
1211 => 0.14886154828061
1212 => 0.1541460820362
1213 => 0.14872839158869
1214 => 0.13820270402388
1215 => 0.13559218797879
1216 => 0.13524389701702
1217 => 0.12816397046011
1218 => 0.1357666351436
1219 => 0.13244786827051
1220 => 0.14293181305766
1221 => 0.13694344002176
1222 => 0.136685293229
1223 => 0.13629506648982
1224 => 0.1302010812342
1225 => 0.13153527671222
1226 => 0.13597034568485
1227 => 0.13755282825891
1228 => 0.13738776236154
1229 => 0.13594861142734
1230 => 0.13660744735537
1231 => 0.13448510727753
]
'min_raw' => 0.074258318314576
'max_raw' => 0.23091859939855
'avg_raw' => 0.15258845885656
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.074258'
'max' => '$0.230918'
'avg' => '$0.152588'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.042302519570995
'max_diff' => 0.14422559674215
'year' => 2033
]
8 => [
'items' => [
101 => 0.13373566482335
102 => 0.13137021828759
103 => 0.1278936653513
104 => 0.12837710136003
105 => 0.12148914030368
106 => 0.11773621354842
107 => 0.11669745288535
108 => 0.11530837871388
109 => 0.1168543525092
110 => 0.12146962757544
111 => 0.11590262666033
112 => 0.10635839407108
113 => 0.10693201871228
114 => 0.10822078297036
115 => 0.10581917930145
116 => 0.10354626298015
117 => 0.10552237931399
118 => 0.10147836214653
119 => 0.10870948312452
120 => 0.10851390156705
121 => 0.11120921629812
122 => 0.11289465191289
123 => 0.10901026848711
124 => 0.10803335656002
125 => 0.10858984999186
126 => 0.099392253167928
127 => 0.11045757641278
128 => 0.1105532697877
129 => 0.10973388501451
130 => 0.11562582803887
131 => 0.12805966556338
201 => 0.12338155573671
202 => 0.1215700502152
203 => 0.11812637689461
204 => 0.1227148671292
205 => 0.12236254267079
206 => 0.12076919785473
207 => 0.11980553793845
208 => 0.12158111088163
209 => 0.11958552480139
210 => 0.11922706270634
211 => 0.11705517242095
212 => 0.11627990640378
213 => 0.11570593030889
214 => 0.11507403902615
215 => 0.11646783373838
216 => 0.11330931155149
217 => 0.10950044342785
218 => 0.1091837772559
219 => 0.11005812039824
220 => 0.10967128864495
221 => 0.10918192525429
222 => 0.10824759727133
223 => 0.10797040211754
224 => 0.10887115189137
225 => 0.10785425791369
226 => 0.10935474037084
227 => 0.10894669216798
228 => 0.10666736807687
301 => 0.10382648634548
302 => 0.10380119653912
303 => 0.10318913323007
304 => 0.10240957858166
305 => 0.10219272431227
306 => 0.10535595630819
307 => 0.11190375187219
308 => 0.11061826292751
309 => 0.11154716043225
310 => 0.1161164167919
311 => 0.11756884598631
312 => 0.11653794614679
313 => 0.11512678686333
314 => 0.11518887071005
315 => 0.1200112291686
316 => 0.12031199375044
317 => 0.1210719288184
318 => 0.12204866013836
319 => 0.11670428771408
320 => 0.11493715124947
321 => 0.11409978395554
322 => 0.11152101679216
323 => 0.11430199609108
324 => 0.11268163854701
325 => 0.112900280139
326 => 0.11275788951538
327 => 0.11283564442429
328 => 0.10870746187884
329 => 0.11021155462751
330 => 0.10771070870926
331 => 0.10436235675784
401 => 0.10435113190801
402 => 0.10517063630451
403 => 0.10468316302226
404 => 0.10337138495381
405 => 0.10355771683702
406 => 0.10192525347252
407 => 0.10375592744617
408 => 0.10380842462527
409 => 0.10310351542793
410 => 0.10592392126867
411 => 0.10707944384286
412 => 0.10661545750855
413 => 0.10704688932475
414 => 0.11067168079679
415 => 0.11126267996748
416 => 0.11152516275988
417 => 0.11117347059037
418 => 0.10711314385873
419 => 0.10729323661512
420 => 0.10597183546215
421 => 0.10485539073372
422 => 0.10490004266787
423 => 0.10547404038595
424 => 0.10798072208529
425 => 0.1132558859446
426 => 0.11345607455696
427 => 0.11369870899507
428 => 0.11271179279701
429 => 0.11241412942816
430 => 0.11280682424511
501 => 0.11478789843572
502 => 0.11988375911039
503 => 0.11808254160687
504 => 0.11661812373889
505 => 0.11790281301333
506 => 0.11770504516926
507 => 0.11603568553876
508 => 0.11598883217391
509 => 0.11278479731642
510 => 0.11160033858195
511 => 0.11061051620823
512 => 0.1095296560161
513 => 0.10888888586343
514 => 0.10987340004275
515 => 0.11009857008399
516 => 0.10794591262456
517 => 0.10765251336718
518 => 0.10941041991689
519 => 0.10863683078572
520 => 0.10943248639121
521 => 0.10961708531669
522 => 0.10958736063802
523 => 0.10877964473894
524 => 0.10929445876658
525 => 0.10807677011776
526 => 0.10675271660309
527 => 0.10590805295218
528 => 0.10517097188839
529 => 0.10557994730198
530 => 0.10412202462848
531 => 0.10365560582304
601 => 0.10912005135769
602 => 0.11315669602683
603 => 0.11309800161466
604 => 0.11274071447551
605 => 0.11220985825979
606 => 0.11474906299704
607 => 0.11386445483959
608 => 0.11450808118562
609 => 0.1146719111036
610 => 0.11516777492291
611 => 0.11534500361737
612 => 0.11480929540945
613 => 0.11301139323242
614 => 0.10853119194667
615 => 0.10644564615409
616 => 0.10575738130502
617 => 0.10578239842508
618 => 0.10509231457241
619 => 0.10529557519441
620 => 0.10502162882309
621 => 0.10450284067056
622 => 0.10554791359547
623 => 0.10566834851454
624 => 0.10542441600617
625 => 0.10548187094238
626 => 0.10346221395804
627 => 0.1036157640921
628 => 0.10276077743347
629 => 0.102600477742
630 => 0.10043914592119
701 => 0.096610033310589
702 => 0.098731733397819
703 => 0.096169018048624
704 => 0.09519847891441
705 => 0.099792860225978
706 => 0.099331711770598
707 => 0.098542426071402
708 => 0.097374908020739
709 => 0.096941864218862
710 => 0.094310827163668
711 => 0.09415537145841
712 => 0.095459384466941
713 => 0.094857627331852
714 => 0.094012532410938
715 => 0.090951684273288
716 => 0.087510277554579
717 => 0.087614151991505
718 => 0.088708799439078
719 => 0.091891634526218
720 => 0.090648045794067
721 => 0.089745807900354
722 => 0.089576845864033
723 => 0.091691759494572
724 => 0.094684805369887
725 => 0.096089075528959
726 => 0.094697486449638
727 => 0.093098903843791
728 => 0.093196202159891
729 => 0.093843484266486
730 => 0.093911504463813
731 => 0.092870991524354
801 => 0.093163889821972
802 => 0.092718950524708
803 => 0.089988358878693
804 => 0.089938971134617
805 => 0.089268839907946
806 => 0.08924854860073
807 => 0.088108488212095
808 => 0.087948985882859
809 => 0.085685326784505
810 => 0.087175274058033
811 => 0.086175895652694
812 => 0.084669596666313
813 => 0.084409910153303
814 => 0.084402103663141
815 => 0.085948735919863
816 => 0.08715720075962
817 => 0.086193280267925
818 => 0.08597381425678
819 => 0.088317137085905
820 => 0.088018927896037
821 => 0.087760680660854
822 => 0.094416810939767
823 => 0.089147964439685
824 => 0.086850446630405
825 => 0.084006832054622
826 => 0.084932727299246
827 => 0.08512782703152
828 => 0.078289446576815
829 => 0.075515116478007
830 => 0.074563070936521
831 => 0.074015155267447
901 => 0.074264847318136
902 => 0.071767624832745
903 => 0.073445799643175
904 => 0.071283416055789
905 => 0.070920885410359
906 => 0.074787495132529
907 => 0.075325511286963
908 => 0.073030167223632
909 => 0.07450414969474
910 => 0.073969663160827
911 => 0.071320483915977
912 => 0.071219304754868
913 => 0.069890039732955
914 => 0.06780999737009
915 => 0.066859362195273
916 => 0.066364263142435
917 => 0.066568550660924
918 => 0.066465256640275
919 => 0.065791193284771
920 => 0.066503893162782
921 => 0.064683239482385
922 => 0.063958240516847
923 => 0.063630775303962
924 => 0.062014840369693
925 => 0.064586511459642
926 => 0.06509316306142
927 => 0.065600812923367
928 => 0.070019558384332
929 => 0.069798810348347
930 => 0.071794265084996
1001 => 0.071716725383336
1002 => 0.07114758936822
1003 => 0.068746498138777
1004 => 0.069703530307497
1005 => 0.066757934047997
1006 => 0.068964975046691
1007 => 0.067957773703123
1008 => 0.068624439259277
1009 => 0.067425714478502
1010 => 0.068089138266316
1011 => 0.065213308951737
1012 => 0.062527900001794
1013 => 0.063608586955225
1014 => 0.064783417265149
1015 => 0.06733074871826
1016 => 0.065813579119815
1017 => 0.06635921067795
1018 => 0.064531436295818
1019 => 0.06076021566754
1020 => 0.060781560366743
1021 => 0.060201440233589
1022 => 0.059700131739619
1023 => 0.065987844298844
1024 => 0.065205867848079
1025 => 0.063959890716331
1026 => 0.065627680620338
1027 => 0.066068670742343
1028 => 0.066081225111157
1029 => 0.067298001573233
1030 => 0.067947395389162
1031 => 0.068061853863853
1101 => 0.069976477917124
1102 => 0.070618234645279
1103 => 0.073261539783737
1104 => 0.067892298860942
1105 => 0.067781722877464
1106 => 0.065651149844498
1107 => 0.064299906743963
1108 => 0.06574367061563
1109 => 0.067022648312505
1110 => 0.065690891246676
1111 => 0.065864790604547
1112 => 0.064077015552222
1113 => 0.064716061010793
1114 => 0.065266493048435
1115 => 0.064962576830149
1116 => 0.064507599541664
1117 => 0.066917786726631
1118 => 0.066781794520055
1119 => 0.06902621623666
1120 => 0.07077590346489
1121 => 0.073911655771883
1122 => 0.070639334769071
1123 => 0.070520078385431
1124 => 0.071685828664842
1125 => 0.070618056174985
1126 => 0.071292851530321
1127 => 0.073802935807843
1128 => 0.073855969933288
1129 => 0.072967580001472
1130 => 0.072913521393384
1201 => 0.073084146397711
1202 => 0.074083502377424
1203 => 0.073734296691004
1204 => 0.074138406352135
1205 => 0.074643751671326
1206 => 0.076734074173473
1207 => 0.077238043851987
1208 => 0.076013658811517
1209 => 0.076124207071814
1210 => 0.075666253456557
1211 => 0.075223876002361
1212 => 0.076218275915355
1213 => 0.07803556130133
1214 => 0.078024256063261
1215 => 0.078445830949827
1216 => 0.078708468611643
1217 => 0.077581035504611
1218 => 0.076847118008797
1219 => 0.077128548677076
1220 => 0.077578562444416
1221 => 0.076982615277461
1222 => 0.073304153293437
1223 => 0.074419963678329
1224 => 0.074234238269943
1225 => 0.073969742703419
1226 => 0.075091698673734
1227 => 0.074983483283368
1228 => 0.071742012206731
1229 => 0.07194952066813
1230 => 0.071754631483558
1231 => 0.072384358309486
]
'min_raw' => 0.059700131739619
'max_raw' => 0.13373566482335
'avg_raw' => 0.096717898281485
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.05970013'
'max' => '$0.133735'
'avg' => '$0.096717'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.014558186574957
'max_diff' => -0.097182934575202
'year' => 2034
]
9 => [
'items' => [
101 => 0.070584048859798
102 => 0.071137811921253
103 => 0.071485126922191
104 => 0.071689698125943
105 => 0.072428749589683
106 => 0.072342030430513
107 => 0.07242335900499
108 => 0.073519177223364
109 => 0.079061449732499
110 => 0.079363103396836
111 => 0.077877650428996
112 => 0.078471059590384
113 => 0.077331843764837
114 => 0.078096606980609
115 => 0.078619838549961
116 => 0.076255455699704
117 => 0.076115452292029
118 => 0.074971534517528
119 => 0.075586211134731
120 => 0.074608216439949
121 => 0.074848182129246
122 => 0.074177217142138
123 => 0.075384820531136
124 => 0.076735108762631
125 => 0.077076244894405
126 => 0.076178862600047
127 => 0.075529098678557
128 => 0.074388327277962
129 => 0.0762854555409
130 => 0.076840233658919
131 => 0.076282541527622
201 => 0.076153312074987
202 => 0.075908422495756
203 => 0.076205266556889
204 => 0.076837212218144
205 => 0.0765391983145
206 => 0.076736041748186
207 => 0.075985877563042
208 => 0.077581408731882
209 => 0.080115496213485
210 => 0.080123643719103
211 => 0.079825628209053
212 => 0.079703686683175
213 => 0.080009468681579
214 => 0.08017534287188
215 => 0.081164185783891
216 => 0.082225253625719
217 => 0.087176794263362
218 => 0.085786421466222
219 => 0.09017972288841
220 => 0.093654253914568
221 => 0.094696113846485
222 => 0.093737651732419
223 => 0.090458804615306
224 => 0.090297928733174
225 => 0.095197910619688
226 => 0.093813441303359
227 => 0.093648763083527
228 => 0.091896865052754
301 => 0.092932453765733
302 => 0.092705955323034
303 => 0.092348416450552
304 => 0.094324247575181
305 => 0.098022827056826
306 => 0.097446368759553
307 => 0.09701606938177
308 => 0.095130622766588
309 => 0.096266082758675
310 => 0.095861767203796
311 => 0.097598963412546
312 => 0.09656988686209
313 => 0.093802952586625
314 => 0.094243595989927
315 => 0.09417699362597
316 => 0.095547665556725
317 => 0.095136223865281
318 => 0.094096653032312
319 => 0.098010185714245
320 => 0.097756062670093
321 => 0.098116351046085
322 => 0.098274961131485
323 => 0.1006570595108
324 => 0.10163292899815
325 => 0.10185446845678
326 => 0.10278146899332
327 => 0.10183140383896
328 => 0.10563234184138
329 => 0.10815974382211
330 => 0.11109545128165
331 => 0.1153853089238
401 => 0.11699833508066
402 => 0.11670695634306
403 => 0.11995947744787
404 => 0.12580418557374
405 => 0.1178883389619
406 => 0.12622374466535
407 => 0.12358485145652
408 => 0.11732808313006
409 => 0.11692522101229
410 => 0.12116237716554
411 => 0.1305599817023
412 => 0.12820598835259
413 => 0.13056383199212
414 => 0.12781328214237
415 => 0.12767669415887
416 => 0.13043024392526
417 => 0.13686406304262
418 => 0.13380759674806
419 => 0.12942540283854
420 => 0.13266114662684
421 => 0.12985804590347
422 => 0.1235418754352
423 => 0.12820418829824
424 => 0.12508663246175
425 => 0.12599650099322
426 => 0.13254913966008
427 => 0.13176070883955
428 => 0.13278101132805
429 => 0.13098020414182
430 => 0.12929796626866
501 => 0.12615794435379
502 => 0.125228338666
503 => 0.1254852482344
504 => 0.12522821135438
505 => 0.1234713979513
506 => 0.12309201426417
507 => 0.12245969149777
508 => 0.12265567476345
509 => 0.12146672297008
510 => 0.12371052065414
511 => 0.12412698927658
512 => 0.12575983811385
513 => 0.1259293658969
514 => 0.13047682666654
515 => 0.1279721616916
516 => 0.12965250719916
517 => 0.12950220128094
518 => 0.11746368627187
519 => 0.1191224874234
520 => 0.12170306145471
521 => 0.12054051635149
522 => 0.1188969495692
523 => 0.11756968127003
524 => 0.11555873407662
525 => 0.11838910363452
526 => 0.1221107386269
527 => 0.12602375270194
528 => 0.13072498272227
529 => 0.12967572291008
530 => 0.12593586647682
531 => 0.12610363370445
601 => 0.12714070469168
602 => 0.12579760353538
603 => 0.12540149678394
604 => 0.12708628570667
605 => 0.12709788792203
606 => 0.12555248772251
607 => 0.12383505820599
608 => 0.12382786211361
609 => 0.12352226211955
610 => 0.12786764770242
611 => 0.13025717040496
612 => 0.1305311253319
613 => 0.13023873105562
614 => 0.13035126200784
615 => 0.12896085139677
616 => 0.13213891774022
617 => 0.13505542569515
618 => 0.13427373926113
619 => 0.13310188017325
620 => 0.13216843796537
621 => 0.13405384994217
622 => 0.13396989551476
623 => 0.13502995254247
624 => 0.13498186223251
625 => 0.13462540492485
626 => 0.13427375199134
627 => 0.13566801612366
628 => 0.13526649044475
629 => 0.13486434108555
630 => 0.1340577689797
701 => 0.13416739552463
702 => 0.13299573877474
703 => 0.13245367675088
704 => 0.12430236450065
705 => 0.12212406751557
706 => 0.1228094040904
707 => 0.12303503468559
708 => 0.12208703704612
709 => 0.12344622214051
710 => 0.12323439458328
711 => 0.12405849169347
712 => 0.12354363159716
713 => 0.1235647616351
714 => 0.12507885539861
715 => 0.12551840325957
716 => 0.1252948456699
717 => 0.1254514177426
718 => 0.12905955507302
719 => 0.12854659332637
720 => 0.12827409262217
721 => 0.12834957717954
722 => 0.1292715336268
723 => 0.12952963109507
724 => 0.1284360539858
725 => 0.12895179127243
726 => 0.13114773518209
727 => 0.13191619127081
728 => 0.13436873422615
729 => 0.13332685038825
730 => 0.1352392732644
731 => 0.14111740919268
801 => 0.14581327090827
802 => 0.14149476240992
803 => 0.15011811443621
804 => 0.15683263093505
805 => 0.15657491660821
806 => 0.15540408534708
807 => 0.1477597868278
808 => 0.14072538936029
809 => 0.14660996153816
810 => 0.14662496252281
811 => 0.14611947255396
812 => 0.14297991777107
813 => 0.1460102228529
814 => 0.14625075746584
815 => 0.14611612204591
816 => 0.14370903275494
817 => 0.1400338523121
818 => 0.14075197377349
819 => 0.14192827137653
820 => 0.13970129461259
821 => 0.13898964059923
822 => 0.14031274080778
823 => 0.14457604535862
824 => 0.14377009232892
825 => 0.14374904563821
826 => 0.14719725447651
827 => 0.14472908111833
828 => 0.14076103158486
829 => 0.13975904674552
830 => 0.13620267558371
831 => 0.13865907381253
901 => 0.13874747521175
902 => 0.1374021310056
903 => 0.14087019885258
904 => 0.14083823999682
905 => 0.14413065426375
906 => 0.15042451376777
907 => 0.14856310981042
908 => 0.14639849952818
909 => 0.146633852684
910 => 0.14921509590216
911 => 0.14765441732841
912 => 0.14821564822497
913 => 0.14921424641198
914 => 0.14981672549201
915 => 0.14654716521601
916 => 0.14578487431453
917 => 0.14422549465784
918 => 0.14381868161262
919 => 0.14508876380546
920 => 0.14475414202031
921 => 0.13874004541645
922 => 0.13811153885923
923 => 0.13813081425804
924 => 0.13655040463605
925 => 0.13413990062074
926 => 0.14047456124925
927 => 0.13996579934726
928 => 0.13940416558251
929 => 0.13947296251405
930 => 0.14222262399132
1001 => 0.14062768147327
1002 => 0.14486809756344
1003 => 0.14399639549388
1004 => 0.14310233755546
1005 => 0.1429787515147
1006 => 0.14263461548585
1007 => 0.14145444499555
1008 => 0.14002931821125
1009 => 0.13908832606589
1010 => 0.12830162861469
1011 => 0.1303035769183
1012 => 0.13260663595827
1013 => 0.13340164270994
1014 => 0.13204172864842
1015 => 0.14150814269147
1016 => 0.14323774775777
1017 => 0.1379986611926
1018 => 0.13701864200675
1019 => 0.14157239258614
1020 => 0.1388259243134
1021 => 0.14006265880844
1022 => 0.13738951528776
1023 => 0.14282113654605
1024 => 0.14277975669251
1025 => 0.14066673334431
1026 => 0.14245264620885
1027 => 0.14214229989948
1028 => 0.1397567017435
1029 => 0.14289676426271
1030 => 0.14289832169454
1031 => 0.14086458266298
1101 => 0.13848962071684
1102 => 0.13806503361497
1103 => 0.13774516426896
1104 => 0.13998399055767
1105 => 0.14199131520751
1106 => 0.14572644872286
1107 => 0.1466655500332
1108 => 0.15033092496699
1109 => 0.14814837265779
1110 => 0.14911586982767
1111 => 0.15016622486641
1112 => 0.15066980369751
1113 => 0.14984924901577
1114 => 0.15554308501645
1115 => 0.15602381922953
1116 => 0.15618500525284
1117 => 0.15426507578942
1118 => 0.15597042251803
1119 => 0.15517254725886
1120 => 0.15724839702708
1121 => 0.15757391677652
1122 => 0.15729821312945
1123 => 0.1574015382359
1124 => 0.15254285367082
1125 => 0.15229090524451
1126 => 0.14885557057444
1127 => 0.15025549484521
1128 => 0.14763840352112
1129 => 0.14846831013902
1130 => 0.14883412506854
1201 => 0.14864304410917
1202 => 0.15033464446305
1203 => 0.14889643859113
1204 => 0.14510077683222
1205 => 0.14130408094779
1206 => 0.14125641652369
1207 => 0.14025681351457
1208 => 0.1395342836254
1209 => 0.13967346851518
1210 => 0.14016397422093
1211 => 0.13950577454209
1212 => 0.13964623481514
1213 => 0.14197881122969
1214 => 0.14244659279446
1215 => 0.14085688826333
1216 => 0.13447399517758
1217 => 0.13290761720407
1218 => 0.13403349862881
1219 => 0.13349539982383
1220 => 0.1077412065466
1221 => 0.11379177223974
1222 => 0.11019673156267
1223 => 0.11185349170653
1224 => 0.10818388610652
1225 => 0.10993521423935
1226 => 0.10961180788148
1227 => 0.11934093846679
1228 => 0.11918903147468
1229 => 0.11926174131307
1230 => 0.11579111128257
1231 => 0.12131991915902
]
'min_raw' => 0.070584048859798
'max_raw' => 0.15757391677652
'avg_raw' => 0.11407898281816
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.070584'
'max' => '$0.157573'
'avg' => '$0.114078'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.010883917120179
'max_diff' => 0.023838251953169
'year' => 2035
]
10 => [
'items' => [
101 => 0.12404360872847
102 => 0.12353952627781
103 => 0.12366639297061
104 => 0.12148640285886
105 => 0.11928284838257
106 => 0.11683876734376
107 => 0.12137956781632
108 => 0.12087470831782
109 => 0.12203267436466
110 => 0.12497770805423
111 => 0.12541137545212
112 => 0.1259942288327
113 => 0.12578531738609
114 => 0.13076243560399
115 => 0.13015967374772
116 => 0.13161215639492
117 => 0.12862428938952
118 => 0.12524323426196
119 => 0.12588586230669
120 => 0.1258239720583
121 => 0.1250360381619
122 => 0.12432472667114
123 => 0.12314059344979
124 => 0.12688736618088
125 => 0.12673525405041
126 => 0.12919777263174
127 => 0.12876249855286
128 => 0.12585563172447
129 => 0.12595945104192
130 => 0.12665768584567
131 => 0.12907428447373
201 => 0.12979169548112
202 => 0.12945936211861
203 => 0.13024597053716
204 => 0.13086767375857
205 => 0.13032404688986
206 => 0.13802065694322
207 => 0.13482448784328
208 => 0.13638227842379
209 => 0.13675380229821
210 => 0.1358021517062
211 => 0.13600853064355
212 => 0.13632113849875
213 => 0.13821923218062
214 => 0.14320037921967
215 => 0.14540649533545
216 => 0.15204370451763
217 => 0.14522330810265
218 => 0.14481861400499
219 => 0.14601417580322
220 => 0.1499109202131
221 => 0.15306886555472
222 => 0.15411653821078
223 => 0.15425500544746
224 => 0.15622050899818
225 => 0.15734709897898
226 => 0.15598184516925
227 => 0.15482493551353
228 => 0.15068102872767
229 => 0.15116069722162
301 => 0.15446513748055
302 => 0.15913285397686
303 => 0.16313824032382
304 => 0.16173569362692
305 => 0.17243613488059
306 => 0.17349703992351
307 => 0.17335045714975
308 => 0.17576735672135
309 => 0.17097030326475
310 => 0.16891946997352
311 => 0.15507507251258
312 => 0.15896478349347
313 => 0.16461870683891
314 => 0.16387038888302
315 => 0.15976435861975
316 => 0.16313512553167
317 => 0.16202064457696
318 => 0.16114160720813
319 => 0.16516864780454
320 => 0.16074075124708
321 => 0.16457453518359
322 => 0.1596576676296
323 => 0.16174210034209
324 => 0.16055887552181
325 => 0.16132456699111
326 => 0.15684835030723
327 => 0.15926360817584
328 => 0.15674786763927
329 => 0.15674667485069
330 => 0.15669113973891
331 => 0.15965089732369
401 => 0.15974741491227
402 => 0.15756014958517
403 => 0.15724493048003
404 => 0.15841046072476
405 => 0.15704593006104
406 => 0.15768438537034
407 => 0.15706526822195
408 => 0.15692589191125
409 => 0.15581531775464
410 => 0.1553368518721
411 => 0.15552447067319
412 => 0.15488403098094
413 => 0.15449814290065
414 => 0.15661437688708
415 => 0.15548375843676
416 => 0.15644109339422
417 => 0.1553500893849
418 => 0.15156819416076
419 => 0.14939318622455
420 => 0.14224953672804
421 => 0.14427546686358
422 => 0.14561866063942
423 => 0.14517473510452
424 => 0.14612845892987
425 => 0.14618700982692
426 => 0.14587694448923
427 => 0.14551792855003
428 => 0.14534317944565
429 => 0.14664561610044
430 => 0.14740172441655
501 => 0.14575346810444
502 => 0.14536730471207
503 => 0.14703378284633
504 => 0.14805033354554
505 => 0.155555972758
506 => 0.15499993076224
507 => 0.15639548705385
508 => 0.15623836883198
509 => 0.15770113415514
510 => 0.16009213724775
511 => 0.15523055942548
512 => 0.15607436123472
513 => 0.15586748051732
514 => 0.1581261499428
515 => 0.1581332012622
516 => 0.15677901611272
517 => 0.1575131418514
518 => 0.15710337300376
519 => 0.15784388069503
520 => 0.15499250448239
521 => 0.15846517292235
522 => 0.16043395215399
523 => 0.16046128865553
524 => 0.16139447438613
525 => 0.1623426451349
526 => 0.16416257631888
527 => 0.16229188824195
528 => 0.15892670249935
529 => 0.15916965804048
530 => 0.15719665087087
531 => 0.15722981747785
601 => 0.15705277153051
602 => 0.15758409974587
603 => 0.15510910114648
604 => 0.1556899783708
605 => 0.15487674685514
606 => 0.15607259342822
607 => 0.15478606019611
608 => 0.15586738075318
609 => 0.15633404285926
610 => 0.15805603607724
611 => 0.1545317203977
612 => 0.14734540215193
613 => 0.14885605337288
614 => 0.14662168155801
615 => 0.14682848117633
616 => 0.14724624931725
617 => 0.14589212608729
618 => 0.14615045012624
619 => 0.14614122097377
620 => 0.14606168912378
621 => 0.14570942937295
622 => 0.14519858304177
623 => 0.14723363759496
624 => 0.14757943301919
625 => 0.14834809341226
626 => 0.1506351053547
627 => 0.1504065789302
628 => 0.15077931501004
629 => 0.14996563424057
630 => 0.14686622549353
701 => 0.1470345383002
702 => 0.144935674904
703 => 0.14829442075633
704 => 0.14749902540522
705 => 0.14698622884801
706 => 0.14684630755634
707 => 0.14913898855903
708 => 0.14982499464841
709 => 0.14939752168967
710 => 0.14852076217991
711 => 0.15020439962933
712 => 0.15065486998383
713 => 0.1507557136835
714 => 0.15373879643842
715 => 0.15092243487158
716 => 0.15160036109295
717 => 0.15688934794945
718 => 0.1520929667009
719 => 0.15463371682032
720 => 0.1545093603234
721 => 0.1558091221102
722 => 0.15440274191968
723 => 0.15442017568767
724 => 0.15557427610086
725 => 0.15395355021364
726 => 0.15355223569165
727 => 0.15299782255378
728 => 0.15420836335751
729 => 0.1549340278213
730 => 0.16078235045759
731 => 0.16456063359656
801 => 0.16439660836098
802 => 0.16589549197176
803 => 0.16522023117691
804 => 0.16303963594551
805 => 0.16676164611024
806 => 0.1655838463586
807 => 0.1656809427391
808 => 0.16567732880697
809 => 0.16646046267677
810 => 0.16590554055685
811 => 0.1648117320969
812 => 0.16553785319852
813 => 0.16769417327727
814 => 0.1743874569657
815 => 0.17813310719196
816 => 0.1741619641189
817 => 0.17690120543497
818 => 0.17525863673681
819 => 0.17496013314217
820 => 0.176680579117
821 => 0.17840403650476
822 => 0.17829425971987
823 => 0.17704311815687
824 => 0.17633638003448
825 => 0.18168803787191
826 => 0.18563104820342
827 => 0.18536216133308
828 => 0.18654894053204
829 => 0.19003336096586
830 => 0.19035193270215
831 => 0.19031179998566
901 => 0.18952218669774
902 => 0.19295305112401
903 => 0.19581513858872
904 => 0.18933941403571
905 => 0.19180528517204
906 => 0.19291229417054
907 => 0.19453771181511
908 => 0.19728006383313
909 => 0.20025898549765
910 => 0.20068023768323
911 => 0.20038133909879
912 => 0.19841666018332
913 => 0.20167623181457
914 => 0.20358561242979
915 => 0.20472260489075
916 => 0.20760582859426
917 => 0.19291913068124
918 => 0.18252315592217
919 => 0.18089967434384
920 => 0.18420108797363
921 => 0.18507164441952
922 => 0.18472072420776
923 => 0.17301910945575
924 => 0.18083806776388
925 => 0.18925060946673
926 => 0.1895737694547
927 => 0.1937852637291
928 => 0.19515669889983
929 => 0.19854750380389
930 => 0.19833540803393
1001 => 0.19916101506858
1002 => 0.19897122230883
1003 => 0.20525197437541
1004 => 0.21218057660554
1005 => 0.21194066114192
1006 => 0.21094459259584
1007 => 0.2124239242417
1008 => 0.21957498425734
1009 => 0.2189166292445
1010 => 0.21955616506092
1011 => 0.22798766783545
1012 => 0.23894982080961
1013 => 0.23385680017095
1014 => 0.24490718947963
1015 => 0.25186282379349
1016 => 0.26389187411328
1017 => 0.26238577776892
1018 => 0.26706859878517
1019 => 0.25968955098072
1020 => 0.24274576567011
1021 => 0.2400643467865
1022 => 0.24543261529583
1023 => 0.25862997959803
1024 => 0.24501698332852
1025 => 0.24777087474424
1026 => 0.24697775383125
1027 => 0.24693549178834
1028 => 0.24854846207393
1029 => 0.24620876454781
1030 => 0.23667641592287
1031 => 0.24104503512319
1101 => 0.23935810145162
1102 => 0.24122988012947
1103 => 0.25133109767355
1104 => 0.24686510861436
1105 => 0.24216055192799
1106 => 0.2480611100374
1107 => 0.25557454816242
1108 => 0.25510437070751
1109 => 0.25419202992604
1110 => 0.25933484714257
1111 => 0.26782927448023
1112 => 0.27012528405622
1113 => 0.27182015138537
1114 => 0.27205384495505
1115 => 0.27446103396241
1116 => 0.26151697198008
1117 => 0.28205953077312
1118 => 0.28560666319994
1119 => 0.28493994931728
1120 => 0.28888243772354
1121 => 0.28772245762314
1122 => 0.28604182845296
1123 => 0.29229151116822
1124 => 0.28512675425856
1125 => 0.27495728384312
1126 => 0.26937811124389
1127 => 0.27672521578157
1128 => 0.28121183614412
1129 => 0.28417720680112
1130 => 0.2850745261702
1201 => 0.26252178266475
1202 => 0.25036710474781
1203 => 0.25815811393891
1204 => 0.26766368285877
1205 => 0.26146416806479
1206 => 0.26170717730748
1207 => 0.25286829841508
1208 => 0.26844572751304
1209 => 0.26617622712027
1210 => 0.27795039917264
1211 => 0.27514039851871
1212 => 0.2847417787567
1213 => 0.28221341356274
1214 => 0.29270851612385
1215 => 0.29689529667903
1216 => 0.30392555285155
1217 => 0.30909703791034
1218 => 0.31213383285161
1219 => 0.31195151507407
1220 => 0.32398480955661
1221 => 0.31688919621154
1222 => 0.30797543354248
1223 => 0.30781421169835
1224 => 0.31243077569366
1225 => 0.32210582733533
1226 => 0.32461442745974
1227 => 0.32601639269976
1228 => 0.32386923413191
1229 => 0.31616745439303
1230 => 0.31284186495069
1231 => 0.31567536350716
]
'min_raw' => 0.11683876734376
'max_raw' => 0.32601639269976
'avg_raw' => 0.22142758002176
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.116838'
'max' => '$0.326016'
'avg' => '$0.221427'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.046254718483967
'max_diff' => 0.16844247592324
'year' => 2036
]
11 => [
'items' => [
101 => 0.3122102382579
102 => 0.31819201658055
103 => 0.32640627585646
104 => 0.32471006379869
105 => 0.3303802463975
106 => 0.33624828886666
107 => 0.34463985314785
108 => 0.34683371878967
109 => 0.35046009527038
110 => 0.35419282787164
111 => 0.3553916809832
112 => 0.35768066355544
113 => 0.35766859948741
114 => 0.36456660253516
115 => 0.3721753135102
116 => 0.37504742576121
117 => 0.38165168951322
118 => 0.37034211927891
119 => 0.37892055821661
120 => 0.38665852487068
121 => 0.37743300202678
122 => 0.39014823599596
123 => 0.39064193971764
124 => 0.398096279763
125 => 0.39053987804827
126 => 0.38605291083095
127 => 0.39900661706288
128 => 0.40527450747059
129 => 0.40338656787
130 => 0.38901925429047
131 => 0.38065686154412
201 => 0.35877086674182
202 => 0.38469577298976
203 => 0.39732303858325
204 => 0.38898655272311
205 => 0.39319099128654
206 => 0.41612904479484
207 => 0.42486237044182
208 => 0.4230458997578
209 => 0.42335285340175
210 => 0.42806519739979
211 => 0.44896232582233
212 => 0.4364402820799
213 => 0.44601291532896
214 => 0.45109020548756
215 => 0.45580627554733
216 => 0.44422509800979
217 => 0.42915815619474
218 => 0.42438582325472
219 => 0.3881576534985
220 => 0.38627181993172
221 => 0.38521324440408
222 => 0.3785390754408
223 => 0.37329500684441
224 => 0.36912472879677
225 => 0.35818067384932
226 => 0.36187397112798
227 => 0.34443143174353
228 => 0.35559055031606
301 => 0.32775183629364
302 => 0.35093674456337
303 => 0.33831825308058
304 => 0.34679123073803
305 => 0.34676166931719
306 => 0.3311602310898
307 => 0.32216164711396
308 => 0.3278958950535
309 => 0.33404346402985
310 => 0.33504088641335
311 => 0.34301137005916
312 => 0.34523576071973
313 => 0.33849575317133
314 => 0.32717494082298
315 => 0.32980450733126
316 => 0.3221083590326
317 => 0.30862115516726
318 => 0.31830790044734
319 => 0.32161538118208
320 => 0.32307615309756
321 => 0.30981303711183
322 => 0.30564547811286
323 => 0.30342670467101
324 => 0.3254628391003
325 => 0.3266700282881
326 => 0.32049387772398
327 => 0.34841066392043
328 => 0.34209223541532
329 => 0.3491514681081
330 => 0.32956590173245
331 => 0.33031409674346
401 => 0.3210419757486
402 => 0.32623374394237
403 => 0.32256436952152
404 => 0.32581430037837
405 => 0.327762295534
406 => 0.33703289506504
407 => 0.35104259991844
408 => 0.33564817664235
409 => 0.32894060596876
410 => 0.33310194508985
411 => 0.34418413954416
412 => 0.36097423142954
413 => 0.35103415910131
414 => 0.3554453944072
415 => 0.35640905307934
416 => 0.34907961174598
417 => 0.36124447838611
418 => 0.36776372924575
419 => 0.37445113165887
420 => 0.38025761579741
421 => 0.37178003607594
422 => 0.38085226159123
423 => 0.37354164928929
424 => 0.36698327429724
425 => 0.36699322064493
426 => 0.36287905620985
427 => 0.3549073441988
428 => 0.35343723819595
429 => 0.36108491527666
430 => 0.36721762805767
501 => 0.36772274765603
502 => 0.37111813256176
503 => 0.37312748637372
504 => 0.39282188531502
505 => 0.40074313548982
506 => 0.41042909026198
507 => 0.41420231551623
508 => 0.42555837075542
509 => 0.41638743385606
510 => 0.41440324396999
511 => 0.38685716849709
512 => 0.39136783681262
513 => 0.39858985200053
514 => 0.3869762568675
515 => 0.3943424098983
516 => 0.39579664454303
517 => 0.38658163134888
518 => 0.39150376805309
519 => 0.37843203227853
520 => 0.35132752803739
521 => 0.36127465344756
522 => 0.36859908591566
523 => 0.35814621768768
524 => 0.37688257940447
525 => 0.36593718368653
526 => 0.3624680187156
527 => 0.34893356931737
528 => 0.3553213084446
529 => 0.36396081707779
530 => 0.35862260519316
531 => 0.36970019639032
601 => 0.38538901981116
602 => 0.39656980966644
603 => 0.39742813187911
604 => 0.39023963305691
605 => 0.40175924829587
606 => 0.40184315611664
607 => 0.38884898306807
608 => 0.38089012442769
609 => 0.37908185499901
610 => 0.38359926656395
611 => 0.38908423816397
612 => 0.39773250962945
613 => 0.4029584789506
614 => 0.41658503530021
615 => 0.42027199074443
616 => 0.42432283696257
617 => 0.42973601674473
618 => 0.43623592698402
619 => 0.42201449342055
620 => 0.4225795374881
621 => 0.40933673546295
622 => 0.39518490228917
623 => 0.40592437961716
624 => 0.41996481761071
625 => 0.41674392562169
626 => 0.41638150947607
627 => 0.41699099290714
628 => 0.41456254553192
629 => 0.40357876805622
630 => 0.39806278377002
701 => 0.4051798107769
702 => 0.40896219388862
703 => 0.41482834023644
704 => 0.41410521387975
705 => 0.4292157768936
706 => 0.43508728476108
707 => 0.43358510179259
708 => 0.43386153961085
709 => 0.44449162414515
710 => 0.45631446439091
711 => 0.46738811444225
712 => 0.4786527068988
713 => 0.4650728010279
714 => 0.45817776231881
715 => 0.46529168225434
716 => 0.46151693620087
717 => 0.4832077466865
718 => 0.48470957134264
719 => 0.50639881333578
720 => 0.52698448669416
721 => 0.51405499408841
722 => 0.5262469232585
723 => 0.53943348867852
724 => 0.56487251281687
725 => 0.55630554444273
726 => 0.54974338092965
727 => 0.54354216811794
728 => 0.55644590756431
729 => 0.5730463622198
730 => 0.57662194115541
731 => 0.58241574500739
801 => 0.57632426868966
802 => 0.58366078096025
803 => 0.60956189310228
804 => 0.60256318396607
805 => 0.592623891894
806 => 0.61307033236088
807 => 0.62046981968232
808 => 0.67240329684577
809 => 0.73797145702957
810 => 0.71082580816973
811 => 0.69397562793781
812 => 0.69793581998393
813 => 0.72187909246076
814 => 0.72956891165883
815 => 0.70866533223883
816 => 0.71604882987825
817 => 0.75673262780096
818 => 0.77855818009399
819 => 0.74891614851732
820 => 0.6671349590173
821 => 0.59172896739106
822 => 0.6117300319464
823 => 0.60946253193112
824 => 0.65317219739191
825 => 0.60239626706779
826 => 0.60325120351232
827 => 0.64786473856551
828 => 0.63596261228294
829 => 0.61668269201434
830 => 0.59186973214546
831 => 0.54600068090684
901 => 0.50537318307168
902 => 0.5850530622804
903 => 0.58161712100046
904 => 0.57664136884914
905 => 0.58771436682929
906 => 0.64148170189556
907 => 0.6402421907944
908 => 0.63235705357296
909 => 0.63833786065901
910 => 0.61563422761538
911 => 0.62148547080284
912 => 0.59171702269673
913 => 0.6051736044809
914 => 0.61664132596449
915 => 0.61894364083484
916 => 0.62413087379685
917 => 0.57980653607631
918 => 0.59970686241865
919 => 0.61139643973636
920 => 0.55858250414449
921 => 0.61035247803946
922 => 0.57903494796935
923 => 0.56840530789004
924 => 0.58271671790824
925 => 0.57713954750584
926 => 0.5723446238963
927 => 0.56966897413493
928 => 0.58017769415961
929 => 0.57968744980982
930 => 0.56249314419478
1001 => 0.54006387344951
1002 => 0.54759187292734
1003 => 0.54485688014167
1004 => 0.53494491346533
1005 => 0.54162438222977
1006 => 0.51221138219298
1007 => 0.46160784438439
1008 => 0.49503809148903
1009 => 0.49375106334061
1010 => 0.4931020853861
1011 => 0.51822399214107
1012 => 0.51580910046758
1013 => 0.5114260484335
1014 => 0.53486441527749
1015 => 0.52630909608892
1016 => 0.5526745739414
1017 => 0.57004058286724
1018 => 0.56563600127211
1019 => 0.58196881660406
1020 => 0.54776530283089
1021 => 0.55912633809955
1022 => 0.5614678317227
1023 => 0.53457518946888
1024 => 0.51620420661083
1025 => 0.51497907149873
1026 => 0.48312631890025
1027 => 0.50014180223192
1028 => 0.51511472341525
1029 => 0.50794385611406
1030 => 0.50567377375007
1031 => 0.51727113222691
1101 => 0.51817234630522
1102 => 0.4976245698134
1103 => 0.5018971032095
1104 => 0.51971427772083
1105 => 0.50144815612597
1106 => 0.46596006562119
1107 => 0.45715852851476
1108 => 0.45598424122025
1109 => 0.43211377452892
1110 => 0.4577466893104
1111 => 0.44655723508888
1112 => 0.48190458690443
1113 => 0.46171436911904
1114 => 0.46084400918398
1115 => 0.45952833248811
1116 => 0.43898203573032
1117 => 0.443480368935
1118 => 0.45843351362284
1119 => 0.4637689641067
1120 => 0.46321243290917
1121 => 0.45836023505621
1122 => 0.46058154638602
1123 => 0.45342592863653
1124 => 0.45089913107787
1125 => 0.44292386293234
1126 => 0.43120242198247
1127 => 0.43283236023833
1128 => 0.40960911863477
1129 => 0.39695586405844
1130 => 0.39345360995892
1201 => 0.38877024940778
1202 => 0.39398260799512
1203 => 0.40954333010916
1204 => 0.39077379784827
1205 => 0.35859475131659
1206 => 0.36052876684357
1207 => 0.36487392551834
1208 => 0.35677675107402
1209 => 0.34911345500681
1210 => 0.35577606919438
1211 => 0.34214138297004
1212 => 0.36652161220807
1213 => 0.36586219533198
1214 => 0.37494963712866
1215 => 0.3806322009772
1216 => 0.3675357310582
1217 => 0.3642420042902
1218 => 0.36611826074879
1219 => 0.33510792090119
1220 => 0.37241543077742
1221 => 0.37273806767205
1222 => 0.36997545470163
1223 => 0.38984055197058
1224 => 0.43176210328728
1225 => 0.41598952939144
1226 => 0.4098819120504
1227 => 0.39827132702045
1228 => 0.41374174220454
1229 => 0.41255385569447
1230 => 0.40718178240337
1231 => 0.40393273571502
]
'min_raw' => 0.30342670467101
'max_raw' => 0.77855818009399
'avg_raw' => 0.5409924423825
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.303426'
'max' => '$0.778558'
'avg' => '$0.540992'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.18658793732724
'max_diff' => 0.45254178739422
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0095242175416937
]
1 => [
'year' => 2028
'avg' => 0.016346322201654
]
2 => [
'year' => 2029
'avg' => 0.044655206116987
]
3 => [
'year' => 2030
'avg' => 0.034451425016727
]
4 => [
'year' => 2031
'avg' => 0.033835568884525
]
5 => [
'year' => 2032
'avg' => 0.059324400699992
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0095242175416937
'min' => '$0.009524'
'max_raw' => 0.059324400699992
'max' => '$0.059324'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.059324400699992
]
1 => [
'year' => 2033
'avg' => 0.15258845885656
]
2 => [
'year' => 2034
'avg' => 0.096717898281485
]
3 => [
'year' => 2035
'avg' => 0.11407898281816
]
4 => [
'year' => 2036
'avg' => 0.22142758002176
]
5 => [
'year' => 2037
'avg' => 0.5409924423825
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.059324400699992
'min' => '$0.059324'
'max_raw' => 0.5409924423825
'max' => '$0.540992'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.5409924423825
]
]
]
]
'prediction_2025_max_price' => '$0.016284'
'last_price' => 0.01579005
'sma_50day_nextmonth' => '$0.0149091'
'sma_200day_nextmonth' => '$0.018193'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.015545'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0153069'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.015545'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.015532'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.016843'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.019666'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.018229'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.015531'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.015459'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.015499'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.015792'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.0171082'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.018353'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.022177'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.018495'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0218029'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.071755'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.103226'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.015936'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.016361'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.017457'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.0192027'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.032766'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.062686'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.110943'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '48.12'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 62.92
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.015676'
'vwma_10_action' => 'BUY'
'hma_9' => '0.015454'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 54.46
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 34.31
'cci_20_action' => 'NEUTRAL'
'adx_14' => 13.68
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000653'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -45.54
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 48.11
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.009355'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 18
'buy_signals' => 15
'sell_pct' => 54.55
'buy_pct' => 45.45
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767699424
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de LORDS para 2026
La previsión del precio de LORDS para 2026 sugiere que el precio medio podría oscilar entre $0.005455 en el extremo inferior y $0.016284 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, LORDS podría potencialmente ganar 3.13% para 2026 si LORDS alcanza el objetivo de precio previsto.
Predicción de precio de LORDS 2027-2032
La predicción del precio de LORDS para 2027-2032 está actualmente dentro de un rango de precios de $0.009524 en el extremo inferior y $0.059324 en el extremo superior. Considerando la volatilidad de precios en el mercado, si LORDS alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de LORDS | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.005251 | $0.009524 | $0.013796 |
| 2028 | $0.009478 | $0.016346 | $0.023214 |
| 2029 | $0.02082 | $0.044655 | $0.068489 |
| 2030 | $0.0177069 | $0.034451 | $0.051195 |
| 2031 | $0.020935 | $0.033835 | $0.046736 |
| 2032 | $0.031955 | $0.059324 | $0.086693 |
Predicción de precio de LORDS 2032-2037
La predicción de precio de LORDS para 2032-2037 se estima actualmente entre $0.059324 en el extremo inferior y $0.540992 en el extremo superior. Comparado con el precio actual, LORDS podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de LORDS | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.031955 | $0.059324 | $0.086693 |
| 2033 | $0.074258 | $0.152588 | $0.230918 |
| 2034 | $0.05970013 | $0.096717 | $0.133735 |
| 2035 | $0.070584 | $0.114078 | $0.157573 |
| 2036 | $0.116838 | $0.221427 | $0.326016 |
| 2037 | $0.303426 | $0.540992 | $0.778558 |
LORDS Histograma de precios potenciales
Pronóstico de precio de LORDS basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para LORDS es Bajista, con 15 indicadores técnicos mostrando señales alcistas y 18 indicando señales bajistas. La predicción de precio de LORDS se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de LORDS
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de LORDS aumentar durante el próximo mes, alcanzando $0.018193 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para LORDS alcance $0.0149091 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 48.12, lo que sugiere que el mercado de LORDS está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de LORDS para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.015545 | BUY |
| SMA 5 | $0.0153069 | BUY |
| SMA 10 | $0.015545 | BUY |
| SMA 21 | $0.015532 | BUY |
| SMA 50 | $0.016843 | SELL |
| SMA 100 | $0.019666 | SELL |
| SMA 200 | $0.018229 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.015531 | BUY |
| EMA 5 | $0.015459 | BUY |
| EMA 10 | $0.015499 | BUY |
| EMA 21 | $0.015792 | SELL |
| EMA 50 | $0.0171082 | SELL |
| EMA 100 | $0.018353 | SELL |
| EMA 200 | $0.022177 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.018495 | SELL |
| SMA 50 | $0.0218029 | SELL |
| SMA 100 | $0.071755 | SELL |
| SMA 200 | $0.103226 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.0192027 | SELL |
| EMA 50 | $0.032766 | SELL |
| EMA 100 | $0.062686 | SELL |
| EMA 200 | $0.110943 | SELL |
Osciladores de LORDS
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 48.12 | NEUTRAL |
| Stoch RSI (14) | 62.92 | NEUTRAL |
| Estocástico Rápido (14) | 54.46 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 34.31 | NEUTRAL |
| Índice Direccional Medio (14) | 13.68 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.000653 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -45.54 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 48.11 | NEUTRAL |
| VWMA (10) | 0.015676 | BUY |
| Promedio Móvil de Hull (9) | 0.015454 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.009355 | SELL |
Predicción de precios de LORDS basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de LORDS
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de LORDS por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.022187 | $0.031177 | $0.0438094 | $0.061559 | $0.0865014 | $0.121548 |
| Amazon.com acción | $0.032946 | $0.068745 | $0.143441 | $0.299299 | $0.624507 | $1.30 |
| Apple acción | $0.022396 | $0.031768 | $0.045061 | $0.063915 | $0.090659 | $0.128593 |
| Netflix acción | $0.024914 | $0.03931 | $0.062026 | $0.097867 | $0.154419 | $0.24365 |
| Google acción | $0.020448 | $0.02648 | $0.034291 | $0.0444075 | $0.0575075 | $0.074472 |
| Tesla acción | $0.035794 | $0.081144 | $0.183947 | $0.416995 | $0.945297 | $2.14 |
| Kodak acción | $0.01184 | $0.008879 | $0.006658 | $0.004993 | $0.003744 | $0.0028079 |
| Nokia acción | $0.01046 | $0.006929 | $0.00459 | $0.003041 | $0.002014 | $0.001334 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de LORDS
Podría preguntarse cosas como: "¿Debo invertir en LORDS ahora?", "¿Debería comprar LORDS hoy?", "¿Será LORDS una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de LORDS regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como LORDS, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de LORDS a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de LORDS es de $0.01579 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de LORDS basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si LORDS ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.01620048 | $0.016621 | $0.017053 | $0.017496 |
| Si LORDS ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.01661 | $0.017474 | $0.018382 | $0.019338 |
| Si LORDS ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.017842 | $0.020161 | $0.022781 | $0.025742 |
| Si LORDS ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.019894 | $0.025065 | $0.03158 | $0.039789 |
| Si LORDS ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.023998 | $0.036474 | $0.055436 | $0.084256 |
| Si LORDS ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.036311 | $0.0835047 | $0.192032 | $0.4416096 |
| Si LORDS ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.056833 | $0.204561 | $0.736283 | $2.65 |
Cuadro de preguntas
¿Es LORDS una buena inversión?
La decisión de adquirir LORDS depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de LORDS ha experimentado un aumento de 3.9994% durante las últimas 24 horas, y LORDS ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en LORDS dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede LORDS subir?
Parece que el valor medio de LORDS podría potencialmente aumentar hasta $0.016284 para el final de este año. Mirando las perspectivas de LORDS en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.051195. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de LORDS la próxima semana?
Basado en nuestro nuevo pronóstico experimental de LORDS, el precio de LORDS aumentará en un 0.86% durante la próxima semana y alcanzará $0.015925 para el 13 de enero de 2026.
¿Cuál será el precio de LORDS el próximo mes?
Basado en nuestro nuevo pronóstico experimental de LORDS, el precio de LORDS disminuirá en un -11.62% durante el próximo mes y alcanzará $0.013955 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de LORDS este año en 2026?
Según nuestra predicción más reciente sobre el valor de LORDS en 2026, se anticipa que LORDS fluctúe dentro del rango de $0.005455 y $0.016284. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de LORDS no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará LORDS en 5 años?
El futuro de LORDS parece estar en una tendencia alcista, con un precio máximo de $0.051195 proyectada después de un período de cinco años. Basado en el pronóstico de LORDS para 2030, el valor de LORDS podría potencialmente alcanzar su punto más alto de aproximadamente $0.051195, mientras que su punto más bajo se anticipa que esté alrededor de $0.0177069.
¿Cuánto será LORDS en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de LORDS, se espera que el valor de LORDS en 2026 crezca en un 3.13% hasta $0.016284 si ocurre lo mejor. El precio estará entre $0.016284 y $0.005455 durante 2026.
¿Cuánto será LORDS en 2027?
Según nuestra última simulación experimental para la predicción de precios de LORDS, el valor de LORDS podría disminuir en un -12.62% hasta $0.013796 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.013796 y $0.005251 a lo largo del año.
¿Cuánto será LORDS en 2028?
Nuestro nuevo modelo experimental de predicción de precios de LORDS sugiere que el valor de LORDS en 2028 podría aumentar en un 47.02% , alcanzando $0.023214 en el mejor escenario. Se espera que el precio oscile entre $0.023214 y $0.009478 durante el año.
¿Cuánto será LORDS en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de LORDS podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.068489 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.068489 y $0.02082.
¿Cuánto será LORDS en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de LORDS, se espera que el valor de LORDS en 2030 aumente en un 224.23% , alcanzando $0.051195 en el mejor escenario. Se pronostica que el precio oscile entre $0.051195 y $0.0177069 durante el transcurso de 2030.
¿Cuánto será LORDS en 2031?
Nuestra simulación experimental indica que el precio de LORDS podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.046736 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.046736 y $0.020935 durante el año.
¿Cuánto será LORDS en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de LORDS, LORDS podría experimentar un 449.04% aumento en valor, alcanzando $0.086693 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.086693 y $0.031955 a lo largo del año.
¿Cuánto será LORDS en 2033?
Según nuestra predicción experimental de precios de LORDS, se anticipa que el valor de LORDS aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.230918. A lo largo del año, el precio de LORDS podría oscilar entre $0.230918 y $0.074258.
¿Cuánto será LORDS en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de LORDS sugieren que LORDS podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.133735 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.133735 y $0.05970013.
¿Cuánto será LORDS en 2035?
Basado en nuestra predicción experimental para el precio de LORDS, LORDS podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.157573 en 2035. El rango de precios esperado para el año está entre $0.157573 y $0.070584.
¿Cuánto será LORDS en 2036?
Nuestra reciente simulación de predicción de precios de LORDS sugiere que el valor de LORDS podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.326016 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.326016 y $0.116838.
¿Cuánto será LORDS en 2037?
Según la simulación experimental, el valor de LORDS podría aumentar en un 4830.69% en 2037, con un máximo de $0.778558 bajo condiciones favorables. Se espera que el precio caiga entre $0.778558 y $0.303426 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Bad Idea AI
Predicción de precios de Vector ETH
Predicción de precios de Terracoin
Predicción de precios de Phantasma
Predicción de precios de Bifrost Native Coin
Predicción de precios de NvirWorld
Predicción de precios de OPEN Ticketing Ecosystem
Predicción de precios de BabyBonk [OLD]
Predicción de precios de Everest
Predicción de precios de Saros
Predicción de precios de Kasta
Predicción de precios de UX Chain
Predicción de precios de Guacamole
Predicción de precios de RMRK
Predicción de precios de Cult DAO
Predicción de precios de Wrapped Ampleforth
Predicción de precios de SpaceN
Predicción de precios de Polaris Share
Predicción de precios de Prisma mkUSD
Predicción de precios de Source
Predicción de precios de VLaunch
Predicción de precios de agEUR
Predicción de precios de Solve.CarePredicción de precios de Hubble
Predicción de precios de NumberGoUpTech
¿Cómo leer y predecir los movimientos de precio de LORDS?
Los traders de LORDS utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de LORDS
Las medias móviles son herramientas populares para la predicción de precios de LORDS. Una media móvil simple (SMA) calcula el precio de cierre promedio de LORDS durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de LORDS por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de LORDS.
¿Cómo leer gráficos de LORDS y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de LORDS en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de LORDS dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de LORDS?
La acción del precio de LORDS está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de LORDS. La capitalización de mercado de LORDS puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de LORDS, grandes poseedores de LORDS, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de LORDS.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


