Previsão de Preço Impossible Finance Launchpad - Projeção IDIA
Previsão de Preço Impossible Finance Launchpad até $0.02148 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.007196 | $0.02148 |
| 2027 | $0.006927 | $0.018198 |
| 2028 | $0.0125023 | $0.030622 |
| 2029 | $0.027463 | $0.090344 |
| 2030 | $0.023356 | $0.067531 |
| 2031 | $0.027615 | $0.061648 |
| 2032 | $0.042152 | $0.114355 |
| 2033 | $0.097953 | $0.3046012 |
| 2034 | $0.078749 | $0.1764087 |
| 2035 | $0.0931063 | $0.207853 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Impossible Finance Launchpad hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.89, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Impossible Finance Launchpad para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Impossible Finance Launchpad'
'name_with_ticker' => 'Impossible Finance Launchpad <small>IDIA</small>'
'name_lang' => 'Impossible Finance Launchpad'
'name_lang_with_ticker' => 'Impossible Finance Launchpad <small>IDIA</small>'
'name_with_lang' => 'Impossible Finance Launchpad'
'name_with_lang_with_ticker' => 'Impossible Finance Launchpad <small>IDIA</small>'
'image' => '/uploads/coins/idia.png?1717089499'
'price_for_sd' => 0.02082
'ticker' => 'IDIA'
'marketcap' => '$15.59M'
'low24h' => '$0.01855'
'high24h' => '$0.022'
'volume24h' => '$34.26K'
'current_supply' => '748.39M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02082'
'change_24h_pct' => '-5.2202%'
'ath_price' => '$3.51'
'ath_days' => 1502
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '26 de nov. de 2021'
'ath_pct' => '-99.41%'
'fdv' => '$20.83M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.02'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.02100666'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.018408'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.007196'
'current_year_max_price_prediction' => '$0.02148'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.023356'
'grand_prediction_max_price' => '$0.067531'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.021223107603251
107 => 0.021302346983054
108 => 0.021480877351812
109 => 0.01995535489771
110 => 0.020640269692615
111 => 0.021042592966785
112 => 0.019224881777441
113 => 0.021006662660959
114 => 0.019928798945765
115 => 0.019562955811859
116 => 0.020055515395496
117 => 0.019863564446722
118 => 0.019698536292705
119 => 0.01960644774722
120 => 0.019968129143625
121 => 0.01995125627418
122 => 0.019359475310327
123 => 0.018587521167058
124 => 0.01884661431607
125 => 0.018752483346023
126 => 0.018411340567434
127 => 0.018641229610467
128 => 0.017628914609135
129 => 0.015887279264898
130 => 0.017037856921034
131 => 0.01699356093286
201 => 0.01697122488696
202 => 0.017835852195916
203 => 0.017752738230506
204 => 0.017601885569432
205 => 0.018408570040014
206 => 0.018114119356814
207 => 0.019021546981129
208 => 0.019619237503242
209 => 0.019467643853571
210 => 0.020029774678507
211 => 0.018852583298928
212 => 0.019243599054504
213 => 0.019324186859804
214 => 0.018398615678865
215 => 0.017766336703134
216 => 0.017724170903961
217 => 0.016627886293454
218 => 0.017213512683487
219 => 0.017728839671849
220 => 0.017482038035413
221 => 0.017403908010307
222 => 0.01780305736424
223 => 0.017834074687524
224 => 0.017126876429588
225 => 0.017273925341469
226 => 0.017887143748861
227 => 0.017258473810959
228 => 0.016037070814267
301 => 0.01573414598387
302 => 0.015693730227483
303 => 0.014872174062175
304 => 0.015754388869529
305 => 0.015369278464232
306 => 0.016585837620234
307 => 0.015890945554863
308 => 0.015860990146788
309 => 0.01581570815398
310 => 0.015108560824441
311 => 0.015263381148053
312 => 0.015778027483539
313 => 0.015961659093947
314 => 0.015942504812532
315 => 0.015775505435731
316 => 0.015851956895255
317 => 0.015605680106674
318 => 0.015518714646817
319 => 0.015244227733777
320 => 0.014840807800552
321 => 0.014896905816585
322 => 0.014097625368299
323 => 0.013662134959049
324 => 0.01354159695344
325 => 0.013380408494709
326 => 0.013559803618759
327 => 0.014095361107213
328 => 0.013449365151278
329 => 0.012341850396176
330 => 0.012408413920071
331 => 0.012557962395375
401 => 0.012279279801007
402 => 0.012015530113496
403 => 0.012244839068099
404 => 0.011775570466252
405 => 0.012614671263951
406 => 0.012591975938926
407 => 0.012904740826663
408 => 0.013100319129546
409 => 0.012649574460627
410 => 0.012536213395337
411 => 0.0126007890101
412 => 0.011533497942039
413 => 0.012817520376432
414 => 0.012828624655765
415 => 0.012733543074514
416 => 0.013417245381084
417 => 0.014860070500042
418 => 0.014317221652784
419 => 0.014107014171432
420 => 0.013707409595722
421 => 0.014239858966684
422 => 0.014198975162498
423 => 0.014014083095248
424 => 0.013902259796077
425 => 0.014108297653489
426 => 0.013876729425423
427 => 0.013835133408593
428 => 0.013583106803516
429 => 0.013493144771983
430 => 0.013426540465328
501 => 0.013353215668104
502 => 0.013514951899378
503 => 0.013148436321139
504 => 0.012706454463747
505 => 0.012669708454615
506 => 0.012771167416571
507 => 0.012726279378637
508 => 0.012669493547959
509 => 0.012561073932494
510 => 0.012528908148604
511 => 0.012633431341626
512 => 0.012515430750785
513 => 0.012689547050396
514 => 0.012642197051196
515 => 0.012377703804729
516 => 0.012048047291689
517 => 0.012045112657245
518 => 0.011974088702255
519 => 0.011883629017053
520 => 0.011858465202067
521 => 0.012225527307537
522 => 0.012985334880614
523 => 0.012836166473365
524 => 0.012943955934996
525 => 0.013474173403069
526 => 0.013642713591973
527 => 0.013523087757982
528 => 0.013359336538214
529 => 0.013366540760832
530 => 0.013926128249644
531 => 0.013961029034917
601 => 0.014049212059882
602 => 0.014162552167483
603 => 0.013542390068403
604 => 0.013337331181736
605 => 0.013240162905
606 => 0.012940922221507
607 => 0.013263627643696
608 => 0.01307560101381
609 => 0.013100972230086
610 => 0.013084449192203
611 => 0.01309347188817
612 => 0.012614436718177
613 => 0.012788971956775
614 => 0.012498773270939
615 => 0.012110229806937
616 => 0.012108927273004
617 => 0.01220402273537
618 => 0.012147456233269
619 => 0.011995237230573
620 => 0.012016859221453
621 => 0.011827427829621
622 => 0.012039859622187
623 => 0.012045951405881
624 => 0.011964153594505
625 => 0.012291434080892
626 => 0.0124255211632
627 => 0.012371680091474
628 => 0.012421743530079
629 => 0.012842365094141
630 => 0.012910944762088
701 => 0.012941403320472
702 => 0.012900592887224
703 => 0.012429431720124
704 => 0.012450329721417
705 => 0.012296994053971
706 => 0.012167441573095
707 => 0.012172622992917
708 => 0.012239229808731
709 => 0.01253010567983
710 => 0.013142236802489
711 => 0.013165466731131
712 => 0.013193622082311
713 => 0.013079100119317
714 => 0.01304455919945
715 => 0.013090127588522
716 => 0.013320011853867
717 => 0.013911336597304
718 => 0.013702322939722
719 => 0.013532391582616
720 => 0.013681467195963
721 => 0.013658518173782
722 => 0.01346480533149
723 => 0.013459368457188
724 => 0.013087571579089
725 => 0.012950126738662
726 => 0.012835267542432
727 => 0.012709844298625
728 => 0.012635489195471
729 => 0.012749732427705
730 => 0.012775861206604
731 => 0.012526066382692
801 => 0.012492020271217
802 => 0.012696008116619
803 => 0.012606240671291
804 => 0.012698568714936
805 => 0.012719989613037
806 => 0.012716540355078
807 => 0.01262281283243
808 => 0.012682551960371
809 => 0.012541251113699
810 => 0.012387607665646
811 => 0.012289592718112
812 => 0.012204061676593
813 => 0.012251519269521
814 => 0.012082341616147
815 => 0.012028218279959
816 => 0.012662313687997
817 => 0.013130726783589
818 => 0.013123915871667
819 => 0.013082456196967
820 => 0.013020855530151
821 => 0.013315505381403
822 => 0.013212855264937
823 => 0.01328754180137
824 => 0.013306552659476
825 => 0.01336409280126
826 => 0.013384658456206
827 => 0.013322494763195
828 => 0.013113865816795
829 => 0.012593982318211
830 => 0.012351975146221
831 => 0.012272108748516
901 => 0.012275011740385
902 => 0.01219493426512
903 => 0.012218520670406
904 => 0.012186731875916
905 => 0.012126531589687
906 => 0.012247802071487
907 => 0.012261777364801
908 => 0.012233471385275
909 => 0.012240138468145
910 => 0.012005777047309
911 => 0.012023595037129
912 => 0.011924382205611
913 => 0.01190578099573
914 => 0.011654979597102
915 => 0.01121064856519
916 => 0.011456851089126
917 => 0.011159473061524
918 => 0.011046851496459
919 => 0.011579984469231
920 => 0.011526472705572
921 => 0.011434883827191
922 => 0.011299404787272
923 => 0.01124915429351
924 => 0.010943848200789
925 => 0.010925809088086
926 => 0.011077127031597
927 => 0.011007299007199
928 => 0.010909234015004
929 => 0.010554052553961
930 => 0.010154710995209
1001 => 0.010166764606696
1002 => 0.010293787726522
1003 => 0.010663124578815
1004 => 0.010518818281032
1005 => 0.010414122406266
1006 => 0.010394516016068
1007 => 0.010639931038145
1008 => 0.010987244710419
1009 => 0.011150196514745
1010 => 0.010988716225578
1011 => 0.010803216364099
1012 => 0.010814506881144
1013 => 0.010889617632801
1014 => 0.010897510710791
1015 => 0.010776769370662
1016 => 0.010810757350662
1017 => 0.010759126501116
1018 => 0.010442268072757
1019 => 0.010436537108557
1020 => 0.010358774940206
1021 => 0.010356420332652
1022 => 0.010224127485604
1023 => 0.010205618801805
1024 => 0.0099429433243889
1025 => 0.010115837119079
1026 => 0.0099998690389324
1027 => 0.0098250777880473
1028 => 0.0097949437105119
1029 => 0.0097940378437532
1030 => 0.0099735093758037
1031 => 0.010113739889733
1101 => 0.010001886353337
1102 => 0.0099764194712891
1103 => 0.010248339144763
1104 => 0.01021373488771
1105 => 0.010183767824277
1106 => 0.010956146580437
1107 => 0.01034474852547
1108 => 0.010078144076124
1109 => 0.0097481704432457
1110 => 0.0098556115219822
1111 => 0.0098782509359098
1112 => 0.0090847238310563
1113 => 0.0087627899834448
1114 => 0.0086523144187656
1115 => 0.0085887341693975
1116 => 0.0086177084874251
1117 => 0.0083279302655006
1118 => 0.0085226660231232
1119 => 0.00827174257728
1120 => 0.0082296744450088
1121 => 0.0086783566496267
1122 => 0.0087407881572359
1123 => 0.0084744359498261
1124 => 0.0086454771854887
1125 => 0.0085834552557864
1126 => 0.008276043939565
1127 => 0.0082643030884499
1128 => 0.0081100548960003
1129 => 0.0078686863431522
1130 => 0.0077583744377177
1201 => 0.0077009230395955
1202 => 0.0077246286061661
1203 => 0.0077126423463057
1204 => 0.0076344238928979
1205 => 0.0077171257364958
1206 => 0.0075058567008643
1207 => 0.0074217276685656
1208 => 0.0073837285364549
1209 => 0.00719621510714
1210 => 0.0074946323607805
1211 => 0.0075534243191093
1212 => 0.0076123321157576
1213 => 0.0081250842675207
1214 => 0.0080994686190411
1215 => 0.0083310216059695
1216 => 0.008322023882696
1217 => 0.0082559812199144
1218 => 0.0079773580891294
1219 => 0.0080884123030805
1220 => 0.0077466046941956
1221 => 0.0080027101954303
1222 => 0.0078858343398882
1223 => 0.007963194351105
1224 => 0.0078240940756662
1225 => 0.0079010779114036
1226 => 0.0075673660734669
1227 => 0.0072557506546537
1228 => 0.0073811537958053
1229 => 0.0075174813518258
1230 => 0.0078130742288934
1231 => 0.0076370215499002
]
'min_raw' => 0.00719621510714
'max_raw' => 0.021480877351812
'avg_raw' => 0.014338546229476
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.007196'
'max' => '$0.02148'
'avg' => '$0.014338'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.01363220489286
'max_diff' => 0.00065245735181158
'year' => 2026
]
1 => [
'items' => [
101 => 0.007700336750555
102 => 0.007488241427198
103 => 0.0070506281930787
104 => 0.0070531050364592
105 => 0.0069857877743125
106 => 0.0069276158313365
107 => 0.0076572433178916
108 => 0.0075665026062348
109 => 0.0074219191580604
110 => 0.0076154498489596
111 => 0.0076666224353785
112 => 0.0076680792469736
113 => 0.0078092742433036
114 => 0.0078846300381555
115 => 0.0078979118236088
116 => 0.0081200852010538
117 => 0.0081945547866356
118 => 0.008501284470317
119 => 0.0078782366254439
120 => 0.0078654053650868
121 => 0.0076181732226625
122 => 0.0074613746893515
123 => 0.0076289093523853
124 => 0.0077773221930711
125 => 0.0076227848233218
126 => 0.0076429641413491
127 => 0.0074355103486276
128 => 0.0075096653179173
129 => 0.0075735375672228
130 => 0.0075382710653936
131 => 0.0074854754052373
201 => 0.0077651540326126
202 => 0.0077493734683867
203 => 0.0080098166359825
204 => 0.0082128507095929
205 => 0.0085767240661848
206 => 0.0081970032494341
207 => 0.0081831647136181
208 => 0.0083184386209899
209 => 0.0081945340769052
210 => 0.0082728374717273
211 => 0.0085641081787132
212 => 0.0085702622697734
213 => 0.0084671733154159
214 => 0.0084609003431745
215 => 0.0084806997045285
216 => 0.0085966651824004
217 => 0.0085561432811727
218 => 0.0086030362511624
219 => 0.0086616766281851
220 => 0.0089042380905556
221 => 0.0089627188379452
222 => 0.0088206409405796
223 => 0.008833468983933
224 => 0.0087803279501928
225 => 0.0087289943774549
226 => 0.0088443847523033
227 => 0.0090552629303423
228 => 0.0090539510681413
301 => 0.0091028707065603
302 => 0.0091333472360232
303 => 0.0090025196613855
304 => 0.0089173557209595
305 => 0.0089500129948412
306 => 0.0090022326869608
307 => 0.0089330788524862
308 => 0.0085062293509367
309 => 0.0086357082224551
310 => 0.0086141566070411
311 => 0.0085834644859256
312 => 0.0087136564924678
313 => 0.0087010991558313
314 => 0.0083249581709961
315 => 0.0083490374964588
316 => 0.0083264225145307
317 => 0.0083994961477304
318 => 0.0081905878609052
319 => 0.0082548466429139
320 => 0.008295149148601
321 => 0.0083188876340692
322 => 0.0084046473212121
323 => 0.0083945844117605
324 => 0.0084040217966316
325 => 0.0085311807729466
326 => 0.0091743072394563
327 => 0.0092093111940498
328 => 0.0090369389195362
329 => 0.0091057982433116
330 => 0.0089736033995416
331 => 0.0090623466837929
401 => 0.0091230625850426
402 => 0.0088486991022915
403 => 0.0088324530774472
404 => 0.0086997126185326
405 => 0.0087710398223494
406 => 0.0086575531124694
407 => 0.0086853987814774
408 => 0.0086075398633893
409 => 0.0087476704143919
410 => 0.0089043581444989
411 => 0.0089439436529099
412 => 0.0088398112229135
413 => 0.0087644124809345
414 => 0.008632037127909
415 => 0.0088521802901675
416 => 0.0089165568595532
417 => 0.0088518421474544
418 => 0.0088368463346168
419 => 0.0088084292963863
420 => 0.0088428751436134
421 => 0.0089162062509307
422 => 0.0088816246549328
423 => 0.0089044664083387
424 => 0.0088174171986691
425 => 0.0090025629707564
426 => 0.0092966190145875
427 => 0.0092975644528514
428 => 0.0092629826704458
429 => 0.0092488325501603
430 => 0.0092843155575065
501 => 0.0093035636334026
502 => 0.0094183091726895
503 => 0.0095414357080082
504 => 0.010116013524025
505 => 0.0099546743724975
506 => 0.010464473992654
507 => 0.010867659303003
508 => 0.01098855694842
509 => 0.01087733680331
510 => 0.010496858694884
511 => 0.010478190623718
512 => 0.01104678555142
513 => 0.010886131441047
514 => 0.010867022145815
515 => 0.010663731530213
516 => 0.010783901462066
517 => 0.010757618535184
518 => 0.010716129649294
519 => 0.01094540550816
520 => 0.011374589448361
521 => 0.011307697106419
522 => 0.011257765076206
523 => 0.011038977454808
524 => 0.011170736470874
525 => 0.011123819608931
526 => 0.011325404222016
527 => 0.01120598996287
528 => 0.010884914328153
529 => 0.010936046681261
530 => 0.010928318128953
531 => 0.011087371187805
601 => 0.011039627407477
602 => 0.010918995389583
603 => 0.011373122544312
604 => 0.011343634052872
605 => 0.011385441991726
606 => 0.011403847139363
607 => 0.011680266335828
608 => 0.011793506436192
609 => 0.011819213921522
610 => 0.011926783258564
611 => 0.011816537498423
612 => 0.012257599142882
613 => 0.012550879399787
614 => 0.012891539510246
615 => 0.013389335492433
616 => 0.013576511386605
617 => 0.013542699736669
618 => 0.013920122969096
619 => 0.01459834412812
620 => 0.013679787623993
621 => 0.014647029853268
622 => 0.014340812130828
623 => 0.013614775419545
624 => 0.013568027214749
625 => 0.014059707705089
626 => 0.015150207710172
627 => 0.014877049827247
628 => 0.015150654498612
629 => 0.014831480116097
630 => 0.014815630417793
701 => 0.015135152911264
702 => 0.015881734633524
703 => 0.015527061642476
704 => 0.015018550940422
705 => 0.015394027329516
706 => 0.015068754932584
707 => 0.014335825184284
708 => 0.014876840948562
709 => 0.014515079114232
710 => 0.014620660449806
711 => 0.015381030017558
712 => 0.015289540339477
713 => 0.015407936454629
714 => 0.015198970410352
715 => 0.015003763174077
716 => 0.014639394371289
717 => 0.014531522731948
718 => 0.014561334572247
719 => 0.01453150795868
720 => 0.014327646962243
721 => 0.014283623199472
722 => 0.014210248332795
723 => 0.014232990272124
724 => 0.014095024056197
725 => 0.014355394810926
726 => 0.014403721917383
727 => 0.014593198039556
728 => 0.014612870079123
729 => 0.015140558382349
730 => 0.014849916532374
731 => 0.015044904178148
801 => 0.015027462647815
802 => 0.013630510836614
803 => 0.013822998470787
804 => 0.014122448823614
805 => 0.013987546845561
806 => 0.013796827010795
807 => 0.013642810518472
808 => 0.013409459783606
809 => 0.013737896461825
810 => 0.014169755768337
811 => 0.014623822743812
812 => 0.015169354463199
813 => 0.015047598134121
814 => 0.014613624407782
815 => 0.014633092152128
816 => 0.014753434087397
817 => 0.014597580347005
818 => 0.014551616036338
819 => 0.014747119296941
820 => 0.01474846562045
821 => 0.014569137056576
822 => 0.014369846174611
823 => 0.014369011138539
824 => 0.014333549251015
825 => 0.014837788707109
826 => 0.015115069423601
827 => 0.015146859210887
828 => 0.015112929717629
829 => 0.015125987832971
830 => 0.014964644293507
831 => 0.01533342777978
901 => 0.015671859975691
902 => 0.015581152917638
903 => 0.015445170142848
904 => 0.01533685331291
905 => 0.015555636914863
906 => 0.015545894825465
907 => 0.015668904065702
908 => 0.015663323656029
909 => 0.015621960275149
910 => 0.015581154394854
911 => 0.015742945097734
912 => 0.015696351973584
913 => 0.015649686477443
914 => 0.015556091680801
915 => 0.01556881276811
916 => 0.015432853472663
917 => 0.015369952481515
918 => 0.014424072495233
919 => 0.014171302455378
920 => 0.014250829055525
921 => 0.014277011277201
922 => 0.014167005431923
923 => 0.014324725555869
924 => 0.014300145041619
925 => 0.014395773443446
926 => 0.014336028969687
927 => 0.01433848090373
928 => 0.01451417666219
929 => 0.014565181888334
930 => 0.014539240218655
1001 => 0.01455740887487
1002 => 0.014976097888839
1003 => 0.014916573699973
1004 => 0.014884952661
1005 => 0.014893711904898
1006 => 0.01500069592476
1007 => 0.015030645609211
1008 => 0.014903746691667
1009 => 0.014963592954774
1010 => 0.015218410747466
1011 => 0.01530758255347
1012 => 0.01559217615334
1013 => 0.015471275733867
1014 => 0.015693193686257
1015 => 0.016375293814497
1016 => 0.016920202594674
1017 => 0.016419081961115
1018 => 0.017419737542196
1019 => 0.018198891447585
1020 => 0.018168986222947
1021 => 0.018033122717388
1022 => 0.017146076710981
1023 => 0.016329803750775
1024 => 0.017012650742768
1025 => 0.017014391460179
1026 => 0.01695573429798
1027 => 0.016591419701286
1028 => 0.016943056939713
1029 => 0.01697096862674
1030 => 0.016955345504321
1031 => 0.016676026357217
1101 => 0.016249557646395
1102 => 0.016332888611668
1103 => 0.01646938643269
1104 => 0.016210967581067
1105 => 0.016128387099822
1106 => 0.016281919926035
1107 => 0.016776634681925
1108 => 0.016683111723012
1109 => 0.016680669460598
1110 => 0.017080800338738
1111 => 0.016794392983638
1112 => 0.016333939682003
1113 => 0.016217669150707
1114 => 0.015804987093822
1115 => 0.016090028060435
1116 => 0.016100286177375
1117 => 0.015944172153009
1118 => 0.016346607474687
1119 => 0.01634289896235
1120 => 0.01672495140569
1121 => 0.017455292185011
1122 => 0.017239294478679
1123 => 0.016988112646698
1124 => 0.017015423076351
1125 => 0.017314951081761
1126 => 0.017133849612131
1127 => 0.017198974963294
1128 => 0.017314852506742
1129 => 0.017384764305782
1130 => 0.017005363844351
1201 => 0.016916907447969
1202 => 0.016735956704949
1203 => 0.016688750033701
1204 => 0.01683613063823
1205 => 0.01679730105597
1206 => 0.016099424022368
1207 => 0.016026491989405
1208 => 0.016028728710733
1209 => 0.01584533764612
1210 => 0.015565622253685
1211 => 0.016300697604064
1212 => 0.016241660766056
1213 => 0.016176488665983
1214 => 0.016184471876375
1215 => 0.01650354317196
1216 => 0.016318465707034
1217 => 0.016810524481139
1218 => 0.016709371989824
1219 => 0.016605625318789
1220 => 0.016591284368652
1221 => 0.016551350751553
1222 => 0.016414403519879
1223 => 0.01624903150838
1224 => 0.01613983858211
1225 => 0.014888147943357
1226 => 0.01512045444516
1227 => 0.015387701900081
1228 => 0.015479954650592
1229 => 0.015322149937146
1230 => 0.016420634611797
1231 => 0.016621338347118
]
'min_raw' => 0.0069276158313365
'max_raw' => 0.018198891447585
'avg_raw' => 0.012563253639461
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.006927'
'max' => '$0.018198'
'avg' => '$0.012563'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00026859927580351
'max_diff' => -0.0032819859042271
'year' => 2027
]
2 => [
'items' => [
101 => 0.016013393641251
102 => 0.015899672009003
103 => 0.016428090183075
104 => 0.016109389427615
105 => 0.016252900358284
106 => 0.015942708222459
107 => 0.01657299469457
108 => 0.016568192967672
109 => 0.016322997294355
110 => 0.016530234998415
111 => 0.016494222347465
112 => 0.01621739703618
113 => 0.016581770550703
114 => 0.01658195127542
115 => 0.016345955770866
116 => 0.016070364687606
117 => 0.01602109551109
118 => 0.015983977804967
119 => 0.016243771677935
120 => 0.016476702052083
121 => 0.016910127730036
122 => 0.017019101243414
123 => 0.017444432120904
124 => 0.017191168292343
125 => 0.017303436867228
126 => 0.017425320286626
127 => 0.017483755679999
128 => 0.017388538342313
129 => 0.018049252268229
130 => 0.018105036767327
131 => 0.018123740827341
201 => 0.017900951808988
202 => 0.018098840601705
203 => 0.01800625498898
204 => 0.018247137032265
205 => 0.018284910412388
206 => 0.018252917703251
207 => 0.018264907570314
208 => 0.017701104792469
209 => 0.017671868644141
210 => 0.017273231687188
211 => 0.017435679193722
212 => 0.017131991366569
213 => 0.01722829390489
214 => 0.017270743146178
215 => 0.017248570071503
216 => 0.017444863732007
217 => 0.017277974020433
218 => 0.016837524632379
219 => 0.016396955244184
220 => 0.016391424254395
221 => 0.016275430111179
222 => 0.01619158759102
223 => 0.016207738634876
224 => 0.016264657020037
225 => 0.016188279391003
226 => 0.016204578430601
227 => 0.016475251087871
228 => 0.016529532558937
229 => 0.016345062911114
301 => 0.015604390656262
302 => 0.015422627827085
303 => 0.015553275344184
304 => 0.015490834245788
305 => 0.012502312246393
306 => 0.013204421160778
307 => 0.012787251885216
308 => 0.012979502680431
309 => 0.012553680875543
310 => 0.012756905360068
311 => 0.012719377218346
312 => 0.013848347575763
313 => 0.01383072025648
314 => 0.013839157521404
315 => 0.013436424883412
316 => 0.014077988911116
317 => 0.014394046421059
318 => 0.014335552587567
319 => 0.014350274225257
320 => 0.014097307714626
321 => 0.013841606790184
322 => 0.013557995112888
323 => 0.014084910553842
324 => 0.014026326551554
325 => 0.014160697174943
326 => 0.014502439503096
327 => 0.014552762359069
328 => 0.014620396787821
329 => 0.01459615465966
330 => 0.015173700503464
331 => 0.01510375589101
401 => 0.015272302282587
402 => 0.014925589567466
403 => 0.014533251220033
404 => 0.014607821913373
405 => 0.014600640155945
406 => 0.014509208141046
407 => 0.014426667406196
408 => 0.014289260338379
409 => 0.014724036633372
410 => 0.01470638550979
411 => 0.014992136683395
412 => 0.014941627387821
413 => 0.01460431395026
414 => 0.014616361165672
415 => 0.014697384479013
416 => 0.014977807091592
417 => 0.015061055615633
418 => 0.015022491582417
419 => 0.015113769788588
420 => 0.015185912361034
421 => 0.015122829784961
422 => 0.016015946032775
423 => 0.015645061898835
424 => 0.015825828245123
425 => 0.015868939953575
426 => 0.015758510218916
427 => 0.015782458474171
428 => 0.015818733555374
429 => 0.016038988745048
430 => 0.016617002094104
501 => 0.016873000271732
502 => 0.017643183419851
503 => 0.016851743186747
504 => 0.016804782398619
505 => 0.016943515640899
506 => 0.017395694681011
507 => 0.017762143322004
508 => 0.017883715477151
509 => 0.017899783244391
510 => 0.01812786068941
511 => 0.018258590427503
512 => 0.018100166088552
513 => 0.017965918049012
514 => 0.017485058234857
515 => 0.017540719067684
516 => 0.017924167009664
517 => 0.018465809812682
518 => 0.018930595686
519 => 0.018767843872587
520 => 0.020009525324054
521 => 0.020132632968153
522 => 0.020115623472285
523 => 0.020396081006417
524 => 0.01983942991535
525 => 0.019601450789311
526 => 0.01799494399894
527 => 0.018446306878474
528 => 0.019102389331489
529 => 0.01901555435865
530 => 0.018539089744136
531 => 0.018930234244865
601 => 0.018800909640704
602 => 0.01869890595972
603 => 0.019166204596694
604 => 0.018652390549771
605 => 0.019097263643324
606 => 0.01852670929922
607 => 0.018768587309162
608 => 0.018631285652396
609 => 0.018720136651382
610 => 0.018200715526835
611 => 0.018480982557405
612 => 0.018189055496931
613 => 0.018188917085494
614 => 0.018182472779454
615 => 0.0185259236715
616 => 0.018537123592759
617 => 0.018283312864612
618 => 0.018246734773417
619 => 0.018381983147918
620 => 0.018223642722983
621 => 0.018297729211227
622 => 0.018225886727239
623 => 0.018209713470859
624 => 0.01808084221237
625 => 0.018025320930824
626 => 0.018047092255925
627 => 0.017972775499467
628 => 0.017927996965546
629 => 0.018173565201998
630 => 0.018042367999456
701 => 0.018153457349076
702 => 0.018026857014591
703 => 0.017588005098126
704 => 0.017335616720192
705 => 0.016506666131584
706 => 0.016741755490203
707 => 0.016897619978185
708 => 0.016846106765837
709 => 0.016956777078928
710 => 0.016963571337325
711 => 0.016927591290388
712 => 0.016885931005366
713 => 0.016865653082575
714 => 0.017016788105667
715 => 0.017104527073542
716 => 0.016913263064752
717 => 0.01686845258356
718 => 0.017061831056423
719 => 0.017179791813158
720 => 0.018050747764466
721 => 0.017986224534442
722 => 0.018148165179757
723 => 0.018129933148276
724 => 0.018299672743734
725 => 0.018577125245002
726 => 0.018012986732985
727 => 0.018110901672229
728 => 0.018086895190312
729 => 0.018348991665039
730 => 0.018349809901625
731 => 0.018192669972336
801 => 0.018277858077308
802 => 0.018230308414126
803 => 0.018316237082218
804 => 0.017985362787367
805 => 0.018388331962822
806 => 0.018616789518545
807 => 0.018619961651928
808 => 0.018728248720189
809 => 0.018838274653106
810 => 0.019049459850102
811 => 0.018832384812583
812 => 0.018441887951915
813 => 0.018470080563958
814 => 0.018241132397426
815 => 0.018244981057468
816 => 0.018224436608537
817 => 0.018286092046292
818 => 0.017998892688768
819 => 0.018066297803933
820 => 0.017971930247979
821 => 0.018110696535592
822 => 0.017961406949009
823 => 0.01808688361366
824 => 0.018141035182506
825 => 0.018340855637347
826 => 0.01793189330536
827 => 0.017097991426122
828 => 0.017273287711221
829 => 0.017014010736334
830 => 0.017038007807497
831 => 0.017086485710352
901 => 0.016929352966217
902 => 0.016959328941976
903 => 0.016958257989184
904 => 0.0169490290966
905 => 0.016908152801096
906 => 0.016848874085487
907 => 0.017085022243448
908 => 0.017125148417134
909 => 0.017214343930657
910 => 0.017479729277009
911 => 0.017453211022691
912 => 0.017496463395715
913 => 0.017402043708255
914 => 0.017042387665996
915 => 0.017061918719448
916 => 0.016818366169937
917 => 0.017208115744386
918 => 0.017115817900713
919 => 0.017056312880465
920 => 0.01704007638438
921 => 0.017306119569673
922 => 0.017385723860429
923 => 0.017336119808475
924 => 0.017234380450737
925 => 0.017429750094136
926 => 0.017482022768726
927 => 0.017493724692824
928 => 0.017839882242514
929 => 0.017513071054521
930 => 0.017591737755695
1001 => 0.018205472901852
1002 => 0.017648899813949
1003 => 0.017943728991672
1004 => 0.01792929863764
1005 => 0.018080123268488
1006 => 0.017916926615669
1007 => 0.01791894963377
1008 => 0.018052871688218
1009 => 0.017864802315716
1010 => 0.017818233694259
1011 => 0.017753899477247
1012 => 0.017894370886472
1013 => 0.017978577143328
1014 => 0.018657217730901
1015 => 0.019095650500244
1016 => 0.019076616977442
1017 => 0.019250547746585
1018 => 0.019172190342063
1019 => 0.018919153613223
1020 => 0.019351056454811
1021 => 0.01921438432415
1022 => 0.019225651408545
1023 => 0.019225232047101
1024 => 0.019316107065906
1025 => 0.01925171378651
1026 => 0.019124788022985
1027 => 0.01920904726819
1028 => 0.019459267103217
1029 => 0.020235957148824
1030 => 0.02067060318812
1031 => 0.020209790911501
1101 => 0.020527653049391
1102 => 0.020337049032517
1103 => 0.020302410612673
1104 => 0.020502051525095
1105 => 0.020702041882506
1106 => 0.020689303361321
1107 => 0.020544120631459
1108 => 0.020462110591236
1109 => 0.021083118091189
1110 => 0.021540665838567
1111 => 0.021509464149635
1112 => 0.021647178257249
1113 => 0.022051511136541
1114 => 0.022088478267758
1115 => 0.022083821258905
1116 => 0.02199219436706
1117 => 0.022390312595982
1118 => 0.022722429826772
1119 => 0.021970985388954
1120 => 0.022257125593745
1121 => 0.022385583150537
1122 => 0.022574196955548
1123 => 0.022892420059946
1124 => 0.023238094755832
1125 => 0.02328697694796
1126 => 0.023252292693417
1127 => 0.023024310939246
1128 => 0.023402552316241
1129 => 0.023624117244032
1130 => 0.023756054088109
1201 => 0.02409062397249
1202 => 0.022386376460676
1203 => 0.021180025365217
1204 => 0.02099163622174
1205 => 0.021374732953037
1206 => 0.021475752505941
1207 => 0.021435031650833
1208 => 0.02007717381625
1209 => 0.020984487381256
1210 => 0.02196068048811
1211 => 0.021998180041016
1212 => 0.022486882721542
1213 => 0.022646024346921
1214 => 0.02303949406047
1215 => 0.023014882422757
1216 => 0.023110686036535
1217 => 0.023088662444815
1218 => 0.02381748223434
1219 => 0.024621478692972
1220 => 0.024593638852162
1221 => 0.024478054848779
1222 => 0.024649716803804
1223 => 0.025479527310609
1224 => 0.025403131656585
1225 => 0.025477343527103
1226 => 0.026455736880697
1227 => 0.027727787415201
1228 => 0.027136792230139
1229 => 0.028419081727441
1230 => 0.029226214994748
1231 => 0.030622068521417
]
'min_raw' => 0.012502312246393
'max_raw' => 0.030622068521417
'avg_raw' => 0.021562190383905
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0125023'
'max' => '$0.030622'
'avg' => '$0.021562'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0055746964150569
'max_diff' => 0.012423177073832
'year' => 2028
]
3 => [
'items' => [
101 => 0.030447300785154
102 => 0.03099069631984
103 => 0.030134430062117
104 => 0.028168269654423
105 => 0.027857117243745
106 => 0.028480052249556
107 => 0.03001147717623
108 => 0.028431822228736
109 => 0.028751384367267
110 => 0.028659350449872
111 => 0.028654446353533
112 => 0.028841615764392
113 => 0.028570116771841
114 => 0.027463981034453
115 => 0.027970916524399
116 => 0.027775164386689
117 => 0.027992365977767
118 => 0.029164513384063
119 => 0.028646279075236
120 => 0.028100361328822
121 => 0.028785063331671
122 => 0.029656924270432
123 => 0.029602364779769
124 => 0.029496496563785
125 => 0.030093270154207
126 => 0.031078965287329
127 => 0.031345394720968
128 => 0.031542067481971
129 => 0.031569185332899
130 => 0.031848516051115
131 => 0.030346484378863
201 => 0.032730247217637
202 => 0.033141857209774
203 => 0.033064491590738
204 => 0.033521978773802
205 => 0.033387374439215
206 => 0.033192353877171
207 => 0.033917568372642
208 => 0.033086168475377
209 => 0.031906100991546
210 => 0.031258692630828
211 => 0.032111252185164
212 => 0.032631880554769
213 => 0.032975982788895
214 => 0.033080107917029
215 => 0.030463082821844
216 => 0.029052651442406
217 => 0.029956721785997
218 => 0.031059750000781
219 => 0.030340357001437
220 => 0.03036855584502
221 => 0.02934289048111
222 => 0.031150498626787
223 => 0.030887145324339
224 => 0.032253422723301
225 => 0.031927349656978
226 => 0.033041495837248
227 => 0.032748103808879
228 => 0.033965957715314
301 => 0.03445179261067
302 => 0.035267585014135
303 => 0.035867685226997
304 => 0.036220075550077
305 => 0.036198919356862
306 => 0.037595265377068
307 => 0.036771888913567
308 => 0.035737534020477
309 => 0.035718825803809
310 => 0.036254532859862
311 => 0.037377227885297
312 => 0.037668326370844
313 => 0.037831010711879
314 => 0.037581853980501
315 => 0.036688137841293
316 => 0.036302235743627
317 => 0.036631035511499
318 => 0.036228941649478
319 => 0.036923068462938
320 => 0.037876252835305
321 => 0.03767942403171
322 => 0.038337393211903
323 => 0.039018322093026
324 => 0.039992080975461
325 => 0.040246657605516
326 => 0.040667463094316
327 => 0.041100610169693
328 => 0.041239725336663
329 => 0.04150533935531
330 => 0.041503939438321
331 => 0.042304385161399
401 => 0.043187301581695
402 => 0.043520582090795
403 => 0.044286942244275
404 => 0.042974577337903
405 => 0.043970021194748
406 => 0.044867936471197
407 => 0.043797404861912
408 => 0.045272883283437
409 => 0.045330172767039
410 => 0.046195175952219
411 => 0.04531832950948
412 => 0.044797660890775
413 => 0.046300811683778
414 => 0.047028139003706
415 => 0.046809062095758
416 => 0.04514187600911
417 => 0.044171502197706
418 => 0.041631846762133
419 => 0.04464017833052
420 => 0.046105448883246
421 => 0.045138081312362
422 => 0.045625965246705
423 => 0.048287701795582
424 => 0.049301118738716
425 => 0.049090335098863
426 => 0.049125954064204
427 => 0.0496727754519
428 => 0.052097682624984
429 => 0.050644622037964
430 => 0.0517554324116
501 => 0.052344602228451
502 => 0.052891855989133
503 => 0.051547973714225
504 => 0.049799602620121
505 => 0.049245820102992
506 => 0.045041895672168
507 => 0.044823063148826
508 => 0.044700225822169
509 => 0.043925753853285
510 => 0.043317231031469
511 => 0.042833311090556
512 => 0.041563360654875
513 => 0.041991931647131
514 => 0.03996789571191
515 => 0.041262802175835
516 => 0.038032391951166
517 => 0.040722773578429
518 => 0.039258521175352
519 => 0.040241727283076
520 => 0.04023829696959
521 => 0.038427902799489
522 => 0.037383705224138
523 => 0.03804910855993
524 => 0.038762473755681
525 => 0.038878214858643
526 => 0.03980311145567
527 => 0.040061230215315
528 => 0.039279118323179
529 => 0.037965448879533
530 => 0.038270584329682
531 => 0.03737752166398
601 => 0.035812463693497
602 => 0.036936515651188
603 => 0.03732031641062
604 => 0.037489824690632
605 => 0.035950769924784
606 => 0.03546716550285
607 => 0.035209698566447
608 => 0.037766776235884
609 => 0.037906858722892
610 => 0.03719017691369
611 => 0.040429646649839
612 => 0.03969645487847
613 => 0.040515609723435
614 => 0.038242896485859
615 => 0.038329717192149
616 => 0.037253778323635
617 => 0.037856232195742
618 => 0.037430437216931
619 => 0.037807559876441
620 => 0.038033605643615
621 => 0.039109367961148
622 => 0.040735057056074
623 => 0.03894868494442
624 => 0.038170337034053
625 => 0.03865321970005
626 => 0.039939199873134
627 => 0.04188752566347
628 => 0.04073407758188
629 => 0.041245958253671
630 => 0.041357781408472
701 => 0.040507271496076
702 => 0.041918885177095
703 => 0.042675380416682
704 => 0.043451387997865
705 => 0.044125173637367
706 => 0.043141433505168
707 => 0.04419417646023
708 => 0.043345851472598
709 => 0.042584816260466
710 => 0.042585970436741
711 => 0.042108561931221
712 => 0.041183522794432
713 => 0.041012931384961
714 => 0.041900369440347
715 => 0.042612010720069
716 => 0.042670624904399
717 => 0.043064626082303
718 => 0.043297791920851
719 => 0.045583134112212
720 => 0.04650231764692
721 => 0.047626277873907
722 => 0.048064123725245
723 => 0.04938188276135
724 => 0.048317685316539
725 => 0.048087439505239
726 => 0.044890987119345
727 => 0.045414406018467
728 => 0.046252450178372
729 => 0.044904806158871
730 => 0.04575957610435
731 => 0.045928325798091
801 => 0.044859013730771
802 => 0.045430179508174
803 => 0.043913332542243
804 => 0.040768120174867
805 => 0.041922386697566
806 => 0.042772315380183
807 => 0.041559362354638
808 => 0.043733533705163
809 => 0.042463427686193
810 => 0.04206086505402
811 => 0.040490324701973
812 => 0.041231559292497
813 => 0.042234089689638
814 => 0.041614642460873
815 => 0.04290008847103
816 => 0.044720622837341
817 => 0.04601804404147
818 => 0.04611764393138
819 => 0.045283489017594
820 => 0.046620227590441
821 => 0.046629964271593
822 => 0.045122117700685
823 => 0.044198570071729
824 => 0.043988738107269
825 => 0.044512939494469
826 => 0.045149416751445
827 => 0.046152963989485
828 => 0.046759386567599
829 => 0.048340615029638
830 => 0.048768450114093
831 => 0.049238511160416
901 => 0.049866657679762
902 => 0.050620908629699
903 => 0.048970650490768
904 => 0.049036218323094
905 => 0.047499520793501
906 => 0.045857339098413
907 => 0.047103550304146
908 => 0.048732805679114
909 => 0.048359052695929
910 => 0.04831699785024
911 => 0.048387722435647
912 => 0.048105924891957
913 => 0.046831365045752
914 => 0.046191289070154
915 => 0.047017150379472
916 => 0.047456058910516
917 => 0.04813676776532
918 => 0.048052856030945
919 => 0.049806288938124
920 => 0.050487619944795
921 => 0.050313306317491
922 => 0.050345384220007
923 => 0.051578901462974
924 => 0.052950826329324
925 => 0.054235815008091
926 => 0.05554296068368
927 => 0.053967145552993
928 => 0.053167043812395
929 => 0.053992544576501
930 => 0.053554522251302
1001 => 0.056071528457756
1002 => 0.05624580050642
1003 => 0.058762624704676
1004 => 0.061151390566672
1005 => 0.059651049527938
1006 => 0.06106580355062
1007 => 0.062595975372738
1008 => 0.065547925079034
1009 => 0.064553812268796
1010 => 0.063792337435888
1011 => 0.063072747398209
1012 => 0.064570100034917
1013 => 0.066496420281249
1014 => 0.066911331212243
1015 => 0.067583645428628
1016 => 0.066876789236771
1017 => 0.067728119662208
1018 => 0.070733690157545
1019 => 0.0699215584788
1020 => 0.068768200938301
1021 => 0.071140810186311
1022 => 0.07199944824988
1023 => 0.078025819852259
1024 => 0.085634362937256
1025 => 0.08248437613968
1026 => 0.080529077684986
1027 => 0.080988619202138
1028 => 0.083767001571342
1029 => 0.084659329806882
1030 => 0.082233674058696
1031 => 0.083090456676206
1101 => 0.08781141313569
1102 => 0.090344054809787
1103 => 0.086904387237207
1104 => 0.077414480823653
1105 => 0.068664353710937
1106 => 0.070985281444588
1107 => 0.070722160266365
1108 => 0.075794239030769
1109 => 0.069902189406852
1110 => 0.070001396411515
1111 => 0.075178360393342
1112 => 0.073797235158623
1113 => 0.071559989159532
1114 => 0.068680688082615
1115 => 0.06335803373882
1116 => 0.058643610353323
1117 => 0.067889680279145
1118 => 0.067490972931057
1119 => 0.066913585605906
1120 => 0.068198498618195
1121 => 0.07443767147695
1122 => 0.074293838348324
1123 => 0.073378845368312
1124 => 0.074072859479273
1125 => 0.071438325130371
1126 => 0.072117304619315
1127 => 0.068662967646096
1128 => 0.070224472223846
1129 => 0.071555189034416
1130 => 0.071822350135737
1201 => 0.072424277738597
1202 => 0.067280872276016
1203 => 0.069590110326264
1204 => 0.07094657133444
1205 => 0.064818031151026
1206 => 0.070825429799773
1207 => 0.067191337029957
1208 => 0.06595787136164
1209 => 0.067618570387284
1210 => 0.066971394361908
1211 => 0.06641499041874
1212 => 0.06610450745822
1213 => 0.06732394153799
1214 => 0.06726705348063
1215 => 0.06527182264417
1216 => 0.062669125354021
1217 => 0.063542675995221
1218 => 0.063225306857692
1219 => 0.062075120161854
1220 => 0.062850207120778
1221 => 0.05943711641621
1222 => 0.05356507125602
1223 => 0.057444324154449
1224 => 0.057294977137675
1225 => 0.057219669599469
1226 => 0.060134820937964
1227 => 0.059854596400752
1228 => 0.059345986121746
1229 => 0.062065779135223
1230 => 0.061073018098925
1231 => 0.064132473688877
]
'min_raw' => 0.027463981034453
'max_raw' => 0.090344054809787
'avg_raw' => 0.05890401792212
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.027463'
'max' => '$0.090344'
'avg' => '$0.058904'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.014961668788059
'max_diff' => 0.05972198628837
'year' => 2029
]
4 => [
'items' => [
101 => 0.0661476290136
102 => 0.065636520439805
103 => 0.067531783762798
104 => 0.06356280083767
105 => 0.064881137757441
106 => 0.06515284516947
107 => 0.062032217311619
108 => 0.059900444600635
109 => 0.059758279664801
110 => 0.05606207956033
111 => 0.058036559821453
112 => 0.059774020741697
113 => 0.058941911793314
114 => 0.058678490958804
115 => 0.060024250873309
116 => 0.06012882794432
117 => 0.057744459642683
118 => 0.058240245315717
119 => 0.060307753989781
120 => 0.058188149401812
121 => 0.054070103922832
122 => 0.053048771707611
123 => 0.052912507163213
124 => 0.050142573192657
125 => 0.053117022009922
126 => 0.051818595390913
127 => 0.055920309522823
128 => 0.05357743240861
129 => 0.053476435658866
130 => 0.053323764258625
131 => 0.050939567665635
201 => 0.051461555195902
202 => 0.053196721247454
203 => 0.053815848042693
204 => 0.053751268045593
205 => 0.053188217987185
206 => 0.053445979420642
207 => 0.052615640033442
208 => 0.052322429913802
209 => 0.051396978122421
210 => 0.050036819651673
211 => 0.050225958029367
212 => 0.047531128193992
213 => 0.046062841874235
214 => 0.045656439572629
215 => 0.0451129814302
216 => 0.045717824615904
217 => 0.047523494079656
218 => 0.045345473612224
219 => 0.041611410291184
220 => 0.041835833859313
221 => 0.042340046984943
222 => 0.041400449161035
223 => 0.040511198675174
224 => 0.041284329825457
225 => 0.039702157971046
226 => 0.042531244894633
227 => 0.042454726021774
228 => 0.043509234677326
301 => 0.044168640580338
302 => 0.042648923459091
303 => 0.042266718712849
304 => 0.042484439906546
305 => 0.038885993554696
306 => 0.043215164839837
307 => 0.043252603692884
308 => 0.042932029503311
309 => 0.045237179564481
310 => 0.050101765187883
311 => 0.048271512398856
312 => 0.047562783199261
313 => 0.046215488472754
314 => 0.04801067870138
315 => 0.047872836101152
316 => 0.047249459587665
317 => 0.046872439527255
318 => 0.047567110548626
319 => 0.046786362100124
320 => 0.04664611822524
321 => 0.045796392930285
322 => 0.045493079660024
323 => 0.045268518589972
324 => 0.04502129891676
325 => 0.045566603912562
326 => 0.044330871051227
327 => 0.042840698360844
328 => 0.04271680662553
329 => 0.043058882599403
330 => 0.042907539445526
331 => 0.042716082052735
401 => 0.04235053774958
402 => 0.042242088563453
403 => 0.042594495806303
404 => 0.042196648575744
405 => 0.042783693836294
406 => 0.04262405000812
407 => 0.041732292561326
408 => 0.040620832611729
409 => 0.040610938286811
410 => 0.04037147606383
411 => 0.040066484919477
412 => 0.039981643360371
413 => 0.041219218876419
414 => 0.04378096315712
415 => 0.043278031457473
416 => 0.043641451152982
417 => 0.045429116365191
418 => 0.045997361379184
419 => 0.045594034527873
420 => 0.045041935857681
421 => 0.045066225397221
422 => 0.0469529136849
423 => 0.047070584119143
424 => 0.047367899344556
425 => 0.047750033430484
426 => 0.045659113615101
427 => 0.04496774326195
428 => 0.04464013363286
429 => 0.043631222776146
430 => 0.044719246637632
501 => 0.044085301727371
502 => 0.044170842554408
503 => 0.044115133978582
504 => 0.04414555462798
505 => 0.042530454107181
506 => 0.043118911849776
507 => 0.042140486719455
508 => 0.040830485303331
509 => 0.040826093719239
510 => 0.041146714709957
511 => 0.040955996798777
512 => 0.040442779803598
513 => 0.040515679855447
514 => 0.039876998692207
515 => 0.04059322731236
516 => 0.040613766186397
517 => 0.040337979154402
518 => 0.04144142816425
519 => 0.041893512123914
520 => 0.041711983191524
521 => 0.041880775570099
522 => 0.043298930540194
523 => 0.043530151678759
524 => 0.043632844834898
525 => 0.043495249609907
526 => 0.041906696839608
527 => 0.041977155910019
528 => 0.041460174001673
529 => 0.041023378767331
530 => 0.041040848286016
531 => 0.041265417815873
601 => 0.042246126123588
602 => 0.044309968941263
603 => 0.044388290267544
604 => 0.044483217999791
605 => 0.044097099205886
606 => 0.043980642082985
607 => 0.044134279088225
608 => 0.044909349938844
609 => 0.046903042596317
610 => 0.046198338456911
611 => 0.0456254030222
612 => 0.046128021860725
613 => 0.046050647630191
614 => 0.045397531257808
615 => 0.045379200456506
616 => 0.044125661323968
617 => 0.043662256448373
618 => 0.043275000649073
619 => 0.042852127425805
620 => 0.042601434004213
621 => 0.042986613037901
622 => 0.043074708040209
623 => 0.042232507351274
624 => 0.042117718509411
625 => 0.04280547777216
626 => 0.042502820562874
627 => 0.042814111008162
628 => 0.042886333061669
629 => 0.042874703647639
630 => 0.042558694761186
701 => 0.042760109401891
702 => 0.042283703732029
703 => 0.041765684119872
704 => 0.041435219881079
705 => 0.041146846003011
706 => 0.041306852590951
707 => 0.040736458320993
708 => 0.040553977714265
709 => 0.042691874653593
710 => 0.044271162108939
711 => 0.044248198643872
712 => 0.044108414455999
713 => 0.043900723507007
714 => 0.044894156052298
715 => 0.044548064017829
716 => 0.044799874889862
717 => 0.044863971325264
718 => 0.045057971930612
719 => 0.045127310472109
720 => 0.044917721240993
721 => 0.044214314182197
722 => 0.042461490669613
723 => 0.041645546592849
724 => 0.041376271456893
725 => 0.041386059096659
726 => 0.041116072297973
727 => 0.041195595510146
728 => 0.0410884173701
729 => 0.04088544790203
730 => 0.041294319798251
731 => 0.041341438475385
801 => 0.041246002889152
802 => 0.041268481424528
803 => 0.040478315531589
804 => 0.040538390128279
805 => 0.040203887139997
806 => 0.040141171862188
807 => 0.039295577436321
808 => 0.037797484340025
809 => 0.038627573338788
810 => 0.037624942556458
811 => 0.037245231086854
812 => 0.03904272612671
813 => 0.03886230747946
814 => 0.038553509181469
815 => 0.038096732139536
816 => 0.037927309091442
817 => 0.03689794828404
818 => 0.036837128156112
819 => 0.03734730716734
820 => 0.037111877107847
821 => 0.036781244139981
822 => 0.035583725046099
823 => 0.034237317099629
824 => 0.034277956692315
825 => 0.034706224009276
826 => 0.035951468993059
827 => 0.035464930234938
828 => 0.035111940783532
829 => 0.035045836470108
830 => 0.035873270351367
831 => 0.037044262646107
901 => 0.037593666031323
902 => 0.037049223962203
903 => 0.03642379822804
904 => 0.036461864994535
905 => 0.036715106137812
906 => 0.036741718201334
907 => 0.036334630343198
908 => 0.036449223190732
909 => 0.036275146176738
910 => 0.035206835863176
911 => 0.035187513517253
912 => 0.034925332937474
913 => 0.034917394213715
914 => 0.034471359643501
915 => 0.034408956323836
916 => 0.033523327612312
917 => 0.034106251112168
918 => 0.033715256633322
919 => 0.033125935727427
920 => 0.033024336581122
921 => 0.0330212823881
922 => 0.03362638318871
923 => 0.034099180157006
924 => 0.03372205814968
925 => 0.033636194778815
926 => 0.034552990942757
927 => 0.034436320274113
928 => 0.034335284227513
929 => 0.036939413129669
930 => 0.0348780419009
1001 => 0.0339791663862
1002 => 0.032866637244929
1003 => 0.033228882343186
1004 => 0.033305212707876
1005 => 0.030629780671569
1006 => 0.029544358227643
1007 => 0.02917188214817
1008 => 0.028957516898394
1009 => 0.029055205834546
1010 => 0.028078198327659
1011 => 0.0287347635305
1012 => 0.027888757613924
1013 => 0.027746921968869
1014 => 0.029259685347729
1015 => 0.029470177534462
1016 => 0.028572152471063
1017 => 0.029148829938817
1018 => 0.028939718672593
1019 => 0.027903259957179
1020 => 0.027863674857925
1021 => 0.027343616307816
1022 => 0.026529825380074
1023 => 0.026157901089171
1024 => 0.025964199689273
1025 => 0.026044124662036
1026 => 0.026003712150063
1027 => 0.02573999317336
1028 => 0.026018828213109
1029 => 0.025306519909144
1030 => 0.025022873003047
1031 => 0.024894756276122
1101 => 0.024262541657417
1102 => 0.025268676262893
1103 => 0.025466897455122
1104 => 0.025665509204333
1105 => 0.027394288883214
1106 => 0.027307923935938
1107 => 0.02808862099788
1108 => 0.028058284545663
1109 => 0.027835617097143
1110 => 0.026896219758855
1111 => 0.027270646794749
1112 => 0.026118218577149
1113 => 0.026981696155277
1114 => 0.026587641048305
1115 => 0.026848465727226
1116 => 0.026379479436913
1117 => 0.026639035813941
1118 => 0.025513903053321
1119 => 0.024463269912499
1120 => 0.024886075358259
1121 => 0.025345713231468
1122 => 0.026342325254137
1123 => 0.025748751355306
1124 => 0.02596222297484
1125 => 0.025247128784119
1126 => 0.023771685212106
1127 => 0.02378003606249
1128 => 0.023553071213222
1129 => 0.023356940446043
1130 => 0.025816930457928
1201 => 0.025510991813263
1202 => 0.025023518623249
1203 => 0.025676020859497
1204 => 0.025848552807364
1205 => 0.025853464549368
1206 => 0.026329513337414
1207 => 0.026583580660931
1208 => 0.026628361127892
1209 => 0.027377434181597
1210 => 0.027628513588687
1211 => 0.028662674132402
1212 => 0.0265620248236
1213 => 0.026518763333456
1214 => 0.025685202904076
1215 => 0.025156545701694
1216 => 0.025721400515009
1217 => 0.026221784769235
1218 => 0.02570075123767
1219 => 0.025768787217274
1220 => 0.025069342271153
1221 => 0.025319360927448
1222 => 0.025534710675399
1223 => 0.025415807202253
1224 => 0.025237802947961
1225 => 0.026180758966695
1226 => 0.026127553692644
1227 => 0.027005656015754
1228 => 0.027690199570318
1229 => 0.028917023996894
1230 => 0.027636768751958
1231 => 0.027590111162279
]
'min_raw' => 0.023356940446043
'max_raw' => 0.067531783762798
'avg_raw' => 0.04544436210442
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.023356'
'max' => '$0.067531'
'avg' => '$0.045444'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00410704058841
'max_diff' => -0.022812271046989
'year' => 2030
]
5 => [
'items' => [
101 => 0.028046196585506
102 => 0.027628443764385
103 => 0.027892449126996
104 => 0.02887448865147
105 => 0.028895237599145
106 => 0.028547665992087
107 => 0.028526516228211
108 => 0.028593271157363
109 => 0.028984256862459
110 => 0.028847634443321
111 => 0.029005737365604
112 => 0.029203447490876
113 => 0.030021260396359
114 => 0.030218432319179
115 => 0.029739406768649
116 => 0.02978265741244
117 => 0.029603488706996
118 => 0.029430413982515
119 => 0.029819460687615
120 => 0.030530451187918
121 => 0.030526028152916
122 => 0.030690964129305
123 => 0.030793717876193
124 => 0.030352623574212
125 => 0.03006548740311
126 => 0.03017559368206
127 => 0.030351656019903
128 => 0.030118499038806
129 => 0.028679346142651
130 => 0.029115893197902
131 => 0.029043230421848
201 => 0.028939749792651
202 => 0.029378701232424
203 => 0.029336363295229
204 => 0.028068177703532
205 => 0.028149362830494
206 => 0.028073114839996
207 => 0.028319487696167
208 => 0.027615138821625
209 => 0.027831791791572
210 => 0.027967674503327
211 => 0.028047710464451
212 => 0.028336855237204
213 => 0.028302927435418
214 => 0.028334746237408
215 => 0.02876347160401
216 => 0.030931817387504
217 => 0.031049835664314
218 => 0.030468670506143
219 => 0.030700834523857
220 => 0.030255130378537
221 => 0.030554334557248
222 => 0.03075904245736
223 => 0.029834006819818
224 => 0.029779232212795
225 => 0.029331688487921
226 => 0.029572173135496
227 => 0.029189544769746
228 => 0.029283428386929
301 => 0.029020921608659
302 => 0.029493381544967
303 => 0.030021665166611
304 => 0.03015513047199
305 => 0.029804040713963
306 => 0.029549828591209
307 => 0.029103515846332
308 => 0.029845743887791
309 => 0.030062793986103
310 => 0.029844603816026
311 => 0.029794044386069
312 => 0.029698234357661
313 => 0.029814370936519
314 => 0.030061611884654
315 => 0.029945017619337
316 => 0.030022030185706
317 => 0.029728537697723
318 => 0.03035276959478
319 => 0.031344200076894
320 => 0.031347387688009
321 => 0.031230792794206
322 => 0.031183084675733
323 => 0.031302718112345
324 => 0.031367614344087
325 => 0.03175448694107
326 => 0.032169616651318
327 => 0.034106845873759
328 => 0.033562879660045
329 => 0.035281704672478
330 => 0.036641072095817
331 => 0.037048686948143
401 => 0.036673700463764
402 => 0.035390891957074
403 => 0.035327951251774
404 => 0.037245008748551
405 => 0.036703352198916
406 => 0.036638923875873
407 => 0.035953515372074
408 => 0.036358676687314
409 => 0.036270061964313
410 => 0.036130179288875
411 => 0.036903198854572
412 => 0.038350222473624
413 => 0.038124690272493
414 => 0.037956340946487
415 => 0.037218683205679
416 => 0.037662917927466
417 => 0.037504734451793
418 => 0.038184391048999
419 => 0.037781777537051
420 => 0.036699248617818
421 => 0.036871644916268
422 => 0.036845587562571
423 => 0.037381846055221
424 => 0.037220874566481
425 => 0.036814155295894
426 => 0.038345276704206
427 => 0.038245854196495
428 => 0.038386812581279
429 => 0.038448866821544
430 => 0.039380833441398
501 => 0.039762630345947
502 => 0.039849304927575
503 => 0.040211982457664
504 => 0.039840281180235
505 => 0.04132735130847
506 => 0.042316166170799
507 => 0.043464725517342
508 => 0.045143079426289
509 => 0.045774156021695
510 => 0.045660157683283
511 => 0.046932666462258
512 => 0.049219336451796
513 => 0.046122359066565
514 => 0.049383483773262
515 => 0.048351049342617
516 => 0.04590316588026
517 => 0.045745551043935
518 => 0.047403286145154
519 => 0.051079983048568
520 => 0.050159012175014
521 => 0.051081489426988
522 => 0.050005370712296
523 => 0.049951932347871
524 => 0.051029224742958
525 => 0.05354637714423
526 => 0.052350572392432
527 => 0.050636093057376
528 => 0.051902037918129
529 => 0.050805359322079
530 => 0.048334235504167
531 => 0.050158307925944
601 => 0.048938602644093
602 => 0.049294577488436
603 => 0.051858216573418
604 => 0.051549752736165
605 => 0.051948933504553
606 => 0.051244389896729
607 => 0.050586235070692
608 => 0.049357740212675
609 => 0.048994043449281
610 => 0.049094556150244
611 => 0.048993993640178
612 => 0.048306662057568
613 => 0.048158232867745
614 => 0.047910844381874
615 => 0.047987520418114
616 => 0.047522357688623
617 => 0.048400215866697
618 => 0.048563154080207
619 => 0.049201986054913
620 => 0.04926831170977
621 => 0.051047449666121
622 => 0.050067530376962
623 => 0.050724944838291
624 => 0.050666139501044
625 => 0.045956218937522
626 => 0.046605204435194
627 => 0.047614822206704
628 => 0.047159990769143
629 => 0.046516965530598
630 => 0.04599768817364
701 => 0.045210929879014
702 => 0.046318277070346
703 => 0.047774320873702
704 => 0.049305239383462
705 => 0.051144537663183
706 => 0.050734027698941
707 => 0.049270854981511
708 => 0.049336491840767
709 => 0.049742233077533
710 => 0.049216761310442
711 => 0.0490617894279
712 => 0.049720942320627
713 => 0.049725481544335
714 => 0.049120862770913
715 => 0.048448939648322
716 => 0.048446124265904
717 => 0.048326562036247
718 => 0.050026640567343
719 => 0.05096151186212
720 => 0.051068693349445
721 => 0.050954297694045
722 => 0.050998324041608
723 => 0.05045434303366
724 => 0.051697722305271
725 => 0.052838770082365
726 => 0.052532944903174
727 => 0.052074469483955
728 => 0.051709271729378
729 => 0.052446915918347
730 => 0.052414069783772
731 => 0.052828804025461
801 => 0.052809989284637
802 => 0.0526705297581
803 => 0.052532949883713
804 => 0.053078438534337
805 => 0.052921346563237
806 => 0.052764010584916
807 => 0.052448449193459
808 => 0.052491339227478
809 => 0.052032942970504
810 => 0.051820867887242
811 => 0.048631767474261
812 => 0.04777953563705
813 => 0.048047665121816
814 => 0.048135940310179
815 => 0.04776504792246
816 => 0.048296812332012
817 => 0.048213937412061
818 => 0.048536355245383
819 => 0.048334922580879
820 => 0.048343189447693
821 => 0.048935559964028
822 => 0.049107527645045
823 => 0.04902006349453
824 => 0.049081320387455
825 => 0.050492959629985
826 => 0.050292269671379
827 => 0.050185657130769
828 => 0.050215189533121
829 => 0.050575893625474
830 => 0.050676871077619
831 => 0.050249022517319
901 => 0.05045079837172
902 => 0.051309934350589
903 => 0.051610583320309
904 => 0.05257011051196
905 => 0.052162486306711
906 => 0.052910698177009
907 => 0.055210446382081
908 => 0.057047644378763
909 => 0.055358081175596
910 => 0.05873186133075
911 => 0.061358833121557
912 => 0.061258005568775
913 => 0.060799932274096
914 => 0.05780919473192
915 => 0.055057073456226
916 => 0.057359339764586
917 => 0.057365208714872
918 => 0.057167441997205
919 => 0.055939129898817
920 => 0.057124699398702
921 => 0.057218805600246
922 => 0.05716613115224
923 => 0.056224387146336
924 => 0.054786518112707
925 => 0.055067474280106
926 => 0.055527686213656
927 => 0.054656409013179
928 => 0.054377983155079
929 => 0.054895629797974
930 => 0.05656359513734
1001 => 0.056248275951798
1002 => 0.056240041693559
1003 => 0.057589110885451
1004 => 0.056623468491409
1005 => 0.055071018037123
1006 => 0.05467900382311
1007 => 0.053287617455781
1008 => 0.054248652975643
1009 => 0.054283238933105
1010 => 0.053756889600421
1011 => 0.055113728384594
1012 => 0.055101224876331
1013 => 0.056389341363102
1014 => 0.058851736291349
1015 => 0.058123484943971
1016 => 0.057276607860491
1017 => 0.05736868688082
1018 => 0.058378566463438
1019 => 0.057767970214479
1020 => 0.057987544882833
1021 => 0.058378234110879
1022 => 0.058613946622428
1023 => 0.057334771477818
1024 => 0.057036534561589
1025 => 0.056426446497919
1026 => 0.056267285909941
1027 => 0.056764189907895
1028 => 0.056633273260311
1029 => 0.054280332117304
1030 => 0.054034436676218
1031 => 0.054041977938339
1101 => 0.053423662160039
1102 => 0.052480582185341
1103 => 0.054958940050467
1104 => 0.054759893229301
1105 => 0.054540160943735
1106 => 0.054567076894941
1107 => 0.055642848044851
1108 => 0.055018846450158
1109 => 0.056677856961499
1110 => 0.056336814274788
1111 => 0.055987025130035
1112 => 0.055938673615392
1113 => 0.05580403463727
1114 => 0.05534230748433
1115 => 0.054784744201656
1116 => 0.05441659262713
1117 => 0.050196430248324
1118 => 0.050979667838276
1119 => 0.051880711291162
1120 => 0.052191747880393
1121 => 0.051659698271436
1122 => 0.055363316045773
1123 => 0.056040002702093
1124 => 0.053990274680921
1125 => 0.053606854258003
1126 => 0.055388453024867
1127 => 0.054313931176856
1128 => 0.054797788299221
1129 => 0.053751953856364
1130 => 0.055877008702284
1201 => 0.055860819344798
1202 => 0.055034125013195
1203 => 0.055732841401308
1204 => 0.055611422234307
1205 => 0.054678086369985
1206 => 0.055906597113944
1207 => 0.055907206439945
1208 => 0.055111531119662
1209 => 0.054182356541296
1210 => 0.054016242072808
1211 => 0.053891097135141
1212 => 0.054767010316079
1213 => 0.0555523513352
1214 => 0.057013676269233
1215 => 0.057381088077873
1216 => 0.058815120826983
1217 => 0.057961224146675
1218 => 0.058339745485243
1219 => 0.05875068394337
1220 => 0.058947702951958
1221 => 0.058626671050087
1222 => 0.060854314180884
1223 => 0.061042395514345
1224 => 0.061105457558558
1225 => 0.060354308828546
1226 => 0.061021504709346
1227 => 0.060709345851924
1228 => 0.061521496478706
1229 => 0.061648852067045
1230 => 0.061540986414529
1231 => 0.061581411088439
]
'min_raw' => 0.027615138821625
'max_raw' => 0.061648852067045
'avg_raw' => 0.044631995444335
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.027615'
'max' => '$0.061648'
'avg' => '$0.044631'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0042581983755823
'max_diff' => -0.0058829316957523
'year' => 2031
]
6 => [
'items' => [
101 => 0.05968051065948
102 => 0.05958193894419
103 => 0.05823790661188
104 => 0.058785609721882
105 => 0.057761705009826
106 => 0.058086395741406
107 => 0.05822951632212
108 => 0.058154758252777
109 => 0.058816576033954
110 => 0.058253895719513
111 => 0.056768889856495
112 => 0.055283479404622
113 => 0.055264831286388
114 => 0.054873748934082
115 => 0.054591068023671
116 => 0.05464552239566
117 => 0.054837426705146
118 => 0.054579914196341
119 => 0.05463486754631
120 => 0.055547459308054
121 => 0.055730473077565
122 => 0.055108520780671
123 => 0.052611292561351
124 => 0.051998466492507
125 => 0.052438953717923
126 => 0.052228429195185
127 => 0.042152418622282
128 => 0.044519627846808
129 => 0.043113112508424
130 => 0.043761299487011
131 => 0.042325611541902
201 => 0.04301079708016
202 => 0.042884268330213
203 => 0.046690670712438
204 => 0.046631238974775
205 => 0.046659685802536
206 => 0.045301844595651
207 => 0.047464922507626
208 => 0.04853053246883
209 => 0.048333316425302
210 => 0.048382951454605
211 => 0.047530057202457
212 => 0.046667943683232
213 => 0.045711727112092
214 => 0.04748825930933
215 => 0.047290739255413
216 => 0.047743779193626
217 => 0.048895987312679
218 => 0.049065654335023
219 => 0.049293688533646
220 => 0.049211954506019
221 => 0.051159190641369
222 => 0.0509233674971
223 => 0.051491633423839
224 => 0.050322667298098
225 => 0.04899987116754
226 => 0.049251291466496
227 => 0.049227077669912
228 => 0.048918808248099
229 => 0.048640516397743
301 => 0.048177238875142
302 => 0.049643117508822
303 => 0.049583605513303
304 => 0.050547035545623
305 => 0.05037673992915
306 => 0.04923946412394
307 => 0.049280082151812
308 => 0.049553257909606
309 => 0.0504987223264
310 => 0.05077940053743
311 => 0.050649379206988
312 => 0.050957130051936
313 => 0.05120036377177
314 => 0.050987676462255
315 => 0.053998880247146
316 => 0.052748418495264
317 => 0.053357884852474
318 => 0.053503238987485
319 => 0.053130917427124
320 => 0.05321166064173
321 => 0.053333964610651
322 => 0.054076570360362
323 => 0.056025382722311
324 => 0.056888498451403
325 => 0.059485224707758
326 => 0.056816828705253
327 => 0.056658497129385
328 => 0.057126245941775
329 => 0.058650799145645
330 => 0.059886306323381
331 => 0.060296195332355
401 => 0.060350368931421
402 => 0.061119347961162
403 => 0.0615601124004
404 => 0.061025973680795
405 => 0.060573347042585
406 => 0.058952094606604
407 => 0.059139758990592
408 => 0.060432580498459
409 => 0.062258767025128
410 => 0.063825825047334
411 => 0.063277095945443
412 => 0.067463511650494
413 => 0.067878577667676
414 => 0.067821228964792
415 => 0.068766811122036
416 => 0.066890023104365
417 => 0.066087659865755
418 => 0.060671210059297
419 => 0.062193011520795
420 => 0.064405039317349
421 => 0.064112269143796
422 => 0.062505835430266
423 => 0.06382460642331
424 => 0.063388579491228
425 => 0.063044666959121
426 => 0.064620196939428
427 => 0.062887837006876
428 => 0.064387757701835
429 => 0.062464093895857
430 => 0.063279602493759
501 => 0.062816680371877
502 => 0.063116247718336
503 => 0.061364983132103
504 => 0.06230992299329
505 => 0.061325670527204
506 => 0.061325203863382
507 => 0.061303476435641
508 => 0.062461445097147
509 => 0.062499206413626
510 => 0.06164346582318
511 => 0.061520140234916
512 => 0.061976139572284
513 => 0.061442283774641
514 => 0.06169207154231
515 => 0.061449849591661
516 => 0.061395320328595
517 => 0.060960821883097
518 => 0.060773628005992
519 => 0.060847031548597
520 => 0.060596467415567
521 => 0.060445493462116
522 => 0.06127344391634
523 => 0.060831103388074
524 => 0.061205648886327
525 => 0.060778807019658
526 => 0.059299187143634
527 => 0.058448242106236
528 => 0.055653377321261
529 => 0.056445997507261
530 => 0.056971505510604
531 => 0.056797825118634
601 => 0.057170957805975
602 => 0.057193865122519
603 => 0.057072555882227
604 => 0.056932095322645
605 => 0.056863726890197
606 => 0.057373289172461
607 => 0.057669107228393
608 => 0.057024247269129
609 => 0.056873165603223
610 => 0.057525154625733
611 => 0.057922867552823
612 => 0.06085935635086
613 => 0.060641811775968
614 => 0.061187805967981
615 => 0.061126335400924
616 => 0.06169862429785
617 => 0.062634074776991
618 => 0.060732042396831
619 => 0.061062169450695
620 => 0.060981229920835
621 => 0.061864906484368
622 => 0.061867665226143
623 => 0.061337856983387
624 => 0.061625074626942
625 => 0.061464757617713
626 => 0.061754472121533
627 => 0.06063890633554
628 => 0.061997545044994
629 => 0.062767805644511
630 => 0.062778500713682
701 => 0.063143598124687
702 => 0.063514558239283
703 => 0.064226583875435
704 => 0.063494700230744
705 => 0.062178112801381
706 => 0.062273166161229
707 => 0.061501251433115
708 => 0.061514227459152
709 => 0.061444960415215
710 => 0.06165283602825
711 => 0.060684523342741
712 => 0.060911784394594
713 => 0.060593617591161
714 => 0.061061477818201
715 => 0.060558137553972
716 => 0.060981190889343
717 => 0.061163766684448
718 => 0.061837475298965
719 => 0.060458630243832
720 => 0.057647071836812
721 => 0.058238095500819
722 => 0.057363925077846
723 => 0.057444832878694
724 => 0.057608279512787
725 => 0.05707849549528
726 => 0.057179561590408
727 => 0.057175950798298
728 => 0.05714483494261
729 => 0.057007017658427
730 => 0.056807155330043
731 => 0.057603345331944
801 => 0.057738633528048
802 => 0.058039362429324
803 => 0.058934127653161
804 => 0.058844719507282
805 => 0.058990547902718
806 => 0.058672205334273
807 => 0.057459599877416
808 => 0.057525450187744
809 => 0.056704295762771
810 => 0.058018363664471
811 => 0.0577071750405
812 => 0.057506549710223
813 => 0.057451807230077
814 => 0.058348790403836
815 => 0.058617181827914
816 => 0.058449938303507
817 => 0.058106916955676
818 => 0.058765619348669
819 => 0.058941860320611
820 => 0.058981314174712
821 => 0.06014840852144
822 => 0.059046541783893
823 => 0.059311772059234
824 => 0.061381022954123
825 => 0.059504497929564
826 => 0.060498535086574
827 => 0.060449882140458
828 => 0.060958397913602
829 => 0.060408169004597
830 => 0.060414989751368
831 => 0.060866517308077
901 => 0.060232428288103
902 => 0.060075418929544
903 => 0.059858511625216
904 => 0.06033212078882
905 => 0.060616028062901
906 => 0.062904112185077
907 => 0.064382318877315
908 => 0.064318146026312
909 => 0.064904565757934
910 => 0.064640378297849
911 => 0.063787247300104
912 => 0.065243437885014
913 => 0.064782638254346
914 => 0.064820626016027
915 => 0.06481921210964
916 => 0.065125603580231
917 => 0.064908497142951
918 => 0.064480558069555
919 => 0.064764643997556
920 => 0.065608277641141
921 => 0.068226942356672
922 => 0.069692381824176
923 => 0.068138721060668
924 => 0.069210415450989
925 => 0.068567780700552
926 => 0.06845099484967
927 => 0.069124098124385
928 => 0.069798379577278
929 => 0.069755430763728
930 => 0.069265937053663
1001 => 0.068989434477291
1002 => 0.071083204620742
1003 => 0.072625858795993
1004 => 0.072520660123325
1005 => 0.072984972852038
1006 => 0.074348209384189
1007 => 0.074472846648053
1008 => 0.074457145217561
1009 => 0.074148218754522
1010 => 0.075490502159058
1011 => 0.076610258590352
1012 => 0.074076711204072
1013 => 0.075041452882197
1014 => 0.075474556503543
1015 => 0.076110481115733
1016 => 0.077183392529837
1017 => 0.078348858901252
1018 => 0.078513668624859
1019 => 0.078396728239088
1020 => 0.077628071837723
1021 => 0.07890333904823
1022 => 0.07965036067145
1023 => 0.080095194952791
1024 => 0.081223220676906
1025 => 0.075477231204062
1026 => 0.071409934260976
1027 => 0.070774767110834
1028 => 0.072066404487363
1029 => 0.072406998962939
1030 => 0.072269705756904
1031 => 0.067691593265001
1101 => 0.070750664296026
1102 => 0.074041967511411
1103 => 0.074168399872168
1104 => 0.075816095079695
1105 => 0.076352652180574
1106 => 0.077679262790981
1107 => 0.077596282936103
1108 => 0.077919291508751
1109 => 0.077845037431628
1110 => 0.080302304236585
1111 => 0.083013034430104
1112 => 0.082919170463097
1113 => 0.082529470925874
1114 => 0.083108241192295
1115 => 0.085906005251508
1116 => 0.085648431970191
1117 => 0.085898642472951
1118 => 0.089197363973836
1119 => 0.093486171162648
1120 => 0.091493589634243
1121 => 0.095816918200993
1122 => 0.098538224363962
1123 => 0.10324444198451
1124 => 0.1026552003598
1125 => 0.10448729634366
1126 => 0.10160033487315
1127 => 0.094971287785671
1128 => 0.093922215709105
1129 => 0.096022484573127
1130 => 0.10118579063409
1201 => 0.095859873690621
1202 => 0.096937299751795
1203 => 0.096627000973694
1204 => 0.096610466470494
1205 => 0.097241521206956
1206 => 0.096326143398116
1207 => 0.092596729531581
1208 => 0.09430589792904
1209 => 0.093645905929773
1210 => 0.094378216258623
1211 => 0.09833019307567
1212 => 0.096582929921493
1213 => 0.0947423301247
1214 => 0.097050850731671
1215 => 0.099990390758092
1216 => 0.0998064396261
1217 => 0.099449497544427
1218 => 0.10146156136994
1219 => 0.10478490133029
1220 => 0.10568318676732
1221 => 0.10634628271229
1222 => 0.10643771244
1223 => 0.10737949545872
1224 => 0.10231529080722
1225 => 0.11035231364715
1226 => 0.11174008547333
1227 => 0.11147924188726
1228 => 0.11302169186569
1229 => 0.11256786395386
1230 => 0.11191033851303
1231 => 0.11435544981736
]
'min_raw' => 0.042152418622282
'max_raw' => 0.11435544981736
'avg_raw' => 0.078253934219823
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.042152'
'max' => '$0.114355'
'avg' => '$0.078253'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.014537279800657
'max_diff' => 0.052706597750319
'year' => 2032
]
7 => [
'items' => [
101 => 0.11155232701725
102 => 0.10757364710583
103 => 0.10539086461706
104 => 0.10826532867831
105 => 0.11002066357555
106 => 0.11118082828235
107 => 0.11153189342164
108 => 0.10270841059837
109 => 0.097953042729419
110 => 0.10100117901301
111 => 0.10472011565013
112 => 0.10229463192642
113 => 0.10238970629635
114 => 0.098931603912253
115 => 0.10502608097857
116 => 0.10413816693263
117 => 0.10874466657367
118 => 0.10764528846487
119 => 0.11140171009885
120 => 0.11041251839123
121 => 0.11451859786462
122 => 0.11615662413422
123 => 0.11890712517931
124 => 0.12093040494463
125 => 0.12211851352201
126 => 0.1220471839395
127 => 0.12675506203639
128 => 0.12397899080339
129 => 0.12049159106498
130 => 0.12042851500632
131 => 0.12223468874768
201 => 0.12601993340999
202 => 0.12700139227786
203 => 0.12754989389192
204 => 0.12670984457651
205 => 0.12369661821591
206 => 0.1223955223508
207 => 0.12350409372425
208 => 0.12214840619515
209 => 0.12448870320911
210 => 0.12770243086976
211 => 0.12703880881629
212 => 0.12925719784525
213 => 0.13155299710889
214 => 0.13483609316669
215 => 0.1356944160489
216 => 0.13711319113409
217 => 0.13857357674009
218 => 0.13904261323824
219 => 0.13993814944668
220 => 0.13993342952882
221 => 0.14263218816951
222 => 0.14560900252379
223 => 0.14673268102913
224 => 0.14931651779214
225 => 0.14489178788392
226 => 0.14824799634694
227 => 0.15127538039193
228 => 0.1476660083291
301 => 0.15264068684188
302 => 0.15283384233567
303 => 0.1557502609671
304 => 0.15279391196594
305 => 0.15103844136605
306 => 0.1561064192113
307 => 0.15855865405081
308 => 0.1578200209602
309 => 0.15219898666985
310 => 0.14892730361537
311 => 0.14036467800125
312 => 0.15050747791907
313 => 0.15544773988951
314 => 0.15218619258483
315 => 0.15383112733243
316 => 0.16280535794348
317 => 0.16622216392177
318 => 0.16551149216356
319 => 0.16563158399205
320 => 0.16747523047852
321 => 0.17565097431418
322 => 0.17075187909559
323 => 0.17449705382461
324 => 0.17648348099664
325 => 0.17832858525882
326 => 0.1737975923421
327 => 0.16790283713096
328 => 0.1660357207106
329 => 0.15186189598345
330 => 0.1511240868526
331 => 0.15070993222955
401 => 0.14809874591455
402 => 0.14604706873509
403 => 0.14441549886809
404 => 0.14013377230908
405 => 0.14157872933135
406 => 0.13475455086207
407 => 0.13912041841268
408 => 0.12822886480017
409 => 0.13729967429293
410 => 0.13236284508512
411 => 0.13567779312257
412 => 0.13566622758115
413 => 0.12956235723897
414 => 0.12604177221013
415 => 0.12828522601373
416 => 0.13069038657677
417 => 0.13108061578619
418 => 0.13419896923729
419 => 0.13506923465671
420 => 0.13243228980706
421 => 0.12800316156034
422 => 0.12903194703439
423 => 0.12602092390534
424 => 0.12074422168899
425 => 0.12453404134315
426 => 0.12582805239969
427 => 0.12639956140044
428 => 0.12121053080401
429 => 0.11958002473128
430 => 0.11871195697943
501 => 0.1273333228714
502 => 0.12780562075659
503 => 0.12538927799974
504 => 0.13631137638772
505 => 0.13383936914073
506 => 0.1366012068921
507 => 0.12893859553584
508 => 0.12923131760873
509 => 0.12560371459388
510 => 0.12763492988567
511 => 0.12619933238656
512 => 0.12747082776296
513 => 0.128232956849
514 => 0.13185996460988
515 => 0.13734108889542
516 => 0.13131821060046
517 => 0.12869395627814
518 => 0.13032202890034
519 => 0.13465780083816
520 => 0.14122671726804
521 => 0.13733778652979
522 => 0.1390636279531
523 => 0.13944064752675
524 => 0.1365730939764
525 => 0.14133244805768
526 => 0.14388302457476
527 => 0.14649938831383
528 => 0.14877110363963
529 => 0.14545435510137
530 => 0.14900375147453
531 => 0.14614356455057
601 => 0.14357768119909
602 => 0.14358157258498
603 => 0.14197195647702
604 => 0.13885312244317
605 => 0.13827796159583
606 => 0.1412700209585
607 => 0.1436693692183
608 => 0.14386699103308
609 => 0.14519539351266
610 => 0.14598152841645
611 => 0.15368671917212
612 => 0.15678581063473
613 => 0.16057532101241
614 => 0.16205154886962
615 => 0.16649446546285
616 => 0.16290644947777
617 => 0.16213015964973
618 => 0.15135309726151
619 => 0.15311784062383
620 => 0.15594336501933
621 => 0.15139968911808
622 => 0.1542816056674
623 => 0.15485055704157
624 => 0.15124529674962
625 => 0.15317102204565
626 => 0.14805686659714
627 => 0.13745256350882
628 => 0.14134425367842
629 => 0.14420984757198
630 => 0.14012029176068
701 => 0.14745066226478
702 => 0.14316841114585
703 => 0.14181114312545
704 => 0.1365159566769
705 => 0.1390150808502
706 => 0.14239518207859
707 => 0.14030667249839
708 => 0.14464064346861
709 => 0.15077870219027
710 => 0.15515304836305
711 => 0.15548885634572
712 => 0.15267644481506
713 => 0.15718335224152
714 => 0.15721618014182
715 => 0.15213237015352
716 => 0.14901856484245
717 => 0.14831110172428
718 => 0.15007848329979
719 => 0.15222441080911
720 => 0.15560794038759
721 => 0.15765253644878
722 => 0.16298375860639
723 => 0.16442623446412
724 => 0.16601107810041
725 => 0.16812891794618
726 => 0.17067192768401
727 => 0.16510796715126
728 => 0.16532903367574
729 => 0.16014795066593
730 => 0.15461122042747
731 => 0.15881290851529
801 => 0.16430605676297
802 => 0.16304592248556
803 => 0.16290413163715
804 => 0.16314258451468
805 => 0.16219248442165
806 => 0.15789521691325
807 => 0.15573715607284
808 => 0.158521605137
809 => 0.16000141589303
810 => 0.16229647332258
811 => 0.1620135590516
812 => 0.16792538051893
813 => 0.17022253557694
814 => 0.16963482501229
815 => 0.16974297790023
816 => 0.17390186740632
817 => 0.17852740787795
818 => 0.18285983692346
819 => 0.18726696983071
820 => 0.18195399909769
821 => 0.17925640021795
822 => 0.18203963367875
823 => 0.1805628108276
824 => 0.18904907298443
825 => 0.18963664336378
826 => 0.19812229186726
827 => 0.20617618274928
828 => 0.20111767818673
829 => 0.20588762014917
830 => 0.21104670128062
831 => 0.22099940581395
901 => 0.21764768506749
902 => 0.21508031950387
903 => 0.21265417145166
904 => 0.21770260040814
905 => 0.22419732361004
906 => 0.22559622478204
907 => 0.22786297910206
908 => 0.22547976410009
909 => 0.22835008406744
910 => 0.2384835748347
911 => 0.23574541617859
912 => 0.23185679070595
913 => 0.2398562084359
914 => 0.24275116661542
915 => 0.26306949922067
916 => 0.28872223344325
917 => 0.27810183303017
918 => 0.27150940777559
919 => 0.27305878408483
920 => 0.28242629422307
921 => 0.28543484116956
922 => 0.27725657346067
923 => 0.28014527587426
924 => 0.29606231018406
925 => 0.30460128841168
926 => 0.2930042090408
927 => 0.2610083270034
928 => 0.23150666252851
929 => 0.23933183242451
930 => 0.2384447010016
1001 => 0.25554556867702
1002 => 0.23568011200022
1003 => 0.23601459534285
1004 => 0.25346909085166
1005 => 0.24881253069572
1006 => 0.24126949961026
1007 => 0.23156173500305
1008 => 0.21361603426709
1009 => 0.19772102667236
1010 => 0.22889479696725
1011 => 0.22755052730631
1012 => 0.22560382562767
1013 => 0.22993599955837
1014 => 0.2509718064568
1015 => 0.25048686302152
1016 => 0.24740190030664
1017 => 0.24974181733627
1018 => 0.24085930084163
1019 => 0.24314852759344
1020 => 0.23150198931413
1021 => 0.23676671101878
1022 => 0.24125331565329
1023 => 0.24215406795899
1024 => 0.24418350889728
1025 => 0.22684215827908
1026 => 0.23462791559135
1027 => 0.2392013185855
1028 => 0.2185385174761
1029 => 0.23879288144354
1030 => 0.22654028394584
1031 => 0.22238156832729
1101 => 0.22798073103855
1102 => 0.22579873188461
1103 => 0.22392277714334
1104 => 0.22287596216471
1105 => 0.22698736930283
1106 => 0.22679556724564
1107 => 0.22006850717795
1108 => 0.21129333154969
1109 => 0.21423856852585
1110 => 0.21316853632067
1111 => 0.20929060157218
1112 => 0.21190386136904
1113 => 0.2003963877642
1114 => 0.18059837753352
1115 => 0.19367754952136
1116 => 0.19317401562723
1117 => 0.19292011100437
1118 => 0.20274874727147
1119 => 0.20180395067961
1120 => 0.2000891356139
1121 => 0.20925910764872
1122 => 0.20591194450248
1123 => 0.21622711262837
1124 => 0.22302134949933
1125 => 0.22129811125832
1126 => 0.22768812387485
1127 => 0.21430642083724
1128 => 0.2187512858056
1129 => 0.21966736631526
1130 => 0.20914595161723
1201 => 0.20195853108653
1202 => 0.20147921207973
1203 => 0.18901721536705
1204 => 0.19567431342124
1205 => 0.20153228421949
1206 => 0.19872677080403
1207 => 0.19783862906902
1208 => 0.20237595257873
1209 => 0.20272854147498
1210 => 0.19468947727473
1211 => 0.19636105328602
1212 => 0.20333180312947
1213 => 0.19618540827507
1214 => 0.18230113042993
1215 => 0.17885763755918
1216 => 0.17839821213405
1217 => 0.16905918636171
1218 => 0.1790877482185
1219 => 0.17471001221926
1220 => 0.18853922778753
1221 => 0.18064005402251
1222 => 0.18029953642938
1223 => 0.17978479414429
1224 => 0.17174630887173
1225 => 0.17350622627403
1226 => 0.17935645976226
1227 => 0.18144388897846
1228 => 0.18122615300941
1229 => 0.17932779042659
1230 => 0.18019685109582
1231 => 0.17739730387943
]
'min_raw' => 0.097953042729419
'max_raw' => 0.30460128841168
'avg_raw' => 0.20127716557055
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.097953'
'max' => '$0.3046012'
'avg' => '$0.201277'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.055800624107137
'max_diff' => 0.19024583859431
'year' => 2033
]
8 => [
'items' => [
101 => 0.17640872548978
102 => 0.17328850016216
103 => 0.1687026309148
104 => 0.16934032416042
105 => 0.16025451722344
106 => 0.1553040873839
107 => 0.15393387364994
108 => 0.1521015665797
109 => 0.1541408376091
110 => 0.16022877827396
111 => 0.15288543020348
112 => 0.14029577501262
113 => 0.14105243474132
114 => 0.14275242449741
115 => 0.13958450483348
116 => 0.13658633473492
117 => 0.13919300038639
118 => 0.13385859751553
119 => 0.14339706159895
120 => 0.14313907287673
121 => 0.14669442243236
122 => 0.14891765547262
123 => 0.14379382309507
124 => 0.14250519310844
125 => 0.14323925531379
126 => 0.13110684220303
127 => 0.14570294544397
128 => 0.14582917315091
129 => 0.14474833488899
130 => 0.15252030926067
131 => 0.16892159932449
201 => 0.16275077426212
202 => 0.16036124428379
203 => 0.15581874604825
204 => 0.16187135524025
205 => 0.16140660928971
206 => 0.15930485185174
207 => 0.15803370239536
208 => 0.1603758342443
209 => 0.15774348634006
210 => 0.15727064432437
211 => 0.15440573616651
212 => 0.15338309429916
213 => 0.15262597097313
214 => 0.15179245258457
215 => 0.15363098644989
216 => 0.14946462683179
217 => 0.14444040556563
218 => 0.14402269593017
219 => 0.14517602895907
220 => 0.14466576494933
221 => 0.14402025298241
222 => 0.14278779484283
223 => 0.14242215084012
224 => 0.14361031646368
225 => 0.14226894674904
226 => 0.14424821083118
227 => 0.14370996051851
228 => 0.14070333802613
301 => 0.13695597320641
302 => 0.13692261379915
303 => 0.13611525019565
304 => 0.13508695125866
305 => 0.13480090201869
306 => 0.13897347427581
307 => 0.14761057397346
308 => 0.14591490463454
309 => 0.1471401995111
310 => 0.15316743758486
311 => 0.15508331532314
312 => 0.15372347068456
313 => 0.15186203147171
314 => 0.15194392535011
315 => 0.15830502663639
316 => 0.15870176072093
317 => 0.15970417976129
318 => 0.16099257151175
319 => 0.15394288937082
320 => 0.15161188595524
321 => 0.15050732721779
322 => 0.14710571382447
323 => 0.15077406223687
324 => 0.14863667271131
325 => 0.14892507958193
326 => 0.14873725422909
327 => 0.14883981957243
328 => 0.14339439540384
329 => 0.14537842176781
330 => 0.14207959312947
331 => 0.13766283189363
401 => 0.13764802536125
402 => 0.1387290214165
403 => 0.13808600266346
404 => 0.13635565573255
405 => 0.13660144334708
406 => 0.13444808521392
407 => 0.13686290001225
408 => 0.13693214826004
409 => 0.13600231302683
410 => 0.13972266840389
411 => 0.14124690103739
412 => 0.14063486356789
413 => 0.14120395885696
414 => 0.14598536735106
415 => 0.14676494556307
416 => 0.1471111827088
417 => 0.14664727080115
418 => 0.14129135422688
419 => 0.14152891190206
420 => 0.13978587130355
421 => 0.1383131856749
422 => 0.13837208537683
423 => 0.13912923722568
424 => 0.14243576375601
425 => 0.14939415390871
426 => 0.14965821972848
427 => 0.1499782752054
428 => 0.14867644873379
429 => 0.14828380541316
430 => 0.14880180330292
501 => 0.1514150087895
502 => 0.15813688277934
503 => 0.15576092357246
504 => 0.15382923175326
505 => 0.15552384625908
506 => 0.15526297363873
507 => 0.15306094619011
508 => 0.15299914261371
509 => 0.14877274790905
510 => 0.14721034601709
511 => 0.14590468605241
512 => 0.1444789394561
513 => 0.14363370908234
514 => 0.14493236708676
515 => 0.14522938553764
516 => 0.14238984711432
517 => 0.14200282851968
518 => 0.14432165689186
519 => 0.1433012269799
520 => 0.14435076444979
521 => 0.14459426614557
522 => 0.14455505676423
523 => 0.14348961074052
524 => 0.14416869426398
525 => 0.14256245928646
526 => 0.1408159199971
527 => 0.13970173674373
528 => 0.1387294640802
529 => 0.13926893746274
530 => 0.13734581335792
531 => 0.13673056725195
601 => 0.14393863604609
602 => 0.14926331396412
603 => 0.14918589103839
604 => 0.14871459888956
605 => 0.14801435435451
606 => 0.1513637815402
607 => 0.15019690808262
608 => 0.15104590601855
609 => 0.15126201162558
610 => 0.1519160982112
611 => 0.15214987794492
612 => 0.15144323321916
613 => 0.14907164721011
614 => 0.14316188035921
615 => 0.140410867937
616 => 0.13950298801594
617 => 0.13953598772676
618 => 0.13862570838511
619 => 0.13889382644709
620 => 0.13853246786498
621 => 0.13784814213251
622 => 0.13922668227714
623 => 0.13938554618682
624 => 0.13906377844474
625 => 0.13913956639616
626 => 0.13647546692049
627 => 0.13667801261751
628 => 0.13555021243826
629 => 0.13533876350049
630 => 0.13248778285616
701 => 0.12743685738848
702 => 0.13023556040277
703 => 0.1268551207187
704 => 0.12557489698832
705 => 0.13163527701229
706 => 0.13102698294666
707 => 0.12998584792538
708 => 0.12844579223735
709 => 0.12787457060196
710 => 0.12440400877212
711 => 0.12419894946449
712 => 0.12591905362041
713 => 0.12512528473762
714 => 0.12401053260241
715 => 0.11997301336927
716 => 0.11543350497455
717 => 0.11557052419865
718 => 0.11701445735846
719 => 0.12121288776151
720 => 0.11957248836945
721 => 0.1183823597891
722 => 0.11815948448113
723 => 0.12094923558139
724 => 0.12489731785917
725 => 0.12674966973055
726 => 0.12491404528278
727 => 0.12280537875422
728 => 0.12293372351519
729 => 0.12378754371049
730 => 0.12387726814064
731 => 0.12250474300497
801 => 0.12289110079105
802 => 0.1223041879847
803 => 0.11870230517548
804 => 0.11863715853716
805 => 0.11775319840757
806 => 0.11772643244615
807 => 0.11622259575154
808 => 0.11601219860243
809 => 0.1130262395689
810 => 0.11499160684708
811 => 0.11367334166329
812 => 0.111686405084
813 => 0.1113438564688
814 => 0.11133355904379
815 => 0.11337369863984
816 => 0.11496776662808
817 => 0.11369627345056
818 => 0.1134067791009
819 => 0.1164978213763
820 => 0.11610445807128
821 => 0.11576380798605
822 => 0.12454381039414
823 => 0.11759375337601
824 => 0.11456313182071
825 => 0.11081216214661
826 => 0.11203349678653
827 => 0.1122908499403
828 => 0.10327044403719
829 => 0.099610866485721
830 => 0.098355037378326
831 => 0.097632289972204
901 => 0.097961655040865
902 => 0.094667606018906
903 => 0.096881261440204
904 => 0.094028893426221
905 => 0.093550684646269
906 => 0.098651071995863
907 => 0.099360761099528
908 => 0.09633300690017
909 => 0.098277315245037
910 => 0.097572282011281
911 => 0.094077789089028
912 => 0.093944325163148
913 => 0.092190911452128
914 => 0.089447158522179
915 => 0.088193189808472
916 => 0.087540112014918
917 => 0.087809584640771
918 => 0.087673331035141
919 => 0.086784184092918
920 => 0.087724295897071
921 => 0.085322698718477
922 => 0.084366363370977
923 => 0.083934408881323
924 => 0.081802853154545
925 => 0.085195106222983
926 => 0.085863422811944
927 => 0.086533056191038
928 => 0.092361757577929
929 => 0.092070572128379
930 => 0.094702746779245
1001 => 0.094600465312571
1002 => 0.093849726463742
1003 => 0.090682482751078
1004 => 0.091944889644255
1005 => 0.088059397448645
1006 => 0.090970672389384
1007 => 0.089642088084179
1008 => 0.090521476699358
1009 => 0.088940256677991
1010 => 0.08981536912479
1011 => 0.086021905468098
1012 => 0.082479622480952
1013 => 0.083905140560666
1014 => 0.085454841741082
1015 => 0.08881498875674
1016 => 0.086813712914825
1017 => 0.087533447384196
1018 => 0.085122457393899
1019 => 0.080147896378675
1020 => 0.080176051853785
1021 => 0.079410824018296
1022 => 0.07874955544334
1023 => 0.087043583519427
1024 => 0.086012090018985
1025 => 0.084368540124562
1026 => 0.086568496970324
1027 => 0.087150200478353
1028 => 0.087166760759448
1029 => 0.088771792485011
1030 => 0.089628398204662
1031 => 0.089779378675492
1101 => 0.092304930774671
1102 => 0.093151462525478
1103 => 0.096638207001395
1104 => 0.08955572119412
1105 => 0.089409862059679
1106 => 0.086599454874692
1107 => 0.084817050207193
1108 => 0.086721497647189
1109 => 0.088408578096025
1110 => 0.086651877166956
1111 => 0.086881265222311
1112 => 0.084523037752775
1113 => 0.085365993108219
1114 => 0.086092059818676
1115 => 0.08569116845739
1116 => 0.085091014686184
1117 => 0.088270256738432
1118 => 0.088090871442294
1119 => 0.091051454731807
1120 => 0.093359441119324
1121 => 0.097495765327671
1122 => 0.093179295384803
1123 => 0.093021986063671
1124 => 0.094559709910947
1125 => 0.093151227107969
1126 => 0.094041339620277
1127 => 0.097352354440853
1128 => 0.097422310966583
1129 => 0.096250449026714
1130 => 0.096179141121174
1201 => 0.096404210025491
1202 => 0.097722445627973
1203 => 0.097261813603177
1204 => 0.097794868644047
1205 => 0.098461462135083
1206 => 0.10121877544379
1207 => 0.10188355434768
1208 => 0.10026848625957
1209 => 0.10041430882478
1210 => 0.099810229025216
1211 => 0.099226695507937
1212 => 0.10053839363656
1213 => 0.1029355477481
1214 => 0.10292063517678
1215 => 0.10347672833664
1216 => 0.10382316976831
1217 => 0.10233598953296
1218 => 0.10136788988488
1219 => 0.10173912089174
1220 => 0.10233272735606
1221 => 0.10154662231579
1222 => 0.096694417847954
1223 => 0.098166266723473
1224 => 0.097921279100854
1225 => 0.097572386934731
1226 => 0.099052342360535
1227 => 0.098909597049342
1228 => 0.094633820785046
1229 => 0.094907542108764
1230 => 0.094650466685334
1231 => 0.095481129971118
]
'min_raw' => 0.07874955544334
'max_raw' => 0.17640872548978
'avg_raw' => 0.12757914046656
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.078749'
'max' => '$0.1764087'
'avg' => '$0.127579'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.01920348728608
'max_diff' => -0.12819256292189
'year' => 2034
]
9 => [
'items' => [
101 => 0.093106368564532
102 => 0.093836829178936
103 => 0.094294967228647
104 => 0.094564814059509
105 => 0.095539685848287
106 => 0.095425295895802
107 => 0.09553257520823
108 => 0.096978052714378
109 => 0.10428878191249
110 => 0.10468668877253
111 => 0.10272724986611
112 => 0.103510007061
113 => 0.10200728441698
114 => 0.10301607219528
115 => 0.10370625917276
116 => 0.10058743693686
117 => 0.10040276052504
118 => 0.09889383561012
119 => 0.09970464638952
120 => 0.098414588140136
121 => 0.098731123310213
122 => 0.097846063379638
123 => 0.099438995040999
124 => 0.10122014015496
125 => 0.10167012775029
126 => 0.1004864041188
127 => 0.099629310198411
128 => 0.098124535618497
129 => 0.10062700928098
130 => 0.1013588088414
131 => 0.10062316544943
201 => 0.10045270080138
202 => 0.10012967060136
203 => 0.10052123318538
204 => 0.10135482330383
205 => 0.10096171759796
206 => 0.10122137084232
207 => 0.10023184042809
208 => 0.1023364818515
209 => 0.10567915894141
210 => 0.10568990619484
211 => 0.10529679836999
212 => 0.10513594711768
213 => 0.10553929960176
214 => 0.10575810177799
215 => 0.1070624697493
216 => 0.10846210855083
217 => 0.11499361212731
218 => 0.11315959205927
219 => 0.11895473059322
220 => 0.12353793276901
221 => 0.12491223470239
222 => 0.12364794158958
223 => 0.11932286314644
224 => 0.11911065416415
225 => 0.12557414735921
226 => 0.12374791448486
227 => 0.12353068989548
228 => 0.12121978727123
301 => 0.12258581693302
302 => 0.12228704620754
303 => 0.12181542200101
304 => 0.12442171143726
305 => 0.12930045259685
306 => 0.12854005503458
307 => 0.12797245352818
308 => 0.12548538895343
309 => 0.12698315733341
310 => 0.12644983070116
311 => 0.12874134037075
312 => 0.12738390080564
313 => 0.12373407897469
314 => 0.12431532513124
315 => 0.12422747094398
316 => 0.12603550389232
317 => 0.12549277727937
318 => 0.12412149486235
319 => 0.12928377758996
320 => 0.12894856766375
321 => 0.12942381869945
322 => 0.12963303890299
323 => 0.13277522942966
324 => 0.13406248434956
325 => 0.13435471375294
326 => 0.13557750636697
327 => 0.13432428955877
328 => 0.13933805032003
329 => 0.14267190866522
330 => 0.14654435669195
331 => 0.15220304407489
401 => 0.15433076287666
402 => 0.15394640951959
403 => 0.15823676171164
404 => 0.16594642923156
405 => 0.1555047537532
406 => 0.16649986338629
407 => 0.1630189386211
408 => 0.154765728622
409 => 0.15423431919701
410 => 0.15982348883014
411 => 0.17221972913878
412 => 0.16911461153846
413 => 0.17222480799879
414 => 0.16859659862
415 => 0.16841642744339
416 => 0.17204859396758
417 => 0.18053534903044
418 => 0.17650360982133
419 => 0.17072312304206
420 => 0.17499134452554
421 => 0.1712938160713
422 => 0.16296224959086
423 => 0.16911223711355
424 => 0.16499991559869
425 => 0.16620010963976
426 => 0.17484359780234
427 => 0.17380359043878
428 => 0.17514945626931
429 => 0.17277403830587
430 => 0.17055502335899
501 => 0.16641306717441
502 => 0.16518683814413
503 => 0.165525723733
504 => 0.16518667020926
505 => 0.16286928379053
506 => 0.16236884441405
507 => 0.16153475686182
508 => 0.16179327547136
509 => 0.16022494685225
510 => 0.16318470698973
511 => 0.16373406455256
512 => 0.16588793115711
513 => 0.16611155273317
514 => 0.17211004056845
515 => 0.16880617426927
516 => 0.17102269302485
517 => 0.17082442672467
518 => 0.1549446007086
519 => 0.15713270062472
520 => 0.16053669743063
521 => 0.15900320148358
522 => 0.15683519699723
523 => 0.15508441713346
524 => 0.15243180661342
525 => 0.15616530498151
526 => 0.16107445832226
527 => 0.16623605696323
528 => 0.17243737952901
529 => 0.17105331652368
530 => 0.16612012755141
531 => 0.16634142680501
601 => 0.16770941171271
602 => 0.1659377469627
603 => 0.16541524844092
604 => 0.16763762843933
605 => 0.16765293274898
606 => 0.16561441834125
607 => 0.16334898262126
608 => 0.16333949036288
609 => 0.16293637795802
610 => 0.1686683114213
611 => 0.17182029526227
612 => 0.17218166512996
613 => 0.17179597219093
614 => 0.17194441009556
615 => 0.17011034014773
616 => 0.17430248017193
617 => 0.17814960241781
618 => 0.17711849147414
619 => 0.17557270958851
620 => 0.17434141986166
621 => 0.17682843874544
622 => 0.17671769570948
623 => 0.17811600116115
624 => 0.17805256594886
625 => 0.17758236841839
626 => 0.17711850826637
627 => 0.17895766133675
628 => 0.17842801478838
629 => 0.17789754555262
630 => 0.17683360828953
701 => 0.17697821503371
702 => 0.17543270004912
703 => 0.1747176740993
704 => 0.16396539940105
705 => 0.16109204026097
706 => 0.16199605753905
707 => 0.1622936834998
708 => 0.16104319391973
709 => 0.16283607475314
710 => 0.16255665617438
711 => 0.16364371040992
712 => 0.16296456611796
713 => 0.1629924384366
714 => 0.16498965699041
715 => 0.16556945803336
716 => 0.16527456654335
717 => 0.16548109843466
718 => 0.17024053869836
719 => 0.16956389849119
720 => 0.16920444686708
721 => 0.16930401742349
722 => 0.17052015645442
723 => 0.17086060898435
724 => 0.16941808769186
725 => 0.17009838907251
726 => 0.17299502600823
727 => 0.17400868500028
728 => 0.17724379791898
729 => 0.17586946445157
730 => 0.17839211301076
731 => 0.18614587464746
801 => 0.19234011596234
802 => 0.18664363566132
803 => 0.19801857100423
804 => 0.20687558980625
805 => 0.2065356426725
806 => 0.20499121657783
807 => 0.19490773614776
808 => 0.18562876711978
809 => 0.19339101871752
810 => 0.19341080629316
811 => 0.19274402199692
812 => 0.18860268199919
813 => 0.19259991234187
814 => 0.19291719797066
815 => 0.1927396023916
816 => 0.18956444672523
817 => 0.18471657088954
818 => 0.18566383422366
819 => 0.18721547088859
820 => 0.18427789897655
821 => 0.1833391667569
822 => 0.18508444855435
823 => 0.19070811014964
824 => 0.1896449895007
825 => 0.18961722712415
826 => 0.19416570809362
827 => 0.19090997734311
828 => 0.18567578224786
829 => 0.18435407895575
830 => 0.17966292267481
831 => 0.18290312102738
901 => 0.18301972999768
902 => 0.181245106474
903 => 0.18581978316629
904 => 0.18577762671522
905 => 0.19012060138379
906 => 0.1984227378033
907 => 0.19596738754073
908 => 0.19311208232671
909 => 0.1934225331725
910 => 0.19682741269283
911 => 0.194768744809
912 => 0.19550905613357
913 => 0.19682629214298
914 => 0.19762101333258
915 => 0.19330818502338
916 => 0.19230265843807
917 => 0.19024570393642
918 => 0.18970908290182
919 => 0.19138442942365
920 => 0.19094303480601
921 => 0.18300992946526
922 => 0.18218087581777
923 => 0.18220630170952
924 => 0.18012160689355
925 => 0.17694194691512
926 => 0.18529790349081
927 => 0.18462680323624
928 => 0.18388596049424
929 => 0.18397670950294
930 => 0.18760374704281
1001 => 0.1854998820999
1002 => 0.1910933518673
1003 => 0.18994350263821
1004 => 0.18876416411518
1005 => 0.18860114360777
1006 => 0.18814719889283
1007 => 0.18659045355994
1008 => 0.18471059002458
1009 => 0.18346934128754
1010 => 0.16924076918507
1011 => 0.17188150940349
1012 => 0.17491944031374
1013 => 0.17596812189022
1014 => 0.1741742794871
1015 => 0.18666128539161
1016 => 0.18894278169815
1017 => 0.18203198056733
1018 => 0.1807392518419
1019 => 0.18674603647164
1020 => 0.18312321104035
1021 => 0.18475456911023
1022 => 0.1812284652683
1023 => 0.18839323604792
1024 => 0.18833865249885
1025 => 0.18555139484189
1026 => 0.18790716592724
1027 => 0.18749779272848
1028 => 0.18435098569849
1029 => 0.18849299544362
1030 => 0.18849504982878
1031 => 0.18581237493417
1101 => 0.18267959797031
1102 => 0.18211953144206
1103 => 0.18169759654738
1104 => 0.18465079899122
1105 => 0.18729863106794
1106 => 0.19222559010948
1107 => 0.19346434467418
1108 => 0.19829928620878
1109 => 0.19542031393396
1110 => 0.19669652505445
1111 => 0.19808203275684
1112 => 0.19874629609972
1113 => 0.19766391462883
1114 => 0.20517456897339
1115 => 0.20580869832057
1116 => 0.20602131640549
1117 => 0.20348876601872
1118 => 0.20573826351297
1119 => 0.20468579813094
1120 => 0.20742402067168
1121 => 0.20785340892944
1122 => 0.20748973235105
1123 => 0.20762602696149
1124 => 0.20121700844863
1125 => 0.20088466702847
1126 => 0.19635316818275
1127 => 0.19819978745753
1128 => 0.19474762123409
1129 => 0.1958423387048
1130 => 0.19632487973503
1201 => 0.1960728276848
1202 => 0.19830419254068
1203 => 0.19640707657546
1204 => 0.19140027562849
1205 => 0.18639211058196
1206 => 0.18632923714936
1207 => 0.18501067569406
1208 => 0.18405759726846
1209 => 0.18424119398551
1210 => 0.18488821276327
1211 => 0.18401999136088
1212 => 0.18420527041702
1213 => 0.18728213725687
1214 => 0.18789918095839
1215 => 0.18580222536608
1216 => 0.17738264607374
1217 => 0.17531646019648
1218 => 0.17680159363081
1219 => 0.17609179550405
1220 => 0.14211982237291
1221 => 0.15010103354667
1222 => 0.14535886888354
1223 => 0.14754427653682
1224 => 0.14270375439335
1225 => 0.14501390527372
1226 => 0.14458730475932
1227 => 0.15742085614551
1228 => 0.15722047789259
1229 => 0.15731638835848
1230 => 0.15273833192802
1231 => 0.16003130012952
]
'min_raw' => 0.093106368564532
'max_raw' => 0.20785340892944
'avg_raw' => 0.15047988874699
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0931063'
'max' => '$0.207853'
'avg' => '$0.150479'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.014356813121192
'max_diff' => 0.031444683439661
'year' => 2035
]
10 => [
'items' => [
101 => 0.16362407851224
102 => 0.1629591508523
103 => 0.163126498819
104 => 0.16025090630071
105 => 0.15734423037979
106 => 0.15412027944929
107 => 0.16010998178579
108 => 0.1594440291336
109 => 0.16097148491553
110 => 0.16485623503352
111 => 0.16542827924512
112 => 0.16619711246662
113 => 0.16592154048599
114 => 0.172486783068
115 => 0.17169168887246
116 => 0.17360763711951
117 => 0.16966638621197
118 => 0.16520648670312
119 => 0.16605416779465
120 => 0.16597252928892
121 => 0.16493317741059
122 => 0.1639948970074
123 => 0.16243292449495
124 => 0.16737523665277
125 => 0.16717458780489
126 => 0.17042285942339
127 => 0.16984869586279
128 => 0.16601429108347
129 => 0.1661512376003
130 => 0.16707226874022
131 => 0.17025996803166
201 => 0.17120629421648
202 => 0.17076791822309
203 => 0.17180552168331
204 => 0.17262560115177
205 => 0.17190851103838
206 => 0.18206099483468
207 => 0.17784497573376
208 => 0.17989983410867
209 => 0.18038990572316
210 => 0.17913459758774
211 => 0.1794068289731
212 => 0.17981918534331
213 => 0.18232293247554
214 => 0.18889348941558
215 => 0.19180354435703
216 => 0.20055858822797
217 => 0.19156190480406
218 => 0.19102807884167
219 => 0.19260512661982
220 => 0.19774526418757
221 => 0.20191086289767
222 => 0.20329283230896
223 => 0.20347548238049
224 => 0.20606814886766
225 => 0.20755421694774
226 => 0.20575333096222
227 => 0.20422726865011
228 => 0.19876110286997
229 => 0.1993938264429
301 => 0.20375266441859
302 => 0.20990977979352
303 => 0.21519322532389
304 => 0.21334314684582
305 => 0.22745793968161
306 => 0.22885736373752
307 => 0.22866400858179
308 => 0.23185210484338
309 => 0.22552438300864
310 => 0.22281915933046
311 => 0.20455722064354
312 => 0.20968808051976
313 => 0.21714608667469
314 => 0.216158991594
315 => 0.21074278817121
316 => 0.21518911664791
317 => 0.21371902140397
318 => 0.21255949629076
319 => 0.21787150561936
320 => 0.21203073315725
321 => 0.21708782050142
322 => 0.21060205367365
323 => 0.21335159784847
324 => 0.21179082359435
325 => 0.21280083581807
326 => 0.20689632499619
327 => 0.21008225571178
328 => 0.20676377980406
329 => 0.2067622064144
330 => 0.20668895087481
331 => 0.21059312306387
401 => 0.21072043797879
402 => 0.2078352488322
403 => 0.20741944800105
404 => 0.20895688160384
405 => 0.20715694950947
406 => 0.20799912640779
407 => 0.20718245818978
408 => 0.20699860897224
409 => 0.20553366712753
410 => 0.20490252990141
411 => 0.20515001507017
412 => 0.20430522060184
413 => 0.20379620137711
414 => 0.20658769413918
415 => 0.2050963121649
416 => 0.20635911846219
417 => 0.20491999130757
418 => 0.1999313495918
419 => 0.19706232898712
420 => 0.18763924723335
421 => 0.19031162152943
422 => 0.19208340845249
423 => 0.19149783288499
424 => 0.19275587579165
425 => 0.19283310940872
426 => 0.19242410683553
427 => 0.19195053425226
428 => 0.19172002530893
429 => 0.19343805012009
430 => 0.19443542134902
501 => 0.19226123097367
502 => 0.19175184858889
503 => 0.1939500750987
504 => 0.19529099199981
505 => 0.2051915690015
506 => 0.20445810227877
507 => 0.20629895981724
508 => 0.20609170750867
509 => 0.20802121948059
510 => 0.21117515608208
511 => 0.20476232111671
512 => 0.20587536752755
513 => 0.20560247425161
514 => 0.20858185148189
515 => 0.20859115277239
516 => 0.20680486729191
517 => 0.20777324163005
518 => 0.20723272164046
519 => 0.20820951431731
520 => 0.20444830638351
521 => 0.20902905164957
522 => 0.21162603903871
523 => 0.21166209821113
524 => 0.21289304962262
525 => 0.21414376754859
526 => 0.21654441169292
527 => 0.21407681488636
528 => 0.20963784844706
529 => 0.2099583274862
530 => 0.207355763087
531 => 0.20739951266474
601 => 0.20716597399004
602 => 0.2078668411328
603 => 0.20460210730817
604 => 0.20536833381135
605 => 0.20429561221988
606 => 0.20587303564031
607 => 0.20417598879736
608 => 0.20560234265421
609 => 0.20621790969444
610 => 0.20848936532511
611 => 0.20384049295385
612 => 0.19436112748784
613 => 0.19635380503499
614 => 0.19340647842131
615 => 0.19367926472067
616 => 0.194230336459
617 => 0.19244413265563
618 => 0.19278488405156
619 => 0.19277271001387
620 => 0.19266780073398
621 => 0.19220314013826
622 => 0.19152929034417
623 => 0.19421370052379
624 => 0.19466983412247
625 => 0.19568376260935
626 => 0.19870052603203
627 => 0.19839908022592
628 => 0.19889075084255
629 => 0.19781743664707
630 => 0.19372905268786
701 => 0.19395107160665
702 => 0.19118249213169
703 => 0.19561296380756
704 => 0.19456376963534
705 => 0.1938873473271
706 => 0.19370277923329
707 => 0.19672702062899
708 => 0.19763192105375
709 => 0.19706804783465
710 => 0.19591152741145
711 => 0.19813238851856
712 => 0.19872659726021
713 => 0.1988596186839
714 => 0.20279455875781
715 => 0.1990795381223
716 => 0.19997378051339
717 => 0.206950404376
718 => 0.2006235692409
719 => 0.20397503491722
720 => 0.20381099811255
721 => 0.20552549454514
722 => 0.20367035936268
723 => 0.20369335598662
724 => 0.20521571266871
725 => 0.20307783726719
726 => 0.20254846925276
727 => 0.20181715113224
728 => 0.20341395749367
729 => 0.20437117069
730 => 0.21208560605685
731 => 0.21706948312483
801 => 0.21685311987726
802 => 0.21883027494495
803 => 0.21793954847829
804 => 0.21506315775569
805 => 0.21997280598069
806 => 0.21841918785389
807 => 0.21854726624462
808 => 0.21854249916052
809 => 0.21957551939519
810 => 0.21884352988401
811 => 0.2174007034203
812 => 0.21835851896081
813 => 0.22120288869077
814 => 0.23003189960852
815 => 0.23497273108692
816 => 0.22973445534963
817 => 0.23334774780991
818 => 0.23118105988148
819 => 0.23078730823151
820 => 0.23305672291678
821 => 0.23533010991204
822 => 0.23518530498856
823 => 0.23353494276972
824 => 0.23260269502868
825 => 0.23966198724969
826 => 0.24486315350623
827 => 0.24450846883659
828 => 0.24607393161872
829 => 0.25067017876501
830 => 0.25109040200202
831 => 0.25103746353288
901 => 0.24999589639418
902 => 0.25452149860782
903 => 0.25829683559482
904 => 0.24975480369535
905 => 0.25300749761926
906 => 0.25446773671695
907 => 0.25661180094579
908 => 0.26022919668673
909 => 0.26415864792822
910 => 0.264714315418
911 => 0.26432004274286
912 => 0.26172846401978
913 => 0.26602811645632
914 => 0.26854675201439
915 => 0.27004654185127
916 => 0.27384975933636
917 => 0.2544767546565
918 => 0.24076357904328
919 => 0.23862206865062
920 => 0.24297691424483
921 => 0.24412525229878
922 => 0.24366235866913
923 => 0.22822693276907
924 => 0.23854080432769
925 => 0.24963766290981
926 => 0.25006393844133
927 => 0.25561925787191
928 => 0.25742829759875
929 => 0.26190105789273
930 => 0.26162128551854
1001 => 0.26271033147296
1002 => 0.26245997866769
1003 => 0.27074482526149
1004 => 0.27988424136608
1005 => 0.27956777244794
1006 => 0.27825387325024
1007 => 0.28020523761193
1008 => 0.28963809447121
1009 => 0.28876966817006
1010 => 0.28961327034925
1011 => 0.30073514019887
1012 => 0.31519515307091
1013 => 0.30847702533029
1014 => 0.32305342943825
1015 => 0.33222850316223
1016 => 0.34809584444752
1017 => 0.3461091751703
1018 => 0.35228621469273
1019 => 0.34255262253368
1020 => 0.32020232745296
1021 => 0.31666530770294
1022 => 0.32374651081408
1023 => 0.34115495768912
1024 => 0.32319825687058
1025 => 0.32683087405932
1026 => 0.32578468006458
1027 => 0.32572893283264
1028 => 0.32785657793546
1029 => 0.32477031774332
1030 => 0.31219633851293
1031 => 0.31795891909529
1101 => 0.31573370999059
1102 => 0.31820274539258
1103 => 0.33152711114947
1104 => 0.32563609143514
1105 => 0.31943038071368
1106 => 0.32721371911585
1107 => 0.33712458354705
1108 => 0.33650437946249
1109 => 0.33530092431322
1110 => 0.34208473797874
1111 => 0.35328961068328
1112 => 0.35631824275048
1113 => 0.35855391702484
1114 => 0.35886217873525
1115 => 0.36203746593603
1116 => 0.34496314638202
1117 => 0.37206053001387
1118 => 0.37673949961697
1119 => 0.37586004725501
1120 => 0.38106052504772
1121 => 0.37953041255771
1122 => 0.37731351962699
1123 => 0.38555738310179
1124 => 0.37610645887341
1125 => 0.36269206176951
1126 => 0.35533265821162
1127 => 0.3650241144828
1128 => 0.3709423486424
1129 => 0.37485392495151
1130 => 0.3760375655792
1201 => 0.34628857720464
1202 => 0.33025552242529
1203 => 0.34053252671951
1204 => 0.3530711812394
1205 => 0.34489349352307
1206 => 0.34521404339914
1207 => 0.33355480977417
1208 => 0.35410276470607
1209 => 0.351109100508
1210 => 0.36664023566331
1211 => 0.36293360561335
1212 => 0.37559864341731
1213 => 0.37226351451189
1214 => 0.38610744813375
1215 => 0.39163016806505
1216 => 0.40090367437242
1217 => 0.40772530336208
1218 => 0.41173109438178
1219 => 0.41149060171431
1220 => 0.42736354141152
1221 => 0.41800382343035
1222 => 0.40624581172984
1223 => 0.40603314639423
1224 => 0.41212278726624
1225 => 0.42488500392258
1226 => 0.42819406101887
1227 => 0.43004337250582
1228 => 0.42721108758856
1229 => 0.41705178453702
1230 => 0.41266504898821
1231 => 0.41640267477176
]
'min_raw' => 0.15412027944929
'max_raw' => 0.43004337250582
'avg_raw' => 0.29208182597755
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.15412'
'max' => '$0.430043'
'avg' => '$0.292081'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.061013910884755
'max_diff' => 0.22218996357638
'year' => 2036
]
11 => [
'items' => [
101 => 0.41183187961632
102 => 0.41972235439322
103 => 0.43055766157638
104 => 0.42832021349051
105 => 0.43579966698462
106 => 0.44354011448958
107 => 0.45460930206691
108 => 0.45750319759046
109 => 0.46228669684588
110 => 0.46721048887737
111 => 0.46879187817796
112 => 0.47181124102908
113 => 0.47179532749646
114 => 0.48089438067487
115 => 0.49093091810488
116 => 0.49471947863834
117 => 0.50343106468256
118 => 0.48851277887221
119 => 0.49982847002828
120 => 0.51003550670118
121 => 0.49786625679302
122 => 0.51463873271984
123 => 0.51528996995283
124 => 0.52512287898653
125 => 0.51515534192343
126 => 0.50923665023288
127 => 0.52632369137304
128 => 0.53459157234401
129 => 0.5321012193093
130 => 0.51314950975131
131 => 0.5021188019115
201 => 0.47324931183008
202 => 0.50744646990069
203 => 0.5241029080521
204 => 0.5131063736004
205 => 0.51865238594763
206 => 0.54890963101356
207 => 0.56042963092313
208 => 0.55803355147282
209 => 0.5584384494571
210 => 0.56465443230551
211 => 0.59221952345966
212 => 0.57570188188628
213 => 0.58832899996491
214 => 0.59502637786335
215 => 0.60124727570435
216 => 0.58597071674181
217 => 0.56609613798877
218 => 0.55980102461962
219 => 0.51201298496719
220 => 0.50952540997034
221 => 0.50812905874337
222 => 0.49932526177515
223 => 0.49240788892107
224 => 0.48690693720191
225 => 0.47247079716762
226 => 0.47734257065186
227 => 0.45433437649378
228 => 0.46905420375578
301 => 0.43233257032721
302 => 0.46291543783575
303 => 0.44627057348321
304 => 0.45744715223375
305 => 0.45740815820339
306 => 0.43682853318612
307 => 0.42495863496197
308 => 0.43252259609375
309 => 0.44063176285499
310 => 0.44194744787949
311 => 0.45246119425636
312 => 0.45539535487792
313 => 0.44650471121173
314 => 0.43157159609603
315 => 0.43504021814931
316 => 0.42488834344677
317 => 0.40709757351679
318 => 0.41987521507755
319 => 0.42423806369963
320 => 0.42616494619715
321 => 0.40866976725474
322 => 0.40317240219222
323 => 0.4002456511603
324 => 0.42931318818961
325 => 0.43090557348434
326 => 0.42275870517595
327 => 0.45958332244759
328 => 0.45124877742434
329 => 0.46056050622842
330 => 0.43472547705435
331 => 0.43571240996028
401 => 0.42348169312457
402 => 0.43033007729578
403 => 0.4254898600973
404 => 0.42977679553179
405 => 0.43234636695554
406 => 0.44457507685096
407 => 0.46305507005951
408 => 0.44274851538413
409 => 0.43390065871684
410 => 0.43938981923099
411 => 0.45400817703328
412 => 0.47615573740372
413 => 0.46304393590323
414 => 0.46886273075632
415 => 0.47013387857156
416 => 0.46046572157037
417 => 0.47651221614287
418 => 0.48511166294577
419 => 0.49393291596075
420 => 0.50159216278777
421 => 0.49040951352306
422 => 0.5023765512061
423 => 0.49273323130009
424 => 0.48408217643631
425 => 0.48409529651554
426 => 0.47866836342774
427 => 0.46815299673257
428 => 0.46621380177931
429 => 0.47630173881949
430 => 0.48439130899452
501 => 0.48505760474057
502 => 0.48953640644659
503 => 0.49218691516089
504 => 0.51816550375287
505 => 0.52861430699072
506 => 0.54139090580425
507 => 0.54636811109177
508 => 0.56134771458035
509 => 0.54925046817941
510 => 0.54663315282532
511 => 0.51029753455297
512 => 0.51624749000951
513 => 0.52577394278073
514 => 0.51045462225035
515 => 0.52017120510536
516 => 0.5220894643863
517 => 0.50993407760074
518 => 0.51642679488617
519 => 0.49918406273259
520 => 0.46343091450151
521 => 0.47655201961743
522 => 0.48621356949898
523 => 0.4724253465575
524 => 0.49714020250218
525 => 0.48270229387748
526 => 0.47812616998529
527 => 0.46027307917588
528 => 0.46869905080944
529 => 0.48009529809212
530 => 0.47305374222737
531 => 0.48766602794165
601 => 0.50836092146733
602 => 0.52310933499594
603 => 0.52424153505488
604 => 0.51475929322295
605 => 0.52995464627348
606 => 0.53006532783131
607 => 0.51292490751547
608 => 0.50242649551028
609 => 0.50004123421385
610 => 0.50600008459035
611 => 0.51323522901189
612 => 0.52464303521623
613 => 0.53153653358566
614 => 0.54951112130408
615 => 0.55437452936887
616 => 0.55971794033888
617 => 0.56685838524173
618 => 0.5754323201201
619 => 0.55667303872062
620 => 0.55741837994229
621 => 0.53994999684303
622 => 0.52128252428192
623 => 0.5354488090225
624 => 0.55396934185891
625 => 0.54972071116287
626 => 0.54924265341791
627 => 0.55004661394276
628 => 0.54684328514525
629 => 0.53235474771502
630 => 0.5250786949206
701 => 0.53446665934444
702 => 0.53945594462549
703 => 0.54719389098499
704 => 0.54624002576795
705 => 0.56617214459525
706 => 0.57391716325555
707 => 0.57193565605421
708 => 0.57230030106689
709 => 0.58632228740106
710 => 0.60191762004609
711 => 0.61652470705356
712 => 0.63138366334654
713 => 0.61347061158042
714 => 0.60437546861702
715 => 0.61375933454928
716 => 0.60878012319815
717 => 0.63739214855177
718 => 0.63937318310863
719 => 0.66798313948715
720 => 0.69513739490061
721 => 0.67808229359443
722 => 0.69416448594752
723 => 0.71155868817776
724 => 0.74511492638751
725 => 0.73381436588116
726 => 0.72515831363566
727 => 0.7169783860894
728 => 0.73399951678624
729 => 0.75589692950852
730 => 0.76061342247809
731 => 0.76825594292777
801 => 0.76022076715787
802 => 0.76989825132714
803 => 0.80406402294669
804 => 0.79483212986548
805 => 0.78172135758929
806 => 0.80869195296734
807 => 0.81845250658912
808 => 0.8869571835484
809 => 0.97344716799654
810 => 0.93763974651115
811 => 0.9154129244969
812 => 0.92063675489752
813 => 0.95221996934724
814 => 0.96236349542737
815 => 0.93478989485846
816 => 0.94452935672862
817 => 0.99819474919598
818 => 1.0269845104628
819 => 0.98788414768167
820 => 0.88000779751141
821 => 0.78054087599388
822 => 0.80692398263418
823 => 0.80393295710429
824 => 0.86158972641642
825 => 0.79461195226868
826 => 0.79573968621125
827 => 0.85458873645318
828 => 0.83888881877677
829 => 0.81345696283452
830 => 0.78072655668684
831 => 0.72022137372672
901 => 0.6666302458671
902 => 0.77173478889948
903 => 0.76720248988371
904 => 0.7606390492598
905 => 0.77524527612986
906 => 0.84616896776105
907 => 0.84453394711137
908 => 0.83413277993293
909 => 0.8420219735661
910 => 0.81207394904693
911 => 0.81979223686936
912 => 0.78052511992532
913 => 0.79827549672369
914 => 0.81340239749369
915 => 0.81643934678086
916 => 0.82328174859534
917 => 0.76481417425167
918 => 0.79106439861418
919 => 0.80648394611375
920 => 0.73681786954273
921 => 0.80510687177346
922 => 0.76379638386095
923 => 0.74977498380074
924 => 0.76865295180283
925 => 0.76129618931299
926 => 0.75497127692782
927 => 0.7514418671411
928 => 0.76530376335653
929 => 0.76465708932953
930 => 0.74197633664297
1001 => 0.7123902193491
1002 => 0.72232029144412
1003 => 0.71871260315707
1004 => 0.70563787540378
1005 => 0.71444866326085
1006 => 0.67565041257601
1007 => 0.60890003883032
1008 => 0.65299738034597
1009 => 0.65129968066629
1010 => 0.65044362350325
1011 => 0.68358155689125
1012 => 0.6803961092182
1013 => 0.67461449049961
1014 => 0.70553169144201
1015 => 0.694246497203
1016 => 0.72902480672148
1017 => 0.75193205069037
1018 => 0.74612203264815
1019 => 0.76766640632122
1020 => 0.72254906024926
1021 => 0.73753523282062
1022 => 0.74062386221764
1023 => 0.70515017798154
1024 => 0.68091728785261
1025 => 0.67930123035618
1026 => 0.63728473837057
1027 => 0.65972960924401
1028 => 0.67948016678077
1029 => 0.67002118242584
1030 => 0.66702675055819
1031 => 0.68232465355698
1101 => 0.68351343163767
1102 => 0.656409165417
1103 => 0.66204500064476
1104 => 0.68554737042416
1105 => 0.66145280122718
1106 => 0.61464098910298
1107 => 0.60303101247224
1108 => 0.60148202757538
1109 => 0.56999485015396
1110 => 0.60380684662597
1111 => 0.58904700406077
1112 => 0.63567316987419
1113 => 0.60904055402271
1114 => 0.60789247518328
1115 => 0.60615698563095
1116 => 0.57905467130541
1117 => 0.58498835570077
1118 => 0.60471282635661
1119 => 0.61175073969868
1120 => 0.61101662767718
1121 => 0.60461616568975
1122 => 0.60754626441192
1123 => 0.59810739551373
1124 => 0.59477433445271
1125 => 0.58425427691345
1126 => 0.56879269857082
1127 => 0.57094272587073
1128 => 0.54030929343193
1129 => 0.52361857359995
1130 => 0.51899880233062
1201 => 0.51282105111572
1202 => 0.51969659576871
1203 => 0.54022251276672
1204 => 0.5154639020509
1205 => 0.47301700059325
1206 => 0.47556813169686
1207 => 0.48129976584904
1208 => 0.47061890352501
1209 => 0.46051036371214
1210 => 0.46929891894767
1211 => 0.45131360723245
1212 => 0.48347320484398
1213 => 0.48260337785482
1214 => 0.49459048710822
1215 => 0.50208627252462
1216 => 0.48481091392917
1217 => 0.48046620795995
1218 => 0.48294114993589
1219 => 0.44203587207492
1220 => 0.49124765321914
1221 => 0.49167323874604
1222 => 0.48802911708426
1223 => 0.51423287130028
1224 => 0.56953096585196
1225 => 0.54872559832092
1226 => 0.54066913116733
1227 => 0.52535378121913
1228 => 0.54576057568961
1229 => 0.54419365226987
1230 => 0.5371074303277
1231 => 0.53282166118673
]
'min_raw' => 0.4002456511603
'max_raw' => 1.0269845104628
'avg_raw' => 0.71361508081155
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.400245'
'max' => '$1.02'
'avg' => '$0.713615'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.24612537171101
'max_diff' => 0.59694113795697
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.012563253639461
]
1 => [
'year' => 2028
'avg' => 0.021562190383905
]
2 => [
'year' => 2029
'avg' => 0.05890401792212
]
3 => [
'year' => 2030
'avg' => 0.04544436210442
]
4 => [
'year' => 2031
'avg' => 0.044631995444335
]
5 => [
'year' => 2032
'avg' => 0.078253934219823
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.012563253639461
'min' => '$0.012563'
'max_raw' => 0.078253934219823
'max' => '$0.078253'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.078253934219823
]
1 => [
'year' => 2033
'avg' => 0.20127716557055
]
2 => [
'year' => 2034
'avg' => 0.12757914046656
]
3 => [
'year' => 2035
'avg' => 0.15047988874699
]
4 => [
'year' => 2036
'avg' => 0.29208182597755
]
5 => [
'year' => 2037
'avg' => 0.71361508081155
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.078253934219823
'min' => '$0.078253'
'max_raw' => 0.71361508081155
'max' => '$0.713615'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.71361508081155
]
]
]
]
'prediction_2025_max_price' => '$0.02148'
'last_price' => 0.02082842
'sma_50day_nextmonth' => '$0.020098'
'sma_200day_nextmonth' => '$0.026257'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.021584'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.021638'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.021552'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.021513'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.025353'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.03123'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.027333'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.021368'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.021489'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.021578'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.022275'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.02570042'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.027812'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.028318'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.028068'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.026542'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.037583'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.085977'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.021652'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.023114'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.0261074'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.027598'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.029985'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.067215'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.21002'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '31.50'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 75.93
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.021181'
'vwma_10_action' => 'SELL'
'hma_9' => '0.021745'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -244.77
'cci_20_action' => 'BUY'
'adx_14' => 32.49
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000992'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 35.13
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.013635'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 32
'buy_signals' => 0
'sell_pct' => 100
'buy_pct' => 0
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767675752
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Impossible Finance Launchpad para 2026
A previsão de preço para Impossible Finance Launchpad em 2026 sugere que o preço médio poderia variar entre $0.007196 na extremidade inferior e $0.02148 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Impossible Finance Launchpad poderia potencialmente ganhar 3.13% até 2026 se IDIA atingir a meta de preço prevista.
Previsão de preço de Impossible Finance Launchpad 2027-2032
A previsão de preço de IDIA para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.012563 na extremidade inferior e $0.078253 na extremidade superior. Considerando a volatilidade de preços no mercado, se Impossible Finance Launchpad atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Impossible Finance Launchpad | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.006927 | $0.012563 | $0.018198 |
| 2028 | $0.0125023 | $0.021562 | $0.030622 |
| 2029 | $0.027463 | $0.058904 | $0.090344 |
| 2030 | $0.023356 | $0.045444 | $0.067531 |
| 2031 | $0.027615 | $0.044631 | $0.061648 |
| 2032 | $0.042152 | $0.078253 | $0.114355 |
Previsão de preço de Impossible Finance Launchpad 2032-2037
A previsão de preço de Impossible Finance Launchpad para 2032-2037 é atualmente estimada entre $0.078253 na extremidade inferior e $0.713615 na extremidade superior. Comparado ao preço atual, Impossible Finance Launchpad poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Impossible Finance Launchpad | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.042152 | $0.078253 | $0.114355 |
| 2033 | $0.097953 | $0.201277 | $0.3046012 |
| 2034 | $0.078749 | $0.127579 | $0.1764087 |
| 2035 | $0.0931063 | $0.150479 | $0.207853 |
| 2036 | $0.15412 | $0.292081 | $0.430043 |
| 2037 | $0.400245 | $0.713615 | $1.02 |
Impossible Finance Launchpad Histograma de preços potenciais
Previsão de preço de Impossible Finance Launchpad baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Impossible Finance Launchpad é Baixista, com 0 indicadores técnicos mostrando sinais de alta e 32 indicando sinais de baixa. A previsão de preço de IDIA foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Impossible Finance Launchpad
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Impossible Finance Launchpad está projetado para aumentar no próximo mês, alcançando $0.026257 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Impossible Finance Launchpad é esperado para alcançar $0.020098 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 31.50, sugerindo que o mercado de IDIA está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de IDIA para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.021584 | SELL |
| SMA 5 | $0.021638 | SELL |
| SMA 10 | $0.021552 | SELL |
| SMA 21 | $0.021513 | SELL |
| SMA 50 | $0.025353 | SELL |
| SMA 100 | $0.03123 | SELL |
| SMA 200 | $0.027333 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.021368 | SELL |
| EMA 5 | $0.021489 | SELL |
| EMA 10 | $0.021578 | SELL |
| EMA 21 | $0.022275 | SELL |
| EMA 50 | $0.02570042 | SELL |
| EMA 100 | $0.027812 | SELL |
| EMA 200 | $0.028318 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.028068 | SELL |
| SMA 50 | $0.026542 | SELL |
| SMA 100 | $0.037583 | SELL |
| SMA 200 | $0.085977 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.027598 | SELL |
| EMA 50 | $0.029985 | SELL |
| EMA 100 | $0.067215 | SELL |
| EMA 200 | $0.21002 | SELL |
Osciladores de Impossible Finance Launchpad
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 31.50 | NEUTRAL |
| Stoch RSI (14) | 75.93 | NEUTRAL |
| Estocástico Rápido (14) | 0 | BUY |
| Índice de Canal de Commodities (20) | -244.77 | BUY |
| Índice Direcional Médio (14) | 32.49 | SELL |
| Oscilador Impressionante (5, 34) | -0.000992 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -100 | BUY |
| Oscilador Ultimate (7, 14, 28) | 35.13 | NEUTRAL |
| VWMA (10) | 0.021181 | SELL |
| Média Móvel de Hull (9) | 0.021745 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.013635 | SELL |
Previsão do preço de Impossible Finance Launchpad com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Impossible Finance Launchpad
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Impossible Finance Launchpad por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.029267 | $0.041125 | $0.057788 | $0.0812022 | $0.1141027 | $0.160333 |
| Amazon.com stock | $0.043459 | $0.090681 | $0.189211 | $0.394802 | $0.823777 | $1.71 |
| Apple stock | $0.029543 | $0.0419052 | $0.059439 | $0.08431 | $0.119587 | $0.169625 |
| Netflix stock | $0.032863 | $0.051854 | $0.081817 | $0.129095 | $0.203692 | $0.321395 |
| Google stock | $0.026972 | $0.034929 | $0.045233 | $0.058577 | $0.075857 | $0.098234 |
| Tesla stock | $0.047216 | $0.107036 | $0.242642 | $0.550052 | $1.24 | $2.82 |
| Kodak stock | $0.015619 | $0.011712 | $0.008783 | $0.006586 | $0.004939 | $0.0037038 |
| Nokia stock | $0.013797 | $0.00914 | $0.006055 | $0.004011 | $0.002657 | $0.00176 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Impossible Finance Launchpad
Você pode fazer perguntas como: 'Devo investir em Impossible Finance Launchpad agora?', 'Devo comprar IDIA hoje?', 'Impossible Finance Launchpad será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Impossible Finance Launchpad regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Impossible Finance Launchpad, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Impossible Finance Launchpad para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Impossible Finance Launchpad é de $0.02082 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Impossible Finance Launchpad com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Impossible Finance Launchpad tiver 1% da média anterior do crescimento anual do Bitcoin | $0.021369 | $0.021925 | $0.022495 | $0.023079 |
| Se Impossible Finance Launchpad tiver 2% da média anterior do crescimento anual do Bitcoin | $0.021911 | $0.02305 | $0.024248 | $0.0255092 |
| Se Impossible Finance Launchpad tiver 5% da média anterior do crescimento anual do Bitcoin | $0.023535 | $0.026594 | $0.03005 | $0.033956 |
| Se Impossible Finance Launchpad tiver 10% da média anterior do crescimento anual do Bitcoin | $0.026242 | $0.033063 | $0.041657 | $0.052486 |
| Se Impossible Finance Launchpad tiver 20% da média anterior do crescimento anual do Bitcoin | $0.031656 | $0.048113 | $0.073125 | $0.111141 |
| Se Impossible Finance Launchpad tiver 50% da média anterior do crescimento anual do Bitcoin | $0.047898 | $0.110149 | $0.2533072 | $0.58252 |
| Se Impossible Finance Launchpad tiver 100% da média anterior do crescimento anual do Bitcoin | $0.074968 | $0.269834 | $0.971221 | $3.49 |
Perguntas Frequentes sobre Impossible Finance Launchpad
IDIA é um bom investimento?
A decisão de adquirir Impossible Finance Launchpad depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Impossible Finance Launchpad experimentou uma queda de -5.2202% nas últimas 24 horas, e Impossible Finance Launchpad registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Impossible Finance Launchpad dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Impossible Finance Launchpad pode subir?
Parece que o valor médio de Impossible Finance Launchpad pode potencialmente subir para $0.02148 até o final deste ano. Observando as perspectivas de Impossible Finance Launchpad em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.067531. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Impossible Finance Launchpad na próxima semana?
Com base na nossa nova previsão experimental de Impossible Finance Launchpad, o preço de Impossible Finance Launchpad aumentará 0.86% na próxima semana e atingirá $0.02100666 até 13 de janeiro de 2026.
Qual será o preço de Impossible Finance Launchpad no próximo mês?
Com base na nossa nova previsão experimental de Impossible Finance Launchpad, o preço de Impossible Finance Launchpad diminuirá -11.62% no próximo mês e atingirá $0.018408 até 5 de fevereiro de 2026.
Até onde o preço de Impossible Finance Launchpad pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Impossible Finance Launchpad em 2026, espera-se que IDIA fluctue dentro do intervalo de $0.007196 e $0.02148. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Impossible Finance Launchpad não considera flutuações repentinas e extremas de preço.
Onde estará Impossible Finance Launchpad em 5 anos?
O futuro de Impossible Finance Launchpad parece seguir uma tendência de alta, com um preço máximo de $0.067531 projetada após um período de cinco anos. Com base na previsão de Impossible Finance Launchpad para 2030, o valor de Impossible Finance Launchpad pode potencialmente atingir seu pico mais alto de aproximadamente $0.067531, enquanto seu pico mais baixo está previsto para cerca de $0.023356.
Quanto será Impossible Finance Launchpad em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Impossible Finance Launchpad, espera-se que o valor de IDIA em 2026 aumente 3.13% para $0.02148 se o melhor cenário ocorrer. O preço ficará entre $0.02148 e $0.007196 durante 2026.
Quanto será Impossible Finance Launchpad em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Impossible Finance Launchpad, o valor de IDIA pode diminuir -12.62% para $0.018198 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.018198 e $0.006927 ao longo do ano.
Quanto será Impossible Finance Launchpad em 2028?
Nosso novo modelo experimental de previsão de preços de Impossible Finance Launchpad sugere que o valor de IDIA em 2028 pode aumentar 47.02%, alcançando $0.030622 no melhor cenário. O preço é esperado para variar entre $0.030622 e $0.0125023 durante o ano.
Quanto será Impossible Finance Launchpad em 2029?
Com base no nosso modelo de previsão experimental, o valor de Impossible Finance Launchpad pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.090344 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.090344 e $0.027463.
Quanto será Impossible Finance Launchpad em 2030?
Usando nossa nova simulação experimental para previsões de preços de Impossible Finance Launchpad, espera-se que o valor de IDIA em 2030 aumente 224.23%, alcançando $0.067531 no melhor cenário. O preço está previsto para variar entre $0.067531 e $0.023356 ao longo de 2030.
Quanto será Impossible Finance Launchpad em 2031?
Nossa simulação experimental indica que o preço de Impossible Finance Launchpad poderia aumentar 195.98% em 2031, potencialmente atingindo $0.061648 sob condições ideais. O preço provavelmente oscilará entre $0.061648 e $0.027615 durante o ano.
Quanto será Impossible Finance Launchpad em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Impossible Finance Launchpad, IDIA poderia ver um 449.04% aumento em valor, atingindo $0.114355 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.114355 e $0.042152 ao longo do ano.
Quanto será Impossible Finance Launchpad em 2033?
De acordo com nossa previsão experimental de preços de Impossible Finance Launchpad, espera-se que o valor de IDIA seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.3046012. Ao longo do ano, o preço de IDIA poderia variar entre $0.3046012 e $0.097953.
Quanto será Impossible Finance Launchpad em 2034?
Os resultados da nossa nova simulação de previsão de preços de Impossible Finance Launchpad sugerem que IDIA pode aumentar 746.96% em 2034, atingindo potencialmente $0.1764087 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.1764087 e $0.078749.
Quanto será Impossible Finance Launchpad em 2035?
Com base em nossa previsão experimental para o preço de Impossible Finance Launchpad, IDIA poderia aumentar 897.93%, com o valor potencialmente atingindo $0.207853 em 2035. A faixa de preço esperada para o ano está entre $0.207853 e $0.0931063.
Quanto será Impossible Finance Launchpad em 2036?
Nossa recente simulação de previsão de preços de Impossible Finance Launchpad sugere que o valor de IDIA pode aumentar 1964.7% em 2036, possivelmente atingindo $0.430043 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.430043 e $0.15412.
Quanto será Impossible Finance Launchpad em 2037?
De acordo com a simulação experimental, o valor de Impossible Finance Launchpad poderia aumentar 4830.69% em 2037, com um pico de $1.02 sob condições favoráveis. O preço é esperado para cair entre $1.02 e $0.400245 ao longo do ano.
Previsões relacionadas
Previsão de Preço do SelfKey
Previsão de Preço do Solchat
Previsão de Preço do pSTAKE Finance
Previsão de Preço do Groestlcoin
Previsão de Preço do Games for a Living
Previsão de Preço do Fideum
Previsão de Preço do district0x
Previsão de Preço do SOLO Coin
Previsão de Preço do Voxies
Previsão de Preço do Picasso
Previsão de Preço do Acet Token
Previsão de Preço do Dream Machine Token
Previsão de Preço do KILT Protocol [OLD]
Previsão de Preço do Fluence
Previsão de Preço do Vyvo Smart Chain
Previsão de Preço do HydraDX
Previsão de Preço do Leash
Previsão de Preço do BNB48 Club Token
Previsão de Preço do Turbo
Previsão de Preço do SafeMoon
Previsão de Preço do ASD
Previsão de Preço do UniLend Finance
Previsão de Preço do ECOx
Previsão de Preço do Botto
Previsão de Preço do Coinweb
Como ler e prever os movimentos de preço de Impossible Finance Launchpad?
Traders de Impossible Finance Launchpad utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Impossible Finance Launchpad
Médias móveis são ferramentas populares para a previsão de preço de Impossible Finance Launchpad. Uma média móvel simples (SMA) calcula o preço médio de fechamento de IDIA em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de IDIA acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de IDIA.
Como ler gráficos de Impossible Finance Launchpad e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Impossible Finance Launchpad em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de IDIA dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Impossible Finance Launchpad?
A ação de preço de Impossible Finance Launchpad é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de IDIA. A capitalização de mercado de Impossible Finance Launchpad pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de IDIA, grandes detentores de Impossible Finance Launchpad, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Impossible Finance Launchpad.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


