Predicción del precio de DexNet - Pronóstico de DEXNET
Predicción de precio de DexNet hasta $0.01304 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.004368 | $0.01304 |
| 2027 | $0.0042056 | $0.011048 |
| 2028 | $0.00759 | $0.01859 |
| 2029 | $0.016673 | $0.054847 |
| 2030 | $0.014179 | $0.040997 |
| 2031 | $0.016764 | $0.037426 |
| 2032 | $0.02559 | $0.069424 |
| 2033 | $0.059466 | $0.18492 |
| 2034 | $0.0478081 | $0.107096 |
| 2035 | $0.056524 | $0.126185 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en DexNet hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.80, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de DexNet para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'DexNet'
'name_with_ticker' => 'DexNet <small>DEXNET</small>'
'name_lang' => 'DexNet'
'name_lang_with_ticker' => 'DexNet <small>DEXNET</small>'
'name_with_lang' => 'DexNet'
'name_with_lang_with_ticker' => 'DexNet <small>DEXNET</small>'
'image' => '/uploads/coins/dexnet.jpg?1717131583'
'price_for_sd' => 0.01264
'ticker' => 'DEXNET'
'marketcap' => '$5.06M'
'low24h' => '$0.01177'
'high24h' => '$0.01885'
'volume24h' => '$688.67'
'current_supply' => '400.08M'
'max_supply' => '3B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01264'
'change_24h_pct' => '-13.0942%'
'ath_price' => '$0.0816'
'ath_days' => 387
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '15 dic. 2024'
'ath_pct' => '-84.58%'
'fdv' => '$37.93M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.623473'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.012752'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.011175'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004368'
'current_year_max_price_prediction' => '$0.01304'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.014179'
'grand_prediction_max_price' => '$0.040997'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.012884361361362
107 => 0.012932466889662
108 => 0.013040851101251
109 => 0.012114719879992
110 => 0.012530525608553
111 => 0.012774772518355
112 => 0.011671256094092
113 => 0.012752959546723
114 => 0.012098597995886
115 => 0.011876497857351
116 => 0.01217552643442
117 => 0.012058994707121
118 => 0.011958807570962
119 => 0.011902901427552
120 => 0.012122475011972
121 => 0.012112231641812
122 => 0.011752966640305
123 => 0.011284320091354
124 => 0.01144161325598
125 => 0.01138446717464
126 => 0.011177362403872
127 => 0.011316926013444
128 => 0.010702358508416
129 => 0.0096450270584526
130 => 0.010343532601236
131 => 0.010316640897667
201 => 0.010303080881286
202 => 0.010827988491412
203 => 0.010777530736378
204 => 0.010685949416906
205 => 0.011175680441121
206 => 0.010996922029471
207 => 0.011547813333399
208 => 0.011910665975581
209 => 0.01181863480847
210 => 0.012159899472262
211 => 0.011445236972806
212 => 0.011682619187842
213 => 0.011731543333364
214 => 0.011169637236302
215 => 0.010785786249123
216 => 0.0107601877645
217 => 0.010094643050657
218 => 0.010450171664702
219 => 0.010763022132289
220 => 0.010613191036492
221 => 0.010565758987639
222 => 0.010808079038471
223 => 0.010826909381752
224 => 0.010397575559406
225 => 0.010486847656305
226 => 0.010859127140629
227 => 0.010477467168471
228 => 0.0097359641863717
301 => 0.0095520611947303
302 => 0.0095275251456407
303 => 0.0090287656467789
304 => 0.0095643504719982
305 => 0.009330553343009
306 => 0.010069115672166
307 => 0.0096472528307408
308 => 0.0096290671668135
309 => 0.0096015768685305
310 => 0.0091722739643648
311 => 0.0092662640167542
312 => 0.0095787012659859
313 => 0.0096901823963693
314 => 0.0096785540011323
315 => 0.0095771701530151
316 => 0.0096235831595139
317 => 0.0094740706942179
318 => 0.0094212747308891
319 => 0.0092546361479494
320 => 0.0090097234661116
321 => 0.0090437800766579
322 => 0.008558543969048
323 => 0.0082941615841928
324 => 0.0082209840245686
325 => 0.0081231279335385
326 => 0.0082320371304356
327 => 0.0085571693561219
328 => 0.0081649909112947
329 => 0.0074926284757577
330 => 0.0075330386037833
331 => 0.0076238281635822
401 => 0.00745464241953
402 => 0.0072945223114679
403 => 0.0074337337544729
404 => 0.0071488449269385
405 => 0.0076582556173172
406 => 0.0076444774857495
407 => 0.0078343542893769
408 => 0.0079530881513493
409 => 0.0076794450400471
410 => 0.0076106245375642
411 => 0.0076498278234959
412 => 0.0070018848334437
413 => 0.0077814035236419
414 => 0.0077881448336449
415 => 0.0077304216446308
416 => 0.0081454912822219
417 => 0.0090214176810056
418 => 0.0086918589357254
419 => 0.0085642438285871
420 => 0.0083216474166311
421 => 0.0086448927316128
422 => 0.0086200725348347
423 => 0.0085078261922238
424 => 0.0084399392539827
425 => 0.0085650230192189
426 => 0.0084244399912292
427 => 0.008399187416439
428 => 0.0082461842882827
429 => 0.0081915691327297
430 => 0.0081511342458502
501 => 0.0081066194084458
502 => 0.0082048080473535
503 => 0.0079822996737975
504 => 0.0077139763880536
505 => 0.0076916682101422
506 => 0.0077532630507107
507 => 0.0077260119189557
508 => 0.0076915377422077
509 => 0.0076257171503122
510 => 0.0076061895867312
511 => 0.0076696446949423
512 => 0.0075980075774347
513 => 0.0077037120465929
514 => 0.0076749662798769
515 => 0.0075143947637337
516 => 0.0073142632034298
517 => 0.007312481612753
518 => 0.007269363596367
519 => 0.0072144463196624
520 => 0.0071991695896203
521 => 0.0074220097550353
522 => 0.0078832822283996
523 => 0.0077927234045634
524 => 0.0078581614356267
525 => 0.0081800517820579
526 => 0.008282371043608
527 => 0.0082097472553243
528 => 0.0081103353346814
529 => 0.0081147089546656
530 => 0.0084544295815374
531 => 0.0084756175403255
601 => 0.0085291526766887
602 => 0.0085979604559431
603 => 0.0082214655176645
604 => 0.0080969760769303
605 => 0.0080379860734992
606 => 0.0078563196949358
607 => 0.0080522313093182
608 => 0.0079380820013894
609 => 0.0079534846429246
610 => 0.0079434536524185
611 => 0.0079489312515274
612 => 0.0076581132266475
613 => 0.0077640720299683
614 => 0.0075878949683995
615 => 0.0073520136597621
616 => 0.0073512229029049
617 => 0.0074089545190211
618 => 0.0073746134947168
619 => 0.0072822026813025
620 => 0.0072953292011812
621 => 0.0071803270746699
622 => 0.0073092925415204
623 => 0.0073129908096491
624 => 0.0072633320801152
625 => 0.0074620211756033
626 => 0.0075434242601396
627 => 0.0075107378205674
628 => 0.0075411308924039
629 => 0.0077964865325424
630 => 0.0078381206438327
701 => 0.0078566117658728
702 => 0.0078318361119433
703 => 0.0075457983247426
704 => 0.0075584853169316
705 => 0.0074653965862007
706 => 0.007386746418182
707 => 0.0073898920124369
708 => 0.0074303284226047
709 => 0.0076069165973717
710 => 0.0079785360007273
711 => 0.0079926386854344
712 => 0.0080097315507037
713 => 0.0079402062774675
714 => 0.0079192367897922
715 => 0.0079469009567199
716 => 0.0080864616658003
717 => 0.008445449699918
718 => 0.0083185593526562
719 => 0.0082153955251664
720 => 0.0083058980146431
721 => 0.0082919658657701
722 => 0.0081743645084631
723 => 0.008171063830047
724 => 0.0079453492259465
725 => 0.0078619076760835
726 => 0.0077921776715261
727 => 0.0077160343268974
728 => 0.0076708939998534
729 => 0.0077402500581047
730 => 0.0077561126092235
731 => 0.0076044643757207
801 => 0.0075837952818537
802 => 0.0077076345028866
803 => 0.0076531374789015
804 => 0.0077091890195313
805 => 0.0077221934577587
806 => 0.0077200994436864
807 => 0.0076631982917027
808 => 0.0076994653891604
809 => 0.0076136828919309
810 => 0.0075204073103083
811 => 0.0074609033005072
812 => 0.0074089781598942
813 => 0.0074377892458132
814 => 0.0073350829852084
815 => 0.0073022251853723
816 => 0.0076871789125772
817 => 0.0079715483698135
818 => 0.0079674135252826
819 => 0.0079422437225965
820 => 0.0079048465013131
821 => 0.0080837258261305
822 => 0.0080214078461691
823 => 0.0080667493834325
824 => 0.0080782907076444
825 => 0.0081132228200092
826 => 0.0081257080476631
827 => 0.0080879690181448
828 => 0.0079613122256472
829 => 0.0076456955409096
830 => 0.0074987751221733
831 => 0.0074502889368372
901 => 0.0074520513175858
902 => 0.0074034369889255
903 => 0.0074177560874573
904 => 0.0073984573908146
905 => 0.0073619103282294
906 => 0.0074355325676855
907 => 0.0074440168449442
908 => 0.0074268325345349
909 => 0.0074308800617174
910 => 0.0072886013110434
911 => 0.0072994184554439
912 => 0.0072391872208454
913 => 0.0072278945904566
914 => 0.0070756352743252
915 => 0.0068058858254577
916 => 0.0069553532053429
917 => 0.0067748176287357
918 => 0.0067064460703141
919 => 0.0070301063939228
920 => 0.0069976198743725
921 => 0.0069420170744529
922 => 0.006859768944733
923 => 0.0068292623133615
924 => 0.0066439136783741
925 => 0.0066329622922225
926 => 0.0067248260805564
927 => 0.0066824341030803
928 => 0.0066228997116065
929 => 0.0064072721805928
930 => 0.0061648354439114
1001 => 0.0061721530850888
1002 => 0.0062492677003313
1003 => 0.0064734888444716
1004 => 0.0063858817643908
1005 => 0.0063223218226168
1006 => 0.0063104189561273
1007 => 0.0064594082505816
1008 => 0.0066702593164566
1009 => 0.0067691859190385
1010 => 0.0066711526603254
1011 => 0.0065585373312014
1012 => 0.006565391704476
1013 => 0.0066109907790585
1014 => 0.006615782597061
1015 => 0.0065424815948441
1016 => 0.0065631153976051
1017 => 0.0065317707644167
1018 => 0.0063394088083973
1019 => 0.0063359295905992
1020 => 0.0062887208643365
1021 => 0.0062872914028672
1022 => 0.0062069775827257
1023 => 0.0061957411241046
1024 => 0.0060362731595131
1025 => 0.0061412354567207
1026 => 0.0060708322585218
1027 => 0.0059647180324005
1028 => 0.0059464238998203
1029 => 0.0059458739561041
1030 => 0.0060548295396239
1031 => 0.0061399622472903
1101 => 0.0060720569522967
1102 => 0.0060565962329155
1103 => 0.0062216762673664
1104 => 0.0062006683282446
1105 => 0.0061824755884518
1106 => 0.0066513799161423
1107 => 0.0062802055517143
1108 => 0.0061183523429316
1109 => 0.0059180282619724
1110 => 0.0059832547928544
1111 => 0.0059969989812884
1112 => 0.005515255677711
1113 => 0.005319812479447
1114 => 0.0052527437389243
1115 => 0.0052141447305407
1116 => 0.005231734783357
1117 => 0.0050558129817186
1118 => 0.0051740353418976
1119 => 0.0050217019319786
1120 => 0.0049961627400698
1121 => 0.0052685537474934
1122 => 0.0053064553648913
1123 => 0.0051447552899627
1124 => 0.005248592914931
1125 => 0.0052109399486665
1126 => 0.0050243132510682
1127 => 0.005017185483953
1128 => 0.0049235427673438
1129 => 0.0047770100486534
1130 => 0.0047100406642141
1201 => 0.0046751624273433
1202 => 0.0046895538676395
1203 => 0.0046822771150404
1204 => 0.0046347913821462
1205 => 0.0046849989416651
1206 => 0.0045567393742902
1207 => 0.004505665381104
1208 => 0.0044825964432894
1209 => 0.004368758694899
1210 => 0.0045499251764646
1211 => 0.0045856172556083
1212 => 0.0046213796591737
1213 => 0.0049326669661805
1214 => 0.0049171159320112
1215 => 0.0050576897072405
1216 => 0.0050522272688337
1217 => 0.0050121333509941
1218 => 0.0048429837067583
1219 => 0.0049104037401482
1220 => 0.0047028953567735
1221 => 0.0048583747467963
1222 => 0.0047874204461645
1223 => 0.0048343850263791
1224 => 0.0047499384765278
1225 => 0.0047966746839281
1226 => 0.0045940811716621
1227 => 0.0044049022004757
1228 => 0.0044810333409596
1229 => 0.0045637965973174
1230 => 0.0047432484247869
1231 => 0.0046363683967915
]
'min_raw' => 0.004368758694899
'max_raw' => 0.013040851101251
'avg_raw' => 0.008704804898075
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004368'
'max' => '$0.01304'
'avg' => '$0.0087048'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.008275991305101
'max_diff' => 0.00039610110125106
'year' => 2026
]
1 => [
'items' => [
101 => 0.00467480649644
102 => 0.0045460452970779
103 => 0.0042803741639756
104 => 0.0042818778337371
105 => 0.0042410101178696
106 => 0.0042056944445758
107 => 0.0046486448537099
108 => 0.0045935569683244
109 => 0.0045057816326867
110 => 0.0046232724074909
111 => 0.0046543388331785
112 => 0.0046552232506436
113 => 0.0047409414870649
114 => 0.0047866893252088
115 => 0.0047947525799642
116 => 0.0049296320770382
117 => 0.0049748419053539
118 => 0.0051610547898516
119 => 0.0047828079407647
120 => 0.00477501819582
121 => 0.0046249257436359
122 => 0.004529734737593
123 => 0.0046314435532591
124 => 0.0047215436793015
125 => 0.0046277254057052
126 => 0.004639976091625
127 => 0.0045140327245566
128 => 0.0045590515520973
129 => 0.0045978278310664
130 => 0.004576417848984
131 => 0.0045443660695518
201 => 0.0047141564964543
202 => 0.0047045762551544
203 => 0.004862689004151
204 => 0.004985949198745
205 => 0.0052068535028528
206 => 0.0049763283455145
207 => 0.0049679270925266
208 => 0.0050500506880869
209 => 0.0049748293326593
210 => 0.0050223666327366
211 => 0.0051991945088866
212 => 0.0052029306032679
213 => 0.0051403462086949
214 => 0.0051365379425975
215 => 0.0051485579601735
216 => 0.0052189595785545
217 => 0.005194359089869
218 => 0.0052228273981841
219 => 0.0052584274536543
220 => 0.0054056843771901
221 => 0.0054411875229186
222 => 0.0053549332850689
223 => 0.005362721076999
224 => 0.0053304596243114
225 => 0.00529929546525
226 => 0.00536934794366
227 => 0.0054973702248392
228 => 0.0054965738048724
301 => 0.0055262724857084
302 => 0.0055447745178321
303 => 0.0054653502516419
304 => 0.0054136479748633
305 => 0.0054334739176816
306 => 0.0054651760320009
307 => 0.0054231933492783
308 => 0.0051640567832441
309 => 0.0052426622636709
310 => 0.0052295784681163
311 => 0.0052109455522026
312 => 0.00528998397061
313 => 0.0052823605223391
314 => 0.0050540086493696
315 => 0.0050686269953913
316 => 0.0050548976394087
317 => 0.0050992599973505
318 => 0.0049724336197456
319 => 0.0050114445593082
320 => 0.005035911854897
321 => 0.0050503232799654
322 => 0.0051023872293192
323 => 0.0050962781257824
324 => 0.0051020074788658
325 => 0.0051792045713845
326 => 0.0055696409745009
327 => 0.0055908915664732
328 => 0.0054862458795629
329 => 0.0055280497674387
330 => 0.0054477954442225
331 => 0.0055016707090548
401 => 0.0055385307969696
402 => 0.0053719671474697
403 => 0.0053621043291354
404 => 0.0052815187677793
405 => 0.0053248208838526
406 => 0.0052559241036477
407 => 0.0052728289636029
408 => 0.0052255615014289
409 => 0.0053106335224843
410 => 0.0054057572608797
411 => 0.0054297892737487
412 => 0.0053665713943225
413 => 0.0053207974833567
414 => 0.0052404335745644
415 => 0.0053740805459125
416 => 0.0054131629931524
417 => 0.0053738752624551
418 => 0.0053647714367986
419 => 0.00534751970363
420 => 0.0053684314735446
421 => 0.0054129501417513
422 => 0.0053919559599557
423 => 0.0054058229869016
424 => 0.0053529761798001
425 => 0.0054653765443789
426 => 0.0056438953739508
427 => 0.0056444693411787
428 => 0.0056234750462166
429 => 0.0056148846330466
430 => 0.005636426053718
501 => 0.0056481113907569
502 => 0.0057177723951872
503 => 0.0057925214283578
504 => 0.0061413425506068
505 => 0.0060433949753096
506 => 0.0063528898264303
507 => 0.0065976600707901
508 => 0.0066710559645681
509 => 0.006603535195836
510 => 0.006372550293404
511 => 0.006361217072119
512 => 0.0067064060356629
513 => 0.0066088743428056
514 => 0.0065972732582835
515 => 0.00647385731931
516 => 0.0065468114246047
517 => 0.0065308552916046
518 => 0.0065056677550632
519 => 0.0066448591059385
520 => 0.0069054128890796
521 => 0.0068648031385192
522 => 0.0068344898435579
523 => 0.0067016658091052
524 => 0.0067816555451678
525 => 0.0067531727322584
526 => 0.0068755529721571
527 => 0.0068030576290953
528 => 0.0066081354443071
529 => 0.0066391774447066
530 => 0.006634485508794
531 => 0.0067310452173999
601 => 0.0067020603896357
602 => 0.0066288257559832
603 => 0.0069045223445746
604 => 0.0068866201416165
605 => 0.0069120013723978
606 => 0.0069231749751283
607 => 0.0070909866302851
608 => 0.0071597336960288
609 => 0.0071753404835394
610 => 0.007240644878907
611 => 0.0071737156506917
612 => 0.007441480283284
613 => 0.0076195281394584
614 => 0.0078263398866639
615 => 0.0081285474350882
616 => 0.0082421802688719
617 => 0.008221653514537
618 => 0.0084507838287052
619 => 0.0088625259099849
620 => 0.0083048783613202
621 => 0.0088920825841381
622 => 0.0087061805067927
623 => 0.0082654100256424
624 => 0.0082370296029989
625 => 0.0085355244902844
626 => 0.0091975574212156
627 => 0.0090317256807327
628 => 0.0091978286625354
629 => 0.0090040607111832
630 => 0.008994438499194
701 => 0.0091884177856364
702 => 0.0096416609616695
703 => 0.0094263421183025
704 => 0.0091176297579896
705 => 0.0093455781607484
706 => 0.00914810815865
707 => 0.0087031529755488
708 => 0.009031598872326
709 => 0.0088119764547517
710 => 0.0088760739519698
711 => 0.0093376876073418
712 => 0.0092821450310492
713 => 0.009354022267876
714 => 0.0092271608262316
715 => 0.0091086522355226
716 => 0.0088874471504008
717 => 0.0088219592299751
718 => 0.0088400577351723
719 => 0.0088219502612548
720 => 0.0086981880491088
721 => 0.0086714616111794
722 => 0.0086269163770516
723 => 0.0086407228077523
724 => 0.0085569647354241
725 => 0.0087150335232081
726 => 0.0087443724831182
727 => 0.0088594017650245
728 => 0.008871344486667
729 => 0.0091916993994366
730 => 0.0090152532968287
731 => 0.0091336285760817
801 => 0.009123039976914
802 => 0.0082749628585019
803 => 0.0083918204027713
804 => 0.008573614069737
805 => 0.0084917162691845
806 => 0.0083759319403371
807 => 0.0082824298868299
808 => 0.0081407647146907
809 => 0.008340155724038
810 => 0.0086023336984598
811 => 0.0088779937527579
812 => 0.0092091812460348
813 => 0.0091352640529828
814 => 0.0088718024329403
815 => 0.0088836211287566
816 => 0.0089566796558074
817 => 0.0088620622252095
818 => 0.0088341576977745
819 => 0.008952846002241
820 => 0.0089536633433639
821 => 0.0088447945545625
822 => 0.0087238068185878
823 => 0.0087232998755564
824 => 0.0087017712765426
825 => 0.0090078906011217
826 => 0.0091762252774855
827 => 0.0091955245768458
828 => 0.0091749262808698
829 => 0.0091828537474738
830 => 0.0090849035082992
831 => 0.0093087887088113
901 => 0.0095142479087527
902 => 0.0094591804541728
903 => 0.0093766265114576
904 => 0.0093108683197484
905 => 0.0094436899140315
906 => 0.0094377755775186
907 => 0.0095124534018799
908 => 0.0095090655844068
909 => 0.0094839542408492
910 => 0.009459181350978
911 => 0.0095574030591169
912 => 0.0095291167845653
913 => 0.0095007865736164
914 => 0.00944396599842
915 => 0.009451688858279
916 => 0.009369149169666
917 => 0.0093309625329544
918 => 0.0087567271393654
919 => 0.0086032726785156
920 => 0.0086515525757525
921 => 0.0086674475715099
922 => 0.0086006639934908
923 => 0.0086964144890766
924 => 0.0086814918757644
925 => 0.0087395470347252
926 => 0.0087032766918685
927 => 0.0087047652393909
928 => 0.0088114285840802
929 => 0.0088423934068218
930 => 0.0088266444480587
1001 => 0.0088376744789337
1002 => 0.0090918568849627
1003 => 0.0090557202751212
1004 => 0.0090365234213722
1005 => 0.0090418410810543
1006 => 0.009106790135527
1007 => 0.0091249723246924
1008 => 0.0090479331115587
1009 => 0.0090842652498309
1010 => 0.0092389628833594
1011 => 0.0092930982999666
1012 => 0.0094658725633026
1013 => 0.0093924749854198
1014 => 0.0095271994161965
1015 => 0.0099412963854608
1016 => 0.01027210569784
1017 => 0.0099678797829031
1018 => 0.010575368956775
1019 => 0.011048386417781
1020 => 0.011030231219776
1021 => 0.010947749684359
1022 => 0.010409231880823
1023 => 0.0099136797691619
1024 => 0.010328230152821
1025 => 0.010329286927002
1026 => 0.010293676681399
1027 => 0.010072504504318
1028 => 0.010285980369055
1029 => 0.010302925307967
1030 => 0.010293440648199
1031 => 0.010123868458597
1101 => 0.0098649630672541
1102 => 0.0099155525609906
1103 => 0.0099984191837288
1104 => 0.009841535379097
1105 => 0.0097914014975922
1106 => 0.0098846099216708
1107 => 0.010184946884798
1108 => 0.010128169921653
1109 => 0.010126687245691
1110 => 0.010369603171208
1111 => 0.010195727793076
1112 => 0.0099161906565166
1113 => 0.0098456038428936
1114 => 0.009595068207507
1115 => 0.0097681140632458
1116 => 0.0097743416755263
1117 => 0.0096795662288239
1118 => 0.0099238811616792
1119 => 0.0099216297565622
1120 => 0.01015357042383
1121 => 0.010596953866708
1122 => 0.010465823565075
1123 => 0.010313333291212
1124 => 0.010329913212077
1125 => 0.010511754021241
1126 => 0.010401808916999
1127 => 0.010441345943049
1128 => 0.010511694177217
1129 => 0.010554137013539
1130 => 0.010323806341089
1201 => 0.010270105243351
1202 => 0.010160251643903
1203 => 0.010131592890322
1204 => 0.010221066354901
1205 => 0.010197493258129
1206 => 0.0097738182688286
1207 => 0.0097295418751414
1208 => 0.0097308997689236
1209 => 0.0096195646717693
1210 => 0.0094497519251239
1211 => 0.0098960096843157
1212 => 0.0098601689408793
1213 => 0.0098206035339786
1214 => 0.0098254500705669
1215 => 0.010019155438753
1216 => 0.0099067965428496
1217 => 0.01020552108287
1218 => 0.010144112297924
1219 => 0.01008112860936
1220 => 0.01007242234507
1221 => 0.010048178998489
1222 => 0.0099650395425095
1223 => 0.0098646436535077
1224 => 0.0097983535914457
1225 => 0.0090384632490975
1226 => 0.0091794944765586
1227 => 0.0093417380483516
1228 => 0.0093977438791843
1229 => 0.0093019420300595
1230 => 0.0099688223834321
1231 => 0.010090667850212
]
'min_raw' => 0.0042056944445758
'max_raw' => 0.011048386417781
'avg_raw' => 0.0076270404311786
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0042056'
'max' => '$0.011048'
'avg' => '$0.007627'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00016306425032318
'max_diff' => -0.0019924646834697
'year' => 2027
]
2 => [
'items' => [
101 => 0.009721589983552
102 => 0.0096525505840499
103 => 0.0099733485949697
104 => 0.0097798681784232
105 => 0.0098669923981471
106 => 0.0096786774895042
107 => 0.010061318845317
108 => 0.010058403759285
109 => 0.009909547629527
110 => 0.010035359811076
111 => 0.010013496848446
112 => 0.0098454386445655
113 => 0.01006664659014
114 => 0.010066756306521
115 => 0.0099234855180401
116 => 0.0097561766031031
117 => 0.0097262657207725
118 => 0.0097037318888981
119 => 0.009861450456855
120 => 0.010002860431712
121 => 0.010265989336415
122 => 0.010332146194846
123 => 0.010590360817613
124 => 0.010436606581997
125 => 0.010504763843195
126 => 0.010578758191659
127 => 0.010614233803364
128 => 0.010556428197816
129 => 0.010957541792353
130 => 0.010991408069535
131 => 0.011002763139332
201 => 0.010867509892094
202 => 0.010987646432058
203 => 0.010931438523513
204 => 0.01107767588654
205 => 0.011100607772315
206 => 0.011081185280889
207 => 0.01108846422339
208 => 0.010746184531739
209 => 0.010728435524058
210 => 0.010486426544912
211 => 0.010585046992754
212 => 0.010400680792514
213 => 0.010459145213793
214 => 0.010484915773623
215 => 0.010471454695634
216 => 0.010590622844906
217 => 0.01048930557358
218 => 0.010221912636449
219 => 0.0099544468482915
220 => 0.0099510890331941
221 => 0.0098806700123354
222 => 0.0098297699581416
223 => 0.0098395751143558
224 => 0.0098741297637611
225 => 0.0098277615791013
226 => 0.0098376565822251
227 => 0.010001979564141
228 => 0.010034933366267
229 => 0.0099229434707629
301 => 0.0094732878802504
302 => 0.009362941270463
303 => 0.0094422562253098
304 => 0.0094043487854303
305 => 0.0075900434491711
306 => 0.0080162875759537
307 => 0.0077630277897023
308 => 0.0078797415511295
309 => 0.0076212288906705
310 => 0.0077446046820509
311 => 0.0077218216783455
312 => 0.0084072096207313
313 => 0.0083965082307313
314 => 0.0084016304198193
315 => 0.0081571349888529
316 => 0.0085466228491568
317 => 0.008738498574673
318 => 0.008702987484487
319 => 0.0087119248608304
320 => 0.0085583511243063
321 => 0.0084031173492845
322 => 0.0082309392024785
323 => 0.0085508249173818
324 => 0.0085152590865158
325 => 0.0085968343063404
326 => 0.0088043030583582
327 => 0.00883485362019
328 => 0.0088759138851052
329 => 0.0088611967030018
330 => 0.0092118196887322
331 => 0.0091693569316753
401 => 0.0092716799588134
402 => 0.0090611937287235
403 => 0.0088230085798403
404 => 0.0088682797897838
405 => 0.0088639198082182
406 => 0.0088084122387338
407 => 0.0087583024869143
408 => 0.0086748838684699
409 => 0.0089388327208605
410 => 0.0089281168794806
411 => 0.0091015938956175
412 => 0.0090709301479494
413 => 0.0088661501363306
414 => 0.0088734638945072
415 => 0.0089226524331176
416 => 0.0090928945268728
417 => 0.009143433971265
418 => 0.0091200220869739
419 => 0.0091754362805366
420 => 0.0092192333997099
421 => 0.0091809365243925
422 => 0.009723139517925
423 => 0.0094979790327494
424 => 0.0096077206865674
425 => 0.0096338934243676
426 => 0.0095668525068458
427 => 0.009581391281301
428 => 0.0096034135630217
429 => 0.0097371285452253
430 => 0.010088035349269
501 => 0.010243449584077
502 => 0.010711020977499
503 => 0.010230544595347
504 => 0.010202035115239
505 => 0.010286258842498
506 => 0.010560772747895
507 => 0.010783240484439
508 => 0.010857045867123
509 => 0.010866800466839
510 => 0.011005264271242
511 => 0.011084629141729
512 => 0.010988451123428
513 => 0.010906950323176
514 => 0.010615024572925
515 => 0.010648815773404
516 => 0.010881603635583
517 => 0.011210430202047
518 => 0.011492597604646
519 => 0.011393792414782
520 => 0.012147606267846
521 => 0.012222343832324
522 => 0.012212017517468
523 => 0.012382280811789
524 => 0.012044342846078
525 => 0.011899867818497
526 => 0.010924571721264
527 => 0.011198590142775
528 => 0.011596892010981
529 => 0.011544175265168
530 => 0.011254917801838
531 => 0.011492378176921
601 => 0.011413866350846
602 => 0.011351940816162
603 => 0.011635633695405
604 => 0.011323701721217
605 => 0.011593780250922
606 => 0.01124740174297
607 => 0.011394243748567
608 => 0.011310889124241
609 => 0.011364829781739
610 => 0.011049493800199
611 => 0.01121964144149
612 => 0.011042415098928
613 => 0.011042331070566
614 => 0.011038418789231
615 => 0.011246924795313
616 => 0.011253724168686
617 => 0.011099637915156
618 => 0.011077431678743
619 => 0.011159539773523
620 => 0.01106341269868
621 => 0.011108389951982
622 => 0.011064775013863
623 => 0.011054956372622
624 => 0.010976719768704
625 => 0.010943013288576
626 => 0.010956230467943
627 => 0.01091111342084
628 => 0.010883928768005
629 => 0.011033011077555
630 => 0.010953362413526
701 => 0.01102080377747
702 => 0.010943945831477
703 => 0.010677522705252
704 => 0.010524299947987
705 => 0.010021051359985
706 => 0.010163772035265
707 => 0.01025839599063
708 => 0.010227122773946
709 => 0.010294309744511
710 => 0.010298434478834
711 => 0.010276591309813
712 => 0.01025129971837
713 => 0.010238989170369
714 => 0.01033074190933
715 => 0.010384007462552
716 => 0.010267892770456
717 => 0.010240688722715
718 => 0.010358087087292
719 => 0.010429700021866
720 => 0.010958449694923
721 => 0.010919278211304
722 => 0.011017590948172
723 => 0.011006522442733
724 => 0.011109569853418
725 => 0.011278008818803
726 => 0.0109355253059
727 => 0.010994968601551
728 => 0.010980394478204
729 => 0.011139510935371
730 => 0.011140007679583
731 => 0.011044609415054
801 => 0.011096326361915
802 => 0.011067459380957
803 => 0.011119625917154
804 => 0.010918755052259
805 => 0.011163394083031
806 => 0.011302088649289
807 => 0.011304014423476
808 => 0.011369754547134
809 => 0.011436550320181
810 => 0.01156475898986
811 => 0.011432974649969
812 => 0.011195907451452
813 => 0.011213022937463
814 => 0.011074030525712
815 => 0.011076367013264
816 => 0.011063894659595
817 => 0.011101325131832
818 => 0.010926968936017
819 => 0.010967889986676
820 => 0.010910600276119
821 => 0.010994844064909
822 => 0.010904211674169
823 => 0.01098038745012
824 => 0.011013262389754
825 => 0.011134571624749
826 => 0.010886294201526
827 => 0.010380039728672
828 => 0.010486460556608
829 => 0.010329055792915
830 => 0.010343624203077
831 => 0.010373054710149
901 => 0.010277660807665
902 => 0.010295858958051
903 => 0.010295208792061
904 => 0.010289606012805
905 => 0.010264790374482
906 => 0.010228802789288
907 => 0.010372166252305
908 => 0.010396526498292
909 => 0.010450676307525
910 => 0.010611789409636
911 => 0.010595690411427
912 => 0.010621948545447
913 => 0.010564627186313
914 => 0.010346283176525
915 => 0.010358140306742
916 => 0.010210281702948
917 => 0.010446895230595
918 => 0.010390862024102
919 => 0.010354737051358
920 => 0.01034488001785
921 => 0.010506392488178
922 => 0.010554719550698
923 => 0.010524605368444
924 => 0.010462840302071
925 => 0.010581447488711
926 => 0.010613181768221
927 => 0.010620285903088
928 => 0.010830435097143
929 => 0.010632030908569
930 => 0.010679788768727
1001 => 0.011052381960595
1002 => 0.010714491349916
1003 => 0.010893479542253
1004 => 0.010884719001647
1005 => 0.010976283304216
1006 => 0.010877208056275
1007 => 0.010878436212714
1008 => 0.010959739110292
1009 => 0.010845563853698
1010 => 0.010817292454516
1011 => 0.010778235719028
1012 => 0.010863514672103
1013 => 0.010914635547636
1014 => 0.011326632260287
1015 => 0.011592800925992
1016 => 0.011581245842244
1017 => 0.011686837677492
1018 => 0.011639267588603
1019 => 0.011485651223223
1020 => 0.011747855627406
1021 => 0.011664883182824
1022 => 0.011671723330344
1023 => 0.011671468739712
1024 => 0.011726638161782
1025 => 0.011687545570042
1026 => 0.01161049005895
1027 => 0.011661643103243
1028 => 0.011813549357244
1029 => 0.012285071030717
1030 => 0.012548940806023
1031 => 0.012269185738918
1101 => 0.012462157038138
1102 => 0.01234644302131
1103 => 0.012325414342259
1104 => 0.012446614578636
1105 => 0.012568026959982
1106 => 0.01256029351617
1107 => 0.012472154361908
1108 => 0.012422366790113
1109 => 0.012799374963802
1110 => 0.01307714816401
1111 => 0.013058205893971
1112 => 0.013141810913567
1113 => 0.013387277836906
1114 => 0.013409720256085
1115 => 0.013406893027101
1116 => 0.013351267149543
1117 => 0.013592961213479
1118 => 0.013794586653816
1119 => 0.013338391366074
1120 => 0.013512104559612
1121 => 0.01359009000888
1122 => 0.013704595785646
1123 => 0.013897786224447
1124 => 0.014107642282218
1125 => 0.014137318229742
1126 => 0.014116261724849
1127 => 0.013977856013516
1128 => 0.014207483016032
1129 => 0.01434199312869
1130 => 0.014422090822569
1201 => 0.014625205247261
1202 => 0.013590571620465
1203 => 0.012858206514792
1204 => 0.012743837128061
1205 => 0.012976411773333
1206 => 0.013037739852543
1207 => 0.013013018580712
1208 => 0.012188675070554
1209 => 0.012739497130082
1210 => 0.013332135351699
1211 => 0.013354900999386
1212 => 0.013651588084608
1213 => 0.013748201561171
1214 => 0.013987073552441
1215 => 0.013972132044349
1216 => 0.014030293572939
1217 => 0.014016923244734
1218 => 0.014459383308128
1219 => 0.014947482464007
1220 => 0.014930581142299
1221 => 0.014860411113714
1222 => 0.01496462557193
1223 => 0.015468396208682
1224 => 0.015422017081209
1225 => 0.015467070452984
1226 => 0.016061044424983
1227 => 0.016833295080394
1228 => 0.016474507118257
1229 => 0.017252973757638
1230 => 0.017742977242385
1231 => 0.018590387601949
]
'min_raw' => 0.0075900434491711
'max_raw' => 0.018590387601949
'avg_raw' => 0.01309021552556
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00759'
'max' => '$0.01859'
'avg' => '$0.01309'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0033843490045952
'max_diff' => 0.0075420011841677
'year' => 2028
]
3 => [
'items' => [
101 => 0.018484287651348
102 => 0.018814178285741
103 => 0.018294346596043
104 => 0.017100707961178
105 => 0.016911810078146
106 => 0.017289988423633
107 => 0.018219702983911
108 => 0.017260708403557
109 => 0.017454711758165
110 => 0.017398838778987
111 => 0.017395861545371
112 => 0.017509490443192
113 => 0.017344665800418
114 => 0.016673140554367
115 => 0.016980896617309
116 => 0.016862057221747
117 => 0.016993918391187
118 => 0.01770551873897
119 => 0.017390903262782
120 => 0.017059481415903
121 => 0.017475157960284
122 => 0.018004457043239
123 => 0.01797133445787
124 => 0.017907062798087
125 => 0.01826935877913
126 => 0.018867765597052
127 => 0.019029512555343
128 => 0.019148910853183
129 => 0.019165373861204
130 => 0.019334953075526
131 => 0.018423082900654
201 => 0.019870244286663
202 => 0.020120129081
203 => 0.020073161096328
204 => 0.020350897528475
205 => 0.020269180424644
206 => 0.020150785162214
207 => 0.020591056483399
208 => 0.020086320941724
209 => 0.019369912384754
210 => 0.018976876481445
211 => 0.019494457864224
212 => 0.019810526753586
213 => 0.020019428183697
214 => 0.020082641630227
215 => 0.018493868786567
216 => 0.017637608341216
217 => 0.01818646146964
218 => 0.018856100166137
219 => 0.018419363023884
220 => 0.018436482293007
221 => 0.017813809900656
222 => 0.018911192856254
223 => 0.018751313390067
224 => 0.019580768343468
225 => 0.019382812262047
226 => 0.02005920057729
227 => 0.019881084865646
228 => 0.020620433226367
301 => 0.020915379304516
302 => 0.02141063967442
303 => 0.021774955218594
304 => 0.021988888274379
305 => 0.021976044536152
306 => 0.022823753884197
307 => 0.022323889298364
308 => 0.02169594156952
309 => 0.021684583976255
310 => 0.022009807003111
311 => 0.022691385246822
312 => 0.022868108568856
313 => 0.022966872796834
314 => 0.022815611943678
315 => 0.022273044761374
316 => 0.022038767002933
317 => 0.022238378440805
318 => 0.021994270805094
319 => 0.022415669068836
320 => 0.022994338890767
321 => 0.022874845860847
322 => 0.023274293144473
323 => 0.023687679059947
324 => 0.024278839485398
325 => 0.024433390711218
326 => 0.024688858010442
327 => 0.02495181777798
328 => 0.025036273368348
329 => 0.025197525295392
330 => 0.025196675418141
331 => 0.025682618953795
401 => 0.026218629722041
402 => 0.026420961378375
403 => 0.026886211865485
404 => 0.026089486710632
405 => 0.026693811892707
406 => 0.027238928334179
407 => 0.026589018040143
408 => 0.027484767970794
409 => 0.027519547910788
410 => 0.028044683712054
411 => 0.027512357973625
412 => 0.027196264649389
413 => 0.028108814232594
414 => 0.028550368230865
415 => 0.0284173685731
416 => 0.027405234610508
417 => 0.026816129231811
418 => 0.025274326825822
419 => 0.027100658376624
420 => 0.027990211200198
421 => 0.027402930883595
422 => 0.027699120915234
423 => 0.029315037687913
424 => 0.029930274172087
425 => 0.029802309284206
426 => 0.029823933243777
427 => 0.030155903683305
428 => 0.031628043431632
429 => 0.030745903170502
430 => 0.031420266346971
501 => 0.031777946144173
502 => 0.032110179073525
503 => 0.031294320002331
504 => 0.030232899338057
505 => 0.029896702858273
506 => 0.027344537430139
507 => 0.027211686136112
508 => 0.027137112678968
509 => 0.026666937580303
510 => 0.02629750874455
511 => 0.026003725218346
512 => 0.0252327495144
513 => 0.025492931182253
514 => 0.024264156825298
515 => 0.025050283113789
516 => 0.023089129570294
517 => 0.024722436517309
518 => 0.023833501803403
519 => 0.024430397555968
520 => 0.024428315042918
521 => 0.023329240716475
522 => 0.022695317582079
523 => 0.023099278075974
524 => 0.023532355791853
525 => 0.023602621194206
526 => 0.024164117757328
527 => 0.024320819378767
528 => 0.023846006150107
529 => 0.023048489022186
530 => 0.023233734061573
531 => 0.022691563597268
601 => 0.02174143071286
602 => 0.022423832738171
603 => 0.022656834792711
604 => 0.02275974177383
605 => 0.021825395205513
606 => 0.021531803228097
607 => 0.021375497322797
608 => 0.022927876613238
609 => 0.023012919455066
610 => 0.022577828252426
611 => 0.024544481745402
612 => 0.024099367490406
613 => 0.024596669168876
614 => 0.023216925015895
615 => 0.023269633100611
616 => 0.022616440107209
617 => 0.022982184537142
618 => 0.022723688162558
619 => 0.022952636001561
620 => 0.023089866392271
621 => 0.02374295220313
622 => 0.024729893708202
623 => 0.023645402961481
624 => 0.02317287481294
625 => 0.023466028618696
626 => 0.024246735834778
627 => 0.025429547230811
628 => 0.024729299078062
629 => 0.025040057317267
630 => 0.025107944167862
701 => 0.02459160710462
702 => 0.025448585314828
703 => 0.025907846899757
704 => 0.0263789542551
705 => 0.026788003571615
706 => 0.026190783617503
707 => 0.026829894576521
708 => 0.026314883961824
709 => 0.025852866199622
710 => 0.025853566889855
711 => 0.025563736398623
712 => 0.025002153300869
713 => 0.024898588761413
714 => 0.025437344574424
715 => 0.025869375716094
716 => 0.025904959870211
717 => 0.026144154508801
718 => 0.026285707432018
719 => 0.027673118511409
720 => 0.028231146724806
721 => 0.028913493061216
722 => 0.029179305414179
723 => 0.029979305297597
724 => 0.029333240418923
725 => 0.029193460218484
726 => 0.027252922179279
727 => 0.027570685174488
728 => 0.028079454389386
729 => 0.027261311596242
730 => 0.027780234887979
731 => 0.027882681338067
801 => 0.027233511417197
802 => 0.02758026112091
803 => 0.02665939671197
804 => 0.024749966035885
805 => 0.02545071105701
806 => 0.025966695260782
807 => 0.025230322181606
808 => 0.026550242424455
809 => 0.025779172267267
810 => 0.025534780045333
811 => 0.024581318855452
812 => 0.025031315834989
813 => 0.025639943193149
814 => 0.025263882246331
815 => 0.026044265176814
816 => 0.027149495526904
817 => 0.027937148491982
818 => 0.027997614706315
819 => 0.02749120661842
820 => 0.028302728811126
821 => 0.028308639864341
822 => 0.027393239515803
823 => 0.026832561899294
824 => 0.026705174765148
825 => 0.027023412801965
826 => 0.027409812528643
827 => 0.028019057201941
828 => 0.028387210998273
829 => 0.029347160845423
830 => 0.029606895750142
831 => 0.029892265663727
901 => 0.030273607873097
902 => 0.030731506969582
903 => 0.029729649814683
904 => 0.029769455467143
905 => 0.028836539956157
906 => 0.027839585939052
907 => 0.028596149765962
908 => 0.029585256328179
909 => 0.029358354189941
910 => 0.029332823064199
911 => 0.029375759335953
912 => 0.029204682533653
913 => 0.028430908497249
914 => 0.028042324020249
915 => 0.028543697134052
916 => 0.028810154630488
917 => 0.029223406969925
918 => 0.029172464896391
919 => 0.030236958542719
920 => 0.030650588585066
921 => 0.030544764320006
922 => 0.03056423853158
923 => 0.031313095965702
924 => 0.032145979446723
925 => 0.032926084735355
926 => 0.033719641341252
927 => 0.032762977879801
928 => 0.032277243172876
929 => 0.032778397402862
930 => 0.032512477914175
1001 => 0.034040530173014
1002 => 0.034146329196048
1003 => 0.035674270959317
1004 => 0.03712446963658
1005 => 0.036213625830399
1006 => 0.037072510514321
1007 => 0.038001464325879
1008 => 0.039793566945698
1009 => 0.039190049830273
1010 => 0.038727765178177
1011 => 0.038290908415689
1012 => 0.039199937989368
1013 => 0.040369390013805
1014 => 0.040621278778996
1015 => 0.04102943480752
1016 => 0.040600308650472
1017 => 0.041117143839941
1018 => 0.042941799167658
1019 => 0.04244876119143
1020 => 0.041748568005378
1021 => 0.04318895814485
1022 => 0.04371022973695
1023 => 0.047368786762359
1024 => 0.051987866134391
1025 => 0.05007553694386
1026 => 0.048888492504819
1027 => 0.049167476105064
1028 => 0.050854207526026
1029 => 0.05139593212426
1030 => 0.049923337922593
1031 => 0.050443483089762
1101 => 0.053309534100403
1102 => 0.054847078513687
1103 => 0.052758886680683
1104 => 0.046997648232314
1105 => 0.041685523269954
1106 => 0.043094538018076
1107 => 0.042934799472457
1108 => 0.046014013736247
1109 => 0.042437002398756
1110 => 0.042497230095922
1111 => 0.045640119249742
1112 => 0.044801650306264
1113 => 0.043443438000818
1114 => 0.041695439722871
1115 => 0.038464103235816
1116 => 0.035602018396748
1117 => 0.041215225864935
1118 => 0.040973174151951
1119 => 0.040622647401497
1120 => 0.041402706753677
1121 => 0.045190453544156
1122 => 0.045103133720895
1123 => 0.044547649556278
1124 => 0.044968979399327
1125 => 0.043369576842231
1126 => 0.043781779298914
1127 => 0.041684681802219
1128 => 0.042632657453253
1129 => 0.043440523887214
1130 => 0.043602715034499
1201 => 0.043968139971017
1202 => 0.040845623898124
1203 => 0.042247541942597
1204 => 0.043071037451769
1205 => 0.039350454782309
1206 => 0.042997493494979
1207 => 0.040791267840266
1208 => 0.040042441716659
1209 => 0.041050637441756
1210 => 0.040657742587183
1211 => 0.040319954662781
1212 => 0.040131463197032
1213 => 0.040871770867041
1214 => 0.040837234629376
1215 => 0.039625947593714
1216 => 0.038045873034069
1217 => 0.038576197920465
1218 => 0.038383525917415
1219 => 0.037685257723179
1220 => 0.038155806176871
1221 => 0.036083748925933
1222 => 0.032518882121858
1223 => 0.034873942327453
1224 => 0.03478327507135
1225 => 0.034737556529391
1226 => 0.036507319184812
1227 => 0.036337197340865
1228 => 0.036028424528262
1229 => 0.037679586868333
1230 => 0.037076890402939
1231 => 0.038934258896135
]
'min_raw' => 0.016673140554367
'max_raw' => 0.054847078513687
'avg_raw' => 0.035760109534027
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.016673'
'max' => '$0.054847'
'avg' => '$0.03576'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0090830971051964
'max_diff' => 0.036256690911738
'year' => 2029
]
4 => [
'items' => [
101 => 0.040157641912815
102 => 0.03984735240749
103 => 0.040997950047802
104 => 0.038588415534742
105 => 0.039388766246235
106 => 0.039553717418636
107 => 0.037659211781359
108 => 0.036365031378467
109 => 0.036278724300331
110 => 0.03403479383076
111 => 0.035233483375231
112 => 0.036288280569221
113 => 0.035783114568869
114 => 0.035623194104562
115 => 0.036440193074188
116 => 0.036503680891251
117 => 0.03505615193408
118 => 0.035357139041556
119 => 0.036612305314675
120 => 0.035325512071898
121 => 0.032825482997665
122 => 0.032205441221649
123 => 0.032122716219091
124 => 0.030441113746403
125 => 0.032246875377968
126 => 0.031458612034386
127 => 0.033948726491914
128 => 0.032526386468526
129 => 0.032465072232913
130 => 0.032372386772941
131 => 0.030924962058574
201 => 0.031241856082381
202 => 0.032295260081838
203 => 0.032671126496289
204 => 0.032631920549879
205 => 0.032290097827558
206 => 0.032446582519421
207 => 0.031942490804049
208 => 0.031764485527589
209 => 0.031202651910874
210 => 0.0303769117048
211 => 0.030491735945014
212 => 0.028855728530104
213 => 0.027964344860975
214 => 0.027717621609609
215 => 0.027387692966607
216 => 0.027754887927742
217 => 0.028851093926651
218 => 0.027528836918891
219 => 0.025261920024632
220 => 0.025398165592616
221 => 0.025704268932202
222 => 0.025133847383959
223 => 0.024593991260398
224 => 0.025063352359922
225 => 0.024102829787587
226 => 0.025820343496118
227 => 0.025773889563579
228 => 0.026414072463784
301 => 0.026814391969157
302 => 0.02589178511425
303 => 0.025659751985235
304 => 0.025791928600839
305 => 0.023607343571944
306 => 0.026235545260204
307 => 0.026258274057542
308 => 0.026063656295677
309 => 0.027463092558052
310 => 0.030416339566779
311 => 0.02930520924801
312 => 0.028874946004491
313 => 0.028057015264041
314 => 0.029146859411769
315 => 0.029063176385441
316 => 0.028684730004539
317 => 0.028455844452544
318 => 0.028877573100108
319 => 0.028403587606047
320 => 0.028318446787063
321 => 0.027802586058147
322 => 0.027618447248092
323 => 0.027482118203904
324 => 0.027332033321668
325 => 0.027663083173057
326 => 0.026912880656574
327 => 0.026008209964956
328 => 0.02593299638562
329 => 0.026140667691011
330 => 0.026048788597686
331 => 0.02593255650387
401 => 0.025710637782847
402 => 0.025644799238863
403 => 0.025858742566491
404 => 0.02561721302327
405 => 0.025973603021087
406 => 0.025876684661639
407 => 0.025335306584217
408 => 0.024660549055913
409 => 0.024654542298559
410 => 0.02450916689591
411 => 0.024324009463299
412 => 0.024272502901375
413 => 0.025023824077275
414 => 0.026579036426238
415 => 0.026273711029059
416 => 0.026494339919527
417 => 0.027579615696186
418 => 0.027924592230205
419 => 0.027679736057575
420 => 0.027344561826409
421 => 0.027359307791542
422 => 0.028504699603577
423 => 0.028576136285927
424 => 0.02875663373588
425 => 0.028988623967642
426 => 0.027719244997198
427 => 0.027299520156188
428 => 0.027100631241069
429 => 0.026488130362201
430 => 0.027148660048204
501 => 0.026763797686871
502 => 0.026815728768185
503 => 0.026781908583353
504 => 0.026800376691182
505 => 0.025819863416033
506 => 0.026177110919237
507 => 0.025583117655868
508 => 0.02478782735509
509 => 0.024785161263137
510 => 0.024979807437565
511 => 0.02486402427651
512 => 0.024552454767166
513 => 0.024596711745402
514 => 0.024208974046677
515 => 0.024643790122245
516 => 0.024656259091445
517 => 0.02448883121776
518 => 0.025158725375228
519 => 0.025433181558124
520 => 0.025322976945012
521 => 0.025425449308685
522 => 0.026286398677774
523 => 0.02642677099079
524 => 0.026489115099757
525 => 0.026405582252753
526 => 0.025441185882685
527 => 0.025483960962628
528 => 0.025170105807721
529 => 0.024904931275066
530 => 0.024915536865715
531 => 0.025051871045776
601 => 0.025647250405996
602 => 0.026900191170047
603 => 0.026947739356155
604 => 0.027005369144796
605 => 0.026770959831981
606 => 0.026700259740241
607 => 0.026793531410488
608 => 0.02726407008497
609 => 0.028474423305742
610 => 0.028046603640748
611 => 0.027698779593697
612 => 0.02800391505565
613 => 0.027956941843013
614 => 0.027560440656188
615 => 0.027549312188462
616 => 0.026788299641847
617 => 0.026506970630781
618 => 0.026271871052022
619 => 0.026015148449448
620 => 0.025862954685222
621 => 0.026096793477902
622 => 0.026150275176487
623 => 0.025638982569491
624 => 0.025569295276448
625 => 0.025986827856339
626 => 0.025803087335112
627 => 0.025992069017739
628 => 0.026035914389164
629 => 0.02602885427452
630 => 0.025837008067895
701 => 0.025959285119061
702 => 0.025670063440509
703 => 0.025355578304776
704 => 0.025154956381294
705 => 0.02497988714442
706 => 0.025077025732121
707 => 0.02473074440377
708 => 0.024619962037565
709 => 0.025917860405447
710 => 0.02687663188456
711 => 0.026862690967539
712 => 0.026777829220483
713 => 0.026651741877936
714 => 0.027254846010513
715 => 0.027044736590171
716 => 0.027197608748699
717 => 0.027236521129069
718 => 0.02735429718479
719 => 0.027396392001515
720 => 0.02726915222864
721 => 0.026842120009839
722 => 0.025777996321593
723 => 0.025282643872167
724 => 0.025119169313109
725 => 0.025125111302849
726 => 0.024961204699627
727 => 0.025009482540054
728 => 0.024944415636931
729 => 0.024821194663791
730 => 0.025069417184258
731 => 0.025098022517389
801 => 0.025040084415073
802 => 0.025053730935559
803 => 0.024574028194076
804 => 0.024610498951651
805 => 0.024407425138992
806 => 0.02436935124721
807 => 0.023855998332467
808 => 0.022946519232305
809 => 0.023450458939067
810 => 0.022841770637944
811 => 0.022611251155176
812 => 0.023702494533465
813 => 0.023592963964665
814 => 0.023405495242673
815 => 0.023128189930941
816 => 0.023025334693367
817 => 0.022400418829878
818 => 0.022363495466867
819 => 0.022673220642959
820 => 0.022530293131185
821 => 0.022329568773773
822 => 0.021602565498327
823 => 0.020785173114213
824 => 0.020809845052344
825 => 0.021069842361605
826 => 0.021825819603694
827 => 0.021530446216671
828 => 0.021316149435366
829 => 0.021276018089965
830 => 0.021778345898318
831 => 0.022489244988067
901 => 0.022822782935507
902 => 0.022492256959292
903 => 0.022112566514599
904 => 0.022135676512652
905 => 0.022289416976233
906 => 0.022305572925182
907 => 0.022058433478495
908 => 0.02212800178511
909 => 0.022022321165903
910 => 0.0213737594009
911 => 0.021362028975183
912 => 0.02120286145858
913 => 0.021198041929435
914 => 0.020927258277496
915 => 0.02088937377275
916 => 0.020351716396432
917 => 0.020705604109701
918 => 0.020468234811579
919 => 0.020110463289553
920 => 0.020048783344303
921 => 0.020046929170668
922 => 0.020414280527541
923 => 0.020701311395214
924 => 0.020472363952147
925 => 0.02042023705732
926 => 0.020976815918991
927 => 0.020905986185515
928 => 0.020844648093127
929 => 0.02242559177179
930 => 0.021174151487554
1001 => 0.020628452093913
1002 => 0.019953045468779
1003 => 0.020172961271618
1004 => 0.020219300762512
1005 => 0.018595069580258
1006 => 0.017936119191902
1007 => 0.01770999225064
1008 => 0.017579852998978
1009 => 0.017639159090146
1010 => 0.017046026453455
1011 => 0.01744462139482
1012 => 0.016931018667699
1013 => 0.016844911499089
1014 => 0.01776329679835
1015 => 0.017891084747613
1016 => 0.017345901655453
1017 => 0.017695997457745
1018 => 0.017569047853138
1019 => 0.016939822912326
1020 => 0.016915791147852
1021 => 0.016600068190878
1022 => 0.016106022899226
1023 => 0.015880230943936
1024 => 0.015762636533205
1025 => 0.015811158278942
1026 => 0.015786624199507
1027 => 0.015626522735707
1028 => 0.015795801028004
1029 => 0.015363364941803
1030 => 0.015191165407903
1031 => 0.01511338687344
1101 => 0.014729574956844
1102 => 0.015340390398082
1103 => 0.015460728734856
1104 => 0.015581304175328
1105 => 0.016630831064287
1106 => 0.016578399666847
1107 => 0.01705235396458
1108 => 0.017033936972116
1109 => 0.016898757528852
1110 => 0.01632845769366
1111 => 0.016555769043351
1112 => 0.01585614004103
1113 => 0.016380349659717
1114 => 0.016141122281265
1115 => 0.016299466642421
1116 => 0.016014749203728
1117 => 0.016172323589996
1118 => 0.015489265418763
1119 => 0.014851435309355
1120 => 0.015108116764802
1121 => 0.015387158861959
1122 => 0.015992193227199
1123 => 0.015631839750687
1124 => 0.015761436487314
1125 => 0.015327309113845
1126 => 0.014431580340024
1127 => 0.014436650067608
1128 => 0.014298861710268
1129 => 0.014179792452097
1130 => 0.015673230682302
1201 => 0.015487498030612
1202 => 0.015191557358231
1203 => 0.015587685708427
1204 => 0.015692428331622
1205 => 0.015695410206853
1206 => 0.015984415225604
1207 => 0.016138657255918
1208 => 0.016165843082284
1209 => 0.016620598723655
1210 => 0.016773026816271
1211 => 0.017400856557323
1212 => 0.016125570897275
1213 => 0.016099307228331
1214 => 0.015593260046672
1215 => 0.015272316923775
1216 => 0.015615235296876
1217 => 0.015919014162418
1218 => 0.015602699302805
1219 => 0.015644003345699
1220 => 0.015219376490543
1221 => 0.015371160610711
1222 => 0.015501897542528
1223 => 0.01542971229314
1224 => 0.015321647481001
1225 => 0.015894107759692
1226 => 0.015861807307278
1227 => 0.0163948954796
1228 => 0.016810475831426
1229 => 0.017555270115771
1230 => 0.016778038453052
1231 => 0.016749713042047
]
'min_raw' => 0.014179792452097
'max_raw' => 0.040997950047802
'avg_raw' => 0.027588871249949
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.014179'
'max' => '$0.040997'
'avg' => '$0.027588'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0024933481022707
'max_diff' => -0.013849128465885
'year' => 2030
]
5 => [
'items' => [
101 => 0.017026598478165
102 => 0.016772984426553
103 => 0.016933259752712
104 => 0.01752944728288
105 => 0.017542043785932
106 => 0.017331036130126
107 => 0.017318196295094
108 => 0.017358722623563
109 => 0.017596086595218
110 => 0.017513144330064
111 => 0.017609127219142
112 => 0.017729155291677
113 => 0.018225642290527
114 => 0.018345343625101
115 => 0.018054531440113
116 => 0.018080788524331
117 => 0.017972016784172
118 => 0.017866944646085
119 => 0.018103131467952
120 => 0.018534767527178
121 => 0.018532082341655
122 => 0.01863221351759
123 => 0.018694594410665
124 => 0.01842680995198
125 => 0.018252492116083
126 => 0.018319336666498
127 => 0.018426222558297
128 => 0.01828467501236
129 => 0.017410977987639
130 => 0.017676001852957
131 => 0.017631888922763
201 => 0.017569066745851
202 => 0.017835550291798
203 => 0.017809847303701
204 => 0.017039943020965
205 => 0.017089229795198
206 => 0.017042940312949
207 => 0.017192511100031
208 => 0.016764907113201
209 => 0.016896435219593
210 => 0.016978928414923
211 => 0.017027517540715
212 => 0.01720305478095
213 => 0.017182457511852
214 => 0.017201774425783
215 => 0.017462049812939
216 => 0.018778433405445
217 => 0.018850081259948
218 => 0.018497261020402
219 => 0.018638205747029
220 => 0.018367622693128
221 => 0.018549266909961
222 => 0.018673543269855
223 => 0.018111962296463
224 => 0.018078709115849
225 => 0.017807009269433
226 => 0.017953005377031
227 => 0.017720715072351
228 => 0.017777710987949
301 => 0.017618345439121
302 => 0.017905171697648
303 => 0.018225888022976
304 => 0.018306913632225
305 => 0.018093770138008
306 => 0.017939440201354
307 => 0.017668487672032
308 => 0.018119087766866
309 => 0.018250856966385
310 => 0.018118395639357
311 => 0.018087701455547
312 => 0.018029536032692
313 => 0.018100041524972
314 => 0.018250139323025
315 => 0.018179355973334
316 => 0.018226109622847
317 => 0.018047932923058
318 => 0.018426898599778
319 => 0.019028787297467
320 => 0.019030722468049
321 => 0.018959938736809
322 => 0.018930975559043
323 => 0.019003603962811
324 => 0.019043001892481
325 => 0.019277868832494
326 => 0.01952989041664
327 => 0.020705965184215
328 => 0.020375728095619
329 => 0.021419211594413
330 => 0.022244471562585
331 => 0.022491930942795
401 => 0.022264279956866
402 => 0.021485498231465
403 => 0.021447287484642
404 => 0.022611116175554
405 => 0.022282281263641
406 => 0.022243167397213
407 => 0.021827061942338
408 => 0.022073031801832
409 => 0.022019234585401
410 => 0.021934313047414
411 => 0.02240360640492
412 => 0.023282081676064
413 => 0.023145163066767
414 => 0.023042959676398
415 => 0.022595134170763
416 => 0.022864825150604
417 => 0.022768793358273
418 => 0.023181406881407
419 => 0.022936983770811
420 => 0.022279790015765
421 => 0.022384450287395
422 => 0.022368631097885
423 => 0.022694188897034
424 => 0.022596464526571
425 => 0.022349548846132
426 => 0.023279079143089
427 => 0.023218720615924
428 => 0.023304295207564
429 => 0.023341967789286
430 => 0.023907756500883
501 => 0.024139542032805
502 => 0.024192161406528
503 => 0.024412339734917
504 => 0.02418668316914
505 => 0.025089470322654
506 => 0.025689771100651
507 => 0.026387051345489
508 => 0.027405965194459
509 => 0.027789086227152
510 => 0.027719878841779
511 => 0.028492407693365
512 => 0.029880624867314
513 => 0.028000477223282
514 => 0.029980277257802
515 => 0.029353495424764
516 => 0.027867406973953
517 => 0.027771720397553
518 => 0.028778116750284
519 => 0.031010206998581
520 => 0.030451093707541
521 => 0.031011121507628
522 => 0.030357819331198
523 => 0.030325377371675
524 => 0.030979392079117
525 => 0.03250753309154
526 => 0.031781570578047
527 => 0.030740725301644
528 => 0.031509269256394
529 => 0.030843485357404
530 => 0.0293432878918
531 => 0.030450666164144
601 => 0.029710193849745
602 => 0.02992630303676
603 => 0.031482665704683
604 => 0.031295400030854
605 => 0.031537739153123
606 => 0.031110016945436
607 => 0.030710456957855
608 => 0.029964648569321
609 => 0.029743851473386
610 => 0.029804871847255
611 => 0.029743821234719
612 => 0.029326548295667
613 => 0.029236438244208
614 => 0.029086250877297
615 => 0.029132800222338
616 => 0.028850404033682
617 => 0.029383343987706
618 => 0.029482262339424
619 => 0.029870091594459
620 => 0.029910357314291
621 => 0.030990456269159
622 => 0.030395555915143
623 => 0.030794666433843
624 => 0.030758966232476
625 => 0.027899615016896
626 => 0.028293608386134
627 => 0.028906538426737
628 => 0.028630414274253
629 => 0.02824003932574
630 => 0.027924790624236
701 => 0.027447156605622
702 => 0.028119417314672
703 => 0.029003368660117
704 => 0.029932775779153
705 => 0.031049397535509
706 => 0.0308001805584
707 => 0.029911901312124
708 => 0.029951748870223
709 => 0.030198070794959
710 => 0.02987906152172
711 => 0.029784979459241
712 => 0.030185145364302
713 => 0.030187901086963
714 => 0.029820842364543
715 => 0.029412923765611
716 => 0.029411214571787
717 => 0.029338629397133
718 => 0.03037073207252
719 => 0.030938284186632
720 => 0.031003353121859
721 => 0.030933904528849
722 => 0.030960632535983
723 => 0.030630386465938
724 => 0.03138523105063
725 => 0.032077951087936
726 => 0.031892287320133
727 => 0.031613950938537
728 => 0.031392242604099
729 => 0.031840059882532
730 => 0.031820119284053
731 => 0.032071900782726
801 => 0.032060478519586
802 => 0.031975813871563
803 => 0.031892290343774
804 => 0.032223451690385
805 => 0.03212808254085
806 => 0.032032565256684
807 => 0.031840990720323
808 => 0.031867028881531
809 => 0.031588740558635
810 => 0.031459991646856
811 => 0.029523916925536
812 => 0.029006534496932
813 => 0.029169313541261
814 => 0.029222904629211
815 => 0.028997739133239
816 => 0.029320568614192
817 => 0.029270255981547
818 => 0.029465993003265
819 => 0.029343705010009
820 => 0.029348723751908
821 => 0.029708346665525
822 => 0.029812746727293
823 => 0.029759648013266
824 => 0.029796836532453
825 => 0.030653830260829
826 => 0.03053199315777
827 => 0.030467269625074
828 => 0.03048519848596
829 => 0.030704178757712
830 => 0.030765481277924
831 => 0.030505738192137
901 => 0.030628234532951
902 => 0.031149808405036
903 => 0.031332329741741
904 => 0.031914850233292
905 => 0.031667385175005
906 => 0.032121617999528
907 => 0.03351777484273
908 => 0.034633121535785
909 => 0.0336074026232
910 => 0.03565559478645
911 => 0.037250406181256
912 => 0.037189194663626
913 => 0.03691110240829
914 => 0.035095452035558
915 => 0.033424663492748
916 => 0.034822349054237
917 => 0.03482591204217
918 => 0.034705849612892
919 => 0.033960152176117
920 => 0.034679900958485
921 => 0.034737032003086
922 => 0.034705053810481
923 => 0.034133329334085
924 => 0.033260411730974
925 => 0.033430977741152
926 => 0.033710368345277
927 => 0.033181423644683
928 => 0.033012393762954
929 => 0.03332665247234
930 => 0.034339259512382
1001 => 0.034147832017095
1002 => 0.034142833071574
1003 => 0.034961841074302
1004 => 0.034375608097338
1005 => 0.033433129124769
1006 => 0.033195140754425
1007 => 0.032350442367879
1008 => 0.032933878552179
1009 => 0.03295487538178
1010 => 0.032635333346213
1011 => 0.033459058199858
1012 => 0.033451467430318
1013 => 0.03423347158359
1014 => 0.035728369817299
1015 => 0.035286254850117
1016 => 0.034772123245256
1017 => 0.034828023606027
1018 => 0.035441112589844
1019 => 0.035070424994768
1020 => 0.035203726838483
1021 => 0.035440910821538
1022 => 0.035584009807462
1023 => 0.034807433864121
1024 => 0.034626376863807
1025 => 0.034255997783536
1026 => 0.034159372794947
1027 => 0.034461038827614
1028 => 0.034381560486025
1029 => 0.032953110679556
1030 => 0.03280382972696
1031 => 0.032808407960652
1101 => 0.032433033907428
1102 => 0.031860498376166
1103 => 0.033365087568003
1104 => 0.033244247999186
1105 => 0.033110850467452
1106 => 0.033127190903934
1107 => 0.033780282076851
1108 => 0.033401456214664
1109 => 0.034408626857626
1110 => 0.034201582851754
1111 => 0.03398922894838
1112 => 0.033959875170475
1113 => 0.03387813703486
1114 => 0.033597826554414
1115 => 0.033259334805227
1116 => 0.033035833232761
1117 => 0.030473809889685
1118 => 0.030949306519555
1119 => 0.03149632204934
1120 => 0.031685149618195
1121 => 0.031362146995199
1122 => 0.033610580666694
1123 => 0.034021391164922
1124 => 0.032777019369283
1125 => 0.032544248213685
1126 => 0.033625841104903
1127 => 0.032973508372145
1128 => 0.033267253761763
1129 => 0.032632336899547
1130 => 0.033922438945835
1201 => 0.033912610529754
1202 => 0.033410731695472
1203 => 0.033834916249489
1204 => 0.033761203744559
1205 => 0.033194583776728
1206 => 0.033940401809477
1207 => 0.033940771725916
1208 => 0.033457724259706
1209 => 0.03289363057186
1210 => 0.032792783943772
1211 => 0.032716809556345
1212 => 0.033248568719771
1213 => 0.03372534232293
1214 => 0.03461249979621
1215 => 0.034835552263335
1216 => 0.035706140891964
1217 => 0.035187747751806
1218 => 0.035417544716523
1219 => 0.035667021828489
1220 => 0.035786630330182
1221 => 0.035591734695219
1222 => 0.036944117184056
1223 => 0.037058299702043
1224 => 0.037096584112649
1225 => 0.036640568346507
1226 => 0.03704561707866
1227 => 0.03685610819069
1228 => 0.037349157670103
1229 => 0.037426474124047
1230 => 0.037360989838169
1231 => 0.037385531301008
]
'min_raw' => 0.016764907113201
'max_raw' => 0.037426474124047
'avg_raw' => 0.027095690618624
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.016764'
'max' => '$0.037426'
'avg' => '$0.027095'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0025851146611046
'max_diff' => -0.0035714759237554
'year' => 2031
]
6 => [
'items' => [
101 => 0.036231511423404
102 => 0.036171669404811
103 => 0.035355719235092
104 => 0.035688224960451
105 => 0.035066621444306
106 => 0.035263738322501
107 => 0.035350625564211
108 => 0.035305240599949
109 => 0.035707024335276
110 => 0.035365426081254
111 => 0.034463892124939
112 => 0.0335621125463
113 => 0.033550791438264
114 => 0.03331336879294
115 => 0.033141755706497
116 => 0.033174814475247
117 => 0.033291317888246
118 => 0.033134984316342
119 => 0.033168346010221
120 => 0.033722372416415
121 => 0.033833478461042
122 => 0.033455896709466
123 => 0.031939851492103
124 => 0.03156781019305
125 => 0.03183522610091
126 => 0.031707418520743
127 => 0.025590361408791
128 => 0.027027473241654
129 => 0.026173590190274
130 => 0.02656709878562
131 => 0.025695505302105
201 => 0.026111475396567
202 => 0.026034660908915
203 => 0.028345494208927
204 => 0.028309413725395
205 => 0.028326683543525
206 => 0.027502350127896
207 => 0.028815535642084
208 => 0.029462458046998
209 => 0.02934272992713
210 => 0.02937286291546
211 => 0.028855078340593
212 => 0.028331696830031
213 => 0.02775118618698
214 => 0.028829703208484
215 => 0.028709790526592
216 => 0.028984827075631
217 => 0.029684322458065
218 => 0.029787325810253
219 => 0.02992576336015
220 => 0.029876143353168
221 => 0.031058293229273
222 => 0.030915127079201
223 => 0.031260116309162
224 => 0.030550447288735
225 => 0.029747389429719
226 => 0.029900024474779
227 => 0.029885324492526
228 => 0.029698176846595
229 => 0.029529228319784
301 => 0.029247976623597
302 => 0.030137898607752
303 => 0.030101769400384
304 => 0.030686659272067
305 => 0.03058327430593
306 => 0.029892844199473
307 => 0.029917503045796
308 => 0.030083345637955
309 => 0.030657328742974
310 => 0.030827726008294
311 => 0.030748791205841
312 => 0.030935624028333
313 => 0.031083289073443
314 => 0.030954168484508
315 => 0.032782243732607
316 => 0.032023099436635
317 => 0.032393101084399
318 => 0.032481344297215
319 => 0.032255311163143
320 => 0.032304329656283
321 => 0.032378579316651
322 => 0.032829408714833
323 => 0.034012515504198
324 => 0.034536505447527
325 => 0.036112955045242
326 => 0.034492995377026
327 => 0.034396873674373
328 => 0.034680839851139
329 => 0.035606382649135
330 => 0.036356448155096
331 => 0.036605288155741
401 => 0.036638176469727
402 => 0.037105016853506
403 => 0.037372601055431
404 => 0.037048330151794
405 => 0.036773544513541
406 => 0.035789296464967
407 => 0.035903225856608
408 => 0.036688086386672
409 => 0.037796748113442
410 => 0.038748095211604
411 => 0.038414966615622
412 => 0.04095650265083
413 => 0.041208485567477
414 => 0.041173669675979
415 => 0.041747724260187
416 => 0.040608342814717
417 => 0.040121235172303
418 => 0.036832956287481
419 => 0.037756828526963
420 => 0.039099731084165
421 => 0.038921992895093
422 => 0.037946741162165
423 => 0.038747355395712
424 => 0.038482647292579
425 => 0.03827386102889
426 => 0.039230351378061
427 => 0.038178650948689
428 => 0.039089239567873
429 => 0.037921400244936
430 => 0.038416488318987
501 => 0.03813545238344
502 => 0.038317317076208
503 => 0.037254139798394
504 => 0.037827804450333
505 => 0.037230273462839
506 => 0.03722999015535
507 => 0.037216799625683
508 => 0.037919792182612
509 => 0.037942716744655
510 => 0.037423204182922
511 => 0.037348334306465
512 => 0.037625167480618
513 => 0.037301068336408
514 => 0.037452712286128
515 => 0.037305661477162
516 => 0.037272557242701
517 => 0.037008777070286
518 => 0.036895133319223
519 => 0.036939695962254
520 => 0.036787580687973
521 => 0.03669592573297
522 => 0.037198567148211
523 => 0.036930026116544
524 => 0.037157409383688
525 => 0.036898277452722
526 => 0.036000013281587
527 => 0.035483412057795
528 => 0.033786674307654
529 => 0.034267867028797
530 => 0.034586898300745
531 => 0.03448145846727
601 => 0.034707984029374
602 => 0.034721890859123
603 => 0.034648245089728
604 => 0.034562972723376
605 => 0.034521466851294
606 => 0.034830817616674
607 => 0.035010406148245
608 => 0.034618917356973
609 => 0.034527197010688
610 => 0.034923013793353
611 => 0.035164461802122
612 => 0.036947178240958
613 => 0.036815108849071
614 => 0.037146577105399
615 => 0.037109258866531
616 => 0.037456690406197
617 => 0.038024594138027
618 => 0.036869887062837
619 => 0.037070304284323
620 => 0.037021166609924
621 => 0.037557638854422
622 => 0.037559313662211
623 => 0.037237671752859
624 => 0.037412039049963
625 => 0.037314712008236
626 => 0.037490595127175
627 => 0.036813344981824
628 => 0.037638162554226
629 => 0.038105780967708
630 => 0.038112273849833
701 => 0.038333921266574
702 => 0.038559127878936
703 => 0.038991392360002
704 => 0.038547072257171
705 => 0.037747783645868
706 => 0.037805489701917
707 => 0.037336867081559
708 => 0.03734474471247
709 => 0.037302693301282
710 => 0.037428892751741
711 => 0.036841038664389
712 => 0.036979006843704
713 => 0.036785850584722
714 => 0.037069884400339
715 => 0.036764310967207
716 => 0.03702114291425
717 => 0.03713198306848
718 => 0.037540985623806
719 => 0.036703900957235
720 => 0.034997028656448
721 => 0.0353558339079
722 => 0.034825132757458
723 => 0.034874251169453
724 => 0.034973478178821
725 => 0.034651850976404
726 => 0.034713207310987
727 => 0.034711015230958
728 => 0.034692125069524
729 => 0.034608457412343
730 => 0.03448712275629
731 => 0.034970482681169
801 => 0.035052614951292
802 => 0.03523518481374
803 => 0.035778388886066
804 => 0.035724109989606
805 => 0.035812641121741
806 => 0.035619378157371
807 => 0.034883216084079
808 => 0.034923193226441
809 => 0.034424677620593
810 => 0.035222436648883
811 => 0.035033516781079
812 => 0.034911718913309
813 => 0.034878485236639
814 => 0.035423035806792
815 => 0.035585973872167
816 => 0.035484441804192
817 => 0.035276196570613
818 => 0.035676088981262
819 => 0.035783083320245
820 => 0.035807035406944
821 => 0.036515568086849
822 => 0.035846634512934
823 => 0.036007653472803
824 => 0.037263877432813
825 => 0.036124655648141
826 => 0.036728126835159
827 => 0.036698590060867
828 => 0.037007305499794
829 => 0.036673266384147
830 => 0.036677407199327
831 => 0.036951525594899
901 => 0.036566575745832
902 => 0.036471256749641
903 => 0.03633957423909
904 => 0.036627098183369
905 => 0.036799455784374
906 => 0.038188531465769
907 => 0.039085937705497
908 => 0.03904697893389
909 => 0.039402989178615
910 => 0.039242603302686
911 => 0.038724675001656
912 => 0.039608715456887
913 => 0.039328968067028
914 => 0.039352030101955
915 => 0.039351171731863
916 => 0.039537179290178
917 => 0.03940537588777
918 => 0.039145577852281
919 => 0.039318043912505
920 => 0.039830206453626
921 => 0.04141997469633
922 => 0.042309630066575
923 => 0.041366416325957
924 => 0.0420170325341
925 => 0.041626894647473
926 => 0.041555994987876
927 => 0.04196463004675
928 => 0.0423739803672
929 => 0.042347906521457
930 => 0.042050739209182
1001 => 0.041882876934819
1002 => 0.043153986314282
1003 => 0.044090518052288
1004 => 0.044026652866344
1005 => 0.044308533027028
1006 => 0.04513614189702
1007 => 0.04521180808016
1008 => 0.045202275880252
1009 => 0.04501472935039
1010 => 0.045829617761489
1011 => 0.046509412010626
1012 => 0.044971317747467
1013 => 0.045557003907745
1014 => 0.045819937294724
1015 => 0.046206001515629
1016 => 0.046857356568173
1017 => 0.04756490091863
1018 => 0.047664955447614
1019 => 0.04759396197125
1020 => 0.04712731745231
1021 => 0.04790152092334
1022 => 0.048355031159364
1023 => 0.048625086126519
1024 => 0.049309900590362
1025 => 0.045821561081809
1026 => 0.043352340995932
1027 => 0.042966736623552
1028 => 0.043750878277929
1029 => 0.043957650178776
1030 => 0.043874300684815
1031 => 0.041094968986492
1101 => 0.042952104017356
1102 => 0.044950225158217
1103 => 0.045026981128842
1104 => 0.0460272823507
1105 => 0.04635302143227
1106 => 0.047158395028344
1107 => 0.04710801869063
1108 => 0.047304114344981
1109 => 0.047259035349949
1110 => 0.048750820345257
1111 => 0.050396480727298
1112 => 0.050339496741147
1113 => 0.050102913590659
1114 => 0.050454279912556
1115 => 0.052152777786506
1116 => 0.051996407320146
1117 => 0.05214830790861
1118 => 0.054150932625142
1119 => 0.056754629626678
1120 => 0.05554495096256
1121 => 0.058169605588038
1122 => 0.059821686547814
1123 => 0.062678789739385
1124 => 0.062321066348271
1125 => 0.063433315654358
1126 => 0.061680666819051
1127 => 0.057656230824415
1128 => 0.057019348423342
1129 => 0.058294403118722
1130 => 0.061429000669295
1201 => 0.058195683486769
1202 => 0.058849779341712
1203 => 0.058661399691485
1204 => 0.058651361740486
1205 => 0.059034469502807
1206 => 0.058478751712004
1207 => 0.05621465746055
1208 => 0.0572522785136
1209 => 0.056851603194362
1210 => 0.05729618233338
1211 => 0.05969539258828
1212 => 0.05863464454456
1213 => 0.057517232648674
1214 => 0.058918715139665
1215 => 0.06070328395233
1216 => 0.060591608843212
1217 => 0.060374912454948
1218 => 0.061596418649735
1219 => 0.063613989015789
1220 => 0.06415933017848
1221 => 0.064561889875768
1222 => 0.064617396056722
1223 => 0.065189144217451
1224 => 0.062114710258126
1225 => 0.066993915908638
1226 => 0.067836419939145
1227 => 0.067678064099624
1228 => 0.068614471871544
1229 => 0.068338956950673
1230 => 0.067939779057297
1231 => 0.069424184555435
]
'min_raw' => 0.025590361408791
'max_raw' => 0.069424184555435
'avg_raw' => 0.047507272982113
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.02559'
'max' => '$0.069424'
'avg' => '$0.0475072'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0088254542955901
'max_diff' => 0.031997710431389
'year' => 2032
]
7 => [
'items' => [
101 => 0.067722433437167
102 => 0.065307011969294
103 => 0.063981863980399
104 => 0.065726925748815
105 => 0.066792574076523
106 => 0.067496899833175
107 => 0.067710028381573
108 => 0.062353369814597
109 => 0.059466427940901
110 => 0.061316924583085
111 => 0.063574658201004
112 => 0.062102168433883
113 => 0.062159887244962
114 => 0.06006050380055
115 => 0.063760407052182
116 => 0.063221362269504
117 => 0.066017927555593
118 => 0.065350504806229
119 => 0.067630995234996
120 => 0.067030465677545
121 => 0.069523230295369
122 => 0.070517661590327
123 => 0.072187466505434
124 => 0.073415781798315
125 => 0.074137072032222
126 => 0.07409376847207
127 => 0.076951879724179
128 => 0.075266551373612
129 => 0.073149381763905
130 => 0.07311108884525
131 => 0.074207600986643
201 => 0.076505589621586
202 => 0.077101424640252
203 => 0.077434415130378
204 => 0.076924428603268
205 => 0.075095125467298
206 => 0.074305241647964
207 => 0.074978245547174
208 => 0.074155219610325
209 => 0.075575993277619
210 => 0.077527018983694
211 => 0.077124139890581
212 => 0.078470904295848
213 => 0.079864663771551
214 => 0.081857802419462
215 => 0.082378882667736
216 => 0.083240208503227
217 => 0.084126795718744
218 => 0.084411543638173
219 => 0.084955215768452
220 => 0.084952350347962
221 => 0.086590742905915
222 => 0.088397940634131
223 => 0.089080115939809
224 => 0.09064874043985
225 => 0.087962525954689
226 => 0.090000050498691
227 => 0.091837948639929
228 => 0.089646730708299
301 => 0.092666814138753
302 => 0.092784077134701
303 => 0.094554609152479
304 => 0.092759835759569
305 => 0.091694105047978
306 => 0.094770829679932
307 => 0.096259559813416
308 => 0.095811142181523
309 => 0.092398661861706
310 => 0.090412451947407
311 => 0.085214157490406
312 => 0.091371761824333
313 => 0.094370951275607
314 => 0.092390894685578
315 => 0.093389520056576
316 => 0.098837696275372
317 => 0.1009120090362
318 => 0.10048056648249
319 => 0.10055347317192
320 => 0.10167273468622
321 => 0.10663615662922
322 => 0.10366195914976
323 => 0.10593562168176
324 => 0.10714156409043
325 => 0.1082617106075
326 => 0.10551098478751
327 => 0.10193233091188
328 => 0.1007988210078
329 => 0.09219401708035
330 => 0.091746099667157
331 => 0.091494670049845
401 => 0.089909441878117
402 => 0.088663886765679
403 => 0.087673375095773
404 => 0.085073976682114
405 => 0.085951197340583
406 => 0.081808298805824
407 => 0.084458778473054
408 => 0.077846612377795
409 => 0.083353420783503
410 => 0.08035631533213
411 => 0.082368791035834
412 => 0.082361769697691
413 => 0.078656163871169
414 => 0.076518847764451
415 => 0.077880828773239
416 => 0.079340980528846
417 => 0.079577885238653
418 => 0.081471010103659
419 => 0.081999340560899
420 => 0.080398474610071
421 => 0.077709589932414
422 => 0.078334156516104
423 => 0.076506190942568
424 => 0.073302751586626
425 => 0.075603517658748
426 => 0.076389100353314
427 => 0.076736058424894
428 => 0.073585843735821
429 => 0.072595977886026
430 => 0.072068981613374
501 => 0.077302936774757
502 => 0.077589664653483
503 => 0.076122724286683
504 => 0.082753433845614
505 => 0.081252700058012
506 => 0.082929387387468
507 => 0.078277483645031
508 => 0.078455192632611
509 => 0.076252906850877
510 => 0.077486039731859
511 => 0.076614501157309
512 => 0.077386414781133
513 => 0.077849096624533
514 => 0.080051021032841
515 => 0.083378563223246
516 => 0.079722126953948
517 => 0.078128965310283
518 => 0.079117353833731
519 => 0.081749562719992
520 => 0.08573749392297
521 => 0.083376558386212
522 => 0.084424301486139
523 => 0.084653186742628
524 => 0.082912320284407
525 => 0.08580168215243
526 => 0.087350114650638
527 => 0.088938485990841
528 => 0.090317624320385
529 => 0.08830405554853
530 => 0.09045886276816
531 => 0.088722468523817
601 => 0.087164743381503
602 => 0.087167105807543
603 => 0.086189922071036
604 => 0.084296505448481
605 => 0.083947330373059
606 => 0.085763783211355
607 => 0.087220406368945
608 => 0.087340380828958
609 => 0.088146842253
610 => 0.088624097816534
611 => 0.09330185113665
612 => 0.095183282218406
613 => 0.097483860531509
614 => 0.098380065437952
615 => 0.1010773208991
616 => 0.098899068053846
617 => 0.098427789348922
618 => 0.091885129865705
619 => 0.092956489989555
620 => 0.094671840918715
621 => 0.091913415370723
622 => 0.093663001478884
623 => 0.094008406837936
624 => 0.091819685126127
625 => 0.092988775961487
626 => 0.089884017314047
627 => 0.083446238477434
628 => 0.085808849240612
629 => 0.087548526008495
630 => 0.085065792760127
701 => 0.089515996012781
702 => 0.086916279143423
703 => 0.086092293704253
704 => 0.082877632734034
705 => 0.084394828968329
706 => 0.086446858599371
707 => 0.085178942861437
708 => 0.087810058396156
709 => 0.091536419686201
710 => 0.094192046650139
711 => 0.094395912713379
712 => 0.092688522488755
713 => 0.095424626220133
714 => 0.095444555748744
715 => 0.092358219562438
716 => 0.090467855833117
717 => 0.090038361216456
718 => 0.091111322976255
719 => 0.092414096632318
720 => 0.094468207584447
721 => 0.095709463812459
722 => 0.098946001743682
723 => 0.099821716109056
724 => 0.1007838606966
725 => 0.10206958257995
726 => 0.10361342135325
727 => 0.10023559000807
728 => 0.10036979754448
729 => 0.09722440776511
730 => 0.093863107691332
731 => 0.096413915455361
801 => 0.099748757287091
802 => 0.098983740886219
803 => 0.098897660913254
804 => 0.099042423551188
805 => 0.09846562616803
806 => 0.095856792981118
807 => 0.094546653286811
808 => 0.09623706774475
809 => 0.097135447797453
810 => 0.098528756912222
811 => 0.098357002154639
812 => 0.10194601680381
813 => 0.10334059937031
814 => 0.10298380547224
815 => 0.10304946413621
816 => 0.10557428925891
817 => 0.10838241406524
818 => 0.11101259351107
819 => 0.11368812501221
820 => 0.11046266735982
821 => 0.1088249788825
822 => 0.11051465535837
823 => 0.10961808923636
824 => 0.11477002411224
825 => 0.11512673290505
826 => 0.1202782952374
827 => 0.12516774132743
828 => 0.1220967678418
829 => 0.12499255751906
830 => 0.12812459015221
831 => 0.13416678925554
901 => 0.13213198916467
902 => 0.13057336418444
903 => 0.12910047110935
904 => 0.13216532778343
905 => 0.13610821693235
906 => 0.1369574774905
907 => 0.13833360403722
908 => 0.13688677523809
909 => 0.13862932116367
910 => 0.14478127399443
911 => 0.14311896203477
912 => 0.14075821182207
913 => 0.14561458774213
914 => 0.14737209130891
915 => 0.15970717175237
916 => 0.175280720349
917 => 0.16883316896857
918 => 0.16483096576554
919 => 0.16577157845178
920 => 0.17145851120138
921 => 0.17328497350633
922 => 0.16832001934217
923 => 0.17007372508865
924 => 0.17973681617232
925 => 0.18492075450963
926 => 0.17788026995176
927 => 0.15845585228626
928 => 0.14054565209494
929 => 0.14529624369251
930 => 0.14475767403336
1001 => 0.1551394599076
1002 => 0.1430793164443
1003 => 0.14328237833026
1004 => 0.15387884854188
1005 => 0.15105189195891
1006 => 0.14647258434374
1007 => 0.1405790861083
1008 => 0.12968440953749
1009 => 0.12003469067818
1010 => 0.13896001155881
1011 => 0.13814391730897
1012 => 0.13696209189682
1013 => 0.1395921164647
1014 => 0.15236276922083
1015 => 0.15206836434023
1016 => 0.15019551069656
1017 => 0.15161605367871
1018 => 0.14622355629074
1019 => 0.14761332565251
1020 => 0.14054281502773
1021 => 0.14373898112073
1022 => 0.14646275920627
1023 => 0.14700959798316
1024 => 0.14824165366979
1025 => 0.13771387272292
1026 => 0.14244053728865
1027 => 0.14521700989244
1028 => 0.13267280565957
1029 => 0.14496905130745
1030 => 0.13753060747883
1031 => 0.13500588792172
1101 => 0.13840509019886
1102 => 0.13708041776563
1103 => 0.13594154219491
1104 => 0.13530603005808
1105 => 0.13780202905415
1106 => 0.13768558771762
1107 => 0.13360164890752
1108 => 0.12827431721239
1109 => 0.13006234459298
1110 => 0.12941273748277
1111 => 0.12705847751437
1112 => 0.12864496447864
1113 => 0.12165887879068
1114 => 0.10963968146969
1115 => 0.11757993137791
1116 => 0.11727424039377
1117 => 0.11712009713759
1118 => 0.12308697549122
1119 => 0.12251339781683
1120 => 0.12147234872131
1121 => 0.12703935783133
1122 => 0.12500732461933
1123 => 0.13126957217147
1124 => 0.13539429342608
1125 => 0.13434813069516
1126 => 0.13822745097163
1127 => 0.13010353713252
1128 => 0.13280197543502
1129 => 0.13335811982929
1130 => 0.12697066180306
1201 => 0.12260724221791
1202 => 0.12231625187821
1203 => 0.11475068363383
1204 => 0.11879214912284
1205 => 0.12234847150597
1206 => 0.12064526906622
1207 => 0.12010608605552
1208 => 0.12286065512266
1209 => 0.12307470873046
1210 => 0.11819426378812
1211 => 0.11920906283522
1212 => 0.12344094355796
1213 => 0.1191024302989
1214 => 0.11067340772866
1215 => 0.10858289359089
1216 => 0.10830398046909
1217 => 0.10263434032669
1218 => 0.10872259174176
1219 => 0.10606490684409
1220 => 0.11446050159188
1221 => 0.10966498289842
1222 => 0.10945825767223
1223 => 0.10914576217284
1224 => 0.10426566869238
1225 => 0.10533409901848
1226 => 0.10888572414897
1227 => 0.11015298400745
1228 => 0.11002079842186
1229 => 0.10886831924825
1230 => 0.10939591831228
1231 => 0.10769633789934
]
'min_raw' => 0.059466427940901
'max_raw' => 0.18492075450963
'avg_raw' => 0.12219359122527
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.059466'
'max' => '$0.18492'
'avg' => '$0.122193'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.03387606653211
'max_diff' => 0.1154965699542
'year' => 2033
]
8 => [
'items' => [
101 => 0.10709618068183
102 => 0.1052019194171
103 => 0.10241787866098
104 => 0.10280501660363
105 => 0.097289103381875
106 => 0.094283741106989
107 => 0.093451896439338
108 => 0.092339518984575
109 => 0.093577542432777
110 => 0.097273477492756
111 => 0.092815395674058
112 => 0.08517232709398
113 => 0.085631688538798
114 => 0.086663737319667
115 => 0.084740521244204
116 => 0.082920358632069
117 => 0.08450284234886
118 => 0.081264373434688
119 => 0.087055090815976
120 => 0.08689846813911
121 => 0.089056889483294
122 => 0.090406594645077
123 => 0.087295961219402
124 => 0.086513645324893
125 => 0.08695928801268
126 => 0.079593807064902
127 => 0.088454972552053
128 => 0.088531604279154
129 => 0.087875436907246
130 => 0.092593733971363
131 => 0.10255081245041
201 => 0.098804559004038
202 => 0.097353896438493
203 => 0.094596185840965
204 => 0.098270671475519
205 => 0.09798852830969
206 => 0.096712569914196
207 => 0.095940866295369
208 => 0.097362753874783
209 => 0.095764678688946
210 => 0.095477620473401
211 => 0.093738360009613
212 => 0.09311752315535
213 => 0.092657880264681
214 => 0.092151858605632
215 => 0.093268016292753
216 => 0.090738656130964
217 => 0.087688495732081
218 => 0.087434907898106
219 => 0.08813508620338
220 => 0.087825309425441
221 => 0.087433424806073
222 => 0.086685210344276
223 => 0.086463231096533
224 => 0.087184555962676
225 => 0.086370222244653
226 => 0.087571816004649
227 => 0.087245048989146
228 => 0.085419755003306
301 => 0.083144762886564
302 => 0.083124510684767
303 => 0.08263436736495
304 => 0.082010096153621
305 => 0.08183643818402
306 => 0.084369569984138
307 => 0.089613077000127
308 => 0.088583651106399
309 => 0.089327516814426
310 => 0.092986599866968
311 => 0.094149712336905
312 => 0.093324162655573
313 => 0.092194099334078
314 => 0.092243816385055
315 => 0.096105584848033
316 => 0.096346438610128
317 => 0.096954998364572
318 => 0.097737169627998
319 => 0.093457369803938
320 => 0.092042238198218
321 => 0.091371670334916
322 => 0.089306580858366
323 => 0.091533602811434
324 => 0.090236012489969
325 => 0.090411101756332
326 => 0.090297074641919
327 => 0.090359341156869
328 => 0.087053472192453
329 => 0.088257957091729
330 => 0.086255267332995
331 => 0.083573890558526
401 => 0.083564901643366
402 => 0.084221164810213
403 => 0.083830793798992
404 => 0.082780315445152
405 => 0.082929530937197
406 => 0.081622246214965
407 => 0.08308825897163
408 => 0.083130298971846
409 => 0.082565804206275
410 => 0.084824399128694
411 => 0.085749747311247
412 => 0.085378184763899
413 => 0.085723677492416
414 => 0.088626428399863
415 => 0.089099703453678
416 => 0.089309900969788
417 => 0.089028264144035
418 => 0.085776734450349
419 => 0.085920953618836
420 => 0.084862769051401
421 => 0.083968714600661
422 => 0.084004472089992
423 => 0.084464132296616
424 => 0.086471495377655
425 => 0.090695872641186
426 => 0.090856184670357
427 => 0.091050487526345
428 => 0.090260160162252
429 => 0.090021789866827
430 => 0.090336261815086
501 => 0.091922715808063
502 => 0.096003506196059
503 => 0.094561082326115
504 => 0.093388369267186
505 => 0.094417154781038
506 => 0.094258781315068
507 => 0.092921949880858
508 => 0.092884429474955
509 => 0.090318622541843
510 => 0.089370102139268
511 => 0.088577447495355
512 => 0.087711889316976
513 => 0.08719875741506
514 => 0.087987161230682
515 => 0.088167478511434
516 => 0.086443619789637
517 => 0.086208664215732
518 => 0.087616404460027
519 => 0.086996910464359
520 => 0.087634075401616
521 => 0.087781903132559
522 => 0.087758099463116
523 => 0.087111276583206
524 => 0.087523542198324
525 => 0.086548411116274
526 => 0.085488102524497
527 => 0.084811691702503
528 => 0.084221433547437
529 => 0.084548943077873
530 => 0.083381431402747
531 => 0.083007920920507
601 => 0.087383875884192
602 => 0.09061644086531
603 => 0.090569438090248
604 => 0.090283320785193
605 => 0.089858208506656
606 => 0.091891616197028
607 => 0.091183217616972
608 => 0.091698636772645
609 => 0.091829832579837
610 => 0.092226922774559
611 => 0.092368848388117
612 => 0.091939850610269
613 => 0.090500081670146
614 => 0.08691231436048
615 => 0.085242198992839
616 => 0.084691033103545
617 => 0.084711066936808
618 => 0.084158444380451
619 => 0.084321216490104
620 => 0.084101838883398
621 => 0.083686390769442
622 => 0.084523290327539
623 => 0.08461973520535
624 => 0.084424392848286
625 => 0.084470403044871
626 => 0.082853051760187
627 => 0.082976015465659
628 => 0.082291337928117
629 => 0.082162969143739
630 => 0.080432163950528
701 => 0.077365791666529
702 => 0.079064859571824
703 => 0.077012624467329
704 => 0.07623541193682
705 => 0.0799146151749
706 => 0.07954532521501
707 => 0.078913261330164
708 => 0.077978307110822
709 => 0.077631523496218
710 => 0.075524576032235
711 => 0.075400086335935
712 => 0.076444346391452
713 => 0.075962456306625
714 => 0.075285700121482
715 => 0.072834557820568
716 => 0.070078662329015
717 => 0.070161845490963
718 => 0.071038444571568
719 => 0.073587274623918
720 => 0.072591402627257
721 => 0.071868886067365
722 => 0.071733580434466
723 => 0.073427213711735
724 => 0.075824059626213
725 => 0.076948606102881
726 => 0.075834214697487
727 => 0.074554061854065
728 => 0.074631978825987
729 => 0.075150325532766
730 => 0.07520479644262
731 => 0.074371548543391
801 => 0.074606102946247
802 => 0.074249793360205
803 => 0.072063122088363
804 => 0.072023572139065
805 => 0.071486927744118
806 => 0.071470678365115
807 => 0.070557712377091
808 => 0.070429982124331
809 => 0.068617232742035
810 => 0.069810389874973
811 => 0.069010082713759
812 => 0.067803831048436
813 => 0.067595872806671
814 => 0.067589621330806
815 => 0.068828172078156
816 => 0.069795916688371
817 => 0.06902400439947
818 => 0.068848254934178
819 => 0.070724799425397
820 => 0.070485992033807
821 => 0.070279186372832
822 => 0.075609448363408
823 => 0.071390130072337
824 => 0.069550266467162
825 => 0.067273085875135
826 => 0.06801454735844
827 => 0.068170784187308
828 => 0.062694575356138
829 => 0.06047287811535
830 => 0.059710475345206
831 => 0.059271701772195
901 => 0.059471656399188
902 => 0.057471868303384
903 => 0.058815758977207
904 => 0.05708411152412
905 => 0.056793795193342
906 => 0.059890195349416
907 => 0.060321041342227
908 => 0.05848291848354
909 => 0.059663290923877
910 => 0.059235271468606
911 => 0.057113795649574
912 => 0.057032770877807
913 => 0.055968288885297
914 => 0.05430258069135
915 => 0.053541307349798
916 => 0.05314482958384
917 => 0.053308424037272
918 => 0.053225705675544
919 => 0.052685912412412
920 => 0.053256645993527
921 => 0.051798657537176
922 => 0.051218074786046
923 => 0.050955839026778
924 => 0.049661790353082
925 => 0.051721197258989
926 => 0.052126926363178
927 => 0.052533454879037
928 => 0.05607200806079
929 => 0.055895231943678
930 => 0.057493201948917
1001 => 0.057431107772992
1002 => 0.0569753408421
1003 => 0.055052535130687
1004 => 0.05581893121654
1005 => 0.05346008318868
1006 => 0.055227492517227
1007 => 0.054420920708456
1008 => 0.054954789777343
1009 => 0.053994845054451
1010 => 0.054526118099246
1011 => 0.052223139785338
1012 => 0.05007265103959
1013 => 0.050938070487559
1014 => 0.05187888040022
1015 => 0.053918796004776
1016 => 0.052703839099641
1017 => 0.053140783545334
1018 => 0.051677092795878
1019 => 0.048657080697156
1020 => 0.048674173637662
1021 => 0.048209610570814
1022 => 0.047808160253739
1023 => 0.052843391515404
1024 => 0.05221718091279
1025 => 0.05121939627394
1026 => 0.052554970663426
1027 => 0.052908117730421
1028 => 0.052918171330952
1029 => 0.053892571929356
1030 => 0.054412609703396
1031 => 0.054504268615043
1101 => 0.05603750900995
1102 => 0.056551430966393
1103 => 0.058668202772024
1104 => 0.05436848813157
1105 => 0.054279938338056
1106 => 0.052573764934007
1107 => 0.051491682787624
1108 => 0.052647856024331
1109 => 0.053672067678668
1110 => 0.052605590045086
1111 => 0.05274484950946
1112 => 0.0513131904208
1113 => 0.051824941179175
1114 => 0.052265729872559
1115 => 0.052022352264434
1116 => 0.051658004205462
1117 => 0.053588094002968
1118 => 0.05347919077251
1119 => 0.05527653476452
1120 => 0.056677692935594
1121 => 0.059188818865141
1122 => 0.056568328049703
1123 => 0.056472826948881
1124 => 0.057406365528276
1125 => 0.0565512880465
1126 => 0.057091667498711
1127 => 0.059101755381156
1128 => 0.059144225370657
1129 => 0.058432798327024
1130 => 0.058389507926764
1201 => 0.058526145272653
1202 => 0.059326434475314
1203 => 0.059046788837501
1204 => 0.059370401849339
1205 => 0.059775084875982
1206 => 0.061449025456222
1207 => 0.061852606863019
1208 => 0.060872113277471
1209 => 0.060960640870125
1210 => 0.060593909353979
1211 => 0.060239651304515
1212 => 0.061035971664478
1213 => 0.062491262774025
1214 => 0.062482209483562
1215 => 0.06281980873416
1216 => 0.06303013027046
1217 => 0.062127276271888
1218 => 0.06153955151768
1219 => 0.061764922586341
1220 => 0.062125295833074
1221 => 0.061648058399415
1222 => 0.058702327880988
1223 => 0.059595874346285
1224 => 0.059447144522269
1225 => 0.059235335166707
1226 => 0.060133803047153
1227 => 0.060047143628257
1228 => 0.057451357586015
1229 => 0.057617531386432
1230 => 0.057461463165203
1231 => 0.057965751516548
]
'min_raw' => 0.047808160253739
'max_raw' => 0.10709618068183
'avg_raw' => 0.077452170467782
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0478081'
'max' => '$0.107096'
'avg' => '$0.077452'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.011658267687163
'max_diff' => -0.077824573827809
'year' => 2034
]
9 => [
'items' => [
101 => 0.056524054820595
102 => 0.056967511014294
103 => 0.057245642581839
104 => 0.057409464211831
105 => 0.058001300272903
106 => 0.057931855142082
107 => 0.057996983466066
108 => 0.058874520105708
109 => 0.06331279929481
110 => 0.063554365038562
111 => 0.062364806967809
112 => 0.062840011954079
113 => 0.061927722296346
114 => 0.062540148455392
115 => 0.062959154879473
116 => 0.061065745419351
117 => 0.060953629999249
118 => 0.060037574997579
119 => 0.060529811067469
120 => 0.059746628087248
121 => 0.059938793796016
122 => 0.059401481721594
123 => 0.060368536477787
124 => 0.061449853960328
125 => 0.061723037458939
126 => 0.061004409286984
127 => 0.060484075130584
128 => 0.059570539760673
129 => 0.061089769440299
130 => 0.061534038496308
131 => 0.061087435884079
201 => 0.060983948300366
202 => 0.060787839516228
203 => 0.061025553705987
204 => 0.061531618911617
205 => 0.061292967906199
206 => 0.061450601099767
207 => 0.060849865916528
208 => 0.062127575154129
209 => 0.064156884920913
210 => 0.064163409483639
211 => 0.063924757191803
212 => 0.063827105815819
213 => 0.064071977549875
214 => 0.064204810420436
215 => 0.064996680706575
216 => 0.065846389073107
217 => 0.069811607262906
218 => 0.068698189862288
219 => 0.072216367332163
220 => 0.074998788932666
221 => 0.075833115510106
222 => 0.07506557431696
223 => 0.072439857356968
224 => 0.072311027156266
225 => 0.076234956843601
226 => 0.075126266979563
227 => 0.074994391848058
228 => 0.073591463255392
301 => 0.074420767809744
302 => 0.074239386738544
303 => 0.073953067844188
304 => 0.075535323164035
305 => 0.078497163873883
306 => 0.078035533223287
307 => 0.077690947357047
308 => 0.076181072398619
309 => 0.077090354366373
310 => 0.076766576473805
311 => 0.078157731774807
312 => 0.077333642192356
313 => 0.075117867563417
314 => 0.075470736976364
315 => 0.075417401474472
316 => 0.07651504232402
317 => 0.076185557786106
318 => 0.075353064330406
319 => 0.07848704062433
320 => 0.078283537635895
321 => 0.078572058346236
322 => 0.078699074085728
323 => 0.080606670228982
324 => 0.081388151332606
325 => 0.08156556122488
326 => 0.082307907831405
327 => 0.081547090965048
328 => 0.084590900883709
329 => 0.086614856868385
330 => 0.08896578589641
331 => 0.092401125076505
401 => 0.093692844386885
402 => 0.093459506855196
403 => 0.09606414181456
404 => 0.10074461293876
405 => 0.094405563889187
406 => 0.1010805979308
407 => 0.098967359220197
408 => 0.093956908252906
409 => 0.093634294279949
410 => 0.09702742984753
411 => 0.10455307795923
412 => 0.10266798846244
413 => 0.10455616129033
414 => 0.10235350739039
415 => 0.10224412705884
416 => 0.10444918330683
417 => 0.10960141742161
418 => 0.10715378412229
419 => 0.10364450160339
420 => 0.10623570120486
421 => 0.10399096430587
422 => 0.09893294381014
423 => 0.10266654697003
424 => 0.10016999286391
425 => 0.10089862007619
426 => 0.10614600547287
427 => 0.10551462617908
428 => 0.10633168944939
429 => 0.10488959416356
430 => 0.10354244976904
501 => 0.10102790471642
502 => 0.10028347189191
503 => 0.10048920634272
504 => 0.10028336994014
505 => 0.098876505093058
506 => 0.09857269276328
507 => 0.098066325569993
508 => 0.098223269936772
509 => 0.097271151470445
510 => 0.099067995734117
511 => 0.099401505863192
512 => 0.10070909927392
513 => 0.10084485795959
514 => 0.10448648699603
515 => 0.10248073891785
516 => 0.10382636789665
517 => 0.10370600217524
518 => 0.094065499918383
519 => 0.095393876070506
520 => 0.097460412495809
521 => 0.096529440637334
522 => 0.095213264243315
523 => 0.094150381236232
524 => 0.092540004795133
525 => 0.094806578711439
526 => 0.097786882388119
527 => 0.10092044337908
528 => 0.10468521159068
529 => 0.10384495915258
530 => 0.10085006365609
531 => 0.10098441248029
601 => 0.10181490404718
602 => 0.10073934200994
603 => 0.10042213776769
604 => 0.1017713250553
605 => 0.10178061616665
606 => 0.10054305205678
607 => 0.099167726020516
608 => 0.099161963354207
609 => 0.098917237370126
610 => 0.1023970435993
611 => 0.10431058517725
612 => 0.10452996963534
613 => 0.10429581885526
614 => 0.1043859341974
615 => 0.1032724865152
616 => 0.10581749773406
617 => 0.108153051704
618 => 0.10752707334822
619 => 0.10658864280485
620 => 0.10584113767611
621 => 0.10735098489595
622 => 0.10728375377597
623 => 0.10813265267757
624 => 0.10809414171991
625 => 0.10780868894801
626 => 0.10752708354264
627 => 0.10864361714369
628 => 0.10832207339757
629 => 0.1080000302052
630 => 0.10735412328055
701 => 0.10744191275899
702 => 0.10650364424887
703 => 0.10606955830385
704 => 0.099541947208498
705 => 0.097797556227974
706 => 0.0983463771408
707 => 0.098527063235431
708 => 0.097767902045209
709 => 0.098856344179478
710 => 0.098686711625797
711 => 0.099346652660443
712 => 0.098934350153305
713 => 0.098951271192015
714 => 0.10016376495334
715 => 0.10051575705058
716 => 0.100336731029
717 => 0.10046211471786
718 => 0.10335152890647
719 => 0.10294074660711
720 => 0.10272252669777
721 => 0.102782975104
722 => 0.10352128237893
723 => 0.10372796810583
724 => 0.10285222615742
725 => 0.10326523112289
726 => 0.10502375384775
727 => 0.10563913727769
728 => 0.10760314578523
729 => 0.10676880006376
730 => 0.10830027774516
731 => 0.11300751801857
801 => 0.11676798726523
802 => 0.11330970433804
803 => 0.12021532721665
804 => 0.12559234518041
805 => 0.12538596627507
806 => 0.12444835882042
807 => 0.1183267668241
808 => 0.11269358660128
809 => 0.11740598105513
810 => 0.11741799391771
811 => 0.11701319505491
812 => 0.11449902408389
813 => 0.1169257073549
814 => 0.11711832866053
815 => 0.11701051195152
816 => 0.11508290296282
817 => 0.11213980031877
818 => 0.11271487553063
819 => 0.11365686045886
820 => 0.11187348647107
821 => 0.11130359042353
822 => 0.11236313560307
823 => 0.11577721093653
824 => 0.11513179977113
825 => 0.11511494547729
826 => 0.1178762881398
827 => 0.11589976272849
828 => 0.11272212907069
829 => 0.11191973466426
830 => 0.10907177507906
831 => 0.11103887090864
901 => 0.1111096631856
902 => 0.11003230490297
903 => 0.11280955075767
904 => 0.11278395794819
905 => 0.11542053954874
906 => 0.12046069331415
907 => 0.11897007183481
908 => 0.1172366412335
909 => 0.11742511320268
910 => 0.11949218551612
911 => 0.11824238640874
912 => 0.11869182288167
913 => 0.11949150524019
914 => 0.11997397346209
915 => 0.11735569345031
916 => 0.11674524713276
917 => 0.11549648820458
918 => 0.11517071030941
919 => 0.1161877984002
920 => 0.11591983162253
921 => 0.11110371336884
922 => 0.1106004022147
923 => 0.11061583804923
924 => 0.10935023822101
925 => 0.1074198947042
926 => 0.11249272221155
927 => 0.11208530316853
928 => 0.11163554407677
929 => 0.11169063699922
930 => 0.11389257948608
1001 => 0.11261534164294
1002 => 0.1160110877841
1003 => 0.11531302446295
1004 => 0.11459705845165
1005 => 0.11449809014003
1006 => 0.11422250430902
1007 => 0.11327741795355
1008 => 0.11213616938843
1009 => 0.11138261823247
1010 => 0.10274457765653
1011 => 0.10434774774226
1012 => 0.10619204879233
1013 => 0.10682869412425
1014 => 0.10573966822949
1015 => 0.11332041933356
1016 => 0.11470549561021
1017 => 0.11051000922195
1018 => 0.10972520501929
1019 => 0.11337187096644
1020 => 0.11117248561353
1021 => 0.11216286870327
1022 => 0.11002220217383
1023 => 0.11437187129494
1024 => 0.11433873410392
1025 => 0.11264661457408
1026 => 0.11407678241357
1027 => 0.11382825555676
1028 => 0.11191785677507
1029 => 0.11443243434383
1030 => 0.11443368154293
1031 => 0.11280505328531
1101 => 0.11090317203298
1102 => 0.11056316058549
1103 => 0.11030700763392
1104 => 0.11209987077965
1105 => 0.11370734626997
1106 => 0.11669845963049
1107 => 0.11745049659642
1108 => 0.12038574694041
1109 => 0.11863794827531
1110 => 0.11941272478576
1111 => 0.12025385428669
1112 => 0.12065712270095
1113 => 0.12000001846049
1114 => 0.12455967044194
1115 => 0.1249446447733
1116 => 0.12507372333659
1117 => 0.12353623434304
1118 => 0.12490188442309
1119 => 0.12426294197621
1120 => 0.12592529271967
1121 => 0.1261859705422
1122 => 0.1259651857004
1123 => 0.12604792895579
1124 => 0.12215707036736
1125 => 0.12195530882363
1126 => 0.1192042758586
1127 => 0.12032534212646
1128 => 0.1182295624728
1129 => 0.1188941557899
1130 => 0.1191871021916
1201 => 0.11903408361591
1202 => 0.12038872553121
1203 => 0.11923700316815
1204 => 0.11619741849134
1205 => 0.11315700568172
1206 => 0.11311883577556
1207 => 0.11231834875053
1208 => 0.11173974324795
1209 => 0.11185120319488
1210 => 0.11224400258581
1211 => 0.11171691303328
1212 => 0.11182939431343
1213 => 0.1136973330228
1214 => 0.11407193480944
1215 => 0.11279889157208
1216 => 0.10768743927484
1217 => 0.10643307605999
1218 => 0.10733468746372
1219 => 0.10690377528395
1220 => 0.086279690151719
1221 => 0.091125013032158
1222 => 0.088246086708219
1223 => 0.089572828411322
1224 => 0.086634190128937
1225 => 0.088036662344519
1226 => 0.087777676936386
1227 => 0.095568812744606
1228 => 0.095447164875317
1229 => 0.095505391272883
1230 => 0.092726093608968
1231 => 0.09715359025374
]
'min_raw' => 0.056524054820595
'max_raw' => 0.1261859705422
'avg_raw' => 0.091355012681398
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.056524'
'max' => '$0.126185'
'avg' => '$0.091355'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0087158945668561
'max_diff' => 0.019089789860376
'year' => 2035
]
10 => [
'items' => [
101 => 0.099334734308585
102 => 0.098931062593302
103 => 0.099032658067273
104 => 0.097286911222544
105 => 0.095522293918354
106 => 0.093565061755351
107 => 0.097201357193004
108 => 0.09679706321397
109 => 0.097724368141492
110 => 0.10008276566058
111 => 0.10043004865394
112 => 0.10089680051882
113 => 0.10072950320092
114 => 0.10471520404328
115 => 0.10423250937277
116 => 0.10539566464797
117 => 0.10300296599809
118 => 0.10029540035871
119 => 0.10081002006976
120 => 0.10076045805328
121 => 0.10012947669879
122 => 0.099559854945036
123 => 0.098611595214975
124 => 0.10161202931692
125 => 0.10149021717182
126 => 0.10346221420991
127 => 0.10311364457847
128 => 0.10078581127026
129 => 0.10086895029226
130 => 0.10142810017049
131 => 0.10336332428328
201 => 0.10393783056006
202 => 0.10367169636254
203 => 0.10430161626782
204 => 0.10479947927706
205 => 0.10436414019655
206 => 0.11052762352765
207 => 0.10796811553202
208 => 0.10921560192015
209 => 0.1095131200731
210 => 0.10875103358045
211 => 0.10891630285243
212 => 0.10916664076631
213 => 0.11068664355818
214 => 0.1146755707004
215 => 0.11644223937815
216 => 0.12175734926104
217 => 0.11629554213768
218 => 0.11597146110618
219 => 0.11692887289703
220 => 0.12004940505981
221 => 0.12257830328106
222 => 0.12341728471669
223 => 0.12352816996348
224 => 0.12510215491115
225 => 0.12600433373007
226 => 0.12491103173858
227 => 0.12398457277429
228 => 0.12066611176052
229 => 0.12105023265874
301 => 0.12369644473306
302 => 0.12743437514915
303 => 0.13064190831154
304 => 0.12951874199189
305 => 0.13808770817897
306 => 0.13893728617533
307 => 0.13881990196638
308 => 0.14075536707625
309 => 0.13691386298378
310 => 0.13527154555861
311 => 0.12418488371813
312 => 0.12729978347624
313 => 0.13182747320631
314 => 0.13122821649257
315 => 0.1279400871851
316 => 0.13063941397061
317 => 0.12974693211957
318 => 0.12904299465454
319 => 0.1322678686468
320 => 0.12872198722179
321 => 0.13179210032664
322 => 0.12785464851342
323 => 0.12952387252103
324 => 0.12857634024303
325 => 0.12918950975208
326 => 0.12560493333127
327 => 0.12753908375727
328 => 0.12552446631465
329 => 0.12552351112367
330 => 0.12547903833196
331 => 0.12784922681902
401 => 0.12792651858049
402 => 0.1261749457074
403 => 0.12592251669168
404 => 0.12685587906621
405 => 0.12576315617362
406 => 0.12627443433755
407 => 0.12577864226836
408 => 0.12566702903061
409 => 0.12477767576277
410 => 0.12439451792171
411 => 0.12454476398395
412 => 0.12403189671637
413 => 0.12372287563643
414 => 0.12541756626122
415 => 0.12451216142402
416 => 0.12527879998458
417 => 0.12440511858732
418 => 0.12137655821953
419 => 0.11963480112557
420 => 0.11391413133853
421 => 0.11553650619366
422 => 0.11661214240109
423 => 0.11625664464095
424 => 0.1170203913891
425 => 0.11706727923654
426 => 0.11681897738324
427 => 0.11653147564656
428 => 0.11639153570098
429 => 0.11743453340464
430 => 0.11804002867731
501 => 0.11672009688466
502 => 0.11641085533345
503 => 0.11774537925125
504 => 0.11855943807018
505 => 0.124569991009
506 => 0.12412470983346
507 => 0.12524227820205
508 => 0.12511645715423
509 => 0.12628784684711
510 => 0.12820257392874
511 => 0.12430939840566
512 => 0.12498511906059
513 => 0.12481944796067
514 => 0.12662820158829
515 => 0.12663384831968
516 => 0.12554941016598
517 => 0.1261373016821
518 => 0.12580915676576
519 => 0.12640215898104
520 => 0.12411876283189
521 => 0.12689969286417
522 => 0.1284763009933
523 => 0.1284981921987
524 => 0.12924549193917
525 => 0.13000479175617
526 => 0.13146220163383
527 => 0.12996414538569
528 => 0.12726928802814
529 => 0.12746384802502
530 => 0.12588385414229
531 => 0.12591041412491
601 => 0.12576863485615
602 => 0.12619412511434
603 => 0.12421213401617
604 => 0.12467730336536
605 => 0.12402606355246
606 => 0.12498370339242
607 => 0.12395344122816
608 => 0.12481936806905
609 => 0.12519307338765
610 => 0.12657205405858
611 => 0.12374976466185
612 => 0.11799492552973
613 => 0.11920466248598
614 => 0.1174153665049
615 => 0.11758097266027
616 => 0.11791552345017
617 => 0.11683113488192
618 => 0.11703800204773
619 => 0.11703061129687
620 => 0.11696692179872
621 => 0.11668483045105
622 => 0.11627574218685
623 => 0.11790542392069
624 => 0.1181823386037
625 => 0.11879788564157
626 => 0.12062933609671
627 => 0.12044633100767
628 => 0.12074481990071
629 => 0.12009322032315
630 => 0.11761119849585
701 => 0.11774598422244
702 => 0.11606520405207
703 => 0.1187549043137
704 => 0.11811794778944
705 => 0.1177072977746
706 => 0.1175952481134
707 => 0.11943123837998
708 => 0.11998059544336
709 => 0.11963827298745
710 => 0.11893615964322
711 => 0.12028442482531
712 => 0.1206451637093
713 => 0.12072591984189
714 => 0.12311478724036
715 => 0.12085943099246
716 => 0.12140231765764
717 => 0.12563776444557
718 => 0.12179679866062
719 => 0.12383144390067
720 => 0.12373185860395
721 => 0.12477271426012
722 => 0.12364647805984
723 => 0.12366043910733
724 => 0.12458464841633
725 => 0.12328676312386
726 => 0.12296538847324
727 => 0.12252141169515
728 => 0.12349081874756
729 => 0.12407193443297
730 => 0.12875530007496
731 => 0.13178096786711
801 => 0.13164961564862
802 => 0.13284992904455
803 => 0.13230917686608
804 => 0.13056294543855
805 => 0.1335435495551
806 => 0.13260036169885
807 => 0.13267811695975
808 => 0.13267522290505
809 => 0.13330236037454
810 => 0.1328579760011
811 => 0.13198204878593
812 => 0.13256353014917
813 => 0.13429032191461
814 => 0.13965033653896
815 => 0.1426498717335
816 => 0.13946976075392
817 => 0.14166335872425
818 => 0.14034798160093
819 => 0.14010893844854
820 => 0.14148668007952
821 => 0.14286683326485
822 => 0.14277892347351
823 => 0.14177700313261
824 => 0.14121104375483
825 => 0.14549667777371
826 => 0.14865425991496
827 => 0.14843893398162
828 => 0.14938931262361
829 => 0.1521796537106
830 => 0.1524347675299
831 => 0.15240262905239
901 => 0.15177030283288
902 => 0.15451775600459
903 => 0.15680972977728
904 => 0.15162393758272
905 => 0.1535986193634
906 => 0.15448511763503
907 => 0.15578676010995
908 => 0.15798284914576
909 => 0.16036838432249
910 => 0.16070572515255
911 => 0.16046636569038
912 => 0.1588930411147
913 => 0.16150332217043
914 => 0.16303236359426
915 => 0.16394287277066
916 => 0.16625177254773
917 => 0.15449059234655
918 => 0.14616544443158
919 => 0.14486535236806
920 => 0.14750914070282
921 => 0.14820628660287
922 => 0.14792526796471
923 => 0.13855455709707
924 => 0.14481601751465
925 => 0.15155282244543
926 => 0.15181161055932
927 => 0.15518419596762
928 => 0.15628244802351
929 => 0.15899782133206
930 => 0.15882797399229
1001 => 0.1594891241819
1002 => 0.15933713720283
1003 => 0.16436679446762
1004 => 0.16991525334201
1005 => 0.16972312785421
1006 => 0.16892547124463
1007 => 0.17011012733051
1008 => 0.17583673149787
1009 => 0.1753095175531
1010 => 0.17582166099247
1011 => 0.18257365004305
1012 => 0.19135219626805
1013 => 0.18727368019491
1014 => 0.19612288651224
1015 => 0.20169299281273
1016 => 0.21132591569969
1017 => 0.2101198263111
1018 => 0.21386985250134
1019 => 0.20796067458707
1020 => 0.194392007654
1021 => 0.19224471417308
1022 => 0.19654365010003
1023 => 0.20711216459239
1024 => 0.19621080996851
1025 => 0.19841613981097
1026 => 0.19778100466798
1027 => 0.19774716101536
1028 => 0.19903883558375
1029 => 0.19716519425308
1030 => 0.18953164241029
1031 => 0.19303005423504
1101 => 0.19167914942197
1102 => 0.1931780790287
1103 => 0.2012671839106
1104 => 0.19769079782214
1105 => 0.19392336559995
1106 => 0.19864856166671
1107 => 0.20466536001322
1108 => 0.20428883958593
1109 => 0.20355823258364
1110 => 0.2076766260022
1111 => 0.21447900535362
1112 => 0.21631766115813
1113 => 0.21767491928336
1114 => 0.21786206224776
1115 => 0.21978975108984
1116 => 0.20942408234585
1117 => 0.22587466485182
1118 => 0.22871522601242
1119 => 0.22818131824343
1120 => 0.23133848242436
1121 => 0.2304095646328
1122 => 0.22906370849558
1123 => 0.23406848527043
1124 => 0.22833091256272
1125 => 0.22018715044444
1126 => 0.21571932148101
1127 => 0.22160291906954
1128 => 0.2251958268076
1129 => 0.22757051027061
1130 => 0.22828908805169
1201 => 0.21022873970318
1202 => 0.20049521361616
1203 => 0.20673429224284
1204 => 0.21434639876558
1205 => 0.20938179670978
1206 => 0.20957639971113
1207 => 0.20249818185402
1208 => 0.2149726639859
1209 => 0.21315523686619
1210 => 0.22258405197819
1211 => 0.22033378958075
1212 => 0.22802262228009
1213 => 0.22599789494951
1214 => 0.23440242489777
1215 => 0.2377552194377
1216 => 0.24338508329104
1217 => 0.24752643405922
1218 => 0.24995831444171
1219 => 0.2498123134653
1220 => 0.25944863509874
1221 => 0.25376643289894
1222 => 0.24662824774375
1223 => 0.24649914049498
1224 => 0.25019610773572
1225 => 0.25794393685887
1226 => 0.25995283622418
1227 => 0.26107553691029
1228 => 0.25935608172801
1229 => 0.25318845848723
1230 => 0.25052531004241
1231 => 0.25279438967623
]
'min_raw' => 0.093565061755351
'max_raw' => 0.26107553691029
'avg_raw' => 0.17732029933282
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.093565'
'max' => '$0.261075'
'avg' => '$0.17732'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.037041006934756
'max_diff' => 0.13488956636809
'year' => 2036
]
11 => [
'items' => [
101 => 0.25001950026831
102 => 0.25480973788284
103 => 0.26138775726714
104 => 0.26002942227659
105 => 0.26457013249703
106 => 0.26926928987855
107 => 0.27598929598647
108 => 0.27774615442419
109 => 0.2806501746144
110 => 0.28363936531106
111 => 0.28459941280188
112 => 0.28643244134709
113 => 0.28642278038185
114 => 0.2919467352799
115 => 0.2980398285951
116 => 0.30033983026615
117 => 0.3056285572859
118 => 0.29657179760368
119 => 0.3034414538592
120 => 0.30963805576034
121 => 0.3022502115179
122 => 0.31243263365916
123 => 0.31282799403704
124 => 0.31879746634958
125 => 0.31274626254831
126 => 0.30915307704724
127 => 0.31952646895392
128 => 0.32454582653878
129 => 0.32303395518534
130 => 0.31152853953531
131 => 0.3048318941365
201 => 0.28730548144139
202 => 0.30806627436343
203 => 0.31817825099512
204 => 0.3115023519587
205 => 0.31486928711882
206 => 0.33323819362
207 => 0.34023188391704
208 => 0.33877724522484
209 => 0.33902305521843
210 => 0.34279672355825
211 => 0.35953124717413
212 => 0.34950353272028
213 => 0.35716934468895
214 => 0.361235263716
215 => 0.36501191590445
216 => 0.3557376517528
217 => 0.3436719703575
218 => 0.33985026257676
219 => 0.31083856536712
220 => 0.30932838053594
221 => 0.30848066802692
222 => 0.30313596056885
223 => 0.29893648454538
224 => 0.29559690529497
225 => 0.28683285205912
226 => 0.28979046275474
227 => 0.27582239109686
228 => 0.28475866834551
301 => 0.26246528870865
302 => 0.28103187772158
303 => 0.27092692744106
304 => 0.27771212978266
305 => 0.27768845685089
306 => 0.26519474808964
307 => 0.2579886376132
308 => 0.2625806516748
309 => 0.26750365526337
310 => 0.26830239603264
311 => 0.27468519868877
312 => 0.27646650171221
313 => 0.2710690703901
314 => 0.26200330796745
315 => 0.2641090778102
316 => 0.25794596425454
317 => 0.24714534480899
318 => 0.25490253825551
319 => 0.25755118515787
320 => 0.25872097852004
321 => 0.24809980975487
322 => 0.24476240793205
323 => 0.2429856032051
324 => 0.26063224845479
325 => 0.26159897151661
326 => 0.25665307965144
327 => 0.27900897987073
328 => 0.27394915112795
329 => 0.27960221952178
330 => 0.26391800126861
331 => 0.26451715952748
401 => 0.25709199925568
402 => 0.2612495928585
403 => 0.25831113970552
404 => 0.26091370038153
405 => 0.26247366451997
406 => 0.26989760639603
407 => 0.28111664721256
408 => 0.26878871704639
409 => 0.26341726133378
410 => 0.26674968224767
411 => 0.27562435828266
412 => 0.28906994676196
413 => 0.28110988776453
414 => 0.28464242677702
415 => 0.28541412939953
416 => 0.27954467659222
417 => 0.28928636185907
418 => 0.29450701013488
419 => 0.29986231500492
420 => 0.30451217617134
421 => 0.29772328847415
422 => 0.30498837145897
423 => 0.29913399703299
424 => 0.29388201795878
425 => 0.29388998304311
426 => 0.29059533985069
427 => 0.28421155351362
428 => 0.28303428536821
429 => 0.28915858293321
430 => 0.29406968960721
501 => 0.29447419187549
502 => 0.29719323287199
503 => 0.29880233332536
504 => 0.31457370523444
505 => 0.3209170814839
506 => 0.32867364188778
507 => 0.33169525930088
508 => 0.34078924440452
509 => 0.33344511285597
510 => 0.33185616379869
511 => 0.30979713055713
512 => 0.31340929601466
513 => 0.3191927214343
514 => 0.30989249711213
515 => 0.315791348828
516 => 0.31695590711147
517 => 0.30957647904844
518 => 0.31351815042317
519 => 0.303050239876
520 => 0.28134481905699
521 => 0.28931052619726
522 => 0.29517596788053
523 => 0.28680525939476
524 => 0.30180943036435
525 => 0.29304430343287
526 => 0.29026617899589
527 => 0.27942772509433
528 => 0.28454305812552
529 => 0.29146161929471
530 => 0.28718675286121
531 => 0.29605774258514
601 => 0.30862142984077
602 => 0.31757506155963
603 => 0.31826241022532
604 => 0.31250582487682
605 => 0.32173078963583
606 => 0.32179798343297
607 => 0.31139218549973
608 => 0.30501869220535
609 => 0.30357062111892
610 => 0.30718818660388
611 => 0.31158057894205
612 => 0.31850615743059
613 => 0.32269113946508
614 => 0.33360335306806
615 => 0.33655588519134
616 => 0.33979982284302
617 => 0.34413472393899
618 => 0.34933988415053
619 => 0.33795128993762
620 => 0.3384037800167
621 => 0.32779887877145
622 => 0.31646602089423
623 => 0.32506624736237
624 => 0.33630989942927
625 => 0.33373059322199
626 => 0.33344036858322
627 => 0.33392844592402
628 => 0.331983733276
629 => 0.32318787004341
630 => 0.31877064259302
701 => 0.32446999295893
702 => 0.32749894402951
703 => 0.33219658298769
704 => 0.33161749983097
705 => 0.34371811329764
706 => 0.34842004578723
707 => 0.34721709024936
708 => 0.34743846301907
709 => 0.35595108719791
710 => 0.36541887603946
711 => 0.37428670967436
712 => 0.38330745093008
713 => 0.37243259526078
714 => 0.36691101421976
715 => 0.37260787642759
716 => 0.36958504115098
717 => 0.38695514928161
718 => 0.38815781788119
719 => 0.40552666995529
720 => 0.42201177881805
721 => 0.41165777730275
722 => 0.42142113437721
723 => 0.43198100107141
724 => 0.45235269720116
725 => 0.44549222662957
726 => 0.44023721368901
727 => 0.43527125185223
728 => 0.44560463011034
729 => 0.45889835615965
730 => 0.46176169742495
731 => 0.46640140415528
801 => 0.46152331984469
802 => 0.46739843509344
803 => 0.48814017357799
804 => 0.48253557274707
805 => 0.47457613858263
806 => 0.49094974905844
807 => 0.49687529503884
808 => 0.53846387996179
809 => 0.59097118636576
810 => 0.56923281673295
811 => 0.55573910920906
812 => 0.5589104505522
813 => 0.57808434136644
814 => 0.5842423865471
815 => 0.5675026969406
816 => 0.57341543830469
817 => 0.60599522454876
818 => 0.62347323458402
819 => 0.59973574934622
820 => 0.53424496901745
821 => 0.47385947862218
822 => 0.48987642986908
823 => 0.48806060466154
824 => 0.52306352056969
825 => 0.48240190487082
826 => 0.48308654219666
827 => 0.51881328133706
828 => 0.50928199984577
829 => 0.49384254450418
830 => 0.47397220373249
831 => 0.43724004103197
901 => 0.40470534017597
902 => 0.4685133808487
903 => 0.4657618621075
904 => 0.46177725521801
905 => 0.47064456667108
906 => 0.51370171405688
907 => 0.51270910744725
908 => 0.50639465062914
909 => 0.51118411047261
910 => 0.49300292903693
911 => 0.49768863347071
912 => 0.47384991325198
913 => 0.48462601038374
914 => 0.49380941836723
915 => 0.4956531234826
916 => 0.49980708524943
917 => 0.46431193676087
918 => 0.48024821634942
919 => 0.48960928758024
920 => 0.44731562720074
921 => 0.48877327789902
922 => 0.46369404519526
923 => 0.45518177693817
924 => 0.46664242474028
925 => 0.46217619914595
926 => 0.45833640064551
927 => 0.45619372710616
928 => 0.46460916198648
929 => 0.4642165718907
930 => 0.45044728706096
1001 => 0.43248581630842
1002 => 0.43851427545815
1003 => 0.43632407973195
1004 => 0.42838652787931
1005 => 0.43373547944432
1006 => 0.41018140379446
1007 => 0.36965784087318
1008 => 0.39642894780928
1009 => 0.3953982893136
1010 => 0.39487858456343
1011 => 0.41499633152686
1012 => 0.41306247435172
1013 => 0.40955250464245
1014 => 0.42832206453305
1015 => 0.42147092268678
1016 => 0.44258452752496
1017 => 0.45649131321373
1018 => 0.45296410252567
1019 => 0.46604350168329
1020 => 0.43865315898118
1021 => 0.44775113211701
1022 => 0.44962621177106
1023 => 0.42809045107752
1024 => 0.41337887730199
1025 => 0.41239778305538
1026 => 0.38688994150835
1027 => 0.40051602457067
1028 => 0.41250641377988
1029 => 0.40676394784046
1030 => 0.40494605467533
1031 => 0.41423327660306
1101 => 0.41495497328652
1102 => 0.39850021242161
1103 => 0.40192167825994
1104 => 0.41618975957711
1105 => 0.40156215921887
1106 => 0.37314312112777
1107 => 0.36609480675723
1108 => 0.36515443169399
1109 => 0.34603884411224
1110 => 0.3665658088263
1111 => 0.35760523864016
1112 => 0.38591157249406
1113 => 0.36974314640662
1114 => 0.36904615787342
1115 => 0.36799255747949
1116 => 0.3515389815929
1117 => 0.35514126903276
1118 => 0.36711582112675
1119 => 0.37138847621687
1120 => 0.37094280328614
1121 => 0.36705713928879
1122 => 0.36883597636896
1123 => 0.36310572234583
1124 => 0.36108225038533
1125 => 0.35469561627821
1126 => 0.34530902849344
1127 => 0.3466142910962
1128 => 0.32801700456028
1129 => 0.31788421582281
1130 => 0.31507959344828
1201 => 0.31132913519583
1202 => 0.31550321768749
1203 => 0.32796432078415
1204 => 0.31293358667908
1205 => 0.28716444733934
1206 => 0.28871321652213
1207 => 0.29219284104217
1208 => 0.28570858376909
1209 => 0.27957177844258
1210 => 0.28490723277923
1211 => 0.27398850873242
1212 => 0.29351231667841
1213 => 0.29298425238831
1214 => 0.30026152064639
1215 => 0.30481214583275
1216 => 0.2943244280606
1217 => 0.29168679540271
1218 => 0.29318931083836
1219 => 0.26835607758147
1220 => 0.29823211568822
1221 => 0.29849048490639
1222 => 0.29627817079986
1223 => 0.31218623877251
1224 => 0.34575722404564
1225 => 0.33312646899613
1226 => 0.32823545887437
1227 => 0.3189376450576
1228 => 0.33132642991889
1229 => 0.3303751645367
1230 => 0.32607318172172
1231 => 0.32347132909222
]
'min_raw' => 0.2429856032051
'max_raw' => 0.62347323458402
'avg_raw' => 0.43322941889456
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.242985'
'max' => '$0.623473'
'avg' => '$0.433229'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.14942054144975
'max_diff' => 0.36239769767373
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0076270404311786
]
1 => [
'year' => 2028
'avg' => 0.01309021552556
]
2 => [
'year' => 2029
'avg' => 0.035760109534027
]
3 => [
'year' => 2030
'avg' => 0.027588871249949
]
4 => [
'year' => 2031
'avg' => 0.027095690618624
]
5 => [
'year' => 2032
'avg' => 0.047507272982113
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0076270404311786
'min' => '$0.007627'
'max_raw' => 0.047507272982113
'max' => '$0.0475072'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.047507272982113
]
1 => [
'year' => 2033
'avg' => 0.12219359122527
]
2 => [
'year' => 2034
'avg' => 0.077452170467782
]
3 => [
'year' => 2035
'avg' => 0.091355012681398
]
4 => [
'year' => 2036
'avg' => 0.17732029933282
]
5 => [
'year' => 2037
'avg' => 0.43322941889456
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.047507272982113
'min' => '$0.0475072'
'max_raw' => 0.43322941889456
'max' => '$0.433229'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.43322941889456
]
]
]
]
'prediction_2025_max_price' => '$0.01304'
'last_price' => 0.01264475
'sma_50day_nextmonth' => '$0.0116089'
'sma_200day_nextmonth' => '$0.022081'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.0137098'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.013157'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.012414'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.0115048'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.014483'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.018486'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.024393'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.013252'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.013081'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.0126069'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.012465'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.014386'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.017971'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.023169'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.021771'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.028542'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.012798'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.013253'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.01538'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.019821'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.027768'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.035768'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.017884'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '49.59'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 108.74
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.012246'
'vwma_10_action' => 'BUY'
'hma_9' => '0.014146'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 38.86
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 79.61
'cci_20_action' => 'NEUTRAL'
'adx_14' => 15.87
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001055'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -61.14
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 58.43
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 25
'buy_signals' => 6
'sell_pct' => 80.65
'buy_pct' => 19.35
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767686601
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de DexNet para 2026
La previsión del precio de DexNet para 2026 sugiere que el precio medio podría oscilar entre $0.004368 en el extremo inferior y $0.01304 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, DexNet podría potencialmente ganar 3.13% para 2026 si DEXNET alcanza el objetivo de precio previsto.
Predicción de precio de DexNet 2027-2032
La predicción del precio de DEXNET para 2027-2032 está actualmente dentro de un rango de precios de $0.007627 en el extremo inferior y $0.0475072 en el extremo superior. Considerando la volatilidad de precios en el mercado, si DexNet alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de DexNet | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.0042056 | $0.007627 | $0.011048 |
| 2028 | $0.00759 | $0.01309 | $0.01859 |
| 2029 | $0.016673 | $0.03576 | $0.054847 |
| 2030 | $0.014179 | $0.027588 | $0.040997 |
| 2031 | $0.016764 | $0.027095 | $0.037426 |
| 2032 | $0.02559 | $0.0475072 | $0.069424 |
Predicción de precio de DexNet 2032-2037
La predicción de precio de DexNet para 2032-2037 se estima actualmente entre $0.0475072 en el extremo inferior y $0.433229 en el extremo superior. Comparado con el precio actual, DexNet podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de DexNet | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.02559 | $0.0475072 | $0.069424 |
| 2033 | $0.059466 | $0.122193 | $0.18492 |
| 2034 | $0.0478081 | $0.077452 | $0.107096 |
| 2035 | $0.056524 | $0.091355 | $0.126185 |
| 2036 | $0.093565 | $0.17732 | $0.261075 |
| 2037 | $0.242985 | $0.433229 | $0.623473 |
DexNet Histograma de precios potenciales
Pronóstico de precio de DexNet basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para DexNet es Bajista, con 6 indicadores técnicos mostrando señales alcistas y 25 indicando señales bajistas. La predicción de precio de DEXNET se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de DexNet
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de DexNet aumentar durante el próximo mes, alcanzando $0.022081 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para DexNet alcance $0.0116089 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 49.59, lo que sugiere que el mercado de DEXNET está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de DEXNET para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.0137098 | SELL |
| SMA 5 | $0.013157 | SELL |
| SMA 10 | $0.012414 | BUY |
| SMA 21 | $0.0115048 | BUY |
| SMA 50 | $0.014483 | SELL |
| SMA 100 | $0.018486 | SELL |
| SMA 200 | $0.024393 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.013252 | SELL |
| EMA 5 | $0.013081 | SELL |
| EMA 10 | $0.0126069 | BUY |
| EMA 21 | $0.012465 | BUY |
| EMA 50 | $0.014386 | SELL |
| EMA 100 | $0.017971 | SELL |
| EMA 200 | $0.023169 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.021771 | SELL |
| SMA 50 | $0.028542 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.019821 | SELL |
| EMA 50 | $0.027768 | SELL |
| EMA 100 | $0.035768 | SELL |
| EMA 200 | $0.017884 | SELL |
Osciladores de DexNet
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 49.59 | NEUTRAL |
| Stoch RSI (14) | 108.74 | SELL |
| Estocástico Rápido (14) | 38.86 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 79.61 | NEUTRAL |
| Índice Direccional Medio (14) | 15.87 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.001055 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -61.14 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 58.43 | NEUTRAL |
| VWMA (10) | 0.012246 | BUY |
| Promedio Móvil de Hull (9) | 0.014146 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | — | — |
Predicción de precios de DexNet basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de DexNet
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de DexNet por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.017767 | $0.024966 | $0.035082 | $0.049297 | $0.06927 | $0.097336 |
| Amazon.com acción | $0.026384 | $0.055051 | $0.114868 | $0.23968 | $0.5001082 | $1.04 |
| Apple acción | $0.017935 | $0.02544 | $0.036085 | $0.051183 | $0.07260058 | $0.102978 |
| Netflix acción | $0.019951 | $0.03148 | $0.04967 | $0.078372 | $0.12366 | $0.195116 |
| Google acción | $0.016374 | $0.0212054 | $0.02746 | $0.035561 | $0.046052 | $0.059637 |
| Tesla acción | $0.028664 | $0.06498 | $0.1473063 | $0.333932 | $0.756999 | $1.71 |
| Kodak acción | $0.009482 | $0.00711 | $0.005332 | $0.003998 | $0.002998 | $0.002248 |
| Nokia acción | $0.008376 | $0.005549 | $0.003676 | $0.002435 | $0.001613 | $0.001068 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de DexNet
Podría preguntarse cosas como: "¿Debo invertir en DexNet ahora?", "¿Debería comprar DEXNET hoy?", "¿Será DexNet una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de DexNet regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como DexNet, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de DexNet a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de DexNet es de $0.01264 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de DexNet basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si DexNet ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.012973 | $0.01331 | $0.013656 | $0.014011 |
| Si DexNet ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.0133021 | $0.013993 | $0.014721 | $0.015486 |
| Si DexNet ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.014288 | $0.016145 | $0.018243 | $0.020614 |
| Si DexNet ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.015931 | $0.020072 | $0.02529 | $0.031863 |
| Si DexNet ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.019218 | $0.0292092 | $0.044394 | $0.067472 |
| Si DexNet ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.029078 | $0.06687 | $0.15378 | $0.353643 |
| Si DexNet ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.045512 | $0.163814 | $0.589619 | $2.12 |
Cuadro de preguntas
¿Es DEXNET una buena inversión?
La decisión de adquirir DexNet depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de DexNet ha experimentado una caída de -13.0942% durante las últimas 24 horas, y DexNet ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en DexNet dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede DexNet subir?
Parece que el valor medio de DexNet podría potencialmente aumentar hasta $0.01304 para el final de este año. Mirando las perspectivas de DexNet en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.040997. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de DexNet la próxima semana?
Basado en nuestro nuevo pronóstico experimental de DexNet, el precio de DexNet aumentará en un 0.86% durante la próxima semana y alcanzará $0.012752 para el 13 de enero de 2026.
¿Cuál será el precio de DexNet el próximo mes?
Basado en nuestro nuevo pronóstico experimental de DexNet, el precio de DexNet disminuirá en un -11.62% durante el próximo mes y alcanzará $0.011175 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de DexNet este año en 2026?
Según nuestra predicción más reciente sobre el valor de DexNet en 2026, se anticipa que DEXNET fluctúe dentro del rango de $0.004368 y $0.01304. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de DexNet no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará DexNet en 5 años?
El futuro de DexNet parece estar en una tendencia alcista, con un precio máximo de $0.040997 proyectada después de un período de cinco años. Basado en el pronóstico de DexNet para 2030, el valor de DexNet podría potencialmente alcanzar su punto más alto de aproximadamente $0.040997, mientras que su punto más bajo se anticipa que esté alrededor de $0.014179.
¿Cuánto será DexNet en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de DexNet, se espera que el valor de DEXNET en 2026 crezca en un 3.13% hasta $0.01304 si ocurre lo mejor. El precio estará entre $0.01304 y $0.004368 durante 2026.
¿Cuánto será DexNet en 2027?
Según nuestra última simulación experimental para la predicción de precios de DexNet, el valor de DEXNET podría disminuir en un -12.62% hasta $0.011048 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.011048 y $0.0042056 a lo largo del año.
¿Cuánto será DexNet en 2028?
Nuestro nuevo modelo experimental de predicción de precios de DexNet sugiere que el valor de DEXNET en 2028 podría aumentar en un 47.02% , alcanzando $0.01859 en el mejor escenario. Se espera que el precio oscile entre $0.01859 y $0.00759 durante el año.
¿Cuánto será DexNet en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de DexNet podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.054847 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.054847 y $0.016673.
¿Cuánto será DexNet en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de DexNet, se espera que el valor de DEXNET en 2030 aumente en un 224.23% , alcanzando $0.040997 en el mejor escenario. Se pronostica que el precio oscile entre $0.040997 y $0.014179 durante el transcurso de 2030.
¿Cuánto será DexNet en 2031?
Nuestra simulación experimental indica que el precio de DexNet podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.037426 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.037426 y $0.016764 durante el año.
¿Cuánto será DexNet en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de DexNet, DEXNET podría experimentar un 449.04% aumento en valor, alcanzando $0.069424 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.069424 y $0.02559 a lo largo del año.
¿Cuánto será DexNet en 2033?
Según nuestra predicción experimental de precios de DexNet, se anticipa que el valor de DEXNET aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.18492. A lo largo del año, el precio de DEXNET podría oscilar entre $0.18492 y $0.059466.
¿Cuánto será DexNet en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de DexNet sugieren que DEXNET podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.107096 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.107096 y $0.0478081.
¿Cuánto será DexNet en 2035?
Basado en nuestra predicción experimental para el precio de DexNet, DEXNET podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.126185 en 2035. El rango de precios esperado para el año está entre $0.126185 y $0.056524.
¿Cuánto será DexNet en 2036?
Nuestra reciente simulación de predicción de precios de DexNet sugiere que el valor de DEXNET podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.261075 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.261075 y $0.093565.
¿Cuánto será DexNet en 2037?
Según la simulación experimental, el valor de DexNet podría aumentar en un 4830.69% en 2037, con un máximo de $0.623473 bajo condiciones favorables. Se espera que el precio caiga entre $0.623473 y $0.242985 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de SolPod
Predicción de precios de zuzalu
Predicción de precios de SOFT COQ INU
Predicción de precios de All Street Bets
Predicción de precios de MagicRing
Predicción de precios de AI INU
Predicción de precios de Wall Street Baby On Solana
Predicción de precios de Meta Masters Guild Games
Predicción de precios de Morfey
Predicción de precios de PANTIESPredicción de precios de Celer Bridged BUSD (zkSync)
Predicción de precios de Bridged BUSD
Predicción de precios de Multichain Bridged BUSD (Moonriver)
Predicción de precios de tooker kurlson
Predicción de precios de dogwifsaudihatPredicción de precios de Harmony Horizen Bridged BUSD (Harmony)
Predicción de precios de IoTeX Bridged BUSD (IoTeX)
Predicción de precios de MIMANY
Predicción de precios de The Open League MEME
Predicción de precios de Sandwich Cat
Predicción de precios de Hege
Predicción de precios de SolDocs
Predicción de precios de Secret Society
Predicción de precios de duk
Predicción de precios de Fofar
¿Cómo leer y predecir los movimientos de precio de DexNet?
Los traders de DexNet utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de DexNet
Las medias móviles son herramientas populares para la predicción de precios de DexNet. Una media móvil simple (SMA) calcula el precio de cierre promedio de DEXNET durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de DEXNET por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de DEXNET.
¿Cómo leer gráficos de DexNet y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de DexNet en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de DEXNET dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de DexNet?
La acción del precio de DexNet está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de DEXNET. La capitalización de mercado de DexNet puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de DEXNET, grandes poseedores de DexNet, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de DexNet.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


