Predicción del precio de DexNet - Pronóstico de DEXNET
Predicción de precio de DexNet hasta $0.013041 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.004369 | $0.013041 |
| 2027 | $0.004206 | $0.011049 |
| 2028 | $0.00759 | $0.018591 |
| 2029 | $0.016674 | $0.054851 |
| 2030 | $0.014181 | $0.0410014 |
| 2031 | $0.016766 | $0.037429 |
| 2032 | $0.025592 | $0.06943 |
| 2033 | $0.059471 | $0.184936 |
| 2034 | $0.047812 | $0.1071054 |
| 2035 | $0.056528 | $0.126196 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en DexNet hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.53, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de DexNet para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'DexNet'
'name_with_ticker' => 'DexNet <small>DEXNET</small>'
'name_lang' => 'DexNet'
'name_lang_with_ticker' => 'DexNet <small>DEXNET</small>'
'name_with_lang' => 'DexNet'
'name_with_lang_with_ticker' => 'DexNet <small>DEXNET</small>'
'image' => '/uploads/coins/dexnet.jpg?1717131583'
'price_for_sd' => 0.01264
'ticker' => 'DEXNET'
'marketcap' => '$5.06M'
'low24h' => '$0.01177'
'high24h' => '$0.01885'
'volume24h' => '$688.73'
'current_supply' => '400.08M'
'max_supply' => '3B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01264'
'change_24h_pct' => '-12.6931%'
'ath_price' => '$0.0816'
'ath_days' => 387
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '15 dic. 2024'
'ath_pct' => '-84.50%'
'fdv' => '$37.94M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.623526'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.012754'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.011176'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004369'
'current_year_max_price_prediction' => '$0.013041'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.014181'
'grand_prediction_max_price' => '$0.0410014'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.012885472016288
107 => 0.012933581691371
108 => 0.013041975245872
109 => 0.01211576419045
110 => 0.012531605762207
111 => 0.012775873726528
112 => 0.011672262177181
113 => 0.012754058874579
114 => 0.012099640916609
115 => 0.011877521632646
116 => 0.012176575986512
117 => 0.01206003421397
118 => 0.011959838441502
119 => 0.011903927478882
120 => 0.012123519990937
121 => 0.012113275737779
122 => 0.011753979766989
123 => 0.011285292819869
124 => 0.011442599543447
125 => 0.011385448536013
126 => 0.011178325912445
127 => 0.011317901552649
128 => 0.010703281070805
129 => 0.0096458584769855
130 => 0.010344424232193
131 => 0.010317530210511
201 => 0.010303969025232
202 => 0.01082892188333
203 => 0.010778459778747
204 => 0.010686870564803
205 => 0.011176643804706
206 => 0.010997869983761
207 => 0.011548808775502
208 => 0.011911692696229
209 => 0.011819653595868
210 => 0.012160947677282
211 => 0.011446223572644
212 => 0.011683626250451
213 => 0.011732554613321
214 => 0.011170600078951
215 => 0.010786716003133
216 => 0.010761115311874
217 => 0.01009551322689
218 => 0.010451072488136
219 => 0.010763949923991
220 => 0.010614105912486
221 => 0.010566669774907
222 => 0.010809010714159
223 => 0.010827842680649
224 => 0.010398471848961
225 => 0.010487751641275
226 => 0.010860063216754
227 => 0.010478370344826
228 => 0.0097368034438472
301 => 0.0095528845994399
302 => 0.0095283464352992
303 => 0.0090295439424791
304 => 0.0095651749360654
305 => 0.0093313576533468
306 => 0.010069983647894
307 => 0.0096480844411392
308 => 0.0096298972095753
309 => 0.0096024045415796
310 => 0.0091730646307379
311 => 0.0092670627852374
312 => 0.0095795269671172
313 => 0.0096910177073728
314 => 0.0096793883097475
315 => 0.0095779957221617
316 => 0.0096244127295444
317 => 0.0094748873760074
318 => 0.0094220868615723
319 => 0.0092554339140896
320 => 0.0090105001203419
321 => 0.0090445596666287
322 => 0.008559281730801
323 => 0.0082948765557127
324 => 0.0082216926880524
325 => 0.0081238281616528
326 => 0.0082327467467168
327 => 0.0085579069993808
328 => 0.0081656947480722
329 => 0.0074932743536943
330 => 0.007533687965145
331 => 0.0076244853511658
401 => 0.0074552850230008
402 => 0.0072951511122998
403 => 0.0074343745555795
404 => 0.0071494611701201
405 => 0.0076589157726088
406 => 0.0076451364533415
407 => 0.007835029624688
408 => 0.0079537737217311
409 => 0.0076801070219047
410 => 0.0076112805869717
411 => 0.0076504872522966
412 => 0.0070024884084032
413 => 0.0077820742945026
414 => 0.0077888161856186
415 => 0.0077310880207626
416 => 0.0081461934380967
417 => 0.009022195343298
418 => 0.0086926081894663
419 => 0.0085649820816781
420 => 0.0083223647574788
421 => 0.0086456379367831
422 => 0.0086208156004598
423 => 0.0085085595820139
424 => 0.0084406667917978
425 => 0.0085657613394776
426 => 0.0084251661929802
427 => 0.008399911441373
428 => 0.0082468951240742
429 => 0.0081922752605973
430 => 0.0081518368881585
501 => 0.0081073182134958
502 => 0.0082055153164393
503 => 0.0079829877622646
504 => 0.007714641346575
505 => 0.0076923312456589
506 => 0.0077539313958124
507 => 0.0077266779149613
508 => 0.0076922007664777
509 => 0.0076263745007299
510 => 0.0076068452538381
511 => 0.0076703058319927
512 => 0.0075986625392377
513 => 0.0077043761203097
514 => 0.0076756278756574
515 => 0.0075150425179631
516 => 0.0073148937059618
517 => 0.0073131119617087
518 => 0.0072699902284729
519 => 0.007215068217801
520 => 0.0071997901708775
521 => 0.0074226495455122
522 => 0.0078839617813864
523 => 0.007793395151218
524 => 0.0078588388231562
525 => 0.0081807569171094
526 => 0.0082830849987623
527 => 0.0082104549501785
528 => 0.0081110344600508
529 => 0.0081154084570489
530 => 0.0084551583684445
531 => 0.0084763481536725
601 => 0.0085298879048599
602 => 0.0085987016154676
603 => 0.0082221742226539
604 => 0.0080976740507079
605 => 0.0080386789622333
606 => 0.0078569969237041
607 => 0.008052925426017
608 => 0.0079387662782142
609 => 0.0079541702474846
610 => 0.0079441383922893
611 => 0.007949616463577
612 => 0.0076587733696647
613 => 0.0077647413068234
614 => 0.0075885490584776
615 => 0.0073526474164507
616 => 0.0073518565914289
617 => 0.0074095931841133
618 => 0.0073752491995515
619 => 0.0072828304201603
620 => 0.0072959580715685
621 => 0.0071809460316688
622 => 0.0073099226155725
623 => 0.0073136212024985
624 => 0.0072639581922935
625 => 0.007462664415136
626 => 0.0075440745167634
627 => 0.0075113852595617
628 => 0.0075417809513353
629 => 0.0077971586035854
630 => 0.0078387963038103
701 => 0.0078572890198181
702 => 0.007832511230183
703 => 0.007546448786015
704 => 0.0075591368718453
705 => 0.0074660401166999
706 => 0.0073873831688963
707 => 0.0073905290343071
708 => 0.0074309689301656
709 => 0.0076075723271482
710 => 0.007979223764759
711 => 0.0079933276651427
712 => 0.0080104220038475
713 => 0.0079408907374088
714 => 0.0079199194421263
715 => 0.0079475859937545
716 => 0.0080871587332169
717 => 0.0084461777127433
718 => 0.0083192764273073
719 => 0.0082161037069116
720 => 0.0083066139978643
721 => 0.0082926806480152
722 => 0.0081750691532615
723 => 0.008171768190321
724 => 0.0079460341292191
725 => 0.0078625853865457
726 => 0.0077928493711376
727 => 0.0077166994628167
728 => 0.0076715552445961
729 => 0.0077409172814632
730 => 0.0077567811999622
731 => 0.0076051198941113
801 => 0.0075844490185316
802 => 0.0077082989147261
803 => 0.0076537971930004
804 => 0.007709853565373
805 => 0.0077228591246061
806 => 0.0077207649300261
807 => 0.0076638588730616
808 => 0.0077001290968077
809 => 0.007614339204974
810 => 0.00752105558283
811 => 0.0074615464436771
812 => 0.0074096168270244
813 => 0.0074384303965103
814 => 0.0073357152824428
815 => 0.0073028546502057
816 => 0.0076878415611084
817 => 0.007972235531499
818 => 0.0079681003305371
819 => 0.0079429283581692
820 => 0.0079055279131786
821 => 0.0080844226577128
822 => 0.0080220993058304
823 => 0.0080674447516152
824 => 0.0080789870707098
825 => 0.008113922194285
826 => 0.0081264084981878
827 => 0.0080886662154979
828 => 0.0079619985049589
829 => 0.0076463546135002
830 => 0.0074994215299617
831 => 0.00745093116503
901 => 0.007452693697699
902 => 0.0074040751783969
903 => 0.0074183955112605
904 => 0.0073990951510357
905 => 0.0073625449380285
906 => 0.0074361735238529
907 => 0.0074446585324715
908 => 0.007427472740744
909 => 0.0074315206168305
910 => 0.0072892296014745
911 => 0.0073000476783322
912 => 0.0072398112516939
913 => 0.0072285176478601
914 => 0.0070762452067042
915 => 0.0068064725049532
916 => 0.006955952769193
917 => 0.0067754016300971
918 => 0.0067070241779253
919 => 0.0070307124016311
920 => 0.0069982230816848
921 => 0.0069426154887047
922 => 0.0068603602690493
923 => 0.0068298510079518
924 => 0.0066444863955816
925 => 0.006633534065401
926 => 0.0067254057725572
927 => 0.0066830101408171
928 => 0.0066234706173725
929 => 0.0064078244988811
930 => 0.0061653668637207
1001 => 0.0061726851356918
1002 => 0.0062498063983517
1003 => 0.0064740468707545
1004 => 0.0063864322387872
1005 => 0.0063228668180328
1006 => 0.006310962925495
1007 => 0.0064599650630922
1008 => 0.0066708343047051
1009 => 0.0067697694349365
1010 => 0.0066717277255817
1011 => 0.0065591026888155
1012 => 0.0065659576529493
1013 => 0.0066115606582534
1014 => 0.0066163528893191
1015 => 0.0065430455684251
1016 => 0.0065636811498567
1017 => 0.006532333814705
1018 => 0.0063399552767419
1019 => 0.0063364757590291
1020 => 0.00628926296329
1021 => 0.0062878333785986
1022 => 0.0062075126352625
1023 => 0.0061962752080387
1024 => 0.0060367934970243
1025 => 0.0061417648421691
1026 => 0.0060713555750889
1027 => 0.0059652322017321
1028 => 0.005946936492165
1029 => 0.0059463865010427
1030 => 0.0060553514767281
1031 => 0.0061404915229857
1101 => 0.0060725803744346
1102 => 0.0060571183223118
1103 => 0.006222212586956
1104 => 0.0062012028369124
1105 => 0.006183008528873
1106 => 0.0066519532769527
1107 => 0.0062807469166326
1108 => 0.0061188797558147
1109 => 0.0059185384065625
1110 => 0.0059837705600878
1111 => 0.0059975159332953
1112 => 0.005515731102586
1113 => 0.0053202710567698
1114 => 0.0052531965348021
1115 => 0.0052145941991151
1116 => 0.0052321857682253
1117 => 0.0050562488018139
1118 => 0.0051744813529712
1119 => 0.0050221348116405
1120 => 0.0049965934182079
1121 => 0.0052690079062221
1122 => 0.005306912790807
1123 => 0.0051451987770435
1124 => 0.0052490453530004
1125 => 0.005211389140983
1126 => 0.0050247463558306
1127 => 0.0050176179742891
1128 => 0.0049239671855108
1129 => 0.0047774218354387
1130 => 0.004710446678119
1201 => 0.0046755654346819
1202 => 0.004689958115546
1203 => 0.0046826807356778
1204 => 0.0046351909094287
1205 => 0.0046854027969288
1206 => 0.0045571321733505
1207 => 0.004506053777495
1208 => 0.0044829828510969
1209 => 0.0043691352896895
1210 => 0.004550317388129
1211 => 0.0045860125439935
1212 => 0.0046217780303418
1213 => 0.0049330921708696
1214 => 0.0049175397961735
1215 => 0.0050581256891129
1216 => 0.0050526627798341
1217 => 0.0050125654058273
1218 => 0.0048434011805905
1219 => 0.0049108270257075
1220 => 0.0047033007547402
1221 => 0.0048587935473637
1222 => 0.0047878331303446
1223 => 0.0048348017589898
1224 => 0.0047503479296952
1225 => 0.00479708816584
1226 => 0.0045944771896519
1227 => 0.0044052819109009
1228 => 0.0044814196140248
1229 => 0.004564190004723
1230 => 0.00474365730126
1231 => 0.0046367680600156
]
'min_raw' => 0.0043691352896895
'max_raw' => 0.013041975245872
'avg_raw' => 0.008705555267781
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004369'
'max' => '$0.013041'
'avg' => '$0.0087055'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0082767047103105
'max_diff' => 0.00039613524587237
'year' => 2026
]
1 => [
'items' => [
101 => 0.0046752094730968
102 => 0.0045464371742896
103 => 0.0042807431398619
104 => 0.0042822469392425
105 => 0.004241375700505
106 => 0.0042060569829372
107 => 0.0046490455751865
108 => 0.004593952941127
109 => 0.0045061700390988
110 => 0.0046236709418174
111 => 0.0046547400454862
112 => 0.0046556245391897
113 => 0.0047413501646759
114 => 0.004787101946365
115 => 0.0047951658961873
116 => 0.0049300570201145
117 => 0.004975270745598
118 => 0.0051614996819785
119 => 0.0047832202273386
120 => 0.004775429810904
121 => 0.0046253244204829
122 => 0.0045301252088055
123 => 0.0046318427919529
124 => 0.0047219506847868
125 => 0.004628124323888
126 => 0.0046403760658388
127 => 0.0045144218422275
128 => 0.0045594445504715
129 => 0.004598224172025
130 => 0.0045768123443639
131 => 0.0045447578020112
201 => 0.0047145628651513
202 => 0.0047049817980175
203 => 0.004863108176615
204 => 0.0049863789964576
205 => 0.0052073023429104
206 => 0.0049767573138924
207 => 0.0049683553367015
208 => 0.0050504860114622
209 => 0.0049752581718196
210 => 0.005022799569697
211 => 0.0051996426887252
212 => 0.0052033791051646
213 => 0.0051407893157051
214 => 0.0051369807213283
215 => 0.0051490017750513
216 => 0.0052194094621774
217 => 0.0051948068528859
218 => 0.0052232776152199
219 => 0.0052588807394784
220 => 0.0054061503568236
221 => 0.0054416565629866
222 => 0.0053553948898678
223 => 0.0053631833531194
224 => 0.0053309191194371
225 => 0.0052997522739696
226 => 0.0053698107910282
227 => 0.0054978441079563
228 => 0.0054970476193367
301 => 0.0055267488602519
302 => 0.0055452524872838
303 => 0.0054658213745802
304 => 0.0054141146409732
305 => 0.0054339422928231
306 => 0.0054656471399211
307 => 0.0054236608382164
308 => 0.0051645019341481
309 => 0.0052431141905076
310 => 0.0052300292671064
311 => 0.0052113947450021
312 => 0.0052904399766621
313 => 0.0052828158712364
314 => 0.0050544443139283
315 => 0.0050690639200774
316 => 0.0050553333805998
317 => 0.005099699562656
318 => 0.0049728622523912
319 => 0.0050118765547663
320 => 0.0050363459594796
321 => 0.0050507586268386
322 => 0.0051028270641977
323 => 0.0050967174340453
324 => 0.0051024472810091
325 => 0.0051796510280549
326 => 0.0055701210874855
327 => 0.0055913735112967
328 => 0.0054867188037416
329 => 0.005528526295187
330 => 0.0054482650539051
331 => 0.0055021449628813
401 => 0.0055390082282014
402 => 0.0053724302206179
403 => 0.0053625665520911
404 => 0.0052819740441159
405 => 0.0053252798929088
406 => 0.0052563771736786
407 => 0.0052732834908629
408 => 0.0052260119541493
409 => 0.0053110913085646
410 => 0.0054062232467959
411 => 0.0054302573312673
412 => 0.0053670340023472
413 => 0.0053212561455886
414 => 0.005240885309284
415 => 0.0053745438012394
416 => 0.0054136296174559
417 => 0.0053743385000862
418 => 0.0053652338896637
419 => 0.0053479806693649
420 => 0.0053688942419114
421 => 0.0054134167477067
422 => 0.0053924207561752
423 => 0.0054062889784835
424 => 0.005353437615893
425 => 0.0054658476695837
426 => 0.0056443818877971
427 => 0.0056449559045019
428 => 0.0056239597997942
429 => 0.0056153686461152
430 => 0.0056369119236955
501 => 0.0056485982680313
502 => 0.0057182652773645
503 => 0.005793020754035
504 => 0.0061418719452868
505 => 0.0060439159267339
506 => 0.0063534374568628
507 => 0.0065982288008542
508 => 0.006671631021489
509 => 0.0066041044323463
510 => 0.0063730996186037
511 => 0.0063617654203748
512 => 0.006706984139823
513 => 0.0066094440395598
514 => 0.0065978419550036
515 => 0.006474415377356
516 => 0.0065473757714248
517 => 0.0065314182629775
518 => 0.0065062285552255
519 => 0.0066454319046436
520 => 0.0069060081479854
521 => 0.006865394896792
522 => 0.0068350789887707
523 => 0.0067022435046493
524 => 0.0067822401359699
525 => 0.0067537548677912
526 => 0.0068761456570847
527 => 0.0068036440647952
528 => 0.006608705077367
529 => 0.0066397497536423
530 => 0.0066350574132765
531 => 0.0067316254455015
601 => 0.0067026381191934
602 => 0.0066293971725849
603 => 0.0069051175267139
604 => 0.0068872137805539
605 => 0.0069125971992426
606 => 0.0069237717651576
607 => 0.0070915978859783
608 => 0.0071603508778417
609 => 0.0071759590106852
610 => 0.0072412690354082
611 => 0.007174334037774
612 => 0.0074421217521552
613 => 0.0076201849563723
614 => 0.0078270145311192
615 => 0.0081292481303732
616 => 0.0082428907595098
617 => 0.008222362235732
618 => 0.0084515123013419
619 => 0.0088632898755233
620 => 0.0083055942566454
621 => 0.0088928490975146
622 => 0.0087069309950786
623 => 0.0082661225187267
624 => 0.0082377396496402
625 => 0.0085362602677173
626 => 0.0091983502670677
627 => 0.009032504231593
628 => 0.009198621531769
629 => 0.0090048368772738
630 => 0.0089952138358328
701 => 0.0091892098436356
702 => 0.0096424920900388
703 => 0.0094271546858036
704 => 0.0091184157139347
705 => 0.0093463837662522
706 => 0.0091488967418875
707 => 0.0087039032028561
708 => 0.0090323774122553
709 => 0.0088127360628369
710 => 0.0088768390853735
711 => 0.0093384925326659
712 => 0.0092829451685042
713 => 0.0093548286012769
714 => 0.0092279562239501
715 => 0.0091094374175892
716 => 0.0088882132641946
717 => 0.0088227196985934
718 => 0.0088408197639139
719 => 0.0088227107290999
720 => 0.0086989378484305
721 => 0.0086722091066345
722 => 0.0086276600326281
723 => 0.0086414676534677
724 => 0.0085577023610443
725 => 0.0087157847746398
726 => 0.0087451262636205
727 => 0.008860165461256
728 => 0.0088721092123824
729 => 0.0091924917403169
730 => 0.0090160304277402
731 => 0.0091344159111534
801 => 0.0091238263992295
802 => 0.0082756761750574
803 => 0.0083925437926556
804 => 0.0085743531305595
805 => 0.0084924482702705
806 => 0.0083766539606075
807 => 0.0082831438470566
808 => 0.0081414664631269
809 => 0.0083408746603348
810 => 0.0086030752349656
811 => 0.0088787590516519
812 => 0.0092099750938814
813 => 0.0091360515290355
814 => 0.0088725671981315
815 => 0.0088843869127404
816 => 0.0089574517375666
817 => 0.0088628261507774
818 => 0.0088349192179224
819 => 0.0089536177535324
820 => 0.0089544351651116
821 => 0.0088455569916265
822 => 0.0087245588262931
823 => 0.0087240518395624
824 => 0.0087025213847449
825 => 0.0090086670973557
826 => 0.0091770162844688
827 => 0.0091963172474631
828 => 0.0091757171758773
829 => 0.0091836453258431
830 => 0.0090856866431831
831 => 0.0093095911429988
901 => 0.0095150680538896
902 => 0.0094599958523969
903 => 0.0093774347933847
904 => 0.0093116709332021
905 => 0.0094445039769435
906 => 0.0094385891306042
907 => 0.0095132733923271
908 => 0.0095098852828182
909 => 0.0094847717746179
910 => 0.0094599967492794
911 => 0.0095582269243048
912 => 0.0095299382114258
913 => 0.0095016055583622
914 => 0.009444780085131
915 => 0.0094525036107142
916 => 0.0093699568070329
917 => 0.0093317668785651
918 => 0.0087574819848611
919 => 0.0086040142959631
920 => 0.0086522983550133
921 => 0.0086681947209476
922 => 0.008601405386065
923 => 0.0086971641355143
924 => 0.0086822402358462
925 => 0.0087403003992653
926 => 0.0087040269298403
927 => 0.0087055156056782
928 => 0.008812188144938
929 => 0.0088431556369025
930 => 0.0088274053205511
1001 => 0.0088384363022344
1002 => 0.0090926406192402
1003 => 0.0090565008943584
1004 => 0.0090373023858064
1005 => 0.0090426205038802
1006 => 0.0091075751570772
1007 => 0.0091257589135798
1008 => 0.0090487130595285
1009 => 0.0090850483296959
1010 => 0.0092397592984362
1011 => 0.0092938993816129
1012 => 0.0094666885383985
1013 => 0.0093932846335136
1014 => 0.0095280206777764
1015 => 0.009942153342938
1016 => 0.01027299117167
1017 => 0.0099687390319165
1018 => 0.010576280572439
1019 => 0.011049338808394
1020 => 0.011031182045378
1021 => 0.010948693399905
1022 => 0.010410129175175
1023 => 0.0099145343460375
1024 => 0.010329120464679
1025 => 0.010330177329956
1026 => 0.010294564014686
1027 => 0.010073372772169
1028 => 0.010286867038906
1029 => 0.010303813438503
1030 => 0.01029432796114
1031 => 0.010124741154113
1101 => 0.0098658134446631
1102 => 0.0099164072993043
1103 => 0.0099992810652931
1104 => 0.0098423837369976
1105 => 0.0097922455338628
1106 => 0.0098854619926738
1107 => 0.010185824845383
1108 => 0.010129042987962
1109 => 0.010127560184191
1110 => 0.010370497049494
1111 => 0.010196606682994
1112 => 0.0099170454498352
1113 => 0.009846452551503
1114 => 0.0095958953194978
1115 => 0.009768956092098
1116 => 0.0097751842412097
1117 => 0.0096804006246948
1118 => 0.0099247366179331
1119 => 0.0099224850187409
1120 => 0.010154445679707
1121 => 0.01059786734303
1122 => 0.01046672573773
1123 => 0.010314222318933
1124 => 0.010330803669018
1125 => 0.010512660153184
1126 => 0.010402705571477
1127 => 0.01044224600569
1128 => 0.010512600304001
1129 => 0.010555046798971
1130 => 0.010324696271606
1201 => 0.010270990544738
1202 => 0.010161127475714
1203 => 0.010132466251697
1204 => 0.010221947429049
1205 => 0.010198372300233
1206 => 0.0097746607893935
1207 => 0.0097303805790021
1208 => 0.0097317385898373
1209 => 0.009620393895399
1210 => 0.009450566510592
1211 => 0.0098968627379985
1212 => 0.0098610189050261
1213 => 0.0098214500875168
1214 => 0.0098262970418852
1215 => 0.01002001910782
1216 => 0.0099076505263789
1217 => 0.010206400816988
1218 => 0.010144986738494
1219 => 0.010081997620624
1220 => 0.010073290605839
1221 => 0.010049045169438
1222 => 0.0099658985466892
1223 => 0.0098654940033827
1224 => 0.0097991982269992
1225 => 0.0090392423807483
1226 => 0.0091802857653527
1227 => 0.009342543322831
1228 => 0.0093985539814661
1229 => 0.0093027438740511
1230 => 0.0099696817136994
1231 => 0.010091537683776
]
'min_raw' => 0.0042060569829372
'max_raw' => 0.011049338808394
'avg_raw' => 0.0076276978956654
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004206'
'max' => '$0.011049'
'avg' => '$0.007627'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00016307830675236
'max_diff' => -0.0019926364374787
'year' => 2027
]
2 => [
'items' => [
101 => 0.0097224280019456
102 => 0.0096533826511241
103 => 0.0099742083154045
104 => 0.009780711220501
105 => 0.0098678429504881
106 => 0.0096795118087643
107 => 0.010062186148944
108 => 0.010059270811627
109 => 0.0099104018502048
110 => 0.010036224876988
111 => 0.010014360029732
112 => 0.0098462873389345
113 => 0.010067514353028
114 => 0.010067624078867
115 => 0.0099243409401888
116 => 0.0097570176029249
117 => 0.0097271041422229
118 => 0.009704568367892
119 => 0.0098623005314707
120 => 0.01000372269612
121 => 0.010266874283004
122 => 0.010333036844274
123 => 0.010591273725602
124 => 0.010437506236097
125 => 0.010505669372572
126 => 0.010579670099481
127 => 0.010615148769247
128 => 0.010557338180753
129 => 0.010958486351997
130 => 0.010992355548512
131 => 0.011003711597136
201 => 0.010868446690828
202 => 0.010988593586775
203 => 0.010932380833008
204 => 0.011078630801957
205 => 0.011101564664502
206 => 0.011082140498822
207 => 0.01108942006878
208 => 0.01074711087201
209 => 0.010729360334333
210 => 0.010487330493581
211 => 0.010585959442682
212 => 0.010401577349747
213 => 0.010460046810762
214 => 0.010485819592061
215 => 0.010472357353703
216 => 0.010591535775482
217 => 0.010490209770427
218 => 0.010222793783548
219 => 0.009955304939362
220 => 0.009951946834815
221 => 0.0098815217437111
222 => 0.0098306173018419
223 => 0.009840423303278
224 => 0.0098749809313557
225 => 0.0098286087496757
226 => 0.0098385046057664
227 => 0.010002841752617
228 => 0.010035798395419
229 => 0.0099237988461861
301 => 0.0094741044945598
302 => 0.0093637483726979
303 => 0.0094430701646352
304 => 0.0094051594570669
305 => 0.0075906977244521
306 => 0.0080169785942386
307 => 0.007763696976542
308 => 0.0078804207989035
309 => 0.0076218858541921
310 => 0.0077452722807858
311 => 0.0077224873131448
312 => 0.0084079343371936
313 => 0.0083972320247146
314 => 0.0084023546553445
315 => 0.0081578381484359
316 => 0.008547359583288
317 => 0.0087392518488339
318 => 0.0087037376975286
319 => 0.0087126758442898
320 => 0.0085590888694357
321 => 0.0084038417129856
322 => 0.0082316487241164
323 => 0.0085515620137388
324 => 0.0085159931170347
325 => 0.0085975753687887
326 => 0.008805062004983
327 => 0.0088356152003277
328 => 0.0088766790047109
329 => 0.0088619605539601
330 => 0.0092126137640172
331 => 0.0091701473465949
401 => 0.0092724791941605
402 => 0.0090619748197821
403 => 0.0088237691389144
404 => 0.0088690442513169
405 => 0.0088646838939131
406 => 0.0088091715395772
407 => 0.0087590574682078
408 => 0.0086756316589297
409 => 0.0089396032641821
410 => 0.0089288864990776
411 => 0.0091023784692425
412 => 0.0090717120783048
413 => 0.0088669144142837
414 => 0.0088742288029194
415 => 0.0089234215816695
416 => 0.0090936783505968
417 => 0.0091442221515792
418 => 0.0091208082491419
419 => 0.009176227219507
420 => 0.0092200281140701
421 => 0.0091817279374937
422 => 0.0097239776698911
423 => 0.0094987977754802
424 => 0.0096085488892245
425 => 0.0096347238831614
426 => 0.0095676771865929
427 => 0.0095822172143164
428 => 0.0096042413943971
429 => 0.0097379679030706
430 => 0.010088904955907
501 => 0.010244332587699
502 => 0.010711944286609
503 => 0.010231426486536
504 => 0.01020291454886
505 => 0.010287145536354
506 => 0.010561683105339
507 => 0.010784170018999
508 => 0.010857981763838
509 => 0.010867737204418
510 => 0.011006212944648
511 => 0.011085584656528
512 => 0.010989398347511
513 => 0.010907890521745
514 => 0.010615939606974
515 => 0.010649733720315
516 => 0.010882541649222
517 => 0.011211396561122
518 => 0.011493588287054
519 => 0.011394774580007
520 => 0.01214865341317
521 => 0.012223397420159
522 => 0.012213070215156
523 => 0.012383348186477
524 => 0.012045381089911
525 => 0.011900893608325
526 => 0.010925513438828
527 => 0.011199555481217
528 => 0.011597891683753
529 => 0.011545170393663
530 => 0.011255887995824
531 => 0.011493368840415
601 => 0.011414850246481
602 => 0.011352919373705
603 => 0.01163663670778
604 => 0.011324677844499
605 => 0.011594779655456
606 => 0.011248371289058
607 => 0.011395225952698
608 => 0.011311864143055
609 => 0.011365809450333
610 => 0.01105044628627
611 => 0.01122060859459
612 => 0.011043366974802
613 => 0.011043282939197
614 => 0.011039370320616
615 => 0.011247894300288
616 => 0.011254694259778
617 => 0.011100594723739
618 => 0.011078386573109
619 => 0.011160501745752
620 => 0.011064366384584
621 => 0.011109347515006
622 => 0.011065728817202
623 => 0.011055909329576
624 => 0.010977665981523
625 => 0.010943956595836
626 => 0.010957174914548
627 => 0.010912053978275
628 => 0.010884866982075
629 => 0.011033962142785
630 => 0.010954306612899
701 => 0.011021753790409
702 => 0.010944889219124
703 => 0.010678443126751
704 => 0.010525207161411
705 => 0.010021915192483
706 => 0.01016464817054
707 => 0.010259280282659
708 => 0.010228004370168
709 => 0.01029519713237
710 => 0.010299322222252
711 => 0.010277477170311
712 => 0.010252183398688
713 => 0.010239871789495
714 => 0.010331632437706
715 => 0.010384902582514
716 => 0.010268777881124
717 => 0.010241571488346
718 => 0.010358979972871
719 => 0.010430599080607
720 => 0.01095939433283
721 => 0.010920219472559
722 => 0.01101854068416
723 => 0.011007471224596
724 => 0.011110527518152
725 => 0.011278981003276
726 => 0.010936467967683
727 => 0.010995916387452
728 => 0.010981341007789
729 => 0.01114047118108
730 => 0.011140967968111
731 => 0.011045561480082
801 => 0.011097282885036
802 => 0.011068413415693
803 => 0.011120584448738
804 => 0.010919696268416
805 => 0.01116435638751
806 => 0.011303062909486
807 => 0.011304988849678
808 => 0.011370734640252
809 => 0.011437536171214
810 => 0.011565755892709
811 => 0.011433960192773
812 => 0.011196872558641
813 => 0.011213989520037
814 => 0.011074985126892
815 => 0.011077321815854
816 => 0.011064848387045
817 => 0.011102282085856
818 => 0.010927910860225
819 => 0.010968835438353
820 => 0.010911540789321
821 => 0.010995791840075
822 => 0.010905151636661
823 => 0.0109813339791
824 => 0.011014211752612
825 => 0.011135531444679
826 => 0.0108872326195
827 => 0.010380934506608
828 => 0.010487364508209
829 => 0.010329946175944
830 => 0.010344515841929
831 => 0.010373948885964
901 => 0.010278546760355
902 => 0.010296746479455
903 => 0.010296096257419
904 => 0.010290492995194
905 => 0.010265675217718
906 => 0.01022968453033
907 => 0.010373060351533
908 => 0.010397422697417
909 => 0.01045157717446
910 => 0.010612704164808
911 => 0.010596603778836
912 => 0.010622864176355
913 => 0.010565537876017
914 => 0.010347175044586
915 => 0.010359033196908
916 => 0.010211161847439
917 => 0.010447795771594
918 => 0.010391757734939
919 => 0.010355629648158
920 => 0.010345771764956
921 => 0.010507298157947
922 => 0.010555629386346
923 => 0.010525512608196
924 => 0.010463742217563
925 => 0.010582359628355
926 => 0.010614096643416
927 => 0.010621201390672
928 => 0.010831368699963
929 => 0.010632947408594
930 => 0.010680709385565
1001 => 0.01105333469563
1002 => 0.010715414958178
1003 => 0.010894418579616
1004 => 0.010885657283837
1005 => 0.010977229479412
1006 => 0.010878145691007
1007 => 0.010879373953315
1008 => 0.010960683859348
1009 => 0.010846498760644
1010 => 0.010818224924416
1011 => 0.010779164822168
1012 => 0.010864451126441
1013 => 0.010915576408685
1014 => 0.011327608636187
1015 => 0.011593800246106
1016 => 0.011582244166289
1017 => 0.011687845103742
1018 => 0.011640270914226
1019 => 0.011486641306841
1020 => 0.011748868313512
1021 => 0.011665888716557
1022 => 0.01167272945371
1023 => 0.011672474841131
1024 => 0.011727649018904
1025 => 0.011688553057313
1026 => 0.011611490903899
1027 => 0.011662648357675
1028 => 0.011814567706266
1029 => 0.012286130025748
1030 => 0.0125500225471
1031 => 0.012270243364609
1101 => 0.012463231298299
1102 => 0.012347507306717
1103 => 0.012326476814956
1104 => 0.012447687499009
1105 => 0.012569110346319
1106 => 0.012561376235871
1107 => 0.012473229483856
1108 => 0.012423437620284
1109 => 0.01280047829275
1110 => 0.013078275437503
1111 => 0.013059331534606
1112 => 0.013142943761104
1113 => 0.01338843184413
1114 => 0.013410876197885
1115 => 0.013408048725189
1116 => 0.013352418052581
1117 => 0.013594132950976
1118 => 0.013795775771786
1119 => 0.013339541159197
1120 => 0.013513269327122
1121 => 0.013591261498875
1122 => 0.013705777146243
1123 => 0.013898984238405
1124 => 0.014108858386142
1125 => 0.014138536891785
1126 => 0.014117478571784
1127 => 0.013979060929631
1128 => 0.014208707726405
1129 => 0.014343229434075
1130 => 0.014423334032518
1201 => 0.014626465966035
1202 => 0.013591743151976
1203 => 0.012859314915124
1204 => 0.012744935669548
1205 => 0.012977530363169
1206 => 0.013038863728969
1207 => 0.01301414032612
1208 => 0.012189725756082
1209 => 0.012740595297453
1210 => 0.013333284605542
1211 => 0.013356052215669
1212 => 0.013652764875847
1213 => 0.013749386680664
1214 => 0.013988279263125
1215 => 0.013973336467048
1216 => 0.014031503009266
1217 => 0.014018131528514
1218 => 0.014460629732755
1219 => 0.014948770963652
1220 => 0.01493186818502
1221 => 0.014861692107653
1222 => 0.014965915549342
1223 => 0.01546972961202
1224 => 0.015423346486585
1225 => 0.01546840374204
1226 => 0.016062428915655
1227 => 0.016834746140449
1228 => 0.01647592725015
1229 => 0.017254460994744
1230 => 0.017744506718665
1231 => 0.018591990126513
]
'min_raw' => 0.0075906977244521
'max_raw' => 0.018591990126513
'avg_raw' => 0.013091343925483
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00759'
'max' => '$0.018591'
'avg' => '$0.013091'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0033846407415149
'max_diff' => 0.0075426513181198
'year' => 2028
]
3 => [
'items' => [
101 => 0.018485881029907
102 => 0.018815800101462
103 => 0.018295923601345
104 => 0.017102182072701
105 => 0.016913267906334
106 => 0.017291478851469
107 => 0.0182212735548
108 => 0.017262196307403
109 => 0.017456216385446
110 => 0.017400338589917
111 => 0.017397361099659
112 => 0.017510999792494
113 => 0.017346160941541
114 => 0.016674577808817
115 => 0.01698236040088
116 => 0.016863510761151
117 => 0.016995383297258
118 => 0.01770704498626
119 => 0.017392402389657
120 => 0.017060951973624
121 => 0.017476664350065
122 => 0.018006009059545
123 => 0.017972883618949
124 => 0.017908606418834
125 => 0.018270933630438
126 => 0.018869392032095
127 => 0.019031152933262
128 => 0.019150561523448
129 => 0.019167025950609
130 => 0.019336619782962
131 => 0.018424671003254
201 => 0.019871957137156
202 => 0.020121863472008
203 => 0.020074891438612
204 => 0.020352651812134
205 => 0.020270927664143
206 => 0.020152522195831
207 => 0.020592831469189
208 => 0.02008805241841
209 => 0.019371582105745
210 => 0.01897851232204
211 => 0.019496138321257
212 => 0.019812234456321
213 => 0.020021153894108
214 => 0.02008437278975
215 => 0.018495462991038
216 => 0.017639128734509
217 => 0.018188029175052
218 => 0.018857725595598
219 => 0.018420950805824
220 => 0.018438071550659
221 => 0.017815345482837
222 => 0.018912823034804
223 => 0.018752929786721
224 => 0.019582456240619
225 => 0.01938448309503
226 => 0.020060929716153
227 => 0.019882798650616
228 => 0.020622210744484
301 => 0.020917182247511
302 => 0.021412485309743
303 => 0.021776832258566
304 => 0.021990783755762
305 => 0.021977938910382
306 => 0.022825721332484
307 => 0.022325813657433
308 => 0.021697811798375
309 => 0.021686453226065
310 => 0.022011704287726
311 => 0.022693341284697
312 => 0.022870079840596
313 => 0.022968852582227
314 => 0.022817578690116
315 => 0.022274964737553
316 => 0.022040666783951
317 => 0.022240295428685
318 => 0.021996166750461
319 => 0.022417601339485
320 => 0.022996321043786
321 => 0.022876817713353
322 => 0.023276299430048
323 => 0.023689720980126
324 => 0.024280932364659
325 => 0.024435496913071
326 => 0.024690986234031
327 => 0.02495396866917
328 => 0.025038431539761
329 => 0.025199697367009
330 => 0.025198847416496
331 => 0.02568483284135
401 => 0.02622088981468
402 => 0.026423238912364
403 => 0.026888529504895
404 => 0.026091735670913
405 => 0.026696112946896
406 => 0.027241276378378
407 => 0.026591310060915
408 => 0.027487137206808
409 => 0.027521920144895
410 => 0.028047101213803
411 => 0.027514729587946
412 => 0.027198609015902
413 => 0.028111237262509
414 => 0.028552829323522
415 => 0.028419818200949
416 => 0.027407596990604
417 => 0.026818440829974
418 => 0.025276505517867
419 => 0.027102994501706
420 => 0.02799262400632
421 => 0.027405293065106
422 => 0.027701508628854
423 => 0.029317564696441
424 => 0.029932854215097
425 => 0.029804878296415
426 => 0.029826504120009
427 => 0.030158503175981
428 => 0.03163076982538
429 => 0.030748553522186
430 => 0.031422974829963
501 => 0.031780685459801
502 => 0.032112947028225
503 => 0.031297017628524
504 => 0.030235505467896
505 => 0.029899280007376
506 => 0.02734689457803
507 => 0.027214031831985
508 => 0.027139451946476
509 => 0.026669236317879
510 => 0.026299775636701
511 => 0.026005966785834
512 => 0.025234924622407
513 => 0.025495128718384
514 => 0.024266248438888
515 => 0.025052442492866
516 => 0.023091119894439
517 => 0.024724567635425
518 => 0.023835556293762
519 => 0.024432503499805
520 => 0.024430420807239
521 => 0.023331251738629
522 => 0.022697273958928
523 => 0.023101269274938
524 => 0.023534384322888
525 => 0.023604655782244
526 => 0.024166200747372
527 => 0.02432291587677
528 => 0.023848061718363
529 => 0.023050475843043
530 => 0.023235736850883
531 => 0.022693519650517
601 => 0.02174330486296
602 => 0.022425765712542
603 => 0.022658787852275
604 => 0.022761703704159
605 => 0.021827276593502
606 => 0.021533659307934
607 => 0.021377339928786
608 => 0.02292985303709
609 => 0.023014903209763
610 => 0.022579774501485
611 => 0.024546597523499
612 => 0.024101444898862
613 => 0.024598789445623
614 => 0.023218926356235
615 => 0.023271638984482
616 => 0.022618389684679
617 => 0.022984165642435
618 => 0.022725646985002
619 => 0.022954614559716
620 => 0.023091856779931
621 => 0.023744998887952
622 => 0.024732025469142
623 => 0.023647441237384
624 => 0.023174872356074
625 => 0.023468051432211
626 => 0.024248825946648
627 => 0.025431739303132
628 => 0.024731430787743
629 => 0.025042215814863
630 => 0.025110108517425
701 => 0.024593726945008
702 => 0.025450779028266
703 => 0.025910080202362
704 => 0.026381228167999
705 => 0.026790312745295
706 => 0.026193041309758
707 => 0.02683220736128
708 => 0.02631715235175
709 => 0.025855094762793
710 => 0.025855795513426
711 => 0.025565940038289
712 => 0.025004308531071
713 => 0.024900735064167
714 => 0.02543953731889
715 => 0.025871605702414
716 => 0.025907192923949
717 => 0.026146408181544
718 => 0.026287973306875
719 => 0.027675503983575
720 => 0.0282335803
721 => 0.02891598545588
722 => 0.029181820722343
723 => 0.029981889567177
724 => 0.029335768996559
725 => 0.029195976746817
726 => 0.027255271429772
727 => 0.027573061816718
728 => 0.02808187488843
729 => 0.027263661569918
730 => 0.027782629593768
731 => 0.027885084874922
801 => 0.027235858994448
802 => 0.027582638588604
803 => 0.02666169479951
804 => 0.024752099527095
805 => 0.025452904953691
806 => 0.025968933636221
807 => 0.025232497080373
808 => 0.0265525311027
809 => 0.02578139447789
810 => 0.025536981188911
811 => 0.024583437808974
812 => 0.025033473579054
813 => 0.025642153401978
814 => 0.025266060038035
815 => 0.026046510238918
816 => 0.027151835861835
817 => 0.027939556724004
818 => 0.028000028150633
819 => 0.027493576409457
820 => 0.028305168556823
821 => 0.028311080119581
822 => 0.027395600861901
823 => 0.026834874913982
824 => 0.026707476798837
825 => 0.02702574226834
826 => 0.027412175303364
827 => 0.028021472494639
828 => 0.028389658026485
829 => 0.029349690623024
830 => 0.029609447917355
831 => 0.029894842430335
901 => 0.030276217512084
902 => 0.030734156080288
903 => 0.029732212563515
904 => 0.029772021647293
905 => 0.028839025717327
906 => 0.027841985761007
907 => 0.028598614805069
908 => 0.029587806630035
909 => 0.029360884932428
910 => 0.029335351605858
911 => 0.029378291578795
912 => 0.029207200029369
913 => 0.028433359292264
914 => 0.028044741318589
915 => 0.028546157651648
916 => 0.028812638117196
917 => 0.029225926079721
918 => 0.02917497961489
919 => 0.030239565022469
920 => 0.030653230720462
921 => 0.030547397333162
922 => 0.030566873223448
923 => 0.031315795210416
924 => 0.032148750487479
925 => 0.032928923022578
926 => 0.03372254803447
927 => 0.032765802106922
928 => 0.032280025528799
929 => 0.032781222959173
930 => 0.032515280547752
1001 => 0.034043464527421
1002 => 0.03414927267052
1003 => 0.035677346145093
1004 => 0.037127669832068
1005 => 0.036216747509527
1006 => 0.037075706230841
1007 => 0.038004740119874
1008 => 0.039796997222134
1009 => 0.039193428082458
1010 => 0.0387311035806
1011 => 0.03829420916028
1012 => 0.03920331709393
1013 => 0.040372869927216
1014 => 0.040624780405669
1015 => 0.04103297161797
1016 => 0.040603808469482
1017 => 0.041120688211066
1018 => 0.042945500827326
1019 => 0.042452420350346
1020 => 0.041752166806392
1021 => 0.043192681110063
1022 => 0.043713997636704
1023 => 0.047372870036253
1024 => 0.051992347581164
1025 => 0.050079853544446
1026 => 0.048892706780058
1027 => 0.049171714429187
1028 => 0.050858591249405
1029 => 0.051400362545265
1030 => 0.049927641403353
1031 => 0.050447831407962
1101 => 0.053314129477312
1102 => 0.054851806429667
1103 => 0.052763434590802
1104 => 0.047001699513405
1105 => 0.041689116636399
1106 => 0.043098252844106
1107 => 0.04293850052874
1108 => 0.04601798022629
1109 => 0.042440660544043
1110 => 0.042500893432944
1111 => 0.045644053509414
1112 => 0.044805512288417
1113 => 0.043447182902648
1114 => 0.041699033944133
1115 => 0.03846741891011
1116 => 0.035605087354224
1117 => 0.041218778690905
1118 => 0.040976706112632
1119 => 0.040626149146147
1120 => 0.041406275740835
1121 => 0.045194349041841
1122 => 0.045107021691456
1123 => 0.044551489643113
1124 => 0.044972855805547
1125 => 0.043373315377098
1126 => 0.043785553366368
1127 => 0.041688275096129
1128 => 0.042636332464354
1129 => 0.043444268537843
1130 => 0.043606473666294
1201 => 0.043971930103093
1202 => 0.040849144863746
1203 => 0.042251183756055
1204 => 0.043074750252008
1205 => 0.039353846861686
1206 => 0.043001199955598
1207 => 0.040794784120299
1208 => 0.040045893446545
1209 => 0.041054176079911
1210 => 0.040661247357101
1211 => 0.040323430314778
1212 => 0.040134922600728
1213 => 0.040875294086579
1214 => 0.040840754871828
1215 => 0.039629363421064
1216 => 0.038049152656173
1217 => 0.038579523257521
1218 => 0.0383868346458
1219 => 0.0376885062596
1220 => 0.038159095275408
1221 => 0.03608685940944
1222 => 0.03252168530749
1223 => 0.034876948523474
1224 => 0.034786273451692
1225 => 0.034740550968713
1226 => 0.036510466180831
1227 => 0.036340329672077
1228 => 0.036031530242708
1229 => 0.037682834915916
1230 => 0.037080086497013
1231 => 0.038937615098685
]
'min_raw' => 0.016674577808817
'max_raw' => 0.054851806429667
'avg_raw' => 0.035763192119242
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.016674'
'max' => '$0.054851'
'avg' => '$0.035763'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0090838800843651
'max_diff' => 0.036259816303153
'year' => 2029
]
4 => [
'items' => [
101 => 0.040161103573163
102 => 0.03985078732033
103 => 0.04100148414421
104 => 0.038591741924978
105 => 0.039392161628129
106 => 0.039557127019615
107 => 0.037662458072574
108 => 0.036368166109023
109 => 0.036281851591063
110 => 0.034037727690684
111 => 0.035236520564331
112 => 0.036291408683721
113 => 0.035786199137158
114 => 0.035626264887422
115 => 0.036443334283816
116 => 0.036506827573642
117 => 0.035059173836893
118 => 0.035360186889995
119 => 0.036615461360686
120 => 0.035328557194036
121 => 0.032828312612839
122 => 0.032208217388116
123 => 0.032125485254515
124 => 0.030443737824695
125 => 0.032249655116133
126 => 0.031461323822845
127 => 0.03395165293268
128 => 0.032529190301046
129 => 0.032467870780036
130 => 0.032375177330412
131 => 0.030927627845453
201 => 0.03124454918609
202 => 0.03229804399085
203 => 0.032673942805657
204 => 0.032634733479625
205 => 0.032292881291575
206 => 0.032449379472698
207 => 0.031945244303721
208 => 0.031767223682889
209 => 0.031205341635114
210 => 0.030379530248762
211 => 0.030494364387029
212 => 0.028858215945363
213 => 0.027966755437373
214 => 0.027720010918022
215 => 0.027390053834582
216 => 0.027757280448578
217 => 0.028853580942399
218 => 0.027531209953727
219 => 0.025264097647189
220 => 0.025400354959783
221 => 0.025706484686024
222 => 0.025136013966426
223 => 0.024596111306305
224 => 0.025065512865592
225 => 0.024104907494499
226 => 0.025822569255774
227 => 0.025776111318823
228 => 0.026416349403935
301 => 0.026816703417564
302 => 0.025894017032301
303 => 0.025661963901616
304 => 0.025794151911081
305 => 0.02360937856706
306 => 0.026237806810992
307 => 0.026260537567594
308 => 0.02606590302933
309 => 0.027465459925606
310 => 0.030418961509493
311 => 0.029307735409309
312 => 0.028877435076331
313 => 0.028059433828792
314 => 0.029149371923029
315 => 0.029065681683075
316 => 0.02868720267942
317 => 0.028458297397083
318 => 0.028880062398408
319 => 0.028406036045952
320 => 0.028320887887678
321 => 0.027804982690647
322 => 0.027620828007498
323 => 0.027484487211503
324 => 0.027334389391683
325 => 0.02766546778016
326 => 0.026915200594882
327 => 0.026010451919036
328 => 0.025935231856156
329 => 0.026142921063184
330 => 0.026051034049717
331 => 0.025934791936487
401 => 0.025712854085675
402 => 0.025647009866291
403 => 0.025860971636215
404 => 0.025619421272717
405 => 0.025975841991988
406 => 0.025878915278004
407 => 0.025337490532826
408 => 0.02466267483922
409 => 0.024656667564073
410 => 0.024511279629805
411 => 0.024326106236293
412 => 0.024274595234411
413 => 0.025025981175537
414 => 0.026581327586578
415 => 0.026275975869805
416 => 0.026496623778876
417 => 0.027581993108243
418 => 0.027926999379854
419 => 0.027682122100186
420 => 0.027346918976403
421 => 0.027361666212665
422 => 0.028507156759517
423 => 0.028578599599836
424 => 0.028759112608991
425 => 0.028991122838725
426 => 0.02772163444555
427 => 0.02730187342351
428 => 0.027102967363812
429 => 0.026490413686276
430 => 0.027151000311115
501 => 0.026766104773961
502 => 0.026818040331827
503 => 0.026784217231634
504 => 0.026802686931447
505 => 0.025822089134305
506 => 0.026179367432881
507 => 0.025585322966234
508 => 0.024789964110013
509 => 0.024787297788238
510 => 0.024981960741514
511 => 0.024866167599744
512 => 0.024554571232553
513 => 0.024598832025819
514 => 0.024211060903413
515 => 0.024645914460902
516 => 0.02465838450495
517 => 0.024490942198683
518 => 0.025160894102222
519 => 0.025435373943731
520 => 0.025325159830784
521 => 0.025427641027758
522 => 0.026288664612218
523 => 0.026429049025577
524 => 0.026491398508718
525 => 0.026407858461033
526 => 0.025443378958279
527 => 0.025486157725509
528 => 0.025172275515729
529 => 0.024907078124556
530 => 0.024917684629426
531 => 0.025054030561736
601 => 0.025649461244718
602 => 0.026902510014498
603 => 0.026950062299345
604 => 0.027007697055777
605 => 0.02677326753646
606 => 0.026702561350246
607 => 0.026795841060678
608 => 0.027266420296433
609 => 0.028476877851811
610 => 0.028049021307998
611 => 0.027701167277895
612 => 0.028006329043069
613 => 0.027959351781257
614 => 0.027562816415323
615 => 0.027551686988303
616 => 0.026790608841049
617 => 0.02650925557892
618 => 0.026274135734159
619 => 0.026017391001638
620 => 0.025865184118039
621 => 0.026099043068039
622 => 0.026152529376842
623 => 0.025641192695511
624 => 0.0255714993953
625 => 0.025989067967243
626 => 0.025805311607256
627 => 0.025994309580441
628 => 0.026038158731415
629 => 0.026031098008177
630 => 0.025839235264067
701 => 0.025961522855733
702 => 0.025672276245757
703 => 0.025357764000843
704 => 0.025157124783394
705 => 0.024982040455239
706 => 0.025079187416461
707 => 0.024732876238041
708 => 0.024622084322198
709 => 0.025920094571234
710 => 0.026878948698159
711 => 0.026865006579406
712 => 0.026780137517116
713 => 0.026654039305615
714 => 0.027257195426844
715 => 0.027047067894695
716 => 0.027199953231076
717 => 0.027238868965763
718 => 0.027356655173989
719 => 0.027398753619363
720 => 0.027271502878192
721 => 0.026844433848453
722 => 0.025780218430847
723 => 0.025284823281157
724 => 0.0251213346303
725 => 0.02512727713225
726 => 0.024963356399986
727 => 0.02501163840205
728 => 0.024946565890044
729 => 0.024823334295036
730 => 0.025071578212726
731 => 0.025100186011688
801 => 0.025042242915005
802 => 0.025055890611845
803 => 0.02457614651913
804 => 0.02461262042055
805 => 0.024409529102566
806 => 0.024371451928746
807 => 0.023858054762067
808 => 0.022948497263184
809 => 0.023452480410448
810 => 0.022843739639308
811 => 0.02261320028535
812 => 0.023704537730764
813 => 0.023594997720233
814 => 0.023407512838103
815 => 0.023130183622158
816 => 0.023027319518279
817 => 0.022402349785929
818 => 0.022365423240058
819 => 0.022675175115013
820 => 0.022532235282633
821 => 0.022331493622423
822 => 0.021604427677998
823 => 0.020786964833203
824 => 0.020811638898099
825 => 0.021071658619591
826 => 0.021827701028267
827 => 0.021532302179531
828 => 0.021317986925462
829 => 0.021277852120667
830 => 0.021780223230573
831 => 0.022491183601091
901 => 0.022824750300097
902 => 0.022494195831954
903 => 0.022114472657267
904 => 0.022137584647443
905 => 0.022291338363726
906 => 0.022307495705346
907 => 0.022060334954799
908 => 0.022129909258326
909 => 0.022024219529261
910 => 0.021375601857078
911 => 0.021363870420177
912 => 0.02120468918305
913 => 0.021199869238453
914 => 0.02092906224448
915 => 0.020891174474023
916 => 0.02035347075068
917 => 0.020707388969701
918 => 0.020469999209922
919 => 0.020112196847352
920 => 0.020050511585181
921 => 0.020048657251713
922 => 0.020416040274928
923 => 0.020703095885174
924 => 0.020474128706429
925 => 0.020421997318171
926 => 0.020978624157932
927 => 0.020907788318806
928 => 0.020846444938965
929 => 0.022427524897793
930 => 0.021175976737173
1001 => 0.020630230303272
1002 => 0.019954765456881
1003 => 0.020174700216855
1004 => 0.020221043702296
1005 => 0.018596672508417
1006 => 0.017937665317363
1007 => 0.017711518883555
1008 => 0.017581368413657
1009 => 0.017640679617117
1010 => 0.017047495851334
1011 => 0.017446125152294
1012 => 0.016932478151702
1013 => 0.0168463635605
1014 => 0.017764828026212
1015 => 0.017892626991025
1016 => 0.017347396903109
1017 => 0.017697522884284
1018 => 0.017570562336395
1019 => 0.01694128315527
1020 => 0.016917249319216
1021 => 0.01660149914636
1022 => 0.016107411267122
1023 => 0.015881599848163
1024 => 0.015763995300584
1025 => 0.015812521228982
1026 => 0.015787985034666
1027 => 0.015627869769834
1028 => 0.015797162654222
1029 => 0.015364689291259
1030 => 0.015192474913453
1031 => 0.015114689674341
1101 => 0.014730844672473
1102 => 0.015341712767092
1103 => 0.015462061477245
1104 => 0.015582647311535
1105 => 0.016632264671584
1106 => 0.016579828754463
1107 => 0.017053823907902
1108 => 0.017035405327861
1109 => 0.016900214231888
1110 => 0.016329865235833
1111 => 0.016557196180167
1112 => 0.015857506868579
1113 => 0.016381761675069
1114 => 0.016142513674791
1115 => 0.016300871685513
1116 => 0.016016129703669
1117 => 0.01617371767313
1118 => 0.015490600621065
1119 => 0.014852715529564
1120 => 0.01510941911141
1121 => 0.015388485262494
1122 => 0.015993571782774
1123 => 0.015633187243151
1124 => 0.015762795151248
1125 => 0.015328630355225
1126 => 0.014432824367986
1127 => 0.01443789453259
1128 => 0.014300094297648
1129 => 0.014181014775494
1130 => 0.015674581742738
1201 => 0.015488833080561
1202 => 0.015192866897567
1203 => 0.015589029394734
1204 => 0.015693781046929
1205 => 0.015696763179203
1206 => 0.015985793110702
1207 => 0.016140048436954
1208 => 0.016167236606787
1209 => 0.016622031448906
1210 => 0.016774472681095
1211 => 0.01740235654219
1212 => 0.016126960950244
1213 => 0.016100695017325
1214 => 0.015594604213497
1215 => 0.01527363342473
1216 => 0.015616581358006
1217 => 0.015920386409828
1218 => 0.01560404428331
1219 => 0.015645351886686
1220 => 0.015220688427938
1221 => 0.015372485632168
1222 => 0.015503233833742
1223 => 0.015431042361857
1224 => 0.015322968234338
1225 => 0.015895477860125
1226 => 0.015863174623355
1227 => 0.016396308748828
1228 => 0.016811924924421
1229 => 0.017556783411362
1230 => 0.016779484749888
1231 => 0.016751156897182
]
'min_raw' => 0.014181014775494
'max_raw' => 0.04100148414421
'avg_raw' => 0.027591249459852
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.014181'
'max' => '$0.0410014'
'avg' => '$0.027591'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0024935630333236
'max_diff' => -0.013850322285457
'year' => 2030
]
5 => [
'items' => [
101 => 0.017028066201318
102 => 0.016774430287723
103 => 0.016934719429901
104 => 0.017530958352497
105 => 0.01754355594139
106 => 0.017332530096348
107 => 0.017319689154499
108 => 0.017360218976409
109 => 0.017597603409263
110 => 0.017514653994337
111 => 0.017610645157312
112 => 0.01773068357648
113 => 0.018227213373395
114 => 0.018346925026438
115 => 0.01805608777292
116 => 0.018082347120546
117 => 0.017973566004069
118 => 0.017868484808576
119 => 0.018104691990169
120 => 0.018536365257193
121 => 0.018533679840202
122 => 0.018633819647623
123 => 0.018696205918043
124 => 0.018428398375859
125 => 0.018254065513454
126 => 0.018320915825989
127 => 0.018427810931541
128 => 0.018286251183954
129 => 0.017412478844991
130 => 0.017677525555839
131 => 0.017633408823032
201 => 0.017570581230737
202 => 0.01783708774804
203 => 0.017811382544299
204 => 0.017041411894442
205 => 0.017090702917282
206 => 0.017044409444798
207 => 0.017193993125148
208 => 0.016766352278092
209 => 0.016897891722441
210 => 0.016980392028832
211 => 0.017028985343093
212 => 0.017204537714951
213 => 0.017183938670331
214 => 0.017203257249415
215 => 0.017463555072773
216 => 0.018780052139893
217 => 0.018851706170569
218 => 0.018498855517289
219 => 0.018639812393603
220 => 0.01836920601496
221 => 0.018550865889848
222 => 0.018675152962586
223 => 0.018113523579913
224 => 0.018080267532816
225 => 0.017808544265388
226 => 0.017954552958111
227 => 0.017722242629592
228 => 0.01777924345834
301 => 0.017619864171917
302 => 0.017906715155379
303 => 0.018227459127026
304 => 0.018308491720827
305 => 0.018095329853261
306 => 0.017940986613092
307 => 0.017670010727179
308 => 0.018120649664544
309 => 0.018252430222803
310 => 0.018119957477372
311 => 0.018089260647669
312 => 0.01803109021085
313 => 0.01810160178083
314 => 0.018251712517581
315 => 0.018180923066239
316 => 0.018227680746
317 => 0.018049488687062
318 => 0.018428487031299
319 => 0.019030427612867
320 => 0.019032362950264
321 => 0.018961573117341
322 => 0.018932607442897
323 => 0.019005242107362
324 => 0.019044643433205
325 => 0.019279530619167
326 => 0.019531573928022
327 => 0.02070775007534
328 => 0.020377484519718
329 => 0.021421057968651
330 => 0.022246389075704
331 => 0.022493869787354
401 => 0.022266199177503
402 => 0.021487350319729
403 => 0.021449136279072
404 => 0.022613065294092
405 => 0.022284202036023
406 => 0.02224508479791
407 => 0.021828943474003
408 => 0.022074934536537
409 => 0.02202113268269
410 => 0.021936203824315
411 => 0.022405537635745
412 => 0.023284088633024
413 => 0.023147158221099
414 => 0.023044946020616
415 => 0.022597081911624
416 => 0.022866796139307
417 => 0.022770756068865
418 => 0.02318340516002
419 => 0.022938960979716
420 => 0.022281710573397
421 => 0.022386379866929
422 => 0.022370559313777
423 => 0.022696145176588
424 => 0.02259841238211
425 => 0.0223514754171
426 => 0.023281085841226
427 => 0.023220722111048
428 => 0.023306304079371
429 => 0.023343979908537
430 => 0.023909817392129
501 => 0.024141622904377
502 => 0.024194246813984
503 => 0.024414444122138
504 => 0.024188768104362
505 => 0.025091633079739
506 => 0.025691985604733
507 => 0.026389325956372
508 => 0.027408327637533
509 => 0.027791481695942
510 => 0.027722268344769
511 => 0.02849486378972
512 => 0.029883200630465
513 => 0.028002890914353
514 => 0.029982861611167
515 => 0.029356025748417
516 => 0.027869809194132
517 => 0.027774114369378
518 => 0.028780597475269
519 => 0.031012880133726
520 => 0.030453718646123
521 => 0.031013794721606
522 => 0.030360436229363
523 => 0.030327991473285
524 => 0.030982062557961
525 => 0.032510335298865
526 => 0.031784310206109
527 => 0.030743375206986
528 => 0.031511985411596
529 => 0.030846144120846
530 => 0.029345817335545
531 => 0.030453291065872
601 => 0.029712754921438
602 => 0.029928882737451
603 => 0.031485379566611
604 => 0.031298097750147
605 => 0.031540457762481
606 => 0.031112698684377
607 => 0.030713104254013
608 => 0.029967231575465
609 => 0.029746415446426
610 => 0.029807441080361
611 => 0.029746385205153
612 => 0.029329076296429
613 => 0.029238958477323
614 => 0.029088758163993
615 => 0.029135311521671
616 => 0.02885289098996
617 => 0.029385876884359
618 => 0.029484803763015
619 => 0.029872666449623
620 => 0.029912935640432
621 => 0.030993127701756
622 => 0.030398176066269
623 => 0.030797320989007
624 => 0.030761617710219
625 => 0.027902020013466
626 => 0.028296047345634
627 => 0.0289090302219
628 => 0.028632882267021
629 => 0.028242473667492
630 => 0.027927197790987
701 => 0.027449522599469
702 => 0.028121841258591
703 => 0.029005868802218
704 => 0.029935356037806
705 => 0.031052074048948
706 => 0.030802835588892
707 => 0.02991447977136
708 => 0.029954330764391
709 => 0.030200673922515
710 => 0.029881637150108
711 => 0.029787546977587
712 => 0.030187747377664
713 => 0.030190503337873
714 => 0.029823412974336
715 => 0.029415459212093
716 => 0.029413749870933
717 => 0.029341158439308
718 => 0.030373350083786
719 => 0.030940951121903
720 => 0.031006025666188
721 => 0.030936571086586
722 => 0.030963301397721
723 => 0.030633026859876
724 => 0.031387936513518
725 => 0.032080716264526
726 => 0.031895036492175
727 => 0.031616676117486
728 => 0.031394948671394
729 => 0.031842804552476
730 => 0.031822862235082
731 => 0.032074665437769
801 => 0.032063242190009
802 => 0.031978570243743
803 => 0.031895039516077
804 => 0.032226229409387
805 => 0.032130852038861
806 => 0.032035326520934
807 => 0.031843735470507
808 => 0.03186977587625
809 => 0.031591463564405
810 => 0.03146270355424
811 => 0.029526461939826
812 => 0.029009034911935
813 => 0.029171827988108
814 => 0.029225423695704
815 => 0.029000238790065
816 => 0.029323096099496
817 => 0.029272779129811
818 => 0.02946853302441
819 => 0.029346234489711
820 => 0.029351253664234
821 => 0.029710907577988
822 => 0.029815316639227
823 => 0.029762213347996
824 => 0.0297994050729
825 => 0.030656472675664
826 => 0.03053462507003
827 => 0.03046989595805
828 => 0.030487826364435
829 => 0.030706825512678
830 => 0.030768133317275
831 => 0.030508367841172
901 => 0.030630874741388
902 => 0.031152493574071
903 => 0.031335030644441
904 => 0.031917601350298
905 => 0.031670114960081
906 => 0.032124386940284
907 => 0.033520664134695
908 => 0.034636106972624
909 => 0.03361029964124
910 => 0.035658668362307
911 => 0.0372536172327
912 => 0.037192400438528
913 => 0.036914284211143
914 => 0.035098477326111
915 => 0.033427544758349
916 => 0.034825350802826
917 => 0.034828914097895
918 => 0.034708841319021
919 => 0.033963079601797
920 => 0.034682890427794
921 => 0.034740026397193
922 => 0.03470804544801
923 => 0.034136271687945
924 => 0.03326327883778
925 => 0.033433859551053
926 => 0.033713274239146
927 => 0.033184283942576
928 => 0.033015239490169
929 => 0.033329525289216
930 => 0.03434221961779
1001 => 0.034150775621112
1002 => 0.034145776244673
1003 => 0.034964854847352
1004 => 0.034378571336059
1005 => 0.033436011120122
1006 => 0.033198002234756
1007 => 0.032353231033703
1008 => 0.032936717511242
1009 => 0.032957716150808
1010 => 0.032638146570147
1011 => 0.033461942430344
1012 => 0.033454351006466
1013 => 0.034236422569891
1014 => 0.035731449666494
1015 => 0.035289296588213
1016 => 0.03477512066429
1017 => 0.034831025843773
1018 => 0.035444167676953
1019 => 0.035073448127946
1020 => 0.035206761462517
1021 => 0.035443965891255
1022 => 0.035587077212566
1023 => 0.034810434326994
1024 => 0.034629361719244
1025 => 0.034258950711636
1026 => 0.0341623173938
1027 => 0.034464009430617
1028 => 0.034384524237853
1029 => 0.032955951296463
1030 => 0.032806657475583
1031 => 0.032811236103927
1101 => 0.03243582969279
1102 => 0.031863244807944
1103 => 0.033367963698053
1104 => 0.03324711371265
1105 => 0.033113704681811
1106 => 0.033130046526867
1107 => 0.033783193997408
1108 => 0.033404335479756
1109 => 0.034411592942624
1110 => 0.034204531089189
1111 => 0.03399215888053
1112 => 0.033962802572277
1113 => 0.033881057390689
1114 => 0.03360072274698
1115 => 0.0332622018192
1116 => 0.0330386809805
1117 => 0.030476436786442
1118 => 0.030951974404971
1119 => 0.03149903708847
1120 => 0.031687880934597
1121 => 0.0313648504682
1122 => 0.033613477958687
1123 => 0.034024323869513
1124 => 0.032779844806806
1125 => 0.032547053585919
1126 => 0.033628739712373
1127 => 0.03297635074737
1128 => 0.033270121458364
1129 => 0.032635149865182
1130 => 0.033925363120567
1201 => 0.03391553385726
1202 => 0.033413611760127
1203 => 0.033837832879609
1204 => 0.03376411402053
1205 => 0.033197445209047
1206 => 0.03394332753264
1207 => 0.033943697480967
1208 => 0.033460608375204
1209 => 0.032896466061477
1210 => 0.032795610740229
1211 => 0.032719629803675
1212 => 0.033251434805688
1213 => 0.033728249507583
1214 => 0.034615483455419
1215 => 0.034838555150064
1216 => 0.035709218824985
1217 => 0.035190780998414
1218 => 0.035420597772039
1219 => 0.035670096389377
1220 => 0.035789715201536
1221 => 0.035594802766222
1222 => 0.036947301832842
1223 => 0.037061494193565
1224 => 0.037099781904355
1225 => 0.036643726828841
1226 => 0.037048810476917
1227 => 0.036859285252943
1228 => 0.037352377234101
1229 => 0.03742970035286
1230 => 0.037364210422121
1231 => 0.037388754000477
]
'min_raw' => 0.016766352278092
'max_raw' => 0.03742970035286
'avg_raw' => 0.027098026315476
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.016766'
'max' => '$0.037429'
'avg' => '$0.027098'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0025853375025985
'max_diff' => -0.0035717837913491
'year' => 2031
]
6 => [
'items' => [
101 => 0.036234634644303
102 => 0.03617478746722
103 => 0.035358766961141
104 => 0.035691301349088
105 => 0.03506964424961
106 => 0.035266778119632
107 => 0.035353672851177
108 => 0.035308283974651
109 => 0.035710102344451
110 => 0.035368474644051
111 => 0.034466862973901
112 => 0.033565005660254
113 => 0.033553683576318
114 => 0.033316240464739
115 => 0.033144612584942
116 => 0.033177674203417
117 => 0.033294187659218
118 => 0.033137840611081
119 => 0.033171205180798
120 => 0.033725279345057
121 => 0.033836394967223
122 => 0.033458780667426
123 => 0.031942604764261
124 => 0.031570531394585
125 => 0.031837970354173
126 => 0.031710151756765
127 => 0.025592567343581
128 => 0.027029803058047
129 => 0.026175846400425
130 => 0.026569388916913
131 => 0.025697720300486
201 => 0.026113726252312
202 => 0.026036905143114
203 => 0.028347937641078
204 => 0.028311854047343
205 => 0.028329125354163
206 => 0.027504720879523
207 => 0.028818019592645
208 => 0.029464997763423
209 => 0.029345259322778
210 => 0.029375394908625
211 => 0.028857565699804
212 => 0.028334139072823
213 => 0.02775357838872
214 => 0.028832188380314
215 => 0.028712265361735
216 => 0.028987325619415
217 => 0.029686881299598
218 => 0.029789893530859
219 => 0.02992834301432
220 => 0.029878718730004
221 => 0.031060970509537
222 => 0.030917792018287
223 => 0.031262810986936
224 => 0.030553080791773
225 => 0.029749953707738
226 => 0.029902601910211
227 => 0.029887900660793
228 => 0.029700736882401
229 => 0.029531773791926
301 => 0.029250497851341
302 => 0.030140496548358
303 => 0.030104364226588
304 => 0.030689304516822
305 => 0.030585910638716
306 => 0.029895421015953
307 => 0.029920081987912
308 => 0.030085938875998
309 => 0.030659971459385
310 => 0.030830383413252
311 => 0.030751441806479
312 => 0.030938290734293
313 => 0.031085968508394
314 => 0.030956836789033
315 => 0.032785069620479
316 => 0.032025859884914
317 => 0.032395893427481
318 => 0.032484144247019
319 => 0.032258091628487
320 => 0.032307114347109
321 => 0.032381370407931
322 => 0.03283223866841
323 => 0.03401544744369
324 => 0.034539482555887
325 => 0.036116068046369
326 => 0.03449596873474
327 => 0.034399838746226
328 => 0.034683829401382
329 => 0.035609451982818
330 => 0.036359582145764
331 => 0.03660844359686
401 => 0.036641334745877
402 => 0.03710821537213
403 => 0.03737582264029
404 => 0.037051523783923
405 => 0.036776714458658
406 => 0.035792381566147
407 => 0.035906320778705
408 => 0.036691248965146
409 => 0.037800006260535
410 => 0.038751435366513
411 => 0.038418278054251
412 => 0.040960033174398
413 => 0.041212037812422
414 => 0.041177218919732
415 => 0.041751322988469
416 => 0.040611843326287
417 => 0.040124693694325
418 => 0.036836131353999
419 => 0.037760083232916
420 => 0.039103101550713
421 => 0.038925348040292
422 => 0.037950012238926
423 => 0.038750695486847
424 => 0.038485964565404
425 => 0.038277160303966
426 => 0.039233733104311
427 => 0.038181942016487
428 => 0.039092609130034
429 => 0.037924669137265
430 => 0.038419799888791
501 => 0.038138739727445
502 => 0.038320620097273
503 => 0.037257351171682
504 => 0.037831065274537
505 => 0.037233482778806
506 => 0.037233199446896
507 => 0.037220007780181
508 => 0.037923060936322
509 => 0.037945987474503
510 => 0.037426430129861
511 => 0.037351553799487
512 => 0.037628410837153
513 => 0.037304283755019
514 => 0.037455940776718
515 => 0.037308877291711
516 => 0.037275770203605
517 => 0.037011967292869
518 => 0.036898313745512
519 => 0.036942880229922
520 => 0.036790751843034
521 => 0.036699088987209
522 => 0.037201773731037
523 => 0.036933209550655
524 => 0.037160612418641
525 => 0.036901458150041
526 => 0.036003116546932
527 => 0.035486470791194
528 => 0.033789586779232
529 => 0.034270820980047
530 => 0.034589879753059
531 => 0.034484430830482
601 => 0.034710975919494
602 => 0.034724883948036
603 => 0.034651231830245
604 => 0.034565952113263
605 => 0.0345244426633
606 => 0.034833820095268
607 => 0.035013424107691
608 => 0.034621901569387
609 => 0.034530173316645
610 => 0.034926024219422
611 => 0.03516749304144
612 => 0.036950363153613
613 => 0.036818282377108
614 => 0.037149779206591
615 => 0.037112457750824
616 => 0.037459919239709
617 => 0.038027871925852
618 => 0.036873065312853
619 => 0.037073499810662
620 => 0.037024357900508
621 => 0.037560876389869
622 => 0.03756255134203
623 => 0.037240881706572
624 => 0.037415264034448
625 => 0.037317928602956
626 => 0.037493826883334
627 => 0.036816518357812
628 => 0.03764140703096
629 => 0.038109065753983
630 => 0.038115559195806
701 => 0.03833722571895
702 => 0.038562451744523
703 => 0.038994753487558
704 => 0.038550395083542
705 => 0.037751037572135
706 => 0.03780874860255
707 => 0.037340085586086
708 => 0.037347963896063
709 => 0.037305908859968
710 => 0.037432119189045
711 => 0.036844214427622
712 => 0.036982194500041
713 => 0.036789021590644
714 => 0.037073079890483
715 => 0.036767480116376
716 => 0.037024334202791
717 => 0.037135183911639
718 => 0.037544221723715
719 => 0.036707064898954
720 => 0.03500004546273
721 => 0.035358881643834
722 => 0.034828134746007
723 => 0.034877257392097
724 => 0.03497649295501
725 => 0.034654838027754
726 => 0.034716199651363
727 => 0.034714007382372
728 => 0.034695115592573
729 => 0.034611440723091
730 => 0.034490095607774
731 => 0.03497349719914
801 => 0.035055636549212
802 => 0.035238222149508
803 => 0.035781473046993
804 => 0.035727189471596
805 => 0.035815728235272
806 => 0.03562244861129
807 => 0.034886223079514
808 => 0.034926203667978
809 => 0.034427645089195
810 => 0.035225472885736
811 => 0.035036536732702
812 => 0.034914728365739
813 => 0.034881491824267
814 => 0.03542608933565
815 => 0.035589041446576
816 => 0.035487500626357
817 => 0.035279237441667
818 => 0.035679164323755
819 => 0.035786167885841
820 => 0.035810122037252
821 => 0.036518715793938
822 => 0.035849724556756
823 => 0.036010757396747
824 => 0.037267089645502
825 => 0.036127769657881
826 => 0.036731292865191
827 => 0.036701753544777
828 => 0.037010495595525
829 => 0.03667642768511
830 => 0.036680568857236
831 => 0.036954710882303
901 => 0.036569727849872
902 => 0.036474400637013
903 => 0.036342706775196
904 => 0.036630255504551
905 => 0.036802627963089
906 => 0.038191823385285
907 => 0.039089306983031
908 => 0.039050344853108
909 => 0.039406385786551
910 => 0.039245986085074
911 => 0.0387280131377
912 => 0.039612129798795
913 => 0.039332358294213
914 => 0.039355422317128
915 => 0.039354563873043
916 => 0.039540587465541
917 => 0.039408772701445
918 => 0.039148952270902
919 => 0.039321433198008
920 => 0.039833639888453
921 => 0.041423545172015
922 => 0.042313277232139
923 => 0.041369982184815
924 => 0.042020654477235
925 => 0.041630482960026
926 => 0.041559577188752
927 => 0.041968247472697
928 => 0.042377633079875
929 => 0.04235155698652
930 => 0.042054364057893
1001 => 0.041886487313503
1002 => 0.043157706264861
1003 => 0.044094318733573
1004 => 0.044030448042336
1005 => 0.044312352501592
1006 => 0.045140032712945
1007 => 0.045215705418645
1008 => 0.045206172397044
1009 => 0.045018609700336
1010 => 0.04583356835627
1011 => 0.046513421204884
1012 => 0.044975194355256
1013 => 0.045560931002726
1014 => 0.045823887055032
1015 => 0.046209984555361
1016 => 0.046861395755872
1017 => 0.047569001097914
1018 => 0.047669064251776
1019 => 0.047598064655648
1020 => 0.047131379911119
1021 => 0.047905650119869
1022 => 0.048359199449284
1023 => 0.048629277695658
1024 => 0.04931415119173
1025 => 0.04582551098209
1026 => 0.043356078045038
1027 => 0.042970440432873
1028 => 0.04375464968166
1029 => 0.043961439406614
1030 => 0.043878082727777
1031 => 0.041098511446105
1101 => 0.042955806565321
1102 => 0.044954099947788
1103 => 0.045030862534914
1104 => 0.046031249984522
1105 => 0.046357017145381
1106 => 0.047162460166095
1107 => 0.047112079485851
1108 => 0.047308192043997
1109 => 0.047263109163075
1110 => 0.048755022752911
1111 => 0.050400824993811
1112 => 0.050343836095539
1113 => 0.050107232551161
1114 => 0.050458629161462
1115 => 0.052157273448957
1116 => 0.052000889503185
1117 => 0.05215280318575
1118 => 0.054155600532104
1119 => 0.056759521976965
1120 => 0.055549739036389
1121 => 0.058174619911777
1122 => 0.059826843283877
1123 => 0.062684192762839
1124 => 0.06232643853533
1125 => 0.063438783719291
1126 => 0.061685983802529
1127 => 0.057661200894333
1128 => 0.057024263592861
1129 => 0.05829942820023
1130 => 0.061434295958702
1201 => 0.058200700058468
1202 => 0.058854852297641
1203 => 0.058666456408752
1204 => 0.058656417592464
1205 => 0.059039558379357
1206 => 0.058483792684689
1207 => 0.056219503264273
1208 => 0.057257213762108
1209 => 0.056856503903943
1210 => 0.057301121366476
1211 => 0.059700538437579
1212 => 0.058639698955486
1213 => 0.057522190736702
1214 => 0.058923794037983
1215 => 0.060708516683662
1216 => 0.06059683194795
1217 => 0.060380116880071
1218 => 0.061601728370871
1219 => 0.063619472655088
1220 => 0.064164860827159
1221 => 0.064567455225812
1222 => 0.064622966191498
1223 => 0.065194763637937
1224 => 0.062120064656922
1225 => 0.066999690903663
1226 => 0.06784226755952
1227 => 0.067683898069443
1228 => 0.068620386561383
1229 => 0.068344847890634
1230 => 0.067945635587412
1231 => 0.069430169043951
]
'min_raw' => 0.025592567343581
'max_raw' => 0.069430169043951
'avg_raw' => 0.047511368193766
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.025592'
'max' => '$0.06943'
'avg' => '$0.047511'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0088262150654893
'max_diff' => 0.032000468691091
'year' => 2032
]
7 => [
'items' => [
101 => 0.067728271231702
102 => 0.06531264155019
103 => 0.063987379331176
104 => 0.065732591527028
105 => 0.066798331715523
106 => 0.067502718186311
107 => 0.06771586510677
108 => 0.062358744786273
109 => 0.059471554053039
110 => 0.061322210211333
111 => 0.063580138449917
112 => 0.062107521751551
113 => 0.062165245538095
114 => 0.060065681123087
115 => 0.063765903312977
116 => 0.063226812063677
117 => 0.066023618418681
118 => 0.065356138136286
119 => 0.067636825147395
120 => 0.067036243823225
121 => 0.069529223321804
122 => 0.070523740338513
123 => 0.072193689193782
124 => 0.073422110369632
125 => 0.074143462780044
126 => 0.074100155487047
127 => 0.076958513113443
128 => 0.075273039484567
129 => 0.073155687371064
130 => 0.073117391151491
131 => 0.074213997814186
201 => 0.076512184539847
202 => 0.077108070920555
203 => 0.077441090115055
204 => 0.076931059626196
205 => 0.075101598801034
206 => 0.074311646892306
207 => 0.074984708805652
208 => 0.074161611922499
209 => 0.075582508063018
210 => 0.077533701950988
211 => 0.077130788128979
212 => 0.078477668627739
213 => 0.079871548247995
214 => 0.081864858708011
215 => 0.082385983874332
216 => 0.083247383957646
217 => 0.084134047598562
218 => 0.084418820063769
219 => 0.084962539059556
220 => 0.084959673392061
221 => 0.086598207182375
222 => 0.088405560694258
223 => 0.089087794804664
224 => 0.090656554522934
225 => 0.087970108481293
226 => 0.090007808663546
227 => 0.091845865234881
228 => 0.089654458416357
301 => 0.092674802183388
302 => 0.092792075287616
303 => 0.094562759928412
304 => 0.092767831822834
305 => 0.091702009243356
306 => 0.094778999094459
307 => 0.096267857559136
308 => 0.095819401272843
309 => 0.092406626791138
310 => 0.090420245662002
311 => 0.085221503102748
312 => 0.091379638233149
313 => 0.094379086219903
314 => 0.092398858945465
315 => 0.09339757039975
316 => 0.098846216261052
317 => 0.10092070783134
318 => 0.10048922808651
319 => 0.10056214106063
320 => 0.10168149905727
321 => 0.10664534885609
322 => 0.1036708949955
323 => 0.10594475352126
324 => 0.10715079988432
325 => 0.10827104296002
326 => 0.10552008002256
327 => 0.10194111766059
328 => 0.10080751004593
329 => 0.092201964369036
330 => 0.091754008344563
331 => 0.09150255705357
401 => 0.089917192232347
402 => 0.088671529750837
403 => 0.087680932697058
404 => 0.08508131021062
405 => 0.085958606487075
406 => 0.081815350827074
407 => 0.084466058970377
408 => 0.07785332289461
409 => 0.083360605997023
410 => 0.080363242189815
411 => 0.082375891372514
412 => 0.082368869429118
413 => 0.078662944172766
414 => 0.076525443825588
415 => 0.077887542239568
416 => 0.079347819862861
417 => 0.079584744994276
418 => 0.081478033050021
419 => 0.082006409050288
420 => 0.08040540510196
421 => 0.077716288637649
422 => 0.078340909060093
423 => 0.076512785912664
424 => 0.073309070414537
425 => 0.075610034816798
426 => 0.076395685229993
427 => 0.076742673209977
428 => 0.07359218696678
429 => 0.072602235788783
430 => 0.072075194088113
501 => 0.077309600425765
502 => 0.077596353020946
503 => 0.076129286201269
504 => 0.082760567339189
505 => 0.081259704185659
506 => 0.082936536048552
507 => 0.078284231303717
508 => 0.078461955610129
509 => 0.076259479987433
510 => 0.077492719166669
511 => 0.076621105463939
512 => 0.077393085628093
513 => 0.077855807355494
514 => 0.080057921573613
515 => 0.083385750604089
516 => 0.079728999143463
517 => 0.078135700166423
518 => 0.079124173890725
519 => 0.081756609678086
520 => 0.085744884647845
521 => 0.083383745594234
522 => 0.084431579011485
523 => 0.084660483998291
524 => 0.082919467474276
525 => 0.085809078410446
526 => 0.087357644386296
527 => 0.088946152646942
528 => 0.090325409860669
529 => 0.088311667515595
530 => 0.09046666048345
531 => 0.088730116558826
601 => 0.087172257137828
602 => 0.087174619767513
603 => 0.086197351796025
604 => 0.08430377195758
605 => 0.083954566782644
606 => 0.085771176202414
607 => 0.087227924923518
608 => 0.087347909725544
609 => 0.088154440667998
610 => 0.088631737371814
611 => 0.093309893922608
612 => 0.095191487187078
613 => 0.097492263814135
614 => 0.098388545975039
615 => 0.10108603394442
616 => 0.098907593329884
617 => 0.098436273999894
618 => 0.091893050527762
619 => 0.092964503004765
620 => 0.094680001800235
621 => 0.091921338471042
622 => 0.093671075396646
623 => 0.094016510530255
624 => 0.091827600146731
625 => 0.092996791759806
626 => 0.089891765476634
627 => 0.083453431692004
628 => 0.085816246116444
629 => 0.087556072847566
630 => 0.085073125583165
701 => 0.089523712451275
702 => 0.086923771481687
703 => 0.086099715013503
704 => 0.082884776933775
705 => 0.084402103953092
706 => 0.086454310472747
707 => 0.085186285438215
708 => 0.087817627779786
709 => 0.09154431028882
710 => 0.094200166172537
711 => 0.094404049809395
712 => 0.09269651240469
713 => 0.095432851993088
714 => 0.09545278323966
715 => 0.092366181005671
716 => 0.090475654323626
717 => 0.090046122683763
718 => 0.091119176934779
719 => 0.092422062892254
720 => 0.09447635091241
721 => 0.095717714138923
722 => 0.098954531065487
723 => 0.099830320919001
724 => 0.10079254844512
725 => 0.10207838116
726 => 0.10362235301494
727 => 0.10024423049468
728 => 0.10037844960002
729 => 0.097232788682445
730 => 0.093871198858606
731 => 0.096422226506812
801 => 0.099757355807856
802 => 0.098992273461206
803 => 0.098906186067994
804 => 0.099050961184725
805 => 0.098474114080604
806 => 0.095865056007619
807 => 0.094554803376934
808 => 0.096245363551614
809 => 0.09714382104628
810 => 0.098537250266779
811 => 0.09836548070363
812 => 0.10195480473226
813 => 0.10334950751426
814 => 0.10299268285993
815 => 0.10305834718379
816 => 0.10558338995092
817 => 0.10839175682262
818 => 0.11102216299461
819 => 0.11369792513133
820 => 0.11047218943874
821 => 0.10883435978976
822 => 0.11052418191875
823 => 0.10962753851114
824 => 0.11477991749299
825 => 0.11513665703474
826 => 0.12028866344094
827 => 0.12517853100995
828 => 0.12210729280093
829 => 0.12500333210043
830 => 0.12813563472038
831 => 0.13417835467204
901 => 0.13214337917777
902 => 0.13058461984129
903 => 0.12911159980019
904 => 0.13217672067038
905 => 0.13611994970338
906 => 0.1369692834693
907 => 0.13834552864058
908 => 0.13689857512224
909 => 0.13864127125838
910 => 0.14479375439845
911 => 0.14313129914453
912 => 0.14077034543095
913 => 0.14562713997927
914 => 0.147384795046
915 => 0.15972093879539
916 => 0.17529582985968
917 => 0.16884772268882
918 => 0.16484517448874
919 => 0.16578586825747
920 => 0.17147329123082
921 => 0.17329991098008
922 => 0.16833452882801
923 => 0.17008838574706
924 => 0.17975230980641
925 => 0.18493669500845
926 => 0.17789560354825
927 => 0.15846951146331
928 => 0.1405577673808
929 => 0.14530876848783
930 => 0.14477015240302
1001 => 0.15515283320572
1002 => 0.14309165013653
1003 => 0.14329472952679
1004 => 0.15389211317304
1005 => 0.15106491290137
1006 => 0.14648521054172
1007 => 0.14059120427622
1008 => 0.12969558856486
1009 => 0.12004503788258
1010 => 0.13897199015962
1011 => 0.138155825561
1012 => 0.13697389827339
1013 => 0.13960414955408
1014 => 0.15237590316325
1015 => 0.15208147290443
1016 => 0.15020845781743
1017 => 0.15162912325292
1018 => 0.14623616102206
1019 => 0.14762605018442
1020 => 0.14055493006902
1021 => 0.14375137167724
1022 => 0.14647538455731
1023 => 0.14702227047268
1024 => 0.1482544323647
1025 => 0.13772574390434
1026 => 0.14245281591699
1027 => 0.14522952785767
1028 => 0.13268424229202
1029 => 0.1449815478982
1030 => 0.13754246286246
1031 => 0.13501752567002
1101 => 0.13841702096446
1102 => 0.1370922343421
1103 => 0.13595326059827
1104 => 0.13531769367917
1105 => 0.1378139078348
1106 => 0.13769745646082
1107 => 0.13361316560791
1108 => 0.12828537468729
1109 => 0.13007355619903
1110 => 0.12942389309153
1111 => 0.12706943018172
1112 => 0.12865605390399
1113 => 0.12166936600299
1114 => 0.10964913260576
1115 => 0.11759006697768
1116 => 0.11728434964243
1117 => 0.11713019309883
1118 => 0.12309758580802
1119 => 0.1225239586902
1120 => 0.1214828198544
1121 => 0.12705030885053
1122 => 0.12501810047365
1123 => 0.13128088784269
1124 => 0.13540596465563
1125 => 0.13435971174361
1126 => 0.13823936642441
1127 => 0.13011475228944
1128 => 0.13281342320214
1129 => 0.13336961553705
1130 => 0.12698160690054
1201 => 0.12261781118084
1202 => 0.12232679575725
1203 => 0.1147605753474
1204 => 0.11880238921795
1205 => 0.12235901816241
1206 => 0.12065566890357
1207 => 0.12011643941433
1208 => 0.12287124593023
1209 => 0.12308531798984
1210 => 0.11820445234444
1211 => 0.11921933886903
1212 => 0.12345158438743
1213 => 0.11911269714079
1214 => 0.11068294797378
1215 => 0.10859225362996
1216 => 0.10831331646535
1217 => 0.10264318758986
1218 => 0.10873196382306
1219 => 0.10607404982821
1220 => 0.11447036829124
1221 => 0.10967443621552
1222 => 0.10946769316924
1223 => 0.10915517073218
1224 => 0.10427465657897
1225 => 0.10534317900567
1226 => 0.10889511029257
1227 => 0.11016247939111
1228 => 0.11003028241089
1229 => 0.10887770389152
1230 => 0.10940534843553
1231 => 0.10770562151573
]
'min_raw' => 0.059471554053039
'max_raw' => 0.18493669500845
'avg_raw' => 0.12220412453074
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.059471'
'max' => '$0.184936'
'avg' => '$0.1222041'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.033878986709458
'max_diff' => 0.1155065259645
'year' => 2033
]
8 => [
'items' => [
101 => 0.10710541256359
102 => 0.10521098801016
103 => 0.10242670726477
104 => 0.1028138785794
105 => 0.097297489876087
106 => 0.094291868533613
107 => 0.093459952159469
108 => 0.092347478815785
109 => 0.093585608983816
110 => 0.097281862639988
111 => 0.092823396526687
112 => 0.085179669100468
113 => 0.085639070143061
114 => 0.086671207888375
115 => 0.084747826028257
116 => 0.082927506514859
117 => 0.084510126644568
118 => 0.081271378568601
119 => 0.087062595120054
120 => 0.086905958942034
121 => 0.089064566345987
122 => 0.090414387854761
123 => 0.087303486286939
124 => 0.086521102955403
125 => 0.086966784058386
126 => 0.079600668193014
127 => 0.088462597528433
128 => 0.088539235861325
129 => 0.08788301192662
130 => 0.092601715716358
131 => 0.10255965251333
201 => 0.098813076133227
202 => 0.097362288517982
203 => 0.094604340200882
204 => 0.098279142582651
205 => 0.097996975095578
206 => 0.096720906710195
207 => 0.095949136569139
208 => 0.097371146717799
209 => 0.095772933775031
210 => 0.095485850814555
211 => 0.093746440423414
212 => 0.093125550051907
213 => 0.092665867539201
214 => 0.092159802260183
215 => 0.093276056162087
216 => 0.090746477964941
217 => 0.087696054636792
218 => 0.087442444943094
219 => 0.088142683604986
220 => 0.087832880123736
221 => 0.087440961723216
222 => 0.086692682763997
223 => 0.086470684381247
224 => 0.08719207142688
225 => 0.086377667511838
226 => 0.08757936485136
227 => 0.087252569667957
228 => 0.085427118338521
301 => 0.0831519301134
302 => 0.083131676165828
303 => 0.082641490594783
304 => 0.082017165570162
305 => 0.081843492630934
306 => 0.084376842791531
307 => 0.089620801807175
308 => 0.0885912871751
309 => 0.089335217005678
310 => 0.092994615477704
311 => 0.09415782821001
312 => 0.093332207364823
313 => 0.092202046629855
314 => 0.09225176796653
315 => 0.096113869320837
316 => 0.096354743844955
317 => 0.096963356058335
318 => 0.097745594746319
319 => 0.093465425995882
320 => 0.092050172403294
321 => 0.091379546735846
322 => 0.089314279244901
323 => 0.091541493171232
324 => 0.090243790995168
325 => 0.090418895354538
326 => 0.090304858410785
327 => 0.090367130293218
328 => 0.087060976357002
329 => 0.088265565085024
330 => 0.086262702690862
331 => 0.083581094776933
401 => 0.083572105086913
402 => 0.084228424824815
403 => 0.083838020162917
404 => 0.08278745125597
405 => 0.082936679610656
406 => 0.081629282198149
407 => 0.083095421327729
408 => 0.083137464951867
409 => 0.082572921525841
410 => 0.08483171114317
411 => 0.085757139092387
412 => 0.085385544515685
413 => 0.08573106702629
414 => 0.088634068156043
415 => 0.089107384007012
416 => 0.089317599642522
417 => 0.089035938539173
418 => 0.085784128557828
419 => 0.085928360158264
420 => 0.084870084373433
421 => 0.083975952853605
422 => 0.084011713425296
423 => 0.084471413255449
424 => 0.086478949374765
425 => 0.090703690787149
426 => 0.090864016635504
427 => 0.091058336240744
428 => 0.090267940749023
429 => 0.090029549905654
430 => 0.090344048961955
501 => 0.091930639710096
502 => 0.096011781869501
503 => 0.094569233660047
504 => 0.093396419511161
505 => 0.094425293708158
506 => 0.094266906590113
507 => 0.092929959918649
508 => 0.092892436278421
509 => 0.090326408168175
510 => 0.089377806001451
511 => 0.088585083029294
512 => 0.087719450238256
513 => 0.087206274103455
514 => 0.087994745880891
515 => 0.088175078705315
516 => 0.086451071383822
517 => 0.086216095556328
518 => 0.087623957150342
519 => 0.087004409753187
520 => 0.087641629615197
521 => 0.087789470089154
522 => 0.087765664367792
523 => 0.087118785730597
524 => 0.087531086883747
525 => 0.086555871743658
526 => 0.08549547175139
527 => 0.084819002621577
528 => 0.084228693585205
529 => 0.084556231347547
530 => 0.083388619030832
531 => 0.083015076351322
601 => 0.087391408530129
602 => 0.090624252164113
603 => 0.090577245337329
604 => 0.090291103368451
605 => 0.089865954444478
606 => 0.091899537418218
607 => 0.091191077772942
608 => 0.091706541358665
609 => 0.09183774847517
610 => 0.092234872899775
611 => 0.092376810747574
612 => 0.091947775989352
613 => 0.090507882938579
614 => 0.086919806356973
615 => 0.085249547022408
616 => 0.084698333621632
617 => 0.084718369181847
618 => 0.08416569898844
619 => 0.084328485129339
620 => 0.084109088611893
621 => 0.083693604685568
622 => 0.084530576385899
623 => 0.084627029577431
624 => 0.084431670381507
625 => 0.084477684544253
626 => 0.082860193841004
627 => 0.082983168146167
628 => 0.082298431588201
629 => 0.082170051738204
630 => 0.080439097346498
701 => 0.07737246073574
702 => 0.079071675103719
703 => 0.077019263092898
704 => 0.076241983565283
705 => 0.079921503957244
706 => 0.0795521821639
707 => 0.078920063794021
708 => 0.077985028979957
709 => 0.077638215471987
710 => 0.075531086385375
711 => 0.075406585957842
712 => 0.076450936030438
713 => 0.075969004405826
714 => 0.075292189883093
715 => 0.072840836289342
716 => 0.070084703234682
717 => 0.070167893567167
718 => 0.071044568212176
719 => 0.073593617978222
720 => 0.072597660135619
721 => 0.071875081293512
722 => 0.071739763997025
723 => 0.073433543268503
724 => 0.075830595795373
725 => 0.076955239209953
726 => 0.075840751742033
727 => 0.074560488547153
728 => 0.074638412235657
729 => 0.075156803624846
730 => 0.07521127923019
731 => 0.074377959503506
801 => 0.074612534125369
802 => 0.074256193824806
803 => 0.072069334058001
804 => 0.072029780699426
805 => 0.071493090044775
806 => 0.071476839265047
807 => 0.070563794577727
808 => 0.070436053314391
809 => 0.068623147669866
810 => 0.069816407655076
811 => 0.069016031505958
812 => 0.06780967585959
813 => 0.067601699691454
814 => 0.067595447676701
815 => 0.068834105189334
816 => 0.069801933220859
817 => 0.069029954391743
818 => 0.068854189776534
819 => 0.070730896029234
820 => 0.070492068052021
821 => 0.070285244564029
822 => 0.075615966032694
823 => 0.071396284028863
824 => 0.069556261824164
825 => 0.067278884935109
826 => 0.068020410333716
827 => 0.068176660630477
828 => 0.06269997974034
829 => 0.060478090985288
830 => 0.059715622494665
831 => 0.05927681109859
901 => 0.059476782962028
902 => 0.057476822480924
903 => 0.058820829000519
904 => 0.057089032276334
905 => 0.056798690919771
906 => 0.05989535799106
907 => 0.060326241123564
908 => 0.058487959815408
909 => 0.059668434005955
910 => 0.059240377654644
911 => 0.057118718960613
912 => 0.057037687204366
913 => 0.05597311345161
914 => 0.054307261670646
915 => 0.053545922705974
916 => 0.053149410762926
917 => 0.053313019318491
918 => 0.053230293826293
919 => 0.052690454032019
920 => 0.053261236811387
921 => 0.051803122673831
922 => 0.051222489875432
923 => 0.050960231510974
924 => 0.049666071287974
925 => 0.05172565571843
926 => 0.05213141979719
927 => 0.052537983356533
928 => 0.056076841567881
929 => 0.055900050212352
930 => 0.057498157965456
1001 => 0.057436058436902
1002 => 0.056980252218087
1003 => 0.055057280757393
1004 => 0.055823742907955
1005 => 0.053464691543189
1006 => 0.055232253225572
1007 => 0.054425611888873
1008 => 0.054959526978226
1009 => 0.053999499506386
1010 => 0.054530818347865
1011 => 0.05222764151312
1012 => 0.050076967391407
1013 => 0.050942461440076
1014 => 0.051883352452229
1015 => 0.053923443901147
1016 => 0.05270838226456
1017 => 0.053145364375644
1018 => 0.051681547453435
1019 => 0.048661275024284
1020 => 0.048678369438233
1021 => 0.04821376632522
1022 => 0.047812281402411
1023 => 0.052847946709991
1024 => 0.052221682126906
1025 => 0.051223811477241
1026 => 0.05255950099562
1027 => 0.052912678504523
1028 => 0.052922732971692
1029 => 0.053897217565166
1030 => 0.054417300167389
1031 => 0.054508966980197
1101 => 0.056042339543161
1102 => 0.056556305800593
1103 => 0.058673260075729
1104 => 0.054373174792205
1105 => 0.05428461736554
1106 => 0.052578296886301
1107 => 0.051496121462508
1108 => 0.05265239436341
1109 => 0.053676694306618
1110 => 0.052610124740762
1111 => 0.05274939620955
1112 => 0.051317613709324
1113 => 0.051829408581526
1114 => 0.052270235271682
1115 => 0.052026836683973
1116 => 0.051662457217549
1117 => 0.053592713392237
1118 => 0.053483800774126
1119 => 0.055281299700394
1120 => 0.056682578653801
1121 => 0.059193921046881
1122 => 0.056573204340462
1123 => 0.056477695007275
1124 => 0.05741131405936
1125 => 0.056556162868381
1126 => 0.057096588902264
1127 => 0.059106850057869
1128 => 0.059149323708359
1129 => 0.058437835338445
1130 => 0.058394541206476
1201 => 0.058531190330748
1202 => 0.059331548519765
1203 => 0.059051878775999
1204 => 0.059375519683857
1205 => 0.059780237594898
1206 => 0.061454322471802
1207 => 0.061857938668036
1208 => 0.060877360562192
1209 => 0.060965895786082
1210 => 0.060599132657026
1211 => 0.060244844069886
1212 => 0.061041233074083
1213 => 0.062496649632319
1214 => 0.062487595561447
1215 => 0.062825223913703
1216 => 0.063035563580094
1217 => 0.062132631753897
1218 => 0.061544856336767
1219 => 0.061770246832816
1220 => 0.062130651144365
1221 => 0.061653372571989
1222 => 0.058707388126338
1223 => 0.059601011616933
1224 => 0.059452268972142
1225 => 0.059240441358236
1226 => 0.060138986688215
1227 => 0.060052319799123
1228 => 0.057456309995495
1229 => 0.05762249812039
1230 => 0.057466416445802
1231 => 0.057970748267702
]
'min_raw' => 0.047812281402411
'max_raw' => 0.10710541256359
'avg_raw' => 0.077458846983
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.047812'
'max' => '$0.1071054'
'avg' => '$0.077458'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.011659272650628
'max_diff' => -0.077831282444861
'year' => 2034
]
9 => [
'items' => [
101 => 0.056528927294922
102 => 0.056972421715337
103 => 0.057250577258319
104 => 0.057414413010027
105 => 0.058006300088423
106 => 0.057936848971308
107 => 0.058001982909469
108 => 0.058879595194335
109 => 0.063318256971018
110 => 0.063559843538168
111 => 0.062370182925387
112 => 0.062845428875175
113 => 0.061933060576447
114 => 0.062545539527719
115 => 0.062964582070902
116 => 0.061071009395508
117 => 0.060958884310856
118 => 0.060042750343611
119 => 0.060535028845128
120 => 0.059751778353138
121 => 0.059943960626933
122 => 0.059406602235252
123 => 0.06037374035329
124 => 0.061455151047326
125 => 0.061728358094842
126 => 0.061009667975857
127 => 0.060489288965725
128 => 0.059575674847435
129 => 0.061095035487369
130 => 0.061539342840162
131 => 0.061092701729992
201 => 0.060989205225465
202 => 0.0607930795364
203 => 0.061030814217546
204 => 0.061536923046899
205 => 0.061298251469339
206 => 0.061455898251169
207 => 0.060855111283487
208 => 0.062132930661903
209 => 0.064162415358807
210 => 0.064168940483962
211 => 0.063930267619873
212 => 0.063832607826166
213 => 0.064077500668602
214 => 0.064210344989593
215 => 0.065002283536364
216 => 0.065852065149272
217 => 0.069817625147951
218 => 0.068704111768766
219 => 0.072222592511814
220 => 0.07500525396202
221 => 0.075839652459899
222 => 0.075072045103334
223 => 0.072446101801857
224 => 0.072317260495763
225 => 0.076241528432834
226 => 0.075132742997753
227 => 0.075000856498376
228 => 0.073597806970764
301 => 0.074427183012647
302 => 0.074245786306075
303 => 0.07395944273052
304 => 0.075541834443598
305 => 0.078503930469396
306 => 0.078042260025415
307 => 0.077697644455259
308 => 0.076187639342917
309 => 0.077096999692399
310 => 0.076773193889598
311 => 0.078164469110668
312 => 0.077340308490226
313 => 0.075124342857562
314 => 0.075477242688482
315 => 0.075423902588974
316 => 0.076521638057121
317 => 0.076192125117053
318 => 0.075359559898932
319 => 0.078493806347201
320 => 0.078290285816445
321 => 0.078578831397787
322 => 0.078705858086261
323 => 0.080613618667706
324 => 0.081395167136394
325 => 0.081572592321718
326 => 0.082315002919843
327 => 0.081554120469716
328 => 0.08459819277022
329 => 0.086622323223511
330 => 0.088973454905811
331 => 0.09240909021827
401 => 0.093700920877158
402 => 0.093467563231358
403 => 0.0960724227149
404 => 0.10075329730405
405 => 0.094413701817152
406 => 0.1010893112586
407 => 0.098975890383055
408 => 0.093965007505955
409 => 0.093642365723098
410 => 0.097035793785017
411 => 0.104562090621
412 => 0.10267683862614
413 => 0.10456517421789
414 => 0.10236233044526
415 => 0.10225294068493
416 => 0.1044581870127
417 => 0.10961086525925
418 => 0.10716302096957
419 => 0.10365343594427
420 => 0.10624485891176
421 => 0.10399992851244
422 => 0.098941472006329
423 => 0.10267539700947
424 => 0.10017862769593
425 => 0.10090731771718
426 => 0.10615515544783
427 => 0.10552372172802
428 => 0.10634085543064
429 => 0.10489863583363
430 => 0.10355137531287
501 => 0.10103661350198
502 => 0.10029211650603
503 => 0.10049786869151
504 => 0.10029201454547
505 => 0.098885028424128
506 => 0.098581189905185
507 => 0.098074779062143
508 => 0.098231736957806
509 => 0.09727953641717
510 => 0.099076535572022
511 => 0.099410074450265
512 => 0.10071778057787
513 => 0.10085355096619
514 => 0.10449549391755
515 => 0.1024895729403
516 => 0.10383531791472
517 => 0.10371494181757
518 => 0.094073608532228
519 => 0.095402099192744
520 => 0.097468813757172
521 => 0.096537761647263
522 => 0.095221471796491
523 => 0.094158497166997
524 => 0.092547981908577
525 => 0.094814751207597
526 => 0.097795311791769
527 => 0.10092914290128
528 => 0.10469423564261
529 => 0.10385391077325
530 => 0.10085875711142
531 => 0.10099311751673
601 => 0.10182368067348
602 => 0.10074802592087
603 => 0.10043079433505
604 => 0.10178009792501
605 => 0.10178938983727
606 => 0.10055171904718
607 => 0.099176274455349
608 => 0.099170511292288
609 => 0.098925764212391
610 => 0.10240587040707
611 => 0.10431957693572
612 => 0.10453898030514
613 => 0.10430480934084
614 => 0.10439493245109
615 => 0.10328138878771
616 => 0.10582661939107
617 => 0.10816237468993
618 => 0.1075363423737
619 => 0.10659783093594
620 => 0.10585026137093
621 => 0.10736023874229
622 => 0.10729300182687
623 => 0.10814197390507
624 => 0.1081034596277
625 => 0.10781798224926
626 => 0.107536352569
627 => 0.10865298241723
628 => 0.10833141095347
629 => 0.1080093400004
630 => 0.10736337739743
701 => 0.10745117444347
702 => 0.10651282505294
703 => 0.10607870168893
704 => 0.099550527901865
705 => 0.097805986551728
706 => 0.098354854773895
707 => 0.098535556443989
708 => 0.097776329812719
709 => 0.098864865772641
710 => 0.098695218596332
711 => 0.099355216519072
712 => 0.098942878470723
713 => 0.098959800968056
714 => 0.10017239924851
715 => 0.10052442168809
716 => 0.10034538023415
717 => 0.10047077473131
718 => 0.10336043799257
719 => 0.10294962028305
720 => 0.10273138156277
721 => 0.10279183517975
722 => 0.10353020609809
723 => 0.10373690964166
724 => 0.10286109220273
725 => 0.10327413276997
726 => 0.10503280708263
727 => 0.10564824355971
728 => 0.10761242136829
729 => 0.10677800372473
730 => 0.10830961342224
731 => 0.11301725946816
801 => 0.11677805287397
802 => 0.11331947183663
803 => 0.12022568999224
804 => 0.12560317146454
805 => 0.12539677476897
806 => 0.12445908649089
807 => 0.11833696680241
808 => 0.11270330098942
809 => 0.11741610166008
810 => 0.11742811555818
811 => 0.117023281801
812 => 0.11450889410395
813 => 0.11693578655939
814 => 0.11712842446932
815 => 0.11702059846632
816 => 0.11509282331429
817 => 0.11214946696954
818 => 0.11272459175391
819 => 0.11366665788292
820 => 0.11188313016511
821 => 0.11131318499152
822 => 0.11237282150574
823 => 0.11578719113859
824 => 0.11514172433759
825 => 0.11512486859088
826 => 0.11788644928606
827 => 0.11590975349473
828 => 0.11273184591924
829 => 0.11192938234498
830 => 0.10908117726059
831 => 0.11104844265734
901 => 0.11111924103671
902 => 0.11004178988388
903 => 0.11281927514212
904 => 0.1127936801265
905 => 0.11543048900508
906 => 0.12047107724073
907 => 0.11898032726717
908 => 0.11724674724105
909 => 0.11743523545685
910 => 0.11950248595561
911 => 0.11825257911332
912 => 0.11870205432847
913 => 0.11950180562104
914 => 0.11998431543256
915 => 0.11736580972037
916 => 0.11675531078126
917 => 0.11550644420784
918 => 0.11518063823003
919 => 0.11619781399562
920 => 0.11592982411874
921 => 0.11111329070707
922 => 0.11060993616661
923 => 0.11062537333174
924 => 0.10935966440655
925 => 0.1074291544907
926 => 0.11250241928481
927 => 0.11209496512155
928 => 0.11164516725976
929 => 0.11170026493132
930 => 0.11390239722955
1001 => 0.11262504928623
1002 => 0.11602108814675
1003 => 0.1153229646513
1004 => 0.11460693692245
1005 => 0.11450796007959
1006 => 0.11423235049259
1007 => 0.11328718266899
1008 => 0.11214583572621
1009 => 0.1113922196128
1010 => 0.10275343442236
1011 => 0.1043567427042
1012 => 0.10620120273632
1013 => 0.10683790294819
1014 => 0.10574878317746
1015 => 0.1133301877558
1016 => 0.1147153834285
1017 => 0.11051953538183
1018 => 0.10973466352764
1019 => 0.11338164382389
1020 => 0.11118206888004
1021 => 0.11217253734258
1022 => 0.11003168628386
1023 => 0.11438173035421
1024 => 0.11434859030671
1025 => 0.11265632491314
1026 => 0.11408661603565
1027 => 0.11383806775538
1028 => 0.11192750429391
1029 => 0.11444229862375
1030 => 0.11444354593036
1031 => 0.11281477728207
1101 => 0.11091273208418
1102 => 0.1105726913271
1103 => 0.11031651629469
1104 => 0.11210953398842
1105 => 0.113717148046
1106 => 0.11670851924582
1107 => 0.11746062103869
1108 => 0.12039612440648
1109 => 0.11864817507802
1110 => 0.1194230183756
1111 => 0.12026422038339
1112 => 0.1206675235601
1113 => 0.12001036267609
1114 => 0.12457040770766
1115 => 0.1249554152245
1116 => 0.12508450491459
1117 => 0.12354688338675
1118 => 0.12491265118827
1119 => 0.12427365366341
1120 => 0.12593614770447
1121 => 0.1261968479979
1122 => 0.12597604412405
1123 => 0.12605879451205
1124 => 0.12216760052467
1125 => 0.12196582158874
1126 => 0.11921455147976
1127 => 0.12033571438553
1128 => 0.11823975407193
1129 => 0.11890440467816
1130 => 0.11919737633236
1201 => 0.1190443445662
1202 => 0.12039910325405
1203 => 0.11924728161046
1204 => 0.11620743491603
1205 => 0.11316676001741
1206 => 0.11312858682093
1207 => 0.1123280307925
1208 => 0.11174937541309
1209 => 0.11186084496806
1210 => 0.112253678219
1211 => 0.11172654323041
1212 => 0.11183903420665
1213 => 0.11370713393567
1214 => 0.11408176801365
1215 => 0.1128086150377
1216 => 0.10769672212415
1217 => 0.10644225078096
1218 => 0.1073439399052
1219 => 0.10691299058003
1220 => 0.086287127614877
1221 => 0.091132868170789
1222 => 0.088253693678267
1223 => 0.08958054974887
1224 => 0.086641658150625
1225 => 0.088044251261813
1226 => 0.087785243528676
1227 => 0.095577050946696
1228 => 0.095455392591145
1229 => 0.09551362400793
1230 => 0.0927340867636
1231 => 0.097161965066479
]
'min_raw' => 0.056528927294922
'max_raw' => 0.1261968479979
'avg_raw' => 0.091362887646409
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.056528'
'max' => '$0.126196'
'avg' => '$0.091362'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0087166458925112
'max_diff' => 0.019091435434306
'year' => 2035
]
10 => [
'items' => [
101 => 0.099343297139831
102 => 0.098939590627326
103 => 0.099041194859009
104 => 0.097295297527788
105 => 0.095530528110439
106 => 0.093573127230533
107 => 0.097209736123338
108 => 0.096805407293442
109 => 0.097732792156302
110 => 0.10009139297346
111 => 0.10043870590324
112 => 0.10090549800296
113 => 0.10073818626373
114 => 0.10472423068061
115 => 0.10424149440096
116 => 0.10540474994222
117 => 0.10301184503744
118 => 0.10030404600108
119 => 0.10081871007327
120 => 0.10076914378445
121 => 0.10013810803824
122 => 0.099568437182082
123 => 0.098620095710341
124 => 0.10162078845506
125 => 0.10149896580953
126 => 0.10347113283728
127 => 0.10312253315852
128 => 0.10079449918693
129 => 0.10087764537566
130 => 0.1014368434536
131 => 0.10337223438616
201 => 0.10394679018641
202 => 0.10368063304765
203 => 0.10431060725315
204 => 0.10480851317906
205 => 0.10437313657155
206 => 0.11053715120591
207 => 0.10797742257612
208 => 0.1092250164998
209 => 0.10952256029935
210 => 0.10876040811348
211 => 0.10892569163197
212 => 0.10917605112542
213 => 0.11069618494425
214 => 0.1146854559391
215 => 0.11645227690684
216 => 0.12176784496168
217 => 0.1163055670208
218 => 0.11598145805295
219 => 0.1169389523744
220 => 0.12005975353261
221 => 0.1225888697494
222 => 0.12342792350672
223 => 0.12353881831202
224 => 0.12511293894
225 => 0.12601519552834
226 => 0.12492179929228
227 => 0.12399526046557
228 => 0.12067651339455
229 => 0.12106066740467
301 => 0.12370710758719
302 => 0.12744536021955
303 => 0.13065316987702
304 => 0.12952990673843
305 => 0.13809961158568
306 => 0.13894926281718
307 => 0.1388318684895
308 => 0.14076750043991
309 => 0.13692566520293
310 => 0.13528320620707
311 => 0.12419558867657
312 => 0.1273107569446
313 => 0.1318388369696
314 => 0.13123952859886
315 => 0.12795111584878
316 => 0.13065067532107
317 => 0.1297581165365
318 => 0.12905411839081
319 => 0.13227927037296
320 => 0.12873308328665
321 => 0.13180346104072
322 => 0.12786566981213
323 => 0.12953503770983
324 => 0.12858742375286
325 => 0.12920064611821
326 => 0.12561576070052
327 => 0.12755007785373
328 => 0.1255352867475
329 => 0.12553433147418
330 => 0.12548985484884
331 => 0.12786024765037
401 => 0.12793754607453
402 => 0.12618582221273
403 => 0.12593337143718
404 => 0.12686681426921
405 => 0.12577399718197
406 => 0.12628531941898
407 => 0.12578948461163
408 => 0.12567786175262
409 => 0.12478843182094
410 => 0.12440524095099
411 => 0.12455549996471
412 => 0.12404258848705
413 => 0.12373354076895
414 => 0.12542837747909
415 => 0.12452289459438
416 => 0.12528959924056
417 => 0.1244158425304
418 => 0.12138702109531
419 => 0.11964511385878
420 => 0.11392395093979
421 => 0.11554646564654
422 => 0.11662219457572
423 => 0.11626666617105
424 => 0.11703047875552
425 => 0.11707737064478
426 => 0.11682904738742
427 => 0.11654152086757
428 => 0.11640156885893
429 => 0.11744465647085
430 => 0.11805020393829
501 => 0.11673015836516
502 => 0.11642089015678
503 => 0.11775552911292
504 => 0.11856965810517
505 => 0.12458072916438
506 => 0.12413540960481
507 => 0.12525307430978
508 => 0.12512724241596
509 => 0.12629873308472
510 => 0.12821362521924
511 => 0.12432011409749
512 => 0.12499589300075
513 => 0.12483020761968
514 => 0.12663911716509
515 => 0.12664476438324
516 => 0.12556023274904
517 => 0.12614817494246
518 => 0.12582000173944
519 => 0.12641305507256
520 => 0.12412946209059
521 => 0.126910631844
522 => 0.12848737587956
523 => 0.12850926897202
524 => 0.12925663313106
525 => 0.13001599840106
526 => 0.13147353391005
527 => 0.1299753485268
528 => 0.12728025886773
529 => 0.12747483563603
530 => 0.12589470555501
531 => 0.12592126782715
601 => 0.12577947633676
602 => 0.12620500327297
603 => 0.12422284132363
604 => 0.12468805077125
605 => 0.12403675482032
606 => 0.12499447721054
607 => 0.12396412623585
608 => 0.12483012772117
609 => 0.12520386525384
610 => 0.12658296479536
611 => 0.12376043211225
612 => 0.11800509690273
613 => 0.11921493814047
614 => 0.11742548791888
615 => 0.11759110834981
616 => 0.11792568797857
617 => 0.1168412059341
618 => 0.11704809093223
619 => 0.11704069954427
620 => 0.11697700455598
621 => 0.11669488889152
622 => 0.11628576536319
623 => 0.1179155875785
624 => 0.11819252613205
625 => 0.11880812623117
626 => 0.12063973456061
627 => 0.1204567136962
628 => 0.12075522831951
629 => 0.1201035725729
630 => 0.1176213367909
701 => 0.11775613413626
702 => 0.11607520907964
703 => 0.11876514119824
704 => 0.11812812976718
705 => 0.11771744435358
706 => 0.11760538503351
707 => 0.11944153356572
708 => 0.11999093798466
709 => 0.11964858601993
710 => 0.11894641215228
711 => 0.12029479355724
712 => 0.12065556353757
713 => 0.12073632663148
714 => 0.12312539995458
715 => 0.12086984929094
716 => 0.12141278275393
717 => 0.12564859464492
718 => 0.12180729776187
719 => 0.12384211839197
720 => 0.12374252451082
721 => 0.1247834698906
722 => 0.12365713660676
723 => 0.12367109885771
724 => 0.12459538783521
725 => 0.12329739066271
726 => 0.12297598830902
727 => 0.12253197325933
728 => 0.12350146387636
729 => 0.12408262965499
730 => 0.12876639901145
731 => 0.13179232762155
801 => 0.13166096408027
802 => 0.13286138094535
803 => 0.13232058215307
804 => 0.13057420019729
805 => 0.13355506124722
806 => 0.1326117920865
807 => 0.13268955405004
808 => 0.13268665974587
809 => 0.13331385127573
810 => 0.13286942859557
811 => 0.13199342587391
812 => 0.13257495736188
813 => 0.13430189797984
814 => 0.13966237464702
815 => 0.14266216840683
816 => 0.13948178329602
817 => 0.14167557035841
818 => 0.14036007984723
819 => 0.1401210160889
820 => 0.14149887648367
821 => 0.14287914864066
822 => 0.14279123127134
823 => 0.14178922456312
824 => 0.14122321639863
825 => 0.14550921984681
826 => 0.14866707417726
827 => 0.14845172968245
828 => 0.14940219024877
829 => 0.15219277186814
830 => 0.1524479076787
831 => 0.1524157664308
901 => 0.15178338570364
902 => 0.15453107571072
903 => 0.15682324705563
904 => 0.15163700783654
905 => 0.15361185983831
906 => 0.15449843452767
907 => 0.15580018920649
908 => 0.15799646754909
909 => 0.16038220836322
910 => 0.16071957827265
911 => 0.16048019817727
912 => 0.1589067379782
913 => 0.16151724404482
914 => 0.16304641727475
915 => 0.16395700493866
916 => 0.166266103747
917 => 0.15450390971112
918 => 0.14617804415355
919 => 0.14487784001978
920 => 0.1475218562538
921 => 0.14821906224908
922 => 0.14793801938661
923 => 0.13856650074698
924 => 0.14482850091362
925 => 0.151565886569
926 => 0.15182469699089
927 => 0.15519757312206
928 => 0.15629591984923
929 => 0.15901152722781
930 => 0.1588416652469
1001 => 0.15950287242883
1002 => 0.15935087234822
1003 => 0.16438096317842
1004 => 0.16992990033986
1005 => 0.1697377582905
1006 => 0.1689400329215
1007 => 0.17012479112686
1008 => 0.1758518889377
1009 => 0.17532462954615
1010 => 0.1758368171332
1011 => 0.18258938821728
1012 => 0.19136869116862
1013 => 0.18728982352011
1014 => 0.19613979265481
1015 => 0.2017103791084
1016 => 0.21134413237049
1017 => 0.21013793901484
1018 => 0.21388828846403
1019 => 0.20797860116808
1020 => 0.19440876459173
1021 => 0.19226128601028
1022 => 0.19656059251317
1023 => 0.20713001803034
1024 => 0.19622772369024
1025 => 0.19843324363606
1026 => 0.19779805374329
1027 => 0.19776420717329
1028 => 0.19905599308634
1029 => 0.19718219024444
1030 => 0.18954798037587
1031 => 0.19304669376996
1101 => 0.19169567250648
1102 => 0.19319473132361
1103 => 0.20128453350079
1104 => 0.19770783912146
1105 => 0.1939400821399
1106 => 0.19866568552698
1107 => 0.20468300253225
1108 => 0.20430644964822
1109 => 0.2035757796663
1110 => 0.20769452809772
1111 => 0.21449749382637
1112 => 0.21633630812629
1113 => 0.21769368324959
1114 => 0.21788084234605
1115 => 0.21980869735835
1116 => 0.20944213507523
1117 => 0.22589413565074
1118 => 0.22873494167279
1119 => 0.22820098787999
1120 => 0.2313584242141
1121 => 0.23042942634817
1122 => 0.22908345419575
1123 => 0.23408866239129
1124 => 0.22835059509458
1125 => 0.22020613096948
1126 => 0.21573791687122
1127 => 0.22162202163636
1128 => 0.22521523908948
1129 => 0.22759012725443
1130 => 0.2283087669782
1201 => 0.21024686179545
1202 => 0.20051249666113
1203 => 0.20675211310751
1204 => 0.21436487580741
1205 => 0.20939984579405
1206 => 0.20959446557053
1207 => 0.20251563755842
1208 => 0.2149911950129
1209 => 0.21317361122774
1210 => 0.22260323912042
1211 => 0.22035278274634
1212 => 0.22804227823677
1213 => 0.22601737637109
1214 => 0.23442263080482
1215 => 0.23777571436161
1216 => 0.24340606351926
1217 => 0.24754777127926
1218 => 0.24997986129418
1219 => 0.24983384773223
1220 => 0.25947100003378
1221 => 0.25378830801801
1222 => 0.24664950753853
1223 => 0.24652038916048
1224 => 0.25021767508639
1225 => 0.25796617208623
1226 => 0.25997524462225
1227 => 0.26109804208716
1228 => 0.25937843868478
1229 => 0.25321028378387
1230 => 0.25054690577091
1231 => 0.25281618100344
]
'min_raw' => 0.093573127230533
'max_raw' => 0.26109804208716
'avg_raw' => 0.17733558465885
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.093573'
'max' => '$0.261098'
'avg' => '$0.177335'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.037044199935611
'max_diff' => 0.13490119408926
'year' => 2036
]
11 => [
'items' => [
101 => 0.2500410523951
102 => 0.25483170293666
103 => 0.26141028935796
104 => 0.26005183727651
105 => 0.26459293891427
106 => 0.26929250137153
107 => 0.27601308675597
108 => 0.27777009663802
109 => 0.28067436715995
110 => 0.28366381553017
111 => 0.2846239457788
112 => 0.28645713233434
113 => 0.28644747053631
114 => 0.29197190160913
115 => 0.29806552015983
116 => 0.30036572009513
117 => 0.30565490301258
118 => 0.29659736262152
119 => 0.30346761105367
120 => 0.30966474711294
121 => 0.30227626602515
122 => 0.31245956590936
123 => 0.31285496036801
124 => 0.31882494725971
125 => 0.31277322183387
126 => 0.3091797265938
127 => 0.31955401270537
128 => 0.32457380296781
129 => 0.32306180128835
130 => 0.31155539385098
131 => 0.30485817118939
201 => 0.28733024768626
202 => 0.30809283022567
203 => 0.31820567852778
204 => 0.31152920401696
205 => 0.31489642941289
206 => 0.33326691934657
207 => 0.34026121251218
208 => 0.33880644842754
209 => 0.33905227961039
210 => 0.34282627324715
211 => 0.35956223940881
212 => 0.34953366054808
213 => 0.35720013332342
214 => 0.36126640283994
215 => 0.36504338058255
216 => 0.35576831697279
217 => 0.34370159549423
218 => 0.33987955827547
219 => 0.31086536020579
220 => 0.30935504519399
221 => 0.30850725961063
222 => 0.30316209142924
223 => 0.29896225340346
224 => 0.29562238627536
225 => 0.28685757756249
226 => 0.28981544320943
227 => 0.27584616747886
228 => 0.28478321505054
301 => 0.2624879136846
302 => 0.28105610317062
303 => 0.27095028182536
304 => 0.2777360690635
305 => 0.27771239409109
306 => 0.26521760834986
307 => 0.25801087669384
308 => 0.26260328659525
309 => 0.26752671455551
310 => 0.26832552417766
311 => 0.27470887704275
312 => 0.27649033361769
313 => 0.27109243702738
314 => 0.26202589311984
315 => 0.26413184448371
316 => 0.25796819965667
317 => 0.24716664917846
318 => 0.25492451130889
319 => 0.25757338652934
320 => 0.25874328072978
321 => 0.24812119640091
322 => 0.24478350688811
323 => 0.24300654899743
324 => 0.2606547154194
325 => 0.26162152181448
326 => 0.25667520360461
327 => 0.27903303094237
328 => 0.27397276603332
329 => 0.27962632173173
330 => 0.26394075147097
331 => 0.26453996137836
401 => 0.2571141610445
402 => 0.2612721130393
403 => 0.25833340658642
404 => 0.2609361916078
405 => 0.26249629021793
406 => 0.26992087205103
407 => 0.28114087996888
408 => 0.26881188711315
409 => 0.26343996837147
410 => 0.26677267654599
411 => 0.27564811759387
412 => 0.28909486510688
413 => 0.28113411993817
414 => 0.28466696346182
415 => 0.28543873260648
416 => 0.27956877384187
417 => 0.28931129885936
418 => 0.29453239716436
419 => 0.29988816367123
420 => 0.30453842566398
421 => 0.29774895275256
422 => 0.30501466200049
423 => 0.29915978291699
424 => 0.29390735111282
425 => 0.29391531688376
426 => 0.29062038968722
427 => 0.28423605305638
428 => 0.28305868342836
429 => 0.28918350891873
430 => 0.29409503893888
501 => 0.29449957607598
502 => 0.29721885145866
503 => 0.29882809061936
504 => 0.31460082204883
505 => 0.32094474510864
506 => 0.32870197414185
507 => 0.33172385202376
508 => 0.34081862104513
509 => 0.33347385641935
510 => 0.33188477039183
511 => 0.30982383562226
512 => 0.3134363124549
513 => 0.31922023641612
514 => 0.30991921039803
515 => 0.31581857060543
516 => 0.31698322927591
517 => 0.30960316509301
518 => 0.31354517624685
519 => 0.30307636334712
520 => 0.28136907148213
521 => 0.28933546528056
522 => 0.29520141257537
523 => 0.28682998251959
524 => 0.30183544687548
525 => 0.29306956437443
526 => 0.29029120045816
527 => 0.27945181226255
528 => 0.28456758624457
529 => 0.29148674380607
530 => 0.28721150887146
531 => 0.29608326329053
601 => 0.3086480335584
602 => 0.31760243709629
603 => 0.31828984501266
604 => 0.31253276343624
605 => 0.32175852340365
606 => 0.32182572299302
607 => 0.31141902806144
608 => 0.30504498536057
609 => 0.30359678944783
610 => 0.30721466677338
611 => 0.31160743774361
612 => 0.31853361322937
613 => 0.32271895601677
614 => 0.33363211027202
615 => 0.33658489690884
616 => 0.33982911419373
617 => 0.34416438896591
618 => 0.34936999787154
619 => 0.3379804219415
620 => 0.33843295102602
621 => 0.32782713561938
622 => 0.3164933008296
623 => 0.32509426865259
624 => 0.33633888994235
625 => 0.33375936139428
626 => 0.33346911173764
627 => 0.33395723115157
628 => 0.33201235086585
629 => 0.32321572941416
630 => 0.31879812119089
701 => 0.32449796285097
702 => 0.32752717502253
703 => 0.33222521892556
704 => 0.33164608585084
705 => 0.34374774241197
706 => 0.34845008021653
707 => 0.34724702098175
708 => 0.34746841283419
709 => 0.35598177081641
710 => 0.36545037579825
711 => 0.37431897385621
712 => 0.38334049271592
713 => 0.37246469961467
714 => 0.36694264260352
715 => 0.37263999589103
716 => 0.36961690004062
717 => 0.38698850550555
718 => 0.38819127777731
719 => 0.40556162707744
720 => 0.42204815698598
721 => 0.41169326293729
722 => 0.42145746163053
723 => 0.43201823860408
724 => 0.45239169081036
725 => 0.44553062885397
726 => 0.44027516292193
727 => 0.43530877301038
728 => 0.44564304202412
729 => 0.45893791401633
730 => 0.46180150210675
731 => 0.46644160878808
801 => 0.46156310397791
802 => 0.46743872567208
803 => 0.48818225213147
804 => 0.48257716817397
805 => 0.47461704789211
806 => 0.49099206980234
807 => 0.49691812657537
808 => 0.53851029650851
809 => 0.59102212913593
810 => 0.56928188561689
811 => 0.55578701491135
812 => 0.55895862962977
813 => 0.57813417326759
814 => 0.58429274928273
815 => 0.56755161668513
816 => 0.57346486773807
817 => 0.60604746241782
818 => 0.62352697908871
819 => 0.59978744763735
820 => 0.53429102188652
821 => 0.47390032615429
822 => 0.48991865809095
823 => 0.48810267635604
824 => 0.52310860957796
825 => 0.48244348877531
826 => 0.48312818511811
827 => 0.51885800396713
828 => 0.50932590086238
829 => 0.49388511461221
830 => 0.47401306098171
831 => 0.43727773190325
901 => 0.40474022649803
902 => 0.46855376753765
903 => 0.46580201161063
904 => 0.46181706124092
905 => 0.47068513707204
906 => 0.51374599606074
907 => 0.51275330388665
908 => 0.5064383027511
909 => 0.51122817545455
910 => 0.4930454267686
911 => 0.49773153511846
912 => 0.47389075995954
913 => 0.48466778601009
914 => 0.49385198561973
915 => 0.49569584966576
916 => 0.49985016951151
917 => 0.46435196127785
918 => 0.48028961460212
919 => 0.48965149277397
920 => 0.44735418660552
921 => 0.48881541102723
922 => 0.46373401644888
923 => 0.45522101441909
924 => 0.46668265014947
925 => 0.46221603955854
926 => 0.45837591006062
927 => 0.45623305181899
928 => 0.46464921212481
929 => 0.46425658818705
930 => 0.45048611642041
1001 => 0.43252309735706
1002 => 0.43855207617072
1003 => 0.43636169164574
1004 => 0.42842345556198
1005 => 0.43377286821615
1006 => 0.41021676216296
1007 => 0.36968970603829
1008 => 0.39646312069155
1009 => 0.39543237335127
1010 => 0.39491262380163
1011 => 0.41503210495072
1012 => 0.41309808107364
1013 => 0.40958780879873
1014 => 0.42835898665886
1015 => 0.42150725423194
1016 => 0.44262267910051
1017 => 0.45653066357901
1018 => 0.4530031488391
1019 => 0.46608367546425
1020 => 0.43869097166576
1021 => 0.4477897290631
1022 => 0.44966497035235
1023 => 0.42812735323784
1024 => 0.41341451129841
1025 => 0.41243333247973
1026 => 0.38692329211127
1027 => 0.40055054976625
1028 => 0.41254197256839
1029 => 0.40679901161816
1030 => 0.4049809617474
1031 => 0.41426898425023
1101 => 0.41499074314523
1102 => 0.39853456385059
1103 => 0.40195632462537
1104 => 0.41622563587659
1105 => 0.40159677459312
1106 => 0.37317528673025
1107 => 0.36612636478245
1108 => 0.3651859086572
1109 => 0.34606867327771
1110 => 0.36659740745273
1111 => 0.35763606484946
1112 => 0.38594483875982
1113 => 0.36977501892522
1114 => 0.36907797031036
1115 => 0.3680242790942
1116 => 0.35156928488003
1117 => 0.35517188284349
1118 => 0.36714746716522
1119 => 0.37142049056583
1120 => 0.3709747792173
1121 => 0.36708878026879
1122 => 0.36886777068788
1123 => 0.36313702270663
1124 => 0.36111337631925
1125 => 0.35472619167288
1126 => 0.3453387947475
1127 => 0.34664416986623
1128 => 0.32804528021104
1129 => 0.31791161800911
1130 => 0.31510675387113
1201 => 0.31135597232249
1202 => 0.3155304146275
1203 => 0.32799259189347
1204 => 0.31296056211232
1205 => 0.28718920142681
1206 => 0.28873810411627
1207 => 0.29221802858615
1208 => 0.28573321235853
1209 => 0.27959587802846
1210 => 0.28493179229078
1211 => 0.27401212703049
1212 => 0.29353761796354
1213 => 0.29300950815336
1214 => 0.30028740372494
1215 => 0.3048384211833
1216 => 0.29434979935118
1217 => 0.29171193932465
1218 => 0.29321458427981
1219 => 0.26837921035393
1220 => 0.29825782382844
1221 => 0.2985162153185
1222 => 0.29630371050655
1223 => 0.31221314978303
1224 => 0.34578702893495
1225 => 0.33315518509184
1226 => 0.32826375335629
1227 => 0.31896513805138
1228 => 0.33135499084802
1229 => 0.33040364346505
1230 => 0.32610128981148
1231 => 0.32349921289764
]
'min_raw' => 0.24300654899743
'max_raw' => 0.62352697908871
'avg_raw' => 0.43326676404307
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.2430065'
'max' => '$0.623526'
'avg' => '$0.433266'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.14943342176689
'max_diff' => 0.36242893700155
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0076276978956654
]
1 => [
'year' => 2028
'avg' => 0.013091343925483
]
2 => [
'year' => 2029
'avg' => 0.035763192119242
]
3 => [
'year' => 2030
'avg' => 0.027591249459852
]
4 => [
'year' => 2031
'avg' => 0.027098026315476
]
5 => [
'year' => 2032
'avg' => 0.047511368193766
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0076276978956654
'min' => '$0.007627'
'max_raw' => 0.047511368193766
'max' => '$0.047511'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.047511368193766
]
1 => [
'year' => 2033
'avg' => 0.12220412453074
]
2 => [
'year' => 2034
'avg' => 0.077458846983
]
3 => [
'year' => 2035
'avg' => 0.091362887646409
]
4 => [
'year' => 2036
'avg' => 0.17733558465885
]
5 => [
'year' => 2037
'avg' => 0.43326676404307
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.047511368193766
'min' => '$0.047511'
'max_raw' => 0.43326676404307
'max' => '$0.433266'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.43326676404307
]
]
]
]
'prediction_2025_max_price' => '$0.013041'
'last_price' => 0.01264584
'sma_50day_nextmonth' => '$0.0116095'
'sma_200day_nextmonth' => '$0.022081'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.01371'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.013157'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.012414'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.0115049'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.014483'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.018486'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.024393'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.013253'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.013081'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.0126071'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.012465'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.014386'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.017971'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.023169'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.021771'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.028542'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.012799'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.013253'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.015381'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.019821'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.027768'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.035768'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.017884'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '49.59'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 108.74
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.012246'
'vwma_10_action' => 'BUY'
'hma_9' => '0.014146'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 38.89
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 79.68
'cci_20_action' => 'NEUTRAL'
'adx_14' => 15.87
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001055'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -61.11
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 58.44
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 25
'buy_signals' => 6
'sell_pct' => 80.65
'buy_pct' => 19.35
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767689185
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de DexNet para 2026
La previsión del precio de DexNet para 2026 sugiere que el precio medio podría oscilar entre $0.004369 en el extremo inferior y $0.013041 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, DexNet podría potencialmente ganar 3.13% para 2026 si DEXNET alcanza el objetivo de precio previsto.
Predicción de precio de DexNet 2027-2032
La predicción del precio de DEXNET para 2027-2032 está actualmente dentro de un rango de precios de $0.007627 en el extremo inferior y $0.047511 en el extremo superior. Considerando la volatilidad de precios en el mercado, si DexNet alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de DexNet | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.004206 | $0.007627 | $0.011049 |
| 2028 | $0.00759 | $0.013091 | $0.018591 |
| 2029 | $0.016674 | $0.035763 | $0.054851 |
| 2030 | $0.014181 | $0.027591 | $0.0410014 |
| 2031 | $0.016766 | $0.027098 | $0.037429 |
| 2032 | $0.025592 | $0.047511 | $0.06943 |
Predicción de precio de DexNet 2032-2037
La predicción de precio de DexNet para 2032-2037 se estima actualmente entre $0.047511 en el extremo inferior y $0.433266 en el extremo superior. Comparado con el precio actual, DexNet podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de DexNet | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.025592 | $0.047511 | $0.06943 |
| 2033 | $0.059471 | $0.1222041 | $0.184936 |
| 2034 | $0.047812 | $0.077458 | $0.1071054 |
| 2035 | $0.056528 | $0.091362 | $0.126196 |
| 2036 | $0.093573 | $0.177335 | $0.261098 |
| 2037 | $0.2430065 | $0.433266 | $0.623526 |
DexNet Histograma de precios potenciales
Pronóstico de precio de DexNet basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para DexNet es Bajista, con 6 indicadores técnicos mostrando señales alcistas y 25 indicando señales bajistas. La predicción de precio de DEXNET se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de DexNet
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de DexNet aumentar durante el próximo mes, alcanzando $0.022081 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para DexNet alcance $0.0116095 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 49.59, lo que sugiere que el mercado de DEXNET está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de DEXNET para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.01371 | SELL |
| SMA 5 | $0.013157 | SELL |
| SMA 10 | $0.012414 | BUY |
| SMA 21 | $0.0115049 | BUY |
| SMA 50 | $0.014483 | SELL |
| SMA 100 | $0.018486 | SELL |
| SMA 200 | $0.024393 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.013253 | SELL |
| EMA 5 | $0.013081 | SELL |
| EMA 10 | $0.0126071 | BUY |
| EMA 21 | $0.012465 | BUY |
| EMA 50 | $0.014386 | SELL |
| EMA 100 | $0.017971 | SELL |
| EMA 200 | $0.023169 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.021771 | SELL |
| SMA 50 | $0.028542 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.019821 | SELL |
| EMA 50 | $0.027768 | SELL |
| EMA 100 | $0.035768 | SELL |
| EMA 200 | $0.017884 | SELL |
Osciladores de DexNet
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 49.59 | NEUTRAL |
| Stoch RSI (14) | 108.74 | SELL |
| Estocástico Rápido (14) | 38.89 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 79.68 | NEUTRAL |
| Índice Direccional Medio (14) | 15.87 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.001055 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -61.11 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 58.44 | NEUTRAL |
| VWMA (10) | 0.012246 | BUY |
| Promedio Móvil de Hull (9) | 0.014146 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | — | — |
Predicción de precios de DexNet basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de DexNet
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de DexNet por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.017769 | $0.024969 | $0.035085 | $0.0493014 | $0.069276 | $0.097345 |
| Amazon.com acción | $0.026386 | $0.055056 | $0.114878 | $0.2397014 | $0.500151 | $1.04 |
| Apple acción | $0.017937 | $0.025442 | $0.036088 | $0.051188 | $0.0726068 | $0.102987 |
| Netflix acción | $0.019953 | $0.031482 | $0.049675 | $0.078379 | $0.12367 | $0.195133 |
| Google acción | $0.016376 | $0.0212072 | $0.027463 | $0.035564 | $0.046056 | $0.059642 |
| Tesla acción | $0.028667 | $0.064986 | $0.147319 | $0.333961 | $0.757064 | $1.71 |
| Kodak acción | $0.009483 | $0.007111 | $0.005332 | $0.003998 | $0.002998 | $0.002248 |
| Nokia acción | $0.008377 | $0.005549 | $0.003676 | $0.002435 | $0.001613 | $0.001068 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de DexNet
Podría preguntarse cosas como: "¿Debo invertir en DexNet ahora?", "¿Debería comprar DEXNET hoy?", "¿Será DexNet una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de DexNet regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como DexNet, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de DexNet a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de DexNet es de $0.01264 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de DexNet basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si DexNet ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.012974 | $0.013311 | $0.013657 | $0.014012 |
| Si DexNet ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.0133032 | $0.013994 | $0.014722 | $0.015487 |
| Si DexNet ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.014289 | $0.016146 | $0.018245 | $0.020616 |
| Si DexNet ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.015932 | $0.020074 | $0.025292 | $0.031866 |
| Si DexNet ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.019219 | $0.029211 | $0.044397 | $0.067478 |
| Si DexNet ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.029081 | $0.066876 | $0.153793 | $0.353673 |
| Si DexNet ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.045516 | $0.163828 | $0.58967 | $2.12 |
Cuadro de preguntas
¿Es DEXNET una buena inversión?
La decisión de adquirir DexNet depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de DexNet ha experimentado una caída de -12.6931% durante las últimas 24 horas, y DexNet ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en DexNet dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede DexNet subir?
Parece que el valor medio de DexNet podría potencialmente aumentar hasta $0.013041 para el final de este año. Mirando las perspectivas de DexNet en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.0410014. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de DexNet la próxima semana?
Basado en nuestro nuevo pronóstico experimental de DexNet, el precio de DexNet aumentará en un 0.86% durante la próxima semana y alcanzará $0.012754 para el 13 de enero de 2026.
¿Cuál será el precio de DexNet el próximo mes?
Basado en nuestro nuevo pronóstico experimental de DexNet, el precio de DexNet disminuirá en un -11.62% durante el próximo mes y alcanzará $0.011176 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de DexNet este año en 2026?
Según nuestra predicción más reciente sobre el valor de DexNet en 2026, se anticipa que DEXNET fluctúe dentro del rango de $0.004369 y $0.013041. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de DexNet no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará DexNet en 5 años?
El futuro de DexNet parece estar en una tendencia alcista, con un precio máximo de $0.0410014 proyectada después de un período de cinco años. Basado en el pronóstico de DexNet para 2030, el valor de DexNet podría potencialmente alcanzar su punto más alto de aproximadamente $0.0410014, mientras que su punto más bajo se anticipa que esté alrededor de $0.014181.
¿Cuánto será DexNet en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de DexNet, se espera que el valor de DEXNET en 2026 crezca en un 3.13% hasta $0.013041 si ocurre lo mejor. El precio estará entre $0.013041 y $0.004369 durante 2026.
¿Cuánto será DexNet en 2027?
Según nuestra última simulación experimental para la predicción de precios de DexNet, el valor de DEXNET podría disminuir en un -12.62% hasta $0.011049 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.011049 y $0.004206 a lo largo del año.
¿Cuánto será DexNet en 2028?
Nuestro nuevo modelo experimental de predicción de precios de DexNet sugiere que el valor de DEXNET en 2028 podría aumentar en un 47.02% , alcanzando $0.018591 en el mejor escenario. Se espera que el precio oscile entre $0.018591 y $0.00759 durante el año.
¿Cuánto será DexNet en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de DexNet podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.054851 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.054851 y $0.016674.
¿Cuánto será DexNet en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de DexNet, se espera que el valor de DEXNET en 2030 aumente en un 224.23% , alcanzando $0.0410014 en el mejor escenario. Se pronostica que el precio oscile entre $0.0410014 y $0.014181 durante el transcurso de 2030.
¿Cuánto será DexNet en 2031?
Nuestra simulación experimental indica que el precio de DexNet podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.037429 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.037429 y $0.016766 durante el año.
¿Cuánto será DexNet en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de DexNet, DEXNET podría experimentar un 449.04% aumento en valor, alcanzando $0.06943 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.06943 y $0.025592 a lo largo del año.
¿Cuánto será DexNet en 2033?
Según nuestra predicción experimental de precios de DexNet, se anticipa que el valor de DEXNET aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.184936. A lo largo del año, el precio de DEXNET podría oscilar entre $0.184936 y $0.059471.
¿Cuánto será DexNet en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de DexNet sugieren que DEXNET podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.1071054 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.1071054 y $0.047812.
¿Cuánto será DexNet en 2035?
Basado en nuestra predicción experimental para el precio de DexNet, DEXNET podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.126196 en 2035. El rango de precios esperado para el año está entre $0.126196 y $0.056528.
¿Cuánto será DexNet en 2036?
Nuestra reciente simulación de predicción de precios de DexNet sugiere que el valor de DEXNET podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.261098 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.261098 y $0.093573.
¿Cuánto será DexNet en 2037?
Según la simulación experimental, el valor de DexNet podría aumentar en un 4830.69% en 2037, con un máximo de $0.623526 bajo condiciones favorables. Se espera que el precio caiga entre $0.623526 y $0.2430065 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de SolPod
Predicción de precios de zuzalu
Predicción de precios de SOFT COQ INU
Predicción de precios de All Street Bets
Predicción de precios de MagicRing
Predicción de precios de AI INU
Predicción de precios de Wall Street Baby On Solana
Predicción de precios de Meta Masters Guild Games
Predicción de precios de Morfey
Predicción de precios de PANTIESPredicción de precios de Celer Bridged BUSD (zkSync)
Predicción de precios de Bridged BUSD
Predicción de precios de Multichain Bridged BUSD (Moonriver)
Predicción de precios de tooker kurlson
Predicción de precios de dogwifsaudihatPredicción de precios de Harmony Horizen Bridged BUSD (Harmony)
Predicción de precios de IoTeX Bridged BUSD (IoTeX)
Predicción de precios de MIMANY
Predicción de precios de The Open League MEME
Predicción de precios de Sandwich Cat
Predicción de precios de Hege
Predicción de precios de SolDocs
Predicción de precios de Secret Society
Predicción de precios de duk
Predicción de precios de Fofar
¿Cómo leer y predecir los movimientos de precio de DexNet?
Los traders de DexNet utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de DexNet
Las medias móviles son herramientas populares para la predicción de precios de DexNet. Una media móvil simple (SMA) calcula el precio de cierre promedio de DEXNET durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de DEXNET por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de DEXNET.
¿Cómo leer gráficos de DexNet y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de DexNet en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de DEXNET dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de DexNet?
La acción del precio de DexNet está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de DEXNET. La capitalización de mercado de DexNet puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de DEXNET, grandes poseedores de DexNet, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de DexNet.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


