Predicción del precio de DexNet - Pronóstico de DEXNET
Predicción de precio de DexNet hasta $0.013138 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.0044014 | $0.013138 |
| 2027 | $0.004237 | $0.011131 |
| 2028 | $0.007646 | $0.018729 |
| 2029 | $0.016797 | $0.055257 |
| 2030 | $0.014285 | $0.0413048 |
| 2031 | $0.01689 | $0.0377065 |
| 2032 | $0.025781 | $0.069943 |
| 2033 | $0.059911 | $0.1863047 |
| 2034 | $0.048165 | $0.107897 |
| 2035 | $0.056947 | $0.12713 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en DexNet hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.97, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de DexNet para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'DexNet'
'name_with_ticker' => 'DexNet <small>DEXNET</small>'
'name_lang' => 'DexNet'
'name_lang_with_ticker' => 'DexNet <small>DEXNET</small>'
'name_with_lang' => 'DexNet'
'name_with_lang_with_ticker' => 'DexNet <small>DEXNET</small>'
'image' => '/uploads/coins/dexnet.jpg?1717131583'
'price_for_sd' => 0.01273
'ticker' => 'DEXNET'
'marketcap' => '$5.1M'
'low24h' => '$0.01177'
'high24h' => '$0.01472'
'volume24h' => '$384.79'
'current_supply' => '400.08M'
'max_supply' => '3B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01273'
'change_24h_pct' => '-4.722%'
'ath_price' => '$0.0816'
'ath_days' => 387
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '15 dic. 2024'
'ath_pct' => '-84.39%'
'fdv' => '$38.22M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.628139'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.012848'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.011259'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0044014'
'current_year_max_price_prediction' => '$0.013138'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.014285'
'grand_prediction_max_price' => '$0.0413048'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.012980794739581
107 => 0.01302926031511
108 => 0.013138455731491
109 => 0.012205392854107
110 => 0.012624310692765
111 => 0.012870385675684
112 => 0.011758609950573
113 => 0.01284840944423
114 => 0.012189150305289
115 => 0.011965387851793
116 => 0.012266654516964
117 => 0.012149250604555
118 => 0.012048313614855
119 => 0.011991989040285
120 => 0.012213206029599
121 => 0.012202885992636
122 => 0.011840932061751
123 => 0.011368777914043
124 => 0.011527248343945
125 => 0.011469674551093
126 => 0.011261019698631
127 => 0.011401627876108
128 => 0.010782460622671
129 => 0.0097172155446475
130 => 0.010420949072529
131 => 0.010393856097221
201 => 0.010380194590501
202 => 0.010909030886938
203 => 0.010858195479365
204 => 0.010765928716838
205 => 0.011259325147181
206 => 0.011079228812987
207 => 0.011634243278939
208 => 0.0119998117023
209 => 0.011907091725236
210 => 0.012250910594353
211 => 0.011530899182585
212 => 0.01177005809173
213 => 0.011819348411445
214 => 0.011253236711819
215 => 0.010866512780736
216 => 0.010840722703509
217 => 0.010170196700852
218 => 0.010528386279175
219 => 0.010843578285206
220 => 0.010692625774205
221 => 0.0106448387188
222 => 0.010888972421116
223 => 0.01090794370065
224 => 0.010475396516794
225 => 0.010565336773306
226 => 0.010940402594282
227 => 0.010555886076937
228 => 0.0098088332941515
301 => 0.0096235538752079
302 => 0.0095988341853436
303 => 0.0090963417064726
304 => 0.0096359351319297
305 => 0.0094003881415129
306 => 0.010144478261953
307 => 0.0097194579757931
308 => 0.0097011362007341
309 => 0.0096734401505122
310 => 0.009240924116245
311 => 0.0093356176399216
312 => 0.0096503933348534
313 => 0.0097627088490071
314 => 0.009750993420707
315 => 0.009648850762223
316 => 0.0096956111482219
317 => 0.0095449796525208
318 => 0.0094917885362653
319 => 0.0093239027419937
320 => 0.0090771570040489
321 => 0.0091114685122897
322 => 0.0086226006408866
323 => 0.0083562394783645
324 => 0.008282514219162
325 => 0.0081839257213659
326 => 0.0082936500523221
327 => 0.0086212157396299
328 => 0.0082261020237994
329 => 0.0075487072720127
330 => 0.0075894198508196
331 => 0.0076808889277255
401 => 0.0075104369080398
402 => 0.007349118376361
403 => 0.0074893717514696
404 => 0.0072023506652003
405 => 0.0077155740547417
406 => 0.0077016928003465
407 => 0.007892990742446
408 => 0.0080126132714698
409 => 0.0077369220703237
410 => 0.0076675864787837
411 => 0.0077070831828518
412 => 0.0070542906446015
413 => 0.0078396436651613
414 => 0.0078464354306956
415 => 0.0077882802107905
416 => 0.0082064564491844
417 => 0.0090889387446351
418 => 0.0087569134073185
419 => 0.0086283431611905
420 => 0.008383931029317
421 => 0.0087095956832821
422 => 0.0086845897190176
423 => 0.0085715032653831
424 => 0.0085031082253738
425 => 0.0086291281836974
426 => 0.0084874929579364
427 => 0.008462051379514
428 => 0.0083079030949845
429 => 0.0082528791707076
430 => 0.0082121416477385
501 => 0.0081672936377359
502 => 0.0082662171723739
503 => 0.0080420434284093
504 => 0.0077717118692111
505 => 0.0077492367250917
506 => 0.0078112925740401
507 => 0.0077838374803951
508 => 0.0077491052806661
509 => 0.0076827920526318
510 => 0.0076631183344319
511 => 0.0077270483742503
512 => 0.0076548750866482
513 => 0.0077613707039874
514 => 0.0077324097887425
515 => 0.0075706364704056
516 => 0.0073690070196043
517 => 0.0073672120945601
518 => 0.0073237713601235
519 => 0.0072684430534604
520 => 0.0072530519842869
521 => 0.0074775600034164
522 => 0.0079422848840548
523 => 0.0078510482700616
524 => 0.007916976073976
525 => 0.008241275618089
526 => 0.008344360691135
527 => 0.0082711933479907
528 => 0.0081710373759296
529 => 0.0081754437304002
530 => 0.0085177070062074
531 => 0.0085390535468908
601 => 0.0085929893685428
602 => 0.0086623121416269
603 => 0.0082829993160071
604 => 0.0081575781304245
605 => 0.008098146614593
606 => 0.0079151205487232
607 => 0.0081124984692948
608 => 0.007997494807543
609 => 0.0080130127305978
610 => 0.0080029066628509
611 => 0.00800842525921
612 => 0.0077154305983448
613 => 0.0078221824534181
614 => 0.0076446867894959
615 => 0.0074070400203275
616 => 0.0074062433450276
617 => 0.0074644070551076
618 => 0.0074298090044058
619 => 0.0073367065395644
620 => 0.0073499313052639
621 => 0.0072340684419842
622 => 0.0073639991546309
623 => 0.0073677251025552
624 => 0.0073176947008124
625 => 0.007517870890628
626 => 0.0075998832389237
627 => 0.0075669521567415
628 => 0.0075975727064102
629 => 0.0078548395632816
630 => 0.0078967852862916
701 => 0.0079154148056737
702 => 0.00789045371764
703 => 0.0076022750722824
704 => 0.0076150570206342
705 => 0.0075212715645845
706 => 0.0074420327370903
707 => 0.0074452018746372
708 => 0.0074859409322957
709 => 0.0076638507864047
710 => 0.0080382515860183
711 => 0.0080524598226802
712 => 0.0080696806199979
713 => 0.0079996349828274
714 => 0.0079785085484103
715 => 0.0080063797686019
716 => 0.0081469850238779
717 => 0.0085086599144023
718 => 0.0083808198526372
719 => 0.0082768838924731
720 => 0.0083680637504707
721 => 0.0083540273260233
722 => 0.0082355457779292
723 => 0.0082322203954892
724 => 0.0080048164238542
725 => 0.0079207503532787
726 => 0.0078504984524694
727 => 0.007773785210758
728 => 0.0077283070296204
729 => 0.0077981821853115
730 => 0.0078141634601566
731 => 0.0076613802110293
801 => 0.0076405564187267
802 => 0.0077653225180196
803 => 0.0077104176094698
804 => 0.0077668886694895
805 => 0.0077799904398138
806 => 0.0077778807530322
807 => 0.0077205537227177
808 => 0.0077570922623235
809 => 0.0076706677234928
810 => 0.0075766940180604
811 => 0.0075167446487632
812 => 0.0074644308729215
813 => 0.007493457596253
814 => 0.0073899826276466
815 => 0.0073568789026498
816 => 0.0077447138272482
817 => 0.0080312116559772
818 => 0.0080270458640819
819 => 0.0080016876772739
820 => 0.0079640105553975
821 => 0.0081442287077363
822 => 0.0080814443070372
823 => 0.008127125204358
824 => 0.0081387529099474
825 => 0.0081739464727256
826 => 0.0081865251464299
827 => 0.008148503658045
828 => 0.0080208988990915
829 => 0.007702919972076
830 => 0.0075548999231826
831 => 0.0075060508415789
901 => 0.0075078264129175
902 => 0.0074588482288972
903 => 0.0074732744991394
904 => 0.007453831360839
905 => 0.0074170107606985
906 => 0.007491184027952
907 => 0.0074997318060312
908 => 0.0074824188791497
909 => 0.0074864967001674
910 => 0.0073431530600362
911 => 0.0073540511656693
912 => 0.0072933691286396
913 => 0.0072819919782294
914 => 0.0071285930728078
915 => 0.0068568246763264
916 => 0.0070074107491736
917 => 0.0068255239487802
918 => 0.0067566406614365
919 => 0.0070827234301727
920 => 0.0070499937643197
921 => 0.0069939748036232
922 => 0.0069111110853786
923 => 0.0068803761262353
924 => 0.006693640243986
925 => 0.0066826068918655
926 => 0.0067751582374012
927 => 0.0067324489759339
928 => 0.0066724689975715
929 => 0.0064552275960159
930 => 0.0062109763345112
1001 => 0.0062183487447873
1002 => 0.0062960405266157
1003 => 0.0065219398604459
1004 => 0.0064336770826203
1005 => 0.0063696414246091
1006 => 0.0063576494707684
1007 => 0.0065077538799404
1008 => 0.0067201830667648
1009 => 0.0068198500883876
1010 => 0.0067210830968919
1011 => 0.006607624895054
1012 => 0.0066145305700852
1013 => 0.0066604709322707
1014 => 0.0066652986147747
1015 => 0.0065914489890698
1016 => 0.0066122372261291
1017 => 0.0065806579931198
1018 => 0.0063868562984328
1019 => 0.0063833510403277
1020 => 0.006335788978977
1021 => 0.0063343488186617
1022 => 0.0062534338873919
1023 => 0.0062421133291688
1024 => 0.0060814518219474
1025 => 0.0061871997125284
1026 => 0.0061162695795401
1027 => 0.0060093611383999
1028 => 0.0059909300828511
1029 => 0.0059903760230652
1030 => 0.0061001470878262
1031 => 0.0061859169737248
1101 => 0.0061175034395713
1102 => 0.0061019270039852
1103 => 0.0062682425847663
1104 => 0.0062470774111118
1105 => 0.0062287485072276
1106 => 0.0067011623630284
1107 => 0.0063272099332492
1108 => 0.006164145329407
1109 => 0.0059623219170239
1110 => 0.0060280366377778
1111 => 0.0060418836949908
1112 => 0.0055565347696139
1113 => 0.0053596287710348
1114 => 0.0052920580525685
1115 => 0.0052531701487814
1116 => 0.0052708918548607
1117 => 0.0050936533613695
1118 => 0.0052127605602497
1119 => 0.0050592870064832
1120 => 0.0050335566657481
1121 => 0.0053079863916076
1122 => 0.0053461716847658
1123 => 0.0051832613609124
1124 => 0.005287876161612
1125 => 0.0052499413806238
1126 => 0.0050619178700667
1127 => 0.0050547367549708
1128 => 0.0049603931667192
1129 => 0.0048127637196239
1130 => 0.0047452931008745
1201 => 0.004710153816823
1202 => 0.0047246529702736
1203 => 0.0047173217546076
1204 => 0.0046694806133612
1205 => 0.004720063952823
1206 => 0.0045908444229771
1207 => 0.0045393881649999
1208 => 0.0045161465670477
1209 => 0.0044014567967108
1210 => 0.0045839792240892
1211 => 0.0046199384416397
1212 => 0.0046559685099571
1213 => 0.004969585655888
1214 => 0.0049539182295501
1215 => 0.0050955441332982
1216 => 0.0050900408111119
1217 => 0.0050496468091754
1218 => 0.0048792311594962
1219 => 0.0049471558000914
1220 => 0.0047380943141721
1221 => 0.0048947373942221
1222 => 0.0048232520340587
1223 => 0.004870568122043
1224 => 0.0047854895295275
1225 => 0.0048325755354346
1226 => 0.0046284657061199
1227 => 0.0044378708194087
1228 => 0.0045145717656329
1229 => 0.0045979544659958
1230 => 0.0047787494058993
1231 => 0.0046710694312186
]
'min_raw' => 0.0044014567967108
'max_raw' => 0.013138455731491
'avg_raw' => 0.0087699562641008
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0044014'
'max' => '$0.013138'
'avg' => '$0.008769'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0083379332032892
'max_diff' => 0.00039906573149067
'year' => 2026
]
1 => [
'items' => [
101 => 0.0047097952219445
102 => 0.004580070305632
103 => 0.0043124107491891
104 => 0.0043139256732108
105 => 0.0042727520817325
106 => 0.0042371720872524
107 => 0.0046834377716368
108 => 0.0046279375793671
109 => 0.004539505286671
110 => 0.0046578754246044
111 => 0.0046891743678606
112 => 0.004690065404774
113 => 0.0047764252018348
114 => 0.0048225154410069
115 => 0.0048306390454275
116 => 0.0049665280520295
117 => 0.0050120762546232
118 => 0.0051996828548835
119 => 0.0048186050062277
120 => 0.0048107569587099
121 => 0.0046595411351919
122 => 0.0045636376692892
123 => 0.0046661077275513
124 => 0.0047568822106136
125 => 0.0046623617514136
126 => 0.0046747041279493
127 => 0.0045478181340785
128 => 0.0045931739063464
129 => 0.0046322404075058
130 => 0.0046106701817884
131 => 0.0045783785098786
201 => 0.004749439738181
202 => 0.0047397877932859
203 => 0.0048990839417617
204 => 0.0050232666808755
205 => 0.0052458243496873
206 => 0.0050135738200885
207 => 0.0050051096876777
208 => 0.005087847939683
209 => 0.0050120635878279
210 => 0.0050599566822134
211 => 0.0052381080317574
212 => 0.0052418720890461
213 => 0.0051788192797474
214 => 0.0051749825105713
215 => 0.0051870924923193
216 => 0.0052580210336655
217 => 0.0052332364219052
218 => 0.0052619178021038
219 => 0.0052977843072271
220 => 0.0054461433794999
221 => 0.0054819122495576
222 => 0.0053950124393502
223 => 0.005402858519236
224 => 0.0053703556047653
225 => 0.005338958196647
226 => 0.0054095349848738
227 => 0.0055385154525487
228 => 0.0055377130717533
301 => 0.0055676340332319
302 => 0.0055862745443544
303 => 0.0055062558249285
304 => 0.0054541665809521
305 => 0.0054741409116174
306 => 0.0055060803013354
307 => 0.0054637833980001
308 => 0.005202707316783
309 => 0.0052819011222196
310 => 0.0052687194006157
311 => 0.0052499470260997
312 => 0.0053295770098538
313 => 0.0053218965036621
314 => 0.0050918355244424
315 => 0.005106563281901
316 => 0.0050927311681533
317 => 0.0051374255574564
318 => 0.005009649944131
319 => 0.005048952862208
320 => 0.0050736032839839
321 => 0.0050881225717834
322 => 0.005140576195284
323 => 0.0051344213679836
324 => 0.0051401936025772
325 => 0.0052179684789853
326 => 0.0056113271147431
327 => 0.0056327367573904
328 => 0.0055273078467858
329 => 0.0055694246170791
330 => 0.0054885696280412
331 => 0.0055428481238637
401 => 0.0055799840921811
402 => 0.0054121737921907
403 => 0.0054022371553051
404 => 0.0053210484489658
405 => 0.0053646746609892
406 => 0.0052952622208243
407 => 0.0053122936056967
408 => 0.0052646723688241
409 => 0.0053503811139011
410 => 0.0054462168086896
411 => 0.0054704286898595
412 => 0.0054067376543718
413 => 0.005360621147235
414 => 0.0052796557524245
415 => 0.0054143030084258
416 => 0.0054536779693814
417 => 0.0054140961885184
418 => 0.0054049242250134
419 => 0.0053875433707449
420 => 0.0054086116554111
421 => 0.0054534635248878
422 => 0.0054323122115266
423 => 0.0054462830266399
424 => 0.00539304068607
425 => 0.0055062823144542
426 => 0.0056861372734103
427 => 0.0056867155365126
428 => 0.0056655641091379
429 => 0.00565690940077
430 => 0.0056786120488324
501 => 0.0056903848451171
502 => 0.0057605672293659
503 => 0.0058358757238544
504 => 0.0061873076079618
505 => 0.0060886269411818
506 => 0.0064004382155383
507 => 0.0066470404499277
508 => 0.0067209856774123
509 => 0.0066529595475183
510 => 0.0064202458318502
511 => 0.0064088277867401
512 => 0.0067566003271447
513 => 0.0066583386554889
514 => 0.0066466507423115
515 => 0.0065223110931449
516 => 0.0065958112255675
517 => 0.0065797356684248
518 => 0.0065543596150319
519 => 0.0066945927476306
520 => 0.0069570966531573
521 => 0.006916182957735
522 => 0.0068856427820339
523 => 0.0067518246222232
524 => 0.0068324130437973
525 => 0.0068037170504443
526 => 0.0069270132488161
527 => 0.0068539753122458
528 => 0.0066575942266831
529 => 0.0066888685618395
530 => 0.0066841415089958
531 => 0.0067814239215558
601 => 0.0067522221560032
602 => 0.0066784393956001
603 => 0.0069561994433461
604 => 0.006938163250828
605 => 0.006963734448171
606 => 0.0069749916800569
607 => 0.0071440593264388
608 => 0.0072133209316002
609 => 0.0072290445285669
610 => 0.0072948376965855
611 => 0.0072274075346104
612 => 0.0074971762594014
613 => 0.0076765567199458
614 => 0.0078849163557023
615 => 0.0081893857853329
616 => 0.0083038691073737
617 => 0.0082831887199475
618 => 0.0085140339666319
619 => 0.0089288577435222
620 => 0.0083670364655228
621 => 0.0089586356354648
622 => 0.008771342168602
623 => 0.0083272727279359
624 => 0.0082986798911918
625 => 0.0085994088721631
626 => 0.0092663968078656
627 => 0.0090993238948867
628 => 0.009266670079299
629 => 0.0090714518660661
630 => 0.0090617576363508
701 => 0.0092571887664175
702 => 0.0097138242542148
703 => 0.0094968938506876
704 => 0.0091858709237142
705 => 0.0094155254129386
706 => 0.0092165774408528
707 => 0.0087682919777123
708 => 0.0090991961373788
709 => 0.0088779299494177
710 => 0.0089425071862223
711 => 0.0094075758024551
712 => 0.009351617516131
713 => 0.0094240327202322
714 => 0.0092962217804295
715 => 0.0091768262087186
716 => 0.0089539655076885
717 => 0.0088879874410133
718 => 0.0089062214050002
719 => 0.0088879784051663
720 => 0.0087632898911356
721 => 0.0087363634184023
722 => 0.0086914847841711
723 => 0.0087053945495048
724 => 0.0086210095874425
725 => 0.0087802614456768
726 => 0.0088098199938877
727 => 0.0089257102158078
728 => 0.0089377423230986
729 => 0.0092604949415519
730 => 0.0090827282229452
731 => 0.0092019894854267
801 => 0.0091913216355798
802 => 0.0083368970592515
803 => 0.0084546292272177
804 => 0.0086377835341835
805 => 0.0085552727671552
806 => 0.0084386218471232
807 => 0.0083444199747707
808 => 0.0082016945055207
809 => 0.0084025778626902
810 => 0.0086667181158047
811 => 0.0089444413558153
812 => 0.0092781076315406
813 => 0.0092036372031023
814 => 0.0089382036968841
815 => 0.0089501108500737
816 => 0.0090237161858001
817 => 0.0089283905882845
818 => 0.0089002772086005
819 => 0.0090198538391418
820 => 0.0090206772976782
821 => 0.0089109936772532
822 => 0.0087891004050415
823 => 0.0087885896677803
824 => 0.0087668999373395
825 => 0.0090753104209275
826 => 0.009244905003084
827 => 0.0092643487486129
828 => 0.0092435962840902
829 => 0.0092515830840491
830 => 0.0091528997334539
831 => 0.009378460609276
901 => 0.009585457574589
902 => 0.00952997796604
903 => 0.0094468061459339
904 => 0.0093805557851218
905 => 0.0095143714864994
906 => 0.0095084128839625
907 => 0.0095836496366772
908 => 0.0095802364629855
909 => 0.009554937172845
910 => 0.0095299788695573
911 => 0.0096289357209342
912 => 0.0096004377369361
913 => 0.0095718954876974
914 => 0.0095146496372496
915 => 0.0095224302990784
916 => 0.0094392728397597
917 => 0.0094008003940524
918 => 0.0088222671189197
919 => 0.0086676641236841
920 => 0.0087163053732194
921 => 0.0087323193355359
922 => 0.0086650359138802
923 => 0.0087615030568415
924 => 0.008746468754795
925 => 0.0088049584292855
926 => 0.0087684166199903
927 => 0.0087699163085901
928 => 0.0088773779781922
929 => 0.0089085745580523
930 => 0.0088927077257482
1001 => 0.0089038203112108
1002 => 0.0091599051528678
1003 => 0.0091234980775164
1004 => 0.0091041575443559
1005 => 0.0091095150042169
1006 => 0.0091749501717812
1007 => 0.0091932684460716
1008 => 0.0091156526307012
1009 => 0.0091522566979216
1010 => 0.009308112170398
1011 => 0.0093626527651089
1012 => 0.0095367201624557
1013 => 0.0094627732382615
1014 => 0.0095985060179678
1015 => 0.010015702308071
1016 => 0.010348987572392
1017 => 0.010042484669726
1018 => 0.01065452061403
1019 => 0.011131078388012
1020 => 0.011112787306898
1021 => 0.011029688436025
1022 => 0.01048714008029
1023 => 0.0099878789944019
1024 => 0.010405532092492
1025 => 0.010406596776131
1026 => 0.010370720004606
1027 => 0.010147892457919
1028 => 0.010362966088988
1029 => 0.01038003785279
1030 => 0.010370482204809
1031 => 0.010199640847211
1101 => 0.0099387976709184
1102 => 0.0099897658031956
1103 => 0.010073252643587
1104 => 0.0099151946375464
1105 => 0.0098646855275439
1106 => 0.0099585915727898
1107 => 0.010261176416674
1108 => 0.010203974504692
1109 => 0.010202480731599
1110 => 0.010447214768442
1111 => 0.010272038014973
1112 => 0.0099904086745662
1113 => 0.0099192935518788
1114 => 0.0096668827752254
1115 => 0.0098412237977163
1116 => 0.0098474980207424
1117 => 0.0097520132244462
1118 => 0.0099981567395389
1119 => 0.0099958884837146
1120 => 0.010229565117668
1121 => 0.01067626707685
1122 => 0.010544155326652
1123 => 0.010390523734888
1124 => 0.010407227748655
1125 => 0.010590429550656
1126 => 0.010479661559076
1127 => 0.01051949450115
1128 => 0.010590369258728
1129 => 0.010633129759695
1130 => 0.010401075170612
1201 => 0.010346972145443
1202 => 0.010236296343528
1203 => 0.01020742309267
1204 => 0.010297566224003
1205 => 0.010273816693701
1206 => 0.009846970696592
1207 => 0.0098023629149455
1208 => 0.0098037309719233
1209 => 0.0096915625839886
1210 => 0.0095204788688905
1211 => 0.0099700766572905
1212 => 0.009933967662765
1213 => 0.009894106127423
1214 => 0.0098989889380556
1215 => 0.010094144099717
1216 => 0.0099809442503816
1217 => 0.010281904602931
1218 => 0.010220036202143
1219 => 0.010156581110326
1220 => 0.010147809683747
1221 => 0.010123384887132
1222 => 0.01003962317147
1223 => 0.0099384758665105
1224 => 0.0098716896545465
1225 => 0.0091061118907784
1226 => 0.0092481986705728
1227 => 0.0094116565591087
1228 => 0.009468081567215
1229 => 0.0093715626863575
1230 => 0.010043434325176
1231 => 0.010166191747904
]
'min_raw' => 0.0042371720872524
'max_raw' => 0.011131078388012
'avg_raw' => 0.0076841252376324
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004237'
'max' => '$0.011131'
'avg' => '$0.007684'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00016428470945844
'max_diff' => -0.0020073773434783
'year' => 2027
]
2 => [
'items' => [
101 => 0.0097943515071917
102 => 0.0097247953802914
103 => 0.010047994413276
104 => 0.0098530658869113
105 => 0.0099408421903976
106 => 0.0097511178333312
107 => 0.010136623079526
108 => 0.010133686175448
109 => 0.0099837159276474
110 => 0.010110469754137
111 => 0.010088443157526
112 => 0.009919127117119
113 => 0.010141990700011
114 => 0.010142101237567
115 => 0.0099977581346934
116 => 0.0098291969913051
117 => 0.0097990622401037
118 => 0.0097763597531077
119 => 0.0099352587702844
120 => 0.010077727132221
121 => 0.010342825432882
122 => 0.010409477444248
123 => 0.010669624681887
124 => 0.010514719668212
125 => 0.010583387054419
126 => 0.010657935215741
127 => 0.010693676345696
128 => 0.010635438092408
129 => 0.011039553833337
130 => 0.011073673583658
131 => 0.011085113640805
201 => 0.010948848086696
202 => 0.011069883792095
203 => 0.01101325519382
204 => 0.011160587074654
205 => 0.011183690594797
206 => 0.011164122735168
207 => 0.011171456157125
208 => 0.010826614663144
209 => 0.010808732812498
210 => 0.010564912510092
211 => 0.010664271085551
212 => 0.010478524991111
213 => 0.010537426991055
214 => 0.010563390431391
215 => 0.010549828603571
216 => 0.010669888670331
217 => 0.010567813086934
218 => 0.01029841883957
219 => 0.010028951195924
220 => 0.010025568249161
221 => 0.0099546221750881
222 => 0.0099033411579549
223 => 0.0099132197011465
224 => 0.0099480329758327
225 => 0.009901317747143
226 => 0.0099112868097062
227 => 0.010076839671771
228 => 0.010110040117589
229 => 0.0099972120304476
301 => 0.0095441909795593
302 => 0.0094330184773541
303 => 0.0095129270672927
304 => 0.0094747359080744
305 => 0.0076468513506345
306 => 0.0080762857140101
307 => 0.0078211303975053
308 => 0.0079387177064824
309 => 0.0076782702004799
310 => 0.0078025694015676
311 => 0.0077796158778068
312 => 0.0084701336262281
313 => 0.0084593521413627
314 => 0.0084645126676243
315 => 0.0082181873034771
316 => 0.008610590297026
317 => 0.0088039021220035
318 => 0.0087681252480278
319 => 0.008777129516425
320 => 0.0086224063527927
321 => 0.0084660107260563
322 => 0.0082925439068912
323 => 0.0086148238157531
324 => 0.0085789917913892
325 => 0.0086611775633246
326 => 0.0088701991212652
327 => 0.0089009783396676
328 => 0.0089423459213325
329 => 0.0089275185880506
330 => 0.0092807658217392
331 => 0.0092379852509393
401 => 0.009341074117757
402 => 0.0091290124973418
403 => 0.0088890446447681
404 => 0.0089346546884022
405 => 0.0089302620744275
406 => 0.008874339056921
407 => 0.0088238542572033
408 => 0.0087398112896773
409 => 0.0090057356749483
410 => 0.0089949396305413
411 => 0.0091697150404626
412 => 0.0091388217890813
413 => 0.0089325090954956
414 => 0.0089398775937085
415 => 0.0089894342853701
416 => 0.009160950561039
417 => 0.0092118682693761
418 => 0.0091882811581545
419 => 0.0092441101008644
420 => 0.009288235020853
421 => 0.0092496515114558
422 => 0.0097959126390998
423 => 0.0095690669337091
424 => 0.0096796299521343
425 => 0.0097059985805535
426 => 0.0096384558933301
427 => 0.0096531034836665
428 => 0.0096752905917968
429 => 0.0098100063676828
430 => 0.010163539543931
501 => 0.01032011698111
502 => 0.010791187926257
503 => 0.010307115404616
504 => 0.010278392544473
505 => 0.010363246646673
506 => 0.010639815159399
507 => 0.010863947962203
508 => 0.010938305743424
509 => 0.010948133351726
510 => 0.01108763349251
511 => 0.011167592371684
512 => 0.011070694506201
513 => 0.010988583710834
514 => 0.010694473033795
515 => 0.010728517145499
516 => 0.010963047315218
517 => 0.011294334993705
518 => 0.011578614286455
519 => 0.011479069586267
520 => 0.01223852538109
521 => 0.012313822321048
522 => 0.012303418718587
523 => 0.012474956353499
524 => 0.012134489081232
525 => 0.011988932726095
526 => 0.011006336996789
527 => 0.011282406317165
528 => 0.011683689287314
529 => 0.011630577981481
530 => 0.011339155562234
531 => 0.011578393216417
601 => 0.011499293766291
602 => 0.011436904748137
603 => 0.011722720935005
604 => 0.011408454296862
605 => 0.011680554237197
606 => 0.011331583249204
607 => 0.011479524298073
608 => 0.011395545803632
609 => 0.011449890181552
610 => 0.011132194058666
611 => 0.011303615174938
612 => 0.011125062376649
613 => 0.011124977719375
614 => 0.011121036156456
615 => 0.011331102731819
616 => 0.0113379529953
617 => 0.011182713478714
618 => 0.011160341039077
619 => 0.011243063674285
620 => 0.011146217133548
621 => 0.011191531020414
622 => 0.01114758964502
623 => 0.011137697515871
624 => 0.011058875347811
625 => 0.011024916590549
626 => 0.011038232694281
627 => 0.010992777967323
628 => 0.010965389850162
629 => 0.011115587970604
630 => 0.011035343173827
701 => 0.011103289304625
702 => 0.011025856113095
703 => 0.010757438935215
704 => 0.010603069377756
705 => 0.010096054211027
706 => 0.010239843083361
707 => 0.010335175254479
708 => 0.010303667972493
709 => 0.010371357805898
710 => 0.010375513411915
711 => 0.010353506757059
712 => 0.010328025869963
713 => 0.010315623183306
714 => 0.010408062648317
715 => 0.010461726869125
716 => 0.01034474311323
717 => 0.010317335456001
718 => 0.01043561249206
719 => 0.01050776141573
720 => 0.01104046853113
721 => 0.0110010038674
722 => 0.011100052428813
723 => 0.011088901080822
724 => 0.011192719752857
725 => 0.011362419404589
726 => 0.011017372563849
727 => 0.011077260764579
728 => 0.011062577560781
729 => 0.011222884929711
730 => 0.011223385391818
731 => 0.011127273116198
801 => 0.011179377140055
802 => 0.011150294103337
803 => 0.011202851081495
804 => 0.011000476792755
805 => 0.011246946831486
806 => 0.011386679461268
807 => 0.011388619648968
808 => 0.011454851806497
809 => 0.011522147514456
810 => 0.01165131576566
811 => 0.011518545082036
812 => 0.01127970354716
813 => 0.011296947134525
814 => 0.011156914430016
815 => 0.011159268405078
816 => 0.011146702701714
817 => 0.011184413323411
818 => 0.011008752153566
819 => 0.011049979479022
820 => 0.010992260981956
821 => 0.011077135295839
822 => 0.010985824564328
823 => 0.011062570480095
824 => 0.011095691473173
825 => 0.011217908650674
826 => 0.010967772987839
827 => 0.010457729438624
828 => 0.01056494677635
829 => 0.010406363912114
830 => 0.010421041359966
831 => 0.010450692140527
901 => 0.010354584259598
902 => 0.010372918614572
903 => 0.010372263582395
904 => 0.010366618868975
905 => 0.010341617497283
906 => 0.010305360561959
907 => 0.010449797032994
908 => 0.010474339603952
909 => 0.010528894699011
910 => 0.010691213656832
911 => 0.010674994165201
912 => 0.010701448828991
913 => 0.010643698446474
914 => 0.010423720234579
915 => 0.010435666109832
916 => 0.010286700854008
917 => 0.0105250853225
918 => 0.01046863273384
919 => 0.010432237382685
920 => 0.010422306573922
921 => 0.010585027889043
922 => 0.010633716656871
923 => 0.010603377084142
924 => 0.010541149735328
925 => 0.010660644640915
926 => 0.010692616436565
927 => 0.010699773742536
928 => 0.010911495804361
929 => 0.010711606653854
930 => 0.010759721959108
1001 => 0.011135103835583
1002 => 0.010794684272778
1003 => 0.010975012107458
1004 => 0.010966185998331
1005 => 0.011058435616592
1006 => 0.010958618837069
1007 => 0.010959856185681
1008 => 0.011041767597166
1009 => 0.010926737792536
1010 => 0.010898254795242
1011 => 0.010858905738479
1012 => 0.010944822964364
1013 => 0.01099632645558
1014 => 0.011411406769638
1015 => 0.011679567582481
1016 => 0.011667926014372
1017 => 0.011774308154789
1018 => 0.011726382026182
1019 => 0.011571615914637
1020 => 0.011835782795328
1021 => 0.011752189341066
1022 => 0.011759080683869
1023 => 0.011758824187746
1024 => 0.011814406526963
1025 => 0.011775021345581
1026 => 0.01169738911027
1027 => 0.011748925011014
1028 => 0.011901968211802
1029 => 0.012377019002985
1030 => 0.012642863719318
1031 => 0.012361014817258
1101 => 0.012555430415791
1102 => 0.012438850334032
1103 => 0.012417664265219
1104 => 0.012539771628298
1105 => 0.012662092724152
1106 => 0.012654301399155
1107 => 0.012565502564823
1108 => 0.012515342356496
1109 => 0.012895172258852
1110 => 0.013175024460674
1111 => 0.013155940416662
1112 => 0.013240171180465
1113 => 0.013487475308148
1114 => 0.013510085698267
1115 => 0.013507237308806
1116 => 0.013451195097745
1117 => 0.013694698127949
1118 => 0.013897832639772
1119 => 0.0134382229451
1120 => 0.013613236300099
1121 => 0.013691805433736
1122 => 0.013807168232326
1123 => 0.014001804610598
1124 => 0.014213231342152
1125 => 0.014243129400169
1126 => 0.014221915297252
1127 => 0.014082473684337
1128 => 0.014313819336848
1129 => 0.014449336194366
1130 => 0.01453003338177
1201 => 0.014734668022294
1202 => 0.013692290649957
1203 => 0.0129544441363
1204 => 0.012839218748559
1205 => 0.013073534105544
1206 => 0.013135321196551
1207 => 0.01311041489764
1208 => 0.012279901564449
1209 => 0.012834846267739
1210 => 0.013431920107402
1211 => 0.013454856145244
1212 => 0.013753763793604
1213 => 0.013851100376549
1214 => 0.014091760212201
1215 => 0.014076706873956
1216 => 0.014135303714203
1217 => 0.014121833315386
1218 => 0.014567604984023
1219 => 0.015059357332264
1220 => 0.015042329512121
1221 => 0.014971634293912
1222 => 0.015076628748278
1223 => 0.015584169871047
1224 => 0.015537443617643
1225 => 0.015582834192692
1226 => 0.0161812537802
1227 => 0.016959284368154
1228 => 0.016597811047055
1229 => 0.017382104142693
1230 => 0.017875775072806
1231 => 0.01872952789991
]
'min_raw' => 0.0076468513506345
'max_raw' => 0.01872952789991
'avg_raw' => 0.013188189625272
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.007646'
'max' => '$0.018729'
'avg' => '$0.013188'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0034096792633821
'max_diff' => 0.0075984495118981
'year' => 2028
]
3 => [
'items' => [
101 => 0.018622633841136
102 => 0.0189549935516
103 => 0.018431271166466
104 => 0.017228698708441
105 => 0.017038387013696
106 => 0.017419395846035
107 => 0.018356068882042
108 => 0.017389896678794
109 => 0.017585352057166
110 => 0.017529060895046
111 => 0.017526061378239
112 => 0.017640540734858
113 => 0.01747448245724
114 => 0.016797931160909
115 => 0.017107990633076
116 => 0.016988261780593
117 => 0.0171211098688
118 => 0.01783803621013
119 => 0.017521065985239
120 => 0.017187163601885
121 => 0.017605951289481
122 => 0.018139211926853
123 => 0.018105841434527
124 => 0.018041088731633
125 => 0.018406096327509
126 => 0.019008981938704
127 => 0.01917193949682
128 => 0.0192922314347
129 => 0.019308817660585
130 => 0.01947966609548
131 => 0.018560971001701
201 => 0.020018963709292
202 => 0.020270718773657
203 => 0.020223399255735
204 => 0.020503214414304
205 => 0.020420885696428
206 => 0.020301604301205
207 => 0.020745170845928
208 => 0.020236657596377
209 => 0.019514887058677
210 => 0.019118909466692
211 => 0.019640364702419
212 => 0.019958799218597
213 => 0.020169264177552
214 => 0.020232950746966
215 => 0.018632286686641
216 => 0.017769617535025
217 => 0.018322578570689
218 => 0.018997229197531
219 => 0.018557223283405
220 => 0.018574470682197
221 => 0.017947137880172
222 => 0.019052734230494
223 => 0.018891658141781
224 => 0.019727321174962
225 => 0.019527883485478
226 => 0.020209334248785
227 => 0.020029885424904
228 => 0.020774767459985
301 => 0.021071921070654
302 => 0.021570888231235
303 => 0.02193793050572
304 => 0.022153464749698
305 => 0.022140524882138
306 => 0.022994578935511
307 => 0.022490973098613
308 => 0.021858325476686
309 => 0.021846882877183
310 => 0.022174540045265
311 => 0.02286121958121
312 => 0.0230392655941
313 => 0.023138769025821
314 => 0.022986376056401
315 => 0.022439748014203
316 => 0.02220371679705
317 => 0.022404822232547
318 => 0.022158887566121
319 => 0.022583439797453
320 => 0.023166440690535
321 => 0.023046053311549
322 => 0.023448490270015
323 => 0.023864970184424
324 => 0.024460555167313
325 => 0.024616263136289
326 => 0.024873642487961
327 => 0.025138570385545
328 => 0.025223658086241
329 => 0.025386116908034
330 => 0.025385260669852
331 => 0.025874841264065
401 => 0.026414863820531
402 => 0.026618709834047
403 => 0.02708744250199
404 => 0.026284754234489
405 => 0.026893602506007
406 => 0.027442798887376
407 => 0.026788024320798
408 => 0.027690478517919
409 => 0.027725518769388
410 => 0.028254584964867
411 => 0.02771827501893
412 => 0.027399815884994
413 => 0.028319195472158
414 => 0.028764054294201
415 => 0.02863005919662
416 => 0.027610349887879
417 => 0.027016835332802
418 => 0.025463493261757
419 => 0.027303494044293
420 => 0.028199704751908
421 => 0.027608028918655
422 => 0.02790643579322
423 => 0.029534446942093
424 => 0.030154288181667
425 => 0.030025365536853
426 => 0.030047151341579
427 => 0.03038160642354
428 => 0.03186476444473
429 => 0.030976021779099
430 => 0.031655432246421
501 => 0.032015789108492
502 => 0.03235050864489
503 => 0.031528543252693
504 => 0.030459178354515
505 => 0.030120465602377
506 => 0.027549198417694
507 => 0.027415352794284
508 => 0.027340221189926
509 => 0.026866527052028
510 => 0.026494333215384
511 => 0.026198350857814
512 => 0.025421604763736
513 => 0.025683733768867
514 => 0.024445762614416
515 => 0.02523777268803
516 => 0.023261940833667
517 => 0.024907472314141
518 => 0.024011884342454
519 => 0.024613247578681
520 => 0.024611149479001
521 => 0.023503849098721
522 => 0.022865181348145
523 => 0.023272165296133
524 => 0.023708484394802
525 => 0.023779275700607
526 => 0.024344974801125
527 => 0.024502849260418
528 => 0.024024482278306
529 => 0.023220996110191
530 => 0.023407627621476
531 => 0.022861399266526
601 => 0.021904155084845
602 => 0.022591664568008
603 => 0.022826410533218
604 => 0.022930087724637
605 => 0.021988748012192
606 => 0.021692958637062
607 => 0.021535482855656
608 => 0.023099480974152
609 => 0.02318516032161
610 => 0.022746812666179
611 => 0.024728185634556
612 => 0.024279739908943
613 => 0.024780763656323
614 => 0.023390692768006
615 => 0.023443795347918
616 => 0.022785713512515
617 => 0.023154195367297
618 => 0.022893764269061
619 => 0.023124425674839
620 => 0.023262683170409
621 => 0.023920657021059
622 => 0.024914985318597
623 => 0.023822377669266
624 => 0.023346312870023
625 => 0.023641660793983
626 => 0.024428211235985
627 => 0.025619875418392
628 => 0.02491438623793
629 => 0.025227470356236
630 => 0.025295865307943
701 => 0.024775663704899
702 => 0.025639055993504
703 => 0.026101754935154
704 => 0.026576388307232
705 => 0.026988499165282
706 => 0.026386809301013
707 => 0.027030703704635
708 => 0.026511838477978
709 => 0.026046362730366
710 => 0.026047068664936
711 => 0.025755068928943
712 => 0.025189282646123
713 => 0.025084942974852
714 => 0.025627731121451
715 => 0.026062995812795
716 => 0.026098846297552
717 => 0.026339831195387
718 => 0.026482443575584
719 => 0.027880238773646
720 => 0.028442443565474
721 => 0.02912989694293
722 => 0.029397698776199
723 => 0.030203686282066
724 => 0.029552785911973
725 => 0.029411959522549
726 => 0.027456897469818
727 => 0.027777038771428
728 => 0.028289615884347
729 => 0.027465349677617
730 => 0.027988156865859
731 => 0.028091370079389
801 => 0.027437341427321
802 => 0.0277866863893
803 => 0.026858929743847
804 => 0.024935207878202
805 => 0.025641197645866
806 => 0.026161043748453
807 => 0.025419159263499
808 => 0.026748958487884
809 => 0.025972117233626
810 => 0.025725895850983
811 => 0.02476529845303
812 => 0.025218663448079
813 => 0.025831846095445
814 => 0.025452970509507
815 => 0.026239194238783
816 => 0.027352696717648
817 => 0.028146244894306
818 => 0.028207163669783
819 => 0.02769696535579
820 => 0.028514561410005
821 => 0.02852051670467
822 => 0.027598265015538
823 => 0.027033390991063
824 => 0.026905050424197
825 => 0.027225670322878
826 => 0.027614962069576
827 => 0.028228766652392
828 => 0.028599675906545
829 => 0.029566810526311
830 => 0.029828489424497
831 => 0.030115995197518
901 => 0.030500191573772
902 => 0.030961517829393
903 => 0.029952162245412
904 => 0.029992265824438
905 => 0.029052367880114
906 => 0.028047952131603
907 => 0.028810178482532
908 => 0.029806688041649
909 => 0.029578087647742
910 => 0.029552365433546
911 => 0.029595623063077
912 => 0.029423265831463
913 => 0.028643700460726
914 => 0.02825220761188
915 => 0.028757333267369
916 => 0.029025785072706
917 => 0.029442130411324
918 => 0.029390807060356
919 => 0.030463267940413
920 => 0.030879993808869
921 => 0.030773377499013
922 => 0.030792997465891
923 => 0.031547459745309
924 => 0.032386576967025
925 => 0.033172520976431
926 => 0.03397201697988
927 => 0.033008193342862
928 => 0.032518823140363
929 => 0.033023728273793
930 => 0.03275581850294
1001 => 0.034295307513457
1002 => 0.034401898392364
1003 => 0.035941276080303
1004 => 0.037402328811842
1005 => 0.036484667768641
1006 => 0.037349980800019
1007 => 0.03828588739346
1008 => 0.040091403057582
1009 => 0.039483368900712
1010 => 0.039017624265661
1011 => 0.038577497835999
1012 => 0.039493331068022
1013 => 0.040671535890228
1014 => 0.040925309924226
1015 => 0.041336520808444
1016 => 0.040904182844163
1017 => 0.041424886301675
1018 => 0.043263198315385
1019 => 0.042766470182051
1020 => 0.042061036379686
1021 => 0.043512207161147
1022 => 0.044037380225674
1023 => 0.047723319827796
1024 => 0.052376970834046
1025 => 0.050450328759938
1026 => 0.049254399852189
1027 => 0.049535471513323
1028 => 0.051234827324777
1029 => 0.051780606476559
1030 => 0.050296990600661
1031 => 0.050821028809496
1101 => 0.053708530862479
1102 => 0.055257583071748
1103 => 0.053153762106093
1104 => 0.047349403500603
1105 => 0.041997519784101
1106 => 0.043417080344182
1107 => 0.043256146230762
1108 => 0.046358406963475
1109 => 0.04275462338035
1110 => 0.042815301853472
1111 => 0.045981714052787
1112 => 0.045136969564057
1113 => 0.043768591679016
1114 => 0.042007510457
1115 => 0.038751988937806
1116 => 0.035868482741323
1117 => 0.041523702424444
1118 => 0.041279839068358
1119 => 0.040926688790221
1120 => 0.041712586519364
1121 => 0.045528682811118
1122 => 0.045440709440094
1123 => 0.044881067738053
1124 => 0.045305551036596
1125 => 0.043694177704435
1126 => 0.044109465302421
1127 => 0.041996672018377
1128 => 0.042951742820807
1129 => 0.043765655754644
1130 => 0.043929060826299
1201 => 0.044297220796407
1202 => 0.041151334160938
1203 => 0.042563744901884
1204 => 0.043393403887201
1205 => 0.039644974408288
1206 => 0.043319309488523
1207 => 0.04109657127358
1208 => 0.040342140539021
1209 => 0.041357882134414
1210 => 0.040962046646848
1211 => 0.040621730538879
1212 => 0.040431828303259
1213 => 0.041177676827606
1214 => 0.041142882102464
1215 => 0.039922529153671
1216 => 0.038330628479921
1217 => 0.03886492259839
1218 => 0.038670808536116
1219 => 0.037967314133224
1220 => 0.038441384420535
1221 => 0.036353818796697
1222 => 0.032762270643103
1223 => 0.035134957365463
1224 => 0.035043611507638
1225 => 0.034997550783918
1226 => 0.036780559279527
1227 => 0.036609164153679
1228 => 0.036298080321959
1229 => 0.037961600834699
1230 => 0.037354393470041
1231 => 0.03922566349187
]
'min_raw' => 0.016797931160909
'max_raw' => 0.055257583071748
'avg_raw' => 0.036027757116328
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.016797'
'max' => '$0.055257'
'avg' => '$0.036027'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0091510798102744
'max_diff' => 0.036528055171837
'year' => 2029
]
4 => [
'items' => [
101 => 0.040458202954404
102 => 0.040145591078231
103 => 0.041304800400124
104 => 0.038877231655757
105 => 0.039683572615483
106 => 0.039849758369742
107 => 0.037941073249794
108 => 0.036637206515947
109 => 0.036550253469969
110 => 0.034289528237383
111 => 0.035497189408694
112 => 0.036559881263032
113 => 0.036050934333023
114 => 0.03588981693934
115 => 0.036712930761571
116 => 0.036776893755052
117 => 0.035318530725201
118 => 0.035621770579458
119 => 0.03688633118114
120 => 0.035589906896824
121 => 0.033071166282103
122 => 0.032446483785339
123 => 0.032363139625088
124 => 0.030668951149669
125 => 0.032488228056808
126 => 0.031694064933252
127 => 0.03420281672503
128 => 0.032769831156272
129 => 0.032708058012475
130 => 0.032614678845476
131 => 0.031156420838639
201 => 0.031475686665005
202 => 0.032536974897405
203 => 0.032915654494993
204 => 0.032876155110534
205 => 0.032531774006082
206 => 0.032689429912184
207 => 0.032181565307672
208 => 0.032002227745532
209 => 0.031436189068733
210 => 0.030604268586015
211 => 0.030719952231602
212 => 0.029071700071501
213 => 0.028173644815316
214 => 0.027925074956581
215 => 0.027592676953032
216 => 0.027962620195559
217 => 0.029067030780224
218 => 0.027734877301343
219 => 0.025450993601502
220 => 0.025588258903411
221 => 0.025896653282366
222 => 0.025321962397416
223 => 0.024778065704961
224 => 0.025250939751317
225 => 0.024283228119788
226 => 0.02601359660974
227 => 0.025966794991388
228 => 0.026611769359173
301 => 0.027015085067555
302 => 0.026085572934745
303 => 0.025851803147012
304 => 0.025984969042349
305 => 0.023784033423119
306 => 0.026431905963533
307 => 0.026454804875218
308 => 0.02625873049104
309 => 0.027668640874918
310 => 0.030643991546976
311 => 0.029524544940944
312 => 0.029091061379636
313 => 0.028267008812714
314 => 0.029365009930738
315 => 0.029280700576359
316 => 0.028899421702487
317 => 0.028668823049906
318 => 0.029093708137826
319 => 0.028616175085517
320 => 0.028530397027592
321 => 0.028010675324012
322 => 0.027825158321664
323 => 0.027687808918771
324 => 0.027536600721859
325 => 0.027870128325512
326 => 0.027114310896424
327 => 0.02620286917064
328 => 0.026127092653078
329 => 0.026336318280408
330 => 0.02624375151533
331 => 0.026126649479019
401 => 0.02590306980086
402 => 0.025836738486374
403 => 0.026052283079074
404 => 0.025808945800946
405 => 0.026168003210092
406 => 0.026070359462357
407 => 0.025524929424932
408 => 0.024845121654236
409 => 0.024839069939132
410 => 0.024692606470044
411 => 0.02450606322123
412 => 0.024454171156942
413 => 0.025211115618086
414 => 0.026777967999214
415 => 0.026470357385198
416 => 0.026692637579028
417 => 0.027786036133876
418 => 0.028133594654821
419 => 0.027886905849029
420 => 0.027549222996559
421 => 0.027564079328298
422 => 0.028718043858741
423 => 0.028790015211023
424 => 0.028971863599401
425 => 0.029205590168816
426 => 0.027926710494463
427 => 0.027503844210643
428 => 0.027303466705642
429 => 0.02668638154609
430 => 0.027351854985783
501 => 0.026964112110888
502 => 0.027016431871894
503 => 0.026982358558902
504 => 0.027000964891823
505 => 0.026013112936482
506 => 0.026373034269038
507 => 0.025774595245773
508 => 0.024973352571554
509 => 0.024970666525158
510 => 0.025166769534553
511 => 0.025050119791054
512 => 0.024736218330635
513 => 0.024780806551514
514 => 0.024390166818679
515 => 0.024828237287841
516 => 0.024840799581405
517 => 0.024672118588918
518 => 0.025347026588736
519 => 0.025623536946935
520 => 0.025512507504183
521 => 0.025615746825249
522 => 0.026483139994989
523 => 0.026624562928674
524 => 0.026687373653943
525 => 0.02660321560291
526 => 0.025631601180096
527 => 0.025674696411371
528 => 0.025358492198408
529 => 0.025091332959233
530 => 0.025102017927735
531 => 0.025239372504941
601 => 0.025839207999338
602 => 0.027101526435065
603 => 0.027149430496958
604 => 0.027207491617432
605 => 0.026971327861281
606 => 0.026900098612644
607 => 0.026994068377426
608 => 0.027468128812334
609 => 0.028687540957072
610 => 0.028256519263323
611 => 0.027906091917053
612 => 0.028213511174266
613 => 0.02816618638925
614 => 0.027766717577733
615 => 0.027755505818666
616 => 0.02698879745146
617 => 0.026705362825209
618 => 0.0264685036368
619 => 0.026209859586422
620 => 0.026056526723531
621 => 0.026292115689471
622 => 0.026345997673389
623 => 0.02583087828197
624 => 0.025760669412351
625 => 0.026181327027008
626 => 0.025996211294494
627 => 0.026186607416034
628 => 0.026230780949419
629 => 0.026223667993141
630 => 0.02603038590799
701 => 0.026153578145311
702 => 0.025862191778674
703 => 0.025545352869774
704 => 0.025343229385658
705 => 0.025166849837976
706 => 0.025264715462269
707 => 0.024915842381221
708 => 0.024804230861166
709 => 0.02611184338722
710 => 0.027077790819419
711 => 0.027063745561198
712 => 0.026978248663922
713 => 0.026851217616983
714 => 0.027458835700023
715 => 0.027247153709599
716 => 0.027401170044255
717 => 0.02744037366547
718 => 0.027559031219513
719 => 0.027601441096122
720 => 0.027473248993456
721 => 0.027043020639565
722 => 0.025970932486553
723 => 0.025471872557279
724 => 0.025307174468118
725 => 0.025313160930852
726 => 0.02514802756388
727 => 0.025196666741212
728 => 0.025131112842956
729 => 0.02500696961885
730 => 0.025257049968007
731 => 0.025285869398588
801 => 0.025227497656857
802 => 0.025241246315122
803 => 0.024757953224487
804 => 0.02479469694851
805 => 0.02459010322398
806 => 0.024551744367045
807 => 0.024034549247446
808 => 0.023118263124446
809 => 0.023625974582634
810 => 0.023012730536177
811 => 0.02278048572362
812 => 0.023879896544786
813 => 0.02376954619125
814 => 0.023580674354143
815 => 0.023301293542721
816 => 0.023197668482123
817 => 0.022568075417637
818 => 0.022530875700639
819 => 0.022842919023841
820 => 0.022698921766938
821 => 0.022496695082221
822 => 0.021764250529566
823 => 0.020940740348324
824 => 0.020965596944296
825 => 0.021227540210997
826 => 0.021989175586793
827 => 0.021691591469044
828 => 0.021475690777232
829 => 0.021435259067607
830 => 0.021941346563086
831 => 0.022657566397796
901 => 0.022993600719727
902 => 0.022660600912208
903 => 0.022278068663313
904 => 0.022301351628819
905 => 0.022456242767381
906 => 0.022472519636001
907 => 0.022223530466921
908 => 0.022293619459555
909 => 0.022187147870673
910 => 0.021533731926233
911 => 0.021521913703803
912 => 0.021361554893282
913 => 0.02135669929223
914 => 0.021083888952154
915 => 0.021045720899728
916 => 0.020504039411103
917 => 0.020860575807279
918 => 0.020621429911725
919 => 0.020260980638312
920 => 0.020198839047714
921 => 0.020196970996462
922 => 0.020567071805275
923 => 0.020856250963844
924 => 0.020625589956965
925 => 0.020573072916875
926 => 0.021133817509262
927 => 0.02106245764858
928 => 0.021000660469451
929 => 0.022593436767166
930 => 0.02133263004164
1001 => 0.020782846344979
1002 => 0.020102384619269
1003 => 0.020323946388346
1004 => 0.02037063270851
1005 => 0.018734244920622
1006 => 0.018070362598875
1007 => 0.017842543203929
1008 => 0.017711429921244
1009 => 0.01777117989058
1010 => 0.017173607935378
1011 => 0.017575186172202
1012 => 0.017057739370497
1013 => 0.016970987730274
1014 => 0.01789624671108
1015 => 0.018024991092975
1016 => 0.017475727562068
1017 => 0.017828443666599
1018 => 0.017700543903975
1019 => 0.01706660951075
1020 => 0.017042397879834
1021 => 0.016724311885185
1022 => 0.016226568897145
1023 => 0.015999086995383
1024 => 0.015880612445857
1025 => 0.015929497354014
1026 => 0.015904779648547
1027 => 0.015743479900673
1028 => 0.015914025161284
1029 => 0.015478352494589
1030 => 0.015304864128258
1031 => 0.015226503458086
1101 => 0.014839818890011
1102 => 0.015455205997226
1103 => 0.01557644500979
1104 => 0.015697922900661
1105 => 0.016755305004217
1106 => 0.016702481182454
1107 => 0.017179982804945
1108 => 0.017161427969965
1109 => 0.017025236772217
1110 => 0.016450668511282
1111 => 0.016679681179396
1112 => 0.015974815783412
1113 => 0.016502948864271
1114 => 0.016261930981532
1115 => 0.016421460475675
1116 => 0.016134612061011
1117 => 0.016293365817367
1118 => 0.01560519527734
1119 => 0.014962591309883
1120 => 0.015221193905167
1121 => 0.015502324501034
1122 => 0.016111887263619
1123 => 0.015748836711007
1124 => 0.015879403418187
1125 => 0.015442026805736
1126 => 0.014539593923795
1127 => 0.014544701595903
1128 => 0.014405881957585
1129 => 0.01428592152208
1130 => 0.015790537434257
1201 => 0.01560341466112
1202 => 0.015305259012149
1203 => 0.015704352196531
1204 => 0.015809878768942
1205 => 0.015812882962105
1206 => 0.016104051047344
1207 => 0.016259447506631
1208 => 0.016286836806107
1209 => 0.016744996079333
1210 => 0.016898565024451
1211 => 0.017531093775504
1212 => 0.016246263202755
1213 => 0.016219802962615
1214 => 0.015709968256073
1215 => 0.015386623025016
1216 => 0.015732107980677
1217 => 0.016038160487994
1218 => 0.015719478160593
1219 => 0.015761091344801
1220 => 0.015333286357568
1221 => 0.015486206510408
1222 => 0.015617921946603
1223 => 0.015545196424612
1224 => 0.015436322798236
1225 => 0.016013067672571
1226 => 0.015980525466479
1227 => 0.016517603552768
1228 => 0.016936294327852
1229 => 0.017686663046731
1230 => 0.016903614170974
1231 => 0.016875076757605
]
'min_raw' => 0.01428592152208
'max_raw' => 0.041304800400124
'avg_raw' => 0.027795360961102
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.014285'
'max' => '$0.0413048'
'avg' => '$0.027795'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0025120096388292
'max_diff' => -0.013952782671624
'year' => 2030
]
5 => [
'items' => [
101 => 0.017154034550841
102 => 0.016898522317467
103 => 0.017059997228977
104 => 0.017660646942094
105 => 0.017673337724041
106 => 0.017460750775284
107 => 0.017447814840132
108 => 0.017488644489087
109 => 0.017727785018309
110 => 0.017644221969353
111 => 0.017740923245162
112 => 0.017861849671305
113 => 0.018362052641572
114 => 0.018482649884274
115 => 0.018189661107009
116 => 0.01821611471314
117 => 0.018106528867721
118 => 0.018000670314153
119 => 0.018238624883174
120 => 0.018673491535068
121 => 0.018670786252196
122 => 0.018771666862836
123 => 0.018834514647525
124 => 0.018564725948252
125 => 0.01838910342543
126 => 0.018456448275831
127 => 0.018564134158203
128 => 0.018421527195532
129 => 0.017541290959959
130 => 0.017808298404124
131 => 0.017763855309418
201 => 0.017700562938091
202 => 0.017969040987906
203 => 0.017943145625045
204 => 0.017167478971261
205 => 0.017217134633792
206 => 0.017170498696564
207 => 0.017321188950562
208 => 0.016890384549228
209 => 0.017022897081566
210 => 0.017106007699621
211 => 0.017154960492141
212 => 0.017331811545969
213 => 0.017311060116009
214 => 0.017330521607946
215 => 0.017592745033824
216 => 0.018918981137705
217 => 0.018991165242664
218 => 0.018635704309749
219 => 0.018777703941291
220 => 0.018505095700635
221 => 0.018688099438904
222 => 0.018813305948837
223 => 0.018247521806278
224 => 0.018214019741265
225 => 0.017940286349427
226 => 0.018087375169149
227 => 0.017853346280911
228 => 0.017910768784102
301 => 0.017750210459177
302 => 0.018039183477198
303 => 0.018362300213212
304 => 0.018443932260996
305 => 0.018229193488083
306 => 0.018073708464519
307 => 0.017800727983092
308 => 0.018254700607472
309 => 0.018387456037406
310 => 0.018254003299714
311 => 0.018223079384391
312 => 0.018164478620733
313 => 0.018235511813425
314 => 0.018386733022824
315 => 0.018315419893089
316 => 0.018362523471654
317 => 0.018183013203161
318 => 0.018564815259537
319 => 0.01917120881073
320 => 0.019173158465152
321 => 0.019101844951013
322 => 0.019072664997498
323 => 0.019145836990671
324 => 0.019185529795295
325 => 0.019422154603767
326 => 0.019676062450807
327 => 0.020860939584265
328 => 0.020528230826553
329 => 0.021579524308013
330 => 0.022410960958475
331 => 0.022660272455631
401 => 0.02243091760926
402 => 0.021646307069332
403 => 0.021607810333061
404 => 0.022780349733739
405 => 0.022449053647341
406 => 0.022409647032039
407 => 0.021990427223757
408 => 0.022238238051835
409 => 0.022184038188569
410 => 0.022098481052855
411 => 0.022571286850176
412 => 0.023456337095097
413 => 0.023318393714478
414 => 0.023215425379854
415 => 0.022764248111167
416 => 0.023035957601008
417 => 0.022939207055928
418 => 0.023354908797004
419 => 0.023108656294512
420 => 0.022446543753648
421 => 0.022551987358132
422 => 0.022536049769437
423 => 0.022864044215424
424 => 0.022765588424061
425 => 0.022516824696014
426 => 0.023453312089577
427 => 0.023392501807256
428 => 0.023478716884422
429 => 0.02351667142768
430 => 0.024086694801383
501 => 0.024320215138875
502 => 0.024373228343835
503 => 0.024595054603342
504 => 0.024367709104419
505 => 0.025277253194703
506 => 0.025882046941372
507 => 0.02658454600053
508 => 0.027611085939907
509 => 0.027997074453138
510 => 0.027927349083072
511 => 0.028705659949369
512 => 0.030104267275225
513 => 0.028210047611341
514 => 0.030204665516936
515 => 0.029573192516996
516 => 0.028075981393852
517 => 0.027979578648481
518 => 0.028993507404053
519 => 0.031242303796884
520 => 0.030679005806117
521 => 0.031243225150601
522 => 0.030585033314986
523 => 0.030552348542671
524 => 0.031211258242257
525 => 0.032750836670637
526 => 0.032019440669548
527 => 0.03097080515633
528 => 0.031745101300715
529 => 0.031074334322723
530 => 0.029562908585453
531 => 0.03067857506276
601 => 0.029932560661737
602 => 0.030150287324262
603 => 0.031718298633945
604 => 0.031529631364721
605 => 0.031773784281216
606 => 0.031342860774196
607 => 0.03094031026824
608 => 0.03018891985508
609 => 0.029966470196843
610 => 0.03002794727948
611 => 0.029966439731854
612 => 0.029546043701325
613 => 0.029455259218559
614 => 0.029303947769922
615 => 0.029350845514894
616 => 0.029066335723731
617 => 0.029603264482378
618 => 0.029702923191382
619 => 0.030093655165783
620 => 0.030134222255569
621 => 0.031222405242552
622 => 0.030623052339494
623 => 0.031025150012506
624 => 0.030989182611941
625 => 0.028108430498832
626 => 0.028505372722927
627 => 0.029122890256288
628 => 0.028844699444534
629 => 0.028451402723339
630 => 0.028133794533738
701 => 0.027652585649387
702 => 0.028329877913312
703 => 0.029220445218372
704 => 0.030156808512085
705 => 0.031281787656528
706 => 0.031030705407689
707 => 0.030135777809499
708 => 0.030175923607808
709 => 0.03042408913617
710 => 0.030102692228726
711 => 0.030007906006307
712 => 0.030411066964751
713 => 0.030413843312699
714 => 0.03004403732857
715 => 0.029633065650992
716 => 0.029631343664657
717 => 0.029558215224148
718 => 0.030598042702097
719 => 0.031169842676553
720 => 0.031235398622123
721 => 0.031165430239094
722 => 0.031192358292776
723 => 0.030859640486392
724 => 0.031620134727384
725 => 0.032318039448003
726 => 0.032130986074318
727 => 0.031850566475959
728 => 0.031627198759029
729 => 0.032078367738937
730 => 0.032058277894468
731 => 0.032311943859108
801 => 0.032300436105706
802 => 0.032215137782657
803 => 0.03213098912059
804 => 0.032464629053954
805 => 0.032368546111238
806 => 0.032272313925174
807 => 0.032079305543611
808 => 0.032105538588195
809 => 0.031825167408234
810 => 0.031695454871472
811 => 0.029744889542458
812 => 0.029223634749985
813 => 0.029387632118817
814 => 0.029441624310826
815 => 0.029214773557135
816 => 0.02954001926475
817 => 0.029489330065739
818 => 0.029686532086903
819 => 0.029563328825596
820 => 0.029568385130415
821 => 0.029930699652213
822 => 0.030035881099287
823 => 0.029982384966386
824 => 0.03001985182413
825 => 0.030883259747049
826 => 0.030760510750641
827 => 0.030695302792777
828 => 0.030713365842745
829 => 0.030933985078725
830 => 0.030995746419436
831 => 0.030734059278952
901 => 0.0308574724472
902 => 0.031382950054135
903 => 0.031566837477106
904 => 0.032153717860258
905 => 0.031904400642528
906 => 0.032362033185868
907 => 0.033768639605664
908 => 0.034892334143558
909 => 0.03385893820787
910 => 0.035922460125076
911 => 0.037529207932259
912 => 0.037467538275241
913 => 0.037187364630312
914 => 0.035358124969435
915 => 0.033674831361069
916 => 0.035082977940889
917 => 0.035086567596109
918 => 0.034965606556079
919 => 0.034214327925099
920 => 0.034939463688212
921 => 0.034997022331781
922 => 0.034964804797461
923 => 0.034388801232555
924 => 0.033509350252196
925 => 0.03368119286865
926 => 0.033962674579896
927 => 0.033429770977271
928 => 0.033259475986464
929 => 0.033576086774321
930 => 0.034596272701274
1001 => 0.034403412461318
1002 => 0.034398376101044
1003 => 0.035223513993044
1004 => 0.034632893338274
1005 => 0.033683360354359
1006 => 0.03344359075312
1007 => 0.032592570196875
1008 => 0.033180373126304
1009 => 0.033201527107289
1010 => 0.032879593450041
1011 => 0.033709483496368
1012 => 0.033701835913491
1013 => 0.034489692999646
1014 => 0.035995779842765
1015 => 0.035550355853222
1016 => 0.035032376215376
1017 => 0.035088694964028
1018 => 0.035706372630216
1019 => 0.035332910613029
1020 => 0.035467210158279
1021 => 0.03570616935177
1022 => 0.035850339366226
1023 => 0.035067951117598
1024 => 0.034885538990887
1025 => 0.034512387797592
1026 => 0.034415039616459
1027 => 0.034718963477342
1028 => 0.034638890277788
1029 => 0.0331997491971
1030 => 0.033049350946862
1031 => 0.033053963446478
1101 => 0.032675779895209
1102 => 0.032098959205073
1103 => 0.033614809538578
1104 => 0.033493065542486
1105 => 0.033358669593037
1106 => 0.033375132329992
1107 => 0.034033111582832
1108 => 0.033651450387436
1109 => 0.034666159228436
1110 => 0.034457565595666
1111 => 0.034243622323312
1112 => 0.034214048846201
1113 => 0.034131698939127
1114 => 0.033849290466718
1115 => 0.033508265266167
1116 => 0.033283090889666
1117 => 0.030701892008189
1118 => 0.031180947506448
1119 => 0.031732057189912
1120 => 0.031922298044211
1121 => 0.031596877898667
1122 => 0.033862140037523
1123 => 0.034276025258902
1124 => 0.033022339926282
1125 => 0.032787826588184
1126 => 0.033877514692927
1127 => 0.033220299556814
1128 => 0.033516243492364
1129 => 0.032876574576383
1130 => 0.034176332429046
1201 => 0.034166430451898
1202 => 0.03366079529085
1203 => 0.034088154666528
1204 => 0.034013890458206
1205 => 0.033443029606707
1206 => 0.034194429736264
1207 => 0.034194802421354
1208 => 0.033708139572301
1209 => 0.033139823908804
1210 => 0.033038222491188
1211 => 0.032961679471244
1212 => 0.03349741860163
1213 => 0.033977760630721
1214 => 0.034871558059973
1215 => 0.03509627996979
1216 => 0.03597338454439
1217 => 0.035451111475662
1218 => 0.035682628362461
1219 => 0.035933972693144
1220 => 0.036054476408155
1221 => 0.03585812207113
1222 => 0.03722062650613
1223 => 0.037335663626502
1224 => 0.037374234577895
1225 => 0.036914805748457
1226 => 0.037322886079654
1227 => 0.037131958806887
1228 => 0.037628698529503
1229 => 0.0377065936607
1230 => 0.037640619255776
1231 => 0.037665344399909
]
'min_raw' => 0.016890384549228
'max_raw' => 0.0377065936607
'avg_raw' => 0.027298489104964
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.01689'
'max' => '$0.0377065'
'avg' => '$0.027298'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.002604463027148
'max_diff' => -0.0035982067394238
'year' => 2031
]
6 => [
'items' => [
101 => 0.036502687226889
102 => 0.036442397318963
103 => 0.035620340146411
104 => 0.035955334520566
105 => 0.035329078594782
106 => 0.035527670799999
107 => 0.035615208351803
108 => 0.035569483702453
109 => 0.035974274599859
110 => 0.035630119643747
111 => 0.034721838130253
112 => 0.033813309156069
113 => 0.03380190331487
114 => 0.033562703672835
115 => 0.033389806143244
116 => 0.033423112341313
117 => 0.033540487727503
118 => 0.033382984072422
119 => 0.033416595462872
120 => 0.033974768495855
121 => 0.034086706116911
122 => 0.033706298343709
123 => 0.032178906241719
124 => 0.031804080388718
125 => 0.032073497778736
126 => 0.031944733619009
127 => 0.025781893214776
128 => 0.027229761153047
129 => 0.026369487189076
130 => 0.026765941010976
131 => 0.025887824060624
201 => 0.026306907495385
202 => 0.026229518087461
203 => 0.028557646886673
204 => 0.02852129635771
205 => 0.028538695432298
206 => 0.027708192269188
207 => 0.02903120635864
208 => 0.029682970673152
209 => 0.029562346444681
210 => 0.02959270496424
211 => 0.029071045015628
212 => 0.028543746240892
213 => 0.027958890749011
214 => 0.029045479962603
215 => 0.028924669790748
216 => 0.029201764858856
217 => 0.029906495634872
218 => 0.030010269918652
219 => 0.030149743608427
220 => 0.030099752219056
221 => 0.031290749930372
222 => 0.031146512249075
223 => 0.031494083560986
224 => 0.030779103002087
225 => 0.029970034633114
226 => 0.030123812079618
227 => 0.03010900207492
228 => 0.029920453716976
229 => 0.029750240689992
301 => 0.029466883957285
302 => 0.030363466588474
303 => 0.030327066971
304 => 0.030916334467979
305 => 0.030812175714049
306 => 0.030116578063333
307 => 0.03014142146951
308 => 0.030308505315385
309 => 0.030886784413686
310 => 0.031058457022306
311 => 0.030978931430023
312 => 0.031167162608221
313 => 0.031315932856666
314 => 0.031185845860919
315 => 0.033027603391505
316 => 0.032262777257919
317 => 0.032635548193803
318 => 0.032724451865517
319 => 0.032496726979863
320 => 0.032546112353345
321 => 0.032620917737461
322 => 0.033075121381415
323 => 0.034267083168036
324 => 0.034794994929372
325 => 0.036383243510058
326 => 0.034751159206479
327 => 0.034654318078141
328 => 0.034940409608035
329 => 0.035872879658084
330 => 0.036628559051191
331 => 0.036879261502075
401 => 0.036912395969606
402 => 0.037382730433847
403 => 0.037652317377532
404 => 0.037325619458864
405 => 0.03704877717949
406 => 0.036057162497704
407 => 0.036171944597198
408 => 0.03696267943878
409 => 0.038079638976564
410 => 0.039038106459816
411 => 0.038702484553145
412 => 0.041263042788901
413 => 0.041516911679033
414 => 0.041481835206981
415 => 0.042060186319459
416 => 0.040912277140345
417 => 0.040421523726581
418 => 0.037108633622584
419 => 0.038039420610776
420 => 0.039392374161316
421 => 0.039213305685587
422 => 0.038230754652632
423 => 0.03903736110675
424 => 0.038770671788103
425 => 0.038560322857536
426 => 0.03952397208661
427 => 0.038464400174714
428 => 0.039381804120965
429 => 0.03820522407057
430 => 0.038704017645744
501 => 0.038420878288545
502 => 0.038604104152907
503 => 0.037532969493763
504 => 0.038110927755513
505 => 0.037508924529924
506 => 0.037508639102012
507 => 0.037495349847441
508 => 0.038203603972656
509 => 0.038226700114252
510 => 0.037703299245606
511 => 0.037627869003375
512 => 0.037906774143491
513 => 0.037580249269788
514 => 0.03773302820307
515 => 0.037584876788038
516 => 0.037551524783968
517 => 0.037285770341164
518 => 0.037171276020133
519 => 0.037216172193564
520 => 0.037062918408079
521 => 0.036970577458893
522 => 0.03747698090846
523 => 0.037206429973613
524 => 0.037435515097448
525 => 0.037174443685991
526 => 0.03626945643048
527 => 0.035748988689769
528 => 0.034039551656472
529 => 0.034524345878565
530 => 0.034845764949369
531 => 0.034739535948386
601 => 0.034967756947664
602 => 0.034981767863485
603 => 0.034907570890182
604 => 0.034821660300318
605 => 0.034779843776326
606 => 0.035091509886528
607 => 0.035272442553699
608 => 0.034878023653156
609 => 0.034785616823266
610 => 0.035184396108179
611 => 0.035427651241609
612 => 0.037223710473602
613 => 0.037090652604501
614 => 0.037424601744657
615 => 0.037387004196342
616 => 0.037737036097495
617 => 0.038309190321361
618 => 0.037145840807405
619 => 0.037347758057428
620 => 0.037298252610672
621 => 0.037838740097324
622 => 0.037840427440261
623 => 0.037516378192661
624 => 0.037692050546883
625 => 0.037593995058075
626 => 0.037771194579346
627 => 0.037088875535538
628 => 0.037919866479106
629 => 0.038390984796236
630 => 0.038397526274527
701 => 0.03862083261782
702 => 0.038847724795637
703 => 0.039283224572813
704 => 0.03883557894322
705 => 0.038030308033004
706 => 0.038088445991712
707 => 0.03761631595169
708 => 0.03762425254296
709 => 0.037581886396759
710 => 0.037709030390684
711 => 0.037116776492277
712 => 0.037255777298453
713 => 0.037061175355819
714 => 0.03734733503081
715 => 0.037039474524409
716 => 0.037298228737647
717 => 0.037409898478242
718 => 0.037821962225117
719 => 0.036978612373957
720 => 0.035258964937675
721 => 0.035620455677491
722 => 0.035085782478818
723 => 0.035135268519
724 => 0.035235238195812
725 => 0.034911203765222
726 => 0.03497301932308
727 => 0.034970810836364
728 => 0.034951779290966
729 => 0.034867485420766
730 => 0.034745242631942
731 => 0.03523222027827
801 => 0.035314967269763
802 => 0.035498903581669
803 => 0.03604617328071
804 => 0.035991488132267
805 => 0.036080681878242
806 => 0.035885972431581
807 => 0.03514430053179
808 => 0.03518457688424
809 => 0.034682330123806
810 => 0.0354860600028
811 => 0.035295726158738
812 => 0.035173016691277
813 => 0.035139534276185
814 => 0.035688160550955
815 => 0.03585231813103
816 => 0.035750026143333
817 => 0.035540222292232
818 => 0.035943107709286
819 => 0.036050902850518
820 => 0.036075034207308
821 => 0.036788869920712
822 => 0.036114929693962
823 => 0.03627715380493
824 => 0.037542780009791
825 => 0.03639503168646
826 => 0.03700301957117
827 => 0.03697326172803
828 => 0.037284287756659
829 => 0.036947748515513
830 => 0.036951920322746
831 => 0.03722809036544
901 => 0.036840259348005
902 => 0.036744226934008
903 => 0.036611558841869
904 => 0.03690123476749
905 => 0.037074882383985
906 => 0.038474354642812
907 => 0.039378477545703
908 => 0.039339227186034
909 => 0.039697901999814
910 => 0.039536315711122
911 => 0.039014510960623
912 => 0.039905168042414
913 => 0.03962332687506
914 => 0.03964656151846
915 => 0.039645696723872
916 => 0.039833096461179
917 => 0.039700306572363
918 => 0.039438564070904
919 => 0.039612320958384
920 => 0.040128316794974
921 => 0.041729983704437
922 => 0.042626297726236
923 => 0.041676024474879
924 => 0.042331510238999
925 => 0.041938452353986
926 => 0.04186702204382
927 => 0.042278715543705
928 => 0.042691129658562
929 => 0.042664860662361
930 => 0.042365469192674
1001 => 0.042196350548225
1002 => 0.043476973582894
1003 => 0.044420514819995
1004 => 0.044356171633205
1005 => 0.044640161534169
1006 => 0.045473964666876
1007 => 0.045550197175769
1008 => 0.045540593631833
1009 => 0.0453516434045
1010 => 0.046172630871669
1011 => 0.046857513060681
1012 => 0.04530790688617
1013 => 0.045897976631589
1014 => 0.046162877951168
1015 => 0.046551831680989
1016 => 0.047208061819412
1017 => 0.047920901806187
1018 => 0.04802170519621
1019 => 0.047950180367102
1020 => 0.047480043233657
1021 => 0.048260041253136
1022 => 0.048716945799742
1023 => 0.048989022001171
1024 => 0.049678961978833
1025 => 0.046164513891534
1026 => 0.043676812855941
1027 => 0.043288322416395
1028 => 0.044078333001844
1029 => 0.044286652493011
1030 => 0.044202679167332
1031 => 0.041402545479889
1101 => 0.043273580292031
1102 => 0.045286656428822
1103 => 0.045363986881746
1104 => 0.046371774887261
1105 => 0.046699951972482
1106 => 0.047511353410714
1107 => 0.047460600029832
1108 => 0.047658163367825
1109 => 0.047612746977741
1110 => 0.049115697281335
1111 => 0.05077367465648
1112 => 0.050716264172024
1113 => 0.050477910308049
1114 => 0.050831906441425
1115 => 0.052543116772228
1116 => 0.052385575946554
1117 => 0.052538613439401
1118 => 0.054556226859005
1119 => 0.057179411306654
1120 => 0.055960678767308
1121 => 0.058604977696846
1122 => 0.060269423704727
1123 => 0.063147910968428
1124 => 0.062787510186164
1125 => 0.063908084154607
1126 => 0.062142317567998
1127 => 0.058087760564839
1128 => 0.057446111398868
1129 => 0.058730709278286
1130 => 0.061888767815608
1201 => 0.05863125077637
1202 => 0.059290242230808
1203 => 0.059100452647597
1204 => 0.059090339567262
1205 => 0.059476314710798
1206 => 0.058916437633989
1207 => 0.056635397703106
1208 => 0.057680784861177
1209 => 0.057277110675831
1210 => 0.057725017280376
1211 => 0.060142184494372
1212 => 0.059073497250995
1213 => 0.057947722053199
1214 => 0.059359693980751
1215 => 0.061157619450718
1216 => 0.06104510850599
1217 => 0.060826790247292
1218 => 0.062057438840804
1219 => 0.064090109771079
1220 => 0.0646395325556
1221 => 0.065045105222678
1222 => 0.065101026841262
1223 => 0.065677054267767
1224 => 0.062579609617847
1225 => 0.06749533382529
1226 => 0.068344143601775
1227 => 0.068184602543357
1228 => 0.069128018886544
1229 => 0.068850441866216
1230 => 0.06844827631426
1231 => 0.069943791888623
]
'min_raw' => 0.025781893214776
'max_raw' => 0.069943791888623
'avg_raw' => 0.0478628425517
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.025781'
'max' => '$0.069943'
'avg' => '$0.047862'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0088915086655488
'max_diff' => 0.032237198227923
'year' => 2032
]
7 => [
'items' => [
101 => 0.0682293039645
102 => 0.065795804204235
103 => 0.064460738106586
104 => 0.06621886084068
105 => 0.067292485044364
106 => 0.068002082347674
107 => 0.068216806062906
108 => 0.062820055428726
109 => 0.059911506154415
110 => 0.061775852892663
111 => 0.064050484583664
112 => 0.062566973923954
113 => 0.062625124733158
114 => 0.060510028392154
115 => 0.064237623677534
116 => 0.063694544398465
117 => 0.066512040658965
118 => 0.065839622564576
119 => 0.068137181390439
120 => 0.067532157152008
121 => 0.070043578939285
122 => 0.07104545308426
123 => 0.072727755702932
124 => 0.073965264357432
125 => 0.074691953109122
126 => 0.074648325442212
127 => 0.077527828311307
128 => 0.075829886071569
129 => 0.073696870444198
130 => 0.073658290921077
131 => 0.074763009939558
201 => 0.077078197937431
202 => 0.077678492500665
203 => 0.078013975267821
204 => 0.077500171731681
205 => 0.075657177123062
206 => 0.074861381395255
207 => 0.075539422411769
208 => 0.074710236513302
209 => 0.076141644002528
210 => 0.078107272217377
211 => 0.077701377763947
212 => 0.079058222066666
213 => 0.080462413175797
214 => 0.082470469528023
215 => 0.082995449816606
216 => 0.083863222270422
217 => 0.0847564451738
218 => 0.085043324297333
219 => 0.085591065557521
220 => 0.085588178690707
221 => 0.087238833845523
222 => 0.08905955759782
223 => 0.089746838664461
224 => 0.091327203580301
225 => 0.088620884044516
226 => 0.090673658500367
227 => 0.092525312443822
228 => 0.090317694277704
301 => 0.093360381610635
302 => 0.093478522264895
303 => 0.095262305881176
304 => 0.093454099454484
305 => 0.092380392250314
306 => 0.095480144717469
307 => 0.096980017295038
308 => 0.096528243468307
309 => 0.093090222340054
310 => 0.091089146579748
311 => 0.085851945336341
312 => 0.092055636439414
313 => 0.095077273411571
314 => 0.09308239703027
315 => 0.094088496641969
316 => 0.099577449894502
317 => 0.10166728790966
318 => 0.10123261621158
319 => 0.10130606857325
320 => 0.10243370723299
321 => 0.10743427805222
322 => 0.10443782010501
323 => 0.10672849993051
324 => 0.1079434682503
325 => 0.10907199853663
326 => 0.10630068482905
327 => 0.10269524641417
328 => 0.10155325272217
329 => 0.092884045888866
330 => 0.092432776024736
331 => 0.092179464575123
401 => 0.090582371716931
402 => 0.089327494210943
403 => 0.088329569027567
404 => 0.085710715340703
405 => 0.086594501582763
406 => 0.082420595403146
407 => 0.085090912662713
408 => 0.078429257617554
409 => 0.083977281891311
410 => 0.080957744516814
411 => 0.082985282653591
412 => 0.082978208764038
413 => 0.07924486822268
414 => 0.077091555311254
415 => 0.078463730106606
416 => 0.079934810410596
417 => 0.08017348824061
418 => 0.082080782253856
419 => 0.082613067015805
420 => 0.081000219337099
421 => 0.078291209623685
422 => 0.078920450794178
423 => 0.077078803759017
424 => 0.073851388167828
425 => 0.07616937439069
426 => 0.076960836801835
427 => 0.077310391691216
428 => 0.074136599128466
429 => 0.073139324598861
430 => 0.072608384007244
501 => 0.077881512858615
502 => 0.078170386760508
503 => 0.076692467035768
504 => 0.083372804333693
505 => 0.081860838260309
506 => 0.083550074804961
507 => 0.07886335375335
508 => 0.079042392809028
509 => 0.076823623955159
510 => 0.078065986255138
511 => 0.077187924624719
512 => 0.077965615658563
513 => 0.078431760457708
514 => 0.080650165233442
515 => 0.084002612510377
516 => 0.080318809537227
517 => 0.078713723828795
518 => 0.079709509974962
519 => 0.082361419705366
520 => 0.086379198695691
521 => 0.084000592668081
522 => 0.085056177631785
523 => 0.085286775986647
524 => 0.083532879962669
525 => 0.086443867343826
526 => 0.088003889130207
527 => 0.089604148682011
528 => 0.090993609212588
529 => 0.088964969826559
530 => 0.091135904763643
531 => 0.089386514425957
601 => 0.087817130444405
602 => 0.087819510552091
603 => 0.086835013055421
604 => 0.084927425100956
605 => 0.084575636614503
606 => 0.086405684747022
607 => 0.087873210043098
608 => 0.087994082455455
609 => 0.088806579863535
610 => 0.089287407460249
611 => 0.094000171561457
612 => 0.095895684268992
613 => 0.098213481327547
614 => 0.099116393905739
615 => 0.10183383705402
616 => 0.099639281011842
617 => 0.099164475007711
618 => 0.092572846798858
619 => 0.093652225548788
620 => 0.095380415071984
621 => 0.092601344007563
622 => 0.094364024943956
623 => 0.094712015499487
624 => 0.092506912236219
625 => 0.093684753166018
626 => 0.09055675686197
627 => 0.084070794281978
628 => 0.086451088074289
629 => 0.088203785503656
630 => 0.085702470165914
701 => 0.090185981094546
702 => 0.087566806568491
703 => 0.086736653986281
704 => 0.083497932792315
705 => 0.085026484526056
706 => 0.087093872632693
707 => 0.085816467142455
708 => 0.088467275338098
709 => 0.09222152668785
710 => 0.094897029769217
711 => 0.095102421673951
712 => 0.093382252437417
713 => 0.096138834616936
714 => 0.096158913308684
715 => 0.093049477349218
716 => 0.091144965137457
717 => 0.090712255955816
718 => 0.091793248329186
719 => 0.093105772632657
720 => 0.095175257638089
721 => 0.096425804084525
722 => 0.099686565978247
723 => 0.10056883465332
724 => 0.10153818044007
725 => 0.10283352534635
726 => 0.10438891902594
727 => 0.10098580620359
728 => 0.10112101822022
729 => 0.097952086679354
730 => 0.094565628857184
731 => 0.097135528216285
801 => 0.10049532976892
802 => 0.099724587580497
803 => 0.099637863339465
804 => 0.099783709457582
805 => 0.099202595017596
806 => 0.096574235942642
807 => 0.095254290469599
808 => 0.096957356883829
809 => 0.097862460888226
810 => 0.099266198265683
811 => 0.09909315800461
812 => 0.10270903473855
813 => 0.10411405509892
814 => 0.10375459076653
815 => 0.10382074085468
816 => 0.10636446310461
817 => 0.10919360540292
818 => 0.11184347050349
819 => 0.11453902709815
820 => 0.11128942841393
821 => 0.10963948260946
822 => 0.11134180551817
823 => 0.11043852902088
824 => 0.11562902370353
825 => 0.1159884022937
826 => 0.1211785216445
827 => 0.12610456293633
828 => 0.12301060466013
829 => 0.12592806795965
830 => 0.12908354238235
831 => 0.13517096450101
901 => 0.13312093488954
902 => 0.13155064433521
903 => 0.13006672734896
904 => 0.13315452303216
905 => 0.13712692284986
906 => 0.13798253972342
907 => 0.13936896592939
908 => 0.13791130829794
909 => 0.1396668963593
910 => 0.14586489366037
911 => 0.14419014007838
912 => 0.14181172076189
913 => 0.1467044443691
914 => 0.14847510202257
915 => 0.1609025047352
916 => 0.17659261401031
917 => 0.1700968057436
918 => 0.16606464793404
919 => 0.16701230066335
920 => 0.1727417974269
921 => 0.17458192994221
922 => 0.16957981543387
923 => 0.17134664684214
924 => 0.18108206161273
925 => 0.18630479928765
926 => 0.17921162001786
927 => 0.15964181973207
928 => 0.14159757012529
929 => 0.14638371766416
930 => 0.1458411170647
1001 => 0.15630060571797
1002 => 0.14415019775933
1003 => 0.1443547794679
1004 => 0.15503055926973
1005 => 0.1521824442478
1006 => 0.14756886267129
1007 => 0.1416312543765
1008 => 0.13065503628128
1009 => 0.12093309381986
1010 => 0.14000006181634
1011 => 0.1391778594853
1012 => 0.13798718866639
1013 => 0.14063689772983
1014 => 0.15350313280881
1015 => 0.1532065244463
1016 => 0.15131965337493
1017 => 0.15275082845244
1018 => 0.14731797076057
1019 => 0.14871814189164
1020 => 0.14159471182396
1021 => 0.14481479971527
1022 => 0.14755896399729
1023 => 0.14810989560495
1024 => 0.14935117264828
1025 => 0.138744596218
1026 => 0.14350663764247
1027 => 0.14630389083641
1028 => 0.13366579914126
1029 => 0.14605407639816
1030 => 0.13855995931985
1031 => 0.13601634342562
1101 => 0.1394409871313
1102 => 0.13810640014862
1103 => 0.13695900063049
1104 => 0.13631873198455
1105 => 0.13883341235786
1106 => 0.13871609951275
1107 => 0.13460159434358
1108 => 0.12923439007908
1109 => 0.13103580000272
1110 => 0.13038133088915
1111 => 0.12800945039339
1112 => 0.12960781146559
1113 => 0.12256943821564
1114 => 0.11046028286191
1115 => 0.11845996180205
1116 => 0.11815198286483
1117 => 0.11799668591895
1118 => 0.12400822354757
1119 => 0.12343035291435
1120 => 0.12238151205653
1121 => 0.12799018760852
1122 => 0.12594294558471
1123 => 0.13225206311121
1124 => 0.1364076559623
1125 => 0.13535366319592
1126 => 0.13926201835809
1127 => 0.13107730084902
1128 => 0.13379593569166
1129 => 0.13435624256487
1130 => 0.12792097742282
1201 => 0.12352489969659
1202 => 0.12323173143121
1203 => 0.11560953847075
1204 => 0.11968125242603
1205 => 0.12326419220771
1206 => 0.12154824209965
1207 => 0.12100502355798
1208 => 0.12378020927761
1209 => 0.12399586497588
1210 => 0.11907889220109
1211 => 0.12010128654124
1212 => 0.12436484089862
1213 => 0.11999385591059
1214 => 0.11150174607521
1215 => 0.10939558542343
1216 => 0.10911458476824
1217 => 0.1034025100389
1218 => 0.10953632914918
1219 => 0.10685875273141
1220 => 0.11531718455285
1221 => 0.11048577365992
1222 => 0.11027750119275
1223 => 0.10996266681168
1224 => 0.10504604812931
1225 => 0.10612247515333
1226 => 0.10970068252565
1227 => 0.11097742722748
1228 => 0.11084425229502
1229 => 0.10968314735744
1230 => 0.11021469525204
1231 => 0.10850239427996
]
'min_raw' => 0.059911506154415
'max_raw' => 0.18630479928765
'avg_raw' => 0.12310815272103
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.059911'
'max' => '$0.1863047'
'avg' => '$0.1231081'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.034129612939639
'max_diff' => 0.11636100739902
'year' => 2033
]
8 => [
'items' => [
101 => 0.10789774516825
102 => 0.10598930624987
103 => 0.10318442825955
104 => 0.10357446374742
105 => 0.098017266512349
106 => 0.094989410515903
107 => 0.094151339882587
108 => 0.093030636806334
109 => 0.094277926277127
110 => 0.098001523670807
111 => 0.093510075208773
112 => 0.085809801859094
113 => 0.086272601408037
114 => 0.087312374588093
115 => 0.085374764145847
116 => 0.083540978473579
117 => 0.085135306335882
118 => 0.081872599006713
119 => 0.087706657181054
120 => 0.087548862257197
121 => 0.089723438368855
122 => 0.091083245438268
123 => 0.087949330386037
124 => 0.087161159225408
125 => 0.087610137338884
126 => 0.080189529234231
127 => 0.089117016372795
128 => 0.089194221652291
129 => 0.088533143176559
130 => 0.093286754472602
131 => 0.1033183569958
201 => 0.099544064606295
202 => 0.098082544514488
203 => 0.095304193751599
204 => 0.099006181181004
205 => 0.098721926306426
206 => 0.097436417963124
207 => 0.096658938506064
208 => 0.098091468244518
209 => 0.096481432218365
210 => 0.096192225507237
211 => 0.094439947497805
212 => 0.093814463972007
213 => 0.093351380870723
214 => 0.092841571877815
215 => 0.093966083479684
216 => 0.091417792248027
217 => 0.088344802834719
218 => 0.088089317015208
219 => 0.088794735825419
220 => 0.088482640514155
221 => 0.08808782282293
222 => 0.08733400832818
223 => 0.087110367670287
224 => 0.087837091313419
225 => 0.087016662690943
226 => 0.088227249814466
227 => 0.087898037101708
228 => 0.086059081649821
301 => 0.083767062288259
302 => 0.083746658508267
303 => 0.083252846696484
304 => 0.082623903109075
305 => 0.082448945391338
306 => 0.08500103649026
307 => 0.090283788687371
308 => 0.089246658025532
309 => 0.089996091218137
310 => 0.093682560784456
311 => 0.094854378603582
312 => 0.094022650071593
313 => 0.092884128758224
314 => 0.092934217917919
315 => 0.096824889899538
316 => 0.097067546338636
317 => 0.097680660876303
318 => 0.098468686323353
319 => 0.094156854212744
320 => 0.092731131013266
321 => 0.092055544265242
322 => 0.089974998566303
323 => 0.092218688730101
324 => 0.090911386556048
325 => 0.091087786283129
326 => 0.090972905729454
327 => 0.09103563827995
328 => 0.087705026442896
329 => 0.088918526344514
330 => 0.086900847395898
331 => 0.084199401778791
401 => 0.084190345585834
402 => 0.084851520573485
403 => 0.08445822781905
404 => 0.083399887129347
405 => 0.083550219429093
406 => 0.082233150296246
407 => 0.083710135468127
408 => 0.083752490117949
409 => 0.083183770374849
410 => 0.085459269816809
411 => 0.08639154379481
412 => 0.086017200276744
413 => 0.086365278855659
414 => 0.089289755486896
415 => 0.089766572781648
416 => 0.089978343527195
417 => 0.08969459878241
418 => 0.086418732919941
419 => 0.086564031500999
420 => 0.08549792692032
421 => 0.08459718089298
422 => 0.084633206010283
423 => 0.085096306557123
424 => 0.087118693805662
425 => 0.091374688543972
426 => 0.091536200433199
427 => 0.091731957554577
428 => 0.090935714962288
429 => 0.090695560577438
430 => 0.091012386200161
501 => 0.092610714054298
502 => 0.096722047236917
503 => 0.095268827503469
504 => 0.094087337239463
505 => 0.095123822728484
506 => 0.094964263911691
507 => 0.09361742692364
508 => 0.093579625695165
509 => 0.090994614905263
510 => 0.090038995274084
511 => 0.089240407983381
512 => 0.088368371509582
513 => 0.087851399056987
514 => 0.088645703703951
515 => 0.088827370574648
516 => 0.087090609581992
517 => 0.086853895476246
518 => 0.088272171993438
519 => 0.0876480413769
520 => 0.088289975193704
521 => 0.088438909345609
522 => 0.088414927516908
523 => 0.087763263472297
524 => 0.08817861470143
525 => 0.087196185222369
526 => 0.086127940720026
527 => 0.085446467281516
528 => 0.084851791322081
529 => 0.085181752107145
530 => 0.084005502156851
531 => 0.083629196124518
601 => 0.088037903050698
602 => 0.091294662258654
603 => 0.091247307689952
604 => 0.090959048931586
605 => 0.090530754887807
606 => 0.092579381677316
607 => 0.091865681067437
608 => 0.092384957892806
609 => 0.092517135638842
610 => 0.092917197866703
611 => 0.093060185726653
612 => 0.09262797710243
613 => 0.091177432169701
614 => 0.087562812111015
615 => 0.085880196716216
616 => 0.085324905609756
617 => 0.085345089386828
618 => 0.084788330710838
619 => 0.084952321093091
620 => 0.084731301548293
621 => 0.084312744000816
622 => 0.085155907358053
623 => 0.085253074080364
624 => 0.085056269677733
625 => 0.085102624238976
626 => 0.083473167841452
627 => 0.083597051872362
628 => 0.082907249845831
629 => 0.082777920281544
630 => 0.081034160826407
701 => 0.077944838189656
702 => 0.07965662281822
703 => 0.077589027700258
704 => 0.076805998099907
705 => 0.080512738441881
706 => 0.08014068452052
707 => 0.079503889935102
708 => 0.078561938023649
709 => 0.078212558896971
710 => 0.076089841923271
711 => 0.075964420480211
712 => 0.077016496330556
713 => 0.076530999525341
714 => 0.075849178138801
715 => 0.073379690191879
716 => 0.070603168120178
717 => 0.070686973868927
718 => 0.071570133880906
719 => 0.074138040726087
720 => 0.073134715096435
721 => 0.072406790840288
722 => 0.072270472508434
723 => 0.073976781833341
724 => 0.07639156701094
725 => 0.077524530188496
726 => 0.076401798088141
727 => 0.075112063903442
728 => 0.075190564047212
729 => 0.075712790335029
730 => 0.075767668933996
731 => 0.074928184566574
801 => 0.075164494498696
802 => 0.07480551810317
803 => 0.072602480626447
804 => 0.072562634664401
805 => 0.072021973738835
806 => 0.072005602740881
807 => 0.071085803632305
808 => 0.070957117378744
809 => 0.069130800420851
810 => 0.070332887773133
811 => 0.069526590689641
812 => 0.068311310798563
813 => 0.068101796087275
814 => 0.068095497822057
815 => 0.069343318538582
816 => 0.070318306261544
817 => 0.069540616572614
818 => 0.069363551705326
819 => 0.071254141248495
820 => 0.07101354649602
821 => 0.070805192992047
822 => 0.076175349483881
823 => 0.071924451582058
824 => 0.070070817464093
825 => 0.06777659324754
826 => 0.068523604220933
827 => 0.068681010408901
828 => 0.063163814733089
829 => 0.060925489134535
830 => 0.060157380138632
831 => 0.059715322552022
901 => 0.05991677374525
902 => 0.057902018177144
903 => 0.059255967239893
904 => 0.057511359220962
905 => 0.057218870009143
906 => 0.060338445262453
907 => 0.060772515934656
908 => 0.058920635591848
909 => 0.060109842564125
910 => 0.059678619584764
911 => 0.057541265518118
912 => 0.057459634314084
913 => 0.05638718517507
914 => 0.054709009939585
915 => 0.053942038825516
916 => 0.05354259361016
917 => 0.053707412491048
918 => 0.05362407502133
919 => 0.053080241659784
920 => 0.053655246913025
921 => 0.052186346099569
922 => 0.051601417959912
923 => 0.051337219489459
924 => 0.05003348547074
925 => 0.052108306067672
926 => 0.052517071863168
927 => 0.052926643053556
928 => 0.056491680639756
929 => 0.056313581436641
930 => 0.057923511494969
1001 => 0.057860952573374
1002 => 0.057401774441601
1003 => 0.055464577434786
1004 => 0.056236709634486
1005 => 0.053860206739796
1006 => 0.055640844294987
1007 => 0.054828235676
1008 => 0.055366100503497
1009 => 0.054398971046341
1010 => 0.054934220419727
1011 => 0.052614005397492
1012 => 0.050447421256035
1013 => 0.051319317961091
1014 => 0.05226716939297
1015 => 0.054322352805337
1016 => 0.053098302519826
1017 => 0.053538517288961
1018 => 0.05206387150342
1019 => 0.049021256036105
1020 => 0.049038476909223
1021 => 0.048570436806558
1022 => 0.048165981822881
1023 => 0.053238899419714
1024 => 0.052608001925588
1025 => 0.051602749338521
1026 => 0.05294831987346
1027 => 0.053304110079974
1028 => 0.053314238926971
1029 => 0.05429593245506
1030 => 0.054819862466979
1031 => 0.054912207402423
1101 => 0.056456923379763
1102 => 0.056974691800072
1103 => 0.059107306645991
1104 => 0.054775410665963
1105 => 0.054686198118938
1106 => 0.052967254810307
1107 => 0.051877073788555
1108 => 0.053041900437557
1109 => 0.054073777833879
1110 => 0.052999318117358
1111 => 0.053139619873253
1112 => 0.051697245490408
1113 => 0.052212826462252
1114 => 0.052656914251462
1115 => 0.052411715076534
1116 => 0.052044640043893
1117 => 0.053989175654755
1118 => 0.053879457334894
1119 => 0.055690253600409
1120 => 0.057101898780662
1121 => 0.059631819305434
1122 => 0.056991715350094
1123 => 0.056895499468499
1124 => 0.057836025144606
1125 => 0.056974547810491
1126 => 0.057518971748465
1127 => 0.059544104192265
1128 => 0.05958689204964
1129 => 0.058870140309559
1130 => 0.058826525901037
1201 => 0.058964185913124
1202 => 0.059770464903653
1203 => 0.059488726249911
1204 => 0.059814761352771
1205 => 0.060222473241324
1206 => 0.061908942478637
1207 => 0.062315544502238
1208 => 0.061327712383865
1209 => 0.061416902563867
1210 => 0.061047426234998
1211 => 0.060690516730835
1212 => 0.061492797173746
1213 => 0.062958980452028
1214 => 0.062949859401949
1215 => 0.06328998542398
1216 => 0.063501881117949
1217 => 0.062592269682305
1218 => 0.06200014608504
1219 => 0.062227203950035
1220 => 0.062590274420838
1221 => 0.062109465089695
1222 => 0.059141687165327
1223 => 0.060041921405193
1224 => 0.059892078408474
1225 => 0.059678683759615
1226 => 0.060583876249105
1227 => 0.060496568225262
1228 => 0.057881353946713
1229 => 0.058048771479784
1230 => 0.057891535161404
1231 => 0.058399597873615
]
'min_raw' => 0.048165981822881
'max_raw' => 0.10789774516825
'avg_raw' => 0.078031863495566
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.048165'
'max' => '$0.107897'
'avg' => '$0.078031'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.011745524331534
'max_diff' => -0.078407054119397
'year' => 2034
]
9 => [
'items' => [
101 => 0.056947110756712
102 => 0.057393886011221
103 => 0.057674099262592
104 => 0.057839147020348
105 => 0.058435412695673
106 => 0.058365447800746
107 => 0.058431063579569
108 => 0.059315168167773
109 => 0.063786665786853
110 => 0.064030039536456
111 => 0.062831578183644
112 => 0.063310339855487
113 => 0.062391222139215
114 => 0.063008232019702
115 => 0.06343037450958
116 => 0.061522793771156
117 => 0.061409839219923
118 => 0.060486927977888
119 => 0.060982848202993
120 => 0.060193803466925
121 => 0.060387407445543
122 => 0.059846073843235
123 => 0.060820366548944
124 => 0.061909777183706
125 => 0.062185005332176
126 => 0.061460998566718
127 => 0.060936769954156
128 => 0.060016397202136
129 => 0.061546997600589
130 => 0.061994591801299
131 => 0.061544646578799
201 => 0.061440384439249
202 => 0.061242807873199
203 => 0.061482301241741
204 => 0.061992154107156
205 => 0.06175171691133
206 => 0.061910529915131
207 => 0.061305298511901
208 => 0.062592570801539
209 => 0.064637068996432
210 => 0.064643642392437
211 => 0.064403203900566
212 => 0.064304821650012
213 => 0.064551526133699
214 => 0.064685353195752
215 => 0.065483150258134
216 => 0.066339218291706
217 => 0.070334114272642
218 => 0.06921236346703
219 => 0.072756872838742
220 => 0.075560119554828
221 => 0.076400690673859
222 => 0.075627404796277
223 => 0.072982035581152
224 => 0.072852241147058
225 => 0.076805539600529
226 => 0.075688551714884
227 => 0.075555689560112
228 => 0.074142260707496
301 => 0.074977772215961
302 => 0.074795033592845
303 => 0.074506571736378
304 => 0.076100669492293
305 => 0.079084678185278
306 => 0.078619592446621
307 => 0.078272427517419
308 => 0.076751251855848
309 => 0.077667339370998
310 => 0.077341138153354
311 => 0.078742705596762
312 => 0.077912448091807
313 => 0.075680089433062
314 => 0.076035599907418
315 => 0.075981865214406
316 => 0.077087721388892
317 => 0.076755770814349
318 => 0.075917046537111
319 => 0.079074479167969
320 => 0.078869453055484
321 => 0.079160133207493
322 => 0.07928809959999
323 => 0.08120997320219
324 => 0.081997303323915
325 => 0.082176041045701
326 => 0.082923943767043
327 => 0.08215743254467
328 => 0.085224023947401
329 => 0.087263128289648
330 => 0.089631652914518
331 => 0.093092703990856
401 => 0.094394091212071
402 => 0.094159007258824
403 => 0.096783136684473
404 => 0.10149863893124
405 => 0.095112145084265
406 => 0.10183713861275
407 => 0.099708083305417
408 => 0.094660131471795
409 => 0.094335102885153
410 => 0.097753634474807
411 => 0.10533560851919
412 => 0.10343641001511
413 => 0.10533871492757
414 => 0.10311957520031
415 => 0.10300937620847
416 => 0.10523093626423
417 => 0.11042173242545
418 => 0.10795577974334
419 => 0.10442023189713
420 => 0.10703082540755
421 => 0.1047692877098
422 => 0.099673410312221
423 => 0.10343495773381
424 => 0.1009197180957
425 => 0.10165379873959
426 => 0.10694045834524
427 => 0.10630435347472
428 => 0.1071275320789
429 => 0.10567464338886
430 => 0.10431741625285
501 => 0.10178405101448
502 => 0.10103404646079
503 => 0.1012413207371
504 => 0.10103394374596
505 => 0.099616549177915
506 => 0.099310462955898
507 => 0.098800305842591
508 => 0.098958424864059
509 => 0.097999180239314
510 => 0.09980947303626
511 => 0.10014547933162
512 => 0.10146285946334
513 => 0.10159963423886
514 => 0.10526851915399
515 => 0.10324775899584
516 => 0.10460345937396
517 => 0.1044821927718
518 => 0.094769535894759
519 => 0.096107854316917
520 => 0.09818985779434
521 => 0.09725191804985
522 => 0.095925890695241
523 => 0.094855052509305
524 => 0.093232623158786
525 => 0.095516161313646
526 => 0.098518771160076
527 => 0.10167578537963
528 => 0.10546873110865
529 => 0.10462218977669
530 => 0.10160487889754
531 => 0.10174023325943
601 => 0.10257694066467
602 => 0.101493328552
603 => 0.10117375018536
604 => 0.10253303550455
605 => 0.10254239615549
606 => 0.10129556946098
607 => 0.099909949756895
608 => 0.099904143959741
609 => 0.099657586316899
610 => 0.10316343725724
611 => 0.10509130079292
612 => 0.10531232724038
613 => 0.10507642395196
614 => 0.105167213765
615 => 0.10404543245117
616 => 0.10660949188068
617 => 0.1089625263724
618 => 0.10833186286337
619 => 0.10738640860923
620 => 0.10663330875657
621 => 0.10815445647194
622 => 0.10808672215868
623 => 0.10894197466886
624 => 0.10890317547482
625 => 0.10861558622332
626 => 0.10833187313409
627 => 0.10945676346342
628 => 0.10913281311376
629 => 0.10880835957973
630 => 0.10815761834588
701 => 0.10824606488722
702 => 0.10730077387909
703 => 0.10686343900516
704 => 0.10028697181427
705 => 0.098529524888597
706 => 0.099082453467544
707 => 0.099264491912517
708 => 0.098499648758236
709 => 0.09959623736939
710 => 0.099425335195916
711 => 0.10009021557847
712 => 0.099674827181203
713 => 0.09969187486592
714 => 0.10091344357215
715 => 0.1012680701645
716 => 0.10108770421744
717 => 0.10121402634418
718 => 0.10412506643752
719 => 0.10371120962606
720 => 0.10349135644345
721 => 0.10355225727754
722 => 0.10429609043479
723 => 0.10450432310704
724 => 0.10362202664248
725 => 0.10403812275566
726 => 0.10580980719512
727 => 0.10642979648028
728 => 0.10840850466675
729 => 0.1075679142604
730 => 0.10911085433116
731 => 0.11385332608163
801 => 0.11764194066998
802 => 0.11415777412341
803 => 0.12111508233777
804 => 0.12653234474924
805 => 0.12632442119496
806 => 0.12537979618999
807 => 0.1192123869599
808 => 0.11353704503549
809 => 0.11828470954301
810 => 0.1182968123162
811 => 0.11788898372451
812 => 0.11535599536756
813 => 0.11780084122026
814 => 0.11799490420567
815 => 0.11788628053936
816 => 0.11594424430499
817 => 0.1129791139234
818 => 0.11355849330244
819 => 0.11450752854434
820 => 0.11271080684194
821 => 0.11213664539082
822 => 0.11320412076714
823 => 0.11664374884697
824 => 0.11599350708289
825 => 0.1159765266426
826 => 0.11875853665476
827 => 0.11676721788139
828 => 0.11356580113184
829 => 0.11275740118108
830 => 0.10988812595935
831 => 0.11186994457501
901 => 0.11194126669882
902 => 0.11085584489672
903 => 0.11365387712898
904 => 0.11362809276938
905 => 0.11628440794177
906 => 0.12136228488498
907 => 0.11986050680572
908 => 0.11811410229254
909 => 0.11830398488567
910 => 0.1203865282621
911 => 0.11912737499687
912 => 0.11958017529018
913 => 0.12038584289463
914 => 0.12087192216399
915 => 0.11823404555914
916 => 0.11761903033833
917 => 0.11636092503755
918 => 0.11603270884823
919 => 0.11705740936448
920 => 0.11678743698165
921 => 0.11193527235049
922 => 0.11142819414934
923 => 0.11144374551383
924 => 0.1101686732668
925 => 0.10822388203767
926 => 0.11333467727037
927 => 0.11292420888765
928 => 0.11247108356086
929 => 0.11252658882789
930 => 0.11474501181749
1001 => 0.11345821445048
1002 => 0.11687937615262
1003 => 0.11617608815619
1004 => 0.11545476347641
1005 => 0.11535505443357
1006 => 0.11507740597239
1007 => 0.11412524609053
1008 => 0.11297545581725
1009 => 0.11221626468571
1010 => 0.10351357244326
1011 => 0.10512874150222
1012 => 0.10698684627727
1013 => 0.10762825659973
1014 => 0.10653107985892
1015 => 0.11416856931563
1016 => 0.11556401223605
1017 => 0.11133712460761
1018 => 0.11054644651501
1019 => 0.11422040603975
1020 => 0.11200455932305
1021 => 0.1130023549639
1022 => 0.11084566655341
1023 => 0.11522789089986
1024 => 0.11519450569257
1025 => 0.11348972144478
1026 => 0.11493059341716
1027 => 0.11468020645384
1028 => 0.11275550923678
1029 => 0.11528890723466
1030 => 0.11529016376846
1031 => 0.11364934599516
1101 => 0.11173323005715
1102 => 0.11139067378407
1103 => 0.11113260364827
1104 => 0.11293888553048
1105 => 0.11455839221797
1106 => 0.11757189265363
1107 => 0.11832955826216
1108 => 0.12128677757292
1109 => 0.11952589745776
1110 => 0.12030647280559
1111 => 0.12115389776479
1112 => 0.12156018445325
1113 => 0.12089816209695
1114 => 0.12549194092658
1115 => 0.12587979660954
1116 => 0.1260098412651
1117 => 0.12446084489036
1118 => 0.12583671621825
1119 => 0.125192991588
1120 => 0.12686778424405
1121 => 0.12713041311735
1122 => 0.12690797580496
1123 => 0.12699133835466
1124 => 0.12307135852169
1125 => 0.12286808688781
1126 => 0.12009646373636
1127 => 0.12122592065738
1128 => 0.11911445507981
1129 => 0.11978402256496
1130 => 0.12007916153254
1201 => 0.11992499768487
1202 => 0.12128977845707
1203 => 0.12012943599441
1204 => 0.11706710145747
1205 => 0.11400393258954
1206 => 0.11396547699961
1207 => 0.11315899870611
1208 => 0.11257606261377
1209 => 0.11268835678592
1210 => 0.11308409609535
1211 => 0.11255306152569
1212 => 0.11266638467526
1213 => 0.11454830402636
1214 => 0.11492570953099
1215 => 0.11364313816441
1216 => 0.10849342905345
1217 => 0.10722967752055
1218 => 0.10813803706111
1219 => 0.10770389970657
1220 => 0.08692545300792
1221 => 0.091807040848711
1222 => 0.088906567116773
1223 => 0.09024323885683
1224 => 0.087282606250552
1225 => 0.088695575310318
1226 => 0.088434651518347
1227 => 0.096284100309654
1228 => 0.096161541963341
1229 => 0.096220204158078
1230 => 0.093420104759773
1231 => 0.097880739132256
]
'min_raw' => 0.056947110756712
'max_raw' => 0.12713041311735
'avg_raw' => 0.092038761937031
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.056947'
'max' => '$0.12713'
'avg' => '$0.092038'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0087811289338311
'max_diff' => 0.0192326679491
'year' => 2035
]
10 => [
'items' => [
101 => 0.10007820802336
102 => 0.099671515015361
103 => 0.099773870883619
104 => 0.098015057945738
105 => 0.096237233311891
106 => 0.094265352187705
107 => 0.097928863584569
108 => 0.097521543655463
109 => 0.098455789023748
110 => 0.10083183803782
111 => 0.10118172028087
112 => 0.10165196556369
113 => 0.10148341610414
114 => 0.10549894804064
115 => 0.1050126406278
116 => 0.10618450157256
117 => 0.10377389469988
118 => 0.10104606420654
119 => 0.10156453560383
120 => 0.10151460263899
121 => 0.10087889868615
122 => 0.10030501358178
123 => 0.099349656574127
124 => 0.10237254751258
125 => 0.10224982366093
126 => 0.10423658016834
127 => 0.10388540165733
128 => 0.10154014561286
129 => 0.1016239068913
130 => 0.10218724174309
131 => 0.10413695009717
201 => 0.10471575628293
202 => 0.10444763019624
203 => 0.10508226475542
204 => 0.10558385403486
205 => 0.10514525664632
206 => 0.11135487074809
207 => 0.10877620604025
208 => 0.11003302927662
209 => 0.11033277421286
210 => 0.10956498386163
211 => 0.1097314900963
212 => 0.10998370167159
213 => 0.11151508096867
214 => 0.11553386335238
215 => 0.11731375471335
216 => 0.1226686456911
217 => 0.1171659595131
218 => 0.11683945288768
219 => 0.11780403045499
220 => 0.12094791833171
221 => 0.12349574416542
222 => 0.12434100498206
223 => 0.12445272015271
224 => 0.12603848563661
225 => 0.1269474168392
226 => 0.12584593199709
227 => 0.12491253892367
228 => 0.1215692407917
229 => 0.12195623665398
301 => 0.12462225437971
302 => 0.12838816144498
303 => 0.13161970148282
304 => 0.13048812879211
305 => 0.13912122965643
306 => 0.13997716634407
307 => 0.13985890356958
308 => 0.14180885472449
309 => 0.13793859878265
310 => 0.13628398938483
311 => 0.12511434910061
312 => 0.12825256241677
313 => 0.13281413977261
314 => 0.13221039790453
315 => 0.1288976584974
316 => 0.13161718847292
317 => 0.13071802681545
318 => 0.13000882070995
319 => 0.13325783136561
320 => 0.12968541068771
321 => 0.13277850214359
322 => 0.12881158035749
323 => 0.13049329772085
324 => 0.12953867360989
325 => 0.13015643240401
326 => 0.12654502711647
327 => 0.12849365374772
328 => 0.12646395784212
329 => 0.12646299550199
330 => 0.12641818985238
331 => 0.12880611808426
401 => 0.12888398833817
402 => 0.12711930576685
403 => 0.1268649874388
404 => 0.12780533559123
405 => 0.12670443418231
406 => 0.12721953902255
407 => 0.12672003618317
408 => 0.12660758757289
409 => 0.12571157791459
410 => 0.12532555231749
411 => 0.12547692290077
412 => 0.12496021706317
413 => 0.12464888310595
414 => 0.12635625769212
415 => 0.12544407632602
416 => 0.12621645281524
417 => 0.12533623232409
418 => 0.12228500460795
419 => 0.12053021128224
420 => 0.1147667249754
421 => 0.11640124254244
422 => 0.11748492938041
423 => 0.11712677088693
424 => 0.11789623391988
425 => 0.11794347270078
426 => 0.11769331242502
427 => 0.11740365887321
428 => 0.11726267154303
429 => 0.11831347559341
430 => 0.11892350271309
501 => 0.11759369185247
502 => 0.11728213577385
503 => 0.11862664797482
504 => 0.11944679964071
505 => 0.12550233873822
506 => 0.12505372484275
507 => 0.12617965768436
508 => 0.12605289492525
509 => 0.12723305191843
510 => 0.12916210983073
511 => 0.12523979572195
512 => 0.12592057382782
513 => 0.12575366275772
514 => 0.1275759540546
515 => 0.12758164304912
516 => 0.12648908838644
517 => 0.12708137999375
518 => 0.12675077906722
519 => 0.12734821962486
520 => 0.12504773333066
521 => 0.12784947731484
522 => 0.12943788561347
523 => 0.12945994066424
524 => 0.13021283359141
525 => 0.13097781641002
526 => 0.1324461343144
527 => 0.1309368658206
528 => 0.12822183872459
529 => 0.12841785491144
530 => 0.12682603551844
531 => 0.12685279429002
601 => 0.12670995387019
602 => 0.12713862872262
603 => 0.12514180335429
604 => 0.12561045427704
605 => 0.12495434024078
606 => 0.12591914756404
607 => 0.12488117437257
608 => 0.12575358226815
609 => 0.1261300845951
610 => 0.12751938628706
611 => 0.12467597338307
612 => 0.11887806198969
613 => 0.12009685325746
614 => 0.11829416523844
615 => 0.11846101087792
616 => 0.11879806562295
617 => 0.11770556091686
618 => 0.117913976386
619 => 0.11790653031884
620 => 0.11784236413479
621 => 0.1175581614662
622 => 0.11714601136897
623 => 0.11878789050325
624 => 0.11906687776228
625 => 0.1196870318799
626 => 0.12153218987936
627 => 0.1213478150834
628 => 0.12164853802526
629 => 0.12099206153166
630 => 0.11849146293964
701 => 0.11862725747393
702 => 0.11693389745538
703 => 0.11964372885703
704 => 0.11900200501309
705 => 0.11858828147624
706 => 0.11847539317609
707 => 0.12032512496535
708 => 0.12087859370768
709 => 0.12053370912936
710 => 0.11982634079734
711 => 0.1211846971095
712 => 0.12154813595418
713 => 0.1216294965084
714 => 0.12403624345455
715 => 0.12176400692706
716 => 0.12231095684332
717 => 0.12657810395621
718 => 0.12270839035087
719 => 0.12475826395253
720 => 0.12465793330675
721 => 0.12570657927742
722 => 0.12457191372948
723 => 0.12458597926883
724 => 0.12551710584935
725 => 0.12420950649657
726 => 0.12388572650801
727 => 0.12343842677277
728 => 0.12441508938053
729 => 0.12500055444323
730 => 0.1297189728719
731 => 0.13276728636284
801 => 0.13263495103485
802 => 0.13384424821138
803 => 0.13329944875746
804 => 0.13154014760991
805 => 0.13454306014486
806 => 0.1335928129716
807 => 0.13367115019402
808 => 0.13366823447869
809 => 0.13430006577685
810 => 0.13385235539561
811 => 0.13296987227767
812 => 0.13355570575512
813 => 0.13529542174387
814 => 0.14069555355393
815 => 0.14371753885707
816 => 0.14051362624416
817 => 0.14272364226245
818 => 0.1413984201607
819 => 0.14115758788287
820 => 0.14254564126126
821 => 0.14393612424333
822 => 0.1438475564886
823 => 0.1428381372457
824 => 0.14226794192846
825 => 0.14658565190009
826 => 0.14976686705692
827 => 0.14954992951036
828 => 0.150507421289
829 => 0.1533186467652
830 => 0.15357566999132
831 => 0.15354329097244
901 => 0.1529062320889
902 => 0.15567424865397
903 => 0.15798337677118
904 => 0.15275877136376
905 => 0.1547482327078
906 => 0.15564136600158
907 => 0.15695275065755
908 => 0.15916527638577
909 => 0.16156866617008
910 => 0.16190853183741
911 => 0.16166738088237
912 => 0.16008228071303
913 => 0.16271209849343
914 => 0.16425258407237
915 => 0.16516990798124
916 => 0.167496088786
917 => 0.15564688168874
918 => 0.1472594239615
919 => 0.14594960132103
920 => 0.14861317716665
921 => 0.14931554087552
922 => 0.14903241894517
923 => 0.13959157271886
924 => 0.14589989721948
925 => 0.15268712396315
926 => 0.15294784898423
927 => 0.15634567660633
928 => 0.15745214856175
929 => 0.16018784516099
930 => 0.16001672659386
1001 => 0.16068282518133
1002 => 0.16052970065129
1003 => 0.1655970025325
1004 => 0.17118698900908
1005 => 0.17099342555247
1006 => 0.17018979885874
1007 => 0.17138332153764
1008 => 0.17715278664083
1009 => 0.17662162674792
1010 => 0.17713760333979
1011 => 0.18394012784926
1012 => 0.1927843773594
1013 => 0.1886753355138
1014 => 0.1975907739738
1015 => 0.20320256989728
1016 => 0.21290759067641
1017 => 0.21169247427662
1018 => 0.21547056764721
1019 => 0.20951716231857
1020 => 0.19584694030229
1021 => 0.1936835753407
1022 => 0.19801468677892
1023 => 0.20866230162611
1024 => 0.19767935549574
1025 => 0.19990119119369
1026 => 0.19926130236321
1027 => 0.19922720540679
1028 => 0.20052854755114
1029 => 0.19864088289731
1030 => 0.19095019751322
1031 => 0.19447479330325
1101 => 0.19311377760373
1102 => 0.19462392599279
1103 => 0.20277357401601
1104 => 0.1991704203616
1105 => 0.19537479068312
1106 => 0.20013535261759
1107 => 0.20619718386673
1108 => 0.20581784536132
1109 => 0.20508177010962
1110 => 0.20923098776379
1111 => 0.21608427972177
1112 => 0.21793669699925
1113 => 0.21930411356248
1114 => 0.21949265720386
1115 => 0.22143477388927
1116 => 0.21099152299539
1117 => 0.22756523036569
1118 => 0.23042705178911
1119 => 0.22988914797186
1120 => 0.23306994204014
1121 => 0.23213407173629
1122 => 0.23077814249957
1123 => 0.2358203776721
1124 => 0.23003986193419
1125 => 0.22183514759093
1126 => 0.21733387903137
1127 => 0.22326151257758
1128 => 0.22688131153835
1129 => 0.22927376838896
1130 => 0.22999772438639
1201 => 0.21180220283416
1202 => 0.20199582588739
1203 => 0.20828160107993
1204 => 0.21595068063585
1205 => 0.21094892087123
1206 => 0.21114498038442
1207 => 0.20401378539942
1208 => 0.21658163315647
1209 => 0.21475060345051
1210 => 0.22424998880409
1211 => 0.22198288425212
1212 => 0.22972926424395
1213 => 0.22768938278264
1214 => 0.23615681668031
1215 => 0.23953470530872
1216 => 0.24520670604219
1217 => 0.24937905287093
1218 => 0.25182913473304
1219 => 0.25168204100807
1220 => 0.26139048597169
1221 => 0.25566575516387
1222 => 0.2484741440538
1223 => 0.24834407049806
1224 => 0.25206870779788
1225 => 0.25987452577398
1226 => 0.26189846080515
1227 => 0.26302956437728
1228 => 0.26129723988256
1229 => 0.25508345488583
1230 => 0.25240037402884
1231 => 0.25468643665533
]
'min_raw' => 0.094265352187705
'max_raw' => 0.26302956437728
'avg_raw' => 0.17864745828249
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.094265'
'max' => '$0.263029'
'avg' => '$0.178647'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.037318241430994
'max_diff' => 0.13589915125993
'year' => 2036
]
11 => [
'items' => [
101 => 0.25189077850674
102 => 0.25671686879434
103 => 0.26334412155649
104 => 0.2619756200681
105 => 0.26655031536656
106 => 0.27128464372849
107 => 0.27805494591804
108 => 0.27982495361395
109 => 0.28275070902793
110 => 0.2857622724095
111 => 0.28672950540375
112 => 0.28857625330455
113 => 0.28856652003153
114 => 0.29413181913106
115 => 0.3002705163808
116 => 0.30258773248141
117 => 0.30791604313272
118 => 0.29879149786862
119 => 0.30571257026666
120 => 0.31195555081537
121 => 0.30451241203732
122 => 0.31477104481395
123 => 0.3151693642781
124 => 0.32118351528019
125 => 0.31508702106766
126 => 0.31146694226495
127 => 0.32191797412577
128 => 0.32697489923881
129 => 0.32545171224014
130 => 0.31386018397127
131 => 0.30711341733475
201 => 0.28945582769288
202 => 0.31037200537478
203 => 0.32055966539036
204 => 0.31383380039298
205 => 0.31722593547746
206 => 0.33573232459485
207 => 0.34277835937079
208 => 0.3413128333929
209 => 0.34156048315855
210 => 0.34536239562907
211 => 0.36222216927481
212 => 0.35211940209979
213 => 0.35984258906163
214 => 0.36393893957816
215 => 0.36774385823002
216 => 0.35840018057795
217 => 0.34624419323851
218 => 0.34239388177447
219 => 0.31316504567131
220 => 0.31164355781773
221 => 0.31078950057973
222 => 0.30540479050287
223 => 0.30117388337868
224 => 0.29780930895002
225 => 0.28897966090223
226 => 0.29195940792132
227 => 0.27788679182391
228 => 0.28688995290014
301 => 0.26442971781349
302 => 0.28313526900314
303 => 0.27295468792766
304 => 0.279790674314
305 => 0.27976682420148
306 => 0.26717960591278
307 => 0.2599195610924
308 => 0.26454594421712
309 => 0.26950579416957
310 => 0.27031051313741
311 => 0.27674108806609
312 => 0.27853572330394
313 => 0.27309789474975
314 => 0.26396427936396
315 => 0.26608580990249
316 => 0.25987656834375
317 => 0.2489951113471
318 => 0.25681036373411
319 => 0.25947883451142
320 => 0.26065738322611
321 => 0.24995672001368
322 => 0.24659433930964
323 => 0.24480423603591
324 => 0.26258295811641
325 => 0.26355691664517
326 => 0.25857400710815
327 => 0.28109723071436
328 => 0.27599953153584
329 => 0.28169491048487
330 => 0.26589330324295
331 => 0.26649694591928
401 => 0.25901621181896
402 => 0.2632049230523
403 => 0.26024447696104
404 => 0.2628665165783
405 => 0.26443815631381
406 => 0.27191766289927
407 => 0.28322067295385
408 => 0.27080047403497
409 => 0.26538881550548
410 => 0.26874617802085
411 => 0.27768727682734
412 => 0.29123349920559
413 => 0.28321386291453
414 => 0.28677284131825
415 => 0.28755031977153
416 => 0.28163693687358
417 => 0.2914515340678
418 => 0.29671125643782
419 => 0.30210664324328
420 => 0.30679130643116
421 => 0.29995160710608
422 => 0.3072710658163
423 => 0.30137287415426
424 => 0.29608158648956
425 => 0.2960896111888
426 => 0.29277030914336
427 => 0.28633874317134
428 => 0.28515266372818
429 => 0.29132279877685
430 => 0.29627066277191
501 => 0.29667819254922
502 => 0.29941758428732
503 => 0.30103872809995
504 => 0.31692814130185
505 => 0.32331899473578
506 => 0.33113360934212
507 => 0.33417784213884
508 => 0.34333989143909
509 => 0.33594079252387
510 => 0.33433995093105
511 => 0.31211581621212
512 => 0.31575501702732
513 => 0.32158172866312
514 => 0.31221189654088
515 => 0.31815489838438
516 => 0.31932817283828
517 => 0.31189351323077
518 => 0.31586468615982
519 => 0.30531842823099
520 => 0.2834505525571
521 => 0.29147587926468
522 => 0.29738522101723
523 => 0.28895186171977
524 => 0.30406833184439
525 => 0.29523760206487
526 => 0.29243868467454
527 => 0.28151911004879
528 => 0.28667272893917
529 => 0.29364307228113
530 => 0.28933621048519
531 => 0.29827359539032
601 => 0.31093131592947
602 => 0.31995196136596
603 => 0.32064445451277
604 => 0.31484478383341
605 => 0.32413879311008
606 => 0.32420648982116
607 => 0.31372280938994
608 => 0.30730161349919
609 => 0.3058427042825
610 => 0.30948734554179
611 => 0.31391261286846
612 => 0.3208900260511
613 => 0.32510633070563
614 => 0.33610021708944
615 => 0.33907484752547
616 => 0.34234306452308
617 => 0.34671041031267
618 => 0.35195452869756
619 => 0.34048069621925
620 => 0.34093657297352
621 => 0.33025229903575
622 => 0.31883462005336
623 => 0.32749921516721
624 => 0.33882702067579
625 => 0.33622840957601
626 => 0.33593601274248
627 => 0.33642774311236
628 => 0.33446847520583
629 => 0.32560677907845
630 => 0.32115649076044
701 => 0.32689849808031
702 => 0.32995011942348
703 => 0.33468291799739
704 => 0.3340995006759
705 => 0.34629068153683
706 => 0.35102780577721
707 => 0.34981584668355
708 => 0.3500388763242
709 => 0.35861521348687
710 => 0.36815386427002
711 => 0.37708806946427
712 => 0.38617632672091
713 => 0.37522007787732
714 => 0.36965717040203
715 => 0.37539667094113
716 => 0.37235121116577
717 => 0.38985132637708
718 => 0.39106299638485
719 => 0.40856184613865
720 => 0.42517033827928
721 => 0.41473884193779
722 => 0.4245752731429
723 => 0.43521417546722
724 => 0.45573834415053
725 => 0.44882652618695
726 => 0.44353218194885
727 => 0.43852905222592
728 => 0.44893977095485
729 => 0.46233299428433
730 => 0.4652177663108
731 => 0.46989219906141
801 => 0.46497760458658
802 => 0.47089669230669
803 => 0.49179367293759
804 => 0.48614712430837
805 => 0.47812811752689
806 => 0.49462427676764
807 => 0.50059417266967
808 => 0.54249402856888
809 => 0.59539432743835
810 => 0.5734932563443
811 => 0.55989855477307
812 => 0.56309363211295
813 => 0.58241103047195
814 => 0.58861516572129
815 => 0.57175018741992
816 => 0.57770718286913
817 => 0.61053081347312
818 => 0.62813963818401
819 => 0.60422448904595
820 => 0.53824354106259
821 => 0.47740609370407
822 => 0.49354292428951
823 => 0.49171350848527
824 => 0.52697840473795
825 => 0.486012455991
826 => 0.48670221750487
827 => 0.52269635446588
828 => 0.51309373582041
829 => 0.49753872342523
830 => 0.47751966250876
831 => 0.44051257686567
901 => 0.40773436909266
902 => 0.47201998290596
903 => 0.46924787034253
904 => 0.46523344054661
905 => 0.47416711965075
906 => 0.51754652951139
907 => 0.51654649370865
908 => 0.5101847761544
909 => 0.51501008284969
910 => 0.49669282383153
911 => 0.50141359855674
912 => 0.47739645674158
913 => 0.48825320788648
914 => 0.49750534935474
915 => 0.49936285373479
916 => 0.50354790594956
917 => 0.46778709298737
918 => 0.48384264812508
919 => 0.49327378256642
920 => 0.45066357405285
921 => 0.49243151574637
922 => 0.46716457679432
923 => 0.45858859821731
924 => 0.470135023572
925 => 0.46563537038201
926 => 0.46176683279776
927 => 0.45960812235583
928 => 0.46808654280385
929 => 0.46769101435605
930 => 0.45381867291259
1001 => 0.43572276900858
1002 => 0.44179634833656
1003 => 0.4395897600266
1004 => 0.43159279933573
1005 => 0.43698178528466
1006 => 0.41325141846893
1007 => 0.37242455575961
1008 => 0.39939603182601
1009 => 0.39835765933678
1010 => 0.39783406484126
1011 => 0.41810238366832
1012 => 0.41615405248277
1013 => 0.41261781230289
1014 => 0.43152785351167
1015 => 0.42462543409452
1016 => 0.44589706432363
1017 => 0.4599079357553
1018 => 0.45635432555602
1019 => 0.46953161785793
1020 => 0.44193627133738
1021 => 0.45110233851837
1022 => 0.45299145226075
1023 => 0.43129450653848
1024 => 0.41647282356015
1025 => 0.41548438628505
1026 => 0.38978563055434
1027 => 0.40351369843258
1028 => 0.41559383005937
1029 => 0.40980838446622
1030 => 0.4079768852267
1031 => 0.4173336176377
1101 => 0.41806071588102
1102 => 0.40148279887873
1103 => 0.40492987277786
1104 => 0.4193047439656
1105 => 0.40456766290605
1106 => 0.37593592169587
1107 => 0.36883485401095
1108 => 0.36788744068314
1109 => 0.34862878192887
1110 => 0.36930938130874
1111 => 0.36028174547382
1112 => 0.38879993890864
1113 => 0.37251049976481
1114 => 0.37180829460061
1115 => 0.37074680850382
1116 => 0.35417008534884
1117 => 0.35779933421406
1118 => 0.36986351019228
1119 => 0.37416814409398
1120 => 0.37371913551121
1121 => 0.3698043891484
1122 => 0.37159653998655
1123 => 0.36582339771013
1124 => 0.36378478101476
1125 => 0.35735034595848
1126 => 0.34789350398379
1127 => 0.34920853586255
1128 => 0.3304720573934
1129 => 0.32026342950322
1130 => 0.31743781585078
1201 => 0.3136592871842
1202 => 0.31786461071795
1203 => 0.33041897930401
1204 => 0.31527574723134
1205 => 0.28931373801698
1206 => 0.29087409900788
1207 => 0.29437976687908
1208 => 0.28784697799341
1209 => 0.28166424156853
1210 => 0.2870396292687
1211 => 0.27603918371345
1212 => 0.29570911816918
1213 => 0.29517710156651
1214 => 0.30250883675102
1215 => 0.30709352122424
1216 => 0.29652730782268
1217 => 0.29386993372627
1218 => 0.29538369478251
1219 => 0.27036459646735
1220 => 0.30046424265227
1221 => 0.30072454564239
1222 => 0.29849567340644
1223 => 0.31452280577759
1224 => 0.34834505406866
1225 => 0.33561976376478
1226 => 0.33069214673517
1227 => 0.32132474315984
1228 => 0.33380625224259
1229 => 0.3328478670869
1230 => 0.32851368595613
1231 => 0.32589235968478
]
'min_raw' => 0.24480423603591
'max_raw' => 0.62813963818401
'avg_raw' => 0.43647193710996
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.2448042'
'max' => '$0.628139'
'avg' => '$0.436471'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.1505388838482
'max_diff' => 0.36511007380674
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0076841252376324
]
1 => [
'year' => 2028
'avg' => 0.013188189625272
]
2 => [
'year' => 2029
'avg' => 0.036027757116328
]
3 => [
'year' => 2030
'avg' => 0.027795360961102
]
4 => [
'year' => 2031
'avg' => 0.027298489104964
]
5 => [
'year' => 2032
'avg' => 0.0478628425517
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0076841252376324
'min' => '$0.007684'
'max_raw' => 0.0478628425517
'max' => '$0.047862'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0478628425517
]
1 => [
'year' => 2033
'avg' => 0.12310815272103
]
2 => [
'year' => 2034
'avg' => 0.078031863495566
]
3 => [
'year' => 2035
'avg' => 0.092038761937031
]
4 => [
'year' => 2036
'avg' => 0.17864745828249
]
5 => [
'year' => 2037
'avg' => 0.43647193710996
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0478628425517
'min' => '$0.047862'
'max_raw' => 0.43647193710996
'max' => '$0.436471'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.43647193710996
]
]
]
]
'prediction_2025_max_price' => '$0.013138'
'last_price' => 0.01273939
'sma_50day_nextmonth' => '$0.011663'
'sma_200day_nextmonth' => '$0.022095'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.013741'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.013175'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.012424'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.0115093'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.014485'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.018487'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.024394'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.01330025'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.013112'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.012624'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.012474'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.01439'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.017973'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.02317'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.021776'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.028544'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.012846'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.013284'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.015398'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.01983'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.027772'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.035769'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.017884'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '49.99'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 109.31
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.012219'
'vwma_10_action' => 'BUY'
'hma_9' => '0.014174'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 41.52
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 85.89
'cci_20_action' => 'NEUTRAL'
'adx_14' => 15.81
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001071'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -58.48
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 59.17
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 25
'buy_signals' => 6
'sell_pct' => 80.65
'buy_pct' => 19.35
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767706562
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de DexNet para 2026
La previsión del precio de DexNet para 2026 sugiere que el precio medio podría oscilar entre $0.0044014 en el extremo inferior y $0.013138 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, DexNet podría potencialmente ganar 3.13% para 2026 si DEXNET alcanza el objetivo de precio previsto.
Predicción de precio de DexNet 2027-2032
La predicción del precio de DEXNET para 2027-2032 está actualmente dentro de un rango de precios de $0.007684 en el extremo inferior y $0.047862 en el extremo superior. Considerando la volatilidad de precios en el mercado, si DexNet alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de DexNet | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.004237 | $0.007684 | $0.011131 |
| 2028 | $0.007646 | $0.013188 | $0.018729 |
| 2029 | $0.016797 | $0.036027 | $0.055257 |
| 2030 | $0.014285 | $0.027795 | $0.0413048 |
| 2031 | $0.01689 | $0.027298 | $0.0377065 |
| 2032 | $0.025781 | $0.047862 | $0.069943 |
Predicción de precio de DexNet 2032-2037
La predicción de precio de DexNet para 2032-2037 se estima actualmente entre $0.047862 en el extremo inferior y $0.436471 en el extremo superior. Comparado con el precio actual, DexNet podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de DexNet | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.025781 | $0.047862 | $0.069943 |
| 2033 | $0.059911 | $0.1231081 | $0.1863047 |
| 2034 | $0.048165 | $0.078031 | $0.107897 |
| 2035 | $0.056947 | $0.092038 | $0.12713 |
| 2036 | $0.094265 | $0.178647 | $0.263029 |
| 2037 | $0.2448042 | $0.436471 | $0.628139 |
DexNet Histograma de precios potenciales
Pronóstico de precio de DexNet basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para DexNet es Bajista, con 6 indicadores técnicos mostrando señales alcistas y 25 indicando señales bajistas. La predicción de precio de DEXNET se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de DexNet
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de DexNet aumentar durante el próximo mes, alcanzando $0.022095 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para DexNet alcance $0.011663 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 49.99, lo que sugiere que el mercado de DEXNET está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de DEXNET para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.013741 | SELL |
| SMA 5 | $0.013175 | SELL |
| SMA 10 | $0.012424 | BUY |
| SMA 21 | $0.0115093 | BUY |
| SMA 50 | $0.014485 | SELL |
| SMA 100 | $0.018487 | SELL |
| SMA 200 | $0.024394 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.01330025 | SELL |
| EMA 5 | $0.013112 | SELL |
| EMA 10 | $0.012624 | BUY |
| EMA 21 | $0.012474 | BUY |
| EMA 50 | $0.01439 | SELL |
| EMA 100 | $0.017973 | SELL |
| EMA 200 | $0.02317 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.021776 | SELL |
| SMA 50 | $0.028544 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.01983 | SELL |
| EMA 50 | $0.027772 | SELL |
| EMA 100 | $0.035769 | SELL |
| EMA 200 | $0.017884 | SELL |
Osciladores de DexNet
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 49.99 | NEUTRAL |
| Stoch RSI (14) | 109.31 | SELL |
| Estocástico Rápido (14) | 41.52 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 85.89 | NEUTRAL |
| Índice Direccional Medio (14) | 15.81 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.001071 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -58.48 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 59.17 | NEUTRAL |
| VWMA (10) | 0.012219 | BUY |
| Promedio Móvil de Hull (9) | 0.014174 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | — | — |
Predicción de precios de DexNet basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de DexNet
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de DexNet por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.01790097 | $0.025153 | $0.035345 | $0.049666 | $0.069789 | $0.098065 |
| Amazon.com acción | $0.026581 | $0.055463 | $0.115728 | $0.241474 | $0.503851 | $1.05 |
| Apple acción | $0.018069 | $0.02563 | $0.036355 | $0.051567 | $0.073143 | $0.103749 |
| Netflix acción | $0.02010076 | $0.031715 | $0.050042 | $0.078959 | $0.124585 | $0.196576 |
| Google acción | $0.016497 | $0.021364 | $0.027666 | $0.035827 | $0.046397 | $0.060083 |
| Tesla acción | $0.028879 | $0.065467 | $0.1484088 | $0.336431 | $0.762665 | $1.72 |
| Kodak acción | $0.009553 | $0.007163 | $0.005372 | $0.004028 | $0.00302 | $0.002265 |
| Nokia acción | $0.008439 | $0.00559 | $0.0037036 | $0.002453 | $0.001625 | $0.001076 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de DexNet
Podría preguntarse cosas como: "¿Debo invertir en DexNet ahora?", "¿Debería comprar DEXNET hoy?", "¿Será DexNet una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de DexNet regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como DexNet, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de DexNet a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de DexNet es de $0.01273 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de DexNet basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si DexNet ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.01307 | $0.01341 | $0.013758 | $0.014116 |
| Si DexNet ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.0134016 | $0.014098 | $0.014831 | $0.0156023 |
| Si DexNet ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.014395 | $0.016265 | $0.018379 | $0.020768 |
| Si DexNet ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.01605 | $0.020222 | $0.025479 | $0.0321023 |
| Si DexNet ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.019362 | $0.029427 | $0.044726 | $0.067977 |
| Si DexNet ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.029296 | $0.067371 | $0.154931 | $0.35629 |
| Si DexNet ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.045853 | $0.16504 | $0.594032 | $2.13 |
Cuadro de preguntas
¿Es DEXNET una buena inversión?
La decisión de adquirir DexNet depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de DexNet ha experimentado una caída de -4.722% durante las últimas 24 horas, y DexNet ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en DexNet dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede DexNet subir?
Parece que el valor medio de DexNet podría potencialmente aumentar hasta $0.013138 para el final de este año. Mirando las perspectivas de DexNet en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.0413048. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de DexNet la próxima semana?
Basado en nuestro nuevo pronóstico experimental de DexNet, el precio de DexNet aumentará en un 0.86% durante la próxima semana y alcanzará $0.012848 para el 13 de enero de 2026.
¿Cuál será el precio de DexNet el próximo mes?
Basado en nuestro nuevo pronóstico experimental de DexNet, el precio de DexNet disminuirá en un -11.62% durante el próximo mes y alcanzará $0.011259 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de DexNet este año en 2026?
Según nuestra predicción más reciente sobre el valor de DexNet en 2026, se anticipa que DEXNET fluctúe dentro del rango de $0.0044014 y $0.013138. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de DexNet no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará DexNet en 5 años?
El futuro de DexNet parece estar en una tendencia alcista, con un precio máximo de $0.0413048 proyectada después de un período de cinco años. Basado en el pronóstico de DexNet para 2030, el valor de DexNet podría potencialmente alcanzar su punto más alto de aproximadamente $0.0413048, mientras que su punto más bajo se anticipa que esté alrededor de $0.014285.
¿Cuánto será DexNet en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de DexNet, se espera que el valor de DEXNET en 2026 crezca en un 3.13% hasta $0.013138 si ocurre lo mejor. El precio estará entre $0.013138 y $0.0044014 durante 2026.
¿Cuánto será DexNet en 2027?
Según nuestra última simulación experimental para la predicción de precios de DexNet, el valor de DEXNET podría disminuir en un -12.62% hasta $0.011131 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.011131 y $0.004237 a lo largo del año.
¿Cuánto será DexNet en 2028?
Nuestro nuevo modelo experimental de predicción de precios de DexNet sugiere que el valor de DEXNET en 2028 podría aumentar en un 47.02% , alcanzando $0.018729 en el mejor escenario. Se espera que el precio oscile entre $0.018729 y $0.007646 durante el año.
¿Cuánto será DexNet en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de DexNet podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.055257 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.055257 y $0.016797.
¿Cuánto será DexNet en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de DexNet, se espera que el valor de DEXNET en 2030 aumente en un 224.23% , alcanzando $0.0413048 en el mejor escenario. Se pronostica que el precio oscile entre $0.0413048 y $0.014285 durante el transcurso de 2030.
¿Cuánto será DexNet en 2031?
Nuestra simulación experimental indica que el precio de DexNet podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.0377065 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.0377065 y $0.01689 durante el año.
¿Cuánto será DexNet en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de DexNet, DEXNET podría experimentar un 449.04% aumento en valor, alcanzando $0.069943 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.069943 y $0.025781 a lo largo del año.
¿Cuánto será DexNet en 2033?
Según nuestra predicción experimental de precios de DexNet, se anticipa que el valor de DEXNET aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.1863047. A lo largo del año, el precio de DEXNET podría oscilar entre $0.1863047 y $0.059911.
¿Cuánto será DexNet en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de DexNet sugieren que DEXNET podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.107897 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.107897 y $0.048165.
¿Cuánto será DexNet en 2035?
Basado en nuestra predicción experimental para el precio de DexNet, DEXNET podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.12713 en 2035. El rango de precios esperado para el año está entre $0.12713 y $0.056947.
¿Cuánto será DexNet en 2036?
Nuestra reciente simulación de predicción de precios de DexNet sugiere que el valor de DEXNET podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.263029 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.263029 y $0.094265.
¿Cuánto será DexNet en 2037?
Según la simulación experimental, el valor de DexNet podría aumentar en un 4830.69% en 2037, con un máximo de $0.628139 bajo condiciones favorables. Se espera que el precio caiga entre $0.628139 y $0.2448042 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de SolPod
Predicción de precios de zuzalu
Predicción de precios de SOFT COQ INU
Predicción de precios de All Street Bets
Predicción de precios de MagicRing
Predicción de precios de AI INU
Predicción de precios de Wall Street Baby On Solana
Predicción de precios de Meta Masters Guild Games
Predicción de precios de Morfey
Predicción de precios de PANTIESPredicción de precios de Celer Bridged BUSD (zkSync)
Predicción de precios de Bridged BUSD
Predicción de precios de Multichain Bridged BUSD (Moonriver)
Predicción de precios de tooker kurlson
Predicción de precios de dogwifsaudihatPredicción de precios de Harmony Horizen Bridged BUSD (Harmony)
Predicción de precios de IoTeX Bridged BUSD (IoTeX)
Predicción de precios de MIMANY
Predicción de precios de The Open League MEME
Predicción de precios de Sandwich Cat
Predicción de precios de Hege
Predicción de precios de SolDocs
Predicción de precios de Secret Society
Predicción de precios de duk
Predicción de precios de Fofar
¿Cómo leer y predecir los movimientos de precio de DexNet?
Los traders de DexNet utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de DexNet
Las medias móviles son herramientas populares para la predicción de precios de DexNet. Una media móvil simple (SMA) calcula el precio de cierre promedio de DEXNET durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de DEXNET por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de DEXNET.
¿Cómo leer gráficos de DexNet y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de DexNet en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de DEXNET dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de DexNet?
La acción del precio de DexNet está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de DEXNET. La capitalización de mercado de DexNet puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de DEXNET, grandes poseedores de DexNet, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de DexNet.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


