Predicción del precio de DexNet - Pronóstico de DEXNET
Predicción de precio de DexNet hasta $0.012933 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.004332 | $0.012933 |
| 2027 | $0.004171 | $0.010957 |
| 2028 | $0.007527 | $0.018437 |
| 2029 | $0.016535 | $0.054395 |
| 2030 | $0.014062 | $0.04066 |
| 2031 | $0.016626 | $0.037118 |
| 2032 | $0.025379 | $0.068852 |
| 2033 | $0.058976 | $0.183397 |
| 2034 | $0.047414 | $0.106213 |
| 2035 | $0.056058 | $0.125146 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en DexNet hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.82, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de DexNet para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'DexNet'
'name_with_ticker' => 'DexNet <small>DEXNET</small>'
'name_lang' => 'DexNet'
'name_lang_with_ticker' => 'DexNet <small>DEXNET</small>'
'name_with_lang' => 'DexNet'
'name_with_lang_with_ticker' => 'DexNet <small>DEXNET</small>'
'image' => '/uploads/coins/dexnet.jpg?1717131583'
'price_for_sd' => 0.01254
'ticker' => 'DEXNET'
'marketcap' => '$5.02M'
'low24h' => '$0.01177'
'high24h' => '$0.01885'
'volume24h' => '$689.04'
'current_supply' => '400.08M'
'max_supply' => '3B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01254'
'change_24h_pct' => '-15.3871%'
'ath_price' => '$0.0816'
'ath_days' => 387
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '15 dic. 2024'
'ath_pct' => '-84.63%'
'fdv' => '$37.62M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.618335'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.012647'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.0110835'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004332'
'current_year_max_price_prediction' => '$0.012933'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.014062'
'grand_prediction_max_price' => '$0.04066'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.012778197015665
107 => 0.012825906164836
108 => 0.012933397314008
109 => 0.012014897213328
110 => 0.012427276792787
111 => 0.012669511160978
112 => 0.011575087472929
113 => 0.012647877923506
114 => 0.011998908170053
115 => 0.011778638088533
116 => 0.012075202734924
117 => 0.011959631203807
118 => 0.01186026958794
119 => 0.011804824099038
120 => 0.012022588444701
121 => 0.012012429477691
122 => 0.011656124741947
123 => 0.011191339739008
124 => 0.011347336842042
125 => 0.01129066163203
126 => 0.011085263359695
127 => 0.011223676995367
128 => 0.010614173393408
129 => 0.0095655541254789
130 => 0.01025830413395
131 => 0.010231634012191
201 => 0.010218185727406
202 => 0.010738768212568
203 => 0.010688726218501
204 => 0.010597899509257
205 => 0.011083595255953
206 => 0.010906309774879
207 => 0.011452661853836
208 => 0.011812524668873
209 => 0.011721251818637
210 => 0.012059704535548
211 => 0.011350930700226
212 => 0.01158635693725
213 => 0.011634877958414
214 => 0.011077601845831
215 => 0.01069691370761
216 => 0.010671526148953
217 => 0.010011465379335
218 => 0.010364064514641
219 => 0.010674337162166
220 => 0.010525740642131
221 => 0.010478699423083
222 => 0.010719022809205
223 => 0.010737697994537
224 => 0.010311901789854
225 => 0.01040043830402
226 => 0.010769650286062
227 => 0.010391135109373
228 => 0.0096557419511691
301 => 0.0094733542803288
302 => 0.0094490204029669
303 => 0.0089543705742992
304 => 0.0094855422966149
305 => 0.009253671605307
306 => 0.0099861483409113
307 => 0.0095677615578856
308 => 0.0095497257398885
309 => 0.0095224619557065
310 => 0.0090966964144451
311 => 0.0091899120091696
312 => 0.0094997748431699
313 => 0.0096103373931958
314 => 0.0095988048134159
315 => 0.0094982563462382
316 => 0.0095442869196207
317 => 0.0093960064046408
318 => 0.0093436454686094
319 => 0.0091783799514841
320 => 0.0089354852970743
321 => 0.0089692612885295
322 => 0.0084880234213002
323 => 0.0082258194900069
324 => 0.0081532448976172
325 => 0.0080561951195726
326 => 0.0081642069282869
327 => 0.0084866601348866
328 => 0.0080977131554634
329 => 0.0074308908407005
330 => 0.0074709679980277
331 => 0.0075610094715271
401 => 0.007393217781345
402 => 0.0072344170282767
403 => 0.0073724813991572
404 => 0.0070899399938289
405 => 0.0075951532505035
406 => 0.0075814886477542
407 => 0.0077698009076643
408 => 0.0078875564283426
409 => 0.0076161680769816
410 => 0.0075479146405264
411 => 0.007586794899877
412 => 0.0069441908196596
413 => 0.007717286444765
414 => 0.0077239722078344
415 => 0.0076667246453897
416 => 0.0080783741991088
417 => 0.0089470831541716
418 => 0.0086202399015402
419 => 0.0084936763152317
420 => 0.0082530788451419
421 => 0.0085736606887724
422 => 0.0085490450050374
423 => 0.0084377235479668
424 => 0.0083703959833865
425 => 0.0084944490855016
426 => 0.0083550244311995
427 => 0.0083299799321536
428 => 0.0081782375166189
429 => 0.008124072378113
430 => 0.0080839706659396
501 => 0.0080398226211494
502 => 0.0081372022069491
503 => 0.0079165272541756
504 => 0.0076504148941632
505 => 0.0076282905308038
506 => 0.007689377843233
507 => 0.0076623512548986
508 => 0.0076281611378967
509 => 0.0075628828934158
510 => 0.0075435162327273
511 => 0.0076064484845968
512 => 0.0075354016414143
513 => 0.0076402351286519
514 => 0.0076117262208247
515 => 0.0074524777791802
516 => 0.0072539952595665
517 => 0.0072522283488108
518 => 0.0072094656155366
519 => 0.007155000845292
520 => 0.007139849992195
521 => 0.0073608540029345
522 => 0.0078183256910717
523 => 0.0077285130523207
524 => 0.0077934118881878
525 => 0.0081126499279151
526 => 0.0082141261009216
527 => 0.0081421007169164
528 => 0.008043507928958
529 => 0.0080478455112613
530 => 0.0083847669137819
531 => 0.0084057802883809
601 => 0.008458874306821
602 => 0.0085271151248844
603 => 0.0081537224233143
604 => 0.008030258748596
605 => 0.0079717548100106
606 => 0.0077915853230411
607 => 0.0079858826681733
608 => 0.0078726739258066
609 => 0.0078879496529132
610 => 0.0078780013155953
611 => 0.0078834337804745
612 => 0.007595012033102
613 => 0.0077000977588438
614 => 0.0075253723580863
615 => 0.0072914346603188
616 => 0.0072906504191267
617 => 0.007347906339236
618 => 0.0073138482775306
619 => 0.0072221989091943
620 => 0.0072352172693936
621 => 0.0071211627354849
622 => 0.0072490655548342
623 => 0.0072527333500348
624 => 0.0072034837976717
625 => 0.007400535738067
626 => 0.0074812680788261
627 => 0.0074488509684331
628 => 0.0074789936079435
629 => 0.0077322451729405
630 => 0.0077735362281755
701 => 0.0077918749873769
702 => 0.007767303479467
703 => 0.0074836225816512
704 => 0.0074962050357737
705 => 0.0074038833360126
706 => 0.0073258812283355
707 => 0.0073290009035755
708 => 0.0073691041264857
709 => 0.0075442372529576
710 => 0.007912794592956
711 => 0.007926781074597
712 => 0.0079437330983604
713 => 0.0078747806983102
714 => 0.0078539839946695
715 => 0.0078814202148563
716 => 0.0080198309739353
717 => 0.0083758610244412
718 => 0.0082500162261449
719 => 0.008147702446239
720 => 0.0082374592148135
721 => 0.0082236418638282
722 => 0.0081070095162223
723 => 0.0081037360346811
724 => 0.0078798812700082
725 => 0.007797127260435
726 => 0.0077279718160053
727 => 0.0076524558760368
728 => 0.0076076874955062
729 => 0.0076764720748662
730 => 0.0076922039220011
731 => 0.0075418052370816
801 => 0.0075213064520693
802 => 0.0076441252647557
803 => 0.0075900772844393
804 => 0.0076456669725201
805 => 0.0076585642569944
806 => 0.0076564874971444
807 => 0.007600055198323
808 => 0.0076360234627564
809 => 0.0075509477947158
810 => 0.0074584407836739
811 => 0.0073994270740195
812 => 0.0073479297853135
813 => 0.0073765034741276
814 => 0.0072746434908547
815 => 0.0072420564321693
816 => 0.0076238382240779
817 => 0.0079058645386067
818 => 0.0079017637642988
819 => 0.0078768013553328
820 => 0.0078397122790491
821 => 0.0080171176769916
822 => 0.0079553131836813
823 => 0.0080002811165028
824 => 0.008011727342704
825 => 0.0080463716220324
826 => 0.0080587539741159
827 => 0.0080213259060232
828 => 0.0078957127380504
829 => 0.0075826966664038
830 => 0.0074369868400816
831 => 0.0073889001704061
901 => 0.0073906480295192
902 => 0.0073424342723928
903 => 0.0073566353846556
904 => 0.0073374957050913
905 => 0.0073012497823824
906 => 0.0073742653905387
907 => 0.0073826797591912
908 => 0.007365637043776
909 => 0.0073696512202116
910 => 0.0072285448156126
911 => 0.0072392728290873
912 => 0.0071795378868104
913 => 0.0071683383052489
914 => 0.0070173335728893
915 => 0.0067498068010283
916 => 0.0068980426020914
917 => 0.006718994599515
918 => 0.0066511864079194
919 => 0.0069721798405957
920 => 0.0069399610029269
921 => 0.0068848163580301
922 => 0.0068032459350766
923 => 0.0067729906717371
924 => 0.0065891692693387
925 => 0.006578308120236
926 => 0.00666941497086
927 => 0.0066273722940923
928 => 0.0065683284531037
929 => 0.0063544776462211
930 => 0.0061140385357162
1001 => 0.006121295881116
1002 => 0.0061977750886389
1003 => 0.0064201486991381
1004 => 0.0063332634824136
1005 => 0.0062702272607869
1006 => 0.0062584224713381
1007 => 0.0064061841262907
1008 => 0.0066152978250723
1009 => 0.0067134092938854
1010 => 0.0066161838079812
1011 => 0.0065044964047665
1012 => 0.0065112942994906
1013 => 0.0065565176475794
1014 => 0.0065612699820399
1015 => 0.0064885729641976
1016 => 0.006509036748895
1017 => 0.006477950388692
1018 => 0.0062871734535071
1019 => 0.0062837229037099
1020 => 0.0062369031671218
1021 => 0.0062354854841053
1022 => 0.0061558334324384
1023 => 0.0061446895598016
1024 => 0.0059865355766831
1025 => 0.0060906330073061
1026 => 0.0060208099162046
1027 => 0.0059155700483126
1028 => 0.0058974266554207
1029 => 0.0058968812431215
1030 => 0.0060049390562428
1031 => 0.0060893702888454
1101 => 0.0060220245187682
1102 => 0.0060066911923645
1103 => 0.0061704110031028
1104 => 0.0061495761648471
1105 => 0.006131533329288
1106 => 0.0065965739869255
1107 => 0.0062284580188304
1108 => 0.006067938445416
1109 => 0.0058692649914755
1110 => 0.0059339540698771
1111 => 0.0059475850091766
1112 => 0.0054698111660314
1113 => 0.0052759783773703
1114 => 0.0052094622687364
1115 => 0.0051711813078178
1116 => 0.0051886264224105
1117 => 0.005014154178297
1118 => 0.0051314024118458
1119 => 0.0049803241962153
1120 => 0.0049549954417138
1121 => 0.0052251420062608
1122 => 0.0052627313225442
1123 => 0.0051023636211941
1124 => 0.0052053456466334
1125 => 0.0051680029326519
1126 => 0.0049829139986015
1127 => 0.0049758449627428
1128 => 0.0048829738418269
1129 => 0.0047376485209862
1130 => 0.0046712309497631
1201 => 0.0046366401020063
1202 => 0.0046509129599529
1203 => 0.0046436961662184
1204 => 0.0045966017054736
1205 => 0.0046463955655815
1206 => 0.0045191928292492
1207 => 0.0044685396746996
1208 => 0.0044456608199338
1209 => 0.0043327610699225
1210 => 0.0045124347789371
1211 => 0.0045478327630828
1212 => 0.0045833004921922
1213 => 0.0048920228592423
1214 => 0.0048765999622248
1215 => 0.0050160154400073
1216 => 0.0050105980109093
1217 => 0.0049708344582647
1218 => 0.0048030785704442
1219 => 0.0048699430773683
1220 => 0.0046641445181075
1221 => 0.0048183427916474
1222 => 0.0047479731390777
1223 => 0.0047945507413281
1224 => 0.0047108000127488
1225 => 0.0047571511239274
1226 => 0.0045562269383023
1227 => 0.0043686067608452
1228 => 0.0044441105972284
1229 => 0.0045261919022879
1230 => 0.0047041650855845
1231 => 0.00459816572586
]
'min_raw' => 0.0043327610699225
'max_raw' => 0.012933397314008
'avg_raw' => 0.0086330791919653
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004332'
'max' => '$0.012933'
'avg' => '$0.008633'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0082077989300775
'max_diff' => 0.00039283731400818
'year' => 2026
]
1 => [
'items' => [
101 => 0.0046362871038965
102 => 0.0045085868689158
103 => 0.0042451048083818
104 => 0.0042465960882303
105 => 0.0042060651134859
106 => 0.0041710404336875
107 => 0.0046103410274336
108 => 0.0045557070542866
109 => 0.0044686549683944
110 => 0.0045851776446734
111 => 0.0046159880897451
112 => 0.004616865219802
113 => 0.0047018771565295
114 => 0.0047472480424003
115 => 0.0047552448576837
116 => 0.004889012976929
117 => 0.0049338502860558
118 => 0.0051185288167359
119 => 0.0047433986397229
120 => 0.0047356730805886
121 => 0.0045868173576869
122 => 0.0044924107049067
123 => 0.0045932814619711
124 => 0.0046826391824987
125 => 0.0045895939511473
126 => 0.0046017436940698
127 => 0.0044768380730552
128 => 0.0045214859552122
129 => 0.004559942726045
130 => 0.0045387091575757
131 => 0.0045069214778607
201 => 0.0046753128684375
202 => 0.0046658115662499
203 => 0.0048226215004564
204 => 0.0049448660577563
205 => 0.0051639501582662
206 => 0.0049353244782717
207 => 0.0049269924497879
208 => 0.0050084393647162
209 => 0.0049338378169575
210 => 0.0049809834199831
211 => 0.0051563542727506
212 => 0.0051600595825238
213 => 0.0050979908698006
214 => 0.0050942139829906
215 => 0.0051061349582264
216 => 0.0051759564825274
217 => 0.0051515586965379
218 => 0.0051797924321613
219 => 0.0052150991508887
220 => 0.0053611427092837
221 => 0.0053963533167846
222 => 0.0053108097951643
223 => 0.0053185334173764
224 => 0.0052865377920682
225 => 0.0052556304189245
226 => 0.0053251056800922
227 => 0.0054520730854157
228 => 0.0054512832277768
301 => 0.0054807371979181
302 => 0.0054990867773063
303 => 0.0054203169498591
304 => 0.0053690406886377
305 => 0.0053887032699833
306 => 0.0054201441657501
307 => 0.0053785074112359
308 => 0.0051215060743533
309 => 0.0051994638626545
310 => 0.0051864878747401
311 => 0.005168008490016
312 => 0.0052463956489826
313 => 0.0052388350162735
314 => 0.0050123647132556
315 => 0.0050268626072737
316 => 0.0050132463782094
317 => 0.0050572431999346
318 => 0.0049314618441991
319 => 0.004970151342073
320 => 0.004994417032448
321 => 0.0050087097104967
322 => 0.0050603446641896
323 => 0.0050542858983421
324 => 0.0050599680427976
325 => 0.0051365290480018
326 => 0.0055237483397605
327 => 0.0055448238314598
328 => 0.0054410404023339
329 => 0.0054824998352321
330 => 0.0054029067902488
331 => 0.0054563381345731
401 => 0.0054928945033508
402 => 0.0053277033022299
403 => 0.0053179217513816
404 => 0.0052380001975889
405 => 0.0052809455136089
406 => 0.0052126164279436
407 => 0.0052293819955159
408 => 0.0051825040069878
409 => 0.005266875053024
410 => 0.0053612149924275
411 => 0.0053850489867179
412 => 0.0053223520089195
413 => 0.0052769552650613
414 => 0.0051972535374633
415 => 0.0053297992867276
416 => 0.005368559703071
417 => 0.0053295956947613
418 => 0.0053205668826556
419 => 0.0053034573000299
420 => 0.0053241967614919
421 => 0.0053683486055194
422 => 0.0053475274112325
423 => 0.0053612801768812
424 => 0.0053088688160188
425 => 0.0054203430259496
426 => 0.0055973908990492
427 => 0.0055979601369115
428 => 0.0055771388303907
429 => 0.0055686192003636
430 => 0.0055899831243966
501 => 0.0056015721767904
502 => 0.0056706591896391
503 => 0.0057447923069738
504 => 0.0060907392187618
505 => 0.0059935987102606
506 => 0.0063005433908728
507 => 0.0065432967814585
508 => 0.006616087908976
509 => 0.0065491234967471
510 => 0.0063200418598588
511 => 0.0063088020218614
512 => 0.0066511467031449
513 => 0.0065544186503026
514 => 0.0065429131562031
515 => 0.0064205141378237
516 => 0.0064928671170993
517 => 0.0064770424591775
518 => 0.0064520624624793
519 => 0.0065901069067849
520 => 0.0068485137832124
521 => 0.0068082386481969
522 => 0.0067781751282175
523 => 0.0066464455350269
524 => 0.0067257761729975
525 => 0.0066975280522945
526 => 0.006818899905535
527 => 0.006747001908391
528 => 0.0065536858401676
529 => 0.0065844720612103
530 => 0.006579818785833
531 => 0.0066755828633636
601 => 0.0066468368642994
602 => 0.0065742056681589
603 => 0.0068476305766012
604 => 0.0068298758839162
605 => 0.0068550479788557
606 => 0.006866129513521
607 => 0.0070325584370025
608 => 0.0071007390418214
609 => 0.0071162172327847
610 => 0.0071809835340854
611 => 0.0071146057882076
612 => 0.0073801640982495
613 => 0.0075567448786703
614 => 0.007761852541893
615 => 0.0080615699656039
616 => 0.0081742664894604
617 => 0.0081539088711332
618 => 0.0083811512011631
619 => 0.0087895006169137
620 => 0.008236447963213
621 => 0.0088188137504766
622 => 0.0086344434659653
623 => 0.0081973048380687
624 => 0.0081691582639581
625 => 0.0084651936180534
626 => 0.0091217715410901
627 => 0.0089573062182146
628 => 0.0091220405474402
629 => 0.0089298692020194
630 => 0.008920326274972
701 => 0.0091127072141276
702 => 0.0095622157646038
703 => 0.0093486711018486
704 => 0.0090425024644895
705 => 0.0092685726218038
706 => 0.0090727297297328
707 => 0.0086314408809228
708 => 0.0089571804546817
709 => 0.0087393676782381
710 => 0.0088029370259684
711 => 0.0092607470848476
712 => 0.0092056621673481
713 => 0.0092769471513185
714 => 0.0091511310204636
715 => 0.0090335989148623
716 => 0.0088142165117088
717 => 0.0087492681975568
718 => 0.0087672175749929
719 => 0.0087492593027368
720 => 0.0086265168644008
721 => 0.0086000106465285
722 => 0.0085558324554774
723 => 0.0085695251241808
724 => 0.008486457200219
725 => 0.0086432235354438
726 => 0.0086723207486817
727 => 0.0087864022142308
728 => 0.0087982465304349
729 => 0.0091159617881412
730 => 0.0089409695631846
731 => 0.0090583694557873
801 => 0.0090478681043823
802 => 0.0082067789576555
803 => 0.0083226736210821
804 => 0.008502969347625
805 => 0.0084217463672025
806 => 0.0083069160761354
807 => 0.0082141844592881
808 => 0.0080736865774698
809 => 0.0082714346481062
810 => 0.0085314523328304
811 => 0.008804841008014
812 => 0.0091332995881116
813 => 0.0090599914567131
814 => 0.0087987007033301
815 => 0.0088104220156539
816 => 0.0088828785562729
817 => 0.0087890407528003
818 => 0.0087613661526248
819 => 0.0088790764911811
820 => 0.0088798870975903
821 => 0.0087719153640178
822 => 0.0086519245407706
823 => 0.00865142177484
824 => 0.008630070566817
825 => 0.0089336675344947
826 => 0.0091006151696019
827 => 0.0091197554469174
828 => 0.0090993268764368
829 => 0.0091071890224338
830 => 0.0090100458720051
831 => 0.0092320863069788
901 => 0.0094358525676338
902 => 0.009381238856947
903 => 0.0092993651408311
904 => 0.0092341487823724
905 => 0.0093658759554998
906 => 0.0093600103518383
907 => 0.0094340728471087
908 => 0.0094307129445176
909 => 0.0094058085129894
910 => 0.0093812397463627
911 => 0.0094786521289103
912 => 0.0094505989271316
913 => 0.009422502150982
914 => 0.0093661497650128
915 => 0.0093738089901801
916 => 0.0092919494107156
917 => 0.0092540774236159
918 => 0.0086845736052385
919 => 0.008532383575894
920 => 0.0085802656572395
921 => 0.0085960296816761
922 => 0.0085297963858685
923 => 0.0086247579181189
924 => 0.0086099582639068
925 => 0.0086675350609378
926 => 0.0086315635778468
927 => 0.0086330398600602
928 => 0.0087388243219022
929 => 0.0087695340012142
930 => 0.0087539148104586
1001 => 0.0087648539562693
1002 => 0.0090169419543516
1003 => 0.0089811031023447
1004 => 0.0089620644265108
1005 => 0.0089673382698295
1006 => 0.0090317521581671
1007 => 0.0090497845300338
1008 => 0.0089733801033226
1009 => 0.0090094128726483
1010 => 0.009162835831198
1011 => 0.009216525183703
1012 => 0.0093878758245477
1013 => 0.0093150830268021
1014 => 0.0094486973574627
1015 => 0.0098593822574313
1016 => 0.01018746577276
1017 => 0.009885746613439
1018 => 0.010488230208156
1019 => 0.010957350107782
1020 => 0.010939344504674
1021 => 0.010857542599235
1022 => 0.010323462065709
1023 => 0.0098319931960664
1024 => 0.010243127774393
1025 => 0.010244175840984
1026 => 0.010208859016088
1027 => 0.009989509249821
1028 => 0.01020122611969
1029 => 0.010218031435978
1030 => 0.010208624927751
1031 => 0.010040449976247
1101 => 0.0097836779092258
1102 => 0.0098338505564963
1103 => 0.0099160343762195
1104 => 0.0097604432601426
1105 => 0.0097107224709579
1106 => 0.0098031628778195
1107 => 0.010101025129451
1108 => 0.010044715996179
1109 => 0.010043245537146
1110 => 0.010284159888074
1111 => 0.01011171720538
1112 => 0.0098344833942534
1113 => 0.0097644782006791
1114 => 0.0095160069246393
1115 => 0.0096876269200243
1116 => 0.009693803218129
1117 => 0.0095998087005705
1118 => 0.0098421105313199
1119 => 0.0098398776772932
1120 => 0.010069907203722
1121 => 0.010509637263108
1122 => 0.010379587446745
1123 => 0.010228353659696
1124 => 0.010244796965606
1125 => 0.010425139445906
1126 => 0.010316100265498
1127 => 0.010355311515021
1128 => 0.010425080094983
1129 => 0.010467173211531
1130 => 0.010238740413911
1201 => 0.010185481801582
1202 => 0.01007653337199
1203 => 0.010048110760328
1204 => 0.010136846982947
1205 => 0.010113468123384
1206 => 0.0096932841241892
1207 => 0.0096493725583916
1208 => 0.0096507192634233
1209 => 0.0095403015433442
1210 => 0.0093718880169344
1211 => 0.0098144687088904
1212 => 0.0097789232854135
1213 => 0.0097396838888923
1214 => 0.0097444904910692
1215 => 0.0099365997689959
1216 => 0.0098251666860474
1217 => 0.010121429800589
1218 => 0.010060527010724
1219 => 0.0099980622941057
1220 => 0.0099894277675472
1221 => 0.0099653841808884
1222 => 0.0098829297760108
1223 => 0.0097833611273795
1224 => 0.0097176172810645
1225 => 0.008963988270476
1226 => 0.009103857431183
1227 => 0.0092647641511011
1228 => 0.0093203085060237
1229 => 0.0092252960433763
1230 => 0.0098866814471439
1231 => 0.010007522933681
]
'min_raw' => 0.0041710404336875
'max_raw' => 0.010957350107782
'avg_raw' => 0.0075641952707345
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004171'
'max' => '$0.010957'
'avg' => '$0.007564'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00016172063623503
'max_diff' => -0.0019760472062266
'year' => 2027
]
2 => [
'items' => [
101 => 0.0096414861886659
102 => 0.0095730156588554
103 => 0.0098911703636792
104 => 0.0096992841838396
105 => 0.009785690518872
106 => 0.0095989272842703
107 => 0.0099784157582257
108 => 0.0099755246918712
109 => 0.0098278951043666
110 => 0.0099526706208017
111 => 0.0099309878042465
112 => 0.0097643143635494
113 => 0.0099836996035858
114 => 0.0099838084159278
115 => 0.0098417181476986
116 => 0.0096757878219664
117 => 0.0096461233988248
118 => 0.0096237752408422
119 => 0.0097801942419753
120 => 0.0099204390292817
121 => 0.010181399808828
122 => 0.010247011549081
123 => 0.010503098539309
124 => 0.010350611205277
125 => 0.010418206865412
126 => 0.010491591516478
127 => 0.010526774816831
128 => 0.010469445516946
129 => 0.010867254022382
130 => 0.010900841248778
131 => 0.01091210275526
201 => 0.010777963965472
202 => 0.010897110606379
203 => 0.010841365838821
204 => 0.010986398237665
205 => 0.01100914116967
206 => 0.010989878715365
207 => 0.010997097680956
208 => 0.010657638299796
209 => 0.010640035540092
210 => 0.010400020662493
211 => 0.010497828499215
212 => 0.010314981436515
213 => 0.010372964123631
214 => 0.010398522339632
215 => 0.010385172178009
216 => 0.010503358407554
217 => 0.010402875968589
218 => 0.010137686291319
219 => 0.0098724243632978
220 => 0.0098690942158692
221 => 0.0097992554324833
222 => 0.0097487747837064
223 => 0.0097584991475581
224 => 0.00979276907414
225 => 0.0097467829532742
226 => 0.0097565964237164
227 => 0.0099195654198689
228 => 0.0099522476898056
229 => 0.0098411805667736
301 => 0.0093952300408907
302 => 0.0092857926632568
303 => 0.0093644540800625
304 => 0.0093268589892735
305 => 0.0075275031358419
306 => 0.007950235103383
307 => 0.0076990621228912
308 => 0.007814814188215
309 => 0.0075584316160609
310 => 0.0076807908176548
311 => 0.007658195540963
312 => 0.0083379360352208
313 => 0.0083273228223554
314 => 0.0083324028057153
315 => 0.0080899219641202
316 => 0.0084762005288536
317 => 0.0086664952399692
318 => 0.0086312767534715
319 => 0.0086401404877705
320 => 0.0084878321655572
321 => 0.0083338774832039
322 => 0.0081631180470182
323 => 0.008480367972947
324 => 0.0084450951968205
325 => 0.0085259982545103
326 => 0.0087317575089681
327 => 0.0087620563407904
328 => 0.0088027782780201
329 => 0.0087881823623081
330 => 0.0091359162906128
331 => 0.0090938034174728
401 => 0.0091952833250398
402 => 0.0089865314558754
403 => 0.0087503089010065
404 => 0.0087952070859899
405 => 0.0087908830297276
406 => 0.0087358328305878
407 => 0.008686135972265
408 => 0.0086034047051606
409 => 0.0088651786762027
410 => 0.0088545511310338
411 => 0.0090265987341485
412 => 0.0089961876491167
413 => 0.0087930949804196
414 => 0.0088003484748137
415 => 0.0088491317105246
416 => 0.0090179710463172
417 => 0.009068094056639
418 => 0.0090448750812014
419 => 0.0090998326738169
420 => 0.0091432689142186
421 => 0.0091052875968552
422 => 0.0096430229552113
423 => 0.0094197177436435
424 => 0.009528555150014
425 => 0.0095545122301261
426 => 0.0094880237152375
427 => 0.0095024426933416
428 => 0.009524283516233
429 => 0.009656896715958
430 => 0.010004912123975
501 => 0.010159045779165
502 => 0.010622764485623
503 => 0.010146247124745
504 => 0.010117972556576
505 => 0.010201502298572
506 => 0.010473754268874
507 => 0.010694388919476
508 => 0.010767586161799
509 => 0.010777260385727
510 => 0.010914583278385
511 => 0.010993294199537
512 => 0.010897908667266
513 => 0.010817079415948
514 => 0.010527559070622
515 => 0.010561071838931
516 => 0.010791941579568
517 => 0.011118058686378
518 => 0.011397901090723
519 => 0.011299910034214
520 => 0.012047512624473
521 => 0.012121634367614
522 => 0.012111393139355
523 => 0.012280253501026
524 => 0.011945100070924
525 => 0.011801815486264
526 => 0.010834555617534
527 => 0.01110631618663
528 => 0.011501336133749
529 => 0.011449053762499
530 => 0.011162179717987
531 => 0.011397683471035
601 => 0.011319818565394
602 => 0.011258403283697
603 => 0.011539758595089
604 => 0.011230396872775
605 => 0.011498250013919
606 => 0.011154725589816
607 => 0.011300357649105
608 => 0.011217689848822
609 => 0.01127118604699
610 => 0.010958448365609
611 => 0.011127194027204
612 => 0.010951427991302
613 => 0.010951344655315
614 => 0.010947464610331
615 => 0.011154252572104
616 => 0.011160995920113
617 => 0.011008179303924
618 => 0.010986156042087
619 => 0.011067587583957
620 => 0.010972252575382
621 => 0.011016859225863
622 => 0.010973603665383
623 => 0.010963865927618
624 => 0.010886273976363
625 => 0.010852845230327
626 => 0.010865953503001
627 => 0.010821208210589
628 => 0.010794247553403
629 => 0.010942101457027
630 => 0.01086310908073
701 => 0.010929994742449
702 => 0.010853770089277
703 => 0.010589542231881
704 => 0.010437581996934
705 => 0.0099384800682477
706 => 0.010080024756089
707 => 0.010173869030566
708 => 0.010142853498411
709 => 0.010209486862898
710 => 0.010213577610304
711 => 0.010191914424262
712 => 0.010166831230052
713 => 0.010154622118299
714 => 0.010245618834573
715 => 0.010298445491179
716 => 0.010183287558985
717 => 0.010156307666702
718 => 0.010272738694194
719 => 0.010343761553705
720 => 0.010868154444031
721 => 0.010829305724949
722 => 0.010926808386169
723 => 0.010915831082816
724 => 0.011018029405167
725 => 0.011185080469976
726 => 0.010845418947006
727 => 0.010904372442782
728 => 0.010889918407053
729 => 0.011047723779093
730 => 0.011048216430239
731 => 0.010953604226738
801 => 0.011004895037164
802 => 0.010976265913874
803 => 0.011028002609117
804 => 0.010828786876621
805 => 0.011071410134791
806 => 0.011208961887876
807 => 0.011210871794101
808 => 0.011276070233385
809 => 0.011342315623737
810 => 0.01146946788176
811 => 0.011338769416273
812 => 0.011103655600102
813 => 0.011120630058216
814 => 0.01098278291382
815 => 0.010985100149221
816 => 0.010972730565043
817 => 0.0110098526183
818 => 0.010836933079757
819 => 0.010877516949826
820 => 0.01082069929407
821 => 0.010904248932295
822 => 0.010814363332815
823 => 0.010889911436879
824 => 0.010922515494134
825 => 0.011042825167319
826 => 0.010796593496265
827 => 0.010294510450566
828 => 0.01040005439394
829 => 0.010243946611392
830 => 0.010258394981011
831 => 0.010287582987082
901 => 0.010192975109683
902 => 0.010211023311254
903 => 0.010210378502491
904 => 0.010204821888922
905 => 0.010180210726081
906 => 0.010144519670791
907 => 0.010286701849938
908 => 0.010310861372777
909 => 0.010364564999316
910 => 0.010524350564377
911 => 0.010508384218424
912 => 0.010534425991111
913 => 0.010477576947555
914 => 0.010261032045094
915 => 0.010272791475127
916 => 0.010126151194189
917 => 0.01036081507764
918 => 0.010305243572627
919 => 0.010269416261831
920 => 0.010259640448142
921 => 0.010419822090714
922 => 0.01046775094871
923 => 0.010437884900793
924 => 0.010376628765182
925 => 0.010494258654306
926 => 0.010525731450229
927 => 0.010532777048564
928 => 0.010741194658797
929 => 0.010544425277745
930 => 0.010591789623484
1001 => 0.010961312728188
1002 => 0.010626206262924
1003 => 0.01080371963134
1004 => 0.010795031275691
1005 => 0.010885841108248
1006 => 0.010787582218881
1007 => 0.010788800255577
1008 => 0.010869433234897
1009 => 0.010756198757677
1010 => 0.010728160308697
1011 => 0.010689425392247
1012 => 0.010774001665228
1013 => 0.010824701315824
1014 => 0.011233303264838
1015 => 0.011497278758414
1016 => 0.011485818886053
1017 => 0.011590540667459
1018 => 0.011543362545794
1019 => 0.011391011945977
1020 => 0.011651055842687
1021 => 0.01156876707307
1022 => 0.011575550859256
1023 => 0.011575298366395
1024 => 0.011630013204382
1025 => 0.011591242727127
1026 => 0.01151482213675
1027 => 0.011565553691042
1028 => 0.011716208270427
1029 => 0.012183844707484
1030 => 0.01244554025302
1031 => 0.012168090307048
1101 => 0.012359471564577
1102 => 0.012244711006174
1103 => 0.012223855598882
1104 => 0.012344057171574
1105 => 0.012464469141206
1106 => 0.012456799419296
1107 => 0.012369386512566
1108 => 0.012320009179574
1109 => 0.012693910887606
1110 => 0.012969395296835
1111 => 0.012950609106997
1112 => 0.013033525239347
1113 => 0.013276969568429
1114 => 0.013299227066936
1115 => 0.013296423133707
1116 => 0.013241255601326
1117 => 0.013480958158548
1118 => 0.013680922248948
1119 => 0.013228485911524
1120 => 0.013400767745988
1121 => 0.013478110612053
1122 => 0.013591672886031
1123 => 0.013783271477479
1124 => 0.013991398366808
1125 => 0.014020829790954
1126 => 0.013999946787099
1127 => 0.013862681508836
1128 => 0.01409041643461
1129 => 0.014223818213087
1130 => 0.014303255919325
1201 => 0.014504696725169
1202 => 0.013478588255263
1203 => 0.012752257679364
1204 => 0.012638830671597
1205 => 0.012869488952188
1206 => 0.012930311701315
1207 => 0.012905794127407
1208 => 0.012088243029146
1209 => 0.01263452643426
1210 => 0.013222281445351
1211 => 0.013244859509034
1212 => 0.013539101956964
1213 => 0.013634919359415
1214 => 0.013871823097237
1215 => 0.013857004703935
1216 => 0.013914686994133
1217 => 0.013901426834534
1218 => 0.014340241122883
1219 => 0.014824318447484
1220 => 0.014807556389005
1221 => 0.01473796454625
1222 => 0.014841320299913
1223 => 0.01534093997578
1224 => 0.015294943002268
1225 => 0.015339625144022
1226 => 0.0159287048992
1227 => 0.01669459237655
1228 => 0.016338760749475
1229 => 0.017110812992434
1230 => 0.017596778954646
1231 => 0.018437206836473
]
'min_raw' => 0.0075275031358419
'max_raw' => 0.018437206836473
'avg_raw' => 0.012982354986158
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.007527'
'max' => '$0.018437'
'avg' => '$0.012982'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0033564627021544
'max_diff' => 0.0074798567286918
'year' => 2028
]
3 => [
'items' => [
101 => 0.018331981126474
102 => 0.018659153533525
103 => 0.018143605144307
104 => 0.016959801833143
105 => 0.016772460427734
106 => 0.017147522665602
107 => 0.018069576579364
108 => 0.017118483906547
109 => 0.017310888715552
110 => 0.017255476117615
111 => 0.017252523415759
112 => 0.017365216036084
113 => 0.01720174951265
114 => 0.016535757489114
115 => 0.016840977708785
116 => 0.016723117524091
117 => 0.016853892186068
118 => 0.017559629101182
119 => 0.017247605988344
120 => 0.016918914985667
121 => 0.017331166445396
122 => 0.017856104218602
123 => 0.017823254556158
124 => 0.017759512480925
125 => 0.018118823221591
126 => 0.018712299297002
127 => 0.018872713495406
128 => 0.018991127977144
129 => 0.019007455333546
130 => 0.019175637251888
131 => 0.018271280689663
201 => 0.019706517779438
202 => 0.019954343577218
203 => 0.019907762598562
204 => 0.020183210542691
205 => 0.020102166770088
206 => 0.019984747058965
207 => 0.020421390639867
208 => 0.019920814009683
209 => 0.019210308503984
210 => 0.018820511131351
211 => 0.019333827755691
212 => 0.019647292305893
213 => 0.019854472433487
214 => 0.019917165014916
215 => 0.018341483315216
216 => 0.017492278270391
217 => 0.018036608967968
218 => 0.01870072998671
219 => 0.018267591463872
220 => 0.018284569673927
221 => 0.017667027967161
222 => 0.018755368724999
223 => 0.018596806630968
224 => 0.019419427055289
225 => 0.019223102089083
226 => 0.019893917111176
227 => 0.0197172690344
228 => 0.020450525324838
301 => 0.020743041111215
302 => 0.02123422064299
303 => 0.021595534306024
304 => 0.021807704599786
305 => 0.021794966691179
306 => 0.022635691097887
307 => 0.022139945287925
308 => 0.021517171712296
309 => 0.021505907703139
310 => 0.021828450962727
311 => 0.022504413149401
312 => 0.022679680309555
313 => 0.022777630741696
314 => 0.022627616245193
315 => 0.022089519698902
316 => 0.021857172338425
317 => 0.022055139021303
318 => 0.021813042779614
319 => 0.022230968812976
320 => 0.022804870520966
321 => 0.02268636208772
322 => 0.023082518012286
323 => 0.023492497717393
324 => 0.024078787109038
325 => 0.024232064866247
326 => 0.024485427170282
327 => 0.024746220206316
328 => 0.024829979900921
329 => 0.024989903147028
330 => 0.024989060272581
331 => 0.025470999738801
401 => 0.026002593894465
402 => 0.026203258381795
403 => 0.026664675305706
404 => 0.025874514993486
405 => 0.026473860667012
406 => 0.027014485467128
407 => 0.026369930293085
408 => 0.027258299438409
409 => 0.027292792799234
410 => 0.027813601595289
411 => 0.027285662105595
412 => 0.026972173321856
413 => 0.027877203694237
414 => 0.028315119383242
415 => 0.028183215613838
416 => 0.027179421415777
417 => 0.026595170137748
418 => 0.025066071849489
419 => 0.026877354824062
420 => 0.027759577925127
421 => 0.027177136671075
422 => 0.027470886161034
423 => 0.029073488129661
424 => 0.029683655198521
425 => 0.029556744713588
426 => 0.029578190496418
427 => 0.029907425571459
428 => 0.031367435207259
429 => 0.030492563590729
430 => 0.031161370160752
501 => 0.031516102753931
502 => 0.031845598155937
503 => 0.0310364615867
504 => 0.0299837867987
505 => 0.029650360505059
506 => 0.027119224367022
507 => 0.02698746773887
508 => 0.026913508750854
509 => 0.026447207793119
510 => 0.026080822970921
511 => 0.025789460157313
512 => 0.025024837126104
513 => 0.025282874953393
514 => 0.024064225430875
515 => 0.024843874209095
516 => 0.022898880145835
517 => 0.024518728997528
518 => 0.023637118913041
519 => 0.024229096373947
520 => 0.024227031020354
521 => 0.023137012828201
522 => 0.022508313083067
523 => 0.022908945030027
524 => 0.023338454279371
525 => 0.023408140710035
526 => 0.023965010663148
527 => 0.024120421097182
528 => 0.023649520226639
529 => 0.022858574467036
530 => 0.02304229312744
531 => 0.022504590030278
601 => 0.021562286034952
602 => 0.022239065215444
603 => 0.022470147383544
604 => 0.022572206433438
605 => 0.02164555867838
606 => 0.02135438583524
607 => 0.021199367856728
608 => 0.022738955878203
609 => 0.022823297985442
610 => 0.022391791840031
611 => 0.024342240534381
612 => 0.023900793924395
613 => 0.024393997944795
614 => 0.023025622584656
615 => 0.023077896366175
616 => 0.022430085541498
617 => 0.022792816316582
618 => 0.022536449896111
619 => 0.022763511254531
620 => 0.022899610896558
621 => 0.023547315421854
622 => 0.024526124742785
623 => 0.023450569964817
624 => 0.022981935345829
625 => 0.023272673627748
626 => 0.024046947985542
627 => 0.025220013271976
628 => 0.024525535012268
629 => 0.024833732670921
630 => 0.024901060148577
701 => 0.024388977590851
702 => 0.025238894486306
703 => 0.025694371855293
704 => 0.026161597388112
705 => 0.026567276226897
706 => 0.025974977235794
707 => 0.026608822058999
708 => 0.026098055020169
709 => 0.025639844184213
710 => 0.02564053910091
711 => 0.025353096750123
712 => 0.024796140975405
713 => 0.024693429785312
714 => 0.025227746367167
715 => 0.025656217665846
716 => 0.025691508614245
717 => 0.025928732340844
718 => 0.026069118898646
719 => 0.027445098011383
720 => 0.027998528193221
721 => 0.028675252143677
722 => 0.028938874260451
723 => 0.029732282318182
724 => 0.029091540874112
725 => 0.028952912432235
726 => 0.027028364005977
727 => 0.027343508702962
728 => 0.027848085769774
729 => 0.027036684295962
730 => 0.027551331772221
731 => 0.027652934085759
801 => 0.027009113184368
802 => 0.02735300574566
803 => 0.026439729059907
804 => 0.024546031678837
805 => 0.025241002712833
806 => 0.025752735318575
807 => 0.025022429794006
808 => 0.026331474180069
809 => 0.025566757473892
810 => 0.02532437899091
811 => 0.024378774114627
812 => 0.024825063216563
813 => 0.025428675617176
814 => 0.02505571333107
815 => 0.025829666075308
816 => 0.026925789566805
817 => 0.027706952442129
818 => 0.027766920427959
819 => 0.027264685032973
820 => 0.028069520458661
821 => 0.028075382806078
822 => 0.027167525158053
823 => 0.026611467403611
824 => 0.026485129911846
825 => 0.026800745736199
826 => 0.027183961612859
827 => 0.027788186242066
828 => 0.028153306530893
829 => 0.029105346599314
830 => 0.029362941344701
831 => 0.029645959872034
901 => 0.030024159904233
902 => 0.030478286011385
903 => 0.029484683942349
904 => 0.029524161604858
905 => 0.028598933115529
906 => 0.027610193783494
907 => 0.028360523688411
908 => 0.029341480226885
909 => 0.029116447713099
910 => 0.0290911269583
911 => 0.029133709444479
912 => 0.028964042277959
913 => 0.028196643971946
914 => 0.027811261346833
915 => 0.028308503254822
916 => 0.028572765199226
917 => 0.028982612428934
918 => 0.028932090107047
919 => 0.029987812556396
920 => 0.030398034376823
921 => 0.030293082080776
922 => 0.030312395829067
923 => 0.031055082840202
924 => 0.031881103541817
925 => 0.032654780931912
926 => 0.033441798803334
927 => 0.032493018041505
928 => 0.03201128568331
929 => 0.032508310511036
930 => 0.032244582141314
1001 => 0.033760043580655
1002 => 0.033864970842665
1003 => 0.035380322696895
1004 => 0.036818572051302
1005 => 0.035915233400713
1006 => 0.036767041060952
1007 => 0.037688340494398
1008 => 0.039465676576962
1009 => 0.038867132311792
1010 => 0.038408656785056
1011 => 0.037975399627628
1012 => 0.038876938994599
1013 => 0.040036754987763
1014 => 0.040286568244111
1015 => 0.040691361155404
1016 => 0.040265770904902
1017 => 0.040778347484403
1018 => 0.042587968047605
1019 => 0.042098992597465
1020 => 0.041404568851541
1021 => 0.042833090488383
1022 => 0.043350066915518
1023 => 0.046978478223814
1024 => 0.051559497382732
1025 => 0.049662925370346
1026 => 0.048485661920262
1027 => 0.048762346756094
1028 => 0.050435179875646
1029 => 0.050972440780577
1030 => 0.049511980436035
1031 => 0.050027839719736
1101 => 0.052870275091097
1102 => 0.054395150471587
1103 => 0.052324164886795
1104 => 0.046610397794834
1105 => 0.041342043591075
1106 => 0.042739448362994
1107 => 0.042581026028377
1108 => 0.04563486823387
1109 => 0.042087330694695
1110 => 0.042147062128687
1111 => 0.045264054556915
1112 => 0.044432494415842
1113 => 0.043085473485481
1114 => 0.041351878334569
1115 => 0.038147167359967
1116 => 0.035308665479785
1117 => 0.040875621334765
1118 => 0.040635564075446
1119 => 0.040287925589459
1120 => 0.041061557421609
1121 => 0.044818093999304
1122 => 0.044731493672465
1123 => 0.044180586576996
1124 => 0.044598444753437
1125 => 0.043012220926836
1126 => 0.043421026924596
1127 => 0.041341209056852
1128 => 0.042281373593939
1129 => 0.043082583383542
1130 => 0.043243438110918
1201 => 0.043605852025143
1202 => 0.040509064808071
1203 => 0.04189943135164
1204 => 0.04271614143626
1205 => 0.039026215561781
1206 => 0.042643203465738
1207 => 0.040455156632351
1208 => 0.039712500673739
1209 => 0.040712389084528
1210 => 0.04032273159842
1211 => 0.03998772697332
1212 => 0.039800788636404
1213 => 0.04053499633163
1214 => 0.04050074466508
1215 => 0.039299438372117
1216 => 0.037732383284456
1217 => 0.038258338408705
1218 => 0.038067253981209
1219 => 0.037374739365585
1220 => 0.037841410601982
1221 => 0.035786426653797
1222 => 0.032250933579714
1223 => 0.034586588599535
1224 => 0.034496668421975
1225 => 0.034451326590894
1226 => 0.036206506785526
1227 => 0.036037786708709
1228 => 0.035731558117174
1229 => 0.037369115237354
1230 => 0.036771384860237
1231 => 0.038613449039523
]
'min_raw' => 0.016535757489114
'max_raw' => 0.054395150471587
'avg_raw' => 0.035465453980351
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.016535'
'max' => '$0.054395'
'avg' => '$0.035465'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0090082543532723
'max_diff' => 0.035957943635114
'year' => 2029
]
4 => [
'items' => [
101 => 0.039826751645242
102 => 0.039519018858204
103 => 0.040660135823283
104 => 0.038270455352487
105 => 0.039064211347546
106 => 0.03922780335803
107 => 0.037348908036683
108 => 0.036065391399873
109 => 0.035979795473359
110 => 0.033754354504619
111 => 0.034943167106988
112 => 0.035989273000664
113 => 0.03548826945869
114 => 0.035329666704356
115 => 0.036139933779508
116 => 0.036202898470716
117 => 0.034767296838485
118 => 0.035065803877417
119 => 0.036310627852429
120 => 0.035034437507136
121 => 0.032555008130742
122 => 0.031940075364603
123 => 0.03185803199814
124 => 0.030190285565439
125 => 0.031981168112452
126 => 0.031199399888012
127 => 0.033668996341995
128 => 0.032258376092191
129 => 0.032197567072593
130 => 0.032105645320727
131 => 0.030670147072364
201 => 0.030984429958082
202 => 0.032029154136846
203 => 0.03240192349349
204 => 0.032363040595582
205 => 0.032024034418423
206 => 0.032179229710334
207 => 0.031679291601465
208 => 0.031502753049911
209 => 0.030945548820453
210 => 0.030126612534747
211 => 0.030240490648103
212 => 0.028617963579784
213 => 0.027733924718935
214 => 0.027489234413697
215 => 0.027162024311221
216 => 0.027526193665444
217 => 0.028613367164459
218 => 0.027302005267923
219 => 0.025053767277653
220 => 0.025188890211679
221 => 0.025492471326077
222 => 0.024926749927786
223 => 0.024391342101702
224 => 0.024856835767472
225 => 0.023904227692997
226 => 0.025607589460739
227 => 0.025561518298537
228 => 0.026196426230366
301 => 0.026593447189761
302 => 0.025678442415418
303 => 0.025448321189106
304 => 0.02557940869804
305 => 0.023412824176403
306 => 0.026019370052259
307 => 0.026041911569232
308 => 0.025848897415553
309 => 0.027236802626371
310 => 0.030165715519687
311 => 0.029063740673973
312 => 0.028637022706347
313 => 0.02782583153796
314 => 0.02890669560607
315 => 0.028823702109745
316 => 0.028448374045016
317 => 0.028221374460373
318 => 0.028639628155265
319 => 0.028169548198967
320 => 0.028085108921882
321 => 0.02757349877359
322 => 0.027390877227428
323 => 0.027255671505023
324 => 0.027106823289695
325 => 0.027435145362045
326 => 0.026691124351736
327 => 0.025793907950582
328 => 0.025719314114842
329 => 0.025925274253677
330 => 0.025834152224172
331 => 0.025718877857622
401 => 0.025498787698773
402 => 0.025433491650125
403 => 0.025645672131092
404 => 0.02540613273897
405 => 0.025759586160432
406 => 0.025663466387264
407 => 0.025126549147889
408 => 0.024457351475404
409 => 0.02445139421243
410 => 0.024307216671597
411 => 0.024123584896108
412 => 0.024072502737093
413 => 0.024817633189309
414 => 0.026360030925517
415 => 0.026057221343449
416 => 0.026276032299667
417 => 0.027352365639096
418 => 0.027694499641228
419 => 0.027451661030403
420 => 0.027119248562272
421 => 0.027133873023848
422 => 0.028269827055547
423 => 0.028340675115115
424 => 0.028519685305192
425 => 0.028749763987714
426 => 0.027490844424924
427 => 0.027074578025653
428 => 0.026877327912098
429 => 0.026269873907749
430 => 0.026924960972269
501 => 0.026543269793398
502 => 0.026594772973855
503 => 0.026561231460017
504 => 0.02657954739464
505 => 0.02560711333641
506 => 0.025961417197599
507 => 0.025372318310008
508 => 0.024583581028976
509 => 0.024580936905043
510 => 0.024773979237172
511 => 0.024659150104275
512 => 0.024350147860174
513 => 0.024394040170499
514 => 0.024009497346392
515 => 0.024440730631718
516 => 0.024453096859314
517 => 0.024287048555028
518 => 0.024951422929798
519 => 0.02522361765322
520 => 0.025114321102239
521 => 0.02521594911584
522 => 0.026069804448687
523 => 0.026209020124262
524 => 0.02627085053128
525 => 0.026188005976834
526 => 0.025231556023881
527 => 0.025273978646433
528 => 0.024962709589994
529 => 0.024699720038027
530 => 0.024710238240907
531 => 0.024845449056867
601 => 0.025435922620171
602 => 0.026678539423828
603 => 0.026725695823185
604 => 0.026782850754856
605 => 0.026550372923984
606 => 0.02648025538568
607 => 0.026572758517575
608 => 0.027039420055341
609 => 0.028239800227846
610 => 0.027815505704187
611 => 0.027470547651914
612 => 0.02777316886378
613 => 0.027726582700237
614 => 0.027333348597273
615 => 0.02732231182571
616 => 0.026567569857574
617 => 0.026288558936598
618 => 0.026055396527424
619 => 0.025800789263466
620 => 0.025649849542878
621 => 0.025881761554577
622 => 0.025934802575554
623 => 0.025427722908847
624 => 0.025358609823999
625 => 0.025772702025907
626 => 0.02559047548676
627 => 0.025777900001273
628 => 0.025821384096338
629 => 0.025814382155509
630 => 0.025624116720055
701 => 0.025745386234816
702 => 0.025458547680224
703 => 0.025146653833863
704 => 0.024947684991558
705 => 0.024774058287259
706 => 0.024870396474047
707 => 0.024526968428806
708 => 0.024417098885292
709 => 0.025704302851866
710 => 0.026655174261748
711 => 0.026641348214862
712 => 0.026557185710213
713 => 0.026432137300046
714 => 0.027030271985259
715 => 0.026821893821011
716 => 0.02697350634608
717 => 0.027012098096867
718 => 0.027128903703409
719 => 0.027170651667967
720 => 0.027044460323248
721 => 0.026620946757396
722 => 0.025565591217756
723 => 0.025074320365175
724 => 0.02491219280106
725 => 0.024918085830092
726 => 0.024755529781763
727 => 0.024803409823247
728 => 0.024738879057306
729 => 0.024616673398284
730 => 0.024862850618969
731 => 0.024891220250354
801 => 0.024833759545447
802 => 0.02484729362156
803 => 0.024371543526721
804 => 0.024407713773156
805 => 0.024206313244709
806 => 0.024168553073545
807 => 0.023659430075581
808 => 0.022757444886129
809 => 0.023257232238906
810 => 0.022653559397487
811 => 0.022424939345306
812 => 0.02350719111462
813 => 0.023398563053972
814 => 0.023212639033626
815 => 0.022937618657574
816 => 0.02283561092487
817 => 0.022215844232683
818 => 0.022179225110182
819 => 0.022486398217938
820 => 0.02234464839789
821 => 0.022145577965687
822 => 0.021424565039696
823 => 0.020613907791706
824 => 0.020638376438413
825 => 0.020896231426184
826 => 0.021645979579612
827 => 0.021353040005293
828 => 0.021140508983031
829 => 0.02110070831122
830 => 0.021598897047282
831 => 0.022303938482576
901 => 0.022634728149603
902 => 0.022306925635811
903 => 0.021930363758107
904 => 0.021953283334783
905 => 0.022105757010258
906 => 0.022121779837689
907 => 0.02187667676649
908 => 0.021945671845333
909 => 0.021840862011528
910 => 0.021197644254932
911 => 0.021186010485381
912 => 0.021028154474625
913 => 0.021023374657355
914 => 0.020754822204032
915 => 0.020717249859396
916 => 0.020184022663354
917 => 0.02053499441855
918 => 0.020299580992008
919 => 0.019944757429797
920 => 0.019883585713931
921 => 0.019881746818285
922 => 0.020246071279579
923 => 0.020530737075099
924 => 0.020303676109352
925 => 0.020251978728844
926 => 0.0208039715013
927 => 0.020733725389479
928 => 0.020672892709681
929 => 0.022240809755008
930 => 0.020999681067539
1001 => 0.020458478118654
1002 => 0.019788636697756
1003 => 0.020006740442034
1004 => 0.020052698105564
1005 => 0.018441850236295
1006 => 0.017788329456351
1007 => 0.017564065752086
1008 => 0.017434998819657
1009 => 0.017493816241485
1010 => 0.016905570889194
1011 => 0.017300881494614
1012 => 0.016791510742671
1013 => 0.016706113078472
1014 => 0.017616931081873
1015 => 0.017743666086125
1016 => 0.017202975184508
1017 => 0.017550186273252
1018 => 0.017424282705878
1019 => 0.016800242442231
1020 => 0.016776408694289
1021 => 0.016463287226066
1022 => 0.015973312760562
1023 => 0.015749381282056
1024 => 0.015632755823788
1025 => 0.015680877760855
1026 => 0.015656545836918
1027 => 0.015497763574487
1028 => 0.015665647050337
1029 => 0.015236774143781
1030 => 0.015065993496727
1031 => 0.014988855840533
1101 => 0.014608206450961
1102 => 0.015213988905322
1103 => 0.015333335680277
1104 => 0.015452917605247
1105 => 0.016493796620064
1106 => 0.016441797245978
1107 => 0.016911846262999
1108 => 0.016893581022562
1109 => 0.016759515428619
1110 => 0.01619391474049
1111 => 0.016419353093915
1112 => 0.015725488882971
1113 => 0.01624537912799
1114 => 0.016008122931299
1115 => 0.016165162569231
1116 => 0.015882791140536
1117 => 0.016039067148006
1118 => 0.015361637228093
1119 => 0.014729062700574
1120 => 0.014983629156449
1121 => 0.015260372007191
1122 => 0.015860421020366
1123 => 0.015503036778416
1124 => 0.015631565666016
1125 => 0.015201015408033
1126 => 0.014312667245212
1127 => 0.014317695199339
1128 => 0.014181042188206
1129 => 0.014062954034921
1130 => 0.015544086657724
1201 => 0.015359884402836
1202 => 0.015066382217469
1203 => 0.015459246555897
1204 => 0.015563126122573
1205 => 0.015566083427798
1206 => 0.015852707107819
1207 => 0.016005678217227
1208 => 0.016032640038274
1209 => 0.016483648591702
1210 => 0.016634820709864
1211 => 0.017257477269895
1212 => 0.015992699687343
1213 => 0.01596665242534
1214 => 0.015464774962803
1215 => 0.015146476341692
1216 => 0.015486569141706
1217 => 0.015787844935222
1218 => 0.01547413644151
1219 => 0.015515100148041
1220 => 0.015093972126159
1221 => 0.015244505578066
1222 => 0.015374165265895
1223 => 0.01530257480732
1224 => 0.015195400425816
1225 => 0.015763143755858
1226 => 0.015731109452173
1227 => 0.01625980509347
1228 => 0.016671961153249
1229 => 0.017410618494081
1230 => 0.016639791051844
1231 => 0.016611699036088
]
'min_raw' => 0.014062954034921
'max_raw' => 0.040660135823283
'avg_raw' => 0.027361544929102
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.014062'
'max' => '$0.04066'
'avg' => '$0.027361'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0024728034541934
'max_diff' => -0.013735014648304
'year' => 2030
]
5 => [
'items' => [
101 => 0.01688630299621
102 => 0.016634778669428
103 => 0.01679373336163
104 => 0.017385008435737
105 => 0.017397501146334
106 => 0.017188232147889
107 => 0.017175498110315
108 => 0.017215690510619
109 => 0.017451098654582
110 => 0.01736883981572
111 => 0.017464031826591
112 => 0.017583070893816
113 => 0.018075466947381
114 => 0.018194181968896
115 => 0.017905766013295
116 => 0.01793180674483
117 => 0.01782393126024
118 => 0.017719724893802
119 => 0.017953965587437
120 => 0.018382045059066
121 => 0.01837938199889
122 => 0.018478688115633
123 => 0.018540555003667
124 => 0.018274977030894
125 => 0.018102095536192
126 => 0.018168389301996
127 => 0.018274394477208
128 => 0.018134013252378
129 => 0.017267515301818
130 => 0.017530355427914
131 => 0.017486605978706
201 => 0.017424301442919
202 => 0.017688589222192
203 => 0.017663098021147
204 => 0.01689953758287
205 => 0.016948418244763
206 => 0.016902510177818
207 => 0.017050848534024
208 => 0.016626767911388
209 => 0.016757212254685
210 => 0.01683902572396
211 => 0.016887214485884
212 => 0.017061305337297
213 => 0.017040877785233
214 => 0.017060035531979
215 => 0.017318166306344
216 => 0.018623703183296
217 => 0.018694760675004
218 => 0.018344847597778
219 => 0.0184846309704
220 => 0.01821627746223
221 => 0.018396424970077
222 => 0.018519677319695
223 => 0.017962723651834
224 => 0.017929744470223
225 => 0.017660283371666
226 => 0.017805076502974
227 => 0.017574700220069
228 => 0.017631226501674
301 => 0.017473174090434
302 => 0.017757636962744
303 => 0.018075710655047
304 => 0.018156068630833
305 => 0.017944681392823
306 => 0.017791623101405
307 => 0.017522903162212
308 => 0.017969790409905
309 => 0.018100473859773
310 => 0.017969103985377
311 => 0.017938662714991
312 => 0.017880976562615
313 => 0.017950901104917
314 => 0.018099762129639
315 => 0.018029562019412
316 => 0.018075930428984
317 => 0.017899221866592
318 => 0.018275064948254
319 => 0.018871994213497
320 => 0.018873913438693
321 => 0.018803712950061
322 => 0.018774988422603
323 => 0.018847018384062
324 => 0.018886091683329
325 => 0.01911902337065
326 => 0.019368968351553
327 => 0.020535352517888
328 => 0.020207836511343
329 => 0.02124272193222
330 => 0.02206118193708
331 => 0.022306602305619
401 => 0.022080827114484
402 => 0.021308462381746
403 => 0.021270566483197
404 => 0.022424805477887
405 => 0.022098680094392
406 => 0.022059888517748
407 => 0.021647211681655
408 => 0.021891154802806
409 => 0.021837800863781
410 => 0.021753579060865
411 => 0.022219005542796
412 => 0.023090242368064
413 => 0.022954451938439
414 => 0.02285309068186
415 => 0.022408955161352
416 => 0.022676423945958
417 => 0.022581183434787
418 => 0.022990397111899
419 => 0.022747987994771
420 => 0.022096209373859
421 => 0.022200007267529
422 => 0.022184318424713
423 => 0.022507193698142
424 => 0.022410274555316
425 => 0.02216539340658
426 => 0.023087264575311
427 => 0.02302740338933
428 => 0.023112272864878
429 => 0.02314963503269
430 => 0.023710761767905
501 => 0.023940637437269
502 => 0.023992823238755
503 => 0.024211187345429
504 => 0.023987390140856
505 => 0.024882738523851
506 => 0.025478092953516
507 => 0.026169627760231
508 => 0.027180145979875
509 => 0.027560110178277
510 => 0.027491473046763
511 => 0.028257636428012
512 => 0.029634414993261
513 => 0.027769759358406
514 => 0.029733246269646
515 => 0.029111628983094
516 => 0.027637785579096
517 => 0.027542887439351
518 => 0.028540991304212
519 => 0.030754689612537
520 => 0.03020018329386
521 => 0.030755596586227
522 => 0.030107677478166
523 => 0.03007550283336
524 => 0.030724128601332
525 => 0.032239678062947
526 => 0.031519697323255
527 => 0.030487428386388
528 => 0.031249639705487
529 => 0.030589341721556
530 => 0.029101505557989
531 => 0.030199759273328
601 => 0.029465388290346
602 => 0.029679716784489
603 => 0.031223255361278
604 => 0.031037532716022
605 => 0.031277875016437
606 => 0.030853677147058
607 => 0.030457409447194
608 => 0.029717746358171
609 => 0.029498768582461
610 => 0.029559286161673
611 => 0.029498738592955
612 => 0.029084903892501
613 => 0.02899553632834
614 => 0.028846586472788
615 => 0.028892752261313
616 => 0.028612682956059
617 => 0.029141231600345
618 => 0.02923933488628
619 => 0.029623968512292
620 => 0.029663902451318
621 => 0.030735101624846
622 => 0.030145103120837
623 => 0.030540925055346
624 => 0.030505519015903
625 => 0.027669728234745
626 => 0.028060475183995
627 => 0.028668354813879
628 => 0.028394505864578
629 => 0.02800734752105
630 => 0.027694696400535
701 => 0.027220997982735
702 => 0.027887719409216
703 => 0.028764387187118
704 => 0.029686136192887
705 => 0.030793557227932
706 => 0.030546393744712
707 => 0.029665433726943
708 => 0.029704952949799
709 => 0.02994924523525
710 => 0.029632864529296
711 => 0.029539557682625
712 => 0.029936426307341
713 => 0.029939159323445
714 => 0.029575125085359
715 => 0.02917056764729
716 => 0.029168872536852
717 => 0.029096885448309
718 => 0.030120483821298
719 => 0.030683359428974
720 => 0.030747892210274
721 => 0.030679015858622
722 => 0.030705523632768
723 => 0.030377998718779
724 => 0.031126623547661
725 => 0.031813635721966
726 => 0.031629501783378
727 => 0.031353458833253
728 => 0.031133577327448
729 => 0.031577704688545
730 => 0.031557928396277
731 => 0.031807635269959
801 => 0.031796307123792
802 => 0.031712340094123
803 => 0.031629504782105
804 => 0.03195793743098
805 => 0.031863354102571
806 => 0.031768623860128
807 => 0.031578627856435
808 => 0.031604451468836
809 => 0.031328456181419
810 => 0.031200768132774
811 => 0.029280646247628
812 => 0.028767526938124
813 => 0.028928964718401
814 => 0.028982114227398
815 => 0.028758804046322
816 => 0.029078973482306
817 => 0.029029075414851
818 => 0.029223199605925
819 => 0.029101919239235
820 => 0.029106896627788
821 => 0.029463556326524
822 => 0.029567096154405
823 => 0.029514434962276
824 => 0.029551317056123
825 => 0.03040124934188
826 => 0.03028041615015
827 => 0.030216225925338
828 => 0.030234007056295
829 => 0.030451182978059
830 => 0.030511980378788
831 => 0.030254377519744
901 => 0.030375864517253
902 => 0.030893140733653
903 => 0.031074158134094
904 => 0.031651878783022
905 => 0.031406452783192
906 => 0.031856942827668
907 => 0.033241595641017
908 => 0.034347752119006
909 => 0.033330484907997
910 => 0.035361800411646
911 => 0.03694347090614
912 => 0.036882763758151
913 => 0.036606962922739
914 => 0.034806273115643
915 => 0.033149251508382
916 => 0.03453542044371
917 => 0.034538954073394
918 => 0.034419880932517
919 => 0.033680327881035
920 => 0.0343941460894
921 => 0.034450806386573
922 => 0.034419091687345
923 => 0.033852078096748
924 => 0.032986353145533
925 => 0.033155513728748
926 => 0.033432602214836
927 => 0.032908015903958
928 => 0.032740378791827
929 => 0.033052048077544
930 => 0.034056311454998
1001 => 0.033866461280792
1002 => 0.033861503525499
1003 => 0.034673763079756
1004 => 0.034092360535491
1005 => 0.033157647385429
1006 => 0.032921619987687
1007 => 0.032083881732808
1008 => 0.032662510529374
1009 => 0.03268333434965
1010 => 0.032366425271214
1011 => 0.033183362810559
1012 => 0.033175834587315
1013 => 0.033951395195817
1014 => 0.035433975792011
1015 => 0.034995503756356
1016 => 0.034485608484511
1017 => 0.034541048238423
1018 => 0.035149085501864
1019 => 0.034781452292247
1020 => 0.034913655757655
1021 => 0.035148885396085
1022 => 0.035290805277373
1023 => 0.034520628151529
1024 => 0.034341063021664
1025 => 0.033973735784757
1026 => 0.033877906965135
1027 => 0.034177087335062
1028 => 0.034098263877785
1029 => 0.03268158418819
1030 => 0.032533533278295
1031 => 0.032538073788334
1101 => 0.032165792735968
1102 => 0.03159797477342
1103 => 0.033090166476347
1104 => 0.032970322599393
1105 => 0.032838024234414
1106 => 0.03285423002924
1107 => 0.033501939872411
1108 => 0.033126235453241
1109 => 0.034125107228349
1110 => 0.033919769220221
1111 => 0.033709165066995
1112 => 0.03368005315786
1113 => 0.03359898852677
1114 => 0.033320987743943
1115 => 0.032985285093421
1116 => 0.032763625125481
1117 => 0.030222712299585
1118 => 0.030694290940262
1119 => 0.031236799180614
1120 => 0.031424070851219
1121 => 0.031103729699845
1122 => 0.033333636765101
1123 => 0.033741062273843
1124 => 0.032506943832156
1125 => 0.032276090660441
1126 => 0.033348771460606
1127 => 0.032701813808212
1128 => 0.032993138799471
1129 => 0.032363453514619
1130 => 0.033642925399599
1201 => 0.033633177967537
1202 => 0.033135434506096
1203 => 0.033556123871306
1204 => 0.033483018741444
1205 => 0.032921067599366
1206 => 0.033660740253137
1207 => 0.033661107121545
1208 => 0.033182039861784
1209 => 0.032622594183693
1210 => 0.032522578509967
1211 => 0.03244723013503
1212 => 0.032974607718176
1213 => 0.033447452810158
1214 => 0.034327300298097
1215 => 0.034548514861225
1216 => 0.035411930028203
1217 => 0.03489780833519
1218 => 0.035125711822712
1219 => 0.035373133297334
1220 => 0.035491756250892
1221 => 0.035298466513729
1222 => 0.036639705663907
1223 => 0.036752947342687
1224 => 0.036790916298046
1225 => 0.036338658003003
1226 => 0.036740369221373
1227 => 0.036552421845575
1228 => 0.037041408704117
1229 => 0.037118088087234
1230 => 0.037053143377682
1231 => 0.037077482624185
]
'min_raw' => 0.016626767911388
'max_raw' => 0.037118088087234
'avg_raw' => 0.026872427999311
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.016626'
'max' => '$0.037118'
'avg' => '$0.026872'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0025638138764674
'max_diff' => -0.0035420477360493
'year' => 2031
]
6 => [
'items' => [
101 => 0.035932971620308
102 => 0.03587362268698
103 => 0.035064395769851
104 => 0.035394161720084
105 => 0.034777680082216
106 => 0.034973172760048
107 => 0.035059344069714
108 => 0.035014333067724
109 => 0.035412806192134
110 => 0.035074022633704
111 => 0.034179917121835
112 => 0.033285568011516
113 => 0.033274340186957
114 => 0.033038873852784
115 => 0.032868674820986
116 => 0.032901461192645
117 => 0.033017004642766
118 => 0.032861959225619
119 => 0.032895046026369
120 => 0.033444507375029
121 => 0.033554697929924
122 => 0.033180227370163
123 => 0.031676674036877
124 => 0.031307698277511
125 => 0.031572910736236
126 => 0.031446156262835
127 => 0.025379502375977
128 => 0.026804772718745
129 => 0.02595792547868
130 => 0.02634819164847
131 => 0.025483779906393
201 => 0.025896322497413
202 => 0.025820140944495
203 => 0.028111933478851
204 => 0.028076150290685
205 => 0.028093277809256
206 => 0.027275736722346
207 => 0.028578101872453
208 => 0.029219693776931
209 => 0.029100952190828
210 => 0.029130836889863
211 => 0.028617318747694
212 => 0.028098249787367
213 => 0.027522522426224
214 => 0.028592152701175
215 => 0.028473228073798
216 => 0.02874599838127
217 => 0.029439730073327
218 => 0.029541884700213
219 => 0.029679181554698
220 => 0.029629970405821
221 => 0.030802379623107
222 => 0.030660393131089
223 => 0.031002539724552
224 => 0.030298718223074
225 => 0.029502277386802
226 => 0.029653654752164
227 => 0.02963907589458
228 => 0.029453470304698
229 => 0.029285913877139
301 => 0.029006979633983
302 => 0.029889568853827
303 => 0.029853737343299
304 => 0.03043380784918
305 => 0.030331274752761
306 => 0.029646533640772
307 => 0.029670989303544
308 => 0.02983546538868
309 => 0.030404718997291
310 => 0.030573712226068
311 => 0.030495427829282
312 => 0.030680721189802
313 => 0.030827169506938
314 => 0.030699112843677
315 => 0.032512125147858
316 => 0.031759236036385
317 => 0.032126188950748
318 => 0.032213705058612
319 => 0.031989534388585
320 => 0.032038148979964
321 => 0.03211178683922
322 => 0.03255890150085
323 => 0.033732259746639
324 => 0.03425193212638
325 => 0.035815392121012
326 => 0.034208780569431
327 => 0.03411345088878
328 => 0.034395077245782
329 => 0.035312993771679
330 => 0.036056878900403
331 => 0.036303668513364
401 => 0.036336285834769
402 => 0.036799279554946
403 => 0.03706465892103
404 => 0.036743059939373
405 => 0.036470538475235
406 => 0.035494400417304
407 => 0.035607391055445
408 => 0.036385784504814
409 => 0.037485311099192
410 => 0.038428819303413
411 => 0.038098435614876
412 => 0.040619029943881
413 => 0.040868936575897
414 => 0.040834407559801
415 => 0.041403732058627
416 => 0.040273738869375
417 => 0.039790644888383
418 => 0.036529460709032
419 => 0.037445720441455
420 => 0.03877755777258
421 => 0.038601284107672
422 => 0.037634068237695
423 => 0.038428085583443
424 => 0.038165558617721
425 => 0.037958492707602
426 => 0.038907101783559
427 => 0.037864067137831
428 => 0.038767152704109
429 => 0.037608936124134
430 => 0.038099944779735
501 => 0.037821224519399
502 => 0.038001590686507
503 => 0.036947173759082
504 => 0.037516111538596
505 => 0.03692350407696
506 => 0.036923223103863
507 => 0.036910141261302
508 => 0.037607341311894
509 => 0.037630076980513
510 => 0.037114845089715
511 => 0.037040592124817
512 => 0.037315144253602
513 => 0.036993715616111
514 => 0.037144110052545
515 => 0.036998270910381
516 => 0.036965439447638
517 => 0.036703832766685
518 => 0.036591125415506
519 => 0.036635320872014
520 => 0.036484458994632
521 => 0.036393559256596
522 => 0.036892059015494
523 => 0.036625730703738
524 => 0.036851240382032
525 => 0.036594243642026
526 => 0.035703380973015
527 => 0.035191036431365
528 => 0.033508279432617
529 => 0.033985507230009
530 => 0.034301909753407
531 => 0.034197338721311
601 => 0.03442199776187
602 => 0.034435790002355
603 => 0.034362751058142
604 => 0.034278181317611
605 => 0.03423701744492
606 => 0.034543819227027
607 => 0.034721927988013
608 => 0.03433366497955
609 => 0.034242700389043
610 => 0.034635255727188
611 => 0.034874714256685
612 => 0.036642741498363
613 => 0.036511760329647
614 => 0.036840497359369
615 => 0.036803486614703
616 => 0.037148055393767
617 => 0.037711279721906
618 => 0.036566087182801
619 => 0.036764853009811
620 => 0.036716120219201
621 => 0.037248172048653
622 => 0.037249833056389
623 => 0.036930841406673
624 => 0.037103771955033
625 => 0.03700724686704
626 => 0.037181680747191
627 => 0.036510010996284
628 => 0.03732803225062
629 => 0.037791797589703
630 => 0.037798236971886
701 => 0.038018058061942
702 => 0.038241409020618
703 => 0.038670111736028
704 => 0.038229452734564
705 => 0.03743675008822
706 => 0.037493980658872
707 => 0.037029219387359
708 => 0.037037032108299
709 => 0.036995327191627
710 => 0.03712048678596
711 => 0.036537476488905
712 => 0.03667430784032
713 => 0.036482743147056
714 => 0.03676443658558
715 => 0.036461381011322
716 => 0.036716096718774
717 => 0.036826023574151
718 => 0.037231656037049
719 => 0.036401468766742
720 => 0.03470866072385
721 => 0.03506450949778
722 => 0.03453818120982
723 => 0.034586894896744
724 => 0.034685304297055
725 => 0.034366327233093
726 => 0.034427178004774
727 => 0.034425003987009
728 => 0.034406269476412
729 => 0.034323291222597
730 => 0.034202956337817
731 => 0.034682333481655
801 => 0.034763788999669
802 => 0.034944854526012
803 => 0.035483582714489
804 => 0.035429751064375
805 => 0.035517552719165
806 => 0.035325882199743
807 => 0.034595785942415
808 => 0.034635433681787
809 => 0.034141025736507
810 => 0.034932211403271
811 => 0.034744848194241
812 => 0.034624053914509
813 => 0.034591094076133
814 => 0.035131157667587
815 => 0.03529275315861
816 => 0.035192057692875
817 => 0.034985528354896
818 => 0.035382125738733
819 => 0.035488238467548
820 => 0.035511993194243
821 => 0.036214687718398
822 => 0.035551266012181
823 => 0.035710958210712
824 => 0.036956831157503
825 => 0.035826996313478
826 => 0.036425495028682
827 => 0.036396201631009
828 => 0.036702373321615
829 => 0.036371086615898
830 => 0.036375193311658
831 => 0.03664705303105
901 => 0.036265275085323
902 => 0.036170741497006
903 => 0.036040144021809
904 => 0.03632529883109
905 => 0.036496236242811
906 => 0.037873866241591
907 => 0.038763878048364
908 => 0.038725240288592
909 => 0.039078317086045
910 => 0.03891925275498
911 => 0.03840559207092
912 => 0.039282348224363
913 => 0.039004905892378
914 => 0.039027777901134
915 => 0.039026926603826
916 => 0.039211401500167
917 => 0.039080684129233
918 => 0.038823026773261
919 => 0.038994071750521
920 => 0.039502014183284
921 => 0.041078683080156
922 => 0.04196100788293
923 => 0.041025566019149
924 => 0.04167082129072
925 => 0.041283898055739
926 => 0.041213582593974
927 => 0.04161885058851
928 => 0.042024827951022
929 => 0.041998968948119
930 => 0.041704250230103
1001 => 0.041537771104507
1002 => 0.042798406818121
1003 => 0.043727221737543
1004 => 0.043663882786892
1005 => 0.043943440316133
1006 => 0.044764229868372
1007 => 0.044839272578559
1008 => 0.044829818921912
1009 => 0.044643817734816
1010 => 0.045451991641987
1011 => 0.046126184533816
1012 => 0.044600763834095
1013 => 0.045181624067325
1014 => 0.04544239094017
1015 => 0.045825274075552
1016 => 0.046471262103605
1017 => 0.047172976441933
1018 => 0.047272206543279
1019 => 0.047201798037776
1020 => 0.046738998568555
1021 => 0.047506822770747
1022 => 0.047956596180697
1023 => 0.048224425953441
1024 => 0.048903597694495
1025 => 0.045444001347602
1026 => 0.042995127100175
1027 => 0.042612700024267
1028 => 0.043390380521329
1029 => 0.043595448666518
1030 => 0.043512785954326
1031 => 0.040756355346941
1101 => 0.042598187987575
1102 => 0.04457984504321
1103 => 0.04465596856127
1104 => 0.045648027517815
1105 => 0.045971082579937
1106 => 0.046769820072097
1107 => 0.046719858824489
1108 => 0.046914338693141
1109 => 0.04686963113926
1110 => 0.048349124149463
1111 => 0.049981224646554
1112 => 0.049924710196102
1113 => 0.049690076439508
1114 => 0.05003854757905
1115 => 0.051723050198568
1116 => 0.051567968190967
1117 => 0.051718617151497
1118 => 0.053704740674315
1119 => 0.056286983776756
1120 => 0.055087272602704
1121 => 0.057690300642806
1122 => 0.059328768813464
1123 => 0.062162330093845
1124 => 0.061807554265957
1125 => 0.062910638878777
1126 => 0.06117243149009
1127 => 0.057181155975992
1128 => 0.056549521347897
1129 => 0.057814069868879
1130 => 0.060922839014874
1201 => 0.057716163665302
1202 => 0.058364869912138
1203 => 0.058178042469408
1204 => 0.05816808722895
1205 => 0.058548038266326
1206 => 0.0579968994697
1207 => 0.055751460864269
1208 => 0.056780532144685
1209 => 0.056383158303255
1210 => 0.056824074206504
1211 => 0.05920351548879
1212 => 0.058151507779096
1213 => 0.0570433031151
1214 => 0.058433237694053
1215 => 0.060203102046401
1216 => 0.060092347115983
1217 => 0.059877436259003
1218 => 0.061088877507434
1219 => 0.06308982353086
1220 => 0.06363067120054
1221 => 0.064029913893154
1222 => 0.064084962715205
1223 => 0.064651999794981
1224 => 0.06160289850528
1225 => 0.066441900558511
1226 => 0.067277462538369
1227 => 0.067120411516652
1228 => 0.068049103491442
1229 => 0.067775858753817
1230 => 0.067379969999785
1231 => 0.068852144318275
]
'min_raw' => 0.025379502375977
'max_raw' => 0.068852144318275
'avg_raw' => 0.047115823347126
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.025379'
'max' => '$0.068852'
'avg' => '$0.047115'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0087527344645885
'max_diff' => 0.031734056231041
'year' => 2032
]
7 => [
'items' => [
101 => 0.067164415260467
102 => 0.06476889634209
103 => 0.063454667285476
104 => 0.065185350123059
105 => 0.066242217739463
106 => 0.066940740004502
107 => 0.067152112419844
108 => 0.061839591558722
109 => 0.058976437460491
110 => 0.060811686411328
111 => 0.063050816793466
112 => 0.061590460022951
113 => 0.061647703243534
114 => 0.059565618263788
115 => 0.063235035114361
116 => 0.062700431943886
117 => 0.065473954138007
118 => 0.064812030807474
119 => 0.067073730489268
120 => 0.066478149165241
121 => 0.068950373942774
122 => 0.069936611339345
123 => 0.071592657423783
124 => 0.072810851664815
125 => 0.073526198623492
126 => 0.073483251875292
127 => 0.07631781291001
128 => 0.074646371299856
129 => 0.072546646708963
130 => 0.07250866931566
131 => 0.073596146434611
201 => 0.075875200141155
202 => 0.076466125608379
203 => 0.076796372329023
204 => 0.076290587980386
205 => 0.074476357905864
206 => 0.073692982558041
207 => 0.074360441050955
208 => 0.073544196669483
209 => 0.074953263469627
210 => 0.076888213146653
211 => 0.076488653689968
212 => 0.077824321048366
213 => 0.079206596248005
214 => 0.081183311865351
215 => 0.081700098525293
216 => 0.082554327222541
217 => 0.083433609151517
218 => 0.083716010809792
219 => 0.084255203199527
220 => 0.08425236138948
221 => 0.08587725394778
222 => 0.087669560758319
223 => 0.088346115087299
224 => 0.089901814461366
225 => 0.087237733801485
226 => 0.089258469584757
227 => 0.091081223843567
228 => 0.088908061072877
301 => 0.091903259670288
302 => 0.092019556444559
303 => 0.093775499662169
304 => 0.091995514813105
305 => 0.090938565491644
306 => 0.093989938579328
307 => 0.095466401899107
308 => 0.095021679131332
309 => 0.091637316909898
310 => 0.089667472934899
311 => 0.084512011297802
312 => 0.090618878306313
313 => 0.093593355086405
314 => 0.091629613733618
315 => 0.092620010647951
316 => 0.098023295075274
317 => 0.10008051594844
318 => 0.09965262838788
319 => 0.099724934341986
320 => 0.10083497338395
321 => 0.10575749780566
322 => 0.10280780706895
323 => 0.10506273511436
324 => 0.1062587408189
325 => 0.1073696575714
326 => 0.10464159713611
327 => 0.10109243059296
328 => 0.099968260564869
329 => 0.091434358357196
330 => 0.090990131686428
331 => 0.09074077379468
401 => 0.089168607559583
402 => 0.087933315551371
403 => 0.08695096548299
404 => 0.084372985548994
405 => 0.085242978099323
406 => 0.081134216150763
407 => 0.083762856439869
408 => 0.077205173160441
409 => 0.082666606658159
410 => 0.079694196706261
411 => 0.081690090046252
412 => 0.081683126562413
413 => 0.078008054124931
414 => 0.075888349039796
415 => 0.0772391076202
416 => 0.078687228041743
417 => 0.078922180708076
418 => 0.080799706634416
419 => 0.081323683763173
420 => 0.079736008600887
421 => 0.077069279750318
422 => 0.077688700040696
423 => 0.075875796507382
424 => 0.072698752797578
425 => 0.074980561055821
426 => 0.075759670719212
427 => 0.076103769931464
428 => 0.072979512328807
429 => 0.071997802759119
430 => 0.071475148821559
501 => 0.076665977326562
502 => 0.076950342629698
503 => 0.075495489533648
504 => 0.082071563482627
505 => 0.08058319541624
506 => 0.082246067205423
507 => 0.0776324941418
508 => 0.077808738845831
509 => 0.075624599421723
510 => 0.076847571554974
511 => 0.075983214269424
512 => 0.076748767492254
513 => 0.077207636937524
514 => 0.079391417965843
515 => 0.082691541929647
516 => 0.079065233902892
517 => 0.077485199565947
518 => 0.078465443982137
519 => 0.08107596403755
520 => 0.085031035551563
521 => 0.082689553612035
522 => 0.083728663535856
523 => 0.083955662827428
524 => 0.082229140731593
525 => 0.085094694883922
526 => 0.086630368633876
527 => 0.088205652138421
528 => 0.089573426666976
529 => 0.087576449265479
530 => 0.089713501340546
531 => 0.087991414608516
601 => 0.08644652478383
602 => 0.086448867743991
603 => 0.085479735789727
604 => 0.083601920509855
605 => 0.083255622561392
606 => 0.085057108221909
607 => 0.086501729120317
608 => 0.086620715016777
609 => 0.087420531373437
610 => 0.087893854454545
611 => 0.09253306410093
612 => 0.09439899259826
613 => 0.096680614644577
614 => 0.09756943501679
615 => 0.10024446567741
616 => 0.098084161163592
617 => 0.097616765693075
618 => 0.091128016306266
619 => 0.092190548654849
620 => 0.093891765464054
621 => 0.091156068744852
622 => 0.092891238642601
623 => 0.093233797936341
624 => 0.091063110817161
625 => 0.092222568597369
626 => 0.089143392488411
627 => 0.082758659554405
628 => 0.085101802916851
629 => 0.086827145125138
630 => 0.084364869060752
701 => 0.088778403602921
702 => 0.086200107837232
703 => 0.085382911859531
704 => 0.082194738999119
705 => 0.083699433865206
706 => 0.085734555216744
707 => 0.084477086829745
708 => 0.087086522542597
709 => 0.09078217942308
710 => 0.093415924596284
711 => 0.093618110847339
712 => 0.09192478914819
713 => 0.09463834797771
714 => 0.094658113291323
715 => 0.091597207846412
716 => 0.089722420304597
717 => 0.08929646463051
718 => 0.090360585417908
719 => 0.091652624501345
720 => 0.093689810024334
721 => 0.094920838569997
722 => 0.098130708129994
723 => 0.098999206798757
724 => 0.099953423523383
725 => 0.10122855133702
726 => 0.10275966921336
727 => 0.099409670466525
728 => 0.099542772161916
729 => 0.096423299712753
730 => 0.09308969602322
731 => 0.095619485684009
801 => 0.098926849141675
802 => 0.098168136310174
803 => 0.098082765617534
804 => 0.0982263354427
805 => 0.097654290744993
806 => 0.095066953778231
807 => 0.09376760935111
808 => 0.095444095160213
809 => 0.096335072755952
810 => 0.097716901305532
811 => 0.097546561769935
812 => 0.1011060037161
813 => 0.10248909522444
814 => 0.10213524123079
815 => 0.10220035888159
816 => 0.10470437999239
817 => 0.10748936645881
818 => 0.11009787379594
819 => 0.11275135949727
820 => 0.10955247891701
821 => 0.10792828463788
822 => 0.10960403854572
823 => 0.10871485993427
824 => 0.11382434398315
825 => 0.11417811357281
826 => 0.11928722814783
827 => 0.12413638626158
828 => 0.12109071693202
829 => 0.12396264592983
830 => 0.12706887129277
831 => 0.13306128398478
901 => 0.13104325020573
902 => 0.1294974679576
903 => 0.12803671120228
904 => 0.13107631412149
905 => 0.13498671471821
906 => 0.13582897755339
907 => 0.13719376511556
908 => 0.13575885787223
909 => 0.13748704559697
910 => 0.14358830766948
911 => 0.14193969280016
912 => 0.13959839465765
913 => 0.14441475509246
914 => 0.14615777721069
915 => 0.1583912192642
916 => 0.17383644519503
917 => 0.16744202024084
918 => 0.16347279432498
919 => 0.1644056565665
920 => 0.17004573022255
921 => 0.17185714287388
922 => 0.16693309885618
923 => 0.16867235444732
924 => 0.17825582375436
925 => 0.18339704756309
926 => 0.17641457507236
927 => 0.15715021039933
928 => 0.13938758637662
929 => 0.14409903412883
930 => 0.14356490216697
1001 => 0.15386114437525
1002 => 0.14190037388076
1003 => 0.14210176258078
1004 => 0.15261092017401
1005 => 0.14980725710071
1006 => 0.145265681988
1007 => 0.13942074490095
1008 => 0.1286158381043
1009 => 0.1190456308374
1010 => 0.13781501117491
1011 => 0.13700564136485
1012 => 0.135833553938
1013 => 0.13844190767335
1014 => 0.15110733301805
1015 => 0.15081535396987
1016 => 0.14895793223439
1017 => 0.15036677025019
1018 => 0.14501870587219
1019 => 0.14639702383557
1020 => 0.13938477268622
1021 => 0.1425546030632
1022 => 0.14525593780753
1023 => 0.1457982707514
1024 => 0.14702017456614
1025 => 0.136579140253
1026 => 0.14126685812694
1027 => 0.14402045319811
1028 => 0.1315796104899
1029 => 0.14377453773813
1030 => 0.13639738507481
1031 => 0.13389346865977
1101 => 0.13726466224672
1102 => 0.13595090482729
1103 => 0.13482141334449
1104 => 0.13419113768996
1105 => 0.13666657019516
1106 => 0.13655108831001
1107 => 0.13250080027076
1108 => 0.12721736463442
1109 => 0.12899065905684
1110 => 0.12834640456845
1111 => 0.12601154319204
1112 => 0.1275849578475
1113 => 0.1206564359918
1114 => 0.10873627425228
1115 => 0.11661109822183
1116 => 0.11630792606517
1117 => 0.11615505291601
1118 => 0.12207276548498
1119 => 0.12150391396633
1120 => 0.12047144288978
1121 => 0.12599258105105
1122 => 0.1239772913524
1123 => 0.13018793934167
1124 => 0.13427867378694
1125 => 0.13324113121022
1126 => 0.13708848672823
1127 => 0.12903151217878
1128 => 0.13170771593439
1129 => 0.13225927781937
1130 => 0.12592445106316
1201 => 0.12159698510989
1202 => 0.12130839246753
1203 => 0.1138051628661
1204 => 0.11781332755523
1205 => 0.12134034661254
1206 => 0.11965117819182
1207 => 0.1191164379323
1208 => 0.12184830994721
1209 => 0.12206059979967
1210 => 0.1172203686661
1211 => 0.11822680598896
1212 => 0.12242381693154
1213 => 0.11812105208163
1214 => 0.10976148283088
1215 => 0.10768819407661
1216 => 0.1074115791385
1217 => 0.1017886556023
1218 => 0.10782674114498
1219 => 0.10519095499497
1220 => 0.11351737186129
1221 => 0.10876136720272
1222 => 0.1085563453476
1223 => 0.10824642474341
1224 => 0.10340654217576
1225 => 0.10446616886749
1226 => 0.10798852937651
1227 => 0.10924534728836
1228 => 0.10911425088335
1229 => 0.1079712678884
1230 => 0.10849451965046
1231 => 0.10680894341185
]
'min_raw' => 0.058976437460491
'max_raw' => 0.18339704756309
'avg_raw' => 0.12118674251179
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.058976'
'max' => '$0.183397'
'avg' => '$0.121186'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.033596935084515
'max_diff' => 0.11454490324481
'year' => 2033
]
8 => [
'items' => [
101 => 0.10621373135976
102 => 0.10433507839738
103 => 0.10157397753382
104 => 0.10195792554371
105 => 0.096487462251654
106 => 0.093506863510679
107 => 0.092681873062837
108 => 0.091578661357258
109 => 0.092806483760516
110 => 0.096471965116475
111 => 0.092050616925938
112 => 0.084470525574779
113 => 0.08492610198083
114 => 0.08594964690338
115 => 0.084042277711636
116 => 0.082237112845013
117 => 0.083806557238887
118 => 0.080594772606822
119 => 0.086337775731683
120 => 0.086182443591735
121 => 0.088323080011753
122 => 0.089661663895471
123 => 0.086576661415179
124 => 0.085800791634119
125 => 0.086242762322726
126 => 0.078937971341926
127 => 0.087726122745596
128 => 0.087802123043871
129 => 0.087151362348922
130 => 0.091830781667642
131 => 0.10170581597763
201 => 0.097990430847876
202 => 0.096551721427526
203 => 0.093816733767751
204 => 0.097460942436903
205 => 0.097181124069623
206 => 0.095915679294819
207 => 0.09515033434659
208 => 0.09656050588046
209 => 0.094975598487866
210 => 0.094690905569814
211 => 0.092965976235367
212 => 0.092350254942253
213 => 0.091894399409403
214 => 0.091392547259174
215 => 0.092499508048815
216 => 0.08999098926667
217 => 0.086965961528531
218 => 0.086714463203359
219 => 0.087408872191119
220 => 0.087101647906704
221 => 0.086712992331683
222 => 0.085970942994919
223 => 0.085750792808077
224 => 0.086466174113628
225 => 0.085658550328982
226 => 0.086850243216771
227 => 0.086526168690667
228 => 0.084715914731747
301 => 0.082459668057077
302 => 0.082439582729035
303 => 0.081953478083963
304 => 0.081334350732142
305 => 0.08116212366658
306 => 0.083674383009571
307 => 0.088874684663968
308 => 0.087853741016538
309 => 0.088591477432319
310 => 0.092220410433397
311 => 0.093373939108618
312 => 0.09255519177777
313 => 0.091434439933171
314 => 0.091483747326421
315 => 0.095313695654074
316 => 0.095552564833359
317 => 0.096156110187296
318 => 0.096931836529001
319 => 0.092687301328098
320 => 0.091283830100163
321 => 0.090618787570749
322 => 0.088570713984
323 => 0.090779385758749
324 => 0.089492487300358
325 => 0.089666133869107
326 => 0.089553046313408
327 => 0.089614799765766
328 => 0.086336170445266
329 => 0.087530730649973
330 => 0.085544542620887
331 => 0.08288525981001
401 => 0.082876344961563
402 => 0.083527200662122
403 => 0.083140046223443
404 => 0.08209822358361
405 => 0.082246209572334
406 => 0.080949696592936
407 => 0.082403629722158
408 => 0.082445323321882
409 => 0.081885479870858
410 => 0.084125464460534
411 => 0.085043187974577
412 => 0.084674687022105
413 => 0.085017332965403
414 => 0.087896165834372
415 => 0.088365541204299
416 => 0.088574006738423
417 => 0.088294690539087
418 => 0.0850699527455
419 => 0.085212983579289
420 => 0.084163518223391
421 => 0.083276830587592
422 => 0.08331229344296
423 => 0.083768166149085
424 => 0.085758988993314
425 => 0.089948558303576
426 => 0.090107549396365
427 => 0.090300251238923
428 => 0.089516436001054
429 => 0.089280029825211
430 => 0.089591910592759
501 => 0.091165292548604
502 => 0.095212458108072
503 => 0.093781919498257
504 => 0.092618869340817
505 => 0.093639177884963
506 => 0.093482109382034
507 => 0.092156293149163
508 => 0.092119081903275
509 => 0.089574416663305
510 => 0.088633711863312
511 => 0.087847588521904
512 => 0.086989162355356
513 => 0.086480258549121
514 => 0.087262166088142
515 => 0.087440997593574
516 => 0.0857313430941
517 => 0.085498323503212
518 => 0.086894464272938
519 => 0.086280074773556
520 => 0.086911989609797
521 => 0.08705859927227
522 => 0.087034991739905
523 => 0.086393498540365
524 => 0.086802367176149
525 => 0.085835270962913
526 => 0.084783699084174
527 => 0.084112861740781
528 => 0.083527467185009
529 => 0.083852278107883
530 => 0.082694386475971
531 => 0.082323953639168
601 => 0.086663851682181
602 => 0.089869781028322
603 => 0.089823165545941
604 => 0.08953940578548
605 => 0.089117796340001
606 => 0.091134449191624
607 => 0.090431887662365
608 => 0.090943059875881
609 => 0.091073174658051
610 => 0.091466992915615
611 => 0.091607749092871
612 => 0.091182286163753
613 => 0.089754380607711
614 => 0.086196175723242
615 => 0.084539821744331
616 => 0.083993197342533
617 => 0.08401306610135
618 => 0.08346499703511
619 => 0.08362642793785
620 => 0.083408857955087
621 => 0.082996833043566
622 => 0.083826836730652
623 => 0.083922486923569
624 => 0.083728754145198
625 => 0.083774385227733
626 => 0.08217036056717
627 => 0.082292311078354
628 => 0.081613275135359
629 => 0.081485964081947
630 => 0.079769420348478
701 => 0.076728314307645
702 => 0.078413382261573
703 => 0.076378057129639
704 => 0.075607248661967
705 => 0.079256136062614
706 => 0.078889888971972
707 => 0.078263033156575
708 => 0.077335782757404
709 => 0.07699185656464
710 => 0.074902269891204
711 => 0.074778805963026
712 => 0.075814461541967
713 => 0.075336542127018
714 => 0.074665362266194
715 => 0.072234416846699
716 => 0.069501229336819
717 => 0.069583727087538
718 => 0.07045310318167
719 => 0.072980931426696
720 => 0.071993265199492
721 => 0.071276702019491
722 => 0.071142511275687
723 => 0.072822189381746
724 => 0.075199285805263
725 => 0.076314566262642
726 => 0.07520935720095
727 => 0.073939752539561
728 => 0.074017027492518
729 => 0.074531103134754
730 => 0.074585125216114
731 => 0.073758743099018
801 => 0.07399136482442
802 => 0.073637991152158
803 => 0.071469337577765
804 => 0.071430113511479
805 => 0.07089789095006
806 => 0.070881775462419
807 => 0.069976332116305
808 => 0.069849654333149
809 => 0.068051841612958
810 => 0.069235167389666
811 => 0.068441454586042
812 => 0.067245142173058
813 => 0.067038897462142
814 => 0.067032697497084
815 => 0.068261042854658
816 => 0.069220813458986
817 => 0.068455261560079
818 => 0.068280960232298
819 => 0.070142042403539
820 => 0.069905202733108
821 => 0.069700101105967
822 => 0.074986442892759
823 => 0.070801890870119
824 => 0.06897718734237
825 => 0.066718770224977
826 => 0.067454122226328
827 => 0.067609071697581
828 => 0.062177985640536
829 => 0.059974594703591
830 => 0.059218473967067
831 => 0.05878331579322
901 => 0.058981622837415
902 => 0.056998312562185
903 => 0.058331129868063
904 => 0.056613750814759
905 => 0.056325826627637
906 => 0.059396713117386
907 => 0.059824009032576
908 => 0.058001031907941
909 => 0.059171678335145
910 => 0.058747185667438
911 => 0.056643190349451
912 => 0.056562833204246
913 => 0.055507122312691
914 => 0.053855139193318
915 => 0.05310013857914
916 => 0.05270692770406
917 => 0.052869174174645
918 => 0.052787137394294
919 => 0.052251791910682
920 => 0.052817822770761
921 => 0.051371847823358
922 => 0.05079604894829
923 => 0.050535973954854
924 => 0.049252587961821
925 => 0.051295025801078
926 => 0.051697411785366
927 => 0.052100590594346
928 => 0.055609986864653
929 => 0.055434667344439
930 => 0.057019470423101
1001 => 0.05695788788973
1002 => 0.056505876379588
1003 => 0.054598914170583
1004 => 0.05535899531876
1005 => 0.053019583687509
1006 => 0.05477242994617
1007 => 0.053972504114327
1008 => 0.054501974217771
1009 => 0.053549939231384
1010 => 0.054076834701412
1011 => 0.051792832429777
1012 => 0.049660063245303
1013 => 0.050518351824549
1014 => 0.051451409667394
1015 => 0.053474516809399
1016 => 0.052269570885892
1017 => 0.052702915004035
1018 => 0.051251284749186
1019 => 0.048256156895749
1020 => 0.04827310899413
1021 => 0.047812373826285
1022 => 0.047414231372832
1023 => 0.05240797341999
1024 => 0.051786922657046
1025 => 0.05079735954741
1026 => 0.052121929093333
1027 => 0.05247216630502
1028 => 0.052482137066062
1029 => 0.053448508814679
1030 => 0.053964261590147
1031 => 0.054055165252224
1101 => 0.055575772078516
1102 => 0.0560854594294
1103 => 0.058184789494038
1104 => 0.053920503570513
1105 => 0.053832683408109
1106 => 0.052140568503197
1107 => 0.051067402479224
1108 => 0.052214049098992
1109 => 0.053229821471234
1110 => 0.052172131382257
1111 => 0.052310243378821
1112 => 0.050890380850825
1113 => 0.051397914893842
1114 => 0.051835071583907
1115 => 0.051593699354536
1116 => 0.051232353444619
1117 => 0.053146539720426
1118 => 0.053038533828988
1119 => 0.054821068095972
1120 => 0.056210681027334
1121 => 0.05870111582336
1122 => 0.056102217284405
1123 => 0.05600750309196
1124 => 0.05693334951575
1125 => 0.056085317687136
1126 => 0.056621244529756
1127 => 0.058614769723617
1128 => 0.058656889769607
1129 => 0.057951324730654
1130 => 0.057908391033912
1201 => 0.058043902517679
1202 => 0.058837597510725
1203 => 0.058560256092371
1204 => 0.058881202603116
1205 => 0.05928255112931
1206 => 0.060942698801896
1207 => 0.061342954785354
1208 => 0.060370540254487
1209 => 0.06045833839896
1210 => 0.06009462867104
1211 => 0.059743289631139
1212 => 0.060533048483891
1213 => 0.061976348310043
1214 => 0.061967369616732
1215 => 0.06230218712266
1216 => 0.062510775655075
1217 => 0.061615360977812
1218 => 0.061032478948223
1219 => 0.061255993008115
1220 => 0.061613396857384
1221 => 0.061140091756766
1222 => 0.058218633419498
1223 => 0.059104817255544
1224 => 0.05895731293305
1225 => 0.058747248840681
1226 => 0.059638313540482
1227 => 0.059552368176419
1228 => 0.056977970848682
1229 => 0.057142775412992
1230 => 0.056987993160088
1231 => 0.057488126284692
]
'min_raw' => 0.047414231372832
'max_raw' => 0.10621373135976
'avg_raw' => 0.076813981366294
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.047414'
'max' => '$0.106213'
'avg' => '$0.076813'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.011562206087659
'max_diff' => -0.07718331620333
'year' => 2034
]
9 => [
'items' => [
101 => 0.056058308857111
102 => 0.056498111067867
103 => 0.056773950891564
104 => 0.056936422666823
105 => 0.057523382126997
106 => 0.057454509209007
107 => 0.057519100889713
108 => 0.058389406817599
109 => 0.062791115547917
110 => 0.063030690842285
111 => 0.061850934472268
112 => 0.062322223872425
113 => 0.061417451283787
114 => 0.062024831183989
115 => 0.062440385085931
116 => 0.060562576909476
117 => 0.060451385296141
118 => 0.059542878389184
119 => 0.060031058540521
120 => 0.059254328818348
121 => 0.059444911123317
122 => 0.058912026383958
123 => 0.059871112818512
124 => 0.060943520479308
125 => 0.061214453005087
126 => 0.060501746173549
127 => 0.059985699457846
128 => 0.059079691421428
129 => 0.060586402977697
130 => 0.061027011352953
131 => 0.060584088649474
201 => 0.060481453781026
202 => 0.060286960890774
203 => 0.060522716367121
204 => 0.061024611705116
205 => 0.060787927132269
206 => 0.06094426146248
207 => 0.060348476206977
208 => 0.061615657397328
209 => 0.063628246091366
210 => 0.063634716893109
211 => 0.063398031044444
212 => 0.063301184294638
213 => 0.063544038338667
214 => 0.063675776695158
215 => 0.06446112214173
216 => 0.065303829095446
217 => 0.069236374746587
218 => 0.068132131664082
219 => 0.071621320113962
220 => 0.074380815163402
221 => 0.075208267070635
222 => 0.074447050250601
223 => 0.071842968629391
224 => 0.071715199961627
225 => 0.075606797318617
226 => 0.074507242818816
227 => 0.074376454309819
228 => 0.072985085544755
301 => 0.073807556809281
302 => 0.073627670278804
303 => 0.073343710590095
304 => 0.074912928468967
305 => 0.077850364253169
306 => 0.077392537339103
307 => 0.077050790785732
308 => 0.075553356869786
309 => 0.076455146551159
310 => 0.076134036518265
311 => 0.077513729001037
312 => 0.076696429738174
313 => 0.074498912612039
314 => 0.074848874457487
315 => 0.074795978428573
316 => 0.07588457495537
317 => 0.075557805298652
318 => 0.074732171408633
319 => 0.077840324416998
320 => 0.077638498249091
321 => 0.077924641611299
322 => 0.07805061076862
323 => 0.079942488733013
324 => 0.080717530601682
325 => 0.080893478674887
326 => 0.081629708506234
327 => 0.080875160605993
328 => 0.08389389019049
329 => 0.085901169216425
330 => 0.088232727098683
331 => 0.091639759828341
401 => 0.092920835651507
402 => 0.092689420770517
403 => 0.095272594102216
404 => 0.099914499158563
405 => 0.093627682499549
406 => 0.10024771570707
407 => 0.09815188962553
408 => 0.093182723688492
409 => 0.092862767984765
410 => 0.09622794485053
411 => 0.10369158325253
412 => 0.10182202648471
413 => 0.10369464117765
414 => 0.10151013666855
415 => 0.10140165760723
416 => 0.10358854466955
417 => 0.10869832549167
418 => 0.10627086016035
419 => 0.10279049336898
420 => 0.10536034204722
421 => 0.10313410129386
422 => 0.098117757790995
423 => 0.10182059686989
424 => 0.099344613828617
425 => 0.10006723731056
426 => 0.10527138538862
427 => 0.1046452085234
428 => 0.10545553936941
429 => 0.10402532663625
430 => 0.10268928241963
501 => 0.10019545667337
502 => 0.099457157814022
503 => 0.099661197057535
504 => 0.099457056702306
505 => 0.098061784116712
506 => 0.097760475134698
507 => 0.097258280297358
508 => 0.097413931476564
509 => 0.096469658260084
510 => 0.098251696916383
511 => 0.098582458994263
512 => 0.099879278118626
513 => 0.10001391818215
514 => 0.10362554098444
515 => 0.10163631983579
516 => 0.10297086112339
517 => 0.10285148718944
518 => 0.093290420582176
519 => 0.094607851202653
520 => 0.09665735981561
521 => 0.095734058963516
522 => 0.094428727577781
523 => 0.093374602496359
524 => 0.091777495208181
525 => 0.094025393046563
526 => 0.09698113966675
527 => 0.10008888079416
528 => 0.10382262813148
529 => 0.1029892991914
530 => 0.10001908098483
531 => 0.10015232280383
601 => 0.10097597130017
602 => 0.099909271661055
603 => 0.099594681113028
604 => 0.10093275138974
605 => 0.10094196594435
606 => 0.099714599094583
607 => 0.098350605446833
608 => 0.098344890263645
609 => 0.098102180768643
610 => 0.10155331414853
611 => 0.10345108855853
612 => 0.10366866533622
613 => 0.10343644390783
614 => 0.10352581671908
615 => 0.10242154360451
616 => 0.1049455844824
617 => 0.10726189399372
618 => 0.10664107356395
619 => 0.1057103754849
620 => 0.10496902963645
621 => 0.10646643604237
622 => 0.10639975889225
623 => 0.10724166305085
624 => 0.10720346941514
625 => 0.10692036871222
626 => 0.10664108367437
627 => 0.10774841728049
628 => 0.10742952298516
629 => 0.10711013335891
630 => 0.10646954856736
701 => 0.10655661467952
702 => 0.10562607729861
703 => 0.10519556812771
704 => 0.098721743133316
705 => 0.096991725556478
706 => 0.097536024303906
707 => 0.097715221584271
708 => 0.096962315717753
709 => 0.098041789324691
710 => 0.097873554506495
711 => 0.098528057770018
712 => 0.098119152546197
713 => 0.098135934159215
714 => 0.099338437234687
715 => 0.09968752899331
716 => 0.099509978107358
717 => 0.09963432866179
718 => 0.1024999347036
719 => 0.10209253716137
720 => 0.1018761153368
721 => 0.10193606566126
722 => 0.10266828944423
723 => 0.10287327212552
724 => 0.102004746101
725 => 0.10241434799506
726 => 0.10415838087372
727 => 0.10476869367754
728 => 0.10671651918057
729 => 0.10588904828704
730 => 0.10740790692421
731 => 0.11207636055778
801 => 0.1158058443527
802 => 0.11237605692746
803 => 0.11922477896993
804 => 0.12455749147082
805 => 0.12435281308294
806 => 0.12342293131055
807 => 0.11735177990578
808 => 0.11176501586734
809 => 0.11643858121203
810 => 0.11645049509122
811 => 0.11604903168333
812 => 0.11355557693631
813 => 0.11596226486301
814 => 0.11615329901082
815 => 0.11604637068813
816 => 0.1141346447798
817 => 0.1112157926638
818 => 0.11178612938052
819 => 0.11272035255707
820 => 0.11095167318449
821 => 0.11038647295689
822 => 0.11143728771374
823 => 0.11482323180626
824 => 0.11418313868901
825 => 0.1141664232709
826 => 0.11690501306823
827 => 0.11494477379801
828 => 0.11179332315299
829 => 0.11099754030259
830 => 0.10817304728725
831 => 0.11012393467345
901 => 0.11019414363738
902 => 0.10912566255355
903 => 0.11188002450421
904 => 0.11185464257394
905 => 0.11446949931341
906 => 0.11946812330395
907 => 0.1179897842226
908 => 0.11627063671383
909 => 0.11645755571482
910 => 0.11850759580032
911 => 0.11726809476676
912 => 0.11771382798054
913 => 0.11850692112971
914 => 0.11898541391801
915 => 0.11638870796617
916 => 0.11578329159399
917 => 0.11454482216879
918 => 0.11422172861289
919 => 0.1152304361182
920 => 0.11496467732871
921 => 0.11018824284582
922 => 0.10968907886653
923 => 0.10970438751313
924 => 0.10844921595325
925 => 0.10653477804874
926 => 0.11156580655665
927 => 0.11116174455827
928 => 0.11071569138397
929 => 0.11077033035267
930 => 0.11295412931058
1001 => 0.1116874156305
1002 => 0.11505518155928
1003 => 0.11436287012864
1004 => 0.11365280352212
1005 => 0.11355465068795
1006 => 0.11328133562447
1007 => 0.11234403657578
1008 => 0.11121219165153
1009 => 0.11046484959382
1010 => 0.10189798460044
1011 => 0.10348794491205
1012 => 0.10531704932112
1013 => 0.10594844883345
1014 => 0.10486839627609
1015 => 0.11238668363374
1016 => 0.113760347182
1017 => 0.10959943069246
1018 => 0.10882109310636
1019 => 0.1124377113163
1020 => 0.11025644842212
1021 => 0.11123867096981
1022 => 0.10911564306871
1023 => 0.11342947185879
1024 => 0.11339660771105
1025 => 0.11171843087946
1026 => 0.11313681444586
1027 => 0.11289033539649
1028 => 0.1109956778868
1029 => 0.11348953588129
1030 => 0.11349077280374
1031 => 0.11187556409005
1101 => 0.10998935392711
1102 => 0.10965214410027
1103 => 0.10939810179352
1104 => 0.11117619213542
1105 => 0.11277042237603
1106 => 0.11573688961061
1107 => 0.1164827299549
1108 => 0.11939379447209
1109 => 0.11766039728926
1110 => 0.11842878980916
1111 => 0.11926298858526
1112 => 0.11966293415517
1113 => 0.11901124431127
1114 => 0.12353332574842
1115 => 0.12391512797471
1116 => 0.12404314295861
1117 => 0.12251832254121
1118 => 0.12387271996052
1119 => 0.12323904226095
1120 => 0.1248876955945
1121 => 0.12514622548826
1122 => 0.12492725986571
1123 => 0.12500932133461
1124 => 0.12115052257783
1125 => 0.12095042350551
1126 => 0.11822205845599
1127 => 0.11933388738072
1128 => 0.11725537649728
1129 => 0.11791449370945
1130 => 0.11820502629628
1201 => 0.1180532685605
1202 => 0.11939674851995
1203 => 0.11825451609959
1204 => 0.11523997694187
1205 => 0.11222461647497
1206 => 0.11218676108057
1207 => 0.11139286989517
1208 => 0.11081903197655
1209 => 0.11092957351767
1210 => 0.11131913632674
1211 => 0.1107963898779
1212 => 0.11090794433668
1213 => 0.11276049163585
1214 => 0.11313200678494
1215 => 0.111869453148
1216 => 0.10680011811009
1217 => 0.10555609057632
1218 => 0.10645027289745
1219 => 0.10602291134067
1220 => 0.085568764200877
1221 => 0.090374162670718
1222 => 0.087518958075851
1223 => 0.088834767714813
1224 => 0.085920343175099
1225 => 0.087311259323528
1226 => 0.087054407899038
1227 => 0.094781346436465
1228 => 0.094660700919259
1229 => 0.094718447543926
1230 => 0.091962050690514
1231 => 0.096353065722331
]
'min_raw' => 0.056058308857111
'max_raw' => 0.12514622548826
'avg_raw' => 0.090602267172687
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.056058'
'max' => '$0.125146'
'avg' => '$0.0906022'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0086440774842786
'max_diff' => 0.018932494128507
'year' => 2035
]
10 => [
'items' => [
101 => 0.098516237622797
102 => 0.098115892074976
103 => 0.098216650424257
104 => 0.096485288155241
105 => 0.094735210915261
106 => 0.092794105921167
107 => 0.096400439072366
108 => 0.095999476388112
109 => 0.096919140523969
110 => 0.099258105358539
111 => 0.099602526815293
112 => 0.10006543274595
113 => 0.099899513921696
114 => 0.10385237345278
115 => 0.10337365608176
116 => 0.10452722720953
117 => 0.10215424387805
118 => 0.099468987992832
119 => 0.099979367348983
120 => 0.099930213712774
121 => 0.099304431507917
122 => 0.098739503313986
123 => 0.097799057038621
124 => 0.10077476821373
125 => 0.10065395977431
126 => 0.10260970798412
127 => 0.10226401049091
128 => 0.099955358024742
129 => 0.10003781199922
130 => 0.10059235460361
131 => 0.10251163288906
201 => 0.10308140535861
202 => 0.10281746404921
203 => 0.10344219355097
204 => 0.10393595427689
205 => 0.10350420229607
206 => 0.10961689986009
207 => 0.10707848165572
208 => 0.10831568902633
209 => 0.10861075569417
210 => 0.10785494862908
211 => 0.10801885611808
212 => 0.10826713130179
213 => 0.10977460960003
214 => 0.11373066884696
215 => 0.11548278055762
216 => 0.12075409508682
217 => 0.11533729207063
218 => 0.1150158813966
219 => 0.11596540432176
220 => 0.11906022397571
221 => 0.1215682846236
222 => 0.122400353034
223 => 0.12251032461039
224 => 0.12407134026315
225 => 0.1249660853241
226 => 0.12388179190412
227 => 0.12296296676094
228 => 0.11967184914684
229 => 0.12005280497209
301 => 0.12267721283233
302 => 0.12638434351177
303 => 0.12956544729594
304 => 0.12845153562339
305 => 0.1369498953859
306 => 0.13779247304367
307 => 0.13767605605516
308 => 0.13959557335192
309 => 0.13578572242075
310 => 0.13415693733529
311 => 0.123161627186
312 => 0.12625086084508
313 => 0.13074124339288
314 => 0.13014692442461
315 => 0.12688588859013
316 => 0.12956297350784
317 => 0.12867784551386
318 => 0.12797970834101
319 => 0.13117801007037
320 => 0.12766134593995
321 => 0.13070616197807
322 => 0.12680115391459
323 => 0.12845662387808
324 => 0.12751689906073
325 => 0.12812501618589
326 => 0.12456997589804
327 => 0.12648818934364
328 => 0.1244901719122
329 => 0.12448922459179
330 => 0.12444511824625
331 => 0.12679577689377
401 => 0.12687243178788
402 => 0.12513529149571
403 => 0.12488494244038
404 => 0.12581061411119
405 => 0.12472689501846
406 => 0.12523396036111
407 => 0.12474225351114
408 => 0.12463155994228
409 => 0.12374953475265
410 => 0.12336953404917
411 => 0.12351854211642
412 => 0.12300990076398
413 => 0.12270342595078
414 => 0.12438415269205
415 => 0.12348620819451
416 => 0.12424652981946
417 => 0.12338004736759
418 => 0.12037644168098
419 => 0.11864903628805
420 => 0.11297550358043
421 => 0.11458451041832
422 => 0.11565128361647
423 => 0.11529871508085
424 => 0.11605616872128
425 => 0.11610267022302
426 => 0.11585641432319
427 => 0.11557128153852
428 => 0.11543249466777
429 => 0.11646689829636
430 => 0.11706740441918
501 => 0.11575834857849
502 => 0.11545165511065
503 => 0.11677518284055
504 => 0.11758253399121
505 => 0.12354356127625
506 => 0.12310194912111
507 => 0.1242103089685
508 => 0.12408552465885
509 => 0.12524726235449
510 => 0.12714621249988
511 => 0.12328511589949
512 => 0.12395526876265
513 => 0.12379096275669
514 => 0.12558481264636
515 => 0.12559041284991
516 => 0.12451491023161
517 => 0.12509795764903
518 => 0.12477251657569
519 => 0.12536063258121
520 => 0.12309605112154
521 => 0.12585406689295
522 => 0.12741768411273
523 => 0.12743939493935
524 => 0.12818053709189
525 => 0.12893358044293
526 => 0.130378981579
527 => 0.12889326898974
528 => 0.12622061667286
529 => 0.12641357353752
530 => 0.12484659846202
531 => 0.12487293959614
601 => 0.12473232855783
602 => 0.12515431286849
603 => 0.12318865294749
604 => 0.12364998940204
605 => 0.12300411566409
606 => 0.12395386475928
607 => 0.122932091732
608 => 0.12379088352336
609 => 0.12416150959111
610 => 0.12552912776012
611 => 0.12273009341646
612 => 0.11702267291177
613 => 0.11822244189764
614 => 0.11644788932772
615 => 0.11661213092426
616 => 0.11694392508814
617 => 0.11586847164672
618 => 0.11607363427191
619 => 0.11606630441923
620 => 0.11600313970875
621 => 0.11572337273265
622 => 0.11531765526711
623 => 0.1169339087766
624 => 0.11720854174263
625 => 0.11781901680628
626 => 0.11963537650653
627 => 0.11945387933977
628 => 0.11974990874901
629 => 0.11910367821077
630 => 0.11664210770549
701 => 0.1167757828269
702 => 0.11510885192093
703 => 0.11777638963524
704 => 0.11714468149472
705 => 0.11673741514702
706 => 0.11662628875075
707 => 0.11844715085537
708 => 0.11899198133559
709 => 0.11865247954253
710 => 0.11795615146012
711 => 0.11929330722927
712 => 0.11965107370302
713 => 0.11973116442258
714 => 0.12210034807133
715 => 0.1198635754702
716 => 0.1204019888669
717 => 0.12460253649107
718 => 0.12079321943189
719 => 0.12281109963605
720 => 0.1227123349006
721 => 0.1237446141317
722 => 0.12262765787367
723 => 0.12264150388515
724 => 0.12355809790972
725 => 0.12227090691082
726 => 0.12195218031768
727 => 0.12151186181203
728 => 0.12247328116039
729 => 0.12304960857848
730 => 0.12769438430242
731 => 0.1306951212476
801 => 0.13056485134293
802 => 0.13175527441657
803 => 0.13121897791887
804 => 0.12948713505992
805 => 0.13244317964441
806 => 0.13150776345172
807 => 0.13158487802611
808 => 0.1315820078178
809 => 0.13220397781044
810 => 0.13176325506794
811 => 0.13089454530322
812 => 0.13147123538603
813 => 0.1331837987615
814 => 0.13849964802681
815 => 0.14147446770132
816 => 0.13832056014711
817 => 0.1404960833455
818 => 0.13919154464464
819 => 0.13895447115603
820 => 0.14032086049452
821 => 0.14168964151666
822 => 0.14160245608296
823 => 0.14060879134856
824 => 0.14004749535341
825 => 0.14429781667664
826 => 0.14742938102526
827 => 0.14721582933095
828 => 0.14815837705887
829 => 0.15092572633994
830 => 0.15117873807665
831 => 0.15114686441323
901 => 0.15051974842475
902 => 0.15324456317768
903 => 0.15551765158312
904 => 0.15037458919254
905 => 0.15233300002324
906 => 0.1532121937412
907 => 0.15450311096419
908 => 0.15668110470221
909 => 0.15904698358602
910 => 0.15938154480073
911 => 0.15914415760866
912 => 0.15758379688656
913 => 0.16017256979202
914 => 0.16168901224584
915 => 0.16259201902393
916 => 0.16488189396715
917 => 0.15321762334229
918 => 0.14496107284215
919 => 0.14367169325552
920 => 0.14629369734729
921 => 0.14698509891619
922 => 0.14670639581071
923 => 0.13741289757007
924 => 0.14362276491062
925 => 0.15030406002857
926 => 0.15056071578448
927 => 0.15390551181982
928 => 0.15499471451675
929 => 0.15768771373764
930 => 0.15751926590314
1001 => 0.15817496835845
1002 => 0.15802423371916
1003 => 0.16301244769796
1004 => 0.16851518847353
1005 => 0.16832464605811
1006 => 0.16753356196615
1007 => 0.1687084567426
1008 => 0.17438787493252
1009 => 0.17386500511641
1010 => 0.17437292860481
1011 => 0.18106928272871
1012 => 0.18977549563505
1013 => 0.18573058565057
1014 => 0.19450687642539
1015 => 0.20003108625695
1016 => 0.20958463594669
1017 => 0.20838848447331
1018 => 0.21210761126034
1019 => 0.20624712369162
1020 => 0.19279025963388
1021 => 0.19066065938594
1022 => 0.19492417301239
1023 => 0.20540560523544
1024 => 0.19459407541143
1025 => 0.19678123381386
1026 => 0.19615133204682
1027 => 0.19611776725857
1028 => 0.19739879870841
1029 => 0.19554059577631
1030 => 0.18796994274658
1031 => 0.19143952841597
1101 => 0.19009975476583
1102 => 0.1915863335174
1103 => 0.19960878592791
1104 => 0.19606186848584
1105 => 0.1923254790888
1106 => 0.19701174056388
1107 => 0.2029789617958
1108 => 0.20260554381523
1109 => 0.20188095685633
1110 => 0.20596541560554
1111 => 0.21271174482511
1112 => 0.21453525050422
1113 => 0.2158813251166
1114 => 0.21606692606353
1115 => 0.21797873116726
1116 => 0.20769847328758
1117 => 0.22401350655838
1118 => 0.22683066211055
1119 => 0.22630115362587
1120 => 0.22943230345808
1121 => 0.22851103974784
1122 => 0.22717627317355
1123 => 0.23213981167227
1124 => 0.22644951532039
1125 => 0.21837285603729
1126 => 0.21394184101638
1127 => 0.21977695903571
1128 => 0.22334026199255
1129 => 0.2256953785784
1130 => 0.22640803543427
1201 => 0.20849650044264
1202 => 0.19884317650142
1203 => 0.20503084647216
1204 => 0.21258023088662
1205 => 0.20765653607598
1206 => 0.20784953559077
1207 => 0.20082964071502
1208 => 0.21320133581723
1209 => 0.21139888390317
1210 => 0.22075000762179
1211 => 0.21851828689889
1212 => 0.22614376528289
1213 => 0.22413572126677
1214 => 0.23247099970944
1215 => 0.23579616794888
1216 => 0.24137964294401
1217 => 0.24548686987925
1218 => 0.24789871209436
1219 => 0.24775391413436
1220 => 0.25731083456564
1221 => 0.25167545248068
1222 => 0.24459608442439
1223 => 0.24446804099138
1224 => 0.24813454602315
1225 => 0.25581853471321
1226 => 0.25781088118306
1227 => 0.25892433105879
1228 => 0.25721904381463
1229 => 0.25110224045288
1230 => 0.24846103577417
1231 => 0.2507114186835
]
'min_raw' => 0.092794105921167
'max_raw' => 0.25892433105879
'avg_raw' => 0.17585921848998
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.092794'
'max' => '$0.258924'
'avg' => '$0.175859'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.036735797064056
'max_diff' => 0.13377810557053
'year' => 2036
]
11 => [
'items' => [
101 => 0.247959393763
102 => 0.25271016085759
103 => 0.25923397878756
104 => 0.25788683618299
105 => 0.26239013193515
106 => 0.2670505692781
107 => 0.27371520399186
108 => 0.27545758629675
109 => 0.27833767798986
110 => 0.28130223840291
111 => 0.28225437531044
112 => 0.28407230009764
113 => 0.28406271873666
114 => 0.28954115744334
115 => 0.29558404498994
116 => 0.29786509514561
117 => 0.30311024420074
118 => 0.29412811025578
119 => 0.30094116203235
120 => 0.30708670527656
121 => 0.2997597352698
122 => 0.30985825645906
123 => 0.3102503591531
124 => 0.31617064430731
125 => 0.31016930111412
126 => 0.30660572268297
127 => 0.31689364008816
128 => 0.32187163925417
129 => 0.32037222539307
130 => 0.30896161187488
131 => 0.30232014538306
201 => 0.28493814653074
202 => 0.30552787501778
203 => 0.3155565311532
204 => 0.30893564007823
205 => 0.31227483242221
206 => 0.3304923831142
207 => 0.33742844691865
208 => 0.33598579413407
209 => 0.33622957870658
210 => 0.339972152837
211 => 0.3565687876045
212 => 0.34662369934483
213 => 0.354226346684
214 => 0.35825876341931
215 => 0.36200429681209
216 => 0.3528064505874
217 => 0.34084018779228
218 => 0.33704997005552
219 => 0.30827732294433
220 => 0.30677958170892
221 => 0.30593885416728
222 => 0.30063818594051
223 => 0.29647331268949
224 => 0.29316125084845
225 => 0.28446941151217
226 => 0.28740265213655
227 => 0.27354967436238
228 => 0.2824123186229
301 => 0.26030263160348
302 => 0.27871623594615
303 => 0.26869454826629
304 => 0.27542384201089
305 => 0.27540036413895
306 => 0.26300960083062
307 => 0.25586286714301
308 => 0.26041704400379
309 => 0.26529948310956
310 => 0.26609164242797
311 => 0.2724218521733
312 => 0.27418847764582
313 => 0.26883551998823
314 => 0.25984445748348
315 => 0.26193287623903
316 => 0.25582054540358
317 => 0.24510892072187
318 => 0.2528021965753
319 => 0.25542901920112
320 => 0.25658917371947
321 => 0.24605552108341
322 => 0.24274561872844
323 => 0.24098345448742
324 => 0.25848469520411
325 => 0.25944345267739
326 => 0.25453831388945
327 => 0.27671000633526
328 => 0.27169186948489
329 => 0.27729835782013
330 => 0.26174337412673
331 => 0.26233759545139
401 => 0.25497361689126
402 => 0.25909695282371
403 => 0.25618271188798
404 => 0.25876382802796
405 => 0.26031093839993
406 => 0.26767370860364
407 => 0.2788003069549
408 => 0.26657395626195
409 => 0.26124676018047
410 => 0.26455172266813
411 => 0.27335327329565
412 => 0.28668807303942
413 => 0.27879360320325
414 => 0.28229703485975
415 => 0.28306237881987
416 => 0.27724128903184
417 => 0.28690270492302
418 => 0.2920803361883
419 => 0.29739151450666
420 => 0.30200306182465
421 => 0.29527011309099
422 => 0.30247533336629
423 => 0.296669197717
424 => 0.29146049381231
425 => 0.29146839326607
426 => 0.28820089721964
427 => 0.28186971189867
428 => 0.28070214418768
429 => 0.28677597886782
430 => 0.29164661908702
501 => 0.29204778834426
502 => 0.29474442503214
503 => 0.29634026684645
504 => 0.31198168606851
505 => 0.31827279427223
506 => 0.32596544229915
507 => 0.32896216223953
508 => 0.33798121487649
509 => 0.3306975973805
510 => 0.32912174091914
511 => 0.3072444693315
512 => 0.31082687132839
513 => 0.31656264257578
514 => 0.30733905008675
515 => 0.31318929654271
516 => 0.31434425911827
517 => 0.30702563594343
518 => 0.31093482880015
519 => 0.30055317156759
520 => 0.27902659871277
521 => 0.2869266701523
522 => 0.29274378186709
523 => 0.28444204620539
524 => 0.29932258605745
525 => 0.29062968187257
526 => 0.28787444857895
527 => 0.27712530118895
528 => 0.2821984849844
529 => 0.28906003870875
530 => 0.28482039624834
531 => 0.2936182909392
601 => 0.30607845613428
602 => 0.31495831186795
603 => 0.31563999692957
604 => 0.30993084459695
605 => 0.3190797976453
606 => 0.31914643778012
607 => 0.30882638136701
608 => 0.30250540427629
609 => 0.30106926498183
610 => 0.30465702251109
611 => 0.30901322248818
612 => 0.31588173571069
613 => 0.32003223440006
614 => 0.33085453372753
615 => 0.3337827376259
616 => 0.33699994593427
617 => 0.34129912838454
618 => 0.34646139920384
619 => 0.33516664453944
620 => 0.33561540619832
621 => 0.32509788704135
622 => 0.31385840945731
623 => 0.32238777192294
624 => 0.3335387787332
625 => 0.33098072545016
626 => 0.33069289219953
627 => 0.3311769478888
628 => 0.3292482592516
629 => 0.32052487202606
630 => 0.31614404157269
701 => 0.32179643052658
702 => 0.32480042369669
703 => 0.32945935512779
704 => 0.32888504349079
705 => 0.34088595052459
706 => 0.34554914010933
707 => 0.34435609666442
708 => 0.34457564537048
709 => 0.35301812737069
710 => 0.36240790368378
711 => 0.3712026682911
712 => 0.38014908059359
713 => 0.36936383137852
714 => 0.3638877469688
715 => 0.3695376682665
716 => 0.36653974049754
717 => 0.38376672270112
718 => 0.38495948157204
719 => 0.40218521806873
720 => 0.41853449320663
721 => 0.4082658064202
722 => 0.41794871554799
723 => 0.42842157122886
724 => 0.44862540899685
725 => 0.44182146721617
726 => 0.43660975444353
727 => 0.4316847110562
728 => 0.44193294451662
729 => 0.45511713314391
730 => 0.45795688109764
731 => 0.4625583576499
801 => 0.45772046769699
802 => 0.46354717326917
803 => 0.48411800432315
804 => 0.47855958418862
805 => 0.47066573403695
806 => 0.48690442951045
807 => 0.49278115027598
808 => 0.53402705427102
809 => 0.58610171184808
810 => 0.56454246167054
811 => 0.55115993937269
812 => 0.55430514955036
813 => 0.57332105165909
814 => 0.57942835588185
815 => 0.56282659769037
816 => 0.56869061934687
817 => 0.60100195521202
818 => 0.61833595023191
819 => 0.59479405672878
820 => 0.52984290623867
821 => 0.46995497919928
822 => 0.48583995423863
823 => 0.48403909103733
824 => 0.5187535905032
825 => 0.4784270177067
826 => 0.47910601376933
827 => 0.51453837232086
828 => 0.50508562652372
829 => 0.48977338894856
830 => 0.47006677547912
831 => 0.43363727783972
901 => 0.40137065586881
902 => 0.46465293211301
903 => 0.46192408529001
904 => 0.45797231069786
905 => 0.46676655742601
906 => 0.50946892324745
907 => 0.50848449550119
908 => 0.50222206843898
909 => 0.50697206417117
910 => 0.48894069173082
911 => 0.49358778697542
912 => 0.46994549264566
913 => 0.48063279707214
914 => 0.4897405357638
915 => 0.49156904914853
916 => 0.49568878317053
917 => 0.46048610701404
918 => 0.47629107511204
919 => 0.48557501314436
920 => 0.44362984336175
921 => 0.48474589200176
922 => 0.45987330674105
923 => 0.45143117772986
924 => 0.4627973922775
925 => 0.45836796741428
926 => 0.45455980802144
927 => 0.45243478964775
928 => 0.46078088316821
929 => 0.46039152792974
930 => 0.44673569902332
1001 => 0.4289222268977
1002 => 0.43490101285035
1003 => 0.43272886386233
1004 => 0.42485671571697
1005 => 0.43016159308015
1006 => 0.40680159790969
1007 => 0.36661194036581
1008 => 0.3931624591818
1009 => 0.39214029308879
1010 => 0.39162487059316
1011 => 0.41157685168093
1012 => 0.40965892906987
1013 => 0.40617788075042
1014 => 0.42479278353471
1015 => 0.41799809361267
1016 => 0.43893772692211
1017 => 0.45272992371028
1018 => 0.44923177647398
1019 => 0.46220340421672
1020 => 0.43503875200325
1021 => 0.44406175981188
1022 => 0.44592138921589
1023 => 0.42456307852387
1024 => 0.40997272492839
1025 => 0.40899971468577
1026 => 0.38370205222578
1027 => 0.39721585931631
1028 => 0.40910745031665
1029 => 0.40341230105223
1030 => 0.40160938693286
1031 => 0.41082008416436
1101 => 0.41153583422353
1102 => 0.39521665702256
1103 => 0.39860993072377
1104 => 0.41276044614265
1105 => 0.3982533740417
1106 => 0.37006850266632
1107 => 0.3630782648789
1108 => 0.36214563830241
1109 => 0.34318755902016
1110 => 0.36354538599298
1111 => 0.3546586489635
1112 => 0.38273174476016
1113 => 0.36669654300014
1114 => 0.36600529750142
1115 => 0.36496037854643
1116 => 0.3486423765598
1117 => 0.35221498193175
1118 => 0.36409086631125
1119 => 0.36832831564927
1120 => 0.36788631496692
1121 => 0.36403266799893
1122 => 0.36579684784701
1123 => 0.36011380987533
1124 => 0.35810701088533
1125 => 0.35177300125932
1126 => 0.34246375692392
1127 => 0.34375826444567
1128 => 0.32531421552094
1129 => 0.31526491876699
1130 => 0.31248340587309
1201 => 0.30876385058395
1202 => 0.31290353954036
1203 => 0.32526196584771
1204 => 0.31035508173464
1205 => 0.28479827451913
1206 => 0.28633428217946
1207 => 0.28978523534746
1208 => 0.28335440694923
1209 => 0.27726816756883
1210 => 0.28255965891788
1211 => 0.27173090279123
1212 => 0.29109383879038
1213 => 0.2905701256356
1214 => 0.29778743078015
1215 => 0.30230055980105
1216 => 0.29189925855075
1217 => 0.28928335941441
1218 => 0.29077349444845
1219 => 0.26614488165247
1220 => 0.29577474767908
1221 => 0.29603098799088
1222 => 0.2938369028732
1223 => 0.30961389181289
1224 => 0.34290825944188
1225 => 0.33038157907702
1226 => 0.32553086981883
1227 => 0.31630966797315
1228 => 0.32859637193172
1229 => 0.32765294477015
1230 => 0.32338640936136
1231 => 0.32080599543373
]
'min_raw' => 0.24098345448742
'max_raw' => 0.61833595023191
'avg_raw' => 0.42965970235966
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.240983'
'max' => '$0.618335'
'avg' => '$0.429659'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.14818934856625
'max_diff' => 0.35941161917312
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0075641952707345
]
1 => [
'year' => 2028
'avg' => 0.012982354986158
]
2 => [
'year' => 2029
'avg' => 0.035465453980351
]
3 => [
'year' => 2030
'avg' => 0.027361544929102
]
4 => [
'year' => 2031
'avg' => 0.026872427999311
]
5 => [
'year' => 2032
'avg' => 0.047115823347126
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0075641952707345
'min' => '$0.007564'
'max_raw' => 0.047115823347126
'max' => '$0.047115'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.047115823347126
]
1 => [
'year' => 2033
'avg' => 0.12118674251179
]
2 => [
'year' => 2034
'avg' => 0.076813981366294
]
3 => [
'year' => 2035
'avg' => 0.090602267172687
]
4 => [
'year' => 2036
'avg' => 0.17585921848998
]
5 => [
'year' => 2037
'avg' => 0.42965970235966
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.047115823347126
'min' => '$0.047115'
'max_raw' => 0.42965970235966
'max' => '$0.429659'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.42965970235966
]
]
]
]
'prediction_2025_max_price' => '$0.012933'
'last_price' => 0.01254056
'sma_50day_nextmonth' => '$0.011549'
'sma_200day_nextmonth' => '$0.022066'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.013675'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.013136'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.0124043'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.011499'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.014481'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.018485'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.024393'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.01320084'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.013046'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.012587'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.012455'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.014382'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.017969'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.023168'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.021766'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.02854'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.012746'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.013218'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.015361'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.019812'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.027764'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.035767'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.017883'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '49.15'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 108.12
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.012225'
'vwma_10_action' => 'BUY'
'hma_9' => '0.014115'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 35.93
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 72.62
'cci_20_action' => 'NEUTRAL'
'adx_14' => 15.93
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001037'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -64.07
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 57.64
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 26
'buy_signals' => 5
'sell_pct' => 83.87
'buy_pct' => 16.13
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767677950
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de DexNet para 2026
La previsión del precio de DexNet para 2026 sugiere que el precio medio podría oscilar entre $0.004332 en el extremo inferior y $0.012933 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, DexNet podría potencialmente ganar 3.13% para 2026 si DEXNET alcanza el objetivo de precio previsto.
Predicción de precio de DexNet 2027-2032
La predicción del precio de DEXNET para 2027-2032 está actualmente dentro de un rango de precios de $0.007564 en el extremo inferior y $0.047115 en el extremo superior. Considerando la volatilidad de precios en el mercado, si DexNet alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de DexNet | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.004171 | $0.007564 | $0.010957 |
| 2028 | $0.007527 | $0.012982 | $0.018437 |
| 2029 | $0.016535 | $0.035465 | $0.054395 |
| 2030 | $0.014062 | $0.027361 | $0.04066 |
| 2031 | $0.016626 | $0.026872 | $0.037118 |
| 2032 | $0.025379 | $0.047115 | $0.068852 |
Predicción de precio de DexNet 2032-2037
La predicción de precio de DexNet para 2032-2037 se estima actualmente entre $0.047115 en el extremo inferior y $0.429659 en el extremo superior. Comparado con el precio actual, DexNet podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de DexNet | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.025379 | $0.047115 | $0.068852 |
| 2033 | $0.058976 | $0.121186 | $0.183397 |
| 2034 | $0.047414 | $0.076813 | $0.106213 |
| 2035 | $0.056058 | $0.0906022 | $0.125146 |
| 2036 | $0.092794 | $0.175859 | $0.258924 |
| 2037 | $0.240983 | $0.429659 | $0.618335 |
DexNet Histograma de precios potenciales
Pronóstico de precio de DexNet basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para DexNet es Bajista, con 5 indicadores técnicos mostrando señales alcistas y 26 indicando señales bajistas. La predicción de precio de DEXNET se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de DexNet
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de DexNet aumentar durante el próximo mes, alcanzando $0.022066 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para DexNet alcance $0.011549 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 49.15, lo que sugiere que el mercado de DEXNET está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de DEXNET para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.013675 | SELL |
| SMA 5 | $0.013136 | SELL |
| SMA 10 | $0.0124043 | BUY |
| SMA 21 | $0.011499 | BUY |
| SMA 50 | $0.014481 | SELL |
| SMA 100 | $0.018485 | SELL |
| SMA 200 | $0.024393 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.01320084 | SELL |
| EMA 5 | $0.013046 | SELL |
| EMA 10 | $0.012587 | SELL |
| EMA 21 | $0.012455 | BUY |
| EMA 50 | $0.014382 | SELL |
| EMA 100 | $0.017969 | SELL |
| EMA 200 | $0.023168 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.021766 | SELL |
| SMA 50 | $0.02854 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.019812 | SELL |
| EMA 50 | $0.027764 | SELL |
| EMA 100 | $0.035767 | SELL |
| EMA 200 | $0.017883 | SELL |
Osciladores de DexNet
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 49.15 | NEUTRAL |
| Stoch RSI (14) | 108.12 | SELL |
| Estocástico Rápido (14) | 35.93 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 72.62 | NEUTRAL |
| Índice Direccional Medio (14) | 15.93 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.001037 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -64.07 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 57.64 | NEUTRAL |
| VWMA (10) | 0.012225 | BUY |
| Promedio Móvil de Hull (9) | 0.014115 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | — | — |
Predicción de precios de DexNet basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de DexNet
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de DexNet por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.017621 | $0.024761 | $0.034793 | $0.04889 | $0.068699 | $0.096534 |
| Amazon.com acción | $0.026166 | $0.054598 | $0.113922 | $0.2377059 | $0.495987 | $1.03 |
| Apple acción | $0.017787 | $0.02523 | $0.035787 | $0.050762 | $0.0720023 | $0.102129 |
| Netflix acción | $0.019787 | $0.03122 | $0.049261 | $0.077727 | $0.122641 | $0.1935085 |
| Google acción | $0.016239 | $0.02103 | $0.027234 | $0.035268 | $0.045672 | $0.059146 |
| Tesla acción | $0.028428 | $0.064445 | $0.146092 | $0.33118 | $0.750761 | $1.70 |
| Kodak acción | $0.009404 | $0.007052 | $0.005288 | $0.003965 | $0.002973 | $0.00223 |
| Nokia acción | $0.0083075 | $0.0055034 | $0.003645 | $0.002415 | $0.001599 | $0.001059 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de DexNet
Podría preguntarse cosas como: "¿Debo invertir en DexNet ahora?", "¿Debería comprar DEXNET hoy?", "¿Será DexNet una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de DexNet regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como DexNet, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de DexNet a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de DexNet es de $0.01254 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de DexNet basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si DexNet ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.012866 | $0.01320097 | $0.013544 | $0.013896 |
| Si DexNet ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.013192 | $0.013878 | $0.014599 | $0.015358 |
| Si DexNet ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.01417 | $0.016012 | $0.018093 | $0.020444 |
| Si DexNet ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.01580025 | $0.0199072 | $0.025081 | $0.0316013 |
| Si DexNet ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.019059 | $0.028968 | $0.044028 | $0.066916 |
| Si DexNet ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.028839 | $0.066319 | $0.152513 | $0.350729 |
| Si DexNet ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.045137 | $0.162464 | $0.584761 | $2.10 |
Cuadro de preguntas
¿Es DEXNET una buena inversión?
La decisión de adquirir DexNet depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de DexNet ha experimentado una caída de -15.3871% durante las últimas 24 horas, y DexNet ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en DexNet dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede DexNet subir?
Parece que el valor medio de DexNet podría potencialmente aumentar hasta $0.012933 para el final de este año. Mirando las perspectivas de DexNet en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.04066. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de DexNet la próxima semana?
Basado en nuestro nuevo pronóstico experimental de DexNet, el precio de DexNet aumentará en un 0.86% durante la próxima semana y alcanzará $0.012647 para el 13 de enero de 2026.
¿Cuál será el precio de DexNet el próximo mes?
Basado en nuestro nuevo pronóstico experimental de DexNet, el precio de DexNet disminuirá en un -11.62% durante el próximo mes y alcanzará $0.0110835 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de DexNet este año en 2026?
Según nuestra predicción más reciente sobre el valor de DexNet en 2026, se anticipa que DEXNET fluctúe dentro del rango de $0.004332 y $0.012933. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de DexNet no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará DexNet en 5 años?
El futuro de DexNet parece estar en una tendencia alcista, con un precio máximo de $0.04066 proyectada después de un período de cinco años. Basado en el pronóstico de DexNet para 2030, el valor de DexNet podría potencialmente alcanzar su punto más alto de aproximadamente $0.04066, mientras que su punto más bajo se anticipa que esté alrededor de $0.014062.
¿Cuánto será DexNet en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de DexNet, se espera que el valor de DEXNET en 2026 crezca en un 3.13% hasta $0.012933 si ocurre lo mejor. El precio estará entre $0.012933 y $0.004332 durante 2026.
¿Cuánto será DexNet en 2027?
Según nuestra última simulación experimental para la predicción de precios de DexNet, el valor de DEXNET podría disminuir en un -12.62% hasta $0.010957 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.010957 y $0.004171 a lo largo del año.
¿Cuánto será DexNet en 2028?
Nuestro nuevo modelo experimental de predicción de precios de DexNet sugiere que el valor de DEXNET en 2028 podría aumentar en un 47.02% , alcanzando $0.018437 en el mejor escenario. Se espera que el precio oscile entre $0.018437 y $0.007527 durante el año.
¿Cuánto será DexNet en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de DexNet podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.054395 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.054395 y $0.016535.
¿Cuánto será DexNet en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de DexNet, se espera que el valor de DEXNET en 2030 aumente en un 224.23% , alcanzando $0.04066 en el mejor escenario. Se pronostica que el precio oscile entre $0.04066 y $0.014062 durante el transcurso de 2030.
¿Cuánto será DexNet en 2031?
Nuestra simulación experimental indica que el precio de DexNet podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.037118 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.037118 y $0.016626 durante el año.
¿Cuánto será DexNet en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de DexNet, DEXNET podría experimentar un 449.04% aumento en valor, alcanzando $0.068852 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.068852 y $0.025379 a lo largo del año.
¿Cuánto será DexNet en 2033?
Según nuestra predicción experimental de precios de DexNet, se anticipa que el valor de DEXNET aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.183397. A lo largo del año, el precio de DEXNET podría oscilar entre $0.183397 y $0.058976.
¿Cuánto será DexNet en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de DexNet sugieren que DEXNET podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.106213 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.106213 y $0.047414.
¿Cuánto será DexNet en 2035?
Basado en nuestra predicción experimental para el precio de DexNet, DEXNET podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.125146 en 2035. El rango de precios esperado para el año está entre $0.125146 y $0.056058.
¿Cuánto será DexNet en 2036?
Nuestra reciente simulación de predicción de precios de DexNet sugiere que el valor de DEXNET podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.258924 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.258924 y $0.092794.
¿Cuánto será DexNet en 2037?
Según la simulación experimental, el valor de DexNet podría aumentar en un 4830.69% en 2037, con un máximo de $0.618335 bajo condiciones favorables. Se espera que el precio caiga entre $0.618335 y $0.240983 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de SolPod
Predicción de precios de zuzalu
Predicción de precios de SOFT COQ INU
Predicción de precios de All Street Bets
Predicción de precios de MagicRing
Predicción de precios de AI INU
Predicción de precios de Wall Street Baby On Solana
Predicción de precios de Meta Masters Guild Games
Predicción de precios de Morfey
Predicción de precios de PANTIESPredicción de precios de Celer Bridged BUSD (zkSync)
Predicción de precios de Bridged BUSD
Predicción de precios de Multichain Bridged BUSD (Moonriver)
Predicción de precios de tooker kurlson
Predicción de precios de dogwifsaudihatPredicción de precios de Harmony Horizen Bridged BUSD (Harmony)
Predicción de precios de IoTeX Bridged BUSD (IoTeX)
Predicción de precios de MIMANY
Predicción de precios de The Open League MEME
Predicción de precios de Sandwich Cat
Predicción de precios de Hege
Predicción de precios de SolDocs
Predicción de precios de Secret Society
Predicción de precios de duk
Predicción de precios de Fofar
¿Cómo leer y predecir los movimientos de precio de DexNet?
Los traders de DexNet utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de DexNet
Las medias móviles son herramientas populares para la predicción de precios de DexNet. Una media móvil simple (SMA) calcula el precio de cierre promedio de DEXNET durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de DEXNET por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de DEXNET.
¿Cómo leer gráficos de DexNet y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de DexNet en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de DEXNET dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de DexNet?
La acción del precio de DexNet está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de DEXNET. La capitalización de mercado de DexNet puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de DEXNET, grandes poseedores de DexNet, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de DexNet.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


