Predicción del precio de DexNet - Pronóstico de DEXNET
Predicción de precio de DexNet hasta $0.013042 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.004369 | $0.013042 |
| 2027 | $0.004206 | $0.011049 |
| 2028 | $0.00759 | $0.018592 |
| 2029 | $0.016674 | $0.054852 |
| 2030 | $0.014181 | $0.0410017 |
| 2031 | $0.016766 | $0.037429 |
| 2032 | $0.025592 | $0.06943 |
| 2033 | $0.059471 | $0.184938 |
| 2034 | $0.047812 | $0.1071061 |
| 2035 | $0.056529 | $0.126197 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en DexNet hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.58, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de DexNet para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'DexNet'
'name_with_ticker' => 'DexNet <small>DEXNET</small>'
'name_lang' => 'DexNet'
'name_lang_with_ticker' => 'DexNet <small>DEXNET</small>'
'name_with_lang' => 'DexNet'
'name_with_lang_with_ticker' => 'DexNet <small>DEXNET</small>'
'image' => '/uploads/coins/dexnet.jpg?1717131583'
'price_for_sd' => 0.01264
'ticker' => 'DEXNET'
'marketcap' => '$5.06M'
'low24h' => '$0.01177'
'high24h' => '$0.01885'
'volume24h' => '$666.81'
'current_supply' => '400.08M'
'max_supply' => '3B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01264'
'change_24h_pct' => '-32.9217%'
'ath_price' => '$0.0816'
'ath_days' => 387
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '15 dic. 2024'
'ath_pct' => '-84.50%'
'fdv' => '$37.94M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.623531'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.012754'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.011176'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004369'
'current_year_max_price_prediction' => '$0.013042'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.014181'
'grand_prediction_max_price' => '$0.0410017'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.012885563721741
107 => 0.012933673739218
108 => 0.013042068065153
109 => 0.012115850417919
110 => 0.012531694949206
111 => 0.012775964651973
112 => 0.011672345248262
113 => 0.012754149644769
114 => 0.012099727029329
115 => 0.011877606164551
116 => 0.012176662646776
117 => 0.012060120044811
118 => 0.011959923559253
119 => 0.011904012198717
120 => 0.012123606273603
121 => 0.012113361947538
122 => 0.011754063419651
123 => 0.011285373136903
124 => 0.011442680980027
125 => 0.011385529565851
126 => 0.011178405468198
127 => 0.011317982101757
128 => 0.010703357245681
129 => 0.0096459271262222
130 => 0.010344497853097
131 => 0.010317603640011
201 => 0.010304042358218
202 => 0.010828998952388
203 => 0.010778536488668
204 => 0.010686946622886
205 => 0.011176723348488
206 => 0.010997948255216
207 => 0.011548890967969
208 => 0.011911777471329
209 => 0.011819737715928
210 => 0.01216103422632
211 => 0.011446305035016
212 => 0.011683709402409
213 => 0.011732638113501
214 => 0.01117067957972
215 => 0.010786792771812
216 => 0.010761191898355
217 => 0.010095585076304
218 => 0.010451146868053
219 => 0.010764026530645
220 => 0.010614181452706
221 => 0.010566744977525
222 => 0.010809087641509
223 => 0.010827919742026
224 => 0.010398545854521
225 => 0.010487826282236
226 => 0.010860140507443
227 => 0.01047844491902
228 => 0.009736872740336
301 => 0.0095529525869848
302 => 0.0095284142482067
303 => 0.0090296082054268
304 => 0.0095652430110801
305 => 0.0093314240642921
306 => 0.010070055315614
307 => 0.009648153106218
308 => 0.0096299657452161
309 => 0.0096024728815561
310 => 0.0091731299151173
311 => 0.0092671287385984
312 => 0.0095795951442748
313 => 0.0096910866780062
314 => 0.0096794571976148
315 => 0.0095780638884216
316 => 0.0096244812261525
317 => 0.0094749548084487
318 => 0.0094221539182342
319 => 0.0092554997846884
320 => 0.0090105642477554
321 => 0.0090446240364429
322 => 0.0085593426469091
323 => 0.0082949355900584
324 => 0.0082217512015511
325 => 0.008123885978653
326 => 0.0082328053388869
327 => 0.0085579679057049
328 => 0.0081657528630355
329 => 0.0074933276830652
330 => 0.0075337415821382
331 => 0.0076245396143608
401 => 0.007455338082003
402 => 0.0072952030316345
403 => 0.0074344274657626
404 => 0.0071495120525847
405 => 0.0076589702808439
406 => 0.0076451908635096
407 => 0.0078350853863192
408 => 0.0079538303284599
409 => 0.0076801616809571
410 => 0.0076113347561889
411 => 0.0076505417005462
412 => 0.0070025382448677
413 => 0.0077821296792525
414 => 0.0077888716183504
415 => 0.0077311430426451
416 => 0.0081462514142698
417 => 0.009022259553946
418 => 0.008692670054454
419 => 0.0085650430383554
420 => 0.0083224239874571
421 => 0.0086456994674853
422 => 0.0086208769545022
423 => 0.0085086201371342
424 => 0.0084407268637275
425 => 0.0085658223017008
426 => 0.0084252261545927
427 => 0.0083999712232483
428 => 0.0082469538169377
429 => 0.0081923335647332
430 => 0.0081518949044959
501 => 0.0081073759129953
502 => 0.0082055737148041
503 => 0.0079830445769086
504 => 0.007714696251407
505 => 0.0076923859917107
506 => 0.0077539865802704
507 => 0.0077267329054572
508 => 0.0076922555116009
509 => 0.0076264287773699
510 => 0.0076068993914891
511 => 0.0076703604212904
512 => 0.0075987166186527
513 => 0.0077044309520845
514 => 0.0076756825028319
515 => 0.0075150960022573
516 => 0.0073149457658039
517 => 0.0073131640088702
518 => 0.0072700419687385
519 => 0.0072151195671886
520 => 0.0071998414115318
521 => 0.0074227023722489
522 => 0.007884017891266
523 => 0.0077934506165381
524 => 0.0078588947542367
525 => 0.0081808151392696
526 => 0.0082831439491879
527 => 0.0082105133836986
528 => 0.0081110921859987
529 => 0.0081154662141264
530 => 0.0084552185435102
531 => 0.0084764084795452
601 => 0.0085299486117731
602 => 0.0085987628121256
603 => 0.0082222327395796
604 => 0.0080977316815702
605 => 0.0080387361732297
606 => 0.0078570528416758
607 => 0.008052982738405
608 => 0.0079388227781356
609 => 0.0079542268570355
610 => 0.0079441949304438
611 => 0.0079496730407187
612 => 0.0076588278768863
613 => 0.0077647965682151
614 => 0.0075886030659153
615 => 0.0073526997449847
616 => 0.0073519089143345
617 => 0.0074096459179283
618 => 0.0073753016889416
619 => 0.0072828822518091
620 => 0.0072960099966463
621 => 0.00718099713821
622 => 0.0073099746400355
623 => 0.0073136732532842
624 => 0.0072640098896293
625 => 0.007462717526657
626 => 0.0075441282076773
627 => 0.0075114387178273
628 => 0.0075418346259259
629 => 0.0077972140956898
630 => 0.0078388520922488
701 => 0.0078573449398686
702 => 0.0078325669738909
703 => 0.0075465024938265
704 => 0.0075591906699575
705 => 0.0074660932522457
706 => 0.0073874357446434
707 => 0.0073905816324432
708 => 0.007431021816111
709 => 0.0076076264699737
710 => 0.0079792805526149
711 => 0.0079933845533755
712 => 0.0080104790137401
713 => 0.0079409472524498
714 => 0.0079199758079153
715 => 0.0079476425564454
716 => 0.0080872162892421
717 => 0.008446237823894
718 => 0.008319335635306
719 => 0.0082161621806336
720 => 0.0083066731157449
721 => 0.0082927396667327
722 => 0.0081751273349421
723 => 0.0081718263485087
724 => 0.0079460906808655
725 => 0.0078626413442902
726 => 0.0077929048325734
727 => 0.0077167543822963
728 => 0.0076716098427858
729 => 0.0077409723733002
730 => 0.0077568364047021
731 => 0.007605174019483
801 => 0.0075845029967894
802 => 0.0077083537744193
803 => 0.0076538516648068
804 => 0.0077099084361305
805 => 0.0077229140879237
806 => 0.0077208198784395
807 => 0.0076639134164765
808 => 0.0077001838983566
809 => 0.0076143933959592
810 => 0.0075211091099189
811 => 0.0074615995472416
812 => 0.0074096695610076
813 => 0.0074384833355587
814 => 0.0073357674904713
815 => 0.0073029066243663
816 => 0.0076878962752073
817 => 0.0079722922696198
818 => 0.0079681570392279
819 => 0.0079429848877119
820 => 0.0079055841765436
821 => 0.0080844801942655
822 => 0.00802215639883
823 => 0.0080675021673367
824 => 0.0080790445685776
825 => 0.0081139799407848
826 => 0.0081264663335522
827 => 0.0080887237822518
828 => 0.0079620551702231
829 => 0.0076464090323379
830 => 0.0074994749030819
831 => 0.0074509841930459
901 => 0.0074527467382588
902 => 0.0074041278729404
903 => 0.0074184483077213
904 => 0.0073991478101365
905 => 0.0073625973370028
906 => 0.0074362264468393
907 => 0.0074447115158453
908 => 0.0074275256018071
909 => 0.0074315735067023
910 => 0.007289281478666
911 => 0.0073000996325156
912 => 0.0072398627771768
913 => 0.0072285690929669
914 => 0.0070762955680933
915 => 0.0068065209463794
916 => 0.006956002274465
917 => 0.006775449850393
918 => 0.0067070719115813
919 => 0.0070307624389648
920 => 0.0069982728877932
921 => 0.0069426648990558
922 => 0.0068604090939929
923 => 0.006829899615762
924 => 0.0066445336841583
925 => 0.0066335812760304
926 => 0.0067254536370344
927 => 0.006683057703566
928 => 0.0066235177563807
929 => 0.0064078701031435
930 => 0.0061654107424205
1001 => 0.0061727290664756
1002 => 0.0062498508780047
1003 => 0.0064740929463191
1004 => 0.0063864776908015
1005 => 0.0063229118176543
1006 => 0.0063110078403969
1007 => 0.0064600110384371
1008 => 0.006670881780799
1009 => 0.0067698176151483
1010 => 0.0066717752080341
1011 => 0.0065591493697194
1012 => 0.0065660043826398
1013 => 0.0066116077124988
1014 => 0.0066163999776706
1015 => 0.006543092135051
1016 => 0.0065637278633453
1017 => 0.0065323803050958
1018 => 0.0063400003979814
1019 => 0.006336520855505
1020 => 0.006289307723754
1021 => 0.0062878781288883
1022 => 0.0062075568139123
1023 => 0.0061963193067121
1024 => 0.006036836460672
1025 => 0.0061418085528942
1026 => 0.0060713987847137
1027 => 0.0059652746560805
1028 => 0.0059469788163036
1029 => 0.005946428821267
1030 => 0.0060553945724523
1031 => 0.0061405352246486
1101 => 0.0060726235927762
1102 => 0.0060571614306106
1103 => 0.0062222568702249
1104 => 0.0062012469706556
1105 => 0.006183052533128
1106 => 0.006652000618671
1107 => 0.0062807916164882
1108 => 0.0061189233036675
1109 => 0.0059185805285928
1110 => 0.0059838131463731
1111 => 0.0059975586174059
1112 => 0.005515770357851
1113 => 0.0053203089209524
1114 => 0.0052532339216177
1115 => 0.0052146313111993
1116 => 0.005232223005508
1117 => 0.0050562847869594
1118 => 0.0051745181795736
1119 => 0.005022170553998
1120 => 0.0049966289787881
1121 => 0.0052690454055667
1122 => 0.0053069505599193
1123 => 0.0051452353952429
1124 => 0.0052490827102721
1125 => 0.0052114262302569
1126 => 0.0050247821167743
1127 => 0.0050176536845004
1128 => 0.0049240022292126
1129 => 0.0047774558361824
1130 => 0.0047104802022029
1201 => 0.0046755987105173
1202 => 0.0046899914938135
1203 => 0.0046827140621525
1204 => 0.00463522389792
1205 => 0.0046854361427763
1206 => 0.0045571646063005
1207 => 0.0045060858469218
1208 => 0.0044830147563287
1209 => 0.0043691663846722
1210 => 0.0045503497725783
1211 => 0.004586045182484
1212 => 0.004621810923374
1213 => 0.0049331272795137
1214 => 0.0049175747941318
1215 => 0.0050581616876161
1216 => 0.005052698739458
1217 => 0.0050126010800796
1218 => 0.004843435650907
1219 => 0.0049108619758913
1220 => 0.0047033342279668
1221 => 0.004858828127227
1222 => 0.0047878672051851
1223 => 0.0048348361681044
1224 => 0.0047503817377549
1225 => 0.0047971223065483
1226 => 0.004594509888385
1227 => 0.0044053132631378
1228 => 0.0044814515081311
1229 => 0.0045642224879032
1230 => 0.0047436910617027
1231 => 0.0046368010597313
]
'min_raw' => 0.0043691663846722
'max_raw' => 0.013042068065153
'avg_raw' => 0.0087056172249126
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004369'
'max' => '$0.013042'
'avg' => '$0.0087056'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0082767636153278
'max_diff' => 0.00039613806515303
'year' => 2026
]
1 => [
'items' => [
101 => 0.0046752427463987
102 => 0.0045464695311236
103 => 0.0042807736057608
104 => 0.0042822774158438
105 => 0.0042414058862271
106 => 0.0042060869172973
107 => 0.0046490786622809
108 => 0.004593985636129
109 => 0.004506202109353
110 => 0.0046237038483214
111 => 0.004654773173108
112 => 0.0046556576731063
113 => 0.0047413839086988
114 => 0.0047871360160018
115 => 0.0047952000232149
116 => 0.0049300921071575
117 => 0.0049753061544255
118 => 0.0051615364161908
119 => 0.0047832542693493
120 => 0.0047754637974706
121 => 0.0046253573387546
122 => 0.0045301574495478
123 => 0.0046318757566157
124 => 0.0047219842907443
125 => 0.0046281572620866
126 => 0.0046404090912326
127 => 0.0045144539712095
128 => 0.0045594769998785
129 => 0.0045982568974252
130 => 0.004576844917377
131 => 0.0045447901468932
201 => 0.0047145964185299
202 => 0.004705015283208
203 => 0.0048631427871855
204 => 0.0049864144843422
205 => 0.0052073394030987
206 => 0.0049767927332998
207 => 0.0049683906963123
208 => 0.0050505219555941
209 => 0.0049752935805576
210 => 0.0050228353167854
211 => 0.0051996796944
212 => 0.0052034161374312
213 => 0.0051408259025225
214 => 0.0051370172810401
215 => 0.0051490384203164
216 => 0.0052194466085316
217 => 0.0051948438241441
218 => 0.0052233147891036
219 => 0.0052589181667483
220 => 0.0054061888322062
221 => 0.0054416952910656
222 => 0.0053554330040255
223 => 0.0053632215227073
224 => 0.0053309570594016
225 => 0.0052997899921208
226 => 0.0053698490077834
227 => 0.0054978832359201
228 => 0.0054970867416319
301 => 0.0055267881939298
302 => 0.0055452919526514
303 => 0.0054658602746394
304 => 0.0054141531730373
305 => 0.0054339809659999
306 => 0.0054656860387402
307 => 0.0054236994382205
308 => 0.0051645386897274
309 => 0.0052431515055675
310 => 0.0052300664890414
311 => 0.0052114318343158
312 => 0.005290477628538
313 => 0.0052828534688518
314 => 0.0050544802862313
315 => 0.0050690999964276
316 => 0.0050553693592303
317 => 0.005099735857039
318 => 0.0049728976440775
319 => 0.0050119122241161
320 => 0.0050363818029773
321 => 0.0050507945729107
322 => 0.0051028633808391
323 => 0.0050967537072046
324 => 0.0051024835949476
325 => 0.0051796878914497
326 => 0.0055701607298421
327 => 0.005591413304906
328 => 0.005486757852527
329 => 0.0055285656415149
330 => 0.0054483038290165
331 => 0.0055021841214541
401 => 0.0055390476491288
402 => 0.0053724684560154
403 => 0.0053626047172893
404 => 0.00528201163574
405 => 0.0053253177927391
406 => 0.0052564145831306
407 => 0.0052733210206366
408 => 0.0052260491474932
409 => 0.0053111291074153
410 => 0.0054062617226973
411 => 0.0054302959782183
412 => 0.00536707219934
413 => 0.005321294016782
414 => 0.005240922608481
415 => 0.0053745820516793
416 => 0.0054136681460682
417 => 0.0053743767490649
418 => 0.0053652720738453
419 => 0.0053480187307558
420 => 0.0053689324521435
421 => 0.0054134552748039
422 => 0.0053924591338447
423 => 0.0054063274548527
424 => 0.0053534757161208
425 => 0.0054658865698299
426 => 0.0056444220586651
427 => 0.0056449960794552
428 => 0.005623999825319
429 => 0.005615408610497
430 => 0.0056369520414001
501 => 0.0056486384689072
502 => 0.005718305974058
503 => 0.0057930619827607
504 => 0.0061419156567742
505 => 0.0060439589410717
506 => 0.0063534826740544
507 => 0.0065982757602172
508 => 0.0066716785032532
509 => 0.0066041514335261
510 => 0.0063731449757303
511 => 0.0063618106968363
512 => 0.006707031873194
513 => 0.0066094910787414
514 => 0.0065978889116135
515 => 0.0064744614555433
516 => 0.0065474223688686
517 => 0.0065314647468524
518 => 0.0065062748598261
519 => 0.0066454791999495
520 => 0.0069060572978033
521 => 0.0068654437575668
522 => 0.0068351276337882
523 => 0.0067022912042814
524 => 0.0067822884049352
525 => 0.0067538029340278
526 => 0.0068761945943724
527 => 0.0068036924860915
528 => 0.0066087521112894
529 => 0.0066397970085085
530 => 0.0066351046347475
531 => 0.0067316733542438
601 => 0.006702685821634
602 => 0.0066294443537722
603 => 0.0069051666701933
604 => 0.006887262796613
605 => 0.0069126463959545
606 => 0.0069238210413985
607 => 0.0070916483566319
608 => 0.0071604018378079
609 => 0.0071760100817339
610 => 0.0072413205712661
611 => 0.0071743850972579
612 => 0.0074421747174748
613 => 0.0076202391889615
614 => 0.0078270702357072
615 => 0.0081293059859471
616 => 0.0082429494238744
617 => 0.0082224207539958
618 => 0.0084515724504587
619 => 0.0088633529552466
620 => 0.0083056533672686
621 => 0.0088929123876099
622 => 0.0087069929620013
623 => 0.0082661813484309
624 => 0.0082377982773445
625 => 0.0085363210199824
626 => 0.0091984157314041
627 => 0.009032568515609
628 => 0.009198686998036
629 => 0.0090049009643822
630 => 0.0089952778544544
701 => 0.00918927524292
702 => 0.009642560715317
703 => 0.009427221778533
704 => 0.0091184806093797
705 => 0.0093464502841379
706 => 0.0091489618542649
707 => 0.0087039651482301
708 => 0.0090324416953687
709 => 0.0088127987827706
710 => 0.0088769022615261
711 => 0.0093385589943899
712 => 0.0092830112348995
713 => 0.0093548951792641
714 => 0.009228021898991
715 => 0.009109502249136
716 => 0.0088882765212968
717 => 0.0088227824895802
718 => 0.0088408826837183
719 => 0.0088227735200229
720 => 0.0086989997584663
721 => 0.0086722708264427
722 => 0.0086277214353821
723 => 0.0086415291544901
724 => 0.008557763265912
725 => 0.0087158468045745
726 => 0.0087451885023776
727 => 0.008860228518743
728 => 0.0088721723548727
729 => 0.0091925571629583
730 => 0.0090160945945127
731 => 0.0091344809204712
801 => 0.0091238913331822
802 => 0.0082757350727547
803 => 0.0083926035220955
804 => 0.0085744141539302
805 => 0.0084925087107272
806 => 0.0083767135769601
807 => 0.008283202797901
808 => 0.0081415244056583
809 => 0.0083409340220474
810 => 0.0086031364627504
811 => 0.0088788222414688
812 => 0.0092100406409513
813 => 0.009136116549994
814 => 0.0088726303438812
815 => 0.0088844501426107
816 => 0.0089575154874366
817 => 0.0088628892272004
818 => 0.0088349820957327
819 => 0.0089536814761161
820 => 0.0089544988935128
821 => 0.0088456199451455
822 => 0.0087246209186725
823 => 0.0087241139283335
824 => 0.0087025833202846
825 => 0.0090087312117236
826 => 0.009177081596972
827 => 0.0091963826973306
828 => 0.0091757824791348
829 => 0.0091837106855249
830 => 0.0090857513056965
831 => 0.0093096573990326
901 => 0.0095151357722954
902 => 0.0094600631788558
903 => 0.0093775015322594
904 => 0.0093117372040377
905 => 0.0094445711931472
906 => 0.0094386563047122
907 => 0.0095133410979604
908 => 0.0095099529643384
909 => 0.0094848392774062
910 => 0.0094600640757447
911 => 0.0095582949498707
912 => 0.009530006035662
913 => 0.0095016731809559
914 => 0.0094448473032997
915 => 0.0094525708838511
916 => 0.009370023492687
917 => 0.0093318332924229
918 => 0.0087575443115534
919 => 0.0086040755304312
920 => 0.0086523599331174
921 => 0.0086682564121856
922 => 0.0086014666019656
923 => 0.0086972260329265
924 => 0.0086823020270456
925 => 0.0087403626036768
926 => 0.0087040888760949
927 => 0.0087055775625276
928 => 0.0088122508609721
929 => 0.0088432185733312
930 => 0.0088274681448853
1001 => 0.0088384992050757
1002 => 0.0090927053312447
1003 => 0.0090565653491578
1004 => 0.0090373667039707
1005 => 0.0090426848598934
1006 => 0.0091076399753704
1007 => 0.0091258238612861
1008 => 0.0090487774589021
1009 => 0.0090851129876664
1010 => 0.0092398250574792
1011 => 0.009293965525969
1012 => 0.009466755912489
1013 => 0.0093933514851911
1014 => 0.0095280884883656
1015 => 0.0099422241008948
1016 => 0.010273064284188
1017 => 0.0099688099790828
1018 => 0.010576355843457
1019 => 0.011049417446151
1020 => 0.011031260553914
1021 => 0.010948771321372
1022 => 0.010410203263699
1023 => 0.0099146049074309
1024 => 0.010329193976667
1025 => 0.010330250849466
1026 => 0.010294637280737
1027 => 0.01007344446401
1028 => 0.010286940250178
1029 => 0.010303886770382
1030 => 0.010294401225511
1031 => 0.010124813211541
1101 => 0.0098658836593116
1102 => 0.0099164778740274
1103 => 0.0099993522298259
1104 => 0.0098424537848976
1105 => 0.009792315224931
1106 => 0.0098855323471602
1107 => 0.010185897337542
1108 => 0.010129115076006
1109 => 0.010127632261682
1110 => 0.010370570855958
1111 => 0.010196679251886
1112 => 0.0099171160291001
1113 => 0.0098465226283606
1114 => 0.0095959636131484
1115 => 0.0097690256174161
1116 => 0.0097752538108533
1117 => 0.0096804695197667
1118 => 0.0099248072519357
1119 => 0.0099225556367189
1120 => 0.010154517948541
1121 => 0.01059794276768
1122 => 0.010466800229051
1123 => 0.010314295724892
1124 => 0.010330877192985
1125 => 0.010512734971418
1126 => 0.010402779607168
1127 => 0.010442320322788
1128 => 0.010512675121809
1129 => 0.010555121918869
1130 => 0.010324769752107
1201 => 0.010271063643017
1202 => 0.010161199792102
1203 => 0.010132538364104
1204 => 0.01022202017829
1205 => 0.010198444881691
1206 => 0.0097747303553117
1207 => 0.0097304498297796
1208 => 0.0097318078502797
1209 => 0.0096204623634051
1210 => 0.0094506337699426
1211 => 0.0098969331736237
1212 => 0.0098610890855519
1213 => 0.0098215199864328
1214 => 0.0098263669752967
1215 => 0.010020090419944
1216 => 0.0099077210387803
1217 => 0.010206473455585
1218 => 0.010145058940009
1219 => 0.010082069373848
1220 => 0.010073362297095
1221 => 0.01004911668814
1222 => 0.0099659694736398
1223 => 0.0098655642157577
1224 => 0.0097992679675494
1225 => 0.0090393067127194
1226 => 0.0091803511011246
1227 => 0.0093426098133843
1228 => 0.0093986208706453
1229 => 0.0093028100813531
1230 => 0.0099697526675747
1231 => 0.010091609504896
]
'min_raw' => 0.0042060869172973
'max_raw' => 0.011049417446151
'avg_raw' => 0.0076277521817239
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004206'
'max' => '$0.011049'
'avg' => '$0.007627'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00016307946737495
'max_diff' => -0.0019926506190024
'year' => 2027
]
2 => [
'items' => [
101 => 0.0097224971961248
102 => 0.00965345135391
103 => 0.0099742793014954
104 => 0.0097807808294799
105 => 0.0098679131795804
106 => 0.0096795806975105
107 => 0.01006225776117
108 => 0.010059342403104
109 => 0.0099104723821873
110 => 0.010036296304449
111 => 0.010014431301581
112 => 0.0098463574146163
113 => 0.010067586003175
114 => 0.010067695729795
115 => 0.0099244115713753
116 => 0.0097570870432771
117 => 0.0097271733696821
118 => 0.0097046374349649
119 => 0.0098623707211179
120 => 0.010003793892263
121 => 0.010266947351988
122 => 0.010333110384135
123 => 0.010591349103326
124 => 0.010437580519463
125 => 0.010505744141053
126 => 0.010579745394622
127 => 0.010615224316889
128 => 0.010557413316959
129 => 0.01095856434316
130 => 0.010992433780721
131 => 0.011003789910166
201 => 0.010868524041182
202 => 0.010988671792211
203 => 0.010932458638379
204 => 0.011078709648184
205 => 0.011101643673948
206 => 0.011082219370028
207 => 0.011089498991794
208 => 0.010747187358822
209 => 0.010729436694814
210 => 0.010487405131544
211 => 0.010586034782584
212 => 0.010401651377408
213 => 0.010460121254549
214 => 0.010485894219271
215 => 0.010472431885103
216 => 0.010591611155071
217 => 0.010490284428882
218 => 0.010222866538813
219 => 0.0099553757909183
220 => 0.0099520176624717
221 => 0.009881592070155
222 => 0.0098306872660006
223 => 0.0098404933372257
224 => 0.0098750512112489
225 => 0.0098286786995396
226 => 0.0098385746260588
227 => 0.010002912942491
228 => 0.010035869819844
229 => 0.0099238694735146
301 => 0.0094741719214294
302 => 0.0093638150141668
303 => 0.0094431373706346
304 => 0.009405226393257
305 => 0.0075907517471817
306 => 0.0080170356507942
307 => 0.0077637522305012
308 => 0.0078804768835821
309 => 0.0076219400988866
310 => 0.0077453274036171
311 => 0.0077225422738163
312 => 0.0084079941761675
313 => 0.0083972917875206
314 => 0.0084024144546081
315 => 0.008157896207484
316 => 0.0085474204145465
317 => 0.008739314045783
318 => 0.0087037996417247
319 => 0.0087127378520984
320 => 0.0085591497841711
321 => 0.0084039015228325
322 => 0.0082317073084718
323 => 0.0085516228749058
324 => 0.0085160537250592
325 => 0.0085976365574312
326 => 0.0088051246703006
327 => 0.0088356780830913
328 => 0.0088767421797242
329 => 0.0088620236242228
330 => 0.0092126793298664
331 => 0.0091702126102121
401 => 0.0092725451860699
402 => 0.0090620393135393
403 => 0.0088238319373701
404 => 0.008869107371994
405 => 0.0088647469835576
406 => 0.0088092342341422
407 => 0.0087591198061127
408 => 0.0086756934030961
409 => 0.0089396668870251
410 => 0.0089289500456498
411 => 0.009102443250551
412 => 0.0090717766413617
413 => 0.0088669775198028
414 => 0.0088742919604947
415 => 0.0089234850893481
416 => 0.0090937430699869
417 => 0.0091442872306877
418 => 0.0091208731616145
419 => 0.0091762925263944
420 => 0.009220093732687
421 => 0.0091817932835296
422 => 0.0097240468750993
423 => 0.009498865378091
424 => 0.0096086172729301
425 => 0.0096347924531535
426 => 0.009567745279416
427 => 0.0095822854106204
428 => 0.0096043097474464
429 => 0.0097380372078468
430 => 0.01008897675829
501 => 0.010244405496255
502 => 0.010712020523141
503 => 0.010231499303239
504 => 0.010202987162645
505 => 0.010287218749608
506 => 0.010561758272468
507 => 0.010784246769559
508 => 0.010858059039714
509 => 0.010867814549723
510 => 0.01100629127548
511 => 0.011085663552246
512 => 0.010989476558674
513 => 0.010907968152819
514 => 0.010616015160244
515 => 0.010649809514096
516 => 0.010882619099889
517 => 0.011211476352238
518 => 0.011493670086519
519 => 0.011394855676219
520 => 0.01214873987471
521 => 0.01222348441365
522 => 0.012213157135149
523 => 0.012383436318332
524 => 0.012045466816466
525 => 0.011900978306567
526 => 0.010925591195324
527 => 0.01119963518806
528 => 0.011597974225542
529 => 0.011545252560236
530 => 0.011255968103584
531 => 0.011493450638318
601 => 0.01141493148557
602 => 0.011353000172034
603 => 0.011636719525316
604 => 0.011324758441834
605 => 0.011594862175096
606 => 0.011248451343322
607 => 0.011395307052121
608 => 0.011311944649196
609 => 0.011365890340401
610 => 0.011050524931909
611 => 0.011220688451268
612 => 0.011043445570058
613 => 0.011043361533854
614 => 0.011039448887428
615 => 0.011247974351157
616 => 0.011254774359043
617 => 0.011100673726283
618 => 0.011078465417598
619 => 0.011160581174652
620 => 0.011064445129292
621 => 0.011109426579843
622 => 0.011065807571606
623 => 0.011055988014095
624 => 0.010977744109187
625 => 0.010944034483592
626 => 0.010957252896378
627 => 0.010912131638981
628 => 0.010884944449292
629 => 0.011034040671107
630 => 0.010954384574316
701 => 0.011021832231845
702 => 0.010944967113517
703 => 0.010678519124856
704 => 0.010525282068941
705 => 0.010021986518103
706 => 0.010164720511984
707 => 0.010259353297597
708 => 0.010228077162516
709 => 0.010295270402927
710 => 0.010299395522167
711 => 0.010277550314756
712 => 0.010252256363118
713 => 0.010239944666303
714 => 0.010331705967572
715 => 0.010384976491502
716 => 0.010268850963656
717 => 0.010241644377251
718 => 0.010359053697369
719 => 0.010430673314815
720 => 0.010959472330455
721 => 0.010920297191378
722 => 0.011018619102728
723 => 0.011007549564383
724 => 0.011110606591387
725 => 0.011279061275389
726 => 0.010936545802142
727 => 0.010995994645004
728 => 0.010981419161608
729 => 0.011140550467422
730 => 0.011141047257989
731 => 0.011045640090956
801 => 0.011097361864009
802 => 0.011068492189203
803 => 0.011120663593548
804 => 0.010919773983512
805 => 0.011164435843843
806 => 0.011303143352988
807 => 0.011305069306887
808 => 0.011370815565372
809 => 0.011437617571758
810 => 0.011565838205788
811 => 0.011434041567867
812 => 0.01119695224639
813 => 0.011214069329607
814 => 0.011075063947173
815 => 0.011077400652765
816 => 0.011064927135184
817 => 0.011102361100408
818 => 0.010927988633784
819 => 0.01096891350317
820 => 0.010911618446374
821 => 0.01099587009674
822 => 0.010905229248243
823 => 0.010981412132869
824 => 0.011014290140371
825 => 0.011135610695866
826 => 0.010887310103553
827 => 0.010381008387355
828 => 0.010487439146415
829 => 0.010330019693809
830 => 0.010344589463486
831 => 0.010374022716995
901 => 0.010278619912412
902 => 0.010296819761038
903 => 0.010296169534375
904 => 0.010290566232271
905 => 0.010265748278168
906 => 0.010229757334636
907 => 0.01037313417624
908 => 0.01039749669551
909 => 0.010451651557968
910 => 0.010612779695051
911 => 0.010596679194494
912 => 0.010622939778907
913 => 0.01056561307058
914 => 0.010347248685068
915 => 0.010359106921784
916 => 0.01021123451992
917 => 0.01044787012819
918 => 0.010391831692714
919 => 0.010355703348812
920 => 0.010345845395451
921 => 0.01050737293802
922 => 0.010555704510391
923 => 0.010525587517901
924 => 0.01046381668765
925 => 0.010582434942638
926 => 0.01061417218357
927 => 0.01062127698139
928 => 0.010831445786434
929 => 0.010633023082908
930 => 0.010680785399799
1001 => 0.011053413361826
1002 => 0.010715491219411
1003 => 0.010894496114811
1004 => 0.010885734756678
1005 => 0.010977307603969
1006 => 0.010878223110389
1007 => 0.010879451381439
1008 => 0.010960761866151
1009 => 0.010846575954795
1010 => 0.010818301917344
1011 => 0.010779241537107
1012 => 0.010864528448359
1013 => 0.010915654094459
1014 => 0.011327689254381
1015 => 0.011593882758776
1016 => 0.011582326596715
1017 => 0.011687928285725
1018 => 0.011640353757626
1019 => 0.011486723056865
1020 => 0.011748951929796
1021 => 0.011665971742278
1022 => 0.011672812528116
1023 => 0.011672557913726
1024 => 0.011727732484171
1025 => 0.011688636244335
1026 => 0.011611573542473
1027 => 0.011662731360335
1028 => 0.011814651790131
1029 => 0.012286217465705
1030 => 0.01255011186517
1031 => 0.012270330691501
1101 => 0.012463319998679
1102 => 0.012347595183493
1103 => 0.012326564542059
1104 => 0.012447776088765
1105 => 0.012569199800237
1106 => 0.012561465634745
1107 => 0.012473318255393
1108 => 0.012423526037454
1109 => 0.012800569393305
1110 => 0.013078368515131
1111 => 0.013059424477411
1112 => 0.013143037298974
1113 => 0.01338852712913
1114 => 0.013410971642621
1115 => 0.013408144149802
1116 => 0.013352513081273
1117 => 0.013594229699944
1118 => 0.013795873955839
1119 => 0.013339636096244
1120 => 0.013513365500586
1121 => 0.013591358227406
1122 => 0.013705874689779
1123 => 0.013899083156988
1124 => 0.014108958798393
1125 => 0.014138637515256
1126 => 0.014117579045384
1127 => 0.013979160418118
1128 => 0.01420880884928
1129 => 0.014343331514336
1130 => 0.014423436682881
1201 => 0.01462657006208
1202 => 0.013591839883935
1203 => 0.012859406434418
1204 => 0.012745026374808
1205 => 0.012977622723798
1206 => 0.013038956526105
1207 => 0.013014232947301
1208 => 0.012189812509933
1209 => 0.012740685971823
1210 => 0.013333379498061
1211 => 0.013356147270224
1212 => 0.013652862042096
1213 => 0.013749484534567
1214 => 0.013988378817218
1215 => 0.013973435914794
1216 => 0.014031602870981
1217 => 0.014018231295065
1218 => 0.01446073264855
1219 => 0.01494887735353
1220 => 0.014931974454602
1221 => 0.014861797877795
1222 => 0.014966022061238
1223 => 0.015469839709544
1224 => 0.015423456254001
1225 => 0.015468513830127
1226 => 0.016062543231398
1227 => 0.016834865952747
1228 => 0.016476044508747
1229 => 0.017254583794138
1230 => 0.017744633005698
1231 => 0.018592122445055
]
'min_raw' => 0.0075907517471817
'max_raw' => 0.018592122445055
'avg_raw' => 0.013091437096119
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00759'
'max' => '$0.018592'
'avg' => '$0.013091'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0033846648298844
'max_diff' => 0.0075427049989048
'year' => 2028
]
3 => [
'items' => [
101 => 0.018486012593274
102 => 0.018815934012852
103 => 0.018296053812792
104 => 0.017102303788331
105 => 0.016913388277469
106 => 0.017291601914318
107 => 0.018221403234965
108 => 0.017262319161849
109 => 0.017456340620727
110 => 0.017400462427517
111 => 0.017397484916068
112 => 0.017511124417666
113 => 0.017346284393561
114 => 0.016674696481203
115 => 0.016982481263744
116 => 0.016863630778166
117 => 0.016995504252806
118 => 0.017707171006679
119 => 0.017392526170775
120 => 0.017061073395821
121 => 0.017476788730872
122 => 0.01800613720768
123 => 0.017973011531332
124 => 0.017908733873758
125 => 0.018271063664032
126 => 0.018869526324896
127 => 0.01903128837731
128 => 0.019150697817323
129 => 0.019167162361661
130 => 0.019336757401007
131 => 0.018424802130992
201 => 0.019872098565178
202 => 0.020122006678605
203 => 0.020075034310911
204 => 0.020352796661244
205 => 0.020271071931625
206 => 0.020152665620625
207 => 0.020592978027649
208 => 0.020088195384375
209 => 0.019371719972615
210 => 0.018978647391447
211 => 0.01949627707459
212 => 0.019812375459299
213 => 0.020021296383958
214 => 0.020084515729527
215 => 0.018495594622599
216 => 0.01763925427157
217 => 0.018188158618618
218 => 0.01885785980537
219 => 0.018421081907085
220 => 0.018438202773768
221 => 0.017815472274026
222 => 0.018912957636702
223 => 0.018753063250665
224 => 0.019582595608274
225 => 0.019384621053717
226 => 0.020061072489086
227 => 0.019882940155797
228 => 0.020622357512035
301 => 0.020917331114364
302 => 0.02141263770165
303 => 0.021776987243518
304 => 0.021990940263399
305 => 0.021978095326603
306 => 0.022825883782343
307 => 0.022325972549466
308 => 0.021697966220941
309 => 0.021686607567792
310 => 0.022011860944254
311 => 0.022693502792411
312 => 0.022870242606153
313 => 0.022969016050746
314 => 0.022817741082023
315 => 0.022275123267696
316 => 0.022040823646604
317 => 0.022240453712088
318 => 0.021996323296408
319 => 0.022417760884768
320 => 0.022996484707797
321 => 0.022876980526863
322 => 0.023276465086656
323 => 0.023689889579039
324 => 0.024281105171204
325 => 0.024435670819646
326 => 0.024691161958915
327 => 0.02495414626569
328 => 0.0250386097374
329 => 0.025199876712372
330 => 0.02519902675581
331 => 0.025685015639405
401 => 0.026221076427833
402 => 0.026423426965629
403 => 0.026888720869617
404 => 0.026091921364881
405 => 0.026696302942196
406 => 0.027241470253587
407 => 0.026591499310337
408 => 0.0274873328318
409 => 0.027522116017436
410 => 0.028047300824039
411 => 0.027514925409312
412 => 0.027198802587449
413 => 0.028111437329199
414 => 0.028553032533007
415 => 0.028420020463799
416 => 0.027407792049511
417 => 0.026818631695877
418 => 0.025276685409871
419 => 0.027103187392768
420 => 0.027992823228843
421 => 0.027405488107616
422 => 0.027701705779519
423 => 0.029317773348521
424 => 0.029933067246171
425 => 0.029805090416689
426 => 0.029826716394193
427 => 0.030158717812991
428 => 0.03163099494046
429 => 0.030748772358564
430 => 0.031423198466174
501 => 0.031780911641826
502 => 0.032113175574943
503 => 0.031297240368301
504 => 0.030235720652928
505 => 0.029899492799503
506 => 0.02734708920492
507 => 0.027214225513295
508 => 0.027139645097004
509 => 0.026669426121899
510 => 0.026299962811283
511 => 0.026006151869388
512 => 0.025235104218481
513 => 0.025495310166321
514 => 0.024266421140927
515 => 0.025052620790221
516 => 0.02309128423313
517 => 0.024724743599306
518 => 0.02383572593058
519 => 0.024432677385076
520 => 0.024430594677688
521 => 0.02333141778633
522 => 0.022697435494631
523 => 0.023101433685861
524 => 0.023534551816277
525 => 0.023604823775752
526 => 0.024166372737376
527 => 0.02432308898211
528 => 0.023848231444183
529 => 0.023050639892471
530 => 0.023235902218807
531 => 0.022693681159501
601 => 0.021743459609298
602 => 0.02242592531593
603 => 0.022658949114074
604 => 0.022761865698407
605 => 0.021827431937465
606 => 0.021533812562233
607 => 0.021377492070565
608 => 0.02293001622805
609 => 0.023015067006023
610 => 0.022579935200949
611 => 0.024546772220773
612 => 0.024101616428
613 => 0.024598964514345
614 => 0.02321909160452
615 => 0.023271804607921
616 => 0.022618550658965
617 => 0.022984329219936
618 => 0.022725808722635
619 => 0.022954777926903
620 => 0.023092021123867
621 => 0.023745167880277
622 => 0.0247322014861
623 => 0.023647609535394
624 => 0.023175037290829
625 => 0.02346821845351
626 => 0.024248998524692
627 => 0.025431920299929
628 => 0.024731606800469
629 => 0.025042394039435
630 => 0.025110287225187
701 => 0.024593901977701
702 => 0.025450960160568
703 => 0.025910264603495
704 => 0.026381415922275
705 => 0.026790503411012
706 => 0.026193227724715
707 => 0.026832398325159
708 => 0.026317339650001
709 => 0.025855278772596
710 => 0.025855979528217
711 => 0.025566121990188
712 => 0.025004486485859
713 => 0.024900912281826
714 => 0.025439718371185
715 => 0.025871789829725
716 => 0.025907377304533
717 => 0.026146594264614
718 => 0.026288160397459
719 => 0.027675700949167
720 => 0.028233781237401
721 => 0.028916191249935
722 => 0.029182028408338
723 => 0.029982102947234
724 => 0.029335977778198
725 => 0.02919618453356
726 => 0.027255465404584
727 => 0.027573258053233
728 => 0.028082074746149
729 => 0.027263855604441
730 => 0.027782827321769
731 => 0.027885283332094
801 => 0.027236052831101
802 => 0.027582834893275
803 => 0.026661884549857
804 => 0.02475227568692
805 => 0.025453086101123
806 => 0.025969118456211
807 => 0.02523267665917
808 => 0.026552720076133
809 => 0.025781577963171
810 => 0.025537162934711
811 => 0.02458361276844
812 => 0.025033651741408
813 => 0.025642335896284
814 => 0.025266239855699
815 => 0.026046695611019
816 => 0.027152029100499
817 => 0.02793975556885
818 => 0.028000227425851
819 => 0.027493772080276
820 => 0.028305370003715
821 => 0.028311281608546
822 => 0.027395795835432
823 => 0.026835065896846
824 => 0.026707666875013
825 => 0.027025934609601
826 => 0.027412370394855
827 => 0.028021671922477
828 => 0.028389860074686
829 => 0.029349899503743
830 => 0.029609658646758
831 => 0.029895055190881
901 => 0.030276432986863
902 => 0.030734374814199
903 => 0.02973242416663
904 => 0.029772233533728
905 => 0.028839230963662
906 => 0.027842183911444
907 => 0.028598818340408
908 => 0.029588017205418
909 => 0.029361093892817
910 => 0.029335560384527
911 => 0.029378500663066
912 => 0.029207407895988
913 => 0.028433561651485
914 => 0.02804494091203
915 => 0.028546360813652
916 => 0.028812843175731
917 => 0.029226134079613
918 => 0.029175187252197
919 => 0.030239780236393
920 => 0.030653448878431
921 => 0.030547614737918
922 => 0.030567090766813
923 => 0.031316018083833
924 => 0.032148979289009
925 => 0.032929157376568
926 => 0.033722788036662
927 => 0.032766035299987
928 => 0.032280255264609
929 => 0.032781456261988
930 => 0.032515511957864
1001 => 0.034043706813565
1002 => 0.034149515709696
1003 => 0.035677600059515
1004 => 0.037127934068393
1005 => 0.036217005262849
1006 => 0.037075970097342
1007 => 0.038005010598277
1008 => 0.039797280455969
1009 => 0.039193707020712
1010 => 0.038731379228507
1011 => 0.038294481698825
1012 => 0.039203596102564
1013 => 0.040373157259517
1014 => 0.040625069530807
1015 => 0.041033263648191
1016 => 0.040604097445363
1017 => 0.041120980865563
1018 => 0.04294580646895
1019 => 0.042452722482733
1020 => 0.0417524639551
1021 => 0.04319298851086
1022 => 0.043714308747692
1023 => 0.047373207187308
1024 => 0.05199271760888
1025 => 0.050080209961008
1026 => 0.048893054747738
1027 => 0.049172064382555
1028 => 0.050858953208216
1029 => 0.051400728359844
1030 => 0.049927996736627
1031 => 0.05044819044341
1101 => 0.053314508912103
1102 => 0.05485219680805
1103 => 0.052763810106317
1104 => 0.047002034022852
1105 => 0.041689413336381
1106 => 0.043098559572861
1107 => 0.042938806120543
1108 => 0.046018307734642
1109 => 0.042440962592736
1110 => 0.042501195910313
1111 => 0.045644378356543
1112 => 0.044805831167678
1113 => 0.043447492114726
1114 => 0.041699330714696
1115 => 0.038467692681382
1116 => 0.035605340754383
1117 => 0.041219072043509
1118 => 0.040976997742413
1119 => 0.040626438281026
1120 => 0.041406570427848
1121 => 0.045194670688439
1122 => 0.045107342716549
1123 => 0.044551806714503
1124 => 0.044973175875785
1125 => 0.043373624063463
1126 => 0.043785864986616
1127 => 0.041688571790121
1128 => 0.042636635905638
1129 => 0.043444577729179
1130 => 0.043606784012038
1201 => 0.043972243049778
1202 => 0.040849435585678
1203 => 0.042251484456248
1204 => 0.043075056813495
1205 => 0.039354126941635
1206 => 0.04300150599363
1207 => 0.040795074455347
1208 => 0.040046178451764
1209 => 0.041054468261043
1210 => 0.040661536741773
1211 => 0.040323717295218
1212 => 0.040135208239565
1213 => 0.040875584994614
1214 => 0.040841045534049
1215 => 0.039629645461854
1216 => 0.038049423450659
1217 => 0.038579797826635
1218 => 0.038387107843557
1219 => 0.037688774487378
1220 => 0.038159366852352
1221 => 0.036087116238354
1222 => 0.032521916763184
1223 => 0.034877196741494
1224 => 0.034786521024381
1225 => 0.034740798215996
1226 => 0.036510726024539
1227 => 0.03634058830493
1228 => 0.036031786677845
1229 => 0.037683103103331
1230 => 0.037080350394689
1231 => 0.038937892216327
]
'min_raw' => 0.016674696481203
'max_raw' => 0.05485219680805
'avg_raw' => 0.035763446644627
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.016674'
'max' => '$0.054852'
'avg' => '$0.035763'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0090839447340213
'max_diff' => 0.036260074362995
'year' => 2029
]
4 => [
'items' => [
101 => 0.04016138939833
102 => 0.039851070936986
103 => 0.041001775950335
104 => 0.038592016581052
105 => 0.039392441980763
106 => 0.039557408546302
107 => 0.037662726114968
108 => 0.036368424939986
109 => 0.036282109807729
110 => 0.034037969935999
111 => 0.035236771341413
112 => 0.036291666968404
113 => 0.035786453826283
114 => 0.035626518438301
115 => 0.036443593649749
116 => 0.036507087391454
117 => 0.035059423351805
118 => 0.035360438547206
119 => 0.036615721951641
120 => 0.035328808626139
121 => 0.032828546250789
122 => 0.03220844661287
123 => 0.032125713890468
124 => 0.03044395449171
125 => 0.032249884635798
126 => 0.031461547731984
127 => 0.033951894565404
128 => 0.032529421810153
129 => 0.032468101852734
130 => 0.032375407743414
131 => 0.030927847956297
201 => 0.031244771552452
202 => 0.032298273854897
203 => 0.032674175344963
204 => 0.032634965739879
205 => 0.032293111118879
206 => 0.032449610413794
207 => 0.031945471656905
208 => 0.031767449769106
209 => 0.031205563722436
210 => 0.030379746458813
211 => 0.030494581414352
212 => 0.028858421328274
213 => 0.027966954475791
214 => 0.027720208200368
215 => 0.027390248768635
216 => 0.02775747799617
217 => 0.028853786292323
218 => 0.027531405892383
219 => 0.025264277450886
220 => 0.025400535733219
221 => 0.025706667638174
222 => 0.025136192858556
223 => 0.024596286355967
224 => 0.025065691255969
225 => 0.024105079048281
226 => 0.025822753034094
227 => 0.025776294766504
228 => 0.026416537408168
301 => 0.026816894271103
302 => 0.025894201319112
303 => 0.025662146536914
304 => 0.025794335487156
305 => 0.023609546594179
306 => 0.026237993544544
307 => 0.026260724462919
308 => 0.026066088539448
309 => 0.027465655396322
310 => 0.030419178000175
311 => 0.029307943991434
312 => 0.028877640596024
313 => 0.028059633526799
314 => 0.029149579378087
315 => 0.029065888542512
316 => 0.028687406845236
317 => 0.028458499933788
318 => 0.028880267936799
319 => 0.028406238210715
320 => 0.028321089446444
321 => 0.027805180577734
322 => 0.027621024583962
323 => 0.027484682817635
324 => 0.027334583929574
325 => 0.027665664674324
326 => 0.026915392149421
327 => 0.026010637034511
328 => 0.025935416436292
329 => 0.026143107121437
330 => 0.026051219454013
331 => 0.025934976513492
401 => 0.025713037083156
402 => 0.025647192395161
403 => 0.025861155687844
404 => 0.02561960360524
405 => 0.025976026861145
406 => 0.025879099457337
407 => 0.025337670858858
408 => 0.024662850362612
409 => 0.024656843044712
410 => 0.024511454075723
411 => 0.024326279364338
412 => 0.024274767995854
413 => 0.025026159284567
414 => 0.026581516764955
415 => 0.026276162875005
416 => 0.026496812354419
417 => 0.027582189408321
418 => 0.02792719813533
419 => 0.027682319112879
420 => 0.027347113603467
421 => 0.027361860944684
422 => 0.028507359643952
423 => 0.028578802992728
424 => 0.028759317286587
425 => 0.02899132916753
426 => 0.027721831739451
427 => 0.027302067729986
428 => 0.027103160254681
429 => 0.026490602217622
430 => 0.027151193543833
501 => 0.02676629526739
502 => 0.02681823119488
503 => 0.026784407853969
504 => 0.026802877685231
505 => 0.025822272909209
506 => 0.026179553750521
507 => 0.02558550505608
508 => 0.024790140539319
509 => 0.024787474198568
510 => 0.024982138537253
511 => 0.024866344571387
512 => 0.024554745986576
513 => 0.024599007094844
514 => 0.024211233212685
515 => 0.024646089865011
516 => 0.024658559997808
517 => 0.02449111649986
518 => 0.025161073171423
519 => 0.025435554966395
520 => 0.025325340069059
521 => 0.025427821995388
522 => 0.026288851707722
523 => 0.026429237120193
524 => 0.026491587047072
525 => 0.026408046404836
526 => 0.025443560037915
527 => 0.025486339109601
528 => 0.025172454665931
529 => 0.024907255387358
530 => 0.024917861967714
531 => 0.025054208870394
601 => 0.025649643791035
602 => 0.026902701478719
603 => 0.026950254101993
604 => 0.02700788926861
605 => 0.026773458080867
606 => 0.026702751391439
607 => 0.026796031765739
608 => 0.02726661435059
609 => 0.028477080520752
610 => 0.0280492209319
611 => 0.027701364426131
612 => 0.028006528363131
613 => 0.027959550766984
614 => 0.027563012578921
615 => 0.027551883072693
616 => 0.026790799508873
617 => 0.026509444244363
618 => 0.026274322726262
619 => 0.026017576166498
620 => 0.025865368199647
621 => 0.026099228814014
622 => 0.026152715503477
623 => 0.025641375182981
624 => 0.025571681386765
625 => 0.025989252930529
626 => 0.025805495262755
627 => 0.025994494581032
628 => 0.026038344044078
629 => 0.026031283270589
630 => 0.025839419160998
701 => 0.025961707622981
702 => 0.025672458954447
703 => 0.025357944471161
704 => 0.025157303825769
705 => 0.024982218251546
706 => 0.025079365904158
707 => 0.024733052261055
708 => 0.024622259556709
709 => 0.025920279043639
710 => 0.026879139994695
711 => 0.026865197776716
712 => 0.026780328110416
713 => 0.026654229001478
714 => 0.027257389415349
715 => 0.027047260387729
716 => 0.02720014681219
717 => 0.027239062823838
718 => 0.027356849870345
719 => 0.027398948615332
720 => 0.027271696968522
721 => 0.026844624899347
722 => 0.025780401907758
723 => 0.025285003232358
724 => 0.025121513417958
725 => 0.0251274559622
726 => 0.024963534063319
727 => 0.025011816409004
728 => 0.024946743433879
729 => 0.024823510961836
730 => 0.02507175664627
731 => 0.025100364648832
801 => 0.02504242113977
802 => 0.02505606893374
803 => 0.024576321426704
804 => 0.024612795587707
805 => 0.024409702824329
806 => 0.024371625379515
807 => 0.023858224559006
808 => 0.022948660586835
809 => 0.023452647320929
810 => 0.022843902217402
811 => 0.022613361222703
812 => 0.023704706435128
813 => 0.023595165645005
814 => 0.023407679428551
815 => 0.023130348238864
816 => 0.023027483402905
817 => 0.022402509222667
818 => 0.022365582413991
819 => 0.02267533649344
820 => 0.022532395643761
821 => 0.02233165255488
822 => 0.021604581435952
823 => 0.020787112773303
824 => 0.020811787013803
825 => 0.021071808585847
826 => 0.02182785637525
827 => 0.021532455424171
828 => 0.021318138644827
829 => 0.021278003554395
830 => 0.021780378239658
831 => 0.022491343670057
901 => 0.022824912743045
902 => 0.022494355922357
903 => 0.022114630045194
904 => 0.022137742199857
905 => 0.022291497010399
906 => 0.022307654467011
907 => 0.022060491957429
908 => 0.022130066756114
909 => 0.022024376274859
910 => 0.021375753986487
911 => 0.021364022466094
912 => 0.02120484009608
913 => 0.021200020117179
914 => 0.020929211195882
915 => 0.020891323155779
916 => 0.020353615605618
917 => 0.020707536343462
918 => 0.020470144894189
919 => 0.020112339985152
920 => 0.020050654283969
921 => 0.020048799937304
922 => 0.020416185575171
923 => 0.020703243228381
924 => 0.020474274420085
925 => 0.02042214266081
926 => 0.020978773462065
927 => 0.020907937118803
928 => 0.020846593302383
929 => 0.022427684513702
930 => 0.021176127445857
1001 => 0.020630377127897
1002 => 0.019954907474247
1003 => 0.02017484379949
1004 => 0.020221187614755
1005 => 0.018596804860283
1006 => 0.017937792979098
1007 => 0.017711644935814
1008 => 0.01758149353964
1009 => 0.017640805165215
1010 => 0.017047617177764
1011 => 0.017446249315755
1012 => 0.016932598659555
1013 => 0.016846483455479
1014 => 0.017764954457871
1015 => 0.017892754332224
1016 => 0.017347520363925
1017 => 0.017697648836934
1018 => 0.017570687385471
1019 => 0.016941403725789
1020 => 0.016917369718686
1021 => 0.016601617298648
1022 => 0.016107525903004
1023 => 0.015881712876953
1024 => 0.015764107492386
1025 => 0.015812633766142
1026 => 0.015788097397203
1027 => 0.015627980992835
1028 => 0.015797275082075
1029 => 0.015364798641214
1030 => 0.015192583037764
1031 => 0.015114797245057
1101 => 0.014730949511378
1102 => 0.015341821953524
1103 => 0.015462171520195
1104 => 0.01558275821269
1105 => 0.016632383042828
1106 => 0.016579946752524
1107 => 0.017053945279369
1108 => 0.017035526568243
1109 => 0.01690033451012
1110 => 0.016329981454911
1111 => 0.016557314017152
1112 => 0.0158576197259
1113 => 0.016381878263493
1114 => 0.016142628560495
1115 => 0.016300987698246
1116 => 0.016016243689902
1117 => 0.016173832780912
1118 => 0.015490710867127
1119 => 0.014852821235819
1120 => 0.015109526644617
1121 => 0.015388594781804
1122 => 0.015993685608464
1123 => 0.015633298503996
1124 => 0.015762907334508
1125 => 0.015328739448549
1126 => 0.014432927085891
1127 => 0.014437997286579
1128 => 0.014300196070917
1129 => 0.014181115701279
1130 => 0.015674693298187
1201 => 0.015488943314044
1202 => 0.015192975024668
1203 => 0.015589140341309
1204 => 0.015693892739018
1205 => 0.015696874892517
1206 => 0.015985906881031
1207 => 0.016140163305113
1208 => 0.016167351668443
1209 => 0.016622149747321
1210 => 0.016774592064429
1211 => 0.017402480394152
1212 => 0.01612707572526
1213 => 0.016100809605407
1214 => 0.015594715199748
1215 => 0.015273742126643
1216 => 0.015616692500668
1217 => 0.01592049971466
1218 => 0.015604155336746
1219 => 0.015645463234107
1220 => 0.015220796753044
1221 => 0.015372595037609
1222 => 0.015503344169714
1223 => 0.015431152184044
1224 => 0.015323077287366
1225 => 0.015895590987684
1226 => 0.015863287521013
1227 => 0.016396425440783
1228 => 0.016812044574301
1229 => 0.017556908362374
1230 => 0.016779604168893
1231 => 0.016751276114578
]
'min_raw' => 0.014181115701279
'max_raw' => 0.041001775950335
'avg_raw' => 0.027591445825807
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.014181'
'max' => '$0.0410017'
'avg' => '$0.027591'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0024935807799243
'max_diff' => -0.013850420857715
'year' => 2030
]
5 => [
'items' => [
101 => 0.017028187389468
102 => 0.016774549670755
103 => 0.016934839953705
104 => 0.017531083119713
105 => 0.017543680798263
106 => 0.017332653451357
107 => 0.01731981241812
108 => 0.017360342528479
109 => 0.01759772865079
110 => 0.017514778645516
111 => 0.017610770491656
112 => 0.017730809765133
113 => 0.018227343095834
114 => 0.01834705560086
115 => 0.018056216277464
116 => 0.018082475811977
117 => 0.017973693921309
118 => 0.017868611977956
119 => 0.018104820840627
120 => 0.018536497179854
121 => 0.018533811743752
122 => 0.018633952263864
123 => 0.018696338978285
124 => 0.018428529530125
125 => 0.018254195426999
126 => 0.018321046215304
127 => 0.018427942081626
128 => 0.018286381326563
129 => 0.017412602768993
130 => 0.017677651366169
131 => 0.017633534319385
201 => 0.017570706279947
202 => 0.017837214693968
203 => 0.017811509307285
204 => 0.017041533177573
205 => 0.017090824551216
206 => 0.017044530749262
207 => 0.017194115494194
208 => 0.016766471603634
209 => 0.016898011984145
210 => 0.016980512877687
211 => 0.017029106537785
212 => 0.017204660159043
213 => 0.017184060967821
214 => 0.017203379684394
215 => 0.017463679360283
216 => 0.018780185796866
217 => 0.018851840337501
218 => 0.018498987172995
219 => 0.018639945052494
220 => 0.018369336747955
221 => 0.01855099791571
222 => 0.018675285872995
223 => 0.018113652493225
224 => 0.018080396209446
225 => 0.017808671008173
226 => 0.017954680740035
227 => 0.017722368758172
228 => 0.017779369992593
301 => 0.017619989571873
302 => 0.017906842596843
303 => 0.018227588851214
304 => 0.018308622021721
305 => 0.01809545863709
306 => 0.017941114298465
307 => 0.017670136484025
308 => 0.018120778628573
309 => 0.018252560124709
310 => 0.018120086436474
311 => 0.018089389388303
312 => 0.018031218537487
313 => 0.018101730609295
314 => 0.018251842414379
315 => 0.018181052459231
316 => 0.018227810471765
317 => 0.01804961714464
318 => 0.018428618186195
319 => 0.019030563051753
320 => 0.019032498402924
321 => 0.018961708066192
322 => 0.0189327421856
323 => 0.019005377367004
324 => 0.019044778973264
325 => 0.01927966783091
326 => 0.019531712933549
327 => 0.020707897451672
328 => 0.020377629545561
329 => 0.021421210421569
330 => 0.022246547402475
331 => 0.022494029875436
401 => 0.022266357645262
402 => 0.021487503244448
403 => 0.021449288931823
404 => 0.022613226230485
405 => 0.022284360631908
406 => 0.022245243115398
407 => 0.021829098829828
408 => 0.022075091643073
409 => 0.022021289406319
410 => 0.021936359943508
411 => 0.022405697095171
412 => 0.023284254345067
413 => 0.023147322958613
414 => 0.023045110030689
415 => 0.022597242734264
416 => 0.022866958881494
417 => 0.022770918127538
418 => 0.023183570155502
419 => 0.022939124235498
420 => 0.02228186915155
421 => 0.02238653919001
422 => 0.022370718524263
423 => 0.022696306704258
424 => 0.022598573214219
425 => 0.022351634491767
426 => 0.023281251531898
427 => 0.023220887372114
428 => 0.02330646994952
429 => 0.023344146046823
430 => 0.023909987557461
501 => 0.024141794719461
502 => 0.024194419003591
503 => 0.024414617878881
504 => 0.024188940254977
505 => 0.025091811656012
506 => 0.025692168453694
507 => 0.02638951376828
508 => 0.02740852270164
509 => 0.027791679486943
510 => 0.027722465643181
511 => 0.028495066586667
512 => 0.029883413308156
513 => 0.028003090209946
514 => 0.029983074998142
515 => 0.029356234674223
516 => 0.027870007542587
517 => 0.027774312036776
518 => 0.028780802305772
519 => 0.031013100851307
520 => 0.030453935384171
521 => 0.031014015445696
522 => 0.030360652303523
523 => 0.030328207316537
524 => 0.030982283056214
525 => 0.032510566673782
526 => 0.03178453641393
527 => 0.03074359400651
528 => 0.031512209681291
529 => 0.030846363651773
530 => 0.029346026188698
531 => 0.030453507800876
601 => 0.029712966386073
602 => 0.02992909574026
603 => 0.031485603646954
604 => 0.031298320497611
605 => 0.031540682234813
606 => 0.031112920112363
607 => 0.030713322838099
608 => 0.029967444851202
609 => 0.029746627150622
610 => 0.029807653218874
611 => 0.029746596909134
612 => 0.029329285030437
613 => 0.029239166569965
614 => 0.029088965187665
615 => 0.029135518876662
616 => 0.028853096334974
617 => 0.029386086022614
618 => 0.02948501360533
619 => 0.029872879052343
620 => 0.029913148529746
621 => 0.03099334827876
622 => 0.030398392409023
623 => 0.030797540172461
624 => 0.030761836639574
625 => 0.027902218591164
626 => 0.028296248727611
627 => 0.028909235966455
628 => 0.02863308604624
629 => 0.028242674668187
630 => 0.027927396547875
701 => 0.027449717956759
702 => 0.02812204140075
703 => 0.02900607523597
704 => 0.029935569086685
705 => 0.03105229504547
706 => 0.030803054811593
707 => 0.029914692671664
708 => 0.029954543948313
709 => 0.030200888859653
710 => 0.029881849816672
711 => 0.029787758974515
712 => 0.030187962222803
713 => 0.030190718202627
714 => 0.029823625226521
715 => 0.029415668560885
716 => 0.02941395920756
717 => 0.029341367259304
718 => 0.030373566249854
719 => 0.030941171327568
720 => 0.031006246334986
721 => 0.030936791261078
722 => 0.030963521762452
723 => 0.030633244874055
724 => 0.031388159900362
725 => 0.032080944581859
726 => 0.031895263488032
727 => 0.031616901132262
728 => 0.031395172108144
729 => 0.031843031176599
730 => 0.031823088717277
731 => 0.032074893712038
801 => 0.03206347038298
802 => 0.031978797834106
803 => 0.031895266511955
804 => 0.032226458762332
805 => 0.032131080713008
806 => 0.03203555451523
807 => 0.031843962101256
808 => 0.031870002692328
809 => 0.031591688399744
810 => 0.031462927473198
811 => 0.029526672078621
812 => 0.029009241368219
813 => 0.029172035602985
814 => 0.02922563169202
815 => 0.029000445183748
816 => 0.029323304790943
817 => 0.029272987463154
818 => 0.029468742750926
819 => 0.029346443345833
820 => 0.029351462556078
821 => 0.029711119029475
822 => 0.029815528833791
823 => 0.029762425164625
824 => 0.029799617154221
825 => 0.030656690856705
826 => 0.030534842383886
827 => 0.030470112811231
828 => 0.030488043345226
829 => 0.030707044052078
830 => 0.030768352293002
831 => 0.030508584968156
901 => 0.03063109274025
902 => 0.031152715285276
903 => 0.031335253654756
904 => 0.031917828506748
905 => 0.031670340355179
906 => 0.03212461556842
907 => 0.033520902700087
908 => 0.034636353476583
909 => 0.033610538844564
910 => 0.0356589221438
911 => 0.037253882365388
912 => 0.037192665135538
913 => 0.03691454692881
914 => 0.035098727120743
915 => 0.033427782661013
916 => 0.034825598653627
917 => 0.034829161974056
918 => 0.034709088340628
919 => 0.033963321315844
920 => 0.03468313726471
921 => 0.034740273640743
922 => 0.034708292463953
923 => 0.034136514634594
924 => 0.03326351557137
925 => 0.033434097498659
926 => 0.033713514175337
927 => 0.033184520113961
928 => 0.033015474458471
929 => 0.033329762494279
930 => 0.034342464030164
1001 => 0.034151018670985
1002 => 0.034146019258966
1003 => 0.034965103690998
1004 => 0.034378816007147
1005 => 0.033436249083041
1006 => 0.033198238503774
1007 => 0.032353461290515
1008 => 0.032936951920706
1009 => 0.032957950709719
1010 => 0.032638378854692
1011 => 0.033462180577816
1012 => 0.03345458909991
1013 => 0.03423666622931
1014 => 0.035731703965969
1015 => 0.0352895477409
1016 => 0.034775368157605
1017 => 0.034831273734963
1018 => 0.035444419931852
1019 => 0.035073697744446
1020 => 0.035207012027804
1021 => 0.035444218144717
1022 => 0.035587330484547
1023 => 0.034810682071635
1024 => 0.034629608175197
1025 => 0.034259194531387
1026 => 0.034162560525815
1027 => 0.034464254709764
1028 => 0.034384768951306
1029 => 0.032956185842814
1030 => 0.032806890959415
1031 => 0.032811469620344
1101 => 0.032436060537453
1102 => 0.031863471577541
1103 => 0.033368201176681
1104 => 0.033247350331193
1105 => 0.033113940350886
1106 => 0.033130282312247
1107 => 0.033783434431216
1108 => 0.033404573217241
1109 => 0.034411837848724
1110 => 0.034204774521638
1111 => 0.033992400801533
1112 => 0.033963044284353
1113 => 0.033881298520987
1114 => 0.033600961882146
1115 => 0.033262438545125
1116 => 0.033038916115634
1117 => 0.030476653686175
1118 => 0.030952194689088
1119 => 0.031499261266012
1120 => 0.031688106456135
1121 => 0.031365073690741
1122 => 0.033613717184631
1123 => 0.034024566019433
1124 => 0.032780078099812
1125 => 0.032547285222158
1126 => 0.033628979046935
1127 => 0.032976585438902
1128 => 0.033270358240653
1129 => 0.0326353821284
1130 => 0.033925604566187
1201 => 0.033915775232925
1202 => 0.03341384956363
1203 => 0.03383807370228
1204 => 0.033764354318546
1205 => 0.033197681474101
1206 => 0.033943569106112
1207 => 0.033943939057072
1208 => 0.033460846513181
1209 => 0.032896700184472
1210 => 0.032795844145441
1211 => 0.032719862668133
1212 => 0.033251671454984
1213 => 0.033728489550352
1214 => 0.034615729812601
1215 => 0.034838803094839
1216 => 0.035709472966244
1217 => 0.035191031449969
1218 => 0.035420849859192
1219 => 0.035670350252203
1220 => 0.035789969915685
1221 => 0.035595056093186
1222 => 0.036947564785494
1223 => 0.03706175795892
1224 => 0.037100045942203
1225 => 0.036643987620961
1226 => 0.037049074152003
1227 => 0.036859547579184
1228 => 0.03735264306966
1229 => 0.037429966738726
1230 => 0.037364476341896
1231 => 0.037389020094929
]
'min_raw' => 0.016766471603634
'max_raw' => 0.037429966738726
'avg_raw' => 0.02709821917118
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.016766'
'max' => '$0.037429'
'avg' => '$0.027098'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0025853559023549
'max_diff' => -0.0035718092116091
'year' => 2031
]
6 => [
'items' => [
101 => 0.036234892524927
102 => 0.036175044921915
103 => 0.035359018608246
104 => 0.035691555362828
105 => 0.035069893839039
106 => 0.035267029112056
107 => 0.035353924462028
108 => 0.03530853526247
109 => 0.035710356491998
110 => 0.035368726360245
111 => 0.034467108273357
112 => 0.033565244541223
113 => 0.033553922376708
114 => 0.033316477575254
115 => 0.033144848473988
116 => 0.033177910327761
117 => 0.033294424612784
118 => 0.033138076451931
119 => 0.033171441259102
120 => 0.033725519366687
121 => 0.033836635779659
122 => 0.033459018792396
123 => 0.03194283209866
124 => 0.031570756080951
125 => 0.031838196943892
126 => 0.031710377436803
127 => 0.025592749484986
128 => 0.027029995428208
129 => 0.026176032693006
130 => 0.026569578010323
131 => 0.02569790319026
201 => 0.026113912102786
202 => 0.026037090446856
203 => 0.028348139392356
204 => 0.028312055541816
205 => 0.028329326971555
206 => 0.027504916629657
207 => 0.02881822468948
208 => 0.029465207464779
209 => 0.02934546817196
210 => 0.029375603972281
211 => 0.028857771078088
212 => 0.028334340725897
213 => 0.027753775909964
214 => 0.028832393577988
215 => 0.028712469705921
216 => 0.028987531921195
217 => 0.029687092580092
218 => 0.029790105544487
219 => 0.029928556013288
220 => 0.029878931375798
221 => 0.031061191569375
222 => 0.030918012059129
223 => 0.031263033483266
224 => 0.030553298236978
225 => 0.029750165437116
226 => 0.02990281472598
227 => 0.029888113371935
228 => 0.029700948261504
229 => 0.029531983968525
301 => 0.029250706026109
302 => 0.030140711057216
303 => 0.030104578478293
304 => 0.030689522931526
305 => 0.03058612831757
306 => 0.029895633780616
307 => 0.029920294928087
308 => 0.030086152996571
309 => 0.030660189665327
310 => 0.030830602832011
311 => 0.030751660663412
312 => 0.030938510921024
313 => 0.031086189746142
314 => 0.030957057107756
315 => 0.03278530295067
316 => 0.032026087811837
317 => 0.032396123987919
318 => 0.032484375435535
319 => 0.032258321208195
320 => 0.03230734427571
321 => 0.032381600865009
322 => 0.032832472334302
323 => 0.034015689530437
324 => 0.034539728372174
325 => 0.03611632508316
326 => 0.034496214241341
327 => 0.034400083568672
328 => 0.03468407624498
329 => 0.035609705414039
330 => 0.036359840915635
331 => 0.03660870413787
401 => 0.036641595520972
402 => 0.037108479469998
403 => 0.03737608864271
404 => 0.037051787478319
405 => 0.036776976197246
406 => 0.035792636299272
407 => 0.035906576322731
408 => 0.036691510095479
409 => 0.037800275281854
410 => 0.03875171115912
411 => 0.038418551475789
412 => 0.040960324685518
413 => 0.04121233111705
414 => 0.041177511976556
415 => 0.041751620131171
416 => 0.040612132359352
417 => 0.040124979260364
418 => 0.036836393515455
419 => 0.037760351970105
420 => 0.039103379846116
421 => 0.03892562507063
422 => 0.037950282327832
423 => 0.038750971274188
424 => 0.038486238468665
425 => 0.038277432721174
426 => 0.039234012329415
427 => 0.03818221375603
428 => 0.039092887350763
429 => 0.037924939045806
430 => 0.03842007332116
501 => 0.038139011159518
502 => 0.038320892823783
503 => 0.037257616330944
504 => 0.037831334516902
505 => 0.037233747768198
506 => 0.037233464434271
507 => 0.037220272673672
508 => 0.037923330833417
509 => 0.037946257534766
510 => 0.037426696492452
511 => 0.037351819629186
512 => 0.037628678637234
513 => 0.037304549248299
514 => 0.037456207349336
515 => 0.037309142817683
516 => 0.037276035493955
517 => 0.037012230705743
518 => 0.036898576349518
519 => 0.036943143151106
520 => 0.036791013681525
521 => 0.036699350173339
522 => 0.037202038494757
523 => 0.036933472403012
524 => 0.037160876889417
525 => 0.036901720776425
526 => 0.03600337277985
527 => 0.035486723347163
528 => 0.033789827258537
529 => 0.034271064884278
530 => 0.034590125928021
531 => 0.034484676254967
601 => 0.034711222956293
602 => 0.034725131083818
603 => 0.034651478441847
604 => 0.034566198117932
605 => 0.034524688372548
606 => 0.034834068006344
607 => 0.035013673297003
608 => 0.034622147972247
609 => 0.034530419066678
610 => 0.034926272786712
611 => 0.035167743327255
612 => 0.036950626128052
613 => 0.036818544411533
614 => 0.037150043600267
615 => 0.037112721878885
616 => 0.037460185840641
617 => 0.038028142568884
618 => 0.036873327737167
619 => 0.03707376366146
620 => 0.037024621401565
621 => 0.03756114370931
622 => 0.037562818673392
623 => 0.037241146748621
624 => 0.03741553031757
625 => 0.037318194193346
626 => 0.037494093725585
627 => 0.036816780379683
628 => 0.037641674923535
629 => 0.038109336974868
630 => 0.038115830462905
701 => 0.038337498563641
702 => 0.03856272619214
703 => 0.038995031011852
704 => 0.038550669445353
705 => 0.037751306244946
706 => 0.037809017686088
707 => 0.037340351334166
708 => 0.037348229700213
709 => 0.037306174364814
710 => 0.037432385592125
711 => 0.036844476646604
712 => 0.036982457701022
713 => 0.036789283416821
714 => 0.037073343738293
715 => 0.036767741789243
716 => 0.037024597703679
717 => 0.037135448201442
718 => 0.037544488924625
719 => 0.036707326141848
720 => 0.035000294556827
721 => 0.035359133291756
722 => 0.034828382616622
723 => 0.034877505612315
724 => 0.034976741881484
725 => 0.034655084665022
726 => 0.034716446725339
727 => 0.034714254440746
728 => 0.034695362516494
729 => 0.034611687051501
730 => 0.034490341072575
731 => 0.034973746104294
801 => 0.035055886038948
802 => 0.035238472938699
803 => 0.035781727702482
804 => 0.035727443740751
805 => 0.035815983134555
806 => 0.035622702135008
807 => 0.034886471363541
808 => 0.034926452236545
809 => 0.034427890109538
810 => 0.035225723584191
811 => 0.035036786086506
812 => 0.034914976852637
813 => 0.034881740074622
814 => 0.035426341461886
815 => 0.035589294732537
816 => 0.035487753189655
817 => 0.035279488522763
818 => 0.035679418251116
819 => 0.035786422574743
820 => 0.035810376896636
821 => 0.036518975696358
822 => 0.035849979697989
823 => 0.036011013684045
824 => 0.037267354874073
825 => 0.036128026777951
826 => 0.036731554280515
827 => 0.03670201474987
828 => 0.037010758997925
829 => 0.03667668870996
830 => 0.036680829911559
831 => 0.036954973887685
901 => 0.036569988115343
902 => 0.036474660224044
903 => 0.036342965424966
904 => 0.036630516200795
905 => 0.036802889886102
906 => 0.038192095195153
907 => 0.039089585180259
908 => 0.039050622773044
909 => 0.039406666240418
910 => 0.039246265397381
911 => 0.038728288763613
912 => 0.039612411716935
913 => 0.039332638221228
914 => 0.039355702408289
915 => 0.039354843958095
916 => 0.039540868874516
917 => 0.039409053172299
918 => 0.039149230892623
919 => 0.03932171304727
920 => 0.039833923383072
921 => 0.041423839981934
922 => 0.04231357837425
923 => 0.041370276613528
924 => 0.04202095353676
925 => 0.041630779242714
926 => 0.041559872966807
927 => 0.041968546159243
928 => 0.042377934680004
929 => 0.042351858401067
930 => 0.042054663357328
1001 => 0.041886785418165
1002 => 0.043158013416744
1003 => 0.044094632551293
1004 => 0.044030761405491
1005 => 0.044312667871052
1006 => 0.045140353972976
1007 => 0.045216027217236
1008 => 0.045206494127788
1009 => 0.045018930096204
1010 => 0.04583389455217
1011 => 0.046513752239272
1012 => 0.044975514442138
1013 => 0.045561255258275
1014 => 0.04582421318203
1015 => 0.046210313430202
1016 => 0.046861729266783
1017 => 0.047569339644827
1018 => 0.047669403510836
1019 => 0.047598403409406
1020 => 0.047131715343498
1021 => 0.047905991062701
1022 => 0.048359543620011
1023 => 0.048629623788523
1024 => 0.049314502158815
1025 => 0.045825837120645
1026 => 0.043356386608726
1027 => 0.042970746251992
1028 => 0.043754961081968
1029 => 0.043961752278637
1030 => 0.043878395006554
1031 => 0.04109880394277
1101 => 0.04295611228029
1102 => 0.044954419884542
1103 => 0.045031183017985
1104 => 0.046031577587314
1105 => 0.046357347066647
1106 => 0.047162795819671
1107 => 0.047112414780869
1108 => 0.047308528734742
1109 => 0.047263445532967
1110 => 0.048755369740699
1111 => 0.050401183694716
1112 => 0.050344194390856
1113 => 0.050107589162579
1114 => 0.050458988273757
1115 => 0.052157644650444
1116 => 0.052001259591693
1117 => 0.052153174355422
1118 => 0.054155985955615
1119 => 0.056759925932494
1120 => 0.055550134381934
1121 => 0.058175033938507
1122 => 0.059827269069423
1123 => 0.062684638884042
1124 => 0.062326882110408
1125 => 0.063439235210891
1126 => 0.061686422819513
1127 => 0.057661611267079
1128 => 0.057024669432547
1129 => 0.058299843115217
1130 => 0.061434733184433
1201 => 0.05820111427081
1202 => 0.058855271165562
1203 => 0.058666873935866
1204 => 0.058656835048132
1205 => 0.059039978561825
1206 => 0.058484208911792
1207 => 0.056219903376507
1208 => 0.057257621259692
1209 => 0.056856908549688
1210 => 0.057301529176549
1211 => 0.059700963324218
1212 => 0.058640116292168
1213 => 0.057522600120117
1214 => 0.058924213396559
1215 => 0.060708948744047
1216 => 0.060597263213479
1217 => 0.060380546603247
1218 => 0.061602166788212
1219 => 0.063619925432645
1220 => 0.064165317486225
1221 => 0.064567914750127
1222 => 0.064623426110883
1223 => 0.065195227626785
1224 => 0.062120506763245
1225 => 0.067000167738114
1226 => 0.06784275039056
1227 => 0.067684379773373
1228 => 0.068620874930269
1229 => 0.068345334298521
1230 => 0.067946119154119
1231 => 0.069430663176031
]
'min_raw' => 0.025592749484986
'max_raw' => 0.069430663176031
'avg_raw' => 0.047511706330508
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.025592'
'max' => '$0.06943'
'avg' => '$0.047511'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0088262778813525
'max_diff' => 0.032000696437305
'year' => 2032
]
7 => [
'items' => [
101 => 0.067728753251434
102 => 0.065313106377971
103 => 0.063987834727111
104 => 0.065733059343578
105 => 0.066798807116908
106 => 0.067503198600791
107 => 0.067716347038209
108 => 0.062359188591274
109 => 0.059471977310005
110 => 0.061322646639354
111 => 0.063580590947534
112 => 0.062107963768607
113 => 0.062165687965969
114 => 0.060066108608434
115 => 0.063766357132676
116 => 0.063227262046682
117 => 0.066024088306459
118 => 0.06535660327363
119 => 0.067637306516308
120 => 0.067036720917822
121 => 0.06952971815885
122 => 0.070524242253501
123 => 0.072194202993737
124 => 0.073422632912218
125 => 0.074143990456469
126 => 0.074100682855257
127 => 0.076959060824483
128 => 0.07527357520015
129 => 0.073156208017527
130 => 0.073117911525401
131 => 0.074214525992607
201 => 0.076512729074383
202 => 0.077108619695992
203 => 0.077441641260579
204 => 0.076931607141851
205 => 0.07510213329648
206 => 0.074312175765692
207 => 0.074985242469197
208 => 0.074162139728092
209 => 0.075583045981078
210 => 0.077534253755627
211 => 0.077131337066094
212 => 0.078478227150556
213 => 0.079872116691004
214 => 0.081865441337341
215 => 0.082386570212492
216 => 0.083247976426359
217 => 0.08413464637763
218 => 0.084419420869552
219 => 0.084963143734968
220 => 0.084960278047079
221 => 0.08659882349878
222 => 0.088406189873534
223 => 0.089088428839377
224 => 0.090657199722455
225 => 0.087970734561472
226 => 0.090008449245965
227 => 0.091846518898684
228 => 0.089655096483995
301 => 0.092675461746707
302 => 0.092792735685563
303 => 0.09456343292826
304 => 0.092768492048242
305 => 0.091702661883341
306 => 0.094779673633273
307 => 0.096268542694104
308 => 0.095820083216164
309 => 0.092407284445861
310 => 0.09042088917972
311 => 0.085222109621198
312 => 0.091380288578832
313 => 0.094379757912552
314 => 0.092399516544906
315 => 0.093398235106985
316 => 0.098846919746109
317 => 0.10092142608048
318 => 0.10048994326483
319 => 0.10056285675786
320 => 0.10168222272094
321 => 0.1066461078473
322 => 0.10367163281763
323 => 0.10594550752636
324 => 0.10715156247281
325 => 0.10827181352124
326 => 0.10552083100527
327 => 0.10194184317195
328 => 0.10080822748945
329 => 0.092202620567185
330 => 0.091754661354624
331 => 0.091503208274061
401 => 0.089917832169852
402 => 0.088672160823006
403 => 0.087681556719182
404 => 0.085081915731323
405 => 0.085959218251464
406 => 0.081815933104058
407 => 0.084466660112358
408 => 0.07785387697398
409 => 0.083361199271534
410 => 0.080363814132193
411 => 0.082376477638845
412 => 0.082369455645475
413 => 0.078663504014182
414 => 0.07652598845449
415 => 0.077888096562476
416 => 0.079348384578513
417 => 0.079585311396116
418 => 0.081478612926326
419 => 0.082006992687027
420 => 0.08040597734441
421 => 0.077716841741752
422 => 0.078341466609596
423 => 0.076513330451479
424 => 0.073309592152621
425 => 0.075610572930765
426 => 0.076396228935407
427 => 0.076743219384892
428 => 0.073592710719795
429 => 0.07260275249635
430 => 0.072075707044743
501 => 0.077310150635481
502 => 0.07759690527147
503 => 0.076129828010731
504 => 0.082761156343246
505 => 0.081260282508125
506 => 0.082937126304972
507 => 0.078284788449847
508 => 0.078462514021117
509 => 0.076260022723479
510 => 0.077493270679635
511 => 0.076621650773661
512 => 0.077393636431971
513 => 0.077856361452546
514 => 0.080058491343034
515 => 0.083386344057553
516 => 0.079729566571956
517 => 0.078136256255463
518 => 0.079124737014697
519 => 0.081757191537011
520 => 0.085745494891184
521 => 0.083384339033428
522 => 0.084432179908074
523 => 0.084661086523988
524 => 0.08292005760922
525 => 0.085809689110649
526 => 0.087358266107589
527 => 0.088946785673592
528 => 0.090326052703445
529 => 0.088312296026637
530 => 0.090467304331502
531 => 0.088730748047956
601 => 0.087172877539726
602 => 0.087175240186226
603 => 0.086197965259557
604 => 0.08430437194457
605 => 0.083955164284353
606 => 0.085771786632869
607 => 0.087228545721602
608 => 0.087348531377555
609 => 0.088155068060062
610 => 0.088632368160782
611 => 0.093310558005852
612 => 0.095192164661556
613 => 0.097492957663159
614 => 0.098389246202872
615 => 0.10108675337018
616 => 0.098908297251758
617 => 0.098436974567406
618 => 0.091893704527381
619 => 0.092965164629875
620 => 0.094680675634489
621 => 0.091921992671986
622 => 0.093671742050406
623 => 0.094017179642465
624 => 0.091828253680543
625 => 0.092997453614713
626 => 0.089892405233178
627 => 0.083454025627152
628 => 0.085816856867659
629 => 0.087556695981068
630 => 0.085073731045618
701 => 0.089524349588399
702 => 0.086924390115121
703 => 0.086100327782157
704 => 0.082885366821827
705 => 0.084402704639907
706 => 0.086454925765044
707 => 0.085186891706023
708 => 0.087818252774765
709 => 0.091544961806467
710 => 0.094200836591818
711 => 0.094404721679709
712 => 0.092697172122519
713 => 0.095433531185351
714 => 0.095453462573772
715 => 0.092366838372543
716 => 0.090476298235686
717 => 0.090046763538862
718 => 0.091119825426767
719 => 0.092422720656836
720 => 0.094477023297288
721 => 0.095718395358539
722 => 0.098955235321416
723 => 0.099831031407896
724 => 0.10079326578216
725 => 0.10207910764826
726 => 0.1036230904916
727 => 0.10024494392936
728 => 0.10037916398993
729 => 0.097233480684793
730 => 0.093871866936638
731 => 0.096422912740419
801 => 0.09975806577746
802 => 0.098992977985746
803 => 0.098906889979853
804 => 0.099051666126944
805 => 0.098474814917423
806 => 0.095865738275862
807 => 0.094555476320155
808 => 0.096246048526493
809 => 0.097144512415449
810 => 0.098537951552935
811 => 0.098366180767308
812 => 0.10195553034103
813 => 0.10335024304909
814 => 0.10299341585524
815 => 0.10305908064644
816 => 0.10558414138421
817 => 0.10839252824295
818 => 0.11102295313545
819 => 0.11369873431548
820 => 0.11047297566544
821 => 0.10883513436008
822 => 0.11052496851548
823 => 0.10962831872649
824 => 0.11478073437764
825 => 0.11513747645829
826 => 0.12028951953115
827 => 0.12517942190116
828 => 0.12210816183426
829 => 0.12500422174476
830 => 0.1281365466572
831 => 0.13417930961469
901 => 0.13214431963757
902 => 0.13058554920745
903 => 0.12911251868292
904 => 0.13217766136747
905 => 0.13612091846429
906 => 0.13697025827489
907 => 0.13834651324086
908 => 0.1368995494246
909 => 0.13864225796345
910 => 0.14479478489052
911 => 0.14313231780497
912 => 0.14077134728856
913 => 0.14562817640252
914 => 0.14738584397842
915 => 0.15972207552372
916 => 0.17529707743396
917 => 0.16884892437214
918 => 0.16484634768607
919 => 0.16578704814969
920 => 0.17147451160022
921 => 0.17330114434947
922 => 0.16833572685895
923 => 0.17008959626014
924 => 0.1797535890973
925 => 0.18493801119643
926 => 0.17789686962503
927 => 0.15847063928527
928 => 0.1405587677255
929 => 0.14530980264524
930 => 0.14477118272712
1001 => 0.15515393742299
1002 => 0.14309266851479
1003 => 0.14329574935036
1004 => 0.15389320841781
1005 => 0.15106598802506
1006 => 0.14648625307183
1007 => 0.1405922048589
1008 => 0.12969651160382
1009 => 0.12004589223891
1010 => 0.1389729792184
1011 => 0.13815680881117
1012 => 0.13697487311182
1013 => 0.13960514311192
1014 => 0.15237698761722
1015 => 0.15208255526294
1016 => 0.15020952684576
1017 => 0.15163020239208
1018 => 0.14623720177969
1019 => 0.14762710083385
1020 => 0.14055593039353
1021 => 0.14375239475072
1022 => 0.14647642701748
1023 => 0.14702331682502
1024 => 0.1482554874863
1025 => 0.13772672409363
1026 => 0.14245382974868
1027 => 0.14523056145113
1028 => 0.13268518660112
1029 => 0.1449825797268
1030 => 0.13754344174735
1031 => 0.13501848658502
1101 => 0.13841800607355
1102 => 0.13709321002273
1103 => 0.13595422817286
1104 => 0.13531865673045
1105 => 0.13781488865155
1106 => 0.13769843644879
1107 => 0.13361411652813
1108 => 0.12828628768981
1109 => 0.13007448192797
1110 => 0.12942481419684
1111 => 0.1270703345304
1112 => 0.12865696954462
1113 => 0.12167023191961
1114 => 0.10964991297479
1115 => 0.11759090386206
1116 => 0.11728518435104
1117 => 0.11713102671031
1118 => 0.12309846188922
1119 => 0.12252483068892
1120 => 0.12148368444337
1121 => 0.12705121306312
1122 => 0.12501899022309
1123 => 0.13128182216417
1124 => 0.13540692833513
1125 => 0.13436066797697
1126 => 0.13824035026914
1127 => 0.13011567831157
1128 => 0.13281436843061
1129 => 0.13337056472393
1130 => 0.12698251062418
1201 => 0.12261868384751
1202 => 0.12232766635277
1203 => 0.11476139209439
1204 => 0.11880323473039
1205 => 0.12235988898725
1206 => 0.12065652760573
1207 => 0.12011729427882
1208 => 0.12287212040058
1209 => 0.12308619398374
1210 => 0.11820529360138
1211 => 0.11922018734889
1212 => 0.12345246298803
1213 => 0.11911354486168
1214 => 0.11068373570044
1215 => 0.10859302647722
1216 => 0.10831408732743
1217 => 0.10264391809782
1218 => 0.10873273766463
1219 => 0.1060748047535
1220 => 0.11447118297284
1221 => 0.10967521676463
1222 => 0.10946847224697
1223 => 0.10915594758571
1224 => 0.10427539869804
1225 => 0.10534392872938
1226 => 0.10889588529526
1227 => 0.11016326341362
1228 => 0.11003106549255
1229 => 0.10887847877032
1230 => 0.10940612706956
1231 => 0.10770638805286
]
'min_raw' => 0.059471977310005
'max_raw' => 0.18493801119643
'avg_raw' => 0.12220499425322
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.059471'
'max' => '$0.184938'
'avg' => '$0.1222049'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.033879227825019
'max_diff' => 0.1155073480204
'year' => 2033
]
8 => [
'items' => [
101 => 0.10710617482906
102 => 0.10521173679308
103 => 0.10242743623205
104 => 0.10281461030217
105 => 0.097298182338912
106 => 0.094292539605536
107 => 0.093460617310672
108 => 0.092348136049554
109 => 0.093586275029315
110 => 0.097282554991595
111 => 0.092824057147547
112 => 0.085180275321187
113 => 0.085639679633322
114 => 0.086671824724324
115 => 0.084748429175564
116 => 0.082928096707016
117 => 0.084510728100177
118 => 0.081271956974153
119 => 0.087063214741492
120 => 0.086906577448698
121 => 0.089065200215383
122 => 0.090415031330791
123 => 0.08730410762279
124 => 0.08652171872306
125 => 0.086967402997939
126 => 0.07960123470818
127 => 0.088463227113639
128 => 0.088539865991963
129 => 0.087883637386935
130 => 0.092602374759523
131 => 0.10256038242678
201 => 0.098813779382426
202 => 0.097362981441977
203 => 0.094605013496656
204 => 0.098279842031863
205 => 0.097997672536615
206 => 0.096721595069498
207 => 0.095949819435781
208 => 0.097371839704837
209 => 0.095773615387644
210 => 0.095486530384009
211 => 0.093747107613545
212 => 0.093126212823183
213 => 0.092666527038932
214 => 0.092160458158265
215 => 0.093276720004509
216 => 0.090747123804444
217 => 0.087696678766539
218 => 0.08744306726791
219 => 0.088143310913376
220 => 0.087833505227265
221 => 0.087441584037475
222 => 0.086693299752782
223 => 0.086471299790077
224 => 0.087192691969796
225 => 0.08637828225867
226 => 0.08757998815063
227 => 0.087253190641437
228 => 0.085427726320328
301 => 0.083152521902773
302 => 0.083132267811053
303 => 0.082642078751374
304 => 0.082017749283454
305 => 0.081844075108202
306 => 0.084377443298563
307 => 0.08962143963528
308 => 0.088591917676186
309 => 0.089335852801286
310 => 0.092995277317123
311 => 0.094158498327973
312 => 0.093332871606871
313 => 0.092202702828589
314 => 0.09225242451913
315 => 0.096114553359876
316 => 0.096355429598289
317 => 0.096964046143141
318 => 0.097746290398291
319 => 0.093466091186043
320 => 0.092050827521145
321 => 0.091380197080877
322 => 0.089314914891496
323 => 0.09154214466883
324 => 0.090244433257065
325 => 0.090419538862647
326 => 0.090305501107297
327 => 0.090367773432917
328 => 0.08706159596692
329 => 0.088266193267957
330 => 0.086263316619493
331 => 0.083581689620655
401 => 0.083572699866655
402 => 0.084229024275563
403 => 0.083838616835168
404 => 0.082788040451358
405 => 0.082937269868098
406 => 0.081629863150889
407 => 0.08309601271493
408 => 0.083138056638291
409 => 0.082573509194429
410 => 0.084832314887485
411 => 0.08575774942294
412 => 0.085386152201612
413 => 0.085731677171289
414 => 0.088634698961599
415 => 0.08910801818114
416 => 0.089318235312748
417 => 0.089036572204827
418 => 0.085784739080464
419 => 0.085928971707392
420 => 0.084870688390848
421 => 0.083976550507517
422 => 0.084012311333715
423 => 0.084472014435536
424 => 0.086479564842417
425 => 0.090704336322137
426 => 0.090864663311525
427 => 0.091058984299731
428 => 0.090268583182793
429 => 0.090030190642805
430 => 0.090344691937385
501 => 0.091931293977237
502 => 0.096012465181987
503 => 0.094569906705968
504 => 0.093397084210205
505 => 0.094425965729664
506 => 0.094267577484383
507 => 0.092930621297917
508 => 0.092893097390634
509 => 0.090327051018056
510 => 0.089378442100163
511 => 0.088585713486225
512 => 0.087720074534509
513 => 0.087206894747451
514 => 0.087995372136413
515 => 0.08817570624426
516 => 0.086451686653066
517 => 0.086216709153258
518 => 0.087624580766974
519 => 0.087005028960522
520 => 0.087642253357603
521 => 0.087790094883736
522 => 0.087766288992949
523 => 0.087119405751941
524 => 0.087531709839424
525 => 0.086556487758764
526 => 0.085496080219666
527 => 0.084819606275445
528 => 0.084229293037865
529 => 0.084556833131281
530 => 0.083389212504711
531 => 0.083015667166711
601 => 0.087392030491721
602 => 0.090624897133739
603 => 0.090577889972409
604 => 0.090291745967069
605 => 0.089866594017325
606 => 0.091900191464005
607 => 0.091191726776646
608 => 0.091707194030905
609 => 0.091838402081207
610 => 0.092235529332133
611 => 0.092377468190098
612 => 0.091948430378451
613 => 0.090508527080009
614 => 0.086920424962188
615 => 0.085250153740446
616 => 0.084698936416704
617 => 0.084718972119511
618 => 0.08416629799277
619 => 0.084329085292212
620 => 0.084109687213328
621 => 0.083694200330019
622 => 0.084531177987048
623 => 0.084627631865035
624 => 0.084432271278746
625 => 0.084478285768973
626 => 0.082860783554099
627 => 0.082983758734466
628 => 0.082299017303254
629 => 0.082170636539582
630 => 0.080439669828735
701 => 0.077373011392831
702 => 0.079072237854059
703 => 0.077019811236294
704 => 0.076242526176808
705 => 0.079922072755786
706 => 0.079552748333992
707 => 0.078920625465348
708 => 0.077985583996675
709 => 0.077638768020445
710 => 0.075531623937469
711 => 0.075407122623871
712 => 0.07645148012907
713 => 0.075969545074568
714 => 0.07529272573497
715 => 0.07284135469502
716 => 0.070085202025058
717 => 0.070168392949606
718 => 0.071045073833878
719 => 0.073594141741422
720 => 0.072598176810622
721 => 0.071875592825946
722 => 0.071740274566411
723 => 0.073434065892457
724 => 0.075831135479066
725 => 0.076955786897693
726 => 0.075841291498005
727 => 0.074561019191536
728 => 0.07463894343462
729 => 0.075157338513183
730 => 0.075211814506228
731 => 0.074378488848836
801 => 0.074613065140159
802 => 0.074256722303534
803 => 0.072069846972925
804 => 0.072030293332851
805 => 0.071493598858591
806 => 0.071477347963206
807 => 0.070564296777779
808 => 0.070436554605313
809 => 0.068623636058403
810 => 0.069816904536002
811 => 0.069016522690635
812 => 0.067810158458677
813 => 0.067602180810381
814 => 0.067595928751133
815 => 0.068834595079248
816 => 0.069802429998771
817 => 0.069030445675509
818 => 0.068854679809389
819 => 0.070731399418542
820 => 0.070492569741598
821 => 0.070285744781651
822 => 0.075616504188874
823 => 0.071396792153713
824 => 0.069556756853641
825 => 0.067279363756575
826 => 0.068020894432592
827 => 0.068177145841381
828 => 0.062700425973898
829 => 0.060478521405741
830 => 0.059716047488657
831 => 0.059277232969577
901 => 0.059477206256208
902 => 0.057477231541455
903 => 0.058821247626298
904 => 0.057089438576976
905 => 0.056799095154063
906 => 0.059895784264224
907 => 0.060326670463307
908 => 0.058488376072168
909 => 0.059668858664108
910 => 0.059240799266335
911 => 0.057119125472533
912 => 0.057038093139586
913 => 0.055973511810296
914 => 0.054307648173523
915 => 0.053546303790429
916 => 0.053149789025419
917 => 0.053313398745381
918 => 0.053230672664428
919 => 0.052690829028134
920 => 0.053261615869742
921 => 0.051803491354839
922 => 0.051222854424097
923 => 0.050960594193155
924 => 0.049666424759663
925 => 0.051726023848108
926 => 0.052131790814678
927 => 0.052538357267519
928 => 0.056077240664797
929 => 0.05590044805105
930 => 0.05749856717783
1001 => 0.057436467207316
1002 => 0.056980657744545
1003 => 0.05505767259813
1004 => 0.055824140203577
1005 => 0.053465072049524
1006 => 0.055232646311582
1007 => 0.054425999234045
1008 => 0.054959918123253
1009 => 0.053999883818932
1010 => 0.054531206441788
1011 => 0.052228013215414
1012 => 0.050077323787428
1013 => 0.050942823995788
1014 => 0.051883721704229
1015 => 0.053923827672408
1016 => 0.052708757388269
1017 => 0.05314574260934
1018 => 0.051681915269197
1019 => 0.048661621344873
1020 => 0.048678715880482
1021 => 0.048214109460904
1022 => 0.047812621680742
1023 => 0.052848322826975
1024 => 0.052222053786787
1025 => 0.051224176035311
1026 => 0.052559875059747
1027 => 0.052913055082201
1028 => 0.052923109620928
1029 => 0.053897601149774
1030 => 0.054417687453406
1031 => 0.054509354918605
1101 => 0.056042738394527
1102 => 0.056556708309839
1103 => 0.058673677651264
1104 => 0.054373561764184
1105 => 0.054285003707259
1106 => 0.052578671084197
1107 => 0.0514964879586
1108 => 0.052652769088655
1109 => 0.053677076321769
1110 => 0.052610499165175
1111 => 0.052749771625154
1112 => 0.051317978934982
1113 => 0.051829777449611
1114 => 0.052270607277114
1115 => 0.052027206957146
1116 => 0.051662824897446
1117 => 0.0535930948097
1118 => 0.053484181416462
1119 => 0.055281693135466
1120 => 0.056682982061726
1121 => 0.059194342327942
1122 => 0.056573606969974
1123 => 0.05647809695705
1124 => 0.05741172265367
1125 => 0.056556565376609
1126 => 0.057096995256686
1127 => 0.059107270719249
1128 => 0.059149744672022
1129 => 0.058438251238471
1130 => 0.058394956798379
1201 => 0.058531606895178
1202 => 0.059331970780316
1203 => 0.059052299046151
1204 => 0.059375942257349
1205 => 0.059780663048753
1206 => 0.061454759840061
1207 => 0.061858378908817
1208 => 0.060877793824233
1209 => 0.060966329678225
1210 => 0.060599563938929
1211 => 0.060245272830329
1212 => 0.061041667502399
1213 => 0.062497094418784
1214 => 0.062488040283474
1215 => 0.062825671038619
1216 => 0.06303601220199
1217 => 0.062133073949659
1218 => 0.061545294349352
1219 => 0.061770686449498
1220 => 0.062131093326032
1221 => 0.06165381135688
1222 => 0.058707805944761
1223 => 0.059601435795244
1224 => 0.059452692091856
1225 => 0.05924086297038
1226 => 0.060139414695276
1227 => 0.060052747189378
1228 => 0.057456718910039
1229 => 0.057622908217689
1230 => 0.057466825432273
1231 => 0.057971160843485
]
'min_raw' => 0.047812621680742
'max_raw' => 0.10710617482906
'avg_raw' => 0.077459398254899
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.047812'
'max' => '$0.1071061'
'avg' => '$0.077459'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.011659355629263
'max_diff' => -0.07783183636737
'year' => 2034
]
9 => [
'items' => [
101 => 0.056529329609316
102 => 0.056972827186065
103 => 0.05725098470867
104 => 0.057414821626392
105 => 0.058006712917227
106 => 0.057937261305831
107 => 0.058002395707548
108 => 0.05888001423835
109 => 0.063318707604834
110 => 0.063560295891347
111 => 0.062370626811793
112 => 0.06284587614389
113 => 0.061933501351868
114 => 0.062545984662132
115 => 0.062965030187625
116 => 0.061071444035741
117 => 0.060959318153099
118 => 0.060043177665761
119 => 0.060535459670807
120 => 0.05975220360445
121 => 0.059944387246
122 => 0.059407025029957
123 => 0.060374170031084
124 => 0.061455588421482
125 => 0.061728797413403
126 => 0.061010102179525
127 => 0.060489719465874
128 => 0.059576098845425
129 => 0.061095470298595
130 => 0.061539780813508
131 => 0.061093136524609
201 => 0.060989639283501
202 => 0.060793512198616
203 => 0.061031248571712
204 => 0.061537361003023
205 => 0.061298687726846
206 => 0.061456335630643
207 => 0.060855544387181
208 => 0.062133372859792
209 => 0.064162872000468
210 => 0.064169397172062
211 => 0.063930722609347
212 => 0.063833062120599
213 => 0.064077956705928
214 => 0.064210801972368
215 => 0.065002746155337
216 => 0.065852533816112
217 => 0.069818122037541
218 => 0.068704600733522
219 => 0.072223106517473
220 => 0.075005787771784
221 => 0.075840192208048
222 => 0.075072579388447
223 => 0.072446617398224
224 => 0.072317775175171
225 => 0.076242071041119
226 => 0.075133277714851
227 => 0.075001390276843
228 => 0.073598330763776
301 => 0.0744277127083
302 => 0.074246314710734
303 => 0.073959969097281
304 => 0.075542372072185
305 => 0.078504489179118
306 => 0.078042815449444
307 => 0.077698197426671
308 => 0.076188181567676
309 => 0.077097548389043
310 => 0.076773740281728
311 => 0.078165025404455
312 => 0.077340858918491
313 => 0.075124877514876
314 => 0.075477779857372
315 => 0.075424439378245
316 => 0.076522182658937
317 => 0.076192667373737
318 => 0.075360096230278
319 => 0.07849436498487
320 => 0.078290843005665
321 => 0.078579390640575
322 => 0.078706418233095
323 => 0.080614192392004
324 => 0.081395746422945
325 => 0.081573172870998
326 => 0.082315588752834
327 => 0.081554700887532
328 => 0.084598794852592
329 => 0.08662293971155
330 => 0.08897408812677
331 => 0.092409747890526
401 => 0.093701587743327
402 => 0.093468228436729
403 => 0.096073106458965
404 => 0.10075401436174
405 => 0.094414373756158
406 => 0.10109003070768
407 => 0.098976594790997
408 => 0.09396567625162
409 => 0.093643032172533
410 => 0.097036484385359
411 => 0.10456283478574
412 => 0.1026775693736
413 => 0.10456591840457
414 => 0.10236305895438
415 => 0.10225366841552
416 => 0.10445893043795
417 => 0.10961164535594
418 => 0.10716378364503
419 => 0.10365417364214
420 => 0.1062456150527
421 => 0.10400066867629
422 => 0.098942176169317
423 => 0.10267612774667
424 => 0.10017934066371
425 => 0.10090803587102
426 => 0.10615591095035
427 => 0.10552447273665
428 => 0.10634161225478
429 => 0.10489938239355
430 => 0.10355211228437
501 => 0.10103733257601
502 => 0.10029283028151
503 => 0.10049858393132
504 => 0.10029272832022
505 => 0.098885732185409
506 => 0.098581891504058
507 => 0.098075477056908
508 => 0.098232436069635
509 => 0.09728022875222
510 => 0.099077240696252
511 => 0.09941078194828
512 => 0.10071849738279
513 => 0.10085426873738
514 => 0.10449623760831
515 => 0.102490302355
516 => 0.10383605690704
517 => 0.10371567995317
518 => 0.094074278050802
519 => 0.09540277816614
520 => 0.097469507439303
521 => 0.096538448703128
522 => 0.095222149484368
523 => 0.094159167289721
524 => 0.09254864056932
525 => 0.094815426000858
526 => 0.097796007797575
527 => 0.10092986121045
528 => 0.10469498074781
529 => 0.1038546498979
530 => 0.10085947491966
531 => 0.10099383628121
601 => 0.10182440534904
602 => 0.10074874294104
603 => 0.10043150909749
604 => 0.1017808222904
605 => 0.10179011426879
606 => 0.10055243467023
607 => 0.099176980289418
608 => 0.09917121708534
609 => 0.098926468263587
610 => 0.10240659922606
611 => 0.10432031937449
612 => 0.10453972430539
613 => 0.10430555167451
614 => 0.10439567542616
615 => 0.10328212383773
616 => 0.10582737255541
617 => 0.10816314447776
618 => 0.10753710770608
619 => 0.10659858958897
620 => 0.10585101470353
621 => 0.10736100282135
622 => 0.1072937654274
623 => 0.1081427435477
624 => 0.10810422899623
625 => 0.10781874958606
626 => 0.10753711790145
627 => 0.1086537556967
628 => 0.10833218194432
629 => 0.10801010869909
630 => 0.10736414149882
701 => 0.10745193916972
702 => 0.10651358310098
703 => 0.10607945664734
704 => 0.099551236399483
705 => 0.097806682633506
706 => 0.098355554761949
707 => 0.09853625771809
708 => 0.097777025683431
709 => 0.098865569390425
710 => 0.098695921006743
711 => 0.099355923626665
712 => 0.098943582643721
713 => 0.098960505261491
714 => 0.10017311217196
715 => 0.10052513711687
716 => 0.1003460943887
717 => 0.10047148977829
718 => 0.10336117360519
719 => 0.10295035297189
720 => 0.10273211269841
721 => 0.10279256674564
722 => 0.10353094291893
723 => 0.10373764793361
724 => 0.10286182426152
725 => 0.10327486776836
726 => 0.10503355459743
727 => 0.10564899545456
728 => 0.10761318724212
729 => 0.10677876366004
730 => 0.10831038425796
731 => 0.11301806380803
801 => 0.11677888397928
802 => 0.11332027832733
803 => 0.12022654563426
804 => 0.12560406537791
805 => 0.12539766721342
806 => 0.12445997226184
807 => 0.11833780900246
808 => 0.11270410309486
809 => 0.11741693730636
810 => 0.11742895128996
811 => 0.11702411465159
812 => 0.11450970905974
813 => 0.11693661878728
814 => 0.11712925806822
815 => 0.11702143129781
816 => 0.11509364242588
817 => 0.11215026513337
818 => 0.11272539401087
819 => 0.11366746684454
820 => 0.11188392643343
821 => 0.11131397720355
822 => 0.11237362125917
823 => 0.11578801519197
824 => 0.11514254379721
825 => 0.11512568793054
826 => 0.11788728827978
827 => 0.11591057842038
828 => 0.11273264822784
829 => 0.11193017894247
830 => 0.1090819535875
831 => 0.11104923298521
901 => 0.11112003186845
902 => 0.11004257304744
903 => 0.11282007807295
904 => 0.11279448287517
905 => 0.11543131051982
906 => 0.12047193462917
907 => 0.11898117404599
908 => 0.11724758168204
909 => 0.1174360712393
910 => 0.11950333645061
911 => 0.11825342071278
912 => 0.11870289912683
913 => 0.1195026561112
914 => 0.11998516935672
915 => 0.11736664500873
916 => 0.11675614172471
917 => 0.11550726626315
918 => 0.11518145796659
919 => 0.11619864097139
920 => 0.11593064918723
921 => 0.11111408149646
922 => 0.11061072337365
923 => 0.11062616064865
924 => 0.10936044271545
925 => 0.10742991906022
926 => 0.11250321996059
927 => 0.11209576289749
928 => 0.1116459618345
929 => 0.11170105989819
930 => 0.11390320786891
1001 => 0.11262585083475
1002 => 0.11602191386477
1003 => 0.1153237854008
1004 => 0.114607752576
1005 => 0.11450877502872
1006 => 0.11423316348023
1007 => 0.1132879889299
1008 => 0.11214663386419
1009 => 0.11139301238732
1010 => 0.10275416571495
1011 => 0.10435748540748
1012 => 0.10620195856655
1013 => 0.1068386633098
1014 => 0.10574953578785
1015 => 0.11333099432277
1016 => 0.11471619985386
1017 => 0.11052032194549
1018 => 0.10973544450539
1019 => 0.11338245075708
1020 => 0.11118286015893
1021 => 0.11217333567059
1022 => 0.11003246937552
1023 => 0.11438254440497
1024 => 0.11434940412162
1025 => 0.11265712668426
1026 => 0.1140874279861
1027 => 0.11383887793692
1028 => 0.11192830087803
1029 => 0.11444311310557
1030 => 0.11444436042106
1031 => 0.11281558018089
1101 => 0.11091352144621
1102 => 0.11057347826907
1103 => 0.11031730141347
1104 => 0.11211033186804
1105 => 0.11371795736695
1106 => 0.11670934985626
1107 => 0.11746145700181
1108 => 0.12039698126148
1109 => 0.11864901949293
1110 => 0.11942386830503
1111 => 0.12026507629963
1112 => 0.12066838234664
1113 => 0.12001121678563
1114 => 0.12457129427089
1115 => 0.12495630452781
1116 => 0.12508539513663
1117 => 0.12354776266558
1118 => 0.12491354018723
1119 => 0.12427453811465
1120 => 0.12593704398762
1121 => 0.12619774613644
1122 => 0.12597694069114
1123 => 0.12605969166807
1124 => 0.1221684699872
1125 => 0.12196668961522
1126 => 0.11921539992555
1127 => 0.12033657081059
1128 => 0.11824059558012
1129 => 0.11890525091664
1130 => 0.11919822465591
1201 => 0.11904519180063
1202 => 0.12039996013024
1203 => 0.11924813028919
1204 => 0.11620826196027
1205 => 0.11316756542127
1206 => 0.11312939195312
1207 => 0.11232883022715
1208 => 0.11175017072947
1209 => 0.11186164107777
1210 => 0.1122544771245
1211 => 0.1117273383843
1212 => 0.11183983016113
1213 => 0.11370794318536
1214 => 0.11408257992959
1215 => 0.11280941789265
1216 => 0.10769748859795
1217 => 0.10644300832673
1218 => 0.10734470386826
1219 => 0.10691375147604
1220 => 0.086287741717339
1221 => 0.091133516760217
1222 => 0.088254321776711
1223 => 0.089581187290502
1224 => 0.086642274776269
1225 => 0.088044877869663
1226 => 0.087785868293177
1227 => 0.095577731165218
1228 => 0.095456071943828
1229 => 0.095514303775044
1230 => 0.092734746748845
1231 => 0.097162656564778
]
'min_raw' => 0.056529329609316
'max_raw' => 0.12619774613644
'avg_raw' => 0.091363537872878
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.056529'
'max' => '$0.126197'
'avg' => '$0.091363'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0087167079285745
'max_diff' => 0.019091571307383
'year' => 2035
]
10 => [
'items' => [
101 => 0.099344004162594
102 => 0.098940294776925
103 => 0.09904189973172
104 => 0.09729598997501
105 => 0.095531207997859
106 => 0.093573793187199
107 => 0.097210427961622
108 => 0.096806096254132
109 => 0.097733487717158
110 => 0.10009210532039
111 => 0.10043942072199
112 => 0.10090621614385
113 => 0.10073890321388
114 => 0.10472497599929
115 => 0.10424223628402
116 => 0.10540550010413
117 => 0.10301257816913
118 => 0.10030475986146
119 => 0.1008194275965
120 => 0.10076986095492
121 => 0.10013882071765
122 => 0.099569145807159
123 => 0.098620797586105
124 => 0.10162151168665
125 => 0.10149968817411
126 => 0.10347186923771
127 => 0.10312326707797
128 => 0.10079521653784
129 => 0.10087836331833
130 => 0.10143756537606
131 => 0.10337297008273
201 => 0.10394752997207
202 => 0.10368137093908
203 => 0.10431134962809
204 => 0.10480925909758
205 => 0.10437387939151
206 => 0.11053793789494
207 => 0.10797819104765
208 => 0.10922579385042
209 => 0.10952333976757
210 => 0.10876118215749
211 => 0.1089264668523
212 => 0.10917682812755
213 => 0.11069697276511
214 => 0.11468627215147
215 => 0.11645310569361
216 => 0.12176871157917
217 => 0.11630639476345
218 => 0.11598228348892
219 => 0.11693978462482
220 => 0.12006060799367
221 => 0.12258974221009
222 => 0.12342880193893
223 => 0.12353969753346
224 => 0.1251138293644
225 => 0.12601609237407
226 => 0.12492268835635
227 => 0.1239961429355
228 => 0.12067737224506
229 => 0.12106152898919
301 => 0.12370798800634
302 => 0.12744626724371
303 => 0.13065409973105
304 => 0.12953082859823
305 => 0.13810059443577
306 => 0.13895025171421
307 => 0.13883285655104
308 => 0.14076850227727
309 => 0.13692663969809
310 => 0.13528416901291
311 => 0.12419647257222
312 => 0.12731166301079
313 => 0.13183977526198
314 => 0.13124046262598
315 => 0.12795202647239
316 => 0.13065160515734
317 => 0.12975904002047
318 => 0.12905503686445
319 => 0.13228021179989
320 => 0.12873399947549
321 => 0.13180439908133
322 => 0.12786657982762
323 => 0.12953595960615
324 => 0.12858833890504
325 => 0.12920156563468
326 => 0.12561665470348
327 => 0.12755098562316
328 => 0.12553618017773
329 => 0.12553522489762
330 => 0.12549074795574
331 => 0.12786115762727
401 => 0.12793845660156
402 => 0.12618672027281
403 => 0.12593426770057
404 => 0.12686771717588
405 => 0.1257748923111
406 => 0.12628621818717
407 => 0.12579037985099
408 => 0.12567875619756
409 => 0.12478931993584
410 => 0.12440612633873
411 => 0.12455638642184
412 => 0.12404347129381
413 => 0.12373442137622
414 => 0.12542927014846
415 => 0.12452378081945
416 => 0.12529049092224
417 => 0.12441672799359
418 => 0.12138788500248
419 => 0.11964596536886
420 => 0.11392476173256
421 => 0.11554728798668
422 => 0.11662302457179
423 => 0.11626749363683
424 => 0.11703131165734
425 => 0.11707820388032
426 => 0.11682987885565
427 => 0.11654235028949
428 => 0.11640239728481
429 => 0.11744549232035
430 => 0.11805104409745
501 => 0.11673098912961
502 => 0.11642171872018
503 => 0.11775636717489
504 => 0.11857050196127
505 => 0.12458161580106
506 => 0.12413629307217
507 => 0.12525396573152
508 => 0.12512813294216
509 => 0.12629963194838
510 => 0.12821453771112
511 => 0.12432099887939
512 => 0.12499678259213
513 => 0.12483109603189
514 => 0.12664001845125
515 => 0.12664566570959
516 => 0.12556112635681
517 => 0.12614907273459
518 => 0.12582089719598
519 => 0.12641395474984
520 => 0.12413034551562
521 => 0.12691153506252
522 => 0.12848829031971
523 => 0.12851018356798
524 => 0.12925755304599
525 => 0.13001692372037
526 => 0.13147446960258
527 => 0.1299762735568
528 => 0.12728116471687
529 => 0.12747574286996
530 => 0.12589560154322
531 => 0.1259221640044
601 => 0.12578037150489
602 => 0.12620590146955
603 => 0.12422372541324
604 => 0.12468893817174
605 => 0.12403763758556
606 => 0.12499536679186
607 => 0.12396500848419
608 => 0.12483101613282
609 => 0.12520475632536
610 => 0.12658386568188
611 => 0.12376131291091
612 => 0.11800593674087
613 => 0.11921578658901
614 => 0.11742632363196
615 => 0.1175919452416
616 => 0.11792652725156
617 => 0.11684203748887
618 => 0.11704892395939
619 => 0.11704153251882
620 => 0.11697783707722
621 => 0.11669571940496
622 => 0.1162865929649
623 => 0.1179164267796
624 => 0.11819336730412
625 => 0.11880897178444
626 => 0.12064059314937
627 => 0.12045757098241
628 => 0.12075608773024
629 => 0.12010442734582
630 => 0.11762217389783
701 => 0.11775697220254
702 => 0.11607603518284
703 => 0.11876598644558
704 => 0.11812897048094
705 => 0.11771828214451
706 => 0.11760622202691
707 => 0.11944238362693
708 => 0.11999179195596
709 => 0.11964943755473
710 => 0.11894725868973
711 => 0.12029564969107
712 => 0.12065642223898
713 => 0.12073718590768
714 => 0.12312627623373
715 => 0.12087070951742
716 => 0.12141364684444
717 => 0.12564948888156
718 => 0.12180816466014
719 => 0.12384299977198
720 => 0.12374340518203
721 => 0.12478435797018
722 => 0.12365801667026
723 => 0.12367197902058
724 => 0.12459627457621
725 => 0.12329826816591
726 => 0.12297686352482
727 => 0.12253284531509
728 => 0.12350234283195
729 => 0.12408351274671
730 => 0.12876731543739
731 => 0.13179326558293
801 => 0.13166190110673
802 => 0.13286232651515
803 => 0.13232152387402
804 => 0.13057512948929
805 => 0.13355601175391
806 => 0.13261273587998
807 => 0.13269049839694
808 => 0.13268760407218
809 => 0.13331480006574
810 => 0.13287037422263
811 => 0.13199436526649
812 => 0.1325759008932
813 => 0.13430285380174
814 => 0.13966336861924
815 => 0.14266318372849
816 => 0.13948277598298
817 => 0.14167657865847
818 => 0.140361078785
819 => 0.14012201332526
820 => 0.14149988352621
821 => 0.14288016550655
822 => 0.14279224751152
823 => 0.14179023367206
824 => 0.14122422147931
825 => 0.14551025543083
826 => 0.14866813223562
827 => 0.14845278620821
828 => 0.14940325353892
829 => 0.15219385501876
830 => 0.15244899264512
831 => 0.15241685116847
901 => 0.15178446594068
902 => 0.15453217550297
903 => 0.15682436316118
904 => 0.15163808703181
905 => 0.15361295308853
906 => 0.15449953408761
907 => 0.15580129803098
908 => 0.15799759200441
909 => 0.16038334979777
910 => 0.16072072210825
911 => 0.16048134030921
912 => 0.15890786891188
913 => 0.16151839355738
914 => 0.16304757767038
915 => 0.16395817181492
916 => 0.16626728705704
917 => 0.15450500931003
918 => 0.14617908449757
919 => 0.14487887111029
920 => 0.14752290616168
921 => 0.14822011711895
922 => 0.14793907225631
923 => 0.13856748691991
924 => 0.14482953165299
925 => 0.1515669652581
926 => 0.15182577752193
927 => 0.15519867765775
928 => 0.15629703220182
929 => 0.15901265890727
930 => 0.15884279571746
1001 => 0.15950400760518
1002 => 0.15935200644279
1003 => 0.16438213307198
1004 => 0.16993110972501
1005 => 0.16973896630818
1006 => 0.16894123526179
1007 => 0.17012600189903
1008 => 0.17585314046943
1009 => 0.1753258773254
1010 => 0.17583806855766
1011 => 0.18259068769955
1012 => 0.19137005313288
1013 => 0.18729115645522
1014 => 0.19614118857484
1015 => 0.2017118146741
1016 => 0.21134563649927
1017 => 0.21013943455919
1018 => 0.21388981069948
1019 => 0.2079800813445
1020 => 0.1944101481921
1021 => 0.19226265432711
1022 => 0.19656199142802
1023 => 0.20713149216741
1024 => 0.19622912023607
1025 => 0.1984346558785
1026 => 0.19779946146511
1027 => 0.19776561465422
1028 => 0.19905740976086
1029 => 0.19718359358318
1030 => 0.1895493293822
1031 => 0.19304806767651
1101 => 0.19169703679786
1102 => 0.19319610628374
1103 => 0.20128596603575
1104 => 0.19770924620122
1105 => 0.19394146240466
1106 => 0.1986670994237
1107 => 0.204684459254
1108 => 0.20430790369006
1109 => 0.20357722850799
1110 => 0.2076960062524
1111 => 0.21449902039751
1112 => 0.21633784778421
1113 => 0.2176952325679
1114 => 0.21788239299637
1115 => 0.21981026172914
1116 => 0.20944362566756
1117 => 0.22589574333138
1118 => 0.22873656957135
1119 => 0.22820261197842
1120 => 0.23136007078389
1121 => 0.23043106630632
1122 => 0.22908508457466
1123 => 0.23409032839209
1124 => 0.22835222025776
1125 => 0.2202076981688
1126 => 0.21573945227041
1127 => 0.22162359891252
1128 => 0.22521684193844
1129 => 0.22759174700539
1130 => 0.22831039184369
1201 => 0.21024835811499
1202 => 0.20051392370154
1203 => 0.20675358455505
1204 => 0.21436640143471
1205 => 0.20940133608541
1206 => 0.209595957247
1207 => 0.20251707885512
1208 => 0.2149927250977
1209 => 0.21317512837686
1210 => 0.22260482337987
1211 => 0.22035435098937
1212 => 0.22804390120567
1213 => 0.22601898492883
1214 => 0.23442429918246
1215 => 0.23777740660304
1216 => 0.24340779583168
1217 => 0.24754953306807
1218 => 0.24998164039209
1219 => 0.24983562579096
1220 => 0.25947284667979
1221 => 0.2537901142205
1222 => 0.24665126293443
1223 => 0.24652214363745
1224 => 0.25021945587681
1225 => 0.25796800802244
1226 => 0.25997709485695
1227 => 0.26109990031277
1228 => 0.25938028467204
1229 => 0.25321208587259
1230 => 0.25054868890446
1231 => 0.25281798028734
]
'min_raw' => 0.093573793187199
'max_raw' => 0.26109990031277
'avg_raw' => 0.17733684674999
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.093573'
'max' => '$0.261099'
'avg' => '$0.177336'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.037044463577883
'max_diff' => 0.13490215417633
'year' => 2036
]
11 => [
'items' => [
101 => 0.25004283192851
102 => 0.25483351656496
103 => 0.26141214980583
104 => 0.26005368805632
105 => 0.26459482201295
106 => 0.26929441791683
107 => 0.27601505113144
108 => 0.27777207351806
109 => 0.28067636470958
110 => 0.28366583435561
111 => 0.28462597143744
112 => 0.28645917103971
113 => 0.28644950917292
114 => 0.29197397956292
115 => 0.29806764148169
116 => 0.30036785778743
117 => 0.30565707834781
118 => 0.29659947349455
119 => 0.30346977082202
120 => 0.30966695098609
121 => 0.30227841731473
122 => 0.31246178967314
123 => 0.3128571869458
124 => 0.31882721632568
125 => 0.31277544782993
126 => 0.30918192701508
127 => 0.31955628696008
128 => 0.32457611294819
129 => 0.32306410050787
130 => 0.31155761117979
131 => 0.30486034085431
201 => 0.28733229260556
202 => 0.30809502291154
203 => 0.31820794318644
204 => 0.31153142115938
205 => 0.31489867051974
206 => 0.33326929119556
207 => 0.34026363413931
208 => 0.33880885970115
209 => 0.33905469263358
210 => 0.34282871312972
211 => 0.35956479840066
212 => 0.34953614816689
213 => 0.35720267550425
214 => 0.36126897396027
215 => 0.36504597858349
216 => 0.35577084896343
217 => 0.34370404160644
218 => 0.33988197718637
219 => 0.31086757262366
220 => 0.309357246863
221 => 0.30850945524599
222 => 0.30316424902322
223 => 0.29896438110733
224 => 0.29562449020952
225 => 0.28685961911782
226 => 0.28981750581578
227 => 0.27584813066637
228 => 0.2847852418427
301 => 0.26248978180188
302 => 0.28105810343705
303 => 0.27095221016902
304 => 0.27773804570137
305 => 0.27771437056046
306 => 0.26521949589428
307 => 0.25801271294821
308 => 0.26260515553363
309 => 0.26752861853376
310 => 0.26832743384101
311 => 0.2747108321362
312 => 0.2764923013897
313 => 0.27109436638275
314 => 0.26202775794893
315 => 0.26413372430079
316 => 0.2579700356073
317 => 0.24716840825484
318 => 0.2549263255977
319 => 0.2575752196701
320 => 0.25874512219664
321 => 0.24812296227077
322 => 0.24478524900375
323 => 0.24300827846652
324 => 0.26065657048987
325 => 0.26162338376568
326 => 0.25667703035304
327 => 0.27903501681067
328 => 0.2739747158879
329 => 0.27962831182246
330 => 0.26394262992805
331 => 0.26454184409999
401 => 0.25711599091697
402 => 0.26127397250377
403 => 0.25833524513622
404 => 0.26093804868153
405 => 0.26249815839483
406 => 0.26992279306841
407 => 0.28114288083867
408 => 0.26881380023792
409 => 0.26344184326449
410 => 0.26677457515778
411 => 0.27565007937186
412 => 0.28909692258491
413 => 0.28113612075984
414 => 0.28466898942663
415 => 0.28544076406393
416 => 0.27957076352303
417 => 0.28931335787773
418 => 0.29453449334111
419 => 0.29989029796478
420 => 0.30454059305328
421 => 0.29775107182142
422 => 0.30501683277915
423 => 0.29916191202668
424 => 0.29390944284114
425 => 0.29391740866877
426 => 0.29062245802235
427 => 0.28423807595441
428 => 0.28306069794708
429 => 0.28918556702763
430 => 0.29409713200296
501 => 0.29450167201914
502 => 0.29722096675481
503 => 0.29883021736841
504 => 0.31460306105185
505 => 0.32094702926114
506 => 0.32870431350228
507 => 0.33172621289079
508 => 0.34082104663931
509 => 0.3334762297411
510 => 0.3318871324041
511 => 0.30982604062763
512 => 0.31343854317015
513 => 0.31922250829536
514 => 0.30992141608218
515 => 0.31582081827513
516 => 0.31698548523444
517 => 0.30960536852789
518 => 0.31354740773687
519 => 0.30307852033097
520 => 0.28137107397595
521 => 0.28933752447093
522 => 0.29520351351347
523 => 0.28683202387853
524 => 0.30183759502777
525 => 0.29307165014025
526 => 0.29029326645046
527 => 0.2794538011113
528 => 0.2845696115021
529 => 0.29148881830701
530 => 0.28721355294571
531 => 0.29608537050473
601 => 0.30865023019563
602 => 0.3176046974617
603 => 0.31829211027032
604 => 0.31253498772096
605 => 0.32176081334778
606 => 0.32182801341541
607 => 0.31142124441975
608 => 0.30504715635504
609 => 0.30359895013554
610 => 0.3072168532094
611 => 0.31160965544282
612 => 0.31853588022193
613 => 0.32272125279627
614 => 0.33363448472006
615 => 0.33658729237176
616 => 0.33983153274563
617 => 0.3441668383718
618 => 0.34937248432557
619 => 0.33798282733631
620 => 0.33843535964147
621 => 0.32782946875361
622 => 0.31649555330133
623 => 0.32509658233711
624 => 0.33634128365444
625 => 0.33376173674796
626 => 0.33347148502561
627 => 0.33395960791348
628 => 0.33201471378611
629 => 0.32321802972918
630 => 0.31880039006594
701 => 0.32450027229159
702 => 0.32752950602195
703 => 0.3322275833608
704 => 0.33164844616441
705 => 0.34375018885261
706 => 0.34845256012354
707 => 0.34724949232662
708 => 0.3474708857547
709 => 0.35598430432619
710 => 0.36545297669576
711 => 0.37432163787123
712 => 0.38334322093677
713 => 0.37246735043288
714 => 0.36694525412144
715 => 0.37264264795682
716 => 0.36961953059114
717 => 0.38699125968918
718 => 0.38819404052102
719 => 0.40556451344532
720 => 0.42205116068792
721 => 0.41169619294381
722 => 0.42146046112851
723 => 0.43202131326274
724 => 0.45239491046616
725 => 0.44553379967984
726 => 0.44027829634483
727 => 0.43531187108766
728 => 0.44564621365003
729 => 0.45894118026138
730 => 0.46180478873185
731 => 0.46644492843666
801 => 0.46156638890635
802 => 0.4674420524171
803 => 0.48818572650745
804 => 0.48258060265876
805 => 0.474620425725
806 => 0.49099556417569
807 => 0.49692166312426
808 => 0.53851412906741
809 => 0.59102633541971
810 => 0.56928593717612
811 => 0.55579097042806
812 => 0.55896260771874
813 => 0.57813828782824
814 => 0.58429690767374
815 => 0.56755565593009
816 => 0.57346894906744
817 => 0.60605177563637
818 => 0.62353141670836
819 => 0.59979171630359
820 => 0.534294824417
821 => 0.4739036988863
822 => 0.48992214482487
823 => 0.48810615016568
824 => 0.5231123325236
825 => 0.48244692230871
826 => 0.48313162352447
827 => 0.51886169666136
828 => 0.50932952571696
829 => 0.49388862957526
830 => 0.47401643451605
831 => 0.43728084399354
901 => 0.40474310702003
902 => 0.46855710221839
903 => 0.46580532670722
904 => 0.46182034797676
905 => 0.47068848692167
906 => 0.51374965237299
907 => 0.51275695313394
908 => 0.50644190705475
909 => 0.51123181384756
910 => 0.49304893575562
911 => 0.49773507745635
912 => 0.47389413262347
913 => 0.48467123537374
914 => 0.493855500347
915 => 0.49569937751575
916 => 0.49985372692764
917 => 0.46435526605448
918 => 0.48029303280647
919 => 0.48965497760648
920 => 0.44735737040959
921 => 0.48881888990937
922 => 0.46373731682762
923 => 0.45522425421109
924 => 0.46668597151353
925 => 0.46221932913389
926 => 0.45837917230591
927 => 0.45623629881362
928 => 0.46465251901696
929 => 0.46425989228492
930 => 0.45048932251431
1001 => 0.43252617560878
1002 => 0.43855519733047
1003 => 0.4363647972166
1004 => 0.42842650463669
1005 => 0.43377595536245
1006 => 0.41021968166128
1007 => 0.36969233710697
1008 => 0.39646594230568
1009 => 0.39543518762961
1010 => 0.39491543438093
1011 => 0.41503505871966
1012 => 0.4131010210782
1013 => 0.4095907238208
1014 => 0.42836203527475
1015 => 0.42151025408429
1016 => 0.44262582923061
1017 => 0.45653391269174
1018 => 0.45300637284663
1019 => 0.46608699256543
1020 => 0.43869409381403
1021 => 0.4477929159669
1022 => 0.44966817060218
1023 => 0.42813040020521
1024 => 0.41341745355499
1025 => 0.4124362677533
1026 => 0.38692604583077
1027 => 0.40055340047047
1028 => 0.41254490861515
1029 => 0.40680190679247
1030 => 0.40498384398271
1031 => 0.41427193258806
1101 => 0.4149936966198
1102 => 0.39853740020711
1103 => 0.40195918533444
1104 => 0.41622859813985
1105 => 0.40159963274329
1106 => 0.37317794260569
1107 => 0.36612897049095
1108 => 0.36518850767251
1109 => 0.34607113623633
1110 => 0.36660001651363
1111 => 0.3576386101328
1112 => 0.38594758551571
1113 => 0.36977765060107
1114 => 0.36908059702534
1115 => 0.3680268983101
1116 => 0.3515717869863
1117 => 0.35517441058933
1118 => 0.36715008014088
1119 => 0.37142313395244
1120 => 0.3709774194318
1121 => 0.36709139282677
1122 => 0.36887039590688
1123 => 0.3631396071401
1124 => 0.36111594635049
1125 => 0.35472871624675
1126 => 0.3453412525116
1127 => 0.34664663692063
1128 => 0.3280476148978
1129 => 0.31791388057495
1130 => 0.31510899647486
1201 => 0.31135818823204
1202 => 0.3155326602464
1203 => 0.32799492620525
1204 => 0.31296278944167
1205 => 0.28719124534229
1206 => 0.28874015905524
1207 => 0.29222010829162
1208 => 0.28573524591179
1209 => 0.27959786790252
1210 => 0.28493382014036
1211 => 0.27401407716519
1212 => 0.29353970706048
1213 => 0.29301159349176
1214 => 0.30028954085987
1215 => 0.30484059070766
1216 => 0.29435189422838
1217 => 0.29171401542829
1218 => 0.29321667107773
1219 => 0.26838112039936
1220 => 0.29825994651892
1221 => 0.29851833984794
1222 => 0.29630581928967
1223 => 0.31221537179308
1224 => 0.34578948988912
1225 => 0.33315755614562
1226 => 0.32826608959791
1227 => 0.31896740811509
1228 => 0.33135734908988
1229 => 0.3304059949362
1230 => 0.32610361066293
1231 => 0.3235015152302
]
'min_raw' => 0.24300827846652
'max_raw' => 0.62353141670836
'avg_raw' => 0.43326984758744
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.2430082'
'max' => '$0.623531'
'avg' => '$0.433269'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.14943448527932
'max_diff' => 0.36243151639559
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0076277521817239
]
1 => [
'year' => 2028
'avg' => 0.013091437096119
]
2 => [
'year' => 2029
'avg' => 0.035763446644627
]
3 => [
'year' => 2030
'avg' => 0.027591445825807
]
4 => [
'year' => 2031
'avg' => 0.02709821917118
]
5 => [
'year' => 2032
'avg' => 0.047511706330508
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0076277521817239
'min' => '$0.007627'
'max_raw' => 0.047511706330508
'max' => '$0.047511'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.047511706330508
]
1 => [
'year' => 2033
'avg' => 0.12220499425322
]
2 => [
'year' => 2034
'avg' => 0.077459398254899
]
3 => [
'year' => 2035
'avg' => 0.091363537872878
]
4 => [
'year' => 2036
'avg' => 0.17733684674999
]
5 => [
'year' => 2037
'avg' => 0.43326984758744
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.047511706330508
'min' => '$0.047511'
'max_raw' => 0.43326984758744
'max' => '$0.433269'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.43326984758744
]
]
]
]
'prediction_2025_max_price' => '$0.013042'
'last_price' => 0.01264593
'sma_50day_nextmonth' => '$0.0116096'
'sma_200day_nextmonth' => '$0.022081'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.01371'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.013157'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.012414'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.0115049'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.014483'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.018486'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.024393'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.013253'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.013081'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.0126071'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.012465'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.014386'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.017971'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.023169'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.021771'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.028542'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.012799'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.013253'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.015381'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.019821'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.027768'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.035768'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.017884'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '49.59'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 108.74
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.012243'
'vwma_10_action' => 'BUY'
'hma_9' => '0.014146'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 38.89
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 79.69
'cci_20_action' => 'NEUTRAL'
'adx_14' => 15.87
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001055'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -61.11
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 58.44
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 25
'buy_signals' => 6
'sell_pct' => 80.65
'buy_pct' => 19.35
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767694419
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de DexNet para 2026
La previsión del precio de DexNet para 2026 sugiere que el precio medio podría oscilar entre $0.004369 en el extremo inferior y $0.013042 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, DexNet podría potencialmente ganar 3.13% para 2026 si DEXNET alcanza el objetivo de precio previsto.
Predicción de precio de DexNet 2027-2032
La predicción del precio de DEXNET para 2027-2032 está actualmente dentro de un rango de precios de $0.007627 en el extremo inferior y $0.047511 en el extremo superior. Considerando la volatilidad de precios en el mercado, si DexNet alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de DexNet | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.004206 | $0.007627 | $0.011049 |
| 2028 | $0.00759 | $0.013091 | $0.018592 |
| 2029 | $0.016674 | $0.035763 | $0.054852 |
| 2030 | $0.014181 | $0.027591 | $0.0410017 |
| 2031 | $0.016766 | $0.027098 | $0.037429 |
| 2032 | $0.025592 | $0.047511 | $0.06943 |
Predicción de precio de DexNet 2032-2037
La predicción de precio de DexNet para 2032-2037 se estima actualmente entre $0.047511 en el extremo inferior y $0.433269 en el extremo superior. Comparado con el precio actual, DexNet podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de DexNet | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.025592 | $0.047511 | $0.06943 |
| 2033 | $0.059471 | $0.1222049 | $0.184938 |
| 2034 | $0.047812 | $0.077459 | $0.1071061 |
| 2035 | $0.056529 | $0.091363 | $0.126197 |
| 2036 | $0.093573 | $0.177336 | $0.261099 |
| 2037 | $0.2430082 | $0.433269 | $0.623531 |
DexNet Histograma de precios potenciales
Pronóstico de precio de DexNet basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para DexNet es Bajista, con 6 indicadores técnicos mostrando señales alcistas y 25 indicando señales bajistas. La predicción de precio de DEXNET se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de DexNet
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de DexNet aumentar durante el próximo mes, alcanzando $0.022081 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para DexNet alcance $0.0116096 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 49.59, lo que sugiere que el mercado de DEXNET está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de DEXNET para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.01371 | SELL |
| SMA 5 | $0.013157 | SELL |
| SMA 10 | $0.012414 | BUY |
| SMA 21 | $0.0115049 | BUY |
| SMA 50 | $0.014483 | SELL |
| SMA 100 | $0.018486 | SELL |
| SMA 200 | $0.024393 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.013253 | SELL |
| EMA 5 | $0.013081 | SELL |
| EMA 10 | $0.0126071 | BUY |
| EMA 21 | $0.012465 | BUY |
| EMA 50 | $0.014386 | SELL |
| EMA 100 | $0.017971 | SELL |
| EMA 200 | $0.023169 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.021771 | SELL |
| SMA 50 | $0.028542 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.019821 | SELL |
| EMA 50 | $0.027768 | SELL |
| EMA 100 | $0.035768 | SELL |
| EMA 200 | $0.017884 | SELL |
Osciladores de DexNet
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 49.59 | NEUTRAL |
| Stoch RSI (14) | 108.74 | SELL |
| Estocástico Rápido (14) | 38.89 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 79.69 | NEUTRAL |
| Índice Direccional Medio (14) | 15.87 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.001055 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -61.11 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 58.44 | NEUTRAL |
| VWMA (10) | 0.012243 | BUY |
| Promedio Móvil de Hull (9) | 0.014146 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | — | — |
Predicción de precios de DexNet basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de DexNet
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de DexNet por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.017769 | $0.024969 | $0.035086 | $0.0493017 | $0.069277 | $0.097346 |
| Amazon.com acción | $0.026386 | $0.055056 | $0.114879 | $0.2397031 | $0.500154 | $1.04 |
| Apple acción | $0.017937 | $0.025442 | $0.036088 | $0.051188 | $0.0726073 | $0.102987 |
| Netflix acción | $0.019953 | $0.031483 | $0.049675 | $0.07838 | $0.123671 | $0.195134 |
| Google acción | $0.016376 | $0.0212073 | $0.027463 | $0.035565 | $0.046056 | $0.059643 |
| Tesla acción | $0.028667 | $0.064986 | $0.14732 | $0.333963 | $0.757069 | $1.71 |
| Kodak acción | $0.009483 | $0.007111 | $0.005332 | $0.003998 | $0.002998 | $0.002248 |
| Nokia acción | $0.008377 | $0.005549 | $0.003676 | $0.002435 | $0.001613 | $0.001068 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de DexNet
Podría preguntarse cosas como: "¿Debo invertir en DexNet ahora?", "¿Debería comprar DEXNET hoy?", "¿Será DexNet una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de DexNet regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como DexNet, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de DexNet a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de DexNet es de $0.01264 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de DexNet basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si DexNet ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.012974 | $0.013311 | $0.013657 | $0.014012 |
| Si DexNet ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.0133033 | $0.013994 | $0.014722 | $0.015487 |
| Si DexNet ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.014289 | $0.016146 | $0.018245 | $0.020616 |
| Si DexNet ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.015933 | $0.020074 | $0.025292 | $0.031866 |
| Si DexNet ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.01922 | $0.029211 | $0.044398 | $0.067479 |
| Si DexNet ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.029081 | $0.066877 | $0.153794 | $0.353676 |
| Si DexNet ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.045516 | $0.163829 | $0.589674 | $2.12 |
Cuadro de preguntas
¿Es DEXNET una buena inversión?
La decisión de adquirir DexNet depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de DexNet ha experimentado una caída de -32.9217% durante las últimas 24 horas, y DexNet ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en DexNet dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede DexNet subir?
Parece que el valor medio de DexNet podría potencialmente aumentar hasta $0.013042 para el final de este año. Mirando las perspectivas de DexNet en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.0410017. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de DexNet la próxima semana?
Basado en nuestro nuevo pronóstico experimental de DexNet, el precio de DexNet aumentará en un 0.86% durante la próxima semana y alcanzará $0.012754 para el 13 de enero de 2026.
¿Cuál será el precio de DexNet el próximo mes?
Basado en nuestro nuevo pronóstico experimental de DexNet, el precio de DexNet disminuirá en un -11.62% durante el próximo mes y alcanzará $0.011176 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de DexNet este año en 2026?
Según nuestra predicción más reciente sobre el valor de DexNet en 2026, se anticipa que DEXNET fluctúe dentro del rango de $0.004369 y $0.013042. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de DexNet no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará DexNet en 5 años?
El futuro de DexNet parece estar en una tendencia alcista, con un precio máximo de $0.0410017 proyectada después de un período de cinco años. Basado en el pronóstico de DexNet para 2030, el valor de DexNet podría potencialmente alcanzar su punto más alto de aproximadamente $0.0410017, mientras que su punto más bajo se anticipa que esté alrededor de $0.014181.
¿Cuánto será DexNet en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de DexNet, se espera que el valor de DEXNET en 2026 crezca en un 3.13% hasta $0.013042 si ocurre lo mejor. El precio estará entre $0.013042 y $0.004369 durante 2026.
¿Cuánto será DexNet en 2027?
Según nuestra última simulación experimental para la predicción de precios de DexNet, el valor de DEXNET podría disminuir en un -12.62% hasta $0.011049 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.011049 y $0.004206 a lo largo del año.
¿Cuánto será DexNet en 2028?
Nuestro nuevo modelo experimental de predicción de precios de DexNet sugiere que el valor de DEXNET en 2028 podría aumentar en un 47.02% , alcanzando $0.018592 en el mejor escenario. Se espera que el precio oscile entre $0.018592 y $0.00759 durante el año.
¿Cuánto será DexNet en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de DexNet podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.054852 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.054852 y $0.016674.
¿Cuánto será DexNet en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de DexNet, se espera que el valor de DEXNET en 2030 aumente en un 224.23% , alcanzando $0.0410017 en el mejor escenario. Se pronostica que el precio oscile entre $0.0410017 y $0.014181 durante el transcurso de 2030.
¿Cuánto será DexNet en 2031?
Nuestra simulación experimental indica que el precio de DexNet podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.037429 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.037429 y $0.016766 durante el año.
¿Cuánto será DexNet en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de DexNet, DEXNET podría experimentar un 449.04% aumento en valor, alcanzando $0.06943 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.06943 y $0.025592 a lo largo del año.
¿Cuánto será DexNet en 2033?
Según nuestra predicción experimental de precios de DexNet, se anticipa que el valor de DEXNET aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.184938. A lo largo del año, el precio de DEXNET podría oscilar entre $0.184938 y $0.059471.
¿Cuánto será DexNet en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de DexNet sugieren que DEXNET podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.1071061 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.1071061 y $0.047812.
¿Cuánto será DexNet en 2035?
Basado en nuestra predicción experimental para el precio de DexNet, DEXNET podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.126197 en 2035. El rango de precios esperado para el año está entre $0.126197 y $0.056529.
¿Cuánto será DexNet en 2036?
Nuestra reciente simulación de predicción de precios de DexNet sugiere que el valor de DEXNET podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.261099 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.261099 y $0.093573.
¿Cuánto será DexNet en 2037?
Según la simulación experimental, el valor de DexNet podría aumentar en un 4830.69% en 2037, con un máximo de $0.623531 bajo condiciones favorables. Se espera que el precio caiga entre $0.623531 y $0.2430082 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de SolPod
Predicción de precios de zuzalu
Predicción de precios de SOFT COQ INU
Predicción de precios de All Street Bets
Predicción de precios de MagicRing
Predicción de precios de AI INU
Predicción de precios de Wall Street Baby On Solana
Predicción de precios de Meta Masters Guild Games
Predicción de precios de Morfey
Predicción de precios de PANTIESPredicción de precios de Celer Bridged BUSD (zkSync)
Predicción de precios de Bridged BUSD
Predicción de precios de Multichain Bridged BUSD (Moonriver)
Predicción de precios de tooker kurlson
Predicción de precios de dogwifsaudihatPredicción de precios de Harmony Horizen Bridged BUSD (Harmony)
Predicción de precios de IoTeX Bridged BUSD (IoTeX)
Predicción de precios de MIMANY
Predicción de precios de The Open League MEME
Predicción de precios de Sandwich Cat
Predicción de precios de Hege
Predicción de precios de SolDocs
Predicción de precios de Secret Society
Predicción de precios de duk
Predicción de precios de Fofar
¿Cómo leer y predecir los movimientos de precio de DexNet?
Los traders de DexNet utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de DexNet
Las medias móviles son herramientas populares para la predicción de precios de DexNet. Una media móvil simple (SMA) calcula el precio de cierre promedio de DEXNET durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de DEXNET por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de DEXNET.
¿Cómo leer gráficos de DexNet y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de DexNet en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de DEXNET dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de DexNet?
La acción del precio de DexNet está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de DEXNET. La capitalización de mercado de DexNet puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de DEXNET, grandes poseedores de DexNet, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de DexNet.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


