Predicción del precio de DexNet - Pronóstico de DEXNET
Predicción de precio de DexNet hasta $0.013039 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.004368 | $0.013039 |
| 2027 | $0.0042054 | $0.011047 |
| 2028 | $0.007589 | $0.018589 |
| 2029 | $0.016672 | $0.054843 |
| 2030 | $0.014178 | $0.040995 |
| 2031 | $0.016763 | $0.037423 |
| 2032 | $0.025588 | $0.069419 |
| 2033 | $0.059462 | $0.1849084 |
| 2034 | $0.0478049 | $0.107089 |
| 2035 | $0.05652 | $0.126177 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en DexNet hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,955.19, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de DexNet para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'DexNet'
'name_with_ticker' => 'DexNet <small>DEXNET</small>'
'name_lang' => 'DexNet'
'name_lang_with_ticker' => 'DexNet <small>DEXNET</small>'
'name_with_lang' => 'DexNet'
'name_with_lang_with_ticker' => 'DexNet <small>DEXNET</small>'
'image' => '/uploads/coins/dexnet.jpg?1717131583'
'price_for_sd' => 0.01264
'ticker' => 'DEXNET'
'marketcap' => '$5.06M'
'low24h' => '$0.01177'
'high24h' => '$0.01885'
'volume24h' => '$666.7'
'current_supply' => '400.08M'
'max_supply' => '3B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01264'
'change_24h_pct' => '-17.139%'
'ath_price' => '$0.0816'
'ath_days' => 387
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '15 dic. 2024'
'ath_pct' => '-84.51%'
'fdv' => '$37.93M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.623431'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.012752'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.011174'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004368'
'current_year_max_price_prediction' => '$0.013039'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.014178'
'grand_prediction_max_price' => '$0.040995'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.012883505443803
107 => 0.012931607776418
108 => 0.013039984787965
109 => 0.012113915090281
110 => 0.012529693196563
111 => 0.012773923880864
112 => 0.011670480764004
113 => 0.012752112358284
114 => 0.012097794277163
115 => 0.011875708892903
116 => 0.012174717605285
117 => 0.012058193619274
118 => 0.01195801313862
119 => 0.011902110709096
120 => 0.012121669707082
121 => 0.012111427017396
122 => 0.011752185882126
123 => 0.011283570465709
124 => 0.011440853181235
125 => 0.011383710896151
126 => 0.011176619883505
127 => 0.011316174221764
128 => 0.010701647542904
129 => 0.0096443863322438
130 => 0.010342845472793
131 => 0.010315955555659
201 => 0.01030239644008
202 => 0.01082726918021
203 => 0.01077681477712
204 => 0.010685239541463
205 => 0.011174938032488
206 => 0.010996191495889
207 => 0.011547046203705
208 => 0.01190987474132
209 => 0.011817849687907
210 => 0.012159091681238
211 => 0.011444476657334
212 => 0.011681843102897
213 => 0.011730763998351
214 => 0.011168895229122
215 => 0.010785069741446
216 => 0.010759472957349
217 => 0.010093972456128
218 => 0.010449477452148
219 => 0.010762307136849
220 => 0.010612485994441
221 => 0.010565057096534
222 => 0.010807361049868
223 => 0.010826190142235
224 => 0.010396884840849
225 => 0.010486151007338
226 => 0.010858405760862
227 => 0.010476771142656
228 => 0.0097353174191429
301 => 0.0095514266443119
302 => 0.00952689222517
303 => 0.0090281658592668
304 => 0.009563715105194
305 => 0.0093299335075193
306 => 0.01006844677344
307 => 0.0096466119566722
308 => 0.0096284275008319
309 => 0.0096009390287496
310 => 0.0091716646434901
311 => 0.0092656484520515
312 => 0.009578064945848
313 => 0.0096895386704583
314 => 0.0096779110477041
315 => 0.0095765339345902
316 => 0.0096229438578389
317 => 0.0094734413247655
318 => 0.0094206488687112
319 => 0.0092540213556946
320 => 0.0090091249435855
321 => 0.0090431792917263
322 => 0.0085579754187063
323 => 0.0082936105969664
324 => 0.0082204378985811
325 => 0.0081225883082028
326 => 0.0082314902701822
327 => 0.0085566008970967
328 => 0.0081644485049706
329 => 0.0074921307349625
330 => 0.0075325381785138
331 => 0.0076233217070957
401 => 0.0074541472021764
402 => 0.0072940377310102
403 => 0.0074332399260972
404 => 0.0071483700239362
405 => 0.0076577468737898
406 => 0.0076439696575134
407 => 0.0078338338474857
408 => 0.0079525598218808
409 => 0.0076789348888908
410 => 0.0076101189582043
411 => 0.007649319639833
412 => 0.007001419693108
413 => 0.0077808865993089
414 => 0.0077876274614818
415 => 0.0077299081070613
416 => 0.0081449501712725
417 => 0.0090208183816242
418 => 0.0086912815291728
419 => 0.0085636748995995
420 => 0.0083210946035008
421 => 0.0086443184450595
422 => 0.0086194998971052
423 => 0.008507261011101
424 => 0.008439378582639
425 => 0.0085644540384691
426 => 0.0084238803495129
427 => 0.0083986294522697
428 => 0.0082456364882232
429 => 0.008191024960795
430 => 0.0081505927600346
501 => 0.0081060808797835
502 => 0.008204262995948
503 => 0.0079817694037861
504 => 0.0077134639429546
505 => 0.0076911572469918
506 => 0.0077527479957699
507 => 0.0077254986743276
508 => 0.0076910267877243
509 => 0.0076252105683389
510 => 0.0076056843019883
511 => 0.0076691351948301
512 => 0.0075975028362286
513 => 0.0077032002833616
514 => 0.0076744564262479
515 => 0.0075138955769881
516 => 0.0073137773115703
517 => 0.0073119958392458
518 => 0.0072688806872213
519 => 0.0072139670587115
520 => 0.0071986913435137
521 => 0.0074215167054935
522 => 0.0078827585361897
523 => 0.0077922057282424
524 => 0.0078576394122093
525 => 0.0081795083752292
526 => 0.0082818208396358
527 => 0.0082092018758035
528 => 0.0081097965591673
529 => 0.0081141698886088
530 => 0.0084538679475906
531 => 0.0084750544988471
601 => 0.008528586078832
602 => 0.0085973892871353
603 => 0.0082209193596911
604 => 0.0080964381888815
605 => 0.0080374521041996
606 => 0.0078557977938667
607 => 0.0080516963936971
608 => 0.0079375546687903
609 => 0.0079529562871168
610 => 0.0079429259629768
611 => 0.0079484031982048
612 => 0.0076576044925791
613 => 0.0077635562569791
614 => 0.0075873908989815
615 => 0.0073515252601121
616 => 0.0073507345557854
617 => 0.0074084623367481
618 => 0.0073741235937432
619 => 0.0072817189192469
620 => 0.0072948445671213
621 => 0.0071798500802855
622 => 0.0073088069798656
623 => 0.0073125050023156
624 => 0.0072628495716474
625 => 0.0074615254680735
626 => 0.0075429231449433
627 => 0.0075102388767551
628 => 0.0075406299295576
629 => 0.0077959686062341
630 => 0.0078375999517398
701 => 0.0078560898454012
702 => 0.0078313158373365
703 => 0.0075452970518355
704 => 0.0075579832012182
705 => 0.0074649006544399
706 => 0.0073862557112094
707 => 0.0073894010965002
708 => 0.0074298348204477
709 => 0.0076064112643329
710 => 0.0079780059807395
711 => 0.0079921077285949
712 => 0.0080091994583727
713 => 0.0079396788037513
714 => 0.0079187107090944
715 => 0.0079463730382713
716 => 0.0080859244762316
717 => 0.0084448886625113
718 => 0.0083180067446682
719 => 0.008214849770427
720 => 0.008305346247757
721 => 0.0082914150244069
722 => 0.0081738214794442
723 => 0.0081705210202945
724 => 0.0079448214105805
725 => 0.0078613854038006
726 => 0.0077916600314586
727 => 0.0077155217450879
728 => 0.007670384416749
729 => 0.0077397358676265
730 => 0.0077555973649844
731 => 0.0076039592055848
801 => 0.0075832914847809
802 => 0.0077071224790836
803 => 0.0076526290753758
804 => 0.0077086768924607
805 => 0.0077216804667936
806 => 0.0077195865918283
807 => 0.0076626892198298
808 => 0.0076989539080376
809 => 0.0076131771094022
810 => 0.0075199077241448
811 => 0.0074604076672387
812 => 0.0074084859760507
813 => 0.0074372951480282
814 => 0.0073345957102755
815 => 0.0073017400932071
816 => 0.0076866682476541
817 => 0.0079710188140191
818 => 0.0079668842441689
819 => 0.0079417161135313
820 => 0.0079043213765727
821 => 0.0080831888183056
822 => 0.0080208749781732
823 => 0.0080662135033651
824 => 0.0080777540608784
825 => 0.0081126838526774
826 => 0.0081251682509285
827 => 0.0080874317284416
828 => 0.0079607833498474
829 => 0.0076451876317572
830 => 0.0074982769730519
831 => 0.0074497940086886
901 => 0.0074515562723609
902 => 0.0074029451731861
903 => 0.0074172633204897
904 => 0.0073979659058735
905 => 0.0073614212711364
906 => 0.0074350386198133
907 => 0.0074435223334552
908 => 0.0074263391646122
909 => 0.0074303864229145
910 => 0.0072881171239221
911 => 0.0072989335497318
912 => 0.0072387063163384
913 => 0.0072274144361272
914 => 0.0070751652346937
915 => 0.0068054337054796
916 => 0.0069548911561373
917 => 0.0067743675726406
918 => 0.0067060005561917
919 => 0.0070296393788082
920 => 0.0069971550173611
921 => 0.0069415559111762
922 => 0.0068593132452598
923 => 0.0068288086404661
924 => 0.0066434723183243
925 => 0.0066325216596813
926 => 0.0067243793454365
927 => 0.0066819901840904
928 => 0.0066224597475298
929 => 0.0064068465408109
930 => 0.0061644259093794
1001 => 0.0061717430644406
1002 => 0.0062488525569027
1003 => 0.0064730588058683
1004 => 0.00638545754559
1005 => 0.0063219018261494
1006 => 0.0063099997503761
1007 => 0.0064589791473624
1008 => 0.0066698162062468
1009 => 0.006768736237062
1010 => 0.0066707094907701
1011 => 0.0065581016427648
1012 => 0.0065649555606984
1013 => 0.006610551606101
1014 => 0.0066153431057795
1015 => 0.0065420469730018
1016 => 0.0065626794050442
1017 => 0.0065313368541027
1018 => 0.0063389876768289
1019 => 0.0063355086901579
1020 => 0.0062883031000054
1021 => 0.0062868737334962
1022 => 0.0062065652486606
1023 => 0.0061953295364857
1024 => 0.0060358721654678
1025 => 0.0061408274899532
1026 => 0.0060704289686903
1027 => 0.0059643217918147
1028 => 0.0059460288745271
1029 => 0.0059454789673441
1030 => 0.0060544273128647
1031 => 0.006139554365103
1101 => 0.0060716535811079
1102 => 0.0060561938887936
1103 => 0.0062212629568569
1104 => 0.0062002564133079
1105 => 0.0061820648820721
1106 => 0.0066509380601048
1107 => 0.0062797883530616
1108 => 0.0061179458963061
1109 => 0.0059176351230222
1110 => 0.005982857320858
1111 => 0.0059966005962555
1112 => 0.0055148892952385
1113 => 0.0053194590804092
1114 => 0.0052523947953121
1115 => 0.0052137983510889
1116 => 0.005231387235385
1117 => 0.0050554771203608
1118 => 0.0051736916269418
1119 => 0.0050213683366427
1120 => 0.0049958308413212
1121 => 0.0052682037536108
1122 => 0.0053061028531764
1123 => 0.0051444135201021
1124 => 0.0052482442470611
1125 => 0.0052105937821107
1126 => 0.0050239794822605
1127 => 0.0050168521886481
1128 => 0.0049232156927931
1129 => 0.0047766927083785
1130 => 0.0047097277727644
1201 => 0.0046748518528804
1202 => 0.0046892423371427
1203 => 0.0046819660679436
1204 => 0.0046344834895614
1205 => 0.0046846877137554
1206 => 0.0045564366667575
1207 => 0.004505366066454
1208 => 0.0044822986611259
1209 => 0.0043684684750604
1210 => 0.0045496229216041
1211 => 0.0045853126296967
1212 => 0.0046210726575395
1213 => 0.0049323392855026
1214 => 0.0049167892843999
1215 => 0.0050573537212104
1216 => 0.0050518916456773
1217 => 0.0050118003913061
1218 => 0.004842661983805
1219 => 0.0049100775384327
1220 => 0.0047025829399919
1221 => 0.004858052001405
1222 => 0.0047871024143193
1223 => 0.0048340638746424
1224 => 0.0047496229346372
1225 => 0.0047963560373171
1226 => 0.0045937759834864
1227 => 0.0044046095795976
1228 => 0.004480735662634
1229 => 0.0045634934209682
1230 => 0.0047429333273214
1231 => 0.0046360603994445
]
'min_raw' => 0.0043684684750604
'max_raw' => 0.013039984787965
'avg_raw' => 0.0087042266315127
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004368'
'max' => '$0.013039'
'avg' => '$0.0087042'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0082754415249396
'max_diff' => 0.00039607478796491
'year' => 2026
]
1 => [
'items' => [
101 => 0.0046744959456219
102 => 0.0045457432999605
103 => 0.0042800898155861
104 => 0.0042815933854578
105 => 0.0042407283844625
106 => 0.0042054150572148
107 => 0.0046483360408289
108 => 0.0045932518149719
109 => 0.004505482310314
110 => 0.0046229652801201
111 => 0.0046540296420423
112 => 0.0046549140007548
113 => 0.004740626542851
114 => 0.0047863713419325
115 => 0.0047944340610399
116 => 0.0049293045979703
117 => 0.0049745114229639
118 => 0.0051607119372034
119 => 0.0047824902153316
120 => 0.0047747009878653
121 => 0.0046246185064328
122 => 0.0045294338239981
123 => 0.0046311358830731
124 => 0.0047212300236981
125 => 0.0046274179825184
126 => 0.0046396678546162
127 => 0.0045137328540579
128 => 0.0045587486909649
129 => 0.0045975223939974
130 => 0.0045761138341958
131 => 0.0045440641839868
201 => 0.0047138433315869
202 => 0.0047042637267094
203 => 0.0048623659721604
204 => 0.0049856179784894
205 => 0.0052065076077626
206 => 0.0049759977643792
207 => 0.0049675970694927
208 => 0.0050497152095224
209 => 0.0049744988511045
210 => 0.0050220329932442
211 => 0.0051988491225889
212 => 0.0052025849687787
213 => 0.0051400047317329
214 => 0.0051361967186213
215 => 0.0051482159376988
216 => 0.0052186128792488
217 => 0.0051940140247917
218 => 0.0052224804419363
219 => 0.0052580781324688
220 => 0.0054053252736193
221 => 0.0054408260608478
222 => 0.0053545775529303
223 => 0.0053623648275116
224 => 0.005330105517976
225 => 0.0052989434291725
226 => 0.0053689912539451
227 => 0.0054970050305104
228 => 0.0054962086634504
301 => 0.0055259053713813
302 => 0.0055444061744014
303 => 0.0054649871844234
304 => 0.0054132883422649
305 => 0.0054331129680313
306 => 0.0054648129763559
307 => 0.0054228330825736
308 => 0.0051637137311713
309 => 0.0052423139897785
310 => 0.00522923106339
311 => 0.0052105993852745
312 => 0.0052896325531019
313 => 0.0052820096112622
314 => 0.0050536729078749
315 => 0.0050682902827891
316 => 0.0050545618388577
317 => 0.0050989212497755
318 => 0.0049721032973398
319 => 0.0050111116453771
320 => 0.0050355773155855
321 => 0.0050499877832924
322 => 0.005102048274
323 => 0.0050959395762954
324 => 0.0051016685487737
325 => 0.005178860513033
326 => 0.0055692709791733
327 => 0.0055905201594532
328 => 0.0054858814242325
329 => 0.0055276825350454
330 => 0.0054474335431827
331 => 0.0055013052290416
401 => 0.0055381628683139
402 => 0.0053716102837591
403 => 0.0053617481206191
404 => 0.0052811679126208
405 => 0.0053244671521028
406 => 0.0052555749487615
407 => 0.0052724786857145
408 => 0.0052252143635526
409 => 0.0053102807332113
410 => 0.0054053981524672
411 => 0.0054294285688719
412 => 0.0053662148890558
413 => 0.0053204440188844
414 => 0.0052400854487254
415 => 0.0053737235418074
416 => 0.0054128033927716
417 => 0.005373518271987
418 => 0.0053644150511044
419 => 0.005347164463981
420 => 0.0053680748447114
421 => 0.0054125905555104
422 => 0.0053915977683737
423 => 0.0054054638741228
424 => 0.0053526205776734
425 => 0.0054650134754137
426 => 0.0056435204458491
427 => 0.0056440943749479
428 => 0.0056231014746522
429 => 0.0056145116321496
430 => 0.0056360516218087
501 => 0.0056477361825821
502 => 0.0057173925593809
503 => 0.0057921366269185
504 => 0.006140934576725
505 => 0.0060429935081568
506 => 0.006352467799308
507 => 0.0065972217834013
508 => 0.0066706128014363
509 => 0.0066030965181584
510 => 0.0063721269602225
511 => 0.0063607944918117
512 => 0.0067059605242
513 => 0.0066084353104445
514 => 0.0065968349965909
515 => 0.0064734272562286
516 => 0.0065463765151287
517 => 0.0065304214421062
518 => 0.0065052355787913
519 => 0.0066444176830833
520 => 0.0069049541574457
521 => 0.0068643471046208
522 => 0.0068340358233939
523 => 0.006701220612539
524 => 0.006781205034825
525 => 0.0067527241140496
526 => 0.0068750962241393
527 => 0.0068026056969963
528 => 0.0066076964610316
529 => 0.0066387363992882
530 => 0.0066340447750644
531 => 0.0067305980691382
601 => 0.0067016151668573
602 => 0.0066283853982351
603 => 0.0069040636721003
604 => 0.0068861626583986
605 => 0.0069115422030861
606 => 0.0069227150635461
607 => 0.0070905155708517
608 => 0.0071592580696775
609 => 0.0071748638204178
610 => 0.0072401638775667
611 => 0.007173239095509
612 => 0.0074409859403007
613 => 0.0076190219686257
614 => 0.0078258199771754
615 => 0.008128007449731
616 => 0.0082416327348024
617 => 0.0082211073440747
618 => 0.0084502224369485
619 => 0.0088619371659002
620 => 0.0083043266621705
621 => 0.008891491876582
622 => 0.0087056021488477
623 => 0.0082648609484031
624 => 0.0082364824110918
625 => 0.0085349574691435
626 => 0.0091969464207423
627 => 0.0090311256965833
628 => 0.0091972176440434
629 => 0.009003462564838
630 => 0.0089938409920594
701 => 0.0091878073923158
702 => 0.0096410204590729
703 => 0.0094257159194944
704 => 0.0091170240671696
705 => 0.009344957327149
706 => 0.0091475004431274
707 => 0.0087025748187249
708 => 0.0090309988966007
709 => 0.0088113910687044
710 => 0.0088754843078787
711 => 0.0093370672979177
712 => 0.0092815284113591
713 => 0.0093534008733284
714 => 0.0092265478591825
715 => 0.009108047141086
716 => 0.0088868567507799
717 => 0.0088213731807647
718 => 0.0088394704836649
719 => 0.0088213642126402
720 => 0.0086976102221086
721 => 0.008670885559636
722 => 0.0086263432846807
723 => 0.00864014879821
724 => 0.0085563962899919
725 => 0.0087144545771507
726 => 0.0087437915880522
727 => 0.0088588132284791
728 => 0.0088707551567578
729 => 0.0091910887881161
730 => 0.0090146544069519
731 => 0.0091330218224484
801 => 0.0091224339266891
802 => 0.0082744131466609
803 => 0.0083912629279981
804 => 0.0085730445182774
805 => 0.0084911521582557
806 => 0.0083753755210461
807 => 0.0082818796789487
808 => 0.0081402239177306
809 => 0.0083396016813872
810 => 0.0086017622391342
811 => 0.0088774039811331
812 => 0.0092085694733823
813 => 0.0091346571907036
814 => 0.0088712130726094
815 => 0.0088830309833011
816 => 0.0089560846570204
817 => 0.0088614735119277
818 => 0.0088335708382109
819 => 0.0089522512581264
820 => 0.0089530685449528
821 => 0.0088442069883848
822 => 0.0087232272897139
823 => 0.0087227203803592
824 => 0.0087011932115059
825 => 0.0090072922003541
826 => 0.0091756156941222
827 => 0.0091949137114158
828 => 0.0091743167837998
829 => 0.0091822437237764
830 => 0.0090842999915078
831 => 0.0093081703191622
901 => 0.0095136158702985
902 => 0.0094585520738899
903 => 0.0093760036152936
904 => 0.0093102497919492
905 => 0.0094430625627965
906 => 0.0094371486191774
907 => 0.0095118214826361
908 => 0.0095084338902182
909 => 0.0094833242148255
910 => 0.0094585529706355
911 => 0.0095567681538345
912 => 0.0095284837583608
913 => 0.0095001554294085
914 => 0.0094433386288446
915 => 0.0094510609756684
916 => 0.0093685267702273
917 => 0.0093303426702819
918 => 0.0087561454235705
919 => 0.0086027011568129
920 => 0.0086509778467809
921 => 0.0086668717866221
922 => 0.008600092645085
923 => 0.0086958367798952
924 => 0.0086809151579032
925 => 0.0087389664602173
926 => 0.008702698526826
927 => 0.0087041869754631
928 => 0.0088108432344283
929 => 0.0088418060001541
930 => 0.0088260580876058
1001 => 0.0088370873857477
1002 => 0.0090912529062535
1003 => 0.0090551186969934
1004 => 0.0090359231185055
1005 => 0.0090412404249315
1006 => 0.009106185164791
1007 => 0.0091243661461003
1008 => 0.0090473320507379
1009 => 0.0090836617754396
1010 => 0.009238349132291
1011 => 0.0092924809526428
1012 => 0.009465243738458
1013 => 0.0093918510364301
1014 => 0.0095265665173641
1015 => 0.0099406359778636
1016 => 0.010271423314338
1017 => 0.0099672176093513
1018 => 0.010574666427273
1019 => 0.011047652465383
1020 => 0.011029498473441
1021 => 0.010947022417332
1022 => 0.010408540387929
1023 => 0.0099130211961568
1024 => 0.01032754404093
1025 => 0.010328600744909
1026 => 0.010292992864921
1027 => 0.01007183538047
1028 => 0.010285297063848
1029 => 0.010302240877096
1030 => 0.010292756847401
1031 => 0.010123195922604
1101 => 0.0098643077305352
1102 => 0.0099148938635746
1103 => 0.0099977549814223
1104 => 0.0098408815986965
1105 => 0.0097907510476222
1106 => 0.009883953279797
1107 => 0.01018427029132
1108 => 0.01012749709991
1109 => 0.010126014522444
1110 => 0.010368914310878
1111 => 0.010195050483414
1112 => 0.0099155319167114
1113 => 0.0098449497922221
1114 => 0.0095944308001011
1115 => 0.0097674651602771
1116 => 0.0097736923588527
1117 => 0.0096789232081526
1118 => 0.0099232219109881
1119 => 0.0099209706554336
1120 => 0.010152895914713
1121 => 0.010596249903305
1122 => 0.010465128312753
1123 => 0.01031264816893
1124 => 0.01032922698838
1125 => 0.010511055717726
1126 => 0.010401117917217
1127 => 0.010440652316793
1128 => 0.010510995877677
1129 => 0.01055343589449
1130 => 0.010323120523075
1201 => 0.01026942299274
1202 => 0.010159576690948
1203 => 0.010130919841189
1204 => 0.01022038736198
1205 => 0.010196815831186
1206 => 0.0097731689869253
1207 => 0.0097288955345513
1208 => 0.0097302533381277
1209 => 0.0096189256370454
1210 => 0.0094491241711851
1211 => 0.0098953522851473
1212 => 0.0098595139226376
1213 => 0.009819951144096
1214 => 0.0098247973587252
1215 => 0.010018489858922
1216 => 0.0099061384271022
1217 => 0.010204843122633
1218 => 0.010143438417117
1219 => 0.010080458912606
1220 => 0.01007175322668
1221 => 0.010047511490601
1222 => 0.009964377557637
1223 => 0.0098639883380076
1224 => 0.009797702679643
1225 => 0.0090378628173666
1226 => 0.0091788846760199
1227 => 0.0093411174698538
1228 => 0.0093971195801781
1229 => 0.0093013240952403
1230 => 0.0099681601472627
1231 => 0.010089997519759
]
'min_raw' => 0.0042054150572148
'max_raw' => 0.011047652465383
'avg_raw' => 0.0076265337612988
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0042054'
'max' => '$0.011047'
'avg' => '$0.007626'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00016305341784565
'max_diff' => -0.0019923323225821
'year' => 2027
]
2 => [
'items' => [
101 => 0.009720944171212
102 => 0.0096519093580477
103 => 0.0099726860581208
104 => 0.00977921849462
105 => 0.0098663369266182
106 => 0.0096780345278726
107 => 0.01006065046454
108 => 0.010057735572159
109 => 0.0099088893310229
110 => 0.010034693154776
111 => 0.010012831644519
112 => 0.0098447846048682
113 => 0.010065977855437
114 => 0.010066087564529
115 => 0.0099228262936319
116 => 0.0097555284931486
117 => 0.0097256195978198
118 => 0.0097030872628844
119 => 0.0098607953534813
120 => 0.01000219593437
121 => 0.010265307359227
122 => 0.01033145982281
123 => 0.010589657292191
124 => 0.010435913270581
125 => 0.010504066004042
126 => 0.010578055437007
127 => 0.010613528692042
128 => 0.010555726926563
129 => 0.01095681387483
130 => 0.01099067790225
131 => 0.011002032217721
201 => 0.010866787955456
202 => 0.010986916514661
203 => 0.010930712340049
204 => 0.011076939988421
205 => 0.011099870350814
206 => 0.011080449149638
207 => 0.011087727608593
208 => 0.010745470654833
209 => 0.010727722826232
210 => 0.010485729923919
211 => 0.010584343820333
212 => 0.010399989867675
213 => 0.010458450405119
214 => 0.010484219252991
215 => 0.010470759069232
216 => 0.010589919302077
217 => 0.010488608761331
218 => 0.010221233587309
219 => 0.0099537855670995
220 => 0.0099504279750642
221 => 0.0098800136321926
222 => 0.0098291169593267
223 => 0.0098389214641771
224 => 0.0098734738180918
225 => 0.0098271087137044
226 => 0.0098370030594959
227 => 0.010001315125316
228 => 0.010034266738296
229 => 0.0099222842823633
301 => 0.0094726585628009
302 => 0.0093623192834196
303 => 0.0094416289693159
304 => 0.0094037240476554
305 => 0.0075895392370279
306 => 0.0080157550481011
307 => 0.0077625120860827
308 => 0.0078792180941293
309 => 0.0076207226068556
310 => 0.0077440902022919
311 => 0.007721308712078
312 => 0.0084066511236411
313 => 0.0083959504445422
314 => 0.0084010722933595
315 => 0.0081565931044035
316 => 0.0085460550907438
317 => 0.008737918069815
318 => 0.0087024093386568
319 => 0.0087113461212837
320 => 0.0085577825867753
321 => 0.0084025591240468
322 => 0.0082303924151612
323 => 0.0085502568798223
324 => 0.0085146934116204
325 => 0.0085962632123434
326 => 0.0088037181820602
327 => 0.0088342667143958
328 => 0.0088753242516475
329 => 0.0088606080472173
330 => 0.009211207740806
331 => 0.0091687478045812
401 => 0.0092710640343257
402 => 0.0090605917869901
403 => 0.0088224224609208
404 => 0.0088676906634647
405 => 0.0088633309715358
406 => 0.0088078270894599
407 => 0.0087577206664679
408 => 0.0086743075895834
409 => 0.0089382389076585
410 => 0.0089275237781398
411 => 0.0091009892700715
412 => 0.0090703275594186
413 => 0.0088655611514859
414 => 0.0088728744238042
415 => 0.0089220596947839
416 => 0.0090922904792323
417 => 0.0091428265662521
418 => 0.0091194162372297
419 => 0.0091748267495869
420 => 0.0092186209592856
421 => 0.0091803266280576
422 => 0.0097224936026482
423 => 0.0094973480750486
424 => 0.0096070824386481
425 => 0.0096332534377742
426 => 0.0095662169738296
427 => 0.0095807547824634
428 => 0.0096027756012278
429 => 0.0097364817006472
430 => 0.010087365193695
501 => 0.010242769104222
502 => 0.010710309436534
503 => 0.010229864972779
504 => 0.010201357386577
505 => 0.010285575518792
506 => 0.010560071188029
507 => 0.010782524145879
508 => 0.010856324625617
509 => 0.010866078577328
510 => 0.011004533183479
511 => 0.011083892781699
512 => 0.010987721152575
513 => 0.010906225766481
514 => 0.010614319409072
515 => 0.010648108364776
516 => 0.010880880762687
517 => 0.011209685484961
518 => 0.011491834142973
519 => 0.01139303551681
520 => 0.012146799293468
521 => 0.012221531893075
522 => 0.012211206264204
523 => 0.01238145824781
524 => 0.012043542731565
525 => 0.011899077301566
526 => 0.010923845993966
527 => 0.011197846212233
528 => 0.011596121620954
529 => 0.011543408377154
530 => 0.011254170129409
531 => 0.011491614729825
601 => 0.011413108119348
602 => 0.011351186698423
603 => 0.01163486073174
604 => 0.011322949479421
605 => 0.011593010067612
606 => 0.011246654569838
607 => 0.011393486820613
608 => 0.011310137733596
609 => 0.011364074807776
610 => 0.011048759774237
611 => 0.011218896112495
612 => 0.011041681543209
613 => 0.011041597520429
614 => 0.01103768549899
615 => 0.011246177653865
616 => 0.01125297657555
617 => 0.011098900558083
618 => 0.011076695796847
619 => 0.011158798437125
620 => 0.011062677748075
621 => 0.011107652013505
622 => 0.011064039972758
623 => 0.011054221983776
624 => 0.010975990577173
625 => 0.010942286336191
626 => 0.010955502637532
627 => 0.010910388587587
628 => 0.010883205740649
629 => 0.011032278146551
630 => 0.010952634773641
701 => 0.011020071657406
702 => 0.010943218817143
703 => 0.010676813389601
704 => 0.010523600811036
705 => 0.010020385654207
706 => 0.010163096848447
707 => 0.010257714517874
708 => 0.010226443378693
709 => 0.010293625885978
710 => 0.010297750346292
711 => 0.010275908628329
712 => 0.010250618717025
713 => 0.010238308986822
714 => 0.010330055630582
715 => 0.010383317645334
716 => 0.010267210666822
717 => 0.010240008426266
718 => 0.010357398991984
719 => 0.010429007169257
720 => 0.010957721717087
721 => 0.010918552835658
722 => 0.011016859041539
723 => 0.011005791271389
724 => 0.011108831836559
725 => 0.011277259612421
726 => 0.010934798850948
727 => 0.010994238197737
728 => 0.010979665042559
729 => 0.011138770929504
730 => 0.011139267640716
731 => 0.011043875713564
801 => 0.011095589224831
802 => 0.011066724161528
803 => 0.011118887232264
804 => 0.010918029711367
805 => 0.01116265249059
806 => 0.011301337843265
807 => 0.011303263489522
808 => 0.011368999246015
809 => 0.01143579058177
810 => 0.011563990734454
811 => 0.011432215149093
812 => 0.011195163699123
813 => 0.01121227804814
814 => 0.011073294869756
815 => 0.011075631202094
816 => 0.011063159676973
817 => 0.011100587662676
818 => 0.01092624304947
819 => 0.010967161381715
820 => 0.010909875476955
821 => 0.010994113669368
822 => 0.010903487299404
823 => 0.010979658014943
824 => 0.01101253077067
825 => 0.011133831947004
826 => 0.010885571017032
827 => 0.010379350175033
828 => 0.010485763933356
829 => 0.010328369626176
830 => 0.010342937068548
831 => 0.010372365620531
901 => 0.010276978055133
902 => 0.010295174996603
903 => 0.010294524873804
904 => 0.010288922466745
905 => 0.010264108476942
906 => 0.01022812328243
907 => 0.010371477221707
908 => 0.010395835849425
909 => 0.010449982061447
910 => 0.010611084460697
911 => 0.010594986531955
912 => 0.010621242921629
913 => 0.010563925370395
914 => 0.010345595865359
915 => 0.010357452207898
916 => 0.010209603426459
917 => 0.010446201235696
918 => 0.01039017175153
919 => 0.010354049178595
920 => 0.010344192799897
921 => 0.010505694540833
922 => 0.010554018392951
923 => 0.010523906211205
924 => 0.010462145247929
925 => 0.010580744555408
926 => 0.010612476726786
927 => 0.01061958038972
928 => 0.01082971562341
929 => 0.010631324614972
930 => 0.01067907930254
1001 => 0.01105164774277
1002 => 0.010713779578412
1003 => 0.010892755880431
1004 => 0.010883995921795
1005 => 0.010975554141681
1006 => 0.01087648547538
1007 => 0.010877713550232
1008 => 0.010959011046799
1009 => 0.010844843374951
1010 => 0.010816573853858
1011 => 0.010777519712938
1012 => 0.01086279300087
1013 => 0.010913910480406
1014 => 0.011325879823813
1015 => 0.011592030807739
1016 => 0.011580476491604
1017 => 0.011686061312309
1018 => 0.011638494383535
1019 => 0.011484888223003
1020 => 0.011747075208756
1021 => 0.011664108276094
1022 => 0.011670947969218
1023 => 0.011670693395498
1024 => 0.011725859152623
1025 => 0.011686769157833
1026 => 0.011609718765595
1027 => 0.011660868411754
1028 => 0.011812764574511
1029 => 0.012284254924454
1030 => 0.012548107170698
1031 => 0.012268370687927
1101 => 0.012461329167922
1102 => 0.012345622838061
1103 => 0.012324595555961
1104 => 0.012445787740917
1105 => 0.012567192056749
1106 => 0.012559459126676
1107 => 0.012471325827562
1108 => 0.012421541563192
1109 => 0.012798524691953
1110 => 0.013076279439483
1111 => 0.013057338427793
1112 => 0.013140937893446
1113 => 0.013386388510238
1114 => 0.01340882943855
1115 => 0.013406002397382
1116 => 0.013350380215092
1117 => 0.013592058223114
1118 => 0.013793670269325
1119 => 0.013337505286971
1120 => 0.013511206940613
1121 => 0.013589187209251
1122 => 0.013703685379315
1123 => 0.013896862984334
1124 => 0.014106705101213
1125 => 0.014136379077342
1126 => 0.014115323971248
1127 => 0.013976927454307
1128 => 0.014206539202534
1129 => 0.014341040379587
1130 => 0.014421132752517
1201 => 0.014624233684169
1202 => 0.013589668788843
1203 => 0.012857352334719
1204 => 0.01274299054563
1205 => 0.012975549740798
1206 => 0.013036873745939
1207 => 0.013012154116361
1208 => 0.012187865367946
1209 => 0.01273865083596
1210 => 0.013331249688186
1211 => 0.013354013823535
1212 => 0.013650681199617
1213 => 0.013747288258076
1214 => 0.013986144380904
1215 => 0.013971203865388
1216 => 0.014029361530265
1217 => 0.01401599209026
1218 => 0.014458422760708
1219 => 0.014946489491803
1220 => 0.014929589292862
1221 => 0.014859423925724
1222 => 0.014963631460897
1223 => 0.015467368631797
1224 => 0.015420992585324
1225 => 0.01546604296417
1226 => 0.016059977478043
1227 => 0.016832176832277
1228 => 0.016473412704688
1229 => 0.01725182762996
1230 => 0.017741798563417
1231 => 0.01858915262889
]
'min_raw' => 0.0075895392370279
'max_raw' => 0.01858915262889
'avg_raw' => 0.013089345932959
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.007589'
'max' => '$0.018589'
'avg' => '$0.013089'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0033841241798131
'max_diff' => 0.0075415001635073
'year' => 2028
]
3 => [
'items' => [
101 => 0.018483059726586
102 => 0.018812928446104
103 => 0.018293131289205
104 => 0.017099571948628
105 => 0.016910686614221
106 => 0.017288839837044
107 => 0.018218492635702
108 => 0.01725956176206
109 => 0.017453552228884
110 => 0.017397682961388
111 => 0.017394705925553
112 => 0.017508327274923
113 => 0.01734351358157
114 => 0.016672032945434
115 => 0.016979768563915
116 => 0.016860937062941
117 => 0.016992789472747
118 => 0.017704342548397
119 => 0.017389747972346
120 => 0.017058348142063
121 => 0.017473997072747
122 => 0.018003260993976
123 => 0.017970140608964
124 => 0.017905873218795
125 => 0.018268145132251
126 => 0.01886651219757
127 => 0.019028248410892
128 => 0.019147638777015
129 => 0.019164100691387
130 => 0.019333668640437
131 => 0.018421859041768
201 => 0.019868924291787
202 => 0.020118792486095
203 => 0.020071827621541
204 => 0.020349545603452
205 => 0.020267833928149
206 => 0.020149446530803
207 => 0.020589688604442
208 => 0.020084986592718
209 => 0.019368625627293
210 => 0.018975615833647
211 => 0.019493162833115
212 => 0.01980921072579
213 => 0.020018098278426
214 => 0.02008130752564
215 => 0.018492640225324
216 => 0.017636436661981
217 => 0.01818525332969
218 => 0.018854847541598
219 => 0.018418139412113
220 => 0.018435257543991
221 => 0.017812626516222
222 => 0.018909936571867
223 => 0.01875006772659
224 => 0.019579467578692
225 => 0.019381524647638
226 => 0.02005786802991
227 => 0.019879764150623
228 => 0.020619063395891
301 => 0.020913989880556
302 => 0.021409217349951
303 => 0.021773508692377
304 => 0.021987427536432
305 => 0.021974584651425
306 => 0.022822237685516
307 => 0.022322406306054
308 => 0.021694500292238
309 => 0.021683143453466
310 => 0.022008344875518
311 => 0.022689877841487
312 => 0.022866589423661
313 => 0.022965347090659
314 => 0.022814096285873
315 => 0.022271565146704
316 => 0.022037302951506
317 => 0.022236901129044
318 => 0.021992809709582
319 => 0.022414179979529
320 => 0.022992811359999
321 => 0.022873326268089
322 => 0.02327274701614
323 => 0.023686105470085
324 => 0.024277226624316
325 => 0.024431767583185
326 => 0.024687217911529
327 => 0.024950160210457
328 => 0.025034610190379
329 => 0.025195851405339
330 => 0.025195001584546
331 => 0.025680912838615
401 => 0.026216887999273
402 => 0.026419206214568
403 => 0.026884425794746
404 => 0.026087753566929
405 => 0.026692038603239
406 => 0.027237118832227
407 => 0.026587251712208
408 => 0.027482942137535
409 => 0.027517719767073
410 => 0.028042820683183
411 => 0.027510530307542
412 => 0.027194457981617
413 => 0.028106946943486
414 => 0.028548471609001
415 => 0.028415480786501
416 => 0.027403414060709
417 => 0.026814347816714
418 => 0.025272647833787
419 => 0.027098858060047
420 => 0.027988351789975
421 => 0.027401110486834
422 => 0.027697280842352
423 => 0.029313090268497
424 => 0.029928285882061
425 => 0.029800329494982
426 => 0.029821952018057
427 => 0.030153900404545
428 => 0.031625942357551
429 => 0.030743860697645
430 => 0.031418179075674
501 => 0.031775835111945
502 => 0.032108045970821
503 => 0.031292241097742
504 => 0.03023089094442
505 => 0.029894716798414
506 => 0.027342720912498
507 => 0.027209878443879
508 => 0.027135309940705
509 => 0.026665166076116
510 => 0.026295761781791
511 => 0.026001997771842
512 => 0.025231073284377
513 => 0.02549123766817
514 => 0.024262544939596
515 => 0.025048619005141
516 => 0.023087595742513
517 => 0.024720794187751
518 => 0.023831918526429
519 => 0.024428774626772
520 => 0.024426692252065
521 => 0.023327690937934
522 => 0.022693809915516
523 => 0.023097743574019
524 => 0.023530792520229
525 => 0.0236010532548
526 => 0.024162512517294
527 => 0.02431920372893
528 => 0.023844422042461
529 => 0.023046957894185
530 => 0.023232190627609
531 => 0.022690056180085
601 => 0.0217399864137
602 => 0.022422343106545
603 => 0.022655329682588
604 => 0.022758229827521
605 => 0.021823945328531
606 => 0.021530372854645
607 => 0.02137407733286
608 => 0.022926353497608
609 => 0.023011390689978
610 => 0.022576328390765
611 => 0.02454285123751
612 => 0.02409776655178
613 => 0.024595035194135
614 => 0.023215382698569
615 => 0.023268087281848
616 => 0.022614937680534
617 => 0.022980657813798
618 => 0.022722178611317
619 => 0.022951111241147
620 => 0.023088332515542
621 => 0.023741374941433
622 => 0.024728250883258
623 => 0.02364383218005
624 => 0.023171335421901
625 => 0.023464469753234
626 => 0.024245125106365
627 => 0.025427857927371
628 => 0.024727656292619
629 => 0.025038393887927
630 => 0.025106276228748
701 => 0.024589973466156
702 => 0.025446894746674
703 => 0.02590612582252
704 => 0.026377201881856
705 => 0.026786224024926
706 => 0.026189043744572
707 => 0.026828112246981
708 => 0.026313135844816
709 => 0.025851148774793
710 => 0.025851849418478
711 => 0.025562038180898
712 => 0.025000492389521
713 => 0.024896934729933
714 => 0.025435654753001
715 => 0.025867657194525
716 => 0.025903238984761
717 => 0.026142417733476
718 => 0.026283961253228
719 => 0.027671280165886
720 => 0.028229271309061
721 => 0.028911572316703
722 => 0.029177367011558
723 => 0.029977313750398
724 => 0.029331291790287
725 => 0.029191520875548
726 => 0.027251111747706
727 => 0.027568853633687
728 => 0.028077589050673
729 => 0.027259500607353
730 => 0.027778389426637
731 => 0.027880829071132
801 => 0.027231702275095
802 => 0.027578428943971
803 => 0.026657625708728
804 => 0.024748321877521
805 => 0.025449020347642
806 => 0.025964970274205
807 => 0.025228646112832
808 => 0.026548478672413
809 => 0.02577745973798
810 => 0.0255330837512
811 => 0.024579685900444
812 => 0.025029652986352
813 => 0.025638239912951
814 => 0.025262203948137
815 => 0.026042535037211
816 => 0.027147691966039
817 => 0.027935292606755
818 => 0.027995754804273
819 => 0.027489380357437
820 => 0.02830084864013
821 => 0.028306759300669
822 => 0.027391419762847
823 => 0.026830779392562
824 => 0.026703400720836
825 => 0.027021617616868
826 => 0.027407991674729
827 => 0.028017195875457
828 => 0.028385325215064
829 => 0.029345211292042
830 => 0.029604928942382
831 => 0.029890279898634
901 => 0.030271596775162
902 => 0.030729465453075
903 => 0.02972767485228
904 => 0.029767477860421
905 => 0.028834624323696
906 => 0.027837736534975
907 => 0.028594250102797
908 => 0.029583290957941
909 => 0.029356403892978
910 => 0.029330874463288
911 => 0.029373807882754
912 => 0.02920274244521
913 => 0.028429019811183
914 => 0.028040461148134
915 => 0.028541800955354
916 => 0.028808240750823
917 => 0.029221465637605
918 => 0.02917052694819
919 => 0.030234949879426
920 => 0.030648552444026
921 => 0.03054273520895
922 => 0.030562208126838
923 => 0.031311015813812
924 => 0.032143843965774
925 => 0.03292389743144
926 => 0.033717401320791
927 => 0.032760801411194
928 => 0.032275098971981
929 => 0.032776219909924
930 => 0.032510318086463
1001 => 0.034038268835673
1002 => 0.0341440608304
1003 => 0.035671901091379
1004 => 0.037122003430882
1005 => 0.036211220132722
1006 => 0.037070047760306
1007 => 0.037998939860782
1008 => 0.039790923429912
1009 => 0.039187446406571
1010 => 0.038725192464383
1011 => 0.038288364722609
1012 => 0.039197333908788
1013 => 0.040366708245671
1014 => 0.040618580277707
1015 => 0.041026709192127
1016 => 0.040597611542244
1017 => 0.041114412397973
1018 => 0.0429389465125
1019 => 0.042445941289147
1020 => 0.04174579461744
1021 => 0.043186089070741
1022 => 0.043707326034387
1023 => 0.047365640019175
1024 => 0.051984412542382
1025 => 0.050072210389279
1026 => 0.04888524480647
1027 => 0.04916420987363
1028 => 0.050850829243788
1029 => 0.05139251785486
1030 => 0.049920021478705
1031 => 0.050440132092249
1101 => 0.053305992709024
1102 => 0.054843434982107
1103 => 0.052755381869215
1104 => 0.046994526144134
1105 => 0.041682754070124
1106 => 0.043091675216365
1107 => 0.042931947282295
1108 => 0.046010956991626
1109 => 0.042434183277617
1110 => 0.042494406973814
1111 => 0.045637087343206
1112 => 0.044798674099834
1113 => 0.043440552021425
1114 => 0.041692669864284
1115 => 0.038461548037278
1116 => 0.035599653328601
1117 => 0.041212487907306
1118 => 0.040970452273995
1119 => 0.040619948809289
1120 => 0.041399956341556
1121 => 0.045187451509242
1122 => 0.045100137486701
1123 => 0.044544690223303
1124 => 0.044965992077103
1125 => 0.04336669576949
1126 => 0.043778870843261
1127 => 0.041681912658289
1128 => 0.042629825334606
1129 => 0.043437638101409
1130 => 0.043599818474217
1201 => 0.043965219135288
1202 => 0.040842910493424
1203 => 0.042244735407455
1204 => 0.043068176211217
1205 => 0.039347840702788
1206 => 0.042994637140006
1207 => 0.040788558046479
1208 => 0.04003978166794
1209 => 0.041047910417856
1210 => 0.040655041663576
1211 => 0.040317276178674
1212 => 0.040128797234551
1213 => 0.040869055725379
1214 => 0.040834521781982
1215 => 0.039623315213004
1216 => 0.038043345618869
1217 => 0.038573635275395
1218 => 0.038380976071687
1219 => 0.037682754263918
1220 => 0.038153271458732
1221 => 0.036081351856074
1222 => 0.032516721868711
1223 => 0.034871625625932
1224 => 0.034780964392922
1225 => 0.034735248888078
1226 => 0.036504893976871
1227 => 0.036334783434242
1228 => 0.036026031133643
1229 => 0.037677083785791
1230 => 0.037074427357965
1231 => 0.038931672464811
]
'min_raw' => 0.016672032945434
'max_raw' => 0.054843434982107
'avg_raw' => 0.03575773396377
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.016672'
'max' => '$0.054843'
'avg' => '$0.035757'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0090824937084057
'max_diff' => 0.036254282353217
'year' => 2029
]
4 => [
'items' => [
101 => 0.040154974211263
102 => 0.039844705318697
103 => 0.040995226523965
104 => 0.038585852078047
105 => 0.039386149621656
106 => 0.039551089836229
107 => 0.037656710052349
108 => 0.036362615622809
109 => 0.036276314278115
110 => 0.034032532874488
111 => 0.035231142789135
112 => 0.036285869912175
113 => 0.03578073747037
114 => 0.035620827629697
115 => 0.036437772325483
116 => 0.036501255925004
117 => 0.035053823128241
118 => 0.035354790240923
119 => 0.036609873132428
120 => 0.035323165372268
121 => 0.032823302376797
122 => 0.03220330179061
123 => 0.032120582283535
124 => 0.03043909152093
125 => 0.032244733194427
126 => 0.031456522215757
127 => 0.033946471253159
128 => 0.03252422571686
129 => 0.032462915554396
130 => 0.032370236251587
131 => 0.030922907690704
201 => 0.031239780663008
202 => 0.032293114684066
203 => 0.032668956129437
204 => 0.032629752787506
205 => 0.032287952772719
206 => 0.032444427069189
207 => 0.031940368840999
208 => 0.03176237538956
209 => 0.031200579095863
210 => 0.030374893744316
211 => 0.030489710356671
212 => 0.028853811622931
213 => 0.027962487169073
214 => 0.027715780307712
215 => 0.027385873582112
216 => 0.027753044150217
217 => 0.028849177327359
218 => 0.0275270081581
219 => 0.02526024185679
220 => 0.025396478373881
221 => 0.025702561378798
222 => 0.025132177724076
223 => 0.024592357463553
224 => 0.025061687383076
225 => 0.024101228618958
226 => 0.025818628231796
227 => 0.025772177385225
228 => 0.026412317757611
301 => 0.026812610669467
302 => 0.025890065104009
303 => 0.025658047389124
304 => 0.02579021522414
305 => 0.023605775318827
306 => 0.026233802413724
307 => 0.026256529701172
308 => 0.026061924867907
309 => 0.027461268164707
310 => 0.030414318987073
311 => 0.029303262481505
312 => 0.028873027820688
313 => 0.028055151415976
314 => 0.029144923164559
315 => 0.029061245697355
316 => 0.028682824456923
317 => 0.028453954109964
318 => 0.028875654741785
319 => 0.028401700734927
320 => 0.028316565571911
321 => 0.027800739112
322 => 0.027616612534421
323 => 0.027480292546671
324 => 0.027330217634684
325 => 0.027661245494189
326 => 0.026911092814209
327 => 0.026006482220526
328 => 0.025931273637684
329 => 0.026138931147318
330 => 0.026047058157588
331 => 0.025930833785155
401 => 0.025708929806356
402 => 0.025643095636074
403 => 0.02585702475129
404 => 0.025615511253054
405 => 0.025971877575623
406 => 0.025874965654532
407 => 0.025333623541252
408 => 0.024658910837585
409 => 0.024652904479264
410 => 0.02450753873401
411 => 0.024322393601542
412 => 0.024270890461236
413 => 0.025022161726321
414 => 0.026577270761389
415 => 0.0262719656472
416 => 0.026492579881129
417 => 0.027577783562123
418 => 0.027922737179098
419 => 0.027677897272444
420 => 0.027342745307147
421 => 0.027357490292695
422 => 0.028502806015513
423 => 0.028574237952273
424 => 0.028754723411647
425 => 0.028986698232128
426 => 0.027717403587459
427 => 0.027297706629077
428 => 0.027098830926295
429 => 0.026486370736309
430 => 0.02714685654284
501 => 0.026762019748196
502 => 0.026813947379691
503 => 0.026780129441558
504 => 0.026798596322537
505 => 0.025818148183603
506 => 0.026175371954594
507 => 0.025581418150632
508 => 0.024786180681571
509 => 0.024783514766728
510 => 0.024978148010669
511 => 0.024862372541174
512 => 0.024550823729621
513 => 0.024595077767833
514 => 0.024207365826807
515 => 0.024642153017225
516 => 0.024654621158103
517 => 0.024487204406773
518 => 0.025157054062682
519 => 0.025431492013253
520 => 0.025321294721114
521 => 0.025423760277473
522 => 0.026284652453065
523 => 0.026425015441045
524 => 0.026487355408447
525 => 0.026403828110591
526 => 0.025439495806081
527 => 0.025482268044443
528 => 0.025168433739165
529 => 0.024903276822248
530 => 0.02491388170836
531 => 0.025050206831641
601 => 0.025645546640374
602 => 0.026898404170653
603 => 0.0269459491981
604 => 0.027003575158353
605 => 0.02676918141752
606 => 0.026698486022438
607 => 0.02679175149658
608 => 0.027262258912834
609 => 0.028472531728955
610 => 0.028044740484334
611 => 0.02769693954349
612 => 0.028002054735071
613 => 0.027955084642899
614 => 0.027558609795938
615 => 0.027547482067484
616 => 0.02678652007549
617 => 0.026505209753315
618 => 0.026270125792394
619 => 0.02601342024409
620 => 0.025861236590208
621 => 0.026095059848805
622 => 0.026148537994561
623 => 0.025637279353107
624 => 0.025567596689443
625 => 0.025985101532338
626 => 0.02580137321713
627 => 0.025990342345565
628 => 0.026034184804309
629 => 0.026027125158674
630 => 0.025835291696533
701 => 0.025957560624745
702 => 0.025668358159401
703 => 0.025353893915146
704 => 0.025153285319125
705 => 0.024978227712228
706 => 0.025075359846942
707 => 0.024729101522314
708 => 0.024618326515462
709 => 0.025916138663005
710 => 0.026874846450227
711 => 0.026860906459311
712 => 0.026776050349683
713 => 0.02664997138321
714 => 0.027253035451139
715 => 0.027042939988519
716 => 0.027195801991638
717 => 0.02723471178703
718 => 0.027352480018801
719 => 0.027394572039137
720 => 0.027267340718893
721 => 0.026840336868155
722 => 0.025776283870425
723 => 0.025280964327625
724 => 0.025117500628302
725 => 0.02512344222331
726 => 0.024959546508524
727 => 0.025007821141819
728 => 0.024942758561138
729 => 0.024819545773657
730 => 0.02506775180452
731 => 0.025096355237378
801 => 0.025038420983933
802 => 0.02505206659787
803 => 0.024572395723392
804 => 0.024608864058188
805 => 0.024405803735871
806 => 0.024367732373365
807 => 0.023854413561032
808 => 0.022944994878233
809 => 0.023448901107911
810 => 0.022840253242398
811 => 0.022609749073208
812 => 0.0237009199594
813 => 0.023591396666796
814 => 0.023403940398488
815 => 0.023126653508351
816 => 0.023023805103526
817 => 0.022398930753656
818 => 0.02236200984349
819 => 0.022671714444313
820 => 0.022528796427318
821 => 0.022328085404171
822 => 0.021601130424085
823 => 0.020783792339946
824 => 0.020808462639102
825 => 0.021068442676551
826 => 0.021824369698519
827 => 0.021529015933366
828 => 0.021314733387953
829 => 0.021274604708507
830 => 0.021776899146856
831 => 0.022487751011058
901 => 0.022821266801327
902 => 0.022490762782195
903 => 0.022111097560617
904 => 0.022134206023455
905 => 0.022287936273944
906 => 0.022304091149642
907 => 0.02205696812061
908 => 0.022126531805751
909 => 0.022020858206985
910 => 0.021372339526415
911 => 0.021360609879959
912 => 0.02120145293697
913 => 0.02119663372799
914 => 0.020925868064407
915 => 0.020887986076357
916 => 0.020350364417012
917 => 0.020704228621261
918 => 0.020466875091756
919 => 0.020109127336753
920 => 0.020047451488947
921 => 0.020045597438486
922 => 0.02041292439194
923 => 0.020699936191942
924 => 0.020471003958021
925 => 0.020418880526022
926 => 0.020975422413752
927 => 0.020904597385546
928 => 0.020843263367893
929 => 0.02242410202331
930 => 0.021172744873169
1001 => 0.020627081730738
1002 => 0.01995171997336
1003 => 0.020171621167032
1004 => 0.020217957579559
1005 => 0.018593834296171
1006 => 0.017934927682373
1007 => 0.017708815762889
1008 => 0.017578685156473
1009 => 0.017637987307894
1010 => 0.017044894073437
1011 => 0.017443462535849
1012 => 0.016929893927733
1013 => 0.016843792479285
1014 => 0.017762116769539
1015 => 0.017889896229755
1016 => 0.017344749354507
1017 => 0.017694821899678
1018 => 0.017567880728427
1019 => 0.016938697587488
1020 => 0.016914667419462
1021 => 0.016598965436195
1022 => 0.016104952964333
1023 => 0.015879176008568
1024 => 0.01576158940972
1025 => 0.015810107932122
1026 => 0.015785575482504
1027 => 0.015625484654361
1028 => 0.015794751701378
1029 => 0.015362344342222
1030 => 0.015190156247664
1031 => 0.015112382880085
1101 => 0.014728596460395
1102 => 0.015339371324717
1103 => 0.015459701667327
1104 => 0.015580269097884
1105 => 0.016629726266004
1106 => 0.01657729835162
1107 => 0.017051221164222
1108 => 0.017032805395212
1109 => 0.016897634932018
1110 => 0.016327372982261
1111 => 0.016554669231492
1112 => 0.015855086706039
1113 => 0.016379261501096
1114 => 0.016140050014695
1115 => 0.016298383856919
1116 => 0.016013685332213
1117 => 0.016171249250699
1118 => 0.015488236455522
1119 => 0.014850448717634
1120 => 0.015107113121545
1121 => 0.01538613668173
1122 => 0.015991130854094
1123 => 0.015630801316128
1124 => 0.015760389443549
1125 => 0.015326290909479
1126 => 0.014430621639577
1127 => 0.014435691030375
1128 => 0.014297911826416
1129 => 0.014178850478103
1130 => 0.015672189498113
1201 => 0.015486469184779
1202 => 0.015190548171954
1203 => 0.015586650207054
1204 => 0.015691385872119
1205 => 0.015694367549262
1206 => 0.015983353369198
1207 => 0.016137585153101
1208 => 0.016164769173493
1209 => 0.016619494605114
1210 => 0.016771912571819
1211 => 0.017399700605683
1212 => 0.016124499663794
1213 => 0.016098237739566
1214 => 0.015592224174991
1215 => 0.01527130237258
1216 => 0.015614197965363
1217 => 0.015917956650652
1218 => 0.015601662804067
1219 => 0.015642964103104
1220 => 0.01521836545622
1221 => 0.015370139493258
1222 => 0.015500867740125
1223 => 0.015428687286056
1224 => 0.015320629652742
1225 => 0.015893051902477
1226 => 0.015860753595806
1227 => 0.01639380635469
1228 => 0.016809359099209
1229 => 0.017554103906325
1230 => 0.016776923875674
1231 => 0.016748600346347
]
'min_raw' => 0.014178850478103
'max_raw' => 0.040995226523965
'avg_raw' => 0.027587038501034
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.014178'
'max' => '$0.040995'
'avg' => '$0.027587'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0024931824673308
'max_diff' => -0.013848208458142
'year' => 2030
]
5 => [
'items' => [
101 => 0.017025467388762
102 => 0.016771870184918
103 => 0.016932134863869
104 => 0.017528282788863
105 => 0.017540878455121
106 => 0.017329884816708
107 => 0.017317045834635
108 => 0.01735756947091
109 => 0.017594917674303
110 => 0.017511980919064
111 => 0.017607957431929
112 => 0.017727977530911
113 => 0.018224431547766
114 => 0.018344124930493
115 => 0.018053332064371
116 => 0.018079587404312
117 => 0.01797082288994
118 => 0.017865757731871
119 => 0.018101928863675
120 => 0.018533536249001
121 => 0.018530851241858
122 => 0.018630975766005
123 => 0.018693352515072
124 => 0.018425585845504
125 => 0.018251279589669
126 => 0.018318119699551
127 => 0.018424998490842
128 => 0.018283460348012
129 => 0.017409821363624
130 => 0.017674827623213
131 => 0.017630717623473
201 => 0.017567899619885
202 => 0.017834365463134
203 => 0.017808664182505
204 => 0.017038811045075
205 => 0.017088094545151
206 => 0.017041808137947
207 => 0.017191368988932
208 => 0.016763793408148
209 => 0.016895312777031
210 => 0.016977800492278
211 => 0.017026386390258
212 => 0.017201911969426
213 => 0.017181316068619
214 => 0.017200631699314
215 => 0.017460889796185
216 => 0.018777185940366
217 => 0.01884882903525
218 => 0.01849603223381
219 => 0.018636967597376
220 => 0.018366402518505
221 => 0.01854803466858
222 => 0.018672302772704
223 => 0.018110759105548
224 => 0.018077508133967
225 => 0.01780582633677
226 => 0.01795181274574
227 => 0.017719537872275
228 => 0.017776530001593
301 => 0.017617175039535
302 => 0.017903982243983
303 => 0.018224677263891
304 => 0.018305697490549
305 => 0.018092568155611
306 => 0.017938248471208
307 => 0.017667313941461
308 => 0.0181178841026
309 => 0.018249644548594
310 => 0.01811719202107
311 => 0.018086499876297
312 => 0.018028338317413
313 => 0.018098839125962
314 => 0.018248926952908
315 => 0.018178148305407
316 => 0.018224898849041
317 => 0.018046733985661
318 => 0.018425674487414
319 => 0.019027523201195
320 => 0.019029458243222
321 => 0.018958679214198
322 => 0.018929717960477
323 => 0.019002341539486
324 => 0.019041736851924
325 => 0.019276588189554
326 => 0.019528593031721
327 => 0.020704589671789
328 => 0.020374374521084
329 => 0.021417788700506
330 => 0.022242993846054
331 => 0.022490436787356
401 => 0.022262800924448
402 => 0.021484070934087
403 => 0.021445862725633
404 => 0.022609614102553
405 => 0.022280801035383
406 => 0.022241689767318
407 => 0.021825611954633
408 => 0.022071565474169
409 => 0.022017771831526
410 => 0.021932855934939
411 => 0.022402118116944
412 => 0.023280535030333
413 => 0.023143625516639
414 => 0.023041428915717
415 => 0.022593633159458
416 => 0.022863306223529
417 => 0.02276728081066
418 => 0.023179866923576
419 => 0.022935460050186
420 => 0.022278309953003
421 => 0.022382963271974
422 => 0.022367145133345
423 => 0.02269268130545
424 => 0.022594963426889
425 => 0.02234806414924
426 => 0.023277532696819
427 => 0.023217178179315
428 => 0.023302747086172
429 => 0.023340417165277
430 => 0.023906168291115
501 => 0.024137938425354
502 => 0.024190554303534
503 => 0.024410718005316
504 => 0.024185076430069
505 => 0.025087803610772
506 => 0.025688064510348
507 => 0.026385298434349
508 => 0.027404144596126
509 => 0.027787240177809
510 => 0.027718037389933
511 => 0.028490514921862
512 => 0.029878639875527
513 => 0.02799861713108
514 => 0.029978285646035
515 => 0.029351545450572
516 => 0.027865555721705
517 => 0.027769875501834
518 => 0.028776204998919
519 => 0.031008146967827
520 => 0.030449070819092
521 => 0.031009061416122
522 => 0.030355802639034
523 => 0.030323362834654
524 => 0.03097733409542
525 => 0.032505373592318
526 => 0.031779459305046
527 => 0.030738683172756
528 => 0.031507176072568
529 => 0.03084143640209
530 => 0.029341338595702
531 => 0.030448643304097
601 => 0.029708220179816
602 => 0.029924315010539
603 => 0.031480574288151
604 => 0.031293321054517
605 => 0.031535644078022
606 => 0.031107950284234
607 => 0.030708416839716
608 => 0.029962657995779
609 => 0.029741875567556
610 => 0.029802891887797
611 => 0.029741845330898
612 => 0.029324600111593
613 => 0.02923449604621
614 => 0.029084318656356
615 => 0.029130864909091
616 => 0.02884848748022
617 => 0.029381392030653
618 => 0.029480303811152
619 => 0.029868107302406
620 => 0.029908370347356
621 => 0.03098839755046
622 => 0.030393536716111
623 => 0.030792620721606
624 => 0.03075692289183
625 => 0.027897761625045
626 => 0.028291728821014
627 => 0.028904618144226
628 => 0.028628512334871
629 => 0.028238163319252
630 => 0.02792293555995
701 => 0.027445333270914
702 => 0.028117549321193
703 => 0.029001441945103
704 => 0.029930787322944
705 => 0.031047334901298
706 => 0.030798134479856
707 => 0.029909914242621
708 => 0.029949759153618
709 => 0.030196064715007
710 => 0.029877076633788
711 => 0.029783000821249
712 => 0.030183140142997
713 => 0.030185895682593
714 => 0.029818861344153
715 => 0.029410969843551
716 => 0.02940926076327
717 => 0.029336680410503
718 => 0.030368714522553
719 => 0.030936228933763
720 => 0.031001293546413
721 => 0.030931849566924
722 => 0.030958575798497
723 => 0.03062835166694
724 => 0.031383146106754
725 => 0.03207582012616
726 => 0.031890168692137
727 => 0.031611850800631
728 => 0.031390157194439
729 => 0.031837944724043
730 => 0.031818005450233
731 => 0.032069770222876
801 => 0.032058348718525
802 => 0.031973689694837
803 => 0.031890171715578
804 => 0.032221311062898
805 => 0.032125948248805
806 => 0.032030437309922
807 => 0.031838875499998
808 => 0.031864911931472
809 => 0.031586642095473
810 => 0.031457901736578
811 => 0.029521955630119
812 => 0.029004607571609
813 => 0.029167375802407
814 => 0.029220963330261
815 => 0.028995812792198
816 => 0.029318620827353
817 => 0.029268311537012
818 => 0.029464035555777
819 => 0.029341755686202
820 => 0.029346774094702
821 => 0.029706373118305
822 => 0.029810766244701
823 => 0.02975767105806
824 => 0.029794857106787
825 => 0.030651793904442
826 => 0.030529964895112
827 => 0.030465245662047
828 => 0.030483173331905
829 => 0.030702139056638
830 => 0.030763437504478
831 => 0.030503711673615
901 => 0.030626199876907
902 => 0.031147739100458
903 => 0.031330248312137
904 => 0.031912730106426
905 => 0.031665281487424
906 => 0.032119484136927
907 => 0.033515548232408
908 => 0.034630820832165
909 => 0.033605170058839
910 => 0.035653226159184
911 => 0.037247931609502
912 => 0.037186724158198
913 => 0.036908650376733
914 => 0.035093120618985
915 => 0.033422443067881
916 => 0.034820035780095
917 => 0.034823598531336
918 => 0.034703544077893
919 => 0.033957896178345
920 => 0.034677597147275
921 => 0.034734724396618
922 => 0.034702748328348
923 => 0.034131061832027
924 => 0.033258202217472
925 => 0.033428756896825
926 => 0.033708128940828
927 => 0.033179219378418
928 => 0.033010200725467
929 => 0.033324438558417
930 => 0.034336978330232
1001 => 0.034145563551614
1002 => 0.034140564938176
1003 => 0.034959518533603
1004 => 0.034373324500525
1005 => 0.033430908137524
1006 => 0.033192935576921
1007 => 0.032348293304308
1008 => 0.032931690730515
1009 => 0.032952686165282
1010 => 0.032633165357125
1011 => 0.033456835490126
1012 => 0.033449245224846
1013 => 0.03423119742901
1014 => 0.035725996355535
1015 => 0.035283910758374
1016 => 0.034769813307651
1017 => 0.034825709954921
1018 => 0.035438758210787
1019 => 0.03506809524076
1020 => 0.035201388229136
1021 => 0.035438556455885
1022 => 0.035581645935639
1023 => 0.034805121580806
1024 => 0.034624076608241
1025 => 0.034253722132524
1026 => 0.034157103562803
1027 => 0.034458749555575
1028 => 0.03437927649379
1029 => 0.032950921580288
1030 => 0.032801650544535
1031 => 0.032806228474092
1101 => 0.032430879357241
1102 => 0.031858381859933
1103 => 0.033362871100808
1104 => 0.033242039559453
1105 => 0.033108650889414
1106 => 0.033124990240389
1107 => 0.033778038027981
1108 => 0.033399237331474
1109 => 0.034406341067352
1110 => 0.034199310815565
1111 => 0.033986971019016
1112 => 0.033957619191105
1113 => 0.033875886485414
1114 => 0.033595594626198
1115 => 0.033257125363266
1116 => 0.033033638638173
1117 => 0.030471785492183
1118 => 0.030947250534464
1119 => 0.031494229725607
1120 => 0.031683044750508
1121 => 0.031360063584813
1122 => 0.033608347891213
1123 => 0.034019131098999
1124 => 0.03277484196789
1125 => 0.03254208627545
1126 => 0.03362360731566
1127 => 0.032971317917843
1128 => 0.03326504379374
1129 => 0.032630169109515
1130 => 0.03392018545338
1201 => 0.033910357690208
1202 => 0.033408512196104
1203 => 0.033832668571231
1204 => 0.033758960963077
1205 => 0.033192378636225
1206 => 0.033938147123736
1207 => 0.033938517015601
1208 => 0.033455501638588
1209 => 0.032891445423899
1210 => 0.032790605495126
1211 => 0.032714636154734
1212 => 0.033246359993009
1213 => 0.033723101923749
1214 => 0.034610200462508
1215 => 0.034833238112094
1216 => 0.035703768906883
1217 => 0.035185410203961
1218 => 0.035415191903098
1219 => 0.035664652442116
1220 => 0.035784252998129
1221 => 0.035589370310225
1222 => 0.036941662959304
1223 => 0.037055837892062
1224 => 0.037094119759407
1225 => 0.036638134286726
1226 => 0.037043156111195
1227 => 0.036853659812439
1228 => 0.037346676538215
1229 => 0.03742398785597
1230 => 0.037358507920261
1231 => 0.037383047752793
]
'min_raw' => 0.016763793408148
'max_raw' => 0.03742398785597
'avg_raw' => 0.027093890632059
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.016763'
'max' => '$0.037423'
'avg' => '$0.027093'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.002584942930045
'max_diff' => -0.0035712386679949
'year' => 2031
]
6 => [
'items' => [
101 => 0.036229104537575
102 => 0.03616926649433
103 => 0.035353370528778
104 => 0.035685854165539
105 => 0.03506429194297
106 => 0.035261395726547
107 => 0.035348277196274
108 => 0.035302895246969
109 => 0.035704652291507
110 => 0.035363076730108
111 => 0.034461602663353
112 => 0.033559882990592
113 => 0.033548562634625
114 => 0.033311155761461
115 => 0.033139554075401
116 => 0.033172610648033
117 => 0.033289106321625
118 => 0.033132783135075
119 => 0.033166142612712
120 => 0.033720132214527
121 => 0.033831230878298
122 => 0.033453674209754
123 => 0.031937729704384
124 => 0.031565713120308
125 => 0.031833111263532
126 => 0.031705312173717
127 => 0.025588661422348
128 => 0.027025677786819
129 => 0.026171851459515
130 => 0.026565333913797
131 => 0.025693798330875
201 => 0.026109740792139
202 => 0.02603293140733
203 => 0.028343611196994
204 => 0.028307533110315
205 => 0.028324801781198
206 => 0.027500523126641
207 => 0.028813621404955
208 => 0.029460500834339
209 => 0.029340780668099
210 => 0.029370911654672
211 => 0.028853161476613
212 => 0.028329814734668
213 => 0.027749342655364
214 => 0.028827788030193
215 => 0.028707883314188
216 => 0.028982901592347
217 => 0.029682350506791
218 => 0.029785347016391
219 => 0.029923775369781
220 => 0.029874158659092
221 => 0.031056230004115
222 => 0.030913073364675
223 => 0.03125803967675
224 => 0.030548417800155
225 => 0.029745413288861
226 => 0.029898038194262
227 => 0.02988333918854
228 => 0.029696203974964
229 => 0.029527266671528
301 => 0.029246033659097
302 => 0.030135896525083
303 => 0.030099769717804
304 => 0.030684620734826
305 => 0.030581242636627
306 => 0.029890858395948
307 => 0.029915515604166
308 => 0.03008134717928
309 => 0.030655292154181
310 => 0.030825678099886
311 => 0.030746748541129
312 => 0.03093356895218
313 => 0.031081224187793
314 => 0.030952112176433
315 => 0.032780065984155
316 => 0.032020972118694
317 => 0.032390949186979
318 => 0.032479186537733
319 => 0.032253168419207
320 => 0.032302183656013
321 => 0.032376428383922
322 => 0.032827227833176
323 => 0.034010256027891
324 => 0.034534211162185
325 => 0.0361105560352
326 => 0.03449070398209
327 => 0.034394588664872
328 => 0.034678535977557
329 => 0.035604017291067
330 => 0.036354032969628
331 => 0.036602856439649
401 => 0.03663574256884
402 => 0.037102551940071
403 => 0.037370118366181
404 => 0.037045869004098
405 => 0.036771101620056
406 => 0.035786918955801
407 => 0.035900840779029
408 => 0.036685649170233
409 => 0.037794237247793
410 => 0.038745521147271
411 => 0.038412414681265
412 => 0.040953781880373
413 => 0.041205748057611
414 => 0.041170934478958
415 => 0.0417449509283
416 => 0.040605645172774
417 => 0.040118569889277
418 => 0.036830509447229
419 => 0.037754320313202
420 => 0.039097133660403
421 => 0.03891940727861
422 => 0.037944220332368
423 => 0.038744781380525
424 => 0.038480090862146
425 => 0.03827131846828
426 => 0.039227745277098
427 => 0.038176114712955
428 => 0.039086642841071
429 => 0.037918881098555
430 => 0.038413936283543
501 => 0.038132919017419
502 => 0.038314771628782
503 => 0.037251664978613
504 => 0.037825291521589
505 => 0.037227800228516
506 => 0.037227516939847
507 => 0.037214327286437
508 => 0.037917273143055
509 => 0.037940196182203
510 => 0.037420718132069
511 => 0.037345853229273
512 => 0.037622668013196
513 => 0.037298590399129
514 => 0.037450224275031
515 => 0.037303183234758
516 => 0.037270081199435
517 => 0.03700631855013
518 => 0.036892682348505
519 => 0.036937242031206
520 => 0.036785136862055
521 => 0.036693487995757
522 => 0.037196096020161
523 => 0.036927572827872
524 => 0.037154940989778
525 => 0.036895826273137
526 => 0.035997621774348
527 => 0.035481054868754
528 => 0.033784429834143
529 => 0.034265590589302
530 => 0.034584600667769
531 => 0.034479167838739
601 => 0.034705678352585
602 => 0.034719584258493
603 => 0.03464594338144
604 => 0.034560676679794
605 => 0.034519173564977
606 => 0.034828503779959
607 => 0.035008080381332
608 => 0.034616617596948
609 => 0.034524903343713
610 => 0.034920693831978
611 => 0.03516212580118
612 => 0.036944723812858
613 => 0.036812663194437
614 => 0.037144109431086
615 => 0.037106793671296
616 => 0.037454202130831
617 => 0.038022068136399
618 => 0.036867437769246
619 => 0.037067841676869
620 => 0.037018707266722
621 => 0.037555143872976
622 => 0.037556818569507
623 => 0.037235198027062
624 => 0.037409553740818
625 => 0.037312233164598
626 => 0.037488104599493
627 => 0.036810899444365
628 => 0.037635662223532
629 => 0.03810324957278
630 => 0.038109742023578
701 => 0.038331374716119
702 => 0.038556566367841
703 => 0.038988802133261
704 => 0.038544511546939
705 => 0.037745276032964
706 => 0.037802978255558
707 => 0.037334386766143
708 => 0.037342263873738
709 => 0.037300215256056
710 => 0.037426406322993
711 => 0.036838591287218
712 => 0.036976550301206
713 => 0.036783406873736
714 => 0.037067421820778
715 => 0.036761868687113
716 => 0.037018683572622
717 => 0.037129516363659
718 => 0.037538491748646
719 => 0.036701462690223
720 => 0.034994703778212
721 => 0.035353485193968
722 => 0.034822819298393
723 => 0.034871934447416
724 => 0.034971154865061
725 => 0.034649549028574
726 => 0.034710901287211
727 => 0.034708709352803
728 => 0.034689820446256
729 => 0.034606158347179
730 => 0.034484831751476
731 => 0.034968159566401
801 => 0.035050286380418
802 => 0.035232844114616
803 => 0.035776012101498
804 => 0.035721736810825
805 => 0.035810262061772
806 => 0.035617011936003
807 => 0.034880898766496
808 => 0.034920873253147
809 => 0.034422390764055
810 => 0.035220096796629
811 => 0.03503118947891
812 => 0.034909399702262
813 => 0.034876168233329
814 => 0.03542068262859
815 => 0.035583609869869
816 => 0.035482084546744
817 => 0.035273853147048
818 => 0.035673718992551
819 => 0.035780706223822
820 => 0.035804656719366
821 => 0.036513142330927
822 => 0.035844253194759
823 => 0.036005261458021
824 => 0.037261401966153
825 => 0.036122255860818
826 => 0.036725686958804
827 => 0.036696152146661
828 => 0.037004847077396
829 => 0.036670830152211
830 => 0.036674970692315
831 => 0.036949070878001
901 => 0.036564146601434
902 => 0.036468833937353
903 => 0.036337160174568
904 => 0.036624665018421
905 => 0.036797011169585
906 => 0.038185994573665
907 => 0.039083341198039
908 => 0.039044385014492
909 => 0.039400371609196
910 => 0.039239996387818
911 => 0.038722102493144
912 => 0.039606084220921
913 => 0.039326355414886
914 => 0.039349415917785
915 => 0.039348557604715
916 => 0.039534552806412
917 => 0.0394027581598
918 => 0.039142977382885
919 => 0.039315431986062
920 => 0.03982756050385
921 => 0.041417223137086
922 => 0.042306819406874
923 => 0.041363668324635
924 => 0.042014241311867
925 => 0.041624129342385
926 => 0.041553234392705
927 => 0.041961842305652
928 => 0.042371165432661
929 => 0.042345093319023
930 => 0.04204794574779
1001 => 0.041880094624641
1002 => 0.043151119563378
1003 => 0.044087589086894
1004 => 0.044023728143561
1005 => 0.044305589578739
1006 => 0.045133143470069
1007 => 0.045208804626649
1008 => 0.045199273059971
1009 => 0.045011738988962
1010 => 0.045826573266428
1011 => 0.046506322356335
1012 => 0.044968330269904
1013 => 0.045553977522622
1014 => 0.045816893442744
1015 => 0.04620293201712
1016 => 0.04685424379967
1017 => 0.047561741147438
1018 => 0.047661789029727
1019 => 0.047590800269511
1020 => 0.047124186750109
1021 => 0.047898338790235
1022 => 0.048351818899242
1023 => 0.048621855926448
1024 => 0.049306624897565
1025 => 0.045818517121959
1026 => 0.04334946106818
1027 => 0.042963882311781
1028 => 0.043747971875054
1029 => 0.043954730039893
1030 => 0.043871386082899
1031 => 0.041092239017615
1101 => 0.04294925067764
1102 => 0.044947239081851
1103 => 0.045023989953521
1104 => 0.046024224724636
1105 => 0.04634994216712
1106 => 0.047155262261636
1107 => 0.047104889270459
1108 => 0.047300971898033
1109 => 0.047255895897631
1110 => 0.04874758179257
1111 => 0.050393132852186
1112 => 0.050336152651524
1113 => 0.050099585217428
1114 => 0.050450928197802
1115 => 0.052149313239295
1116 => 0.05199295316074
1117 => 0.052144843658336
1118 => 0.054147335339043
1119 => 0.056750859375081
1120 => 0.055541261070802
1121 => 0.058165741338552
1122 => 0.059817712549379
1123 => 0.062674625941494
1124 => 0.062316926314206
1125 => 0.063429101732758
1126 => 0.061676569327196
1127 => 0.05765240067879
1128 => 0.057015560586281
1129 => 0.058290530578844
1130 => 0.061424919895807
1201 => 0.058191817504908
1202 => 0.058845869907785
1203 => 0.058657502771756
1204 => 0.058647465487586
1205 => 0.059030547799778
1206 => 0.058474866925714
1207 => 0.056210923079698
1208 => 0.057248475202822
1209 => 0.056847826500739
1210 => 0.05729237610604
1211 => 0.059691426979646
1212 => 0.058630749402195
1213 => 0.0575134117368
1214 => 0.058914801126283
1215 => 0.060699251388735
1216 => 0.060587583698276
1217 => 0.060370901705312
1218 => 0.061592326754548
1219 => 0.063609763091926
1220 => 0.064155068027203
1221 => 0.064557600982156
1222 => 0.064613103475794
1223 => 0.065184813654874
1224 => 0.062110583932448
1225 => 0.066989465453756
1226 => 0.067831913516104
1227 => 0.067673568196277
1228 => 0.068609913761943
1229 => 0.06833441714373
1230 => 0.067935265768034
1231 => 0.069419572656028
]
'min_raw' => 0.025588661422348
'max_raw' => 0.069419572656028
'avg_raw' => 0.047504117039188
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.025588'
'max' => '$0.069419'
'avg' => '$0.0475041'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0088248680141999
'max_diff' => 0.031995584800058
'year' => 2032
]
7 => [
'items' => [
101 => 0.067717934586333
102 => 0.065302673576676
103 => 0.063977613618332
104 => 0.065722559461017
105 => 0.066788136996927
106 => 0.067492415964703
107 => 0.067705530354816
108 => 0.06234922763459
109 => 0.059462477542556
110 => 0.061312851254893
111 => 0.063570434889915
112 => 0.062098042941367
113 => 0.062155757918144
114 => 0.060056513937311
115 => 0.063756171401661
116 => 0.063217162428123
117 => 0.066013541936332
118 => 0.06534616352435
119 => 0.067626502458468
120 => 0.067026012794635
121 => 0.069518611816281
122 => 0.07051297705044
123 => 0.072182671039184
124 => 0.073410904734181
125 => 0.07413214705225
126 => 0.074088846368785
127 => 0.07694676775447
128 => 0.0752615513615
129 => 0.07314452239692
130 => 0.073106232022092
131 => 0.07420267132138
201 => 0.076500507299256
202 => 0.077096302736165
203 => 0.077429271105489
204 => 0.076919318457157
205 => 0.075090136843134
206 => 0.074300305496361
207 => 0.074973264687429
208 => 0.074150293424795
209 => 0.075570972709054
210 => 0.077521868807063
211 => 0.077119016477504
212 => 0.078465691416225
213 => 0.079859358303466
214 => 0.081852364545717
215 => 0.082373410178249
216 => 0.083234678795234
217 => 0.084121207114113
218 => 0.084405936117529
219 => 0.084949572131271
220 => 0.084946706901132
221 => 0.086584990619468
222 => 0.088392068294216
223 => 0.089074198282489
224 => 0.090642718577656
225 => 0.08795668253969
226 => 0.089994071729445
227 => 0.091831847777764
228 => 0.089640775410345
301 => 0.092660658214446
302 => 0.092777913420528
303 => 0.094548327820568
304 => 0.092753673655768
305 => 0.091688013741448
306 => 0.094764533984332
307 => 0.096253165220384
308 => 0.095804777377202
309 => 0.092392523750951
310 => 0.090406445782031
311 => 0.085208496651536
312 => 0.091365691931299
313 => 0.094364682144223
314 => 0.092384757090803
315 => 0.093383316122386
316 => 0.098831130414847
317 => 0.10090530537756
318 => 0.10047389148489
319 => 0.10054679333108
320 => 0.10166598049202
321 => 0.10662907271127
322 => 0.10365507280992
323 => 0.10592858430085
324 => 0.10713444659788
325 => 0.10825451870281
326 => 0.10550397561554
327 => 0.10192555947252
328 => 0.10079212486833
329 => 0.092187892564298
330 => 0.091740004906586
331 => 0.091488591991928
401 => 0.089903469128068
402 => 0.088657996758769
403 => 0.087667550889277
404 => 0.085068325155558
405 => 0.085945487539617
406 => 0.08180286422064
407 => 0.084453167814565
408 => 0.077841440970342
409 => 0.083347883554735
410 => 0.080350977203272
411 => 0.082363319216742
412 => 0.082356298345031
413 => 0.078650938684617
414 => 0.076513764561373
415 => 0.077875655092765
416 => 0.079335709849422
417 => 0.079572598821476
418 => 0.081465597924811
419 => 0.081993893284672
420 => 0.080393133680541
421 => 0.077704427627462
422 => 0.078328952720736
423 => 0.076501108580291
424 => 0.073297882031171
425 => 0.075598495261719
426 => 0.076384025769452
427 => 0.076730960792352
428 => 0.073580955374347
429 => 0.072591155282065
430 => 0.072064194018162
501 => 0.077297801484071
502 => 0.077584510315255
503 => 0.076117667398377
504 => 0.082747936474417
505 => 0.081247302381661
506 => 0.082923878327549
507 => 0.078272283614484
508 => 0.078449980796726
509 => 0.076247841314449
510 => 0.077480892277511
511 => 0.076609411599906
512 => 0.077381273944942
513 => 0.077843925052049
514 => 0.080045703184906
515 => 0.083373024324248
516 => 0.079716830954688
517 => 0.078123775145917
518 => 0.079112098009992
519 => 0.081744132036689
520 => 0.085731798318478
521 => 0.083371019620396
522 => 0.084418693117983
523 => 0.084647563169456
524 => 0.082906812358268
525 => 0.085795982283867
526 => 0.087344311918571
527 => 0.088932577742103
528 => 0.090311624454478
529 => 0.08829818944547
530 => 0.090452853519679
531 => 0.088716574625277
601 => 0.087158952963785
602 => 0.087161315232887
603 => 0.086184196411412
604 => 0.084290905569908
605 => 0.083941753690442
606 => 0.085758085860446
607 => 0.087214612253493
608 => 0.087334578743516
609 => 0.088140986593734
610 => 0.088618210452833
611 => 0.093295653026371
612 => 0.095176959123282
613 => 0.097477384607284
614 => 0.098373529978179
615 => 0.10107060625868
616 => 0.098892498116349
617 => 0.098421250718814
618 => 0.091879025869256
619 => 0.092950314821869
620 => 0.094665551799011
621 => 0.091907309495248
622 => 0.093656779377123
623 => 0.094002161790644
624 => 0.091813585477221
625 => 0.09298259864902
626 => 0.089878046252971
627 => 0.083440695082719
628 => 0.085803148895934
629 => 0.087542710095816
630 => 0.085060141777236
701 => 0.089510049399629
702 => 0.086910505231366
703 => 0.086086574530152
704 => 0.082872127112214
705 => 0.084389222558053
706 => 0.086441115871265
707 => 0.085173284361901
708 => 0.087804225109689
709 => 0.091530338854826
710 => 0.09418578940352
711 => 0.094389641923788
712 => 0.092682365122347
713 => 0.09541828709235
714 => 0.095438215297028
715 => 0.092352084138295
716 => 0.09046184598722
717 => 0.090032379902201
718 => 0.091105270384365
719 => 0.09240795749622
720 => 0.094461931992254
721 => 0.095703105762707
722 => 0.098939428688345
723 => 0.099815084879373
724 => 0.10077716555094
725 => 0.10206280202285
726 => 0.10360653823781
727 => 0.10022893128444
728 => 0.10036312990535
729 => 0.097217949076522
730 => 0.093856872296369
731 => 0.09640751060837
801 => 0.099742130904116
802 => 0.098977165323844
803 => 0.098891091069234
804 => 0.09903584409048
805 => 0.098459085024395
806 => 0.095850425144182
807 => 0.094540372483413
808 => 0.096230674645883
809 => 0.097128995018541
810 => 0.098522211574765
811 => 0.098350468226977
812 => 0.10193924445528
813 => 0.10333373437863
814 => 0.10297696418265
815 => 0.10304261848486
816 => 0.10556727588158
817 => 0.10837521414212
818 => 0.11100521886321
819 => 0.11368057262683
820 => 0.11045532924395
821 => 0.10881774955948
822 => 0.11050731378891
823 => 0.10961080722644
824 => 0.11476239985551
825 => 0.1151190849519
826 => 0.12027030506219
827 => 0.12515942634273
828 => 0.12208865686413
829 => 0.12498425417196
830 => 0.12811607874189
831 => 0.13415787645751
901 => 0.13212321153989
902 => 0.13056469010026
903 => 0.12909189487054
904 => 0.13215654794394
905 => 0.13609917516385
906 => 0.136948379305
907 => 0.13832441443462
908 => 0.1368776817494
909 => 0.13862011191637
910 => 0.1447716560684
911 => 0.14310945453734
912 => 0.14074886115101
913 => 0.14560491445845
914 => 0.14736230127299
915 => 0.15969656228803
916 => 0.17526907632242
917 => 0.16882195325754
918 => 0.16482001592381
919 => 0.16576056612446
920 => 0.17144712108696
921 => 0.17327346205868
922 => 0.16830883772005
923 => 0.17006242696658
924 => 0.17972487612404
925 => 0.18490847008853
926 => 0.1778684532352
927 => 0.15844532594798
928 => 0.14053631554438
929 => 0.14528659155666
930 => 0.1447480576751
1001 => 0.1551291538797
1002 => 0.14306981158055
1003 => 0.14327285997696
1004 => 0.15386862625731
1005 => 0.15104185747113
1006 => 0.14646285406272
1007 => 0.14056974733669
1008 => 0.12967579450721
1009 => 0.1200267166858
1010 => 0.1389507803435
1011 => 0.13813474030741
1012 => 0.13695299340478
1013 => 0.1395828432582
1014 => 0.15235264765052
1015 => 0.15205826232746
1016 => 0.15018553309882
1017 => 0.15160598171327
1018 => 0.14621384255284
1019 => 0.14760351959121
1020 => 0.14053347866563
1021 => 0.14372943243498
1022 => 0.14645302957794
1023 => 0.14699983202794
1024 => 0.1482318058682
1025 => 0.13770472428953
1026 => 0.14243107485948
1027 => 0.14520736302016
1028 => 0.13266399210796
1029 => 0.14495942090724
1030 => 0.13752147121989
1031 => 0.13499691938174
1101 => 0.13839589584739
1102 => 0.13707131141311
1103 => 0.13593251149873
1104 => 0.13529704157944
1105 => 0.13779287476447
1106 => 0.13767644116322
1107 => 0.13359277365217
1108 => 0.12826579585559
1109 => 0.13005370445621
1110 => 0.12940414049987
1111 => 0.12705003692669
1112 => 0.12863641849946
1113 => 0.12165079690229
1114 => 0.10963239802538
1115 => 0.11757212045698
1116 => 0.11726644978012
1117 => 0.11711231676379
1118 => 0.12307879873333
1119 => 0.12250525916212
1120 => 0.12146427922425
1121 => 0.12703091851378
1122 => 0.12499902029124
1123 => 0.13126085183768
1124 => 0.13538529908404
1125 => 0.13433920585048
1126 => 0.13821826842086
1127 => 0.1300948942593
1128 => 0.13279315330257
1129 => 0.13334926075176
1130 => 0.12696222704903
1201 => 0.12259909732905
1202 => 0.12230812632005
1203 => 0.1147430606619
1204 => 0.11878425767341
1205 => 0.12234034380744
1206 => 0.12063725451267
1207 => 0.12009810732029
1208 => 0.12285249339939
1209 => 0.12306653278746
1210 => 0.11818641205664
1211 => 0.1192011436899
1212 => 0.1234327432857
1213 => 0.11909451823725
1214 => 0.11066605561316
1215 => 0.10857568034977
1216 => 0.10829678575638
1217 => 0.10262752225232
1218 => 0.10871536922039
1219 => 0.10605786087467
1220 => 0.11445289789696
1221 => 0.10965769777332
1222 => 0.10945098628003
1223 => 0.10913851153995
1224 => 0.10425874224768
1225 => 0.10532710159717
1226 => 0.1088784907906
1227 => 0.11014566646408
1228 => 0.11001348965967
1229 => 0.1088610870461
1230 => 0.10938865106133
1231 => 0.10768918355277
]
'min_raw' => 0.059462477542556
'max_raw' => 0.18490847008853
'avg_raw' => 0.12218547381554
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.059462'
'max' => '$0.1849084'
'avg' => '$0.122185'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.033873816120209
'max_diff' => 0.1154888974325
'year' => 2033
]
8 => [
'items' => [
101 => 0.10708906620414
102 => 0.10519493077657
103 => 0.10241107496632
104 => 0.10279818719112
105 => 0.09728264039551
106 => 0.09427747776904
107 => 0.09344568836144
108 => 0.092333384802724
109 => 0.093571326008123
110 => 0.09726701554443
111 => 0.092809229879371
112 => 0.085166669033935
113 => 0.085625999963035
114 => 0.086657980184148
115 => 0.084734891869337
116 => 0.082914850171937
117 => 0.084497228763176
118 => 0.081258974982865
119 => 0.087049307682558
120 => 0.086892695410251
121 => 0.089050973368925
122 => 0.090400588868805
123 => 0.087290162084787
124 => 0.086507898160095
125 => 0.086953511243513
126 => 0.079588519590026
127 => 0.088449096423466
128 => 0.088525723059865
129 => 0.087869599277637
130 => 0.092587582901825
131 => 0.10254399992486
201 => 0.098797995344846
202 => 0.097347429147878
203 => 0.094589901747083
204 => 0.098264143282866
205 => 0.097982018860015
206 => 0.096706145227371
207 => 0.09593449287338
208 => 0.097356285995761
209 => 0.095758316971229
210 => 0.095471277825171
211 => 0.09373213290173
212 => 0.093111337290114
213 => 0.092651724933858
214 => 0.092145736890198
215 => 0.093261820430147
216 => 0.090732628295606
217 => 0.08768267052111
218 => 0.087429099533162
219 => 0.088129231325078
220 => 0.087819475125837
221 => 0.087427616539651
222 => 0.086679451782288
223 => 0.086457487280789
224 => 0.087178764228793
225 => 0.086364484607555
226 => 0.087565998544799
227 => 0.087239253236667
228 => 0.085414080506444
301 => 0.083139239519093
302 => 0.083118988662665
303 => 0.082628877903427
304 => 0.082004648162892
305 => 0.081831001729517
306 => 0.084363965251835
307 => 0.089607123937814
308 => 0.088577766429602
309 => 0.089321582722085
310 => 0.092980422699061
311 => 0.094143457902585
312 => 0.093317963063122
313 => 0.092187974812562
314 => 0.092237688560799
315 => 0.096099200483671
316 => 0.096340038245673
317 => 0.096948557573047
318 => 0.097730676876264
319 => 0.09345116136244
320 => 0.092036123764948
321 => 0.09136560044796
322 => 0.089300648156816
323 => 0.091527522167185
324 => 0.090230018045596
325 => 0.09040509568065
326 => 0.090291076141142
327 => 0.090353338519681
328 => 0.087047689166561
329 => 0.088252094051023
330 => 0.086249537332436
331 => 0.083568338683789
401 => 0.08355935036577
402 => 0.084215569936574
403 => 0.083825224857985
404 => 0.082774816288192
405 => 0.082924021867742
406 => 0.081616823989391
407 => 0.083082739357756
408 => 0.083124776565223
409 => 0.082560319299453
410 => 0.084818764181758
411 => 0.085744050892754
412 => 0.085372513028578
413 => 0.085717982805759
414 => 0.088620540881339
415 => 0.089093784495146
416 => 0.08930396804768
417 => 0.089022349931269
418 => 0.08577103623908
419 => 0.085915245826982
420 => 0.084857131555522
421 => 0.083963136497474
422 => 0.08399889161141
423 => 0.084458521282469
424 => 0.086465751012909
425 => 0.090689847647965
426 => 0.090850149027491
427 => 0.091044438975798
428 => 0.090254164113731
429 => 0.090015809653419
430 => 0.090330260711076
501 => 0.091916609314753
502 => 0.095997128612856
503 => 0.094554800564186
504 => 0.093382165409444
505 => 0.09441088258032
506 => 0.094252519635216
507 => 0.092915777007697
508 => 0.092878259094302
509 => 0.090312622609623
510 => 0.089364165217953
511 => 0.088571563230669
512 => 0.087706062551953
513 => 0.087192964737765
514 => 0.087981316179144
515 => 0.088161621481287
516 => 0.086437877276687
517 => 0.086202937311053
518 => 0.087610584038133
519 => 0.086991131195905
520 => 0.087628253805828
521 => 0.087776071716466
522 => 0.087752269628318
523 => 0.087105489717326
524 => 0.087517727945338
525 => 0.086542661641959
526 => 0.085482423487259
527 => 0.084806057599731
528 => 0.084215838655946
529 => 0.084543326429684
530 => 0.083375892313214
531 => 0.083002406643548
601 => 0.087378070909341
602 => 0.090610421148801
603 => 0.090563421496168
604 => 0.090277323198094
605 => 0.089852239160077
606 => 0.091885511769687
607 => 0.091177160249068
608 => 0.091692545165069
609 => 0.091823732256828
610 => 0.092220796072558
611 => 0.092362712257893
612 => 0.091933742978682
613 => 0.090494069683463
614 => 0.086906540711807
615 => 0.085236536291151
616 => 0.084685407016212
617 => 0.084705439518612
618 => 0.084152853673376
619 => 0.084315614969958
620 => 0.084096251936668
621 => 0.083680831421234
622 => 0.08451767538348
623 => 0.084614113854388
624 => 0.084418784474059
625 => 0.084464791614154
626 => 0.082847547771299
627 => 0.082970503308202
628 => 0.082285871254291
629 => 0.082157510997545
630 => 0.08042682078299
701 => 0.077360652200347
702 => 0.079059607235317
703 => 0.077007508462302
704 => 0.076230347562591
705 => 0.079909306388507
706 => 0.079540040960819
707 => 0.07890801906444
708 => 0.077973126954791
709 => 0.077626366377276
710 => 0.075519558879355
711 => 0.075395077452997
712 => 0.076439268137554
713 => 0.075957410065039
714 => 0.075280698837305
715 => 0.072829719367568
716 => 0.07007400695217
717 => 0.0701571845882
718 => 0.071033725435686
719 => 0.07358238616739
720 => 0.072586580327235
721 => 0.071864111764647
722 => 0.071728815120199
723 => 0.07342233588817
724 => 0.075819022578419
725 => 0.076943494350642
726 => 0.075829176975085
727 => 0.074549109173153
728 => 0.074627020968994
729 => 0.075145333241621
730 => 0.075199800532933
731 => 0.074366607986972
801 => 0.074601146808207
802 => 0.074244860892072
803 => 0.072058334882404
804 => 0.072018787560438
805 => 0.07148217881517
806 => 0.071465930515625
807 => 0.070553025176601
808 => 0.070425303409054
809 => 0.068612674449028
810 => 0.069805752319663
811 => 0.069005498323441
812 => 0.067799326790299
813 => 0.067591382363352
814 => 0.067585131302777
815 => 0.068823599772294
816 => 0.069791280094525
817 => 0.069019419084323
818 => 0.068843681294197
819 => 0.070720101125192
820 => 0.070481309597751
821 => 0.070274517675028
822 => 0.075604425572397
823 => 0.07138538757373
824 => 0.069545646192041
825 => 0.067268616874788
826 => 0.068010029102264
827 => 0.068166255552205
828 => 0.062690410509596
829 => 0.060468860857783
830 => 0.059706508734613
831 => 0.059267764309652
901 => 0.059467705653513
902 => 0.057468050405096
903 => 0.058811851803277
904 => 0.057080319384799
905 => 0.056790022339947
906 => 0.059886216799892
907 => 0.060317034171288
908 => 0.058479033420448
909 => 0.059659327447779
910 => 0.059231336426155
911 => 0.057110001538314
912 => 0.057028982149082
913 => 0.055964570870891
914 => 0.054298973331158
915 => 0.053537750561552
916 => 0.053141299133902
917 => 0.053304882719635
918 => 0.053222169852948
919 => 0.052682412448678
920 => 0.053253108115543
921 => 0.051795216514433
922 => 0.05121467233184
923 => 0.050952453993085
924 => 0.04965849128399
925 => 0.051717761381989
926 => 0.052123463533296
927 => 0.052529965043169
928 => 0.056068283156243
929 => 0.055891518782497
930 => 0.05748938263342
1001 => 0.057427292582456
1002 => 0.056971555928495
1003 => 0.055048877950473
1004 => 0.055815223124072
1005 => 0.053456531796214
1006 => 0.055223823714466
1007 => 0.054417305486851
1008 => 0.054951139090425
1009 => 0.053991258137363
1010 => 0.054522495889301
1011 => 0.052219670563928
1012 => 0.050069324676722
1013 => 0.050934686634244
1014 => 0.051875434048213
1015 => 0.053915214139682
1016 => 0.052700337945024
1017 => 0.053137253364178
1018 => 0.051673659848769
1019 => 0.048653848371662
1020 => 0.048670940176672
1021 => 0.048206407971088
1022 => 0.047804984322651
1023 => 0.052839881090218
1024 => 0.052213712087232
1025 => 0.051215993731946
1026 => 0.052551479398247
1027 => 0.052904603005425
1028 => 0.052914655938088
1029 => 0.053888991806347
1030 => 0.054408995033896
1031 => 0.054500647856575
1101 => 0.0560337863972
1102 => 0.056547674213431
1103 => 0.058664305400362
1104 => 0.054364876393099
1105 => 0.054276332482012
1106 => 0.052570272420311
1107 => 0.051488262157438
1108 => 0.052644358588711
1109 => 0.053668502203917
1110 => 0.052602095417225
1111 => 0.052741345630491
1112 => 0.051309781647993
1113 => 0.05182149841039
1114 => 0.052262257821858
1115 => 0.052018896381486
1116 => 0.051654572526422
1117 => 0.05358453410665
1118 => 0.053475638110713
1119 => 0.055272862703846
1120 => 0.056673927794957
1121 => 0.05918488690857
1122 => 0.056564570174256
1123 => 0.056469075417642
1124 => 0.057402551981385
1125 => 0.056547531303033
1126 => 0.057087874857441
1127 => 0.059097829208276
1128 => 0.059140296376465
1129 => 0.058428916593451
1130 => 0.058385629069004
1201 => 0.058522257337974
1202 => 0.059322493376837
1203 => 0.059042866316089
1204 => 0.059366457830078
1205 => 0.05977111397333
1206 => 0.061444943352473
1207 => 0.061848497949062
1208 => 0.06086806949842
1209 => 0.060956591210121
1210 => 0.060589884056219
1211 => 0.060235649540376
1212 => 0.061031917000194
1213 => 0.062487111433687
1214 => 0.062478058744641
1215 => 0.062815635568274
1216 => 0.06302594313276
1217 => 0.06212314911144
1218 => 0.061535463400218
1219 => 0.061760819497314
1220 => 0.062121168804188
1221 => 0.061643963073761
1222 => 0.058698428242369
1223 => 0.05959191534872
1224 => 0.059443195404936
1225 => 0.059231400120024
1226 => 0.060129808314591
1227 => 0.060043154652544
1228 => 0.057447541050269
1229 => 0.057613703811639
1230 => 0.057457645958136
1231 => 0.057961900809237
]
'min_raw' => 0.047804984322651
'max_raw' => 0.10708906620414
'avg_raw' => 0.077447025263393
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0478049'
'max' => '$0.107089'
'avg' => '$0.077447'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.011657493219905
'max_diff' => -0.077819403884392
'year' => 2034
]
9 => [
'items' => [
101 => 0.05652029988625
102 => 0.05696372662083
103 => 0.057241839711892
104 => 0.057405650459092
105 => 0.057997447204061
106 => 0.057928006686532
107 => 0.057993130683993
108 => 0.058870609028234
109 => 0.0633085933792
110 => 0.063550143075563
111 => 0.062360664028023
112 => 0.062835837446078
113 => 0.061923608392415
114 => 0.062535993867543
115 => 0.06295497245672
116 => 0.061061688777175
117 => 0.060949580804982
118 => 0.060033586657516
119 => 0.060525790027804
120 => 0.059742659075002
121 => 0.059934812018062
122 => 0.059397535637674
123 => 0.060364526151712
124 => 0.061445771801541
125 => 0.061718937152372
126 => 0.061000356719412
127 => 0.060480057129191
128 => 0.059566582446103
129 => 0.06108571120219
130 => 0.06152995074508
131 => 0.06108337780099
201 => 0.060979897092032
202 => 0.060783801335544
203 => 0.061021499733776
204 => 0.061527531321124
205 => 0.061288896169467
206 => 0.061446518891346
207 => 0.060845823615386
208 => 0.062123447973827
209 => 0.064152622932077
210 => 0.064159147061371
211 => 0.063920510623382
212 => 0.06382286573445
213 => 0.064067721201497
214 => 0.064200545247873
215 => 0.06499236292949
216 => 0.065842014849273
217 => 0.069806969626725
218 => 0.068693626191239
219 => 0.07221156994601
220 => 0.074993806708208
221 => 0.075828077860723
222 => 0.0750605876559
223 => 0.072435045124208
224 => 0.072306223481792
225 => 0.076229892499604
226 => 0.075121276286646
227 => 0.074989409915702
228 => 0.07358657452061
301 => 0.074415823983653
302 => 0.07423445496173
303 => 0.073948155087748
304 => 0.075530305297216
305 => 0.078491949249817
306 => 0.078030349265683
307 => 0.077685786290534
308 => 0.076176011634206
309 => 0.077085233197693
310 => 0.076761476813927
311 => 0.078152539699464
312 => 0.077328504861888
313 => 0.075112877428479
314 => 0.075465723400053
315 => 0.075412391441277
316 => 0.07650995937374
317 => 0.076180496723725
318 => 0.075348058571175
319 => 0.078481826672759
320 => 0.078278337203176
321 => 0.078566838746875
322 => 0.078693846048618
323 => 0.080601315468865
324 => 0.081382744658126
325 => 0.081560142764932
326 => 0.082302440056828
327 => 0.081541673732092
328 => 0.084585281448232
329 => 0.08660910298003
330 => 0.088959875834118
331 => 0.092394986802117
401 => 0.093686620302638
402 => 0.093453298271732
403 => 0.096057760203289
404 => 0.10073792040036
405 => 0.094399292458461
406 => 0.10107388307267
407 => 0.098960784746067
408 => 0.093950666626702
409 => 0.093628074085228
410 => 0.097020984244329
411 => 0.10454613242171
412 => 0.1026611681528
413 => 0.10454921554799
414 => 0.10234670797196
415 => 0.10223733490662
416 => 0.10444224467111
417 => 0.10959413651921
418 => 0.10714666581796
419 => 0.10363761642327
420 => 0.10622864388945
421 => 0.10398405610997
422 => 0.098926371622252
423 => 0.10265972675615
424 => 0.10016333849795
425 => 0.10089191730699
426 => 0.10613895411601
427 => 0.10550761676521
428 => 0.10632462575741
429 => 0.10488262627103
430 => 0.1035355713683
501 => 0.10102119335875
502 => 0.10027680998746
503 => 0.10048253077117
504 => 0.10027670804245
505 => 0.098869936654435
506 => 0.098566144507132
507 => 0.098059810952188
508 => 0.098216744893038
509 => 0.097264689676638
510 => 0.09906141457463
511 => 0.099394902548383
512 => 0.10070240909472
513 => 0.10083815876185
514 => 0.1044795458822
515 => 0.10247393104734
516 => 0.10381947063502
517 => 0.10369911290959
518 => 0.094059251078356
519 => 0.095387538985479
520 => 0.097453938129254
521 => 0.096523028115921
522 => 0.095206939156464
523 => 0.094144126757476
524 => 0.092533857294863
525 => 0.094800280641005
526 => 0.09778038633393
527 => 0.10091373916014
528 => 0.10467825727543
529 => 0.10383806065592
530 => 0.10084336411252
531 => 0.10097770401183
601 => 0.10180814040856
602 => 0.10073264982169
603 => 0.10041546665156
604 => 0.10176456431166
605 => 0.1017738548058
606 => 0.10053637290823
607 => 0.099161138235873
608 => 0.099155375952382
609 => 0.098910666225628
610 => 0.10239024128873
611 => 0.10430365574871
612 => 0.10452302563293
613 => 0.10428889040766
614 => 0.10437899976337
615 => 0.10326562604831
616 => 0.10581046820021
617 => 0.1081458670176
618 => 0.10751993024602
619 => 0.10658156204327
620 => 0.10583410657184
621 => 0.10734385349143
622 => 0.10727662683766
623 => 0.10812546934628
624 => 0.10808696094694
625 => 0.10780152713787
626 => 0.10751994043976
627 => 0.10863639986866
628 => 0.10831487748293
629 => 0.10799285568412
630 => 0.10734699166754
701 => 0.10743477531406
702 => 0.10649656913381
703 => 0.10606251202544
704 => 0.099535334564068
705 => 0.097791059464714
706 => 0.098339843918964
707 => 0.098520518010486
708 => 0.097761407251897
709 => 0.098849777080159
710 => 0.098680155795293
711 => 0.099340052989573
712 => 0.098927777871992
713 => 0.098944697786625
714 => 0.10015711100111
715 => 0.10050907971524
716 => 0.1003300655865
717 => 0.10045544094603
718 => 0.10334466318874
719 => 0.10293390817795
720 => 0.10271570276512
721 => 0.10277614715572
722 => 0.10351440538435
723 => 0.10372107738097
724 => 0.10284539360873
725 => 0.10325837113799
726 => 0.10501677704289
727 => 0.10563211959246
728 => 0.10759599762948
729 => 0.1067617073342
730 => 0.10829308327842
731 => 0.11300001084642
801 => 0.11676023028235
802 => 0.11330217709142
803 => 0.12020734122445
804 => 0.12558400198897
805 => 0.12537763679353
806 => 0.12444009162484
807 => 0.11831890629035
808 => 0.11268610028382
809 => 0.11739818168986
810 => 0.11741019375441
811 => 0.11700542178269
812 => 0.11449141782989
813 => 0.11691793989455
814 => 0.11711054840421
815 => 0.11700273885754
816 => 0.11507525792132
817 => 0.11213235078973
818 => 0.11270738779892
819 => 0.11364931015041
820 => 0.11186605463346
821 => 0.11129619644453
822 => 0.1123556712377
823 => 0.11576951977165
824 => 0.11512415148138
825 => 0.11510729830719
826 => 0.11786845753168
827 => 0.1158920634224
828 => 0.11271464085713
829 => 0.11191229975435
830 => 0.10906452936119
831 => 0.11103149451515
901 => 0.11110228208932
902 => 0.1100249953764
903 => 0.11280205673662
904 => 0.11277646562729
905 => 0.11541287207779
906 => 0.1204526910221
907 => 0.11896216856584
908 => 0.11722885311759
909 => 0.11741731256644
910 => 0.11948424756275
911 => 0.11823453148045
912 => 0.11868393809697
913 => 0.11948356733202
914 => 0.11996600350319
915 => 0.11734789742568
916 => 0.11673749166052
917 => 0.11548881568831
918 => 0.11516305943481
919 => 0.11618007995969
920 => 0.11591213098325
921 => 0.11109633266782
922 => 0.11059305494901
923 => 0.11060848975813
924 => 0.10934297400463
925 => 0.10741275872195
926 => 0.11248524923765
927 => 0.11207785725978
928 => 0.11162812804585
929 => 0.11168321730844
930 => 0.11388501351864
1001 => 0.11260786052335
1002 => 0.1160033810826
1003 => 0.11530536413431
1004 => 0.11458944568515
1005 => 0.11449048394807
1006 => 0.11421491642444
1007 => 0.11326989285174
1008 => 0.1121287201006
1009 => 0.1113752190036
1010 => 0.10273775225902
1011 => 0.10434081584498
1012 => 0.10618499437679
1013 => 0.10682159741588
1014 => 0.10573264386592
1015 => 0.11331289137514
1016 => 0.11469787564016
1017 => 0.11050266796113
1018 => 0.10971791589359
1019 => 0.11336433959005
1020 => 0.11116510034391
1021 => 0.11215541764179
1022 => 0.11001489331839
1023 => 0.11436427348779
1024 => 0.11433113849811
1025 => 0.112639131377
1026 => 0.11406920420939
1027 => 0.1138206938624
1028 => 0.1119104219899
1029 => 0.11442483251344
1030 => 0.11442607962969
1031 => 0.11279755956303
1101 => 0.11089580465406
1102 => 0.11055581579378
1103 => 0.11029967985864
1104 => 0.11209242390316
1105 => 0.11369979260771
1106 => 0.11669070726638
1107 => 0.11744269427395
1108 => 0.1203777496271
1109 => 0.11863006706955
1110 => 0.11940479211103
1111 => 0.12024586573511
1112 => 0.12064910735995
1113 => 0.11999204677141
1114 => 0.12455139585184
1115 => 0.12493634460907
1116 => 0.12506541459758
1117 => 0.12352802774055
1118 => 0.12489358709947
1119 => 0.124254687098
1120 => 0.12591692741028
1121 => 0.12617758791579
1122 => 0.12595681774089
1123 => 0.12603955549959
1124 => 0.12214895538374
1125 => 0.12194720724318
1126 => 0.11919635703128
1127 => 0.12031734882589
1128 => 0.11822170839641
1129 => 0.11888625756409
1130 => 0.11917918450514
1201 => 0.11902617609459
1202 => 0.12038072802003
1203 => 0.11922908216673
1204 => 0.11618969941176
1205 => 0.11314948857899
1206 => 0.11311132120848
1207 => 0.11231088736039
1208 => 0.111732320295
1209 => 0.11184377283756
1210 => 0.11223654613454
1211 => 0.11170949159695
1212 => 0.11182196540489
1213 => 0.11368978002573
1214 => 0.11406435692729
1215 => 0.11279139825913
1216 => 0.10768028551941
1217 => 0.10642600563283
1218 => 0.10732755714185
1219 => 0.10689667358789
1220 => 0.086273958528735
1221 => 0.091118959530828
1222 => 0.088240224456072
1223 => 0.089566878022752
1224 => 0.086628434956259
1225 => 0.088030814004586
1226 => 0.087771845801043
1227 => 0.095562464038407
1228 => 0.095440824250275
1229 => 0.095499046779819
1230 => 0.092719933746682
1231 => 0.097147136269611
]
'min_raw' => 0.05652029988625
'max_raw' => 0.12617758791579
'avg_raw' => 0.091348943901023
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.05652'
'max' => '$0.126177'
'avg' => '$0.091348'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0087153155635989
'max_diff' => 0.01908852171166
'year' => 2035
]
10 => [
'items' => [
101 => 0.099328135429459
102 => 0.098924490530384
103 => 0.099026079255294
104 => 0.097280448381806
105 => 0.095515948302435
106 => 0.093558846159797
107 => 0.097194900035682
108 => 0.096790632914193
109 => 0.09771787624017
110 => 0.10007611708918
111 => 0.10042337701228
112 => 0.1008900978705
113 => 0.10072281166628
114 => 0.10470824773561
115 => 0.10422558513086
116 => 0.1053886631368
117 => 0.10299612343564
118 => 0.10028873766183
119 => 0.10080332318632
120 => 0.10075376446228
121 => 0.10012282502434
122 => 0.099553241110982
123 => 0.098605044374509
124 => 0.10160527915542
125 => 0.10148347510239
126 => 0.10345534113927
127 => 0.10310679466357
128 => 0.10077911599503
129 => 0.10086224949405
130 => 0.10142136222753
131 => 0.10335645778197
201 => 0.10393092589388
202 => 0.10366480937585
203 => 0.10429468743509
204 => 0.10479251737092
205 => 0.10435720721031
206 => 0.1105202810967
207 => 0.10796094313106
208 => 0.10920834664775
209 => 0.10950584503636
210 => 0.10874380916967
211 => 0.10890906746269
212 => 0.10915938874644
213 => 0.11067929056341
214 => 0.11466795271828
215 => 0.11643450403494
216 => 0.12174926083119
217 => 0.11628781653967
218 => 0.11596375703711
219 => 0.1169211052264
220 => 0.12004143008994
221 => 0.12257016031463
222 => 0.12340908601611
223 => 0.12351996389671
224 => 0.1250938442834
225 => 0.12599596316993
226 => 0.1249027338073
227 => 0.12397633638835
228 => 0.12065809582237
229 => 0.12104219120316
301 => 0.12368822748767
302 => 0.12742590959032
303 => 0.13063322967392
304 => 0.12951013796703
305 => 0.13807853491142
306 => 0.13892805646969
307 => 0.13881068005866
308 => 0.14074601659416
309 => 0.13690476769562
310 => 0.1352625593708
311 => 0.12417663402538
312 => 0.12729132685843
313 => 0.13181871581075
314 => 0.13121949890608
315 => 0.12793158803144
316 => 0.13063073549869
317 => 0.12973831293587
318 => 0.12903442223393
319 => 0.13225908199545
320 => 0.12871343612594
321 => 0.13178334528093
322 => 0.12784615503551
323 => 0.12951526815535
324 => 0.12856779882261
325 => 0.12918092759837
326 => 0.12559658930359
327 => 0.12753061124256
328 => 0.12551612763245
329 => 0.12551517250493
330 => 0.12547070266758
331 => 0.12784073370128
401 => 0.1279180203282
402 => 0.12616656381338
403 => 0.1259141515667
404 => 0.12684745193729
405 => 0.12575480163509
406 => 0.12626604583443
407 => 0.12577028670107
408 => 0.12565868087787
409 => 0.12476938669042
410 => 0.12438625430281
411 => 0.1245364903841
412 => 0.12402365718666
413 => 0.12371465663522
414 => 0.12540923468047
415 => 0.12450388998997
416 => 0.12527047762218
417 => 0.12439685426421
418 => 0.12136849508591
419 => 0.11962685369815
420 => 0.11390656393938
421 => 0.11552883101897
422 => 0.11660439577109
423 => 0.11624892162693
424 => 0.11701261763882
425 => 0.11705950237147
426 => 0.11681121701305
427 => 0.11652373437532
428 => 0.11638380372605
429 => 0.11742673214261
430 => 0.11803218719178
501 => 0.11671234308317
502 => 0.1164031220751
503 => 0.1177375573395
504 => 0.11855156207991
505 => 0.1245617157333
506 => 0.12411646413811
507 => 0.12523395826581
508 => 0.12510814557638
509 => 0.12627945745298
510 => 0.1281940573379
511 => 0.12430114044132
512 => 0.12497681620763
513 => 0.12481115611336
514 => 0.12661978958415
515 => 0.12662543594043
516 => 0.12554106982675
517 => 0.12612892228881
518 => 0.12580079917137
519 => 0.12639376199307
520 => 0.1241105175316
521 => 0.12689126282466
522 => 0.12846776621856
523 => 0.12848965596971
524 => 0.12923690606652
525 => 0.12999615544267
526 => 0.13145346850353
527 => 0.12995551177237
528 => 0.12726083343616
529 => 0.12745538050827
530 => 0.1258754915857
531 => 0.12590204980392
601 => 0.12576027995366
602 => 0.12618574194622
603 => 0.12420388251317
604 => 0.12466902096082
605 => 0.12401782441026
606 => 0.1249754006335
607 => 0.12394520691031
608 => 0.12481107622705
609 => 0.12518475672013
610 => 0.12656364578436
611 => 0.12374154387438
612 => 0.11798708704044
613 => 0.11919674363298
614 => 0.11740756651614
615 => 0.11757316167018
616 => 0.11790769023561
617 => 0.1168233737041
618 => 0.11703022712757
619 => 0.11702283686768
620 => 0.11695915160047
621 => 0.11667707899234
622 => 0.11626801790417
623 => 0.11789759137706
624 => 0.11817448766443
625 => 0.11878999381105
626 => 0.1206213226016
627 => 0.12043832966972
628 => 0.12073679873392
629 => 0.1200852424426
630 => 0.11760338549782
701 => 0.1177381622705
702 => 0.11605749375559
703 => 0.11874701533847
704 => 0.11811010112769
705 => 0.11769947839263
706 => 0.11758743617498
707 => 0.11942330447538
708 => 0.11997262504457
709 => 0.11963032532938
710 => 0.11892825862706
711 => 0.12027643424291
712 => 0.12063714916275
713 => 0.12071789993065
714 => 0.12310660863491
715 => 0.12085140221197
716 => 0.1213942528128
717 => 0.12562941823689
718 => 0.12178870761012
719 => 0.12382321768719
720 => 0.123723639006
721 => 0.12476442551736
722 => 0.12363826413378
723 => 0.12365222425382
724 => 0.12457637216693
725 => 0.12327857309393
726 => 0.12295721979246
727 => 0.12251327250807
728 => 0.12348261516206
729 => 0.12406369224353
730 => 0.12874674676611
731 => 0.13177221356093
801 => 0.13164087006827
802 => 0.1328411037265
803 => 0.13230038747059
804 => 0.1305542720465
805 => 0.13353467815933
806 => 0.13259155295974
807 => 0.1326693030553
808 => 0.13266640919286
809 => 0.13329350500115
810 => 0.13284915014849
811 => 0.13197328112181
812 => 0.13255472385681
813 => 0.13428140091021
814 => 0.13964105946486
815 => 0.14264039539808
816 => 0.13946049567561
817 => 0.14165394792361
818 => 0.14033865818176
819 => 0.14009963090918
820 => 0.14147728101578
821 => 0.14285734251652
822 => 0.14276943856509
823 => 0.1417675847825
824 => 0.14120166300181
825 => 0.14548701232289
826 => 0.14864438470364
827 => 0.14842907307456
828 => 0.1493793885822
829 => 0.15216954430479
830 => 0.15242464117669
831 => 0.15239250483416
901 => 0.15176022062055
902 => 0.15450749127694
903 => 0.15679931279212
904 => 0.15161386509354
905 => 0.15358841569467
906 => 0.15447485507556
907 => 0.15577641108142
908 => 0.15797235422943
909 => 0.16035773093331
910 => 0.16069504935357
911 => 0.16045570579223
912 => 0.15888248573364
913 => 0.1614925933865
914 => 0.16302153323499
915 => 0.16393198192559
916 => 0.16624072832076
917 => 0.1544803294234
918 => 0.14615573455409
919 => 0.14485572885664
920 => 0.1474993415626
921 => 0.14819644115075
922 => 0.14791544118086
923 => 0.1385453528164
924 => 0.14480639728059
925 => 0.15154275468048
926 => 0.15180152560289
927 => 0.15517388696787
928 => 0.15627206606607
929 => 0.15898725899038
930 => 0.1588174229337
1001 => 0.15947852920261
1002 => 0.15932655232016
1003 => 0.16435587546113
1004 => 0.16990396574733
1005 => 0.16971185302256
1006 => 0.1689142494019
1007 => 0.17009882679021
1008 => 0.17582505053506
1009 => 0.1752978716135
1010 => 0.17580998103081
1011 => 0.18256152154181
1012 => 0.19133948460156
1013 => 0.18726123946722
1014 => 0.1961098579253
1015 => 0.20167959419956
1016 => 0.21131187716439
1017 => 0.2101058678972
1018 => 0.21385564497046
1019 => 0.2079468596072
1020 => 0.19437909405062
1021 => 0.19223194321597
1022 => 0.19653059356146
1023 => 0.20709840597967
1024 => 0.19619777554075
1025 => 0.19840295888154
1026 => 0.19776786593104
1027 => 0.19773402452668
1028 => 0.19902561328819
1029 => 0.19715209642488
1030 => 0.18951905168453
1031 => 0.19301723110722
1101 => 0.19166641603574
1102 => 0.19316524606748
1103 => 0.20125381358422
1104 => 0.1976776650777
1105 => 0.1939104831288
1106 => 0.19863536529732
1107 => 0.20465176394352
1108 => 0.20427526852875
1109 => 0.20354471006122
1110 => 0.20766282989189
1111 => 0.21446475735627
1112 => 0.21630329101753
1113 => 0.21766045897911
1114 => 0.21784758951147
1115 => 0.21977515029576
1116 => 0.20941017015074
1117 => 0.22585965983246
1118 => 0.22870003229251
1119 => 0.2281661599914
1120 => 0.2313231144396
1121 => 0.23039425835674
1122 => 0.22904849162572
1123 => 0.23405293592959
1124 => 0.22831574437303
1125 => 0.22017252325084
1126 => 0.21570499108855
1127 => 0.22158819782539
1128 => 0.22518086688396
1129 => 0.227555392595
1130 => 0.22827392264044
1201 => 0.21021477405408
1202 => 0.20048189457234
1203 => 0.20672055873245
1204 => 0.21433215957738
1205 => 0.20936788732373
1206 => 0.20956247739746
1207 => 0.20248472975155
1208 => 0.21495838319444
1209 => 0.21314107680775
1210 => 0.22256926555666
1211 => 0.22031915264579
1212 => 0.22800747457035
1213 => 0.22598288174389
1214 => 0.23438685337307
1215 => 0.2377394251844
1216 => 0.24336891504176
1217 => 0.24750999069699
1218 => 0.24994170952789
1219 => 0.24979571825043
1220 => 0.25943139973597
1221 => 0.25374957500901
1222 => 0.24661186404869
1223 => 0.24648276537661
1224 => 0.25017948702511
1225 => 0.2579268014543
1226 => 0.25993556736695
1227 => 0.26105819347123
1228 => 0.25933885251362
1229 => 0.25317163899256
1230 => 0.25050866746265
1231 => 0.25277759635985
]
'min_raw' => 0.093558846159797
'max_raw' => 0.26105819347123
'avg_raw' => 0.17730851981552
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.093558'
'max' => '$0.261058'
'avg' => '$0.1773085'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.037038546273547
'max_diff' => 0.13488060555544
'year' => 2036
]
11 => [
'items' => [
101 => 0.25000289128986
102 => 0.2547928106854
103 => 0.26137039308705
104 => 0.26001214833169
105 => 0.26455255690943
106 => 0.26925140212248
107 => 0.27597096181548
108 => 0.27772770354381
109 => 0.28063153081783
110 => 0.28362052294036
111 => 0.28458050665452
112 => 0.28641341343031
113 => 0.28640375310685
114 => 0.29192734104454
115 => 0.29802002959108
116 => 0.30031987847134
117 => 0.30560825415709
118 => 0.29655209612204
119 => 0.30342129602127
120 => 0.3096174862776
121 => 0.30223013281506
122 => 0.31241187853057
123 => 0.31280721264437
124 => 0.31877628840049
125 => 0.31272548658512
126 => 0.30913253978199
127 => 0.31950524257666
128 => 0.32452426672192
129 => 0.32301249580319
130 => 0.31150784446635
131 => 0.3048116439306
201 => 0.28728639552791
202 => 0.30804580929528
203 => 0.31815711418096
204 => 0.31148165862941
205 => 0.31484837012155
206 => 0.33321605636283
207 => 0.3402092820639
208 => 0.33875474000441
209 => 0.33900053366867
210 => 0.34277395132094
211 => 0.35950736325016
212 => 0.34948031494472
213 => 0.3571456176679
214 => 0.36121126659296
215 => 0.36498766789564
216 => 0.35571401984015
217 => 0.3436491399769
218 => 0.339827686075
219 => 0.31081791613365
220 => 0.30930783162516
221 => 0.3084601754303
222 => 0.30311582302505
223 => 0.29891662597585
224 => 0.29557726857614
225 => 0.28681379754276
226 => 0.28977121176214
227 => 0.27580406801349
228 => 0.28473975161869
301 => 0.26244785294736
302 => 0.28101320856819
303 => 0.27090892956691
304 => 0.27769368116256
305 => 0.2776700098034
306 => 0.26517713100837
307 => 0.25797149923912
308 => 0.26256320824987
309 => 0.26748588479971
310 => 0.26828457250805
311 => 0.27466695114991
312 => 0.27644813584009
313 => 0.2710510630733
314 => 0.26198590289588
315 => 0.2640915328508
316 => 0.25792882871529
317 => 0.2471289267628
318 => 0.25488560489327
319 => 0.25753407584408
320 => 0.25870379149602
321 => 0.24808332830286
322 => 0.2447461481861
323 => 0.24296946149359
324 => 0.26061493446371
325 => 0.26158159330541
326 => 0.25663602999946
327 => 0.27899044509993
328 => 0.27393095248528
329 => 0.27958364534163
330 => 0.26390046900256
331 => 0.26449958745891
401 => 0.25707492044595
402 => 0.26123223785678
403 => 0.2582939799074
404 => 0.26089636769339
405 => 0.26245622820227
406 => 0.26987967690044
407 => 0.28109797242787
408 => 0.26877086121513
409 => 0.26339976233226
410 => 0.26673196187099
411 => 0.27560604835474
412 => 0.28905074363376
413 => 0.28109121342887
414 => 0.28462351777222
415 => 0.28539516912995
416 => 0.27952610623469
417 => 0.28926714435426
418 => 0.29448744581858
419 => 0.2998423949318
420 => 0.30449194720454
421 => 0.29770351049812
422 => 0.30496811085816
423 => 0.29911412534256
424 => 0.29386249516117
425 => 0.29387045971638
426 => 0.29057603538952
427 => 0.28419267313204
428 => 0.28301548319342
429 => 0.28913937391685
430 => 0.29405015434243
501 => 0.29445462973933
502 => 0.29717349010794
503 => 0.2987824836676
504 => 0.3145528078729
505 => 0.32089576272723
506 => 0.32865180785712
507 => 0.33167322454196
508 => 0.34076660552551
509 => 0.333422961853
510 => 0.33183411835077
511 => 0.30977655050693
512 => 0.31338847600567
513 => 0.31917151722813
514 => 0.30987191072667
515 => 0.31577037057749
516 => 0.31693485149851
517 => 0.30955591365628
518 => 0.3134973231829
519 => 0.30303010802669
520 => 0.28132612911468
521 => 0.2892913070872
522 => 0.29515635912488
523 => 0.2867862067114
524 => 0.30178938094293
525 => 0.29302483628525
526 => 0.29024689640111
527 => 0.27940916250598
528 => 0.28452415572185
529 => 0.29144225728595
530 => 0.28716767483497
531 => 0.29603807525255
601 => 0.30860092789323
602 => 0.31755396481579
603 => 0.3182412678204
604 => 0.31248506488609
605 => 0.32170941682392
606 => 0.32177660615734
607 => 0.31137149948887
608 => 0.30499842959031
609 => 0.3035504547003
610 => 0.30716777986774
611 => 0.31155988041607
612 => 0.31848499883337
613 => 0.32266970285644
614 => 0.33358119155308
615 => 0.33653352753749
616 => 0.33977724969202
617 => 0.34411186281733
618 => 0.34931667724627
619 => 0.33792883958601
620 => 0.33838129960584
621 => 0.32777710285195
622 => 0.31644499782477
623 => 0.32504465297356
624 => 0.33628755811643
625 => 0.33370842325435
626 => 0.33341821789542
627 => 0.33390626281288
628 => 0.33196167935354
629 => 0.32316640043659
630 => 0.31874946642585
701 => 0.32444843817975
702 => 0.32747718803489
703 => 0.33217451492547
704 => 0.33159547023767
705 => 0.34369527985173
706 => 0.3483968999885
707 => 0.34719402436385
708 => 0.3474153824276
709 => 0.35592744110658
710 => 0.365394600996
711 => 0.37426184553421
712 => 0.38328198753549
713 => 0.37240785429081
714 => 0.36688664005246
715 => 0.37258312381357
716 => 0.36956048934611
717 => 0.38692944356774
718 => 0.38813203227316
719 => 0.40549973052171
720 => 0.42198374426662
721 => 0.41163043057522
722 => 0.42139313906272
723 => 0.43195230425725
724 => 0.4523226470803
725 => 0.4454626322548
726 => 0.4402079684086
727 => 0.43524233646429
728 => 0.44557502826852
729 => 0.45886787120588
730 => 0.46173102225733
731 => 0.46637042076854
801 => 0.46149266051266
802 => 0.4673673854732
803 => 0.48810774606888
804 => 0.4825035175557
805 => 0.47454461214229
806 => 0.49091713490717
807 => 0.49684228724921
808 => 0.53842810941202
809 => 0.59093192771719
810 => 0.56919500218019
811 => 0.55570219105317
812 => 0.55887332172178
813 => 0.57804593880041
814 => 0.58420357489762
815 => 0.56746499732096
816 => 0.57337734589732
817 => 0.60595496784233
818 => 0.62343181680059
819 => 0.59969590846131
820 => 0.53420947873303
821 => 0.47382799979009
822 => 0.48984388701919
823 => 0.48802818243825
824 => 0.52302877307707
825 => 0.4823698585591
826 => 0.48305445040398
827 => 0.51877881619094
828 => 0.50924816786966
829 => 0.4938097381824
830 => 0.47394071741199
831 => 0.43721099485593
901 => 0.40467845530393
902 => 0.4684822571618
903 => 0.46573092120601
904 => 0.46174657901687
905 => 0.47061330140794
906 => 0.51366758847592
907 => 0.51267504780588
908 => 0.50636101046176
909 => 0.5111501521379
910 => 0.49297017849141
911 => 0.49765557165042
912 => 0.47381843505533
913 => 0.48459381632307
914 => 0.49377661424604
915 => 0.49562019688272
916 => 0.49977388269884
917 => 0.46428109217897
918 => 0.48021631310881
919 => 0.48957676247681
920 => 0.44728591169613
921 => 0.48874080833233
922 => 0.46366324166036
923 => 0.45515153887948
924 => 0.46661142534236
925 => 0.46214549644267
926 => 0.45830595302286
927 => 0.45616342182288
928 => 0.4645782976597
929 => 0.46418573364396
930 => 0.4504173635179
1001 => 0.43245708595901
1002 => 0.43848514463378
1003 => 0.43629509440389
1004 => 0.42835806984863
1005 => 0.43370666607887
1006 => 0.4101541551435
1007 => 0.36963328423218
1008 => 0.39640261274404
1009 => 0.39537202271576
1010 => 0.39485235248996
1011 => 0.41496876301673
1012 => 0.41303503430914
1013 => 0.40952529776972
1014 => 0.42829361078472
1015 => 0.42144292406481
1016 => 0.44255512631077
1017 => 0.45646098816159
1018 => 0.45293401178871
1019 => 0.46601254207227
1020 => 0.43862401893068
1021 => 0.4477213876815
1022 => 0.44959634277263
1023 => 0.42806201271544
1024 => 0.41335141624052
1025 => 0.41237038716873
1026 => 0.38686424012628
1027 => 0.40048941799793
1028 => 0.41247901067681
1029 => 0.4067369262136
1030 => 0.40491915381245
1031 => 0.41420575878323
1101 => 0.41492740752385
1102 => 0.39847373976075
1103 => 0.40189497830859
1104 => 0.41616211178668
1105 => 0.40153548315064
1106 => 0.37311833295704
1107 => 0.36607048681119
1108 => 0.36513017421776
1109 => 0.34601585649848
1110 => 0.36654145759125
1111 => 0.35758148266234
1112 => 0.38588593610576
1113 => 0.36971858409871
1114 => 0.36902164186696
1115 => 0.36796811146448
1116 => 0.35151562860098
1117 => 0.35511767673825
1118 => 0.36709143335398
1119 => 0.37136380460849
1120 => 0.37091816128414
1121 => 0.3670327554143
1122 => 0.36881147432501
1123 => 0.36308160096685
1124 => 0.36105826342708
1125 => 0.35467205358874
1126 => 0.34528608936187
1127 => 0.34659126525508
1128 => 0.32799521415052
1129 => 0.31786309854162
1130 => 0.31505866248021
1201 => 0.31130845337345
1202 => 0.31548225857775
1203 => 0.32794253387421
1204 => 0.31291279827181
1205 => 0.28714537079486
1206 => 0.28869403709178
1207 => 0.29217343045782
1208 => 0.2856896039387
1209 => 0.27955320628466
1210 => 0.28488830618317
1211 => 0.27397030747519
1212 => 0.29349281844033
1213 => 0.29296478922992
1214 => 0.30024157405375
1215 => 0.30479189693874
1216 => 0.29430487587336
1217 => 0.29166741843534
1218 => 0.29316983405779
1219 => 0.26833825049076
1220 => 0.29821230391043
1221 => 0.29847065596495
1222 => 0.29625848882406
1223 => 0.31216550001211
1224 => 0.34573425514011
1225 => 0.33310433916091
1226 => 0.32821365395253
1227 => 0.31891645779634
1228 => 0.33130441966158
1229 => 0.33035321747264
1230 => 0.32605152044153
1231 => 0.323449840655
]
'min_raw' => 0.24296946149359
'max_raw' => 0.62343181680059
'avg_raw' => 0.43320063914709
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.242969'
'max' => '$0.623431'
'avg' => '$0.43320063'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.14941061533379
'max_diff' => 0.36237362332935
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0076265337612988
]
1 => [
'year' => 2028
'avg' => 0.013089345932959
]
2 => [
'year' => 2029
'avg' => 0.03575773396377
]
3 => [
'year' => 2030
'avg' => 0.027587038501034
]
4 => [
'year' => 2031
'avg' => 0.027093890632059
]
5 => [
'year' => 2032
'avg' => 0.047504117039188
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0076265337612988
'min' => '$0.007626'
'max_raw' => 0.047504117039188
'max' => '$0.0475041'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.047504117039188
]
1 => [
'year' => 2033
'avg' => 0.12218547381554
]
2 => [
'year' => 2034
'avg' => 0.077447025263393
]
3 => [
'year' => 2035
'avg' => 0.091348943901023
]
4 => [
'year' => 2036
'avg' => 0.17730851981552
]
5 => [
'year' => 2037
'avg' => 0.43320063914709
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.047504117039188
'min' => '$0.0475041'
'max_raw' => 0.43320063914709
'max' => '$0.43320063'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.43320063914709
]
]
]
]
'prediction_2025_max_price' => '$0.013039'
'last_price' => 0.01264391
'sma_50day_nextmonth' => '$0.0116084'
'sma_200day_nextmonth' => '$0.022081'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.0137096'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.013156'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.012414'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.0115048'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.014483'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.018486'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.024393'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.013252'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.013081'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.0126067'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.012465'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.014386'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.017971'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.023169'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.021771'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.028542'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.012798'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.013252'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.01538'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.019821'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.027768'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.035768'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.017884'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '49.58'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 108.73
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.012243'
'vwma_10_action' => 'BUY'
'hma_9' => '0.014146'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 38.83
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 79.55
'cci_20_action' => 'NEUTRAL'
'adx_14' => 15.87
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001055'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -61.17
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 58.43
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 25
'buy_signals' => 6
'sell_pct' => 80.65
'buy_pct' => 19.35
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767693602
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de DexNet para 2026
La previsión del precio de DexNet para 2026 sugiere que el precio medio podría oscilar entre $0.004368 en el extremo inferior y $0.013039 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, DexNet podría potencialmente ganar 3.13% para 2026 si DEXNET alcanza el objetivo de precio previsto.
Predicción de precio de DexNet 2027-2032
La predicción del precio de DEXNET para 2027-2032 está actualmente dentro de un rango de precios de $0.007626 en el extremo inferior y $0.0475041 en el extremo superior. Considerando la volatilidad de precios en el mercado, si DexNet alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de DexNet | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.0042054 | $0.007626 | $0.011047 |
| 2028 | $0.007589 | $0.013089 | $0.018589 |
| 2029 | $0.016672 | $0.035757 | $0.054843 |
| 2030 | $0.014178 | $0.027587 | $0.040995 |
| 2031 | $0.016763 | $0.027093 | $0.037423 |
| 2032 | $0.025588 | $0.0475041 | $0.069419 |
Predicción de precio de DexNet 2032-2037
La predicción de precio de DexNet para 2032-2037 se estima actualmente entre $0.0475041 en el extremo inferior y $0.43320063 en el extremo superior. Comparado con el precio actual, DexNet podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de DexNet | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.025588 | $0.0475041 | $0.069419 |
| 2033 | $0.059462 | $0.122185 | $0.1849084 |
| 2034 | $0.0478049 | $0.077447 | $0.107089 |
| 2035 | $0.05652 | $0.091348 | $0.126177 |
| 2036 | $0.093558 | $0.1773085 | $0.261058 |
| 2037 | $0.242969 | $0.43320063 | $0.623431 |
DexNet Histograma de precios potenciales
Pronóstico de precio de DexNet basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para DexNet es Bajista, con 6 indicadores técnicos mostrando señales alcistas y 25 indicando señales bajistas. La predicción de precio de DEXNET se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de DexNet
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de DexNet aumentar durante el próximo mes, alcanzando $0.022081 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para DexNet alcance $0.0116084 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 49.58, lo que sugiere que el mercado de DEXNET está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de DEXNET para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.0137096 | SELL |
| SMA 5 | $0.013156 | SELL |
| SMA 10 | $0.012414 | BUY |
| SMA 21 | $0.0115048 | BUY |
| SMA 50 | $0.014483 | SELL |
| SMA 100 | $0.018486 | SELL |
| SMA 200 | $0.024393 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.013252 | SELL |
| EMA 5 | $0.013081 | SELL |
| EMA 10 | $0.0126067 | BUY |
| EMA 21 | $0.012465 | BUY |
| EMA 50 | $0.014386 | SELL |
| EMA 100 | $0.017971 | SELL |
| EMA 200 | $0.023169 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.021771 | SELL |
| SMA 50 | $0.028542 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.019821 | SELL |
| EMA 50 | $0.027768 | SELL |
| EMA 100 | $0.035768 | SELL |
| EMA 200 | $0.017884 | SELL |
Osciladores de DexNet
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 49.58 | NEUTRAL |
| Stoch RSI (14) | 108.73 | SELL |
| Estocástico Rápido (14) | 38.83 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 79.55 | NEUTRAL |
| Índice Direccional Medio (14) | 15.87 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.001055 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -61.17 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 58.43 | NEUTRAL |
| VWMA (10) | 0.012243 | BUY |
| Promedio Móvil de Hull (9) | 0.014146 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | — | — |
Predicción de precios de DexNet basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de DexNet
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de DexNet por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.017766 | $0.024965 | $0.03508 | $0.049293 | $0.069266 | $0.09733 |
| Amazon.com acción | $0.026382 | $0.055048 | $0.114861 | $0.239664 | $0.500075 | $1.04 |
| Apple acción | $0.017934 | $0.025438 | $0.036082 | $0.05118 | $0.072595 | $0.102971 |
| Netflix acción | $0.01995 | $0.031478 | $0.049667 | $0.078367 | $0.123651 | $0.1951032 |
| Google acción | $0.016373 | $0.021204 | $0.027459 | $0.035559 | $0.046049 | $0.059633 |
| Tesla acción | $0.028662 | $0.064976 | $0.147296 | $0.33391 | $0.756948 | $1.71 |
| Kodak acción | $0.009481 | $0.00711 | $0.005331 | $0.003998 | $0.002998 | $0.002248 |
| Nokia acción | $0.008376 | $0.005548 | $0.003675 | $0.002435 | $0.001613 | $0.001068 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de DexNet
Podría preguntarse cosas como: "¿Debo invertir en DexNet ahora?", "¿Debería comprar DEXNET hoy?", "¿Será DexNet una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de DexNet regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como DexNet, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de DexNet a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de DexNet es de $0.01264 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de DexNet basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si DexNet ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.012972 | $0.0133097 | $0.013655 | $0.01401 |
| Si DexNet ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.0133012 | $0.013992 | $0.01472 | $0.015485 |
| Si DexNet ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.014287 | $0.016144 | $0.018242 | $0.020613 |
| Si DexNet ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.01593 | $0.020071 | $0.025288 | $0.031861 |
| Si DexNet ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.019217 | $0.0292072 | $0.044391 | $0.067468 |
| Si DexNet ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.029076 | $0.066866 | $0.15377 | $0.353619 |
| Si DexNet ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.0455094 | $0.1638032 | $0.58958 | $2.12 |
Cuadro de preguntas
¿Es DEXNET una buena inversión?
La decisión de adquirir DexNet depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de DexNet ha experimentado una caída de -17.139% durante las últimas 24 horas, y DexNet ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en DexNet dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede DexNet subir?
Parece que el valor medio de DexNet podría potencialmente aumentar hasta $0.013039 para el final de este año. Mirando las perspectivas de DexNet en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.040995. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de DexNet la próxima semana?
Basado en nuestro nuevo pronóstico experimental de DexNet, el precio de DexNet aumentará en un 0.86% durante la próxima semana y alcanzará $0.012752 para el 13 de enero de 2026.
¿Cuál será el precio de DexNet el próximo mes?
Basado en nuestro nuevo pronóstico experimental de DexNet, el precio de DexNet disminuirá en un -11.62% durante el próximo mes y alcanzará $0.011174 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de DexNet este año en 2026?
Según nuestra predicción más reciente sobre el valor de DexNet en 2026, se anticipa que DEXNET fluctúe dentro del rango de $0.004368 y $0.013039. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de DexNet no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará DexNet en 5 años?
El futuro de DexNet parece estar en una tendencia alcista, con un precio máximo de $0.040995 proyectada después de un período de cinco años. Basado en el pronóstico de DexNet para 2030, el valor de DexNet podría potencialmente alcanzar su punto más alto de aproximadamente $0.040995, mientras que su punto más bajo se anticipa que esté alrededor de $0.014178.
¿Cuánto será DexNet en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de DexNet, se espera que el valor de DEXNET en 2026 crezca en un 3.13% hasta $0.013039 si ocurre lo mejor. El precio estará entre $0.013039 y $0.004368 durante 2026.
¿Cuánto será DexNet en 2027?
Según nuestra última simulación experimental para la predicción de precios de DexNet, el valor de DEXNET podría disminuir en un -12.62% hasta $0.011047 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.011047 y $0.0042054 a lo largo del año.
¿Cuánto será DexNet en 2028?
Nuestro nuevo modelo experimental de predicción de precios de DexNet sugiere que el valor de DEXNET en 2028 podría aumentar en un 47.02% , alcanzando $0.018589 en el mejor escenario. Se espera que el precio oscile entre $0.018589 y $0.007589 durante el año.
¿Cuánto será DexNet en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de DexNet podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.054843 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.054843 y $0.016672.
¿Cuánto será DexNet en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de DexNet, se espera que el valor de DEXNET en 2030 aumente en un 224.23% , alcanzando $0.040995 en el mejor escenario. Se pronostica que el precio oscile entre $0.040995 y $0.014178 durante el transcurso de 2030.
¿Cuánto será DexNet en 2031?
Nuestra simulación experimental indica que el precio de DexNet podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.037423 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.037423 y $0.016763 durante el año.
¿Cuánto será DexNet en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de DexNet, DEXNET podría experimentar un 449.04% aumento en valor, alcanzando $0.069419 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.069419 y $0.025588 a lo largo del año.
¿Cuánto será DexNet en 2033?
Según nuestra predicción experimental de precios de DexNet, se anticipa que el valor de DEXNET aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.1849084. A lo largo del año, el precio de DEXNET podría oscilar entre $0.1849084 y $0.059462.
¿Cuánto será DexNet en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de DexNet sugieren que DEXNET podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.107089 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.107089 y $0.0478049.
¿Cuánto será DexNet en 2035?
Basado en nuestra predicción experimental para el precio de DexNet, DEXNET podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.126177 en 2035. El rango de precios esperado para el año está entre $0.126177 y $0.05652.
¿Cuánto será DexNet en 2036?
Nuestra reciente simulación de predicción de precios de DexNet sugiere que el valor de DEXNET podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.261058 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.261058 y $0.093558.
¿Cuánto será DexNet en 2037?
Según la simulación experimental, el valor de DexNet podría aumentar en un 4830.69% en 2037, con un máximo de $0.623431 bajo condiciones favorables. Se espera que el precio caiga entre $0.623431 y $0.242969 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de SolPod
Predicción de precios de zuzalu
Predicción de precios de SOFT COQ INU
Predicción de precios de All Street Bets
Predicción de precios de MagicRing
Predicción de precios de AI INU
Predicción de precios de Wall Street Baby On Solana
Predicción de precios de Meta Masters Guild Games
Predicción de precios de Morfey
Predicción de precios de PANTIESPredicción de precios de Celer Bridged BUSD (zkSync)
Predicción de precios de Bridged BUSD
Predicción de precios de Multichain Bridged BUSD (Moonriver)
Predicción de precios de tooker kurlson
Predicción de precios de dogwifsaudihatPredicción de precios de Harmony Horizen Bridged BUSD (Harmony)
Predicción de precios de IoTeX Bridged BUSD (IoTeX)
Predicción de precios de MIMANY
Predicción de precios de The Open League MEME
Predicción de precios de Sandwich Cat
Predicción de precios de Hege
Predicción de precios de SolDocs
Predicción de precios de Secret Society
Predicción de precios de duk
Predicción de precios de Fofar
¿Cómo leer y predecir los movimientos de precio de DexNet?
Los traders de DexNet utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de DexNet
Las medias móviles son herramientas populares para la predicción de precios de DexNet. Una media móvil simple (SMA) calcula el precio de cierre promedio de DEXNET durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de DEXNET por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de DEXNET.
¿Cómo leer gráficos de DexNet y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de DexNet en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de DEXNET dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de DexNet?
La acción del precio de DexNet está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de DEXNET. La capitalización de mercado de DexNet puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de DEXNET, grandes poseedores de DexNet, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de DexNet.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


