Predicción del precio de DexNet - Pronóstico de DEXNET
Predicción de precio de DexNet hasta $0.012981 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.004348 | $0.012981 |
| 2027 | $0.004186 | $0.010998 |
| 2028 | $0.007555 | $0.0185058 |
| 2029 | $0.016597 | $0.054597 |
| 2030 | $0.014115 | $0.040811 |
| 2031 | $0.016688 | $0.037256 |
| 2032 | $0.025474 | $0.0691085 |
| 2033 | $0.059196 | $0.18408 |
| 2034 | $0.04759 | $0.1066093 |
| 2035 | $0.056267 | $0.125612 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en DexNet hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,955.00, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de DexNet para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'DexNet'
'name_with_ticker' => 'DexNet <small>DEXNET</small>'
'name_lang' => 'DexNet'
'name_lang_with_ticker' => 'DexNet <small>DEXNET</small>'
'name_with_lang' => 'DexNet'
'name_with_lang_with_ticker' => 'DexNet <small>DEXNET</small>'
'image' => '/uploads/coins/dexnet.jpg?1717131583'
'price_for_sd' => 0.01258
'ticker' => 'DEXNET'
'marketcap' => '$5.04M'
'low24h' => '$0.01177'
'high24h' => '$0.01885'
'volume24h' => '$689.23'
'current_supply' => '400.08M'
'max_supply' => '3B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01258'
'change_24h_pct' => '-13.7685%'
'ath_price' => '$0.0816'
'ath_days' => 387
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '15 dic. 2024'
'ath_pct' => '-84.57%'
'fdv' => '$37.76M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.620639'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.012694'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.011124'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004348'
'current_year_max_price_prediction' => '$0.012981'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.014115'
'grand_prediction_max_price' => '$0.040811'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.012825792145596
107 => 0.012873678997705
108 => 0.01298157052067
109 => 0.012059649269762
110 => 0.012473564845234
111 => 0.012716701467179
112 => 0.011618201363845
113 => 0.012694987652083
114 => 0.012043600671873
115 => 0.011822510147286
116 => 0.012120179412181
117 => 0.012004177410159
118 => 0.011904445700686
119 => 0.011848793693192
120 => 0.012067369148773
121 => 0.012057172342516
122 => 0.011699540473517
123 => 0.011233024279349
124 => 0.011389602426984
125 => 0.01133271611802
126 => 0.011126552795855
127 => 0.01126548198274
128 => 0.010653708154153
129 => 0.0096011830793056
130 => 0.010296513383465
131 => 0.010269743923128
201 => 0.010256245547328
202 => 0.010778767053386
203 => 0.010728538667201
204 => 0.010637373654437
205 => 0.011124878478903
206 => 0.010946932660108
207 => 0.011495319744328
208 => 0.011856522945448
209 => 0.011764910129945
210 => 0.012104623486445
211 => 0.011393209671262
212 => 0.011629512803697
213 => 0.01167821455179
214 => 0.011118862745043
215 => 0.010736756652366
216 => 0.010711274532312
217 => 0.010048755225073
218 => 0.010402667691331
219 => 0.010714096015746
220 => 0.010564946016165
221 => 0.010517729582028
222 => 0.010758948104042
223 => 0.010777692849099
224 => 0.010350310675311
225 => 0.010439176962675
226 => 0.010809764153773
227 => 0.010429839116288
228 => 0.0096917068288571
301 => 0.009508639816097
302 => 0.0094842153020004
303 => 0.008987723044167
304 => 0.0095208732292586
305 => 0.0092881388859295
306 => 0.010023343887921
307 => 0.0096033987337668
308 => 0.009585295737505
309 => 0.0095579304035231
310 => 0.009130579007369
311 => 0.0092241418035287
312 => 0.0095351587879797
313 => 0.0096461331518889
314 => 0.009634557616547
315 => 0.0095336346350812
316 => 0.0095798366591869
317 => 0.0094310038416899
318 => 0.0093784478761445
319 => 0.009212566792226
320 => 0.0089687674246848
321 => 0.0090026692220498
322 => 0.008519638881376
323 => 0.0082564583154164
324 => 0.0081836134034229
325 => 0.0080862021427068
326 => 0.0081946162645223
327 => 0.0085182705171104
328 => 0.008127874821409
329 => 0.007458568784203
330 => 0.0074987952174811
331 => 0.0075891720697217
401 => 0.007420755403474
402 => 0.00726136316301
403 => 0.0073999417841922
404 => 0.0071163479929224
405 => 0.0076234430245113
406 => 0.0076097275250242
407 => 0.0077987411942541
408 => 0.0079169353205745
409 => 0.0076445361252087
410 => 0.00757602846422
411 => 0.0076150535414188
412 => 0.0069700559447566
413 => 0.0077460311299972
414 => 0.0077527417956222
415 => 0.0076952810023774
416 => 0.008108463832972
417 => 0.0089804084804833
418 => 0.0086523478301974
419 => 0.008525312830721
420 => 0.0082838192038544
421 => 0.0086055951231814
422 => 0.0085808877530634
423 => 0.0084691516553979
424 => 0.0084015733148919
425 => 0.0085260884793392
426 => 0.0083861445080686
427 => 0.0083610067254252
428 => 0.0082086991127838
429 => 0.0081543322246256
430 => 0.0081140811450414
501 => 0.0080697686614087
502 => 0.0081675109583196
503 => 0.0079460140544495
504 => 0.0076789105019914
505 => 0.007656703731705
506 => 0.007718018576905
507 => 0.0076908913222574
508 => 0.0076565738568464
509 => 0.0075910524695712
510 => 0.0075716136736096
511 => 0.0076347803301217
512 => 0.0075634688577644
513 => 0.0076686928197645
514 => 0.0076400777244079
515 => 0.0074802361278556
516 => 0.0072810143176129
517 => 0.0072792408256199
518 => 0.0072363188133923
519 => 0.0071816511774528
520 => 0.0071664438917606
521 => 0.0073882710792434
522 => 0.007847446718604
523 => 0.0077572995534557
524 => 0.0078224401189284
525 => 0.0081428672290669
526 => 0.0082447213718006
527 => 0.0081724277138358
528 => 0.008073467695935
529 => 0.0080778214344921
530 => 0.0084159977728937
531 => 0.0084370894163043
601 => 0.0084903811947807
602 => 0.0085588761903778
603 => 0.0081840927077667
604 => 0.0080601691661648
605 => 0.0080014473171375
606 => 0.0078206067503489
607 => 0.008015627797532
608 => 0.0079019973849723
609 => 0.0079173300097942
610 => 0.0079073446177645
611 => 0.007912797317022
612 => 0.0076233012811153
613 => 0.007728778421136
614 => 0.0075534022182238
615 => 0.0073185931694271
616 => 0.0073178060071609
617 => 0.0073752751892001
618 => 0.0073410902709539
619 => 0.0072490995349278
620 => 0.0072621663847963
621 => 0.0071476870303628
622 => 0.0072760662511401
623 => 0.007279747707829
624 => 0.0072303147149664
625 => 0.0074281006174923
626 => 0.0075091336631351
627 => 0.0074765958082756
628 => 0.0075068507204989
629 => 0.0077610455751577
630 => 0.0078024904277661
701 => 0.0078208974936015
702 => 0.007796234463851
703 => 0.00751149693581
704 => 0.0075241262559761
705 => 0.007431460684283
706 => 0.0073531680410597
707 => 0.0073562993361978
708 => 0.0073965519321457
709 => 0.0075723373794341
710 => 0.0079422674901342
711 => 0.0079563060674199
712 => 0.0079733212326243
713 => 0.007904112004601
714 => 0.0078832378391861
715 => 0.0079107762514476
716 => 0.0080497025510254
717 => 0.0084070587116619
718 => 0.0082807451774775
719 => 0.0081780503079983
720 => 0.0082681413948695
721 => 0.008254272578203
722 => 0.0081372058084535
723 => 0.0081339201341296
724 => 0.00790923157447
725 => 0.0078261693298748
726 => 0.0077567563011899
727 => 0.0076809590859388
728 => 0.0076360239559924
729 => 0.0077050647382415
730 => 0.0077208551820084
731 => 0.0075698963049944
801 => 0.0075493211678696
802 => 0.0076725974455129
803 => 0.0076183481519249
804 => 0.0076741448956979
805 => 0.0076870902188688
806 => 0.0076850057236822
807 => 0.0076283632306847
808 => 0.0076644654666179
809 => 0.0075790729160414
810 => 0.0074862213428359
811 => 0.0074269878239882
812 => 0.0073752987226075
813 => 0.0074039788402417
814 => 0.0073017394576583
815 => 0.0072690310214976
816 => 0.0076522348414097
817 => 0.0079353116233142
818 => 0.0079311955747946
819 => 0.0079061401879932
820 => 0.0078689129655061
821 => 0.0080469791478264
822 => 0.0079849444504517
823 => 0.0080300798759642
824 => 0.008041568736085
825 => 0.0080763420554473
826 => 0.0080887705282515
827 => 0.0080512030513078
828 => 0.0079251220102036
829 => 0.0076109400431978
830 => 0.0074646874894385
831 => 0.0074164217106691
901 => 0.0074181760800576
902 => 0.0073697827404727
903 => 0.0073840367478178
904 => 0.0073648257784202
905 => 0.0073284448500138
906 => 0.0074017324204314
907 => 0.0074101781302011
908 => 0.0073930719355444
909 => 0.0073971010636393
910 => 0.0072554690780329
911 => 0.0072662370502901
912 => 0.0072062796124345
913 => 0.0071950383156343
914 => 0.0070434711338267
915 => 0.0067749479012404
916 => 0.0069237358382741
917 => 0.0067440209330873
918 => 0.0066759601753679
919 => 0.0069981492167922
920 => 0.0069658103731661
921 => 0.0069104603302358
922 => 0.006828586080782
923 => 0.0067982181252382
924 => 0.00661371204068
925 => 0.0066028104369026
926 => 0.006694256634493
927 => 0.0066520573607765
928 => 0.0065927935983639
929 => 0.0063781462583768
930 => 0.0061368115809393
1001 => 0.0061440959578754
1002 => 0.006220860028577
1003 => 0.0064440619171872
1004 => 0.0063568530778753
1005 => 0.0062935820643484
1006 => 0.0062817333054345
1007 => 0.006430045330299
1008 => 0.0066399379178121
1009 => 0.0067384148237913
1010 => 0.006640827200754
1011 => 0.0065287237938996
1012 => 0.0065355470088376
1013 => 0.0065809388009664
1014 => 0.0065857088365138
1015 => 0.0065127410430679
1016 => 0.0065332810495116
1017 => 0.0065020789015061
1018 => 0.0063105913767907
1019 => 0.0063071279746821
1020 => 0.0062601338479635
1021 => 0.0062587108844832
1022 => 0.0061787621517005
1023 => 0.0061675767713247
1024 => 0.0060088337098436
1025 => 0.0061133188736287
1026 => 0.006043235711479
1027 => 0.0059376038551726
1028 => 0.0059193928833303
1029 => 0.0059188454395264
1030 => 0.0060273057371021
1031 => 0.0061120514519029
1101 => 0.0060444548380898
1102 => 0.0060290643994298
1103 => 0.0061933940196471
1104 => 0.0061724815775767
1105 => 0.0061543715376145
1106 => 0.0066211443387224
1107 => 0.0062516572439096
1108 => 0.0060905397809852
1109 => 0.0058911263252399
1110 => 0.0059560563519605
1111 => 0.0059697380626111
1112 => 0.0054901846485206
1113 => 0.0052956298881487
1114 => 0.0052288660260306
1115 => 0.0051904424794791
1116 => 0.0052079525721351
1117 => 0.0050328304688031
1118 => 0.0051505154184945
1119 => 0.0049988744797118
1120 => 0.0049734513828426
1121 => 0.0052446041660936
1122 => 0.0052823334918314
1123 => 0.0051213684666512
1124 => 0.0052247340706873
1125 => 0.0051872522657745
1126 => 0.0050014739283713
1127 => 0.0049943785623755
1128 => 0.0049011615230909
1129 => 0.0047552949069862
1130 => 0.0046886299493025
1201 => 0.0046539102605291
1202 => 0.0046682362807902
1203 => 0.0046609926065627
1204 => 0.0046137227324183
1205 => 0.0046637020604166
1206 => 0.0045360255302653
1207 => 0.0044851837071993
1208 => 0.0044622196352418
1209 => 0.0043488993659457
1210 => 0.0045292423081483
1211 => 0.0045647721396627
1212 => 0.004600371975921
1213 => 0.0049102442455085
1214 => 0.0048947639026099
1215 => 0.0050346986631809
1216 => 0.0050292610557087
1217 => 0.004989349395201
1218 => 0.0048209686646685
1219 => 0.0048880822227608
1220 => 0.0046815171227153
1221 => 0.0048362897407309
1222 => 0.0047656579813277
1223 => 0.0048124090718275
1224 => 0.0047283463957329
1225 => 0.0047748701515465
1226 => 0.0045731975807847
1227 => 0.0043848785718169
1228 => 0.0044606636384001
1229 => 0.0045430506728497
1230 => 0.0047216867553623
1231 => 0.0046152925783334
]
'min_raw' => 0.0043488993659457
'max_raw' => 0.01298157052067
'avg_raw' => 0.0086652349433079
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004348'
'max' => '$0.012981'
'avg' => '$0.008665'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0082383706340543
'max_diff' => 0.00039430052067019
'year' => 2026
]
1 => [
'items' => [
101 => 0.0046535559476023
102 => 0.0045253800657624
103 => 0.0042609166098962
104 => 0.0042624134443357
105 => 0.0042217315033003
106 => 0.004186576366585
107 => 0.0046275132294239
108 => 0.0045726757603496
109 => 0.0044852994303302
110 => 0.0046022561202585
111 => 0.0046331813254278
112 => 0.0046340617225432
113 => 0.0047193903044258
114 => 0.0047649301838725
115 => 0.0047729567850061
116 => 0.0049072231522443
117 => 0.0049522274675263
118 => 0.005137593872924
119 => 0.0047610664432709
120 => 0.0047533121086379
121 => 0.004603901940734
122 => 0.004509143650168
123 => 0.0046103901219583
124 => 0.0047000806744428
125 => 0.0046066888762111
126 => 0.0046188838734517
127 => 0.0044935130147159
128 => 0.0045383271974668
129 => 0.0045769272087742
130 => 0.004555614551334
131 => 0.0045237084716019
201 => 0.0046927270719567
202 => 0.0046831903801354
203 => 0.0048405843865066
204 => 0.0049632842698264
205 => 0.0051831843959631
206 => 0.0049537071506866
207 => 0.0049453440877793
208 => 0.0050270943691758
209 => 0.0049522149519842
210 => 0.0049995361588996
211 => 0.005175560217946
212 => 0.0051792793289386
213 => 0.0051169794280092
214 => 0.0051131884733758
215 => 0.0051251538508355
216 => 0.0051952354403489
217 => 0.0051707467795832
218 => 0.0051990856777983
219 => 0.0052345239039569
220 => 0.0053811114328455
221 => 0.0054164531897908
222 => 0.0053305910430138
223 => 0.0053383434335101
224 => 0.0053062286336469
225 => 0.0052752061393762
226 => 0.0053449401760251
227 => 0.0054723804986269
228 => 0.0054715876989941
301 => 0.0055011513767518
302 => 0.0055195693030762
303 => 0.0054405060805461
304 => 0.0053890388299142
305 => 0.0054087746487527
306 => 0.0054403326528657
307 => 0.005398540813347
308 => 0.0051405822199747
309 => 0.0052188303787451
310 => 0.0052058060589862
311 => 0.0051872578438382
312 => 0.005265936972557
313 => 0.005258348178653
314 => 0.005031034338516
315 => 0.0050455862330437
316 => 0.0050319192874196
317 => 0.0050760799847248
318 => 0.0049498301294067
319 => 0.0049886637345968
320 => 0.0050130198077296
321 => 0.005027365721917
322 => 0.0050791930010473
323 => 0.0050731116680296
324 => 0.0050788149768483
325 => 0.0051556611499042
326 => 0.0055443227227985
327 => 0.0055654767146777
328 => 0.0054613067219554
329 => 0.0055029205793857
330 => 0.0054230310730698
331 => 0.0054766614338728
401 => 0.0055133539646708
402 => 0.0053475474735626
403 => 0.0053377294892344
404 => 0.0052575102505076
405 => 0.0053006155255494
406 => 0.0052320319335789
407 => 0.0052488599480962
408 => 0.0052018073524657
409 => 0.0052864926565223
410 => 0.0053811839852234
411 => 0.0054051067543272
412 => 0.0053421762482148
413 => 0.005296610414467
414 => 0.0052166118207245
415 => 0.0053496512650031
416 => 0.0053885560528138
417 => 0.005349446914715
418 => 0.005340384472866
419 => 0.0053232111619376
420 => 0.0053440278719629
421 => 0.0053883441689841
422 => 0.0053674454217024
423 => 0.0053812494124705
424 => 0.005328642834276
425 => 0.0054405322537625
426 => 0.0056182395795623
427 => 0.0056188109376728
428 => 0.0055979120777391
429 => 0.0055893607145264
430 => 0.0056108042130673
501 => 0.0056224364313673
502 => 0.0056917807735834
503 => 0.0057661900155816
504 => 0.0061134254806917
505 => 0.006015923151574
506 => 0.0063240111133499
507 => 0.0065676686908997
508 => 0.0066407309445524
509 => 0.0065735171090366
510 => 0.0063435822085573
511 => 0.0063323005053774
512 => 0.0066759203227045
513 => 0.0065788319855249
514 => 0.0065672836367499
515 => 0.0064444287170273
516 => 0.0065170511904612
517 => 0.0065011675902138
518 => 0.0064760945501709
519 => 0.0066146531705575
520 => 0.0068740225387077
521 => 0.006833597390331
522 => 0.0068034218923364
523 => 0.0066712016440796
524 => 0.0067508277659918
525 => 0.0067224744291168
526 => 0.0068442983578041
527 => 0.0067721325611801
528 => 0.0065780964458818
529 => 0.0066089973367944
530 => 0.0066043267292969
531 => 0.0067004475006324
601 => 0.0066715944309417
602 => 0.0065986927043646
603 => 0.0068731360424044
604 => 0.0068553152185662
605 => 0.0068805810723613
606 => 0.0068917038825744
607 => 0.0070587527062052
608 => 0.0071271872642806
609 => 0.0071427231070793
610 => 0.0072077306443322
611 => 0.0071411056603319
612 => 0.0074076530991417
613 => 0.007584891592476
614 => 0.0077907632230932
615 => 0.0080915970085026
616 => 0.0082047132946846
617 => 0.0081842798500504
618 => 0.0084123685927793
619 => 0.0088222389933352
620 => 0.008267126376646
621 => 0.0088516613099385
622 => 0.0086666042988384
623 => 0.0082278374545537
624 => 0.008199586042503
625 => 0.0084967240436404
626 => 0.0091557475316905
627 => 0.0089906696225165
628 => 0.0091560175400124
629 => 0.0089631304112817
630 => 0.0089535519395599
701 => 0.0091466494427021
702 => 0.0095978322839908
703 => 0.0093834922284304
704 => 0.0090761832004468
705 => 0.0093030954044519
706 => 0.0091065230536096
707 => 0.0086635905300252
708 => 0.0089905433905505
709 => 0.0087719193237986
710 => 0.0088357254491714
711 => 0.0092952407196082
712 => 0.0092399506265426
713 => 0.0093115011266942
714 => 0.0091852163667293
715 => 0.0090672464876432
716 => 0.0088470469477709
717 => 0.0087818567197208
718 => 0.0087998729534551
719 => 0.0087818477917701
720 => 0.0086586481729497
721 => 0.0086320432269954
722 => 0.0085877004848154
723 => 0.0086014441547943
724 => 0.0085180668265692
725 => 0.008675417071565
726 => 0.0087046226636019
727 => 0.0088191290499883
728 => 0.0088310174828833
729 => 0.0091499161390733
730 => 0.0089742721181181
731 => 0.00909210929175
801 => 0.0090815688258138
802 => 0.0082373468625267
803 => 0.0083536732004343
804 => 0.0085346404770026
805 => 0.0084531149642039
806 => 0.0083378569631386
807 => 0.0082447799475353
808 => 0.0081037587512829
809 => 0.008302243376936
810 => 0.0085632295531831
811 => 0.0088376365230057
812 => 0.0091673185173907
813 => 0.0090937373341655
814 => 0.0088314733474427
815 => 0.0088432383183031
816 => 0.0089159647388168
817 => 0.0088217774163595
818 => 0.0087939997362119
819 => 0.0089121485121199
820 => 0.0089129621378061
821 => 0.0088045882404008
822 => 0.0086841504856486
823 => 0.0086836458470587
824 => 0.0086622151118912
825 => 0.0089669428914593
826 => 0.0091345123587683
827 => 0.0091537239281435
828 => 0.0091332192670795
829 => 0.0091411106973222
830 => 0.0090436057164364
831 => 0.0092664731885374
901 => 0.009470998420246
902 => 0.0094161812891038
903 => 0.0093340026168074
904 => 0.0092685433460621
905 => 0.0094007611652418
906 => 0.0093948737138839
907 => 0.0094692120707709
908 => 0.0094658396535033
909 => 0.0094408424600892
910 => 0.0094161821818323
911 => 0.0095139573976496
912 => 0.0094857997057162
913 => 0.0094575982771098
914 => 0.0094010359946169
915 => 0.0094087237482077
916 => 0.0093265592652177
917 => 0.0092885462157956
918 => 0.0087169211585456
919 => 0.0085641642648608
920 => 0.0086122246932673
921 => 0.0086280474341872
922 => 0.0085615674382923
923 => 0.0086568826750959
924 => 0.0086420278964039
925 => 0.0086998191505396
926 => 0.0086637136839602
927 => 0.0086651954649027
928 => 0.0087713739436157
929 => 0.0088021980077017
930 => 0.0087865206399269
1001 => 0.0087975005309276
1002 => 0.0090505274847177
1003 => 0.0090145551432353
1004 => 0.0089954455537781
1005 => 0.009000739040655
1006 => 0.0090653928523074
1007 => 0.0090834923896029
1008 => 0.0090068033782502
1009 => 0.009042970359338
1010 => 0.0091969647745367
1011 => 0.0092508541045272
1012 => 0.009422842977511
1013 => 0.009349779047409
1014 => 0.009483891053244
1015 => 0.0098961056370287
1016 => 0.010225411169636
1017 => 0.0099225681927236
1018 => 0.010527295866549
1019 => 0.010998163103655
1020 => 0.010980090434825
1021 => 0.01089798384068
1022 => 0.010361914009888
1023 => 0.0098686145592422
1024 => 0.010281280496308
1025 => 0.010282332466648
1026 => 0.010246884096678
1027 => 0.010026717315255
1028 => 0.010239222769924
1029 => 0.010256090681209
1030 => 0.010246649136429
1031 => 0.01007784778132
1101 => 0.0098201193117741
1102 => 0.0098704788378086
1103 => 0.0099529687687596
1104 => 0.009796798120267
1105 => 0.0097468921353603
1106 => 0.0098396768563039
1107 => 0.010138648559649
1108 => 0.010082129690956
1109 => 0.010080653754884
1110 => 0.01032246544288
1111 => 0.010149380460503
1112 => 0.0098711140327054
1113 => 0.0098008480898032
1114 => 0.009551451329311
1115 => 0.0097237105601038
1116 => 0.0097299098631528
1117 => 0.0096355652428943
1118 => 0.0098787695786765
1119 => 0.009876528407907
1120 => 0.010107414728544
1121 => 0.01054878265666
1122 => 0.010418248441919
1123 => 0.010266451352258
1124 => 0.010282955904781
1125 => 0.010463970109251
1126 => 0.010354524789076
1127 => 0.010393882089291
1128 => 0.010463910537263
1129 => 0.010506160438633
1130 => 0.010276876794163
1201 => 0.010223419808733
1202 => 0.010114065577394
1203 => 0.010085537099631
1204 => 0.010174603839305
1205 => 0.010151137900176
1206 => 0.0097293888357364
1207 => 0.0096853137119129
1208 => 0.0096866654330358
1209 => 0.0095758364385235
1210 => 0.009406795619886
1211 => 0.0098510247983627
1212 => 0.0098153469783476
1213 => 0.0097759614262949
1214 => 0.0097807859316906
1215 => 0.0099736107617435
1216 => 0.0098617626224255
1217 => 0.010159129232352
1218 => 0.01009799959701
1219 => 0.010035302217184
1220 => 0.010026635529483
1221 => 0.010002502387339
1222 => 0.0099197408633815
1223 => 0.0098198013500059
1224 => 0.009753812626663
1225 => 0.0089973765635119
1226 => 0.0091377666968466
1227 => 0.0092992727482848
1228 => 0.0093550239900465
1229 => 0.0092596576331447
1230 => 0.0099235065084168
1231 => 0.010044798094936
]
'min_raw' => 0.004186576366585
'max_raw' => 0.010998163103655
'avg_raw' => 0.0075923697351202
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004186'
'max' => '$0.010998'
'avg' => '$0.007592'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00016232299936064
'max_diff' => -0.0019834074170148
'year' => 2027
]
2 => [
'items' => [
101 => 0.009677397967715
102 => 0.0096086724047603
103 => 0.0099280121448825
104 => 0.0097354112438933
105 => 0.0098221394178156
106 => 0.0096346805435704
107 => 0.010015582503576
108 => 0.010012680668826
109 => 0.0098645012033228
110 => 0.0099897414728767
111 => 0.00996797789403
112 => 0.0098006836424271
113 => 0.010020886029749
114 => 0.010020995247386
115 => 0.0098783757335385
116 => 0.009711827364791
117 => 0.0096820524501558
118 => 0.0096596210516752
119 => 0.0098166226688591
120 => 0.009957389827895
121 => 0.010219322611722
122 => 0.010285178736946
123 => 0.010542219577985
124 => 0.010389164272238
125 => 0.010457011706877
126 => 0.010530669694784
127 => 0.010565984042869
128 => 0.010508441207737
129 => 0.010907731436101
130 => 0.010941443765311
131 => 0.010952747217685
201 => 0.010818108799262
202 => 0.010937699227336
203 => 0.010881746826458
204 => 0.011027319429516
205 => 0.01105014707244
206 => 0.011030812871
207 => 0.011038058725174
208 => 0.010697334954889
209 => 0.010679666629938
210 => 0.010438757765553
211 => 0.010536929908498
212 => 0.010353401792775
213 => 0.01041160044882
214 => 0.010437253861867
215 => 0.01042385397471
216 => 0.010542480414164
217 => 0.010441623706847
218 => 0.010175446273861
219 => 0.0099091963210102
220 => 0.0099058537697347
221 => 0.0098357548568512
222 => 0.0097850861820927
223 => 0.009794846766419
224 => 0.0098292443386779
225 => 0.0097830869326617
226 => 0.0097929369554751
227 => 0.0099565129645369
228 => 0.0099893169665836
229 => 0.0098778361502781
301 => 0.0094302245862069
302 => 0.0093203795856352
303 => 0.0093993339937251
304 => 0.0093615988719732
305 => 0.0075555409325172
306 => 0.0079798474557563
307 => 0.0077277389277357
308 => 0.0078439221364033
309 => 0.007586584612481
310 => 0.0077093995671119
311 => 0.0076867201294757
312 => 0.0083689924627013
313 => 0.0083583397186529
314 => 0.0083634386234982
315 => 0.008120054610106
316 => 0.0085077719520359
317 => 0.0086987754565352
318 => 0.0086634257912461
319 => 0.0086723225404207
320 => 0.0085194469132602
321 => 0.0083649187937387
322 => 0.0081935233274823
323 => 0.0085119549186668
324 => 0.0084765507615356
325 => 0.0085577551599809
326 => 0.0087642808088243
327 => 0.0087946924951311
328 => 0.0088355661099324
329 => 0.0088209158286081
330 => 0.0091699449663605
331 => 0.0091276752348103
401 => 0.0092295331260146
402 => 0.0090200037158306
403 => 0.0087829012994932
404 => 0.008827966717377
405 => 0.0088236265552416
406 => 0.0087683713098516
407 => 0.0087184893449425
408 => 0.0086354499275253
409 => 0.0088981989317547
410 => 0.008887531802019
411 => 0.009060220233258
412 => 0.0090296958756305
413 => 0.0088258467448174
414 => 0.0088331272564039
415 => 0.0088820921957182
416 => 0.0090515604097566
417 => 0.0091018701139591
418 => 0.0090785646544774
419 => 0.0091337269484102
420 => 0.0091773249763868
421 => 0.009139202189477
422 => 0.0096789404582764
423 => 0.0094548034986501
424 => 0.009564046293237
425 => 0.0095901000560501
426 => 0.0095233638904561
427 => 0.0095378365751305
428 => 0.0095597587488417
429 => 0.0096928658948147
430 => 0.010042177560711
501 => 0.010196885319691
502 => 0.01066233124573
503 => 0.010184038993944
504 => 0.010155659111093
505 => 0.010239499977493
506 => 0.010512766008533
507 => 0.010734222460117
508 => 0.010807692341237
509 => 0.010817402598883
510 => 0.010955236980049
511 => 0.011034241076874
512 => 0.010938500260771
513 => 0.010857369943605
514 => 0.010566771217782
515 => 0.01060040881157
516 => 0.010832138475973
517 => 0.011159470275752
518 => 0.011440355013031
519 => 0.011341998967857
520 => 0.012092386163987
521 => 0.012166783989426
522 => 0.01215650461552
523 => 0.012325993933752
524 => 0.011989592152961
525 => 0.011845773874196
526 => 0.010874911239045
527 => 0.01114768403855
528 => 0.011544175322015
529 => 0.011491698213883
530 => 0.011203755645588
531 => 0.011440136582773
601 => 0.011361981652624
602 => 0.011300337616565
603 => 0.011582740896037
604 => 0.01127222688977
605 => 0.011541077707272
606 => 0.01119627375292
607 => 0.011342448249987
608 => 0.011259472535787
609 => 0.011313167991995
610 => 0.010999265452179
611 => 0.01116863964311
612 => 0.010992218928985
613 => 0.010992135282596
614 => 0.010988240785554
615 => 0.011195798973353
616 => 0.011202567438405
617 => 0.011049181624019
618 => 0.011027076331829
619 => 0.011108811182907
620 => 0.011013121078686
621 => 0.011057893876185
622 => 0.011014477201111
623 => 0.011004703193057
624 => 0.010926822233972
625 => 0.010893268975416
626 => 0.010906426072657
627 => 0.010861514116826
628 => 0.010834453038901
629 => 0.010982857656037
630 => 0.010903571055727
701 => 0.01097070584741
702 => 0.010894197279201
703 => 0.010628985248592
704 => 0.010476459005223
705 => 0.0099754980645723
706 => 0.010117569965901
707 => 0.010211763783466
708 => 0.010180632727322
709 => 0.010247514282038
710 => 0.010251620266308
711 => 0.010229876391093
712 => 0.010204699769157
713 => 0.010192445181953
714 => 0.010283780834975
715 => 0.010336804255771
716 => 0.010221217393209
717 => 0.010194137008543
718 => 0.010311001708319
719 => 0.010382289107672
720 => 0.010908635211563
721 => 0.010869641792111
722 => 0.010967507622863
723 => 0.010956489432194
724 => 0.011059068414072
725 => 0.011226741696329
726 => 0.010885815031313
727 => 0.010944988112003
728 => 0.010930480239123
729 => 0.011088873391049
730 => 0.011089367877181
731 => 0.010994403270276
801 => 0.011045885124304
802 => 0.011017149365716
803 => 0.011069078765355
804 => 0.010869121011222
805 => 0.01111264797165
806 => 0.011250712065682
807 => 0.011252629085762
808 => 0.011318070370588
809 => 0.011384562506076
810 => 0.0115121883699
811 => 0.011381003090003
812 => 0.011145013542098
813 => 0.011162051225215
814 => 0.011023690639623
815 => 0.011026016506064
816 => 0.011013600848722
817 => 0.011050861171012
818 => 0.010877297556634
819 => 0.010918032590015
820 => 0.010861003304738
821 => 0.010944864141474
822 => 0.010854643743839
823 => 0.010930473242988
824 => 0.010963198741033
825 => 0.011083956533348
826 => 0.010836807719729
827 => 0.010332854558257
828 => 0.01043879162264
829 => 0.010282102383241
830 => 0.010296604568905
831 => 0.010325901291953
901 => 0.010230941027264
902 => 0.010249056453224
903 => 0.010248409242733
904 => 0.010242831932367
905 => 0.010218129099982
906 => 0.010182305105718
907 => 0.010325016872825
908 => 0.010349266382978
909 => 0.010403170040168
910 => 0.010563550760769
911 => 0.010547524944743
912 => 0.010573663715586
913 => 0.010516602925599
914 => 0.010299251455298
915 => 0.010311054685845
916 => 0.010163868211793
917 => 0.010399406151107
918 => 0.010343627658128
919 => 0.010307666900844
920 => 0.010297854675045
921 => 0.010458632948431
922 => 0.010506740327719
923 => 0.010476763037313
924 => 0.010415278740113
925 => 0.010533346766937
926 => 0.010564936790025
927 => 0.010572008631199
928 => 0.010781202537434
929 => 0.010583700246704
930 => 0.010631241011086
1001 => 0.01100214048369
1002 => 0.010665785842667
1003 => 0.01084396039762
1004 => 0.010835239680331
1005 => 0.010926387753547
1006 => 0.010827762877914
1007 => 0.010828985451449
1008 => 0.010909918765559
1009 => 0.010796262522291
1010 => 0.010768119638107
1011 => 0.010729240445169
1012 => 0.010814131740582
1013 => 0.010865020232879
1014 => 0.011275144107313
1015 => 0.011540102834118
1016 => 0.011528600277009
1017 => 0.011633712117105
1018 => 0.011586358270428
1019 => 0.011433440208192
1020 => 0.011694452694057
1021 => 0.011611857422303
1022 => 0.011618666476153
1023 => 0.011618413042829
1024 => 0.011673331677941
1025 => 0.011634416791745
1026 => 0.011557711556521
1027 => 0.011608632071346
1028 => 0.011759847795959
1029 => 0.012229226045023
1030 => 0.012491896331634
1031 => 0.012213412963951
1101 => 0.012405507061938
1102 => 0.012290319053271
1103 => 0.01226938596555
1104 => 0.012390035254728
1105 => 0.012510895724516
1106 => 0.012503197435084
1107 => 0.012415458940272
1108 => 0.012365897690835
1109 => 0.012741192075812
1110 => 0.013017702585689
1111 => 0.012998846422666
1112 => 0.013082071393899
1113 => 0.013326422483493
1114 => 0.013348762884818
1115 => 0.01334594850774
1116 => 0.013290575492076
1117 => 0.01353117087278
1118 => 0.013731879772236
1119 => 0.01327775823883
1120 => 0.013450681773864
1121 => 0.013528312719989
1122 => 0.013642297980964
1123 => 0.013834610222377
1124 => 0.014043512324854
1125 => 0.014073053372639
1126 => 0.014052092585566
1127 => 0.013914316033393
1128 => 0.014142899206644
1129 => 0.014276797868599
1130 => 0.014356531457577
1201 => 0.014558722572822
1202 => 0.013528792142283
1203 => 0.012799756192684
1204 => 0.012685906701748
1205 => 0.012917424118477
1206 => 0.012978473414952
1207 => 0.012953864520092
1208 => 0.01213326827777
1209 => 0.012681586432358
1210 => 0.013271530662795
1211 => 0.013294192823309
1212 => 0.013589531240218
1213 => 0.013685705535094
1214 => 0.013923491671597
1215 => 0.013908618084017
1216 => 0.013966515224251
1217 => 0.01395320567435
1218 => 0.014393654420443
1219 => 0.014879534794655
1220 => 0.014862710302301
1221 => 0.014792859249833
1222 => 0.014896599974123
1223 => 0.015398080590415
1224 => 0.01535191229133
1225 => 0.015396760861285
1226 => 0.015988034770102
1227 => 0.016756774959298
1228 => 0.016399617961164
1229 => 0.017174545877958
1230 => 0.017662321924416
1231 => 0.018505880159781
]
'min_raw' => 0.0075555409325172
'max_raw' => 0.018505880159781
'avg_raw' => 0.013030710546149
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.007555'
'max' => '$0.0185058'
'avg' => '$0.01303'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0033689645659322
'max_diff' => 0.0075077170561252
'year' => 2028
]
3 => [
'items' => [
101 => 0.018400262514101
102 => 0.018728653544812
103 => 0.018211184885267
104 => 0.01702297224528
105 => 0.016834933046706
106 => 0.017211392284161
107 => 0.018136880585088
108 => 0.017182245364031
109 => 0.017375366825932
110 => 0.017319747831912
111 => 0.017316784132087
112 => 0.017429896500198
113 => 0.017265821110708
114 => 0.016597348457326
115 => 0.016903705535037
116 => 0.016785406354857
117 => 0.016916668115055
118 => 0.017625033698371
119 => 0.01731184838866
120 => 0.016981933105989
121 => 0.017395720084521
122 => 0.017922613100825
123 => 0.017889641082782
124 => 0.017825661586545
125 => 0.018186310656975
126 => 0.018781997261062
127 => 0.018943008956484
128 => 0.019061864498305
129 => 0.019078252669441
130 => 0.019247061017337
131 => 0.01833933598552
201 => 0.019779918923046
202 => 0.020028667801056
203 => 0.019981913321575
204 => 0.02025838723053
205 => 0.020177041593049
206 => 0.020059184527079
207 => 0.02049745448046
208 => 0.01999501334547
209 => 0.019281861409932
210 => 0.01889061215355
211 => 0.019405840735531
212 => 0.019720472851548
213 => 0.019928424665873
214 => 0.01999135075924
215 => 0.018409800095779
216 => 0.017557432004994
217 => 0.018103790178767
218 => 0.018770384858397
219 => 0.018335633018418
220 => 0.018352674467451
221 => 0.017732832594415
222 => 0.018825227110361
223 => 0.018666074417872
224 => 0.019491758868043
225 => 0.019294702647478
226 => 0.019968016263707
227 => 0.019790710223357
228 => 0.020526697683802
301 => 0.020820303007838
302 => 0.021313312042914
303 => 0.021675971496024
304 => 0.02188893206346
305 => 0.021876146709787
306 => 0.022720002574502
307 => 0.022222410253158
308 => 0.021597317024043
309 => 0.021586011059673
310 => 0.02190975570067
311 => 0.022588235653197
312 => 0.022764155633405
313 => 0.022862470902897
314 => 0.022711897645291
315 => 0.022171796843235
316 => 0.02193858405528
317 => 0.022137288107443
318 => 0.021894290126482
319 => 0.022313772814812
320 => 0.022889812142556
321 => 0.022770862299283
322 => 0.023168493791386
323 => 0.023580000553661
324 => 0.024168473705638
325 => 0.024322322378663
326 => 0.024576628384831
327 => 0.02483839280035
328 => 0.024922464475866
329 => 0.025082983390335
330 => 0.025082137376421
331 => 0.025565871929341
401 => 0.026099446121224
402 => 0.026300858026389
403 => 0.026763993596398
404 => 0.025970890162963
405 => 0.026572468227739
406 => 0.027115106700643
407 => 0.026468150742889
408 => 0.027359828809248
409 => 0.027394450647978
410 => 0.027917199307873
411 => 0.027387293394544
412 => 0.02707263695473
413 => 0.027981038306452
414 => 0.028420585106176
415 => 0.028288190032949
416 => 0.027280656988537
417 => 0.026694229541565
418 => 0.025159435799431
419 => 0.026977465285144
420 => 0.027862974414988
421 => 0.027278363733814
422 => 0.027573207356626
423 => 0.029181778559318
424 => 0.029794218326031
425 => 0.029666835135832
426 => 0.02968836079807
427 => 0.03001882217962
428 => 0.031484269933821
429 => 0.030606139670691
430 => 0.03127743735394
501 => 0.031633491224592
502 => 0.031964213902751
503 => 0.031152063531168
504 => 0.030095467830597
505 => 0.029760799619356
506 => 0.027220235722989
507 => 0.027087988339073
508 => 0.027013753874975
509 => 0.026545716079513
510 => 0.026177966578621
511 => 0.025885518521848
512 => 0.025118047488493
513 => 0.025377046432902
514 => 0.024153857789389
515 => 0.024936410536365
516 => 0.022984171926395
517 => 0.024610054251861
518 => 0.023725160421908
519 => 0.024319342829578
520 => 0.024317269783133
521 => 0.023223191584908
522 => 0.022592150113001
523 => 0.022994274299402
524 => 0.023425383347881
525 => 0.023495329340571
526 => 0.024054273475022
527 => 0.024210262768483
528 => 0.023737607926852
529 => 0.022943716120468
530 => 0.023128119080347
531 => 0.022588413192905
601 => 0.021642599384651
602 => 0.022321899374064
603 => 0.022553842257161
604 => 0.022656281447832
605 => 0.021726182194864
606 => 0.021433924816144
607 => 0.02127832943999
608 => 0.022823651986596
609 => 0.022908308244067
610 => 0.022475194861655
611 => 0.024432908419656
612 => 0.02398981754728
613 => 0.024484858611623
614 => 0.023111386444558
615 => 0.023163854930965
616 => 0.022513631196209
617 => 0.022877713039707
618 => 0.022620391727628
619 => 0.022848298824679
620 => 0.022984905398955
621 => 0.023635022438395
622 => 0.024617477544154
623 => 0.023537916632196
624 => 0.023067536483258
625 => 0.023359357682141
626 => 0.024136515990512
627 => 0.025313950609697
628 => 0.02461688561706
629 => 0.024926231223861
630 => 0.024993809477119
701 => 0.024479819558297
702 => 0.025332902151152
703 => 0.025790076043093
704 => 0.026259041857418
705 => 0.026666231733873
706 => 0.026071726598397
707 => 0.026707932312319
708 => 0.026195262812325
709 => 0.025735345272031
710 => 0.025736042777094
711 => 0.025447529785744
712 => 0.024888499510028
713 => 0.024785405750123
714 => 0.025321712508457
715 => 0.025751779740201
716 => 0.025787202137291
717 => 0.026025309454437
718 => 0.026166218912024
719 => 0.027547323153491
720 => 0.028102814704502
721 => 0.028782059258162
722 => 0.029046663291938
723 => 0.029843026567808
724 => 0.02919989854508
725 => 0.029060753751898
726 => 0.027129036933081
727 => 0.027445355453945
728 => 0.027951811926047
729 => 0.027137388213766
730 => 0.027653952604711
731 => 0.027755933357813
801 => 0.027109714407666
802 => 0.027454887870412
803 => 0.026538209490158
804 => 0.024637458627851
805 => 0.02533501823022
806 => 0.025848656893587
807 => 0.025115631189772
808 => 0.026429551391848
809 => 0.025661986334613
810 => 0.02541870506109
811 => 0.024469578077041
812 => 0.024917529478265
813 => 0.025523390162465
814 => 0.025149038698494
815 => 0.02592587419539
816 => 0.027026080433455
817 => 0.027810152917114
818 => 0.027870344266542
819 => 0.027366238188326
820 => 0.02817407139583
821 => 0.028179955578815
822 => 0.027268716420655
823 => 0.026710587510083
824 => 0.026583779447288
825 => 0.026900570850336
826 => 0.027285214096555
827 => 0.027891689289727
828 => 0.028258169547222
829 => 0.02921375569266
830 => 0.029472309904814
831 => 0.029756382595232
901 => 0.030135991314403
902 => 0.030591808911446
903 => 0.029594505958826
904 => 0.029634130664339
905 => 0.028705455963458
906 => 0.027713033860143
907 => 0.028466158529397
908 => 0.029450768850471
909 => 0.029224898154919
910 => 0.02919948308755
911 => 0.029242224181313
912 => 0.029071925053114
913 => 0.028301668407851
914 => 0.027914850342661
915 => 0.028413944334569
916 => 0.02867919057915
917 => 0.029090564372592
918 => 0.029039853869503
919 => 0.030099508583089
920 => 0.030511258362493
921 => 0.030405915149155
922 => 0.030425300835635
923 => 0.031170754143514
924 => 0.031999851536041
925 => 0.032776410653179
926 => 0.033566359941122
927 => 0.032614045242261
928 => 0.032130518568785
929 => 0.032629394671869
930 => 0.032364683989383
1001 => 0.033885790089236
1002 => 0.033991108175293
1003 => 0.035512104281862
1004 => 0.036955710703844
1005 => 0.036049007375093
1006 => 0.03690398777529
1007 => 0.037828718785678
1008 => 0.039612674936917
1009 => 0.039011901265514
1010 => 0.038551718048543
1011 => 0.038116847132094
1012 => 0.03902174447541
1013 => 0.040185880451497
1014 => 0.04043662419079
1015 => 0.040842924839926
1016 => 0.040415749387439
1017 => 0.040930235168127
1018 => 0.042746596050462
1019 => 0.042255799306594
1020 => 0.041558789030788
1021 => 0.042992631502238
1022 => 0.043511533518734
1023 => 0.047153459621601
1024 => 0.051751541766934
1025 => 0.049847905566131
1026 => 0.048666257146336
1027 => 0.048943972554063
1028 => 0.050623036498635
1029 => 0.051162298546806
1030 => 0.049696398405103
1031 => 0.050214179117125
1101 => 0.053067201747443
1102 => 0.054597756852684
1103 => 0.052519057438792
1104 => 0.046784008198276
1105 => 0.041496030881606
1106 => 0.042898640586709
1107 => 0.042739628174197
1108 => 0.045804845068653
1109 => 0.04224409396657
1110 => 0.042304047883074
1111 => 0.045432650216786
1112 => 0.044597992751974
1113 => 0.043245954553831
1114 => 0.041505902256708
1115 => 0.038289254650119
1116 => 0.035440180162109
1117 => 0.041027871335765
1118 => 0.0407869199318
1119 => 0.040437986591861
1120 => 0.041214499981364
1121 => 0.044985028583621
1122 => 0.044898105695329
1123 => 0.044345146628462
1124 => 0.044764561207123
1125 => 0.043172429150352
1126 => 0.043582757833555
1127 => 0.041495193238982
1128 => 0.042438859620127
1129 => 0.043243053687089
1130 => 0.043404507552328
1201 => 0.04376827135475
1202 => 0.040659949490827
1203 => 0.042055494752193
1204 => 0.042875246848338
1205 => 0.039171577055119
1206 => 0.042802037204732
1207 => 0.040605840522568
1208 => 0.039860418382874
1209 => 0.040864031092073
1210 => 0.040472922243253
1211 => 0.040136669821719
1212 => 0.039949035192954
1213 => 0.040685977601897
1214 => 0.040651598357683
1215 => 0.039445817542295
1216 => 0.037872925622535
1217 => 0.038400839779223
1218 => 0.038209043616877
1219 => 0.037513949582335
1220 => 0.037982359035642
1221 => 0.035919720859877
1222 => 0.032371059085075
1223 => 0.034715413751959
1224 => 0.034625158647451
1225 => 0.034579647931015
1226 => 0.036341365669974
1227 => 0.036172017159117
1228 => 0.035864647953645
1229 => 0.037508304505835
1230 => 0.036908347753985
1231 => 0.038757273095597
]
'min_raw' => 0.016597348457326
'max_raw' => 0.054597756852684
'avg_raw' => 0.035597552655005
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.016597'
'max' => '$0.054597'
'avg' => '$0.035597'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0090418075248087
'max_diff' => 0.036091876692904
'year' => 2029
]
4 => [
'items' => [
101 => 0.039975094906576
102 => 0.039666215902903
103 => 0.040811583202372
104 => 0.038413001855157
105 => 0.039209714364321
106 => 0.039373915708264
107 => 0.037488022039119
108 => 0.036199724669862
109 => 0.036113809922997
110 => 0.033880079823018
111 => 0.035073320412388
112 => 0.036123322751382
113 => 0.035620453114477
114 => 0.035461259610236
115 => 0.036274544698545
116 => 0.036337743915223
117 => 0.034896795077426
118 => 0.035196413969719
119 => 0.036445874558077
120 => 0.035164930768678
121 => 0.032676266226854
122 => 0.032059043012003
123 => 0.031976694057461
124 => 0.030302735746193
125 => 0.032100288818587
126 => 0.03131560873106
127 => 0.033794403725647
128 => 0.032378529318783
129 => 0.032317493802976
130 => 0.032225229668869
131 => 0.030784384600014
201 => 0.031099838099612
202 => 0.032148453577201
203 => 0.032522611393104
204 => 0.03248358366752
205 => 0.032143314789291
206 => 0.032299088139286
207 => 0.031797287903919
208 => 0.031620091796742
209 => 0.031060812140863
210 => 0.03023882555167
211 => 0.030353127828434
212 => 0.028724557310751
213 => 0.027837225657938
214 => 0.027591623951282
215 => 0.027263195084741
216 => 0.027628720865674
217 => 0.028719943775093
218 => 0.027403697430479
219 => 0.025147085396584
220 => 0.0252827116249
221 => 0.02558742349214
222 => 0.02501959494341
223 => 0.024482192876275
224 => 0.024949420372841
225 => 0.023993264105689
226 => 0.025702970408935
227 => 0.025656727644829
228 => 0.02629400042715
301 => 0.02669250017609
302 => 0.02577408727061
303 => 0.025543108908534
304 => 0.025674684680954
305 => 0.023500030251513
306 => 0.026116284765409
307 => 0.026138910243087
308 => 0.025945177166878
309 => 0.027338251927732
310 => 0.030278074184047
311 => 0.029171994797145
312 => 0.02874368742711
313 => 0.027929474803583
314 => 0.029014364781271
315 => 0.028931062157905
316 => 0.02855433610346
317 => 0.028326491010275
318 => 0.02874630258058
319 => 0.028274471710865
320 => 0.028189717921619
321 => 0.027676202171821
322 => 0.027492900412621
323 => 0.027357191087562
324 => 0.027207788455195
325 => 0.02753733343338
326 => 0.026790541157562
327 => 0.025889982881875
328 => 0.025815111205427
329 => 0.026021838486884
330 => 0.025930377053876
331 => 0.025814673323273
401 => 0.025593763391518
402 => 0.02552822413376
403 => 0.025741194926346
404 => 0.025500763318485
405 => 0.025855533252871
406 => 0.025759055461034
407 => 0.025220138358474
408 => 0.024548448116018
409 => 0.024542468663942
410 => 0.024397754102998
411 => 0.024213438351656
412 => 0.024162165926205
413 => 0.024910071776283
414 => 0.026458214503007
415 => 0.026154277041835
416 => 0.026373903006296
417 => 0.027454245379634
418 => 0.02779765373309
419 => 0.02755391061788
420 => 0.027220260008359
421 => 0.027234938941873
422 => 0.028375124077512
423 => 0.028446236025842
424 => 0.028625912977688
425 => 0.028856848637512
426 => 0.027593239959342
427 => 0.027175423086765
428 => 0.026977438272941
429 => 0.026367721676128
430 => 0.027025248752641
501 => 0.026642135883273
502 => 0.02669383089835
503 => 0.026660164451965
504 => 0.026678548608206
505 => 0.025702492511179
506 => 0.026058116052938
507 => 0.025466822940444
508 => 0.024675147838581
509 => 0.024672493866043
510 => 0.024866255225658
511 => 0.024750998387076
512 => 0.024440845197976
513 => 0.024484900994606
514 => 0.024098925858441
515 => 0.024531765364442
516 => 0.0245441776527
517 => 0.024377510865962
518 => 0.025044359845299
519 => 0.02531756841623
520 => 0.025207864766851
521 => 0.025309871315742
522 => 0.026166907015542
523 => 0.026306641229699
524 => 0.026368701937303
525 => 0.026285548810582
526 => 0.025325536355052
527 => 0.025368116989743
528 => 0.025055688545076
529 => 0.024791719432231
530 => 0.024802276812409
531 => 0.024937991249994
601 => 0.025530664158475
602 => 0.026777909354396
603 => 0.026825241397857
604 => 0.026882609215304
605 => 0.02664926547099
606 => 0.026578886764906
607 => 0.026671734444516
608 => 0.027140134163067
609 => 0.028344985408463
610 => 0.027919110509031
611 => 0.027572867586655
612 => 0.027876615976001
613 => 0.027829856292319
614 => 0.027435157504768
615 => 0.027424079624387
616 => 0.02666652645824
617 => 0.026386476301367
618 => 0.026152445428892
619 => 0.025896889825681
620 => 0.025745387897796
621 => 0.025978163715422
622 => 0.026031402299036
623 => 0.025522433905571
624 => 0.025453063394245
625 => 0.025868697971194
626 => 0.025685792690297
627 => 0.025873915307532
628 => 0.025917561368417
629 => 0.02591053334736
630 => 0.025719559227566
701 => 0.025841280436593
702 => 0.025553373490407
703 => 0.025240317928655
704 => 0.025040607984307
705 => 0.024866334570184
706 => 0.02496303158917
707 => 0.024618324372664
708 => 0.024508045596518
709 => 0.025800044029789
710 => 0.026754457163769
711 => 0.026740579618812
712 => 0.0266561036329
713 => 0.026530589453163
714 => 0.02713095201904
715 => 0.026921797705717
716 => 0.027073974944087
717 => 0.027112710438111
718 => 0.027229951112136
719 => 0.027271854575924
720 => 0.027145193204531
721 => 0.026720102171751
722 => 0.025660815734506
723 => 0.02516771503848
724 => 0.025004983595549
725 => 0.025010898574429
726 => 0.024847737051303
727 => 0.02489579543225
728 => 0.024831024307659
729 => 0.024708363467502
730 => 0.02495545762794
731 => 0.024983932928089
801 => 0.024926258198487
802 => 0.024939842685164
803 => 0.024462320557263
804 => 0.024498625527523
805 => 0.024296474839699
806 => 0.024258574022694
807 => 0.023747554687148
808 => 0.022842209860789
809 => 0.023343858778541
810 => 0.022737937428409
811 => 0.022508465831908
812 => 0.02359474867959
813 => 0.023485716010479
814 => 0.023299099476323
815 => 0.023023054728012
816 => 0.022920667045673
817 => 0.022298591899782
818 => 0.02226183638152
819 => 0.022570153621266
820 => 0.022427875823672
821 => 0.022228063911034
822 => 0.021504365418069
823 => 0.020690688703639
824 => 0.020715248489058
825 => 0.020974063912925
826 => 0.021726604663832
827 => 0.021432573973366
828 => 0.021219251333819
829 => 0.021179302415886
830 => 0.021679346762532
831 => 0.022387014275565
901 => 0.022719036039512
902 => 0.022390012555091
903 => 0.022012048092072
904 => 0.022035053037617
905 => 0.022188094633933
906 => 0.022204177141814
907 => 0.021958161131763
908 => 0.022027413197545
909 => 0.02192221297708
910 => 0.02127659941827
911 => 0.021264922316254
912 => 0.021106478336997
913 => 0.021101680716275
914 => 0.020832127981856
915 => 0.020794415690981
916 => 0.02025920237611
917 => 0.020611481400733
918 => 0.020375191126495
919 => 0.020019045947977
920 => 0.019957646384962
921 => 0.019955800639955
922 => 0.020321482105688
923 => 0.020607208199896
924 => 0.02037930149698
925 => 0.020327411558512
926 => 0.020881460346202
927 => 0.020810952587702
928 => 0.020749893323567
929 => 0.022323650411538
930 => 0.021077898874612
1001 => 0.0205346800995
1002 => 0.019862343710852
1003 => 0.02008125982921
1004 => 0.020127388671895
1005 => 0.018510540854939
1006 => 0.017854585896965
1007 => 0.01762948687453
1008 => 0.017499939204685
1009 => 0.017558975704591
1010 => 0.016968539306572
1011 => 0.017365322330957
1012 => 0.016854054318619
1013 => 0.016768338572541
1014 => 0.017682549112554
1015 => 0.017809756168457
1016 => 0.017267051347843
1017 => 0.017615555698606
1018 => 0.017489183176447
1019 => 0.016862818541263
1020 => 0.016838896019425
1021 => 0.016524608263271
1022 => 0.016032808782992
1023 => 0.015808043223763
1024 => 0.015690983369012
1025 => 0.015739284546533
1026 => 0.015714861993138
1027 => 0.015555488312183
1028 => 0.015723997105974
1029 => 0.015293526770479
1030 => 0.015122110014349
1031 => 0.015044685042444
1101 => 0.014662617842743
1102 => 0.015270656663522
1103 => 0.015390447971086
1104 => 0.015510475304532
1105 => 0.016555231296038
1106 => 0.016503038239152
1107 => 0.01697483805435
1108 => 0.016956504781116
1109 => 0.016821939831171
1110 => 0.016254232442213
1111 => 0.016480510489041
1112 => 0.015784061832323
1113 => 0.016305888519841
1114 => 0.016067748611661
1115 => 0.016225373177338
1116 => 0.015941949995817
1117 => 0.016098808086727
1118 => 0.015418854934074
1119 => 0.014783924247326
1120 => 0.015039438890456
1121 => 0.015317212529182
1122 => 0.015919496553346
1123 => 0.015560781157289
1124 => 0.015689788778242
1125 => 0.015257634843665
1126 => 0.014365977837963
1127 => 0.014371024519781
1128 => 0.014233862515258
1129 => 0.014115334517369
1130 => 0.015601983935659
1201 => 0.015417095580045
1202 => 0.015122500182964
1203 => 0.015516827828713
1204 => 0.01562109431707
1205 => 0.015624062637412
1206 => 0.01591175390868
1207 => 0.016065294791728
1208 => 0.016092357037849
1209 => 0.016545045469171
1210 => 0.016696780660246
1211 => 0.017321756437913
1212 => 0.016052267920532
1213 => 0.016026123639926
1214 => 0.015522376827354
1215 => 0.015202892634898
1216 => 0.015544252183342
1217 => 0.015846650143038
1218 => 0.015531773174892
1219 => 0.015572889459517
1220 => 0.015150192856175
1221 => 0.015301287002146
1222 => 0.015431429635235
1223 => 0.015359572522674
1224 => 0.015251998947245
1225 => 0.015821856958843
1226 => 0.015789703336537
1227 => 0.016320368217917
1228 => 0.016734059441162
1229 => 0.017475468069368
1230 => 0.016701769515329
1231 => 0.016673572864846
]
'min_raw' => 0.014115334517369
'max_raw' => 0.040811583202372
'avg_raw' => 0.027463458859871
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.014115'
'max' => '$0.040811'
'avg' => '$0.027463'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0024820139399568
'max_diff' => -0.013786173650312
'year' => 2030
]
5 => [
'items' => [
101 => 0.016949199646197
102 => 0.016696738463221
103 => 0.016856285216198
104 => 0.01744976262088
105 => 0.017462301863252
106 => 0.017252253397628
107 => 0.017239471929406
108 => 0.017279814034907
109 => 0.017516099006892
110 => 0.017433533777377
111 => 0.017529080351267
112 => 0.017648562804979
113 => 0.018142792893041
114 => 0.018261950094065
115 => 0.017972459871503
116 => 0.017998597597316
117 => 0.017890320307393
118 => 0.017785725802038
119 => 0.018020838975275
120 => 0.018450512920526
121 => 0.018447839941213
122 => 0.018547515944843
123 => 0.018609613269344
124 => 0.018343046094566
125 => 0.018169520665732
126 => 0.018236061356857
127 => 0.018342461371033
128 => 0.018201557266283
129 => 0.017331831858634
130 => 0.017595650989041
131 => 0.017551738585644
201 => 0.017489201983278
202 => 0.017754474158955
203 => 0.017728888010475
204 => 0.016962483527907
205 => 0.017011546256288
206 => 0.016965467194921
207 => 0.017114358069087
208 => 0.016688697867398
209 => 0.016819628078573
210 => 0.016901746279626
211 => 0.016950114530909
212 => 0.017124853820962
213 => 0.017104350182108
214 => 0.017123579285982
215 => 0.017382671523669
216 => 0.018693071152166
217 => 0.018764393312712
218 => 0.018413176909332
219 => 0.018553480935045
220 => 0.018284127886793
221 => 0.018464946392593
222 => 0.018588657821969
223 => 0.018029629660958
224 => 0.017996527641326
225 => 0.01772606287723
226 => 0.017871395321548
227 => 0.017640160952866
228 => 0.017696897778705
301 => 0.01753825666743
302 => 0.017823779082596
303 => 0.018143037508449
304 => 0.018223694794717
305 => 0.018011520199691
306 => 0.017857891809905
307 => 0.017588170965779
308 => 0.018036722740682
309 => 0.018167892949031
310 => 0.018036033759418
311 => 0.018005479104005
312 => 0.017947578087207
313 => 0.018017763078434
314 => 0.018167178567906
315 => 0.018096716982342
316 => 0.018143258100981
317 => 0.017965891349724
318 => 0.018343134339392
319 => 0.018942286995455
320 => 0.018944213369216
321 => 0.018873751403838
322 => 0.018844919885729
323 => 0.018917218138197
324 => 0.018956436974331
325 => 0.01919023626558
326 => 0.019441112220064
327 => 0.020611840833889
328 => 0.020283104923873
329 => 0.021321844997015
330 => 0.022143353531353
331 => 0.022389688020587
401 => 0.022163071881426
402 => 0.021387830310917
403 => 0.021349793260983
404 => 0.022508331465871
405 => 0.022180991358579
406 => 0.022142055294404
407 => 0.021727841355102
408 => 0.021972693094624
409 => 0.021919140427432
410 => 0.021834604922384
411 => 0.022301764984871
412 => 0.023176246918181
413 => 0.023039950708035
414 => 0.02293821190976
415 => 0.022492422111439
416 => 0.022760887140785
417 => 0.022665291885944
418 => 0.023076029766988
419 => 0.022832717745215
420 => 0.022178511435318
421 => 0.022282695946461
422 => 0.022266948667192
423 => 0.022591026558688
424 => 0.022493746419768
425 => 0.022247953158778
426 => 0.023173258034001
427 => 0.02311317388222
428 => 0.023198359472296
429 => 0.023235860803499
430 => 0.023799077575347
501 => 0.024029809465846
502 => 0.02408218964452
503 => 0.02430136709505
504 => 0.024076736309885
505 => 0.02497541960958
506 => 0.025572991564253
507 => 0.026267102140377
508 => 0.027281384251429
509 => 0.027662763707819
510 => 0.027593870922617
511 => 0.028362888043375
512 => 0.029744794715086
513 => 0.027873193771194
514 => 0.029843994109715
515 => 0.029220061476523
516 => 0.027740728427294
517 => 0.027645476819115
518 => 0.028647298335463
519 => 0.030869242036974
520 => 0.030312670340822
521 => 0.030870152388883
522 => 0.030219819967418
523 => 0.03018752548126
524 => 0.030838567194741
525 => 0.032359761644726
526 => 0.03163709918266
527 => 0.030600985339182
528 => 0.031366035677489
529 => 0.030703278272381
530 => 0.029209900344555
531 => 0.030312244740935
601 => 0.029575138436037
602 => 0.029790265242533
603 => 0.031339553059142
604 => 0.03115313865014
605 => 0.031394376156898
606 => 0.030968598271756
607 => 0.030570854588023
608 => 0.029828436465502
609 => 0.029608643060195
610 => 0.029669386050084
611 => 0.029608612958986
612 => 0.02919323684261
613 => 0.029103536409827
614 => 0.028954031758656
615 => 0.029000369501543
616 => 0.028719257018212
617 => 0.029249774355059
618 => 0.029348243047681
619 => 0.029734309323963
620 => 0.029774392005493
621 => 0.03084958108963
622 => 0.030257385009906
623 => 0.030654681267934
624 => 0.030619143351119
625 => 0.027772790060201
626 => 0.028164992430102
627 => 0.028775136237784
628 => 0.028500267279454
629 => 0.028111666881805
630 => 0.027797851225269
701 => 0.027322388416318
702 => 0.027991593189462
703 => 0.028871526304152
704 => 0.029796708561392
705 => 0.030908254423123
706 => 0.030660170326605
707 => 0.029775928984682
708 => 0.029815595405342
709 => 0.0300607976097
710 => 0.029743238476087
711 => 0.029649584088093
712 => 0.030047930934951
713 => 0.030050674130758
714 => 0.029685283969232
715 => 0.029279219670389
716 => 0.029277518246151
717 => 0.029205263026287
718 => 0.030232674010516
719 => 0.030797646168874
720 => 0.030862419316332
721 => 0.030793286419965
722 => 0.03081989292799
723 => 0.030491148077353
724 => 0.031242561319652
725 => 0.031932132417853
726 => 0.031747312632997
727 => 0.031470241501818
728 => 0.03124954100028
729 => 0.031695322608798
730 => 0.031675472655496
731 => 0.031926109615879
801 => 0.031914739275607
802 => 0.031830459492763
803 => 0.031747315642894
804 => 0.032076971609469
805 => 0.031982035985208
806 => 0.031886952899701
807 => 0.031696249215224
808 => 0.031722169013197
809 => 0.031445145722255
810 => 0.031316982072142
811 => 0.029389708282037
812 => 0.028874677749833
813 => 0.029036716839677
814 => 0.029090064315397
815 => 0.028865922367753
816 => 0.029187284343333
817 => 0.029137200419845
818 => 0.029332047668021
819 => 0.029210315566645
820 => 0.029215311494547
821 => 0.029573299648673
822 => 0.029677225132806
823 => 0.029624367792794
824 => 0.029661387261895
825 => 0.030514485302376
826 => 0.030393202041559
827 => 0.030328772726516
828 => 0.030346620087101
829 => 0.030564604927072
830 => 0.030625628780733
831 => 0.030367066424701
901 => 0.030489005926537
902 => 0.031008208848926
903 => 0.031189900487422
904 => 0.031769772980566
905 => 0.031523432839067
906 => 0.031975600830141
907 => 0.033365411079274
908 => 0.034475687673836
909 => 0.033454631433356
910 => 0.035493513006397
911 => 0.037081074771201
912 => 0.037020141506445
913 => 0.036743313391787
914 => 0.034935916530071
915 => 0.033272722991151
916 => 0.034664055009386
917 => 0.03466760180083
918 => 0.034548085146552
919 => 0.03380577747143
920 => 0.034522254448503
921 => 0.034579125789081
922 => 0.034547292961668
923 => 0.033978167407584
924 => 0.033109217878482
925 => 0.033279008536497
926 => 0.033557129097962
927 => 0.033030588853082
928 => 0.032862327340645
929 => 0.033175157505329
930 => 0.034183161476693
1001 => 0.033992604164876
1002 => 0.033987627943362
1003 => 0.034802912932191
1004 => 0.034219344829702
1005 => 0.03328115014044
1006 => 0.033044243608134
1007 => 0.032203385017809
1008 => 0.032784169041182
1009 => 0.032805070424233
1010 => 0.0324869809501
1011 => 0.033306961348175
1012 => 0.033299405084452
1013 => 0.034077854434447
1014 => 0.035565957219415
1015 => 0.035125852000809
1016 => 0.034614057514883
1017 => 0.034669703766025
1018 => 0.035280005794402
1019 => 0.034911003256205
1020 => 0.035043699141718
1021 => 0.035279804943287
1022 => 0.03542225343555
1023 => 0.034649207620146
1024 => 0.034468973661519
1025 => 0.034100278235693
1026 => 0.03400409248112
1027 => 0.034304387212374
1028 => 0.034225270160258
1029 => 0.032803313743922
1030 => 0.032654711386724
1031 => 0.032659268808864
1101 => 0.032285601116032
1102 => 0.031715668193943
1103 => 0.033213417884268
1104 => 0.033093127623141
1105 => 0.032960336484584
1106 => 0.032976602641362
1107 => 0.033626725018485
1108 => 0.033249621207786
1109 => 0.034252213494627
1110 => 0.034046110661136
1111 => 0.033834722067662
1112 => 0.03380550172499
1113 => 0.03372413515133
1114 => 0.033445098895081
1115 => 0.033108145848181
1116 => 0.032885660260245
1117 => 0.030335283260652
1118 => 0.030808618396916
1119 => 0.031353147325332
1120 => 0.031541116529359
1121 => 0.031219582198799
1122 => 0.033457795030227
1123 => 0.033866738082484
1124 => 0.032628022902501
1125 => 0.032396309868734
1126 => 0.033472986098144
1127 => 0.032823618713494
1128 => 0.033116028807041
1129 => 0.032483998124562
1130 => 0.033768235676446
1201 => 0.033758451937987
1202 => 0.033258854524483
1203 => 0.033681110837281
1204 => 0.033607733411715
1205 => 0.033043689162324
1206 => 0.033786116885219
1207 => 0.033786485120107
1208 => 0.033305633471794
1209 => 0.032744104018526
1210 => 0.032643715815016
1211 => 0.032568086788928
1212 => 0.033097428702767
1213 => 0.033572035007505
1214 => 0.034455159675742
1215 => 0.034677198199862
1216 => 0.035543829341441
1217 => 0.035027792692135
1218 => 0.035256545054979
1219 => 0.035504888103844
1220 => 0.035623952893983
1221 => 0.03542994320782
1222 => 0.036776178090303
1223 => 0.036889841561955
1224 => 0.036927951940815
1225 => 0.036474009112947
1226 => 0.036877216590736
1227 => 0.036688569164706
1228 => 0.03717937735947
1229 => 0.037256342351362
1230 => 0.037191155741338
1231 => 0.037215585644575
]
'min_raw' => 0.016688697867398
'max_raw' => 0.037256342351362
'avg_raw' => 0.02697252010938
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.016688'
'max' => '$0.037256'
'avg' => '$0.026972'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0025733633500292
'max_diff' => -0.0035552408510099
'year' => 2031
]
6 => [
'items' => [
101 => 0.036066811664483
102 => 0.03600724167335
103 => 0.035195000617354
104 => 0.035525994851455
105 => 0.03490721699577
106 => 0.035103437827926
107 => 0.03518993010108
108 => 0.035144751445978
109 => 0.035544708768832
110 => 0.035204663338523
111 => 0.034307227539293
112 => 0.03340954723428
113 => 0.033398277589285
114 => 0.033161934210349
115 => 0.032991101235827
116 => 0.033024009727345
117 => 0.033139983543777
118 => 0.032984360626787
119 => 0.033017570666409
120 => 0.033569078601473
121 => 0.033679679584675
122 => 0.03330381422916
123 => 0.031794660589652
124 => 0.031424310501091
125 => 0.031690510800387
126 => 0.031563284202819
127 => 0.025474033765004
128 => 0.02690461283224
129 => 0.026054611328363
130 => 0.026446331128039
131 => 0.025578699699403
201 => 0.025992778893607
202 => 0.025916313586189
203 => 0.028216642392392
204 => 0.028180725922082
205 => 0.028197917235762
206 => 0.027377331042081
207 => 0.028684547129958
208 => 0.029328528780817
209 => 0.029209344916259
210 => 0.029239340927253
211 => 0.028723910076846
212 => 0.02820290773307
213 => 0.027625035952137
214 => 0.028698650294
215 => 0.028579282706393
216 => 0.028853069005261
217 => 0.029549384649497
218 => 0.029651919773156
219 => 0.029789728019163
220 => 0.029740333572829
221 => 0.030917109679197
222 => 0.030774594328097
223 => 0.031118015319783
224 => 0.030411572284472
225 => 0.029612164933828
226 => 0.02976410613659
227 => 0.02974947297693
228 => 0.0295631760593
229 => 0.029394995531961
301 => 0.029115022338512
302 => 0.030000898950821
303 => 0.029964933978162
304 => 0.030547165080806
305 => 0.030444250077922
306 => 0.029756958501094
307 => 0.029781505254217
308 => 0.029946593965738
309 => 0.030517967881261
310 => 0.030687590561491
311 => 0.030609014577714
312 => 0.030794998103016
313 => 0.030941991898257
314 => 0.030813458260542
315 => 0.032633223517122
316 => 0.031877530108999
317 => 0.032245849818037
318 => 0.032333691898377
319 => 0.032108686256707
320 => 0.032157481923537
321 => 0.032231394062762
322 => 0.032680174098654
323 => 0.033857902768384
324 => 0.034379510779137
325 => 0.035948794215175
326 => 0.034336198494978
327 => 0.034240513738526
328 => 0.034523189073176
329 => 0.035444524575652
330 => 0.036191180463766
331 => 0.036438889297464
401 => 0.036471628109065
402 => 0.036936346348455
403 => 0.037202714176792
404 => 0.03687991733089
405 => 0.036606380802227
406 => 0.035626606909159
407 => 0.035740018405117
408 => 0.036521311147501
409 => 0.037624933164032
410 => 0.038571955666515
411 => 0.038240341393212
412 => 0.040770324215323
413 => 0.041021161678082
414 => 0.040986504051275
415 => 0.04155794912106
416 => 0.040423747030302
417 => 0.039938853662372
418 => 0.036665522504496
419 => 0.037585195042416
420 => 0.038921993086758
421 => 0.038745062852854
422 => 0.037774244380339
423 => 0.038571219213648
424 => 0.038307714410049
425 => 0.038099877238626
426 => 0.039052019612134
427 => 0.038005099960609
428 => 0.038911549262382
429 => 0.03774901865684
430 => 0.038241856179279
501 => 0.037962097765674
502 => 0.038143135745178
503 => 0.037084791416211
504 => 0.037655848326265
505 => 0.037061033571292
506 => 0.037060751551651
507 => 0.037047620982967
508 => 0.037747417904381
509 => 0.037770238256865
510 => 0.037253087274605
511 => 0.037178557738645
512 => 0.037454132495601
513 => 0.037131506628349
514 => 0.037282461241053
515 => 0.037136078889788
516 => 0.037103125139234
517 => 0.036840544048202
518 => 0.036727416894368
519 => 0.036771776966314
520 => 0.036620353171578
521 => 0.036529114858011
522 => 0.037029471385964
523 => 0.036762151077403
524 => 0.036988500714764
525 => 0.03673054673539
526 => 0.035836365857681
527 => 0.03532211297912
528 => 0.03363308819174
529 => 0.034112093526212
530 => 0.034429674558534
531 => 0.034324714029246
601 => 0.034550209860489
602 => 0.034564053473126
603 => 0.034490742479731
604 => 0.0344058577411
605 => 0.034364540544754
606 => 0.034672485075769
607 => 0.034851257240959
608 => 0.034461548063813
609 => 0.034370244656219
610 => 0.034764262150747
611 => 0.035004612594792
612 => 0.036779225232375
613 => 0.036647756196259
614 => 0.036977717677414
615 => 0.036940569078307
616 => 0.037286421277543
617 => 0.037851743455249
618 => 0.036702285401406
619 => 0.036901791574284
620 => 0.036852877267965
621 => 0.03738691083834
622 => 0.037388578032855
623 => 0.03706839823046
624 => 0.037241972895662
625 => 0.037145088279318
626 => 0.037320171875793
627 => 0.036646000347129
628 => 0.037467068496723
629 => 0.037932561229079
630 => 0.03793902459612
701 => 0.038159664456878
702 => 0.038383847334007
703 => 0.038814146844444
704 => 0.038371846514207
705 => 0.03757619127718
706 => 0.037633635015342
707 => 0.037167142640992
708 => 0.037174984462084
709 => 0.037133124206523
710 => 0.037258749984555
711 => 0.036673568140857
712 => 0.036810909149928
713 => 0.03661863093296
714 => 0.036901373598992
715 => 0.036597189229379
716 => 0.036852853680005
717 => 0.036963189981485
718 => 0.037370333309315
719 => 0.03653705382882
720 => 0.034837940560031
721 => 0.035195114768887
722 => 0.03466682605856
723 => 0.034715721190037
724 => 0.034814497137225
725 => 0.034494331974911
726 => 0.034555409398317
727 => 0.034553227282958
728 => 0.034534422991665
729 => 0.034451135667582
730 => 0.034330352569767
731 => 0.034811515256386
801 => 0.034893274172913
802 => 0.035075014116566
803 => 0.035615748913494
804 => 0.035561716755876
805 => 0.035649845446724
806 => 0.035457461009426
807 => 0.034724645352312
808 => 0.034764440768176
809 => 0.034268191294676
810 => 0.035062323901808
811 => 0.034874262818401
812 => 0.034753018614518
813 => 0.034719936010169
814 => 0.035262011184069
815 => 0.035424208572088
816 => 0.035323138044537
817 => 0.035115839443831
818 => 0.035513914039516
819 => 0.035620422007902
820 => 0.035644265214161
821 => 0.036349577074481
822 => 0.035683684312115
823 => 0.035843971318422
824 => 0.03709448478568
825 => 0.035960441629939
826 => 0.036561169581715
827 => 0.036531767074513
828 => 0.036839079167116
829 => 0.036506558513152
830 => 0.03651068050518
831 => 0.036783552824287
901 => 0.036400352864883
902 => 0.036305467165982
903 => 0.036174383252534
904 => 0.036460600181939
905 => 0.036632174286639
906 => 0.038014935563228
907 => 0.03890826240948
908 => 0.038869480735102
909 => 0.039223872642662
910 => 0.039064215842448
911 => 0.038548641919223
912 => 0.039428663738627
913 => 0.039150188013291
914 => 0.03917314521374
915 => 0.039172290745592
916 => 0.039357452758171
917 => 0.03922624850241
918 => 0.038967631446464
919 => 0.039139313517353
920 => 0.039649147890431
921 => 0.041231689428092
922 => 0.042117300638454
923 => 0.041178374521222
924 => 0.041826033184167
925 => 0.041437668770778
926 => 0.041367091404024
927 => 0.041773868905953
928 => 0.04218135841805
929 => 0.042155403097755
930 => 0.041859586636791
1001 => 0.041692487424057
1002 => 0.042957818645223
1003 => 0.043890093134623
1004 => 0.043826518264493
1005 => 0.04410711706559
1006 => 0.044930963824204
1007 => 0.045006286047028
1008 => 0.044996797178214
1009 => 0.044810103189883
1010 => 0.045621287313759
1011 => 0.046297991381323
1012 => 0.044766888925693
1013 => 0.045349912697194
1014 => 0.045611650852074
1015 => 0.045995960117648
1016 => 0.046644354266384
1017 => 0.047348682289966
1018 => 0.047448281995064
1019 => 0.047377611238012
1020 => 0.046913087973106
1021 => 0.04768377210089
1022 => 0.048135220788179
1023 => 0.04840404815024
1024 => 0.049085749611819
1025 => 0.045613267257812
1026 => 0.043155271654075
1027 => 0.042771420146664
1028 => 0.043551997281198
1029 => 0.043757829246589
1030 => 0.043674858639431
1031 => 0.040908161116242
1101 => 0.042756854056786
1102 => 0.044745892218294
1103 => 0.044822299274691
1104 => 0.045818053367168
1105 => 0.046142311717018
1106 => 0.046944024277935
1107 => 0.046893876938967
1108 => 0.047089081189517
1109 => 0.047044207112782
1110 => 0.048529210811384
1111 => 0.050167390416125
1112 => 0.050110665465505
1113 => 0.049875157765262
1114 => 0.050224926860152
1115 => 0.05191570377024
1116 => 0.051760044126507
1117 => 0.051911254211337
1118 => 0.053904775476342
1119 => 0.056496636695941
1120 => 0.055292456940825
1121 => 0.057905180516036
1122 => 0.059549751512106
1123 => 0.062393866997993
1124 => 0.062037769731596
1125 => 0.063144963019168
1126 => 0.061400281305003
1127 => 0.057394139430929
1128 => 0.056760152144462
1129 => 0.058029410747084
1130 => 0.061149759169188
1201 => 0.057931139870895
1202 => 0.058582262363001
1203 => 0.058394739041471
1204 => 0.058384746720589
1205 => 0.058766112966931
1206 => 0.058212921335887
1207 => 0.055959119113739
1208 => 0.056992023390409
1209 => 0.05659316944505
1210 => 0.057035727633958
1211 => 0.059424031654614
1212 => 0.058368105517025
1213 => 0.057255773107549
1214 => 0.058650884795354
1215 => 0.060427341386318
1216 => 0.060316173925455
1217 => 0.060100462586986
1218 => 0.061316416107654
1219 => 0.063324815082843
1220 => 0.063867677255436
1221 => 0.064268407012915
1222 => 0.064323660876087
1223 => 0.06489281000684
1224 => 0.061832351686732
1225 => 0.066689377638887
1226 => 0.06752805184819
1227 => 0.067370415856326
1228 => 0.068302566943161
1229 => 0.068028304447023
1230 => 0.067630941120587
1231 => 0.069108598867442
]
'min_raw' => 0.025474033765004
'max_raw' => 0.069108598867442
'avg_raw' => 0.047291316316223
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.025474'
'max' => '$0.0691085'
'avg' => '$0.047291'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.008785335897606
'max_diff' => 0.03185225651608
'year' => 2032
]
7 => [
'items' => [
101 => 0.067414583501504
102 => 0.06501014196016
103 => 0.063691017776117
104 => 0.065428146912377
105 => 0.066488951058439
106 => 0.067190075119171
107 => 0.067402234836317
108 => 0.062069926354114
109 => 0.059196107825593
110 => 0.061038192553979
111 => 0.063285663056506
112 => 0.061819866874613
113 => 0.061877323309824
114 => 0.059787483158904
115 => 0.063470567537968
116 => 0.062933973123554
117 => 0.065717825894754
118 => 0.065053437089093
119 => 0.067323560955464
120 => 0.066725761261313
121 => 0.069207194369204
122 => 0.070197105218061
123 => 0.071859319600613
124 => 0.073082051266848
125 => 0.073800062688391
126 => 0.073756955975835
127 => 0.076602074939858
128 => 0.074924407687659
129 => 0.072816862223085
130 => 0.072778743374851
131 => 0.073870271035104
201 => 0.076157813565005
202 => 0.076750940060618
203 => 0.077082416855861
204 => 0.076574748605156
205 => 0.07475376104239
206 => 0.073967467845404
207 => 0.074637412430343
208 => 0.073818127771957
209 => 0.075232442943006
210 => 0.077174599754276
211 => 0.076773552052869
212 => 0.07811419439024
213 => 0.079501618169733
214 => 0.081485696487508
215 => 0.082004408029982
216 => 0.082861818484858
217 => 0.083744375487588
218 => 0.084027829011286
219 => 0.08456902973849
220 => 0.084566177343513
221 => 0.086197122161951
222 => 0.087996104802845
223 => 0.088675179103239
224 => 0.090236673012618
225 => 0.087562669414079
226 => 0.08959093186031
227 => 0.091420475357513
228 => 0.089239218176923
301 => 0.092245573032626
302 => 0.092362302979126
303 => 0.094124786583106
304 => 0.09233817179947
305 => 0.091277285644023
306 => 0.094340024223912
307 => 0.095821986947359
308 => 0.095375607714444
309 => 0.091978639711501
310 => 0.090001458630976
311 => 0.084826794373496
312 => 0.090956407715342
313 => 0.093941963570882
314 => 0.091970907843092
315 => 0.092964993702725
316 => 0.098388403819458
317 => 0.10045328725211
318 => 0.10002380593274
319 => 0.10009638120585
320 => 0.10121055482583
321 => 0.10615141424341
322 => 0.10319073675217
323 => 0.10545406375975
324 => 0.10665452424354
325 => 0.10776957884327
326 => 0.10503135716295
327 => 0.10146897098932
328 => 0.10034061374934
329 => 0.091774925196226
330 => 0.091329043908137
331 => 0.091078757229547
401 => 0.089500735124788
402 => 0.088260842007081
403 => 0.0872748329656
404 => 0.084687250793529
405 => 0.085560483817331
406 => 0.081436417905422
407 => 0.08407484912794
408 => 0.077492740353479
409 => 0.082974516129268
410 => 0.079991034800266
411 => 0.081994362272218
412 => 0.081987372851393
413 => 0.078298611819976
414 => 0.076171011439534
415 => 0.077526801209397
416 => 0.078980315465417
417 => 0.079216143263247
418 => 0.08110066243678
419 => 0.081626591230509
420 => 0.080033002432243
421 => 0.077356340779262
422 => 0.077978068233097
423 => 0.076158412152526
424 => 0.072969534863385
425 => 0.075259842204902
426 => 0.076041853829001
427 => 0.076387234712423
428 => 0.073251340143584
429 => 0.072265973986471
430 => 0.071741373312447
501 => 0.076951536169303
502 => 0.077236960651879
503 => 0.075776688644064
504 => 0.08237725658806
505 => 0.080883344776229
506 => 0.082552410287325
507 => 0.077921652983301
508 => 0.078098554148456
509 => 0.075906279429553
510 => 0.077133806784289
511 => 0.076266230015015
512 => 0.077034634704688
513 => 0.077495213307427
514 => 0.07968712829562
515 => 0.082999544277512
516 => 0.079359729290308
517 => 0.077773809777272
518 => 0.078757705323609
519 => 0.081377948819745
520 => 0.085347751844186
521 => 0.082997548553986
522 => 0.084040528865137
523 => 0.084268373664159
524 => 0.08253542076722
525 => 0.085411648289355
526 => 0.086953041984898
527 => 0.088534192970042
528 => 0.089907062067597
529 => 0.08790264649632
530 => 0.090047658479272
531 => 0.088319157466599
601 => 0.086768513369081
602 => 0.086770865056099
603 => 0.085798123362431
604 => 0.083913313757607
605 => 0.08356572594831
606 => 0.085373921627774
607 => 0.086823923325936
608 => 0.086943352410836
609 => 0.087746147854716
610 => 0.088221233928953
611 => 0.092877723304678
612 => 0.094750601852095
613 => 0.0970407222881
614 => 0.097932853262039
615 => 0.10061784764694
616 => 0.098449496616551
617 => 0.097980360231559
618 => 0.091467442108756
619 => 0.092533932086504
620 => 0.094241485441856
621 => 0.091495599034654
622 => 0.093237231944097
623 => 0.09358106717325
624 => 0.091402294865264
625 => 0.092566071294153
626 => 0.089475426134687
627 => 0.08306691189623
628 => 0.085418782797673
629 => 0.087150551412321
630 => 0.084679104073688
701 => 0.089109077769967
702 => 0.08652117858982
703 => 0.085700938790782
704 => 0.082500890898129
705 => 0.084011190322322
706 => 0.086053891918947
707 => 0.084791739821782
708 => 0.087410894936491
709 => 0.091120317082072
710 => 0.093763872202922
711 => 0.093966811539946
712 => 0.092267182701677
713 => 0.094990848761889
714 => 0.095010687695644
715 => 0.091938381253223
716 => 0.090056610663914
717 => 0.089629068426743
718 => 0.090697152759788
719 => 0.091994004319348
720 => 0.094038777775874
721 => 0.095274391550853
722 => 0.098496216957092
723 => 0.099367950535047
724 => 0.10032572144411
725 => 0.10160559874423
726 => 0.10314241959683
727 => 0.099779943062605
728 => 0.099913540523751
729 => 0.096782448931734
730 => 0.093436428521709
731 => 0.095975640925586
801 => 0.099295323366384
802 => 0.098533784546541
803 => 0.098448095872483
804 => 0.098592200454193
805 => 0.098018025053565
806 => 0.095421050996456
807 => 0.094116866882894
808 => 0.095799597122242
809 => 0.096693893354748
810 => 0.098080868820539
811 => 0.09790989481888
812 => 0.10148259466847
813 => 0.10287083779718
814 => 0.10251566579858
815 => 0.10258102599401
816 => 0.10509437386742
817 => 0.10788973361205
818 => 0.11050795689311
819 => 0.11317132606991
820 => 0.10996053057421
821 => 0.10833028663583
822 => 0.11001228224779
823 => 0.10911979170028
824 => 0.11424830711617
825 => 0.11460339439639
826 => 0.11973153896224
827 => 0.12459875880334
828 => 0.12154174522645
829 => 0.12442437133854
830 => 0.12754216650272
831 => 0.13355689921846
901 => 0.13153134884065
902 => 0.12997980899566
903 => 0.12851361133914
904 => 0.13156453591004
905 => 0.1354895016308
906 => 0.13633490165419
907 => 0.13770477265976
908 => 0.13626452079726
909 => 0.1379991455271
910 => 0.14412313305616
911 => 0.14246837756788
912 => 0.14011835875929
913 => 0.14495265875947
914 => 0.14670217313667
915 => 0.15898118126365
916 => 0.17448393624448
917 => 0.16806569388584
918 => 0.16408168373844
919 => 0.16501802062506
920 => 0.17067910194269
921 => 0.17249726158817
922 => 0.16755487691454
923 => 0.16930061073542
924 => 0.17891977572522
925 => 0.18408014912248
926 => 0.17707166891838
927 => 0.15773554999563
928 => 0.13990676527769
929 => 0.14463576182553
930 => 0.14409964037485
1001 => 0.15443423314112
1002 => 0.14242891219675
1003 => 0.14263105101209
1004 => 0.15317935221224
1005 => 0.1503652462957
1006 => 0.14580675511437
1007 => 0.13994004730805
1008 => 0.12909489532327
1009 => 0.11948904177091
1010 => 0.13832833268304
1011 => 0.13751594820188
1012 => 0.13633949508453
1013 => 0.13895756419167
1014 => 0.15167016462408
1015 => 0.15137709803744
1016 => 0.14951275793713
1017 => 0.15092684347167
1018 => 0.14555885908316
1019 => 0.14694231088681
1020 => 0.1399039411071
1021 => 0.14308557819582
1022 => 0.14579697463962
1023 => 0.14634132761862
1024 => 0.14756778267566
1025 => 0.13708785849534
1026 => 0.1417930367779
1027 => 0.14455688820331
1028 => 0.13206970691351
1029 => 0.14431005677856
1030 => 0.13690542633109
1031 => 0.1343921835434
1101 => 0.13777593386247
1102 => 0.13645728307232
1103 => 0.13532358455673
1104 => 0.13469096130561
1105 => 0.13717561408904
1106 => 0.13705970206689
1107 => 0.13299432786288
1108 => 0.1276912129396
1109 => 0.12947111237667
1110 => 0.12882445822454
1111 => 0.12648090015716
1112 => 0.12806017533229
1113 => 0.1211058467139
1114 => 0.1091412857805
1115 => 0.11704544121752
1116 => 0.11674113983126
1117 => 0.11658769727334
1118 => 0.12252745162944
1119 => 0.12195648130155
1120 => 0.12092016456547
1121 => 0.12646186738762
1122 => 0.12443907131111
1123 => 0.1306728521882
1124 => 0.13477882344952
1125 => 0.13373741632339
1126 => 0.13759910214055
1127 => 0.12951211766481
1128 => 0.13219828951415
1129 => 0.13275190580942
1130 => 0.12639348363501
1201 => 0.12204989910851
1202 => 0.12176023154108
1203 => 0.11422905455494
1204 => 0.1182521485114
1205 => 0.12179230470614
1206 => 0.12009684461608
1207 => 0.11956011260199
1208 => 0.12230216005898
1209 => 0.12251524063044
1210 => 0.11765698101997
1211 => 0.11866716703406
1212 => 0.12287981064226
1213 => 0.11856101922366
1214 => 0.11017031296789
1215 => 0.10808930180587
1216 => 0.10781165655622
1217 => 0.10216778923774
1218 => 0.10822836492246
1219 => 0.10558276122275
1220 => 0.11394019161094
1221 => 0.10916647219501
1222 => 0.1089606866921
1223 => 0.10864961172228
1224 => 0.10379170197604
1225 => 0.1048552754742
1226 => 0.10839075576889
1227 => 0.10965225496807
1228 => 0.10952067026643
1229 => 0.10837342998667
1230 => 0.10889863071192
1231 => 0.10720677618381
]
'min_raw' => 0.059196107825593
'max_raw' => 0.18408014912248
'avg_raw' => 0.12163812847404
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.059196'
'max' => '$0.18408'
'avg' => '$0.121638'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.033722074060589
'max_diff' => 0.11497155025504
'year' => 2033
]
8 => [
'items' => [
101 => 0.10660934713703
102 => 0.10472369672957
103 => 0.10195231155484
104 => 0.10233768966128
105 => 0.096846850457746
106 => 0.093855149838769
107 => 0.093027086537416
108 => 0.0919197656837
109 => 0.093152161374312
110 => 0.096831295600169
111 => 0.092393479151917
112 => 0.084785154128017
113 => 0.085242427425909
114 => 0.08626978476061
115 => 0.084355311164043
116 => 0.082543422574482
117 => 0.084118712699938
118 => 0.080894965088535
119 => 0.086659359257812
120 => 0.086503448550061
121 => 0.088652058228623
122 => 0.089995627954537
123 => 0.086899134722169
124 => 0.086120375048037
125 => 0.086563991951076
126 => 0.079231992712693
127 => 0.088052877467351
128 => 0.088129160845004
129 => 0.087475976252553
130 => 0.092172825070145
131 => 0.10208464105915
201 => 0.098355417182211
202 => 0.096911348980672
203 => 0.09416617427394
204 => 0.097823956578315
205 => 0.097543095967632
206 => 0.096272937772899
207 => 0.09550474213359
208 => 0.096920166153182
209 => 0.095329355433758
210 => 0.095043602115995
211 => 0.093312247913024
212 => 0.09269423323416
213 => 0.092236679769803
214 => 0.09173295836382
215 => 0.092844042265864
216 => 0.090326179968572
217 => 0.087289884867123
218 => 0.087037449782605
219 => 0.087734445245277
220 => 0.087426076638255
221 => 0.087035973432353
222 => 0.086291160174001
223 => 0.086070189990665
224 => 0.086788235887014
225 => 0.085977603934712
226 => 0.08717373553774
227 => 0.086848453926697
228 => 0.085031457289426
301 => 0.082766806741071
302 => 0.082746646600925
303 => 0.082258731355054
304 => 0.081637297930888
305 => 0.081464429368755
306 => 0.083986046159413
307 => 0.089205717450435
308 => 0.088180971079859
309 => 0.088921455352832
310 => 0.092563905091638
311 => 0.09372173033132
312 => 0.092899933400788
313 => 0.091775007076048
314 => 0.091824498125239
315 => 0.09566871191523
316 => 0.095908470813903
317 => 0.096514264201698
318 => 0.097292879902205
319 => 0.093032535021414
320 => 0.09162383626448
321 => 0.090956316641814
322 => 0.088900614566606
323 => 0.091117513012142
324 => 0.089825821224984
325 => 0.090000114577546
326 => 0.08988660580304
327 => 0.089948589269351
328 => 0.086657747992163
329 => 0.087856757592044
330 => 0.085863171580505
331 => 0.083193983701585
401 => 0.083185035647877
402 => 0.083838315599807
403 => 0.083449719121552
404 => 0.082404015990297
405 => 0.082552553184512
406 => 0.081251211065006
407 => 0.08271055967938
408 => 0.082752408575839
409 => 0.08219047986805
410 => 0.084438807759793
411 => 0.085359949531501
412 => 0.084990076018354
413 => 0.085333998219811
414 => 0.088223553918009
415 => 0.088694677576969
416 => 0.088903919585597
417 => 0.08862356301329
418 => 0.085386813993542
419 => 0.085530377576288
420 => 0.084477003262036
421 => 0.083587012968343
422 => 0.083622607912707
423 => 0.084080178614304
424 => 0.086078416704348
425 => 0.090283590962274
426 => 0.09044317425142
427 => 0.090636593853238
428 => 0.089849859127742
429 => 0.089612572406495
430 => 0.089925614840719
501 => 0.091504857194438
502 => 0.095567097288319
503 => 0.094131230331248
504 => 0.092963848144548
505 => 0.093987957046261
506 => 0.093830303508074
507 => 0.092499548988855
508 => 0.092462199141716
509 => 0.08990805575138
510 => 0.088963847095004
511 => 0.088174795668943
512 => 0.087313172110393
513 => 0.086802372783002
514 => 0.087587192704018
515 => 0.08776669030567
516 => 0.086050667832065
517 => 0.085816780309833
518 => 0.087218121304697
519 => 0.086601443380116
520 => 0.087235711918424
521 => 0.087382867659967
522 => 0.087359172196294
523 => 0.086715289618023
524 => 0.087125681172558
525 => 0.086154982802471
526 => 0.085099494119182
527 => 0.084426158098513
528 => 0.083838583115416
529 => 0.084164603866096
530 => 0.083002399418957
531 => 0.082630586825763
601 => 0.086986649747984
602 => 0.090204520264196
603 => 0.090157731152474
604 => 0.089872914468047
605 => 0.089449734647943
606 => 0.091473898954773
607 => 0.090768720584716
608 => 0.091281796768557
609 => 0.091412396191084
610 => 0.091807681309044
611 => 0.09194896176281
612 => 0.091521914105943
613 => 0.090088690010018
614 => 0.08651723182983
615 => 0.084854708405986
616 => 0.084306047984599
617 => 0.084325990748862
618 => 0.083775880282071
619 => 0.083937912468763
620 => 0.083719532100028
621 => 0.083305972513531
622 => 0.084139067727011
623 => 0.084235074189545
624 => 0.084040619811973
625 => 0.084086420857242
626 => 0.082476421663492
627 => 0.082598826405459
628 => 0.081917261247747
629 => 0.081789475997067
630 => 0.08006653862904
701 => 0.077014105337816
702 => 0.078705449688023
703 => 0.076662543551978
704 => 0.075888864043178
705 => 0.079551342505986
706 => 0.07918373124966
707 => 0.078554540575602
708 => 0.077623836433843
709 => 0.077278629214357
710 => 0.075181259428084
711 => 0.075057335632079
712 => 0.076096848731903
713 => 0.075617149203796
714 => 0.074943469389915
715 => 0.072503469393867
716 => 0.069760101542074
717 => 0.069842906573324
718 => 0.070715520844806
719 => 0.073252764527207
720 => 0.072261419525732
721 => 0.071542187352788
722 => 0.071407496786835
723 => 0.073093431213532
724 => 0.075479381641491
725 => 0.076598816199657
726 => 0.075489490550247
727 => 0.07421515697454
728 => 0.0742927197546
729 => 0.074808710181602
730 => 0.074862933479768
731 => 0.074033473325591
801 => 0.074266961500402
802 => 0.073912271612259
803 => 0.071735540423432
804 => 0.071696170258715
805 => 0.071161965320445
806 => 0.071145789807221
807 => 0.070236973943557
808 => 0.070109824321882
809 => 0.068305315263397
810 => 0.069493048590249
811 => 0.068696379433395
812 => 0.06749561109876
813 => 0.067288598185272
814 => 0.067282375127118
815 => 0.068515295719901
816 => 0.069478641195281
817 => 0.068710237834462
818 => 0.068535287284077
819 => 0.070403301454226
820 => 0.070165579623747
821 => 0.069959714051694
822 => 0.075265745950001
823 => 0.071065607667659
824 => 0.069234107641046
825 => 0.06696727856569
826 => 0.06770536954297
827 => 0.067860896156696
828 => 0.062409580857119
829 => 0.060197982918998
830 => 0.059439045848945
831 => 0.059002266835335
901 => 0.059201312516563
902 => 0.057210614977689
903 => 0.058548396646911
904 => 0.05682462084772
905 => 0.056535624225335
906 => 0.059617948889132
907 => 0.06004683635942
908 => 0.058217069166279
909 => 0.059392075916676
910 => 0.058966002135166
911 => 0.056854170036261
912 => 0.056773513583668
913 => 0.055713870470925
914 => 0.054055734186821
915 => 0.053297921411249
916 => 0.052903245938099
917 => 0.053066096730393
918 => 0.052983754386493
919 => 0.052446414894038
920 => 0.053014554057213
921 => 0.05156319326661
922 => 0.050985249705384
923 => 0.050724206006966
924 => 0.049436039768096
925 => 0.051486085104265
926 => 0.051889969861281
927 => 0.052294650396035
928 => 0.055817118163929
929 => 0.055641145628636
930 => 0.057231851645588
1001 => 0.05717003973489
1002 => 0.056716344611126
1003 => 0.054802279513192
1004 => 0.055565191746299
1005 => 0.053217066475682
1006 => 0.054976441585426
1007 => 0.0541735362586
1008 => 0.054704978486776
1009 => 0.053749397442301
1010 => 0.054278255447288
1011 => 0.051985745920306
1012 => 0.04984503278049
1013 => 0.050706518239265
1014 => 0.051643051455764
1015 => 0.053673694093362
1016 => 0.052464260090847
1017 => 0.052899218291914
1018 => 0.051442181129462
1019 => 0.048435897281234
1020 => 0.048452912521334
1021 => 0.047990461246738
1022 => 0.047590835826495
1023 => 0.052603178134807
1024 => 0.051979814135363
1025 => 0.050986565186111
1026 => 0.052316068374829
1027 => 0.052667610119979
1028 => 0.052677618019254
1029 => 0.053647589226298
1030 => 0.054165263033374
1031 => 0.054256505285598
1101 => 0.055782775937498
1102 => 0.056294361728018
1103 => 0.058401511196838
1104 => 0.05412134202763
1105 => 0.054033194760233
1106 => 0.052334777211165
1107 => 0.051257613950626
1108 => 0.052408531501167
1109 => 0.053428087335033
1110 => 0.052366457652924
1111 => 0.052505084077181
1112 => 0.051079932967281
1113 => 0.051589357429478
1114 => 0.052028142403208
1115 => 0.051785871131303
1116 => 0.051423179311199
1117 => 0.053344495383518
1118 => 0.053236087201019
1119 => 0.055025260898428
1120 => 0.056420049740597
1121 => 0.058919760694092
1122 => 0.056311182001241
1123 => 0.056216115025512
1124 => 0.057145409962483
1125 => 0.056294219457805
1126 => 0.056832142474664
1127 => 0.058833092979819
1128 => 0.058875369910936
1129 => 0.05816717684397
1130 => 0.058124083231485
1201 => 0.058260099456779
1202 => 0.059056750736715
1203 => 0.058778376300884
1204 => 0.059100518245607
1205 => 0.059503361680294
1206 => 0.061169692928239
1207 => 0.06157143975078
1208 => 0.06059540325385
1209 => 0.060683528421305
1210 => 0.060318463978652
1211 => 0.059965816301294
1212 => 0.060758516779939
1213 => 0.062207192485229
1214 => 0.062198180348853
1215 => 0.062534244954248
1216 => 0.0627436104193
1217 => 0.06184486057841
1218 => 0.061259807479938
1219 => 0.061484154065788
1220 => 0.061842889142195
1221 => 0.06136782111542
1222 => 0.058435481181243
1223 => 0.059324965798672
1224 => 0.059176912064756
1225 => 0.058966065543711
1226 => 0.059860449204717
1227 => 0.059774183718749
1228 => 0.057190197497121
1229 => 0.057355615911307
1230 => 0.057200257138771
1231 => 0.05770225311625
]
'min_raw' => 0.047590835826495
'max_raw' => 0.10660934713703
'avg_raw' => 0.077100091481761
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.04759'
'max' => '$0.1066093'
'avg' => '$0.077100091'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.011605271999098
'max_diff' => -0.077470801985453
'year' => 2034
]
9 => [
'items' => [
101 => 0.05626711002761
102 => 0.05670855037584
103 => 0.056985417624003
104 => 0.057148494560165
105 => 0.057737640276486
106 => 0.05766851082657
107 => 0.057733343092817
108 => 0.058606890661419
109 => 0.063024994498079
110 => 0.063265462141912
111 => 0.062081311516771
112 => 0.062554356335176
113 => 0.061646213727367
114 => 0.062255855944016
115 => 0.062672957665414
116 => 0.060788155190466
117 => 0.060676549420166
118 => 0.05976465858477
119 => 0.060254657067575
120 => 0.059475034249295
121 => 0.059666326418852
122 => 0.059131456836218
123 => 0.060094115593488
124 => 0.061170517666163
125 => 0.061442459338127
126 => 0.060727097877441
127 => 0.060209129035287
128 => 0.059299746378009
129 => 0.060812070003978
130 => 0.061254319519438
131 => 0.060809747055544
201 => 0.06070672990156
202 => 0.060511512580907
203 => 0.060748146178988
204 => 0.061251910933599
205 => 0.061014344778399
206 => 0.061171261409286
207 => 0.060573257024072
208 => 0.061845158102004
209 => 0.063865243113424
210 => 0.063871738017052
211 => 0.063634170581282
212 => 0.063536963105027
213 => 0.063780721710925
214 => 0.063912950755123
215 => 0.064701221388913
216 => 0.065547067185057
217 => 0.069494260444229
218 => 0.068385904372002
219 => 0.071888089051117
220 => 0.074657862430532
221 => 0.075488396359508
222 => 0.074724344224491
223 => 0.072110563143885
224 => 0.071982318574369
225 => 0.075888411018703
226 => 0.074784760992811
227 => 0.074653485334017
228 => 0.073256934118168
301 => 0.074082468852967
302 => 0.073901912296603
303 => 0.073616894939252
304 => 0.075191957706002
305 => 0.078140334598534
306 => 0.077680802410129
307 => 0.07733778294857
308 => 0.075834771519482
309 => 0.076739920109549
310 => 0.076417614033605
311 => 0.07780244547635
312 => 0.07698210200744
313 => 0.074776399758395
314 => 0.075127665111645
315 => 0.075074572060149
316 => 0.076167223297722
317 => 0.075839236517474
318 => 0.075010527377306
319 => 0.078130257366845
320 => 0.077927679454174
321 => 0.078214888618583
322 => 0.078341326974994
323 => 0.080240251643818
324 => 0.081018180321823
325 => 0.081194783751288
326 => 0.08193375582823
327 => 0.081176397452826
328 => 0.084206370941812
329 => 0.086221126508133
330 => 0.088561368776789
331 => 0.091981091729116
401 => 0.093266939193397
402 => 0.093034662358149
403 => 0.095627457271845
404 => 0.10028665209716
405 => 0.093976418843824
406 => 0.10062110978203
407 => 0.098517477347643
408 => 0.093529802688432
409 => 0.093208655241201
410 => 0.096586366428511
411 => 0.10407780474931
412 => 0.10220128441714
413 => 0.10408087406433
414 => 0.1018882329006
415 => 0.10177934978579
416 => 0.10397438237708
417 => 0.10910319567161
418 => 0.10666668872607
419 => 0.10317335856362
420 => 0.10575277919333
421 => 0.10351824632977
422 => 0.098483218381784
423 => 0.10219984947741
424 => 0.099714644107324
425 => 0.1004399591551
426 => 0.10566349119662
427 => 0.10503498200163
428 => 0.10584833109833
429 => 0.10441279123171
430 => 0.10307177063243
501 => 0.10056865609837
502 => 0.099827607286892
503 => 0.10003240651824
504 => 0.099827505798564
505 => 0.09842703622157
506 => 0.098124604949758
507 => 0.097620539580253
508 => 0.097776770515592
509 => 0.096828980151398
510 => 0.098617656392114
511 => 0.098949650464152
512 => 0.10025129986892
513 => 0.10038644142818
514 => 0.10401151649266
515 => 0.10201488606406
516 => 0.10335439813634
517 => 0.10323457956862
518 => 0.09363790072225
519 => 0.094960238395065
520 => 0.097017380841545
521 => 0.096090640957796
522 => 0.094780447585912
523 => 0.093722396189991
524 => 0.09211934013386
525 => 0.094375610748899
526 => 0.097342366680045
527 => 0.10046168325449
528 => 0.10420933773297
529 => 0.10337290488088
530 => 0.10039162346083
531 => 0.10052536156751
601 => 0.10135207791897
602 => 0.10028140512872
603 => 0.099965642820862
604 => 0.10130869702673
605 => 0.10131794590292
606 => 0.10008600746261
607 => 0.098716933328556
608 => 0.098711196857945
609 => 0.098467583339478
610 => 0.10193157120435
611 => 0.10383641428135
612 => 0.10405480147032
613 => 0.10382171508351
614 => 0.10391142078293
615 => 0.10280303456677
616 => 0.10533647677518
617 => 0.10766141387708
618 => 0.10703828106874
619 => 0.10610411640548
620 => 0.10536000925572
621 => 0.10686299307232
622 => 0.10679606756888
623 => 0.10764110757973
624 => 0.10760277168365
625 => 0.10731861651156
626 => 0.10703829121681
627 => 0.10814974932397
628 => 0.10782966723858
629 => 0.1075090879773
630 => 0.10686611719058
701 => 0.10695350759911
702 => 0.10601950423255
703 => 0.10558739153809
704 => 0.099089453396794
705 => 0.097352991999185
706 => 0.097899318103804
707 => 0.098079182842795
708 => 0.09732347261722
709 => 0.098406966954666
710 => 0.09823810550988
711 => 0.098895046610903
712 => 0.098484618332051
713 => 0.098501462451778
714 => 0.099708444507347
715 => 0.10005883653295
716 => 0.099880624320717
717 => 0.10000543804541
718 => 0.10288171765029
719 => 0.10247280266872
720 => 0.10225557473474
721 => 0.10231574835701
722 => 0.10305069946419
723 => 0.10325644564736
724 => 0.10238468461175
725 => 0.10279581215574
726 => 0.10454634105816
727 => 0.10515892710266
728 => 0.1071140076987
729 => 0.10628345471271
730 => 0.10780797066398
731 => 0.11249381295238
801 => 0.11623718800799
802 => 0.11279462560534
803 => 0.11966885717901
804 => 0.12502143250907
805 => 0.12481599175272
806 => 0.12388264643663
807 => 0.11778888172894
808 => 0.112181308592
809 => 0.11687228163118
810 => 0.11688423988616
811 => 0.11648128114188
812 => 0.11397853898894
813 => 0.11639419113997
814 => 0.11658593683535
815 => 0.11647861023523
816 => 0.11455976369456
817 => 0.11163003968908
818 => 0.11220250074698
819 => 0.11314020363772
820 => 0.11136493644024
821 => 0.11079763100341
822 => 0.11185235974475
823 => 0.11525091551079
824 => 0.11460843822971
825 => 0.11459166055145
826 => 0.11734045081267
827 => 0.1153729102117
828 => 0.11220972131419
829 => 0.11141097440024
830 => 0.10857596095608
831 => 0.11053411483993
901 => 0.11060458531218
902 => 0.10953212444184
903 => 0.11229674560315
904 => 0.11227126913245
905 => 0.11489586546556
906 => 0.11991310790109
907 => 0.1184292624294
908 => 0.11670371158775
909 => 0.11689132680857
910 => 0.11894900270717
911 => 0.11770488488671
912 => 0.11815227832924
913 => 0.11894832552361
914 => 0.11942860056072
915 => 0.11682222262175
916 => 0.1162145512467
917 => 0.11497146887704
918 => 0.11464717189002
919 => 0.11565963654235
920 => 0.11539288787737
921 => 0.11059866254186
922 => 0.11009763931948
923 => 0.11011300498642
924 => 0.10885315827139
925 => 0.10693158963312
926 => 0.11198135728359
927 => 0.11157579026981
928 => 0.11112807567498
929 => 0.11118291815822
930 => 0.11337485114279
1001 => 0.11210341931647
1002 => 0.11548372921032
1003 => 0.11478883911756
1004 => 0.11407612771598
1005 => 0.11397760929056
1006 => 0.11370327620664
1007 => 0.112762485987
1008 => 0.11162642526407
1009 => 0.1108762995709
1010 => 0.10227752545513
1011 => 0.10387340791425
1012 => 0.1057093252142
1013 => 0.10634307650917
1014 => 0.10525900106487
1015 => 0.11280529189306
1016 => 0.11418407194524
1017 => 0.1100076572316
1018 => 0.10922642056056
1019 => 0.11285650963915
1020 => 0.11066712216442
1021 => 0.11165300321024
1022 => 0.10952206763729
1023 => 0.11385196420606
1024 => 0.11381897764877
1025 => 0.11213455008837
1026 => 0.11355821672796
1027 => 0.11331081961461
1028 => 0.11140910504748
1029 => 0.11391225194987
1030 => 0.1139134934795
1031 => 0.11229226857523
1101 => 0.1103990328188
1102 => 0.11006056698178
1103 => 0.10980557844008
1104 => 0.11159029166006
1105 => 0.11319045995244
1106 => 0.11616797642919
1107 => 0.1169165948155
1108 => 0.11983850221559
1109 => 0.11809864862392
1110 => 0.11886990318623
1111 => 0.11970720911424
1112 => 0.12010864436703
1113 => 0.11945452716481
1114 => 0.12399345206222
1115 => 0.12437667639262
1116 => 0.12450516819573
1117 => 0.1229746682583
1118 => 0.12433411042071
1119 => 0.12369807245291
1120 => 0.12535286654869
1121 => 0.12561235939238
1122 => 0.1253925781855
1123 => 0.1254749453099
1124 => 0.12160177363118
1125 => 0.12140092924703
1126 => 0.11866240181788
1127 => 0.11977837198744
1128 => 0.1176921192453
1129 => 0.11835369148062
1130 => 0.11864530621825
1201 => 0.1184929832283
1202 => 0.11984146726643
1203 => 0.11869498035693
1204 => 0.11566921290286
1205 => 0.11264262108047
1206 => 0.11260462468555
1207 => 0.1118077764825
1208 => 0.11123180118172
1209 => 0.11134275445847
1210 => 0.11173376827761
1211 => 0.11120907474773
1212 => 0.11132104471497
1213 => 0.11318049222309
1214 => 0.11355339115987
1215 => 0.11228613487167
1216 => 0.10719791801033
1217 => 0.10594925682973
1218 => 0.10684676972431
1219 => 0.10641781636793
1220 => 0.085887483378954
1221 => 0.090710780583981
1222 => 0.08784494116845
1223 => 0.089165651822059
1224 => 0.086240371884321
1225 => 0.087636468797667
1226 => 0.087378660675068
1227 => 0.095134379849012
1228 => 0.095013284961754
1229 => 0.095071246676085
1230 => 0.092304583032591
1231 => 0.096711953339781
]
'min_raw' => 0.05626711002761
'max_raw' => 0.12561235939238
'avg_raw' => 0.090939734709993
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.056267'
'max' => '$0.125612'
'avg' => '$0.090939'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0086762742011152
'max_diff' => 0.019003012255349
'year' => 2035
]
10 => [
'items' => [
101 => 0.098883182437013
102 => 0.098481345716507
103 => 0.098582479361826
104 => 0.096844668263445
105 => 0.095088072486184
106 => 0.09313973743105
107 => 0.096759503141999
108 => 0.096357046986402
109 => 0.097280136608186
110 => 0.099627813417933
111 => 0.099973517746125
112 => 0.100438147869
113 => 0.10027161104457
114 => 0.10423919384708
115 => 0.10375869339074
116 => 0.1049165612411
117 => 0.10253473922527
118 => 0.099839481529735
119 => 0.10035176190304
120 => 0.1003024251836
121 => 0.09967431211897
122 => 0.099107279729058
123 => 0.09816333056024
124 => 0.10115012540857
125 => 0.10102886699226
126 => 0.1029918998049
127 => 0.10264491468738
128 => 0.10032766315094
129 => 0.10041042424289
130 => 0.10096703235991
131 => 0.10289345940815
201 => 0.10346535411722
202 => 0.10320042970192
203 => 0.10382748614243
204 => 0.10432308598586
205 => 0.10388972585237
206 => 0.11002519146689
207 => 0.10747731838057
208 => 0.10871913399485
209 => 0.10901529970166
210 => 0.10825667747137
211 => 0.1084211954689
212 => 0.10867039540667
213 => 0.1101834886305
214 => 0.11415428306689
215 => 0.11591292089265
216 => 0.12120386956112
217 => 0.11576689050264
218 => 0.11544428266577
219 => 0.1163973422923
220 => 0.11950368926449
221 => 0.12202109172112
222 => 0.12285625934841
223 => 0.12296664053747
224 => 0.12453347052717
225 => 0.12543154825761
226 => 0.1243432161547
227 => 0.1234209686506
228 => 0.12011759256449
229 => 0.12049996734125
301 => 0.12313415037032
302 => 0.12685508905148
303 => 0.1300480415376
304 => 0.12892998086259
305 => 0.1374599945851
306 => 0.1383057106037
307 => 0.13818885999521
308 => 0.14011552694501
309 => 0.13629148540855
310 => 0.1346566335644
311 => 0.12362036902894
312 => 0.12672110920003
313 => 0.13122821713878
314 => 0.1306316845023
315 => 0.12735850224183
316 => 0.13004555853534
317 => 0.12915713369269
318 => 0.12845639615851
319 => 0.13166661064725
320 => 0.12813684794854
321 => 0.13119300505573
322 => 0.12727345195386
323 => 0.12893508806958
324 => 0.127991863046
325 => 0.12860224523356
326 => 0.12503396343721
327 => 0.12695932167938
328 => 0.12495386220434
329 => 0.12495291135543
330 => 0.12490864072637
331 => 0.12726805490518
401 => 0.12734499531684
402 => 0.12560138467383
403 => 0.12535010313985
404 => 0.12627922267294
405 => 0.12519146703648
406 => 0.12570042105253
407 => 0.12520688273515
408 => 0.1250957768644
409 => 0.12421046638316
410 => 0.12382905028572
411 => 0.12397861336541
412 => 0.12346807746939
413 => 0.12316046112514
414 => 0.12484744809291
415 => 0.12394615900889
416 => 0.12470931261448
417 => 0.12383960276325
418 => 0.12082480950434
419 => 0.11909097002028
420 => 0.11339630502568
421 => 0.11501130495394
422 => 0.11608205157721
423 => 0.11572816982461
424 => 0.11648844476326
425 => 0.1165351194698
426 => 0.11628794633716
427 => 0.1160017515144
428 => 0.11586244770224
429 => 0.11690070418856
430 => 0.11750344702497
501 => 0.1161895153256
502 => 0.11588167951229
503 => 0.11721013700452
504 => 0.11802049530735
505 => 0.12400372571446
506 => 0.12356046868032
507 => 0.1246729568512
508 => 0.12454770775569
509 => 0.12571377259204
510 => 0.12761979578371
511 => 0.12374431770258
512 => 0.12441696669351
513 => 0.12425204869467
514 => 0.12605258016222
515 => 0.12605820122493
516 => 0.12497869266691
517 => 0.12556391176924
518 => 0.12523725852097
519 => 0.12582756509043
520 => 0.12355454871239
521 => 0.12632283730389
522 => 0.12789227855069
523 => 0.12791407024393
524 => 0.12865797293906
525 => 0.12941382116125
526 => 0.13086460600324
527 => 0.12937335955942
528 => 0.12669075237691
529 => 0.12688442795072
530 => 0.12531161634114
531 => 0.12533805558845
601 => 0.12519692081423
602 => 0.12562047689578
603 => 0.12364749545366
604 => 0.12411055025459
605 => 0.12346227082164
606 => 0.12441555746063
607 => 0.12338997862101
608 => 0.12425196916622
609 => 0.12462397571009
610 => 0.12599668786571
611 => 0.12318722791951
612 => 0.11745854890548
613 => 0.11866278668775
614 => 0.11688162441694
615 => 0.11704647776646
616 => 0.11737950776872
617 => 0.11630004857076
618 => 0.11650597536807
619 => 0.11649861821378
620 => 0.11643521823282
621 => 0.11615440920474
622 => 0.11574718055764
623 => 0.11736945414929
624 => 0.11764511004458
625 => 0.11825785895329
626 => 0.12008098407403
627 => 0.11989881088221
628 => 0.12019594291636
629 => 0.11954730535415
630 => 0.11707656620264
701 => 0.11721073922565
702 => 0.11553759947871
703 => 0.11821507300823
704 => 0.11758101193551
705 => 0.11717222863712
706 => 0.11706068832681
707 => 0.11888833262209
708 => 0.11943519244006
709 => 0.1190944260999
710 => 0.11839550439449
711 => 0.11973764068652
712 => 0.12009673973809
713 => 0.12017712877267
714 => 0.12255513695304
715 => 0.12031003301358
716 => 0.12085045184622
717 => 0.12506664530914
718 => 0.1212431396332
719 => 0.1232685358641
720 => 0.12316940325825
721 => 0.1242055274343
722 => 0.12308441083361
723 => 0.12309830841753
724 => 0.12401831649273
725 => 0.12272633107543
726 => 0.12240641731688
727 => 0.1219644587507
728 => 0.12292945911122
729 => 0.12350793318414
730 => 0.12817000936947
731 => 0.13118192320169
801 => 0.13105116807888
802 => 0.13224602513807
803 => 0.13170773108927
804 => 0.12996943761089
805 => 0.13293649261618
806 => 0.13199759226565
807 => 0.13207499406978
808 => 0.13207211317077
809 => 0.13269639982377
810 => 0.13225403551509
811 => 0.1313820900549
812 => 0.13196092814336
813 => 0.13367987032769
814 => 0.13901551961144
815 => 0.14200141963858
816 => 0.1388357646806
817 => 0.1410193910808
818 => 0.13970999334632
819 => 0.13947203682676
820 => 0.14084351557481
821 => 0.14221739491486
822 => 0.14212988474034
823 => 0.14113251888895
824 => 0.14056913222672
825 => 0.14483528478149
826 => 0.14797851331183
827 => 0.14776416619853
828 => 0.14871022464721
829 => 0.15148788151302
830 => 0.1517418356461
831 => 0.1517098432624
901 => 0.15108039144619
902 => 0.15381535535491
903 => 0.15609691036467
904 => 0.15093469153735
905 => 0.15290039688838
906 => 0.15378286535154
907 => 0.15507859087204
908 => 0.15726469701393
909 => 0.15963938812005
910 => 0.15997519547962
911 => 0.15973692408814
912 => 0.15817075146854
913 => 0.16076916681281
914 => 0.16229125758114
915 => 0.16319762780126
916 => 0.16549603187385
917 => 0.15378831517634
918 => 0.14550101138656
919 => 0.14420682922967
920 => 0.14683859953691
921 => 0.14753257637895
922 => 0.1472528351841
923 => 0.13792472132001
924 => 0.14415771864068
925 => 0.15086389967241
926 => 0.15112151139762
927 => 0.15447876584174
928 => 0.15557202550725
929 => 0.15827505538017
930 => 0.15810598012566
1001 => 0.15876412488512
1002 => 0.1586128288024
1003 => 0.16361962245188
1004 => 0.16914285936331
1005 => 0.16895160723189
1006 => 0.1681575765779
1007 => 0.16933684750142
1008 => 0.17503741990005
1009 => 0.1745126025434
1010 => 0.17502241790155
1011 => 0.18174371402973
1012 => 0.19048235508958
1013 => 0.18642237897206
1014 => 0.19523135892042
1015 => 0.20077614485395
1016 => 0.21036527878442
1017 => 0.20916467198884
1018 => 0.21289765145966
1019 => 0.20701533525056
1020 => 0.19350834822223
1021 => 0.19137081582233
1022 => 0.19565020981787
1023 => 0.20617068237877
1024 => 0.19531888269775
1025 => 0.1975141876398
1026 => 0.19688193966881
1027 => 0.19684824986131
1028 => 0.19813405278699
1029 => 0.19626892858032
1030 => 0.1886700770329
1031 => 0.19215258591677
1101 => 0.1908078219929
1102 => 0.19229993782523
1103 => 0.20035227157693
1104 => 0.19679214288164
1105 => 0.19304183650252
1106 => 0.19774555296155
1107 => 0.20373500038622
1108 => 0.20336019153046
1109 => 0.20263290569233
1110 => 0.20673257788242
1111 => 0.21350403524921
1112 => 0.21533433296553
1113 => 0.21668542132093
1114 => 0.21687171357832
1115 => 0.21879063960937
1116 => 0.20847209070875
1117 => 0.22484789281317
1118 => 0.2276755414642
1119 => 0.22714406071183
1120 => 0.23028687318181
1121 => 0.22936217802768
1122 => 0.22802243982958
1123 => 0.23300446608987
1124 => 0.22729297501124
1125 => 0.21918623248185
1126 => 0.21473871319704
1127 => 0.22059556536242
1128 => 0.22417214060385
1129 => 0.22653602932553
1130 => 0.2272513406244
1201 => 0.20927309028677
1202 => 0.19958381047426
1203 => 0.20579452774626
1204 => 0.21337203145891
1205 => 0.20842999729303
1206 => 0.20862371567583
1207 => 0.20157767369902
1208 => 0.21399544982778
1209 => 0.21218628429575
1210 => 0.22157223827625
1211 => 0.21933220503181
1212 => 0.22698608614227
1213 => 0.2249705627364
1214 => 0.23333688770778
1215 => 0.23667444124807
1216 => 0.24227871309095
1217 => 0.24640123827206
1218 => 0.24882206390975
1219 => 0.24867672661875
1220 => 0.25826924384581
1221 => 0.25261287157404
1222 => 0.2455071348961
1223 => 0.24537861453791
1224 => 0.24905877625248
1225 => 0.25677138560316
1226 => 0.25877115299389
1227 => 0.25988875015202
1228 => 0.25817711120051
1229 => 0.25203752449535
1230 => 0.24938648208447
1231 => 0.25164524702663
]
'min_raw' => 0.09313973743105
'max_raw' => 0.25988875015202
'avg_raw' => 0.17651424379154
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.093139'
'max' => '$0.259888'
'avg' => '$0.176514'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.03687262740344
'max_diff' => 0.13427639075965
'year' => 2036
]
11 => [
'items' => [
101 => 0.24888297160025
102 => 0.25365143394378
103 => 0.26019955123003
104 => 0.25884739090448
105 => 0.26336746014559
106 => 0.26804525628498
107 => 0.27473471485729
108 => 0.27648358703802
109 => 0.27937440624912
110 => 0.28235000880199
111 => 0.28330569214723
112 => 0.28513038818442
113 => 0.28512077113561
114 => 0.29061961545991
115 => 0.29668501103464
116 => 0.29897455744987
117 => 0.30423924318537
118 => 0.29522365335992
119 => 0.30206208180615
120 => 0.30823051544162
121 => 0.30087625456675
122 => 0.31101238985974
123 => 0.31140595302419
124 => 0.31734828954768
125 => 0.3113245930672
126 => 0.3077477413254
127 => 0.31807397828108
128 => 0.32307051907051
129 => 0.32156552032154
130 => 0.31011240553088
131 => 0.30344620147552
201 => 0.2859994596479
202 => 0.30666587898587
203 => 0.31673188899768
204 => 0.31008633699672
205 => 0.31343796687733
206 => 0.3317233727363
207 => 0.33868527139504
208 => 0.33723724514137
209 => 0.3374819377417
210 => 0.34123845189055
211 => 0.35789690437672
212 => 0.3479147735071
213 => 0.35554573853362
214 => 0.35959317486819
215 => 0.36335265930182
216 => 0.35412055373008
217 => 0.34210972002783
218 => 0.33830538481382
219 => 0.30942556781974
220 => 0.30792224792651
221 => 0.30707838891518
222 => 0.301757977215
223 => 0.29757759100208
224 => 0.29425319267777
225 => 0.28552897872542
226 => 0.28847314483235
227 => 0.27456856867726
228 => 0.28346422375337
301 => 0.26127218447211
302 => 0.27975437422555
303 => 0.2696953586248
304 => 0.27644971706435
305 => 0.27642615174405
306 => 0.26398923638556
307 => 0.25681588315858
308 => 0.26138702302589
309 => 0.26628764782119
310 => 0.26708275770654
311 => 0.27343654567304
312 => 0.27520975132027
313 => 0.2698368554261
314 => 0.26081230378453
315 => 0.26290850130276
316 => 0.25677340378278
317 => 0.24602188136214
318 => 0.25374381246821
319 => 0.25638041925717
320 => 0.25754489501935
321 => 0.24697200753934
322 => 0.24364977674457
323 => 0.24188104894565
324 => 0.25944747677949
325 => 0.2604098053502
326 => 0.25548639632292
327 => 0.27774067198304
328 => 0.27270384400785
329 => 0.27833121490895
330 => 0.26271829334928
331 => 0.26331472797845
401 => 0.25592332070393
402 => 0.26006201488365
403 => 0.25713691923376
404 => 0.2597276492933
405 => 0.261280522209
406 => 0.26867071662632
407 => 0.27983875837476
408 => 0.26756686802163
409 => 0.26221982965807
410 => 0.26553710218594
411 => 0.27437143607272
412 => 0.28775590413242
413 => 0.27983202965356
414 => 0.28334851059116
415 => 0.28411670523868
416 => 0.27827393355574
417 => 0.28797133545841
418 => 0.29316825191961
419 => 0.29849921285846
420 => 0.30312793687153
421 => 0.29636990982914
422 => 0.30360196748962
423 => 0.2977742056453
424 => 0.29254610080801
425 => 0.29255402968498
426 => 0.28927436315012
427 => 0.28291959597425
428 => 0.2817476794074
429 => 0.2878441373849
430 => 0.29273291934614
501 => 0.29313558284415
502 => 0.29584226373258
503 => 0.29744404960132
504 => 0.31314372863729
505 => 0.31945826942011
506 => 0.3271795703612
507 => 0.33018745222643
508 => 0.33924009825545
509 => 0.33192935136706
510 => 0.330347625291
511 => 0.30838886712255
512 => 0.31198461254248
513 => 0.31774174789762
514 => 0.30848380016407
515 => 0.31435583711518
516 => 0.31551510159608
517 => 0.30816921864268
518 => 0.31209297212496
519 => 0.30167264618786
520 => 0.28006589300473
521 => 0.28799538995133
522 => 0.29383416874383
523 => 0.28550151149069
524 => 0.30043747709858
525 => 0.29171219433136
526 => 0.28894669858159
527 => 0.27815751369131
528 => 0.28324959364571
529 => 0.2901367046956
530 => 0.28588127077937
531 => 0.29471193511218
601 => 0.30721851085959
602 => 0.31613144151666
603 => 0.31681566566021
604 => 0.31108524836769
605 => 0.32026827864998
606 => 0.32033516700025
607 => 0.30997667132804
608 => 0.30363215040516
609 => 0.30219066190249
610 => 0.30579178280262
611 => 0.31016420837896
612 => 0.31705830484916
613 => 0.3212242629593
614 => 0.3320868722571
615 => 0.33502598287767
616 => 0.33825517436702
617 => 0.34257037004255
618 => 0.3477518688445
619 => 0.33641504444873
620 => 0.33686547761646
621 => 0.32630878370814
622 => 0.31502744228406
623 => 0.32358857418588
624 => 0.33478111530786
625 => 0.33221353400782
626 => 0.33192462866063
627 => 0.33241048731893
628 => 0.33047461486807
629 => 0.32171873551959
630 => 0.31732158772548
701 => 0.32299503021192
702 => 0.32601021239758
703 => 0.33068649701603
704 => 0.33011004623241
705 => 0.34215565321323
706 => 0.34683621184573
707 => 0.34563872465514
708 => 0.34585909111735
709 => 0.35433301894886
710 => 0.36375776949368
711 => 0.37258529208428
712 => 0.38156502721436
713 => 0.37073960603003
714 => 0.36524312477178
715 => 0.3709140904107
716 => 0.36790499621807
717 => 0.38519614400426
718 => 0.38639334556091
719 => 0.40368324300031
720 => 0.42009341451299
721 => 0.40978647980463
722 => 0.41950545500008
723 => 0.43001731907362
724 => 0.45029641035997
725 => 0.44346712584176
726 => 0.43823600092934
727 => 0.43329261316372
728 => 0.44357901836327
729 => 0.45681231432316
730 => 0.45966263952598
731 => 0.46428125526259
801 => 0.45942534555301
802 => 0.46527375393729
803 => 0.48592120545467
804 => 0.48034208179458
805 => 0.47241882930837
806 => 0.48871800927902
807 => 0.49461661914894
808 => 0.53601615234201
809 => 0.58828477312768
810 => 0.56664522090814
811 => 0.55321285254149
812 => 0.55636977772769
813 => 0.57545650863414
814 => 0.58158656081874
815 => 0.5649229658253
816 => 0.57080882928564
817 => 0.60324051563739
818 => 0.62063907483204
819 => 0.59700949450746
820 => 0.5318164195547
821 => 0.47170542711217
822 => 0.48764956914119
823 => 0.48584199823943
824 => 0.52068579928913
825 => 0.48020902154043
826 => 0.48089054666923
827 => 0.51645488062441
828 => 0.50696692605221
829 => 0.49159765477065
830 => 0.47181763980118
831 => 0.43525245270017
901 => 0.40286564678913
902 => 0.46638363141663
903 => 0.46364462041953
904 => 0.45967812659705
905 => 0.46850512937953
906 => 0.51136654930282
907 => 0.51037845484471
908 => 0.50409270203244
909 => 0.50886039014046
910 => 0.49076185599388
911 => 0.49542626033942
912 => 0.47169590522385
913 => 0.48242301680326
914 => 0.49156467921717
915 => 0.49340000329139
916 => 0.49753508214457
917 => 0.46220128608569
918 => 0.47806512317038
919 => 0.48738364121711
920 => 0.44528223767137
921 => 0.48655143183535
922 => 0.4615862033069
923 => 0.4531126297792
924 => 0.46452118022583
925 => 0.4600752570216
926 => 0.45625291332397
927 => 0.45411997986449
928 => 0.46249716019673
929 => 0.46210635472134
930 => 0.44839966175716
1001 => 0.43051983954166
1002 => 0.43652089476234
1003 => 0.43434065514048
1004 => 0.42643918549433
1005 => 0.43176382200875
1006 => 0.40831681753612
1007 => 0.3679774650102
1008 => 0.39462687691661
1009 => 0.39360090354719
1010 => 0.39308356125015
1011 => 0.41310985776216
1012 => 0.4111847914378
1013 => 0.40769077720879
1014 => 0.42637501518298
1015 => 0.41955501698393
1016 => 0.44057264443972
1017 => 0.45441621321701
1018 => 0.45090503638255
1019 => 0.46392497972938
1020 => 0.4366591469542
1021 => 0.44571576288677
1022 => 0.44758231887855
1023 => 0.42614445458665
1024 => 0.41149975609617
1025 => 0.41052312166864
1026 => 0.3851312326499
1027 => 0.39869537480754
1028 => 0.41063125858393
1029 => 0.40491489651704
1030 => 0.40310526705812
1031 => 0.41235027150299
1101 => 0.41306868752646
1102 => 0.39668872605692
1103 => 0.40009463873236
1104 => 0.4142978607748
1105 => 0.3997367539786
1106 => 0.37144690201688
1107 => 0.36443062759257
1108 => 0.36349452724877
1109 => 0.3444658345423
1110 => 0.36489948859922
1111 => 0.35597965101549
1112 => 0.38415731106643
1113 => 0.36806238276516
1114 => 0.36736856257461
1115 => 0.36631975159532
1116 => 0.34994096971746
1117 => 0.35352688202282
1118 => 0.3654470006757
1119 => 0.3697002333008
1120 => 0.36925658629229
1121 => 0.3653885855913
1122 => 0.36715933650485
1123 => 0.36145513084181
1124 => 0.35944085709941
1125 => 0.35308325509877
1126 => 0.34373933649021
1127 => 0.34503866568232
1128 => 0.32652591794946
1129 => 0.31643919043871
1130 => 0.31364731720467
1201 => 0.3099139076357
1202 => 0.31406901574971
1203 => 0.32647347366114
1204 => 0.31151106566741
1205 => 0.28585906665304
1206 => 0.28740079550268
1207 => 0.29086460248443
1208 => 0.28440982108932
1209 => 0.2783009122076
1210 => 0.28361211284881
1211 => 0.2727430227021
1212 => 0.29217808010096
1213 => 0.29165241626444
1214 => 0.29889660380685
1215 => 0.30342654294282
1216 => 0.29298649981963
1217 => 0.29036085720703
1218 => 0.29185654256797
1219 => 0.26713619523192
1220 => 0.29687642403676
1221 => 0.29713361877045
1222 => 0.29493136131311
1223 => 0.31076711502514
1224 => 0.34418549465295
1225 => 0.33161215598576
1226 => 0.32674337922265
1227 => 0.31748783103693
1228 => 0.32982029945433
1229 => 0.32887335829635
1230 => 0.3245909312632
1231 => 0.32200090603156
]
'min_raw' => 0.24188104894565
'max_raw' => 0.62063907483204
'avg_raw' => 0.43126006188884
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.241881'
'max' => '$0.620639'
'avg' => '$0.43126'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.1487413115146
'max_diff' => 0.36075032468001
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0075923697351202
]
1 => [
'year' => 2028
'avg' => 0.013030710546149
]
2 => [
'year' => 2029
'avg' => 0.035597552655005
]
3 => [
'year' => 2030
'avg' => 0.027463458859871
]
4 => [
'year' => 2031
'avg' => 0.02697252010938
]
5 => [
'year' => 2032
'avg' => 0.047291316316223
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0075923697351202
'min' => '$0.007592'
'max_raw' => 0.047291316316223
'max' => '$0.047291'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.047291316316223
]
1 => [
'year' => 2033
'avg' => 0.12163812847404
]
2 => [
'year' => 2034
'avg' => 0.077100091481761
]
3 => [
'year' => 2035
'avg' => 0.090939734709993
]
4 => [
'year' => 2036
'avg' => 0.17651424379154
]
5 => [
'year' => 2037
'avg' => 0.43126006188884
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.047291316316223
'min' => '$0.047291'
'max_raw' => 0.43126006188884
'max' => '$0.43126'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.43126006188884
]
]
]
]
'prediction_2025_max_price' => '$0.012981'
'last_price' => 0.01258727
'sma_50day_nextmonth' => '$0.011576'
'sma_200day_nextmonth' => '$0.022073'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.01369'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.013145'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.012409'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.0115021'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.014482'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.018486'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.024393'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.013224'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.013062'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.012596'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.01246'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.014384'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.017969'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.023169'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.021768'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.028541'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.01277'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.013233'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.01537'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.019816'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.027766'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.035768'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.017884'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '49.35'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 108.39
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.012234'
'vwma_10_action' => 'BUY'
'hma_9' => '0.014129'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 37.24
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 75.77
'cci_20_action' => 'NEUTRAL'
'adx_14' => 15.91
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001045'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -62.76
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 57.99
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 26
'buy_signals' => 5
'sell_pct' => 83.87
'buy_pct' => 16.13
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767682894
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de DexNet para 2026
La previsión del precio de DexNet para 2026 sugiere que el precio medio podría oscilar entre $0.004348 en el extremo inferior y $0.012981 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, DexNet podría potencialmente ganar 3.13% para 2026 si DEXNET alcanza el objetivo de precio previsto.
Predicción de precio de DexNet 2027-2032
La predicción del precio de DEXNET para 2027-2032 está actualmente dentro de un rango de precios de $0.007592 en el extremo inferior y $0.047291 en el extremo superior. Considerando la volatilidad de precios en el mercado, si DexNet alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de DexNet | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.004186 | $0.007592 | $0.010998 |
| 2028 | $0.007555 | $0.01303 | $0.0185058 |
| 2029 | $0.016597 | $0.035597 | $0.054597 |
| 2030 | $0.014115 | $0.027463 | $0.040811 |
| 2031 | $0.016688 | $0.026972 | $0.037256 |
| 2032 | $0.025474 | $0.047291 | $0.0691085 |
Predicción de precio de DexNet 2032-2037
La predicción de precio de DexNet para 2032-2037 se estima actualmente entre $0.047291 en el extremo inferior y $0.43126 en el extremo superior. Comparado con el precio actual, DexNet podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de DexNet | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.025474 | $0.047291 | $0.0691085 |
| 2033 | $0.059196 | $0.121638 | $0.18408 |
| 2034 | $0.04759 | $0.077100091 | $0.1066093 |
| 2035 | $0.056267 | $0.090939 | $0.125612 |
| 2036 | $0.093139 | $0.176514 | $0.259888 |
| 2037 | $0.241881 | $0.43126 | $0.620639 |
DexNet Histograma de precios potenciales
Pronóstico de precio de DexNet basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para DexNet es Bajista, con 5 indicadores técnicos mostrando señales alcistas y 26 indicando señales bajistas. La predicción de precio de DEXNET se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de DexNet
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de DexNet aumentar durante el próximo mes, alcanzando $0.022073 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para DexNet alcance $0.011576 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 49.35, lo que sugiere que el mercado de DEXNET está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de DEXNET para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.01369 | SELL |
| SMA 5 | $0.013145 | SELL |
| SMA 10 | $0.012409 | BUY |
| SMA 21 | $0.0115021 | BUY |
| SMA 50 | $0.014482 | SELL |
| SMA 100 | $0.018486 | SELL |
| SMA 200 | $0.024393 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.013224 | SELL |
| EMA 5 | $0.013062 | SELL |
| EMA 10 | $0.012596 | SELL |
| EMA 21 | $0.01246 | BUY |
| EMA 50 | $0.014384 | SELL |
| EMA 100 | $0.017969 | SELL |
| EMA 200 | $0.023169 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.021768 | SELL |
| SMA 50 | $0.028541 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.019816 | SELL |
| EMA 50 | $0.027766 | SELL |
| EMA 100 | $0.035768 | SELL |
| EMA 200 | $0.017884 | SELL |
Osciladores de DexNet
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 49.35 | NEUTRAL |
| Stoch RSI (14) | 108.39 | SELL |
| Estocástico Rápido (14) | 37.24 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 75.77 | NEUTRAL |
| Índice Direccional Medio (14) | 15.91 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.001045 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -62.76 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 57.99 | NEUTRAL |
| VWMA (10) | 0.012234 | BUY |
| Promedio Móvil de Hull (9) | 0.014129 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | — | — |
Predicción de precios de DexNet basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de DexNet
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de DexNet por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.017687 | $0.024853 | $0.034923 | $0.049073 | $0.068955 | $0.096894 |
| Amazon.com acción | $0.026264 | $0.0548015 | $0.114346 | $0.238591 | $0.497834 | $1.03 |
| Apple acción | $0.017854 | $0.025324 | $0.035921 | $0.050951 | $0.07227 | $0.10251 |
| Netflix acción | $0.01986 | $0.031337 | $0.049445 | $0.078016 | $0.123097 | $0.194229 |
| Google acción | $0.01630045 | $0.021109 | $0.027336 | $0.03540011 | $0.045842 | $0.059366 |
| Tesla acción | $0.028534 | $0.064685 | $0.146636 | $0.332414 | $0.753558 | $1.70 |
| Kodak acción | $0.009439 | $0.007078 | $0.0053079 | $0.00398 | $0.002984 | $0.002238 |
| Nokia acción | $0.008338 | $0.005523 | $0.003659 | $0.002424 | $0.0016059 | $0.001063 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de DexNet
Podría preguntarse cosas como: "¿Debo invertir en DexNet ahora?", "¿Debería comprar DEXNET hoy?", "¿Será DexNet una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de DexNet regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como DexNet, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de DexNet a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de DexNet es de $0.01258 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de DexNet basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si DexNet ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.012914 | $0.01325 | $0.013594 | $0.013947 |
| Si DexNet ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.013241 | $0.01393 | $0.014654 | $0.015416 |
| Si DexNet ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.014223 | $0.016071 | $0.01816 | $0.02052 |
| Si DexNet ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.015859 | $0.019981 | $0.025175 | $0.031719 |
| Si DexNet ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.01913 | $0.029076 | $0.044192 | $0.067166 |
| Si DexNet ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.028946 | $0.066567 | $0.153081 | $0.352035 |
| Si DexNet ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.0453056 | $0.163069 | $0.586939 | $2.11 |
Cuadro de preguntas
¿Es DEXNET una buena inversión?
La decisión de adquirir DexNet depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de DexNet ha experimentado una caída de -13.7685% durante las últimas 24 horas, y DexNet ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en DexNet dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede DexNet subir?
Parece que el valor medio de DexNet podría potencialmente aumentar hasta $0.012981 para el final de este año. Mirando las perspectivas de DexNet en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.040811. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de DexNet la próxima semana?
Basado en nuestro nuevo pronóstico experimental de DexNet, el precio de DexNet aumentará en un 0.86% durante la próxima semana y alcanzará $0.012694 para el 13 de enero de 2026.
¿Cuál será el precio de DexNet el próximo mes?
Basado en nuestro nuevo pronóstico experimental de DexNet, el precio de DexNet disminuirá en un -11.62% durante el próximo mes y alcanzará $0.011124 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de DexNet este año en 2026?
Según nuestra predicción más reciente sobre el valor de DexNet en 2026, se anticipa que DEXNET fluctúe dentro del rango de $0.004348 y $0.012981. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de DexNet no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará DexNet en 5 años?
El futuro de DexNet parece estar en una tendencia alcista, con un precio máximo de $0.040811 proyectada después de un período de cinco años. Basado en el pronóstico de DexNet para 2030, el valor de DexNet podría potencialmente alcanzar su punto más alto de aproximadamente $0.040811, mientras que su punto más bajo se anticipa que esté alrededor de $0.014115.
¿Cuánto será DexNet en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de DexNet, se espera que el valor de DEXNET en 2026 crezca en un 3.13% hasta $0.012981 si ocurre lo mejor. El precio estará entre $0.012981 y $0.004348 durante 2026.
¿Cuánto será DexNet en 2027?
Según nuestra última simulación experimental para la predicción de precios de DexNet, el valor de DEXNET podría disminuir en un -12.62% hasta $0.010998 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.010998 y $0.004186 a lo largo del año.
¿Cuánto será DexNet en 2028?
Nuestro nuevo modelo experimental de predicción de precios de DexNet sugiere que el valor de DEXNET en 2028 podría aumentar en un 47.02% , alcanzando $0.0185058 en el mejor escenario. Se espera que el precio oscile entre $0.0185058 y $0.007555 durante el año.
¿Cuánto será DexNet en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de DexNet podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.054597 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.054597 y $0.016597.
¿Cuánto será DexNet en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de DexNet, se espera que el valor de DEXNET en 2030 aumente en un 224.23% , alcanzando $0.040811 en el mejor escenario. Se pronostica que el precio oscile entre $0.040811 y $0.014115 durante el transcurso de 2030.
¿Cuánto será DexNet en 2031?
Nuestra simulación experimental indica que el precio de DexNet podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.037256 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.037256 y $0.016688 durante el año.
¿Cuánto será DexNet en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de DexNet, DEXNET podría experimentar un 449.04% aumento en valor, alcanzando $0.0691085 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.0691085 y $0.025474 a lo largo del año.
¿Cuánto será DexNet en 2033?
Según nuestra predicción experimental de precios de DexNet, se anticipa que el valor de DEXNET aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.18408. A lo largo del año, el precio de DEXNET podría oscilar entre $0.18408 y $0.059196.
¿Cuánto será DexNet en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de DexNet sugieren que DEXNET podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.1066093 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.1066093 y $0.04759.
¿Cuánto será DexNet en 2035?
Basado en nuestra predicción experimental para el precio de DexNet, DEXNET podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.125612 en 2035. El rango de precios esperado para el año está entre $0.125612 y $0.056267.
¿Cuánto será DexNet en 2036?
Nuestra reciente simulación de predicción de precios de DexNet sugiere que el valor de DEXNET podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.259888 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.259888 y $0.093139.
¿Cuánto será DexNet en 2037?
Según la simulación experimental, el valor de DexNet podría aumentar en un 4830.69% en 2037, con un máximo de $0.620639 bajo condiciones favorables. Se espera que el precio caiga entre $0.620639 y $0.241881 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de SolPod
Predicción de precios de zuzalu
Predicción de precios de SOFT COQ INU
Predicción de precios de All Street Bets
Predicción de precios de MagicRing
Predicción de precios de AI INU
Predicción de precios de Wall Street Baby On Solana
Predicción de precios de Meta Masters Guild Games
Predicción de precios de Morfey
Predicción de precios de PANTIESPredicción de precios de Celer Bridged BUSD (zkSync)
Predicción de precios de Bridged BUSD
Predicción de precios de Multichain Bridged BUSD (Moonriver)
Predicción de precios de tooker kurlson
Predicción de precios de dogwifsaudihatPredicción de precios de Harmony Horizen Bridged BUSD (Harmony)
Predicción de precios de IoTeX Bridged BUSD (IoTeX)
Predicción de precios de MIMANY
Predicción de precios de The Open League MEME
Predicción de precios de Sandwich Cat
Predicción de precios de Hege
Predicción de precios de SolDocs
Predicción de precios de Secret Society
Predicción de precios de duk
Predicción de precios de Fofar
¿Cómo leer y predecir los movimientos de precio de DexNet?
Los traders de DexNet utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de DexNet
Las medias móviles son herramientas populares para la predicción de precios de DexNet. Una media móvil simple (SMA) calcula el precio de cierre promedio de DEXNET durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de DEXNET por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de DEXNET.
¿Cómo leer gráficos de DexNet y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de DexNet en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de DEXNET dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de DexNet?
La acción del precio de DexNet está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de DEXNET. La capitalización de mercado de DexNet puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de DEXNET, grandes poseedores de DexNet, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de DexNet.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


