Predicción del precio de IQ - Pronóstico de IQ
Predicción de precio de IQ hasta $0.001754 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000587 | $0.001754 |
| 2027 | $0.000565 | $0.001486 |
| 2028 | $0.001021 | $0.0025012 |
| 2029 | $0.002243 | $0.007379 |
| 2030 | $0.0019078 | $0.005516 |
| 2031 | $0.002255 | $0.005035 |
| 2032 | $0.003443 | $0.00934 |
| 2033 | $0.008001 | $0.02488 |
| 2034 | $0.006432 | $0.0144094 |
| 2035 | $0.0076051 | $0.016977 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en IQ hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.66, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Everipedia para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'IQ'
'name_with_ticker' => 'IQ <small>IQ</small>'
'name_lang' => 'Everipedia'
'name_lang_with_ticker' => 'Everipedia <small>IQ</small>'
'name_with_lang' => 'Everipedia/IQ'
'name_with_lang_with_ticker' => 'Everipedia/IQ <small>IQ</small>'
'image' => '/uploads/coins/everipedia.png?1752171772'
'price_for_sd' => 0.001701
'ticker' => 'IQ'
'marketcap' => '$41.82M'
'low24h' => '$0.001644'
'high24h' => '$0.001718'
'volume24h' => '$1.52M'
'current_supply' => '24.54B'
'max_supply' => '24.54B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.001701'
'change_24h_pct' => '3.2066%'
'ath_price' => '$0.07238'
'ath_days' => 2731
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '16 jul. 2018'
'ath_pct' => '-97.66%'
'fdv' => '$41.82M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.083886'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.001715'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001503'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000587'
'current_year_max_price_prediction' => '$0.001754'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0019078'
'grand_prediction_max_price' => '$0.005516'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0017335489296109
107 => 0.0017400213720358
108 => 0.0017546041153103
109 => 0.001629996170666
110 => 0.0016859414795142
111 => 0.001718804107096
112 => 0.0015703295601288
113 => 0.0017158692426845
114 => 0.0016278270235774
115 => 0.0015979441720627
116 => 0.0016381774948609
117 => 0.0016224985298382
118 => 0.0016090186764115
119 => 0.001601496686586
120 => 0.0016310395984593
121 => 0.001629661386309
122 => 0.0015813234484523
123 => 0.0015182685790246
124 => 0.00153943186291
125 => 0.0015317430434676
126 => 0.0015038777699308
127 => 0.0015226555998286
128 => 0.0014399675402007
129 => 0.0012977070313621
130 => 0.0013916886810581
131 => 0.0013880704897772
201 => 0.0013862460336614
202 => 0.0014568706459459
203 => 0.0014500817190618
204 => 0.0014377597502898
205 => 0.0015036514673113
206 => 0.0014796001042298
207 => 0.0015537207380332
208 => 0.0016025413812781
209 => 0.0015901588869688
210 => 0.0016360749379113
211 => 0.0015399194222269
212 => 0.0015718584274476
213 => 0.001578441012158
214 => 0.0015028383737513
215 => 0.0014511924714601
216 => 0.0014477482785837
217 => 0.0013582014012545
218 => 0.0014060366203266
219 => 0.0014481296335542
220 => 0.001427970346768
221 => 0.001421588518813
222 => 0.0014541918937853
223 => 0.0014567254552497
224 => 0.0013989599853672
225 => 0.0014109712557503
226 => 0.0014610602499553
227 => 0.0014097091416115
228 => 0.0013099423262553
301 => 0.0012851987766628
302 => 0.001281897531033
303 => 0.0012147910621026
304 => 0.0012868522589624
305 => 0.0012553956154131
306 => 0.001354766775477
307 => 0.0012980065017867
308 => 0.0012955596798332
309 => 0.0012918609495798
310 => 0.0012340996396381
311 => 0.0012467456955926
312 => 0.001288783111634
313 => 0.001303782535263
314 => 0.0013022179724919
315 => 0.001288577105362
316 => 0.0012948218244815
317 => 0.0012747054083932
318 => 0.0012676018831854
319 => 0.0012451812036511
320 => 0.0012122289986066
321 => 0.0012168112048256
322 => 0.0011515242642188
323 => 0.0011159524739361
324 => 0.0011061066712144
325 => 0.0010929404523307
326 => 0.0011075938306713
327 => 0.001151339314519
328 => 0.0010985729798766
329 => 0.0010081088002603
330 => 0.0010135458515987
331 => 0.0010257612916811
401 => 0.0010029978999008
402 => 0.00098145425996745
403 => 0.0010001847069987
404 => 0.0009618538415271
405 => 0.0010303933936454
406 => 0.0010285395908405
407 => 0.0010540868974127
408 => 0.0010700621524959
409 => 0.0010332443615795
410 => 0.0010239847867299
411 => 0.0010292594613885
412 => 0.00094208083876598
413 => 0.0010469625440445
414 => 0.0010478695653871
415 => 0.0010401030979835
416 => 0.001095949368185
417 => 0.0012138024171986
418 => 0.0011694613595317
419 => 0.0011522911617876
420 => 0.0011196506033246
421 => 0.0011631422094719
422 => 0.0011598027326946
423 => 0.0011447003522483
424 => 0.0011355663854322
425 => 0.0011523959993537
426 => 0.0011334810100222
427 => 0.0011300833581891
428 => 0.0011094972847623
429 => 0.0011021489931556
430 => 0.0010967086105939
501 => 0.0010907192839544
502 => 0.0011039302460739
503 => 0.0010739924678644
504 => 0.0010378904421803
505 => 0.001034888949374
506 => 0.0010431763349062
507 => 0.0010395097837315
508 => 0.0010348713953376
509 => 0.0010260154487038
510 => 0.0010233880785149
511 => 0.00103192575701
512 => 0.0010222872157667
513 => 0.0010365094084097
514 => 0.0010326417589606
515 => 0.0010110373835377
516 => 0.00098411033279639
517 => 0.0009838706255634
518 => 0.0009780692366504
519 => 0.00097068029562505
520 => 0.00096862486126786
521 => 0.00099860728099323
522 => 0.0010606699925264
523 => 0.0010484855972176
524 => 0.0010572900715353
525 => 0.0011005993710696
526 => 0.0011143660950355
527 => 0.0011045948004473
528 => 0.0010912192497477
529 => 0.0010918077060964
530 => 0.0011375160118915
531 => 0.001140366782857
601 => 0.0011475697613932
602 => 0.0011568276243738
603 => 0.001106171454545
604 => 0.0010894218050529
605 => 0.0010814848918883
606 => 0.0010570422713135
607 => 0.0010834015420515
608 => 0.001068043123809
609 => 0.0010701154991482
610 => 0.0010687658619899
611 => 0.0010695028551404
612 => 0.0010303742354438
613 => 0.0010446306479215
614 => 0.0010209265971006
615 => 0.00098918953395597
616 => 0.00098908314019187
617 => 0.00099685074143464
618 => 0.00099223026826917
619 => 0.00097979669378411
620 => 0.0009815628243549
621 => 0.0009660896621449
622 => 0.00098344154639784
623 => 0.00098393913635019
624 => 0.00097725771574928
625 => 0.0010039906875395
626 => 0.001014943207894
627 => 0.0010105453537246
628 => 0.0010146346427217
629 => 0.001048991913852
630 => 0.001054593648159
701 => 0.0010570815685084
702 => 0.0010537480848265
703 => 0.0010152626305675
704 => 0.0010169696241166
705 => 0.0010044448380608
706 => 0.00099386271367304
707 => 0.00099428594315262
708 => 0.0009997265306678
709 => 0.0010234858954328
710 => 0.0010734860778898
711 => 0.0010753835482644
712 => 0.0010776833377115
713 => 0.0010683289382485
714 => 0.001065507561861
715 => 0.0010692296855752
716 => 0.0010880071252214
717 => 0.0011363077980164
718 => 0.0011192351143571
719 => 0.00110535475679
720 => 0.0011175315724939
721 => 0.0011156570471613
722 => 0.0010998341668988
723 => 0.0010993900713496
724 => 0.0010690209052449
725 => 0.0010577941160084
726 => 0.0010484121706118
727 => 0.0010381673311607
728 => 0.0010320938469239
729 => 0.0010414254790608
730 => 0.0010435597337391
731 => 0.0010231559569827
801 => 0.0010203749976054
802 => 0.0010370371621508
803 => 0.0010297047647624
804 => 0.001037246317311
805 => 0.0010389960221926
806 => 0.0010387142794075
807 => 0.0010310584144136
808 => 0.0010359380344595
809 => 0.0010243962783662
810 => 0.0010118463521304
811 => 0.00100384028108
812 => 0.00099685392223726
813 => 0.0010007303601728
814 => 0.00098691156674232
815 => 0.00098249065660656
816 => 0.0010342849289829
817 => 0.0010725459148696
818 => 0.0010719895849818
819 => 0.0010686030698662
820 => 0.0010635713953339
821 => 0.001087639026889
822 => 0.0010792543453027
823 => 0.0010853549017203
824 => 0.0010869077493681
825 => 0.0010916077515103
826 => 0.0010932875982973
827 => 0.0010882099345784
828 => 0.0010711686749533
829 => 0.001028703476202
830 => 0.0010089358115506
831 => 0.0010024121529592
901 => 0.0010026492755588
902 => 0.0009961083756997
903 => 0.00099803496385077
904 => 0.00099543838696429
905 => 0.00099052109852072
906 => 0.0010004267314679
907 => 0.0010015682633877
908 => 0.00099925617029435
909 => 0.00099980075191683
910 => 0.00098065760861157
911 => 0.00098211302022035
912 => 0.00097400910343791
913 => 0.00097248971673538
914 => 0.00095200372079814
915 => 0.00091570980950272
916 => 0.00093582015949559
917 => 0.00091152968464733
918 => 0.00090233051376153
919 => 0.00094587795797029
920 => 0.00094150700238982
921 => 0.00093402582644476
922 => 0.00092295960800835
923 => 0.00091885503994503
924 => 0.00089391698374065
925 => 0.00089244351034074
926 => 0.00090480348437979
927 => 0.00089909978164151
928 => 0.00089108962283581
929 => 0.00086207763961836
930 => 0.00082945856494441
1001 => 0.00083044312977262
1002 => 0.00084081865052695
1003 => 0.00087098687644975
1004 => 0.00085919962866611
1005 => 0.00085064784515599
1006 => 0.00084904635317021
1007 => 0.00086909237832278
1008 => 0.00089746170368578
1009 => 0.00091077195641822
1010 => 0.00089758190019876
1011 => 0.0008824298738169
1012 => 0.00088335210745504
1013 => 0.00088948731468159
1014 => 0.00089013203821394
1015 => 0.00088026962669283
1016 => 0.00088304583776662
1017 => 0.00087882851928348
1018 => 0.00085294684353699
1019 => 0.00085247872609442
1020 => 0.00084612694546783
1021 => 0.00084593461607482
1022 => 0.00083512865270306
1023 => 0.00083361682372925
1024 => 0.00081216092757953
1025 => 0.00082628326339971
1026 => 0.00081681074198744
1027 => 0.00080253341787724
1028 => 0.0008000720018192
1029 => 0.00079999800868024
1030 => 0.00081465762819017
1031 => 0.00082611195721049
1101 => 0.00081697552055295
1102 => 0.00081489533102841
1103 => 0.0008371063129309
1104 => 0.00083427976302622
1105 => 0.00083183198903805
1106 => 0.00089492154175701
1107 => 0.00084498123784076
1108 => 0.00082320441484039
1109 => 0.0007962514610709
1110 => 0.00080502747872683
1111 => 0.00080687671459346
1112 => 0.00074205971941292
1113 => 0.00071576347254061
1114 => 0.0007067395915672
1115 => 0.00070154622048805
1116 => 0.00070391290490307
1117 => 0.00068024319847587
1118 => 0.00069614963265576
1119 => 0.00067565366764028
1120 => 0.0006722174524058
1121 => 0.00070886677681631
1122 => 0.00071396631620579
1123 => 0.00069221009686758
1124 => 0.00070618111169468
1125 => 0.00070111502750674
1126 => 0.00067600501213349
1127 => 0.000675045994243
1128 => 0.00066244667118842
1129 => 0.00064273117031768
1130 => 0.00063372065738224
1201 => 0.0006290279040126
1202 => 0.00063096422551286
1203 => 0.00062998516210991
1204 => 0.00062359611114171
1205 => 0.00063035137503266
1206 => 0.00061309446725904
1207 => 0.00060622262753523
1208 => 0.00060311877695745
1209 => 0.00058780227803781
1210 => 0.00061217763909694
1211 => 0.0006169798922983
1212 => 0.00062179160742195
1213 => 0.00066367430247593
1214 => 0.0006615819613903
1215 => 0.00068049570579294
1216 => 0.0006797607524656
1217 => 0.00067436624617962
1218 => 0.00065160771151228
1219 => 0.00066067885779881
1220 => 0.000632759279498
1221 => 0.00065367852590775
1222 => 0.00064413185545496
1223 => 0.00065045078702458
1224 => 0.00063908877830732
1225 => 0.00064537698305729
1226 => 0.00061811868468419
1227 => 0.000592665269198
1228 => 0.00060290846662116
1229 => 0.00061404399367185
1230 => 0.00063818865359728
1231 => 0.00062380829333481
]
'min_raw' => 0.00058780227803781
'max_raw' => 0.0017546041153103
'avg_raw' => 0.001171203196674
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000587'
'max' => '$0.001754'
'avg' => '$0.001171'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0011135077219622
'max_diff' => 5.3294115310262E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00062898001466682
102 => 0.00061165561394029
103 => 0.00057591042677105
104 => 0.00057611274064852
105 => 0.00057061412235376
106 => 0.00056586251333568
107 => 0.00062546005069814
108 => 0.00061804815482947
109 => 0.0006062382688077
110 => 0.00062204627055406
111 => 0.00062622615712251
112 => 0.00062634515261689
113 => 0.00063787826262745
114 => 0.00064403348550751
115 => 0.00064511837021838
116 => 0.00066326596800933
117 => 0.00066934880341625
118 => 0.00069440314158227
119 => 0.00064351125785028
120 => 0.00064246317299516
121 => 0.00062226872155679
122 => 0.00060946108119293
123 => 0.00062314567164992
124 => 0.00063526835066192
125 => 0.00062264540698553
126 => 0.00062429369694478
127 => 0.00060734842639161
128 => 0.00061340556326529
129 => 0.00061862278552534
130 => 0.00061574214204749
131 => 0.00061142967933642
201 => 0.00063427442922815
202 => 0.00063298543890996
203 => 0.00065425899520767
204 => 0.00067084325362834
205 => 0.00070056520950897
206 => 0.00066954879910693
207 => 0.00066841843783281
208 => 0.00067946790060294
209 => 0.00066934711180107
210 => 0.0006757431009661
211 => 0.00069953471677288
212 => 0.00070003739612454
213 => 0.00069161686931847
214 => 0.00069110447949706
215 => 0.00069272173378064
216 => 0.00070219404263355
217 => 0.00069888412686569
218 => 0.00070271444518908
219 => 0.00070750431690438
220 => 0.00072731725718241
221 => 0.00073209409000704
222 => 0.00072048886274703
223 => 0.00072153668483039
224 => 0.00071719601126453
225 => 0.0007130029749884
226 => 0.00072242830819338
227 => 0.00073965328988088
228 => 0.00073954613416378
301 => 0.00074354199510948
302 => 0.00074603138337515
303 => 0.0007353451065953
304 => 0.0007283887333569
305 => 0.00073105624950204
306 => 0.00073532166590904
307 => 0.00072967303244909
308 => 0.0006948070500327
309 => 0.00070538316185025
310 => 0.00070362277969837
311 => 0.0007011157814443
312 => 0.0007117501436595
313 => 0.00071072443348114
314 => 0.00068000043142482
315 => 0.00068196728235269
316 => 0.00068012004214416
317 => 0.0006860888531677
318 => 0.00066902477641783
319 => 0.00067427357149778
320 => 0.00067756556656753
321 => 0.00067950457695391
322 => 0.00068650961206137
323 => 0.00068568765204332
324 => 0.00068645851787257
325 => 0.00069684513567624
326 => 0.0007493770842704
327 => 0.00075223628232717
328 => 0.00073815654539308
329 => 0.00074378112258772
330 => 0.00073298316433383
331 => 0.0007402319060497
401 => 0.00074519131103362
402 => 0.00072278071355002
403 => 0.00072145370341061
404 => 0.00071061117814196
405 => 0.00071643733706932
406 => 0.00070716749930025
407 => 0.00070944199324362
408 => 0.00070308230989114
409 => 0.00071452847372528
410 => 0.00072732706344588
411 => 0.00073056049264093
412 => 0.00072205473250755
413 => 0.00071589600161407
414 => 0.00070508329897721
415 => 0.00072306506443911
416 => 0.00072832348064454
417 => 0.00072303744421736
418 => 0.000721812554075
419 => 0.00071949138946857
420 => 0.00072230500011911
421 => 0.00072829484218058
422 => 0.00072547014327941
423 => 0.00072733590666842
424 => 0.00072022554059635
425 => 0.00073534864419757
426 => 0.00075936777228939
427 => 0.00075944499771373
428 => 0.00075662028358638
429 => 0.00075546447142478
430 => 0.00075836279953743
501 => 0.0007599350236429
502 => 0.00076930768529674
503 => 0.00077936492467462
504 => 0.00082629767253389
505 => 0.00081311914473943
506 => 0.00085476067068183
507 => 0.00088769371122687
508 => 0.000897568890099
509 => 0.00088848419019971
510 => 0.00085740592259009
511 => 0.00085588107451446
512 => 0.00090232512722937
513 => 0.00088920255506503
514 => 0.00088764166686176
515 => 0.00087103645354121
516 => 0.00088085219120934
517 => 0.00087870534539313
518 => 0.00087531644424497
519 => 0.00089404418794553
520 => 0.00092910085231578
521 => 0.00092363694241436
522 => 0.00091955838713644
523 => 0.00090168734515817
524 => 0.00091244970407082
525 => 0.00090861743420143
526 => 0.00092508329757888
527 => 0.00091532928487761
528 => 0.00088910313867448
529 => 0.00089327973889984
530 => 0.00089264845417793
531 => 0.0009056402490215
601 => 0.00090174043468563
602 => 0.00089188695283906
603 => 0.00092898103244811
604 => 0.00092657234924641
605 => 0.00092998731132478
606 => 0.00093149068324289
607 => 0.00095406919582991
608 => 0.000963318890005
609 => 0.00096541873252143
610 => 0.00097420522659074
611 => 0.00096520011654468
612 => 0.0010012269772636
613 => 0.0010251827374161
614 => 0.0010530085855853
615 => 0.0010936696286435
616 => 0.0011089585569691
617 => 0.0011061967489129
618 => 0.0011370254877016
619 => 0.0011924240460204
620 => 0.0011173943814546
621 => 0.0011964008004286
622 => 0.0011713882803544
623 => 0.0011120840452145
624 => 0.0011082655516225
625 => 0.0011484270681956
626 => 0.001237501446552
627 => 0.0012151893250469
628 => 0.0012375379411897
629 => 0.0012114670933425
630 => 0.0012101724560046
701 => 0.001236271738301
702 => 0.0012972541339843
703 => 0.0012682836836861
704 => 0.0012267474393377
705 => 0.001257417155789
706 => 0.0012308482090506
707 => 0.0011709809358691
708 => 0.0012151722633881
709 => 0.0011856227811727
710 => 0.00119424689102
711 => 0.0012563555074831
712 => 0.0012488824344312
713 => 0.0012585532829483
714 => 0.0012414844884459
715 => 0.0012255395428788
716 => 0.0011957771178907
717 => 0.0011869659311215
718 => 0.0011894010261512
719 => 0.0011869647244094
720 => 0.0011703129211593
721 => 0.0011667169658329
722 => 0.0011607235494131
723 => 0.0011625811597744
724 => 0.0011513117834694
725 => 0.0011725794249289
726 => 0.0011765268865936
727 => 0.0011920037024737
728 => 0.0011936105568407
729 => 0.0012367132687681
730 => 0.0012129730193501
731 => 0.0012289000282942
801 => 0.0012274753667034
802 => 0.0011133693478161
803 => 0.0011290921504529
804 => 0.0011535518972684
805 => 0.0011425328144824
806 => 0.0011269544094913
807 => 0.0011143740121997
808 => 0.0010953134238914
809 => 0.0011221408359092
810 => 0.0011574160299355
811 => 0.0011945051939741
812 => 0.0012390653943883
813 => 0.0012291200763938
814 => 0.0011936721720228
815 => 0.0011952623391182
816 => 0.0012050921263941
817 => 0.0011923616587415
818 => 0.0011886071953024
819 => 0.0012045763207713
820 => 0.0012046862913619
821 => 0.0011900383497991
822 => 0.0011737598432971
823 => 0.0011736916357605
824 => 0.0011707950327602
825 => 0.0012119823925814
826 => 0.0012346312759714
827 => 0.0012372279339515
828 => 0.0012344565002002
829 => 0.0012355231150568
830 => 0.0012223442288463
831 => 0.0012524672546462
901 => 0.0012801111219787
902 => 0.0012727019750085
903 => 0.0012615946104279
904 => 0.0012527470595363
905 => 0.0012706177731976
906 => 0.0012698220184494
907 => 0.0012798696769135
908 => 0.0012794138570875
909 => 0.0012760352074576
910 => 0.0012727020956707
911 => 0.0012859175071477
912 => 0.0012821116808754
913 => 0.0012782999431036
914 => 0.0012706549194545
915 => 0.0012716940051388
916 => 0.0012605885584013
917 => 0.0012554506705898
918 => 0.0011781891654223
919 => 0.001157542366649
920 => 0.0011640382698474
921 => 0.0011661768898464
922 => 0.0011571913765607
923 => 0.0011700742944234
924 => 0.0011680665053209
925 => 0.0011758776382015
926 => 0.0011709975814977
927 => 0.001171197860727
928 => 0.0011855490669552
929 => 0.0011897152831776
930 => 0.0011875963119814
1001 => 0.0011890803667731
1002 => 0.0012232797830685
1003 => 0.0012184177197071
1004 => 0.0012158348454509
1005 => 0.0012165503192715
1006 => 0.0012252890033787
1007 => 0.0012277353578143
1008 => 0.0012173699821686
1009 => 0.0012222583532446
1010 => 0.0012430724168598
1011 => 0.0012503561611512
1012 => 0.0012736023765335
1013 => 0.0012637269710706
1014 => 0.0012818537051954
1015 => 0.001337569106036
1016 => 0.0013820784234399
1017 => 0.0013411458157299
1018 => 0.0014228815089149
1019 => 0.0014865244703482
1020 => 0.0014840817474855
1021 => 0.0014729841250714
1022 => 0.0014005283055152
1023 => 0.0013338533801042
1024 => 0.0013896297863774
1025 => 0.0013897719719075
1026 => 0.001384980729143
1027 => 0.0013552227318248
1028 => 0.0013839452153405
1029 => 0.0013862251017773
1030 => 0.0013849489716434
1031 => 0.0013621335848709
1101 => 0.0013272987062575
1102 => 0.0013341053581557
1103 => 0.0013452547928167
1104 => 0.0013241465869876
1105 => 0.0013174012362339
1106 => 0.0013299421266405
1107 => 0.0013703514885289
1108 => 0.0013627123327394
1109 => 0.0013625128435095
1110 => 0.0013951963914833
1111 => 0.0013718020246852
1112 => 0.001334191211834
1113 => 0.0013246939855634
1114 => 0.001290985230401
1115 => 0.0013142679876582
1116 => 0.0013151058926424
1117 => 0.0013023541644366
1118 => 0.0013352259442991
1119 => 0.0013349230250607
1120 => 0.0013661298877214
1121 => 0.0014257856883663
1122 => 0.0014081425326319
1123 => 0.0013876254620828
1124 => 0.0013898562365281
1125 => 0.0014143223261731
1126 => 0.0013995295698673
1127 => 0.0014048491481736
1128 => 0.0014143142743543
1129 => 0.0014200248199849
1130 => 0.0013890345768922
1201 => 0.0013818092687926
1202 => 0.0013670288241593
1203 => 0.0013631728820446
1204 => 0.0013752112457943
1205 => 0.0013720395622679
1206 => 0.001315035469973
1207 => 0.0013090782251604
1208 => 0.0013092609253538
1209 => 0.001294281150021
1210 => 0.0012714333970804
1211 => 0.0013314759276398
1212 => 0.0013266536721412
1213 => 0.0013213302752837
1214 => 0.0013219823610238
1215 => 0.0013480447885095
1216 => 0.0013329272643837
1217 => 0.0013731196799856
1218 => 0.0013648573276325
1219 => 0.0013563830771182
1220 => 0.0013552116775651
1221 => 0.0013519498141062
1222 => 0.0013407636706196
1223 => 0.0013272557301765
1224 => 0.0013183366178582
1225 => 0.0012160958429642
1226 => 0.0012350711360773
1227 => 0.0012569004811515
1228 => 0.0012644358835956
1229 => 0.0012515460562811
1230 => 0.0013412726395664
1231 => 0.0013576665509595
]
'min_raw' => 0.00056586251333568
'max_raw' => 0.0014865244703482
'avg_raw' => 0.0010261934918419
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000565'
'max' => '$0.001486'
'avg' => '$0.001026'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -2.1939764702136E-5
'max_diff' => -0.00026807964496206
'year' => 2027
]
2 => [
'items' => [
101 => 0.0013080083240014
102 => 0.0012987192972696
103 => 0.0013418816266124
104 => 0.0013158494656385
105 => 0.0013275717461311
106 => 0.0013022345874508
107 => 0.0013537177377746
108 => 0.001353325522427
109 => 0.0013332974141514
110 => 0.0013502250341194
111 => 0.0013472834435817
112 => 0.0013246717586655
113 => 0.0013544345685182
114 => 0.0013544493305006
115 => 0.0013351727117339
116 => 0.0013126618412088
117 => 0.001308637429242
118 => 0.0013056055754286
119 => 0.0013268260959491
120 => 0.0013458523482928
121 => 0.0013812554868966
122 => 0.0013901566770995
123 => 0.0014248986150469
124 => 0.0014042114825534
125 => 0.0014133818204446
126 => 0.0014233375194489
127 => 0.0014281106476602
128 => 0.00142033309138
129 => 0.0014743016213645
130 => 0.0014788582188482
131 => 0.0014803860065701
201 => 0.0014621881219098
202 => 0.001478352102756
203 => 0.0014707895114129
204 => 0.0014904652731394
205 => 0.0014935506838109
206 => 0.0014909374507388
207 => 0.0014919168087859
208 => 0.0014458641891452
209 => 0.0014434761178699
210 => 0.0014109145965815
211 => 0.0014241836571891
212 => 0.0013993777843858
213 => 0.0014072439821805
214 => 0.0014107113272166
215 => 0.0014089001829398
216 => 0.0014249338699672
217 => 0.0014113019605281
218 => 0.001375325110225
219 => 0.0013393384580531
220 => 0.0013388866749492
221 => 0.0013294120246495
222 => 0.0013225635878515
223 => 0.0013238828397402
224 => 0.0013285320554684
225 => 0.0013222933669816
226 => 0.0013236247074798
227 => 0.0013457338304252
228 => 0.0013501676573569
229 => 0.0013350997810351
301 => 0.0012746000833191
302 => 0.0012597533057476
303 => 0.0012704248750416
304 => 0.0012653245522561
305 => 0.0010212156682029
306 => 0.001078565429593
307 => 0.0010444901487889
308 => 0.0010601936059117
309 => 0.0010254115679619
310 => 0.0010420113795544
311 => 0.0010389460004813
312 => 0.0011311627196937
313 => 0.0011297228824631
314 => 0.0011304120563509
315 => 0.0010975159910544
316 => 0.0011499203162972
317 => 0.0011757365713104
318 => 0.0011709586695848
319 => 0.0011721611645133
320 => 0.0011514983175858
321 => 0.0011306121178759
322 => 0.0011074461080345
323 => 0.0011504856909145
324 => 0.0011457004240084
325 => 0.0011566761046062
326 => 0.0011845903506369
327 => 0.0011887008294008
328 => 0.0011942253545438
329 => 0.0011922452055425
330 => 0.0012394203882747
331 => 0.001233707162374
401 => 0.0012474743929875
402 => 0.0012191541550932
403 => 0.0011871071177341
404 => 0.0011931982118395
405 => 0.0011926115904956
406 => 0.001185143227496
407 => 0.001178401123313
408 => 0.0011671774194244
409 => 0.0012026908793236
410 => 0.0012012490977069
411 => 0.0012245898661937
412 => 0.0012204641586435
413 => 0.0011929116738916
414 => 0.0011938957162747
415 => 0.0012005138742156
416 => 0.0012234193944138
417 => 0.0012302193123354
418 => 0.0012270693194242
419 => 0.0012345251189972
420 => 0.0012404178789822
421 => 0.0012352651589248
422 => 0.0013082168088132
423 => 0.0012779221976082
424 => 0.001292687580321
425 => 0.0012962090370953
426 => 0.0012871888996162
427 => 0.0012891450444485
428 => 0.0012921080708519
429 => 0.0013100989869533
430 => 0.0013573123565168
501 => 0.0013782228365042
502 => 0.0014411330472512
503 => 0.0013764865122291
504 => 0.0013726506543749
505 => 0.0013839826830368
506 => 0.0014209176364674
507 => 0.0014508499470991
508 => 0.0014607802213721
509 => 0.0014620926710482
510 => 0.0014807225257365
511 => 0.0014914008110176
512 => 0.0014784603713635
513 => 0.0014674947036772
514 => 0.0014282170431336
515 => 0.0014327635392911
516 => 0.0014640843892725
517 => 0.0015083269346601
518 => 0.001546291641255
519 => 0.0015329977242091
520 => 0.0016344209272267
521 => 0.0016444766235292
522 => 0.0016430872514398
523 => 0.0016659956241053
524 => 0.0016205271695733
525 => 0.001601088524351
526 => 0.0014698656054966
527 => 0.0015067338931814
528 => 0.0015603241145298
529 => 0.0015532312477814
530 => 0.0015143125965674
531 => 0.0015462621179682
601 => 0.0015356986070392
602 => 0.001527366727689
603 => 0.0015655366822064
604 => 0.0015235672492792
605 => 0.0015599054373314
606 => 0.001513301335284
607 => 0.0015330584497024
608 => 0.0015218433560144
609 => 0.0015291008961007
610 => 0.0014866734650521
611 => 0.0015095662769782
612 => 0.0014857210488114
613 => 0.0014857097430685
614 => 0.0014851833583351
615 => 0.0015132371635275
616 => 0.0015141519971076
617 => 0.0014934201926835
618 => 0.0014904324157743
619 => 0.0015014797929648
620 => 0.0014885462075874
621 => 0.0014945977507825
622 => 0.001488729502666
623 => 0.0014874084364108
624 => 0.0014768819557281
625 => 0.0014723468584185
626 => 0.0014741251869287
627 => 0.0014680548349322
628 => 0.0014643972282801
629 => 0.0014844557683113
630 => 0.0014737392995318
701 => 0.0014828133157751
702 => 0.0014724723290338
703 => 0.0014366259636349
704 => 0.0014160103398256
705 => 0.0013482998785469
706 => 0.001367502481371
707 => 0.0013802338269099
708 => 0.0013760261172852
709 => 0.0013850659057264
710 => 0.0013856208753186
711 => 0.0013826819479466
712 => 0.0013792790465498
713 => 0.0013776227023421
714 => 0.0013899677350491
715 => 0.0013971344420503
716 => 0.0013815115877581
717 => 0.0013778513715844
718 => 0.0013936469398352
719 => 0.0014032822273434
720 => 0.0014744237767033
721 => 0.0014691533809426
722 => 0.0014823810400392
723 => 0.0014808918086199
724 => 0.0014947565026844
725 => 0.0015174194178231
726 => 0.0014713393746954
727 => 0.0014793372768544
728 => 0.0014773763759436
729 => 0.0014987849779123
730 => 0.0014988518132308
731 => 0.0014860162869116
801 => 0.0014929746339619
802 => 0.0014890906755307
803 => 0.0014961095133643
804 => 0.001469082991594
805 => 0.0015019983777775
806 => 0.0015206592807229
807 => 0.0015209183873784
808 => 0.0015297635072725
809 => 0.0015387506613596
810 => 0.0015560007210138
811 => 0.0015382695665584
812 => 0.0015063729457862
813 => 0.0015086757787805
814 => 0.0014899748016923
815 => 0.0014902891684958
816 => 0.0014886110538615
817 => 0.0014936472022015
818 => 0.0014701881429474
819 => 0.001475693937265
820 => 0.0014679857929785
821 => 0.0014793205208541
822 => 0.0014671262273576
823 => 0.0014773754303378
824 => 0.0014817986465776
825 => 0.0014981204097274
826 => 0.0014647154896695
827 => 0.0013966005963571
828 => 0.0014109191727446
829 => 0.0013897408735676
830 => 0.0013917010057879
831 => 0.0013956607848256
901 => 0.0013828258454052
902 => 0.0013852743473712
903 => 0.0013851868696511
904 => 0.0013844330339189
905 => 0.0013810941704667
906 => 0.0013762521578872
907 => 0.0013955412457114
908 => 0.0013988188376053
909 => 0.0014061045183776
910 => 0.0014277817624317
911 => 0.0014256156945661
912 => 0.0014291486411242
913 => 0.0014214362386245
914 => 0.0013920587620201
915 => 0.0013936541003391
916 => 0.0013737602059386
917 => 0.0014055957867702
918 => 0.0013980567010202
919 => 0.0013931962033924
920 => 0.0013918699715825
921 => 0.0014136009493318
922 => 0.0014201031984657
923 => 0.0014160514331551
924 => 0.0014077411442943
925 => 0.0014236993556234
926 => 0.0014279690997522
927 => 0.0014289249380005
928 => 0.0014571998287922
929 => 0.0014305051903009
930 => 0.0014369308551077
1001 => 0.0014870620576429
1002 => 0.0014415999745765
1003 => 0.0014656822539022
1004 => 0.0014645035516473
1005 => 0.0014768232308505
1006 => 0.0014634929783682
1007 => 0.0014636582228239
1008 => 0.0014745972633489
1009 => 0.0014592353537979
1010 => 0.001455431528958
1011 => 0.0014501765721853
1012 => 0.0014616505780498
1013 => 0.001468528725641
1014 => 0.0015239615437829
1015 => 0.0015597736723462
1016 => 0.0015582189733975
1017 => 0.0015724260115142
1018 => 0.0015660256107211
1019 => 0.0015453570282197
1020 => 0.0015806357782844
1021 => 0.0015694721056384
1022 => 0.0015703924252474
1023 => 0.0015703581709056
1024 => 0.0015777810372701
1025 => 0.0015725212561551
1026 => 0.0015621536876722
1027 => 0.0015690361634653
1028 => 0.0015894746560409
1029 => 0.0016529163641249
1030 => 0.0016884191844595
1031 => 0.0016507790497621
1101 => 0.0016767427106549
1102 => 0.0016611737659175
1103 => 0.0016583444255227
1104 => 0.0016746515232629
1105 => 0.001690987164419
1106 => 0.0016899466546982
1107 => 0.0016780878180634
1108 => 0.0016713890621552
1109 => 0.0017221142861398
1110 => 0.00175948776709
1111 => 0.0017569391462442
1112 => 0.0017681879298017
1113 => 0.0018012147062383
1114 => 0.0018042342607706
1115 => 0.0018038538663032
1116 => 0.0017963695853369
1117 => 0.0018288887358076
1118 => 0.0018560167832503
1119 => 0.0017946371905349
1120 => 0.001818009735923
1121 => 0.0018285024245642
1122 => 0.0018439088045298
1123 => 0.0018699019499408
1124 => 0.0018981374001986
1125 => 0.001902130202451
1126 => 0.0018992971181797
1127 => 0.0018806750797251
1128 => 0.0019115706463161
1129 => 0.0019296685446349
1130 => 0.0019404454289207
1201 => 0.001967773814367
1202 => 0.0018285672238371
1203 => 0.0017300298800435
1204 => 0.0017146418509137
1205 => 0.0017459340132536
1206 => 0.0017541855069123
1207 => 0.001750859340165
1208 => 0.001639946601102
1209 => 0.0017140579182964
1210 => 0.0017937954641411
1211 => 0.0017968585080184
1212 => 0.0018367767907017
1213 => 0.0018497758198491
1214 => 0.001881915269618
1215 => 0.0018799049382844
1216 => 0.0018877303828528
1217 => 0.0018859314486643
1218 => 0.0019454630116017
1219 => 0.0020111351660443
1220 => 0.0020088611481606
1221 => 0.0019994199989618
1222 => 0.0020134417154772
1223 => 0.0020812224167178
1224 => 0.0020749822559111
1225 => 0.0020810440405991
1226 => 0.0021609613073147
1227 => 0.0022648651221435
1228 => 0.0022165913683831
1229 => 0.0023213315236448
1230 => 0.002387259899345
1231 => 0.0025012762079971
]
'min_raw' => 0.0010212156682029
'max_raw' => 0.0025012762079971
'avg_raw' => 0.0017612459381
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001021'
'max' => '$0.0025012'
'avg' => '$0.001761'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00045535315486727
'max_diff' => 0.0010147517376489
'year' => 2028
]
3 => [
'items' => [
101 => 0.0024870008046117
102 => 0.0025313865168797
103 => 0.0024614448531852
104 => 0.0023008446558004
105 => 0.0022754290598114
106 => 0.0023263117266068
107 => 0.0024514017978652
108 => 0.0023223721951051
109 => 0.002348474715695
110 => 0.0023409571880091
111 => 0.0023405566109061
112 => 0.0023558450096607
113 => 0.0023336683898779
114 => 0.002243316851385
115 => 0.0022847244290314
116 => 0.0022687349747469
117 => 0.0022864764663683
118 => 0.0023822199795011
119 => 0.0023398894901048
120 => 0.0022952977581755
121 => 0.0023512256857123
122 => 0.0024224411563877
123 => 0.0024179846202193
124 => 0.0024093370773651
125 => 0.0024580828236637
126 => 0.0025385965153855
127 => 0.0025603590427277
128 => 0.0025764236954964
129 => 0.0025786387396987
130 => 0.0026014550716244
131 => 0.0024787659044039
201 => 0.0026734767636641
202 => 0.0027070979502795
203 => 0.0027007785606512
204 => 0.0027381470945783
205 => 0.0027271523239487
206 => 0.0027112226263332
207 => 0.0027704597011227
208 => 0.0027025491750619
209 => 0.0026061587330161
210 => 0.002553277030123
211 => 0.0026229159223379
212 => 0.0026654419637512
213 => 0.0026935489719611
214 => 0.0027020541356627
215 => 0.0024882899152039
216 => 0.0023730828562838
217 => 0.0024469292602
218 => 0.0025370269695843
219 => 0.0024782654070791
220 => 0.0024805687490789
221 => 0.0023967902032135
222 => 0.0025444395119139
223 => 0.0025229282495624
224 => 0.0026345287166948
225 => 0.0026078943695639
226 => 0.0026989002182052
227 => 0.0026749353283198
228 => 0.002774412246375
301 => 0.0028140962822172
302 => 0.0028807319547233
303 => 0.0029297494266748
304 => 0.0029585334237595
305 => 0.0029568053405406
306 => 0.0030708618771208
307 => 0.0030036067223313
308 => 0.0029191183970929
309 => 0.0029175902698466
310 => 0.0029613479706964
311 => 0.0030530521073386
312 => 0.0030768296557291
313 => 0.0030901180614865
314 => 0.0030697664054962
315 => 0.0029967657551927
316 => 0.0029652444445133
317 => 0.0029921015144724
318 => 0.0029592576257668
319 => 0.0030159553920403
320 => 0.0030938135351233
321 => 0.0030777361364611
322 => 0.0031314804697304
323 => 0.0031871002005954
324 => 0.0032666389137707
325 => 0.0032874332787048
326 => 0.0033218055732019
327 => 0.00335718595495
328 => 0.0033685491800395
329 => 0.0033902451025369
330 => 0.003390130754316
331 => 0.0034555128770661
401 => 0.0035276313831752
402 => 0.0035548544496841
403 => 0.0036174523900328
404 => 0.0035102556108792
405 => 0.0035915655992551
406 => 0.0036649092440911
407 => 0.003577465927114
408 => 0.0036979861678872
409 => 0.0037026656957316
410 => 0.003773321010392
411 => 0.0037016983130633
412 => 0.0036591689840173
413 => 0.00378194956342
414 => 0.003841359218241
415 => 0.0038234645467171
416 => 0.0036872852128514
417 => 0.0036080229995352
418 => 0.0034005784987476
419 => 0.0036463054708661
420 => 0.0037659919110309
421 => 0.0036869752538855
422 => 0.0037268266596252
423 => 0.0039442430074793
424 => 0.0040270210760761
425 => 0.0040098038164703
426 => 0.0040127132499235
427 => 0.0040573787932101
428 => 0.0042554504099068
429 => 0.004136761305918
430 => 0.0042274946787216
501 => 0.0042756193324931
502 => 0.0043203201929322
503 => 0.0042105490075458
504 => 0.0040677383082172
505 => 0.0040225041649545
506 => 0.0036791186045805
507 => 0.0036612438949151
508 => 0.0036512102787208
509 => 0.0035879497478989
510 => 0.0035382442991906
511 => 0.0034987166809328
512 => 0.0033949844066782
513 => 0.0034299910041463
514 => 0.0032646634095927
515 => 0.0033704341457379
516 => 0.0031065673128561
517 => 0.0033263234521253
518 => 0.0032067201766067
519 => 0.0032870305593977
520 => 0.0032867503640378
521 => 0.0031388734868895
522 => 0.0030535811902621
523 => 0.0031079327612989
524 => 0.0031662019598835
525 => 0.0031756559413127
526 => 0.0032512034782593
527 => 0.0032722871719323
528 => 0.0032084025957998
529 => 0.0031010992592447
530 => 0.0031260233769979
531 => 0.0030530761038113
601 => 0.0029252388134281
602 => 0.0030170537872063
603 => 0.0030484034560736
604 => 0.0030622492557966
605 => 0.0029365359629168
606 => 0.0028970341169255
607 => 0.0028760036655724
608 => 0.0030848712517738
609 => 0.0030963134896379
610 => 0.0030377733829561
611 => 0.0033023802161584
612 => 0.0032424915403708
613 => 0.0033094018643074
614 => 0.003123761774554
615 => 0.0031308534759801
616 => 0.0030429684824765
617 => 0.0030921782063612
618 => 0.0030573983596229
619 => 0.0030882025469712
620 => 0.0031066664498574
621 => 0.0031945370222984
622 => 0.0033273267929142
623 => 0.0031814120890011
624 => 0.0031178349629691
625 => 0.003157277854388
626 => 0.00326231947196
627 => 0.0034214628995631
628 => 0.0033272467873621
629 => 0.0033690582980636
630 => 0.0033781922530872
701 => 0.0033087207800203
702 => 0.0034240244118682
703 => 0.0034858165649005
704 => 0.0035492025278272
705 => 0.0036042387834022
706 => 0.0035238847803471
707 => 0.0036098750819099
708 => 0.0035405820781819
709 => 0.0034784190904588
710 => 0.0034785133660514
711 => 0.0034395176157963
712 => 0.0033639584358965
713 => 0.0033500241638371
714 => 0.0034225120067944
715 => 0.0034806403922218
716 => 0.0034854281244618
717 => 0.0035176109853787
718 => 0.0035366564709595
719 => 0.0037233281207335
720 => 0.0037984090025014
721 => 0.003890216483519
722 => 0.0039259806713614
723 => 0.0040336180545962
724 => 0.0039466921257532
725 => 0.0039278851542583
726 => 0.0036667920704505
727 => 0.0037095460482973
728 => 0.0037779992919754
729 => 0.0036679208392259
730 => 0.0037377402809283
731 => 0.0037515241176983
801 => 0.0036641804155235
802 => 0.0037108344607536
803 => 0.0035869351485827
804 => 0.0033300274593417
805 => 0.0034243104235672
806 => 0.0034937344205398
807 => 0.0033946578169429
808 => 0.0035722487940963
809 => 0.0034685038114651
810 => 0.0034356216326085
811 => 0.0033073365295454
812 => 0.0033678821600447
813 => 0.003449770992225
814 => 0.0033991732145361
815 => 0.003504171200535
816 => 0.0036528763506496
817 => 0.0037588524961659
818 => 0.0037669880287077
819 => 0.0036988524669909
820 => 0.0038080401394773
821 => 0.0038088354524685
822 => 0.0036856713118591
823 => 0.0036102339615167
824 => 0.0035930944367973
825 => 0.003635912329948
826 => 0.0036879011568521
827 => 0.003769873046777
828 => 0.0038194069430769
829 => 0.0039485650738785
830 => 0.0039835115608197
831 => 0.0040219071548551
901 => 0.0040732155092492
902 => 0.0041348243438913
903 => 0.0040000277210873
904 => 0.0040053834422036
905 => 0.0038798626934348
906 => 0.003745725771879
907 => 0.0038475189749365
908 => 0.0039806000469518
909 => 0.00395007110199
910 => 0.003946635972032
911 => 0.0039524129077957
912 => 0.0039293950802766
913 => 0.0038252862994883
914 => 0.0037730035215318
915 => 0.0038404616438549
916 => 0.0038763126336539
917 => 0.0039319143922974
918 => 0.0039250603019339
919 => 0.0040682844610066
920 => 0.0041239370383485
921 => 0.0041096987275564
922 => 0.0041123189194063
923 => 0.0042130752523702
924 => 0.0043251370167464
925 => 0.004430097646937
926 => 0.0045368681081307
927 => 0.0044081521498396
928 => 0.004342798124316
929 => 0.0044102267965331
930 => 0.0043744481939274
1001 => 0.0045800426571225
1002 => 0.0045942775716822
1003 => 0.0047998571680575
1004 => 0.0049949766849806
1005 => 0.0048724256123305
1006 => 0.004987985754018
1007 => 0.0051129734690097
1008 => 0.0053540950497547
1009 => 0.0052728937841193
1010 => 0.0052106948872286
1011 => 0.0051519172302098
1012 => 0.0052742242037756
1013 => 0.0054315701713664
1014 => 0.0054654609857446
1015 => 0.0055203770523246
1016 => 0.0054626395231328
1017 => 0.0055321780174641
1018 => 0.0057776794592164
1019 => 0.0057113428025538
1020 => 0.0056171340859431
1021 => 0.0058109338959975
1022 => 0.0058810692938785
1023 => 0.0063733162464002
1024 => 0.0069947983576663
1025 => 0.0067375006827306
1026 => 0.0065777877129539
1027 => 0.0066153240492937
1028 => 0.0068422682778309
1029 => 0.0069151555611873
1030 => 0.0067170227992714
1031 => 0.0067870066403402
1101 => 0.0071726244852889
1102 => 0.0073794960870022
1103 => 0.0070985366653127
1104 => 0.0063233807638836
1105 => 0.0056086516217722
1106 => 0.0057982299749329
1107 => 0.0057767376729857
1108 => 0.0061910359405772
1109 => 0.0057097606952314
1110 => 0.0057178641360638
1111 => 0.0061407296530796
1112 => 0.0060279163828901
1113 => 0.005845173333215
1114 => 0.0056099858482704
1115 => 0.0051752200301411
1116 => 0.0047901358206822
1117 => 0.0055453746350281
1118 => 0.0055128073640409
1119 => 0.0054656451294522
1120 => 0.0055705995790426
1121 => 0.0060802285944133
1122 => 0.0060684799961008
1123 => 0.0059937414078246
1124 => 0.0060504299683164
1125 => 0.0058352355544756
1126 => 0.0058906960548081
1127 => 0.0056085384050245
1128 => 0.005736085446671
1129 => 0.0058447812487045
1130 => 0.0058666035402316
1201 => 0.0059157702773159
1202 => 0.0054956458920988
1203 => 0.0056842694068574
1204 => 0.0057950680501448
1205 => 0.0052944757488831
1206 => 0.0057851729498758
1207 => 0.0054883324612446
1208 => 0.0053875803410086
1209 => 0.0055232297978238
1210 => 0.0054703670725795
1211 => 0.0054249188056179
1212 => 0.0053995578917529
1213 => 0.0054991638817538
1214 => 0.0054945171432653
1215 => 0.0053315424109343
1216 => 0.0051189485163085
1217 => 0.0051903020055016
1218 => 0.0051643786139352
1219 => 0.0050704288987145
1220 => 0.0051337396632414
1221 => 0.0048549510971098
1222 => 0.004375309859249
1223 => 0.0046921755527882
1224 => 0.0046799765682705
1225 => 0.0046738252870968
1226 => 0.0049119410982671
1227 => 0.0048890517572895
1228 => 0.0048475073792821
1229 => 0.0050696659036329
1230 => 0.0049885750537911
1231 => 0.0052384779455966
]
'min_raw' => 0.002243316851385
'max_raw' => 0.0073794960870022
'avg_raw' => 0.0048114064691936
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.002243'
'max' => '$0.007379'
'avg' => '$0.004811'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0012221011831821
'max_diff' => 0.0048782198790051
'year' => 2029
]
4 => [
'items' => [
101 => 0.0054030801528454
102 => 0.0053613317087635
103 => 0.0055161408802725
104 => 0.0051919458457788
105 => 0.0052996304317904
106 => 0.005321824075723
107 => 0.0050669245019272
108 => 0.0048927967365507
109 => 0.0048811843998019
110 => 0.0045792708509231
111 => 0.0047405506317732
112 => 0.0048824701647104
113 => 0.0048145017218341
114 => 0.0047929849433189
115 => 0.004902909498333
116 => 0.0049114515776977
117 => 0.0047166912629327
118 => 0.0047571880996294
119 => 0.0049260666406935
120 => 0.0047529327936923
121 => 0.0044165620102222
122 => 0.0043331374052317
123 => 0.0043220070251054
124 => 0.0040957528798823
125 => 0.0043387122362474
126 => 0.0042326539662881
127 => 0.0045676907703164
128 => 0.0043763195446939
129 => 0.0043680699136461
130 => 0.0043555993863597
131 => 0.0041608530971251
201 => 0.0042034901576951
202 => 0.0043452222408376
203 => 0.004395793844829
204 => 0.0043905188122118
205 => 0.0043445276763085
206 => 0.0043655821828123
207 => 0.0042977582814873
208 => 0.004273808250297
209 => 0.0041982153638853
210 => 0.004087114703928
211 => 0.004102563932115
212 => 0.0038824444536705
213 => 0.0037625116791891
214 => 0.0037293158679012
215 => 0.0036849250416985
216 => 0.0037343299298402
217 => 0.0038818208828447
218 => 0.0037039155015701
219 => 0.0033989092039864
220 => 0.0034172406021766
221 => 0.0034584258112691
222 => 0.0033816774465927
223 => 0.0033090415604285
224 => 0.0033721925703125
225 => 0.0032429573811993
226 => 0.003474043266445
227 => 0.0034677930408598
228 => 0.0035539275686241
301 => 0.0036077892564935
302 => 0.003483655503883
303 => 0.0034524362007948
304 => 0.003470220134672
305 => 0.0031762913218832
306 => 0.0035299073138367
307 => 0.0035329653996194
308 => 0.0035067802125307
309 => 0.003695069811577
310 => 0.0040924195945635
311 => 0.003942920622846
312 => 0.0038850301023666
313 => 0.0037749801806177
314 => 0.0039216151672304
315 => 0.0039103558881207
316 => 0.0038594371580317
317 => 0.0038286413511978
318 => 0.0038853835695403
319 => 0.0038216103624068
320 => 0.0038101549420351
321 => 0.0037407475582029
322 => 0.0037159722800095
323 => 0.0036976296503674
324 => 0.003677436217441
325 => 0.0037219778985867
326 => 0.0036210405891644
327 => 0.0034993200890076
328 => 0.0034892003464536
329 => 0.003517141845382
330 => 0.0035047798121061
331 => 0.0034891411617943
401 => 0.003459282719416
402 => 0.003450424357387
403 => 0.0034792097365149
404 => 0.0034467127217714
405 => 0.0034946638372294
406 => 0.003481623787081
407 => 0.0034087831269732
408 => 0.0033179966954123
409 => 0.0033171885057405
410 => 0.0032976287179803
411 => 0.0032727163874339
412 => 0.0032657863469928
413 => 0.0033668741684026
414 => 0.0035761229334169
415 => 0.003535042393946
416 => 0.0035647272938168
417 => 0.0037107476209556
418 => 0.0037571630919685
419 => 0.0037242184900542
420 => 0.0036791218870193
421 => 0.0036811059086837
422 => 0.003835214652924
423 => 0.0038448262262687
424 => 0.0038691115712995
425 => 0.0039003251027018
426 => 0.0037295342894231
427 => 0.0036730616767373
428 => 0.0036463018198654
429 => 0.0035638918180681
430 => 0.0036527639397069
501 => 0.0036009819603116
502 => 0.0036079691184564
503 => 0.0036034187225484
504 => 0.0036059035464106
505 => 0.0034739786732305
506 => 0.0035220451632501
507 => 0.0034421253009434
508 => 0.0033351215767404
509 => 0.0033347628627365
510 => 0.0033609518726431
511 => 0.0033453736247746
512 => 0.0033034529603138
513 => 0.0033094075928405
514 => 0.0032572387461478
515 => 0.0033157418353764
516 => 0.0033174194946414
517 => 0.0032948926186036
518 => 0.0033850246994309
519 => 0.0034219518864867
520 => 0.0034071242141061
521 => 0.0034209115374649
522 => 0.0035367494758286
523 => 0.0035556361141454
524 => 0.0035640243113045
525 => 0.0035527852383345
526 => 0.0034230288423315
527 => 0.003428784090261
528 => 0.0033865558996211
529 => 0.0033508775284274
530 => 0.0033523044761668
531 => 0.0033706477968239
601 => 0.0034507541539551
602 => 0.0036193332600101
603 => 0.0036257307138551
604 => 0.0036334846145423
605 => 0.0036019456036495
606 => 0.0035924331361766
607 => 0.0036049825361496
608 => 0.0036682919849155
609 => 0.0038311410754892
610 => 0.0037735793305554
611 => 0.0037267807359223
612 => 0.003767835720226
613 => 0.0037615156271921
614 => 0.0037081676816686
615 => 0.0037066703825186
616 => 0.0036042786186892
617 => 0.0035664267149492
618 => 0.0035347948310181
619 => 0.0035002536395366
620 => 0.0034797764633951
621 => 0.0035112387126585
622 => 0.0035184345013154
623 => 0.003449641743435
624 => 0.0034402655447339
625 => 0.0034964431958139
626 => 0.0034717215060875
627 => 0.0034971483770395
628 => 0.003503047629208
629 => 0.0035020977137375
630 => 0.0034762854303952
701 => 0.0034927374100643
702 => 0.0034538235735758
703 => 0.0034115106210639
704 => 0.0033845175935514
705 => 0.0033609625969412
706 => 0.003374032278085
707 => 0.0033274412512369
708 => 0.0033125358440561
709 => 0.0034871638495336
710 => 0.0036161634347473
711 => 0.0036142877296889
712 => 0.0036028698575377
713 => 0.0035859052155519
714 => 0.003667050915688
715 => 0.0036387813763201
716 => 0.0036593498282093
717 => 0.0036645853624703
718 => 0.0036804317478364
719 => 0.0036860954685619
720 => 0.0036689757708224
721 => 0.0036115199742137
722 => 0.0034683455917981
723 => 0.0034016975302918
724 => 0.0033797025598834
725 => 0.0033805020352834
726 => 0.0033584489347375
727 => 0.0033649445611989
728 => 0.0033561900209389
729 => 0.0033396110396373
730 => 0.003373008572708
731 => 0.0033768573272748
801 => 0.0033690619439853
802 => 0.003370898038947
803 => 0.0033063555947617
804 => 0.0033112626166143
805 => 0.0032839396953849
806 => 0.0032788169770371
807 => 0.0032097470114482
808 => 0.0030873795555557
809 => 0.0031551830046165
810 => 0.0030732859727587
811 => 0.0030422703258517
812 => 0.003189093574387
813 => 0.003174356592477
814 => 0.0031491332854593
815 => 0.0031118227573822
816 => 0.0030979839195849
817 => 0.0030139035219724
818 => 0.0030089356035299
819 => 0.0030506081189484
820 => 0.0030313776869465
821 => 0.0030043708772817
822 => 0.0029065549503121
823 => 0.0027965774626578
824 => 0.0027998969917162
825 => 0.0028348787843351
826 => 0.0029365930643121
827 => 0.0028968515354502
828 => 0.0028680186002794
829 => 0.0028626190582367
830 => 0.0029302056316074
831 => 0.0030258547927518
901 => 0.0030707312391314
902 => 0.0030262600436872
903 => 0.00297517392886
904 => 0.0029782833039593
905 => 0.0029989685834701
906 => 0.0030011423138726
907 => 0.0029678905048576
908 => 0.0029772506943217
909 => 0.0029630317106121
910 => 0.0028757698338319
911 => 0.0028741915431913
912 => 0.0028527760713416
913 => 0.0028521276193651
914 => 0.0028156945594089
915 => 0.0028105973224712
916 => 0.0027382572705996
917 => 0.0027858717118073
918 => 0.0027539344445155
919 => 0.0027057974494671
920 => 0.0026974986133768
921 => 0.0026972491403428
922 => 0.0027466750710224
923 => 0.0027852941410302
924 => 0.0027544900069536
925 => 0.0027474765027374
926 => 0.0028223623789429
927 => 0.0028128324685959
928 => 0.0028045796276966
929 => 0.0030172904594605
930 => 0.0028489132380862
1001 => 0.0027754911589312
1002 => 0.0026846173935022
1003 => 0.0027142063497512
1004 => 0.0027204411775851
1005 => 0.0025019061529558
1006 => 0.0024132465206805
1007 => 0.0023828218759514
1008 => 0.0023653120627684
1009 => 0.0023732915045103
1010 => 0.0022934874367249
1011 => 0.0023471170901141
1012 => 0.0022780135130819
1013 => 0.0022664280735099
1014 => 0.0023899938295341
1015 => 0.0024071872826242
1016 => 0.0023338346701547
1017 => 0.0023809389220694
1018 => 0.002363858265527
1019 => 0.0022791980955708
1020 => 0.0022759646997965
1021 => 0.0022334852024614
1022 => 0.0021670130147834
1023 => 0.0021366334413276
1024 => 0.0021208114957043
1025 => 0.002127339938832
1026 => 0.002124038958213
1027 => 0.0021024978268044
1028 => 0.0021252736706502
1029 => 0.0020670908012526
1030 => 0.0020439219138473
1031 => 0.0020334570649204
1101 => 0.001981816419449
1102 => 0.0020639996510932
1103 => 0.0020801907830442
1104 => 0.0020964138165268
1105 => 0.0022376242470577
1106 => 0.0022305697730049
1107 => 0.0022943387827739
1108 => 0.0022918608363179
1109 => 0.0022736728817424
1110 => 0.0021969408931613
1111 => 0.0022275248961935
1112 => 0.0021333920886696
1113 => 0.0022039227884752
1114 => 0.0021717355225164
1115 => 0.0021930402414771
1116 => 0.0021547324358167
1117 => 0.0021759335571597
1118 => 0.0020840303010812
1119 => 0.0019982123336688
1120 => 0.0020327479889382
1121 => 0.0020702921958472
1122 => 0.0021516976025121
1123 => 0.0021032132138825
1124 => 0.0021206500334315
1125 => 0.0020622396068309
1126 => 0.0019417222126406
1127 => 0.0019424043280035
1128 => 0.0019238653525215
1129 => 0.0019078449709703
1130 => 0.002108782229155
1201 => 0.0020837925047518
1202 => 0.0020439746494895
1203 => 0.0020972724310567
1204 => 0.0021113652104526
1205 => 0.0021117664120699
1206 => 0.0021506510976865
1207 => 0.0021714038613706
1208 => 0.0021750616259175
1209 => 0.0022362475188945
1210 => 0.002256756223159
1211 => 0.0023412286735238
1212 => 0.0021696431343635
1213 => 0.0021661094430995
1214 => 0.0020980224401435
1215 => 0.0020548405864558
1216 => 0.0021009791386092
1217 => 0.0021418515972766
1218 => 0.0020992924613658
1219 => 0.0021048497860434
1220 => 0.0020477176232923
1221 => 0.0020681396831577
1222 => 0.0020857299122623
1223 => 0.0020760176216566
1224 => 0.0020614778525397
1225 => 0.0021385005217692
1226 => 0.002134154600917
1227 => 0.002205879881247
1228 => 0.0022617948663882
1229 => 0.0023620045157605
1230 => 0.0022574305225934
1231 => 0.0022536194306384
]
'min_raw' => 0.0019078449709703
'max_raw' => 0.0055161408802725
'avg_raw' => 0.0037119929256214
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0019078'
'max' => '$0.005516'
'avg' => '$0.003711'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00033547188041473
'max_diff' => -0.0018633552067297
'year' => 2030
]
5 => [
'items' => [
101 => 0.0022908734658167
102 => 0.0022567505197603
103 => 0.0022783150437839
104 => 0.002358530137554
105 => 0.0023602249560841
106 => 0.002331834562055
107 => 0.0023301070039982
108 => 0.0023355596897284
109 => 0.0023674962403615
110 => 0.0023563366282592
111 => 0.0023692508139108
112 => 0.0023854002008171
113 => 0.0024522009122598
114 => 0.0024683063376359
115 => 0.0024291785036776
116 => 0.0024327113089883
117 => 0.0024180764250048
118 => 0.0024039393104514
119 => 0.0024357174794078
120 => 0.002493792707777
121 => 0.0024934314247954
122 => 0.0025069037489559
123 => 0.0025152968952972
124 => 0.0024792673670419
125 => 0.0024558134689902
126 => 0.0024648071859135
127 => 0.0024791883351316
128 => 0.0024601435730464
129 => 0.0023425904790644
130 => 0.0023782485784578
131 => 0.0023723133271267
201 => 0.0023638608074801
202 => 0.0023997153021561
203 => 0.002396257048677
204 => 0.0022926689306628
205 => 0.0022993003058872
206 => 0.002293072206554
207 => 0.002313196469649
208 => 0.002255663743511
209 => 0.0022733604225822
210 => 0.0022844596137996
211 => 0.0022909971226947
212 => 0.0023146150876354
213 => 0.0023118437920471
214 => 0.0023144428200106
215 => 0.0023494620271062
216 => 0.0025265771594549
217 => 0.0025362171453261
218 => 0.002488746329237
219 => 0.0025077099839442
220 => 0.0024713039138018
221 => 0.0024957435525878
222 => 0.0025124645327457
223 => 0.0024369056386718
224 => 0.0024324315313379
225 => 0.0023958752003937
226 => 0.0024155185019867
227 => 0.0023842645967489
228 => 0.0023919332118791
301 => 0.0023704910954373
302 => 0.0024090826359497
303 => 0.0024522339747617
304 => 0.0024631357070436
305 => 0.0024344579429008
306 => 0.0024136933517045
307 => 0.0023772375698456
308 => 0.0024378643475471
309 => 0.0024555934649146
310 => 0.0024377712240411
311 => 0.0024336414214071
312 => 0.0024258154528779
313 => 0.0024353017376263
314 => 0.0024554969083339
315 => 0.0024459732387744
316 => 0.0024522637903039
317 => 0.002428290694662
318 => 0.0024792792943149
319 => 0.0025602614616385
320 => 0.0025605218325483
321 => 0.0025509981116527
322 => 0.0025471012102537
323 => 0.0025568731258403
324 => 0.0025621739891811
325 => 0.0025937745723253
326 => 0.0026276832570619
327 => 0.0027859202932092
328 => 0.0027414879666548
329 => 0.0028818852786881
330 => 0.0029929213241971
331 => 0.0030262161792275
401 => 0.0029955864792435
402 => 0.0028908039301824
403 => 0.0028856627984339
404 => 0.0030422521647824
405 => 0.0029980084965416
406 => 0.0029927458529866
407 => 0.0029367602169374
408 => 0.0029698546617983
409 => 0.002962616421241
410 => 0.0029511905044145
411 => 0.0030143323998302
412 => 0.0031325283913327
413 => 0.003114106437622
414 => 0.0031003553037469
415 => 0.0030401018380008
416 => 0.0030763878824787
417 => 0.0030634671170536
418 => 0.0031189829250405
419 => 0.0030860965902147
420 => 0.0029976733072398
421 => 0.0030117550065005
422 => 0.0030096265859857
423 => 0.003053429329359
424 => 0.0030402808330493
425 => 0.0030070591310554
426 => 0.0031321244102833
427 => 0.0031240033666998
428 => 0.0031355171497721
429 => 0.0031405858731561
430 => 0.0032167109047246
501 => 0.003247896894429
502 => 0.0032549766600795
503 => 0.0032846009382876
504 => 0.0032542395810505
505 => 0.0033757066572795
506 => 0.0034564751751713
507 => 0.0035502919650126
508 => 0.0036873835105466
509 => 0.0037389311998351
510 => 0.0037296195711506
511 => 0.0038335608163703
512 => 0.0040203409235461
513 => 0.0037673731710585
514 => 0.0040337488286816
515 => 0.003949417370933
516 => 0.0037494690016691
517 => 0.003736594683925
518 => 0.0038720020410387
519 => 0.0041723225266419
520 => 0.0040970956512051
521 => 0.0041724455708608
522 => 0.0040845458871358
523 => 0.0040801809269621
524 => 0.0041681764794181
525 => 0.0043737828841194
526 => 0.0042761069882866
527 => 0.0041360646404981
528 => 0.0042394697308049
529 => 0.0041498906718918
530 => 0.0039480439805609
531 => 0.0040970381266312
601 => 0.0039974099842629
602 => 0.0040264867727293
603 => 0.0042358903094196
604 => 0.004210694321872
605 => 0.0042433002628442
606 => 0.0041857516304743
607 => 0.0041319921332544
608 => 0.0040316460394608
609 => 0.0040019385080911
610 => 0.0040101486009967
611 => 0.0040019344395768
612 => 0.0039457917223275
613 => 0.0039336677078829
614 => 0.0039134604859767
615 => 0.0039197235490038
616 => 0.0038817280599888
617 => 0.0039534333980288
618 => 0.0039667425406343
619 => 0.0040189237059308
620 => 0.0040243413276163
621 => 0.0041696651302148
622 => 0.0040896232218108
623 => 0.0041433222444541
624 => 0.004138518898434
625 => 0.0037538024891276
626 => 0.0038068130159484
627 => 0.0038892807600619
628 => 0.0038521291531211
629 => 0.0037996054730441
630 => 0.0037571897852404
701 => 0.0036929256809909
702 => 0.0037833761736392
703 => 0.0039023089531341
704 => 0.0040273576591732
705 => 0.0041775954859634
706 => 0.0041440641519849
707 => 0.0040245490675046
708 => 0.0040299104268886
709 => 0.0040630522409831
710 => 0.0040201305804794
711 => 0.0040074721448665
712 => 0.0040613131663134
713 => 0.0040616839398376
714 => 0.0040122973821721
715 => 0.0039574132609716
716 => 0.0039571832944998
717 => 0.0039474171952499
718 => 0.0040862832544968
719 => 0.0041626455461404
720 => 0.0041714003598134
721 => 0.0041620562774255
722 => 0.0041656524438833
723 => 0.0041212189089041
724 => 0.004222780793511
725 => 0.0043159840222556
726 => 0.0042910035659555
727 => 0.0042535543107805
728 => 0.0042237241752331
729 => 0.0042839765340358
730 => 0.0042812935913444
731 => 0.0043151699733612
801 => 0.0043136331449935
802 => 0.0043022417918764
803 => 0.0042910039727766
804 => 0.0043355606552419
805 => 0.0043227290462503
806 => 0.0043098775062257
807 => 0.0042841017752342
808 => 0.0042876051251655
809 => 0.0042501623361325
810 => 0.0042328395886603
811 => 0.003972347029762
812 => 0.0039027349061844
813 => 0.0039246362973474
814 => 0.0039318468039876
815 => 0.0039015515185963
816 => 0.0039449871756271
817 => 0.0039382177744886
818 => 0.0039645535543513
819 => 0.0039481001024597
820 => 0.0039487753578646
821 => 0.003997161451632
822 => 0.0040112081405018
823 => 0.0040040638811719
824 => 0.0040090674755157
825 => 0.0041243731952827
826 => 0.0041079804092011
827 => 0.0040992720683157
828 => 0.0041016843382548
829 => 0.0041311474218378
830 => 0.0041393954766163
831 => 0.0041044478889392
901 => 0.0041209293733173
902 => 0.0041911054419875
903 => 0.0042156630944005
904 => 0.0042940393325611
905 => 0.004260743713564
906 => 0.0043218592632339
907 => 0.004509707627093
908 => 0.0046597738982618
909 => 0.0045217667535441
910 => 0.0047973443497211
911 => 0.0050119210376032
912 => 0.0050036852269261
913 => 0.0049662688181456
914 => 0.0047219789638083
915 => 0.0044971797976905
916 => 0.0046852338456248
917 => 0.0046857132340666
918 => 0.0046695592245722
919 => 0.0045692280589769
920 => 0.0046660679174899
921 => 0.0046737547137879
922 => 0.0046694521519451
923 => 0.0045925284825221
924 => 0.0044750802571837
925 => 0.0044980293592835
926 => 0.004535620456672
927 => 0.0044644526669911
928 => 0.0044417102459797
929 => 0.0044839927335626
930 => 0.004620235718461
1001 => 0.0045944797713678
1002 => 0.0045938071795013
1003 => 0.0047040020433872
1004 => 0.0046251263023849
1005 => 0.0044983188209542
1006 => 0.0044662982595077
1007 => 0.0043526468380076
1008 => 0.0044311462796502
1009 => 0.004433971334805
1010 => 0.0043909779928622
1011 => 0.004501807493703
1012 => 0.0045007861803416
1013 => 0.0046060022965956
1014 => 0.0048071359935048
1015 => 0.0047476508621406
1016 => 0.004678476126328
1017 => 0.0046859973381182
1018 => 0.0047684864675242
1019 => 0.0047186116568417
1020 => 0.0047365469865027
1021 => 0.0047684593202547
1022 => 0.004787712823546
1023 => 0.0046832270552892
1024 => 0.0046588664245765
1025 => 0.0046090331235578
1026 => 0.0045960325455047
1027 => 0.0046366207293784
1028 => 0.0046259271769294
1029 => 0.0044337338998584
1030 => 0.0044136486330512
1031 => 0.004414264619509
1101 => 0.0043637592611199
1102 => 0.0042867264669016
1103 => 0.0044891640507182
1104 => 0.0044729054796255
1105 => 0.0044549572754527
1106 => 0.0044571558280529
1107 => 0.0045450271219413
1108 => 0.0044940573338793
1109 => 0.0046295688692261
1110 => 0.0046017117714084
1111 => 0.0045731402441462
1112 => 0.0045691907887685
1113 => 0.0045581931883807
1114 => 0.004520478324624
1115 => 0.0044749353603259
1116 => 0.0044448639504323
1117 => 0.0041001520396543
1118 => 0.0041641285651978
1119 => 0.0042377277261917
1120 => 0.0042631338616367
1121 => 0.004219674908907
1122 => 0.0045221943489632
1123 => 0.0045774675658114
1124 => 0.0044100413865957
1125 => 0.0043787227844302
1126 => 0.0045242475913072
1127 => 0.0044364783430763
1128 => 0.0044760008301805
1129 => 0.0043905748307058
1130 => 0.0045641538664614
1201 => 0.0045628314850334
1202 => 0.0044953053196641
1203 => 0.004552377972235
1204 => 0.0045424601943618
1205 => 0.0044662233199695
1206 => 0.0045665707113609
1207 => 0.0045666204824151
1208 => 0.0045016280163926
1209 => 0.0044257310447586
1210 => 0.0044121624588369
1211 => 0.004401940352028
1212 => 0.004473486818532
1213 => 0.0045376351566796
1214 => 0.0046569993102505
1215 => 0.0046870102944806
1216 => 0.0048041451638749
1217 => 0.0047343970523439
1218 => 0.0047653154867963
1219 => 0.004798881821074
1220 => 0.0048149747560878
1221 => 0.0047887521820773
1222 => 0.0049707108488824
1223 => 0.0049860737354303
1224 => 0.0049912247784013
1225 => 0.0049298693397335
1226 => 0.0049843673296898
1227 => 0.004958869524973
1228 => 0.0050252077293519
1229 => 0.0050356104068472
1230 => 0.0050267997090947
1231 => 0.0050301016831268
]
'min_raw' => 0.002255663743511
'max_raw' => 0.0050356104068472
'avg_raw' => 0.0036456370751791
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.002255'
'max' => '$0.005035'
'avg' => '$0.003645'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00034781877254068
'max_diff' => -0.00048053047342527
'year' => 2031
]
6 => [
'items' => [
101 => 0.004874832060717
102 => 0.0048667805116826
103 => 0.004756997069286
104 => 0.0048017346335408
105 => 0.0047180999014936
106 => 0.004744621336559
107 => 0.0047563117324303
108 => 0.0047502053330512
109 => 0.0048042640283001
110 => 0.0047583030938768
111 => 0.0046370046312564
112 => 0.004515673120951
113 => 0.0045141499026736
114 => 0.0044822054576892
115 => 0.0044591154748825
116 => 0.0044635634247322
117 => 0.0044792385801579
118 => 0.0044582044063532
119 => 0.0044626931137942
120 => 0.0045372355654142
121 => 0.0045521845224742
122 => 0.0045013821254499
123 => 0.0042974031706463
124 => 0.004247346223495
125 => 0.0042833261644349
126 => 0.0042661300700706
127 => 0.0034430999243473
128 => 0.0036364586489063
129 => 0.0035215714606152
130 => 0.0035745167626851
131 => 0.0034572466933331
201 => 0.0035132141170788
202 => 0.003502878977516
203 => 0.0038137940847063
204 => 0.0038089395729572
205 => 0.0038112631708364
206 => 0.0037003517899595
207 => 0.0038770366312687
208 => 0.003964077937479
209 => 0.0039479689082288
210 => 0.0039520232038357
211 => 0.0038823569727858
212 => 0.0038119376922358
213 => 0.0037338318726563
214 => 0.003878942831264
215 => 0.0038628089697935
216 => 0.0038998142432267
217 => 0.0039939290726293
218 => 0.0040077878387663
219 => 0.0040264141609962
220 => 0.0040197379503887
221 => 0.0041787923726364
222 => 0.0041595298326273
223 => 0.0042059470118382
224 => 0.0041104633525216
225 => 0.0040024145286127
226 => 0.0040229510776556
227 => 0.0040209732428383
228 => 0.0039957931355606
229 => 0.0039730616605889
301 => 0.0039352201593145
302 => 0.0040549562688352
303 => 0.0040500952014525
304 => 0.0041287902320062
305 => 0.0041148801209531
306 => 0.0040219849949588
307 => 0.0040253027625571
308 => 0.0040476163441198
309 => 0.0041248439046806
310 => 0.0041477703027083
311 => 0.0041371498816828
312 => 0.0041622876304904
313 => 0.0041821554821993
314 => 0.0041647827267742
315 => 0.0044107443076946
316 => 0.0043086039109148
317 => 0.004358386429617
318 => 0.0043702592669918
319 => 0.0043398472437151
320 => 0.0043464425225909
321 => 0.0043564325729818
322 => 0.0044170902027032
323 => 0.0045762733745188
324 => 0.0046467745177194
325 => 0.0048588806855036
326 => 0.0046409203791999
327 => 0.0046279875166332
328 => 0.0046661942424438
329 => 0.0047907230166511
330 => 0.0048916418917532
331 => 0.0049251225047742
401 => 0.0049295475204896
402 => 0.0049923593762659
403 => 0.0050283619606251
404 => 0.0049847323648588
405 => 0.004947760850656
406 => 0.0048153334758546
407 => 0.0048306623050757
408 => 0.00493626273754
409 => 0.0050854295682303
410 => 0.0052134302271262
411 => 0.0051686088576542
412 => 0.0055105642677698
413 => 0.0055444677499202
414 => 0.0055397833849178
415 => 0.005617020562771
416 => 0.0054637204938102
417 => 0.0053981817442805
418 => 0.0049557545116712
419 => 0.0050800585176621
420 => 0.0052607416904882
421 => 0.0052368275950375
422 => 0.0051056106452562
423 => 0.0052133306873033
424 => 0.0051777150726853
425 => 0.005149623559743
426 => 0.0052783162263397
427 => 0.0051368133530132
428 => 0.0052593300910827
429 => 0.0051022011072352
430 => 0.0051688135978945
501 => 0.0051310011265126
502 => 0.0051554704296189
503 => 0.0050124233836498
504 => 0.005089608097384
505 => 0.0050092122457986
506 => 0.0050091741276971
507 => 0.0050073993848175
508 => 0.0051019847476778
509 => 0.0051050691729649
510 => 0.0050351704469006
511 => 0.0050250969484514
512 => 0.0050623439519523
513 => 0.0050187374658584
514 => 0.0050391406662458
515 => 0.0050193554580131
516 => 0.0050149013908997
517 => 0.0049794106263428
518 => 0.0049641202291328
519 => 0.0049701159878638
520 => 0.0049496493722893
521 => 0.0049373174960959
522 => 0.0050049462642538
523 => 0.0049688149415637
524 => 0.0049994086208554
525 => 0.0049645432620724
526 => 0.0048436847384168
527 => 0.0047741777234068
528 => 0.0045458871758124
529 => 0.0046106300919166
530 => 0.0046535547122751
531 => 0.0046393681255027
601 => 0.0046698464033701
602 => 0.0046717175220969
603 => 0.0046618087232729
604 => 0.0046503356036305
605 => 0.0046447511234919
606 => 0.0046863732631664
607 => 0.0047105363161842
608 => 0.0046578627721854
609 => 0.0046455220978077
610 => 0.0046987779589765
611 => 0.0047312640035246
612 => 0.0049711227041361
613 => 0.0049533531968614
614 => 0.0049979511730312
615 => 0.0049929301253262
616 => 0.0050396759093669
617 => 0.0051160855100311
618 => 0.0049607234274204
619 => 0.004987688912945
620 => 0.0049810775986184
621 => 0.0050532581948568
622 => 0.0050534835347995
623 => 0.0050102076616664
624 => 0.0050336682145627
625 => 0.0050205731775426
626 => 0.0050442376793384
627 => 0.0049531158742582
628 => 0.0050640923968548
629 => 0.005127008933998
630 => 0.0051278825301772
701 => 0.0051577044694466
702 => 0.0051880052869145
703 => 0.0052461650673991
704 => 0.005186383242203
705 => 0.0050788415583187
706 => 0.0050866057205377
707 => 0.0050235540706243
708 => 0.0050246139802505
709 => 0.005018956099599
710 => 0.0050359358253397
711 => 0.0049568419692055
712 => 0.0049754051391496
713 => 0.004949416592522
714 => 0.0049876324189201
715 => 0.0049465185070182
716 => 0.0049810744104424
717 => 0.004995987592814
718 => 0.0050510175568229
719 => 0.0049383905365906
720 => 0.0047087364181578
721 => 0.0047570124981394
722 => 0.0046856083838424
723 => 0.0046922171064752
724 => 0.0047055677779639
725 => 0.0046622938836011
726 => 0.0046705491789284
727 => 0.0046702542416877
728 => 0.0046677126318852
729 => 0.0046564554206444
730 => 0.0046401302371738
731 => 0.0047051647434942
801 => 0.0047162153733986
802 => 0.0047407795547926
803 => 0.0048138658965778
804 => 0.0048065628475388
805 => 0.004818474423522
806 => 0.0047924715200314
807 => 0.00469342330659
808 => 0.0046988021011152
809 => 0.0046317284471967
810 => 0.0047390643306598
811 => 0.0047136457766913
812 => 0.0046972582695903
813 => 0.0046927867864486
814 => 0.0047660542951386
815 => 0.0047879770820661
816 => 0.0047743162724364
817 => 0.0047462975533363
818 => 0.0048001017769991
819 => 0.0048144975174333
820 => 0.0048177201928221
821 => 0.004913050961216
822 => 0.0048230481237826
823 => 0.0048447127013041
824 => 0.0050137335507004
825 => 0.0048604549635808
826 => 0.0049416500496984
827 => 0.0049376759727518
828 => 0.0049792126313177
829 => 0.0049342687543852
830 => 0.0049348258876045
831 => 0.004971707626474
901 => 0.0049199138758884
902 => 0.0049070890148663
903 => 0.0048893715612176
904 => 0.0049280569730795
905 => 0.0049512471279
906 => 0.0051381427444613
907 => 0.0052588858362355
908 => 0.0052536440601843
909 => 0.0053015440810984
910 => 0.0052799646829627
911 => 0.0052102791140249
912 => 0.0053292238829519
913 => 0.0052915847812029
914 => 0.0052946877030196
915 => 0.0052945722121146
916 => 0.0053195989243103
917 => 0.0053018652050551
918 => 0.0052669102240743
919 => 0.00529011497173
920 => 0.0053590247764185
921 => 0.0055729229245823
922 => 0.0056926231620684
923 => 0.0055657168199856
924 => 0.0056532551154107
925 => 0.0056007633312395
926 => 0.0055912240125603
927 => 0.0056462045311165
928 => 0.0057012812857922
929 => 0.0056977731346227
930 => 0.0056577902389508
1001 => 0.0056352049157142
1002 => 0.0058062285499003
1003 => 0.005932235850257
1004 => 0.0059236429971363
1005 => 0.0059615690562654
1006 => 0.0060729211388773
1007 => 0.0060831017778016
1008 => 0.0060818192512964
1009 => 0.0060565854754828
1010 => 0.0061662260617093
1011 => 0.006257690167682
1012 => 0.0060507445854558
1013 => 0.0061295467540509
1014 => 0.0061649235863806
1015 => 0.0062168672720738
1016 => 0.0063045049766106
1017 => 0.0063997027684908
1018 => 0.0064131647800533
1019 => 0.0064036128386331
1020 => 0.0063408273358342
1021 => 0.0064449938956553
1022 => 0.0065060122233921
1023 => 0.0065423472411797
1024 => 0.0066344868007188
1025 => 0.0061651420616534
1026 => 0.0058329165273958
1027 => 0.0057810347128266
1028 => 0.0058865384229047
1029 => 0.0059143589098759
1030 => 0.0059031445064617
1031 => 0.0055291944630307
1101 => 0.0057790659432387
1102 => 0.0060479066461517
1103 => 0.0060582339124388
1104 => 0.006192821189511
1105 => 0.0062366483238446
1106 => 0.0063450087226455
1107 => 0.0063382307501971
1108 => 0.0063646147829146
1109 => 0.0063585495507006
1110 => 0.0065592643715051
1111 => 0.0067806826252918
1112 => 0.0067730156152301
1113 => 0.0067411841215464
1114 => 0.0067884593177429
1115 => 0.0070169866842729
1116 => 0.0069959475464392
1117 => 0.0070163852767351
1118 => 0.0072858319211119
1119 => 0.00763615088714
1120 => 0.0074733925559708
1121 => 0.0078265313021598
1122 => 0.0080488134238051
1123 => 0.0084332273687904
1124 => 0.0083850968495997
1125 => 0.0085347463774226
1126 => 0.0082989331751058
1127 => 0.007757458396875
1128 => 0.0076717679405378
1129 => 0.0078433224041529
1130 => 0.0082650723129107
1201 => 0.0078300399986456
1202 => 0.0079180464692341
1203 => 0.0078927005997841
1204 => 0.0078913500261141
1205 => 0.0079428959299172
1206 => 0.0078681259079973
1207 => 0.0075634993878255
1208 => 0.0077031079268449
1209 => 0.0076491983653768
1210 => 0.0077090150430497
1211 => 0.0080318209821757
1212 => 0.0078891007817556
1213 => 0.0077387566442607
1214 => 0.0079273215567143
1215 => 0.0081674294882016
1216 => 0.0081524039653646
1217 => 0.0081232481708794
1218 => 0.0082875978578446
1219 => 0.008559055390771
1220 => 0.0086324292711163
1221 => 0.0086865923695243
1222 => 0.0086940605457017
1223 => 0.0087709874017747
1224 => 0.0083573323086065
1225 => 0.0090138135648806
1226 => 0.0091271697429104
1227 => 0.009105863479573
1228 => 0.009231854100696
1229 => 0.0091947844638881
1230 => 0.0091410763762012
1231 => 0.0093407983096547
]
'min_raw' => 0.0034430999243473
'max_raw' => 0.0093407983096547
'avg_raw' => 0.006391949117001
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.003443'
'max' => '$0.00934'
'avg' => '$0.006391'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0011874361808363
'max_diff' => 0.0043051879028075
'year' => 2032
]
7 => [
'items' => [
101 => 0.0091118332296792
102 => 0.0087868461245559
103 => 0.0086085517711692
104 => 0.008843344158304
105 => 0.0089867236760022
106 => 0.0090814884165507
107 => 0.0091101641697822
108 => 0.0083894431759641
109 => 0.008001014533315
110 => 0.0082499928399096
111 => 0.0085537635575199
112 => 0.0083556448469324
113 => 0.0083634107252991
114 => 0.0080809455086826
115 => 0.0085787554615115
116 => 0.0085062287386251
117 => 0.0088824975052575
118 => 0.0087926979443552
119 => 0.0090995305168746
120 => 0.009018731217451
121 => 0.0093541245919305
122 => 0.0094879220894235
123 => 0.009712588911632
124 => 0.009877854740607
125 => 0.0099749019964127
126 => 0.0099690756431892
127 => 0.010353625219442
128 => 0.010126869769465
129 => 0.0098420114821368
130 => 0.0098368592944354
131 => 0.0099843914379157
201 => 0.010293578337183
202 => 0.010373746001677
203 => 0.010418548789455
204 => 0.010349931760377
205 => 0.010103804971136
206 => 0.0099975286714326
207 => 0.0100880791579
208 => 0.0099773436940422
209 => 0.010168504171545
210 => 0.010431008336831
211 => 0.010376802264754
212 => 0.010558005036681
213 => 0.010745530842538
214 => 0.011013701167224
215 => 0.011083810820415
216 => 0.011199699411109
217 => 0.011318986838352
218 => 0.011357298745096
219 => 0.011430448062558
220 => 0.011430062529547
221 => 0.011650502921233
222 => 0.011893655499733
223 => 0.011985439969122
224 => 0.012196493295456
225 => 0.0118350718703
226 => 0.012109214172991
227 => 0.012356497392246
228 => 0.01206167614396
301 => 0.012468018550181
302 => 0.012483795905023
303 => 0.012722015231397
304 => 0.012480534306816
305 => 0.012337143704634
306 => 0.012751107000357
307 => 0.012951410799436
308 => 0.012891077665027
309 => 0.012431939533161
310 => 0.012164701447054
311 => 0.011465287829336
312 => 0.012293773471943
313 => 0.0126973046612
314 => 0.012430894484867
315 => 0.012565256281655
316 => 0.013298290677969
317 => 0.013577382715623
318 => 0.013519333522792
319 => 0.013529142880809
320 => 0.013679735878449
321 => 0.014347548163061
322 => 0.013947379562354
323 => 0.014253293463563
324 => 0.01441554909371
325 => 0.014566261165594
326 => 0.014196159950085
327 => 0.013714663706574
328 => 0.013562153634416
329 => 0.012404405243201
330 => 0.012344139411592
331 => 0.012310310374068
401 => 0.012097023077693
402 => 0.011929437687049
403 => 0.011796167562363
404 => 0.011446426957358
405 => 0.011564454144804
406 => 0.011007040616962
407 => 0.011363654038553
408 => 0.010474008588898
409 => 0.011214931755328
410 => 0.010811680961483
411 => 0.011082453024154
412 => 0.011081508325936
413 => 0.010582931110197
414 => 0.010295362177199
415 => 0.010478612293655
416 => 0.010675070964909
417 => 0.010706945723353
418 => 0.010961659518729
419 => 0.011032744663964
420 => 0.010817353355255
421 => 0.01045557266438
422 => 0.010539606067531
423 => 0.010293659242966
424 => 0.0098626468931249
425 => 0.010172207487535
426 => 0.010277905084885
427 => 0.010324587165334
428 => 0.0099007360213676
429 => 0.0097675527896774
430 => 0.0096966471546411
501 => 0.010400858804188
502 => 0.010439437108018
503 => 0.010242065051201
504 => 0.011134205463602
505 => 0.01093228661189
506 => 0.011157879440572
507 => 0.010531980916991
508 => 0.010555891083476
509 => 0.010259580691945
510 => 0.010425494711735
511 => 0.010308232030206
512 => 0.01041209049853
513 => 0.010474342836219
514 => 0.010770604606132
515 => 0.011218314588848
516 => 0.010726352977166
517 => 0.010511998257936
518 => 0.01064498272017
519 => 0.010999137867585
520 => 0.011535701044788
521 => 0.011218044844544
522 => 0.01135901527206
523 => 0.011389811039135
524 => 0.011155583117346
525 => 0.011544337362364
526 => 0.011752673920503
527 => 0.011966384119977
528 => 0.012151942698156
529 => 0.011881023566719
530 => 0.012170945872089
531 => 0.011937319672137
601 => 0.011727732818947
602 => 0.01172805067569
603 => 0.011596573781109
604 => 0.011341820730703
605 => 0.011294840359595
606 => 0.011539238183065
607 => 0.011735222092928
608 => 0.011751364266444
609 => 0.011859871028961
610 => 0.01192408421331
611 => 0.012553460713521
612 => 0.012806601148381
613 => 0.013116136480426
614 => 0.013236717936712
615 => 0.01359962488929
616 => 0.013306548051222
617 => 0.013243139033766
618 => 0.012362845472771
619 => 0.012506993494069
620 => 0.012737788384382
621 => 0.012366651195505
622 => 0.012602052317843
623 => 0.012648525485869
624 => 0.012354040095845
625 => 0.012511337466619
626 => 0.012093602285262
627 => 0.011227420074263
628 => 0.011545301670776
629 => 0.011779369523598
630 => 0.011445325837263
701 => 0.012044086215742
702 => 0.011694302763558
703 => 0.011583438201782
704 => 0.011150916020225
705 => 0.011355049840614
706 => 0.011631143755606
707 => 0.011460549815504
708 => 0.011814557856024
709 => 0.012315927651897
710 => 0.012673233625524
711 => 0.012700663141493
712 => 0.012470939338092
713 => 0.01283907319912
714 => 0.012841754652397
715 => 0.012426498153287
716 => 0.012172155859739
717 => 0.012114368755505
718 => 0.012258732271712
719 => 0.012434016231363
720 => 0.01271039018134
721 => 0.012877397171061
722 => 0.013312862826591
723 => 0.013430687347199
724 => 0.013560140773185
725 => 0.013733130472259
726 => 0.013940848959646
727 => 0.013486372734663
728 => 0.013504429922331
729 => 0.013081227954278
730 => 0.012628975958112
731 => 0.012972178849195
801 => 0.013420870974918
802 => 0.013317940505517
803 => 0.01330635872503
804 => 0.01332583606729
805 => 0.013248229854756
806 => 0.012897219831686
807 => 0.012720944795538
808 => 0.012948384564726
809 => 0.01306925867987
810 => 0.013256723891127
811 => 0.013233614846929
812 => 0.013716505098834
813 => 0.013904141648882
814 => 0.013856136189959
815 => 0.013864970349716
816 => 0.014204677360887
817 => 0.014582501423384
818 => 0.014936383516188
819 => 0.015296367580579
820 => 0.014862392740539
821 => 0.014642047080614
822 => 0.014869387556713
823 => 0.014748757500046
824 => 0.015441933586855
825 => 0.015489927595143
826 => 0.016183053557432
827 => 0.016840912631548
828 => 0.016427723133865
829 => 0.016817342219716
830 => 0.017238747027174
831 => 0.018051705271227
901 => 0.017777929534846
902 => 0.017568221611391
903 => 0.017370048637027
904 => 0.017782415137604
905 => 0.018312918052881
906 => 0.018427183299738
907 => 0.01861233665233
908 => 0.018417670541555
909 => 0.018652124430215
910 => 0.019479849681446
911 => 0.019256191012031
912 => 0.018938559746535
913 => 0.019591969336804
914 => 0.019828435727457
915 => 0.021488080695469
916 => 0.023583451024098
917 => 0.022715953949102
918 => 0.022177470520697
919 => 0.02230402689937
920 => 0.023069185210623
921 => 0.023314929775287
922 => 0.022646911335299
923 => 0.022882866741579
924 => 0.024183004228801
925 => 0.024880486277292
926 => 0.023933211971105
927 => 0.02131971972978
928 => 0.018909960526357
929 => 0.019549137179976
930 => 0.019476674383416
1001 => 0.020873509917982
1002 => 0.019250856826734
1003 => 0.019278178143265
1004 => 0.020703898757411
1005 => 0.020323540940596
1006 => 0.019707409989904
1007 => 0.018914458964148
1008 => 0.017448615653945
1009 => 0.016150277356033
1010 => 0.018696617747691
1011 => 0.018586814919783
1012 => 0.018427804153105
1013 => 0.018781665407585
1014 => 0.020499915214068
1015 => 0.020460303994597
1016 => 0.020208317626142
1017 => 0.020399447065709
1018 => 0.019673904075051
1019 => 0.01986089302405
1020 => 0.018909578808187
1021 => 0.019339612564148
1022 => 0.019706088049603
1023 => 0.01977966342907
1024 => 0.019945432515862
1025 => 0.018528953818954
1026 => 0.019164911168236
1027 => 0.019538476529794
1028 => 0.017850694635852
1029 => 0.019505114508383
1030 => 0.018504296076222
1031 => 0.018164603268558
1101 => 0.018621954882953
1102 => 0.018443724514034
1103 => 0.018290492508876
1104 => 0.018204986417138
1105 => 0.018540814966694
1106 => 0.018525148163456
1107 => 0.017975667474869
1108 => 0.017258892316306
1109 => 0.017499465586863
1110 => 0.017412063062283
1111 => 0.017095305038057
1112 => 0.017308761700876
1113 => 0.016368806585767
1114 => 0.014751662664837
1115 => 0.015819997473461
1116 => 0.015778867745454
1117 => 0.015758128271508
1118 => 0.016560952353583
1119 => 0.016483779342395
1120 => 0.016343709571407
1121 => 0.017092732546869
1122 => 0.016819329085044
1123 => 0.01766189413243
1124 => 0.018216861966328
1125 => 0.018076104172323
1126 => 0.018598054102496
1127 => 0.017505007909127
1128 => 0.017868074009162
1129 => 0.017942901429192
1130 => 0.017083489719619
1201 => 0.01649640580144
1202 => 0.016457253997344
1203 => 0.015439331388368
1204 => 0.015983097429699
1205 => 0.016461589043502
1206 => 0.01623242869294
1207 => 0.016159883371922
1208 => 0.016530501683839
1209 => 0.016559301900807
1210 => 0.015902653901845
1211 => 0.016039191814167
1212 => 0.016608577606088
1213 => 0.016024844753104
1214 => 0.014890747171977
1215 => 0.014609475291731
1216 => 0.014571948438037
1217 => 0.013809116790858
1218 => 0.014628271223723
1219 => 0.014270688361803
1220 => 0.015400288338107
1221 => 0.014755066889809
1222 => 0.01472725268276
1223 => 0.01468520742935
1224 => 0.014028606718444
1225 => 0.01417236054498
1226 => 0.014650220158713
1227 => 0.014820725852367
1228 => 0.014802940711607
1229 => 0.01464787838591
1230 => 0.014718865124566
1231 => 0.014490192105935
]
'min_raw' => 0.008001014533315
'max_raw' => 0.024880486277292
'avg_raw' => 0.016440750405303
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.008001'
'max' => '$0.02488'
'avg' => '$0.01644'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0045579146089676
'max_diff' => 0.015539687967637
'year' => 2033
]
8 => [
'items' => [
101 => 0.014409442903639
102 => 0.014154576209376
103 => 0.013779992577529
104 => 0.013832080728992
105 => 0.013089932539166
106 => 0.012685570816563
107 => 0.012573648821148
108 => 0.012423982051337
109 => 0.012590554081046
110 => 0.01308783012659
111 => 0.012488009712666
112 => 0.011459659685503
113 => 0.011521465274358
114 => 0.011660324082273
115 => 0.011401561612367
116 => 0.011156664650889
117 => 0.011369582689775
118 => 0.010933857226768
119 => 0.011712979422774
120 => 0.011691906350837
121 => 0.011982314924915
122 => 0.01216391336607
123 => 0.011745387752402
124 => 0.011640129692378
125 => 0.011700089467079
126 => 0.010709087953308
127 => 0.011901328958859
128 => 0.011911639508584
129 => 0.011823354322123
130 => 0.012458185851268
131 => 0.013797878386683
201 => 0.013293832165852
202 => 0.013098650234269
203 => 0.012727609239652
204 => 0.013221999334745
205 => 0.013184037889129
206 => 0.013012361835601
207 => 0.012908531622766
208 => 0.013099841973523
209 => 0.01288482615317
210 => 0.012846203403594
211 => 0.012612191563135
212 => 0.012528659982952
213 => 0.012466816526472
214 => 0.0123987329575
215 => 0.012548908345283
216 => 0.012208591159348
217 => 0.011798201994816
218 => 0.011764082576257
219 => 0.011858289290707
220 => 0.011816609832428
221 => 0.011763883031046
222 => 0.011663213207918
223 => 0.011633346621866
224 => 0.011730398537327
225 => 0.01162083258325
226 => 0.011782503116856
227 => 0.011738537677354
228 => 0.011492950306228
301 => 0.011186857513714
302 => 0.01118413264581
303 => 0.011118185455755
304 => 0.011034191793995
305 => 0.011010826678808
306 => 0.011351651326417
307 => 0.012057148146945
308 => 0.011918642239967
309 => 0.012018726952415
310 => 0.012511044680177
311 => 0.012667537681322
312 => 0.012556462655849
313 => 0.012404416310173
314 => 0.012411105577734
315 => 0.01293069396847
316 => 0.01296310005906
317 => 0.01304497979538
318 => 0.013150218395762
319 => 0.012574385244559
320 => 0.012383983888097
321 => 0.01229376116234
322 => 0.012015910087597
323 => 0.012315548650556
324 => 0.012140962091723
325 => 0.012164519783235
326 => 0.012149177805733
327 => 0.012157555562869
328 => 0.011712761642242
329 => 0.011874821169238
330 => 0.011605365773645
331 => 0.011244595246733
401 => 0.011243385817424
402 => 0.011331683892783
403 => 0.011279160742455
404 => 0.011137822295418
405 => 0.011157898754721
406 => 0.010982007845784
407 => 0.011179255095674
408 => 0.011184911441016
409 => 0.011108960505678
410 => 0.011412847109009
411 => 0.011537349698341
412 => 0.011487357165675
413 => 0.011533842088979
414 => 0.011924397785719
415 => 0.011988075405427
416 => 0.012016356797794
417 => 0.011978463478589
418 => 0.011540980730162
419 => 0.011560384950375
420 => 0.011418009657355
421 => 0.011297717537891
422 => 0.011302528591821
423 => 0.011364374378106
424 => 0.011634458554021
425 => 0.012202834779903
426 => 0.012224404242197
427 => 0.012250547059724
428 => 0.012144211082516
429 => 0.012112139134291
430 => 0.012154450312471
501 => 0.01236790253911
502 => 0.01291695961774
503 => 0.012722886175863
504 => 0.012565101446684
505 => 0.012703521192631
506 => 0.012682212557713
507 => 0.012502346234746
508 => 0.012497297986123
509 => 0.012152077005608
510 => 0.012024456669413
511 => 0.011917807564272
512 => 0.011801349525603
513 => 0.011732309296571
514 => 0.011838386466587
515 => 0.011862647570437
516 => 0.011630707984286
517 => 0.01159909547574
518 => 0.011788502348555
519 => 0.011705151445629
520 => 0.011790879916291
521 => 0.01181076965685
522 => 0.01180756695052
523 => 0.011720539035076
524 => 0.01177600803317
525 => 0.011644807316572
526 => 0.011502146242982
527 => 0.011411137366131
528 => 0.011331720050502
529 => 0.011375785392975
530 => 0.011218700493075
531 => 0.011168445872102
601 => 0.011757216384708
602 => 0.012192147492719
603 => 0.012185823422157
604 => 0.012147327269029
605 => 0.01209012979414
606 => 0.012363718187561
607 => 0.012268405461866
608 => 0.012337753433454
609 => 0.012355405402748
610 => 0.012408832597369
611 => 0.012427928227224
612 => 0.012370207971036
613 => 0.012176491741334
614 => 0.011693769314904
615 => 0.011469060722316
616 => 0.011394903143944
617 => 0.011397598631073
618 => 0.011323245062884
619 => 0.011345145521009
620 => 0.0113156289773
621 => 0.011259731784334
622 => 0.011372333898823
623 => 0.011385310243557
624 => 0.01135902756454
625 => 0.011365218086895
626 => 0.011147608730115
627 => 0.011164153096888
628 => 0.011072031960338
629 => 0.011054760357772
630 => 0.010821886146477
701 => 0.010409315725513
702 => 0.010637919787907
703 => 0.010361798227131
704 => 0.01025722680814
705 => 0.010752251641449
706 => 0.010702564878036
707 => 0.010617522737391
708 => 0.010491727687041
709 => 0.010445069079211
710 => 0.010161586148354
711 => 0.010144836464476
712 => 0.010285338259692
713 => 0.010220501515572
714 => 0.010129446171231
715 => 0.0097996529441634
716 => 0.0094288561661539
717 => 0.0094400481901366
718 => 0.0095579917463021
719 => 0.0099009285427088
720 => 0.0097669372034859
721 => 0.0096697249495062
722 => 0.0096515200165254
723 => 0.0098793928673886
724 => 0.010201880692198
725 => 0.01035318476434
726 => 0.01020324702402
727 => 0.010031006621162
728 => 0.010041490096399
729 => 0.01011123196047
730 => 0.010118560844287
731 => 0.010006450048625
801 => 0.010038008580911
802 => 0.0099900682845963
803 => 0.0096958587746023
804 => 0.0096905374575149
805 => 0.0096183336989932
806 => 0.0096161473978807
807 => 0.0094933107925635
808 => 0.0094761251023503
809 => 0.0092322255668441
810 => 0.0093927609797101
811 => 0.009285082253247
812 => 0.0091227850136234
813 => 0.0090948049083388
814 => 0.0090939637925869
815 => 0.0092606067686817
816 => 0.0093908136595101
817 => 0.0092869553707951
818 => 0.009263308851663
819 => 0.0095157918116548
820 => 0.0094836610535626
821 => 0.0094558360242758
822 => 0.010173005444564
823 => 0.0096053098869781
824 => 0.0093577622209412
825 => 0.0090513749761937
826 => 0.0091511362080221
827 => 0.0091721573653658
828 => 0.0084353512721999
829 => 0.0081364291319659
830 => 0.0080338503180808
831 => 0.0079748147604384
901 => 0.0080017180053779
902 => 0.0077326530190972
903 => 0.007913469139802
904 => 0.0076804816051801
905 => 0.0076414204867937
906 => 0.0080580310603147
907 => 0.0081159999878165
908 => 0.0078686865335598
909 => 0.0080275018076039
910 => 0.0079699131815381
911 => 0.0076844755077464
912 => 0.0076735738881449
913 => 0.0075303512970556
914 => 0.0073062356753593
915 => 0.0072038088224191
916 => 0.0071504640280972
917 => 0.0071724751299037
918 => 0.0071613456432795
919 => 0.0070887182147816
920 => 0.0071655085624664
921 => 0.0069693409560942
922 => 0.006891225434607
923 => 0.0068559424658176
924 => 0.0066818324241761
925 => 0.0069589189275146
926 => 0.0070135084593161
927 => 0.0070682055493588
928 => 0.007544306374891
929 => 0.0075205217230944
930 => 0.0077355233917406
1001 => 0.0077271688222597
1002 => 0.0076658468635657
1003 => 0.0074071396068082
1004 => 0.0075102557083383
1005 => 0.0071928803756288
1006 => 0.0074306795543196
1007 => 0.0073221579398963
1008 => 0.0073939882873202
1009 => 0.0072648308459707
1010 => 0.0073363119067935
1011 => 0.0070264536624443
1012 => 0.0067371123936942
1013 => 0.0068535517666375
1014 => 0.0069801346814842
1015 => 0.0072545986935989
1016 => 0.0070911301922623
1017 => 0.0071499196467714
1018 => 0.006952984815402
1019 => 0.0065466520066334
1020 => 0.0065489518062034
1021 => 0.0064864463560158
1022 => 0.0064324325211086
1023 => 0.0071099065160697
1024 => 0.0070256519155173
1025 => 0.0068914032365066
1026 => 0.0070711004281929
1027 => 0.0071186152178526
1028 => 0.0071199678971163
1029 => 0.0072510703295148
1030 => 0.0073210397211873
1031 => 0.0073333721297343
1101 => 0.0075396646397689
1102 => 0.0076088111680684
1103 => 0.0078936159321515
1104 => 0.0073151033071529
1105 => 0.0073031892203418
1106 => 0.0070736291361928
1107 => 0.0069280385016242
1108 => 0.0070835978515
1109 => 0.007221402199521
1110 => 0.007077911101414
1111 => 0.0070966480095644
1112 => 0.0069040229340091
1113 => 0.0069728773346679
1114 => 0.0070321840202046
1115 => 0.0069994383543371
1116 => 0.0069504165076252
1117 => 0.0072101038144834
1118 => 0.0071954512389077
1119 => 0.0074372780292394
1120 => 0.0076257993055026
1121 => 0.0079636631347755
1122 => 0.0076110846156895
1123 => 0.0075982352530813
1124 => 0.0077238398336789
1125 => 0.0076087919386616
1126 => 0.0076814982369942
1127 => 0.0079519490260791
1128 => 0.0079576632250817
1129 => 0.0078619430294587
1130 => 0.007856118446856
1201 => 0.0078745025574896
1202 => 0.0079821788676878
1203 => 0.0079445534563457
1204 => 0.0079880945349097
1205 => 0.0080425433203785
1206 => 0.0082677665828842
1207 => 0.0083220671489846
1208 => 0.0081901449249763
1209 => 0.0082020560247337
1210 => 0.0081527134916086
1211 => 0.0081050492228699
1212 => 0.0082121915381871
1213 => 0.0084079962253169
1214 => 0.0084067781345205
1215 => 0.0084522010160354
1216 => 0.0084804990949157
1217 => 0.0083590230249017
1218 => 0.0082799465701214
1219 => 0.0083102695146497
1220 => 0.0083587565632983
1221 => 0.0082945458182651
1222 => 0.0078982073546098
1223 => 0.0080184311262838
1224 => 0.0079984200120351
1225 => 0.0079699217519105
1226 => 0.0080908076839915
1227 => 0.0080791479409391
1228 => 0.0077298933687628
1229 => 0.0077522515133198
1230 => 0.0077312530415858
1231 => 0.0077991033996416
]
'min_raw' => 0.0064324325211086
'max_raw' => 0.014409442903639
'avg_raw' => 0.010420937712374
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.006432'
'max' => '$0.0144094'
'avg' => '$0.01042'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0015685820122064
'max_diff' => -0.010471043373652
'year' => 2034
]
9 => [
'items' => [
101 => 0.0076051277966607
102 => 0.007664793385692
103 => 0.0077022150838023
104 => 0.0077242567514762
105 => 0.0078038863692277
106 => 0.0077945427526661
107 => 0.0078033055569032
108 => 0.0079213752585889
109 => 0.0085185312930863
110 => 0.0085510331784935
111 => 0.0083909820077425
112 => 0.0084549192935878
113 => 0.0083321736863122
114 => 0.0084145736348004
115 => 0.0084709495868242
116 => 0.0082161975001005
117 => 0.0082011127348521
118 => 0.0080778605127923
119 => 0.0081440892755645
120 => 0.0080387145519773
121 => 0.0080645698232942
122 => 0.00799227623067
123 => 0.0081223903038829
124 => 0.0082678780554179
125 => 0.008304634006941
126 => 0.0082079449229157
127 => 0.0081379356539602
128 => 0.0080150224401613
129 => 0.0082194298540086
130 => 0.0082792048110206
131 => 0.0082191158816063
201 => 0.008205191963692
202 => 0.0081788061644044
203 => 0.0082107898357446
204 => 0.0082788792637673
205 => 0.0082467695469261
206 => 0.0082679785806002
207 => 0.0081871516148954
208 => 0.0083590632385354
209 => 0.0086321002696612
210 => 0.0086329781283623
211 => 0.0086008682384377
212 => 0.0085877295632978
213 => 0.0086206762589515
214 => 0.0086385484897994
215 => 0.0087450920621525
216 => 0.0088594175601706
217 => 0.0093929247752984
218 => 0.0092431180841541
219 => 0.0097164774239017
220 => 0.010090843203625
221 => 0.010203099131932
222 => 0.010099828959939
223 => 0.0097465472800951
224 => 0.0097292135954627
225 => 0.010257165576827
226 => 0.010107994960359
227 => 0.010090251590187
228 => 0.009901492109455
301 => 0.010013072340884
302 => 0.0099886681074874
303 => 0.0099501448311746
304 => 0.010163032139995
305 => 0.010561538177526
306 => 0.010499427274411
307 => 0.010453064366477
308 => 0.010249915599952
309 => 0.01037225653232
310 => 0.01032869326959
311 => 0.010515868692208
312 => 0.010404990118292
313 => 0.010106864846226
314 => 0.010154342278436
315 => 0.010147166160069
316 => 0.010294850167562
317 => 0.010250519094255
318 => 0.010138509806518
319 => 0.010560176127213
320 => 0.010532795461778
321 => 0.010571614985273
322 => 0.010588704540049
323 => 0.010845365398863
324 => 0.010950511140487
325 => 0.010974381064671
326 => 0.011074261386951
327 => 0.010971895951264
328 => 0.01138143067933
329 => 0.01165374737648
330 => 0.01197005723351
331 => 0.012432270950703
401 => 0.012606067584084
402 => 0.012574672777857
403 => 0.012925117943062
404 => 0.013554860114975
405 => 0.012701961675819
406 => 0.01360006580325
407 => 0.013315736405616
408 => 0.012641596518694
409 => 0.012598189857563
410 => 0.013054725215912
411 => 0.01406727670083
412 => 0.013813644038122
413 => 0.014067691553004
414 => 0.013771331632365
415 => 0.013756614864388
416 => 0.014053298013147
417 => 0.014746514361578
418 => 0.014417193259264
419 => 0.013945030706251
420 => 0.014293668187733
421 => 0.013991646136398
422 => 0.013311105924089
423 => 0.013813450090004
424 => 0.013477546852195
425 => 0.013575581274586
426 => 0.014281599918626
427 => 0.014196649887481
428 => 0.014306583093943
429 => 0.014112553861991
430 => 0.013931299963745
501 => 0.01359297610258
502 => 0.013492815086453
503 => 0.013520495987895
504 => 0.013492801369173
505 => 0.013303512278208
506 => 0.013262635317036
507 => 0.013194505257556
508 => 0.013215621611825
509 => 0.013087517167851
510 => 0.013329276721359
511 => 0.013374149424869
512 => 0.013550081866838
513 => 0.013568347756597
514 => 0.014058317103242
515 => 0.01378845022071
516 => 0.013969500224698
517 => 0.013953305408233
518 => 0.012656207174214
519 => 0.012834935866467
520 => 0.01311298162346
521 => 0.012987722386817
522 => 0.012810635132351
523 => 0.012667627679552
524 => 0.012450956765298
525 => 0.012755916916314
526 => 0.013156907086002
527 => 0.013578517529035
528 => 0.014085054851328
529 => 0.013972001617737
530 => 0.013569048166135
531 => 0.013587124363616
601 => 0.013698864303723
602 => 0.01355415092864
603 => 0.013511472129188
604 => 0.013693000892056
605 => 0.013694250980879
606 => 0.013527740753651
607 => 0.013342695107136
608 => 0.013341919759121
609 => 0.013308992673653
610 => 0.013777189287722
611 => 0.014034650085444
612 => 0.014064167550984
613 => 0.01403266332483
614 => 0.014044788051119
615 => 0.013894977285686
616 => 0.014237400270462
617 => 0.014551641463416
618 => 0.014467418110921
619 => 0.014341155332475
620 => 0.014240580947803
621 => 0.014443725982192
622 => 0.014434680253591
623 => 0.014548896840734
624 => 0.014543715316594
625 => 0.014505308574241
626 => 0.014467419482547
627 => 0.014617645448326
628 => 0.014574382782737
629 => 0.014531052918279
630 => 0.014444148241636
701 => 0.014455960030526
702 => 0.014329719053129
703 => 0.014271314200591
704 => 0.013393045351256
705 => 0.013158343216451
706 => 0.013232185285863
707 => 0.013256496012422
708 => 0.013154353342576
709 => 0.013300799692836
710 => 0.013277976184273
711 => 0.013366769104786
712 => 0.01331129514299
713 => 0.013313571813732
714 => 0.013476708907078
715 => 0.013524068299311
716 => 0.013499980930184
717 => 0.013516850897854
718 => 0.013905612182436
719 => 0.013850342759655
720 => 0.013820981980363
721 => 0.013829115116882
722 => 0.013928451960228
723 => 0.013956260852775
724 => 0.013838432620959
725 => 0.01389400109624
726 => 0.014130604611298
727 => 0.01421340245097
728 => 0.014477653409982
729 => 0.014365394905907
730 => 0.014571450248571
731 => 0.015204794122476
801 => 0.015710753033014
802 => 0.015245452309247
803 => 0.016174581414971
804 => 0.016898041699432
805 => 0.016870274088728
806 => 0.016744122054194
807 => 0.015920481754523
808 => 0.01516255567098
809 => 0.015796593023105
810 => 0.015798209314707
811 => 0.015743744943859
812 => 0.015405471414157
813 => 0.015731973758276
814 => 0.01575789032867
815 => 0.015743383941022
816 => 0.015484030418923
817 => 0.015088045527221
818 => 0.015165420027206
819 => 0.015292161036577
820 => 0.015052213864892
821 => 0.014975536204627
822 => 0.015118094563582
823 => 0.015577447299348
824 => 0.015490609325501
825 => 0.015488341635064
826 => 0.015859871312215
827 => 0.015593936244497
828 => 0.015166395967438
829 => 0.015058436408917
830 => 0.01467525270644
831 => 0.014939919054594
901 => 0.014949443925288
902 => 0.014804488871229
903 => 0.015178158271182
904 => 0.015174714841878
905 => 0.015529458323783
906 => 0.016207594625619
907 => 0.016007036352105
908 => 0.015773808900687
909 => 0.015799167191352
910 => 0.016077285050352
911 => 0.015909128643987
912 => 0.015969598860144
913 => 0.016077193521437
914 => 0.01614210805202
915 => 0.015789826989379
916 => 0.015707693422126
917 => 0.015539676968492
918 => 0.015495844611914
919 => 0.015632690507621
920 => 0.015596636448939
921 => 0.014948643396788
922 => 0.014880924517439
923 => 0.014883001358789
924 => 0.014712719016808
925 => 0.014452997572843
926 => 0.015135530020422
927 => 0.015080713112846
928 => 0.015020199489373
929 => 0.015027612062963
930 => 0.015323876265285
1001 => 0.015152028066237
1002 => 0.015608914668773
1003 => 0.01551499251856
1004 => 0.015418661619595
1005 => 0.015405345755047
1006 => 0.015368266577511
1007 => 0.015241108281188
1008 => 0.015087556997349
1009 => 0.014986169139373
1010 => 0.013823948865168
1011 => 0.014039650187737
1012 => 0.014287794897557
1013 => 0.014373453457009
1014 => 0.014226928563674
1015 => 0.015246893977057
1016 => 0.015433251486713
1017 => 0.014868762434164
1018 => 0.014763169580369
1019 => 0.015253816626972
1020 => 0.014957896478708
1021 => 0.015091149303352
1022 => 0.01480312958187
1023 => 0.015388363419822
1024 => 0.015383904918511
1025 => 0.015156235737442
1026 => 0.01534866017027
1027 => 0.015315221689734
1028 => 0.015058183745032
1029 => 0.015396511981139
1030 => 0.015396679787723
1031 => 0.015177553150899
1101 => 0.014921661212078
1102 => 0.014875913777314
1103 => 0.014841449230523
1104 => 0.015082673137557
1105 => 0.015298953738315
1106 => 0.015701398315818
1107 => 0.01580258244445
1108 => 0.016197510834708
1109 => 0.015962350207024
1110 => 0.016066593867437
1111 => 0.01617976510698
1112 => 0.016234023560952
1113 => 0.016145612321874
1114 => 0.016759098670956
1115 => 0.016810895715555
1116 => 0.016828262816566
1117 => 0.016621398671398
1118 => 0.016805142449463
1119 => 0.016719174820661
1120 => 0.01694283870831
1121 => 0.016977912061777
1122 => 0.016948206179161
1123 => 0.016959339015147
1124 => 0.016435836642613
1125 => 0.016408690282902
1126 => 0.016038547742027
1127 => 0.016189383563389
1128 => 0.015907403225102
1129 => 0.015996822095092
1130 => 0.016036237080969
1201 => 0.016015648929128
1202 => 0.016197911594417
1203 => 0.016042951095119
1204 => 0.015633984859606
1205 => 0.015224907201516
1206 => 0.015219771564746
1207 => 0.015112068638191
1208 => 0.015034219149067
1209 => 0.015049215722531
1210 => 0.015102065603453
1211 => 0.015031147417912
1212 => 0.01504628140844
1213 => 0.015297606488465
1214 => 0.015348007940896
1215 => 0.015176724112418
1216 => 0.014488994824942
1217 => 0.014320224332757
1218 => 0.014441533215675
1219 => 0.014383555382933
1220 => 0.011608651784497
1221 => 0.012260574224223
1222 => 0.011873224047732
1223 => 0.012051732830184
1224 => 0.011656348603829
1225 => 0.011845046680508
1226 => 0.011810201035896
1227 => 0.012858473027187
1228 => 0.012842105701894
1229 => 0.012849939874372
1230 => 0.01247599441016
1231 => 0.013071699688376
]
'min_raw' => 0.0076051277966607
'max_raw' => 0.016977912061777
'avg_raw' => 0.012291519929219
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0076051'
'max' => '$0.016977'
'avg' => '$0.012291'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0011726952755521
'max_diff' => 0.0025684691581373
'year' => 2035
]
10 => [
'items' => [
101 => 0.013365165529294
102 => 0.01331085281248
103 => 0.013324522153181
104 => 0.013089637591255
105 => 0.012852214070364
106 => 0.012588874846477
107 => 0.013078126574747
108 => 0.013023730134369
109 => 0.013148495997374
110 => 0.013465810715593
111 => 0.013512536513212
112 => 0.013575336459058
113 => 0.013552827148877
114 => 0.01408909023831
115 => 0.014024145239802
116 => 0.014180644000255
117 => 0.013858714176413
118 => 0.013494420022877
119 => 0.013563660431791
120 => 0.013556992023616
121 => 0.01347209553391
122 => 0.013395454778982
123 => 0.013267869515426
124 => 0.013671568168384
125 => 0.013655178740314
126 => 0.013920504530138
127 => 0.013873605619549
128 => 0.013560403216529
129 => 0.013571589301625
130 => 0.013646821099749
131 => 0.013907199212035
201 => 0.013984497163656
202 => 0.013948689672674
203 => 0.014033443347841
204 => 0.014100429197006
205 => 0.014041855739164
206 => 0.014871132381726
207 => 0.014526758902768
208 => 0.014694604140277
209 => 0.014734634240421
210 => 0.014632097980644
211 => 0.014654334423841
212 => 0.014688016576218
213 => 0.014892528009804
214 => 0.015429225187394
215 => 0.015666924713928
216 => 0.016382055467392
217 => 0.015647187077186
218 => 0.015603583028099
219 => 0.015732399671678
220 => 0.016152257128239
221 => 0.016492512161577
222 => 0.016605394385919
223 => 0.016620313635348
224 => 0.016832088192481
225 => 0.016953473419269
226 => 0.016806373191022
227 => 0.016681721149618
228 => 0.016235233009691
229 => 0.016286915227635
301 => 0.016642954458475
302 => 0.017145880842643
303 => 0.017577444000831
304 => 0.017426325624328
305 => 0.018579252164097
306 => 0.018693560121233
307 => 0.018677766457575
308 => 0.018938176995235
309 => 0.018421315109664
310 => 0.018200346639856
311 => 0.01670867233583
312 => 0.017127771970657
313 => 0.017736957902737
314 => 0.017656329860296
315 => 0.017213922752833
316 => 0.017577108395368
317 => 0.017457027864081
318 => 0.017362315366909
319 => 0.017796211677375
320 => 0.01731912486054
321 => 0.017732198596786
322 => 0.017202427257349
323 => 0.017427015920343
324 => 0.017299528533096
325 => 0.017382028496911
326 => 0.0168997353942
327 => 0.01715996904542
328 => 0.016888908818741
329 => 0.0168887803009
330 => 0.016882796631373
331 => 0.017201697785996
401 => 0.017212097141199
402 => 0.0169764287061
403 => 0.016942465202769
404 => 0.017068046075575
405 => 0.016921023763202
406 => 0.016989814577814
407 => 0.016923107366898
408 => 0.016908090168652
409 => 0.016788430578063
410 => 0.016736877936328
411 => 0.0167570930555
412 => 0.016688088432157
413 => 0.016646510650587
414 => 0.016874525764121
415 => 0.016752706487063
416 => 0.016855855212777
417 => 0.016738304221419
418 => 0.016330821270841
419 => 0.01609647351691
420 => 0.015326775996959
421 => 0.01554506125881
422 => 0.01568978461325
423 => 0.015641953545471
424 => 0.015744713187227
425 => 0.015751021794651
426 => 0.015717613587606
427 => 0.015678931163704
428 => 0.015660102699021
429 => 0.015800434648898
430 => 0.015881902069158
501 => 0.015704309538017
502 => 0.015662702092754
503 => 0.01584225794689
504 => 0.015951786914187
505 => 0.016760487269699
506 => 0.016700576135295
507 => 0.016850941325682
508 => 0.016834012512787
509 => 0.016991619187366
510 => 0.017249239490754
511 => 0.016725425382197
512 => 0.016816341399314
513 => 0.016794050891474
514 => 0.017037412811181
515 => 0.01703817256053
516 => 0.016892264932837
517 => 0.01697136382489
518 => 0.01692721299331
519 => 0.017006999513318
520 => 0.016699775985569
521 => 0.017073941079637
522 => 0.017286068577307
523 => 0.017289013967818
524 => 0.017389560718166
525 => 0.017491722039794
526 => 0.017687811800284
527 => 0.017486253202802
528 => 0.017123668907266
529 => 0.017149846322263
530 => 0.016937263282455
531 => 0.01694083684176
601 => 0.016921760902123
602 => 0.016979009232944
603 => 0.016712338774831
604 => 0.016774925798337
605 => 0.01668730359892
606 => 0.016816150925764
607 => 0.016677532501305
608 => 0.016794040142316
609 => 0.016844320977887
610 => 0.017029858343613
611 => 0.016650128481532
612 => 0.015875833587297
613 => 0.016038599761484
614 => 0.015797855804855
615 => 0.015820137574618
616 => 0.015865150295656
617 => 0.015719249339525
618 => 0.015747082644088
619 => 0.015746088242589
620 => 0.01573751902769
621 => 0.015699564554038
622 => 0.015644523058179
623 => 0.015863791436803
624 => 0.015901049407056
625 => 0.015983869259642
626 => 0.016230284963696
627 => 0.016205662223979
628 => 0.016245822934045
629 => 0.016158152329462
630 => 0.015824204362519
701 => 0.015842339343796
702 => 0.015616195836677
703 => 0.015978086261725
704 => 0.015892385832353
705 => 0.015837134208023
706 => 0.015822058290422
707 => 0.016069084811344
708 => 0.016142999018071
709 => 0.016096940644637
710 => 0.016002473576986
711 => 0.016183878273557
712 => 0.016232414517509
713 => 0.016243279992582
714 => 0.016564694334004
715 => 0.0162612434838
716 => 0.016334287119486
717 => 0.016904152713884
718 => 0.016387363255842
719 => 0.016661118157547
720 => 0.01664771927966
721 => 0.016787763024012
722 => 0.016636231605053
723 => 0.0166381100186
724 => 0.016762459376199
725 => 0.016587833129976
726 => 0.016544593215636
727 => 0.016484857583666
728 => 0.016615288150688
729 => 0.01669347537675
730 => 0.017323606996622
731 => 0.017730700760552
801 => 0.017713027746626
802 => 0.017874526011411
803 => 0.017801769563971
804 => 0.017566819803006
805 => 0.017967850395902
806 => 0.017840947536477
807 => 0.017851409254021
808 => 0.017851019868372
809 => 0.017935399175849
810 => 0.017875608703251
811 => 0.017757755544396
812 => 0.017835991971221
813 => 0.018068326188856
814 => 0.018789498729283
815 => 0.019193076437171
816 => 0.018765202844521
817 => 0.019060344319275
818 => 0.018883364604083
819 => 0.018851202125142
820 => 0.019036572782071
821 => 0.019222267905796
822 => 0.019210439929197
823 => 0.019075634804923
824 => 0.018999486810774
825 => 0.019576104933921
826 => 0.020000947344622
827 => 0.019971975940392
828 => 0.020099846296659
829 => 0.020475277617539
830 => 0.020509602352462
831 => 0.020505278224806
901 => 0.020420200787885
902 => 0.020789861679209
903 => 0.021098239298316
904 => 0.020400507819361
905 => 0.020666194832571
906 => 0.020785470292702
907 => 0.020960602055609
908 => 0.021256078695124
909 => 0.021577044696945
910 => 0.021622432808816
911 => 0.021590227771423
912 => 0.021378542065192
913 => 0.021729746894306
914 => 0.021935474446434
915 => 0.022057980495735
916 => 0.0223686354537
917 => 0.020786206897338
918 => 0.019666085313342
919 => 0.019491162153249
920 => 0.019846875277811
921 => 0.019940673991999
922 => 0.019902863847924
923 => 0.018642065168138
924 => 0.019484524309129
925 => 0.020390939508858
926 => 0.020425758608172
927 => 0.020879529009405
928 => 0.021027295252723
929 => 0.021392639902762
930 => 0.021369787495429
1001 => 0.02145874310381
1002 => 0.02143829374994
1003 => 0.022115017781744
1004 => 0.022861544883314
1005 => 0.022835695023598
1006 => 0.022728372920239
1007 => 0.022887764544865
1008 => 0.023658260516392
1009 => 0.02358732559428
1010 => 0.023656232828889
1011 => 0.024564691002569
1012 => 0.025745815855022
1013 => 0.025197064778062
1014 => 0.026387696716198
1015 => 0.027137136408567
1016 => 0.02843321486301
1017 => 0.028270939457192
1018 => 0.028775493288444
1019 => 0.02798043261288
1020 => 0.026154812593514
1021 => 0.025865901237256
1022 => 0.026444309088885
1023 => 0.0278662683519
1024 => 0.026399526531369
1025 => 0.026696246491374
1026 => 0.026610791122931
1027 => 0.026606237569508
1028 => 0.026780028183001
1029 => 0.026527935833821
1030 => 0.025500866252718
1031 => 0.025971566189179
1101 => 0.025789806338844
1102 => 0.025991482443885
1103 => 0.027079845205239
1104 => 0.026598654085117
1105 => 0.02609175832886
1106 => 0.026727518096379
1107 => 0.027537058751189
1108 => 0.027486399151895
1109 => 0.027388098355196
1110 => 0.027942214799328
1111 => 0.028857452824149
1112 => 0.029104837984534
1113 => 0.029287452652363
1114 => 0.029312632129757
1115 => 0.029571996395868
1116 => 0.028177329368775
1117 => 0.030390701758361
1118 => 0.030772890026865
1119 => 0.030701054472467
1120 => 0.031125840647967
1121 => 0.03100085777935
1122 => 0.030819777211934
1123 => 0.031493153654713
1124 => 0.030721181901744
1125 => 0.029625465186946
1126 => 0.029024333326388
1127 => 0.029815952252295
1128 => 0.030299366306652
1129 => 0.030618872245674
1130 => 0.030715554549771
1201 => 0.028285593399981
1202 => 0.026975979112067
1203 => 0.027815426855862
1204 => 0.028839611038879
1205 => 0.028171639973926
1206 => 0.028197823175036
1207 => 0.027245471976122
1208 => 0.028923872988066
1209 => 0.0286793440782
1210 => 0.029947960495148
1211 => 0.02964519500596
1212 => 0.030679702446576
1213 => 0.030407281967342
1214 => 0.031538084145817
1215 => 0.031989191750058
1216 => 0.03274667162687
1217 => 0.033303876907751
1218 => 0.033631078506323
1219 => 0.033611434549647
1220 => 0.034907970294378
1221 => 0.034143448463219
1222 => 0.033183028859323
1223 => 0.033165657898773
1224 => 0.033663072820882
1225 => 0.034705518038503
1226 => 0.034975808916471
1227 => 0.035126864643496
1228 => 0.03489551753927
1229 => 0.03406568388532
1230 => 0.033707365920897
1231 => 0.034012663208056
]
'min_raw' => 0.012588874846477
'max_raw' => 0.035126864643496
'avg_raw' => 0.023857869744987
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.012588'
'max' => '$0.035126'
'avg' => '$0.023857'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0049837470498167
'max_diff' => 0.018148952581719
'year' => 2036
]
11 => [
'items' => [
101 => 0.033639310860355
102 => 0.034283821756654
103 => 0.035168872877372
104 => 0.034986113320815
105 => 0.035597051117541
106 => 0.036229307464621
107 => 0.037133462437355
108 => 0.03736984202799
109 => 0.037760568502597
110 => 0.03816275439193
111 => 0.038291925660369
112 => 0.038538553691312
113 => 0.03853725383985
114 => 0.039280484011076
115 => 0.04010028990586
116 => 0.040409747652591
117 => 0.0411213286776
118 => 0.039902771109046
119 => 0.040827061022574
120 => 0.041660793661054
121 => 0.040666783238697
122 => 0.042036795031192
123 => 0.042089989484581
124 => 0.042893162575393
125 => 0.042078992778509
126 => 0.041595541352042
127 => 0.042991247505565
128 => 0.043666585748923
129 => 0.043463168373939
130 => 0.041915152106353
131 => 0.041014140241077
201 => 0.038656018397441
202 => 0.041449315584511
203 => 0.042809849162736
204 => 0.041911628653066
205 => 0.042364638831777
206 => 0.044836115477779
207 => 0.045777093768314
208 => 0.045581376861818
209 => 0.045614449797241
210 => 0.04612218460285
211 => 0.048373760345583
212 => 0.04702456396942
213 => 0.048055974045573
214 => 0.048603030230939
215 => 0.049111166503679
216 => 0.047863344415948
217 => 0.046239946213956
218 => 0.045725747857764
219 => 0.041822318325371
220 => 0.041619127866475
221 => 0.041505070904595
222 => 0.040785957893622
223 => 0.040220932048629
224 => 0.039771602518625
225 => 0.038592427650741
226 => 0.03899036455361
227 => 0.037111005927124
228 => 0.03831335297597
301 => 0.035313851229396
302 => 0.037811925414618
303 => 0.036452337209098
304 => 0.037365264123097
305 => 0.037362079007097
306 => 0.035681091114682
307 => 0.03471153237966
308 => 0.035329372941407
309 => 0.035991747067844
310 => 0.036099215041365
311 => 0.036958000386024
312 => 0.03719766891619
313 => 0.036471462080735
314 => 0.035251693222728
315 => 0.035535017708478
316 => 0.034705790817999
317 => 0.033252602588187
318 => 0.034296307745071
319 => 0.034652674574107
320 => 0.03481006646758
321 => 0.033381022743356
322 => 0.032931986179156
323 => 0.032692922880158
324 => 0.035067221623093
325 => 0.035197291067908
326 => 0.034531837398271
327 => 0.037539751085935
328 => 0.036858967579864
329 => 0.037619569552154
330 => 0.035509308981063
331 => 0.035589923776721
401 => 0.034590892603941
402 => 0.03515028330541
403 => 0.034754923987615
404 => 0.035105090064738
405 => 0.035314978167577
406 => 0.036313845409172
407 => 0.037823330874015
408 => 0.036164647952565
409 => 0.035441936050912
410 => 0.035890302450012
411 => 0.037084361255846
412 => 0.038893421469431
413 => 0.037822421412259
414 => 0.038297713050872
415 => 0.038401543129655
416 => 0.037611827338074
417 => 0.038922539417106
418 => 0.039624960668465
419 => 0.040345499526761
420 => 0.04097112322838
421 => 0.040057700461769
422 => 0.041035193756053
423 => 0.040247506711654
424 => 0.039540870003239
425 => 0.039541941679438
426 => 0.039098658149934
427 => 0.038239740454201
428 => 0.038081342852946
429 => 0.038905347178086
430 => 0.039566120613348
501 => 0.039620545078368
502 => 0.039986383203894
503 => 0.040202882438148
504 => 0.042324869250274
505 => 0.043178349900107
506 => 0.044221969883161
507 => 0.044628518681759
508 => 0.045852084809731
509 => 0.044863955788212
510 => 0.044650167858783
511 => 0.041682196657755
512 => 0.042168201775654
513 => 0.04294634286193
514 => 0.04169502791766
515 => 0.042488699236802
516 => 0.042645386767458
517 => 0.041652508714675
518 => 0.042182847782395
519 => 0.040774424453107
520 => 0.037854030653816
521 => 0.038925790650243
522 => 0.039714966758127
523 => 0.038588715147464
524 => 0.040607477567621
525 => 0.03942815823748
526 => 0.039054370627137
527 => 0.037596091894283
528 => 0.038284343321894
529 => 0.039215213232549
530 => 0.038640043853007
531 => 0.039833606677674
601 => 0.041524009948982
602 => 0.042728691985371
603 => 0.042821172513528
604 => 0.042046642671558
605 => 0.043287831686299
606 => 0.043296872393234
607 => 0.041896806114201
608 => 0.041039273313895
609 => 0.040844440057401
610 => 0.041331171731433
611 => 0.041922153839332
612 => 0.04285396790749
613 => 0.043417043633392
614 => 0.044885246494254
615 => 0.045282500091728
616 => 0.045718961355587
617 => 0.046302208203772
618 => 0.04700254558644
619 => 0.045470247263392
620 => 0.045531128332328
621 => 0.044104273350019
622 => 0.04257947416972
623 => 0.043736606678666
624 => 0.045249403507226
625 => 0.044902366243263
626 => 0.044863317461739
627 => 0.044928986681033
628 => 0.044667331917182
629 => 0.043483877117661
630 => 0.042889553526161
701 => 0.043656382587315
702 => 0.044063918105684
703 => 0.044695970153841
704 => 0.044618056397905
705 => 0.046246154596525
706 => 0.046878784325374
707 => 0.046716930568982
708 => 0.046746715555386
709 => 0.047892061461134
710 => 0.049165921666676
711 => 0.050359059849825
712 => 0.051572771256202
713 => 0.050109594783852
714 => 0.049366684007372
715 => 0.050133178294946
716 => 0.049726465636771
717 => 0.052063557209458
718 => 0.052225372359235
719 => 0.0545622949336
720 => 0.056780312732235
721 => 0.055387215492829
722 => 0.056700843443111
723 => 0.058121639173001
724 => 0.060862584651756
725 => 0.059939530642136
726 => 0.059232485736867
727 => 0.058564331717804
728 => 0.059954654165011
729 => 0.061743281782398
730 => 0.062128535039921
731 => 0.062752792495179
801 => 0.062096462111545
802 => 0.062886939766212
803 => 0.06567767324067
804 => 0.064923592421386
805 => 0.063852676433461
806 => 0.066055692486653
807 => 0.066852955432295
808 => 0.072448564314659
809 => 0.079513251671716
810 => 0.076588424716656
811 => 0.074772890242074
812 => 0.075199583908654
813 => 0.077779368576692
814 => 0.078607913533794
815 => 0.076355642723818
816 => 0.07715118284997
817 => 0.081534687160841
818 => 0.083886296583968
819 => 0.08069249512408
820 => 0.071880923564252
821 => 0.063756252165894
822 => 0.06591128087946
823 => 0.065666967501668
824 => 0.070376496030401
825 => 0.064905607843237
826 => 0.064997723569434
827 => 0.069804640160663
828 => 0.068522237225536
829 => 0.066444908708389
830 => 0.063771418962979
831 => 0.058829225900717
901 => 0.054451787682222
902 => 0.063036952092505
903 => 0.062666744192025
904 => 0.062130628290393
905 => 0.063323696215675
906 => 0.069116895402607
907 => 0.068983343410592
908 => 0.06813375377622
909 => 0.068778160025952
910 => 0.066331941177153
911 => 0.066962387473856
912 => 0.063754965176434
913 => 0.065204854008656
914 => 0.066440451694367
915 => 0.06668851622311
916 => 0.067247418272856
917 => 0.062471661450849
918 => 0.064615836055077
919 => 0.065875337753069
920 => 0.060184863260475
921 => 0.065762855368621
922 => 0.062388526149678
923 => 0.061243228132045
924 => 0.062785221031248
925 => 0.062184304898791
926 => 0.061667672495084
927 => 0.061379382736944
928 => 0.062511652138573
929 => 0.062458830417632
930 => 0.060606217912547
1001 => 0.058189560421809
1002 => 0.059000669999778
1003 => 0.058705986285909
1004 => 0.057638014491892
1005 => 0.058357698533653
1006 => 0.055188574237493
1007 => 0.049736260602696
1008 => 0.053338225998726
1009 => 0.053199554249164
1010 => 0.053129629664771
1011 => 0.055836407108876
1012 => 0.055576212913606
1013 => 0.055103957901362
1014 => 0.057629341158245
1015 => 0.056707542298284
1016 => 0.059548309181556
1017 => 0.061419421980162
1018 => 0.060944847250277
1019 => 0.062704637881239
1020 => 0.059019356326244
1021 => 0.06024345903098
1022 => 0.060495744901893
1023 => 0.05759817832086
1024 => 0.055618783901828
1025 => 0.055486780860827
1026 => 0.052054783715579
1027 => 0.053888128888457
1028 => 0.055501396771612
1029 => 0.054728766650226
1030 => 0.054484175035464
1031 => 0.055733740549837
1101 => 0.055830842492108
1102 => 0.053616907917912
1103 => 0.054077255022077
1104 => 0.055996978972785
1105 => 0.054028882904023
1106 => 0.050205193729087
1107 => 0.049256865947064
1108 => 0.049130341539794
1109 => 0.046558401382122
1110 => 0.049320237744065
1111 => 0.048114622159464
1112 => 0.051923147345725
1113 => 0.049747738184863
1114 => 0.049653960643874
1115 => 0.049512202136494
1116 => 0.047298426997276
1117 => 0.047783103060015
1118 => 0.049394240110808
1119 => 0.049969111961289
1120 => 0.049909148117498
1121 => 0.049386344660307
1122 => 0.049625681405822
1123 => 0.048854694358067
1124 => 0.048582442784797
1125 => 0.047723141930863
1126 => 0.046460207063499
1127 => 0.046635825902835
1128 => 0.044133621465703
1129 => 0.042770287686312
1130 => 0.042392934864627
1201 => 0.04188832290081
1202 => 0.042449932128662
1203 => 0.044126533034918
1204 => 0.042104196631248
1205 => 0.038637042717561
1206 => 0.038845424575517
1207 => 0.039313596741213
1208 => 0.038441161007706
1209 => 0.037615473803923
1210 => 0.038333341837492
1211 => 0.036864263017581
1212 => 0.039491127897993
1213 => 0.039420078564681
1214 => 0.040399211347864
1215 => 0.041011483171016
1216 => 0.039600394844008
1217 => 0.039245509945754
1218 => 0.039447668512419
1219 => 0.036106437719221
1220 => 0.040126161509046
1221 => 0.040160924247303
1222 => 0.039863264577276
1223 => 0.042003643400309
1224 => 0.046520510317806
1225 => 0.044821083292893
1226 => 0.044163013783393
1227 => 0.042912023164787
1228 => 0.044578893887606
1229 => 0.044450904223328
1230 => 0.043872086422822
1231 => 0.043522015611054
]
'min_raw' => 0.032692922880158
'max_raw' => 0.083886296583968
'avg_raw' => 0.058289609732063
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.032692'
'max' => '$0.083886'
'avg' => '$0.058289'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.02010404803368
'max_diff' => 0.048759431940472
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0010261934918419
]
1 => [
'year' => 2028
'avg' => 0.0017612459381
]
2 => [
'year' => 2029
'avg' => 0.0048114064691936
]
3 => [
'year' => 2030
'avg' => 0.0037119929256214
]
4 => [
'year' => 2031
'avg' => 0.0036456370751791
]
5 => [
'year' => 2032
'avg' => 0.006391949117001
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0010261934918419
'min' => '$0.001026'
'max_raw' => 0.006391949117001
'max' => '$0.006391'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.006391949117001
]
1 => [
'year' => 2033
'avg' => 0.016440750405303
]
2 => [
'year' => 2034
'avg' => 0.010420937712374
]
3 => [
'year' => 2035
'avg' => 0.012291519929219
]
4 => [
'year' => 2036
'avg' => 0.023857869744987
]
5 => [
'year' => 2037
'avg' => 0.058289609732063
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.006391949117001
'min' => '$0.006391'
'max_raw' => 0.058289609732063
'max' => '$0.058289'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.058289609732063
]
]
]
]
'prediction_2025_max_price' => '$0.001754'
'last_price' => 0.00170131
'sma_50day_nextmonth' => '$0.001563'
'sma_200day_nextmonth' => '$0.002574'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.001659'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.001636'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.001589'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.001563'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.0017068'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.002122'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.002884'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.001666'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.001642'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.00161'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.001612'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.001761'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.002119'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.002775'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.002426'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0035099'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.005625'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.005793'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.00166'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.001685'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.001861'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.002347'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.003448'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.004599'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.005415'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '59.14'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 116.19
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.001597'
'vwma_10_action' => 'BUY'
'hma_9' => '0.001680'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 248.47
'cci_20_action' => 'SELL'
'adx_14' => 23.27
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.0000042'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 85.58
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000252'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 18
'sell_pct' => 47.06
'buy_pct' => 52.94
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767695732
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Everipedia para 2026
La previsión del precio de Everipedia para 2026 sugiere que el precio medio podría oscilar entre $0.000587 en el extremo inferior y $0.001754 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Everipedia podría potencialmente ganar 3.13% para 2026 si IQ alcanza el objetivo de precio previsto.
Predicción de precio de Everipedia 2027-2032
La predicción del precio de IQ para 2027-2032 está actualmente dentro de un rango de precios de $0.001026 en el extremo inferior y $0.006391 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Everipedia alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Everipedia | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000565 | $0.001026 | $0.001486 |
| 2028 | $0.001021 | $0.001761 | $0.0025012 |
| 2029 | $0.002243 | $0.004811 | $0.007379 |
| 2030 | $0.0019078 | $0.003711 | $0.005516 |
| 2031 | $0.002255 | $0.003645 | $0.005035 |
| 2032 | $0.003443 | $0.006391 | $0.00934 |
Predicción de precio de Everipedia 2032-2037
La predicción de precio de Everipedia para 2032-2037 se estima actualmente entre $0.006391 en el extremo inferior y $0.058289 en el extremo superior. Comparado con el precio actual, Everipedia podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Everipedia | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.003443 | $0.006391 | $0.00934 |
| 2033 | $0.008001 | $0.01644 | $0.02488 |
| 2034 | $0.006432 | $0.01042 | $0.0144094 |
| 2035 | $0.0076051 | $0.012291 | $0.016977 |
| 2036 | $0.012588 | $0.023857 | $0.035126 |
| 2037 | $0.032692 | $0.058289 | $0.083886 |
Everipedia Histograma de precios potenciales
Pronóstico de precio de Everipedia basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Everipedia es Alcista, con 18 indicadores técnicos mostrando señales alcistas y 16 indicando señales bajistas. La predicción de precio de IQ se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Everipedia
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Everipedia aumentar durante el próximo mes, alcanzando $0.002574 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Everipedia alcance $0.001563 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 59.14, lo que sugiere que el mercado de IQ está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de IQ para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.001659 | BUY |
| SMA 5 | $0.001636 | BUY |
| SMA 10 | $0.001589 | BUY |
| SMA 21 | $0.001563 | BUY |
| SMA 50 | $0.0017068 | SELL |
| SMA 100 | $0.002122 | SELL |
| SMA 200 | $0.002884 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.001666 | BUY |
| EMA 5 | $0.001642 | BUY |
| EMA 10 | $0.00161 | BUY |
| EMA 21 | $0.001612 | BUY |
| EMA 50 | $0.001761 | SELL |
| EMA 100 | $0.002119 | SELL |
| EMA 200 | $0.002775 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.002426 | SELL |
| SMA 50 | $0.0035099 | SELL |
| SMA 100 | $0.005625 | SELL |
| SMA 200 | $0.005793 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.002347 | SELL |
| EMA 50 | $0.003448 | SELL |
| EMA 100 | $0.004599 | SELL |
| EMA 200 | $0.005415 | SELL |
Osciladores de Everipedia
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 59.14 | NEUTRAL |
| Stoch RSI (14) | 116.19 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 248.47 | SELL |
| Índice Direccional Medio (14) | 23.27 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.0000042 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 85.58 | SELL |
| VWMA (10) | 0.001597 | BUY |
| Promedio Móvil de Hull (9) | 0.001680 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000252 | SELL |
Predicción de precios de Everipedia basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Everipedia
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Everipedia por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.00239 | $0.003359 | $0.00472 | $0.006632 | $0.00932 | $0.013096 |
| Amazon.com acción | $0.003549 | $0.007407 | $0.015455 | $0.032248 | $0.067287 | $0.14040029 |
| Apple acción | $0.002413 | $0.003422 | $0.004855 | $0.006886 | $0.009768 | $0.013855 |
| Netflix acción | $0.002684 | $0.004235 | $0.006683 | $0.010544 | $0.016638 | $0.026252 |
| Google acción | $0.0022031 | $0.002853 | $0.003694 | $0.004784 | $0.006196 | $0.008024 |
| Tesla acción | $0.003856 | $0.008742 | $0.019819 | $0.044929 | $0.101851 | $0.23089 |
| Kodak acción | $0.001275 | $0.000956 | $0.000717 | $0.000537 | $0.0004034 | $0.0003025 |
| Nokia acción | $0.001127 | $0.000746 | $0.000494 | $0.000327 | $0.000217 | $0.000143 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Everipedia
Podría preguntarse cosas como: "¿Debo invertir en Everipedia ahora?", "¿Debería comprar IQ hoy?", "¿Será Everipedia una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Everipedia/IQ regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Everipedia, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Everipedia a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Everipedia es de $0.001701 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Everipedia
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Everipedia
basado en el historial de precios del último mes
Predicción de precios de Everipedia basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Everipedia ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.001745 | $0.00179 | $0.001837 | $0.001885 |
| Si Everipedia ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.001789 | $0.001882 | $0.00198 | $0.002083 |
| Si Everipedia ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.001922 | $0.002172 | $0.002454 | $0.002773 |
| Si Everipedia ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.002143 | $0.0027007 | $0.0034027 | $0.004287 |
| Si Everipedia ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.002585 | $0.00393 | $0.005973 | $0.009078 |
| Si Everipedia ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.003912 | $0.008997 | $0.02069 | $0.047581 |
| Si Everipedia ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.006123 | $0.02204 | $0.079331 | $0.285539 |
Cuadro de preguntas
¿Es IQ una buena inversión?
La decisión de adquirir Everipedia depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Everipedia ha experimentado un aumento de 3.2066% durante las últimas 24 horas, y Everipedia ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Everipedia dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Everipedia subir?
Parece que el valor medio de Everipedia podría potencialmente aumentar hasta $0.001754 para el final de este año. Mirando las perspectivas de Everipedia en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.005516. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Everipedia la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Everipedia, el precio de Everipedia aumentará en un 0.86% durante la próxima semana y alcanzará $0.001715 para el 13 de enero de 2026.
¿Cuál será el precio de Everipedia el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Everipedia, el precio de Everipedia disminuirá en un -11.62% durante el próximo mes y alcanzará $0.001503 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Everipedia este año en 2026?
Según nuestra predicción más reciente sobre el valor de Everipedia en 2026, se anticipa que IQ fluctúe dentro del rango de $0.000587 y $0.001754. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Everipedia no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Everipedia en 5 años?
El futuro de Everipedia parece estar en una tendencia alcista, con un precio máximo de $0.005516 proyectada después de un período de cinco años. Basado en el pronóstico de Everipedia para 2030, el valor de Everipedia podría potencialmente alcanzar su punto más alto de aproximadamente $0.005516, mientras que su punto más bajo se anticipa que esté alrededor de $0.0019078.
¿Cuánto será Everipedia en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Everipedia, se espera que el valor de IQ en 2026 crezca en un 3.13% hasta $0.001754 si ocurre lo mejor. El precio estará entre $0.001754 y $0.000587 durante 2026.
¿Cuánto será Everipedia en 2027?
Según nuestra última simulación experimental para la predicción de precios de Everipedia, el valor de IQ podría disminuir en un -12.62% hasta $0.001486 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.001486 y $0.000565 a lo largo del año.
¿Cuánto será Everipedia en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Everipedia sugiere que el valor de IQ en 2028 podría aumentar en un 47.02% , alcanzando $0.0025012 en el mejor escenario. Se espera que el precio oscile entre $0.0025012 y $0.001021 durante el año.
¿Cuánto será Everipedia en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Everipedia podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.007379 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.007379 y $0.002243.
¿Cuánto será Everipedia en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Everipedia, se espera que el valor de IQ en 2030 aumente en un 224.23% , alcanzando $0.005516 en el mejor escenario. Se pronostica que el precio oscile entre $0.005516 y $0.0019078 durante el transcurso de 2030.
¿Cuánto será Everipedia en 2031?
Nuestra simulación experimental indica que el precio de Everipedia podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.005035 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.005035 y $0.002255 durante el año.
¿Cuánto será Everipedia en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Everipedia, IQ podría experimentar un 449.04% aumento en valor, alcanzando $0.00934 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.00934 y $0.003443 a lo largo del año.
¿Cuánto será Everipedia en 2033?
Según nuestra predicción experimental de precios de Everipedia, se anticipa que el valor de IQ aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.02488. A lo largo del año, el precio de IQ podría oscilar entre $0.02488 y $0.008001.
¿Cuánto será Everipedia en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Everipedia sugieren que IQ podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.0144094 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.0144094 y $0.006432.
¿Cuánto será Everipedia en 2035?
Basado en nuestra predicción experimental para el precio de Everipedia, IQ podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.016977 en 2035. El rango de precios esperado para el año está entre $0.016977 y $0.0076051.
¿Cuánto será Everipedia en 2036?
Nuestra reciente simulación de predicción de precios de Everipedia sugiere que el valor de IQ podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.035126 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.035126 y $0.012588.
¿Cuánto será Everipedia en 2037?
Según la simulación experimental, el valor de Everipedia podría aumentar en un 4830.69% en 2037, con un máximo de $0.083886 bajo condiciones favorables. Se espera que el precio caiga entre $0.083886 y $0.032692 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Huobi BTC
Predicción de precios de Olympus
Predicción de precios de DUSK Network
Predicción de precios de Tensor
Predicción de precios de Numeraire
Predicción de precios de BORA
Predicción de precios de TokenFi
Predicción de precios de Celer Network
Predicción de precios de Power Ledger
Predicción de precios de Entangle
Predicción de precios de Boba Network
Predicción de precios de Nano
Predicción de precios de Tectum
Predicción de precios de GXChain
Predicción de precios de ECOMI
Predicción de precios de Songbird
Predicción de precios de NodeAI
Predicción de precios de Sleepless AI
Predicción de precios de Hooked Protocol
Predicción de precios de Orbs
Predicción de precios de Status
Predicción de precios de Bluzelle
Predicción de precios de SMARDEX
Predicción de precios de Slerf [OLD]
Predicción de precios de ConstitutionDAO
¿Cómo leer y predecir los movimientos de precio de Everipedia?
Los traders de Everipedia utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Everipedia
Las medias móviles son herramientas populares para la predicción de precios de Everipedia. Una media móvil simple (SMA) calcula el precio de cierre promedio de IQ durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de IQ por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de IQ.
¿Cómo leer gráficos de Everipedia y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Everipedia en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de IQ dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Everipedia?
La acción del precio de Everipedia está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de IQ. La capitalización de mercado de Everipedia puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de IQ, grandes poseedores de Everipedia, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Everipedia.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


