Predicción del precio de Orbs - Pronóstico de ORBS
Predicción de precio de Orbs hasta $0.011273 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.003776 | $0.011273 |
| 2027 | $0.003635 | $0.00955 |
| 2028 | $0.006561 | $0.01607 |
| 2029 | $0.014413 | $0.047413 |
| 2030 | $0.012257 | $0.035441 |
| 2031 | $0.014492 | $0.032353 |
| 2032 | $0.022121 | $0.060014 |
| 2033 | $0.0514062 | $0.159856 |
| 2034 | $0.041328 | $0.09258 |
| 2035 | $0.048862 | $0.109082 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Orbs hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.73, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Orbs para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Orbs'
'name_with_ticker' => 'Orbs <small>ORBS</small>'
'name_lang' => 'Orbs'
'name_lang_with_ticker' => 'Orbs <small>ORBS</small>'
'name_with_lang' => 'Orbs'
'name_with_lang_with_ticker' => 'Orbs <small>ORBS</small>'
'image' => '/uploads/coins/orbs.jpg?1717132735'
'price_for_sd' => 0.01093
'ticker' => 'ORBS'
'marketcap' => '$53.43M'
'low24h' => '$0.01046'
'high24h' => '$0.011'
'volume24h' => '$5.96M'
'current_supply' => '4.89B'
'max_supply' => '10B'
'algo' => 'Proof of Stake'
'proof' => null
'ico_price_and_roi' => ''
'price' => '$0.01093'
'change_24h_pct' => '4.3665%'
'ath_price' => '$0.3604'
'ath_days' => 1757
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '16 mar. 2021'
'ath_pct' => '-96.96%'
'fdv' => '$109.21M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.538966'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.0110244'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00966'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.003776'
'current_year_max_price_prediction' => '$0.011273'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.012257'
'grand_prediction_max_price' => '$0.035441'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.011137994047368
107 => 0.011179579274049
108 => 0.011273272913155
109 => 0.010472671025319
110 => 0.010832117768521
111 => 0.011043259054547
112 => 0.010089315042896
113 => 0.011024402648601
114 => 0.01045873432763
115 => 0.01026673800344
116 => 0.01052523576037
117 => 0.010424498933097
118 => 0.010337891324473
119 => 0.010289562790753
120 => 0.010479375014086
121 => 0.010470520046993
122 => 0.010159950408655
123 => 0.0097548249758813
124 => 0.0098907983689092
125 => 0.0098413979604648
126 => 0.0096623645074828
127 => 0.0097830114382111
128 => 0.009251743413298
129 => 0.008337724389344
130 => 0.0089415533537279
131 => 0.0089183065954386
201 => 0.0089065845257526
202 => 0.0093603453038803
203 => 0.0093167266751056
204 => 0.0092375584367648
205 => 0.0096609105207012
206 => 0.0095063813151753
207 => 0.0099826039149462
208 => 0.010296274919302
209 => 0.010216717806403
210 => 0.010511726902103
211 => 0.0098939309212569
212 => 0.010099137964421
213 => 0.010141430851613
214 => 0.0096556864217006
215 => 0.0093238632222139
216 => 0.0093017343978695
217 => 0.008726398698013
218 => 0.0090337383849289
219 => 0.0093041845908344
220 => 0.009174661845679
221 => 0.0091336588139448
222 => 0.0093431344106025
223 => 0.0093594124584999
224 => 0.0089882712413677
225 => 0.0090654432529232
226 => 0.0093872633698895
227 => 0.0090573342116811
228 => 0.008416335750904
301 => 0.0082573592701342
302 => 0.0082361488770817
303 => 0.0078049920526503
304 => 0.0082679828387549
305 => 0.0080658749532386
306 => 0.0087043313419603
307 => 0.0083396484768328
308 => 0.0083239277273995
309 => 0.0083001635088986
310 => 0.0079290490192464
311 => 0.0080102995069241
312 => 0.0082803885027632
313 => 0.0083767592992489
314 => 0.0083667070356328
315 => 0.008279064919337
316 => 0.008319187031377
317 => 0.0081899397290258
318 => 0.0081442998165157
319 => 0.0080002476983866
320 => 0.0077885308801503
321 => 0.0078179714022608
322 => 0.0073985049866157
323 => 0.0071699574206045
324 => 0.0071066984665412
325 => 0.0070221059493939
326 => 0.007116253416445
327 => 0.0073973166909633
328 => 0.0070582947509942
329 => 0.0064770654145413
330 => 0.0065119982880287
331 => 0.0065904820830917
401 => 0.006444228050214
402 => 0.0063058108822659
403 => 0.006426153379657
404 => 0.0061798788475909
405 => 0.0066202431837014
406 => 0.0066083325625164
407 => 0.0067724731550705
408 => 0.0068751136360986
409 => 0.0066385605575792
410 => 0.006579068098039
411 => 0.0066129577067746
412 => 0.0060528379644118
413 => 0.0067266994223244
414 => 0.0067325270041951
415 => 0.0066826277101903
416 => 0.0070414381333904
417 => 0.00779864004212
418 => 0.0075137502256797
419 => 0.0074034322779137
420 => 0.0071937177785687
421 => 0.0074731498973311
422 => 0.0074516938704303
423 => 0.0073546615798281
424 => 0.0072959761477127
425 => 0.0074041058557789
426 => 0.0072825776802648
427 => 0.0072607478805715
428 => 0.0071284830454867
429 => 0.007081270517028
430 => 0.0070463162405421
501 => 0.0070078350166673
502 => 0.0070927150076115
503 => 0.0069003657812393
504 => 0.0066684114704617
505 => 0.0066491269793009
506 => 0.0067023731549055
507 => 0.0066788156859121
508 => 0.0066490141952026
509 => 0.0065921150334852
510 => 0.0065752342676618
511 => 0.0066300885672043
512 => 0.0065681612612252
513 => 0.0066595383745523
514 => 0.0066346888558537
515 => 0.0064958814644106
516 => 0.0063228760615942
517 => 0.006321335950618
518 => 0.0062840622203669
519 => 0.0062365885207493
520 => 0.0062233824235668
521 => 0.0064160184701893
522 => 0.006814769321586
523 => 0.0067364849881576
524 => 0.0067930534419608
525 => 0.0070713142468159
526 => 0.007159764989085
527 => 0.0070969847472931
528 => 0.0070110472802116
529 => 0.0070148280926231
530 => 0.007308502432681
531 => 0.0073268185410422
601 => 0.0073730974378702
602 => 0.007432578898709
603 => 0.007107114697279
604 => 0.0069994987580043
605 => 0.0069485043556709
606 => 0.0067914613338015
607 => 0.0069608187690365
608 => 0.0068621414441335
609 => 0.0068754563865603
610 => 0.0068667850128374
611 => 0.0068715201692458
612 => 0.0066201200928948
613 => 0.0067117170675181
614 => 0.0065594193316815
615 => 0.0063555097596194
616 => 0.0063548261832339
617 => 0.0064047327621176
618 => 0.0063750463761529
619 => 0.0062951610748288
620 => 0.0063065084048339
621 => 0.0062070938537675
622 => 0.0063185791312919
623 => 0.0063217761301378
624 => 0.0062788482256468
625 => 0.0064506066776769
626 => 0.0065209762556152
627 => 0.0064927201892743
628 => 0.0065189937346758
629 => 0.0067397380556442
630 => 0.006775729011712
701 => 0.0067917138169682
702 => 0.0067702962955057
703 => 0.006523028535637
704 => 0.0065339959122509
705 => 0.006453524579627
706 => 0.0063855347834199
707 => 0.0063882540187086
708 => 0.0064232096120139
709 => 0.0065758627380965
710 => 0.0068971122425441
711 => 0.0069093034264076
712 => 0.006924079496892
713 => 0.0068639777923738
714 => 0.0068458505431953
715 => 0.0068697650639018
716 => 0.0069904094872758
717 => 0.0073007396988351
718 => 0.0071910482758121
719 => 0.0071018674414457
720 => 0.0071801030761653
721 => 0.0071680593134314
722 => 0.0070663978355427
723 => 0.0070635445364525
724 => 0.0068684236572435
725 => 0.0067962919108874
726 => 0.0067360132246646
727 => 0.0066701904729243
728 => 0.006631168539294
729 => 0.0066911239645018
730 => 0.0067048364796185
731 => 0.0065737428945602
801 => 0.0065558753233242
802 => 0.0066629291747344
803 => 0.0066158187660986
804 => 0.0066642729896624
805 => 0.0066755147851619
806 => 0.006673704597166
807 => 0.0066245159199542
808 => 0.0066558673159815
809 => 0.006581711918076
810 => 0.0065010790606344
811 => 0.0064496403211912
812 => 0.0064047531986683
813 => 0.0064296591830989
814 => 0.006340873896257
815 => 0.0063124696961015
816 => 0.0066452461684362
817 => 0.0068910717264999
818 => 0.006887497325528
819 => 0.0068657390788732
820 => 0.0068334107378432
821 => 0.0069880444677686
822 => 0.0069341731682616
823 => 0.0069733690397507
824 => 0.0069833460340902
825 => 0.0070135433910774
826 => 0.0070243363506498
827 => 0.0069917125306296
828 => 0.0068822230059778
829 => 0.0066093855204972
830 => 0.0064823789344953
831 => 0.0064404646456526
901 => 0.0064419881504455
902 => 0.0063999630870334
903 => 0.0064123413516395
904 => 0.006395658431757
905 => 0.0063640650175313
906 => 0.0064277083787983
907 => 0.0064350426833054
908 => 0.0064201875623042
909 => 0.0064236864810632
910 => 0.006300692423878
911 => 0.0063100433949168
912 => 0.0062579759999091
913 => 0.006248213991027
914 => 0.0061165921504744
915 => 0.0058834049810445
916 => 0.0060126133089349
917 => 0.0058565478182836
918 => 0.0057974434521959
919 => 0.0060772343286404
920 => 0.0060491510848362
921 => 0.0060010847789362
922 => 0.0059299846946143
923 => 0.0059036129817221
924 => 0.0057433868024589
925 => 0.0057339197850146
926 => 0.0058133322059282
927 => 0.0057766861060911
928 => 0.0057252211029566
929 => 0.005538820078527
930 => 0.0053292436118099
1001 => 0.0053355694079894
1002 => 0.0054022317827433
1003 => 0.0055960616279864
1004 => 0.0055203289541596
1005 => 0.0054653840303659
1006 => 0.0054550944977777
1007 => 0.0055838895407147
1008 => 0.0057661615098664
1009 => 0.0058516794396869
1010 => 0.0057669337684529
1011 => 0.0056695825043703
1012 => 0.0056755078247327
1013 => 0.0057149263265134
1014 => 0.0057190686537029
1015 => 0.0056557029886568
1016 => 0.0056735400522007
1017 => 0.0056464439216221
1018 => 0.0054801550182769
1019 => 0.0054771473793232
1020 => 0.0054363374006715
1021 => 0.0054351016907369
1022 => 0.0053656737365241
1023 => 0.0053559602857969
1024 => 0.0052181068687317
1025 => 0.0053088424053026
1026 => 0.0052479817712004
1027 => 0.005156250440036
1028 => 0.0051404359239676
1029 => 0.005139960520518
1030 => 0.0052341480868735
1031 => 0.0053077417687511
1101 => 0.0052490404679873
1102 => 0.0052356753196802
1103 => 0.0053783801375199
1104 => 0.0053602196486665
1105 => 0.005344492782442
1106 => 0.0057498410542053
1107 => 0.0054289762673846
1108 => 0.005289060906009
1109 => 0.0051158890771002
1110 => 0.0051722746978011
1111 => 0.0051841559765599
1112 => 0.0047677089446026
1113 => 0.0045987564356027
1114 => 0.004540778301355
1115 => 0.0045074110654049
1116 => 0.0045226169338267
1117 => 0.0043705398595741
1118 => 0.0044727381685945
1119 => 0.0043410522770468
1120 => 0.0043189747087858
1121 => 0.0045544453956248
1122 => 0.0045872097660986
1123 => 0.0044474267825652
1124 => 0.0045371900868031
1125 => 0.0045046406648831
1126 => 0.0043433096536959
1127 => 0.0043371479957392
1128 => 0.0042561977653847
1129 => 0.0041295263299332
1130 => 0.0040716340848836
1201 => 0.0040414833010182
1202 => 0.0040539241020681
1203 => 0.0040476336523625
1204 => 0.004006584213009
1205 => 0.0040499865581754
1206 => 0.0039391115013625
1207 => 0.0038949601603586
1208 => 0.0038750180239305
1209 => 0.0037766100292789
1210 => 0.0039332209110034
1211 => 0.003964075227635
1212 => 0.0039949903368018
1213 => 0.0042640852554573
1214 => 0.0042506420337756
1215 => 0.0043721622106635
1216 => 0.0043674401600509
1217 => 0.0043327806371061
1218 => 0.0041865578110169
1219 => 0.0042448396233248
1220 => 0.0040654572640457
1221 => 0.0041998627244324
1222 => 0.0041385256852181
1223 => 0.0041791246097745
1224 => 0.0041061240827646
1225 => 0.0041465255885298
1226 => 0.0039713919307281
1227 => 0.0038078545852699
1228 => 0.003873666787035
1229 => 0.0039452121768919
1230 => 0.0041003408115278
1231 => 0.0040079474765221
]
'min_raw' => 0.0037766100292789
'max_raw' => 0.011273272913155
'avg_raw' => 0.0075249414712171
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.003776'
'max' => '$0.011273'
'avg' => '$0.007524'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0071542499707211
'max_diff' => 0.00034241291315535
'year' => 2026
]
1 => [
'items' => [
101 => 0.0040411756135689
102 => 0.0039298669167849
103 => 0.0037002052815622
104 => 0.0037015051414764
105 => 0.0036661767023481
106 => 0.0036356477729047
107 => 0.0040185599624843
108 => 0.0039709387787642
109 => 0.0038950606550125
110 => 0.0039966265389309
111 => 0.0040234821707062
112 => 0.0040242467127883
113 => 0.0040983465599002
114 => 0.004137893661587
115 => 0.0041448640096662
116 => 0.00426146172013
117 => 0.0043005437347165
118 => 0.0044615170217045
119 => 0.0041345383663091
120 => 0.0041278044560755
121 => 0.0039980557792032
122 => 0.0039157671170854
123 => 0.0040036901542995
124 => 0.0040815779625797
125 => 0.0040004759705179
126 => 0.0040110661785247
127 => 0.003902193380458
128 => 0.0039411102828256
129 => 0.0039746307618174
130 => 0.0039561227235608
131 => 0.0039284152944915
201 => 0.0040751920505215
202 => 0.0040669103307236
203 => 0.0042035922203218
204 => 0.0043101455274793
205 => 0.0045011081025875
206 => 0.0043018287003579
207 => 0.0042945661668768
208 => 0.0043655585966019
209 => 0.0043005328661454
210 => 0.004341626883182
211 => 0.0044944872211319
212 => 0.0044977169191986
213 => 0.0044436153153502
214 => 0.0044403232278393
215 => 0.0044507140326651
216 => 0.0045115733010806
217 => 0.0044903072026798
218 => 0.0045149168701409
219 => 0.0045456916361377
220 => 0.0046729891165307
221 => 0.0047036801080899
222 => 0.0046291169100558
223 => 0.0046358491319895
224 => 0.0046079604491192
225 => 0.0045810203309107
226 => 0.0046415777823552
227 => 0.0047522477151297
228 => 0.0047515592432217
301 => 0.0047772325165093
302 => 0.0047932267530786
303 => 0.0047245677812264
304 => 0.004679873315211
305 => 0.0046970120174641
306 => 0.0047244171755991
307 => 0.0046881248940384
308 => 0.0044641121200254
309 => 0.0045320632856695
310 => 0.0045207528890641
311 => 0.0045046455089068
312 => 0.0045729709314128
313 => 0.0045663807777311
314 => 0.004368980089369
315 => 0.004381617040973
316 => 0.0043697485842509
317 => 0.0044080979959776
318 => 0.0042984618720601
319 => 0.0043321852053666
320 => 0.0043533361638798
321 => 0.0043657942409334
322 => 0.0044108013578344
323 => 0.0044055202921362
324 => 0.0044104730793756
325 => 0.0044772067523014
326 => 0.0048147227697292
327 => 0.0048330930218707
328 => 0.004742631181722
329 => 0.0047787689025805
330 => 0.0047093923809829
331 => 0.0047559653047137
401 => 0.0047878293163062
402 => 0.0046438419750165
403 => 0.0046353159791355
404 => 0.0045656531159547
405 => 0.0046030859927218
406 => 0.0045435275942663
407 => 0.0045581411419829
408 => 0.004517280388581
409 => 0.0045908216094096
410 => 0.0046730521214464
411 => 0.0046938267961682
412 => 0.0046391775710349
413 => 0.004599607930479
414 => 0.0045301366767127
415 => 0.0046456689199939
416 => 0.0046794540687107
417 => 0.0046454914609905
418 => 0.0046376215826841
419 => 0.004622708177514
420 => 0.0046407855320911
421 => 0.004679270067535
422 => 0.0046611214713175
423 => 0.0046731089388563
424 => 0.0046274250740212
425 => 0.004724590510203
426 => 0.0048789126069953
427 => 0.0048794087777707
428 => 0.0048612600837255
429 => 0.0048538340291412
430 => 0.0048724556905865
501 => 0.00488255717802
502 => 0.0049427762165054
503 => 0.0050073936440325
504 => 0.005308934983509
505 => 0.0052242633820212
506 => 0.0054918087971794
507 => 0.0057034024841454
508 => 0.0057668501789959
509 => 0.0057084812851781
510 => 0.0055088044524532
511 => 0.0054990073544311
512 => 0.0057974088439064
513 => 0.0057130967554756
514 => 0.0057030681008356
515 => 0.0055963801591453
516 => 0.0056594459462429
517 => 0.0056456525334854
518 => 0.0056238789566508
519 => 0.0057442040852321
520 => 0.0059694419844381
521 => 0.0059343365455793
522 => 0.0059081319639655
523 => 0.0057933111153732
524 => 0.0058624589123908
525 => 0.0058378367063116
526 => 0.0059436293292657
527 => 0.0058809601230212
528 => 0.0057124580084825
529 => 0.005739292525613
530 => 0.0057352365423323
531 => 0.0058187083908395
601 => 0.0057936522138163
602 => 0.0057303439216312
603 => 0.0059686721457851
604 => 0.0059531964365598
605 => 0.0059751374540017
606 => 0.0059847965684281
607 => 0.0061298627586562
608 => 0.0061892917351923
609 => 0.0062027831533167
610 => 0.006259236084624
611 => 0.0062013785529583
612 => 0.0064328499313421
613 => 0.0065867648912379
614 => 0.0067655450375483
615 => 0.0070267908828809
616 => 0.0071250217373852
617 => 0.0071072772127493
618 => 0.0073053508311228
619 => 0.007661284720411
620 => 0.0071792216283138
621 => 0.0076868352348328
622 => 0.0075261306276898
623 => 0.0071451028951061
624 => 0.0071205692011496
625 => 0.0073786056054782
626 => 0.0079509055151955
627 => 0.0078075508787831
628 => 0.0079511399920252
629 => 0.0077836356642435
630 => 0.0077753176625318
701 => 0.0079430046807016
702 => 0.0083348145387986
703 => 0.0081486803619896
704 => 0.0078818113775613
705 => 0.0080788632827219
706 => 0.0079081586861789
707 => 0.0075235134529593
708 => 0.0078074412581944
709 => 0.007617586820632
710 => 0.0076729964387297
711 => 0.0080720422277695
712 => 0.008024027982688
713 => 0.0080861628618228
714 => 0.0079764964265028
715 => 0.0078740506831044
716 => 0.0076828280953305
717 => 0.0076262165142502
718 => 0.0076418619185895
719 => 0.0076262087611649
720 => 0.0075192214807316
721 => 0.0074961175877084
722 => 0.0074576100871316
723 => 0.007469545171739
724 => 0.007397139804888
725 => 0.007533783691848
726 => 0.0075591460013695
727 => 0.0076585840271445
728 => 0.0076689080128535
729 => 0.007945841499225
730 => 0.0077933111886097
731 => 0.0078956416898039
801 => 0.0078864882866051
802 => 0.0071533609214483
803 => 0.0072543794039294
804 => 0.0074115324613239
805 => 0.0073407352219836
806 => 0.0072406444895591
807 => 0.0071598158566008
808 => 0.0070373522125169
809 => 0.007209717439859
810 => 0.0074363593848155
811 => 0.0076746560265937
812 => 0.0079609538278757
813 => 0.0078970554915034
814 => 0.0076693038883433
815 => 0.0076795206588884
816 => 0.0077426767142473
817 => 0.0076608838842249
818 => 0.0076367615818656
819 => 0.0077393626803263
820 => 0.0077400692377028
821 => 0.0076459567017683
822 => 0.0075413678404894
823 => 0.0075409296093418
824 => 0.0075223190316858
825 => 0.0077869464446649
826 => 0.0079324647649542
827 => 0.0079491482058609
828 => 0.0079313418364545
829 => 0.0079381948013295
830 => 0.0078535208970305
831 => 0.0080470603329917
901 => 0.008224671258496
902 => 0.0081770677363569
903 => 0.0081057032894309
904 => 0.0080488580700769
905 => 0.0081636768092441
906 => 0.0081585641115305
907 => 0.0082231199820061
908 => 0.0082201913548286
909 => 0.0081984836436567
910 => 0.0081770685116076
911 => 0.0082619770895256
912 => 0.0082375247826752
913 => 0.0082130344946385
914 => 0.0081639154727052
915 => 0.0081705915635665
916 => 0.0080992394387184
917 => 0.0080662286809126
918 => 0.0075698260873962
919 => 0.0074371710939859
920 => 0.0074789070553542
921 => 0.0074926476175104
922 => 0.0074349159943762
923 => 0.0075176883119134
924 => 0.0075047883339028
925 => 0.0075549746021073
926 => 0.0075236204005676
927 => 0.0075249071879356
928 => 0.0076171132092433
929 => 0.0076438810095013
930 => 0.0076302666902474
1001 => 0.0076398016927813
1002 => 0.0078595318017014
1003 => 0.0078282932067863
1004 => 0.0078116983258459
1005 => 0.0078162952212778
1006 => 0.0078724409751736
1007 => 0.0078881587208199
1008 => 0.0078215615280501
1009 => 0.0078529691491541
1010 => 0.0079866988135944
1011 => 0.008033496627705
1012 => 0.0081828527861208
1013 => 0.0081194036354318
1014 => 0.0082358672975365
1015 => 0.0085938368894583
1016 => 0.008879807769097
1017 => 0.0086168171299348
1018 => 0.0091419662322195
1019 => 0.0095508701365127
1020 => 0.0095351757236008
1021 => 0.0094638738697696
1022 => 0.0089983476460045
1023 => 0.008569963474291
1024 => 0.0089283250240821
1025 => 0.0089292385613702
1026 => 0.0088984549864281
1027 => 0.0087072608462859
1028 => 0.0088918018447884
1029 => 0.0089064500390951
1030 => 0.0088982509455526
1031 => 0.008751662846584
1101 => 0.008527849913468
1102 => 0.0085715824248664
1103 => 0.0086432171706561
1104 => 0.0085075976523028
1105 => 0.0084642589987126
1106 => 0.008544833801253
1107 => 0.0088044626034653
1108 => 0.0087553812823343
1109 => 0.0087540995706864
1110 => 0.008964090276204
1111 => 0.008813782249884
1112 => 0.008572134031886
1113 => 0.0085111146698932
1114 => 0.0082945370423859
1115 => 0.0084441279811282
1116 => 0.0084495114927019
1117 => 0.0083675820643351
1118 => 0.0085787821534592
1119 => 0.0085768359074568
1120 => 0.0087773389590953
1121 => 0.009160625488321
1122 => 0.0090472688012443
1123 => 0.0089154473073467
1124 => 0.0089297799587469
1125 => 0.0090869737686094
1126 => 0.0089919308027809
1127 => 0.0090261089159559
1128 => 0.0090869220359417
1129 => 0.0091236121011339
1130 => 0.0089245008229938
1201 => 0.0088780784594659
1202 => 0.0087831145957235
1203 => 0.0087583402962576
1204 => 0.0088356863817898
1205 => 0.0088153084209295
1206 => 0.0084490590294001
1207 => 0.0084107839301929
1208 => 0.0084119577728414
1209 => 0.0083157132160031
1210 => 0.0081689171654844
1211 => 0.0085546884215108
1212 => 0.0085237055907866
1213 => 0.0084895029435477
1214 => 0.0084936925726769
1215 => 0.008661142799917
1216 => 0.0085640132116786
1217 => 0.0088222481412369
1218 => 0.0087691628029722
1219 => 0.0087147160260904
1220 => 0.0087071898230359
1221 => 0.0086862324591171
1222 => 0.008614361860348
1223 => 0.0085275737935808
1224 => 0.0084702687944475
1225 => 0.0078133752261634
1226 => 0.0079352908514628
1227 => 0.0080755436654109
1228 => 0.0081239583747579
1229 => 0.008041141664224
1230 => 0.0086176319688536
1231 => 0.0087229623027083
]
'min_raw' => 0.0036356477729047
'max_raw' => 0.0095508701365127
'avg_raw' => 0.0065932589547087
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.003635'
'max' => '$0.00955'
'avg' => '$0.006593'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0001409622563742
'max_diff' => -0.0017224027766427
'year' => 2027
]
2 => [
'items' => [
101 => 0.0084039098509349
102 => 0.0083442281640339
103 => 0.008621544690311
104 => 0.0084542889243993
105 => 0.0085296041855481
106 => 0.0083668137861897
107 => 0.0086975913097149
108 => 0.0086950713391896
109 => 0.0085663914115891
110 => 0.0086751508052349
111 => 0.0086562511841517
112 => 0.0085109718628154
113 => 0.0087021969233313
114 => 0.0087022917685756
115 => 0.008578440136003
116 => 0.0084338085437668
117 => 0.0084079518311207
118 => 0.0083884722715024
119 => 0.0085248134080007
120 => 0.0086470564446575
121 => 0.0088745204292569
122 => 0.0089317102793961
123 => 0.0091549260718335
124 => 0.0090220119356167
125 => 0.0090809310506754
126 => 0.0091448960846893
127 => 0.0091755632742318
128 => 0.0091255927345644
129 => 0.0094723387395054
130 => 0.0095016147263455
131 => 0.0095114307114967
201 => 0.009394509909575
202 => 0.0094983629473359
203 => 0.0094497735502186
204 => 0.0095761896629944
205 => 0.0095960133236395
206 => 0.0095792233883202
207 => 0.0095855157311042
208 => 0.009289629186074
209 => 0.0092742859077883
210 => 0.0090650792196536
211 => 0.0091503324914463
212 => 0.0089909555861256
213 => 0.0090414956445668
214 => 0.0090637732207643
215 => 0.0090521366792001
216 => 0.0091551525835205
217 => 0.0090675680200893
218 => 0.008836417956959
219 => 0.0086052049171486
220 => 0.0086023022257759
221 => 0.0085414279136429
222 => 0.0084974269356572
223 => 0.0085059030850358
224 => 0.0085357741410076
225 => 0.0084956907755815
226 => 0.0085042445938734
227 => 0.0086462949713113
228 => 0.0086747821614496
229 => 0.0085779715586961
301 => 0.0081892630189378
302 => 0.0080938729682796
303 => 0.0081624374450258
304 => 0.0081296680412589
305 => 0.0065612766038716
306 => 0.0069297469078068
307 => 0.0067108143652777
308 => 0.006811708553477
309 => 0.0065882351198619
310 => 0.0066948883556292
311 => 0.0066751933973356
312 => 0.0072676827422343
313 => 0.0072584318360561
314 => 0.0072628597552966
315 => 0.0070515036330692
316 => 0.0073881996747215
317 => 0.0075540682520374
318 => 0.0075233703928254
319 => 0.0075310963826297
320 => 0.0073983382803641
321 => 0.0072641451439213
322 => 0.0071153043034306
323 => 0.0073918321877785
324 => 0.0073610870075274
325 => 0.0074316053892567
326 => 0.0076109534888776
327 => 0.007637363177824
328 => 0.0076728580675886
329 => 0.0076601356763063
330 => 0.0079632346517546
331 => 0.0079265273659164
401 => 0.0080149813633797
402 => 0.0078330247795768
403 => 0.0076271236335264
404 => 0.007666258709975
405 => 0.0076624896874086
406 => 0.0076145057042555
407 => 0.0075711879097738
408 => 0.0074990759866745
409 => 0.007727248781917
410 => 0.0077179853831226
411 => 0.0078679490420806
412 => 0.0078414415086905
413 => 0.0076644177132177
414 => 0.0076707401527047
415 => 0.0077132615967154
416 => 0.0078604287999377
417 => 0.0079041180457614
418 => 0.0078838794463804
419 => 0.0079317827099362
420 => 0.0079696434962774
421 => 0.0079365374417858
422 => 0.0084052493588964
423 => 0.0082106074924312
424 => 0.0083054745838369
425 => 0.0083280998261478
426 => 0.008270145743726
427 => 0.0082827139090232
428 => 0.0083017512548284
429 => 0.008417342290663
430 => 0.0087206866152287
501 => 0.0088550357516442
502 => 0.0092592317572199
503 => 0.0088438799260952
504 => 0.008819234667333
505 => 0.0088920425734872
506 => 0.0091293484172525
507 => 0.0093216625146198
508 => 0.009385464195583
509 => 0.0093938966409733
510 => 0.0095135928359157
511 => 0.0095822004626549
512 => 0.0094990585695273
513 => 0.0094286045204207
514 => 0.0091762468615993
515 => 0.009205457947755
516 => 0.0094066933641271
517 => 0.0096909502424597
518 => 0.0099348722159565
519 => 0.009849459242377
520 => 0.010501099938627
521 => 0.010565707451946
522 => 0.010556780782617
523 => 0.010703966312846
524 => 0.010411833009153
525 => 0.010286940362008
526 => 0.0094438374855249
527 => 0.0096807150040972
528 => 0.010025030388671
529 => 0.0099794589564061
530 => 0.0097294079205521
531 => 0.0099346825298232
601 => 0.0098668123244677
602 => 0.0098132802775663
603 => 0.010058520962119
604 => 0.0097888687555212
605 => 0.010022340401637
606 => 0.0097229106005386
607 => 0.0098498494016456
608 => 0.0097777927987984
609 => 0.0098244222517656
610 => 0.0095518274225151
611 => 0.0096989129755133
612 => 0.0095457081799379
613 => 0.009545635540917
614 => 0.0095422535365633
615 => 0.0097224982991436
616 => 0.0097283760743803
617 => 0.0095951749224987
618 => 0.0095759785555196
619 => 0.0096469575854649
620 => 0.0095638597308363
621 => 0.0096027406940053
622 => 0.009565037395602
623 => 0.0095565495889785
624 => 0.0094889173017208
625 => 0.0094597794527817
626 => 0.0094712051541406
627 => 0.0094322033450499
628 => 0.0094087033443157
629 => 0.0095375787949308
630 => 0.009468725840488
701 => 0.0095270260921721
702 => 0.0094605855972998
703 => 0.0092302738953266
704 => 0.0090978192000198
705 => 0.0086627817448987
706 => 0.0087861578275088
707 => 0.008867956297921
708 => 0.0088409219039377
709 => 0.0088990022431355
710 => 0.0089025679042533
711 => 0.0088836853939211
712 => 0.0088618218659558
713 => 0.0088511799096713
714 => 0.0089304963330252
715 => 0.0089765421864502
716 => 0.0088761658687492
717 => 0.0088526491019259
718 => 0.0089541351010499
719 => 0.009016041501889
720 => 0.009473123583483
721 => 0.0094392614665229
722 => 0.009524248734988
723 => 0.0095146804727948
724 => 0.0096037606696799
725 => 0.0097493691434869
726 => 0.0094533064034676
727 => 0.0095046926580557
728 => 0.0094920939351126
729 => 0.0096296434886426
730 => 0.0096300729033346
731 => 0.0095476050748836
801 => 0.0095923122225746
802 => 0.00956735791921
803 => 0.0096124537181663
804 => 0.0094388092173061
805 => 0.0096502894755883
806 => 0.0097701851545475
807 => 0.0097718499061661
808 => 0.0098286795064418
809 => 0.0098864216716704
810 => 0.009997252729544
811 => 0.00988333065362
812 => 0.0096783959291232
813 => 0.0096931915542968
814 => 0.009573038400307
815 => 0.009575058196533
816 => 0.0095642763659843
817 => 0.0095966334510793
818 => 0.0094459097778877
819 => 0.0094812843227236
820 => 0.0094317597528003
821 => 0.0095045850013126
822 => 0.0094262370723582
823 => 0.0094920878596269
824 => 0.0095205068764239
825 => 0.0096253736602226
826 => 0.0094107481631265
827 => 0.008973112245679
828 => 0.0090651086213491
829 => 0.0089290387555736
830 => 0.0089416325397057
831 => 0.0089670739879382
901 => 0.0088846099302926
902 => 0.0089003414737503
903 => 0.0088997794323168
904 => 0.0088949360628824
905 => 0.0088734839765758
906 => 0.0088423742072652
907 => 0.0089663059531165
908 => 0.0089873643717052
909 => 0.0090341746276417
910 => 0.009173450197609
911 => 0.0091595332838251
912 => 0.0091822323476138
913 => 0.009132680418813
914 => 0.0089439311115644
915 => 0.0089541811070483
916 => 0.0088263634991189
917 => 0.0090309060440338
918 => 0.0089824676695683
919 => 0.0089512391344401
920 => 0.0089427181393
921 => 0.0090823389464662
922 => 0.0091241156802584
923 => 0.0090980832232914
924 => 0.0090446898945641
925 => 0.0091472208700412
926 => 0.0091746538336443
927 => 0.0091807950625062
928 => 0.0093624602926871
929 => 0.0091909481308244
930 => 0.009232232812869
1001 => 0.0095543241169489
1002 => 0.0092622317497102
1003 => 0.0094169595910736
1004 => 0.0094093864684037
1005 => 0.0094885399963406
1006 => 0.0094028935687945
1007 => 0.0094039552589103
1008 => 0.0094742382293938
1009 => 0.0093755384729502
1010 => 0.009351099025237
1011 => 0.0093173361032598
1012 => 0.0093910562082052
1013 => 0.0094352480770464
1014 => 0.0097914020845553
1015 => 0.010021493816002
1016 => 0.010011504927116
1017 => 0.010102784673117
1018 => 0.010061662311517
1019 => 0.00992886735838
1020 => 0.010155532150765
1021 => 0.010083805926397
1022 => 0.010089718949186
1023 => 0.010089498866183
1024 => 0.010137190534972
1025 => 0.010103396616758
1026 => 0.010036785335082
1027 => 0.010081005012477
1028 => 0.010212321645515
1029 => 0.010619932503752
1030 => 0.010848036940147
1031 => 0.010606200330265
1101 => 0.01077301598544
1102 => 0.01067298603483
1103 => 0.010654807617171
1104 => 0.010759580176202
1105 => 0.010864536125727
1106 => 0.010857850885479
1107 => 0.010781658255671
1108 => 0.010738618972409
1109 => 0.011064526844487
1110 => 0.011304650212938
1111 => 0.011288275409017
1112 => 0.011360548468152
1113 => 0.011572744405095
1114 => 0.011592144942243
1115 => 0.011589700920478
1116 => 0.011541614664921
1117 => 0.011750549121965
1118 => 0.011924845921883
1119 => 0.011530484086104
1120 => 0.011680651910593
1121 => 0.011748067085112
1122 => 0.011847052562486
1123 => 0.012014057654707
1124 => 0.012195469480773
1125 => 0.012221123102059
1126 => 0.012202920630118
1127 => 0.012083274654216
1128 => 0.01228177763899
1129 => 0.012398056032004
1130 => 0.012467297154059
1201 => 0.012642881118968
1202 => 0.011748483418279
1203 => 0.011115384271281
1204 => 0.011016516697415
1205 => 0.011217567796647
1206 => 0.011270583368162
1207 => 0.01124921285776
1208 => 0.010536602208958
1209 => 0.011012764949827
1210 => 0.011525076022102
1211 => 0.01154475597684
1212 => 0.01180122961154
1213 => 0.011884747940208
1214 => 0.012091242832909
1215 => 0.012078326521148
1216 => 0.01212860474147
1217 => 0.012117046649315
1218 => 0.012499534955415
1219 => 0.012921476357106
1220 => 0.012906865868057
1221 => 0.012846206799379
1222 => 0.012936295860273
1223 => 0.013371784604807
1224 => 0.013331691779775
1225 => 0.013370638544195
1226 => 0.01388410431707
1227 => 0.014551682861462
1228 => 0.014241525603802
1229 => 0.014914477607578
1230 => 0.015338065222302
1231 => 0.01607061620219
]
'min_raw' => 0.0065612766038716
'max_raw' => 0.01607061620219
'avg_raw' => 0.011315946403031
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.006561'
'max' => '$0.01607'
'avg' => '$0.011315'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.002925628830967
'max_diff' => 0.0065197460656772
'year' => 2028
]
3 => [
'items' => [
101 => 0.015978897211618
102 => 0.016264073932381
103 => 0.015814701076164
104 => 0.014782850165051
105 => 0.0146195558086
106 => 0.014946475245486
107 => 0.015750174780736
108 => 0.014921163886997
109 => 0.015088871711094
110 => 0.015040571846472
111 => 0.015037998151947
112 => 0.015136225603976
113 => 0.014993741561609
114 => 0.014413235940617
115 => 0.014679278245776
116 => 0.014576546535353
117 => 0.014690535027224
118 => 0.01530568390542
119 => 0.015033711923052
120 => 0.014747211532837
121 => 0.015106546601693
122 => 0.015564103625272
123 => 0.015535470529046
124 => 0.01547991035466
125 => 0.015793100148634
126 => 0.01631039793228
127 => 0.016450221444528
128 => 0.016553436302704
129 => 0.016567667887818
130 => 0.016714262059364
131 => 0.015925988252471
201 => 0.017176999028317
202 => 0.01739301403083
203 => 0.017352412163262
204 => 0.017592503747255
205 => 0.017521862712709
206 => 0.01741951493689
207 => 0.017800111166463
208 => 0.017363788301789
209 => 0.016744482926907
210 => 0.016404719749775
211 => 0.016852147309336
212 => 0.01712537570689
213 => 0.017305962297083
214 => 0.017360607690162
215 => 0.015987179704173
216 => 0.015246978193532
217 => 0.015721438875425
218 => 0.016300313652862
219 => 0.015922772573855
220 => 0.015937571469372
221 => 0.015399297106758
222 => 0.016347938990072
223 => 0.016209729847007
224 => 0.016926759125715
225 => 0.016755634333832
226 => 0.017340343875702
227 => 0.017186370257577
228 => 0.017825506137865
301 => 0.018080474744425
302 => 0.018508606717534
303 => 0.018823542339763
304 => 0.019008478560895
305 => 0.018997375683857
306 => 0.01973018512684
307 => 0.019298073000725
308 => 0.018755238329315
309 => 0.018745420162731
310 => 0.01902656193108
311 => 0.019615757950064
312 => 0.019768527905333
313 => 0.019853905469068
314 => 0.019723146758194
315 => 0.019254120015051
316 => 0.019051596645381
317 => 0.019224152424006
318 => 0.019013131534634
319 => 0.019377412791694
320 => 0.019877648763916
321 => 0.0197743520138
322 => 0.020119657562324
323 => 0.020477012477844
324 => 0.02098804605685
325 => 0.021121649157921
326 => 0.021342490003521
327 => 0.021569807776081
328 => 0.021642816118242
329 => 0.021782211696585
330 => 0.021781477013079
331 => 0.02220155497082
401 => 0.02266491396694
402 => 0.02283982126119
403 => 0.023242010939872
404 => 0.022553275209535
405 => 0.023075689172622
406 => 0.023546919644195
407 => 0.022985099249433
408 => 0.02375943777625
409 => 0.023789503586557
410 => 0.024243461626425
411 => 0.023783288185181
412 => 0.023510038664697
413 => 0.02429889979181
414 => 0.024680604842328
415 => 0.024565632174694
416 => 0.023690684497093
417 => 0.023181427420458
418 => 0.021848603422551
419 => 0.023427391021784
420 => 0.024196372407505
421 => 0.023688693021076
422 => 0.023944736973644
423 => 0.025341629756326
424 => 0.025873476085861
425 => 0.025762855767205
426 => 0.025781548780092
427 => 0.026068523405816
428 => 0.027341126936087
429 => 0.02657855340203
430 => 0.027161512295731
501 => 0.027470711590936
502 => 0.027757913128186
503 => 0.027052636923678
504 => 0.026135082944178
505 => 0.025844455082574
506 => 0.023638214311363
507 => 0.023523369898003
508 => 0.023458904248643
509 => 0.023052457448271
510 => 0.022733101598328
511 => 0.02247913796953
512 => 0.021812661567605
513 => 0.022037577788635
514 => 0.020975353508403
515 => 0.021654926959978
516 => 0.019959591360426
517 => 0.021371517224902
518 => 0.020603070169259
519 => 0.021119061699806
520 => 0.021117261453966
521 => 0.020167157450965
522 => 0.019619157290199
523 => 0.019968364321124
524 => 0.020342741978365
525 => 0.020403483493695
526 => 0.020888873898564
527 => 0.021024335927131
528 => 0.020613879656455
529 => 0.019924459298369
530 => 0.020084595923548
531 => 0.019615912126601
601 => 0.018794561800112
602 => 0.019384469943997
603 => 0.01958589052075
604 => 0.019674849322121
605 => 0.018867145608742
606 => 0.018613347565897
607 => 0.018478227617459
608 => 0.01982019489168
609 => 0.019893710888282
610 => 0.019517592655553
611 => 0.021217682732481
612 => 0.020832899988231
613 => 0.021262796587619
614 => 0.020070065203286
615 => 0.020115629148393
616 => 0.019550970996681
617 => 0.019867141831168
618 => 0.019643682476014
619 => 0.019841598352203
620 => 0.019960228312352
621 => 0.020524793809218
622 => 0.021377963656003
623 => 0.020440466550586
624 => 0.020031985636551
625 => 0.020285404898235
626 => 0.020960293787299
627 => 0.021982785001157
628 => 0.021377449622999
629 => 0.021646087184564
630 => 0.021704772540913
701 => 0.021258420643793
702 => 0.021999242632273
703 => 0.022396255154327
704 => 0.022803507851788
705 => 0.023157113958032
706 => 0.022640842168743
707 => 0.023193326987936
708 => 0.022748121750366
709 => 0.022348726627794
710 => 0.022349332345332
711 => 0.022098785950711
712 => 0.021613320740255
713 => 0.021523793507074
714 => 0.021989525480123
715 => 0.022362998417526
716 => 0.022393759437466
717 => 0.022600533245344
718 => 0.022722899854908
719 => 0.023922258977965
720 => 0.024404651138877
721 => 0.024994511142025
722 => 0.025224294855939
723 => 0.0259158614528
724 => 0.025357365259542
725 => 0.025236531095025
726 => 0.02355901674075
727 => 0.023833709622286
728 => 0.024273519429547
729 => 0.023566269042479
730 => 0.024014856626475
731 => 0.02410341731794
801 => 0.02354223694496
802 => 0.023841987629341
803 => 0.023045938681508
804 => 0.021395315347715
805 => 0.0220010802479
806 => 0.022447127112697
807 => 0.02181056323945
808 => 0.022951579343821
809 => 0.022285021291
810 => 0.022073754388686
811 => 0.021249526880666
812 => 0.021638530537025
813 => 0.022164663552246
814 => 0.021839574518368
815 => 0.02251418307603
816 => 0.02346960870521
817 => 0.024150501905144
818 => 0.02420277243035
819 => 0.023765003719094
820 => 0.024466530872685
821 => 0.024471640732124
822 => 0.023680315237052
823 => 0.023195632777439
824 => 0.023085511902834
825 => 0.023360615438066
826 => 0.023694641916751
827 => 0.024221308575211
828 => 0.024539562206654
829 => 0.025369398888772
830 => 0.025593928901671
831 => 0.0258406193126
901 => 0.026170273778107
902 => 0.026566108485619
903 => 0.025700044680466
904 => 0.02573445500999
905 => 0.024927988386102
906 => 0.024066163139464
907 => 0.024720181073628
908 => 0.025575222522188
909 => 0.025379075069152
910 => 0.025357004473756
911 => 0.025394121093339
912 => 0.025246232319326
913 => 0.024577336875481
914 => 0.024241421771089
915 => 0.024674837956838
916 => 0.024905179370428
917 => 0.025262418815024
918 => 0.025218381513068
919 => 0.026138591957632
920 => 0.02649615791067
921 => 0.026404677238773
922 => 0.026421511884008
923 => 0.027068867962407
924 => 0.02778886106052
925 => 0.028463229608359
926 => 0.029149226260024
927 => 0.028322230521537
928 => 0.027902333087539
929 => 0.028335560057339
930 => 0.028105683729052
1001 => 0.029426621297138
1002 => 0.029518080148355
1003 => 0.03083892219762
1004 => 0.032092558585318
1005 => 0.031305172031434
1006 => 0.032047642087077
1007 => 0.032850683986728
1008 => 0.034399882100006
1009 => 0.033878166676901
1010 => 0.033478540839125
1011 => 0.033100896353405
1012 => 0.033886714578815
1013 => 0.034897657172051
1014 => 0.035115404523947
1015 => 0.035468238419908
1016 => 0.035097276720781
1017 => 0.035544059227288
1018 => 0.037121397801442
1019 => 0.036695186995153
1020 => 0.036089899133416
1021 => 0.037335056448503
1022 => 0.037785674040407
1023 => 0.04094834429065
1024 => 0.044941346124974
1025 => 0.0432882171461
1026 => 0.042262066642775
1027 => 0.042503236351672
1028 => 0.043961345449925
1029 => 0.044429643814214
1030 => 0.043156647427949
1031 => 0.04360629127239
1101 => 0.046083873063266
1102 => 0.047413016203731
1103 => 0.04560786129124
1104 => 0.040627510481162
1105 => 0.036035399584065
1106 => 0.037253434179424
1107 => 0.037115346856324
1108 => 0.039777199405998
1109 => 0.03668502200838
1110 => 0.036737086345425
1111 => 0.039453983186875
1112 => 0.03872916168898
1113 => 0.037555043690513
1114 => 0.036043971944811
1115 => 0.03325061606566
1116 => 0.030776462865005
1117 => 0.035628847054942
1118 => 0.035419603425184
1119 => 0.035116587641126
1120 => 0.035790916478815
1121 => 0.039065265903056
1122 => 0.038989781550792
1123 => 0.038509588614147
1124 => 0.038873810724366
1125 => 0.037491193793604
1126 => 0.037847525658263
1127 => 0.036034672170237
1128 => 0.036854157658274
1129 => 0.037552524560612
1130 => 0.037692732055755
1201 => 0.038008626701484
1202 => 0.035309341540406
1203 => 0.036521241330881
1204 => 0.037233118918131
1205 => 0.034016830080606
1206 => 0.03716954322897
1207 => 0.035262352991119
1208 => 0.034615023979356
1209 => 0.035486567214582
1210 => 0.035146925968211
1211 => 0.034854922368984
1212 => 0.034691979343357
1213 => 0.03533194450659
1214 => 0.035302089366802
1215 => 0.034254982147866
1216 => 0.032889073466315
1217 => 0.033347517254267
1218 => 0.033180960328171
1219 => 0.032577336541725
1220 => 0.032984106091976
1221 => 0.031192898854032
1222 => 0.028111219900001
1223 => 0.030147071411413
1224 => 0.030068693342804
1225 => 0.030029171566449
1226 => 0.031559057710472
1227 => 0.031411994458203
1228 => 0.031145073215287
1229 => 0.032572434323777
1230 => 0.032051428318462
1231 => 0.03365704606239
]
'min_raw' => 0.014413235940617
'max_raw' => 0.047413016203731
'avg_raw' => 0.030913126072174
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.014413'
'max' => '$0.047413'
'avg' => '$0.030913'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.007851959336745
'max_diff' => 0.031342400001541
'year' => 2029
]
4 => [
'items' => [
101 => 0.034714609753385
102 => 0.034446377392747
103 => 0.035441021155777
104 => 0.033358078873215
105 => 0.034049948746343
106 => 0.034192542168304
107 => 0.032554820909262
108 => 0.031436055825036
109 => 0.031361446948774
110 => 0.029421662468052
111 => 0.030457879680261
112 => 0.031369707945422
113 => 0.030933012967142
114 => 0.030794768382909
115 => 0.03150102998216
116 => 0.031555912557143
117 => 0.030304584031329
118 => 0.030564774856267
119 => 0.031649813849382
120 => 0.030537434657564
121 => 0.02837626359397
122 => 0.027840263289672
123 => 0.027768750968632
124 => 0.026315075632654
125 => 0.02787608139299
126 => 0.02719466054625
127 => 0.029347260836427
128 => 0.028117707095305
129 => 0.028064703491003
130 => 0.027984580769162
131 => 0.026733342356914
201 => 0.027007284048847
202 => 0.02791790795533
203 => 0.028242828824075
204 => 0.028208936915467
205 => 0.027913445401399
206 => 0.028048719903378
207 => 0.027612953599742
208 => 0.027459075448238
209 => 0.026973393674568
210 => 0.026259575640288
211 => 0.026358836416055
212 => 0.024944576109498
213 => 0.024174012034009
214 => 0.023960730053786
215 => 0.023675520476163
216 => 0.023992945234492
217 => 0.024940569687741
218 => 0.02379753354738
219 => 0.021837878259392
220 => 0.02195565688129
221 => 0.022220270475909
222 => 0.021727164792931
223 => 0.021260481647216
224 => 0.021666224779215
225 => 0.020835893000016
226 => 0.022320612104468
227 => 0.02228045461357
228 => 0.022833866081296
301 => 0.023179925629212
302 => 0.022382370409375
303 => 0.022181787428405
304 => 0.022296048610354
305 => 0.020407565792666
306 => 0.022679536745523
307 => 0.022699184844669
308 => 0.022530945891074
309 => 0.023740700284237
310 => 0.026293659385668
311 => 0.025333133479167
312 => 0.024961188816121
313 => 0.024254121739781
314 => 0.025196246637516
315 => 0.025123906144808
316 => 0.024796755002464
317 => 0.024598892970801
318 => 0.024963459830921
319 => 0.024553719102349
320 => 0.024480118408576
321 => 0.024034178282651
322 => 0.023874997946679
323 => 0.023757147163077
324 => 0.02362740503011
325 => 0.02391358384571
326 => 0.023265064999602
327 => 0.022483014846283
328 => 0.022417995837934
329 => 0.022597519036514
330 => 0.022518093385073
331 => 0.022417615578472
401 => 0.022225776082169
402 => 0.022168861401619
403 => 0.022353806502331
404 => 0.022145014266596
405 => 0.022453098583925
406 => 0.022369316696694
407 => 0.021901317885221
408 => 0.021318018090774
409 => 0.021312825499091
410 => 0.021187154515181
411 => 0.021027093622412
412 => 0.020982568343741
413 => 0.021632054224348
414 => 0.022976470559727
415 => 0.022712529463936
416 => 0.022903253955417
417 => 0.023841429686535
418 => 0.024139647539529
419 => 0.02392797957115
420 => 0.023638235400923
421 => 0.023650982673936
422 => 0.024641126215129
423 => 0.024702880253259
424 => 0.024858912785004
425 => 0.025059458683085
426 => 0.023962133404779
427 => 0.023599298752009
428 => 0.023427367564226
429 => 0.0228978860516
430 => 0.023468886468653
501 => 0.023136188978312
502 => 0.023181081236324
503 => 0.023151845094401
504 => 0.02316781000483
505 => 0.02232019709522
506 => 0.022629022690259
507 => 0.022115540240797
508 => 0.021428044882078
509 => 0.021425740156569
510 => 0.021594003671641
511 => 0.021493913948724
512 => 0.021224575077896
513 => 0.021262833393254
514 => 0.020927650293431
515 => 0.021303530690258
516 => 0.021314309595074
517 => 0.021169575167952
518 => 0.021748670780764
519 => 0.02198592672583
520 => 0.021890659425386
521 => 0.021979242518068
522 => 0.022723497408089
523 => 0.02284484342928
524 => 0.022898737316224
525 => 0.02282652664729
526 => 0.021992846131209
527 => 0.022029823407181
528 => 0.02175850869091
529 => 0.021529276346102
530 => 0.021538444437729
531 => 0.021656299661079
601 => 0.022170980333568
602 => 0.023254095466737
603 => 0.023295198894294
604 => 0.023345017447564
605 => 0.023142380354614
606 => 0.023081263068405
607 => 0.023161892544625
608 => 0.023568653641155
609 => 0.024614953615991
610 => 0.024245121324858
611 => 0.023944441915385
612 => 0.02420821882008
613 => 0.024167612433154
614 => 0.023824853662674
615 => 0.02381523356558
616 => 0.023157369898423
617 => 0.022914172679505
618 => 0.022710938880382
619 => 0.022489012877291
620 => 0.022357447703633
621 => 0.022559591605675
622 => 0.022605824307768
623 => 0.022163833133082
624 => 0.022103591369186
625 => 0.022464530903477
626 => 0.022305694871617
627 => 0.022469061669329
628 => 0.022506964167732
629 => 0.022500860992521
630 => 0.022335017933058
701 => 0.022440721353648
702 => 0.022190701252245
703 => 0.021918841943774
704 => 0.021745412642403
705 => 0.021594072574899
706 => 0.021678044840287
707 => 0.021378699046909
708 => 0.021282932302966
709 => 0.022404911413154
710 => 0.023233729445158
711 => 0.023221678102725
712 => 0.023148318655016
713 => 0.023039321396141
714 => 0.023560679812766
715 => 0.023379048965305
716 => 0.023511200582598
717 => 0.023544838715585
718 => 0.02364665121298
719 => 0.023683040429719
720 => 0.023573046942798
721 => 0.02320389536612
722 => 0.022284004734917
723 => 0.021855793162895
724 => 0.0217144762117
725 => 0.021719612814477
726 => 0.021577922379087
727 => 0.021619656562429
728 => 0.021563408933281
729 => 0.021456889531437
730 => 0.021671467567387
731 => 0.021696195687097
801 => 0.02164611060949
802 => 0.021657907458373
803 => 0.021243224407402
804 => 0.021274751859123
805 => 0.021099203001625
806 => 0.021066289707118
807 => 0.020622517482151
808 => 0.01983631065981
809 => 0.02027194555833
810 => 0.019745759860454
811 => 0.019546485363655
812 => 0.020489819837962
813 => 0.020395135220767
814 => 0.020233076314543
815 => 0.019993357416202
816 => 0.019904443344972
817 => 0.019364229594952
818 => 0.019332310884672
819 => 0.01960005540618
820 => 0.019476500522031
821 => 0.019302982670791
822 => 0.018674518602823
823 => 0.017967916913124
824 => 0.017989244776596
825 => 0.018214001627298
826 => 0.018867512483302
827 => 0.018612174486009
828 => 0.018426923839306
829 => 0.018392231961793
830 => 0.018826473441238
831 => 0.019441016111055
901 => 0.019729345782116
902 => 0.019443619834797
903 => 0.019115393251094
904 => 0.019135370882389
905 => 0.019268273113254
906 => 0.019282239258582
907 => 0.019068597494829
908 => 0.019128736399912
909 => 0.019037379903875
910 => 0.018476725256326
911 => 0.018466584791607
912 => 0.018328991099321
913 => 0.018324824817002
914 => 0.018090743622068
915 => 0.01805799404477
916 => 0.017593211624517
917 => 0.017899132821018
918 => 0.017693936943989
919 => 0.017384658356491
920 => 0.017331338611432
921 => 0.01732973575551
922 => 0.017647295711444
923 => 0.017895421948041
924 => 0.017697506414122
925 => 0.01765244488348
926 => 0.018133584140158
927 => 0.018072354784064
928 => 0.018019330556574
929 => 0.019385990555336
930 => 0.018304172524506
1001 => 0.01783243811505
1002 => 0.017248577203413
1003 => 0.017438685260324
1004 => 0.017478743821184
1005 => 0.016074663577536
1006 => 0.015505028397556
1007 => 0.015309551070035
1008 => 0.015197051104404
1009 => 0.015248318751428
1010 => 0.014735580277903
1011 => 0.015080149012023
1012 => 0.014636160834655
1013 => 0.014561724771856
1014 => 0.015355630632572
1015 => 0.01546609799516
1016 => 0.014994809906841
1017 => 0.015297453154152
1018 => 0.015187710505621
1019 => 0.014643771737632
1020 => 0.014622997277638
1021 => 0.014350067924233
1022 => 0.013922986335691
1023 => 0.013727798589599
1024 => 0.013626143116736
1025 => 0.013668088146065
1026 => 0.013646879455697
1027 => 0.013508478404937
1028 => 0.01365481244192
1029 => 0.013280989446826
1030 => 0.013132130118083
1031 => 0.0130648938128
1101 => 0.012733104388206
1102 => 0.013261128910163
1103 => 0.013365156392866
1104 => 0.013469388841846
1105 => 0.0143766611477
1106 => 0.014331336387224
1107 => 0.014741050147869
1108 => 0.014725129424546
1109 => 0.014608272423087
1110 => 0.014115271955976
1111 => 0.014311773155278
1112 => 0.013706973006892
1113 => 0.014160130400475
1114 => 0.013953328290349
1115 => 0.014090210399017
1116 => 0.01384408402547
1117 => 0.0139803005229
1118 => 0.01338982516818
1119 => 0.012838447590155
1120 => 0.013060338023267
1121 => 0.013301558300309
1122 => 0.013824585322719
1123 => 0.013513074743051
1124 => 0.013625105727019
1125 => 0.013249820684487
1126 => 0.01247550044687
1127 => 0.012479883015324
1128 => 0.01236077071625
1129 => 0.01225784029917
1130 => 0.013548855480413
1201 => 0.013388297334696
1202 => 0.013132468942825
1203 => 0.01347490541156
1204 => 0.013565451049091
1205 => 0.013568028756099
1206 => 0.013817861564123
1207 => 0.01395119737855
1208 => 0.013974698393754
1209 => 0.014367815715175
1210 => 0.014499583455972
1211 => 0.015042316131848
1212 => 0.013939884766262
1213 => 0.013917180917763
1214 => 0.013479724194924
1215 => 0.013202282225383
1216 => 0.013498720883941
1217 => 0.013761325067511
1218 => 0.013487884038914
1219 => 0.013523589664594
1220 => 0.013156517424656
1221 => 0.013287728478079
1222 => 0.013400745113325
1223 => 0.013338343970153
1224 => 0.013244926438575
1225 => 0.013739794519157
1226 => 0.013711872122646
1227 => 0.014172704656252
1228 => 0.014531956570648
1229 => 0.015175800225206
1230 => 0.014503915807345
1231 => 0.01447942966866
]
'min_raw' => 0.01225784029917
'max_raw' => 0.035441021155777
'avg_raw' => 0.023849430727473
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.012257'
'max' => '$0.035441'
'avg' => '$0.023849'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0021553956414469
'max_diff' => -0.011971995047953
'year' => 2030
]
5 => [
'items' => [
101 => 0.014718785602011
102 => 0.014499546811826
103 => 0.014638098159357
104 => 0.015153477461123
105 => 0.015164366613646
106 => 0.014981959279017
107 => 0.014970859776128
108 => 0.015005893100061
109 => 0.015211084372582
110 => 0.015139384237072
111 => 0.01522235744911
112 => 0.015326116721293
113 => 0.015755309064065
114 => 0.015858785884883
115 => 0.015607390856875
116 => 0.015630089013153
117 => 0.01553606037173
118 => 0.015445229882291
119 => 0.015649403557823
120 => 0.0160225349629
121 => 0.016020213731794
122 => 0.016106772965134
123 => 0.01616069865041
124 => 0.015929210133194
125 => 0.015778519620555
126 => 0.015836303951787
127 => 0.015928702355806
128 => 0.015806340394678
129 => 0.015051065687021
130 => 0.015280167786189
131 => 0.015242033994367
201 => 0.015187726837585
202 => 0.015418090769893
203 => 0.015395871606645
204 => 0.014730321403756
205 => 0.014772927768373
206 => 0.014732912437906
207 => 0.014862210157013
208 => 0.014492564310675
209 => 0.014606264883406
210 => 0.014677576816746
211 => 0.014719580093327
212 => 0.014871324730255
213 => 0.014853519248542
214 => 0.014870217916512
215 => 0.015095215153978
216 => 0.016233173971351
217 => 0.016295110559016
218 => 0.015990112149111
219 => 0.01611195299804
220 => 0.01587804521176
221 => 0.016035069075736
222 => 0.016142500815495
223 => 0.015657037441461
224 => 0.015628291451082
225 => 0.015393418244162
226 => 0.015519625801663
227 => 0.015318820503035
228 => 0.015368091099447
301 => 0.015230326216546
302 => 0.015478275577054
303 => 0.015755521489537
304 => 0.015825564755803
305 => 0.015641311077779
306 => 0.015507899271981
307 => 0.015273672089579
308 => 0.015663197114006
309 => 0.015777106101708
310 => 0.015662598798586
311 => 0.015636064954419
312 => 0.015585783367667
313 => 0.015646732430744
314 => 0.015776485728898
315 => 0.015715296469656
316 => 0.015755713053401
317 => 0.015601686713564
318 => 0.015929286765525
319 => 0.016449594489285
320 => 0.016451267363696
321 => 0.016390077774621
322 => 0.01636504031312
323 => 0.016427824544805
324 => 0.016461882414951
325 => 0.016664915107563
326 => 0.016882777275915
327 => 0.017899444954905
328 => 0.017613968738906
329 => 0.018516016785536
330 => 0.019229419674141
331 => 0.019443338007107
401 => 0.019246543206414
402 => 0.018573318823891
403 => 0.018540287223898
404 => 0.01954636867939
405 => 0.019262104586764
406 => 0.019228292277467
407 => 0.018868586433344
408 => 0.019081217137656
409 => 0.019034711683519
410 => 0.018961300549038
411 => 0.019366985120882
412 => 0.020126390423663
413 => 0.020008029985567
414 => 0.019919679409111
415 => 0.019532552901546
416 => 0.019765689526936
417 => 0.019682674040073
418 => 0.020039361254567
419 => 0.01982806765029
420 => 0.019259951006681
421 => 0.019350425454712
422 => 0.019336750423902
423 => 0.019618181588962
424 => 0.019533702938762
425 => 0.019320254611616
426 => 0.020123794858896
427 => 0.020071617424764
428 => 0.020145593096942
429 => 0.020178159475608
430 => 0.02066726026416
501 => 0.020867629207751
502 => 0.020913116465898
503 => 0.021103451465218
504 => 0.020908380757723
505 => 0.02168880267076
506 => 0.022207737704048
507 => 0.022810507449364
508 => 0.023691316056506
509 => 0.024022508240726
510 => 0.023962681337033
511 => 0.024630500370438
512 => 0.025830556328684
513 => 0.024205246957108
514 => 0.025916701671937
515 => 0.025374874868917
516 => 0.024090213266004
517 => 0.024007496203942
518 => 0.024877483956662
519 => 0.026807033058978
520 => 0.026323702893612
521 => 0.02680782361398
522 => 0.026243071078085
523 => 0.02621502635457
524 => 0.026780394843863
525 => 0.028101409135728
526 => 0.027473844763143
527 => 0.026574077349945
528 => 0.027238451605919
529 => 0.02666290914046
530 => 0.025366050881588
531 => 0.026323333300144
601 => 0.025683225808689
602 => 0.025870043204681
603 => 0.027215453942916
604 => 0.027053570563377
605 => 0.027263062646498
606 => 0.026893314603151
607 => 0.02654791162675
608 => 0.025903191321335
609 => 0.025712321423229
610 => 0.025765070996286
611 => 0.02571229528316
612 => 0.025351580197566
613 => 0.025273683809176
614 => 0.025143853082474
615 => 0.025184093053508
616 => 0.024939973303989
617 => 0.025400677709046
618 => 0.025486188506338
619 => 0.025821450752779
620 => 0.025856258791395
621 => 0.026789959375575
622 => 0.026275692784009
623 => 0.026620707213273
624 => 0.026589845875318
625 => 0.024118055778374
626 => 0.024458646644944
627 => 0.024988499150026
628 => 0.024749801314684
629 => 0.024412338422204
630 => 0.02413981904291
701 => 0.023726924316742
702 => 0.024308065714882
703 => 0.025072204855938
704 => 0.025875638621033
705 => 0.02684091164673
706 => 0.026625473944411
707 => 0.025857593513248
708 => 0.025892040068453
709 => 0.02610497511851
710 => 0.025829204881497
711 => 0.025747874854927
712 => 0.026093801621767
713 => 0.026096183829292
714 => 0.025778876843662
715 => 0.025426248195699
716 => 0.025424770668788
717 => 0.025362023806872
718 => 0.026254233605427
719 => 0.026744858782047
720 => 0.026801108167865
721 => 0.02674107275021
722 => 0.026764177999745
723 => 0.026478694019658
724 => 0.027131225740493
725 => 0.027730053376229
726 => 0.027569554777765
727 => 0.027328944562448
728 => 0.027137286936589
729 => 0.02752440633208
730 => 0.027507168514781
731 => 0.027724823139237
801 => 0.027714949068238
802 => 0.027641760004438
803 => 0.027569557391577
804 => 0.027855832590155
805 => 0.027773389930404
806 => 0.027690819214431
807 => 0.027525211002602
808 => 0.027547719909051
809 => 0.027307151238479
810 => 0.027195853163799
811 => 0.025522197162036
812 => 0.025074941590078
813 => 0.025215657297743
814 => 0.025261984562388
815 => 0.025067338364298
816 => 0.025346411011853
817 => 0.025302917835343
818 => 0.025472124342487
819 => 0.025366411462916
820 => 0.025370749956368
821 => 0.025681628994825
822 => 0.025771878502263
823 => 0.025725976874378
824 => 0.025758124801133
825 => 0.026498960204423
826 => 0.026393637100658
827 => 0.02633768630095
828 => 0.026353185054844
829 => 0.026542484384075
830 => 0.026595477860899
831 => 0.026370940775808
901 => 0.026476833763171
902 => 0.026927712663538
903 => 0.027085494761131
904 => 0.027589059476944
905 => 0.027375136235517
906 => 0.027767801603537
907 => 0.02897472107534
908 => 0.029938891861891
909 => 0.029052200560536
910 => 0.030822777423628
911 => 0.032201425485711
912 => 0.03214851067683
913 => 0.031908111498502
914 => 0.030338557333075
915 => 0.028894230189315
916 => 0.03010247117444
917 => 0.030105551229188
918 => 0.03000176225703
919 => 0.029357137864792
920 => 0.029979330725484
921 => 0.030028718135294
922 => 0.030001074318973
923 => 0.029506842308846
924 => 0.028752241378725
925 => 0.028899688594211
926 => 0.029141210141019
927 => 0.028683959466239
928 => 0.028537840169851
929 => 0.02880950374217
930 => 0.029684860375532
1001 => 0.029519379274591
1002 => 0.029515057894284
1003 => 0.030223056219019
1004 => 0.02971628221411
1005 => 0.02890154837579
1006 => 0.028695817336595
1007 => 0.027965610744487
1008 => 0.028469967038563
1009 => 0.028488117923698
1010 => 0.02821188713583
1011 => 0.028923962981831
1012 => 0.028917401077551
1013 => 0.029593411114827
1014 => 0.030885688408322
1015 => 0.030503498423532
1016 => 0.030059053053373
1017 => 0.030107376588243
1018 => 0.030637366493115
1019 => 0.030316922498137
1020 => 0.030432156392946
1021 => 0.030637192072814
1022 => 0.030760895189228
1023 => 0.030089577613473
1024 => 0.029933061373733
1025 => 0.02961288407696
1026 => 0.029529355796625
1027 => 0.029790133524128
1028 => 0.029721427806344
1029 => 0.028486592412086
1030 => 0.028357545242827
1031 => 0.028361502935272
1101 => 0.028037007692311
1102 => 0.027542074559014
1103 => 0.028842729282396
1104 => 0.028738268505457
1105 => 0.028622951892339
1106 => 0.028637077519459
1107 => 0.0292016476516
1108 => 0.028874168463483
1109 => 0.029744825557876
1110 => 0.029565844633616
1111 => 0.029382273524007
1112 => 0.029356898404946
1113 => 0.029286239189297
1114 => 0.029043922447702
1115 => 0.028751310421247
1116 => 0.028558102615762
1117 => 0.026343340087448
1118 => 0.026754387130022
1119 => 0.027227259284387
1120 => 0.027390492857157
1121 => 0.027111270535514
1122 => 0.029054947846841
1123 => 0.029410076421361
1124 => 0.028334368804676
1125 => 0.028133147830447
1126 => 0.029068139860412
1127 => 0.028504225368216
1128 => 0.028758156029523
1129 => 0.028209296832423
1130 => 0.029324536347137
1201 => 0.029316040090572
1202 => 0.028882186730522
1203 => 0.029248876619537
1204 => 0.029185155227526
1205 => 0.028695335852562
1206 => 0.029340064494999
1207 => 0.029340384272362
1208 => 0.028922809846098
1209 => 0.028435174335019
1210 => 0.028347996623074
1211 => 0.028282319927802
1212 => 0.02874200358854
1213 => 0.029154154521365
1214 => 0.02992106522647
1215 => 0.030113884799082
1216 => 0.030866472427714
1217 => 0.03041834313769
1218 => 0.030616993047712
1219 => 0.030832655625786
1220 => 0.030936052196443
1221 => 0.030767573033123
1222 => 0.031936651397814
1223 => 0.03203535743143
1224 => 0.032068452710697
1225 => 0.031674246063868
1226 => 0.032024393831467
1227 => 0.031860571286683
1228 => 0.032286792036997
1229 => 0.032353628892906
1230 => 0.032297020453741
1231 => 0.032318235526755
]
'min_raw' => 0.014492564310675
'max_raw' => 0.032353628892906
'avg_raw' => 0.023423096601791
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.014492'
'max' => '$0.032353'
'avg' => '$0.023423'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0022347240115053
'max_diff' => -0.0030873922628711
'year' => 2031
]
6 => [
'items' => [
101 => 0.031320633382047
102 => 0.031268902448073
103 => 0.030563547492682
104 => 0.030850984850725
105 => 0.030313634487096
106 => 0.030484033822724
107 => 0.030559144226245
108 => 0.030519910813924
109 => 0.030867236127681
110 => 0.030571938657114
111 => 0.029792600080888
112 => 0.029013049174388
113 => 0.029003262547765
114 => 0.028798020554301
115 => 0.028649668184972
116 => 0.028678246114387
117 => 0.028778958465127
118 => 0.028643814600062
119 => 0.028672654395641
120 => 0.029151587160814
121 => 0.029247633711277
122 => 0.028921230004993
123 => 0.027610672024434
124 => 0.027289057808719
125 => 0.027520227729088
126 => 0.027409743396402
127 => 0.022121802163657
128 => 0.023364125519149
129 => 0.022625979166631
130 => 0.022966150966352
131 => 0.022212694682502
201 => 0.022572283513182
202 => 0.022505880586237
203 => 0.024503499778848
204 => 0.024472309702791
205 => 0.024487238741658
206 => 0.023774636819155
207 => 0.024909831030952
208 => 0.025469068519947
209 => 0.025365568544358
210 => 0.025391617258394
211 => 0.024944014047731
212 => 0.024491572519149
213 => 0.023989745233699
214 => 0.024922078302338
215 => 0.024818418780562
216 => 0.025056176427998
217 => 0.025660861067555
218 => 0.025749903177703
219 => 0.025869576676718
220 => 0.025826682246261
221 => 0.02684860160368
222 => 0.026724840426655
223 => 0.027023069254764
224 => 0.026409589928669
225 => 0.025715379839201
226 => 0.025847326481772
227 => 0.025834618959044
228 => 0.025672837609709
229 => 0.025526788641262
301 => 0.025283658257839
302 => 0.026052958767515
303 => 0.02602172657173
304 => 0.026527339518035
305 => 0.026437967518513
306 => 0.02584111943267
307 => 0.025862435978819
308 => 0.026005799996054
309 => 0.026501984496604
310 => 0.026649285839184
311 => 0.026581049988357
312 => 0.026742559185935
313 => 0.026870209470439
314 => 0.02675859009633
315 => 0.028338885049289
316 => 0.027682636407041
317 => 0.028002487429124
318 => 0.028078770013219
319 => 0.027883373778109
320 => 0.02792574822489
321 => 0.027989933965417
322 => 0.028379657213042
323 => 0.02940240378214
324 => 0.029855371275522
325 => 0.031218146328384
326 => 0.029817758630809
327 => 0.029734665420215
328 => 0.029980142359099
329 => 0.030780235579519
330 => 0.031428635985734
331 => 0.031643747807593
401 => 0.031672178385961
402 => 0.032075742464131
403 => 0.032307057867713
404 => 0.032026739170252
405 => 0.031789198424744
406 => 0.030938356958979
407 => 0.031036844175406
408 => 0.031715323431513
409 => 0.032673715342992
410 => 0.033496115306725
411 => 0.033208139502958
412 => 0.035405191606465
413 => 0.035623020348374
414 => 0.035592923459489
415 => 0.036089169750822
416 => 0.035104221921326
417 => 0.03468313764175
418 => 0.031840557430125
419 => 0.032639206522252
420 => 0.033800089880674
421 => 0.033646442615098
422 => 0.03280337808971
423 => 0.033495475766683
424 => 0.033266646630781
425 => 0.033086159597165
426 => 0.033913005687293
427 => 0.033003854446232
428 => 0.03379102040158
429 => 0.032781471921656
430 => 0.033209454952173
501 => 0.032966511084842
502 => 0.033123725541085
503 => 0.032204653042304
504 => 0.032700562253423
505 => 0.032184021588723
506 => 0.032183776681193
507 => 0.03217237401739
508 => 0.032780081818717
509 => 0.032799899148301
510 => 0.032350802164925
511 => 0.032286080273407
512 => 0.032525391028465
513 => 0.032245220809878
514 => 0.032376310691785
515 => 0.032249191388857
516 => 0.032220574156226
517 => 0.031992547177802
518 => 0.031894306885764
519 => 0.031932829435612
520 => 0.031801332113244
521 => 0.031722100220051
522 => 0.032156612799596
523 => 0.031924470256533
524 => 0.032121033625479
525 => 0.03189702485829
526 => 0.031120512875238
527 => 0.030673932622319
528 => 0.029207173469033
529 => 0.029623144545396
530 => 0.029898933799378
531 => 0.029807785452582
601 => 0.030003607371227
602 => 0.030015629246632
603 => 0.029951965544713
604 => 0.029878251133715
605 => 0.029842371035104
606 => 0.030109791894137
607 => 0.030265038703779
608 => 0.029926612940599
609 => 0.029847324519366
610 => 0.030189491650939
611 => 0.030398213403535
612 => 0.031939297554081
613 => 0.031825129062572
614 => 0.032111669571824
615 => 0.032079409507805
616 => 0.032379749610984
617 => 0.032870678746483
618 => 0.031872482548068
619 => 0.032045734893085
620 => 0.032003257419068
621 => 0.032467015342197
622 => 0.032468463143812
623 => 0.03219041710247
624 => 0.032341150372263
625 => 0.032257015196215
626 => 0.032409058830885
627 => 0.031823604272763
628 => 0.032536624728641
629 => 0.032940861381101
630 => 0.032946474207413
701 => 0.033138079172458
702 => 0.033332760913956
703 => 0.033706435563554
704 => 0.033322339330791
705 => 0.032631387599064
706 => 0.032681272082334
707 => 0.032276167334833
708 => 0.032282977218826
709 => 0.032246625524368
710 => 0.032355719695865
711 => 0.031847544308509
712 => 0.031966812056195
713 => 0.031799836511004
714 => 0.032045371920859
715 => 0.031781216408312
716 => 0.032003236935143
717 => 0.032099053634427
718 => 0.032452619317569
719 => 0.031728994469436
720 => 0.030253474418998
721 => 0.030563646622551
722 => 0.030104877569995
723 => 0.030147338392466
724 => 0.030233116011447
725 => 0.029955082683638
726 => 0.030008122680747
727 => 0.030006227718813
728 => 0.029989897960612
729 => 0.029917570753893
730 => 0.029812681994647
731 => 0.030230526528423
801 => 0.030301526456947
802 => 0.030459350503024
803 => 0.030928927811079
804 => 0.030882005964609
805 => 0.03095853744297
806 => 0.030791469655413
807 => 0.030155088187969
808 => 0.030189646763374
809 => 0.0297587007743
810 => 0.030448330245185
811 => 0.030285016883815
812 => 0.030179727697324
813 => 0.030150998567292
814 => 0.030621739866667
815 => 0.030762593041405
816 => 0.030674822795213
817 => 0.030494803459606
818 => 0.030840493801911
819 => 0.030932985954007
820 => 0.030953691535882
821 => 0.031566188542898
822 => 0.030987923314581
823 => 0.031127117502499
824 => 0.032213070821901
825 => 0.031228261012518
826 => 0.031749936732428
827 => 0.031724403420608
828 => 0.03199127506637
829 => 0.031702512156255
830 => 0.031706091718606
831 => 0.031943055660591
901 => 0.031610282540745
902 => 0.031527883236472
903 => 0.031414049187774
904 => 0.03166260166857
905 => 0.031811597639746
906 => 0.033012395741941
907 => 0.033788166079006
908 => 0.033754487842725
909 => 0.034062243879314
910 => 0.033923596966108
911 => 0.03347586951016
912 => 0.034240085682917
913 => 0.033998255709694
914 => 0.034018191878863
915 => 0.034017449853651
916 => 0.034178245644701
917 => 0.034064307090024
918 => 0.033839722503203
919 => 0.033988812232859
920 => 0.034431555429382
921 => 0.035805843896409
922 => 0.036574913929458
923 => 0.035759544914747
924 => 0.036321975542869
925 => 0.035984717580519
926 => 0.035923427776205
927 => 0.036276675773963
928 => 0.036630542085578
929 => 0.036608002331334
930 => 0.036351113560338
1001 => 0.036206003611913
1002 => 0.037304824756783
1003 => 0.038114417458394
1004 => 0.038059208663723
1005 => 0.038302882328541
1006 => 0.03901831574499
1007 => 0.039083726010486
1008 => 0.039075485820472
1009 => 0.038913359652583
1010 => 0.039617796761846
1011 => 0.040205450591785
1012 => 0.038875832128992
1013 => 0.03938213343364
1014 => 0.039609428401305
1015 => 0.039943164849216
1016 => 0.040506234177566
1017 => 0.041117876814916
1018 => 0.041204369790158
1019 => 0.041142998885154
1020 => 0.040739604123985
1021 => 0.041408870796188
1022 => 0.04180091151653
1023 => 0.042034362793801
1024 => 0.042626356390373
1025 => 0.039610832097645
1026 => 0.037476294121971
1027 => 0.037142955193967
1028 => 0.037820813011968
1029 => 0.037999558712761
1030 => 0.037927506544899
1031 => 0.035524889989575
1101 => 0.037130305915036
1102 => 0.038857598463627
1103 => 0.038923950805039
1104 => 0.039788669570848
1105 => 0.040070257447015
1106 => 0.04076646939477
1107 => 0.04072292114788
1108 => 0.040892437678007
1109 => 0.040853468763348
1110 => 0.042143054791843
1111 => 0.043565659686652
1112 => 0.043516399402751
1113 => 0.043311883117625
1114 => 0.043615624676246
1115 => 0.045083905383294
1116 => 0.044948729624508
1117 => 0.045080041359924
1118 => 0.046811227062208
1119 => 0.049062014733472
1120 => 0.048016297884783
1121 => 0.050285202549522
1122 => 0.051713357766506
1123 => 0.054183204540276
1124 => 0.053873967559948
1125 => 0.054835460784404
1126 => 0.053320368825456
1127 => 0.049841411437108
1128 => 0.049290853113488
1129 => 0.050393084819732
1130 => 0.053102813915338
1201 => 0.050307745807404
1202 => 0.050873184445335
1203 => 0.050710338079572
1204 => 0.050701660688793
1205 => 0.051032841401329
1206 => 0.050552446504571
1207 => 0.048595231273787
1208 => 0.049492211480114
1209 => 0.049145844345924
1210 => 0.049530164504688
1211 => 0.051604181895848
1212 => 0.050687209368817
1213 => 0.049721253300388
1214 => 0.050932776573009
1215 => 0.05247546202362
1216 => 0.052378923540593
1217 => 0.052191598533565
1218 => 0.053247539790162
1219 => 0.0549916453843
1220 => 0.055463070118012
1221 => 0.055811066218584
1222 => 0.05585904900141
1223 => 0.056353301485657
1224 => 0.053695581310199
1225 => 0.057913451483746
1226 => 0.058641761146405
1227 => 0.058504869115168
1228 => 0.059314354653258
1229 => 0.059076183473286
1230 => 0.058731110801419
1231 => 0.060014317561804
]
'min_raw' => 0.022121802163657
'max_raw' => 0.060014317561804
'avg_raw' => 0.041068059862731
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.022121'
'max' => '$0.060014'
'avg' => '$0.041068'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.007629237852982
'max_diff' => 0.027660688668898
'year' => 2032
]
7 => [
'items' => [
101 => 0.058543224560469
102 => 0.056455193250533
103 => 0.055309657977325
104 => 0.056818191232779
105 => 0.05773939985133
106 => 0.05834826014832
107 => 0.058532500906305
108 => 0.053901892561861
109 => 0.051406251489518
110 => 0.053005928804307
111 => 0.05495764553218
112 => 0.053684739425231
113 => 0.053734634934693
114 => 0.051919805340025
115 => 0.05511821768168
116 => 0.054652235906382
117 => 0.057069750180931
118 => 0.056492790997546
119 => 0.058464180041077
120 => 0.057945047237474
121 => 0.060099938480906
122 => 0.060959582939263
123 => 0.06240305977782
124 => 0.06346488721627
125 => 0.06408841259765
126 => 0.064050978472537
127 => 0.066521696672677
128 => 0.065064800470374
129 => 0.063234595476209
130 => 0.063201492842088
131 => 0.064149381942771
201 => 0.066135897457127
202 => 0.066650972027374
203 => 0.066938828444378
204 => 0.066497966321383
205 => 0.064916609910474
206 => 0.064233788229903
207 => 0.064815572084998
208 => 0.064104100423473
209 => 0.065332300114956
210 => 0.067018880620661
211 => 0.066670608415695
212 => 0.067834830181008
213 => 0.069039677228407
214 => 0.070762662619253
215 => 0.071213114802384
216 => 0.071957695131938
217 => 0.072724112872946
218 => 0.072970265595821
219 => 0.073440247520492
220 => 0.07343777048376
221 => 0.074854092647189
222 => 0.076416339853298
223 => 0.077006052007499
224 => 0.078362062589164
225 => 0.07603994198834
226 => 0.077801297138664
227 => 0.079390083573835
228 => 0.077495866887848
301 => 0.080106603293598
302 => 0.080207972272177
303 => 0.081738523497931
304 => 0.080187016612494
305 => 0.079265736776507
306 => 0.081925437143097
307 => 0.083212382370713
308 => 0.082824743994648
309 => 0.079874796812721
310 => 0.078157801023653
311 => 0.073664091859908
312 => 0.078987084478153
313 => 0.081579758908676
314 => 0.07986808241229
315 => 0.080731352474791
316 => 0.085441074019542
317 => 0.087234231051896
318 => 0.08686126692428
319 => 0.086924291722335
320 => 0.087891846708891
321 => 0.092182518361542
322 => 0.089611448450283
323 => 0.091576935061289
324 => 0.092619422072677
325 => 0.093587742107287
326 => 0.091209854142975
327 => 0.088116256839517
328 => 0.087136384713132
329 => 0.079697889918181
330 => 0.079310683960358
331 => 0.079093333522691
401 => 0.077722969758029
402 => 0.07664623921323
403 => 0.075789983107564
404 => 0.07354291138658
405 => 0.07430123212893
406 => 0.070719868805997
407 => 0.073011098144286
408 => 0.067295155805844
409 => 0.072055562435442
410 => 0.069464689536082
411 => 0.071204391006699
412 => 0.071198321352158
413 => 0.067994979371898
414 => 0.066147358569725
415 => 0.067324734455347
416 => 0.068586974864948
417 => 0.068791769124719
418 => 0.070428296763611
419 => 0.070885016450583
420 => 0.069501134476857
421 => 0.067176705605775
422 => 0.06771661741795
423 => 0.066136417274084
424 => 0.06336717730348
425 => 0.065356093796659
426 => 0.066035197333916
427 => 0.066335128143643
428 => 0.063611898681914
429 => 0.062756200860851
430 => 0.062300634520917
501 => 0.066825170879117
502 => 0.067073035194383
503 => 0.065804926313002
504 => 0.071536898703862
505 => 0.07023957681695
506 => 0.07168900321621
507 => 0.067667626080083
508 => 0.067821248102185
509 => 0.065917463720515
510 => 0.066983455763332
511 => 0.066230046945996
512 => 0.066897334140611
513 => 0.067297303333735
514 => 0.069200775323121
515 => 0.072077297027972
516 => 0.068916460083104
517 => 0.067539238162206
518 => 0.068393658896141
519 => 0.070669093904857
520 => 0.074116494420438
521 => 0.072075563929813
522 => 0.072981294224305
523 => 0.073179156000515
524 => 0.071674249416082
525 => 0.074171982472782
526 => 0.075510537909415
527 => 0.07688361881238
528 => 0.078075826487572
529 => 0.07633518010504
530 => 0.078197921246207
531 => 0.076696880704501
601 => 0.075350292163873
602 => 0.075352334382842
603 => 0.074507599720786
604 => 0.072870819869636
605 => 0.072568972552375
606 => 0.074139220415878
607 => 0.07539841049938
608 => 0.075502123425771
609 => 0.076199275755521
610 => 0.076611843323027
611 => 0.080655566342993
612 => 0.082281985193055
613 => 0.084270739376378
614 => 0.085045471210826
615 => 0.087377136275781
616 => 0.085494127367252
617 => 0.085086726545211
618 => 0.07943086977946
619 => 0.080357016008005
620 => 0.081839865479724
621 => 0.079455321421082
622 => 0.080967765779907
623 => 0.081266354334291
624 => 0.079374295526426
625 => 0.080384925886742
626 => 0.077700991280762
627 => 0.072135799468035
628 => 0.074178178122164
629 => 0.075682056268824
630 => 0.073535836726702
701 => 0.07738285218579
702 => 0.075135505173109
703 => 0.07442320406177
704 => 0.071644263472757
705 => 0.072955816459539
706 => 0.074729710653791
707 => 0.073633650279078
708 => 0.075908140130901
709 => 0.079129424345369
710 => 0.081425103307391
711 => 0.081601337032536
712 => 0.080125369258501
713 => 0.082490617035892
714 => 0.082507845283751
715 => 0.079839836128533
716 => 0.078205695376499
717 => 0.077834415159375
718 => 0.078761945935524
719 => 0.079888139529397
720 => 0.081663832939087
721 => 0.082736847277254
722 => 0.085534699588362
723 => 0.086291718203035
724 => 0.087123452146859
725 => 0.088234905193056
726 => 0.089569489545727
727 => 0.086649494960012
728 => 0.086765511788453
729 => 0.084046453260312
730 => 0.081140749270557
731 => 0.083345816397665
801 => 0.086228648338573
802 => 0.085567323506082
803 => 0.085492910952787
804 => 0.085618052227109
805 => 0.085119434900261
806 => 0.082864207210549
807 => 0.081731645983247
808 => 0.08319293891365
809 => 0.083969551071494
810 => 0.085174008800611
811 => 0.085025533962479
812 => 0.088128087723369
813 => 0.089333646298496
814 => 0.089025212826218
815 => 0.089081972007983
816 => 0.091264578223266
817 => 0.093692085221865
818 => 0.095965765863813
819 => 0.098278651469659
820 => 0.09549037759835
821 => 0.094074664083324
822 => 0.095535319058947
823 => 0.094760274968674
824 => 0.099213908204393
825 => 0.099522268106723
826 => 0.10397557929407
827 => 0.10820230190129
828 => 0.10554757316129
829 => 0.1080508627915
830 => 0.11075837462277
831 => 0.11598160422324
901 => 0.11422260424923
902 => 0.11287523783619
903 => 0.11160198308629
904 => 0.11425142409733
905 => 0.11765988763219
906 => 0.11839403803174
907 => 0.11958364214605
908 => 0.11833291887772
909 => 0.11983927729177
910 => 0.12515738442079
911 => 0.1237203849303
912 => 0.12167961464461
913 => 0.12587774946653
914 => 0.12739703813875
915 => 0.13806020169803
916 => 0.15152288616494
917 => 0.14594924639489
918 => 0.14248950832938
919 => 0.14330262884086
920 => 0.14821874546755
921 => 0.1497976460983
922 => 0.14550564990423
923 => 0.1470216555189
924 => 0.15537499550607
925 => 0.15985629440196
926 => 0.15377008858261
927 => 0.13697848810944
928 => 0.12149586560893
929 => 0.12560255428764
930 => 0.12513698323686
1001 => 0.1341116049527
1002 => 0.1236861129677
1003 => 0.12386165151506
1004 => 0.13302185890369
1005 => 0.13057807261812
1006 => 0.12661945181198
1007 => 0.12152476792169
1008 => 0.11210677354925
1009 => 0.10376499329338
1010 => 0.1201251453724
1011 => 0.11941966586575
1012 => 0.11839802699391
1013 => 0.12067157375032
1014 => 0.13171127144192
1015 => 0.13145677067811
1016 => 0.12983776666621
1017 => 0.13106576693999
1018 => 0.1264041774267
1019 => 0.12760557518669
1020 => 0.12149341308242
1021 => 0.12425636561999
1022 => 0.12661095838964
1023 => 0.12708367774849
1024 => 0.12814873860163
1025 => 0.11904791022298
1026 => 0.12313391497871
1027 => 0.12553405996583
1028 => 0.114690117596
1029 => 0.12531971009111
1030 => 0.11888948504842
1031 => 0.1167069700902
1101 => 0.11964543895697
1102 => 0.11850031478183
1103 => 0.11751580426
1104 => 0.11696643047278
1105 => 0.11912411770156
1106 => 0.11902345901334
1107 => 0.11549306391801
1108 => 0.11088780743346
1109 => 0.11243348267207
1110 => 0.1118719243671
1111 => 0.10983676462743
1112 => 0.11120821656584
1113 => 0.10516903630502
1114 => 0.09477894055555
1115 => 0.10164295606489
1116 => 0.10137869893439
1117 => 0.10124544850609
1118 => 0.1064035664539
1119 => 0.10590773243125
1120 => 0.10500778882491
1121 => 0.10982023645736
1122 => 0.10806362833496
1123 => 0.11347708065926
1124 => 0.11704273048019
1125 => 0.11613836634892
1126 => 0.11949187723978
1127 => 0.11246909190774
1128 => 0.1148017794898
1129 => 0.1152825431675
1130 => 0.10976085160059
1201 => 0.10598885700944
1202 => 0.1057373079741
1203 => 0.099197189165914
1204 => 0.10269086784325
1205 => 0.10576516050106
1206 => 0.10429281289272
1207 => 0.10382671162505
1208 => 0.10620792191653
1209 => 0.10639296234987
1210 => 0.10217402086012
1211 => 0.10305127239234
1212 => 0.10670955711263
1213 => 0.10295909300358
1214 => 0.095672553874528
1215 => 0.093865391426239
1216 => 0.093624282643025
1217 => 0.088723114755402
1218 => 0.093986154662317
1219 => 0.091688696702249
1220 => 0.098946338870333
1221 => 0.094800812587439
1222 => 0.094622107234941
1223 => 0.094351967884266
1224 => 0.090133330218694
1225 => 0.091056943759044
1226 => 0.094127175837483
1227 => 0.09522266923171
1228 => 0.095108400295579
1229 => 0.094112130025339
1230 => 0.094568217453326
1231 => 0.093099000936387
]
'min_raw' => 0.051406251489518
'max_raw' => 0.15985629440196
'avg_raw' => 0.10563127294574
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.0514062'
'max' => '$0.159856'
'avg' => '$0.105631'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.029284449325861
'max_diff' => 0.099841976840155
'year' => 2033
]
8 => [
'items' => [
101 => 0.092580190005159
102 => 0.090942679996013
103 => 0.088535992656255
104 => 0.088870657291919
105 => 0.084102379927859
106 => 0.081504369348286
107 => 0.080785274261089
108 => 0.079823670257437
109 => 0.080893889992032
110 => 0.08408887199719
111 => 0.080235045845725
112 => 0.073627931223512
113 => 0.074025030070283
114 => 0.07491719327927
115 => 0.073254653041572
116 => 0.071681198233016
117 => 0.073049189530632
118 => 0.070249667965147
119 => 0.075255502085587
120 => 0.075120108301317
121 => 0.076985973702711
122 => 0.078152737629615
123 => 0.075463724522408
124 => 0.07478744499781
125 => 0.075172684550211
126 => 0.068805532880717
127 => 0.07646564157222
128 => 0.076531886510277
129 => 0.075964657132165
130 => 0.080043428531067
131 => 0.088650908383454
201 => 0.085412428227911
202 => 0.084158390828104
203 => 0.081774464814375
204 => 0.084950904684148
205 => 0.084707003662331
206 => 0.083603990744957
207 => 0.082936885090919
208 => 0.084166047713059
209 => 0.082784578239495
210 => 0.0825364283618
211 => 0.081032910092701
212 => 0.080496222476355
213 => 0.080098880331362
214 => 0.079661445671758
215 => 0.08062631752892
216 => 0.078439790961127
217 => 0.075803054268212
218 => 0.075583838142082
219 => 0.076189113140005
220 => 0.075921324010848
221 => 0.075582556070758
222 => 0.074935755815167
223 => 0.074743863996034
224 => 0.07536741931554
225 => 0.074663461715351
226 => 0.075702189500985
227 => 0.075419713018722
228 => 0.073841822351208
301 => 0.071875186369539
302 => 0.071857679184143
303 => 0.071433970687822
304 => 0.070894314212758
305 => 0.070744194127063
306 => 0.072933981119185
307 => 0.077466774658068
308 => 0.076576878825828
309 => 0.077219919764815
310 => 0.080383044743617
311 => 0.081388507055891
312 => 0.080674853722319
313 => 0.079697961023104
314 => 0.079740939344055
315 => 0.083079277422802
316 => 0.083287485473884
317 => 0.083813560048507
318 => 0.084489714545554
319 => 0.080790005756941
320 => 0.079566683392821
321 => 0.07898700538936
322 => 0.077201821502321
323 => 0.079126989274393
324 => 0.07800527645751
325 => 0.078156633839674
326 => 0.078058062145979
327 => 0.078111888956125
328 => 0.075254102852931
329 => 0.076295329908119
330 => 0.07456408797956
331 => 0.072246149378245
401 => 0.072238378835279
402 => 0.07280569102413
403 => 0.072468231535273
404 => 0.071560136727638
405 => 0.071689127308976
406 => 0.070559034086186
407 => 0.071826341087221
408 => 0.071862682917368
409 => 0.071374700691291
410 => 0.073327161981049
411 => 0.07412708696452
412 => 0.073805886609724
413 => 0.074104550691373
414 => 0.076613858015297
415 => 0.077022984597851
416 => 0.077204691600436
417 => 0.076961228288536
418 => 0.074150416222854
419 => 0.074275087690463
420 => 0.073360331181968
421 => 0.072587458326956
422 => 0.072618369187972
423 => 0.073015726301887
424 => 0.074751008123039
425 => 0.078402806415202
426 => 0.07854138949096
427 => 0.078709356221532
428 => 0.078026151114981
429 => 0.077820089917452
430 => 0.0780919378259
501 => 0.079463361262004
502 => 0.082991034677495
503 => 0.081744119287075
504 => 0.080730357665269
505 => 0.081619699915763
506 => 0.081482792647195
507 => 0.08032715752187
508 => 0.080294722692865
509 => 0.078076689408468
510 => 0.077256733005401
511 => 0.076571516062324
512 => 0.075823277048527
513 => 0.075379695879949
514 => 0.07606123815892
515 => 0.076217114941892
516 => 0.0747269108376
517 => 0.074523801524678
518 => 0.075740734364533
519 => 0.075205207593542
520 => 0.075756010157931
521 => 0.075883801077567
522 => 0.075863223796231
523 => 0.075304072342458
524 => 0.075660458804957
525 => 0.07481749857723
526 => 0.073900905938111
527 => 0.073316176940091
528 => 0.072805923336273
529 => 0.073089041691785
530 => 0.072079776449754
531 => 0.071756892186333
601 => 0.075539723090411
602 => 0.07833414095154
603 => 0.078293509009128
604 => 0.078046172509384
605 => 0.077678680641141
606 => 0.079436476942877
607 => 0.078824095859598
608 => 0.079269654263835
609 => 0.07938306757774
610 => 0.079726335521028
611 => 0.079849024305876
612 => 0.079478173585224
613 => 0.078233553271114
614 => 0.075132077783301
615 => 0.073688332571451
616 => 0.073211872604062
617 => 0.07322919101895
618 => 0.072751471823523
619 => 0.072892181536449
620 => 0.072702538727692
621 => 0.072343401127429
622 => 0.073066865956992
623 => 0.073150238539058
624 => 0.072981373203077
625 => 0.073021147102715
626 => 0.071623014244121
627 => 0.071729311248775
628 => 0.071137436019292
629 => 0.071026466548926
630 => 0.069530257509264
701 => 0.066879506316534
702 => 0.06834827979195
703 => 0.066574207974451
704 => 0.065902340095589
705 => 0.069082858137228
706 => 0.068763622339686
707 => 0.068217229422759
708 => 0.067409000420364
709 => 0.067109220421429
710 => 0.065287852046716
711 => 0.065180235886515
712 => 0.066082955234106
713 => 0.065666381315869
714 => 0.065081353765784
715 => 0.062962443282669
716 => 0.060580086352497
717 => 0.060651994733257
718 => 0.061409778147418
719 => 0.063613135625109
720 => 0.062752245740104
721 => 0.062127660250959
722 => 0.062010694163813
723 => 0.063474769629534
724 => 0.065546743146823
725 => 0.06651886676334
726 => 0.065555521783204
727 => 0.064448882940202
728 => 0.064516238918905
729 => 0.064964328069205
730 => 0.065011415903263
731 => 0.064291107780779
801 => 0.064493870298029
802 => 0.064185855493333
803 => 0.062295569205465
804 => 0.06226137992068
805 => 0.061797473180653
806 => 0.061783426268933
807 => 0.060994205177188
808 => 0.060883787690825
809 => 0.059316741310868
810 => 0.060348175983609
811 => 0.059656343757885
812 => 0.058613589406996
813 => 0.058433818163864
814 => 0.058428414023216
815 => 0.059499089585973
816 => 0.060335664516281
817 => 0.059668378475651
818 => 0.059516450378996
819 => 0.061138644974958
820 => 0.060932205925989
821 => 0.060753431040972
822 => 0.065361220643954
823 => 0.061713795622887
824 => 0.060123310125961
825 => 0.05815478229851
826 => 0.058795744885306
827 => 0.058930805120044
828 => 0.054196850548836
829 => 0.052276285768873
830 => 0.051617220311346
831 => 0.051237918822722
901 => 0.051410771274057
902 => 0.04968203771231
903 => 0.050843775256418
904 => 0.049346838118155
905 => 0.049095871735471
906 => 0.051772580773611
907 => 0.052145029199161
908 => 0.050556048505109
909 => 0.051576431343298
910 => 0.051206426341788
911 => 0.049372498808921
912 => 0.049302456266623
913 => 0.0483822558963
914 => 0.046942320502647
915 => 0.046284231389123
916 => 0.045941492865008
917 => 0.046082913459899
918 => 0.04601140687958
919 => 0.045544778074089
920 => 0.046038153496495
921 => 0.044777783169048
922 => 0.044275893549164
923 => 0.044049201651614
924 => 0.042930550441795
925 => 0.044710821983068
926 => 0.045061557903968
927 => 0.045412984882981
928 => 0.048471916805897
929 => 0.04831910121148
930 => 0.049700479760797
1001 => 0.049646801930563
1002 => 0.049252810391449
1003 => 0.047590624896389
1004 => 0.048253142409112
1005 => 0.046214016483031
1006 => 0.047741868273936
1007 => 0.047044620521183
1008 => 0.047506128107362
1009 => 0.046676295854951
1010 => 0.04713555928637
1011 => 0.045144730402259
1012 => 0.043285722401994
1013 => 0.044033841489127
1014 => 0.044847132494636
1015 => 0.046610554617273
1016 => 0.045560274948947
1017 => 0.045937995233148
1018 => 0.044672695510686
1019 => 0.042062020768249
1020 => 0.042076796903772
1021 => 0.041675201471289
1022 => 0.041328164383731
1023 => 0.045680912203094
1024 => 0.045139579204996
1025 => 0.044277035920438
1026 => 0.045431584382926
1027 => 0.045736865321556
1028 => 0.045745556240705
1029 => 0.046587884995727
1030 => 0.047037436003279
1031 => 0.047116671316825
1101 => 0.04844209381257
1102 => 0.048886357950399
1103 => 0.0507162190595
1104 => 0.046999294741126
1105 => 0.046922747130779
1106 => 0.045447831247477
1107 => 0.044512416276789
1108 => 0.045511879910802
1109 => 0.046397268250147
1110 => 0.045475342731191
1111 => 0.045595726741056
1112 => 0.044358117055941
1113 => 0.044800504283422
1114 => 0.045181547759723
1115 => 0.04497115794881
1116 => 0.04465619421889
1117 => 0.046324676503156
1118 => 0.046230534193843
1119 => 0.047784263255193
1120 => 0.048995506166746
1121 => 0.051166269999819
1122 => 0.04890096477553
1123 => 0.048818408049384
1124 => 0.049625413289975
1125 => 0.048886234402101
1126 => 0.049353369943649
1127 => 0.051091007242188
1128 => 0.051127720780173
1129 => 0.050512721716201
1130 => 0.050475298967267
1201 => 0.050593416264855
1202 => 0.051285232966158
1203 => 0.051043490953343
1204 => 0.051323240930732
1205 => 0.05167307256114
1206 => 0.053120124510046
1207 => 0.053469003835956
1208 => 0.052621407947186
1209 => 0.052697936365813
1210 => 0.052380912236386
1211 => 0.052074670899659
1212 => 0.052763056701664
1213 => 0.054021095285085
1214 => 0.05401326909235
1215 => 0.054305109590927
1216 => 0.054486923803804
1217 => 0.053706444105999
1218 => 0.053198380521761
1219 => 0.053393204428884
1220 => 0.053704732099085
1221 => 0.053292180204102
1222 => 0.05074571879564
1223 => 0.051518152518383
1224 => 0.051389581776839
1225 => 0.051206481406145
1226 => 0.051983169487416
1227 => 0.051908256027234
1228 => 0.049664307050963
1229 => 0.04980795738395
1230 => 0.049673042903497
1231 => 0.050108979190745
]
'min_raw' => 0.041328164383731
'max_raw' => 0.092580190005159
'avg_raw' => 0.066954177194445
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.041328'
'max' => '$0.09258'
'avg' => '$0.066954'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.010078087105787
'max_diff' => -0.0672761043968
'year' => 2034
]
9 => [
'items' => [
101 => 0.048862692411969
102 => 0.049246041831251
103 => 0.049486474993347
104 => 0.049628091972916
105 => 0.050139709610792
106 => 0.050079677186056
107 => 0.050135977910981
108 => 0.050894571805902
109 => 0.054731279408424
110 => 0.054940102938011
111 => 0.053911779504706
112 => 0.054322574433529
113 => 0.053533938001165
114 => 0.054063354921616
115 => 0.054425568532856
116 => 0.052788794873332
117 => 0.052691875759789
118 => 0.051899984344335
119 => 0.052325501935977
120 => 0.051648472851877
121 => 0.051814592107643
122 => 0.051350108186504
123 => 0.052186086766728
124 => 0.053120840717356
125 => 0.053356996479837
126 => 0.052735772340198
127 => 0.052285965122434
128 => 0.051496251823749
129 => 0.052809562639371
130 => 0.053193614744281
131 => 0.05280754537716
201 => 0.052718084669016
202 => 0.052548556788734
203 => 0.052754050810227
204 => 0.053191523114038
205 => 0.052985219254406
206 => 0.053121486588299
207 => 0.052602176029762
208 => 0.053706702477254
209 => 0.055460956294637
210 => 0.055466596507509
211 => 0.055260291535822
212 => 0.055175875986311
213 => 0.055387557406894
214 => 0.055502385893934
215 => 0.056186924792366
216 => 0.056921462303617
217 => 0.0603492283648
218 => 0.059386725371247
219 => 0.062428043339445
220 => 0.064833330986576
221 => 0.06555457158147
222 => 0.06489106417116
223 => 0.062621241162457
224 => 0.062509872816888
225 => 0.065901946686446
226 => 0.06494353045147
227 => 0.064829529889975
228 => 0.063616756522654
301 => 0.064333655787644
302 => 0.064176859402113
303 => 0.063929348636811
304 => 0.065297142494776
305 => 0.067857530493087
306 => 0.067458470012384
307 => 0.067160589875422
308 => 0.065855365826858
309 => 0.066641402236439
310 => 0.066361509726523
311 => 0.067564105573298
312 => 0.066851714434428
313 => 0.064936269505862
314 => 0.065241310424125
315 => 0.065195204102986
316 => 0.066144068924885
317 => 0.065859243257624
318 => 0.065139587320165
319 => 0.067848779365259
320 => 0.067672859503169
321 => 0.067922273646733
322 => 0.068032073466119
323 => 0.069681110922649
324 => 0.070356668805277
325 => 0.070510032271938
326 => 0.071151760010913
327 => 0.070494065501192
328 => 0.073125312468312
329 => 0.07487493816393
330 => 0.076907218444305
331 => 0.079876926159375
401 => 0.080993563731574
402 => 0.080791853148792
403 => 0.083043451645553
404 => 0.087089524094009
405 => 0.081609680072263
406 => 0.087379969133262
407 => 0.085553162237741
408 => 0.081221835951312
409 => 0.080942949601449
410 => 0.08387617405035
411 => 0.090381783565623
412 => 0.08875220216806
413 => 0.090384448977008
414 => 0.088480346372476
415 => 0.088385791629124
416 => 0.090291970963543
417 => 0.094745862878838
418 => 0.092629985781523
419 => 0.089596357128173
420 => 0.091836341317317
421 => 0.08989585971193
422 => 0.08552341154839
423 => 0.088750956057877
424 => 0.086592788959558
425 => 0.087222656853321
426 => 0.091758803090858
427 => 0.091213001974403
428 => 0.091919319158918
429 => 0.090672687815788
430 => 0.089508137565586
501 => 0.087334418042946
502 => 0.08669088685537
503 => 0.08686873572379
504 => 0.086690798722303
505 => 0.0854746226269
506 => 0.085211989514891
507 => 0.084774256155322
508 => 0.08490992802713
509 => 0.084086861247729
510 => 0.085640158314733
511 => 0.085928463937976
512 => 0.087058824009116
513 => 0.087176181741528
514 => 0.090324218449985
515 => 0.088590332731574
516 => 0.089753572967975
517 => 0.089649521812389
518 => 0.081315708925669
519 => 0.082464034811605
520 => 0.084250469525608
521 => 0.083445683108405
522 => 0.082307903405499
523 => 0.081389085291514
524 => 0.079996981894851
525 => 0.081956340692676
526 => 0.084532689157238
527 => 0.087241522190211
528 => 0.090496007589558
529 => 0.08976964433481
530 => 0.087180681849443
531 => 0.087296820815299
601 => 0.088014746203217
602 => 0.087084967595463
603 => 0.086810757732602
604 => 0.087977073978839
605 => 0.087985105757831
606 => 0.086915283102111
607 => 0.085726370995758
608 => 0.085721389410622
609 => 0.085509833984825
610 => 0.088517981612752
611 => 0.090172158650083
612 => 0.090361807381574
613 => 0.090159393779412
614 => 0.090237294741375
615 => 0.089274765570656
616 => 0.091474821825761
617 => 0.093493811008458
618 => 0.092952678778083
619 => 0.092141444638271
620 => 0.09149525757158
621 => 0.092800457641291
622 => 0.092742339136762
623 => 0.093476176899275
624 => 0.093442885779515
625 => 0.093196123741016
626 => 0.092952687590732
627 => 0.093917884409834
628 => 0.093639923226519
629 => 0.093361530292712
630 => 0.092803170644136
701 => 0.092879060993749
702 => 0.092067966924949
703 => 0.091692717695582
704 => 0.086049869634708
705 => 0.084541916247463
706 => 0.085016349080312
707 => 0.085172544687529
708 => 0.084516281440905
709 => 0.085457194356368
710 => 0.085310554075166
711 => 0.085881045627626
712 => 0.085524627273513
713 => 0.08553925480709
714 => 0.086587405190131
715 => 0.086891687705478
716 => 0.086736927162311
717 => 0.086845316141864
718 => 0.089343094427534
719 => 0.088987990229765
720 => 0.088799348202189
721 => 0.08885160333303
722 => 0.089489839237989
723 => 0.089668510444989
724 => 0.088911467985927
725 => 0.089268493586031
726 => 0.090788663277979
727 => 0.091320636636008
728 => 0.093018440233137
729 => 0.092297183089024
730 => 0.093621081792322
731 => 0.097690295055933
801 => 0.10094106417905
802 => 0.097951522549715
803 => 0.10392114606136
804 => 0.10856935425681
805 => 0.10839094828427
806 => 0.1075804256704
807 => 0.10228856421889
808 => 0.097418914414004
809 => 0.10149258325205
810 => 0.10150296787167
811 => 0.10115303610573
812 => 0.098979639961058
813 => 0.101077406631
814 => 0.10124391973129
815 => 0.10115071667454
816 => 0.099484378946215
817 => 0.09694018922576
818 => 0.097437317807207
819 => 0.098251624564766
820 => 0.096709971990522
821 => 0.096217320581027
822 => 0.097133253282043
823 => 0.10008457928687
824 => 0.099526648201528
825 => 0.099512078366113
826 => 0.10189914414882
827 => 0.10019052020944
828 => 0.097443588190645
829 => 0.096749951628317
830 => 0.09428800912163
831 => 0.095988481580137
901 => 0.096049678556626
902 => 0.095118347169509
903 => 0.09751916059985
904 => 0.097497036681434
905 => 0.099776251719621
906 => 0.10413325483856
907 => 0.10284467462119
908 => 0.10134619602551
909 => 0.10150912219717
910 => 0.10329602016416
911 => 0.1022156208624
912 => 0.10260413998413
913 => 0.10329543209394
914 => 0.1037125057876
915 => 0.10144911171105
916 => 0.10092140628115
917 => 0.099841906171015
918 => 0.099560284742104
919 => 0.1004395150573
920 => 0.10020786893291
921 => 0.096044535187719
922 => 0.095609443646776
923 => 0.095622787283169
924 => 0.094528728915993
925 => 0.092860027301955
926 => 0.09724527551065
927 => 0.096893078707983
928 => 0.096504280695705
929 => 0.096551906233759
930 => 0.098455393851301
1001 => 0.097351274904698
1002 => 0.10028675608578
1003 => 0.099683309403591
1004 => 0.099064386591017
1005 => 0.098978832605469
1006 => 0.098740600126641
1007 => 0.097923612314338
1008 => 0.096937050437626
1009 => 0.096285636832094
1010 => 0.088818410338101
1011 => 0.090204284140528
1012 => 0.091798605623848
1013 => 0.092348959011048
1014 => 0.091407541458948
1015 => 0.097960785217302
1016 => 0.099158126000582
1017 => 0.095531302667421
1018 => 0.094852872104008
1019 => 0.098005263012093
1020 => 0.096103985930402
1021 => 0.096960130883871
1022 => 0.095109613780724
1023 => 0.098869721668121
1024 => 0.098841075945922
1025 => 0.097378309051837
1026 => 0.098614629614122
1027 => 0.09839978849207
1028 => 0.096748328271284
1029 => 0.098922075902776
1030 => 0.098923154054481
1031 => 0.097515272722218
1101 => 0.095871175550989
1102 => 0.095577249808615
1103 => 0.095355816245104
1104 => 0.096905671801372
1105 => 0.098295267446849
1106 => 0.10088096043311
1107 => 0.1015310650844
1108 => 0.10406846681832
1109 => 0.10255756762962
1110 => 0.10322732967055
1111 => 0.10395445110961
1112 => 0.1043030598665
1113 => 0.10373502060452
1114 => 0.10767664993353
1115 => 0.1080094442173
1116 => 0.10812102726198
1117 => 0.10679193202957
1118 => 0.10797247967457
1119 => 0.1074201405271
1120 => 0.10885717354457
1121 => 0.10908251867067
1122 => 0.10889165936575
1123 => 0.1089631874656
1124 => 0.10559970218436
1125 => 0.10542528772873
1126 => 0.10304713425032
1127 => 0.1040162493712
1128 => 0.10220453510362
1129 => 0.10277904836059
1130 => 0.1030322883301
1201 => 0.10290001014127
1202 => 0.10407104168608
1203 => 0.10307542564705
1204 => 0.10044783122563
1205 => 0.097819520917857
1206 => 0.097786524622918
1207 => 0.097094536912412
1208 => 0.096594356541588
1209 => 0.096690709025861
1210 => 0.09703026774789
1211 => 0.09657462077138
1212 => 0.096671856155706
1213 => 0.098286611411504
1214 => 0.098610439062146
1215 => 0.097509946177632
1216 => 0.093091308445942
1217 => 0.092006963663271
1218 => 0.092786369189563
1219 => 0.09241386354814
1220 => 0.074585200489675
1221 => 0.078773780418964
1222 => 0.076285068455715
1223 => 0.077431981428512
1224 => 0.074891650962873
1225 => 0.076104029811203
1226 => 0.075880147706903
1227 => 0.082615260284109
1228 => 0.082510100765061
1229 => 0.082560435061911
1230 => 0.080157847927916
1231 => 0.08398523446972
]
'min_raw' => 0.048862692411969
'max_raw' => 0.10908251867067
'avg_raw' => 0.078972605541318
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.048862'
'max' => '$0.109082'
'avg' => '$0.078972'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0075345280282381
'max_diff' => 0.016502328665509
'year' => 2035
]
10 => [
'items' => [
101 => 0.085870742708581
102 => 0.085521785314745
103 => 0.085609610372782
104 => 0.084100484897373
105 => 0.082575046695298
106 => 0.080883100965941
107 => 0.084026527000274
108 => 0.083677031685328
109 => 0.084478648193369
110 => 0.086517384673367
111 => 0.086817596364454
112 => 0.087221083921721
113 => 0.08707646235464
114 => 0.090521934816309
115 => 0.090104665367242
116 => 0.091110164682881
117 => 0.089041776303195
118 => 0.086701198518354
119 => 0.087146065835999
120 => 0.087103221535913
121 => 0.086557764421416
122 => 0.086065350127483
123 => 0.085245619064952
124 => 0.08783936944417
125 => 0.087734067915519
126 => 0.089438777264755
127 => 0.089137453328614
128 => 0.087125138336592
129 => 0.087197008560207
130 => 0.087680370353669
131 => 0.089353291039769
201 => 0.089849927800529
202 => 0.089619865865392
203 => 0.090164405401236
204 => 0.090594787247702
205 => 0.090218454734877
206 => 0.09554652950145
207 => 0.093333941386292
208 => 0.094412341438531
209 => 0.094669533496688
210 => 0.094010741447885
211 => 0.094153609853696
212 => 0.094370016559189
213 => 0.095683995698164
214 => 0.099132257161762
215 => 0.10065946869088
216 => 0.10525415992752
217 => 0.1005326550332
218 => 0.1002525004723
219 => 0.1010801431104
220 => 0.10377771326377
221 => 0.1059638405032
222 => 0.10668910502922
223 => 0.10678496070915
224 => 0.10814560517464
225 => 0.10892550120774
226 => 0.10798038714803
227 => 0.10717950193998
228 => 0.1043108305343
229 => 0.10464288706064
301 => 0.10693042724252
302 => 0.11016171248486
303 => 0.11293449138071
304 => 0.11196356085248
305 => 0.11937107541274
306 => 0.1201055002244
307 => 0.12000402646223
308 => 0.12167715548027
309 => 0.11835633510626
310 => 0.1169366200585
311 => 0.1073526624124
312 => 0.1100453635864
313 => 0.11395936287961
314 => 0.11344133039641
315 => 0.11059887948818
316 => 0.11293233512681
317 => 0.11216082171877
318 => 0.11155229708374
319 => 0.11434006640515
320 => 0.111274799521
321 => 0.11392878449763
322 => 0.11052502131315
323 => 0.11196799598135
324 => 0.11114889377085
325 => 0.11167895328644
326 => 0.1085802361892
327 => 0.11025222871776
328 => 0.10851067580301
329 => 0.10850985008017
330 => 0.10847140520305
331 => 0.11052033448403
401 => 0.11058714999433
402 => 0.10907298815992
403 => 0.10885477378393
404 => 0.10966162670275
405 => 0.10871701324993
406 => 0.10915899193918
407 => 0.10873040033417
408 => 0.10863391533637
409 => 0.10786510645827
410 => 0.10753388245475
411 => 0.10766376392112
412 => 0.10722041151791
413 => 0.10695327565821
414 => 0.10841826515685
415 => 0.10763558036524
416 => 0.10829830748725
417 => 0.10754304628888
418 => 0.10492498192369
419 => 0.10341930542174
420 => 0.098474024530578
421 => 0.099876500056708
422 => 0.1008063427815
423 => 0.1004990297665
424 => 0.10115925703706
425 => 0.10119978962933
426 => 0.10098514301345
427 => 0.1007366097302
428 => 0.10061563747266
429 => 0.10151726556962
430 => 0.10204069102731
501 => 0.10089966493862
502 => 0.10063233849069
503 => 0.10178597886414
504 => 0.1024896988255
505 => 0.10768557163413
506 => 0.10730064459402
507 => 0.10826673592658
508 => 0.10815796886841
509 => 0.10917058649536
510 => 0.11082578835127
511 => 0.10746030017648
512 => 0.1080444325538
513 => 0.10790121678447
514 => 0.10946480900084
515 => 0.10946969036507
516 => 0.10853223872413
517 => 0.1090404464671
518 => 0.10875677884692
519 => 0.10926940457656
520 => 0.10729550365872
521 => 0.10969950190721
522 => 0.11106241400388
523 => 0.11108133803966
524 => 0.11172734755675
525 => 0.11238373064045
526 => 0.1136436008107
527 => 0.1123485935452
528 => 0.11001900154097
529 => 0.11018719055914
530 => 0.10882135161943
531 => 0.10884431161877
601 => 0.1087217493429
602 => 0.10908956795882
603 => 0.10737621916068
604 => 0.10777833869901
605 => 0.10721536899053
606 => 0.1080432087676
607 => 0.10715259001429
608 => 0.10790114772149
609 => 0.10822420041283
610 => 0.10941627179871
611 => 0.10697652010136
612 => 0.10200170123378
613 => 0.10304746847359
614 => 0.10150069658267
615 => 0.10164385621015
616 => 0.10193306144135
617 => 0.10099565266497
618 => 0.10117448071836
619 => 0.1011680917219
620 => 0.10111303480202
621 => 0.10086917857484
622 => 0.10051553879994
623 => 0.10192433081854
624 => 0.10216371203461
625 => 0.10269582682489
626 => 0.10427903950383
627 => 0.10412083922248
628 => 0.10437887044503
629 => 0.10381558973498
630 => 0.10166998518676
701 => 0.10178650183654
702 => 0.10033353734669
703 => 0.10265867125617
704 => 0.10210804885614
705 => 0.10175305901283
706 => 0.10165619674512
707 => 0.10324333390207
708 => 0.10371823021476
709 => 0.1034223067018
710 => 0.10281535894325
711 => 0.10398087806766
712 => 0.10429272181605
713 => 0.10436253213096
714 => 0.10642760855329
715 => 0.10447794696283
716 => 0.10494724988562
717 => 0.10860861732082
718 => 0.10528826229126
719 => 0.10704712840317
720 => 0.10696104105969
721 => 0.10786081744576
722 => 0.10688723313353
723 => 0.10689930187791
724 => 0.10769824235261
725 => 0.10657627454557
726 => 0.10629845953828
727 => 0.10591466009545
728 => 0.10675267213784
729 => 0.10725502245723
730 => 0.11130359709582
731 => 0.11391916094979
801 => 0.11380561242483
802 => 0.11484323338903
803 => 0.11437577564114
804 => 0.11286623126408
805 => 0.1154428394464
806 => 0.11462749280765
807 => 0.1146947089939
808 => 0.11469220720409
809 => 0.11523434144002
810 => 0.11485018964799
811 => 0.11409298703353
812 => 0.11459565346617
813 => 0.11608839306459
814 => 0.12072190258093
815 => 0.12331487589211
816 => 0.12056580233177
817 => 0.12246207646213
818 => 0.12132498769547
819 => 0.12111834484111
820 => 0.12230934512854
821 => 0.1235024301043
822 => 0.1234264357492
823 => 0.12256031732238
824 => 0.12207106900001
825 => 0.12577582120719
826 => 0.12850541952462
827 => 0.12831927921883
828 => 0.12914084199252
829 => 0.13155297570604
830 => 0.13177351098297
831 => 0.13174572860702
901 => 0.13119910891269
902 => 0.1335741678088
903 => 0.13555548372512
904 => 0.13107258224682
905 => 0.13277961244427
906 => 0.13354595329698
907 => 0.13467116903185
908 => 0.13656959658462
909 => 0.13863179243997
910 => 0.13892340954475
911 => 0.13871649325375
912 => 0.13735641965234
913 => 0.13961289896438
914 => 0.14093469162443
915 => 0.14172178890479
916 => 0.14371773664731
917 => 0.13355068595719
918 => 0.12635394214352
919 => 0.12523006667478
920 => 0.12751551163469
921 => 0.12811816524454
922 => 0.12787523633007
923 => 0.11977464686847
924 => 0.12518741874772
925 => 0.13101110617101
926 => 0.13123481772265
927 => 0.13415027741431
928 => 0.13509967059865
929 => 0.13744699778847
930 => 0.13730017183364
1001 => 0.13787170865023
1002 => 0.13774032223373
1003 => 0.14208825156482
1004 => 0.14688466329077
1005 => 0.14671857880436
1006 => 0.14602903787019
1007 => 0.14705312374163
1008 => 0.15200353465753
1009 => 0.15154778014911
1010 => 0.15199050683296
1011 => 0.15782732029574
1012 => 0.16541600807438
1013 => 0.16189030070941
1014 => 0.16954007119644
1015 => 0.17435519622112
1016 => 0.18268245705808
1017 => 0.18163984298867
1018 => 0.18488158452423
1019 => 0.1797733462043
1020 => 0.16804379847643
1021 => 0.16618755264959
1022 => 0.16990380380255
1023 => 0.17903984463563
1024 => 0.16961607736431
1025 => 0.17152249320976
1026 => 0.17097344531802
1027 => 0.17094418888917
1028 => 0.17206078778379
1029 => 0.17044110284927
1030 => 0.16384221505028
1031 => 0.16686644644106
1101 => 0.16569864546556
1102 => 0.16699440771321
1103 => 0.17398710215078
1104 => 0.17089546525491
1105 => 0.16763867692931
1106 => 0.1717234122288
1107 => 0.17692468393239
1108 => 0.17659919769677
1109 => 0.17596761835696
1110 => 0.17952779802704
1111 => 0.18540817180724
1112 => 0.18699761321077
1113 => 0.18817090636016
1114 => 0.18833268366251
1115 => 0.18999909042076
1116 => 0.18103840129311
1117 => 0.19525924506551
1118 => 0.19771479194212
1119 => 0.19725325090131
1120 => 0.19998248790946
1121 => 0.1991794771476
1122 => 0.1980160405422
1123 => 0.20234246172547
1124 => 0.19738256896303
1125 => 0.19034262561989
1126 => 0.18648037346755
1127 => 0.19156649866075
1128 => 0.19467241783492
1129 => 0.19672523283549
1130 => 0.19734641341432
1201 => 0.18173399408227
1202 => 0.17331976596677
1203 => 0.17871318971949
1204 => 0.18529353893202
1205 => 0.18100184712098
1206 => 0.18117007331473
1207 => 0.17505124862895
1208 => 0.18583491914485
1209 => 0.18426382905563
1210 => 0.19241464721773
1211 => 0.19046938904894
1212 => 0.19711606484719
1213 => 0.19536577235515
1214 => 0.20263113863208
1215 => 0.20552948994189
1216 => 0.21039627288342
1217 => 0.21397629822658
1218 => 0.21607855758306
1219 => 0.21595234581667
1220 => 0.22428254472848
1221 => 0.21937051746517
1222 => 0.21319985354651
1223 => 0.21308824570442
1224 => 0.21628411998687
1225 => 0.22298179573761
1226 => 0.22471840561256
1227 => 0.22568893361998
1228 => 0.22420253619229
1229 => 0.21887088264613
1230 => 0.216568701677
1231 => 0.2185302265633
]
'min_raw' => 0.080883100965941
'max_raw' => 0.22568893361998
'avg_raw' => 0.15328601729296
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.080883'
'max' => '$0.225688'
'avg' => '$0.153286'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.032020408553972
'max_diff' => 0.11660641494931
'year' => 2036
]
11 => [
'items' => [
101 => 0.21613145018311
102 => 0.22027241119311
103 => 0.22595883512138
104 => 0.22478461106675
105 => 0.22870986603187
106 => 0.23277209197191
107 => 0.23858125751215
108 => 0.24009998849714
109 => 0.24261039306317
110 => 0.24519442398656
111 => 0.24602434507756
112 => 0.24760892194968
113 => 0.2476005704474
114 => 0.25237579950586
115 => 0.25764302503387
116 => 0.25963128073414
117 => 0.26420316508386
118 => 0.2563739733529
119 => 0.26231250521611
120 => 0.26766920960782
121 => 0.26128272580102
122 => 0.27008500586881
123 => 0.27042677845744
124 => 0.27558713877474
125 => 0.27035612498774
126 => 0.26724996569901
127 => 0.27621733117931
128 => 0.28055635686587
129 => 0.27924940701692
130 => 0.26930345413432
131 => 0.26351448295465
201 => 0.24836362876834
202 => 0.26631047002022
203 => 0.27505185287748
204 => 0.26928081606448
205 => 0.27219139135179
206 => 0.28807054636218
207 => 0.29411630049098
208 => 0.2928588258952
209 => 0.2930713184021
210 => 0.2963334975918
211 => 0.31079979663384
212 => 0.30213125492167
213 => 0.30875803025656
214 => 0.31227284799958
215 => 0.31553760660221
216 => 0.3075203913117
217 => 0.29709011201502
218 => 0.29378640472843
219 => 0.26870700018813
220 => 0.26740150826747
221 => 0.26666869609196
222 => 0.26204841898365
223 => 0.25841814677694
224 => 0.2555312195348
225 => 0.24795506034196
226 => 0.25051179166905
227 => 0.23843697518298
228 => 0.24616201486555
301 => 0.22689031619714
302 => 0.24294035950981
303 => 0.23420505064065
304 => 0.24007057561091
305 => 0.24005011134686
306 => 0.22924982021021
307 => 0.22302043767892
308 => 0.22699004267906
309 => 0.23124577434684
310 => 0.23193625249193
311 => 0.23745391968517
312 => 0.23899378199695
313 => 0.23432792730297
314 => 0.22649095307768
315 => 0.22831130344787
316 => 0.22298354833677
317 => 0.21364686243372
318 => 0.22035263325219
319 => 0.22264227824154
320 => 0.22365351590704
321 => 0.21447195764701
322 => 0.21158691270038
323 => 0.21005093897867
324 => 0.22530572920338
325 => 0.22614142104764
326 => 0.22186590341752
327 => 0.24119164852684
328 => 0.236817637209
329 => 0.24170447950982
330 => 0.22814612573178
331 => 0.22866407310485
401 => 0.22224533114407
402 => 0.22583939774161
403 => 0.22329922731264
404 => 0.22554903267779
405 => 0.22689755673736
406 => 0.23331524544575
407 => 0.24301363920599
408 => 0.23235665676377
409 => 0.2277132569029
410 => 0.23059399606112
411 => 0.2382657840588
412 => 0.2498889355869
413 => 0.24300779594454
414 => 0.24606152886849
415 => 0.24672863366125
416 => 0.24165473604261
417 => 0.25007601742943
418 => 0.25458905053899
419 => 0.25921848866879
420 => 0.26323810008298
421 => 0.25736938927622
422 => 0.2636497510861
423 => 0.25858888810044
424 => 0.2540487708199
425 => 0.25405565630373
426 => 0.25120757441312
427 => 0.24568905686865
428 => 0.2446713575642
429 => 0.2499655578672
430 => 0.25421100514758
501 => 0.25456068051991
502 => 0.25691117827328
503 => 0.25830217863167
504 => 0.27193587311722
505 => 0.27741945782314
506 => 0.28412468140259
507 => 0.28673674387249
508 => 0.29459811543064
509 => 0.28824941942805
510 => 0.28687583911272
511 => 0.26780672314768
512 => 0.27092928981869
513 => 0.27592882034183
514 => 0.26788916356457
515 => 0.27298847531584
516 => 0.27399518747373
517 => 0.26761597910369
518 => 0.27102338992345
519 => 0.26197431701306
520 => 0.24321088426717
521 => 0.25009690649389
522 => 0.25516733666277
523 => 0.24793120763224
524 => 0.2609016888426
525 => 0.25332460148459
526 => 0.25092302855644
527 => 0.24155363634114
528 => 0.24597562880578
529 => 0.25195643693104
530 => 0.2482609928532
531 => 0.25592959418843
601 => 0.2667903788204
602 => 0.27453042072004
603 => 0.27512460502861
604 => 0.27014827662967
605 => 0.27812287464747
606 => 0.27818096088797
607 => 0.2691855817467
608 => 0.26367596210915
609 => 0.26242416493516
610 => 0.26555139970508
611 => 0.26934844003515
612 => 0.27533531434087
613 => 0.27895305709747
614 => 0.28838621150418
615 => 0.29093855261691
616 => 0.29374280167832
617 => 0.29749014322274
618 => 0.30198978754548
619 => 0.29214482193223
620 => 0.29253598076935
621 => 0.28336848510312
622 => 0.27357170123189
623 => 0.28100623900381
624 => 0.29072590816547
625 => 0.28849620532051
626 => 0.28824531820175
627 => 0.28866724074521
628 => 0.2869861176154
629 => 0.27938246000456
630 => 0.27556395075382
701 => 0.28049080189288
702 => 0.28310920400438
703 => 0.28717011733065
704 => 0.28666952404771
705 => 0.29713000066594
706 => 0.30119462557139
707 => 0.30015472058547
708 => 0.30034608812959
709 => 0.30770489736911
710 => 0.31588940669801
711 => 0.32355527972566
712 => 0.33135333502628
713 => 0.3219524749981
714 => 0.31717929804023
715 => 0.32210399827022
716 => 0.31949088300801
717 => 0.33450661840498
718 => 0.33554627534469
719 => 0.35056092493307
720 => 0.36481161530367
721 => 0.35586101200954
722 => 0.36430102777188
723 => 0.37342959294343
724 => 0.39104007621568
725 => 0.38510948499386
726 => 0.38056674506216
727 => 0.37627387777706
728 => 0.38520665312386
729 => 0.39669852590295
730 => 0.39917376523178
731 => 0.40318459855867
801 => 0.39896769773681
802 => 0.40404649030036
803 => 0.42197685978423
804 => 0.41713191567394
805 => 0.41025131617369
806 => 0.42440562083022
807 => 0.42952800866195
808 => 0.46547960908037
809 => 0.51086998969517
810 => 0.49207807407134
811 => 0.4804133256323
812 => 0.483154818207
813 => 0.49972984864618
814 => 0.50505322235807
815 => 0.49058245753218
816 => 0.49569377630615
817 => 0.52385764528449
818 => 0.53896665738627
819 => 0.518446589541
820 => 0.4618325361936
821 => 0.40963179347097
822 => 0.42347778107109
823 => 0.42190807576825
824 => 0.45216663947127
825 => 0.41701636535924
826 => 0.41760820582738
827 => 0.4484924845834
828 => 0.44025308850188
829 => 0.42690632207193
830 => 0.40972923963632
831 => 0.37797581406629
901 => 0.34985091952913
902 => 0.40501031449288
903 => 0.40263174108119
904 => 0.39918721429624
905 => 0.40685263591943
906 => 0.44407374745375
907 => 0.4432156803599
908 => 0.43775709529853
909 => 0.44189738395782
910 => 0.42618050945195
911 => 0.43023110587869
912 => 0.40962352460662
913 => 0.41893901199021
914 => 0.4268776859055
915 => 0.42847149222808
916 => 0.4320624192546
917 => 0.40137834097644
918 => 0.41515459128613
919 => 0.42324684768297
920 => 0.38668573888321
921 => 0.42252415211493
922 => 0.40084419943953
923 => 0.39348569787954
924 => 0.40339295082121
925 => 0.39953208471472
926 => 0.39621273875403
927 => 0.39436048667436
928 => 0.40163527981111
929 => 0.40129590201602
930 => 0.38939292846779
1001 => 0.3738659847014
1002 => 0.37907733668396
1003 => 0.37718400365201
1004 => 0.3703223204994
1005 => 0.37494626646148
1006 => 0.35458474857001
1007 => 0.31955381533735
1008 => 0.34269632285735
1009 => 0.34180536149204
1010 => 0.34135609836976
1011 => 0.35874705315911
1012 => 0.35707531413371
1013 => 0.35404109143288
1014 => 0.37026659462004
1015 => 0.36434406769291
1016 => 0.38259590015947
1017 => 0.39461773747646
1018 => 0.39156861066717
1019 => 0.40287520677038
1020 => 0.37919739570818
1021 => 0.38706221475415
1022 => 0.38868314305936
1023 => 0.37006637442933
1024 => 0.35734883131301
1025 => 0.35650071617776
1026 => 0.33445024899946
1027 => 0.34622943058095
1028 => 0.35659462291702
1029 => 0.35163050015946
1030 => 0.35005900719337
1031 => 0.3580874239419
1101 => 0.358711300682
1102 => 0.34448684489222
1103 => 0.34744455968085
1104 => 0.35977872202859
1105 => 0.34713377043588
1106 => 0.32256669503238
1107 => 0.31647372066592
1108 => 0.31566080556963
1109 => 0.2991361758479
1110 => 0.31688088234777
1111 => 0.30913484243201
1112 => 0.3336044897141
1113 => 0.31962755841992
1114 => 0.31902504084717
1115 => 0.31811424716584
1116 => 0.30389081574049
1117 => 0.30700484327641
1118 => 0.31735634508563
1119 => 0.32104987754917
1120 => 0.320664611853
1121 => 0.31730561707952
1122 => 0.31884334768599
1123 => 0.31388978162171
1124 => 0.31214057434485
1125 => 0.30661959502171
1126 => 0.29850528062617
1127 => 0.29963362581086
1128 => 0.28355704576743
1129 => 0.27479767171109
1130 => 0.27237319241899
1201 => 0.26913107738363
1202 => 0.27273939793918
1203 => 0.28351150283609
1204 => 0.27051805890087
1205 => 0.24824171065807
1206 => 0.24958055714451
1207 => 0.25258854769246
1208 => 0.24698317720621
1209 => 0.24167816446406
1210 => 0.24629044263407
1211 => 0.23685166021968
1212 => 0.25372917945292
1213 => 0.25327268985637
1214 => 0.25956358532773
1215 => 0.26349741136814
1216 => 0.25443121593629
1217 => 0.25215109230278
1218 => 0.25344995435027
1219 => 0.23198265795624
1220 => 0.25780924922135
1221 => 0.25803259865508
1222 => 0.25612014520409
1223 => 0.26987200774621
1224 => 0.29889272702359
1225 => 0.28797396507571
1226 => 0.28374589042816
1227 => 0.27570831743248
1228 => 0.28641790622537
1229 => 0.28559557690169
1230 => 0.28187669184085
1231 => 0.27962749855244
]
'min_raw' => 0.21005093897867
'max_raw' => 0.53896665738627
'avg_raw' => 0.37450879818247
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.21005'
'max' => '$0.538966'
'avg' => '$0.3745087'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.12916783801273
'max_diff' => 0.3132777237663
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0065932589547087
]
1 => [
'year' => 2028
'avg' => 0.011315946403031
]
2 => [
'year' => 2029
'avg' => 0.030913126072174
]
3 => [
'year' => 2030
'avg' => 0.023849430727473
]
4 => [
'year' => 2031
'avg' => 0.023423096601791
]
5 => [
'year' => 2032
'avg' => 0.041068059862731
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0065932589547087
'min' => '$0.006593'
'max_raw' => 0.041068059862731
'max' => '$0.041068'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.041068059862731
]
1 => [
'year' => 2033
'avg' => 0.10563127294574
]
2 => [
'year' => 2034
'avg' => 0.066954177194445
]
3 => [
'year' => 2035
'avg' => 0.078972605541318
]
4 => [
'year' => 2036
'avg' => 0.15328601729296
]
5 => [
'year' => 2037
'avg' => 0.37450879818247
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.041068059862731
'min' => '$0.041068'
'max_raw' => 0.37450879818247
'max' => '$0.3745087'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.37450879818247
]
]
]
]
'prediction_2025_max_price' => '$0.011273'
'last_price' => 0.01093086
'sma_50day_nextmonth' => '$0.010055'
'sma_200day_nextmonth' => '$0.014015'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.010646'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.010486'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.010292'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.010056'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.010447'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.011991'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.015505'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.010686'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.01055'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.010366'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.01028'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.01074'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.012157'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.014733'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.013557'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0178048'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.0243072'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.030915'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.010648'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.010652'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.011258'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.013215'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.017398'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.022722'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.028784'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '61.01'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 118.39
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.010318'
'vwma_10_action' => 'BUY'
'hma_9' => '0.010727'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 219.52
'cci_20_action' => 'SELL'
'adx_14' => 13.46
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000232'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 76.12
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000982'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 14
'buy_signals' => 21
'sell_pct' => 40
'buy_pct' => 60
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767714387
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Orbs para 2026
La previsión del precio de Orbs para 2026 sugiere que el precio medio podría oscilar entre $0.003776 en el extremo inferior y $0.011273 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Orbs podría potencialmente ganar 3.13% para 2026 si ORBS alcanza el objetivo de precio previsto.
Predicción de precio de Orbs 2027-2032
La predicción del precio de ORBS para 2027-2032 está actualmente dentro de un rango de precios de $0.006593 en el extremo inferior y $0.041068 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Orbs alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Orbs | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.003635 | $0.006593 | $0.00955 |
| 2028 | $0.006561 | $0.011315 | $0.01607 |
| 2029 | $0.014413 | $0.030913 | $0.047413 |
| 2030 | $0.012257 | $0.023849 | $0.035441 |
| 2031 | $0.014492 | $0.023423 | $0.032353 |
| 2032 | $0.022121 | $0.041068 | $0.060014 |
Predicción de precio de Orbs 2032-2037
La predicción de precio de Orbs para 2032-2037 se estima actualmente entre $0.041068 en el extremo inferior y $0.3745087 en el extremo superior. Comparado con el precio actual, Orbs podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Orbs | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.022121 | $0.041068 | $0.060014 |
| 2033 | $0.0514062 | $0.105631 | $0.159856 |
| 2034 | $0.041328 | $0.066954 | $0.09258 |
| 2035 | $0.048862 | $0.078972 | $0.109082 |
| 2036 | $0.080883 | $0.153286 | $0.225688 |
| 2037 | $0.21005 | $0.3745087 | $0.538966 |
Orbs Histograma de precios potenciales
Pronóstico de precio de Orbs basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Orbs es Alcista, con 21 indicadores técnicos mostrando señales alcistas y 14 indicando señales bajistas. La predicción de precio de ORBS se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Orbs
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Orbs aumentar durante el próximo mes, alcanzando $0.014015 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Orbs alcance $0.010055 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 61.01, lo que sugiere que el mercado de ORBS está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de ORBS para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.010646 | BUY |
| SMA 5 | $0.010486 | BUY |
| SMA 10 | $0.010292 | BUY |
| SMA 21 | $0.010056 | BUY |
| SMA 50 | $0.010447 | BUY |
| SMA 100 | $0.011991 | SELL |
| SMA 200 | $0.015505 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.010686 | BUY |
| EMA 5 | $0.01055 | BUY |
| EMA 10 | $0.010366 | BUY |
| EMA 21 | $0.01028 | BUY |
| EMA 50 | $0.01074 | BUY |
| EMA 100 | $0.012157 | SELL |
| EMA 200 | $0.014733 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.013557 | SELL |
| SMA 50 | $0.0178048 | SELL |
| SMA 100 | $0.0243072 | SELL |
| SMA 200 | $0.030915 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.013215 | SELL |
| EMA 50 | $0.017398 | SELL |
| EMA 100 | $0.022722 | SELL |
| EMA 200 | $0.028784 | SELL |
Osciladores de Orbs
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 61.01 | NEUTRAL |
| Stoch RSI (14) | 118.39 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 219.52 | SELL |
| Índice Direccional Medio (14) | 13.46 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.000232 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 76.12 | SELL |
| VWMA (10) | 0.010318 | BUY |
| Promedio Móvil de Hull (9) | 0.010727 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000982 | NEUTRAL |
Predicción de precios de Orbs basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Orbs
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Orbs por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.015359 | $0.021582 | $0.030327 | $0.042615 | $0.059881 | $0.084143 |
| Amazon.com acción | $0.0228078 | $0.04759 | $0.099299 | $0.207194 | $0.432322 | $0.902067 |
| Apple acción | $0.0155045 | $0.021992 | $0.031194 | $0.044246 | $0.06276 | $0.08902 |
| Netflix acción | $0.017247 | $0.027213 | $0.042938 | $0.06775 | $0.106898 | $0.168669 |
| Google acción | $0.014155 | $0.018331 | $0.023738 | $0.030741 | $0.03981 | $0.051554 |
| Tesla acción | $0.024779 | $0.056173 | $0.12734 | $0.28867 | $0.654394 | $1.48 |
| Kodak acción | $0.008196 | $0.006146 | $0.0046094 | $0.003456 | $0.002592 | $0.001943 |
| Nokia acción | $0.007241 | $0.004797 | $0.003177 | $0.0021051 | $0.001394 | $0.000923 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Orbs
Podría preguntarse cosas como: "¿Debo invertir en Orbs ahora?", "¿Debería comprar ORBS hoy?", "¿Será Orbs una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Orbs regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Orbs, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Orbs a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Orbs es de $0.01093 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Orbs
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Orbs
basado en el historial de precios del último mes
Predicción de precios de Orbs basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Orbs ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.011214 | $0.0115065 | $0.0118055 | $0.012112 |
| Si Orbs ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.011499 | $0.012096 | $0.012725 | $0.013387 |
| Si Orbs ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.012351 | $0.013956 | $0.01577 | $0.01782 |
| Si Orbs ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.013772 | $0.017351 | $0.021862 | $0.027545 |
| Si Orbs ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.016613 | $0.02525 | $0.038376 | $0.058327 |
| Si Orbs ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.025137 | $0.0578071 | $0.132936 | $0.3057097 |
| Si Orbs ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.039343 | $0.14161 | $0.5097018 | $1.83 |
Cuadro de preguntas
¿Es ORBS una buena inversión?
La decisión de adquirir Orbs depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Orbs ha experimentado un aumento de 4.3665% durante las últimas 24 horas, y Orbs ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Orbs dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Orbs subir?
Parece que el valor medio de Orbs podría potencialmente aumentar hasta $0.011273 para el final de este año. Mirando las perspectivas de Orbs en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.035441. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Orbs la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Orbs, el precio de Orbs aumentará en un 0.86% durante la próxima semana y alcanzará $0.0110244 para el 13 de enero de 2026.
¿Cuál será el precio de Orbs el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Orbs, el precio de Orbs disminuirá en un -11.62% durante el próximo mes y alcanzará $0.00966 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Orbs este año en 2026?
Según nuestra predicción más reciente sobre el valor de Orbs en 2026, se anticipa que ORBS fluctúe dentro del rango de $0.003776 y $0.011273. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Orbs no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Orbs en 5 años?
El futuro de Orbs parece estar en una tendencia alcista, con un precio máximo de $0.035441 proyectada después de un período de cinco años. Basado en el pronóstico de Orbs para 2030, el valor de Orbs podría potencialmente alcanzar su punto más alto de aproximadamente $0.035441, mientras que su punto más bajo se anticipa que esté alrededor de $0.012257.
¿Cuánto será Orbs en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Orbs, se espera que el valor de ORBS en 2026 crezca en un 3.13% hasta $0.011273 si ocurre lo mejor. El precio estará entre $0.011273 y $0.003776 durante 2026.
¿Cuánto será Orbs en 2027?
Según nuestra última simulación experimental para la predicción de precios de Orbs, el valor de ORBS podría disminuir en un -12.62% hasta $0.00955 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.00955 y $0.003635 a lo largo del año.
¿Cuánto será Orbs en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Orbs sugiere que el valor de ORBS en 2028 podría aumentar en un 47.02% , alcanzando $0.01607 en el mejor escenario. Se espera que el precio oscile entre $0.01607 y $0.006561 durante el año.
¿Cuánto será Orbs en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Orbs podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.047413 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.047413 y $0.014413.
¿Cuánto será Orbs en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Orbs, se espera que el valor de ORBS en 2030 aumente en un 224.23% , alcanzando $0.035441 en el mejor escenario. Se pronostica que el precio oscile entre $0.035441 y $0.012257 durante el transcurso de 2030.
¿Cuánto será Orbs en 2031?
Nuestra simulación experimental indica que el precio de Orbs podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.032353 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.032353 y $0.014492 durante el año.
¿Cuánto será Orbs en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Orbs, ORBS podría experimentar un 449.04% aumento en valor, alcanzando $0.060014 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.060014 y $0.022121 a lo largo del año.
¿Cuánto será Orbs en 2033?
Según nuestra predicción experimental de precios de Orbs, se anticipa que el valor de ORBS aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.159856. A lo largo del año, el precio de ORBS podría oscilar entre $0.159856 y $0.0514062.
¿Cuánto será Orbs en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Orbs sugieren que ORBS podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.09258 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.09258 y $0.041328.
¿Cuánto será Orbs en 2035?
Basado en nuestra predicción experimental para el precio de Orbs, ORBS podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.109082 en 2035. El rango de precios esperado para el año está entre $0.109082 y $0.048862.
¿Cuánto será Orbs en 2036?
Nuestra reciente simulación de predicción de precios de Orbs sugiere que el valor de ORBS podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.225688 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.225688 y $0.080883.
¿Cuánto será Orbs en 2037?
Según la simulación experimental, el valor de Orbs podría aumentar en un 4830.69% en 2037, con un máximo de $0.538966 bajo condiciones favorables. Se espera que el precio caiga entre $0.538966 y $0.21005 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Status
Predicción de precios de Bluzelle
Predicción de precios de SMARDEX
Predicción de precios de Slerf [OLD]
Predicción de precios de ConstitutionDAO
Predicción de precios de Victoria VR
Predicción de precios de Dent
Predicción de precios de Bone ShibaSwap
Predicción de precios de Milady Meme Coin
Predicción de precios de tBTC
Predicción de precios de inSure DeFi
Predicción de precios de Dione
Predicción de precios de Nexera
Predicción de precios de LooksRare
Predicción de precios de Virtuals Protocol
Predicción de precios de Autonolas
Predicción de precios de Covalent
Predicción de precios de OpSec
Predicción de precios de Horizen
Predicción de precios de Hiveterminal token
Predicción de precios de Ark
Predicción de precios de Escoin Token
Predicción de precios de MVL
Predicción de precios de Nym
Predicción de precios de Constellation
¿Cómo leer y predecir los movimientos de precio de Orbs?
Los traders de Orbs utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Orbs
Las medias móviles son herramientas populares para la predicción de precios de Orbs. Una media móvil simple (SMA) calcula el precio de cierre promedio de ORBS durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de ORBS por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de ORBS.
¿Cómo leer gráficos de Orbs y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Orbs en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de ORBS dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Orbs?
La acción del precio de Orbs está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de ORBS. La capitalización de mercado de Orbs puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de ORBS, grandes poseedores de Orbs, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Orbs.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


