Previsão de Preço Dimitra - Projeção DMTR
Previsão de Preço Dimitra até $0.014973 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.005016 | $0.014973 |
| 2027 | $0.004829 | $0.012686 |
| 2028 | $0.008715 | $0.021345 |
| 2029 | $0.019144 | $0.062976 |
| 2030 | $0.016281 | $0.047074 |
| 2031 | $0.019249 | $0.042974 |
| 2032 | $0.029383 | $0.079714 |
| 2033 | $0.06828 | $0.21233 |
| 2034 | $0.054894 | $0.12297 |
| 2035 | $0.0649024 | $0.14489 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Dimitra hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.83, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Dimitra para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Dimitra'
'name_with_ticker' => 'Dimitra <small>DMTR</small>'
'name_lang' => 'Dimitra'
'name_lang_with_ticker' => 'Dimitra <small>DMTR</small>'
'name_with_lang' => 'Dimitra'
'name_with_lang_with_ticker' => 'Dimitra <small>DMTR</small>'
'image' => '/uploads/coins/dimitra.jpg?1717210240'
'price_for_sd' => 0.01451
'ticker' => 'DMTR'
'marketcap' => '$10.01M'
'low24h' => '$0.01398'
'high24h' => '$0.01494'
'volume24h' => '$230.53K'
'current_supply' => '689.23M'
'max_supply' => '971.07M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01451'
'change_24h_pct' => '3.0335%'
'ath_price' => '$5.95'
'ath_days' => 1567
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '22 de set. de 2021'
'ath_pct' => '-99.76%'
'fdv' => '$14.1M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.715888'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.014643'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.012832'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.005016'
'current_year_max_price_prediction' => '$0.014973'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.016281'
'grand_prediction_max_price' => '$0.047074'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.014794168170985
107 => 0.014849404224652
108 => 0.014973853873988
109 => 0.013910445246161
110 => 0.014387884500018
111 => 0.014668335331651
112 => 0.013401248271445
113 => 0.014643289094466
114 => 0.013891933667821
115 => 0.013636912351038
116 => 0.013980264957583
117 => 0.013846460112891
118 => 0.013731422564709
119 => 0.013667229636228
120 => 0.01391934989603
121 => 0.013907588184561
122 => 0.013495070505091
123 => 0.012956958008594
124 => 0.013137566225359
125 => 0.013071949566997
126 => 0.012834146332377
127 => 0.012994397000039
128 => 0.012288734160662
129 => 0.011074677922676
130 => 0.011876720661038
131 => 0.011845842888065
201 => 0.011830272914737
202 => 0.012432985865783
203 => 0.012375048922493
204 => 0.012269892803103
205 => 0.01283221505778
206 => 0.012626959870521
207 => 0.013259507993448
208 => 0.013676145097855
209 => 0.013570472451379
210 => 0.013962321661856
211 => 0.013141727073896
212 => 0.013414295679476
213 => 0.013470471691322
214 => 0.012825276088444
215 => 0.012384528122934
216 => 0.012355135258529
217 => 0.011590939025145
218 => 0.011999166484642
219 => 0.0123583897554
220 => 0.012186349685559
221 => 0.012131886938998
222 => 0.012410125299648
223 => 0.012431746803221
224 => 0.011938774230414
225 => 0.012041278838712
226 => 0.012468740095286
227 => 0.012030507911799
228 => 0.011179094364104
301 => 0.010967932032562
302 => 0.01093975908504
303 => 0.010367070094404
304 => 0.010982042909267
305 => 0.010713590795333
306 => 0.011561627806703
307 => 0.011077233613922
308 => 0.011056352348417
309 => 0.011024787252992
310 => 0.010531850181267
311 => 0.010639772072189
312 => 0.010998520874584
313 => 0.011126526488873
314 => 0.011113174454584
315 => 0.010996762809738
316 => 0.011050055464624
317 => 0.010878381254843
318 => 0.01081775951828
319 => 0.010626420642363
320 => 0.01034520535348
321 => 0.010384310064193
322 => 0.0098271489929312
323 => 0.0095235780705319
324 => 0.0094395536402122
325 => 0.009327192660366
326 => 0.009452245111867
327 => 0.0098255706256199
328 => 0.0093752608506078
329 => 0.0086032363269076
330 => 0.0086496363162478
331 => 0.0087538833160146
401 => 0.008559619721612
402 => 0.0083757655328175
403 => 0.0085356118334125
404 => 0.0082084948653012
405 => 0.0087934138387911
406 => 0.0087775934197747
407 => 0.008995615041945
408 => 0.0091319484365422
409 => 0.0088177441004563
410 => 0.0087387225596296
411 => 0.0087837368206133
412 => 0.0080397513570583
413 => 0.0089348155571203
414 => 0.0089425561094908
415 => 0.0088762768006691
416 => 0.0093528708551953
417 => 0.010358632963659
418 => 0.0099802248017679
419 => 0.0098336937240364
420 => 0.0095551380381553
421 => 0.0099262969505918
422 => 0.0098977977370977
423 => 0.0097689134856715
424 => 0.0096909638882655
425 => 0.0098345884115511
426 => 0.0096731672204082
427 => 0.0096441715389213
428 => 0.009468489256723
429 => 0.0094057786750128
430 => 0.0093593502568947
501 => 0.0093082371305088
502 => 0.0094209799507185
503 => 0.0091654898875701
504 => 0.0088573939174129
505 => 0.0088317790711389
506 => 0.0089025039137817
507 => 0.0088712134357575
508 => 0.0088316292643684
509 => 0.008756052301079
510 => 0.0087336302305174
511 => 0.0088064910822005
512 => 0.0087242354287018
513 => 0.0088456081261365
514 => 0.0088126014682919
515 => 0.0086282289606706
516 => 0.0083984325527294
517 => 0.0083963868826845
518 => 0.0083468776235352
519 => 0.0082838201382416
520 => 0.0082662789883928
521 => 0.008522150023824
522 => 0.0090517954095908
523 => 0.0089478133470249
524 => 0.0090229510437392
525 => 0.0093925541450618
526 => 0.0095100398566192
527 => 0.0094266512813573
528 => 0.0093125038563555
529 => 0.0093175257637476
530 => 0.0097076020697542
531 => 0.0097319306504824
601 => 0.0097934011252852
602 => 0.0098724080569609
603 => 0.0094401065034573
604 => 0.0092971643994539
605 => 0.009229430500451
606 => 0.0090208363078401
607 => 0.0092457872610565
608 => 0.0091147179739775
609 => 0.0091324036987689
610 => 0.0091208858472972
611 => 0.0091271753730344
612 => 0.0087932503420173
613 => 0.008914915072737
614 => 0.0087126238606529
615 => 0.0084417786359265
616 => 0.0084408706677627
617 => 0.0085071596528083
618 => 0.0084677283706149
619 => 0.0083616198041035
620 => 0.0083766920251581
621 => 0.0082446435089832
622 => 0.0083927251058373
623 => 0.0083969715561737
624 => 0.0083399520753257
625 => 0.008568092206602
626 => 0.0086615614045305
627 => 0.0086240299607608
628 => 0.0086589280983845
629 => 0.0089521342711753
630 => 0.0089999396708224
701 => 0.0090211716714983
702 => 0.0089927236032937
703 => 0.008664287368977
704 => 0.0086788549125876
705 => 0.0085719679432897
706 => 0.0084816597177042
707 => 0.0084852715731234
708 => 0.0085317017403219
709 => 0.0087344650035709
710 => 0.0091611683375313
711 => 0.009177361417139
712 => 0.0091969879020091
713 => 0.0091171571245617
714 => 0.009093079398206
715 => 0.0091248441342577
716 => 0.0092850914714978
717 => 0.0096972911296069
718 => 0.0095515922405416
719 => 0.0094331367757933
720 => 0.0095370541537416
721 => 0.0095210568879378
722 => 0.0093860238654743
723 => 0.0093822339382752
724 => 0.0091230623954991
725 => 0.0090272525771852
726 => 0.0089471867217616
727 => 0.008859756897811
728 => 0.0088079255674989
729 => 0.0088875620477766
730 => 0.0089057758530473
731 => 0.0087316492971125
801 => 0.0087079164909583
802 => 0.0088501119953174
803 => 0.0087875370554317
804 => 0.008851896932888
805 => 0.0088668289765267
806 => 0.0088644245735867
807 => 0.00879908914966
808 => 0.0088407320005405
809 => 0.0087422342438767
810 => 0.0086351327273895
811 => 0.008566808632531
812 => 0.0085071867978908
813 => 0.0085402684569906
814 => 0.0084223383827723
815 => 0.0083846101785665
816 => 0.008826624339656
817 => 0.0091531449529058
818 => 0.0091483972138728
819 => 0.0091194965735287
820 => 0.0090765560842582
821 => 0.0092819501072478
822 => 0.0092103949366214
823 => 0.0092624573018867
824 => 0.0092757093588973
825 => 0.0093158193442042
826 => 0.0093301552163817
827 => 0.0092868222537579
828 => 0.0091413915385168
829 => 0.0087789920232735
830 => 0.008610294070649
831 => 0.0085546209363962
901 => 0.008556644549088
902 => 0.0085008242772446
903 => 0.0085172658489916
904 => 0.008495106569567
905 => 0.0084531422552423
906 => 0.0085376772788333
907 => 0.008547419152804
908 => 0.0085276876681795
909 => 0.0085323351470987
910 => 0.0083689668818356
911 => 0.0083813874162264
912 => 0.0083122283024135
913 => 0.0082992618022992
914 => 0.0081244335849533
915 => 0.0078147000561699
916 => 0.007986322497677
917 => 0.0077790267221035
918 => 0.0077005206708502
919 => 0.0080721561072873
920 => 0.0080348542170315
921 => 0.0079710095956555
922 => 0.0078765700942554
923 => 0.0078415415645376
924 => 0.0076287193066577
925 => 0.0076161446322996
926 => 0.0077216250899892
927 => 0.0076729494881264
928 => 0.007604590508219
929 => 0.0073570012124331
930 => 0.0070786288699711
1001 => 0.0070870311812038
1002 => 0.0071755762440395
1003 => 0.0074330329561626
1004 => 0.0073324401646898
1005 => 0.0072594589403069
1006 => 0.0072457917507876
1007 => 0.0074168652418217
1008 => 0.0076589700726393
1009 => 0.0077725602424687
1010 => 0.0076599958339525
1011 => 0.0075306879023473
1012 => 0.0075385582769889
1013 => 0.0075909163534891
1014 => 0.007596418447026
1015 => 0.0075122522766211
1016 => 0.0075359445605839
1017 => 0.0074999538147766
1018 => 0.0072790786741907
1019 => 0.0072750837433001
1020 => 0.0072208774217075
1021 => 0.0072192360758327
1022 => 0.0071270176004031
1023 => 0.0071141155982143
1024 => 0.0069310102179875
1025 => 0.0070515307337469
1026 => 0.0069706918993866
1027 => 0.0068488487080523
1028 => 0.0068278428959408
1029 => 0.0068272114358634
1030 => 0.0069523171497247
1031 => 0.0070500688006403
1101 => 0.0069720981255204
1102 => 0.0069543457141936
1103 => 0.0071438950230683
1104 => 0.0071197731457337
1105 => 0.0070988837555313
1106 => 0.0076372922404686
1107 => 0.0072110999121027
1108 => 0.0070252557307276
1109 => 0.006795238265423
1110 => 0.0068701331119749
1111 => 0.0068859145565776
1112 => 0.0063327640162845
1113 => 0.0061083509109781
1114 => 0.0060313407900664
1115 => 0.0059870203767184
1116 => 0.0060072177456218
1117 => 0.0058052196298141
1118 => 0.0059409657043773
1119 => 0.0057660524105636
1120 => 0.0057367276276386
1121 => 0.0060494942645768
1122 => 0.0060930139149505
1123 => 0.0059073455659605
1124 => 0.0060265747029874
1125 => 0.0059833405604925
1126 => 0.0057690507969544
1127 => 0.0057608665041961
1128 => 0.0056533434335021
1129 => 0.0054850906484352
1130 => 0.0054081946108346
1201 => 0.0053681464868103
1202 => 0.0053846711233051
1203 => 0.0053763157614311
1204 => 0.0053217913734186
1205 => 0.005379441035528
1206 => 0.0052321699713236
1207 => 0.0051735254469139
1208 => 0.0051470370757806
1209 => 0.0050163255296931
1210 => 0.0052243457272067
1211 => 0.0052653283266863
1212 => 0.005306391674547
1213 => 0.0056638200825364
1214 => 0.0056459639693555
1215 => 0.0058073745362315
1216 => 0.0058011024184177
1217 => 0.0057550655100668
1218 => 0.0055608433664384
1219 => 0.0056382568512118
1220 => 0.0053999901778057
1221 => 0.0055785157700805
1222 => 0.0054970441451733
1223 => 0.0055509701317463
1224 => 0.0054540063455778
1225 => 0.0055076701083801
1226 => 0.0052750468213771
1227 => 0.0050578264690718
1228 => 0.0051452422798968
1229 => 0.0052402732634742
1230 => 0.0054463246493143
1231 => 0.005323602143795
]
'min_raw' => 0.0050163255296931
'max_raw' => 0.014973853873988
'avg_raw' => 0.0099950897018405
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.005016'
'max' => '$0.014973'
'avg' => '$0.009995'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0095027144703069
'max_diff' => 0.00045481387398787
'year' => 2026
]
1 => [
'items' => [
101 => 0.0053677377974315
102 => 0.0052198907459685
103 => 0.004914840048378
104 => 0.004916566602198
105 => 0.0048696411982644
106 => 0.0048290907980446
107 => 0.0053376982998326
108 => 0.0052744449170905
109 => 0.005173658930089
110 => 0.0053085649787665
111 => 0.0053442362792836
112 => 0.0053452517910614
113 => 0.0054436757617474
114 => 0.0054962046525459
115 => 0.0055054630972224
116 => 0.0056603353416874
117 => 0.0057122464752177
118 => 0.0059260610874906
119 => 0.0054917479431606
120 => 0.0054828035497608
121 => 0.0053104633835291
122 => 0.0052011625255147
123 => 0.0053179473067883
124 => 0.0054214026802843
125 => 0.0053136780303644
126 => 0.0053277445954524
127 => 0.0051831330543622
128 => 0.0052348248756965
129 => 0.0052793488358699
130 => 0.0052547653220596
131 => 0.00521796261203
201 => 0.0054129205194472
202 => 0.0054019202302645
203 => 0.0055834695157143
204 => 0.0057250001664364
205 => 0.0059786483941604
206 => 0.0057139532455493
207 => 0.005704306702266
208 => 0.0057986032102146
209 => 0.0057122320389137
210 => 0.0057668156377443
211 => 0.0059698541325297
212 => 0.0059741440159806
213 => 0.0059022829409747
214 => 0.0058979101880298
215 => 0.0059117118935587
216 => 0.00599254891393
217 => 0.0059643019751415
218 => 0.0059969900478325
219 => 0.0060378669832702
220 => 0.0062069513197017
221 => 0.006247716980783
222 => 0.0061486775589273
223 => 0.0061576197098235
224 => 0.0061205762473566
225 => 0.0060847927267667
226 => 0.0061652288552892
227 => 0.00631222746114
228 => 0.0063113129904422
301 => 0.006345413809755
302 => 0.0063666583376804
303 => 0.0062754612718796
304 => 0.0062160953354522
305 => 0.0062388600130311
306 => 0.00627526122823
307 => 0.0062270555895455
308 => 0.0059295080565604
309 => 0.0060197649706581
310 => 0.0060047418068146
311 => 0.0059833469946224
312 => 0.0060741010196836
313 => 0.0060653475725706
314 => 0.0058031478471732
315 => 0.0058199330228882
316 => 0.0058041686093027
317 => 0.0058551066546931
318 => 0.0057094812172982
319 => 0.0057542746210386
320 => 0.0057823686239525
321 => 0.0057989162074971
322 => 0.0058586974260444
323 => 0.0058516827900401
324 => 0.0058582613864214
325 => 0.0059469011518705
326 => 0.0063952106680178
327 => 0.0064196111658425
328 => 0.0062994541904908
329 => 0.0063474545321523
330 => 0.0062553043726831
331 => 0.0063171653920872
401 => 0.0063594891304639
402 => 0.0061682362951263
403 => 0.0061569115434382
404 => 0.0060643810474812
405 => 0.0061141016948133
406 => 0.0060349925698669
407 => 0.006054403182009
408 => 0.0060001294182729
409 => 0.0060978113871994
410 => 0.0062070350067026
411 => 0.0062346292063606
412 => 0.0061620407471104
413 => 0.0061094819188007
414 => 0.0060172059302432
415 => 0.0061706629557188
416 => 0.006215538466486
417 => 0.0061704272437648
418 => 0.0061599739877607
419 => 0.0061401650865214
420 => 0.0061641765398013
421 => 0.0062152940648169
422 => 0.006191187984012
423 => 0.0062071104750781
424 => 0.0061464303583356
425 => 0.006275491461903
426 => 0.0064804715546141
427 => 0.0064811305991298
428 => 0.0064570243883842
429 => 0.0064471606463226
430 => 0.0064718950814348
501 => 0.0064853124978236
502 => 0.0065652991254567
503 => 0.0066511279637149
504 => 0.00705165370181
505 => 0.0069391876772825
506 => 0.0072945579395033
507 => 0.0075756096778667
508 => 0.0076598848052988
509 => 0.0075823556535124
510 => 0.0073171326132935
511 => 0.0073041195056271
512 => 0.0077004747019933
513 => 0.0075884862048018
514 => 0.0075751655294053
515 => 0.007433456048823
516 => 0.0075172239029077
517 => 0.0074989026444191
518 => 0.0074699816415882
519 => 0.0076298048718627
520 => 0.0079289796914183
521 => 0.0078823504901469
522 => 0.0078475439544641
523 => 0.0076950318471326
524 => 0.0077868782005586
525 => 0.0077541734733046
526 => 0.0078946937365204
527 => 0.0078114526454964
528 => 0.0075876377817918
529 => 0.0076232810365402
530 => 0.0076178936302893
531 => 0.007728766069178
601 => 0.0076954849150467
602 => 0.0076113949508017
603 => 0.0079279571444095
604 => 0.0079074013563681
605 => 0.0079365447641035
606 => 0.0079493745934784
607 => 0.008142060422276
608 => 0.0082209976410755
609 => 0.0082389177717335
610 => 0.0083139020243695
611 => 0.0082370520952189
612 => 0.0085445066048923
613 => 0.0087489459133571
614 => 0.0089864126904896
615 => 0.0093334154769326
616 => 0.0094638917345904
617 => 0.0094403223664922
618 => 0.0097034159188852
619 => 0.010176189184294
620 => 0.0095358833605364
621 => 0.010210126947738
622 => 0.0099966692125462
623 => 0.0094905647623482
624 => 0.009457977602335
625 => 0.0098007174120025
626 => 0.010560881322361
627 => 0.010370468884524
628 => 0.010561192768896
629 => 0.01033870322688
630 => 0.01032765474583
701 => 0.010550386948446
702 => 0.011070812880359
703 => 0.010823578027981
704 => 0.010469106242626
705 => 0.010730842692741
706 => 0.010504102357086
707 => 0.0099931929202327
708 => 0.010370323279721
709 => 0.010118146948386
710 => 0.0101917454083
711 => 0.01072178254837
712 => 0.010658007077372
713 => 0.010740538442293
714 => 0.01059487274343
715 => 0.01045879801132
716 => 0.010204804418795
717 => 0.010129609437781
718 => 0.010150390625301
719 => 0.010129599139656
720 => 0.0099874920589598
721 => 0.0099568040484136
722 => 0.0099056560196972
723 => 0.0099215089325346
724 => 0.0098253356746643
725 => 0.010006834482675
726 => 0.010040522260803
727 => 0.010172601957529
728 => 0.0101863149098
729 => 0.010554154985144
730 => 0.010351554852946
731 => 0.010487476513278
801 => 0.010475318400634
802 => 0.0095015335804269
803 => 0.0096357125368752
804 => 0.0098444528854326
805 => 0.0097504156413483
806 => 0.0096174689795394
807 => 0.0095101074219797
808 => 0.0093474436839939
809 => 0.0095763897715286
810 => 0.0098774295309346
811 => 0.01019394977489
812 => 0.010574228108775
813 => 0.010489354411579
814 => 0.010186840735954
815 => 0.010200411278456
816 => 0.010284299032393
817 => 0.010175656769039
818 => 0.010143616044627
819 => 0.010279897128878
820 => 0.010280835621806
821 => 0.010155829567961
822 => 0.010016908214978
823 => 0.010016326129437
824 => 0.0099916064164948
825 => 0.010343100808898
826 => 0.010536387184628
827 => 0.010558547156109
828 => 0.010534895641986
829 => 0.010543998171077
830 => 0.010431529087814
831 => 0.010688600060482
901 => 0.010924513806686
902 => 0.010861283883141
903 => 0.010766493239084
904 => 0.010690987925357
905 => 0.010843497230821
906 => 0.01083670623152
907 => 0.01092245330592
908 => 0.010918563323326
909 => 0.010889729807316
910 => 0.010861284912877
911 => 0.010974065704062
912 => 0.010941586647405
913 => 0.010909057141802
914 => 0.010843814238297
915 => 0.010852681832453
916 => 0.010757907555337
917 => 0.010714060638167
918 => 0.010054708207401
919 => 0.0098785076929377
920 => 0.00993394396168
921 => 0.0099521950207521
922 => 0.0098755123310506
923 => 0.0099854556099157
924 => 0.0099683210663633
925 => 0.010034981551953
926 => 0.0099933349746184
927 => 0.0099950441646791
928 => 0.010117517868633
929 => 0.010153072505932
930 => 0.010134989130441
1001 => 0.010147654106773
1002 => 0.010439513140794
1003 => 0.010398020119282
1004 => 0.010375977778591
1005 => 0.010382083657603
1006 => 0.010456659898323
1007 => 0.010477537174013
1008 => 0.010389078689895
1009 => 0.010430796222377
1010 => 0.010608424180945
1011 => 0.010670583913573
1012 => 0.010868967941754
1013 => 0.010784690880588
1014 => 0.010939385073784
1015 => 0.011414862284534
1016 => 0.011794706381001
1017 => 0.011445386052169
1018 => 0.012142921362477
1019 => 0.012686052657049
1020 => 0.012665206373331
1021 => 0.012570498869269
1022 => 0.011952158330291
1023 => 0.011383152147385
1024 => 0.011859149980665
1025 => 0.011860363397032
1026 => 0.011819474761011
1027 => 0.011565518954379
1028 => 0.011810637649422
1029 => 0.011830094281294
1030 => 0.011819203741381
1031 => 0.011624496419867
1101 => 0.011327214327842
1102 => 0.011385302537031
1103 => 0.01148045220865
1104 => 0.011300314029975
1105 => 0.011242748966931
1106 => 0.011349773371331
1107 => 0.011694628301727
1108 => 0.011629435474744
1109 => 0.011627733026567
1110 => 0.01190665558646
1111 => 0.011707007228832
1112 => 0.011386035215373
1113 => 0.011304985548874
1114 => 0.011017313834399
1115 => 0.011216009712239
1116 => 0.011223160423151
1117 => 0.011114336721481
1118 => 0.011394865659002
1119 => 0.011392280535457
1120 => 0.011658601010411
1121 => 0.012167705733122
1122 => 0.012017138415094
1123 => 0.011842045005906
1124 => 0.011861082514298
1125 => 0.012069876992788
1126 => 0.011943635084779
1127 => 0.011989032555089
1128 => 0.01206980827828
1129 => 0.012118542277629
1130 => 0.011854070441766
1201 => 0.011792409405676
1202 => 0.011666272565918
1203 => 0.011633365818881
1204 => 0.011736101642932
1205 => 0.011709034383005
1206 => 0.011222559433587
1207 => 0.011171720094652
1208 => 0.011173279264595
1209 => 0.011045441329564
1210 => 0.010850457794021
1211 => 0.011362862883566
1212 => 0.011321709583771
1213 => 0.011276279525809
1214 => 0.011281844448689
1215 => 0.011504262131041
1216 => 0.011375248642915
1217 => 0.011718252145992
1218 => 0.011647740937389
1219 => 0.011575421382348
1220 => 0.011565424616933
1221 => 0.011537587758257
1222 => 0.011442124812217
1223 => 0.011326847568439
1224 => 0.011250731546954
1225 => 0.010378205140645
1226 => 0.010540140966404
1227 => 0.010726433373023
1228 => 0.010790740765269
1229 => 0.010680738520897
1230 => 0.011446468371296
1231 => 0.01158637459372
]
'min_raw' => 0.0048290907980446
'max_raw' => 0.012686052657049
'avg_raw' => 0.0087575717275469
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004829'
'max' => '$0.012686'
'avg' => '$0.008757'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00018723473164849
'max_diff' => -0.0022878012169387
'year' => 2027
]
2 => [
'items' => [
101 => 0.01116258952014
102 => 0.011083316635904
103 => 0.011451665488389
104 => 0.011229506101525
105 => 0.011329544459827
106 => 0.011113316247234
107 => 0.011552675281671
108 => 0.011549328101956
109 => 0.011378407514186
110 => 0.011522868424556
111 => 0.01149776478637
112 => 0.011304795863737
113 => 0.011558792740711
114 => 0.011558918719993
115 => 0.011394411370398
116 => 0.011202302801362
117 => 0.01116795832662
118 => 0.011142084378433
119 => 0.011323181054674
120 => 0.011485551768318
121 => 0.011787683411296
122 => 0.011863646484811
123 => 0.01216013541789
124 => 0.011983590694026
125 => 0.012061850683478
126 => 0.012146812972579
127 => 0.012187547018359
128 => 0.01212117307667
129 => 0.012581742429455
130 => 0.01262062859431
131 => 0.012633666789022
201 => 0.012478365394627
202 => 0.012616309381594
203 => 0.012551769958317
204 => 0.012719683608115
205 => 0.012746014612433
206 => 0.012723713188528
207 => 0.012732071064905
208 => 0.012339056372305
209 => 0.012318676487176
210 => 0.012040795307352
211 => 0.012154033942124
212 => 0.011942339742086
213 => 0.01200947015361
214 => 0.012039060599368
215 => 0.012023604229747
216 => 0.012160436284632
217 => 0.012044101085038
218 => 0.01173707336603
219 => 0.011429961997526
220 => 0.011426106464462
221 => 0.011345249462101
222 => 0.011286804659092
223 => 0.011298063201592
224 => 0.011337739773838
225 => 0.011284498584585
226 => 0.011295860291709
227 => 0.011484540332624
228 => 0.011522378769225
229 => 0.011393788977223
301 => 0.010877482406918
302 => 0.010750779479508
303 => 0.010841851031102
304 => 0.010798324695199
305 => 0.0087150908037132
306 => 0.0092045157054726
307 => 0.0089137160481464
308 => 0.0090477299092912
309 => 0.0087508987613674
310 => 0.00889256214341
311 => 0.0088664020894651
312 => 0.0096533828483586
313 => 0.0096410952262651
314 => 0.0096469766607148
315 => 0.0093662404704367
316 => 0.0098134608443679
317 => 0.010033777682091
318 => 0.0099930028989712
319 => 0.010003265033424
320 => 0.0098269275634431
321 => 0.0096486839928788
322 => 0.0094509844416342
323 => 0.0098182857714437
324 => 0.0097774481336116
325 => 0.00987111498188
326 => 0.010109336149503
327 => 0.010144415121349
328 => 0.010191561615247
329 => 0.010174662953301
330 => 0.010577257639217
331 => 0.010528500766347
401 => 0.010645990801654
402 => 0.010404304885038
403 => 0.01013081432935
404 => 0.010182795942906
405 => 0.010177789695511
406 => 0.010114054420266
407 => 0.010056517063572
408 => 0.0099607335757266
409 => 0.01026380670456
410 => 0.010251502489006
411 => 0.010450693436741
412 => 0.010415484501891
413 => 0.010180350617876
414 => 0.010188748470544
415 => 0.010245228065603
416 => 0.010440704588975
417 => 0.010498735330169
418 => 0.010471853178723
419 => 0.010535481237238
420 => 0.010585770260363
421 => 0.010541796764279
422 => 0.011164368736933
423 => 0.01090583344832
424 => 0.011031841749113
425 => 0.011061893986368
426 => 0.01098491581257
427 => 0.011001609622085
428 => 0.01102689619471
429 => 0.011180431312068
430 => 0.011583351885759
501 => 0.011761802665074
502 => 0.012298680639249
503 => 0.011746984812007
504 => 0.011714249464763
505 => 0.011810957400073
506 => 0.012126161605219
507 => 0.012381605007865
508 => 0.012466350321405
509 => 0.012477550813582
510 => 0.012636538655547
511 => 0.012727667521614
512 => 0.012617233349737
513 => 0.012523651952012
514 => 0.01218845500111
515 => 0.012227254960888
516 => 0.012494548207689
517 => 0.012872115662288
518 => 0.013196107817533
519 => 0.013082657057033
520 => 0.013948206275894
521 => 0.014034021945492
522 => 0.014022164994707
523 => 0.014217665861136
524 => 0.013829636454333
525 => 0.013663746365209
526 => 0.012543885312394
527 => 0.012858520589696
528 => 0.013315861443137
529 => 0.013255330666244
530 => 0.012923197513719
531 => 0.013195855864754
601 => 0.013105706487087
602 => 0.01303460193262
603 => 0.01336034568093
604 => 0.013002177048847
605 => 0.013312288437047
606 => 0.012914567373989
607 => 0.013083175290551
608 => 0.012987465282463
609 => 0.013049401387473
610 => 0.012687324183147
611 => 0.012882692253674
612 => 0.012679196229102
613 => 0.012679099745491
614 => 0.01267460755947
615 => 0.012914019729939
616 => 0.012921826952223
617 => 0.012744900996514
618 => 0.012719403202194
619 => 0.012813681911731
620 => 0.012703306234496
621 => 0.012754950319178
622 => 0.01270487048121
623 => 0.012693596454841
624 => 0.012603763094613
625 => 0.012565060413006
626 => 0.012580236731709
627 => 0.012528432132048
628 => 0.012497217986897
629 => 0.012668398280351
630 => 0.012576943554952
701 => 0.012654381532038
702 => 0.012566131183696
703 => 0.012260217027499
704 => 0.012084282561286
705 => 0.011506439078485
706 => 0.011670314773395
707 => 0.011778964528662
708 => 0.011743055785194
709 => 0.011820201661001
710 => 0.011824937791223
711 => 0.011799856880589
712 => 0.011770816399139
713 => 0.011756681098808
714 => 0.011862034046639
715 => 0.011923194978872
716 => 0.011789868985149
717 => 0.011758632570248
718 => 0.011893432511033
719 => 0.01197566039704
720 => 0.012582784907458
721 => 0.01253780716274
722 => 0.012650692475545
723 => 0.01263798332169
724 => 0.012756305113551
725 => 0.012949711236724
726 => 0.012556462511111
727 => 0.012624716892359
728 => 0.012607982494301
729 => 0.012790684264307
730 => 0.01279125463929
731 => 0.012681715801542
801 => 0.01274109858255
802 => 0.012707952743272
803 => 0.012767851754776
804 => 0.012537206457537
805 => 0.012818107532952
806 => 0.012977360341847
807 => 0.012979571567253
808 => 0.013055056134761
809 => 0.01313175282712
810 => 0.013278965449229
811 => 0.013127647146989
812 => 0.012855440251799
813 => 0.012875092710409
814 => 0.012715497907355
815 => 0.012718180724828
816 => 0.012703859634903
817 => 0.012746838303808
818 => 0.012546637858462
819 => 0.012593624502829
820 => 0.012527842925561
821 => 0.012624573896057
822 => 0.012520507362005
823 => 0.012607974424468
824 => 0.012645722309047
825 => 0.0127850128158
826 => 0.012499934040904
827 => 0.011918639120756
828 => 0.012040834360491
829 => 0.011860098002694
830 => 0.01187682584072
831 => 0.011910618735748
901 => 0.011801084906614
902 => 0.011821980509405
903 => 0.011821233971434
904 => 0.011814800710505
905 => 0.01178630673115
906 => 0.011744984823724
907 => 0.011909598584698
908 => 0.011937569670398
909 => 0.011999745929023
910 => 0.012184740300131
911 => 0.01216625499999
912 => 0.012196405291468
913 => 0.012130587374457
914 => 0.011879878945119
915 => 0.011893493619027
916 => 0.011723718417238
917 => 0.011995404395406
918 => 0.011931065569696
919 => 0.011889585910212
920 => 0.011878267800816
921 => 0.012063720737188
922 => 0.01211921116237
923 => 0.01208463325322
924 => 0.012013712952757
925 => 0.012149900895352
926 => 0.012186339043482
927 => 0.012194496201061
928 => 0.012435795123891
929 => 0.012207982130351
930 => 0.012262818982162
1001 => 0.012690640446126
1002 => 0.012302665413637
1003 => 0.012508184441223
1004 => 0.012498125354292
1005 => 0.012603261934419
1006 => 0.012489501086014
1007 => 0.012490911288071
1008 => 0.012584265448656
1009 => 0.012453166366627
1010 => 0.012420704390265
1011 => 0.01237585840242
1012 => 0.012473777976223
1013 => 0.012532476332197
1014 => 0.013005541972154
1015 => 0.013311163949981
1016 => 0.013297896093903
1017 => 0.01341913946207
1018 => 0.013364518214249
1019 => 0.013188131796676
1020 => 0.013489201903441
1021 => 0.013393930724352
1022 => 0.013401784764602
1023 => 0.013401492436831
1024 => 0.013464839442174
1025 => 0.013419952283221
1026 => 0.013331475085352
1027 => 0.013390210378355
1028 => 0.013564633200324
1029 => 0.014106046991662
1030 => 0.014409029322073
1031 => 0.014087807074935
1101 => 0.014309381879673
1102 => 0.014176515952006
1103 => 0.01415237026053
1104 => 0.014291535612155
1105 => 0.014430944554305
1106 => 0.014422064807372
1107 => 0.014320861074099
1108 => 0.014263693653123
1109 => 0.014696584517246
1110 => 0.015015531131828
1111 => 0.014993781110959
1112 => 0.01508977862959
1113 => 0.015371630313383
1114 => 0.015397399299069
1115 => 0.015394152999166
1116 => 0.015330281879428
1117 => 0.015607801465189
1118 => 0.015839313186123
1119 => 0.015315497560623
1120 => 0.015514959693563
1121 => 0.015604504671309
1122 => 0.015735983265437
1123 => 0.015957809692101
1124 => 0.016198772028013
1125 => 0.016232846744329
1126 => 0.016208669102478
1127 => 0.016049747964529
1128 => 0.016313411827762
1129 => 0.016467859935165
1130 => 0.016559830248642
1201 => 0.016793051661218
1202 => 0.015605057670606
1203 => 0.014764136476919
1204 => 0.014632814489476
1205 => 0.014899862914924
1206 => 0.014970281455044
1207 => 0.014941895829819
1208 => 0.013995362573114
1209 => 0.014627831187769
1210 => 0.015308314237666
1211 => 0.015334454362967
1212 => 0.015675118405975
1213 => 0.015786052582669
1214 => 0.016060331789148
1215 => 0.016043175550104
1216 => 0.016109958172146
1217 => 0.016094606003853
1218 => 0.016602650477553
1219 => 0.017163098977379
1220 => 0.017143692427947
1221 => 0.017063121325171
1222 => 0.017182783152208
1223 => 0.017761226065339
1224 => 0.017707972311257
1225 => 0.017759703797204
1226 => 0.0184417205914
1227 => 0.019328439439612
1228 => 0.018916469509501
1229 => 0.019810325716689
1230 => 0.020372960817832
1231 => 0.021345980047704
]
'min_raw' => 0.0087150908037132
'max_raw' => 0.021345980047704
'avg_raw' => 0.015030535425708
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.008715'
'max' => '$0.021345'
'avg' => '$0.01503'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0038860000056686
'max_diff' => 0.0086599273906545
'year' => 2028
]
3 => [
'items' => [
101 => 0.021224153247903
102 => 0.021602942493747
103 => 0.021006057850239
104 => 0.019635490058456
105 => 0.019418592459084
106 => 0.019852826945749
107 => 0.020920350059235
108 => 0.019819206843914
109 => 0.020041966682241
110 => 0.019977811833817
111 => 0.019974393294585
112 => 0.020104865032865
113 => 0.019915608971541
114 => 0.019144545731191
115 => 0.01949791947034
116 => 0.019361464899254
117 => 0.019512871419236
118 => 0.020329949962779
119 => 0.019968700061959
120 => 0.019588152637004
121 => 0.020065443558132
122 => 0.020673198915682
123 => 0.020635166677648
124 => 0.020561368239619
125 => 0.020977366170825
126 => 0.02166447287722
127 => 0.02185019505894
128 => 0.021987291376563
129 => 0.022006194642502
130 => 0.022200910029987
131 => 0.021153876316883
201 => 0.022815545709312
202 => 0.023102470110694
203 => 0.023048540215033
204 => 0.023367444611544
205 => 0.023273614848267
206 => 0.023137670242717
207 => 0.023643201544098
208 => 0.023063650701337
209 => 0.022241051243459
210 => 0.021789756911696
211 => 0.022384057692638
212 => 0.02274697644132
213 => 0.022986842648231
214 => 0.023059426017511
215 => 0.021235154563508
216 => 0.020251973428534
217 => 0.020882181263858
218 => 0.021651078317575
219 => 0.021149605054927
220 => 0.021169261857408
221 => 0.020454292769728
222 => 0.021714337217238
223 => 0.021530759339877
224 => 0.022483161692366
225 => 0.022255863227439
226 => 0.023032510373847
227 => 0.022827993151917
228 => 0.023676932705743
301 => 0.024015597677885
302 => 0.024584268875106
303 => 0.025002585722689
304 => 0.025248229376717
305 => 0.025233481853115
306 => 0.026206844389554
307 => 0.025632886508513
308 => 0.024911860138439
309 => 0.024898819046213
310 => 0.025272248820297
311 => 0.026054855181321
312 => 0.026257773624276
313 => 0.026371177351244
314 => 0.02619749559578
315 => 0.025574505451842
316 => 0.025305501466321
317 => 0.02553470065578
318 => 0.025254409742382
319 => 0.025738270494648
320 => 0.026402714654587
321 => 0.026265509563057
322 => 0.026724165613107
323 => 0.027198826372885
324 => 0.027877612577716
325 => 0.028055072427039
326 => 0.028348406809777
327 => 0.028650344244939
328 => 0.028747318411671
329 => 0.028932472185279
330 => 0.028931496333498
331 => 0.029489469692553
401 => 0.030104931586587
402 => 0.030337254203609
403 => 0.030871467251108
404 => 0.029956646128324
405 => 0.030650548458663
406 => 0.031276465730131
407 => 0.030530221355547
408 => 0.031558745373271
409 => 0.031598680630194
410 => 0.032201655596406
411 => 0.031590424952124
412 => 0.031227478146667
413 => 0.032275291974583
414 => 0.032782296080085
415 => 0.032629582317371
416 => 0.031467423042713
417 => 0.030790996497506
418 => 0.029020657755762
419 => 0.0311177004683
420 => 0.032139108802002
421 => 0.031464777841883
422 => 0.031804871154678
423 => 0.033660309993659
424 => 0.034366740972775
425 => 0.034219808267444
426 => 0.034244637475927
427 => 0.034625814809628
428 => 0.036316165025453
429 => 0.03530326799412
430 => 0.036077589822047
501 => 0.036488287327554
502 => 0.03686976605909
503 => 0.035932974862029
504 => 0.034714223278849
505 => 0.034328193492744
506 => 0.03139772891751
507 => 0.031245185510006
508 => 0.031159558272836
509 => 0.030619690654692
510 => 0.030195502589017
511 => 0.029858172490099
512 => 0.028972917575243
513 => 0.029271665122076
514 => 0.027860753554857
515 => 0.028763404775928
516 => 0.026511555846995
517 => 0.028386962549063
518 => 0.027366263945406
519 => 0.028051635606161
520 => 0.028049244409002
521 => 0.026787257884271
522 => 0.026059370393792
523 => 0.02652320863253
524 => 0.027020480043982
525 => 0.027101160657468
526 => 0.027745886022528
527 => 0.02792581501359
528 => 0.027380621770589
529 => 0.026464891283155
530 => 0.026677594589797
531 => 0.026055059968072
601 => 0.024964091988947
602 => 0.025747644238028
603 => 0.026015183426225
604 => 0.026133343973104
605 => 0.025060502264154
606 => 0.024723392106675
607 => 0.024543917487461
608 => 0.026326400890699
609 => 0.026424049355257
610 => 0.025924466004476
611 => 0.028182630122442
612 => 0.027671538034988
613 => 0.028242553117276
614 => 0.02665829399417
615 => 0.02671881482616
616 => 0.025968801168403
617 => 0.026388758700816
618 => 0.02609194625277
619 => 0.026354830282299
620 => 0.026512401885687
621 => 0.027262292473583
622 => 0.028395525095011
623 => 0.027150283826399
624 => 0.026607714373481
625 => 0.026944321410545
626 => 0.027840750307802
627 => 0.029198885974498
628 => 0.028394842324786
629 => 0.028751663242982
630 => 0.02882961273975
701 => 0.028236740719766
702 => 0.029220746011538
703 => 0.029748082441444
704 => 0.030289020501628
705 => 0.030758701862546
706 => 0.030072957944908
707 => 0.03080680223431
708 => 0.030215453278007
709 => 0.029684952131672
710 => 0.029685756682929
711 => 0.029352965564448
712 => 0.028708140838012
713 => 0.028589225265071
714 => 0.029207839092892
715 => 0.029703908799857
716 => 0.029744767476936
717 => 0.030019417155694
718 => 0.030181952006466
719 => 0.031775014499447
720 => 0.032415757412628
721 => 0.033199245718224
722 => 0.033504458568234
723 => 0.034423039821904
724 => 0.033681210856044
725 => 0.033520711492957
726 => 0.031292533837193
727 => 0.031657397803499
728 => 0.032241580217692
729 => 0.031302166790035
730 => 0.031898008386719
731 => 0.032015640139555
801 => 0.031270245881234
802 => 0.031668393161188
803 => 0.030611032028072
804 => 0.028418572678278
805 => 0.029223186845542
806 => 0.029815653702849
807 => 0.028970130446836
808 => 0.030485698156971
809 => 0.029600334788378
810 => 0.02931971710547
811 => 0.028224927477021
812 => 0.028741626039332
813 => 0.029440468243268
814 => 0.029008665010362
815 => 0.029904721554224
816 => 0.031173776589884
817 => 0.032078180781829
818 => 0.032147609705655
819 => 0.031566138400609
820 => 0.032497949877845
821 => 0.032504737107175
822 => 0.031453649954291
823 => 0.030809864925627
824 => 0.03066359561258
825 => 0.031029005034361
826 => 0.031472679530704
827 => 0.032172230552384
828 => 0.03259495458371
829 => 0.033697194661905
830 => 0.033995429223365
831 => 0.03432309858734
901 => 0.034760965907101
902 => 0.035286737891349
903 => 0.034136378722029
904 => 0.034182084636364
905 => 0.033110886105699
906 => 0.031966156850276
907 => 0.032834863662626
908 => 0.03397058226055
909 => 0.033710047159328
910 => 0.033680731638192
911 => 0.033730032213296
912 => 0.033533597255256
913 => 0.032645129220261
914 => 0.032198946135191
915 => 0.032774636148377
916 => 0.03308058976937
917 => 0.033555097153571
918 => 0.033496604102833
919 => 0.034718884166162
920 => 0.035193825238942
921 => 0.03507231498865
922 => 0.035094675799011
923 => 0.035954533925136
924 => 0.036910873004697
925 => 0.037806610752763
926 => 0.038717793662927
927 => 0.03761932710065
928 => 0.037061593524325
929 => 0.03763703220926
930 => 0.037331696343148
1001 => 0.039086246798331
1002 => 0.039207728065054
1003 => 0.040962151646269
1004 => 0.042627308537716
1005 => 0.041581453328582
1006 => 0.042567647684442
1007 => 0.04363429728591
1008 => 0.045692037424802
1009 => 0.044999062938194
1010 => 0.044468255341747
1011 => 0.043966644727948
1012 => 0.045010416786821
1013 => 0.046353212865895
1014 => 0.046642438280187
1015 => 0.047111093943951
1016 => 0.046618359817991
1017 => 0.047211803799826
1018 => 0.049306921828204
1019 => 0.048740802442818
1020 => 0.047936821907337
1021 => 0.049590716373467
1022 => 0.050189254351407
1023 => 0.054390107337366
1024 => 0.05969385776072
1025 => 0.057498070259149
1026 => 0.056135074099303
1027 => 0.056455410527568
1028 => 0.058392160638895
1029 => 0.059014183305277
1030 => 0.057323311273979
1031 => 0.057920555860699
1101 => 0.061211432253316
1102 => 0.062976881854
1103 => 0.060579164164756
1104 => 0.053963956154996
1105 => 0.047864432256659
1106 => 0.049482300659639
1107 => 0.049298884591042
1108 => 0.052834520729719
1109 => 0.048727300682705
1110 => 0.048796455734743
1111 => 0.052405205084464
1112 => 0.051442452627585
1113 => 0.049882916947459
1114 => 0.047875818593009
1115 => 0.044165511650681
1116 => 0.040879189322297
1117 => 0.04732442420309
1118 => 0.047046493955131
1119 => 0.046644009769131
1120 => 0.047539694771736
1121 => 0.05188888689976
1122 => 0.051788623944247
1123 => 0.051150802175889
1124 => 0.051634584365686
1125 => 0.049798107590536
1126 => 0.050271409471291
1127 => 0.04786346606091
1128 => 0.048951957047002
1129 => 0.049879570884313
1130 => 0.050065803095711
1201 => 0.050485393777242
1202 => 0.046900037343705
1203 => 0.048509757121829
1204 => 0.049455316681131
1205 => 0.045183244192454
1206 => 0.04937087154379
1207 => 0.046837624264895
1208 => 0.045977802090341
1209 => 0.04713543937542
1210 => 0.046684306999586
1211 => 0.046296449874225
1212 => 0.046080018934042
1213 => 0.04693005999244
1214 => 0.046890404561047
1215 => 0.045499572403649
1216 => 0.043685288551894
1217 => 0.04429422176438
1218 => 0.044072990619505
1219 => 0.04327122041109
1220 => 0.043811516725458
1221 => 0.041432325194691
1222 => 0.037339049825623
1223 => 0.040043192914845
1224 => 0.039939086347451
1225 => 0.039886591095315
1226 => 0.04191867988984
1227 => 0.041723341440511
1228 => 0.04136880024222
1229 => 0.043264708983949
1230 => 0.042572676789647
1231 => 0.044705356949195
]
'min_raw' => 0.019144545731191
'max_raw' => 0.062976881854
'avg_raw' => 0.041060713792596
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.019144'
'max' => '$0.062976'
'avg' => '$0.04106'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.010429454927478
'max_diff' => 0.041630901806296
'year' => 2029
]
4 => [
'items' => [
101 => 0.046110078035378
102 => 0.045753795329955
103 => 0.047074942301116
104 => 0.044308250355724
105 => 0.045227234439569
106 => 0.045416635785592
107 => 0.043241313764371
108 => 0.041755301226613
109 => 0.041656201132128
110 => 0.039079660176797
111 => 0.040456027558023
112 => 0.041667173895549
113 => 0.041087128788626
114 => 0.040903503836129
115 => 0.041841603895044
116 => 0.041914502303905
117 => 0.04025241085644
118 => 0.040598012299959
119 => 0.042039227770891
120 => 0.04056169736787
121 => 0.037691097148019
122 => 0.036979148604343
123 => 0.036884161544802
124 => 0.034953300629002
125 => 0.037026724410346
126 => 0.036121619365487
127 => 0.038980835357375
128 => 0.037347666517091
129 => 0.03727726387256
130 => 0.037170839949528
131 => 0.035508868196439
201 => 0.03587273438655
202 => 0.037082281020867
203 => 0.037513860886509
204 => 0.037468843570693
205 => 0.037076353582493
206 => 0.037256033489217
207 => 0.036677221905029
208 => 0.036472831487731
209 => 0.035827719108725
210 => 0.034879582128429
211 => 0.035011426390802
212 => 0.0331329189393
213 => 0.032109408379786
214 => 0.031826114146564
215 => 0.03144728125822
216 => 0.031868904329339
217 => 0.033127597363712
218 => 0.031609346517634
219 => 0.029006411934948
220 => 0.029162852738552
221 => 0.029514328776559
222 => 0.02885935550498
223 => 0.02823947827117
224 => 0.028778411233738
225 => 0.027675513537173
226 => 0.029647608694033
227 => 0.029594269046773
228 => 0.030329344167704
301 => 0.030789001726082
302 => 0.029729639869922
303 => 0.029463213227917
304 => 0.029614981951619
305 => 0.027106583017837
306 => 0.030124354459733
307 => 0.030150452272478
308 => 0.029926986955312
309 => 0.031533857084881
310 => 0.034924854253635
311 => 0.033649024716204
312 => 0.03315498495716
313 => 0.032215815014075
314 => 0.033467203200842
315 => 0.033371116112795
316 => 0.032936573860701
317 => 0.032673761350779
318 => 0.033158001458581
319 => 0.032613758642575
320 => 0.032515997678028
321 => 0.031923672597851
322 => 0.031712239493302
323 => 0.031555702840088
324 => 0.031383371365874
325 => 0.031763491655663
326 => 0.030902089070012
327 => 0.029863321996053
328 => 0.029776959753469
329 => 0.030015413498289
330 => 0.029909915467
331 => 0.029776454669483
401 => 0.029521641661137
402 => 0.02944604408478
403 => 0.029691699533212
404 => 0.029414368854534
405 => 0.029823585377907
406 => 0.029712301126533
407 => 0.02909067634461
408 => 0.028315901711363
409 => 0.028309004591983
410 => 0.028142080668135
411 => 0.027929477953934
412 => 0.027870336742535
413 => 0.028733023802837
414 => 0.030518760199609
415 => 0.030168177415873
416 => 0.030421509406291
417 => 0.031667652067265
418 => 0.032063763346371
419 => 0.031782612942871
420 => 0.031397756929959
421 => 0.03141468864135
422 => 0.032729858141309
423 => 0.032811883649802
424 => 0.033019135647331
425 => 0.033285513033563
426 => 0.031827978163595
427 => 0.031346038880048
428 => 0.031117669310531
429 => 0.030414379426561
430 => 0.031172817270904
501 => 0.030730908018552
502 => 0.030790536674464
503 => 0.030751703434077
504 => 0.030772909009221
505 => 0.029647057453245
506 => 0.030057258587227
507 => 0.029375219642164
508 => 0.028462046057189
509 => 0.028458984779132
510 => 0.028682482720363
511 => 0.028549537399444
512 => 0.028191784959187
513 => 0.028242602004782
514 => 0.027797391213165
515 => 0.028296658655685
516 => 0.028310975859472
517 => 0.02811873069882
518 => 0.028887921079653
519 => 0.029203059006281
520 => 0.029076519123249
521 => 0.029194180630758
522 => 0.030182745713323
523 => 0.0303439249559
524 => 0.030415510128549
525 => 0.030319595480417
526 => 0.029212249785732
527 => 0.029261365276089
528 => 0.028900988396491
529 => 0.028596507908811
530 => 0.028608685531528
531 => 0.028765228081889
601 => 0.029448858580412
602 => 0.030887518662335
603 => 0.030942114760797
604 => 0.031008286824814
605 => 0.030739131785043
606 => 0.030657952049581
607 => 0.030765049074923
608 => 0.03130533416054
609 => 0.032695094086716
610 => 0.032203860109861
611 => 0.031804479240165
612 => 0.032154843935197
613 => 0.032100908036646
614 => 0.031645634773706
615 => 0.03163285676955
616 => 0.030759041818301
617 => 0.030436012326628
618 => 0.030166064705048
619 => 0.029871288949443
620 => 0.029696536000548
621 => 0.029965035953846
622 => 0.030026445069963
623 => 0.029439365229501
624 => 0.029359348416581
625 => 0.0298387704873
626 => 0.029627794708633
627 => 0.02984478852894
628 => 0.02989513295659
629 => 0.029887026344208
630 => 0.029666743400865
701 => 0.02980714518002
702 => 0.029475053116534
703 => 0.029113952876108
704 => 0.028883593420057
705 => 0.028682574241904
706 => 0.028794111365246
707 => 0.028396501886405
708 => 0.028269298611826
709 => 0.029759580216382
710 => 0.030860467260895
711 => 0.030844459927269
712 => 0.03074701940057
713 => 0.030602242542986
714 => 0.031294742831648
715 => 0.031053489578058
716 => 0.031229021477429
717 => 0.031273701712869
718 => 0.031408935328721
719 => 0.031457269722666
720 => 0.031311169613769
721 => 0.030820839803685
722 => 0.029598984536117
723 => 0.029030207610728
724 => 0.028842501751621
725 => 0.028849324503095
726 => 0.028661122559328
727 => 0.028716556466387
728 => 0.028641844908696
729 => 0.028500359293095
730 => 0.028785375027179
731 => 0.028818220435427
801 => 0.028751694357407
802 => 0.02876736365706
803 => 0.028216556144717
804 => 0.02825843284359
805 => 0.028025258062835
806 => 0.027981540602407
807 => 0.027392095061509
808 => 0.026347806844311
809 => 0.026926443888149
810 => 0.026227531707874
811 => 0.025962843074956
812 => 0.027215837895661
813 => 0.027090071968329
814 => 0.026874815369871
815 => 0.026556405997345
816 => 0.026438304863788
817 => 0.02572075976257
818 => 0.025678363370036
819 => 0.026033998097547
820 => 0.025869884907444
821 => 0.025639407834015
822 => 0.02480464323714
823 => 0.023866091449193
824 => 0.023894420428145
825 => 0.024192956289514
826 => 0.025060989569491
827 => 0.024721833949876
828 => 0.024475772656483
829 => 0.024429692772805
830 => 0.025006478991797
831 => 0.025822752332118
901 => 0.02620572952031
902 => 0.025826210758002
903 => 0.025390240038603
904 => 0.025416775556199
905 => 0.025593304466644
906 => 0.025611855159147
907 => 0.025328083039333
908 => 0.025407963228856
909 => 0.025286617916573
910 => 0.024541921959078
911 => 0.024528452770663
912 => 0.024345692372849
913 => 0.024340158460637
914 => 0.024029237432238
915 => 0.023985737431069
916 => 0.023368384857625
917 => 0.023774728190982
918 => 0.023502174416949
919 => 0.023091371590545
920 => 0.023020549028432
921 => 0.023018420016694
922 => 0.02344022266558
923 => 0.023769799181444
924 => 0.023506915606538
925 => 0.023447062112316
926 => 0.024086140841098
927 => 0.024004812247528
928 => 0.02393438221001
929 => 0.025749664007456
930 => 0.024312726816573
1001 => 0.02368614018384
1002 => 0.022910620240259
1003 => 0.0231631334444
1004 => 0.023216341686703
1005 => 0.021351356020367
1006 => 0.020594731567804
1007 => 0.020335086568475
1008 => 0.02018565720052
1009 => 0.020253754039913
1010 => 0.01957270328941
1011 => 0.020030380657288
1012 => 0.019440648275139
1013 => 0.019341777722116
1014 => 0.020396292275222
1015 => 0.020543021814903
1016 => 0.019917028013333
1017 => 0.020319017373131
1018 => 0.020173250443198
1019 => 0.019450757544196
1020 => 0.019423163629752
1021 => 0.019060642089886
1022 => 0.018493366077999
1023 => 0.018234105718519
1024 => 0.0180990806723
1025 => 0.018154794637956
1026 => 0.018126623952045
1027 => 0.017942791171089
1028 => 0.018137161031862
1029 => 0.01764062635676
1030 => 0.017442902248282
1031 => 0.017353594855647
1101 => 0.016912891752025
1102 => 0.017614246371448
1103 => 0.017752422066907
1104 => 0.017890870011171
1105 => 0.019095964843562
1106 => 0.019035761711298
1107 => 0.019579968706847
1108 => 0.019558821823732
1109 => 0.019403605173033
1110 => 0.018748771655633
1111 => 0.019009776624383
1112 => 0.018206443899747
1113 => 0.01880835539836
1114 => 0.018533668126818
1115 => 0.018715483355541
1116 => 0.018388563180679
1117 => 0.018569494303651
1118 => 0.017785188650281
1119 => 0.017052815066643
1120 => 0.017347543576017
1121 => 0.017667947171999
1122 => 0.018362663805407
1123 => 0.017948896309837
1124 => 0.018097702747526
1125 => 0.017599226091167
1126 => 0.016570726366281
1127 => 0.016576547563029
1128 => 0.01641833528744
1129 => 0.01628161678196
1130 => 0.01799642248408
1201 => 0.017783159287955
1202 => 0.017443352296127
1203 => 0.017898197458082
1204 => 0.018018465738267
1205 => 0.018021889607126
1206 => 0.018353732896036
1207 => 0.018530837718813
1208 => 0.018562053211444
1209 => 0.019084215796492
1210 => 0.01925923780751
1211 => 0.019980128700847
1212 => 0.018515811611963
1213 => 0.018485654965138
1214 => 0.017904598062282
1215 => 0.017536082588344
1216 => 0.017929830632061
1217 => 0.018278637646826
1218 => 0.017915436468526
1219 => 0.017962862874817
1220 => 0.017475294967576
1221 => 0.017649577552212
1222 => 0.017799693192501
1223 => 0.017716808159323
1224 => 0.017592725252975
1225 => 0.018250039449358
1226 => 0.018212951206363
1227 => 0.018825057297624
1228 => 0.019302237767888
1229 => 0.020157430476813
1230 => 0.019264992302845
1231 => 0.019232468308666
]
'min_raw' => 0.01628161678196
'max_raw' => 0.047074942301116
'avg_raw' => 0.031678279541538
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.016281'
'max' => '$0.047074'
'avg' => '$0.031678'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0028629289492312
'max_diff' => -0.015901939552884
'year' => 2030
]
5 => [
'items' => [
101 => 0.019550395568786
102 => 0.019259189134503
103 => 0.019443221548865
104 => 0.020127780009729
105 => 0.020142243651294
106 => 0.019899959019732
107 => 0.019885215977882
108 => 0.019931749391677
109 => 0.020204297049719
110 => 0.020109060523456
111 => 0.020219270642742
112 => 0.020357090084506
113 => 0.020927169729877
114 => 0.02106461400238
115 => 0.020730695676882
116 => 0.020760844762949
117 => 0.02063595014295
118 => 0.020515303504956
119 => 0.02078649952814
120 => 0.021282115590881
121 => 0.021279032389078
122 => 0.021394005682234
123 => 0.02146563309138
124 => 0.021158155816856
125 => 0.020957999417394
126 => 0.021034752117231
127 => 0.021157481355725
128 => 0.02099495267929
129 => 0.019991750397726
130 => 0.020296057885143
131 => 0.020245406239361
201 => 0.020173272136316
202 => 0.020479255668054
203 => 0.020449742809966
204 => 0.019565718129589
205 => 0.019622310521415
206 => 0.019569159700376
207 => 0.01974090087679
208 => 0.01924991454737
209 => 0.019400938635456
210 => 0.019495659527741
211 => 0.019551450860977
212 => 0.019753007413101
213 => 0.019729357078066
214 => 0.019751537275068
215 => 0.020050392432911
216 => 0.021561899266572
217 => 0.021644167248577
218 => 0.021239049617086
219 => 0.021400886120275
220 => 0.021090195423906
221 => 0.021298764169825
222 => 0.021441461608711
223 => 0.020796639321524
224 => 0.020758457130539
225 => 0.020446484103147
226 => 0.020614120737012
227 => 0.020347398799032
228 => 0.020412843033075
301 => 0.020229855249365
302 => 0.020559196827538
303 => 0.020927451886443
304 => 0.021020487657155
305 => 0.020775750598829
306 => 0.020598544839643
307 => 0.020287429901717
308 => 0.020804820977136
309 => 0.020956121894795
310 => 0.020804026257826
311 => 0.020768782375385
312 => 0.020701995281843
313 => 0.020782951573003
314 => 0.020955297877504
315 => 0.020874022543038
316 => 0.02092770633334
317 => 0.020723119083192
318 => 0.021158257604628
319 => 0.021849362298457
320 => 0.021851584313055
321 => 0.021770308540484
322 => 0.021737052245459
323 => 0.021820446120343
324 => 0.021865683876471
325 => 0.022135364376025
326 => 0.02242474229659
327 => 0.023775142786392
328 => 0.02339595573257
329 => 0.024594111382807
330 => 0.025541696941105
331 => 0.025825836417144
401 => 0.025564441468984
402 => 0.024670223471604
403 => 0.024626348870561
404 => 0.025962688087746
405 => 0.025585111050677
406 => 0.025540199463558
407 => 0.025062416055935
408 => 0.025344845224466
409 => 0.025283073822323
410 => 0.025185564642078
411 => 0.02572441982145
412 => 0.026733108613301
413 => 0.026575895005667
414 => 0.026458542340498
415 => 0.025944337122575
416 => 0.026254003515658
417 => 0.02614373724435
418 => 0.026617511122594
419 => 0.026336857972499
420 => 0.025582250533264
421 => 0.025702424255181
422 => 0.025684260238869
423 => 0.026058074407449
424 => 0.025945864672679
425 => 0.025662349487253
426 => 0.026729661024669
427 => 0.026660355750128
428 => 0.026758614784035
429 => 0.026801871449523
430 => 0.027451525174209
501 => 0.027717667518612
502 => 0.027778086490269
503 => 0.028030901133265
504 => 0.027771796231643
505 => 0.028808400576795
506 => 0.029497681978781
507 => 0.030298317797284
508 => 0.031468261918737
509 => 0.031908171730992
510 => 0.031828705960888
511 => 0.032715744241387
512 => 0.034309732313689
513 => 0.032150896524164
514 => 0.034424155852597
515 => 0.033704468195256
516 => 0.031998101706329
517 => 0.031888231821181
518 => 0.033043803018805
519 => 0.035606748715528
520 => 0.034964759887189
521 => 0.035607798779265
522 => 0.034857659754636
523 => 0.034820409029395
524 => 0.035571366201181
525 => 0.037326018565602
526 => 0.036492448999426
527 => 0.035297322626669
528 => 0.036179785342087
529 => 0.035415314469923
530 => 0.033692747633014
531 => 0.034964268970431
601 => 0.034114038862943
602 => 0.034362181209026
603 => 0.036149238432782
604 => 0.035934214979653
605 => 0.036212475238637
606 => 0.035721353164868
607 => 0.035262567705125
608 => 0.034406210574659
609 => 0.034152685446224
610 => 0.034222750670845
611 => 0.034152650725379
612 => 0.033673526781211
613 => 0.033570060011086
614 => 0.033397610861227
615 => 0.033451060063674
616 => 0.033126805210161
617 => 0.03373874111321
618 => 0.033852321809177
619 => 0.034297637728196
620 => 0.034343871904188
621 => 0.035584070399982
622 => 0.034900989909188
623 => 0.035359259276745
624 => 0.035318267351112
625 => 0.0320350838423
626 => 0.032487477562041
627 => 0.033191260220988
628 => 0.032874207087087
629 => 0.032425968134759
630 => 0.032063991147702
701 => 0.031515558998263
702 => 0.032287466716891
703 => 0.033302443283654
704 => 0.034369613384887
705 => 0.035651748337765
706 => 0.035365590741979
707 => 0.034345644763778
708 => 0.034391398795289
709 => 0.034674232214543
710 => 0.034307937238483
711 => 0.034199909699116
712 => 0.034659390889509
713 => 0.034662555083941
714 => 0.034241088445758
715 => 0.033772705404998
716 => 0.033770742862955
717 => 0.033687398624896
718 => 0.034872486509437
719 => 0.035524165020035
720 => 0.035598878911042
721 => 0.035519136179881
722 => 0.035549825992229
723 => 0.035170628625668
724 => 0.03603736135814
725 => 0.03683276102444
726 => 0.036619576922636
727 => 0.036299983648127
728 => 0.036045412211282
729 => 0.036559607982512
730 => 0.036536711654239
731 => 0.036825813902246
801 => 0.036812698554341
802 => 0.036715484342022
803 => 0.036619580394462
804 => 0.036999828706046
805 => 0.036890323298911
806 => 0.036780647799632
807 => 0.03656067679535
808 => 0.036590574508163
809 => 0.036271036415939
810 => 0.036123203473407
811 => 0.033900150718561
812 => 0.033306078382122
813 => 0.033492985632623
814 => 0.033554520352533
815 => 0.03329597931039
816 => 0.033666660751078
817 => 0.033608890441196
818 => 0.033833640922448
819 => 0.033693226579293
820 => 0.033698989232915
821 => 0.034111917876638
822 => 0.034231792818635
823 => 0.034170823455626
824 => 0.03421352430757
825 => 0.035197547417717
826 => 0.035057650798742
827 => 0.034983333508155
828 => 0.035003919905541
829 => 0.035255358907877
830 => 0.03532574810047
831 => 0.035027504145291
901 => 0.035168157718681
902 => 0.035767042782582
903 => 0.035976618660988
904 => 0.036645484262732
905 => 0.036361338266973
906 => 0.036882900539739
907 => 0.038486005152541
908 => 0.039766676043648
909 => 0.038588918166223
910 => 0.040940707165287
911 => 0.042771912245154
912 => 0.042701627544157
913 => 0.042382314581945
914 => 0.040297536283623
915 => 0.038379092211214
916 => 0.039983952139222
917 => 0.039988043257221
918 => 0.039850184366125
919 => 0.038993954633435
920 => 0.039820389427413
921 => 0.039885988820189
922 => 0.039849270604521
923 => 0.039192801276004
924 => 0.03819049394717
925 => 0.03838634240004
926 => 0.03870714616104
927 => 0.038099797714791
928 => 0.037905713085675
929 => 0.038266553337314
930 => 0.039429255812147
1001 => 0.039209453644357
1002 => 0.039203713721465
1003 => 0.040144120605898
1004 => 0.039470992229152
1005 => 0.038388812676224
1006 => 0.038115548066915
1007 => 0.037145642796966
1008 => 0.037815559821604
1009 => 0.03783966894269
1010 => 0.037472762234682
1011 => 0.03841858513344
1012 => 0.03840986920892
1013 => 0.03930778728413
1014 => 0.041024269401306
1015 => 0.040516621176302
1016 => 0.039926281522592
1017 => 0.039990467811294
1018 => 0.040694432973087
1019 => 0.040268799566305
1020 => 0.040421860307006
1021 => 0.040694201297325
1022 => 0.04085851137863
1023 => 0.039966826119182
1024 => 0.039758931630969
1025 => 0.039333652469133
1026 => 0.039222705074022
1027 => 0.039569086077596
1028 => 0.039477826920976
1029 => 0.037837642664418
1030 => 0.037666234283709
1031 => 0.03767149113403
1101 => 0.037240476610712
1102 => 0.036583076007314
1103 => 0.038310685541694
1104 => 0.038171934318203
1105 => 0.038018763705961
1106 => 0.038037526231982
1107 => 0.038787422976736
1108 => 0.038352444994085
1109 => 0.039508905252452
1110 => 0.039271171789709
1111 => 0.039027341360698
1112 => 0.038993636568152
1113 => 0.038899782655617
1114 => 0.038577922668032
1115 => 0.038189257392237
1116 => 0.037932626911547
1117 => 0.03499084321483
1118 => 0.035536821157372
1119 => 0.036164919012812
1120 => 0.036381735875565
1121 => 0.036010855628555
1122 => 0.038592567280726
1123 => 0.03906427087757
1124 => 0.037635449914265
1125 => 0.037368175850406
1126 => 0.038610089723856
1127 => 0.037861063840369
1128 => 0.03819835014984
1129 => 0.037469321634512
1130 => 0.038950651294184
1201 => 0.038939366044083
1202 => 0.038363095349123
1203 => 0.038850155394372
1204 => 0.038765516725551
1205 => 0.038114908530233
1206 => 0.038971276734444
1207 => 0.038971701482389
1208 => 0.038417053467695
1209 => 0.037769346014596
1210 => 0.037653551220149
1211 => 0.037566315397375
1212 => 0.038176895485091
1213 => 0.038724339682502
1214 => 0.039742997610959
1215 => 0.039999112416888
1216 => 0.040998745554958
1217 => 0.040403512692492
1218 => 0.040667371710867
1219 => 0.040953828000451
1220 => 0.041091165679758
1221 => 0.040867381301273
1222 => 0.042420223030111
1223 => 0.042551330449866
1224 => 0.042595289633635
1225 => 0.042071680139636
1226 => 0.042536767922635
1227 => 0.042319168751059
1228 => 0.04288530134471
1229 => 0.042974078164139
1230 => 0.04289888735641
1231 => 0.042927066520143
]
'min_raw' => 0.01924991454737
'max_raw' => 0.042974078164139
'avg_raw' => 0.031111996355754
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.019249'
'max' => '$0.042974'
'avg' => '$0.031111'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0029682977654097
'max_diff' => -0.004100864136977
'year' => 2031
]
6 => [
'items' => [
101 => 0.041601990044632
102 => 0.041533277839042
103 => 0.040596382040219
104 => 0.040978174003424
105 => 0.040264432227978
106 => 0.040490767097327
107 => 0.040590533351138
108 => 0.040538421121832
109 => 0.040999759948187
110 => 0.04060752770049
111 => 0.039572362309865
112 => 0.038536914889122
113 => 0.038523915690212
114 => 0.038251300661495
115 => 0.038054249927666
116 => 0.038092208889752
117 => 0.038225981223208
118 => 0.038046474836461
119 => 0.038084781625278
120 => 0.038720929556443
121 => 0.038848504487239
122 => 0.038414955025652
123 => 0.036674191376492
124 => 0.036247003610613
125 => 0.036554057705225
126 => 0.036407305624817
127 => 0.029383537112928
128 => 0.031033667339766
129 => 0.030053215992106
130 => 0.030505053081505
131 => 0.029504266142191
201 => 0.029981894125369
202 => 0.029893693677058
203 => 0.032547054250909
204 => 0.032505625675126
205 => 0.032525455342002
206 => 0.031578933676104
207 => 0.033086768390743
208 => 0.033829581991157
209 => 0.033692106963064
210 => 0.033726706465852
211 => 0.033132172374321
212 => 0.032531211731595
213 => 0.031864653891632
214 => 0.033103035969245
215 => 0.032965349022101
216 => 0.033281153340648
217 => 0.034084332639359
218 => 0.034202603842076
219 => 0.034361561537915
220 => 0.034304586519336
221 => 0.035661962611166
222 => 0.03549757541019
223 => 0.035893701267117
224 => 0.035078840325276
225 => 0.034156747822272
226 => 0.034332007461618
227 => 0.034315128549
228 => 0.034100240618658
229 => 0.033906249403434
301 => 0.033583308686773
302 => 0.034605140900524
303 => 0.03456365637873
304 => 0.035235242566086
305 => 0.035116533184031
306 => 0.034323762877552
307 => 0.034352076824139
308 => 0.034542501722161
309 => 0.035201564468447
310 => 0.035397219163958
311 => 0.035306584113506
312 => 0.035521110555158
313 => 0.035690663507692
314 => 0.035542403795513
315 => 0.037641448667903
316 => 0.036769778891989
317 => 0.03719462467573
318 => 0.037295947891816
319 => 0.03703641060441
320 => 0.037092694948715
321 => 0.037177950393771
322 => 0.037695604761423
323 => 0.03905407960664
324 => 0.039655738868136
325 => 0.041465860441691
326 => 0.03960577944197
327 => 0.039495409933227
328 => 0.039821467489059
329 => 0.040884200473564
330 => 0.041745445740071
331 => 0.042031170481403
401 => 0.042068933722772
402 => 0.042604972332132
403 => 0.042912219666489
404 => 0.042539883145741
405 => 0.042224366929665
406 => 0.041094227006996
407 => 0.041225043780314
408 => 0.042126241623721
409 => 0.043399236657822
410 => 0.04449159882964
411 => 0.044109091669734
412 => 0.04702735129184
413 => 0.047316684813351
414 => 0.047276708275951
415 => 0.047935853096552
416 => 0.046627584860167
417 => 0.046068274842609
418 => 0.042292585116842
419 => 0.0433533999214
420 => 0.044895356539294
421 => 0.044691272798875
422 => 0.043571462686342
423 => 0.044490749353254
424 => 0.044186804432421
425 => 0.043947070462673
426 => 0.045045338252802
427 => 0.043837747703201
428 => 0.044883309899803
429 => 0.043542365567705
430 => 0.044110838930221
501 => 0.043788145955694
502 => 0.043996967857976
503 => 0.042776199284167
504 => 0.043434896374113
505 => 0.04274879531963
506 => 0.042748470018398
507 => 0.042733324299593
508 => 0.043540519147553
509 => 0.043566841742566
510 => 0.042970323530319
511 => 0.042884355936569
512 => 0.043202223188105
513 => 0.042830083886121
514 => 0.043004205523302
515 => 0.042835357853131
516 => 0.0427973466861
517 => 0.042494467240125
518 => 0.042363978446955
519 => 0.042415146465039
520 => 0.042240483640397
521 => 0.04213524297072
522 => 0.042712389281525
523 => 0.042404043289678
524 => 0.04266513083597
525 => 0.042367588625095
526 => 0.04133617768923
527 => 0.040743002353041
528 => 0.038794762707036
529 => 0.039347281053859
530 => 0.039713601289425
531 => 0.039592532453755
601 => 0.039852635160193
602 => 0.039868603353901
603 => 0.039784041312605
604 => 0.039686129301853
605 => 0.039638471149892
606 => 0.039993675969014
607 => 0.040199884322158
608 => 0.039750366425796
609 => 0.039645050672102
610 => 0.040099538083888
611 => 0.040376775142528
612 => 0.042423737817482
613 => 0.042272092210919
614 => 0.042652692924445
615 => 0.042609843124896
616 => 0.043008773307119
617 => 0.04366085555458
618 => 0.042334990020428
619 => 0.042565114432176
620 => 0.042508693240764
621 => 0.043124685014168
622 => 0.043126608073247
623 => 0.04275729023402
624 => 0.042957503426163
625 => 0.04284574991487
626 => 0.043047703614169
627 => 0.042270066891389
628 => 0.043217144479037
629 => 0.043754076442902
630 => 0.043761531743741
701 => 0.044016033233258
702 => 0.044274621486339
703 => 0.044770959119837
704 => 0.044260778899128
705 => 0.043343014347116
706 => 0.04340927398341
707 => 0.042871188962362
708 => 0.042880234268779
709 => 0.042831949714233
710 => 0.042976855297118
711 => 0.042301865518085
712 => 0.042460284270074
713 => 0.04223849708959
714 => 0.04256463231016
715 => 0.04221376472491
716 => 0.042508666032757
717 => 0.042635935661091
718 => 0.04310556332956
719 => 0.042144400336435
720 => 0.040184523928438
721 => 0.040596513710603
722 => 0.039987148461681
723 => 0.040043547535486
724 => 0.040157482640418
725 => 0.039788181688087
726 => 0.039858632671782
727 => 0.039856115666888
728 => 0.039834425478512
729 => 0.039738356037731
730 => 0.03959903634184
731 => 0.040154043129931
801 => 0.040248349598245
802 => 0.040457981195206
803 => 0.041081702633294
804 => 0.041019378153264
805 => 0.04112103196601
806 => 0.040899122263548
807 => 0.040053841290131
808 => 0.040099744113757
809 => 0.039527335167598
810 => 0.040443343411502
811 => 0.040226420568628
812 => 0.04008656900066
813 => 0.040048409204624
814 => 0.040673676727515
815 => 0.040860766570232
816 => 0.040744184735383
817 => 0.040505071990873
818 => 0.04096423914767
819 => 0.041087092908121
820 => 0.041114595334414
821 => 0.041928151499688
822 => 0.041160064086571
823 => 0.041344950361041
824 => 0.042787380296337
825 => 0.041479295386748
826 => 0.042172217137132
827 => 0.042138302223241
828 => 0.042492777543544
829 => 0.042109224900617
830 => 0.04211397949531
831 => 0.042428729565501
901 => 0.041986719857392
902 => 0.041877272037668
903 => 0.041726070658599
904 => 0.042056213338204
905 => 0.042254118943558
906 => 0.043849092777062
907 => 0.044879518613149
908 => 0.04483478511005
909 => 0.045243565590769
910 => 0.045059406240205
911 => 0.044464707118451
912 => 0.045479786003453
913 => 0.045158572571534
914 => 0.045185053016587
915 => 0.045184067413099
916 => 0.04539764626436
917 => 0.045246306074028
918 => 0.044947999024131
919 => 0.045146029165259
920 => 0.04573410788734
921 => 0.047559522285138
922 => 0.04858104836567
923 => 0.047498025132424
924 => 0.048245080056458
925 => 0.047797113304924
926 => 0.047715704420314
927 => 0.048184910119532
928 => 0.048654937101215
929 => 0.048624998414464
930 => 0.048283782961915
1001 => 0.048091039010792
1002 => 0.049550560782658
1003 => 0.050625911561864
1004 => 0.050552579847966
1005 => 0.050876242184364
1006 => 0.051826524814528
1007 => 0.051913406748901
1008 => 0.051902461622128
1009 => 0.051687115682594
1010 => 0.052622792341784
1011 => 0.053403350272544
1012 => 0.051637269319534
1013 => 0.052309769826743
1014 => 0.052611676971042
1015 => 0.053054966230687
1016 => 0.053802869515614
1017 => 0.054615290854594
1018 => 0.054730176139672
1019 => 0.054648659532142
1020 => 0.054112845820027
1021 => 0.055001806943341
1022 => 0.055522539520674
1023 => 0.055832623853723
1024 => 0.056618946129223
1025 => 0.052613541446784
1026 => 0.049778316931024
1027 => 0.04933555568175
1028 => 0.050235928092875
1029 => 0.050473349117354
1030 => 0.050377645000087
1031 => 0.047186342040264
1101 => 0.049318754132122
1102 => 0.05161305024466
1103 => 0.051701183502158
1104 => 0.052849756107563
1105 => 0.053223778429465
1106 => 0.05414852992367
1107 => 0.054090686465925
1108 => 0.054315848738753
1109 => 0.054264087831497
1110 => 0.05597699524511
1111 => 0.057866586491537
1112 => 0.057801155955205
1113 => 0.057529504856903
1114 => 0.057932953061278
1115 => 0.059883213728495
1116 => 0.059703664978548
1117 => 0.059878081295195
1118 => 0.062177548533719
1119 => 0.0651671830392
1120 => 0.063778197657007
1121 => 0.066791896266589
1122 => 0.068688859792022
1123 => 0.071969462059568
1124 => 0.071558714498364
1125 => 0.072835828886949
1126 => 0.070823390638207
1127 => 0.066202425638223
1128 => 0.065471140238632
1129 => 0.066935192127709
1130 => 0.07053442083691
1201 => 0.066821839607088
1202 => 0.067572889954605
1203 => 0.067356587403994
1204 => 0.067345061560299
1205 => 0.067784956135158
1206 => 0.067146866110967
1207 => 0.064547172562211
1208 => 0.065738596795516
1209 => 0.065278530682146
1210 => 0.06578900833513
1211 => 0.06854384569129
1212 => 0.067325866429012
1213 => 0.066042824216802
1214 => 0.067652043880773
1215 => 0.069701133500878
1216 => 0.06957290515502
1217 => 0.069324088568765
1218 => 0.070726654637874
1219 => 0.073043282870741
1220 => 0.073669458173119
1221 => 0.074131687979744
1222 => 0.074195421660641
1223 => 0.074851918184142
1224 => 0.071321770918851
1225 => 0.07692420528948
1226 => 0.077891590941161
1227 => 0.077709762532672
1228 => 0.078784970970705
1229 => 0.07846861737283
1230 => 0.078010270643869
1231 => 0.079714704721544
]
'min_raw' => 0.029383537112928
'max_raw' => 0.079714704721544
'avg_raw' => 0.054549120917236
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.029383'
'max' => '$0.079714'
'avg' => '$0.054549'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.010133622565558
'max_diff' => 0.036740626557405
'year' => 2032
]
7 => [
'items' => [
101 => 0.077760708592227
102 => 0.074987257087934
103 => 0.073465686740028
104 => 0.075469413315729
105 => 0.076693019215089
106 => 0.077501744878615
107 => 0.077746464775752
108 => 0.071595806202015
109 => 0.068280942361934
110 => 0.070405732078435
111 => 0.072998122177718
112 => 0.071307370060956
113 => 0.071373644342916
114 => 0.068963076146254
115 => 0.073211403974528
116 => 0.07259245834401
117 => 0.075803549370035
118 => 0.075037196726059
119 => 0.077655716803947
120 => 0.076966172711275
121 => 0.079828431688066
122 => 0.080970264286476
123 => 0.08288757893126
124 => 0.084297963388838
125 => 0.085126168118683
126 => 0.085076445813221
127 => 0.088358205562826
128 => 0.086423066494436
129 => 0.083992075747279
130 => 0.083948106794341
131 => 0.085207151349699
201 => 0.087845763335723
202 => 0.088529917033457
203 => 0.088912265616526
204 => 0.088326685451906
205 => 0.086226230685835
206 => 0.085319264967394
207 => 0.086092026036833
208 => 0.085147005653025
209 => 0.086778375961365
210 => 0.089018595836612
211 => 0.088555999291164
212 => 0.09010239018625
213 => 0.091702742077597
214 => 0.093991317158525
215 => 0.09458963543037
216 => 0.095578632781722
217 => 0.09659663592497
218 => 0.096923591098627
219 => 0.097547849973371
220 => 0.097544559820959
221 => 0.099425805957468
222 => 0.10150087870338
223 => 0.10228417062692
224 => 0.10408530721412
225 => 0.10100092392789
226 => 0.10334046408134
227 => 0.10545078786224
228 => 0.10293477285221
301 => 0.10640251338722
302 => 0.10653715789413
303 => 0.10857013009108
304 => 0.10650932329912
305 => 0.10528562280439
306 => 0.10881840028123
307 => 0.11052780002083
308 => 0.11001291490771
309 => 0.10609461377383
310 => 0.10381399445007
311 => 0.097845173781174
312 => 0.10491549969734
313 => 0.10835924920687
314 => 0.10608569529454
315 => 0.10723234364319
316 => 0.11348808523142
317 => 0.11586986659894
318 => 0.11537447272441
319 => 0.11545818613433
320 => 0.11674335212785
321 => 0.12244248589699
322 => 0.11902743283764
323 => 0.12163811294191
324 => 0.12302280825572
325 => 0.12430899043308
326 => 0.12115053350752
327 => 0.11704142745431
328 => 0.11573990107872
329 => 0.10585963516481
330 => 0.10534532441618
331 => 0.10505662620775
401 => 0.10323642484083
402 => 0.10180624516154
403 => 0.1006689131814
404 => 0.097684214429441
405 => 0.098691462641477
406 => 0.093934475785896
407 => 0.096977827398834
408 => 0.089385561515862
409 => 0.0957086261486
410 => 0.092267269543472
411 => 0.094578047948826
412 => 0.094569985860658
413 => 0.09031511018344
414 => 0.08786098668981
415 => 0.089424849695866
416 => 0.091101434977958
417 => 0.091373455299268
418 => 0.093547191880853
419 => 0.094153835036462
420 => 0.092315677953506
421 => 0.089228228680861
422 => 0.089945372729676
423 => 0.08784645378855
424 => 0.084168179077979
425 => 0.086809980191627
426 => 0.087712007243621
427 => 0.08811039377713
428 => 0.084493233051988
429 => 0.083356642619768
430 => 0.082751531410572
501 => 0.088761298653604
502 => 0.08909052726946
503 => 0.087406147122507
504 => 0.095019705106215
505 => 0.093296522450051
506 => 0.095221739666987
507 => 0.089880299423994
508 => 0.09008434963448
509 => 0.08755562622307
510 => 0.0889715423641
511 => 0.087970818472727
512 => 0.088857150332261
513 => 0.089388413994382
514 => 0.091916722467162
515 => 0.095737495370081
516 => 0.091539077492987
517 => 0.089709766701485
518 => 0.090844660828098
519 => 0.093867033441868
520 => 0.098446082664137
521 => 0.0957351933626
522 => 0.096938240000737
523 => 0.09720105217135
524 => 0.095202142762973
525 => 0.098519785305239
526 => 0.10029773689612
527 => 0.10212154733312
528 => 0.10370511083356
529 => 0.10139307733813
530 => 0.10386728459522
531 => 0.10187351030238
601 => 0.10008488864911
602 => 0.10008760124984
603 => 0.09896557275915
604 => 0.096791501173744
605 => 0.096390569017153
606 => 0.09847626872789
607 => 0.1001488023794
608 => 0.10028656026184
609 => 0.1012125608292
610 => 0.1017605584264
611 => 0.10713167984555
612 => 0.10929198931259
613 => 0.11193357483631
614 => 0.1129626212694
615 => 0.11605968209944
616 => 0.1135585539482
617 => 0.11301741913985
618 => 0.10550496260704
619 => 0.10673512694343
620 => 0.1087047387392
621 => 0.1055374407801
622 => 0.10754636232365
623 => 0.10794296599112
624 => 0.10542981720743
625 => 0.10677219855955
626 => 0.10320723167665
627 => 0.095815201906198
628 => 0.098528014747497
629 => 0.10052555812162
630 => 0.097674817431424
701 => 0.1027846597797
702 => 0.099799595368395
703 => 0.098853473258372
704 => 0.095162313590284
705 => 0.096904398867856
706 => 0.099260594150032
707 => 0.097804739402749
708 => 0.10082585660105
709 => 0.10510456425637
710 => 0.108153826133
711 => 0.10838791059705
712 => 0.10642743949506
713 => 0.10956910694756
714 => 0.10959199056511
715 => 0.1060481768446
716 => 0.10387761067283
717 => 0.10338445347169
718 => 0.1046164568493
719 => 0.10611233639008
720 => 0.10847092150077
721 => 0.10989616508603
722 => 0.11361244446561
723 => 0.11461796311165
724 => 0.11572272324944
725 => 0.11719902348893
726 => 0.11897170044205
727 => 0.11509318418717
728 => 0.11524728486844
729 => 0.11163566423361
730 => 0.10777612962651
731 => 0.11070503529552
801 => 0.11453418984176
802 => 0.11365577755801
803 => 0.11355693823175
804 => 0.11372315856277
805 => 0.11306086438709
806 => 0.11006533237625
807 => 0.10856099495343
808 => 0.11050197402627
809 => 0.11153351802045
810 => 0.11313335279534
811 => 0.11293613939092
812 => 0.1170571419613
813 => 0.1186584389475
814 => 0.11824875865507
815 => 0.11832414968839
816 => 0.12122322139399
817 => 0.1244475853702
818 => 0.12746762772621
819 => 0.13053974452459
820 => 0.12683618781739
821 => 0.12495575012509
822 => 0.1268958818272
823 => 0.12586642063673
824 => 0.13178200999518
825 => 0.13219159256749
826 => 0.1381067541615
827 => 0.14372094687855
828 => 0.14019477302168
829 => 0.14351979614635
830 => 0.1471160797488
831 => 0.1540538942939
901 => 0.15171748243037
902 => 0.14992782755914
903 => 0.14823661235339
904 => 0.15175576272371
905 => 0.15628309345534
906 => 0.1572582371327
907 => 0.15883834242357
908 => 0.1571770549163
909 => 0.15917789273399
910 => 0.16624172944314
911 => 0.16433301841012
912 => 0.16162234190262
913 => 0.1671985625664
914 => 0.16921657514761
915 => 0.18338004428396
916 => 0.20126200913233
917 => 0.19385875826579
918 => 0.18926332155152
919 => 0.19034335818459
920 => 0.1968732464045
921 => 0.19897043925245
922 => 0.19326954614601
923 => 0.19528319796842
924 => 0.20637861748778
925 => 0.21233095407624
926 => 0.20424688148365
927 => 0.18194324581967
928 => 0.16137827514127
929 => 0.16683303141788
930 => 0.16621463133691
1001 => 0.17813527542869
1002 => 0.16428749628323
1003 => 0.16452065736943
1004 => 0.17668780775685
1005 => 0.17344182063125
1006 => 0.1681837372024
1007 => 0.16141666496924
1008 => 0.14890710606782
1009 => 0.13782704089398
1010 => 0.1595576002865
1011 => 0.15862053905104
1012 => 0.15726353551739
1013 => 0.1602834000384
1014 => 0.17494700494893
1015 => 0.17460896139429
1016 => 0.17245850077097
1017 => 0.17408960620047
1018 => 0.16789779653434
1019 => 0.16949356687018
1020 => 0.16137501754484
1021 => 0.16504494090047
1022 => 0.16817245571689
1023 => 0.16880035061994
1024 => 0.17021502989761
1025 => 0.15812675036034
1026 => 0.16355403297933
1027 => 0.16674205305038
1028 => 0.15233846238823
1029 => 0.16645734037406
1030 => 0.15791632030759
1031 => 0.15501736981522
1101 => 0.15892042474552
1102 => 0.15739940044333
1103 => 0.15609171306586
1104 => 0.15536200104031
1105 => 0.15822797381667
1106 => 0.15809427276107
1107 => 0.1534049850376
1108 => 0.14728800036216
1109 => 0.14934106120242
1110 => 0.1485951649516
1111 => 0.14589194071613
1112 => 0.1477135874623
1113 => 0.13969197710647
1114 => 0.1258912134163
1115 => 0.13500842063885
1116 => 0.1346574180784
1117 => 0.13448042667071
1118 => 0.14133175591736
1119 => 0.14067315869736
1120 => 0.13947779829405
1121 => 0.14586998698491
1122 => 0.14353675212567
1123 => 0.15072723218256
1124 => 0.15546334739912
1125 => 0.15426211538292
1126 => 0.15871645463573
1127 => 0.14938835957758
1128 => 0.15248677857768
1129 => 0.15312535843938
1130 => 0.14579110836869
1201 => 0.14078091334756
1202 => 0.14044679046006
1203 => 0.13175980274082
1204 => 0.13640032146152
1205 => 0.14048378589803
1206 => 0.13852812332258
1207 => 0.13790901897495
1208 => 0.14107188881964
1209 => 0.14131767089472
1210 => 0.13571381353607
1211 => 0.13687903293202
1212 => 0.14173819151471
1213 => 0.13675659460305
1214 => 0.12707816554292
1215 => 0.12467778132125
1216 => 0.12435752581822
1217 => 0.1178474934322
1218 => 0.12483818647283
1219 => 0.12178656162167
1220 => 0.1314266079624
1221 => 0.12592026519318
1222 => 0.12568289776179
1223 => 0.125324082075
1224 => 0.1197206282743
1225 => 0.12094742853859
1226 => 0.12502549946404
1227 => 0.12648060111299
1228 => 0.12632882208971
1229 => 0.12500551469172
1230 => 0.12561131804209
1231 => 0.12365981437466
]
'min_raw' => 0.068280942361934
'max_raw' => 0.21233095407624
'avg_raw' => 0.14030594821909
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.06828'
'max' => '$0.21233'
'avg' => '$0.1403059'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.038897405249006
'max_diff' => 0.1326162493547
'year' => 2033
]
8 => [
'items' => [
101 => 0.12297069781266
102 => 0.12079565638653
103 => 0.11759894636066
104 => 0.11804346849632
105 => 0.11170994947038
106 => 0.10825911215975
107 => 0.10730396587347
108 => 0.10602670434115
109 => 0.10744823596221
110 => 0.11169200740674
111 => 0.1065731186783
112 => 0.097797143001687
113 => 0.098324594093386
114 => 0.099509620094801
115 => 0.097301331980897
116 => 0.09521137260866
117 => 0.097028422719056
118 => 0.093309926133231
119 => 0.09995898264187
120 => 0.099779144297077
121 => 0.1022575013886
122 => 0.10380726893894
123 => 0.10023555647861
124 => 0.099337280453779
125 => 0.099848979301894
126 => 0.091391737165827
127 => 0.10156636427625
128 => 0.10165435487402
129 => 0.10090092595534
130 => 0.10631860078527
131 => 0.11775158449159
201 => 0.11345003613057
202 => 0.11178434659019
203 => 0.10861786955633
204 => 0.11283701219715
205 => 0.11251304787121
206 => 0.11104795832951
207 => 0.11016186760332
208 => 0.11179451693534
209 => 0.10995956428336
210 => 0.10962995636593
211 => 0.1076328910033
212 => 0.10692002952952
213 => 0.10639225527417
214 => 0.10581122767706
215 => 0.10709282977324
216 => 0.10418855081451
217 => 0.10068627510025
218 => 0.10039509876976
219 => 0.10119906221873
220 => 0.1008433682406
221 => 0.10039339584384
222 => 0.099534275995725
223 => 0.099279393488982
224 => 0.10010763798449
225 => 0.099172598238716
226 => 0.10055230031785
227 => 0.10017709769472
228 => 0.098081246342016
301 => 0.095469039572987
302 => 0.095445785453454
303 => 0.094882989789944
304 => 0.094166184895571
305 => 0.09396678617223
306 => 0.096875395826924
307 => 0.10289613076478
308 => 0.1017141164325
309 => 0.10256824292527
310 => 0.10676969990965
311 => 0.10810521674276
312 => 0.10715729852807
313 => 0.10585972961074
314 => 0.10591681605783
315 => 0.11035100184915
316 => 0.11062755657787
317 => 0.11132632115741
318 => 0.11222443111297
319 => 0.10731025053703
320 => 0.10568535859463
321 => 0.10491539464675
322 => 0.10254420370081
323 => 0.10510132984545
324 => 0.10361140194803
325 => 0.10381244412458
326 => 0.10368151514336
327 => 0.10375301122048
328 => 0.099957124095068
329 => 0.10134014585762
330 => 0.099040603935898
331 => 0.095961775438411
401 => 0.095951454125712
402 => 0.096704993038698
403 => 0.096256758607273
404 => 0.095050571277469
405 => 0.095221904494624
406 => 0.093720845227064
407 => 0.095404160267262
408 => 0.095452431719424
409 => 0.094804263738158
410 => 0.097397642810294
411 => 0.098460152332145
412 => 0.098033514281772
413 => 0.098430218269201
414 => 0.10176323446448
415 => 0.102306661534
416 => 0.10254801594151
417 => 0.10222463300878
418 => 0.098491139686747
419 => 0.098656735991618
420 => 0.097441700181344
421 => 0.096415122958981
422 => 0.096456180664187
423 => 0.096983974802179
424 => 0.099288882757507
425 => 0.10413942566775
426 => 0.10432350022549
427 => 0.10454660395931
428 => 0.10363912895092
429 => 0.10336542580502
430 => 0.10372651090324
501 => 0.10554811979089
502 => 0.11023379241194
503 => 0.10857756276211
504 => 0.10723102227605
505 => 0.10841230130703
506 => 0.10823045265938
507 => 0.10669546706721
508 => 0.10665238513407
509 => 0.10370625701812
510 => 0.10261714053375
511 => 0.10170699328045
512 => 0.10071313623984
513 => 0.10012394447178
514 => 0.10102921081039
515 => 0.10123625593283
516 => 0.099256875262107
517 => 0.09898709299075
518 => 0.10060349797436
519 => 0.099892178406726
520 => 0.10062378822192
521 => 0.10079352797467
522 => 0.10076619596504
523 => 0.1000234966419
524 => 0.10049687104286
525 => 0.099377199464887
526 => 0.098159724793078
527 => 0.097383051803816
528 => 0.096705301609963
529 => 0.097081356808585
530 => 0.095740788690464
531 => 0.095311913969171
601 => 0.10033650244707
602 => 0.10404821997913
603 => 0.10399425013621
604 => 0.10366572259737
605 => 0.10317759731402
606 => 0.10551241038607
607 => 0.10469900819783
608 => 0.1052908262518
609 => 0.10544146878507
610 => 0.10589741836262
611 => 0.10606038114641
612 => 0.10556779442888
613 => 0.10391461324044
614 => 0.099795042898625
615 => 0.09787737178394
616 => 0.097244508374756
617 => 0.097267511757701
618 => 0.096632975764451
619 => 0.096819875052371
620 => 0.09656797981942
621 => 0.096090951188213
622 => 0.09705190163484
623 => 0.097162642221941
624 => 0.096938344905195
625 => 0.09699117504297
626 => 0.095134089058954
627 => 0.09527527927294
628 => 0.094489114219882
629 => 0.094341717749794
630 => 0.092354360954884
701 => 0.088833470320726
702 => 0.090784385513173
703 => 0.088427954300885
704 => 0.087535538095033
705 => 0.091760097614344
706 => 0.091336069009647
707 => 0.090610316359209
708 => 0.089536776929105
709 => 0.08913859071176
710 => 0.086719337305605
711 => 0.086576394908155
712 => 0.087775442221582
713 => 0.087222123143134
714 => 0.086445053598672
715 => 0.083630586478905
716 => 0.080466193598248
717 => 0.080561706728651
718 => 0.081568241228365
719 => 0.084494876035956
720 => 0.083351389185334
721 => 0.082521776355208
722 => 0.082366414810196
723 => 0.084311089817452
724 => 0.08706321237473
725 => 0.088354446703333
726 => 0.087074872699057
727 => 0.085604966980102
728 => 0.085694433330327
729 => 0.086289612876747
730 => 0.08635215783169
731 => 0.085395400317399
801 => 0.085664721953433
802 => 0.085255597761011
803 => 0.082744803347304
804 => 0.082699391038175
805 => 0.082083201597022
806 => 0.082064543625634
807 => 0.081016251670573
808 => 0.08086958837956
809 => 0.078788141076013
810 => 0.08015815599441
811 => 0.079239221916161
812 => 0.077854171505604
813 => 0.077615388292767
814 => 0.07760821018105
815 => 0.079030347261087
816 => 0.080141537494621
817 => 0.079255207167882
818 => 0.079053406933275
819 => 0.081208105486413
820 => 0.080933900455012
821 => 0.080696440666253
822 => 0.08681678998527
823 => 0.081972055922455
824 => 0.079859475343315
825 => 0.077244755708458
826 => 0.078096121606128
827 => 0.078275516909934
828 => 0.071987587526742
829 => 0.069436575359093
830 => 0.068561164116021
831 => 0.068057352569135
901 => 0.068286945817518
902 => 0.06599073566275
903 => 0.067533826862565
904 => 0.065545502962349
905 => 0.065212153989912
906 => 0.068767523429565
907 => 0.069262232316925
908 => 0.06715165050944
909 => 0.068506985702003
910 => 0.068015522320611
911 => 0.065579587068782
912 => 0.065486552259689
913 => 0.064264285577586
914 => 0.062351674897561
915 => 0.061477560494593
916 => 0.061022314124119
917 => 0.061210157649152
918 => 0.061115178214788
919 => 0.060495373159003
920 => 0.061150704715068
921 => 0.059476603391017
922 => 0.058809962754628
923 => 0.058508856645117
924 => 0.057022995362345
925 => 0.059387661428747
926 => 0.059853530433107
927 => 0.060320317343319
928 => 0.064383378707759
929 => 0.064180399644084
930 => 0.066015231524894
1001 => 0.065943933332045
1002 => 0.065420609557332
1003 => 0.063212792634401
1004 => 0.064092789109329
1005 => 0.061384296741317
1006 => 0.06341368338301
1007 => 0.062487556068954
1008 => 0.063100558806527
1009 => 0.061998324612141
1010 => 0.062608346525449
1011 => 0.059964005256641
1012 => 0.057494756586714
1013 => 0.058488454333355
1014 => 0.059568717427075
1015 => 0.061911003060178
1016 => 0.060515957060539
1017 => 0.061017668354538
1018 => 0.059337019505096
1019 => 0.055869360875085
1020 => 0.055888987446344
1021 => 0.055355563713167
1022 => 0.054894607726561
1023 => 0.060676194875171
1024 => 0.059957163119874
1025 => 0.058811480122358
1026 => 0.060345022342166
1027 => 0.06075051524567
1028 => 0.060762059058577
1029 => 0.061880891875695
1030 => 0.062478013150753
1031 => 0.062583258363554
1101 => 0.064343765975272
1102 => 0.064933864905063
1103 => 0.067364398882946
1104 => 0.062427351582419
1105 => 0.062325676342178
1106 => 0.060366602426101
1107 => 0.059124126776791
1108 => 0.060451675796793
1109 => 0.061627703000002
1110 => 0.060403144869468
1111 => 0.060563046309482
1112 => 0.058919177069314
1113 => 0.059506782971438
1114 => 0.060012908333409
1115 => 0.059733455657202
1116 => 0.059315101475258
1117 => 0.061531282180577
1118 => 0.0614062365799
1119 => 0.063469995002468
1120 => 0.065078842273639
1121 => 0.067962184199429
1122 => 0.064953266587853
1123 => 0.064843609670723
1124 => 0.065915523625193
1125 => 0.064933700800621
1126 => 0.065554178934379
1127 => 0.067862215579526
1128 => 0.067910980756882
1129 => 0.067094101205796
1130 => 0.067044394010874
1201 => 0.067201284664343
1202 => 0.068120198122103
1203 => 0.067799101524603
1204 => 0.068170682636401
1205 => 0.068635350506556
1206 => 0.070557413832611
1207 => 0.071020816793408
1208 => 0.069894987845559
1209 => 0.069996637594178
1210 => 0.069575546662986
1211 => 0.069168778099709
1212 => 0.070083134426178
1213 => 0.071754138584517
1214 => 0.071743743354373
1215 => 0.072131383839429
1216 => 0.072372880650231
1217 => 0.071336199551797
1218 => 0.070661358276537
1219 => 0.070920135362738
1220 => 0.071333925559005
1221 => 0.070785948779014
1222 => 0.067403582245372
1223 => 0.068429576185269
1224 => 0.068258800625129
1225 => 0.068015595460473
1226 => 0.069047240300815
1227 => 0.06894773563925
1228 => 0.065967184708725
1229 => 0.066157989908924
1230 => 0.065978788204916
1231 => 0.066557825571784
]
'min_raw' => 0.054894607726561
'max_raw' => 0.12297069781266
'avg_raw' => 0.088932652769611
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.054894'
'max' => '$0.12297'
'avg' => '$0.088932'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.013386334635372
'max_diff' => -0.08936025626358
'year' => 2034
]
9 => [
'items' => [
101 => 0.064902430882572
102 => 0.06541161913972
103 => 0.06573097724126
104 => 0.065919081616492
105 => 0.066598643604206
106 => 0.066518904848423
107 => 0.066593686931188
108 => 0.067601297961255
109 => 0.072697448780982
110 => 0.072974821026077
111 => 0.071608938647098
112 => 0.072154581716661
113 => 0.071107066342121
114 => 0.071810270430793
115 => 0.072291384808815
116 => 0.070117321447508
117 => 0.069988587524806
118 => 0.068936748681693
119 => 0.069501947296785
120 => 0.068602675660955
121 => 0.068823325465202
122 => 0.068206369376625
123 => 0.06931676750133
124 => 0.070558365143175
125 => 0.070872041739681
126 => 0.070046893660538
127 => 0.06944943207133
128 => 0.068400486336764
129 => 0.070144906470628
130 => 0.070655028078011
131 => 0.07014222701899
201 => 0.070023399808691
202 => 0.069798222459889
203 => 0.070071172247721
204 => 0.070652249846182
205 => 0.070378224381566
206 => 0.070559223028653
207 => 0.069869442830954
208 => 0.071336542736377
209 => 0.073666650463009
210 => 0.073674142140361
211 => 0.073400115198645
212 => 0.073287989278088
213 => 0.073569157549634
214 => 0.073721679802821
215 => 0.074630926435555
216 => 0.075606584298464
217 => 0.080159553831782
218 => 0.078881098205828
219 => 0.082920763633157
220 => 0.086115614501269
221 => 0.087073610582719
222 => 0.086192299264984
223 => 0.083177380854513
224 => 0.083029454573868
225 => 0.087535015544831
226 => 0.086261988202768
227 => 0.086110565651169
228 => 0.084499685534595
301 => 0.085451915194874
302 => 0.085243648599805
303 => 0.084914889590737
304 => 0.086731677449657
305 => 0.090132542135784
306 => 0.089602485481344
307 => 0.089206822777425
308 => 0.087473143984534
309 => 0.088517205849032
310 => 0.088145435416772
311 => 0.089742797125106
312 => 0.088796555434983
313 => 0.086252343768595
314 => 0.086657517862299
315 => 0.086596276613132
316 => 0.087856617181371
317 => 0.087478294226362
318 => 0.086522402984301
319 => 0.090120918350008
320 => 0.089887250778153
321 => 0.0902185379712
322 => 0.090364380838976
323 => 0.092554733729128
324 => 0.093452051224749
325 => 0.093655758006009
326 => 0.094508140225823
327 => 0.093634549959878
328 => 0.097129533882963
329 => 0.099453494253849
330 => 0.10215289381454
331 => 0.10609744210291
401 => 0.10758062874845
402 => 0.10731270435642
403 => 0.11030341585016
404 => 0.11567765792462
405 => 0.10839899233513
406 => 0.11606344487484
407 => 0.11363696769113
408 => 0.10788383393901
409 => 0.10751339995036
410 => 0.11140948892255
411 => 0.12005063927821
412 => 0.11788612912124
413 => 0.12005417964141
414 => 0.11752503354684
415 => 0.11739944012593
416 => 0.11993134466076
417 => 0.12584727761332
418 => 0.12303683962299
419 => 0.11900738761618
420 => 0.12198267227279
421 => 0.11940520535364
422 => 0.11359745099723
423 => 0.11788447396111
424 => 0.11501786379255
425 => 0.11585449303711
426 => 0.12187968123535
427 => 0.12115471465067
428 => 0.12209288854135
429 => 0.12043703618059
430 => 0.11889020897169
501 => 0.11600294111737
502 => 0.1151481634463
503 => 0.1153843932429
504 => 0.11514804638254
505 => 0.11353264655342
506 => 0.11318380111412
507 => 0.11260237676536
508 => 0.11278258448311
509 => 0.11168933660574
510 => 0.11375252122687
511 => 0.11413546647327
512 => 0.11563688018521
513 => 0.11579276193753
514 => 0.119974177754
515 => 0.11767112418813
516 => 0.11921621135619
517 => 0.11907800421696
518 => 0.10800852179244
519 => 0.10953379880367
520 => 0.11190665117485
521 => 0.11083768439796
522 => 0.10932641547514
523 => 0.10810598479085
524 => 0.10625690750871
525 => 0.10885944827494
526 => 0.11228151263318
527 => 0.11587955113692
528 => 0.12020235864635
529 => 0.11923755833328
530 => 0.11579873925742
531 => 0.1159530021691
601 => 0.11690659478892
602 => 0.11567160570323
603 => 0.11530738331201
604 => 0.11685655622538
605 => 0.11686722452782
606 => 0.11544622033133
607 => 0.11386703420794
608 => 0.11386041736043
609 => 0.1135794164429
610 => 0.11757502298582
611 => 0.11977220258305
612 => 0.12002410568293
613 => 0.11975524749736
614 => 0.11985872034239
615 => 0.11858022994632
616 => 0.12150247986719
617 => 0.12418422537515
618 => 0.12346546029188
619 => 0.12238792925358
620 => 0.12152962388065
621 => 0.12326327082336
622 => 0.12318607425401
623 => 0.12416080266764
624 => 0.1241165833565
625 => 0.12378881885238
626 => 0.12346547199739
627 => 0.12474750572798
628 => 0.1243783006024
629 => 0.12400852199928
630 => 0.12326687440046
701 => 0.1233676766266
702 => 0.12229033163923
703 => 0.12179190255212
704 => 0.11429672498057
705 => 0.11229376862146
706 => 0.11292393946597
707 => 0.11313140807036
708 => 0.11225971889602
709 => 0.11350949725345
710 => 0.11331472062029
711 => 0.11407248255941
712 => 0.11359906579805
713 => 0.11361849498707
714 => 0.11501071273914
715 => 0.11541487947548
716 => 0.11520931701135
717 => 0.11535328591496
718 => 0.11867098853312
719 => 0.11819931731497
720 => 0.11794875138109
721 => 0.11801815985717
722 => 0.11886590400846
723 => 0.11910322608571
724 => 0.11809767576809
725 => 0.1185718991109
726 => 0.12059108191666
727 => 0.12129768162282
728 => 0.12355280869781
729 => 0.12259479063467
730 => 0.12435327425161
731 => 0.12975825337886
801 => 0.13407612470182
802 => 0.13010523178965
803 => 0.13803445259666
804 => 0.14420848837409
805 => 0.14397151859755
806 => 0.14289493265174
807 => 0.13586595706437
808 => 0.12939778893276
809 => 0.13480868622778
810 => 0.13482247971775
811 => 0.13435767884142
812 => 0.1314708405176
813 => 0.13425722312533
814 => 0.13447839605808
815 => 0.13435459803037
816 => 0.13214126585605
817 => 0.12876191671802
818 => 0.12942223345058
819 => 0.13050384572859
820 => 0.12845612803835
821 => 0.12780175816073
822 => 0.12901835626219
823 => 0.13293848883339
824 => 0.13219741047858
825 => 0.13217805792781
826 => 0.13534870539578
827 => 0.13307920607726
828 => 0.1294305621592
829 => 0.12850923145019
830 => 0.12523912811593
831 => 0.12749780013661
901 => 0.1275790857216
902 => 0.12634203413894
903 => 0.12953094207735
904 => 0.1295015557293
905 => 0.13252894921052
906 => 0.13831618850953
907 => 0.13660461707606
908 => 0.13461424571738
909 => 0.13483065427108
910 => 0.13720412196334
911 => 0.1357690692156
912 => 0.13628512418923
913 => 0.13720334085233
914 => 0.13775732376322
915 => 0.13475094465551
916 => 0.13405001387377
917 => 0.1326161554876
918 => 0.13224208859888
919 => 0.13340993633598
920 => 0.13310224971793
921 => 0.12757225398293
922 => 0.12699433866002
923 => 0.1270120624979
924 => 0.12555886694006
925 => 0.12334239490746
926 => 0.12916715107047
927 => 0.12869934163317
928 => 0.12818291621997
929 => 0.1282461753864
930 => 0.13077450461746
1001 => 0.12930794597976
1002 => 0.13320703248232
1003 => 0.13240549751466
1004 => 0.13158340619955
1005 => 0.13146976813829
1006 => 0.13115333311951
1007 => 0.13006815969982
1008 => 0.12875774758673
1009 => 0.12789250000372
1010 => 0.11797407088146
1011 => 0.1198148736337
1012 => 0.12193254940571
1013 => 0.12266356259615
1014 => 0.12141311394933
1015 => 0.13011753503397
1016 => 0.13170791664402
1017 => 0.12689054700915
1018 => 0.12598941384237
1019 => 0.13017661317436
1020 => 0.12765122011287
1021 => 0.12878840445383
1022 => 0.12633043391525
1023 => 0.13132484028597
1024 => 0.13128679127735
1025 => 0.12934385439535
1026 => 0.13098601134336
1027 => 0.13070064616214
1028 => 0.12850707520761
1029 => 0.13139438039783
1030 => 0.13139581246518
1031 => 0.12952577795936
1101 => 0.12734198705974
1102 => 0.12695157682573
1103 => 0.12665745515863
1104 => 0.12871606855371
1105 => 0.13056181488661
1106 => 0.13399629121283
1107 => 0.13485980016239
1108 => 0.13823013307955
1109 => 0.13622326392591
1110 => 0.13711288302841
1111 => 0.13807869040848
1112 => 0.13854173398288
1113 => 0.13778722932669
1114 => 0.14302274363141
1115 => 0.14346478145075
1116 => 0.14361299290795
1117 => 0.14184760694169
1118 => 0.14341568287346
1119 => 0.1426820320742
1120 => 0.14459078763982
1121 => 0.14489010488472
1122 => 0.14463659382681
1123 => 0.14473160184474
1124 => 0.14026401399367
1125 => 0.14003234599519
1126 => 0.13687353639748
1127 => 0.13816077465729
1128 => 0.13575434442952
1129 => 0.13651744824372
1130 => 0.1368538171339
1201 => 0.13667811711444
1202 => 0.13823355317714
1203 => 0.13691111476925
1204 => 0.13342098238182
1205 => 0.12992989911015
1206 => 0.12988607140345
1207 => 0.12896693080076
1208 => 0.12830256049401
1209 => 0.12843054178489
1210 => 0.12888156454683
1211 => 0.12827634623117
1212 => 0.12840550024417
1213 => 0.13055031740852
1214 => 0.13098044519469
1215 => 0.1295187029155
1216 => 0.12364959673612
1217 => 0.12220930335816
1218 => 0.12324455767598
1219 => 0.12274977279098
1220 => 0.099068646869286
1221 => 0.10463217613748
1222 => 0.10132651596592
1223 => 0.10284991625909
1224 => 0.099475693220477
1225 => 0.10108604931268
1226 => 0.10078867534324
1227 => 0.1097346657697
1228 => 0.109594986434
1229 => 0.10966184354033
1230 => 0.10647057965973
1231 => 0.11155434967379
]
'min_raw' => 0.064902430882572
'max_raw' => 0.14489010488472
'avg_raw' => 0.10489626788365
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0649024'
'max' => '$0.14489'
'avg' => '$0.104896'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.010007823156011
'max_diff' => 0.021919407072057
'year' => 2035
]
10 => [
'items' => [
101 => 0.11405879758917
102 => 0.11359529093376
103 => 0.11371194557307
104 => 0.11170743237443
105 => 0.10968125160975
106 => 0.10743390531473
107 => 0.11160919695047
108 => 0.11114497579518
109 => 0.11220973210392
110 => 0.11491770718571
111 => 0.1153164668031
112 => 0.1158524037727
113 => 0.11566030851969
114 => 0.12023679678227
115 => 0.11968255385703
116 => 0.12101811984028
117 => 0.11827075928309
118 => 0.11516186003077
119 => 0.11575276014106
120 => 0.11569585170872
121 => 0.11497134204858
122 => 0.11431728712242
123 => 0.11322846994919
124 => 0.1166736485999
125 => 0.11653378063831
126 => 0.11879808035764
127 => 0.11839784338801
128 => 0.11572496295026
129 => 0.115820425398
130 => 0.11646245623672
131 => 0.11868453230012
201 => 0.11934419576621
202 => 0.11903861336567
203 => 0.11976190424146
204 => 0.12033356385873
205 => 0.11983369588796
206 => 0.12691077222586
207 => 0.12397187671832
208 => 0.12540427393999
209 => 0.12574589223718
210 => 0.12487084415238
211 => 0.12506061074885
212 => 0.1253480554342
213 => 0.12709336327622
214 => 0.13167355606255
215 => 0.13370209226919
216 => 0.13980504353309
217 => 0.13353365057582
218 => 0.13316153207134
219 => 0.13426085788544
220 => 0.13784393634034
221 => 0.1407476848866
222 => 0.14171102580066
223 => 0.14183834720548
224 => 0.14364563880196
225 => 0.14468154464107
226 => 0.14342618606566
227 => 0.14236240111452
228 => 0.1385520554614
229 => 0.13899311334597
301 => 0.14203156479464
302 => 0.14632355642979
303 => 0.15000653175836
304 => 0.14871688216295
305 => 0.15855599822526
306 => 0.15953150639365
307 => 0.15939672270673
308 => 0.16161907548941
309 => 0.15720815779007
310 => 0.15532240501609
311 => 0.14259240349543
312 => 0.14616901467272
313 => 0.15136782906593
314 => 0.15067974648643
315 => 0.14690422850938
316 => 0.15000366768942
317 => 0.14897889616807
318 => 0.14817061635138
319 => 0.15187350288441
320 => 0.14780202703515
321 => 0.15132721297981
322 => 0.1468061255424
323 => 0.14872277317367
324 => 0.14763479128035
325 => 0.14833884890337
326 => 0.14422294242543
327 => 0.14644378565295
328 => 0.14413054804571
329 => 0.14412945126989
330 => 0.1440783864215
331 => 0.14679990020795
401 => 0.14688864867482
402 => 0.14487744587466
403 => 0.14458760013026
404 => 0.1456593117616
405 => 0.14440461812302
406 => 0.14499168137956
407 => 0.14442239967101
408 => 0.14429424236751
409 => 0.14327306316904
410 => 0.14283311109243
411 => 0.14300562763784
412 => 0.14241673972999
413 => 0.1420619134645
414 => 0.14400780254645
415 => 0.14296819250691
416 => 0.14384846739778
417 => 0.14284528306008
418 => 0.139367809079
419 => 0.13736787701886
420 => 0.13079925103061
421 => 0.13266210521252
422 => 0.13389717946239
423 => 0.13348898743018
424 => 0.13436594186472
425 => 0.13441977974467
426 => 0.13413467291851
427 => 0.13380455573826
428 => 0.13364387295154
429 => 0.13484147079882
430 => 0.13553671665845
501 => 0.13402113568653
502 => 0.13366605627004
503 => 0.13519839231017
504 => 0.13613311640945
505 => 0.14303459398243
506 => 0.14252331023234
507 => 0.14380653211069
508 => 0.14366206101983
509 => 0.14500708198161
510 => 0.14720562280586
511 => 0.14273537458849
512 => 0.14351125510947
513 => 0.14332102712342
514 => 0.14539788639463
515 => 0.14540437012257
516 => 0.14415918924267
517 => 0.14483422199842
518 => 0.14445743723272
519 => 0.14513833822986
520 => 0.14251648172615
521 => 0.14570961993575
522 => 0.14751992353931
523 => 0.1475450596066
524 => 0.14840312914723
525 => 0.14927497749655
526 => 0.15094841448108
527 => 0.14922830624731
528 => 0.14613399898393
529 => 0.14635739797379
530 => 0.14454320675743
531 => 0.14457370363954
601 => 0.14441090889277
602 => 0.14489946818245
603 => 0.14262369301616
604 => 0.14315781289893
605 => 0.14241004193525
606 => 0.14350962960143
607 => 0.14232665504097
608 => 0.14332093538973
609 => 0.14375003382734
610 => 0.14533341629994
611 => 0.14209278816236
612 => 0.13548492801859
613 => 0.13687398033337
614 => 0.13481946285211
615 => 0.1350096162671
616 => 0.13539375642807
617 => 0.13414863248352
618 => 0.13438616289378
619 => 0.13437767663605
620 => 0.13430454665158
621 => 0.13398064182463
622 => 0.13351091574294
623 => 0.13538215987833
624 => 0.13570012072051
625 => 0.13640690828568
626 => 0.13850982866103
627 => 0.13829969732526
628 => 0.13864243025217
629 => 0.13789424619708
630 => 0.13504432237957
701 => 0.13519908695426
702 => 0.13326917022797
703 => 0.13635755597595
704 => 0.13562618546612
705 => 0.1351546661406
706 => 0.13502600772403
707 => 0.13713414083224
708 => 0.13776492729916
709 => 0.13737186350348
710 => 0.13656567819105
711 => 0.13811379231821
712 => 0.13852800234895
713 => 0.13862072869936
714 => 0.14136369011125
715 => 0.13877402977178
716 => 0.1393973867545
717 => 0.14426063998859
718 => 0.13985034038834
719 => 0.14218657444801
720 => 0.14207222794797
721 => 0.14326736623905
722 => 0.14197419172463
723 => 0.14199022217259
724 => 0.14305142400939
725 => 0.14156115741837
726 => 0.14119214645276
727 => 0.14068236044669
728 => 0.1417954595408
729 => 0.14246271210658
730 => 0.14784027774376
731 => 0.15131443039216
801 => 0.15116360826327
802 => 0.15254184019415
803 => 0.15192093408613
804 => 0.14991586447657
805 => 0.1533382738079
806 => 0.15225528029578
807 => 0.15234456096508
808 => 0.15234123793411
809 => 0.15306133394273
810 => 0.15255107992479
811 => 0.15154531687893
812 => 0.15221298932577
813 => 0.15419573779561
814 => 0.16035024988415
815 => 0.16379439638534
816 => 0.16014290794018
817 => 0.16266165577427
818 => 0.16115130459544
819 => 0.16087682885719
820 => 0.162458788631
821 => 0.16404351741598
822 => 0.16394257704334
823 => 0.16279214532217
824 => 0.16214229563401
825 => 0.16706317518841
826 => 0.1706887954191
827 => 0.17044155242583
828 => 0.17153280259038
829 => 0.17473674682459
830 => 0.17502967533223
831 => 0.17499277307316
901 => 0.17426671920304
902 => 0.17742141838636
903 => 0.18005312394673
904 => 0.17409865870982
905 => 0.17636604112237
906 => 0.17738394213785
907 => 0.17887852282621
908 => 0.18140013096829
909 => 0.1841392662341
910 => 0.18452660999378
911 => 0.18425177106018
912 => 0.18244523772047
913 => 0.185442432213
914 => 0.18719811845387
915 => 0.18824358943214
916 => 0.19089472988326
917 => 0.17739022834799
918 => 0.16783107094405
919 => 0.16633827047952
920 => 0.16937393892563
921 => 0.17017442048586
922 => 0.16985174737265
923 => 0.15909204663395
924 => 0.1662816228819
925 => 0.17401700240796
926 => 0.17431414983889
927 => 0.17818664256879
928 => 0.17944768494049
929 => 0.18256554916728
930 => 0.182370525911
1001 => 0.18312967623417
1002 => 0.18295516072152
1003 => 0.18873034765789
1004 => 0.19510123647227
1005 => 0.19488063285081
1006 => 0.19396474220681
1007 => 0.19532499599571
1008 => 0.20190043599809
1009 => 0.20129507485195
1010 => 0.20188313164088
1011 => 0.20963594597924
1012 => 0.21971570744409
1013 => 0.21503264625216
1014 => 0.22519354152409
1015 => 0.23158928649185
1016 => 0.24265006608121
1017 => 0.24126520200114
1018 => 0.24557108232753
1019 => 0.23878600626794
1020 => 0.22320610014502
1021 => 0.22074052036359
1022 => 0.22567667352445
1023 => 0.23781172440764
1024 => 0.22529449758716
1025 => 0.22782671627047
1026 => 0.22709743711932
1027 => 0.2270585769326
1028 => 0.22854171220419
1029 => 0.22639034713761
1030 => 0.21762529883317
1031 => 0.22164226881834
1101 => 0.22009112379632
1102 => 0.22181223484377
1103 => 0.23110036132667
1104 => 0.2269938592073
1105 => 0.22266799280969
1106 => 0.22809358925889
1107 => 0.23500223797595
1108 => 0.23456990715527
1109 => 0.23373100466289
1110 => 0.23845985408893
1111 => 0.24627052791786
1112 => 0.24838172166799
1113 => 0.24994016173288
1114 => 0.25015504428777
1115 => 0.25236846815188
1116 => 0.24046633017994
1117 => 0.25935532880999
1118 => 0.26261693707534
1119 => 0.26200388990127
1120 => 0.26562903021875
1121 => 0.26456242197641
1122 => 0.26301707397897
1123 => 0.26876369247164
1124 => 0.26217565809799
1125 => 0.25282477271507
1126 => 0.24769469205445
1127 => 0.25445039610015
1128 => 0.25857586881928
1129 => 0.26130254385728
1130 => 0.26212763407628
1201 => 0.24139025926966
1202 => 0.23021396439642
1203 => 0.23737784127368
1204 => 0.24611826548831
1205 => 0.24041777668211
1206 => 0.24064122505086
1207 => 0.23251382607531
1208 => 0.24683735995712
1209 => 0.24475054155042
1210 => 0.25557695913588
1211 => 0.25299314769168
1212 => 0.26182167095352
1213 => 0.25949682490264
1214 => 0.26914713087943
1215 => 0.27299689920518
1216 => 0.2794612593927
1217 => 0.28421646906132
1218 => 0.2870088191314
1219 => 0.28684117690704
1220 => 0.29790585902798
1221 => 0.29138140255181
1222 => 0.28318514752141
1223 => 0.28303690312677
1224 => 0.28728185974884
1225 => 0.29617812428173
1226 => 0.29848479623972
1227 => 0.29977391118227
1228 => 0.29779958677335
1229 => 0.29071775688047
1230 => 0.28765985863842
1231 => 0.29026527653649
]
'min_raw' => 0.10743390531473
'max_raw' => 0.29977391118227
'avg_raw' => 0.2036039082485
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.107433'
'max' => '$0.299773'
'avg' => '$0.2036039'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.042531474432155
'max_diff' => 0.15488380629755
'year' => 2036
]
11 => [
'items' => [
101 => 0.28707907433327
102 => 0.29257935322648
103 => 0.30013241094303
104 => 0.29857273439259
105 => 0.30378649926093
106 => 0.30918219739561
107 => 0.31689828806417
108 => 0.31891555989094
109 => 0.32225003351062
110 => 0.32568230218279
111 => 0.32678465437806
112 => 0.32888938675862
113 => 0.32887829378005
114 => 0.3352210464737
115 => 0.3422172991135
116 => 0.3448582225214
117 => 0.3509308802765
118 => 0.34053166668219
119 => 0.34841958965103
120 => 0.35553469361645
121 => 0.34705177334758
122 => 0.35874350267128
123 => 0.35919746602689
124 => 0.3660517737265
125 => 0.35910361974648
126 => 0.35497782809244
127 => 0.36688883400626
128 => 0.37265219457479
129 => 0.37091622346777
130 => 0.35770539762784
131 => 0.35001613035003
201 => 0.32989183473511
202 => 0.35372993219586
203 => 0.36534077410215
204 => 0.35767532835228
205 => 0.36154133331617
206 => 0.38263300284281
207 => 0.39066334501408
208 => 0.38899308997879
209 => 0.38927533558501
210 => 0.39360836245961
211 => 0.41282338986307
212 => 0.40130930004207
213 => 0.41011139028551
214 => 0.41477998721233
215 => 0.4191164402217
216 => 0.40846748218074
217 => 0.39461334423372
218 => 0.39022515718875
219 => 0.35691315084188
220 => 0.35517911624481
221 => 0.35420575007885
222 => 0.34806881408786
223 => 0.34324686344718
224 => 0.33941226927016
225 => 0.32934914904292
226 => 0.33274515671362
227 => 0.31670664340781
228 => 0.32696751585086
301 => 0.30136966135134
302 => 0.32268831522289
303 => 0.31108554116086
304 => 0.31887649188791
305 => 0.31884930999477
306 => 0.3045036995831
307 => 0.29622945088289
308 => 0.30150212419324
309 => 0.30715484852726
310 => 0.30807198403241
311 => 0.31540088868267
312 => 0.31744622843627
313 => 0.31124875349506
314 => 0.30083920271351
315 => 0.30325710394349
316 => 0.29618045219164
317 => 0.28377889219601
318 => 0.29268590909534
319 => 0.29572715627866
320 => 0.29707034429084
321 => 0.28487483436393
322 => 0.28104274036749
323 => 0.27900256567817
324 => 0.2992649155266
325 => 0.30037493279097
326 => 0.29469592752585
327 => 0.32036556982956
328 => 0.31455573919553
329 => 0.32104674345681
330 => 0.30303770475011
331 => 0.30372567428109
401 => 0.29519990674969
402 => 0.29997376687528
403 => 0.29659975640721
404 => 0.29958808615334
405 => 0.30137927868183
406 => 0.30990364721867
407 => 0.3227856498187
408 => 0.3086303908219
409 => 0.30246274176995
410 => 0.30628911655361
411 => 0.31647925683625
412 => 0.33191784098814
413 => 0.32277788843976
414 => 0.32683404417427
415 => 0.32772013375645
416 => 0.32098067112671
417 => 0.33216633458837
418 => 0.33816082250963
419 => 0.34430992673236
420 => 0.34964902163496
421 => 0.3418538392841
422 => 0.35019580179502
423 => 0.34347365256583
424 => 0.33744318978424
425 => 0.33745233550701
426 => 0.33366933811311
427 => 0.32633930397409
428 => 0.32498753321595
429 => 0.3320196154096
430 => 0.33765867938825
501 => 0.33812313970683
502 => 0.34124521527098
503 => 0.3430928274299
504 => 0.36120193829432
505 => 0.36848557249041
506 => 0.37739186251324
507 => 0.38086136440814
508 => 0.39130332122651
509 => 0.38287059304141
510 => 0.38104611925422
511 => 0.35571734755089
512 => 0.35986493249837
513 => 0.3665056161817
514 => 0.35582684997891
515 => 0.36260006922142
516 => 0.36393724617629
517 => 0.35546398958962
518 => 0.35998992204037
519 => 0.34797038729664
520 => 0.32304764283052
521 => 0.3321940807275
522 => 0.33892893767739
523 => 0.32931746640803
524 => 0.34654565664305
525 => 0.33648130356978
526 => 0.3332913868197
527 => 0.32084638429021
528 => 0.32671994643205
529 => 0.33466402333021
530 => 0.32975550740521
531 => 0.33994141496695
601 => 0.35436737655669
602 => 0.36464817586641
603 => 0.36543740798022
604 => 0.35882754278413
605 => 0.36941989394445
606 => 0.36949704765872
607 => 0.35754883227885
608 => 0.35023061688662
609 => 0.34856790295185
610 => 0.35272168835518
611 => 0.3577651506659
612 => 0.36571728503775
613 => 0.37052259329279
614 => 0.38305228868339
615 => 0.38644246500156
616 => 0.390167240938
617 => 0.39514469026744
618 => 0.40112139437924
619 => 0.38804470603657
620 => 0.38856426724242
621 => 0.3763874361168
622 => 0.36337474572484
623 => 0.37324975567758
624 => 0.38616001757326
625 => 0.38319838922982
626 => 0.3828651455406
627 => 0.38342556899177
628 => 0.38119259793855
629 => 0.37109295262263
630 => 0.3660209739721
701 => 0.37256512043104
702 => 0.37604304302752
703 => 0.38143699766793
704 => 0.38077207890593
705 => 0.39466632679119
706 => 0.40006521137916
707 => 0.39868394567026
708 => 0.39893813180271
709 => 0.40871255446489
710 => 0.41958372272856
711 => 0.42976600638449
712 => 0.44012386265857
713 => 0.42763706264616
714 => 0.42129703567862
715 => 0.42783832516794
716 => 0.42436742488959
717 => 0.44431224742487
718 => 0.44569318366355
719 => 0.46563656396114
720 => 0.48456520667711
721 => 0.47267646532907
722 => 0.4838870129396
723 => 0.49601213418975
724 => 0.51940346031131
725 => 0.51152608459035
726 => 0.5054921382423
727 => 0.49979008809921
728 => 0.51165514927201
729 => 0.52691936092182
730 => 0.53020712591239
731 => 0.53553456122001
801 => 0.52993341440185
802 => 0.53667937879824
803 => 0.56049559744445
804 => 0.55406024493467
805 => 0.54492100983623
806 => 0.56372162712346
807 => 0.57052549743416
808 => 0.6182786224892
809 => 0.67856891545439
810 => 0.65360833827939
811 => 0.63811450255408
812 => 0.64175592146823
813 => 0.6637718955039
814 => 0.67084272761207
815 => 0.65162176848007
816 => 0.65841093618801
817 => 0.69581991775499
818 => 0.71588863614186
819 => 0.68863262098402
820 => 0.6134343561528
821 => 0.54409812171016
822 => 0.56248921333567
823 => 0.56040423428736
824 => 0.60059551811559
825 => 0.55390676390562
826 => 0.55469288278653
827 => 0.59571527980102
828 => 0.58477120757948
829 => 0.56704321219146
830 => 0.54422755569546
831 => 0.50205070446982
901 => 0.46469349115076
902 => 0.53795958932185
903 => 0.53480022194296
904 => 0.53022498978631
905 => 0.54040667385911
906 => 0.58984604159516
907 => 0.58870630414923
908 => 0.58145587601736
909 => 0.58695526185304
910 => 0.56607914326533
911 => 0.57145939436576
912 => 0.54408713849637
913 => 0.55646054131572
914 => 0.56700517587541
915 => 0.56912216737925
916 => 0.57389185733366
917 => 0.53313537889705
918 => 0.55143384116775
919 => 0.56218247341774
920 => 0.51361976187371
921 => 0.56122254475153
922 => 0.53242589928245
923 => 0.52265188529914
924 => 0.53581130749924
925 => 0.5306830678699
926 => 0.52627410857694
927 => 0.52381383353592
928 => 0.53347666084725
929 => 0.5330258784036
930 => 0.51721561744831
1001 => 0.49659177654082
1002 => 0.50351381450387
1003 => 0.50099897321744
1004 => 0.49188486397444
1005 => 0.49802667316248
1006 => 0.47098125379686
1007 => 0.42445101547688
1008 => 0.4551903161708
1009 => 0.45400688653201
1010 => 0.45341014764387
1011 => 0.47650988254349
1012 => 0.47428937603445
1013 => 0.47025913497728
1014 => 0.49181084543687
1015 => 0.48394418120771
1016 => 0.5081873867428
1017 => 0.52415552986043
1018 => 0.52010549225048
1019 => 0.53512360803335
1020 => 0.50367328427799
1021 => 0.51411982026154
1022 => 0.51627283684948
1023 => 0.49154490067519
1024 => 0.47465267836079
1025 => 0.47352615971786
1026 => 0.44423737411632
1027 => 0.45988320697384
1028 => 0.47365089241991
1029 => 0.46705723950679
1030 => 0.46496988597428
1031 => 0.47563372248015
1101 => 0.47646239390624
1102 => 0.45756859757274
1103 => 0.46149721611919
1104 => 0.47788020853638
1105 => 0.4610844067447
1106 => 0.42845290744213
1107 => 0.42035984444932
1108 => 0.41928008066133
1109 => 0.3973310519559
1110 => 0.42090066161698
1111 => 0.41061189537365
1112 => 0.44311398465799
1113 => 0.42454896557098
1114 => 0.42374866470357
1115 => 0.42253889256387
1116 => 0.40364645685415
1117 => 0.40778269959765
1118 => 0.42153220044462
1119 => 0.42643817724603
1120 => 0.42592644367216
1121 => 0.42146482038945
1122 => 0.42350732868107
1123 => 0.41692769781671
1124 => 0.41460429321534
1125 => 0.40727098919061
1126 => 0.3964930581512
1127 => 0.39799179556712
1128 => 0.37663789397899
1129 => 0.36500315505644
1130 => 0.36178281266607
1201 => 0.3574764362343
1202 => 0.36226922934287
1203 => 0.37657740105877
1204 => 0.35931871032143
1205 => 0.32972989560867
1206 => 0.33150823378979
1207 => 0.33550363168943
1208 => 0.32805823413565
1209 => 0.32101179019585
1210 => 0.32713810150544
1211 => 0.31460093064919
1212 => 0.33701868889037
1213 => 0.33641235135499
1214 => 0.34476830532243
1215 => 0.34999345481971
1216 => 0.33795117689072
1217 => 0.33492257655736
1218 => 0.33664780494945
1219 => 0.30813362262191
1220 => 0.34243808829449
1221 => 0.34273475473815
1222 => 0.34019451653611
1223 => 0.35846058547521
1224 => 0.39700768826648
1225 => 0.38250471764279
1226 => 0.37688872906268
1227 => 0.36621273066665
1228 => 0.38043786465131
1229 => 0.37934559630794
1230 => 0.37440594462879
1231 => 0.37141842788058
]
'min_raw' => 0.27900256567817
'max_raw' => 0.71588863614186
'avg_raw' => 0.49744560091001
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.2790025'
'max' => '$0.715888'
'avg' => '$0.497445'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.17156866036344
'max_diff' => 0.41611472495959
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0087575717275469
]
1 => [
'year' => 2028
'avg' => 0.015030535425708
]
2 => [
'year' => 2029
'avg' => 0.041060713792596
]
3 => [
'year' => 2030
'avg' => 0.031678279541538
]
4 => [
'year' => 2031
'avg' => 0.031111996355754
]
5 => [
'year' => 2032
'avg' => 0.054549120917236
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0087575717275469
'min' => '$0.008757'
'max_raw' => 0.054549120917236
'max' => '$0.054549'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.054549120917236
]
1 => [
'year' => 2033
'avg' => 0.14030594821909
]
2 => [
'year' => 2034
'avg' => 0.088932652769611
]
3 => [
'year' => 2035
'avg' => 0.10489626788365
]
4 => [
'year' => 2036
'avg' => 0.2036039082485
]
5 => [
'year' => 2037
'avg' => 0.49744560091001
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.054549120917236
'min' => '$0.054549'
'max_raw' => 0.49744560091001
'max' => '$0.497445'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.49744560091001
]
]
]
]
'prediction_2025_max_price' => '$0.014973'
'last_price' => 0.01451904
'sma_50day_nextmonth' => '$0.013962'
'sma_200day_nextmonth' => '$0.017165'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.01436'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.014432'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.015215'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.014837'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.016562'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.020238'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.017479'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.014465'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.014566'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.014792'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.015132'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.016498'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.017737'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.020618'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.01833'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.019735'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.060981'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.052562'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.014904'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.015534'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.016938'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.018574'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.02845'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.068949'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.182623'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '42.81'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 12.93
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.015253'
'vwma_10_action' => 'SELL'
'hma_9' => '0.0140048'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 11.07
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -37.39
'cci_20_action' => 'NEUTRAL'
'adx_14' => 16.37
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000834'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -88.93
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 29.96
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.004220'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 25
'buy_signals' => 8
'sell_pct' => 75.76
'buy_pct' => 24.24
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767698064
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Dimitra para 2026
A previsão de preço para Dimitra em 2026 sugere que o preço médio poderia variar entre $0.005016 na extremidade inferior e $0.014973 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Dimitra poderia potencialmente ganhar 3.13% até 2026 se DMTR atingir a meta de preço prevista.
Previsão de preço de Dimitra 2027-2032
A previsão de preço de DMTR para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.008757 na extremidade inferior e $0.054549 na extremidade superior. Considerando a volatilidade de preços no mercado, se Dimitra atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Dimitra | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.004829 | $0.008757 | $0.012686 |
| 2028 | $0.008715 | $0.01503 | $0.021345 |
| 2029 | $0.019144 | $0.04106 | $0.062976 |
| 2030 | $0.016281 | $0.031678 | $0.047074 |
| 2031 | $0.019249 | $0.031111 | $0.042974 |
| 2032 | $0.029383 | $0.054549 | $0.079714 |
Previsão de preço de Dimitra 2032-2037
A previsão de preço de Dimitra para 2032-2037 é atualmente estimada entre $0.054549 na extremidade inferior e $0.497445 na extremidade superior. Comparado ao preço atual, Dimitra poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Dimitra | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.029383 | $0.054549 | $0.079714 |
| 2033 | $0.06828 | $0.1403059 | $0.21233 |
| 2034 | $0.054894 | $0.088932 | $0.12297 |
| 2035 | $0.0649024 | $0.104896 | $0.14489 |
| 2036 | $0.107433 | $0.2036039 | $0.299773 |
| 2037 | $0.2790025 | $0.497445 | $0.715888 |
Dimitra Histograma de preços potenciais
Previsão de preço de Dimitra baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Dimitra é Baixista, com 8 indicadores técnicos mostrando sinais de alta e 25 indicando sinais de baixa. A previsão de preço de DMTR foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Dimitra
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Dimitra está projetado para aumentar no próximo mês, alcançando $0.017165 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Dimitra é esperado para alcançar $0.013962 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 42.81, sugerindo que o mercado de DMTR está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de DMTR para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.01436 | BUY |
| SMA 5 | $0.014432 | BUY |
| SMA 10 | $0.015215 | SELL |
| SMA 21 | $0.014837 | SELL |
| SMA 50 | $0.016562 | SELL |
| SMA 100 | $0.020238 | SELL |
| SMA 200 | $0.017479 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.014465 | BUY |
| EMA 5 | $0.014566 | SELL |
| EMA 10 | $0.014792 | SELL |
| EMA 21 | $0.015132 | SELL |
| EMA 50 | $0.016498 | SELL |
| EMA 100 | $0.017737 | SELL |
| EMA 200 | $0.020618 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.01833 | SELL |
| SMA 50 | $0.019735 | SELL |
| SMA 100 | $0.060981 | SELL |
| SMA 200 | $0.052562 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.018574 | SELL |
| EMA 50 | $0.02845 | SELL |
| EMA 100 | $0.068949 | SELL |
| EMA 200 | $0.182623 | SELL |
Osciladores de Dimitra
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 42.81 | NEUTRAL |
| Stoch RSI (14) | 12.93 | BUY |
| Estocástico Rápido (14) | 11.07 | BUY |
| Índice de Canal de Commodities (20) | -37.39 | NEUTRAL |
| Índice Direcional Médio (14) | 16.37 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000834 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -88.93 | BUY |
| Oscilador Ultimate (7, 14, 28) | 29.96 | BUY |
| VWMA (10) | 0.015253 | SELL |
| Média Móvel de Hull (9) | 0.0140048 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.004220 | SELL |
Previsão do preço de Dimitra com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Dimitra
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Dimitra por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.0204016 | $0.028667 | $0.040282 | $0.0566043 | $0.079538 | $0.111764 |
| Amazon.com stock | $0.030294 | $0.063211 | $0.131895 | $0.2752079 | $0.574237 | $1.19 |
| Apple stock | $0.020594 | $0.029211 | $0.041433 | $0.05877 | $0.083361 | $0.118242 |
| Netflix stock | $0.0229087 | $0.036146 | $0.057033 | $0.089989 | $0.141989 | $0.224037 |
| Google stock | $0.018802 | $0.024348 | $0.031531 | $0.040832 | $0.052878 | $0.068477 |
| Tesla stock | $0.032913 | $0.074612 | $0.169141 | $0.383429 | $0.8692067 | $1.97 |
| Kodak stock | $0.010887 | $0.008164 | $0.006122 | $0.004591 | $0.003442 | $0.002581 |
| Nokia stock | $0.009618 | $0.006371 | $0.00422 | $0.002796 | $0.001852 | $0.001227 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Dimitra
Você pode fazer perguntas como: 'Devo investir em Dimitra agora?', 'Devo comprar DMTR hoje?', 'Dimitra será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Dimitra regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Dimitra, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Dimitra para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Dimitra é de $0.01451 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Dimitra
com base no histórico de preços de 4 horas
Previsão de longo prazo para Dimitra
com base no histórico de preços de 1 mês
Previsão do preço de Dimitra com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Dimitra tiver 1% da média anterior do crescimento anual do Bitcoin | $0.014896 | $0.015283 | $0.01568 | $0.016088 |
| Se Dimitra tiver 2% da média anterior do crescimento anual do Bitcoin | $0.015273 | $0.016067 | $0.0169031 | $0.017781 |
| Se Dimitra tiver 5% da média anterior do crescimento anual do Bitcoin | $0.016406 | $0.018538 | $0.020947 | $0.02367 |
| Se Dimitra tiver 10% da média anterior do crescimento anual do Bitcoin | $0.018293 | $0.023047 | $0.029038 | $0.036586 |
| Se Dimitra tiver 20% da média anterior do crescimento anual do Bitcoin | $0.022066 | $0.033538 | $0.050974 | $0.077474 |
| Se Dimitra tiver 50% da média anterior do crescimento anual do Bitcoin | $0.033388 | $0.076783 | $0.176574 | $0.406062 |
| Se Dimitra tiver 100% da média anterior do crescimento anual do Bitcoin | $0.052258 | $0.188095 | $0.677017 | $2.43 |
Perguntas Frequentes sobre Dimitra
DMTR é um bom investimento?
A decisão de adquirir Dimitra depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Dimitra experimentou uma escalada de 3.0335% nas últimas 24 horas, e Dimitra registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Dimitra dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Dimitra pode subir?
Parece que o valor médio de Dimitra pode potencialmente subir para $0.014973 até o final deste ano. Observando as perspectivas de Dimitra em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.047074. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Dimitra na próxima semana?
Com base na nossa nova previsão experimental de Dimitra, o preço de Dimitra aumentará 0.86% na próxima semana e atingirá $0.014643 até 13 de janeiro de 2026.
Qual será o preço de Dimitra no próximo mês?
Com base na nossa nova previsão experimental de Dimitra, o preço de Dimitra diminuirá -11.62% no próximo mês e atingirá $0.012832 até 5 de fevereiro de 2026.
Até onde o preço de Dimitra pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Dimitra em 2026, espera-se que DMTR fluctue dentro do intervalo de $0.005016 e $0.014973. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Dimitra não considera flutuações repentinas e extremas de preço.
Onde estará Dimitra em 5 anos?
O futuro de Dimitra parece seguir uma tendência de alta, com um preço máximo de $0.047074 projetada após um período de cinco anos. Com base na previsão de Dimitra para 2030, o valor de Dimitra pode potencialmente atingir seu pico mais alto de aproximadamente $0.047074, enquanto seu pico mais baixo está previsto para cerca de $0.016281.
Quanto será Dimitra em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Dimitra, espera-se que o valor de DMTR em 2026 aumente 3.13% para $0.014973 se o melhor cenário ocorrer. O preço ficará entre $0.014973 e $0.005016 durante 2026.
Quanto será Dimitra em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Dimitra, o valor de DMTR pode diminuir -12.62% para $0.012686 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.012686 e $0.004829 ao longo do ano.
Quanto será Dimitra em 2028?
Nosso novo modelo experimental de previsão de preços de Dimitra sugere que o valor de DMTR em 2028 pode aumentar 47.02%, alcançando $0.021345 no melhor cenário. O preço é esperado para variar entre $0.021345 e $0.008715 durante o ano.
Quanto será Dimitra em 2029?
Com base no nosso modelo de previsão experimental, o valor de Dimitra pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.062976 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.062976 e $0.019144.
Quanto será Dimitra em 2030?
Usando nossa nova simulação experimental para previsões de preços de Dimitra, espera-se que o valor de DMTR em 2030 aumente 224.23%, alcançando $0.047074 no melhor cenário. O preço está previsto para variar entre $0.047074 e $0.016281 ao longo de 2030.
Quanto será Dimitra em 2031?
Nossa simulação experimental indica que o preço de Dimitra poderia aumentar 195.98% em 2031, potencialmente atingindo $0.042974 sob condições ideais. O preço provavelmente oscilará entre $0.042974 e $0.019249 durante o ano.
Quanto será Dimitra em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Dimitra, DMTR poderia ver um 449.04% aumento em valor, atingindo $0.079714 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.079714 e $0.029383 ao longo do ano.
Quanto será Dimitra em 2033?
De acordo com nossa previsão experimental de preços de Dimitra, espera-se que o valor de DMTR seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.21233. Ao longo do ano, o preço de DMTR poderia variar entre $0.21233 e $0.06828.
Quanto será Dimitra em 2034?
Os resultados da nossa nova simulação de previsão de preços de Dimitra sugerem que DMTR pode aumentar 746.96% em 2034, atingindo potencialmente $0.12297 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.12297 e $0.054894.
Quanto será Dimitra em 2035?
Com base em nossa previsão experimental para o preço de Dimitra, DMTR poderia aumentar 897.93%, com o valor potencialmente atingindo $0.14489 em 2035. A faixa de preço esperada para o ano está entre $0.14489 e $0.0649024.
Quanto será Dimitra em 2036?
Nossa recente simulação de previsão de preços de Dimitra sugere que o valor de DMTR pode aumentar 1964.7% em 2036, possivelmente atingindo $0.299773 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.299773 e $0.107433.
Quanto será Dimitra em 2037?
De acordo com a simulação experimental, o valor de Dimitra poderia aumentar 4830.69% em 2037, com um pico de $0.715888 sob condições favoráveis. O preço é esperado para cair entre $0.715888 e $0.2790025 ao longo do ano.
Previsões relacionadas
Previsão de Preço do IX Swap
Previsão de Preço do BitMart Token
Previsão de Preço do LON
Previsão de Preço do Moon Tropica
Previsão de Preço do Kinesis Silver
Previsão de Preço do Perpetual Protocol
Previsão de Preço do USDX
Previsão de Preço do Metadium
Previsão de Preço do ARPA
Previsão de Preço do Storj
Previsão de Preço do Ozone Chain
Previsão de Preço do Humanscape
Previsão de Preço do Ordiswap
Previsão de Preço do Guild of Guardians
Previsão de Preço do Lyra Finance
Previsão de Preço do Bazaars
Previsão de Preço do PlatON Network
Previsão de Preço do Saitama Inu
Previsão de Preço do Nuls
Previsão de Preço do Across Protocol
Previsão de Preço do Alien Worlds
Previsão de Preço do MovieBloc
Previsão de Preço do REN
Previsão de Preço do Moonwell
Previsão de Preço do Pandora
Como ler e prever os movimentos de preço de Dimitra?
Traders de Dimitra utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Dimitra
Médias móveis são ferramentas populares para a previsão de preço de Dimitra. Uma média móvel simples (SMA) calcula o preço médio de fechamento de DMTR em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de DMTR acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de DMTR.
Como ler gráficos de Dimitra e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Dimitra em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de DMTR dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Dimitra?
A ação de preço de Dimitra é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de DMTR. A capitalização de mercado de Dimitra pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de DMTR, grandes detentores de Dimitra, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Dimitra.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


