Previsão de Preço Dimitra - Projeção DMTR
Previsão de Preço Dimitra até $0.014573 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.004882 | $0.014573 |
| 2027 | $0.004699 | $0.012346 |
| 2028 | $0.008482 | $0.020775 |
| 2029 | $0.018632 | $0.061293 |
| 2030 | $0.015846 | $0.045816 |
| 2031 | $0.018735 | $0.041825 |
| 2032 | $0.028597 | $0.077583 |
| 2033 | $0.066455 | $0.206653 |
| 2034 | $0.053426 | $0.119682 |
| 2035 | $0.063167 | $0.141016 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Dimitra hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,955.07, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Dimitra para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Dimitra'
'name_with_ticker' => 'Dimitra <small>DMTR</small>'
'name_lang' => 'Dimitra'
'name_lang_with_ticker' => 'Dimitra <small>DMTR</small>'
'name_with_lang' => 'Dimitra'
'name_with_lang_with_ticker' => 'Dimitra <small>DMTR</small>'
'image' => '/uploads/coins/dimitra.jpg?1717210240'
'price_for_sd' => 0.01413
'ticker' => 'DMTR'
'marketcap' => '$9.74M'
'low24h' => '$0.01398'
'high24h' => '$0.01494'
'volume24h' => '$281.93K'
'current_supply' => '689.23M'
'max_supply' => '971.07M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01413'
'change_24h_pct' => '0.7437%'
'ath_price' => '$5.95'
'ath_days' => 1567
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '22 de set. de 2021'
'ath_pct' => '-99.76%'
'fdv' => '$13.72M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.696747'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.014251'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.012489'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004882'
'current_year_max_price_prediction' => '$0.014573'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.015846'
'grand_prediction_max_price' => '$0.045816'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.014398611985178
107 => 0.014452371175635
108 => 0.014573493376745
109 => 0.013538517429683
110 => 0.014003191244617
111 => 0.014276143576842
112 => 0.013042935009758
113 => 0.014251767008538
114 => 0.013520500801058
115 => 0.013272298066989
116 => 0.013606470350189
117 => 0.013476243086433
118 => 0.013364281332257
119 => 0.01330180474968
120 => 0.013547183993213
121 => 0.01353573675821
122 => 0.013134248689732
123 => 0.012610523871148
124 => 0.012786303110946
125 => 0.012722440865188
126 => 0.012490995848169
127 => 0.012646961844862
128 => 0.01196016652801
129 => 0.010778570881881
130 => 0.011559169158968
131 => 0.011529116974427
201 => 0.011513963300224
202 => 0.012100561331303
203 => 0.012044173465734
204 => 0.011941828937574
205 => 0.01248911621065
206 => 0.012289348993925
207 => 0.012904984484796
208 => 0.013310481835891
209 => 0.013207634591188
210 => 0.013589006809832
211 => 0.012790352709607
212 => 0.013055633565261
213 => 0.013110307581948
214 => 0.012482362770653
215 => 0.012053399217901
216 => 0.012024792239475
217 => 0.011281028553822
218 => 0.011678341111247
219 => 0.012027959719871
220 => 0.01186051953784
221 => 0.011807512978342
222 => 0.012078311995096
223 => 0.012099355397935
224 => 0.011619563583137
225 => 0.011719327494464
226 => 0.012135359589069
227 => 0.011708844553108
228 => 0.010880195509073
301 => 0.010674679089183
302 => 0.01064725941035
303 => 0.010089882579895
304 => 0.010688412679075
305 => 0.010427138251173
306 => 0.011252501038365
307 => 0.010781058240831
308 => 0.01076073528409
309 => 0.010730014154246
310 => 0.010250256891327
311 => 0.010355293241742
312 => 0.010704450068008
313 => 0.010829033157153
314 => 0.010816038120276
315 => 0.010702739009077
316 => 0.010754606761999
317 => 0.010587522657916
318 => 0.010528521783209
319 => 0.010342298793166
320 => 0.010068602443217
321 => 0.010106661599355
322 => 0.0095643975135596
323 => 0.0092689432594851
324 => 0.0091871654159818
325 => 0.0090778086659178
326 => 0.0091995175518887
327 => 0.0095628613475364
328 => 0.0091245916422989
329 => 0.0083732089737145
330 => 0.0084183683523901
331 => 0.0085198280683346
401 => 0.0083307585588953
402 => 0.0081518201356122
403 => 0.0083073925769237
404 => 0.0079890218349418
405 => 0.0085583016514689
406 => 0.0085429042278201
407 => 0.0087550965393937
408 => 0.0088877847464452
409 => 0.0085819813875085
410 => 0.0085050726697162
411 => 0.0085488833706771
412 => 0.0078247900733363
413 => 0.0086959226689353
414 => 0.0087034562597966
415 => 0.0086389490810664
416 => 0.0091028002950214
417 => 0.010081671035288
418 => 0.0097133804878155
419 => 0.0095707672561934
420 => 0.0092996593986301
421 => 0.0096608945220415
422 => 0.0096331573007092
423 => 0.0095077190668161
424 => 0.0094318536315664
425 => 0.0095716380221752
426 => 0.0094145327986446
427 => 0.0093863123835357
428 => 0.0092153273720901
429 => 0.0091542935023264
430 => 0.0091091064549817
501 => 0.0090593599558427
502 => 0.0091690883368881
503 => 0.0089204293894687
504 => 0.0086205710752181
505 => 0.0085956411009001
506 => 0.0086644749518579
507 => 0.0086340210968866
508 => 0.0085954952995589
509 => 0.0085219390605838
510 => 0.0085001164957603
511 => 0.0085710292446334
512 => 0.0084909728856258
513 => 0.0086091004042371
514 => 0.0085769762554686
515 => 0.0083975333718072
516 => 0.0081738811005005
517 => 0.0081718901261594
518 => 0.0081237046111696
519 => 0.0080623331130895
520 => 0.0080452609663132
521 => 0.0082942906998433
522 => 0.0088097747954178
523 => 0.0087085729329675
524 => 0.0087817016501718
525 => 0.0091414225606655
526 => 0.0092557670209263
527 => 0.0091746080314301
528 => 0.0090635126009394
529 => 0.0090684002360622
530 => 0.0094480469529228
531 => 0.0094717250529693
601 => 0.0095315519729421
602 => 0.0096084464721928
603 => 0.0091877034971537
604 => 0.0090485832797746
605 => 0.0089826604026846
606 => 0.0087796434566114
607 => 0.0089985798275938
608 => 0.0088710149800125
609 => 0.0088882278361869
610 => 0.0088770179410223
611 => 0.008883139301792
612 => 0.0085581425261582
613 => 0.0086765542698715
614 => 0.0084796717796127
615 => 0.008216068226253
616 => 0.0082151845347108
617 => 0.0082797011309487
618 => 0.0082413241349717
619 => 0.0081380526255605
620 => 0.0081527218560446
621 => 0.0080242039613143
622 => 0.0081683262553564
623 => 0.0081724591670552
624 => 0.0081169642334546
625 => 0.0083390045124705
626 => 0.008429974595951
627 => 0.0083934466418384
628 => 0.0084274116973144
629 => 0.0087127783272513
630 => 0.00875930553935
701 => 0.0087799698535492
702 => 0.0087522824100193
703 => 0.0084326276754547
704 => 0.0084468057222096
705 => 0.0083427766224045
706 => 0.0082548829953856
707 => 0.008258398279525
708 => 0.0083035870291844
709 => 0.0085009289492322
710 => 0.0089162233860311
711 => 0.0089319835063313
712 => 0.0089510852318904
713 => 0.0088733889142837
714 => 0.0088499549614399
715 => 0.0088808703940573
716 => 0.0090368331493749
717 => 0.0094380116995266
718 => 0.0092962084060885
719 => 0.0091809201212236
720 => 0.0092820590285485
721 => 0.0092664894865188
722 => 0.0091350668831547
723 => 0.0091313782883949
724 => 0.0088791362941912
725 => 0.0087858881722064
726 => 0.008707963061975
727 => 0.0086228708758887
728 => 0.0085724253756609
729 => 0.0086499325910807
730 => 0.0086676594082856
731 => 0.008498188527176
801 => 0.0084750902722972
802 => 0.0086134838520943
803 => 0.0085525819974583
804 => 0.0086152210652448
805 => 0.0086297538662792
806 => 0.0086274137505939
807 => 0.0085638252198204
808 => 0.0086043546530981
809 => 0.0085084904609907
810 => 0.00840425255041
811 => 0.0083377552577109
812 => 0.0082797275502449
813 => 0.0083119246949372
814 => 0.0081971477530756
815 => 0.0081604282993706
816 => 0.0085906241930448
817 => 0.0089084145250871
818 => 0.0089037937278004
819 => 0.0088756658126903
820 => 0.0088338734363759
821 => 0.0090337757767388
822 => 0.0089641337985299
823 => 0.0090148041564589
824 => 0.00902770188918
825 => 0.0090667394415784
826 => 0.0090806920111698
827 => 0.0090385176551819
828 => 0.0088969753653227
829 => 0.0085442654364307
830 => 0.0083800780124092
831 => 0.0083258934277243
901 => 0.0083278629344664
902 => 0.0082735351462534
903 => 0.0082895371146828
904 => 0.0082679703146696
905 => 0.0082271280130138
906 => 0.0083094027979005
907 => 0.008318884200416
908 => 0.008299680282513
909 => 0.0083042035003712
910 => 0.0081452032622348
911 => 0.00815729170501
912 => 0.008089981719513
913 => 0.0080773619086663
914 => 0.0079072081266807
915 => 0.0076057560377082
916 => 0.0077727897576613
917 => 0.0075710365124533
918 => 0.0074946295014324
919 => 0.0078563284078768
920 => 0.0078200238696358
921 => 0.0077578862813707
922 => 0.0076659718377184
923 => 0.0076318798764816
924 => 0.0074247479122099
925 => 0.0074125094507546
926 => 0.0075151696452812
927 => 0.0074677954978288
928 => 0.007401264252813
929 => 0.0071602948275298
930 => 0.0068893654112767
1001 => 0.0068975430673517
1002 => 0.0069837206738409
1003 => 0.0072342936873417
1004 => 0.0071363904760098
1005 => 0.0070653605728786
1006 => 0.0070520588071731
1007 => 0.0072185582541093
1008 => 0.0074541898542366
1009 => 0.0075647429290564
1010 => 0.0074551881894567
1011 => 0.0073293376034508
1012 => 0.0073369975454855
1013 => 0.007387955708128
1014 => 0.0073933106905121
1015 => 0.0073113948966715
1016 => 0.0073344537128131
1017 => 0.0072994252625516
1018 => 0.0070844557279545
1019 => 0.0070805676107494
1020 => 0.0070278106201072
1021 => 0.0070262131593975
1022 => 0.0069364603574672
1023 => 0.0069239033200453
1024 => 0.0067456936842068
1025 => 0.0068629918061842
1026 => 0.0067843143843896
1027 => 0.0066657289516176
1028 => 0.0066452847783101
1029 => 0.0066446702017734
1030 => 0.0067664309260127
1031 => 0.0068615689612289
1101 => 0.0067856830118264
1102 => 0.0067684052521348
1103 => 0.0069528865233359
1104 => 0.0069294095999914
1105 => 0.006909078735785
1106 => 0.0074330916288752
1107 => 0.0070182945347584
1108 => 0.006837419325933
1109 => 0.0066135519077411
1110 => 0.0066864442679419
1111 => 0.0067018037592478
1112 => 0.0061634429736314
1113 => 0.0059450300699554
1114 => 0.0058700789921304
1115 => 0.0058269435871895
1116 => 0.0058466009328814
1117 => 0.0056500037022946
1118 => 0.005782120292667
1119 => 0.005611883708929
1120 => 0.0055833429916676
1121 => 0.005887747091657
1122 => 0.0059301031438676
1123 => 0.0057493990661433
1124 => 0.0058654403373751
1125 => 0.0058233621593321
1126 => 0.0056148019265486
1127 => 0.0056068364597215
1128 => 0.0055021882661573
1129 => 0.0053384341071127
1130 => 0.0052635940623186
1201 => 0.0052246167171988
1202 => 0.0052406995294485
1203 => 0.0052325675674329
1204 => 0.0051795010146097
1205 => 0.0052356092801232
1206 => 0.0050922758472722
1207 => 0.005035199319395
1208 => 0.0050094191759182
1209 => 0.0048822025042984
1210 => 0.0050846608023562
1211 => 0.005124547637576
1212 => 0.0051645130621829
1213 => 0.0055123847978316
1214 => 0.0054950061089939
1215 => 0.0056521009923219
1216 => 0.0056459965740347
1217 => 0.0056011905685412
1218 => 0.0054121614015942
1219 => 0.0054875050584184
1220 => 0.0052556089937175
1221 => 0.005429361292791
1222 => 0.0053500679995634
1223 => 0.0054025521505889
1224 => 0.0053081809147399
1225 => 0.0053604098531516
1226 => 0.0051340062859107
1227 => 0.0049225938204053
1228 => 0.0050076723680393
1229 => 0.0051001624792295
1230 => 0.0053007046063319
1231 => 0.0051812633698663
]
'min_raw' => 0.0048822025042984
'max_raw' => 0.014573493376745
'avg_raw' => 0.0097278479405219
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004882'
'max' => '$0.014573'
'avg' => '$0.009727'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0092486374957016
'max_diff' => 0.00044265337674549
'year' => 2026
]
1 => [
'items' => [
101 => 0.0052242189550725
102 => 0.0050803249353099
103 => 0.0047834304712448
104 => 0.0047851108616688
105 => 0.0047394401165698
106 => 0.0046999739247664
107 => 0.0051949826326814
108 => 0.0051334204749226
109 => 0.0050353292335898
110 => 0.0051666282581047
111 => 0.0052013458041821
112 => 0.0052023341639118
113 => 0.0052981265428796
114 => 0.0053492509527064
115 => 0.0053582618515242
116 => 0.0055089932295613
117 => 0.0055595163992844
118 => 0.0057676141850671
119 => 0.005344913403719
120 => 0.0053362081592931
121 => 0.0051684759046403
122 => 0.0050620974569975
123 => 0.0051757597279611
124 => 0.0052764489835877
125 => 0.0051716046004828
126 => 0.0051852950635306
127 => 0.0050445500453131
128 => 0.0050948597666572
129 => 0.0051381932761301
130 => 0.0051142670592252
131 => 0.0050784483544764
201 => 0.0052681936128714
202 => 0.0052574874417751
203 => 0.0054341825886172
204 => 0.0055719290911718
205 => 0.0058187954488822
206 => 0.0055611775351771
207 => 0.0055517889144632
208 => 0.0056435641879235
209 => 0.0055595023489682
210 => 0.0056126265294719
211 => 0.0058102363221064
212 => 0.0058144115056353
213 => 0.0057444718021056
214 => 0.0057402159647896
215 => 0.0057536486499091
216 => 0.0058323243062157
217 => 0.0058048326144435
218 => 0.0058366466961668
219 => 0.0058764306925164
220 => 0.0060409941694832
221 => 0.0060806698666528
222 => 0.005984278492021
223 => 0.0059929815539018
224 => 0.0059569285337871
225 => 0.0059221017680993
226 => 0.0060003872513248
227 => 0.0061434555106243
228 => 0.0061425654904085
301 => 0.0061757545457164
302 => 0.0061964310522203
303 => 0.0061076723501779
304 => 0.0060498936988962
305 => 0.0060720497103487
306 => 0.0061074776551564
307 => 0.0060605609053335
308 => 0.0057709689914737
309 => 0.0058588126789357
310 => 0.0058441911940051
311 => 0.0058233684214307
312 => 0.0059116959284489
313 => 0.0059031765249206
314 => 0.0056479873135379
315 => 0.0056643236988912
316 => 0.005648980783239
317 => 0.0056985568825765
318 => 0.0055568250769091
319 => 0.0056004208257541
320 => 0.0056277636707449
321 => 0.0056438688165022
322 => 0.0057020516463792
323 => 0.0056952245628368
324 => 0.0057016272652805
325 => 0.0057878970422905
326 => 0.0062242199701945
327 => 0.006247968064468
328 => 0.0061310237628077
329 => 0.0061777407046966
330 => 0.006088054392142
331 => 0.006148261414606
401 => 0.0061894535302833
402 => 0.0060033142803258
403 => 0.0059922923219771
404 => 0.0059022358421073
405 => 0.0059506270933296
406 => 0.0058736331331809
407 => 0.005892524757867
408 => 0.0058397021283024
409 => 0.005934772344638
410 => 0.0060410756189193
411 => 0.0060679320240462
412 => 0.0059972843845666
413 => 0.005946130837677
414 => 0.0058563220603647
415 => 0.0060056760585541
416 => 0.0060493517191053
417 => 0.0060054466489026
418 => 0.0059952728847918
419 => 0.0059759936201856
420 => 0.005999363071917
421 => 0.0060491138520781
422 => 0.0060256523029068
423 => 0.0060411490694738
424 => 0.0059820913755168
425 => 0.0061077017330015
426 => 0.006307201210466
427 => 0.0063078426339075
428 => 0.0062843809582696
429 => 0.0062747809460875
430 => 0.0062988540490654
501 => 0.0063119127199006
502 => 0.0063897607206791
503 => 0.0064732947271157
504 => 0.0068631114864127
505 => 0.006753652500279
506 => 0.0070995211194301
507 => 0.0073730582917593
508 => 0.00745508012941
509 => 0.0073796238981971
510 => 0.0071214922072832
511 => 0.0071088270350447
512 => 0.0074945847616589
513 => 0.0073855905350672
514 => 0.0073726260186309
515 => 0.0072347054676445
516 => 0.00731623359507
517 => 0.0072984021976566
518 => 0.0072702544644977
519 => 0.0074258044523269
520 => 0.0077169801435
521 => 0.0076715976814023
522 => 0.0076377217786782
523 => 0.0074892874340684
524 => 0.0075786780635346
525 => 0.0075468477725464
526 => 0.0076836109026336
527 => 0.0076025954540442
528 => 0.007384764796602
529 => 0.0074194550467789
530 => 0.0074142116852517
531 => 0.0075221196939317
601 => 0.0074897283881674
602 => 0.0074078867629394
603 => 0.0077159849366424
604 => 0.0076959787549742
605 => 0.0077243429465298
606 => 0.0077368297408444
607 => 0.0079243636698786
608 => 0.0080011903201875
609 => 0.0080186313148475
610 => 0.0080916106906546
611 => 0.0080168155214947
612 => 0.008316049526186
613 => 0.0085150226785175
614 => 0.0087461402340153
615 => 0.0090838651011402
616 => 0.0092108527753088
617 => 0.0091879135885928
618 => 0.0094439727284463
619 => 0.009904105310888
620 => 0.0092809195391983
621 => 0.0099371356700008
622 => 0.0097293852193683
623 => 0.0092368126381896
624 => 0.009205096771011
625 => 0.0095386726418704
626 => 0.010278511817949
627 => 0.010093190495528
628 => 0.010278814937243
629 => 0.010062274165959
630 => 0.010051521091516
701 => 0.01026829803531
702 => 0.010774809180379
703 => 0.010534184721643
704 => 0.010189190556507
705 => 0.01044392887934
706 => 0.010223250969183
707 => 0.0097260018737424
708 => 0.010093048783805
709 => 0.0098476149679403
710 => 0.0099192456033889
711 => 0.010435110978812
712 => 0.01037304069203
713 => 0.010453365390679
714 => 0.010311594400027
715 => 0.010179157939525
716 => 0.0099319554511374
717 => 0.0098587709812611
718 => 0.0098789965358336
719 => 0.0098587609584808
720 => 0.0097204534381359
721 => 0.0096905859422858
722 => 0.0096408054740106
723 => 0.0096562345226831
724 => 0.0095626326785361
725 => 0.0097392786975694
726 => 0.0097720657553013
727 => 0.0099006139968982
728 => 0.0099139603017832
729 => 0.010271965324861
730 => 0.01007478217418
731 => 0.010207069655631
801 => 0.010195236618152
802 => 0.0092474881796345
803 => 0.0093780795524069
804 => 0.0095812387466104
805 => 0.0094897158049975
806 => 0.0093603237786269
807 => 0.0092558327797711
808 => 0.0090975182317514
809 => 0.0093203429179276
810 => 0.0096133336854856
811 => 0.0099213910311569
812 => 0.010291501747264
813 => 0.010208897343993
814 => 0.0099144720687629
815 => 0.0099276797715319
816 => 0.01000932459301
817 => 0.0099035871309815
818 => 0.0098724030891887
819 => 0.010005040384532
820 => 0.010005953784689
821 => 0.0098842900558251
822 => 0.0097490830854207
823 => 0.0097485165632779
824 => 0.0097244577888388
825 => 0.010066554168485
826 => 0.010254672587446
827 => 0.010276240061011
828 => 0.010253220924634
829 => 0.010262080076629
830 => 0.010152618113542
831 => 0.010402815701221
901 => 0.010632421749652
902 => 0.010570882423855
903 => 0.010478626226154
904 => 0.010405139721025
905 => 0.010553571338681
906 => 0.0105469619124
907 => 0.010630416341123
908 => 0.01062663036618
909 => 0.010598567780681
910 => 0.010570883426058
911 => 0.010680648762838
912 => 0.010649038108623
913 => 0.010617378354331
914 => 0.010553879870232
915 => 0.010562510368819
916 => 0.010470270100451
917 => 0.010427595531677
918 => 0.0097858724079187
919 => 0.0096143830203424
920 => 0.0096683370726623
921 => 0.0096861001476023
922 => 0.0096114677463595
923 => 0.0097184714382509
924 => 0.0097017950262145
925 => 0.0097666731900731
926 => 0.0097261401299767
927 => 0.0097278036209016
928 => 0.0098470027080855
929 => 0.0098816067102041
930 => 0.009864006835438
1001 => 0.0098763331844358
1002 => 0.010160388694463
1003 => 0.010120005084521
1004 => 0.010098552096614
1005 => 0.010104494720877
1006 => 0.010177076993907
1007 => 0.010197396067511
1008 => 0.010111302724857
1009 => 0.010151904842952
1010 => 0.010324783508625
1011 => 0.010385281257526
1012 => 0.010578361031449
1013 => 0.010496337311767
1014 => 0.010646895399147
1015 => 0.011109659630718
1016 => 0.011479347719746
1017 => 0.01113936727507
1018 => 0.011818252371076
1019 => 0.012346861798599
1020 => 0.012326572888326
1021 => 0.012234397607681
1022 => 0.011632589828254
1023 => 0.011078797337177
1024 => 0.011542068271234
1025 => 0.011543249244117
1026 => 0.011503453860027
1027 => 0.011256288147239
1028 => 0.011494853028985
1029 => 0.011513789442958
1030 => 0.011503190086732
1031 => 0.011313688714248
1101 => 0.011024355144173
1102 => 0.011080890231199
1103 => 0.011173495857032
1104 => 0.010998174087772
1105 => 0.010942148159373
1106 => 0.011046311019636
1107 => 0.011381945458596
1108 => 0.011318495712109
1109 => 0.011316838782807
1110 => 0.011588303705161
1111 => 0.011393993406553
1112 => 0.011081603319696
1113 => 0.011002720702846
1114 => 0.010722740554726
1115 => 0.010916123840288
1116 => 0.010923083360461
1117 => 0.010817169311288
1118 => 0.011090197661061
1119 => 0.011087681656752
1120 => 0.011346881439955
1121 => 0.011842374074445
1122 => 0.011695832520714
1123 => 0.011525420637402
1124 => 0.011543949134127
1125 => 0.011747161010974
1126 => 0.011624294471356
1127 => 0.011668478135659
1128 => 0.011747094133706
1129 => 0.011794525117254
1130 => 0.011537124545516
1201 => 0.011477112159351
1202 => 0.011354347878743
1203 => 0.011322320969436
1204 => 0.01142230991443
1205 => 0.011395966360086
1206 => 0.010922498439739
1207 => 0.010873018407712
1208 => 0.010874535889654
1209 => 0.010750115996475
1210 => 0.010560345795181
1211 => 0.011059050553591
1212 => 0.011018997582122
1213 => 0.010974782201474
1214 => 0.010980198333314
1215 => 0.011196669166267
1216 => 0.011071105151115
1217 => 0.011404937664934
1218 => 0.011336311736016
1219 => 0.011265925810972
1220 => 0.011256196332123
1221 => 0.011229103756026
1222 => 0.011136193231885
1223 => 0.011023998190928
1224 => 0.01094991730672
1225 => 0.01010071990501
1226 => 0.010258326003213
1227 => 0.010439637452948
1228 => 0.010502225438837
1229 => 0.010395164358018
1230 => 0.0111404206559
1231 => 0.011276586162992
]
'min_raw' => 0.0046999739247664
'max_raw' => 0.012346861798599
'avg_raw' => 0.0085234178616829
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004699'
'max' => '$0.012346'
'avg' => '$0.008523'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00018222857953197
'max_diff' => -0.002226631578146
'year' => 2027
]
2 => [
'items' => [
101 => 0.010864131960155
102 => 0.010786978619199
103 => 0.011145478816089
104 => 0.010929259372498
105 => 0.011026622974707
106 => 0.010816176121773
107 => 0.011243787879725
108 => 0.011240530194575
109 => 0.011074179562682
110 => 0.011214777977638
111 => 0.011190345543082
112 => 0.011002536089379
113 => 0.011249741774397
114 => 0.011249864385333
115 => 0.01108975551891
116 => 0.010902783415267
117 => 0.010869357219219
118 => 0.010844175070675
119 => 0.011020429709859
120 => 0.011178459068218
121 => 0.011472512525324
122 => 0.011546444550978
123 => 0.01183500616904
124 => 0.011663181775294
125 => 0.011739349303543
126 => 0.011822039930012
127 => 0.011861684857188
128 => 0.011797085575819
129 => 0.012245340545369
130 => 0.012283186998976
131 => 0.012295876587501
201 => 0.012144727533846
202 => 0.012278983270368
203 => 0.012216169457332
204 => 0.012379593548671
205 => 0.012405220532897
206 => 0.012383515388964
207 => 0.012391649798252
208 => 0.012009143259336
209 => 0.01198930827741
210 => 0.011718856891429
211 => 0.011829067830292
212 => 0.011623033762636
213 => 0.011688369287876
214 => 0.011717168564862
215 => 0.011702125456909
216 => 0.011835298991416
217 => 0.011722074281529
218 => 0.011423255656272
219 => 0.01112435561808
220 => 0.011120603171579
221 => 0.011041908067547
222 => 0.010985025921059
223 => 0.010995983440475
224 => 0.011034599168109
225 => 0.010982781504769
226 => 0.010993839430465
227 => 0.011177474675589
228 => 0.011214301414372
229 => 0.011089149766851
301 => 0.010586647842761
302 => 0.010463332610159
303 => 0.010551969153906
304 => 0.01050960659492
305 => 0.0084820727632641
306 => 0.0089584117621772
307 => 0.008675387303967
308 => 0.0088058179956395
309 => 0.008516923312635
310 => 0.0086547989976324
311 => 0.0086293383930272
312 => 0.0093952774073837
313 => 0.0093833183231892
314 => 0.0093890425039324
315 => 0.0091158124427831
316 => 0.0095510753491986
317 => 0.0097655015084467
318 => 0.0097258169331373
319 => 0.0097358046857721
320 => 0.0095641820044992
321 => 0.0093907041866357
322 => 0.0091982905885804
323 => 0.0095557712707278
324 => 0.0095160255212717
325 => 0.0096071879704546
326 => 0.0098390397460741
327 => 0.0098731808007533
328 => 0.0099190667244666
329 => 0.0099026198871979
330 => 0.010294450276227
331 => 0.010246997030736
401 => 0.01036134569914
402 => 0.010126121812578
403 => 0.0098599436572768
404 => 0.00991053542258
405 => 0.009905663028748
406 => 0.0098436318629936
407 => 0.0097876329001513
408 => 0.0096944104046287
409 => 0.0099893801747954
410 => 0.0099774049408047
411 => 0.010171270059428
412 => 0.010137002516606
413 => 0.0099081554789509
414 => 0.0099163287956708
415 => 0.0099712982785737
416 => 0.010161548286531
417 => 0.010218027442101
418 => 0.010191864046936
419 => 0.010253790862647
420 => 0.010302735292826
421 => 0.010259937529516
422 => 0.010865863605486
423 => 0.010614240853725
424 => 0.010736880032154
425 => 0.010766128753577
426 => 0.010691208768686
427 => 0.010707456230725
428 => 0.010732066708546
429 => 0.010881496710652
430 => 0.011273644274095
501 => 0.011447323760506
502 => 0.011969847064567
503 => 0.011432902096895
504 => 0.011401042004612
505 => 0.011495164230366
506 => 0.011801940724559
507 => 0.012050554259051
508 => 0.012133033711301
509 => 0.012143934732503
510 => 0.012298671668055
511 => 0.01238736399384
512 => 0.012279882534093
513 => 0.012188803250736
514 => 0.011862568562928
515 => 0.011900331116349
516 => 0.0121604776621
517 => 0.012527949980528
518 => 0.012843279458718
519 => 0.012732862065798
520 => 0.013575268831249
521 => 0.01365879002112
522 => 0.013647250093243
523 => 0.01383752379339
524 => 0.013459869247164
525 => 0.01329841461194
526 => 0.012208495625592
527 => 0.012514718403538
528 => 0.012959831195116
529 => 0.012900918848063
530 => 0.01257766604092
531 => 0.012843034242477
601 => 0.012755295216212
602 => 0.012686091805901
603 => 0.013003126044278
604 => 0.012654533876133
605 => 0.01295635372158
606 => 0.012569266647868
607 => 0.012733366443148
608 => 0.012640215462733
609 => 0.012700495563216
610 => 0.012348099327516
611 => 0.012538243782365
612 => 0.012340188693057
613 => 0.012340094789158
614 => 0.012335722712084
615 => 0.012568733646344
616 => 0.012576332124544
617 => 0.012404136692067
618 => 0.012379320640048
619 => 0.012471078590979
620 => 0.012363654061885
621 => 0.012413917322926
622 => 0.012365176484857
623 => 0.012354203895569
624 => 0.012266772437288
625 => 0.012229104561082
626 => 0.012243875105924
627 => 0.012193455621641
628 => 0.012163076058608
629 => 0.012329679452354
630 => 0.012240669979837
701 => 0.012316037474115
702 => 0.012230146702249
703 => 0.011932411866133
704 => 0.011761181413394
705 => 0.011198787908004
706 => 0.011358282008486
707 => 0.011464026762113
708 => 0.01142907812167
709 => 0.011504161324671
710 => 0.011508770823534
711 => 0.011484360508856
712 => 0.011456096491614
713 => 0.011442339131119
714 => 0.011544875225057
715 => 0.011604400878794
716 => 0.011474639662822
717 => 0.011444238425472
718 => 0.011575434179133
719 => 0.011655463513077
720 => 0.01224635515032
721 => 0.012202579989278
722 => 0.012312447053051
723 => 0.012300077707718
724 => 0.012415235893748
725 => 0.012603470858427
726 => 0.012220736543911
727 => 0.012287165986954
728 => 0.0122708790216
729 => 0.012448695838667
730 => 0.01244925096336
731 => 0.01234264089892
801 => 0.012400435944404
802 => 0.012368176335539
803 => 0.012426473808906
804 => 0.012201995345314
805 => 0.012475385883016
806 => 0.012630380700996
807 => 0.012632532804194
808 => 0.012705999117801
809 => 0.012780645147308
810 => 0.012923921700648
811 => 0.012776649241999
812 => 0.012511720425574
813 => 0.012530847430405
814 => 0.012375519762269
815 => 0.012378130848432
816 => 0.012364192665857
817 => 0.012406022200984
818 => 0.012211174575996
819 => 0.012256904924125
820 => 0.012192882168947
821 => 0.012287026813988
822 => 0.012185742738592
823 => 0.012270871167532
824 => 0.012307609775411
825 => 0.012443176029408
826 => 0.012165719492651
827 => 0.011599966832045
828 => 0.011718894900393
829 => 0.011542990945709
830 => 0.011559271526428
831 => 0.011592160890517
901 => 0.011485555700775
902 => 0.011505892611462
903 => 0.011505166033904
904 => 0.011498904781035
905 => 0.011471172653895
906 => 0.011430955582909
907 => 0.011591168015558
908 => 0.011618391229809
909 => 0.011678905062846
910 => 0.011858953183041
911 => 0.011840962130007
912 => 0.011870306283948
913 => 0.011806248160655
914 => 0.011562242999045
915 => 0.011575493653264
916 => 0.011410257782818
917 => 0.011674679610138
918 => 0.011612061031231
919 => 0.011571690426052
920 => 0.011560674932397
921 => 0.011741169357057
922 => 0.011795176117819
923 => 0.011761522728771
924 => 0.011692498646008
925 => 0.011825045290052
926 => 0.011860509180304
927 => 0.011868448237473
928 => 0.01210329547742
929 => 0.011881573589359
930 => 0.011934944251541
1001 => 0.012351326922561
1002 => 0.011973725296827
1003 => 0.012173749299499
1004 => 0.012163959165443
1005 => 0.012266284676767
1006 => 0.012155565486857
1007 => 0.012156937983912
1008 => 0.012247796105837
1009 => 0.012120202259941
1010 => 0.012088608229342
1011 => 0.012044961302348
1012 => 0.012140262770647
1013 => 0.012197391690777
1014 => 0.01265780883046
1015 => 0.012955259300267
1016 => 0.012942346190903
1017 => 0.013060347838163
1018 => 0.013007187015301
1019 => 0.012835516695163
1020 => 0.013128536998673
1021 => 0.013035813114152
1022 => 0.013043457158533
1023 => 0.013043172646819
1024 => 0.013104825923963
1025 => 0.013061138926667
1026 => 0.012975027370618
1027 => 0.013032192240181
1028 => 0.01320195146597
1029 => 0.013728889311666
1030 => 0.014023770711116
1031 => 0.013711137081155
1101 => 0.013926787572771
1102 => 0.013797474121928
1103 => 0.013773974021168
1104 => 0.013909418466349
1105 => 0.014045099989101
1106 => 0.014036457662669
1107 => 0.013937959844475
1108 => 0.013882320926266
1109 => 0.014303637455347
1110 => 0.014614056297034
1111 => 0.014592887813105
1112 => 0.014686318616807
1113 => 0.014960634346181
1114 => 0.014985714338638
1115 => 0.014982554836045
1116 => 0.014920391457913
1117 => 0.015190490917881
1118 => 0.015415812639334
1119 => 0.014906002431948
1120 => 0.015100131485015
1121 => 0.015187282271384
1122 => 0.015315245482247
1123 => 0.015531140868097
1124 => 0.015765660520553
1125 => 0.015798824170787
1126 => 0.015775292973919
1127 => 0.015620620958898
1128 => 0.015877235161017
1129 => 0.016027553742274
1130 => 0.016117065017434
1201 => 0.016344050717982
1202 => 0.015187820484971
1203 => 0.014369383257675
1204 => 0.014241572466256
1205 => 0.014501480736518
1206 => 0.014570016474656
1207 => 0.014542389804549
1208 => 0.01362116429617
1209 => 0.014236722404606
1210 => 0.014899011171688
1211 => 0.014924452380487
1212 => 0.015256007985093
1213 => 0.015363976080876
1214 => 0.015630921800571
1215 => 0.015614224273123
1216 => 0.015679221307834
1217 => 0.015664279615146
1218 => 0.016158740348826
1219 => 0.016704203966206
1220 => 0.016685316295604
1221 => 0.016606899446973
1222 => 0.01672336183925
1223 => 0.017286338747819
1224 => 0.017234508855599
1225 => 0.017284857181031
1226 => 0.017948638684223
1227 => 0.018811649060189
1228 => 0.018410694095728
1229 => 0.019280650996926
1230 => 0.019828242751797
1231 => 0.020775246069802
]
'min_raw' => 0.0084820727632641
'max_raw' => 0.020775246069802
'avg_raw' => 0.014628659416533
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.008482'
'max' => '$0.020775'
'avg' => '$0.014628'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0037820988384977
'max_diff' => 0.0084283842712022
'year' => 2028
]
3 => [
'items' => [
101 => 0.020656676590298
102 => 0.021025338032566
103 => 0.020444412475789
104 => 0.019110489973003
105 => 0.018899391630887
106 => 0.019322015857665
107 => 0.020360996280129
108 => 0.019289294666744
109 => 0.019506098507345
110 => 0.019443658986667
111 => 0.019440331849961
112 => 0.019567315125588
113 => 0.019383119261288
114 => 0.018632672173928
115 => 0.018976597651653
116 => 0.018843791508045
117 => 0.018991149825732
118 => 0.019786381891092
119 => 0.019434790839032
120 => 0.019064418226624
121 => 0.019528947674845
122 => 0.020120453292069
123 => 0.020083437933581
124 => 0.020011612666894
125 => 0.020416487934557
126 => 0.021085223259412
127 => 0.021265979730524
128 => 0.021399410462096
129 => 0.021417808305649
130 => 0.021607317528442
131 => 0.020588278675013
201 => 0.022205519506178
202 => 0.022484772322344
203 => 0.022432284366748
204 => 0.022742662119162
205 => 0.022651341110878
206 => 0.022519031297702
207 => 0.023011046054519
208 => 0.022446990839372
209 => 0.021646385474048
210 => 0.021207157536453
211 => 0.021785568316186
212 => 0.022138783595614
213 => 0.022372236426605
214 => 0.022442879112207
215 => 0.020667383760373
216 => 0.019710490239221
217 => 0.020323848015473
218 => 0.021072186834193
219 => 0.02058412161509
220 => 0.02060325284765
221 => 0.019907400106493
222 => 0.021133754361365
223 => 0.020955084861693
224 => 0.021882022542052
225 => 0.021660801425495
226 => 0.022416683120315
227 => 0.022217634137714
228 => 0.023043875335809
301 => 0.023373485319316
302 => 0.023926951781323
303 => 0.024334083963789
304 => 0.02457315976853
305 => 0.024558806553964
306 => 0.025506143999443
307 => 0.024947532205294
308 => 0.024245784137151
309 => 0.024233091728585
310 => 0.024596536996923
311 => 0.02535821857302
312 => 0.025555711523686
313 => 0.025666083140624
314 => 0.02549704516722
315 => 0.024890712100738
316 => 0.02462890055681
317 => 0.024851971577648
318 => 0.024579174887875
319 => 0.025050098507655
320 => 0.025696777221471
321 => 0.025563240624313
322 => 0.026009633447688
323 => 0.026471603057986
324 => 0.027132240349065
325 => 0.027304955400282
326 => 0.027590446812177
327 => 0.027884311254061
328 => 0.027978692592925
329 => 0.028158895853626
330 => 0.028157946093492
331 => 0.028701000748694
401 => 0.029300006850384
402 => 0.02952611778675
403 => 0.030046047417091
404 => 0.029155686145638
405 => 0.029831035397769
406 => 0.030440217328278
407 => 0.029713925517101
408 => 0.03071494957452
409 => 0.0307538170703
410 => 0.031340670110966
411 => 0.030745782126813
412 => 0.030392539540772
413 => 0.031412337650844
414 => 0.031905785832969
415 => 0.031757155224698
416 => 0.030626068956962
417 => 0.029967728234568
418 => 0.028244723579619
419 => 0.030285697021667
420 => 0.031279795649278
421 => 0.030623494481673
422 => 0.030954494615854
423 => 0.032760324020789
424 => 0.033447866939393
425 => 0.033304862818611
426 => 0.033329028160975
427 => 0.033700013840067
428 => 0.035345168646706
429 => 0.034359353752178
430 => 0.035112972301266
501 => 0.035512688862328
502 => 0.035883967880688
503 => 0.034972223955534
504 => 0.033786058505086
505 => 0.033410350115091
506 => 0.030558238264837
507 => 0.030409773456938
508 => 0.03032643566132
509 => 0.029801002648312
510 => 0.029388156228303
511 => 0.029059845427107
512 => 0.028198259842865
513 => 0.028489019685437
514 => 0.027115832091041
515 => 0.027994348851155
516 => 0.025802708293726
517 => 0.027627971674904
518 => 0.026634563801071
519 => 0.027301610470731
520 => 0.02729928320774
521 => 0.026071038801558
522 => 0.025362613060878
523 => 0.025814049515181
524 => 0.026298025229265
525 => 0.026376548660585
526 => 0.027004035806953
527 => 0.027179153981713
528 => 0.026648537736704
529 => 0.02575729141456
530 => 0.02596430760803
531 => 0.025358417884325
601 => 0.024296619448744
602 => 0.025059221622401
603 => 0.025319607533737
604 => 0.025434608786042
605 => 0.024390451973022
606 => 0.024062355232624
607 => 0.023887679281035
608 => 0.025622503881959
609 => 0.025717541489743
610 => 0.025231315651358
611 => 0.027429102546685
612 => 0.026931675684227
613 => 0.027487423362132
614 => 0.025945523058313
615 => 0.026004425726363
616 => 0.025274465412487
617 => 0.025683194412292
618 => 0.025394317929181
619 => 0.025650173148247
620 => 0.025803531711624
621 => 0.026533372246196
622 => 0.02763630528145
623 => 0.026424358408368
624 => 0.025896295800367
625 => 0.026223902872434
626 => 0.027096363676903
627 => 0.02841818645612
628 => 0.027635640766661
629 => 0.027982921255156
630 => 0.028058786592458
701 => 0.027481766372467
702 => 0.028439462014685
703 => 0.028952698889655
704 => 0.029479173723967
705 => 0.02993629707111
706 => 0.029268888097713
707 => 0.029983111368567
708 => 0.029407573489638
709 => 0.028891256514226
710 => 0.028892039553952
711 => 0.028568146373089
712 => 0.027940562522
713 => 0.027824826430995
714 => 0.028426900192258
715 => 0.028909706332193
716 => 0.028949472558364
717 => 0.029216778844907
718 => 0.02937496795181
719 => 0.030925436247119
720 => 0.031549047421638
721 => 0.032311587361486
722 => 0.032608639642452
723 => 0.033502660509025
724 => 0.032780666050443
725 => 0.032624458007771
726 => 0.030455855817461
727 => 0.030810964304637
728 => 0.031379527255478
729 => 0.030465231211106
730 => 0.03104514160932
731 => 0.031159628206109
801 => 0.030434163781378
802 => 0.030821665676094
803 => 0.029792575530032
804 => 0.027658736634455
805 => 0.028441837587366
806 => 0.029018463477638
807 => 0.02819554723476
808 => 0.029670592748863
809 => 0.028808901610644
810 => 0.028535786888297
811 => 0.027470268983995
812 => 0.027973152419281
813 => 0.028653309466101
814 => 0.02823305148791
815 => 0.02910514989471
816 => 0.030340273818888
817 => 0.031220496680159
818 => 0.031288069261677
819 => 0.030722144932231
820 => 0.031629042281849
821 => 0.031635648038958
822 => 0.030612664123805
823 => 0.029986092171772
824 => 0.029843733705952
825 => 0.030199373064593
826 => 0.03063118490063
827 => 0.031312031813319
828 => 0.031723453343311
829 => 0.032796222492412
830 => 0.033086483065457
831 => 0.033405391433726
901 => 0.033831551361433
902 => 0.034343265619807
903 => 0.033223663954393
904 => 0.033268147815759
905 => 0.032225590246866
906 => 0.031111467966625
907 => 0.031956947900025
908 => 0.033062300443464
909 => 0.032808731348693
910 => 0.032780199645585
911 => 0.032828182056178
912 => 0.032636999239513
913 => 0.031772286445305
914 => 0.031338033093442
915 => 0.03189833070719
916 => 0.03219610395292
917 => 0.032657924288491
918 => 0.032600995184287
919 => 0.033790594772834
920 => 0.03425283720132
921 => 0.034134575807644
922 => 0.0341563387502
923 => 0.034993206587396
924 => 0.035923975737356
925 => 0.0367957638721
926 => 0.037682584206933
927 => 0.036613487680105
928 => 0.036070666396489
929 => 0.036630719401827
930 => 0.036333547393878
1001 => 0.038041185898498
1002 => 0.038159419083547
1003 => 0.039866934106467
1004 => 0.041487569190325
1005 => 0.040469677330847
1006 => 0.041429503507479
1007 => 0.042467633773282
1008 => 0.044470355486581
1009 => 0.043795909270141
1010 => 0.043279294038268
1011 => 0.042791095140414
1012 => 0.043806959547455
1013 => 0.045113852878283
1014 => 0.045395345184475
1015 => 0.045851470258842
1016 => 0.045371910515465
1017 => 0.04594948740459
1018 => 0.047988587623346
1019 => 0.047437604744602
1020 => 0.046655120481869
1021 => 0.04826479426731
1022 => 0.048847328952813
1023 => 0.052935862451453
1024 => 0.058097804882382
1025 => 0.055960726820836
1026 => 0.054634173504956
1027 => 0.054945945000453
1028 => 0.05683091163345
1029 => 0.057436303090118
1030 => 0.055790640419945
1031 => 0.056371916296022
1101 => 0.059574803522991
1102 => 0.061293049759335
1103 => 0.058959440579123
1104 => 0.0525211054032
1105 => 0.046584666335356
1106 => 0.048159277297483
1107 => 0.047980765280245
1108 => 0.051421868037304
1109 => 0.047424463985166
1110 => 0.04749177001749
1111 => 0.051004031135375
1112 => 0.050067020084522
1113 => 0.04854918218545
1114 => 0.046595748231759
1115 => 0.04298464489759
1116 => 0.03978618997145
1117 => 0.046059096641788
1118 => 0.045788597499623
1119 => 0.04539687465604
1120 => 0.046268611455595
1121 => 0.050501517907424
1122 => 0.050403935713128
1123 => 0.049783167579891
1124 => 0.050254014737752
1125 => 0.048466640402165
1126 => 0.048927287466203
1127 => 0.046583725973077
1128 => 0.047643113643743
1129 => 0.048545925587014
1130 => 0.048727178450985
1201 => 0.049135550408513
1202 => 0.045646056743278
1203 => 0.047212736952817
1204 => 0.048133014797837
1205 => 0.04397516601404
1206 => 0.048050827495884
1207 => 0.045585312421989
1208 => 0.044748479575115
1209 => 0.045875164759086
1210 => 0.045436094447155
1211 => 0.045058607576031
1212 => 0.044847963415896
1213 => 0.045675276667298
1214 => 0.045636681515267
1215 => 0.04428303646139
1216 => 0.042517261670238
1217 => 0.04310991364973
1218 => 0.042894597629439
1219 => 0.042114264595583
1220 => 0.042640114842632
1221 => 0.040324536481348
1222 => 0.036340704264049
1223 => 0.038972545854878
1224 => 0.038871222816524
1225 => 0.038820131145952
1226 => 0.040797887362701
1227 => 0.040607771737059
1228 => 0.040262710014903
1229 => 0.042107927266455
1230 => 0.041434398147964
1231 => 0.043510056187734
]
'min_raw' => 0.018632672173928
'max_raw' => 0.061293049759335
'avg_raw' => 0.039962860966632
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.018632'
'max' => '$0.061293'
'avg' => '$0.039962'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.010150599410664
'max_diff' => 0.040517803689533
'year' => 2029
]
4 => [
'items' => [
101 => 0.044877218817872
102 => 0.044530462151791
103 => 0.045816285213506
104 => 0.043123567154349
105 => 0.044017980080504
106 => 0.044202317344981
107 => 0.042085157571996
108 => 0.040638877004614
109 => 0.040542426579575
110 => 0.038034775385473
111 => 0.039374342412309
112 => 0.040553105960875
113 => 0.039988569696858
114 => 0.039809854380712
115 => 0.040722872172281
116 => 0.040793821474155
117 => 0.039176169872569
118 => 0.039512530864903
119 => 0.040915212118296
120 => 0.039477186896226
121 => 0.036683338789832
122 => 0.035990425831474
123 => 0.035897978469909
124 => 0.034018743571222
125 => 0.036036729588643
126 => 0.035155824613376
127 => 0.037938592875383
128 => 0.03634909056841
129 => 0.036280570300855
130 => 0.036176991866707
131 => 0.034559456759191
201 => 0.034913594148018
202 => 0.036090800765127
203 => 0.036510841348293
204 => 0.036467027674177
205 => 0.03608503181048
206 => 0.036259907560745
207 => 0.03569657183839
208 => 0.035497646270007
209 => 0.034869782457403
210 => 0.03394699610468
211 => 0.034075315206804
212 => 0.032247033981876
213 => 0.031250889336307
214 => 0.030975169627389
215 => 0.030606465709503
216 => 0.031016815715997
217 => 0.032241854690877
218 => 0.030764197780655
219 => 0.02823085865366
220 => 0.028383116651793
221 => 0.02872519516779
222 => 0.028087734116304
223 => 0.027484430729124
224 => 0.028008954076726
225 => 0.026935544892199
226 => 0.028854911539467
227 => 0.028802998050622
228 => 0.029518419243886
301 => 0.029965786797955
302 => 0.028934749422792
303 => 0.028675446311159
304 => 0.028823157148214
305 => 0.026381826041651
306 => 0.029318910408248
307 => 0.029344310435816
308 => 0.029126819978979
309 => 0.030690726731886
310 => 0.033991057775268
311 => 0.032749340481239
312 => 0.032268510013887
313 => 0.031354450943966
314 => 0.032572380383179
315 => 0.032478862404906
316 => 0.032055938641518
317 => 0.031800153029818
318 => 0.03227144586219
319 => 0.03174175463232
320 => 0.031646607532494
321 => 0.031070119628613
322 => 0.030864339675456
323 => 0.030711988390474
324 => 0.030544264595438
325 => 0.030914221493123
326 => 0.030075850491085
327 => 0.02906485724915
328 => 0.028980804100182
329 => 0.029212882234512
330 => 0.029110204936256
331 => 0.028980312520781
401 => 0.028732312525544
402 => 0.028658736224638
403 => 0.028897823508434
404 => 0.028627907904683
405 => 0.029026183081081
406 => 0.028917874270672
407 => 0.028312870060105
408 => 0.027558810812492
409 => 0.027552098103495
410 => 0.027389637275502
411 => 0.027182718984904
412 => 0.027125159050108
413 => 0.027964780183406
414 => 0.029702770801585
415 => 0.029361561656646
416 => 0.029608120232384
417 => 0.030820944397026
418 => 0.03120646472807
419 => 0.030932831528644
420 => 0.030558265528309
421 => 0.03057474453137
422 => 0.031854749943353
423 => 0.031934582310811
424 => 0.032136292948482
425 => 0.032395548121308
426 => 0.030976983805628
427 => 0.03050793027967
428 => 0.030285666696973
429 => 0.029601180889097
430 => 0.030339340149513
501 => 0.0299092463596
502 => 0.029967280705955
503 => 0.029929485761758
504 => 0.029950124356972
505 => 0.028854375037373
506 => 0.029253608498546
507 => 0.028589805436742
508 => 0.027701047652377
509 => 0.027698068224645
510 => 0.027915590433266
511 => 0.027786199711934
512 => 0.027438012607767
513 => 0.027487470942517
514 => 0.027054163887601
515 => 0.027540082264262
516 => 0.027554016664605
517 => 0.027366911621438
518 => 0.028115535924497
519 => 0.02842224791228
520 => 0.028299091364689
521 => 0.028413606920591
522 => 0.029375740437085
523 => 0.029532610181102
524 => 0.029602281359161
525 => 0.029508931210224
526 => 0.028431192955059
527 => 0.028478995229572
528 => 0.0281282538565
529 => 0.027831914356469
530 => 0.027843766382374
531 => 0.027996123406828
601 => 0.028661475468242
602 => 0.030061669656841
603 => 0.03011480600277
604 => 0.030179208804132
605 => 0.029917250244738
606 => 0.029838241036619
607 => 0.029942474576135
608 => 0.03046831389466
609 => 0.031820915385888
610 => 0.031342815681672
611 => 0.030954113180079
612 => 0.031295110067418
613 => 0.031242616269434
614 => 0.030799515786559
615 => 0.030787079431797
616 => 0.029936627937365
617 => 0.029622235383718
618 => 0.029359505434015
619 => 0.029072611187678
620 => 0.028902530661668
621 => 0.029163851649837
622 => 0.02922361885169
623 => 0.02865223594395
624 => 0.028574358564957
625 => 0.029040962181574
626 => 0.028835627326637
627 => 0.029046819316999
628 => 0.029095817670335
629 => 0.02908792780692
630 => 0.028873534635808
701 => 0.029010182449778
702 => 0.028686969633064
703 => 0.028335524239883
704 => 0.028111323974855
705 => 0.027915679507768
706 => 0.028024234429031
707 => 0.027637255956075
708 => 0.027513453754238
709 => 0.028963889245078
710 => 0.030035341536971
711 => 0.030019762196306
712 => 0.029924926966684
713 => 0.029784021052089
714 => 0.030458005749358
715 => 0.030223202957579
716 => 0.030394041607028
717 => 0.030437527213389
718 => 0.030569145046815
719 => 0.030616187109329
720 => 0.030473993323597
721 => 0.029996773611169
722 => 0.028807587460489
723 => 0.028254018097201
724 => 0.028071330986888
725 => 0.028077971316376
726 => 0.027894801385371
727 => 0.027948753139153
728 => 0.027876039167162
729 => 0.027738336495611
730 => 0.028015731677099
731 => 0.02804769888765
801 => 0.027982951537665
802 => 0.027998201882475
803 => 0.027462121478556
804 => 0.027502878507361
805 => 0.027275938191825
806 => 0.027233389618468
807 => 0.026659704262746
808 => 0.025643337498062
809 => 0.026206503346806
810 => 0.025526278194625
811 => 0.025268666622402
812 => 0.02648815973849
813 => 0.026365756453109
814 => 0.026156255235965
815 => 0.02584635927193
816 => 0.025731415844395
817 => 0.025033055965361
818 => 0.024991793138103
819 => 0.025337919151455
820 => 0.025178193905762
821 => 0.024953879168128
822 => 0.024141433926837
823 => 0.023227976484252
824 => 0.023255548022655
825 => 0.023546101839661
826 => 0.024390926249128
827 => 0.024060838736739
828 => 0.023821356459183
829 => 0.023776508627407
830 => 0.024337873137373
831 => 0.025132321528475
901 => 0.025505058938799
902 => 0.025135687485371
903 => 0.024711373448045
904 => 0.024737199477415
905 => 0.024909008480549
906 => 0.02492706317753
907 => 0.024650878359418
908 => 0.024728622767955
909 => 0.02461052190229
910 => 0.023885737107702
911 => 0.023872628049086
912 => 0.02369475417176
913 => 0.023689368221446
914 => 0.023386760383398
915 => 0.023344423455025
916 => 0.022743577225597
917 => 0.023139056033336
918 => 0.022873789612674
919 => 0.022473970546712
920 => 0.02240504158904
921 => 0.022402969501338
922 => 0.022813494284173
923 => 0.02313425881223
924 => 0.022878404035632
925 => 0.022820150862537
926 => 0.023442142348462
927 => 0.0233629882623
928 => 0.023294441334172
929 => 0.025061187388638
930 => 0.023662670025615
1001 => 0.023052836630756
1002 => 0.022298052000398
1003 => 0.022543813681997
1004 => 0.0225955992793
1005 => 0.020780478303445
1006 => 0.020044083949599
1007 => 0.019791381157795
1008 => 0.019645947128419
1009 => 0.019712223241851
1010 => 0.019049381952948
1011 => 0.019494822261474
1012 => 0.018920857733863
1013 => 0.018824630712967
1014 => 0.019850950388897
1015 => 0.01999375677613
1016 => 0.019384500361726
1017 => 0.019775741609427
1018 => 0.019633872094351
1019 => 0.018930696708311
1020 => 0.018903840580772
1021 => 0.018551011889867
1022 => 0.017998903309697
1023 => 0.017746574873509
1024 => 0.017615160033126
1025 => 0.017669384357492
1026 => 0.017641966879801
1027 => 0.01746304929197
1028 => 0.017652222226502
1029 => 0.017168963550424
1030 => 0.01697652605173
1031 => 0.016889606498086
1101 => 0.016460686607736
1102 => 0.017143288894825
1103 => 0.017277770144578
1104 => 0.017412516363937
1105 => 0.018585390208306
1106 => 0.018526796745548
1107 => 0.019056453112703
1108 => 0.019035871640251
1109 => 0.018884805064474
1110 => 0.018247480030517
1111 => 0.018501506429826
1112 => 0.017719652657221
1113 => 0.018305470664545
1114 => 0.018038127790347
1115 => 0.018215081769856
1116 => 0.017896902559402
1117 => 0.018072996071765
1118 => 0.01730966063782
1119 => 0.016596868750022
1120 => 0.016883717013364
1121 => 0.017195553880695
1122 => 0.017871695663625
1123 => 0.017468991195761
1124 => 0.017613818950347
1125 => 0.017128670216357
1126 => 0.016127669802252
1127 => 0.016133335355888
1128 => 0.015979353250157
1129 => 0.01584629022905
1130 => 0.01751524664819
1201 => 0.017307685535174
1202 => 0.016976964066509
1203 => 0.017419647894666
1204 => 0.017536700525167
1205 => 0.017540032849001
1206 => 0.017863003542701
1207 => 0.018035373059825
1208 => 0.01806575393431
1209 => 0.018573955299091
1210 => 0.018744297693227
1211 => 0.019445913906917
1212 => 0.018020748710576
1213 => 0.017991398371213
1214 => 0.017425877363959
1215 => 0.017067215000625
1216 => 0.017450435282826
1217 => 0.01778991613807
1218 => 0.017436425980431
1219 => 0.017482584332434
1220 => 0.01700805267701
1221 => 0.017177675415035
1222 => 0.017323777367671
1223 => 0.017243108456901
1224 => 0.017122343193059
1225 => 0.017762082579328
1226 => 0.017725985975996
1227 => 0.018321726000035
1228 => 0.018786147950552
1229 => 0.019618475111231
1230 => 0.018749898328866
1231 => 0.018718243938637
]
'min_raw' => 0.01584629022905
'max_raw' => 0.045816285213506
'avg_raw' => 0.030831287721278
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.015846'
'max' => '$0.045816'
'avg' => '$0.030831'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0027863819448776
'max_diff' => -0.015476764545829
'year' => 2030
]
5 => [
'items' => [
101 => 0.019027670680653
102 => 0.018744250321605
103 => 0.018923362205185
104 => 0.019589617417727
105 => 0.019603694340497
106 => 0.019367887747012
107 => 0.019353538894369
108 => 0.019398828130089
109 => 0.019664088598286
110 => 0.019571398440067
111 => 0.019678661837786
112 => 0.019812796359108
113 => 0.020367633611157
114 => 0.020501402994233
115 => 0.020176412744831
116 => 0.02020575572559
117 => 0.020084200451132
118 => 0.019966779579089
119 => 0.020230724551501
120 => 0.020713089176437
121 => 0.02071008841114
122 => 0.020821987628296
123 => 0.020891699913562
124 => 0.020592443752691
125 => 0.020397638995918
126 => 0.020472339535413
127 => 0.020591787324833
128 => 0.020433604227182
129 => 0.019457224870942
130 => 0.01975339599627
131 => 0.019704098638988
201 => 0.019633893207453
202 => 0.019931695564195
203 => 0.019902971800393
204 => 0.019042583557475
205 => 0.019097662821264
206 => 0.019045933109934
207 => 0.019213082390143
208 => 0.018735223711937
209 => 0.018882209822926
210 => 0.018974398133829
211 => 0.019028697757175
212 => 0.0192248652303
213 => 0.019201847241485
214 => 0.019223434399797
215 => 0.019514298976149
216 => 0.020985392190672
217 => 0.021065460548554
218 => 0.020671174670716
219 => 0.020828684101967
220 => 0.020526300437491
221 => 0.020729292617248
222 => 0.020868174711196
223 => 0.020240593234137
224 => 0.020203431932036
225 => 0.019899800222612
226 => 0.020062954704677
227 => 0.019803364192489
228 => 0.019867058624089
301 => 0.019688963440554
302 => 0.02000949931252
303 => 0.020367908223617
304 => 0.020458456468557
305 => 0.020220263019591
306 => 0.020047795264826
307 => 0.019744998701869
308 => 0.020248556134328
309 => 0.020395811673213
310 => 0.020247782663671
311 => 0.020213481107662
312 => 0.020148479721007
313 => 0.020227271459122
314 => 0.020395009687924
315 => 0.02031590743686
316 => 0.02036815586729
317 => 0.020169038728837
318 => 0.020592542818932
319 => 0.021265169235812
320 => 0.021267331839728
321 => 0.021188229162273
322 => 0.02115586205095
323 => 0.02123702619837
324 => 0.021281054418818
325 => 0.021543524388617
326 => 0.021825165123476
327 => 0.023139459543583
328 => 0.022770410929651
329 => 0.023936531126895
330 => 0.024858780801158
331 => 0.025135323153379
401 => 0.024880917201659
402 => 0.024010608183563
403 => 0.023967906671107
404 => 0.025268515779131
405 => 0.024901034134444
406 => 0.024857323362125
407 => 0.024392314595169
408 => 0.024667192368896
409 => 0.024607072567568
410 => 0.024512170520011
411 => 0.025036618164131
412 => 0.026018337336158
413 => 0.025865327196694
414 => 0.02575111222552
415 => 0.025250655469312
416 => 0.025552042217612
417 => 0.025444724169226
418 => 0.025905830610811
419 => 0.025632681369574
420 => 0.024898250099557
421 => 0.025015210700024
422 => 0.024997532340556
423 => 0.025361351725717
424 => 0.025252142176844
425 => 0.024976207423388
426 => 0.026014981926755
427 => 0.025947529688474
428 => 0.026043161540628
429 => 0.02608526163946
430 => 0.026717545374399
501 => 0.026976571789781
502 => 0.027035375320969
503 => 0.02728143038176
504 => 0.027029253246905
505 => 0.028038141585573
506 => 0.028708993460521
507 => 0.029488222434994
508 => 0.030626885403703
509 => 0.031055033213158
510 => 0.030977692143583
511 => 0.031841013411077
512 => 0.03339238253821
513 => 0.031291268199517
514 => 0.033503746700065
515 => 0.032803301551084
516 => 0.031142558703321
517 => 0.031035626442797
518 => 0.032160300780923
519 => 0.034654720216993
520 => 0.034029896439729
521 => 0.034655742204856
522 => 0.03392565987608
523 => 0.033889405134839
524 => 0.034620283735722
525 => 0.036328021424802
526 => 0.03551673926231
527 => 0.03435356734783
528 => 0.035212435388522
529 => 0.03446840440719
530 => 0.032791894365089
531 => 0.034029418648762
601 => 0.033201921402932
602 => 0.033443429091438
603 => 0.035182705221247
604 => 0.034973430915754
605 => 0.035244251245341
606 => 0.034766260452223
607 => 0.034319741679222
608 => 0.033486281230496
609 => 0.033239534680731
610 => 0.033307726550075
611 => 0.033239500888227
612 => 0.032773187427062
613 => 0.032672487079521
614 => 0.03250464875517
615 => 0.032556668869992
616 => 0.032241083717378
617 => 0.03283665810358
618 => 0.032947201957842
619 => 0.033380611329338
620 => 0.033425609328067
621 => 0.034632648258486
622 => 0.033967831499076
623 => 0.034413847978805
624 => 0.034373952066789
625 => 0.031178552036645
626 => 0.031618849967545
627 => 0.032303815374924
628 => 0.031995239387349
629 => 0.031558985136578
630 => 0.031206686438607
701 => 0.03067291788679
702 => 0.031424186873355
703 => 0.032412025702139
704 => 0.033450662550947
705 => 0.034698516670608
706 => 0.034420010157723
707 => 0.033427334786169
708 => 0.033471865478187
709 => 0.033747136694061
710 => 0.033390635458477
711 => 0.033285496284372
712 => 0.033732692186061
713 => 0.033735771778462
714 => 0.033325574022308
715 => 0.032869714281741
716 => 0.032867804212783
717 => 0.032786688375032
718 => 0.033940090203416
719 => 0.03457434458695
720 => 0.03464706082987
721 => 0.034569450204428
722 => 0.034599319453905
723 => 0.034230260802969
724 => 0.035073819438066
725 => 0.035847952260934
726 => 0.03564046812747
727 => 0.0353294199158
728 => 0.035081655033093
729 => 0.035582102595186
730 => 0.035559818453023
731 => 0.035841190886065
801 => 0.035828426207217
802 => 0.035733811240937
803 => 0.035640471506469
804 => 0.036010553002991
805 => 0.035903975475319
806 => 0.03579723240331
807 => 0.035583142830849
808 => 0.035612241159397
809 => 0.035301246654586
810 => 0.03515736636652
811 => 0.032993752051091
812 => 0.032415563607871
813 => 0.032597473462219
814 => 0.032657362909558
815 => 0.0324057345581
816 => 0.032766504976071
817 => 0.03271027928858
818 => 0.032929020547678
819 => 0.032792360505635
820 => 0.03279796908143
821 => 0.033199857126085
822 => 0.033316526935202
823 => 0.033257187728644
824 => 0.033298746874888
825 => 0.034256459859066
826 => 0.034120303698653
827 => 0.034047973452127
828 => 0.034068009424729
829 => 0.034312725625784
830 => 0.03438123280107
831 => 0.034090963085468
901 => 0.034227855961376
902 => 0.034810728452695
903 => 0.035014700836931
904 => 0.035665682775114
905 => 0.035389134077492
906 => 0.035896751180723
907 => 0.037456993096632
908 => 0.038703422299589
909 => 0.037557154493685
910 => 0.039846062993113
911 => 0.041628306584341
912 => 0.041559901106828
913 => 0.04124912571266
914 => 0.039220088767444
915 => 0.03735293871922
916 => 0.038914889017938
917 => 0.038918870750468
918 => 0.038784697834583
919 => 0.037951361377359
920 => 0.038755699532233
921 => 0.03881954497404
922 => 0.038783808504501
923 => 0.038144891396608
924 => 0.037169383064475
925 => 0.037359995057537
926 => 0.037672221390551
927 => 0.037081111804918
928 => 0.036892216475716
929 => 0.03724340883151
930 => 0.038375023775713
1001 => 0.03816109852551
1002 => 0.038155512072688
1003 => 0.039070775011478
1004 => 0.038415644273409
1005 => 0.037362399285193
1006 => 0.037096441035074
1007 => 0.036152468418096
1008 => 0.036804473666958
1009 => 0.036827938175122
1010 => 0.036470841563653
1011 => 0.037391375707142
1012 => 0.037382892822953
1013 => 0.038256802988771
1014 => 0.039927391000145
1015 => 0.039433315920538
1016 => 0.038858760358172
1017 => 0.038921230478499
1018 => 0.03960637350909
1019 => 0.0391921203925
1020 => 0.039341088701501
1021 => 0.039606148027713
1022 => 0.039766064900269
1023 => 0.038898220901519
1024 => 0.038695884951633
1025 => 0.038281976608435
1026 => 0.03817399564766
1027 => 0.038511115356714
1028 => 0.038422296223993
1029 => 0.03682596607407
1030 => 0.036659140691506
1031 => 0.036664256987817
1101 => 0.036244766631245
1102 => 0.035604943148252
1103 => 0.037286361059684
1104 => 0.037151319669967
1105 => 0.037002244427094
1106 => 0.037020505293734
1107 => 0.037750351820546
1108 => 0.037327003976862
1109 => 0.038452543604643
1110 => 0.03822116649399
1111 => 0.037983855433514
1112 => 0.037951051816284
1113 => 0.037859707304429
1114 => 0.037546452985482
1115 => 0.037168179571688
1116 => 0.036918410698419
1117 => 0.034055282369485
1118 => 0.034586662333284
1119 => 0.035197966544827
1120 => 0.035408986309003
1121 => 0.035048022400256
1122 => 0.0375607060407
1123 => 0.038019797554632
1124 => 0.036629179413135
1125 => 0.036369051537426
1126 => 0.037577759980925
1127 => 0.036848761030898
1128 => 0.037177029213458
1129 => 0.036467492955858
1130 => 0.037909215852694
1201 => 0.037898232339767
1202 => 0.037337369570109
1203 => 0.037811406942401
1204 => 0.037729031283479
1205 => 0.037095818597879
1206 => 0.037929289824269
1207 => 0.037929703215599
1208 => 0.037389884994011
1209 => 0.036759495492601
1210 => 0.036646796738884
1211 => 0.036561893366906
1212 => 0.037156148188623
1213 => 0.037688955203587
1214 => 0.038680376964375
1215 => 0.038929643950637
1216 => 0.039902549592661
1217 => 0.039323231652752
1218 => 0.03958003579209
1219 => 0.039858833012506
1220 => 0.039992498652401
1221 => 0.039774697665085
1222 => 0.041286020591087
1223 => 0.041413622551779
1224 => 0.041456406385447
1225 => 0.040946796798162
1226 => 0.04139944938728
1227 => 0.04118766823111
1228 => 0.041738663964965
1229 => 0.041825067131501
1230 => 0.041751886723327
1231 => 0.041779312452166
]
'min_raw' => 0.018735223711937
'max_raw' => 0.041825067131501
'avg_raw' => 0.030280145421719
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.018735'
'max' => '$0.041825'
'avg' => '$0.03028'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.002888933482886
'max_diff' => -0.0039912180820055
'year' => 2031
]
6 => [
'items' => [
101 => 0.040489664950458
102 => 0.040422789924061
103 => 0.039510944193915
104 => 0.039882528068973
105 => 0.03918786982503
106 => 0.039408153109957
107 => 0.039505251883017
108 => 0.039454532994277
109 => 0.039903536863749
110 => 0.039521791849268
111 => 0.038514303991361
112 => 0.037506541644062
113 => 0.037493890008697
114 => 0.037228563971136
115 => 0.037036781842867
116 => 0.037073725884608
117 => 0.037203921506391
118 => 0.037029214636646
119 => 0.03706649720517
120 => 0.037685636255108
121 => 0.037809800176076
122 => 0.037387842658653
123 => 0.035693622338019
124 => 0.035277856421706
125 => 0.035576700717355
126 => 0.035433872392072
127 => 0.028597900520754
128 => 0.030203910712516
129 => 0.029249673991524
130 => 0.029689430174878
131 => 0.028715401581146
201 => 0.029180259079287
202 => 0.029094416873258
203 => 0.031676833736315
204 => 0.031636512848997
205 => 0.031655812324022
206 => 0.030734598096544
207 => 0.032202117374609
208 => 0.032925070141271
209 => 0.032791270824927
210 => 0.032824945230257
211 => 0.032246307378033
212 => 0.031661414803272
213 => 0.03101267892354
214 => 0.032217950001904
215 => 0.032083944432653
216 => 0.032391304994832
217 => 0.033173009443707
218 => 0.033288118393211
219 => 0.033442825988663
220 => 0.03338737432853
221 => 0.034708457841866
222 => 0.034548465911611
223 => 0.034934000430706
224 => 0.034140926674355
225 => 0.033243488439792
226 => 0.033414062108716
227 => 0.033397634492732
228 => 0.033188492086513
229 => 0.032999687673567
301 => 0.032685381521326
302 => 0.033679892695575
303 => 0.033639517358091
304 => 0.034293147140758
305 => 0.034177611727651
306 => 0.033406037962608
307 => 0.033433594870572
308 => 0.033618928320025
309 => 0.034260369504686
310 => 0.034450792920939
311 => 0.034362581207469
312 => 0.034571371790232
313 => 0.034736391353769
314 => 0.034592095706726
315 => 0.036635017776268
316 => 0.035786654100965
317 => 0.036200140653431
318 => 0.03629875475979
319 => 0.036046156799983
320 => 0.03610093625261
321 => 0.036183912196833
322 => 0.036687725881801
323 => 0.038009878770821
324 => 0.038595451285169
325 => 0.040357175086223
326 => 0.038546827639415
327 => 0.038439409113884
328 => 0.038756748769416
329 => 0.039791067138038
330 => 0.040629285027222
331 => 0.040907370259014
401 => 0.040944123813082
402 => 0.041465830194682
403 => 0.041764862563366
404 => 0.041402481317715
405 => 0.041095401154924
406 => 0.039995478127999
407 => 0.040122797213357
408 => 0.040999899455208
409 => 0.042238858032888
410 => 0.043302013384206
411 => 0.042929733434879
412 => 0.045769966659558
413 => 0.046051564182473
414 => 0.046012656509944
415 => 0.046654177574473
416 => 0.045380888904875
417 => 0.044836533329816
418 => 0.041161795371628
419 => 0.042194246847265
420 => 0.043694975700853
421 => 0.043496348609636
422 => 0.042406479201563
423 => 0.043301186620529
424 => 0.043005368367731
425 => 0.042772044238239
426 => 0.043840947307551
427 => 0.042665644474725
428 => 0.043683251156036
429 => 0.042378160061461
430 => 0.042931433978329
501 => 0.042617368944267
502 => 0.042820607511668
503 => 0.041632478999485
504 => 0.04227356430447
505 => 0.041605807743105
506 => 0.04160549113955
507 => 0.041590750376448
508 => 0.042376363009608
509 => 0.042401981809371
510 => 0.041821412886471
511 => 0.04173774383449
512 => 0.042047112172389
513 => 0.041684922872405
514 => 0.041854388966275
515 => 0.04169005582775
516 => 0.041653060976883
517 => 0.041358279711017
518 => 0.041231279836502
519 => 0.041281079759683
520 => 0.041111086948247
521 => 0.041008660130448
522 => 0.041570375104342
523 => 0.041270273453307
524 => 0.041524380222257
525 => 0.041234793488208
526 => 0.04023095970106
527 => 0.039653644274721
528 => 0.037757495306239
529 => 0.038295240801535
530 => 0.038651766621254
531 => 0.038533934839964
601 => 0.038787083101022
602 => 0.038802624348266
603 => 0.038720323268055
604 => 0.038625029160592
605 => 0.038578645259173
606 => 0.038924352858728
607 => 0.039125047756252
608 => 0.038687548756963
609 => 0.038585048862691
610 => 0.039027384505954
611 => 0.039297208992815
612 => 0.041289441402516
613 => 0.04114185039078
614 => 0.041512274866965
615 => 0.041470570755573
616 => 0.041858834619863
617 => 0.042493481945423
618 => 0.041203066482375
619 => 0.041427037987551
620 => 0.041372125346739
621 => 0.041971647160254
622 => 0.041973518801916
623 => 0.041614075526378
624 => 0.041808935557348
625 => 0.041700170033766
626 => 0.041896724035421
627 => 0.041139879222836
628 => 0.042061634508216
629 => 0.042584210358427
630 => 0.042591466324615
701 => 0.042839163130197
702 => 0.043090837430299
703 => 0.043573904333135
704 => 0.043077364956564
705 => 0.042184138955248
706 => 0.042248626987441
707 => 0.041724928909688
708 => 0.041733732368988
709 => 0.041686738813301
710 => 0.041827770011428
711 => 0.041170827639952
712 => 0.04132501070146
713 => 0.041109153512455
714 => 0.041426568756178
715 => 0.041085082424551
716 => 0.041372098866201
717 => 0.041495965647671
718 => 0.041953036737958
719 => 0.041017572652883
720 => 0.039110098058062
721 => 0.039511072343787
722 => 0.038917999879349
723 => 0.038972890993919
724 => 0.039083779781206
725 => 0.038724352941055
726 => 0.038792920255314
727 => 0.038790470548348
728 => 0.038769360297153
729 => 0.038675859494307
730 => 0.038540264831609
731 => 0.03908043223396
801 => 0.039172217201472
802 => 0.039376243814499
803 => 0.039983288622295
804 => 0.039922630530894
805 => 0.04002156639465
806 => 0.039805589959573
807 => 0.038982909521307
808 => 0.03902758502714
809 => 0.038470480753528
810 => 0.039361997405682
811 => 0.039150874495007
812 => 0.039014762181059
813 => 0.038977622675127
814 => 0.039586172229586
815 => 0.039768259794125
816 => 0.039654795043346
817 => 0.039422075529202
818 => 0.039868965793706
819 => 0.039988534775701
820 => 0.040015301861235
821 => 0.040807105727228
822 => 0.040059554901501
823 => 0.040239497815269
824 => 0.041643361061523
825 => 0.040370250817056
826 => 0.041044645707297
827 => 0.041011637586801
828 => 0.041356635192369
829 => 0.040983337713419
830 => 0.040987965183063
831 => 0.041294299684646
901 => 0.040864108124892
902 => 0.040757586644899
903 => 0.040610427983211
904 => 0.040931743537316
905 => 0.041124357680149
906 => 0.042676686211886
907 => 0.043679561238169
908 => 0.043636023788384
909 => 0.044033874580734
910 => 0.043854639154885
911 => 0.043275840684901
912 => 0.044263779096209
913 => 0.043951154045773
914 => 0.043976926475091
915 => 0.043975967223985
916 => 0.044183835552369
917 => 0.044036541790856
918 => 0.04374621066752
919 => 0.043938946016377
920 => 0.044511301098333
921 => 0.046287908834725
922 => 0.047282122060931
923 => 0.046228055950136
924 => 0.046955136638855
925 => 0.046519147310962
926 => 0.046439915080525
927 => 0.046896575483882
928 => 0.047354035210822
929 => 0.047324897003869
930 => 0.046992804732927
1001 => 0.046805214235601
1002 => 0.048225712328778
1003 => 0.049272311126277
1004 => 0.049200940104775
1005 => 0.049515948582585
1006 => 0.050440823216282
1007 => 0.050525382161881
1008 => 0.050514729678301
1009 => 0.05030514150882
1010 => 0.051215800695843
1011 => 0.051975488611181
1012 => 0.05025662790317
1013 => 0.050911147559242
1014 => 0.051204982520159
1015 => 0.051636419419689
1016 => 0.052364325786417
1017 => 0.053155025168312
1018 => 0.053266838730489
1019 => 0.053187501657353
1020 => 0.052666014159853
1021 => 0.053531206858528
1022 => 0.054038016450146
1023 => 0.054339809963823
1024 => 0.055105108100857
1025 => 0.051206797144844
1026 => 0.048447378891552
1027 => 0.048016455884818
1028 => 0.048892754764222
1029 => 0.049123827790368
1030 => 0.04903068254327
1031 => 0.045924706423858
1101 => 0.048000103563346
1102 => 0.050233056381087
1103 => 0.050318833192803
1104 => 0.051436696062205
1105 => 0.05180071803523
1106 => 0.052700744166735
1107 => 0.052644447287159
1108 => 0.052863589327636
1109 => 0.052813212367542
1110 => 0.054480321253293
1111 => 0.056319389922341
1112 => 0.056255708822212
1113 => 0.055991320942164
1114 => 0.056383982028869
1115 => 0.058282097981903
1116 => 0.058107349881636
1117 => 0.058277102776037
1118 => 0.060515088457792
1119 => 0.063424788193824
1120 => 0.06207294053736
1121 => 0.065006060968202
1122 => 0.066852304801384
1123 => 0.070045192605698
1124 => 0.069645427327294
1125 => 0.07088839511902
1126 => 0.068929764045419
1127 => 0.064432351195783
1128 => 0.063720618396923
1129 => 0.065145525484186
1130 => 0.068648520517819
1201 => 0.065035203704476
1202 => 0.065766172989821
1203 => 0.065555653786467
1204 => 0.065544436112769
1205 => 0.065972569092236
1206 => 0.065351539875605
1207 => 0.062821355126027
1208 => 0.063980923886286
1209 => 0.063533158700885
1210 => 0.064029987557193
1211 => 0.066711167986886
1212 => 0.06552575420756
1213 => 0.064277017086237
1214 => 0.065843210553327
1215 => 0.067837513039399
1216 => 0.067712713173927
1217 => 0.067470549272614
1218 => 0.068835614505026
1219 => 0.071090302342385
1220 => 0.071699735404754
1221 => 0.072149606432084
1222 => 0.07221163604612
1223 => 0.072850579621876
1224 => 0.069414818980521
1225 => 0.074867459354943
1226 => 0.075808979721455
1227 => 0.075632012914572
1228 => 0.076678473176717
1229 => 0.076370578021459
1230 => 0.075924486248761
1231 => 0.077583348352741
]
'min_raw' => 0.028597900520754
'max_raw' => 0.077583348352741
'avg_raw' => 0.053090624436748
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.028597'
'max' => '$0.077583'
'avg' => '$0.05309'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0098626768088176
'max_diff' => 0.035758281221241
'year' => 2032
]
7 => [
'items' => [
101 => 0.075681596813797
102 => 0.072982299928126
103 => 0.071501412270608
104 => 0.073451564597827
105 => 0.074642454573123
106 => 0.075429557091965
107 => 0.075667733838587
108 => 0.069681527298753
109 => 0.066455293984018
110 => 0.068523272549923
111 => 0.071046349124584
112 => 0.069400803162755
113 => 0.069465305449028
114 => 0.067119189349332
115 => 0.071253928340953
116 => 0.070651531648502
117 => 0.073776766754556
118 => 0.073030904314918
119 => 0.075579412222977
120 => 0.074908304680984
121 => 0.077694034566679
122 => 0.078805337638708
123 => 0.080671388457157
124 => 0.082044063035402
125 => 0.082850123802828
126 => 0.08280173093781
127 => 0.08599574527623
128 => 0.084112346611225
129 => 0.081746354004995
130 => 0.081703560663359
131 => 0.0829289417605
201 => 0.085497004373221
202 => 0.086162865644909
203 => 0.086534991257316
204 => 0.085965067928128
205 => 0.083920773661663
206 => 0.083038057762211
207 => 0.083790157283286
208 => 0.08287040419766
209 => 0.084458156060587
210 => 0.086638478493884
211 => 0.086188250533337
212 => 0.087693295103496
213 => 0.089250857898304
214 => 0.091478242649402
215 => 0.092060563503158
216 => 0.093023117730737
217 => 0.094013902213508
218 => 0.094332115486983
219 => 0.094939683361828
220 => 0.094936481179224
221 => 0.096767427864103
222 => 0.098787018757224
223 => 0.09954936756574
224 => 0.10130234661476
225 => 0.098300431425022
226 => 0.10057741857996
227 => 0.1026313179904
228 => 0.10018257444094
301 => 0.10355759693979
302 => 0.10368864141546
303 => 0.10566725741483
304 => 0.10366155104251
305 => 0.10247056900106
306 => 0.1059088895292
307 => 0.10757258452669
308 => 0.10707146605384
309 => 0.10325792973225
310 => 0.10103828802282
311 => 0.095229057532314
312 => 0.10211034198839
313 => 0.10546201491713
314 => 0.10324924970907
315 => 0.10436523977115
316 => 0.11045371968887
317 => 0.11277181864166
318 => 0.11228967026421
319 => 0.11237114540317
320 => 0.11362194952162
321 => 0.11916870381324
322 => 0.11584496006894
323 => 0.11838583762316
324 => 0.1197335099161
325 => 0.12098530304837
326 => 0.11791129474879
327 => 0.11391205511717
328 => 0.11264532804918
329 => 0.10302923381796
330 => 0.10252867435265
331 => 0.10224769515626
401 => 0.10047616106835
402 => 0.09908422053927
403 => 0.09797729775111
404 => 0.095072401799852
405 => 0.096052718909287
406 => 0.091422921061886
407 => 0.094384901654692
408 => 0.086995632499863
409 => 0.093149635425323
410 => 0.089800291421173
411 => 0.092049285839642
412 => 0.092041439309984
413 => 0.087900327541254
414 => 0.085511820695848
415 => 0.087033870219817
416 => 0.088665628129955
417 => 0.088930375360982
418 => 0.091045992084714
419 => 0.091636415237278
420 => 0.089847405520787
421 => 0.086842506320849
422 => 0.087540475870541
423 => 0.085497676365201
424 => 0.08191774880724
425 => 0.084488915278906
426 => 0.085366824558542
427 => 0.085754559309818
428 => 0.082234111714022
429 => 0.081127910646787
430 => 0.080538978480517
501 => 0.086388060744119
502 => 0.086708486674076
503 => 0.085069142312756
504 => 0.092479134274932
505 => 0.090802024878923
506 => 0.092675766976043
507 => 0.087477142449677
508 => 0.08767573690746
509 => 0.085214624745025
510 => 0.086592683104415
511 => 0.085618715872892
512 => 0.086481349607214
513 => 0.086998408710794
514 => 0.089459117028941
515 => 0.093177732761626
516 => 0.089091569263601
517 => 0.087311169312573
518 => 0.088415719428841
519 => 0.091357281944377
520 => 0.095813899731229
521 => 0.093175492303621
522 => 0.09434637271693
523 => 0.094602157998394
524 => 0.092656694040428
525 => 0.09588563176234
526 => 0.097616045719355
527 => 0.099391092380539
528 => 0.10093231566077
529 => 0.098682099709949
530 => 0.10109015333311
531 => 0.099149687191529
601 => 0.09740888846083
602 => 0.097411528533934
603 => 0.096319500061155
604 => 0.094203557290702
605 => 0.093813344979444
606 => 0.09584327870099
607 => 0.09747109331023
608 => 0.097605167918154
609 => 0.098506409725964
610 => 0.099039755344297
611 => 0.10426726745217
612 => 0.1063698160662
613 => 0.10894077271224
614 => 0.10994230521705
615 => 0.11295655898724
616 => 0.11052230426209
617 => 0.10999563794012
618 => 0.10268404424852
619 => 0.10388131730592
620 => 0.10579826699048
621 => 0.10271565404276
622 => 0.10467086243839
623 => 0.10505686199267
624 => 0.10261090803438
625 => 0.10391739772693
626 => 0.1004477484507
627 => 0.093253361634391
628 => 0.095893641171491
629 => 0.097837775619279
630 => 0.095063256052237
701 => 0.10003647498743
702 => 0.097131223153565
703 => 0.096210397798913
704 => 0.092617929792475
705 => 0.094313436404739
706 => 0.096606633375143
707 => 0.095189704260196
708 => 0.098130044926688
709 => 0.10229435147065
710 => 0.10526208430263
711 => 0.10548990997898
712 => 0.10358185659068
713 => 0.10663952432247
714 => 0.10666179609376
715 => 0.10321273440137
716 => 0.10110020331923
717 => 0.10062023181257
718 => 0.10181929474017
719 => 0.10327517849351
720 => 0.10557070139486
721 => 0.10695783780776
722 => 0.1105747538923
723 => 0.11155338767967
724 => 0.11262860950876
725 => 0.11406543745856
726 => 0.11579071780741
727 => 0.11201590262438
728 => 0.11216588306874
729 => 0.10865082743617
730 => 0.10489448638281
731 => 0.10774508100779
801 => 0.11147185428124
802 => 0.11061692837459
803 => 0.11052073174554
804 => 0.11068250779288
805 => 0.11003792157854
806 => 0.10712248202055
807 => 0.10565836652614
808 => 0.10754744904962
809 => 0.10855141233747
810 => 0.11010847184211
811 => 0.10991653139262
812 => 0.1139273494606
813 => 0.11548583208097
814 => 0.11508710553545
815 => 0.11516048081572
816 => 0.11798203915707
817 => 0.12112019233039
818 => 0.12405948689298
819 => 0.12704946356769
820 => 0.12344492998555
821 => 0.12161477012927
822 => 0.12350302793842
823 => 0.12250109176573
824 => 0.12825851420757
825 => 0.12865714564574
826 => 0.13441415176041
827 => 0.13987823609476
828 => 0.13644634262359
829 => 0.13968246359103
830 => 0.14318259226213
831 => 0.14993490834408
901 => 0.14766096583702
902 => 0.14591916151384
903 => 0.14427316484476
904 => 0.14769822261849
905 => 0.15210450472776
906 => 0.15305357569125
907 => 0.15459143322511
908 => 0.15297456406852
909 => 0.15492190487534
910 => 0.1617968736283
911 => 0.15993919638423
912 => 0.15730099606111
913 => 0.16272812361256
914 => 0.16469217997601
915 => 0.17847695611897
916 => 0.19588080542016
917 => 0.18867549752963
918 => 0.18420293040814
919 => 0.1852540897724
920 => 0.19160938637972
921 => 0.19365050594296
922 => 0.18810203935397
923 => 0.19006185155355
924 => 0.20086060945772
925 => 0.20665379660768
926 => 0.1987858703292
927 => 0.17707857377337
928 => 0.15706345498719
929 => 0.16237236578183
930 => 0.1617705000524
1001 => 0.17337241824795
1002 => 0.15989489139633
1003 => 0.16012181838347
1004 => 0.17196365196065
1005 => 0.16880445378268
1006 => 0.1636869573339
1007 => 0.15710081837463
1008 => 0.1449257313643
1009 => 0.13414191727182
1010 => 0.15529146007123
1011 => 0.15437945332777
1012 => 0.15305873241141
1013 => 0.15599785389383
1014 => 0.17026939352826
1015 => 0.16994038834722
1016 => 0.16784742524537
1017 => 0.1694349193116
1018 => 0.16340866194867
1019 => 0.16496176568643
1020 => 0.15706028449012
1021 => 0.16063208398585
1022 => 0.16367597748491
1023 => 0.16428708417046
1024 => 0.16566393873688
1025 => 0.15389886721587
1026 => 0.15918103892445
1027 => 0.16228381993069
1028 => 0.14826534246438
1029 => 0.16200671970402
1030 => 0.15369406349561
1031 => 0.15087262312657
1101 => 0.15467132088698
1102 => 0.1531909646754
1103 => 0.15191824133411
1104 => 0.15120803984151
1105 => 0.15399738422978
1106 => 0.15386725798008
1107 => 0.14930334917245
1108 => 0.14334991618162
1109 => 0.14534808370812
1110 => 0.14462213071282
1111 => 0.14199118340807
1112 => 0.14376412422968
1113 => 0.1359569901161
1114 => 0.12252522165319
1115 => 0.13139865932598
1116 => 0.13105704162802
1117 => 0.13088478249358
1118 => 0.13755292566088
1119 => 0.13691193755558
1120 => 0.13574853786789
1121 => 0.14196981666045
1122 => 0.13969896621316
1123 => 0.14669719221206
1124 => 0.15130667647182
1125 => 0.15013756216235
1126 => 0.15447280438822
1127 => 0.1453941174522
1128 => 0.14840969307865
1129 => 0.14903119903585
1130 => 0.14189304704586
1201 => 0.13701681113684
1202 => 0.13669162179487
1203 => 0.12823690071534
1204 => 0.1327533444719
1205 => 0.13672762807453
1206 => 0.13482425464574
1207 => 0.13422170347985
1208 => 0.13730000670899
1209 => 0.13753921723378
1210 => 0.1320851919182
1211 => 0.13321925648783
1212 => 0.13794849426572
1213 => 0.1331000918298
1214 => 0.12368043787884
1215 => 0.1213442334621
1216 => 0.12103254072812
1217 => 0.11469656906321
1218 => 0.12150034981223
1219 => 0.11853031718529
1220 => 0.12791261466732
1221 => 0.12255349666386
1222 => 0.12232247579786
1223 => 0.12197325387551
1224 => 0.11651962132783
1225 => 0.11771362025934
1226 => 0.12168265455887
1227 => 0.12309885071131
1228 => 0.12295112985006
1229 => 0.1216632041255
1230 => 0.12225280992696
1231 => 0.12035348420819
]
'min_raw' => 0.066455293984018
'max_raw' => 0.20665379660768
'avg_raw' => 0.13655454529585
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.066455'
'max' => '$0.206653'
'avg' => '$0.136554'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.037857393463263
'max_diff' => 0.12907044825493
'year' => 2033
]
8 => [
'items' => [
101 => 0.11968279276585
102 => 0.1175659060856
103 => 0.11445466747051
104 => 0.11488730428227
105 => 0.10872312648591
106 => 0.10536455526478
107 => 0.10443494701602
108 => 0.10319183601479
109 => 0.1045753597114
110 => 0.1087056641447
111 => 0.10372364070518
112 => 0.095182310966425
113 => 0.095695659437442
114 => 0.096849001037287
115 => 0.094699756596093
116 => 0.092665677104916
117 => 0.094434144192409
118 => 0.090815070183739
119 => 0.097286348840905
120 => 0.097111318888777
121 => 0.099523411390981
122 => 0.10103174233373
123 => 0.097555527838635
124 => 0.096681269293802
125 => 0.097179286693774
126 => 0.0889481684197
127 => 0.098850753422365
128 => 0.098936391388682
129 => 0.09820310712876
130 => 0.10347592793467
131 => 0.11460322446919
201 => 0.11041668791843
202 => 0.10879553442725
203 => 0.10571372045544
204 => 0.10982005459286
205 => 0.1095047521999
206 => 0.10807883520404
207 => 0.10721643615582
208 => 0.10880543284477
209 => 0.10701954188141
210 => 0.10669874679138
211 => 0.10475507757435
212 => 0.10406127609518
213 => 0.10354761310104
214 => 0.10298212061597
215 => 0.10422945612608
216 => 0.10140282975952
217 => 0.097994195459042
218 => 0.097710804398891
219 => 0.098493272031963
220 => 0.098147088352193
221 => 0.097709147004619
222 => 0.09687299770587
223 => 0.096624930070435
224 => 0.097431029540293
225 => 0.096520990237342
226 => 0.097863802801252
227 => 0.097498632085077
228 => 0.095458818149107
301 => 0.092916454749044
302 => 0.092893822381995
303 => 0.092346074357763
304 => 0.091648434894437
305 => 0.091454367555569
306 => 0.094285208826956
307 => 0.10014496553878
308 => 0.098994555084154
309 => 0.099825844536426
310 => 0.10391496588419
311 => 0.10521477459648
312 => 0.10429220116015
313 => 0.10302932573866
314 => 0.10308488584801
315 => 0.10740051346163
316 => 0.10766967386224
317 => 0.10834975536013
318 => 0.10922385227593
319 => 0.10444106364462
320 => 0.10285961693358
321 => 0.10211023974657
322 => 0.099802448056042
323 => 0.10229120353917
324 => 0.10084111229829
325 => 0.10103677914885
326 => 0.10090935085573
327 => 0.10097893532044
328 => 0.097284539986635
329 => 0.098630583474571
330 => 0.096392525106449
331 => 0.093396016185376
401 => 0.093385970836761
402 => 0.094119362150043
403 => 0.093683112299298
404 => 0.092509175167953
405 => 0.092675927396634
406 => 0.091215002408452
407 => 0.0928533101411
408 => 0.092900290944725
409 => 0.09226945322843
410 => 0.094793492333475
411 => 0.095827593214232
412 => 0.095412362315514
413 => 0.095798459507457
414 => 0.099042359832335
415 => 0.099571257126584
416 => 0.099806158367695
417 => 0.099491421823057
418 => 0.095857752050485
419 => 0.096018920756455
420 => 0.09483637172916
421 => 0.093837242415042
422 => 0.093877202347863
423 => 0.094390884693039
424 => 0.096634165621494
425 => 0.10135501808679
426 => 0.10153417098695
427 => 0.1017513095282
428 => 0.10086809795584
429 => 0.10060171289442
430 => 0.10095314355026
501 => 0.10272604752559
502 => 0.10728643788889
503 => 0.10567449135627
504 => 0.1043639537338
505 => 0.10551364854711
506 => 0.10533666204221
507 => 0.10384271782791
508 => 0.10380078778955
509 => 0.10093343119944
510 => 0.099873434754634
511 => 0.098987622385991
512 => 0.098020338404152
513 => 0.097446900036064
514 => 0.098327961992524
515 => 0.098529471286385
516 => 0.096603013920258
517 => 0.09634044489976
518 => 0.097913631570409
519 => 0.097221330770967
520 => 0.097933379311427
521 => 0.098098580680653
522 => 0.098071979455297
523 => 0.097349137910439
524 => 0.097809855555687
525 => 0.096720120978136
526 => 0.095535198297892
527 => 0.094779291451187
528 => 0.094119662470944
529 => 0.094485662967044
530 => 0.093180938027497
531 => 0.092763530260411
601 => 0.097653774783952
602 => 0.10126625099248
603 => 0.10121372415771
604 => 0.10089398055986
605 => 0.10041890643106
606 => 0.10269129289402
607 => 0.10189963888812
608 => 0.10247563332232
609 => 0.10262224808023
610 => 0.10306600679489
611 => 0.10322461239303
612 => 0.10274519611678
613 => 0.10113621653791
614 => 0.097126792404567
615 => 0.095260394647262
616 => 0.094644452300037
617 => 0.094666840634518
618 => 0.094049270423618
619 => 0.094231172528284
620 => 0.09398601229499
621 => 0.093521738123763
622 => 0.094456995345261
623 => 0.094564775027515
624 => 0.094346474816526
625 => 0.094397892418797
626 => 0.092590459909046
627 => 0.092727875077226
628 => 0.091962729958928
629 => 0.091819274473209
630 => 0.08988505424296
701 => 0.086458302735368
702 => 0.088357055713392
703 => 0.086063629121011
704 => 0.085195073719393
705 => 0.089306679902575
706 => 0.088893988679987
707 => 0.088187640699479
708 => 0.08714280482049
709 => 0.086755265029462
710 => 0.084400695939369
711 => 0.084261575436389
712 => 0.085428563456152
713 => 0.084890038638638
714 => 0.08413374583955
715 => 0.081394529985424
716 => 0.078314744442186
717 => 0.078407703808895
718 => 0.079387326288752
719 => 0.082235710769026
720 => 0.081122797675031
721 => 0.080315366456131
722 => 0.080164158860125
723 => 0.082056838498692
724 => 0.084735376715908
725 => 0.085992086918511
726 => 0.084746725274587
727 => 0.083316120873081
728 => 0.083403195134219
729 => 0.083982461183608
730 => 0.084043333855018
731 => 0.083112157458146
801 => 0.083374278159468
802 => 0.08297609284534
803 => 0.080532430307529
804 => 0.080488232201157
805 => 0.079888518004997
806 => 0.079870358897479
807 => 0.078850095444093
808 => 0.078707353534216
809 => 0.076681558521953
810 => 0.078014942933697
811 => 0.077120578676122
812 => 0.075772560780758
813 => 0.075540161987498
814 => 0.075533175799143
815 => 0.076917288766397
816 => 0.077998768767804
817 => 0.077136136525293
818 => 0.076939731885097
819 => 0.079036819605953
820 => 0.078769946078095
821 => 0.07853883532412
822 => 0.08449554299702
823 => 0.079780344066224
824 => 0.07772424819825
825 => 0.075179439119618
826 => 0.076008041787662
827 => 0.076182640544525
828 => 0.070062833446729
829 => 0.067580028469326
830 => 0.066728023363613
831 => 0.066237682379692
901 => 0.066461136923379
902 => 0.064226321239739
903 => 0.065728154339585
904 => 0.06379299286182
905 => 0.063468556742512
906 => 0.066928865185262
907 => 0.067410346890242
908 => 0.065356196352157
909 => 0.066675293534372
910 => 0.066196970559278
911 => 0.063826165651106
912 => 0.063735618342074
913 => 0.062546031776975
914 => 0.060684559151945
915 => 0.059833816212327
916 => 0.059390741902885
917 => 0.059573562998307
918 => 0.059481123058044
919 => 0.058877889919042
920 => 0.059515699675452
921 => 0.057886359309012
922 => 0.057237542846608
923 => 0.056944487502968
924 => 0.05549835414642
925 => 0.05779979541511
926 => 0.058253208337835
927 => 0.058707514624085
928 => 0.06266194067781
929 => 0.062464388727258
930 => 0.064250162148547
1001 => 0.064180770277222
1002 => 0.063671438769859
1003 => 0.061522652921261
1004 => 0.062379120662087
1005 => 0.059743046080462
1006 => 0.061718172392663
1007 => 0.060816807227022
1008 => 0.061413419923468
1009 => 0.060340656500859
1010 => 0.060934368072247
1011 => 0.058360729362324
1012 => 0.055957501747072
1013 => 0.056924630694037
1014 => 0.057976010463998
1015 => 0.060255669691858
1016 => 0.058897923462525
1017 => 0.059386220348663
1018 => 0.057750507520014
1019 => 0.054375564736242
1020 => 0.054394666545881
1021 => 0.053875505125722
1022 => 0.053426873859897
1023 => 0.059053876949844
1024 => 0.058354070165854
1025 => 0.057239019644014
1026 => 0.058731559077843
1027 => 0.059126210193934
1028 => 0.059137445356395
1029 => 0.060226363599298
1030 => 0.060807519460735
1031 => 0.060909950700187
1101 => 0.062623387083031
1102 => 0.063197708357788
1103 => 0.065563256407523
1104 => 0.060758212446202
1105 => 0.060659255727866
1106 => 0.058752562168493
1107 => 0.057543306969507
1108 => 0.058835360906531
1109 => 0.059979944311783
1110 => 0.058788127565408
1111 => 0.05894375367186
1112 => 0.057343837064858
1113 => 0.057915731968788
1114 => 0.058408324902616
1115 => 0.05813634403783
1116 => 0.057729175519224
1117 => 0.05988610152521
1118 => 0.059764399306891
1119 => 0.061772978391179
1120 => 0.063338809422251
1121 => 0.066145058555708
1122 => 0.063216591291869
1123 => 0.063109866305172
1124 => 0.064153120169365
1125 => 0.063197548641057
1126 => 0.06380143686174
1127 => 0.06604776282728
1128 => 0.066095224155218
1129 => 0.065300185761793
1130 => 0.0652518076033
1201 => 0.065404503423524
1202 => 0.066298847611945
1203 => 0.06598633627209
1204 => 0.066347982306389
1205 => 0.066800226210001
1206 => 0.068670898742783
1207 => 0.069121911557304
1208 => 0.068026184241351
1209 => 0.068125116149643
1210 => 0.067715284055089
1211 => 0.067319391386931
1212 => 0.068209300289469
1213 => 0.069835626300061
1214 => 0.069825509010356
1215 => 0.070202785033553
1216 => 0.070437824870481
1217 => 0.069428861830708
1218 => 0.068772063992415
1219 => 0.069023922076749
1220 => 0.069426648638354
1221 => 0.068893323280633
1222 => 0.06560139211244
1223 => 0.066599953739493
1224 => 0.066433744257582
1225 => 0.066197041743578
1226 => 0.067201103181228
1227 => 0.067104259006143
1228 => 0.064203399974754
1229 => 0.064389103558129
1230 => 0.064214693224728
1231 => 0.064778248692943
]
'min_raw' => 0.053426873859897
'max_raw' => 0.11968279276585
'avg_raw' => 0.086554833312873
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.053426'
'max' => '$0.119682'
'avg' => '$0.086554'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.01302842012412
'max_diff' => -0.086971003841827
'year' => 2034
]
9 => [
'items' => [
101 => 0.063167114796342
102 => 0.063662688731784
103 => 0.063973508058377
104 => 0.064156583029566
105 => 0.064817975361185
106 => 0.064740368604831
107 => 0.064813151216245
108 => 0.065793821442934
109 => 0.070753714924145
110 => 0.071023670982939
111 => 0.069694308617646
112 => 0.070225362662067
113 => 0.069205855025532
114 => 0.069890257332046
115 => 0.070358508008229
116 => 0.068242573241985
117 => 0.068117281317431
118 => 0.06709356581022
119 => 0.067643652537585
120 => 0.066768425001712
121 => 0.066983175224856
122 => 0.066382714879358
123 => 0.067463423950792
124 => 0.068671824617866
125 => 0.068977114347557
126 => 0.068174028504232
127 => 0.067592541427728
128 => 0.066571641675138
129 => 0.06826942071593
130 => 0.068765903046336
131 => 0.068266812905607
201 => 0.068151162814665
202 => 0.067932006101306
203 => 0.068197657947425
204 => 0.06876319909694
205 => 0.068496500334734
206 => 0.068672659565798
207 => 0.068001322231591
208 => 0.069429195839457
209 => 0.071697002765245
210 => 0.071704294135335
211 => 0.071437593935524
212 => 0.071328465959897
213 => 0.071602116549625
214 => 0.071750560768818
215 => 0.072635496597062
216 => 0.073585067998167
217 => 0.078016303396664
218 => 0.076772030228641
219 => 0.08070368588956
220 => 0.083813115055755
221 => 0.084745496903839
222 => 0.083887749475558
223 => 0.080953441858015
224 => 0.080809470727444
225 => 0.085194565140775
226 => 0.083955575118962
227 => 0.0838082011983
228 => 0.082240391674634
301 => 0.083167161280108
302 => 0.082964463172501
303 => 0.082644494293312
304 => 0.084412706141226
305 => 0.087722640871161
306 => 0.08720675650313
307 => 0.086821672753581
308 => 0.085134347859254
309 => 0.086150494323298
310 => 0.085788664030455
311 => 0.087343316591685
312 => 0.086422374854183
313 => 0.083946188550966
314 => 0.08434052938137
315 => 0.084280925558158
316 => 0.085507568016288
317 => 0.085139360397495
318 => 0.084209027111068
319 => 0.08771132787409
320 => 0.08748390794336
321 => 0.087806337409701
322 => 0.087948280832247
323 => 0.090080069589237
324 => 0.090953395233344
325 => 0.091151655444274
326 => 0.091981247260747
327 => 0.09113101444414
328 => 0.094532551916292
329 => 0.09679437585006
330 => 0.099421600741526
331 => 0.10326068243944
401 => 0.10470421267134
402 => 0.10444345185549
403 => 0.10735419978401
404 => 0.11258474910927
405 => 0.10550069542125
406 => 0.11296022115616
407 => 0.11059862143286
408 => 0.10499931097226
409 => 0.10463878139013
410 => 0.10843069944338
411 => 0.11684080872689
412 => 0.11473417173804
413 => 0.11684425443033
414 => 0.11438273088614
415 => 0.11426049549482
416 => 0.11672470372601
417 => 0.12248246057518
418 => 0.11974716612243
419 => 0.11582545080269
420 => 0.11872118436613
421 => 0.11621263196599
422 => 0.11056016130885
423 => 0.11473256083244
424 => 0.11194259609411
425 => 0.11275685612744
426 => 0.11862094703147
427 => 0.11791536409944
428 => 0.11882845374871
429 => 0.11721687441746
430 => 0.11571140519934
501 => 0.11290133510611
502 => 0.11206941188629
503 => 0.11229932553478
504 => 0.1120692979525
505 => 0.11049708956122
506 => 0.11015757130881
507 => 0.10959169268016
508 => 0.10976708212921
509 => 0.10870306475372
510 => 0.11071108537848
511 => 0.11108379170105
512 => 0.11254506165672
513 => 0.1126967755511
514 => 0.11676639157777
515 => 0.1145249154574
516 => 0.11602869115868
517 => 0.11589417930587
518 => 0.10512066500854
519 => 0.10660516022319
520 => 0.10891456891692
521 => 0.10787418343073
522 => 0.10640332176595
523 => 0.10521552210903
524 => 0.10341588417005
525 => 0.10594884001018
526 => 0.10927940759013
527 => 0.1127812442412
528 => 0.11698847152802
529 => 0.11604946737513
530 => 0.11270259305356
531 => 0.11285273139073
601 => 0.11378082751387
602 => 0.11257885870798
603 => 0.1122243746419
604 => 0.11373212684667
605 => 0.11374250990745
606 => 0.11235949953349
607 => 0.11082253659106
608 => 0.11081609666021
609 => 0.1105426089499
610 => 0.11443138374224
611 => 0.11656981667855
612 => 0.11681498456845
613 => 0.11655331492617
614 => 0.11665402118618
615 => 0.1154097141777
616 => 0.11825383101131
617 => 0.12086387387184
618 => 0.12016432662979
619 => 0.11911560586745
620 => 0.11828024926701
621 => 0.11996754316274
622 => 0.11989241062161
623 => 0.12084107742441
624 => 0.12079804041847
625 => 0.12047903945385
626 => 0.12016433802232
627 => 0.12141209362611
628 => 0.12105276005056
629 => 0.12069286833071
630 => 0.1199710503899
701 => 0.12006915743619
702 => 0.11902061775027
703 => 0.11853551531366
704 => 0.11124073859046
705 => 0.10929133588632
706 => 0.10990465766079
707 => 0.11010657911384
708 => 0.10925819655877
709 => 0.11047455921115
710 => 0.11028499038022
711 => 0.11102249180729
712 => 0.11056173293425
713 => 0.11058064263912
714 => 0.1119356362406
715 => 0.11232899664766
716 => 0.11212893036982
717 => 0.11226904993295
718 => 0.11549804612449
719 => 0.11503898612354
720 => 0.11479511964744
721 => 0.11486267232793
722 => 0.11568775008533
723 => 0.11591872680983
724 => 0.11494006219769
725 => 0.11540160608637
726 => 0.11736680138571
727 => 0.11805450852006
728 => 0.12024933957475
729 => 0.1193169363327
730 => 0.12102840283694
731 => 0.12628886738904
801 => 0.13049129046972
802 => 0.12662656853225
803 => 0.13434378334456
804 => 0.14035274204466
805 => 0.1401221082013
806 => 0.13907430726222
807 => 0.13223326753859
808 => 0.12593804079075
809 => 0.13120426527477
810 => 0.13121768996399
811 => 0.13076531661043
812 => 0.1279556645632
813 => 0.13066754680946
814 => 0.13088280617405
815 => 0.13076231817196
816 => 0.12860816453494
817 => 0.12531917008533
818 => 0.12596183172804
819 => 0.12701452460875
820 => 0.12502155737083
821 => 0.12438468358018
822 => 0.1255687531272
823 => 0.12938407191842
824 => 0.12866280800157
825 => 0.12864397288585
826 => 0.1317298457856
827 => 0.12952102676243
828 => 0.12596993774945
829 => 0.12507324094056
830 => 0.12189057135635
831 => 0.12408885257444
901 => 0.12416796480196
902 => 0.1229639886447
903 => 0.12606763377912
904 => 0.12603903314282
905 => 0.12898548228133
906 => 0.13461798639841
907 => 0.13295217777229
908 => 0.13101502357959
909 => 0.13122564595179
910 => 0.13353565351459
911 => 0.13213897020978
912 => 0.13264122726421
913 => 0.13353489328839
914 => 0.13407406418925
915 => 0.13114806755653
916 => 0.13046587777484
917 => 0.12907035689759
918 => 0.12870629154935
919 => 0.12984291418537
920 => 0.12954345427825
921 => 0.12416131572557
922 => 0.12359885230088
923 => 0.1236161022511
924 => 0.12220176122604
925 => 0.12004455168208
926 => 0.12571356956332
927 => 0.1252582680896
928 => 0.12475565050015
929 => 0.12481721828696
930 => 0.12727794680837
1001 => 0.12585059999619
1002 => 0.12964543543392
1003 => 0.12886533135111
1004 => 0.12806522054219
1005 => 0.12795462085643
1006 => 0.12764664645724
1007 => 0.12659048765019
1008 => 0.12531511242537
1009 => 0.12447299923084
1010 => 0.11481976217261
1011 => 0.11661134682032
1012 => 0.11867240164943
1013 => 0.11938386951728
1014 => 0.11816685449725
1015 => 0.12663854282097
1016 => 0.12818640191294
1017 => 0.12349783575903
1018 => 0.12262079646452
1019 => 0.12669604137111
1020 => 0.12423817051401
1021 => 0.12534494961046
1022 => 0.12295269857973
1023 => 0.12781356798429
1024 => 0.12777653630361
1025 => 0.12588554831752
1026 => 0.12748379841444
1027 => 0.12720606312909
1028 => 0.1250711423501
1029 => 0.12788124878097
1030 => 0.1278826425587
1031 => 0.12606260773572
1101 => 0.12393720551932
1102 => 0.12355723380279
1103 => 0.1232709761564
1104 => 0.12527454777737
1105 => 0.12707094382772
1106 => 0.13041359151307
1107 => 0.13125401256052
1108 => 0.1345342318587
1109 => 0.13258102097761
1110 => 0.13344685406289
1111 => 0.13438683835652
1112 => 0.13483750139366
1113 => 0.13410317015855
1114 => 0.13919870092076
1115 => 0.13962891984012
1116 => 0.1397731685224
1117 => 0.13805498421906
1118 => 0.13958113402647
1119 => 0.13886709907235
1120 => 0.14072481965834
1121 => 0.14101613396679
1122 => 0.14076940111134
1123 => 0.14086186887093
1124 => 0.1365137322786
1125 => 0.13628825845804
1126 => 0.13321390691582
1127 => 0.13446672789373
1128 => 0.13212463912479
1129 => 0.13286733959961
1130 => 0.1331947148922
1201 => 0.13302371261773
1202 => 0.13453756051211
1203 => 0.1332504805432
1204 => 0.12985366488971
1205 => 0.12645592377607
1206 => 0.12641326790413
1207 => 0.12551870264402
1208 => 0.12487209580876
1209 => 0.12499665522484
1210 => 0.12543561885365
1211 => 0.12484658244466
1212 => 0.12497228322742
1213 => 0.1270597537612
1214 => 0.12747838108959
1215 => 0.12605572185946
1216 => 0.12034353976176
1217 => 0.11894175594706
1218 => 0.11994933035449
1219 => 0.11946777468384
1220 => 0.096419818247376
1221 => 0.10183459373695
1222 => 0.098617318009448
1223 => 0.10009998668442
1224 => 0.096815981276149
1225 => 0.098383280786447
1226 => 0.098093857795509
1227 => 0.10680065654789
1228 => 0.10666471186119
1229 => 0.10672978138868
1230 => 0.10362384330361
1231 => 0.10857168700853
]
'min_raw' => 0.063167114796342
'max_raw' => 0.14101613396679
'avg_raw' => 0.10209162438157
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.063167'
'max' => '$0.141016'
'avg' => '$0.102091'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.009740240936445
'max_diff' => 0.021333341200941
'year' => 2035
]
10 => [
'items' => [
101 => 0.11100917273628
102 => 0.11055805899966
103 => 0.1106715946083
104 => 0.10872067669032
105 => 0.10674867053862
106 => 0.10456141222681
107 => 0.10862506781686
108 => 0.10817325868416
109 => 0.10920954627877
110 => 0.11184511740502
111 => 0.11223321526492
112 => 0.11275482272432
113 => 0.11256786358067
114 => 0.11702198888099
115 => 0.11648256491786
116 => 0.11778242146615
117 => 0.11510851792597
118 => 0.112082742261
119 => 0.11265784329485
120 => 0.11260245644062
121 => 0.1118973182162
122 => 0.11126075095605
123 => 0.11020104581961
124 => 0.11355410967815
125 => 0.1134179814089
126 => 0.11562173985614
127 => 0.11523220414442
128 => 0.11263078932602
129 => 0.11272369936518
130 => 0.11334856402959
131 => 0.11551122776766
201 => 0.1161532536105
202 => 0.11585584165979
203 => 0.11655979368687
204 => 0.11711616866663
205 => 0.11662966581822
206 => 0.12351752020795
207 => 0.1206572028458
208 => 0.12205130162615
209 => 0.12238378597076
210 => 0.12153213431344
211 => 0.12171682706256
212 => 0.1219965862517
213 => 0.12369522926572
214 => 0.12815296004081
215 => 0.1301272586563
216 => 0.13606703345119
217 => 0.12996332063985
218 => 0.1296011515813
219 => 0.13067108438587
220 => 0.13415836097949
221 => 0.13698447111537
222 => 0.13792205488965
223 => 0.13804597206324
224 => 0.13980494155318
225 => 0.14081315006198
226 => 0.13959135639161
227 => 0.13855601418311
228 => 0.13484754690366
229 => 0.13527681208908
301 => 0.1382340235348
302 => 0.14241125888077
303 => 0.14599576137488
304 => 0.14474059353397
305 => 0.15431663814973
306 => 0.15526606385874
307 => 0.15513488392437
308 => 0.157297816983
309 => 0.15300483533527
310 => 0.15116950250827
311 => 0.13877986692022
312 => 0.14226084915379
313 => 0.14732066126121
314 => 0.14665097615547
315 => 0.1429764053539
316 => 0.14599297388342
317 => 0.14499560199074
318 => 0.14420893339799
319 => 0.1478128147246
320 => 0.14385019916671
321 => 0.14728113113978
322 => 0.14288092539587
323 => 0.14474632703494
324 => 0.14368743484528
325 => 0.14437266786493
326 => 0.14036680963363
327 => 0.14252827349853
328 => 0.14027688563061
329 => 0.14027581817962
330 => 0.14022611866766
331 => 0.14287486651008
401 => 0.14296124208213
402 => 0.14100381342454
403 => 0.1407217173742
404 => 0.14176477432483
405 => 0.14054362781269
406 => 0.14111499457992
407 => 0.14056093393001
408 => 0.14043620320741
409 => 0.13944232758857
410 => 0.1390141386448
411 => 0.13918204256272
412 => 0.13860889993044
413 => 0.13826356076302
414 => 0.14015742201519
415 => 0.1391456083463
416 => 0.14000234705899
417 => 0.13902598516684
418 => 0.13564148946803
419 => 0.13369503020125
420 => 0.12730203156912
421 => 0.12911507805071
422 => 0.13031712974373
423 => 0.12991985166635
424 => 0.13077335870276
425 => 0.1308257571029
426 => 0.13054827326489
427 => 0.13022698252835
428 => 0.1300705959663
429 => 0.13123617327473
430 => 0.13191283013381
501 => 0.1304377717125
502 => 0.13009218616265
503 => 0.1315835516668
504 => 0.13249328376279
505 => 0.13921023442532
506 => 0.13871262102478
507 => 0.13996153300845
508 => 0.13982092468521
509 => 0.14112998341137
510 => 0.14326974117916
511 => 0.13891901535157
512 => 0.13967415091846
513 => 0.13948900911608
514 => 0.14151033876762
515 => 0.14151664913816
516 => 0.14030476103916
517 => 0.14096174523826
518 => 0.14059503468174
519 => 0.14125773022128
520 => 0.13870597509443
521 => 0.14181373739399
522 => 0.14357563835806
523 => 0.14360010235466
524 => 0.14443522942832
525 => 0.14528376690245
526 => 0.14691246069201
527 => 0.14523834351663
528 => 0.14222676969015
529 => 0.1424441955931
530 => 0.14067851096052
531 => 0.14070819243819
601 => 0.14054975038421
602 => 0.14102524691518
603 => 0.13881031984349
604 => 0.13933015880008
605 => 0.13860238121668
606 => 0.13967256887212
607 => 0.13852122386323
608 => 0.1394889198351
609 => 0.13990654533693
610 => 0.14144759242951
611 => 0.13829360995467
612 => 0.1318624261826
613 => 0.13321433898206
614 => 0.13121475376121
615 => 0.13139982298636
616 => 0.1317736922747
617 => 0.13056185958875
618 => 0.13079303907599
619 => 0.13078477971792
620 => 0.13071360503215
621 => 0.13039836054733
622 => 0.12994119367513
623 => 0.13176240578544
624 => 0.13207186521163
625 => 0.13275975518214
626 => 0.13480644913414
627 => 0.13460193614396
628 => 0.1349355053161
629 => 0.13420732568624
630 => 0.13143360115091
701 => 0.13158422773797
702 => 0.12970591178371
703 => 0.13271172242016
704 => 0.13199990678668
705 => 0.13154099461715
706 => 0.1314157761799
707 => 0.13346754349033
708 => 0.13408146442713
709 => 0.13369891009802
710 => 0.13291428000813
711 => 0.13442100173578
712 => 0.13482413690662
713 => 0.13491438400431
714 => 0.13758400602049
715 => 0.13506358621922
716 => 0.1356702763162
717 => 0.14040349926555
718 => 0.13611111919061
719 => 0.1383848886478
720 => 0.138273599465
721 => 0.13943678297913
722 => 0.13817818446606
723 => 0.13819378630304
724 => 0.13922661446272
725 => 0.13777619358399
726 => 0.13741704897711
727 => 0.13692089327493
728 => 0.13800423109913
729 => 0.13865364312959
730 => 0.14388742715445
731 => 0.14726869032407
801 => 0.14712190077243
802 => 0.14846328249589
803 => 0.14785897774382
804 => 0.14590751829185
805 => 0.14923842162124
806 => 0.14818438443691
807 => 0.14827127798173
808 => 0.14826804379965
809 => 0.1489688863817
810 => 0.14847227518104
811 => 0.14749340352844
812 => 0.14814322421346
813 => 0.15007295933283
814 => 0.15606291635487
815 => 0.15941497566077
816 => 0.15586111817568
817 => 0.15831252148085
818 => 0.15684255302206
819 => 0.15657541602532
820 => 0.15811507845825
821 => 0.15965743586645
822 => 0.15955919436734
823 => 0.15843952208992
824 => 0.15780704763103
825 => 0.16259635612819
826 => 0.16612503704515
827 => 0.16588440466319
828 => 0.16694647773932
829 => 0.17006475713951
830 => 0.17034985352832
831 => 0.17031393793619
901 => 0.16960729678981
902 => 0.17267764781905
903 => 0.17523898866533
904 => 0.16944372978125
905 => 0.1716504884988
906 => 0.17264117358443
907 => 0.17409579321316
908 => 0.17654998034938
909 => 0.17921587852031
910 => 0.17959286575176
911 => 0.17932537527055
912 => 0.17756714376363
913 => 0.18048420135304
914 => 0.1821929452755
915 => 0.18321046317741
916 => 0.18579071927783
917 => 0.17264729171825
918 => 0.16334372042085
919 => 0.16189083341756
920 => 0.1648453362707
921 => 0.16562441511136
922 => 0.16531036940757
923 => 0.15483835406865
924 => 0.16183570042403
925 => 0.16936425674883
926 => 0.16965345925828
927 => 0.17342241196916
928 => 0.17464973746642
929 => 0.17768423840661
930 => 0.17749442954659
1001 => 0.17823328223607
1002 => 0.1780634327979
1003 => 0.18368420680004
1004 => 0.18988475521741
1005 => 0.18967004994225
1006 => 0.1887786477457
1007 => 0.19010253201424
1008 => 0.19650216247212
1009 => 0.19591298705155
1010 => 0.19648532078679
1011 => 0.204030845764
1012 => 0.21384110157278
1013 => 0.20928325281602
1014 => 0.21917247313254
1015 => 0.22539721311674
1016 => 0.23616225726929
1017 => 0.23481442072243
1018 => 0.23900517341347
1019 => 0.23240151200157
1020 => 0.21723817057969
1021 => 0.21483851375674
1022 => 0.21964268748528
1023 => 0.23145327981247
1024 => 0.21927072990256
1025 => 0.22173524388275
1026 => 0.22102546369066
1027 => 0.22098764252059
1028 => 0.22243112275216
1029 => 0.22033727938941
1030 => 0.21180658485435
1031 => 0.21571615188807
1101 => 0.21420648030352
1102 => 0.21588157348005
1103 => 0.2249213604928
1104 => 0.22092465517286
1105 => 0.21671445078427
1106 => 0.2219949814067
1107 => 0.22871891147625
1108 => 0.22829814001656
1109 => 0.22748166751594
1110 => 0.23208408025283
1111 => 0.23968591771376
1112 => 0.2417406638328
1113 => 0.24325743541043
1114 => 0.24346657258492
1115 => 0.2456208154602
1116 => 0.23403690858072
1117 => 0.25242086629428
1118 => 0.25559526794483
1119 => 0.254998612
1120 => 0.25852682583534
1121 => 0.25748873582283
1122 => 0.25598470626605
1123 => 0.26157767566767
1124 => 0.25516578757807
1125 => 0.24606491966914
1126 => 0.24107200353954
1127 => 0.24764707826605
1128 => 0.25166224696304
1129 => 0.25431601805906
1130 => 0.25511904758927
1201 => 0.23493613429662
1202 => 0.22405866342758
1203 => 0.23103099754418
1204 => 0.23953772637123
1205 => 0.23398965327257
1206 => 0.23420712723415
1207 => 0.22629703300343
1208 => 0.24023759419193
1209 => 0.23820657168534
1210 => 0.24874352004235
1211 => 0.24622879275266
1212 => 0.25482126509582
1213 => 0.25255857916276
1214 => 0.26195086196583
1215 => 0.26569769786188
1216 => 0.27198921847979
1217 => 0.27661728665742
1218 => 0.27933497681216
1219 => 0.27917181688907
1220 => 0.28994065923001
1221 => 0.28359064913625
1222 => 0.27561353987602
1223 => 0.27546925913696
1224 => 0.27960071705935
1225 => 0.28825911945454
1226 => 0.29050411722098
1227 => 0.2917587647042
1228 => 0.28983722840906
1229 => 0.28294474756161
1230 => 0.27996860927735
1231 => 0.28250436532256
]
'min_raw' => 0.10456141222681
'max_raw' => 0.2917587647042
'avg_raw' => 0.1981600884655
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.104561'
'max' => '$0.291758'
'avg' => '$0.19816'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.041394297430469
'max_diff' => 0.15074263073741
'year' => 2036
]
11 => [
'items' => [
101 => 0.27940335357927
102 => 0.28475656983842
103 => 0.29210767914753
104 => 0.29058970414464
105 => 0.29566406699178
106 => 0.30091549870004
107 => 0.30842528189941
108 => 0.31038861731419
109 => 0.31363393609586
110 => 0.31697443515389
111 => 0.31804731342235
112 => 0.32009577093142
113 => 0.3200849745492
114 => 0.32625813912989
115 => 0.33306733082938
116 => 0.33563764306278
117 => 0.34154793431566
118 => 0.33142676766642
119 => 0.33910378883345
120 => 0.34602865409442
121 => 0.33777254425161
122 => 0.34915166824304
123 => 0.34959349384198
124 => 0.35626453582643
125 => 0.34950215675819
126 => 0.34548667765374
127 => 0.35707921537024
128 => 0.36268847920973
129 => 0.36099892329158
130 => 0.34814131933072
131 => 0.34065764233692
201 => 0.32107141615067
202 => 0.34427214713029
203 => 0.35557254641586
204 => 0.34811205402654
205 => 0.35187469243679
206 => 0.37240242756348
207 => 0.3802180600273
208 => 0.37859246311022
209 => 0.37886716222961
210 => 0.38308433564332
211 => 0.40178560499955
212 => 0.39057937090927
213 => 0.39914611698171
214 => 0.40368988820883
215 => 0.4079103961517
216 => 0.39754616254924
217 => 0.38406244691327
218 => 0.37979158816348
219 => 0.34737025508866
220 => 0.3456825839034
221 => 0.34473524292545
222 => 0.33876239206348
223 => 0.33406936738751
224 => 0.33033729992435
225 => 0.32054324041133
226 => 0.32384844798934
227 => 0.30823876130467
228 => 0.31822528567219
301 => 0.29331184881439
302 => 0.31406049933634
303 => 0.30276795218262
304 => 0.31035059388426
305 => 0.31032413876169
306 => 0.29636209131023
307 => 0.28830907372072
308 => 0.29344076995689
309 => 0.29894235567661
310 => 0.29983496945008
311 => 0.30696791894179
312 => 0.30895857182269
313 => 0.30292680065887
314 => 0.29279557321091
315 => 0.29514882627838
316 => 0.28826138512242
317 => 0.27619140941819
318 => 0.28486027669052
319 => 0.28782020912049
320 => 0.28912748390519
321 => 0.27725804904616
322 => 0.27352841491549
323 => 0.27154278899898
324 => 0.29126337822059
325 => 0.29234371661487
326 => 0.28681655264531
327 => 0.3117998578949
328 => 0.30614536647422
329 => 0.31246281877515
330 => 0.29493529322814
331 => 0.29560486830798
401 => 0.28730705682296
402 => 0.29195327679461
403 => 0.28866947827331
404 => 0.29157790813574
405 => 0.29332120900337
406 => 0.30161765889917
407 => 0.31415523146738
408 => 0.30037844594696
409 => 0.29437570320851
410 => 0.29809977104274
411 => 0.30801745443721
412 => 0.32304325245669
413 => 0.31414767760679
414 => 0.31809538266852
415 => 0.31895778060334
416 => 0.3123985130411
417 => 0.32328510200776
418 => 0.32911931347748
419 => 0.33510400722546
420 => 0.34030034911952
421 => 0.33271358893628
422 => 0.3408325098517
423 => 0.33429009277634
424 => 0.3284208683171
425 => 0.3284297695079
426 => 0.32474791926893
427 => 0.31761387048794
428 => 0.31629824243678
429 => 0.32314230570442
430 => 0.32863059630986
501 => 0.32908263821126
502 => 0.33212123788899
503 => 0.3339194498782
504 => 0.35154437192313
505 => 0.35863326137061
506 => 0.36730142120117
507 => 0.3706781579659
508 => 0.38084092500058
509 => 0.37263366524049
510 => 0.37085797296531
511 => 0.34620642435492
512 => 0.35024311405887
513 => 0.35670624375751
514 => 0.34631299898313
515 => 0.35290512059729
516 => 0.35420654504415
517 => 0.34595984050272
518 => 0.35036476171737
519 => 0.33866659693939
520 => 0.31441021949214
521 => 0.32331210628991
522 => 0.32986689131576
523 => 0.3205124048847
524 => 0.33727995974375
525 => 0.32748470034769
526 => 0.3243800733745
527 => 0.31226781667269
528 => 0.31798433559243
529 => 0.32571600928405
530 => 0.32093873384617
531 => 0.33085229769128
601 => 0.34489254794686
602 => 0.35489846639035
603 => 0.35566659656445
604 => 0.34923346134976
605 => 0.35954260158702
606 => 0.35961769241891
607 => 0.3479889401172
608 => 0.34086639408157
609 => 0.33924813663631
610 => 0.34329086101263
611 => 0.34819947473358
612 => 0.35593899046375
613 => 0.36061581772662
614 => 0.37281050283068
615 => 0.37611003497082
616 => 0.37973522043719
617 => 0.38457958618605
618 => 0.39039648933745
619 => 0.37766943639867
620 => 0.37817510593813
621 => 0.36632385045958
622 => 0.3536590843388
623 => 0.36327006313909
624 => 0.37583513942554
625 => 0.37295269704225
626 => 0.37262836339117
627 => 0.37317380262963
628 => 0.3710005352044
629 => 0.36117092718513
630 => 0.35623455957446
701 => 0.36260373319392
702 => 0.36598866551335
703 => 0.37123840034368
704 => 0.37059125971738
705 => 0.38411401285995
706 => 0.38936854582432
707 => 0.38802421143789
708 => 0.38827160131821
709 => 0.39778468226099
710 => 0.40836518478368
711 => 0.41827522161646
712 => 0.42835613672875
713 => 0.41620320009607
714 => 0.41003268836293
715 => 0.41639908140043
716 => 0.41302098364126
717 => 0.43243253537433
718 => 0.43377654909968
719 => 0.45318669715661
720 => 0.47160923898007
721 => 0.46003837053487
722 => 0.47094917831534
723 => 0.48275010650111
724 => 0.50551601160308
725 => 0.49784925567893
726 => 0.49197664079442
727 => 0.48642704810483
728 => 0.49797486951884
729 => 0.51283095728702
730 => 0.51603081630245
731 => 0.52121581034766
801 => 0.51576442310003
802 => 0.5223300185892
803 => 0.54550945573481
804 => 0.53924616720752
805 => 0.53035129062488
806 => 0.54864923007453
807 => 0.55527118322993
808 => 0.60174751841825
809 => 0.66042581143516
810 => 0.63613261282372
811 => 0.62105304050897
812 => 0.62459709769517
813 => 0.64602442391938
814 => 0.65290620103325
815 => 0.63419915854691
816 => 0.64080680220752
817 => 0.67721556842663
818 => 0.69674770337011
819 => 0.67022044060116
820 => 0.59703277470812
821 => 0.52955040430957
822 => 0.54744976771001
823 => 0.54542053538231
824 => 0.58453721259866
825 => 0.53909678984755
826 => 0.53986189002822
827 => 0.57978745870412
828 => 0.56913600147892
829 => 0.55188200490967
830 => 0.52967637757894
831 => 0.48862722168617
901 => 0.45226883957154
902 => 0.52357599973365
903 => 0.5205011053238
904 => 0.51604820254453
905 => 0.52595765582541
906 => 0.57407514810997
907 => 0.57296588417169
908 => 0.56590931294777
909 => 0.57126166002735
910 => 0.5509437125884
911 => 0.55618011027448
912 => 0.52953971475732
913 => 0.54158228613227
914 => 0.55184498558219
915 => 0.55390537443863
916 => 0.55854753573824
917 => 0.5188807756941
918 => 0.53668998639903
919 => 0.54715122919079
920 => 0.49988695367432
921 => 0.54621696643007
922 => 0.5181902656523
923 => 0.50867758246141
924 => 0.52148515717724
925 => 0.51649403285471
926 => 0.51220295725085
927 => 0.50980846333386
928 => 0.51921293268472
929 => 0.51877420294873
930 => 0.50338666576188
1001 => 0.48331425077788
1002 => 0.49005121210107
1003 => 0.48760361089301
1004 => 0.47873318836815
1005 => 0.484710782131
1006 => 0.45838848439035
1007 => 0.41310233924153
1008 => 0.44301975387898
1009 => 0.44186796595932
1010 => 0.44128718226081
1011 => 0.46376929250424
1012 => 0.46160815635487
1013 => 0.45768567308185
1014 => 0.47866114888679
1015 => 0.47100481805802
1016 => 0.49459982561386
1017 => 0.51014102361954
1018 => 0.50619927310021
1019 => 0.52081584494168
1020 => 0.49020641808321
1021 => 0.50037364184854
1022 => 0.50246909257541
1023 => 0.47840231477129
1024 => 0.46196174495613
1025 => 0.46086534638568
1026 => 0.43235966397626
1027 => 0.44758716942954
1028 => 0.46098674407144
1029 => 0.45456938766697
1030 => 0.45253784434238
1031 => 0.4629165585997
1101 => 0.46372307358517
1102 => 0.44533444644583
1103 => 0.44915802432018
1104 => 0.46510297967319
1105 => 0.44875625235583
1106 => 0.41699723140094
1107 => 0.40912055510132
1108 => 0.408069661287
1109 => 0.38670749045533
1110 => 0.40964691227545
1111 => 0.39963323991268
1112 => 0.43126631092445
1113 => 0.41319767041409
1114 => 0.41241876743502
1115 => 0.41124134134194
1116 => 0.39285403844696
1117 => 0.3968796892069
1118 => 0.41026156545687
1119 => 0.41503636966048
1120 => 0.41453831846322
1121 => 0.41019598696278
1122 => 0.41218388408735
1123 => 0.40578017481985
1124 => 0.40351889179581
1125 => 0.39638166055705
1126 => 0.38589190234653
1127 => 0.38735056756313
1128 => 0.36656761175354
1129 => 0.35524395439353
1130 => 0.35210971527968
1201 => 0.34791847974778
1202 => 0.35258312648546
1203 => 0.36650873625097
1204 => 0.34971149639085
1205 => 0.32091380684004
1206 => 0.32264459705092
1207 => 0.32653316877854
1208 => 0.3192868410896
1209 => 0.3124288000702
1210 => 0.31839131032611
1211 => 0.3061893496302
1212 => 0.32800771743308
1213 => 0.32741759172928
1214 => 0.33555013000738
1215 => 0.34063557308917
1216 => 0.32891527321741
1217 => 0.32596764949472
1218 => 0.32764674992919
1219 => 0.29989495998982
1220 => 0.33328221670272
1221 => 0.33357095108521
1222 => 0.33109863200661
1223 => 0.34887631549032
1224 => 0.38639277263948
1225 => 0.37227757236397
1226 => 0.36681174018311
1227 => 0.35642118921179
1228 => 0.3702659814512
1229 => 0.36920291741962
1230 => 0.36439533871374
1231 => 0.36148770011186
]
'min_raw' => 0.27154278899898
'max_raw' => 0.69674770337011
'avg_raw' => 0.48414524618455
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.271542'
'max' => '$0.696747'
'avg' => '$0.484145'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.16698137677216
'max_diff' => 0.40498893866592
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0085234178616829
]
1 => [
'year' => 2028
'avg' => 0.014628659416533
]
2 => [
'year' => 2029
'avg' => 0.039962860966632
]
3 => [
'year' => 2030
'avg' => 0.030831287721278
]
4 => [
'year' => 2031
'avg' => 0.030280145421719
]
5 => [
'year' => 2032
'avg' => 0.053090624436748
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0085234178616829
'min' => '$0.008523'
'max_raw' => 0.053090624436748
'max' => '$0.05309'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.053090624436748
]
1 => [
'year' => 2033
'avg' => 0.13655454529585
]
2 => [
'year' => 2034
'avg' => 0.086554833312873
]
3 => [
'year' => 2035
'avg' => 0.10209162438157
]
4 => [
'year' => 2036
'avg' => 0.1981600884655
]
5 => [
'year' => 2037
'avg' => 0.48414524618455
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.053090624436748
'min' => '$0.05309'
'max_raw' => 0.48414524618455
'max' => '$0.484145'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.48414524618455
]
]
]
]
'prediction_2025_max_price' => '$0.014573'
'last_price' => 0.01413084
'sma_50day_nextmonth' => '$0.01374'
'sma_200day_nextmonth' => '$0.01711'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.014231'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.014354'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.015176'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.014819'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.016554'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.020234'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.017477'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.014271'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.014437'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.014721'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.015097'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.016483'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.01773'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.020614'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.018311'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.019728'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.060977'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.05256'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.0147099'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.0154046'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.016868'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.018539'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.028435'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.068941'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.182619'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '40.02'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 8.17
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.015189'
'vwma_10_action' => 'SELL'
'hma_9' => '0.013888'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -74.86
'cci_20_action' => 'NEUTRAL'
'adx_14' => 16.77
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.00090076'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 24.78
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.004220'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 32
'buy_signals' => 1
'sell_pct' => 96.97
'buy_pct' => 3.03
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767707941
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Dimitra para 2026
A previsão de preço para Dimitra em 2026 sugere que o preço médio poderia variar entre $0.004882 na extremidade inferior e $0.014573 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Dimitra poderia potencialmente ganhar 3.13% até 2026 se DMTR atingir a meta de preço prevista.
Previsão de preço de Dimitra 2027-2032
A previsão de preço de DMTR para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.008523 na extremidade inferior e $0.05309 na extremidade superior. Considerando a volatilidade de preços no mercado, se Dimitra atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Dimitra | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.004699 | $0.008523 | $0.012346 |
| 2028 | $0.008482 | $0.014628 | $0.020775 |
| 2029 | $0.018632 | $0.039962 | $0.061293 |
| 2030 | $0.015846 | $0.030831 | $0.045816 |
| 2031 | $0.018735 | $0.03028 | $0.041825 |
| 2032 | $0.028597 | $0.05309 | $0.077583 |
Previsão de preço de Dimitra 2032-2037
A previsão de preço de Dimitra para 2032-2037 é atualmente estimada entre $0.05309 na extremidade inferior e $0.484145 na extremidade superior. Comparado ao preço atual, Dimitra poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Dimitra | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.028597 | $0.05309 | $0.077583 |
| 2033 | $0.066455 | $0.136554 | $0.206653 |
| 2034 | $0.053426 | $0.086554 | $0.119682 |
| 2035 | $0.063167 | $0.102091 | $0.141016 |
| 2036 | $0.104561 | $0.19816 | $0.291758 |
| 2037 | $0.271542 | $0.484145 | $0.696747 |
Dimitra Histograma de preços potenciais
Previsão de preço de Dimitra baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Dimitra é Baixista, com 1 indicadores técnicos mostrando sinais de alta e 32 indicando sinais de baixa. A previsão de preço de DMTR foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Dimitra
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Dimitra está projetado para aumentar no próximo mês, alcançando $0.01711 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Dimitra é esperado para alcançar $0.01374 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 40.02, sugerindo que o mercado de DMTR está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de DMTR para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.014231 | SELL |
| SMA 5 | $0.014354 | SELL |
| SMA 10 | $0.015176 | SELL |
| SMA 21 | $0.014819 | SELL |
| SMA 50 | $0.016554 | SELL |
| SMA 100 | $0.020234 | SELL |
| SMA 200 | $0.017477 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.014271 | SELL |
| EMA 5 | $0.014437 | SELL |
| EMA 10 | $0.014721 | SELL |
| EMA 21 | $0.015097 | SELL |
| EMA 50 | $0.016483 | SELL |
| EMA 100 | $0.01773 | SELL |
| EMA 200 | $0.020614 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.018311 | SELL |
| SMA 50 | $0.019728 | SELL |
| SMA 100 | $0.060977 | SELL |
| SMA 200 | $0.05256 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.018539 | SELL |
| EMA 50 | $0.028435 | SELL |
| EMA 100 | $0.068941 | SELL |
| EMA 200 | $0.182619 | SELL |
Osciladores de Dimitra
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 40.02 | NEUTRAL |
| Stoch RSI (14) | 8.17 | BUY |
| Estocástico Rápido (14) | 0 | BUY |
| Índice de Canal de Commodities (20) | -74.86 | NEUTRAL |
| Índice Direcional Médio (14) | 16.77 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.00090076 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -100 | BUY |
| Oscilador Ultimate (7, 14, 28) | 24.78 | BUY |
| VWMA (10) | 0.015189 | SELL |
| Média Móvel de Hull (9) | 0.013888 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.004220 | SELL |
Previsão do preço de Dimitra com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Dimitra
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Dimitra por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.019856 | $0.0279012 | $0.0392059 | $0.05509 | $0.077411 | $0.108776 |
| Amazon.com stock | $0.029484 | $0.061521 | $0.128369 | $0.267849 | $0.558884 | $1.16 |
| Apple stock | $0.020043 | $0.02843 | $0.040326 | $0.057199 | $0.081133 | $0.115081 |
| Netflix stock | $0.022296 | $0.035179 | $0.0555085 | $0.087583 | $0.138193 | $0.218047 |
| Google stock | $0.018299 | $0.023697 | $0.030688 | $0.039741 | $0.051464 | $0.066646 |
| Tesla stock | $0.032033 | $0.072617 | $0.164618 | $0.373178 | $0.845966 | $1.91 |
| Kodak stock | $0.010596 | $0.007946 | $0.005958 | $0.004468 | $0.00335 | $0.002512 |
| Nokia stock | $0.009361 | $0.0062013 | $0.0041081 | $0.002721 | $0.0018028 | $0.001194 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Dimitra
Você pode fazer perguntas como: 'Devo investir em Dimitra agora?', 'Devo comprar DMTR hoje?', 'Dimitra será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Dimitra regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Dimitra, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Dimitra para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Dimitra é de $0.01413 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Dimitra
com base no histórico de preços de 4 horas
Previsão de longo prazo para Dimitra
com base no histórico de preços de 1 mês
Previsão do preço de Dimitra com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Dimitra tiver 1% da média anterior do crescimento anual do Bitcoin | $0.014498 | $0.014874 | $0.015261 | $0.015658 |
| Se Dimitra tiver 2% da média anterior do crescimento anual do Bitcoin | $0.014865 | $0.015638 | $0.016451 | $0.0173064 |
| Se Dimitra tiver 5% da média anterior do crescimento anual do Bitcoin | $0.015967 | $0.018042 | $0.020387 | $0.023037 |
| Se Dimitra tiver 10% da média anterior do crescimento anual do Bitcoin | $0.0178038 | $0.022431 | $0.028262 | $0.0356087 |
| Se Dimitra tiver 20% da média anterior do crescimento anual do Bitcoin | $0.021476 | $0.032642 | $0.049611 | $0.0754027 |
| Se Dimitra tiver 50% da média anterior do crescimento anual do Bitcoin | $0.032496 | $0.07473 | $0.171853 | $0.3952055 |
| Se Dimitra tiver 100% da média anterior do crescimento anual do Bitcoin | $0.050861 | $0.183066 | $0.658915 | $2.37 |
Perguntas Frequentes sobre Dimitra
DMTR é um bom investimento?
A decisão de adquirir Dimitra depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Dimitra experimentou uma escalada de 0.7437% nas últimas 24 horas, e Dimitra registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Dimitra dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Dimitra pode subir?
Parece que o valor médio de Dimitra pode potencialmente subir para $0.014573 até o final deste ano. Observando as perspectivas de Dimitra em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.045816. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Dimitra na próxima semana?
Com base na nossa nova previsão experimental de Dimitra, o preço de Dimitra aumentará 0.86% na próxima semana e atingirá $0.014251 até 13 de janeiro de 2026.
Qual será o preço de Dimitra no próximo mês?
Com base na nossa nova previsão experimental de Dimitra, o preço de Dimitra diminuirá -11.62% no próximo mês e atingirá $0.012489 até 5 de fevereiro de 2026.
Até onde o preço de Dimitra pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Dimitra em 2026, espera-se que DMTR fluctue dentro do intervalo de $0.004882 e $0.014573. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Dimitra não considera flutuações repentinas e extremas de preço.
Onde estará Dimitra em 5 anos?
O futuro de Dimitra parece seguir uma tendência de alta, com um preço máximo de $0.045816 projetada após um período de cinco anos. Com base na previsão de Dimitra para 2030, o valor de Dimitra pode potencialmente atingir seu pico mais alto de aproximadamente $0.045816, enquanto seu pico mais baixo está previsto para cerca de $0.015846.
Quanto será Dimitra em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Dimitra, espera-se que o valor de DMTR em 2026 aumente 3.13% para $0.014573 se o melhor cenário ocorrer. O preço ficará entre $0.014573 e $0.004882 durante 2026.
Quanto será Dimitra em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Dimitra, o valor de DMTR pode diminuir -12.62% para $0.012346 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.012346 e $0.004699 ao longo do ano.
Quanto será Dimitra em 2028?
Nosso novo modelo experimental de previsão de preços de Dimitra sugere que o valor de DMTR em 2028 pode aumentar 47.02%, alcançando $0.020775 no melhor cenário. O preço é esperado para variar entre $0.020775 e $0.008482 durante o ano.
Quanto será Dimitra em 2029?
Com base no nosso modelo de previsão experimental, o valor de Dimitra pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.061293 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.061293 e $0.018632.
Quanto será Dimitra em 2030?
Usando nossa nova simulação experimental para previsões de preços de Dimitra, espera-se que o valor de DMTR em 2030 aumente 224.23%, alcançando $0.045816 no melhor cenário. O preço está previsto para variar entre $0.045816 e $0.015846 ao longo de 2030.
Quanto será Dimitra em 2031?
Nossa simulação experimental indica que o preço de Dimitra poderia aumentar 195.98% em 2031, potencialmente atingindo $0.041825 sob condições ideais. O preço provavelmente oscilará entre $0.041825 e $0.018735 durante o ano.
Quanto será Dimitra em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Dimitra, DMTR poderia ver um 449.04% aumento em valor, atingindo $0.077583 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.077583 e $0.028597 ao longo do ano.
Quanto será Dimitra em 2033?
De acordo com nossa previsão experimental de preços de Dimitra, espera-se que o valor de DMTR seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.206653. Ao longo do ano, o preço de DMTR poderia variar entre $0.206653 e $0.066455.
Quanto será Dimitra em 2034?
Os resultados da nossa nova simulação de previsão de preços de Dimitra sugerem que DMTR pode aumentar 746.96% em 2034, atingindo potencialmente $0.119682 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.119682 e $0.053426.
Quanto será Dimitra em 2035?
Com base em nossa previsão experimental para o preço de Dimitra, DMTR poderia aumentar 897.93%, com o valor potencialmente atingindo $0.141016 em 2035. A faixa de preço esperada para o ano está entre $0.141016 e $0.063167.
Quanto será Dimitra em 2036?
Nossa recente simulação de previsão de preços de Dimitra sugere que o valor de DMTR pode aumentar 1964.7% em 2036, possivelmente atingindo $0.291758 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.291758 e $0.104561.
Quanto será Dimitra em 2037?
De acordo com a simulação experimental, o valor de Dimitra poderia aumentar 4830.69% em 2037, com um pico de $0.696747 sob condições favoráveis. O preço é esperado para cair entre $0.696747 e $0.271542 ao longo do ano.
Previsões relacionadas
Previsão de Preço do IX Swap
Previsão de Preço do BitMart Token
Previsão de Preço do LON
Previsão de Preço do Moon Tropica
Previsão de Preço do Kinesis Silver
Previsão de Preço do Perpetual Protocol
Previsão de Preço do USDX
Previsão de Preço do Metadium
Previsão de Preço do ARPA
Previsão de Preço do Storj
Previsão de Preço do Ozone Chain
Previsão de Preço do Humanscape
Previsão de Preço do Ordiswap
Previsão de Preço do Guild of Guardians
Previsão de Preço do Lyra Finance
Previsão de Preço do Bazaars
Previsão de Preço do PlatON Network
Previsão de Preço do Saitama Inu
Previsão de Preço do Nuls
Previsão de Preço do Across Protocol
Previsão de Preço do Alien Worlds
Previsão de Preço do MovieBloc
Previsão de Preço do REN
Previsão de Preço do Moonwell
Previsão de Preço do Pandora
Como ler e prever os movimentos de preço de Dimitra?
Traders de Dimitra utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Dimitra
Médias móveis são ferramentas populares para a previsão de preço de Dimitra. Uma média móvel simples (SMA) calcula o preço médio de fechamento de DMTR em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de DMTR acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de DMTR.
Como ler gráficos de Dimitra e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Dimitra em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de DMTR dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Dimitra?
A ação de preço de Dimitra é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de DMTR. A capitalização de mercado de Dimitra pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de DMTR, grandes detentores de Dimitra, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Dimitra.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


