Previsão de Preço Dimitra - Projeção DMTR
Previsão de Preço Dimitra até $0.015277 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.005118 | $0.015277 |
| 2027 | $0.004926 | $0.012943 |
| 2028 | $0.008891 | $0.021778 |
| 2029 | $0.019532 | $0.064253 |
| 2030 | $0.016611 | $0.048029 |
| 2031 | $0.01964 | $0.043845 |
| 2032 | $0.029979 | $0.08133 |
| 2033 | $0.069665 | $0.216635 |
| 2034 | $0.0560073 | $0.125463 |
| 2035 | $0.066218 | $0.147827 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Dimitra hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.78, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Dimitra para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Dimitra'
'name_with_ticker' => 'Dimitra <small>DMTR</small>'
'name_lang' => 'Dimitra'
'name_lang_with_ticker' => 'Dimitra <small>DMTR</small>'
'name_with_lang' => 'Dimitra'
'name_with_lang_with_ticker' => 'Dimitra <small>DMTR</small>'
'image' => '/uploads/coins/dimitra.jpg?1717210240'
'price_for_sd' => 0.01481
'ticker' => 'DMTR'
'marketcap' => '$10.27M'
'low24h' => '$0.01398'
'high24h' => '$0.01494'
'volume24h' => '$125.41K'
'current_supply' => '689.23M'
'max_supply' => '971.07M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01481'
'change_24h_pct' => '2.9069%'
'ath_price' => '$5.95'
'ath_days' => 1567
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '22 de set. de 2021'
'ath_pct' => '-99.75%'
'fdv' => '$14.47M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.73040063'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.01494'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.0130923'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.005118'
'current_year_max_price_prediction' => '$0.015277'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.016611'
'grand_prediction_max_price' => '$0.048029'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.015094065380173
107 => 0.015150421141156
108 => 0.01527739354825
109 => 0.014192428231596
110 => 0.014679545805865
111 => 0.014965681744004
112 => 0.013672909165778
113 => 0.014940127786713
114 => 0.014173541399263
115 => 0.013913350465621
116 => 0.014263663280221
117 => 0.014127146035681
118 => 0.014009776525387
119 => 0.013944282321979
120 => 0.014201513390407
121 => 0.014189513253607
122 => 0.01376863329926
123 => 0.013219612556077
124 => 0.013403881938481
125 => 0.013336935144319
126 => 0.013094311325968
127 => 0.013257810485025
128 => 0.012537842933567
129 => 0.011299176181941
130 => 0.012117477379454
131 => 0.01208597367349
201 => 0.012070088076364
202 => 0.012685018810111
203 => 0.012625907408927
204 => 0.012518619636958
205 => 0.013092340901899
206 => 0.012882924922556
207 => 0.013528295626283
208 => 0.013953378511717
209 => 0.01384556374198
210 => 0.014245356250335
211 => 0.01340812713288
212 => 0.013686221061897
213 => 0.013743535835245
214 => 0.013085261270546
215 => 0.012635578765204
216 => 0.012605590068853
217 => 0.011825902574655
218 => 0.012242405340638
219 => 0.012608910538648
220 => 0.012433382990754
221 => 0.012377816212827
222 => 0.012661694830292
223 => 0.012683754630125
224 => 0.01218078885614
225 => 0.012285371367406
226 => 0.012721497824781
227 => 0.012274382099665
228 => 0.011405709281704
301 => 0.011190266412509
302 => 0.011161522362358
303 => 0.01057722421411
304 => 0.011204663335209
305 => 0.010930769344526
306 => 0.011795997179338
307 => 0.011301783680403
308 => 0.011280479124236
309 => 0.011248274162891
310 => 0.010745344609641
311 => 0.010855454218963
312 => 0.011221475330513
313 => 0.011352075786637
314 => 0.011338453089085
315 => 0.011219681627384
316 => 0.011274054594343
317 => 0.011098900322972
318 => 0.01103704970423
319 => 0.010841832138128
320 => 0.010554916246186
321 => 0.010594813660718
322 => 0.010026358203154
323 => 0.0097166334996594
324 => 0.0096309057838379
325 => 0.0095162670994336
326 => 0.0096438545282833
327 => 0.010024747840266
328 => 0.0095653096949909
329 => 0.0087776352207557
330 => 0.0088249757987892
331 => 0.0089313360220868
401 => 0.008733134449615
402 => 0.0085455532950676
403 => 0.0087086398900065
404 => 0.0083748918315439
405 => 0.0089716678804518
406 => 0.0089555267607744
407 => 0.0091779679674239
408 => 0.009317065018895
409 => 0.0089964913484594
410 => 0.0089158679372682
411 => 0.0089617946964124
412 => 0.0082027276708786
413 => 0.0091159359972301
414 => 0.0091238334607582
415 => 0.0090562105833416
416 => 0.0095424658249799
417 => 0.01056861605165
418 => 0.010182537059579
419 => 0.01003303560455
420 => 0.0097488332292554
421 => 0.010127516020069
422 => 0.010098439090106
423 => 0.0099669421857166
424 => 0.0098874124476465
425 => 0.010033948428556
426 => 0.00986925501797
427 => 0.0098396715559565
428 => 0.0096604279632793
429 => 0.0095964461557573
430 => 0.0095490765726572
501 => 0.0094969273161031
502 => 0.0096119555812764
503 => 0.0093512863991652
504 => 0.0090369449192541
505 => 0.0090108108264214
506 => 0.0090829693544654
507 => 0.0090510445773765
508 => 0.0090106579828711
509 => 0.0089335489753256
510 => 0.0089106723799602
511 => 0.0089850102167517
512 => 0.0089010871331792
513 => 0.0090249202145173
514 => 0.0089912444683903
515 => 0.008803134488013
516 => 0.0085686798052282
517 => 0.0085665926667661
518 => 0.0085160797899428
519 => 0.0084517440466466
520 => 0.008433847314664
521 => 0.0086949051918662
522 => 0.0092352871848701
523 => 0.0091291972693983
524 => 0.0092058581058585
525 => 0.0095829535472244
526 => 0.009702820848379
527 => 0.0096177418772321
528 => 0.0095012805340837
529 => 0.009506404242131
530 => 0.0099043879069149
531 => 0.0099292096599108
601 => 0.0099919262219303
602 => 0.010072534727824
603 => 0.0096314698543468
604 => 0.0094856301262545
605 => 0.0094165231722043
606 => 0.0092037005014867
607 => 0.0094332115058188
608 => 0.0092994852722356
609 => 0.0093175295098846
610 => 0.009305778176444
611 => 0.0093121951991243
612 => 0.0089715010693838
613 => 0.0090956321039049
614 => 0.0088892401834034
615 => 0.0086129045704322
616 => 0.0086119781965618
617 => 0.0086796109463521
618 => 0.0086393803403071
619 => 0.0085311208138633
620 => 0.0085464985686241
621 => 0.0084117732556858
622 => 0.0085628566608954
623 => 0.0085671891923544
624 => 0.00850901385178
625 => 0.0087417786829976
626 => 0.0088371426242656
627 => 0.0087988503688629
628 => 0.0088344559375472
629 => 0.0091336057843534
630 => 0.0091823802622057
701 => 0.0092040426634065
702 => 0.0091750179155156
703 => 0.0088399238475897
704 => 0.0088547866944322
705 => 0.0087457329859556
706 => 0.0086535940940896
707 => 0.0086572791665594
708 => 0.0087046505341961
709 => 0.0089115240749593
710 => 0.0093468772456342
711 => 0.0093633985802223
712 => 0.0093834229197044
713 => 0.009301973867604
714 => 0.0092774080541281
715 => 0.0093098167030773
716 => 0.0094733124642005
717 => 0.0098938679504757
718 => 0.0097452155536695
719 => 0.0096243588411537
720 => 0.0097303827607658
721 => 0.0097140612093845
722 => 0.0095762908902973
723 => 0.0095724241362988
724 => 0.0093079988461351
725 => 0.0092102468370342
726 => 0.0091285579416183
727 => 0.0090393558003668
728 => 0.0089864737809501
729 => 0.0090677245972222
730 => 0.009086307620235
731 => 0.0089086512904348
801 => 0.0088844373891458
802 => 0.0090295153830388
803 => 0.0089656719669792
804 => 0.009031336503637
805 => 0.0090465712394016
806 => 0.0090441180960578
807 => 0.008977458237322
808 => 0.0090199452434546
809 => 0.0089194508079648
810 => 0.0088101782031459
811 => 0.0087404690891952
812 => 0.0086796386417011
813 => 0.0087133909094572
814 => 0.0085930702378273
815 => 0.0085545772333963
816 => 0.0090055516017648
817 => 0.0093386912164701
818 => 0.0093338472345345
819 => 0.0093043607402726
820 => 0.0092605497909165
821 => 0.0094701074203736
822 => 0.0093971017325078
823 => 0.0094502194702595
824 => 0.0094637401638617
825 => 0.0095046632312234
826 => 0.0095192897103486
827 => 0.0094750783316891
828 => 0.0093266995449426
829 => 0.0089569537158021
830 => 0.0087848360342274
831 => 0.008728034332461
901 => 0.0087300989664384
902 => 0.0086731471444093
903 => 0.0086899220083985
904 => 0.0086673135312914
905 => 0.0086244985452286
906 => 0.0087107472047173
907 => 0.0087206865592615
908 => 0.0087005550915421
909 => 0.0087052967809598
910 => 0.0085386168265057
911 => 0.008551289141433
912 => 0.0084807280815977
913 => 0.0084674987335049
914 => 0.0082891265186958
915 => 0.0079731142846954
916 => 0.0081482157383814
917 => 0.007936717805319
918 => 0.0078566203333517
919 => 0.0082357893079326
920 => 0.0081977312593949
921 => 0.0081325924237345
922 => 0.00803623850967
923 => 0.0080004999056728
924 => 0.0077833634612531
925 => 0.0077705338817389
926 => 0.0078781525667705
927 => 0.0078284902465612
928 => 0.007758745540396
929 => 0.0075061372845731
930 => 0.0072221219693089
1001 => 0.0072306946064201
1002 => 0.0073210345939129
1003 => 0.0075837102915552
1004 => 0.0074810783521506
1005 => 0.0074066177025468
1006 => 0.0073926734611549
1007 => 0.0075672148364211
1008 => 0.0078142274499714
1009 => 0.0079301202416535
1010 => 0.0078152740048129
1011 => 0.0076833448316911
1012 => 0.0076913747491581
1013 => 0.0077447941925996
1014 => 0.0077504078207951
1015 => 0.0076645354916309
1016 => 0.0076887080492906
1017 => 0.0076519877238205
1018 => 0.0074266351541913
1019 => 0.0074225592408074
1020 => 0.0073672540859193
1021 => 0.0073655794678089
1022 => 0.0072714916028269
1023 => 0.0072583280601172
1024 => 0.0070715108934701
1025 => 0.0071944745182917
1026 => 0.0071119969746414
1027 => 0.0069876838618747
1028 => 0.0069662522343773
1029 => 0.0069656079737753
1030 => 0.0070932497446833
1031 => 0.0071929829498819
1101 => 0.0071134317068249
1102 => 0.0070953194308168
1103 => 0.0072887111530045
1104 => 0.0072641002935515
1105 => 0.0072427874479881
1106 => 0.007792110179686
1107 => 0.0073572783733598
1108 => 0.0071676668864698
1109 => 0.0069329866651987
1110 => 0.007009399728605
1111 => 0.0070255010838061
1112 => 0.0064611374559384
1113 => 0.0062321752023995
1114 => 0.0061536039852454
1115 => 0.0061083851389393
1116 => 0.0061289919350235
1117 => 0.0059228990522447
1118 => 0.0060613968779337
1119 => 0.005882937862045
1120 => 0.0058530186272754
1121 => 0.0061721254545143
1122 => 0.0062165273053295
1123 => 0.0060270952151779
1124 => 0.0061487412833249
1125 => 0.006104630728008
1126 => 0.005885997029664
1127 => 0.0058776468305479
1128 => 0.005767944126065
1129 => 0.0055962806361787
1130 => 0.0055178258149542
1201 => 0.0054769658628846
1202 => 0.0054938254754531
1203 => 0.0054853007394258
1204 => 0.005429671070494
1205 => 0.0054884893669312
1206 => 0.0053382329249321
1207 => 0.0052783995990297
1208 => 0.0052513742738422
1209 => 0.0051180130331299
1210 => 0.0053302500731161
1211 => 0.0053720634436851
1212 => 0.005413959199511
1213 => 0.005778633150528
1214 => 0.0057604150704931
1215 => 0.0059250976414439
1216 => 0.0059186983795686
1217 => 0.0058717282426526
1218 => 0.0056735689612167
1219 => 0.0057525517189475
1220 => 0.0055094550672979
1221 => 0.0056915996076793
1222 => 0.0056084764459871
1223 => 0.0056634955830968
1224 => 0.005564566213698
1225 => 0.0056193178114168
1226 => 0.0053819789450208
1227 => 0.0051603552510282
1228 => 0.0052495430950898
1229 => 0.0053465004814519
1230 => 0.0055567287993674
1231 => 0.0054315185475629
]
'min_raw' => 0.0051180130331299
'max_raw' => 0.01527739354825
'avg_raw' => 0.01019770329069
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.005118'
'max' => '$0.015277'
'avg' => '$0.010197'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0096953469668701
'max_diff' => 0.00046403354824954
'year' => 2026
]
1 => [
'items' => [
101 => 0.0054765488888356
102 => 0.0053257047835601
103 => 0.0050144703078882
104 => 0.0050162318612205
105 => 0.00496835521775
106 => 0.0049269828076871
107 => 0.0054459004511875
108 => 0.0053813648393442
109 => 0.005278535788084
110 => 0.0054161765594598
111 => 0.0054525709640644
112 => 0.005453607061599
113 => 0.0055540262153722
114 => 0.0056076199357422
115 => 0.0056170660612458
116 => 0.0057750777694075
117 => 0.0058280412097584
118 => 0.0060461901248974
119 => 0.0056030728830073
120 => 0.0055939471750119
121 => 0.0054181134473791
122 => 0.0053065969174931
123 => 0.0054257490795869
124 => 0.00553130162931
125 => 0.0054213932593256
126 => 0.0054357449721532
127 => 0.0052882019652929
128 => 0.0053409416477017
129 => 0.0053863681669947
130 => 0.0053612863130885
131 => 0.0053237375638155
201 => 0.0055226475239381
202 => 0.0055114242444535
203 => 0.0056966537722399
204 => 0.00584105343504
205 => 0.006099843445305
206 => 0.0058297825785651
207 => 0.0058199404871864
208 => 0.0059161485091345
209 => 0.0058280264808115
210 => 0.0058837165608426
211 => 0.0060908709124467
212 => 0.0060952477574665
213 => 0.0060219299641379
214 => 0.0060174685697507
215 => 0.0060315500539683
216 => 0.0061140257468575
217 => 0.00608520620554
218 => 0.0061185569083742
219 => 0.0061602624729524
220 => 0.006332774370841
221 => 0.0063743664053857
222 => 0.0062733193244396
223 => 0.0062824427444729
224 => 0.0062446483623946
225 => 0.0062081394628693
226 => 0.0062902061373057
227 => 0.0064401845978627
228 => 0.0064392515896435
301 => 0.006474043677328
302 => 0.0064957188597223
303 => 0.0064026731096829
304 => 0.0063421037477943
305 => 0.006365329895271
306 => 0.006402469010886
307 => 0.0063532861806255
308 => 0.0060497069685551
309 => 0.0061417935087821
310 => 0.0061264658056866
311 => 0.0061046372925661
312 => 0.0061972310208486
313 => 0.0061883001298718
314 => 0.0059207852718501
315 => 0.0059379107051108
316 => 0.0059218267261678
317 => 0.0059737973526049
318 => 0.0058252198964309
319 => 0.0058709213212656
320 => 0.0058995848264977
321 => 0.0059164678512828
322 => 0.0059774609136051
323 => 0.0059703040817209
324 => 0.0059770160348865
325 => 0.006067452644739
326 => 0.0065248499832763
327 => 0.0065497451112225
328 => 0.00642715239625
329 => 0.0064761257678471
330 => 0.0063821076036796
331 => 0.0064452226271522
401 => 0.0064884043232644
402 => 0.0062932745418961
403 => 0.0062817202226253
404 => 0.0061873140120502
405 => 0.0062380425621722
406 => 0.0061573297914162
407 => 0.0061771338821469
408 => 0.0061217599179744
409 => 0.0062214220286386
410 => 0.0063328597542874
411 => 0.0063610133245954
412 => 0.0062869534019891
413 => 0.0062333291372353
414 => 0.0061391825932588
415 => 0.0062957503940844
416 => 0.0063415355903631
417 => 0.0062955099039397
418 => 0.0062848447467143
419 => 0.0062646342930437
420 => 0.0062891324900015
421 => 0.0063412862343513
422 => 0.0063166914916444
423 => 0.0063329367525059
424 => 0.006271026570142
425 => 0.0064027039116978
426 => 0.0066118392199663
427 => 0.0066125116241794
428 => 0.0065879167488977
429 => 0.0065778530558363
430 => 0.0066030888904173
501 => 0.0066167782954493
502 => 0.0066983863570233
503 => 0.0067859550585009
504 => 0.0071945999790788
505 => 0.0070798541205996
506 => 0.0074424282045315
507 => 0.0077291772305692
508 => 0.0078151607254627
509 => 0.0077360599559967
510 => 0.0074654604965933
511 => 0.0074521835961521
512 => 0.0078565734326457
513 => 0.0077423147816084
514 => 0.0077287240786355
515 => 0.0075841419608591
516 => 0.0076696078993086
517 => 0.00765091524486
518 => 0.007621407975337
519 => 0.0077844710322897
520 => 0.0080897105181657
521 => 0.0080421360817742
522 => 0.0080066239719225
523 => 0.0078510202439721
524 => 0.0079447284435491
525 => 0.0079113607485421
526 => 0.0080547295419547
527 => 0.0079698010447447
528 => 0.0077414491599503
529 => 0.0077778149502614
530 => 0.0077723183342137
531 => 0.0078854383029813
601 => 0.0078514824961675
602 => 0.0077656879179621
603 => 0.0080886672427867
604 => 0.008067694761938
605 => 0.0080974289448049
606 => 0.0081105188516631
607 => 0.0083071106751497
608 => 0.0083876480549955
609 => 0.0084059314502258
610 => 0.0084824357320948
611 => 0.0084040279539991
612 => 0.0087177149701803
613 => 0.008926298531796
614 => 0.0091685790722245
615 => 0.0095226160606606
616 => 0.0096557372433379
617 => 0.0096316900932087
618 => 0.0099001168972727
619 => 0.010382473897383
620 => 0.0097291882340454
621 => 0.010417099623841
622 => 0.010199314820151
623 => 0.0096829509683821
624 => 0.0096497032238581
625 => 0.0099993908193835
626 => 0.010774964250075
627 => 0.010580691902168
628 => 0.01077528201004
629 => 0.010548282312945
630 => 0.010537009864681
701 => 0.010764257141425
702 => 0.011295232790143
703 => 0.011042986162761
704 => 0.010681328769
705 => 0.010948370960541
706 => 0.01071703430064
707 => 0.010195768058829
708 => 0.010580543345765
709 => 0.01032325506916
710 => 0.01039834546647
711 => 0.010939127155151
712 => 0.010874058871638
713 => 0.010958263255664
714 => 0.01080964472187
715 => 0.010670811576314
716 => 0.01041166920025
717 => 0.010334949918262
718 => 0.010356152367733
719 => 0.010334939411381
720 => 0.010189951633614
721 => 0.01015864153681
722 => 0.01010645667041
723 => 0.0101226309426
724 => 0.010024508126546
725 => 0.010209686153649
726 => 0.010244056827262
727 => 0.010378813952822
728 => 0.010392804884637
729 => 0.010768101561173
730 => 0.010561394458341
731 => 0.010700071429153
801 => 0.010687666855606
802 => 0.0096941421388021
803 => 0.0098310410788348
804 => 0.010044012868272
805 => 0.0099480693658068
806 => 0.0098124277006435
807 => 0.0097028897833781
808 => 0.009536928637894
809 => 0.0097705157631614
810 => 0.010077657993667
811 => 0.010400594518464
812 => 0.01078858159337
813 => 0.010701987394918
814 => 0.010393341369977
815 => 0.01040718700519
816 => 0.010492775274019
817 => 0.010381930689371
818 => 0.010349240457415
819 => 0.010488284138141
820 => 0.010489241655553
821 => 0.0103617015649
822 => 0.01021996409373
823 => 0.010219370208551
824 => 0.010194149394578
825 => 0.010552769039723
826 => 0.010749973584016
827 => 0.010772582767209
828 => 0.010748451805847
829 => 0.010757738855152
830 => 0.010642989875933
831 => 0.010905272014675
901 => 0.011145968042199
902 => 0.011081456365102
903 => 0.010984744190258
904 => 0.010907708284705
905 => 0.01106330915399
906 => 0.011056380492219
907 => 0.011143865772378
908 => 0.01113989693473
909 => 0.011110478925501
910 => 0.011081457415712
911 => 0.011196524421582
912 => 0.011163386971811
913 => 0.011130198050428
914 => 0.011063632587624
915 => 0.011072679939554
916 => 0.010975984463431
917 => 0.010931248711692
918 => 0.010258530341619
919 => 0.010078758011429
920 => 0.01013531804611
921 => 0.010153939078108
922 => 0.010075701929624
923 => 0.010187873903075
924 => 0.010170392019832
925 => 0.01023840380097
926 => 0.010195912992843
927 => 0.01019765683043
928 => 0.010322613237136
929 => 0.010358888613605
930 => 0.010340438664354
1001 => 0.010353360376382
1002 => 0.010651135776147
1003 => 0.010608801636621
1004 => 0.010586312468749
1005 => 0.010592542121944
1006 => 0.01066863012096
1007 => 0.010689930606434
1008 => 0.010599678952723
1009 => 0.010642242154351
1010 => 0.010823470864813
1011 => 0.010886890656817
1012 => 0.01108929618967
1013 => 0.011003310721843
1014 => 0.011161140769403
1015 => 0.011646256527375
1016 => 0.012033800562301
1017 => 0.011677399051849
1018 => 0.012389074318554
1019 => 0.012943215597438
1020 => 0.012921946732184
1021 => 0.012825319382692
1022 => 0.012194444269291
1023 => 0.011613903584121
1024 => 0.012099550518325
1025 => 0.012100788532234
1026 => 0.012059071029887
1027 => 0.011799967205685
1028 => 0.012050054778445
1029 => 0.012069905821786
1030 => 0.012058794516334
1031 => 0.011860140221819
1101 => 0.011556831831546
1102 => 0.011616097564988
1103 => 0.011713176045353
1104 => 0.011529386229328
1105 => 0.011470654246891
1106 => 0.011579848176459
1107 => 0.011931693768987
1108 => 0.011865179397822
1109 => 0.011863442438786
1110 => 0.012148019125111
1111 => 0.011944323633195
1112 => 0.011616845095681
1113 => 0.011534152446048
1114 => 0.011240649248293
1115 => 0.011443372952405
1116 => 0.011450668617614
1117 => 0.011339638916658
1118 => 0.011625854543994
1119 => 0.011623217016601
1120 => 0.011894936157183
1121 => 0.012414361100927
1122 => 0.012260741585712
1123 => 0.012082098803274
1124 => 0.012101522226952
1125 => 0.012314549243606
1126 => 0.012185748246404
1127 => 0.01223206598303
1128 => 0.012314479136165
1129 => 0.012364201037654
1130 => 0.012094368010504
1201 => 0.01203145702427
1202 => 0.011902763225191
1203 => 0.011869189415194
1204 => 0.01197400782926
1205 => 0.011946391880443
1206 => 0.011450055445203
1207 => 0.011398185526131
1208 => 0.011399776302496
1209 => 0.011269346924708
1210 => 0.011070410816944
1211 => 0.01159320303029
1212 => 0.011551215499086
1213 => 0.011504864514213
1214 => 0.011510542245385
1215 => 0.011737468626126
1216 => 0.011605839865239
1217 => 0.011955796499587
1218 => 0.011883855936224
1219 => 0.011810070368868
1220 => 0.011799870955896
1221 => 0.011771469807553
1222 => 0.011674071702282
1223 => 0.011556457637448
1224 => 0.011478798644289
1225 => 0.010588584982356
1226 => 0.010753803459876
1227 => 0.010943872258125
1228 => 0.011009483245628
1229 => 0.010897251111363
1230 => 0.011678503311006
1231 => 0.011821245616214
]
'min_raw' => 0.0049269828076871
'max_raw' => 0.012943215597438
'avg_raw' => 0.0089350992025626
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004926'
'max' => '$0.012943'
'avg' => '$0.008935'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00019103022544276
'max_diff' => -0.0023341779508115
'year' => 2027
]
2 => [
'items' => [
101 => 0.011388869862888
102 => 0.011307990013226
103 => 0.011683805780484
104 => 0.011457142931219
105 => 0.011559209198364
106 => 0.011338597756059
107 => 0.011786863174872
108 => 0.01178344814343
109 => 0.011609062770978
110 => 0.011756452093635
111 => 0.011730839571751
112 => 0.011533958915745
113 => 0.011793104642837
114 => 0.011793233175884
115 => 0.011625391046364
116 => 0.011429388184451
117 => 0.011394347502122
118 => 0.011367949055041
119 => 0.011552716798636
120 => 0.01171837897979
121 => 0.01202663522778
122 => 0.012104138172513
123 => 0.012406637325467
124 => 0.012226513808299
125 => 0.01230636023047
126 => 0.012393044816702
127 => 0.012434604595062
128 => 0.012366885166445
129 => 0.012836790864602
130 => 0.012876465303065
131 => 0.012889767799099
201 => 0.012731318241575
202 => 0.012872058534237
203 => 0.012806210812129
204 => 0.01297752829203
205 => 0.013004393060369
206 => 0.012981639557327
207 => 0.01299016685883
208 => 0.012589185242499
209 => 0.012568392230346
210 => 0.01228487803423
211 => 0.012400412164778
212 => 0.012184426645414
213 => 0.012252917878502
214 => 0.012283108161439
215 => 0.012267338470916
216 => 0.012406944291174
217 => 0.01228825082437
218 => 0.011974999250461
219 => 0.011661662331371
220 => 0.011657728641591
221 => 0.01157523256165
222 => 0.011515603005764
223 => 0.0115270897737
224 => 0.011567570642149
225 => 0.0115132501841
226 => 0.011524842207942
227 => 0.011717347040967
228 => 0.011755952512349
229 => 0.011624756036463
301 => 0.011097983254219
302 => 0.010968711892147
303 => 0.011061629583642
304 => 0.011017220911773
305 => 0.0088917571346379
306 => 0.009391103321626
307 => 0.0090944087735119
308 => 0.0092311392715426
309 => 0.008928290966599
310 => 0.0090728260513577
311 => 0.009046135698779
312 => 0.0098490695907279
313 => 0.0098365328824046
314 => 0.0098425335412511
315 => 0.0095561064598725
316 => 0.010012392577851
317 => 0.010237175527086
318 => 0.010195574185587
319 => 0.010206044346976
320 => 0.010026132285
321 => 0.0098442754832793
322 => 0.00964256830261
323 => 0.010017315312533
324 => 0.009975649842174
325 => 0.010071215440414
326 => 0.010314265663818
327 => 0.010350055732472
328 => 0.010398157947691
329 => 0.010380916727684
330 => 0.010791672536371
331 => 0.010741927297685
401 => 0.010861799010236
402 => 0.010615213802829
403 => 0.010336179234565
404 => 0.010389214583665
405 => 0.010384106853063
406 => 0.010319079580124
407 => 0.01026037586568
408 => 0.0101626507208
409 => 0.0104718675398
410 => 0.010459313901645
411 => 0.010662542711369
412 => 0.010626620045191
413 => 0.010386719688686
414 => 0.010395287776851
415 => 0.010452912287443
416 => 0.010652351376547
417 => 0.010711558477042
418 => 0.010684131389098
419 => 0.010749049271884
420 => 0.010800357719522
421 => 0.010755492822948
422 => 0.011390685146741
423 => 0.011126909008448
424 => 0.011255471662909
425 => 0.011286133098463
426 => 0.011207594476032
427 => 0.01122462669098
428 => 0.011250425855626
429 => 0.011407073331359
430 => 0.011818161633994
501 => 0.012000229844859
502 => 0.012547991040333
503 => 0.011985111614459
504 => 0.011951712678754
505 => 0.012050381010862
506 => 0.012371974819016
507 => 0.012632596394755
508 => 0.012719059607047
509 => 0.012730487147903
510 => 0.012892697882128
511 => 0.012985674049935
512 => 0.012873001232427
513 => 0.012777522816926
514 => 0.012435530983815
515 => 0.01247511746971
516 => 0.0127478291015
517 => 0.013133050344039
518 => 0.013463610245576
519 => 0.013347859689234
520 => 0.014230954726971
521 => 0.014318509992843
522 => 0.0143064126861
523 => 0.014505876611726
524 => 0.01410998133948
525 => 0.013940728440484
526 => 0.012798166334083
527 => 0.013119179681479
528 => 0.013585791434372
529 => 0.013524033619173
530 => 0.013185167691654
531 => 0.013463353185384
601 => 0.013371376361492
602 => 0.013298830424366
603 => 0.01363117742606
604 => 0.013265748245636
605 => 0.013582145998759
606 => 0.013176362607663
607 => 0.013348388428025
608 => 0.013250738252435
609 => 0.013313929883597
610 => 0.012944512899039
611 => 0.013143841336816
612 => 0.012936220180696
613 => 0.012936121741235
614 => 0.012931538492706
615 => 0.013175803862148
616 => 0.013183769347076
617 => 0.013003256869994
618 => 0.012977242201912
619 => 0.013073432064652
620 => 0.012960818927548
621 => 0.013013509905621
622 => 0.012962414883597
623 => 0.012950912317914
624 => 0.012859257917549
625 => 0.012819770681782
626 => 0.012835254644387
627 => 0.012782399897486
628 => 0.012750553000638
629 => 0.012925203343349
630 => 0.012831894710613
701 => 0.012910902457148
702 => 0.012820863158399
703 => 0.01250874772068
704 => 0.012329246831888
705 => 0.011739689703153
706 => 0.011906887373519
707 => 0.01201773960195
708 => 0.011981102941115
709 => 0.012059812665094
710 => 0.012064644802893
711 => 0.012039055469276
712 => 0.012009426299145
713 => 0.011995004457721
714 => 0.012102493048103
715 => 0.012164893792718
716 => 0.012028865106085
717 => 0.01199699548805
718 => 0.012134528000586
719 => 0.012218422753784
720 => 0.012837854475002
721 => 0.012791964972356
722 => 0.012907138618638
723 => 0.01289417183355
724 => 0.013014892163454
725 => 0.013212218882628
726 => 0.012810998489128
727 => 0.012880636476282
728 => 0.012863562850008
729 => 0.013049968224725
730 => 0.013050550161958
731 => 0.012938790828176
801 => 0.012999377376108
802 => 0.012965559627157
803 => 0.013026672870253
804 => 0.012791352090071
805 => 0.013077947399024
806 => 0.013240428471407
807 => 0.013242684521255
808 => 0.013319699260035
809 => 0.013397950695028
810 => 0.013548147510234
811 => 0.013393761787372
812 => 0.013116036901089
813 => 0.013136087740833
814 => 0.012973257741621
815 => 0.012975994943325
816 => 0.012961383546109
817 => 0.01300523344905
818 => 0.012800974677873
819 => 0.012848913803201
820 => 0.01278179874701
821 => 0.012880490581258
822 => 0.012774314481952
823 => 0.012863554616589
824 => 0.01290206770034
825 => 0.013044181808512
826 => 0.012753324112625
827 => 0.012160245581377
828 => 0.012284917879028
829 => 0.012100517758005
830 => 0.012117584691266
831 => 0.012152062612637
901 => 0.012040308389001
902 => 0.012061627573091
903 => 0.012060865901814
904 => 0.012054302230242
905 => 0.012025230640521
906 => 0.011983071083788
907 => 0.012151021781786
908 => 0.01217955987811
909 => 0.012242996531117
910 => 0.012431740980971
911 => 0.01241288095953
912 => 0.012443642436995
913 => 0.012376490304407
914 => 0.0121206996861
915 => 0.01213459034732
916 => 0.011961373579326
917 => 0.012238566988915
918 => 0.01217292393075
919 => 0.012130603424118
920 => 0.012119055881786
921 => 0.012308268192624
922 => 0.012364883481566
923 => 0.012329604632808
924 => 0.012257246684757
925 => 0.012396195335722
926 => 0.012433372132948
927 => 0.012441694646819
928 => 0.012687885015569
929 => 0.012455453953598
930 => 0.012511402420381
1001 => 0.012947896387022
1002 => 0.012552056591328
1003 => 0.012761741759388
1004 => 0.012751478761561
1005 => 0.012858746598181
1006 => 0.012742679668044
1007 => 0.012744118456748
1008 => 0.012839365028714
1009 => 0.012705608396198
1010 => 0.012672488372963
1011 => 0.012626733298074
1012 => 0.012726637830178
1013 => 0.012786526078881
1014 => 0.013269181380355
1015 => 0.013580998716863
1016 => 0.013567461903926
1017 => 0.013691163034323
1018 => 0.013635434542106
1019 => 0.013455472540306
1020 => 0.013762645733351
1021 => 0.013665443282399
1022 => 0.013673456534355
1023 => 0.013673158280717
1024 => 0.013737789413014
1025 => 0.013691992332425
1026 => 0.013601721585611
1027 => 0.013661647520106
1028 => 0.013839606121641
1029 => 0.014391995081245
1030 => 0.01470111926122
1031 => 0.014373385417463
1101 => 0.014599451834355
1102 => 0.01446389253992
1103 => 0.014439257383582
1104 => 0.014581243799567
1105 => 0.014723478743978
1106 => 0.014714418992918
1107 => 0.014611163727121
1108 => 0.014552837447477
1109 => 0.014994503577674
1110 => 0.015319915658816
1111 => 0.015297724736473
1112 => 0.015395668250823
1113 => 0.015683233438234
1114 => 0.015709524795087
1115 => 0.015706212688423
1116 => 0.015641046817245
1117 => 0.01592419208931
1118 => 0.016160396856733
1119 => 0.01562596280089
1120 => 0.015829468293099
1121 => 0.01592082846509
1122 => 0.016054972302913
1123 => 0.016281295442439
1124 => 0.016527142401212
1125 => 0.016561907856757
1126 => 0.016537240102367
1127 => 0.016375097424336
1128 => 0.016644106100189
1129 => 0.016801685073475
1130 => 0.016895519745935
1201 => 0.017133468862695
1202 => 0.015921392674409
1203 => 0.015063424904245
1204 => 0.01492944084773
1205 => 0.015201902695317
1206 => 0.015273748711684
1207 => 0.015244787672574
1208 => 0.014279066944237
1209 => 0.014924356527955
1210 => 0.015618633862547
1211 => 0.015645303882502
1212 => 0.015992873632853
1213 => 0.016106056590932
1214 => 0.016385895796973
1215 => 0.016368391778444
1216 => 0.0164365281719
1217 => 0.016420864795002
1218 => 0.016939207997097
1219 => 0.017511017523717
1220 => 0.017491217578053
1221 => 0.017409013193258
1222 => 0.017531100722609
1223 => 0.018121269432914
1224 => 0.01806693615533
1225 => 0.018119716306405
1226 => 0.018815558476305
1227 => 0.01972025227957
1228 => 0.019299931178181
1229 => 0.020211907024057
1230 => 0.020785947477274
1231 => 0.021778691084221
]
'min_raw' => 0.0088917571346379
'max_raw' => 0.021778691084221
'avg_raw' => 0.01533522410943
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.008891'
'max' => '$0.021778'
'avg' => '$0.015335'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0039647743269508
'max_diff' => 0.0088354754867833
'year' => 2028
]
3 => [
'items' => [
101 => 0.021654394695266
102 => 0.022040862496362
103 => 0.021431878217597
104 => 0.020033527217525
105 => 0.019812232819091
106 => 0.020255269808823
107 => 0.02134443301716
108 => 0.020220968183389
109 => 0.020448243656057
110 => 0.020382788304639
111 => 0.02037930046713
112 => 0.020512417038816
113 => 0.020319324508691
114 => 0.019532630804282
115 => 0.019893167892998
116 => 0.019753947208631
117 => 0.019908422937525
118 => 0.020742064735729
119 => 0.020373491825205
120 => 0.019985230204399
121 => 0.02047219643904
122 => 0.021092271795491
123 => 0.021053468594067
124 => 0.020978174164824
125 => 0.021402604920178
126 => 0.022103640181479
127 => 0.02229312719562
128 => 0.022433002635568
129 => 0.022452289095522
130 => 0.022650951619516
131 => 0.021582693158601
201 => 0.023278046770895
202 => 0.02357078750654
203 => 0.023515764381099
204 => 0.023841133388355
205 => 0.023745401572605
206 => 0.023606701191446
207 => 0.024122480275919
208 => 0.023531181176796
209 => 0.022691906548078
210 => 0.022231463887794
211 => 0.022837811925707
212 => 0.023208087513829
213 => 0.023452816123628
214 => 0.023526870853084
215 => 0.02166561902198
216 => 0.020662507514774
217 => 0.021305490490196
218 => 0.022089974096526
219 => 0.021578335312559
220 => 0.02159839058423
221 => 0.020868928134599
222 => 0.022154515337126
223 => 0.021967216095208
224 => 0.022938924893604
225 => 0.022707018790417
226 => 0.02349940959399
227 => 0.023290746539502
228 => 0.02415689521249
301 => 0.024502425368184
302 => 0.025082624277069
303 => 0.025509420956279
304 => 0.025760044129631
305 => 0.025744997654367
306 => 0.026738091527156
307 => 0.026152498766429
308 => 0.02541685624534
309 => 0.025403550793056
310 => 0.025784550478863
311 => 0.026583021298156
312 => 0.026790053164321
313 => 0.0269057557337
314 => 0.02672855322106
315 => 0.026092934249103
316 => 0.025818477199673
317 => 0.026052322557574
318 => 0.025766349779422
319 => 0.026260019024301
320 => 0.026937932339582
321 => 0.026797945920736
322 => 0.027265899531
323 => 0.027750182287468
324 => 0.028442728379716
325 => 0.028623785573138
326 => 0.028923066228875
327 => 0.029231124332202
328 => 0.029330064292592
329 => 0.029518971376243
330 => 0.029517975742665
331 => 0.030087259954162
401 => 0.030715198068707
402 => 0.030952230170147
403 => 0.031497272417382
404 => 0.030563906669551
405 => 0.031271875311014
406 => 0.031910480747218
407 => 0.031149109019564
408 => 0.032198482569275
409 => 0.032239227366279
410 => 0.032854425426583
411 => 0.032230804334777
412 => 0.031860500121131
413 => 0.032929554510808
414 => 0.033446836255075
415 => 0.033291026783924
416 => 0.032105309015197
417 => 0.031415170415971
418 => 0.029608944584001
419 => 0.031748497105118
420 => 0.032790610726552
421 => 0.032102610192674
422 => 0.032449597643361
423 => 0.03434264866325
424 => 0.035063399925647
425 => 0.0349134887015
426 => 0.034938821230632
427 => 0.035327725529261
428 => 0.03705234136289
429 => 0.036018911579097
430 => 0.036808929926931
501 => 0.037227952809999
502 => 0.037617164616192
503 => 0.036661383431837
504 => 0.035417926154206
505 => 0.035024071037595
506 => 0.032034202098588
507 => 0.03187856643597
508 => 0.031791203422299
509 => 0.031240391978849
510 => 0.030807605064249
511 => 0.030463436841412
512 => 0.029560236647355
513 => 0.029865040199129
514 => 0.028425527602333
515 => 0.029346476748569
516 => 0.027048979885835
517 => 0.028962403543608
518 => 0.02792101403938
519 => 0.028620279083388
520 => 0.028617839413524
521 => 0.027330270765322
522 => 0.026587628039911
523 => 0.02706086888863
524 => 0.027568220644362
525 => 0.027650536759794
526 => 0.028308331554336
527 => 0.028491907942241
528 => 0.027935662916527
529 => 0.02700136937003
530 => 0.027218384451914
531 => 0.026583230236203
601 => 0.025470146904023
602 => 0.026269582785765
603 => 0.026542545344506
604 => 0.02666310116078
605 => 0.025568511542066
606 => 0.02522456771917
607 => 0.025041454913827
608 => 0.026860071595521
609 => 0.02695969952264
610 => 0.026449988961533
611 => 0.028753929030472
612 => 0.028232476435492
613 => 0.028815066743072
614 => 0.027198692607877
615 => 0.027260440276578
616 => 0.026495222857432
617 => 0.026923693480308
618 => 0.026620864254312
619 => 0.026889077288209
620 => 0.027049843074842
621 => 0.027814934929339
622 => 0.028971139663602
623 => 0.027700655719842
624 => 0.027147087671881
625 => 0.027490518175451
626 => 0.028405118863202
627 => 0.029790785722691
628 => 0.028970443052729
629 => 0.029334497199336
630 => 0.029414026834729
701 => 0.028809136520635
702 => 0.029813088891379
703 => 0.030351115122955
704 => 0.03090301870771
705 => 0.031382221126366
706 => 0.030682576279339
707 => 0.031431296555808
708 => 0.030827960179895
709 => 0.030286705078932
710 => 0.0302875259395
711 => 0.029947988708191
712 => 0.029290092538086
713 => 0.029168766390381
714 => 0.029799920332548
715 => 0.030306046023666
716 => 0.030347732959765
717 => 0.030627950148045
718 => 0.030793779793602
719 => 0.032419135754535
720 => 0.033072867367673
721 => 0.03387223800971
722 => 0.034183637924845
723 => 0.035120840026352
724 => 0.034363973213552
725 => 0.034200220317687
726 => 0.031926874575903
727 => 0.032299134813765
728 => 0.032895159372352
729 => 0.031936702801344
730 => 0.032544622889357
731 => 0.032664639192239
801 => 0.031904134813819
802 => 0.032310353061788
803 => 0.031231557830501
804 => 0.028994654451637
805 => 0.029815579204292
806 => 0.03042005614253
807 => 0.029557393020195
808 => 0.031103683277307
809 => 0.030200372431012
810 => 0.029914066259304
811 => 0.028797083807952
812 => 0.029324256528393
813 => 0.030037265181176
814 => 0.029596708729909
815 => 0.030510929516172
816 => 0.031805709963298
817 => 0.032728447615429
818 => 0.03279928395468
819 => 0.032206025462981
820 => 0.033156725982054
821 => 0.033163650797432
822 => 0.032091256728193
823 => 0.031434421331899
824 => 0.031285186947867
825 => 0.031658003698302
826 => 0.032110672059099
827 => 0.032824403898293
828 => 0.033255697100645
829 => 0.03438028103214
830 => 0.034684561199654
831 => 0.03501887285177
901 => 0.035465616316892
902 => 0.036002046389444
903 => 0.034828367929681
904 => 0.034875000362898
905 => 0.03378208723185
906 => 0.032614152811729
907 => 0.03350046945152
908 => 0.034659210556286
909 => 0.034393394066557
910 => 0.034363484281325
911 => 0.034413784243803
912 => 0.034213367291303
913 => 0.033306888842943
914 => 0.032851661041032
915 => 0.033439021046496
916 => 0.033751176749013
917 => 0.03423530302078
918 => 0.034175624239119
919 => 0.035422681523824
920 => 0.035907250275606
921 => 0.035783276853034
922 => 0.035806090946374
923 => 0.036683379525454
924 => 0.037659104853549
925 => 0.038573000381606
926 => 0.039502654165472
927 => 0.038381920244017
928 => 0.03781288067596
929 => 0.03839998425842
930 => 0.038088458833485
1001 => 0.039878576329601
1002 => 0.040002520181069
1003 => 0.041792508231314
1004 => 0.043491420038808
1005 => 0.042424363971688
1006 => 0.043430549781722
1007 => 0.044518821770806
1008 => 0.046618275003517
1009 => 0.045911253014395
1010 => 0.045369685251175
1011 => 0.044857906331768
1012 => 0.045922837020438
1013 => 0.047292853338729
1014 => 0.047587941731836
1015 => 0.04806609766111
1016 => 0.047563375167603
1017 => 0.048168849037966
1018 => 0.050306437859049
1019 => 0.049728842490574
1020 => 0.048908564214251
1021 => 0.050595985292283
1022 => 0.051206656420739
1023 => 0.055492666211199
1024 => 0.060903930617888
1025 => 0.058663631621241
1026 => 0.057273005740025
1027 => 0.057599835808198
1028 => 0.059575846386661
1029 => 0.060210478269022
1030 => 0.058485330042035
1031 => 0.059094681560533
1101 => 0.062452268337575
1102 => 0.064253505919177
1103 => 0.061807183344879
1104 => 0.055057876384952
1105 => 0.048834707130327
1106 => 0.050485371849617
1107 => 0.05029823769654
1108 => 0.05390554582099
1109 => 0.049715067032059
1110 => 0.049785623947783
1111 => 0.053467527384042
1112 => 0.052485258671053
1113 => 0.050894109155483
1114 => 0.048846324282662
1115 => 0.045060804548078
1116 => 0.04170786415213
1117 => 0.048283752404641
1118 => 0.048000188145716
1119 => 0.047589545076924
1120 => 0.0485033867903
1121 => 0.05294074275196
1122 => 0.052838447334725
1123 => 0.05218769608185
1124 => 0.052681285171697
1125 => 0.050807580601564
1126 => 0.051290476932748
1127 => 0.048833721348522
1128 => 0.049944277475768
1129 => 0.050890695263244
1130 => 0.051080702646034
1201 => 0.051508798981479
1202 => 0.047850762666522
1203 => 0.049493113577634
1204 => 0.050457840870443
1205 => 0.046099167864454
1206 => 0.050371683919317
1207 => 0.047787084392675
1208 => 0.046909832493951
1209 => 0.048090936606434
1210 => 0.047630659185138
1211 => 0.047234939686705
1212 => 0.047014121407255
1213 => 0.047881393913758
1214 => 0.047840934614715
1215 => 0.046421908463736
1216 => 0.044570846696689
1217 => 0.045192123784741
1218 => 0.044966407994148
1219 => 0.044148384851122
1220 => 0.04469963368103
1221 => 0.042272212814762
1222 => 0.038095961380703
1223 => 0.040854921000083
1224 => 0.040748704055908
1225 => 0.040695144656099
1226 => 0.04276842655802
1227 => 0.042569128341902
1228 => 0.042207400128114
1229 => 0.044141741428805
1230 => 0.043435680833491
1231 => 0.04561159321945
]
'min_raw' => 0.019532630804282
'max_raw' => 0.064253505919177
'avg_raw' => 0.041893068361729
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.019532'
'max' => '$0.064253'
'avg' => '$0.041893'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.010640873669644
'max_diff' => 0.042474814834956
'year' => 2029
]
4 => [
'items' => [
101 => 0.047044789846033
102 => 0.046681284822477
103 => 0.048029213177019
104 => 0.045206436754046
105 => 0.046144049851624
106 => 0.04633729061156
107 => 0.044117871957414
108 => 0.042601735994822
109 => 0.042500627011332
110 => 0.039871856188602
111 => 0.041276124343408
112 => 0.042511822207072
113 => 0.041920018824405
114 => 0.041732671553076
115 => 0.042689788131632
116 => 0.042764164286935
117 => 0.041068380063996
118 => 0.041420987302447
119 => 0.042891418102864
120 => 0.041383936219013
121 => 0.038455145164459
122 => 0.037728764489225
123 => 0.037631851917297
124 => 0.035661849916084
125 => 0.037777304719268
126 => 0.036853852007015
127 => 0.039771028060362
128 => 0.038104752743819
129 => 0.038032922945265
130 => 0.03792434166961
131 => 0.036228679567409
201 => 0.036599921802843
202 => 0.037833987535213
203 => 0.038274316091269
204 => 0.038228386215367
205 => 0.037827939939883
206 => 0.038011262194182
207 => 0.037420717339375
208 => 0.037212183660014
209 => 0.036553994006244
210 => 0.035586637044735
211 => 0.035721153963378
212 => 0.033804566699911
213 => 0.032760308237789
214 => 0.032471271258579
215 => 0.032084758930292
216 => 0.032514928854529
217 => 0.033799137249
218 => 0.032250109465258
219 => 0.029594409981699
220 => 0.029754022045752
221 => 0.030112622964434
222 => 0.029444372524853
223 => 0.028811929565799
224 => 0.029361787406977
225 => 0.028236532526326
226 => 0.030248604640792
227 => 0.030194183728862
228 => 0.03094415978743
301 => 0.031413135207911
302 => 0.030332298696299
303 => 0.030060471236521
304 => 0.030215316511479
305 => 0.027656069038525
306 => 0.030735014668988
307 => 0.030761641518657
308 => 0.030533646266168
309 => 0.032173089762608
310 => 0.035632826895347
311 => 0.034331134618407
312 => 0.033827080024918
313 => 0.032868871874235
314 => 0.03414562734225
315 => 0.034047592442795
316 => 0.033604241448825
317 => 0.033336101384333
318 => 0.033830157674783
319 => 0.033274882342467
320 => 0.033175139634837
321 => 0.032570807347738
322 => 0.032355088216611
323 => 0.03219537835995
324 => 0.032019553500533
325 => 0.032407379327582
326 => 0.031528514980753
327 => 0.030468690734611
328 => 0.030380577816002
329 => 0.030623865331249
330 => 0.030516228716378
331 => 0.0303800624933
401 => 0.030120084090782
402 => 0.030042954052314
403 => 0.030293589259159
404 => 0.030010636723572
405 => 0.030428148603053
406 => 0.03031460847382
407 => 0.029680382541559
408 => 0.028889902209447
409 => 0.028882865276402
410 => 0.028712557585496
411 => 0.028495645135195
412 => 0.028435305053805
413 => 0.029315479913272
414 => 0.03113741553095
415 => 0.030779725973976
416 => 0.03103819333639
417 => 0.032309596944918
418 => 0.032713737919629
419 => 0.032426888228383
420 => 0.032034230678887
421 => 0.032051505618294
422 => 0.033393335330445
423 => 0.03347702360367
424 => 0.033688476871249
425 => 0.033960254076775
426 => 0.032473173061681
427 => 0.031981464236214
428 => 0.03174846531574
429 => 0.031030918822611
430 => 0.031804731197664
501 => 0.03135386386467
502 => 0.031414701271712
503 => 0.031375080830566
504 => 0.031396716270554
505 => 0.03024804222563
506 => 0.03066655867507
507 => 0.029970693905275
508 => 0.029039009093006
509 => 0.029035885758825
510 => 0.029263914296711
511 => 0.029128273999619
512 => 0.028763269447775
513 => 0.028815116621591
514 => 0.028360880822799
515 => 0.028870269071769
516 => 0.028884876504071
517 => 0.028688734281652
518 => 0.029473517161224
519 => 0.029795043347307
520 => 0.029665938334737
521 => 0.029785984995457
522 => 0.030794589589939
523 => 0.030959036147344
524 => 0.031032072445413
525 => 0.030934213481455
526 => 0.029804420435923
527 => 0.029854531561743
528 => 0.029486849369727
529 => 0.029176196662869
530 => 0.029188621141985
531 => 0.029348337015335
601 => 0.030045825601468
602 => 0.031513649211786
603 => 0.031569352044832
604 => 0.031636865503451
605 => 0.031362254337703
606 => 0.031279428982439
607 => 0.031388697005071
608 => 0.031939934378607
609 => 0.03335786656283
610 => 0.032856674628419
611 => 0.032449197784226
612 => 0.032806664831552
613 => 0.032751635581535
614 => 0.032287133331917
615 => 0.032274096300843
616 => 0.031382567973471
617 => 0.03105299024996
618 => 0.030777570435729
619 => 0.030476819188605
620 => 0.030298523768037
621 => 0.030572466567849
622 => 0.030635120527362
623 => 0.030036139807872
624 => 0.029954500949115
625 => 0.030443641534548
626 => 0.030228388999898
627 => 0.030449781569791
628 => 0.030501146545077
629 => 0.03049287560102
630 => 0.030268127233249
701 => 0.030411375140774
702 => 0.030072551135222
703 => 0.029704130918906
704 => 0.029469101774286
705 => 0.029264007673514
706 => 0.029377805800761
707 => 0.02897213625584
708 => 0.028842354403905
709 => 0.030362845972884
710 => 0.031486049442928
711 => 0.031469717619637
712 => 0.031370301845551
713 => 0.031222590171014
714 => 0.031929128349576
715 => 0.031682984575842
716 => 0.031862074737234
717 => 0.031907660699698
718 => 0.032045635678465
719 => 0.032094949874024
720 => 0.031945888124134
721 => 0.031445618685142
722 => 0.030198994807365
723 => 0.029618688027063
724 => 0.02942717712379
725 => 0.029434138181393
726 => 0.029242121137172
727 => 0.029298678762296
728 => 0.029222452703256
729 => 0.029078098988498
730 => 0.029368892365653
731 => 0.029402403593443
801 => 0.029334528944492
802 => 0.029350515881418
803 => 0.028788542777753
804 => 0.028831268372284
805 => 0.028593366832633
806 => 0.028548763161895
807 => 0.027947368786115
808 => 0.026881911475914
809 => 0.027472278252209
810 => 0.026759198204575
811 => 0.02648914398561
812 => 0.027767538656142
813 => 0.027639223288369
814 => 0.027419603156092
815 => 0.027094739207608
816 => 0.026974244009042
817 => 0.026242153326698
818 => 0.026198897503633
819 => 0.026561741413914
820 => 0.026394301434016
821 => 0.02615915228776
822 => 0.025307465916708
823 => 0.024349888451979
824 => 0.024378791696522
825 => 0.02468337927169
826 => 0.025569008725723
827 => 0.025222977976487
828 => 0.024971928697671
829 => 0.024924914714262
830 => 0.025513393147062
831 => 0.026346213419517
901 => 0.026736954058049
902 => 0.026349741952233
903 => 0.025904933534052
904 => 0.025932006961423
905 => 0.026112114344613
906 => 0.026131041084005
907 => 0.025841516530813
908 => 0.025923015996637
909 => 0.025799210855583
910 => 0.025039418933464
911 => 0.025025676706919
912 => 0.024839211515932
913 => 0.024833565424054
914 => 0.024516341618262
915 => 0.024471959814967
916 => 0.023842092694459
917 => 0.024256673140591
918 => 0.023978594343776
919 => 0.023559464004818
920 => 0.023487205776402
921 => 0.023485033606802
922 => 0.023915386749082
923 => 0.024251644213559
924 => 0.023983431643502
925 => 0.023922364840382
926 => 0.024574398533917
927 => 0.024491421302996
928 => 0.024419563556163
929 => 0.026271643498571
930 => 0.024805577704555
1001 => 0.024166289338254
1002 => 0.023375048587389
1003 => 0.023632680565653
1004 => 0.023686967408874
1005 => 0.021784176034908
1006 => 0.021012213811467
1007 => 0.020747305467165
1008 => 0.020594846969765
1009 => 0.020664324221484
1010 => 0.01996946767825
1011 => 0.020436422767169
1012 => 0.01983473573549
1013 => 0.01973386094657
1014 => 0.020809751893933
1015 => 0.020959455833995
1016 => 0.020320772316323
1017 => 0.020730910528137
1018 => 0.020582188711186
1019 => 0.019845049932702
1020 => 0.019816896653389
1021 => 0.019447026326027
1022 => 0.018868250884713
1023 => 0.018603734977414
1024 => 0.018465972796261
1025 => 0.018522816157136
1026 => 0.018494074414442
1027 => 0.018306515101699
1028 => 0.018504825094699
1029 => 0.01799822500993
1030 => 0.01779649277422
1031 => 0.017705375003503
1101 => 0.017255738269457
1102 => 0.017971310267687
1103 => 0.018112286965877
1104 => 0.018253541431712
1105 => 0.019483065118288
1106 => 0.019421641589504
1107 => 0.019976880375235
1108 => 0.01995530481704
1109 => 0.019796941721078
1110 => 0.019128833868677
1111 => 0.019395129750767
1112 => 0.018575512417264
1113 => 0.019189625452086
1114 => 0.018909369908967
1115 => 0.019094870771045
1116 => 0.018761323495089
1117 => 0.018945922329433
1118 => 0.018145717770908
1119 => 0.01739849801334
1120 => 0.01769920105649
1121 => 0.018026099653958
1122 => 0.018734899105483
1123 => 0.018312743999623
1124 => 0.018464566939142
1125 => 0.017955985506607
1126 => 0.016906636742182
1127 => 0.01691257594223
1128 => 0.016751156496128
1129 => 0.016611666527072
1130 => 0.018361233591806
1201 => 0.018143647270744
1202 => 0.017796951945125
1203 => 0.018261017415591
1204 => 0.018383723691691
1205 => 0.018387216966867
1206 => 0.018725787154855
1207 => 0.018906482124876
1208 => 0.018938330396519
1209 => 0.019471077902611
1210 => 0.019649647839544
1211 => 0.020385152137606
1212 => 0.018891151419115
1213 => 0.018860383457472
1214 => 0.01826754776844
1215 => 0.017891562002093
1216 => 0.018293291835531
1217 => 0.018649169626366
1218 => 0.018278605883406
1219 => 0.018326993685209
1220 => 0.017829542136456
1221 => 0.018007357657864
1222 => 0.018160516339239
1223 => 0.018075951117635
1224 => 0.017949352887891
1225 => 0.018619991705894
1226 => 0.018582151635528
1227 => 0.019206665920772
1228 => 0.019693519465565
1229 => 0.020566048053315
1230 => 0.019655518986054
1231 => 0.019622335687818
]
'min_raw' => 0.016611666527072
'max_raw' => 0.048029213177019
'avg_raw' => 0.032320439852045
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.016611'
'max' => '$0.048029'
'avg' => '$0.03232'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0029209642772101
'max_diff' => -0.016224292742158
'year' => 2030
]
5 => [
'items' => [
101 => 0.019946707750846
102 => 0.019649598179871
103 => 0.019837361172853
104 => 0.020535796532341
105 => 0.020550553370907
106 => 0.020303357311815
107 => 0.020288315409154
108 => 0.020335792116331
109 => 0.020613864673176
110 => 0.020516697577508
111 => 0.020629141800585
112 => 0.02076975502335
113 => 0.021351390931478
114 => 0.021491621379808
115 => 0.021150934091517
116 => 0.021181694339136
117 => 0.021054267941239
118 => 0.02093117563752
119 => 0.021207869160094
120 => 0.021713532011024
121 => 0.021710386308672
122 => 0.021827690261407
123 => 0.021900769652162
124 => 0.021587059409657
125 => 0.021382845577232
126 => 0.021461154155048
127 => 0.021586371276314
128 => 0.021420547930255
129 => 0.020397009421536
130 => 0.020707485621188
131 => 0.020655807200056
201 => 0.020582210844052
202 => 0.020894397063644
203 => 0.020864285941181
204 => 0.019962340920069
205 => 0.020020080513968
206 => 0.019965852256014
207 => 0.02014107485152
208 => 0.019640135584682
209 => 0.019794221129284
210 => 0.019890862138396
211 => 0.019947784435194
212 => 0.020153426803214
213 => 0.020129297044842
214 => 0.020151926863553
215 => 0.020456840207754
216 => 0.021998987269094
217 => 0.022082922931087
218 => 0.021669593033407
219 => 0.021834710174959
220 => 0.02151772137033
221 => 0.021730518078518
222 => 0.02187610818181
223 => 0.0212182145004
224 => 0.021179258306282
225 => 0.020860961176097
226 => 0.021031996024587
227 => 0.020759867282798
228 => 0.020826638157374
301 => 0.020639940971079
302 => 0.02097595873537
303 => 0.021351678807728
304 => 0.021446600535642
305 => 0.021196902335876
306 => 0.021016104383332
307 => 0.020698682737213
308 => 0.021226562008911
309 => 0.021380929994785
310 => 0.021225751179598
311 => 0.021189792857395
312 => 0.021121651901796
313 => 0.021204249283249
314 => 0.021380089273582
315 => 0.021297166381396
316 => 0.021351938412598
317 => 0.021143203910327
318 => 0.021587163260801
319 => 0.022292277553989
320 => 0.02229454461174
321 => 0.022211621272568
322 => 0.022177690828787
323 => 0.022262775206986
324 => 0.022308929991815
325 => 0.022584077269105
326 => 0.022879321259988
327 => 0.024257096140394
328 => 0.023870222467231
329 => 0.025092666305322
330 => 0.026059460666786
331 => 0.026349360022995
401 => 0.026082666256101
402 => 0.025170321286072
403 => 0.02512555728927
404 => 0.026488985856605
405 => 0.026103754837349
406 => 0.026057932833403
407 => 0.025570464128919
408 => 0.025858618507443
409 => 0.02579559491789
410 => 0.025696109098561
411 => 0.026245887579776
412 => 0.027275023817548
413 => 0.027114623283713
414 => 0.026994891725971
415 => 0.026470262893281
416 => 0.026786206630653
417 => 0.026673705117278
418 => 0.027157083013959
419 => 0.026870740656097
420 => 0.026100836333493
421 => 0.026223446134505
422 => 0.026204913909739
423 => 0.026586305782223
424 => 0.026471821408831
425 => 0.026182558998426
426 => 0.027271506341768
427 => 0.027200796158335
428 => 0.027301047031845
429 => 0.027345180566725
430 => 0.028008003625214
501 => 0.028279541024304
502 => 0.028341184767829
503 => 0.028599124295509
504 => 0.028334766997403
505 => 0.029392384673386
506 => 0.030095638714212
507 => 0.030912504471754
508 => 0.03210616489634
509 => 0.03255499225796
510 => 0.032473915612381
511 => 0.033378935323244
512 => 0.035005235626206
513 => 0.032802637401315
514 => 0.035121978680452
515 => 0.03438770200956
516 => 0.032646745231948
517 => 0.032534648140002
518 => 0.033713644282724
519 => 0.036328544253109
520 => 0.035673541468478
521 => 0.036329615603016
522 => 0.035564270275647
523 => 0.035526264429307
524 => 0.036292444488749
525 => 0.038082665959936
526 => 0.037232198844423
527 => 0.036012845691244
528 => 0.036913197084315
529 => 0.036133229384049
530 => 0.034375743856135
531 => 0.035673040600193
601 => 0.034805575212326
602 => 0.035058747729502
603 => 0.03688203094906
604 => 0.036662648688273
605 => 0.036946549647981
606 => 0.036445471885079
607 => 0.035977386241817
608 => 0.035103669628173
609 => 0.034845005212582
610 => 0.03491649075128
611 => 0.034844969787899
612 => 0.034356133372435
613 => 0.034250569195058
614 => 0.034074624274558
615 => 0.0341291569625
616 => 0.033798329037457
617 => 0.034422669684551
618 => 0.034538552810323
619 => 0.034992895867589
620 => 0.035040067271019
621 => 0.036305406218337
622 => 0.035608478789312
623 => 0.036076037878521
624 => 0.036034214992745
625 => 0.032684477044362
626 => 0.033146041378661
627 => 0.033864090635963
628 => 0.033540610418841
629 => 0.033083285074544
630 => 0.032713970338791
701 => 0.032154420749754
702 => 0.032941976051125
703 => 0.03397752752526
704 => 0.035066330565324
705 => 0.036374456076759
706 => 0.036082497690866
707 => 0.0350418760688
708 => 0.035088557594592
709 => 0.03537712441853
710 => 0.035003404162469
711 => 0.034893186763071
712 => 0.035361982240356
713 => 0.035365210577163
714 => 0.034935200256963
715 => 0.034457322477119
716 => 0.034455320151772
717 => 0.034370286416601
718 => 0.035579397588231
719 => 0.0362442864777
720 => 0.036320514917355
721 => 0.036239155696354
722 => 0.036270467631486
723 => 0.035883583436531
724 => 0.036767885979254
725 => 0.037579409440913
726 => 0.037361903817519
727 => 0.037035831967803
728 => 0.036776100033757
729 => 0.037300719228257
730 => 0.037277358761353
731 => 0.037572321491433
801 => 0.03755894027821
802 => 0.037459755406193
803 => 0.037361907359723
804 => 0.037749863803736
805 => 0.03763813857825
806 => 0.037526239812629
807 => 0.037301809707334
808 => 0.037332313486033
809 => 0.03700629793722
810 => 0.036855468226882
811 => 0.034587351274486
812 => 0.033981236311946
813 => 0.034171932417769
814 => 0.034234714527228
815 => 0.033970932518773
816 => 0.034349128158859
817 => 0.03429018676896
818 => 0.034519493237497
819 => 0.034376232511285
820 => 0.03438211198146
821 => 0.034803411230844
822 => 0.034925716195276
823 => 0.034863510903244
824 => 0.03490707735751
825 => 0.035911047907831
826 => 0.035768315400747
827 => 0.035692491601122
828 => 0.035713495311807
829 => 0.035970031312786
830 => 0.036041847386713
831 => 0.035737557635056
901 => 0.035881062441016
902 => 0.03649208769132
903 => 0.036705911947893
904 => 0.037388336333407
905 => 0.037098430325314
906 => 0.037630565350006
907 => 0.039266166997711
908 => 0.040572798768923
909 => 0.039371166193275
910 => 0.041770629042552
911 => 0.043638955053218
912 => 0.043567245589069
913 => 0.04324145973395
914 => 0.041114420242824
915 => 0.039157086790718
916 => 0.040794479336173
917 => 0.040798653386504
918 => 0.040657999914718
919 => 0.03978441328137
920 => 0.040627600993486
921 => 0.040694530172066
922 => 0.040657067629967
923 => 0.039987290806411
924 => 0.038964665392289
925 => 0.039164483950389
926 => 0.039491790824745
927 => 0.038872130628222
928 => 0.038674111648897
929 => 0.039042266606114
930 => 0.040228538586396
1001 => 0.040004280740129
1002 => 0.039998424461466
1003 => 0.040957894627922
1004 => 0.040271121055361
1005 => 0.039167004302314
1006 => 0.038888200260659
1007 => 0.037898633737689
1008 => 0.038582130859819
1009 => 0.038606728704438
1010 => 0.038232384315819
1011 => 0.039197380286321
1012 => 0.039188487678568
1013 => 0.040104607731864
1014 => 0.041855885194788
1015 => 0.041337946273871
1016 => 0.04073563966044
1017 => 0.04080112708947
1018 => 0.041519362549192
1019 => 0.041085100994523
1020 => 0.041241264477361
1021 => 0.041519126177057
1022 => 0.041686767039401
1023 => 0.040777006149225
1024 => 0.040564897366832
1025 => 0.040130997238121
1026 => 0.040017800793669
1027 => 0.040371203394881
1028 => 0.04027809429536
1029 => 0.038604661350846
1030 => 0.038429778297251
1031 => 0.038435141710829
1101 => 0.037995389957329
1102 => 0.037324662980728
1103 => 0.039087293428209
1104 => 0.038945729535279
1105 => 0.03878945395366
1106 => 0.038808596820712
1107 => 0.039573694956875
1108 => 0.039129899399518
1109 => 0.040309802625412
1110 => 0.040067249993306
1111 => 0.039818476801421
1112 => 0.039784088768486
1113 => 0.039688332313941
1114 => 0.039359947801902
1115 => 0.038963403770763
1116 => 0.03870157105335
1117 => 0.03570015353941
1118 => 0.036257199171555
1119 => 0.036898029395031
1120 => 0.037119241420208
1121 => 0.036740842943736
1122 => 0.039374889280119
1123 => 0.039856154928078
1124 => 0.038398369888228
1125 => 0.038125677828243
1126 => 0.039392766926173
1127 => 0.038628557304779
1128 => 0.038972680850499
1129 => 0.038228873970167
1130 => 0.039740232126588
1201 => 0.039728718109653
1202 => 0.039140765651233
1203 => 0.039637699042965
1204 => 0.039551344637222
1205 => 0.038887547759729
1206 => 0.039761275671597
1207 => 0.039761709029741
1208 => 0.039195817571701
1209 => 0.038534980238279
1210 => 0.038416838131344
1211 => 0.038327833923928
1212 => 0.038950791271532
1213 => 0.039509332881457
1214 => 0.04054864034332
1215 => 0.040809946932568
1216 => 0.041829843946569
1217 => 0.041222544932616
1218 => 0.041491752719663
1219 => 0.041784015854268
1220 => 0.041924137548619
1221 => 0.041695816767019
1222 => 0.043280136636122
1223 => 0.043413901775381
1224 => 0.043458752069511
1225 => 0.042924528323724
1226 => 0.043399044046607
1227 => 0.043177033854179
1228 => 0.043754642698669
1229 => 0.043845219140765
1230 => 0.04376850411666
1231 => 0.043797254509033
]
'min_raw' => 0.019640135584682
'max_raw' => 0.043845219140765
'avg_raw' => 0.031742677362724
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.01964'
'max' => '$0.043845'
'avg' => '$0.031742'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0030284690576105
'max_diff' => -0.0041839940362537
'year' => 2031
]
6 => [
'items' => [
101 => 0.04244531699393
102 => 0.042375211901734
103 => 0.041419323995203
104 => 0.041808855382681
105 => 0.041080645124516
106 => 0.041311568098777
107 => 0.041413356745516
108 => 0.041360188132914
109 => 0.041830878902881
110 => 0.041430695592638
111 => 0.040374546040679
112 => 0.039318108741482
113 => 0.039304846031746
114 => 0.039026704738534
115 => 0.038825659527661
116 => 0.038864387967737
117 => 0.039000872041996
118 => 0.038817726825151
119 => 0.038856810142863
120 => 0.039505853627666
121 => 0.039636014669777
122 => 0.039193676591482
123 => 0.037417625378047
124 => 0.036981777955383
125 => 0.037295056439564
126 => 0.037145329501843
127 => 0.02997917998209
128 => 0.031662760514758
129 => 0.030662434131239
130 => 0.031123430551569
131 => 0.030102356347258
201 => 0.030589666476639
202 => 0.030499678089459
203 => 0.033206825765219
204 => 0.033164557377822
205 => 0.033184789018075
206 => 0.032219080115508
207 => 0.033757480619152
208 => 0.034515352026341
209 => 0.034375090198964
210 => 0.034410391079093
211 => 0.03380380500108
212 => 0.033190662097242
213 => 0.03251059225487
214 => 0.033774077962825
215 => 0.03363359992052
216 => 0.033955806007162
217 => 0.034775266804595
218 => 0.034895935519845
219 => 0.035058115496844
220 => 0.034999985519847
221 => 0.036384877406891
222 => 0.036217157861559
223 => 0.036621313709602
224 => 0.035789934466799
225 => 0.034849149938324
226 => 0.035027962320624
227 => 0.03501074125029
228 => 0.034791497259516
229 => 0.034593573587707
301 => 0.034264086438793
302 => 0.03530663253288
303 => 0.035264307065372
304 => 0.03594950718634
305 => 0.03582839140928
306 => 0.035019550608016
307 => 0.035048438515469
308 => 0.035242723576145
309 => 0.035915146389452
310 => 0.036114767262478
311 => 0.036022294920576
312 => 0.03624117009481
313 => 0.036414160108265
314 => 0.036262894977099
315 => 0.038404490244477
316 => 0.03751515057796
317 => 0.037948608543435
318 => 0.038051985714118
319 => 0.037787187265201
320 => 0.03784461256705
321 => 0.037931596251892
322 => 0.038459744153103
323 => 0.039845757066708
324 => 0.040459612751235
325 => 0.04230642786524
326 => 0.040408640581919
327 => 0.040296033738351
328 => 0.040628700908857
329 => 0.041712976886011
330 => 0.042591680724631
331 => 0.042883197481542
401 => 0.042921726233385
402 => 0.043468631049017
403 => 0.043782106690166
404 => 0.043402222419374
405 => 0.043080310275419
406 => 0.041927260932979
407 => 0.042060729534016
408 => 0.042980195840715
409 => 0.044278996155222
410 => 0.045393501942211
411 => 0.045003240860055
412 => 0.047980657435512
413 => 0.048275856127313
414 => 0.048235069213022
415 => 0.048907575764399
416 => 0.047572787213494
417 => 0.047002139247671
418 => 0.043149911334801
419 => 0.044232230247983
420 => 0.045805444350654
421 => 0.045597223564915
422 => 0.044454713431422
423 => 0.045392635245823
424 => 0.045082528962455
425 => 0.044837935270441
426 => 0.045958466390377
427 => 0.044726396395126
428 => 0.045793153509967
429 => 0.044425026475995
430 => 0.045005023539806
501 => 0.044675789155085
502 => 0.044888844151448
503 => 0.04364332899614
504 => 0.044315378740773
505 => 0.043615369517269
506 => 0.043615037621753
507 => 0.043599584879346
508 => 0.044423142626482
509 => 0.04444999881505
510 => 0.043841388395589
511 => 0.043753678125863
512 => 0.044077988963853
513 => 0.04369830590971
514 => 0.043875957221047
515 => 0.043703686786954
516 => 0.04366490508367
517 => 0.043355885873734
518 => 0.043222751901433
519 => 0.043274957162412
520 => 0.043096753693034
521 => 0.042989379656833
522 => 0.04357822548098
523 => 0.043263628911111
524 => 0.043530009044698
525 => 0.043226435262623
526 => 0.042174116273151
527 => 0.041568916494234
528 => 0.039581183473143
529 => 0.040144902092149
530 => 0.040518648119759
531 => 0.040395125059864
601 => 0.040660500389598
602 => 0.040676792279555
603 => 0.040590516054677
604 => 0.040490619238937
605 => 0.040441994993675
606 => 0.040804400280759
607 => 0.041014788747912
608 => 0.040556158533707
609 => 0.040448707891437
610 => 0.040912408359667
611 => 0.041195265377416
612 => 0.043283722672847
613 => 0.043129003010774
614 => 0.043517319000378
615 => 0.043473600579143
616 => 0.043880617599838
617 => 0.044545918410445
618 => 0.043193175841447
619 => 0.043427965177107
620 => 0.043370400254081
621 => 0.043998878989347
622 => 0.044000841031357
623 => 0.043624036634724
624 => 0.043828308411092
625 => 0.043714289509427
626 => 0.043920337075315
627 => 0.043126936635358
628 => 0.044093212728941
629 => 0.044641029008546
630 => 0.044648635438119
701 => 0.044908296006913
702 => 0.045172126183334
703 => 0.045678525232208
704 => 0.045158002988709
705 => 0.044221634144475
706 => 0.044289236950576
707 => 0.043740244239805
708 => 0.043749472906457
709 => 0.043700209560607
710 => 0.043848052569875
711 => 0.043159379861959
712 => 0.043321009970008
713 => 0.043094726872235
714 => 0.043427473281844
715 => 0.043069493150057
716 => 0.043370372494532
717 => 0.043500222045299
718 => 0.043979369683091
719 => 0.042998722654372
720 => 0.040999116978847
721 => 0.041419458334718
722 => 0.040797740452284
723 => 0.040855282809351
724 => 0.040971527528422
725 => 0.040594740361005
726 => 0.04066661947862
727 => 0.040664051450733
728 => 0.040641921573766
729 => 0.04054390467931
730 => 0.040401760790297
731 => 0.040968018294542
801 => 0.041064236478765
802 => 0.041278117583382
803 => 0.041914482673781
804 => 0.041850894794728
805 => 0.041954609263699
806 => 0.041728201160266
807 => 0.040865785231915
808 => 0.040912618566032
809 => 0.040328606139131
810 => 0.041263183072587
811 => 0.041041862918932
812 => 0.040899176376098
813 => 0.040860243030904
814 => 0.041498185547275
815 => 0.041689067946697
816 => 0.041570122845019
817 => 0.041326162971293
818 => 0.041794638049108
819 => 0.041919982216555
820 => 0.041948042153131
821 => 0.042778090169833
822 => 0.041994432616581
823 => 0.042183066778535
824 => 0.043654736662103
825 => 0.042320135154269
826 => 0.043027103338134
827 => 0.042992500924419
828 => 0.043354161924785
829 => 0.042962834166295
830 => 0.042967685142864
831 => 0.043288815610151
901 => 0.042837845785031
902 => 0.042726179314328
903 => 0.042571912884823
904 => 0.042908747989924
905 => 0.04311066540169
906 => 0.044737971448527
907 => 0.045789285368955
908 => 0.045743645059026
909 => 0.046160712056697
910 => 0.045972819554351
911 => 0.045366065100736
912 => 0.046401720967234
913 => 0.046073996117392
914 => 0.046101013355827
915 => 0.046100007772863
916 => 0.046317916147804
917 => 0.046163508093149
918 => 0.045859153967762
919 => 0.046061198439806
920 => 0.046661198289557
921 => 0.048523616233427
922 => 0.049565849988572
923 => 0.0484608724527
924 => 0.049223071160706
925 => 0.048766023535071
926 => 0.048682964385504
927 => 0.049161681500174
928 => 0.049641236545781
929 => 0.049610690962549
930 => 0.049262558624862
1001 => 0.049065907500834
1002 => 0.050555015694936
1003 => 0.051652165246054
1004 => 0.051577347002051
1005 => 0.051907570398881
1006 => 0.052877116505399
1007 => 0.052965759650631
1008 => 0.052954592651771
1009 => 0.052734881367357
1010 => 0.053689525420695
1011 => 0.054485906285354
1012 => 0.052684024553084
1013 => 0.053370157528368
1014 => 0.053678184726797
1015 => 0.054130460041643
1016 => 0.054893524307931
1017 => 0.05572241449392
1018 => 0.055839628654537
1019 => 0.055756459598365
1020 => 0.055209784238941
1021 => 0.056116765771167
1022 => 0.056648054281411
1023 => 0.05696442443094
1024 => 0.057766686491172
1025 => 0.05368008699791
1026 => 0.050787388759406
1027 => 0.050335652158394
1028 => 0.051254276300215
1029 => 0.051496510160523
1030 => 0.051398865995169
1031 => 0.048142871135114
1101 => 0.0503185100193
1102 => 0.05265931452577
1103 => 0.05274923436009
1104 => 0.053921090039943
1105 => 0.054302694285291
1106 => 0.055246191706208
1107 => 0.055187175685643
1108 => 0.055416902293313
1109 => 0.05536409212452
1110 => 0.057111722419947
1111 => 0.059039618161413
1112 => 0.058972861262219
1113 => 0.058695703439556
1114 => 0.059107330068641
1115 => 0.061097125079698
1116 => 0.060913936640895
1117 => 0.061091888605238
1118 => 0.063437969063206
1119 => 0.066488207384618
1120 => 0.065071065445402
1121 => 0.068145855681894
1122 => 0.070081273148138
1123 => 0.073428377530107
1124 => 0.073009303576648
1125 => 0.074312306750362
1126 => 0.072259073736583
1127 => 0.06754443571009
1128 => 0.066798326195488
1129 => 0.068292056338223
1130 => 0.071964246138081
1201 => 0.068176406013212
1202 => 0.068942681137179
1203 => 0.068721993849926
1204 => 0.068710234362249
1205 => 0.069159046177592
1206 => 0.068508021230988
1207 => 0.06585562848137
1208 => 0.067071204447871
1209 => 0.066601812190453
1210 => 0.067122637895569
1211 => 0.069933319421224
1212 => 0.068690650120453
1213 => 0.067381598958348
1214 => 0.069023439617336
1215 => 0.071114066973889
1216 => 0.070983239271135
1217 => 0.070729378846053
1218 => 0.072160376770537
1219 => 0.074523966098731
1220 => 0.075162834796471
1221 => 0.075634434608047
1222 => 0.07569946025432
1223 => 0.076369264824138
1224 => 0.072767556839741
1225 => 0.0784835599094
1226 => 0.079470555738132
1227 => 0.079285041429116
1228 => 0.080382045753618
1229 => 0.080059279253035
1230 => 0.079591641234204
1231 => 0.081330626428051
]
'min_raw' => 0.02997917998209
'max_raw' => 0.081330626428051
'avg_raw' => 0.055654903205071
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.029979'
'max' => '$0.08133'
'avg' => '$0.055654'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.010339044397408
'max_diff' => 0.037485407287286
'year' => 2032
]
7 => [
'items' => [
101 => 0.079337020232175
102 => 0.076507347225169
103 => 0.074954932648939
104 => 0.07699927739263
105 => 0.078247687389802
106 => 0.079072806984145
107 => 0.079322487674842
108 => 0.073047147177822
109 => 0.069665086696268
110 => 0.071832948689542
111 => 0.074477889939179
112 => 0.072752864057553
113 => 0.072820481806207
114 => 0.070361048227835
115 => 0.074695495237986
116 => 0.074064002767044
117 => 0.077340186823379
118 => 0.076558299205315
119 => 0.079229900122523
120 => 0.078526378065926
121 => 0.081446658789474
122 => 0.082611637833542
123 => 0.084567818963042
124 => 0.086006793764992
125 => 0.086851787291899
126 => 0.086801057050035
127 => 0.090149342377743
128 => 0.088174975500172
129 => 0.0856947053794
130 => 0.085649845118067
131 => 0.086934412159314
201 => 0.089626512274012
202 => 0.09032453466529
203 => 0.090714633956048
204 => 0.090117183312798
205 => 0.087974149571344
206 => 0.087048798467212
207 => 0.087837224417935
208 => 0.086873047230415
209 => 0.088537487556413
210 => 0.090823119629276
211 => 0.090351145644599
212 => 0.091928883913081
213 => 0.093561677038055
214 => 0.095896644540095
215 => 0.096507091508724
216 => 0.097516137134649
217 => 0.098554776537947
218 => 0.09888835952217
219 => 0.099525272943772
220 => 0.099521916095651
221 => 0.10144129756087
222 => 0.10355843475529
223 => 0.10435760503435
224 => 0.10619525302454
225 => 0.10304834524021
226 => 0.1054353109437
227 => 0.10758841375787
228 => 0.1050213958208
301 => 0.10855943200858
302 => 0.10869680593638
303 => 0.11077098914846
304 => 0.1086684070976
305 => 0.10741990058748
306 => 0.11102429210127
307 => 0.11276834361752
308 => 0.11224302110726
309 => 0.10824529086583
310 => 0.1059184403946
311 => 0.099828623895457
312 => 0.10704227459919
313 => 0.1105558334319
314 => 0.10823619159727
315 => 0.10940608401315
316 => 0.11578863769531
317 => 0.11821870089773
318 => 0.11771326473905
319 => 0.11779867512968
320 => 0.11910989312493
321 => 0.12492455581685
322 => 0.12144027514903
323 => 0.12410387716607
324 => 0.12551664207158
325 => 0.12682889685006
326 => 0.12360641385649
327 => 0.11941401082954
328 => 0.1180861008058
329 => 0.10800554893196
330 => 0.10748081242931
331 => 0.10718626192923
401 => 0.10532916269121
402 => 0.10386999139242
403 => 0.10270960420006
404 => 0.099664401686373
405 => 0.10069206814188
406 => 0.095838650918226
407 => 0.098943695263378
408 => 0.091197524184562
409 => 0.097648765637716
410 => 0.09413764821672
411 => 0.096495269133719
412 => 0.09648704361644
413 => 0.092145916023853
414 => 0.08964204422547
415 => 0.091237608787548
416 => 0.092948180654168
417 => 0.093225715184473
418 => 0.095443516260039
419 => 0.096062456868755
420 => 0.094187037928772
421 => 0.091037002006463
422 => 0.091768683506546
423 => 0.089627216723224
424 => 0.085874378555785
425 => 0.088569732445908
426 => 0.089490044770341
427 => 0.089896507121847
428 => 0.086206021800546
429 => 0.085046391188259
430 => 0.08442901358052
501 => 0.090560606694613
502 => 0.090896509206692
503 => 0.089177984463068
504 => 0.096945879261453
505 => 0.09518776543082
506 => 0.097152009327983
507 => 0.091702291079536
508 => 0.091910477655645
509 => 0.089330493701221
510 => 0.090775112321108
511 => 0.089754102442803
512 => 0.090658401412621
513 => 0.091200434486565
514 => 0.093779995091009
515 => 0.097678220076214
516 => 0.093394694757471
517 => 0.091528301434882
518 => 0.092686201355222
519 => 0.095769841429353
520 => 0.10044171399029
521 => 0.097675871404019
522 => 0.098903305376755
523 => 0.099171445095061
524 => 0.097132015169
525 => 0.10051691068068
526 => 0.10233090368423
527 => 0.10419168515291
528 => 0.10580734956426
529 => 0.10344844811486
530 => 0.10597281080095
531 => 0.10393862008596
601 => 0.10211374072384
602 => 0.10211650831256
603 => 0.10097173483147
604 => 0.098753591961115
605 => 0.098344532383404
606 => 0.10047251196518
607 => 0.10217895006935
608 => 0.1023195004849
609 => 0.10326427229933
610 => 0.10382337852718
611 => 0.10930337962819
612 => 0.11150748140397
613 => 0.11420261533388
614 => 0.115252521889
615 => 0.11841236420759
616 => 0.11586053490548
617 => 0.11530843058421
618 => 0.10764368669586
619 => 0.10889878807819
620 => 0.11090832649057
621 => 0.10767682324412
622 => 0.10972646826448
623 => 0.11013111160891
624 => 0.10756701800035
625 => 0.10893661118463
626 => 0.10529937774327
627 => 0.097757501825823
628 => 0.10052530694454
629 => 0.10256334314504
630 => 0.09965481419887
701 => 0.10486823975926
702 => 0.10182266417383
703 => 0.10085736292666
704 => 0.097091378606696
705 => 0.098868778239688
706 => 0.10127273669322
707 => 0.099787369859103
708 => 0.10286972906885
709 => 0.10723517174502
710 => 0.11034624616266
711 => 0.11058507582608
712 => 0.10858486340133
713 => 0.11179021657718
714 => 0.1118135640757
715 => 0.1081979125991
716 => 0.10598334620171
717 => 0.10548019205674
718 => 0.10673716976006
719 => 0.10826337274278
720 => 0.11066976946979
721 => 0.11212390461345
722 => 0.11591551785443
723 => 0.11694141968337
724 => 0.11806857475937
725 => 0.11957480154266
726 => 0.12138341298462
727 => 0.11742627411392
728 => 0.11758349861828
729 => 0.11389866569219
730 => 0.10996089325218
731 => 0.11294917168389
801 => 0.11685594821932
802 => 0.11595972936549
803 => 0.11585888643634
804 => 0.11602847627167
805 => 0.11535275652365
806 => 0.1122965011467
807 => 0.11076166882957
808 => 0.11274199409616
809 => 0.11379444884121
810 => 0.11542671436709
811 => 0.11522550318808
812 => 0.11943004389022
813 => 0.12106380126836
814 => 0.12064581621861
815 => 0.12072273552714
816 => 0.12368057522184
817 => 0.12697030128848
818 => 0.13005156386747
819 => 0.13318595650613
820 => 0.1294073238428
821 => 0.12748876721002
822 => 0.12946822792855
823 => 0.12841789820837
824 => 0.13445340432854
825 => 0.13487128967725
826 => 0.14090635936162
827 => 0.14663435913482
828 => 0.14303670510505
829 => 0.14642913081323
830 => 0.15009831580515
831 => 0.15717676895838
901 => 0.15479299495936
902 => 0.15296706143461
903 => 0.15124156307656
904 => 0.1548320512445
905 => 0.1594511569131
906 => 0.16044606803288
907 => 0.16205820413221
908 => 0.16036324014638
909 => 0.16240463757315
910 => 0.16961166752511
911 => 0.16766426441388
912 => 0.16489863893526
913 => 0.17058789691182
914 => 0.17264681725711
915 => 0.18709739850529
916 => 0.20534185425486
917 => 0.19778852977498
918 => 0.19309993752606
919 => 0.19420186791945
920 => 0.20086412554539
921 => 0.20300383124536
922 => 0.19718737355207
923 => 0.19924184474025
924 => 0.21056218297827
925 => 0.21663518124303
926 => 0.208387233887
927 => 0.18563147425004
928 => 0.16464962462027
929 => 0.17021495596709
930 => 0.1695840201047
1001 => 0.18174631130049
1002 => 0.16761781949373
1003 => 0.16785570706122
1004 => 0.18026950155885
1005 => 0.1769577140132
1006 => 0.17159304233094
1007 => 0.16468879266045
1008 => 0.15192564857875
1009 => 0.14062097593899
1010 => 0.16279204229619
1011 => 0.1618359855994
1012 => 0.16045147382278
1013 => 0.16353255496182
1014 => 0.17849341039286
1015 => 0.17814851425161
1016 => 0.17595446096854
1017 => 0.17761863104625
1018 => 0.17130130527017
1019 => 0.1729294239655
1020 => 0.16464630098809
1021 => 0.16839061850765
1022 => 0.17158153215491
1023 => 0.17222215531188
1024 => 0.17366551199556
1025 => 0.16133218716374
1026 => 0.16686948792584
1027 => 0.17012213334865
1028 => 0.15542656299613
1029 => 0.16983164917264
1030 => 0.16111749141759
1031 => 0.15815977539327
1101 => 0.16214195037056
1102 => 0.16059009290912
1103 => 0.1592558969919
1104 => 0.1585113927457
1105 => 0.1614354625524
1106 => 0.1612990512009
1107 => 0.15651470545963
1108 => 0.15027372147503
1109 => 0.15236840055358
1110 => 0.15160738400662
1111 => 0.14884936186736
1112 => 0.15070793578436
1113 => 0.14252371685662
1114 => 0.12844319357013
1115 => 0.13774521855128
1116 => 0.13738710070816
1117 => 0.13720652145231
1118 => 0.14419673613655
1119 => 0.14352478828635
1120 => 0.14230519635851
1121 => 0.14882696310519
1122 => 0.14644643051251
1123 => 0.15378267103912
1124 => 0.15861479352824
1125 => 0.15738921096221
1126 => 0.1619338455189
1127 => 0.15241665772889
1128 => 0.15557788574943
1129 => 0.15622941046319
1130 => 0.14874648551588
1201 => 0.14363472726477
1202 => 0.14329383126773
1203 => 0.13443074690398
1204 => 0.13916533503077
1205 => 0.14333157665179
1206 => 0.14133627022873
1207 => 0.14070461582328
1208 => 0.14393160119162
1209 => 0.14418236559201
1210 => 0.13846491068849
1211 => 0.13965375061118
1212 => 0.14461141071699
1213 => 0.13952883029656
1214 => 0.12965420677447
1215 => 0.12720516361364
1216 => 0.12687841611116
1217 => 0.12023641682293
1218 => 0.1273688203882
1219 => 0.12425533509543
1220 => 0.13409079783002
1221 => 0.12847283426467
1222 => 0.12823065508384
1223 => 0.12786456573207
1224 => 0.12214752256715
1225 => 0.12339919168322
1226 => 0.12755993045963
1227 => 0.12904452892913
1228 => 0.1288896731458
1229 => 0.12753954056974
1230 => 0.12815762434926
1231 => 0.12616656114076
]
'min_raw' => 0.069665086696268
'max_raw' => 0.21663518124303
'avg_raw' => 0.14315013396965
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.069665'
'max' => '$0.216635'
'avg' => '$0.14315'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.039685906714177
'max_diff' => 0.13530455481498
'year' => 2033
]
8 => [
'items' => [
101 => 0.12546347528144
102 => 0.12324434291042
103 => 0.11998283137598
104 => 0.12043636455886
105 => 0.11397445678823
106 => 0.11045366647539
107 => 0.10947915812006
108 => 0.10817600481981
109 => 0.10962635275288
110 => 0.11395615101541
111 => 0.10873349569286
112 => 0.09977961946902
113 => 0.10031776268673
114 => 0.10152681072079
115 => 0.099273757707985
116 => 0.097141432115775
117 => 0.098995316217158
118 => 0.095201440824253
119 => 0.10198528243656
120 => 0.10180179853245
121 => 0.10433039517557
122 => 0.10591157854854
123 => 0.10226746278804
124 => 0.10135097752901
125 => 0.10187304918449
126 => 0.093244367648466
127 => 0.10362524780669
128 => 0.10371502208938
129 => 0.10294632017749
130 => 0.10847381838803
131 => 0.12013856368219
201 => 0.11574981728924
202 => 0.11405036203532
203 => 0.11081969635533
204 => 0.11512436655597
205 => 0.11479383504788
206 => 0.11329904621793
207 => 0.11239499326955
208 => 0.11406073854671
209 => 0.11218858899572
210 => 0.11185229949314
211 => 0.10981475099405
212 => 0.10908743888242
213 => 0.10854896595011
214 => 0.10795616016088
215 => 0.10926374201391
216 => 0.10630058950823
217 => 0.1027273180678
218 => 0.10243023921086
219 => 0.10325050005431
220 => 0.10288759569232
221 => 0.10242850176439
222 => 0.10155196642919
223 => 0.10129191711945
224 => 0.10213695121812
225 => 0.10118295698927
226 => 0.10259062744069
227 => 0.10220781896786
228 => 0.100069481957
301 => 0.09740432232771
302 => 0.097380596816648
303 => 0.096806392546255
304 => 0.09607505707572
305 => 0.095871616278506
306 => 0.098839187269043
307 => 0.10498197040753
308 => 0.1037759950931
309 => 0.1046474358511
310 => 0.10893406188381
311 => 0.11029665139627
312 => 0.10932951763503
313 => 0.10800564529243
314 => 0.10806388895674
315 => 0.11258796151482
316 => 0.11287012237092
317 => 0.11358305182576
318 => 0.11449936764907
319 => 0.109485570182
320 => 0.10782773954692
321 => 0.10704216741908
322 => 0.10462290932
323 => 0.10723187176834
324 => 0.10571174107661
325 => 0.10591685864198
326 => 0.10578327555844
327 => 0.1058562209549
328 => 0.10198338621458
329 => 0.10339444364375
330 => 0.10104828698866
331 => 0.097907046595942
401 => 0.097896516056685
402 => 0.098665330192611
403 => 0.098208009460862
404 => 0.096977371130517
405 => 0.097152177496893
406 => 0.095620689787533
407 => 0.09733812783329
408 => 0.097387377811153
409 => 0.096726070614054
410 => 0.099372020884322
411 => 0.10045606886894
412 => 0.10002078230524
413 => 0.10042552800325
414 => 0.10382610881207
415 => 0.10438055186165
416 => 0.10462679883982
417 => 0.10429686051054
418 => 0.1004876843779
419 => 0.10065663753725
420 => 0.099416971356117
421 => 0.098369584065865
422 => 0.098411474064652
423 => 0.098949967282659
424 => 0.1013015987479
425 => 0.10625046853026
426 => 0.10643827452093
427 => 0.1066659008603
428 => 0.10574003014224
429 => 0.10546077867429
430 => 0.10582918344144
501 => 0.10768771873248
502 => 0.11246837608845
503 => 0.11077857248948
504 => 0.10940473586016
505 => 0.11060996096777
506 => 0.11042442600932
507 => 0.10885832424422
508 => 0.10881436898374
509 => 0.10580851898349
510 => 0.10469732467829
511 => 0.10376872754541
512 => 0.10275472371795
513 => 0.10215358825931
514 => 0.10307720553496
515 => 0.10328844773381
516 => 0.10126894241855
517 => 0.10099369130641
518 => 0.1026428629409
519 => 0.10191712399188
520 => 0.10266356449841
521 => 0.10283674509877
522 => 0.10280885903343
523 => 0.10205110422006
524 => 0.10253407454153
525 => 0.10139170575087
526 => 0.10014955126928
527 => 0.099357134098989
528 => 0.098665645019021
529 => 0.099049323350169
530 => 0.097681580156524
531 => 0.097244011581645
601 => 0.10237045506379
602 => 0.10615741398261
603 => 0.10610235010013
604 => 0.10576716287681
605 => 0.10526914265321
606 => 0.10765128545115
607 => 0.10682139453279
608 => 0.1074252095156
609 => 0.10757890577076
610 => 0.10804409804478
611 => 0.10821036429812
612 => 0.1077077922012
613 => 0.10602109885994
614 => 0.10181801941952
615 => 0.099861474594006
616 => 0.099215782212755
617 => 0.099239251904469
618 => 0.098591853033678
619 => 0.098782541015508
620 => 0.098525539535521
621 => 0.098038840907762
622 => 0.099019271081385
623 => 0.099132256525556
624 => 0.098903412407765
625 => 0.098957313481782
626 => 0.097062581927067
627 => 0.097206634252031
628 => 0.096404532601345
629 => 0.096254148211321
630 => 0.094226505085366
701 => 0.090634241376167
702 => 0.092624704180539
703 => 0.090220505014282
704 => 0.089309998360459
705 => 0.093620195246823
706 => 0.093187571025684
707 => 0.092447106416323
708 => 0.091351804932732
709 => 0.09094554695806
710 => 0.0884772521096
711 => 0.088331412082112
712 => 0.089554765658576
713 => 0.088990230076064
714 => 0.088197408311873
715 => 0.085325888249028
716 => 0.082097348970769
717 => 0.082194798277705
718 => 0.083221736553011
719 => 0.086207698089955
720 => 0.085041031259812
721 => 0.084194601088584
722 => 0.08403609016111
723 => 0.086020186283546
724 => 0.088828097977782
725 => 0.090145507321234
726 => 0.08883999467219
727 => 0.08734029203476
728 => 0.087431571985348
729 => 0.088038816602467
730 => 0.08810262942575
731 => 0.087126477180706
801 => 0.087401258319841
802 => 0.08698384064298
803 => 0.084422149130578
804 => 0.08437581625433
805 => 0.083747135844331
806 => 0.08372809965137
807 => 0.082658557442283
808 => 0.082508921093835
809 => 0.080385280121122
810 => 0.081783067040339
811 => 0.080845504962035
812 => 0.079432377761495
813 => 0.079188754099482
814 => 0.079181430478018
815 => 0.080632396143512
816 => 0.081766111661744
817 => 0.080861814255792
818 => 0.080655923265526
819 => 0.082854300386817
820 => 0.08257453685948
821 => 0.082332263449088
822 => 0.088576680283008
823 => 0.083633737101038
824 => 0.081478331740366
825 => 0.078810608306158
826 => 0.079679232508165
827 => 0.079862264390273
828 => 0.073446870424294
829 => 0.070844145891283
830 => 0.069950988913159
831 => 0.069436964444862
901 => 0.069671211849778
902 => 0.067328454500929
903 => 0.068902826184985
904 => 0.066874196349231
905 => 0.066534089955535
906 => 0.070161531400876
907 => 0.07066626868679
908 => 0.068512902615499
909 => 0.069895712231568
910 => 0.06939428624229
911 => 0.066908971385245
912 => 0.066814050638444
913 => 0.06556700700622
914 => 0.06361562519702
915 => 0.062723791347651
916 => 0.062259316535643
917 => 0.062450967895511
918 => 0.062354063103333
919 => 0.061721693785447
920 => 0.062390309772409
921 => 0.06068227221692
922 => 0.060002117899731
923 => 0.059694907974116
924 => 0.058178926332646
925 => 0.060591527284321
926 => 0.061066840064947
927 => 0.061543089358582
928 => 0.065688514310476
929 => 0.065481420594729
930 => 0.067353446926354
1001 => 0.067280703425542
1002 => 0.066746771190947
1003 => 0.064494198920778
1004 => 0.065392034079427
1005 => 0.062628637015667
1006 => 0.064699161988572
1007 => 0.063754260858128
1008 => 0.064379689965884
1009 => 0.06325511203747
1010 => 0.063877499895739
1011 => 0.061179554358175
1012 => 0.058660250776316
1013 => 0.059674092080713
1014 => 0.060776253525408
1015 => 0.063166020363021
1016 => 0.061742694949687
1017 => 0.062254576590214
1018 => 0.060539858782399
1019 => 0.057001906159949
1020 => 0.057021930587572
1021 => 0.056477693655096
1022 => 0.056007393485543
1023 => 0.061906180995166
1024 => 0.061172573522314
1025 => 0.060003666026496
1026 => 0.061568295160186
1027 => 0.061982007937137
1028 => 0.061993785758285
1029 => 0.063135298785302
1030 => 0.063744524492449
1031 => 0.063851903163869
1101 => 0.065648098575902
1102 => 0.066250159585625
1103 => 0.068729963677811
1104 => 0.063692835947621
1105 => 0.063589099616791
1106 => 0.061590312700751
1107 => 0.060322650439027
1108 => 0.061677110620343
1109 => 0.062876977438737
1110 => 0.061627595907414
1111 => 0.061790738759521
1112 => 0.060113546131941
1113 => 0.060713063577053
1114 => 0.061229448764505
1115 => 0.060944331215712
1116 => 0.060517496445325
1117 => 0.062778602042729
1118 => 0.06265102160358
1119 => 0.064756615118476
1120 => 0.066398075835774
1121 => 0.069339866887374
1122 => 0.066269954565994
1123 => 0.066158074759207
1124 => 0.067251717816639
1125 => 0.066249992154571
1126 => 0.066883048194603
1127 => 0.069237871772317
1128 => 0.069287625483831
1129 => 0.068454186711924
1130 => 0.06840347188691
1201 => 0.068563542919876
1202 => 0.069501083959686
1203 => 0.06917347831265
1204 => 0.06955259186136
1205 => 0.070026679159214
1206 => 0.071987705231988
1207 => 0.072460501979112
1208 => 0.07131185100061
1209 => 0.071415561323069
1210 => 0.070985934325935
1211 => 0.070570920029914
1212 => 0.071503811559399
1213 => 0.073208689165561
1214 => 0.073198083210456
1215 => 0.073593581677001
1216 => 0.073839973945172
1217 => 0.072782277960018
1218 => 0.072093756766242
1219 => 0.072357779603677
1220 => 0.072779957870406
1221 => 0.072220872881754
1222 => 0.06876994133843
1223 => 0.069816733522314
1224 => 0.069642496117393
1225 => 0.069394360864793
1226 => 0.070446918500293
1227 => 0.070345396748618
1228 => 0.06730442613815
1229 => 0.067499099210227
1230 => 0.06731626485244
1231 => 0.06790704006684
]
'min_raw' => 0.056007393485543
'max_raw' => 0.12546347528144
'avg_raw' => 0.090735434383489
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0560073'
'max' => '$0.125463'
'avg' => '$0.090735'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.013657693210725
'max_diff' => -0.091171705961597
'year' => 2034
]
9 => [
'items' => [
101 => 0.066218088354234
102 => 0.066737598525768
103 => 0.067063430435249
104 => 0.067255347933092
105 => 0.067948685534361
106 => 0.067867330369324
107 => 0.067943628383074
108 => 0.068971665011415
109 => 0.074171121497995
110 => 0.074454116442605
111 => 0.073060545834805
112 => 0.073617249805657
113 => 0.072548499919397
114 => 0.073265958878045
115 => 0.07375682607607
116 => 0.071538691596528
117 => 0.071407348068224
118 => 0.070334187071008
119 => 0.070910843003966
120 => 0.069993341951601
121 => 0.070218464617027
122 => 0.069589002018655
123 => 0.070721909370972
124 => 0.071988675826866
125 => 0.072308711059748
126 => 0.071466836145866
127 => 0.070857263225955
128 => 0.069787053984393
129 => 0.071566835804278
130 => 0.072087298246281
131 => 0.071564102036638
201 => 0.071442866042801
202 => 0.071213124053548
203 => 0.071491606891881
204 => 0.072084463696047
205 => 0.071804883375549
206 => 0.071989551102809
207 => 0.071285788155026
208 => 0.0727826281014
209 => 0.075159970170391
210 => 0.075167613713878
211 => 0.074888031886338
212 => 0.074773633026182
213 => 0.075060500947683
214 => 0.075216115027159
215 => 0.07614379328271
216 => 0.07713922901125
217 => 0.081784493213709
218 => 0.080480121613983
219 => 0.084601676362409
220 => 0.087861291051511
221 => 0.088838706971097
222 => 0.08793953031605
223 => 0.084863495551704
224 => 0.084712570611167
225 => 0.089309465217479
226 => 0.088010631940084
227 => 0.087856139854592
228 => 0.086212605083445
301 => 0.087184137688934
302 => 0.08697164925659
303 => 0.086636225870846
304 => 0.08848984240457
305 => 0.091959647082214
306 => 0.091418845483581
307 => 0.091015162177266
308 => 0.089246339439436
309 => 0.090311565808471
310 => 0.089932259101525
311 => 0.091562001428549
312 => 0.090596578177233
313 => 0.08800079200057
314 => 0.088414179505027
315 => 0.088351696815348
316 => 0.089637586141359
317 => 0.089251594083426
318 => 0.088276325671086
319 => 0.091947787667041
320 => 0.091709383346769
321 => 0.0920473861661
322 => 0.092196185460254
323 => 0.094430939678775
324 => 0.095346446977945
325 => 0.095554283163067
326 => 0.096423944289402
327 => 0.095532645202001
328 => 0.099098477037086
329 => 0.10146954713536
330 => 0.10422366706866
331 => 0.10824817652886
401 => 0.10976142931469
402 => 0.10948807374353
403 => 0.11253941088516
404 => 0.11802259590126
405 => 0.11059638220554
406 => 0.11841620325939
407 => 0.11594053819792
408 => 0.11007078087248
409 => 0.10969283770061
410 => 0.11366790551068
411 => 0.12248422332732
412 => 0.1202758357081
413 => 0.12248783545833
414 => 0.1199074202524
415 => 0.11977928088798
416 => 0.12236251045137
417 => 0.12839836713075
418 => 0.12553095787309
419 => 0.12141982358462
420 => 0.12445542116689
421 => 0.12182570560984
422 => 0.11590022044875
423 => 0.12027414699571
424 => 0.11734942687602
425 => 0.11820301569362
426 => 0.12435034236592
427 => 0.1236106797569
428 => 0.12456787166389
429 => 0.12287845300213
430 => 0.12130026957518
501 => 0.11835447301133
502 => 0.11748236787479
503 => 0.11772338635948
504 => 0.117482248438
505 => 0.1158341023338
506 => 0.11547818533952
507 => 0.11488497475597
508 => 0.11506883552072
509 => 0.11395342607376
510 => 0.11605843415551
511 => 0.11644914220475
512 => 0.11798099154355
513 => 0.11814003322361
514 => 0.12240621182764
515 => 0.12005647234276
516 => 0.12163288045596
517 => 0.12149187167659
518 => 0.11019799631238
519 => 0.11175419269086
520 => 0.11417514589446
521 => 0.11308450975776
522 => 0.11154260543003
523 => 0.11029743501371
524 => 0.10841087450776
525 => 0.11106617219169
526 => 0.11455760628663
527 => 0.11822858175401
528 => 0.12263901824622
529 => 0.1216546601643
530 => 0.11814613171162
531 => 0.11830352173503
601 => 0.11927644492903
602 => 0.1180164209934
603 => 0.1176448153362
604 => 0.11922539201812
605 => 0.11923627658106
606 => 0.11778646676414
607 => 0.11617526846504
608 => 0.11616851748533
609 => 0.11588182031034
610 => 0.11995842304293
611 => 0.12220014235484
612 => 0.12245715186124
613 => 0.12218284356731
614 => 0.12228841394274
615 => 0.12098400686805
616 => 0.12396549463088
617 => 0.12670160264062
618 => 0.12596826724559
619 => 0.12486889323866
620 => 0.12399318888912
621 => 0.12576197913112
622 => 0.12568321768598
623 => 0.12667770512408
624 => 0.12663258942945
625 => 0.12629818070858
626 => 0.12596827918838
627 => 0.12727630142562
628 => 0.12689961202749
629 => 0.12652233752668
630 => 0.12576565575746
701 => 0.12586850137705
702 => 0.12476931719255
703 => 0.12426078429355
704 => 0.11661366963368
705 => 0.11457011071988
706 => 0.11521305595464
707 => 0.11542473021999
708 => 0.11453537076181
709 => 0.11581048376714
710 => 0.11561175875594
711 => 0.11638488152428
712 => 0.11590186798371
713 => 0.11592169102789
714 => 0.11734213086137
715 => 0.11775449058801
716 => 0.11754476110289
717 => 0.11769164844516
718 => 0.12107660525055
719 => 0.12059537263765
720 => 0.12033972740337
721 => 0.12041054288038
722 => 0.12127547191845
723 => 0.12151760482573
724 => 0.12049167068319
725 => 0.12097550715567
726 => 0.12303562144749
727 => 0.12375654485726
728 => 0.12605738631836
729 => 0.12507994797149
730 => 0.12687407835972
731 => 0.13238862350902
801 => 0.13679402375177
802 => 0.13274263562767
803 => 0.14083259214915
804 => 0.14713178373647
805 => 0.1468900102715
806 => 0.14579160051532
807 => 0.13862013836584
808 => 0.1320208519754
809 => 0.1375414352615
810 => 0.13755550836362
811 => 0.13708128536338
812 => 0.13413592703717
813 => 0.13697879327806
814 => 0.13720444967649
815 => 0.13707814210025
816 => 0.1348199427773
817 => 0.13137208979617
818 => 0.13204579201569
819 => 0.13314932999441
820 => 0.13106010237854
821 => 0.13039246756451
822 => 0.13163372770652
823 => 0.13563332651091
824 => 0.13487722552504
825 => 0.13485748067265
826 => 0.13809240132692
827 => 0.13577689627804
828 => 0.13205428955817
829 => 0.13111428226625
830 => 0.12777788964473
831 => 0.13008234791224
901 => 0.13016528126274
902 => 0.12890315302062
903 => 0.13215670430903
904 => 0.13212672226113
905 => 0.13521548498228
906 => 0.14112003921881
907 => 0.1393737719856
908 => 0.13734305318671
909 => 0.13756384862587
910 => 0.13998542962392
911 => 0.13852128647319
912 => 0.13904780255856
913 => 0.13998463267877
914 => 0.14054984555047
915 => 0.13748252319177
916 => 0.13676738362297
917 => 0.13530445904508
918 => 0.13492280932949
919 => 0.13611433087325
920 => 0.13580040704355
921 => 0.13015831103576
922 => 0.12956868061062
923 => 0.12958676373396
924 => 0.12810410999455
925 => 0.12584270716428
926 => 0.13178553878089
927 => 0.1313082462322
928 => 0.13078135219796
929 => 0.13084589371073
930 => 0.13342547549425
1001 => 0.13192918778781
1002 => 0.13590731389212
1003 => 0.13508953075849
1004 => 0.13425077457326
1005 => 0.13413483291933
1006 => 0.13381198334733
1007 => 0.13270481203791
1008 => 0.13136783615111
1009 => 0.13048504886377
1010 => 0.12036556016325
1011 => 0.12224367840371
1012 => 0.12440428224349
1013 => 0.12515011403091
1014 => 0.12387431714854
1015 => 0.1327551882749
1016 => 0.13437780900789
1017 => 0.12946278496673
1018 => 0.12854338464774
1019 => 0.13281546400675
1020 => 0.13023887791281
1021 => 0.13139911447314
1022 => 0.12889131764517
1023 => 0.13398696718919
1024 => 0.13394814687722
1025 => 0.13196582411412
1026 => 0.13364126973913
1027 => 0.13335011983109
1028 => 0.13111208231381
1029 => 0.13405791697041
1030 => 0.13405937806764
1031 => 0.13215143550758
1101 => 0.12992337629976
1102 => 0.12952505193781
1103 => 0.12922496803843
1104 => 0.13132531222937
1105 => 0.13320847426337
1106 => 0.13671257193317
1107 => 0.13759358534266
1108 => 0.1410322393323
1109 => 0.13898468830649
1110 => 0.13989234115601
1111 => 0.14087772671949
1112 => 0.14135015679498
1113 => 0.14058035733897
1114 => 0.14592200239133
1115 => 0.14637300089753
1116 => 0.14652421679553
1117 => 0.1447230441383
1118 => 0.14632290702763
1119 => 0.1455743841636
1120 => 0.14752183271016
1121 => 0.14782721750853
1122 => 0.14756856744869
1123 => 0.14766550140387
1124 => 0.14310734968243
1125 => 0.14287098546951
1126 => 0.13964814265468
1127 => 0.14096147492378
1128 => 0.13850626319636
1129 => 0.1392848361266
1130 => 0.13962802365574
1201 => 0.13944876196624
1202 => 0.14103572875976
1203 => 0.13968648278937
1204 => 0.13612560083694
1205 => 0.1325637487246
1206 => 0.13251903257275
1207 => 0.13158125978348
1208 => 0.13090342181849
1209 => 0.13103399745814
1210 => 0.13149416304352
1211 => 0.13087667615814
1212 => 0.13100844829251
1213 => 0.1331967437163
1214 => 0.13363559075733
1215 => 0.1321442170433
1216 => 0.12615613637726
1217 => 0.12468664636186
1218 => 0.12574288664368
1219 => 0.12523807181955
1220 => 0.10107689838912
1221 => 0.10675320769885
1222 => 0.10338053745626
1223 => 0.10493481907314
1224 => 0.10149219610418
1225 => 0.1031351962283
1226 => 0.10283179409813
1227 => 0.11195913149397
1228 => 0.11181662067478
1229 => 0.11188483306242
1230 => 0.10862887807377
1231 => 0.1138157027795
]
'min_raw' => 0.066218088354234
'max_raw' => 0.14782721750853
'avg_raw' => 0.10702265293138
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.066218'
'max' => '$0.147827'
'avg' => '$0.107022'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.010210694868691
'max_diff' => 0.022363742227098
'year' => 2035
]
10 => [
'items' => [
101 => 0.11637091914173
102 => 0.11589801659797
103 => 0.11601703597995
104 => 0.11397188866744
105 => 0.11190463455888
106 => 0.10961173160436
107 => 0.11387166188249
108 => 0.11339803035499
109 => 0.11448437067182
110 => 0.11724723996329
111 => 0.11765408296157
112 => 0.11820088407707
113 => 0.11800489480112
114 => 0.12267415448835
115 => 0.12210867633146
116 => 0.1234713159904
117 => 0.12066826282824
118 => 0.11749634210701
119 => 0.11809922053822
120 => 0.11804115849725
121 => 0.11730196207523
122 => 0.11663464859713
123 => 0.11552375967051
124 => 0.11903877661497
125 => 0.1188960733462
126 => 0.12120627339319
127 => 0.12079792309479
128 => 0.11807085986187
129 => 0.11816825745874
130 => 0.11882330310536
131 => 0.12109042356748
201 => 0.12176345927798
202 => 0.12145168232104
203 => 0.12218963525235
204 => 0.12277288316049
205 => 0.12226288220977
206 => 0.12948342017514
207 => 0.12648494939776
208 => 0.12794638319143
209 => 0.12829492653995
210 => 0.12740214008179
211 => 0.12759575349628
212 => 0.12788902506273
213 => 0.12966971258578
214 => 0.13434275189233
215 => 0.13641240919074
216 => 0.14263907528813
217 => 0.13624055296313
218 => 0.13586089112808
219 => 0.13698250171952
220 => 0.14063821387823
221 => 0.14360082521928
222 => 0.14458369431826
223 => 0.14471359669509
224 => 0.14655752446466
225 => 0.14761442947497
226 => 0.14633362313332
227 => 0.14524827386479
228 => 0.14136068750342
229 => 0.14181068621029
301 => 0.14491073105842
302 => 0.14928972699812
303 => 0.15304736107126
304 => 0.15173156858562
305 => 0.16177013644636
306 => 0.16276541944588
307 => 0.16262790351669
308 => 0.16489530630757
309 => 0.16039497351623
310 => 0.15847099405809
311 => 0.14548293869588
312 => 0.14913205247677
313 => 0.15443625366223
314 => 0.1537342227456
315 => 0.14988217006302
316 => 0.15304443894388
317 => 0.15199889395858
318 => 0.15117422924896
319 => 0.15495217815281
320 => 0.15079816814344
321 => 0.15439481423473
322 => 0.14978207842012
323 => 0.15173757901486
324 => 0.15062754230036
325 => 0.15134587209562
326 => 0.14714653079041
327 => 0.14941239342546
328 => 0.14705226345533
329 => 0.14705114444642
330 => 0.14699904444652
331 => 0.14977572688996
401 => 0.14986627440475
402 => 0.14781430188372
403 => 0.1475185805856
404 => 0.14861201721855
405 => 0.14733188929288
406 => 0.14793085309227
407 => 0.14735003129619
408 => 0.14721927607591
409 => 0.14617739623458
410 => 0.14572852575185
411 => 0.1459045394341
412 => 0.14530371399532
413 => 0.14494169493565
414 => 0.14692702974367
415 => 0.14586634544392
416 => 0.14676446466238
417 => 0.14574094446127
418 => 0.1421929775177
419 => 0.14015250420938
420 => 0.13345072354968
421 => 0.13535134023124
422 => 0.13661145105744
423 => 0.1361949844369
424 => 0.13708971588901
425 => 0.13714464513346
426 => 0.13685375881768
427 => 0.13651694972884
428 => 0.1363530096911
429 => 0.13757488441883
430 => 0.13828422382469
501 => 0.13673792003696
502 => 0.13637564269458
503 => 0.13793904119775
504 => 0.13889271338154
505 => 0.14593409296452
506 => 0.14541244482165
507 => 0.14672167929196
508 => 0.14657427958245
509 => 0.14794656588474
510 => 0.15018967401752
511 => 0.14562880800068
512 => 0.14642041663832
513 => 0.14622633248128
514 => 0.14834529241621
515 => 0.14835190757784
516 => 0.14708148524695
517 => 0.14777020180277
518 => 0.14738577911526
519 => 0.14808048286944
520 => 0.14540547789267
521 => 0.14866334520543
522 => 0.15051034603943
523 => 0.1505359916478
524 => 0.15141145538441
525 => 0.15230097724425
526 => 0.15400833699318
527 => 0.15225335990752
528 => 0.149096326974
529 => 0.14932425455464
530 => 0.14747328730083
531 => 0.14750440239478
601 => 0.14733830758478
602 => 0.1478367706126
603 => 0.14551486249627
604 => 0.14605980969021
605 => 0.14529688042749
606 => 0.1464187581791
607 => 0.1452118031714
608 => 0.14622623888802
609 => 0.14666403571424
610 => 0.14827951542808
611 => 0.14497319550416
612 => 0.13823138536112
613 => 0.13964859558974
614 => 0.13755243034215
615 => 0.13774643841648
616 => 0.13813836560278
617 => 0.13686800136139
618 => 0.13711034682487
619 => 0.13710168853956
620 => 0.1370270761143
621 => 0.13669660531132
622 => 0.13621735726535
623 => 0.13812653397575
624 => 0.13845094030159
625 => 0.13917205537851
626 => 0.14131760471038
627 => 0.14110321373659
628 => 0.14145289430984
629 => 0.14068954358181
630 => 0.13778184806741
701 => 0.13793974992319
702 => 0.13597071125145
703 => 0.13912170263267
704 => 0.13837550628254
705 => 0.13789442864132
706 => 0.13776316214976
707 => 0.13991402988343
708 => 0.14055760322006
709 => 0.14015657150527
710 => 0.13933404375827
711 => 0.14091354019101
712 => 0.14133614680281
713 => 0.14143075283806
714 => 0.14422931767847
715 => 0.14158716152446
716 => 0.1422231547715
717 => 0.14718499253266
718 => 0.1426852903701
719 => 0.14506888296094
720 => 0.14495221850724
721 => 0.14617158382034
722 => 0.14485219496096
723 => 0.14486855036714
724 => 0.14595126415821
725 => 0.14443078790712
726 => 0.14405429660484
727 => 0.14353417656722
728 => 0.14466983964114
729 => 0.14535061829234
730 => 0.15083719424413
731 => 0.15438177252725
801 => 0.15422789303582
802 => 0.15563406353715
803 => 0.15500057084726
804 => 0.15295485584465
805 => 0.15644664190573
806 => 0.15534169469347
807 => 0.15543278519914
808 => 0.15542939480597
809 => 0.15616408810596
810 => 0.15564349056926
811 => 0.1546173393862
812 => 0.15529854642999
813 => 0.15732148781407
814 => 0.1636007599417
815 => 0.16711472381361
816 => 0.16338921490435
817 => 0.1659590210634
818 => 0.16441805308353
819 => 0.16413801336176
820 => 0.16575204153683
821 => 0.16736889485456
822 => 0.16726590828807
823 => 0.16609215580573
824 => 0.16542913281133
825 => 0.17044976505396
826 => 0.17414888136609
827 => 0.17389662643279
828 => 0.17500999767066
829 => 0.17827889006033
830 => 0.17857775661335
831 => 0.17854010629704
901 => 0.17779933436189
902 => 0.18101798343883
903 => 0.18370303712557
904 => 0.17762786706186
905 => 0.1799412122923
906 => 0.18097974749758
907 => 0.18250462529843
908 => 0.18507734974767
909 => 0.187872010881
910 => 0.18826720660715
911 => 0.18798679632759
912 => 0.18614364218563
913 => 0.18920159374496
914 => 0.19099287005063
915 => 0.19205953409802
916 => 0.19476441664624
917 => 0.18098616113744
918 => 0.17123322706459
919 => 0.16971016557503
920 => 0.17280737100547
921 => 0.17362407937773
922 => 0.17329486525694
923 => 0.16231705125996
924 => 0.16965236965625
925 => 0.17754455547957
926 => 0.17784772647898
927 => 0.18179871971995
928 => 0.1830853250759
929 => 0.18626639250341
930 => 0.18606741586971
1001 => 0.18684195516647
1002 => 0.18666390199529
1003 => 0.19255615955198
1004 => 0.19905619464571
1005 => 0.19883111909926
1006 => 0.19789666214961
1007 => 0.19928449006843
1008 => 0.20599322287126
1009 => 0.20537559026002
1010 => 0.20597556773201
1011 => 0.21388554179416
1012 => 0.22416963325564
1013 => 0.21939164026588
1014 => 0.22975851022321
1015 => 0.23628390533719
1016 => 0.24756890144836
1017 => 0.24615596435547
1018 => 0.25054913052842
1019 => 0.24362651207031
1020 => 0.22773078079848
1021 => 0.22521522047829
1022 => 0.23025143594343
1023 => 0.24263248023776
1024 => 0.22986151279821
1025 => 0.23244506287829
1026 => 0.23170100028142
1027 => 0.23166135234769
1028 => 0.23317455271816
1029 => 0.23097957665757
1030 => 0.22203684931809
1031 => 0.22613524855795
1101 => 0.22455265979015
1102 => 0.22630866001784
1103 => 0.2357850690171
1104 => 0.23159532270915
1105 => 0.22718176532108
1106 => 0.23271734573251
1107 => 0.23976604182807
1108 => 0.23932494709414
1109 => 0.238469038947
1110 => 0.24329374835849
1111 => 0.25126275479903
1112 => 0.25341674521785
1113 => 0.25500677690863
1114 => 0.25522601541498
1115 => 0.25748430828638
1116 => 0.24534089835377
1117 => 0.26461280178171
1118 => 0.26794052712813
1119 => 0.26731505268309
1120 => 0.27101367935354
1121 => 0.26992544956199
1122 => 0.26834877533206
1123 => 0.27421188532518
1124 => 0.26749030284664
1125 => 0.25794986274206
1126 => 0.25271578861218
1127 => 0.25960843964713
1128 => 0.2638175411138
1129 => 0.26659948943413
1130 => 0.26744130531497
1201 => 0.24628355669898
1202 => 0.2348807036575
1203 => 0.24218980172311
1204 => 0.25110740581016
1205 => 0.2452913606128
1206 => 0.24551933857331
1207 => 0.23722718655166
1208 => 0.25184107726781
1209 => 0.24971195631263
1210 => 0.26075783959443
1211 => 0.25812165090048
1212 => 0.26712913991807
1213 => 0.26475716618591
1214 => 0.27460309653284
1215 => 0.27853090471615
1216 => 0.28512630597047
1217 => 0.28997790998126
1218 => 0.29282686465279
1219 => 0.29265582410047
1220 => 0.30394480185265
1221 => 0.29728808607903
1222 => 0.28892568219991
1223 => 0.28877443269679
1224 => 0.29310544016196
1225 => 0.30218204365509
1226 => 0.30453547488165
1227 => 0.30585072187631
1228 => 0.30383637531992
1229 => 0.29661098743877
1230 => 0.29349110158524
1231 => 0.29614933472424
]
'min_raw' => 0.10961173160436
'max_raw' => 0.30585072187631
'avg_raw' => 0.20773122674033
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.109611'
'max' => '$0.30585'
'avg' => '$0.207731'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.043393643250126
'max_diff' => 0.15802350436777
'year' => 2036
]
11 => [
'items' => [
101 => 0.29289854401982
102 => 0.29851032078643
103 => 0.30621648889782
104 => 0.30462519565631
105 => 0.30994465038267
106 => 0.31544972640149
107 => 0.32332223235684
108 => 0.32538039693162
109 => 0.32878246470875
110 => 0.33228430997245
111 => 0.33340900829378
112 => 0.33555640636259
113 => 0.33554508851478
114 => 0.34201641713169
115 => 0.3491544929965
116 => 0.35184895138863
117 => 0.35804470988803
118 => 0.34743469058308
119 => 0.35548251210501
120 => 0.36274184856782
121 => 0.35408696836954
122 => 0.36601570439442
123 => 0.36647887018316
124 => 0.37347212369752
125 => 0.36638312151546
126 => 0.36217369464864
127 => 0.37432615228797
128 => 0.3802063437408
129 => 0.37843518222062
130 => 0.36495655559902
131 => 0.35711141677976
201 => 0.33657917527548
202 => 0.36090050226412
203 => 0.37274671117745
204 => 0.36492587677977
205 => 0.36887025073919
206 => 0.39038947609426
207 => 0.3985826038428
208 => 0.39687849054539
209 => 0.39716645764056
210 => 0.40158732065789
211 => 0.42119186189046
212 => 0.4094443663542
213 => 0.41842488652141
214 => 0.42318812203642
215 => 0.42761248064077
216 => 0.41674765424139
217 => 0.4026126747318
218 => 0.39813553337504
219 => 0.36414824893072
220 => 0.3623790631761
221 => 0.36138596560021
222 => 0.3551246258607
223 => 0.35020492795074
224 => 0.34629260151607
225 => 0.33602548863192
226 => 0.33949033783606
227 => 0.32312670281173
228 => 0.33359557660868
301 => 0.30747881999606
302 => 0.32922963096666
303 => 0.31739165344338
304 => 0.32534053696888
305 => 0.32531280406309
306 => 0.31067638929683
307 => 0.30223441071384
308 => 0.30761396803364
309 => 0.31338128051027
310 => 0.31431700755603
311 => 0.32179447872423
312 => 0.32388128019957
313 => 0.31755817430585
314 => 0.3069376082653
315 => 0.3094045235272
316 => 0.30218441875479
317 => 0.28953146285848
318 => 0.29861903668263
319 => 0.30172193393861
320 => 0.30309235013501
321 => 0.29064962121278
322 => 0.28673984564063
323 => 0.28465831393221
324 => 0.30533140821054
325 => 0.30646392698198
326 => 0.30066980082528
327 => 0.32685980047513
328 => 0.32093219694756
329 => 0.32755478238598
330 => 0.30918067682416
331 => 0.30988259240064
401 => 0.30118399636957
402 => 0.30605462890657
403 => 0.30261222281723
404 => 0.30566112993011
405 => 0.30748863228245
406 => 0.31618580095951
407 => 0.3293289386625
408 => 0.31488673398417
409 => 0.30859405858964
410 => 0.31249799901306
411 => 0.32289470681587
412 => 0.3386462513348
413 => 0.32932101995022
414 => 0.333459399286
415 => 0.33436345106719
416 => 0.32748737068302
417 => 0.33889978222651
418 => 0.34501578628693
419 => 0.3512895409242
420 => 0.35673686628913
421 => 0.34878366535925
422 => 0.35729473040079
423 => 0.35043631438254
424 => 0.34428360620415
425 => 0.34429293732273
426 => 0.3404332536057
427 => 0.33295463005251
428 => 0.33157545712663
429 => 0.33875008885739
430 => 0.34450346406531
501 => 0.34497733960424
502 => 0.34816270373843
503 => 0.35004776942119
504 => 0.36852397573473
505 => 0.37595525875722
506 => 0.38504209097015
507 => 0.38858192422288
508 => 0.39923555321316
509 => 0.39063188255807
510 => 0.38877042429221
511 => 0.36292820513729
512 => 0.3671598670762
513 => 0.37393516613504
514 => 0.36303992732327
515 => 0.36995044861106
516 => 0.37131473189812
517 => 0.36266971127756
518 => 0.36728739032029
519 => 0.35502420382922
520 => 0.32959624261659
521 => 0.3389280908163
522 => 0.34579947215744
523 => 0.33599316374843
524 => 0.35357059201503
525 => 0.34330222129345
526 => 0.34004764074343
527 => 0.32735036167606
528 => 0.33334298863277
529 => 0.34144810239787
530 => 0.33644008441165
531 => 0.34683247369074
601 => 0.36155086845893
602 => 0.37204007306629
603 => 0.37284530395108
604 => 0.36610144811067
605 => 0.37690852013363
606 => 0.37698723785497
607 => 0.36479681646488
608 => 0.35733025124
609 => 0.35563383191112
610 => 0.35987181999726
611 => 0.3650175199096
612 => 0.37313085448396
613 => 0.37803357264528
614 => 0.39081726140922
615 => 0.39427616105166
616 => 0.39807644308586
617 => 0.40315479184712
618 => 0.40925265159692
619 => 0.39591088161572
620 => 0.39644097500924
621 => 0.38401730353213
622 => 0.37074082882412
623 => 0.38081601819156
624 => 0.39398798804322
625 => 0.39096632360552
626 => 0.39062632462927
627 => 0.39119810859946
628 => 0.38891987229177
629 => 0.37861549390745
630 => 0.37344069959167
701 => 0.38011750448985
702 => 0.38366592914285
703 => 0.38916922632448
704 => 0.38849082878634
705 => 0.40266673131527
706 => 0.40817505838097
707 => 0.40676579260296
708 => 0.40702513142199
709 => 0.41699769446244
710 => 0.42808923557745
711 => 0.43847792748941
712 => 0.44904575110696
713 => 0.43630582726683
714 => 0.42983727963008
715 => 0.43651116964412
716 => 0.43296990966086
717 => 0.45331903993058
718 => 0.45472796955957
719 => 0.47507562835556
720 => 0.49438797950708
721 => 0.48225823776552
722 => 0.49369603789224
723 => 0.50606695126683
724 => 0.52993245027476
725 => 0.52189538980726
726 => 0.51573912744596
727 => 0.50992148926137
728 => 0.52202707079945
729 => 0.5376007080568
730 => 0.54095512035959
731 => 0.54639054977423
801 => 0.54067586035742
802 => 0.54755857430758
803 => 0.57185757896939
804 => 0.56529177341652
805 => 0.55596727402553
806 => 0.57514900450482
807 => 0.58209079819818
808 => 0.6308119417838
809 => 0.6923243981307
810 => 0.66685783729052
811 => 0.65104992117623
812 => 0.65476515643187
813 => 0.6772274231617
814 => 0.68444159031862
815 => 0.66483099711358
816 => 0.67175779016313
817 => 0.70992510089339
818 => 0.73040063854624
819 => 0.70259210818208
820 => 0.62586947580967
821 => 0.55512770487693
822 => 0.57389160807176
823 => 0.57176436376117
824 => 0.61277037767185
825 => 0.56513518112554
826 => 0.56593723566811
827 => 0.60779121052034
828 => 0.59662528758855
829 => 0.5785379224624
830 => 0.55525976265903
831 => 0.51222793129333
901 => 0.47411343822133
902 => 0.54886473637905
903 => 0.54564132447607
904 => 0.54097334635768
905 => 0.55136142653217
906 => 0.60180299515148
907 => 0.60064015373138
908 => 0.59324274990361
909 => 0.59885361550925
910 => 0.5775543105936
911 => 0.58304362644652
912 => 0.55511649901899
913 => 0.5677407269561
914 => 0.57849911510029
915 => 0.5806590208009
916 => 0.58552539863188
917 => 0.54394273287617
918 => 0.56261212899756
919 => 0.57357865013302
920 => 0.52403150867754
921 => 0.57259926245265
922 => 0.54321887117844
923 => 0.53324672510131
924 => 0.54667290606383
925 => 0.54144071028535
926 => 0.53694237559985
927 => 0.53443222755415
928 => 0.5442909330595
929 => 0.54383101266397
930 => 0.52770025696493
1001 => 0.50665834372925
1002 => 0.5137207004884
1003 => 0.51115488006786
1004 => 0.50185601586637
1005 => 0.50812232758903
1006 => 0.48052866207024
1007 => 0.43305519473909
1008 => 0.46441762140968
1009 => 0.46321020209862
1010 => 0.46260136652987
1011 => 0.48616936337901
1012 => 0.48390384428817
1013 => 0.47979190495425
1014 => 0.50178049687588
1015 => 0.49375436503619
1016 => 0.51848901217162
1017 => 0.5347808505117
1018 => 0.53064871332289
1019 => 0.54597126602702
1020 => 0.51388340292418
1021 => 0.52454170390532
1022 => 0.52673836496577
1023 => 0.50150916106477
1024 => 0.48427451122958
1025 => 0.48312515657496
1026 => 0.45324264884178
1027 => 0.46920564326967
1028 => 0.48325241777262
1029 => 0.47652510285944
1030 => 0.47439543593075
1031 => 0.48527544240105
1101 => 0.48612091208475
1102 => 0.46684411369761
1103 => 0.47085237049911
1104 => 0.48756746767861
1105 => 0.47043119293671
1106 => 0.43713821030777
1107 => 0.4288810903043
1108 => 0.42777943828692
1109 => 0.40538547395706
1110 => 0.42943287054589
1111 => 0.4189355375047
1112 => 0.45209648680445
1113 => 0.43315513041017
1114 => 0.43233860639362
1115 => 0.43110431058458
1116 => 0.41182890040285
1117 => 0.41604899021643
1118 => 0.43007721149458
1119 => 0.43508263888585
1120 => 0.43456053180068
1121 => 0.43000846555725
1122 => 0.43209237817314
1123 => 0.42537936955406
1124 => 0.42300886649147
1125 => 0.41552690676771
1126 => 0.4045304929179
1127 => 0.40605961170864
1128 => 0.38427283850397
1129 => 0.37240224815049
1130 => 0.36911662519251
1201 => 0.36472295285747
1202 => 0.36961290217387
1203 => 0.38421111931284
1204 => 0.36660257225871
1205 => 0.33641395343037
1206 => 0.33822834086085
1207 => 0.34230473072069
1208 => 0.3347084051849
1209 => 0.32751912057654
1210 => 0.33376962025841
1211 => 0.32097830449131
1212 => 0.34385050011992
1213 => 0.34323187132675
1214 => 0.35175721145
1215 => 0.35708828158667
1216 => 0.34480189087611
1217 => 0.34171189683834
1218 => 0.34347209787465
1219 => 0.31437989564066
1220 => 0.34937975786403
1221 => 0.34968243812594
1222 => 0.34709070596096
1223 => 0.36572705209539
1224 => 0.40505555526117
1225 => 0.39025859038483
1226 => 0.38452875834408
1227 => 0.37363634344613
1228 => 0.38814983957005
1229 => 0.38703542951354
1230 => 0.38199564461055
1231 => 0.37894756697613
]
'min_raw' => 0.28465831393221
'max_raw' => 0.73040063854624
'avg_raw' => 0.50752947623923
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.284658'
'max' => '$0.73040063'
'avg' => '$0.507529'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.17504658232785
'max_diff' => 0.42454991666993
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0089350992025626
]
1 => [
'year' => 2028
'avg' => 0.01533522410943
]
2 => [
'year' => 2029
'avg' => 0.041893068361729
]
3 => [
'year' => 2030
'avg' => 0.032320439852045
]
4 => [
'year' => 2031
'avg' => 0.031742677362724
]
5 => [
'year' => 2032
'avg' => 0.055654903205071
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0089350992025626
'min' => '$0.008935'
'max_raw' => 0.055654903205071
'max' => '$0.055654'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.055654903205071
]
1 => [
'year' => 2033
'avg' => 0.14315013396965
]
2 => [
'year' => 2034
'avg' => 0.090735434383489
]
3 => [
'year' => 2035
'avg' => 0.10702265293138
]
4 => [
'year' => 2036
'avg' => 0.20773122674033
]
5 => [
'year' => 2037
'avg' => 0.50752947623923
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.055654903205071
'min' => '$0.055654'
'max_raw' => 0.50752947623923
'max' => '$0.507529'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.50752947623923
]
]
]
]
'prediction_2025_max_price' => '$0.015277'
'last_price' => 0.01481336
'sma_50day_nextmonth' => '$0.01413'
'sma_200day_nextmonth' => '$0.0172076'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.014458'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.014491'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.015244'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.014851'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.016568'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.020241'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.017481'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.014613'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.014664'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.014845'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.015159'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.01651'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.017743'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.020621'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.018344'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.019741'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.060984'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.052563'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.015051'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.015632'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.016992'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.0186013'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.028462'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.068955'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.182626'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '45.26'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 17.13
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.0153066'
'vwma_10_action' => 'SELL'
'hma_9' => '0.014093'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 20.72
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -7.88
'cci_20_action' => 'NEUTRAL'
'adx_14' => 16.02
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000784'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -79.28
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 36.75
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.004220'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 23
'buy_signals' => 11
'sell_pct' => 67.65
'buy_pct' => 32.35
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767675635
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Dimitra para 2026
A previsão de preço para Dimitra em 2026 sugere que o preço médio poderia variar entre $0.005118 na extremidade inferior e $0.015277 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Dimitra poderia potencialmente ganhar 3.13% até 2026 se DMTR atingir a meta de preço prevista.
Previsão de preço de Dimitra 2027-2032
A previsão de preço de DMTR para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.008935 na extremidade inferior e $0.055654 na extremidade superior. Considerando a volatilidade de preços no mercado, se Dimitra atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Dimitra | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.004926 | $0.008935 | $0.012943 |
| 2028 | $0.008891 | $0.015335 | $0.021778 |
| 2029 | $0.019532 | $0.041893 | $0.064253 |
| 2030 | $0.016611 | $0.03232 | $0.048029 |
| 2031 | $0.01964 | $0.031742 | $0.043845 |
| 2032 | $0.029979 | $0.055654 | $0.08133 |
Previsão de preço de Dimitra 2032-2037
A previsão de preço de Dimitra para 2032-2037 é atualmente estimada entre $0.055654 na extremidade inferior e $0.507529 na extremidade superior. Comparado ao preço atual, Dimitra poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Dimitra | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.029979 | $0.055654 | $0.08133 |
| 2033 | $0.069665 | $0.14315 | $0.216635 |
| 2034 | $0.0560073 | $0.090735 | $0.125463 |
| 2035 | $0.066218 | $0.107022 | $0.147827 |
| 2036 | $0.109611 | $0.207731 | $0.30585 |
| 2037 | $0.284658 | $0.507529 | $0.73040063 |
Dimitra Histograma de preços potenciais
Previsão de preço de Dimitra baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Dimitra é Baixista, com 11 indicadores técnicos mostrando sinais de alta e 23 indicando sinais de baixa. A previsão de preço de DMTR foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Dimitra
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Dimitra está projetado para aumentar no próximo mês, alcançando $0.0172076 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Dimitra é esperado para alcançar $0.01413 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 45.26, sugerindo que o mercado de DMTR está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de DMTR para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.014458 | BUY |
| SMA 5 | $0.014491 | BUY |
| SMA 10 | $0.015244 | SELL |
| SMA 21 | $0.014851 | SELL |
| SMA 50 | $0.016568 | SELL |
| SMA 100 | $0.020241 | SELL |
| SMA 200 | $0.017481 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.014613 | BUY |
| EMA 5 | $0.014664 | BUY |
| EMA 10 | $0.014845 | SELL |
| EMA 21 | $0.015159 | SELL |
| EMA 50 | $0.01651 | SELL |
| EMA 100 | $0.017743 | SELL |
| EMA 200 | $0.020621 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.018344 | SELL |
| SMA 50 | $0.019741 | SELL |
| SMA 100 | $0.060984 | SELL |
| SMA 200 | $0.052563 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.0186013 | SELL |
| EMA 50 | $0.028462 | SELL |
| EMA 100 | $0.068955 | SELL |
| EMA 200 | $0.182626 | SELL |
Osciladores de Dimitra
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 45.26 | NEUTRAL |
| Stoch RSI (14) | 17.13 | BUY |
| Estocástico Rápido (14) | 20.72 | NEUTRAL |
| Índice de Canal de Commodities (20) | -7.88 | NEUTRAL |
| Índice Direcional Médio (14) | 16.02 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000784 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -79.28 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 36.75 | NEUTRAL |
| VWMA (10) | 0.0153066 | SELL |
| Média Móvel de Hull (9) | 0.014093 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.004220 | SELL |
Previsão do preço de Dimitra com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Dimitra
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Dimitra por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.020815 | $0.029248 | $0.041099 | $0.057751 | $0.08115 | $0.11403 |
| Amazon.com stock | $0.0309089 | $0.064493 | $0.134569 | $0.280786 | $0.585878 | $1.22 |
| Apple stock | $0.021011 | $0.0298033 | $0.042273 | $0.059962 | $0.085051 | $0.120639 |
| Netflix stock | $0.023373 | $0.036879 | $0.058189 | $0.091814 | $0.144868 | $0.228579 |
| Google stock | $0.019183 | $0.024842 | $0.03217 | $0.04166 | $0.05395 | $0.069865 |
| Tesla stock | $0.03358 | $0.076125 | $0.172569 | $0.3912025 | $0.886826 | $2.01 |
| Kodak stock | $0.0111084 | $0.00833 | $0.006246 | $0.004684 | $0.003512 | $0.002634 |
| Nokia stock | $0.009813 | $0.00650085 | $0.0043065 | $0.002852 | $0.001889 | $0.001252 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Dimitra
Você pode fazer perguntas como: 'Devo investir em Dimitra agora?', 'Devo comprar DMTR hoje?', 'Dimitra será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Dimitra regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Dimitra, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Dimitra para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Dimitra é de $0.01481 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Dimitra
com base no histórico de preços de 4 horas
Previsão de longo prazo para Dimitra
com base no histórico de preços de 1 mês
Previsão do preço de Dimitra com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Dimitra tiver 1% da média anterior do crescimento anual do Bitcoin | $0.015198 | $0.015593 | $0.015998 | $0.016414 |
| Se Dimitra tiver 2% da média anterior do crescimento anual do Bitcoin | $0.015583 | $0.016393 | $0.017245 | $0.018142 |
| Se Dimitra tiver 5% da média anterior do crescimento anual do Bitcoin | $0.016738 | $0.018914 | $0.021372 | $0.024149 |
| Se Dimitra tiver 10% da média anterior do crescimento anual do Bitcoin | $0.018663 | $0.023515 | $0.029627 | $0.037328 |
| Se Dimitra tiver 20% da média anterior do crescimento anual do Bitcoin | $0.022514 | $0.034218 | $0.0520077 | $0.079044 |
| Se Dimitra tiver 50% da média anterior do crescimento anual do Bitcoin | $0.034065 | $0.078339 | $0.180154 | $0.414293 |
| Se Dimitra tiver 100% da média anterior do crescimento anual do Bitcoin | $0.053318 | $0.1919087 | $0.690741 | $2.48 |
Perguntas Frequentes sobre Dimitra
DMTR é um bom investimento?
A decisão de adquirir Dimitra depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Dimitra experimentou uma escalada de 2.9069% nas últimas 24 horas, e Dimitra registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Dimitra dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Dimitra pode subir?
Parece que o valor médio de Dimitra pode potencialmente subir para $0.015277 até o final deste ano. Observando as perspectivas de Dimitra em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.048029. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Dimitra na próxima semana?
Com base na nossa nova previsão experimental de Dimitra, o preço de Dimitra aumentará 0.86% na próxima semana e atingirá $0.01494 até 13 de janeiro de 2026.
Qual será o preço de Dimitra no próximo mês?
Com base na nossa nova previsão experimental de Dimitra, o preço de Dimitra diminuirá -11.62% no próximo mês e atingirá $0.0130923 até 5 de fevereiro de 2026.
Até onde o preço de Dimitra pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Dimitra em 2026, espera-se que DMTR fluctue dentro do intervalo de $0.005118 e $0.015277. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Dimitra não considera flutuações repentinas e extremas de preço.
Onde estará Dimitra em 5 anos?
O futuro de Dimitra parece seguir uma tendência de alta, com um preço máximo de $0.048029 projetada após um período de cinco anos. Com base na previsão de Dimitra para 2030, o valor de Dimitra pode potencialmente atingir seu pico mais alto de aproximadamente $0.048029, enquanto seu pico mais baixo está previsto para cerca de $0.016611.
Quanto será Dimitra em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Dimitra, espera-se que o valor de DMTR em 2026 aumente 3.13% para $0.015277 se o melhor cenário ocorrer. O preço ficará entre $0.015277 e $0.005118 durante 2026.
Quanto será Dimitra em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Dimitra, o valor de DMTR pode diminuir -12.62% para $0.012943 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.012943 e $0.004926 ao longo do ano.
Quanto será Dimitra em 2028?
Nosso novo modelo experimental de previsão de preços de Dimitra sugere que o valor de DMTR em 2028 pode aumentar 47.02%, alcançando $0.021778 no melhor cenário. O preço é esperado para variar entre $0.021778 e $0.008891 durante o ano.
Quanto será Dimitra em 2029?
Com base no nosso modelo de previsão experimental, o valor de Dimitra pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.064253 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.064253 e $0.019532.
Quanto será Dimitra em 2030?
Usando nossa nova simulação experimental para previsões de preços de Dimitra, espera-se que o valor de DMTR em 2030 aumente 224.23%, alcançando $0.048029 no melhor cenário. O preço está previsto para variar entre $0.048029 e $0.016611 ao longo de 2030.
Quanto será Dimitra em 2031?
Nossa simulação experimental indica que o preço de Dimitra poderia aumentar 195.98% em 2031, potencialmente atingindo $0.043845 sob condições ideais. O preço provavelmente oscilará entre $0.043845 e $0.01964 durante o ano.
Quanto será Dimitra em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Dimitra, DMTR poderia ver um 449.04% aumento em valor, atingindo $0.08133 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.08133 e $0.029979 ao longo do ano.
Quanto será Dimitra em 2033?
De acordo com nossa previsão experimental de preços de Dimitra, espera-se que o valor de DMTR seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.216635. Ao longo do ano, o preço de DMTR poderia variar entre $0.216635 e $0.069665.
Quanto será Dimitra em 2034?
Os resultados da nossa nova simulação de previsão de preços de Dimitra sugerem que DMTR pode aumentar 746.96% em 2034, atingindo potencialmente $0.125463 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.125463 e $0.0560073.
Quanto será Dimitra em 2035?
Com base em nossa previsão experimental para o preço de Dimitra, DMTR poderia aumentar 897.93%, com o valor potencialmente atingindo $0.147827 em 2035. A faixa de preço esperada para o ano está entre $0.147827 e $0.066218.
Quanto será Dimitra em 2036?
Nossa recente simulação de previsão de preços de Dimitra sugere que o valor de DMTR pode aumentar 1964.7% em 2036, possivelmente atingindo $0.30585 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.30585 e $0.109611.
Quanto será Dimitra em 2037?
De acordo com a simulação experimental, o valor de Dimitra poderia aumentar 4830.69% em 2037, com um pico de $0.73040063 sob condições favoráveis. O preço é esperado para cair entre $0.73040063 e $0.284658 ao longo do ano.
Previsões relacionadas
Previsão de Preço do IX Swap
Previsão de Preço do BitMart Token
Previsão de Preço do LON
Previsão de Preço do Moon Tropica
Previsão de Preço do Kinesis Silver
Previsão de Preço do Perpetual Protocol
Previsão de Preço do USDX
Previsão de Preço do Metadium
Previsão de Preço do ARPA
Previsão de Preço do Storj
Previsão de Preço do Ozone Chain
Previsão de Preço do Humanscape
Previsão de Preço do Ordiswap
Previsão de Preço do Guild of Guardians
Previsão de Preço do Lyra Finance
Previsão de Preço do Bazaars
Previsão de Preço do PlatON Network
Previsão de Preço do Saitama Inu
Previsão de Preço do Nuls
Previsão de Preço do Across Protocol
Previsão de Preço do Alien Worlds
Previsão de Preço do MovieBloc
Previsão de Preço do REN
Previsão de Preço do Moonwell
Previsão de Preço do Pandora
Como ler e prever os movimentos de preço de Dimitra?
Traders de Dimitra utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Dimitra
Médias móveis são ferramentas populares para a previsão de preço de Dimitra. Uma média móvel simples (SMA) calcula o preço médio de fechamento de DMTR em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de DMTR acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de DMTR.
Como ler gráficos de Dimitra e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Dimitra em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de DMTR dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Dimitra?
A ação de preço de Dimitra é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de DMTR. A capitalização de mercado de Dimitra pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de DMTR, grandes detentores de Dimitra, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Dimitra.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


