Previsão de Preço Dimitra - Projeção DMTR
Previsão de Preço Dimitra até $0.014425 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.004832 | $0.014425 |
| 2027 | $0.004652 | $0.012221 |
| 2028 | $0.008395 | $0.020563 |
| 2029 | $0.018442 | $0.060668 |
| 2030 | $0.015684 | $0.045349 |
| 2031 | $0.018544 | $0.041399 |
| 2032 | $0.0283066 | $0.076793 |
| 2033 | $0.065778 | $0.204549 |
| 2034 | $0.052882 | $0.118464 |
| 2035 | $0.062523 | $0.13958 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Dimitra hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,955.08, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Dimitra para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Dimitra'
'name_with_ticker' => 'Dimitra <small>DMTR</small>'
'name_lang' => 'Dimitra'
'name_lang_with_ticker' => 'Dimitra <small>DMTR</small>'
'name_with_lang' => 'Dimitra'
'name_with_lang_with_ticker' => 'Dimitra <small>DMTR</small>'
'image' => '/uploads/coins/dimitra.jpg?1717210240'
'price_for_sd' => 0.01398
'ticker' => 'DMTR'
'marketcap' => '$9.67M'
'low24h' => '$0.01399'
'high24h' => '$0.01494'
'volume24h' => '$277.57K'
'current_supply' => '689.23M'
'max_supply' => '971.07M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01398'
'change_24h_pct' => '-0.3731%'
'ath_price' => '$5.95'
'ath_days' => 1567
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '22 de set. de 2021'
'ath_pct' => '-99.76%'
'fdv' => '$13.62M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.689652'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.014106'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.012361'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004832'
'current_year_max_price_prediction' => '$0.014425'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.015684'
'grand_prediction_max_price' => '$0.045349'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.01425198515587
107 => 0.014305196894971
108 => 0.014425085660225
109 => 0.013400649287511
110 => 0.013860591142988
111 => 0.014130763892357
112 => 0.012910113581739
113 => 0.014106635560406
114 => 0.013382816129427
115 => 0.01313714094315
116 => 0.013467910216227
117 => 0.013339009108825
118 => 0.013228187506008
119 => 0.013166347147479
120 => 0.013409227595955
121 => 0.013397896932729
122 => 0.013000497377959
123 => 0.012482105858839
124 => 0.012656095068277
125 => 0.012592883157331
126 => 0.012363795037563
127 => 0.012518172770081
128 => 0.011838371364851
129 => 0.010668808380154
130 => 0.011441457512528
131 => 0.011411711361412
201 => 0.011396712003139
202 => 0.011977336471664
203 => 0.011921522826301
204 => 0.011820220513438
205 => 0.012361934541145
206 => 0.01216420163395
207 => 0.012773567862192
208 => 0.013174935871448
209 => 0.013073135961406
210 => 0.013450624514092
211 => 0.012660103428254
212 => 0.012922682822768
213 => 0.012976800072058
214 => 0.012355249874131
215 => 0.011930654628942
216 => 0.011902338966828
217 => 0.011166149324498
218 => 0.011559415889115
219 => 0.011905474191502
220 => 0.011739739119868
221 => 0.011687272347383
222 => 0.011955313709354
223 => 0.011976142818798
224 => 0.011501236916101
225 => 0.011599984891586
226 => 0.012011780364843
227 => 0.011589608702218
228 => 0.010769398123089
301 => 0.010565974559167
302 => 0.010538834105899
303 => 0.0099871332668149
304 => 0.010579568294415
305 => 0.010320954528596
306 => 0.011137912316151
307 => 0.010671270409332
308 => 0.010651154409394
309 => 0.010620746125113
310 => 0.010145874422439
311 => 0.010249841145653
312 => 0.010595442368198
313 => 0.010718756777878
314 => 0.010705894074663
315 => 0.010593748733665
316 => 0.010645088296497
317 => 0.010479705676726
318 => 0.010421305631544
319 => 0.010236979024749
320 => 0.0099660698342866
321 => 0.010003741418803
322 => 0.0094669994252505
323 => 0.0091745539001095
324 => 0.0090936088331205
325 => 0.0089853657066156
326 => 0.0091058351822832
327 => 0.0094654789026209
328 => 0.009031672273222
329 => 0.0082879412351145
330 => 0.0083326407377608
331 => 0.0084330672488056
401 => 0.0082459231098615
402 => 0.008068806888168
403 => 0.0082227950730372
404 => 0.0079076664277581
405 => 0.0084711490400426
406 => 0.0084559084145221
407 => 0.0086659398868508
408 => 0.0087972768767776
409 => 0.0084945876358517
410 => 0.0084184621103176
411 => 0.0084618266693741
412 => 0.0077451071039196
413 => 0.0086073686076014
414 => 0.0086148254808914
415 => 0.0085509752045831
416 => 0.0090101028359565
417 => 0.0099790053436536
418 => 0.0096144652462449
419 => 0.0094733043022454
420 => 0.0092049572445145
421 => 0.0095625137660693
422 => 0.0095350590039645
423 => 0.0094108981578174
424 => 0.0093358052906622
425 => 0.0094741662008687
426 => 0.0093186608427153
427 => 0.0092907278073895
428 => 0.0091214840047572
429 => 0.0090610716673198
430 => 0.0090163447777656
501 => 0.0089671048671399
502 => 0.009075715840159
503 => 0.0088295890863342
504 => 0.0085327843493247
505 => 0.0085081082469141
506 => 0.0085762411352148
507 => 0.0085460974040387
508 => 0.0085079639303263
509 => 0.0084351567439758
510 => 0.008413556407065
511 => 0.0084837470230314
512 => 0.0084045059099724
513 => 0.0085214304887777
514 => 0.0084896334730747
515 => 0.0083120179281249
516 => 0.0080906431974203
517 => 0.0080886724979678
518 => 0.0080409776753649
519 => 0.0079802311478154
520 => 0.0079633328535434
521 => 0.0082098266176155
522 => 0.0087200613323072
523 => 0.0086198900489313
524 => 0.0086922740671365
525 => 0.0090483317956098
526 => 0.009161511840462
527 => 0.0090811793254422
528 => 0.0089712152241893
529 => 0.0089760530865672
530 => 0.0093518337089455
531 => 0.0093752706854213
601 => 0.0094344883639206
602 => 0.0095105998157061
603 => 0.0090941414347965
604 => 0.0089564379342778
605 => 0.0088911863762328
606 => 0.0086902368329849
607 => 0.0089069436872659
608 => 0.0087806778835891
609 => 0.0087977154543591
610 => 0.0087866197140441
611 => 0.0087926787385468
612 => 0.0084709915351687
613 => 0.008588197444698
614 => 0.0083933198876455
615 => 0.0081324007147846
616 => 0.0081315260222271
617 => 0.0081953856201409
618 => 0.0081573994324755
619 => 0.008055179578182
620 => 0.0080696994260203
621 => 0.007942490280455
622 => 0.0080851449194878
623 => 0.0080892357440924
624 => 0.0080343059376141
625 => 0.0082540850915908
626 => 0.0083441287902977
627 => 0.0083079728149632
628 => 0.0083415919906838
629 => 0.0086240526180018
630 => 0.0086701060248759
701 => 0.008690559906092
702 => 0.0086631544148823
703 => 0.0083467548524309
704 => 0.0083607885184605
705 => 0.0082578187886194
706 => 0.0081708202175864
707 => 0.0081742997041803
708 => 0.0082190282787139
709 => 0.0084143605869979
710 => 0.0088254259143132
711 => 0.008841025543
712 => 0.0088599327480416
713 => 0.0087830276431374
714 => 0.0087598323276155
715 => 0.0087904329360078
716 => 0.0089448074601593
717 => 0.0093419006485514
718 => 0.0092015413948113
719 => 0.0090874271366987
720 => 0.0091875361060466
721 => 0.0091721251148955
722 => 0.0090420408405072
723 => 0.0090383898081842
724 => 0.0087887164951747
725 => 0.0086964179561414
726 => 0.0086192863884992
727 => 0.0085350607302045
728 => 0.0084851289366978
729 => 0.0085618468651184
730 => 0.0085793931630481
731 => 0.0084116480717565
801 => 0.0083887850356528
802 => 0.0085257692982308
803 => 0.0084654876315583
804 => 0.0085274888206444
805 => 0.0085418736283487
806 => 0.0085395573429981
807 => 0.0084766163596867
808 => 0.0085167330655223
809 => 0.0084218450968555
810 => 0.0083186686826425
811 => 0.0082528485584924
812 => 0.0081954117703988
813 => 0.0082272810386788
814 => 0.0081136729163591
815 => 0.0080773273915492
816 => 0.0085031424282396
817 => 0.0088176965741259
818 => 0.0088131228322676
819 => 0.0087852813549761
820 => 0.0087439145671584
821 => 0.0089417812219726
822 => 0.008872848435904
823 => 0.0089230027972959
824 => 0.0089357691872421
825 => 0.0089744092046185
826 => 0.0089882196896088
827 => 0.0089464748119695
828 => 0.0088063739039043
829 => 0.0084572557614006
830 => 0.0082947403236387
831 => 0.0082411075222686
901 => 0.0082430569727352
902 => 0.0081892824261359
903 => 0.0082051214401155
904 => 0.0081837742634596
905 => 0.0081433478753099
906 => 0.0082247848231292
907 => 0.0082341696727277
908 => 0.0082151613160076
909 => 0.0082196384721277
910 => 0.0080622573970608
911 => 0.0080742227383844
912 => 0.0080075981974125
913 => 0.0079951068991511
914 => 0.0078266858612365
915 => 0.007528303579551
916 => 0.0076936363282737
917 => 0.0074939376171192
918 => 0.0074183086892758
919 => 0.0077763242709753
920 => 0.0077403894363792
921 => 0.0076788846200477
922 => 0.0075879061779666
923 => 0.0075541613888173
924 => 0.0073491387322484
925 => 0.007337024899945
926 => 0.0074386396646179
927 => 0.0073917479470719
928 => 0.0073258942163551
929 => 0.0070873786791847
930 => 0.0068192082456246
1001 => 0.0068273026253545
1002 => 0.0069126026507817
1003 => 0.0071606239789869
1004 => 0.0070637177552446
1005 => 0.0069934111780487
1006 => 0.0069802448695479
1007 => 0.0071450487859697
1008 => 0.0073782808551944
1009 => 0.0074877081238012
1010 => 0.0073792690239674
1011 => 0.0072547000248541
1012 => 0.007262281962633
1013 => 0.0073127211979078
1014 => 0.0073180216483628
1015 => 0.0072369400358401
1016 => 0.007259764034827
1017 => 0.0072250922932957
1018 => 0.0070123118795171
1019 => 0.0070084633565659
1020 => 0.0069562436114769
1021 => 0.0069546624183491
1022 => 0.0068658236051269
1023 => 0.0068533944410434
1024 => 0.0066769995852603
1025 => 0.0067931032135096
1026 => 0.0067152269953941
1027 => 0.0065978491655512
1028 => 0.0065776131834439
1029 => 0.0065770048653861
1030 => 0.0066975256514322
1031 => 0.006791694857954
1101 => 0.0067165816855499
1102 => 0.0066994798722011
1103 => 0.0068820824967735
1104 => 0.0068588446483368
1105 => 0.0068387208214587
1106 => 0.0073573974815071
1107 => 0.0069468244322343
1108 => 0.006767791148061
1109 => 0.006546203461398
1110 => 0.0066183535295175
1111 => 0.0066335566089754
1112 => 0.0061006781667335
1113 => 0.0058844894490817
1114 => 0.0058103016280836
1115 => 0.0057676054882374
1116 => 0.0057870626553097
1117 => 0.0055924674530157
1118 => 0.0057232386472648
1119 => 0.0055547356508012
1120 => 0.0055264855750879
1121 => 0.0058277898062805
1122 => 0.0058697145298572
1123 => 0.0056908506340885
1124 => 0.0058057102106064
1125 => 0.0057640605314935
1126 => 0.0055576241510426
1127 => 0.0055497397997526
1128 => 0.005446157280632
1129 => 0.0052840706957363
1130 => 0.0052099927770753
1201 => 0.0051714123538626
1202 => 0.0051873313883976
1203 => 0.0051792822374063
1204 => 0.0051267560825319
1205 => 0.0051822929751187
1206 => 0.0050404191639878
1207 => 0.0049839238692405
1208 => 0.004958406255284
1209 => 0.0048324850819534
1210 => 0.0050328816661223
1211 => 0.0050723623177333
1212 => 0.005111920758424
1213 => 0.0054562499769428
1214 => 0.0054390482622499
1215 => 0.0055945433854992
1216 => 0.0055885011309469
1217 => 0.0055441514029422
1218 => 0.0053570471956666
1219 => 0.0054316235978749
1220 => 0.005202089023624
1221 => 0.0053740719334867
1222 => 0.0052955861156034
1223 => 0.0053475357995107
1224 => 0.0052541255837312
1225 => 0.0053058226539568
1226 => 0.0050817246448658
1227 => 0.0048724650771207
1228 => 0.0049566772358489
1229 => 0.005048225483215
1230 => 0.0052467254095643
1231 => 0.0051285004910195
]
'min_raw' => 0.0048324850819534
'max_raw' => 0.014425085660225
'avg_raw' => 0.0096287853710893
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004832'
'max' => '$0.014425'
'avg' => '$0.009628'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0091544549180466
'max_diff' => 0.00043814566022519
'year' => 2026
]
1 => [
'items' => [
101 => 0.0051710186423073
102 => 0.0050285899529457
103 => 0.0047347188840488
104 => 0.0047363821623845
105 => 0.0046911765007639
106 => 0.0046521122089891
107 => 0.0051420800450898
108 => 0.0050811447994255
109 => 0.0049840524604671
110 => 0.0051140144144591
111 => 0.0051483784178681
112 => 0.0051493567127351
113 => 0.0052441735995641
114 => 0.0052947773890616
115 => 0.0053036965262899
116 => 0.0054528929463698
117 => 0.0055029016184322
118 => 0.0057088802611651
119 => 0.0052904840110717
120 => 0.0052818674156343
121 => 0.0051158432456704
122 => 0.005010548092341
123 => 0.0051230528949028
124 => 0.0052227167915355
125 => 0.0051189400807508
126 => 0.0051324911283334
127 => 0.0049931793729737
128 => 0.0050429767702875
129 => 0.0050858689972879
130 => 0.0050621864306268
131 => 0.005026732482086
201 => 0.0052145454885637
202 => 0.0052039483426932
203 => 0.0053788441321276
204 => 0.0055151879069096
205 => 0.005759540325684
206 => 0.0055045458383132
207 => 0.0054952528256821
208 => 0.005586093514797
209 => 0.005502887711196
210 => 0.0055554709069051
211 => 0.0057510683599222
212 => 0.005755201025886
213 => 0.0056859735463527
214 => 0.0056817610479317
215 => 0.0056950569426417
216 => 0.005772931413248
217 => 0.0057457196803774
218 => 0.005777209786572
219 => 0.0058165886465621
220 => 0.0059794763077716
221 => 0.0060187479714356
222 => 0.0059233381887551
223 => 0.0059319526238731
224 => 0.0058962667460935
225 => 0.0058617946353012
226 => 0.0059392829061149
227 => 0.0060808942440628
228 => 0.006080013287279
301 => 0.0061128643651519
302 => 0.0061333303145137
303 => 0.0060454754778624
304 => 0.0059882852097143
305 => 0.0060102155976336
306 => 0.0060452827654982
307 => 0.0059988437877186
308 => 0.0057122009042352
309 => 0.0057991500442658
310 => 0.005784677455769
311 => 0.0057640667298226
312 => 0.0058514947624811
313 => 0.0058430621154491
314 => 0.0055904715979528
315 => 0.005606641623355
316 => 0.0055914549507543
317 => 0.005640526196828
318 => 0.0055002377028699
319 => 0.005543389498754
320 => 0.0055704539006095
321 => 0.005586395041221
322 => 0.005643985372052
323 => 0.005637227811434
324 => 0.0056435653125959
325 => 0.0057289565699346
326 => 0.0061608362468128
327 => 0.0061843425047365
328 => 0.0060685890937103
329 => 0.0061148302982802
330 => 0.0060260572973458
331 => 0.0060856512076005
401 => 0.0061264238474755
402 => 0.005942180128008
403 => 0.005931270410673
404 => 0.0058421310119855
405 => 0.0058900294757265
406 => 0.0058138195758931
407 => 0.0058325188196031
408 => 0.0057802341040191
409 => 0.0058743361822872
410 => 0.0059795569277755
411 => 0.006006139843379
412 => 0.0059362116370909
413 => 0.005885579007245
414 => 0.0057966847886607
415 => 0.0059445178553032
416 => 0.0059877487491206
417 => 0.005944290781822
418 => 0.0059342206212235
419 => 0.0059151376850859
420 => 0.005938269156336
421 => 0.0059875133043886
422 => 0.0059642906735636
423 => 0.0059796296303536
424 => 0.0059211733445337
425 => 0.006045504561469
426 => 0.0062429724558989
427 => 0.0062436073474688
428 => 0.0062203845914652
429 => 0.0062108823400498
430 => 0.0062347102969841
501 => 0.006247635986147
502 => 0.0063246912295727
503 => 0.0064073745757848
504 => 0.0067932216749864
505 => 0.0066848773535227
506 => 0.007027223854081
507 => 0.0072979754878932
508 => 0.0073791620643394
509 => 0.0073044742341325
510 => 0.0070489712015519
511 => 0.0070364350038319
512 => 0.0074182644051052
513 => 0.007310380110351
514 => 0.007297547616775
515 => 0.0071610315659661
516 => 0.007241729459836
517 => 0.0072240796466799
518 => 0.0071962185531547
519 => 0.0073501845131945
520 => 0.0076383950457528
521 => 0.0075934747314323
522 => 0.0075599438005855
523 => 0.007413021022322
524 => 0.0075015013512272
525 => 0.0074699952008331
526 => 0.0076053656172231
527 => 0.0075251751813756
528 => 0.0073095627807111
529 => 0.0073438997661847
530 => 0.0073387097999068
531 => 0.0074455189381411
601 => 0.0074134574860089
602 => 0.0073324492868101
603 => 0.007637409973485
604 => 0.0076176075227728
605 => 0.0076456828704122
606 => 0.0076580425067021
607 => 0.007843666702671
608 => 0.0079197109964478
609 => 0.0079369743824778
610 => 0.008009210580089
611 => 0.0079351770800756
612 => 0.00823136386512
613 => 0.0084283107941965
614 => 0.0086570747871152
615 => 0.0089913604667339
616 => 0.0091170549745859
617 => 0.0090943493867903
618 => 0.0093478009739275
619 => 0.0098032478421008
620 => 0.0091864082205725
621 => 0.0098359418398454
622 => 0.0096303069952098
623 => 0.0091427504777918
624 => 0.0091113575859839
625 => 0.0094415365202269
626 => 0.010173841617833
627 => 0.0099904074966185
628 => 0.010174141650342
629 => 0.0099598060004093
630 => 0.0099491624288275
701 => 0.010163731846231
702 => 0.010665084985564
703 => 0.010426910902008
704 => 0.01008542995055
705 => 0.010337574171075
706 => 0.01011914351241
707 => 0.0096269581035468
708 => 0.009990267228003
709 => 0.0097473327629273
710 => 0.0098182339549429
711 => 0.010328846066758
712 => 0.010267407866552
713 => 0.010346914586642
714 => 0.010206587306736
715 => 0.010075499499723
716 => 0.0098308143732242
717 => 0.0097583751700989
718 => 0.0097783947597533
719 => 0.0097583652493845
720 => 0.0096214661698809
721 => 0.0095919028266964
722 => 0.0095426292928557
723 => 0.0095579012213497
724 => 0.0094652525622485
725 => 0.0096400997241622
726 => 0.0096725528981613
727 => 0.0097997920815589
728 => 0.009813002475679
729 => 0.010167361790305
730 => 0.0099721866345753
731 => 0.010103126979651
801 => 0.010091414442729
802 => 0.0091533173059249
803 => 0.0092825788144754
804 => 0.009483669157284
805 => 0.0093930782304203
806 => 0.0092650038548471
807 => 0.0091615769296583
808 => 0.0090048745620511
809 => 0.0092254301352558
810 => 0.0095154372605497
811 => 0.0098203575349611
812 => 0.010186699265499
813 => 0.01010493605593
814 => 0.0098135090311307
815 => 0.0098265822345756
816 => 0.0099073956341563
817 => 0.0098027349390277
818 => 0.0097718684568148
819 => 0.0099031550534873
820 => 0.0099040591521248
821 => 0.0097836343737118
822 => 0.0096498042700076
823 => 0.0096492435169865
824 => 0.0096254297426778
825 => 0.0099640424179563
826 => 0.010150245151757
827 => 0.010171592995106
828 => 0.010148808271808
829 => 0.010157577207512
830 => 0.010049229939411
831 => 0.010296879664906
901 => 0.01052414754304
902 => 0.01046323489683
903 => 0.010371918180918
904 => 0.010299180018286
905 => 0.010446100097366
906 => 0.010439557977518
907 => 0.010522162556388
908 => 0.010518415135543
909 => 0.010490638322585
910 => 0.010463235888827
911 => 0.010571883441245
912 => 0.010540594690975
913 => 0.010509257340634
914 => 0.010446405487016
915 => 0.010454948097781
916 => 0.010363647148988
917 => 0.010321407152429
918 => 0.0096862189521086
919 => 0.0095164759096097
920 => 0.0095698805262181
921 => 0.0095874627126558
922 => 0.0095135903230286
923 => 0.0096195043534941
924 => 0.0096029977640368
925 => 0.0096672152475834
926 => 0.0096270949518625
927 => 0.0096287415027934
928 => 0.0097467267379596
929 => 0.0097809783536734
930 => 0.0097635577054769
1001 => 0.0097757585303289
1002 => 0.010056921389396
1003 => 0.010016949021918
1004 => 0.009995714498375
1005 => 0.010001596606516
1006 => 0.010073439745207
1007 => 0.010093551901551
1008 => 0.010008335281867
1009 => 0.010048523932341
1010 => 0.010219642105362
1011 => 0.010279523781469
1012 => 0.010470637346769
1013 => 0.010389448907457
1014 => 0.010538473801568
1015 => 0.010996525519734
1016 => 0.011362448926973
1017 => 0.011025930639252
1018 => 0.011697902376582
1019 => 0.012221128762714
1020 => 0.012201046462535
1021 => 0.012109809839668
1022 => 0.01151413050975
1023 => 0.010965977509281
1024 => 0.011424530769979
1025 => 0.011425699716543
1026 => 0.011386309584778
1027 => 0.011141660859379
1028 => 0.011377796339441
1029 => 0.011396539916331
1030 => 0.011386048497592
1031 => 0.011198476893437
1101 => 0.01091208972292
1102 => 0.010968049090525
1103 => 0.011059711676203
1104 => 0.010886175278697
1105 => 0.010830719884753
1106 => 0.010933822012916
1107 => 0.011266038552036
1108 => 0.011203234939715
1109 => 0.011201594883588
1110 => 0.011470295369975
1111 => 0.011277963810916
1112 => 0.010968754917358
1113 => 0.01089067559377
1114 => 0.010613546595568
1115 => 0.010804960581726
1116 => 0.01081184923032
1117 => 0.010707013746305
1118 => 0.010977261739104
1119 => 0.010974771356274
1120 => 0.011231331604332
1121 => 0.01172177843899
1122 => 0.011576729176559
1123 => 0.011408052665666
1124 => 0.011426392479292
1125 => 0.011627534968256
1126 => 0.011505919627792
1127 => 0.011549653352155
1128 => 0.011627468772027
1129 => 0.011674416746883
1130 => 0.011419637388199
1201 => 0.011360236132184
1202 => 0.011238722009385
1203 => 0.011207021242916
1204 => 0.01130599196046
1205 => 0.011279916673074
1206 => 0.01081127026608
1207 => 0.010762294109025
1208 => 0.01076379613784
1209 => 0.010640643262236
1210 => 0.010452805566863
1211 => 0.010946431815097
1212 => 0.010906786719069
1213 => 0.01086302160134
1214 => 0.010868382578542
1215 => 0.011082649002354
1216 => 0.010958363655829
1217 => 0.011288796619533
1218 => 0.01122086953592
1219 => 0.011151200378924
1220 => 0.011141569979253
1221 => 0.011114753297702
1222 => 0.011022788918619
1223 => 0.010911736404673
1224 => 0.010838409915762
1225 => 0.0099978602311103
1226 => 0.010153861363329
1227 => 0.010333326445996
1228 => 0.010395277073372
1229 => 0.010289306238393
1230 => 0.011026973293084
1231 => 0.011161752172312
]
'min_raw' => 0.0046521122089891
'max_raw' => 0.012221128762714
'avg_raw' => 0.0084366204858513
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004652'
'max' => '$0.012221'
'avg' => '$0.008436'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0001803728729643
'max_diff' => -0.0022039568975117
'year' => 2027
]
2 => [
'items' => [
101 => 0.01075349815572
102 => 0.010677130498117
103 => 0.011031979944002
104 => 0.010817962349553
105 => 0.010914334459229
106 => 0.010706030670835
107 => 0.011129287887093
108 => 0.011126063376254
109 => 0.010961406759433
110 => 0.011100573404451
111 => 0.011076389775156
112 => 0.010890492860295
113 => 0.011135181150872
114 => 0.011135302513211
115 => 0.010976824099464
116 => 0.010791756007593
117 => 0.010758670203879
118 => 0.010733744495234
119 => 0.010908204262876
120 => 0.011064624345023
121 => 0.011355683338071
122 => 0.011428862484315
123 => 0.011714485563915
124 => 0.011544410926748
125 => 0.011619802810569
126 => 0.011701651365289
127 => 0.011740892572303
128 => 0.011676951131273
129 => 0.012120641341042
130 => 0.012158102389063
131 => 0.012170662754428
201 => 0.012021052912088
202 => 0.012153941468705
203 => 0.012091767313871
204 => 0.012253527192272
205 => 0.01227889320666
206 => 0.012257409094896
207 => 0.012265460668238
208 => 0.011886849346517
209 => 0.011867216352152
210 => 0.01159951908089
211 => 0.011708607697648
212 => 0.011504671757373
213 => 0.011569341944807
214 => 0.011597847947228
215 => 0.011582958029265
216 => 0.011714775404364
217 => 0.011602703707019
218 => 0.011306928071433
219 => 0.011011071851974
220 => 0.011007357618137
221 => 0.01092946389785
222 => 0.010873161005028
223 => 0.010884006939638
224 => 0.010922229427861
225 => 0.010870939444528
226 => 0.01088188476294
227 => 0.011063649976858
228 => 0.011100101694219
229 => 0.010976224516021
301 => 0.010478839770165
302 => 0.010356780305936
303 => 0.010444514228279
304 => 0.010402583064188
305 => 0.0083956964211193
306 => 0.0088671846693379
307 => 0.0085870423624745
308 => 0.0087161448262049
309 => 0.008430192073396
310 => 0.0085666637151043
311 => 0.0085414623860272
312 => 0.0092996015368111
313 => 0.0092877642367579
314 => 0.0092934301258774
315 => 0.009022982475809
316 => 0.0094538129258218
317 => 0.00966605549766
318 => 0.0096267750462659
319 => 0.0096366610896177
320 => 0.0094667861108052
321 => 0.0092950748870006
322 => 0.0091046207136333
323 => 0.0094584610269024
324 => 0.0094191200243224
325 => 0.0095093541297949
326 => 0.0097388448659778
327 => 0.0097726382486313
328 => 0.0098180568976162
329 => 0.0098017775450747
330 => 0.010189617768411
331 => 0.010142647758313
401 => 0.010255831968455
402 => 0.010023003460885
403 => 0.0097595359042853
404 => 0.0098096124733916
405 => 0.0098047896970964
406 => 0.0097433902195326
407 => 0.0096879615165441
408 => 0.0095956883430085
409 => 0.0098876543179353
410 => 0.0098758010325457
411 => 0.010067691945066
412 => 0.010033773362349
413 => 0.0098072567656812
414 => 0.0098153468502452
415 => 0.0098697565569006
416 => 0.010058069172874
417 => 0.010113973178595
418 => 0.010088076215756
419 => 0.010149372405915
420 => 0.010197818415369
421 => 0.010155456478814
422 => 0.010755212167014
423 => 0.010506151790453
424 => 0.010627542085037
425 => 0.010656492955023
426 => 0.010582335910327
427 => 0.010598417917956
428 => 0.010622777777431
429 => 0.010770686074011
430 => 0.011158840241848
501 => 0.011330751080528
502 => 0.011847953320629
503 => 0.01131647627849
504 => 0.01128494063028
505 => 0.011378104371734
506 => 0.01168175683809
507 => 0.011927838641446
508 => 0.012009478172419
509 => 0.012020268184159
510 => 0.012173429371558
511 => 0.012261218507887
512 => 0.012154831574868
513 => 0.012064679788311
514 => 0.011741767278913
515 => 0.011779145281137
516 => 0.012036642650482
517 => 0.0124003728512
518 => 0.012712491203094
519 => 0.012603198234684
520 => 0.013437026434844
521 => 0.013519697095007
522 => 0.013508274682835
523 => 0.01369661074973
524 => 0.013322802010916
525 => 0.01316299153287
526 => 0.012084171627831
527 => 0.012387276016654
528 => 0.012827856046507
529 => 0.012769543627465
530 => 0.012449582633049
531 => 0.012712248483988
601 => 0.012625402939347
602 => 0.012556904255064
603 => 0.012870710006889
604 => 0.012525667692327
605 => 0.012824413985475
606 => 0.012441268774378
607 => 0.012603697475757
608 => 0.012511495089062
609 => 0.012571161333153
610 => 0.012222353689378
611 => 0.012410561827132
612 => 0.012214523612076
613 => 0.012214430664438
614 => 0.012210103109975
615 => 0.012440741200621
616 => 0.012448262300477
617 => 0.012277820403014
618 => 0.012253257062787
619 => 0.012344080605775
620 => 0.01223775002366
621 => 0.012287501433795
622 => 0.01223925694319
623 => 0.012228396092171
624 => 0.012141854983426
625 => 0.012104570694281
626 => 0.012119190824753
627 => 0.01206928478226
628 => 0.012039214586478
629 => 0.012204121391178
630 => 0.012116018337748
701 => 0.012190618334664
702 => 0.012105602222908
703 => 0.011810899339805
704 => 0.011641412595306
705 => 0.011084746168096
706 => 0.01124261607631
707 => 0.011347283988784
708 => 0.011312691244336
709 => 0.011387009845026
710 => 0.011391572403518
711 => 0.011367410668845
712 => 0.011339434475404
713 => 0.011325817211617
714 => 0.011427309139468
715 => 0.011486228619646
716 => 0.011357788814077
717 => 0.011327697164696
718 => 0.011457556899483
719 => 0.011536771262685
720 => 0.012121645613864
721 => 0.012078316232809
722 => 0.012187064476295
723 => 0.012174821092956
724 => 0.012288806577083
725 => 0.01247512466977
726 => 0.012096287891979
727 => 0.012162040857413
728 => 0.012145919748747
729 => 0.012321925785989
730 => 0.012322475257625
731 => 0.012216950846145
801 => 0.012274157341547
802 => 0.012242226245192
803 => 0.012299930052052
804 => 0.012077737542509
805 => 0.012348344034933
806 => 0.01250176047864
807 => 0.01250389066611
808 => 0.012576608842839
809 => 0.012650494721948
810 => 0.012792312232795
811 => 0.012646539508542
812 => 0.0123843085683
813 => 0.012403240795185
814 => 0.012249494890868
815 => 0.012252079387296
816 => 0.012238283142812
817 => 0.01227968671104
818 => 0.01208682329741
819 => 0.012132087955099
820 => 0.012068717169265
821 => 0.012161903101701
822 => 0.012061650442586
823 => 0.01214591197466
824 => 0.012182276458589
825 => 0.012316462187158
826 => 0.012041831101374
827 => 0.01148183972657
828 => 0.011599556702793
829 => 0.011425444048491
830 => 0.01144155883754
831 => 0.011474113276069
901 => 0.011368593689646
902 => 0.011388723501431
903 => 0.011388004322903
904 => 0.011381806830878
905 => 0.01135435711109
906 => 0.011314549586635
907 => 0.011473130511953
908 => 0.011500076501316
909 => 0.01155997409777
910 => 0.011738188715887
911 => 0.011720380872947
912 => 0.011749426203623
913 => 0.011686020409841
914 => 0.011444500050461
915 => 0.011457615767965
916 => 0.011294062560527
917 => 0.011555791674538
918 => 0.011493810765685
919 => 0.011453851270537
920 => 0.011442947952064
921 => 0.01162160432975
922 => 0.011675061118049
923 => 0.011641750434932
924 => 0.011573429252033
925 => 0.011704626120544
926 => 0.011739728867807
927 => 0.011747587078379
928 => 0.011980042774877
929 => 0.011760578769553
930 => 0.011813405936919
1001 => 0.012225548416531
1002 => 0.011851792059297
1003 => 0.012049779137485
1004 => 0.012040088700283
1005 => 0.012141372189966
1006 => 0.012031780497885
1007 => 0.012033139018253
1008 => 0.012123071895554
1009 => 0.011996777388865
1010 => 0.011965505092925
1011 => 0.01192230264006
1012 => 0.01201663361536
1013 => 0.012073180768829
1014 => 0.012528909296483
1015 => 0.012823330709093
1016 => 0.01281054909909
1017 => 0.012927349088343
1018 => 0.012874729623419
1019 => 0.012704807490867
1020 => 0.012994843851337
1021 => 0.012903064211247
1022 => 0.012910630413264
1023 => 0.012910348798847
1024 => 0.012971374235991
1025 => 0.012928132120875
1026 => 0.01284289747327
1027 => 0.012899480210085
1028 => 0.013067510709726
1029 => 0.013589082536418
1030 => 0.013880961040542
1031 => 0.013571511083976
1101 => 0.013784965520315
1102 => 0.013656968920104
1103 => 0.013633708130277
1104 => 0.013767773290457
1105 => 0.013902073113952
1106 => 0.01389351879579
1107 => 0.013796024020304
1108 => 0.013740951695471
1109 => 0.014157977789692
1110 => 0.01446523551206
1111 => 0.014444282595276
1112 => 0.014536761955705
1113 => 0.014808284218204
1114 => 0.014833108811059
1115 => 0.014829981482946
1116 => 0.014768451139376
1117 => 0.015035800068428
1118 => 0.015258827248599
1119 => 0.014754208642623
1120 => 0.014946360801836
1121 => 0.015032624096863
1122 => 0.015159284207128
1123 => 0.015372981043846
1124 => 0.015605112488808
1125 => 0.015637938420317
1126 => 0.015614646851046
1127 => 0.015461549923065
1128 => 0.015715550920047
1129 => 0.015864338747022
1130 => 0.015952938493037
1201 => 0.016177612707339
1202 => 0.015033156829605
1203 => 0.014223054076198
1204 => 0.014096544833228
1205 => 0.014353806353538
1206 => 0.014421644164821
1207 => 0.014394298828154
1208 => 0.013482454527874
1209 => 0.014091744161697
1210 => 0.014747288577163
1211 => 0.01477247070795
1212 => 0.01510064994912
1213 => 0.015207518562566
1214 => 0.015471745867144
1215 => 0.015455218377302
1216 => 0.015519553521192
1217 => 0.015504763985741
1218 => 0.015994189427848
1219 => 0.016534098370874
1220 => 0.016515403040983
1221 => 0.01643778474251
1222 => 0.016553061151628
1223 => 0.01711030504099
1224 => 0.017059002953309
1225 => 0.01710883856159
1226 => 0.017765860512036
1227 => 0.018620082507899
1228 => 0.018223210628335
1229 => 0.019084308410183
1230 => 0.019626323819024
1231 => 0.020563683423176
]
'min_raw' => 0.0083956964211193
'max_raw' => 0.020563683423176
'avg_raw' => 0.014479689922148
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.008395'
'max' => '$0.020563'
'avg' => '$0.014479'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0037435842121302
'max_diff' => 0.0083425546604625
'year' => 2028
]
3 => [
'items' => [
101 => 0.020446321384143
102 => 0.020811228599377
103 => 0.020236218840077
104 => 0.018915880204079
105 => 0.018706931560879
106 => 0.019125252035987
107 => 0.020153652104927
108 => 0.019092864058051
109 => 0.019307460098361
110 => 0.019245656424315
111 => 0.019242363169174
112 => 0.019368053323277
113 => 0.019185733199193
114 => 0.018442928214912
115 => 0.018783351361831
116 => 0.018651897636343
117 => 0.018797755345296
118 => 0.01958488924422
119 => 0.019236878584577
120 => 0.018870277624734
121 => 0.019330076583643
122 => 0.019915558662399
123 => 0.019878920246122
124 => 0.019807826404877
125 => 0.020208578665626
126 => 0.020870503990987
127 => 0.021049419746601
128 => 0.021181491699624
129 => 0.021199702190572
130 => 0.021387281565092
131 => 0.020378619992208
201 => 0.021979391812641
202 => 0.022255800885601
203 => 0.022203847435867
204 => 0.02251106448739
205 => 0.022420673437487
206 => 0.0222897109881
207 => 0.022776715361705
208 => 0.022218404146593
209 => 0.02142595166617
210 => 0.020991196562477
211 => 0.021563717153714
212 => 0.021913335500567
213 => 0.022144410987934
214 => 0.022214334290791
215 => 0.020456919518819
216 => 0.019509770427418
217 => 0.02011688213592
218 => 0.020857600320904
219 => 0.02037450526529
220 => 0.02039344167685
221 => 0.019704675082692
222 => 0.020918540881303
223 => 0.020741690844664
224 => 0.02165918914759
225 => 0.021440220814213
226 => 0.022188405063171
227 => 0.021991383076035
228 => 0.022809210329283
301 => 0.023135463762392
302 => 0.023683294053875
303 => 0.02408628024636
304 => 0.024322921446485
305 => 0.024308714396448
306 => 0.025246404725521
307 => 0.024693481498872
308 => 0.023998879612201
309 => 0.023986316455512
310 => 0.024346060615204
311 => 0.025099985682926
312 => 0.025295467483823
313 => 0.025404715142407
314 => 0.025237398550348
315 => 0.024637240016185
316 => 0.024378094604006
317 => 0.024598894003348
318 => 0.024328875311461
319 => 0.024795003327521
320 => 0.025435096653142
321 => 0.025302919912605
322 => 0.025744766939177
323 => 0.026202032128017
324 => 0.026855941885122
325 => 0.027026898109837
326 => 0.027309482248409
327 => 0.027600354151053
328 => 0.027693774366965
329 => 0.027872142545731
330 => 0.027871202457384
331 => 0.028408726969659
401 => 0.029001633152446
402 => 0.029225441510639
403 => 0.029740076489438
404 => 0.028858782123205
405 => 0.029527254023573
406 => 0.030130232410641
407 => 0.029411336719697
408 => 0.03040216694845
409 => 0.030440638640963
410 => 0.031021515522211
411 => 0.030432685520521
412 => 0.03008304014513
413 => 0.031092453242843
414 => 0.031580876444612
415 => 0.03143375940132
416 => 0.030314191437798
417 => 0.0296625548625
418 => 0.027957096253635
419 => 0.029977285646164
420 => 0.030961260969532
421 => 0.030311643179421
422 => 0.030639272606743
423 => 0.032426712528012
424 => 0.033107253921867
425 => 0.032965706069289
426 => 0.032989625326298
427 => 0.033356833109722
428 => 0.034985234646445
429 => 0.034009458699589
430 => 0.034755402849333
501 => 0.035151048936655
502 => 0.035518547072157
503 => 0.034616087800344
504 => 0.033442001547476
505 => 0.033070119146404
506 => 0.030247051492762
507 => 0.030100098561429
508 => 0.030017609427942
509 => 0.029497527109626
510 => 0.029088884869966
511 => 0.028763917389074
512 => 0.027911105675711
513 => 0.028198904594421
514 => 0.026839700718957
515 => 0.027709271191251
516 => 0.025539948986886
517 => 0.027346624980439
518 => 0.026363333376626
519 => 0.027023587243043
520 => 0.027021283679503
521 => 0.025805546977749
522 => 0.025104335419955
523 => 0.025551174716144
524 => 0.026030221911805
525 => 0.026107945707593
526 => 0.026729042901179
527 => 0.026902377777469
528 => 0.026377165010078
529 => 0.02549499460598
530 => 0.025699902670687
531 => 0.025100182964564
601 => 0.024049197247469
602 => 0.024804033537937
603 => 0.025061767835312
604 => 0.025175597983831
605 => 0.024142074237593
606 => 0.023817318637633
607 => 0.023644421481177
608 => 0.025361579668776
609 => 0.025455649470558
610 => 0.024974375064511
611 => 0.027149781016155
612 => 0.026657419650548
613 => 0.027207507927394
614 => 0.02568130941156
615 => 0.025739612250164
616 => 0.025017085414351
617 => 0.025421652163146
618 => 0.025135717424893
619 => 0.02538896716785
620 => 0.02554076401959
621 => 0.026263172295858
622 => 0.027354873722533
623 => 0.026155268589577
624 => 0.025632583454486
625 => 0.025956854372603
626 => 0.026820430559473
627 => 0.028128792688232
628 => 0.027354215974765
629 => 0.027697959967036
630 => 0.027773052737241
701 => 0.027201908545119
702 => 0.028149851589267
703 => 0.028657861967701
704 => 0.029178975498039
705 => 0.029631443775161
706 => 0.02897083129449
707 => 0.029677781343887
708 => 0.029108104397556
709 => 0.028597045284576
710 => 0.028597820350294
711 => 0.02827722550334
712 => 0.027656032589815
713 => 0.027541475085752
714 => 0.028137417688906
715 => 0.028615307220661
716 => 0.028654668491433
717 => 0.028919252691064
718 => 0.029075830894971
719 => 0.030610510151008
720 => 0.031227770843319
721 => 0.03198254553373
722 => 0.032276572812416
723 => 0.033161489506647
724 => 0.032446847406636
725 => 0.032292230092989
726 => 0.03014571164683
727 => 0.030497203922138
728 => 0.031059976968867
729 => 0.030154991567088
730 => 0.030728996505591
731 => 0.030842317239539
801 => 0.030124240509432
802 => 0.030507796317246
803 => 0.029489185808064
804 => 0.027377076648092
805 => 0.02815220297054
806 => 0.028722956848561
807 => 0.02790842069118
808 => 0.029368445226383
809 => 0.028515529033941
810 => 0.028245195548135
811 => 0.027190528239157
812 => 0.027688290611127
813 => 0.028361521346487
814 => 0.027945543023508
815 => 0.028808760503149
816 => 0.030031306666013
817 => 0.030902565865553
818 => 0.030969450328425
819 => 0.030409289032954
820 => 0.031306951083848
821 => 0.031313489571889
822 => 0.030300923111423
823 => 0.029680731792381
824 => 0.029539823019801
825 => 0.029891840760498
826 => 0.030319255283764
827 => 0.030993168859812
828 => 0.031400400719681
829 => 0.03246224543113
830 => 0.032749550164574
831 => 0.033065210961277
901 => 0.033487031131856
902 => 0.033993534399108
903 => 0.032885334085607
904 => 0.032929364950007
905 => 0.031897424162152
906 => 0.030794647435051
907 => 0.031631517507861
908 => 0.0327256138039
909 => 0.032474626904719
910 => 0.032446385751365
911 => 0.032493879537865
912 => 0.032304643612349
913 => 0.03144873653465
914 => 0.031018905358491
915 => 0.031573497237364
916 => 0.03186823813894
917 => 0.032325355573177
918 => 0.032269006200829
919 => 0.033446491620594
920 => 0.033904026849404
921 => 0.033786969758838
922 => 0.033808511080638
923 => 0.034636856757667
924 => 0.035558147512806
925 => 0.036421057880015
926 => 0.037298847368403
927 => 0.036240637879445
928 => 0.035703344362239
929 => 0.036257694123647
930 => 0.035963548337206
1001 => 0.037653797275402
1002 => 0.037770826444601
1003 => 0.03946095315856
1004 => 0.041065084666653
1005 => 0.040057558407421
1006 => 0.041007610289897
1007 => 0.042035168859662
1008 => 0.044017496056107
1009 => 0.043349917995456
1010 => 0.042838563663279
1011 => 0.042355336290218
1012 => 0.043360855743373
1013 => 0.044654440456291
1014 => 0.044933066213653
1015 => 0.045384546383811
1016 => 0.044909870189259
1017 => 0.045481565381729
1018 => 0.047499900626748
1019 => 0.046954528627206
1020 => 0.046180012714933
1021 => 0.047773294547897
1022 => 0.048349897049521
1023 => 0.052396795374991
1024 => 0.057506171679927
1025 => 0.05539085633971
1026 => 0.054077811847237
1027 => 0.0543864084488
1028 => 0.05625217971206
1029 => 0.056851406225199
1030 => 0.055222501996721
1031 => 0.05579785850788
1101 => 0.058968129452168
1102 => 0.060668878099309
1103 => 0.058359032995474
1104 => 0.051986261963778
1105 => 0.046110276031194
1106 => 0.047668852099611
1107 => 0.047492157941699
1108 => 0.050898218571981
1109 => 0.046941521685384
1110 => 0.047008142313439
1111 => 0.050484636670475
1112 => 0.04955716757822
1113 => 0.048054786430033
1114 => 0.046121245076211
1115 => 0.042546915052743
1116 => 0.039381031273391
1117 => 0.045590058424191
1118 => 0.045322313883066
1119 => 0.044934580109998
1120 => 0.045797439664784
1121 => 0.04998724073587
1122 => 0.049890652260119
1123 => 0.049276205657263
1124 => 0.049742257990045
1125 => 0.047973085202766
1126 => 0.048429041313364
1127 => 0.046109345245001
1128 => 0.047157944746966
1129 => 0.048051562994842
1130 => 0.048230970088348
1201 => 0.048635183430769
1202 => 0.045181224676298
1203 => 0.046731950754154
1204 => 0.047642857041511
1205 => 0.04352734929618
1206 => 0.047561506685752
1207 => 0.045121098938748
1208 => 0.04429278789572
1209 => 0.045407999593475
1210 => 0.044973400510281
1211 => 0.044599757739065
1212 => 0.044391258652729
1213 => 0.045210147042136
1214 => 0.045171944919987
1215 => 0.043832084575529
1216 => 0.042084291375879
1217 => 0.042670908143037
1218 => 0.042457784771967
1219 => 0.041685398181746
1220 => 0.042205893485243
1221 => 0.039913895585289
1222 => 0.035970632326104
1223 => 0.038575672820542
1224 => 0.038475381595245
1225 => 0.038424810211605
1226 => 0.040382426145144
1227 => 0.040194246543019
1228 => 0.0398526987225
1229 => 0.041679125388177
1230 => 0.0410124550863
1231 => 0.043066975869408
]
'min_raw' => 0.018442928214912
'max_raw' => 0.060668878099309
'avg_raw' => 0.03955590315711
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.018442'
'max' => '$0.060668'
'avg' => '$0.039555'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.010047231793792
'max_diff' => 0.040105194676133
'year' => 2029
]
4 => [
'items' => [
101 => 0.044420216135237
102 => 0.044076990631086
103 => 0.045349719641875
104 => 0.042684422608553
105 => 0.043569727369866
106 => 0.043752187454193
107 => 0.041656587566632
108 => 0.040225035053183
109 => 0.040129566821429
110 => 0.037647452043197
111 => 0.038973377722798
112 => 0.040140137450314
113 => 0.039581350085047
114 => 0.0394044546985
115 => 0.040308174864436
116 => 0.040378401661169
117 => 0.038777223253354
118 => 0.039110158947065
119 => 0.040498556135791
120 => 0.039075174900169
121 => 0.036309777667361
122 => 0.035623920919016
123 => 0.035532414985939
124 => 0.033672317088444
125 => 0.035669753146492
126 => 0.034797818779196
127 => 0.037552248998107
128 => 0.035978933229371
129 => 0.035911110731127
130 => 0.035808587077634
131 => 0.034207523977584
201 => 0.034558055043627
202 => 0.035723273694542
203 => 0.036139036836316
204 => 0.036095669334382
205 => 0.03571756348747
206 => 0.035890658407971
207 => 0.035333059358768
208 => 0.035136159529074
209 => 0.034514689504994
210 => 0.033601300255073
211 => 0.033728312632417
212 => 0.031918649527025
213 => 0.030932649021117
214 => 0.03065973707636
215 => 0.030294787818055
216 => 0.030700959066178
217 => 0.03191352297882
218 => 0.03045091364039
219 => 0.027943372519767
220 => 0.028094080013759
221 => 0.028432675007301
222 => 0.027801705476865
223 => 0.027204545769566
224 => 0.027723727685964
225 => 0.026661249456826
226 => 0.028561070425243
227 => 0.028509685592234
228 => 0.029217821365119
301 => 0.029660633196313
302 => 0.028640095287444
303 => 0.028383432763191
304 => 0.028529639401667
305 => 0.026113169346975
306 => 0.029020344207814
307 => 0.029045485576733
308 => 0.028830209912276
309 => 0.030378190776719
310 => 0.033644913228033
311 => 0.032415840838242
312 => 0.031939906860006
313 => 0.031035156019473
314 => 0.032240682795694
315 => 0.032148117148427
316 => 0.031729500187009
317 => 0.031476319342579
318 => 0.03194281281139
319 => 0.031418515639338
320 => 0.031324337460515
321 => 0.030753720163715
322 => 0.03055003575019
323 => 0.030399235919327
324 => 0.030233220122831
325 => 0.030599409601341
326 => 0.0297695760668
327 => 0.028768878173727
328 => 0.028685680971619
329 => 0.028915395761412
330 => 0.028813764067183
331 => 0.028685194398168
401 => 0.028439719886152
402 => 0.028366892842169
403 => 0.028603545404453
404 => 0.028336378459336
405 => 0.028730597840192
406 => 0.028623391981753
407 => 0.028024548771233
408 => 0.027278168410772
409 => 0.027271524059978
410 => 0.027110717635626
411 => 0.026905906476806
412 => 0.026848932697867
413 => 0.027680003633081
414 => 0.029400295597114
415 => 0.029062561121477
416 => 0.029306608892546
417 => 0.030507082383251
418 => 0.030888676806448
419 => 0.030617830123422
420 => 0.0302470784786
421 => 0.030263389669375
422 => 0.031530360273889
423 => 0.031609379676395
424 => 0.031809036213901
425 => 0.032065651287528
426 => 0.030661532780096
427 => 0.030197255813946
428 => 0.029977255630278
429 => 0.029299740215369
430 => 0.030030382504567
501 => 0.029604668531873
502 => 0.02966211189125
503 => 0.029624701828098
504 => 0.029645130252236
505 => 0.028560539386564
506 => 0.028955707293597
507 => 0.028298664004078
508 => 0.027418956795983
509 => 0.027416007708956
510 => 0.027631314801857
511 => 0.027503241718032
512 => 0.027158600342519
513 => 0.02720755502325
514 => 0.026778660507517
515 => 0.027259630582845
516 => 0.027273423083612
517 => 0.027088223405994
518 => 0.027829224168117
519 => 0.028132812784957
520 => 0.028010910389787
521 => 0.028124259787945
522 => 0.029076595513719
523 => 0.029231867790341
524 => 0.029300829478906
525 => 0.029208429951902
526 => 0.028141666736785
527 => 0.028188982221603
528 => 0.027841812588327
529 => 0.027548490832043
530 => 0.027560222164024
531 => 0.027711027675913
601 => 0.028369604190959
602 => 0.029755539641668
603 => 0.029808134878916
604 => 0.029871881840773
605 => 0.029612590910246
606 => 0.029534386284518
607 => 0.029637558372179
608 => 0.030158042858441
609 => 0.031496870267266
610 => 0.031023639243711
611 => 0.030638895055282
612 => 0.030976419434823
613 => 0.030924460202196
614 => 0.030485871988902
615 => 0.030473562278518
616 => 0.029631771272072
617 => 0.029320580303643
618 => 0.029060525838184
619 => 0.028776553150795
620 => 0.028608204622861
621 => 0.028866864474806
622 => 0.028926023043319
623 => 0.028360458756441
624 => 0.028283374433972
625 => 0.028745226439189
626 => 0.028541982591271
627 => 0.02875102392906
628 => 0.02879952331255
629 => 0.028791713794773
630 => 0.028579503875139
701 => 0.028714760149722
702 => 0.028394838738496
703 => 0.02804697225443
704 => 0.027825055110443
705 => 0.027631402969277
706 => 0.027738852432325
707 => 0.027355814716058
708 => 0.027233273241598
709 => 0.028668938367256
710 => 0.029729479631581
711 => 0.029714058941577
712 => 0.029620189457059
713 => 0.029480718443795
714 => 0.030147839685109
715 => 0.029915427984146
716 => 0.030084526915244
717 => 0.030127569690269
718 => 0.030257847206613
719 => 0.030304410220975
720 => 0.03016366445148
721 => 0.029691304458405
722 => 0.028514228266304
723 => 0.027966296121424
724 => 0.027785469387082
725 => 0.027792042095436
726 => 0.027610737457158
727 => 0.027664139798635
728 => 0.027592166302127
729 => 0.027455865912
730 => 0.027730436267319
731 => 0.027762077942969
801 => 0.027697989941167
802 => 0.027713084985611
803 => 0.027182463703027
804 => 0.027222805686693
805 => 0.026998176395229
806 => 0.026956061111026
807 => 0.026388217822916
808 => 0.025382201127828
809 => 0.02593963203331
810 => 0.025266333886134
811 => 0.025011345675666
812 => 0.026218420205216
813 => 0.026097263401485
814 => 0.025889895619095
815 => 0.025583155449706
816 => 0.025469382537103
817 => 0.024778134336256
818 => 0.024737291704885
819 => 0.025079892978496
820 => 0.024921794278914
821 => 0.024699763828042
822 => 0.023895592041849
823 => 0.022991436702039
824 => 0.02301872746843
825 => 0.023306322459616
826 => 0.024142543683955
827 => 0.023815817584832
828 => 0.023578774051168
829 => 0.023534382922815
830 => 0.024090030833273
831 => 0.024876389038407
901 => 0.025245330714483
902 => 0.024879720718417
903 => 0.024459727640777
904 => 0.024485290673352
905 => 0.024655350076636
906 => 0.024673220915411
907 => 0.024399848597853
908 => 0.024476801303958
909 => 0.024359903106682
910 => 0.023642499085773
911 => 0.023629523521948
912 => 0.023453461005514
913 => 0.023448129902488
914 => 0.023148603641182
915 => 0.023106697846698
916 => 0.02251197027493
917 => 0.022903421763668
918 => 0.022640856657148
919 => 0.022245109108774
920 => 0.022176882082269
921 => 0.022174831095465
922 => 0.022581175340112
923 => 0.022898673394585
924 => 0.02264542408959
925 => 0.022587764131874
926 => 0.023203421629528
927 => 0.023125073601109
928 => 0.023057224713788
929 => 0.02480597928599
930 => 0.023421703585071
1001 => 0.022818080367776
1002 => 0.022070982011434
1003 => 0.022314241003456
1004 => 0.022365499247293
1005 => 0.02056886237489
1006 => 0.019839967019513
1007 => 0.019589837601389
1008 => 0.019445884584948
1009 => 0.019511485782189
1010 => 0.018855394471451
1011 => 0.019296298683015
1012 => 0.018728179065935
1013 => 0.01863293196331
1014 => 0.019648800215166
1015 => 0.019790152347795
1016 => 0.019187100235333
1017 => 0.019574357316802
1018 => 0.019433932515785
1019 => 0.018737917846168
1020 => 0.018711335205325
1021 => 0.01836209951021
1022 => 0.01781561327271
1023 => 0.017565854397989
1024 => 0.017435777807529
1025 => 0.017489449943895
1026 => 0.017462311669354
1027 => 0.017285216070936
1028 => 0.017472462581754
1029 => 0.016994125122213
1030 => 0.016803647291597
1031 => 0.01671761287456
1101 => 0.01629306084714
1102 => 0.016968711921908
1103 => 0.017101823695266
1104 => 0.017235197739937
1105 => 0.018396127740471
1106 => 0.018338130958399
1107 => 0.018862393622756
1108 => 0.018842021739677
1109 => 0.01869249353531
1110 => 0.018061658637282
1111 => 0.018313098184085
1112 => 0.017539206341406
1113 => 0.018119058729471
1114 => 0.017854438314773
1115 => 0.018029590301077
1116 => 0.017714651236884
1117 => 0.017888951518524
1118 => 0.01713338943485
1119 => 0.016427856192161
1120 => 0.016711783364818
1121 => 0.017020444672507
1122 => 0.017689701033016
1123 => 0.017291097465942
1124 => 0.017434450381532
1125 => 0.016954242111295
1126 => 0.015963435285087
1127 => 0.015969043144122
1128 => 0.01581662909981
1129 => 0.015684921112709
1130 => 0.017336881880585
1201 => 0.017131434445464
1202 => 0.016804080845895
1203 => 0.017242256647433
1204 => 0.017358117284145
1205 => 0.017361415673591
1206 => 0.017681097427439
1207 => 0.017851711636774
1208 => 0.017881783130653
1209 => 0.018384809277514
1210 => 0.018553417006866
1211 => 0.01924788838181
1212 => 0.017837236213127
1213 => 0.017808184760018
1214 => 0.017248422679547
1215 => 0.016893412718624
1216 => 0.017272730515296
1217 => 0.017608754301104
1218 => 0.017258863875235
1219 => 0.017304552178263
1220 => 0.016834852868632
1221 => 0.017002748270419
1222 => 0.01714736240839
1223 => 0.017067514981429
1224 => 0.016947979518608
1225 => 0.017581204182633
1226 => 0.017545475165461
1227 => 0.018135148530373
1228 => 0.018594841086269
1229 => 0.019418692326308
1230 => 0.018558960608991
1231 => 0.018527628568088
]
'min_raw' => 0.015684921112709
'max_raw' => 0.045349719641875
'avg_raw' => 0.030517320377292
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.015684'
'max' => '$0.045349'
'avg' => '$0.030517'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0027580071022024
'max_diff' => -0.015319158457433
'year' => 2030
]
5 => [
'items' => [
101 => 0.018833904293733
102 => 0.018553370117648
103 => 0.018730658033223
104 => 0.019390128502248
105 => 0.019404062074079
106 => 0.019170656793524
107 => 0.01915645406099
108 => 0.019201282098295
109 => 0.019463841312966
110 => 0.01937209505573
111 => 0.019478266147334
112 => 0.019611034723135
113 => 0.020160221845356
114 => 0.02029262900126
115 => 0.019970948257654
116 => 0.019999992427095
117 => 0.019879674998653
118 => 0.01976344987035
119 => 0.020024706985457
120 => 0.020502159498336
121 => 0.020499189291033
122 => 0.020609948993671
123 => 0.020678951370831
124 => 0.020382742655232
125 => 0.020189921673274
126 => 0.020263861507275
127 => 0.020382092912042
128 => 0.020225520656192
129 => 0.019259084161761
130 => 0.019552239257969
131 => 0.019503443915408
201 => 0.019433953413885
202 => 0.019728723130023
203 => 0.019700291871806
204 => 0.018848665306761
205 => 0.018903183676359
206 => 0.018851980749386
207 => 0.019017427881569
208 => 0.018544435429559
209 => 0.018689924722145
210 => 0.018781174242577
211 => 0.018834920911123
212 => 0.019029090732348
213 => 0.019006307144927
214 => 0.019027674472565
215 => 0.019315577058509
216 => 0.02077168954198
217 => 0.020850942531724
218 => 0.020460671824805
219 => 0.02061657727447
220 => 0.020317272903887
221 => 0.020518197933024
222 => 0.020655665735018
223 => 0.020034475171347
224 => 0.01999769229766
225 => 0.019697152591471
226 => 0.019858645606138
227 => 0.019601698608044
228 => 0.019664744413752
301 => 0.019488462844758
302 => 0.019805734571636
303 => 0.020160493661328
304 => 0.020250119817245
305 => 0.020014351987513
306 => 0.019843640540931
307 => 0.019543927476578
308 => 0.020042356982138
309 => 0.020188112958928
310 => 0.020041591388042
311 => 0.020007639138508
312 => 0.019943299686992
313 => 0.0200212890573
314 => 0.020187319140576
315 => 0.020109022419397
316 => 0.020160738783146
317 => 0.019963649334217
318 => 0.020382840712642
319 => 0.021048617505481
320 => 0.021050758086736
321 => 0.020972460943508
322 => 0.020940423439435
323 => 0.021020761059854
324 => 0.02106434092331
325 => 0.021324138056345
326 => 0.021602910730866
327 => 0.022903821164808
328 => 0.022538530720634
329 => 0.023692775849136
330 => 0.024605633885809
331 => 0.024879360096564
401 => 0.024627544862483
402 => 0.023766098549486
403 => 0.023723831883623
404 => 0.025011196368494
405 => 0.024647456936489
406 => 0.024604191288461
407 => 0.024143917891913
408 => 0.024415996475242
409 => 0.024356488897916
410 => 0.024262553275896
411 => 0.02478166025973
412 => 0.025753382192467
413 => 0.0256019302165
414 => 0.025488878342095
415 => 0.024993517937359
416 => 0.025291835543762
417 => 0.025185610358019
418 => 0.025642021168139
419 => 0.025371653514961
420 => 0.024644701252544
421 => 0.0247604707964
422 => 0.024742972462742
423 => 0.025103086929475
424 => 0.024994989505152
425 => 0.024721864705741
426 => 0.025750060952541
427 => 0.025683295607402
428 => 0.025777953602126
429 => 0.0258196249788
430 => 0.026445469915377
501 => 0.026701858561088
502 => 0.02676006327238
503 => 0.027003612655996
504 => 0.026754003541847
505 => 0.027752617966725
506 => 0.028416638288502
507 => 0.029187932062419
508 => 0.030314999570334
509 => 0.030738787379268
510 => 0.030662233904762
511 => 0.031516763626219
512 => 0.03305233454055
513 => 0.030972616690201
514 => 0.033162564636568
515 => 0.032469252400913
516 => 0.030825421562329
517 => 0.030719578235817
518 => 0.031832799564975
519 => 0.034301817329463
520 => 0.033683356382827
521 => 0.034302828910015
522 => 0.033580181301829
523 => 0.033544295757131
524 => 0.034267731528665
525 => 0.035958078641285
526 => 0.035155058089793
527 => 0.034003731220512
528 => 0.034853853064159
529 => 0.03411739884813
530 => 0.032457961378859
531 => 0.033682883457396
601 => 0.032863812947251
602 => 0.033102861266294
603 => 0.034824425651077
604 => 0.034617282469606
605 => 0.034885344927372
606 => 0.034412221705831
607 => 0.033970250012227
608 => 0.033145277024867
609 => 0.032901043193986
610 => 0.032968540638229
611 => 0.032901009745605
612 => 0.03243944494107
613 => 0.032339770065477
614 => 0.032173640905965
615 => 0.032225131279134
616 => 0.031912759856452
617 => 0.032502269270283
618 => 0.032611687412229
619 => 0.03304068320261
620 => 0.033085222968706
621 => 0.034279970138544
622 => 0.033621923474308
623 => 0.034063397989693
624 => 0.034023908353718
625 => 0.030861048361133
626 => 0.031296862561961
627 => 0.031974852692419
628 => 0.031669419057642
629 => 0.03123760735853
630 => 0.030888896259218
701 => 0.03036056328622
702 => 0.031104181799978
703 => 0.032081961070558
704 => 0.033110021064589
705 => 0.03434516778626
706 => 0.034069497416676
707 => 0.033086930855778
708 => 0.033131008073935
709 => 0.033403476092832
710 => 0.03305060525203
711 => 0.03294653675222
712 => 0.033389178679039
713 => 0.033392226910717
714 => 0.032986206362508
715 => 0.03253498882415
716 => 0.032533098206189
717 => 0.032452808403482
718 => 0.033594464679366
719 => 0.034222260196633
720 => 0.034294235940945
721 => 0.034217415655568
722 => 0.034246980734522
723 => 0.033881680355554
724 => 0.034716648695412
725 => 0.035482898213875
726 => 0.035277526974394
727 => 0.034969646291169
728 => 0.034724404497437
729 => 0.035219755801687
730 => 0.035197698587864
731 => 0.035476205692793
801 => 0.035463571001778
802 => 0.035369919537573
803 => 0.035277530318982
804 => 0.035643843127489
805 => 0.035538350921443
806 => 0.035432694856863
807 => 0.035220785444214
808 => 0.035249587452835
809 => 0.034941759929551
810 => 0.034799344832051
811 => 0.032657763467245
812 => 0.03208546294838
813 => 0.032265520341866
814 => 0.03232479991099
815 => 0.032075733991756
816 => 0.032432830540152
817 => 0.032377177421344
818 => 0.032593691150642
819 => 0.03245842277251
820 => 0.032463974233932
821 => 0.032861769691761
822 => 0.032977251405511
823 => 0.032918516473846
824 => 0.032959652406669
825 => 0.033907612616176
826 => 0.033772842988446
827 => 0.033701249309772
828 => 0.033721081248044
829 => 0.03396330540607
830 => 0.034031114945368
831 => 0.033743801162469
901 => 0.033879300003425
902 => 0.034456236870854
903 => 0.034658132122656
904 => 0.035302484851187
905 => 0.03502875235965
906 => 0.035531200194731
907 => 0.037075553542678
908 => 0.038309289858141
909 => 0.037174694956131
910 => 0.039440294584108
911 => 0.041204388875451
912 => 0.041136679998297
913 => 0.040829069354365
914 => 0.038820694904543
915 => 0.036972558792642
916 => 0.038518603126252
917 => 0.038522544311205
918 => 0.038389737731829
919 => 0.037564887473316
920 => 0.038361034730799
921 => 0.038424230008916
922 => 0.038388857458152
923 => 0.037756446698913
924 => 0.036790872358602
925 => 0.03697954327344
926 => 0.037288590080728
927 => 0.036703500000614
928 => 0.03651652826816
929 => 0.03686414429162
930 => 0.037984235547884
1001 => 0.037772488784135
1002 => 0.037766959220397
1003 => 0.038672901670321
1004 => 0.038024442390793
1005 => 0.036981923017884
1006 => 0.036718673127084
1007 => 0.035784313361117
1008 => 0.036429678979546
1009 => 0.036452904539231
1010 => 0.036099444385494
1011 => 0.03701060436133
1012 => 0.037002207861746
1013 => 0.037867218650537
1014 => 0.039520794395491
1015 => 0.039031750680187
1016 => 0.038463046047095
1017 => 0.038524880009181
1018 => 0.039203045954044
1019 => 0.038793011342757
1020 => 0.038940462647838
1021 => 0.039202822768833
1022 => 0.039361111143865
1023 => 0.038502104747933
1024 => 0.038301829266016
1025 => 0.037892135917156
1026 => 0.037785254569727
1027 => 0.038118941253841
1028 => 0.038031026601902
1029 => 0.036450952520873
1030 => 0.036285825987956
1031 => 0.036290890182974
1101 => 0.035875671664617
1102 => 0.035242363760258
1103 => 0.036906659120062
1104 => 0.036772992910871
1105 => 0.036625435760867
1106 => 0.036643510669793
1107 => 0.037365924877281
1108 => 0.036946888154146
1109 => 0.038060965961368
1110 => 0.037831945056447
1111 => 0.03759705062949
1112 => 0.037564581064626
1113 => 0.037474166750498
1114 => 0.03716410242567
1115 => 0.036789681121464
1116 => 0.036542455744608
1117 => 0.033708483797499
1118 => 0.034234452506426
1119 => 0.03483953156249
1120 => 0.035048402427941
1121 => 0.034691114359163
1122 => 0.037178210336322
1123 => 0.037632626737602
1124 => 0.036256169817276
1125 => 0.035998690927849
1126 => 0.037195090609448
1127 => 0.036473515347531
1128 => 0.036798440643789
1129 => 0.036096129877913
1130 => 0.037523171133399
1201 => 0.037512299469981
1202 => 0.036957148190408
1203 => 0.037426358250391
1204 => 0.037344821455776
1205 => 0.036718057028416
1206 => 0.037543040683686
1207 => 0.037543449865287
1208 => 0.037009128828728
1209 => 0.036385158835942
1210 => 0.036273607738745
1211 => 0.036189568971789
1212 => 0.036777772258788
1213 => 0.037305153486648
1214 => 0.0382864792028
1215 => 0.038533207803565
1216 => 0.039496205958002
1217 => 0.038922787444564
1218 => 0.039176976444558
1219 => 0.039452934561281
1220 => 0.039585239030462
1221 => 0.039369655997781
1222 => 0.040865588517477
1223 => 0.040991891056327
1224 => 0.041034239205091
1225 => 0.040529819176219
1226 => 0.040977862222835
1227 => 0.040768237718949
1228 => 0.041313622442695
1229 => 0.0413991457312
1230 => 0.041326710548416
1231 => 0.04135385699008
]
'min_raw' => 0.018544435429559
'max_raw' => 0.0413991457312
'avg_raw' => 0.02997179058038
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.018544'
'max' => '$0.041399'
'avg' => '$0.029971'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0028595143168501
'max_diff' => -0.0039505739106753
'year' => 2031
]
6 => [
'items' => [
101 => 0.0400773424851
102 => 0.040011148473867
103 => 0.039108588433783
104 => 0.039476388321504
105 => 0.038788804060517
106 => 0.039006844112578
107 => 0.039102954089965
108 => 0.039052751691972
109 => 0.039497183175313
110 => 0.039119325623119
111 => 0.038122097417346
112 => 0.037124597517416
113 => 0.037112074718718
114 => 0.036849450602402
115 => 0.036659621468311
116 => 0.036696189294088
117 => 0.036825059081739
118 => 0.036652131321981
119 => 0.036689034227185
120 => 0.03730186833635
121 => 0.03742476784641
122 => 0.037007107291287
123 => 0.03533013989434
124 => 0.034918607888775
125 => 0.03521440893334
126 => 0.035073035086065
127 => 0.028306676652609
128 => 0.029896332199736
129 => 0.028951812853235
130 => 0.029387090823349
131 => 0.02842298115267
201 => 0.028883104820835
202 => 0.028798136780351
203 => 0.031354255858804
204 => 0.031314345575221
205 => 0.031333448515967
206 => 0.030421615381709
207 => 0.031874190323549
208 => 0.032589780972805
209 => 0.032457344188456
210 => 0.032490675673838
211 => 0.031917930322479
212 => 0.031338993942927
213 => 0.030696864400334
214 => 0.031889861720862
215 => 0.031757220783963
216 => 0.032061451370507
217 => 0.03283519541008
218 => 0.032949132159074
219 => 0.033102264305156
220 => 0.033047377331474
221 => 0.034355007722592
222 => 0.034196645054205
223 => 0.034578253520969
224 => 0.03379325595213
225 => 0.032904956690335
226 => 0.033073793339312
227 => 0.033057533012317
228 => 0.032850520386936
229 => 0.032663638644902
301 => 0.032352533198019
302 => 0.033336916866898
303 => 0.033296952687637
304 => 0.033943926296594
305 => 0.033829567426844
306 => 0.033065850906296
307 => 0.033093127191235
308 => 0.033276573315988
309 => 0.033911482448309
310 => 0.034099966706692
311 => 0.03401265328841
312 => 0.034219317673094
313 => 0.034382656776362
314 => 0.034239830549651
315 => 0.036261948726021
316 => 0.035422224277605
317 => 0.035831500130997
318 => 0.035929110010438
319 => 0.035679084356765
320 => 0.035733305968299
321 => 0.035815436935269
322 => 0.036314120083817
323 => 0.037622808960737
324 => 0.038202418355779
325 => 0.039946201818186
326 => 0.038154289864073
327 => 0.038047965224385
328 => 0.03836207328318
329 => 0.039385858773838
330 => 0.040215540754736
331 => 0.040490794133301
401 => 0.040527173411216
402 => 0.041043567047904
403 => 0.041339554250282
404 => 0.040980863277909
405 => 0.040676910235333
406 => 0.039588188164867
407 => 0.039714210709016
408 => 0.040582381067653
409 => 0.041808722834207
410 => 0.042861051649024
411 => 0.042492562775437
412 => 0.045303872768303
413 => 0.045582602670924
414 => 0.045544091210798
415 => 0.04617907940954
416 => 0.044918757148135
417 => 0.044379944963791
418 => 0.040742628333152
419 => 0.041764565942144
420 => 0.043250012273106
421 => 0.043053407881065
422 => 0.041974637049426
423 => 0.042860233304612
424 => 0.042567427487492
425 => 0.042336479391006
426 => 0.043394497392503
427 => 0.042231163138872
428 => 0.043238407124021
429 => 0.041946606294463
430 => 0.042494246001572
501 => 0.042183379217465
502 => 0.042384548125182
503 => 0.041208518801222
504 => 0.041843075677933
505 => 0.041182119148921
506 => 0.041181805769467
507 => 0.041167215117456
508 => 0.041944827542708
509 => 0.041970185455978
510 => 0.04139552869881
511 => 0.041312711682276
512 => 0.041618929598557
513 => 0.041260428617192
514 => 0.041428168969994
515 => 0.041265509301598
516 => 0.041228891184105
517 => 0.040937111793865
518 => 0.040811405209907
519 => 0.040860698000537
520 => 0.040692436293944
521 => 0.040591052529429
522 => 0.041147047334902
523 => 0.040850001739104
524 => 0.041101520837112
525 => 0.040814883080691
526 => 0.039821271734811
527 => 0.039249835342546
528 => 0.037372995617999
529 => 0.037905265035668
530 => 0.038258160210255
531 => 0.038141528357159
601 => 0.038392098708145
602 => 0.038407481692647
603 => 0.03832601871728
604 => 0.038231695027857
605 => 0.038185783472274
606 => 0.038527970592962
607 => 0.038726621734011
608 => 0.038293577962153
609 => 0.038192121865334
610 => 0.038629953027683
611 => 0.03889702978379
612 => 0.040868974493414
613 => 0.040722886460027
614 => 0.041089538755499
615 => 0.041048259333767
616 => 0.041432569351712
617 => 0.04206075380952
618 => 0.040783479163659
619 => 0.041005169877346
620 => 0.040950816433936
621 => 0.041544233076848
622 => 0.041546085658833
623 => 0.041190302738048
624 => 0.041383178431324
625 => 0.041275520510605
626 => 0.041470072924185
627 => 0.040720935365276
628 => 0.041633304047625
629 => 0.042150558298778
630 => 0.042157740374557
701 => 0.04240291478442
702 => 0.042652026184385
703 => 0.043130173823587
704 => 0.042638690906243
705 => 0.041754560982837
706 => 0.041818392307585
707 => 0.041300027256983
708 => 0.041308741067134
709 => 0.041262226065635
710 => 0.04140182108662
711 => 0.040751568622273
712 => 0.040904181575949
713 => 0.040690522547102
714 => 0.041004705424344
715 => 0.040666696584722
716 => 0.04095079022306
717 => 0.041073395619513
718 => 0.041525812171932
719 => 0.040599874292081
720 => 0.038711824274582
721 => 0.039108715278654
722 => 0.038521682308516
723 => 0.038576014444894
724 => 0.038685774007274
725 => 0.038330007354507
726 => 0.038397876420359
727 => 0.03839545165974
728 => 0.038374556382682
729 => 0.038282007735938
730 => 0.038147793887966
731 => 0.038682460549441
801 => 0.038773310833889
802 => 0.038975259762249
803 => 0.03957612278978
804 => 0.039516082404003
805 => 0.039614010764256
806 => 0.039400233703669
807 => 0.038585930949607
808 => 0.038630151506882
809 => 0.038078720449085
810 => 0.038961158430315
811 => 0.038752185468747
812 => 0.038617459240975
813 => 0.038580697941498
814 => 0.039183050392254
815 => 0.039363283686238
816 => 0.039250974392434
817 => 0.039020624754255
818 => 0.039462964156315
819 => 0.039581315519505
820 => 0.039607810025093
821 => 0.040391550635376
822 => 0.039651612418936
823 => 0.039829722901986
824 => 0.041219290046866
825 => 0.039959144393619
826 => 0.040626671650745
827 => 0.040593999665153
828 => 0.040935484022008
829 => 0.040565987980709
830 => 0.040570568326978
831 => 0.040873783301712
901 => 0.040447972554807
902 => 0.040342535825684
903 => 0.040196875739552
904 => 0.040514919208754
905 => 0.040705571884671
906 => 0.042242092433605
907 => 0.043234754782066
908 => 0.043191660691558
909 => 0.043585460010039
910 => 0.043408049810275
911 => 0.042835145476792
912 => 0.043813023315807
913 => 0.043503581851396
914 => 0.04352909182975
915 => 0.043528142347082
916 => 0.043733893869073
917 => 0.043588100058892
918 => 0.043300725493599
919 => 0.04349149814125
920 => 0.044058024702305
921 => 0.045816540530978
922 => 0.046800629285939
923 => 0.045757297152271
924 => 0.046476973687301
925 => 0.046045424213252
926 => 0.045966998836333
927 => 0.04641900888401
928 => 0.046871810115439
929 => 0.046842968634511
930 => 0.046514258192094
1001 => 0.046328578003891
1002 => 0.047734610596389
1003 => 0.048770551459401
1004 => 0.04869990723758
1005 => 0.049011707857969
1006 => 0.049927164123063
1007 => 0.050010861971072
1008 => 0.050000317965996
1009 => 0.049792864116739
1010 => 0.050694249696742
1011 => 0.051446201405951
1012 => 0.049744844544554
1013 => 0.050392698964977
1014 => 0.050683541686871
1015 => 0.051110585091759
1016 => 0.051831078896588
1017 => 0.052613726270177
1018 => 0.052724401190094
1019 => 0.05264587203813
1020 => 0.052129695056558
1021 => 0.052986077151664
1022 => 0.053487725698345
1023 => 0.053786445927871
1024 => 0.054543950727643
1025 => 0.050685337832507
1026 => 0.047954019839826
1027 => 0.047527485094559
1028 => 0.04839486027171
1029 => 0.048623580188737
1030 => 0.048531383476974
1031 => 0.045457036755643
1101 => 0.047511299295322
1102 => 0.049721513060715
1103 => 0.049806416372823
1104 => 0.050912895597169
1105 => 0.051273210588732
1106 => 0.052164071393878
1107 => 0.052108347807961
1108 => 0.052325258237323
1109 => 0.052275394285978
1110 => 0.053925526334636
1111 => 0.055745867031287
1112 => 0.055682834421291
1113 => 0.055421138908854
1114 => 0.055809801370539
1115 => 0.057688588049047
1116 => 0.057515619478633
1117 => 0.057683643711362
1118 => 0.059898839089101
1119 => 0.062778908188028
1120 => 0.061440826937367
1121 => 0.064344078228795
1122 => 0.066171521022011
1123 => 0.069331894371767
1124 => 0.06893620006321
1125 => 0.070166510216379
1126 => 0.068227824667
1127 => 0.063776210772633
1128 => 0.063071725833756
1129 => 0.064482122521788
1130 => 0.067949445154818
1201 => 0.06437292419292
1202 => 0.065096449725441
1203 => 0.064888074323401
1204 => 0.064876970883764
1205 => 0.065300744013729
1206 => 0.064686038986196
1207 => 0.062181620120703
1208 => 0.063329380528125
1209 => 0.062886175114838
1210 => 0.063377944564033
1211 => 0.066031821460189
1212 => 0.064858479223875
1213 => 0.063622458492501
1214 => 0.065172702784601
1215 => 0.06714669649018
1216 => 0.067023167511692
1217 => 0.06678346966232
1218 => 0.068134633889063
1219 => 0.07036636133767
1220 => 0.070969588299222
1221 => 0.071414878109807
1222 => 0.071476276051453
1223 => 0.072108713009022
1224 => 0.06870794009354
1225 => 0.074105054048452
1226 => 0.075036986536201
1227 => 0.074861821853149
1228 => 0.075897625591568
1229 => 0.07559286585592
1230 => 0.075151316814304
1231 => 0.076793286061472
]
'min_raw' => 0.028306676652609
'max_raw' => 0.076793286061472
'avg_raw' => 0.052549981357041
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0283066'
'max' => '$0.076793'
'avg' => '$0.052549'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00976224122305
'max_diff' => 0.035394140330272
'year' => 2032
]
7 => [
'items' => [
101 => 0.07491090081968
102 => 0.072239091954668
103 => 0.070773284768935
104 => 0.072703577914401
105 => 0.07388234058039
106 => 0.074661427719222
107 => 0.074897179016696
108 => 0.06897193241421
109 => 0.065778553124713
110 => 0.067825472637113
111 => 0.070322855713079
112 => 0.068694067004457
113 => 0.068757912438131
114 => 0.066435687777779
115 => 0.070528321067198
116 => 0.069932058821394
117 => 0.073025468407397
118 => 0.072287201383534
119 => 0.074809756815451
120 => 0.074145483430189
121 => 0.076902845113388
122 => 0.078002831341403
123 => 0.079849879417427
124 => 0.081208575500989
125 => 0.08200642782897
126 => 0.081958527767867
127 => 0.085120016179783
128 => 0.083255796917268
129 => 0.080913898160805
130 => 0.080871540600896
131 => 0.082084443151831
201 => 0.084626354155025
202 => 0.085285434694852
203 => 0.085653770803194
204 => 0.085089651231396
205 => 0.083066174831734
206 => 0.082192447981619
207 => 0.082936888572221
208 => 0.082026501700424
209 => 0.083598084850587
210 => 0.085756204187808
211 => 0.085310561078801
212 => 0.086800279177664
213 => 0.088341980687073
214 => 0.090546683087674
215 => 0.091123073935085
216 => 0.092075826087675
217 => 0.093056521015467
218 => 0.093371493795805
219 => 0.093972874563783
220 => 0.093969704990286
221 => 0.095782006412184
222 => 0.097781031002839
223 => 0.098535616508286
224 => 0.10027074426997
225 => 0.097299398784213
226 => 0.099553198467519
227 => 0.10158618219813
228 => 0.099162375184415
301 => 0.10250302847821
302 => 0.10263273847553
303 => 0.10459120543618
304 => 0.10260592397469
305 => 0.1014270701801
306 => 0.10483037691401
307 => 0.10647712983939
308 => 0.10598111445655
309 => 0.1022064129018
310 => 0.10000937469236
311 => 0.09425930192126
312 => 0.10107051150329
313 => 0.10438805300499
314 => 0.10219782127077
315 => 0.10330244675934
316 => 0.10932892524896
317 => 0.11162341807223
318 => 0.11114617960471
319 => 0.1112268250497
320 => 0.11246489172915
321 => 0.11795516120157
322 => 0.11466526447024
323 => 0.11718026725126
324 => 0.1185142156578
325 => 0.11975326127954
326 => 0.11671055683693
327 => 0.1127520430633
328 => 0.11149821558409
329 => 0.10198004588955
330 => 0.10148458382163
331 => 0.10120646594887
401 => 0.09945297210168
402 => 0.098075206260176
403 => 0.096979555709845
404 => 0.094104241476829
405 => 0.095074575624737
406 => 0.090491924862028
407 => 0.093423742420838
408 => 0.086109721151583
409 => 0.092201055401935
410 => 0.088885819108451
411 => 0.091111911116531
412 => 0.091104144491225
413 => 0.087005203321237
414 => 0.084641019597107
415 => 0.08614756948153
416 => 0.087762710547709
417 => 0.08802476175171
418 => 0.090118834303507
419 => 0.090703244940775
420 => 0.08893245342633
421 => 0.085958154317743
422 => 0.086649016164128
423 => 0.084627019303841
424 => 0.081083547581173
425 => 0.083628530835474
426 => 0.084497500013507
427 => 0.084881286306608
428 => 0.081396688837842
429 => 0.080301752658864
430 => 0.07971881782458
501 => 0.085508336542226
502 => 0.085825499446679
503 => 0.084202849185186
504 => 0.091537382233146
505 => 0.089877351513428
506 => 0.091732012544753
507 => 0.08658632769284
508 => 0.086782899783766
509 => 0.084346850111612
510 => 0.085710875151121
511 => 0.084746826217776
512 => 0.085600675407487
513 => 0.086112469091247
514 => 0.08854811903162
515 => 0.092228866611815
516 => 0.088184314152296
517 => 0.086422044726626
518 => 0.087515346766932
519 => 0.090426954173927
520 => 0.094838188437964
521 => 0.092226648969291
522 => 0.093385605838672
523 => 0.093638786356229
524 => 0.091713133836476
525 => 0.094909189993089
526 => 0.096621982452132
527 => 0.09837895310265
528 => 0.099904481489295
529 => 0.097677180388221
530 => 0.10006071183744
531 => 0.09814000623931
601 => 0.096416934758891
602 => 0.096419547947073
603 => 0.095338640037349
604 => 0.093244244759096
605 => 0.092858006135997
606 => 0.094867268229916
607 => 0.09647850615141
608 => 0.096611215423934
609 => 0.097503279525667
610 => 0.098031193872081
611 => 0.1032054721317
612 => 0.10528660965159
613 => 0.10783138521699
614 => 0.10882271871541
615 => 0.11180627713292
616 => 0.10939681139802
617 => 0.10887550833002
618 => 0.10163837152366
619 => 0.10282345227027
620 => 0.10472088088888
621 => 0.10166965942272
622 => 0.10360495714862
623 => 0.10398702591493
624 => 0.10156598008486
625 => 0.10285916526992
626 => 0.099424848821095
627 => 0.092303725325496
628 => 0.094917117839221
629 => 0.096841454387731
630 => 0.094095188864022
701 => 0.099017763520118
702 => 0.096142097028593
703 => 0.095230648807115
704 => 0.091674764340376
705 => 0.093353004930132
706 => 0.095622849357867
707 => 0.094220349399264
708 => 0.097130747399793
709 => 0.10125264714334
710 => 0.10419015836396
711 => 0.10441566400026
712 => 0.10252704108336
713 => 0.10555357136072
714 => 0.10557561632965
715 => 0.10216167781306
716 => 0.10007065948053
717 => 0.099595575715843
718 => 0.1007824281057
719 => 0.10222348601202
720 => 0.10449563268481
721 => 0.10586864333237
722 => 0.10944872691265
723 => 0.11041739488044
724 => 0.11148166729525
725 => 0.11290386345091
726 => 0.11461157457938
727 => 0.11087519985033
728 => 0.11102365298379
729 => 0.10754439256973
730 => 0.1038263038409
731 => 0.10664786971978
801 => 0.11033669176924
802 => 0.10949047191531
803 => 0.10939525489504
804 => 0.10955538351213
805 => 0.10891736137723
806 => 0.10603161090724
807 => 0.10458240508697
808 => 0.10645225032695
809 => 0.10744598985477
810 => 0.10898719319922
811 => 0.10879720735616
812 => 0.11276718165831
813 => 0.11430979362633
814 => 0.11391512747282
815 => 0.11398775554324
816 => 0.11678058082659
817 => 0.11988677693
818 => 0.12279613947953
819 => 0.12575566802494
820 => 0.12218784085108
821 => 0.12037631824519
822 => 0.12224534716924
823 => 0.12125361411365
824 => 0.12695240641819
825 => 0.12734697843286
826 => 0.13304535864986
827 => 0.13845380002628
828 => 0.13505685490004
829 => 0.13826002115231
830 => 0.14172450661212
831 => 0.1484080611566
901 => 0.1461572751163
902 => 0.14443320828375
903 => 0.14280397345762
904 => 0.14619415249705
905 => 0.15055556367186
906 => 0.15149496986583
907 => 0.15301716678086
908 => 0.15141676285009
909 => 0.15334427310599
910 => 0.16014923130024
911 => 0.15831047152713
912 => 0.15569913705392
913 => 0.16107099799315
914 => 0.16301505358447
915 => 0.17665945383421
916 => 0.19388607277157
917 => 0.18675413941542
918 => 0.18232711823521
919 => 0.18336757322291
920 => 0.18965815130098
921 => 0.19167848532669
922 => 0.18618652099391
923 => 0.18812637564139
924 => 0.19881516547131
925 => 0.20454935827762
926 => 0.19676155424181
927 => 0.17527531177578
928 => 0.15546401495584
929 => 0.16071886298681
930 => 0.16012312629702
1001 => 0.17160689751558
1002 => 0.15826661771466
1003 => 0.15849123381345
1004 => 0.17021247725928
1005 => 0.16708545046092
1006 => 0.1620200675269
1007 => 0.15550099785695
1008 => 0.14344989463107
1009 => 0.13277589643404
1010 => 0.15371006497339
1011 => 0.15280734555966
1012 => 0.15150007407306
1013 => 0.15440926530495
1014 => 0.16853547213868
1015 => 0.1682098173491
1016 => 0.16613816772828
1017 => 0.16770949570699
1018 => 0.16174460613498
1019 => 0.16328189399569
1020 => 0.1554608767452
1021 => 0.15899630317696
1022 => 0.16200919949011
1023 => 0.16261408303166
1024 => 0.16397691653691
1025 => 0.15233165344851
1026 => 0.15756003468824
1027 => 0.16063121883351
1028 => 0.14675549713455
1029 => 0.16035694042937
1030 => 0.15212893532652
1031 => 0.14933622681412
1101 => 0.15309624091469
1102 => 0.15163095976296
1103 => 0.15037119707291
1104 => 0.14966822784638
1105 => 0.15242916722423
1106 => 0.15230036610222
1107 => 0.14778293340482
1108 => 0.14189012660517
1109 => 0.14386794599192
1110 => 0.14314938566656
1111 => 0.14054523035132
1112 => 0.14230011660688
1113 => 0.134572485665
1114 => 0.12127749827681
1115 => 0.13006057418193
1116 => 0.12972243531373
1117 => 0.12955193036301
1118 => 0.13615216915931
1119 => 0.13551770849247
1120 => 0.13436615616948
1121 => 0.14052408118985
1122 => 0.13827635572163
1123 => 0.14520331598395
1124 => 0.1497658600204
1125 => 0.14860865126992
1126 => 0.1528997459889
1127 => 0.14391351095596
1128 => 0.14689837776873
1129 => 0.14751355468199
1130 => 0.14044809335097
1201 => 0.13562151410407
1202 => 0.13529963629533
1203 => 0.1269310130248
1204 => 0.13140146402675
1205 => 0.13533527590864
1206 => 0.13345128529335
1207 => 0.13285487014717
1208 => 0.13590182578235
1209 => 0.13613860033061
1210 => 0.13074011553796
1211 => 0.13186263147413
1212 => 0.13654370953071
1213 => 0.13174468031751
1214 => 0.12242095047323
1215 => 0.1201085365612
1216 => 0.11980001791909
1217 => 0.1135285679898
1218 => 0.12026306311604
1219 => 0.11732327552018
1220 => 0.12661002931142
1221 => 0.12130548535172
1222 => 0.12107681706368
1223 => 0.12073115140796
1224 => 0.11533305538348
1225 => 0.11651489534594
1226 => 0.12044351138047
1227 => 0.12184528584062
1228 => 0.12169906928002
1229 => 0.12042425901865
1230 => 0.12100786062822
1231 => 0.11912787650351
]
'min_raw' => 0.065778553124713
'max_raw' => 0.20454935827762
'avg_raw' => 0.13516395570117
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.065778'
'max' => '$0.204549'
'avg' => '$0.135163'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.037471876472103
'max_diff' => 0.12775607221615
'year' => 2033
]
8 => [
'items' => [
101 => 0.11846401498059
102 => 0.11636868540476
103 => 0.11328912977785
104 => 0.11371736087578
105 => 0.10761595536931
106 => 0.10429158582329
107 => 0.10337144414743
108 => 0.10214099224311
109 => 0.10351042696413
110 => 0.10759867085411
111 => 0.10266738135347
112 => 0.094213031394364
113 => 0.094721152232417
114 => 0.095862748893093
115 => 0.093735391068341
116 => 0.091722025422822
117 => 0.093472483502083
118 => 0.089890263972683
119 => 0.096295643008965
120 => 0.096122395456901
121 => 0.098509924655645
122 => 0.10000289566065
123 => 0.096562080849215
124 => 0.095696725229091
125 => 0.096189671118534
126 => 0.088042373616589
127 => 0.097844116632374
128 => 0.097928882513001
129 => 0.097203065580216
130 => 0.10242219114126
131 => 0.11343617396114
201 => 0.10929227058787
202 => 0.10768762595159
203 => 0.10463719532505
204 => 0.10870171301827
205 => 0.10838962147579
206 => 0.10697822516346
207 => 0.10612460826994
208 => 0.10769742356957
209 => 0.10592971904874
210 => 0.10561219074353
211 => 0.10368831468814
212 => 0.10300157846715
213 => 0.10249314630889
214 => 0.10193341246015
215 => 0.10316804585348
216 => 0.10037020415464
217 => 0.096996281341653
218 => 0.096715776166104
219 => 0.097490275618063
220 => 0.097147617265274
221 => 0.096714135649741
222 => 0.095886501193995
223 => 0.095640959730587
224 => 0.096438850366879
225 => 0.09553807835842
226 => 0.096867216524492
227 => 0.09650576448789
228 => 0.094486722793725
301 => 0.091970249297819
302 => 0.091947847405224
303 => 0.091405677318374
304 => 0.090715142196954
305 => 0.090523051123478
306 => 0.093325064805072
307 => 0.09912514926876
308 => 0.09798645390428
309 => 0.098809278003312
310 => 0.1028567581916
311 => 0.10414333043149
312 => 0.10323015192975
313 => 0.10198013687418
314 => 0.10203513119269
315 => 0.10630681104287
316 => 0.10657323047538
317 => 0.10724638643116
318 => 0.10811158206818
319 => 0.10337749848795
320 => 0.10181215628179
321 => 0.10107041030264
322 => 0.098786119778653
323 => 0.1012495312685
324 => 0.099814206887163
325 => 0.10000788118387
326 => 0.099881750544064
327 => 0.099950626402313
328 => 0.096293852574982
329 => 0.097626188763288
330 => 0.095410921439377
331 => 0.092444927168087
401 => 0.092434984115278
402 => 0.093160907011255
403 => 0.092729099667362
404 => 0.091567117207728
405 => 0.091732171331717
406 => 0.090286123527467
407 => 0.091907747716693
408 => 0.09195425009599
409 => 0.091329836452671
410 => 0.09382817225719
411 => 0.094851742474749
412 => 0.09444074003848
413 => 0.094822905448172
414 => 0.098033771837575
415 => 0.09855728315897
416 => 0.098789792306717
417 => 0.098478260850296
418 => 0.094881594191499
419 => 0.095041121652025
420 => 0.093870614994824
421 => 0.092881660214442
422 => 0.092921213219273
423 => 0.093429664531511
424 => 0.095650101232333
425 => 0.10032287936732
426 => 0.10050020788179
427 => 0.10071513521436
428 => 0.099840917738968
429 => 0.099577245383256
430 => 0.099925097280049
501 => 0.10167994706455
502 => 0.10619389714735
503 => 0.1045983657115
504 => 0.10330117381822
505 => 0.10443916082905
506 => 0.10426397664857
507 => 0.10278524586619
508 => 0.1027437428182
509 => 0.099905585667997
510 => 0.098856383591278
511 => 0.097979591804558
512 => 0.097022158062689
513 => 0.096454559247039
514 => 0.097326648996925
515 => 0.097526106240987
516 => 0.095619266761341
517 => 0.095359371586279
518 => 0.096916537867347
519 => 0.096231287044059
520 => 0.096936084509213
521 => 0.09709960356677
522 => 0.09707327323234
523 => 0.096357792672272
524 => 0.096813818645322
525 => 0.095735181271173
526 => 0.094562325132881
527 => 0.09381411598817
528 => 0.093161204273868
529 => 0.093523477640414
530 => 0.092232039237181
531 => 0.091818882100467
601 => 0.096659327306562
602 => 0.10023501622386
603 => 0.10018302429087
604 => 0.099866536770062
605 => 0.099396300511286
606 => 0.1016455463533
607 => 0.10086195407703
608 => 0.10143208292934
609 => 0.10157720465049
610 => 0.10201644439253
611 => 0.10217343484637
612 => 0.10169890065796
613 => 0.10010630596219
614 => 0.096137711399686
615 => 0.094290319917823
616 => 0.09368064995807
617 => 0.093702810303178
618 => 0.093091529056937
619 => 0.093271578779659
620 => 0.093028915111154
621 => 0.092569368829652
622 => 0.093495101952499
623 => 0.093601784071107
624 => 0.093385706898547
625 => 0.093436600894792
626 => 0.091647574193766
627 => 0.091783590008283
628 => 0.091026236668997
629 => 0.090884242047912
630 => 0.088969718756495
701 => 0.085577863231162
702 => 0.087457280447579
703 => 0.085187208736199
704 => 0.0843274981819
705 => 0.088397234233529
706 => 0.087988745610853
707 => 0.087289590654566
708 => 0.086255394757559
709 => 0.085871801439348
710 => 0.083541209868784
711 => 0.083403506085573
712 => 0.08455861019921
713 => 0.084025569395472
714 => 0.083276978228685
715 => 0.080565656906053
716 => 0.077517234051776
717 => 0.077609246776043
718 => 0.078578893368066
719 => 0.081398271609029
720 => 0.080296691754546
721 => 0.079497482930946
722 => 0.079347815142414
723 => 0.081221220866622
724 => 0.083872482457009
725 => 0.085116395076584
726 => 0.083883715448773
727 => 0.082467679464528
728 => 0.082553867013611
729 => 0.083127234164951
730 => 0.083187486945582
731 => 0.08226579309069
801 => 0.082525244511989
802 => 0.0821311140783
803 => 0.079712336334258
804 => 0.079668588314896
805 => 0.079074981248448
806 => 0.07905700706239
807 => 0.07804713336014
808 => 0.077905845048268
809 => 0.075900679517498
810 => 0.077220485542051
811 => 0.076335228953707
812 => 0.075000938464154
813 => 0.074770906280831
814 => 0.074763991235628
815 => 0.076134009226505
816 => 0.077204476084164
817 => 0.076350628371073
818 => 0.076156223797944
819 => 0.078231956035119
820 => 0.077967800187219
821 => 0.07773904292656
822 => 0.083635091060882
823 => 0.078967908888193
824 => 0.076932751067455
825 => 0.074413856798305
826 => 0.075234021473708
827 => 0.075406842221541
828 => 0.069349355569053
829 => 0.06689183398855
830 => 0.066048505191868
831 => 0.065563157546459
901 => 0.065784336563084
902 => 0.063572278902101
903 => 0.065058818234339
904 => 0.063143363280506
905 => 0.062822231024067
906 => 0.066247301760855
907 => 0.066723880344906
908 => 0.064690648043984
909 => 0.065996312331585
910 => 0.065522860310809
911 => 0.063176198258
912 => 0.063086573028461
913 => 0.061909100499521
914 => 0.060066583995339
915 => 0.05922450451161
916 => 0.058785942205215
917 => 0.058966901560243
918 => 0.058875402972893
919 => 0.058278312798407
920 => 0.058909627482766
921 => 0.057296879341468
922 => 0.056654670036809
923 => 0.056364598993037
924 => 0.054933192191315
925 => 0.057211196962348
926 => 0.057659992599789
927 => 0.058109672503276
928 => 0.062023829053622
929 => 0.061828288853659
930 => 0.063595877029391
1001 => 0.063527191803268
1002 => 0.063023047022519
1003 => 0.060896143120331
1004 => 0.061743889107327
1005 => 0.059134658728332
1006 => 0.061089671538694
1007 => 0.060197485335332
1008 => 0.060788022485879
1009 => 0.059726183442607
1010 => 0.060313849011413
1011 => 0.057766418694647
1012 => 0.055387664108163
1013 => 0.056344944393939
1014 => 0.057385617542858
1015 => 0.059642062088301
1016 => 0.058298142332298
1017 => 0.058781466695789
1018 => 0.057162410985617
1019 => 0.053821836595131
1020 => 0.053840743883395
1021 => 0.053326869291788
1022 => 0.052882806617721
1023 => 0.058452507682831
1024 => 0.05775982731144
1025 => 0.056656131795395
1026 => 0.058133472102738
1027 => 0.058524104328542
1028 => 0.058535225078847
1029 => 0.059613054431412
1030 => 0.060188292150087
1031 => 0.060289680291226
1101 => 0.061985668065532
1102 => 0.062554140796859
1103 => 0.064895599523924
1104 => 0.06013948724862
1105 => 0.060041538246156
1106 => 0.058154261310509
1107 => 0.056957320441253
1108 => 0.058236216875854
1109 => 0.059369144530138
1110 => 0.058189464530751
1111 => 0.058343505834267
1112 => 0.056759881818487
1113 => 0.057325952887693
1114 => 0.0578135295505
1115 => 0.057544318375729
1116 => 0.057141296217129
1117 => 0.059276257382224
1118 => 0.059155794506309
1119 => 0.06114391942579
1120 => 0.062693804972702
1121 => 0.06547147694795
1122 => 0.062572831438464
1123 => 0.062467193275026
1124 => 0.063499823267527
1125 => 0.062553982706587
1126 => 0.063151721291795
1127 => 0.065375172020871
1128 => 0.065422150031108
1129 => 0.064635207831881
1130 => 0.064587322327541
1201 => 0.064738463185107
1202 => 0.065623699908669
1203 => 0.06531437099688
1204 => 0.065672334244853
1205 => 0.06611997276777
1206 => 0.067971595493359
1207 => 0.06841801546386
1208 => 0.067333446377761
1209 => 0.067431370822831
1210 => 0.067025712212543
1211 => 0.066633851077892
1212 => 0.067514697681864
1213 => 0.069124462163706
1214 => 0.069114447902411
1215 => 0.069487881972848
1216 => 0.069720528305036
1217 => 0.068721839939763
1218 => 0.06807173053676
1219 => 0.068321023849408
1220 => 0.068719649285233
1221 => 0.068191754993109
1222 => 0.064933346877693
1223 => 0.065921739751994
1224 => 0.065757222847768
1225 => 0.065522930770211
1226 => 0.066516767448336
1227 => 0.06642090947625
1228 => 0.063549591053531
1229 => 0.063733403542984
1230 => 0.063560769299821
1231 => 0.064118585857124
]
'min_raw' => 0.052882806617721
'max_raw' => 0.11846401498059
'avg_raw' => 0.085673410799157
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.052882'
'max' => '$0.118464'
'avg' => '$0.085673'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.012895746506992
'max_diff' => -0.086085343297031
'year' => 2034
]
9 => [
'items' => [
101 => 0.062523858781895
102 => 0.063014386089585
103 => 0.06332204021856
104 => 0.063503250864036
105 => 0.064157907972801
106 => 0.064081091517111
107 => 0.06415313295406
108 => 0.065123816623289
109 => 0.070033201523838
110 => 0.070300408512028
111 => 0.068984583575818
112 => 0.069510229684334
113 => 0.068501104102149
114 => 0.069178536866024
115 => 0.069642019158141
116 => 0.067547631802586
117 => 0.067423615775851
118 => 0.066410325173422
119 => 0.066954810147454
120 => 0.066088495403914
121 => 0.066301058739576
122 => 0.065706713122128
123 => 0.066776416900502
124 => 0.067972511939886
125 => 0.068274692782059
126 => 0.067479785083334
127 => 0.066904219522488
128 => 0.065893716000723
129 => 0.067574205877957
130 => 0.068065632330061
131 => 0.067571624624011
201 => 0.067457152244237
202 => 0.067240227291414
203 => 0.067503173898449
204 => 0.068062955916064
205 => 0.067798973054108
206 => 0.067973338385209
207 => 0.067308837547799
208 => 0.068722170547168
209 => 0.070966883487275
210 => 0.070974100606425
211 => 0.070710116321502
212 => 0.070602099639733
213 => 0.070872963535969
214 => 0.071019896088259
215 => 0.071895820260743
216 => 0.072835721796177
217 => 0.077221832150879
218 => 0.075990229914583
219 => 0.079881847952148
220 => 0.082959612556504
221 => 0.083882499587016
222 => 0.083033486944135
223 => 0.080129060555603
224 => 0.079986555540684
225 => 0.084326994782343
226 => 0.083100621891863
227 => 0.082954748738826
228 => 0.081402904847101
301 => 0.082320236786716
302 => 0.082119602835074
303 => 0.081802892327059
304 => 0.083553097765948
305 => 0.08682932610563
306 => 0.086318695194616
307 => 0.08593753290703
308 => 0.084267390717503
309 => 0.085273189355361
310 => 0.084915043725224
311 => 0.086453864637127
312 => 0.085542301217972
313 => 0.083091330911046
314 => 0.083481656010928
315 => 0.083422659157306
316 => 0.084636810224285
317 => 0.08427235221106
318 => 0.083351492880882
319 => 0.086818128313337
320 => 0.086593024290793
321 => 0.086912170328816
322 => 0.087052668284674
323 => 0.089162748183441
324 => 0.09002718040294
325 => 0.090223421650782
326 => 0.091044565401719
327 => 0.090202990846214
328 => 0.093569889100724
329 => 0.095808679976013
330 => 0.098409150784786
331 => 0.10220913757706
401 => 0.1036379677628
402 => 0.10337986237871
403 => 0.10626096899597
404 => 0.11143825354377
405 => 0.10442633961005
406 => 0.11180990200852
407 => 0.10947235140049
408 => 0.1039300609596
409 => 0.10357320279452
410 => 0.1073265062284
411 => 0.11565097200269
412 => 0.11356578774154
413 => 0.11565438261715
414 => 0.11321792575251
415 => 0.11309693513311
416 => 0.11553604934551
417 => 0.12123517265197
418 => 0.11852773279751
419 => 0.11464595387466
420 => 0.11751219902412
421 => 0.11502919221719
422 => 0.10943428293132
423 => 0.11356419324044
424 => 0.1108026398298
425 => 0.11160860792728
426 => 0.11741298244636
427 => 0.11671458474776
428 => 0.11761837603964
429 => 0.1160232080658
430 => 0.11453306964334
501 => 0.11175161561868
502 => 0.11092816420601
503 => 0.11115573655179
504 => 0.11092805143245
505 => 0.10937185346854
506 => 0.1090357926664
507 => 0.10847567660634
508 => 0.10864927999442
509 => 0.10759609793377
510 => 0.10958367008073
511 => 0.10995258098564
512 => 0.11139897024443
513 => 0.11154913917549
514 => 0.11557731267319
515 => 0.11335866240136
516 => 0.11484712455275
517 => 0.11471398248798
518 => 0.10405017919915
519 => 0.10551955720482
520 => 0.10780544826542
521 => 0.10677565744107
522 => 0.10531977414938
523 => 0.10414407033182
524 => 0.10236275882633
525 => 0.10486992056325
526 => 0.10816657164038
527 => 0.11163274768711
528 => 0.11579713109441
529 => 0.11486768919667
530 => 0.111554897436
531 => 0.11170350685439
601 => 0.11262215180321
602 => 0.11143242312679
603 => 0.11108154891385
604 => 0.11257394707439
605 => 0.11258422440032
606 => 0.11121529777458
607 => 0.109693986341
608 => 0.10968761199055
609 => 0.10941690931507
610 => 0.11326608315711
611 => 0.11538273957486
612 => 0.11562541082199
613 => 0.11536640586642
614 => 0.11546608659428
615 => 0.11423445086213
616 => 0.11704960491559
617 => 0.11963306866492
618 => 0.11894064519245
619 => 0.11790260397341
620 => 0.11707575414361
621 => 0.11874586565021
622 => 0.11867149821382
623 => 0.11961050436284
624 => 0.11956790561995
625 => 0.11925215316985
626 => 0.11894065646896
627 => 0.12017570567799
628 => 0.11982003134007
629 => 0.11946380454167
630 => 0.11874933716188
701 => 0.11884644514484
702 => 0.11780858315826
703 => 0.11732842071393
704 => 0.11010792962205
705 => 0.10817837846595
706 => 0.10878545453929
707 => 0.10898531974536
708 => 0.10814557660944
709 => 0.10934955255404
710 => 0.1091619141784
711 => 0.10989190533324
712 => 0.10943583855223
713 => 0.109454555692
714 => 0.11079575085126
715 => 0.11118510551185
716 => 0.110987076589
717 => 0.11112576925853
718 => 0.11432188328935
719 => 0.11386749808014
720 => 0.11362611499398
721 => 0.11369297975849
722 => 0.11450965541882
723 => 0.11473828001488
724 => 0.11376958153623
725 => 0.11422642533874
726 => 0.11617160826772
727 => 0.11685231220505
728 => 0.11902479241656
729 => 0.11810188420995
730 => 0.11979592216571
731 => 0.12500281730162
801 => 0.12916244542593
802 => 0.12533707949892
803 => 0.13297570682375
804 => 0.13892347389215
805 => 0.13869518868554
806 => 0.13765805792283
807 => 0.13088668324503
808 => 0.12465556331101
809 => 0.12986815972315
810 => 0.12988144770338
811 => 0.12943368104876
812 => 0.12665264081298
813 => 0.12933690687681
814 => 0.12954997416913
815 => 0.1294307131446
816 => 0.12729849611632
817 => 0.12404299481371
818 => 0.12467911197567
819 => 0.1257210848634
820 => 0.12374841280861
821 => 0.12311802455869
822 => 0.12429003625156
823 => 0.12806650212433
824 => 0.12735258312666
825 => 0.12733393981646
826 => 0.13038838803726
827 => 0.12820206230235
828 => 0.12468713545021
829 => 0.12379957006385
830 => 0.12064931087798
831 => 0.1228252061185
901 => 0.12290351271454
902 => 0.12171179712841
903 => 0.1247838366021
904 => 0.12475552721753
905 => 0.12767197148507
906 => 0.13324711755815
907 => 0.13159827252806
908 => 0.1296808451519
909 => 0.12988932267218
910 => 0.13217580650332
911 => 0.13079334618367
912 => 0.13129048855347
913 => 0.1321750540188
914 => 0.13270873432656
915 => 0.12981253428877
916 => 0.1291372915187
917 => 0.12775598178914
918 => 0.12739562386406
919 => 0.12852067181682
920 => 0.1282242614298
921 => 0.12289693134836
922 => 0.12234019571386
923 => 0.12235727000094
924 => 0.12095733177666
925 => 0.11882208996097
926 => 0.12443337796394
927 => 0.12398271300738
928 => 0.12348521377403
929 => 0.12354615459142
930 => 0.12598182452932
1001 => 0.12456901296106
1002 => 0.12832520407054
1003 => 0.12755304409987
1004 => 0.12676108113958
1005 => 0.12665160773468
1006 => 0.12634676956208
1007 => 0.12530136604292
1008 => 0.12403897847453
1009 => 0.12320544085573
1010 => 0.11365050657445
1011 => 0.11542384679856
1012 => 0.11746391308135
1013 => 0.11816813578712
1014 => 0.11696351411818
1015 => 0.12534893184867
1016 => 0.12688102847192
1017 => 0.12224020786389
1018 => 0.12137209981158
1019 => 0.12540584486805
1020 => 0.12297300349372
1021 => 0.12406851181562
1022 => 0.12170062203469
1023 => 0.1265119912604
1024 => 0.12647533668815
1025 => 0.12460360538965
1026 => 0.12618557986608
1027 => 0.12591067287032
1028 => 0.12379749284418
1029 => 0.12657898283644
1030 => 0.12658036242078
1031 => 0.12477886174092
1101 => 0.12267510334605
1102 => 0.1222990010336
1103 => 0.12201565846341
1104 => 0.12399882691257
1105 => 0.12577692954288
1106 => 0.12908553770886
1107 => 0.12991740041238
1108 => 0.13316421592445
1109 => 0.13123089537159
1110 => 0.13208791133198
1111 => 0.13301832338929
1112 => 0.13346439714433
1113 => 0.13273754389812
1114 => 0.13778118483095
1115 => 0.13820702265885
1116 => 0.13834980239906
1117 => 0.13664911505423
1118 => 0.13815972346727
1119 => 0.1374529598169
1120 => 0.13929176249055
1121 => 0.13958011022879
1122 => 0.13933588995277
1123 => 0.13942741607615
1124 => 0.13512355829921
1125 => 0.13490038056882
1126 => 0.13185733637895
1127 => 0.13309739937937
1128 => 0.13077916103785
1129 => 0.13151429829645
1130 => 0.13183833979539
1201 => 0.13166907890554
1202 => 0.13316751068084
1203 => 0.13189353756244
1204 => 0.12853131304243
1205 => 0.12516817248659
1206 => 0.12512595099647
1207 => 0.12424049545248
1208 => 0.12360047327345
1209 => 0.12372376425114
1210 => 0.12415825773761
1211 => 0.12357521972215
1212 => 0.12369964044352
1213 => 0.12576585342928
1214 => 0.12618021770802
1215 => 0.1247720459863
1216 => 0.11911803332536
1217 => 0.11773052443635
1218 => 0.11872783831028
1219 => 0.11825118651378
1220 => 0.095437936643325
1221 => 0.10079757130667
1222 => 0.097613058385706
1223 => 0.099080628452081
1224 => 0.0958300653854
1225 => 0.097381404457427
1226 => 0.097094928776656
1227 => 0.1057130627122
1228 => 0.10557850240465
1229 => 0.1056429093031
1230 => 0.10256860022879
1231 => 0.10746605806075
]
'min_raw' => 0.062523858781895
'max_raw' => 0.13958011022879
'avg_raw' => 0.10105198450534
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.062523'
'max' => '$0.13958'
'avg' => '$0.101051'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0096410521641743
'max_diff' => 0.021116095248201
'year' => 2035
]
10 => [
'items' => [
101 => 0.10987872189566
102 => 0.10943220203078
103 => 0.10954458146088
104 => 0.10761353052097
105 => 0.10566160609726
106 => 0.10349662151236
107 => 0.10751889527093
108 => 0.10707168709148
109 => 0.10809742175472
110 => 0.11070615380522
111 => 0.11109029950926
112 => 0.11160659523112
113 => 0.11142153996727
114 => 0.11583030712676
115 => 0.11529637633377
116 => 0.11658299592251
117 => 0.11393632181239
118 => 0.11094135883218
119 => 0.111510603382
120 => 0.11145578055428
121 => 0.11075782303465
122 => 0.11012773819371
123 => 0.10907882445886
124 => 0.11239774272596
125 => 0.11226300070537
126 => 0.11444431739822
127 => 0.11405874848458
128 => 0.11148382491456
129 => 0.11157578881361
130 => 0.11219429023101
131 => 0.11433493069857
201 => 0.11497041853526
202 => 0.11467603524949
203 => 0.1153728186513
204 => 0.11592352784194
205 => 0.11544197924678
206 => 0.12225969185819
207 => 0.11942850225267
208 => 0.12080840436711
209 => 0.12113750289055
210 => 0.12029452394296
211 => 0.12047733589187
212 => 0.12075424618121
213 => 0.12243559123349
214 => 0.12684792715177
215 => 0.12880212069418
216 => 0.13468140838476
217 => 0.12863985212417
218 => 0.12828137117812
219 => 0.12934040842867
220 => 0.13279217268884
221 => 0.13558950341398
222 => 0.13651753939739
223 => 0.13664019467281
224 => 0.13838125187235
225 => 0.13937919339033
226 => 0.13816984173397
227 => 0.13714504282961
228 => 0.13347434035688
229 => 0.13389923416309
301 => 0.13682633114096
302 => 0.14096102802734
303 => 0.14450902809775
304 => 0.14326664213338
305 => 0.15274517005372
306 => 0.15368492738071
307 => 0.15355508330411
308 => 0.15569599034963
309 => 0.15144672585241
310 => 0.14963008295423
311 => 0.13736661598469
312 => 0.14081214998282
313 => 0.1458204359982
314 => 0.14515757056396
315 => 0.14152041938772
316 => 0.14450626899243
317 => 0.14351905373696
318 => 0.14274039610538
319 => 0.14630757766588
320 => 0.14238531500836
321 => 0.14578130842782
322 => 0.14142591174031
323 => 0.14327231724781
324 => 0.14222420818117
325 => 0.1429024631987
326 => 0.13893739822523
327 => 0.1410768510384
328 => 0.13884838995433
329 => 0.13884733337362
330 => 0.13879813997168
331 => 0.14141991455458
401 => 0.14150541052961
402 => 0.13956791515156
403 => 0.13928869179822
404 => 0.14032112688241
405 => 0.139112415794
406 => 0.13967796410473
407 => 0.13912954567619
408 => 0.13900608513647
409 => 0.13802233055089
410 => 0.13759850202652
411 => 0.13776469611164
412 => 0.13719739002021
413 => 0.13685556757976
414 => 0.13873014288473
415 => 0.13772863291943
416 => 0.13857664711887
417 => 0.13761022791069
418 => 0.13426019788633
419 => 0.13233356019339
420 => 0.12600566402531
421 => 0.12780024752885
422 => 0.12899005824832
423 => 0.12859682581263
424 => 0.12944164124525
425 => 0.1294935060515
426 => 0.12921884794249
427 => 0.12890082903813
428 => 0.12874603502304
429 => 0.12989974279118
430 => 0.1305695089826
501 => 0.12910947167164
502 => 0.12876740535777
503 => 0.13024358369003
504 => 0.13114405161994
505 => 0.13779260088522
506 => 0.13730005488112
507 => 0.13853624869415
508 => 0.13839707224174
509 => 0.13969280029891
510 => 0.14181076805685
511 => 0.13750434741186
512 => 0.13825179313101
513 => 0.13806853670172
514 => 0.14006928234432
515 => 0.14007552845383
516 => 0.13887598149643
517 => 0.13952627536246
518 => 0.13916329916632
519 => 0.13981924621192
520 => 0.13729347662894
521 => 0.14036959134103
522 => 0.14211355016233
523 => 0.14213776503226
524 => 0.14296438767264
525 => 0.14380428415003
526 => 0.1454163922988
527 => 0.14375932332873
528 => 0.14077841756399
529 => 0.14099362933194
530 => 0.13924592537274
531 => 0.13927530459204
601 => 0.13911847601692
602 => 0.13958913037638
603 => 0.13739675879366
604 => 0.13791130402207
605 => 0.13719093768912
606 => 0.13825022719529
607 => 0.13711060679348
608 => 0.13806844832992
609 => 0.1384818209841
610 => 0.14000717497729
611 => 0.13688531076845
612 => 0.13051961831501
613 => 0.13185776404529
614 => 0.12987854140113
615 => 0.13006172599228
616 => 0.13043178802001
617 => 0.12923229591137
618 => 0.12946112120536
619 => 0.12945294595564
620 => 0.12938249607018
621 => 0.12907046184614
622 => 0.12861795048719
623 => 0.13042061646559
624 => 0.13072692454257
625 => 0.13140780945416
626 => 0.1334336611024
627 => 0.13323123074987
628 => 0.1335614030536
629 => 0.13284063876839
630 => 0.13009516018027
701 => 0.1302442528765
702 => 0.12838506456545
703 => 0.13136026582902
704 => 0.13065569889907
705 => 0.13020146001585
706 => 0.13007751672807
707 => 0.1321083900707
708 => 0.13271605920486
709 => 0.13233740057961
710 => 0.13156076069199
711 => 0.13305213886919
712 => 0.13345116875321
713 => 0.13354049682859
714 => 0.13618293301518
715 => 0.13368817965762
716 => 0.1342886915865
717 => 0.13897371423194
718 => 0.13472504518146
719 => 0.13697565993412
720 => 0.13686550405361
721 => 0.13801684240443
722 => 0.1367710607038
723 => 0.13678650366103
724 => 0.13780881411814
725 => 0.1363731634558
726 => 0.1360176761622
727 => 0.13552657301214
728 => 0.13659887877364
729 => 0.13724167758144
730 => 0.14242216388861
731 => 0.14576899430192
801 => 0.14562369956704
802 => 0.14695142146349
803 => 0.1463532705886
804 => 0.14442168362936
805 => 0.14771866703685
806 => 0.14667536353507
807 => 0.14676137220815
808 => 0.14675817096104
809 => 0.14745187658254
810 => 0.14696032257252
811 => 0.14599141916178
812 => 0.14663462246266
813 => 0.14854470631688
814 => 0.1544736652089
815 => 0.15779158915314
816 => 0.15427392202135
817 => 0.15670036170542
818 => 0.15524536252384
819 => 0.15498094589007
820 => 0.15650492932415
821 => 0.15803158028948
822 => 0.15793433922288
823 => 0.15682606901644
824 => 0.15620003529814
825 => 0.16094057234981
826 => 0.16443331929654
827 => 0.16419513737044
828 => 0.16524639493131
829 => 0.16833291964419
830 => 0.16861511278235
831 => 0.16857956293308
901 => 0.16788011779634
902 => 0.17091920221206
903 => 0.17345445989925
904 => 0.1677182164561
905 => 0.16990250286631
906 => 0.17088309940917
907 => 0.17232290606396
908 => 0.17475210123022
909 => 0.17739085149297
910 => 0.17776399971254
911 => 0.17749923319397
912 => 0.17575890646227
913 => 0.17864625848661
914 => 0.18033760158573
915 => 0.18134475769555
916 => 0.18389873801528
917 => 0.17088915523958
918 => 0.16168032593272
919 => 0.16024223425935
920 => 0.16316665022731
921 => 0.16393779539629
922 => 0.16362694774561
923 => 0.15326157313061
924 => 0.16018766270716
925 => 0.16763955272939
926 => 0.16792581017392
927 => 0.17165638213071
928 => 0.17287120928116
929 => 0.17587480868362
930 => 0.17568693272321
1001 => 0.17641826138
1002 => 0.17625014158665
1003 => 0.18181367699724
1004 => 0.18795108274813
1005 => 0.18773856390273
1006 => 0.18685623921156
1007 => 0.18816664183667
1008 => 0.19450110229596
1009 => 0.19391792668453
1010 => 0.19448443211625
1011 => 0.2019531179923
1012 => 0.21166347203934
1013 => 0.20715203768088
1014 => 0.21694055210847
1015 => 0.22310190307378
1016 => 0.2337573224727
1017 => 0.23242321148491
1018 => 0.23657128806383
1019 => 0.23003487437939
1020 => 0.21502594733277
1021 => 0.21265072717578
1022 => 0.21740597808023
1023 => 0.22909629841823
1024 => 0.21703780829047
1025 => 0.21947722513831
1026 => 0.21877467292202
1027 => 0.21873723690007
1028 => 0.22016601759464
1029 => 0.21809349667698
1030 => 0.20964967361903
1031 => 0.21351942796673
1101 => 0.21202512997221
1102 => 0.21368316500442
1103 => 0.22263089624758
1104 => 0.21867489097771
1105 => 0.21450756078567
1106 => 0.21973431765109
1107 => 0.22638977524928
1108 => 0.2259732886738
1109 => 0.22516513063946
1110 => 0.2297206751652
1111 => 0.23724510007242
1112 => 0.23927892188925
1113 => 0.24078024757478
1114 => 0.24098725502171
1115 => 0.24311956037949
1116 => 0.23165361706056
1117 => 0.24985036357401
1118 => 0.2529924390219
1119 => 0.25240185906338
1120 => 0.25589414368497
1121 => 0.25486662495859
1122 => 0.25337791153681
1123 => 0.25891392549227
1124 => 0.25256733222563
1125 => 0.2435591420975
1126 => 0.23861707083142
1127 => 0.24512518894012
1128 => 0.24909946956708
1129 => 0.25172621624978
1130 => 0.25252106820884
1201 => 0.23254368560105
1202 => 0.22177698437189
1203 => 0.2286783164193
1204 => 0.23709841782164
1205 => 0.23160684297213
1206 => 0.2318221023093
1207 => 0.22399255973438
1208 => 0.23779115860819
1209 => 0.23578081881676
1210 => 0.24621046521093
1211 => 0.24372134639582
1212 => 0.25222631815372
1213 => 0.24998667405722
1214 => 0.25928331148497
1215 => 0.26299199185131
1216 => 0.26921944339641
1217 => 0.27380038210327
1218 => 0.27649039693133
1219 => 0.27632889853104
1220 => 0.28698807743989
1221 => 0.28070273204069
1222 => 0.27280685687712
1223 => 0.27266404540658
1224 => 0.27675343103921
1225 => 0.28532366145703
1226 => 0.28754579751259
1227 => 0.28878766841828
1228 => 0.28688569989639
1229 => 0.28006340794032
1230 => 0.27711757686349
1231 => 0.27962751028989
]
'min_raw' => 0.10349662151236
'max_raw' => 0.28878766841828
'avg_raw' => 0.19614214496532
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.103496'
'max' => '$0.288787'
'avg' => '$0.196142'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.040972762730462
'max_diff' => 0.14920755818948
'year' => 2036
]
11 => [
'items' => [
101 => 0.27655807739044
102 => 0.28185677970565
103 => 0.28913302972617
104 => 0.28763051287035
105 => 0.29265320144946
106 => 0.29785115572659
107 => 0.30528446379763
108 => 0.307227805782
109 => 0.31044007618348
110 => 0.31374655760247
111 => 0.31480851032208
112 => 0.31683610756838
113 => 0.31682542113004
114 => 0.32293572190481
115 => 0.32967557287965
116 => 0.33221971059474
117 => 0.33806981498602
118 => 0.32805171622806
119 => 0.3356505592156
120 => 0.34250490580174
121 => 0.3343328712302
122 => 0.34559611704721
123 => 0.34603344335922
124 => 0.35263655145286
125 => 0.34594303639751
126 => 0.3419684485241
127 => 0.35344293478877
128 => 0.35899507724932
129 => 0.35732272675537
130 => 0.34459605692228
131 => 0.33718858920687
201 => 0.31780181740183
202 => 0.34076628605111
203 => 0.35195160884744
204 => 0.34456708963841
205 => 0.34829141159562
206 => 0.36861010457869
207 => 0.3763461473287
208 => 0.37473710451572
209 => 0.37500900626401
210 => 0.37918323451281
211 => 0.39769406135746
212 => 0.38660194483454
213 => 0.39508145230263
214 => 0.39957895248857
215 => 0.40375648130968
216 => 0.39349779084658
217 => 0.38015138528418
218 => 0.37592401839858
219 => 0.34383284473604
220 => 0.342162359782
221 => 0.34122466595642
222 => 0.33531263902559
223 => 0.33066740529842
224 => 0.3269733429721
225 => 0.31727902028746
226 => 0.3205505696137
227 => 0.30509984261677
228 => 0.31498467020926
301 => 0.29032493685131
302 => 0.31086229555974
303 => 0.29968474493386
304 => 0.30719016955988
305 => 0.30716398384041
306 => 0.29334411750686
307 => 0.28537310701892
308 => 0.29045254513821
309 => 0.29589810600838
310 => 0.2967816299385
311 => 0.30384194175036
312 => 0.30581232301616
313 => 0.29984197579249
314 => 0.28981391868896
315 => 0.29214320763848
316 => 0.28532590405271
317 => 0.27337884174244
318 => 0.28195943046937
319 => 0.2848892207226
320 => 0.28618318300489
321 => 0.27443461935212
322 => 0.27074296557869
323 => 0.2687775600857
324 => 0.28829732665353
325 => 0.2893666635295
326 => 0.28389578488305
327 => 0.30862467513499
328 => 0.30302776566382
329 => 0.30928088481923
330 => 0.29193184908076
331 => 0.29259460560954
401 => 0.28438129406032
402 => 0.28898019971421
403 => 0.28572984142769
404 => 0.28860865358465
405 => 0.29033420172174
406 => 0.29854616554736
407 => 0.31095606299557
408 => 0.29731957199667
409 => 0.2913779575903
410 => 0.2950641017511
411 => 0.30488078940572
412 => 0.31975357370946
413 => 0.31094858605897
414 => 0.31485609005987
415 => 0.31570970585132
416 => 0.3092172339362
417 => 0.31999296040974
418 => 0.32576775976875
419 => 0.33169150898475
420 => 0.33683493444931
421 => 0.32932543328184
422 => 0.33736167597574
423 => 0.33088588295226
424 => 0.32507642715502
425 => 0.32508523770142
426 => 0.32144088121721
427 => 0.31437948131057
428 => 0.31307725082647
429 => 0.31985161825832
430 => 0.32528401940368
501 => 0.32573145798145
502 => 0.32873911438237
503 => 0.33051901445911
504 => 0.34796445486798
505 => 0.35498115531667
506 => 0.363561043806
507 => 0.36690339390861
508 => 0.37696266941864
509 => 0.36883898746988
510 => 0.36708137777991
511 => 0.34268086575652
512 => 0.3466764482334
513 => 0.35307376129527
514 => 0.34278635509263
515 => 0.3493113464937
516 => 0.35059951801449
517 => 0.34243679296639
518 => 0.34679685710511
519 => 0.33521781942159
520 => 0.31120845437521
521 => 0.32001968969648
522 => 0.32650772472267
523 => 0.31724849877135
524 => 0.33384530290756
525 => 0.32414979255876
526 => 0.32107678124477
527 => 0.30908786850123
528 => 0.31474617382061
529 => 0.3223991127842
530 => 0.31767048625435
531 => 0.32748309631063
601 => 0.34138036907784
602 => 0.35128439324865
603 => 0.35204470124573
604 => 0.34567707722198
605 => 0.35588123535767
606 => 0.35595556150956
607 => 0.34444522944729
608 => 0.33739521514895
609 => 0.33579343706701
610 => 0.33979499276278
611 => 0.34465362010539
612 => 0.35231432124892
613 => 0.35694352250774
614 => 0.3690140242521
615 => 0.37227995593572
616 => 0.3758682246874
617 => 0.38066325832075
618 => 0.38642092561897
619 => 0.37382347735464
620 => 0.37432399745877
621 => 0.36259342805857
622 => 0.35005763232064
623 => 0.35957073867673
624 => 0.37200785976181
625 => 0.3691547704431
626 => 0.36883373961142
627 => 0.36937362442378
628 => 0.36722248825065
629 => 0.35749297906443
630 => 0.35260688046106
701 => 0.3589111942361
702 => 0.36226165643482
703 => 0.36745793111401
704 => 0.36681738057974
705 => 0.38020242611418
706 => 0.3854034500661
707 => 0.38407280557483
708 => 0.38431767618497
709 => 0.39373388161663
710 => 0.40420663864698
711 => 0.41401575760791
712 => 0.42399401472643
713 => 0.41196483631205
714 => 0.40585716136981
715 => 0.41215872287868
716 => 0.40881502564117
717 => 0.4280289017729
718 => 0.42935922886851
719 => 0.4485717156183
720 => 0.46680665332422
721 => 0.45535361566397
722 => 0.46615331432144
723 => 0.47783406893183
724 => 0.50036813970943
725 => 0.4927794574297
726 => 0.48696664573324
727 => 0.48147356676739
728 => 0.4929037920936
729 => 0.50760859437345
730 => 0.51077586794369
731 => 0.5159080611191
801 => 0.51051218752988
802 => 0.51701092293211
803 => 0.53995431459103
804 => 0.53375480763787
805 => 0.52495051114391
806 => 0.54306211535186
807 => 0.54961663450764
808 => 0.59561968257124
809 => 0.65370043104267
810 => 0.62965461979674
811 => 0.61472860880291
812 => 0.61823657543618
813 => 0.63944569862053
814 => 0.64625739584342
815 => 0.62774085465876
816 => 0.63428121003907
817 => 0.6703192112181
818 => 0.68965244261315
819 => 0.66339531757928
820 => 0.59095295098353
821 => 0.52415778057452
822 => 0.54187486759271
823 => 0.53986629975007
824 => 0.57858463618474
825 => 0.53360695144735
826 => 0.53436426030662
827 => 0.57388325093533
828 => 0.56334026176261
829 => 0.54626196954684
830 => 0.52428247100767
831 => 0.48365133510047
901 => 0.44766320494442
902 => 0.51824421575183
903 => 0.51520063422258
904 => 0.5107930771347
905 => 0.52060161848628
906 => 0.56822911108648
907 => 0.5671311432269
908 => 0.56014643189235
909 => 0.56544427387918
910 => 0.54533323223185
911 => 0.55051630558428
912 => 0.52414719987826
913 => 0.53606713692851
914 => 0.54622532720199
915 => 0.54826473429397
916 => 0.55285962260691
917 => 0.51359680505807
918 => 0.53122465744174
919 => 0.54157936921074
920 => 0.49479640473075
921 => 0.54065462042167
922 => 0.51291332675643
923 => 0.5034975150262
924 => 0.51617466508209
925 => 0.51123436737638
926 => 0.50698698951302
927 => 0.50461687968605
928 => 0.5139255795611
929 => 0.51349131758563
930 => 0.49826047784926
1001 => 0.47839246830162
1002 => 0.48506082445099
1003 => 0.48263814814575
1004 => 0.4738580566841
1005 => 0.47977477821697
1006 => 0.45372053097047
1007 => 0.4088955527648
1008 => 0.43850830639368
1009 => 0.43736824759145
1010 => 0.43679337824581
1011 => 0.45904654416152
1012 => 0.45690741572661
1013 => 0.45302487667085
1014 => 0.47378675080962
1015 => 0.46620838746235
1016 => 0.48956311761166
1017 => 0.50494605337723
1018 => 0.50104444328124
1019 => 0.51551216872094
1020 => 0.48521444990848
1021 => 0.49527813676448
1022 => 0.49735224867784
1023 => 0.47353055250553
1024 => 0.45725740359361
1025 => 0.45617217008866
1026 => 0.42795677245345
1027 => 0.44302921012345
1028 => 0.4562923315332
1029 => 0.44994032563773
1030 => 0.447929470332
1031 => 0.45820249398766
1101 => 0.4590007959082
1102 => 0.44079942751959
1103 => 0.44458406836996
1104 => 0.46036664986017
1105 => 0.44418638781034
1106 => 0.41275078167831
1107 => 0.40495431672631
1108 => 0.40391412458435
1109 => 0.38276949328909
1110 => 0.40547531379465
1111 => 0.39556361466582
1112 => 0.42687455345341
1113 => 0.40898991314187
1114 => 0.40821894204362
1115 => 0.40705350615174
1116 => 0.38885344852219
1117 => 0.39283810446906
1118 => 0.40608370771669
1119 => 0.41080988817784
1120 => 0.41031690883529
1121 => 0.40601879703466
1122 => 0.40798645060709
1123 => 0.40164795287433
1124 => 0.39940969740047
1125 => 0.3923451474443
1126 => 0.38196221064047
1127 => 0.38340602168529
1128 => 0.3628347070337
1129 => 0.35162636300921
1130 => 0.34852404110683
1201 => 0.34437548660401
1202 => 0.3489926313768
1203 => 0.36277643108394
1204 => 0.34615024424089
1205 => 0.3176458130899
1206 => 0.31935897797126
1207 => 0.32320795081646
1208 => 0.31603541538293
1209 => 0.30924721254036
1210 => 0.31514900416767
1211 => 0.30307130092172
1212 => 0.32466748355183
1213 => 0.32408336733428
1214 => 0.33213308871981
1215 => 0.3371667446991
1216 => 0.32556579733232
1217 => 0.32264819044188
1218 => 0.32431019192451
1219 => 0.29684100957056
1220 => 0.32988827048412
1221 => 0.33017406456882
1222 => 0.32772692210502
1223 => 0.34532356832178
1224 => 0.38245798037074
1225 => 0.36848652082966
1226 => 0.36307634940575
1227 => 0.35279160957409
1228 => 0.36649541475235
1229 => 0.36544317632732
1230 => 0.36068455511978
1231 => 0.35780652616565
]
'min_raw' => 0.2687775600857
'max_raw' => 0.68965244261315
'avg_raw' => 0.47921500134942
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.268777'
'max' => '$0.689652'
'avg' => '$0.479215'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.16528093857334
'max_diff' => 0.40086477419487
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0084366204858513
]
1 => [
'year' => 2028
'avg' => 0.014479689922148
]
2 => [
'year' => 2029
'avg' => 0.03955590315711
]
3 => [
'year' => 2030
'avg' => 0.030517320377292
]
4 => [
'year' => 2031
'avg' => 0.02997179058038
]
5 => [
'year' => 2032
'avg' => 0.052549981357041
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0084366204858513
'min' => '$0.008436'
'max_raw' => 0.052549981357041
'max' => '$0.052549'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.052549981357041
]
1 => [
'year' => 2033
'avg' => 0.13516395570117
]
2 => [
'year' => 2034
'avg' => 0.085673410799157
]
3 => [
'year' => 2035
'avg' => 0.10105198450534
]
4 => [
'year' => 2036
'avg' => 0.19614214496532
]
5 => [
'year' => 2037
'avg' => 0.47921500134942
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.052549981357041
'min' => '$0.052549'
'max_raw' => 0.47921500134942
'max' => '$0.479215'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.47921500134942
]
]
]
]
'prediction_2025_max_price' => '$0.014425'
'last_price' => 0.01398694
'sma_50day_nextmonth' => '$0.013657'
'sma_200day_nextmonth' => '$0.017089'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.014183'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.014325'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.015162'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.014812'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.016552'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.020233'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.017476'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.014199'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.014389'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.014695'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.015084'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.016477'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.017727'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.020613'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0183047'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.019725'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.060976'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.052559'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.014637'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.015356'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.016842'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.018526'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.02843'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.068938'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.182618'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '39.18'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 6.72
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.015174'
'vwma_10_action' => 'SELL'
'hma_9' => '0.013845'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -88.35
'cci_20_action' => 'NEUTRAL'
'adx_14' => 16.89
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000925'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 24.09
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.004220'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 32
'buy_signals' => 1
'sell_pct' => 96.97
'buy_pct' => 3.03
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767705656
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Dimitra para 2026
A previsão de preço para Dimitra em 2026 sugere que o preço médio poderia variar entre $0.004832 na extremidade inferior e $0.014425 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Dimitra poderia potencialmente ganhar 3.13% até 2026 se DMTR atingir a meta de preço prevista.
Previsão de preço de Dimitra 2027-2032
A previsão de preço de DMTR para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.008436 na extremidade inferior e $0.052549 na extremidade superior. Considerando a volatilidade de preços no mercado, se Dimitra atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Dimitra | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.004652 | $0.008436 | $0.012221 |
| 2028 | $0.008395 | $0.014479 | $0.020563 |
| 2029 | $0.018442 | $0.039555 | $0.060668 |
| 2030 | $0.015684 | $0.030517 | $0.045349 |
| 2031 | $0.018544 | $0.029971 | $0.041399 |
| 2032 | $0.0283066 | $0.052549 | $0.076793 |
Previsão de preço de Dimitra 2032-2037
A previsão de preço de Dimitra para 2032-2037 é atualmente estimada entre $0.052549 na extremidade inferior e $0.479215 na extremidade superior. Comparado ao preço atual, Dimitra poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Dimitra | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.0283066 | $0.052549 | $0.076793 |
| 2033 | $0.065778 | $0.135163 | $0.204549 |
| 2034 | $0.052882 | $0.085673 | $0.118464 |
| 2035 | $0.062523 | $0.101051 | $0.13958 |
| 2036 | $0.103496 | $0.196142 | $0.288787 |
| 2037 | $0.268777 | $0.479215 | $0.689652 |
Dimitra Histograma de preços potenciais
Previsão de preço de Dimitra baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Dimitra é Baixista, com 1 indicadores técnicos mostrando sinais de alta e 32 indicando sinais de baixa. A previsão de preço de DMTR foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Dimitra
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Dimitra está projetado para aumentar no próximo mês, alcançando $0.017089 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Dimitra é esperado para alcançar $0.013657 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 39.18, sugerindo que o mercado de DMTR está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de DMTR para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.014183 | SELL |
| SMA 5 | $0.014325 | SELL |
| SMA 10 | $0.015162 | SELL |
| SMA 21 | $0.014812 | SELL |
| SMA 50 | $0.016552 | SELL |
| SMA 100 | $0.020233 | SELL |
| SMA 200 | $0.017476 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.014199 | SELL |
| EMA 5 | $0.014389 | SELL |
| EMA 10 | $0.014695 | SELL |
| EMA 21 | $0.015084 | SELL |
| EMA 50 | $0.016477 | SELL |
| EMA 100 | $0.017727 | SELL |
| EMA 200 | $0.020613 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.0183047 | SELL |
| SMA 50 | $0.019725 | SELL |
| SMA 100 | $0.060976 | SELL |
| SMA 200 | $0.052559 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.018526 | SELL |
| EMA 50 | $0.02843 | SELL |
| EMA 100 | $0.068938 | SELL |
| EMA 200 | $0.182618 | SELL |
Osciladores de Dimitra
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 39.18 | NEUTRAL |
| Stoch RSI (14) | 6.72 | BUY |
| Estocástico Rápido (14) | 0 | BUY |
| Índice de Canal de Commodities (20) | -88.35 | NEUTRAL |
| Índice Direcional Médio (14) | 16.89 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000925 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -100 | BUY |
| Oscilador Ultimate (7, 14, 28) | 24.09 | BUY |
| VWMA (10) | 0.015174 | SELL |
| Média Móvel de Hull (9) | 0.013845 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.004220 | SELL |
Previsão do preço de Dimitra com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Dimitra
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Dimitra por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.019653 | $0.027617 | $0.0388066 | $0.054529 | $0.076623 | $0.107668 |
| Amazon.com stock | $0.029184 | $0.060895 | $0.127061 | $0.265121 | $0.553192 | $1.15 |
| Apple stock | $0.019839 | $0.02814 | $0.039915 | $0.056616 | $0.0803068 | $0.1139091 |
| Netflix stock | $0.022069 | $0.034821 | $0.054943 | $0.086691 | $0.136786 | $0.215827 |
| Google stock | $0.018113 | $0.023456 | $0.030375 | $0.039336 | $0.05094 | $0.065967 |
| Tesla stock | $0.0317073 | $0.071878 | $0.162942 | $0.369377 | $0.837351 | $1.89 |
| Kodak stock | $0.010488 | $0.007865 | $0.005898 | $0.004423 | $0.003316 | $0.002487 |
| Nokia stock | $0.009265 | $0.006138 | $0.004066 | $0.002693 | $0.001784 | $0.001182 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Dimitra
Você pode fazer perguntas como: 'Devo investir em Dimitra agora?', 'Devo comprar DMTR hoje?', 'Dimitra será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Dimitra regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Dimitra, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Dimitra para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Dimitra é de $0.01398 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Dimitra
com base no histórico de preços de 4 horas
Previsão de longo prazo para Dimitra
com base no histórico de preços de 1 mês
Previsão do preço de Dimitra com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Dimitra tiver 1% da média anterior do crescimento anual do Bitcoin | $0.01435 | $0.014723 | $0.0151062 | $0.015498 |
| Se Dimitra tiver 2% da média anterior do crescimento anual do Bitcoin | $0.014714 | $0.015479 | $0.016283 | $0.01713 |
| Se Dimitra tiver 5% da média anterior do crescimento anual do Bitcoin | $0.0158047 | $0.017858 | $0.020179 | $0.0228025 |
| Se Dimitra tiver 10% da média anterior do crescimento anual do Bitcoin | $0.017622 | $0.0222032 | $0.027974 | $0.035246 |
| Se Dimitra tiver 20% da média anterior do crescimento anual do Bitcoin | $0.021258 | $0.0323096 | $0.0491062 | $0.074634 |
| Se Dimitra tiver 50% da média anterior do crescimento anual do Bitcoin | $0.032165 | $0.073969 | $0.1701037 | $0.39118 |
| Se Dimitra tiver 100% da média anterior do crescimento anual do Bitcoin | $0.050343 | $0.1812023 | $0.6522056 | $2.34 |
Perguntas Frequentes sobre Dimitra
DMTR é um bom investimento?
A decisão de adquirir Dimitra depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Dimitra experimentou uma queda de -0.3731% nas últimas 24 horas, e Dimitra registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Dimitra dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Dimitra pode subir?
Parece que o valor médio de Dimitra pode potencialmente subir para $0.014425 até o final deste ano. Observando as perspectivas de Dimitra em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.045349. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Dimitra na próxima semana?
Com base na nossa nova previsão experimental de Dimitra, o preço de Dimitra aumentará 0.86% na próxima semana e atingirá $0.014106 até 13 de janeiro de 2026.
Qual será o preço de Dimitra no próximo mês?
Com base na nossa nova previsão experimental de Dimitra, o preço de Dimitra diminuirá -11.62% no próximo mês e atingirá $0.012361 até 5 de fevereiro de 2026.
Até onde o preço de Dimitra pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Dimitra em 2026, espera-se que DMTR fluctue dentro do intervalo de $0.004832 e $0.014425. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Dimitra não considera flutuações repentinas e extremas de preço.
Onde estará Dimitra em 5 anos?
O futuro de Dimitra parece seguir uma tendência de alta, com um preço máximo de $0.045349 projetada após um período de cinco anos. Com base na previsão de Dimitra para 2030, o valor de Dimitra pode potencialmente atingir seu pico mais alto de aproximadamente $0.045349, enquanto seu pico mais baixo está previsto para cerca de $0.015684.
Quanto será Dimitra em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Dimitra, espera-se que o valor de DMTR em 2026 aumente 3.13% para $0.014425 se o melhor cenário ocorrer. O preço ficará entre $0.014425 e $0.004832 durante 2026.
Quanto será Dimitra em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Dimitra, o valor de DMTR pode diminuir -12.62% para $0.012221 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.012221 e $0.004652 ao longo do ano.
Quanto será Dimitra em 2028?
Nosso novo modelo experimental de previsão de preços de Dimitra sugere que o valor de DMTR em 2028 pode aumentar 47.02%, alcançando $0.020563 no melhor cenário. O preço é esperado para variar entre $0.020563 e $0.008395 durante o ano.
Quanto será Dimitra em 2029?
Com base no nosso modelo de previsão experimental, o valor de Dimitra pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.060668 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.060668 e $0.018442.
Quanto será Dimitra em 2030?
Usando nossa nova simulação experimental para previsões de preços de Dimitra, espera-se que o valor de DMTR em 2030 aumente 224.23%, alcançando $0.045349 no melhor cenário. O preço está previsto para variar entre $0.045349 e $0.015684 ao longo de 2030.
Quanto será Dimitra em 2031?
Nossa simulação experimental indica que o preço de Dimitra poderia aumentar 195.98% em 2031, potencialmente atingindo $0.041399 sob condições ideais. O preço provavelmente oscilará entre $0.041399 e $0.018544 durante o ano.
Quanto será Dimitra em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Dimitra, DMTR poderia ver um 449.04% aumento em valor, atingindo $0.076793 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.076793 e $0.0283066 ao longo do ano.
Quanto será Dimitra em 2033?
De acordo com nossa previsão experimental de preços de Dimitra, espera-se que o valor de DMTR seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.204549. Ao longo do ano, o preço de DMTR poderia variar entre $0.204549 e $0.065778.
Quanto será Dimitra em 2034?
Os resultados da nossa nova simulação de previsão de preços de Dimitra sugerem que DMTR pode aumentar 746.96% em 2034, atingindo potencialmente $0.118464 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.118464 e $0.052882.
Quanto será Dimitra em 2035?
Com base em nossa previsão experimental para o preço de Dimitra, DMTR poderia aumentar 897.93%, com o valor potencialmente atingindo $0.13958 em 2035. A faixa de preço esperada para o ano está entre $0.13958 e $0.062523.
Quanto será Dimitra em 2036?
Nossa recente simulação de previsão de preços de Dimitra sugere que o valor de DMTR pode aumentar 1964.7% em 2036, possivelmente atingindo $0.288787 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.288787 e $0.103496.
Quanto será Dimitra em 2037?
De acordo com a simulação experimental, o valor de Dimitra poderia aumentar 4830.69% em 2037, com um pico de $0.689652 sob condições favoráveis. O preço é esperado para cair entre $0.689652 e $0.268777 ao longo do ano.
Previsões relacionadas
Previsão de Preço do IX Swap
Previsão de Preço do BitMart Token
Previsão de Preço do LON
Previsão de Preço do Moon Tropica
Previsão de Preço do Kinesis Silver
Previsão de Preço do Perpetual Protocol
Previsão de Preço do USDX
Previsão de Preço do Metadium
Previsão de Preço do ARPA
Previsão de Preço do Storj
Previsão de Preço do Ozone Chain
Previsão de Preço do Humanscape
Previsão de Preço do Ordiswap
Previsão de Preço do Guild of Guardians
Previsão de Preço do Lyra Finance
Previsão de Preço do Bazaars
Previsão de Preço do PlatON Network
Previsão de Preço do Saitama Inu
Previsão de Preço do Nuls
Previsão de Preço do Across Protocol
Previsão de Preço do Alien Worlds
Previsão de Preço do MovieBloc
Previsão de Preço do REN
Previsão de Preço do Moonwell
Previsão de Preço do Pandora
Como ler e prever os movimentos de preço de Dimitra?
Traders de Dimitra utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Dimitra
Médias móveis são ferramentas populares para a previsão de preço de Dimitra. Uma média móvel simples (SMA) calcula o preço médio de fechamento de DMTR em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de DMTR acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de DMTR.
Como ler gráficos de Dimitra e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Dimitra em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de DMTR dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Dimitra?
A ação de preço de Dimitra é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de DMTR. A capitalização de mercado de Dimitra pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de DMTR, grandes detentores de Dimitra, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Dimitra.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


