Previsão de Preço Dimitra - Projeção DMTR
Previsão de Preço Dimitra até $0.014995 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.005023 | $0.014995 |
| 2027 | $0.004836 | $0.0127046 |
| 2028 | $0.008727 | $0.021377 |
| 2029 | $0.019172 | $0.063069 |
| 2030 | $0.0163055 | $0.047144 |
| 2031 | $0.019278 | $0.043037 |
| 2032 | $0.029426 | $0.079831 |
| 2033 | $0.068381 | $0.212642 |
| 2034 | $0.054975 | $0.123151 |
| 2035 | $0.064997 | $0.1451026 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Dimitra hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.75, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Dimitra para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Dimitra'
'name_with_ticker' => 'Dimitra <small>DMTR</small>'
'name_lang' => 'Dimitra'
'name_lang_with_ticker' => 'Dimitra <small>DMTR</small>'
'name_with_lang' => 'Dimitra'
'name_with_lang_with_ticker' => 'Dimitra <small>DMTR</small>'
'image' => '/uploads/coins/dimitra.jpg?1717210240'
'price_for_sd' => 0.01454
'ticker' => 'DMTR'
'marketcap' => '$10M'
'low24h' => '$0.01398'
'high24h' => '$0.01494'
'volume24h' => '$230.04K'
'current_supply' => '689.23M'
'max_supply' => '971.07M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01454'
'change_24h_pct' => '2.4974%'
'ath_price' => '$5.95'
'ath_days' => 1567
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '22 de set. de 2021'
'ath_pct' => '-99.76%'
'fdv' => '$14.09M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.716938'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.014664'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.012851'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.005023'
'current_year_max_price_prediction' => '$0.014995'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0163055'
'grand_prediction_max_price' => '$0.047144'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.014815871794781
107 => 0.014871188881901
108 => 0.014995821103744
109 => 0.013930852413835
110 => 0.014408992089766
111 => 0.014689854353746
112 => 0.013420908427226
113 => 0.014664771372751
114 => 0.013912313678285
115 => 0.013656918235248
116 => 0.014000774553506
117 => 0.01386677341187
118 => 0.013751567099102
119 => 0.013687279997081
120 => 0.013939770127173
121 => 0.013927991160814
122 => 0.013514868301761
123 => 0.012975966373168
124 => 0.013156839549256
125 => 0.013091126628688
126 => 0.012852974527414
127 => 0.013013460289079
128 => 0.012306762214694
129 => 0.011090924908686
130 => 0.011894144275139
131 => 0.011863221203265
201 => 0.011847628388176
202 => 0.012451225542713
203 => 0.01239320360366
204 => 0.012287893216126
205 => 0.012851040419562
206 => 0.012645484114909
207 => 0.013278960210692
208 => 0.01369620853804
209 => 0.013590380865655
210 => 0.013982804934262
211 => 0.013161006501921
212 => 0.013433974976314
213 => 0.013490233400569
214 => 0.012844091270487
215 => 0.012402696710459
216 => 0.012373260725571
217 => 0.0116079433864
218 => 0.01201676973156
219 => 0.012376519996916
220 => 0.012204227537559
221 => 0.012149684892017
222 => 0.012428331439233
223 => 0.012449984662398
224 => 0.011956288879531
225 => 0.012058943866101
226 => 0.012487032225071
227 => 0.012048157137817
228 => 0.01119549453312
301 => 0.010984022418172
302 => 0.010955808139834
303 => 0.010382278992031
304 => 0.010998153996086
305 => 0.010729308052392
306 => 0.011578589167253
307 => 0.011093484349231
308 => 0.011072572450092
309 => 0.011040961047436
310 => 0.010547300817732
311 => 0.010655381034293
312 => 0.011014656135223
313 => 0.011142849538759
314 => 0.011129477916513
315 => 0.011012895491227
316 => 0.011066266328524
317 => 0.010894340265957
318 => 0.010833629594934
319 => 0.010642010017397
320 => 0.010360382174677
321 => 0.010399544253531
322 => 0.0098415658051688
323 => 0.0095375495323436
324 => 0.0094534018348956
325 => 0.0093408760170939
326 => 0.0094661119254361
327 => 0.0098399851223309
328 => 0.0093890147252523
329 => 0.0086158576113564
330 => 0.0086623256712972
331 => 0.0087667256054932
401 => 0.0085721770187935
402 => 0.0083880531087075
403 => 0.0085481339100823
404 => 0.0082205370485744
405 => 0.0088063141210939
406 => 0.0087904704929036
407 => 0.0090088119613277
408 => 0.0091453453623512
409 => 0.0088306800762054
410 => 0.0087515426076851
411 => 0.0087966229063517
412 => 0.0080515459869997
413 => 0.0089479232812789
414 => 0.0089556751893427
415 => 0.0088892986461805
416 => 0.0093665918828401
417 => 0.010373829483686
418 => 0.0099948661822088
419 => 0.0098481201376506
420 => 0.0095691557996748
421 => 0.0099408592167642
422 => 0.0099123181938083
423 => 0.0097832448641404
424 => 0.0097051809116238
425 => 0.009849016137707
426 => 0.0096873581353582
427 => 0.0096583199160715
428 => 0.0094823799010885
429 => 0.0094195773205002
430 => 0.0093730807900754
501 => 0.0093218926787324
502 => 0.0094348008970724
503 => 0.0091789360200007
504 => 0.0088703880609954
505 => 0.0088447356367393
506 => 0.0089155642354946
507 => 0.0088842278531144
508 => 0.0088445856101965
509 => 0.0087688977725436
510 => 0.0087464428079268
511 => 0.0088194105493313
512 => 0.0087370342235692
513 => 0.0088585849795019
514 => 0.0088255298995983
515 => 0.0086408869102914
516 => 0.0084107533820249
517 => 0.0084087047109019
518 => 0.0083591228197315
519 => 0.0082959728266387
520 => 0.0082784059432364
521 => 0.0085346523514922
522 => 0.0090650747477719
523 => 0.00896094013945
524 => 0.0090361880661065
525 => 0.0094063333896461
526 => 0.0095239914573412
527 => 0.0094404805477753
528 => 0.009326165664033
529 => 0.0093311949387598
530 => 0.009721843501976
531 => 0.0097462077736845
601 => 0.00980776842808
602 => 0.009886891266017
603 => 0.0094539555092128
604 => 0.0093108037035476
605 => 0.0092429704362636
606 => 0.009034070227807
607 => 0.0092593511928771
608 => 0.0091280896220235
609 => 0.0091458012924654
610 => 0.0091342665438547
611 => 0.0091405652965725
612 => 0.008806150384464
613 => 0.008927993602106
614 => 0.0087254056208955
615 => 0.0084541630556227
616 => 0.008453253755434
617 => 0.0085196399890154
618 => 0.0084801508595876
619 => 0.0083738866276557
620 => 0.0083889809602486
621 => 0.0082567387237317
622 => 0.0084050375620847
623 => 0.0084092902421299
624 => 0.0083521871114717
625 => 0.0085806619332507
626 => 0.0086742682541512
627 => 0.0086366817502844
628 => 0.008671631084842
629 => 0.0089652674025653
630 => 0.009013142934605
701 => 0.0090344060834568
702 => 0.0090059162808227
703 => 0.0086769982176942
704 => 0.0086915871324615
705 => 0.0085845433557957
706 => 0.0084941026445084
707 => 0.0084977197986609
708 => 0.008544218080732
709 => 0.0087472788056251
710 => 0.0091746081300789
711 => 0.0091908249655682
712 => 0.0092104802432598
713 => 0.0091305323509371
714 => 0.0091064193016143
715 => 0.0091382306377772
716 => 0.0092987130641336
717 => 0.0097115174352759
718 => 0.0095656048002373
719 => 0.0094469755566854
720 => 0.0095510453854948
721 => 0.0095350246510759
722 => 0.0093997935298829
723 => 0.0093959980427122
724 => 0.0091364462851381
725 => 0.0090404959100705
726 => 0.0089603125949029
727 => 0.0088727545079783
728 => 0.0088208471390758
729 => 0.0089006004491873
730 => 0.0089188409748233
731 => 0.0087444589684151
801 => 0.0087206913453053
802 => 0.0088630954560353
803 => 0.0088004287162634
804 => 0.0088648830121791
805 => 0.0088798369617103
806 => 0.0088774290314171
807 => 0.008811997757866
808 => 0.0088537017004388
809 => 0.0087550594437105
810 => 0.0086478008051064
811 => 0.0085793764761262
812 => 0.0085196671739209
813 => 0.0085527973651094
814 => 0.0084346942828562
815 => 0.0083969107298979
816 => 0.0088395733430636
817 => 0.0091665729748341
818 => 0.0091618182706821
819 => 0.0091328752319673
820 => 0.0090898717473182
821 => 0.0092955670913793
822 => 0.0092239069465167
823 => 0.0092760456893097
824 => 0.0092893171876067
825 => 0.0093294860158321
826 => 0.0093438429192952
827 => 0.0093004463855191
828 => 0.0091548023177261
829 => 0.0087918711482085
830 => 0.0086229257090841
831 => 0.0085671709001642
901 => 0.008569197481575
902 => 0.0085132953192078
903 => 0.0085297610113841
904 => 0.0085075692234292
905 => 0.0084655433458128
906 => 0.0085502023855924
907 => 0.0085599585512735
908 => 0.0085401981197887
909 => 0.0085448524167415
910 => 0.0083812444838385
911 => 0.0083936832396393
912 => 0.0083244226666995
913 => 0.0083114371442219
914 => 0.0081363524470379
915 => 0.0078261645270437
916 => 0.0079980387453904
917 => 0.0077904388587999
918 => 0.0077118176360965
919 => 0.0080839982762658
920 => 0.0080466416626768
921 => 0.0079827033787422
922 => 0.0078881253308969
923 => 0.0078530454129549
924 => 0.0076399109364922
925 => 0.0076273178145946
926 => 0.0077329530162445
927 => 0.0076842060053684
928 => 0.0076157467401617
929 => 0.0073677942211875
930 => 0.0070890134956027
1001 => 0.0070974281333549
1002 => 0.0071861030952637
1003 => 0.0074439375064612
1004 => 0.0073431971414257
1005 => 0.00727010885073
1006 => 0.0072564216109086
1007 => 0.0074277460734504
1008 => 0.0076702060815316
1009 => 0.0077839628925864
1010 => 0.0076712333476768
1011 => 0.0075417357162744
1012 => 0.0075496176370637
1013 => 0.0076020525249116
1014 => 0.007607562690235
1015 => 0.0075232730447637
1016 => 0.0075470000862344
1017 => 0.0075109565405942
1018 => 0.0072897573675313
1019 => 0.0072857565759207
1020 => 0.0072314707315326
1021 => 0.0072298269777391
1022 => 0.0071374732141963
1023 => 0.0071245522842653
1024 => 0.0069411782812784
1025 => 0.007061875605352
1026 => 0.0069809181772574
1027 => 0.0068588962371921
1028 => 0.0068378596087319
1029 => 0.006837227222278
1030 => 0.0069625164711185
1031 => 0.0070604115275323
1101 => 0.0069823264663799
1102 => 0.0069645480115709
1103 => 0.0071543753967012
1104 => 0.0071302181316284
1105 => 0.0071092980958729
1106 => 0.0076484964471326
1107 => 0.0072216788779385
1108 => 0.0070355620558748
1109 => 0.006805207145945
1110 => 0.0068802118661684
1111 => 0.0068960164627681
1112 => 0.0063420544289803
1113 => 0.0061173121008642
1114 => 0.0060401890030907
1115 => 0.0059958035699615
1116 => 0.0060160305691956
1117 => 0.0058137361142453
1118 => 0.0059496813336134
1119 => 0.005774511435151
1120 => 0.0057451436316216
1121 => 0.0060583691094588
1122 => 0.0061019526048631
1123 => 0.0059160118731375
1124 => 0.0060354159239754
1125 => 0.0059921183553011
1126 => 0.005777514220292
1127 => 0.0057693179208558
1128 => 0.0056616371096083
1129 => 0.0054931374911198
1130 => 0.0054161286440221
1201 => 0.0053760217678322
1202 => 0.0053925706466156
1203 => 0.0053842030270987
1204 => 0.0053295986496748
1205 => 0.005387332886095
1206 => 0.0052398457694749
1207 => 0.0051811152112522
1208 => 0.0051545879806417
1209 => 0.0050236846755996
1210 => 0.0052320100468855
1211 => 0.0052730527694428
1212 => 0.0053141763588421
1213 => 0.0056721291282969
1214 => 0.005654246819499
1215 => 0.0058158941819947
1216 => 0.0058096128627385
1217 => 0.0057635084164411
1218 => 0.0055690013413255
1219 => 0.0056465283947113
1220 => 0.0054079121747689
1221 => 0.0055866996710755
1222 => 0.0055051085241055
1223 => 0.0055591136222117
1224 => 0.0054620075863734
1225 => 0.0055157500760163
1226 => 0.0052827855215457
1227 => 0.0050652464984808
1228 => 0.0051527905517221
1229 => 0.0052479609494722
1230 => 0.0054543146207608
1231 => 0.0053314120765222
]
'min_raw' => 0.0050236846755996
'max_raw' => 0.014995821103744
'avg_raw' => 0.010009752889672
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.005023'
'max' => '$0.014995'
'avg' => '$0.0100097'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0095166553244004
'max_diff' => 0.00045548110374383
'year' => 2026
]
1 => [
'items' => [
101 => 0.0053756124788901
102 => 0.0052275485300155
103 => 0.004922050311111
104 => 0.004923779397853
105 => 0.004876785152515
106 => 0.0048361752632708
107 => 0.0053455289121725
108 => 0.0052821827342419
109 => 0.0051812488902525
110 => 0.0053163528513839
111 => 0.0053520764830953
112 => 0.0053530934846686
113 => 0.0054516618471721
114 => 0.0055042677999096
115 => 0.0055135398270868
116 => 0.0056686392751966
117 => 0.0057206265643918
118 => 0.0059347548510703
119 => 0.0054998045523572
120 => 0.0054908470371822
121 => 0.0053182540411807
122 => 0.0052087928345292
123 => 0.0053257489436482
124 => 0.0054293560902267
125 => 0.0053214734040287
126 => 0.0053355606053183
127 => 0.0051907369134367
128 => 0.0052425045686963
129 => 0.0052870938472622
130 => 0.0052624742684748
131 => 0.005225617567429
201 => 0.0054208614857276
202 => 0.0054098450586901
203 => 0.0055916606840481
204 => 0.0057333989657748
205 => 0.0059874193053774
206 => 0.0057223358386222
207 => 0.0057126751434823
208 => 0.0058071099880992
209 => 0.0057206121069091
210 => 0.0057752757820159
211 => 0.0059786121422206
212 => 0.0059829083190985
213 => 0.0059109418210826
214 => 0.0059065626531381
215 => 0.0059203846063092
216 => 0.0060013402177536
217 => 0.0059730518396003
218 => 0.0060057878669734
219 => 0.0060467247704754
220 => 0.0062160571602469
221 => 0.0062568826261487
222 => 0.0061576979095845
223 => 0.0061666531789661
224 => 0.0061295553722897
225 => 0.0060937193558745
226 => 0.006174273487346
227 => 0.0063214877459055
228 => 0.0063205719336435
301 => 0.006354722780193
302 => 0.0063759984746725
303 => 0.0062846676192063
304 => 0.0062252145906265
305 => 0.0062480126648785
306 => 0.0062844672820849
307 => 0.0062361909238415
308 => 0.0059382068769786
309 => 0.0060285962015022
310 => 0.0060135509980893
311 => 0.0059921247988701
312 => 0.0060830119636386
313 => 0.006074245674876
314 => 0.0058116612922181
315 => 0.0058284710924429
316 => 0.0058126835518456
317 => 0.0058636963253425
318 => 0.0057178572497307
319 => 0.0057627163671477
320 => 0.0057908515850636
321 => 0.0058074234445609
322 => 0.0058672923644959
323 => 0.005860267437746
324 => 0.0058668556851857
325 => 0.0059556254886403
326 => 0.006404592692396
327 => 0.0064290289867062
328 => 0.0063086957363684
329 => 0.0063567664964099
330 => 0.0062644811490497
331 => 0.0063264329209907
401 => 0.0063688187499483
402 => 0.006177285339215
403 => 0.0061659439736729
404 => 0.0060732777318565
405 => 0.0061230713213244
406 => 0.0060438461401951
407 => 0.0060632852284651
408 => 0.0060089318429931
409 => 0.0061067571151916
410 => 0.00621614097002
411 => 0.0062437756514489
412 => 0.0061710807020877
413 => 0.0061184447679195
414 => 0.0060260334068749
415 => 0.0061797155598137
416 => 0.0062246569047117
417 => 0.006179479502061
418 => 0.0061690109107211
419 => 0.0061491729490483
420 => 0.0061732196280701
421 => 0.0062244121444957
422 => 0.0062002706991267
423 => 0.0062162165491105
424 => 0.0061554474122615
425 => 0.0062846978535198
426 => 0.0064899786600504
427 => 0.0064906386714102
428 => 0.0064664970959098
429 => 0.0064566188833526
430 => 0.0064813896048493
501 => 0.006494826705113
502 => 0.0065749306762598
503 => 0.0066608854287834
504 => 0.0070619987538141
505 => 0.0069493677372263
506 => 0.0073052593415321
507 => 0.0075867233937968
508 => 0.0076711221561397
509 => 0.0075934792660529
510 => 0.0073278671332524
511 => 0.0073148349348476
512 => 0.0077117715998015
513 => 0.007599618811101
514 => 0.0075862785937523
515 => 0.007444361219815
516 => 0.0075282519646207
517 => 0.0075099038281287
518 => 0.0074809403970545
519 => 0.0076409980942638
520 => 0.0079406118149904
521 => 0.0078939142068555
522 => 0.0078590566086224
523 => 0.0077063207600597
524 => 0.0077983018556813
525 => 0.0077655491493123
526 => 0.0079062755612546
527 => 0.0078229123522917
528 => 0.0075987691434213
529 => 0.0076344646882196
530 => 0.0076290693784328
531 => 0.0077401044715292
601 => 0.0077067744926421
602 => 0.007622561165128
603 => 0.0079395877678651
604 => 0.007919001823678
605 => 0.0079481879859333
606 => 0.0079610366371701
607 => 0.0081540051436208
608 => 0.0082330581664102
609 => 0.0082510045866013
610 => 0.008326098844071
611 => 0.0082491361730662
612 => 0.00855704173054
613 => 0.0087617809594727
614 => 0.0089995961096625
615 => 0.0093471079627759
616 => 0.009477775634211
617 => 0.0094541716889272
618 => 0.0097176512098599
619 => 0.010191118052155
620 => 0.0095498728746902
621 => 0.010225105603626
622 => 0.010011334717582
623 => 0.0095044877923446
624 => 0.009471852825692
625 => 0.0098150954480763
626 => 0.010576374548646
627 => 0.01038568276831
628 => 0.010576686452086
629 => 0.010353870509203
630 => 0.010342805819599
701 => 0.010565864779074
702 => 0.0110870541962
703 => 0.010839456640617
704 => 0.010484464831277
705 => 0.010746585259009
706 => 0.010519512286407
707 => 0.010007853325411
708 => 0.010385536949899
709 => 0.010132990666014
710 => 0.010206697097751
711 => 0.010737511823052
712 => 0.010673642790942
713 => 0.010756295232605
714 => 0.010610415836461
715 => 0.010474141477393
716 => 0.010219775266325
717 => 0.01014446997133
718 => 0.010165281645666
719 => 0.010144459658098
720 => 0.010002144100752
721 => 0.0099714110696927
722 => 0.0099201880048161
723 => 0.0099360641744971
724 => 0.009839749826693
725 => 0.010021514900559
726 => 0.010055252099977
727 => 0.010187525562787
728 => 0.010201258632497
729 => 0.010569638343629
730 => 0.010366740989107
731 => 0.010502862051835
801 => 0.010490686102764
802 => 0.0095154727021087
803 => 0.0096498485043383
804 => 0.0098588950831578
805 => 0.0097647198827556
806 => 0.0096315781829899
807 => 0.0095240591218227
808 => 0.0093611567497661
809 => 0.0095904387101729
810 => 0.0098919201066896
811 => 0.010208904698233
812 => 0.010589740915318
813 => 0.010504742705087
814 => 0.010201785230058
815 => 0.010215375681077
816 => 0.010299386501633
817 => 0.010190584855826
818 => 0.010158497126417
819 => 0.010294978140353
820 => 0.010295918010087
821 => 0.010170728567468
822 => 0.010031603411423
823 => 0.010031020471939
824 => 0.01000626449421
825 => 0.010358274542645
826 => 0.010551844477054
827 => 0.010574036958081
828 => 0.010550350746261
829 => 0.010559466629118
830 => 0.010446832549308
831 => 0.010704280655155
901 => 0.01094054049606
902 => 0.010877217811742
903 => 0.0107822881061
904 => 0.010706672023122
905 => 0.010859405065706
906 => 0.010852604103744
907 => 0.010938476972458
908 => 0.010934581283108
909 => 0.010905705467201
910 => 0.010877218842988
911 => 0.010990165088009
912 => 0.010957638383304
913 => 0.010925061155643
914 => 0.010859722538244
915 => 0.010868603141508
916 => 0.010773689826818
917 => 0.010729778584505
918 => 0.010069458857913
919 => 0.0098929998503986
920 => 0.009948517446317
921 => 0.0099667952804071
922 => 0.0098900000941983
923 => 0.010000104664157
924 => 0.0099829449835586
925 => 0.01004970326269
926 => 0.010007995588196
927 => 0.010009707285706
928 => 0.010132360663378
929 => 0.010167967460721
930 => 0.01014985755621
1001 => 0.010162541112558
1002 => 0.010454828315206
1003 => 0.010413274421808
1004 => 0.01039119974414
1005 => 0.010397314580715
1006 => 0.0104720002277
1007 => 0.010492908131171
1008 => 0.010404319874993
1009 => 0.010446098608729
1010 => 0.010623987154465
1011 => 0.010686238077853
1012 => 0.010884913143169
1013 => 0.010800512444255
1014 => 0.010955433579889
1015 => 0.011431608334318
1016 => 0.011812009676943
1017 => 0.011462176881515
1018 => 0.012160735503427
1019 => 0.012704663592868
1020 => 0.012683786726836
1021 => 0.012588940283159
1022 => 0.011969692614406
1023 => 0.011399851677157
1024 => 0.01187654781789
1025 => 0.011877763014386
1026 => 0.011836814393136
1027 => 0.011582486023395
1028 => 0.011827964317158
1029 => 0.011847449492671
1030 => 0.01183654297591
1031 => 0.011641550011134
1101 => 0.011343831794643
1102 => 0.011402005221509
1103 => 0.01149729448142
1104 => 0.011316892032986
1105 => 0.011259242519741
1106 => 0.011366423933132
1107 => 0.01171178477921
1108 => 0.011646496311798
1109 => 0.011644791366062
1110 => 0.011924123116269
1111 => 0.011724181866686
1112 => 0.011402738974719
1113 => 0.011321570405186
1114 => 0.011033476665046
1115 => 0.011232464037516
1116 => 0.0112396252388
1117 => 0.011130641888501
1118 => 0.011411582372954
1119 => 0.011408993456931
1120 => 0.011675704634447
1121 => 0.012185556233714
1122 => 0.012034768027537
1123 => 0.011859417749464
1124 => 0.011878483186626
1125 => 0.012087583974789
1126 => 0.011961156864959
1127 => 0.012006620935135
1128 => 0.012087515159474
1129 => 0.012136320653508
1130 => 0.011871460827109
1201 => 0.011809709331865
1202 => 0.011683387444426
1203 => 0.011650432421903
1204 => 0.01175331896343
1205 => 0.011726211994773
1206 => 0.011239023367562
1207 => 0.011188109445327
1208 => 0.011189670902633
1209 => 0.011061645424347
1210 => 0.010866375840325
1211 => 0.011379532648193
1212 => 0.011338318974897
1213 => 0.011292822269262
1214 => 0.011298395356102
1215 => 0.011521139333899
1216 => 0.011391936577936
1217 => 0.011735443280579
1218 => 0.011664828629272
1219 => 0.011592402978613
1220 => 0.011582391547553
1221 => 0.011554513851115
1222 => 0.011458910857196
1223 => 0.01134346449719
1224 => 0.011267236810521
1225 => 0.010393430373822
1226 => 0.010555603765775
1227 => 0.010742169470647
1228 => 0.010806571204354
1229 => 0.010696407582384
1230 => 0.011463260788447
1231 => 0.011603372258776
]
'min_raw' => 0.0048361752632708
'max_raw' => 0.012704663592868
'avg_raw' => 0.0087704194280696
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004836'
'max' => '$0.0127046'
'avg' => '$0.00877'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00018750941232877
'max_diff' => -0.0022911575108755
'year' => 2027
]
2 => [
'items' => [
101 => 0.011178965475904
102 => 0.011099576295244
103 => 0.011468465529914
104 => 0.011245980226533
105 => 0.011346165345023
106 => 0.011129619917178
107 => 0.011569623508516
108 => 0.011566271418358
109 => 0.011395100083396
110 => 0.011539772923575
111 => 0.01151463245737
112 => 0.011321380441774
113 => 0.011575749942108
114 => 0.011575876106207
115 => 0.011411127417891
116 => 0.011218737018064
117 => 0.011184342158633
118 => 0.011158430252351
119 => 0.011339792604506
120 => 0.011502401522342
121 => 0.011804976404267
122 => 0.011881050918584
123 => 0.012177974812533
124 => 0.012001171090648
125 => 0.012079545890568
126 => 0.012164632822674
127 => 0.012205426626893
128 => 0.012138955312034
129 => 0.012600200338087
130 => 0.012639143550468
131 => 0.012652200872722
201 => 0.012496671645103
202 => 0.012634818001298
203 => 0.012570183896161
204 => 0.012738343881856
205 => 0.012764713514787
206 => 0.012742379373821
207 => 0.01275074951153
208 => 0.012357158250992
209 => 0.012336748467774
210 => 0.012058459625382
211 => 0.012171864385664
212 => 0.011959859621948
213 => 0.012027088516413
214 => 0.012056722372513
215 => 0.012041243327793
216 => 0.012178276120659
217 => 0.012061770252773
218 => 0.011754292112084
219 => 0.01144673019918
220 => 0.011442869009898
221 => 0.01136189338715
222 => 0.011303362843327
223 => 0.01131463790255
224 => 0.01135437268188
225 => 0.011301053385719
226 => 0.011312431760912
227 => 0.011501388602832
228 => 0.011539282549901
229 => 0.011410504111641
301 => 0.010893440099387
302 => 0.010766551293823
303 => 0.010857756450948
304 => 0.010814166260206
305 => 0.0087278761830578
306 => 0.0092180190903057
307 => 0.0089267928184994
308 => 0.0090610032832242
309 => 0.0087637366723875
310 => 0.0089056078801567
311 => 0.0088794094483887
312 => 0.0096675447388604
313 => 0.0096552390903443
314 => 0.0096611291530885
315 => 0.0093799811118304
316 => 0.0098278575755558
317 => 0.010048497626704
318 => 0.010007663025381
319 => 0.010017940214787
320 => 0.009841344050835
321 => 0.0096628389899756
322 => 0.0094648494057507
323 => 0.0098326895809884
324 => 0.0097917920327432
325 => 0.0098855962939443
326 => 0.010124166941345
327 => 0.010159297375416
328 => 0.010206513035066
329 => 0.010189589582121
330 => 0.0105927748902
331 => 0.01054394648909
401 => 0.010661608886877
402 => 0.010419568407561
403 => 0.010145676630522
404 => 0.01019773450314
405 => 0.010192720911384
406 => 0.010128892133996
407 => 0.010071270367748
408 => 0.0099753463617761
409 => 0.010278864110752
410 => 0.010266541844432
411 => 0.010466025013085
412 => 0.010430764425349
413 => 0.010195285590723
414 => 0.010203695763369
415 => 0.010260258216205
416 => 0.010456021511289
417 => 0.010514137385851
418 => 0.010487215797237
419 => 0.010550937200604
420 => 0.010601299999695
421 => 0.010557261992771
422 => 0.011180747302878
423 => 0.010921832732877
424 => 0.011048025892779
425 => 0.011078122217843
426 => 0.01100103111405
427 => 0.011017749414038
428 => 0.011043073083054
429 => 0.011196833442439
430 => 0.011600345116384
501 => 0.011779057689977
502 => 0.012316723285156
503 => 0.011764218098539
504 => 0.011731434727259
505 => 0.011828284536896
506 => 0.012143951158949
507 => 0.012399769307065
508 => 0.012484638945298
509 => 0.012495855869036
510 => 0.012655076952388
511 => 0.012746339508068
512 => 0.012635743324939
513 => 0.01254202463964
514 => 0.012206335941691
515 => 0.012245192822528
516 => 0.012512878198985
517 => 0.012890999559819
518 => 0.013215467024238
519 => 0.013101849827031
520 => 0.013968668840477
521 => 0.014054610405021
522 => 0.014042736059625
523 => 0.014238523733478
524 => 0.013849925072346
525 => 0.013683791615968
526 => 0.012562287683154
527 => 0.012877384542724
528 => 0.013335396333098
529 => 0.013274776755186
530 => 0.012942156350326
531 => 0.013215214701834
601 => 0.013124933071501
602 => 0.01305372420387
603 => 0.013379945831009
604 => 0.013021251751523
605 => 0.013331818085268
606 => 0.012933513549843
607 => 0.013102368820818
608 => 0.013006518402402
609 => 0.013068545370102
610 => 0.012705936984345
611 => 0.012901591667479
612 => 0.012697797106273
613 => 0.012697700481116
614 => 0.012693201704883
615 => 0.012932965102377
616 => 0.012940783778162
617 => 0.012763598265151
618 => 0.012738063064568
619 => 0.012832480084663
620 => 0.012721942481989
621 => 0.012773662330564
622 => 0.012723509023514
623 => 0.012712218457707
624 => 0.012622253308423
625 => 0.012583493848468
626 => 0.012598692431424
627 => 0.012546811832387
628 => 0.012515551894864
629 => 0.012686983316508
630 => 0.012595394423447
701 => 0.012672946005077
702 => 0.01258456619002
703 => 0.012278203245781
704 => 0.012102010676819
705 => 0.011523319475011
706 => 0.01168743558198
707 => 0.01179624473069
708 => 0.011760283307691
709 => 0.011837542359517
710 => 0.011842285437827
711 => 0.011817167732516
712 => 0.011788084647542
713 => 0.011773928610172
714 => 0.011879436114902
715 => 0.011940686772617
716 => 0.011807165184442
717 => 0.011775882944498
718 => 0.011910880642072
719 => 0.011993229159607
720 => 0.012601244345446
721 => 0.012556200616616
722 => 0.012669251536594
723 => 0.012656523737912
724 => 0.012775019112474
725 => 0.012968708969999
726 => 0.012574883333113
727 => 0.012643237846211
728 => 0.012626478898136
729 => 0.012809448698789
730 => 0.012810019910535
731 => 0.012700320375024
801 => 0.012759790272896
802 => 0.012726595807375
803 => 0.012786582693073
804 => 0.012555599030155
805 => 0.012836912198443
806 => 0.012996398637442
807 => 0.012998613106803
808 => 0.013074208413125
809 => 0.013151017622534
810 => 0.013298446211323
811 => 0.01314690591921
812 => 0.01287429968585
813 => 0.012893980975386
814 => 0.012734152040509
815 => 0.01273683879378
816 => 0.012722496694256
817 => 0.01276553841455
818 => 0.012565044267314
819 => 0.012612099842928
820 => 0.012546221761511
821 => 0.012643094640128
822 => 0.012538875436397
823 => 0.012626470816464
824 => 0.012664274078667
825 => 0.012803768930046
826 => 0.012518271933428
827 => 0.011936124230878
828 => 0.012058498735813
829 => 0.011877497230704
830 => 0.011894249609124
831 => 0.011928092079651
901 => 0.011818397560103
902 => 0.011839323817562
903 => 0.011838576184389
904 => 0.011832133485615
905 => 0.011803597704477
906 => 0.011762215176195
907 => 0.011927070432001
908 => 0.011955082552377
909 => 0.012017350026008
910 => 0.0122026157911
911 => 0.0121841033723
912 => 0.012214297895436
913 => 0.012148383420964
914 => 0.011897307192547
915 => 0.011910941839714
916 => 0.011740917571058
917 => 0.012013002123191
918 => 0.011948568909906
919 => 0.011907028398137
920 => 0.011895693684631
921 => 0.012081418687721
922 => 0.012136990519528
923 => 0.012102361883233
924 => 0.012031337539912
925 => 0.01216772527555
926 => 0.01220421687987
927 => 0.012212386004318
928 => 0.012454038922113
929 => 0.012225891717994
930 => 0.012280809017614
1001 => 0.012709258112412
1002 => 0.012320713905363
1003 => 0.012526534437407
1004 => 0.012516460593402
1005 => 0.012621751413008
1006 => 0.012507823672985
1007 => 0.012509235943864
1008 => 0.012602727058656
1009 => 0.012471435649142
1010 => 0.012438926049791
1011 => 0.012394014271125
1012 => 0.012492077496777
1013 => 0.012550861965536
1014 => 0.013024621611304
1015 => 0.013330691948535
1016 => 0.013317404627993
1017 => 0.013438825864928
1018 => 0.013384124485598
1019 => 0.013207479302246
1020 => 0.013508991090642
1021 => 0.013413580145005
1022 => 0.013421445707439
1023 => 0.013421152950812
1024 => 0.013484592888691
1025 => 0.013439639878519
1026 => 0.013351032881137
1027 => 0.013409854341115
1028 => 0.013584533048191
1029 => 0.014126741114753
1030 => 0.014430167932102
1031 => 0.014108474439354
1101 => 0.014330374303004
1102 => 0.01419731345582
1103 => 0.014173132341669
1104 => 0.014312501854313
1105 => 0.014452115314838
1106 => 0.014443222540968
1107 => 0.014341870337857
1108 => 0.014284619050037
1109 => 0.014718144982002
1110 => 0.015037559503753
1111 => 0.015015777574752
1112 => 0.0151119159255
1113 => 0.015394181096746
1114 => 0.015419987886543
1115 => 0.01541673682419
1116 => 0.01535277200302
1117 => 0.015630698720876
1118 => 0.015862550078566
1119 => 0.01533796599504
1120 => 0.015537720746737
1121 => 0.01562739709047
1122 => 0.015759068568842
1123 => 0.015981220423558
1124 => 0.016222536260648
1125 => 0.016256660965906
1126 => 0.016232447854508
1127 => 0.016073293573029
1128 => 0.01633734424147
1129 => 0.016492018930293
1130 => 0.01658412416782
1201 => 0.016817687725337
1202 => 0.015627950901039
1203 => 0.014785796043045
1204 => 0.014654281401105
1205 => 0.014921721597047
1206 => 0.014992243443921
1207 => 0.014963816175873
1208 => 0.01401589431783
1209 => 0.0146492907887
1210 => 0.015330772133867
1211 => 0.015356950607755
1212 => 0.015698114418249
1213 => 0.015809211339723
1214 => 0.016083892924533
1215 => 0.016066711516616
1216 => 0.016133592111378
1217 => 0.016118217420853
1218 => 0.016627007215683
1219 => 0.017188277915395
1220 => 0.017168842895796
1221 => 0.017088153592059
1222 => 0.017207990967679
1223 => 0.017787282479206
1224 => 0.017733950599782
1225 => 0.017785757977844
1226 => 0.018468775317373
1227 => 0.019356795016845
1228 => 0.01894422071072
1229 => 0.019839388239952
1230 => 0.020402848748812
1231 => 0.021377295435981
]
'min_raw' => 0.0087278761830578
'max_raw' => 0.021377295435981
'avg_raw' => 0.01505258580952
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.008727'
'max' => '$0.021377'
'avg' => '$0.015052'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.003891700919787
'max_diff' => 0.0086726318431129
'year' => 2028
]
3 => [
'items' => [
101 => 0.021255289911497
102 => 0.021634634855991
103 => 0.021036874559348
104 => 0.019664296090966
105 => 0.019447080294325
106 => 0.01988195181998
107 => 0.020951041031659
108 => 0.019848282396138
109 => 0.020071369031868
110 => 0.02000712006577
111 => 0.020003696511407
112 => 0.020134359656835
113 => 0.019944825949461
114 => 0.019172631529156
115 => 0.019526523681411
116 => 0.019389868926128
117 => 0.019541497565402
118 => 0.020359774795152
119 => 0.019997994926586
120 => 0.019616889223663
121 => 0.020094880349255
122 => 0.020703527307704
123 => 0.020665439274888
124 => 0.020591532571662
125 => 0.021008140788117
126 => 0.021696255506945
127 => 0.021882250150376
128 => 0.022019547593663
129 => 0.022038478591433
130 => 0.022233479634013
131 => 0.021184909881468
201 => 0.022849017007939
202 => 0.023136362338649
203 => 0.023082353325719
204 => 0.023401725567463
205 => 0.02330775815225
206 => 0.023171614110643
207 => 0.023677887046231
208 => 0.023097485979698
209 => 0.022273679736217
210 => 0.021821723338003
211 => 0.022416895981454
212 => 0.022780347146146
213 => 0.023020565246172
214 => 0.023093255098096
215 => 0.021266307366463
216 => 0.020281683866278
217 => 0.020912816241165
218 => 0.021682841296956
219 => 0.021180632353403
220 => 0.021200317993183
221 => 0.020484300017865
222 => 0.021746192999902
223 => 0.021562345806609
224 => 0.02251614537063
225 => 0.022288513449956
226 => 0.023066299968129
227 => 0.022861482711429
228 => 0.023711667692811
301 => 0.024050829499723
302 => 0.02462033495985
303 => 0.025039265494623
304 => 0.025285269517506
305 => 0.02527050035871
306 => 0.02624529085609
307 => 0.025670490956371
308 => 0.024948406812389
309 => 0.024935346588371
310 => 0.02530932419855
311 => 0.02609307867374
312 => 0.026296294805993
313 => 0.026409864900667
314 => 0.02623592834727
315 => 0.025612024252405
316 => 0.025342625627508
317 => 0.025572161061149
318 => 0.02529145895001
319 => 0.025776029544939
320 => 0.026441448470469
321 => 0.026304042093699
322 => 0.026763371010128
323 => 0.02723872811582
324 => 0.027918510126583
325 => 0.028096230316452
326 => 0.028389995032211
327 => 0.028692375421409
328 => 0.02878949185304
329 => 0.028974917254482
330 => 0.028973939971087
331 => 0.029532731898901
401 => 0.030149096699624
402 => 0.03038176014302
403 => 0.03091675690197
404 => 0.03000059370079
405 => 0.030695514013009
406 => 0.031322349529614
407 => 0.030575010385323
408 => 0.031605043288041
409 => 0.031645037131549
410 => 0.032248896685638
411 => 0.031636769342076
412 => 0.031273290079448
413 => 0.032322641091264
414 => 0.032830388991635
415 => 0.032677451191854
416 => 0.031513586984049
417 => 0.030836168094622
418 => 0.029063232196648
419 => 0.03116335135293
420 => 0.032186258132639
421 => 0.031510937902606
422 => 0.031851530145603
423 => 0.033709690985988
424 => 0.034417158327002
425 => 0.034270010065641
426 => 0.034294875699545
427 => 0.034676612235315
428 => 0.036369442261072
429 => 0.035355059270146
430 => 0.036130517058504
501 => 0.036541817073328
502 => 0.036923855449095
503 => 0.035985689942679
504 => 0.034765150403221
505 => 0.03437855429631
506 => 0.031443790614836
507 => 0.031291023420182
508 => 0.031205270564504
509 => 0.030664610939432
510 => 0.03023980057326
511 => 0.029901975597883
512 => 0.029015421979416
513 => 0.029314607800594
514 => 0.027901626370878
515 => 0.028805601816623
516 => 0.026550449337166
517 => 0.028428607334276
518 => 0.027406411325814
519 => 0.028092788453623
520 => 0.028090393748484
521 => 0.026826555840123
522 => 0.026097600510204
523 => 0.026562119217794
524 => 0.027060120145872
525 => 0.027140919120976
526 => 0.027786590323382
527 => 0.027966783277318
528 => 0.027420790214488
529 => 0.026503716314585
530 => 0.026716731665304
531 => 0.026093283760921
601 => 0.025000715289067
602 => 0.025785417039968
603 => 0.026053348718626
604 => 0.026171682611652
605 => 0.02509726700192
606 => 0.024759662290645
607 => 0.02457992437514
608 => 0.026365022751302
609 => 0.02646281446998
610 => 0.025962498210868
611 => 0.028223975143987
612 => 0.027712133264434
613 => 0.0282839860482
614 => 0.026697402754947
615 => 0.026758012373367
616 => 0.026006898416216
617 => 0.026427472042768
618 => 0.026130224159242
619 => 0.026393493849932
620 => 0.02655129661703
621 => 0.027302287323772
622 => 0.028437182441814
623 => 0.027190114355518
624 => 0.026646748931975
625 => 0.026983849784738
626 => 0.027881593778276
627 => 0.029241721883157
628 => 0.028436498669938
629 => 0.028793843058388
630 => 0.028871906910119
701 => 0.028278165123675
702 => 0.029263613989727
703 => 0.029791724042817
704 => 0.03033345568031
705 => 0.030803826082169
706 => 0.030117076151361
707 => 0.030851997019061
708 => 0.030259780530692
709 => 0.02972850111841
710 => 0.029729306849976
711 => 0.029396027513897
712 => 0.028750256804347
713 => 0.028631166777605
714 => 0.029250688136126
715 => 0.029747485596769
716 => 0.029788404215127
717 => 0.030063456815714
718 => 0.030226230111474
719 => 0.03182162968949
720 => 0.032463312597605
721 => 0.033247950311213
722 => 0.033553610920422
723 => 0.034473539768747
724 => 0.033730622510756
725 => 0.033569887688822
726 => 0.031338441209218
727 => 0.031703840445245
728 => 0.032288879877907
729 => 0.031348088293979
730 => 0.031944804013609
731 => 0.032062608336831
801 => 0.031316120555956
802 => 0.031714851933554
803 => 0.030655939610267
804 => 0.028460263836788
805 => 0.029266058404531
806 => 0.029859394433908
807 => 0.029012630762182
808 => 0.030530421869471
809 => 0.029643759638161
810 => 0.029362730278128
811 => 0.028266334550441
812 => 0.028783791129768
813 => 0.029483658562572
814 => 0.029051221857421
815 => 0.029948592951307
816 => 0.031219509740379
817 => 0.032125240728675
818 => 0.03219477150745
819 => 0.031612447161239
820 => 0.032545625642386
821 => 0.032552422828847
822 => 0.031499793689967
823 => 0.030855064203466
824 => 0.030708580307611
825 => 0.031074525799317
826 => 0.031518851183513
827 => 0.032219428473925
828 => 0.032642772657951
829 => 0.033746629765486
830 => 0.034045301848722
831 => 0.03437345191648
901 => 0.034811961604738
902 => 0.035338504917068
903 => 0.034186458125817
904 => 0.034232231092518
905 => 0.033159461071679
906 => 0.032013052453629
907 => 0.032883033692877
908 => 0.034020418434439
909 => 0.033759501118026
910 => 0.033730142589873
911 => 0.033779515490851
912 => 0.033582792355038
913 => 0.032693020902658
914 => 0.032246183249537
915 => 0.032822717822507
916 => 0.033129120289438
917 => 0.033604323794546
918 => 0.033545744932212
919 => 0.034769818128238
920 => 0.035245455958162
921 => 0.035123767447577
922 => 0.035146161062123
923 => 0.036007280633776
924 => 0.036965022700201
925 => 0.037862074530605
926 => 0.038774594181764
927 => 0.037674516126043
928 => 0.03711596433273
929 => 0.037692247208741
930 => 0.037386463402961
1001 => 0.03914358785234
1002 => 0.039265247336837
1003 => 0.041022244726119
1004 => 0.042689844467905
1005 => 0.041642454948242
1006 => 0.042630096089824
1007 => 0.043698310508009
1008 => 0.045759069432232
1009 => 0.045065078324927
1010 => 0.044533492012958
1011 => 0.044031145516754
1012 => 0.045076448830094
1013 => 0.046421214843577
1014 => 0.046710864562873
1015 => 0.047180207762841
1016 => 0.046686750776631
1017 => 0.047281065364016
1018 => 0.049379257012551
1019 => 0.048812307107867
1020 => 0.048007147101471
1021 => 0.049663467895521
1022 => 0.050262883952103
1023 => 0.054469899753827
1024 => 0.059781430986657
1025 => 0.057582422178871
1026 => 0.056217426450307
1027 => 0.056538232824651
1028 => 0.058477824224202
1029 => 0.059100759422183
1030 => 0.057407406815429
1031 => 0.058005527583336
1101 => 0.061301231820436
1102 => 0.063069271404789
1103 => 0.060668036169842
1104 => 0.054043123390992
1105 => 0.047934651252341
1106 => 0.049554893131596
1107 => 0.049371207984448
1108 => 0.052912031039736
1109 => 0.048798785540143
1110 => 0.04886804204535
1111 => 0.052482085571624
1112 => 0.051517920719206
1113 => 0.049956097139193
1114 => 0.047946054292892
1115 => 0.044230304185047
1116 => 0.04093916069317
1117 => 0.04739385098582
1118 => 0.047115513003308
1119 => 0.046712438357253
1120 => 0.047609437364816
1121 => 0.051965009927933
1122 => 0.05186459988274
1123 => 0.051225842404881
1124 => 0.051710334322087
1125 => 0.049871163363623
1126 => 0.050345159596763
1127 => 0.047933683639145
1128 => 0.04902377148412
1129 => 0.049952746167241
1130 => 0.050139251588582
1201 => 0.050559457826068
1202 => 0.0469688415343
1203 => 0.048580922834348
1204 => 0.049527869566536
1205 => 0.045249529780296
1206 => 0.049443300544873
1207 => 0.046906336893061
1208 => 0.046045253325721
1209 => 0.047204588910011
1210 => 0.046752794705322
1211 => 0.046364368578377
1212 => 0.046147620125533
1213 => 0.046998908227436
1214 => 0.046959194619973
1215 => 0.045566322057359
1216 => 0.043749376580177
1217 => 0.044359203121521
1218 => 0.044137647421897
1219 => 0.043334700985203
1220 => 0.043875789935412
1221 => 0.041493108037541
1222 => 0.037393827673283
1223 => 0.040101937846265
1224 => 0.039997678550462
1225 => 0.039945106285736
1226 => 0.041980176234065
1227 => 0.041784551215585
1228 => 0.041429489891478
1229 => 0.043328180005543
1230 => 0.042635132572923
1231 => 0.044770941457745
]
'min_raw' => 0.019172631529156
'max_raw' => 0.063069271404789
'avg_raw' => 0.041120951466972
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.019172'
'max' => '$0.063069'
'avg' => '$0.04112'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.010444755346098
'max_diff' => 0.041691975968808
'year' => 2029
]
4 => [
'items' => [
101 => 0.046177723324746
102 => 0.045820917938649
103 => 0.04714400308413
104 => 0.044373252293357
105 => 0.045293584562825
106 => 0.045483263768037
107 => 0.043304750464261
108 => 0.041816557887944
109 => 0.041717312409741
110 => 0.039136991567975
111 => 0.040515378134024
112 => 0.041728301270636
113 => 0.041147405214836
114 => 0.040963510877347
115 => 0.041902987165767
116 => 0.041975992519448
117 => 0.04031146271877
118 => 0.040657571173135
119 => 0.042100900963576
120 => 0.040621202965618
121 => 0.037746391462881
122 => 0.037033398462824
123 => 0.036938272053548
124 => 0.035004578489204
125 => 0.037081044064396
126 => 0.036174611195007
127 => 0.039038021768674
128 => 0.037402457005775
129 => 0.037331951077808
130 => 0.037225371026715
131 => 0.035560961096009
201 => 0.035925361092065
202 => 0.037136682178639
203 => 0.037568895188838
204 => 0.037523811830857
205 => 0.037130746044481
206 => 0.037310689548661
207 => 0.036731028825223
208 => 0.036526338559183
209 => 0.035880279775065
210 => 0.034930751840706
211 => 0.035062789523772
212 => 0.033181526228309
213 => 0.03215651413874
214 => 0.03187280430179
215 => 0.03149341565077
216 => 0.031915657259437
217 => 0.033176196845761
218 => 0.031655718666263
219 => 0.029048965476657
220 => 0.029205635785044
221 => 0.029557627452156
222 => 0.02890169330915
223 => 0.028280906691174
224 => 0.028820630289494
225 => 0.027716114598837
226 => 0.029691102896486
227 => 0.029637684997875
228 => 0.030373838502782
301 => 0.03083417039679
302 => 0.029773254415321
303 => 0.029506436915003
304 => 0.029658428289363
305 => 0.027146349436159
306 => 0.030168548066885
307 => 0.030194684166143
308 => 0.02997089101661
309 => 0.031580118487557
310 => 0.034976090381891
311 => 0.03369838915259
312 => 0.03320362461788
313 => 0.032263076875727
314 => 0.033516300897947
315 => 0.033420072846381
316 => 0.032984893103793
317 => 0.032721695037633
318 => 0.033206645544627
319 => 0.032661604303107
320 => 0.032563699919398
321 => 0.031970505875143
322 => 0.031758762589953
323 => 0.031601996291342
324 => 0.031429412000109
325 => 0.031810089941243
326 => 0.03094742364428
327 => 0.029907132658364
328 => 0.029820643718989
329 => 0.030059447284787
330 => 0.029953794483756
331 => 0.029820137894025
401 => 0.029564951065022
402 => 0.029489242584061
403 => 0.029735258418652
404 => 0.029457520885013
405 => 0.029867337745043
406 => 0.029755890235316
407 => 0.029133353505506
408 => 0.028357442247546
409 => 0.028350535009821
410 => 0.028183366202043
411 => 0.027970451591339
412 => 0.027911223617467
413 => 0.028775176273455
414 => 0.030563532415421
415 => 0.030212435313017
416 => 0.030466138951382
417 => 0.031714109752417
418 => 0.032110802142275
419 => 0.031829239280128
420 => 0.031443818668381
421 => 0.031460775219255
422 => 0.03277787412435
423 => 0.032860019967474
424 => 0.033067576011796
425 => 0.033334344184081
426 => 0.031874671053407
427 => 0.031392024746066
428 => 0.031163320149451
429 => 0.030458998511693
430 => 0.031218549014041
501 => 0.030775991463518
502 => 0.030835707597002
503 => 0.030796817386731
504 => 0.030818054071284
505 => 0.029690550847006
506 => 0.030101353762108
507 => 0.029418314239216
508 => 0.028503800992847
509 => 0.028500735223776
510 => 0.028724561045235
511 => 0.028591420688326
512 => 0.028233143411235
513 => 0.028284035007425
514 => 0.02783817107415
515 => 0.028338170961552
516 => 0.028352509169237
517 => 0.028159981977409
518 => 0.02893030079064
519 => 0.029245901036941
520 => 0.029119175514948
521 => 0.029237009636493
522 => 0.03022702498273
523 => 0.030388440681565
524 => 0.030460130872465
525 => 0.030364075513789
526 => 0.029255105299626
527 => 0.029304292844329
528 => 0.028943387277743
529 => 0.028638460105269
530 => 0.028650655593035
531 => 0.028807427797445
601 => 0.029492061208669
602 => 0.030932831861245
603 => 0.030987508054321
604 => 0.031053777195346
605 => 0.030784227294596
606 => 0.030702928465285
607 => 0.030810182606155
608 => 0.031351260311141
609 => 0.032743059069528
610 => 0.0322511044332
611 => 0.031851137656136
612 => 0.03220201634989
613 => 0.032148001325265
614 => 0.031692060158627
615 => 0.031679263408639
616 => 0.030804166536652
617 => 0.030480663148071
618 => 0.030210319502763
619 => 0.029915111299586
620 => 0.029740101981275
621 => 0.030008995834514
622 => 0.030070495040208
623 => 0.02948255393064
624 => 0.029402419729923
625 => 0.029882545131587
626 => 0.029671259843194
627 => 0.029888572001929
628 => 0.029938990286825
629 => 0.029930871781725
630 => 0.029710265674682
701 => 0.029850873428742
702 => 0.0295182941732
703 => 0.029156664184588
704 => 0.028925966782197
705 => 0.028724652701041
706 => 0.02883635345371
707 => 0.028438160666199
708 => 0.028310770779437
709 => 0.029803238685441
710 => 0.030905740774341
711 => 0.03088970995733
712 => 0.030792126481564
713 => 0.030647137230663
714 => 0.031340653444355
715 => 0.031099046262799
716 => 0.031274835674336
717 => 0.031319581457431
718 => 0.031455013466291
719 => 0.031503418768684
720 => 0.031357104325208
721 => 0.0308660551821
722 => 0.029642407405027
723 => 0.029072796061625
724 => 0.028884814830675
725 => 0.028891647591393
726 => 0.028703169548008
727 => 0.028758684778778
728 => 0.028683863616307
729 => 0.02854217043577
730 => 0.028827604299092
731 => 0.02886049789284
801 => 0.02879387421846
802 => 0.028809566505588
803 => 0.028257950937065
804 => 0.028299889070694
805 => 0.028066372213408
806 => 0.028022590617755
807 => 0.027432280337176
808 => 0.026386460108286
809 => 0.026965946035317
810 => 0.026266008523516
811 => 0.026000931582013
812 => 0.027255764595166
813 => 0.027129814164295
814 => 0.026914241775981
815 => 0.026595365284442
816 => 0.0264770908919
817 => 0.025758493123932
818 => 0.02571603453423
819 => 0.026072190991807
820 => 0.025907837041231
821 => 0.025677021848913
822 => 0.024841032619699
823 => 0.023901103939541
824 => 0.023929474478214
825 => 0.024228448303378
826 => 0.025097755022154
827 => 0.024758101847969
828 => 0.024511679573027
829 => 0.024465532088357
830 => 0.025043164475308
831 => 0.025860635320571
901 => 0.026244174351289
902 => 0.025864098820101
903 => 0.025427488514592
904 => 0.025454062960831
905 => 0.025630850846098
906 => 0.025649428753193
907 => 0.025365240328571
908 => 0.025445237705459
909 => 0.025323714374853
910 => 0.024577925919238
911 => 0.024564436970997
912 => 0.024381408456526
913 => 0.024375866425848
914 => 0.024064489264129
915 => 0.024020925446756
916 => 0.023402667192922
917 => 0.023809606647854
918 => 0.023536653026766
919 => 0.023125247536536
920 => 0.023054321074952
921 => 0.023052188939871
922 => 0.023474610389753
923 => 0.023804670407267
924 => 0.023541401171866
925 => 0.023481459870226
926 => 0.024121476152517
927 => 0.024040028246718
928 => 0.023969494885578
929 => 0.025787439772477
930 => 0.024348394538488
1001 => 0.023720888678638
1002 => 0.022944231016944
1003 => 0.023197114667839
1004 => 0.023250400968717
1005 => 0.021382679295407
1006 => 0.020624944845156
1007 => 0.02036491893645
1008 => 0.020215270349762
1009 => 0.020283467089884
1010 => 0.019601417211271
1011 => 0.020059766009763
1012 => 0.019469168467125
1013 => 0.019370152867131
1014 => 0.020426214434364
1015 => 0.020573159232022
1016 => 0.019946247073042
1017 => 0.020348826166967
1018 => 0.020202845391242
1019 => 0.019479292566876
1020 => 0.01945165817108
1021 => 0.019088604797925
1022 => 0.018520496569923
1023 => 0.018260855865347
1024 => 0.0181256327321
1025 => 0.018181428432324
1026 => 0.018153216418914
1027 => 0.017969113948074
1028 => 0.01816376895704
1029 => 0.017666505846134
1030 => 0.017468491668649
1031 => 0.017379053258574
1101 => 0.016937703626248
1102 => 0.017640087160351
1103 => 0.017778465564964
1104 => 0.017917116617781
1105 => 0.019123979371462
1106 => 0.019063687918847
1107 => 0.01960869328736
1108 => 0.01958751538094
1109 => 0.019432071021339
1110 => 0.018776276837536
1111 => 0.019037664710793
1112 => 0.018233153465604
1113 => 0.018835947991946
1114 => 0.018560857743425
1115 => 0.018742939702205
1116 => 0.01841553992265
1117 => 0.018596736478662
1118 => 0.017811280218198
1119 => 0.017077832213845
1120 => 0.017372993101479
1121 => 0.017693866742078
1122 => 0.018389602551981
1123 => 0.017975228043299
1124 => 0.018124252785856
1125 => 0.01762504484473
1126 => 0.016595036270489
1127 => 0.016600866007161
1128 => 0.016442421627971
1129 => 0.016305502551092
1130 => 0.0180228239403
1201 => 0.017809247878718
1202 => 0.017468942376732
1203 => 0.017924454814344
1204 => 0.018044899532803
1205 => 0.018048328424612
1206 => 0.018380658540616
1207 => 0.018558023183101
1208 => 0.018589284470081
1209 => 0.019112213088081
1210 => 0.019287491863239
1211 => 0.020009440331735
1212 => 0.018542975032364
1213 => 0.018512774144558
1214 => 0.01793086480848
1215 => 0.017561808707918
1216 => 0.017956134395427
1217 => 0.018305453123737
1218 => 0.017941719115091
1219 => 0.017989215097776
1220 => 0.01750093190933
1221 => 0.01767547017334
1222 => 0.017825806039149
1223 => 0.017742799410383
1224 => 0.017618534469555
1225 => 0.018276812971594
1226 => 0.018239670318694
1227 => 0.01885267439355
1228 => 0.019330554906242
1229 => 0.020187002216347
1230 => 0.019293254800645
1231 => 0.019260683092493
]
'min_raw' => 0.016305502551092
'max_raw' => 0.04714400308413
'avg_raw' => 0.031724752817611
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0163055'
'max' => '$0.047144'
'avg' => '$0.031724'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0028671289780637
'max_diff' => -0.015925268320659
'year' => 2030
]
5 => [
'items' => [
101 => 0.019579076764349
102 => 0.019287443118827
103 => 0.019471745515945
104 => 0.020157308250867
105 => 0.02017179311116
106 => 0.019929153038559
107 => 0.01991438836809
108 => 0.019960990048225
109 => 0.02023393754435
110 => 0.020138561302374
111 => 0.02024893310422
112 => 0.0203869547325
113 => 0.020957870707024
114 => 0.021095516615655
115 => 0.020761108418903
116 => 0.02079130173486
117 => 0.020666223889565
118 => 0.02054540025823
119 => 0.020816994136596
120 => 0.021313337287501
121 => 0.021310249562519
122 => 0.021425391525997
123 => 0.021497124015356
124 => 0.021189195659635
125 => 0.020988745622901
126 => 0.021065610921952
127 => 0.021188520209043
128 => 0.021025753096678
129 => 0.020021079078098
130 => 0.02032583299651
131 => 0.020275107042781
201 => 0.020202867116184
202 => 0.02050929953774
203 => 0.020479743383134
204 => 0.019594421803947
205 => 0.019651097219028
206 => 0.019597868423653
207 => 0.019769861551096
208 => 0.019278154925512
209 => 0.019429400571847
210 => 0.019524260423388
211 => 0.019580133604694
212 => 0.019781985848169
213 => 0.019758300817167
214 => 0.019780513553387
215 => 0.020079807143444
216 => 0.021593531416796
217 => 0.02167592008915
218 => 0.021270208134237
219 => 0.02143228205791
220 => 0.021121135566128
221 => 0.021330010290562
222 => 0.021472917072176
223 => 0.020827148805453
224 => 0.020788910599699
225 => 0.020476479895665
226 => 0.020644362459033
227 => 0.02037724922953
228 => 0.020442789472826
301 => 0.020259533238875
302 => 0.020589357974035
303 => 0.020958153277526
304 => 0.021051325535355
305 => 0.020806229438185
306 => 0.020628763711213
307 => 0.020317192355496
308 => 0.020835342463874
309 => 0.020986865345902
310 => 0.02083454657868
311 => 0.020799250992084
312 => 0.020732365919262
313 => 0.020813440976469
314 => 0.020986040119746
315 => 0.020904645551182
316 => 0.020958408097706
317 => 0.020753520710054
318 => 0.021189297596734
319 => 0.0218814161682
320 => 0.02188364144258
321 => 0.02180224643527
322 => 0.021768941351958
323 => 0.021852457568921
324 => 0.021897761690609
325 => 0.022167837822011
326 => 0.022457640271313
327 => 0.023810021851492
328 => 0.02343027851542
329 => 0.024630191906895
330 => 0.025579167610298
331 => 0.025863723930071
401 => 0.02560194550529
402 => 0.024706415655106
403 => 0.024662476688305
404 => 0.02600077636743
405 => 0.025622645410069
406 => 0.025577667935893
407 => 0.025099183601309
408 => 0.025382027104486
409 => 0.025320165081277
410 => 0.025222512851249
411 => 0.025762158552261
412 => 0.026772327130053
413 => 0.026614882883903
414 => 0.026497358057781
415 => 0.025982398480675
416 => 0.026292519166478
417 => 0.026182091130234
418 => 0.026656560053302
419 => 0.02637549517405
420 => 0.025619780696165
421 => 0.025740130717635
422 => 0.025721940054001
423 => 0.026096302622598
424 => 0.025983928271755
425 => 0.025699997158455
426 => 0.026768874483673
427 => 0.026699467535582
428 => 0.026797870719338
429 => 0.026841190844048
430 => 0.027491797636177
501 => 0.027758330421817
502 => 0.027818838030471
503 => 0.028072023562443
504 => 0.027812538543788
505 => 0.028850663628091
506 => 0.029540956232874
507 => 0.030342766615462
508 => 0.031514427090737
509 => 0.031954982267906
510 => 0.031875399918407
511 => 0.032763739518784
512 => 0.034360066033982
513 => 0.03219806314785
514 => 0.0344746574367
515 => 0.033753913969395
516 => 0.032045044174037
517 => 0.031935013105467
518 => 0.03309227957127
519 => 0.035658985209652
520 => 0.035016054558572
521 => 0.035660036813874
522 => 0.034908797305932
523 => 0.034871491932419
524 => 0.035623550787771
525 => 0.037380777295893
526 => 0.036545984850535
527 => 0.035349105180608
528 => 0.036232862503372
529 => 0.035467270122515
530 => 0.03374217621263
531 => 0.03501556292162
601 => 0.034164085493284
602 => 0.034412591873902
603 => 0.036202270780556
604 => 0.035986931879604
605 => 0.036265600357281
606 => 0.035773757788205
607 => 0.035314299272234
608 => 0.034456685832337
609 => 0.034202788772615
610 => 0.034272956785663
611 => 0.034202754000833
612 => 0.033722927163085
613 => 0.033619308603158
614 => 0.033446606463646
615 => 0.033500134078165
616 => 0.03317540353009
617 => 0.033788237167062
618 => 0.033901984490355
619 => 0.034347953705259
620 => 0.034394255708596
621 => 0.035636273624129
622 => 0.034952191027517
623 => 0.035411132694174
624 => 0.035370080631782
625 => 0.032082080564248
626 => 0.032535137963284
627 => 0.03323995309894
628 => 0.032922434835682
629 => 0.032473538299265
630 => 0.032111030277799
701 => 0.03156179355693
702 => 0.032334833694396
703 => 0.033351299271511
704 => 0.034420034953056
705 => 0.035704050848096
706 => 0.035417473447915
707 => 0.034396031169041
708 => 0.034441852323507
709 => 0.034725100670458
710 => 0.034358268325331
711 => 0.034250082305334
712 => 0.03471023757262
713 => 0.034713406409049
714 => 0.03429132146281
715 => 0.033822251285795
716 => 0.033820285864626
717 => 0.033736819357307
718 => 0.034923645812163
719 => 0.035576280360644
720 => 0.035651103859855
721 => 0.035571244142985
722 => 0.035601978978489
723 => 0.035222225314549
724 => 0.036090229577866
725 => 0.036886796126611
726 => 0.036673299275385
727 => 0.036353237145032
728 => 0.036098292241925
729 => 0.036613242358479
730 => 0.036590312440395
731 => 0.036879838812717
801 => 0.036866704224083
802 => 0.036769347394709
803 => 0.036673302752304
804 => 0.037054108903045
805 => 0.036944442847191
806 => 0.036834606449662
807 => 0.036614312739306
808 => 0.036644254313235
809 => 0.036324247446121
810 => 0.036176197626876
811 => 0.033949883566622
812 => 0.033354939702811
813 => 0.033542121153565
814 => 0.033603746147318
815 => 0.033344825815346
816 => 0.033716051060217
817 => 0.033658195999029
818 => 0.033883276198034
819 => 0.033742655861542
820 => 0.033748426969202
821 => 0.034161961395409
822 => 0.034282012198638
823 => 0.034220953391187
824 => 0.034263716886952
825 => 0.03524918359752
826 => 0.035109081744729
827 => 0.035034655427767
828 => 0.035055272026204
829 => 0.035307079899398
830 => 0.035377572355693
831 => 0.035078890864957
901 => 0.035219750782645
902 => 0.035819514434376
903 => 0.0360293977688
904 => 0.036699244622563
905 => 0.036414681773506
906 => 0.036937009198542
907 => 0.038542465628561
908 => 0.039825015313995
909 => 0.038645529619662
910 => 0.041000768785244
911 => 0.042834660314642
912 => 0.042764272503238
913 => 0.042444491096412
914 => 0.040356654346721
915 => 0.038435395841764
916 => 0.040042610162106
917 => 0.040046707281935
918 => 0.03990864614645
919 => 0.039051160291226
920 => 0.039878807497396
921 => 0.039944503127049
922 => 0.039907731044321
923 => 0.039250298649603
924 => 0.038246520896685
925 => 0.0384426566669
926 => 0.038763931059575
927 => 0.038155691609382
928 => 0.037961322250518
929 => 0.038322691868931
930 => 0.039487100073806
1001 => 0.039266975447632
1002 => 0.039261227104049
1003 => 0.040203013602192
1004 => 0.039528897719769
1005 => 0.038445130567077
1006 => 0.038171465067889
1007 => 0.037200136908944
1008 => 0.03787103672808
1009 => 0.03789518121819
1010 => 0.03752773624368
1011 => 0.038474946701653
1012 => 0.03846621799053
1013 => 0.039365453346704
1014 => 0.041084453610334
1015 => 0.040576060645513
1016 => 0.039984854940424
1017 => 0.040049135392923
1018 => 0.040754133299165
1019 => 0.040327875471514
1020 => 0.040481160758312
1021 => 0.040753901283524
1022 => 0.040918452414151
1023 => 0.040025459017524
1024 => 0.039817259539959
1025 => 0.039391356476946
1026 => 0.039280246317664
1027 => 0.039627135475728
1028 => 0.039535742438353
1029 => 0.037893151967289
1030 => 0.037721492123775
1031 => 0.037726756686102
1101 => 0.037295109847607
1102 => 0.036636744811791
1103 => 0.038366888816982
1104 => 0.038227934040016
1105 => 0.03807453872049
1106 => 0.03809332877187
1107 => 0.038844325644503
1108 => 0.038408709532125
1109 => 0.039566866362958
1110 => 0.03932878413592
1111 => 0.039084595998124
1112 => 0.039050841759329
1113 => 0.03895685015943
1114 => 0.038634517990645
1115 => 0.038245282527677
1116 => 0.037988275560026
1117 => 0.035042176151476
1118 => 0.035588955065031
1119 => 0.03621797436461
1120 => 0.036435109306188
1121 => 0.036063684963338
1122 => 0.038649184087559
1123 => 0.039121579692043
1124 => 0.037690662592457
1125 => 0.037422996427084
1126 => 0.038666732236799
1127 => 0.037916607503022
1128 => 0.038254388624711
1129 => 0.037524290596015
1130 => 0.039007793424281
1201 => 0.038996491618277
1202 => 0.03841937551165
1203 => 0.03890715009305
1204 => 0.038822387255989
1205 => 0.038170824592982
1206 => 0.03902844912287
1207 => 0.039028874493937
1208 => 0.038473412788895
1209 => 0.037824755123608
1210 => 0.037708790453665
1211 => 0.037621426652525
1212 => 0.038232902485129
1213 => 0.038781149804606
1214 => 0.039801302144117
1215 => 0.040057792680492
1216 => 0.041058892319505
1217 => 0.04046278622713
1218 => 0.040727032337013
1219 => 0.041013908869187
1220 => 0.041151448028246
1221 => 0.040927335349317
1222 => 0.042482455157755
1223 => 0.042613754917227
1224 => 0.042657778590839
1225 => 0.042133400941217
1226 => 0.042599171026198
1227 => 0.042381252628119
1228 => 0.042948215760446
1229 => 0.043037122818944
1230 => 0.042961821703357
1231 => 0.042990042207026
]
'min_raw' => 0.019278154925512
'max_raw' => 0.043037122818944
'avg_raw' => 0.031157638872228
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.019278'
'max' => '$0.043037'
'avg' => '$0.031157'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0029726523744199
'max_diff' => -0.0041068802651864
'year' => 2031
]
6 => [
'items' => [
101 => 0.041663021792458
102 => 0.041594208783372
103 => 0.04065593852174
104 => 0.041038290588699
105 => 0.040323501726131
106 => 0.040550168637592
107 => 0.040650081252403
108 => 0.040597892572417
109 => 0.041059908200888
110 => 0.040667100533131
111 => 0.039630416514358
112 => 0.038593450051718
113 => 0.038580431782474
114 => 0.03830741681684
115 => 0.038110077001871
116 => 0.03814809165124
117 => 0.038282060233945
118 => 0.038102290504302
119 => 0.038140653490678
120 => 0.038777734675759
121 => 0.038905496763972
122 => 0.038471311268354
123 => 0.036727993850783
124 => 0.03630017938373
125 => 0.036607683938718
126 => 0.036460716567263
127 => 0.029426643912035
128 => 0.031079194944507
129 => 0.030097305236343
130 => 0.030549805188438
131 => 0.02954755005551
201 => 0.030025878737635
202 => 0.029937548895813
203 => 0.032594802053487
204 => 0.032553312700362
205 => 0.032573171458135
206 => 0.031625261207904
207 => 0.033135307975091
208 => 0.033879211312132
209 => 0.033741534602792
210 => 0.033776184864404
211 => 0.03318077856809
212 => 0.032578936292577
213 => 0.031911400586172
214 => 0.033151599418766
215 => 0.033013710479482
216 => 0.033329978095326
217 => 0.034134335689507
218 => 0.034252780400708
219 => 0.034411971293709
220 => 0.034354912690547
221 => 0.035714280106236
222 => 0.035549651742801
223 => 0.035946358731866
224 => 0.035130302357127
225 => 0.034206857108328
226 => 0.034382373860425
227 => 0.034365470185781
228 => 0.034150267006435
229 => 0.033955991198504
301 => 0.03363257671517
302 => 0.034655907996777
303 => 0.034614362615566
304 => 0.035286934046147
305 => 0.035168050512781
306 => 0.034374117181231
307 => 0.034402472665487
308 => 0.034593176924288
309 => 0.03525320654142
310 => 0.035449148270028
311 => 0.035358380254409
312 => 0.035573221414748
313 => 0.0357430231081
314 => 0.03559454589312
315 => 0.037696670146501
316 => 0.036823721596906
317 => 0.037249190646042
318 => 0.037350662507251
319 => 0.037090744468486
320 => 0.037147111384127
321 => 0.037232491902258
322 => 0.03775090568913
323 => 0.039111373470121
324 => 0.039713915389304
325 => 0.041526692482061
326 => 0.039663882670704
327 => 0.039553351245571
328 => 0.039879887140601
329 => 0.040944179195992
330 => 0.041806687943018
331 => 0.042092831853729
401 => 0.042130650495251
402 => 0.042667475494234
403 => 0.042975173572457
404 => 0.042602290819458
405 => 0.042286311728743
406 => 0.04115451384657
407 => 0.041285522533215
408 => 0.042188042469134
409 => 0.043462905036779
410 => 0.044556869746661
411 => 0.04417380143378
412 => 0.047096342256981
413 => 0.047386100242093
414 => 0.047346065057548
415 => 0.048006176869402
416 => 0.046695989352304
417 => 0.046135858805057
418 => 0.042354629994671
419 => 0.04341700105607
420 => 0.04496121978468
421 => 0.044756836645425
422 => 0.043635383727624
423 => 0.04455601902406
424 => 0.044251628204131
425 => 0.044011542535266
426 => 0.045111421527233
427 => 0.043902059395027
428 => 0.044949155472297
429 => 0.043606243922376
430 => 0.044175551257566
501 => 0.043852384879815
502 => 0.044061513132001
503 => 0.04283895364291
504 => 0.04349861706727
505 => 0.042811509475684
506 => 0.042811183697222
507 => 0.042796015759055
508 => 0.043604394793453
509 => 0.043630756004743
510 => 0.04303336267693
511 => 0.042947268965354
512 => 0.04326560254059
513 => 0.042892917295684
514 => 0.043067294376123
515 => 0.04289819899981
516 => 0.042860132068908
517 => 0.042556808286931
518 => 0.042426128061593
519 => 0.042477371145163
520 => 0.042302452083321
521 => 0.042197057021462
522 => 0.042775050028496
523 => 0.042466251681009
524 => 0.042727722252951
525 => 0.042429743536006
526 => 0.041396819479925
527 => 0.0408027739323
528 => 0.038851676142474
529 => 0.039405005055339
530 => 0.039771862697029
531 => 0.039650616248639
601 => 0.039911100535928
602 => 0.039927092155602
603 => 0.039842406058481
604 => 0.039744350406976
605 => 0.039696622338642
606 => 0.040052348257136
607 => 0.040258859126007
608 => 0.039808681769295
609 => 0.039703211513268
610 => 0.040158365675876
611 => 0.040436009452134
612 => 0.042485975101456
613 => 0.042334107024853
614 => 0.042715266094523
615 => 0.042672353432641
616 => 0.043071868861057
617 => 0.043724907738699
618 => 0.04239709710791
619 => 0.042627559121178
620 => 0.04257105515767
621 => 0.043187950615117
622 => 0.043189876495399
623 => 0.042820016852446
624 => 0.043020523765178
625 => 0.04290860630711
626 => 0.043110856280391
627 => 0.0423320787341
628 => 0.043280545721641
629 => 0.043818265385714
630 => 0.043825731623771
701 => 0.044080606476934
702 => 0.044339574089104
703 => 0.044836639869339
704 => 0.044325711194277
705 => 0.043406600245743
706 => 0.043472957087517
707 => 0.042934082674681
708 => 0.042943141250916
709 => 0.042894785861038
710 => 0.043039904026086
711 => 0.042363924010626
712 => 0.042522575169124
713 => 0.042300462618166
714 => 0.04262707629187
715 => 0.042275693970139
716 => 0.042571027909748
717 => 0.042698484247608
718 => 0.04316880087825
719 => 0.04220622782139
720 => 0.040243476197987
721 => 0.04065607038529
722 => 0.040045811173695
723 => 0.040102292987149
724 => 0.040216395239339
725 => 0.039846552508056
726 => 0.039917106846101
727 => 0.039914586148663
728 => 0.039892864139931
729 => 0.039796653761521
730 => 0.039657129678182
731 => 0.040212950682956
801 => 0.04030739550255
802 => 0.04051733463727
803 => 0.041141971099121
804 => 0.04107955518664
805 => 0.041181358129508
806 => 0.040959122876827
807 => 0.040112601843135
808 => 0.040158572008
809 => 0.039585323315511
810 => 0.040502675379364
811 => 0.040285434302188
812 => 0.040145377566496
813 => 0.040107161788546
814 => 0.040733346603368
815 => 0.040920710914207
816 => 0.040803958049243
817 => 0.040564494516977
818 => 0.041024335289966
819 => 0.041147369281693
820 => 0.041174912055122
821 => 0.041989661739135
822 => 0.041220447511718
823 => 0.041405605021589
824 => 0.042850151058062
825 => 0.041540147136708
826 => 0.042234085430423
827 => 0.042200120762026
828 => 0.042555116111499
829 => 0.042171000781831
830 => 0.042175762351701
831 => 0.042490974172565
901 => 0.042048316018913
902 => 0.041938707634953
903 => 0.041787284437542
904 => 0.042117911449381
905 => 0.042316107390005
906 => 0.043913421112555
907 => 0.044945358623677
908 => 0.044900559494778
909 => 0.045309939672463
910 => 0.045125510152923
911 => 0.04452993858428
912 => 0.045546506629739
913 => 0.045224821965142
914 => 0.045251341258045
915 => 0.045250354208638
916 => 0.045464246388434
917 => 0.045312684176118
918 => 0.045013939498103
919 => 0.0452122601572
920 => 0.045801201613785
921 => 0.047629293965957
922 => 0.048652318665234
923 => 0.047567706594513
924 => 0.048315857477362
925 => 0.047867233541069
926 => 0.047785705226439
927 => 0.048255599268784
928 => 0.048726315798447
929 => 0.048696333190471
930 => 0.048354617161497
1001 => 0.048161590447453
1002 => 0.049623253394888
1003 => 0.05070018175578
1004 => 0.050626742461387
1005 => 0.050950879623102
1006 => 0.051902556355082
1007 => 0.051989565748653
1008 => 0.051978604564951
1009 => 0.051762942704493
1010 => 0.052699992037968
1011 => 0.053481695077766
1012 => 0.051713023214868
1013 => 0.052386510306645
1014 => 0.052688860360542
1015 => 0.053132799942883
1016 => 0.053881800431204
1017 => 0.054695413624088
1018 => 0.054810467450377
1019 => 0.054728831254793
1020 => 0.054192231482989
1021 => 0.055082496747067
1022 => 0.055603993259475
1023 => 0.055914532498378
1024 => 0.056702008339435
1025 => 0.052690727571543
1026 => 0.049851343670439
1027 => 0.049407932873081
1028 => 0.050309626165777
1029 => 0.050547395496192
1030 => 0.050451550977239
1031 => 0.047255566251056
1101 => 0.049391106674922
1102 => 0.051688768609663
1103 => 0.051777031162099
1104 => 0.052927288768476
1105 => 0.053301859795764
1106 => 0.054227967936609
1107 => 0.054170039620247
1108 => 0.054395532214943
1109 => 0.05434369537241
1110 => 0.056059115688247
1111 => 0.057951479038997
1112 => 0.057885952513507
1113 => 0.05761390289241
1114 => 0.058017942971093
1115 => 0.059971064747048
1116 => 0.059791252592057
1117 => 0.059965924784268
1118 => 0.062268765431239
1119 => 0.065262785847563
1120 => 0.063871762769446
1121 => 0.066889882592853
1122 => 0.068789629038031
1123 => 0.072075044077516
1124 => 0.071663693933563
1125 => 0.072942681898945
1126 => 0.070927291324519
1127 => 0.066299547188001
1128 => 0.065567188964104
1129 => 0.06703338867461
1130 => 0.070637897593212
1201 => 0.066919869861405
1202 => 0.06767202202918
1203 => 0.067455402154261
1204 => 0.067443859401702
1205 => 0.06788439931912
1206 => 0.067245373191888
1207 => 0.064641865790935
1208 => 0.065835037890226
1209 => 0.06537429684186
1210 => 0.065885523385543
1211 => 0.068644402195937
1212 => 0.067424636110405
1213 => 0.066139711625048
1214 => 0.067751292077256
1215 => 0.069803387792042
1216 => 0.069674971330181
1217 => 0.069425789720254
1218 => 0.070830413408687
1219 => 0.073150440225852
1220 => 0.073777534151909
1221 => 0.074240442067754
1222 => 0.074304269248455
1223 => 0.074961728878054
1224 => 0.071426402748543
1225 => 0.07703705610969
1226 => 0.078005860953989
1227 => 0.077823765796108
1228 => 0.078900551607006
1229 => 0.07858373390602
1230 => 0.078124714764466
1231 => 0.07983164931365
]
'min_raw' => 0.029426643912035
'max_raw' => 0.07983164931365
'avg_raw' => 0.054629146612843
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.029426'
'max' => '$0.079831'
'avg' => '$0.054629'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.010148488986523
'max_diff' => 0.036794526494706
'year' => 2032
]
7 => [
'items' => [
101 => 0.077874786595526
102 => 0.075097266329315
103 => 0.073573463778149
104 => 0.075580129899169
105 => 0.076805530876279
106 => 0.077615442972009
107 => 0.077860521882815
108 => 0.071700840052194
109 => 0.068381113177106
110 => 0.070509020043292
111 => 0.073105213280325
112 => 0.071411980764027
113 => 0.071478352272952
114 => 0.069064247678388
115 => 0.073318807969879
116 => 0.072698954321893
117 => 0.075914756144146
118 => 0.075147279230844
119 => 0.077769640780183
120 => 0.077079085099336
121 => 0.079945543122084
122 => 0.081089050833611
123 => 0.083009178254028
124 => 0.084421631800812
125 => 0.085251051539414
126 => 0.085201256289384
127 => 0.088487830508999
128 => 0.086549852515849
129 => 0.08411529541011
130 => 0.084071261952996
131 => 0.085332153576
201 => 0.087974636509091
202 => 0.088659793887079
203 => 0.089042703390486
204 => 0.088456264156843
205 => 0.086352727941413
206 => 0.085444431668761
207 => 0.086218326408936
208 => 0.085271919643234
209 => 0.086905683235675
210 => 0.089149189601168
211 => 0.088685914408479
212 => 0.090234573919539
213 => 0.091837273589754
214 => 0.094129206099907
215 => 0.094728402128077
216 => 0.095718850377256
217 => 0.096738346970963
218 => 0.097065781800658
219 => 0.097690956487606
220 => 0.097687661508411
221 => 0.099571667506641
222 => 0.1016497844655
223 => 0.10243422550895
224 => 0.10423800443403
225 => 0.10114909623678
226 => 0.10349206858721
227 => 0.1056054882957
228 => 0.10308578219317
301 => 0.10655861003929
302 => 0.10669345207495
303 => 0.1087294067217
304 => 0.10666557664551
305 => 0.10544008093425
306 => 0.10897804113393
307 => 0.11068994862986
308 => 0.11017430816012
309 => 0.1062502587251
310 => 0.10396629364352
311 => 0.097988716481073
312 => 0.10506941484211
313 => 0.10851821646697
314 => 0.10624132716206
315 => 0.10738965768872
316 => 0.11365457669473
317 => 0.11603985222875
318 => 0.11554373159201
319 => 0.11562756781277
320 => 0.11691461919512
321 => 0.12262211381658
322 => 0.11920205074071
323 => 0.12181656081489
324 => 0.12320328753092
325 => 0.12449135658789
326 => 0.12132826608238
327 => 0.11721313180975
328 => 0.11590969604402
329 => 0.10601493539327
330 => 0.10549987013064
331 => 0.10521074839064
401 => 0.10338787671706
402 => 0.1019555989082
403 => 0.10081659841753
404 => 0.097827520995671
405 => 0.098836246880261
406 => 0.094072281338759
407 => 0.09712009766764
408 => 0.089516693633433
409 => 0.095849034449491
410 => 0.092402629239518
411 => 0.094716797647244
412 => 0.094708723731677
413 => 0.090447605985291
414 => 0.087989882196435
415 => 0.089556039450735
416 => 0.091235084349063
417 => 0.091507503734831
418 => 0.093684429273069
419 => 0.094291962397933
420 => 0.092451108666585
421 => 0.089359129985004
422 => 0.09007732611221
423 => 0.08797532797484
424 => 0.084291657091289
425 => 0.086937333830579
426 => 0.087840684191567
427 => 0.088239655173714
428 => 0.084617187932201
429 => 0.083478930077328
430 => 0.082872931146302
501 => 0.08889151495312
502 => 0.089221226560243
503 => 0.087534375361682
504 => 0.095159102732971
505 => 0.093433392100399
506 => 0.095361433686352
507 => 0.090012157341442
508 => 0.090216506901573
509 => 0.087684073753937
510 => 0.089102067099369
511 => 0.088099875106876
512 => 0.088987507249941
513 => 0.08951955029665
514 => 0.092051567896926
515 => 0.09587794602325
516 => 0.091673368902791
517 => 0.089841374440753
518 => 0.090977933501474
519 => 0.094004740054173
520 => 0.098590506920889
521 => 0.095875640638634
522 => 0.09708045219328
523 => 0.097343649919635
524 => 0.095341808032913
525 => 0.09866431768665
526 => 0.10044487760211
527 => 0.10227136364041
528 => 0.10385725029049
529 => 0.10154182495142
530 => 0.10401966196741
531 => 0.10202296272964
601 => 0.10023171709839
602 => 0.10023443367861
603 => 0.099110759128206
604 => 0.096933498094685
605 => 0.096531977754926
606 => 0.098620737268779
607 => 0.10029572459263
608 => 0.10043368457127
609 => 0.10136104361771
610 => 0.10190984514883
611 => 0.10728884621335
612 => 0.10945232493893
613 => 0.11209778577202
614 => 0.11312834185651
615 => 0.11622994619602
616 => 0.11372514879188
617 => 0.11318322011757
618 => 0.10565974251697
619 => 0.1068917115526
620 => 0.10886421284597
621 => 0.10569226833678
622 => 0.10770413704688
623 => 0.10810132254745
624 => 0.10558448687612
625 => 0.10692883755423
626 => 0.10335864072537
627 => 0.095955766557898
628 => 0.098672559201822
629 => 0.10067303305027
630 => 0.09781811021189
701 => 0.10293544889891
702 => 0.099946005281265
703 => 0.098998495173072
704 => 0.095301920429268
705 => 0.097046561414133
706 => 0.099406213327016
707 => 0.097948222783833
708 => 0.10097377207932
709 => 0.10525875676625
710 => 0.10831249202941
711 => 0.10854691990453
712 => 0.1065835727147
713 => 0.10972984911633
714 => 0.10975276630504
715 => 0.10620375367109
716 => 0.10403000319378
717 => 0.10353612251172
718 => 0.10476993328651
719 => 0.10626800734113
720 => 0.1086300525885
721 => 0.11005738706189
722 => 0.11377911836879
723 => 0.11478611215003
724 => 0.11589249301419
725 => 0.11737095904392
726 => 0.11914623658352
727 => 0.11526203039348
728 => 0.11541635714648
729 => 0.11179943812281
730 => 0.10793424142736
731 => 0.11086744391563
801 => 0.11470221598148
802 => 0.11382251503253
803 => 0.11372353070511
804 => 0.11388999488786
805 => 0.1132267291007
806 => 0.11022680252714
807 => 0.10872025818244
808 => 0.11066408474756
809 => 0.11169714205716
810 => 0.11329932385228
811 => 0.11310182112807
812 => 0.11722886937054
813 => 0.1188325155221
814 => 0.11842223421264
815 => 0.11849773584755
816 => 0.12140106060483
817 => 0.1246301548492
818 => 0.12765462772556
819 => 0.13073125143953
820 => 0.12702226146967
821 => 0.12513906510168
822 => 0.12708204305293
823 => 0.1260510716026
824 => 0.1319753393622
825 => 0.13238552280817
826 => 0.13830936217578
827 => 0.1439317911333
828 => 0.14040044424136
829 => 0.14373034530511
830 => 0.14733190479637
831 => 0.15427989738697
901 => 0.15194005791578
902 => 0.15014777755081
903 => 0.14845408126615
904 => 0.15197839436782
905 => 0.15651236687084
906 => 0.15748894112215
907 => 0.15907136448933
908 => 0.15740763980826
909 => 0.15941141293335
910 => 0.16648561256745
911 => 0.16457410138063
912 => 0.16185944820458
913 => 0.16744384940235
914 => 0.16946482248701
915 => 0.18364906998698
916 => 0.20155726837774
917 => 0.1941431566524
918 => 0.18954097825259
919 => 0.19062259934167
920 => 0.1971620671632
921 => 0.19926233667515
922 => 0.19355308013537
923 => 0.19556968606383
924 => 0.20668138299793
925 => 0.21264245189716
926 => 0.20454651965364
927 => 0.18221016368311
928 => 0.16161502338775
929 => 0.16707778200533
930 => 0.16645847470723
1001 => 0.17839660685051
1002 => 0.164528512471
1003 => 0.16476201561364
1004 => 0.17694701568694
1005 => 0.17369626657117
1006 => 0.16843046932811
1007 => 0.1616534695351
1008 => 0.14912555862111
1009 => 0.13802923855795
1010 => 0.1597916775317
1011 => 0.15885324159073
1012 => 0.15749424727978
1013 => 0.16051854206025
1014 => 0.17520365905316
1015 => 0.17486511957539
1016 => 0.17271150414216
1017 => 0.17434500246717
1018 => 0.16814410917389
1019 => 0.16974222056728
1020 => 0.1616117610123
1021 => 0.16528706828914
1022 => 0.16841917129222
1023 => 0.16904798734166
1024 => 0.17046474200921
1025 => 0.15835872849269
1026 => 0.16379397314772
1027 => 0.166986670169
1028 => 0.15256194887555
1029 => 0.16670153980805
1030 => 0.15814798973082
1031 => 0.15524478636459
1101 => 0.15915356722925
1102 => 0.15763031152488
1103 => 0.15632070571884
1104 => 0.15558992317718
1105 => 0.15846010044779
1106 => 0.15832620324751
1107 => 0.1536300361554
1108 => 0.147504077624
1109 => 0.14956015038487
1110 => 0.14881315987506
1111 => 0.14610596990382
1112 => 0.14793028907707
1113 => 0.13989691070486
1114 => 0.12607590075415
1115 => 0.13520648327657
1116 => 0.13485496578162
1117 => 0.13467771472062
1118 => 0.14153909513546
1119 => 0.14087953172755
1120 => 0.13968241768373
1121 => 0.14608398396561
1122 => 0.14374732615951
1123 => 0.1509483549321
1124 => 0.15569141821507
1125 => 0.15448842394448
1126 => 0.15894929788733
1127 => 0.1496075181486
1128 => 0.15271048265065
1129 => 0.15334999933401
1130 => 0.14600498963138
1201 => 0.14098744445804
1202 => 0.14065283139918
1203 => 0.13195309952892
1204 => 0.13660042607223
1205 => 0.14068988111091
1206 => 0.13873134950191
1207 => 0.13811133690397
1208 => 0.14127884680252
1209 => 0.14152498944953
1210 => 0.13591291101279
1211 => 0.13707983983119
1212 => 0.14194612698974
1213 => 0.13695722188041
1214 => 0.127264594186
1215 => 0.12486068850672
1216 => 0.12453996317634
1217 => 0.11802038031798
1218 => 0.12502132897894
1219 => 0.12196522727467
1220 => 0.13161941594073
1221 => 0.12610499515113
1222 => 0.12586727949242
1223 => 0.12550793740898
1224 => 0.11989626312221
1225 => 0.12112486315051
1226 => 0.12520891676563
1227 => 0.12666615310567
1228 => 0.12651415141662
1229 => 0.12518890267487
1230 => 0.12579559476247
1231 => 0.12384122816278
]
'min_raw' => 0.068381113177106
'max_raw' => 0.21264245189716
'avg_raw' => 0.14051178253713
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.068381'
'max' => '$0.212642'
'avg' => '$0.140511'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.038954469265071
'max_diff' => 0.13281080258351
'year' => 2033
]
8 => [
'items' => [
101 => 0.12315110063981
102 => 0.12097286834277
103 => 0.11777146861816
104 => 0.11821664288519
105 => 0.11187383233892
106 => 0.10841793251489
107 => 0.10746138499162
108 => 0.10618224966663
109 => 0.10760586673023
110 => 0.11185586395358
111 => 0.10672946561501
112 => 0.097940615238553
113 => 0.09846884012165
114 => 0.099655604602594
115 => 0.097444076843587
116 => 0.095351051419144
117 => 0.097170767213177
118 => 0.093446815447307
119 => 0.10010562638211
120 => 0.099925524207425
121 => 0.10240751714581
122 => 0.10395955826581
123 => 0.1003826059635
124 => 0.099483012132573
125 => 0.099995461662927
126 => 0.091525812421604
127 => 0.10171536610827
128 => 0.10180348579168
129 => 0.10104895156329
130 => 0.10647457433426
131 => 0.1179243306752
201 => 0.11361647177436
202 => 0.11194833860223
203 => 0.10877721622261
204 => 0.11300254851083
205 => 0.11267810891655
206 => 0.11121087003113
207 => 0.11032347937517
208 => 0.11195852386767
209 => 0.11012087926832
210 => 0.10979078780318
211 => 0.10779079266749
212 => 0.10707688539802
213 => 0.10654833687718
214 => 0.10596645688984
215 => 0.10724993914646
216 => 0.10434139949681
217 => 0.100833985807
218 => 0.10054238230943
219 => 0.10134752520425
220 => 0.10099130940913
221 => 0.10054067688525
222 => 0.09968029667469
223 => 0.099425040245332
224 => 0.10025449980793
225 => 0.099318088322254
226 => 0.10069981447834
227 => 0.10032406141828
228 => 0.098225135369602
301 => 0.095609096390994
302 => 0.095585808156757
303 => 0.09502218684998
304 => 0.094304330374768
305 => 0.094104639125695
306 => 0.097017515824604
307 => 0.10304708341628
308 => 0.10186333502271
309 => 0.10271871455248
310 => 0.10692633523871
311 => 0.10826381132729
312 => 0.10731450247947
313 => 0.10601502997776
314 => 0.1060722001729
315 => 0.11051289108834
316 => 0.11078985153367
317 => 0.1114896412282
318 => 0.11238906874622
319 => 0.10746767887503
320 => 0.10584040315254
321 => 0.10506930963741
322 => 0.10269464006154
323 => 0.10525551761033
324 => 0.10376340393036
325 => 0.10396474104365
326 => 0.10383361998449
327 => 0.10390522094916
328 => 0.10010376510875
329 => 0.10148881581836
330 => 0.099185900378627
331 => 0.09610255511922
401 => 0.09609221866475
402 => 0.096846863048818
403 => 0.096397971039937
404 => 0.095190014186106
405 => 0.095361598755798
406 => 0.093858337375535
407 => 0.095544121904787
408 => 0.095592464173059
409 => 0.094943345303993
410 => 0.097540528964742
411 => 0.098604597229651
412 => 0.098177333284558
413 => 0.098574619252264
414 => 0.10191252511277
415 => 0.10245674941107
416 => 0.10269845789494
417 => 0.10237460054679
418 => 0.098635630043914
419 => 0.098801469285047
420 => 0.097584650969679
421 => 0.096556567718347
422 => 0.096597685656814
423 => 0.097126254089466
424 => 0.099434543434986
425 => 0.10429220228154
426 => 0.10447654688387
427 => 0.1046999779196
428 => 0.10379117160985
429 => 0.10351706693072
430 => 0.10387868175491
501 => 0.10570296301411
502 => 0.1103955097003
503 => 0.10873685029674
504 => 0.10738833438308
505 => 0.10857134639664
506 => 0.10838923096991
507 => 0.10685199349379
508 => 0.10680884835777
509 => 0.10385839815655
510 => 0.10276768389566
511 => 0.10185620142072
512 => 0.10086088635293
513 => 0.10027083021748
514 => 0.10117742461725
515 => 0.10138477348298
516 => 0.099402488983337
517 => 0.099132310930828
518 => 0.10075108724382
519 => 0.10003872414254
520 => 0.10077140725796
521 => 0.10094139602558
522 => 0.10091402391882
523 => 0.1001702350267
524 => 0.10064430388643
525 => 0.099522989706432
526 => 0.098303728951624
527 => 0.097525916552686
528 => 0.096847172072769
529 => 0.097223778959088
530 => 0.095881244175063
531 => 0.095451740277767
601 => 0.10048370002364
602 => 0.10420086279061
603 => 0.10414681377182
604 => 0.10381780427021
605 => 0.10332896288797
606 => 0.10566720122219
607 => 0.1048526057411
608 => 0.10544529201532
609 => 0.10559615554708
610 => 0.10605277402051
611 => 0.10621597587708
612 => 0.10572266651555
613 => 0.10406706004561
614 => 0.099941446132843
615 => 0.09802096171957
616 => 0.097387169874992
617 => 0.0974102070048
618 => 0.09677474012241
619 => 0.096961913598902
620 => 0.096709648825784
621 => 0.096231920374902
622 => 0.097194280573449
623 => 0.097305183621326
624 => 0.097080557251638
625 => 0.097133464893292
626 => 0.095273654491446
627 => 0.095415051837003
628 => 0.094627733449038
629 => 0.094480120742559
630 => 0.092489848417439
701 => 0.088963792498902
702 => 0.090917569760302
703 => 0.088557681571188
704 => 0.087663956155829
705 => 0.091894713269318
706 => 0.09147006259806
707 => 0.090743245240075
708 => 0.089668130885606
709 => 0.089269360513494
710 => 0.086846557967895
711 => 0.086703405868353
712 => 0.087904212231123
713 => 0.087350081411928
714 => 0.086571871876027
715 => 0.083753275822829
716 => 0.080584240653953
717 => 0.080679893905856
718 => 0.08168790503108
719 => 0.084618833326491
720 => 0.0834736689359
721 => 0.082642839031278
722 => 0.082487249564798
723 => 0.084434777486411
724 => 0.087190937515207
725 => 0.088484066135113
726 => 0.087202614945686
727 => 0.085730552817504
728 => 0.085820150418368
729 => 0.086416203116479
730 => 0.086478839827319
731 => 0.085520678712305
801 => 0.08579039545372
802 => 0.085380671060094
803 => 0.082866193212702
804 => 0.082820714281938
805 => 0.082203620866755
806 => 0.082184935523392
807 => 0.081135105683
808 => 0.080988227231198
809 => 0.078903726362983
810 => 0.080275751146892
811 => 0.07935546895638
812 => 0.077968386622655
813 => 0.077729253105498
814 => 0.07772206446321
815 => 0.079146287874011
816 => 0.080259108267113
817 => 0.079371477659091
818 => 0.079169381375641
819 => 0.081327240955897
820 => 0.081052633654983
821 => 0.080814825503418
822 => 0.086944153614456
823 => 0.082092312137133
824 => 0.07997663231959
825 => 0.07735807678868
826 => 0.078210691673448
827 => 0.078390350157187
828 => 0.072093196135461
829 => 0.069538441533107
830 => 0.068661746027475
831 => 0.068157195369329
901 => 0.068387125439995
902 => 0.066087546655049
903 => 0.067632901630055
904 => 0.065641660780848
905 => 0.06530782277242
906 => 0.068868408078209
907 => 0.069363842722872
908 => 0.067250164609261
909 => 0.068607488131603
910 => 0.068115303754193
911 => 0.06567579489
912 => 0.0655826235952
913 => 0.064358563800031
914 => 0.062443147245273
915 => 0.061567750482261
916 => 0.061111836247541
917 => 0.061299955346377
918 => 0.061204836573466
919 => 0.060584122239403
920 => 0.061240415192513
921 => 0.059563857896289
922 => 0.058896239271993
923 => 0.058594691428033
924 => 0.057106650328597
925 => 0.05947478545268
926 => 0.059941337905104
927 => 0.060408809609985
928 => 0.064477831644488
929 => 0.064274554802581
930 => 0.066112078453581
1001 => 0.066040675663493
1002 => 0.065516584152318
1003 => 0.06330552827554
1004 => 0.064186815739742
1005 => 0.061474349907407
1006 => 0.063506713738741
1007 => 0.062579227759663
1008 => 0.063193129796247
1009 => 0.062089278581153
1010 => 0.062700195420486
1011 => 0.060051974799529
1012 => 0.057579103645149
1013 => 0.058574259185281
1014 => 0.059656107067244
1015 => 0.062001828925055
1016 => 0.060604736338328
1017 => 0.061107183662434
1018 => 0.059424069235344
1019 => 0.055951323414388
1020 => 0.055970978778596
1021 => 0.055436772491922
1022 => 0.054975140264841
1023 => 0.060765209228106
1024 => 0.060045122625079
1025 => 0.05889775886576
1026 => 0.060433550852032
1027 => 0.060839638629499
1028 => 0.060851199377631
1029 => 0.061971673566286
1030 => 0.062569670841628
1031 => 0.062675070453275
1101 => 0.064438160798571
1102 => 0.065029125426591
1103 => 0.067463225092958
1104 => 0.06251893495079
1105 => 0.062417110548992
1106 => 0.060455162594795
1107 => 0.059210864185073
1108 => 0.060540360771452
1109 => 0.061718113252602
1110 => 0.060491758647357
1111 => 0.060651894669043
1112 => 0.059005613808354
1113 => 0.059594081751336
1114 => 0.060100949619025
1115 => 0.059821086974803
1116 => 0.059402119050898
1117 => 0.06162155098006
1118 => 0.061496321932593
1119 => 0.063563107969548
1120 => 0.065174315482642
1121 => 0.0680618873839
1122 => 0.065048555572409
1123 => 0.06493873778429
1124 => 0.066012224278488
1125 => 0.065028961081402
1126 => 0.065650349480869
1127 => 0.067961772106118
1128 => 0.068010608823898
1129 => 0.067192530878535
1130 => 0.067142750761213
1201 => 0.067299871579412
1202 => 0.068220133119183
1203 => 0.067898565460406
1204 => 0.068270691696239
1205 => 0.068736041252348
1206 => 0.070660924320539
1207 => 0.071125007111618
1208 => 0.069997526528634
1209 => 0.070099325401413
1210 => 0.069677616713343
1211 => 0.069270251404661
1212 => 0.070185949127651
1213 => 0.071859404714499
1214 => 0.071848994234146
1215 => 0.072237203402966
1216 => 0.072479054499043
1217 => 0.071440852548859
1218 => 0.070765021255033
1219 => 0.071024177977349
1220 => 0.07143857522003
1221 => 0.070889794536653
1222 => 0.067502465938911
1223 => 0.068529965052077
1224 => 0.068358938957507
1225 => 0.068115377001355
1226 => 0.069148535305059
1227 => 0.06904888466626
1228 => 0.066063961150853
1229 => 0.066255046269748
1230 => 0.066075581669826
1231 => 0.066655468507177
]
'min_raw' => 0.054975140264841
'max_raw' => 0.12315110063981
'avg_raw' => 0.089063120452323
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.054975'
'max' => '$0.123151'
'avg' => '$0.089063'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.013405972912265
'max_diff' => -0.089491351257355
'year' => 2034
]
9 => [
'items' => [
101 => 0.064997645289158
102 => 0.065507580545411
103 => 0.065827407157787
104 => 0.0660157874895
105 => 0.06669634642125
106 => 0.066616490685591
107 => 0.066691382476599
108 => 0.067700471711488
109 => 0.072804098783946
110 => 0.073081877944982
111 => 0.071713991763088
112 => 0.072260435312393
113 => 0.071211383191795
114 => 0.071915618908391
115 => 0.072397439100038
116 => 0.07022018630268
117 => 0.070091263522274
118 => 0.069037881590407
119 => 0.06960390937399
120 => 0.068703318471471
121 => 0.068924291977617
122 => 0.068306430790309
123 => 0.069418457912527
124 => 0.070661877026712
125 => 0.070976013799064
126 => 0.07014965519539
127 => 0.069551317106644
128 => 0.068500832527626
129 => 0.070247811794109
130 => 0.070758681769857
131 => 0.07024512841161
201 => 0.070126126877142
202 => 0.069900619184356
203 => 0.07017396940021
204 => 0.070755899462254
205 => 0.070481471991555
206 => 0.070662736170742
207 => 0.069971944038493
208 => 0.071441196236904
209 => 0.073774722322778
210 => 0.073782224990714
211 => 0.073507796040749
212 => 0.073395505627077
213 => 0.073677086383483
214 => 0.073829832392786
215 => 0.074740412925922
216 => 0.075717502117105
217 => 0.080277151034946
218 => 0.078996819864546
219 => 0.083042411639182
220 => 0.086241949478574
221 => 0.087201350977774
222 => 0.086318746741839
223 => 0.083299405328046
224 => 0.083151262033757
225 => 0.087663432839027
226 => 0.086388537916022
227 => 0.086236893221613
228 => 0.084623649880853
301 => 0.085577276499317
302 => 0.085368704369
303 => 0.085039463057598
304 => 0.086858916215421
305 => 0.090264770103163
306 => 0.089733935834863
307 => 0.08933769267827
308 => 0.087601470510729
309 => 0.088647064054849
310 => 0.088274748220813
311 => 0.089874453321299
312 => 0.088926823457578
313 => 0.086378879333087
314 => 0.086784647833046
315 => 0.08672331674057
316 => 0.087985506277755
317 => 0.087606628308162
318 => 0.086649334736233
319 => 0.090253129264839
320 => 0.09001911889351
321 => 0.090350892097836
322 => 0.090496948922808
323 => 0.092690515146387
324 => 0.093589149041898
325 => 0.09379315466898
326 => 0.094646787366875
327 => 0.093771915509814
328 => 0.097272026711119
329 => 0.099599396422836
330 => 0.10230275610835
331 => 0.10625309120346
401 => 0.10773845374186
402 => 0.10747013629426
403 => 0.11046523527883
404 => 0.11584736157677
405 => 0.10855801789996
406 => 0.11623371449155
407 => 0.11380367757083
408 => 0.1080421037463
409 => 0.1076711263165
410 => 0.11157293100372
411 => 0.12022675826519
412 => 0.11805907268708
413 => 0.12023030382224
414 => 0.11769744737135
415 => 0.11757166969997
416 => 0.12010728863786
417 => 0.12603190049563
418 => 0.12321733948276
419 => 0.11918197611213
420 => 0.1221616256278
421 => 0.11958037746378
422 => 0.11376410290439
423 => 0.11805741509877
424 => 0.11518659950088
425 => 0.1160244561133
426 => 0.12205848349847
427 => 0.12133245335943
428 => 0.12227200358793
429 => 0.12061372202694
430 => 0.11906462556198
501 => 0.11617312197271
502 => 0.11531709030933
503 => 0.11555366666429
504 => 0.11531697307384
505 => 0.11369920338993
506 => 0.11334984618072
507 => 0.11276756885968
508 => 0.1129480409492
509 => 0.11185318923441
510 => 0.11391940062814
511 => 0.1143029076702
512 => 0.11580652401483
513 => 0.11596263445178
514 => 0.12015018456892
515 => 0.11784375233332
516 => 0.11939110620474
517 => 0.11925269631022
518 => 0.1081669745217
519 => 0.10969448917401
520 => 0.11207082261249
521 => 0.1110002876195
522 => 0.10948680160601
523 => 0.10826458050214
524 => 0.10641279055125
525 => 0.10901914934665
526 => 0.11244623400726
527 => 0.11604955097433
528 => 0.12037870021158
529 => 0.11941248449868
530 => 0.11596862054063
531 => 0.11612310976204
601 => 0.11707810133956
602 => 0.11584130047654
603 => 0.11547654375682
604 => 0.11702798936749
605 => 0.11703867332075
606 => 0.11561558445547
607 => 0.11403408160424
608 => 0.11402745504954
609 => 0.11374604189267
610 => 0.11774751014679
611 => 0.11994791309249
612 => 0.12020018574409
613 => 0.11993093313303
614 => 0.12003455777677
615 => 0.11875419178524
616 => 0.12168072876114
617 => 0.12436640849473
618 => 0.12364658895495
619 => 0.12256747713644
620 => 0.12170791259593
621 => 0.12344410286656
622 => 0.12336679304683
623 => 0.1243429514252
624 => 0.12429866724259
625 => 0.12397042189512
626 => 0.12364660067763
627 => 0.12493051520189
628 => 0.12456076843794
629 => 0.12419044735513
630 => 0.12344771173025
701 => 0.12354866183721
702 => 0.12246973634257
703 => 0.12197057604048
704 => 0.11446440275004
705 => 0.11245850797555
706 => 0.11308960330536
707 => 0.11329737627432
708 => 0.11242440829783
709 => 0.11367602012904
710 => 0.11348095775093
711 => 0.11423983135647
712 => 0.11376572007419
713 => 0.11378517776659
714 => 0.1151794379566
715 => 0.11558419762137
716 => 0.11537833358905
717 => 0.11552251370068
718 => 0.11884508351845
719 => 0.11837272034016
720 => 0.11812178681625
721 => 0.11819129711728
722 => 0.11904028494242
723 => 0.11927795518044
724 => 0.11827092968115
725 => 0.11874584872816
726 => 0.12076799375414
727 => 0.12147563006973
728 => 0.12373406550441
729 => 0.12277464199127
730 => 0.12453570537251
731 => 0.12994861381571
801 => 0.13427281962491
802 => 0.13029610125741
803 => 0.13823695454171
804 => 0.1444200478713
805 => 0.14418273045083
806 => 0.14310456511129
807 => 0.1360652777416
808 => 0.12958762055415
809 => 0.1350064558473
810 => 0.13502026957286
811 => 0.13455478681545
812 => 0.13166371338681
813 => 0.1344541837269
814 => 0.134675681129
815 => 0.13455170148474
816 => 0.13233512226548
817 => 0.12895081548999
818 => 0.12961210093303
819 => 0.1306952999786
820 => 0.12864457820635
821 => 0.1279892483425
822 => 0.129207631241
823 => 0.13313351480013
824 => 0.13239134925437
825 => 0.13237196831264
826 => 0.13554726724456
827 => 0.13327443848171
828 => 0.1296204418602
829 => 0.12869775952297
830 => 0.12542285881912
831 => 0.12768484440007
901 => 0.12776624923419
902 => 0.12652738284844
903 => 0.12972096903962
904 => 0.12969153958065
905 => 0.1327233743666
906 => 0.13851910377219
907 => 0.13680502139644
908 => 0.13481173008506
909 => 0.13502845611858
910 => 0.13740540578086
911 => 0.13596824775456
912 => 0.13648505980104
913 => 0.13740462352393
914 => 0.13795941914943
915 => 0.13494862956589
916 => 0.13424667049126
917 => 0.13281070857871
918 => 0.13243609291922
919 => 0.13360565393467
920 => 0.1332975159283
921 => 0.1277594074731
922 => 0.12718064432579
923 => 0.12719839416523
924 => 0.12574306671263
925 => 0.12352334302879
926 => 0.12935664433709
927 => 0.12888814860504
928 => 0.12837096557554
929 => 0.12843431754564
930 => 0.13096635593465
1001 => 0.12949764579802
1002 => 0.13340245241311
1003 => 0.13259974156228
1004 => 0.13177644420703
1005 => 0.13166263943428
1006 => 0.13134574019294
1007 => 0.13025897478137
1008 => 0.12894664024242
1009 => 0.12808012330733
1010 => 0.11814714346131
1011 => 0.11999064674325
1012 => 0.1221114292285
1013 => 0.12284351484391
1014 => 0.12159123173997
1015 => 0.13030842255107
1016 => 0.13190113731319
1017 => 0.1270767004085
1018 => 0.12617424524409
1019 => 0.1303675873614
1020 => 0.12783848944944
1021 => 0.12897734208434
1022 => 0.12651576560677
1023 => 0.13151749896713
1024 => 0.13147939413912
1025 => 0.12953360689267
1026 => 0.13117817294919
1027 => 0.13089238912609
1028 => 0.12869560011711
1029 => 0.13158714109706
1030 => 0.13158857526531
1031 => 0.12971579734566
1101 => 0.12752880273932
1102 => 0.12713781975821
1103 => 0.12684326660312
1104 => 0.12890490006462
1105 => 0.13075335417965
1106 => 0.13419286901707
1107 => 0.13505764476805
1108 => 0.13843292209553
1109 => 0.13642310878629
1110 => 0.13731403299484
1111 => 0.13828125725214
1112 => 0.13874498012958
1113 => 0.13798936858553
1114 => 0.14323256359467
1115 => 0.14367524990079
1116 => 0.14382367879001
1117 => 0.14205570293343
1118 => 0.14362607929397
1119 => 0.14289135220027
1120 => 0.14480290798501
1121 => 0.14510266434003
1122 => 0.14484878137147
1123 => 0.14494392876989
1124 => 0.14046978679256
1125 => 0.14023777892806
1126 => 0.13707433523303
1127 => 0.13836346192175
1128 => 0.13595350136664
1129 => 0.13671772468401
1130 => 0.13705458704052
1201 => 0.13687862926225
1202 => 0.13843634721054
1203 => 0.13711196873374
1204 => 0.13361671618548
1205 => 0.130120511358
1206 => 0.13007661935434
1207 => 0.12915613033641
1208 => 0.12849078537242
1209 => 0.12861895441686
1210 => 0.12907063884684
1211 => 0.12846453265223
1212 => 0.12859387613921
1213 => 0.1307418398343
1214 => 0.13117259863477
1215 => 0.12970871192244
1216 => 0.12383099553456
1217 => 0.12238858918984
1218 => 0.12342536226626
1219 => 0.12292985151247
1220 => 0.099213984452097
1221 => 0.1047856756355
1222 => 0.10147516593108
1223 => 0.1030008011121
1224 => 0.099621627956218
1225 => 0.10123434650385
1226 => 0.10093653627515
1227 => 0.10989565081974
1228 => 0.10975576656898
1229 => 0.10982272175731
1230 => 0.10662677616768
1231 => 0.11171800427134
]
'min_raw' => 0.064997645289158
'max_raw' => 0.14510266434003
'avg_raw' => 0.10505015481459
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.064997'
'max' => '$0.1451026'
'avg' => '$0.10505'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.010022505024318
'max_diff' => 0.021951563700226
'year' => 2035
]
10 => [
'items' => [
101 => 0.11422612630985
102 => 0.11376193967203
103 => 0.11387876544826
104 => 0.1118713115503
105 => 0.10984215829912
106 => 0.10759151505912
107 => 0.11177293201113
108 => 0.11130802982523
109 => 0.11237434817315
110 => 0.11508629596039
111 => 0.11548564057375
112 => 0.11602236378385
113 => 0.11582998671959
114 => 0.12041318886958
115 => 0.11985813284828
116 => 0.12119565815911
117 => 0.11844426711644
118 => 0.11533080698722
119 => 0.11592257397111
120 => 0.11586558205187
121 => 0.1151400095077
122 => 0.11448499505736
123 => 0.11339458054672
124 => 0.11684481340936
125 => 0.116704740256
126 => 0.11897236179165
127 => 0.11857153765872
128 => 0.11589473600074
129 => 0.11599033849563
130 => 0.11663331121872
131 => 0.11885864715468
201 => 0.1195192783729
202 => 0.11921324767102
203 => 0.11993759964283
204 => 0.12051009790714
205 => 0.12000949661049
206 => 0.12709695529639
207 => 0.12415374831411
208 => 0.12558824691857
209 => 0.12593036638318
210 => 0.12505403456858
211 => 0.12524407956008
212 => 0.12553194593804
213 => 0.12727981421497
214 => 0.13186672632341
215 => 0.13389823847207
216 => 0.14001014300435
217 => 0.13372954966813
218 => 0.13335688525124
219 => 0.13445782381934
220 => 0.13804615879059
221 => 0.14095416724963
222 => 0.14191892142252
223 => 0.14204642961282
224 => 0.14385637257682
225 => 0.14489379813034
226 => 0.14363659789476
227 => 0.14257125232946
228 => 0.13875531675011
229 => 0.13919702168387
301 => 0.14223993065975
302 => 0.14653821881463
303 => 0.15022659721217
304 => 0.14893505565032
305 => 0.15878860608103
306 => 0.15976554535809
307 => 0.15963056393822
308 => 0.16185617699943
309 => 0.15743878831116
310 => 0.15555026906405
311 => 0.14280159213287
312 => 0.14638345033875
313 => 0.15158989159617
314 => 0.1509007995726
315 => 0.14711974276289
316 => 0.15022372894153
317 => 0.14919745404025
318 => 0.14838798844542
319 => 0.15209630725794
320 => 0.14801885839424
321 => 0.15154921592467
322 => 0.14702149587502
323 => 0.14894095530338
324 => 0.14785137729804
325 => 0.14855646780115
326 => 0.1444345231273
327 => 0.14665862441876
328 => 0.14434199320141
329 => 0.14434089481658
330 => 0.14428975505406
331 => 0.14701526140775
401 => 0.1471041400721
402 => 0.14508998675871
403 => 0.14479971579926
404 => 0.14587299967351
405 => 0.14461646535025
406 => 0.14520438985157
407 => 0.14463427298447
408 => 0.14450592766919
409 => 0.14348325036086
410 => 0.14304265285733
411 => 0.14321542249126
412 => 0.1426256706618
413 => 0.1422703238523
414 => 0.1442190676297
415 => 0.14317793244153
416 => 0.14405949873013
417 => 0.14305484268174
418 => 0.13957226711021
419 => 0.13756940107145
420 => 0.13099113865176
421 => 0.13285672571367
422 => 0.13409361186581
423 => 0.13368482099991
424 => 0.13456306196094
425 => 0.13461697882317
426 => 0.13433145373413
427 => 0.13400085225905
428 => 0.1338399337444
429 => 0.13503928851459
430 => 0.13573555432712
501 => 0.13421774993858
502 => 0.13386214960669
503 => 0.13539673364377
504 => 0.1363328290199
505 => 0.14324443133062
506 => 0.14273239750726
507 => 0.14401750192233
508 => 0.14387281888672
509 => 0.14521981304691
510 => 0.1474215792166
511 => 0.14294477297011
512 => 0.14372179173819
513 => 0.14353128468024
514 => 0.14561119078529
515 => 0.14561768402512
516 => 0.14437067641613
517 => 0.14504669947135
518 => 0.14466936194765
519 => 0.1453512618532
520 => 0.14272555898337
521 => 0.14592338165172
522 => 0.14773634104153
523 => 0.14776151398441
524 => 0.14862084234665
525 => 0.14949396973162
526 => 0.15116986171371
527 => 0.14944723001383
528 => 0.14634838328057
529 => 0.1465721100055
530 => 0.14475525729962
531 => 0.14478579892184
601 => 0.1446227653488
602 => 0.14511204137409
603 => 0.14283292755655
604 => 0.1433678310141
605 => 0.14261896304114
606 => 0.14372016384547
607 => 0.14253545381502
608 => 0.14353119281197
609 => 0.14396092075378
610 => 0.14554662611045
611 => 0.14230124384454
612 => 0.1356836897113
613 => 0.13707477982019
614 => 0.13501724828137
615 => 0.13520768065886
616 => 0.13559238436848
617 => 0.13434543377837
618 => 0.13458331265503
619 => 0.13457481394763
620 => 0.13450157667861
621 => 0.1341771966706
622 => 0.13370678148237
623 => 0.13558077080615
624 => 0.13589919810933
625 => 0.13660702255952
626 => 0.13871302800138
627 => 0.13850258839471
628 => 0.13884582412425
629 => 0.13809654245386
630 => 0.13524243768656
701 => 0.13539742930693
702 => 0.13346468131726
703 => 0.13655759784802
704 => 0.13582515438903
705 => 0.1353529433262
706 => 0.1352240961627
707 => 0.1373353219847
708 => 0.13796703384005
709 => 0.1375733934044
710 => 0.13676602538656
711 => 0.13831641065774
712 => 0.13873122835081
713 => 0.1388240907344
714 => 0.14157107617806
715 => 0.1389776167055
716 => 0.13960188817732
717 => 0.14447227599427
718 => 0.14005550631187
719 => 0.14239516771835
720 => 0.14228065346752
721 => 0.14347754507325
722 => 0.1421824734212
723 => 0.14219852738645
724 => 0.14326128604788
725 => 0.14176883317744
726 => 0.14139928085831
727 => 0.14088874697621
728 => 0.14200347903026
729 => 0.14267171048167
730 => 0.14805716521813
731 => 0.15153641458446
801 => 0.1513853711936
802 => 0.15276562504468
803 => 0.15214380804309
804 => 0.15013579691793
805 => 0.15356322705771
806 => 0.15247864475172
807 => 0.15256805639925
808 => 0.15256472849327
809 => 0.15328588091092
810 => 0.15277487833037
811 => 0.15176763979075
812 => 0.1524362917392
813 => 0.15442194897866
814 => 0.16058548997734
815 => 0.16403468917625
816 => 0.16037784385462
817 => 0.16290028679037
818 => 0.16138771986724
819 => 0.16111284146234
820 => 0.16269712203306
821 => 0.1642841756772
822 => 0.16418308722108
823 => 0.16303096777155
824 => 0.16238016472845
825 => 0.16730826340578
826 => 0.17093920256326
827 => 0.17069159685485
828 => 0.1717844479261
829 => 0.17499309247192
830 => 0.17528645071715
831 => 0.17524949432101
901 => 0.17452237530145
902 => 0.17768170255196
903 => 0.1803172689274
904 => 0.17435406825691
905 => 0.1766247770082
906 => 0.17764417132433
907 => 0.17914094462106
908 => 0.18166625206098
909 => 0.18440940574545
910 => 0.18479731775358
911 => 0.18452207562051
912 => 0.18271289202567
913 => 0.18571448351985
914 => 0.18747274542116
915 => 0.18851975014628
916 => 0.19117477992421
917 => 0.17765046675658
918 => 0.16807728569456
919 => 0.16658229523331
920 => 0.16962241712385
921 => 0.17042407302187
922 => 0.17010092653457
923 => 0.15932544089371
924 => 0.16652556453145
925 => 0.17427229216206
926 => 0.17456987551989
927 => 0.17844804934821
928 => 0.17971094171843
929 => 0.18283337997409
930 => 0.18263807061105
1001 => 0.18339833463746
1002 => 0.18322356310373
1003 => 0.18900722246539
1004 => 0.19538745762304
1005 => 0.19516653036744
1006 => 0.19424929607601
1007 => 0.19561154541046
1008 => 0.20219663184071
1009 => 0.20159038260607
1010 => 0.20217930209733
1011 => 0.20994349011779
1012 => 0.22003803898726
1013 => 0.21534810756126
1014 => 0.22552390926427
1015 => 0.23192903704025
1016 => 0.24300604322623
1017 => 0.24161914749634
1018 => 0.24593134471771
1019 => 0.23913631468596
1020 => 0.22353355223091
1021 => 0.22106435534743
1022 => 0.22600775003819
1023 => 0.23816060351604
1024 => 0.22562501343384
1025 => 0.22816094698108
1026 => 0.22743059794887
1027 => 0.22739168075273
1028 => 0.22887699184182
1029 => 0.22672247063848
1030 => 0.21794456366509
1031 => 0.22196742670246
1101 => 0.22041400608998
1102 => 0.22213764207471
1103 => 0.23143939460272
1104 => 0.227326868084
1105 => 0.22299465547105
1106 => 0.22842821148263
1107 => 0.23534699545777
1108 => 0.23491403039086
1109 => 0.23407389719569
1110 => 0.23880968402893
1111 => 0.2466318164221
1112 => 0.24874610737611
1113 => 0.25030683373357
1114 => 0.25052203152958
1115 => 0.25273870257314
1116 => 0.2408191036989
1117 => 0.25973581322932
1118 => 0.26300220640167
1119 => 0.26238825986339
1120 => 0.26601871840362
1121 => 0.26495054540524
1122 => 0.2634029303218
1123 => 0.26915797932874
1124 => 0.26256028005079
1125 => 0.25319567655299
1126 => 0.24805806986324
1127 => 0.25482368479121
1128 => 0.2589552097403
1129 => 0.26168588491731
1130 => 0.26251218557596
1201 => 0.24174438822877
1202 => 0.23055169729347
1203 => 0.23772608385853
1204 => 0.24647933061762
1205 => 0.2407704789712
1206 => 0.24099425514745
1207 => 0.23285493295948
1208 => 0.24719948002615
1209 => 0.24510960017517
1210 => 0.25595190053901
1211 => 0.25336429854228
1212 => 0.26220577359332
1213 => 0.25987751690228
1214 => 0.26954198025568
1215 => 0.27339739634226
1216 => 0.27987123999921
1217 => 0.28463342574655
1218 => 0.28742987230348
1219 => 0.28726198414141
1220 => 0.29834289858413
1221 => 0.29180887047492
1222 => 0.28360059121757
1223 => 0.2834521293426
1224 => 0.28770331348219
1225 => 0.29661262918338
1226 => 0.29892268511943
1227 => 0.30021369124405
1228 => 0.29823647042394
1229 => 0.29114425120941
1230 => 0.28808186691094
1231 => 0.29069110705905
]
'min_raw' => 0.10759151505912
'max_raw' => 0.30021369124405
'avg_raw' => 0.20390260315158
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.107591'
'max' => '$0.300213'
'avg' => '$0.2039026'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.042593869769961
'max_diff' => 0.15511102690402
'year' => 2036
]
11 => [
'items' => [
101 => 0.28750023057248
102 => 0.29300857859012
103 => 0.30057271693799
104 => 0.299010752281
105 => 0.30423216594649
106 => 0.30963577978154
107 => 0.31736319025714
108 => 0.31938342150064
109 => 0.32272278692364
110 => 0.3261600908683
111 => 0.32726406025739
112 => 0.32937188036274
113 => 0.32936077111034
114 => 0.33571282887046
115 => 0.34271934528674
116 => 0.34536414303265
117 => 0.35144570961439
118 => 0.34103123996668
119 => 0.34893073482727
120 => 0.35605627692871
121 => 0.34756091188376
122 => 0.35926979343203
123 => 0.35972442276965
124 => 0.36658878600696
125 => 0.35963043881308
126 => 0.35549859446118
127 => 0.36742707428692
128 => 0.37319888993099
129 => 0.3714603720864
130 => 0.35823016544786
131 => 0.35052961771397
201 => 0.33037579896965
202 => 0.35424886785247
203 => 0.36587674331833
204 => 0.35820005205949
205 => 0.36207172860399
206 => 0.38319434043542
207 => 0.39123646343299
208 => 0.38956375806818
209 => 0.38984641773976
210 => 0.39418580133439
211 => 0.41342901793518
212 => 0.40189803649372
213 => 0.41071303974809
214 => 0.41538848568935
215 => 0.41973130044502
216 => 0.40906671996578
217 => 0.3951922574561
218 => 0.39079763276897
219 => 0.35743675640485
220 => 0.35570017791115
221 => 0.35472538377893
222 => 0.34857944466262
223 => 0.3437504200316
224 => 0.33991020035483
225 => 0.32983231713631
226 => 0.3332333068832
227 => 0.31717126445057
228 => 0.32744718999513
301 => 0.30181178244109
302 => 0.32316171161234
303 => 0.31154191582659
304 => 0.31934429618332
305 => 0.31931707441328
306 => 0.3049504184296
307 => 0.29666403108268
308 => 0.30194443961116
309 => 0.30760545671304
310 => 0.30852393769187
311 => 0.31586359413213
312 => 0.31791193447922
313 => 0.31170536759967
314 => 0.30128054559967
315 => 0.30370199398539
316 => 0.29661496050843
317 => 0.28419520693885
318 => 0.29311529078061
319 => 0.29616099959259
320 => 0.29750615811417
321 => 0.28529275689682
322 => 0.28145504106849
323 => 0.27941187336304
324 => 0.29970394887183
325 => 0.30081559457497
326 => 0.29512825798684
327 => 0.3208355586606
328 => 0.31501720477762
329 => 0.32151773159622
330 => 0.30348227292481
331 => 0.30417125173402
401 => 0.29563297656793
402 => 0.30041384013319
403 => 0.29703487985969
404 => 0.30002759360253
405 => 0.30182141388057
406 => 0.31035828799972
407 => 0.32325918900182
408 => 0.30908316368599
409 => 0.30290646645146
410 => 0.3067384546767
411 => 0.31694354429401
412 => 0.33240477745316
413 => 0.32325141623663
414 => 0.32731352251037
415 => 0.32820091202065
416 => 0.32145156233543
417 => 0.33265363560323
418 => 0.33865691767292
419 => 0.34481504287223
420 => 0.35016197043605
421 => 0.34235535224755
422 => 0.350709552744
423 => 0.34397754185877
424 => 0.33793823215222
425 => 0.33794739129213
426 => 0.33415884409298
427 => 0.32681805650695
428 => 0.3254643026482
429 => 0.33250670118169
430 => 0.33815403788792
501 => 0.33861917958796
502 => 0.34174583535917
503 => 0.34359615803746
504 => 0.36173183567635
505 => 0.36902615524891
506 => 0.37794551114784
507 => 0.38142010293782
508 => 0.39187737851557
509 => 0.38343227918814
510 => 0.38160512882648
511 => 0.35623919882363
512 => 0.36039286844057
513 => 0.3670432942668
514 => 0.356348861896
515 => 0.36313201771626
516 => 0.36447115636206
517 => 0.35598546917631
518 => 0.36051804134712
519 => 0.34848087347544
520 => 0.32352156636763
521 => 0.33268142244703
522 => 0.33942615969569
523 => 0.32980058802175
524 => 0.34705405268621
525 => 0.33697493481304
526 => 0.33378033833022
527 => 0.32131707849488
528 => 0.3271992573823
529 => 0.33515498855222
530 => 0.33023927164223
531 => 0.34044012232907
601 => 0.35488724736914
602 => 0.36518312901386
603 => 0.36597351896207
604 => 0.35935395683501
605 => 0.36996184738911
606 => 0.3700391142909
607 => 0.35807337041137
608 => 0.3507444189107
609 => 0.3490792657095
610 => 0.35323914487861
611 => 0.35829000614597
612 => 0.3662538066102
613 => 0.37106616444055
614 => 0.38361424138474
615 => 0.38700939122427
616 => 0.39073963155281
617 => 0.39572438299525
618 => 0.40170985516593
619 => 0.38861398280959
620 => 0.38913430623207
621 => 0.37693961121855
622 => 0.36390783070043
623 => 0.37379732767931
624 => 0.38672652943454
625 => 0.38376055626639
626 => 0.38342682369564
627 => 0.38398806930994
628 => 0.38175182240079
629 => 0.37163736050985
630 => 0.36655794106811
701 => 0.37311168804606
702 => 0.37659471289113
703 => 0.38199658067413
704 => 0.38133068645028
705 => 0.39524531774106
706 => 0.40065212270404
707 => 0.39926883062428
708 => 0.39952338965774
709 => 0.40931215178056
710 => 0.42019926847361
711 => 0.43039648993823
712 => 0.4407695415929
713 => 0.4282644229561
714 => 0.42191509492083
715 => 0.42846598073787
716 => 0.42498998851296
717 => 0.4449640708836
718 => 0.44634703300979
719 => 0.46631967102693
720 => 0.48527608280269
721 => 0.47336990020573
722 => 0.48459689412842
723 => 0.49673980340606
724 => 0.52016544551865
725 => 0.51227651337915
726 => 0.50623371499563
727 => 0.50052329972178
728 => 0.51240576740375
729 => 0.52769237224955
730 => 0.53098496052005
731 => 0.5363202113838
801 => 0.53071084746401
802 => 0.53746670845422
803 => 0.56131786642543
804 => 0.55487307300162
805 => 0.54572043028756
806 => 0.56454862881626
807 => 0.57136248067103
808 => 0.61918566142973
809 => 0.67956440261465
810 => 0.6545672072959
811 => 0.6390506415071
812 => 0.64269740252533
813 => 0.66474567485669
814 => 0.67182688015234
815 => 0.65257772312092
816 => 0.65937685080364
817 => 0.69684071281088
818 => 0.71693887279317
819 => 0.68964287199422
820 => 0.61433428836499
821 => 0.54489633495239
822 => 0.5633144070292
823 => 0.56122636923501
824 => 0.60147661524983
825 => 0.55471936680989
826 => 0.55550663895797
827 => 0.59658921743463
828 => 0.58562908983076
829 => 0.56787508677957
830 => 0.54502595882242
831 => 0.50278723250509
901 => 0.46537521469181
902 => 0.53874879709679
903 => 0.53558479480229
904 => 0.53100285060098
905 => 0.54119947160285
906 => 0.59071136882658
907 => 0.5895699593412
908 => 0.58230889454746
909 => 0.58781634819742
910 => 0.56690960352658
911 => 0.57229774766599
912 => 0.5448853356258
913 => 0.55727689071141
914 => 0.56783699466275
915 => 0.56995709187599
916 => 0.57473377915227
917 => 0.53391750936646
918 => 0.55224281619757
919 => 0.5630072171118
920 => 0.51437326216904
921 => 0.56204588019267
922 => 0.53320698891749
923 => 0.52341863607309
924 => 0.53659736366065
925 => 0.53146160070304
926 => 0.52704617329421
927 => 0.52458228893341
928 => 0.53425929199063
929 => 0.5338078482315
930 => 0.51797439300453
1001 => 0.49732029611514
1002 => 0.50425248897884
1003 => 0.5017339583218
1004 => 0.49260647832379
1005 => 0.49875729778631
1006 => 0.47167220173184
1007 => 0.42507370173091
1008 => 0.45585809818218
1009 => 0.45467293240579
1010 => 0.45407531807834
1011 => 0.47720894119325
1012 => 0.47498517711424
1013 => 0.47094902353568
1014 => 0.49253235119813
1015 => 0.48465414626461
1016 => 0.50893291753117
1017 => 0.5249244865398
1018 => 0.52086850736615
1019 => 0.53590865531273
1020 => 0.50441219270136
1021 => 0.51487405416211
1022 => 0.51703022930965
1023 => 0.49226601628506
1024 => 0.47534901241932
1025 => 0.47422084112944
1026 => 0.44488908773297
1027 => 0.46055787363972
1028 => 0.47434575681925
1029 => 0.46774243075921
1030 => 0.46565201499736
1031 => 0.4763314957688
1101 => 0.47716138288831
1102 => 0.45823986861603
1103 => 0.46217425059966
1104 => 0.47858127750801
1105 => 0.46176083561767
1106 => 0.42908146462832
1107 => 0.42097652879531
1108 => 0.41989518095158
1109 => 0.39791395216188
1110 => 0.42151813936293
1111 => 0.41121427909678
1112 => 0.44376405021833
1113 => 0.42517179552163
1114 => 0.42437032058152
1115 => 0.42315877365874
1116 => 0.40423862200632
1117 => 0.40838093277984
1118 => 0.42215060468274
1119 => 0.42706377874416
1120 => 0.4265512944371
1121 => 0.4220831257784
1122 => 0.42412863050963
1123 => 0.41753934706925
1124 => 0.41521253394238
1125 => 0.4078684716736
1126 => 0.39707472898747
1127 => 0.39857566510985
1128 => 0.37719043651223
1129 => 0.36553862897226
1130 => 0.36231356221355
1201 => 0.35800086815899
1202 => 0.36280069248266
1203 => 0.37712985484653
1204 => 0.35984584493432
1205 => 0.33021362227217
1206 => 0.33199456934502
1207 => 0.33599582864977
1208 => 0.32853950840634
1209 => 0.32148272705746
1210 => 0.32761802590555
1211 => 0.31506246252891
1212 => 0.33751310849892
1213 => 0.33690588144264
1214 => 0.34527409392163
1215 => 0.35050690891775
1216 => 0.33844696449567
1217 => 0.33541392108707
1218 => 0.33714168045675
1219 => 0.3085856667076
1220 => 0.34294045837411
1221 => 0.34323756003905
1222 => 0.34069359520814
1223 => 0.35898646118536
1224 => 0.39759011408527
1225 => 0.38306586703598
1226 => 0.37744163958081
1227 => 0.36674997907724
1228 => 0.38099598189026
1229 => 0.37990211114649
1230 => 0.37495521280497
1231 => 0.37196331325275
]
'min_raw' => 0.27941187336304
'max_raw' => 0.71693887279317
'avg_raw' => 0.49817537307811
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.279411'
'max' => '$0.716938'
'avg' => '$0.498175'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.17182035830392
'max_diff' => 0.41672518154912
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0087704194280696
]
1 => [
'year' => 2028
'avg' => 0.01505258580952
]
2 => [
'year' => 2029
'avg' => 0.041120951466972
]
3 => [
'year' => 2030
'avg' => 0.031724752817611
]
4 => [
'year' => 2031
'avg' => 0.031157638872228
]
5 => [
'year' => 2032
'avg' => 0.054629146612843
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0087704194280696
'min' => '$0.00877'
'max_raw' => 0.054629146612843
'max' => '$0.054629'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.054629146612843
]
1 => [
'year' => 2033
'avg' => 0.14051178253713
]
2 => [
'year' => 2034
'avg' => 0.089063120452323
]
3 => [
'year' => 2035
'avg' => 0.10505015481459
]
4 => [
'year' => 2036
'avg' => 0.20390260315158
]
5 => [
'year' => 2037
'avg' => 0.49817537307811
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.054629146612843
'min' => '$0.054629'
'max_raw' => 0.49817537307811
'max' => '$0.498175'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.49817537307811
]
]
]
]
'prediction_2025_max_price' => '$0.014995'
'last_price' => 0.01454034
'sma_50day_nextmonth' => '$0.013974'
'sma_200day_nextmonth' => '$0.017168'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.014367'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.014436'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.015217'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.014838'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.016563'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.020238'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.017479'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.014476'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.014573'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.014796'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.015134'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.016499'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.017738'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.020618'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.018331'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.019736'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.060982'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.052562'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.014914'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.015541'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.016942'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.018576'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.028451'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.068949'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.182624'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '42.99'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 13.25
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.015255'
'vwma_10_action' => 'SELL'
'hma_9' => '0.014011'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 11.77
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -35.28
'cci_20_action' => 'NEUTRAL'
'adx_14' => 16.34
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000830'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -88.23
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 30.51
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.004220'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 25
'buy_signals' => 8
'sell_pct' => 75.76
'buy_pct' => 24.24
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767695153
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Dimitra para 2026
A previsão de preço para Dimitra em 2026 sugere que o preço médio poderia variar entre $0.005023 na extremidade inferior e $0.014995 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Dimitra poderia potencialmente ganhar 3.13% até 2026 se DMTR atingir a meta de preço prevista.
Previsão de preço de Dimitra 2027-2032
A previsão de preço de DMTR para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.00877 na extremidade inferior e $0.054629 na extremidade superior. Considerando a volatilidade de preços no mercado, se Dimitra atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Dimitra | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.004836 | $0.00877 | $0.0127046 |
| 2028 | $0.008727 | $0.015052 | $0.021377 |
| 2029 | $0.019172 | $0.04112 | $0.063069 |
| 2030 | $0.0163055 | $0.031724 | $0.047144 |
| 2031 | $0.019278 | $0.031157 | $0.043037 |
| 2032 | $0.029426 | $0.054629 | $0.079831 |
Previsão de preço de Dimitra 2032-2037
A previsão de preço de Dimitra para 2032-2037 é atualmente estimada entre $0.054629 na extremidade inferior e $0.498175 na extremidade superior. Comparado ao preço atual, Dimitra poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Dimitra | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.029426 | $0.054629 | $0.079831 |
| 2033 | $0.068381 | $0.140511 | $0.212642 |
| 2034 | $0.054975 | $0.089063 | $0.123151 |
| 2035 | $0.064997 | $0.10505 | $0.1451026 |
| 2036 | $0.107591 | $0.2039026 | $0.300213 |
| 2037 | $0.279411 | $0.498175 | $0.716938 |
Dimitra Histograma de preços potenciais
Previsão de preço de Dimitra baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Dimitra é Baixista, com 8 indicadores técnicos mostrando sinais de alta e 25 indicando sinais de baixa. A previsão de preço de DMTR foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Dimitra
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Dimitra está projetado para aumentar no próximo mês, alcançando $0.017168 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Dimitra é esperado para alcançar $0.013974 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 42.99, sugerindo que o mercado de DMTR está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de DMTR para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.014367 | BUY |
| SMA 5 | $0.014436 | BUY |
| SMA 10 | $0.015217 | SELL |
| SMA 21 | $0.014838 | SELL |
| SMA 50 | $0.016563 | SELL |
| SMA 100 | $0.020238 | SELL |
| SMA 200 | $0.017479 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.014476 | BUY |
| EMA 5 | $0.014573 | SELL |
| EMA 10 | $0.014796 | SELL |
| EMA 21 | $0.015134 | SELL |
| EMA 50 | $0.016499 | SELL |
| EMA 100 | $0.017738 | SELL |
| EMA 200 | $0.020618 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.018331 | SELL |
| SMA 50 | $0.019736 | SELL |
| SMA 100 | $0.060982 | SELL |
| SMA 200 | $0.052562 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.018576 | SELL |
| EMA 50 | $0.028451 | SELL |
| EMA 100 | $0.068949 | SELL |
| EMA 200 | $0.182624 | SELL |
Osciladores de Dimitra
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 42.99 | NEUTRAL |
| Stoch RSI (14) | 13.25 | BUY |
| Estocástico Rápido (14) | 11.77 | BUY |
| Índice de Canal de Commodities (20) | -35.28 | NEUTRAL |
| Índice Direcional Médio (14) | 16.34 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000830 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -88.23 | BUY |
| Oscilador Ultimate (7, 14, 28) | 30.51 | NEUTRAL |
| VWMA (10) | 0.015255 | SELL |
| Média Móvel de Hull (9) | 0.014011 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.004220 | SELL |
Previsão do preço de Dimitra com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Dimitra
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Dimitra por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.020431 | $0.0287098 | $0.040342 | $0.056687 | $0.079655 | $0.111928 |
| Amazon.com stock | $0.030339 | $0.0633047 | $0.132089 | $0.275611 | $0.57508 | $1.19 |
| Apple stock | $0.020624 | $0.029254 | $0.041494 | $0.058857 | $0.083484 | $0.118416 |
| Netflix stock | $0.022942 | $0.036199 | $0.057117 | $0.090121 | $0.142198 | $0.224366 |
| Google stock | $0.018829 | $0.024384 | $0.031577 | $0.040892 | $0.052956 | $0.068577 |
| Tesla stock | $0.032961 | $0.074722 | $0.169389 | $0.383992 | $0.870481 | $1.97 |
| Kodak stock | $0.0109037 | $0.008176 | $0.006131 | $0.004598 | $0.003448 | $0.002585 |
| Nokia stock | $0.009632 | $0.006381 | $0.004227 | $0.00280032 | $0.001855 | $0.001228 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Dimitra
Você pode fazer perguntas como: 'Devo investir em Dimitra agora?', 'Devo comprar DMTR hoje?', 'Dimitra será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Dimitra regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Dimitra, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Dimitra para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Dimitra é de $0.01454 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Dimitra
com base no histórico de preços de 4 horas
Previsão de longo prazo para Dimitra
com base no histórico de preços de 1 mês
Previsão do preço de Dimitra com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Dimitra tiver 1% da média anterior do crescimento anual do Bitcoin | $0.014918 | $0.015306 | $0.0157039 | $0.016112 |
| Se Dimitra tiver 2% da média anterior do crescimento anual do Bitcoin | $0.015296 | $0.016091 | $0.016927 | $0.0178079 |
| Se Dimitra tiver 5% da média anterior do crescimento anual do Bitcoin | $0.01643 | $0.018565 | $0.020978 | $0.0237047 |
| Se Dimitra tiver 10% da média anterior do crescimento anual do Bitcoin | $0.018319 | $0.023081 | $0.029081 | $0.03664 |
| Se Dimitra tiver 20% da média anterior do crescimento anual do Bitcoin | $0.022099 | $0.033588 | $0.051049 | $0.077587 |
| Se Dimitra tiver 50% da média anterior do crescimento anual do Bitcoin | $0.033437 | $0.076895 | $0.176834 | $0.406658 |
| Se Dimitra tiver 100% da média anterior do crescimento anual do Bitcoin | $0.052335 | $0.188371 | $0.67801 | $2.44 |
Perguntas Frequentes sobre Dimitra
DMTR é um bom investimento?
A decisão de adquirir Dimitra depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Dimitra experimentou uma escalada de 2.4974% nas últimas 24 horas, e Dimitra registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Dimitra dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Dimitra pode subir?
Parece que o valor médio de Dimitra pode potencialmente subir para $0.014995 até o final deste ano. Observando as perspectivas de Dimitra em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.047144. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Dimitra na próxima semana?
Com base na nossa nova previsão experimental de Dimitra, o preço de Dimitra aumentará 0.86% na próxima semana e atingirá $0.014664 até 13 de janeiro de 2026.
Qual será o preço de Dimitra no próximo mês?
Com base na nossa nova previsão experimental de Dimitra, o preço de Dimitra diminuirá -11.62% no próximo mês e atingirá $0.012851 até 5 de fevereiro de 2026.
Até onde o preço de Dimitra pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Dimitra em 2026, espera-se que DMTR fluctue dentro do intervalo de $0.005023 e $0.014995. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Dimitra não considera flutuações repentinas e extremas de preço.
Onde estará Dimitra em 5 anos?
O futuro de Dimitra parece seguir uma tendência de alta, com um preço máximo de $0.047144 projetada após um período de cinco anos. Com base na previsão de Dimitra para 2030, o valor de Dimitra pode potencialmente atingir seu pico mais alto de aproximadamente $0.047144, enquanto seu pico mais baixo está previsto para cerca de $0.0163055.
Quanto será Dimitra em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Dimitra, espera-se que o valor de DMTR em 2026 aumente 3.13% para $0.014995 se o melhor cenário ocorrer. O preço ficará entre $0.014995 e $0.005023 durante 2026.
Quanto será Dimitra em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Dimitra, o valor de DMTR pode diminuir -12.62% para $0.0127046 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.0127046 e $0.004836 ao longo do ano.
Quanto será Dimitra em 2028?
Nosso novo modelo experimental de previsão de preços de Dimitra sugere que o valor de DMTR em 2028 pode aumentar 47.02%, alcançando $0.021377 no melhor cenário. O preço é esperado para variar entre $0.021377 e $0.008727 durante o ano.
Quanto será Dimitra em 2029?
Com base no nosso modelo de previsão experimental, o valor de Dimitra pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.063069 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.063069 e $0.019172.
Quanto será Dimitra em 2030?
Usando nossa nova simulação experimental para previsões de preços de Dimitra, espera-se que o valor de DMTR em 2030 aumente 224.23%, alcançando $0.047144 no melhor cenário. O preço está previsto para variar entre $0.047144 e $0.0163055 ao longo de 2030.
Quanto será Dimitra em 2031?
Nossa simulação experimental indica que o preço de Dimitra poderia aumentar 195.98% em 2031, potencialmente atingindo $0.043037 sob condições ideais. O preço provavelmente oscilará entre $0.043037 e $0.019278 durante o ano.
Quanto será Dimitra em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Dimitra, DMTR poderia ver um 449.04% aumento em valor, atingindo $0.079831 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.079831 e $0.029426 ao longo do ano.
Quanto será Dimitra em 2033?
De acordo com nossa previsão experimental de preços de Dimitra, espera-se que o valor de DMTR seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.212642. Ao longo do ano, o preço de DMTR poderia variar entre $0.212642 e $0.068381.
Quanto será Dimitra em 2034?
Os resultados da nossa nova simulação de previsão de preços de Dimitra sugerem que DMTR pode aumentar 746.96% em 2034, atingindo potencialmente $0.123151 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.123151 e $0.054975.
Quanto será Dimitra em 2035?
Com base em nossa previsão experimental para o preço de Dimitra, DMTR poderia aumentar 897.93%, com o valor potencialmente atingindo $0.1451026 em 2035. A faixa de preço esperada para o ano está entre $0.1451026 e $0.064997.
Quanto será Dimitra em 2036?
Nossa recente simulação de previsão de preços de Dimitra sugere que o valor de DMTR pode aumentar 1964.7% em 2036, possivelmente atingindo $0.300213 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.300213 e $0.107591.
Quanto será Dimitra em 2037?
De acordo com a simulação experimental, o valor de Dimitra poderia aumentar 4830.69% em 2037, com um pico de $0.716938 sob condições favoráveis. O preço é esperado para cair entre $0.716938 e $0.279411 ao longo do ano.
Previsões relacionadas
Previsão de Preço do IX Swap
Previsão de Preço do BitMart Token
Previsão de Preço do LON
Previsão de Preço do Moon Tropica
Previsão de Preço do Kinesis Silver
Previsão de Preço do Perpetual Protocol
Previsão de Preço do USDX
Previsão de Preço do Metadium
Previsão de Preço do ARPA
Previsão de Preço do Storj
Previsão de Preço do Ozone Chain
Previsão de Preço do Humanscape
Previsão de Preço do Ordiswap
Previsão de Preço do Guild of Guardians
Previsão de Preço do Lyra Finance
Previsão de Preço do Bazaars
Previsão de Preço do PlatON Network
Previsão de Preço do Saitama Inu
Previsão de Preço do Nuls
Previsão de Preço do Across Protocol
Previsão de Preço do Alien Worlds
Previsão de Preço do MovieBloc
Previsão de Preço do REN
Previsão de Preço do Moonwell
Previsão de Preço do Pandora
Como ler e prever os movimentos de preço de Dimitra?
Traders de Dimitra utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Dimitra
Médias móveis são ferramentas populares para a previsão de preço de Dimitra. Uma média móvel simples (SMA) calcula o preço médio de fechamento de DMTR em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de DMTR acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de DMTR.
Como ler gráficos de Dimitra e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Dimitra em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de DMTR dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Dimitra?
A ação de preço de Dimitra é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de DMTR. A capitalização de mercado de Dimitra pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de DMTR, grandes detentores de Dimitra, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Dimitra.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


