Predicción del precio de Desmos - Pronóstico de DSM
Predicción de precio de Desmos hasta $0.007312 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.002449 | $0.007312 |
| 2027 | $0.002358 | $0.006195 |
| 2028 | $0.004255 | $0.010424 |
| 2029 | $0.009349 | $0.030754 |
| 2030 | $0.007951 | $0.022988 |
| 2031 | $0.00940057 | $0.020986 |
| 2032 | $0.014349 | $0.038928 |
| 2033 | $0.033344 | $0.10369 |
| 2034 | $0.0268074 | $0.060051 |
| 2035 | $0.031694 | $0.070756 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Desmos hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,955.10, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Desmos para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Desmos'
'name_with_ticker' => 'Desmos <small>DSM</small>'
'name_lang' => 'Desmos'
'name_lang_with_ticker' => 'Desmos <small>DSM</small>'
'name_with_lang' => 'Desmos'
'name_with_lang_with_ticker' => 'Desmos <small>DSM</small>'
'image' => '/uploads/coins/desmos.png?1717121213'
'price_for_sd' => 0.00709
'ticker' => 'DSM'
'marketcap' => '$657.27K'
'low24h' => '$0.007068'
'high24h' => '$0.007109'
'volume24h' => '$1.06K'
'current_supply' => '92.7M'
'max_supply' => '161.92M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.00709'
'change_24h_pct' => '0.2646%'
'ath_price' => '$1.77'
'ath_days' => 1450
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '17 ene. 2022'
'ath_pct' => '-99.60%'
'fdv' => '$1.15M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.349599'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.00715'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.006266'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002449'
'current_year_max_price_prediction' => '$0.007312'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.007951'
'grand_prediction_max_price' => '$0.022988'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0072246370765127
107 => 0.0072516112488132
108 => 0.0073123854363414
109 => 0.0067930766579575
110 => 0.0070262310533472
111 => 0.0071631874170261
112 => 0.0065444135834094
113 => 0.0071509562478451
114 => 0.0067840366474835
115 => 0.0066594986241734
116 => 0.0068271726659236
117 => 0.0067618299287852
118 => 0.0067056520804478
119 => 0.0066743038758176
120 => 0.0067974251865703
121 => 0.0067916814302619
122 => 0.0065902310690539
123 => 0.0063274472850253
124 => 0.006415646148529
125 => 0.0063836026745493
126 => 0.0062674729911567
127 => 0.0063457303762119
128 => 0.0060011244575851
129 => 0.0054082478856447
130 => 0.005799920309369
131 => 0.0057848413471133
201 => 0.0057772378505674
202 => 0.0060715688519656
203 => 0.0060432757175527
204 => 0.0059919234015461
205 => 0.0062665298656023
206 => 0.0061662948122436
207 => 0.0064751956283462
208 => 0.0066786576842836
209 => 0.0066270531255898
210 => 0.0068184101726164
211 => 0.0064176780722074
212 => 0.006550785201382
213 => 0.0065782183962263
214 => 0.0062631412644619
215 => 0.0060479048242497
216 => 0.0060335510075627
217 => 0.0056603606816433
218 => 0.0058597159414624
219 => 0.0060351403202219
220 => 0.0059511256562778
221 => 0.0059245291235398
222 => 0.0060604050412142
223 => 0.006070963763716
224 => 0.0058302237717109
225 => 0.0058802812392928
226 => 0.006089029200471
227 => 0.0058750213262633
228 => 0.0054592389846654
301 => 0.0053561192153085
302 => 0.0053423611372019
303 => 0.005062692144174
304 => 0.0053630101713833
305 => 0.0052319133044837
306 => 0.005646046736238
307 => 0.0054094959410621
308 => 0.0053992987090701
309 => 0.0053838840973056
310 => 0.0051431614420258
311 => 0.0051958644048093
312 => 0.0053710570799893
313 => 0.0054335678001803
314 => 0.0054270474199291
315 => 0.0053701985403049
316 => 0.0053962236662835
317 => 0.0053123876677514
318 => 0.0052827834317743
319 => 0.005189344319744
320 => 0.0050520146382729
321 => 0.0050711111727734
322 => 0.0047990251395134
323 => 0.0046507782278946
324 => 0.0046097454366214
325 => 0.0045548746732525
326 => 0.0046159432353494
327 => 0.004798254353967
328 => 0.0045783484654528
329 => 0.0042013352441998
330 => 0.0042239943811964
331 => 0.0042749027344695
401 => 0.0041800353549375
402 => 0.004090251341826
403 => 0.0041683112568192
404 => 0.0040085657848968
405 => 0.0042942072115583
406 => 0.004286481411468
407 => 0.0043929508713801
408 => 0.0044595284096363
409 => 0.0043060887386896
410 => 0.0042674990763914
411 => 0.0042894815018388
412 => 0.0039261609756515
413 => 0.0043632598331804
414 => 0.0043670398822512
415 => 0.0043346728071724
416 => 0.0045674144548933
417 => 0.0050585719255248
418 => 0.0048737787283098
419 => 0.0048022212169441
420 => 0.0046661903355299
421 => 0.0048474434082999
422 => 0.0048335260002995
423 => 0.0047705862033018
424 => 0.0047325200176934
425 => 0.0048026581318498
426 => 0.0047238291291653
427 => 0.004709669274207
428 => 0.0046238759592341
429 => 0.0045932516491359
430 => 0.004570578629128
501 => 0.0045456178619044
502 => 0.0046006750945641
503 => 0.0044759081619749
504 => 0.0043254514723256
505 => 0.0043129426265452
506 => 0.0043474806495338
507 => 0.0043322001454148
508 => 0.0043128694693703
509 => 0.004275961944405
510 => 0.0042650122701523
511 => 0.0043005933994468
512 => 0.0042604243789821
513 => 0.0043196959567976
514 => 0.0043035773672778
515 => 0.0042135402364939
516 => 0.0041013206355218
517 => 0.0041003216456846
518 => 0.0040761441167322
519 => 0.0040453503984955
520 => 0.0040367842905469
521 => 0.0041617372685053
522 => 0.0044203861933512
523 => 0.0043696072204597
524 => 0.0044063002324123
525 => 0.0045867935348101
526 => 0.0046441669280194
527 => 0.0046034446524827
528 => 0.0045477014900875
529 => 0.0045501539063316
530 => 0.0047406451668386
531 => 0.0047525258730951
601 => 0.0047825445849441
602 => 0.0048211271129571
603 => 0.0046100154238389
604 => 0.0045402105647591
605 => 0.0045071331499009
606 => 0.0044052675147084
607 => 0.004515120868964
608 => 0.0044511140238289
609 => 0.0044597507340228
610 => 0.0044541260651788
611 => 0.0044571975147061
612 => 0.0042941273689582
613 => 0.0043535415593542
614 => 0.0042547539442491
615 => 0.0041224884170535
616 => 0.0041220450166281
617 => 0.0041544168170288
618 => 0.0041351608034418
619 => 0.0040833433659966
620 => 0.0040907037884143
621 => 0.0040262187430349
622 => 0.0040985334404627
623 => 0.0041006071672305
624 => 0.0040727620697126
625 => 0.0041841728386055
626 => 0.0042298179215234
627 => 0.0042114896818373
628 => 0.0042285319633677
629 => 0.0043717173160367
630 => 0.0043950627761366
701 => 0.0044054312873985
702 => 0.0043915388558721
703 => 0.0042311491287654
704 => 0.0042382630951924
705 => 0.0041860655297422
706 => 0.0041419640873807
707 => 0.0041437279137936
708 => 0.0041664017879536
709 => 0.0042654199262154
710 => 0.0044737977607494
711 => 0.0044817055472478
712 => 0.0044912900151702
713 => 0.0044523051673621
714 => 0.0044405469642285
715 => 0.0044560590692115
716 => 0.0045343148278764
717 => 0.0047356098853939
718 => 0.0046644587680224
719 => 0.0046066118020662
720 => 0.0046573591866398
721 => 0.0046495470245558
722 => 0.0045836045146852
723 => 0.0045817537280615
724 => 0.004455188968524
725 => 0.0044084008586632
726 => 0.0043693012120341
727 => 0.0043266054186373
728 => 0.0043012939211357
729 => 0.004340183885168
730 => 0.0043490784800747
731 => 0.0042640448940378
801 => 0.0042524551304709
802 => 0.0043218953924061
803 => 0.0042913373221223
804 => 0.0043227670552128
805 => 0.0043300590228891
806 => 0.004328884848145
807 => 0.0042969787131967
808 => 0.0043173147321581
809 => 0.0042692139848554
810 => 0.0042169116466623
811 => 0.0041835460134459
812 => 0.0041544300731556
813 => 0.0041705852890571
814 => 0.0041129948941943
815 => 0.0040945705678121
816 => 0.0043104253465089
817 => 0.0044698795923621
818 => 0.0044675610644766
819 => 0.0044534476222505
820 => 0.0044324779099096
821 => 0.0045327807628064
822 => 0.004497837254476
823 => 0.0045232615764142
824 => 0.0045297331334029
825 => 0.0045493205872995
826 => 0.0045563214184689
827 => 0.0045351600442849
828 => 0.0044641398878793
829 => 0.0042871644105103
830 => 0.0042047818480589
831 => 0.0041775942302598
901 => 0.0041785824485302
902 => 0.0041513229770331
903 => 0.0041593521130728
904 => 0.0041485307711853
905 => 0.0041280377676141
906 => 0.0041693199038343
907 => 0.004174077285464
908 => 0.0041644415415854
909 => 0.0041667111080878
910 => 0.0040869312642531
911 => 0.0040929967525072
912 => 0.0040592233431437
913 => 0.0040528912360325
914 => 0.0039675149981488
915 => 0.0038162586172543
916 => 0.003900069335082
917 => 0.0037988377735164
918 => 0.0037604998472431
919 => 0.0039419856274504
920 => 0.0039237694887495
921 => 0.0038925913776589
922 => 0.003846472453268
923 => 0.0038293664955954
924 => 0.0037254361118648
925 => 0.0037192953503469
926 => 0.0037708060548803
927 => 0.0037470356371133
928 => 0.0037136529680072
929 => 0.0035927443244519
930 => 0.0034568029776196
1001 => 0.0034609061923837
1002 => 0.0035041466055323
1003 => 0.0036298739385263
1004 => 0.0035807500944206
1005 => 0.0035451101818908
1006 => 0.0035384358976058
1007 => 0.0036219785389932
1008 => 0.0037402088792808
1009 => 0.003795679909689
1010 => 0.0037407098032347
1011 => 0.0036775631047408
1012 => 0.0036814065516845
1013 => 0.0037069752823063
1014 => 0.0037096621943723
1015 => 0.0036685601852382
1016 => 0.0036801301600531
1017 => 0.0036625543103287
1018 => 0.0035546913530124
1019 => 0.0035527404541516
1020 => 0.0035262691449011
1021 => 0.0035254676041773
1022 => 0.0034804333035646
1023 => 0.0034741326936014
1024 => 0.0033847143563481
1025 => 0.0034435697767119
1026 => 0.0034040926507801
1027 => 0.0033445913102883
1028 => 0.0033343332567601
1029 => 0.0033340248872841
1030 => 0.0033951194597129
1031 => 0.0034428558510621
1101 => 0.0034047793722873
1102 => 0.0033961100961519
1103 => 0.0034886752846029
1104 => 0.0034768955206221
1105 => 0.003466694320986
1106 => 0.0037296226490698
1107 => 0.0035214943608382
1108 => 0.0034307385476218
1109 => 0.0033184109947051
1110 => 0.0033549854123395
1111 => 0.003362692179525
1112 => 0.0030925646633236
1113 => 0.0029829739636429
1114 => 0.0029453665653509
1115 => 0.0029237229759432
1116 => 0.0029335862314194
1117 => 0.0028349417479998
1118 => 0.0029012324722869
1119 => 0.0028158146878561
1120 => 0.0028014941183228
1121 => 0.002954231698118
1122 => 0.0029754842400665
1123 => 0.002884814293467
1124 => 0.0029430390773149
1125 => 0.0029219259613066
1126 => 0.0028172789306063
1127 => 0.002813282183765
1128 => 0.0027607739822806
1129 => 0.0026786088145488
1130 => 0.0026410571281096
1201 => 0.0026214998837734
1202 => 0.0026295695839496
1203 => 0.0026254892966036
1204 => 0.0025988626616583
1205 => 0.0026270155041507
1206 => 0.0025550966251403
1207 => 0.0025264579480286
1208 => 0.0025135225219895
1209 => 0.0024496903773715
1210 => 0.0025512757057422
1211 => 0.0025712892951695
1212 => 0.0025913423175504
1213 => 0.0027658901865968
1214 => 0.0027571702683264
1215 => 0.0028359940827184
1216 => 0.0028329311342388
1217 => 0.0028104493055131
1218 => 0.0027156021682006
1219 => 0.0027534065466457
1220 => 0.0026370505458965
1221 => 0.0027242323730967
1222 => 0.0026844462279627
1223 => 0.0027107806374057
1224 => 0.0026634289947492
1225 => 0.0026896353488967
1226 => 0.0025760352596779
1227 => 0.0024699570947618
1228 => 0.0025126460449387
1229 => 0.0025590538158546
1230 => 0.0026596776876805
1231 => 0.0025997469397499
]
'min_raw' => 0.0024496903773715
'max_raw' => 0.0073123854363414
'avg_raw' => 0.0048810379068565
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002449'
'max' => '$0.007312'
'avg' => '$0.004881'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0046405896226285
'max_diff' => 0.00022210543634143
'year' => 2026
]
1 => [
'items' => [
101 => 0.0026213003029382
102 => 0.0025491001442468
103 => 0.0024001305939107
104 => 0.0024009737453876
105 => 0.0023780580255464
106 => 0.0023582554978538
107 => 0.002606630707081
108 => 0.0025757413235826
109 => 0.0025265231336804
110 => 0.0025924036367176
111 => 0.0026098234873848
112 => 0.0026103194060439
113 => 0.0026583841204379
114 => 0.002684036267126
115 => 0.0026885575691626
116 => 0.0027641884357684
117 => 0.0027895389046594
118 => 0.0028939538982889
119 => 0.0026818598617011
120 => 0.0026774919245899
121 => 0.0025933307104994
122 => 0.002539954337987
123 => 0.0025969854363908
124 => 0.0026475072040552
125 => 0.0025949005626496
126 => 0.0026017698794304
127 => 0.0025311497614638
128 => 0.0025563931306514
129 => 0.0025781361208449
130 => 0.002566130919654
131 => 0.0025481585524128
201 => 0.0026433649952494
202 => 0.0026379930746275
203 => 0.0027266515029836
204 => 0.0027957670879122
205 => 0.0029196345719929
206 => 0.0027903723949967
207 => 0.0027856615674964
208 => 0.0028317106619529
209 => 0.002789531854783
210 => 0.0028161874049514
211 => 0.0029153399507676
212 => 0.0029174348878181
213 => 0.0028823419930473
214 => 0.0028802065872113
215 => 0.0028869465615262
216 => 0.0029264228016081
217 => 0.0029126285903411
218 => 0.0029285916008459
219 => 0.0029485535899165
220 => 0.0030311248404202
221 => 0.003051032489373
222 => 0.0030026672233503
223 => 0.0030070340653492
224 => 0.0029889441282004
225 => 0.002971469475581
226 => 0.0030107499427014
227 => 0.0030825357684235
228 => 0.0030820891925274
301 => 0.0030987421087778
302 => 0.0031091167376417
303 => 0.0030645812358656
304 => 0.0030355902618252
305 => 0.0030467072460159
306 => 0.0030644835458332
307 => 0.0030409426315681
308 => 0.0028956372035113
309 => 0.0029397135882371
310 => 0.0029323771225936
311 => 0.0029219291033726
312 => 0.0029662482490469
313 => 0.0029619735593294
314 => 0.0028339300062439
315 => 0.0028421269390761
316 => 0.0028344284888785
317 => 0.0028593037564218
318 => 0.002788188508702
319 => 0.0028100630799321
320 => 0.0028237826059462
321 => 0.0028318635121669
322 => 0.0028610572865654
323 => 0.002857631734093
324 => 0.002860844349414
325 => 0.0029041310099762
326 => 0.0031230600849115
327 => 0.0031349759114204
328 => 0.0030762980236815
329 => 0.0030997386824631
330 => 0.0030547377435111
331 => 0.0030849471753096
401 => 0.0031056157013098
402 => 0.003012218606644
403 => 0.00300668823684
404 => 0.0029615015630052
405 => 0.00298578232202
406 => 0.0029471498885791
407 => 0.0029566289364404
408 => 0.0029301246922518
409 => 0.0029778270548488
410 => 0.00303116570843
411 => 0.0030446411587319
412 => 0.0030091930505338
413 => 0.0029835262840542
414 => 0.0029384638972745
415 => 0.0030134036507699
416 => 0.0030353183184395
417 => 0.00301328854235
418 => 0.0030081837618699
419 => 0.0029985102120843
420 => 0.0030102360511867
421 => 0.003035198966453
422 => 0.0030234269166061
423 => 0.0030312025629268
424 => 0.003001569817364
425 => 0.0030645959789698
426 => 0.0031646966916717
427 => 0.0031650185318312
428 => 0.0031532464185285
429 => 0.0031484295233988
430 => 0.0031605084260389
501 => 0.0031670607352186
502 => 0.0032061216914647
503 => 0.0032480356537738
504 => 0.0034436298273763
505 => 0.0033887077661115
506 => 0.003562250552881
507 => 0.0036995003655052
508 => 0.0037406555831043
509 => 0.0037027947194157
510 => 0.003573274749941
511 => 0.0035669198823309
512 => 0.0037604773986468
513 => 0.0037057885347917
514 => 0.0036992834684547
515 => 0.0036300805531115
516 => 0.0036709880470271
517 => 0.0036620409780311
518 => 0.0036479175919152
519 => 0.0037259662406654
520 => 0.0038720663436749
521 => 0.0038492952725028
522 => 0.0038322977241924
523 => 0.0037578194154082
524 => 0.0038026719926288
525 => 0.003786700848975
526 => 0.0038553230176497
527 => 0.003814672765094
528 => 0.00370537421286
529 => 0.003722780367556
530 => 0.00372014946229
531 => 0.0037742933062359
601 => 0.0037580406682162
602 => 0.0037169758738712
603 => 0.0038715669894059
604 => 0.0038615287022441
605 => 0.0038757606983676
606 => 0.0038820260632004
607 => 0.0039761229510253
608 => 0.0040146714352027
609 => 0.0040234226159971
610 => 0.0040600406945188
611 => 0.0040225115248452
612 => 0.0041726549613842
613 => 0.0042724915855702
614 => 0.004388456962108
615 => 0.0045579135457844
616 => 0.0046216307888078
617 => 0.0046101208391665
618 => 0.0047386008869287
619 => 0.0049694766768064
620 => 0.0046567874372923
621 => 0.0049860499657694
622 => 0.0048818092507722
623 => 0.0046346563907243
624 => 0.0046187426602781
625 => 0.0047861174466062
626 => 0.0051573386134559
627 => 0.0050643519215157
628 => 0.0051574907063723
629 => 0.0050488393664792
630 => 0.0050434439116681
701 => 0.005152213753308
702 => 0.0054063604170352
703 => 0.0052856248636436
704 => 0.0051125208422846
705 => 0.0052403381578592
706 => 0.0051296109701744
707 => 0.004880111625732
708 => 0.0050642808163448
709 => 0.0049411321234186
710 => 0.004977073458959
711 => 0.0052359136945043
712 => 0.0052047693525572
713 => 0.0052450730149252
714 => 0.0051739381057762
715 => 0.0051074868836854
716 => 0.0049834507429205
717 => 0.0049467297565478
718 => 0.0049568781160985
719 => 0.0049467247275248
720 => 0.0048773276467178
721 => 0.0048623413537249
722 => 0.0048373635421721
723 => 0.0048451052104114
724 => 0.0047981396171757
725 => 0.0048867733951982
726 => 0.0049032246054373
727 => 0.0049677248776384
728 => 0.0049744215098697
729 => 0.0051540538498458
730 => 0.0050551153755858
731 => 0.0051214918460563
801 => 0.0051155545097778
802 => 0.0046400129426346
803 => 0.0047055383748482
804 => 0.0048074753843591
805 => 0.0047615528997468
806 => 0.0046966292507114
807 => 0.0046441999231295
808 => 0.004564764130669
809 => 0.0046765684831279
810 => 0.0048235793175441
811 => 0.0049781499472353
812 => 0.0051638564309405
813 => 0.0051224089056393
814 => 0.0049746782936972
815 => 0.0049813053810316
816 => 0.0050222714272704
817 => 0.0049692166752334
818 => 0.0049535697931059
819 => 0.0050201217859403
820 => 0.0050205800929386
821 => 0.0049595341888391
822 => 0.004891692837715
823 => 0.0048914085799767
824 => 0.0048793368668138
825 => 0.0050509868974334
826 => 0.0051453770584986
827 => 0.0051561987383473
828 => 0.0051446486732221
829 => 0.0051490938348831
830 => 0.0050941702799046
831 => 0.0052197092395113
901 => 0.0053349162033627
902 => 0.0053040382760127
903 => 0.0052577478733591
904 => 0.0052208753379976
905 => 0.0052953522785076
906 => 0.0052920359375843
907 => 0.0053339099710378
908 => 0.0053320103230042
909 => 0.0053179296605159
910 => 0.0053040387788775
911 => 0.0053591145544194
912 => 0.0053432536155533
913 => 0.0053273680402681
914 => 0.0052955070870739
915 => 0.0052998375197674
916 => 0.0052535551098044
917 => 0.0052321427492165
918 => 0.004910152221412
919 => 0.0048241058310386
920 => 0.0048511777770859
921 => 0.0048600905646474
922 => 0.0048226430652854
923 => 0.0048763331598972
924 => 0.0048679656155238
925 => 0.0049005188358308
926 => 0.0048801809970795
927 => 0.004881015669076
928 => 0.0049408249163591
929 => 0.0049581877952921
930 => 0.0049493568949312
1001 => 0.0049555417548384
1002 => 0.005098069240935
1003 => 0.0050778063901845
1004 => 0.0050670421545769
1005 => 0.0050700239214043
1006 => 0.0051064427499258
1007 => 0.0051166380335175
1008 => 0.0050734399005296
1009 => 0.0050938123897721
1010 => 0.0051805558633128
1011 => 0.0052109111697967
1012 => 0.0053077907367194
1013 => 0.0052666345747937
1014 => 0.0053421784912054
1015 => 0.005574374735436
1016 => 0.0057598691620855
1017 => 0.0055892808214573
1018 => 0.0059299177134261
1019 => 0.0061951523952839
1020 => 0.0061849722464227
1021 => 0.0061387224446521
1022 => 0.0058367598109859
1023 => 0.005558889293477
1024 => 0.0057913397803786
1025 => 0.0057919323444736
1026 => 0.0057719646414986
1027 => 0.0056479469532318
1028 => 0.0057676490947708
1029 => 0.0057771506160719
1030 => 0.0057718322908017
1031 => 0.0056767482199824
1101 => 0.0055315724183151
1102 => 0.0055599394224591
1103 => 0.0056064051539183
1104 => 0.0055184358304991
1105 => 0.0054903243014174
1106 => 0.0055425889824175
1107 => 0.0057109966743786
1108 => 0.0056791601757327
1109 => 0.0056783287960916
1110 => 0.0058145388380753
1111 => 0.0057170418439818
1112 => 0.0055602972212251
1113 => 0.0055207171367715
1114 => 0.0053802345013007
1115 => 0.0054772663580024
1116 => 0.0054807583617826
1117 => 0.0054276150055086
1118 => 0.005564609511697
1119 => 0.0055633470832051
1120 => 0.0056934029778896
1121 => 0.0059420210017631
1122 => 0.0058684924183538
1123 => 0.0057829866757358
1124 => 0.0057922835207755
1125 => 0.0058942469642916
1126 => 0.0058325975387427
1127 => 0.0058547671020051
1128 => 0.0058942134080024
1129 => 0.0059180123438072
1130 => 0.005788859220158
1201 => 0.0057587474489274
1202 => 0.005697149332785
1203 => 0.0056810795340668
1204 => 0.0057312499143778
1205 => 0.0057180317917116
1206 => 0.0054804648723865
1207 => 0.0054556378075072
1208 => 0.0054563992181422
1209 => 0.0053939703830405
1210 => 0.0052987514248733
1211 => 0.0055489811617082
1212 => 0.0055288842118774
1213 => 0.0055066987346446
1214 => 0.0055094163290171
1215 => 0.0056180325767044
1216 => 0.0055550296677938
1217 => 0.0057225332271064
1218 => 0.0056880995309297
1219 => 0.0056527827403761
1220 => 0.0056479008841459
1221 => 0.0056343069328698
1222 => 0.0055876882158575
1223 => 0.0055313933137146
1224 => 0.0054942225431389
1225 => 0.0050681298725408
1226 => 0.0051472101937368
1227 => 0.0052381848948747
1228 => 0.0052695889971492
1229 => 0.0052158701071109
1230 => 0.0055898093650567
1231 => 0.0056581316708517
]
'min_raw' => 0.0023582554978538
'max_raw' => 0.0061951523952839
'avg_raw' => 0.0042767039465689
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002358'
'max' => '$0.006195'
'avg' => '$0.004276'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.1434879517702E-5
'max_diff' => -0.0011172330410575
'year' => 2027
]
2 => [
'items' => [
101 => 0.0054511789500448
102 => 0.0054124665458057
103 => 0.0055923473438337
104 => 0.0054838572330896
105 => 0.0055327103233147
106 => 0.0054271166634597
107 => 0.0056416748280964
108 => 0.0056400402543651
109 => 0.0055565722823055
110 => 0.0056271188407262
111 => 0.0056148596401351
112 => 0.0055206245052523
113 => 0.0056446622499563
114 => 0.0056447237711302
115 => 0.005564387662773
116 => 0.0054705726760473
117 => 0.0054538007722318
118 => 0.0054411653956951
119 => 0.0055296027952494
120 => 0.0056088954911531
121 => 0.0057564395399037
122 => 0.0057935356193197
123 => 0.0059383240869062
124 => 0.005852109604081
125 => 0.0058903273676529
126 => 0.005931818156243
127 => 0.0059517103660664
128 => 0.0059192970776341
129 => 0.0061442131651069
130 => 0.0061632029741404
131 => 0.0061695700928482
201 => 0.0060937296536284
202 => 0.0061610937143314
203 => 0.0061295763011917
204 => 0.0062115758543916
205 => 0.0062244344313562
206 => 0.0062135436741244
207 => 0.0062176251894118
208 => 0.0060256989866705
209 => 0.0060157466005669
210 => 0.0058800451098565
211 => 0.0059353444703758
212 => 0.0058319649664523
213 => 0.0058647476720733
214 => 0.0058791979763459
215 => 0.0058716499574415
216 => 0.005938471013249
217 => 0.0058816594651728
218 => 0.0057317244491163
219 => 0.0055817485833649
220 => 0.0055798657585381
221 => 0.0055403797603797
222 => 0.0055118386159325
223 => 0.0055173366529045
224 => 0.0055367124523142
225 => 0.0055107124592475
226 => 0.0055162608760014
227 => 0.0056084015630233
228 => 0.0056268797206883
229 => 0.0055640837210606
301 => 0.0053119487211358
302 => 0.0052500741597215
303 => 0.0052945483674402
304 => 0.0052732925606565
305 => 0.0042559586600596
306 => 0.0044949661696778
307 => 0.0043529560233908
308 => 0.0044184008323725
309 => 0.0042734452463625
310 => 0.0043426256497797
311 => 0.0043298505553324
312 => 0.004714167558052
313 => 0.0047081669766653
314 => 0.0047110391374314
315 => 0.0045739434206895
316 => 0.0047923406200138
317 => 0.0048999309337102
318 => 0.0048800188300685
319 => 0.0048850302775657
320 => 0.004798917005844
321 => 0.004711872902136
322 => 0.0046153275951323
323 => 0.0047946968421846
324 => 0.0047747540438475
325 => 0.0048204956480404
326 => 0.0049368294263323
327 => 0.0049539600170949
328 => 0.0049769837048011
329 => 0.0049687313516961
330 => 0.0051653358826883
331 => 0.0051415257767467
401 => 0.005198901281431
402 => 0.0050808755152054
403 => 0.0049473181576125
404 => 0.0049727030449719
405 => 0.0049702582761868
406 => 0.0049391335635777
407 => 0.0049110355647141
408 => 0.0048642603131683
409 => 0.0050122641304939
410 => 0.0050062554457972
411 => 0.005103529066705
412 => 0.005086335009344
413 => 0.0049715088861877
414 => 0.00497560992364
415 => 0.005003191371398
416 => 0.0050986510770079
417 => 0.0051269900170253
418 => 0.0051138622908977
419 => 0.005144934644905
420 => 0.0051694929665905
421 => 0.0051480187920022
422 => 0.0054520478191465
423 => 0.0053257937702463
424 => 0.0053873291152102
425 => 0.0054020049323968
426 => 0.0053644131352726
427 => 0.0053725654500075
428 => 0.0053849139854581
429 => 0.005459891874623
430 => 0.0056566555508189
501 => 0.0057438008435904
502 => 0.0060059817565664
503 => 0.0057365646401467
504 => 0.0057205785434172
505 => 0.0057678052429493
506 => 0.0059217331935344
507 => 0.0060464773397664
508 => 0.006087862169734
509 => 0.0060933318582033
510 => 0.006170972550434
511 => 0.0062154747473074
512 => 0.0061615449282442
513 => 0.0061158450532756
514 => 0.0059521537736153
515 => 0.0059711014849525
516 => 0.0061016324265248
517 => 0.0062860150697298
518 => 0.0064442345593441
519 => 0.0063888316085871
520 => 0.0068115170144752
521 => 0.0068534245459539
522 => 0.0068476342801362
523 => 0.0069431058735217
524 => 0.0067536142031035
525 => 0.0066726028427715
526 => 0.0061257258849594
527 => 0.0062793760032834
528 => 0.0065027154738223
529 => 0.0064731556574164
530 => 0.0063109605640299
531 => 0.0064441115198214
601 => 0.0064000876498214
602 => 0.0063653641970003
603 => 0.0065244390658461
604 => 0.0063495297131147
605 => 0.0065009706192301
606 => 0.0063067460906815
607 => 0.0063890846845994
608 => 0.0063423453164219
609 => 0.0063725914157943
610 => 0.006195773336893
611 => 0.0062911800802519
612 => 0.006191804102701
613 => 0.0061917569855485
614 => 0.0061895632553362
615 => 0.0063064786522242
616 => 0.0063102912591193
617 => 0.0062238906041697
618 => 0.0062114389199596
619 => 0.0062574793226763
620 => 0.0062035780690956
621 => 0.0062287981263956
622 => 0.0062043419589391
623 => 0.006198836360519
624 => 0.0061549668156069
625 => 0.0061360666094405
626 => 0.0061434778672767
627 => 0.0061181794235166
628 => 0.0061029361960665
629 => 0.0061865309937299
630 => 0.0061418696655428
701 => 0.0061796860046516
702 => 0.0061365895134347
703 => 0.0059871982986294
704 => 0.0059012818312115
705 => 0.0056190956750173
706 => 0.0056991233188632
707 => 0.0057521817295275
708 => 0.0057346459251195
709 => 0.0057723196184434
710 => 0.0057746324772405
711 => 0.005762384375503
712 => 0.00574820264277
713 => 0.0057412997595746
714 => 0.0057927481954871
715 => 0.0058226157442089
716 => 0.0057575068508677
717 => 0.005742252748128
718 => 0.0058080814340566
719 => 0.005848236894445
720 => 0.006144722252549
721 => 0.0061227576595856
722 => 0.0061778844775901
723 => 0.0061716780438728
724 => 0.0062294597315323
725 => 0.0063239083704925
726 => 0.0061318678792317
727 => 0.006165199468254
728 => 0.0061570273323645
729 => 0.0062462485691567
730 => 0.0062465271081192
731 => 0.0061930345197309
801 => 0.0062220337197143
802 => 0.006205847161835
803 => 0.0062350984596674
804 => 0.0061224643090554
805 => 0.0062596405463956
806 => 0.0063374106335261
807 => 0.0063384904712613
808 => 0.0063753528753396
809 => 0.0064128072128095
810 => 0.0064846975519979
811 => 0.0064108022302681
812 => 0.0062778717400409
813 => 0.0062874688920725
814 => 0.0062095317942896
815 => 0.0062108419309838
816 => 0.0062038483186329
817 => 0.0062248366757527
818 => 0.0061270700731655
819 => 0.0061500156993796
820 => 0.0061178916883104
821 => 0.0061651296369276
822 => 0.0061143094129281
823 => 0.0061570233915132
824 => 0.0061754573286796
825 => 0.0062434789536782
826 => 0.0061042625636092
827 => 0.0058203909201373
828 => 0.0058800641812061
829 => 0.0057918027408519
830 => 0.0057999716731917
831 => 0.005816474216594
901 => 0.0057629840741309
902 => 0.0057731883076448
903 => 0.0057728237406176
904 => 0.0057696820989322
905 => 0.0057557672469902
906 => 0.0057355879587048
907 => 0.0058159760323765
908 => 0.0058296355325577
909 => 0.0058599989094065
910 => 0.0059503397232334
911 => 0.005941312545549
912 => 0.0059560362468862
913 => 0.0059238944895371
914 => 0.0058014626371303
915 => 0.0058081112757534
916 => 0.0057252026455862
917 => 0.0058578787493291
918 => 0.0058264592967238
919 => 0.0058062029712335
920 => 0.00580067584515
921 => 0.0058912405963804
922 => 0.0059183389893771
923 => 0.0059014530893671
924 => 0.0058668196158061
925 => 0.0059333261235105
926 => 0.0059511204592878
927 => 0.0059551039548386
928 => 0.0060729407351327
929 => 0.0059616897218537
930 => 0.0059884689464899
1001 => 0.0061973928126351
1002 => 0.0060079276955642
1003 => 0.006108291593653
1004 => 0.00610337930311
1005 => 0.0061547220772431
1006 => 0.0060991676970478
1007 => 0.0060998563601717
1008 => 0.0061454452653411
1009 => 0.006081423870033
1010 => 0.0060655712722198
1011 => 0.0060436710218794
1012 => 0.0060914894172931
1013 => 0.0061201543827037
1014 => 0.0063511729518154
1015 => 0.0065004214831882
1016 => 0.0064939422108263
1017 => 0.0065531506315244
1018 => 0.0065264766957129
1019 => 0.006440339520749
1020 => 0.006587365175103
1021 => 0.0065408401062507
1022 => 0.006544675576399
1023 => 0.0065445328200085
1024 => 0.0065754679235031
1025 => 0.0065535475675166
1026 => 0.0065103402957887
1027 => 0.0065390232991606
1028 => 0.0066242015648139
1029 => 0.0068885975149899
1030 => 0.0070365569914888
1031 => 0.0068796901687212
1101 => 0.0069878948025358
1102 => 0.0069230105795003
1103 => 0.0069112191860363
1104 => 0.0069791796923315
1105 => 0.0070472591544965
1106 => 0.0070429227870722
1107 => 0.0069935005934594
1108 => 0.0069655832503294
1109 => 0.0071769827255064
1110 => 0.0073327382577208
1111 => 0.0073221167746221
1112 => 0.0073689965467283
1113 => 0.007506637007569
1114 => 0.0075192211263419
1115 => 0.0075176358166192
1116 => 0.0074864447652236
1117 => 0.0076219696737937
1118 => 0.0077350269368568
1119 => 0.0074792249380217
1120 => 0.0075766309904841
1121 => 0.0076203597056614
1122 => 0.0076845664332669
1123 => 0.0077928939450344
1124 => 0.0079105663552674
1125 => 0.0079272065242866
1126 => 0.0079153995280621
1127 => 0.0078377914103093
1128 => 0.00796654996571
1129 => 0.0080419737077041
1130 => 0.0080868868200199
1201 => 0.0082007790000235
1202 => 0.0076206297593193
1203 => 0.0072099712914607
1204 => 0.0071458410417245
1205 => 0.0072762524263607
1206 => 0.007310640868478
1207 => 0.0072967789305799
1208 => 0.0068345454895707
1209 => 0.007143407478319
1210 => 0.0074757170083585
1211 => 0.0074884823707805
1212 => 0.0076548434697829
1213 => 0.0077090174629899
1214 => 0.0078429599531345
1215 => 0.0078345818139074
1216 => 0.0078671946787671
1217 => 0.0078596975459119
1218 => 0.0081077978039859
1219 => 0.0083814892318864
1220 => 0.0083720121680237
1221 => 0.008332665787093
1222 => 0.00839110187233
1223 => 0.0086735807564792
1224 => 0.0086475746274586
1225 => 0.0086728373666053
1226 => 0.0090058958908295
1227 => 0.0094389193493435
1228 => 0.0092377364780193
1229 => 0.0096742454199811
1230 => 0.0099490046606012
1231 => 0.010424172356618
]
'min_raw' => 0.0042559586600596
'max_raw' => 0.010424172356618
'avg_raw' => 0.0073400655083388
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.004255'
'max' => '$0.010424'
'avg' => '$0.00734'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0018977031622058
'max_diff' => 0.0042290199613342
'year' => 2028
]
3 => [
'items' => [
101 => 0.010364679020827
102 => 0.010549658317944
103 => 0.010258173533126
104 => 0.0095888655483882
105 => 0.0094829449977955
106 => 0.0096950006224177
107 => 0.010216318683466
108 => 0.0096785824614618
109 => 0.0097873657988242
110 => 0.0097560361903456
111 => 0.009754366768652
112 => 0.0098180818046665
113 => 0.0097256598217747
114 => 0.0093491160370762
115 => 0.0095216838346171
116 => 0.0094550471206003
117 => 0.009528985522898
118 => 0.0099280005855824
119 => 0.0097515865150386
120 => 0.009565748622436
121 => 0.0097988305804894
122 => 0.010095624008742
123 => 0.010077051209391
124 => 0.010041012215822
125 => 0.010244162135629
126 => 0.010579706285808
127 => 0.010670402521276
128 => 0.010737352628095
129 => 0.010746583916694
130 => 0.010841671926478
131 => 0.010330359732604
201 => 0.011141825315711
202 => 0.011281943005629
203 => 0.011255606687208
204 => 0.011411341602498
205 => 0.011365520439807
206 => 0.011299132764186
207 => 0.011546005730688
208 => 0.011262985796215
209 => 0.010861274630449
210 => 0.010640887939964
211 => 0.010931110912082
212 => 0.011108339953768
213 => 0.011225477076439
214 => 0.011260922698983
215 => 0.010370051442695
216 => 0.0098899212455414
217 => 0.010197679197213
218 => 0.010573165138572
219 => 0.010328273889241
220 => 0.010337873162574
221 => 0.0099887225973166
222 => 0.010604057216223
223 => 0.010514408138027
224 => 0.010979507714295
225 => 0.010868507967761
226 => 0.011247778617145
227 => 0.011147903944419
228 => 0.011562478126989
301 => 0.011727862992564
302 => 0.012005569921963
303 => 0.0122098522697
304 => 0.01232981077159
305 => 0.01232260891309
306 => 0.012797944260665
307 => 0.012517655613152
308 => 0.012165547012913
309 => 0.012159178479223
310 => 0.012341540512704
311 => 0.0127237213063
312 => 0.012822815225575
313 => 0.012878195207808
314 => 0.012793378837227
315 => 0.012489145598819
316 => 0.012357779228973
317 => 0.012469707182132
318 => 0.012332828913497
319 => 0.012569119206421
320 => 0.012893596247488
321 => 0.012826593021629
322 => 0.013050574759991
323 => 0.01328237229563
324 => 0.013613853182272
325 => 0.013700514560741
326 => 0.013843762523915
327 => 0.013991211732526
328 => 0.014038568444464
329 => 0.014128987101478
330 => 0.014128510550524
331 => 0.014400993259314
401 => 0.014701550125197
402 => 0.014815003384161
403 => 0.015075882897298
404 => 0.014629135873359
405 => 0.014967998622877
406 => 0.015273661305226
407 => 0.014909237654336
408 => 0.015411510757268
409 => 0.015431012883679
410 => 0.015725471838502
411 => 0.015426981276279
412 => 0.015249738533247
413 => 0.015761431691182
414 => 0.016009023892124
415 => 0.015934447106228
416 => 0.015366914083251
417 => 0.015036585521242
418 => 0.014172051958843
419 => 0.015196129308575
420 => 0.015694927512884
421 => 0.015365622316403
422 => 0.015531704702969
423 => 0.016437796351676
424 => 0.016782777386414
425 => 0.016711023742788
426 => 0.016723148927396
427 => 0.016909294431892
428 => 0.017734766111029
429 => 0.017240124346606
430 => 0.017618259441634
501 => 0.017818820932569
502 => 0.018005113622763
503 => 0.017547637654056
504 => 0.016952468140425
505 => 0.016763952971941
506 => 0.015332879404509
507 => 0.015258385810487
508 => 0.015216570298775
509 => 0.014952929412354
510 => 0.014745779892944
511 => 0.014581046904141
512 => 0.014148738348086
513 => 0.014294629795204
514 => 0.01360562018666
515 => 0.014046424117205
516 => 0.012946748145251
517 => 0.013862590971742
518 => 0.013364139359547
519 => 0.013698836211323
520 => 0.013697668485538
521 => 0.013081385465684
522 => 0.012725926281331
523 => 0.012952438708279
524 => 0.013195278010546
525 => 0.01323467787033
526 => 0.013549525364474
527 => 0.013637392532465
528 => 0.013371150911325
529 => 0.012923959804996
530 => 0.013027832099653
531 => 0.012723821312595
601 => 0.012191054101882
602 => 0.012573696813839
603 => 0.012704347859314
604 => 0.012762050804021
605 => 0.012238135441013
606 => 0.0120735098592
607 => 0.011985864580785
608 => 0.012856328910679
609 => 0.012904014911633
610 => 0.012660046588632
611 => 0.013762806542619
612 => 0.013513218001928
613 => 0.013792069552557
614 => 0.013018406777651
615 => 0.013047961737527
616 => 0.012681697381391
617 => 0.012886780947034
618 => 0.012741834492989
619 => 0.012870212221605
620 => 0.012947161302817
621 => 0.013313365558577
622 => 0.013866772436101
623 => 0.013258666854602
624 => 0.01299370654451
625 => 0.013158086430698
626 => 0.013595851729343
627 => 0.014259088565584
628 => 0.013866439009644
629 => 0.014040690214949
630 => 0.014078756351411
701 => 0.013789231105537
702 => 0.014269763774374
703 => 0.014527285135444
704 => 0.014791448765365
705 => 0.015020814643528
706 => 0.014685936002492
707 => 0.015044304151368
708 => 0.014755522683868
709 => 0.014496455853841
710 => 0.014496848751284
711 => 0.014334332344445
712 => 0.014019436327811
713 => 0.013961364670972
714 => 0.01426346076349
715 => 0.014505713221084
716 => 0.014525666293802
717 => 0.014659789701707
718 => 0.014739162552924
719 => 0.015517124397008
720 => 0.015830027086337
721 => 0.016212638571903
722 => 0.016361687308333
723 => 0.016810270568058
724 => 0.016448003153679
725 => 0.016369624319809
726 => 0.015281508062184
727 => 0.015459687038413
728 => 0.015744968771069
729 => 0.015286212252879
730 => 0.015577187672476
731 => 0.015634632384006
801 => 0.015270623881937
802 => 0.015465056550771
803 => 0.014948701027616
804 => 0.013878027575469
805 => 0.014270955739995
806 => 0.014560283127275
807 => 0.014147377271816
808 => 0.014887495036063
809 => 0.014455133517322
810 => 0.014318095672894
811 => 0.013783462184261
812 => 0.014035788610966
813 => 0.01437706371605
814 => 0.014166195378597
815 => 0.014603778840852
816 => 0.015223513722651
817 => 0.015665173705271
818 => 0.015699078874623
819 => 0.015415121094719
820 => 0.01587016524921
821 => 0.015873479749092
822 => 0.015360188083917
823 => 0.015045799797017
824 => 0.014974370116754
825 => 0.015152815462663
826 => 0.015369481055425
827 => 0.015711102307106
828 => 0.015917536874737
829 => 0.016455808742686
830 => 0.016601449676689
831 => 0.016761464907587
901 => 0.016975294602935
902 => 0.017232051977009
903 => 0.01667028145974
904 => 0.016692601649663
905 => 0.016169488722224
906 => 0.015610467537273
907 => 0.016034694933676
908 => 0.016589315821868
909 => 0.016462085177315
910 => 0.016447769130717
911 => 0.016471844750155
912 => 0.016375916999126
913 => 0.015942039336474
914 => 0.015724148690507
915 => 0.016005283213636
916 => 0.016154693700821
917 => 0.016386416336481
918 => 0.016357851630565
919 => 0.016954744254831
920 => 0.017186678679524
921 => 0.017127339928654
922 => 0.017138259686881
923 => 0.017558165884157
924 => 0.018025187935824
925 => 0.018462615716198
926 => 0.018907586042354
927 => 0.018371156946685
928 => 0.018098791334251
929 => 0.018379803122842
930 => 0.018230694312289
1001 => 0.019087517766276
1002 => 0.019146842363206
1003 => 0.020003603859105
1004 => 0.020816772539975
1005 => 0.020306035860951
1006 => 0.020787637545185
1007 => 0.021308529032246
1008 => 0.022313413222384
1009 => 0.021975003579398
1010 => 0.021715787096425
1011 => 0.021470828772541
1012 => 0.021980548158505
1013 => 0.022636294005582
1014 => 0.022777535380386
1015 => 0.023006400365928
1016 => 0.02276577681791
1017 => 0.023055581377683
1018 => 0.024078718820258
1019 => 0.02380225805179
1020 => 0.02340963931728
1021 => 0.024217308065028
1022 => 0.024509600245105
1023 => 0.026561059839492
1024 => 0.029151112318974
1025 => 0.028078813585267
1026 => 0.027413203158391
1027 => 0.027569637397197
1028 => 0.028515436883895
1029 => 0.028819197660847
1030 => 0.027993471156472
1031 => 0.028285131717248
1101 => 0.029892210082556
1102 => 0.030754356064297
1103 => 0.02958344601944
1104 => 0.026352951644644
1105 => 0.023374288295971
1106 => 0.024164363946998
1107 => 0.024074793887074
1108 => 0.025801399103488
1109 => 0.023795664553894
1110 => 0.023829435979716
1111 => 0.0255917455635
1112 => 0.025121591580181
1113 => 0.024360002339978
1114 => 0.02337984874025
1115 => 0.021567944157919
1116 => 0.019963089740651
1117 => 0.023110578828813
1118 => 0.022974853375994
1119 => 0.022778302806926
1120 => 0.023215704829392
1121 => 0.025339604891758
1122 => 0.025290642120927
1123 => 0.024979165953924
1124 => 0.025215417881371
1125 => 0.024318586234835
1126 => 0.024549720170624
1127 => 0.023373816460479
1128 => 0.023905374047541
1129 => 0.024358368311515
1130 => 0.024449313616703
1201 => 0.024654218033073
1202 => 0.02290333222977
1203 => 0.023689428552147
1204 => 0.024151186494278
1205 => 0.02206494731283
1206 => 0.024109948253431
1207 => 0.022872853203304
1208 => 0.022452964562747
1209 => 0.023018289301135
1210 => 0.022797981700789
1211 => 0.022608574162907
1212 => 0.022502881502335
1213 => 0.022917993597593
1214 => 0.022898628122183
1215 => 0.022219424164555
1216 => 0.021333430289725
1217 => 0.021630798915875
1218 => 0.021522762106149
1219 => 0.021131222770675
1220 => 0.021395073008145
1221 => 0.020233210093878
1222 => 0.01823428533826
1223 => 0.019554836260542
1224 => 0.019503996486518
1225 => 0.019478360767054
1226 => 0.020470718287802
1227 => 0.020375326009766
1228 => 0.020202188091045
1229 => 0.021128042957022
1230 => 0.020790093476435
1231 => 0.021831574144691
]
'min_raw' => 0.0093491160370762
'max_raw' => 0.030754356064297
'avg_raw' => 0.020051736050687
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.009349'
'max' => '$0.030754'
'avg' => '$0.020051'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0050931573770166
'max_diff' => 0.020330183707679
'year' => 2029
]
4 => [
'items' => [
101 => 0.022517560671551
102 => 0.022343572299
103 => 0.022988745943172
104 => 0.021637649688422
105 => 0.022086429667677
106 => 0.022178922599419
107 => 0.021116618051692
108 => 0.020390933366189
109 => 0.020342538471077
110 => 0.019084301231923
111 => 0.019756441408943
112 => 0.02034789694967
113 => 0.020064635644466
114 => 0.019974963577429
115 => 0.020433078720421
116 => 0.020468678190523
117 => 0.019657006499548
118 => 0.019825778746401
119 => 0.020529587071831
120 => 0.019808044582387
121 => 0.018406205388694
122 => 0.018058529886714
123 => 0.01801214356582
124 => 0.01706922002996
125 => 0.018081763226232
126 => 0.017639760986589
127 => 0.019036040765621
128 => 0.018238493244237
129 => 0.018204112564628
130 => 0.01815214112485
131 => 0.017340527885855
201 => 0.017518219604483
202 => 0.018108893940414
203 => 0.018319653197897
204 => 0.018297669280642
205 => 0.018105999313927
206 => 0.01819374484318
207 => 0.017911085920886
208 => 0.017811273172388
209 => 0.017496236682467
210 => 0.017033220073335
211 => 0.017097605372681
212 => 0.016180248315105
213 => 0.015680423502313
214 => 0.015542078581718
215 => 0.015357077972065
216 => 0.015562974892846
217 => 0.016177649557821
218 => 0.015436221501356
219 => 0.014165095103679
220 => 0.014241491966074
221 => 0.014413133033442
222 => 0.01409328103992
223 => 0.013790567971196
224 => 0.014053752424564
225 => 0.013515159412905
226 => 0.014478219425742
227 => 0.014452171351339
228 => 0.014811140568893
301 => 0.01503561138742
302 => 0.014518278824007
303 => 0.014388171083325
304 => 0.014462286365484
305 => 0.013237325845215
306 => 0.014711035160641
307 => 0.014723779859998
308 => 0.014614652006573
309 => 0.015399356721367
310 => 0.01705532842512
311 => 0.016432285258861
312 => 0.016191024113306
313 => 0.015732386499245
314 => 0.016343493888774
315 => 0.016296570376019
316 => 0.016084364456124
317 => 0.015956021653649
318 => 0.016192497202414
319 => 0.015926719716198
320 => 0.015878978776597
321 => 0.015589720625268
322 => 0.015486468625651
323 => 0.015410024955715
324 => 0.015325867986315
325 => 0.015511497290201
326 => 0.015090836866027
327 => 0.014583561632324
328 => 0.014541387185435
329 => 0.014657834541309
330 => 0.014606315254821
331 => 0.014541140530912
401 => 0.014416704233691
402 => 0.014379786642466
403 => 0.014499750904078
404 => 0.014364318247069
405 => 0.014564156509884
406 => 0.014509811559954
407 => 0.014206245087324
408 => 0.013827888867724
409 => 0.013824520703741
410 => 0.013743004476857
411 => 0.013639181305873
412 => 0.013610300074858
413 => 0.014031587763983
414 => 0.014903640672392
415 => 0.014732435820014
416 => 0.014856148871636
417 => 0.01546469464231
418 => 0.015658133043198
419 => 0.015520835048087
420 => 0.015332893084209
421 => 0.015341161576798
422 => 0.015983416161272
423 => 0.016023472791901
424 => 0.016124682974739
425 => 0.016254766661681
426 => 0.015542988862471
427 => 0.015307636906464
428 => 0.015196114092879
429 => 0.014852666991795
430 => 0.015223045245385
501 => 0.015007241698196
502 => 0.015036360969611
503 => 0.015017397005902
504 => 0.015027752612424
505 => 0.014477950230841
506 => 0.014678269321928
507 => 0.01434519998047
508 => 0.013899257521046
509 => 0.013897762565554
510 => 0.014006906350732
511 => 0.013941983356512
512 => 0.013767277248387
513 => 0.013792093426457
514 => 0.013574677593758
515 => 0.013818491644987
516 => 0.013825483359568
517 => 0.013731601669203
518 => 0.014107230854977
519 => 0.014261126438873
520 => 0.014199331499134
521 => 0.014256790741168
522 => 0.014739550154574
523 => 0.014818261003229
524 => 0.014853219162854
525 => 0.014806379860025
526 => 0.014265614697031
527 => 0.014289599931521
528 => 0.014113612195288
529 => 0.013964921103302
530 => 0.013970867967199
531 => 0.014047314516969
601 => 0.014381161083345
602 => 0.015083721500952
603 => 0.015110383155235
604 => 0.015142697858002
605 => 0.015011257721781
606 => 0.014971614118985
607 => 0.015023914263956
608 => 0.015287759017937
609 => 0.015966439358329
610 => 0.015726548398499
611 => 0.015531513314031
612 => 0.015702611664191
613 => 0.015676272414297
614 => 0.015453942638309
615 => 0.015447702581989
616 => 0.015020980658739
617 => 0.014863231279702
618 => 0.014731404091242
619 => 0.014587452242879
620 => 0.014502112761861
621 => 0.014633232990806
622 => 0.014663221738535
623 => 0.014376525066356
624 => 0.014337449369319
625 => 0.014571572060597
626 => 0.014468543393139
627 => 0.014574510932608
628 => 0.014599096310737
629 => 0.014595137498609
630 => 0.014487563737016
701 => 0.01455612804476
702 => 0.014393953016942
703 => 0.014217612032091
704 => 0.014105117470188
705 => 0.014006951044689
706 => 0.014061419483022
707 => 0.013867249445909
708 => 0.013805130543166
709 => 0.014532900000042
710 => 0.015070511122676
711 => 0.015062694044036
712 => 0.015015109588201
713 => 0.014944408738986
714 => 0.015282586810449
715 => 0.015164772332435
716 => 0.015250492208919
717 => 0.015272311515136
718 => 0.015338351983501
719 => 0.015361955774571
720 => 0.01529060872407
721 => 0.015051159308279
722 => 0.014454474130296
723 => 0.014176715569224
724 => 0.014085050617636
725 => 0.01408838246453
726 => 0.013996475253182
727 => 0.014023546045916
728 => 0.01398706113622
729 => 0.013917967543904
730 => 0.014057153148397
731 => 0.014073192992711
801 => 0.014040705409479
802 => 0.014048357411398
803 => 0.013779374097858
804 => 0.013799824314986
805 => 0.013685954907332
806 => 0.013664605766114
807 => 0.01337675381931
808 => 0.012866782370741
809 => 0.013149356057375
810 => 0.012808046779794
811 => 0.012678787784695
812 => 0.013290679763596
813 => 0.013229262780156
814 => 0.013124143601828
815 => 0.012968650428324
816 => 0.012910976497731
817 => 0.012560567952795
818 => 0.012539863946604
819 => 0.0127135358833
820 => 0.012633392260201
821 => 0.012520840260607
822 => 0.012113188327288
823 => 0.011654852585321
824 => 0.011668686860376
825 => 0.011814474932256
826 => 0.012238373413447
827 => 0.012072748943327
828 => 0.011952586489934
829 => 0.011930083674483
830 => 0.012211753522682
831 => 0.01261037536954
901 => 0.012797399821425
902 => 0.012612064269624
903 => 0.01239916076689
904 => 0.012412119216602
905 => 0.012498325977045
906 => 0.01250738508867
907 => 0.012368806795224
908 => 0.012407815773102
909 => 0.012348557568649
910 => 0.011984890077306
911 => 0.01197831248559
912 => 0.011889062618284
913 => 0.011886360167772
914 => 0.011734523879061
915 => 0.011713280932676
916 => 0.011411800765638
917 => 0.011610235924548
918 => 0.011477136038264
919 => 0.011276523114545
920 => 0.011241937370881
921 => 0.011240897681663
922 => 0.011446882298093
923 => 0.011607828874375
924 => 0.011479451367771
925 => 0.011450222298011
926 => 0.011762312293569
927 => 0.011722595996871
928 => 0.011688201940073
929 => 0.012574683155277
930 => 0.011872964100451
1001 => 0.011566974539823
1002 => 0.011188254352705
1003 => 0.011311567555304
1004 => 0.011337551458939
1005 => 0.010426797678365
1006 => 0.010057304983013
1007 => 0.0099305090140071
1008 => 0.0098575361412122
1009 => 0.0098907907956805
1010 => 0.0095582040326934
1011 => 0.0097817078378981
1012 => 0.0094937158140104
1013 => 0.0094454330139986
1014 => 0.0099603984280754
1015 => 0.01003205285706
1016 => 0.0097263528017259
1017 => 0.0099226617255937
1018 => 0.0098514773809011
1019 => 0.0094986526106728
1020 => 0.0094851772996534
1021 => 0.0093081422323431
1022 => 0.0090311166327466
1023 => 0.0089045085001418
1024 => 0.008838569885419
1025 => 0.0088657774429716
1026 => 0.008852020469308
1027 => 0.0087622469105775
1028 => 0.0088571661846093
1029 => 0.00861468666281
1030 => 0.0085181293634393
1031 => 0.0084745166714259
1101 => 0.0082593021392285
1102 => 0.0086018041662914
1103 => 0.0086692813803496
1104 => 0.0087368915453643
1105 => 0.0093253918723972
1106 => 0.0092959920591433
1107 => 0.0095617520526688
1108 => 0.0095514251080217
1109 => 0.0094756260528417
1110 => 0.009155842307377
1111 => 0.0092833024087221
1112 => 0.0088910000284796
1113 => 0.0091849396457261
1114 => 0.0090507978796267
1115 => 0.0091395861796734
1116 => 0.0089799368104711
1117 => 0.0090682933631485
1118 => 0.0086852827310424
1119 => 0.0083276327918868
1120 => 0.0084715615678556
1121 => 0.0086280286075857
1122 => 0.008967289016781
1123 => 0.0087652283159019
1124 => 0.008837896984699
1125 => 0.0085944691088169
1126 => 0.0080922078691368
1127 => 0.008095050613208
1128 => 0.0080177886638391
1129 => 0.0079510230591551
1130 => 0.0087884374180679
1201 => 0.0086842917049751
1202 => 0.0085183491414158
1203 => 0.0087404698570353
1204 => 0.0087992020997749
1205 => 0.0088008741241579
1206 => 0.0089629276645085
1207 => 0.0090494156680433
1208 => 0.0090646595535268
1209 => 0.0093196543006669
1210 => 0.0094051251764462
1211 => 0.0097571676174901
1212 => 0.0090420777652014
1213 => 0.0090273509602715
1214 => 0.0087435955510168
1215 => 0.008563633384472
1216 => 0.0087559177145245
1217 => 0.0089262553815225
1218 => 0.0087488884171449
1219 => 0.0087720487982716
1220 => 0.0085339481400081
1221 => 0.00861905792166
1222 => 0.0086923659311444
1223 => 0.0086518895571528
1224 => 0.0085912944662086
1225 => 0.0089122896353338
1226 => 0.0088941778299015
1227 => 0.0091930959110379
1228 => 0.0094261239311207
1229 => 0.0098437518018504
1230 => 0.0094079353473107
1231 => 0.0093920524634938
]
'min_raw' => 0.0079510230591551
'max_raw' => 0.022988745943172
'avg_raw' => 0.015469884501164
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.007951'
'max' => '$0.022988'
'avg' => '$0.015469'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0013980929779211
'max_diff' => -0.0077656101211252
'year' => 2030
]
5 => [
'items' => [
101 => 0.009547310200499
102 => 0.0094051014072956
103 => 0.0094949724557195
104 => 0.0098292721865483
105 => 0.0098363354130781
106 => 0.0097180172682506
107 => 0.0097108175983851
108 => 0.0097335418923579
109 => 0.009866638791937
110 => 0.0098201306455694
111 => 0.0098739510499881
112 => 0.009941254289841
113 => 0.010219649025855
114 => 0.010286769054207
115 => 0.010123702183056
116 => 0.010138425295739
117 => 0.010077433809643
118 => 0.010018516798295
119 => 0.010150953635666
120 => 0.010392984559014
121 => 0.010391478897202
122 => 0.01044762536701
123 => 0.010482604152558
124 => 0.01033244959895
125 => 0.010234704505888
126 => 0.01027218619425
127 => 0.010332120230185
128 => 0.010252750394166
129 => 0.009762842998572
130 => 0.0099114496069897
131 => 0.0098867142008571
201 => 0.0098514879745961
202 => 0.010000913068501
203 => 0.009986500653669
204 => 0.0095547928747259
205 => 0.0095824294060614
206 => 0.0095564735437314
207 => 0.0096403422449892
208 => 0.0094005722221941
209 => 0.0094743238663301
210 => 0.0095205802061535
211 => 0.0095478255456674
212 => 0.009646254394296
213 => 0.0096347049049709
214 => 0.0096455364618233
215 => 0.0097914804600867
216 => 0.010529615121371
217 => 0.010569790162382
218 => 0.010371953567112
219 => 0.010450985384768
220 => 0.010299261577226
221 => 0.01040111478569
222 => 0.01047080016413
223 => 0.010155905338687
224 => 0.010137259310775
225 => 0.0099849092851084
226 => 0.010066773559355
227 => 0.0099365216127789
228 => 0.009968480884449
301 => 0.0098791199747001
302 => 0.010039951820669
303 => 0.010219786815203
304 => 0.010265220236722
305 => 0.010145704465024
306 => 0.010059167169842
307 => 0.0099072361866589
308 => 0.010159900797695
309 => 0.010233787629776
310 => 0.010159512701621
311 => 0.010142301577828
312 => 0.01010968652934
313 => 0.010149221014546
314 => 0.010233385226221
315 => 0.010193694938264
316 => 0.010219911072712
317 => 0.010120002202155
318 => 0.010332499306355
319 => 0.010669995848038
320 => 0.010671080954606
321 => 0.010631390452704
322 => 0.010615149954469
323 => 0.010655874818042
324 => 0.010677966385909
325 => 0.010809663127041
326 => 0.010950978977306
327 => 0.011610438389556
328 => 0.011425264825466
329 => 0.01201037644743
330 => 0.012473123773168
331 => 0.012611881462669
401 => 0.012484230917382
402 => 0.012047545297502
403 => 0.012026119417672
404 => 0.012678712097686
405 => 0.012494324774943
406 => 0.012472392489619
407 => 0.012239070028946
408 => 0.012376992500753
409 => 0.012346826832968
410 => 0.012299208850615
411 => 0.012562355319059
412 => 0.013054942016739
413 => 0.012978167760457
414 => 0.012920859339597
415 => 0.012669750521622
416 => 0.012820974117228
417 => 0.01276712629133
418 => 0.012998490724063
419 => 0.012861435559462
420 => 0.012492927859624
421 => 0.01255161392544
422 => 0.012542743644652
423 => 0.012725293394718
424 => 0.012670496490911
425 => 0.012532043669725
426 => 0.013053258408957
427 => 0.01301941362294
428 => 0.013067397791517
429 => 0.013088521906484
430 => 0.013405776133421
501 => 0.013535745039194
502 => 0.013565250256231
503 => 0.013688710664559
504 => 0.013562178448802
505 => 0.014068397527773
506 => 0.014405003676587
507 => 0.014795989040028
508 => 0.015367323742974
509 => 0.015582150876423
510 => 0.015543344277608
511 => 0.015976523728829
512 => 0.016754937573635
513 => 0.015700683971347
514 => 0.016810815574483
515 => 0.016459360726016
516 => 0.015626067602703
517 => 0.015572413349442
518 => 0.016136729127282
519 => 0.01738832720915
520 => 0.01707481608515
521 => 0.017388840001036
522 => 0.017022514422792
523 => 0.017004323270198
524 => 0.017371048385355
525 => 0.018227921606065
526 => 0.017820853258318
527 => 0.017237220964569
528 => 0.017668165967949
529 => 0.017294841523944
530 => 0.016453637064669
531 => 0.017074576349102
601 => 0.016659371932934
602 => 0.016780550655053
603 => 0.017653248580842
604 => 0.017548243257538
605 => 0.017684129869124
606 => 0.017444293556447
607 => 0.017220248621692
608 => 0.016802052113176
609 => 0.016678244743844
610 => 0.016712460646605
611 => 0.016678227788141
612 => 0.016444250685051
613 => 0.016393723351916
614 => 0.016309508916371
615 => 0.016335610491345
616 => 0.016177262714718
617 => 0.016476097685534
618 => 0.016531564089442
619 => 0.016749031260433
620 => 0.016771609423545
621 => 0.017377252399304
622 => 0.017043674425672
623 => 0.017267467330121
624 => 0.017247449186326
625 => 0.015644127591451
626 => 0.015865051160999
627 => 0.016208738905579
628 => 0.016053908042503
629 => 0.015835013426956
630 => 0.015658244288515
701 => 0.015390420968205
702 => 0.015767377148451
703 => 0.016263034440653
704 => 0.016784180110434
705 => 0.017410302485859
706 => 0.017270559260532
707 => 0.016772475188147
708 => 0.016794818875784
709 => 0.016932938760836
710 => 0.016754060960179
711 => 0.016701306404655
712 => 0.016925691095008
713 => 0.016927236309051
714 => 0.016721415781291
715 => 0.016492683929444
716 => 0.016491725534633
717 => 0.016451024910884
718 => 0.01702975497334
719 => 0.017347997991482
720 => 0.017384484040638
721 => 0.017345542189668
722 => 0.01736052936256
723 => 0.017175350762309
724 => 0.017598614129474
725 => 0.017987042451592
726 => 0.017882935363704
727 => 0.017726864039264
728 => 0.017602545711935
729 => 0.017853649916678
730 => 0.017842468641716
731 => 0.017983649869056
801 => 0.017977245073081
802 => 0.017929771136421
803 => 0.017882937059147
804 => 0.018068628881655
805 => 0.018015152618892
806 => 0.017961593292723
807 => 0.017854171864568
808 => 0.017868772220735
809 => 0.01771272784421
810 => 0.017640534575525
811 => 0.016554921030371
812 => 0.01626480961766
813 => 0.016356084573861
814 => 0.016386134659396
815 => 0.016259877800796
816 => 0.016440897703302
817 => 0.016412685943244
818 => 0.016522441398303
819 => 0.01645387095501
820 => 0.016456685109921
821 => 0.016658336162885
822 => 0.016716876321445
823 => 0.016687102324324
824 => 0.016707955011314
825 => 0.01718849638164
826 => 0.017120178765628
827 => 0.017083886393742
828 => 0.017093939628781
829 => 0.017216728251822
830 => 0.017251102362264
831 => 0.017105456840898
901 => 0.017174144110741
902 => 0.017466605788019
903 => 0.017568950823169
904 => 0.017895587046965
905 => 0.017756826173601
906 => 0.01801152776209
907 => 0.018794393610938
908 => 0.019419801021194
909 => 0.018844650520668
910 => 0.01999313158445
911 => 0.020887388832427
912 => 0.020853065749787
913 => 0.020697131314059
914 => 0.019679043212295
915 => 0.018742183362214
916 => 0.019525906407978
917 => 0.019527904279195
918 => 0.019460581774515
919 => 0.019042447479885
920 => 0.01944603160742
921 => 0.019478066649862
922 => 0.0194601355449
923 => 0.019139552961575
924 => 0.018650082610403
925 => 0.018745723945395
926 => 0.018902386403144
927 => 0.018605791687414
928 => 0.018511011704431
929 => 0.018687225725426
930 => 0.019255024016722
1001 => 0.019147685038784
1002 => 0.019144881984279
1003 => 0.019604123650709
1004 => 0.0192754057281
1005 => 0.018746930288915
1006 => 0.018613483270787
1007 => 0.018139836257113
1008 => 0.01846698593653
1009 => 0.018478759471079
1010 => 0.018299582935051
1011 => 0.018761469477316
1012 => 0.018757213111515
1013 => 0.019195705640657
1014 => 0.020033938666103
1015 => 0.019786031913536
1016 => 0.01949774333248
1017 => 0.019529088294616
1018 => 0.01987286516329
1019 => 0.019665009820827
1020 => 0.019739756051196
1021 => 0.019872752025919
1022 => 0.019952991799573
1023 => 0.019517543026007
1024 => 0.019416019086966
1025 => 0.019208336737749
1026 => 0.019154156289413
1027 => 0.019323309229416
1028 => 0.019278743405987
1029 => 0.01847776995109
1030 => 0.018394063768479
1031 => 0.018396630917594
1101 => 0.018186147741407
1102 => 0.017865110375971
1103 => 0.018708777404192
1104 => 0.018641019134713
1105 => 0.018566219249283
1106 => 0.018575381808446
1107 => 0.018941589070868
1108 => 0.018729170364753
1109 => 0.019293920309701
1110 => 0.019177824698957
1111 => 0.019058751673866
1112 => 0.019042292154745
1113 => 0.018996459198918
1114 => 0.018839280939697
1115 => 0.018649478746737
1116 => 0.018524154898561
1117 => 0.017087553710799
1118 => 0.017354178534923
1119 => 0.01766090609146
1120 => 0.017766787214843
1121 => 0.017585670226546
1122 => 0.018846432542316
1123 => 0.019076785966415
1124 => 0.018379030419237
1125 => 0.018248508845531
1126 => 0.018854989514958
1127 => 0.018489207532047
1128 => 0.018653919136555
1129 => 0.01829790274004
1130 => 0.019021300572085
1201 => 0.019015789492628
1202 => 0.018734371397281
1203 => 0.0189722240444
1204 => 0.018930891293697
1205 => 0.018613170957153
1206 => 0.019031372873461
1207 => 0.019031580296394
1208 => 0.01876072149818
1209 => 0.018444417720481
1210 => 0.01838787007579
1211 => 0.018345269021623
1212 => 0.018643441888722
1213 => 0.018910782749001
1214 => 0.01940823781056
1215 => 0.019533309832276
1216 => 0.020021474259552
1217 => 0.019730796111404
1218 => 0.019859649969566
1219 => 0.019999539060092
1220 => 0.020066607034341
1221 => 0.019957323369368
1222 => 0.020715643661422
1223 => 0.020779669128405
1224 => 0.020801136313666
1225 => 0.020545434977826
1226 => 0.020772557611695
1227 => 0.020666294452819
1228 => 0.020942761671458
1229 => 0.020986115261452
1230 => 0.020949396313076
1231 => 0.02096315742683
]
'min_raw' => 0.0094005722221941
'max_raw' => 0.020986115261452
'avg_raw' => 0.015193343741823
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.00940057'
'max' => '$0.020986'
'avg' => '$0.015193'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0014495491630389
'max_diff' => -0.0020026306817204
'year' => 2031
]
6 => [
'items' => [
101 => 0.020316064834428
102 => 0.020282509669827
103 => 0.019824982619521
104 => 0.02001142827439
105 => 0.019662877059185
106 => 0.019773406240002
107 => 0.019822126449745
108 => 0.019796677777023
109 => 0.020021969631975
110 => 0.01983042553118
111 => 0.019324909156417
112 => 0.018819255054056
113 => 0.018812906978698
114 => 0.018679777179082
115 => 0.018583548717899
116 => 0.018602085733411
117 => 0.018667412593896
118 => 0.01857975180201
119 => 0.018598458676474
120 => 0.018909117435826
121 => 0.018971417834497
122 => 0.018759696737476
123 => 0.017909605981726
124 => 0.017700991577973
125 => 0.017850939474387
126 => 0.017779274037783
127 => 0.014349261763936
128 => 0.015155092269585
129 => 0.014676295146546
130 => 0.014896946889239
131 => 0.014408219010531
201 => 0.014641465570673
202 => 0.014598393447815
203 => 0.015894145054641
204 => 0.015873913675548
205 => 0.015883597366099
206 => 0.015421369585386
207 => 0.016157710990914
208 => 0.016520459245257
209 => 0.01645332419761
210 => 0.016470220642735
211 => 0.016179883734889
212 => 0.015886408462012
213 => 0.015560899218871
214 => 0.016165655158469
215 => 0.016098416621514
216 => 0.016252637633627
217 => 0.016644865089303
218 => 0.016702622072079
219 => 0.016780248042643
220 => 0.016752424657988
221 => 0.017415290560719
222 => 0.017335013126168
223 => 0.017528458646041
224 => 0.017130526534915
225 => 0.016680228579114
226 => 0.016765815499162
227 => 0.016757572790515
228 => 0.016652633648895
229 => 0.016557899283987
301 => 0.016400193257657
302 => 0.016899198461067
303 => 0.016878939761099
304 => 0.017206904565417
305 => 0.017148933600573
306 => 0.016761789309448
307 => 0.016775616243544
308 => 0.016868609020335
309 => 0.017190458082583
310 => 0.017286004797413
311 => 0.017241743752225
312 => 0.017346506363163
313 => 0.017429306459333
314 => 0.01735690478043
315 => 0.018381959872075
316 => 0.017956285531432
317 => 0.018163756243239
318 => 0.018213236785516
319 => 0.018086493416936
320 => 0.018113979515242
321 => 0.01815561346466
322 => 0.018408406652769
323 => 0.019071809124664
324 => 0.019365625563534
325 => 0.020249586816519
326 => 0.019341228198408
327 => 0.019287329957171
328 => 0.019446558071906
329 => 0.01996553690421
330 => 0.020386120502589
331 => 0.020525652346222
401 => 0.020544093782777
402 => 0.020805864797333
403 => 0.020955907061136
404 => 0.020774078910905
405 => 0.020619998591785
406 => 0.02006810201385
407 => 0.02013198554551
408 => 0.020572079728401
409 => 0.021193738683151
410 => 0.021727186738918
411 => 0.02154039182233
412 => 0.022965505179234
413 => 0.023106799347505
414 => 0.023087277062038
415 => 0.02340916620475
416 => 0.022770281808049
417 => 0.022497146350657
418 => 0.020653312505664
419 => 0.021171354607102
420 => 0.021924359225088
421 => 0.021824696240275
422 => 0.021277844158823
423 => 0.021726771902577
424 => 0.021578342351223
425 => 0.021461269805723
426 => 0.021997601832289
427 => 0.021407882737774
428 => 0.021918476326009
429 => 0.021263634767684
430 => 0.021541245085775
501 => 0.021383660042726
502 => 0.021485636878475
503 => 0.020889482380415
504 => 0.021211152876736
505 => 0.020876099830214
506 => 0.020875940971445
507 => 0.020868544656872
508 => 0.021262733080253
509 => 0.021275587550587
510 => 0.020984281710124
511 => 0.02094229998746
512 => 0.021097528419658
513 => 0.020915796579945
514 => 0.02100082776394
515 => 0.020918372087886
516 => 0.020899809578424
517 => 0.020751900344879
518 => 0.020688176980219
519 => 0.020713164553451
520 => 0.020627869084033
521 => 0.020576475478436
522 => 0.020858321175161
523 => 0.020707742389024
524 => 0.020835242816582
525 => 0.020689939987543
526 => 0.020186257076665
527 => 0.01989658370827
528 => 0.018945173381053
529 => 0.019214992169631
530 => 0.019393882305606
531 => 0.019334759116733
601 => 0.019461778604068
602 => 0.019469576568981
603 => 0.019428281238838
604 => 0.019380466536792
605 => 0.019357192984155
606 => 0.019530654977848
607 => 0.01963135550365
608 => 0.019411836323992
609 => 0.019360406051598
610 => 0.019582352062218
611 => 0.019717739000482
612 => 0.020717360085277
613 => 0.020643304926581
614 => 0.020829168842315
615 => 0.020808243417718
616 => 0.021003058411851
617 => 0.021321498592298
618 => 0.020674020668174
619 => 0.0207864004477
620 => 0.020758847520988
621 => 0.021059663150061
622 => 0.021060602263619
623 => 0.020880248267135
624 => 0.020978021094539
625 => 0.020923446984539
626 => 0.021022069777442
627 => 0.020642315874788
628 => 0.02110481513632
629 => 0.021367022414814
630 => 0.02137066316313
701 => 0.021494947332131
702 => 0.021621227245889
703 => 0.021863610543686
704 => 0.021614467307267
705 => 0.021166282878556
706 => 0.021198640346682
707 => 0.020935869980113
708 => 0.020940287197448
709 => 0.020916707745128
710 => 0.020987471456518
711 => 0.020657844530049
712 => 0.020735207310843
713 => 0.020626898964696
714 => 0.020786165006507
715 => 0.020614821073138
716 => 0.020758834234132
717 => 0.020820985540305
718 => 0.021050325198106
719 => 0.020580947419211
720 => 0.01962385435396
721 => 0.019825046919908
722 => 0.019527467311536
723 => 0.019555009437257
724 => 0.019610648914508
725 => 0.019430303164632
726 => 0.01946470745036
727 => 0.019463478287175
728 => 0.01945288602289
729 => 0.019405971128064
730 => 0.019337935248737
731 => 0.019608969251637
801 => 0.019655023210174
802 => 0.019757395455123
803 => 0.020061985816334
804 => 0.020031550056514
805 => 0.020081192043548
806 => 0.01997282386458
807 => 0.019560036326272
808 => 0.019582452675582
809 => 0.019302920440478
810 => 0.019750247187397
811 => 0.019644314309302
812 => 0.01957601869366
813 => 0.019557383602178
814 => 0.01986272898398
815 => 0.019954093107918
816 => 0.019897161117098
817 => 0.019780391942955
818 => 0.020004623277017
819 => 0.020064618122451
820 => 0.020078048755819
821 => 0.020475343687682
822 => 0.020100253129114
823 => 0.020190541154641
824 => 0.020894942555948
825 => 0.020256147685711
826 => 0.020594531575301
827 => 0.020577969444771
828 => 0.020751075192398
829 => 0.020563769720887
830 => 0.02056609159669
831 => 0.020719797773384
901 => 0.020503945169272
902 => 0.020450497028952
903 => 0.020376658805902
904 => 0.020537881864614
905 => 0.020634527796819
906 => 0.021413423031781
907 => 0.021916624875504
908 => 0.021894779556368
909 => 0.022094404880551
910 => 0.022004471843648
911 => 0.021714054344351
912 => 0.022209761603009
913 => 0.022052899085097
914 => 0.022065830640486
915 => 0.022065349327349
916 => 0.022169649188601
917 => 0.022095743177962
918 => 0.021950066844696
919 => 0.022046773593148
920 => 0.022333958062754
921 => 0.023225387468308
922 => 0.023724243173525
923 => 0.023195355728473
924 => 0.023560175205985
925 => 0.023341413517949
926 => 0.023301658011636
927 => 0.023530791603461
928 => 0.023760326263307
929 => 0.02374570589778
930 => 0.023579075521468
1001 => 0.023484950249978
1002 => 0.024197698339977
1003 => 0.024722838991342
1004 => 0.024687027919507
1005 => 0.024845086344204
1006 => 0.025309150767678
1007 => 0.025351579002716
1008 => 0.025346234020303
1009 => 0.025241071212834
1010 => 0.025698002904125
1011 => 0.026079183359948
1012 => 0.02521672906135
1013 => 0.0255451403679
1014 => 0.025692574784162
1015 => 0.025909052249055
1016 => 0.026274286018164
1017 => 0.02667102676489
1018 => 0.026727130256518
1019 => 0.026687322144408
1020 => 0.026425660956979
1021 => 0.026859779416148
1022 => 0.027114075828198
1023 => 0.027265503522105
1024 => 0.027649498958685
1025 => 0.025693485288924
1026 => 0.02430892159328
1027 => 0.024092701978864
1028 => 0.024532393067197
1029 => 0.024648336100719
1030 => 0.024601599609287
1031 => 0.023043147290816
1101 => 0.024084497049936
1102 => 0.025204901831575
1103 => 0.02524794114223
1104 => 0.025808839202477
1105 => 0.025991490602882
1106 => 0.026443087059971
1107 => 0.026414839578623
1108 => 0.026524796129455
1109 => 0.026499519022601
1110 => 0.027336006364504
1111 => 0.028258776122196
1112 => 0.028226823539716
1113 => 0.028094164469331
1114 => 0.028291185810585
1115 => 0.02924358309054
1116 => 0.029155901610857
1117 => 0.029241076699678
1118 => 0.030364006767503
1119 => 0.031823975590616
1120 => 0.031145673493807
1121 => 0.032617393867712
1122 => 0.033543763830541
1123 => 0.03514582489281
1124 => 0.034945238957497
1125 => 0.035568909572572
1126 => 0.034586148269739
1127 => 0.032329529669605
1128 => 0.031972411138144
1129 => 0.032687371481809
1130 => 0.034445031721899
1201 => 0.032632016505867
1202 => 0.032998787122794
1203 => 0.032893157160445
1204 => 0.03288752858865
1205 => 0.033102348281015
1206 => 0.032790741112998
1207 => 0.03152119745344
1208 => 0.032103021831148
1209 => 0.031878351497413
1210 => 0.032127639982974
1211 => 0.033472947125157
1212 => 0.032878154769481
1213 => 0.032251589339784
1214 => 0.033037441434624
1215 => 0.034038101199432
1216 => 0.033975481709709
1217 => 0.03385397372673
1218 => 0.034538907864833
1219 => 0.035670218394106
1220 => 0.035976007084194
1221 => 0.036201734043643
1222 => 0.036232857977663
1223 => 0.036553453841484
1224 => 0.034829529081159
1225 => 0.037565441949322
1226 => 0.038037858523587
1227 => 0.037949063787286
1228 => 0.038474134927252
1229 => 0.038319645678105
1230 => 0.038095814994711
1231 => 0.038928164437392
]
'min_raw' => 0.014349261763936
'max_raw' => 0.038928164437392
'avg_raw' => 0.026638713100664
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.014349'
'max' => '$0.038928'
'avg' => '$0.026638'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0049486895417415
'max_diff' => 0.01794204917594
'year' => 2032
]
7 => [
'items' => [
101 => 0.037973942968495
102 => 0.036619545726538
103 => 0.03587649661266
104 => 0.036855003625877
105 => 0.037452543713659
106 => 0.037847479700996
107 => 0.037966987092137
108 => 0.034963352452918
109 => 0.033344559971594
110 => 0.034382187392629
111 => 0.035648164459512
112 => 0.034822496514632
113 => 0.034854861134875
114 => 0.033677675627194
115 => 0.03575231925613
116 => 0.035450061129893
117 => 0.037018176823493
118 => 0.036643933428301
119 => 0.037922670902531
120 => 0.037585936470407
121 => 0.038983702271587
122 => 0.039541308892676
123 => 0.040477617194025
124 => 0.041166369391957
125 => 0.041570817856314
126 => 0.041546536287562
127 => 0.043149162598766
128 => 0.042204149854547
129 => 0.041016991125406
130 => 0.040995519169434
131 => 0.041610365497425
201 => 0.042898914726043
202 => 0.043233016793395
203 => 0.043419734270002
204 => 0.043133769954896
205 => 0.04210802635072
206 => 0.041665115463075
207 => 0.042042488371713
208 => 0.041580993732473
209 => 0.042377662952327
210 => 0.043471659950549
211 => 0.043245753896549
212 => 0.044000923965342
213 => 0.044782445540335
214 => 0.045900056492905
215 => 0.04619224138092
216 => 0.046675211890014
217 => 0.047172347191419
218 => 0.047332013652058
219 => 0.047636866467011
220 => 0.047635259742197
221 => 0.048553954219019
222 => 0.049567302676554
223 => 0.049949818260203
224 => 0.050829391752771
225 => 0.04932315297068
226 => 0.05046565238932
227 => 0.051496215463549
228 => 0.050267535681325
301 => 0.051960984515448
302 => 0.052026737296239
303 => 0.053019526220893
304 => 0.052013144450412
305 => 0.051415558167585
306 => 0.053140767374841
307 => 0.053975541766651
308 => 0.053724100926219
309 => 0.051810623715361
310 => 0.050696897905744
311 => 0.047782062640311
312 => 0.051234810923729
313 => 0.052916543894534
314 => 0.051806268433244
315 => 0.052366226795052
316 => 0.055421178049968
317 => 0.056584305694395
318 => 0.05634238327523
319 => 0.056383264181687
320 => 0.057010866746359
321 => 0.059794002145162
322 => 0.058126282901626
323 => 0.059401191775062
324 => 0.060077398844506
325 => 0.060705497656035
326 => 0.059163085487587
327 => 0.057156429918971
328 => 0.05652083786672
329 => 0.051695873419756
330 => 0.051444713066533
331 => 0.051303729149332
401 => 0.050414845493946
402 => 0.049716426426537
403 => 0.049161017653497
404 => 0.047703459173938
405 => 0.048195342373711
406 => 0.045872298373392
407 => 0.047358499601172
408 => 0.043650865284804
409 => 0.046738693316424
410 => 0.045058128905126
411 => 0.046186582708678
412 => 0.046182645639664
413 => 0.044104804410721
414 => 0.042906348953307
415 => 0.043670051415356
416 => 0.044488801077448
417 => 0.044621640455518
418 => 0.045683170763974
419 => 0.045979421055547
420 => 0.045081768841479
421 => 0.043574032804602
422 => 0.043924245498171
423 => 0.04289925190425
424 => 0.041102990056713
425 => 0.042393096675337
426 => 0.042833595796919
427 => 0.043028145303691
428 => 0.041261728078705
429 => 0.040706681435831
430 => 0.040411179260457
501 => 0.043346010522574
502 => 0.04350678720412
503 => 0.0426842309698
504 => 0.046402263146909
505 => 0.045560757956252
506 => 0.046500925427993
507 => 0.043892467366985
508 => 0.04399211397767
509 => 0.042757228129195
510 => 0.043448681689239
511 => 0.042959984599588
512 => 0.043392819074665
513 => 0.043652258274382
514 => 0.044886941490241
515 => 0.04675279141545
516 => 0.044702520990849
517 => 0.043809188806436
518 => 0.044363407069355
519 => 0.045839363337535
520 => 0.04807551263664
521 => 0.046751667244871
522 => 0.047339167349385
523 => 0.047467509986161
524 => 0.046491355405692
525 => 0.048111504848394
526 => 0.048979756096809
527 => 0.049870402218402
528 => 0.050643725290443
529 => 0.04951465857171
530 => 0.050722921806111
531 => 0.049749274926356
601 => 0.048875813021452
602 => 0.048877137702612
603 => 0.048329202290423
604 => 0.047267508385002
605 => 0.047071715739535
606 => 0.048090253807137
607 => 0.048907024881441
608 => 0.04897429805919
609 => 0.049426504493137
610 => 0.04969411560265
611 => 0.052317068275543
612 => 0.053372041538782
613 => 0.05466204287545
614 => 0.055164571096574
615 => 0.056677000875818
616 => 0.055455590995537
617 => 0.05519133128491
618 => 0.051522671352475
619 => 0.052123414210889
620 => 0.053085261490274
621 => 0.051538531859841
622 => 0.052519575802266
623 => 0.052713254657852
624 => 0.051485974578863
625 => 0.052141517896693
626 => 0.050400589199584
627 => 0.046790738903638
628 => 0.048115523643704
629 => 0.049091011130114
630 => 0.047698870210267
701 => 0.050194228925799
702 => 0.048736491878845
703 => 0.048274459218679
704 => 0.046471905084835
705 => 0.047322641249338
706 => 0.048473274093197
707 => 0.047762316771117
708 => 0.049237659965211
709 => 0.051327139387704
710 => 0.052816226854824
711 => 0.052930540500477
712 => 0.051973157020231
713 => 0.053507370157265
714 => 0.05351854522503
715 => 0.051787946539011
716 => 0.050727964479838
717 => 0.050487134325772
718 => 0.051088775268161
719 => 0.051819278441265
720 => 0.052971078342541
721 => 0.053667086900113
722 => 0.055481908083844
723 => 0.055972946661161
724 => 0.056512449184037
725 => 0.057233390931017
726 => 0.058099066343936
727 => 0.056205017823398
728 => 0.056280271902067
729 => 0.054516560144629
730 => 0.052631781189956
731 => 0.05406209347554
801 => 0.055932036522471
802 => 0.055503069521401
803 => 0.05545480197078
804 => 0.055535974602623
805 => 0.055212547492569
806 => 0.053749698660563
807 => 0.053015065135049
808 => 0.053962929807963
809 => 0.054466677697014
810 => 0.0552479467415
811 => 0.055151638841179
812 => 0.057164103997604
813 => 0.057946087103603
814 => 0.057746022362145
815 => 0.0577828390894
816 => 0.059198582150431
817 => 0.060773179604064
818 => 0.062247997905826
819 => 0.063748246427298
820 => 0.061939638278967
821 => 0.061021338600687
822 => 0.061968789465538
823 => 0.061466058700312
824 => 0.064354898796933
825 => 0.064554915817395
826 => 0.067443547017996
827 => 0.070185201999171
828 => 0.068463217627346
829 => 0.070086971330098
830 => 0.071843193346206
831 => 0.07523123055203
901 => 0.074090258813695
902 => 0.073216292343436
903 => 0.072390398252017
904 => 0.074108952749265
905 => 0.076319845655397
906 => 0.076796050811708
907 => 0.077567685089304
908 => 0.076756405997363
909 => 0.077733502304146
910 => 0.081183081624963
911 => 0.080250974842199
912 => 0.078927233367032
913 => 0.081650344939697
914 => 0.082635828432017
915 => 0.089552467682826
916 => 0.098285010449089
917 => 0.094669680402889
918 => 0.092425528377241
919 => 0.092952957335266
920 => 0.096141786338278
921 => 0.097165937005672
922 => 0.094381942445789
923 => 0.095365296389535
924 => 0.1007836733008
925 => 0.10369045867135
926 => 0.099742653704784
927 => 0.088850816374244
928 => 0.078808044930562
929 => 0.081471840149319
930 => 0.081169848438701
1001 => 0.086991218473571
1002 => 0.080228744403698
1003 => 0.080342607123704
1004 => 0.086284356925956
1005 => 0.084699199946095
1006 => 0.082131448650287
1007 => 0.078826792356666
1008 => 0.072717829554197
1009 => 0.06730695083902
1010 => 0.077918930050429
1011 => 0.077461322210201
1012 => 0.076798638243869
1013 => 0.078273369701047
1014 => 0.085434247047279
1015 => 0.08526916564695
1016 => 0.08421900200333
1017 => 0.085015541871298
1018 => 0.081991811360218
1019 => 0.082771095561987
1020 => 0.078806454104256
1021 => 0.080598637621203
1022 => 0.082125939409242
1023 => 0.08243256785528
1024 => 0.08312341740104
1025 => 0.077220183672262
1026 => 0.079870562306647
1027 => 0.081427411447454
1028 => 0.074393510390632
1029 => 0.081288373839276
1030 => 0.077117421506554
1031 => 0.075701737639226
1101 => 0.077607769464416
1102 => 0.076864987008463
1103 => 0.076226386270483
1104 => 0.075870036086137
1105 => 0.077269615497501
1106 => 0.077204323445102
1107 => 0.074914339881453
1108 => 0.071927149674346
1109 => 0.072929748759027
1110 => 0.072565495112146
1111 => 0.071245392906192
1112 => 0.072134982403257
1113 => 0.068217680469127
1114 => 0.061478166095093
1115 => 0.065930495727488
1116 => 0.065759085879843
1117 => 0.065672653261843
1118 => 0.069018455927235
1119 => 0.068696834201759
1120 => 0.06811308762069
1121 => 0.071234671942451
1122 => 0.070095251673774
1123 => 0.073606676460658
1124 => 0.075919527930016
1125 => 0.07533291398448
1126 => 0.077508161970392
1127 => 0.072952846616972
1128 => 0.074465939649848
1129 => 0.074777786026868
1130 => 0.071196152076472
1201 => 0.06874945549361
1202 => 0.068586288725916
1203 => 0.064344054026791
1204 => 0.066610221560942
1205 => 0.06860435521061
1206 => 0.067649319943441
1207 => 0.067346984308723
1208 => 0.068891551497901
1209 => 0.069011577596823
1210 => 0.066274969821594
1211 => 0.066843997235162
1212 => 0.069216936142675
1213 => 0.066784205263027
1214 => 0.062057806548203
1215 => 0.060885594319352
1216 => 0.060729199599865
1217 => 0.057550067065897
1218 => 0.060963927145635
1219 => 0.059473685735067
1220 => 0.064181340495216
1221 => 0.061492353343878
1222 => 0.061376436482194
1223 => 0.061201211144453
1224 => 0.058464800444155
1225 => 0.059063900479548
1226 => 0.061055400242706
1227 => 0.061765989794051
1228 => 0.061691869482158
1229 => 0.061045640807408
1230 => 0.061341480985482
1231 => 0.060388476694354
]
'min_raw' => 0.033344559971594
'max_raw' => 0.10369045867135
'avg_raw' => 0.068517509321472
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.033344'
'max' => '$0.10369'
'avg' => '$0.068517'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.018995298207658
'max_diff' => 0.064762294233959
'year' => 2033
]
8 => [
'items' => [
101 => 0.060051951044088
102 => 0.058989783523175
103 => 0.057428690698699
104 => 0.057645770230681
105 => 0.054552836863239
106 => 0.052867642610258
107 => 0.052401203051536
108 => 0.051777460579762
109 => 0.052471656423438
110 => 0.054544074971615
111 => 0.052044298514392
112 => 0.047758607117413
113 => 0.048016184472834
114 => 0.048594884315062
115 => 0.047516480987552
116 => 0.046495862741595
117 => 0.047383207501079
118 => 0.045567303558908
119 => 0.04881432763089
120 => 0.048726504729423
121 => 0.049936794508836
122 => 0.05069361354555
123 => 0.048949390688997
124 => 0.048510723357455
125 => 0.04876060820582
126 => 0.044630568287719
127 => 0.049599282135777
128 => 0.049642251779465
129 => 0.049274319602579
130 => 0.05192000633484
131 => 0.057503230550298
201 => 0.055402597015769
202 => 0.054589168219215
203 => 0.053042839482352
204 => 0.055103230712306
205 => 0.054945024812956
206 => 0.054229557738288
207 => 0.053796841019136
208 => 0.054594134841993
209 => 0.053698047491224
210 => 0.053537085580193
211 => 0.052561831527627
212 => 0.052213710202093
213 => 0.051955975031777
214 => 0.051672233933794
215 => 0.052298096092068
216 => 0.050879810102394
217 => 0.049169496235137
218 => 0.049027302142927
219 => 0.049419912533352
220 => 0.049246211661995
221 => 0.049026470529983
222 => 0.048606924866036
223 => 0.048482454629718
224 => 0.048886922513378
225 => 0.048430301854668
226 => 0.049104070510009
227 => 0.048920842717077
228 => 0.047897347160271
301 => 0.046621692749903
302 => 0.046610336749875
303 => 0.046335499099654
304 => 0.04598545202998
305 => 0.045888076943189
306 => 0.047308477800441
307 => 0.050248665065933
308 => 0.049671435952998
309 => 0.050088543143912
310 => 0.052140297697049
311 => 0.052792488771079
312 => 0.052329578994725
313 => 0.051695919541819
314 => 0.051723797341871
315 => 0.05388920351421
316 => 0.054024257241038
317 => 0.054365494438747
318 => 0.054804080671425
319 => 0.05240427212665
320 => 0.051610766575224
321 => 0.051234759622946
322 => 0.050076803742933
323 => 0.051325559883892
324 => 0.050597963157625
325 => 0.050696140814242
326 => 0.050632202486574
327 => 0.050667117136971
328 => 0.048813420021487
329 => 0.049488809822918
330 => 0.048365843284033
331 => 0.046862317147377
401 => 0.046857276800563
402 => 0.047225262692466
403 => 0.047006370284673
404 => 0.04641733644354
405 => 0.046501005920511
406 => 0.04576797326108
407 => 0.046590009357351
408 => 0.046613582411206
409 => 0.046297053737532
410 => 0.04756351376296
411 => 0.048082383468711
412 => 0.047874037514998
413 => 0.048067765361191
414 => 0.049695422428674
415 => 0.04996080155033
416 => 0.050078665426209
417 => 0.049920743446503
418 => 0.048097515944452
419 => 0.04817838383713
420 => 0.04758502889735
421 => 0.047083706499438
422 => 0.047103756766265
423 => 0.047361501646141
424 => 0.048487088653099
425 => 0.050855820152264
426 => 0.050945711781137
427 => 0.051054663057655
428 => 0.050611503461532
429 => 0.050477842286875
430 => 0.050654175877124
501 => 0.051543746886225
502 => 0.053831965037805
503 => 0.053023155918085
504 => 0.052365581513888
505 => 0.052942451547155
506 => 0.052853646927191
507 => 0.052104046564878
508 => 0.05208300777933
509 => 0.050644285022319
510 => 0.050112421977185
511 => 0.049667957407411
512 => 0.04918261370026
513 => 0.048894885681793
514 => 0.049336966688204
515 => 0.04943807584492
516 => 0.048471457998146
517 => 0.048339711557407
518 => 0.049129072556977
519 => 0.048781704211411
520 => 0.049138981169146
521 => 0.049221872488006
522 => 0.049208525076521
523 => 0.048845832628749
524 => 0.049077001979314
525 => 0.048530217550327
526 => 0.047935671608169
527 => 0.047556388338593
528 => 0.047225413381263
529 => 0.047409057523967
530 => 0.046754399687322
531 => 0.046544961469721
601 => 0.048998687004818
602 => 0.050811280439589
603 => 0.050784924613181
604 => 0.050624490298095
605 => 0.050386117448788
606 => 0.051526308427565
607 => 0.051129088689398
608 => 0.051418099237734
609 => 0.051491664552021
610 => 0.05171432460191
611 => 0.051793906431467
612 => 0.05155335486941
613 => 0.050746034446248
614 => 0.04873426870945
615 => 0.047797786328313
616 => 0.04748873154419
617 => 0.047499965098615
618 => 0.047190093518798
619 => 0.047281364586524
620 => 0.04715835316619
621 => 0.046925399295736
622 => 0.047394673278913
623 => 0.047448752733885
624 => 0.047339218578805
625 => 0.04736501783752
626 => 0.046458121816106
627 => 0.04652707115094
628 => 0.046143152492929
629 => 0.046071172372761
630 => 0.045100659436932
701 => 0.043381255093011
702 => 0.044333972006161
703 => 0.043183223947346
704 => 0.042747418220795
705 => 0.044810454748594
706 => 0.044603383100929
707 => 0.044248966452008
708 => 0.043724710361353
709 => 0.043530258677693
710 => 0.042348831803699
711 => 0.042279026801317
712 => 0.042864573861277
713 => 0.042594364040549
714 => 0.042214887115786
715 => 0.040840460161254
716 => 0.039295149207233
717 => 0.039341792431457
718 => 0.039833327094398
719 => 0.041262530419381
720 => 0.040704115954842
721 => 0.040298979853751
722 => 0.040223110040363
723 => 0.041172779599125
724 => 0.042516760986697
725 => 0.043147326983858
726 => 0.042522455231246
727 => 0.04180463620733
728 => 0.041848326525263
729 => 0.042138978636862
730 => 0.042169522064191
731 => 0.04170229567261
801 => 0.041833817165046
802 => 0.041634023991458
803 => 0.040407893653941
804 => 0.040385716844237
805 => 0.040084804685388
806 => 0.040075693184808
807 => 0.03956376653655
808 => 0.039492144459677
809 => 0.038475683027833
810 => 0.039144721020401
811 => 0.038695965461058
812 => 0.038019584982392
813 => 0.037902976732927
814 => 0.03789947134814
815 => 0.038593962863822
816 => 0.039136605482688
817 => 0.038703771756141
818 => 0.038605223906736
819 => 0.039657457116187
820 => 0.039523550848965
821 => 0.039407588885155
822 => 0.042396422194357
823 => 0.040030527408552
824 => 0.038998862241388
825 => 0.03772198068912
826 => 0.038137739761134
827 => 0.038225346306379
828 => 0.035154676348375
829 => 0.03390890592884
830 => 0.033481404466724
831 => 0.033235371331292
901 => 0.033347491720598
902 => 0.032226152228721
903 => 0.032979710912506
904 => 0.032008725697008
905 => 0.03184593686577
906 => 0.033582178713067
907 => 0.033823766623141
908 => 0.032793077543286
909 => 0.033454946785958
910 => 0.033214943797894
911 => 0.032025370451631
912 => 0.031979937499713
913 => 0.031383051410083
914 => 0.030449040259733
915 => 0.030022172101159
916 => 0.029799855457934
917 => 0.029891587637793
918 => 0.029845205040605
919 => 0.029542527219555
920 => 0.029862554179006
921 => 0.02904501754188
922 => 0.028719467865636
923 => 0.028572424629572
924 => 0.02784681380847
925 => 0.02900158330544
926 => 0.029229087443746
927 => 0.029457039835484
928 => 0.031441209775856
929 => 0.031342086252841
930 => 0.032238114625783
1001 => 0.032203296610901
1002 => 0.031947734804241
1003 => 0.030869561579818
1004 => 0.031299302210483
1005 => 0.029976627345818
1006 => 0.030967665287573
1007 => 0.03051539695769
1008 => 0.030814752910299
1009 => 0.03027648391567
1010 => 0.03057438420188
1011 => 0.029283037114786
1012 => 0.028077195374601
1013 => 0.028562461291566
1014 => 0.029090000840196
1015 => 0.030233840996203
1016 => 0.029552579235762
1017 => 0.029797586726176
1018 => 0.028976852647047
1019 => 0.027283443810706
1020 => 0.027293028320816
1021 => 0.027032534264262
1022 => 0.026807429366644
1023 => 0.029630830344122
1024 => 0.029279695801208
1025 => 0.028720208862428
1026 => 0.029469104363113
1027 => 0.029667124220064
1028 => 0.029672761567008
1029 => 0.030219136392517
1030 => 0.030510736734834
1031 => 0.030562132559035
1101 => 0.031421865152183
1102 => 0.031710036177259
1103 => 0.032896971846057
1104 => 0.030485996483086
1105 => 0.030436344032072
1106 => 0.0294796428586
1107 => 0.028872887849537
1108 => 0.029521187893172
1109 => 0.030095493230052
1110 => 0.029497488126287
1111 => 0.029575574968262
1112 => 0.02877280197527
1113 => 0.029059755546284
1114 => 0.029306918618463
1115 => 0.02917044969758
1116 => 0.028966149117847
1117 => 0.03004840674172
1118 => 0.029987341525179
1119 => 0.030995164705524
1120 => 0.03178083494473
1121 => 0.033188896468742
1122 => 0.031719510864529
1123 => 0.031665960612832
1124 => 0.032189422912894
1125 => 0.031709956037908
1126 => 0.032012962552266
1127 => 0.033140077434817
1128 => 0.033163891596201
1129 => 0.032764973710206
1130 => 0.032740699520589
1201 => 0.032817316064278
1202 => 0.033266061553738
1203 => 0.033109256091164
1204 => 0.033290715342283
1205 => 0.033517632914409
1206 => 0.03445626020378
1207 => 0.034682560065539
1208 => 0.034132768724489
1209 => 0.034182408726833
1210 => 0.033976771673171
1211 => 0.033778128855958
1212 => 0.034224648899599
1213 => 0.035040673055727
1214 => 0.035035596611804
1215 => 0.035224898354783
1216 => 0.035342831772398
1217 => 0.034836575211455
1218 => 0.03450702080585
1219 => 0.03463339293505
1220 => 0.034835464721669
1221 => 0.034567863778105
1222 => 0.032916106789617
1223 => 0.033417144345279
1224 => 0.033333747196532
1225 => 0.033214979515277
1226 => 0.033718776651904
1227 => 0.033670184189055
1228 => 0.032214651271474
1229 => 0.032307829766392
1230 => 0.032220317764367
1231 => 0.032503086946183
]
'min_raw' => 0.026807429366644
'max_raw' => 0.060051951044088
'avg_raw' => 0.043429690205366
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0268074'
'max' => '$0.060051'
'avg' => '$0.043429'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0065371306049496
'max_diff' => -0.043638507627263
'year' => 2034
]
9 => [
'items' => [
101 => 0.031694685574121
102 => 0.031943344391501
103 => 0.03209930087073
104 => 0.03219116043511
105 => 0.032523020170344
106 => 0.032484080260725
107 => 0.032520599610888
108 => 0.033012659990518
109 => 0.035501332535954
110 => 0.035636785491656
111 => 0.03496976559819
112 => 0.035236226889244
113 => 0.034724679479099
114 => 0.035068084682599
115 => 0.035303033801287
116 => 0.034241343912052
117 => 0.034178477527122
118 => 0.033664818778847
119 => 0.033940829895051
120 => 0.033501676363269
121 => 0.03360942927903
122 => 0.033308142732832
123 => 0.033850398530435
124 => 0.034456724770188
125 => 0.034609906722898
126 => 0.034206950954295
127 => 0.033915184421746
128 => 0.033402938504462
129 => 0.03425481488105
130 => 0.034503929494027
131 => 0.03425350638804
201 => 0.03419547788253
202 => 0.034085513969443
203 => 0.034218807246524
204 => 0.034502572762344
205 => 0.03436875418541
206 => 0.034457143713055
207 => 0.034120293980556
208 => 0.034836742803441
209 => 0.035974635956982
210 => 0.035978294469535
211 => 0.035844475171268
212 => 0.035789719197594
213 => 0.03592702591845
214 => 0.036001509181898
215 => 0.036445533939399
216 => 0.036921990194924
217 => 0.03914540364531
218 => 0.038521078045574
219 => 0.040493822730215
220 => 0.042054007646928
221 => 0.042521838884833
222 => 0.042091456159121
223 => 0.040619140103281
224 => 0.040546901253526
225 => 0.042747163036758
226 => 0.042125488304621
227 => 0.042051542073386
228 => 0.041264879107174
301 => 0.041729894350309
302 => 0.041628188695273
303 => 0.041467641343189
304 => 0.042354858033847
305 => 0.04401564847638
306 => 0.043756798711117
307 => 0.043563579369044
308 => 0.042716948457382
309 => 0.043226809368062
310 => 0.043045257663511
311 => 0.043825319001821
312 => 0.043363227945481
313 => 0.042120778507091
314 => 0.042318642675321
315 => 0.042288735904341
316 => 0.042904215131904
317 => 0.042719463544923
318 => 0.042252660191826
319 => 0.044009972075199
320 => 0.043895862016175
321 => 0.04405764399068
322 => 0.04412886541913
323 => 0.045198510195231
324 => 0.045636709435184
325 => 0.045736188334411
326 => 0.046152443720821
327 => 0.045725831521197
328 => 0.047432584489036
329 => 0.048567475620852
330 => 0.04988571007142
331 => 0.051812004911717
401 => 0.052536309590893
402 => 0.052405470433599
403 => 0.053865965197014
404 => 0.056490441821894
405 => 0.052935952196146
406 => 0.056678838403034
407 => 0.055493883843632
408 => 0.052684377899714
409 => 0.052503478838825
410 => 0.054406108883081
411 => 0.058625959199886
412 => 0.057568934556673
413 => 0.058627688113534
414 => 0.057392595850449
415 => 0.057331263109412
416 => 0.058567702439093
417 => 0.061456710327693
418 => 0.060084250972661
419 => 0.058116493946381
420 => 0.059569455112896
421 => 0.058310765685253
422 => 0.055474586119785
423 => 0.057568126269849
424 => 0.056168235592092
425 => 0.056576798114143
426 => 0.059519160100765
427 => 0.05916512732201
428 => 0.059623278520271
429 => 0.058814653647245
430 => 0.0580592705074
501 => 0.056649291781391
502 => 0.056231866591731
503 => 0.056347227896768
504 => 0.056231809424398
505 => 0.055442939285569
506 => 0.055272582854198
507 => 0.054988648005093
508 => 0.055076651287474
509 => 0.054542770703087
510 => 0.055550313671183
511 => 0.0557373225245
512 => 0.056470528274569
513 => 0.056546652127858
514 => 0.058588619705271
515 => 0.057463938277503
516 => 0.058218471679572
517 => 0.058150979110147
518 => 0.052745268412686
519 => 0.053490127651807
520 => 0.054648894878173
521 => 0.054126871813367
522 => 0.053388853334316
523 => 0.052792863842435
524 => 0.05188987881918
525 => 0.053160812899119
526 => 0.054831956065468
527 => 0.056589035076363
528 => 0.058700050379575
529 => 0.058228896338825
530 => 0.056549571113661
531 => 0.056624904416514
601 => 0.057090585252189
602 => 0.056487486258424
603 => 0.056309620591272
604 => 0.057066149240836
605 => 0.057071359037864
606 => 0.056377420758589
607 => 0.05560623535054
608 => 0.055603004055522
609 => 0.055465779060927
610 => 0.05741700787214
611 => 0.058489986426824
612 => 0.058613001688927
613 => 0.05848170651955
614 => 0.058532236819324
615 => 0.057907894239823
616 => 0.059334956233522
617 => 0.060644569440744
618 => 0.060293565125403
619 => 0.059767359758504
620 => 0.059348211838284
621 => 0.060194827196112
622 => 0.060157128746924
623 => 0.06063313111186
624 => 0.060611536895064
625 => 0.06045147520309
626 => 0.06029357084171
627 => 0.060919643785883
628 => 0.060739344832385
629 => 0.060558765824812
630 => 0.060196586979863
701 => 0.060245813100045
702 => 0.059719698589921
703 => 0.059476293944176
704 => 0.055816072081572
705 => 0.054837941198685
706 => 0.055145681086132
707 => 0.055246997047542
708 => 0.0548213132338
709 => 0.055431634473506
710 => 0.055336516554788
711 => 0.055706564734398
712 => 0.055475374697402
713 => 0.055484862817163
714 => 0.056164743421055
715 => 0.056362115652784
716 => 0.056261730542738
717 => 0.056332036832814
718 => 0.057952215613195
719 => 0.057721878001026
720 => 0.05759951573536
721 => 0.057633410919188
722 => 0.0580474013346
723 => 0.058163296047877
724 => 0.057672242003946
725 => 0.057903825929814
726 => 0.05888988089378
727 => 0.059234944325291
728 => 0.06033622115883
729 => 0.059868379186308
730 => 0.060727123374599
731 => 0.063366610241937
801 => 0.065475214990165
802 => 0.063536054921918
803 => 0.067408239012844
804 => 0.070423289759448
805 => 0.070307567089963
806 => 0.069781823252913
807 => 0.066349268137176
808 => 0.063190579743161
809 => 0.065832956709748
810 => 0.065839692672045
811 => 0.065612710147207
812 => 0.064202941179659
813 => 0.065563653242988
814 => 0.065671661625195
815 => 0.065611205652906
816 => 0.064530339090865
817 => 0.062880055628159
818 => 0.063202517066551
819 => 0.063730715480673
820 => 0.062730725689008
821 => 0.062411168359053
822 => 0.063005286233709
823 => 0.064919657815225
824 => 0.064557756956939
825 => 0.064548306262973
826 => 0.066096671604569
827 => 0.064988376178141
828 => 0.063206584337954
829 => 0.06275665839936
830 => 0.061159724423779
831 => 0.062262732408796
901 => 0.06230242770253
902 => 0.061698321501604
903 => 0.06325560422674
904 => 0.063241253592273
905 => 0.064719661768845
906 => 0.067545822937696
907 => 0.066709988013121
908 => 0.065738002934423
909 => 0.0658436846627
910 => 0.067002752377172
911 => 0.06630195357806
912 => 0.066553965712363
913 => 0.067002370926624
914 => 0.067272904925662
915 => 0.065804758983521
916 => 0.065462463934869
917 => 0.064762248394565
918 => 0.064579575230242
919 => 0.065149886177343
920 => 0.064999629392165
921 => 0.062299091466799
922 => 0.062016870227947
923 => 0.062025525550424
924 => 0.061315866826442
925 => 0.060233466934761
926 => 0.06307794922336
927 => 0.062849497487081
928 => 0.06259730445099
929 => 0.062628196658917
930 => 0.063862890011948
1001 => 0.063146705513681
1002 => 0.065050799382655
1003 => 0.064659374925495
1004 => 0.064257911907988
1005 => 0.064202417490106
1006 => 0.064047888479581
1007 => 0.063517951004779
1008 => 0.062878019659651
1009 => 0.062455481555693
1010 => 0.057611880350863
1011 => 0.058510824560547
1012 => 0.059544977932446
1013 => 0.059901963532316
1014 => 0.059291314961087
1015 => 0.063542063132318
1016 => 0.064318715784431
1017 => 0.061966184241383
1018 => 0.061526121642909
1019 => 0.063570913563012
1020 => 0.062337654069544
1021 => 0.062892990743939
1022 => 0.061692656606817
1023 => 0.064131642903581
1024 => 0.064113061914419
1025 => 0.063164241157974
1026 => 0.063966177964078
1027 => 0.063826821709322
1028 => 0.062755605412137
1029 => 0.064165602370896
1030 => 0.064166301711796
1031 => 0.06325308236286
1101 => 0.062186642092723
1102 => 0.061995987760618
1103 => 0.061852355332182
1104 => 0.062857665971372
1105 => 0.063759024346944
1106 => 0.065436228818194
1107 => 0.065857917871661
1108 => 0.067503798320774
1109 => 0.066523756649792
1110 => 0.066958196428874
1111 => 0.067429842264326
1112 => 0.067655966622044
1113 => 0.067287509115645
1114 => 0.069844238924538
1115 => 0.070060105256586
1116 => 0.070132483370485
1117 => 0.069270368464205
1118 => 0.070036128281488
1119 => 0.069677854622281
1120 => 0.070609983152249
1121 => 0.070756152807763
1122 => 0.070632352309679
1123 => 0.07067874886547
1124 => 0.068497031011625
1125 => 0.068383897431425
1126 => 0.0668413130378
1127 => 0.06746992758041
1128 => 0.066294762823279
1129 => 0.066667419673304
1130 => 0.06683168326199
1201 => 0.066745881285137
1202 => 0.067505468503484
1203 => 0.066859664194472
1204 => 0.065155280442932
1205 => 0.06345043233318
1206 => 0.063429029353901
1207 => 0.062980172939671
1208 => 0.062655731964336
1209 => 0.062718230806348
1210 => 0.062938484877448
1211 => 0.062642930397324
1212 => 0.062706001930651
1213 => 0.063753409627308
1214 => 0.063963459771102
1215 => 0.063249627310599
1216 => 0.060383486976147
1217 => 0.059680128948904
1218 => 0.06018568875069
1219 => 0.059944063727658
1220 => 0.048379537870573
1221 => 0.051096451681658
1222 => 0.049482153752786
1223 => 0.050226096508687
1224 => 0.048578316343731
1225 => 0.049364723406006
1226 => 0.049219502736591
1227 => 0.053588219745492
1228 => 0.053520008238372
1229 => 0.053552657477158
1230 => 0.051994224242772
1231 => 0.054476850701223
]
'min_raw' => 0.031694685574121
'max_raw' => 0.070756152807763
'avg_raw' => 0.051225419190942
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.031694'
'max' => '$0.070756'
'avg' => '$0.051225'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0048872562074765
'max_diff' => 0.010704201763675
'year' => 2035
]
10 => [
'items' => [
101 => 0.055699881767015
102 => 0.055473531266655
103 => 0.055530498811066
104 => 0.054551607655586
105 => 0.053562135283293
106 => 0.052464658143713
107 => 0.054503635016778
108 => 0.054276935594989
109 => 0.054796902504696
110 => 0.056119324755955
111 => 0.056314056455847
112 => 0.056575777835275
113 => 0.056481969351346
114 => 0.058716868022222
115 => 0.058446207046842
116 => 0.059098422123029
117 => 0.057756766227636
118 => 0.056238555230852
119 => 0.056527117507284
120 => 0.056499326639592
121 => 0.056145516997004
122 => 0.055826113471574
123 => 0.055294396593118
124 => 0.056976827475845
125 => 0.056908523854485
126 => 0.058014280090015
127 => 0.057818826934643
128 => 0.056513542927562
129 => 0.056560161401231
130 => 0.056873693040731
131 => 0.057958829624883
201 => 0.058280972044792
202 => 0.058131742840734
203 => 0.058484957297804
204 => 0.058764123602959
205 => 0.058520016287612
206 => 0.061976061096157
207 => 0.060540870337045
208 => 0.061240372327043
209 => 0.061407199429953
210 => 0.060979875313846
211 => 0.0610725466133
212 => 0.061212918380556
213 => 0.062065228263721
214 => 0.064301936014998
215 => 0.065292558652254
216 => 0.068272895732898
217 => 0.065210301232362
218 => 0.065028579548977
219 => 0.065565428254758
220 => 0.067315201621816
221 => 0.068733228587961
222 => 0.069203669940569
223 => 0.069265846531457
224 => 0.0701484257833
225 => 0.070654303751328
226 => 0.070041257447988
227 => 0.06952176489453
228 => 0.067661007049834
229 => 0.067876394837033
301 => 0.069360203101042
302 => 0.071456169669827
303 => 0.073254727033998
304 => 0.072624934931117
305 => 0.077429804112157
306 => 0.077906187265326
307 => 0.07784036651687
308 => 0.078925638235108
309 => 0.076771594886147
310 => 0.075850699621841
311 => 0.069634085081079
312 => 0.071380700194621
313 => 0.073919507837264
314 => 0.07358348712572
315 => 0.07173973715311
316 => 0.07325332838431
317 => 0.072752887788901
318 => 0.072358169528003
319 => 0.074166450401078
320 => 0.072178171301048
321 => 0.073899673232287
322 => 0.071691829198816
323 => 0.072627811768394
324 => 0.072096502793518
325 => 0.072440324815042
326 => 0.070430348302655
327 => 0.071514882839317
328 => 0.070385228100312
329 => 0.07038469249688
330 => 0.070359755305905
331 => 0.071688789096689
401 => 0.071732128840893
402 => 0.070749970861445
403 => 0.070608426552415
404 => 0.071131790049273
405 => 0.07051906846357
406 => 0.070805757037097
407 => 0.070527751968407
408 => 0.070465167171763
409 => 0.069966480864174
410 => 0.069751633091198
411 => 0.069835880438927
412 => 0.069548300808645
413 => 0.06937502367919
414 => 0.070325286123535
415 => 0.069817599232999
416 => 0.070247475826305
417 => 0.069757577193481
418 => 0.06805937509344
419 => 0.067082721107545
420 => 0.063874974763986
421 => 0.064784687647822
422 => 0.065387828230972
423 => 0.065188490271839
424 => 0.065616745341607
425 => 0.065643036724747
426 => 0.065503806636022
427 => 0.065342596029757
428 => 0.065264127622133
429 => 0.065848966844601
430 => 0.066188485698027
501 => 0.065448361457471
502 => 0.065274960703347
503 => 0.066023267173929
504 => 0.066479733688701
505 => 0.069850025967401
506 => 0.069600343829494
507 => 0.070226996997995
508 => 0.070156445467998
509 => 0.070813277822266
510 => 0.071886921123429
511 => 0.069703904096776
512 => 0.070082800369554
513 => 0.069989903753461
514 => 0.071004124649157
515 => 0.071007290936087
516 => 0.070399214845027
517 => 0.070728862758898
518 => 0.070544862336793
519 => 0.070877375968686
520 => 0.069597009172318
521 => 0.07115635772324
522 => 0.072040407869411
523 => 0.072052682906548
524 => 0.072471715659578
525 => 0.072897477205396
526 => 0.073714689416579
527 => 0.072874685600369
528 => 0.071363600507731
529 => 0.071472695970644
530 => 0.070586747333715
531 => 0.070601640290361
601 => 0.0705221405206
602 => 0.070760725314116
603 => 0.069649365117708
604 => 0.06991019913445
605 => 0.069545029983569
606 => 0.070082006563136
607 => 0.069504308528931
608 => 0.0699898589559
609 => 0.070199406423929
610 => 0.070972641092188
611 => 0.069390101139731
612 => 0.066163195048135
613 => 0.066841529831043
614 => 0.065838219405075
615 => 0.065931079604871
616 => 0.066118671987049
617 => 0.065510623700001
618 => 0.065626620151366
619 => 0.065622475941869
620 => 0.065586763383305
621 => 0.065428586539905
622 => 0.06519919882264
623 => 0.066113008886407
624 => 0.066268283022999
625 => 0.066613438194247
626 => 0.067640385862891
627 => 0.0675377695737
628 => 0.067705140998879
629 => 0.067339770117462
630 => 0.065948028112151
701 => 0.066023606398912
702 => 0.065081143951939
703 => 0.066589337310533
704 => 0.066232177216039
705 => 0.066001913779654
706 => 0.065939084267661
707 => 0.066968577540941
708 => 0.067276618063637
709 => 0.067084667881723
710 => 0.066690972458538
711 => 0.067446984056658
712 => 0.067649260866746
713 => 0.067694543184843
714 => 0.069034050785866
715 => 0.067769406779667
716 => 0.068073819161439
717 => 0.070448757665681
718 => 0.068295016161445
719 => 0.069435901070406
720 => 0.069380060690991
721 => 0.069963698804975
722 => 0.069332185330524
723 => 0.069340013696902
724 => 0.069858244803049
725 => 0.069130482677938
726 => 0.068950278541218
727 => 0.068701327816987
728 => 0.069244902615666
729 => 0.069570751123701
730 => 0.072196850789102
731 => 0.073893430937646
801 => 0.073819777918986
802 => 0.074492828636866
803 => 0.074189613124023
804 => 0.073210450248843
805 => 0.074881761880584
806 => 0.074352888949652
807 => 0.074396488591497
808 => 0.07439486581065
809 => 0.074746520074846
810 => 0.074497340800023
811 => 0.07400618287162
812 => 0.074332236425875
813 => 0.075300498915733
814 => 0.078306015394172
815 => 0.079987942233304
816 => 0.078204761286567
817 => 0.079434775625882
818 => 0.078697205321214
819 => 0.07856316685604
820 => 0.079335706758476
821 => 0.080109598889743
822 => 0.080060305306609
823 => 0.07949849935911
824 => 0.079181149434666
825 => 0.081584229382582
826 => 0.083354777752807
827 => 0.083234038223865
828 => 0.083766943238018
829 => 0.085331568841706
830 => 0.085474618598381
831 => 0.085456597617001
901 => 0.085102033869384
902 => 0.086642610968524
903 => 0.087927787488501
904 => 0.085019962606142
905 => 0.086127224255122
906 => 0.086624309683091
907 => 0.08735417856995
908 => 0.08858558972231
909 => 0.08992322884945
910 => 0.090112385688495
911 => 0.089978169859204
912 => 0.089095960897186
913 => 0.090559621591456
914 => 0.091416999699093
915 => 0.091927548741441
916 => 0.093222216165577
917 => 0.086627379513466
918 => 0.081959226346452
919 => 0.081230226820474
920 => 0.082712676023041
921 => 0.083103586055447
922 => 0.082946010711544
923 => 0.077691579912153
924 => 0.081202563329745
925 => 0.084980086275204
926 => 0.085125196315986
927 => 0.087016303286762
928 => 0.087632125235541
929 => 0.089154714220073
930 => 0.089059475864534
1001 => 0.089430202052586
1002 => 0.089344978522035
1003 => 0.092165253996944
1004 => 0.095276436660729
1005 => 0.095168706298037
1006 => 0.094721436980276
1007 => 0.095385708187903
1008 => 0.098596782111526
1009 => 0.09830115788105
1010 => 0.098588331639745
1011 => 0.10237436876389
1012 => 0.10729675558278
1013 => 0.10500981270585
1014 => 0.10997182069871
1015 => 0.11309514170547
1016 => 0.11849660242925
1017 => 0.11782031294387
1018 => 0.11992306196589
1019 => 0.11660961361918
1020 => 0.10900126645675
1021 => 0.10779721639472
1022 => 0.11020775511032
1023 => 0.1161338293257
1024 => 0.11002112194417
1025 => 0.11125771468625
1026 => 0.11090157589334
1027 => 0.11088259877056
1028 => 0.11160687836159
1029 => 0.11055627303891
1030 => 0.106275917954
1031 => 0.10823757946512
1101 => 0.10748008774896
1102 => 0.10832058128279
1103 => 0.11285637823901
1104 => 0.11085099428477
1105 => 0.10873848519314
1106 => 0.11138804039734
1107 => 0.11476183465822
1108 => 0.11455070867667
1109 => 0.11414103602864
1110 => 0.11645033929582
1111 => 0.12026463173085
1112 => 0.12129561964897
1113 => 0.1220566738525
1114 => 0.12216161036905
1115 => 0.12324252170721
1116 => 0.11743018901719
1117 => 0.12665451026754
1118 => 0.12824729573075
1119 => 0.12794791807786
1120 => 0.12971823208555
1121 => 0.12919736079596
1122 => 0.12844270001953
1123 => 0.13124902427831
1124 => 0.12803179997431
1125 => 0.12346535511206
1126 => 0.12096011314659
1127 => 0.12425921785883
1128 => 0.1262738659837
1129 => 0.12760542023856
1130 => 0.12800834775153
1201 => 0.11788138385833
1202 => 0.11242351198706
1203 => 0.11592194528192
1204 => 0.12019027535061
1205 => 0.11740647822815
1206 => 0.11751559780492
1207 => 0.11354663467731
1208 => 0.12054144051926
1209 => 0.11952235614366
1210 => 0.12480936768698
1211 => 0.12354757995125
1212 => 0.12785893262422
1213 => 0.12672360897626
1214 => 0.13143627396383
1215 => 0.13331628361768
1216 => 0.13647311242664
1217 => 0.13879528854911
1218 => 0.14015891478438
1219 => 0.14007704778005
1220 => 0.14548041428007
1221 => 0.14229423783425
1222 => 0.13829164929418
1223 => 0.13821925509549
1224 => 0.14029225241752
1225 => 0.14463668610544
1226 => 0.14576313455177
1227 => 0.14639266556035
1228 => 0.14542851690658
1229 => 0.14197015072997
1230 => 0.14047684574923
1231 => 0.14174918485803
]
'min_raw' => 0.052464658143713
'max_raw' => 0.14639266556035
'avg_raw' => 0.099428661852033
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.052464'
'max' => '$0.146392'
'avg' => '$0.099428'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.020769972569593
'max_diff' => 0.075636512752591
'year' => 2036
]
11 => [
'items' => [
101 => 0.14019322346131
102 => 0.14287924935771
103 => 0.14656773661765
104 => 0.14580607858433
105 => 0.14835218719556
106 => 0.15098714174974
107 => 0.15475524510544
108 => 0.15574036685508
109 => 0.15736873564641
110 => 0.15904486202398
111 => 0.15958318864358
112 => 0.16061102119334
113 => 0.16060560400845
114 => 0.16370304657825
115 => 0.16711962165256
116 => 0.16840929964922
117 => 0.17137484308927
118 => 0.16629645387322
119 => 0.17014847042993
120 => 0.17362308578631
121 => 0.16948050611685
122 => 0.17519008709392
123 => 0.17541177718507
124 => 0.17875903435885
125 => 0.17536594795634
126 => 0.17335114408165
127 => 0.17916780737417
128 => 0.18198230751825
129 => 0.18113455716969
130 => 0.17468313515857
131 => 0.1709281308336
201 => 0.16110056022889
202 => 0.17274174212962
203 => 0.17841182225554
204 => 0.17466845102084
205 => 0.17655638973272
206 => 0.18685637117855
207 => 0.19077793723872
208 => 0.18996227891202
209 => 0.19010011174235
210 => 0.19221611760696
211 => 0.20159965291633
212 => 0.19597682105031
213 => 0.20027526532839
214 => 0.20255514467429
215 => 0.20467282366982
216 => 0.19947247335612
217 => 0.19270689400632
218 => 0.19056395102653
219 => 0.17429624652533
220 => 0.17344944185898
221 => 0.17297410473896
222 => 0.16997717143495
223 => 0.16762240278712
224 => 0.16574980333141
225 => 0.16083554315409
226 => 0.16249396170432
227 => 0.15466165666749
228 => 0.15967248787021
301 => 0.14717193991381
302 => 0.15758276770768
303 => 0.15191662746173
304 => 0.15572128824654
305 => 0.15570801414348
306 => 0.14870242736986
307 => 0.1446617511217
308 => 0.1472366272925
309 => 0.14999709894152
310 => 0.15044497617923
311 => 0.15402399972787
312 => 0.15502282826944
313 => 0.15199633115763
314 => 0.14691289384254
315 => 0.14809366038997
316 => 0.1446378229253
317 => 0.13858160069533
318 => 0.14293128523239
319 => 0.14441645877547
320 => 0.14507239602057
321 => 0.13911679701921
322 => 0.13724541851064
323 => 0.13624911229507
324 => 0.14614410079867
325 => 0.14668617060557
326 => 0.14391286483252
327 => 0.15644846990236
328 => 0.15361127640004
329 => 0.15678111667141
330 => 0.147986518202
331 => 0.14832248370703
401 => 0.14415897985192
402 => 0.14649026380535
403 => 0.14484258744785
404 => 0.14630191910011
405 => 0.14717663647543
406 => 0.15133945714052
407 => 0.15763030043285
408 => 0.15071767055099
409 => 0.14770573872079
410 => 0.1495743242885
411 => 0.15455061389465
412 => 0.16208994737954
413 => 0.15762651021325
414 => 0.15960730783357
415 => 0.16004002399406
416 => 0.15674885067307
417 => 0.16221129763436
418 => 0.16513866733776
419 => 0.16814154291964
420 => 0.17074885564872
421 => 0.16694212837758
422 => 0.17101587223062
423 => 0.16773315379767
424 => 0.16478821600212
425 => 0.16479268225714
426 => 0.16294527975931
427 => 0.15936570463208
428 => 0.15870557605809
429 => 0.16213964826506
430 => 0.16489344896721
501 => 0.16512026518286
502 => 0.16664491074696
503 => 0.16754718028669
504 => 0.17639064835205
505 => 0.17994756436495
506 => 0.18429689393654
507 => 0.18599120291946
508 => 0.19109046551466
509 => 0.18697239682718
510 => 0.18608142676277
511 => 0.17371228366291
512 => 0.17573773015258
513 => 0.17898066540906
514 => 0.17376575847084
515 => 0.17707341661703
516 => 0.17772641840086
517 => 0.17358855792859
518 => 0.17579876799323
519 => 0.16992910534316
520 => 0.15775824303868
521 => 0.16222484728333
522 => 0.16551377145013
523 => 0.16082007114269
524 => 0.16923334727248
525 => 0.16431848504273
526 => 0.16276070967089
527 => 0.15668327255832
528 => 0.15955158893345
529 => 0.16343102790114
530 => 0.16103398565229
531 => 0.16600820823635
601 => 0.17305303399208
602 => 0.17807359635224
603 => 0.17845901278969
604 => 0.17523112754366
605 => 0.18040383425051
606 => 0.18044151177169
607 => 0.17460667747524
608 => 0.17103287395715
609 => 0.1702208982785
610 => 0.17224937272099
611 => 0.17471231517121
612 => 0.17859568895446
613 => 0.18094233040008
614 => 0.1870611267278
615 => 0.18871669757444
616 => 0.19053566799719
617 => 0.19296637343167
618 => 0.19588505852586
619 => 0.18949914170062
620 => 0.18975286608092
621 => 0.1838063887523
622 => 0.17745172491555
623 => 0.18227412264761
624 => 0.1885787661856
625 => 0.18713247399197
626 => 0.18696973657512
627 => 0.18724341577067
628 => 0.18615295868816
629 => 0.18122086171821
630 => 0.17874399349646
701 => 0.18193978541899
702 => 0.18363820659748
703 => 0.18627230972743
704 => 0.18594760091749
705 => 0.19273276769821
706 => 0.19536927833641
707 => 0.19469474609251
708 => 0.19481887625891
709 => 0.1995921528332
710 => 0.204901018083
711 => 0.20987347095592
712 => 0.21493166359007
713 => 0.20883381494498
714 => 0.20573770346603
715 => 0.20893210020578
716 => 0.20723710833128
717 => 0.21697703440941
718 => 0.21765140575864
719 => 0.22739062752926
720 => 0.23663430871453
721 => 0.23082851817981
722 => 0.2363031171555
723 => 0.24222434229831
724 => 0.25364734628296
725 => 0.24980048040705
726 => 0.24685384143419
727 => 0.24406928184288
728 => 0.249863508316
729 => 0.25731768810863
730 => 0.25892324704072
731 => 0.26152486588142
801 => 0.25878958178124
802 => 0.26208393019825
803 => 0.27371442772032
804 => 0.27057176462461
805 => 0.26610867782041
806 => 0.27528983860923
807 => 0.27861246500784
808 => 0.30193239714628
809 => 0.3313747747694
810 => 0.31918543710435
811 => 0.31161912186819
812 => 0.31339738542409
813 => 0.32414874504467
814 => 0.32760174052371
815 => 0.31821530849277
816 => 0.32153075496969
817 => 0.33979919102502
818 => 0.3495996208471
819 => 0.33628932077538
820 => 0.29956673077167
821 => 0.26570682568538
822 => 0.27468799724566
823 => 0.27366981110893
824 => 0.29329696661657
825 => 0.27049681314913
826 => 0.27088070925927
827 => 0.29091373355728
828 => 0.28556926612756
829 => 0.27691191335907
830 => 0.26577003394139
831 => 0.24517323933871
901 => 0.226930083975
902 => 0.26270911279099
903 => 0.26116625600851
904 => 0.2589319707489
905 => 0.26390413081924
906 => 0.28804752874855
907 => 0.28749094528173
908 => 0.28395024523717
909 => 0.28663583501467
910 => 0.27644111648644
911 => 0.27906852758059
912 => 0.26570146210342
913 => 0.27174393395707
914 => 0.27689333856824
915 => 0.27792715778218
916 => 0.28025640525928
917 => 0.26035324059209
918 => 0.26928917720144
919 => 0.27453820277541
920 => 0.25082291427105
921 => 0.27406942777214
922 => 0.26000677077578
923 => 0.25523369377719
924 => 0.26166001315071
925 => 0.25915567024105
926 => 0.25700258326727
927 => 0.25580112374118
928 => 0.2605199034421
929 => 0.26029976672889
930 => 0.2525789272625
1001 => 0.24250740692028
1002 => 0.24588773973352
1003 => 0.24465963313168
1004 => 0.24020881637771
1005 => 0.24320812947622
1006 => 0.23000067250802
1007 => 0.20727792925809
1008 => 0.22228926946544
1009 => 0.22171134919665
1010 => 0.22141993559053
1011 => 0.23270054287339
1012 => 0.23161617277103
1013 => 0.22964803041707
1014 => 0.24017266989995
1015 => 0.23633103491232
1016 => 0.24817004874115
1017 => 0.25596798894822
1018 => 0.25399017907477
1019 => 0.26132417953024
1020 => 0.24596561577422
1021 => 0.25106711457534
1022 => 0.25211852640788
1023 => 0.24004279748243
1024 => 0.23179358913041
1025 => 0.23124346098119
1026 => 0.21694047050972
1027 => 0.22458101256987
1028 => 0.23130437339569
1029 => 0.228084405314
1030 => 0.22706505961315
1031 => 0.2322726757297
1101 => 0.23267735210217
1102 => 0.22345068792413
1103 => 0.2253692035772
1104 => 0.23336973277719
1105 => 0.22516761076861
1106 => 0.20923222751496
1107 => 0.20528003214414
1108 => 0.20475273642826
1109 => 0.19403406913004
1110 => 0.20554413673698
1111 => 0.20051968377592
1112 => 0.21639187047772
1113 => 0.20732576255789
1114 => 0.20693494076567
1115 => 0.20634415630563
1116 => 0.19711815657949
1117 => 0.19913806417664
1118 => 0.2058525446702
1119 => 0.20824834695434
1120 => 0.20799844514788
1121 => 0.20581964005271
1122 => 0.20681708586799
1123 => 0.20360396536382
1124 => 0.20246934563847
1125 => 0.19888817368355
1126 => 0.19362484023381
1127 => 0.1943567390319
1128 => 0.18392869824185
1129 => 0.17824694816142
1130 => 0.17667431462342
1201 => 0.17457132333152
1202 => 0.17691185308568
1203 => 0.18389915691251
1204 => 0.17547098605816
1205 => 0.16102147829582
1206 => 0.1618899183331
1207 => 0.16384104525471
1208 => 0.16020513314429
1209 => 0.15676404747076
1210 => 0.15975579227979
1211 => 0.1536333453564
1212 => 0.16458091371507
1213 => 0.16428481267117
1214 => 0.1683653891622
1215 => 0.17091705738389
1216 => 0.16503628824528
1217 => 0.16355729071021
1218 => 0.16439979492287
1219 => 0.15047507698881
1220 => 0.16722744263207
1221 => 0.16737231778581
1222 => 0.16613180876323
1223 => 0.175051926297
1224 => 0.19387615654768
1225 => 0.18679372392447
1226 => 0.1840511919451
1227 => 0.17883763664754
1228 => 0.18578438953125
1229 => 0.18525098729601
1230 => 0.18283874010145
1231 => 0.18137980547151
]
'min_raw' => 0.13624911229507
'max_raw' => 0.3495996208471
'avg_raw' => 0.24292436657108
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.136249'
'max' => '$0.349599'
'avg' => '$0.242924'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.083784454151355
'max_diff' => 0.20320695528675
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0042767039465689
]
1 => [
'year' => 2028
'avg' => 0.0073400655083388
]
2 => [
'year' => 2029
'avg' => 0.020051736050687
]
3 => [
'year' => 2030
'avg' => 0.015469884501164
]
4 => [
'year' => 2031
'avg' => 0.015193343741823
]
5 => [
'year' => 2032
'avg' => 0.026638713100664
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0042767039465689
'min' => '$0.004276'
'max_raw' => 0.026638713100664
'max' => '$0.026638'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.026638713100664
]
1 => [
'year' => 2033
'avg' => 0.068517509321472
]
2 => [
'year' => 2034
'avg' => 0.043429690205366
]
3 => [
'year' => 2035
'avg' => 0.051225419190942
]
4 => [
'year' => 2036
'avg' => 0.099428661852033
]
5 => [
'year' => 2037
'avg' => 0.24292436657108
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.026638713100664
'min' => '$0.026638'
'max_raw' => 0.24292436657108
'max' => '$0.242924'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.24292436657108
]
]
]
]
'prediction_2025_max_price' => '$0.007312'
'last_price' => 0.00709028
'sma_50day_nextmonth' => '$0.00673'
'sma_200day_nextmonth' => '$0.007974'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.00708'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.007068'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.007052'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.0070052'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.006615'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.007385'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.008266'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.007079'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.007071'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.007045'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.006936'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.006855'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.00717'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.007074'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '$0.008184'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.005583'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '$0.006838'
'weekly_sma100_action' => 'BUY'
'weekly_sma200' => '$0.025633'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.007031'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.006949'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.00703'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.007219'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.007236'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.018447'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.0541093'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '70.93'
'rsi_14_action' => 'SELL'
'stoch_rsi_14' => 69.5
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.007059'
'vwma_10_action' => 'BUY'
'hma_9' => '0.007088'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 204.96
'cci_20_action' => 'SELL'
'adx_14' => 31.98
'adx_14_action' => 'BUY'
'ao_5_34' => '0.000332'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => -0
'macd_12_26_action' => 'SELL'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 87.75
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '0.000445'
'ichimoku_cloud_action' => 'BUY'
'sell_signals' => 12
'buy_signals' => 22
'sell_pct' => 35.29
'buy_pct' => 64.71
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767713898
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Desmos para 2026
La previsión del precio de Desmos para 2026 sugiere que el precio medio podría oscilar entre $0.002449 en el extremo inferior y $0.007312 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Desmos podría potencialmente ganar 3.13% para 2026 si DSM alcanza el objetivo de precio previsto.
Predicción de precio de Desmos 2027-2032
La predicción del precio de DSM para 2027-2032 está actualmente dentro de un rango de precios de $0.004276 en el extremo inferior y $0.026638 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Desmos alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Desmos | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.002358 | $0.004276 | $0.006195 |
| 2028 | $0.004255 | $0.00734 | $0.010424 |
| 2029 | $0.009349 | $0.020051 | $0.030754 |
| 2030 | $0.007951 | $0.015469 | $0.022988 |
| 2031 | $0.00940057 | $0.015193 | $0.020986 |
| 2032 | $0.014349 | $0.026638 | $0.038928 |
Predicción de precio de Desmos 2032-2037
La predicción de precio de Desmos para 2032-2037 se estima actualmente entre $0.026638 en el extremo inferior y $0.242924 en el extremo superior. Comparado con el precio actual, Desmos podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Desmos | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.014349 | $0.026638 | $0.038928 |
| 2033 | $0.033344 | $0.068517 | $0.10369 |
| 2034 | $0.0268074 | $0.043429 | $0.060051 |
| 2035 | $0.031694 | $0.051225 | $0.070756 |
| 2036 | $0.052464 | $0.099428 | $0.146392 |
| 2037 | $0.136249 | $0.242924 | $0.349599 |
Desmos Histograma de precios potenciales
Pronóstico de precio de Desmos basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Desmos es Alcista, con 22 indicadores técnicos mostrando señales alcistas y 12 indicando señales bajistas. La predicción de precio de DSM se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Desmos
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Desmos aumentar durante el próximo mes, alcanzando $0.007974 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Desmos alcance $0.00673 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 70.93, lo que sugiere que el mercado de DSM está en un estado SELL.
Promedios Móviles y Osciladores Populares de DSM para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.00708 | BUY |
| SMA 5 | $0.007068 | BUY |
| SMA 10 | $0.007052 | BUY |
| SMA 21 | $0.0070052 | BUY |
| SMA 50 | $0.006615 | BUY |
| SMA 100 | $0.007385 | SELL |
| SMA 200 | $0.008266 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.007079 | BUY |
| EMA 5 | $0.007071 | BUY |
| EMA 10 | $0.007045 | BUY |
| EMA 21 | $0.006936 | BUY |
| EMA 50 | $0.006855 | BUY |
| EMA 100 | $0.00717 | SELL |
| EMA 200 | $0.007074 | BUY |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.008184 | SELL |
| SMA 50 | $0.005583 | BUY |
| SMA 100 | $0.006838 | BUY |
| SMA 200 | $0.025633 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.007219 | SELL |
| EMA 50 | $0.007236 | SELL |
| EMA 100 | $0.018447 | SELL |
| EMA 200 | $0.0541093 | SELL |
Osciladores de Desmos
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 70.93 | SELL |
| Stoch RSI (14) | 69.5 | NEUTRAL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 204.96 | SELL |
| Índice Direccional Medio (14) | 31.98 | BUY |
| Oscilador Asombroso (5, 34) | 0.000332 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | -0 | SELL |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 87.75 | SELL |
| VWMA (10) | 0.007059 | BUY |
| Promedio Móvil de Hull (9) | 0.007088 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | 0.000445 | BUY |
Predicción de precios de Desmos basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Desmos
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Desmos por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.009963 | $0.013999 | $0.019671 | $0.027642 | $0.038842 | $0.054579 |
| Amazon.com acción | $0.014794 | $0.030869 | $0.06441 | $0.134396 | $0.280425 | $0.585124 |
| Apple acción | $0.010057 | $0.014265 | $0.020233 | $0.02870035 | $0.0407092 | $0.057742 |
| Netflix acción | $0.011187 | $0.017651 | $0.027851 | $0.043945 | $0.069339 | $0.1094073 |
| Google acción | $0.009181 | $0.01189 | $0.015398 | $0.01994 | $0.025822 | $0.03344 |
| Tesla acción | $0.016073 | $0.036436 | $0.082598 | $0.187245 | $0.424471 | $0.962244 |
| Kodak acción | $0.005316 | $0.003987 | $0.002989 | $0.002242 | $0.001681 | $0.00126 |
| Nokia acción | $0.004697 | $0.003111 | $0.002061 | $0.001365 | $0.0009045 | $0.000599 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Desmos
Podría preguntarse cosas como: "¿Debo invertir en Desmos ahora?", "¿Debería comprar DSM hoy?", "¿Será Desmos una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Desmos regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Desmos, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Desmos a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Desmos es de $0.00709 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Desmos basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Desmos ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.007274 | $0.007463 | $0.007657 | $0.007856 |
| Si Desmos ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.007458 | $0.007846 | $0.008254 | $0.008683 |
| Si Desmos ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.008011 | $0.009053 | $0.010229 | $0.011559 |
| Si Desmos ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.008933 | $0.011255 | $0.01418 | $0.017867 |
| Si Desmos ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.010776 | $0.016378 | $0.024893 | $0.037834 |
| Si Desmos ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.0163052 | $0.037496 | $0.086229 | $0.198298 |
| Si Desmos ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.02552 | $0.091855 | $0.330617 | $1.18 |
Cuadro de preguntas
¿Es DSM una buena inversión?
La decisión de adquirir Desmos depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Desmos ha experimentado un aumento de 0.2646% durante las últimas 24 horas, y Desmos ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Desmos dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Desmos subir?
Parece que el valor medio de Desmos podría potencialmente aumentar hasta $0.007312 para el final de este año. Mirando las perspectivas de Desmos en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.022988. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Desmos la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Desmos, el precio de Desmos aumentará en un 0.86% durante la próxima semana y alcanzará $0.00715 para el 13 de enero de 2026.
¿Cuál será el precio de Desmos el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Desmos, el precio de Desmos disminuirá en un -11.62% durante el próximo mes y alcanzará $0.006266 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Desmos este año en 2026?
Según nuestra predicción más reciente sobre el valor de Desmos en 2026, se anticipa que DSM fluctúe dentro del rango de $0.002449 y $0.007312. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Desmos no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Desmos en 5 años?
El futuro de Desmos parece estar en una tendencia alcista, con un precio máximo de $0.022988 proyectada después de un período de cinco años. Basado en el pronóstico de Desmos para 2030, el valor de Desmos podría potencialmente alcanzar su punto más alto de aproximadamente $0.022988, mientras que su punto más bajo se anticipa que esté alrededor de $0.007951.
¿Cuánto será Desmos en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Desmos, se espera que el valor de DSM en 2026 crezca en un 3.13% hasta $0.007312 si ocurre lo mejor. El precio estará entre $0.007312 y $0.002449 durante 2026.
¿Cuánto será Desmos en 2027?
Según nuestra última simulación experimental para la predicción de precios de Desmos, el valor de DSM podría disminuir en un -12.62% hasta $0.006195 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.006195 y $0.002358 a lo largo del año.
¿Cuánto será Desmos en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Desmos sugiere que el valor de DSM en 2028 podría aumentar en un 47.02% , alcanzando $0.010424 en el mejor escenario. Se espera que el precio oscile entre $0.010424 y $0.004255 durante el año.
¿Cuánto será Desmos en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Desmos podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.030754 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.030754 y $0.009349.
¿Cuánto será Desmos en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Desmos, se espera que el valor de DSM en 2030 aumente en un 224.23% , alcanzando $0.022988 en el mejor escenario. Se pronostica que el precio oscile entre $0.022988 y $0.007951 durante el transcurso de 2030.
¿Cuánto será Desmos en 2031?
Nuestra simulación experimental indica que el precio de Desmos podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.020986 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.020986 y $0.00940057 durante el año.
¿Cuánto será Desmos en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Desmos, DSM podría experimentar un 449.04% aumento en valor, alcanzando $0.038928 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.038928 y $0.014349 a lo largo del año.
¿Cuánto será Desmos en 2033?
Según nuestra predicción experimental de precios de Desmos, se anticipa que el valor de DSM aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.10369. A lo largo del año, el precio de DSM podría oscilar entre $0.10369 y $0.033344.
¿Cuánto será Desmos en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Desmos sugieren que DSM podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.060051 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.060051 y $0.0268074.
¿Cuánto será Desmos en 2035?
Basado en nuestra predicción experimental para el precio de Desmos, DSM podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.070756 en 2035. El rango de precios esperado para el año está entre $0.070756 y $0.031694.
¿Cuánto será Desmos en 2036?
Nuestra reciente simulación de predicción de precios de Desmos sugiere que el valor de DSM podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.146392 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.146392 y $0.052464.
¿Cuánto será Desmos en 2037?
Según la simulación experimental, el valor de Desmos podría aumentar en un 4830.69% en 2037, con un máximo de $0.349599 bajo condiciones favorables. Se espera que el precio caiga entre $0.349599 y $0.136249 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Tarot V1
Predicción de precios de Drops Ownership Power
Predicción de precios de Emanate
Predicción de precios de Undead Blocks
Predicción de precios de Yaku
Predicción de precios de Hyve
Predicción de precios de Utility Cjournal
Predicción de precios de Shezmu
Predicción de precios de Tulip Token
Predicción de precios de Million
Predicción de precios de The Three Kingdoms
Predicción de precios de Hypersign Identity Token
Predicción de precios de Populous
Predicción de precios de YAM
Predicción de precios de Polker
Predicción de precios de LightChain
Predicción de precios de Dacxi
Predicción de precios de Goons of Balatroon
Predicción de precios de Trava Finance
Predicción de precios de Tidal Finance
Predicción de precios de NFTBooks
Predicción de precios de Collab.Land
Predicción de precios de MYX Network
Predicción de precios de Hummingbot
Predicción de precios de Wrapped OrdBridge
¿Cómo leer y predecir los movimientos de precio de Desmos?
Los traders de Desmos utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Desmos
Las medias móviles son herramientas populares para la predicción de precios de Desmos. Una media móvil simple (SMA) calcula el precio de cierre promedio de DSM durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de DSM por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de DSM.
¿Cómo leer gráficos de Desmos y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Desmos en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de DSM dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Desmos?
La acción del precio de Desmos está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de DSM. La capitalización de mercado de Desmos puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de DSM, grandes poseedores de Desmos, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Desmos.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


