Predicción del precio de Desmos - Pronóstico de DSM
Predicción de precio de Desmos hasta $0.0073063 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.002447 | $0.0073063 |
| 2027 | $0.002356 | $0.00619 |
| 2028 | $0.004252 | $0.010415 |
| 2029 | $0.009341 | $0.030729 |
| 2030 | $0.007944 | $0.022969 |
| 2031 | $0.009392 | $0.020968 |
| 2032 | $0.014337 | $0.038896 |
| 2033 | $0.033317 | $0.103605 |
| 2034 | $0.026785 | $0.0600024 |
| 2035 | $0.031668 | $0.070697 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Desmos hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,955.77, equivalente a un ROI del 39.56% en los próximos 90 días.
Predicción del precio a largo plazo de Desmos para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Desmos'
'name_with_ticker' => 'Desmos <small>DSM</small>'
'name_lang' => 'Desmos'
'name_lang_with_ticker' => 'Desmos <small>DSM</small>'
'name_with_lang' => 'Desmos'
'name_with_lang_with_ticker' => 'Desmos <small>DSM</small>'
'image' => '/uploads/coins/desmos.png?1717121213'
'price_for_sd' => 0.007084
'ticker' => 'DSM'
'marketcap' => '$656.51K'
'low24h' => '$0.007068'
'high24h' => '$0.007109'
'volume24h' => '$1.06K'
'current_supply' => '92.7M'
'max_supply' => '161.92M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.007084'
'change_24h_pct' => '0.1821%'
'ath_price' => '$1.77'
'ath_days' => 1450
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '17 ene. 2022'
'ath_pct' => '-99.60%'
'fdv' => '$1.15M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.349311'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.007145'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.006261'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002447'
'current_year_max_price_prediction' => '$0.0073063'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.007944'
'grand_prediction_max_price' => '$0.022969'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0072186864115846
107 => 0.0072456383662623
108 => 0.007306362496352
109 => 0.0067874814532995
110 => 0.007020443808083
111 => 0.0071572873658976
112 => 0.0065390231932799
113 => 0.0071450662710758
114 => 0.006778448888746
115 => 0.006654013442775
116 => 0.0068215493776516
117 => 0.0067562604608962
118 => 0.0067001288841637
119 => 0.006668806499884
120 => 0.006791826400191
121 => 0.0067860873748011
122 => 0.0065848029407651
123 => 0.0063222356019684
124 => 0.0064103618193477
125 => 0.0063783447383861
126 => 0.0062623107066957
127 => 0.0063405036340526
128 => 0.0059961815545076
129 => 0.0054037933129547
130 => 0.0057951431306671
131 => 0.0057800765883919
201 => 0.0057724793545634
202 => 0.0060665679264598
203 => 0.0060382980960497
204 => 0.0059869880770364
205 => 0.0062613683579587
206 => 0.0061612158644865
207 => 0.0064698622504726
208 => 0.0066731567222798
209 => 0.0066215946683423
210 => 0.0068127941016843
211 => 0.0064123920694062
212 => 0.0065453895631877
213 => 0.0065728001623295
214 => 0.0062579825478831
215 => 0.0060429233899237
216 => 0.0060285813959417
217 => 0.0056556984530176
218 => 0.0058548895113217
219 => 0.0060301693995432
220 => 0.0059462239353539
221 => 0.005919649309191
222 => 0.0060554133109242
223 => 0.0060659633365989
224 => 0.0058254216331738
225 => 0.005875437870281
226 => 0.0060840138935253
227 => 0.0058701822896462
228 => 0.0054547424125032
301 => 0.005351707579066
302 => 0.0053379608329768
303 => 0.0050585221928995
304 => 0.0053585928593165
305 => 0.0052276039720316
306 => 0.0056413962974768
307 => 0.0054050403403953
308 => 0.0053948515074841
309 => 0.0053794495921622
310 => 0.0051389252111829
311 => 0.0051915847644955
312 => 0.0053666331399831
313 => 0.0054290923724182
314 => 0.0054225773627618
315 => 0.0053657753074459
316 => 0.0053917789974959
317 => 0.0053080120515586
318 => 0.0052784321994899
319 => 0.0051850700497818
320 => 0.0050478534816631
321 => 0.0050669342870581
322 => 0.0047950723609469
323 => 0.0046469475547969
324 => 0.0046059485607082
325 => 0.0045511229923468
326 => 0.0046121412545399
327 => 0.0047943022102678
328 => 0.0045745774500573
329 => 0.0041978747605763
330 => 0.0042205152340842
331 => 0.0042713816560397
401 => 0.0041765924152407
402 => 0.0040868823538825
403 => 0.0041648779738261
404 => 0.0040052640783092
405 => 0.0042906702327485
406 => 0.0042829507961124
407 => 0.0043893325610892
408 => 0.0044558552619028
409 => 0.0043025419735077
410 => 0.0042639840960795
411 => 0.0042859484154204
412 => 0.0039229271428413
413 => 0.0043596659782937
414 => 0.0043634429138787
415 => 0.0043311024983561
416 => 0.0045636524454358
417 => 0.0050544053679213
418 => 0.0048697643779917
419 => 0.0047982658058875
420 => 0.0046623469680522
421 => 0.0048434507494057
422 => 0.0048295448046568
423 => 0.0047666568488296
424 => 0.0047286220169229
425 => 0.0047987023609226
426 => 0.0047199382867565
427 => 0.0047057900947443
428 => 0.0046200674445348
429 => 0.0045894683585421
430 => 0.0045668140134578
501 => 0.00454187380549
502 => 0.0045968856895544
503 => 0.0044722215228484
504 => 0.0043218887587799
505 => 0.0043093902160707
506 => 0.004343899791374
507 => 0.004328631873238
508 => 0.0043093171191527
509 => 0.0042724399935434
510 => 0.0042614993381302
511 => 0.0042970511605715
512 => 0.0042569152258353
513 => 0.0043161379838561
514 => 0.0043000326706191
515 => 0.004210069700072
516 => 0.0040979425302126
517 => 0.0040969443632062
518 => 0.0040727867483854
519 => 0.0040420183937894
520 => 0.0040334593414254
521 => 0.004158309400262
522 => 0.0044167452856058
523 => 0.0043660081374662
524 => 0.0044026709267491
525 => 0.004583015563525
526 => 0.0046403417004036
527 => 0.0045996529662911
528 => 0.0045439557174661
529 => 0.0045464061137461
530 => 0.0047367404736848
531 => 0.0047486113942453
601 => 0.0047786053807976
602 => 0.0048171561298169
603 => 0.0046062183255472
604 => 0.0045364709621343
605 => 0.0045034207919129
606 => 0.0044016390596565
607 => 0.0045114019317888
608 => 0.0044474478067121
609 => 0.004456077403169
610 => 0.0044504573671555
611 => 0.004453526286844
612 => 0.0042905904559118
613 => 0.0043499557090483
614 => 0.0042512494616286
615 => 0.0041190928766298
616 => 0.0041186498414168
617 => 0.0041509949783692
618 => 0.0041317548252446
619 => 0.0040799800678959
620 => 0.0040873344278073
621 => 0.0040229024963621
622 => 0.0040951576308625
623 => 0.0040972296495787
624 => 0.0040694074870323
625 => 0.0041807264910173
626 => 0.0042263339777776
627 => 0.0042080208343811
628 => 0.0042250490788178
629 => 0.0043681164950359
630 => 0.0043914427263484
701 => 0.0044018026974531
702 => 0.004387921708606
703 => 0.0042276640885537
704 => 0.0042347721954711
705 => 0.0041826176232147
706 => 0.0041385525055715
707 => 0.0041403148791861
708 => 0.004162970077719
709 => 0.0042619066584222
710 => 0.0044701128598819
711 => 0.0044780141330306
712 => 0.0044875907065831
713 => 0.0044486379691447
714 => 0.0044368894508057
715 => 0.0044523887790447
716 => 0.0045305800813509
717 => 0.0047317093396142
718 => 0.0046606168267725
719 => 0.0046028175072113
720 => 0.0046535230930511
721 => 0.0046457173655546
722 => 0.0045798291700774
723 => 0.0045779799078778
724 => 0.0044515193950268
725 => 0.0044047698227923
726 => 0.0043657023810883
727 => 0.004323041754629
728 => 0.0042977511052667
729 => 0.0043366090370817
730 => 0.0043454963058413
731 => 0.0042605327588075
801 => 0.0042489525412978
802 => 0.0043183356078712
803 => 0.0042878027071337
804 => 0.0043192065527218
805 => 0.0043264925142754
806 => 0.0043253193066553
807 => 0.004293439451604
808 => 0.0043137587205428
809 => 0.0042656975920371
810 => 0.0042134383333352
811 => 0.0041801001821503
812 => 0.0041510082235774
813 => 0.0041671501330282
814 => 0.0041096071732324
815 => 0.0040911980222827
816 => 0.0043068750094244
817 => 0.0044661979187442
818 => 0.0044638813005439
819 => 0.0044497794830354
820 => 0.0044288270426669
821 => 0.0045290472798333
822 => 0.0044941325531714
823 => 0.004519535934041
824 => 0.0045260021606488
825 => 0.0045455734810879
826 => 0.004552568545933
827 => 0.0045314246015861
828 => 0.0044604629418426
829 => 0.0042836332325939
830 => 0.0042013185255959
831 => 0.0041741533012267
901 => 0.0041751407055385
902 => 0.0041479036866544
903 => 0.0041559262093933
904 => 0.0041451137806428
905 => 0.0041246376563966
906 => 0.0041658857900562
907 => 0.0041706392532076
908 => 0.0041610114459329
909 => 0.0041632791430778
910 => 0.004083565010934
911 => 0.0040896255032709
912 => 0.004055879911809
913 => 0.004049553020219
914 => 0.0039642471035679
915 => 0.0038131153069302
916 => 0.003896856992986
917 => 0.0037957088120936
918 => 0.0037574024633446
919 => 0.0039387387604628
920 => 0.0039205376257181
921 => 0.0038893851948783
922 => 0.0038433042569307
923 => 0.0038262123887993
924 => 0.0037223676086613
925 => 0.0037162319050604
926 => 0.0037677001821417
927 => 0.003743949343184
928 => 0.0037105941701412
929 => 0.0035897851145399
930 => 0.0034539557375404
1001 => 0.003458055572639
1002 => 0.0035012603702671
1003 => 0.0036268841463318
1004 => 0.0035778007637099
1005 => 0.0035421902064508
1006 => 0.0035355214195256
1007 => 0.0036189952499457
1008 => 0.0037371282082981
1009 => 0.0037925535492812
1010 => 0.0037376287196596
1011 => 0.0036745340327532
1012 => 0.0036783743139926
1013 => 0.0037039219846018
1014 => 0.0037066066835582
1015 => 0.0036655385286208
1016 => 0.0036770989736776
1017 => 0.003659537600527
1018 => 0.003551763485918
1019 => 0.0035498141939402
1020 => 0.0035233646881228
1021 => 0.0035225638075983
1022 => 0.0034775666000644
1023 => 0.0034712711796795
1024 => 0.0033819264929857
1025 => 0.0034407334363282
1026 => 0.0034012888262372
1027 => 0.0033418364947871
1028 => 0.0033315868904362
1029 => 0.0033312787749526
1030 => 0.0033923230260538
1031 => 0.0034400200987123
1101 => 0.0034019749821174
1102 => 0.0033933128465423
1103 => 0.0034858017924894
1104 => 0.0034740317310622
1105 => 0.003463838933775
1106 => 0.0037265506975713
1107 => 0.0035185938368719
1108 => 0.0034279127758444
1109 => 0.0033156777429564
1110 => 0.0033522220356029
1111 => 0.0033599224550108
1112 => 0.0030900174328004
1113 => 0.0029805169989042
1114 => 0.0029429405764278
1115 => 0.00292131481404
1116 => 0.0029311699455193
1117 => 0.0028326067118928
1118 => 0.0028988428349752
1119 => 0.0028134954059974
1120 => 0.0027991866317848
1121 => 0.0029517984073147
1122 => 0.0029730334443346
1123 => 0.0028824381791987
1124 => 0.0029406150054571
1125 => 0.0029195192795375
1126 => 0.0028149584427053
1127 => 0.0028109649878358
1128 => 0.0027585000354045
1129 => 0.0026764025440663
1130 => 0.0026388817875549
1201 => 0.0026193406517936
1202 => 0.0026274037052579
1203 => 0.0026233267786929
1204 => 0.0025967220751167
1205 => 0.0026248517291595
1206 => 0.0025529920870556
1207 => 0.0025243769985574
1208 => 0.0025114522269477
1209 => 0.0024476726584939
1210 => 0.0025491743148068
1211 => 0.0025691714197846
1212 => 0.0025892079252367
1213 => 0.0027636120256935
1214 => 0.0027548992896955
1215 => 0.0028336581798425
1216 => 0.0028305977541997
1217 => 0.0028081344429203
1218 => 0.0027133654276681
1219 => 0.0027511386680524
1220 => 0.0026348785054146
1221 => 0.0027219885241854
1222 => 0.0026822351494198
1223 => 0.0027085478681889
1224 => 0.0026612352273198
1225 => 0.0026874199962678
1226 => 0.0025739134752185
1227 => 0.0024679226829426
1228 => 0.0025105764718185
1229 => 0.0025569460183791
1230 => 0.0026574870100632
1231 => 0.0025976056248614
]
'min_raw' => 0.0024476726584939
'max_raw' => 0.007306362496352
'avg_raw' => 0.0048770175774229
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002447'
'max' => '$0.0073063'
'avg' => '$0.004877'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0046367673415061
'max_diff' => 0.00022192249635201
'year' => 2026
]
1 => [
'items' => [
101 => 0.0026191412353458
102 => 0.0025470005452405
103 => 0.0023981536955839
104 => 0.0023989961525883
105 => 0.0023760993075735
106 => 0.0023563130904866
107 => 0.0026044837222892
108 => 0.0025736197812275
109 => 0.0025244421305183
110 => 0.0025902683702347
111 => 0.0026076738728186
112 => 0.0026081693830079
113 => 0.0026561945082839
114 => 0.0026818255262526
115 => 0.0026863431042608
116 => 0.002761911676534
117 => 0.0027872412651864
118 => 0.002891570256068
119 => 0.0026796509134519
120 => 0.0026752865740481
121 => 0.0025911946804203
122 => 0.0025378622720412
123 => 0.0025948463960498
124 => 0.0026453265508128
125 => 0.0025927632395416
126 => 0.0025996268983216
127 => 0.0025290649475203
128 => 0.0025542875246834
129 => 0.0025760126059843
130 => 0.0025640172930312
131 => 0.0025460597289607
201 => 0.0026411877537904
202 => 0.0026358202578197
203 => 0.002724405661525
204 => 0.0027934643185162
205 => 0.002917229777556
206 => 0.0027880740690086
207 => 0.0027833671216417
208 => 0.0028293782871714
209 => 0.0027872342211167
210 => 0.0028138678160995
211 => 0.0029129386936504
212 => 0.0029150319051793
213 => 0.002879967915121
214 => 0.0028778342681394
215 => 0.0028845686909881
216 => 0.0029240124159588
217 => 0.0029102295664708
218 => 0.0029261794288374
219 => 0.0029461249759597
220 => 0.0030286282155946
221 => 0.0030485194673572
222 => 0.0030001940380058
223 => 0.0030045572831993
224 => 0.0029864822460592
225 => 0.0029690219866613
226 => 0.0030082700999215
227 => 0.0030799967983282
228 => 0.00307955059026
301 => 0.0030961897901225
302 => 0.0031065558737903
303 => 0.0030620570542511
304 => 0.0030330899589981
305 => 0.0030441977865423
306 => 0.0030619594446824
307 => 0.003038437920193
308 => 0.0028932521748145
309 => 0.002937292255461
310 => 0.0029299618325915
311 => 0.0029195224190155
312 => 0.0029638050606574
313 => 0.0029595338918429
314 => 0.002831595803471
315 => 0.0028397859847945
316 => 0.002832093875524
317 => 0.0028569486542343
318 => 0.0027858919814999
319 => 0.002807748535459
320 => 0.0028214567612097
321 => 0.0028295310114884
322 => 0.0028587007400604
323 => 0.0028552780090882
324 => 0.0028584879782974
325 => 0.0029017389852468
326 => 0.0031204877364435
327 => 0.0031323937483292
328 => 0.0030737641913846
329 => 0.0030971855429671
330 => 0.0030522216696153
331 => 0.0030824062190281
401 => 0.003103057721132
402 => 0.0030097375541802
403 => 0.0030042117395362
404 => 0.0029590622842845
405 => 0.0029833230441409
406 => 0.002944722430799
407 => 0.002954193671121
408 => 0.0029277112574929
409 => 0.0029753743294275
410 => 0.003028669049943
411 => 0.0030421334010175
412 => 0.0030067144901081
413 => 0.0029810688643897
414 => 0.0029360435938225
415 => 0.0030109216222293
416 => 0.0030328182396021
417 => 0.00301080660862
418 => 0.0030057060327578
419 => 0.0029960404507154
420 => 0.0030077566316802
421 => 0.0030326989859213
422 => 0.0030209366322742
423 => 0.0030287058740841
424 => 0.002999097535912
425 => 0.003062071785212
426 => 0.0031620900486789
427 => 0.0031624116237506
428 => 0.0031506492066999
429 => 0.0031458362790676
430 => 0.0031579052327647
501 => 0.003164452145051
502 => 0.0032034809282398
503 => 0.0032453603675767
504 => 0.0034407934375311
505 => 0.0033859166135259
506 => 0.0035593164595548
507 => 0.0036964532246117
508 => 0.0037375745441883
509 => 0.0036997448650854
510 => 0.0035703315763936
511 => 0.0035639819430517
512 => 0.0037573800332384
513 => 0.003702736214567
514 => 0.0036962365062112
515 => 0.0036270905907363
516 => 0.0036679643906702
517 => 0.0036590246910422
518 => 0.0036449129378343
519 => 0.0037228973008146
520 => 0.0038688770666016
521 => 0.0038461247511141
522 => 0.0038291412030523
523 => 0.0037547242392817
524 => 0.0037995398731022
525 => 0.0037835818842856
526 => 0.0038521475314315
527 => 0.0038115307609773
528 => 0.0037023222338968
529 => 0.0037197140517904
530 => 0.0037170853135033
531 => 0.0037711845611781
601 => 0.003754945309852
602 => 0.0037139143390512
603 => 0.0038683781236322
604 => 0.0038583481046342
605 => 0.0038725683783918
606 => 0.0038788285826764
607 => 0.0039728479663937
608 => 0.004011364699618
609 => 0.0040201086723902
610 => 0.0040566965899622
611 => 0.0040191983316702
612 => 0.0041692181006432
613 => 0.0042689724931141
614 => 0.0043848423532831
615 => 0.0045541593618724
616 => 0.0046178241233719
617 => 0.0046063236540482
618 => 0.0047346978775723
619 => 0.0049653835036464
620 => 0.0046529518146323
621 => 0.0049819431418076
622 => 0.0048777882860114
623 => 0.0046308389965845
624 => 0.0046149383736863
625 => 0.0047821752996264
626 => 0.0051530907054039
627 => 0.0050601806031444
628 => 0.0051532426730471
629 => 0.0050446808252227
630 => 0.0050392898144471
701 => 0.0051479700664128
702 => 0.0054019073989829
703 => 0.0052812712909775
704 => 0.0051083098489644
705 => 0.0052360218861687
706 => 0.0051253859003512
707 => 0.0048760920592418
708 => 0.0050601095565402
709 => 0.0049370622966133
710 => 0.0049729740286121
711 => 0.0052316010670798
712 => 0.0052004823775691
713 => 0.005240752843309
714 => 0.0051696765253396
715 => 0.0051032800366497
716 => 0.0049793460598419
717 => 0.0049426553191803
718 => 0.0049527953199046
719 => 0.0049426502942995
720 => 0.0048733103732876
721 => 0.004858336423947
722 => 0.0048333791856889
723 => 0.0048411144774039
724 => 0.004794187567981
725 => 0.0048827483416562
726 => 0.0048991860016451
727 => 0.0049636331473703
728 => 0.0049703242638347
729 => 0.0051498086473315
730 => 0.005050951665014
731 => 0.0051172734636538
801 => 0.0051113410177384
802 => 0.0046361911365021
803 => 0.0047016625978536
804 => 0.0048035156456401
805 => 0.0047576309856708
806 => 0.0046927608118311
807 => 0.0046403746683369
808 => 0.004561004304185
809 => 0.004672716567556
810 => 0.0048196063146141
811 => 0.004974049630225
812 => 0.0051596031544047
813 => 0.0051181897678889
814 => 0.0049705808361588
815 => 0.0049772024650079
816 => 0.0050181347690376
817 => 0.0049651237162271
818 => 0.0049494897218546
819 => 0.0050159868982871
820 => 0.005016444827795
821 => 0.0049554492049368
822 => 0.0048876637322111
823 => 0.0048873797086053
824 => 0.0048753179384638
825 => 0.0050468265873355
826 => 0.0051411390027347
827 => 0.0051519517691682
828 => 0.0051404112174021
829 => 0.0051448527177487
830 => 0.0050899744012602
831 => 0.0052154099590938
901 => 0.0053305220312528
902 => 0.0052996695369034
903 => 0.0052534172619333
904 => 0.0052165750971081
905 => 0.0052909906937315
906 => 0.0052876770843549
907 => 0.0053295166277241
908 => 0.0053276185443599
909 => 0.0053135494795897
910 => 0.0052996700393541
911 => 0.0053547004510275
912 => 0.0053388525762269
913 => 0.0053229800852995
914 => 0.0052911453747877
915 => 0.0052954722406648
916 => 0.005249227951802
917 => 0.0052278332277794
918 => 0.0049061079116001
919 => 0.004820132394439
920 => 0.0048471820423309
921 => 0.0048560874887608
922 => 0.0048186708335116
923 => 0.0048723167055888
924 => 0.0048639560532506
925 => 0.0048964824606804
926 => 0.0048761613734507
927 => 0.0048769953579589
928 => 0.0049367553425889
929 => 0.0049541039203642
930 => 0.0049452802936875
1001 => 0.0049514600593556
1002 => 0.0050938701508615
1003 => 0.0050736239898677
1004 => 0.0050628686203607
1005 => 0.0050658479312176
1006 => 0.0051022367629042
1007 => 0.0051124236490199
1008 => 0.0050692610967279
1009 => 0.0050896168059086
1010 => 0.0051762888320755
1011 => 0.0052066191360221
1012 => 0.0053034189068478
1013 => 0.0052622966437223
1014 => 0.005337778337419
1015 => 0.005569783330237
1016 => 0.0057551249720243
1017 => 0.0055846771386694
1018 => 0.0059250334606962
1019 => 0.0061900496786086
1020 => 0.0061798779147575
1021 => 0.0061336662072289
1022 => 0.0058319522889563
1023 => 0.0055543106430607
1024 => 0.0057865696691393
1025 => 0.0057871617451613
1026 => 0.0057672104888408
1027 => 0.0056432949493326
1028 => 0.0057628984966684
1029 => 0.0057723921919197
1030 => 0.0057670782471563
1031 => 0.0056720724935507
1101 => 0.0055270162677932
1102 => 0.0055553599070906
1103 => 0.0056017873664545
1104 => 0.0055138905000961
1105 => 0.0054858021254356
1106 => 0.0055380237579613
1107 => 0.0057062927387684
1108 => 0.0056744824626626
1109 => 0.0056736517677981
1110 => 0.0058097496186349
1111 => 0.0057123329291902
1112 => 0.0055557174111511
1113 => 0.0055161699273413
1114 => 0.0053758030021938
1115 => 0.005472754937363
1116 => 0.0054762440649096
1117 => 0.0054231444808422
1118 => 0.0055600261497496
1119 => 0.0055587647610731
1120 => 0.005688713533553
1121 => 0.0059371267800046
1122 => 0.0058636587593554
1123 => 0.0057782234446383
1124 => 0.0057875126322124
1125 => 0.0058893920922313
1126 => 0.005827793445022
1127 => 0.0058499447480395
1128 => 0.0058893585635812
1129 => 0.0059131378970875
1130 => 0.005784091152064
1201 => 0.0057540041827797
1202 => 0.0056924568027152
1203 => 0.0056764002400926
1204 => 0.0057265292969269
1205 => 0.0057133220615368
1206 => 0.0054759508172498
1207 => 0.0054511442015007
1208 => 0.0054519049849901
1209 => 0.0053895275701986
1210 => 0.0052943870403467
1211 => 0.0055444106722516
1212 => 0.0055243302755312
1213 => 0.005502163071651
1214 => 0.005504878427642
1215 => 0.0056134052121648
1216 => 0.0055504541964076
1217 => 0.0057178197892667
1218 => 0.0056834144548451
1219 => 0.0056481267534188
1220 => 0.0056432489181921
1221 => 0.0056296661637481
1222 => 0.0055830858448396
1223 => 0.0055268373107144
1224 => 0.0054896971563203
1225 => 0.0050639554424118
1226 => 0.0051429706280876
1227 => 0.0052338703967468
1228 => 0.00526524863263
1229 => 0.005211573988844
1230 => 0.0055852052469271
1231 => 0.0056534712781793
]
'min_raw' => 0.0023563130904866
'max_raw' => 0.0061900496786086
'avg_raw' => 0.0042731813845476
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002356'
'max' => '$0.00619'
'avg' => '$0.004273'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.135956800724E-5
'max_diff' => -0.0011163128177434
'year' => 2027
]
2 => [
'items' => [
101 => 0.0054466890166334
102 => 0.0054080084983623
103 => 0.0055877411352654
104 => 0.0054793403837915
105 => 0.0055281532355427
106 => 0.005422646549259
107 => 0.0056370279903134
108 => 0.0056353947629197
109 => 0.0055519955403251
110 => 0.0056224839921688
111 => 0.0056102348890254
112 => 0.0055160773721193
113 => 0.005640012951545
114 => 0.0056400744220462
115 => 0.0055598044835543
116 => 0.0054660667687449
117 => 0.005449308679323
118 => 0.0054366837100761
119 => 0.0055250482670327
120 => 0.0056042756524911
121 => 0.0057516981746948
122 => 0.0057887636994495
123 => 0.005933432910159
124 => 0.0058472894389975
125 => 0.0058854757240187
126 => 0.005926932338189
127 => 0.0059468081635387
128 => 0.0059144215727269
129 => 0.0061391524051814
130 => 0.0061581265730154
131 => 0.0061644884473642
201 => 0.0060887104750943
202 => 0.0061560190505252
203 => 0.0061245275971068
204 => 0.0062064596103238
205 => 0.0062193075961566
206 => 0.0062084258092366
207 => 0.0062125039627316
208 => 0.0060207358424671
209 => 0.006010791653774
210 => 0.0058752019353356
211 => 0.0059304557478279
212 => 0.0058271613937578
213 => 0.0058599170974832
214 => 0.0058743554995775
215 => 0.0058668136976955
216 => 0.005933579715484
217 => 0.0058768149609675
218 => 0.0057270034408088
219 => 0.0055771511046015
220 => 0.0055752698305875
221 => 0.0055358163555776
222 => 0.0055072987194098
223 => 0.0055127922278532
224 => 0.0055321520681373
225 => 0.0055061734902982
226 => 0.0055117173370275
227 => 0.0056037821311916
228 => 0.0056222450690851
229 => 0.0055595007921874
301 => 0.005307573466487
302 => 0.0052457498688482
303 => 0.0052901874448157
304 => 0.0052689491456497
305 => 0.0042524531851595
306 => 0.004491263833179
307 => 0.0043493706553691
308 => 0.0044147615598951
309 => 0.0042699253684115
310 => 0.0043390487905027
311 => 0.0043262842184256
312 => 0.0047102846735201
313 => 0.0047042890345892
314 => 0.0047071588296633
315 => 0.0045701760335656
316 => 0.0047883933472374
317 => 0.004895895042793
318 => 0.0048759993400106
319 => 0.0048810066597648
320 => 0.0047949643163432
321 => 0.0047079919076268
322 => 0.0046115261214027
323 => 0.0047907476286756
324 => 0.00477082125648
325 => 0.0048165251850143
326 => 0.0049327631434987
327 => 0.0049498796244306
328 => 0.0049728843483813
329 => 0.0049646387924327
330 => 0.0051610813875831
331 => 0.0051372908931404
401 => 0.0051946191397549
402 => 0.0050766905869644
403 => 0.0049432432356009
404 => 0.0049686072143725
405 => 0.0049661644592525
406 => 0.0049350653829119
407 => 0.0049069905273252
408 => 0.0048602538028148
409 => 0.0050081357148993
410 => 0.0050021319793327
411 => 0.0050993254795759
412 => 0.0050821455843207
413 => 0.0049674140391724
414 => 0.0049715116987526
415 => 0.0049990704286977
416 => 0.0050944515076976
417 => 0.0051227671059838
418 => 0.0051096501926761
419 => 0.0051406969535408
420 => 0.0051652350474498
421 => 0.0051437785603406
422 => 0.0054475571700799
423 => 0.0053214071119454
424 => 0.0053828917725337
425 => 0.0053975555017954
426 => 0.0053599946676366
427 => 0.005368140267613
428 => 0.0053804786320341
429 => 0.0054553947646996
430 => 0.0056519963739716
501 => 0.0057390698884057
502 => 0.0060010348527123
503 => 0.0057318396451538
504 => 0.0057158667155778
505 => 0.0057630545162334
506 => 0.0059168556820891
507 => 0.0060414970812062
508 => 0.0060828478240281
509 => 0.0060883130073184
510 => 0.0061658897497978
511 => 0.0062103552918664
512 => 0.0061564698927899
513 => 0.0061108076591091
514 => 0.0059472512058693
515 => 0.0059661833106813
516 => 0.0060966067387705
517 => 0.0062808375128482
518 => 0.0064389266829519
519 => 0.0063835693655454
520 => 0.0068059066211812
521 => 0.0068477796349845
522 => 0.0068419941383935
523 => 0.0069373870953774
524 => 0.0067480515022022
525 => 0.0066671068679155
526 => 0.0061206803523192
527 => 0.0062742039147539
528 => 0.0064973594288753
529 => 0.0064678239597911
530 => 0.0063057624604721
531 => 0.0064388037447722
601 => 0.006394816135597
602 => 0.0063601212831929
603 => 0.0065190651279841
604 => 0.0063442998415829
605 => 0.0064956160114549
606 => 0.0063015514584287
607 => 0.0063838222331083
608 => 0.0063371213624106
609 => 0.0063673425491955
610 => 0.0061906701087712
611 => 0.0062859982691431
612 => 0.0061867041438898
613 => 0.006186657065546
614 => 0.0061844651422276
615 => 0.0063012842402505
616 => 0.0063050937068431
617 => 0.0062187642169003
618 => 0.0062063227886795
619 => 0.0062523252696284
620 => 0.0061984684125061
621 => 0.0062236676969826
622 => 0.0061992316731619
623 => 0.0061937306094985
624 => 0.0061498971982994
625 => 0.0061310125595301
626 => 0.0061384177129887
627 => 0.0061131401066161
628 => 0.0060979094344456
629 => 0.0061814353781825
630 => 0.0061368108358708
701 => 0.0061745960270672
702 => 0.0061315350328276
703 => 0.0059822668660113
704 => 0.0058964211647929
705 => 0.0056144674348432
706 => 0.0056944291628944
707 => 0.0057474438713188
708 => 0.0057299225105008
709 => 0.0057675651734044
710 => 0.0057698761271856
711 => 0.0057576381137541
712 => 0.0057434680619871
713 => 0.0057365708644399
714 => 0.0057879769241887
715 => 0.0058178198721212
716 => 0.0057527646065545
717 => 0.0057375230680521
718 => 0.0058032975333397
719 => 0.0058434199191685
720 => 0.0061396610733072
721 => 0.0061177145717623
722 => 0.0061727959838566
723 => 0.0061665946621479
724 => 0.0062243287571798
725 => 0.006318699602308
726 => 0.0061268172876592
727 => 0.006160121422691
728 => 0.006151956017886
729 => 0.0062411037664629
730 => 0.0062413820760032
731 => 0.006187933547471
801 => 0.0062169088618916
802 => 0.0062007356362782
803 => 0.0062299628409042
804 => 0.006117421462854
805 => 0.0062544847132281
806 => 0.0063321907440295
807 => 0.0063332696923426
808 => 0.0063701017342292
809 => 0.0064075252219541
810 => 0.0064793563477431
811 => 0.0064055218908422
812 => 0.0062727008905171
813 => 0.0062822901377314
814 => 0.0062044172338381
815 => 0.0062057262914214
816 => 0.0061987384394489
817 => 0.0062197095092394
818 => 0.0061220234333674
819 => 0.0061449501601224
820 => 0.0061128526084067
821 => 0.0061600516488821
822 => 0.0061092732836115
823 => 0.0061519520802805
824 => 0.0061703708340984
825 => 0.0062383364322137
826 => 0.0060992347095087
827 => 0.0058155968805545
828 => 0.0058752209909769
829 => 0.0057870322482894
830 => 0.0057951944521833
831 => 0.0058116834030542
901 => 0.0057582373184326
902 => 0.0057684331470987
903 => 0.0057680688803518
904 => 0.0057649298263199
905 => 0.0057510264355241
906 => 0.0057308637681681
907 => 0.0058111856291725
908 => 0.0058248338785313
909 => 0.0058551722461956
910 => 0.0059454386496533
911 => 0.0059364189073195
912 => 0.0059511304812914
913 => 0.0059190151979126
914 => 0.0057966841880704
915 => 0.0058033273504571
916 => 0.0057204870090457
917 => 0.0058530538324153
918 => 0.0058216602588448
919 => 0.0058014206177366
920 => 0.0057958980441413
921 => 0.0058863882005536
922 => 0.0059134642736116
923 => 0.0058965922818895
924 => 0.005861987334633
925 => 0.0059284390633998
926 => 0.0059462187426445
927 => 0.005950198957138
928 => 0.0060679386796578
929 => 0.0059567792997017
930 => 0.0059835364672864
1001 => 0.0061922882506113
1002 => 0.0060029791889126
1003 => 0.0061032604209903
1004 => 0.0060983521765184
1005 => 0.0061496526615175
1006 => 0.0060941440393995
1007 => 0.0060948321352972
1008 => 0.0061403834905805
1009 => 0.0060764148273153
1010 => 0.0060605752866975
1011 => 0.0060386930747789
1012 => 0.0060864720839584
1013 => 0.0061151134391027
1014 => 0.006345941726809
1015 => 0.006495067327716
1016 => 0.0064885933920898
1017 => 0.0065477530450133
1018 => 0.006521101079531
1019 => 0.0064350348525552
1020 => 0.0065819394073446
1021 => 0.0065354526594616
1022 => 0.0065392849704756
1023 => 0.0065391423316683
1024 => 0.0065700519550685
1025 => 0.0065481496540641
1026 => 0.0065049779705593
1027 => 0.0065336373488079
1028 => 0.0066187454562909
1029 => 0.0068829236333537
1030 => 0.0070307612411333
1031 => 0.006874023623735
1101 => 0.006982139133416
1102 => 0.0069173083531024
1103 => 0.0069055266717708
1104 => 0.0069734312015239
1105 => 0.0070414545891673
1106 => 0.0070371217934476
1107 => 0.0069877403070581
1108 => 0.0069598459584055
1109 => 0.0071710713116953
1110 => 0.0073266985538692
1111 => 0.0073160858192912
1112 => 0.0073629269782723
1113 => 0.0075004540697832
1114 => 0.0075130278234854
1115 => 0.0075114438195233
1116 => 0.007480278459037
1117 => 0.0076156917407791
1118 => 0.0077286558827784
1119 => 0.0074730645785383
1120 => 0.0075703904012571
1121 => 0.0076140830987177
1122 => 0.0076782369416291
1123 => 0.007786475228053
1124 => 0.0079040507158971
1125 => 0.0079206771790278
1126 => 0.007908879907787
1127 => 0.0078313357129552
1128 => 0.0079599882147214
1129 => 0.0080353498329836
1130 => 0.0080802259520388
1201 => 0.0081940243232886
1202 => 0.0076143529299424
1203 => 0.0072040327061944
1204 => 0.0071399552781603
1205 => 0.0072702592477881
1206 => 0.0073046193654243
1207 => 0.007290768845089
1208 => 0.006828916128578
1209 => 0.0071375237191905
1210 => 0.0074695595382263
1211 => 0.0074823143862939
1212 => 0.0076485384598448
1213 => 0.007702667831948
1214 => 0.0078364999986438
1215 => 0.0078281287601784
1216 => 0.007860714763034
1217 => 0.0078532238052884
1218 => 0.0081011197124049
1219 => 0.0083745857108529
1220 => 0.0083651164528952
1221 => 0.0083258024801155
1222 => 0.0083841904337219
1223 => 0.0086664366505175
1224 => 0.0086404519417785
1225 => 0.0086656938729463
1226 => 0.0089984780692481
1227 => 0.0094311448624403
1228 => 0.0092301276979667
1229 => 0.0096662771037436
1230 => 0.0099408100353935
1231 => 0.010415586353447
]
'min_raw' => 0.0042524531851595
'max_raw' => 0.010415586353447
'avg_raw' => 0.0073340197693033
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.004252'
'max' => '$0.010415'
'avg' => '$0.007334'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0018961400946729
'max_diff' => 0.0042255366748386
'year' => 2028
]
3 => [
'items' => [
101 => 0.010356142020104
102 => 0.010540968956653
103 => 0.010249724257014
104 => 0.0095809675563763
105 => 0.0094751342486026
106 => 0.0096870152108917
107 => 0.010207903881637
108 => 0.0096706105729645
109 => 0.0097793043095367
110 => 0.0097480005060917
111 => 0.0097463324594387
112 => 0.0098099950157472
113 => 0.0097176491574061
114 => 0.0093414155178222
115 => 0.0095138411776848
116 => 0.0094472593498516
117 => 0.0095211368518366
118 => 0.0099198232606503
119 => 0.0097435544958168
120 => 0.0095578696709764
121 => 0.0097907596480876
122 => 0.010087308618629
123 => 0.010068751117002
124 => 0.010032741807412
125 => 0.010235724400184
126 => 0.010570992175123
127 => 0.010661613707474
128 => 0.010728508669979
129 => 0.010737732355109
130 => 0.010832742044436
131 => 0.010321850999403
201 => 0.011132648208482
202 => 0.011272650488669
203 => 0.011246335862494
204 => 0.011401942504725
205 => 0.011356159083221
206 => 0.011289826088661
207 => 0.01153649571508
208 => 0.011253708893603
209 => 0.010852328602388
210 => 0.010632123436225
211 => 0.010922107362472
212 => 0.011099190427187
213 => 0.011216231068365
214 => 0.011251647495668
215 => 0.010361510016909
216 => 0.0098817752851457
217 => 0.010189279748036
218 => 0.010564456415587
219 => 0.010319766874072
220 => 0.010329358240841
221 => 0.0099804952579212
222 => 0.010595323048582
223 => 0.010505747810999
224 => 0.010970464302038
225 => 0.010859555981869
226 => 0.011238514240122
227 => 0.01113872183045
228 => 0.01155295454368
301 => 0.011718203187891
302 => 0.011995681380419
303 => 0.012199795468381
304 => 0.012319655164914
305 => 0.012312459238316
306 => 0.01278740306984
307 => 0.012507345285664
308 => 0.012155526704187
309 => 0.012149163416022
310 => 0.012331375244676
311 => 0.012713241250163
312 => 0.012812253549461
313 => 0.012867587917262
314 => 0.012782841406771
315 => 0.01247885875397
316 => 0.012347600585718
317 => 0.012459436347984
318 => 0.012322670820889
319 => 0.012558766490285
320 => 0.012882976271678
321 => 0.012816028233885
322 => 0.013039825486817
323 => 0.013271432099445
324 => 0.013602639957606
325 => 0.01368922995632
326 => 0.013832359931473
327 => 0.013979687691653
328 => 0.014027005397628
329 => 0.014117349580157
330 => 0.01411687342172
331 => 0.014389131696635
401 => 0.014689441005003
402 => 0.014802800816736
403 => 0.015063465453118
404 => 0.014617086398091
405 => 0.014955670038962
406 => 0.015261080958326
407 => 0.014896957469646
408 => 0.015398816868899
409 => 0.015418302932134
410 => 0.015712519352065
411 => 0.015414274645419
412 => 0.015237177890644
413 => 0.015748449585951
414 => 0.015995837854403
415 => 0.015921322494633
416 => 0.015354256927505
417 => 0.01502420044485
418 => 0.014160378966601
419 => 0.015183612821897
420 => 0.015682000184672
421 => 0.015352966224637
422 => 0.015518911815316
423 => 0.016424257150023
424 => 0.016768954036711
425 => 0.016697259493893
426 => 0.016709374691436
427 => 0.016895366874802
428 => 0.01772015864361
429 => 0.017225924297217
430 => 0.017603747936427
501 => 0.017804144232319
502 => 0.017990283480151
503 => 0.01753318431739
504 => 0.016938505022757
505 => 0.016750145127208
506 => 0.015320250281862
507 => 0.015245818045443
508 => 0.015204036975613
509 => 0.014940613240388
510 => 0.014733634342335
511 => 0.014569037037969
512 => 0.014137084558398
513 => 0.014282855840155
514 => 0.013594413743207
515 => 0.014034854599944
516 => 0.012936084390199
517 => 0.013851172871008
518 => 0.013353131814872
519 => 0.013687552989296
520 => 0.013686386225323
521 => 0.013070610814878
522 => 0.012715444409038
523 => 0.012941770266122
524 => 0.013184409550686
525 => 0.01322377695827
526 => 0.013538365124239
527 => 0.013626159919312
528 => 0.013360137591496
529 => 0.012913314819853
530 => 0.013017101558763
531 => 0.012713341174086
601 => 0.012181012783915
602 => 0.012563340327298
603 => 0.012693883760365
604 => 0.012751539177302
605 => 0.012228055343897
606 => 0.012063565358055
607 => 0.011975992269797
608 => 0.012845739630589
609 => 0.012893386354356
610 => 0.012649618978992
611 => 0.013751470630609
612 => 0.013502087666718
613 => 0.013780709537694
614 => 0.013007684000048
615 => 0.013037214616603
616 => 0.012671251938798
617 => 0.012876166584734
618 => 0.012731339517693
619 => 0.012859611506348
620 => 0.012936497207462
621 => 0.013302399834393
622 => 0.01385535089125
623 => 0.013247746183707
624 => 0.012983004111571
625 => 0.013147248604158
626 => 0.013584653331805
627 => 0.014247343884525
628 => 0.013855017739424
629 => 0.01402912542049
630 => 0.014067160203291
701 => 0.013777873428597
702 => 0.014258010300542
703 => 0.014515319550842
704 => 0.014779265599003
705 => 0.015008442557021
706 => 0.01467383974307
707 => 0.015031912717427
708 => 0.014743369108484
709 => 0.014484515662172
710 => 0.014484908236
711 => 0.014322525687883
712 => 0.014007889039389
713 => 0.013949865214014
714 => 0.014251712481214
715 => 0.014493765404466
716 => 0.01451370204258
717 => 0.014647714978021
718 => 0.014727022452771
719 => 0.015504343518612
720 => 0.01581698848163
721 => 0.016199284824342
722 => 0.01634821079487
723 => 0.016796424573243
724 => 0.016434455545063
725 => 0.016356141268925
726 => 0.015268921252201
727 => 0.015446953469032
728 => 0.015732000225733
729 => 0.01527362156823
730 => 0.015564357322193
731 => 0.01562175471865
801 => 0.015258046036849
802 => 0.015452318558723
803 => 0.014936388338413
804 => 0.013866596760178
805 => 0.014259201284385
806 => 0.014548290363455
807 => 0.014135724603196
808 => 0.01487523275996
809 => 0.014443227361325
810 => 0.014306302389874
811 => 0.013772109258967
812 => 0.014024227853776
813 => 0.014365221863246
814 => 0.014154527210202
815 => 0.014591750251229
816 => 0.01521097468045
817 => 0.015652270884164
818 => 0.015686148127089
819 => 0.01540242423265
820 => 0.01585709358419
821 => 0.015860405354042
822 => 0.015347536468126
823 => 0.015033407131168
824 => 0.014962036284877
825 => 0.01514033465199
826 => 0.015356821785359
827 => 0.015698161656317
828 => 0.015904426191471
829 => 0.016442254704897
830 => 0.016587775679878
831 => 0.016747659112179
901 => 0.016961312683958
902 => 0.017217858576531
903 => 0.016656550768748
904 => 0.01667885257436
905 => 0.016156170515589
906 => 0.015597609775603
907 => 0.016021487751673
908 => 0.016575651819261
909 => 0.01644852596986
910 => 0.016434221714857
911 => 0.016458277504102
912 => 0.016362428765196
913 => 0.015928908471441
914 => 0.015711197293898
915 => 0.015992100256973
916 => 0.016141387680295
917 => 0.016372919454637
918 => 0.016344378276406
919 => 0.016940779262412
920 => 0.017172522651344
921 => 0.017113232775596
922 => 0.017124143539624
923 => 0.017543703875779
924 => 0.018010341258747
925 => 0.018447408746123
926 => 0.018892012566767
927 => 0.018356025307798
928 => 0.018083884032792
929 => 0.018364664362421
930 => 0.018215678367251
1001 => 0.019071796087618
1002 => 0.019131071821084
1003 => 0.019987127634395
1004 => 0.020799626538458
1005 => 0.020289310534246
1006 => 0.02077051554108
1007 => 0.021290977989191
1008 => 0.022295034493587
1009 => 0.02195690358604
1010 => 0.021697900610046
1011 => 0.021453144049225
1012 => 0.021962443598284
1013 => 0.022617649331889
1014 => 0.022758774371424
1015 => 0.022987450849387
1016 => 0.022747025494039
1017 => 0.023036591352572
1018 => 0.024058886074878
1019 => 0.023782653016866
1020 => 0.023390357667808
1021 => 0.024197361168841
1022 => 0.024489412598718
1023 => 0.026539182482115
1024 => 0.029127101631675
1025 => 0.028055686110564
1026 => 0.027390623922248
1027 => 0.027546929311988
1028 => 0.028491949778816
1029 => 0.02879546035931
1030 => 0.027970413975155
1031 => 0.028261834305971
1101 => 0.029867588980586
1102 => 0.030729024844738
1103 => 0.029559079234947
1104 => 0.026331245698249
1105 => 0.023355035763822
1106 => 0.024144460658912
1107 => 0.024054964374515
1108 => 0.025780147450413
1109 => 0.023776064949789
1110 => 0.023809808559343
1111 => 0.02557066659425
1112 => 0.025100899859286
1113 => 0.024339937911822
1114 => 0.02336059162817
1115 => 0.021550179444271
1116 => 0.019946646885913
1117 => 0.023091543504346
1118 => 0.022955929843536
1119 => 0.022759541165864
1120 => 0.023196582916548
1121 => 0.025318733601404
1122 => 0.025269811159387
1123 => 0.024958591543722
1124 => 0.02519464887924
1125 => 0.024298555919585
1126 => 0.024529499478946
1127 => 0.023354564316963
1128 => 0.023885684079806
1129 => 0.024338305229248
1130 => 0.024429175626169
1201 => 0.02463391127039
1202 => 0.022884467606621
1203 => 0.023669916450686
1204 => 0.02413129405997
1205 => 0.022046773236163
1206 => 0.024090089785529
1207 => 0.022854013684596
1208 => 0.022434470890699
1209 => 0.022999329992121
1210 => 0.022779203850953
1211 => 0.022589952321018
1212 => 0.02248434671556
1213 => 0.02289911689842
1214 => 0.022879767373632
1215 => 0.02220112285105
1216 => 0.02131585873643
1217 => 0.021612982431101
1218 => 0.021505034607277
1219 => 0.021113817768196
1220 => 0.021377450682036
1221 => 0.02021654475105
1222 => 0.018219266435428
1223 => 0.019538729669017
1224 => 0.019487931769824
1225 => 0.019462317165549
1226 => 0.020453857318306
1227 => 0.020358543611342
1228 => 0.020185548299887
1229 => 0.021110640573636
1230 => 0.020772969449471
1231 => 0.021813592288826
]
'min_raw' => 0.0093414155178222
'max_raw' => 0.030729024844738
'avg_raw' => 0.02003522018128
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.009341'
'max' => '$0.030729'
'avg' => '$0.020035'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0050889623326627
'max_diff' => 0.020313438491291
'year' => 2029
]
4 => [
'items' => [
101 => 0.02249901379409
102 => 0.022325168729292
103 => 0.022969810967923
104 => 0.02161982756092
105 => 0.022068237896793
106 => 0.022160654645547
107 => 0.021099225078577
108 => 0.020374138112566
109 => 0.020325783078529
110 => 0.019068582202605
111 => 0.019740168762753
112 => 0.020331137143543
113 => 0.020048109150143
114 => 0.019958510942654
115 => 0.020416248753237
116 => 0.020451818901379
117 => 0.019640815754196
118 => 0.019809448989625
119 => 0.020512677614306
120 => 0.019791729432582
121 => 0.018391044881708
122 => 0.018043655747112
123 => 0.017997307632905
124 => 0.017055160748102
125 => 0.018066869950192
126 => 0.017625231771359
127 => 0.019020361486655
128 => 0.018223470875508
129 => 0.018189118513987
130 => 0.018137189881151
131 => 0.017326245137804
201 => 0.01750379049837
202 => 0.018093978317814
203 => 0.018304563980733
204 => 0.018282598170813
205 => 0.018091086075522
206 => 0.018178759332046
207 => 0.017896333225397
208 => 0.017796602688948
209 => 0.01748182568287
210 => 0.017019190443303
211 => 0.017083522710871
212 => 0.016166921246194
213 => 0.015667508120515
214 => 0.015529277149487
215 => 0.015344428917958
216 => 0.015550156249101
217 => 0.016164324629409
218 => 0.015423507259667
219 => 0.014153427841539
220 => 0.014229761778679
221 => 0.014401261471682
222 => 0.014081672928355
223 => 0.013779209193129
224 => 0.014042176871249
225 => 0.013504027478628
226 => 0.014466294254741
227 => 0.014440267635169
228 => 0.014798941183125
301 => 0.015023227113385
302 => 0.014506320657569
303 => 0.014376320081795
304 => 0.014450374317953
305 => 0.013226422752116
306 => 0.014698918227976
307 => 0.014711652429998
308 => 0.014602614461128
309 => 0.015386672843826
310 => 0.01704128058526
311 => 0.01641875059649
312 => 0.01617768816877
313 => 0.015719428317458
314 => 0.016330032360554
315 => 0.016283147496951
316 => 0.016071116363183
317 => 0.015942879271902
318 => 0.01617916004455
319 => 0.015913601469367
320 => 0.015865899852203
321 => 0.015576879952057
322 => 0.015473712997273
323 => 0.015397332291146
324 => 0.015313244638712
325 => 0.015498721046643
326 => 0.015078407104819
327 => 0.014571549694864
328 => 0.014529409985499
329 => 0.014645761428016
330 => 0.014594284576049
331 => 0.014529163534137
401 => 0.014404829730466
402 => 0.014367942546889
403 => 0.014487807998398
404 => 0.014352486892234
405 => 0.014552160555702
406 => 0.014497860367686
407 => 0.014194543931473
408 => 0.013816499349823
409 => 0.013813133960071
410 => 0.013731684875072
411 => 0.013627947219373
412 => 0.013599089776754
413 => 0.014020030466874
414 => 0.014891365097728
415 => 0.014720301260421
416 => 0.014843912414203
417 => 0.015451956948353
418 => 0.015645236021222
419 => 0.015508051113365
420 => 0.015320263950294
421 => 0.015328525632433
422 => 0.015970251215687
423 => 0.016010274853158
424 => 0.016111401672933
425 => 0.016241378214778
426 => 0.015530186680476
427 => 0.015295028575124
428 => 0.015183597618733
429 => 0.014840433402257
430 => 0.01521050658905
501 => 0.01499488079122
502 => 0.015023976078173
503 => 0.015005027734376
504 => 0.015015374811371
505 => 0.014466025281566
506 => 0.014666179377266
507 => 0.01433338437264
508 => 0.013887809219438
509 => 0.013886315495286
510 => 0.013995369382786
511 => 0.013930499863222
512 => 0.013755937654023
513 => 0.013780733391929
514 => 0.013563496636568
515 => 0.013807109867228
516 => 0.013814095822994
517 => 0.013720291459487
518 => 0.014095611253467
519 => 0.014249380079293
520 => 0.014187636037748
521 => 0.014245047952741
522 => 0.014727409735168
523 => 0.014806055752624
524 => 0.014840985118513
525 => 0.014794184395476
526 => 0.01425386464064
527 => 0.014277830119384
528 => 0.014101987337705
529 => 0.013953418717043
530 => 0.01395936068273
531 => 0.014035744266319
601 => 0.014369315855691
602 => 0.015071297600405
603 => 0.015097937294475
604 => 0.015130225380823
605 => 0.014998893506956
606 => 0.014959282557121
607 => 0.015011539624407
608 => 0.015275167059275
609 => 0.015953288395906
610 => 0.015713595025339
611 => 0.015518720584019
612 => 0.015689678006829
613 => 0.015663360451596
614 => 0.015441213800378
615 => 0.01543497888376
616 => 0.015008608435492
617 => 0.014850988988753
618 => 0.014719270381446
619 => 0.014575437100868
620 => 0.014490167910807
621 => 0.014621180140895
622 => 0.014651144188008
623 => 0.014364683657217
624 => 0.014325640145379
625 => 0.014559569998502
626 => 0.014456626191926
627 => 0.014562506449873
628 => 0.014587071577941
629 => 0.014583116026539
630 => 0.014475630869453
701 => 0.014544138703326
702 => 0.014382097253048
703 => 0.01420590151371
704 => 0.014093499609395
705 => 0.013995414039931
706 => 0.014049837614636
707 => 0.013855827508163
708 => 0.01379375977045
709 => 0.014520929790685
710 => 0.015058098103027
711 => 0.015050287463024
712 => 0.015002742200736
713 => 0.014932099585181
714 => 0.015269999111941
715 => 0.015152281673332
716 => 0.015237930945541
717 => 0.015259732280007
718 => 0.015325718353294
719 => 0.015349302702799
720 => 0.01527801441821
721 => 0.015038762228
722 => 0.014442568517412
723 => 0.014165038735739
724 => 0.014073449285163
725 => 0.014076778387738
726 => 0.013984946876943
727 => 0.014011995372472
728 => 0.013975540514039
729 => 0.013906503831546
730 => 0.014045574794032
731 => 0.014061601426923
801 => 0.014029140602505
802 => 0.014036786301754
803 => 0.013768024539769
804 => 0.013788457912812
805 => 0.013674682295157
806 => 0.013653350738432
807 => 0.013365735884574
808 => 0.012856184480524
809 => 0.013138525421719
810 => 0.0127974972679
811 => 0.012668344738629
812 => 0.013279732724859
813 => 0.013218366328305
814 => 0.013113333732735
815 => 0.012957968633176
816 => 0.012900342206455
817 => 0.012550222280009
818 => 0.012529535326937
819 => 0.012703064216517
820 => 0.012622986604741
821 => 0.012510527310043
822 => 0.012103211144464
823 => 0.011645252916606
824 => 0.011659075796882
825 => 0.011804743788548
826 => 0.012228293120322
827 => 0.01206280506892
828 => 0.011942741588872
829 => 0.011920257308154
830 => 0.012201695155371
831 => 0.012599988672237
901 => 0.012786859079034
902 => 0.012601676181236
903 => 0.012388948039201
904 => 0.01240189581552
905 => 0.01248803157066
906 => 0.012497083220631
907 => 0.012358619068972
908 => 0.012397595916606
909 => 0.012338386520933
910 => 0.01197501856898
911 => 0.011968446394982
912 => 0.011879270039473
913 => 0.011876569814869
914 => 0.011724858588064
915 => 0.011703633138704
916 => 0.011402401289669
917 => 0.011600673004918
918 => 0.011467682748061
919 => 0.011267235061748
920 => 0.011232677805074
921 => 0.01123163897221
922 => 0.011437453926771
923 => 0.011598267937342
924 => 0.011469996170517
925 => 0.011440791175655
926 => 0.011752624114288
927 => 0.011712940530426
928 => 0.011678574802734
929 => 0.012564325856323
930 => 0.011863184781391
1001 => 0.011557447252987
1002 => 0.011179039003605
1003 => 0.011302250637704
1004 => 0.011328213139364
1005 => 0.010418209512814
1006 => 0.010049021154857
1007 => 0.0099223296229758
1008 => 0.0098494168552228
1009 => 0.0098826441190688
1010 => 0.0095503312954318
1011 => 0.0097736510088626
1012 => 0.0094858961932968
1013 => 0.009437653162032
1014 => 0.0099521944182451
1015 => 0.010023789828141
1016 => 0.0097183415665756
1017 => 0.0099144887980821
1018 => 0.0098433630852874
1019 => 0.0094908289237033
1020 => 0.0094773647117965
1021 => 0.0093004754616886
1022 => 0.0090236780377779
1023 => 0.0088971741875842
1024 => 0.0088312898840466
1025 => 0.0088584750317457
1026 => 0.0088447293891898
1027 => 0.0087550297736016
1028 => 0.0088498708661567
1029 => 0.0086075910657235
1030 => 0.00851111329701
1031 => 0.0084675365271493
1101 => 0.0082524992591599
1102 => 0.0085947191800382
1103 => 0.0086621408156242
1104 => 0.0087296952926599
1105 => 0.0093177108938555
1106 => 0.0092883352961346
1107 => 0.0095538763930351
1108 => 0.0095435579543083
1109 => 0.0094678213319917
1110 => 0.0091483009805077
1111 => 0.0092756560977066
1112 => 0.0088836768423478
1113 => 0.0091773743524611
1114 => 0.0090433430739466
1115 => 0.009132058242372
1116 => 0.008972540370419
1117 => 0.0090608241470893
1118 => 0.0086781289865995
1119 => 0.0083207736304003
1120 => 0.008464583857588
1121 => 0.0086209220212354
1122 => 0.0089599029942462
1123 => 0.0087580087232533
1124 => 0.0088306175375699
1125 => 0.0085873901641778
1126 => 0.0080855426184055
1127 => 0.0080883830210141
1128 => 0.0080111847094401
1129 => 0.0079444740971021
1130 => 0.0087811987089448
1201 => 0.0086771387768035
1202 => 0.0085113328939635
1203 => 0.0087332706570087
1204 => 0.0087919545241838
1205 => 0.0087936251713824
1206 => 0.0089555452342574
1207 => 0.0090419620008396
1208 => 0.0090571933305014
1209 => 0.0093119780479497
1210 => 0.0093973785245466
1211 => 0.0097491310013218
1212 => 0.0090346301419554
1213 => 0.0090199154669471
1214 => 0.0087363937764723
1215 => 0.0085565798380725
1216 => 0.008748705790672
1217 => 0.0089189031568673
1218 => 0.0087416822830633
1219 => 0.0087648235878452
1220 => 0.0085269190442407
1221 => 0.0086119587241301
1222 => 0.0086852063525329
1223 => 0.0086447633174255
1224 => 0.0085842181364047
1225 => 0.0089049489137445
1226 => 0.0088868520263329
1227 => 0.0091855238997604
1228 => 0.0094183599833278
1229 => 0.0098356438695088
1230 => 0.0094001863807779
1231 => 0.0093843165791018
]
'min_raw' => 0.0079444740971021
'max_raw' => 0.022969810967923
'avg_raw' => 0.015457142532513
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.007944'
'max' => '$0.022969'
'avg' => '$0.015457'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0013969414207201
'max_diff' => -0.007759213876815
'year' => 2030
]
5 => [
'items' => [
101 => 0.009539446436082
102 => 0.0093973547749738
103 => 0.0094871517999568
104 => 0.0098211761805275
105 => 0.0098282335893402
106 => 0.0097100128987693
107 => 0.0097028191590041
108 => 0.0097255247358209
109 => 0.0098585120084327
110 => 0.009812042169096
111 => 0.0098658182436488
112 => 0.0099330660483255
113 => 0.010211231480947
114 => 0.010278296225027
115 => 0.010115363665995
116 => 0.010130074651797
117 => 0.01006913340212
118 => 0.010010264918524
119 => 0.010142592672597
120 => 0.010384424244073
121 => 0.010382919822418
122 => 0.010439020046466
123 => 0.010473970021289
124 => 0.010323939144404
125 => 0.01022627456034
126 => 0.010263725376429
127 => 0.010323610046928
128 => 0.010244305584892
129 => 0.0097548017078033
130 => 0.0099032859144833
131 => 0.009878570881985
201 => 0.0098433736702567
202 => 0.0099926756882679
203 => 0.009978275144406
204 => 0.0095469229471083
205 => 0.0095745367152605
206 => 0.0095486022318093
207 => 0.0096324018535363
208 => 0.0093928293203936
209 => 0.0094665202180427
210 => 0.0095127384582389
211 => 0.0095399613567797
212 => 0.0096383091332255
213 => 0.0096267691567854
214 => 0.0096375917920871
215 => 0.0097834155817058
216 => 0.010520942268916
217 => 0.010561084219239
218 => 0.010363410574616
219 => 0.010442377296703
220 => 0.01029077845842
221 => 0.010392547774183
222 => 0.010462175755368
223 => 0.010147540297084
224 => 0.010128909627212
225 => 0.0099766850865965
226 => 0.010058481932284
227 => 0.0099283372693935
228 => 0.0099602702173999
301 => 0.0098709829109097
302 => 0.010031682285667
303 => 0.010211369156803
304 => 0.010256765156502
305 => 0.010137347825501
306 => 0.010050881807871
307 => 0.0098990759645901
308 => 0.010151532465181
309 => 0.010225358439426
310 => 0.010151144688767
311 => 0.010133947741137
312 => 0.010101359556452
313 => 0.010140861478572
314 => 0.010224956367315
315 => 0.010185298770773
316 => 0.010211493311966
317 => 0.01011166673263
318 => 0.010323988810867
319 => 0.010661207369198
320 => 0.010662291582004
321 => 0.010622633771692
322 => 0.010606406650152
323 => 0.010647097970169
324 => 0.010669171342033
325 => 0.010800759609456
326 => 0.01094195906311
327 => 0.011600875303162
328 => 0.011415854259652
329 => 0.012000483946929
330 => 0.012462850124901
331 => 0.012601493524852
401 => 0.012473948120573
402 => 0.012037622182401
403 => 0.012016213950272
404 => 0.01266826911396
405 => 0.0124840336642
406 => 0.012462119443683
407 => 0.012228989162046
408 => 0.01236679803224
409 => 0.012336657210795
410 => 0.012289078449603
411 => 0.012552008174085
412 => 0.013044189146418
413 => 0.012967478126236
414 => 0.012910216908192
415 => 0.012659314919213
416 => 0.012810413957567
417 => 0.01275661048412
418 => 0.012987784350573
419 => 0.012850842073215
420 => 0.012482637899467
421 => 0.012541275627753
422 => 0.012532412653085
423 => 0.01271481204371
424 => 0.012660060274076
425 => 0.01252172149133
426 => 0.013042506925362
427 => 0.013008690016036
428 => 0.013056634661838
429 => 0.013077741377657
430 => 0.013394734294084
501 => 0.013524596149302
502 => 0.013554077063988
503 => 0.013677435782569
504 => 0.013551007786692
505 => 0.014056809911831
506 => 0.014393138810676
507 => 0.014783802134011
508 => 0.015354666249806
509 => 0.015569316438133
510 => 0.015530541802871
511 => 0.015963364460285
512 => 0.01674113715455
513 => 0.015687751901754
514 => 0.016796969130767
515 => 0.01644580376259
516 => 0.015613196991839
517 => 0.015559586931591
518 => 0.016123437903508
519 => 0.017374005090573
520 => 0.017060752194029
521 => 0.017374517460092
522 => 0.017008493610606
523 => 0.016990317441388
524 => 0.017356740498703
525 => 0.018212907944802
526 => 0.017806174884117
527 => 0.017223023306588
528 => 0.017653613356592
529 => 0.01728059640605
530 => 0.01644008481561
531 => 0.017060512655443
601 => 0.016645650227714
602 => 0.016766729139425
603 => 0.017638708256382
604 => 0.017533789422059
605 => 0.017669564108895
606 => 0.017429925340471
607 => 0.017206064943198
608 => 0.016788212887597
609 => 0.016664507493791
610 => 0.016698695214185
611 => 0.016664490552054
612 => 0.016430706167204
613 => 0.016380220451554
614 => 0.016296075380308
615 => 0.016322155456386
616 => 0.016163938104935
617 => 0.016462526936497
618 => 0.01651794765479
619 => 0.016735235706158
620 => 0.016757795272477
621 => 0.017362939402636
622 => 0.017029636184778
623 => 0.017253244759333
624 => 0.017233243103739
625 => 0.015631242105245
626 => 0.015851983708263
627 => 0.016195388370028
628 => 0.016040685035377
629 => 0.015821970715186
630 => 0.015645347174911
701 => 0.015377744450711
702 => 0.015754390146168
703 => 0.016249639183889
704 => 0.016770355605359
705 => 0.017395962267064
706 => 0.017256334143036
707 => 0.016758660323981
708 => 0.016780985607953
709 => 0.016918991728792
710 => 0.016740261263128
711 => 0.01668755015957
712 => 0.016911750032597
713 => 0.016913293973904
714 => 0.016707642972859
715 => 0.016479099518934
716 => 0.016478141913517
717 => 0.016437474813359
718 => 0.017015728197382
719 => 0.017333709090583
720 => 0.017370165087536
721 => 0.017331255311522
722 => 0.017346230140036
723 => 0.017161204064513
724 => 0.01758411880538
725 => 0.017972227193532
726 => 0.017868205854781
727 => 0.017712263080488
728 => 0.017588047149543
729 => 0.017838944529089
730 => 0.017827772463727
731 => 0.01796883740534
801 => 0.017962437884758
802 => 0.017915003050614
803 => 0.017868207548828
804 => 0.018053746423886
805 => 0.018000314207533
806 => 0.017946798996189
807 => 0.01783946604707
808 => 0.017854054377467
809 => 0.017698138528893
810 => 0.017626004723118
811 => 0.016541285357476
812 => 0.016251412898748
813 => 0.016342612675162
814 => 0.016372638009558
815 => 0.016246485144038
816 => 0.016427355947182
817 => 0.016399167424101
818 => 0.016508832477672
819 => 0.016440318513304
820 => 0.016443130350301
821 => 0.01664461531079
822 => 0.016703107251998
823 => 0.016673357778612
824 => 0.016694193290019
825 => 0.017174338856286
826 => 0.017106077510954
827 => 0.017069815031745
828 => 0.017079859986308
829 => 0.017202547472926
830 => 0.017236893270691
831 => 0.017091367712126
901 => 0.017159998406818
902 => 0.017452219194288
903 => 0.017554479931638
904 => 0.017880847117321
905 => 0.017742200536129
906 => 0.017996692336391
907 => 0.018778913367748
908 => 0.019403805653174
909 => 0.01882912888273
910 => 0.019976663985363
911 => 0.020870184666896
912 => 0.020835889854903
913 => 0.020680083856572
914 => 0.019662834316122
915 => 0.018726746122664
916 => 0.019509823644896
917 => 0.019511819870542
918 => 0.019444552816905
919 => 0.019026762923946
920 => 0.019430014634242
921 => 0.01946202329061
922 => 0.019444106954833
923 => 0.019123788423461
924 => 0.018634721230818
925 => 0.018730283789599
926 => 0.018886817210306
927 => 0.018590466788615
928 => 0.01849576487238
929 => 0.018671833752438
930 => 0.019239164369394
1001 => 0.019131913802581
1002 => 0.019129113056848
1003 => 0.019587976462993
1004 => 0.019259529293114
1005 => 0.018731489139499
1006 => 0.018598152036717
1007 => 0.018124895148476
1008 => 0.018451775366867
1009 => 0.018463539203994
1010 => 0.018284510249016
1011 => 0.01874601635251
1012 => 0.01874176349252
1013 => 0.01917989485167
1014 => 0.02001743745574
1015 => 0.019769734894748
1016 => 0.019481683766276
1017 => 0.019513002910732
1018 => 0.019856496623183
1019 => 0.019648812483437
1020 => 0.019723497148115
1021 => 0.019856383578998
1022 => 0.019936557262135
1023 => 0.019501467151532
1024 => 0.019400026833985
1025 => 0.019192515544997
1026 => 0.019138379723081
1027 => 0.019307393338097
1028 => 0.019262864221879
1029 => 0.018462550499035
1030 => 0.018378913262094
1031 => 0.018381478296745
1101 => 0.018171168487723
1102 => 0.017850395548828
1103 => 0.018693367679888
1104 => 0.018625665220376
1105 => 0.01855092694483
1106 => 0.018560081957134
1107 => 0.01892598758825
1108 => 0.018713743843525
1109 => 0.019278028624942
1110 => 0.019162028637836
1111 => 0.019043053688769
1112 => 0.019026607726742
1113 => 0.018980812521817
1114 => 0.018823763724483
1115 => 0.018634117864532
1116 => 0.01850889724095
1117 => 0.01707347932817
1118 => 0.01733988454334
1119 => 0.017646359459794
1120 => 0.017752153372832
1121 => 0.017571185563864
1122 => 0.018830909436593
1123 => 0.019061073127141
1124 => 0.018363892295263
1125 => 0.018233478227324
1126 => 0.018839459361175
1127 => 0.018473978659282
1128 => 0.018638554596966
1129 => 0.018282831437919
1130 => 0.019005633434068
1201 => 0.019000126893882
1202 => 0.018718940592156
1203 => 0.018956597328894
1204 => 0.018915298622441
1205 => 0.018597839980324
1206 => 0.019015697439264
1207 => 0.01901590469135
1208 => 0.018745268989457
1209 => 0.018429225739418
1210 => 0.01837272467092
1211 => 0.018330158705657
1212 => 0.018628085978852
1213 => 0.018895206640405
1214 => 0.019392251966726
1215 => 0.019517220971269
1216 => 0.020004983315658
1217 => 0.019714544588292
1218 => 0.019843292314322
1219 => 0.019983066183406
1220 => 0.020050078916258
1221 => 0.019940885264176
1222 => 0.020698580956003
1223 => 0.020762553687589
1224 => 0.020784003191128
1225 => 0.020528512466971
1226 => 0.020755448028371
1227 => 0.020649272394507
1228 => 0.020925511897379
1229 => 0.020968829778632
1230 => 0.020932141074289
1231 => 0.020945890853525
]
'min_raw' => 0.0093928293203936
'max_raw' => 0.020968829778632
'avg_raw' => 0.015180829549513
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.009392'
'max' => '$0.020968'
'avg' => '$0.01518'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0014483552232915
'max_diff' => -0.0020009811892912
'year' => 2031
]
6 => [
'items' => [
101 => 0.020299331247231
102 => 0.020265803720771
103 => 0.019808653518484
104 => 0.019994945605
105 => 0.019646681478471
106 => 0.019757119620511
107 => 0.019805799701229
108 => 0.019780371989632
109 => 0.020005478280061
110 => 0.01981409194702
111 => 0.019308991947298
112 => 0.01880375433342
113 => 0.018797411486735
114 => 0.018664391341185
115 => 0.018568242139808
116 => 0.018586763887069
117 => 0.018652036940248
118 => 0.018564448351297
119 => 0.018583139817604
120 => 0.018893542698887
121 => 0.018955791783036
122 => 0.01874424507281
123 => 0.017894854505207
124 => 0.017686411929382
125 => 0.017836236319289
126 => 0.01776462991084
127 => 0.014337442810565
128 => 0.01514260958359
129 => 0.014664206827939
130 => 0.014884676827995
131 => 0.014396351496269
201 => 0.014629405939892
202 => 0.01458636929394
203 => 0.015881053638347
204 => 0.015860838923089
205 => 0.015870514637544
206 => 0.015408667576668
207 => 0.016144402485158
208 => 0.016506851957253
209 => 0.016439772206248
210 => 0.0164566547344
211 => 0.016166556966269
212 => 0.015873323418062
213 => 0.015548082284781
214 => 0.016152340109398
215 => 0.016085156954326
216 => 0.016239250940325
217 => 0.016631155332831
218 => 0.016688864743327
219 => 0.016766426776265
220 => 0.016738626308698
221 => 0.017400946233432
222 => 0.017320734920419
223 => 0.01751402110641
224 => 0.017116416757168
225 => 0.01666648969505
226 => 0.016752006120335
227 => 0.0167437702009
228 => 0.016638917493749
229 => 0.016544261158015
301 => 0.016386685028275
302 => 0.016885279219653
303 => 0.016865037206023
304 => 0.017192731877926
305 => 0.017134808661611
306 => 0.016747983246843
307 => 0.016761798792207
308 => 0.016854714974306
309 => 0.017176298941448
310 => 0.017271766958002
311 => 0.017227542368992
312 => 0.017332218690863
313 => 0.017414950587672
314 => 0.017342608543339
315 => 0.01836681933522
316 => 0.017941495606704
317 => 0.018148795432599
318 => 0.018198235219594
319 => 0.018071596244814
320 => 0.018099059703842
321 => 0.018140659360925
322 => 0.018393244332684
323 => 0.019056100384631
324 => 0.019349674817824
325 => 0.020232907984793
326 => 0.019325297547901
327 => 0.019271443700641
328 => 0.019430540665098
329 => 0.019949092033835
330 => 0.020369329213143
331 => 0.020508746129584
401 => 0.020527172376614
402 => 0.020788727780118
403 => 0.020938646459688
404 => 0.020756968074543
405 => 0.020603014665653
406 => 0.020051572664408
407 => 0.020115403577579
408 => 0.020555135271255
409 => 0.021176282188639
410 => 0.021709290863077
411 => 0.021522649802517
412 => 0.022946589346538
413 => 0.023087767136057
414 => 0.02306826093037
415 => 0.023389884944964
416 => 0.022751526773586
417 => 0.022478616287714
418 => 0.0206363011401
419 => 0.021153916549521
420 => 0.021906300945602
421 => 0.021806720049484
422 => 0.021260318389758
423 => 0.021708876368421
424 => 0.02156056907297
425 => 0.021443592955773
426 => 0.021979483225591
427 => 0.021390249860767
428 => 0.021900422892048
429 => 0.021246120702366
430 => 0.02152350236316
501 => 0.021366047117052
502 => 0.021467939958273
503 => 0.020872276490507
504 => 0.0211936820388
505 => 0.020858904963014
506 => 0.020858746235091
507 => 0.020851356012588
508 => 0.021245219757621
509 => 0.021258063640207
510 => 0.020966997737532
511 => 0.020925050593653
512 => 0.021080151169963
513 => 0.020898569016009
514 => 0.020983530162979
515 => 0.020901142402599
516 => 0.020882595182386
517 => 0.020734807776177
518 => 0.020671136898083
519 => 0.02069610388998
520 => 0.020610878675269
521 => 0.020559527400674
522 => 0.020841140951578
523 => 0.020690686191589
524 => 0.020818081601785
525 => 0.020672898453284
526 => 0.020169630407292
527 => 0.019880195632079
528 => 0.018929568946172
529 => 0.019199165495047
530 => 0.019377908285868
531 => 0.019318833794568
601 => 0.019445748660674
602 => 0.019453540202693
603 => 0.019412278885978
604 => 0.019364503567124
605 => 0.019341249184047
606 => 0.019514568303546
607 => 0.019615185886069
608 => 0.019395847516197
609 => 0.019344459605006
610 => 0.01956622280695
611 => 0.019701498232027
612 => 0.020700295966103
613 => 0.020626301803888
614 => 0.020812012630425
615 => 0.020791104441322
616 => 0.020985758973588
617 => 0.0213039368667
618 => 0.020656992246066
619 => 0.020769279462546
620 => 0.020741749230156
621 => 0.02104231708858
622 => 0.021043255428626
623 => 0.020863049983022
624 => 0.020960742278583
625 => 0.020906213119249
626 => 0.021004754680224
627 => 0.02062531356674
628 => 0.021087431884827
629 => 0.021349423192935
630 => 0.021353060942502
701 => 0.021477242743254
702 => 0.021603418644943
703 => 0.02184560230063
704 => 0.021596664274232
705 => 0.021148848998369
706 => 0.021181179814852
707 => 0.020918625882463
708 => 0.020923039461501
709 => 0.020899479430699
710 => 0.020970184856651
711 => 0.020640829431625
712 => 0.020718128491572
713 => 0.020609909354983
714 => 0.020769044215278
715 => 0.020597841411536
716 => 0.020741735954244
717 => 0.020803836068697
718 => 0.021032986827949
719 => 0.020563995658077
720 => 0.019607690914797
721 => 0.019808717765909
722 => 0.019511383262797
723 => 0.019538902703092
724 => 0.019594496352175
725 => 0.019414299146387
726 => 0.019448675094585
727 => 0.019447446943815
728 => 0.019436863403985
729 => 0.019389987151213
730 => 0.01932200731051
731 => 0.019592818072779
801 => 0.019638834098383
802 => 0.01974112202312
803 => 0.020045461504577
804 => 0.02001505081356
805 => 0.020064651912336
806 => 0.019956372992207
807 => 0.019543925451645
808 => 0.019566323337443
809 => 0.019287021342647
810 => 0.019733979643157
811 => 0.019628134018035
812 => 0.019559894654952
813 => 0.019541274912502
814 => 0.019846368792667
815 => 0.019937657663373
816 => 0.019880772565317
817 => 0.019764099569601
818 => 0.01998814621265
819 => 0.020048091642561
820 => 0.020061511213616
821 => 0.020458478908416
822 => 0.020083697297994
823 => 0.020173910956631
824 => 0.020877732168696
825 => 0.020239463450042
826 => 0.020577568625404
827 => 0.020561020136484
828 => 0.020733983303344
829 => 0.020546832108385
830 => 0.020549152071745
831 => 0.020702731646377
901 => 0.020487056832029
902 => 0.020433652714955
903 => 0.020359875309704
904 => 0.020520965574976
905 => 0.020617531903521
906 => 0.021395785591439
907 => 0.021898572966514
908 => 0.021876745640555
909 => 0.022076206540781
910 => 0.021986347578377
911 => 0.021696169285176
912 => 0.022191468248197
913 => 0.022034734932108
914 => 0.022047655836256
915 => 0.022047174919558
916 => 0.022151388872892
917 => 0.022077543735886
918 => 0.021931987390799
919 => 0.022028614485498
920 => 0.022315562411936
921 => 0.023206257580234
922 => 0.023704702396555
923 => 0.023176250576426
924 => 0.023540769565699
925 => 0.023322188063531
926 => 0.023282465302351
927 => 0.023511410165357
928 => 0.023740755766038
929 => 0.023726147442762
930 => 0.023559654313695
1001 => 0.023465606569692
1002 => 0.024177767595591
1003 => 0.024702475708128
1004 => 0.024666694132541
1005 => 0.02482462237039
1006 => 0.025288304561255
1007 => 0.025330697849733
1008 => 0.025325357269783
1009 => 0.025220281081008
1010 => 0.025676836414655
1011 => 0.026057702906309
1012 => 0.025195958979249
1013 => 0.025524099785617
1014 => 0.025671412765633
1015 => 0.025887711926087
1016 => 0.026252644865721
1017 => 0.026649058831845
1018 => 0.026705116113113
1019 => 0.026665340789466
1020 => 0.026403895122627
1021 => 0.026837656014563
1022 => 0.027091742972114
1023 => 0.027243045940659
1024 => 0.027626725094477
1025 => 0.025672322520446
1026 => 0.024288899238436
1027 => 0.024072857716076
1028 => 0.024512186647209
1029 => 0.024628034182766
1030 => 0.024581336186443
1031 => 0.023024167507199
1101 => 0.024064659545243
1102 => 0.025184141491123
1103 => 0.025227145351898
1104 => 0.025787581421269
1105 => 0.025970082378507
1106 => 0.026421306872386
1107 => 0.026393082657438
1108 => 0.026502948641148
1109 => 0.026477692354107
1110 => 0.02731349071249
1111 => 0.028235500419043
1112 => 0.028203574154716
1113 => 0.028071024350676
1114 => 0.028267883412776
1115 => 0.029219496238504
1116 => 0.029131886978796
1117 => 0.029216991912064
1118 => 0.030338997064146
1119 => 0.031797763365225
1120 => 0.031120019960632
1121 => 0.032590528133187
1122 => 0.033516135079522
1123 => 0.035116876583664
1124 => 0.034916455863528
1125 => 0.035539612784306
1126 => 0.034557660945416
1127 => 0.032302901038116
1128 => 0.031946076651912
1129 => 0.032660448109326
1130 => 0.03441666063003
1201 => 0.032605138727219
1202 => 0.032971607248826
1203 => 0.03286606428995
1204 => 0.0328604403542
1205 => 0.033075083107572
1206 => 0.032763732598793
1207 => 0.031495234615142
1208 => 0.032076579765744
1209 => 0.031852094484609
1210 => 0.032101177640514
1211 => 0.033445376703226
1212 => 0.032851074255898
1213 => 0.032225024904848
1214 => 0.033010229722537
1215 => 0.034010065281104
1216 => 0.033947497368726
1217 => 0.033826089467355
1218 => 0.034510459450676
1219 => 0.035640838161531
1220 => 0.035946374984845
1221 => 0.036171916021391
1222 => 0.036203014319784
1223 => 0.036523346120712
1224 => 0.034800841293112
1225 => 0.037534500691575
1226 => 0.038006528153872
1227 => 0.037917806554494
1228 => 0.038442445212886
1229 => 0.038288083210789
1230 => 0.038064436888406
1231 => 0.0388961007558
]
'min_raw' => 0.014337442810565
'max_raw' => 0.0388961007558
'avg_raw' => 0.026616771783183
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.014337'
'max' => '$0.038896'
'avg' => '$0.026616'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0049446134901718
'max_diff' => 0.017927270977168
'year' => 2032
]
7 => [
'items' => [
101 => 0.037942665243647
102 => 0.036589383568338
103 => 0.035846946476387
104 => 0.03682464752976
105 => 0.03742169544599
106 => 0.037816306139239
107 => 0.037935715096586
108 => 0.034934554439536
109 => 0.033317095297387
110 => 0.034353868063298
111 => 0.035618802391943
112 => 0.034793814519048
113 => 0.034826152481757
114 => 0.033649936578008
115 => 0.035722871400127
116 => 0.035420862232671
117 => 0.036987686327681
118 => 0.036613751182858
119 => 0.037891435408578
120 => 0.037554978332084
121 => 0.038951592845546
122 => 0.039508740186795
123 => 0.04044427728581
124 => 0.041132462184168
125 => 0.041536577519362
126 => 0.041512315950436
127 => 0.043113622237937
128 => 0.042169387865578
129 => 0.04098320695494
130 => 0.040961752684619
131 => 0.041576092586552
201 => 0.042863580485082
202 => 0.043197407364984
203 => 0.043383971049349
204 => 0.043098242272416
205 => 0.042073343535107
206 => 0.041630797456691
207 => 0.042007859537296
208 => 0.041546745014031
209 => 0.04234275804707
210 => 0.043435853960643
211 => 0.04321013397706
212 => 0.043964682040347
213 => 0.044745559905077
214 => 0.045862250323061
215 => 0.046154194549249
216 => 0.046636767253492
217 => 0.047133493083034
218 => 0.047293028032346
219 => 0.047597629751371
220 => 0.047596024349956
221 => 0.048513962132298
222 => 0.049526475932388
223 => 0.049908676452173
224 => 0.05078752547276
225 => 0.049282527323548
226 => 0.050424085707898
227 => 0.051453799945642
228 => 0.050226132181269
301 => 0.051918186184554
302 => 0.051983884807225
303 => 0.052975856008556
304 => 0.051970303157319
305 => 0.051373209084094
306 => 0.053096997300673
307 => 0.053931084119856
308 => 0.053679850381895
309 => 0.051767949231068
310 => 0.050655140755988
311 => 0.047742706331982
312 => 0.051192610715022
313 => 0.05287295850491
314 => 0.051763597536234
315 => 0.05232309468116
316 => 0.05537552968632
317 => 0.056537699305754
318 => 0.05629597614909
319 => 0.056336823383464
320 => 0.05696390901524
321 => 0.0597447520489
322 => 0.058078406443694
323 => 0.059352265222095
324 => 0.06002791532492
325 => 0.060655496794813
326 => 0.059114355053917
327 => 0.05710935229288
328 => 0.056474283754169
329 => 0.051653293451014
330 => 0.051402339969235
331 => 0.051261472175244
401 => 0.050373320660274
402 => 0.049675476854683
403 => 0.049120525551196
404 => 0.047664167608362
405 => 0.048155645662233
406 => 0.04583451506688
407 => 0.047319492165969
408 => 0.043614911690128
409 => 0.046700196392612
410 => 0.045021016199732
411 => 0.046148540537844
412 => 0.046144606711648
413 => 0.044068476923265
414 => 0.04287100858905
415 => 0.043634082017777
416 => 0.044452157306216
417 => 0.04458488726943
418 => 0.045645543234841
419 => 0.045941549516064
420 => 0.045044636664747
421 => 0.043538142493983
422 => 0.043888066730378
423 => 0.042863917385568
424 => 0.041069135052125
425 => 0.042358179057897
426 => 0.042798315356732
427 => 0.042992704620309
428 => 0.041227742327511
429 => 0.040673152855918
430 => 0.040377894074699
501 => 0.04331030802543
502 => 0.043470952281201
503 => 0.042649073555867
504 => 0.046364043328118
505 => 0.045523231253997
506 => 0.046462624344749
507 => 0.043856314773657
508 => 0.043955879309134
509 => 0.042722010590215
510 => 0.043412894625672
511 => 0.042924600057643
512 => 0.043357078023056
513 => 0.043616303532352
514 => 0.044849969785555
515 => 0.046714282879558
516 => 0.04466570118647
517 => 0.043773104806562
518 => 0.044326866580505
519 => 0.045801607158387
520 => 0.04803591462446
521 => 0.046713159634916
522 => 0.047300175837439
523 => 0.047428412763158
524 => 0.04645306220492
525 => 0.048071877190768
526 => 0.048939413292913
527 => 0.049829325822413
528 => 0.050602011936994
529 => 0.049473875188535
530 => 0.050681143221437
531 => 0.049708298298414
601 => 0.048835555831602
602 => 0.048836879421672
603 => 0.048289395323508
604 => 0.04722857589588
605 => 0.047032944517536
606 => 0.048050643653204
607 => 0.048866741983543
608 => 0.048933959750877
609 => 0.049385793719199
610 => 0.049653184407392
611 => 0.052273976651696
612 => 0.053328080972685
613 => 0.054617019783218
614 => 0.055119134090531
615 => 0.056630318137602
616 => 0.055409914287225
617 => 0.055145872237495
618 => 0.051480234043835
619 => 0.052080482092694
620 => 0.05304153713424
621 => 0.051496081487492
622 => 0.052476317380499
623 => 0.052669836710014
624 => 0.051443567495991
625 => 0.052098570867166
626 => 0.050359076108292
627 => 0.046752199111811
628 => 0.048075892675945
629 => 0.049050576689584
630 => 0.047659582424449
701 => 0.050152885805791
702 => 0.04869634944264
703 => 0.048234697341597
704 => 0.046433627904569
705 => 0.047283663349326
706 => 0.048433348459695
707 => 0.047722976726727
708 => 0.049197104735488
709 => 0.051284863131474
710 => 0.052772724092616
711 => 0.052886943582369
712 => 0.051930348663298
713 => 0.053463298126017
714 => 0.053474463989294
715 => 0.051745290733064
716 => 0.0506861817417
717 => 0.050445549950478
718 => 0.051046695343593
719 => 0.051776596828396
720 => 0.05292744803492
721 => 0.053622883316122
722 => 0.055436209699124
723 => 0.055926843826223
724 => 0.056465901980932
725 => 0.057186249915001
726 => 0.058051212303271
727 => 0.056158723840073
728 => 0.056233915934756
729 => 0.054471656881113
730 => 0.052588430348783
731 => 0.05401756453932
801 => 0.055885967383693
802 => 0.055457353706792
803 => 0.055409125912358
804 => 0.055490231685322
805 => 0.055167070970153
806 => 0.053705427032338
807 => 0.052971398597142
808 => 0.05391848254917
809 => 0.054421815519816
810 => 0.055202441062039
811 => 0.055106212486954
812 => 0.057117020050659
813 => 0.05789835906625
814 => 0.05769845911068
815 => 0.057735245513366
816 => 0.059149822479479
817 => 0.060723122995737
818 => 0.062196726544502
819 => 0.06369573936705
820 => 0.061888620902002
821 => 0.060971077593022
822 => 0.061917748077824
823 => 0.061415431393237
824 => 0.064301892059685
825 => 0.064501744333565
826 => 0.067387996276053
827 => 0.070127393057963
828 => 0.068406827020636
829 => 0.070029243297839
830 => 0.071784018779173
831 => 0.075169265384728
901 => 0.074029233422388
902 => 0.073155986805815
903 => 0.07233077297265
904 => 0.074047911960459
905 => 0.076256983836311
906 => 0.076732796760142
907 => 0.077503795471275
908 => 0.076693184599756
909 => 0.077669476108642
910 => 0.081116214139237
911 => 0.080184875098172
912 => 0.078862223939638
913 => 0.081583092586554
914 => 0.082567764372764
915 => 0.089478706645002
916 => 0.098204056740488
917 => 0.094591704507219
918 => 0.092349400906151
919 => 0.092876395440554
920 => 0.096062597923686
921 => 0.097085905036255
922 => 0.094304203549176
923 => 0.095286747540842
924 => 0.10070066153652
925 => 0.10360505269604
926 => 0.099660499389633
927 => 0.088777633260513
928 => 0.078743133674252
929 => 0.081404734823934
930 => 0.08110299185266
1001 => 0.086919567041486
1002 => 0.080162662970057
1003 => 0.080276431905574
1004 => 0.086213287709444
1005 => 0.084629436364447
1006 => 0.082063800029905
1007 => 0.078761865658797
1008 => 0.072657934581841
1009 => 0.067251512606271
1010 => 0.077854751124986
1011 => 0.077397520199321
1012 => 0.076735382061131
1013 => 0.078208898836843
1014 => 0.085363878034665
1015 => 0.085198932605747
1016 => 0.084149633942872
1017 => 0.084945517730569
1018 => 0.081924277753881
1019 => 0.082702920088229
1020 => 0.07874154415825
1021 => 0.080532251520273
1022 => 0.082058295326617
1023 => 0.082364671214206
1024 => 0.083054951732883
1025 => 0.077156580278229
1026 => 0.079804775894281
1027 => 0.081360342716338
1028 => 0.074332235222278
1029 => 0.081221419628269
1030 => 0.077053902753896
1031 => 0.07563938493273
1101 => 0.077543846830377
1102 => 0.076801676176714
1103 => 0.076163601430418
1104 => 0.075807544758469
1105 => 0.077205971388311
1106 => 0.077140733114548
1107 => 0.074852635725213
1108 => 0.071867905955607
1109 => 0.072869679236702
1110 => 0.072505725612005
1111 => 0.071186710725154
1112 => 0.072075567500427
1113 => 0.068161492102244
1114 => 0.061427528815607
1115 => 0.065876191229633
1116 => 0.065704922565907
1117 => 0.06561856113924
1118 => 0.068961607991383
1119 => 0.068640251173763
1120 => 0.068056985403048
1121 => 0.071175998591872
1122 => 0.070037516821304
1123 => 0.073546049378155
1124 => 0.075856995837756
1125 => 0.075270865064315
1126 => 0.077444321379343
1127 => 0.072892758069801
1128 => 0.074404604824206
1129 => 0.07471619434496
1130 => 0.071137510453274
1201 => 0.068692829123413
1202 => 0.068529796750118
1203 => 0.064291056221978
1204 => 0.066555357198192
1205 => 0.06854784835412
1206 => 0.067593599713991
1207 => 0.067291513101893
1208 => 0.068834808088508
1209 => 0.068954735326396
1210 => 0.066220381593237
1211 => 0.066788940320082
1212 => 0.06915992472605
1213 => 0.066729197596371
1214 => 0.062006691840428
1215 => 0.060835445119204
1216 => 0.060679179216233
1217 => 0.057502665215524
1218 => 0.06091371342565
1219 => 0.059424699471522
1220 => 0.064128476711488
1221 => 0.061441704378883
1222 => 0.061325882993608
1223 => 0.061150801982462
1224 => 0.058416645161911
1225 => 0.059015251740881
1226 => 0.061005111179733
1227 => 0.061715115444887
1228 => 0.061641056183138
1229 => 0.060995359782919
1230 => 0.061290956288438
1231 => 0.06033873695151
]
'min_raw' => 0.033317095297387
'max_raw' => 0.10360505269604
'avg_raw' => 0.068461073996713
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.033317'
'max' => '$0.103605'
'avg' => '$0.068461'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.018979652486822
'max_diff' => 0.064708951940238
'year' => 2033
]
8 => [
'items' => [
101 => 0.060002488484909
102 => 0.058941195831888
103 => 0.057381388821527
104 => 0.05759828955317
105 => 0.054507903719938
106 => 0.052824097498803
107 => 0.052358042129002
108 => 0.05173481341071
109 => 0.052428437471082
110 => 0.054499149045159
111 => 0.052001431560855
112 => 0.047719270128526
113 => 0.047976635327057
114 => 0.048554858515743
115 => 0.047477343428956
116 => 0.046457565828298
117 => 0.047344179714898
118 => 0.045529771465283
119 => 0.048774121084271
120 => 0.048686370519262
121 => 0.049895663427986
122 => 0.050651859101
123 => 0.048909072895959
124 => 0.048470766878387
125 => 0.048720445905894
126 => 0.044593807748107
127 => 0.049558429051319
128 => 0.049601363302509
129 => 0.049233734177676
130 => 0.05187724175615
131 => 0.057455867277421
201 => 0.055356963956627
202 => 0.054544205151127
203 => 0.052999150067749
204 => 0.055057844230058
205 => 0.054899768639024
206 => 0.054184890867983
207 => 0.053752530561503
208 => 0.054549167683083
209 => 0.053653818406146
210 => 0.053492989073455
211 => 0.05251853830139
212 => 0.052170703710448
213 => 0.051913180827008
214 => 0.051629673436017
215 => 0.052255020094904
216 => 0.050837902294663
217 => 0.049128997149345
218 => 0.048986920177122
219 => 0.049379207188965
220 => 0.049205649388558
221 => 0.048986089249146
222 => 0.048566889149362
223 => 0.048442521434549
224 => 0.048846656173053
225 => 0.048390411615801
226 => 0.049063625312954
227 => 0.048880548437941
228 => 0.04785789589637
301 => 0.046583292195107
302 => 0.046571945548594
303 => 0.046297334271927
304 => 0.045947575523008
305 => 0.045850280640455
306 => 0.047269511566336
307 => 0.050207277108901
308 => 0.049630523438124
309 => 0.050047287073354
310 => 0.052097351672555
311 => 0.052749005561048
312 => 0.052286477066264
313 => 0.051653339535089
314 => 0.051681194373233
315 => 0.053844816981024
316 => 0.053979759469118
317 => 0.054320715602436
318 => 0.054758940587941
319 => 0.052361108676234
320 => 0.051568256705825
321 => 0.051192559456493
322 => 0.050035557341683
323 => 0.051283284928641
324 => 0.050556287496743
325 => 0.050654384288074
326 => 0.050590498624029
327 => 0.050625384516528
328 => 0.048773214222432
329 => 0.049448047730396
330 => 0.048326006137295
331 => 0.046823718399212
401 => 0.046818682203944
402 => 0.04718636499955
403 => 0.046967652885295
404 => 0.046379104209435
405 => 0.046462704770969
406 => 0.045730275883283
407 => 0.046551634898988
408 => 0.046575188536594
409 => 0.04625892057582
410 => 0.047524337465215
411 => 0.048042779797283
412 => 0.047834605450385
413 => 0.048028173730154
414 => 0.049654490157031
415 => 0.049919650695773
416 => 0.05003741749156
417 => 0.049879625586316
418 => 0.048057899808966
419 => 0.048138701093768
420 => 0.047545834878388
421 => 0.047044925401095
422 => 0.047064959153263
423 => 0.047322491738266
424 => 0.048447151641058
425 => 0.050813932104163
426 => 0.050903749692644
427 => 0.051012611230047
428 => 0.050569816648005
429 => 0.050436265565088
430 => 0.050612453915915
501 => 0.051501292218452
502 => 0.053787625649823
503 => 0.052979482716101
504 => 0.052322449931491
505 => 0.052898844818361
506 => 0.05281011334346
507 => 0.052061130399094
508 => 0.05204010894241
509 => 0.05060257120784
510 => 0.050071146238519
511 => 0.049627047757685
512 => 0.049142103810099
513 => 0.048854612782502
514 => 0.049296329663227
515 => 0.049397355540089
516 => 0.048431533860495
517 => 0.0482998959344
518 => 0.049088606766665
519 => 0.048741524535489
520 => 0.049098507217479
521 => 0.049181330261842
522 => 0.049167993844123
523 => 0.048805600132634
524 => 0.049036579077601
525 => 0.048490245014617
526 => 0.047896188777844
527 => 0.047517217909795
528 => 0.047186515564231
529 => 0.047370008446083
530 => 0.046715889826756
531 => 0.046506624115627
601 => 0.048958328608237
602 => 0.050769429077193
603 => 0.0507430949591
604 => 0.050582792787793
605 => 0.05034461627734
606 => 0.051483868123203
607 => 0.051086975560164
608 => 0.051375748061258
609 => 0.05144925278253
610 => 0.051671729435615
611 => 0.051751245716579
612 => 0.051510892287899
613 => 0.050704236824551
614 => 0.048694128104388
615 => 0.047758417068967
616 => 0.047449616841778
617 => 0.047460841143541
618 => 0.047151224793423
619 => 0.047242420684564
620 => 0.047119510584163
621 => 0.04688674858915
622 => 0.047355636048797
623 => 0.047409670960532
624 => 0.047300227024663
625 => 0.047326005033488
626 => 0.046419855988607
627 => 0.046488748532437
628 => 0.046105146093949
629 => 0.04603322526113
630 => 0.045063511700719
701 => 0.043345523566225
702 => 0.044297455761878
703 => 0.043147655531451
704 => 0.042712208761872
705 => 0.044773546043193
706 => 0.044566644952745
707 => 0.04421252022364
708 => 0.043688695943232
709 => 0.043494404422194
710 => 0.042313950645588
711 => 0.04224420313899
712 => 0.042829267905609
713 => 0.042559280646664
714 => 0.042180116282934
715 => 0.040806821392779
716 => 0.039262783253932
717 => 0.039309388059866
718 => 0.039800517863983
719 => 0.041228544007329
720 => 0.04067058948802
721 => 0.040265787082472
722 => 0.040189979760228
723 => 0.041138867111486
724 => 0.042481741511562
725 => 0.043111788134957
726 => 0.042487431065973
727 => 0.041770203282897
728 => 0.041813857614739
729 => 0.042104270327001
730 => 0.042134788596845
731 => 0.04166794704227
801 => 0.041799360205343
802 => 0.041599731593963
803 => 0.040374611174415
804 => 0.040352452630924
805 => 0.040051788322231
806 => 0.040042684326456
807 => 0.039531179333143
808 => 0.039459616248711
809 => 0.038443992038354
810 => 0.039112478969205
811 => 0.038664093033129
812 => 0.037988269663914
813 => 0.037871757460328
814 => 0.037868254962796
815 => 0.03856217445164
816 => 0.039104370115958
817 => 0.038671892898458
818 => 0.038573426219252
819 => 0.039624792743333
820 => 0.039490996769725
821 => 0.039375130319472
822 => 0.042361501837811
823 => 0.03999755575157
824 => 0.038966740328644
825 => 0.037690910496233
826 => 0.038106327122958
827 => 0.038193861509949
828 => 0.035125720748614
829 => 0.033880976423852
830 => 0.033453827078795
831 => 0.033207996591709
901 => 0.033320024631619
902 => 0.032199608745386
903 => 0.032952546750903
904 => 0.031982361299823
905 => 0.031819706551693
906 => 0.033554518321139
907 => 0.033795907244234
908 => 0.03276606710465
909 => 0.033427391190237
910 => 0.033187585883711
911 => 0.031998992344781
912 => 0.031953596814296
913 => 0.031357202357544
914 => 0.03042396051745
915 => 0.029997443954305
916 => 0.029775310425033
917 => 0.029866967048507
918 => 0.02982062265494
919 => 0.029518194138357
920 => 0.0298379575035
921 => 0.029021094240904
922 => 0.028695812707824
923 => 0.028548890585805
924 => 0.027823877423356
925 => 0.02897769577963
926 => 0.029205012531236
927 => 0.029432777167065
928 => 0.031415312820434
929 => 0.031316270941779
930 => 0.032211561289467
1001 => 0.032176771952889
1002 => 0.031921420642986
1003 => 0.030844135469759
1004 => 0.031273522139046
1005 => 0.029951936712486
1006 => 0.030942158373138
1007 => 0.030490262559862
1008 => 0.030789371944103
1009 => 0.030251546301631
1010 => 0.030549201218452
1011 => 0.029258917765938
1012 => 0.028054069232758
1013 => 0.028538935454231
1014 => 0.02906604048815
1015 => 0.030208938505552
1016 => 0.029528237875091
1017 => 0.029773043561945
1018 => 0.028952985490961
1019 => 0.027260971452512
1020 => 0.027270548068218
1021 => 0.027010268570932
1022 => 0.026785349083848
1023 => 0.029606424530923
1024 => 0.029255579204476
1025 => 0.028696553094284
1026 => 0.029444831757591
1027 => 0.029642688512948
1028 => 0.029648321216619
1029 => 0.0301942460135
1030 => 0.030485606175458
1031 => 0.03053695966683
1101 => 0.031395984130208
1102 => 0.031683917799526
1103 => 0.032869875833547
1104 => 0.030460886301336
1105 => 0.0304112747472
1106 => 0.029455361572911
1107 => 0.028849106325388
1108 => 0.029496872388383
1109 => 0.030070704691311
1110 => 0.029473192142115
1111 => 0.029551214666861
1112 => 0.028749102888134
1113 => 0.029035820106162
1114 => 0.029282779599308
1115 => 0.029146423082801
1116 => 0.02894229077786
1117 => 0.030023656986369
1118 => 0.029962642066976
1119 => 0.030969635140841
1120 => 0.031754658252685
1121 => 0.033161560008775
1122 => 0.031693384682848
1123 => 0.031639878538502
1124 => 0.032162909682132
1125 => 0.031683837726183
1126 => 0.031986594665341
1127 => 0.033112781185272
1128 => 0.033136575731817
1129 => 0.032737986419652
1130 => 0.032713732223783
1201 => 0.032790285661274
1202 => 0.033238661535759
1203 => 0.033081985228015
1204 => 0.033263295017895
1205 => 0.033490025686455
1206 => 0.034427879863428
1207 => 0.034653993330406
1208 => 0.034104654832041
1209 => 0.034154253947761
1210 => 0.033948786269693
1211 => 0.033750307067182
1212 => 0.034196459328867
1213 => 0.035011811356239
1214 => 0.035006739093594
1215 => 0.035195884915766
1216 => 0.03531372119601
1217 => 0.034807881619772
1218 => 0.034478598655878
1219 => 0.034604866697054
1220 => 0.034806772044655
1221 => 0.034539391514039
1222 => 0.032888995016365
1223 => 0.033389619886023
1224 => 0.033306291428406
1225 => 0.033187621571674
1226 => 0.033691003749332
1227 => 0.033642451310288
1228 => 0.03218811726105
1229 => 0.032281219008307
1230 => 0.032193779086664
1231 => 0.032476315362019
]
'min_raw' => 0.026785349083848
'max_raw' => 0.060002488484909
'avg_raw' => 0.043393918784379
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.026785'
'max' => '$0.0600024'
'avg' => '$0.043393'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0065317462135387
'max_diff' => -0.043602564211129
'year' => 2034
]
9 => [
'items' => [
101 => 0.031668579840108
102 => 0.031917033846466
103 => 0.032072861870142
104 => 0.032164645773215
105 => 0.032496232167924
106 => 0.032457324331661
107 => 0.032493813602193
108 => 0.032985468689984
109 => 0.035472091408381
110 => 0.035607432796519
111 => 0.034940962302538
112 => 0.035207204119334
113 => 0.03469607805177
114 => 0.035039200405173
115 => 0.035273956005009
116 => 0.034213140590258
117 => 0.034150325986032
118 => 0.033637090319369
119 => 0.03391287409548
120 => 0.033474082278133
121 => 0.033581746441823
122 => 0.033280708054151
123 => 0.033822517215816
124 => 0.03442834404719
125 => 0.034581399829621
126 => 0.034178775960701
127 => 0.033887249745397
128 => 0.033375425746029
129 => 0.034226600463721
130 => 0.034475509890253
131 => 0.034225293048467
201 => 0.034167312338879
202 => 0.034057438998979
203 => 0.034190622487344
204 => 0.03447415427606
205 => 0.034340445920511
206 => 0.034428762644989
207 => 0.03409219036309
208 => 0.03480804907372
209 => 0.03594500498698
210 => 0.035948660486152
211 => 0.035814951409865
212 => 0.035760240536651
213 => 0.035897434163066
214 => 0.035971856077419
215 => 0.036415515108238
216 => 0.036891578924461
217 => 0.039113161031861
218 => 0.038489349665907
219 => 0.040460469474103
220 => 0.042019369324513
221 => 0.042486815227222
222 => 0.042056786991758
223 => 0.040585683627908
224 => 0.040513504278609
225 => 0.042711953788021
226 => 0.042090791106245
227 => 0.042016905781771
228 => 0.041230890760595
301 => 0.041695522987964
302 => 0.041593901104095
303 => 0.041433485988895
304 => 0.042319971912154
305 => 0.043979394423353
306 => 0.043720757863017
307 => 0.043527697668531
308 => 0.04268176409527
309 => 0.043191205052477
310 => 0.043009802885314
311 => 0.043789221716104
312 => 0.043327511266985
313 => 0.042086085188
314 => 0.042283786382873
315 => 0.042253904244987
316 => 0.042868876525196
317 => 0.042684277111228
318 => 0.042217858246695
319 => 0.043973722697612
320 => 0.0438597066268
321 => 0.044021355347508
322 => 0.044092518113517
323 => 0.045161281862987
324 => 0.04559912017452
325 => 0.045698517136676
326 => 0.046114429669002
327 => 0.045688168853984
328 => 0.047393516032865
329 => 0.048527472397055
330 => 0.049844621066922
331 => 0.051769329289784
401 => 0.052493037386126
402 => 0.052362305996182
403 => 0.053821597804365
404 => 0.056443912745435
405 => 0.052892350820626
406 => 0.056632154151315
407 => 0.055448175594925
408 => 0.052640983736587
409 => 0.052460233675528
410 => 0.054361296594162
411 => 0.058577671177167
412 => 0.057521517165849
413 => 0.058579398666772
414 => 0.057345323703261
415 => 0.057284041479722
416 => 0.058519462400302
417 => 0.061406090720525
418 => 0.060034761809231
419 => 0.058068625551248
420 => 0.059520389967674
421 => 0.058262737275712
422 => 0.055428893765895
423 => 0.057520709544781
424 => 0.056121971904924
425 => 0.056530197909217
426 => 0.059470136381675
427 => 0.059116395206556
428 => 0.059574169042711
429 => 0.058766210203926
430 => 0.058011449245086
501 => 0.056602631866127
502 => 0.056185550494074
503 => 0.056300816780294
504 => 0.056185493373827
505 => 0.055397272998
506 => 0.055227056882887
507 => 0.05494335590036
508 => 0.055031286697709
509 => 0.054497845850908
510 => 0.055504558943325
511 => 0.055691413764402
512 => 0.056424015600158
513 => 0.05650007675306
514 => 0.058540362437705
515 => 0.05741660736821
516 => 0.058170519289172
517 => 0.058103082310867
518 => 0.052701824096308
519 => 0.053446069822569
520 => 0.054603882615457
521 => 0.05408228952164
522 => 0.053344878920968
523 => 0.052749380323471
524 => 0.051847139055404
525 => 0.053117026314199
526 => 0.054786793022059
527 => 0.056542424792305
528 => 0.058651701330706
529 => 0.058180935362021
530 => 0.056502993334602
531 => 0.056578264588215
601 => 0.057043561859901
602 => 0.056440959616352
603 => 0.056263240450537
604 => 0.057019145975582
605 => 0.057024351481494
606 => 0.056330984773377
607 => 0.055560434562074
608 => 0.055557205928553
609 => 0.055420093961084
610 => 0.057369715617677
611 => 0.058441810399822
612 => 0.058564724338827
613 => 0.0584335373124
614 => 0.058484025992245
615 => 0.057860197660512
616 => 0.059286084236308
617 => 0.060594618763827
618 => 0.060243903557689
619 => 0.059718131606584
620 => 0.059299328922922
621 => 0.060145246955159
622 => 0.060107579556782
623 => 0.060583189856269
624 => 0.060561613425826
625 => 0.060401683570717
626 => 0.060243909269288
627 => 0.060869466540455
628 => 0.060689316092501
629 => 0.060508885821143
630 => 0.060147005289441
701 => 0.060196190863899
702 => 0.059670509694734
703 => 0.059427305532345
704 => 0.055770098458393
705 => 0.054792773225545
706 => 0.055100259639088
707 => 0.055201492150308
708 => 0.054776158956496
709 => 0.05538597749729
710 => 0.055290937923665
711 => 0.055660681308349
712 => 0.05542968169399
713 => 0.055439161998739
714 => 0.056118482610258
715 => 0.056315692273819
716 => 0.056215389847255
717 => 0.056285638228654
718 => 0.057904482528017
719 => 0.057674334636374
720 => 0.057552073155956
721 => 0.057585940421582
722 => 0.057999589848482
723 => 0.058115389103593
724 => 0.05762473952262
725 => 0.057856132701418
726 => 0.058841375488575
727 => 0.059186154704168
728 => 0.060286524456927
729 => 0.059819067828442
730 => 0.060677104701076
731 => 0.063314417521224
801 => 0.065421285490126
802 => 0.063483722635923
803 => 0.067352717352792
804 => 0.070365284714204
805 => 0.070249657361179
806 => 0.069724346559778
807 => 0.066294618712058
808 => 0.063138532012225
809 => 0.065778732551156
810 => 0.065785462965291
811 => 0.065558667397519
812 => 0.06415005960425
813 => 0.065509650899648
814 => 0.065617570319366
815 => 0.065557164142414
816 => 0.06447718784997
817 => 0.062828263664391
818 => 0.063150459503286
819 => 0.063678222860014
820 => 0.062679056722758
821 => 0.062359762600294
822 => 0.062953391122147
823 => 0.064866185906974
824 => 0.064504583132968
825 => 0.064495140223187
826 => 0.066042230233824
827 => 0.064934847669129
828 => 0.063154523424629
829 => 0.0627049680733
830 => 0.061109349432857
831 => 0.06221144891121
901 => 0.062251111509406
902 => 0.061647502888296
903 => 0.063203502937555
904 => 0.063189164123172
905 => 0.0646663545899
906 => 0.06749018795488
907 => 0.066655041476455
908 => 0.065683856985725
909 => 0.065789451667892
910 => 0.066947564701384
911 => 0.066247343124186
912 => 0.066499147685465
913 => 0.066947183565023
914 => 0.067217494735265
915 => 0.065750558050347
916 => 0.0654085449374
917 => 0.0647089061386
918 => 0.06452638343537
919 => 0.06509622463855
920 => 0.064946091614299
921 => 0.062247778021609
922 => 0.061965789237897
923 => 0.061974437431307
924 => 0.061265363226829
925 => 0.060183854867692
926 => 0.063025994261995
927 => 0.062797730692917
928 => 0.062545745378852
929 => 0.062576612142017
930 => 0.063810288524042
1001 => 0.063094693920317
1002 => 0.06499721945797
1003 => 0.064606117402581
1004 => 0.064204985055234
1005 => 0.064149536346041
1006 => 0.063995134615316
1007 => 0.063465633630308
1008 => 0.062826229372834
1009 => 0.062404039297801
1010 => 0.057564427587185
1011 => 0.058462631369949
1012 => 0.059495932948168
1013 => 0.059852624512273
1014 => 0.059242478909567
1015 => 0.063489725897584
1016 => 0.064265738849785
1017 => 0.061915144999496
1018 => 0.061475444864221
1019 => 0.06351855256525
1020 => 0.062286308861771
1021 => 0.062841188125996
1022 => 0.061641842659471
1023 => 0.064078820053911
1024 => 0.06406025436922
1025 => 0.063112215121152
1026 => 0.063913491401726
1027 => 0.063774249929535
1028 => 0.062703915953384
1029 => 0.064112751550076
1030 => 0.064113450314955
1031 => 0.06320098315084
1101 => 0.062135421267901
1102 => 0.06194492397068
1103 => 0.061801409846935
1104 => 0.062805892449131
1105 => 0.063706508409325
1106 => 0.065382331429614
1107 => 0.065803673153488
1108 => 0.067448197952073
1109 => 0.066468963504975
1110 => 0.066903045452164
1111 => 0.067374302810479
1112 => 0.067600240917971
1113 => 0.067232086896321
1114 => 0.069786710821936
1115 => 0.070002399352913
1116 => 0.070074717851651
1117 => 0.069213313037362
1118 => 0.069978442126758
1119 => 0.069620463564242
1120 => 0.070551824334599
1121 => 0.070697873595602
1122 => 0.070574175067386
1123 => 0.070620533408059
1124 => 0.068440612554088
1125 => 0.068327572157811
1126 => 0.066786258333593
1127 => 0.067414355109779
1128 => 0.066240158292162
1129 => 0.066612508198596
1130 => 0.066776636489472
1201 => 0.066690905184517
1202 => 0.067449866759115
1203 => 0.0668045943751
1204 => 0.065101614461083
1205 => 0.063398170571327
1206 => 0.063376785220887
1207 => 0.062928298512996
1208 => 0.062604124767629
1209 => 0.062666572131668
1210 => 0.06288664478768
1211 => 0.062591333744791
1212 => 0.062654353328442
1213 => 0.063700898314324
1214 => 0.063910775447625
1215 => 0.063197530944378
1216 => 0.060333751343148
1217 => 0.059630972645759
1218 => 0.060136116036735
1219 => 0.05989469003125
1220 => 0.048339689444112
1221 => 0.051054365434314
1222 => 0.049441397142622
1223 => 0.050184727140536
1224 => 0.048538304190833
1225 => 0.049324063518852
1226 => 0.049178962462303
1227 => 0.053544081121445
1228 => 0.053475925797607
1229 => 0.053508548144428
1230 => 0.051951398533551
1231 => 0.054431980144898
]
'min_raw' => 0.031668579840108
'max_raw' => 0.070697873595602
'avg_raw' => 0.051183226717855
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.031668'
'max' => '$0.070697'
'avg' => '$0.051183'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0048832307562599
'max_diff' => 0.010695385110694
'year' => 2035
]
10 => [
'items' => [
101 => 0.055654003845478
102 => 0.055427839781608
103 => 0.055484760403971
104 => 0.054506675524739
105 => 0.053518018144047
106 => 0.05242144495558
107 => 0.054458742399209
108 => 0.054232229701305
109 => 0.054751768333601
110 => 0.056073101354824
111 => 0.056267672661455
112 => 0.056529178470714
113 => 0.056435447253346
114 => 0.058668505121286
115 => 0.058398067079288
116 => 0.059049744950167
117 => 0.057709194126849
118 => 0.056192233624012
119 => 0.056480558222426
120 => 0.056452790245039
121 => 0.056099272022298
122 => 0.055780131577675
123 => 0.055248852654641
124 => 0.056929897781607
125 => 0.056861650419401
126 => 0.057966495884635
127 => 0.057771203716759
128 => 0.05646699482358
129 => 0.056513574899346
130 => 0.056826848294493
131 => 0.057911091091989
201 => 0.058232968175165
202 => 0.058083861885654
203 => 0.058436785413109
204 => 0.058715721779358
205 => 0.05847181552613
206 => 0.061925013719072
207 => 0.060491005073224
208 => 0.061189930909442
209 => 0.06135662060307
210 => 0.060929648457949
211 => 0.061022243427499
212 => 0.06116249957575
213 => 0.062014107442955
214 => 0.064248972901224
215 => 0.065238779599448
216 => 0.068216661887256
217 => 0.065156589931935
218 => 0.064975017925943
219 => 0.065511424449407
220 => 0.067259756593203
221 => 0.068676615583263
222 => 0.069146669450821
223 => 0.069208794829163
224 => 0.070090647133293
225 => 0.070596108428449
226 => 0.069983567068554
227 => 0.069464502401796
228 => 0.067605277194148
229 => 0.067820487574436
301 => 0.06930307368075
302 => 0.071397313879806
303 => 0.073194389839151
304 => 0.072565116472608
305 => 0.077366028061562
306 => 0.077842018835641
307 => 0.077776252301288
308 => 0.078860630121565
309 => 0.076708360978017
310 => 0.075788224220899
311 => 0.069576730074383
312 => 0.071321906566001
313 => 0.073858623087188
314 => 0.07352287914341
315 => 0.071680647799097
316 => 0.073192992341479
317 => 0.072692963940381
318 => 0.072298570794238
319 => 0.074105362253594
320 => 0.072118720825129
321 => 0.073838804819238
322 => 0.071632779304803
323 => 0.072567990940341
324 => 0.072037119584913
325 => 0.072380658413021
326 => 0.070372337443552
327 => 0.071455978689442
328 => 0.070327254405041
329 => 0.070326719242766
330 => 0.070301802591628
331 => 0.071629741706696
401 => 0.071673045753564
402 => 0.070691696741124
403 => 0.070550269016879
404 => 0.071073201438684
405 => 0.070460984528968
406 => 0.070747436967777
407 => 0.070469660881526
408 => 0.070407127633651
409 => 0.069908852075431
410 => 0.069694181264578
411 => 0.069778359220899
412 => 0.069491016459265
413 => 0.069317882051738
414 => 0.070267361800241
415 => 0.06976009307252
416 => 0.07018961559246
417 => 0.069700120470925
418 => 0.06800331711681
419 => 0.067027467564488
420 => 0.063822363322319
421 => 0.064731326909479
422 => 0.065333970708157
423 => 0.065134796936289
424 => 0.065562699268279
425 => 0.065588968996184
426 => 0.065449853586106
427 => 0.065288775763024
428 => 0.06521037198691
429 => 0.065794729499056
430 => 0.066133968703427
501 => 0.065394454075688
502 => 0.065221196145318
503 => 0.065968886263684
504 => 0.06642497680396
505 => 0.069792493098227
506 => 0.069543016614213
507 => 0.0701691536318
508 => 0.070098660212475
509 => 0.070754951558355
510 => 0.071827710539452
511 => 0.069646491582754
512 => 0.07002507577276
513 => 0.069932255672156
514 => 0.070945641191811
515 => 0.070948804870789
516 => 0.070341229629394
517 => 0.070670606024537
518 => 0.070486757156737
519 => 0.070818996909516
520 => 0.06953968470367
521 => 0.071097748877171
522 => 0.071981070864109
523 => 0.071993335790754
524 => 0.072412023402086
525 => 0.07283743426395
526 => 0.07365397336782
527 => 0.07281466143152
528 => 0.071304820963486
529 => 0.071413826568523
530 => 0.070528607654544
531 => 0.070543488344416
601 => 0.07046405405566
602 => 0.070702442335752
603 => 0.069591997525415
604 => 0.069852616702876
605 => 0.069487748328247
606 => 0.070024282620171
607 => 0.069447060414356
608 => 0.069932210911493
609 => 0.070141585783063
610 => 0.070914183566678
611 => 0.069332947093536
612 => 0.066108698884503
613 => 0.066786474948273
614 => 0.065783990911796
615 => 0.065876774626098
616 => 0.066064212495406
617 => 0.065456665035124
618 => 0.065572565944525
619 => 0.065568425148459
620 => 0.065532742005002
621 => 0.065374695445986
622 => 0.065145496666854
623 => 0.06605855405925
624 => 0.066213700302309
625 => 0.066558571182076
626 => 0.06758467299211
627 => 0.067482141224141
628 => 0.067649374791701
629 => 0.067284304852694
630 => 0.065893709173523
701 => 0.065969225209259
702 => 0.065027539033561
703 => 0.066534490149364
704 => 0.066177624234359
705 => 0.065947550457406
706 => 0.065884772695745
707 => 0.066913418013696
708 => 0.067221204814867
709 => 0.067029412735181
710 => 0.066636041584277
711 => 0.067391430483754
712 => 0.067593540685955
713 => 0.06763878570669
714 => 0.068977190005108
715 => 0.067713587639155
716 => 0.068017749287767
717 => 0.07039073164347
718 => 0.068238764096029
719 => 0.069378709300511
720 => 0.06932291491474
721 => 0.069906072307711
722 => 0.069275078987428
723 => 0.069282900905871
724 => 0.069800705164326
725 => 0.069073542469817
726 => 0.068893486760544
727 => 0.068644741087768
728 => 0.069187868164097
729 => 0.069513448282831
730 => 0.072137384927584
731 => 0.073832567666143
801 => 0.073758975312736
802 => 0.074431471663765
803 => 0.074128505898266
804 => 0.073150149523138
805 => 0.074820084557631
806 => 0.074291647239668
807 => 0.07433521097011
808 => 0.074333589525887
809 => 0.07468495414554
810 => 0.074435980110421
811 => 0.073945226730541
812 => 0.074271011726607
813 => 0.075238476694654
814 => 0.078241517640924
815 => 0.079922059139457
816 => 0.078140346932562
817 => 0.079369348154801
818 => 0.078632385359369
819 => 0.078498457296695
820 => 0.079270360886738
821 => 0.080043615591832
822 => 0.079994362609989
823 => 0.07943301940116
824 => 0.079115930866048
825 => 0.081517031486364
826 => 0.083286121521731
827 => 0.083165481441449
828 => 0.083697947521558
829 => 0.085261284401313
830 => 0.085404216333222
831 => 0.085386210195054
901 => 0.085031938488412
902 => 0.086571246671478
903 => 0.087855364639342
904 => 0.084949934824219
905 => 0.086056284462949
906 => 0.086552960460134
907 => 0.087282228181129
908 => 0.088512625065911
909 => 0.089849162429439
910 => 0.090038163467028
911 => 0.089904058186326
912 => 0.089022575867027
913 => 0.090485030998406
914 => 0.091341702915575
915 => 0.091851831437661
916 => 0.093145432492379
917 => 0.086556027762004
918 => 0.081891719579179
919 => 0.081163320503005
920 => 0.082644548667285
921 => 0.083035136721632
922 => 0.082877691166681
923 => 0.077627588246565
924 => 0.081135679797664
925 => 0.084910091337931
926 => 0.085055081856968
927 => 0.086944631193249
928 => 0.087559945912387
929 => 0.089081280796986
930 => 0.08898612088574
1001 => 0.089356541720415
1002 => 0.089271388385318
1003 => 0.092089340904183
1004 => 0.09519796100249
1005 => 0.095090319373293
1006 => 0.094643418454637
1007 => 0.095307142526771
1008 => 0.098515571608199
1009 => 0.098220190872409
1010 => 0.098507128096758
1011 => 0.1022900468029
1012 => 0.1072083792348
1013 => 0.10492332002768
1014 => 0.10988124099905
1015 => 0.11300198944243
1016 => 0.11839900118385
1017 => 0.11772326873298
1018 => 0.11982428579882
1019 => 0.11651356661631
1020 => 0.10891148616654
1021 => 0.10770842783577
1022 => 0.11011698108026
1023 => 0.11603817420866
1024 => 0.10993050163691
1025 => 0.11116607584352
1026 => 0.1108102303889
1027 => 0.11079126889687
1028 => 0.11151495192574
1029 => 0.11046521194759
1030 => 0.10618838243201
1031 => 0.10814842819549
1101 => 0.10739156039708
1102 => 0.10823136164764
1103 => 0.11276342263656
1104 => 0.11075969044252
1105 => 0.10864892134609
1106 => 0.11129629421017
1107 => 0.11466730960217
1108 => 0.11445635751724
1109 => 0.11404702230134
1110 => 0.11635442348129
1111 => 0.12016557422546
1112 => 0.12119571295716
1113 => 0.12195614030865
1114 => 0.12206099039289
1115 => 0.12314101142458
1116 => 0.11733346613688
1117 => 0.1265501896568
1118 => 0.12814166320184
1119 => 0.12784253213519
1120 => 0.12961138800106
1121 => 0.12909094573378
1122 => 0.12833690654338
1123 => 0.13114091933721
1124 => 0.12792634494125
1125 => 0.12336366128983
1126 => 0.12086048279902
1127 => 0.12415687016137
1128 => 0.1261698588955
1129 => 0.12750031639862
1130 => 0.12790291203519
1201 => 0.1177842893456
1202 => 0.11233091292045
1203 => 0.11582646468588
1204 => 0.1200912790898
1205 => 0.11730977487753
1206 => 0.11741880457656
1207 => 0.1134531105363
1208 => 0.12044215501676
1209 => 0.11942391002308
1210 => 0.12470656685157
1211 => 0.12344581840348
1212 => 0.12775361997556
1213 => 0.12661923145148
1214 => 0.13132801479213
1215 => 0.13320647595193
1216 => 0.13636070459838
1217 => 0.13868096803072
1218 => 0.14004347109776
1219 => 0.13996167152424
1220 => 0.14536058747219
1221 => 0.14217703536144
1222 => 0.13817774360472
1223 => 0.13810540903444
1224 => 0.14017669890565
1225 => 0.14451755424508
1226 => 0.14564307487772
1227 => 0.14627208736501
1228 => 0.14530873284464
1229 => 0.14185321519565
1230 => 0.1403611401947
1231 => 0.14163243132509
]
'min_raw' => 0.05242144495558
'max_raw' => 0.14627208736501
'avg_raw' => 0.099346766160296
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.052421'
'max' => '$0.146272'
'avg' => '$0.099346'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.020752865115472
'max_diff' => 0.075574213769409
'year' => 2036
]
11 => [
'items' => [
101 => 0.14007775151591
102 => 0.14276156503266
103 => 0.14644701422279
104 => 0.14568598353887
105 => 0.14822999501511
106 => 0.1508627792552
107 => 0.15462777896427
108 => 0.15561208930575
109 => 0.15723911687026
110 => 0.15891386268485
111 => 0.15945174590483
112 => 0.16047873186714
113 => 0.16047331914418
114 => 0.16356821046571
115 => 0.16698197143417
116 => 0.16827058717102
117 => 0.17123368800321
118 => 0.16615948166752
119 => 0.17000832546142
120 => 0.17348007890632
121 => 0.16934091132571
122 => 0.17504578953323
123 => 0.1752672970265
124 => 0.178611797189
125 => 0.1752215055456
126 => 0.17320836118994
127 => 0.17902023351319
128 => 0.18183241545815
129 => 0.18098536337003
130 => 0.17453925515534
131 => 0.1707873436878
201 => 0.16096786768759
202 => 0.17259946117964
203 => 0.17826487107138
204 => 0.17452458311238
205 => 0.17641096679935
206 => 0.18670246453345
207 => 0.19062080054546
208 => 0.1898058140462
209 => 0.18994353334875
210 => 0.19205779633801
211 => 0.20143360277825
212 => 0.19581540222976
213 => 0.20011030603912
214 => 0.20238830753318
215 => 0.20450424227526
216 => 0.19930817529675
217 => 0.19254816850309
218 => 0.19040699058576
219 => 0.17415268518788
220 => 0.17330657800305
221 => 0.17283163240053
222 => 0.16983716755905
223 => 0.1674843384466
224 => 0.16561328138144
225 => 0.1607030688975
226 => 0.16236012147003
227 => 0.15453426761164
228 => 0.15954097157901
301 => 0.14705071985916
302 => 0.15745297264128
303 => 0.15179149938437
304 => 0.15559302641155
305 => 0.15557976324188
306 => 0.1485799467096
307 => 0.14454259861622
308 => 0.14711535395726
309 => 0.14987355190842
310 => 0.15032106024631
311 => 0.15389713588633
312 => 0.15489514172997
313 => 0.1518711374313
314 => 0.1467918871545
315 => 0.14797168114844
316 => 0.14451869012859
317 => 0.13846745618368
318 => 0.14281355804732
319 => 0.14429750830818
320 => 0.14495290528215
321 => 0.13900221168625
322 => 0.13713237456258
323 => 0.13613688896739
324 => 0.14602372733688
325 => 0.14656535066104
326 => 0.14379432915683
327 => 0.15631960911488
328 => 0.15348475250336
329 => 0.15665198189516
330 => 0.1478646272095
331 => 0.14820031599224
401 => 0.14404024146044
402 => 0.14636960522197
403 => 0.14472328599422
404 => 0.14618141564926
405 => 0.14705541255239
406 => 0.15121480445689
407 => 0.15750046621551
408 => 0.15059353000986
409 => 0.14758407899591
410 => 0.14945112547917
411 => 0.1544233163006
412 => 0.16195643991683
413 => 0.15749667911778
414 => 0.15947584522875
415 => 0.15990820497702
416 => 0.15661974247312
417 => 0.16207769021996
418 => 0.16500264875778
419 => 0.1680030509827
420 => 0.17060821616523
421 => 0.16680462435381
422 => 0.1708750128155
423 => 0.16759499823566
424 => 0.16465248607587
425 => 0.1646569486522
426 => 0.16281106779113
427 => 0.15923444102683
428 => 0.1585748561762
429 => 0.16200609986558
430 => 0.16475763236449
501 => 0.16498426176005
502 => 0.16650765153029
503 => 0.16740917790415
504 => 0.17624536193369
505 => 0.17979934824712
506 => 0.18414509543767
507 => 0.18583800888128
508 => 0.19093307140348
509 => 0.18681839461605
510 => 0.18592815841056
511 => 0.17356920331395
512 => 0.17559298151866
513 => 0.17883324568995
514 => 0.17362263407668
515 => 0.17692756782783
516 => 0.17758003175838
517 => 0.17344557948792
518 => 0.17565396908471
519 => 0.16978914105752
520 => 0.15762830343978
521 => 0.16209122870859
522 => 0.16537744391084
523 => 0.16068760962982
524 => 0.16909395605689
525 => 0.16418314201641
526 => 0.16262664972622
527 => 0.15655421837263
528 => 0.15942017222221
529 => 0.16329641584027
530 => 0.16090134794599
531 => 0.16587147344786
601 => 0.17291049664257
602 => 0.17792692375219
603 => 0.17831202273645
604 => 0.17508679617947
605 => 0.18025524232014
606 => 0.18029288880776
607 => 0.17446286044736
608 => 0.17089200053834
609 => 0.17008069365386
610 => 0.17210749731738
611 => 0.17456841113349
612 => 0.17844858632615
613 => 0.18079329493046
614 => 0.18690705143316
615 => 0.18856125864766
616 => 0.19037873085209
617 => 0.1928074342049
618 => 0.19572371528669
619 => 0.1893430583037
620 => 0.18959657370066
621 => 0.18365499426431
622 => 0.17730556452788
623 => 0.18212399023024
624 => 0.18842344086776
625 => 0.18697833993124
626 => 0.18681573655515
627 => 0.18708919033132
628 => 0.18599963141777
629 => 0.1810715968327
630 => 0.17859676871521
701 => 0.18178992838276
702 => 0.18348695063488
703 => 0.18611888415202
704 => 0.18579444279266
705 => 0.19257402088379
706 => 0.19520835992621
707 => 0.19453438326943
708 => 0.19465841119443
709 => 0.19942775619829
710 => 0.20473224873319
711 => 0.20970060598156
712 => 0.21475463237052
713 => 0.20866180629663
714 => 0.20556824496957
715 => 0.20876001060351
716 => 0.20706641483079
717 => 0.21679831849397
718 => 0.21747213438859
719 => 0.22720333432437
720 => 0.23643940183315
721 => 0.23063839331222
722 => 0.2361084830643
723 => 0.24202483111413
724 => 0.25343842639512
725 => 0.24959472903961
726 => 0.2466505171037
727 => 0.24386825105059
728 => 0.24965770503481
729 => 0.25710574509672
730 => 0.25870998158961
731 => 0.2613094575736
801 => 0.25857642642523
802 => 0.26186806140994
803 => 0.27348897932366
804 => 0.27034890472269
805 => 0.26588949399714
806 => 0.2750630926052
807 => 0.27838298227999
808 => 0.30168370665742
809 => 0.33110183368885
810 => 0.318922535928
811 => 0.31136245278436
812 => 0.31313925165069
813 => 0.32388175577612
814 => 0.32733190715117
815 => 0.31795320637528
816 => 0.32126592204221
817 => 0.33951931106603
818 => 0.34931166863848
819 => 0.33601233176602
820 => 0.29931998879424
821 => 0.26548797285277
822 => 0.27446174695598
823 => 0.27344439946131
824 => 0.29305538881075
825 => 0.27027401498195
826 => 0.27065759489114
827 => 0.29067411873192
828 => 0.28533405334129
829 => 0.27668383131238
830 => 0.26555112904649
831 => 0.24497129925768
901 => 0.22674317010271
902 => 0.26249272906303
903 => 0.26095114307431
904 => 0.25871869811239
905 => 0.26368676279936
906 => 0.28781027470951
907 => 0.2872541496798
908 => 0.28371636597822
909 => 0.28639974373527
910 => 0.27621342221763
911 => 0.27883866921095
912 => 0.26548261368859
913 => 0.27152010858285
914 => 0.27666527182092
915 => 0.2776982395164
916 => 0.28002556847897
917 => 0.26013879730846
918 => 0.26906737371909
919 => 0.27431207586587
920 => 0.25061632076285
921 => 0.27384368697514
922 => 0.25979261286645
923 => 0.25502346727391
924 => 0.26144449352711
925 => 0.25894221335159
926 => 0.2567908997955
927 => 0.25559042986694
928 => 0.26030532288448
929 => 0.26008536748969
930 => 0.25237088739169
1001 => 0.24230766258629
1002 => 0.24568521114508
1003 => 0.24445811608898
1004 => 0.24001096530729
1005 => 0.24300780798312
1006 => 0.22981122950613
1007 => 0.20710720213492
1008 => 0.22210617805951
1009 => 0.22152873380216
1010 => 0.22123756022259
1011 => 0.23250887608867
1012 => 0.23142539914164
1013 => 0.22945887787336
1014 => 0.23997484860203
1015 => 0.2361363778263
1016 => 0.24796564029964
1017 => 0.25575715763332
1018 => 0.25378097680832
1019 => 0.26110893652031
1020 => 0.24576302304218
1021 => 0.25086031992843
1022 => 0.25191086575214
1023 => 0.23984508315559
1024 => 0.23160266936976
1025 => 0.23105299434064
1026 => 0.2167617847106
1027 => 0.22439603354036
1028 => 0.23111385658386
1029 => 0.22789654067015
1030 => 0.22687803456645
1031 => 0.23208136136324
1101 => 0.23248570441883
1102 => 0.223266639901
1103 => 0.22518357534406
1104 => 0.23317751480562
1105 => 0.22498214857997
1106 => 0.20905989070898
1107 => 0.20511095061454
1108 => 0.20458408921253
1109 => 0.19387425048202
1110 => 0.20537483767424
1111 => 0.20035452316826
1112 => 0.21621363654005
1113 => 0.20715499603622
1114 => 0.20676449614937
1115 => 0.20617419829653
1116 => 0.1969557976833
1117 => 0.19897404155768
1118 => 0.20568299158332
1119 => 0.2080768205342
1120 => 0.20782712456256
1121 => 0.20565011406814
1122 => 0.20664673832439
1123 => 0.2034362643481
1124 => 0.20230257916684
1125 => 0.19872435689009
1126 => 0.19346535865241
1127 => 0.19419665461267
1128 => 0.18377720301208
1129 => 0.17810013277793
1130 => 0.1765287945597
1201 => 0.17442753542354
1202 => 0.17676613737036
1203 => 0.18374768601483
1204 => 0.17532645713143
1205 => 0.16088885089137
1206 => 0.16175657562688
1207 => 0.16370609547779
1208 => 0.16007317813299
1209 => 0.15663492675377
1210 => 0.15962420737385
1211 => 0.15350680328233
1212 => 0.16444535453601
1213 => 0.16414949737953
1214 => 0.16822671285143
1215 => 0.17077627935889
1216 => 0.16490035399115
1217 => 0.16342257465136
1218 => 0.16426438492463
1219 => 0.15035113626297
1220 => 0.16708970360554
1221 => 0.16723445943101
1222 => 0.16599497216959
1223 => 0.17490774253422
1224 => 0.19371646796638
1225 => 0.18663986887957
1226 => 0.18389959582182
1227 => 0.17869033473591
1228 => 0.18563136583757
1229 => 0.18509840294591
1230 => 0.18268814262968
1231 => 0.18123040966995
]
'min_raw' => 0.13613688896739
'max_raw' => 0.34931166863848
'avg_raw' => 0.24272427880293
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.136136'
'max' => '$0.349311'
'avg' => '$0.242724'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.083715444011806
'max_diff' => 0.20303958127347
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0042731813845476
]
1 => [
'year' => 2028
'avg' => 0.0073340197693033
]
2 => [
'year' => 2029
'avg' => 0.02003522018128
]
3 => [
'year' => 2030
'avg' => 0.015457142532513
]
4 => [
'year' => 2031
'avg' => 0.015180829549513
]
5 => [
'year' => 2032
'avg' => 0.026616771783183
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0042731813845476
'min' => '$0.004273'
'max_raw' => 0.026616771783183
'max' => '$0.026616'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.026616771783183
]
1 => [
'year' => 2033
'avg' => 0.068461073996713
]
2 => [
'year' => 2034
'avg' => 0.043393918784379
]
3 => [
'year' => 2035
'avg' => 0.051183226717855
]
4 => [
'year' => 2036
'avg' => 0.099346766160296
]
5 => [
'year' => 2037
'avg' => 0.24272427880293
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.026616771783183
'min' => '$0.026616'
'max_raw' => 0.24272427880293
'max' => '$0.242724'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.24272427880293
]
]
]
]
'prediction_2025_max_price' => '$0.0073063'
'last_price' => 0.00708444
'sma_50day_nextmonth' => '$0.006727'
'sma_200day_nextmonth' => '$0.007974'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.007079'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.007067'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.007052'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.007005'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.006615'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.007385'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.008266'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.007076'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.007069'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.007044'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.006935'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.006855'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.00717'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.007074'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '$0.008184'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.005583'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '$0.006838'
'weekly_sma100_action' => 'BUY'
'weekly_sma200' => '$0.025633'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.007028'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.006947'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.007029'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.007219'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.007236'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.018447'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.0541093'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '70.61'
'rsi_14_action' => 'SELL'
'stoch_rsi_14' => 66.56
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.007058'
'vwma_10_action' => 'BUY'
'hma_9' => '0.007086'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 184.84
'cci_20_action' => 'SELL'
'adx_14' => 31.93
'adx_14_action' => 'BUY'
'ao_5_34' => '0.000331'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => -0
'macd_12_26_action' => 'SELL'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 87.44
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '0.000445'
'ichimoku_cloud_action' => 'BUY'
'sell_signals' => 12
'buy_signals' => 22
'sell_pct' => 35.29
'buy_pct' => 64.71
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767712525
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Desmos para 2026
La previsión del precio de Desmos para 2026 sugiere que el precio medio podría oscilar entre $0.002447 en el extremo inferior y $0.0073063 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Desmos podría potencialmente ganar 3.13% para 2026 si DSM alcanza el objetivo de precio previsto.
Predicción de precio de Desmos 2027-2032
La predicción del precio de DSM para 2027-2032 está actualmente dentro de un rango de precios de $0.004273 en el extremo inferior y $0.026616 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Desmos alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Desmos | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.002356 | $0.004273 | $0.00619 |
| 2028 | $0.004252 | $0.007334 | $0.010415 |
| 2029 | $0.009341 | $0.020035 | $0.030729 |
| 2030 | $0.007944 | $0.015457 | $0.022969 |
| 2031 | $0.009392 | $0.01518 | $0.020968 |
| 2032 | $0.014337 | $0.026616 | $0.038896 |
Predicción de precio de Desmos 2032-2037
La predicción de precio de Desmos para 2032-2037 se estima actualmente entre $0.026616 en el extremo inferior y $0.242724 en el extremo superior. Comparado con el precio actual, Desmos podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Desmos | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.014337 | $0.026616 | $0.038896 |
| 2033 | $0.033317 | $0.068461 | $0.103605 |
| 2034 | $0.026785 | $0.043393 | $0.0600024 |
| 2035 | $0.031668 | $0.051183 | $0.070697 |
| 2036 | $0.052421 | $0.099346 | $0.146272 |
| 2037 | $0.136136 | $0.242724 | $0.349311 |
Desmos Histograma de precios potenciales
Pronóstico de precio de Desmos basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Desmos es Alcista, con 22 indicadores técnicos mostrando señales alcistas y 12 indicando señales bajistas. La predicción de precio de DSM se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Desmos
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Desmos aumentar durante el próximo mes, alcanzando $0.007974 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Desmos alcance $0.006727 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 70.61, lo que sugiere que el mercado de DSM está en un estado SELL.
Promedios Móviles y Osciladores Populares de DSM para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.007079 | BUY |
| SMA 5 | $0.007067 | BUY |
| SMA 10 | $0.007052 | BUY |
| SMA 21 | $0.007005 | BUY |
| SMA 50 | $0.006615 | BUY |
| SMA 100 | $0.007385 | SELL |
| SMA 200 | $0.008266 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.007076 | BUY |
| EMA 5 | $0.007069 | BUY |
| EMA 10 | $0.007044 | BUY |
| EMA 21 | $0.006935 | BUY |
| EMA 50 | $0.006855 | BUY |
| EMA 100 | $0.00717 | SELL |
| EMA 200 | $0.007074 | BUY |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.008184 | SELL |
| SMA 50 | $0.005583 | BUY |
| SMA 100 | $0.006838 | BUY |
| SMA 200 | $0.025633 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.007219 | SELL |
| EMA 50 | $0.007236 | SELL |
| EMA 100 | $0.018447 | SELL |
| EMA 200 | $0.0541093 | SELL |
Osciladores de Desmos
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 70.61 | SELL |
| Stoch RSI (14) | 66.56 | NEUTRAL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 184.84 | SELL |
| Índice Direccional Medio (14) | 31.93 | BUY |
| Oscilador Asombroso (5, 34) | 0.000331 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | -0 | SELL |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 87.44 | SELL |
| VWMA (10) | 0.007058 | BUY |
| Promedio Móvil de Hull (9) | 0.007086 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | 0.000445 | BUY |
Predicción de precios de Desmos basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Desmos
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Desmos por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.009954 | $0.013988 | $0.019655 | $0.027619 | $0.03881 | $0.054534 |
| Amazon.com acción | $0.014782 | $0.030843 | $0.064357 | $0.134285 | $0.280194 | $0.584642 |
| Apple acción | $0.010048 | $0.014253 | $0.020217 | $0.028676 | $0.040675 | $0.057695 |
| Netflix acción | $0.011178 | $0.017637 | $0.027828 | $0.0439097 | $0.069282 | $0.109317 |
| Google acción | $0.009174 | $0.01188 | $0.015385 | $0.019924 | $0.0258016 | $0.033412 |
| Tesla acción | $0.016059 | $0.0364065 | $0.08253 | $0.187091 | $0.424121 | $0.961452 |
| Kodak acción | $0.005312 | $0.003983 | $0.002987 | $0.00224 | $0.001679 | $0.001259 |
| Nokia acción | $0.004693 | $0.003109 | $0.002059 | $0.001364 | $0.0009038 | $0.000598 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Desmos
Podría preguntarse cosas como: "¿Debo invertir en Desmos ahora?", "¿Debería comprar DSM hoy?", "¿Será Desmos una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Desmos regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Desmos, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Desmos a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Desmos es de $0.007084 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Desmos basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Desmos ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.007268 | $0.007457 | $0.007651 | $0.00785 |
| Si Desmos ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.007452 | $0.00784 | $0.008247 | $0.008676 |
| Si Desmos ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.0080051 | $0.009045 | $0.010221 | $0.011549 |
| Si Desmos ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.008925 | $0.011246 | $0.014169 | $0.017852 |
| Si Desmos ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.010767 | $0.016364 | $0.024872 | $0.0378028 |
| Si Desmos ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.016291 | $0.037465 | $0.086158 | $0.198134 |
| Si Desmos ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.025499 | $0.091779 | $0.330344 | $1.18 |
Cuadro de preguntas
¿Es DSM una buena inversión?
La decisión de adquirir Desmos depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Desmos ha experimentado un aumento de 0.1821% durante las últimas 24 horas, y Desmos ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Desmos dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Desmos subir?
Parece que el valor medio de Desmos podría potencialmente aumentar hasta $0.0073063 para el final de este año. Mirando las perspectivas de Desmos en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.022969. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Desmos la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Desmos, el precio de Desmos aumentará en un 0.86% durante la próxima semana y alcanzará $0.007145 para el 13 de enero de 2026.
¿Cuál será el precio de Desmos el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Desmos, el precio de Desmos disminuirá en un -11.62% durante el próximo mes y alcanzará $0.006261 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Desmos este año en 2026?
Según nuestra predicción más reciente sobre el valor de Desmos en 2026, se anticipa que DSM fluctúe dentro del rango de $0.002447 y $0.0073063. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Desmos no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Desmos en 5 años?
El futuro de Desmos parece estar en una tendencia alcista, con un precio máximo de $0.022969 proyectada después de un período de cinco años. Basado en el pronóstico de Desmos para 2030, el valor de Desmos podría potencialmente alcanzar su punto más alto de aproximadamente $0.022969, mientras que su punto más bajo se anticipa que esté alrededor de $0.007944.
¿Cuánto será Desmos en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Desmos, se espera que el valor de DSM en 2026 crezca en un 3.13% hasta $0.0073063 si ocurre lo mejor. El precio estará entre $0.0073063 y $0.002447 durante 2026.
¿Cuánto será Desmos en 2027?
Según nuestra última simulación experimental para la predicción de precios de Desmos, el valor de DSM podría disminuir en un -12.62% hasta $0.00619 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.00619 y $0.002356 a lo largo del año.
¿Cuánto será Desmos en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Desmos sugiere que el valor de DSM en 2028 podría aumentar en un 47.02% , alcanzando $0.010415 en el mejor escenario. Se espera que el precio oscile entre $0.010415 y $0.004252 durante el año.
¿Cuánto será Desmos en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Desmos podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.030729 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.030729 y $0.009341.
¿Cuánto será Desmos en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Desmos, se espera que el valor de DSM en 2030 aumente en un 224.23% , alcanzando $0.022969 en el mejor escenario. Se pronostica que el precio oscile entre $0.022969 y $0.007944 durante el transcurso de 2030.
¿Cuánto será Desmos en 2031?
Nuestra simulación experimental indica que el precio de Desmos podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.020968 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.020968 y $0.009392 durante el año.
¿Cuánto será Desmos en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Desmos, DSM podría experimentar un 449.04% aumento en valor, alcanzando $0.038896 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.038896 y $0.014337 a lo largo del año.
¿Cuánto será Desmos en 2033?
Según nuestra predicción experimental de precios de Desmos, se anticipa que el valor de DSM aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.103605. A lo largo del año, el precio de DSM podría oscilar entre $0.103605 y $0.033317.
¿Cuánto será Desmos en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Desmos sugieren que DSM podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.0600024 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.0600024 y $0.026785.
¿Cuánto será Desmos en 2035?
Basado en nuestra predicción experimental para el precio de Desmos, DSM podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.070697 en 2035. El rango de precios esperado para el año está entre $0.070697 y $0.031668.
¿Cuánto será Desmos en 2036?
Nuestra reciente simulación de predicción de precios de Desmos sugiere que el valor de DSM podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.146272 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.146272 y $0.052421.
¿Cuánto será Desmos en 2037?
Según la simulación experimental, el valor de Desmos podría aumentar en un 4830.69% en 2037, con un máximo de $0.349311 bajo condiciones favorables. Se espera que el precio caiga entre $0.349311 y $0.136136 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Tarot V1
Predicción de precios de Drops Ownership Power
Predicción de precios de Emanate
Predicción de precios de Undead Blocks
Predicción de precios de Yaku
Predicción de precios de Hyve
Predicción de precios de Utility Cjournal
Predicción de precios de Shezmu
Predicción de precios de Tulip Token
Predicción de precios de Million
Predicción de precios de The Three Kingdoms
Predicción de precios de Hypersign Identity Token
Predicción de precios de Populous
Predicción de precios de YAM
Predicción de precios de Polker
Predicción de precios de LightChain
Predicción de precios de Dacxi
Predicción de precios de Goons of Balatroon
Predicción de precios de Trava Finance
Predicción de precios de Tidal Finance
Predicción de precios de NFTBooks
Predicción de precios de Collab.Land
Predicción de precios de MYX Network
Predicción de precios de Hummingbot
Predicción de precios de Wrapped OrdBridge
¿Cómo leer y predecir los movimientos de precio de Desmos?
Los traders de Desmos utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Desmos
Las medias móviles son herramientas populares para la predicción de precios de Desmos. Una media móvil simple (SMA) calcula el precio de cierre promedio de DSM durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de DSM por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de DSM.
¿Cómo leer gráficos de Desmos y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Desmos en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de DSM dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Desmos?
La acción del precio de Desmos está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de DSM. La capitalización de mercado de Desmos puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de DSM, grandes poseedores de Desmos, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Desmos.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


