Predicción del precio de Emanate - Pronóstico de EMT
Predicción de precio de Emanate hasta $0.005367 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.001798 | $0.005367 |
| 2027 | $0.00173 | $0.004547 |
| 2028 | $0.003123 | $0.007651 |
| 2029 | $0.006862 | $0.022573 |
| 2030 | $0.005835 | $0.016873 |
| 2031 | $0.006899 | $0.0154033 |
| 2032 | $0.010532 | $0.028572 |
| 2033 | $0.024474 | $0.0761065 |
| 2034 | $0.019676 | $0.044076 |
| 2035 | $0.023263 | $0.051933 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Emanate hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.78, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Emanate para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Emanate'
'name_with_ticker' => 'Emanate <small>EMT</small>'
'name_lang' => 'Emanate'
'name_lang_with_ticker' => 'Emanate <small>EMT</small>'
'name_with_lang' => 'Emanate'
'name_with_lang_with_ticker' => 'Emanate <small>EMT</small>'
'image' => '/uploads/coins/emanate.png?1666228166'
'price_for_sd' => 0.005204
'ticker' => 'EMT'
'marketcap' => '$777.12K'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$52.22'
'current_supply' => '149.33M'
'max_supply' => '208M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.12 USD 0.04x'
'price' => '$0.005204'
'change_24h_pct' => '0%'
'ath_price' => '$0.1961'
'ath_days' => 2129
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '9 mar. 2020'
'ath_pct' => '8.76%'
'fdv' => '$0'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.256598'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.005248'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.004599'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001798'
'current_year_max_price_prediction' => '$0.005367'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.005835'
'grand_prediction_max_price' => '$0.016873'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0053027251471381
107 => 0.0053225235979483
108 => 0.0053671305185576
109 => 0.0049859692658743
110 => 0.0051570994780227
111 => 0.0052576224449274
112 => 0.0048034560233949
113 => 0.0052486450350301
114 => 0.0049793340964723
115 => 0.0048879259190112
116 => 0.0050109949878509
117 => 0.0049630348520355
118 => 0.0049218015435751
119 => 0.004898792648976
120 => 0.0049891609904944
121 => 0.004984945199349
122 => 0.0048370850528857
123 => 0.0046442075193748
124 => 0.0047089435506103
125 => 0.0046854243435589
126 => 0.0046001877031667
127 => 0.0046576269072798
128 => 0.0044046937216814
129 => 0.0039695353221822
130 => 0.0042570142901536
131 => 0.0042459466626037
201 => 0.004240365862916
202 => 0.0044563983620115
203 => 0.0044356318219412
204 => 0.0043979403483671
205 => 0.0045994954696965
206 => 0.0045259251391123
207 => 0.0047526515626228
208 => 0.0049019882488924
209 => 0.0048641116347187
210 => 0.0050045635099622
211 => 0.0047104349380215
212 => 0.0048081326512301
213 => 0.0048282680145192
214 => 0.0045970083107858
215 => 0.0044390294847208
216 => 0.0044284940981128
217 => 0.0041545805845392
218 => 0.0043009029725376
219 => 0.0044296606187443
220 => 0.0043679956982083
221 => 0.0043484744265537
222 => 0.0044482043697898
223 => 0.0044559542405084
224 => 0.0042792563668288
225 => 0.0043159974500607
226 => 0.0044692138748347
227 => 0.0043121367892692
228 => 0.0040069616704118
301 => 0.003931274021559
302 => 0.0039211758940019
303 => 0.00371590498745
304 => 0.0039363318321699
305 => 0.0038401096073775
306 => 0.0041440744625774
307 => 0.0039704513674834
308 => 0.00396296682287
309 => 0.0039516528359429
310 => 0.0037749676870393
311 => 0.0038136505057222
312 => 0.0039422380865837
313 => 0.0039881195840779
314 => 0.0039833337679933
315 => 0.0039416079372868
316 => 0.0039607098089134
317 => 0.0038991760248709
318 => 0.0038774471650106
319 => 0.0038088649062975
320 => 0.0037080679323218
321 => 0.0037220843697769
322 => 0.0035223791893681
323 => 0.0034135692079253
324 => 0.0033834520391544
325 => 0.0033431781023909
326 => 0.0033880010874767
327 => 0.0035218134496837
328 => 0.0033604073509858
329 => 0.0030836879160897
330 => 0.0031003192256339
331 => 0.0031376848402997
401 => 0.0030680542645683
402 => 0.0030021547682899
403 => 0.0030594490337089
404 => 0.0029421993612155
405 => 0.0031518539030536
406 => 0.0031461833352469
407 => 0.0032243295834943
408 => 0.0032731960362458
409 => 0.0031605746833555
410 => 0.0031322507176641
411 => 0.0031483853357744
412 => 0.0028817160387175
413 => 0.0032025370127065
414 => 0.0032053114858119
415 => 0.0031815547626517
416 => 0.0033523820270645
417 => 0.0037128808373355
418 => 0.0035772466838805
419 => 0.0035247250400987
420 => 0.0034248813568765
421 => 0.0035579171366388
422 => 0.0035477020644345
423 => 0.0035015056339756
424 => 0.0034735658886925
425 => 0.0035250457260561
426 => 0.003467186967141
427 => 0.0034567939441875
428 => 0.0033938235328097
429 => 0.0033713459609189
430 => 0.003354704461549
501 => 0.0033363838059026
502 => 0.0033767946070356
503 => 0.0032852184151846
504 => 0.0031747865051372
505 => 0.0031656052867066
506 => 0.0031909554380145
507 => 0.0031797398831576
508 => 0.0031655515909449
509 => 0.0031384622771594
510 => 0.0031304254564308
511 => 0.0031565412248875
512 => 0.0031270580449438
513 => 0.0031705620829826
514 => 0.0031587313918243
515 => 0.0030926461127262
516 => 0.0030102793870659
517 => 0.0030095461504374
518 => 0.0029918003745024
519 => 0.0029691984607539
520 => 0.0029629111254108
521 => 0.003054623870482
522 => 0.0032444665080478
523 => 0.0032071958557443
524 => 0.0032341277216836
525 => 0.0033666058466577
526 => 0.0034087166588308
527 => 0.0033788274017996
528 => 0.0033379131432862
529 => 0.0033397131630174
530 => 0.003479529569946
531 => 0.0034882497477438
601 => 0.003510282823803
602 => 0.0035386015530855
603 => 0.0033836502038501
604 => 0.003332414968403
605 => 0.0033081368714255
606 => 0.0032333697295409
607 => 0.0033139996820132
608 => 0.0032670200616264
609 => 0.0032733592174689
610 => 0.0032692308339103
611 => 0.0032714852104934
612 => 0.0031517953003364
613 => 0.0031954040128811
614 => 0.0031228960702266
615 => 0.0030258160744107
616 => 0.0030254906282241
617 => 0.0030492508196669
618 => 0.0030351173280603
619 => 0.0029970844655523
620 => 0.0030024868541615
621 => 0.0029551562452844
622 => 0.0030082336470276
623 => 0.0030097557169895
624 => 0.0029893180261728
625 => 0.003071091086828
626 => 0.003104593576499
627 => 0.0030911410505856
628 => 0.0031036497114192
629 => 0.0032087446196144
630 => 0.0032258796752625
701 => 0.0032334899351032
702 => 0.0032232931950829
703 => 0.0031055706534156
704 => 0.0031107921487334
705 => 0.0030724802806076
706 => 0.0030401107892465
707 => 0.0030414053991453
708 => 0.0030580475254443
709 => 0.0031307246670395
710 => 0.0032836694269752
711 => 0.0032894735688136
712 => 0.0032965083580405
713 => 0.0032678943348529
714 => 0.0032592640716602
715 => 0.0032706496164713
716 => 0.0033280876268497
717 => 0.0034758337838107
718 => 0.0034236104243066
719 => 0.0033811520201248
720 => 0.0034183994872959
721 => 0.0034126655316802
722 => 0.0033642651758349
723 => 0.0033629067390487
724 => 0.0032700109816517
725 => 0.0032356695352761
726 => 0.003206971252272
727 => 0.0031756334764191
728 => 0.0031570553924417
729 => 0.0031855997730191
730 => 0.0031921282105843
731 => 0.0031297154235815
801 => 0.0031212087913362
802 => 0.0031721764204763
803 => 0.0031497474671564
804 => 0.0031728162018571
805 => 0.0031781683461877
806 => 0.0031773065276801
807 => 0.0031538881244653
808 => 0.0031688143163276
809 => 0.0031335094228614
810 => 0.0030951206538404
811 => 0.0030706310109099
812 => 0.0030492605493732
813 => 0.0030611181234923
814 => 0.0030188480368653
815 => 0.0030053249854246
816 => 0.0031637576583746
817 => 0.003280793577321
818 => 0.0032790918287082
819 => 0.0032687328716821
820 => 0.0032533415627789
821 => 0.0033269616567369
822 => 0.0033013138880822
823 => 0.0033199747827213
824 => 0.0033247247636022
825 => 0.0033391015251261
826 => 0.0033442399816465
827 => 0.0033287079971544
828 => 0.0032765807601268
829 => 0.0031466846415629
830 => 0.0030862176477236
831 => 0.0030662625325992
901 => 0.0030669878631338
902 => 0.0030469800089711
903 => 0.0030528732187111
904 => 0.0030449305911238
905 => 0.0030298891760012
906 => 0.0030601893584941
907 => 0.0030636811722606
908 => 0.0030566087476066
909 => 0.0030582745596381
910 => 0.0029997179041748
911 => 0.0030041698395113
912 => 0.002979380897833
913 => 0.0029747332701035
914 => 0.0029120689841609
915 => 0.0028010501182801
916 => 0.0028625653468402
917 => 0.0027882636010898
918 => 0.0027601244041189
919 => 0.0028933309860359
920 => 0.0028799607397869
921 => 0.0028570766901149
922 => 0.0028232264111963
923 => 0.002810671013471
924 => 0.0027343883914481
925 => 0.002729881207187
926 => 0.0027676889344656
927 => 0.002750241969211
928 => 0.0027257398223111
929 => 0.0026369955299824
930 => 0.0025372175631795
1001 => 0.0025402292328153
1002 => 0.0025719667476202
1003 => 0.0026642478523026
1004 => 0.0026281920282239
1005 => 0.0026020331141619
1006 => 0.0025971343358921
1007 => 0.002658452802225
1008 => 0.0027452312787018
1009 => 0.0027859457983058
1010 => 0.0027455989458966
1011 => 0.0026992506542778
1012 => 0.0027020716600313
1013 => 0.0027208385474767
1014 => 0.0027228106819977
1015 => 0.0026926427088352
1016 => 0.0027011348165706
1017 => 0.002688234528386
1018 => 0.0026090654836093
1019 => 0.002607633566637
1020 => 0.0025882042062755
1021 => 0.0025876158929655
1022 => 0.0025545617041095
1023 => 0.0025499371945957
1024 => 0.0024843060963763
1025 => 0.0025275046839736
1026 => 0.0024985293394409
1027 => 0.0024548566606375
1028 => 0.0024473274743505
1029 => 0.002447101137919
1030 => 0.0024919432140179
1031 => 0.002526980678206
1101 => 0.0024990333779645
1102 => 0.0024926703194352
1103 => 0.0025606111374099
1104 => 0.0025519650490283
1105 => 0.0025444775922512
1106 => 0.002737461217928
1107 => 0.0025846996195047
1108 => 0.0025180868432649
1109 => 0.0024356408832451
1110 => 0.0024624857035561
1111 => 0.0024681423016281
1112 => 0.0022698746297817
1113 => 0.0021894374600063
1114 => 0.0021618344545502
1115 => 0.002145948534661
1116 => 0.0021531879478373
1117 => 0.0020807850607004
1118 => 0.0021294409982896
1119 => 0.0020667462180928
1120 => 0.0020562352341663
1121 => 0.0021683412675512
1122 => 0.0021839401671828
1123 => 0.0021173904151563
1124 => 0.0021601261293835
1125 => 0.0021446295653338
1126 => 0.0020678209401543
1127 => 0.0020648874156385
1128 => 0.0020263475474771
1129 => 0.0019660401165937
1130 => 0.0019384780024155
1201 => 0.0019241234140463
1202 => 0.0019300463969728
1203 => 0.0019270515555588
1204 => 0.0019075081895443
1205 => 0.0019281717584222
1206 => 0.0018753848787155
1207 => 0.0018543647178835
1208 => 0.0018448703988997
1209 => 0.0017980190048606
1210 => 0.0018725804076863
1211 => 0.0018872699433428
1212 => 0.0019019884219223
1213 => 0.0020301027292251
1214 => 0.0020237025004795
1215 => 0.0020815574513017
1216 => 0.0020793093143012
1217 => 0.0020628081451386
1218 => 0.0019931924267524
1219 => 0.0020209400113203
1220 => 0.0019355372589524
1221 => 0.0019995268078491
1222 => 0.0019703246500001
1223 => 0.0019896535289057
1224 => 0.0019548984618188
1225 => 0.0019741333509462
1226 => 0.0018907533771928
1227 => 0.0018128943308897
1228 => 0.0018442270839693
1229 => 0.0018782893699018
1230 => 0.0019521450847124
1231 => 0.0019081572302676
]
'min_raw' => 0.0017980190048606
'max_raw' => 0.0053671305185576
'avg_raw' => 0.0035825747617091
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001798'
'max' => '$0.005367'
'avg' => '$0.003582'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0034060909951394
'max_diff' => 0.00016302051855763
'year' => 2026
]
1 => [
'items' => [
101 => 0.0019239769260909
102 => 0.001870983593268
103 => 0.0017616432108572
104 => 0.0017622620655473
105 => 0.0017454424298232
106 => 0.0017309078088504
107 => 0.0019132097644983
108 => 0.0018905376345461
109 => 0.0018544125627222
110 => 0.0019027674069118
111 => 0.0019155531952101
112 => 0.0019159171886282
113 => 0.0019511956347298
114 => 0.0019700237477382
115 => 0.0019733422842616
116 => 0.0020288536814437
117 => 0.0020474603695661
118 => 0.0021240986846252
119 => 0.0019684263138941
120 => 0.001965220343862
121 => 0.0019034478587329
122 => 0.0018642707720797
123 => 0.0019061303473735
124 => 0.001943212216682
125 => 0.0019046000957776
126 => 0.0019096420236214
127 => 0.0018578084060335
128 => 0.0018763364853228
129 => 0.0018922953632085
130 => 0.0018834838088595
131 => 0.001870292485515
201 => 0.0019401719262748
202 => 0.0019362290543673
203 => 0.0020013023961243
204 => 0.0020520317194631
205 => 0.0021429477358375
206 => 0.0020480721331917
207 => 0.0020446144891349
208 => 0.0020784135144135
209 => 0.0020474551951115
210 => 0.0020670197842655
211 => 0.0021397955780574
212 => 0.0021413332159017
213 => 0.0021155758008763
214 => 0.0021140084598312
215 => 0.0021189554531421
216 => 0.0021479301474803
217 => 0.0021378054989761
218 => 0.0021495219985499
219 => 0.0021641736606763
220 => 0.0022247791474073
221 => 0.0022393909250792
222 => 0.0022038918806746
223 => 0.0022070970469184
224 => 0.0021938194298405
225 => 0.0021809934181113
226 => 0.0022098244193899
227 => 0.0022625136409014
228 => 0.002262185863989
301 => 0.0022744087392475
302 => 0.0022820234892738
303 => 0.0022493354078232
304 => 0.0022280566687729
305 => 0.0022362162913261
306 => 0.0022492637054822
307 => 0.002231985190764
308 => 0.0021253341937364
309 => 0.0021576852933425
310 => 0.0021523004884801
311 => 0.0021446318715414
312 => 0.002177161152359
313 => 0.0021740236238684
314 => 0.0020800424644434
315 => 0.0020860588333487
316 => 0.0020804083397634
317 => 0.0020986662405197
318 => 0.0020464692085533
319 => 0.0020625246640338
320 => 0.0020725944952006
321 => 0.0020785257031179
322 => 0.0020999532931827
323 => 0.0020974390128049
324 => 0.0020997970019842
325 => 0.0021315684613763
326 => 0.0022922576003329
327 => 0.0023010035556258
328 => 0.0022579352730811
329 => 0.0022751402024734
330 => 0.0022421105003446
331 => 0.0022642835606634
401 => 0.0022794538053989
402 => 0.0022109023865097
403 => 0.0022068432163781
404 => 0.0021736771889194
405 => 0.0021914987334559
406 => 0.0021631433746839
407 => 0.0021701007878982
408 => 0.0021506472540146
409 => 0.0021856597418451
410 => 0.0022248091436301
411 => 0.0022346998285777
412 => 0.0022086816946881
413 => 0.0021898428510735
414 => 0.002156768047587
415 => 0.0022117721829051
416 => 0.0022278570682927
417 => 0.0022116876958497
418 => 0.0022079408989468
419 => 0.0022008407255863
420 => 0.00220944723429
421 => 0.0022277694665525
422 => 0.002219129040176
423 => 0.0022248361940224
424 => 0.0022030864087514
425 => 0.0022493462289383
426 => 0.0023228179564271
427 => 0.0023230541800448
428 => 0.0023144137070932
429 => 0.002310878211723
430 => 0.0023197438613191
501 => 0.002324553112537
502 => 0.0023532229976486
503 => 0.0023839869266321
504 => 0.0025275487598441
505 => 0.0024872371715501
506 => 0.0026146137705075
507 => 0.0027153521225014
508 => 0.0027455591495101
509 => 0.0027177701060125
510 => 0.0026227052893419
511 => 0.0026180409559054
512 => 0.0027601079273417
513 => 0.0027199675008314
514 => 0.0027151929248238
515 => 0.0026643995028762
516 => 0.0026944247061349
517 => 0.0026878577537391
518 => 0.002677491498116
519 => 0.0027347774943598
520 => 0.002842011765372
521 => 0.0028252982985981
522 => 0.0028128224709668
523 => 0.0027581570259453
524 => 0.0027910778338175
525 => 0.0027793553646907
526 => 0.0028297225313219
527 => 0.0027998861375789
528 => 0.0027196633976214
529 => 0.0027324391333772
530 => 0.0027305081066189
531 => 0.0027702485004704
601 => 0.0027583194206534
602 => 0.0027281787623298
603 => 0.0028416452502916
604 => 0.0028342773676971
605 => 0.0028447233406836
606 => 0.0028493219810447
607 => 0.0029183870327632
608 => 0.0029466807746172
609 => 0.0029531039493697
610 => 0.0029799808158144
611 => 0.0029524352284483
612 => 0.0030626372175837
613 => 0.0031359151098944
614 => 0.0032210311526591
615 => 0.0033454085681739
616 => 0.0033921756269629
617 => 0.0033837275763884
618 => 0.0034780291133319
619 => 0.0036474868790139
620 => 0.0034179798358157
621 => 0.0036596513095901
622 => 0.0035831409112244
623 => 0.0034017361330628
624 => 0.003390055803971
625 => 0.0035129052258949
626 => 0.0037853734199033
627 => 0.0037171232276128
628 => 0.0037854850527679
629 => 0.0037057373524724
630 => 0.0037017772069863
701 => 0.0037816118849648
702 => 0.0039681499616231
703 => 0.003879532713678
704 => 0.0037524781589079
705 => 0.0038462932649623
706 => 0.0037650219379198
707 => 0.003581894891681
708 => 0.0037170710379771
709 => 0.0036266825985439
710 => 0.0036530627504842
711 => 0.0038430458059071
712 => 0.0038201865420458
713 => 0.0038497685461931
714 => 0.0037975570831689
715 => 0.0037487833437123
716 => 0.003657743537031
717 => 0.0036307911384809
718 => 0.0036382398117944
719 => 0.0036307874472883
720 => 0.0035798515121491
721 => 0.0035688519018055
722 => 0.0035505187359954
723 => 0.0035562009506753
724 => 0.0035217292353955
725 => 0.0035867844843483
726 => 0.0035988593118188
727 => 0.003646201096849
728 => 0.0036511162780212
729 => 0.0037829624754623
730 => 0.0037103438054971
731 => 0.0037590626789041
801 => 0.0037547048043067
802 => 0.0034056677246729
803 => 0.0034537619546663
804 => 0.0035285814837351
805 => 0.003494875387305
806 => 0.0034472228529649
807 => 0.0034087408765179
808 => 0.0033504367472167
809 => 0.0034324986895766
810 => 0.0035404014174651
811 => 0.0036538528692671
812 => 0.0037901573549736
813 => 0.003759735780523
814 => 0.0036513047517182
815 => 0.0036561688884615
816 => 0.0036862370678411
817 => 0.0036472960435623
818 => 0.0036358115752834
819 => 0.0036846592782556
820 => 0.0036849956655397
821 => 0.003640189310927
822 => 0.0035903952472513
823 => 0.0035901866083064
824 => 0.0035813262356289
825 => 0.0037073135930883
826 => 0.0037765939009324
827 => 0.0037845367765759
828 => 0.0037760592821161
829 => 0.003779321933274
830 => 0.0037390092486269
831 => 0.0038311520913748
901 => 0.003915711475863
902 => 0.0038930477544724
903 => 0.0038590716142701
904 => 0.0038320079820863
905 => 0.0038866724228245
906 => 0.0038842383013282
907 => 0.0039149729234075
908 => 0.0039135786234182
909 => 0.0039032437260006
910 => 0.0038930481235641
911 => 0.0039334725347659
912 => 0.003921830953536
913 => 0.0039101712897149
914 => 0.0038867860489165
915 => 0.0038899644915288
916 => 0.0038559942177861
917 => 0.0038402780147787
918 => 0.0036039440299921
919 => 0.0035407878668214
920 => 0.0035606580814171
921 => 0.003567199871992
922 => 0.0035397142288432
923 => 0.0035791215806361
924 => 0.0035729799866019
925 => 0.0035968733362766
926 => 0.0035819458087285
927 => 0.003582558439666
928 => 0.0036264571153006
929 => 0.0036392010875957
930 => 0.0036327194004299
1001 => 0.0036372589519416
1002 => 0.0037418710005024
1003 => 0.0037269985125021
1004 => 0.0037190977996716
1005 => 0.0037212863511201
1006 => 0.003748016972435
1007 => 0.0037555000869653
1008 => 0.0037237936048711
1009 => 0.0037387465651197
1010 => 0.0038024143720453
1011 => 0.0038246945011834
1012 => 0.0038958019783237
1013 => 0.0038655942581999
1014 => 0.0039210418358467
1015 => 0.0040914687860606
1016 => 0.0042276176265395
1017 => 0.0041024095262463
1018 => 0.0043524295333355
1019 => 0.0045471059720943
1020 => 0.0045396339661242
1021 => 0.0045056876260794
1022 => 0.0042840536762934
1023 => 0.0040801028113243
1024 => 0.0042507163700821
1025 => 0.0042511512991304
1026 => 0.0042364954431234
1027 => 0.0041454691801711
1028 => 0.0042333279264835
1029 => 0.0042403018347097
1030 => 0.0042363983006149
1031 => 0.0041666086782317
1101 => 0.0040600528241308
1102 => 0.0040808735829634
1103 => 0.0041149784106633
1104 => 0.0040504108568151
1105 => 0.0040297776110745
1106 => 0.0040681387405418
1107 => 0.0041917462925442
1108 => 0.0041683790008479
1109 => 0.0041677687864271
1110 => 0.0042677439695775
1111 => 0.0041961833144367
1112 => 0.0040811361994096
1113 => 0.0040520852855802
1114 => 0.0039489741125265
1115 => 0.0040201933670241
1116 => 0.0040227564212043
1117 => 0.0039837503633591
1118 => 0.0040843013260291
1119 => 0.0040833747312064
1120 => 0.0041788329052259
1121 => 0.0043613130814983
1122 => 0.0043073447140704
1123 => 0.0042445853744935
1124 => 0.0042514090548332
1125 => 0.004326247985882
1126 => 0.0042809986597633
1127 => 0.0042972706329251
1128 => 0.0043262233563018
1129 => 0.0043436912531706
1130 => 0.0042488956932895
1201 => 0.0042267943136854
1202 => 0.0041815826475456
1203 => 0.0041697877677655
1204 => 0.004206611726464
1205 => 0.0041969099143566
1206 => 0.0040225410064251
1207 => 0.0040043184853668
1208 => 0.0040048773440719
1209 => 0.0039590559484372
1210 => 0.0038891673216992
1211 => 0.0040728304599335
1212 => 0.0040580797395693
1213 => 0.0040417960859023
1214 => 0.0040437907405633
1215 => 0.0041235126839495
1216 => 0.0040772699307308
1217 => 0.0042002138692008
1218 => 0.0041749402914844
1219 => 0.0041490185418656
1220 => 0.0041454353664725
1221 => 0.004135457704409
1222 => 0.0041012405886687
1223 => 0.0040599213652825
1224 => 0.004032638834993
1225 => 0.0037198961607988
1226 => 0.0037779393819888
1227 => 0.0038447128171618
1228 => 0.0038677627394058
1229 => 0.0038283342524014
1230 => 0.0041027974656551
1231 => 0.0041529445395099
]
'min_raw' => 0.0017309078088504
'max_raw' => 0.0045471059720943
'avg_raw' => 0.0031390068904724
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00173'
'max' => '$0.004547'
'avg' => '$0.003139'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -6.7111196010153E-5
'max_diff' => -0.00082002454646331
'year' => 2027
]
2 => [
'items' => [
101 => 0.0040010457817911
102 => 0.0039726317262073
103 => 0.0041046602864088
104 => 0.0040250309247722
105 => 0.0040608880214414
106 => 0.0039833845912259
107 => 0.004140865577896
108 => 0.0041396658366304
109 => 0.0040784021759463
110 => 0.0041301818024411
111 => 0.0041211838181036
112 => 0.004052017296077
113 => 0.0041430582800144
114 => 0.0041431034352065
115 => 0.004084138493785
116 => 0.00401528035129
117 => 0.0040029701417687
118 => 0.0039936960525383
119 => 0.0040586071640027
120 => 0.00411680626357
121 => 0.0042251003590843
122 => 0.0042523280677008
123 => 0.0043585996270824
124 => 0.004295320087739
125 => 0.0043233710879227
126 => 0.0043538244166783
127 => 0.0043684248623679
128 => 0.0043446342196199
129 => 0.0045097176944584
130 => 0.0045236557977617
131 => 0.0045283291232352
201 => 0.0044726639043514
202 => 0.0045221076473269
203 => 0.0044989745573933
204 => 0.0045591604308431
205 => 0.0045685983442918
206 => 0.0045606047673643
207 => 0.0045636005100602
208 => 0.0044227308870061
209 => 0.0044154260539043
210 => 0.0043158241362337
211 => 0.0043564126539047
212 => 0.0042805343655771
213 => 0.0043045961524387
214 => 0.0043152023588182
215 => 0.0043096622785025
216 => 0.0043587074677953
217 => 0.0043170090376262
218 => 0.0042069600245534
219 => 0.0040968810287006
220 => 0.0040954990765761
221 => 0.0040665172200237
222 => 0.0040455686460281
223 => 0.0040496040845703
224 => 0.0040638254963433
225 => 0.0040447420717228
226 => 0.0040488144879197
227 => 0.0041164437311567
228 => 0.0041300062935781
229 => 0.0040839154072348
301 => 0.003898853847683
302 => 0.0038534392767772
303 => 0.0038860823697342
304 => 0.0038704810737852
305 => 0.0031237803052069
306 => 0.0032992065748154
307 => 0.0031949742423273
308 => 0.0032430092966368
309 => 0.0031366150759981
310 => 0.0031873919746858
311 => 0.0031780153355736
312 => 0.0034600955858632
313 => 0.0034556912907437
314 => 0.0034577993937473
315 => 0.0033571741447509
316 => 0.0035174728986754
317 => 0.0035964418290153
318 => 0.0035818267816994
319 => 0.00358550507424
320 => 0.0035222998216266
321 => 0.0034584113587524
322 => 0.003387549221061
323 => 0.0035192023140668
324 => 0.0035045647375178
325 => 0.0035381380716874
326 => 0.0036235245132591
327 => 0.003636097991132
328 => 0.003652996872901
329 => 0.0036469398267311
330 => 0.0037912432401058
331 => 0.0037737671446015
401 => 0.003815879506551
402 => 0.0037292511829484
403 => 0.0036312230119562
404 => 0.0036498549624794
405 => 0.0036480605558154
406 => 0.0036252156994576
407 => 0.0036045923846004
408 => 0.003570260375946
409 => 0.0036788919315097
410 => 0.0036744816887383
411 => 0.0037458783928604
412 => 0.0037332583318962
413 => 0.0036489784761248
414 => 0.0036519885476616
415 => 0.0036722327253375
416 => 0.0037422980554178
417 => 0.003763098215797
418 => 0.0037534627527663
419 => 0.0037762691790588
420 => 0.0037942944485074
421 => 0.0037785328753796
422 => 0.0040016835126537
423 => 0.0039090158100494
424 => 0.003954181403521
425 => 0.0039649531314329
426 => 0.0039373615768917
427 => 0.0039433451970922
428 => 0.003952408751257
429 => 0.00400744087732
430 => 0.0041518610997834
501 => 0.0042158238332107
502 => 0.0044082588725924
503 => 0.0042105126186038
504 => 0.0041987791742474
505 => 0.0042334425358216
506 => 0.0043464222752563
507 => 0.0044379817424208
508 => 0.0044683572998717
509 => 0.0044723719312346
510 => 0.0045293584963413
511 => 0.0045620221327239
512 => 0.0045224388284419
513 => 0.0044888961226076
514 => 0.004368750313783
515 => 0.0043826575183006
516 => 0.0044784643663159
517 => 0.0046137971821327
518 => 0.0047299268170832
519 => 0.0046892622664499
520 => 0.0049995040830828
521 => 0.0050302632919778
522 => 0.0050260133638728
523 => 0.0050960874193196
524 => 0.0049570046895909
525 => 0.004897544128031
526 => 0.0044961484363349
527 => 0.004608924252984
528 => 0.0047728505255749
529 => 0.0047511542687055
530 => 0.0046321066277882
531 => 0.0047298365087723
601 => 0.004697523953823
602 => 0.0046720377010853
603 => 0.0047887951656296
604 => 0.0046604155372309
605 => 0.0047715698405764
606 => 0.0046290132967918
607 => 0.0046894480186919
608 => 0.0046551423476428
609 => 0.0046773423211564
610 => 0.0045475617296155
611 => 0.0046175881865652
612 => 0.0045446483987808
613 => 0.0045446138158243
614 => 0.0045430036659663
615 => 0.0046288170028302
616 => 0.0046316153726645
617 => 0.0045681991870653
618 => 0.0045590599239735
619 => 0.0045928525697057
620 => 0.0045532902318612
621 => 0.0045718012007363
622 => 0.004553850910251
623 => 0.0045498099217718
624 => 0.0045176106380521
625 => 0.0045037383012879
626 => 0.0045091780019792
627 => 0.0044906094991618
628 => 0.0044794213045622
629 => 0.0045407780524577
630 => 0.0045079976171813
701 => 0.0045357539806139
702 => 0.0045041221013501
703 => 0.0043944722264678
704 => 0.0043314114238967
705 => 0.0041242929747929
706 => 0.0041830315100291
707 => 0.0042219752196601
708 => 0.0042091043238594
709 => 0.0042367559884148
710 => 0.004238453576041
711 => 0.0042294637380187
712 => 0.0042190546572584
713 => 0.0042139880924026
714 => 0.0042517501158792
715 => 0.0042736722415187
716 => 0.0042258837419212
717 => 0.0042146875650977
718 => 0.0042630043766661
719 => 0.0042924776038112
720 => 0.0045100913534745
721 => 0.0044939698240162
722 => 0.004534431699266
723 => 0.0045298763130509
724 => 0.0045722868043949
725 => 0.0046416100337312
726 => 0.0045006565254106
727 => 0.0045251211806495
728 => 0.0045191230121563
729 => 0.0045846094429605
730 => 0.0045848138844494
731 => 0.0045455514978925
801 => 0.0045668362746045
802 => 0.0045549556961611
803 => 0.0045764255071647
804 => 0.0044937545111615
805 => 0.0045944388605109
806 => 0.0046515203986358
807 => 0.004652312975848
808 => 0.0046793691718921
809 => 0.0047068598340622
810 => 0.0047596257661655
811 => 0.0047053882208546
812 => 0.0046078201567589
813 => 0.0046148642558437
814 => 0.0045576601355631
815 => 0.0045586217471598
816 => 0.0045534885890939
817 => 0.0045688935828559
818 => 0.0044971350409943
819 => 0.0045139766273403
820 => 0.0044903983078317
821 => 0.0045250699259876
822 => 0.0044877689962757
823 => 0.0045191201196578
824 => 0.0045326502252034
825 => 0.0045825766059487
826 => 0.0044803948292457
827 => 0.00427203926945
828 => 0.004315838134186
829 => 0.0042510561729149
830 => 0.0042570519900728
831 => 0.0042691644949592
901 => 0.0042299039036576
902 => 0.0042373935872345
903 => 0.0042371260030331
904 => 0.0042348201069456
905 => 0.0042246069108321
906 => 0.0042097957558482
907 => 0.0042687988386708
908 => 0.0042788246121929
909 => 0.0043011106648019
910 => 0.0043674188405925
911 => 0.0043607930901765
912 => 0.0043715999640047
913 => 0.0043480086191159
914 => 0.0042581463249006
915 => 0.0042630262798171
916 => 0.0042021731638132
917 => 0.0042995545138092
918 => 0.0042764933247592
919 => 0.0042616256261567
920 => 0.0042575688368447
921 => 0.0043240413777776
922 => 0.0043439310038542
923 => 0.0043315371236264
924 => 0.0043061169136921
925 => 0.0043549312315765
926 => 0.0043679918837316
927 => 0.0043709156820908
928 => 0.0044574052941649
929 => 0.004375749490626
930 => 0.0043954048541267
1001 => 0.0045487503892882
1002 => 0.0044096871491341
1003 => 0.0044833520489241
1004 => 0.004479746535413
1005 => 0.0045174310054612
1006 => 0.0044766553089418
1007 => 0.0044771607725694
1008 => 0.0045106220290051
1009 => 0.0044636317291105
1010 => 0.0044519962700305
1011 => 0.0044359219666463
1012 => 0.0044710196200192
1013 => 0.0044920590758859
1014 => 0.004661621638394
1015 => 0.0047711667867665
1016 => 0.0047664111429709
1017 => 0.0048098688250707
1018 => 0.004790290741258
1019 => 0.0047270679441891
1020 => 0.004834981549587
1021 => 0.0048008331695421
1022 => 0.0048036483205027
1023 => 0.0048035435404433
1024 => 0.00482624922787
1025 => 0.0048101601673825
1026 => 0.0047784469776535
1027 => 0.0047994996729882
1028 => 0.004862018651656
1029 => 0.0050560794797574
1030 => 0.0051646784901269
1031 => 0.0050495416829722
1101 => 0.0051289615108042
1102 => 0.0050813379142831
1103 => 0.005072683290116
1104 => 0.0051225648110737
1105 => 0.0051725336430306
1106 => 0.0051693508444561
1107 => 0.0051330760383833
1108 => 0.0051125853208719
1109 => 0.0052677478987622
1110 => 0.0053820690430262
1111 => 0.005374273107406
1112 => 0.0054086818318592
1113 => 0.0055097069110755
1114 => 0.0055189433782315
1115 => 0.0055177797956676
1116 => 0.0054948862480957
1117 => 0.0055943585583484
1118 => 0.00567734010961
1119 => 0.005489587053291
1120 => 0.0055610809592693
1121 => 0.0055931768770528
1122 => 0.0056403032067886
1123 => 0.0057198132243428
1124 => 0.0058061821923973
1125 => 0.0058183957114677
1126 => 0.0058097296352166
1127 => 0.0057527669790621
1128 => 0.0058472729345035
1129 => 0.0059026323067636
1130 => 0.0059355975460678
1201 => 0.0060191919080505
1202 => 0.0055933750905142
1203 => 0.0052919607825931
1204 => 0.0052448905859358
1205 => 0.0053406096817824
1206 => 0.0053658500440117
1207 => 0.0053556756856458
1208 => 0.0050164064786905
1209 => 0.0052431044037746
1210 => 0.005487012309862
1211 => 0.0054963818058811
1212 => 0.0056184872035423
1213 => 0.0056582497262901
1214 => 0.0057565605761277
1215 => 0.0057504112057032
1216 => 0.0057743483331714
1217 => 0.0057688456020997
1218 => 0.0059509457496321
1219 => 0.0061518292544939
1220 => 0.0061448732974909
1221 => 0.0061159939169213
1222 => 0.0061588847217333
1223 => 0.0063662180267353
1224 => 0.0063471300984593
1225 => 0.0063656723948736
1226 => 0.006610130046264
1227 => 0.0069279597667669
1228 => 0.0067802959520111
1229 => 0.0071006839409132
1230 => 0.0073023511968895
1231 => 0.0076511138633171
]
'min_raw' => 0.0031237803052069
'max_raw' => 0.0076511138633171
'avg_raw' => 0.005387447084262
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003123'
'max' => '$0.007651'
'avg' => '$0.005387'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0013928724963565
'max_diff' => 0.0031040078912228
'year' => 2028
]
3 => [
'items' => [
101 => 0.007607447059788
102 => 0.0077432178064896
103 => 0.0075292743679341
104 => 0.0070380169879078
105 => 0.0069602736270609
106 => 0.0071159178042518
107 => 0.0074985538263388
108 => 0.0071038672342303
109 => 0.0071837118177729
110 => 0.0071607165723412
111 => 0.0071594912534357
112 => 0.0072062566923285
113 => 0.0071384209840932
114 => 0.0068620461053314
115 => 0.0069887070835805
116 => 0.0069397971971188
117 => 0.0069940663626216
118 => 0.0072869346665344
119 => 0.0071574506082662
120 => 0.0070210496713114
121 => 0.0071921267160438
122 => 0.0074099665824387
123 => 0.0073963345550956
124 => 0.0073698827243045
125 => 0.0075189903095008
126 => 0.0077652723558217
127 => 0.0078318414033008
128 => 0.0078809813132056
129 => 0.0078877568765559
130 => 0.0079575493900531
131 => 0.0075822574550007
201 => 0.0081778553941094
202 => 0.0082806987051324
203 => 0.0082613684250786
204 => 0.0083756744369726
205 => 0.0083420427086098
206 => 0.0082933156108685
207 => 0.0084745149533065
208 => 0.0082667845292343
209 => 0.0079719373447969
210 => 0.0078101783479985
211 => 0.0080231956437087
212 => 0.0081532778729198
213 => 0.0082392539516446
214 => 0.0082652702611186
215 => 0.0076113902995997
216 => 0.0072589852661861
217 => 0.0074848728522723
218 => 0.0077604712972258
219 => 0.0075807264917236
220 => 0.0075877721477974
221 => 0.0073315032912553
222 => 0.0077831454046272
223 => 0.007717344947617
224 => 0.008058717834985
225 => 0.0079772464557261
226 => 0.0082556227933556
227 => 0.0081823169742507
228 => 0.0084866053308818
301 => 0.0086079941946203
302 => 0.0088118249895053
303 => 0.0089617637519633
304 => 0.0090498106611501
305 => 0.0090445246549782
306 => 0.0093934103739724
307 => 0.0091876846546201
308 => 0.0089292446652844
309 => 0.0089245703012451
310 => 0.009058420033845
311 => 0.0093389323534935
312 => 0.0094116651166902
313 => 0.009452312808931
314 => 0.0093900594533078
315 => 0.0091667589294461
316 => 0.0090703388954019
317 => 0.0091524915579648
318 => 0.0090520259111091
319 => 0.0092254578032639
320 => 0.0094636168342456
321 => 0.0094144379361308
322 => 0.0095788356192162
323 => 0.0097489699260691
324 => 0.0099922696260784
325 => 0.010055877177023
326 => 0.010161018039955
327 => 0.010269242524887
328 => 0.010304001312715
329 => 0.010370366623698
330 => 0.01037001684575
331 => 0.010570013177298
401 => 0.010790615324365
402 => 0.010873887527932
403 => 0.011065367368377
404 => 0.010737464851869
405 => 0.010986182677313
406 => 0.011210532381675
407 => 0.010943053415282
408 => 0.011311710855848
409 => 0.01132602498887
410 => 0.011542151402972
411 => 0.011323065877468
412 => 0.01119297359177
413 => 0.011568545146087
414 => 0.011750272390828
415 => 0.011695534665767
416 => 0.011278977875315
417 => 0.011036523956311
418 => 0.010401975284409
419 => 0.011153625596739
420 => 0.011519732537936
421 => 0.011278029746782
422 => 0.011399930575628
423 => 0.012064981971336
424 => 0.012318190483932
425 => 0.012265524883373
426 => 0.012274424502918
427 => 0.012411051220255
428 => 0.013016929326637
429 => 0.012653873121148
430 => 0.012931415986788
501 => 0.013078623721968
502 => 0.013215358470379
503 => 0.012879581143742
504 => 0.012442739775336
505 => 0.012304373776608
506 => 0.011253997167643
507 => 0.011199320503592
508 => 0.011168628835188
509 => 0.010975122207322
510 => 0.010823079003745
511 => 0.010702168603258
512 => 0.010384863605479
513 => 0.010491944727644
514 => 0.0099862267878845
515 => 0.010309767204199
516 => 0.0095026291613566
517 => 0.010174837707672
518 => 0.0098089851574848
519 => 0.010054645305363
520 => 0.01005378822025
521 => 0.0096014500013852
522 => 0.0093405507568019
523 => 0.0095068059098009
524 => 0.0096850446311662
525 => 0.0097139632640407
526 => 0.0099450544187974
527 => 0.010009546992802
528 => 0.0098141314826972
529 => 0.0094859030194544
530 => 0.0095621430053715
531 => 0.0093390057559207
601 => 0.0089479663091086
602 => 0.0092288176667028
603 => 0.009324712668348
604 => 0.0093670653640922
605 => 0.0089825229793364
606 => 0.0088616914132248
607 => 0.008797361701302
608 => 0.0094362634264589
609 => 0.0094712639052021
610 => 0.0092921965073829
611 => 0.010101598125393
612 => 0.0099184056110637
613 => 0.010123076532825
614 => 0.0095552250257592
615 => 0.0095769177180426
616 => 0.0093080877143735
617 => 0.0094586145532009
618 => 0.0093522270352242
619 => 0.0094464534721588
620 => 0.0095029324099473
621 => 0.009771718301258
622 => 0.010177906810794
623 => 0.0097315706523158
624 => 0.0095370955964152
625 => 0.0096577468273267
626 => 0.0099790569544774
627 => 0.010465858244673
628 => 0.010177662083088
629 => 0.010305558645712
630 => 0.010333498354923
701 => 0.010120993174972
702 => 0.010473693613772
703 => 0.010662708644259
704 => 0.010856598954389
705 => 0.011024948477991
706 => 0.010779154900784
707 => 0.011042189261521
708 => 0.010830229998582
709 => 0.010640080627779
710 => 0.010640369005885
711 => 0.010521085527941
712 => 0.010289958758741
713 => 0.010247335436379
714 => 0.010469067342036
715 => 0.010646875332282
716 => 0.010661520450002
717 => 0.010759964089507
718 => 0.010818222021316
719 => 0.011389228950862
720 => 0.011618892661542
721 => 0.01189972109965
722 => 0.012009119602917
723 => 0.012338369876216
724 => 0.012072473540127
725 => 0.012014945195248
726 => 0.011216291729169
727 => 0.011347071189498
728 => 0.011556461723826
729 => 0.011219744501957
730 => 0.011433314077612
731 => 0.011475477235868
801 => 0.011208302979604
802 => 0.011351012293793
803 => 0.01097201866567
804 => 0.010186167836217
805 => 0.010474568490393
806 => 0.010686928446477
807 => 0.010383864605351
808 => 0.010927094810378
809 => 0.010609750939149
810 => 0.010509168167162
811 => 0.010116758913292
812 => 0.010301960975901
813 => 0.010552449417418
814 => 0.010397676682968
815 => 0.010718853346196
816 => 0.011173725156014
817 => 0.011497893895776
818 => 0.011522779546395
819 => 0.011314360764348
820 => 0.01164835319269
821 => 0.011650785962903
822 => 0.011274041139333
823 => 0.011043287032621
824 => 0.010990859214065
825 => 0.011121834183897
826 => 0.011280861976586
827 => 0.011531604482112
828 => 0.011683122926766
829 => 0.012078202671249
830 => 0.012185099922282
831 => 0.012302547591946
901 => 0.012459493898137
902 => 0.012647948178926
903 => 0.012235620941267
904 => 0.012252003471094
905 => 0.011868050056445
906 => 0.011457740768404
907 => 0.011769114372252
908 => 0.01217619393899
909 => 0.012082809436597
910 => 0.012072301772406
911 => 0.012089972748993
912 => 0.012019563883842
913 => 0.011701107196237
914 => 0.011541180241366
915 => 0.011747526814867
916 => 0.011857190835253
917 => 0.012027270167165
918 => 0.012006304299568
919 => 0.012444410393385
920 => 0.012614645173801
921 => 0.012571091832214
922 => 0.012579106695236
923 => 0.012887308633707
924 => 0.01323009257585
925 => 0.013551154971993
926 => 0.0138777534313
927 => 0.01348402624125
928 => 0.013284115855861
929 => 0.013490372344902
930 => 0.013380929748547
1001 => 0.01400981936999
1002 => 0.014053362322897
1003 => 0.014682206468462
1004 => 0.015279054443972
1005 => 0.014904184924197
1006 => 0.015257669996851
1007 => 0.015639992922988
1008 => 0.016377555877165
1009 => 0.016129170621975
1010 => 0.015938911409194
1011 => 0.015759117372441
1012 => 0.016133240221424
1013 => 0.016614543289882
1014 => 0.016718211360965
1015 => 0.01688619324037
1016 => 0.016709580834022
1017 => 0.016922291024249
1018 => 0.017673251465343
1019 => 0.017470335325248
1020 => 0.017182161785916
1021 => 0.017774972931153
1022 => 0.017989508980119
1023 => 0.019495235325163
1024 => 0.021396277034235
1025 => 0.020609233283767
1026 => 0.020120689830108
1027 => 0.020235509130123
1028 => 0.020929705207953
1029 => 0.02115265895547
1030 => 0.020546593812954
1031 => 0.020760666267206
1101 => 0.021940226537278
1102 => 0.022573022777347
1103 => 0.02171360048746
1104 => 0.019342488474843
1105 => 0.017156214911675
1106 => 0.017736113109808
1107 => 0.017670370650476
1108 => 0.018937661007528
1109 => 0.017465495842416
1110 => 0.017490283328218
1111 => 0.01878377990777
1112 => 0.018438697196491
1113 => 0.017879707399073
1114 => 0.017160296155811
1115 => 0.015830397935154
1116 => 0.014652469994163
1117 => 0.01696265794705
1118 => 0.016863038441718
1119 => 0.016718774635212
1120 => 0.017039818125616
1121 => 0.018598714185229
1122 => 0.018562776585401
1123 => 0.018334159910818
1124 => 0.018507563643554
1125 => 0.01784930888633
1126 => 0.018018956125449
1127 => 0.017155868594772
1128 => 0.017546020204357
1129 => 0.017878508058023
1130 => 0.017945259917214
1201 => 0.018095655264404
1202 => 0.016810543489153
1203 => 0.017387520947341
1204 => 0.01772644114855
1205 => 0.016195187349466
1206 => 0.017696173184298
1207 => 0.016788172552261
1208 => 0.016479983500036
1209 => 0.016894919458037
1210 => 0.016733218511666
1211 => 0.016594197533374
1212 => 0.016516621438803
1213 => 0.016821304611548
1214 => 0.016807090777365
1215 => 0.016308569970298
1216 => 0.015658269899787
1217 => 0.015876531948822
1218 => 0.01579723530019
1219 => 0.015509854016075
1220 => 0.01570351430302
1221 => 0.014850732408544
1222 => 0.013383565482843
1223 => 0.014352820894499
1224 => 0.014315505615498
1225 => 0.014296689559712
1226 => 0.015025058213319
1227 => 0.014955042373599
1228 => 0.014827962938909
1229 => 0.0155075201026
1230 => 0.015259472596519
1231 => 0.016023896562918
]
'min_raw' => 0.0068620461053314
'max_raw' => 0.022573022777347
'avg_raw' => 0.014717534441339
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.006862'
'max' => '$0.022573'
'avg' => '$0.014717'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0037382658001244
'max_diff' => 0.01492190891403
'year' => 2029
]
4 => [
'items' => [
101 => 0.016527395627031
102 => 0.016399691977884
103 => 0.016873235281304
104 => 0.015881560265605
105 => 0.016210954926724
106 => 0.016278842709859
107 => 0.015499134472685
108 => 0.014966497830878
109 => 0.014930977039371
110 => 0.014007458504328
111 => 0.014500794651367
112 => 0.014934910045125
113 => 0.01472700246023
114 => 0.014661185129915
115 => 0.014997431596458
116 => 0.015023560826664
117 => 0.014427811608902
118 => 0.014551686736199
119 => 0.015068266609554
120 => 0.014538670248798
121 => 0.013509751028923
122 => 0.013254564836473
123 => 0.013220518294386
124 => 0.012528433101389
125 => 0.013271617598073
126 => 0.012947197649164
127 => 0.013972036380619
128 => 0.013386653993533
129 => 0.013361419328814
130 => 0.013323273431972
131 => 0.01272756711668
201 => 0.012857988940618
202 => 0.013291530947191
203 => 0.013446223619336
204 => 0.013430087906272
205 => 0.013289406354841
206 => 0.01335380964868
207 => 0.013146344199629
208 => 0.013073083831549
209 => 0.012841853958038
210 => 0.012502009922859
211 => 0.012549267320335
212 => 0.011875947361616
213 => 0.011509086912311
214 => 0.011407544775087
215 => 0.011271758385452
216 => 0.01142288220911
217 => 0.011874039930771
218 => 0.011329847999998
219 => 0.010396869105311
220 => 0.010452942726601
221 => 0.01057892350523
222 => 0.0103441591577
223 => 0.010121974405042
224 => 0.01031514602106
225 => 0.0099198305641378
226 => 0.010626695489557
227 => 0.010607576774291
228 => 0.010871052306254
301 => 0.011035808963452
302 => 0.010656098209211
303 => 0.010560601981366
304 => 0.010615000972808
305 => 0.0097159068195248
306 => 0.010797577132334
307 => 0.010806931462116
308 => 0.01072683401134
309 => 0.011302790060087
310 => 0.012518236968139
311 => 0.012060936950091
312 => 0.011883856561137
313 => 0.01154722661229
314 => 0.01199576603202
315 => 0.011961325202889
316 => 0.011805570712265
317 => 0.011711369910353
318 => 0.011884937776231
319 => 0.01168986293098
320 => 0.011654822128474
321 => 0.01144251299006
322 => 0.011366728287097
323 => 0.011310620310098
324 => 0.011248850940479
325 => 0.011385098777891
326 => 0.01107634325342
327 => 0.010704014358586
328 => 0.010673059239635
329 => 0.01075852904466
330 => 0.010720715018415
331 => 0.010672878200625
401 => 0.010581544687882
402 => 0.010554447985683
403 => 0.010642499122379
404 => 0.010543094522749
405 => 0.010689771424352
406 => 0.010649883423119
407 => 0.010427072290713
408 => 0.010149367124488
409 => 0.010146894966002
410 => 0.010087063843467
411 => 0.010010859913248
412 => 0.0099896617231714
413 => 0.010298877646358
414 => 0.010938945353301
415 => 0.010813284746906
416 => 0.010904087413243
417 => 0.011350746660921
418 => 0.011492726204245
419 => 0.011391952487363
420 => 0.011254007208243
421 => 0.01126007610044
422 => 0.01173147687807
423 => 0.011760877566338
424 => 0.011835163620572
425 => 0.011930642193499
426 => 0.011408212901194
427 => 0.011235469727754
428 => 0.011153614428752
429 => 0.010901531789813
430 => 0.011173381303976
501 => 0.01101498623383
502 => 0.011036359140339
503 => 0.011022440006937
504 => 0.011030040794982
505 => 0.010626497906405
506 => 0.010773527725413
507 => 0.01052906213441
508 => 0.010201750150608
509 => 0.010200652886068
510 => 0.010280762030401
511 => 0.01023310997668
512 => 0.010104879525365
513 => 0.010123094055744
514 => 0.0099635156033969
515 => 0.01014246976912
516 => 0.010147601534264
517 => 0.010078694432761
518 => 0.010354398015973
519 => 0.010467353998968
520 => 0.010421997868626
521 => 0.010464171691953
522 => 0.010818506512425
523 => 0.010876278548874
524 => 0.010901937071258
525 => 0.010867558050366
526 => 0.01047064828201
527 => 0.010488252918027
528 => 0.010359081779791
529 => 0.010249945779702
530 => 0.010254310647362
531 => 0.010310420738096
601 => 0.01055545679514
602 => 0.011071120731525
603 => 0.011090689800966
604 => 0.011114408083997
605 => 0.011017933907053
606 => 0.010988836372153
607 => 0.011027223531397
608 => 0.011220879793582
609 => 0.011719016277083
610 => 0.011542941574397
611 => 0.011399790100346
612 => 0.011525372536449
613 => 0.011506040104758
614 => 0.011342854925821
615 => 0.011338274861353
616 => 0.011025070329515
617 => 0.010909285745416
618 => 0.010812527480618
619 => 0.010706869981396
620 => 0.010644232674186
621 => 0.010740472046207
622 => 0.01076248312926
623 => 0.010552054060358
624 => 0.010523373355829
625 => 0.010695214275921
626 => 0.010619593493864
627 => 0.010697371343515
628 => 0.0107154164718
629 => 0.010712510790531
630 => 0.010633554009072
701 => 0.010683878707049
702 => 0.010564845793819
703 => 0.010435415378846
704 => 0.010352846837894
705 => 0.010280794834785
706 => 0.010320773473797
707 => 0.010178256925531
708 => 0.010132663013449
709 => 0.010666829831716
710 => 0.011061424603631
711 => 0.01105568703937
712 => 0.011020761092517
713 => 0.010968868219963
714 => 0.011217083506734
715 => 0.011130610264044
716 => 0.011193526773182
717 => 0.011209541665355
718 => 0.011258013920586
719 => 0.0112753385855
720 => 0.011222971415377
721 => 0.011047220796331
722 => 0.010609266963535
723 => 0.010405398272135
724 => 0.010338118208272
725 => 0.01034056371081
726 => 0.010273105833597
727 => 0.010292975201686
728 => 0.010266196078239
729 => 0.010215482896995
730 => 0.010317642077761
731 => 0.010329414971665
801 => 0.010305569798163
802 => 0.010311186199731
803 => 0.010113758347541
804 => 0.010128768358352
805 => 0.010045190710776
806 => 0.010029520909398
807 => 0.0098182438942624
808 => 0.0094439360368557
809 => 0.0096513389248018
810 => 0.0094008254014221
811 => 0.0093059521342189
812 => 0.0097550674253387
813 => 0.0097099887066294
814 => 0.009632833535447
815 => 0.0095187049567218
816 => 0.0094763735567011
817 => 0.0092191813706683
818 => 0.0092039850842505
819 => 0.0093314564764216
820 => 0.0092726328149574
821 => 0.0091900221159991
822 => 0.0088908145384842
823 => 0.008554406157133
824 => 0.0085645602115783
825 => 0.0086715654585856
826 => 0.0089826976458832
827 => 0.0088611329176645
828 => 0.0087729363125474
829 => 0.0087564197395891
830 => 0.008963159229949
831 => 0.0092557389220705
901 => 0.0093930107675122
902 => 0.0092569785376874
903 => 0.00910071203656
904 => 0.0091102232544144
905 => 0.0091734971256989
906 => 0.0091801463149265
907 => 0.0090784328871485
908 => 0.0091070646212782
909 => 0.0090635703989945
910 => 0.0087966464371237
911 => 0.0087918186290785
912 => 0.008726311184105
913 => 0.0087243276447055
914 => 0.0086128831392078
915 => 0.0085972912825091
916 => 0.0083760114526454
917 => 0.0085216585067587
918 => 0.008423966109673
919 => 0.0082767206239581
920 => 0.0082513354467206
921 => 0.0082505723376394
922 => 0.0084017605279805
923 => 0.0085198917847285
924 => 0.0084256655107461
925 => 0.0084042120146599
926 => 0.0086332792259381
927 => 0.008604128335309
928 => 0.0085788838520272
929 => 0.0092295416196831
930 => 0.0087144952251247
1001 => 0.0084899055992768
1002 => 0.0082119332888768
1003 => 0.0083024424748011
1004 => 0.0083215140901319
1005 => 0.007653040791895
1006 => 0.0073818412580533
1007 => 0.0072887757979776
1008 => 0.0072352153099516
1009 => 0.0072596234969154
1010 => 0.0070155121079252
1011 => 0.0071795589985563
1012 => 0.0069681791699129
1013 => 0.0069327406537514
1014 => 0.0073107139723018
1015 => 0.0073633067514899
1016 => 0.0071389296161774
1017 => 0.0072830160604066
1018 => 0.0072307683127777
1019 => 0.0069718026703781
1020 => 0.0069619120876608
1021 => 0.0068319722313871
1022 => 0.006628641517633
1023 => 0.006535713925356
1024 => 0.0064873164284638
1025 => 0.0065072861789299
1026 => 0.0064971888620098
1027 => 0.0064312970390176
1028 => 0.0065009657041735
1029 => 0.0063229910537802
1030 => 0.0062521201139544
1031 => 0.0062201093546283
1101 => 0.0060621466085656
1102 => 0.0063135355839034
1103 => 0.0063630623789599
1104 => 0.0064126867571021
1105 => 0.0068446330888288
1106 => 0.0068230542707634
1107 => 0.007018116276764
1108 => 0.0070105365259069
1109 => 0.0069549016820005
1110 => 0.0067201874270471
1111 => 0.0068137403456922
1112 => 0.0065257990034542
1113 => 0.006741544235167
1114 => 0.0066430871211495
1115 => 0.0067082557858787
1116 => 0.006591076650674
1117 => 0.0066559284223042
1118 => 0.0063748070193907
1119 => 0.0061122998088349
1120 => 0.0062179403734258
1121 => 0.0063327837486
1122 => 0.0065817934475254
1123 => 0.0064334853251308
1124 => 0.0064868225340949
1125 => 0.0063081518126062
1126 => 0.0059395030794064
1127 => 0.0059415895912012
1128 => 0.0058848810150477
1129 => 0.0058358765256633
1130 => 0.0064505202970463
1201 => 0.0063740796279947
1202 => 0.0062522814261684
1203 => 0.0064153131593811
1204 => 0.006458421337304
1205 => 0.0064596485665265
1206 => 0.0065785923106204
1207 => 0.0066420726081651
1208 => 0.0066532612857467
1209 => 0.0068404218370281
1210 => 0.0069031555851103
1211 => 0.0071615470150483
1212 => 0.0066366867484306
1213 => 0.0066258775966335
1214 => 0.0064176073502037
1215 => 0.0062855190672956
1216 => 0.0064266515479409
1217 => 0.0065516756592878
1218 => 0.0064214921978466
1219 => 0.006438491409588
1220 => 0.0062637307489828
1221 => 0.0063261994618958
1222 => 0.0063800059329008
1223 => 0.00635029716221
1224 => 0.0063058216945651
1225 => 0.0065414251079135
1226 => 0.0065281314399952
1227 => 0.0067475307550042
1228 => 0.0069185682104494
1229 => 0.0072250979072093
1230 => 0.0069052181888858
1231 => 0.0068935605005434
]
'min_raw' => 0.0058358765256633
'max_raw' => 0.016873235281304
'avg_raw' => 0.011354555903484
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.005835'
'max' => '$0.016873'
'avg' => '$0.011354'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0010261695796681
'max_diff' => -0.0056997874960437
'year' => 2030
]
5 => [
'items' => [
101 => 0.0070075162740427
102 => 0.0069031381390751
103 => 0.0069691015173638
104 => 0.0072144701871771
105 => 0.0072196544405234
106 => 0.0071328115174402
107 => 0.0071275271176783
108 => 0.0071442062510139
109 => 0.0072418964559238
110 => 0.0072077604966115
111 => 0.0072472634929444
112 => 0.0072966625947501
113 => 0.0075009982246035
114 => 0.0075502628531862
115 => 0.0074305753465117
116 => 0.0074413817882802
117 => 0.0073966153752885
118 => 0.0073533715812599
119 => 0.0074505773149871
120 => 0.0076282227039571
121 => 0.0076271175812121
122 => 0.0076683278585202
123 => 0.0076940015198788
124 => 0.007583791371059
125 => 0.0075120486167168
126 => 0.0075395593538417
127 => 0.0075835496216103
128 => 0.0075252939028904
129 => 0.0071657126202772
130 => 0.0072747866112807
131 => 0.0072566313657321
201 => 0.0072307760883175
202 => 0.0073404508297158
203 => 0.0073298724333546
204 => 0.0070130083927983
205 => 0.0070332930006118
206 => 0.0070142419669842
207 => 0.00707579975411
208 => 0.0068998138165548
209 => 0.0069539459056634
210 => 0.0069878970444955
211 => 0.0070078945260926
212 => 0.0070801391420226
213 => 0.0070716620701874
214 => 0.0070796121953349
215 => 0.0071867318888876
216 => 0.0077285065398375
217 => 0.0077579941387303
218 => 0.0076127864171995
219 => 0.0076707940378554
220 => 0.0075594320910682
221 => 0.0076341901120066
222 => 0.0076853376512848
223 => 0.0074542117563927
224 => 0.0074405259808918
225 => 0.0073287044037366
226 => 0.007388790985402
227 => 0.0072931889135943
228 => 0.0073166463179974
301 => 0.0072510573703065
302 => 0.0073691044175208
303 => 0.007501099358963
304 => 0.0075344464938094
305 => 0.0074467245388726
306 => 0.0073832080623397
307 => 0.0072716940531761
308 => 0.007457144335667
309 => 0.0075113756497622
310 => 0.007456859481661
311 => 0.0074442268943101
312 => 0.0074202881641068
313 => 0.0074493056090884
314 => 0.0075110802943789
315 => 0.0074819484935952
316 => 0.0075011905612491
317 => 0.0074278596416865
318 => 0.0075838278552041
319 => 0.0078315429140648
320 => 0.0078323393584845
321 => 0.0078032074006696
322 => 0.0077912872311885
323 => 0.0078211783877816
324 => 0.007837393114034
325 => 0.0079340556333555
326 => 0.0080377783677921
327 => 0.0085218071116334
328 => 0.0083858937772351
329 => 0.0088153528737699
330 => 0.0091549992608446
331 => 0.0092568443613919
401 => 0.0091631516610707
402 => 0.0088426339944522
403 => 0.0088269078686176
404 => 0.0093058965816141
405 => 0.0091705603311197
406 => 0.0091544625147597
407 => 0.0089832089463801
408 => 0.0090844410154595
409 => 0.009062300076967
410 => 0.0090273495223848
411 => 0.0092204932583013
412 => 0.0095820410898768
413 => 0.0095256904697517
414 => 0.0094836273458583
415 => 0.0092993189813488
416 => 0.0094103137835471
417 => 0.0093707906604497
418 => 0.0095406070792698
419 => 0.009440011594655
420 => 0.0091695350259153
421 => 0.0092126093109895
422 => 0.009206098719454
423 => 0.0093400862319098
424 => 0.0092998665064451
425 => 0.0091982451725535
426 => 0.0095808053586938
427 => 0.0095559640281174
428 => 0.0095911833553559
429 => 0.0096066879924002
430 => 0.0098395456362372
501 => 0.0099349399623037
502 => 0.0099565961444335
503 => 0.010047213376135
504 => 0.0099543415051584
505 => 0.010325895205586
506 => 0.01057295673561
507 => 0.010859931416404
508 => 0.011279278556566
509 => 0.011436956960445
510 => 0.011408473768109
511 => 0.011726417983837
512 => 0.012297756671997
513 => 0.011523957652184
514 => 0.012338769898978
515 => 0.012080809749103
516 => 0.011469190874254
517 => 0.011429809829226
518 => 0.011844005232315
519 => 0.012762650771536
520 => 0.012532540483153
521 => 0.012763027149533
522 => 0.01249415221018
523 => 0.012480800303186
524 => 0.012749968493869
525 => 0.013378894642995
526 => 0.01308011540449
527 => 0.012651742102417
528 => 0.012968046282441
529 => 0.012694034329134
530 => 0.012076608707218
531 => 0.012532364522152
601 => 0.012227613587884
602 => 0.012316556111954
603 => 0.012957097247506
604 => 0.012880025643414
605 => 0.012979763435747
606 => 0.012803728842873
607 => 0.012639284775021
608 => 0.012332337710599
609 => 0.01224146581713
610 => 0.012266579539257
611 => 0.012241453372017
612 => 0.012069719310462
613 => 0.01203263335622
614 => 0.011970821807711
615 => 0.011989979791223
616 => 0.011873755996419
617 => 0.012093094310276
618 => 0.01213380543413
619 => 0.012293421567658
620 => 0.012309993444147
621 => 0.012754522104027
622 => 0.012509683188166
623 => 0.0126739422713
624 => 0.012659249392838
625 => 0.011482446509862
626 => 0.011644599564117
627 => 0.011896858830105
628 => 0.011783216372706
629 => 0.011622552526185
630 => 0.011492807855868
701 => 0.011296231413265
702 => 0.011572908981313
703 => 0.011936710561917
704 => 0.012319220052595
705 => 0.01277878014263
706 => 0.012676211680403
707 => 0.012310628896375
708 => 0.012327028673008
709 => 0.01242840563908
710 => 0.012297113256948
711 => 0.012258392570326
712 => 0.012423086011334
713 => 0.012424220164549
714 => 0.012273152411692
715 => 0.012105268249499
716 => 0.012104564808729
717 => 0.012074691443636
718 => 0.012499466615467
719 => 0.01273305001036
720 => 0.012759829970146
721 => 0.012731247505694
722 => 0.012742247761864
723 => 0.012606330731035
724 => 0.012916996758567
725 => 0.013202094627117
726 => 0.013125682308118
727 => 0.013011129379288
728 => 0.012919882453858
729 => 0.013104187432356
730 => 0.013095980621786
731 => 0.013199604545949
801 => 0.013194903566188
802 => 0.013160058737985
803 => 0.013125683552537
804 => 0.013261977277246
805 => 0.01322272687334
806 => 0.013183415502715
807 => 0.013104570530658
808 => 0.013115286871837
809 => 0.013000753722185
810 => 0.012947765446475
811 => 0.012150948916455
812 => 0.011938013502903
813 => 0.012005007318706
814 => 0.012027063422363
815 => 0.0119343936575
816 => 0.012067258295403
817 => 0.012046551482325
818 => 0.012127109578934
819 => 0.012076780377598
820 => 0.012078845905577
821 => 0.012226853355386
822 => 0.012269820547735
823 => 0.012247967086919
824 => 0.012263272501782
825 => 0.012615979327285
826 => 0.012565835695627
827 => 0.012539197890709
828 => 0.012546576744718
829 => 0.012636700900753
830 => 0.012661930743847
831 => 0.01255503012579
901 => 0.012605445075251
902 => 0.012820105531444
903 => 0.012895224542383
904 => 0.013134968366127
905 => 0.013033120928693
906 => 0.013220066307956
907 => 0.013794672669432
908 => 0.014253707990715
909 => 0.013831560138826
910 => 0.014674520048567
911 => 0.015330885253717
912 => 0.01530569286391
913 => 0.015191240408391
914 => 0.014443986072699
915 => 0.013756351492061
916 => 0.014331587017272
917 => 0.014333053410924
918 => 0.014283640169157
919 => 0.013976738768362
920 => 0.014272960665657
921 => 0.014296473684144
922 => 0.014283312646407
923 => 0.014048012061987
924 => 0.013688751560393
925 => 0.013758950202456
926 => 0.013873937010169
927 => 0.013656242994407
928 => 0.013586676565826
929 => 0.013716013792113
930 => 0.014132765283693
1001 => 0.014053980828287
1002 => 0.014051923447763
1003 => 0.014388996757799
1004 => 0.014147725012787
1005 => 0.01375983563214
1006 => 0.013661888447894
1007 => 0.013314241928951
1008 => 0.013554362617859
1009 => 0.013563004133975
1010 => 0.013431492486633
1011 => 0.013770507077519
1012 => 0.013767382998382
1013 => 0.014089226896766
1014 => 0.014704471551427
1015 => 0.014522513432693
1016 => 0.014310915937592
1017 => 0.014333922452272
1018 => 0.01458624713339
1019 => 0.014433685871174
1020 => 0.014488547964761
1021 => 0.014586164093041
1022 => 0.014645058326903
1023 => 0.01432544847835
1024 => 0.014250932133945
1025 => 0.014098497844977
1026 => 0.014058730584306
1027 => 0.014182885132025
1028 => 0.014150174795146
1029 => 0.013562277848007
1030 => 0.013500839346003
1031 => 0.013502723577145
1101 => 0.013348233542615
1102 => 0.0131125991581
1103 => 0.013731832251608
1104 => 0.013682099168038
1105 => 0.013627197692811
1106 => 0.013633922810263
1107 => 0.013902710908398
1108 => 0.013746800237355
1109 => 0.014161314309578
1110 => 0.014076102677763
1111 => 0.013988705689124
1112 => 0.013976624763117
1113 => 0.013942984378852
1114 => 0.013827618984171
1115 => 0.013688308337708
1116 => 0.013596323382032
1117 => 0.012541889620989
1118 => 0.01273758639368
1119 => 0.012962717692338
1120 => 0.013040432114478
1121 => 0.012907496217733
1122 => 0.013832868103628
1123 => 0.014001942464286
1124 => 0.013489805197405
1125 => 0.013394005225198
1126 => 0.013839148733857
1127 => 0.013570672781555
1128 => 0.013691567486437
1129 => 0.013430259260349
1130 => 0.013961217401879
1201 => 0.013957172390439
1202 => 0.01375061768115
1203 => 0.013925196307015
1204 => 0.013894858974602
1205 => 0.013661659216537
1206 => 0.01396861025016
1207 => 0.013968762494043
1208 => 0.01376995807724
1209 => 0.013537798042296
1210 => 0.013496293311423
1211 => 0.013465025072087
1212 => 0.013683877416338
1213 => 0.013880099743861
1214 => 0.01424522084774
1215 => 0.014337020968318
1216 => 0.014695322950416
1217 => 0.014481971565484
1218 => 0.014576547471061
1219 => 0.014679222995145
1220 => 0.014728449417158
1221 => 0.014648237604123
1222 => 0.015204828065301
1223 => 0.015251821353716
1224 => 0.015267577796831
1225 => 0.015079898624942
1226 => 0.015246601656436
1227 => 0.015168606828624
1228 => 0.015371527703004
1229 => 0.01540334828713
1230 => 0.015376397384425
1231 => 0.015386497740081
]
'min_raw' => 0.0068998138165548
'max_raw' => 0.01540334828713
'avg_raw' => 0.011151581051843
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.006899'
'max' => '$0.0154033'
'avg' => '$0.011151'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0010639372908916
'max_diff' => -0.0014698869941734
'year' => 2031
]
6 => [
'items' => [
101 => 0.014911545970751
102 => 0.014886917215941
103 => 0.014551102396531
104 => 0.014687949417658
105 => 0.014432120470909
106 => 0.014513246465253
107 => 0.014549006030563
108 => 0.014530327262983
109 => 0.014695686542909
110 => 0.014555097374303
111 => 0.014184059443351
112 => 0.013812920423363
113 => 0.013808261075291
114 => 0.013710546722476
115 => 0.013639917142667
116 => 0.013653522905457
117 => 0.013701471388157
118 => 0.013637130289687
119 => 0.013650860725222
120 => 0.013878877440518
121 => 0.01392460456663
122 => 0.01376920592536
123 => 0.013145257956746
124 => 0.012992139560193
125 => 0.013102198027166
126 => 0.013049597168626
127 => 0.010532043394381
128 => 0.011123505310237
129 => 0.010772078723985
130 => 0.01093403226329
131 => 0.010575316720199
201 => 0.010746514579254
202 => 0.010714900585832
203 => 0.011665953843897
204 => 0.011651104455403
205 => 0.011658212071863
206 => 0.011318947019441
207 => 0.011859405459999
208 => 0.012125654722075
209 => 0.01207637906966
210 => 0.01208878068977
211 => 0.011875679767735
212 => 0.011660275354604
213 => 0.011421358709941
214 => 0.011865236304735
215 => 0.011815884693437
216 => 0.011929079533606
217 => 0.012216965882856
218 => 0.012259358241357
219 => 0.012316334001083
220 => 0.012295912247032
221 => 0.012782441280167
222 => 0.012723519404032
223 => 0.012865504172536
224 => 0.012573430731314
225 => 0.012242921908705
226 => 0.012305740830735
227 => 0.012299690863386
228 => 0.012222667835199
229 => 0.012153134889284
301 => 0.012037382125121
302 => 0.012403640999117
303 => 0.0123887715577
304 => 0.012629490530407
305 => 0.012586941113761
306 => 0.012302785695796
307 => 0.012312934362139
308 => 0.012381189020577
309 => 0.012617419172748
310 => 0.012687548365687
311 => 0.012655061729352
312 => 0.012731955187891
313 => 0.012792728642322
314 => 0.012739587398083
315 => 0.013491955351533
316 => 0.01317951972235
317 => 0.013331798674101
318 => 0.013368116306813
319 => 0.013275089454297
320 => 0.013295263647566
321 => 0.01332582205323
322 => 0.013511366708472
323 => 0.013998289571605
324 => 0.01421394439309
325 => 0.014862752563751
326 => 0.014196037262226
327 => 0.014156477135376
328 => 0.014273347079041
329 => 0.014654266158539
330 => 0.014962965294562
331 => 0.015065378607262
401 => 0.015078914217194
402 => 0.015271048400126
403 => 0.015381176130693
404 => 0.015247718256688
405 => 0.01513462668209
406 => 0.014729546699326
407 => 0.014776435810327
408 => 0.015099455287431
409 => 0.015555739324593
410 => 0.015947278496741
411 => 0.015810175125172
412 => 0.016856177070342
413 => 0.016959883890671
414 => 0.016945554961344
415 => 0.017181814531697
416 => 0.016712887397971
417 => 0.016512411963268
418 => 0.015159078364162
419 => 0.015539309903751
420 => 0.016091998776758
421 => 0.016018848331939
422 => 0.015617470898945
423 => 0.015946974015965
424 => 0.015838029980963
425 => 0.015752101300465
426 => 0.016145757243922
427 => 0.015712916363596
428 => 0.016087680857871
429 => 0.015607041517521
430 => 0.015810801401825
501 => 0.015695137436737
502 => 0.015769986197391
503 => 0.01533242187202
504 => 0.015568520960717
505 => 0.015322599373708
506 => 0.015322482774856
507 => 0.015317054042192
508 => 0.015606379698725
509 => 0.015615814597997
510 => 0.015402002500673
511 => 0.015371188837076
512 => 0.015485123101489
513 => 0.015351735917292
514 => 0.015414146941249
515 => 0.015353626283629
516 => 0.015340001808838
517 => 0.015231439675695
518 => 0.015184668123759
519 => 0.015203008454428
520 => 0.015140403450767
521 => 0.01510268167154
522 => 0.015309550230861
523 => 0.015199028704669
524 => 0.01529261122187
525 => 0.015185962132465
526 => 0.014816269923789
527 => 0.014603656025156
528 => 0.013905341713454
529 => 0.014103382785997
530 => 0.014234684221981
531 => 0.014191289098171
601 => 0.014284518615798
602 => 0.014290242151001
603 => 0.014259932284458
604 => 0.014224837341936
605 => 0.014207755064788
606 => 0.0143350723634
607 => 0.014408984340548
608 => 0.014247862077668
609 => 0.014210113385816
610 => 0.014373016889391
611 => 0.014472387932465
612 => 0.015206087882762
613 => 0.015151733020624
614 => 0.015288153057987
615 => 0.015272794255316
616 => 0.015415784187888
617 => 0.015649512295589
618 => 0.015174277701226
619 => 0.015256761994431
620 => 0.015236538750578
621 => 0.015457330824151
622 => 0.015458020112905
623 => 0.015325644235415
624 => 0.015397407346156
625 => 0.015357351146458
626 => 0.015429738113231
627 => 0.015151007078302
628 => 0.01549047139169
629 => 0.015682925782784
630 => 0.015685598012191
701 => 0.015776819866157
702 => 0.015869506553
703 => 0.016047410577086
704 => 0.015864544906326
705 => 0.015535587366243
706 => 0.01555933703811
707 => 0.01536646935272
708 => 0.015369711493356
709 => 0.015352404692551
710 => 0.015404343704562
711 => 0.015162404770654
712 => 0.015219187354862
713 => 0.015139691404453
714 => 0.015256589185761
715 => 0.015130826496969
716 => 0.015236528998317
717 => 0.015282146693806
718 => 0.015450476972238
719 => 0.015105963977979
720 => 0.014403478661208
721 => 0.014551149591604
722 => 0.014332732686247
723 => 0.014352948002409
724 => 0.014393786158301
725 => 0.014261416333641
726 => 0.014286668324734
727 => 0.014285766145917
728 => 0.014277991656265
729 => 0.014243557152506
730 => 0.014193620309396
731 => 0.014392553322596
801 => 0.014426355918003
802 => 0.014501494900337
803 => 0.014725057544504
804 => 0.014702718364381
805 => 0.014739154494005
806 => 0.014659614627617
807 => 0.014356637628685
808 => 0.014373090737393
809 => 0.014167920208158
810 => 0.014496248228618
811 => 0.014418495819655
812 => 0.014368368335787
813 => 0.014354690587386
814 => 0.014578807400106
815 => 0.014645866663072
816 => 0.014604079830571
817 => 0.014518373817995
818 => 0.014682954698849
819 => 0.014726989599456
820 => 0.014736847389757
821 => 0.015028453155377
822 => 0.014753144912719
823 => 0.014819414343055
824 => 0.015336429521096
825 => 0.014867568097831
826 => 0.015115934450592
827 => 0.01510377821006
828 => 0.015230834031873
829 => 0.01509335592419
830 => 0.015095060130101
831 => 0.015207877092364
901 => 0.015049446015511
902 => 0.015010216252862
903 => 0.01495602061673
904 => 0.015074354805516
905 => 0.015145290799899
906 => 0.015716982817875
907 => 0.016086321933811
908 => 0.016070287948725
909 => 0.016216808558043
910 => 0.016150799681571
911 => 0.015937639607178
912 => 0.016301477862064
913 => 0.016186344214579
914 => 0.01619583569259
915 => 0.016195482419305
916 => 0.016272036229724
917 => 0.016217790838988
918 => 0.016110867605673
919 => 0.016181848237846
920 => 0.01639263533936
921 => 0.017046924970198
922 => 0.0174130741158
923 => 0.017024882331883
924 => 0.017292651826334
925 => 0.01713208554569
926 => 0.017102905876063
927 => 0.017271084906589
928 => 0.017439558312244
929 => 0.017428827284634
930 => 0.017306524243334
1001 => 0.017237438358628
1002 => 0.01776057982309
1003 => 0.018146021542624
1004 => 0.018119737001385
1005 => 0.01823574841822
1006 => 0.018576361526143
1007 => 0.018607502920029
1008 => 0.018603579820176
1009 => 0.018526392626161
1010 => 0.018861770465113
1011 => 0.019141548558779
1012 => 0.018508526020899
1013 => 0.01874957271645
1014 => 0.018857786344123
1015 => 0.019016676055082
1016 => 0.019284749630478
1017 => 0.019575948636363
1018 => 0.01961712736863
1019 => 0.019587909087503
1020 => 0.019395855515272
1021 => 0.019714488942238
1022 => 0.019901136930881
1023 => 0.020012281536754
1024 => 0.020294125764551
1025 => 0.018858454634647
1026 => 0.017842215251416
1027 => 0.017683514797049
1028 => 0.01800623841159
1029 => 0.018091338055072
1030 => 0.01805703449549
1031 => 0.016913164677221
1101 => 0.017677492559186
1102 => 0.018499845093666
1103 => 0.018531435003651
1104 => 0.018943121876993
1105 => 0.019077183998568
1106 => 0.019408645892639
1107 => 0.019387912860918
1108 => 0.019468618557414
1109 => 0.019450065715417
1110 => 0.020064029076649
1111 => 0.020741321838529
1112 => 0.020717869343844
1113 => 0.020620500495959
1114 => 0.020765109838924
1115 => 0.021464148552287
1116 => 0.021399792269428
1117 => 0.02146230891637
1118 => 0.022286514955521
1119 => 0.023358100048359
1120 => 0.022860241187352
1121 => 0.02394045166071
1122 => 0.024620386894192
1123 => 0.025796264573885
1124 => 0.025649038897068
1125 => 0.026106799448783
1126 => 0.025385474208639
1127 => 0.023729165653385
1128 => 0.023467048484422
1129 => 0.023991813694551
1130 => 0.025281897757811
1201 => 0.023951184356379
1202 => 0.024220385944364
1203 => 0.024142855868914
1204 => 0.024138724620675
1205 => 0.024296397562961
1206 => 0.024067684736508
1207 => 0.023135867536884
1208 => 0.023562913868238
1209 => 0.023398010771253
1210 => 0.023580983051699
1211 => 0.024568408985752
1212 => 0.024131844443013
1213 => 0.02367195916086
1214 => 0.024248757361394
1215 => 0.024983219680038
1216 => 0.024937258348093
1217 => 0.024848074153773
1218 => 0.025350800787621
1219 => 0.026181157901655
1220 => 0.026405600092934
1221 => 0.026571278730017
1222 => 0.026594123014907
1223 => 0.026829433346921
1224 => 0.025564110385845
1225 => 0.02757221042087
1226 => 0.027918953824275
1227 => 0.027853780435477
1228 => 0.028239171135168
1229 => 0.028125779414901
1230 => 0.027961492602849
1231 => 0.028572418836812
]
'min_raw' => 0.010532043394381
'max_raw' => 0.028572418836812
'avg_raw' => 0.019552231115597
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.010532'
'max' => '$0.028572'
'avg' => '$0.019552'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0036322295778266
'max_diff' => 0.013169070549682
'year' => 2032
]
7 => [
'items' => [
101 => 0.027872041208778
102 => 0.026877943340874
103 => 0.026332561589516
104 => 0.027050764274395
105 => 0.027489345592232
106 => 0.027779219944311
107 => 0.027866935748103
108 => 0.025662333805401
109 => 0.024474175631113
110 => 0.025235771398571
111 => 0.0261649707974
112 => 0.025558948636268
113 => 0.025582703557633
114 => 0.024718675215681
115 => 0.02624141813356
116 => 0.026019567298709
117 => 0.027170529822364
118 => 0.026895843379042
119 => 0.027834408636975
120 => 0.027587252949814
121 => 0.028613182388931
122 => 0.029022453418125
123 => 0.029709683174091
124 => 0.030215212180109
125 => 0.030512068481671
126 => 0.030494246342805
127 => 0.031670538902817
128 => 0.03097692027671
129 => 0.030105571808961
130 => 0.030089811864248
131 => 0.030541095582799
201 => 0.031486862453239
202 => 0.031732086042395
203 => 0.031869132574717
204 => 0.031659241039843
205 => 0.030906367733298
206 => 0.030581280856686
207 => 0.030858264294233
208 => 0.030519537351571
209 => 0.031104275084599
210 => 0.031907244885287
211 => 0.031741434796731
212 => 0.032295713063134
213 => 0.032869332757086
214 => 0.03368963468231
215 => 0.033904091981256
216 => 0.034258581741333
217 => 0.034623468148273
218 => 0.034740659828217
219 => 0.034964415107674
220 => 0.034963235806902
221 => 0.035637537402013
222 => 0.036381312942801
223 => 0.036662070991005
224 => 0.037307658641762
225 => 0.036202112413931
226 => 0.037040681927341
227 => 0.037797092619193
228 => 0.036895268609214
301 => 0.038138222908924
302 => 0.038186484007787
303 => 0.038915169302399
304 => 0.038176507157099
305 => 0.037737891933113
306 => 0.039004157650062
307 => 0.039616863743498
308 => 0.039432311681788
309 => 0.038027861379713
310 => 0.037210411064198
311 => 0.035070985914106
312 => 0.037605227420679
313 => 0.038839582533692
314 => 0.038024664698168
315 => 0.038435661853467
316 => 0.0406779290665
317 => 0.041531639245172
318 => 0.041354073495893
319 => 0.04138407918454
320 => 0.041844725701016
321 => 0.043887486037739
322 => 0.042663416693161
323 => 0.043599171842088
324 => 0.044095492998962
325 => 0.044556503749746
326 => 0.043424407049765
327 => 0.041951565876893
328 => 0.041485055251778
329 => 0.037943637179701
330 => 0.03775929098945
331 => 0.037655811886601
401 => 0.037003390780547
402 => 0.03649076650437
403 => 0.036083108647435
404 => 0.035013292693897
405 => 0.03537432417344
406 => 0.033669260831442
407 => 0.034760099933917
408 => 0.032038777669895
409 => 0.034305175715901
410 => 0.033071678299934
411 => 0.033899938639949
412 => 0.033897048917649
413 => 0.032371959031502
414 => 0.031492319012986
415 => 0.032052859868886
416 => 0.0326538041622
417 => 0.03275130535197
418 => 0.033530445314502
419 => 0.033747886530487
420 => 0.033089029494692
421 => 0.03198238431469
422 => 0.032239432750115
423 => 0.031487109934647
424 => 0.030168693138217
425 => 0.031115603098762
426 => 0.031438919791984
427 => 0.031581714862656
428 => 0.03028520336456
429 => 0.029877811303224
430 => 0.029660919188119
501 => 0.03181502096118
502 => 0.031933027518918
503 => 0.031329289285084
504 => 0.034058243350821
505 => 0.033440596998667
506 => 0.034130659301053
507 => 0.032216108298855
508 => 0.032289246725423
509 => 0.031382867598942
510 => 0.031890379345496
511 => 0.031531686400899
512 => 0.031849377411703
513 => 0.032039800093691
514 => 0.032946030492277
515 => 0.034315523411354
516 => 0.032810669890848
517 => 0.032154983662065
518 => 0.032561767710683
519 => 0.033645087237528
520 => 0.035286371774805
521 => 0.034314698294807
522 => 0.034745910485144
523 => 0.034840111165438
524 => 0.034123635114595
525 => 0.03531278926877
526 => 0.035950066640663
527 => 0.036603781358255
528 => 0.037171383530869
529 => 0.036342673324554
530 => 0.037229512036253
531 => 0.03651487658273
601 => 0.035873774703265
602 => 0.035874746990181
603 => 0.035472574416188
604 => 0.034693314377073
605 => 0.034549606869866
606 => 0.035297191470614
607 => 0.035896683523888
608 => 0.035946060560769
609 => 0.036277970164476
610 => 0.036474390849009
611 => 0.038399580578402
612 => 0.039173907813569
613 => 0.040120740499467
614 => 0.04048958519119
615 => 0.041599675475137
616 => 0.040703187413725
617 => 0.040509226582464
618 => 0.037816510661374
619 => 0.038257442742604
620 => 0.03896341754827
621 => 0.037828151925893
622 => 0.038548216661166
623 => 0.038690372692965
624 => 0.037789576034459
625 => 0.038270730450893
626 => 0.036992926973187
627 => 0.034343376035335
628 => 0.035315738976378
629 => 0.036031725394813
630 => 0.035009924495218
701 => 0.036841463058587
702 => 0.035771516040497
703 => 0.035432394202277
704 => 0.034109359005715
705 => 0.034733780690197
706 => 0.035578319959317
707 => 0.035056492879229
708 => 0.036139362423142
709 => 0.03767299448808
710 => 0.038765952026924
711 => 0.038849855735449
712 => 0.03814715726044
713 => 0.039273236051203
714 => 0.039281438305826
715 => 0.038011216829678
716 => 0.037233213248161
717 => 0.037056449197506
718 => 0.037498040452674
719 => 0.038034213758691
720 => 0.038879609622356
721 => 0.039390464637186
722 => 0.040722503579296
723 => 0.041082915124482
724 => 0.041478898142688
725 => 0.042008053571652
726 => 0.042643440336791
727 => 0.041253250267257
728 => 0.041308485110358
729 => 0.040013959366099
730 => 0.038630572954589
731 => 0.039680390799375
801 => 0.041052887980017
802 => 0.040738035610303
803 => 0.04070260828686
804 => 0.040762187218171
805 => 0.040524798813524
806 => 0.039451099857329
807 => 0.038911894963239
808 => 0.039607606842455
809 => 0.039977346743684
810 => 0.040550781085784
811 => 0.040480093199389
812 => 0.041957198482284
813 => 0.042531156929872
814 => 0.042384313797913
815 => 0.04241133646817
816 => 0.043450460821699
817 => 0.044606180815046
818 => 0.045688665099501
819 => 0.04678981460743
820 => 0.045462335897025
821 => 0.044788324075385
822 => 0.045483732228558
823 => 0.045114738873906
824 => 0.047235084140274
825 => 0.04738189224607
826 => 0.049502084187342
827 => 0.051514398807368
828 => 0.050250500048891
829 => 0.051442299650885
830 => 0.052731328089289
831 => 0.055218073084297
901 => 0.054380624854722
902 => 0.053739152635354
903 => 0.053132964487623
904 => 0.054394345793393
905 => 0.056017092692208
906 => 0.056366616831736
907 => 0.056932979466269
908 => 0.056337518407585
909 => 0.057054685664886
910 => 0.059586601222418
911 => 0.058902455288936
912 => 0.057930858081445
913 => 0.059929562246361
914 => 0.060652885513879
915 => 0.065729547012653
916 => 0.072139041861282
917 => 0.069485468906937
918 => 0.067838310543911
919 => 0.068225431830341
920 => 0.070565962373968
921 => 0.071317666499854
922 => 0.069274275557743
923 => 0.069996035783318
924 => 0.073973005588133
925 => 0.076106522291949
926 => 0.073208920038645
927 => 0.065214550342352
928 => 0.057843376383385
929 => 0.059798543645593
930 => 0.059576888353962
1001 => 0.063849646272149
1002 => 0.058886138634685
1003 => 0.058969711373675
1004 => 0.06333082540068
1005 => 0.062167354946698
1006 => 0.060282681817283
1007 => 0.057857136582934
1008 => 0.053373291881462
1009 => 0.049401825588108
1010 => 0.057190785563439
1011 => 0.056854911445998
1012 => 0.056368515950188
1013 => 0.057450936492623
1014 => 0.062706863396257
1015 => 0.062585697269353
1016 => 0.061814900189492
1017 => 0.062399542981073
1018 => 0.060180191109212
1019 => 0.060752168620293
1020 => 0.05784220875177
1021 => 0.059157632143001
1022 => 0.060278638155197
1023 => 0.060503696708923
1024 => 0.061010765122242
1025 => 0.056677921048345
1026 => 0.058623240831906
1027 => 0.059765933952934
1028 => 0.054603204860597
1029 => 0.059663883398218
1030 => 0.056602495872726
1031 => 0.055563414966077
1101 => 0.05696240051838
1102 => 0.056417214488089
1103 => 0.055948495553643
1104 => 0.055686942334609
1105 => 0.05671420292382
1106 => 0.056666279989491
1107 => 0.054985482282853
1108 => 0.052792950192624
1109 => 0.053528835929518
1110 => 0.053261481742339
1111 => 0.052292555678626
1112 => 0.052945494856989
1113 => 0.050070281160432
1114 => 0.045123625436109
1115 => 0.048391537727759
1116 => 0.048265726659335
1117 => 0.048202287013558
1118 => 0.050658032782272
1119 => 0.050421969490304
1120 => 0.049993512303845
1121 => 0.052284686726396
1122 => 0.05144837724152
1123 => 0.054025686014611
1124 => 0.055723268262449
1125 => 0.055292706493364
1126 => 0.056889290802583
1127 => 0.053545789250615
1128 => 0.05465636634818
1129 => 0.054885254748794
1130 => 0.052256413989671
1201 => 0.050460592364314
1202 => 0.050340831535768
1203 => 0.047227124316863
1204 => 0.048890441580236
1205 => 0.050354091939259
1206 => 0.049653117001143
1207 => 0.049431209276766
1208 => 0.050564887714694
1209 => 0.05065298423862
1210 => 0.048644374157051
1211 => 0.049062027797418
1212 => 0.050803712906889
1213 => 0.049018141801363
1214 => 0.045549068814711
1215 => 0.044688690750335
1216 => 0.044573900456633
1217 => 0.0422404869086
1218 => 0.044746185326654
1219 => 0.043652380818631
1220 => 0.047107696153687
1221 => 0.04513403856553
1222 => 0.045048958131604
1223 => 0.044920346577139
1224 => 0.042911881144247
1225 => 0.043351607429414
1226 => 0.04481332457351
1227 => 0.045334881717946
1228 => 0.04528047903479
1229 => 0.044806161362067
1230 => 0.04502330156374
1231 => 0.04432381731749
]
'min_raw' => 0.024474175631113
'max_raw' => 0.076106522291949
'avg_raw' => 0.050290348961531
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.024474'
'max' => '$0.0761065'
'avg' => '$0.05029'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.013942132236732
'max_diff' => 0.047534103455137
'year' => 2033
]
8 => [
'items' => [
101 => 0.044076814871634
102 => 0.043297207209136
103 => 0.042151399317377
104 => 0.042310730932374
105 => 0.040040585681856
106 => 0.038803690063646
107 => 0.038461333658548
108 => 0.038003520365591
109 => 0.038513044888182
110 => 0.04003415464559
111 => 0.038199373556719
112 => 0.035053770074778
113 => 0.03524282620389
114 => 0.035667579194737
115 => 0.034876054806317
116 => 0.034126943400283
117 => 0.0347782349905
118 => 0.033445401327444
119 => 0.035828645775229
120 => 0.035764185691882
121 => 0.036652511843168
122 => 0.037208000415855
123 => 0.035927779097373
124 => 0.035605806897861
125 => 0.035789216895523
126 => 0.03275785818498
127 => 0.036404785164425
128 => 0.036436323940385
129 => 0.036166269792868
130 => 0.038108145823184
131 => 0.042206109933474
201 => 0.040664290994959
202 => 0.040067252100241
203 => 0.038932280724951
204 => 0.040444562694593
205 => 0.040328443034598
206 => 0.039803305895029
207 => 0.039485701314489
208 => 0.040070897492421
209 => 0.039413189031964
210 => 0.039295046519846
211 => 0.038579231436733
212 => 0.038323718019572
213 => 0.038134546057789
214 => 0.037926286315519
215 => 0.038385655411873
216 => 0.037344664604497
217 => 0.036089331740388
218 => 0.035984964395628
219 => 0.036273131810583
220 => 0.036145639181006
221 => 0.035984354009967
222 => 0.035676416695051
223 => 0.035585058271755
224 => 0.035881928826661
225 => 0.035546779278801
226 => 0.036041310693209
227 => 0.035906825512161
228 => 0.035155602223077
301 => 0.034219299866395
302 => 0.034210964811459
303 => 0.034009240004556
304 => 0.033752313133436
305 => 0.033680841955581
306 => 0.034723385029372
307 => 0.036881417991429
308 => 0.036457744483625
309 => 0.036763892012821
310 => 0.038269834851119
311 => 0.038748528794133
312 => 0.038408763171869
313 => 0.037943671032283
314 => 0.037964132726043
315 => 0.039553493359971
316 => 0.03965261983316
317 => 0.039903080451495
318 => 0.040224993126219
319 => 0.038463586292364
320 => 0.037881170622569
321 => 0.037605189767029
322 => 0.036755275549997
323 => 0.037671835166928
324 => 0.037137795129138
325 => 0.037209855375642
326 => 0.037162926045573
327 => 0.037188552633138
328 => 0.035827979609835
329 => 0.036323700909914
330 => 0.035499468101806
331 => 0.034395912896224
401 => 0.034392213392218
402 => 0.034662306965379
403 => 0.034501644739301
404 => 0.034069306819927
405 => 0.034130718380796
406 => 0.033592688487298
407 => 0.034196044951213
408 => 0.034213347055685
409 => 0.033981021952029
410 => 0.034910575831837
411 => 0.035291414814839
412 => 0.035138493454726
413 => 0.035280685444556
414 => 0.036475350030646
415 => 0.036670132485049
416 => 0.036756641984688
417 => 0.036640730715484
418 => 0.035302521720113
419 => 0.035361876979562
420 => 0.034926367468561
421 => 0.034558407824626
422 => 0.034573124280689
423 => 0.034762303369077
424 => 0.035588459543273
425 => 0.037327056507303
426 => 0.03739303499119
427 => 0.037473002838389
428 => 0.03714773341521
429 => 0.03704962904477
430 => 0.037179054032267
501 => 0.037831979640871
502 => 0.039511481573773
503 => 0.038917833420523
504 => 0.038435188231246
505 => 0.038858598182451
506 => 0.03879341753926
507 => 0.038243227315247
508 => 0.038227785308124
509 => 0.037171794361789
510 => 0.036781418552679
511 => 0.036455191307464
512 => 0.036098959672067
513 => 0.035887773617611
514 => 0.0362122513796
515 => 0.036286463282875
516 => 0.035576986985385
517 => 0.035480287987642
518 => 0.036059661647282
519 => 0.035804700900901
520 => 0.036066934351276
521 => 0.03612777476116
522 => 0.036117978053895
523 => 0.035851769752619
524 => 0.036021442985407
525 => 0.035620115207838
526 => 0.035183731527216
527 => 0.034905345926642
528 => 0.034662417567651
529 => 0.034797208340298
530 => 0.034316703847632
531 => 0.034162980789784
601 => 0.035963961511907
602 => 0.037294365335144
603 => 0.037275020736657
604 => 0.03715726546839
605 => 0.03698230502553
606 => 0.037819180194714
607 => 0.037527629619617
608 => 0.037739757022866
609 => 0.037793752349952
610 => 0.037957179942688
611 => 0.038015591260016
612 => 0.037839031689785
613 => 0.037246476207155
614 => 0.035769884282925
615 => 0.035082526756212
616 => 0.034855687323552
617 => 0.0348639325061
618 => 0.034636493563316
619 => 0.034703484525065
620 => 0.034613196840703
621 => 0.034442213809459
622 => 0.034786650619937
623 => 0.034826343753693
624 => 0.034745948086414
625 => 0.034764884176424
626 => 0.034099242388794
627 => 0.034149849688209
628 => 0.033868061814199
629 => 0.033815229984825
630 => 0.033102894777404
701 => 0.031840889702817
702 => 0.032540163019935
703 => 0.031695539185564
704 => 0.031375667341349
705 => 0.032889890901587
706 => 0.032737904854163
707 => 0.03247777080772
708 => 0.032092978336345
709 => 0.031950255065691
710 => 0.031083113653897
711 => 0.031031878313268
712 => 0.031461657011741
713 => 0.031263328930178
714 => 0.030984801190945
715 => 0.029976001953348
716 => 0.028841777608339
717 => 0.028876012711835
718 => 0.029236788372988
719 => 0.030285792265017
720 => 0.02987592829645
721 => 0.029578567284607
722 => 0.029522880505728
723 => 0.030219917131567
724 => 0.031206369990816
725 => 0.031669191601737
726 => 0.031210549441415
727 => 0.030683686022686
728 => 0.030715753757734
729 => 0.03092908603241
730 => 0.030951504238123
731 => 0.030608570314964
801 => 0.030705104205586
802 => 0.030558460398487
803 => 0.029658507625004
804 => 0.029642230333113
805 => 0.029421367408801
806 => 0.029414679767229
807 => 0.029038936836137
808 => 0.028986367802689
809 => 0.028240307407039
810 => 0.028731366618734
811 => 0.028401989881295
812 => 0.027905541445855
813 => 0.027819953548463
814 => 0.027817380672917
815 => 0.028327122212274
816 => 0.028725409992061
817 => 0.028407719530661
818 => 0.028335387570771
819 => 0.029107703666557
820 => 0.029009419403551
821 => 0.028924305865653
822 => 0.03111804395678
823 => 0.029381529078135
824 => 0.028624309474242
825 => 0.027687106422321
826 => 0.027992264461815
827 => 0.02805656574444
828 => 0.025802761348119
829 => 0.024888393185225
830 => 0.024574616488957
831 => 0.024394033564103
901 => 0.024476327470577
902 => 0.023653288879284
903 => 0.024206384424435
904 => 0.023493702574095
905 => 0.023374219142618
906 => 0.024648582575365
907 => 0.024825902802309
908 => 0.024069399625091
909 => 0.024555197131604
910 => 0.024379040202652
911 => 0.023505919458898
912 => 0.023472572668728
913 => 0.023034471371191
914 => 0.022348927673672
915 => 0.022035615808312
916 => 0.021872440268535
917 => 0.021939769676475
918 => 0.021905725867506
919 => 0.021683566985868
920 => 0.021918459754552
921 => 0.021318405794958
922 => 0.021079459473284
923 => 0.020971532963296
924 => 0.020438950536339
925 => 0.021286526018108
926 => 0.021453509065492
927 => 0.021620821121062
928 => 0.023077158336008
929 => 0.023004403844316
930 => 0.023662069016341
1001 => 0.023636513357125
1002 => 0.023448936596594
1003 => 0.022657581098792
1004 => 0.022973001295661
1005 => 0.022002186956882
1006 => 0.022729587068453
1007 => 0.022397632034487
1008 => 0.022617352737553
1009 => 0.022222275102024
1010 => 0.022440927377881
1011 => 0.021493106940689
1012 => 0.020608045552632
1013 => 0.020964220091738
1014 => 0.021351422549247
1015 => 0.022190976134476
1016 => 0.02169094494528
1017 => 0.021870775069187
1018 => 0.021268374257297
1019 => 0.020025449315081
1020 => 0.020032484135273
1021 => 0.019841287211505
1022 => 0.019676065154161
1023 => 0.021748379542437
1024 => 0.021490654489812
1025 => 0.021080003348676
1026 => 0.021629676219715
1027 => 0.021775018451299
1028 => 0.021779156140305
1029 => 0.022180183277904
1030 => 0.022394211533129
1031 => 0.022431934940764
1101 => 0.023062959806542
1102 => 0.023274471018131
1103 => 0.024145655764481
1104 => 0.022376052731006
1105 => 0.022339608921051
1106 => 0.021637411244249
1107 => 0.021192066376314
1108 => 0.021667904388365
1109 => 0.022089431908676
1110 => 0.021650509279308
1111 => 0.021707823308541
1112 => 0.021118605539911
1113 => 0.021329223166923
1114 => 0.021510635440565
1115 => 0.021410470245981
1116 => 0.021260518101638
1117 => 0.022054871459047
1118 => 0.022010050929526
1119 => 0.02274977103805
1120 => 0.023326435760537
1121 => 0.024359922034383
1122 => 0.023281425230767
1123 => 0.023242120520607
1124 => 0.023626330367097
1125 => 0.023274412197605
1126 => 0.023496812332922
1127 => 0.024324089934291
1128 => 0.024341569006401
1129 => 0.024048772028047
1130 => 0.024030955305305
1201 => 0.024087190167845
1202 => 0.024416559514211
1203 => 0.024301467744093
1204 => 0.024434654854241
1205 => 0.024601207374914
1206 => 0.025290139217223
1207 => 0.025456238352036
1208 => 0.025052703566968
1209 => 0.025089138239872
1210 => 0.024938205152979
1211 => 0.024792405682227
1212 => 0.025120141600176
1213 => 0.025719085431893
1214 => 0.025715359433401
1215 => 0.025854302760555
1216 => 0.025940863302303
1217 => 0.02556928209093
1218 => 0.025327396385747
1219 => 0.025420150756701
1220 => 0.025568467015786
1221 => 0.025372053792837
1222 => 0.024159700393343
1223 => 0.024527450969315
1224 => 0.024466239291388
1225 => 0.024379066418427
1226 => 0.024748842466298
1227 => 0.024713176664406
1228 => 0.023644847428929
1229 => 0.023713238400399
1230 => 0.023649006510422
1231 => 0.023856552887545
]
'min_raw' => 0.019676065154161
'max_raw' => 0.044076814871634
'avg_raw' => 0.031876440012898
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.019676'
'max' => '$0.044076'
'avg' => '$0.031876'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0047981104769522
'max_diff' => -0.032029707420316
'year' => 2034
]
9 => [
'items' => [
101 => 0.023263204012132
102 => 0.023445714129943
103 => 0.023560182764908
104 => 0.023627605670292
105 => 0.023871183436858
106 => 0.023842602397316
107 => 0.023869406799311
108 => 0.024230568324982
109 => 0.026057199386157
110 => 0.026156618884583
111 => 0.025667040913362
112 => 0.025862617656367
113 => 0.025487153077731
114 => 0.025739204964763
115 => 0.025911652464447
116 => 0.025132395373123
117 => 0.025086252825512
118 => 0.024709238571
119 => 0.024911824676195
120 => 0.024589495616372
121 => 0.024668583893061
122 => 0.024447446176647
123 => 0.024845450038112
124 => 0.025290480198777
125 => 0.025402912392134
126 => 0.025107151696513
127 => 0.024893001461304
128 => 0.024517024193749
129 => 0.025142282768892
130 => 0.025325127430674
131 => 0.025141322363723
201 => 0.025098730713491
202 => 0.025018019613262
203 => 0.025115853954951
204 => 0.025324131619378
205 => 0.025225911719119
206 => 0.025290787693652
207 => 0.025043547378545
208 => 0.025569405099773
209 => 0.026404593715635
210 => 0.026407278983602
211 => 0.0263090585539
212 => 0.026268868870255
213 => 0.026369648991643
214 => 0.026424318073279
215 => 0.026750222505933
216 => 0.027099930946776
217 => 0.028731867650445
218 => 0.028273626354355
219 => 0.029721577682199
220 => 0.030866719189574
221 => 0.031210097056667
222 => 0.030894205576119
223 => 0.029813557885286
224 => 0.029760536154071
225 => 0.031375480041863
226 => 0.030919184424446
227 => 0.030864909512675
228 => 0.03028751615034
301 => 0.030628827139039
302 => 0.030554177419081
303 => 0.030436339184137
304 => 0.031087536774644
305 => 0.032306520531265
306 => 0.032116530481238
307 => 0.031974711722278
308 => 0.031353303203335
309 => 0.031727529928356
310 => 0.031594274959417
311 => 0.032166822871673
312 => 0.031827658171942
313 => 0.030915727536365
314 => 0.031060955495843
315 => 0.031039004581926
316 => 0.03149075283488
317 => 0.031355149222424
318 => 0.031012525800234
319 => 0.032302354177305
320 => 0.032218599896901
321 => 0.03233734431762
322 => 0.032389619283914
323 => 0.033174715087712
324 => 0.033496343718264
325 => 0.033569359048301
326 => 0.033874881371675
327 => 0.033561757374571
328 => 0.034814476616613
329 => 0.035647461814376
330 => 0.036615016986604
331 => 0.038028875147542
401 => 0.038560498894975
402 => 0.038464465823381
403 => 0.039536436944864
404 => 0.04146274522159
405 => 0.038853827801368
406 => 0.041601024179808
407 => 0.040731293524302
408 => 0.038669177785882
409 => 0.038536401843075
410 => 0.039932890562789
411 => 0.043030168136057
412 => 0.042254335232985
413 => 0.043031437120751
414 => 0.042124906490474
415 => 0.042079889603841
416 => 0.042987408951453
417 => 0.045107877373454
418 => 0.044100522310731
419 => 0.042656231814724
420 => 0.043722673441327
421 => 0.04279882300985
422 => 0.040717129418279
423 => 0.042253741968185
424 => 0.041226252916269
425 => 0.04152612884594
426 => 0.043685758005606
427 => 0.043425905711445
428 => 0.043762178641764
429 => 0.043168665721546
430 => 0.042614231065666
501 => 0.041579337607606
502 => 0.041272956674306
503 => 0.041357629341839
504 => 0.041272914714737
505 => 0.040693901336114
506 => 0.040568863452129
507 => 0.040360461500785
508 => 0.040425053979766
509 => 0.040033197341098
510 => 0.040772711779978
511 => 0.040909972176413
512 => 0.041448129114643
513 => 0.041504002353237
514 => 0.043002761766023
515 => 0.042177270267089
516 => 0.042731081234081
517 => 0.042681543168522
518 => 0.038713870086815
519 => 0.039260580430398
520 => 0.040111090157857
521 => 0.039727936678476
522 => 0.039186247302736
523 => 0.03874880408828
524 => 0.038086032887514
525 => 0.039018870625199
526 => 0.040245453054021
527 => 0.041535110507801
528 => 0.043084549436814
529 => 0.042738732705316
530 => 0.04150614482479
531 => 0.041561437816705
601 => 0.041903237335729
602 => 0.041460575902831
603 => 0.041330026404492
604 => 0.041885301839381
605 => 0.041889125716127
606 => 0.041379790240157
607 => 0.040813757066025
608 => 0.040811385366358
609 => 0.040710665230253
610 => 0.042142824378936
611 => 0.04293036710309
612 => 0.043020657607226
613 => 0.042924289832765
614 => 0.042961377964455
615 => 0.042503124205589
616 => 0.043550556407425
617 => 0.044511783776137
618 => 0.044254154307695
619 => 0.043867931110312
620 => 0.043560285730568
621 => 0.044181682833338
622 => 0.044154012998521
623 => 0.044503388293628
624 => 0.044487538612152
625 => 0.044370056841077
626 => 0.044254158503339
627 => 0.044713682311919
628 => 0.044581346834774
629 => 0.044448805804082
630 => 0.044182974476011
701 => 0.044219105368487
702 => 0.043832948857985
703 => 0.043654295186907
704 => 0.040967772623991
705 => 0.040249846010523
706 => 0.040475720337864
707 => 0.040550084031249
708 => 0.040237641449019
709 => 0.040685603852022
710 => 0.040615789386024
711 => 0.040887396633127
712 => 0.040717708216953
713 => 0.040724672288742
714 => 0.041223689739326
715 => 0.041368556628203
716 => 0.041294876159301
717 => 0.041346479434101
718 => 0.042535655121488
719 => 0.04236659236644
720 => 0.042276781147366
721 => 0.04230165946883
722 => 0.042605519353172
723 => 0.042690583530653
724 => 0.042330160633312
725 => 0.042500138155278
726 => 0.04322388087045
727 => 0.04347714986047
728 => 0.044285462900602
729 => 0.043942077154535
730 => 0.044572376552828
731 => 0.046509702018279
801 => 0.048057371652808
802 => 0.046634070696743
803 => 0.049476168886015
804 => 0.051689150001134
805 => 0.051604212100023
806 => 0.051218327655426
807 => 0.04869890749101
808 => 0.046380499493275
809 => 0.048319946228184
810 => 0.048324890276762
811 => 0.048158290082223
812 => 0.047123550582272
813 => 0.048122283390553
814 => 0.048201559174009
815 => 0.048157185816406
816 => 0.047363853467869
817 => 0.046152581603979
818 => 0.046389261226808
819 => 0.046776947277135
820 => 0.046042976704083
821 => 0.045808428633148
822 => 0.046244498121613
823 => 0.047649604872134
824 => 0.047383977580177
825 => 0.0473770409781
826 => 0.048513507176593
827 => 0.047700042643228
828 => 0.046392246514805
829 => 0.046062010744666
830 => 0.044889896234145
831 => 0.045699479901491
901 => 0.045728615376404
902 => 0.045285214675544
903 => 0.046428226037959
904 => 0.046417692987031
905 => 0.047502812160854
906 => 0.049577152469055
907 => 0.048963667967833
908 => 0.048250252239835
909 => 0.048327820310341
910 => 0.049178550589478
911 => 0.048664179642429
912 => 0.048849151021309
913 => 0.049178270613142
914 => 0.049376836634475
915 => 0.048299249715629
916 => 0.048048012657905
917 => 0.047534069810028
918 => 0.047399991714214
919 => 0.047818587440041
920 => 0.047708302255491
921 => 0.045726166652556
922 => 0.045519022453551
923 => 0.045525375270401
924 => 0.045004501332833
925 => 0.044210043553973
926 => 0.046297831162208
927 => 0.046130152598698
928 => 0.045945048441872
929 => 0.045967722644894
930 => 0.046873960483941
1001 => 0.046348296771186
1002 => 0.047745859906134
1003 => 0.047458562940182
1004 => 0.047163897891124
1005 => 0.047123166205628
1006 => 0.047009745301381
1007 => 0.046620782818659
1008 => 0.046151087247751
1009 => 0.045840953547504
1010 => 0.042285856503936
1011 => 0.042945661836174
1012 => 0.043704707727766
1013 => 0.043966727327858
1014 => 0.043518524670696
1015 => 0.046638480591391
1016 => 0.047208526602745
1017 => 0.045481820051172
1018 => 0.045158823756336
1019 => 0.046659656174708
1020 => 0.045754470757128
1021 => 0.046162075695239
1022 => 0.045281056767025
1023 => 0.047071219211506
1024 => 0.047057581173021
1025 => 0.046361167549466
1026 => 0.04694977157526
1027 => 0.046847487140945
1028 => 0.046061237875141
1029 => 0.047096144715639
1030 => 0.047096658016521
1031 => 0.046426375045186
1101 => 0.045643631278477
1102 => 0.045503695180572
1103 => 0.045398272128571
1104 => 0.046136148086997
1105 => 0.046797725364044
1106 => 0.048028756657713
1107 => 0.048338267173523
1108 => 0.049546307322013
1109 => 0.048826978231995
1110 => 0.049145847500729
1111 => 0.049492025198751
1112 => 0.049657995517447
1113 => 0.049387555789591
1114 => 0.051264139389358
1115 => 0.051422580542215
1116 => 0.051475704490257
1117 => 0.050842931058894
1118 => 0.05140498196841
1119 => 0.051142016961017
1120 => 0.05182617885647
1121 => 0.051933464177495
1122 => 0.051842597327373
1123 => 0.051876651381649
1124 => 0.05027531833128
1125 => 0.050192280764914
1126 => 0.04906005765543
1127 => 0.049521446941515
1128 => 0.048658901786143
1129 => 0.048932423740111
1130 => 0.049052989611208
1201 => 0.0489900128422
1202 => 0.049547533199488
1203 => 0.049073527001909
1204 => 0.047822546712664
1205 => 0.046571225594677
1206 => 0.046555516277344
1207 => 0.04622606551463
1208 => 0.045987932955105
1209 => 0.046033805734276
1210 => 0.046195467391355
1211 => 0.045978536885711
1212 => 0.046024830007746
1213 => 0.046793604282986
1214 => 0.046947776481238
1215 => 0.046423839112611
1216 => 0.044320154973772
1217 => 0.043803905609409
1218 => 0.044174975414843
1219 => 0.043997627947802
1220 => 0.035509519627945
1221 => 0.037503674771805
1222 => 0.036318815500433
1223 => 0.036864853165435
1224 => 0.035655418667186
1225 => 0.036232624201644
1226 => 0.0361260354156
1227 => 0.039332577875587
1228 => 0.039282512125529
1229 => 0.039306475950661
1230 => 0.038162620139691
1231 => 0.039984813505636
]
'min_raw' => 0.023263204012132
'max_raw' => 0.051933464177495
'avg_raw' => 0.037598334094813
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.023263'
'max' => '$0.051933'
'avg' => '$0.037598'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0035871388579704
'max_diff' => 0.0078566493058607
'year' => 2035
]
10 => [
'items' => [
101 => 0.040882491481654
102 => 0.040716355179219
103 => 0.040758168107276
104 => 0.040039683470401
105 => 0.039313432452476
106 => 0.038507908304366
107 => 0.04000447260576
108 => 0.039838080202649
109 => 0.040219724509288
110 => 0.041190353435367
111 => 0.041333282231793
112 => 0.04152537998363
113 => 0.041456526614046
114 => 0.043096893217634
115 => 0.042898233998452
116 => 0.043376945558522
117 => 0.042392199559524
118 => 0.04127786598871
119 => 0.041489664370213
120 => 0.041469266482899
121 => 0.04120957796579
122 => 0.040975142784002
123 => 0.040584874258028
124 => 0.041819741623084
125 => 0.041769608263195
126 => 0.042581209086136
127 => 0.042437750757212
128 => 0.041479700926445
129 => 0.041513917863577
130 => 0.041744043209887
131 => 0.042540509660994
201 => 0.042776955131253
202 => 0.042667424168706
203 => 0.0429266758327
204 => 0.043131577777379
205 => 0.042952408362226
206 => 0.045489069445935
207 => 0.044435670908585
208 => 0.044949090026189
209 => 0.045071537460497
210 => 0.04475789093231
211 => 0.044825909633434
212 => 0.044928939431649
213 => 0.045554516191111
214 => 0.047196210620033
215 => 0.047923305907211
216 => 0.050110807952935
217 => 0.047862930765266
218 => 0.04772955103559
219 => 0.048123586210258
220 => 0.049407881481706
221 => 0.050448682171493
222 => 0.050793975805528
223 => 0.050839612059442
224 => 0.051487405871578
225 => 0.051858709204055
226 => 0.051408746664116
227 => 0.051027450524559
228 => 0.049661695080887
229 => 0.049819784992321
301 => 0.050908867711877
302 => 0.052447261199902
303 => 0.05376736285519
304 => 0.053305109265696
305 => 0.056831777853359
306 => 0.057181432638677
307 => 0.057133121653039
308 => 0.057929687289601
309 => 0.056348666718796
310 => 0.055672749793946
311 => 0.051109891077827
312 => 0.052391868260468
313 => 0.054255297383317
314 => 0.054008665551407
315 => 0.052655393512791
316 => 0.053766336276998
317 => 0.053399023856759
318 => 0.05310930931111
319 => 0.054436547808655
320 => 0.052977194560652
321 => 0.054240739218321
322 => 0.052620230125164
323 => 0.053307220801155
324 => 0.052917251667463
325 => 0.053169609489781
326 => 0.051694330817024
327 => 0.052490355378479
328 => 0.051661213578182
329 => 0.051660820457011
330 => 0.051642517105815
331 => 0.052617998756886
401 => 0.052649809178506
402 => 0.051928926764494
403 => 0.051825036346335
404 => 0.052209173673441
405 => 0.051759449469125
406 => 0.051969872593794
407 => 0.05176582297121
408 => 0.051719887103223
409 => 0.051353862291765
410 => 0.051196168738927
411 => 0.051258004444257
412 => 0.051046927303474
413 => 0.050919745691159
414 => 0.05161721748201
415 => 0.05124458644009
416 => 0.051560106430555
417 => 0.051200531579623
418 => 0.049954088486988
419 => 0.049237245883518
420 => 0.046882830426867
421 => 0.04755053972973
422 => 0.047993231688323
423 => 0.047846921998649
424 => 0.048161251826403
425 => 0.048180549124946
426 => 0.04807835729373
427 => 0.047960032244766
428 => 0.047902438154716
429 => 0.048331697315996
430 => 0.048580896707318
501 => 0.048037661748822
502 => 0.047910389398712
503 => 0.048459629934575
504 => 0.048794666344165
505 => 0.051268386951885
506 => 0.051085125739253
507 => 0.051545075419763
508 => 0.05149329214424
509 => 0.051975392685145
510 => 0.052763423318634
511 => 0.051161136703921
512 => 0.051439238257332
513 => 0.051371054178739
514 => 0.05211547007
515 => 0.052117794055157
516 => 0.051671479542014
517 => 0.051913433880215
518 => 0.051778381606301
519 => 0.052022439318673
520 => 0.051082678174029
521 => 0.052227205807259
522 => 0.052876079223568
523 => 0.052885088831583
524 => 0.053192649681136
525 => 0.053505149317005
526 => 0.054104965155073
527 => 0.053488420778832
528 => 0.052379317465359
529 => 0.05245939114221
530 => 0.051809124275326
531 => 0.051820055378839
601 => 0.051761704291602
602 => 0.051936820296863
603 => 0.051121106289556
604 => 0.051312552736645
605 => 0.051044526589612
606 => 0.051438655620833
607 => 0.051014637935102
608 => 0.051371021298311
609 => 0.051524824543577
610 => 0.052092361829754
611 => 0.050930812216483
612 => 0.048562333925029
613 => 0.049060216776916
614 => 0.048323808931121
615 => 0.048391966280951
616 => 0.048529654974771
617 => 0.048083360869164
618 => 0.04816849972017
619 => 0.048165457961299
620 => 0.048139245726641
621 => 0.048023147393077
622 => 0.047854781840053
623 => 0.048525498383116
624 => 0.048639466193552
625 => 0.048892802518527
626 => 0.049646559581981
627 => 0.049571241476527
628 => 0.049694088431441
629 => 0.049425914218619
630 => 0.048404406113542
701 => 0.048459878918271
702 => 0.047768132154404
703 => 0.048875112998516
704 => 0.048612965323197
705 => 0.048443957011548
706 => 0.048397841527863
707 => 0.049153467009284
708 => 0.049379561996304
709 => 0.049238674773063
710 => 0.048949710967861
711 => 0.04950460689833
712 => 0.049653073640144
713 => 0.049686309868394
714 => 0.050669479066445
715 => 0.049741258104917
716 => 0.04996469011608
717 => 0.05170784288569
718 => 0.050127043862293
719 => 0.050964428361011
720 => 0.050923442747338
721 => 0.051351820321335
722 => 0.050888303282865
723 => 0.050894049132077
724 => 0.051274419396977
725 => 0.050740257960064
726 => 0.050607992076355
727 => 0.050425267705318
728 => 0.050824239684641
729 => 0.051063405342294
730 => 0.052990904895163
731 => 0.054236157510975
801 => 0.054182097810802
802 => 0.054676102274861
803 => 0.05445354873924
804 => 0.053734864666065
805 => 0.054961570744789
806 => 0.054573389613918
807 => 0.054605390794707
808 => 0.05460419970916
809 => 0.054862306225806
810 => 0.054679414103647
811 => 0.054318914957382
812 => 0.054558231114464
813 => 0.055268914543904
814 => 0.057474897715318
815 => 0.058709395123431
816 => 0.057400579421269
817 => 0.05830338296688
818 => 0.057762022541308
819 => 0.057663641247904
820 => 0.058230668591206
821 => 0.058798688440809
822 => 0.058762508032007
823 => 0.058350154789337
824 => 0.058117226905628
825 => 0.059881034877633
826 => 0.061180578545722
827 => 0.06109195837981
828 => 0.061483098971325
829 => 0.062631499845537
830 => 0.062736495229246
831 => 0.06272326822419
901 => 0.062463026210531
902 => 0.06359377600989
903 => 0.064537067386166
904 => 0.062402787703483
905 => 0.063215493466876
906 => 0.063580343267807
907 => 0.064116051021633
908 => 0.065019879797381
909 => 0.066001677576586
910 => 0.06614051454743
911 => 0.066042003072655
912 => 0.065394481045129
913 => 0.066468775890418
914 => 0.067098072615475
915 => 0.067472804414046
916 => 0.068423061905798
917 => 0.063582596455968
918 => 0.060156274423836
919 => 0.059621204761829
920 => 0.060709289960096
921 => 0.060996209349562
922 => 0.060880552503435
923 => 0.0570239155487
924 => 0.059600900366412
925 => 0.062373519351232
926 => 0.062480026938285
927 => 0.063868057974815
928 => 0.064320057777624
929 => 0.065437604695418
930 => 0.065367701831434
1001 => 0.065639806721862
1002 => 0.065577254519752
1003 => 0.067647274857698
1004 => 0.069930814691446
1005 => 0.069851742968216
1006 => 0.069523457099497
1007 => 0.070011017595603
1008 => 0.072367875423032
1009 => 0.072150893722159
1010 => 0.0723616729621
1011 => 0.075140541167325
1012 => 0.078753465123511
1013 => 0.077074899214228
1014 => 0.080716904243043
1015 => 0.08300935335429
1016 => 0.086973907048531
1017 => 0.086477525400174
1018 => 0.088020897060103
1019 => 0.085588898651637
1020 => 0.08000453871783
1021 => 0.079120792382233
1022 => 0.080890074926118
1023 => 0.085239683416194
1024 => 0.080753090275824
1025 => 0.081660722224769
1026 => 0.081399324162413
1027 => 0.08138539537054
1028 => 0.081917000703831
1029 => 0.081145879441223
1030 => 0.078004192695294
1031 => 0.079444009216877
1101 => 0.078888026912226
1102 => 0.079504930730463
1103 => 0.082834106207003
1104 => 0.081362198371194
1105 => 0.079811663034252
1106 => 0.081756378438113
1107 => 0.084232669423944
1108 => 0.084077707584373
1109 => 0.083777016846582
1110 => 0.085471994791855
1111 => 0.088271601775504
1112 => 0.089028324293452
1113 => 0.089586921385691
1114 => 0.089663942487135
1115 => 0.090457307700361
1116 => 0.086191182995067
1117 => 0.092961632464222
1118 => 0.094130702057653
1119 => 0.093910965427058
1120 => 0.095210337078188
1121 => 0.094828028976548
1122 => 0.094274124519576
1123 => 0.096333904970892
1124 => 0.093972532899169
1125 => 0.090620862531835
1126 => 0.088782069879793
1127 => 0.091203540375175
1128 => 0.09268224790903
1129 => 0.093659579525445
1130 => 0.093955319482053
1201 => 0.08652235011184
1202 => 0.082516391872675
1203 => 0.085084165175575
1204 => 0.08821702582336
1205 => 0.086173779795987
1206 => 0.086253871171883
1207 => 0.08334073929246
1208 => 0.088474773354605
1209 => 0.087726787775773
1210 => 0.091607338281914
1211 => 0.09068121376026
1212 => 0.093845652055915
1213 => 0.093012349400793
1214 => 0.096471342132879
1215 => 0.097851227982198
1216 => 0.10016827108529
1217 => 0.10187269742398
1218 => 0.10287356917055
1219 => 0.10281348058506
1220 => 0.10677943307726
1221 => 0.10444084945244
1222 => 0.10150303725781
1223 => 0.10144990150389
1224 => 0.10297143606861
1225 => 0.10616015510363
1226 => 0.10698694355544
1227 => 0.10744900550744
1228 => 0.10674134154345
1229 => 0.1042029766265
1230 => 0.10310692352516
1231 => 0.10404079252322
]
'min_raw' => 0.038507908304366
'max_raw' => 0.10744900550744
'avg_raw' => 0.072978456905903
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.0385079'
'max' => '$0.107449'
'avg' => '$0.072978'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.015244704292234
'max_diff' => 0.055515541329945
'year' => 2036
]
11 => [
'items' => [
101 => 0.10289875098688
102 => 0.10487023507886
103 => 0.10757750382344
104 => 0.10701846353339
105 => 0.10888725140704
106 => 0.11082125025404
107 => 0.11358695546659
108 => 0.11431001322292
109 => 0.1155052001987
110 => 0.11673544019525
111 => 0.11713056012625
112 => 0.11788496667303
113 => 0.11788099057814
114 => 0.12015444548429
115 => 0.12266213664881
116 => 0.12360873201023
117 => 0.12578537584825
118 => 0.12205794955434
119 => 0.12488524521586
120 => 0.12743553667434
121 => 0.12439497406136
122 => 0.12858568126313
123 => 0.12874839692743
124 => 0.13120521027339
125 => 0.12871475927877
126 => 0.12723593742797
127 => 0.13150524070051
128 => 0.1335710220723
129 => 0.13294879191123
130 => 0.1282135896622
131 => 0.12545749885088
201 => 0.11824427758745
202 => 0.12678864976195
203 => 0.1309503642054
204 => 0.12820281182719
205 => 0.12958851743118
206 => 0.13714847789002
207 => 0.14002682136155
208 => 0.13942814604061
209 => 0.13952931231482
210 => 0.14108241420643
211 => 0.14796972330266
212 => 0.14384268804562
213 => 0.14699765186257
214 => 0.14867103329501
215 => 0.15022536322802
216 => 0.14640842016357
217 => 0.14144263331874
218 => 0.13986976017543
219 => 0.12792962189151
220 => 0.12730808584044
221 => 0.1269591988205
222 => 0.12475951551086
223 => 0.12303116697344
224 => 0.12165672004702
225 => 0.11804976086751
226 => 0.1192670037072
227 => 0.11351826360593
228 => 0.11719610379988
301 => 0.10802097579008
302 => 0.11566229503704
303 => 0.11150347237907
304 => 0.11429600994272
305 => 0.11428626704223
306 => 0.10914432001271
307 => 0.10617855227578
308 => 0.10806845490716
309 => 0.11009458054866
310 => 0.11042331261729
311 => 0.11305023739878
312 => 0.11378335563973
313 => 0.11156197314362
314 => 0.10783084165574
315 => 0.10869749840233
316 => 0.10616098950447
317 => 0.10171585522639
318 => 0.10490842826951
319 => 0.10599851307396
320 => 0.10647995662436
321 => 0.10210867758899
322 => 0.10073512681099
323 => 0.10000385990199
324 => 0.10726656442445
325 => 0.10766443177282
326 => 0.10562888616579
327 => 0.11482974532791
328 => 0.11274730752893
329 => 0.11507390076004
330 => 0.10861885838644
331 => 0.10886544969798
401 => 0.10580952919168
402 => 0.10752064047853
403 => 0.10631128217267
404 => 0.10738239959608
405 => 0.10802442296329
406 => 0.1110798420231
407 => 0.11569718301472
408 => 0.11062346430481
409 => 0.10841277240592
410 => 0.10978427322659
411 => 0.1134367606463
412 => 0.11897046605456
413 => 0.11569440107667
414 => 0.11714826308267
415 => 0.11746586725316
416 => 0.11505021822498
417 => 0.11905953447987
418 => 0.1212081596325
419 => 0.12341220444376
420 => 0.12532591479745
421 => 0.12253186047816
422 => 0.12552189911175
423 => 0.12311245578595
424 => 0.12095093603903
425 => 0.12095421417224
426 => 0.11959826126024
427 => 0.11697093163216
428 => 0.11648641173827
429 => 0.11900694541439
430 => 0.1210281747272
501 => 0.12119465285444
502 => 0.12231370925652
503 => 0.12297595530808
504 => 0.12946686689318
505 => 0.13207756522835
506 => 0.1352698777346
507 => 0.13651346336466
508 => 0.14025621026102
509 => 0.13723363817117
510 => 0.13657968568666
511 => 0.12750100595928
512 => 0.12898763925604
513 => 0.13136788260294
514 => 0.12754025529537
515 => 0.12996800382366
516 => 0.13044729280989
517 => 0.12741019398412
518 => 0.12903243969226
519 => 0.12472423605378
520 => 0.11579109008107
521 => 0.11906947962502
522 => 0.12148347782335
523 => 0.1180384047505
524 => 0.12421356489084
525 => 0.12060616381803
526 => 0.11946279086374
527 => 0.11500208532716
528 => 0.11710736663213
529 => 0.11995478974181
530 => 0.11819541330849
531 => 0.12184638357933
601 => 0.12701713116104
602 => 0.13070211381111
603 => 0.13098500102238
604 => 0.12861580405304
605 => 0.13241245731641
606 => 0.13244011179053
607 => 0.12815747139967
608 => 0.12553437800611
609 => 0.12493840566806
610 => 0.12642726141577
611 => 0.12823500715143
612 => 0.13108531832943
613 => 0.13280770167869
614 => 0.137298763972
615 => 0.13851391665973
616 => 0.13984900105226
617 => 0.14163308552547
618 => 0.14377533636542
619 => 0.13908821348601
620 => 0.1392744416159
621 => 0.13490985768823
622 => 0.13024567381687
623 => 0.13378520797651
624 => 0.13841267804574
625 => 0.13735113129895
626 => 0.13723168560451
627 => 0.13743256013109
628 => 0.1366321885509
629 => 0.13301213755682
630 => 0.13119417061031
701 => 0.13353981178414
702 => 0.13478641567555
703 => 0.13671978959584
704 => 0.1364814604516
705 => 0.14146162404107
706 => 0.14339676501962
707 => 0.14290167314795
708 => 0.14299278196739
709 => 0.14649626227466
710 => 0.15039285292202
711 => 0.1540425242637
712 => 0.15775512670948
713 => 0.15327943955575
714 => 0.15100696164109
715 => 0.15335157878136
716 => 0.15210749192386
717 => 0.1592563840272
718 => 0.1597513578057
719 => 0.16689973296277
720 => 0.17368439219951
721 => 0.16942306929271
722 => 0.17344130485963
723 => 0.1777873542368
724 => 0.18617158860646
725 => 0.18334807343168
726 => 0.18118530505792
727 => 0.17914149939514
728 => 0.18339433453437
729 => 0.1888655390003
730 => 0.19004398403971
731 => 0.19195351520422
801 => 0.1899458766711
802 => 0.19236385615011
803 => 0.20090038622503
804 => 0.19859374044475
805 => 0.19531793262494
806 => 0.20205670326203
807 => 0.20449543815928
808 => 0.22161175684358
809 => 0.24322181622238
810 => 0.23427510974026
811 => 0.22872160031839
812 => 0.23002680676353
813 => 0.23791806890199
814 => 0.24045249184473
815 => 0.2335630566184
816 => 0.23599652161061
817 => 0.24940515297071
818 => 0.25659845349501
819 => 0.24682898519387
820 => 0.21987540961374
821 => 0.19502298197216
822 => 0.20161496490211
823 => 0.2008676386109
824 => 0.2152735402465
825 => 0.19853872770575
826 => 0.19882049903012
827 => 0.21352429945542
828 => 0.20960157758891
829 => 0.20324727054941
830 => 0.19506937544564
831 => 0.17995177998259
901 => 0.16656170409563
902 => 0.19282272646027
903 => 0.19169030342334
904 => 0.19005038705017
905 => 0.19369984348118
906 => 0.21142056799387
907 => 0.21101204793747
908 => 0.20841325176738
909 => 0.21038441575765
910 => 0.20290171597148
911 => 0.20483017808428
912 => 0.19501904522064
913 => 0.19945408702411
914 => 0.20323363706037
915 => 0.20399243768734
916 => 0.20570205424523
917 => 0.19109356794057
918 => 0.19765234940874
919 => 0.20150501904657
920 => 0.18409851746153
921 => 0.20116094847641
922 => 0.19083926669496
923 => 0.18733593287188
924 => 0.19205271033552
925 => 0.19021457757072
926 => 0.18863425895833
927 => 0.18775241401929
928 => 0.19121589481686
929 => 0.1910543192979
930 => 0.18538739248042
1001 => 0.17799511746051
1002 => 0.18047620760035
1003 => 0.1795748042922
1004 => 0.17630800242013
1005 => 0.17850943244674
1006 => 0.16881544872779
1007 => 0.15213745358876
1008 => 0.16315544803841
1009 => 0.16273126723737
1010 => 0.16251737604242
1011 => 0.17079709435633
1012 => 0.17000119048605
1013 => 0.16855661716798
1014 => 0.1762814716983
1015 => 0.17346179588078
1016 => 0.18215137235121
1017 => 0.1878748894212
1018 => 0.18642322035587
1019 => 0.19180621582435
1020 => 0.18053336690607
1021 => 0.18427775512853
1022 => 0.18504946835168
1023 => 0.17618614819249
1024 => 0.17013141020234
1025 => 0.16972762820746
1026 => 0.15922954692683
1027 => 0.16483753720939
1028 => 0.16977233658364
1029 => 0.16740895063928
1030 => 0.16666077325344
1031 => 0.17048304925781
1101 => 0.17078007283893
1102 => 0.16400790371225
1103 => 0.16541605212039
1104 => 0.17128826506754
1105 => 0.16526808742067
1106 => 0.15357186564323
1107 => 0.15067104092951
1108 => 0.15028401743989
1109 => 0.14241675074896
1110 => 0.15086488790771
1111 => 0.14717704964192
1112 => 0.15882688653647
1113 => 0.15217256218163
1114 => 0.15188570755852
1115 => 0.15145208472327
1116 => 0.1446804032897
1117 => 0.14616297116084
1118 => 0.151091252566
1119 => 0.15284971889242
1120 => 0.15266629644789
1121 => 0.1510671012985
1122 => 0.15179920464868
1123 => 0.14944084467602
1124 => 0.14860805868466
1125 => 0.14597955702007
1126 => 0.14211638571526
1127 => 0.1426535833794
1128 => 0.1349996301708
1129 => 0.13082935023671
1130 => 0.12967507171436
1201 => 0.12813152223365
1202 => 0.12984941973543
1203 => 0.13497794748303
1204 => 0.12879185494157
1205 => 0.11818623318319
1206 => 0.11882364912197
1207 => 0.12025573348591
1208 => 0.11758705374788
1209 => 0.11506137234116
1210 => 0.1172572474093
1211 => 0.11276350565883
1212 => 0.12079878070735
1213 => 0.12058144903589
1214 => 0.1235765026759
1215 => 0.12544937118169
1216 => 0.12113301562423
1217 => 0.12004746387419
1218 => 0.12066584348659
1219 => 0.11044540595128
1220 => 0.12274127488279
1221 => 0.12284761006791
1222 => 0.12193710365498
1223 => 0.12848427426864
1224 => 0.1423008463772
1225 => 0.13710249617964
1226 => 0.13508953786217
1227 => 0.13126290262921
1228 => 0.13636166687402
1229 => 0.13597016133313
1230 => 0.13419962480316
1231 => 0.13312879878543
]
'min_raw' => 0.10000385990199
'max_raw' => 0.25659845349501
'avg_raw' => 0.1783011566985
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.1000038'
'max' => '$0.256598'
'avg' => '$0.1783011'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.061495951597625
'max_diff' => 0.14914944798757
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0031390068904724
]
1 => [
'year' => 2028
'avg' => 0.005387447084262
]
2 => [
'year' => 2029
'avg' => 0.014717534441339
]
3 => [
'year' => 2030
'avg' => 0.011354555903484
]
4 => [
'year' => 2031
'avg' => 0.011151581051843
]
5 => [
'year' => 2032
'avg' => 0.019552231115597
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0031390068904724
'min' => '$0.003139'
'max_raw' => 0.019552231115597
'max' => '$0.019552'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.019552231115597
]
1 => [
'year' => 2033
'avg' => 0.050290348961531
]
2 => [
'year' => 2034
'avg' => 0.031876440012898
]
3 => [
'year' => 2035
'avg' => 0.037598334094813
]
4 => [
'year' => 2036
'avg' => 0.072978456905903
]
5 => [
'year' => 2037
'avg' => 0.1783011566985
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.019552231115597
'min' => '$0.019552'
'max_raw' => 0.1783011566985
'max' => '$0.1783011'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.1783011566985
]
]
]
]
'prediction_2025_max_price' => '$0.005367'
'last_price' => false
'sma_50day_nextmonth' => '—'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'disminuir'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '—'
'daily_sma3_action' => '—'
'daily_sma5' => '—'
'daily_sma5_action' => '—'
'daily_sma10' => '—'
'daily_sma10_action' => '—'
'daily_sma21' => '—'
'daily_sma21_action' => '—'
'daily_sma50' => '—'
'daily_sma50_action' => '—'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '—'
'daily_ema3_action' => '—'
'daily_ema5' => '—'
'daily_ema5_action' => '—'
'daily_ema10' => '—'
'daily_ema10_action' => '—'
'daily_ema21' => '—'
'daily_ema21_action' => '—'
'daily_ema50' => '—'
'daily_ema50_action' => '—'
'daily_ema100' => '—'
'daily_ema100_action' => '—'
'daily_ema200' => '—'
'daily_ema200_action' => '—'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '—'
'weekly_ema3_action' => '—'
'weekly_ema5' => '—'
'weekly_ema5_action' => '—'
'weekly_ema10' => '—'
'weekly_ema10_action' => '—'
'weekly_ema21' => '—'
'weekly_ema21_action' => '—'
'weekly_ema50' => '—'
'weekly_ema50_action' => '—'
'weekly_ema100' => '—'
'weekly_ema100_action' => '—'
'weekly_ema200' => '—'
'weekly_ema200_action' => '—'
'rsi_14' => '—'
'rsi_14_action' => '—'
'stoch_rsi_14' => '—'
'stoch_rsi_14_action' => '—'
'momentum_10' => '—'
'momentum_10_action' => '—'
'vwma_10' => '—'
'vwma_10_action' => '—'
'hma_9' => '—'
'hma_9_action' => '—'
'stochastic_fast_14' => '—'
'stochastic_fast_14_action' => '—'
'cci_20' => '—'
'cci_20_action' => '—'
'adx_14' => '—'
'adx_14_action' => '—'
'ao_5_34' => '—'
'ao_5_34_action' => '—'
'macd_12_26' => '—'
'macd_12_26_action' => '—'
'williams_percent_r_14' => '—'
'williams_percent_r_14_action' => '—'
'ultimate_oscillator' => '—'
'ultimate_oscillator_action' => '—'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 0
'buy_signals' => 0
'sell_pct' => 0
'buy_pct' => 0
'overall_action' => 'neutral'
'overall_action_label' => 'Neutral'
'overall_action_dir' => 0
'last_updated' => 1767711948
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Emanate para 2026
La previsión del precio de Emanate para 2026 sugiere que el precio medio podría oscilar entre $0.001798 en el extremo inferior y $0.005367 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Emanate podría potencialmente ganar 3.13% para 2026 si EMT alcanza el objetivo de precio previsto.
Predicción de precio de Emanate 2027-2032
La predicción del precio de EMT para 2027-2032 está actualmente dentro de un rango de precios de $0.003139 en el extremo inferior y $0.019552 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Emanate alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Emanate | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.00173 | $0.003139 | $0.004547 |
| 2028 | $0.003123 | $0.005387 | $0.007651 |
| 2029 | $0.006862 | $0.014717 | $0.022573 |
| 2030 | $0.005835 | $0.011354 | $0.016873 |
| 2031 | $0.006899 | $0.011151 | $0.0154033 |
| 2032 | $0.010532 | $0.019552 | $0.028572 |
Predicción de precio de Emanate 2032-2037
La predicción de precio de Emanate para 2032-2037 se estima actualmente entre $0.019552 en el extremo inferior y $0.1783011 en el extremo superior. Comparado con el precio actual, Emanate podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Emanate | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.010532 | $0.019552 | $0.028572 |
| 2033 | $0.024474 | $0.05029 | $0.0761065 |
| 2034 | $0.019676 | $0.031876 | $0.044076 |
| 2035 | $0.023263 | $0.037598 | $0.051933 |
| 2036 | $0.0385079 | $0.072978 | $0.107449 |
| 2037 | $0.1000038 | $0.1783011 | $0.256598 |
Emanate Histograma de precios potenciales
Pronóstico de precio de Emanate basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Emanate es Neutral, con 0 indicadores técnicos mostrando señales alcistas y 0 indicando señales bajistas. La predicción de precio de EMT se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Emanate
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Emanate disminuir durante el próximo mes, alcanzando — para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Emanate alcance — para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en —, lo que sugiere que el mercado de EMT está en un estado —.
Promedios Móviles y Osciladores Populares de EMT para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | — | — |
| SMA 5 | — | — |
| SMA 10 | — | — |
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | — | — |
| EMA 5 | — | — |
| EMA 10 | — | — |
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Osciladores de Emanate
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | — | — |
| Stoch RSI (14) | — | — |
| Estocástico Rápido (14) | — | — |
| Índice de Canal de Materias Primas (20) | — | — |
| Índice Direccional Medio (14) | — | — |
| Oscilador Asombroso (5, 34) | — | — |
| Momentum (10) | — | — |
| MACD (12, 26) | — | — |
| Rango Percentil de Williams (14) | — | — |
| Oscilador Ultimate (7, 14, 28) | — | — |
| VWMA (10) | — | — |
| Promedio Móvil de Hull (9) | — | — |
| Nube Ichimoku B/L (9, 26, 52, 26) | — | — |
Predicción de precios de Emanate basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Emanate
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Emanate por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.007312 | $0.010275 | $0.014438 | $0.020288 | $0.0285092 | $0.04006 |
| Amazon.com acción | $0.010858 | $0.022657 | $0.047275 | $0.098643 | $0.205826 | $0.429468 |
| Apple acción | $0.007381 | $0.01047 | $0.014851 | $0.021065 | $0.029879 | $0.042382 |
| Netflix acción | $0.008211 | $0.012956 | $0.020442 | $0.032255 | $0.050893 | $0.0803026 |
| Google acción | $0.006739 | $0.008727 | $0.0113018 | $0.014635 | $0.018953 | $0.024544 |
| Tesla acción | $0.011797 | $0.026743 | $0.060625 | $0.137434 | $0.311552 | $0.706266 |
| Kodak acción | $0.0039025 | $0.002926 | $0.002194 | $0.001645 | $0.001234 | $0.000925 |
| Nokia acción | $0.003447 | $0.002283 | $0.001512 | $0.0010022 | $0.000663 | $0.000439 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Emanate
Podría preguntarse cosas como: "¿Debo invertir en Emanate ahora?", "¿Debería comprar EMT hoy?", "¿Será Emanate una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Emanate regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Emanate, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Emanate a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Emanate es de $0.005204 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Emanate basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Emanate ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.005339 | $0.005478 | $0.00562 | $0.005766 |
| Si Emanate ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.005474 | $0.005759 | $0.006058 | $0.006373 |
| Si Emanate ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.00588 | $0.006644 | $0.0075083 | $0.008484 |
| Si Emanate ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.006556 | $0.008261 | $0.0104084 | $0.013113 |
| Si Emanate ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.0079095 | $0.012021 | $0.01827 | $0.027769 |
| Si Emanate ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.011967 | $0.027521 | $0.06329 | $0.145546 |
| Si Emanate ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.018731 | $0.067419 | $0.242665 | $0.873431 |
Cuadro de preguntas
¿Es EMT una buena inversión?
La decisión de adquirir Emanate depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Emanate ha experimentado una caída de 0% durante las últimas 24 horas, y Emanate ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Emanate dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Emanate subir?
Parece que el valor medio de Emanate podría potencialmente aumentar hasta $0.005367 para el final de este año. Mirando las perspectivas de Emanate en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.016873. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Emanate la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Emanate, el precio de Emanate aumentará en un 0.86% durante la próxima semana y alcanzará $0.005248 para el 13 de enero de 2026.
¿Cuál será el precio de Emanate el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Emanate, el precio de Emanate disminuirá en un -11.62% durante el próximo mes y alcanzará $0.004599 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Emanate este año en 2026?
Según nuestra predicción más reciente sobre el valor de Emanate en 2026, se anticipa que EMT fluctúe dentro del rango de $0.001798 y $0.005367. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Emanate no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Emanate en 5 años?
El futuro de Emanate parece estar en una tendencia alcista, con un precio máximo de $0.016873 proyectada después de un período de cinco años. Basado en el pronóstico de Emanate para 2030, el valor de Emanate podría potencialmente alcanzar su punto más alto de aproximadamente $0.016873, mientras que su punto más bajo se anticipa que esté alrededor de $0.005835.
¿Cuánto será Emanate en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Emanate, se espera que el valor de EMT en 2026 crezca en un 3.13% hasta $0.005367 si ocurre lo mejor. El precio estará entre $0.005367 y $0.001798 durante 2026.
¿Cuánto será Emanate en 2027?
Según nuestra última simulación experimental para la predicción de precios de Emanate, el valor de EMT podría disminuir en un -12.62% hasta $0.004547 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.004547 y $0.00173 a lo largo del año.
¿Cuánto será Emanate en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Emanate sugiere que el valor de EMT en 2028 podría aumentar en un 47.02% , alcanzando $0.007651 en el mejor escenario. Se espera que el precio oscile entre $0.007651 y $0.003123 durante el año.
¿Cuánto será Emanate en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Emanate podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.022573 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.022573 y $0.006862.
¿Cuánto será Emanate en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Emanate, se espera que el valor de EMT en 2030 aumente en un 224.23% , alcanzando $0.016873 en el mejor escenario. Se pronostica que el precio oscile entre $0.016873 y $0.005835 durante el transcurso de 2030.
¿Cuánto será Emanate en 2031?
Nuestra simulación experimental indica que el precio de Emanate podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.0154033 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.0154033 y $0.006899 durante el año.
¿Cuánto será Emanate en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Emanate, EMT podría experimentar un 449.04% aumento en valor, alcanzando $0.028572 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.028572 y $0.010532 a lo largo del año.
¿Cuánto será Emanate en 2033?
Según nuestra predicción experimental de precios de Emanate, se anticipa que el valor de EMT aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.0761065. A lo largo del año, el precio de EMT podría oscilar entre $0.0761065 y $0.024474.
¿Cuánto será Emanate en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Emanate sugieren que EMT podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.044076 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.044076 y $0.019676.
¿Cuánto será Emanate en 2035?
Basado en nuestra predicción experimental para el precio de Emanate, EMT podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.051933 en 2035. El rango de precios esperado para el año está entre $0.051933 y $0.023263.
¿Cuánto será Emanate en 2036?
Nuestra reciente simulación de predicción de precios de Emanate sugiere que el valor de EMT podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.107449 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.107449 y $0.0385079.
¿Cuánto será Emanate en 2037?
Según la simulación experimental, el valor de Emanate podría aumentar en un 4830.69% en 2037, con un máximo de $0.256598 bajo condiciones favorables. Se espera que el precio caiga entre $0.256598 y $0.1000038 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Undead Blocks
Predicción de precios de Yaku
Predicción de precios de Hyve
Predicción de precios de Utility Cjournal
Predicción de precios de Shezmu
Predicción de precios de Tulip Token
Predicción de precios de Million
Predicción de precios de The Three Kingdoms
Predicción de precios de Hypersign Identity Token
Predicción de precios de Populous
Predicción de precios de YAM
Predicción de precios de Polker
Predicción de precios de LightChain
Predicción de precios de Dacxi
Predicción de precios de Goons of Balatroon
Predicción de precios de Trava Finance
Predicción de precios de Tidal Finance
Predicción de precios de NFTBooks
Predicción de precios de Collab.Land
Predicción de precios de MYX Network
Predicción de precios de Hummingbot
Predicción de precios de Wrapped OrdBridge
Predicción de precios de Dingocoin
Predicción de precios de Moon Money Chain
Predicción de precios de Shikoku
¿Cómo leer y predecir los movimientos de precio de Emanate?
Los traders de Emanate utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Emanate
Las medias móviles son herramientas populares para la predicción de precios de Emanate. Una media móvil simple (SMA) calcula el precio de cierre promedio de EMT durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de EMT por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de EMT.
¿Cómo leer gráficos de Emanate y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Emanate en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de EMT dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Emanate?
La acción del precio de Emanate está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de EMT. La capitalización de mercado de Emanate puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de EMT, grandes poseedores de Emanate, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Emanate.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


