Previsione del prezzo di Hunny Finance HUNNY
Previsione del prezzo di Hunny Finance fino a $0.003938 entro il 2026
| Anno | Prezzo min. | Prezzo max. |
|---|---|---|
| 2026 | $0.001319 | $0.003938 |
| 2027 | $0.00127 | $0.003337 |
| 2028 | $0.002292 | $0.005615 |
| 2029 | $0.005035 | $0.016566 |
| 2030 | $0.004282 | $0.012383 |
| 2031 | $0.005063 | $0.0113043 |
| 2032 | $0.007729 | $0.020969 |
| 2033 | $0.017961 | $0.055853 |
| 2034 | $0.01444 | $0.032347 |
| 2035 | $0.017072 | $0.038113 |
Calcolatore di profitto dell’investimento
Se apri uno short di $10,000.00 su Hunny Finance oggi e lo chiudi il Apr 06, 2026, la nostra previsione suggerisce che potresti guadagnare circa $3,956.93, con un rendimento del 39.57% nei prossimi 90 giorni.
Previsione a lungo termine del prezzo di Pancake Hunny per gli anni 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Hunny Finance'
'name_with_ticker' => 'Hunny Finance <small>HUNNY</small>'
'name_lang' => 'Pancake Hunny'
'name_lang_with_ticker' => 'Pancake Hunny <small>HUNNY</small>'
'name_with_lang' => 'Pancake Hunny/Hunny Finance'
'name_with_lang_with_ticker' => 'Pancake Hunny/Hunny Finance <small>HUNNY</small>'
'image' => '/uploads/coins/pancake-hunny.png?1717121317'
'price_for_sd' => 0.003819
'ticker' => 'HUNNY'
'marketcap' => '$288.76K'
'low24h' => '$0.003753'
'high24h' => '$0.003865'
'volume24h' => '$2.09'
'current_supply' => '75.66M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.003819'
'change_24h_pct' => '1.68%'
'ath_price' => '$1.94'
'ath_days' => 1671
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '10 giu 2021'
'ath_pct' => '-99.80%'
'fdv' => '$381.65K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.188315'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.003851'
'next_week_prediction_price_date' => '13 gennaio 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003375'
'next_month_prediction_price_date' => '5 febbraio 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001319'
'current_year_max_price_prediction' => '$0.003938'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.004282'
'grand_prediction_max_price' => '$0.012383'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0038916227785745
107 => 0.0039061526853706
108 => 0.0039388893072977
109 => 0.0036591584571983
110 => 0.0037847493964267
111 => 0.0038585223069437
112 => 0.0035252136133462
113 => 0.0038519338657405
114 => 0.003654288965443
115 => 0.0035872053177553
116 => 0.0036775246117683
117 => 0.0036423270950531
118 => 0.0036120663370488
119 => 0.0035951803141366
120 => 0.003661500835483
121 => 0.0036584069038921
122 => 0.0035498936587108
123 => 0.0034083425539376
124 => 0.0034558517509561
125 => 0.0034385912142782
126 => 0.0033760368027039
127 => 0.0034181909232565
128 => 0.0032325655100549
129 => 0.0029132066346108
130 => 0.0031241848899561
131 => 0.0031160624566255
201 => 0.0031119667574171
202 => 0.0032705110852984
203 => 0.0032552707064126
204 => 0.0032276092695006
205 => 0.0033755287787226
206 => 0.0033215361680584
207 => 0.0034879286718665
208 => 0.0035975255364668
209 => 0.003569728226517
210 => 0.0036728046074013
211 => 0.0034569462669003
212 => 0.0035286457488813
213 => 0.0035434229127464
214 => 0.0033737034749398
215 => 0.0032577642208793
216 => 0.0032500323944377
217 => 0.0030490097053101
218 => 0.0031563944032436
219 => 0.0032508884935444
220 => 0.0032056331573279
221 => 0.0031913066698465
222 => 0.003264497587353
223 => 0.0032701851484811
224 => 0.0031405081520204
225 => 0.003167472105921
226 => 0.0032799162760707
227 => 0.0031646388013352
228 => 0.0029406734983926
301 => 0.0028851270067003
302 => 0.0028777160807836
303 => 0.0027270695898662
304 => 0.0028888388888811
305 => 0.0028182222547134
306 => 0.0030412993559319
307 => 0.0029138789121024
308 => 0.0029083860714409
309 => 0.0029000828371565
310 => 0.0027704151792958
311 => 0.0027988041555577
312 => 0.0028931734364156
313 => 0.0029268454589718
314 => 0.0029233331911524
315 => 0.0028927109754565
316 => 0.002906729668991
317 => 0.0028615705726797
318 => 0.0028456239558669
319 => 0.0027952920467432
320 => 0.0027213180448761
321 => 0.0027316045835446
322 => 0.0025850427294954
323 => 0.002505188052783
324 => 0.0024830853307368
325 => 0.0024535286470802
326 => 0.0024864238368031
327 => 0.0025846275381774
328 => 0.0024661730392425
329 => 0.0022630911094357
330 => 0.0022752966794519
331 => 0.0023027189714119
401 => 0.002251617711761
402 => 0.002203254658105
403 => 0.0022453024094403
404 => 0.0021592539185994
405 => 0.0023131175204285
406 => 0.0023089559411968
407 => 0.0023663067770974
408 => 0.0024021694317437
409 => 0.0023195176234564
410 => 0.0022987309171864
411 => 0.0023105719697809
412 => 0.002114865746664
413 => 0.0023503134034021
414 => 0.0023523495645148
415 => 0.002334914716879
416 => 0.0024602833254612
417 => 0.0027248501930193
418 => 0.0026253094952663
419 => 0.0025867643284629
420 => 0.0025134899381932
421 => 0.0026111237126248
422 => 0.0026036269620726
423 => 0.0025697238130173
424 => 0.0025492190826844
425 => 0.0025869996770321
426 => 0.0025445376489454
427 => 0.0025369103019225
428 => 0.0024906968775993
429 => 0.0024742007876927
430 => 0.0024619877394542
501 => 0.0024485423733729
502 => 0.0024781995005718
503 => 0.0024109925486191
504 => 0.0023299475529428
505 => 0.0023232095384714
506 => 0.0023418137888394
507 => 0.0023335827929751
508 => 0.0023231701316299
509 => 0.0023032895254022
510 => 0.0022973913742164
511 => 0.0023165575041941
512 => 0.0022949200609041
513 => 0.002326847287131
514 => 0.0023181648482113
515 => 0.0022696654501979
516 => 0.0022092172434963
517 => 0.0022086791276622
518 => 0.0021956556606833
519 => 0.0021790683173942
520 => 0.0021744540979582
521 => 0.0022417612651036
522 => 0.0023810850867605
523 => 0.0023537324868328
524 => 0.0023734975434878
525 => 0.0024707220600348
526 => 0.0025016268102018
527 => 0.0024796913505524
528 => 0.002449664740464
529 => 0.0024509857589202
530 => 0.0025535957752653
531 => 0.0025599954361208
601 => 0.0025761653144936
602 => 0.0025969481778098
603 => 0.0024832307620428
604 => 0.002445629678864
605 => 0.0024278121996253
606 => 0.0023729412598022
607 => 0.0024321148641226
608 => 0.0023976369389514
609 => 0.0024022891889907
610 => 0.0023992594050495
611 => 0.0024009138719545
612 => 0.0023130745124161
613 => 0.002345078558331
614 => 0.0022918656247106
615 => 0.002220619480025
616 => 0.0022203806379659
617 => 0.0022378180309434
618 => 0.0022274455872751
619 => 0.0021995336080638
620 => 0.0022034983729699
621 => 0.0021687628604704
622 => 0.0022077158930941
623 => 0.0022088329266891
624 => 0.002193833887343
625 => 0.0022538464085824
626 => 0.0022784335874998
627 => 0.0022685608984916
628 => 0.0022777408933204
629 => 0.0023548691108494
630 => 0.0023674443756466
701 => 0.0023730294775942
702 => 0.0023655461808687
703 => 0.0022791506555506
704 => 0.0022829826644806
705 => 0.0022548659255301
706 => 0.002231110243986
707 => 0.0022320603466656
708 => 0.0022442738550017
709 => 0.0022976109622185
710 => 0.0024098557599618
711 => 0.0024141153679863
712 => 0.0024192781371735
713 => 0.0023982785602893
714 => 0.0023919448869621
715 => 0.0024003006369404
716 => 0.0024424538814218
717 => 0.002550883470722
718 => 0.0025125572120945
719 => 0.0024813973672466
720 => 0.0025087329518121
721 => 0.0025045248528316
722 => 0.0024690042625554
723 => 0.0024680073178914
724 => 0.0023998319485317
725 => 0.0023746290667575
726 => 0.0023535676523439
727 => 0.0023305691376265
728 => 0.0023169348471848
729 => 0.0023378833139774
730 => 0.0023426744761879
731 => 0.0022968702874293
801 => 0.0022906273457538
802 => 0.0023280320350461
803 => 0.0023115716258759
804 => 0.002328501564906
805 => 0.0023324294559833
806 => 0.0023317969750528
807 => 0.0023146104174132
808 => 0.0023255646167422
809 => 0.0022996546697251
810 => 0.0022714814938923
811 => 0.0022535087629619
812 => 0.0022378251714882
813 => 0.0022465273395735
814 => 0.0022155056993027
815 => 0.0022055812522378
816 => 0.0023218535804868
817 => 0.0024077451995026
818 => 0.0024064963013453
819 => 0.0023988939550032
820 => 0.0023875984104185
821 => 0.0024416275419798
822 => 0.0024228048728904
823 => 0.0024364999373396
824 => 0.0024399859060219
825 => 0.0024505368833168
826 => 0.0024543079508126
827 => 0.0024429091656656
828 => 0.0024046534504678
829 => 0.0023093238454393
830 => 0.0022649476569612
831 => 0.0022503027756196
901 => 0.0022508350892417
902 => 0.0022361515031894
903 => 0.002240476477354
904 => 0.0022346474536759
905 => 0.002223608693022
906 => 0.0022458457272095
907 => 0.0022484083382473
908 => 0.0022432179487552
909 => 0.0022444404733754
910 => 0.0022014662652249
911 => 0.0022047335009355
912 => 0.0021865411173186
913 => 0.0021831302647028
914 => 0.0021371415031113
915 => 0.0020556657457743
916 => 0.0021008112243821
917 => 0.0020462818346388
918 => 0.0020256307284879
919 => 0.0021233898531003
920 => 0.0021135775484052
921 => 0.0020967831480736
922 => 0.0020719407297235
923 => 0.0020627264351059
924 => 0.0020067432979007
925 => 0.0020034355154962
926 => 0.002031182269967
927 => 0.0020183780974863
928 => 0.002000396190004
929 => 0.0019352675439
930 => 0.0018620413823254
1001 => 0.00186425161986
1002 => 0.0018875434994358
1003 => 0.0019552677806401
1004 => 0.0019288067323316
1005 => 0.0019096089381782
1006 => 0.0019060137684169
1007 => 0.0019510148449779
1008 => 0.0020147007963287
1009 => 0.0020445808198096
1010 => 0.0020149706240098
1011 => 0.0019809560254011
1012 => 0.00198302633641
1013 => 0.0019967991880361
1014 => 0.0019982465200044
1015 => 0.0019761065130673
1016 => 0.0019823387953343
1017 => 0.001972871388679
1018 => 0.0019147699315108
1019 => 0.0019137190603923
1020 => 0.0018994600257907
1021 => 0.0018990282678899
1022 => 0.0018747700929496
1023 => 0.0018713762065867
1024 => 0.0018232101278768
1025 => 0.001854913186744
1026 => 0.0018336484393412
1027 => 0.0018015974491584
1028 => 0.0017960718463701
1029 => 0.001795905740078
1030 => 0.0018288149405254
1031 => 0.0018545286235761
1101 => 0.0018340183487265
1102 => 0.0018293485567182
1103 => 0.0018792097181944
1104 => 0.001872864430902
1105 => 0.0018673694530295
1106 => 0.0020089984178988
1107 => 0.0018968880407588
1108 => 0.0018480015172891
1109 => 0.0017874951611964
1110 => 0.0018071963358397
1111 => 0.0018113476628075
1112 => 0.0016658407834949
1113 => 0.0016068086606796
1114 => 0.0015865510607079
1115 => 0.0015748925255238
1116 => 0.0015802054664059
1117 => 0.0015270696320947
1118 => 0.0015627777915374
1119 => 0.0015167666504841
1120 => 0.0015090527329533
1121 => 0.0015913263528432
1122 => 0.0016027742464154
1123 => 0.0015539339758548
1124 => 0.0015852973360763
1125 => 0.0015739245456766
1126 => 0.0015175553794375
1127 => 0.0015154024919107
1128 => 0.0014871184257639
1129 => 0.0014428593391186
1130 => 0.0014226317488918
1201 => 0.0014120970442777
1202 => 0.0014164438687188
1203 => 0.0014142459812664
1204 => 0.0013999032789309
1205 => 0.0014150680881753
1206 => 0.0013763282670878
1207 => 0.0013609017581828
1208 => 0.0013539339620027
1209 => 0.0013195501410066
1210 => 0.0013742700907659
1211 => 0.0013850506102123
1212 => 0.0013958523706122
1213 => 0.0014898743202186
1214 => 0.0014851772493196
1215 => 0.0015276364826808
1216 => 0.0015259865949499
1217 => 0.0015138765338013
1218 => 0.0014627861778237
1219 => 0.0014831498831184
1220 => 0.0014204735634439
1221 => 0.0014674349237195
1222 => 0.001446003720043
1223 => 0.0014601890121986
1224 => 0.0014346825778666
1225 => 0.0014487988917608
1226 => 0.0013876070713039
1227 => 0.0013304670103535
1228 => 0.0013534618389023
1229 => 0.0013784598473125
1230 => 0.0014326618989199
1231 => 0.0014003796041397
]
'min_raw' => 0.0013195501410066
'max_raw' => 0.0039388893072977
'avg_raw' => 0.0026292197241522
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001319'
'max' => '$0.003938'
'avg' => '$0.002629'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0024996998589934
'max_diff' => 0.00011963930729774
'year' => 2026
]
1 => [
'items' => [
101 => 0.0014119895380714
102 => 0.0013730982028798
103 => 0.0012928542696189
104 => 0.0012933084415667
105 => 0.0012809646606436
106 => 0.0012702978317046
107 => 0.001404087614032
108 => 0.0013874487396962
109 => 0.0013609368710839
110 => 0.0013964240607612
111 => 0.0014058074369693
112 => 0.0014060745684984
113 => 0.00143196510603
114 => 0.0014457828905517
115 => 0.0014482183349634
116 => 0.0014889576551714
117 => 0.0015026129379405
118 => 0.0015588571150984
119 => 0.0014446105480745
120 => 0.0014422577152087
121 => 0.0013969234382951
122 => 0.0013681717231699
123 => 0.0013988920928279
124 => 0.0014261061465962
125 => 0.0013977690548045
126 => 0.0014014692807639
127 => 0.001363429050259
128 => 0.0013770266427053
129 => 0.0013887387211135
130 => 0.0013822719998207
131 => 0.0013725910050524
201 => 0.0014238749045322
202 => 0.0014209812659403
203 => 0.0014687380121476
204 => 0.0015059678109339
205 => 0.0015726902659816
206 => 0.0015030619058191
207 => 0.0015005243716271
208 => 0.0015253291753871
209 => 0.0015026091404543
210 => 0.0015169674182629
211 => 0.0015703769254485
212 => 0.0015715053841737
213 => 0.0015526022465891
214 => 0.0015514519889492
215 => 0.0015550825433
216 => 0.0015763468135309
217 => 0.0015689164241272
218 => 0.0015775150588596
219 => 0.0015882677832594
220 => 0.0016327456104378
221 => 0.0016434690639915
222 => 0.0016174166313292
223 => 0.0016197688743018
224 => 0.0016100245493309
225 => 0.0016006116535049
226 => 0.0016217704686786
227 => 0.001660438619286
228 => 0.001660198066728
301 => 0.0016691683260675
302 => 0.0016747567233223
303 => 0.0016507672313477
304 => 0.0016351509541902
305 => 0.0016411392285419
306 => 0.0016507146096379
307 => 0.0016380340615062
308 => 0.0015597638442361
309 => 0.0015835060282351
310 => 0.0015795541678842
311 => 0.0015739262381818
312 => 0.0015977991877856
313 => 0.0015954965835579
314 => 0.0015265246473125
315 => 0.001530940006892
316 => 0.0015267931599527
317 => 0.0015401924707788
318 => 0.0015018855336969
319 => 0.0015136684895421
320 => 0.0015210586489899
321 => 0.0015254115096785
322 => 0.0015411370272704
323 => 0.0015392918192842
324 => 0.0015410223265512
325 => 0.0015643391177572
326 => 0.0016822674463206
327 => 0.0016886860250501
328 => 0.0016570785959011
329 => 0.0016697051404172
330 => 0.0016454649360681
331 => 0.0016617375476429
401 => 0.0016728708552028
402 => 0.0016225615791513
403 => 0.001619582590328
404 => 0.0015952423380329
405 => 0.0016083214109139
406 => 0.0015875116655415
407 => 0.0015926176491619
408 => 0.0015783408738277
409 => 0.0016040362269517
410 => 0.0016327676243987
411 => 0.001640026310031
412 => 0.0016209318331929
413 => 0.0016071061735748
414 => 0.0015828328697408
415 => 0.0016231999149826
416 => 0.0016350044691747
417 => 0.0016231379106848
418 => 0.0016203881697933
419 => 0.0016151774157725
420 => 0.0016214936558916
421 => 0.0016349401790374
422 => 0.0016285990470402
423 => 0.0016327874764407
424 => 0.0016168255026554
425 => 0.0016507751728677
426 => 0.001704695419598
427 => 0.0017048687820081
428 => 0.0016985276158297
429 => 0.0016959329472519
430 => 0.001702439368565
501 => 0.00170596883522
502 => 0.0017270094086731
503 => 0.0017495867822816
504 => 0.0018549455336329
505 => 0.0018253612178533
506 => 0.0019188417698724
507 => 0.001992772749589
508 => 0.0020149414177961
509 => 0.001994547286162
510 => 0.0019247800635112
511 => 0.0019213569507258
512 => 0.0020256186363278
513 => 0.0019961599346575
514 => 0.0019926559158306
515 => 0.001955379075646
516 => 0.0019774143050216
517 => 0.0019725948771198
518 => 0.0019649871744024
519 => 0.0020070288570637
520 => 0.0020857271339186
521 => 0.002073461269443
522 => 0.002064305370609
523 => 0.0020241868871607
524 => 0.0020483471749843
525 => 0.0020397441592501
526 => 0.0020767081744527
527 => 0.0020548115106999
528 => 0.0019959367560189
529 => 0.0020053127547556
530 => 0.0020038955914084
531 => 0.0020330607126716
601 => 0.0020243060671912
602 => 0.0020021861063713
603 => 0.0020854581517639
604 => 0.0020800509283196
605 => 0.0020877171349003
606 => 0.0020910920361224
607 => 0.0021417782627348
608 => 0.0021625427879996
609 => 0.0021672566987689
610 => 0.0021869813917844
611 => 0.0021667659304379
612 => 0.0022476421892036
613 => 0.0023014201820223
614 => 0.0023638860880714
615 => 0.0024551655660619
616 => 0.0024894874941687
617 => 0.0024832875450598
618 => 0.0025524946035139
619 => 0.0026768581491694
620 => 0.0025084249733267
621 => 0.0026857855164768
622 => 0.0026296352162414
623 => 0.002496503864484
624 => 0.0024879317749464
625 => 0.0025780898720432
626 => 0.0027780518540088
627 => 0.0027279636454764
628 => 0.0027781337803743
629 => 0.0027196076530723
630 => 0.0027167013375548
701 => 0.002775291297004
702 => 0.0029121899308295
703 => 0.0028471545214676
704 => 0.0027539103148106
705 => 0.0028227603859656
706 => 0.0027631160825579
707 => 0.002628720773591
708 => 0.0027279253439673
709 => 0.0026615900729402
710 => 0.0026809502316029
711 => 0.0028203771046751
712 => 0.0028036008944293
713 => 0.0028253108639226
714 => 0.0027869933360157
715 => 0.0027511987228312
716 => 0.0026843854191794
717 => 0.0026646052938241
718 => 0.002670071808858
719 => 0.0026646025848908
720 => 0.0026272211555435
721 => 0.0026191486394351
722 => 0.002605694092256
723 => 0.0026098642190243
724 => 0.002584565734061
725 => 0.0026323092021205
726 => 0.0026411708105063
727 => 0.0026759145250851
728 => 0.0026795217327905
729 => 0.0027762824833467
730 => 0.0027229882879387
731 => 0.0027587426354179
801 => 0.0027555444300464
802 => 0.0024993892245662
803 => 0.0025346851518048
804 => 0.0025895945381161
805 => 0.0025648579340108
806 => 0.0025298861632798
807 => 0.0025016445833469
808 => 0.0024588557018986
809 => 0.0025190802308493
810 => 0.0025982690822549
811 => 0.0026815300927437
812 => 0.0027815627413684
813 => 0.0027592366187038
814 => 0.0026796600519589
815 => 0.0026832297986124
816 => 0.0027052965677805
817 => 0.0026767180967304
818 => 0.0026682897476996
819 => 0.0027041386420498
820 => 0.002704385513683
821 => 0.0026715025289162
822 => 0.0026349591088706
823 => 0.0026348059906063
824 => 0.0026283034419767
825 => 0.002720764442028
826 => 0.0027716086431947
827 => 0.002777437848919
828 => 0.0027712162912048
829 => 0.0027736107218442
830 => 0.0027440256014608
831 => 0.0028116484134623
901 => 0.0028737057929578
902 => 0.0028570730895905
903 => 0.0028321383027647
904 => 0.002812276544036
905 => 0.0028523942904498
906 => 0.0028506079103532
907 => 0.0028731637758856
908 => 0.0028721405115361
909 => 0.0028645558223265
910 => 0.0028570733604636
911 => 0.0028867404759708
912 => 0.0028781968231441
913 => 0.0028696398996646
914 => 0.0028524776796272
915 => 0.0028548103103646
916 => 0.0028298798288813
917 => 0.0028183458474059
918 => 0.0026449024399076
919 => 0.0025985526939972
920 => 0.0026131352675967
921 => 0.002617936229462
922 => 0.0025977647606429
923 => 0.0026266854653042
924 => 0.0026221782041174
925 => 0.0026397133207358
926 => 0.0026287581411589
927 => 0.00262920774555
928 => 0.0026614245927953
929 => 0.0026707772806109
930 => 0.0026660204281024
1001 => 0.002669351964544
1002 => 0.0027461258156859
1003 => 0.0027352110291431
1004 => 0.0027294127663319
1005 => 0.0027310189247567
1006 => 0.0027506362897733
1007 => 0.0027561280809096
1008 => 0.002732858975964
1009 => 0.0027438328203734
1010 => 0.0027905580570806
1011 => 0.0028069092455088
1012 => 0.0028590943899558
1013 => 0.0028369252130777
1014 => 0.0028776176966969
1015 => 0.0030026925182523
1016 => 0.0031026109402301
1017 => 0.0030107218300759
1018 => 0.0031942092875039
1019 => 0.003337080592824
1020 => 0.0033315969541612
1021 => 0.0033066840374058
1022 => 0.003144028854729
1023 => 0.0029943511305776
1024 => 0.0031195629024821
1025 => 0.0031198820930387
1026 => 0.0031091262907873
1027 => 0.0030423229267576
1028 => 0.0031068016785238
1029 => 0.0031119197676865
1030 => 0.0031090549987651
1031 => 0.0030578370161923
1101 => 0.002979636623469
1102 => 0.0029949167930219
1103 => 0.0030199460224564
1104 => 0.0029725604694926
1105 => 0.0029574179141287
1106 => 0.0029855708055392
1107 => 0.0030762852875515
1108 => 0.0030591362402003
1109 => 0.0030586884092692
1110 => 0.0031320593061655
1111 => 0.0030795415784183
1112 => 0.0029951095248938
1113 => 0.0029737893178569
1114 => 0.0028981169458883
1115 => 0.0029503841227428
1116 => 0.0029522651253883
1117 => 0.0029236389267827
1118 => 0.0029974323831427
1119 => 0.0029967523634512
1120 => 0.0030668082675585
1121 => 0.0032007288444157
1122 => 0.0031611219400077
1123 => 0.0031150634194001
1124 => 0.0031200712576544
1125 => 0.003174994882906
1126 => 0.0031417868052945
1127 => 0.0031537286615385
1128 => 0.0031749768074763
1129 => 0.0031877963414824
1130 => 0.0031182267239924
1201 => 0.003102006718256
1202 => 0.0030688262789677
1203 => 0.0030601701216996
1204 => 0.0030871948971673
1205 => 0.003080074823631
1206 => 0.0029521070343995
1207 => 0.0029387336884188
1208 => 0.0029391438298473
1209 => 0.0029055159155108
1210 => 0.0028542252745234
1211 => 0.0029890140166332
1212 => 0.0029781885942745
1213 => 0.0029662381658117
1214 => 0.0029677020251102
1215 => 0.0030262092496458
1216 => 0.0029922721047295
1217 => 0.0030824995666781
1218 => 0.0030639515129872
1219 => 0.0030449277717074
1220 => 0.0030422981111852
1221 => 0.0030349755938218
1222 => 0.003009863957194
1223 => 0.0029795401469906
1224 => 0.0029595177408908
1225 => 0.0027299986764559
1226 => 0.002772596079764
1227 => 0.0028216005093946
1228 => 0.0028385166421301
1229 => 0.0028095804265252
1230 => 0.0030110065353544
1231 => 0.0030478090264278
]
'min_raw' => 0.0012702978317046
'max_raw' => 0.003337080592824
'avg_raw' => 0.0023036892122643
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00127'
'max' => '$0.003337'
'avg' => '$0.0023036'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -4.9252309302027E-5
'max_diff' => -0.00060180871447374
'year' => 2027
]
2 => [
'items' => [
101 => 0.0029363318803995
102 => 0.0029154790579594
103 => 0.003012373642922
104 => 0.0029539343633083
105 => 0.0029802495673401
106 => 0.0029233704898704
107 => 0.003038944384031
108 => 0.0030380639045967
109 => 0.0029931030494135
110 => 0.0030311036563357
111 => 0.0030245001157339
112 => 0.0029737394209658
113 => 0.0030405535885953
114 => 0.0030405867275889
115 => 0.0029973128820083
116 => 0.0029467785042331
117 => 0.0029377441510556
118 => 0.0029309379795309
119 => 0.0029785756663709
120 => 0.0030212874674324
121 => 0.0031007635400544
122 => 0.0031207457130165
123 => 0.0031987374643761
124 => 0.0031522971737909
125 => 0.0031728835531049
126 => 0.0031952329799714
127 => 0.0032059481170841
128 => 0.0031884883761648
129 => 0.0033096416687119
130 => 0.0033198707186438
131 => 0.0033233004306051
201 => 0.0032824482220195
202 => 0.003318734544822
203 => 0.0033017573760594
204 => 0.0033459272527863
205 => 0.0033528536534463
206 => 0.0033469872385011
207 => 0.0033491857873964
208 => 0.0032458028251129
209 => 0.0032404418731299
210 => 0.0031673449124462
211 => 0.0031971324642303
212 => 0.0031414460639245
213 => 0.003159104795095
214 => 0.0031668885955363
215 => 0.0031628227799126
216 => 0.0031988166077153
217 => 0.0031682145010297
218 => 0.0030874505100345
219 => 0.0030066645149439
220 => 0.0030056503125824
221 => 0.0029843807860663
222 => 0.0029690068141033
223 => 0.0029719683865243
224 => 0.00298240535402
225 => 0.0029684001985791
226 => 0.0029713889085718
227 => 0.0030210214081217
228 => 0.0030309748519436
229 => 0.0029971491607751
301 => 0.0028613341297097
302 => 0.00282800478042
303 => 0.0028519612557397
304 => 0.0028405116035315
305 => 0.0022925145568909
306 => 0.002421258334444
307 => 0.0023447631535476
308 => 0.0023800156522787
309 => 0.0023019338809145
310 => 0.0023391985948257
311 => 0.0023323171628558
312 => 0.0025393333473559
313 => 0.0025361010743764
314 => 0.0025376481924036
315 => 0.00246380021797
316 => 0.0025814420464337
317 => 0.0026393966413982
318 => 0.0026286707882819
319 => 0.0026313702544318
320 => 0.0025849844822165
321 => 0.0025380973080729
322 => 0.0024860922160633
323 => 0.0025827112489935
324 => 0.0025719688618735
325 => 0.0025966080329378
326 => 0.0026592723822642
327 => 0.0026684999457412
328 => 0.002680901884631
329 => 0.0026764566723691
330 => 0.0027823596628
331 => 0.0027695341118884
401 => 0.0028004399994225
402 => 0.0027368642439295
403 => 0.0026649222419229
404 => 0.0026785960645431
405 => 0.0026772791654669
406 => 0.0026605135287597
407 => 0.0026453782615827
408 => 0.002620182306068
409 => 0.0026999060376161
410 => 0.0026966693997079
411 => 0.002749066805262
412 => 0.0027398050548691
413 => 0.0026779528190103
414 => 0.0026801618837143
415 => 0.0026950189054892
416 => 0.0027464392274864
417 => 0.0027617042800177
418 => 0.002754632899478
419 => 0.0027713703327025
420 => 0.0027845989174829
421 => 0.00277303163928
422 => 0.0029367999054022
423 => 0.0028687919034246
424 => 0.0029019385303919
425 => 0.0029098438056123
426 => 0.0028895946093652
427 => 0.0028939859349618
428 => 0.0029006375966761
429 => 0.0029410251840765
430 => 0.0030470138996577
501 => 0.003093955580299
502 => 0.0032351819425701
503 => 0.0030900577271815
504 => 0.003081446656824
505 => 0.0031068857892966
506 => 0.0031898006142785
507 => 0.0032569952921327
508 => 0.0032792876433309
509 => 0.0032822339455484
510 => 0.0033240558783638
511 => 0.0033480274303206
512 => 0.0033189775956939
513 => 0.0032943609024923
514 => 0.0032061869629803
515 => 0.0032163933365685
516 => 0.0032867051294173
517 => 0.0033860246781602
518 => 0.0034712511834194
519 => 0.0034414078317212
520 => 0.0036690915390555
521 => 0.0036916654486331
522 => 0.0036885464642314
523 => 0.0037399731896974
524 => 0.0036379016125178
525 => 0.0035942640357299
526 => 0.0032996833109738
527 => 0.0033824484788387
528 => 0.0035027525109581
529 => 0.0034868298211901
530 => 0.003399461817329
531 => 0.003471184906954
601 => 0.0034474710105356
602 => 0.0034287668765399
603 => 0.0035144541403489
604 => 0.0034202374739521
605 => 0.0035018126276388
606 => 0.0033971916492488
607 => 0.003441544153638
608 => 0.0034163675270574
609 => 0.0034326598899863
610 => 0.0033374150692115
611 => 0.0033888068625643
612 => 0.0033352770016474
613 => 0.0033352516215236
614 => 0.0033340699468769
615 => 0.0033970475908578
616 => 0.0033991012895671
617 => 0.0033525607155113
618 => 0.0033458534916894
619 => 0.0033706536135571
620 => 0.0033416191660122
621 => 0.0033552042012778
622 => 0.0033420306428911
623 => 0.0033390649974207
624 => 0.0033154342297493
625 => 0.0033052534452949
626 => 0.003309245593206
627 => 0.0032956183342923
628 => 0.0032874074178773
629 => 0.0033324365889362
630 => 0.003308379319311
701 => 0.0033287494673364
702 => 0.0033055351127438
703 => 0.0032250640457134
704 => 0.003178784284098
705 => 0.0030267818981493
706 => 0.003069889586246
707 => 0.0030984700280522
708 => 0.0030890241922058
709 => 0.0031093175026572
710 => 0.0031105633471035
711 => 0.0031039657850099
712 => 0.0030963266533056
713 => 0.0030926083464624
714 => 0.0031203215593198
715 => 0.0031364100121674
716 => 0.0031013384577445
717 => 0.0030931216832464
718 => 0.0031285809611215
719 => 0.0031502111001412
720 => 0.0033099158937373
721 => 0.003298084446788
722 => 0.0033277790568265
723 => 0.0033244358994371
724 => 0.0033555605814799
725 => 0.0034064362823476
726 => 0.0033029917574138
727 => 0.0033209461500997
728 => 0.0033165441476406
729 => 0.0033646040562223
730 => 0.003364754094011
731 => 0.0033359397780458
801 => 0.0033515604861894
802 => 0.0033428414354353
803 => 0.0033585979385983
804 => 0.0032979264306007
805 => 0.0033718177782572
806 => 0.0034137094109252
807 => 0.0034142910762854
808 => 0.0034341473776975
809 => 0.0034543225299315
810 => 0.0034930469777594
811 => 0.0034532425260993
812 => 0.0033816381924482
813 => 0.0033868077940572
814 => 0.0033448261994365
815 => 0.0033455319176267
816 => 0.0033417647386194
817 => 0.0033530703264002
818 => 0.0033004073713503
819 => 0.0033127672616393
820 => 0.0032954633428552
821 => 0.0033209085347597
822 => 0.0032935337145114
823 => 0.0033165420248617
824 => 0.0033264716488714
825 => 0.0033631121752365
826 => 0.0032881218789758
827 => 0.0031352115885035
828 => 0.0031673551854189
829 => 0.003119812280756
830 => 0.0031242125575912
831 => 0.003133101817097
901 => 0.0031042888186538
902 => 0.0031097854307548
903 => 0.0031095890530915
904 => 0.0031078967764809
905 => 0.003100401402775
906 => 0.003089531627987
907 => 0.0031328334652022
908 => 0.0031401912911368
909 => 0.0031565468267475
910 => 0.0032052098066591
911 => 0.0032003472274139
912 => 0.0032082782959094
913 => 0.0031909648179147
914 => 0.0031250156801791
915 => 0.003128597035649
916 => 0.0030839374755518
917 => 0.0031554047813874
918 => 0.0031384803800432
919 => 0.0031275691083968
920 => 0.0031245918668359
921 => 0.0031733754728623
922 => 0.0031879722923747
923 => 0.0031788765340107
924 => 0.0031602208682404
925 => 0.0031960452615718
926 => 0.0032056303579175
927 => 0.0032077761075045
928 => 0.0032712500638417
929 => 0.0032113235965561
930 => 0.0032257484928496
1001 => 0.0033382874159634
1002 => 0.003236230142009
1003 => 0.0032902921561714
1004 => 0.0032876461019033
1005 => 0.00331530239899
1006 => 0.0032853774783154
1007 => 0.0032857484335718
1008 => 0.003310305351785
1009 => 0.0032758195890182
1010 => 0.0032672804291827
1011 => 0.0032554836410287
1012 => 0.0032812414963862
1013 => 0.0032966821657454
1014 => 0.0034211226208586
1015 => 0.0035015168300359
1016 => 0.0034980267053908
1017 => 0.0035299199114068
1018 => 0.0035155517299883
1019 => 0.0034691530820533
1020 => 0.0035483499163661
1021 => 0.0035232887242532
1022 => 0.0035253547384817
1023 => 0.0035252778413289
1024 => 0.0035419413431965
1025 => 0.0035301337249358
1026 => 0.0035068596973168
1027 => 0.0035223100830037
1028 => 0.0035681922048798
1029 => 0.0037106117190189
1030 => 0.0037903115659387
1031 => 0.0037058136881602
1101 => 0.0037640991927801
1102 => 0.003729148659257
1103 => 0.0037227971076275
1104 => 0.0037594047117938
1105 => 0.0037960763927251
1106 => 0.0037937405651858
1107 => 0.0037671188079413
1108 => 0.003752080852776
1109 => 0.0038659532873724
1110 => 0.0039498525574167
1111 => 0.0039441311896675
1112 => 0.0039693834462239
1113 => 0.0040435248524964
1114 => 0.0040503034135156
1115 => 0.0040494494706306
1116 => 0.0040326480998748
1117 => 0.0041056499428283
1118 => 0.0041665493645654
1119 => 0.0040287590679831
1120 => 0.0040812278091142
1121 => 0.0041047827174452
1122 => 0.0041393683113015
1123 => 0.0041977200053556
1124 => 0.0042611054221209
1125 => 0.0042700688150372
1126 => 0.0042637088588252
1127 => 0.0042219044725771
1128 => 0.0042912615519469
1129 => 0.0043318893024181
1130 => 0.0043560821980741
1201 => 0.0044174313561439
1202 => 0.00410492818454
1203 => 0.0038837229072634
1204 => 0.0038491785089737
1205 => 0.0039194259012872
1206 => 0.0039379495784277
1207 => 0.0039304827073991
1208 => 0.0036814960567203
1209 => 0.0038478676457869
1210 => 0.004026869486702
1211 => 0.0040337456764195
1212 => 0.0041233577407336
1213 => 0.0041525391021969
1214 => 0.0042246885596915
1215 => 0.004220175591481
1216 => 0.0042377428362323
1217 => 0.0042337044308863
1218 => 0.0043673461080343
1219 => 0.0045147727239097
1220 => 0.0045096678089899
1221 => 0.0044884734886852
1222 => 0.0045199506685062
1223 => 0.004672110735286
1224 => 0.0046581022746523
1225 => 0.0046717103009201
1226 => 0.0048511155950189
1227 => 0.0050843679974529
1228 => 0.004975998838364
1229 => 0.0052111287312014
1230 => 0.0053591305350426
1231 => 0.0056150843511136
]
'min_raw' => 0.0022925145568909
'max_raw' => 0.0056150843511136
'avg_raw' => 0.0039537994540023
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002292'
'max' => '$0.005615'
'avg' => '$0.003953'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0010222167251864
'max_diff' => 0.0022780037582896
'year' => 2028
]
3 => [
'items' => [
101 => 0.0055830376727424
102 => 0.005682678615063
103 => 0.0055256674301143
104 => 0.0051651380122762
105 => 0.0051080828518522
106 => 0.0052223087278879
107 => 0.0055031218981237
108 => 0.005213464921828
109 => 0.0052720621508825
110 => 0.0052551861449728
111 => 0.0052542868943362
112 => 0.0052886076336157
113 => 0.0052388236112415
114 => 0.0050359945481143
115 => 0.0051289499124663
116 => 0.0050930553822067
117 => 0.0051328830396442
118 => 0.0053478164806589
119 => 0.005252789283013
120 => 0.0051526858496758
121 => 0.0052782377698108
122 => 0.0054381085084633
123 => 0.0054281040849538
124 => 0.0054086913218207
125 => 0.0055181200511828
126 => 0.0056988642524797
127 => 0.0057477186838012
128 => 0.0057837820262179
129 => 0.005788754551842
130 => 0.0058399746561776
131 => 0.0055645512460366
201 => 0.0060016552713052
202 => 0.0060771310617141
203 => 0.0060629447412683
204 => 0.006146832905801
205 => 0.0061221508797581
206 => 0.0060863904965133
207 => 0.0062193710808219
208 => 0.0060669195718918
209 => 0.0058505338480769
210 => 0.0057318203603677
211 => 0.0058881518573271
212 => 0.0059836180473028
213 => 0.0060467151260867
214 => 0.0060658082640024
215 => 0.0055859315813359
216 => 0.0053273046645597
217 => 0.0054930815530496
218 => 0.005695340798317
219 => 0.0055634276857168
220 => 0.0055685984299862
221 => 0.0053805249975744
222 => 0.0057119811238853
223 => 0.0056636907542666
224 => 0.0059142212772725
225 => 0.0058544301573241
226 => 0.0060587280732965
227 => 0.0060049295852522
228 => 0.0062282441012911
301 => 0.0063173303077382
302 => 0.0064669199135238
303 => 0.0065769586364788
304 => 0.0066415754793034
305 => 0.0066376961264319
306 => 0.0068937402496861
307 => 0.0067427599757034
308 => 0.0065530931682627
309 => 0.0065496626941072
310 => 0.0066478938212802
311 => 0.0068537593154411
312 => 0.0069071372428559
313 => 0.00693696822233
314 => 0.0068912810388416
315 => 0.0067274027722871
316 => 0.0066566409676705
317 => 0.0067169320753707
318 => 0.0066432012315273
319 => 0.0067704813532219
320 => 0.0069452641458756
321 => 0.0069091721903587
322 => 0.0070298221864433
323 => 0.0071546822396412
324 => 0.0073332377235301
325 => 0.0073799187389091
326 => 0.0074570806822105
327 => 0.0075365056682456
328 => 0.0075620148331967
329 => 0.0076107197441173
330 => 0.0076104630451953
331 => 0.0077572385724733
401 => 0.0079191365243206
402 => 0.0079802492531968
403 => 0.008120774603472
404 => 0.0078801298657213
405 => 0.0080626616636327
406 => 0.008227309914416
407 => 0.0080310094821815
408 => 0.0083015638958821
409 => 0.0083120689106766
410 => 0.0084706821619456
411 => 0.0083098972451623
412 => 0.00821442367482
413 => 0.0084900522950502
414 => 0.0086234203021594
415 => 0.0085832487730333
416 => 0.0082775414528703
417 => 0.0080996066801317
418 => 0.0076339170588204
419 => 0.0081855465315582
420 => 0.0084542291564765
421 => 0.0082768456297807
422 => 0.0083663075628625
423 => 0.0088543828616274
424 => 0.0090402103348617
425 => 0.0090015595194611
426 => 0.0090080908710172
427 => 0.0091083600025672
428 => 0.0095530085510793
429 => 0.0092865648339382
430 => 0.009490251072237
501 => 0.0095982855185853
502 => 0.0096986339331787
503 => 0.0094522099423794
504 => 0.0091316159510369
505 => 0.0090300703763585
506 => 0.0082592083338981
507 => 0.0082190816169038
508 => 0.008196557274691
509 => 0.0080545444831706
510 => 0.0079429613296129
511 => 0.007854226263087
512 => 0.007621358949989
513 => 0.0076999448322679
514 => 0.0073288029383752
515 => 0.0075662463696266
516 => 0.0069738949454395
517 => 0.0074672228133202
518 => 0.0071987268836985
519 => 0.0073790146792646
520 => 0.00737838567213
521 => 0.0070464186801951
522 => 0.0068549470472215
523 => 0.0069769602239397
524 => 0.0071077680347997
525 => 0.0071289911620214
526 => 0.0072985869032346
527 => 0.0073459174291589
528 => 0.0072025037259572
529 => 0.0069616197788001
530 => 0.0070175716257468
531 => 0.006853813184829
601 => 0.006566832815998
602 => 0.0067729471270889
603 => 0.0068433236151019
604 => 0.0068744058814685
605 => 0.0065921936486413
606 => 0.0065035164379613
607 => 0.0064563054350691
608 => 0.0069251897234115
609 => 0.0069508762631733
610 => 0.0068194602940411
611 => 0.0074134729358924
612 => 0.0072790295804768
613 => 0.0074292357478978
614 => 0.0070124945820959
615 => 0.0070284146558459
616 => 0.0068311227093819
617 => 0.0069415930163491
618 => 0.0068635161640089
619 => 0.006932668107235
620 => 0.0069741174968806
621 => 0.0071713770696776
622 => 0.0074694752007791
623 => 0.0071419130675288
624 => 0.0069991895552955
625 => 0.0070877344195775
626 => 0.0073235410614664
627 => 0.0076808001946479
628 => 0.0074692955972943
629 => 0.0075631577460189
630 => 0.0075836624498788
701 => 0.0074277067901161
702 => 0.0076865505022762
703 => 0.0078252669504653
704 => 0.007967561322983
705 => 0.0080911115396423
706 => 0.0079107258214791
707 => 0.0081037643971907
708 => 0.0079482093810629
709 => 0.0078086604506144
710 => 0.0078088720887386
711 => 0.0077213310061836
712 => 0.0075517091278471
713 => 0.0075204282510154
714 => 0.0076831553226334
715 => 0.0078136470237601
716 => 0.007824394945278
717 => 0.0078966418559273
718 => 0.0079393968334473
719 => 0.0083584537357162
720 => 0.0085270018884293
721 => 0.0087330993791136
722 => 0.0088133859667533
723 => 0.009055019811214
724 => 0.0088598808572706
725 => 0.0088176613171034
726 => 0.00823153664827
727 => 0.0083275145299562
728 => 0.0084811843790238
729 => 0.008234070607481
730 => 0.0083908074177753
731 => 0.008421750584267
801 => 0.0082256737760832
802 => 0.0083304068713129
803 => 0.0080522668215814
804 => 0.0074755378937942
805 => 0.0076871925664395
806 => 0.0078430416476989
807 => 0.0076206257926886
808 => 0.0080192976041123
809 => 0.0077864017621352
810 => 0.0077125849612005
811 => 0.0074245993031642
812 => 0.0075605174481728
813 => 0.0077443486854573
814 => 0.0076307623534906
815 => 0.007866471047395
816 => 0.008200297419176
817 => 0.0084382019714113
818 => 0.0084564653288594
819 => 0.0083035086401392
820 => 0.0085486227099699
821 => 0.0085504080983715
822 => 0.0082739184262821
823 => 0.0081045700416283
824 => 0.0080660937323229
825 => 0.0081622150966925
826 => 0.00827892417802
827 => 0.0084629418706192
828 => 0.0085741399082746
829 => 0.0088640854155978
830 => 0.0089425363564903
831 => 0.0090287301556921
901 => 0.0091439116526089
902 => 0.0092822165715871
903 => 0.0089796132825661
904 => 0.008991636275362
905 => 0.0087098562824534
906 => 0.0084087339486919
907 => 0.0086372482645881
908 => 0.0089360003346368
909 => 0.0088674662796759
910 => 0.0088597547984691
911 => 0.0088727233708724
912 => 0.0088210509315449
913 => 0.0085873384035365
914 => 0.0084699694350886
915 => 0.0086214053484037
916 => 0.0087018867966936
917 => 0.0088267065042715
918 => 0.0088113198406881
919 => 0.0091328420027506
920 => 0.0092577757926026
921 => 0.0092258123829401
922 => 0.0092316944195605
923 => 0.0094578810784719
924 => 0.0097094471620156
925 => 0.0099450719963228
926 => 0.010184759698102
927 => 0.0098958068184369
928 => 0.0097490943662789
929 => 0.0099004641674117
930 => 0.0098201452202464
1001 => 0.010281681714805
1002 => 0.010313637500307
1003 => 0.010775140620524
1004 => 0.011213162036379
1005 => 0.010938048633049
1006 => 0.01119746818101
1007 => 0.011478051572915
1008 => 0.012019342458914
1009 => 0.011837054731353
1010 => 0.011697425188853
1011 => 0.011565475945876
1012 => 0.011840041374159
1013 => 0.012193265411354
1014 => 0.012269346485829
1015 => 0.012392626891684
1016 => 0.012263012618938
1017 => 0.012419118733917
1018 => 0.012970241916295
1019 => 0.012821323567518
1020 => 0.012609835572434
1021 => 0.013044894394489
1022 => 0.013202340490942
1023 => 0.014307379651012
1024 => 0.015702537237492
1025 => 0.015124932835591
1026 => 0.014766395144153
1027 => 0.014850660006269
1028 => 0.015360124327786
1029 => 0.015523748098268
1030 => 0.015078962285602
1031 => 0.015236068154022
1101 => 0.016101736935326
1102 => 0.016566140462516
1103 => 0.015935418094877
1104 => 0.014195280097374
1105 => 0.012590793392417
1106 => 0.01301637551755
1107 => 0.012968127711911
1108 => 0.013898180823042
1109 => 0.01281777191415
1110 => 0.012835963229313
1111 => 0.013785248853839
1112 => 0.013531995724091
1113 => 0.013121758088109
1114 => 0.012593788581156
1115 => 0.011617788116285
1116 => 0.010753317286762
1117 => 0.012448743659199
1118 => 0.012375633791086
1119 => 0.012269759867784
1120 => 0.012505370827338
1121 => 0.013649430767593
1122 => 0.013623056483009
1123 => 0.013455276740767
1124 => 0.013582536196515
1125 => 0.013099448890226
1126 => 0.01322395148875
1127 => 0.012590539233526
1128 => 0.01287686802652
1129 => 0.01312087790239
1130 => 0.013169866497599
1201 => 0.013280240304024
1202 => 0.012337108212729
1203 => 0.012760546832817
1204 => 0.013009277351285
1205 => 0.011885503819952
1206 => 0.012987063961778
1207 => 0.012320690381299
1208 => 0.012094513179489
1209 => 0.012399030985146
1210 => 0.012280360100128
1211 => 0.012178333841778
1212 => 0.012121401436585
1213 => 0.012345005704656
1214 => 0.012334574298285
1215 => 0.011968714316004
1216 => 0.011491464883479
1217 => 0.011651645458213
1218 => 0.011593450353711
1219 => 0.011382543787679
1220 => 0.011524669348229
1221 => 0.010898820307667
1222 => 0.0098220795621825
1223 => 0.01053340748011
1224 => 0.010506022129046
1225 => 0.010492213193213
1226 => 0.011026756463876
1227 => 0.010975372462413
1228 => 0.010882109996605
1229 => 0.011380830949357
1230 => 0.011198791092859
1231 => 0.011759795036601
]
'min_raw' => 0.0050359945481143
'max_raw' => 0.016566140462516
'avg_raw' => 0.010801067505315
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.005035'
'max' => '$0.016566'
'avg' => '$0.010801'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0027434799912233
'max_diff' => 0.010951056111402
'year' => 2029
]
4 => [
'items' => [
101 => 0.01212930851741
102 => 0.012035587946168
103 => 0.012383117160882
104 => 0.011655335695135
105 => 0.011897075504532
106 => 0.011946897744212
107 => 0.011374676810214
108 => 0.010983779520529
109 => 0.010957711127862
110 => 0.010279949096513
111 => 0.010642004102956
112 => 0.010960597525771
113 => 0.010808016000091
114 => 0.010759713247304
115 => 0.011006481535704
116 => 0.01102565754514
117 => 0.010588442497814
118 => 0.010679353350953
119 => 0.011058466721214
120 => 0.010669800666727
121 => 0.009914686011098
122 => 0.0097274071362252
123 => 0.0097024206820826
124 => 0.0091945055201525
125 => 0.009739922006153
126 => 0.0095018330937607
127 => 0.010253953115265
128 => 0.0098243461926822
129 => 0.0098058266968941
130 => 0.0097778317627911
131 => 0.0093406482012067
201 => 0.0094363636167289
202 => 0.0097545362357942
203 => 0.0098680638107478
204 => 0.0098562219545761
205 => 0.0097529770163823
206 => 0.0098002420203878
207 => 0.009647984974267
208 => 0.0095942198423254
209 => 0.0094245222966531
210 => 0.0091751137846583
211 => 0.0092097955679624
212 => 0.0087156520444136
213 => 0.0084464164266024
214 => 0.0083718955560606
215 => 0.0082722431335307
216 => 0.0083831515623504
217 => 0.0087142521978972
218 => 0.0083148745845094
219 => 0.0076301696794382
220 => 0.0076713216109134
221 => 0.0077637777828199
222 => 0.0075914863181308
223 => 0.0074284269061291
224 => 0.0075701938354363
225 => 0.0072800753408524
226 => 0.0077988372168329
227 => 0.007784806161901
228 => 0.0079781685092473
301 => 0.0080990819532378
302 => 0.0078204156110321
303 => 0.0077503317795613
304 => 0.0077902547150996
305 => 0.007130417520089
306 => 0.007924245733212
307 => 0.0079311107925635
308 => 0.0078723279864974
309 => 0.008295017003289
310 => 0.0091870226687298
311 => 0.0088514142565462
312 => 0.0087214565355308
313 => 0.0084744068128819
314 => 0.0088035858999505
315 => 0.0087783100820573
316 => 0.0086640032479751
317 => 0.0085948701180632
318 => 0.0087222500296634
319 => 0.0085790863373649
320 => 0.0085533702043529
321 => 0.0083975584177289
322 => 0.0083419406988887
323 => 0.0083007635540646
324 => 0.008255431563596
325 => 0.0083554226385416
326 => 0.0081288297077935
327 => 0.0078555808464902
328 => 0.0078328631602664
329 => 0.0078955886892895
330 => 0.0078678373120633
331 => 0.007832730297349
401 => 0.007765701445433
402 => 0.0077458154169143
403 => 0.0078104353622705
404 => 0.0077374832115402
405 => 0.007845128083852
406 => 0.0078158546348457
407 => 0.0076523355283236
408 => 0.00744853017907
409 => 0.0074467158839655
410 => 0.0074028063557766
411 => 0.0073468809697862
412 => 0.0073313238068032
413 => 0.0075582546200702
414 => 0.0080279946120652
415 => 0.0079357734117112
416 => 0.0080024126801757
417 => 0.0083302119257129
418 => 0.0084344094486019
419 => 0.0083604525149088
420 => 0.0082592157026048
421 => 0.0082636696085607
422 => 0.0086096264426708
423 => 0.0086312033460549
424 => 0.0086857212199339
425 => 0.0087557920946176
426 => 0.0083723858878625
427 => 0.0082456112107016
428 => 0.0081855383354715
429 => 0.0080005371308912
430 => 0.0082000450692265
501 => 0.0080838003373402
502 => 0.0080994857231572
503 => 0.0080892705950667
504 => 0.0080948487457481
505 => 0.0077986922123162
506 => 0.0079065960875696
507 => 0.00772718496666
508 => 0.0074869736156054
509 => 0.0074861683429278
510 => 0.0075449597307912
511 => 0.0075099883127828
512 => 0.0074158811261196
513 => 0.0074292486078117
514 => 0.0073121354022635
515 => 0.0074434682713683
516 => 0.0074472344281226
517 => 0.0073966641197675
518 => 0.0075990005250669
519 => 0.0076818979154088
520 => 0.0076486114551285
521 => 0.0076795624486206
522 => 0.0079396056189397
523 => 0.0079820040021806
524 => 0.0080008345633363
525 => 0.007975604105959
526 => 0.0076843155604061
527 => 0.0076972354460559
528 => 0.0076024378976364
529 => 0.0075223439587415
530 => 0.0075255472962599
531 => 0.0075667259923352
601 => 0.0077465557731943
602 => 0.0081249969454676
603 => 0.0081393585113185
604 => 0.0081567651480862
605 => 0.0080859636084773
606 => 0.0080646091866518
607 => 0.0080927811810836
608 => 0.0082349037878979
609 => 0.0086004817185358
610 => 0.0084712620617193
611 => 0.0083662044693038
612 => 0.0084583683011757
613 => 0.008444180401663
614 => 0.0083244202515785
615 => 0.0083210589830392
616 => 0.0080912009653907
617 => 0.00800622768988
618 => 0.0079352176607237
619 => 0.0078576765626488
620 => 0.0078117076005089
621 => 0.0078823368188755
622 => 0.0078984905567763
623 => 0.0077440585364303
624 => 0.007723010022703
625 => 0.0078491225441643
626 => 0.0077936251254179
627 => 0.0078507055968683
628 => 0.007863948755872
629 => 0.0078618163022566
630 => 0.0078038706232474
701 => 0.0078408034710828
702 => 0.0077534462757402
703 => 0.0076584584464315
704 => 0.0075978621292835
705 => 0.0075449838056367
706 => 0.0075743237729022
707 => 0.0074697321468673
708 => 0.0074362711806852
709 => 0.0078282914532516
710 => 0.0081178810435245
711 => 0.0081136702961919
712 => 0.0080880384547208
713 => 0.0080499547375239
714 => 0.0082321177267761
715 => 0.0081686557837846
716 => 0.0082148296497337
717 => 0.0082265828365288
718 => 0.0082621561931242
719 => 0.0082748706104737
720 => 0.0082364388105128
721 => 0.0081074569957949
722 => 0.0077860465767408
723 => 0.0076364291590403
724 => 0.007587052919124
725 => 0.0075888476516661
726 => 0.0075393409161153
727 => 0.0075539228684713
728 => 0.0075342699081713
729 => 0.007497051955925
730 => 0.0075720256692284
731 => 0.0075806656912581
801 => 0.007563165930704
802 => 0.007567287757815
803 => 0.0074223972146721
804 => 0.0074334129279815
805 => 0.0073720760364654
806 => 0.0073605761087333
807 => 0.0072055217881946
808 => 0.0069308205838772
809 => 0.0070830317169602
810 => 0.0068991820723201
811 => 0.0068295554261181
812 => 0.0071591571400729
813 => 0.0071260742697203
814 => 0.0070694507764548
815 => 0.0069856928285451
816 => 0.0069546261909204
817 => 0.0067658751352152
818 => 0.0067547227158965
819 => 0.0068482728358111
820 => 0.0068051026743336
821 => 0.0067444754178004
822 => 0.0065248896403238
823 => 0.0062780025240877
824 => 0.0062854544942498
825 => 0.0063639846924264
826 => 0.006592321834865
827 => 0.0065031065630416
828 => 0.0064383798597064
829 => 0.0064262584938493
830 => 0.0065779827653495
831 => 0.0067927043967398
901 => 0.0068934469820625
902 => 0.0067936141396055
903 => 0.006678931545573
904 => 0.0066859117436838
905 => 0.006732347874531
906 => 0.0067372276553115
907 => 0.0066625810761575
908 => 0.0066835936509445
909 => 0.0066516736284129
910 => 0.0064557805090562
911 => 0.0064522374237109
912 => 0.0064041620930175
913 => 0.0064027063911104
914 => 0.0063209182606477
915 => 0.0063094755358213
916 => 0.0061470802386029
917 => 0.0062539693150103
918 => 0.0061822737344846
919 => 0.0060742115833547
920 => 0.0060555816277688
921 => 0.0060550215888075
922 => 0.0061659772557631
923 => 0.0062526727334404
924 => 0.0061835209098034
925 => 0.006167776380013
926 => 0.0063358867671252
927 => 0.006314493188005
928 => 0.0062959664864607
929 => 0.0067734784297363
930 => 0.0063954904659121
1001 => 0.006230666138886
1002 => 0.0060266647349005
1003 => 0.0060930886207025
1004 => 0.0061070851094109
1005 => 0.0056164985068426
1006 => 0.0054174675832794
1007 => 0.0053491676706346
1008 => 0.0053098601052885
1009 => 0.00532777305641
1010 => 0.0051486218812042
1011 => 0.0052690144338295
1012 => 0.0051138846593731
1013 => 0.0050878766478495
1014 => 0.0053652679014689
1015 => 0.0054038652739139
1016 => 0.0052391968918
1017 => 0.0053449406505066
1018 => 0.0053065964936514
1019 => 0.0051165439141067
1020 => 0.0051092853035002
1021 => 0.0050139235997558
1022 => 0.0048647009990604
1023 => 0.0047965022663656
1024 => 0.0047609837742496
1025 => 0.0047756393963383
1026 => 0.0047682290653408
1027 => 0.0047198716430414
1028 => 0.0047710008561819
1029 => 0.0046403868446574
1030 => 0.0045883752928397
1031 => 0.0045648828815425
1101 => 0.0044489554284526
1102 => 0.0046334475594911
1103 => 0.0046697948334763
1104 => 0.0047062137228195
1105 => 0.0050232152903204
1106 => 0.0050073787878452
1107 => 0.0051505330575317
1108 => 0.0051449703458555
1109 => 0.0051041404291955
1110 => 0.0049318857270023
1111 => 0.0050005433811516
1112 => 0.0047892257934483
1113 => 0.0049475592983549
1114 => 0.0048753024988808
1115 => 0.0049231292017689
1116 => 0.0048371324776161
1117 => 0.00488472661548
1118 => 0.0046784141205332
1119 => 0.004485762415647
1120 => 0.0045632910855471
1121 => 0.0046475736162073
1122 => 0.004830319617468
1123 => 0.0047214776067389
1124 => 0.0047606213095692
1125 => 0.0046294964576644
1126 => 0.0043589484342228
1127 => 0.004360479706654
1128 => 0.0043188617874566
1129 => 0.0042828978289543
1130 => 0.0047339794209758
1201 => 0.0046778802944632
1202 => 0.0045884936784376
1203 => 0.0047081412160708
1204 => 0.0047397779240828
1205 => 0.0047406785766839
1206 => 0.0048279703315912
1207 => 0.0048745579568331
1208 => 0.0048827692277043
1209 => 0.0050201246901141
1210 => 0.0050661644293515
1211 => 0.0052557955994826
1212 => 0.0048706053223209
1213 => 0.0048626725820443
1214 => 0.0047098249022918
1215 => 0.0046128864873665
1216 => 0.0047164623584961
1217 => 0.0048082164408006
1218 => 0.0047126759573925
1219 => 0.0047251515275559
1220 => 0.0045968962345247
1221 => 0.0046427414668109
1222 => 0.0046822295568755
1223 => 0.0046604265545445
1224 => 0.0046277864047777
1225 => 0.0048006936524014
1226 => 0.0047909375478615
1227 => 0.0049519527519691
1228 => 0.0050774756178787
1229 => 0.0053024350334849
1230 => 0.0050676781559003
1231 => 0.005059122682207
]
'min_raw' => 0.0042828978289543
'max_raw' => 0.012383117160882
'avg_raw' => 0.0083330074949183
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.004282'
'max' => '$0.012383'
'avg' => '$0.008333'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00075309671915991
'max_diff' => -0.0041830233016337
'year' => 2030
]
5 => [
'items' => [
101 => 0.0051427538098998
102 => 0.0050661516258616
103 => 0.0051145615619562
104 => 0.0052946354443654
105 => 0.005298440121744
106 => 0.0052347068736025
107 => 0.005230828699661
108 => 0.0052430693671319
109 => 0.0053147633388393
110 => 0.0052897112621915
111 => 0.0053187021595293
112 => 0.0053549557205746
113 => 0.0055049158202492
114 => 0.0055410706925932
115 => 0.0054532330969493
116 => 0.0054611638483601
117 => 0.0054283101763934
118 => 0.0053965739409288
119 => 0.0054679123635482
120 => 0.0055982847330453
121 => 0.005597473693301
122 => 0.0056277175489476
123 => 0.0056465592204618
124 => 0.0055656769733763
125 => 0.0055130256046463
126 => 0.005533215489711
127 => 0.005565499555608
128 => 0.0055227462022544
129 => 0.0052588527000762
130 => 0.0053389011310549
131 => 0.0053255771579717
201 => 0.0053066022000508
202 => 0.0053870915163961
203 => 0.0053793281254796
204 => 0.0051467844269616
205 => 0.0051616711200545
206 => 0.0051476897360748
207 => 0.0051928664480352
208 => 0.0050637119351584
209 => 0.0051034389934504
210 => 0.0051283554319931
211 => 0.0051430314057118
212 => 0.0051960510861934
213 => 0.0051898298386397
214 => 0.0051956643647104
215 => 0.0052742785541878
216 => 0.0056718821474324
217 => 0.0056935228337498
218 => 0.0055869561796136
219 => 0.0056295274560067
220 => 0.0055477999146467
221 => 0.0056026641606886
222 => 0.0056402008844297
223 => 0.0054705796477405
224 => 0.0054605357789365
225 => 0.0053784709189412
226 => 0.0054225679263114
227 => 0.0053524064168984
228 => 0.0053696215971629
301 => 0.0053214864523508
302 => 0.0054081201294009
303 => 0.0055049900418553
304 => 0.00552946320725
305 => 0.0054650848454566
306 => 0.0054184706687774
307 => 0.0053366315301931
308 => 0.0054727318415629
309 => 0.0055125317201893
310 => 0.0054725227897438
311 => 0.0054632518463472
312 => 0.0054456834253629
313 => 0.0054669790699103
314 => 0.0055123149615029
315 => 0.0054909353922503
316 => 0.0055050569744011
317 => 0.0054512400653544
318 => 0.0055657037487656
319 => 0.0057474996252081
320 => 0.0057480841286775
321 => 0.0057267044441811
322 => 0.0057179563379169
323 => 0.005739893191638
324 => 0.0057517930348848
325 => 0.0058227327972877
326 => 0.0058988539887109
327 => 0.0062540783748049
328 => 0.006154332788643
329 => 0.006469508996379
330 => 0.0067187724561896
331 => 0.0067935156688168
401 => 0.0067247554301397
402 => 0.0064895303679806
403 => 0.0064779891042307
404 => 0.006829514656556
405 => 0.0067301925871338
406 => 0.0067183785430162
407 => 0.0065926970737479
408 => 0.0066669903880383
409 => 0.0066507413503858
410 => 0.0066250914495213
411 => 0.0067668379178702
412 => 0.0070321746528248
413 => 0.00699081943437
414 => 0.0069599496822068
415 => 0.0068246874142777
416 => 0.0069061455114923
417 => 0.0068771398433012
418 => 0.0070017666013019
419 => 0.006927940470683
420 => 0.006729440124772
421 => 0.006761051959124
422 => 0.0067562738939559
423 => 0.0068546061365386
424 => 0.0068250892380715
425 => 0.0067505102458009
426 => 0.0070312677607105
427 => 0.0070130369293476
428 => 0.0070388840800719
429 => 0.0070502627951704
430 => 0.0072211549469936
501 => 0.0072911639936566
502 => 0.00730705727293
503 => 0.0073735604525659
504 => 0.0073054026132376
505 => 0.0075780825662664
506 => 0.0077593988237142
507 => 0.007970006987189
508 => 0.0082777621201635
509 => 0.008393480897056
510 => 0.008372577335769
511 => 0.0086059137652294
512 => 0.0090252141421924
513 => 0.0084573299302098
514 => 0.0090553133843581
515 => 0.0088659987268257
516 => 0.0084171370794417
517 => 0.0083882356810814
518 => 0.0086922100000807
519 => 0.0093663957831772
520 => 0.0091975198910634
521 => 0.0093666720036386
522 => 0.0091693470792762
523 => 0.0091595482335965
524 => 0.0093570883724998
525 => 0.0098186516743997
526 => 0.0095993802511087
527 => 0.0092850008982623
528 => 0.0095171337201196
529 => 0.0093160387869483
530 => 0.0088629156195856
531 => 0.0091973907548514
601 => 0.0089737367572026
602 => 0.009039010883817
603 => 0.0095090983208533
604 => 0.009452536156732
605 => 0.0095257328346204
606 => 0.009396542614038
607 => 0.0092758585765863
608 => 0.0090505928585682
609 => 0.0089839027849288
610 => 0.0090023335220252
611 => 0.0089838936515708
612 => 0.0088578595526385
613 => 0.0088306425009739
614 => 0.0087852795557931
615 => 0.0087993394293414
616 => 0.0087140438210039
617 => 0.0088750142569087
618 => 0.0089048917882793
619 => 0.0090220326477105
620 => 0.0090341946003365
621 => 0.0093604302264566
622 => 0.0091807451257566
623 => 0.0093012934045713
624 => 0.0092905104318697
625 => 0.0084268652724081
626 => 0.0085458679553761
627 => 0.0087309987849753
628 => 0.0086475975971798
629 => 0.0085296878305093
630 => 0.0084344693720012
701 => 0.0082902036707741
702 => 0.0084932548748738
703 => 0.0087602456161767
704 => 0.0090409659261378
705 => 0.0093782329850326
706 => 0.0093029589037086
707 => 0.0090346609530698
708 => 0.0090466966031437
709 => 0.0091210962560467
710 => 0.009024741945616
711 => 0.0089963251784104
712 => 0.0091171922286018
713 => 0.0091180245735491
714 => 0.0090071572945912
715 => 0.0088839486025274
716 => 0.0088834323536089
717 => 0.008861508556911
718 => 0.0091732472740048
719 => 0.0093446720480671
720 => 0.0093643256221485
721 => 0.0093433492059399
722 => 0.0093514221960144
723 => 0.0092516738970747
724 => 0.0094796689290117
725 => 0.0096888997166887
726 => 0.0096328213960275
727 => 0.0095487520213532
728 => 0.0094817867150955
729 => 0.0096170464980612
730 => 0.0096110235928444
731 => 0.0096870722682873
801 => 0.0096836222610908
802 => 0.0096580499518747
803 => 0.0096328223092952
804 => 0.0097328470605196
805 => 0.0097040415385153
806 => 0.0096751912735791
807 => 0.0096173276504948
808 => 0.009625192277885
809 => 0.0095411374189736
810 => 0.0095022497951525
811 => 0.0089174732373398
812 => 0.0087612018329669
813 => 0.0088103679979804
814 => 0.0088265547761017
815 => 0.0087585452606514
816 => 0.0088560534355961
817 => 0.0088408568898177
818 => 0.0088999777597595
819 => 0.0088630416069496
820 => 0.0088645574795448
821 => 0.0089731788293406
822 => 0.0090047120692946
823 => 0.0089886740089496
824 => 0.0089999065166627
825 => 0.0092587549159667
826 => 0.0092219549510915
827 => 0.0092024057032021
828 => 0.0092078209784694
829 => 0.0092739622942639
830 => 0.0092924782515044
831 => 0.0092140248395832
901 => 0.009251023922179
902 => 0.0094085613199892
903 => 0.0094636904933783
904 => 0.0096396363513317
905 => 0.0095648914236849
906 => 0.0097020889732654
907 => 0.010123787466585
908 => 0.010460669402364
909 => 0.010150858851987
910 => 0.01076949962539
911 => 0.011251200206233
912 => 0.011232711735626
913 => 0.011148716097421
914 => 0.010600312792804
915 => 0.010095663895662
916 => 0.010517824126645
917 => 0.010518900299892
918 => 0.010482636361655
919 => 0.010257404155767
920 => 0.010474798769109
921 => 0.010492054764055
922 => 0.010482395995625
923 => 0.010309710991455
924 => 0.010046052907612
925 => 0.010097571066086
926 => 0.01018195886061
927 => 0.010022195160439
928 => 0.00997114097781
929 => 0.010066060416772
930 => 0.01037191062636
1001 => 0.010314091415907
1002 => 0.010312581522656
1003 => 0.010559956624135
1004 => 0.010382889438364
1005 => 0.010098220875049
1006 => 0.010026338308495
1007 => 0.009771203623126
1008 => 0.0099474260590686
1009 => 0.0099537679908155
1010 => 0.0098572527635993
1011 => 0.010106052553812
1012 => 0.010103759819944
1013 => 0.010339958191789
1014 => 0.010791480766699
1015 => 0.010657943323222
1016 => 0.01050265380529
1017 => 0.010519538081601
1018 => 0.010704716918781
1019 => 0.0105927535666
1020 => 0.010633016368681
1021 => 0.010704655976208
1022 => 0.010747877930141
1023 => 0.010513319107578
1024 => 0.010458632225793
1025 => 0.010346762058148
1026 => 0.010317577219565
1027 => 0.010408693136864
1028 => 0.010384687311829
1029 => 0.0099532349760093
1030 => 0.009908145806338
1031 => 0.0099095286267993
1101 => 0.0097961497657877
1102 => 0.0096232197887005
1103 => 0.010077669443373
1104 => 0.010041170776084
1105 => 0.01000087907217
1106 => 0.010005814575998
1107 => 0.010203075768363
1108 => 0.010088654314862
1109 => 0.010392862502302
1110 => 0.0103303264443
1111 => 0.01026618657238
1112 => 0.010257320488332
1113 => 0.0102326321098
1114 => 0.010147966473671
1115 => 0.010045727630429
1116 => 0.0099782206903436
1117 => 0.0092043811400919
1118 => 0.0093480012594011
1119 => 0.0095132231152804
1120 => 0.009570257037845
1121 => 0.009472696566671
1122 => 0.010151818755711
1123 => 0.010275900923832
1124 => 0.0099000479429119
1125 => 0.0098297411961578
1126 => 0.010156428054323
1127 => 0.0099593959430052
1128 => 0.010048119490667
1129 => 0.0098563477098079
1130 => 0.010246013163082
1201 => 0.010243044565196
1202 => 0.010091455902879
1203 => 0.010219577602235
1204 => 0.010197313304052
1205 => 0.010026170077642
1206 => 0.010251438708622
1207 => 0.010251550439052
1208 => 0.010105649647394
1209 => 0.009935269464527
1210 => 0.0099048095120307
1211 => 0.0098818620295436
1212 => 0.010042475816682
1213 => 0.010186481636003
1214 => 0.010454440763691
1215 => 0.010521812054943
1216 => 0.010784766689862
1217 => 0.010628190007797
1218 => 0.010697598422949
1219 => 0.010772951076016
1220 => 0.010809077908899
1221 => 0.010750211173389
1222 => 0.011158687957864
1223 => 0.011193175913879
1224 => 0.011204739427212
1225 => 0.011067003353755
1226 => 0.011189345224514
1227 => 0.011132105514723
1228 => 0.01128102733795
1229 => 0.011304380181361
1230 => 0.011284601153793
1231 => 0.011292013714891
]
'min_raw' => 0.0050637119351584
'max_raw' => 0.011304380181361
'avg_raw' => 0.0081840460582597
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.005063'
'max' => '$0.0113043'
'avg' => '$0.008184'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00078081410620405
'max_diff' => -0.0010787369795213
'year' => 2031
]
6 => [
'items' => [
101 => 0.010943450839585
102 => 0.010925376015684
103 => 0.010678924509273
104 => 0.010779355319813
105 => 0.010591604733282
106 => 0.010651142378316
107 => 0.010677386004952
108 => 0.01066367782371
109 => 0.010785033527156
110 => 0.010681856387895
111 => 0.010409554953492
112 => 0.010137179330746
113 => 0.010133759876675
114 => 0.010062048183035
115 => 0.010010213763185
116 => 0.010020198911373
117 => 0.010055387875971
118 => 0.010008168516593
119 => 0.010018245160999
120 => 0.010185584598461
121 => 0.010219143329234
122 => 0.010105097649825
123 => 0.0096471877902856
124 => 0.0095348155621746
125 => 0.0096155864913026
126 => 0.0095769831894935
127 => 0.0077293728868128
128 => 0.0081634415214367
129 => 0.0079055326783212
130 => 0.0080243889390441
131 => 0.0077611307953944
201 => 0.0078867713800855
202 => 0.0078635701517526
203 => 0.008561539671203
204 => 0.0085506418371825
205 => 0.0085558580536276
206 => 0.0083068744519239
207 => 0.0087035120900793
208 => 0.0088989100532628
209 => 0.008862747090626
210 => 0.0088718485292212
211 => 0.008715455659646
212 => 0.0085573722784629
213 => 0.008382033479873
214 => 0.0087077912951226
215 => 0.0086715725869382
216 => 0.0087546452724334
217 => 0.0089659225012723
218 => 0.008997033875783
219 => 0.0090388478786258
220 => 0.00902386053513
221 => 0.0093809198612784
222 => 0.0093376776209286
223 => 0.0094418789785301
224 => 0.0092275288801677
225 => 0.0089849713975726
226 => 0.0090310736452124
227 => 0.0090266336280338
228 => 0.008970107113336
229 => 0.0089190775033382
301 => 0.0088341275801951
302 => 0.0091029217072427
303 => 0.0090920091565603
304 => 0.009268670667656
305 => 0.0092374440295715
306 => 0.0090289048979884
307 => 0.00903635291387
308 => 0.009086444400068
309 => 0.009259811605734
310 => 0.0093112787961151
311 => 0.0092874371429177
312 => 0.0093438685676041
313 => 0.0093884696647817
314 => 0.009349469778719
315 => 0.0099016259218852
316 => 0.0096723321950506
317 => 0.0097840883620943
318 => 0.0098107415494287
319 => 0.0097424699705279
320 => 0.0097572756313695
321 => 0.0097797021732435
322 => 0.0099158717439352
323 => 0.010273220098413
324 => 0.010431487252059
325 => 0.010907641792565
326 => 0.010418345368133
327 => 0.010389312543218
328 => 0.010475082354452
329 => 0.010754635475807
330 => 0.010981187023575
331 => 0.011056347242042
401 => 0.011066280905673
402 => 0.011207286472074
403 => 0.011288108233137
404 => 0.011190164687498
405 => 0.011107167787686
406 => 0.010809883194514
407 => 0.010844294695652
408 => 0.011081355814255
409 => 0.011416218607111
410 => 0.011703565719917
411 => 0.01160294677607
412 => 0.012370598291716
413 => 0.012446707803917
414 => 0.012436191930246
415 => 0.012609580725654
416 => 0.012265439276784
417 => 0.012118312139965
418 => 0.01112511265948
419 => 0.011404161201416
420 => 0.011809774645066
421 => 0.011756090184827
422 => 0.011461522859969
423 => 0.011703342264186
424 => 0.01162338920676
425 => 0.011560326913113
426 => 0.011849227505539
427 => 0.011531569436784
428 => 0.011806605762834
429 => 0.011453868829789
430 => 0.01160340639493
501 => 0.011518521640638
502 => 0.011573452479749
503 => 0.011252327916726
504 => 0.011425598936075
505 => 0.011245119272658
506 => 0.011245033701799
507 => 0.011241049603226
508 => 0.011453383126866
509 => 0.011460307315449
510 => 0.011303392520661
511 => 0.011280778647262
512 => 0.011364393989628
513 => 0.01126650232261
514 => 0.011312305217485
515 => 0.011267889645636
516 => 0.011257890764877
517 => 0.011178217981826
518 => 0.011143892756238
519 => 0.011157352561643
520 => 0.011111407306791
521 => 0.01108372362883
522 => 0.011235542622891
523 => 0.011154431858725
524 => 0.011223111234991
525 => 0.011144842417708
526 => 0.010873528596904
527 => 0.010717493149468
528 => 0.010205006492774
529 => 0.010350347072875
530 => 0.010446708027847
531 => 0.010414860732804
601 => 0.010483281045824
602 => 0.010487481497357
603 => 0.010465237356132
604 => 0.010439481490243
605 => 0.010426944959118
606 => 0.010520381991141
607 => 0.010574625333177
608 => 0.010456379138822
609 => 0.010428675709925
610 => 0.010548229140969
611 => 0.010621156664842
612 => 0.011159612526683
613 => 0.011119721977249
614 => 0.011219839428205
615 => 0.011208567739655
616 => 0.011313506778218
617 => 0.011485037755721
618 => 0.011136267317641
619 => 0.011196801806117
620 => 0.011181960147488
621 => 0.011343997484707
622 => 0.011344503347587
623 => 0.011247353869559
624 => 0.011300020177668
625 => 0.011270623289306
626 => 0.011323747439804
627 => 0.011119189214641
628 => 0.011368319052194
629 => 0.011509559616514
630 => 0.011511520741887
701 => 0.01157846764842
702 => 0.011646489582762
703 => 0.011777051762268
704 => 0.011642848274438
705 => 0.011401429264278
706 => 0.011418858937033
707 => 0.011277315059708
708 => 0.011279694437858
709 => 0.011266993130819
710 => 0.011305110709353
711 => 0.011127553879592
712 => 0.011169226112641
713 => 0.01111088474234
714 => 0.011196674983372
715 => 0.011104378865656
716 => 0.011181952990391
717 => 0.011215431411004
718 => 0.011338967503804
719 => 0.011086132484305
720 => 0.010570584764123
721 => 0.010678959145317
722 => 0.010518664922907
723 => 0.010533500763474
724 => 0.010563471522526
725 => 0.010466326486615
726 => 0.010484858698075
727 => 0.010484196597073
728 => 0.010478490968329
729 => 0.010453219792569
730 => 0.010416571587968
731 => 0.010562566755377
801 => 0.010587374179222
802 => 0.010642518009441
803 => 0.010806588643754
804 => 0.010790194118334
805 => 0.010816934269496
806 => 0.010758560669649
807 => 0.010536208547351
808 => 0.01054828333736
809 => 0.010397710512462
810 => 0.010638667523774
811 => 0.010581605723018
812 => 0.010544817608862
813 => 0.010534779631075
814 => 0.010699256964755
815 => 0.010748471160859
816 => 0.010717804176489
817 => 0.010654905296848
818 => 0.010775689740144
819 => 0.010808006561683
820 => 0.010815241106227
821 => 0.011029247981628
822 => 0.010827201713243
823 => 0.01087583625821
824 => 0.011255269094705
825 => 0.010911175870157
826 => 0.011093449725394
827 => 0.011084528368688
828 => 0.011177773505217
829 => 0.011076879545871
830 => 0.011078130247417
831 => 0.011160925611682
901 => 0.011044654454795
902 => 0.011015864081225
903 => 0.010976090386338
904 => 0.011062934794032
905 => 0.011114994088809
906 => 0.011534553771378
907 => 0.011805608460564
908 => 0.011793841261651
909 => 0.011901371432446
910 => 0.011852928105639
911 => 0.011696491824676
912 => 0.011963509480908
913 => 0.011879013921983
914 => 0.011885979633199
915 => 0.01188572036908
916 => 0.011941902529035
917 => 0.011902092319687
918 => 0.011823622310629
919 => 0.011875714364684
920 => 0.012030409141977
921 => 0.012510586477309
922 => 0.012779300075665
923 => 0.012494409581282
924 => 0.012690923229472
925 => 0.01257308506553
926 => 0.01255167036576
927 => 0.012675095459068
928 => 0.012798736591663
929 => 0.012790861186032
930 => 0.01270110407281
1001 => 0.012650402557054
1002 => 0.013034331420615
1003 => 0.013317203667229
1004 => 0.01329791367641
1005 => 0.013383053422446
1006 => 0.013633026350082
1007 => 0.013655880741822
1008 => 0.013653001613765
1009 => 0.013596354619227
1010 => 0.013842485429571
1011 => 0.014047812081819
1012 => 0.013583242476681
1013 => 0.013760144500655
1014 => 0.013839561518644
1015 => 0.01395616926302
1016 => 0.014152906073508
1017 => 0.014366614431561
1018 => 0.014396835136582
1019 => 0.014375392100176
1020 => 0.014234445693251
1021 => 0.014468287928703
1022 => 0.014605267225955
1023 => 0.014686835262754
1024 => 0.014893678232447
1025 => 0.01384005197111
1026 => 0.013094242934713
1027 => 0.012977774084066
1028 => 0.013214618071767
1029 => 0.013277071942529
1030 => 0.013251896865535
1031 => 0.012412420989079
1101 => 0.01297335441731
1102 => 0.013576871621465
1103 => 0.013600055175178
1104 => 0.013902188506527
1105 => 0.014000575504078
1106 => 0.014243832437336
1107 => 0.014228616649929
1108 => 0.014287845842114
1109 => 0.014274230076537
1110 => 0.014724812321606
1111 => 0.015221871450027
1112 => 0.015204659872961
1113 => 0.015133201742314
1114 => 0.015239329251747
1115 => 0.015752347540371
1116 => 0.015705117037305
1117 => 0.015750997447949
1118 => 0.016355874922681
1119 => 0.01714230168265
1120 => 0.016776927496689
1121 => 0.017569684346635
1122 => 0.018068682761441
1123 => 0.01893164892245
1124 => 0.018823601308894
1125 => 0.019159547702636
1126 => 0.018630173530411
1127 => 0.017414623426809
1128 => 0.017222257969976
1129 => 0.017607378486026
1130 => 0.018554159695226
1201 => 0.01757756097644
1202 => 0.017775125625325
1203 => 0.017718226993156
1204 => 0.017715195106851
1205 => 0.017830909875529
1206 => 0.017663059568285
1207 => 0.016979207220879
1208 => 0.017292612721728
1209 => 0.017171591806882
1210 => 0.01730587353461
1211 => 0.018030536637165
1212 => 0.017710145805715
1213 => 0.01737264009122
1214 => 0.01779594715571
1215 => 0.018334962512896
1216 => 0.018301231900547
1217 => 0.018235780414287
1218 => 0.018604727015402
1219 => 0.019214118709231
1220 => 0.019378834835339
1221 => 0.019500424912159
1222 => 0.019517190129472
1223 => 0.019689882287313
1224 => 0.018761273030574
1225 => 0.020234999769396
1226 => 0.020489471666311
1227 => 0.02044164149647
1228 => 0.020724476300077
1229 => 0.020641259126029
1230 => 0.020520690497209
1231 => 0.020969043821613
]
'min_raw' => 0.0077293728868128
'max_raw' => 0.020969043821613
'avg_raw' => 0.014349208354213
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.007729'
'max' => '$0.020969'
'avg' => '$0.014349'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0026656609516544
'max_diff' => 0.0096646636402524
'year' => 2032
]
7 => [
'items' => [
101 => 0.020455042915431
102 => 0.019725483340021
103 => 0.019325232527898
104 => 0.019852315084613
105 => 0.020174186009353
106 => 0.02038692221577
107 => 0.020451296063293
108 => 0.018833358323763
109 => 0.017961379617097
110 => 0.018520307970814
111 => 0.019202239137522
112 => 0.018757484868511
113 => 0.018774918393825
114 => 0.018140815685581
115 => 0.019258343156966
116 => 0.019095528804271
117 => 0.019940209954068
118 => 0.019738620018679
119 => 0.020427424706005
120 => 0.020246039347473
121 => 0.02099895982962
122 => 0.021299320194457
123 => 0.021803671994375
124 => 0.022174675231477
125 => 0.022392535428464
126 => 0.02237945591941
127 => 0.023242726557391
128 => 0.022733686022552
129 => 0.022094211139152
130 => 0.022082645056029
131 => 0.022413838159571
201 => 0.023107928046204
202 => 0.023287895455211
203 => 0.023388472685241
204 => 0.023234435156332
205 => 0.022681908139028
206 => 0.022443329774332
207 => 0.022646605453334
208 => 0.022398016765593
209 => 0.022827150582301
210 => 0.023416442970677
211 => 0.023294756422792
212 => 0.023701536308105
213 => 0.024122510694913
214 => 0.02472452297519
215 => 0.024881911277704
216 => 0.02514206815682
217 => 0.025409855042513
218 => 0.025495860973138
219 => 0.025660072980776
220 => 0.025659207502438
221 => 0.026154071440196
222 => 0.026699921688203
223 => 0.026905967520363
224 => 0.027379758549983
225 => 0.026568408015377
226 => 0.027183826715999
227 => 0.027738949788889
228 => 0.027077109176351
301 => 0.027989302271649
302 => 0.028024720662465
303 => 0.028559496313142
304 => 0.028017398740563
305 => 0.027695502932402
306 => 0.028624804069284
307 => 0.02907446361671
308 => 0.028939022501574
309 => 0.027908308927841
310 => 0.027308389418544
311 => 0.025738284346882
312 => 0.027598141627757
313 => 0.028504023856491
314 => 0.027905962911714
315 => 0.028207590065132
316 => 0.029853170011247
317 => 0.030479700311316
318 => 0.030349386388679
319 => 0.030371407296455
320 => 0.030709471674043
321 => 0.032208635299722
322 => 0.031310301704874
323 => 0.031997044078218
324 => 0.032361289756805
325 => 0.03269962144271
326 => 0.031868785752956
327 => 0.030787880727987
328 => 0.030445512733273
329 => 0.027846497537249
330 => 0.027711207509345
331 => 0.027635265116975
401 => 0.027156459075347
402 => 0.026780248682641
403 => 0.026481072210564
404 => 0.025695943806178
405 => 0.025960901594972
406 => 0.024709570787413
407 => 0.025510127893648
408 => 0.023512973710346
409 => 0.025176263059957
410 => 0.02427101028745
411 => 0.024878863177493
412 => 0.024876742436023
413 => 0.02375749254552
414 => 0.023111932566827
415 => 0.02352330851082
416 => 0.023964336177844
417 => 0.024035891433024
418 => 0.02460769531532
419 => 0.024767273487986
420 => 0.024283744174817
421 => 0.023471587128996
422 => 0.02366023268741
423 => 0.023108109670606
424 => 0.022140535320763
425 => 0.022835464111048
426 => 0.023072743353913
427 => 0.023177539385063
428 => 0.022226041138657
429 => 0.021927059731604
430 => 0.021767884539186
501 => 0.023348760653788
502 => 0.023435364615972
503 => 0.022992286500873
504 => 0.024995041595513
505 => 0.024541756436194
506 => 0.025048187016713
507 => 0.023643115080273
508 => 0.023696790720426
509 => 0.023031607148438
510 => 0.023404065501169
511 => 0.023140823942352
512 => 0.023373974546973
513 => 0.023513724058067
514 => 0.024178798479976
515 => 0.025183857141532
516 => 0.02407945853962
517 => 0.023598256253488
518 => 0.02389679144542
519 => 0.024691830002043
520 => 0.0258963541126
521 => 0.025183251595843
522 => 0.025499714383514
523 => 0.025568847424171
524 => 0.025043032028804
525 => 0.025915741676243
526 => 0.026383433866185
527 => 0.026863189277805
528 => 0.027279747459272
529 => 0.026671564416356
530 => 0.027322407451891
531 => 0.026797942854512
601 => 0.026327443892509
602 => 0.026328157445221
603 => 0.026033006573464
604 => 0.025461114568031
605 => 0.025355648907832
606 => 0.025904294591033
607 => 0.026344256472021
608 => 0.026380493839815
609 => 0.026624079343187
610 => 0.026768230734953
611 => 0.028181110338572
612 => 0.0287493822031
613 => 0.029444254282209
614 => 0.029714946117867
615 => 0.030529631494802
616 => 0.029871706887416
617 => 0.029729360760068
618 => 0.027753200517178
619 => 0.028076796646245
620 => 0.028594905271263
621 => 0.027761743937574
622 => 0.028290193036496
623 => 0.028394520082705
624 => 0.027733433434268
625 => 0.028086548377066
626 => 0.027148779780278
627 => 0.025204297934316
628 => 0.025917906440397
629 => 0.026443362498898
630 => 0.025693471915152
701 => 0.027037621761744
702 => 0.02625239717025
703 => 0.026003518672174
704 => 0.025032554919588
705 => 0.025490812434986
706 => 0.026110612286178
707 => 0.025727648037608
708 => 0.026522356355762
709 => 0.027647875275235
710 => 0.028449987083062
711 => 0.028511563267805
712 => 0.027995859112689
713 => 0.028822278312441
714 => 0.028828297874089
715 => 0.027896093640747
716 => 0.02732512373836
717 => 0.027195398175207
718 => 0.027519478066159
719 => 0.027912970882222
720 => 0.028533399380525
721 => 0.02890831132808
722 => 0.029885882849369
723 => 0.030150385673858
724 => 0.030440994085725
725 => 0.030829336544296
726 => 0.031295641234772
727 => 0.030275393118751
728 => 0.030315929478381
729 => 0.029365888559038
730 => 0.028350633587071
731 => 0.029121085557475
801 => 0.030128349019848
802 => 0.029897281668652
803 => 0.029871281871365
804 => 0.02991500631866
805 => 0.029740789081813
806 => 0.028952810976345
807 => 0.028557093304783
808 => 0.029067670059443
809 => 0.029339018881387
810 => 0.02975985724012
811 => 0.029707980029586
812 => 0.03079201444694
813 => 0.031213237442025
814 => 0.031105470574734
815 => 0.03112530227187
816 => 0.031887906384238
817 => 0.032736078998689
818 => 0.033530504578356
819 => 0.034338628399366
820 => 0.033364403591529
821 => 0.032869752315942
822 => 0.033380106168763
823 => 0.033109305230706
824 => 0.03466540774556
825 => 0.03477314890746
826 => 0.036329138898391
827 => 0.037805958683626
828 => 0.036878394636495
829 => 0.037753045754537
830 => 0.038699052250052
831 => 0.040524052263922
901 => 0.039909456463525
902 => 0.039438685712365
903 => 0.038993809627267
904 => 0.039919526138267
905 => 0.041110445640987
906 => 0.041366958295387
907 => 0.041782606790892
908 => 0.041345603220949
909 => 0.041871925886581
910 => 0.043730076174163
911 => 0.043227987564112
912 => 0.042514941023068
913 => 0.043981772216463
914 => 0.04451261272319
915 => 0.048238329402737
916 => 0.052942200612344
917 => 0.050994767044283
918 => 0.049785932185299
919 => 0.050070037051106
920 => 0.051787731580765
921 => 0.052339400546793
922 => 0.050839774125434
923 => 0.051369467529595
924 => 0.054288130264825
925 => 0.055853899180365
926 => 0.053727374682241
927 => 0.047860377931102
928 => 0.042450738983658
929 => 0.043885618831737
930 => 0.043722947986471
1001 => 0.046858686984885
1002 => 0.043216012916814
1003 => 0.043277346205962
1004 => 0.046477928966058
1005 => 0.045624068357544
1006 => 0.044240923525955
1007 => 0.042460837471609
1008 => 0.039170183762118
1009 => 0.036255560004955
1010 => 0.041971808390515
1011 => 0.041725313365807
1012 => 0.041368352041513
1013 => 0.04216273084148
1014 => 0.046020008805762
1015 => 0.045931086063895
1016 => 0.045365404948919
1017 => 0.045794469088944
1018 => 0.044165706507714
1019 => 0.044585475711132
1020 => 0.04244988206921
1021 => 0.043415259585627
1022 => 0.044237955918349
1023 => 0.04440312438737
1024 => 0.044775257381785
1025 => 0.041595421688606
1026 => 0.043023074559773
1027 => 0.043861686868599
1028 => 0.040072805948344
1029 => 0.043786792874986
1030 => 0.041540067823684
1031 => 0.040777495596594
1101 => 0.041804198639119
1102 => 0.041404091464945
1103 => 0.041060102811673
1104 => 0.040868151232671
1105 => 0.041622048634022
1106 => 0.041586878419147
1107 => 0.040353355945357
1108 => 0.038744276163106
1109 => 0.039284336154273
1110 => 0.039088127296392
1111 => 0.038377041083988
1112 => 0.038856227334272
1113 => 0.036746133598633
1114 => 0.033115826999594
1115 => 0.035514118738218
1116 => 0.03542178711512
1117 => 0.035375229323849
1118 => 0.037177479281509
1119 => 0.037004234533061
1120 => 0.03668979361821
1121 => 0.038371266129999
1122 => 0.037757506044199
1123 => 0.039648970008571
1124 => 0.040894810507726
1125 => 0.040578825058422
1126 => 0.041750544069546
1127 => 0.039296778045701
1128 => 0.040111820690817
1129 => 0.040279799850375
1130 => 0.038350517020212
1201 => 0.037032579516461
1202 => 0.036944688110548
1203 => 0.034659566102019
1204 => 0.035880259834115
1205 => 0.03695441980262
1206 => 0.036439980535887
1207 => 0.036277124432475
1208 => 0.037109120945627
1209 => 0.037173774200267
1210 => 0.035699673142827
1211 => 0.036006185431379
1212 => 0.037284392628065
1213 => 0.035973977889564
1214 => 0.033428056107689
1215 => 0.032796632305662
1216 => 0.032712388731022
1217 => 0.03099991730107
1218 => 0.032838827063384
1219 => 0.032036093672416
1220 => 0.03457191883626
1221 => 0.033123469102575
1222 => 0.033061029329536
1223 => 0.032966642454664
1224 => 0.0314926475536
1225 => 0.031815358759671
1226 => 0.032888099958952
1227 => 0.03327086610415
1228 => 0.033230940459295
1229 => 0.032882842941843
1230 => 0.033042200202785
1231 => 0.032528854941542
]
'min_raw' => 0.017961379617097
'max_raw' => 0.055853899180365
'avg_raw' => 0.036907639398731
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.017961'
'max' => '$0.055853'
'avg' => '$0.0369076'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.010232006730284
'max_diff' => 0.034884855358752
'year' => 2033
]
8 => [
'items' => [
101 => 0.032347582045439
102 => 0.0317754349223
103 => 0.030934536710963
104 => 0.031051468764778
105 => 0.029385429375134
106 => 0.028477682692253
107 => 0.028226430374341
108 => 0.027890445274271
109 => 0.028264380785416
110 => 0.02938070969487
111 => 0.028034180187678
112 => 0.025725649795661
113 => 0.025864396405766
114 => 0.026176118844432
115 => 0.025595226142227
116 => 0.025045459950219
117 => 0.025523437050229
118 => 0.024545282290313
119 => 0.026294324173979
120 => 0.026247017492659
121 => 0.026898952146865
122 => 0.027306620265186
123 => 0.026367077236577
124 => 0.026130784705676
125 => 0.026265387670174
126 => 0.024040700498834
127 => 0.026717147742694
128 => 0.026740293769601
129 => 0.026542103434864
130 => 0.027967228966182
131 => 0.030974688345062
201 => 0.029843161151954
202 => 0.029404999622192
203 => 0.028572054233821
204 => 0.029681904508422
205 => 0.029596685323694
206 => 0.029211291851938
207 => 0.028978204677719
208 => 0.029407674943061
209 => 0.028924988559106
210 => 0.028838284821213
211 => 0.028312954504179
212 => 0.028125435482004
213 => 0.027986603863333
214 => 0.02783376389249
215 => 0.028170890782823
216 => 0.027406916896592
217 => 0.026485639283082
218 => 0.02640904501788
219 => 0.026620528518338
220 => 0.026526962812481
221 => 0.026408597061278
222 => 0.026182604607238
223 => 0.026115557473689
224 => 0.026333428131078
225 => 0.026087464861535
226 => 0.026450397064059
227 => 0.026351699586927
228 => 0.025800383502748
301 => 0.025113239538505
302 => 0.02510712251589
303 => 0.024959078475936
304 => 0.024770522132483
305 => 0.02471807007132
306 => 0.025483183152053
307 => 0.027066944331263
308 => 0.026756014115591
309 => 0.026980693061824
310 => 0.028085891104365
311 => 0.028437200327624
312 => 0.02818784936217
313 => 0.027846522381358
314 => 0.02786153903625
315 => 0.029027956656387
316 => 0.029100704692598
317 => 0.029284515510697
318 => 0.029520764356886
319 => 0.028228083562245
320 => 0.027800653887071
321 => 0.027598113994079
322 => 0.026974369516465
323 => 0.027647024459761
324 => 0.027255097230259
325 => 0.027307981603659
326 => 0.027273540586105
327 => 0.027292347710581
328 => 0.026293835281127
329 => 0.026657640730152
330 => 0.02605274360992
331 => 0.025242854268819
401 => 0.025240139235764
402 => 0.025438358504629
403 => 0.025320449927187
404 => 0.025003160976998
405 => 0.025048230374811
406 => 0.024653375025722
407 => 0.025096172963277
408 => 0.025108870823719
409 => 0.024938369498394
410 => 0.025620560815537
411 => 0.025900055154786
412 => 0.025787827529965
413 => 0.025892180965453
414 => 0.026768934669818
415 => 0.026911883779075
416 => 0.026975372330719
417 => 0.026890306082137
418 => 0.025908206413689
419 => 0.025951766710195
420 => 0.025632150157145
421 => 0.025362107850181
422 => 0.025372908126274
423 => 0.025511744975096
424 => 0.026118053636577
425 => 0.027393994470816
426 => 0.027442415492775
427 => 0.027501103183929
428 => 0.027262390849932
429 => 0.027190392925829
430 => 0.027285376771962
501 => 0.02776455306352
502 => 0.028997124580502
503 => 0.028561451485717
504 => 0.028207242478001
505 => 0.02851797927183
506 => 0.028470143778056
507 => 0.028066364070659
508 => 0.028055031319103
509 => 0.027280048964427
510 => 0.026993555633397
511 => 0.026754140362335
512 => 0.026492705136429
513 => 0.026337717571124
514 => 0.026575848912021
515 => 0.026630312367172
516 => 0.026109634028476
517 => 0.026038667494884
518 => 0.026463864665886
519 => 0.026276751243876
520 => 0.026469202038603
521 => 0.026513852273792
522 => 0.026506662557544
523 => 0.026311294655126
524 => 0.026435816330173
525 => 0.02614128544699
526 => 0.025821027348638
527 => 0.025616722634673
528 => 0.025438439674652
529 => 0.025537361422738
530 => 0.025184723453207
531 => 0.025071907469554
601 => 0.026393631188493
602 => 0.027370002710598
603 => 0.027355805881981
604 => 0.027269386338903
605 => 0.027140984427454
606 => 0.027755159663932
607 => 0.027541193292364
608 => 0.027696871705168
609 => 0.027736498395029
610 => 0.027856436450443
611 => 0.027899303996229
612 => 0.027769728499438
613 => 0.027334857305894
614 => 0.026251199637894
615 => 0.025746754068163
616 => 0.025580278627946
617 => 0.025586329694016
618 => 0.025419414278656
619 => 0.025468578349104
620 => 0.025402317021327
621 => 0.025276834096854
622 => 0.025529613205754
623 => 0.025558743643254
624 => 0.025499741978751
625 => 0.025513639006633
626 => 0.025025130424492
627 => 0.025062270671007
628 => 0.024855469058855
629 => 0.024816696249608
630 => 0.024293919782364
701 => 0.023367745492982
702 => 0.023880935955214
703 => 0.023261074042337
704 => 0.02302632294349
705 => 0.024137598134146
706 => 0.02402605692698
707 => 0.023835146866109
708 => 0.023552751096938
709 => 0.023448007759183
710 => 0.022811620396695
711 => 0.022774019236325
712 => 0.023089429997078
713 => 0.022943878783612
714 => 0.022739469755351
715 => 0.021999120975599
716 => 0.021166723826101
717 => 0.021191848663782
718 => 0.021456618709738
719 => 0.02222647332746
720 => 0.021925677809696
721 => 0.021707447210327
722 => 0.021666579179053
723 => 0.022178128153466
724 => 0.022902077125085
725 => 0.023241737785123
726 => 0.022905144386673
727 => 0.022518484014009
728 => 0.022542018239281
729 => 0.0226985808965
730 => 0.022715033418097
731 => 0.022463357264821
801 => 0.022534202627767
802 => 0.022426582043217
803 => 0.021766114714485
804 => 0.021754168954873
805 => 0.021592079620927
806 => 0.021587171620314
807 => 0.021311417228194
808 => 0.021272837282536
809 => 0.020725310199887
810 => 0.021085694183751
811 => 0.020843967528383
812 => 0.02047962844119
813 => 0.02041681624523
814 => 0.020414928034772
815 => 0.02078902281259
816 => 0.021081322668464
817 => 0.020848172467046
818 => 0.020795088685609
819 => 0.021361884592851
820 => 0.021289754647195
821 => 0.021227290579445
822 => 0.022837255435018
823 => 0.021562842624708
824 => 0.021007125898472
825 => 0.020319320922012
826 => 0.020543273690561
827 => 0.020590463829445
828 => 0.018936416847223
829 => 0.018265370192535
830 => 0.018035092268505
831 => 0.017902564067574
901 => 0.017962958832923
902 => 0.017358938137781
903 => 0.017764850034496
904 => 0.017241819169102
905 => 0.017154131342428
906 => 0.018089375320845
907 => 0.018219509056826
908 => 0.01766431810975
909 => 0.018020840575023
910 => 0.017891560573082
911 => 0.017250785032099
912 => 0.017226312119659
913 => 0.016904793477544
914 => 0.01640167906091
915 => 0.016171742272146
916 => 0.016051989196155
917 => 0.01610140164925
918 => 0.016076417200919
919 => 0.015913376775429
920 => 0.01608576248726
921 => 0.015645388228226
922 => 0.015470027649942
923 => 0.015390821345066
924 => 0.014999963843177
925 => 0.015621991943802
926 => 0.015744539315729
927 => 0.015867328143835
928 => 0.016936121061007
929 => 0.016882727187243
930 => 0.017365381802203
1001 => 0.01734662673141
1002 => 0.017208965816737
1003 => 0.016628197061854
1004 => 0.016859681136343
1005 => 0.016147209135678
1006 => 0.016681041601963
1007 => 0.016437422757727
1008 => 0.016598673825668
1009 => 0.016308729866088
1010 => 0.016469196824812
1011 => 0.015773599843821
1012 => 0.015124061170285
1013 => 0.015385454493731
1014 => 0.015669618930271
1015 => 0.01628575983244
1016 => 0.01591879139416
1017 => 0.016050767121178
1018 => 0.015608670528137
1019 => 0.014696498978043
1020 => 0.014701661769955
1021 => 0.014561344049711
1022 => 0.014440089052697
1023 => 0.015960942133708
1024 => 0.015771800011955
1025 => 0.015470426795251
1026 => 0.015873826821905
1027 => 0.015980492191772
1028 => 0.015983528804898
1029 => 0.016277839051084
1030 => 0.016434912482231
1031 => 0.016462597355266
1101 => 0.016925700886633
1102 => 0.017080927081864
1103 => 0.017720281811586
1104 => 0.016421585899009
1105 => 0.01639484011132
1106 => 0.015879503487551
1107 => 0.015552668853606
1108 => 0.015901882134556
1109 => 0.016211237429111
1110 => 0.015889116018877
1111 => 0.015931178274699
1112 => 0.015498756599746
1113 => 0.015653327001211
1114 => 0.015786463853834
1115 => 0.015712953509238
1116 => 0.015602904965437
1117 => 0.016185873822799
1118 => 0.016152980435193
1119 => 0.016695854437564
1120 => 0.017119063543705
1121 => 0.017877529919586
1122 => 0.017086030716608
1123 => 0.017057185339727
1124 => 0.017339153525682
1125 => 0.017080883914004
1126 => 0.01724410139342
1127 => 0.01785123306032
1128 => 0.017864060795736
1129 => 0.017649179699914
1130 => 0.017636104165705
1201 => 0.017677374430699
1202 => 0.017919095661823
1203 => 0.017834630836325
1204 => 0.01793237567078
1205 => 0.018054607082986
1206 => 0.018560208028919
1207 => 0.01868210670528
1208 => 0.018385956118941
1209 => 0.01841269520103
1210 => 0.018301926752224
1211 => 0.018194925818602
1212 => 0.018435448291153
1213 => 0.018875007837221
1214 => 0.018872273360098
1215 => 0.018974242630969
1216 => 0.019037768641962
1217 => 0.018765068498895
1218 => 0.018587550733221
1219 => 0.01865562234033
1220 => 0.018764470322503
1221 => 0.018620324406727
1222 => 0.017730589039678
1223 => 0.018000477913525
1224 => 0.017955555208025
1225 => 0.017891579812606
1226 => 0.018162955162248
1227 => 0.018136780347751
1228 => 0.017352743032515
1229 => 0.017402934557633
1230 => 0.017355795345397
1231 => 0.017508111783908
]
'min_raw' => 0.014440089052697
'max_raw' => 0.032347582045439
'avg_raw' => 0.023393835549068
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.01444'
'max' => '$0.032347'
'avg' => '$0.023393'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0035212905644
'max_diff' => -0.023506317134926
'year' => 2034
]
9 => [
'items' => [
101 => 0.017072658326464
102 => 0.01720660087715
103 => 0.017290608389307
104 => 0.017340089459344
105 => 0.017518849013803
106 => 0.017497873643322
107 => 0.017517545155323
108 => 0.017782598383814
109 => 0.019123146658234
110 => 0.019196109743058
111 => 0.018836812828391
112 => 0.018980344858982
113 => 0.018704794747252
114 => 0.018889773383282
115 => 0.019016331068106
116 => 0.018444441226031
117 => 0.018410577621118
118 => 0.018133890216058
119 => 0.018282566355162
120 => 0.018046011927655
121 => 0.018104054109843
122 => 0.01794176310842
123 => 0.018233854599165
124 => 0.018560458272246
125 => 0.018642971258036
126 => 0.018425915116496
127 => 0.018268752165324
128 => 0.017992825795761
129 => 0.018451697497765
130 => 0.018585885567293
131 => 0.018450992664961
201 => 0.018419735032023
202 => 0.018360501874086
203 => 0.018432301626492
204 => 0.018585154750248
205 => 0.018513072039839
206 => 0.018560683939998
207 => 0.01837923647377
208 => 0.01876515877399
209 => 0.019378096263999
210 => 0.019380066958254
211 => 0.019307983859293
212 => 0.01927848900825
213 => 0.019352450642153
214 => 0.01939257179448
215 => 0.019631750156277
216 => 0.019888398067772
217 => 0.021086061886463
218 => 0.020749762678704
219 => 0.021812401267986
220 => 0.022652810425756
221 => 0.022904812385533
222 => 0.022672982440147
223 => 0.021879904720188
224 => 0.02184099254367
225 => 0.023026185486065
226 => 0.022691314194563
227 => 0.02265148231999
228 => 0.022227738471552
301 => 0.022478223567676
302 => 0.022423438802759
303 => 0.022336958371175
304 => 0.022814866485636
305 => 0.023709467812754
306 => 0.023570035806405
307 => 0.02346595628173
308 => 0.023009910101696
309 => 0.023284551763678
310 => 0.023186757128261
311 => 0.023606944944023
312 => 0.023358034990265
313 => 0.022688777215175
314 => 0.02279535872176
315 => 0.022779249141452
316 => 0.023110783162658
317 => 0.023011264878672
318 => 0.022759816599292
319 => 0.023706410162674
320 => 0.023644943641898
321 => 0.023732089115155
322 => 0.023770453247547
323 => 0.024346628068727
324 => 0.024582668457427
325 => 0.024636253758131
326 => 0.024860473871377
327 => 0.024630674957453
328 => 0.025550034456996
329 => 0.026161354878078
330 => 0.026871435005426
331 => 0.027909052923027
401 => 0.028299206858547
402 => 0.028228729042228
403 => 0.029015439105183
404 => 0.030429139600731
405 => 0.028514478331622
406 => 0.030530621297154
407 => 0.029892333711757
408 => 0.028378965329082
409 => 0.028281522246679
410 => 0.029306392885995
411 => 0.031579457323853
412 => 0.031010080463053
413 => 0.031580388620423
414 => 0.030915093861149
415 => 0.030882056368807
416 => 0.031548076738931
417 => 0.033104269636607
418 => 0.03236498072394
419 => 0.031305028786553
420 => 0.032087680802441
421 => 0.031409675195254
422 => 0.029881938800441
423 => 0.031009645071298
424 => 0.030255580003201
425 => 0.030475656278376
426 => 0.032060588892801
427 => 0.031869885607422
428 => 0.032116673317351
429 => 0.031681099468884
430 => 0.031274204810725
501 => 0.030514705714877
502 => 0.03028985547545
503 => 0.030351995992363
504 => 0.030289824681696
505 => 0.029864891917726
506 => 0.029773127727805
507 => 0.029620183390988
508 => 0.029667587236285
509 => 0.029380007137626
510 => 0.029922730200876
511 => 0.030023464383874
512 => 0.03041841296996
513 => 0.030459417842359
514 => 0.031559344032867
515 => 0.030953523170644
516 => 0.03135996010908
517 => 0.031323604563774
518 => 0.028411764610869
519 => 0.028812990464998
520 => 0.029437171982413
521 => 0.029155979054876
522 => 0.028758438044349
523 => 0.028437402363548
524 => 0.027951000479552
525 => 0.028635601790756
526 => 0.029535779715757
527 => 0.030482247840057
528 => 0.031619367276355
529 => 0.031365575455703
530 => 0.030460990183159
531 => 0.030501569217686
601 => 0.030752412841866
602 => 0.030427547557006
603 => 0.030331738442377
604 => 0.030739250140765
605 => 0.030742056449867
606 => 0.030368259678355
607 => 0.029952852970905
608 => 0.029951112401633
609 => 0.029877194790396
610 => 0.030928243639979
611 => 0.031506214234226
612 => 0.03157247763141
613 => 0.031501754179636
614 => 0.031528972829311
615 => 0.031192664475232
616 => 0.031961365643512
617 => 0.032666801852192
618 => 0.03247772987882
619 => 0.032194284112569
620 => 0.031968505907153
621 => 0.032424543708958
622 => 0.032404237063514
623 => 0.032660640482319
624 => 0.032649008542184
625 => 0.03256278971626
626 => 0.032477732957965
627 => 0.032814973390224
628 => 0.032717853561649
629 => 0.032620582879155
630 => 0.032425491634018
701 => 0.032452007774354
702 => 0.032168610949012
703 => 0.032037498610252
704 => 0.03006588361779
705 => 0.029539003667426
706 => 0.029704770825441
707 => 0.029759345678002
708 => 0.029530046848389
709 => 0.029858802468018
710 => 0.029807566252937
711 => 0.030006896393633
712 => 0.029882363575635
713 => 0.029887474445924
714 => 0.030253698910462
715 => 0.030360015430547
716 => 0.030305941990352
717 => 0.030343813174335
718 => 0.031216538624807
719 => 0.031092464973939
720 => 0.031026553319795
721 => 0.031044811298441
722 => 0.031267811362481
723 => 0.03133023920506
724 => 0.031065728049326
725 => 0.031190473039491
726 => 0.031721621375118
727 => 0.031907493232195
728 => 0.032500706976433
729 => 0.032248699234347
730 => 0.032711270351585
731 => 0.03413305626386
801 => 0.035268877230686
802 => 0.034224329329806
803 => 0.036310119889455
804 => 0.037934207029028
805 => 0.037871871859552
806 => 0.037588674700955
807 => 0.035739694671143
808 => 0.03403823568097
809 => 0.035461578374014
810 => 0.035465206767252
811 => 0.035342940367619
812 => 0.034583554260257
813 => 0.035316515377148
814 => 0.035374695168883
815 => 0.035342129956767
816 => 0.034759910408727
817 => 0.033870968771029
818 => 0.034044665839209
819 => 0.034329185180213
820 => 0.03379053071074
821 => 0.033618397969518
822 => 0.033938425485044
823 => 0.034969620820447
824 => 0.034774679315597
825 => 0.034769588605085
826 => 0.035603631030898
827 => 0.035006636651637
828 => 0.034046856715494
829 => 0.033804499623676
830 => 0.032944295219021
831 => 0.033538441465259
901 => 0.033559823730923
902 => 0.033234415903886
903 => 0.034073261767233
904 => 0.034065531654926
905 => 0.034861890956445
906 => 0.036384230842054
907 => 0.035934000028083
908 => 0.035410430576408
909 => 0.035467357092812
910 => 0.03609170047114
911 => 0.03571420821223
912 => 0.035849957060503
913 => 0.036091494999
914 => 0.036237220834344
915 => 0.035446389387699
916 => 0.035262008747645
917 => 0.034884830666905
918 => 0.034786431946003
919 => 0.035093635622686
920 => 0.035012698307546
921 => 0.03355802663429
922 => 0.033406005350718
923 => 0.033410667626449
924 => 0.033028402880689
925 => 0.032445357389354
926 => 0.033977566128745
927 => 0.033854508323724
928 => 0.033718662030899
929 => 0.033735302426642
930 => 0.034400382309039
1001 => 0.03401460238991
1002 => 0.035040261533001
1003 => 0.034829416847317
1004 => 0.034613164791036
1005 => 0.034583272169659
1006 => 0.034500033577749
1007 => 0.034214577474374
1008 => 0.033869872076296
1009 => 0.033642267714615
1010 => 0.031033213643189
1011 => 0.031517438902677
1012 => 0.032074495925196
1013 => 0.032266789777103
1014 => 0.031937857837086
1015 => 0.03422756571223
1016 => 0.034645917405193
1017 => 0.033378702838802
1018 => 0.03314165873346
1019 => 0.034243106284312
1020 => 0.033578798764662
1021 => 0.033877936400084
1022 => 0.033231364451839
1023 => 0.034545148733125
1024 => 0.034535139898093
1025 => 0.034024048139509
1026 => 0.034456019394058
1027 => 0.03438095375829
1028 => 0.033803932421612
1029 => 0.034563441338712
1030 => 0.03456381804566
1031 => 0.034071903340115
1101 => 0.033497454658016
1102 => 0.033394756801528
1103 => 0.033317387762181
1104 => 0.033858908359213
1105 => 0.034344434033221
1106 => 0.035247876940528
1107 => 0.035475023952699
1108 => 0.036361593863235
1109 => 0.035833684647816
1110 => 0.036067699965443
1111 => 0.036321756696214
1112 => 0.036443560835572
1113 => 0.036245087526858
1114 => 0.037622295524654
1115 => 0.037738574076231
1116 => 0.037777561268769
1117 => 0.037313174480686
1118 => 0.037725658639585
1119 => 0.037532670961675
1120 => 0.038034771286075
1121 => 0.038113507028079
1122 => 0.038046820655707
1123 => 0.038071812622978
1124 => 0.036896608552998
1125 => 0.036835668022274
1126 => 0.036004739561712
1127 => 0.036343349051304
1128 => 0.035710334840487
1129 => 0.035911070167506
1130 => 0.03599955238698
1201 => 0.035953334296849
1202 => 0.0363624935238
1203 => 0.036014624595184
1204 => 0.035096541297618
1205 => 0.034178207868871
1206 => 0.034166678940731
1207 => 0.033924897958874
1208 => 0.033750134593386
1209 => 0.033783800217643
1210 => 0.033902442268598
1211 => 0.033743238901705
1212 => 0.033777213011847
1213 => 0.03434140960852
1214 => 0.034454555212317
1215 => 0.034070042241774
1216 => 0.03252616718009
1217 => 0.032147296367436
1218 => 0.032419621194237
1219 => 0.032289467466991
1220 => 0.026060120335471
1221 => 0.02752361304281
1222 => 0.026654055371626
1223 => 0.027054787552932
1224 => 0.026167194341521
1225 => 0.026590800344752
1226 => 0.02651257578357
1227 => 0.028865828749072
1228 => 0.02882908594081
1229 => 0.028846672778739
1230 => 0.028007207182115
1231 => 0.029344498671512
]
'min_raw' => 0.017072658326464
'max_raw' => 0.038113507028079
'avg_raw' => 0.027593082677272
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.017072'
'max' => '$0.038113'
'avg' => '$0.027593'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.002632569273767
'max_diff' => 0.0057659249826404
'year' => 2035
]
10 => [
'items' => [
101 => 0.030003296546635
102 => 0.029881370593287
103 => 0.029912056728953
104 => 0.029384767250179
105 => 0.028851778093491
106 => 0.028260611092281
107 => 0.02935892631008
108 => 0.029236812406727
109 => 0.029516897765823
110 => 0.030229233693759
111 => 0.030334127865048
112 => 0.030475106694993
113 => 0.030424575820014
114 => 0.03162842626721
115 => 0.031482632034793
116 => 0.031833954187053
117 => 0.031111257864979
118 => 0.030293458377586
119 => 0.03044889532426
120 => 0.03043392549635
121 => 0.030243342405492
122 => 0.03007129251261
123 => 0.029784877915719
124 => 0.030691136081667
125 => 0.030654343655151
126 => 0.031249970273923
127 => 0.031144687483447
128 => 0.030441583241577
129 => 0.030466694747126
130 => 0.030635581690119
131 => 0.031220101328133
201 => 0.031393626553828
202 => 0.031313242755501
203 => 0.031503505243748
204 => 0.031653880956831
205 => 0.031522390118086
206 => 0.033384023105082
207 => 0.032610943296282
208 => 0.032987737016036
209 => 0.033077600098
210 => 0.032847417703167
211 => 0.032897336022393
212 => 0.032972948674092
213 => 0.033432053888735
214 => 0.034636878815122
215 => 0.035170487573498
216 => 0.036775875850865
217 => 0.035126178794307
218 => 0.035028292598096
219 => 0.035317471504932
220 => 0.036260004371354
221 => 0.037023838731978
222 => 0.037277246656059
223 => 0.037310738696535
224 => 0.037786148808351
225 => 0.03805864501857
226 => 0.037728421516249
227 => 0.037448591673874
228 => 0.036446275912246
229 => 0.03656229669087
301 => 0.037361564803316
302 => 0.038490578088804
303 => 0.039459388941565
304 => 0.039120145147395
305 => 0.041708335828114
306 => 0.041964944362296
307 => 0.041929489360019
308 => 0.042514081789357
309 => 0.0413537848673
310 => 0.040857735453426
311 => 0.037509094061999
312 => 0.038449925703683
313 => 0.039817479747975
314 => 0.039636478842149
315 => 0.038643324540359
316 => 0.039458635544968
317 => 0.039189068229712
318 => 0.038976449303812
319 => 0.03995049782157
320 => 0.038879491464587
321 => 0.039806795640287
322 => 0.038617518443218
323 => 0.039121694784471
324 => 0.03883549990891
325 => 0.039020703068123
326 => 0.037938009183688
327 => 0.038522204522821
328 => 0.037913704736924
329 => 0.037913416228796
330 => 0.037899983562297
331 => 0.038615880861903
401 => 0.038639226247142
402 => 0.038110177061072
403 => 0.038033932808058
404 => 0.038315847772682
405 => 0.037985799182753
406 => 0.03814022684068
407 => 0.037990476639194
408 => 0.037956764714617
409 => 0.037688142363982
410 => 0.037572412469403
411 => 0.03761779314306
412 => 0.03746288550853
413 => 0.037369548055471
414 => 0.037881416393614
415 => 0.037607945789254
416 => 0.037839503101375
417 => 0.037575614319351
418 => 0.036660860829985
419 => 0.036134776424908
420 => 0.034406891881189
421 => 0.034896917794353
422 => 0.03522180548175
423 => 0.035114430103004
424 => 0.035345113965306
425 => 0.035359276080915
426 => 0.035284278405737
427 => 0.035197440705678
428 => 0.035155172915715
429 => 0.035470202392747
430 => 0.035653087607569
501 => 0.035254412307617
502 => 0.035161008262898
503 => 0.035564091002616
504 => 0.035809971240991
505 => 0.037625412772979
506 => 0.03749091900049
507 => 0.037828471976367
508 => 0.037790468691456
509 => 0.03814427798658
510 => 0.038722606653144
511 => 0.037546702770781
512 => 0.037750799025063
513 => 0.037700759336784
514 => 0.038247079532303
515 => 0.03824878508432
516 => 0.037921238836389
517 => 0.038098806971223
518 => 0.037999693309686
519 => 0.038178805092099
520 => 0.037489122754162
521 => 0.038329081395161
522 => 0.038805283818869
523 => 0.038811895889984
524 => 0.039037612059445
525 => 0.039266952760217
526 => 0.039707152263983
527 => 0.039254675834976
528 => 0.038440714786885
529 => 0.038499480145479
530 => 0.0380222550808
531 => 0.038030277320355
601 => 0.037987453976896
602 => 0.038115970054207
603 => 0.037517324806046
604 => 0.037657825649234
605 => 0.037461123645998
606 => 0.037750371433323
607 => 0.037439188628534
608 => 0.037700735206131
609 => 0.037813610038615
610 => 0.038230120600504
611 => 0.037377669679889
612 => 0.0356394645469
613 => 0.036004856339554
614 => 0.035464413177313
615 => 0.03551443324959
616 => 0.035615481756227
617 => 0.035287950485204
618 => 0.035350433130019
619 => 0.035348200810262
620 => 0.035328963884598
621 => 0.035243760351147
622 => 0.035120198370638
623 => 0.035612431270615
624 => 0.035696071232108
625 => 0.035881992505709
626 => 0.036435168104341
627 => 0.036379892817259
628 => 0.03647004910384
629 => 0.03627323843644
630 => 0.035523562731984
701 => 0.035564273729535
702 => 0.03505660693773
703 => 0.035869010324452
704 => 0.035676622479276
705 => 0.035552588783933
706 => 0.035518745040995
707 => 0.03607329185494
708 => 0.036239220953128
709 => 0.036135825074225
710 => 0.035923757110054
711 => 0.036330990293528
712 => 0.036439948713636
713 => 0.036464340485667
714 => 0.037185879607564
715 => 0.036504666507281
716 => 0.036668641271195
717 => 0.037947925570592
718 => 0.036787791240205
719 => 0.037402340269094
720 => 0.037372261292088
721 => 0.037686643780063
722 => 0.037346472751937
723 => 0.037350689579522
724 => 0.037629839930729
725 => 0.03723782360749
726 => 0.037140754852918
727 => 0.037006655063697
728 => 0.037299457047519
729 => 0.037474978594526
730 => 0.03888955335703
731 => 0.039803433166054
801 => 0.039763759233357
802 => 0.040126304711711
803 => 0.039962974653177
804 => 0.039435538809877
805 => 0.040335807480441
806 => 0.040050924804233
807 => 0.040074410185928
808 => 0.040073536058848
809 => 0.04026295813365
810 => 0.040128735233375
811 => 0.039864168119233
812 => 0.040039800116431
813 => 0.040561364358518
814 => 0.042180315769503
815 => 0.043086302427344
816 => 0.042125774235111
817 => 0.042788333720128
818 => 0.042391034123201
819 => 0.0423188329678
820 => 0.042734969287153
821 => 0.043151833998044
822 => 0.043125281518116
823 => 0.042822659144249
824 => 0.042651715444009
825 => 0.043946158412563
826 => 0.044899881941533
827 => 0.044834844390701
828 => 0.045121898988729
829 => 0.045964700166804
830 => 0.046041755344199
831 => 0.04603204816294
901 => 0.045841058865891
902 => 0.046670906077269
903 => 0.047363179220773
904 => 0.045796850361835
905 => 0.046393287886568
906 => 0.046661047907438
907 => 0.047054199058892
908 => 0.047717510951181
909 => 0.048438043600995
910 => 0.048539934817918
911 => 0.048467638123568
912 => 0.047992427472058
913 => 0.048780842895227
914 => 0.049242678159503
915 => 0.049517690490468
916 => 0.050215076004105
917 => 0.04666270150217
918 => 0.044148154265232
919 => 0.043755471403682
920 => 0.044554007444135
921 => 0.044764575029797
922 => 0.044679695500046
923 => 0.04184934397224
924 => 0.043740570188643
925 => 0.045775370578676
926 => 0.045853535548643
927 => 0.046872199169563
928 => 0.047203917800967
929 => 0.048024075535101
930 => 0.047972774445526
1001 => 0.048172469802228
1002 => 0.048126563297964
1003 => 0.04964573279586
1004 => 0.051321602350893
1005 => 0.051263572317142
1006 => 0.051022646240617
1007 => 0.051380462548257
1008 => 0.053110139526147
1009 => 0.052950898587531
1010 => 0.053105587595285
1011 => 0.055144974232541
1012 => 0.057796466960339
1013 => 0.056564582382759
1014 => 0.059237417450869
1015 => 0.060919825445345
1016 => 0.063829376107558
1017 => 0.06346508603481
1018 => 0.064597752756341
1019 => 0.062812930774958
1020 => 0.058714618733669
1021 => 0.058066045165426
1022 => 0.059364505873546
1023 => 0.062556644822516
1024 => 0.059263974058185
1025 => 0.059930077065426
1026 => 0.059738239354529
1027 => 0.059728017138173
1028 => 0.060118157559719
1029 => 0.059552238529911
1030 => 0.057246582595584
1031 => 0.05830325112297
1101 => 0.057895220659156
1102 => 0.058347960879444
1103 => 0.060791213124069
1104 => 0.059710993066861
1105 => 0.058573068986545
1106 => 0.06000027830883
1107 => 0.061817606218431
1108 => 0.061703881103901
1109 => 0.061483206848301
1110 => 0.062727136072987
1111 => 0.064781742715103
1112 => 0.065337094634389
1113 => 0.065747044067536
1114 => 0.065803569168214
1115 => 0.066385812835357
1116 => 0.063254941892833
1117 => 0.068223714485086
1118 => 0.069081684252196
1119 => 0.068920421495183
1120 => 0.069874018782438
1121 => 0.069593446270099
1122 => 0.069186940720199
1123 => 0.070698595256458
1124 => 0.068965605314867
1125 => 0.066505844270147
1126 => 0.065156370712456
1127 => 0.06693346635215
1128 => 0.06801867664722
1129 => 0.068735931619923
1130 => 0.068952972541286
1201 => 0.063497982491655
1202 => 0.060558045402522
1203 => 0.062442511370209
1204 => 0.064741689909681
1205 => 0.063242169839958
1206 => 0.063300948187724
1207 => 0.061163026635242
1208 => 0.064930848528293
1209 => 0.064381908570846
1210 => 0.067229810041141
1211 => 0.066550135499418
1212 => 0.068872488593545
1213 => 0.068260935193334
1214 => 0.070799459166121
1215 => 0.071812145106659
1216 => 0.073512602412803
1217 => 0.074763465729309
1218 => 0.075497996593963
1219 => 0.075453898116006
1220 => 0.078364475343591
1221 => 0.076648209640307
1222 => 0.074492175424213
1223 => 0.074453179567445
1224 => 0.075569820239201
1225 => 0.077909992751794
1226 => 0.078516765436184
1227 => 0.078855868589306
1228 => 0.078336520306034
1229 => 0.07647363689099
1230 => 0.075669253277407
1231 => 0.076354611421416
]
'min_raw' => 0.028260611092281
'max_raw' => 0.078855868589306
'avg_raw' => 0.053558239840794
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.02826'
'max' => '$0.078855'
'avg' => '$0.053558'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.011187952765817
'max_diff' => 0.040742361561227
'year' => 2036
]
11 => [
'items' => [
101 => 0.07551647730479
102 => 0.076963331928986
103 => 0.078950172359479
104 => 0.078539897667401
105 => 0.079911384451199
106 => 0.081330728987812
107 => 0.083360455421922
108 => 0.08389110107235
109 => 0.084768238153862
110 => 0.085671100335258
111 => 0.085961075335105
112 => 0.08651472758377
113 => 0.086511809563129
114 => 0.088180277879576
115 => 0.09002065010078
116 => 0.090715348009569
117 => 0.092312767544965
118 => 0.089577242570857
119 => 0.091652169687164
120 => 0.093523805884867
121 => 0.091292364051462
122 => 0.094367886759545
123 => 0.094487302337016
124 => 0.096290335780117
125 => 0.094462615966122
126 => 0.09337732177486
127 => 0.096510525439591
128 => 0.098026583997963
129 => 0.097569934822088
130 => 0.094094812046123
131 => 0.092072141535485
201 => 0.08677842266514
202 => 0.0930490613387
203 => 0.096103306519554
204 => 0.094086902288956
205 => 0.09510385929564
206 => 0.10065204697469
207 => 0.10276443762432
208 => 0.10232507513592
209 => 0.10239932016394
210 => 0.10353912781588
211 => 0.10859366264812
212 => 0.10556486821344
213 => 0.10788026807199
214 => 0.10910834780817
215 => 0.11024905670876
216 => 0.10744783617366
217 => 0.1038034894156
218 => 0.10264917181805
219 => 0.093886410627207
220 => 0.093430270852481
221 => 0.093174225774478
222 => 0.09155989777596
223 => 0.090291478170778
224 => 0.089282783807337
225 => 0.086635668576034
226 => 0.087528992259716
227 => 0.083310043076905
228 => 0.086009177253689
301 => 0.079275632487832
302 => 0.084883528657201
303 => 0.081831405731964
304 => 0.083880824189678
305 => 0.083873673961746
306 => 0.080100044812381
307 => 0.077923494272659
308 => 0.079310476989184
309 => 0.080797432560124
310 => 0.08103868609879
311 => 0.082966562810026
312 => 0.08350459176056
313 => 0.081874338922271
314 => 0.079136094739292
315 => 0.079772126410298
316 => 0.077910605111146
317 => 0.074648360636766
318 => 0.07699136157159
319 => 0.077791365105218
320 => 0.078144692240864
321 => 0.07493664947162
322 => 0.073928612783527
323 => 0.073391942509033
324 => 0.078721976702659
325 => 0.079013968007658
326 => 0.077520099207874
327 => 0.084272527837348
328 => 0.082744245275345
329 => 0.08445171133542
330 => 0.079714413202723
331 => 0.07989538437101
401 => 0.07765267151642
402 => 0.078908440856863
403 => 0.078020903562373
404 => 0.07880698710391
405 => 0.079278162337563
406 => 0.081520507185041
407 => 0.084909132633431
408 => 0.081185575640439
409 => 0.079563168536274
410 => 0.080569700778934
411 => 0.083250228780406
412 => 0.087311365916339
413 => 0.084907090993864
414 => 0.085974067377223
415 => 0.086207154250511
416 => 0.084434330933774
417 => 0.087376732440755
418 => 0.088953589312374
419 => 0.090571118178101
420 => 0.091975573170082
421 => 0.089925041578907
422 => 0.092119404313621
423 => 0.090351135306609
424 => 0.088764815207029
425 => 0.088767220999816
426 => 0.08777209922891
427 => 0.085843925404369
428 => 0.085488340567629
429 => 0.087338137793762
430 => 0.088821499992671
501 => 0.088943676808199
502 => 0.089764942339416
503 => 0.090250958821083
504 => 0.095014581048787
505 => 0.096930549315519
506 => 0.099273359044655
507 => 0.10018601546768
508 => 0.10293278409553
509 => 0.1007145453469
510 => 0.10023461544025
511 => 0.09357185321025
512 => 0.094662880152158
513 => 0.096409719554595
514 => 0.093600657948595
515 => 0.095382360980749
516 => 0.095734106900926
517 => 0.093505207110124
518 => 0.094695758793466
519 => 0.091534006496483
520 => 0.084978050193433
521 => 0.08738403109424
522 => 0.089155642881649
523 => 0.086627334422859
524 => 0.09115922947619
525 => 0.088511789943337
526 => 0.087672678710931
527 => 0.084399006628564
528 => 0.085944053836247
529 => 0.088033752307584
530 => 0.08674256160582
531 => 0.089421976185239
601 => 0.093216741803463
602 => 0.095921117765209
603 => 0.096128726171182
604 => 0.094389993606897
605 => 0.097176323637607
606 => 0.097196619009975
607 => 0.094053627352842
608 => 0.092128562463099
609 => 0.091691183669778
610 => 0.092783841648657
611 => 0.094110530150806
612 => 0.096202348149769
613 => 0.097466389956465
614 => 0.10076234059236
615 => 0.10165413033212
616 => 0.10263393688236
617 => 0.10394326059463
618 => 0.10551543941493
619 => 0.10207560166031
620 => 0.10221227282697
621 => 0.099009143537664
622 => 0.095586140516839
623 => 0.098183773126295
624 => 0.10157983221457
625 => 0.10080077250741
626 => 0.10071311237561
627 => 0.10086053240241
628 => 0.10027314682492
629 => 0.097616423627457
630 => 0.09628223386966
701 => 0.098003679045327
702 => 0.098918550543483
703 => 0.10033743645195
704 => 0.10016252881468
705 => 0.10381742653765
706 => 0.10523760927443
707 => 0.10487426575732
708 => 0.10494112970882
709 => 0.10751230271699
710 => 0.11037197590413
711 => 0.113050437211
712 => 0.11577508309494
713 => 0.11249041613711
714 => 0.11082266482602
715 => 0.11254335847257
716 => 0.1116303342032
717 => 0.11687684247563
718 => 0.11724009932523
719 => 0.12248622821541
720 => 0.12746542922959
721 => 0.12433808228423
722 => 0.1272870295949
723 => 0.1304765565426
724 => 0.13662967150679
725 => 0.13455751885605
726 => 0.13297028240035
727 => 0.13147035161918
728 => 0.13459146946748
729 => 0.13860673771824
730 => 0.1394715880417
731 => 0.14087297596394
801 => 0.13939958791726
802 => 0.14117412153112
803 => 0.14743900495761
804 => 0.14574617815412
805 => 0.14334209195767
806 => 0.14828761573708
807 => 0.15007738156761
808 => 0.16263889547394
809 => 0.17849832567093
810 => 0.17193241743074
811 => 0.16785674630552
812 => 0.16881462569616
813 => 0.17460595272851
814 => 0.17646594316376
815 => 0.17140984798358
816 => 0.17319574627772
817 => 0.18303622146408
818 => 0.18831532068131
819 => 0.18114559486669
820 => 0.16136460569959
821 => 0.14312563029935
822 => 0.14796342788726
823 => 0.14741497177513
824 => 0.15798733473859
825 => 0.14570580479471
826 => 0.14591259426122
827 => 0.15670358249444
828 => 0.15382473183819
829 => 0.1491613624704
830 => 0.14315967805653
831 => 0.13206500932888
901 => 0.12223815183907
902 => 0.14151088236671
903 => 0.14067980718117
904 => 0.13947628715407
905 => 0.14215459073991
906 => 0.15515967270304
907 => 0.15485986347045
908 => 0.15295263009671
909 => 0.15439924980111
910 => 0.14890776304192
911 => 0.15032304421859
912 => 0.14312274115246
913 => 0.14637757884957
914 => 0.14915135697416
915 => 0.14970823399916
916 => 0.15096290637133
917 => 0.14024186832274
918 => 0.14505529965342
919 => 0.14788273960267
920 => 0.13510826304881
921 => 0.14763022927427
922 => 0.14005523890247
923 => 0.13748417339774
924 => 0.14094577438773
925 => 0.13959678511542
926 => 0.13843700335439
927 => 0.13778982520415
928 => 0.14033164292824
929 => 0.14021306409328
930 => 0.13605415695111
1001 => 0.13062903212289
1002 => 0.13244988208889
1003 => 0.13178835022569
1004 => 0.12939087341411
1005 => 0.13100648331266
1006 => 0.12389215496091
1007 => 0.11165232280234
1008 => 0.11973833084249
1009 => 0.11942702832883
1010 => 0.119270055485
1011 => 0.12534646704632
1012 => 0.12476236028137
1013 => 0.12370220078338
1014 => 0.12937140275354
1015 => 0.12730206777291
1016 => 0.13367927058658
1017 => 0.13787970881129
1018 => 0.13681434180756
1019 => 0.14076487426038
1020 => 0.13249183079451
1021 => 0.13523980397698
1022 => 0.13580615744136
1023 => 0.12930144568124
1024 => 0.12485792737188
1025 => 0.12456159536047
1026 => 0.11685714696659
1027 => 0.12097280111046
1028 => 0.12459440643973
1029 => 0.12285993853494
1030 => 0.12231085781204
1031 => 0.12511599214427
1101 => 0.12533397510623
1102 => 0.12036394047263
1103 => 0.12139736805348
1104 => 0.12570693285869
1105 => 0.12128877807759
1106 => 0.11270502503942
1107 => 0.11057613560628
1108 => 0.11029210251269
1109 => 0.10451838552567
1110 => 0.11071839817789
1111 => 0.10801192650518
1112 => 0.11656163809074
1113 => 0.11167808868609
1114 => 0.11146756863189
1115 => 0.11114933669337
1116 => 0.1061796599734
1117 => 0.10726770333564
1118 => 0.11088452518542
1119 => 0.11217504796783
1120 => 0.11204043586869
1121 => 0.11086680078521
1122 => 0.11140408491644
1123 => 0.10967330552753
1124 => 0.10906213130225
1125 => 0.10713309733056
1126 => 0.1042979503014
1127 => 0.10469219488477
1128 => 0.099075026763427
1129 => 0.096014495445244
1130 => 0.095167380713526
1201 => 0.09403458349091
1202 => 0.095295333174079
1203 => 0.099059114031899
1204 => 0.094519195786715
1205 => 0.086735824393583
1206 => 0.08720361827653
1207 => 0.088254612242261
1208 => 0.086296091940142
1209 => 0.084442516840336
1210 => 0.086054050004316
1211 => 0.082756132938674
1212 => 0.088653149763659
1213 => 0.088493651984741
1214 => 0.090691695188021
1215 => 0.09206617671142
1216 => 0.088898441793664
1217 => 0.088101765028315
1218 => 0.088555588320798
1219 => 0.081054900199927
1220 => 0.090078728946181
1221 => 0.090156767391901
1222 => 0.08948855484113
1223 => 0.094293465069054
1224 => 0.10443332433906
1225 => 0.10061830140679
1226 => 0.099141009217735
1227 => 0.096332675686451
1228 => 0.10007461337454
1229 => 0.099787290943418
1230 => 0.098487909946078
1231 => 0.097702040264572
]
'min_raw' => 0.073391942509033
'max_raw' => 0.18831532068131
'avg_raw' => 0.13085363159517
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.073391'
'max' => '$0.188315'
'avg' => '$0.130853'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.045131331416752
'max_diff' => 0.10945945209201
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0023036892122643
]
1 => [
'year' => 2028
'avg' => 0.0039537994540023
]
2 => [
'year' => 2029
'avg' => 0.010801067505315
]
3 => [
'year' => 2030
'avg' => 0.0083330074949183
]
4 => [
'year' => 2031
'avg' => 0.0081840460582597
]
5 => [
'year' => 2032
'avg' => 0.014349208354213
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0023036892122643
'min' => '$0.0023036'
'max_raw' => 0.014349208354213
'max' => '$0.014349'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.014349208354213
]
1 => [
'year' => 2033
'avg' => 0.036907639398731
]
2 => [
'year' => 2034
'avg' => 0.023393835549068
]
3 => [
'year' => 2035
'avg' => 0.027593082677272
]
4 => [
'year' => 2036
'avg' => 0.053558239840794
]
5 => [
'year' => 2037
'avg' => 0.13085363159517
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.014349208354213
'min' => '$0.014349'
'max_raw' => 0.13085363159517
'max' => '$0.130853'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.13085363159517
]
]
]
]
'prediction_2025_max_price' => '$0.003938'
'last_price' => 0.00381925
'sma_50day_nextmonth' => '$0.003619'
'sma_200day_nextmonth' => '$0.003825'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentare'
'sma_200day_date_nextmonth' => '4 feb 2026'
'sma_50day_date_nextmonth' => '4 feb 2026'
'daily_sma3' => '$0.003765'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.003735'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.003699'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.003793'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.0037087'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.004115'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.003671'
'daily_sma200_action' => 'BUY'
'daily_ema3' => '$0.003776'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.003753'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.00374'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.003752'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.003812'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.00385'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.003718'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '$0.004022'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.003244'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '$0.004611'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.005342'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.003778'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.003783'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.003833'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.003785'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.003825'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.010963'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.042698'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '53.55'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 62.84
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.003658'
'vwma_10_action' => 'BUY'
'hma_9' => '0.003780'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 60.62
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 24.97
'cci_20_action' => 'NEUTRAL'
'adx_14' => 11.51
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000023'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -39.38
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 64.38
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000443'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 9
'buy_signals' => 24
'sell_pct' => 27.27
'buy_pct' => 72.73
'overall_action' => 'bullish'
'overall_action_label' => 'Rialzista'
'overall_action_dir' => 1
'last_updated' => 1767674718
'last_updated_date' => '6 gennaio 2026'
]
Previsione del prezzo di Pancake Hunny per l'anno 2026
La previsione del prezzo di Pancake Hunny per 2026 suggerisce che il prezzo medio potrebbe variare tra $0.001319 come limite inferiore e $0.003938 come limite superiore. Nel mercato delle criptovalute, rispetto al prezzo medio di oggi, Pancake Hunny potrebbe potenzialmente guadagnare 3.13% entro il 2026 se HUNNY raggiunge l'obiettivo di prezzo previsto.
Previsione del prezzo di Pancake Hunny 2027-2032
La previsione del prezzo di HUNNY per gli anni 2027-2032 è attualmente compresa in un intervallo di prezzo tra $0.0023036 come limite inferiore e $0.014349 come limite superiore. Considerando la volatilità dei prezzi sul mercato, se Pancake Hunny raggiunge l'obiettivo di prezzo massimo, potrebbe guadagnare 275.71% entro il 2032 rispetto al prezzo di oggi.
| Previsione del Prezzo di Pancake Hunny | Potenziale Minimo ($) | Prezzo Medio ($) | Potenziale Massimo ($) |
|---|---|---|---|
| 2027 | $0.00127 | $0.0023036 | $0.003337 |
| 2028 | $0.002292 | $0.003953 | $0.005615 |
| 2029 | $0.005035 | $0.010801 | $0.016566 |
| 2030 | $0.004282 | $0.008333 | $0.012383 |
| 2031 | $0.005063 | $0.008184 | $0.0113043 |
| 2032 | $0.007729 | $0.014349 | $0.020969 |
Previsione del prezzo di Pancake Hunny 2032-2037
La previsione del prezzo di Pancake Hunny per gli anni 2032-2037 è attualmente stimata tra $0.014349 come limite inferiore e $0.130853 come limite superiore. Rispetto al prezzo attuale, Pancake Hunny potrebbe potenzialmente guadagnare 3326.16% entro il 2037 se raggiunge l'obiettivo di prezzo massimo. Si prega di notare che queste informazioni sono solo a scopo generale e non devono essere considerate come consigli di investimento a lungo termine.
| Previsione del Prezzo di Pancake Hunny | Potenziale Minimo ($) | Prezzo Medio ($) | Potenziale Massimo ($) |
|---|---|---|---|
| 2032 | $0.007729 | $0.014349 | $0.020969 |
| 2033 | $0.017961 | $0.0369076 | $0.055853 |
| 2034 | $0.01444 | $0.023393 | $0.032347 |
| 2035 | $0.017072 | $0.027593 | $0.038113 |
| 2036 | $0.02826 | $0.053558 | $0.078855 |
| 2037 | $0.073391 | $0.130853 | $0.188315 |
Pancake Hunny Istogramma dei prezzi potenziali
Previsione del prezzo di Pancake Hunny basata sull'analisi tecnica
Al 6 gennaio 2026, il sentimento generale della previsione di prezzo per Pancake Hunny è Rialzista, con 24 indicatori tecnici che mostrano segnali rialzisti e 9 indicando segnali ribassisti. La previsione del prezzo di HUNNY è stata aggiornata l'ultima volta il 6 gennaio 2026.
Medi Mobile Semplici a 50 e 200 giorni e Indice di Forza Relativa a 14 giorni - RSI (14) di Pancake Hunny
Secondo i nostri indicatori tecnici, il SMA a 200 giorni di Pancake Hunny è previsto aumentare nel corso del prossimo mese, raggiungendo $0.003825 entro il 4 feb 2026. Il SMA a 50 giorni a breve termine per Pancake Hunny dovrebbe raggiungere $0.003619 entro il 4 feb 2026.
L'oscillatore di momentum dell'Indice di Forza Relativa (RSI) è uno strumento comunemente utilizzato per identificare se una criptovaluta è ipervenduta (sotto 30) o ipercomprata (sopra 70). Al momento, l'RSI è a 53.55, suggerendo che il mercato di HUNNY è in uno stato NEUTRAL.
Medie Mobili e Oscillatori Popolari di HUNNY per Sabato, 19 Ottobre 2024
Le medie mobili (MA) sono indicatori ampiamente utilizzati nei mercati finanziari, progettati per smussare i movimenti dei prezzi su un periodo stabilito. In quanto indicatori ritardati, si basano su dati storici dei prezzi. La tabella seguente evidenzia due tipi: la media mobile semplice (SMA) e la media mobile esponenziale (EMA).
Media Mobile Semplice Giornaliera (SMA)
| Periodo | Valore | Azione |
|---|---|---|
| SMA 3 | $0.003765 | BUY |
| SMA 5 | $0.003735 | BUY |
| SMA 10 | $0.003699 | BUY |
| SMA 21 | $0.003793 | BUY |
| SMA 50 | $0.0037087 | BUY |
| SMA 100 | $0.004115 | SELL |
| SMA 200 | $0.003671 | BUY |
Media Mobile Esponenziale Giornaliera (EMA)
| Periodo | Valore | Azione |
|---|---|---|
| EMA 3 | $0.003776 | BUY |
| EMA 5 | $0.003753 | BUY |
| EMA 10 | $0.00374 | BUY |
| EMA 21 | $0.003752 | BUY |
| EMA 50 | $0.003812 | BUY |
| EMA 100 | $0.00385 | SELL |
| EMA 200 | $0.003718 | BUY |
Media Mobile Semplice Settimanale (SMA)
| Periodo | Valore | Azione |
|---|---|---|
| SMA 21 | $0.004022 | SELL |
| SMA 50 | $0.003244 | BUY |
| SMA 100 | $0.004611 | SELL |
| SMA 200 | $0.005342 | SELL |
Media Mobile Esponenziale Settimanale (EMA)
| Periodo | Valore | Azione |
|---|---|---|
| EMA 21 | $0.003785 | BUY |
| EMA 50 | $0.003825 | SELL |
| EMA 100 | $0.010963 | SELL |
| EMA 200 | $0.042698 | SELL |
Oscillatori di Pancake Hunny
Un oscillatore è uno strumento di analisi tecnica che imposta limiti alti e bassi tra due estremi, creando un indicatore di tendenza che fluttua entro questi limiti. I trader utilizzano questo indicatore per identificare condizioni di ipercomprato o ipervenduto a breve termine.
| Periodo | Valore | Azione |
|---|---|---|
| RSI (14) | 53.55 | NEUTRAL |
| Stoch RSI (14) | 62.84 | NEUTRAL |
| Stocastico Veloce (14) | 60.62 | NEUTRAL |
| Indice di Canale delle Materie Prime (20) | 24.97 | NEUTRAL |
| Indice Direzionale Medio (14) | 11.51 | NEUTRAL |
| Oscillatore Awesome (5, 34) | -0.000023 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -39.38 | NEUTRAL |
| Oscillatore Ultimate (7, 14, 28) | 64.38 | NEUTRAL |
| VWMA (10) | 0.003658 | BUY |
| Media Mobile di Hull (9) | 0.003780 | BUY |
| Ichimoku Cloud B/L (9, 26, 52, 26) | -0.000443 | NEUTRAL |
Previsione del prezzo di Pancake Hunny sulla base dei flussi monetari globali
Definizioni dei flussi monetari globali usate per la previsione del prezzo di Pancake Hunny
M0: Il totale della moneta fisica, più i conti presso la banca centrale che possono essere scambiati con moneta fisica.
M1: La misura M0 più l'ammontare dei conti a vista, tra cui i "conti correnti".
M2: La misura M1 più la maggior parte dei conti di risparmio, dei conti del mercato monetario e dei conti di certificati di deposito (CD) al di sotto dei $100.000.
Previsione del prezzo di Pancake Hunny sulla base delle società Internet e delle nicchie tecnologiche
| Confronto | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Azioni Facebook | $0.005366 | $0.007541 | $0.010596 | $0.014889 | $0.020922 | $0.029399 |
| Azioni Amazon.com | $0.007969 | $0.016627 | $0.034695 | $0.072393 | $0.151053 | $0.315182 |
| Azioni Apple | $0.005417 | $0.007684 | $0.010899 | $0.015459 | $0.021928 | $0.0311038 |
| Azioni Netflix | $0.006026 | $0.0095083 | $0.0150027 | $0.023671 | $0.03735 | $0.058933 |
| Azioni Google | $0.004945 | $0.0064049 | $0.008294 | $0.010741 | $0.0139097 | $0.018013 |
| Azioni Tesla | $0.008657 | $0.019626 | $0.044492 | $0.100861 | $0.228645 | $0.518322 |
| Azioni Kodak | $0.002864 | $0.002147 | $0.00161 | $0.0012077 | $0.0009056 | $0.000679 |
| Azioni Nokia | $0.00253 | $0.001676 | $0.00111 | $0.000735 | $0.000487 | $0.000322 |
Questo calcolo mostra quanto può valere la criptovaluta se si assume che la sua capitalizzazione si comporti come quella di alcune società di Internet o di nicchie tecnologiche. Estrapolando i dati si può ottenere un quadro potenziale del prezzo futuro per il 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Panoramica delle previsioni per Pancake Hunny
Potresti avere domande come: "Dovrei investire su Pancake Hunny in questo momento?", "Dovrei acquistare HUNNY oggi?", "Pancake Hunny sarà un buon investimento, a breve e a lungo termine?".
Aggiorniamo regolarmente le previsioni su Pancake Hunny/Hunny Finance con nuovi valori. Consulta le nostre previsioni simili. Effettuiamo previsioni dei prezzi futuri di una grande quantità di valute digitali come Pancake Hunny con metodi di analisi tecnica.
Se cerchi delle criptovalute con un buon rendimento, dovresti esplorare il massimo delle fonti di informazione disponibili su Pancake Hunny per prendere decisioni responsabili.
Il prezzo odierno di Pancake Hunny è di $0.003819 USD, ma il prezzo può salire oppure scendere e potresti perdere il tuo investimento, perché le criptovalute sono beni ad alto rischio
Previsione del prezzo di Pancake Hunny sulla base dello schema di crescita di Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Pancake Hunny ha 1% della precedente crescita media annua di Bitcoin | $0.003918 | $0.00402 | $0.004124 | $0.004232 |
| Se Pancake Hunny ha 2% della precedente crescita media annua di Bitcoin | $0.004017 | $0.004226 | $0.004446 | $0.004677 |
| Se Pancake Hunny ha 5% della precedente crescita media annua di Bitcoin | $0.004315 | $0.004876 | $0.00551 | $0.006226 |
| Se Pancake Hunny ha 10% della precedente crescita media annua di Bitcoin | $0.004811 | $0.006062 | $0.007638 | $0.009624 |
| Se Pancake Hunny ha 20% della precedente crescita media annua di Bitcoin | $0.0058047 | $0.008822 | $0.0134088 | $0.020379 |
| Se Pancake Hunny ha 50% della precedente crescita media annua di Bitcoin | $0.008782 | $0.020197 | $0.046448 | $0.106815 |
| Se Pancake Hunny ha 100% della precedente crescita media annua di Bitcoin | $0.013746 | $0.049478 | $0.17809 | $0.6410036 |
Area domande
È HUNNY un buon investimento?
La decisione di procurarsi Pancake Hunny dipende interamente dalla tua tolleranza individuale al rischio. Come puoi notare, il valore di Pancake Hunny ha subito un aumento del 1.68% nelle precedenti 24 ore, e Pancake Hunny ha registrato una declino di nel corso degli ultimi 30 giorni. Di conseguenza, la decisione di investire o meno in Pancake Hunny dipenderà da quanto tale investimento si allinea con le tue aspirazioni di trading.
Può Pancake Hunny salire?
Sembra che il valore medio di Pancake Hunny possa potenzialmente salire fino a $0.003938 entro la fine di quest'anno. Guardando le prospettive di Pancake Hunny su una linea temporale più estesa di cinque anni, la valuta digitale potrebbe potenzialmente crescere fino a $0.012383. Tuttavia, data l' imprevedibilità del mercato, è fondamentale condurre ricerche approfondite prima di investire fondi in un particolare progetto, rete o asset.
Quale sarà il prezzo di Pancake Hunny la prossima settimana?
Basato sul nostro nuovo pronostico sperimentale di Pancake Hunny, il prezzo di Pancake Hunny aumenterà del 0.86% nella prossima settimana e raggiungerà $0.003851 entro 13 gennaio 2026.
Quale sarà il prezzo di Pancake Hunny il prossimo mese?
Basato sul nostro nuovo pronostico sperimentale di Pancake Hunny, il prezzo di Pancake Hunny diminuirà del -11.62% nel prossimo mese e raggiungerà $0.003375 entro 5 febbraio 2026.
Quanto può salire il prezzo di Pancake Hunny quest'anno in 2026?
Secondo la nostra previsione più recente sul valore di Pancake Hunny in 2026, HUNNY dovrebbe fluttuare all'interno dell'intervallo di $0.001319 e $0.003938. Tuttavia, è fondamentale tenere a mente che il mercato delle criptovalute è eccezionalmente instabile, e questa previsione del prezzo di Pancake Hunny non considera fluttuazioni di prezzo improvvise ed estreme.
Dove sarà Pancake Hunny tra 5 anni?
Il futuro di Pancake Hunny sembra seguire una tendenza al rialzo, con un prezzo massimo di $0.012383 prevista dopo un periodo di cinque anni. Basato sulla previsione di Pancake Hunny per 2030, il valore di Pancake Hunny potrebbe potenzialmente raggiungere il suo picco più alto di circa $0.012383, mentre il suo picco più basso è previsto intorno a $0.004282.
Quanto varrà Pancake Hunny in 2026?
Basato sulla nostra nuova simulazione sperimentale di previsione dei prezzi di Pancake Hunny, si prevede che il valore di HUNNY in 2026 aumenti del 3.13% fino a $0.003938 se si verifica il migliore scenario. Il prezzo sarà compreso tra $0.003938 e $0.001319 durante 2026.
Quanto varrà Pancake Hunny in 2027?
Secondo la nostra ultima simulazione sperimentale per la previsione dei prezzi di Pancake Hunny, il valore di HUNNY potrebbe diminuire del -12.62% fino a $0.003337 in 2027, assumendo le condizioni più favorevoli. Il prezzo è previsto oscillare tra $0.003337 e $0.00127 durante l'anno.
Quanto varrà Pancake Hunny in 2028?
Il nostro nuovo modello sperimentale di previsione dei prezzi di Pancake Hunny suggerisce che il valore di HUNNY in 2028 potrebbe aumentare del 47.02%, raggiungendo $0.005615 nello scenario migliore. Il prezzo è previsto oscillare tra $0.005615 e $0.002292 durante l'anno.
Quanto varrà Pancake Hunny in 2029?
Basato sul nostro modello di previsione sperimentale, il valore di Pancake Hunny potrebbe subire una 333.75% crescita in 2029, raggiungendo potenzialmente $0.016566 in condizioni ottimali. Il range di prezzo previsto per 2029 è compreso tra $0.016566 e $0.005035.
Quanto varrà Pancake Hunny in 2030?
Utilizzando la nostra nuova simulazione sperimentale per le previsioni dei prezzi di Pancake Hunny, si prevede che il valore di HUNNY in 2030 aumenti del 224.23%, raggiungendo $0.012383 nello scenario migliore. Il prezzo è previsto oscillare tra $0.012383 e $0.004282 nel corso di 2030.
Quanto varrà Pancake Hunny in 2031?
La nostra simulazione sperimentale indica che il prezzo di Pancake Hunny potrebbe aumentare del 195.98% in 2031, raggiungendo potenzialmente $0.0113043 in condizioni ideali. Il prezzo probabilmente oscillera' tra $0.0113043 e $0.005063 durante l'anno.
Quanto varrà Pancake Hunny in 2032?
Basato sui risultati della nostra ultima previsione sperimentale dei prezzi di Pancake Hunny, HUNNY potrebbe subire una 449.04% aumento in valore, raggiungendo $0.020969 se si verifica lo scenario più positivo in 2032. Il prezzo è previsto rimanere entro un intervallo di $0.020969 e $0.007729 durante l'anno.
Quanto varrà Pancake Hunny in 2033?
Secondo la nostra previsione sperimentale dei prezzi di Pancake Hunny, si prevede che il valore di HUNNY sarà aumentare del 1362.43% in 2033, con il prezzo potenziale più alto di $0.055853. Durante l'anno, il prezzo di HUNNY potrebbe oscillare tra $0.055853 e $0.017961.
Quanto varrà Pancake Hunny in 2034?
I risultati della nostra nuova simulazione di previsione dei prezzi di Pancake Hunny suggeriscono che HUNNY potrebbe aumentare del 746.96% in 2034, raggiungendo potenzialmente $0.032347 nelle migliori circostanze. L'intervallo di prezzo previsto per l'anno è compreso tra $0.032347 e $0.01444.
Quanto varrà Pancake Hunny in 2035?
Basato sulla nostra previsione sperimentale per il prezzo di Pancake Hunny, HUNNY potrebbe aumentare del 897.93%, con il valore potenzialmente raggiungendo $0.038113 in 2035. L'intervallo di prezzo atteso per l'anno si trova tra $0.038113 e $0.017072.
Quanto varrà Pancake Hunny in 2036?
La nostra recente simulazione di previsione dei prezzi di Pancake Hunny suggerisce che il valore di HUNNY potrebbe aumentare del 1964.7% in 2036, potenzialmente raggiungendo $0.078855 se le condizioni sono ottimali. L' intervallo di prezzo previsto per 2036 è compreso tra $0.078855 e $0.02826.
Quanto varrà Pancake Hunny in 2037?
Secondo la simulazione sperimentale, il valore di Pancake Hunny potrebbe aumentare del 4830.69% in 2037, con un picco di $0.188315 in condizioni favorevoli. Il prezzo è previsto diminuire tra $0.188315 e $0.073391 nel corso dell' anno.
Previsioni correlate
Previsione del prezzo di Savanna
Previsione del prezzo di Tholana
Previsione del prezzo di Flare Token
Previsione del prezzo di Cramer Coin
Previsione del prezzo di LakeViewMeta
Previsione del prezzo di XMax
Previsione del prezzo di Xena Finance
Previsione del prezzo di YES
Previsione del prezzo di APY.vision
Previsione del prezzo di GG Token
Previsione del prezzo di AuroraPrevisione del prezzo di GovWorld
Previsione del prezzo di NFTrade
Previsione del prezzo di Zillion Aakar XO
Previsione del prezzo di Bridge Mutual
Previsione del prezzo di CZ THE GOAT
Previsione del prezzo di Darwinia Commitment Token
Previsione del prezzo di Crypto Royale
Previsione del prezzo di Ycash
Previsione del prezzo di Dimecoin
Previsione del prezzo di Stohn Coin
Previsione del prezzo di Lootex
Previsione del prezzo di SpaceFiPrevisione del prezzo di Impossible Finance
Previsione del prezzo di Cloakcoin
Come leggere e prevedere i movimenti di prezzo di Pancake Hunny?
I trader di Pancake Hunny utilizzano indicatori e modelli grafici per prevedere la direzione del mercato. Identificano anche livelli chiave di supporto e resistenza per valutare quando un trend ribassista potrebbe rallentare o un trend rialzista potrebbe fermarsi.
Indicatori di previsione del prezzo di Pancake Hunny
Le medie mobili sono strumenti popolari per la previsione del prezzo di Pancake Hunny. Una media mobile semplice (SMA) calcola il prezzo di chiusura medio di HUNNY su un periodo specifico, come una SMA a 12 giorni. Una media mobile esponenziale (EMA) dà più peso ai prezzi recenti, reagendo più rapidamente ai cambiamenti di prezzo.
Le medie mobili comunemente utilizzate nel mercato delle criptovalute includono quelle a 50 giorni, 100 giorni e 200 giorni, che aiutano a identificare livelli chiave di resistenza e supporto. Un movimento del prezzo di HUNNY al di sopra di queste medie è considerato rialzista, mentre una caduta al di sotto indica debolezza.
I trader utilizzano anche RSI e livelli di ritracciamento di Fibonacci per valutare la direzione futura di HUNNY.
Come leggere i grafici di Pancake Hunny e prevedere i movimenti di prezzo?
La maggior parte dei trader preferisce i grafici a candele rispetto ai semplici grafici a linee perché forniscono informazioni più dettagliate. Le candele possono rappresentare l'azione del prezzo di Pancake Hunny in diversi intervalli di tempo, come 5 minuti per le tendenze a breve termine e settimanale per le tendenze a lungo termine. Le opzioni popolari includono grafici a 1 ora, 4 ore e 1 giorno.
Ad esempio, un grafico a candele di 1 ora mostra i prezzi di apertura, chiusura, massimo e minimo di HUNNY all'interno di ogni ora. Il colore della candela è cruciale: il verde indica che il prezzo ha chiuso più alto di quanto ha aperto, mentre il rosso significa il contrario. Alcuni grafici utilizzano candele vuote e piene per trasmettere la stessa informazione.
Cosa influisce sul prezzo di Pancake Hunny?
L'azione del prezzo di Pancake Hunny è guidata dall'offerta e dalla domanda, influenzata da fattori come dimezzamenti delle ricompense dei blocchi, hard fork e aggiornamenti del protocollo. Eventi del mondo reale, come regolamentazioni, adozione da parte di aziende e governi e hack degli exchange di criptovalute, influenzano anche il prezzo di HUNNY. La capitalizzazione di mercato di Pancake Hunny può cambiare rapidamente.
I trader spesso monitorano l'attività delle "balene" di HUNNY, grandi detentori di Pancake Hunny, poiché le loro azioni possono influenzare significativamente i movimenti di prezzo nel relativamente piccolo mercato di Pancake Hunny.
Modelli di previsione del prezzo rialzisti e ribassisti
I trader spesso identificano modelli di candele per ottenere un vantaggio nelle previsioni dei prezzi delle criptovalute. Alcune formazioni indicano tendenze rialziste, mentre altre suggeriscono movimenti ribassisti.
Modelli di candele rialzisti comunemente seguiti:
- Martello
- Ingolgimento rialzista
- Linea penetrante
- Stella del mattino
- Tre soldati bianchi
Modelli di candele ribassisti comuni:
- Harami ribassista
- Copertura a nuvola scura
- Stella della sera
- Stella cadente
- Impiccato


