Previsione del prezzo di Nord Finance NORD
Previsione del prezzo di Nord Finance fino a $0.003531 entro il 2026
| Anno | Prezzo min. | Prezzo max. |
|---|---|---|
| 2026 | $0.001183 | $0.003531 |
| 2027 | $0.001139 | $0.002992 |
| 2028 | $0.002055 | $0.005034 |
| 2029 | $0.004515 | $0.014854 |
| 2030 | $0.00384 | $0.0111034 |
| 2031 | $0.00454 | $0.010136 |
| 2032 | $0.00693 | $0.0188021 |
| 2033 | $0.0161052 | $0.050081 |
| 2034 | $0.012947 | $0.0290047 |
| 2035 | $0.0153083 | $0.034174 |
Calcolatore di profitto dell’investimento
Se apri uno short di $10,000.00 su Nord Finance oggi e lo chiudi il Apr 06, 2026, la nostra previsione suggerisce che potresti guadagnare circa $3,954.57, con un rendimento del 39.55% nei prossimi 90 giorni.
Previsione a lungo termine del prezzo di Nord Finance per gli anni 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Nord Finance'
'name_with_ticker' => 'Nord Finance <small>NORD</small>'
'name_lang' => 'Nord Finance'
'name_lang_with_ticker' => 'Nord Finance <small>NORD</small>'
'name_with_lang' => 'Nord Finance'
'name_with_lang_with_ticker' => 'Nord Finance <small>NORD</small>'
'image' => '/uploads/coins/nord-finance.jpg?1717105299'
'price_for_sd' => 0.003424
'ticker' => 'NORD'
'marketcap' => '$25.32K'
'low24h' => '$0.2324'
'high24h' => '$0.2594'
'volume24h' => '$3.56'
'current_supply' => '7.39M'
'max_supply' => '9.1M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.003424'
'change_24h_pct' => '-4.7729%'
'ath_price' => '$18.99'
'ath_days' => 1771
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '2 mar 2021'
'ath_pct' => '-99.98%'
'fdv' => '$31.16K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.168854'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.003453'
'next_week_prediction_price_date' => '13 gennaio 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.0030267'
'next_month_prediction_price_date' => '5 febbraio 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001183'
'current_year_max_price_prediction' => '$0.003531'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.00384'
'grand_prediction_max_price' => '$0.0111034'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0034894638001762
107 => 0.0035024921913307
108 => 0.0035318458218479
109 => 0.0032810222629489
110 => 0.0033936346771018
111 => 0.0034597839200603
112 => 0.0031609192338436
113 => 0.003453876326137
114 => 0.0032766559828205
115 => 0.0032165047365387
116 => 0.0032974904653331
117 => 0.0032659302480607
118 => 0.003238796626528
119 => 0.003223655599498
120 => 0.0032831225806559
121 => 0.0032803483749065
122 => 0.0031830488516885
123 => 0.0030561255900866
124 => 0.0030987252027942
125 => 0.003083248364124
126 => 0.0030271583042314
127 => 0.0030649562322594
128 => 0.0028985132863176
129 => 0.0026121568487764
130 => 0.002801332682751
131 => 0.0027940496189267
201 => 0.0027903771678858
202 => 0.0029325375786818
203 => 0.0029188721353824
204 => 0.0028940692219818
205 => 0.0030267027792761
206 => 0.0029782897466906
207 => 0.0031274873055741
208 => 0.0032257584673478
209 => 0.0032008337219829
210 => 0.0032932582246169
211 => 0.0030997066118319
212 => 0.0031639966936562
213 => 0.003177246790418
214 => 0.0030250661017672
215 => 0.0029211079709096
216 => 0.0029141751487909
217 => 0.0027339260761966
218 => 0.0028302136758568
219 => 0.0029149427789061
220 => 0.0028743641137895
221 => 0.0028615181206667
222 => 0.002927145513575
223 => 0.0029322453240646
224 => 0.0028159691044484
225 => 0.0028401466124956
226 => 0.0029409708402287
227 => 0.002837606100645
228 => 0.0026367852961682
301 => 0.0025869789600931
302 => 0.0025803338767478
303 => 0.0024452551431218
304 => 0.0025903072576279
305 => 0.002526988122491
306 => 0.0027270125117088
307 => 0.0026127596533399
308 => 0.0026078344409699
309 => 0.0026003892601011
310 => 0.002484121414037
311 => 0.002509576683118
312 => 0.00259419387449
313 => 0.0026243862416524
314 => 0.0026212369303986
315 => 0.0025937792040895
316 => 0.0026063492105875
317 => 0.0025658568399769
318 => 0.0025515581411385
319 => 0.0025064275144375
320 => 0.0024400979608408
321 => 0.0024493214920912
322 => 0.0023179052903444
323 => 0.0022463027688471
324 => 0.0022264841346027
325 => 0.0021999818286133
326 => 0.0022294776405841
327 => 0.0023175330047565
328 => 0.002211319553577
329 => 0.002029224041537
330 => 0.0020401682920863
331 => 0.0020647567736933
401 => 0.0020189363008877
402 => 0.001975571068798
403 => 0.0020132736197675
404 => 0.0019361173507935
405 => 0.0020740807401804
406 => 0.0020703492171354
407 => 0.0021217734371001
408 => 0.0021539300571752
409 => 0.0020798194587314
410 => 0.0020611808436392
411 => 0.0020717982458735
412 => 0.0018963162374951
413 => 0.0021074328132196
414 => 0.0021092585581333
415 => 0.0020936254217405
416 => 0.0022060384808208
417 => 0.0024432650979925
418 => 0.002354010902194
419 => 0.0023194489798584
420 => 0.0022537467402339
421 => 0.0023412910735206
422 => 0.0023345690346285
423 => 0.002304169425501
424 => 0.0022857836470481
425 => 0.0023196600075863
426 => 0.0022815859910844
427 => 0.0022747468515166
428 => 0.0022333091067933
429 => 0.0022185177172243
430 => 0.0022075667612496
501 => 0.0021955108347402
502 => 0.0022221032044703
503 => 0.0021618413961444
504 => 0.0020891715628412
505 => 0.0020831298525006
506 => 0.0020998115459438
507 => 0.0020924311384012
508 => 0.0020830945179487
509 => 0.0020652683668277
510 => 0.0020599797285856
511 => 0.00207716523719
512 => 0.002057763799953
513 => 0.0020863916774472
514 => 0.0020786064788215
515 => 0.002035118992154
516 => 0.0019809174826366
517 => 0.0019804349755104
518 => 0.0019687573491932
519 => 0.0019538841363353
520 => 0.0019497467487713
521 => 0.0020100984160858
522 => 0.0021350245612535
523 => 0.0021104985697278
524 => 0.0021282211121299
525 => 0.002215398480103
526 => 0.0022431095438667
527 => 0.0022234408871797
528 => 0.0021965172167967
529 => 0.0021977017216536
530 => 0.0022897080537018
531 => 0.0022954463757743
601 => 0.0023099452643989
602 => 0.0023285804336669
603 => 0.0022266145370868
604 => 0.0021928991370943
605 => 0.0021769229101187
606 => 0.0021277223146117
607 => 0.0021807809387257
608 => 0.0021498659506513
609 => 0.0021540374387489
610 => 0.0021513207516529
611 => 0.0021528042465089
612 => 0.0020740421766014
613 => 0.0021027389352631
614 => 0.0020550250081601
615 => 0.0019911414159087
616 => 0.001990927255707
617 => 0.0020065626744067
618 => 0.0019972621155501
619 => 0.0019722345508063
620 => 0.0019757895982514
621 => 0.0019446436418357
622 => 0.001979571281276
623 => 0.001980572880998
624 => 0.0019671238372922
625 => 0.0020209346849353
626 => 0.0020429810331202
627 => 0.0020341285844465
628 => 0.0020423599217224
629 => 0.0021115177354039
630 => 0.002122793476601
701 => 0.002127801416007
702 => 0.0021210914406277
703 => 0.0020436239996017
704 => 0.0020470600100282
705 => 0.0020218488453473
706 => 0.002000548067879
707 => 0.0020013999872699
708 => 0.0020123513557958
709 => 0.0020601766244379
710 => 0.0021608220828415
711 => 0.0021646415044171
712 => 0.002169270754787
713 => 0.0021504412670576
714 => 0.0021447621133845
715 => 0.0021522543829933
716 => 0.0021900515254829
717 => 0.0022872760377902
718 => 0.002252910401734
719 => 0.0022249706046872
720 => 0.0022494813392124
721 => 0.0022457081037538
722 => 0.0022138581992327
723 => 0.0022129642784922
724 => 0.0021518341286858
725 => 0.0021292357041685
726 => 0.0021103507691792
727 => 0.0020897289131745
728 => 0.002077503585684
729 => 0.0020962872450213
730 => 0.0021005832901535
731 => 0.0020595124907303
801 => 0.0020539146925307
802 => 0.0020874539939145
803 => 0.0020726945978467
804 => 0.0020878750027178
805 => 0.002091396986863
806 => 0.0020908298662975
807 => 0.0020754193616969
808 => 0.0020852415577814
809 => 0.0020620091359038
810 => 0.0020367473665088
811 => 0.0020206319314987
812 => 0.0020065690770501
813 => 0.0020143719660361
814 => 0.0019865560915522
815 => 0.0019776572334819
816 => 0.0020819140187544
817 => 0.0021589296269845
818 => 0.0021578097895393
819 => 0.0021509930670905
820 => 0.0021408648002532
821 => 0.0021893105796787
822 => 0.0021724330388308
823 => 0.0021847128599633
824 => 0.002187838589824
825 => 0.0021972992327028
826 => 0.0022006805993622
827 => 0.0021904597608073
828 => 0.0021561573782467
829 => 0.0020706791022782
830 => 0.0020308887340707
831 => 0.0020177572498013
901 => 0.0020182345543142
902 => 0.0020050683650657
903 => 0.0020089463978666
904 => 0.002003719743519
905 => 0.0019938217246481
906 => 0.0020137607912627
907 => 0.0020160585829447
908 => 0.0020114045665428
909 => 0.0020125007558833
910 => 0.0019739674878317
911 => 0.0019768970885118
912 => 0.0019605846996493
913 => 0.0019575263233864
914 => 0.0019162900248242
915 => 0.0018432339446243
916 => 0.0018837141047803
917 => 0.0018348197636837
918 => 0.0018163027358402
919 => 0.0019039594656625
920 => 0.0018951611612076
921 => 0.0018801022885118
922 => 0.0018578270772506
923 => 0.0018495649847145
924 => 0.0017993671259257
925 => 0.0017964011686333
926 => 0.0018212805829052
927 => 0.0018097995892671
928 => 0.0017936759260069
929 => 0.001735277652108
930 => 0.0016696186572416
1001 => 0.0016716004895789
1002 => 0.0016924853942169
1003 => 0.0017532110711649
1004 => 0.0017294844986164
1005 => 0.0017122705980014
1006 => 0.0017090469518642
1007 => 0.001749397632432
1008 => 0.0018065022991643
1009 => 0.0018332945311502
1010 => 0.0018067442429444
1011 => 0.0017762447014225
1012 => 0.0017781010671937
1013 => 0.0017904506370027
1014 => 0.0017917484021762
1015 => 0.001771896336049
1016 => 0.0017774845763796
1017 => 0.0017689955283179
1018 => 0.001716898256033
1019 => 0.0017159559815796
1020 => 0.0017031704707789
1021 => 0.0017027833305931
1022 => 0.0016810319872259
1023 => 0.0016779888239289
1024 => 0.0016348002114612
1025 => 0.0016632270869746
1026 => 0.0016441598313582
1027 => 0.0016154209796333
1028 => 0.0016104663907636
1029 => 0.0016103174498393
1030 => 0.0016398258246711
1031 => 0.0016628822644341
1101 => 0.001644491514433
1102 => 0.0016403042971475
1103 => 0.0016850128231032
1104 => 0.0016793232556481
1105 => 0.0016743961269257
1106 => 0.0018013892025879
1107 => 0.001700864273808
1108 => 0.0016570296670977
1109 => 0.0016027760173276
1110 => 0.0016204412792634
1111 => 0.0016241636095099
1112 => 0.0014936933617682
1113 => 0.0014407615985084
1114 => 0.0014225974120491
1115 => 0.0014121436659379
1116 => 0.0014169075693106
1117 => 0.0013692627741003
1118 => 0.0014012808644538
1119 => 0.0013600244991159
1120 => 0.0013531077352072
1121 => 0.0014268792271143
1122 => 0.0014371440992464
1123 => 0.0013933509656852
1124 => 0.0014214732468958
1125 => 0.0014112757167999
1126 => 0.0013607317210867
1127 => 0.0013588013122269
1128 => 0.0013334401118854
1129 => 0.001293754744247
1130 => 0.0012756174663356
1201 => 0.0012661714145244
1202 => 0.0012700690396016
1203 => 0.0012680982810932
1204 => 0.0012552377487539
1205 => 0.0012688354317529
1206 => 0.001234098970641
1207 => 0.0012202666319356
1208 => 0.0012140188854501
1209 => 0.0011831882768572
1210 => 0.0012322534855624
1211 => 0.0012419199497846
1212 => 0.0012516054599273
1213 => 0.0013359112131416
1214 => 0.0013316995359566
1215 => 0.001369771046539
1216 => 0.0013682916576468
1217 => 0.0013574330461111
1218 => 0.001311622350197
1219 => 0.0013298816770912
1220 => 0.0012736823070402
1221 => 0.0013157906962681
1222 => 0.0012965741859128
1223 => 0.0013092935747869
1224 => 0.0012864229667303
1225 => 0.0012990805055331
1226 => 0.0012442122270538
1227 => 0.0011929770006274
1228 => 0.0012135955513909
1229 => 0.0012360102740881
1230 => 0.0012846111040608
1231 => 0.0012556648506772
]
'min_raw' => 0.0011831882768572
'max_raw' => 0.0035318458218479
'avg_raw' => 0.0023575170493526
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001183'
'max' => '$0.003531'
'avg' => '$0.002357'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0022413817231428
'max_diff' => 0.00010727582184791
'year' => 2026
]
1 => [
'items' => [
101 => 0.0012660750179729
102 => 0.0012312027001731
103 => 0.0011592511477669
104 => 0.0011596583857396
105 => 0.0011485902069517
106 => 0.0011390256844984
107 => 0.0012589896760845
108 => 0.0012440702573807
109 => 0.0012202981162814
110 => 0.0012521180718101
111 => 0.0012605317731025
112 => 0.00126077129935
113 => 0.0012839863175118
114 => 0.0012963761768663
115 => 0.0012985599432783
116 => 0.0013350892759495
117 => 0.0013473334264274
118 => 0.0013977653493887
119 => 0.0012953249838632
120 => 0.001293215291948
121 => 0.001252565843839
122 => 0.0012267853212059
123 => 0.0012543310582799
124 => 0.0012787328209593
125 => 0.0012533240746251
126 => 0.0012566419204884
127 => 0.0012225327545056
128 => 0.001234725176359
129 => 0.0012452269325558
130 => 0.0012394284800486
131 => 0.0012307479159972
201 => 0.0012767321546936
202 => 0.0012741375437327
203 => 0.0013169591239799
204 => 0.0013503416079833
205 => 0.00141016898715
206 => 0.0013477359981177
207 => 0.0013454606918487
208 => 0.0013677021755987
209 => 0.0013473300213721
210 => 0.0013602045196205
211 => 0.0014080947064432
212 => 0.0014091065506264
213 => 0.0013921568568703
214 => 0.0013911254664648
215 => 0.00139438084056
216 => 0.0014134476683153
217 => 0.0014067851328332
218 => 0.0014144951875679
219 => 0.0014241367290742
220 => 0.0014640182326731
221 => 0.0014736335281727
222 => 0.001450273345068
223 => 0.0014523825080494
224 => 0.0014436451583169
225 => 0.001435204987954
226 => 0.001454177258342
227 => 0.0014888494553769
228 => 0.0014886337614387
301 => 0.0014966770372196
302 => 0.001501687931397
303 => 0.0014801775053888
304 => 0.0014661750090178
305 => 0.0014715444571284
306 => 0.0014801303215887
307 => 0.0014687601770014
308 => 0.0013985783774447
309 => 0.0014198670521995
310 => 0.0014163235757573
311 => 0.0014112772344021
312 => 0.0014326831614885
313 => 0.0014306185076009
314 => 0.0013687741078607
315 => 0.0013727331856784
316 => 0.0013690148724957
317 => 0.0013810295030844
318 => 0.0013466811918917
319 => 0.0013572465010751
320 => 0.0013638729639514
321 => 0.0013677760014924
322 => 0.0013818764494284
323 => 0.0013802219246099
324 => 0.0013817736018426
325 => 0.0014026808437514
326 => 0.0015084224988273
327 => 0.0015141777838073
328 => 0.0014858366556693
329 => 0.0014971583773564
330 => 0.0014754231475056
331 => 0.0014900141529178
401 => 0.0014999969482495
402 => 0.0014548866157267
403 => 0.0014522154745983
404 => 0.0014303905357223
405 => 0.0014421180216465
406 => 0.0014234587483049
407 => 0.0014280370813093
408 => 0.0014152356630972
409 => 0.001438275667142
410 => 0.0014640379717188
411 => 0.0014705465472391
412 => 0.0014534252871631
413 => 0.001441028366522
414 => 0.0014192634576758
415 => 0.0014554589861496
416 => 0.0014660436617141
417 => 0.0014554033893549
418 => 0.0014529378057548
419 => 0.0014482655292876
420 => 0.0014539290512945
421 => 0.0014659860152978
422 => 0.001460300173731
423 => 0.0014640557722575
424 => 0.0014497433034309
425 => 0.0014801846262349
426 => 0.0015285327729509
427 => 0.0015286882201483
428 => 0.0015230023479327
429 => 0.0015206758115259
430 => 0.0015265098614667
501 => 0.0015296745942343
502 => 0.001548540841961
503 => 0.0015687850774362
504 => 0.001663256091147
505 => 0.0016367290085289
506 => 0.0017205493119989
507 => 0.0017868402893395
508 => 0.0018067180548908
509 => 0.0017884314459048
510 => 0.0017258739443866
511 => 0.0017228045749158
512 => 0.0018162918932798
513 => 0.0017898774438515
514 => 0.0017867355291421
515 => 0.0017533108649826
516 => 0.0017730689812261
517 => 0.0017687475913696
518 => 0.0017619260660714
519 => 0.0017996231755016
520 => 0.0018701887991107
521 => 0.001859190484911
522 => 0.001850980753558
523 => 0.0018150081005862
524 => 0.0018366716724582
525 => 0.0018289576894529
526 => 0.0018621018558579
527 => 0.0018424679859128
528 => 0.0017896773284178
529 => 0.0017980844146241
530 => 0.0017968137004568
531 => 0.0018229649079777
601 => 0.0018151149645928
602 => 0.0017952808730238
603 => 0.0018699476134807
604 => 0.0018650991706736
605 => 0.0018719731540657
606 => 0.0018749992941399
607 => 0.0019204476232804
608 => 0.001939066349545
609 => 0.0019432931263737
610 => 0.0019609794763011
611 => 0.0019428530738757
612 => 0.0020153716074834
613 => 0.0020635922007588
614 => 0.0021196029012572
615 => 0.0022014495889425
616 => 0.0022322247006363
617 => 0.0022266654521661
618 => 0.0022887206766657
619 => 0.0024002325356814
620 => 0.0022492051871193
621 => 0.0024082373518782
622 => 0.0023578896046302
623 => 0.0022385160016223
624 => 0.002230829748911
625 => 0.0023116709388239
626 => 0.0024909689173746
627 => 0.0024460568073285
628 => 0.0024910423774973
629 => 0.0024385643203461
630 => 0.0024359583424888
701 => 0.0024884936353947
702 => 0.0026112452108191
703 => 0.0025529305386089
704 => 0.0024693221566515
705 => 0.0025310572847983
706 => 0.0024775766034811
707 => 0.0023570696601732
708 => 0.0024460224638843
709 => 0.0023865422572727
710 => 0.0024039017437037
711 => 0.0025289202909883
712 => 0.002513877728621
713 => 0.0025333441972281
714 => 0.0024989863896627
715 => 0.0024668907796677
716 => 0.0024069819401608
717 => 0.0023892458862529
718 => 0.0023941474934766
719 => 0.0023892434572598
720 => 0.0023557250121463
721 => 0.0023484867071153
722 => 0.0023364225482797
723 => 0.0023401617355617
724 => 0.0023174775874565
725 => 0.0023602872617152
726 => 0.0023682331144951
727 => 0.00239938642539
728 => 0.0024026208654742
729 => 0.0024893823928768
730 => 0.0024415956015517
731 => 0.0024736551068856
801 => 0.0024707874029728
802 => 0.0022411031895719
803 => 0.0022727516476576
804 => 0.0023219867166056
805 => 0.0022998063847811
806 => 0.0022684485849795
807 => 0.0022431254803409
808 => 0.002204758387393
809 => 0.0022587593339424
810 => 0.0023297648362945
811 => 0.0024044216821908
812 => 0.0024941169908249
813 => 0.0024740980421063
814 => 0.0024027448907866
815 => 0.0024059457410313
816 => 0.0024257321377558
817 => 0.0024001069562139
818 => 0.0023925495899142
819 => 0.0024246938716775
820 => 0.0024249152316798
821 => 0.0023954303634092
822 => 0.0023626633280002
823 => 0.0023625260329255
824 => 0.0023566954554665
825 => 0.0024396015671234
826 => 0.0024851915457813
827 => 0.0024904183633625
828 => 0.002484839739313
829 => 0.002486986730302
830 => 0.0024604589262276
831 => 0.0025210936197658
901 => 0.0025767380107062
902 => 0.0025618241252651
903 => 0.0025394660908553
904 => 0.002521656839539
905 => 0.0025576288316412
906 => 0.002556027055458
907 => 0.0025762520054944
908 => 0.0025753344849358
909 => 0.0025685335949374
910 => 0.0025618243681463
911 => 0.0025884256939963
912 => 0.0025807649393557
913 => 0.0025730922854473
914 => 0.0025577036034093
915 => 0.0025597951808772
916 => 0.0025374410068972
917 => 0.0025270989431566
918 => 0.0023715791185794
919 => 0.0023300191396955
920 => 0.0023430947550837
921 => 0.0023473995871777
922 => 0.0023293126311069
923 => 0.0023552446799547
924 => 0.0023512031976106
925 => 0.0023669262412234
926 => 0.0023571031661893
927 => 0.0023575063086151
928 => 0.0023863938777899
929 => 0.0023947800620178
930 => 0.0023905147810347
1001 => 0.00239350203763
1002 => 0.0024623421050267
1003 => 0.0024525552488243
1004 => 0.0024473561765261
1005 => 0.0024487963550838
1006 => 0.0024663864682514
1007 => 0.0024713107395537
1008 => 0.0024504462560233
1009 => 0.0024602860670724
1010 => 0.0025021827336615
1011 => 0.0025168441958217
1012 => 0.0025636365451361
1013 => 0.0025437583234796
1014 => 0.0025802456596393
1015 => 0.0026923952915445
1016 => 0.0027819881776746
1017 => 0.0026995948570068
1018 => 0.0028641207827995
1019 => 0.0029922278158715
1020 => 0.0029873108545688
1021 => 0.0029649724301836
1022 => 0.0028191259789328
1023 => 0.0026849159000438
1024 => 0.0027971883298954
1025 => 0.0027974745354082
1026 => 0.0027878302341144
1027 => 0.0027279303070724
1028 => 0.002785745846494
1029 => 0.0027903350340581
1030 => 0.0027877663093856
1031 => 0.0027418411757653
1101 => 0.0026717219851105
1102 => 0.0026854231071228
1103 => 0.0027078658244743
1104 => 0.0026653770784867
1105 => 0.0026517993496597
1106 => 0.0026770429308176
1107 => 0.0027583830090175
1108 => 0.0027430061384048
1109 => 0.0027426045861703
1110 => 0.0028083933594594
1111 => 0.0027613027958903
1112 => 0.0026855959221485
1113 => 0.0026664789380777
1114 => 0.0025986265233699
1115 => 0.0026454924278906
1116 => 0.0026471790483605
1117 => 0.0026215110714125
1118 => 0.0026876787370135
1119 => 0.0026870689903264
1120 => 0.0027498853410573
1121 => 0.0028699666109107
1122 => 0.0028344526705746
1123 => 0.0027931538218695
1124 => 0.0027976441518166
1125 => 0.0028468919882577
1126 => 0.0028171156221267
1127 => 0.0028278234109956
1128 => 0.0028468757807368
1129 => 0.0028583705484454
1130 => 0.0027959902316378
1201 => 0.0027814463957944
1202 => 0.0027516948118517
1203 => 0.0027439331789406
1204 => 0.0027681652232748
1205 => 0.0027617809357235
1206 => 0.002647037294441
1207 => 0.0026350459454993
1208 => 0.0026354137030517
1209 => 0.0026052608859804
1210 => 0.0025592706024414
1211 => 0.0026801303216447
1212 => 0.002670423594762
1213 => 0.0026597081195245
1214 => 0.0026610207040994
1215 => 0.0027134818118896
1216 => 0.0026830517200219
1217 => 0.0027639551066463
1218 => 0.0027473238025347
1219 => 0.0027302659682283
1220 => 0.0027279080559329
1221 => 0.0027213422450309
1222 => 0.0026988256364176
1223 => 0.0026716354784786
1224 => 0.0026536821810362
1225 => 0.0024478815388965
1226 => 0.0024860769409904
1227 => 0.0025300172694789
1228 => 0.0025451852947933
1229 => 0.0025192393378976
1230 => 0.0026998501409383
1231 => 0.0027328494750629
]
'min_raw' => 0.0011390256844984
'max_raw' => 0.0029922278158715
'avg_raw' => 0.0020656267501849
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001139'
'max' => '$0.002992'
'avg' => '$0.002065'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -4.4162592358826E-5
'max_diff' => -0.0005396180059764
'year' => 2027
]
2 => [
'items' => [
101 => 0.0026328923395063
102 => 0.0026141944406666
103 => 0.0027010759720734
104 => 0.0026486757877999
105 => 0.0026722715875697
106 => 0.0026212703746797
107 => 0.0027249009018056
108 => 0.0027241114108175
109 => 0.0026837967951639
110 => 0.0027178704322517
111 => 0.0027119492992967
112 => 0.0026664341975143
113 => 0.0027263438117159
114 => 0.0027263735261371
115 => 0.0026875715850859
116 => 0.0026422594127751
117 => 0.0026341586665917
118 => 0.0026280558425247
119 => 0.0026707706669592
120 => 0.0027090686449813
121 => 0.0027803316872067
122 => 0.0027982489091903
123 => 0.0028681810194092
124 => 0.0028265398527065
125 => 0.0028449988425624
126 => 0.0028650386872345
127 => 0.0028746465257112
128 => 0.0028589910684985
129 => 0.0029676244208734
130 => 0.0029767964042537
131 => 0.0029798716909438
201 => 0.0029432411357417
202 => 0.0029757776422494
203 => 0.0029605548883503
204 => 0.0030001602649929
205 => 0.0030063708937573
206 => 0.0030011107121434
207 => 0.0030030820637413
208 => 0.0029103826617259
209 => 0.0029055757087031
210 => 0.0028400325631514
211 => 0.0028667418794342
212 => 0.0028168100928544
213 => 0.0028326439767332
214 => 0.0028396234018762
215 => 0.0028359777462604
216 => 0.0028682519841025
217 => 0.0028408122887455
218 => 0.002768394421195
219 => 0.0026959568234448
220 => 0.0026950474284114
221 => 0.0026759758875536
222 => 0.0026621906566403
223 => 0.0026648461811716
224 => 0.0026742045959852
225 => 0.0026616467285587
226 => 0.0026643265862742
227 => 0.0027088300801496
228 => 0.0027177549384619
229 => 0.0026874247827494
301 => 0.0025656448309432
302 => 0.0025357597253081
303 => 0.0025572405465912
304 => 0.0025469740975599
305 => 0.0020556068799089
306 => 0.002171046319143
307 => 0.002102456124303
308 => 0.0021340656417684
309 => 0.0020640528141816
310 => 0.0020974666051927
311 => 0.0020912962980693
312 => 0.0022769195002565
313 => 0.0022740212492707
314 => 0.0022754084886455
315 => 0.0022091919388502
316 => 0.0023146767006494
317 => 0.0023666422874211
318 => 0.002357024840329
319 => 0.0023594453445623
320 => 0.0023178530623196
321 => 0.0022758111928539
322 => 0.0022291802894191
323 => 0.0023158147442471
324 => 0.0023061824717697
325 => 0.0023282754392506
326 => 0.0023844640759653
327 => 0.0023927380661614
328 => 0.0024038583928915
329 => 0.0023998725473575
330 => 0.002494831558666
331 => 0.0024833313958368
401 => 0.0025110434794325
402 => 0.0024540376209553
403 => 0.0023895300810426
404 => 0.0024017908554697
405 => 0.0024006100442974
406 => 0.0023855769628028
407 => 0.0023720057690039
408 => 0.0023494135549889
409 => 0.0024208986631509
410 => 0.0024179964983066
411 => 0.0024649791737373
412 => 0.0024566745294896
413 => 0.0024012140827121
414 => 0.0024031948634186
415 => 0.0024165165656008
416 => 0.0024626231289581
417 => 0.0024763106961367
418 => 0.0024699700696643
419 => 0.0024849778622145
420 => 0.0024968394095292
421 => 0.0024864674899337
422 => 0.002633311998964
423 => 0.0025723319208512
424 => 0.0026020531866267
425 => 0.0026091415333863
426 => 0.0025909848822135
427 => 0.0025949224097119
428 => 0.0026008866909601
429 => 0.0026371006387728
430 => 0.0027321365164236
501 => 0.002774227259704
502 => 0.0029008593375839
503 => 0.002770732209406
504 => 0.0027630110041395
505 => 0.0027858212652881
506 => 0.0028601677003704
507 => 0.002920418502999
508 => 0.0029404071701831
509 => 0.0029430490025284
510 => 0.0029805490709873
511 => 0.003002043410893
512 => 0.0029759955763267
513 => 0.0029539227638536
514 => 0.0028748606893536
515 => 0.0028840123397558
516 => 0.0029470581357724
517 => 0.0030361140360246
518 => 0.0031125332631283
519 => 0.0030857739132755
520 => 0.003289928863495
521 => 0.0033101699929111
522 => 0.0033073733232998
523 => 0.0033534856283936
524 => 0.0032619620933901
525 => 0.0032228340089912
526 => 0.0029586951564474
527 => 0.0030329073999284
528 => 0.0031407792541603
529 => 0.003126502009754
530 => 0.0030481625857879
531 => 0.0031124738356503
601 => 0.0030912105252471
602 => 0.0030744392701165
603 => 0.0031512716411375
604 => 0.0030667912931
605 => 0.0031399364980645
606 => 0.0030461270161073
607 => 0.0030858961477316
608 => 0.0030633212652052
609 => 0.0030779299808733
610 => 0.0029925277275825
611 => 0.0030386087104357
612 => 0.0029906106071956
613 => 0.0029905878498451
614 => 0.0029895282890558
615 => 0.0030459978446616
616 => 0.0030478393148426
617 => 0.0030061082279291
618 => 0.0030000941263428
619 => 0.0030223314120257
620 => 0.0029962973744454
621 => 0.0030084785367729
622 => 0.0029966663294431
623 => 0.0029940071527701
624 => 0.0029728183806173
625 => 0.0029636896749764
626 => 0.002967269275676
627 => 0.0029550502530778
628 => 0.002947687849981
629 => 0.0029880637217709
630 => 0.0029664925222316
701 => 0.0029847576260669
702 => 0.0029639422350067
703 => 0.0028917870207576
704 => 0.0028502897940155
705 => 0.002713995283091
706 => 0.0027526482373163
707 => 0.0027782751859571
708 => 0.0027698054795842
709 => 0.0027880016862145
710 => 0.0027891187855181
711 => 0.0027832030132543
712 => 0.0027763533068301
713 => 0.0027730192485553
714 => 0.0027978685873928
715 => 0.0028122944649782
716 => 0.0027808471930976
717 => 0.00277347953729
718 => 0.0028052744654128
719 => 0.0028246693532004
720 => 0.0029678703075777
721 => 0.0029572615183444
722 => 0.0029838874974501
723 => 0.0029808898208118
724 => 0.0030087980887657
725 => 0.0030544163119563
726 => 0.002961661709154
727 => 0.0029777607009876
728 => 0.00297381359997
729 => 0.0030169070138947
730 => 0.0030170415468291
731 => 0.0029912048925056
801 => 0.0030052113619663
802 => 0.0029973933349607
803 => 0.0030115215664294
804 => 0.0029571198314963
805 => 0.0030233752723405
806 => 0.0030609378378928
807 => 0.0030614593941519
808 => 0.0030792637521088
809 => 0.0030973540109518
810 => 0.0031320766874715
811 => 0.0030963856143494
812 => 0.0030321808482587
813 => 0.0030368162249904
814 => 0.002999172994123
815 => 0.0029998057836347
816 => 0.0029964279036287
817 => 0.0030065651758016
818 => 0.00295934439267
819 => 0.0029704270160874
820 => 0.0029549112784033
821 => 0.0029777269728041
822 => 0.0029531810571982
823 => 0.0029738116965584
824 => 0.0029827151965898
825 => 0.003015569303384
826 => 0.0029483284789118
827 => 0.0028112198860094
828 => 0.0028400417745185
829 => 0.0027974119375031
830 => 0.0028013574912221
831 => 0.0028093281376647
901 => 0.0027834926647109
902 => 0.0027884212587812
903 => 0.002788245174719
904 => 0.0027867277773995
905 => 0.0027800069730709
906 => 0.0027702604771239
907 => 0.0028090875171637
908 => 0.002815684987861
909 => 0.0028303503479674
910 => 0.0028739845120353
911 => 0.0028696244300804
912 => 0.0028767359046468
913 => 0.0028612115955976
914 => 0.0028020776193941
915 => 0.0028052888788041
916 => 0.0027652444225045
917 => 0.0028293263211876
918 => 0.0028141508817397
919 => 0.0028043671772056
920 => 0.0028016976027781
921 => 0.0028454399274988
922 => 0.0028585283166322
923 => 0.0028503725108534
924 => 0.0028336447152582
925 => 0.0028657670279298
926 => 0.0028743616036692
927 => 0.0028762856122215
928 => 0.002933200191433
929 => 0.0028794665049573
930 => 0.0028924007373589
1001 => 0.0029933099263168
1002 => 0.0029017992164482
1003 => 0.002950274480398
1004 => 0.0029479018684807
1005 => 0.0029727001732039
1006 => 0.0029458676836852
1007 => 0.0029462003045512
1008 => 0.0029682195191627
1009 => 0.0029372975034271
1010 => 0.0029296407774737
1011 => 0.0029190630654075
1012 => 0.0029421591127261
1013 => 0.0029560041485492
1014 => 0.0030675849692253
1015 => 0.0031396712680856
1016 => 0.003136541811738
1017 => 0.0031651391846584
1018 => 0.0031522558062358
1019 => 0.0031106519788459
1020 => 0.0031816646391543
1021 => 0.0031591932621368
1022 => 0.0031610457751554
1023 => 0.0031609768245283
1024 => 0.003175918325763
1025 => 0.0031653309027698
1026 => 0.0031444620052733
1027 => 0.0031583157533421
1028 => 0.0031994564323009
1029 => 0.0033271583621393
1030 => 0.0033986220539024
1031 => 0.0033228561581627
1101 => 0.0033751184584981
1102 => 0.0033437797012585
1103 => 0.0033380845168208
1104 => 0.0033709091035851
1105 => 0.0034037911454433
1106 => 0.0034016967015299
1107 => 0.0033778260276524
1108 => 0.0033643420896749
1109 => 0.0034664469854911
1110 => 0.0035416761334169
1111 => 0.0035365460098709
1112 => 0.0035591887067971
1113 => 0.0036256683652847
1114 => 0.0036317464321066
1115 => 0.0036309807353898
1116 => 0.003615915612591
1117 => 0.0036813734698466
1118 => 0.0037359795659906
1119 => 0.0036124284719364
1120 => 0.0036594751111496
1121 => 0.0036805958632405
1122 => 0.0037116073935547
1123 => 0.0037639290433307
1124 => 0.0038207642326196
1125 => 0.0038288013515512
1126 => 0.0038230986310577
1127 => 0.0037856142959097
1128 => 0.0038478040382145
1129 => 0.0038842333307277
1130 => 0.0039059261407498
1201 => 0.0039609354976264
1202 => 0.0036807262978151
1203 => 0.0034823802988877
1204 => 0.0034514057070043
1205 => 0.003514393757615
1206 => 0.0035310032042407
1207 => 0.0035243079571323
1208 => 0.0033010515025104
1209 => 0.0034502303079747
1210 => 0.0036107341593441
1211 => 0.0036168997659477
1212 => 0.0036972513499205
1213 => 0.0037234171193848
1214 => 0.0037881106764057
1215 => 0.0037840640767999
1216 => 0.0037998159284352
1217 => 0.0037961948505283
1218 => 0.003916026042074
1219 => 0.004048217641453
1220 => 0.0040436402667101
1221 => 0.0040246361602793
1222 => 0.0040528604990106
1223 => 0.0041892963960825
1224 => 0.0041767355650208
1225 => 0.0041889373424682
1226 => 0.0043498029543062
1227 => 0.004558951132562
1228 => 0.0044617808056284
1229 => 0.0046726124550659
1230 => 0.0048053198026813
1231 => 0.0050348234381863
]
'min_raw' => 0.0020556068799089
'max_raw' => 0.0050348234381863
'avg_raw' => 0.0035452151590476
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002055'
'max' => '$0.005034'
'avg' => '$0.003545'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00091658119541048
'max_diff' => 0.0020425956223148
'year' => 2028
]
3 => [
'items' => [
101 => 0.0050060884526919
102 => 0.0050954325338185
103 => 0.0049546468314843
104 => 0.0046313744014403
105 => 0.0045802153019487
106 => 0.0046826371146856
107 => 0.0049344311471251
108 => 0.0046747072245452
109 => 0.004727249035818
110 => 0.0047121169906367
111 => 0.0047113106682561
112 => 0.0047420847139756
113 => 0.0046974453555932
114 => 0.0045155765790759
115 => 0.0045989259675943
116 => 0.004566740765921
117 => 0.0046024526467433
118 => 0.0047951749388413
119 => 0.0047099678195792
120 => 0.0046202090411007
121 => 0.0047327864683802
122 => 0.004876136219108
123 => 0.0048671656493317
124 => 0.0048497589945584
125 => 0.0049478793961325
126 => 0.0051099455529526
127 => 0.0051537513839065
128 => 0.0051860879527459
129 => 0.0051905466192581
130 => 0.005236473655379
131 => 0.0049895124070536
201 => 0.0053814462505606
202 => 0.0054491223983804
203 => 0.0054364020874792
204 => 0.0055116212775332
205 => 0.0054894898836926
206 => 0.005457424966327
207 => 0.0055766633821431
208 => 0.0054399661604539
209 => 0.0052459416639677
210 => 0.005139495987826
211 => 0.0052796722408972
212 => 0.0053652729871707
213 => 0.0054218496352275
214 => 0.0054389696947449
215 => 0.0050086833057526
216 => 0.0047767828068629
217 => 0.0049254283679065
218 => 0.0051067862113484
219 => 0.0049885049550763
220 => 0.0049931413563861
221 => 0.0048245033687094
222 => 0.0051217069313147
223 => 0.0050784068721185
224 => 0.0053030476558249
225 => 0.0052494353299384
226 => 0.0054326211685459
227 => 0.0053843821980146
228 => 0.0055846194676857
301 => 0.0056644995357651
302 => 0.0057986306024104
303 => 0.0058972979610463
304 => 0.0059552373212432
305 => 0.005951758859382
306 => 0.0061813434697565
307 => 0.006045965446094
308 => 0.0058758987422236
309 => 0.0058728227721041
310 => 0.0059609027279025
311 => 0.0061454941517
312 => 0.0061933560221947
313 => 0.0062201042783648
314 => 0.0061791383929268
315 => 0.0060321952508715
316 => 0.0059687459471507
317 => 0.0060228065922241
318 => 0.0059566950687835
319 => 0.0060708221058593
320 => 0.006227542903984
321 => 0.0061951806789125
322 => 0.0063033627453108
323 => 0.0064153198029477
324 => 0.0065754234236746
325 => 0.0066172804387526
326 => 0.0066864684929967
327 => 0.0067576857279057
328 => 0.0067805587844001
329 => 0.0068242305463407
330 => 0.0068240003745983
331 => 0.0069556081686548
401 => 0.0071007756410532
402 => 0.0071555730012489
403 => 0.0072815765094749
404 => 0.0070657999173275
405 => 0.0072294689411341
406 => 0.0073771024975091
407 => 0.0072010876853818
408 => 0.0074436830977079
409 => 0.0074531025278355
410 => 0.0075953247394996
411 => 0.0074511552814991
412 => 0.0073655479175435
413 => 0.0076126931696171
414 => 0.007732278972093
415 => 0.0076962587551657
416 => 0.0074221431258116
417 => 0.0072625960721552
418 => 0.0068450306584079
419 => 0.007339654928475
420 => 0.0075805719820369
421 => 0.0074215192088442
422 => 0.0075017361760953
423 => 0.0079393739389784
424 => 0.0081059980641375
425 => 0.008071341410895
426 => 0.0080771978147959
427 => 0.00816710516829
428 => 0.0085658038865666
429 => 0.0083268943728113
430 => 0.0085095317443086
501 => 0.0086064019476027
502 => 0.0086963803910573
503 => 0.0084754217719118
504 => 0.0081879578549302
505 => 0.0080969059655079
506 => 0.0074057045451377
507 => 0.0073697245094718
508 => 0.0073495278251459
509 => 0.0072221905873487
510 => 0.0071221383990449
511 => 0.0070425731842062
512 => 0.0068337703002851
513 => 0.0069042351441355
514 => 0.006571446927714
515 => 0.0067843530352902
516 => 0.0062532150064289
517 => 0.0066955625397164
518 => 0.0064548128884224
519 => 0.0066164698043252
520 => 0.0066159057985746
521 => 0.0063182441630257
522 => 0.0061465591436809
523 => 0.0062559635200883
524 => 0.0063732536961273
525 => 0.006392283632578
526 => 0.0065443534073994
527 => 0.0065867928128231
528 => 0.0064581994330827
529 => 0.0062422083513478
530 => 0.0062923781534028
531 => 0.0061455424542435
601 => 0.0058882185394206
602 => 0.006073033067491
603 => 0.0061361368730954
604 => 0.0061640071085948
605 => 0.0059109585922177
606 => 0.0058314452544214
607 => 0.0057891130205602
608 => 0.0062095429655307
609 => 0.0062325750669832
610 => 0.0061147395795416
611 => 0.0066473671563969
612 => 0.0065268171317441
613 => 0.0066615010447544
614 => 0.0062878257697213
615 => 0.006302100668448
616 => 0.0061251968048354
617 => 0.0062242511477381
618 => 0.006154242730845
619 => 0.0062162485357056
620 => 0.0062534145594796
621 => 0.0064302893949089
622 => 0.006697582166219
623 => 0.0064038701927517
624 => 0.0062758956798791
625 => 0.0063552903479093
626 => 0.0065667288113807
627 => 0.0068870689068758
628 => 0.0066974211228975
629 => 0.0067815835889988
630 => 0.0067999693437145
701 => 0.0066601300889514
702 => 0.0068922249796635
703 => 0.0070166065171316
704 => 0.0071441962374413
705 => 0.0072549788166034
706 => 0.0070932340973916
707 => 0.007266324132143
708 => 0.0071268441186376
709 => 0.0070017161273445
710 => 0.0070019058948567
711 => 0.0069234112780902
712 => 0.0067713180671471
713 => 0.0067432697455206
714 => 0.0068891806567338
715 => 0.0070061873897121
716 => 0.0070158246246646
717 => 0.0070806055640644
718 => 0.0071189422567045
719 => 0.0074946939607833
720 => 0.007645824404545
721 => 0.0078306238504238
722 => 0.0079026136493197
723 => 0.008119277134225
724 => 0.0079443037736161
725 => 0.0079064471864143
726 => 0.0073808924421198
727 => 0.0074669520020559
728 => 0.007604741661026
729 => 0.0073831645428451
730 => 0.0075237042243086
731 => 0.007551449734467
801 => 0.0073756354371568
802 => 0.0074695454498376
803 => 0.0072201482985358
804 => 0.0067030183425936
805 => 0.0068928006931339
806 => 0.00703254438318
807 => 0.0068331129072115
808 => 0.0071905861088211
809 => 0.0069817576441855
810 => 0.0069155690464301
811 => 0.0066573437286475
812 => 0.0067792161386369
813 => 0.0069440503181924
814 => 0.0068422019592573
815 => 0.0070535525966557
816 => 0.007352881464368
817 => 0.0075662010408421
818 => 0.007582577069124
819 => 0.0074454268727528
820 => 0.0076652109377185
821 => 0.007666811824688
822 => 0.0074188945015625
823 => 0.0072670465215576
824 => 0.0072325463410096
825 => 0.0073187345561773
826 => 0.0074233829606132
827 => 0.0075883843272543
828 => 0.0076880911974026
829 => 0.0079480738343114
830 => 0.0080184176815725
831 => 0.0080957042427907
901 => 0.0081989829228709
902 => 0.0083229954584172
903 => 0.0080516630906794
904 => 0.0080624436314765
905 => 0.0078097826874913
906 => 0.0075397782335987
907 => 0.0077446779575729
908 => 0.0080125570900011
909 => 0.007951105321042
910 => 0.0079441907416883
911 => 0.0079558191462168
912 => 0.0079094865192487
913 => 0.0076999257646394
914 => 0.0075946856655943
915 => 0.0077304722429751
916 => 0.0078026367656878
917 => 0.0079145576470073
918 => 0.0079007610360215
919 => 0.0081890572068756
920 => 0.0083010803812458
921 => 0.0082724200595
922 => 0.0082776942484504
923 => 0.0084805068547234
924 => 0.0087060761844927
925 => 0.0089173516283163
926 => 0.0091322700842652
927 => 0.0088731774972087
928 => 0.0087416262601107
929 => 0.0088773535573196
930 => 0.0088053347429205
1001 => 0.0092191762126256
1002 => 0.0092478296980889
1003 => 0.0096616412423454
1004 => 0.010054397673607
1005 => 0.0098077143960939
1006 => 0.01004032561593
1007 => 0.010291913615253
1008 => 0.01077726768463
1009 => 0.010613817509026
1010 => 0.010488617236104
1011 => 0.010370303583156
1012 => 0.010616495513177
1013 => 0.010933217498138
1014 => 0.011001436380172
1015 => 0.011111977030688
1016 => 0.010995757052939
1017 => 0.011135731214927
1018 => 0.011629901514509
1019 => 0.0114963723374
1020 => 0.011306739440019
1021 => 0.011696839430919
1022 => 0.01183801510115
1023 => 0.012828859889106
1024 => 0.014079842363657
1025 => 0.013561927404799
1026 => 0.013240440876825
1027 => 0.013315997836661
1028 => 0.013772814287938
1029 => 0.013919529233459
1030 => 0.013520707435859
1031 => 0.013661578037107
1101 => 0.014437788900075
1102 => 0.014854201124231
1103 => 0.014288657392204
1104 => 0.01272834466533
1105 => 0.011289665072428
1106 => 0.011671267685052
1107 => 0.011628005791288
1108 => 0.01246194752927
1109 => 0.011493187710687
1110 => 0.011509499141509
1111 => 0.012360685911472
1112 => 0.012133603874282
1113 => 0.011765760056502
1114 => 0.011292350739378
1115 => 0.010417209831612
1116 => 0.0096420731244944
1117 => 0.011162294710475
1118 => 0.011096739991344
1119 => 0.011001807043377
1120 => 0.01121307004626
1121 => 0.012238903220207
1122 => 0.012215254445249
1123 => 0.012064813004681
1124 => 0.012178921511422
1125 => 0.011745756283564
1126 => 0.011857392825772
1127 => 0.01128943717823
1128 => 0.011546176850842
1129 => 0.011764970828877
1130 => 0.011808896959267
1201 => 0.011907864773961
1202 => 0.011062195633191
1203 => 0.011441876249855
1204 => 0.011664903040883
1205 => 0.010657259885237
1206 => 0.011644985175515
1207 => 0.011047474414895
1208 => 0.010844670288429
1209 => 0.011117719327303
1210 => 0.011011311851305
1211 => 0.010919828951899
1212 => 0.010868779922154
1213 => 0.01106927700098
1214 => 0.011059923572607
1215 => 0.010731871436842
1216 => 0.010303940798852
1217 => 0.010447568367306
1218 => 0.010395387125171
1219 => 0.01020627557216
1220 => 0.010333713925473
1221 => 0.0097725399125551
1222 => 0.0088070691906168
1223 => 0.0094448887226972
1224 => 0.0094203333645263
1225 => 0.0094079514394397
1226 => 0.0098872551897611
1227 => 0.0098411811935866
1228 => 0.0097575564393721
1229 => 0.010204739737969
1230 => 0.010041511818517
1231 => 0.010544541804934
]
'min_raw' => 0.0045155765790759
'max_raw' => 0.014854201124231
'avg_raw' => 0.0096848888516533
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.004515'
'max' => '$0.014854'
'avg' => '$0.009684'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.002459969699167
'max_diff' => 0.0098193776860445
'year' => 2029
]
4 => [
'items' => [
101 => 0.010875869887927
102 => 0.01079183436874
103 => 0.011103450032243
104 => 0.010450877256396
105 => 0.010667635755857
106 => 0.010712309382181
107 => 0.010199221565479
108 => 0.0098487194691675
109 => 0.0098253449753599
110 => 0.0092176226425201
111 => 0.0095422630073599
112 => 0.0098279330938878
113 => 0.0096911192913351
114 => 0.0096478081286431
115 => 0.0098690754657918
116 => 0.0098862698329148
117 => 0.0094942364403321
118 => 0.009575752596733
119 => 0.0099156885198582
120 => 0.009567187083656
121 => 0.0088901057205016
122 => 0.0087221801810571
123 => 0.0086997758186135
124 => 0.0082443484372975
125 => 0.00873340176857
126 => 0.0085199168836551
127 => 0.0091943130771597
128 => 0.0088091015882892
129 => 0.0087924958909164
130 => 0.0087673939438113
131 => 0.0083753887832445
201 => 0.008461213000181
202 => 0.0087465057686754
203 => 0.0088483014425273
204 => 0.0088376833197572
205 => 0.0087451076784689
206 => 0.0087874883329867
207 => 0.008650965478386
208 => 0.008602756416949
209 => 0.0084505953581067
210 => 0.0082269606371741
211 => 0.0082580584167512
212 => 0.0078149795173757
213 => 0.0075735666170189
214 => 0.0075067467079711
215 => 0.007417392332996
216 => 0.0075168395223874
217 => 0.0078137243305237
218 => 0.0074556182642857
219 => 0.0068416705319404
220 => 0.0068785698367704
221 => 0.0069614716192215
222 => 0.0068069846960741
223 => 0.0066607757884198
224 => 0.0067878925713216
225 => 0.006527754823597
226 => 0.0069929080232112
227 => 0.0069803269327384
228 => 0.0071537072806737
301 => 0.0072621255703605
302 => 0.0070122565134705
303 => 0.0069494151213804
304 => 0.0069852124342969
305 => 0.0063935625912865
306 => 0.0071053568660302
307 => 0.0071115124924761
308 => 0.0070588042816572
309 => 0.0074378127587755
310 => 0.0082376388612036
311 => 0.0079367121085397
312 => 0.007820184174349
313 => 0.0075986644862711
314 => 0.0078938263180973
315 => 0.0078711624946549
316 => 0.0077686680900486
317 => 0.0077066791543407
318 => 0.007820895669067
319 => 0.0076925264641879
320 => 0.0076694678276417
321 => 0.0075297575782161
322 => 0.0074798873755825
323 => 0.0074429654629425
324 => 0.0074023180649981
325 => 0.007491976096163
326 => 0.0072887992020471
327 => 0.0070437877854198
328 => 0.0070234177371876
329 => 0.0070796612313099
330 => 0.0070547776719964
331 => 0.007023298604279
401 => 0.0069631964911923
402 => 0.006945365478118
403 => 0.0070033076202319
404 => 0.0069378943200221
405 => 0.0070344152077285
406 => 0.0070081668670167
407 => 0.0068615457695179
408 => 0.0066788015959515
409 => 0.0066771747894879
410 => 0.0066378028570535
411 => 0.0065876567814887
412 => 0.0065737072904533
413 => 0.0067771871504232
414 => 0.007198384370921
415 => 0.007115693278142
416 => 0.0071754460671989
417 => 0.0074693706498497
418 => 0.0075628004360538
419 => 0.0074964861868119
420 => 0.0074057111523648
421 => 0.0074097047931894
422 => 0.0077199105653668
423 => 0.0077392577188713
424 => 0.0077881417341491
425 => 0.007850971508402
426 => 0.0075071863690508
427 => 0.007393512544042
428 => 0.0073396475793691
429 => 0.0071737643365415
430 => 0.0073526551921767
501 => 0.0072484231514682
502 => 0.0072624876148334
503 => 0.0072533281146161
504 => 0.0072583298210974
505 => 0.0069927780034121
506 => 0.007089531128784
507 => 0.0069286602922759
508 => 0.0067132723007904
509 => 0.0067125502447182
510 => 0.0067652661504943
511 => 0.0067339086669651
512 => 0.0066495264850626
513 => 0.0066615125757291
514 => 0.0065565018091325
515 => 0.0066742627840753
516 => 0.0066776397474676
517 => 0.006632295357631
518 => 0.0068137223874133
519 => 0.0068880531895455
520 => 0.006858206540784
521 => 0.0068859590691033
522 => 0.0071191294663748
523 => 0.0071571464150678
524 => 0.0071740310324185
525 => 0.0071514078819517
526 => 0.0068902209959285
527 => 0.006901805744976
528 => 0.006816804543067
529 => 0.0067449874846599
530 => 0.0067478597903653
531 => 0.0067847830939507
601 => 0.006946029326231
602 => 0.0072853625160804
603 => 0.0072982399625858
604 => 0.0073138478034121
605 => 0.0072503628708995
606 => 0.0072312152077848
607 => 0.0072564759178643
608 => 0.0073839116226802
609 => 0.0077117108539231
610 => 0.0075958447126274
611 => 0.00750164373619
612 => 0.0075842833889264
613 => 0.0075715616621387
614 => 0.0074641774853565
615 => 0.0074611635691684
616 => 0.0072550590011254
617 => 0.0071788668350938
618 => 0.0071151949582731
619 => 0.0070456669309813
620 => 0.0070044483858021
621 => 0.0070677788046911
622 => 0.0070822632207945
623 => 0.0069437901530675
624 => 0.0069249167856118
625 => 0.0070379968818665
626 => 0.0069882345475557
627 => 0.0070394163424408
628 => 0.0070512909578835
629 => 0.0070493788713016
630 => 0.0069974212791135
701 => 0.0070305374989765
702 => 0.0069522077665802
703 => 0.0068670359473446
704 => 0.0068127016330641
705 => 0.0067652877374535
706 => 0.0067915957224501
707 => 0.0066978125595855
708 => 0.006667809438303
709 => 0.0070193184688255
710 => 0.0072789819690313
711 => 0.0072752063589002
712 => 0.0072522233032357
713 => 0.0072180751444608
714 => 0.0073814134721701
715 => 0.0073245096648491
716 => 0.0073659119391473
717 => 0.0073764505556042
718 => 0.007408347773591
719 => 0.0074197482873627
720 => 0.0073852880165786
721 => 0.0072696351388595
722 => 0.0069814391635293
723 => 0.0068472831590429
724 => 0.0068030094430174
725 => 0.0068046187085072
726 => 0.0067602279822219
727 => 0.0067733030405657
728 => 0.0067556810105194
729 => 0.0067223091488386
730 => 0.0067895351040307
731 => 0.0067972822691135
801 => 0.0067815909278813
802 => 0.0067852868067764
803 => 0.0066553692032335
804 => 0.0066652465564646
805 => 0.0066102481985202
806 => 0.0065999366694207
807 => 0.0064609056097919
808 => 0.0062145919347852
809 => 0.0063510736209858
810 => 0.0061862229362846
811 => 0.0061237914840928
812 => 0.0064193322686861
813 => 0.0063896681709383
814 => 0.0063388961302674
815 => 0.0062637937002947
816 => 0.0062359374784683
817 => 0.0060666918928596
818 => 0.0060566919607717
819 => 0.0061405746430146
820 => 0.0061018656713864
821 => 0.0060475036149864
822 => 0.0058506097572989
823 => 0.0056292358719421
824 => 0.0056359177580344
825 => 0.0057063326721589
826 => 0.0059110735317205
827 => 0.0058310777358369
828 => 0.0057730398680774
829 => 0.005762171120058
830 => 0.0058982162567867
831 => 0.0060907486275953
901 => 0.0061810805083096
902 => 0.0060915643579417
903 => 0.0059887330242908
904 => 0.0059949918910957
905 => 0.0060366293279263
906 => 0.0060410048338156
907 => 0.0059740722068407
908 => 0.0059929133492741
909 => 0.0059642919310477
910 => 0.0057886423402235
911 => 0.0057854653961164
912 => 0.0057423581537959
913 => 0.0057410528836303
914 => 0.0056677167108375
915 => 0.0056574564733148
916 => 0.0055118430510473
917 => 0.0056076862465418
918 => 0.0055433996629977
919 => 0.0054465046179247
920 => 0.0054297998756321
921 => 0.0054292977109073
922 => 0.0055287872568616
923 => 0.0056065236532717
924 => 0.0055445179556419
925 => 0.0055304004602216
926 => 0.0056811383769311
927 => 0.0056619556030232
928 => 0.0056453434445346
929 => 0.0060735094655029
930 => 0.0057345826496952
1001 => 0.0055867912127367
1002 => 0.0054038712446679
1003 => 0.0054634309086337
1004 => 0.0054759810049448
1005 => 0.0050360914555418
1006 => 0.0048576283201338
1007 => 0.0047963864973031
1008 => 0.0047611409624318
1009 => 0.0047772027952582
1010 => 0.004616565041753
1011 => 0.0047245162688118
1012 => 0.0045854175526475
1013 => 0.0045620972002162
1014 => 0.0048108229357422
1015 => 0.004845431668806
1016 => 0.0046977800614654
1017 => 0.0047925962960019
1018 => 0.0047582146113147
1019 => 0.0045878020008987
1020 => 0.0045812934926511
1021 => 0.0044957864350372
1022 => 0.0043619844473004
1023 => 0.0043008333485181
1024 => 0.004268985325334
1025 => 0.0042821264404054
1026 => 0.0042754818905006
1027 => 0.0042321217078249
1028 => 0.0042779672454159
1029 => 0.0041608508415548
1030 => 0.0041142141458664
1031 => 0.004093149432387
1101 => 0.0039892018829916
1102 => 0.0041546286597647
1103 => 0.0041872198187806
1104 => 0.0042198751924477
1105 => 0.0045041179254494
1106 => 0.0044899179617703
1107 => 0.0046182787177669
1108 => 0.0046132908548291
1109 => 0.0045766802879125
1110 => 0.0044222263282373
1111 => 0.0044837889236867
1112 => 0.0042943088238448
1113 => 0.0044362801980407
1114 => 0.004371490391724
1115 => 0.0044143746993524
1116 => 0.0043372648475145
1117 => 0.0043799406233093
1118 => 0.0041949483916356
1119 => 0.0040222052486096
1120 => 0.00409172213205
1121 => 0.0041672949345696
1122 => 0.004331156026024
1123 => 0.0042335617117784
1124 => 0.0042686603176307
1125 => 0.0041510858634611
1126 => 0.0039084961810267
1127 => 0.0039098692122841
1128 => 0.0038725520747451
1129 => 0.0038403046195201
1130 => 0.0042447715927711
1201 => 0.0041944697309707
1202 => 0.0041143202975367
1203 => 0.0042216034992
1204 => 0.0042499708805331
1205 => 0.0042507784599998
1206 => 0.0043290495145532
1207 => 0.0043708227903991
1208 => 0.0043781855113227
1209 => 0.0045013467068204
1210 => 0.0045426287150158
1211 => 0.0047126634643241
1212 => 0.0043672786197972
1213 => 0.004360165646211
1214 => 0.0042231131938578
1215 => 0.0041361923618618
1216 => 0.0042290647375885
1217 => 0.0043113369841389
1218 => 0.0042256696218911
1219 => 0.0042368559708639
1220 => 0.0041218545363269
1221 => 0.0041629621378534
1222 => 0.00419836954208
1223 => 0.0041788196546171
1224 => 0.0041495525268599
1225 => 0.0043045915981421
1226 => 0.0042958436861373
1227 => 0.0044402196336482
1228 => 0.0045527710091559
1229 => 0.0047544831950308
1230 => 0.0045439860135763
1231 => 0.0045363146596336
]
'min_raw' => 0.0038403046195201
'max_raw' => 0.011103450032243
'avg_raw' => 0.0074718773258814
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.00384'
'max' => '$0.0111034'
'avg' => '$0.007471'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00067527195955579
'max_diff' => -0.0037507510919881
'year' => 2030
]
5 => [
'items' => [
101 => 0.0046113033749475
102 => 0.0045426172346342
103 => 0.0045860245043473
104 => 0.0047474896128062
105 => 0.0047509011161146
106 => 0.0046937540402259
107 => 0.0046902766354646
108 => 0.0047012523565095
109 => 0.00476553749749
110 => 0.0047430742939486
111 => 0.0047690692817855
112 => 0.0048015764121249
113 => 0.0049360396859464
114 => 0.0049684583260415
115 => 0.0048896978377482
116 => 0.0048968090279973
117 => 0.0048673504433518
118 => 0.0048388938196993
119 => 0.004902860153914
120 => 0.0050197598869529
121 => 0.0050190326597807
122 => 0.0050461511256397
123 => 0.0050630457052083
124 => 0.0049905218021117
125 => 0.0049433114079737
126 => 0.0049614148771616
127 => 0.0049903627186354
128 => 0.0049520274823209
129 => 0.004715404645179
130 => 0.0047871808984425
131 => 0.00477523382022
201 => 0.0047582197280168
202 => 0.0048303913057026
203 => 0.004823430180971
204 => 0.0046149174694088
205 => 0.0046282657766852
206 => 0.0046157292241853
207 => 0.0046562373900499
208 => 0.0045404296607411
209 => 0.0045760513382995
210 => 0.0045983929205316
211 => 0.0046115522841025
212 => 0.0046590929287806
213 => 0.0046535145828396
214 => 0.0046587461709645
215 => 0.0047292363967572
216 => 0.005085751769492
217 => 0.0051051561146231
218 => 0.0050096020223917
219 => 0.005047773997517
220 => 0.0049744921525697
221 => 0.0050236867460285
222 => 0.0050573444374659
223 => 0.0049052518018623
224 => 0.0048962458630549
225 => 0.0048226615578656
226 => 0.0048622015954463
227 => 0.0047992905526262
228 => 0.0048147267219994
301 => 0.0047715658467309
302 => 0.0048492468289696
303 => 0.0049361062375168
304 => 0.0049580503542978
305 => 0.0049003248305833
306 => 0.0048585277471165
307 => 0.0047851458373642
308 => 0.0049071815887049
309 => 0.004942868561369
310 => 0.0049069941402299
311 => 0.0048986812529804
312 => 0.0048829283466636
313 => 0.0049020233065243
314 => 0.0049426742024517
315 => 0.0049235039906365
316 => 0.0049361662532761
317 => 0.0048879107653624
318 => 0.0049905458105414
319 => 0.0051535549627542
320 => 0.0051540790638332
321 => 0.0051349087486834
322 => 0.0051270646687543
323 => 0.00514673457545
324 => 0.0051574046929306
325 => 0.0052210135643405
326 => 0.0052892684176525
327 => 0.0056077840361342
328 => 0.0055183461250254
329 => 0.0058009521303213
330 => 0.0060244567887133
331 => 0.0060914760630909
401 => 0.006029821484164
402 => 0.0058189045001702
403 => 0.0058085559067029
404 => 0.0061237549276433
405 => 0.0060346967671979
406 => 0.0060241035823937
407 => 0.0059114099935445
408 => 0.0059780258619269
409 => 0.0059634559943158
410 => 0.0059404567455094
411 => 0.0060675551818814
412 => 0.006305472108614
413 => 0.0062683905244119
414 => 0.0062407108419703
415 => 0.0061194265309453
416 => 0.0061924667760139
417 => 0.0061664585437387
418 => 0.006278206414825
419 => 0.0062120094515119
420 => 0.0060340220640414
421 => 0.0060623671421502
422 => 0.0060580828406164
423 => 0.0061462534625923
424 => 0.0061197868304046
425 => 0.0060529148059075
426 => 0.0063046589344233
427 => 0.0062883120709919
428 => 0.0063114881859244
429 => 0.0063216910284629
430 => 0.0064749232432613
501 => 0.0065376975787803
502 => 0.0065519484519625
503 => 0.0066115792155642
504 => 0.0065504647842417
505 => 0.0067949660833826
506 => 0.0069575451802649
507 => 0.0071463891675376
508 => 0.0074223409894215
509 => 0.007526101427147
510 => 0.0075073580327955
511 => 0.0077165815547533
512 => 0.0080925515729339
513 => 0.007583352322864
514 => 0.0081195403696199
515 => 0.0079497894246057
516 => 0.007547312987666
517 => 0.0075213982500126
518 => 0.0077939599659557
519 => 0.0083984756188244
520 => 0.0082470513041406
521 => 0.0083987232947569
522 => 0.0082217898611708
523 => 0.0082130036248812
524 => 0.0083901300328105
525 => 0.0088039955395952
526 => 0.0086073835508383
527 => 0.0083254920537178
528 => 0.0085336363484741
529 => 0.0083533224975111
530 => 0.0079470249246224
531 => 0.0082469355128209
601 => 0.0080463938434544
602 => 0.008104922563957
603 => 0.0085264313246435
604 => 0.0084757142753838
605 => 0.0085413468333981
606 => 0.008425507086406
607 => 0.0083172944964639
608 => 0.0081153076613646
609 => 0.0080555093173223
610 => 0.0080720354282966
611 => 0.0080555011278025
612 => 0.0079424913499193
613 => 0.0079180868991451
614 => 0.0078774117453381
615 => 0.0078900186763212
616 => 0.0078135374872279
617 => 0.0079578732928669
618 => 0.0079846632902762
619 => 0.0080896988530129
620 => 0.0081006039935784
621 => 0.0083931265407125
622 => 0.0082320100373927
623 => 0.0083401008979493
624 => 0.0083304322339905
625 => 0.0075560358724698
626 => 0.0076627408585304
627 => 0.0078287403309714
628 => 0.0077539577936437
629 => 0.0076482327822811
630 => 0.0075628541669893
701 => 0.0074334968344106
702 => 0.0076155647959276
703 => 0.0078549648045533
704 => 0.0081066755728673
705 => 0.0084090895682537
706 => 0.0083415942849704
707 => 0.0081010221535783
708 => 0.0081118140436545
709 => 0.0081785252616534
710 => 0.0080921281729916
711 => 0.0080666479848737
712 => 0.0081750246750809
713 => 0.0081757710057835
714 => 0.0080763607138412
715 => 0.0079658843662387
716 => 0.0079654214663084
717 => 0.0079457632673275
718 => 0.0082252870110986
719 => 0.0083789968071346
720 => 0.0083966193875344
721 => 0.0083778106670643
722 => 0.0083850493970818
723 => 0.0082956090535327
724 => 0.008500043156176
725 => 0.0086876521051988
726 => 0.0086373688991801
727 => 0.0085619872251791
728 => 0.008501942090964
729 => 0.0086232241738208
730 => 0.0086178236735869
731 => 0.0086860135046956
801 => 0.0086829200200729
802 => 0.0086599903446204
803 => 0.008637369718071
804 => 0.0087270579454195
805 => 0.008701229176292
806 => 0.0086753602879519
807 => 0.0086234762720573
808 => 0.0086305281715197
809 => 0.0085551595132275
810 => 0.0085202905232664
811 => 0.0079959445766568
812 => 0.0078558222062246
813 => 0.0078999075564164
814 => 0.0079144215983752
815 => 0.0078534401631914
816 => 0.0079408718763996
817 => 0.0079272457365092
818 => 0.0079802570757975
819 => 0.0079471378924949
820 => 0.0079484971153301
821 => 0.0080458935716685
822 => 0.0080741681772977
823 => 0.0080597874846706
824 => 0.0080698592288453
825 => 0.0083019583223334
826 => 0.0082689612533506
827 => 0.0082514322181095
828 => 0.0082562878806668
829 => 0.0083155941753138
830 => 0.0083321966998113
831 => 0.0082618506368767
901 => 0.0082950262468224
902 => 0.0084362837833594
903 => 0.0084857159266631
904 => 0.008643479599314
905 => 0.0085764587871462
906 => 0.008699478388473
907 => 0.0090775987024787
908 => 0.009379667373242
909 => 0.0091018725400923
910 => 0.0096565831857359
911 => 0.010088504991886
912 => 0.010071927113562
913 => 0.0099966115561285
914 => 0.0095048800630625
915 => 0.0090523814118396
916 => 0.0094309157476952
917 => 0.0094318807095635
918 => 0.0093993642744081
919 => 0.0091974074883065
920 => 0.0093923366160184
921 => 0.0094078093822976
922 => 0.0093991487477219
923 => 0.0092443089533305
924 => 0.0090078972064723
925 => 0.0090540914959187
926 => 0.0091297586843698
927 => 0.0089865049108027
928 => 0.0089407266500959
929 => 0.0090258371464204
930 => 0.0093000808990542
1001 => 0.0092482367062047
1002 => 0.0092468828448106
1003 => 0.0094686942871801
1004 => 0.0093099251643488
1005 => 0.0090546741538432
1006 => 0.0089902199073433
1007 => 0.0087614507538518
1008 => 0.0089194624230162
1009 => 0.0089251489816867
1010 => 0.0088386076053254
1011 => 0.0090616965095782
1012 => 0.0090596407060514
1013 => 0.009271430418238
1014 => 0.0096762928033554
1015 => 0.0095565550740082
1016 => 0.0094173131222053
1017 => 0.0094324525831268
1018 => 0.0095984951020622
1019 => 0.0094981020047318
1020 => 0.0095342040624974
1021 => 0.0095984404572739
1022 => 0.0096371958691426
1023 => 0.0094268762757708
1024 => 0.0093778407178068
1025 => 0.0092775311753545
1026 => 0.009251362288095
1027 => 0.0093330623173951
1028 => 0.0093115372461792
1029 => 0.0089246710484498
1030 => 0.0088842413782839
1031 => 0.0088854812985476
1101 => 0.0087838189705894
1102 => 0.0086287595186987
1103 => 0.0090362465001487
1104 => 0.0090035195927616
1105 => 0.0089673916198677
1106 => 0.0089718170904038
1107 => 0.0091486933780361
1108 => 0.0090460961987427
1109 => 0.0093188676152411
1110 => 0.0092627940122683
1111 => 0.0092052823329644
1112 => 0.009197332467036
1113 => 0.0091751953771699
1114 => 0.0090992790591707
1115 => 0.0090076055433232
1116 => 0.0089470747475368
1117 => 0.0082532035140209
1118 => 0.0083819819788982
1119 => 0.0085301298642131
1120 => 0.0085812699205584
1121 => 0.0084937913153956
1122 => 0.0091027332476909
1123 => 0.0092139928066318
1124 => 0.0088769803453185
1125 => 0.0088139390739349
1126 => 0.0091068662229476
1127 => 0.0089301953432054
1128 => 0.0090097502295356
1129 => 0.0088377960794859
1130 => 0.0091871936369431
1201 => 0.0091845318129563
1202 => 0.0090486082716037
1203 => 0.0091634899179907
1204 => 0.0091435264048325
1205 => 0.0089900690614103
1206 => 0.0091920585084465
1207 => 0.0091921586926922
1208 => 0.0090613352393729
1209 => 0.0089085620868325
1210 => 0.0088812498554991
1211 => 0.0088606737580714
1212 => 0.0090046897709061
1213 => 0.0091338140776873
1214 => 0.0093740823999768
1215 => 0.009434491564835
1216 => 0.009670272556942
1217 => 0.0095298764561104
1218 => 0.0095921122291752
1219 => 0.0096596779646246
1220 => 0.0096920714628467
1221 => 0.0096392879958247
1222 => 0.010005552927895
1223 => 0.010036476910229
1224 => 0.010046845454015
1225 => 0.009923342979687
1226 => 0.010033042083004
1227 => 0.0099817175054144
1228 => 0.010115249797924
1229 => 0.010136189366416
1230 => 0.01011845429685
1231 => 0.010125100846398
]
'min_raw' => 0.0045404296607411
'max_raw' => 0.010136189366416
'avg_raw' => 0.0073383095135784
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.00454'
'max' => '$0.010136'
'avg' => '$0.007338'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00070012504122097
'max_diff' => -0.00096726066582693
'year' => 2031
]
6 => [
'items' => [
101 => 0.0098125583404375
102 => 0.0097963513627104
103 => 0.0095753680714065
104 => 0.0096654203960389
105 => 0.0094970718914589
106 => 0.009550456936443
107 => 0.0095739885556005
108 => 0.0095616969731603
109 => 0.0096705118193602
110 => 0.0095779969706858
111 => 0.009333835074185
112 => 0.0090896066559387
113 => 0.0090865405670918
114 => 0.0090222395355572
115 => 0.008975761667079
116 => 0.0089847149534389
117 => 0.0090162675023665
118 => 0.008973927775576
119 => 0.0089829631029654
120 => 0.0091330097397009
121 => 0.0091631005226146
122 => 0.0090608402850461
123 => 0.0086502506751268
124 => 0.0085494909549666
125 => 0.0086219150436657
126 => 0.0085873009939762
127 => 0.006930622113502
128 => 0.0073198342426042
129 => 0.0070885776118867
130 => 0.0071951513069273
131 => 0.006959098170579
201 => 0.0070717550998493
202 => 0.0070509514785854
203 => 0.0076767930645576
204 => 0.0076670214090096
205 => 0.0076716985834159
206 => 0.007448444862689
207 => 0.0078040941018061
208 => 0.0079792997057281
209 => 0.0079468738113883
210 => 0.0079550347104052
211 => 0.0078148034269435
212 => 0.0076730563287702
213 => 0.0075158369821741
214 => 0.0078079310952512
215 => 0.0077754552160898
216 => 0.0078499431984335
217 => 0.0080393871100824
218 => 0.0080672834457001
219 => 0.0081047764036671
220 => 0.0080913378471664
221 => 0.0084114987836193
222 => 0.008372725181725
223 => 0.0084661584063637
224 => 0.008273959174486
225 => 0.0080564674998979
226 => 0.0080978055568985
227 => 0.0080938243695897
228 => 0.0080431392857543
229 => 0.0079973830583509
301 => 0.0079212118314613
302 => 0.0081622288645603
303 => 0.0081524440131653
304 => 0.0083108493836053
305 => 0.0082828496957124
306 => 0.0080958609272773
307 => 0.0081025392677231
308 => 0.0081474543167221
309 => 0.0083029058141385
310 => 0.0083490544025167
311 => 0.0083276765376766
312 => 0.0083782763580702
313 => 0.0084182683929885
314 => 0.0083832987419278
315 => 0.0088783952564798
316 => 0.0086727966656292
317 => 0.008773003988264
318 => 0.0087969028442566
319 => 0.0087356864271704
320 => 0.0087489620760408
321 => 0.0087690710666818
322 => 0.0088911689201094
323 => 0.0092115890168022
324 => 0.0093535008964541
325 => 0.0097804497881955
326 => 0.0093417170903577
327 => 0.0093156845077244
328 => 0.0093925908957484
329 => 0.0096432550923306
330 => 0.0098463948799698
331 => 0.0099137880669452
401 => 0.0099226951891442
402 => 0.010049129288124
403 => 0.010121598955804
404 => 0.010033776862961
405 => 0.0099593568346339
406 => 0.0096927935305192
407 => 0.0097236489587982
408 => 0.009936212261785
409 => 0.01023647044717
410 => 0.01049412320677
411 => 0.010403902190463
412 => 0.011092224858771
413 => 0.011160469239788
414 => 0.011151040072937
415 => 0.011306510929019
416 => 0.010997932940785
417 => 0.010866009872399
418 => 0.0099754472894615
419 => 0.010225659049691
420 => 0.010589356537606
421 => 0.010541219811285
422 => 0.010277092973899
423 => 0.010493922842879
424 => 0.010422232107297
425 => 0.010365686649693
426 => 0.010624732352855
427 => 0.010339900961217
428 => 0.01058651512659
429 => 0.010270229908602
430 => 0.010404314312466
501 => 0.0103282015199
502 => 0.010377455824723
503 => 0.010089516165158
504 => 0.010244881416119
505 => 0.010083052459925
506 => 0.010082975731929
507 => 0.010079403348751
508 => 0.010269794398055
509 => 0.010276003043338
510 => 0.010135303770237
511 => 0.010115026806848
512 => 0.010190001368085
513 => 0.010102225792745
514 => 0.010143295431994
515 => 0.010103469750279
516 => 0.010094504150468
517 => 0.010023064725802
518 => 0.0099922866573884
519 => 0.010004355531067
520 => 0.0099631582432719
521 => 0.0099383353872046
522 => 0.010074465457897
523 => 0.010001736652598
524 => 0.010063318725407
525 => 0.0099931381811635
526 => 0.0097498618386067
527 => 0.0096099510414017
528 => 0.0091504245820408
529 => 0.0092807457158748
530 => 0.0093671487624336
531 => 0.0093385925560613
601 => 0.0093999423371339
602 => 0.0094037087154295
603 => 0.0093837632762158
604 => 0.0093606690127754
605 => 0.0093494280025254
606 => 0.0094332092833414
607 => 0.0094818471368034
608 => 0.0093758204640794
609 => 0.009350979898131
610 => 0.0094581787181479
611 => 0.0095235699364315
612 => 0.010006381952086
613 => 0.009970613678504
614 => 0.010060385026025
615 => 0.010050278149948
616 => 0.010144372823848
617 => 0.010298177848298
618 => 0.00998544922903
619 => 0.010039728103993
620 => 0.010026420177334
621 => 0.010171712631067
622 => 0.010172166218249
623 => 0.010085056134339
624 => 0.010132279924026
625 => 0.01010592090014
626 => 0.010153555218938
627 => 0.0099701359714034
628 => 0.010193520816017
629 => 0.010320165628311
630 => 0.010321924091652
701 => 0.010381952727564
702 => 0.010442945298275
703 => 0.010560015226421
704 => 0.010439680281519
705 => 0.010223209430011
706 => 0.010238837926293
707 => 0.010111921145257
708 => 0.010114054639276
709 => 0.010102665881
710 => 0.010136844401892
711 => 0.0099776362347144
712 => 0.01001500207333
713 => 0.009962689680454
714 => 0.010039614387067
715 => 0.0099568561188609
716 => 0.010026413759849
717 => 0.010056432531827
718 => 0.010167202446685
719 => 0.0099404953123722
720 => 0.0094782241187854
721 => 0.0095753991281738
722 => 0.0094316696563561
723 => 0.0094449723661895
724 => 0.0094718459571636
725 => 0.0093847398563248
726 => 0.0094013569553361
727 => 0.0094007632756267
728 => 0.0093956472646227
729 => 0.0093729876035973
730 => 0.0093401266120332
731 => 0.0094710346883449
801 => 0.0094932785214215
802 => 0.009542723806923
803 => 0.0096898394375178
804 => 0.0096751391167959
805 => 0.0096991159498037
806 => 0.0096467746579718
807 => 0.0094474003285991
808 => 0.0094582273139029
809 => 0.0093232146336742
810 => 0.0095392712291396
811 => 0.0094881061755257
812 => 0.0094551197326124
813 => 0.0094461190760463
814 => 0.009593599377834
815 => 0.0096377277955993
816 => 0.0096102299269959
817 => 0.0095538309962493
818 => 0.0096621336161299
819 => 0.0096911108282892
820 => 0.0096975977574532
821 => 0.009889489234914
822 => 0.0097083223593949
823 => 0.0097519310269762
824 => 0.010092153402803
825 => 0.0097836186554067
826 => 0.0099470563922482
827 => 0.0099390569655187
828 => 0.010022666181255
829 => 0.0099321985694582
830 => 0.0099333200239308
831 => 0.010007559343326
901 => 0.0099033036083673
902 => 0.0098774884222397
903 => 0.0098418249274964
904 => 0.0099196948635456
905 => 0.0099663743684528
906 => 0.010342576895686
907 => 0.010585620885198
908 => 0.010575069704631
909 => 0.010671487744037
910 => 0.010628050534196
911 => 0.010487780325465
912 => 0.01072720446764
913 => 0.010651440651124
914 => 0.010657686528105
915 => 0.010657454056251
916 => 0.010707830370847
917 => 0.010672134135035
918 => 0.010601773190105
919 => 0.010648482068957
920 => 0.010787190740417
921 => 0.011217746712731
922 => 0.011458691538946
923 => 0.011203241531654
924 => 0.011379447526072
925 => 0.011273786718037
926 => 0.01125458500608
927 => 0.011365255392095
928 => 0.011476119491971
929 => 0.011469057928088
930 => 0.011388576284512
1001 => 0.011343114246203
1002 => 0.011687368031183
1003 => 0.011941008355746
1004 => 0.011923711786037
1005 => 0.012000053219587
1006 => 0.012224194029639
1007 => 0.012244686656286
1008 => 0.012242105056346
1009 => 0.012191311943017
1010 => 0.012412007678876
1011 => 0.012596115944501
1012 => 0.012179554804835
1013 => 0.012338175833634
1014 => 0.012409385923912
1015 => 0.012513943463523
1016 => 0.012690349558723
1017 => 0.012881973367517
1018 => 0.012909071075129
1019 => 0.012889843954834
1020 => 0.01276346290181
1021 => 0.012973139959939
1022 => 0.01309596386306
1023 => 0.013169102686593
1024 => 0.013354570573933
1025 => 0.012409825693187
1026 => 0.011741088309728
1027 => 0.011636655310616
1028 => 0.011849023920935
1029 => 0.011905023829869
1030 => 0.011882450336796
1031 => 0.01112972561277
1101 => 0.011632692370724
1102 => 0.012173842311637
1103 => 0.01219463008477
1104 => 0.012465541060103
1105 => 0.012553760778687
1106 => 0.012771879622943
1107 => 0.012758236229848
1108 => 0.012811344697395
1109 => 0.012799135980417
1110 => 0.01320315520906
1111 => 0.013648848415689
1112 => 0.013633415477161
1113 => 0.013569341805505
1114 => 0.013664502134098
1115 => 0.014124505286726
1116 => 0.014082155567833
1117 => 0.014123294712397
1118 => 0.014665664353987
1119 => 0.015370822039236
1120 => 0.015043205497764
1121 => 0.015754039123638
1122 => 0.016201471211455
1123 => 0.016975258741992
1124 => 0.016878376732185
1125 => 0.017179606539508
1126 => 0.016704937714745
1127 => 0.015615002146691
1128 => 0.01544251567094
1129 => 0.015787837963446
1130 => 0.016636779123513
1201 => 0.01576110178519
1202 => 0.015938250170248
1203 => 0.015887231423434
1204 => 0.015884512851232
1205 => 0.015988269694951
1206 => 0.015837764981544
1207 => 0.015224581703843
1208 => 0.015505599986502
1209 => 0.015397085331961
1210 => 0.015517490431477
1211 => 0.016167267094727
1212 => 0.015879985343163
1213 => 0.015577357354765
1214 => 0.015956920010743
1215 => 0.016440233703682
1216 => 0.016409988801376
1217 => 0.016351301049514
1218 => 0.016682120833969
1219 => 0.017228538196785
1220 => 0.017376232614272
1221 => 0.017485257613781
1222 => 0.017500290319221
1223 => 0.017655136528026
1224 => 0.016822489437013
1225 => 0.018143921754344
1226 => 0.018372096611716
1227 => 0.018329209195409
1228 => 0.018582815946312
1229 => 0.018508198406814
1230 => 0.018400089299215
1231 => 0.018802109943099
]
'min_raw' => 0.006930622113502
'max_raw' => 0.018802109943099
'avg_raw' => 0.012866366028301
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.00693'
'max' => '$0.0188021'
'avg' => '$0.012866'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0023901924527609
'max_diff' => 0.0086659205766836
'year' => 2032
]
7 => [
'items' => [
101 => 0.018341225716279
102 => 0.017687058580018
103 => 0.017328169551106
104 => 0.017800783575129
105 => 0.018089392467644
106 => 0.018280144586623
107 => 0.01833786606257
108 => 0.016887125460446
109 => 0.016105256737664
110 => 0.016606425624824
111 => 0.017217886255989
112 => 0.016819092742333
113 => 0.016834724693053
114 => 0.016266149943672
115 => 0.017268192505086
116 => 0.017122203332393
117 => 0.017879595418577
118 => 0.017698837718758
119 => 0.01831646156325
120 => 0.018153820506166
121 => 0.018828934440982
122 => 0.01909825566756
123 => 0.019550487923487
124 => 0.019883151811863
125 => 0.020078498409964
126 => 0.02006677053294
127 => 0.020840831075903
128 => 0.020384394617334
129 => 0.019811002851556
130 => 0.019800632003541
131 => 0.020097599724061
201 => 0.020719962597156
202 => 0.020881332235138
203 => 0.020971515848319
204 => 0.020833396505419
205 => 0.020337967442737
206 => 0.020124043685353
207 => 0.020306312924612
208 => 0.020083413307573
209 => 0.020468200581169
210 => 0.020996595693943
211 => 0.020887484192656
212 => 0.021252227582548
213 => 0.021629698618964
214 => 0.022169499154322
215 => 0.022310623003021
216 => 0.022543895358461
217 => 0.022784009238185
218 => 0.022861127345102
219 => 0.023008369739549
220 => 0.02300759369945
221 => 0.023451318565674
222 => 0.023940760834135
223 => 0.024125513959864
224 => 0.024550343585132
225 => 0.023822837739666
226 => 0.024374659280437
227 => 0.024872416123201
228 => 0.024278969895152
301 => 0.02509689726528
302 => 0.025128655531599
303 => 0.025608167647862
304 => 0.025122090254623
305 => 0.024833459050132
306 => 0.025666726522628
307 => 0.02606991840489
308 => 0.025948473728668
309 => 0.025024273746159
310 => 0.024486349715536
311 => 0.023078498769601
312 => 0.024746159029696
313 => 0.025558427696072
314 => 0.025022170166543
315 => 0.0252926272722
316 => 0.026768153544653
317 => 0.027329938415952
318 => 0.027213091089894
319 => 0.027232836364527
320 => 0.027535965283963
321 => 0.028880205848889
322 => 0.028074705743133
323 => 0.02869048039247
324 => 0.029017085046138
325 => 0.02932045365034
326 => 0.028575476239052
327 => 0.027606271572859
328 => 0.027299283770632
329 => 0.024968849923712
330 => 0.024847540721418
331 => 0.024779446190126
401 => 0.024350119802491
402 => 0.024012786864204
403 => 0.023744527187309
404 => 0.023040533686017
405 => 0.023278110826757
406 => 0.022156092120561
407 => 0.022873919926884
408 => 0.021083150979705
409 => 0.022574556571902
410 => 0.021762852313961
411 => 0.022307889892452
412 => 0.022305988307687
413 => 0.021302401321362
414 => 0.020723553291975
415 => 0.021092417785403
416 => 0.021487869802857
417 => 0.021552030562228
418 => 0.022064744425211
419 => 0.022207831843622
420 => 0.021774270285724
421 => 0.021046041273639
422 => 0.021215192264011
423 => 0.020720125452554
424 => 0.019852539907947
425 => 0.020475654992674
426 => 0.020688413879037
427 => 0.020782380323861
428 => 0.019929209583612
429 => 0.019661124813788
430 => 0.019518398731783
501 => 0.020935907644732
502 => 0.021013561982829
503 => 0.020616271409909
504 => 0.022412062472146
505 => 0.022005619647495
506 => 0.02245971586354
507 => 0.021199843584591
508 => 0.02124797240229
509 => 0.020651528675087
510 => 0.020985497307937
511 => 0.02074945904255
512 => 0.020958515942745
513 => 0.021083823786748
514 => 0.021680169643404
515 => 0.022581365883662
516 => 0.021591095458801
517 => 0.021159620453756
518 => 0.021427305120179
519 => 0.022140184661935
520 => 0.023220233659328
521 => 0.022580822914859
522 => 0.022864582545356
523 => 0.022926571401032
524 => 0.022455093590333
525 => 0.023237617718717
526 => 0.023656978756332
527 => 0.024087156406386
528 => 0.024460667606624
529 => 0.023915333993146
530 => 0.02449891913007
531 => 0.024028652526353
601 => 0.023606774767551
602 => 0.023607414581968
603 => 0.023342764501221
604 => 0.022829971621717
605 => 0.022735404747082
606 => 0.023227353571412
607 => 0.023621849940797
608 => 0.02365434255129
609 => 0.023872756011337
610 => 0.024002010847155
611 => 0.025268883951603
612 => 0.025778430794336
613 => 0.026401495028402
614 => 0.026644213661547
615 => 0.027374709727867
616 => 0.026784774826324
617 => 0.02665713869951
618 => 0.024885194186061
619 => 0.025175350000872
620 => 0.025639917456257
621 => 0.024892854732289
622 => 0.025366694080511
623 => 0.02546024000514
624 => 0.024867469826796
625 => 0.025184093991137
626 => 0.02434323408317
627 => 0.02259969433185
628 => 0.023239558776877
629 => 0.023710714384461
630 => 0.023038317239372
701 => 0.024243563096581
702 => 0.023539483348124
703 => 0.023316323869651
704 => 0.022445699182031
705 => 0.02285660052117
706 => 0.023412350465897
707 => 0.023068961612922
708 => 0.023781545042941
709 => 0.024790753218907
710 => 0.025509975064486
711 => 0.025565187987177
712 => 0.02510277652459
713 => 0.025843793844456
714 => 0.025849191346644
715 => 0.025013320782691
716 => 0.024501354716417
717 => 0.024385034948974
718 => 0.024675624533881
719 => 0.025028453935755
720 => 0.025584767563413
721 => 0.025920936237429
722 => 0.026797485849175
723 => 0.027034655041467
724 => 0.027295232078589
725 => 0.027643443359167
726 => 0.02806156028104
727 => 0.027146744259391
728 => 0.027183091605362
729 => 0.026331227592492
730 => 0.025420888725084
731 => 0.026111722450105
801 => 0.02701489564781
802 => 0.026807706718339
803 => 0.026784393731288
804 => 0.026823599709025
805 => 0.026667386022361
806 => 0.025960837307131
807 => 0.025606012965572
808 => 0.026063826891527
809 => 0.026307134618219
810 => 0.026684483683654
811 => 0.026637967446467
812 => 0.027609978114697
813 => 0.027987672068295
814 => 0.027891041792529
815 => 0.027908824088807
816 => 0.028592620950781
817 => 0.029353143694846
818 => 0.030065473604477
819 => 0.030790086183836
820 => 0.029916537437309
821 => 0.029473003256819
822 => 0.029930617315536
823 => 0.029687800854596
824 => 0.031083096263196
825 => 0.031179703489958
826 => 0.032574898002818
827 => 0.033899103732194
828 => 0.033067393839183
829 => 0.033851658807256
830 => 0.034699905312289
831 => 0.036336310443532
901 => 0.035785226764756
902 => 0.035363105303396
903 => 0.034964202562086
904 => 0.035794255842724
905 => 0.03686210612784
906 => 0.037092110851511
907 => 0.037464806372425
908 => 0.037072962603224
909 => 0.037544895263051
910 => 0.03921102492996
911 => 0.038760821986628
912 => 0.038121461433362
913 => 0.039436710788592
914 => 0.039912694417348
915 => 0.043253396798515
916 => 0.047471171552271
917 => 0.045724985108814
918 => 0.044641070834276
919 => 0.044895816399583
920 => 0.046436004958969
921 => 0.046930664641102
922 => 0.045586009105646
923 => 0.046060964173024
924 => 0.048678013290832
925 => 0.050081976177548
926 => 0.048175206000016
927 => 0.042914502703807
928 => 0.038063894010936
929 => 0.039350493862041
930 => 0.039204633366768
1001 => 0.042016326160326
1002 => 0.038750084795322
1003 => 0.038805079923165
1004 => 0.04167491554606
1005 => 0.04090929260331
1006 => 0.039669081489633
1007 => 0.038072948924565
1008 => 0.035122350253645
1009 => 0.032508922727281
1010 => 0.037634455942896
1011 => 0.037413433630462
1012 => 0.037093360568385
1013 => 0.037805648532514
1014 => 0.041264316699862
1015 => 0.041184583203989
1016 => 0.040677359383627
1017 => 0.041062084180906
1018 => 0.039601637372553
1019 => 0.039978027768821
1020 => 0.038063125649736
1021 => 0.038928741380939
1022 => 0.03966642055359
1023 => 0.039814520569026
1024 => 0.040148197465979
1025 => 0.03729696491514
1026 => 0.038577084622677
1027 => 0.039329035019859
1028 => 0.035931695769201
1029 => 0.039261880546152
1030 => 0.03724733129985
1031 => 0.036563563028141
1101 => 0.037484166926377
1102 => 0.037125406691918
1103 => 0.036816965709437
1104 => 0.036644850341524
1105 => 0.037320840241045
1106 => 0.03728930450425
1107 => 0.036183253824649
1108 => 0.034740455801502
1109 => 0.035224706176301
1110 => 0.035048773475265
1111 => 0.034411170670941
1112 => 0.034840837976599
1113 => 0.032948800612128
1114 => 0.0296936486661
1115 => 0.031844101749646
1116 => 0.031761311645173
1117 => 0.031719565120265
1118 => 0.033335571178393
1119 => 0.033180229483507
1120 => 0.032898282786178
1121 => 0.034405992498739
1122 => 0.033855658172097
1123 => 0.035551658891733
1124 => 0.036668754656134
1125 => 0.03638542303602
1126 => 0.037436057001832
1127 => 0.035235862326888
1128 => 0.035966678741415
1129 => 0.036117298991581
1130 => 0.034387387594922
1201 => 0.033205645305933
1202 => 0.033126836568106
1203 => 0.031077858293118
1204 => 0.032172405948842
1205 => 0.033135562590419
1206 => 0.032674285303078
1207 => 0.032528258694173
1208 => 0.033274276969762
1209 => 0.03333224897899
1210 => 0.032010481025
1211 => 0.032285318437582
1212 => 0.033431436135967
1213 => 0.032256439212218
1214 => 0.029973612124032
1215 => 0.029407439443608
1216 => 0.029331901571406
1217 => 0.027796396358375
1218 => 0.029445273809374
1219 => 0.028725494614844
1220 => 0.030999268466084
1221 => 0.02970050103675
1222 => 0.029644513768685
1223 => 0.029559880801458
1224 => 0.02823820803368
1225 => 0.028527570373137
1226 => 0.029489454860621
1227 => 0.02983266608216
1228 => 0.029796866339907
1229 => 0.029484741101878
1230 => 0.029627630437508
1231 => 0.0291673341015
]
'min_raw' => 0.016105256737664
'max_raw' => 0.050081976177548
'avg_raw' => 0.033093616457606
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.0161052'
'max' => '$0.050081'
'avg' => '$0.033093'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0091746346241616
'max_diff' => 0.031279866234449
'year' => 2033
]
8 => [
'items' => [
101 => 0.029004793885016
102 => 0.028491772251584
103 => 0.027737772176282
104 => 0.027842620511304
105 => 0.026348749067278
106 => 0.025534808618815
107 => 0.025309520630243
108 => 0.025008256116491
109 => 0.025343549258705
110 => 0.026344517117172
111 => 0.025137137512684
112 => 0.02306716986862
113 => 0.023191578451081
114 => 0.023471087598633
115 => 0.022950224151309
116 => 0.022457270611172
117 => 0.022885853719736
118 => 0.022008781141045
119 => 0.023577077629504
120 => 0.023534659604591
121 => 0.024119223552684
122 => 0.024484763385887
123 => 0.023642312415281
124 => 0.023430438274404
125 => 0.02355113141419
126 => 0.021556342660808
127 => 0.023956206753995
128 => 0.02397696087833
129 => 0.023799251465584
130 => 0.025077105007715
131 => 0.027773774554127
201 => 0.026759178997486
202 => 0.026366296931641
203 => 0.025619427837276
204 => 0.026614586560819
205 => 0.026538173897745
206 => 0.026192606856684
207 => 0.025983606832016
208 => 0.026368695785758
209 => 0.025935890049056
210 => 0.025858146246038
211 => 0.025387103385842
212 => 0.025218962515836
213 => 0.025094477709565
214 => 0.024957432169484
215 => 0.025259720481281
216 => 0.024574695397411
217 => 0.023748622300102
218 => 0.023679943260295
219 => 0.023869572127524
220 => 0.023785675469984
221 => 0.023679541595376
222 => 0.023476903124909
223 => 0.023416784619407
224 => 0.023612140596935
225 => 0.023391595088267
226 => 0.023717022000043
227 => 0.023628523886732
228 => 0.023134180619757
301 => 0.022518045879787
302 => 0.022512560988215
303 => 0.022379815769152
304 => 0.022210744774298
305 => 0.02216371309135
306 => 0.022849759645748
307 => 0.024269855481708
308 => 0.023991056689096
309 => 0.024192517389207
310 => 0.025183504640774
311 => 0.02549850968802
312 => 0.025274926566788
313 => 0.024968872200439
314 => 0.024982337039306
315 => 0.026028217458078
316 => 0.026093447736893
317 => 0.026258263607375
318 => 0.026470098577904
319 => 0.025311002978269
320 => 0.024927743740799
321 => 0.024746134251673
322 => 0.024186847316881
323 => 0.024789990326416
324 => 0.024438564723919
325 => 0.024485984044104
326 => 0.024455102149625
327 => 0.024471965752235
328 => 0.023576639258673
329 => 0.023902849175952
330 => 0.023360461919022
331 => 0.022634266267819
401 => 0.02263183180536
402 => 0.022809567162191
403 => 0.022703843217162
404 => 0.022419342799502
405 => 0.022459754741027
406 => 0.022105703609829
407 => 0.022502742958657
408 => 0.022514128626506
409 => 0.022361246850328
410 => 0.022972940748069
411 => 0.023223552237069
412 => 0.023122922176943
413 => 0.023216491763791
414 => 0.02400264203763
415 => 0.024130818834406
416 => 0.024187746500651
417 => 0.024111470969354
418 => 0.023230861147641
419 => 0.023269919937876
420 => 0.022983332451045
421 => 0.022741196224519
422 => 0.022750880403743
423 => 0.022875369899683
424 => 0.023419022829669
425 => 0.024563108370733
426 => 0.0246065255807
427 => 0.024659148505751
428 => 0.024445104623408
429 => 0.02438054694037
430 => 0.024465715188049
501 => 0.024895373564113
502 => 0.02600057155846
503 => 0.025609920773566
504 => 0.025292315604605
505 => 0.025570940963522
506 => 0.025528048773455
507 => 0.02516599552411
508 => 0.025155833895256
509 => 0.024460937954338
510 => 0.024204050746996
511 => 0.023989376568866
512 => 0.02375495797056
513 => 0.023615986767701
514 => 0.023829509696574
515 => 0.023878344916736
516 => 0.023411473301014
517 => 0.023347840424941
518 => 0.023729097864463
519 => 0.02356132068004
520 => 0.023733883674894
521 => 0.023773919769918
522 => 0.023767473036509
523 => 0.023592294386884
524 => 0.023703948034253
525 => 0.023439853872671
526 => 0.023152691137612
527 => 0.022969499203514
528 => 0.022809639944131
529 => 0.022898339152312
530 => 0.022582142670982
531 => 0.022480985052827
601 => 0.023666122290811
602 => 0.024541595910881
603 => 0.02452886617772
604 => 0.024451377200921
605 => 0.024336244299463
606 => 0.024886950875253
607 => 0.024695095715973
608 => 0.024834686374384
609 => 0.024870218055551
610 => 0.024977761752986
611 => 0.025016199381126
612 => 0.024900014172238
613 => 0.024510082420382
614 => 0.023538409568356
615 => 0.023086093232757
616 => 0.022936821308085
617 => 0.022942247059039
618 => 0.022792580626106
619 => 0.022836664098184
620 => 0.022777250193552
621 => 0.022664734631946
622 => 0.022891391633443
623 => 0.022917511741409
624 => 0.022864607288911
625 => 0.022877068202643
626 => 0.022439041931741
627 => 0.022472344117775
628 => 0.022286913314102
629 => 0.022252147273815
630 => 0.021783394349438
701 => 0.020952930597081
702 => 0.021413088130954
703 => 0.020857282537976
704 => 0.020646790538087
705 => 0.021643226927342
706 => 0.021543212350704
707 => 0.021372030870791
708 => 0.021118817784654
709 => 0.021024898587907
710 => 0.020454275279678
711 => 0.020420559810471
712 => 0.020703376130155
713 => 0.020572866129736
714 => 0.020389580661146
715 => 0.019725739273262
716 => 0.018979361762951
717 => 0.019001890208425
718 => 0.019239299007608
719 => 0.019929597110171
720 => 0.019659885699221
721 => 0.019464206975995
722 => 0.019427562233216
723 => 0.019886247910065
724 => 0.020535384240427
725 => 0.020839944483026
726 => 0.020538134532242
727 => 0.020191431511384
728 => 0.020212533717797
729 => 0.020352917243104
730 => 0.020367669566698
731 => 0.020142001541766
801 => 0.020205525768926
802 => 0.020109026659092
803 => 0.019516811800166
804 => 0.019506100511301
805 => 0.019360761434166
806 => 0.019356360624672
807 => 0.019109102597933
808 => 0.019074509490778
809 => 0.018583563671199
810 => 0.018906705696367
811 => 0.018689958991602
812 => 0.018363270582142
813 => 0.018306949377215
814 => 0.018305256293785
815 => 0.018640692244108
816 => 0.018902785931987
817 => 0.018693729393329
818 => 0.018646131271867
819 => 0.019154354682238
820 => 0.019089678620709
821 => 0.019033669568541
822 => 0.020477261201833
823 => 0.019334545779222
824 => 0.018836256631048
825 => 0.01821952918764
826 => 0.018420338753023
827 => 0.018462652278956
828 => 0.016979533951036
829 => 0.01637783303011
830 => 0.016171351948669
831 => 0.016052519167086
901 => 0.016106672757861
902 => 0.015565071356549
903 => 0.015929036455491
904 => 0.015460055422381
905 => 0.015381429225984
906 => 0.016220025408786
907 => 0.016336711168615
908 => 0.01583889346576
909 => 0.016158573020359
910 => 0.016042652769983
911 => 0.015468094756137
912 => 0.01544615086617
913 => 0.015157857851513
914 => 0.014706735108102
915 => 0.014500559909124
916 => 0.014393182075401
917 => 0.014437488262348
918 => 0.014415085698436
919 => 0.014268893815233
920 => 0.014423465246055
921 => 0.014028599113631
922 => 0.013871360238047
923 => 0.01380033908586
924 => 0.013449872665688
925 => 0.014007620593307
926 => 0.014117503961371
927 => 0.014227603833615
928 => 0.015185948053124
929 => 0.01513807188417
930 => 0.015570849134874
1001 => 0.015554032206738
1002 => 0.015430597124311
1003 => 0.014909844815635
1004 => 0.015117407404356
1005 => 0.01447856201866
1006 => 0.014957228418887
1007 => 0.01473878506341
1008 => 0.014883372500666
1009 => 0.014623391251557
1010 => 0.014767275609176
1011 => 0.014143561384343
1012 => 0.01356114581709
1013 => 0.013795526843123
1014 => 0.014050325823142
1015 => 0.014602794933397
1016 => 0.014273748889101
1017 => 0.014392086289238
1018 => 0.013995675808219
1019 => 0.013177767756821
1020 => 0.013182397027567
1021 => 0.013056579692955
1022 => 0.012947855146218
1023 => 0.014311543785516
1024 => 0.014141947546492
1025 => 0.013871718135815
1026 => 0.014233430940497
1027 => 0.014329073547209
1028 => 0.014331796357764
1029 => 0.014595692682901
1030 => 0.014736534198933
1031 => 0.014761358126576
1101 => 0.015176604696036
1102 => 0.015315789868885
1103 => 0.015889073897625
1104 => 0.014724584780303
1105 => 0.014700602893245
1106 => 0.014238520981439
1107 => 0.013945461327746
1108 => 0.014258587026651
1109 => 0.01453597364996
1110 => 0.014247140157037
1111 => 0.014284855713605
1112 => 0.01389712034792
1113 => 0.014035717496508
1114 => 0.014155096031924
1115 => 0.014089182221413
1116 => 0.013990506056814
1117 => 0.014513231110124
1118 => 0.01448373691404
1119 => 0.01497051050108
1120 => 0.01534998532169
1121 => 0.016030072039463
1122 => 0.015320366095745
1123 => 0.01529450159033
1124 => 0.015547331279556
1125 => 0.015315751161977
1126 => 0.015462101802413
1127 => 0.016006492688716
1128 => 0.016017994810304
1129 => 0.015825319454064
1130 => 0.015813595141126
1201 => 0.01585060055093
1202 => 0.016067342391991
1203 => 0.01599160613292
1204 => 0.016079250049324
1205 => 0.016188850108839
1206 => 0.016642202424454
1207 => 0.016751504132932
1208 => 0.016485957647769
1209 => 0.016509933522181
1210 => 0.016410611847317
1211 => 0.016314668353894
1212 => 0.016530335315686
1213 => 0.016924470927305
1214 => 0.016922019030121
1215 => 0.017013450831115
1216 => 0.017070412085672
1217 => 0.016825892682925
1218 => 0.016666719542964
1219 => 0.016727756653275
1220 => 0.016825356321878
1221 => 0.016696106396163
1222 => 0.01589831598026
1223 => 0.016140314629396
1224 => 0.01610003422105
1225 => 0.016042670021301
1226 => 0.016286001534328
1227 => 0.016262531616285
1228 => 0.01555951645136
1229 => 0.015604521201292
1230 => 0.015562253339264
1231 => 0.015698829448666
]
'min_raw' => 0.012947855146218
'max_raw' => 0.029004793885016
'avg_raw' => 0.020976324515617
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.012947'
'max' => '$0.0290047'
'avg' => '$0.020976'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0031574015914453
'max_diff' => -0.021077182292532
'year' => 2034
]
9 => [
'items' => [
101 => 0.015308375603864
102 => 0.015428476576779
103 => 0.015503802781114
104 => 0.01554817049415
105 => 0.015708457096864
106 => 0.015689649314057
107 => 0.015707287978678
108 => 0.015944950696408
109 => 0.017146967166692
110 => 0.01721239027107
111 => 0.016890222977738
112 => 0.017018922456955
113 => 0.01677184760034
114 => 0.016937710606843
115 => 0.017051189863429
116 => 0.016538398923723
117 => 0.016508034772259
118 => 0.016259940149822
119 => 0.016393252147122
120 => 0.016181143173945
121 => 0.016233187296706
122 => 0.016087667392342
123 => 0.016349574247473
124 => 0.01664242680772
125 => 0.016716412929537
126 => 0.016521787296066
127 => 0.016380865510978
128 => 0.016133453278887
129 => 0.016544905334796
130 => 0.016665226454718
131 => 0.016544273339175
201 => 0.016516245859426
202 => 0.016463133835947
203 => 0.016527513826284
204 => 0.016664571160059
205 => 0.016599937452502
206 => 0.016642629155043
207 => 0.016479932408451
208 => 0.016825973629022
209 => 0.017375570366643
210 => 0.017377337410023
211 => 0.017312703354066
212 => 0.017286256490929
213 => 0.017352574954663
214 => 0.017388550000713
215 => 0.017603011751701
216 => 0.017833137755044
217 => 0.018907035400805
218 => 0.018605489239146
219 => 0.019558315116922
220 => 0.020311876677288
221 => 0.020537836839988
222 => 0.020329964122551
223 => 0.019618842785263
224 => 0.019583951779872
225 => 0.020646667285465
226 => 0.020346401479681
227 => 0.020310685817521
228 => 0.019930731514701
301 => 0.020155331565924
302 => 0.020106208240037
303 => 0.02002866466693
304 => 0.020457185918888
305 => 0.021259339448196
306 => 0.021134316298106
307 => 0.02104099231622
308 => 0.020632073793799
309 => 0.020878334079555
310 => 0.020790645508602
311 => 0.021167411257957
312 => 0.020944223574422
313 => 0.020344126670883
314 => 0.020439694080717
315 => 0.020425249258975
316 => 0.020722522666843
317 => 0.020633288568581
318 => 0.020407824869134
319 => 0.021256597774638
320 => 0.021201483183278
321 => 0.021279623072877
322 => 0.021314022668836
323 => 0.02183065577936
324 => 0.022042303834326
325 => 0.022090351648224
326 => 0.022291400930994
327 => 0.022085349358917
328 => 0.022909702559506
329 => 0.023457849335555
330 => 0.024094550023311
331 => 0.025024940857134
401 => 0.025374776417248
402 => 0.02531158175457
403 => 0.02601699346637
404 => 0.027284602632055
405 => 0.025567801809288
406 => 0.027375597244379
407 => 0.026803270081631
408 => 0.025446292674482
409 => 0.025358919327174
410 => 0.026277880182127
411 => 0.028316046911709
412 => 0.027805509262645
413 => 0.028316881968408
414 => 0.027720338543975
415 => 0.027690715134889
416 => 0.028287909185793
417 => 0.029683285637085
418 => 0.02902039458998
419 => 0.028069977726403
420 => 0.028771750748344
421 => 0.028163810010711
422 => 0.026793949376926
423 => 0.027805118864126
424 => 0.027128978624485
425 => 0.027326312292004
426 => 0.02874745850746
427 => 0.02857646243493
428 => 0.028797747186594
429 => 0.028407185391937
430 => 0.028042339089786
501 => 0.027361326372978
502 => 0.027159712081053
503 => 0.027215431018019
504 => 0.027159684469515
505 => 0.026778664113291
506 => 0.026696382803641
507 => 0.026559243682732
508 => 0.02660174883073
509 => 0.026343887161956
510 => 0.026830525407871
511 => 0.026920849754555
512 => 0.027274984487671
513 => 0.02731175193046
514 => 0.028298012121394
515 => 0.027754796581657
516 => 0.028119232464686
517 => 0.028086633889104
518 => 0.02547570248961
519 => 0.025835465800018
520 => 0.026395144611066
521 => 0.026143010065315
522 => 0.025786550808021
523 => 0.025498690845621
524 => 0.025062553567391
525 => 0.025676408411225
526 => 0.026483562254681
527 => 0.027332222683936
528 => 0.028351832583252
529 => 0.028124267523293
530 => 0.027313161786094
531 => 0.027349547396952
601 => 0.027574468926064
602 => 0.027283175109588
603 => 0.027197266876379
604 => 0.027562666454031
605 => 0.027565182760103
606 => 0.027230014020214
607 => 0.02685753530106
608 => 0.026855974601626
609 => 0.02678969561127
610 => 0.027732129429119
611 => 0.02825037273813
612 => 0.028309788498317
613 => 0.028246373584069
614 => 0.028270779467715
615 => 0.027969225104914
616 => 0.028658488955109
617 => 0.029291025625178
618 => 0.029121492285425
619 => 0.02886733770855
620 => 0.028664891346327
621 => 0.029073802356323
622 => 0.029055594192733
623 => 0.029285500969178
624 => 0.029275071069793
625 => 0.029197762068105
626 => 0.029121495046373
627 => 0.02942388516671
628 => 0.02933680166829
629 => 0.029249582905143
630 => 0.029074652323128
701 => 0.029098428294513
702 => 0.02884431760101
703 => 0.028726754366881
704 => 0.026958885399221
705 => 0.026486453044278
706 => 0.02663508988039
707 => 0.026684024986192
708 => 0.026478421819882
709 => 0.026773203945251
710 => 0.026727262463264
711 => 0.026905993894808
712 => 0.026794330255996
713 => 0.026798912970682
714 => 0.027127291923231
715 => 0.027222621730179
716 => 0.027174136220959
717 => 0.027208093809631
718 => 0.027990632107968
719 => 0.02787938018611
720 => 0.027820279819957
721 => 0.02783665102528
722 => 0.028036606338316
723 => 0.02809258290881
724 => 0.027855406246221
725 => 0.0279672601314
726 => 0.028443519778121
727 => 0.028610183700511
728 => 0.029142094937562
729 => 0.028916129590094
730 => 0.029330898764922
731 => 0.030605757803109
801 => 0.031624203416349
802 => 0.030687598741369
803 => 0.032557844411817
804 => 0.034014098937068
805 => 0.03395820546287
806 => 0.033704273802618
807 => 0.03204636674215
808 => 0.030520735947105
809 => 0.031796990888865
810 => 0.031800244325176
811 => 0.031690612893824
812 => 0.03100970148931
813 => 0.031666918652908
814 => 0.031719086164692
815 => 0.031689886230554
816 => 0.031167833053194
817 => 0.030370754342921
818 => 0.030526501614971
819 => 0.030781618823749
820 => 0.030298628724508
821 => 0.030144284122399
822 => 0.030431240102982
823 => 0.031355872062075
824 => 0.031181075746237
825 => 0.031176511108023
826 => 0.031924363872352
827 => 0.03138906268982
828 => 0.030528466086844
829 => 0.030311154094718
830 => 0.029539842921569
831 => 0.030072590296179
901 => 0.030091762925759
902 => 0.029799982633232
903 => 0.03055214244949
904 => 0.030545211164368
905 => 0.03125927496569
906 => 0.032624296763703
907 => 0.032220592649387
908 => 0.031751128687321
909 => 0.031802172436821
910 => 0.03236199638213
911 => 0.032023514045259
912 => 0.03214523465358
913 => 0.032361812143411
914 => 0.032492478720343
915 => 0.031783371527245
916 => 0.031618044720016
917 => 0.03127984409425
918 => 0.031191613863801
919 => 0.0314670712167
920 => 0.031394497936263
921 => 0.030090151540483
922 => 0.029953840084809
923 => 0.029958020562547
924 => 0.029615258925999
925 => 0.029092465158044
926 => 0.030466335965835
927 => 0.03035599491266
928 => 0.030234186929674
929 => 0.030249107712563
930 => 0.030845458465423
1001 => 0.030499544912329
1002 => 0.031419212787345
1003 => 0.031230156719989
1004 => 0.031036252077878
1005 => 0.031009448549859
1006 => 0.030934811805813
1007 => 0.030678854639371
1008 => 0.03036977098025
1009 => 0.030165687176131
1010 => 0.02782625186779
1011 => 0.028260437453149
1012 => 0.028759928391843
1013 => 0.028932350662296
1014 => 0.028637410437428
1015 => 0.03069050067713
1016 => 0.031065620047994
1017 => 0.029929359005217
1018 => 0.029716810957347
1019 => 0.030704435291763
1020 => 0.030108777085945
1021 => 0.030377001939553
1022 => 0.029797246517205
1023 => 0.03097526477633
1024 => 0.030966290250916
1025 => 0.030508014541367
1026 => 0.030895346032941
1027 => 0.03082803765452
1028 => 0.030310645507123
1029 => 0.030991667030258
1030 => 0.030992004808437
1031 => 0.03055092440177
1101 => 0.030035839051699
1102 => 0.029943753956879
1103 => 0.029874380207824
1104 => 0.030359940249973
1105 => 0.030795291865457
1106 => 0.031605373289055
1107 => 0.031809047006007
1108 => 0.0326039990826
1109 => 0.032130643826503
1110 => 0.032340476080554
1111 => 0.032568278674911
1112 => 0.032677495615808
1113 => 0.03249953247152
1114 => 0.033734420261796
1115 => 0.03383868262728
1116 => 0.03387364089656
1117 => 0.033457243681697
1118 => 0.033827101867477
1119 => 0.033654057470766
1120 => 0.03410427091789
1121 => 0.034174870135013
1122 => 0.03411507510975
1123 => 0.034137484415598
1124 => 0.033083725535731
1125 => 0.033029082578789
1126 => 0.032284021983597
1127 => 0.032587639683347
1128 => 0.032020040946439
1129 => 0.032200032352828
1130 => 0.032279370849742
1201 => 0.032237928921374
1202 => 0.032604805772547
1203 => 0.032292885501061
1204 => 0.031469676620169
1205 => 0.030646243456568
1206 => 0.030635905923953
1207 => 0.03041911050678
1208 => 0.030262407128225
1209 => 0.030292593758285
1210 => 0.030398975379924
1211 => 0.030256224034984
1212 => 0.030286687272104
1213 => 0.030792579983779
1214 => 0.030894033159244
1215 => 0.0305492556287
1216 => 0.029164924092406
1217 => 0.028825205661067
1218 => 0.029069388532604
1219 => 0.0289526848474
1220 => 0.023367076336256
1221 => 0.024679332203447
1222 => 0.023899634327161
1223 => 0.024258954980728
1224 => 0.023463085350826
1225 => 0.023842916053316
1226 => 0.023772775191762
1227 => 0.025882843793732
1228 => 0.025849897974817
1229 => 0.025865667394877
1230 => 0.02511295188837
1231 => 0.02631204812869
]
'min_raw' => 0.015308375603864
'max_raw' => 0.034174870135013
'avg_raw' => 0.024741622869439
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0153083'
'max' => '$0.034174'
'avg' => '$0.024741'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0023605204576459
'max_diff' => 0.0051700762499969
'year' => 2035
]
10 => [
'items' => [
101 => 0.026902766054778
102 => 0.026793439888107
103 => 0.026820954928918
104 => 0.026348155366092
105 => 0.025870245128134
106 => 0.025340169124381
107 => 0.02632498481998
108 => 0.026215490125994
109 => 0.026466631559051
110 => 0.027105354933726
111 => 0.027199409376922
112 => 0.027325819502382
113 => 0.02728051047089
114 => 0.028359955421064
115 => 0.028229227515191
116 => 0.028544244155359
117 => 0.027896231026162
118 => 0.027162942660504
119 => 0.027302316805813
120 => 0.027288893954844
121 => 0.027118005655973
122 => 0.026963735340685
123 => 0.026706918731121
124 => 0.027519524485486
125 => 0.027486534175851
126 => 0.0280206089418
127 => 0.027926206039193
128 => 0.027295760351275
129 => 0.027318276842355
130 => 0.027469711065924
131 => 0.02799382664274
201 => 0.028149419830449
202 => 0.028077342866586
203 => 0.028247943693809
204 => 0.028382779631691
205 => 0.028264877011637
206 => 0.029934129476984
207 => 0.029240939473496
208 => 0.029578795458011
209 => 0.029659372119554
210 => 0.029452976695355
211 => 0.029497736472398
212 => 0.029565535338308
213 => 0.02997719677574
214 => 0.031057515502756
215 => 0.031535981312973
216 => 0.032975469310099
217 => 0.031496251388
218 => 0.031408480718115
219 => 0.031667775974771
220 => 0.032512907814363
221 => 0.033197807791155
222 => 0.033425028626285
223 => 0.033455059610655
224 => 0.033881341002713
225 => 0.034125677546964
226 => 0.033829579229404
227 => 0.033578666908057
228 => 0.032679930117379
229 => 0.032783961348079
301 => 0.033500633364795
302 => 0.034512974800177
303 => 0.03538166906791
304 => 0.035077482612401
305 => 0.037398210545757
306 => 0.037628301241026
307 => 0.037596510146662
308 => 0.038120690992571
309 => 0.037080298761015
310 => 0.036635510925375
311 => 0.033632916999908
312 => 0.03447652341875
313 => 0.035702754891804
314 => 0.035540458558213
315 => 0.03464993648522
316 => 0.035380993527062
317 => 0.035139283206762
318 => 0.034948636248571
319 => 0.035822026922776
320 => 0.034861697999576
321 => 0.035693174876182
322 => 0.034626797181407
323 => 0.035078872110507
324 => 0.034822252516346
325 => 0.034988316843883
326 => 0.034017508178355
327 => 0.034541332969226
328 => 0.033995715344878
329 => 0.033995456651083
330 => 0.033983412111785
331 => 0.03462532882719
401 => 0.034646261708234
402 => 0.034171884285667
403 => 0.034103519087907
404 => 0.034356301055676
405 => 0.034060359575121
406 => 0.034198828731239
407 => 0.034064553664799
408 => 0.034034325519077
409 => 0.033793462511075
410 => 0.033689692104561
411 => 0.033730383154789
412 => 0.033591483622686
413 => 0.033507791630379
414 => 0.033966763668018
415 => 0.033721553423187
416 => 0.033929181681187
417 => 0.03369256307642
418 => 0.032872339902478
419 => 0.032400620881442
420 => 0.030851295340594
421 => 0.031290682142046
422 => 0.031581996045987
423 => 0.031485716802472
424 => 0.031692561872663
425 => 0.031705260480047
426 => 0.031638013039192
427 => 0.031560149117612
428 => 0.031522249266733
429 => 0.031804723704426
430 => 0.031968709623159
501 => 0.031611233293525
502 => 0.031527481591117
503 => 0.031888909897186
504 => 0.032109380955099
505 => 0.033737215374736
506 => 0.033616620143093
507 => 0.033919290508897
508 => 0.033885214470563
509 => 0.034202461233096
510 => 0.034721025611352
511 => 0.033666639237477
512 => 0.033849644254044
513 => 0.033804775650185
514 => 0.034294639301941
515 => 0.034296168602791
516 => 0.034002470873059
517 => 0.034161689177048
518 => 0.034072817887687
519 => 0.034233420319238
520 => 0.033615009520251
521 => 0.034368167120096
522 => 0.034795158946805
523 => 0.034801087728733
524 => 0.035003478465776
525 => 0.035209119176293
526 => 0.035603828612598
527 => 0.035198110944343
528 => 0.03446826435497
529 => 0.034520956921333
530 => 0.034093048133024
531 => 0.034100241357064
601 => 0.034061843363398
602 => 0.034177078632856
603 => 0.033640297181656
604 => 0.033766278715349
605 => 0.033589903830432
606 => 0.03384926084949
607 => 0.033570235570234
608 => 0.033804754013185
609 => 0.033905964398754
610 => 0.034279432900404
611 => 0.033515073968883
612 => 0.031956494364961
613 => 0.032284126693656
614 => 0.031799532744551
615 => 0.03184438375952
616 => 0.031934989947744
617 => 0.031641305647212
618 => 0.031697331356697
619 => 0.031695329724108
620 => 0.031678080735819
621 => 0.031601682106625
622 => 0.031490888979286
623 => 0.031932254698281
624 => 0.032007251334513
625 => 0.032173959566741
626 => 0.032669970186577
627 => 0.032620407028919
628 => 0.032701246595414
629 => 0.03252477427565
630 => 0.031852569804299
701 => 0.031889073741167
702 => 0.031433869063492
703 => 0.032162318959693
704 => 0.031989812409204
705 => 0.031878596313882
706 => 0.031848249971863
707 => 0.032345490106086
708 => 0.03249427214753
709 => 0.032401561163694
710 => 0.032211408231034
711 => 0.032576558075409
712 => 0.032674256769328
713 => 0.032696127903908
714 => 0.033343103417602
715 => 0.032732286648122
716 => 0.032879316315532
717 => 0.034026399809198
718 => 0.032986153367145
719 => 0.033537195107765
720 => 0.033510224482044
721 => 0.033792118790309
722 => 0.033487100920888
723 => 0.03349088198294
724 => 0.033741185031505
725 => 0.033389679542188
726 => 0.0333026418398
727 => 0.033182399877328
728 => 0.033444943803423
729 => 0.033602327013276
730 => 0.034870720099465
731 => 0.035690159878896
801 => 0.035654585836952
802 => 0.035979665988501
803 => 0.035833214402835
804 => 0.035360283600743
805 => 0.036167518812147
806 => 0.035912075815103
807 => 0.035933134225416
808 => 0.035932350430333
809 => 0.036102197692152
810 => 0.03598184534088
811 => 0.035744618502607
812 => 0.035902100748766
813 => 0.036369766718924
814 => 0.037821416240039
815 => 0.038633778543852
816 => 0.037772511009317
817 => 0.038366601821808
818 => 0.038010359030514
819 => 0.037945619118031
820 => 0.038318752051241
821 => 0.038692538104257
822 => 0.038668729548601
823 => 0.038397380068238
824 => 0.038244101632019
825 => 0.039404777303112
826 => 0.040259943365979
827 => 0.040201626773597
828 => 0.040459017246797
829 => 0.0412147236369
830 => 0.041283815958391
831 => 0.041275111913952
901 => 0.0411038593861
902 => 0.041847950468032
903 => 0.042468684339616
904 => 0.041064219373864
905 => 0.041599021247026
906 => 0.041839111038129
907 => 0.042191634082899
908 => 0.042786399549148
909 => 0.043432472599243
910 => 0.043523834412357
911 => 0.043459008833888
912 => 0.043032906289974
913 => 0.043739847130643
914 => 0.044153956495304
915 => 0.044400549145235
916 => 0.045025867076357
917 => 0.041840593750942
918 => 0.039585898972857
919 => 0.039233795825072
920 => 0.039949811421866
921 => 0.040138619024623
922 => 0.040062510916696
923 => 0.037524646956081
924 => 0.039220434496543
925 => 0.041044959304213
926 => 0.041115046732687
927 => 0.042028442000421
928 => 0.042325880940933
929 => 0.043061283852914
930 => 0.043015284200541
1001 => 0.043194343106792
1002 => 0.043153180565113
1003 => 0.044515359602204
1004 => 0.04601804536566
1005 => 0.04596601213592
1006 => 0.045749983278452
1007 => 0.046070822970186
1008 => 0.047621755715666
1009 => 0.047478970681653
1010 => 0.047617674179796
1011 => 0.049446311293456
1012 => 0.05182379966181
1013 => 0.05071921761878
1014 => 0.053115842817234
1015 => 0.054624391340018
1016 => 0.057233270023345
1017 => 0.056906625563194
1018 => 0.057922242889777
1019 => 0.056321863806768
1020 => 0.052647069942203
1021 => 0.05206551974659
1022 => 0.053229797965404
1023 => 0.056092062357751
1024 => 0.053139655073755
1025 => 0.053736923222084
1026 => 0.053564909955185
1027 => 0.053555744099201
1028 => 0.05390556754187
1029 => 0.053398130392715
1030 => 0.051330740160858
1031 => 0.052278212920911
1101 => 0.051912348186876
1102 => 0.052318302386311
1103 => 0.054509069772414
1104 => 0.053540479289646
1105 => 0.052520147897951
1106 => 0.053799869892798
1107 => 0.055429395752426
1108 => 0.05532742295267
1109 => 0.055129553099819
1110 => 0.056244935100208
1111 => 0.058087219388587
1112 => 0.058585181428838
1113 => 0.058952766826565
1114 => 0.059003450642505
1115 => 0.059525525446508
1116 => 0.056718197645595
1117 => 0.061173498962935
1118 => 0.061942806425225
1119 => 0.061798208506842
1120 => 0.06265326137377
1121 => 0.062401683129722
1122 => 0.062037185725514
1123 => 0.063392626394555
1124 => 0.061838723045921
1125 => 0.059633152873526
1126 => 0.058423133455719
1127 => 0.06001658463457
1128 => 0.060989649665712
1129 => 0.061632783752737
1130 => 0.061827395738878
1201 => 0.056936122511343
1202 => 0.054299997524151
1203 => 0.055989723417706
1204 => 0.058051305626496
1205 => 0.056706745452333
1206 => 0.056759449665571
1207 => 0.054842460201414
1208 => 0.058220916657599
1209 => 0.057728703969224
1210 => 0.060282304267222
1211 => 0.059672867062182
1212 => 0.061755228975007
1213 => 0.061206873295813
1214 => 0.063483067061994
1215 => 0.06439110238081
1216 => 0.065915835005514
1217 => 0.067037434531025
1218 => 0.067696059225185
1219 => 0.067656517868987
1220 => 0.070266317032768
1221 => 0.068727409645324
1222 => 0.066794179274071
1223 => 0.066759213235919
1224 => 0.067760460639277
1225 => 0.069858800517905
1226 => 0.07040286951883
1227 => 0.070706929867088
1228 => 0.070241250859313
1229 => 0.068570877184729
1230 => 0.06784961830103
1231 => 0.068464151766823
]
'min_raw' => 0.025340169124381
'max_raw' => 0.070706929867088
'avg_raw' => 0.048023549495735
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.02534'
'max' => '$0.0707069'
'avg' => '$0.048023'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.010031793520517
'max_diff' => 0.036532059732075
'year' => 2036
]
11 => [
'items' => [
101 => 0.067712630145621
102 => 0.06900996730354
103 => 0.070791488317627
104 => 0.070423611273116
105 => 0.071653369077709
106 => 0.072926039031169
107 => 0.0747460142238
108 => 0.07522182313264
109 => 0.076008317165561
110 => 0.076817877875267
111 => 0.077077886956952
112 => 0.077574324969968
113 => 0.07757170849659
114 => 0.079067757862946
115 => 0.080717946642829
116 => 0.081340854705277
117 => 0.082773197447524
118 => 0.080320360696702
119 => 0.082180865548359
120 => 0.08385908749601
121 => 0.08185824210505
122 => 0.084615941339303
123 => 0.084723016551488
124 => 0.086339725129937
125 => 0.084700881261792
126 => 0.083727741004262
127 => 0.086537160464661
128 => 0.087896550045664
129 => 0.087487090840787
130 => 0.084371086074174
131 => 0.082557437648275
201 => 0.07781076989104
202 => 0.083433402890272
203 => 0.086172023409744
204 => 0.084363993708631
205 => 0.085275858723066
206 => 0.090250698568596
207 => 0.092144795484748
208 => 0.091750836566925
209 => 0.091817409138921
210 => 0.092839429454586
211 => 0.097371630371111
212 => 0.094655830526334
213 => 0.096731957748587
214 => 0.097833128141237
215 => 0.098855956570822
216 => 0.096344213216005
217 => 0.093076472016226
218 => 0.092041441207813
219 => 0.084184220787226
220 => 0.083775218342156
221 => 0.083545632875696
222 => 0.082098128985171
223 => 0.080960787431904
224 => 0.080056331201962
225 => 0.077682767961099
226 => 0.07848377587821
227 => 0.074700811473424
228 => 0.077121018039579
301 => 0.071083315506671
302 => 0.076111693587377
303 => 0.073374976010345
304 => 0.075212608259539
305 => 0.075206196933736
306 => 0.071822533341136
307 => 0.069870906796182
308 => 0.071114559189068
309 => 0.072447853275492
310 => 0.072664175755274
311 => 0.07439282634086
312 => 0.074875255562076
313 => 0.073413472499323
314 => 0.070958197541752
315 => 0.071528501915536
316 => 0.06985934959625
317 => 0.066934224359716
318 => 0.069035100372381
319 => 0.069752431812103
320 => 0.070069246241355
321 => 0.067192721524128
322 => 0.066288855005585
323 => 0.065807644055287
324 => 0.070586874322609
325 => 0.070848691345155
326 => 0.069509198440612
327 => 0.075563833385074
328 => 0.074193483024831
329 => 0.075724500121212
330 => 0.071476752771263
331 => 0.071639022440381
401 => 0.069628070771745
402 => 0.070754069334342
403 => 0.069958249842926
404 => 0.070663099777819
405 => 0.071085583922589
406 => 0.073096205613844
407 => 0.076134651657385
408 => 0.072795885781495
409 => 0.071341137677362
410 => 0.072243655219353
411 => 0.074647178366043
412 => 0.078288638967366
413 => 0.076132821000159
414 => 0.077089536405842
415 => 0.077298536160678
416 => 0.075708915804379
417 => 0.078347250537314
418 => 0.079761155554487
419 => 0.081211529535688
420 => 0.082470848625009
421 => 0.080632218273189
422 => 0.082599816306944
423 => 0.081014279619546
424 => 0.07959188930118
425 => 0.079594046480156
426 => 0.078701760255638
427 => 0.076972843260336
428 => 0.076654004440056
429 => 0.078312644248054
430 => 0.079642716300294
501 => 0.079752267405132
502 => 0.080488663634822
503 => 0.080924455338068
504 => 0.08519580645997
505 => 0.086913779215669
506 => 0.089014483781777
507 => 0.089832826599499
508 => 0.092295745088703
509 => 0.090306738380211
510 => 0.08987640426739
511 => 0.08390216962708
512 => 0.084880450214747
513 => 0.08644677182564
514 => 0.083927997693531
515 => 0.085525580138467
516 => 0.08584097675452
517 => 0.083842410712343
518 => 0.084909931188411
519 => 0.082074913301737
520 => 0.076196447300104
521 => 0.078353794950422
522 => 0.079942328976423
523 => 0.077675295056487
524 => 0.081738865611644
525 => 0.079365011582444
526 => 0.078612613820277
527 => 0.075677241900891
528 => 0.077062624454014
529 => 0.078936374193881
530 => 0.077778614701431
531 => 0.080181139486727
601 => 0.083583755312662
602 => 0.086008661979499
603 => 0.086194816203193
604 => 0.084635763672546
605 => 0.087134155302648
606 => 0.087152353358117
607 => 0.084334157393132
608 => 0.08260802805636
609 => 0.082215847839238
610 => 0.083195590913069
611 => 0.084385179875249
612 => 0.086260830111475
613 => 0.087394246266468
614 => 0.09034959448121
615 => 0.091149226971645
616 => 0.092027780645211
617 => 0.093201799289014
618 => 0.0946115096831
619 => 0.091527143595696
620 => 0.091649691210326
621 => 0.08877757221569
622 => 0.085708301166394
623 => 0.088037495302772
624 => 0.091082606796376
625 => 0.090384054855194
626 => 0.09030545349169
627 => 0.090437639182904
628 => 0.089910953831826
629 => 0.087528775508772
630 => 0.08633246046816
701 => 0.087876012083067
702 => 0.088696341070811
703 => 0.089968599790596
704 => 0.089811767049259
705 => 0.093088968880815
706 => 0.094362390415119
707 => 0.094036594693864
708 => 0.094096548947287
709 => 0.096402017808603
710 => 0.09896617333822
711 => 0.10136784336183
712 => 0.10381092526397
713 => 0.10086569467583
714 => 0.09937028821974
715 => 0.1009131659683
716 => 0.10009449331734
717 => 0.10479882920384
718 => 0.10512454721377
719 => 0.10982854292325
720 => 0.11429319499294
721 => 0.11148902702052
722 => 0.11413323111601
723 => 0.11699315343041
724 => 0.12251040758055
725 => 0.12065239048212
726 => 0.11922917850357
727 => 0.11788425006074
728 => 0.12068283264888
729 => 0.12428316444008
730 => 0.12505864142435
731 => 0.12631521039388
801 => 0.12499408176836
802 => 0.12658523568026
803 => 0.1322027081777
804 => 0.13068481752209
805 => 0.12852916877802
806 => 0.13296362380696
807 => 0.13456843584342
808 => 0.14583184716192
809 => 0.16005236921984
810 => 0.15416497971088
811 => 0.1505104870578
812 => 0.151369379517
813 => 0.1565622327775
814 => 0.15823001243185
815 => 0.1536964124132
816 => 0.15529775658317
817 => 0.1641213204004
818 => 0.16885487929452
819 => 0.16242607051453
820 => 0.14468924206078
821 => 0.12833507619408
822 => 0.13267293741962
823 => 0.13218115857615
824 => 0.14166097713575
825 => 0.13064861633195
826 => 0.13083403624511
827 => 0.14050988741323
828 => 0.13792853620766
829 => 0.13374707784912
830 => 0.12836560546758
831 => 0.11841745604435
901 => 0.10960610267553
902 => 0.12688719576528
903 => 0.12614200360762
904 => 0.12506285493204
905 => 0.12746438353346
906 => 0.13912552473618
907 => 0.13885669768802
908 => 0.13714655716444
909 => 0.13844368367909
910 => 0.13351968529959
911 => 0.13478871179935
912 => 0.12833248561065
913 => 0.13125096948377
914 => 0.13373810631747
915 => 0.13423743585953
916 => 0.13536245081418
917 => 0.12574932120233
918 => 0.13006533417139
919 => 0.13260058743499
920 => 0.12114622095675
921 => 0.13237417143832
922 => 0.12558197800307
923 => 0.12327660553583
924 => 0.12638048585324
925 => 0.12517090067492
926 => 0.12413097036783
927 => 0.1235506713882
928 => 0.12582981853054
929 => 0.12572349359218
930 => 0.12199436650391
1001 => 0.11712987223593
1002 => 0.11876255618385
1003 => 0.11816938679908
1004 => 0.11601966442829
1005 => 0.11746831774773
1006 => 0.11108918167559
1007 => 0.1001142096221
1008 => 0.10736461233312
1009 => 0.10708547971567
1010 => 0.10694472839229
1011 => 0.11239320564321
1012 => 0.11186946027329
1013 => 0.11091885729836
1014 => 0.11600220585919
1015 => 0.1141467152538
1016 => 0.11986490009104
1017 => 0.12363126645385
1018 => 0.12267599411505
1019 => 0.12621827988371
1020 => 0.11880016992445
1021 => 0.12126416849
1022 => 0.12177199517941
1023 => 0.11593947812701
1024 => 0.11195515149308
1025 => 0.11168944233124
1026 => 0.10478116902202
1027 => 0.10847151286217
1028 => 0.1117188627247
1029 => 0.11016363414508
1030 => 0.1096712952379
1031 => 0.11218654793938
1101 => 0.11238200461597
1102 => 0.1079255716762
1103 => 0.10885220520126
1104 => 0.11271642104075
1105 => 0.10875483687666
1106 => 0.10105812596694
1107 => 0.09914923524598
1108 => 0.098894554035967
1109 => 0.093717491004682
1110 => 0.099276796451671
1111 => 0.096850010643937
1112 => 0.10451619793321
1113 => 0.10013731286816
1114 => 0.099948547884977
1115 => 0.099663201927087
1116 => 0.095207089914279
1117 => 0.096182695244392
1118 => 0.099425755950574
1119 => 0.10058291654623
1120 => 0.10046221521577
1121 => 0.099409863183868
1122 => 0.099891624555158
1123 => 0.098339703321445
1124 => 0.097791687633373
1125 => 0.096061999378229
1126 => 0.093519835481744
1127 => 0.093873338963547
1128 => 0.088836647091243
1129 => 0.086092390041741
1130 => 0.085332815859165
1201 => 0.084317081517435
1202 => 0.08544754575583
1203 => 0.088822378775995
1204 => 0.08475161414291
1205 => 0.077772573710423
1206 => 0.078192025932121
1207 => 0.079134410537796
1208 => 0.077378283059619
1209 => 0.075716255782132
1210 => 0.077161253655372
1211 => 0.074204142221063
1212 => 0.079491763326865
1213 => 0.07934874799434
1214 => 0.081319646158288
1215 => 0.082552089227106
1216 => 0.079711706961662
1217 => 0.078997358503113
1218 => 0.07940428385043
1219 => 0.072678714296697
1220 => 0.080770023640039
1221 => 0.080839997619239
1222 => 0.080240837926893
1223 => 0.084549210361073
1224 => 0.093641220012255
1225 => 0.09022044025624
1226 => 0.088895810941095
1227 => 0.086377689644707
1228 => 0.089732936760896
1229 => 0.089475306132381
1230 => 0.088310202726724
1231 => 0.087605544551638
]
'min_raw' => 0.065807644055287
'max_raw' => 0.16885487929452
'avg_raw' => 0.1173312616749
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.0658076'
'max' => '$0.168854'
'avg' => '$0.117331'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.040467474930906
'max_diff' => 0.098147949427432
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0020656267501849
]
1 => [
'year' => 2028
'avg' => 0.0035452151590476
]
2 => [
'year' => 2029
'avg' => 0.0096848888516533
]
3 => [
'year' => 2030
'avg' => 0.0074718773258814
]
4 => [
'year' => 2031
'avg' => 0.0073383095135784
]
5 => [
'year' => 2032
'avg' => 0.012866366028301
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0020656267501849
'min' => '$0.002065'
'max_raw' => 0.012866366028301
'max' => '$0.012866'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.012866366028301
]
1 => [
'year' => 2033
'avg' => 0.033093616457606
]
2 => [
'year' => 2034
'avg' => 0.020976324515617
]
3 => [
'year' => 2035
'avg' => 0.024741622869439
]
4 => [
'year' => 2036
'avg' => 0.048023549495735
]
5 => [
'year' => 2037
'avg' => 0.1173312616749
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.012866366028301
'min' => '$0.012866'
'max_raw' => 0.1173312616749
'max' => '$0.117331'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.1173312616749
]
]
]
]
'prediction_2025_max_price' => '$0.003531'
'last_price' => 0.003424574558634
'sma_50day_nextmonth' => '$0.003193'
'sma_200day_nextmonth' => '$0.007291'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentare'
'sma_200day_date_nextmonth' => '4 feb 2026'
'sma_50day_date_nextmonth' => '4 feb 2026'
'daily_sma3' => '$0.003283'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.003243'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.003215'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.003266'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.004499'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.006344'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.008363'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.003315'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.003277'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.003262'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.003447'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.004485'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.0061072'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.011069'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.005575'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0088067'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.052196'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.164365'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.003328'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.003358'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.003791'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.005337'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.017431'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.155454'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.833332'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '42.19'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 150.02
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.0032035'
'vwma_10_action' => 'BUY'
'hma_9' => '0.003271'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 107.02
'cci_20_action' => 'SELL'
'adx_14' => 39.03
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000372'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 63.17
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.001278'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 17
'buy_signals' => 17
'sell_pct' => 50
'buy_pct' => 50
'overall_action' => 'neutral'
'overall_action_label' => 'Neutrale'
'overall_action_dir' => 0
'last_updated' => 1767690891
'last_updated_date' => '6 gennaio 2026'
]
Previsione del prezzo di Nord Finance per l'anno 2026
La previsione del prezzo di Nord Finance per 2026 suggerisce che il prezzo medio potrebbe variare tra $0.001183 come limite inferiore e $0.003531 come limite superiore. Nel mercato delle criptovalute, rispetto al prezzo medio di oggi, Nord Finance potrebbe potenzialmente guadagnare 3.13% entro il 2026 se NORD raggiunge l'obiettivo di prezzo previsto.
Previsione del prezzo di Nord Finance 2027-2032
La previsione del prezzo di NORD per gli anni 2027-2032 è attualmente compresa in un intervallo di prezzo tra $0.002065 come limite inferiore e $0.012866 come limite superiore. Considerando la volatilità dei prezzi sul mercato, se Nord Finance raggiunge l'obiettivo di prezzo massimo, potrebbe guadagnare 275.71% entro il 2032 rispetto al prezzo di oggi.
| Previsione del Prezzo di Nord Finance | Potenziale Minimo ($) | Prezzo Medio ($) | Potenziale Massimo ($) |
|---|---|---|---|
| 2027 | $0.001139 | $0.002065 | $0.002992 |
| 2028 | $0.002055 | $0.003545 | $0.005034 |
| 2029 | $0.004515 | $0.009684 | $0.014854 |
| 2030 | $0.00384 | $0.007471 | $0.0111034 |
| 2031 | $0.00454 | $0.007338 | $0.010136 |
| 2032 | $0.00693 | $0.012866 | $0.0188021 |
Previsione del prezzo di Nord Finance 2032-2037
La previsione del prezzo di Nord Finance per gli anni 2032-2037 è attualmente stimata tra $0.012866 come limite inferiore e $0.117331 come limite superiore. Rispetto al prezzo attuale, Nord Finance potrebbe potenzialmente guadagnare 3326.16% entro il 2037 se raggiunge l'obiettivo di prezzo massimo. Si prega di notare che queste informazioni sono solo a scopo generale e non devono essere considerate come consigli di investimento a lungo termine.
| Previsione del Prezzo di Nord Finance | Potenziale Minimo ($) | Prezzo Medio ($) | Potenziale Massimo ($) |
|---|---|---|---|
| 2032 | $0.00693 | $0.012866 | $0.0188021 |
| 2033 | $0.0161052 | $0.033093 | $0.050081 |
| 2034 | $0.012947 | $0.020976 | $0.0290047 |
| 2035 | $0.0153083 | $0.024741 | $0.034174 |
| 2036 | $0.02534 | $0.048023 | $0.0707069 |
| 2037 | $0.0658076 | $0.117331 | $0.168854 |
Nord Finance Istogramma dei prezzi potenziali
Previsione del prezzo di Nord Finance basata sull'analisi tecnica
Al 6 gennaio 2026, il sentimento generale della previsione di prezzo per Nord Finance è Neutrale, con 17 indicatori tecnici che mostrano segnali rialzisti e 17 indicando segnali ribassisti. La previsione del prezzo di NORD è stata aggiornata l'ultima volta il 6 gennaio 2026.
Medi Mobile Semplici a 50 e 200 giorni e Indice di Forza Relativa a 14 giorni - RSI (14) di Nord Finance
Secondo i nostri indicatori tecnici, il SMA a 200 giorni di Nord Finance è previsto aumentare nel corso del prossimo mese, raggiungendo $0.007291 entro il 4 feb 2026. Il SMA a 50 giorni a breve termine per Nord Finance dovrebbe raggiungere $0.003193 entro il 4 feb 2026.
L'oscillatore di momentum dell'Indice di Forza Relativa (RSI) è uno strumento comunemente utilizzato per identificare se una criptovaluta è ipervenduta (sotto 30) o ipercomprata (sopra 70). Al momento, l'RSI è a 42.19, suggerendo che il mercato di NORD è in uno stato NEUTRAL.
Medie Mobili e Oscillatori Popolari di NORD per Sabato, 19 Ottobre 2024
Le medie mobili (MA) sono indicatori ampiamente utilizzati nei mercati finanziari, progettati per smussare i movimenti dei prezzi su un periodo stabilito. In quanto indicatori ritardati, si basano su dati storici dei prezzi. La tabella seguente evidenzia due tipi: la media mobile semplice (SMA) e la media mobile esponenziale (EMA).
Media Mobile Semplice Giornaliera (SMA)
| Periodo | Valore | Azione |
|---|---|---|
| SMA 3 | $0.003283 | BUY |
| SMA 5 | $0.003243 | BUY |
| SMA 10 | $0.003215 | BUY |
| SMA 21 | $0.003266 | BUY |
| SMA 50 | $0.004499 | SELL |
| SMA 100 | $0.006344 | SELL |
| SMA 200 | $0.008363 | SELL |
Media Mobile Esponenziale Giornaliera (EMA)
| Periodo | Valore | Azione |
|---|---|---|
| EMA 3 | $0.003315 | BUY |
| EMA 5 | $0.003277 | BUY |
| EMA 10 | $0.003262 | BUY |
| EMA 21 | $0.003447 | SELL |
| EMA 50 | $0.004485 | SELL |
| EMA 100 | $0.0061072 | SELL |
| EMA 200 | $0.011069 | SELL |
Media Mobile Semplice Settimanale (SMA)
| Periodo | Valore | Azione |
|---|---|---|
| SMA 21 | $0.005575 | SELL |
| SMA 50 | $0.0088067 | SELL |
| SMA 100 | $0.052196 | SELL |
| SMA 200 | $0.164365 | SELL |
Media Mobile Esponenziale Settimanale (EMA)
| Periodo | Valore | Azione |
|---|---|---|
| EMA 21 | $0.005337 | SELL |
| EMA 50 | $0.017431 | SELL |
| EMA 100 | $0.155454 | SELL |
| EMA 200 | $0.833332 | SELL |
Oscillatori di Nord Finance
Un oscillatore è uno strumento di analisi tecnica che imposta limiti alti e bassi tra due estremi, creando un indicatore di tendenza che fluttua entro questi limiti. I trader utilizzano questo indicatore per identificare condizioni di ipercomprato o ipervenduto a breve termine.
| Periodo | Valore | Azione |
|---|---|---|
| RSI (14) | 42.19 | NEUTRAL |
| Stoch RSI (14) | 150.02 | SELL |
| Stocastico Veloce (14) | 100 | SELL |
| Indice di Canale delle Materie Prime (20) | 107.02 | SELL |
| Indice Direzionale Medio (14) | 39.03 | SELL |
| Oscillatore Awesome (5, 34) | -0.000372 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscillatore Ultimate (7, 14, 28) | 63.17 | NEUTRAL |
| VWMA (10) | 0.0032035 | BUY |
| Media Mobile di Hull (9) | 0.003271 | BUY |
| Ichimoku Cloud B/L (9, 26, 52, 26) | -0.001278 | SELL |
Previsione del prezzo di Nord Finance sulla base dei flussi monetari globali
Definizioni dei flussi monetari globali usate per la previsione del prezzo di Nord Finance
M0: Il totale della moneta fisica, più i conti presso la banca centrale che possono essere scambiati con moneta fisica.
M1: La misura M0 più l'ammontare dei conti a vista, tra cui i "conti correnti".
M2: La misura M1 più la maggior parte dei conti di risparmio, dei conti del mercato monetario e dei conti di certificati di deposito (CD) al di sotto dei $100.000.
Previsione del prezzo di Nord Finance sulla base delle società Internet e delle nicchie tecnologiche
| Confronto | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Azioni Facebook | $0.004812 | $0.006761 | $0.0095014 | $0.013351 | $0.01876 | $0.026361 |
| Azioni Amazon.com | $0.007145 | $0.0149096 | $0.0311098 | $0.064912 | $0.135444 | $0.282612 |
| Azioni Apple | $0.004857 | $0.006889 | $0.009772 | $0.013862 | $0.019662 | $0.027889 |
| Azioni Netflix | $0.0054034 | $0.008525 | $0.013452 | $0.021225 | $0.03349 | $0.052843 |
| Azioni Google | $0.004434 | $0.005743 | $0.007437 | $0.009631 | $0.012472 | $0.016151 |
| Azioni Tesla | $0.007763 | $0.017598 | $0.039894 | $0.090438 | $0.205017 | $0.464759 |
| Azioni Kodak | $0.002568 | $0.001925 | $0.001444 | $0.001082 | $0.000812 | $0.0006089 |
| Azioni Nokia | $0.002268 | $0.0015028 | $0.000995 | $0.000659 | $0.000436 | $0.000289 |
Questo calcolo mostra quanto può valere la criptovaluta se si assume che la sua capitalizzazione si comporti come quella di alcune società di Internet o di nicchie tecnologiche. Estrapolando i dati si può ottenere un quadro potenziale del prezzo futuro per il 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Panoramica delle previsioni per Nord Finance
Potresti avere domande come: "Dovrei investire su Nord Finance in questo momento?", "Dovrei acquistare NORD oggi?", "Nord Finance sarà un buon investimento, a breve e a lungo termine?".
Aggiorniamo regolarmente le previsioni su Nord Finance con nuovi valori. Consulta le nostre previsioni simili. Effettuiamo previsioni dei prezzi futuri di una grande quantità di valute digitali come Nord Finance con metodi di analisi tecnica.
Se cerchi delle criptovalute con un buon rendimento, dovresti esplorare il massimo delle fonti di informazione disponibili su Nord Finance per prendere decisioni responsabili.
Il prezzo odierno di Nord Finance è di $0.003424 USD, ma il prezzo può salire oppure scendere e potresti perdere il tuo investimento, perché le criptovalute sono beni ad alto rischio
Previsione a breve termine per Nord Finance
basata sulla cronologia dei prezzi delle ultime 4 ore
Previsione a lungo termine per Nord Finance
basata sulla cronologia dei prezzi dell'ultimo mese
Previsione del prezzo di Nord Finance sulla base dello schema di crescita di Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Nord Finance ha 1% della precedente crescita media annua di Bitcoin | $0.003513 | $0.0036049 | $0.003698 | $0.003794 |
| Se Nord Finance ha 2% della precedente crescita media annua di Bitcoin | $0.0036026 | $0.003789 | $0.003986 | $0.004194 |
| Se Nord Finance ha 5% della precedente crescita media annua di Bitcoin | $0.003869 | $0.004372 | $0.00494 | $0.005583 |
| Se Nord Finance ha 10% della precedente crescita media annua di Bitcoin | $0.004314 | $0.005436 | $0.006849 | $0.008629 |
| Se Nord Finance ha 20% della precedente crescita media annua di Bitcoin | $0.0052048 | $0.00791 | $0.012023 | $0.018273 |
| Se Nord Finance ha 50% della precedente crescita media annua di Bitcoin | $0.007875 | $0.01811 | $0.041648 | $0.095776 |
| Se Nord Finance ha 100% della precedente crescita media annua di Bitcoin | $0.012326 | $0.044365 | $0.159686 | $0.574762 |
Area domande
È NORD un buon investimento?
La decisione di procurarsi Nord Finance dipende interamente dalla tua tolleranza individuale al rischio. Come puoi notare, il valore di Nord Finance ha subito una diminuzione del -4.7729% nelle precedenti 24 ore, e Nord Finance ha registrato una declino di nel corso degli ultimi 30 giorni. Di conseguenza, la decisione di investire o meno in Nord Finance dipenderà da quanto tale investimento si allinea con le tue aspirazioni di trading.
Può Nord Finance salire?
Sembra che il valore medio di Nord Finance possa potenzialmente salire fino a $0.003531 entro la fine di quest'anno. Guardando le prospettive di Nord Finance su una linea temporale più estesa di cinque anni, la valuta digitale potrebbe potenzialmente crescere fino a $0.0111034. Tuttavia, data l' imprevedibilità del mercato, è fondamentale condurre ricerche approfondite prima di investire fondi in un particolare progetto, rete o asset.
Quale sarà il prezzo di Nord Finance la prossima settimana?
Basato sul nostro nuovo pronostico sperimentale di Nord Finance, il prezzo di Nord Finance aumenterà del 0.86% nella prossima settimana e raggiungerà $0.003453 entro 13 gennaio 2026.
Quale sarà il prezzo di Nord Finance il prossimo mese?
Basato sul nostro nuovo pronostico sperimentale di Nord Finance, il prezzo di Nord Finance diminuirà del -11.62% nel prossimo mese e raggiungerà $0.0030267 entro 5 febbraio 2026.
Quanto può salire il prezzo di Nord Finance quest'anno in 2026?
Secondo la nostra previsione più recente sul valore di Nord Finance in 2026, NORD dovrebbe fluttuare all'interno dell'intervallo di $0.001183 e $0.003531. Tuttavia, è fondamentale tenere a mente che il mercato delle criptovalute è eccezionalmente instabile, e questa previsione del prezzo di Nord Finance non considera fluttuazioni di prezzo improvvise ed estreme.
Dove sarà Nord Finance tra 5 anni?
Il futuro di Nord Finance sembra seguire una tendenza al rialzo, con un prezzo massimo di $0.0111034 prevista dopo un periodo di cinque anni. Basato sulla previsione di Nord Finance per 2030, il valore di Nord Finance potrebbe potenzialmente raggiungere il suo picco più alto di circa $0.0111034, mentre il suo picco più basso è previsto intorno a $0.00384.
Quanto varrà Nord Finance in 2026?
Basato sulla nostra nuova simulazione sperimentale di previsione dei prezzi di Nord Finance, si prevede che il valore di NORD in 2026 aumenti del 3.13% fino a $0.003531 se si verifica il migliore scenario. Il prezzo sarà compreso tra $0.003531 e $0.001183 durante 2026.
Quanto varrà Nord Finance in 2027?
Secondo la nostra ultima simulazione sperimentale per la previsione dei prezzi di Nord Finance, il valore di NORD potrebbe diminuire del -12.62% fino a $0.002992 in 2027, assumendo le condizioni più favorevoli. Il prezzo è previsto oscillare tra $0.002992 e $0.001139 durante l'anno.
Quanto varrà Nord Finance in 2028?
Il nostro nuovo modello sperimentale di previsione dei prezzi di Nord Finance suggerisce che il valore di NORD in 2028 potrebbe aumentare del 47.02%, raggiungendo $0.005034 nello scenario migliore. Il prezzo è previsto oscillare tra $0.005034 e $0.002055 durante l'anno.
Quanto varrà Nord Finance in 2029?
Basato sul nostro modello di previsione sperimentale, il valore di Nord Finance potrebbe subire una 333.75% crescita in 2029, raggiungendo potenzialmente $0.014854 in condizioni ottimali. Il range di prezzo previsto per 2029 è compreso tra $0.014854 e $0.004515.
Quanto varrà Nord Finance in 2030?
Utilizzando la nostra nuova simulazione sperimentale per le previsioni dei prezzi di Nord Finance, si prevede che il valore di NORD in 2030 aumenti del 224.23%, raggiungendo $0.0111034 nello scenario migliore. Il prezzo è previsto oscillare tra $0.0111034 e $0.00384 nel corso di 2030.
Quanto varrà Nord Finance in 2031?
La nostra simulazione sperimentale indica che il prezzo di Nord Finance potrebbe aumentare del 195.98% in 2031, raggiungendo potenzialmente $0.010136 in condizioni ideali. Il prezzo probabilmente oscillera' tra $0.010136 e $0.00454 durante l'anno.
Quanto varrà Nord Finance in 2032?
Basato sui risultati della nostra ultima previsione sperimentale dei prezzi di Nord Finance, NORD potrebbe subire una 449.04% aumento in valore, raggiungendo $0.0188021 se si verifica lo scenario più positivo in 2032. Il prezzo è previsto rimanere entro un intervallo di $0.0188021 e $0.00693 durante l'anno.
Quanto varrà Nord Finance in 2033?
Secondo la nostra previsione sperimentale dei prezzi di Nord Finance, si prevede che il valore di NORD sarà aumentare del 1362.43% in 2033, con il prezzo potenziale più alto di $0.050081. Durante l'anno, il prezzo di NORD potrebbe oscillare tra $0.050081 e $0.0161052.
Quanto varrà Nord Finance in 2034?
I risultati della nostra nuova simulazione di previsione dei prezzi di Nord Finance suggeriscono che NORD potrebbe aumentare del 746.96% in 2034, raggiungendo potenzialmente $0.0290047 nelle migliori circostanze. L'intervallo di prezzo previsto per l'anno è compreso tra $0.0290047 e $0.012947.
Quanto varrà Nord Finance in 2035?
Basato sulla nostra previsione sperimentale per il prezzo di Nord Finance, NORD potrebbe aumentare del 897.93%, con il valore potenzialmente raggiungendo $0.034174 in 2035. L'intervallo di prezzo atteso per l'anno si trova tra $0.034174 e $0.0153083.
Quanto varrà Nord Finance in 2036?
La nostra recente simulazione di previsione dei prezzi di Nord Finance suggerisce che il valore di NORD potrebbe aumentare del 1964.7% in 2036, potenzialmente raggiungendo $0.0707069 se le condizioni sono ottimali. L' intervallo di prezzo previsto per 2036 è compreso tra $0.0707069 e $0.02534.
Quanto varrà Nord Finance in 2037?
Secondo la simulazione sperimentale, il valore di Nord Finance potrebbe aumentare del 4830.69% in 2037, con un picco di $0.168854 in condizioni favorevoli. Il prezzo è previsto diminuire tra $0.168854 e $0.0658076 nel corso dell' anno.
Previsioni correlate
Previsione del prezzo di Futureswap
Previsione del prezzo di CorgiCoin
Previsione del prezzo di Meowcoin
Previsione del prezzo di Hot CrossPrevisione del prezzo di OSHI
Previsione del prezzo di ROM Token
Previsione del prezzo di Clube Atlético Mineiro Fan Token
Previsione del prezzo di Stride Staked Juno
Previsione del prezzo di FaraLand
Previsione del prezzo di Blank
Previsione del prezzo di Digix Gold
Previsione del prezzo di Ureeqa
Previsione del prezzo di Piccolo Inu
Previsione del prezzo di Franklin
Previsione del prezzo di Geyser
Previsione del prezzo di Auroracoin
Previsione del prezzo di Aion
Previsione del prezzo di zkApes Token
Previsione del prezzo di Flute
Previsione del prezzo di NIOB
Previsione del prezzo di Woonkly Power
Previsione del prezzo di Sperax USD
Previsione del prezzo di DexKit
Previsione del prezzo di Carlive Chain
Previsione del prezzo di TOP Network
Come leggere e prevedere i movimenti di prezzo di Nord Finance?
I trader di Nord Finance utilizzano indicatori e modelli grafici per prevedere la direzione del mercato. Identificano anche livelli chiave di supporto e resistenza per valutare quando un trend ribassista potrebbe rallentare o un trend rialzista potrebbe fermarsi.
Indicatori di previsione del prezzo di Nord Finance
Le medie mobili sono strumenti popolari per la previsione del prezzo di Nord Finance. Una media mobile semplice (SMA) calcola il prezzo di chiusura medio di NORD su un periodo specifico, come una SMA a 12 giorni. Una media mobile esponenziale (EMA) dà più peso ai prezzi recenti, reagendo più rapidamente ai cambiamenti di prezzo.
Le medie mobili comunemente utilizzate nel mercato delle criptovalute includono quelle a 50 giorni, 100 giorni e 200 giorni, che aiutano a identificare livelli chiave di resistenza e supporto. Un movimento del prezzo di NORD al di sopra di queste medie è considerato rialzista, mentre una caduta al di sotto indica debolezza.
I trader utilizzano anche RSI e livelli di ritracciamento di Fibonacci per valutare la direzione futura di NORD.
Come leggere i grafici di Nord Finance e prevedere i movimenti di prezzo?
La maggior parte dei trader preferisce i grafici a candele rispetto ai semplici grafici a linee perché forniscono informazioni più dettagliate. Le candele possono rappresentare l'azione del prezzo di Nord Finance in diversi intervalli di tempo, come 5 minuti per le tendenze a breve termine e settimanale per le tendenze a lungo termine. Le opzioni popolari includono grafici a 1 ora, 4 ore e 1 giorno.
Ad esempio, un grafico a candele di 1 ora mostra i prezzi di apertura, chiusura, massimo e minimo di NORD all'interno di ogni ora. Il colore della candela è cruciale: il verde indica che il prezzo ha chiuso più alto di quanto ha aperto, mentre il rosso significa il contrario. Alcuni grafici utilizzano candele vuote e piene per trasmettere la stessa informazione.
Cosa influisce sul prezzo di Nord Finance?
L'azione del prezzo di Nord Finance è guidata dall'offerta e dalla domanda, influenzata da fattori come dimezzamenti delle ricompense dei blocchi, hard fork e aggiornamenti del protocollo. Eventi del mondo reale, come regolamentazioni, adozione da parte di aziende e governi e hack degli exchange di criptovalute, influenzano anche il prezzo di NORD. La capitalizzazione di mercato di Nord Finance può cambiare rapidamente.
I trader spesso monitorano l'attività delle "balene" di NORD, grandi detentori di Nord Finance, poiché le loro azioni possono influenzare significativamente i movimenti di prezzo nel relativamente piccolo mercato di Nord Finance.
Modelli di previsione del prezzo rialzisti e ribassisti
I trader spesso identificano modelli di candele per ottenere un vantaggio nelle previsioni dei prezzi delle criptovalute. Alcune formazioni indicano tendenze rialziste, mentre altre suggeriscono movimenti ribassisti.
Modelli di candele rialzisti comunemente seguiti:
- Martello
- Ingolgimento rialzista
- Linea penetrante
- Stella del mattino
- Tre soldati bianchi
Modelli di candele ribassisti comuni:
- Harami ribassista
- Copertura a nuvola scura
- Stella della sera
- Stella cadente
- Impiccato


